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Abstract

Tensor clustering, which seeks to extract underlying cluster structures from noisy tensor observations,
has gained increasing attention. One extensively studied model for tensor clustering is the tensor block
model, which postulates the existence of clustering structures along each mode and has found broad
applications in areas like multi-tissue gene expression analysis and multilayer network analysis. However,
currently available computationally feasible methods for tensor clustering either are limited to handling
i.i.d. sub-Gaussian noise or suffer from suboptimal statistical performance, which restrains their utility
in applications that have to deal with heteroskedastic data and/or low signal-to-noise-ratio (SNR).

To overcome these challenges, we propose a two-stage method, named High-order HeteroCluster-
ing (HHC), which starts by performing tensor subspace estimation via a novel spectral algorithm called
Thresholded Deflated-HeteroPCA, followed by approximate k-means to obtain cluster nodes. Encourag-
ingly, our algorithm provably achieves exact clustering as long as the SNR exceeds the computational
limit (ignoring logarithmic factors); here, the SNR refers to the ratio of the pairwise disparity between
nodes to the noise level, and the computational limit indicates the lowest SNR that enables exact clus-
tering with polynomial runtime. Comprehensive simulation and real-data experiments suggest that our
algorithm outperforms existing algorithms across various settings, delivering more reliable clustering
performance.
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1 Introduction

The past few years have witnessed a surge of interest in tensor data analysis across various domains, including
recommendation systems (Bi et al., 2018; Nasiri et al., 2014), neuroimaging (Wozniak et al., 2007; Zhou et al.,
2013), computational imaging (Li and Li, 2010; Zhang et al., 2020), medical imaging (Fu and Dong, 2016),
signal processing (Cichocki et al., 2015; Sidiropoulos et al., 2017), among other things. Compared to vectors
and matrices, tensors (or multiway data arrays) offer the ability to characterize complex interrelations and
interactions across multiple dimensions, allowing one to simultaneously capture the effects brought about
by multiple factors. The growing prevalence of tensor data has sparked in-depth statistical research — from
both methodological and theoretical perspectives — into various tensor estimation and learning problems
(see, e.g., Zhou et al. (2013); Richard and Montanari (2014); Yuan and Zhang (2016); Xia et al. (2021); Cai
et al. (2022a); Liu and Moitra (2020); Bi et al. (2021); Han et al. (2022b); Deng et al. (2023)).

Within this body of research, one important problem that has garnered increasing attention is tensor
clustering, which aims to extract the underlying cluster structures inherent in the observed tensor data.
A model of this kind that has received widespread adoption is the tensor block model (Wang and Zeng,
2019; Chi et al., 2020; Han et al., 2022a). Concretely, suppose that the observed data takes the form of an
order-three tensor Y € R™ *"2*"3_drawn from the following data generating mechanism.

o Cluster structure. In each mode 1 <4 < 3, the n; indices (or nodes) are divided into k; clusters, and the
cluster memberships of these nodes are encoded by a cluster assignment vector z; = [z} jli<j<n, € [ki]™
such that

z;; = £ if the jth node falls within cluster ¢ (1<j<ny). (1)
Here and throughout, we denote by [d] = {1,...,d} for any positive integer d.
e Observations. The entries of the observed tensor Y = [Y; ; (| obey

Yije= 5% + LB, V(i, 4, €) € [n1] x [n2] x [n3]. (2)

* * *
1,i0%2,j7%3,0

Here, S% ., . is the (j1, j2, j3)-th entry of an underlying core tensor 8* € RFixk2xks (which often has
much lower dimension than Y), whereas the E; ; ¢'s represent independent zero-mean noise contami-

nating the measurements. Alternatively, we can rewrite this model in the tensor form as

Y =X* 4 £ e RN, (3)



where € = [E; j /] stands for a noise tensor, and the underlying tensor

(4,3,£) €[n1] X [n2] X [ns]

* *
X" = [Szf,iﬂz;,j’z;,ﬁ](ivjve)e[nl]x[nQ]X[nS] (4)
exhibits block — and hence low-rank — structures. Crucially, for any set of indices (7,7, ¢) € [n1] x
[n2] x [ng], the mean of the observed entry Y; ;, is determined by the cluster membership of (4, j,¢),
making it possible to retrieve the cluster assignment information from the observed tensor as long as
the noise level is not overly large.

e Goal. The aim is to reconstruct the underlying cluster structure along each mode — namely, recovering
each z7 (1 < i < 3) — on the basis of the observation Y.

Notably, this tensor block model finds a diverse range of applications. For instance, in multi-tissue gene
expression analysis (Wang et al., 2019; Wang and Zeng, 2019; Han et al., 2022a), the expression levels of
numerous genes are measured from various tissues across multiple individuals, and there could be natural
group structures for genes, tissues, and individuals, respectively, which can be captured by the above model.
Another instance arises from multilayer network analysis (Lei et al., 2020), wherein multiple (directed or
undirected) graphs with identical vertices are gathered from various scenarios or experiments, inherently
forming a tensor. A task stemming from this kind of data is identifying the clustering structures among the
vertices and across different layers based on their connectivity patterns.

While numerous clustering algorithms have been studied in the literature, directly applying traditional
clustering methods, such as k-means, to (the unfoldings of) the tensor data Y may fail to capture the inherent
tensor structures and therefore lead to unsatisfactory results. To overcome this issue, Han et al. (2022a)
proposed a spectral clustering method called High-order Spectral Clustering (HSC), which starts by projecting
the tensor data onto their estimated top singular subspaces along each mode, followed by an approximate k-
means procedure to cluster nodes. Informally speaking, the singular subspace estimation procedure adopted
by HSC directly calculates the left singular subspaces of the unfoldings of Y along each mode — which we shall
refer to as a vanilla SVD-based approach in the sequel. To further improve the spectral estimates, Han et al.
(2022a) also came up with an algorithm called High-order Lloyd Algorithm (HLloyd) to iteratively refine the
block membership estimates. When the noise tensor £ has i.i.d. sub-Gaussian noise entries, HSC (resp. HSC
followed by HLloyd) provably achieves consistent (resp. exact) clustering results while accommodating a near-
optimal range of signal-to-noise ratio (SNR) conditions (among polynomial-time algorithms) (Han et al.,
2022a).

However, the HSC algorithm and the intriguing theory developed by Han et al. (2022a) fall short of
accommodating heteroskedastic data, a common scenario in practice where variances of noise entries vary
across locations. It has now been widely recognized that the vanilla SVD-based approach mentioned above
could generate highly sub-optimal subspace estimates in the face of heteroskedastic noise (Zhang et al., 2022;
Cai et al., 2021; Zhou and Chen, 2023); as a consequence, HSC, which is initialized based on this approach,
becomes statistically sub-optimal. This issue severely hinders the performance of HSC in, say, a broad array
of applications with discrete-valued observations — including multi-tissue gene expression data analysis and
multilayer network data analysis — which often have to deal with heterogeneous data. To the best of our
knowledge, no computationally efficient algorithm has been shown to achieve consistent estimation — not
to mention exact recovery — of the underlying cluster structure under the widest possible SNR, conditions.

1.1 Main contributions

Aimed at addressing the challenges resulting from heteroskedastic data, this paper proposes a new tensor
clustering algorithm called High-order HeteroClustering (HHC). The key innovation compared to HSC lies in
the development of a new paradigm for estimating the top singular subspaces of the unfolded tensor, in the
hope of tackling heteroskedasticity. In a nutshell, the proposed HHC algorithm encompasses two stages:

1. Subspace estimation. This stage seeks to estimate the column subspaces of the unfoldings of X* along
each mode. Inspired by a spectral algorithm Deflated-HeteroPCA that proves effective in the face of het-
eroskedastic noise (Zhou and Chen, 2023), we propose a new variant, called Thresholded Deflated-HeteroPCA,
that combines Deflated-HeteroPCA with a data-driven thresholding procedure. Our procedure only at-
tempts to estimate the “useful” part of the column subspaces — that is, the subspace associated with



reasonably large singular values — of the unfolded tensors, which plays a crucial role in achieving
statistical guarantees that are independent of the magnitude of the smallest singular value of S*.

2. Approzimate k-means. Armed with the above subspace estimates, the second stage projects the un-
folding of Y onto the estimated subspace for denoising purposes, followed by an approximate k-means
algorithm to cluster nodes.

Encouragingly, the proposed HHC algorithm allows for exact clustering as long as a certain “necessary” SNR
condition holds (up to logarithmic factors), where the SNR is captured by the ratio of certain “pairwise”
difference between nodes to the noise level. Here, a “necessary” SNR condition refers to a condition that
is essential to ensure that the cluster assignment vectors z; can be exactly recovered in polynomial time.
Empirically, we conduct simulation experiments and find that HHC can reliably estimate the cluster struc-
tures, and that HHC combined with HLloyd (Han et al., 2022a) enables enhanced numerical performance.
We also apply our method (HHC + HLIloyd) and HSC + HLloyd to the flight route network data, in which
our method leads to better clustering results. It is noteworthy that: while the current paper focuses on
three-way tensor for simplicity of presentation, both our algorithm and the proof can be straightforwardly
extended to accommodate general higher-order tensors.

Paper organization. The rest of this article is organized as follows. Section 2 formulates the mathematical
model and introduces the key assumptions, while Section 3 presents the proposed algorithm. The theoretical
guarantees for our algorithm are provided in Section 4, with the analysis deferred to the appendix. Numerical
performance on both synthetic and real data is reported in Section 5.

1.2 Notation

Throughout the paper, we denote [n] := {1,...,n} for any integer n > 0. We often use bold capital letters
(e.g., X,Y Z) and bold lowercase letters (e.g., ¢, y, z) to denote matrices and vectors, respectively, and
employ boldface calligraphic letters (e.g., X, Y, Z) to represent tensors. For any matrix X € R™*"2
we let \;(X) and 0;(X) denote the i-th largest eigenvalue (in magnitude) and the i-th largest singular
value of A, respectively. Define || - ||g for Frobenious norm and || - || for spectral norm. We denote by
A;. and A, ; the i-th column and the j-th row of a matrix A, respectively, and define its ¢ o, norm as
[[All2,00 = max;epn,) [|A;:]l2. Let O™ :={U € R™*" : U'U = I,} denote the set containing all n-by-r
matrices with orthonormal columns. We use Pgiag to represent the projection that keeps all diagonal entries
and zeros out all non-diagonal entries, and define Pogr.diag(M) == M — Pgiag(M) for any M € R™"*". For
any vector @ = [a;]1<i<n, we denote by diag(a) the diagonal matrix whose (7,i)-th entry is a;. We let
C,c,Cy,cg, ... denote absolute constants whose values may change from line to line.
For any two matrices A € R™*"™ and B € RP*? we define the Kronecker product of them as

allB e alnB
AR B = _ . :
amB - am. B

For any tensor G € R™*"2%"3 and any matrix Vi € R™*" the multi-linear product x; is defined as

T1
Gx1 V1 = <ZGj7i27i3Vi17j>
j=1
We can also define x5 and x3 analogously. For any tensor X € R™*"2X"s and 1 < j < 3, let M;(X) €

