Special issue: Systematics and Biogeography of Fiddler Crabs

Phylogeography of the Fiddler Crab *Tubuca arcuata* (Crustacea: Brachyura: Ocypodidae) in East Asia and Northern Vietnam

Hsi-Te Shih¹, Min-Yun Liu^{2,*}, Misuzu Aoki³, and Hiroshi Suzuki⁴

¹Department of Life Science and Research Center for Global Change Biology, National Chung Hsing University, Taichung 402, Taiwan. E-mail: htshih@dragon.nchu.edu.tw (Shih)

²Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung 852, Taiwan.

*Correspondence: E-mail: mylalex@narlabs.org.tw (Liu)

³Wetlands International Japan, Tokyo. E-mail: misuzu_a@wi-japan.org (Aoki)

⁴Department of Fisheries Biology and Oceanography, Kagoshima University, Kagoshima, Japan. E-mail: hiroshi.crustacea@gmail.com (Suzuki)

Received 30 December 2021 / Accepted 11 August 2022 / Published 16 November 2022 Communicated by Benny K.K. Chan

Special issue: Systematics and Biogeography of Fiddler Crabs (articles 64-71). Editors: Hsi-Te Shih and Benny K. K. Chan

The fiddler crab *Tubuca arcuata* (Crustacea: Ocypodidae: Gelasiminae) is widely distributed across East Asia and northern Vietnam. Particularly, this species inhabits estuarine mangroves and mudflats of the East Asian continent, as well as the main islands of Japan and the Ryukyus. By comparing sequences of the mitochondrial 16S, cytochrome oxidase subunit I (*COI*), and control region genes, two main clades of this species were elucidated. The northern (N) clade was mostly restricted to the region north of the Taiwan Strait, whereas the wide (W) clade could be found throughout the entire range inhabited by this species. Based on the distribution of the ancestral haplotypes of *COI* and the divergence time of the two clades, our findings suggest that the land bridge barrier present in the Taiwan Strait during glaciations might have played an important role in their cladogenesis, approximately 0.93 million years ago. Here, we propose that the distribution of the ancestral haplotype of the W clade in the Ryukyus and the main islands of Japan was determined by the Paleo-Kuroshio Current, whereas the modern distribution pattern is shaped by the modern Kuroshio Current and other warm currents during the crab reproduction season in the summer.

Key words: Mitochondrial genes, 16S rDNA, Cytochrome oxidase subunit I, Control region gene, Glaciation, Land bridge, Taiwan Strait.

BACKGROUND

The Taiwan Strait is a shallow and narrow watergate located in East Asia, close to the Tropic of Cancer (23.5°N) and between the island of Taiwan and the East Asian continent (Fig. 1A). This strait has been hypothesized to play a key role in the dispersal of continental coastal organisms between subtropical and tropical regions by acting as a barrier. During the glacial period, when the sea level was 140 m below the present level (shaded areas in Fig. 1A), the Taiwan Strait

became a land bridge (Boggs et al. 1979; Voris 2000; Xu et al. 2009) that presumably allowed some terrestrial animals to migrate from continental China to Taiwan and even to the Ryukyu Islands (*e.g.*, mammals, Ho et al. 1997 2000; Cai 1999; reptiles, Lin et al. 2002; frogs, YH Wang et al. 2017; freshwater crabs, Shih et al. 2007 2011). However, the glacial land bridge of the Taiwan Strait also acted as a geographical barrier that impeded the dispersal of marine coastal organisms between the East China Sea (ECS) and the South China Sea (SCS) (see below).

Citation: Shih HT, Liu MY, Aoki M, Suzuki H. 2022. Phylogeography of the fiddler crab *Tubuca arcuata* (Crustacea: Brachyura: Ocypodidae) in East Asia and northern Vietnam. Zool Stud **61**:68. doi:10.6620/ZS.2022.61-68.

Several hypotheses for the phylogeographic patterns of marine organisms in East Asia have been proposed (see Fig. 1A). For example, some studies have indicated that (1) there is little divergence along the coastal regions of the East Asian continent (e.g., mudskippers, He et al. 2015; filefish, ZY Wang et al. 2016; flathead fish, Cheng et al. 2019); (2) the Yellow Sea (YS) clades are unique, due to the occurrence of local ocean gyres (e.g., marine snails, Ni et al. 2015; Zhao et al. 2017; swimming crabs, Han et al. 2015); (3) the northern and southern clades in both continental and insular regions are separated by the Yangtze River, due to freshwater discharge (e.g., marine snails, Dong et al. 2012; Yu et al. 2014; Ni et al. 2015 2017; J Wang et al. 2015; algae, Cheang et al. 2010; J Wang et al. 2015); (4) the northern and southern clades in the continental region were separated by the Taiwan Strait during glaciations (e.g., mullets, Liu et al. 2007b; mitten crabs, Xu et al. 2009; bivalves, XX Wang et al. 2017); and (5) the Okinawa (or the Ryukyus) clade is unique (e.g., barnacles, Chang et al. 2017; intertidal crabs including *Tmethypocoelis*, *Mictvris*, and *Scopimera*, Davie and Kosuge 1995; Davie et al. 2010; Wong et al. 2010).

Tubuca arcuata (De Haan, 1835), one of the most common species of fiddler crabs in East Asia, is widely distributed across mudflats and estuaries in the subtropical to tropical regions of East Asia, Korea, Japan (including the Ryukyus), Taiwan (including Penghu), China (including Hainan and Hong Kong), and northern Vietnam (Crane 1975; Yoshigou 2001; Shih et al. 2010 2022). This species was grouped among the continental fiddler crabs in East Asia, by exhibiting a similar distribution to Austruca lactea, Gelasimus borealis, and Paraleptuca splendida (see Shih 2012). The general ecology, reproduction, growth and behavior of T. arcuata have been extensively studied (e.g., JT Shih 1990 1992; JT Shih et al. 1991; Murai 1992; JH Shih and Lan 1993; JH Shih and Wang 1993; Jones and Morton 1994; Li 1996; Otani et al. 1997; Wada and Murata 2000; Aoki et al. 2010). During its early development, this species undergoes five zoeal stages within 18 days, followed by the megalopal stage (Ko and Kim 1989). Furthermore, this species has been included in various phylogenetic studies of fiddler crabs (Levinton et al. 1996; Sturmbauer et al. 1996; Shih et al. 2016b) and a study analyzing its full

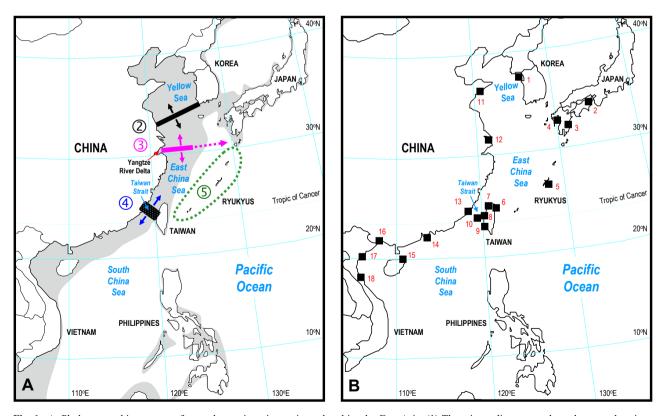


Fig. 1. A, Phylogeographic patterns of coastal organisms in continental and insular East Asia. (1) There is no divergence along the coastal regions of the East Asian continent (not shown); (2) the unique Yellow Sea clade; (3) northern and southern clades of the continental (and insular) regions separated by the Yangtze River; (4) the north and south clades along the continental region separated by the Taiwan Strait; (5) the unique Okinawa or Ryukyus clade. See the BACKGROUND section for more details. B, Collection sites (squares) for specimens of *Tubuca arcuata* from East Asia and northern Vietnam (the numbers next to the squares correspond to the localities in Table 1).