R™ > (mn2n3/75) denote the j-th matricization of X such that

(M (X)] = My (X)] = M3 (x)]

i1,d2+na(is—1) ig,iz4ng(ii—1)

i1€[n1),i2€[r2),i3€[rs]

Xil,izﬂs

ig,ir+ng(ia—1)

for all (i1,12,13) € [n1] X [n2] X [n3]. We further define the Frobenious norm of a tensor X € R"™1*"2X"s ag

niy ms ns3 1/2
1%, (zzzxzj,k) |

i=1j=1k=1



In addition, we say that f(z) < g(x) or f(z) = O(g(x)) if |f(z)] < Cg(x) for some constant C' > 0; we
let f(z) 2 g(x) denote f(x) > C|g(z)| for some constant C' > 0; we say f(z) < g(x) or f(z) = Q(g(x)) if
f(x) < g(x) and f(x) 2 g(z) hold; we use the notation f(z) < g(x) to represent that f(ni,mn2) < cg(ni,ns)
holds for some sufficiently small constant ¢ > 0, and we say f(n1,n2) > g(ni,n2) if g(n1,n2) < f(n1,n2). In
addition, we use f(n1,n2) = o(g(n1,n2)) to indicate that f(ni,n2)/g(n1,n2) — 0 as min{ny, ney} — co. For
any a,b € R, let a Ab := min{a, b} and a Vb := max{a,b}. Moreover, denote by ® the set of all permutations
¢ : [k] = [k]. For any z = [zj]1<j<n,Z = [Zj]1<j<n € [k]", we define the misclassification rate as follows:

n

MCR (2.2) = inf ~ > 1{% # 6 () }. )

ped n

J=1

Also, for any ¢ € ®, we use the notation Z = ¢(z) to mean that
5=0(4), Viell

Clearly, MCR (z, 2) = 0 holds if and only if Z = ¢(z) for some ¢ € P.

2 Problem formulation

2.1 Models

Recall that the vectors z}’s encode the cluster assignment. The tensor block model (2) can be equivalently
written as

y — X* +g e Rnlxngxn;;’ (6)

where the low-rank tensor X* can be decomposed as X* = 8* x| M x5 M3 x3 Mj. Here, S* € RF1xk2xks
stands for the core tensor, and M} € {0,1}"** (1 <i < 3) represents a membership matrix satisfying

1, if 27, =4,

(Mi*)j’e B {O elsej Q

The goal is to recover the cluster assignment vectors {z}}, or equivalently, the membership matrices { M},
based on the observation Y.

We would like to immediately single out two special cases of the above model, which represent two
distinctive types of noise models of important practical value (see more discussions in Han et al. (2022a)).

1. Sub-Gaussian tensor block models. In this scenario, the entries of the noise tensor € are zero-mean sub-
Gaussian random variables generated independently, which capture, say, random contamination during
the data collection process for measuring X*. Importantly, we allow the noise to be heteroskedastic
— namely, the variance of the noise components can be location-varying — a remarkable extension of
the one studied in Han et al. (2022a) (recall that the noise is assumed to be i.i.d. therein).

2. Stochastic tensor block models. Consider another scenario where each entry of the core tensor &* falls
within [0, 1], and the observed entries {Y; ; ¢} are independent Bernoulli random variables satisfying

. - .
= {1, with probability Szf,i’z;‘j’zg,w ®)
s . - o
0, with probability 1 Szf,wzﬁ,j’zé,z'

This scenario can be understood as a generalization of the classical bipartite stochastic block model
(e.g., Florescu and Perkins (2016)). Informally, each binary variable Y; ;, encodes whether there is a
hyper-edge connecting the vertices (i, 7,¢) € [n1] X [n2] x [n3], and the probability that such a hyper-
edge is present is determined by the clusters they belong to. Clearly, this noise model is, in general,
heteroskedastic.

We seek to develop a suite of theory and algorithms that can readily accommodate these two important
scenarios.



2.2 Assumptions and definitions

Next, let us introduce a couple of definitions and assumptions that will be used throughout this paper.
Before proceeding, we find it helpful to define

n = max n;, and k= max k;, (9)
1<i<3 1<i<3
and denote
2 _ 2 2 2
Wi gz = B [Eil’i“g] and  wh,, = max Wik (10)

i1€[n1],i2€[n2),i3€[n3]
We start by imposing the following assumption on the noise tensor £.

Assumption 1. Suppose that the noise components satisfy the following conditions:
1. The E;, 4, i, s are independent and zero-mean;

2. For every (iy,i2,i3), one has P(|E;, i,.5| > B) <n~2* for some quantity B satisfying

(ningns)™*
B S wamaxi
logn

where Cp, > 0 is some universal constant.

Remark 1. Here, the tail condition P(|E;, i,.i,] > B) < n=2% can be relazed to P(|E;, 4,.4,] > B) <n=¢ for
any constant ¢ > 4. We choose the exponent 2/ to streamline the presentation of the proof a little bit.

Notably, Assumption 1 is very mild and accommodates a broad range of scenarios of interest. For example,
all wmax-sub-Gaussian random variables (see, e.g., Vershynin (2018)) satisfy Condition 2 of Assumption 1
with B =< wmaxv/1og n; centered Poisson random variables also easily satisfy this condition (Boucheron et al.,
2013; Zhang and Zhou, 2020). In addition, the aforementioned stochastic tensor block model (8) obeys
Assumption 1 as long as the following conditions hold:

2log*n 21log*n
<S5 <1l V(i1,d0,13) € [k1] X [k2] x [k3]. 11
Cg(n1n2n3)l/2 — 21,122,213 — Cg(nl’rLQng)l/Z’ ( 1,02, 3) [ 1] [ 2] [ 3] ( )
Recognizing that (nlngng)l/ 2> log2 n, we see that the validity of Condition (11) is guaranteed as long as
the entries of the center tensor 8* are not extremely close to 0 or 1.

In addition, we introduce the following parameter that reveals cluster size information.

Definition 1 (Balance of cluster sizes). Let § < 1 denote the largest quantity such that

7

{7 € il = (2); = £}] = Bni/ ki, 1<i<3, 1<(<Ek. (12)

In words, the parameter § measures how balanced these cluster sizes are, with a larger 8 indicating more
balanced cluster sizes; for instance, 5 = 1 corresponds to the scenario where all clusters are of the same size.
Another quantity that plays an important role in our theory is concerned with the separation condition.

Definition 2 (Separation). For any 1 <i < 3, define

A? =  min
1<ji#j2<k;

(13)

(M (8%)]. = [Mi(S")]

Jis: Ja»: ’2

to be the minimum distance between the rows of M;(S), the i-th matrizication of the core tensor. We can
also define

A2

min

= min{A%,A%,Ag}. (14)



In a nutshell, the above separation between clusters captures the “signal strength,” which determines the
degree of noise variability that can be tolerated without compromising the feasibility of exact clustering. In
contrast to generic low-rank tensor estimation problems where the signal strength is typically represented by
the least singular value of 8, the above separation condition is more natural in capturing the differentiability
between two different clusters. Noteworthily, having a desirable separation condition does not necessarily
imply that the least singular value of 8* is sufficiently large.

Armed with the above separation metrics, we can readily introduce the following quantity to quantify
the “signal-to-noise ratio”:

SNR = Apin/Wmax- (15)

An ideal tensor clustering algorithm would allow for exact clustering for the widest possible range of SNRs.

3 Algorithm: High-order HeteroClustering

In this section, we introduce the proposed procedure for tensor clustering. Akin to other spectral-method-
based tensor clustering schemes, our algorithm begins by performing subspace estimation with the aid of
matricization, followed by an application of the (approximate) k-means algorithm to estimate clustering
assignment.

3.1 Stage 1: subspace estimation via Thresholded Deflated-HeteroPCA

First of all, we would like to estimate the “important” column subspaces of X after matricization along each
dimension, namely, the important column subspace of X; = M, (X) for each 1 < ¢ < 3. It is noteworthy
that: it might not be necessary to estimate the entire rank-k; column subspace for M; (X), given that those
singular vectors corresponding to overly small singular values might only exert a negligible impact on the
final clustering outcome. Instead, for each 1 < ¢ < 3, it often suffices to find a suitable estimator U; € O™
for some r; < k;, that can reliably estimate the subspace formed by the singular vectors associated with
large enough singular values of X;. As alluded to previously, however, the vanilla SVD-based approach (i.e.,
directly computing the SVD of X;) might result in unsatisfactory subspace estimation results when the noise
is heteroskedastic. This motivates us to develop a more sophisticated algorithm, inspired by our recent work
Zhou and Chen (2023).

Review: Deflated-HeteroPCA. The recently proposed Deflated-HeteroPCA algorithm is particularly effective
in subspace estimation in the face of heteroskedastic noise (Zhou and Chen, 2023), which we briefly review
here. Let Y; = M, (Y) denote the i-th matricization of Y;. Starting from a diagonal-deleted gram matrix
Go = Pofi-diag (Yin), the main idea of Deflated-HeteroPCA is to sequentially choose ranks 0 < r; <

- < Tk, = r that divide the eigenvalues of X X" into “well-conditioned” and sufficiently separated
subblocks, and progressively improve the estimation accuracy. Informally, we sequentially incorporate new
subblocks into consideration and invoke the HeteroPCA algorithm (Zhang et al., 2022) to gradually improve
the estimation accuracy of both the column subspace and the diagonal entries of X* XZ*T. As proven in
Zhou and Chen (2023), Deflated-HeteroPCA enjoys theoretical guarantees that are condition-number-free
and accommodate the widest possible range of SNRs, all of which are appealing for the tensor clustering
application. However, existing theory of Deflated-HeteroPCA requires the least singular value of X} to
exceed a certain level (depending on the noise variance), which might oftentimes be unnecessary for clustering
applications. In fact, even in the presence of a large separation metric (14), we cannot preclude the possibility
of X having a (nearly) zero singular value, thus limiting the utility of Deflated-HeteroPCA.

Proposed procedure: Thresholded Deflated-HeteroPCA. To address the aforementioned issue, we incor-
porate a thresholding procedure into Deflated-HeteroPCA in order to make sure we only include important
subblocks. More specifically, suppose that in the k-th round, we choose rank r; and perform HeteroPCA
with rank r; and initialization G§_1 to obtain G, where both Gj_; and G}, are intermediate estimates of
the gram matrix X*X . We then decide whether to proceed to the (k + 1)-th round based on whether
the condition o, +1(Gk) > 7 is met for some pre-determined threshold 7. With a properly chosen 7, we can



Algorithm 1: Thresholded Deflated-HeteroPCA(Y , r, 7, {t; };>1)

input: data matrix Y, rank r, threshold 7, maximum numbers of iterations {t;};>1.
initialization: j = 0,79 = 0, Gy = Pofr-diag (YYT).
/* sequentially invoke HeteroPCA until eigenvalues fall below the threshold. */
while r; < and 0,, 11(G;) > 7 do

j—J+1

compute r; = RankSelection(G;_1,7,7j_1).

(G]‘, U7) :HeteroPCA(Gj,l, Tj, tj).

output: subspace estimate U = Uj.