polymorphism (RFLP), Aoki et al. 2008). *Tubuca arcuata* is widely distributed throughout the continent and islands of East Asia and northern Vietnam, and the Okinawa population was considered to have minimal gene flow with other populations (Aoki et al. 2008). Therefore this species is a good candidate to test the above listed hypotheses regarding the phylogeographic patterns. Our study aimed to: (1) characterize a variety of mitochondrial genetic markers (16S rDNA, cytochrome oxidase subunit I [*COI*] and control region [CR]) in *T. arcuata* samples from various locations across their natural habitat range; (2) assess the uniqueness of the Okinawa population; and (3) explain the elucidated phylogeographic patterns in the context of historical glacial events and/or contemporary ocean currents.

MATERIALS AND METHODS

Tubuca arcuata specimens collected from across East Asia, as well as the outgroup *T. forcipata* from Malaysia (Table 1; Fig. 1), were preserved in 70–95% ethanol and deposited into the Zoological Collections of the Department of Life Science, National Chung Hsing University, Taichung, Taiwan (NCHUZOOL); the Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan (NTOU) and the Zoological Reference Collection, Raffles Museum of Biodiversity Research, National University of Singapore (ZRC).

Table 1. Specimens and haplotypes of the 16S rRNA, *COI*, and CR genetic markers of *Tubuca arcuata* from East Asia and northern Vietnam, as well as the outgroup *T. forcipata* used in this study. The numbers within brackets following the localities correspond to those in figure 1B. For abbreviations of museums or universities see the MATERIALS AND METHODS

	Locality	Catalogue no. of NCHUZOOL (unless indicated)	Haplotype of 16S	Access. no. of 16S	Haplotype of <i>COI</i>	Access. no. of <i>COI</i>	Haplotype of control region	Access. no. of control region
T. arcuata	North							
N clade	South Korea: Ganghwa Island, Incheon [1]	13651	S 1	LC053353	C1	LC053370		
	South Korea: Ganghwa Island, Incheon [1]	13651	S 1	OP167996	C2	OP153631		
	Japan: Yoshinogawa R., Tokushima [2]	a	S1	OP167997	C3	OP153632		
	Taiwan: Guandu, Taipei [7]	NTOU	S1	OP167998	C4	OP153633	D1	OP183984
	Taiwan: Guandu, Taipei [7]	NTOU	S1	OP167999	C5	OP153634	D2	OP183985
	Taiwan: Guandu, Taipei [7]	NTOU	S2	OP168000	C2	OP153635	D3	OP183986
	Taiwan: Houlong R., Miaoli [8]	14614	S3	OP168001	C2	OP153636	D4	OP183987
	Taiwan: Shengang, Changhua [9]	14615	S1	OP168002	C6	OP153637	D5	OP183988
	Taiwan: Dongshih, Chiayi County [9]	14618	S4	OP168003	C7	OP153638	D6	OP183989
	Taiwan: Cigu, Tainan [9]	13260	S1	OP168004	C1	OP153639	D7	OP183990
	Taiwan: Cigu, Tainan [9]	13260	S5	AB491164	C8	AB491165	D8	OP183991
	Taiwan: Cieding, Kaohsiung [9]	15162	S6	OP168005	C9	OP153640	D9	OP183992
	Taiwan: Caiyuan, Penghu [10]	14628	S7	OP168006	C2	OP153641	D10	OP183993
	Taiwan: Kinmen [13]	14608	S1	OP168007	C10	OP153642	D11	OP183994
	China: Qingdao [11]	15163	S1	OP168008	C2	OP153643	D12	OP183995
	China: Qingdao [11]	15163	S1	OP168009	C2	OP153644	D13	OP183996
	China: Qingdao [11]	15163	S1	OP168010	C11	OP153645		
	China: Shanghai [12]	ZRC 1998.308	S7	OP168011	C2	OP153646		
	China: Xiamen, Fujian [13]	13350	S1	OP168012	C2	OP153647	D14	OP183997
W clade	South Korea: Ganghwa Island, Incheon [1]	13651	S1	OP168013	C12	OP153648	D15	OP183998
	South Korea: Ganghwa Island, Incheon [1]	13651	S1	OP168014	C12	OP153649	D16	OP183999
	Japan: Yoshinogawa R., Tokushima [2]	a	S1	OP168015	C13	OP153650	D17	OP184000
	Japan: Yoshinogawa R., Tokushima [2]	a	S8	OP168016	C14	OP153651	D18	OP184001
	Japan: Yoshinogawa R., Tokushima [2]	a	S 1	OP168017	C14	AB535432	D19	OP184002
	Japan: Yoshinogawa R., Tokushima [2]	a	S1	OP168018	C15	OP153652	D20	OP184003
	Japan: Kaeda R., Miyazaki [3]	14610	S1	LC097112	C14	AB535432	D21	OP184004
	Japan: Kaeda R., Miyazaki [3]	14610	S1	OP168019	C14	AB535432		
	Japan: Kaeda R., Miyazaki [3]	14610	S1	OP168020	C13	OP153653	D22	OP184005
	Japan: Kaeda R., Miyazaki [3]	14610	S1	OP168021	C16	OP153654	D23	OP184006
	Japan: Ohno R., Kumamoto [4]	a	S 1	OP168022	C17	OP153655	D24	OP184007

	Locality	Catalogue no. of NCHUZOOL (unless indicated)	Haplotype of 16S	Access. no. of 16S	Haplotype of <i>COI</i>	Access. no. of <i>COI</i>	Haplotype of control region	Access. no. of control region
	Japan: Nakagushuku Bay, Okinawa [5]	a	S1	OP168023	C14	AB535432	D25	OP184008
	Japan: Nakagushuku Bay, Okinawa [5]	a	S9	OP168024	C18	OP153656	D26	OP184009
	Japan: Nakagushuku Bay, Okinawa [5]	a	S1	OP168025	C14	AB535432	D27	OP184010
	Japan: Nakagushuku Bay, Okinawa [5]	a	S9	OP168026	C19	OP153657	D28	OP184011
	Japan: Nakagushuku Bay, Okinawa [5]	a	S9	OP168027	C18	OP153658	D29	OP184012
	Taiwan: Yilan [6]	14625	S10	OP168028	C14	AB535432	D30	OP184013
	Taiwan: Yilan [6]	14625	S1	OP168029	C20	OP153659	D31	OP184014
	Taiwan: Yilan [6]	14620	S11	OP168030	C14	OP153660	D32	OP184015
	Taiwan: Jhuwei, New Taipei City [7]	14627	S1	OP168031	C21	OP153661		
	Taiwan: Jhuwei, New Taipei City [7]	14627	S1	OP168032	C12	OP153662	D33	OP184016
	Taiwan: Guandu, Taipei [7]	NTOU	S1	OP168033	C22	OP153663	D34	OP184017
	Taiwan: Guandu, Taipei [7]	NTOU	S1 S1	OP168034	C23	OP153664	D35	OP184018
	Taiwan: Guandu, Taipei [7]	NTOU	S12	OP168035	C24	OP153665	D35	OP184019
	Taiwan: Haishangu, Hsinchu City [8]	13305	S12	AB535406	C14	AB535432	D30	01104017
	Taiwan: Yuanli, Miaoli [8]	14616	S14	OP168036	C25	OP153666		
	Taiwan: Wenliao, Taichung [8]	14619	S14 S1	OP168030 OP168037	C23 C26	OP153667	D27	OP184020
							D37	
	Taiwan: Gaomei, Taichung [8]	14629	S15	OP168038	C27	OP153668	D38	OP184021
	Taiwan: Shengang, Changhua [9]	14624	S1	OP168039	C14	AB535432	D39	OP184022
	Taiwan: Shengang, Changhua [9]	14615	S16	OP168040	C28	OP153669	D40	OP184023
	Taiwan: Shengang, Changhua [9]	14611	S17	OP168041	C29	OP153670		
	Taiwan: Hanbao, Changhua [9]	14634	S1	OP168042	C30	OP153671		
	Taiwan: Hanbao, Changhua [9]	15164	S18	OP168043	C31	OP153672	D41	OP184024
	Taiwan: Cigu, Tainan [9]	14612	S1	OP168044	C32	OP153673	XXX	
	Taiwan: Cigu, Tainan [9]	14612	S1	OP168045	C33	OP153674	D42	OP184025
	Taiwan: Cigu, Tainan [9]	14630	S19	OP168046	C25	OP153675	D43	OP184026
	Taiwan: Cieding, Kaohsiung [9]	15162	S1	OP168047	C14	OP153676	D44	OP184027
	Taiwan: Linyuan, Kaohsiung [9]	15165	S3	OP168048	C34	OP153677	D45	OP184028
	Taiwan: Cingluo, Penghu [10]	14631	S20	OP168049	C35	OP153678	D46	OP184029
	Taiwan: Shuangyuan, Penghu [10]	14663	S21	OP168050	C33	OP153679	D47	OP184030
	Taiwan: Kinmen [13]	14622	S22	OP168051	C36	OP153680		
	Taiwan: Kinmen [13]	14747	S1	OP168052	C14	OP153681		
	China: Shanghai [12]	ZRC 1998.308	S23	OP168053	C37	OP153682	D48	OP184031
	China: Xiamen, Fujian [13]	13350	S24	OP168054	C14	AB535432		
	China: Xiamen, Fujian [13]	13350	S1	OP168055	C14	OP153683	D49	OP184032
	Hong Kong [14]	13362	S3	OP168056	C38	OP153684	D50	OP184033
	Hong Kong [14]	13362	S1	OP168057	C39	OP153685	D51	OP184034
	Hong Kong [14]	13362	S 1	OP168058	C40	OP153686	D52	OP184035
	Hong Kong [14]	13362	S 1	OP168059	C41	OP153687		
	China: Dongzhai, Hainan [15]	13363	S25	OP168060	C42	OP153688	D53	OP184036
	China: Dongzhai, Hainan [15]	13363	S25	OP168061	C42	OP153689	D54	OP184037
	China: Dongzhai, Hainan [15]	13363	S26	AB813667	C43	AB813684	201	01101057
	China: Dongzhai, Hainan [15]	13363	S1	OP168062	C44	OP153690		
	China: Dongzhai, Hainan [15]	13363	S1	OP168063	C31			
						OP153691	D55	00194029
	China: Qinzhou, Guangxi [16] Vietnam: Cat Ba Island [17]	13362	S3	OP168064	C45	OP153692	D55	OP184038
		15140 7DC	S1	OP168065	C14	ON193478		
	Vietnam: Nam Dinh [17]	ZRC	S3	OP168066	C46	OP153693	Dre	00104020
	Vietnam: Nam Dinh [17]	15144	S1	OP168067	C14	ON193480	D56	OP184039
	Vietnam: Nam Dinh [17]	15144	S1	OP168068	C14	ON193481	D57	OP184040
	Vietnam: Nam Dinh [17]	15144	S3	OP168069	C14	ON193482	D58	OP184041
	Vietnam: Nam Dinh [17]	15100	S1	OP168070	C14	ON193479	D59	OP184042
	Vietnam: Ha Tinh [18]	15141	S1	OP168071	C47	ON193483	D60	OP184043
Outgroups								
T. forcipata	Malaysia: Johore	NTOU	fc-S	LC053355	fc-C	LC053372	fc-D1	OP184044
	Malaysia: Johore	NTOU	fc-S	OP168073	fc-C	OP153695	fc-D2	OP184045
	Malaysia: Johore	NTOU	fc-S	OP168074	fc-C	OP153696	fc-D3	OP184046

^a Voucher specimen not preserved.

Genomic DNA was isolated from muscle tissues using commercial kits and the sequences of the mitochondrial 16S rDNA [~560 base pairs (bp)], COI (658 bp), and CR (~905 bp) markers were obtained as described by Shih et al. (2013 2016b) with verification with the complementary strand. The primers used were 1471 (5'-CCTGTTTANCAAAAACAT-3'), 1472 (5'-AGATAGAAACCAACCTGG-3') (Crandall and Fitzpatrick 1996), 16L29 (5'-YGCCTGTTTATCAAAAACAT-3') and 16H10 (5'-AATCCTTTCGTACTAAA-3') (Schubart 2009) for 16S; LCO1490 (5'-GGTCAACAAAT CATAAAGATATTGG-3') and HCO2198 (5'-TA AACTTCAGGGTGACCAAAAATCA-3') (Folmer et al. 1994) for COI; and ILEUCAR3 (5'-GCTAYCCTTTTAAATCAGGCAC-3'; Pie et al. 2008), CR-F4 (5'-TAAGTATAACCGCAGATG-3'; Shih et al. 2013), as well as the three newly designed CR-F2 (5'-TAATAAAACATGCTGAGAACTGAAAC-3'), CR-R1 (5'-GATGGGGGGCTGATAGGGGGCTGTAGTGGT AA-3') and CR-R2 (5'-ATAAATAATAAGGACAAA-3') for CR. The sequences of the different haplotypes were deposited into the NCBI GenBank database (accession numbers are summarized in Table 1).

For the combined 16S, COI, and CR dataset, the best fitting models for sequence evolution of individual datasets were determined independently using the jModelTest tool (vers. 2.1.4, Darriba et al. 2012) and selected based on the Bayesian information criterion (BIC). The best models were the HKY, HKY+G, and TIM3+I+G models, respectively, and were subsequently applied to the partitioned Bayesian inference (BI) analysis. BI analysis was performed using the MrBayes package (vers. 3.2.6, Ronquist et al. 2012). Searches were conducted with 4 chains for 10 million generations and 4 independent runs, with trees sampled every 1000 generations. The convergence of the chains was determined by the average standard deviation of the split frequency values below the recommended threshold of 0.01 (Ronquist et al. 2005) and the first 3100 trees were discarded as burnin. A maximum parsimony (MP) consensus tree was constructed using MEGA software (vers. 11, Tamura et al. 2021), with 2000 bootstrap reiterations of a simple heuristic search, TBR branch-swapping (tree bisection-reconnection) (100 random-addition sequence replications; max no. of trees to retain = 10000). The relationships of the 16S and COI haplotypes among the T. arcuata populations were presented separately using the program TCS (vers. 1.23, Clement et al. 2000) with the gaps treated as the fifth state in 16S. As the network of CR haplotypes contains a lot of unsampled sequences (Leigh and Bryant 2015), it was not used in this study. The bp difference, as well as the pairwise estimates of the Kimura 2-parameter (K2P) distance (Kimura 1980) and the uncorrected *p*-distance for the genetic divergence between haplotypes were calculated using MEGA.