N =

(<23 B N

~

Algorithm 2: RankSelection(G,_1, r, 7j_1)

1 input: rank 7, selected rank r;_;, matrix G;_;.
/* identify a subblock of eigenvalues that are well-conditioned and well-separated
from the remaining eigenvalues. */
2 output rank

. (16)
T, otherwise,

{maij, if R; #0,
r; =

where

Or;_14+1 (Gj—l)

R, = {r’:r-l <r'<r
! ! T (Gj)

1
S 4 and [y (ijl) — Op/41 (ijl) Z ;O'T/ (ijl) }

extract sufficient information needed for clustering. The details of Thresholded Deflated-HeteroPCA can be
found in Algorithm 1. A theoretically-guided procedure for selecting the tuning parameter 7 is deferred to
Section 4.2.

3.2 Stage 2: approximate k-means

Having obtained the subspace estimates U;,1 < j < 3, we would like to extract clustering information based
on these subspace estimates as well as the observation ). More specifically, let us construct the following
matrix

éi _ UzUlTMz(y) (UH-Q ® Ui+1) c RniX(T1T2T3/T’z‘) (17)

for each 1 < i < 3, and we propose to apply the (approximate) k-means algorithm on the rows of él to
estimate the cluster assignment vectors. Here, the indices i + 1 and ¢ + 2 are computed module 3. This
procedure is equivalent to applying (approximate) k-means on the rows of the i-th matricization of the
tensor estimate Y = Y x1 U U, xo UyUy x5 UsUy', but operates upon matrices with significantly reduced
sizes. Recognizing that performing exact k-means can be computationally intractable, we instead employ
an M-approximate k-means approach for some M > 1. To be more specific, we find a cluster assignment
vector estimate Z; and centroids {By)} that satisfy (18a) for each 1 < ¢ < 3. This relaxed version of k-means
can be efficiently solved by a number of algorithms. For example, for M = O(log k), this problem can be
solved with running time O(nk?) by k-means++ (Bahmani et al., 2012; Arthur and Vassilvitskii, 2007)*.
The requirement (18b) ensures the “optimality” of the cluster estimates given the centroids.

I More generally, the time complexity of k-means+4+ for n points in R? is O(nkd). Here, the dimension d = r17ar3/7; < k2
and thus the time complexity does not exceed O(nk?).



Algorithm 3: HeteroPCA(Gin, 7, tmax) (Zhang et al., 2022)

1 input: symmetric matrix Gj,, rank r, number of iterations ¢max.

2 initialization: G° = G;,.

3 fort=0,1,...,tnax do

4 U'A'U'T «+ rank-r leading eigendecompostion of G*.

5 L G = Pofi_ding (G') + Paiag (U'A'U'T).

6 output: matrix estimate G = G*™ and subspace estimate U = Utmx,

Algorithm 4: High-order HeteroClustering (HHC)

1 input: observed tensor Y, numbers of clusters ki, k2, k3, numbers of iterations {t; ;}1<i<3,j>1,
thresholds 71, 79, 73, relaxation factor M > 1.
/* Stage 1: subspace estimation */

2 subspace estimation: for each 1 < ¢ < 3, compute U; € Omiki a5 follows

U - Thresholded Deflated-HeteroPCA (M;(¥), ki, 74, {ti ; };>1). ki > 2,
a0, ki =1,

and set Uy, = U; and Us = U, for convenience.
/* Stage 2: approximate k-means */
3 fori=1,2,3do
4 compute B; = U;U,” M;(Y) (Uiyz ® Uypq) € Rrix(rarara/ro),
5 perform approximate k-means on the rows of ﬁi, i.e., find a cluster assignment vector estimate
z; € [k;]™ and center estimates El(l) € Rmm2rs/mi | € [k;] such that

ng n;
AU K . H ST 2
jz::l ’(BZ)L bgi"j 2 g M b1,...,bkin;]1£llr2r3/7‘i jzz:l (Bl)jv: bZi’j 27 (18a)
z; €[k
Z;; € argmin (ﬁz): % : Vj € [ng). (18D)

L€ (k]

6 output: estimates z7, o, z3 of cluster assignment vectors.

3.3 Full procedure

The full procedure of the proposed High-order HeteroClustering (HHC) is summarized in Algorithm 4. Since
both Thresholded Deflated-HeteroPCA and approximate k-means are polynomial-time algorithms, our pro-
posed method is computationally efficient. Empirically, we recommend using the high-order Lloyd Algorithm
(HLloyd) (Han et al., 2022a) to further refine the clustering results obtained by HHC, where the descrip-
tion of this refinement procedure is deferred to Algorithm 5 in Appendix A. As will be demonstrated in
Section 5, the combined application of our algorithm with HLloyd can yield superior empirical performance
when compared to other methods.

4 Main theory

In this section, we develop theoretical performance guarantees for our algorithm proposed in Section 3.
Before proceeding, we find it convenient to introduce the following additional notation for each 1 < i < 3:

e of;: the j-th largest singular value of M;(S”) (i.e., the i-th matricization of &);

e {r; ;};>1: the ranks selected in Algorithm 1 with the input matrix Y = M,(Y), the rank r = k;, the



threshold 7 = 7;, and the numbers of iterations {t; ;};>1;

e 7; ;i : the largest rank selected by Algorithm 1 with the above inputs.

4.1 Theoretical guarantees for exact clustering

The first theorem below demonstrates that HHC achieves intriguing exact recovery guarantees, as long as
the tuning parameters {7;}1<;<3 are suitably selected.

Theorem 1. Assume that k; <1 for each 1 <i <3, <1, and

nineng > c1n?, (19a)
cr (n1n2n3)1/2 log?n < 7 /Wi, < C; (n1n2n3)1/2 log®n, V1<i<3, (19b)
SNR = Apin/Wmax = C1V M (n1n2n3)71/4 logn, (19¢)

where C1,c1,Cr and ¢, are some large enough positive constants. Suppose Assumption 1 holds. If the
numbers of iterations satisfy

¢ >1 U;{a%’i,j—l“rl . -5
i,j = 108 0*27 ) 1< J < Jmax — 1’ (203‘)
o—i»ﬁ,]‘-‘rl
30:’%71,.7‘1‘ 1t
tig,, 2 log | n? e ), (20b)
max

for all 1 < i < 3 with C > 0 some large enough constant, then with probability exceeding 1 — O(n=19), the
misclassification rate (cf. (5)) of the outputs {Z;} returned by Algorithm 4 satisfy

MCR(Z;,27) =0, V1<i<3.

In words, this theorem asserts that Algorithm 4 enables exact clustering under the assumptions imposed
above. A more general version of Theorem 1 — which allows k; and 8 grows with n — as well as its proof
can be found in Section B.

Let us now take a moment to discuss the conditions assumed in Theorem 1. Condition (19a) assumes that
the dimensions of the observed tensor are not extremely unbalanced; for instance, it holds in the scenario
where n; < nang, no < ning and ng < nyng. In the regime where ny <X ny < ng < n and M <logk =< 1,
the signal-to-noise ratio condition (19c¢) simplifies to

SNR > n=%/*logn. (21)

Interestingly, this condition (21) is almost necessary among polynomial-time algorithms; as shown in Han
et al. (2022a, Theorem 7), if SNR = n? for any v < —3/4, then there exists no polynomial-time algorithm
that can exactly recover the cluster assignment vectors. Furthermore, combining Theorem 1 with Han et al.
(2022a, Theorem 2), we know that HHC+ HLloyd and HHC can achieve the same theoretical guarantees in
terms of the exact cluster recovery. In other words, applying HLloyd to further refinement would not degrade
the theoretical performance at all. As we will illustrate in Section 5, HHC combined with HLlIoyd might
sometimes achieve improved empirical results compared to HHC on its own.

Comparisons with HSC and HSC + HLloyd. To highlight the advantages of our algorithm and theory, we
make comparisons with the state-of-the-art prior work Han et al. (2022a), which proposed the HSC algorithm
and its combination with a follow-up HLloyd procedure. Firstly, in stark contrast to HSC and HSC 4 HLloyd
— which assumes identical variances of the noise entries in order to guarantee their desired theoretical
results Han et al. (2022a, Theorems 3 and 4) — our algorithm HHC is able to handle heteroskedastic
noise efficiently without compromising the applicable range of SNRs. Secondly, in comparison with Han
et al. (2022a, Theorems 3 and 4) that assume sub-Gaussian noise, our assumption is more mild and can
accommodate a wider range of applications, including those with binary or count data outcomes. In addition,
HHC can exactly recover the cluster assignment vectors without the aid of HLloyd, a feature that stands in
contrast to HSC.
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Other prior results. In addition to Han et al. (2022a), the tensor block model has been studied in several
other past works. Focusing on sub-Gaussian noise, Wang and Zeng (2019) characterized the misclassification
rate and the tensor estimation error for the the least-square estimator; this estimator, however, is compu-
tationally intractable. Chi et al. (2020) proposed a convex method and provided theoretical guarantees for
the tensor estimation error, but they did not establish misclassification-rate-based theory for their proposed
method. Agterberg and Zhang (2022) further investigated a more general model, called the tensor mixed-
membership block model, in the presence of sub-Gaussian noise. When applied to Model (2) with £ =< 1 and
B =<1, their signal-to-noise ratio condition becomes

ny/logn

(n1n2n3)1/2 (mini ni)l/‘l ’

A/ Wmax = K2

where # is the condition number of the tensor S* satisfying £ < (min; n;)'/®. In comparison, Theorem 1

does not require any assumptions on s and our signal-to-noise ratio condition is less stringent.

A glimpse of proof highlights. To prove that HHC alone is enough to achieve exact clustering, a
crucial step lies in carefully controlling the magnitude of ||(I — U;U,") X ||2.00- Here, X* = M, (X*) is
the i-th matricization of X*, and U; is the subspace estimator. Unlike the subspace/matrix estimation
problems considered in the literature, we aim to derive sharp and condition-number-free ¢5 o, guarantees for
(I -U;U;") X} without imposing any restrictions on the condition number and the least singular value of
X 7. In this context, existing techniques for deriving f»  guarantees are inadequate for reaching our target
bound; for instance, existing leave-one-out analyses (Zhong and Boumal, 2018; Chen et al., 2021a; Ma et al.,
2020) require the condition number to not be overly large, whereas the subspace representation theorem
(Xia, 2021; Zhou and Chen, 2023) relies on assumptions on the least singular value.

To establish the desired performance guarantees, we develop a new technique (i.e., Lemma 1) that allows
for effective control of (I — U;U;")X}||2,c0 via bounding an infinite sum of ¢3 o, norms of polynomials of
the error matrix E; = M;(E), alongside other terms that can be easily bounded. Using a strategy akin to,
but more intricate than, the one used in Zhou and Chen (2023), we are able to control those f2 o norms of
the error polynomials and, in turn, achieve the desired guarantees.

4.2 Data-driven selection of the thresholds {r;}

As shown in Theorem 1, HHC can successfully recover the cluster assignment vectors of interest if the tuning

parameters {7;} satisfy (19b). However, the maximum variance w?,, is usually unknown a priori and,

therefore, we need to carefully choose 7;. In what follows, we discuss how to select these tuning parameters.
Without loss of generality, we assume n; < ns < ng and let

@ = 0p,+1 (M1 (Y))/v/n2ns, (22)
which can be used to estimate the order of the noise level. Then the threshold 7; can be chosen as follows:

7 =7 =0C, (ninang) /&% log?n = Cry/ %Uzﬁ_l (M1 (¥)) log®n, V1<i<3, (23)
213

where C; > 0 is some sufficiently large constant. The following theorem asserts that the 7;’s computed in
(23) satisty the desired property (19b).

Theorem 2. Suppose that Assumption 1 holds, and min{ns/ke,n3/ks} > Cy/logn holds for some suffi-
ciently large constant C > 0. Assume that either of the following conditions is satisfied:

1. For all i € [ny], there exists some numerical constant ¢ > 0 such that

na N3

2 2 2 .
E E Wi g > CNanaWp,,  where  w; ;= Var[E; jl; (24)
j=1¢=1

2. The observation model is the stochastic tensor block model (8), with the numbers of clusters satisfying
ki S 1 for each 1 < i <3 and the balance parameter obeying § < 1.

11



Then with probability exceeding 1 — O(n~10), the thresholds {7;} defined in (23) satisfy (19b).

Remark 2. Here, Condition (24) posits that the average variance for each row of My (E) is on the same
order as w?,,,. This condition is met when the noise is not excessively spiky. For exzample, any noise tensor
2

. . N 2 . . e
& with variances wj ; | =X wnay satisfies this condition.

The proof of Theorem 2 can be found in Section E. Putting Theorem 1 and Theorem 2 together, we
arrive at the following result:

Theorem 3. Suppose that Assumption 1 holds, k; <1 for every 1 <i <3, and 8 < 1. Assume that either
the following conditions is satisfied:

1. Condition (24) holds;
2. The observation model is the stochastic tensor block model (8).

We further assume that

ningnz > cin?,

SNR = Anin/Cmax > ClvM(n1n2n3)71/4 logn

for some large enough constants Cy,c; > 0. If we choose the tuning parameter T as in (23) and the numbers of
iterations satisfy (20a) and (20b), then with probability exceeding 1—O(n~1°), HHC achieves exact clustering,
i.e., the misclassification rate (cf. (5)) obeys

MCR(Z;,27) =0, V1<i<3.

Theorem 3 shows that our data-driven procedure can still achieve the exact clustering under the same
signal-to-noise ratio condition as in Theorem 1, provided that the noise condition (24) is satisfied. If the
model of interest is the stochastic tensor block model, no extra assumptions on the noise are needed to justify
the validity of the data-driven choices of {;}.

5 Empirical studies

In this section, we conduct a series of numerical experiments to evaluate the practical effectiveness of the
proposed algorithms: HHC, and HHC + HLloyd. Throughout this section, the thresholds are chosen in a
data-driven manner as

T =T = 1.1 (n1n2n3)1/2 LAU2 =1.1 LO’]%IJrl (Ml (y) ), (25)
\/ nansg

where & is defined in (22).

5.1 Experiments on synthetic data

First, we carry out numerical experiments on synthetic data to corroborate the efficacy of HHC and HHC +
HLloyd. Following the settings in Han et al. (2022a), we set the dimensions to be ny = ng = ng = n and the
numbers of clusters as k1 = ko = k3 = k, and let the cluster sizes be balanced. The following four methods
are considered: (1) HSC: the high-order spectral clustering algorithm proposed in Han et al. (2022a); (2)
HSC + HLloyd: the procedure that uses HSC to obtain initial clustering results, followed by a 10-iteration
high-order Lloyd algorithm (Han et al., 2022a) for refinement; (3) HHC: the method proposed in Algorithm
4 with the numbers of iterations t; ; = 10; (4) HHC + HLloyd: the procedure that employs HHC (where
t;,; = 10) as initial cluster assignment vector estimators and then applies HLloyd with the iteration number
t = 10 to compute the final clustering results. To evaluate the clustering performance, we calculate, for each
method, the empirical clustering error rate (CER), which is one minus the adjusted random index (Milligan
and Cooper, 1986). A lower CER indicates a better clustering result. Specifically, an exact recovery of
clustering is achieved when CER equals 0. All results are averaged over 100 independent replicates.

12



-

~a-HSC N
—~ -0-HSC+HLIloyd = x N
& 0.8f|-=HHC g 208 x
S ||x-HHC+HLloyd ’ 3 Y N
o =
Z06 506 \ *
5 g v
£ = 1N
204 504 A
5 x ‘é -a-HSC \
Z00 e’ £ 0.2 {-0-HSC+HLloyd
< X7 o1 HHC ~
—-x-HHC+HLIoyd CR.
st — SR =" - ol o S e ]
07 075 08 08 09 095 1 07 075 08 085 09 095 1
5 5
(a) k =3, averaged CER (b) k = 3, percentage of exact recovery
1. 1 ~
—a-HSC o Jeew = e T\
o 1| |-o-HSC+HLloyd o — \
3 HHC 2 0.8 /7~ Ny \
< —x-HHC+HLloyd 2 X
208 = \
ff § 0.6 \ \
5 0.6 g \ \
£ % 04 | g
0 2 0. \
204 g i \
E g ||[emHsC . \
2 g 0.2 |[-0-HSC+HLloyd \ '
So2 & HHC \
i X —-HHC+HLloyd
0 B v e I X 0 o G\L» oo
05 055 06 065 07 075 08 05 055 06 065 07 075 08
5 5
(c¢) k=5, averaged CER (d) k = 5, percentage of exact recovery

Figure 1: Averaged CER and percentage of exact community recovery for HSC, HSC + HLloyd, HHC and
HHC + HLloyd under the sub-Gaussian tensor block models with n = 100. Here, Apin = 40n7°.

Sub-Gaussian tensor block models. Let us begin by considering Model (6) with Gaussian noise. We
fix the dimensions n; = ny = n3 = n € {100,150}, generate a random tensor S € R¥** with independent
entries gil’i27i3 ~ N(0,1) and the core tensor 8* is obtained by rescaling S such that Ayip = 4000 (so that
SNR decreases as ¢ increases). We randomly generate the cluster assignment vectors z; € [k]™, 1 < i < 3.
We generate three vectors a, 3,4 such that {o;}, {8;}, {7%} are independently and uniformly drawn from
[0,2]. The entries of the noise tensor £ € R"*"*™ are generated independently with E; j x ~ N(0, 7 5373).
For each method, we report the averaged CER and the percentage of exact recovery for cluster assignment
vectors. The results for n = 100 and n = 150 are illustrated in Figures 1 and 2, respectively. As can be seen,
HHC and HHC + HLloyd achieve much smaller CER compared with HSC and HSC + HLloyd. In terms of the
percentage of exact recovery, HHC + HLIloyd achieves the best performance among all these four methods.

Stochastic tensor block models. Next, we study the stochastic block model (8). We choose the core
tensor 8* € REFXkXE gatisfying

oo YHan / (1_%)’ T, (26)
P 0.1a -n=3/2, otherwise.

Here, a is a scalar. When a is not too large, SNR increases with a. The empirical results of the above four
methods for n = 100 and n = 150 are displayed in Figures 3 and 4. From these plots, one sees that HHC and
HHC + HLloyd achieve more accurate clustering results, and HHC + HLloyd outperforms all other methods
in achieving the highest percentage of the exact recovery for the cluster assignment vectors.

5.2 Real data analysis and real-data-inspired simulation studies

Real data example: the flight route network. We now turn attention to the flight route network data
studied in Han et al. (2022a). In adherence to their setup, we also take into account the top 50 airports
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Figure 2: Averaged CER and percentage of exact community recovery for HSC, HSC + HLloyd, HHC and
HHC + HLloyd under the sub-Gaussian tensor block models with n = 150. Here, Apin = 40n7°.

based on the number of flight routes.? This results in a 39 x 50 x 50 tensor ) with binary entries, where the
first mode represent airlines, and the remaining two modes represent airports. The entries of the tensor Y
satisfies

. (27)
0, otherwise.

v {1, if airline ¢ operates a flight route from airport j to airport k,
g,k =

We select the clustering sizes based on the Bayesian information criterion (BIC) as described in Wang and
Zeng (2019); Han et al. (2022a). This criterion suggests the numbers of clusters (k1, ke, k3) = (5,5,5). We
apply HHC + HLloyd and HSC + HLloyd to the data Y, with results summarized in Tables 1-4.%> Tables 1
and 3 reveal that HHC 4+ HLloyd produces reasonable clustering results, effectively grouping airlines/airports
from China, Europe, and the United States. A comparison of Tables 1 and 2 indicates that HHC + HLloyd
outperforms HSC + HLloyd in clustering European and US airlines. For instance, Cluster 2 in both tables
shows HHC + HLloyd grouping three US airlines together, whereas HSC + HLloyd includes only two (AA
and US); in Cluster 3, HHC + HLloyd groups three European airlines, but HSC + HLIloyd gives a mixture of
US and European airlines. For airport clustering, our results in Table 3 appear more reasonable than those
for HSC 4 HLloyd in Table 4. Notably, with regards to Cluster 3 in both tables, HHC + HLloyd identifies
a cluster of airports from four major European cities along with ATL (a hub). In contrast, HSC + HLloyd
groups only CDG (France) and ATL (USA) together.

Real-data-inspired numerical studies. While HHC 4+ HLloyd appears to yield more reasonable real
data results, a challenge arises due to the absence of a known ground truth for validation. To draw a more
convincing conclusion, we adopt real-data-inspired numerical studies to establish a quantitative comparison
between HHC + HLloyd and HSC + HLloyd. Recall that in the real data example, HHC 4 HLloyd gives

2The original database at https://openflights.org/data.html#route. Here, we use the processed data provided at https:
//github.com/Rungang/HLloyd/blob/master/experiment/flight_route.RData.
3For each method, we run 100 independent replicates and choose the result that occurs most frequently.
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Figure 3: Averaged CER and percentage of exact community recovery for HSC, HSC + HLloyd, HHC and
HHC + HLloyd under the Stochastic tensor block models with n = 100. Here, the quantity a satisfies (26).

Airlines
Cluster 1 CA, MU, CZ, iU, 3U, ZH (China)
Cluster 2 AA, UA, US (USA)
Cluster 3 AF, AZ, KL (Europe)
Cluster 4 BA, AY, IB (Europe), DL (USA)
Cluster 5 | SU, AB, AI, AM, NH, AC, AS, FL, DE, ET, etc. (Mixture)

Table 1: Airline clustering results using HHC + HLloyd.