RESULTS

A 557 bp segment of the 16S gene from 81 specimens, a 658 bp segment of COI from 81 specimens, and a 920 bp segment of CR from 60 specimens of T. arcuata were amplified and aligned. A total of 26 haplotypes of the 16S gene, 47 haplotypes of COI and 60 haplotypes of CR were found (Table 1). Phylogenetic analyses based on the combined 16S, COI, and CR database of 2135 bp from 63 specimens (including the outgroups) elucidated two clades that were highly supported by BI and MP analyses (Fig. 2). One clade was labeled as the "N clade", because it was mainly distributed in the north region of the habitat range (green line in Fig. 5A), whereas the other clade was labeled as the "W clade" because it was widely distributed across the entire habitat range (red line in Fig. 5A). Two haplotypes ("S1" and "S3") of 16S were shared by the N and W clades shown in the 16S haplotype network (Fig. 3?). 11 and 36 haplotypes of COI were present in N and W clades, respectively, without a shared haplotype (Table 1). For the CR marker, there were 14 and 46 haplotypes for the N and W clades, respectively, without a shared haplotype (Table 1).

For the *COI* haplotype network analysis based on 81 specimens, the network (Fig. 4) indicated that there were two clades that were separated by at least eight steps, which is consistent with the clades revealed by the combined 16S, *COI*, and CR phylogeny (Fig. 2). The ancestral haplotype of the N clade is "C2," which was represented by eight specimens distributed in Korea, South and North China, and Taiwan. In contrast, the ancestral haplotype of the W clade is "C14", which was represented by 19 specimens distributed in Japan (including Okinawa), Taiwan, South China, and Vietnam (Table 1; Figs. 4, 5B).

The nucleotide divergence with the K2P distance and bp difference between the *COI* haplotypes of the N and W clades are shown in table 2. The average nucleotide divergences and bp differences within the N and W clades were 0.23% (1.53 bp) and 0.32% (2.09 bp), respectively, whereas the divergence between clades was 1.44% (9.32 bp).

DISCUSSION

The distribution of fiddler crabs is known to

be greatly influenced by the dispersal of planktonic larvae via ocean current transport (Barnwell and Thurman 1984; Hopkins and Thurman 2010; López-Duarte et al. 2011). However, according to the study of López-Duarte et al. (2011), species in mesohaline or oligohaline habitats (e.g., the estuaries) exhibit narrower distributional ranges than species in euhaline habitats (e.g., the open coasts) because larvae migrate vertically in estuaries to avoid currents and ensure their retention (Shih et al. 2015 2019). The distribution of T. arcuata is consistent with the above described estuarine pattern, with a narrower distribution compared to other open coastal species (e.g., Austruca annulipes, A. perplexa, Gelasimus tetragonon, Paraleptuca crassipes; Crane 1975; Shih et al. 2009 2013; Shih and Poupin 2020). Our study identified two clades within T. arcuata: the N clade distributed in the northern region and the W clade distributed widely throughout the entire habitat range

(Figs. 2, 5A). However, only one unresolved clade in the network of 16S haplotypes (Fig. 3) and some shared 16S haplotypes in N and W clades were found, which implies a lower resolution of 16S compared with *COI* (Chu et al. 2015).

Based on the pairwise divergence rates of 1.66% per million years for *COI* in marine coastal crabs of the family Sesarmidae (Schubart et al. 1998), the N and W clades of *T. arcuata* possibly diverged approximately 0.93 ± 0.3 million years ago (mya) (with *p*-distance divergences of $1.54\% \pm 0.47\%$) during the Pleistocene. The divergence between these clades was probably caused by glaciation events, with fluctuations in the global sea levels occurring in cycles of 100,000 years during the Pleistocene (Haq et al. 1987; Woodruff 2003; Shih et al. 2011).

During these glaciation periods, the main Paleo-Kuroshio Current was hypothesized to flow along the

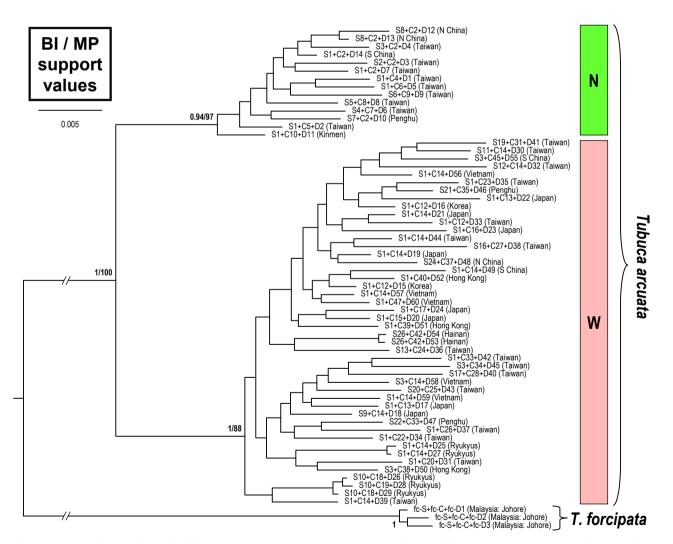


Fig. 2. Bayesian inference (BI) tree for *Tubuca arcuata* based on the combined mitochondrial 16S, *COI*, and control region markers. The probability values at the nodes represent support values (> 50%) for BI and maximum parsimony (MP), respectively. See table 1 for haplotype names.

eastern side of the Ryukyus (Ujiié et al. 2003), with branches extending to areas further north (Ujiié et al. 1991) (Fig. 5B). This differs from the modern pattern of the Kuroshio Current and its branches (Fig. 5A). We hypothesize that the ancestral distributions of the N and W clades could be determined from the current distributions based on their ancestral haplotypes. That is, the ancestral N haplotype was likely distributed across the coastal regions of the ECS and the YS (green line in Fig. 5B). In contrast, the distribution of the ancestral W haplotype includes the northern coastal region of the SCS, Taiwan, Okinawa, and the main islands of Japan. Therefore, we hypothesize that the original ancestral distribution of the latter during the glaciation period was the northern SCS, but was further dispersed northwardly to Okinawa and the main islands of Japan by the Paleo-Kuroshio Current (Fig. 5B).

After the glaciation period, due to the emergence of modern warm currents (including the Kuroshio Current and its branches, the South China Sea Warm Current and the Taiwan Worm Current; blue arrows in Fig. 5A), the ancestral haplotypes of both clades were dispersed to their current habitat range in coastal regions (green and red arrows in Fig. 5B), and their

descendant haplotypes also dispersed to more distant areas (green and red arrows in Fig. 5A). Based on the distribution of descendent W haplotypes in the coastal regions of the ECS and the YS as well as the presence of the descendent N haplotype in the main islands of Japan (Fig. 5A), we propose that the crabs' larvae were dispersed northwardly by warm currents during the reproduction seasons in the summer (blue solid arrows in Fig. 5A). However, the N clade does not extend its range to the SCS (only some extension in southwestern Taiwan). This may have been because the only southward current is the cold China Coastal Current in winter (blue dotted arrow in Fig. 5A; Kang et al. 2021), which would have impeded the southward dispersion of larvae. In other studies, the mixing between the N and W clades separated by the Taiwan Strait was more limited due to the low larvae dispersal (e.g., mullets, Liu et al. 2007b; mitten crabs, Xu et al. 2009; bivalves, XX Wang et al. 2017).

In our study, the Okinawa population did not form an isolated clade and even shared an ancestral *COI* haplotype with others (Figs. 2, 4), which is different from a previous conclusion that the Okinawa population of *T. arcuata* was genetically distinct based on RFLP

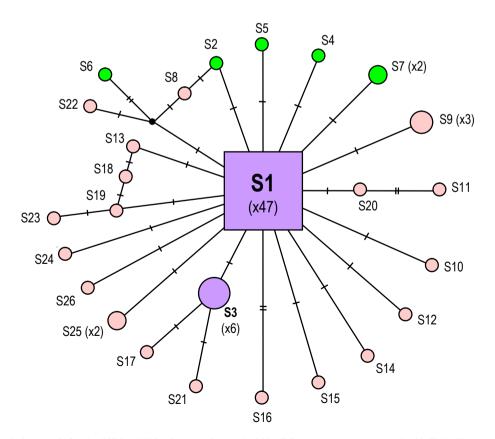


Fig. 3. Genealogical network for the 557-bp 16S haplotypes observed within *Tubuca arcuata*, constructed with TCS. The ancestral haplotype is indicated by square. Green and red circles mean the haplotypes of the N and W clades, respectively; and the square and circle in purple represent the haplotypes that are shared by N and W clades. Unlabelled hatches and node indicate inferred haplotypes not found in the sampled population.

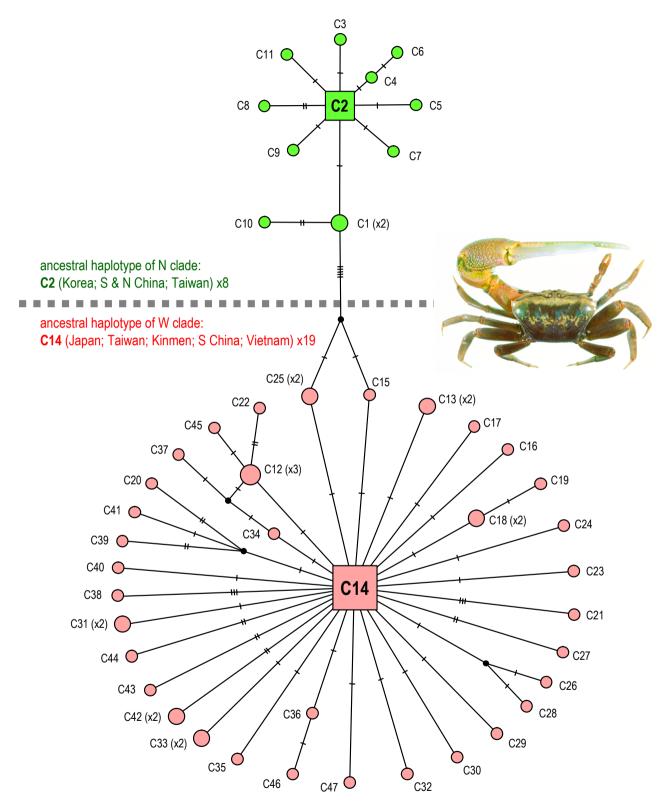
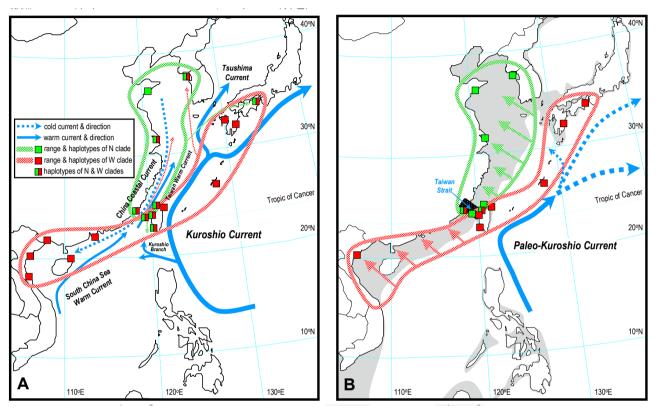



Fig. 4. Genealogical network for the 658-bp *COI* haplotypes observed within *Tubuca arcuata*, constructed with TCS. The ancestral haplotypes of the N and W clades are indicated by squares. Unlabelled hatches and nodes indicate inferred haplotypes not found in the sampled population.

analysis (Aoki et al. 2008). In fact, although one RFLP haplotype is dominant in the Okinawa group, all three haplotypes are shared with other populations (Aoki et al. 2008: table 2) and an alternative conclusion might be obtained by using a larger sample size. Another similar study on the phylogeography of the *Parasesarma bidens*

complex (Sesarmidae) using 16S and *COI* (Shahdadi et al. 2022) showed one clade mainly distributed in the main islands of Japan and the Ryukyus, which might belong to the pattern of the unique Ryukyus clade (see BACKGROUND) (no. 5 in Fig. 1A), although the range also extended to the main islands of Japan and Taiwan.

Fig. 5. A, Distributions of the N haplotypes (green squares) and the W haplotypes (red squares). The green and red lines and arrows indicate the possible biogeographical boundary and possible dispersal direction of the N and W clades after glaciation, respectively. The square with both red and green represents the locality with both N and W haplotypes. The blue solid and dotted lines and arrows represent the warm and cold currents in summer and winter, respectively. B, Distribution of the ancestral haplotypes of the N clade (green squares) and the W clade (red squares). The green and red lines and arrows indicate the possible biogeographical boundary and the assumed dispersal direction of the ancestral N and W clades after glaciation, respectively. The shaded sea areas represent continental shelves (< 120 m) that would have been dry during periods of low sea level (after Voris 2000; Xu et al. 2009). The blue solid line indicates the Paleo-Kuroshio Current (after Ujiié et al. 2003) and the dotted lines are the possible extended branches of the Paleo-Kuroshio Current (after Ujiié et al. 1991).

Table 2. Matrix of the percentage pairwise nucleotide divergences with K2P distance and mean number of bp differences based on *COI* within and between clades of *Tubuca arcuata* from across East Asia and northern Vietnam (see Table 1). In the right half, the lower-left values are K2P distance and the upper-right ones are mean bp differences. Ranges are indicated in parentheses

	Within clade		Between clades		
	nucleotide divergence	mean bp difference	N clade	W clade	
N clade	0.23	1.53		9.32	
	(0-0.76)	(0-5)		(6–13)	
W clade	0.32	2.09	1.44		
	(0-0.92)	(0–6)	(0.92–2.01)		

The estuarine crab species *Austruca lactea* has a similar distribution in East Asia and northern Vietnam, but there is no record of this species in the Ryukyus (Crane 1975; Shih et al. 2016a 2022). Based on the CR sequences of specimens from the main islands of Japan and Taiwan (including Penghu) (Tokuyama et al. 2020), three populations can be distinguished (Seto Inland Sea, Kumamoto in Kyushu, and Taiwan). However, these three putative clades could not be identified in their trees. Therefore, further analysis with different markers and more specimens covering the whole habitat range is necessary to clarify the genetic population structure of this species.