~HHC+HLloyd

us the following estimates: the centroid tensor & € [0,1]>%5%5 and the cluster assignment vector

. A . ~HSC+HLloyd R
estimates 2MCTHYYd 1y contrast, HSC + HLloyd provides 8 € [0,1]5%5%5 and zMSCHHHovd - we

~HHC+HLloyd

then generate stochastic tensor block models, setting the truth $* = 8 and zF = 2;'HC+HL|°yd for

. » _ ohSC+HHLloyd % _ =HSC+HLloyd
the first scenario, and 8™ = § and 2z} = z; ) for the second. We apply the four methods
— HHC, HHC + HLloyd, HSC and HSC + HLloyd — to the generated data. The results are averaged over

100 Monte Carlo runs and are reported in Table 5 and Table 6, respectively. From these results, it becomes
. . + _ oHHC+HLIoyd + _ ~HHC+HLloyd
evident that under the model with §* = 8 and 27 = z; , HHC + HLloyd outperforms

in terms of estimation error and recovery rate. For the second model, while all four methods demonstrate
comparable exact recovery percentages, HHC and HHC + HLloyd have noticeably smaller estimation errors.
This means that even for data that best fits HSC + HLloyd, our methods can achieve better clustering
performance.
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Figure 4: Averaged CER and percentage of exact community recovery for HSC, HSC + HLloyd, HHC and
HHC + HLloyd under the Stochastic tensor block models with n = 150. Here, the quantity a satisfies (26).

Airlines
Cluster 1 CA, MU, CZ, HU, 3U, ZH (China)
Cluster 2 AA,US (USA)
Cluster 3 AF, AZ, KL (Europe), DL (USA)
Cluster 4 BA, AY, IB (Europe), UA (USA)
Cluster 5 | SU, AB, AI, AM, NH, AC, AS, FL, DE, ET, etc. (Mixture)

Table 2: Airline clustering results for HSC + HLloyd.

6 Related work

The tensor clustering problem considered in the current paper is closely related to several classical clustering
problems, which we briefly review here. Among the most commonly studied clustering models are stochastic
and censored block models (Holland et al., 1983; Rohe et al., 2011; Mossel et al., 2014; Lei and Rinaldo, 2015;
Abbe et al., 2015; Mossel et al., 2015; Hajek et al., 2016a,b; Cai and Li, 2015; Abbe and Sandon, 2015; Chin
et al., 2015; Zhang and Zhou, 2016; Florescu and Perkins, 2016; Chen et al., 2016; Guédon and Vershynin,
2016; Abbe, 2017; Gao et al., 2017; Deshpande et al., 2017; Amini and Levina, 2018; Li et al., 2021; Cai
et al., 2021), synchronization (Singer, 2011; Javanmard et al., 2016; Bandeira et al., 2017; Chen and Candeés,
2018; Zhong and Boumal, 2018; Gao and Zhang, 2021; Li and Wei, 2022; Li et al., 2023; Celentano et al.,
2023), and (sub-)Gaussian mixture models (Lu and Zhou, 2016; Cai and Zhang, 2018; Li et al., 2020; Chen
and Yang, 2021; Ndaoud, 2022; Abbe et al., 2022; Han et al., 2023). For all these models, spectral clustering
algorithms have emerged as a powerful paradigm and have achieved both theoretical and empirical success
(Von Luxburg, 2007; Kannan and Vempala, 2009; Abbe, 2017; Chen et al., 2021a). Sharp and intriguing
statistical guarantees have recently been derived for spectral clustering (Lei and Rinaldo, 2015; Chin et al.,
2015; Abbe et al., 2020; Loffler et al., 2021; Zhang and Zhou, 2022; Zhang, 2023). However, direct applications
of these methods and theories to the tensor block model might yield highly sub-optimal signal-to-noise ratio
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Airlines

Cluster 1 BRU, DUS, MUC, MAN, LGW, AMS, BCN, VIE, etc. (Mixture)

Cluster 2 LAX, MIA, DFW, PHL, JFK, ORD, CLT (USA)

Europe: LHR (London), MAD (Madrid), CDG (Paris), FCO (Rome)
USA: ATL (Atlanta)

Cluster 4 PEK, CAN, XIY, KMG, HGH, CKG, CTU, PVG (China)

PHX, SFO, EWR, TAH, DEN, LAS (USA)

Cluster 3

Cluster 5 YYZ (Canada), FRA (Germany), MEX (Mexico)
Table 3: Airport clustering results using HHC + HLloyd.
Airlines
Cluster 1 | BRU, MUC, LGW, AMS, BCN, VIE, ZRH, DXB, etc. (Mixture)
Cluster 2 LHR (UK), MIA, DFW, PHL, JFK, ORD, CLT (USA)
Cluster 3 CDG (France), ATL (USA)

Cluster 4 PEK, CAN, XIY, KMG, HGH, CKG, CTU, PVG (China)
YYZ, FRA, DUS, MAN, MAD, FCO (Europe), MEX (Mexico)
PHX, SFO, LAX, EWR, IAH, DEN, LAS (USA)

Cluster 5

Table 4: Airport clustering results for HSC + HLloyd.

conditions, while in the meantime introducing unnecessary assumptions on the condition number.

Turning to the tensor block model, Wang and Zeng (2019) investigated the theoretical properties for
the MLE estimator, which is, however, computationally intractable. Chi et al. (2020) considered a convex
procedure and derived its theoretical guarantees concerning the tensor estimation error. Under the i.i.d. noise
setting, Han et al. (2022a) proved the existence of a statistical-computational gap for this problem and
proposed a polynomial-time algorithm that can achieve exact clustering if the signal-to-noise ratio exceeds
the computational limit (ignoring logarithmic factors). However, in the presence of heteroskedastic noise,
these methods fall short of statistical efficiency. Going beyond this model, Hu and Wang (2023) considered
degree-corrected tensor block models and Agterberg and Zhang (2022) studied mixed-membership tensor
block models. However, the methods and theoretical results in these two papers either lean on i.i.d. noise
assumptions or require the underlying tensor to be well-conditioned, both of which can be relaxed using our
approach. In addition to the model considered in this paper, a couple of other tensor clustering problems
have been proposed and studied in the literature; see, e.g., Jegelka et al. (2009); Sun and Li (2019); Wu et al.
(2019); Lyu and Xia (2022); Mai et al. (2022).

Our work is also closely related to the tensor PCA models (Richard and Montanari, 2014; Hopkins et al.,
2015; Anandkumar et al., 2017; Zhang and Xia, 2018; Arous et al., 2019; Han et al., 2022b; Cai et al., 2022a,b;
Xia et al., 2022; Zhou et al., 2022), which aim to estimate the true tensor or the associated subspaces based
on noisy observations. To accomplish this task, a commonly used strategy is to apply spectral methods
(Chen et al., 2021a) to obtain initial subspace estimates, followed by further refinement steps (De Lathauwer
et al., 2000; Zhang and Xia, 2018; Han et al., 2022b; Tong et al., 2022; Cai et al., 2022a). Some popular
initialization methods include the vanilla SVD-based approach (Cai and Zhang, 2018; Zhang and Xia, 2018),
diagonal-deleted /reweighted PCA (Lounici, 2014; Florescu and Perkins, 2016; Montanari and Sun, 2018; Cai
et al., 2021, 2022a) and HeteroPCA (Zhang et al., 2022; Yan et al., 2021; Han et al., 2022b). However, in
contrast to the tensor PCA models, the tensor block models studied in the present paper do not impose
any assumptions on the least singular value or on the singular gaps of the true tensor. Therefore, directly
applying these tensor PCA methods may not yield subspace estimates with the desired statistical accuracy.

Recently, it has been shown that sharp f5 , or £ guarantees for singular subspaces play a pivotal role for
proving that spectral clustering (with or without the help of k-means) can achieve exact recovery or optimal
mis-clustering rates for many clustering problems (Abbe et al., 2020; Cai et al., 2021; Abbe et al., 2022;
Zhang, 2023). To derive such subspace estimation guarantees, a powerful and perhaps the most popular
tool is the leave-one-out analysis (Zhong and Boumal, 2018; Ma et al., 2020; Chen et al., 2019a; Abbe et al.,
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error mean | standard deviation | recovery rate
HSC 0.0225 0.0269 0.36
HSC + HLloyd 0.0129 0.0275 0.69
HHC 0.0181 0.0472 0.6
HHC + HLloyd 0.0115 0.0453 0.83
~HHC+HLloyd
Table 5: Real-data-inspired numerical experiments: $* = S Hikley and z} = ElH HC+HLloyd
error mean | standard deviation | recovery rate
HSC 0.0273 0.0942 0.89
HSC + HLloyd 0.0311 0.0959 0.84
HHC 0.0120 0.0386 0.85
HHC + HLloyd 0.0124 0.0419 0.88
~HSC+HLloyd
Table 6: Real-data-inspired nemerical experiments: 8* = 8§ ey and 2z} = EZH SC+HLloyd

2020; Lei, 2019; Chen et al., 2020, 2019b, 2021b; Cai et al., 2021; Chen et al., 2023; Cai et al., 2022a;
Abbe et al., 2022; Yan et al., 2021; Ling, 2022; Ke and Wang, 2022; Zhang and Zhou, 2022; Yang and Ma,
2022). However, the results obtained using the leave-one-out analysis are often sub-optimal with respect to
the condition number of the truth. This can lead to unsatisfactory results under the tensor block models,
especially since there is no assumption made on the singular value of the underlying tensor S*.

7 Discussion

In this paper, we have studied the tensor clustering problem in the presence of heteroskedastic noise. To
better deal with heteroskedastic noise and improve statistical performance, we have proposed a novel method
called High-order HeteroClustering (HHC), which first employs Thresholded Deflated-HeteroPCA to obtain
subspace estimates and then applies approximate k-means for clustering. The proposed method provably
achieves exact clustering for a wide range of signal-to-noise ratio conditions that are essentially unimprovable
among polynomial-time algorithms. Empirically, we have evaluated the numerical performance of HHC, and
HHC followed by the high-order Lloyd algorithm (HLloyd, Han et al. (2022a)), on both synthetic and real data.
Both of these two methods achieve low empirical mis-clustering rates, with HHC 4+ HLloyd outperforming
other existing methods proposed in the literature.

Moving beyond, there are numerous future directions that are worth investigating. For instance, thus far
our theory has focused primarily on exact clustering; it remains unclear whether our algorithm can achieve
optimal mis-classification rates when only partial recovery is feasible. In addition, our signal-to-noise ratio
condition might be sub-optimal if the clusters are highly-unbalanced, a scenario where the balance parameter
[ is exceedingly small. It would be interesting to investigate the plausibility of further improvement under
such imbalanced settings. Furthermore, it would be worthwhile to explore the feasibility of extending our
paradigm to tackle the tensor mixed-membership block model (Agterberg and Zhang, 2022), with the aim of
achieving optimal statistical performance without being affected by the condition number of the true tensor.
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A Procedure of High-order Lloyd Algorithm (HLloyd)

This section provides a formal description of the procedure of High-order Lloyd Algorithm (HLloyd) proposed
by (Han et al., 2022a); see Algorithm 5

Algorithm 5: High-order Lloyd Algorithm (HLloyd) (Han et al., 2022a)

1 input: observed tensor Y, numbers of clusters k1, ko, k3, initial cluster assignment vector estimates

{E,EO)}KK;;, number of iterations 7.