The phylogeographic pattern of *T. arcuata* elucidated herein was consistent with the hypothesis that the land bridge across the Taiwan Strait acted as a barrier for marine organisms during glaciations (see BACKGROUND) (no. 4 in Fig. 1A) and the Paleo-Kuroshio Current played an important role in larval dispersal to Okinawa and the main islands of Japan. Modern ocean currents in East Asia and the northern SCS promote the dispersal of larvae from both clades to farther areas. However, the N clade does not exist in the northern SCS due to the direction of warm currents in the summer (*i.e.*, reproduction season).

CONCLUSIONS

Based on the combined mitochondrial 16S, *COI*, and CR markers, our findings suggest that the phylogenetic pattern of two distinct (N and W) clades in *Tubuca arcuata* originated from the separation by the land bridge in the Taiwan Strait during the glaciation period approximately 0.93 mya. For the W clade, the additional driving force of the Paleo-Kuroshio Current promoted larval dispersal northwardly from the SCS to Okinawa and the main islands of Japan. The modern distributional patterns of both clades are thus likely influenced by the Kuroshio Current and other warm currents in the summer. The Okinawa population does not form an isolated clade and shares the ancestral haplotype with others.

Acknowledgments: This study was supported by grants from the Ministry of Science and Technology (MOST 108-2621-B-005-002-MY3; 111-2621-B-005-003), Executive Yuan, Taiwan, to HTS. We wish to express thanks to Tohru Naruse for the information on the population of *Tubuca arcuata* in Okinawa; Taewon Kim, Ping-Ho Ho, Peter K.L. Ng, Ngan Kee Ng, Benny K.K. Chan, Kingsley Wong, Thanh Son Nguyen and Van Tu Do for providing specimens; and Pei-Yi Hsu and Min-Wan Chen for doing part of the molecular

work. We also acknowledge Christoph Schubart and one anonymous referee who helped improve the manuscript.

Authors' contributions: HTS conceived this study, performed the molecular analysis, and drafted the manuscript. MYL performed the molecular analysis and drafted the manuscript; MA and HS collected and processed the samples, participated in the discussion and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests: The authors declare that they have no conflict of interest.

Availability of data and materials: Sequences generated in the study were deposited into the GenBank database (accession numbers in Table 1).

Consent for publication: Not applicable.

Ethics approval consent to participate: Not applicable.

REFERENCES

- Aoki M, Naruse T, Cheng J-H, Suzuki Y, Imai H. 2008. Low genetic variability in an endangered population of fiddler crab Uca arcuata on Okinawajima Island: analysis of mitochondrial DNA. Fish Sci 74:330–340. doi:10.1111/j.1444-2906.2008.01529.x.
- Aoki M, Watanabe Y, Imai H, Kamada M, Wada K. 2010. Interpopulation variations in life history traits in the fiddler crab Uca arcuata. J Crustacean Biol 30:607–614. doi:10.1651/09-3222.1.
- Barnwell FH, Thurman CL. 1984. Taxonomy and biogeography of the fiddler crabs (Ocypodidae: genus Uca) of the Atlantic and Gulf coasts of eastern North America. Zool J Linn Soc 81:23–87. doi:10.1111/j.1096-3642.1984.tb02558.x.
- Boggs S, Wang W-C, Lewis FS, Chen J-C. 1979. Sediment properties and water characteristics of the Taiwan Shelf and Slope. Acta Oceanogr Taiwan **10:**10–49.
- Cai BQ. 1999. The Late Pleistocene fossil mammals and the palaeogeographical environment of the Taiwan Strait. J Xiamen Univ (Arts Soc Sci) 140(4):29–33. (in Chinese)
- Chang Y-W, Chan JSM, Hayashi R, Shuto T, Tsang LM, Chu KH, Chan BKK. 2017. Genetic differentiation of the soft shore barnacle *Fistulobalanus albicostatus* (Cirripedia: Thoracica: Balanomorpha) in the West Pacific. Mar Ecol 38:e12422. doi:10.1111/maec.12422.
- Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol **9:**1657–1659. doi:10.1046/j.1365-294x.2000.01020.x.
- Crane J. 1975. Fiddler Crabs of the World (Ocypodidae: Genus *Uca*). Princeton University Press, Princeton, New Jersey, 736 pp.
- Cheang CC, Chu KH, Ang POJ. 2010. Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol Ecol 19:2933– 2948. doi:10.1111/j.1365-294X.2010.04685.x.
- Cheng J, Wang Z-Y, Song N, Yanagimoto T, Gao TX. 2019.

Phylogeographic analysis of the genus *Platycephalus* along the coastline of the northwestern Pacific inferred by mitochondrial DNA. BMC Evol Biol **19:**159. doi:10.1186/s12862-019-1477-1.

- Chu KH, Schubart CD, Shih H-T, Tsang LM. 2015. Genetic diversity and evolution of Brachyura. *In*: Castro P, Davie PJF, Guinot D, Schram FR, von Vaupel Klein JC (eds) Treatise on zoology anatomy, taxonomy, biology—the Crustacea, complementary to the volumes translated from the French of the Traité de Zoologie. Brill, Leiden 9(C)(II), Decapoda: Brachyura (Part 2), pp. 775– 820. doi:10.1163/9789004190832_016.
- Crandall KA, Fitzpatrick JFJ. 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst Biol **45:**1–26. doi:10.1093/sysbio/45.1.1.
- Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772. doi:10.1038/nmeth.2109.
- Davie PJF, Kosuge T. 1995. A new species of *Tmethypocoelis* (Crustacea: Brachyura: Ocypodidae) from Japan. Raffles Bull Zool 43:207–215.
- Davie PJF, Shih H-T, Chan BKK. 2010. A new species of *Mictyris* (Decapoda, Brachyura, Mictyridae) from the Ryukyu Islands, Japan. Crust Monogr 11:83–105. doi:10.1163/ej.9789004170865. i-366.61.
- Dong Y-W, Wang HS, Han G-D, Ke C-H, Zhan X, Nakano T, Williams GA. 2012. The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of *Cellana toreuma* along the China coast. PLoS ONE 7:e36178. doi:10.1371/journal.pone.0036178.
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol **3:**294–299.
- Han Z-Q, Zheng W, Zhu W-B, Yu C-G, Shui B-N, Gao T-X. 2015. A barrier to gene flow in the Asian paddle crab, *Charybdis japonica*, in the Yellow Sea. ICES J Mar Sci 72:1440–1448. doi:10.1093/icesjms/fsv020.
- Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi:10.1126/ science.235.4793.1156.
- He L-J, Mukai T, Chu KH, Ma Q, Zhang J. 2015. Biogeographical role of the Kuroshio Current in the amphibious mudskipper *Periophthalmus modestus* indicated by mitochondrial DNA data. Sci Rep **5**:15645. doi:10.1038/srep15645.
- Ho C-K, Qi G-Q, Chang C-H. 1997. A preliminary study of Late Pleistocene carnivore fossils from the Penghu Channel, Taiwan. Ann Taiwan Mus 40:195–224. (in Chinese)
- Ho C-K, Qi G-Q, Chang C-H. 2000. Systematic description and classification of Late Pleistocene *Palaeoloxodon*. Ann Nat Taiwan Mus **43**:49–105. (in Chinese)
- Hopkins MJ, Thurman CL. 2010. The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biol J Linn Soc 100:248–270. doi:10.1111/j.1095-8312.2010.01402.x.
- Huang S, Shih JT. 1995. Microgeographic genetic structure of the fiddler crab, *Uca arcuata* de Haan (Ocypodidae) in Taiwan. Hydrobiologia **295:**67–74. doi:10.1007/BF00029112.
- Jones DS, Morton B. 1994. The fiddler crabs (Ocypodidae: *Uca*) of Hong Kong. Asian Mar Biol **11**:9–40.
- Kang B, Pecl GT, Lin L-S, Sun P, Zhang P-D, Li Y, Zhao L-L, Peng X, Yan Y-R, Shen C-Y, Niu W-T. 2021. Climate change impacts on China's marine ecosystems. Rev Fish Biol Fish 31:599–629. doi:10.1007/s11160-021-09668-6.
- Karagozlu MZ, Kim JY, Do DT, Nguyen VQ, Kim S-G, Kim C-B.

. _

page 11 of 13

2016. Analysis of complete mitochondrial genome of fiddler crab *Uca (Tubuca) arcuata* (De Haan, 1835) (Arthropoda, Malacostraca, Decapoda). Mitochondrial DNA B **1**:835–836. doi:10.1080/23802359.2016.1247673.

- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/bf01731581.
- Ko HS, Kim CH. 1989. Complete larval development of *Uca arcuata* (Crustacea, Brachyura, Ocypodidae) reared in the laboratory. Korean J Syst Zool 5:89–105.
- Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110– 1116. doi:10.1111/2041-210X.12410.
- Levinton JS, Sturmbauer C, Christy J. 1996. Molecular data and biogeography: resolution of a controversy over evolutionary history of a pan-tropical group of invertebrates. J Exp Mar Biol Ecol **203**:117–131.
- Li M-Y. 1996. On the biological characteristics of *Uca arcuata* from the mudflats of Putuo and Ningbo, Zhejiang, China. Chin J Zool **31(6):**32–35. (in Chinese)
- Lin S-M, Chen CA, Lue K-Y. 2002. Molecular phylogeny and biogeography of the grass lizards genus *Takydromus* (Reptilia: Lacertidae) of East Asia. Mol Phylogenet Evol 22:276–288. doi:10.1006/mpev.2001.1059.
- Liu J-X, Gao T-X, Wu S-F, Zhang Y-P. 2007. Pleistocene isolation in the northwestern Pacific marginal seas and limited dispersal in a marine fish, *Chelon haematocheilus* (Temminck & Schlegel, 1845). Mol Ecol 16:275–288. doi:10.1111/j.1365-294X.2006.03140.x.
- López-Duarte PC, Christy JH, Tankersley RA. 2011. A behavioral mechanism for dispersal in fiddler crab larvae (genus *Uca*) varies with adult habitat, not phylogeny. Limnol Oceanogr **56:**1879–1892. doi:10.4319/lo.2011.56.5.1879.
- Murai M. 1992. Courtship activity of wandering and burrow-holding male Uca arcuata. Ethology 92:124–134. doi:10.1111/j.1439-0310.1992.tb00953.x.
- Ni G, Kern E, Dong Y-W, Li Q, Park J-K. 2017. More than meets the eye: The barrier effect of the Yangtze River outflow. Mol Ecol 26:4591–4602. doi:10.1111/mec.14235.
- Ni G, Li Q, Ni L-H, Kong L-F, Yu H. 2015. Population subdivision of the surf clam *Mactra chinensis* in the East China Sea: Changjiang River outflow is not the sole driver. PeerJ 3:e1240. doi:10.7717/peerj.1240.
- Otani T, Yamaguchi T, Takahashi T. 1997. Population structure, growth and reproduction of the fiddler crab, *Uca arcuata* (De Haan). Crustacean Res 26:109–124. doi:10.18353/crustacea.26.0 109.
- Pie MR, Oliveira-Neto JF, Boeger WA, Ostrensky A, Baggio RA. 2008. The organization of the mitochondrial control region in 2 brachyuran crustaceans: *Ucides cordatus* (Ocypodidae) and *Cardisoma guanhumi* (Gecarcinidae). J Hered **99:4**32–437. doi:10.1093/jhered/esn024.
- Ronquist F, Huelsenbeck JP, van der Mark P. 2005. MrBayes 3.1 Manual. Available at: http://mrbayes.csit.fsu.edu/manual.php.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029.
- Schubart CD. 2009. Mitochondrial DNA and decapod phylogenies: the importance of pseudogenes and primer optimization. Crust Issues **18**:47–65.
- Schubart CD, Diesel R, Hedges SB. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365. doi:10.1038/30724.
- Shahdadi A, von Wyschetzki K, Liu H-C, Chu KH, Schubart CD.

2022. Molecular phylogeography reveals multiple Pleistocene divergence events in estuarine crabs from the tropical West Pacific. PLoS ONE 7:e0262122. doi:10.1371/journal.pone. 0262122.