2 fort=0,...,7T—1do
(t)

3 block mean update: calculate S e Rhixkaxks guch that
8\ is = Average ({35, juo 1200, =i Ve B}),  Viee [l £ € [3]
4 calculate lA‘S(lt) € R xkzxks € RF1xnzxks B € RF1XFk2Xns guch that

= (t) . . .
(Bl ) = Average {yl,-l,jz,]é : Zétj) =g, 0 = 2,3}) . Vi1 € [n1],i2 € [ka], i3 € [k3],
J1,12,13

B

(

@))h = Average ({Pivgus 15, =it =1,3}) . Vir € [l ja € [nal.is € [hs),
(

(1) . ) .
(B3 ) = Average {yjl,j27j3 : Z’\ét;[ =ip, 0 = 1,2}) R Vii € [k‘l],ZQ S [kQ},j?, S [713]
11,12,73

cluster update: calculate cluster assignment vector estimates {2§t+1)}ie[3]5

t ~(t
Egtjﬂ € argmmH( ) — (Mi<5( ))) H ,  Vie[3],j € ni (28)
k £€[ki] &:12
5 output: cluster assignment vector estimates S = §(T_1), zZ = 2§T)a Z = 25”7 Z = EéT)'

B Proof of Theorem 1

In this section, we present the proof of our main result Theorem 1, by establishing a more general version
as follows. Here and throughout, we define k_; = kikoks/k; and n_; = ninans/n; for i € [3].

Theorem 4. Suppose that Assumption (1) holds, and assume that for all 1 < i <3,

ninans > kin?, (29a)
n; > 616124, (29b)
ki 2 k_i, (29¢)
erk? (ninans)?log?n < 7 Jw?,, < Crk2 (ninans)*/? log® n, (29d)
Bin >CVM (W (ningng)” Y 0gn + (n1n2n3/n)_1/2 1ogn) , (29)
Wnax B2 85

where Cy,c1,Cr and cr are some large enough constants. If we choose the numbers of iterations to obey

3 *2

i +1 . .

ti,j>10g< 5 L:Q] 11 >’ 1<) <jpax—1 (30a)
ZTi,fr
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Jz‘*%v e
P dhax —
tihjli\ax > log CTLBT (SOb)
for all 1 < i < 3, then with probability exceeding 1 — O(n=1°), the misclassification rate (cf. (5)) of the
outputs {z;} returned by Algorithm 4 satisfy
MCR(z;,2;) =0, V1<i<3.

The rest of this section is dedicated to proving Theorem 4.

B.1 Several key results under the matrix setting
To begin with, we first consider the following model: suppose we observe

Y = X* + EcR™*™2, (31)

where the noise matrix E has independent and zero-mean entries, and X * is a matrix with rank not exceeding
r and admits the following SVD decomposition:

U*E*V*T Z 0_* * *T’ (32)
where 0} > -+ > 0¥ > 0 are the singular values of X, U* = [u},...,u}] € O™>" (resp. V = [v],...,v}] €
O™27) ig the column (resp. row) subspace of X*, and ¥* = diag(c%,...,0}). In addition, we define the
incoherence parameter

(Incoherence parameter) w=p(X*) :=max {ml max_||U;, H2 , ™ nax H H2} . (33)
T i€[ma] 27 r jelmal
For notational convenience, we also define
m = max{my, ma} and oy =0. (34)

Furthermore, we impose the noise assumption on the noise matrix E:
Assumption 2. Suppose that the following conditions on the noise matriz E hold:
1. The E; ;’s, the entries of E, are independently generated and satisfy E[E; ;] = 0;

2. P(|E; ;| > B) <m™'2, where B is some quantity satisfying

: 1/4
min  (1my1ms , /M2
B < Chwmax {( logq)n }

One can immediately find that M; (€) obeys the conditions in Assumption 2 with dimension m; = n;
and mo = n_;. Moreover, we define

M = (U*S* + EV*) (U*S* + EV*) ' (35)

and
MP°?% = M + Poftding (EE" — EV*V*'E") = Pofrding (YY) + Poing (M) . (36)
Let U°ce ¢ O™ denote the leading-r eigenvector of M°2¢. The following theorem shows that U"”’C'e

and U, ,, are reasonably close if there is a sufficiently large gap between o}, and o7, ;; the proof is deferred
to Section C.
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Theorem 5. Suppose that r > 2, Assumption 2 holds and

07 /wmax > 2Cor [(mlmg)l/4 + rmi/ﬂ logm (37a)
n< oty (37D)

hold for some sufficiently large (resp. small) constant Cy > 0 (resp. ¢ > 0).
(a) The set defined below

4
A= {j 1<j<ro} ; 24 7’1 07 \/C’Or[(mlmg) /4—|—Tm1/2]wmaxlogm} (38)

18 non-empty.
(b) With probability exceeding 1 — O(n=10), for all v’ € A, we have

Lri’ <r2./m1wmax logm n r2/mimaw? ., log? m> 7 (39)

oracley roracle T I rr1
HU:,lzr’ U:,l:r’ - Uﬁ,liT’/U:,lzr’

o oy

urs 7'2\/milwmax logm r? \/meax IOg m
S ‘my o¥ + ox2 . (39)
1 /

r r’

2,00 ~ ma *2

| | Uoracle UoraclleT U-*l - U-*lT-r’
51 51

Here, U, 1. 18 the leading rank-r" left singular space of U*) X7 11+ + EV + with T = max A.

With the aid of Theorem 5, we are able to develop an upper bound on H( my — UUT) X*||2,OO if the
threshold 7 is properly chosen, as asserted by the following theorem.
Theorem 6. Suppose that r > 2, Assumption 2 holds, and
crr? [(m1m2)1/2 +r ml} log?m < 7/w?,, < Crr? [(m1m2)1/2 + r2m1] log® m (40a)
07 /Wmax = Clr[(m1m2)1/4 + rm}/Q] logm (40b)
p<asy (40c)

hold for some sufficiently large (resp. small) constant Cy, C,c, > 0 satisfying C?/2 > C; > ¢, (resp. c; > 0).
If the numbers of iterations obey

0.*2
ty >log | C—51 ), 1<k < Emax (41a)
(ejioiy
0:3 1+1
e > log | C—"5—— (41b)
max

for some sufficiently large constants C > 0, then with probability exceeding 1 — O(m~10), the output of
Algorithm 1 satisfies

pr®
mi ’

\vuT -Uy,, U

LT hmay 51T kmay

(42a)

~

H (UUT U*l T homax U:flT:rkmaX) H2 o N “ /::1 ( /M 1Wmax logm + T(mlmQ) /4wmax log m) ) (42b)

|| (Iml - UUT) X*HQ oo N \l ‘L:r; ( M1 Wmax logm + r(m1m2)1/4wmax ]ogm> : (42C)

Here,rg = 0.11, ..., 7k, arethe ranks selected in Algorithm 1 and kmax satisfies Ty,
T.

=1 oray,, +1(Giy,) <

max

The proof of Theorem 6 can be found in Section D. With Theorem 6 in hand, we are now positioned to
prove Theorem 4. The proof consists of four steps, to be detailed next.
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B.2 Main steps for proving Theorem 4
Step 1: verifying (40a) - (40c). To apply Theorem 6, one needs to verify the conditions (40a) - (40¢) for
M (YY) = M1 (X) + M;(E) with dimensions m; = n;, mg = n_; and the rank r = k;.

Step 1.1: verifying (40a). Noting that ninons > k*n?, we have (ningns)/? +k?n; =< (n1n2n3)1/2. Then
we know from (29d) that (40a) is valid.

Step 1.2: verifying (40c). For notational convenience, we let

M, = My (M M) P eomk e )

7

and

/2 1/2

S =8 xy (MTM)Y? o (M7 M) x5 (M7 M)
In addition, for any U € O™", we define the projection matrix
Pu=UU". (43)
Recognizing that
M (X7*) = MFM; (S7) (Mi*+2 ® Mz'*-s-l)T = M:Mi(g*) (M:H ®M:+1)T;
We let UX;EX;V;; denote the SVD of X} := M;(X"), where Xx: = diag(o1 (X{),...,0n, (X)) is a

diagonal matrix containing all singular values of X (in decreasing order), and Ux: € Omiki (resp. Vx;: €
On-i:ki) denotes the left (resp. right) singular subspace of X and satisfies

UX: = M:Al (resp. VX: = (M:+2 ®M:+1)Bl) (44)
for some A; € OFi* and B € OF-i"*i_ Then it follows immediately that

e [ B (45)

900 = ”M:||2oo < | M7l o Haki (Mi*TMi*H

Here, the second inequality comes from the fact that M* " M} is a diagonal matrix and its diagonal entries
(MTMY),, = [{i € [ni): =85 = 0}] > ik (46)

Similarly, one can bound ||V ||2,0c as follows:

= = k; kito
1Vx: |y oo < MGl o [[Miial5 0 < \/ an-:l \/ 571:;2 = (47)
We then arrive at
1 k_; ) (29b) ;
Mi:max{ﬂ’ﬂQk} < cl%. (48)

Step 1.3: verifying (40b). Next, let us validate Condition (40b). Note that for any 1 < j; # jo < k;,
* * 2
A? < HMz (5 )jl,; - M; (S )jQ,: H2

T N

= [tes = e Mi(s0)]

<M (S lles, — el
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=2(|M; (SM)]?, (49)

where e; is the j-th canonical basis of R¥:. Furthermore, recognizing that MI*TMl* is a diagonal matrix
with diagonal entries satisfying (46), we know that

O'k;i (MZ) > ﬂnl

>/ (50)

and consequently
* * * * x \ ! * & * 6377/1”2”3 *
11 = |17 M, (87) (M @ M) = 1M (871 T o, (M) 2 ([ S50 M (8] (51)
i=1

Combining (49), (51) and the assumption A;/omax > k%2 (ninang) "/ *logm/B3/2, one has

/33
| X7 > %Ai > k; (n1n2n3)1/4 logn =< k; [(n1n2n3)1/4 + king/ﬂ logn, (52)
1kaks

and thus condition (40b) holds. Here, the last inequality holds since ninong > kn?.
Step 2: bounding ||Y x; Py, x2 Py, x3 Pu, — X*||2. We define

X=Yx; Pu, x2 Pu, x3 Pu,.

Then the triangle inequality and the fact ||Py,

=1 lead to the following upper bound:
|1Z = 2*[]% = ¥ x1 Po, x2 Pu, xs Po, — 272
<2 (||x* x1 Py, X2 Pu, X3 P, — X*|2 + | € x1 Pu, x2 Pu, X3 PUSHI%)
<6([12* x1 (In, — Puy) %2 Pus %3 Puylly + X %2 (I, — Pu,) X3 Pu,ly
+ (2% x5 (Ing = Pu)lw ) + 211 x1 Pu, X2 Pu, X3 Pus [
<6 (|| (L, —0UT) X [+ [ (1 = UU)) X3+ || (£, = UUY) X537
+2||€ x1 Py, X2 Pu, X3 Pu,lla- (53)

Recognizing that for any 1 < ¢ < k;, we have

3 (50) 3
70 (M3 () = o0 (MM (57) (M7 0 M) ) = TLow (M) 0 (Mo (87) 2 (| 020, (0 (5)
=1

and
3
o0 (Mi (&%) < [T IM | o0 (M (87) < Vinnanzor (Mi (87)) .
i=1
In view of Theorem 6, by choosing the numbers of iterations as in (30a) and (30b), we have

| (@~ 00T Xi [ < | (L, - 00T X3

2

k}3

<np- H;L L (kf\/nlwmax logn + k1 (n1n2n3)1/4 Wmax l0g n)
1

(29a) and (48) %6

< — (n1n2n3)1/2w

~ /82 r2na>< 10g2 n (54)
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with probability at least 1 — O(n~'°). Similarly, one has, with probability exceeding 1 — O(n~19),

i6

| (I, — UU, )X2HF S (n1nans) 1/2 w2, log?n, (bba)
k6

| (I, — UU, )X2HF S (n1nans) 1/2 w2, log?n. (55b)

Moreover, we learn from Theorem 6 that with probability at least 1 — O(n=19),

*TT* * Mlkf) :
Uil o = O [, < [OOT U0, 4100 < 2/ 255 i 3] (56)
Applying Lemma 7 yields that with probability at least 1 — O(n~10),

I€ x1 Pu, X2 Pu, X3 'PU3||% <k ||U1TM1 () (Us @ U,) ||2

< kn (unk?) (p2k3) (sk3) Kowioclogn
(48) 113

< an?nax log n. (57)

Putting (53) - (57) together, we obtain

13

1/2 2
@nwmax

16
||X X*||F~52 (ningns)'? w?_, logn + logn (58)

with probability exceeding 1 — O(n~10).

Step 3: deriving estimation accuracy of the center estimates. We let
0\) = (Ui @ U 1) e R™, Vi€ [3],0€ [k, (59)
and also define
0" = (M (X*))] e R, Viel[3],Le k. (60)
Here, j € [n;] is any index satisfying 27 ; = £ and the Bgi)’s are the center estimates satisfying (18a). Recalling
that B; = U;U M;(Y)(Uiyr ® Uz+1) we have
Mi(X) = Bi{(Ul, @ UlLy),  Viel3).

This allows one to show that

T

(Mi(®))], -

Z H i+2® Uipa) (ui) 3(2)) Hz

Z.LJ

n;
_ T _ 3@
=> |8y, -8 |
Jj=1
(18a) i ~ T 2
<M min > ‘(BZ-) b.,
b1, by, €RTIT27E/ T L J 2
z; €[ky)™ J=
Kz 2




(Mi(®))] — ]|

I+ |2

j=1
= M||x - x*|2. (61)

Here, the fourth line makes use of Han et al. (2022a, Eqn. (38)). As a result, we have

5 _ gl

i’eA

Zi,j i3

1 byl [RC e
j=1

2

2 i - UL
Y [ma(@))) -6
j=1

3 112

= w12 = w112
<2(M|& - x5+ & - x)

<4M| X - x| (62)
Noting that M} " M} is a diagonal matrix and the diagonal entries
(MTM;),, = > (M), = {j€ni]: =, =€} = Bni/ks,
j=1

we have

on, (M) > \/Brifki, Vi€ [3]. (63)

As a consequence, for all {1 # {5 € [k;], we can derive

s~ (M (X))

J2y H

It
- H (M (S, . = (Mi(8))y, .. ) (M @ M) H
It

> M1 (8))617: - (Ml (8))627; Hgki-H (M’L*+1) Ok;ito (Mz*+2)
> 8, [2A, (64)
k_;
where ji (resp. j2) is any index such that z;; = {1 (resp. 2] ;, = {2). We define
. A )% B [n—
Si = il - ‘09 - 0(*) > — Ai . 65
In view of (58) and (62), with probability exceeding 1 — O(n~19),
ni |lg _ g|?
j=1 ’ 021._,]. - az;j 9

1Si| <

(3

4M - Cg (’g—z (n1n2n3)1/2 w2 log2 n -+ %—f’an log n)

< max max
= 2
B [n—i
(/i)
Bni

< B 66

=2k (66)
provided that

k972 —1/4 k® —1/2

A, > CivVM W (n1nang) Wmax logn + 572 (n1nang/n) WmaxV/ logn | .
For each 1 <i < 3 and ¢ € [k;], denote by N ¢ the following set:
Nig:={jeln:z,;=10je8}. (67)

Then we can verify that with probability exceeding 1 — O(n~10)

the AV; ¢’s hold:

, the following two important properties of
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1 . The N, ,’s are nonempty:

(12) and (66) )
> ﬁ——éﬁ by, (68)

Wil > |{5 € [ni] = 25 = £}] - |S4] 2% 2k

2. For any i € [3], the sets {Z; ; : j € Ni ¢}, ¢ € [k;] are disjoint: for all £1 # €5 € [k;], j1 € Niey,J2 € Nigs,

S I e
2,71 2,72 1,51 .72 12 2,71 71 (12 52 1 iz 12
_ He(w* 0(”* ’ 8y gl ’ 8y g
531 Zi J1 12 2,72 t iz 112
(64) 5 n—; B [n—
=5 Ai—3 A; =0,
> B k_l 2V k-, 2V k-,

which implies Z; ;, # Z; j, and further tells us {Z; ; : j € N, } N {Zij: j € Nig, } = 0.

Therefore, with probability at least 1 — O(n~19), for any i € [3], there exists a permutation ¢; : [k;] — [k]
such that

Zij=¢i(27,), VjieSiie[3] (69)
In view of (66), with probability at least 1 — O(n~1%), one has
1. ~
" i €nil: 25 # 0 (515) } < — |S

4M - Ce( (nmgng)l/ w2, log®n + 56 nw logn)

| N

< (70)
B n—g
i (§ T Ai)
for all ¢ € [3], and
oy L2
ni 0&1) _ 0(1*)*
He(l —0( )* 2]71‘ Fid  Faille
o S iell zy =0 (0), 2, =10
(||
E ’ 621 .G - 02?‘ i1l
“fGenl -, =t e
>t ‘02] -0l
[N el
4M C( (n1nans) 1/2 w2 log?n + 66 nwmaxlogn)
- Bri
2k;
C:M (Bs (nmgng)l/2 w2, log®n + 67 nwmax logn)
= (71)

n;
for all £ € [k;], provided that
K9/ —1/4 k® —1/2
A; > CiVM W (n1nans) Wmax logn + ﬁ9/2 (ningns/n) wWmaxV/ logn | .

Here, the fourth line of (71) makes use of (58), (62) and (68).
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Step 4: proving MCR(EZ, Z) 0. Finally, we would like to show that with probability exceeding
1—-0(n=19), z; = ¢;(2}) for all i € [3]. In view of Theorem 6, Lemma 7, (48) and (56), with probability at
least 1 — O(n _10)

13
(L., —-UU") X7|, . < piki k2 /Miwmax 10g 1 + ki (n1mans) /! wmax log n
2,00 n;

(‘g) k3 (n1n2n3)1/4

~ g n;/g Wmax l0g 1 (72)
and
|UU Ei (Ui2Ul © UiaUily) |y, o < Uil o0 1UT B (Uivz @ Ui
g ﬁ 1 (01k2) (2k2) (12]3) K og
(48) [ pa
| e/l
. (73)
holds for all ¢ € [3]. Here, X} = M;(X*) and E; = M;(E). By virtue of (18b), we know that for any i € [3],
{Getml:zy# oG € {iemlsze s (B -8, < | (B, -8, [} @0
For any fixed ¢ # qbl(zz*j) € [ki], recalling that é\y) = (UH_Q ® U7.+1) ) ), one has
@ o, <[ B, -0, )
=1 {[[Bo), 8|, + | B 80, <2 B -8 )
<u{[ol? -8 |, =280, -8 [, )
<1{|of -op.. || <28 -8 |}
= ]l{ 0}1) - Géi)(zij) , <2 H(U) U'Y, U2 @ Upyr) — bfb)(z”) } ; (75)

where Y; = M;(Y) = X} + E;. Note that

H(Ui)j, UY: (Uiy2 @ Uii1) - b;,(z:n

‘ +H ;. Ul X (U2 @ Ui) =3 L
3 @] 2

HU UTE (UH_Q X Uz+1 H2 + H U UTX* (Ui+2 ® Ui+1) 02:(2* ) (Ui+2 ® Ui+1)H2

< H U;) ‘AU'TEi (Uit2 @ Uiy1)

< VU] Bi Uiso @ Ui, o, + |0, U X7 — 65

¢1(z:])
< [UUT B Uiso 0 Ui, o + |00, U7 X = (x0),. |, +||x0,. - 6500 |
< |UUT B Uiz @ Uia) |5 o + || (T, = UU) X*Hg,m+H (X7) -~—@%-)<T;j> )
— |UU] B Uiz @ U)o + || (B, = UUT) X7 |, + |65 0“” i
< |[UU Ei (Uise @ Uia) ||, o + | (Ln, = UUT) X7, o + s%p} w0,
’ ’ aclk;
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and

ni) i) (3)% (3)x (%) l)* At
o -85, |, —H" o~ 0, Q‘H"f H [0, 0],
(64 )
2 B8 i — 2 sup HO 9((;)* .
—A o 11%:@ )

Putting the previous two inequalities, (71), (72) and (73) together yields: with probability at least 1 —
O(n™19),

-

-2 H(Ui)j,: U'Y; Uiy2 @ Uip) — bf;)(zm

0(2)*

Zﬁ ¢i(a) a

-2 sup HB

—i 2

2(lle-UJEmUm@Ui+1>||2,w+||(Imm-vf)xzum sup 87y - 08"

’ a€lk]

)

C:M (g—; (n1n2n3)1/2 w2, log®n + 67 W, logn)

> ; —4
B k_z n;
K3 (n1n2n3)1/4 K8 nlogn
- CS B Twmax log n— C8 @wmax T
>0 (76)

holds for all ¢ € [k;], provided that

9/2

— (k
Ai/Wmax Z Ol M <B5/2

== (nlngng/n)_1/2 v/ log n) .

(ningns)™ /logn+

B
Combining (74), (75) and (76), we arrive at

MCR(z;,2;) =0, Vi€ [3]

with probability exceeding 1 — O(n~10).

C Proof of Theorem 5

Part (a): proving A # (. Let

" )
. max A, if A# .Q), 7 (77)
0, otherwise.
We claim that
opp1 < 2007"[(77117712)1/4 + Tmi/Q]wmax log m. (78)

In fact, if 0%, ; = 0, then (78) clearly holds. If o, ; > 0, then we must have 7 < r. Let

) . L . . 4r .
¢ = min j:r+1§]§r,ajzﬁaj+1 .
r—
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Note that such ¢ does exist as the largest j < r satisfying o7 > 0 must obey o7 > 4:1%10]*- 11- The definition

of 7 immediately tells us that o} < Cor[(mimg)'/* + Tmi/Q} logm and consequently one has

i—1 * i—r—1 T
« (o 4r . 1 1/2
or = g'; jgl O_;jrl < Ji* (47’ — 1) <ol (1 + 37‘) < 2007“[(m1m2)1/4 + rml/ }wmax log m.