- Shih H-T. 2012. Distribution of fiddler crabs in East Asia, with a note on the effect of the Kuroshio Current. Kuroshio Science 6(1):83– 89.
- Shih H-T, Fang S-H, Ng PKL. 2007. Phylogeny of the freshwater crabs genus *Somanniathelphusa* Bott (Decapoda: Parathelphusidae) from Taiwan and the coastal regions of China, with notes on their biogeography. Invertebr Syst 21:29–37. doi:10.1071/IS06007.
- Shih H-T, Kamrani E, Davie PJF, Liu M-Y. 2009. Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea speciescomplex. Hydrobiologia 635:373–382. doi:10.1007/s10750-009-9930-6.
- Shih H-T, Komai T, Liu M-Y. 2013. A new species of fiddler crab from the Ogasawara (Bonin) Islands, Japan, separated from the widely-distributed sister species Uca (Paraleptuca) crassipes (White, 1847) (Crustacea: Decapoda: Brachyura: Ocypodidae). Zootaxa 3746:175–193. doi:10.11646/zootaxa.3746.1.8.
- Shih H-T, Lee J-H, Ho P-H, Liu H-C, Wang C-H, Suzuki H, Teng S-J. 2016a. Species diversity of fiddler crabs, genus Uca Leach, 1814 (Crustacea: Ocypodidae), from Taiwan and adjacent islands, with notes on the Japanese species. Zootaxa 4083:57–82. doi:10.11646/zootaxa.4083.1.3.
- Shih H-T, Ng PKL, Davie PJF, Schubart CD, Türkay M, Naderloo R, Jones DS, Liu M-Y. 2016b. Systematics of the family Ocypodidae Rafinesque, 1815 (Crustacea: Brachyura), based on phylogenetic relationships, with a reorganization of subfamily rankings and a review of the taxonomic status of *Uca* Leach, 1814, sensu lato and its subgenera. Raffles Bull Zool 64:139–175. doi:10.5281/ zenodo.5355087.
- Shih H-T, Ng PKL, Fang S-H, Chan BKK, Wong KJH. 2010. Diversity and distribution of fiddler crabs (Brachyura: Ocypodidae: Uca) from China, with new records from Hainan Island in the South China Sea. Zootaxa 2640:1–19. doi:10.11646/zootaxa.2640.1.1.
- Shih H-T, Ng PKL, Ravichandran S, Prema M. 2019. Resurrection of *Gelasimus variegatus* Heller, 1862, a fiddler crab closely related to *Austruca bengali* (Crane, 1975) and *A. triangularis* (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. Zool Stud **58:**12. doi:10.6620/ ZS.2019.58-12.
- Shih H-T, Poupin J. 2020. A new fiddler crab of Austruca Bott, 1973, closely related to A. perplexa (H. Milne Edwards, 1852) (Crustacea: Brachyura: Ocypodidae), from the South Pacific islands. Zool Stud 59:26. doi:10.6620/ZS.2020.59-26.
- Shih H-T, Saher NU, Kamrani E, Ng PKL, Lai Y-C, Liu M-Y. 2015. Population genetics of the fiddler crab Uca sindensis (Alcock, 1900) (Crustacea: Brachyura: Ocypodidae) from the Arabian Sea. Zool Stud 54:1. doi:10.1186/s40555-014-0078-3.
- Shih H-T, Wong KJH, Chan BKK, Nguyen TS, Do VT, Ngo XQ, Hsu PY. Diversity and distribution of fiddler crabs (Crustacea: Brachyura: Ocypodidae) in Vietnam. Zool Stud 61:66. doi:10.6620/ZS.2022.61-66.
- Shih H-T, Zhou X-M, Chen G-X, Chien I-C, Ng PKL. 2011. Recent vicariant and dispersal events affecting the phylogeny and biogeography of East Asian freshwater crab genus *Nanhaipotamon* (Decapoda: Potamidae). Mol Phylogenet Evol 58:427–438. doi:10.1016/j.ympev.2010.11.013.
- Shih J-T. 1990. Annual estimated densities of Uca arcuata (De Haan, 1835) on Tan-shui mangrove swamp at Taiwan. Biol Bull Taiwan Norm Univ 25:1–11. (in Chinese)

- Shih J-T. 1992. Annual pattern of sex steroid like substance levels in the hemolymph of female *Uca arcuata*. Bull Inst Zool Acad Sinica **31:**47–56.
- Shih J-T, Lan P-L. 1993. Study on the food habit of *Uca arcuata*. Ann Taiwan Mus **36:**81–96. (in Chinese)
- Shih J-T, Lue K-Y, Wang C-H. 1991. Crab fauna and the activities of ten crab species in Tanshui mangrove swamp of Taiwan. Ann Taiwan Mus 34:121–140. (in Chinese)
- Shih J-T, Wang Y-M. 1993. Progesterone like substance in the ovaries, hepatopancreases, and hemolymph of female Uca arcuata. Bull Inst Zool Acad Sinica 31:120–126.
- Sturmbauer C, Levinton JS, Christy J. 1996. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc Natl Acad Sci USA 93:10855–10857. doi:10.1073/pnas.93.20.10855.
- Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38:3022–3027. doi:10.1093/molbev/msab120.
- Tokuyama T, Shy J-Y, Lin H-C, Henmi Y, Mather P, Hughes J, Tsuchiya M, Imai H. 2020. Genetic population structure of the fiddler crab *Austruca lactea* (De Haan, 1835) based on mitochondrial DNA control region sequences. Crustacean Res 49:141–153. doi:10.18353/crustacea.49.0_141.
- Ujiié H, Tanaka Y, Ono T. 1991. Late Quarternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Mar Micropaleontol **18**:115–128. doi:10.1016/0377-8398(91)90008-T.
- Ujiié Y, Ujiié H, Taira A, Nakamura T, Oguri K. 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Mar Micropaleontol **49:**335–364. doi:10.1016/S0377-8398(03)00062-8.
- Voris HK. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167. doi:10.1046/j.1365-2699.2000.00489.x.
- Wada K, Murata I. 2000. Chimney building in the fiddler crab Uca arcuata. J Crustacean Biol 20:505–509. doi:10.1163/20021975-99990066.
- Wang J, Tsang LM, Dong Y-W. 2015. Causations of phylogeographic barrier of some rocky shore species along the Chinese coastline. BMC Evol Biol 15:114. doi:10.1186/s12862-015-0387-0.
- Wang X-X, Kong L-F, Chen J, Matsukuma A, Li Q. 2017. Phylogeography of bivalve *Meretrix petechialis* in the Northwestern Pacific indicated by mitochondrial and nuclear DNA data. PLoS ONE **12:**e0183221. doi:10.1371/journal. pone.0183221.
- Wang Y-H, Hsiao Y-W, Lee K-H, Tseng H-Y, Lin Y-P, Komaki S, Lin S-M. 2017. Acoustic differentiation and behavioral response reveals cryptic species within *Buergeria* treefrogs (Anura, Rhacophoridae) from Taiwan. PLoS ONE **12:**e0184005. doi:10.1371/journal.pone.0184005.
- Wang Z-Y, Zhang Y, Zhao L-L, Song N, Han Z-Q, Gao T-X. 2016. Shallow mitochondrial phylogeographical pattern and high levels of genetic connectivity of *Thamnaconus hypargyreus* in the South China Sea and the East China Sea. Biochem Syst Ecol 67:110–118. doi:10.1016/j.bse.2016.05.013.
- Wong KJH, Chan BKK, Shih H-T. 2010. Taxonomy of the sand bubbler crabs *Scopimera globosa* De Haan, 1835, and *S. tuberculata* Stimpson, 1858 (Crustacea: Decapoda: Dotillidae) in East Asia, with description of a new species from the Ryukyus, Japan. Zootaxa 2345:43–59. doi:10.11646/zootaxa.2345.1.4.
- Woodruff DS. 2003. Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula. J Biogeogr 30:551–567. doi:10.1046/j.1365-2699.2003.00846.x.

- Xu J-W, Chan T-Y, Tsang LM, Chu KH. 2009. Phylogeography of the mitten crab *Eriocheir sensu stricto* in East Asia: Pleistocene isolation, population expansion and secondary contact. Mol Phylogenet Evol 52:45–56. doi:10.1016/j.ympev.2009.02.007.
- Yoshigou H. 2001. Japanese species of genus *Uca* (Crustacea: Decapoda: Ocypodidae) and distribution of *U. lactea* in Hiroshima Prefecture, Japan. Hibakagaku **200:**1–12. (in Japanese)

Yu S-S, Wang J, Wang Q-L, Huang X-W, Dong Y-W. 2014. DNA

barcoding and phylogeographic analysis of *Nipponacmea limpets* (Gastropoda: Lottiidae) in China. J Moll Stud **80**:420–429. doi:10.1093/mollus/eyu034.

Zhao D, Kong L-F, Yu H, Li Q. 2015. Cryptic genetic diversity of Neverita didyma in the coast of China revealed by phylogeographic analysis: implications for management and conservation. Conserv Genet 19:275–282. doi:10.1007/s10592-017-0998-7.