The first inequality holds due to the definition of ¢. This combined with the assumption on o7 reveals that

T #£0,ie., A#( and
7 = max A. (79)

Part (b): proving (39b). The rest of the proof is devoted to proving (39b). Letting

UM = [ut, ... uw], > = diag (0F,...,0%), Vv = [vr, .. v, (80a)
U+ = (Wi, .. u}], »*?) = diag (071, ,070), V2 = [0 ... 0], (80Db)
we can derive
>0
* * *(2 * *(1 *(2 *
U* = [ U], v = [V vy 2{0 2*<2>]' (81)

Let the SVD of U*WE*(1) 1 EV+*(1) be denoted by
UOsOwOT — M) 4 py*(), (82)
Here, UM € O™ 51 = diag(54, . ..,67) where 51 > -+ > 67 > 0, W) € O™, Then one has
(U*(l)g*(l) + Ev*(l)) (U*(l)g*(l) + Ev*(l))T W (f}(l))Qﬁ(l)T_ (83)
We can then write M°2® as follows:

Mo = (X* + E)V*V*T (X* + E)" + Pofrdging (EE" — EV*V*'ET)
= (X*+EBE)VOVOT (x* L B) +(X*+ E)VAVAT (x* 1 E)'
+ Pofr-diag (EE" — EV*V*TE")
= (U*(l)g*(l) + Ev*(l)) (U*(l)g*(l) + Ev*(l))T + P(f}(l))iU*(z) (2*(2))QU*(Q)Tfp(ﬁ(l))l

=M
+ U*(2)2*(2)v*(2)TET + Ev*(2)2*(2)U*(2)T + EV*(Q)V*@)TET
:2Z1
2 2
+ Pﬁ(l) U*(2) (E*(Q)) U*(Z)Tp(ﬁ(l)) + U*(Q) (E*(2)) U*(Z)Tpfj(l)
€L

=:Z5
+ Pofr-diag (EE" —EV*V*'ET). (84)

=:Z3

For convenience, we shall also let

Z =7+ Zy+ Zs. (85)

C.1 Several key lemmas

Before proceeding, we first introduce the following lemma, which allows us to bound an infinite sum of ¢ o

norms of perturbation matrix polynomials instead of bounding HU}???’FUSE??T ~U.1 [NJ:TLT, directly.

s
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Lemma 1. Suppose that M = M + Z € R"*", where M and Z are both symmetric matrices. Assume
that M is a matriz with rank not exceeding r and has eigenvalues AN > o>\ >0 and rank-r leading
eigenspace U = [y, ..., W,] (so that w; is the eigenvector associated with \;). If there exists some rq
obeying 1 < ry <r and

Ay = A1 > 2| Z]], (86)
then it holds that
T 8 2 k
o - . _

o0, -, < 2> (H) >, |PuzPLz-ZP; |, . (72

E>1 N ri+1 0<j1, i1 7

(G150 Jk41)7#0

40

|@.0] ~vu M|, <
0<g1s i1 ST
(415029 k1) #0

_ 2 k L _
Ay (/\A ) § HleZszZ.-.ZPMIHM. (87b)
E>1 r1 T Ari+l

Here, U, and U, denote the rank-r1 leading eigen-subspace of M and M, respectively; and we denote
— - = =T
P; :ﬁjﬂ; foranyl<j<rand Poy=U,U,.

The proof of Lemma 1 can be found in Section C.3. In addition, the following lemmas deliver sharp /5 o
guarantees for some polynomials of the noise matrix.

Lemma 2 (Zhou and Chen (2023), Lemma 2). Suppose that Assumption 2 holds. Then we have, with
probability at least 1 — O(m~19),

|[Potraiog (EET)]" EV*

k
< Cy/pr (Cs (y/mymg + myq) w2, log? m) " wmax logm (88)

2,
for all 0 < k <logn, where C3 is some sufficiently large constant.

Lemma 3 (Zhou and Chen (2023), Lemma 3). Suppose that Assumption 2 holds. Then we have, with
probability at least 1 — O(m~19),

|[Potraiog (BET)]" U*

[ur k
, < (s Z—l (C5 (v/mima + mi) wiy log? m) (89)

for all 0 < k <logn, where Cs is some sufficiently large constant.

The following lemma, which was also established in Zhou and Chen (2023), provides some helpful con-
sequences on the eigenvalue perturbation, the size of some perturbation matrix, and some incoherence
properties of UM,

Lemma 4 (Zhou and Chen (2023), Lemma 4). Instate the assumptions in Theorem 5. Then there exist
some large enough constant Cs > 0 such that with probability exceeding 1 — O(m~1°),

Gi — 07| < |[EV*Y|| < |EV?|| < VCsy/miwmax logm, Vie[r], (90a)
| Pofr-diag (EET — EV*V*TET)|| < 3C5 (v/mimg + my) wa,, log® m (90b)
[T 0T OTHO — GO, < 4C5 \/[ITWmax log m < [B (90¢)

* )
(e miq

T3 0 <24/ 7 (90d)

Finally, the following lemma develops {3 o, bounds on the polynomials of the perturbation matrix Zs,
which will play a key role in the subsequent proof.
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Lemma 5. Suppose that Assumption 2 holds. Let
E ={(88) and (89) hold for 0 < k <logn} N {(90a), (90b), (90c) and (90d) hold}. (91)

Then there exists some large enough constant Co,C3 > 0 (independent of Co) such that under £, for any
0 <1 <logn, one has

HZg,U*H2 o < 3C5 % (Cg (v/mimg + mq) w,znax log? m)i , (92a)
' Vo ma

ZLEV* < 3Cs/r (Cs (vmimg 4+ my) w2, log> m iwmax logm, (92b)

3 2,00

zioW <4Cy L Cs (ymamg +my) wi, log?m ' , (92¢)
3 2,00 my

|| ZZZSZ1 ||2,oo < C2\/W (U$+1 + \/%1wmax IOg m) (03 (\/m + ml) wrznax 10g2 m)l Wmax log m, (92d)

||Z§Z2 ||2’oo < Con/fur (03 (v/mimg + my) w?nax log2 m)i WmaxTpy 1 log m. (92e)

The proof of Lemma 5 is postponed to Section C.4. The union bound taken together with Lemma 2,
Lemma 3 and Lemma 4 shows that

PE)>1-0(n"). (93)

In the rest of the proof, we assume that £ occurs unless otherwise noted.

C.2 Main steps for proving (39b)

Step 1: bounding |[|[U®|,. We start with controlling ||[U?)||,. Combining (90a), (Chen et al., 2021a,
Lemma 2.5) and Wedin’s sin @ theorem, one has

oo

IN

[TOT (U W) || = |[TOTOT — groyT)|

*(1)

ox ox
where the first inequality makes use of the fact that U7 Uy = 0. Note that the rank of M is at most r.
We also denote the eigendecomposition of P(ﬁ(l))LU*(2) (2*(2))2U*(2)TP([~](1))L by

T (5@)25® = P(ﬁ(lmU*(z)(g*(2>)2U*<2>Tp(ﬁ(l)M (95)

where U?) ¢ O™ and 1) = diag(c7s1,...,0.) with o417 > -+ > 7, > 0. Recognizing that

ULTU® = 0, we see that the eigendecomposition of M can be written as

M =UAUT, (96)
where
_ o~ -~ _ s(1)? 0
U=[UYU®, and A = diag(1,...,57) = ( 0 ) EY? (97)
In addition, one observes that
07 (P, U®) =0,z (OV) [U"@) = min | (@) [U"@a

ackr—:al,=1

. 2 ~ 2
= it (I0®al} - [T070Cal)

llall,=1
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\/1 max Hﬁ(l)TU*(Q)aH;
ack T lal,=1

—/1 - ’ 1)TU*(2)H
2
1-— 1 \/§

T2

(98)

The last line holds due to (94). Noting that U® is also the column subspace of P(ﬁ(l))LU*@) € Rmur—T

and combining (90d), (94) and (98), one reaches

1 % P, & P U

= f (7@, o + 1P Ul )
2
< = + o™ uWTyr® )
f (\/ [T, I
<

HE

ml

%\

| /\

(99)

Step 2: bounding 62 — 52, and [|Z|. Recall that Xi(M) = G2 for i € [r]. To apply Lemma 1, one

needs to check the condition

0—3/ _53/+1 >2||Z||7 V?“/ EA
It is seen from the definition of 7, that
or1 < ||2*(2)H =071
Further, (95) and (98) taken together imply that
2 2
~ 2y/C x| 1
CER af,;(P(ﬁ(l))LU*(z))gﬁl > (1 _ 5/1 1 Wma ogm) 022 > (1 B Orz) 022

*
O

for some large constant C' > 0. By virtue of (101) and (102), one has
1 * * ~ *
max { (1 - Cr2> 031,001 — 24/ C5v/mywmax logm} <orp1 S 07y

Putting (90a), (101) and the fact o, > o > Cor[(mima)t/* + m}/z] logm together yields
O — Opp1 200 — 05 — 2BV

> 07 — 0y — 21/ Csy/Miwmax logm

* (7:/
ZO’ 0'7./_;'_1—@

1 1 4r — 1 o
>7 - */_ * _
250 +1)+2(0T ir ) Cr

1 o
>7 ! ! > 7‘.
> 5 lon —on) 2 g
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Here, the penultimate and the last lines hold due to the fact v’ € A. In addition, we observe that

0.*

~ ~ 1
Op + 01 200 +00 —2(|EV*| >0 +05, — C’T > = (O’:, + o).

Combining the previous two inequalities leads to
*2

1 N O
G — Gy > y (o — o2 y) > 16 (104)
90a)

Now, we move on to control ||Z]|. In view of ( and (94), we have

1Z1|| < 2| =@ |EV*| + [|EV*|]” < 2¢/Cs/Miwmaxlogm - 05,1 + Csmiw?,, log? m (105)

and
12 < 2| T Uz @)= < w 022 < Mawmalogm - o, . (106)

Combining (105), (106) and (90b), we arrive at

*2
1Z]] S Vimiwmaddogm - o7y + (Vimams + ma) whadog® m < 12 <G = 61y, (107)
which validates (100). Here, the second inequality uses the facts o > % > Cor[(mimg)'/* + rm}/g] log m.

By virtue of Lemma 1 and (104), we have

oracley roracle T r rr 1
HU 1/ U N U:,l:r/U;)l;r/

2,00

Y
k>1 O'T/* /+1) 0<j1,e o dp41 ST
(15 Jk+1)T#0k+1

k
< Z( r’ - 1> Z ||P ZP Z ZF)]k+1H27oo7 (108)

0<g1,.-0s Jk41<T
(310 dpg1) T Okt
Here, for any 1 < j <, P = uju and Py = ﬁLﬁI
To bound ||URURIET — U, 1.,/ U,,.,||2,50, we will bound each single term | P;, ZP;,Z --- ZP;, |, |2,
for 1 < k <logn, and show that the total contribution of the remaining terms is small.

Step 3: bounding ||P ZP ,Z - ZPJk+1||2 oo for small k. For any 1 < k <logn and (j1,...,Jk+1) €
{0,1,...,7}FT1\0, let £ denote the the smallest 7 such that j; # 0.

Step 3.1: bounding H15j1Z15j2Z~-~Z15jk+1||2700 when ¢ = 1. If ¢ = 1, then (90d) and (99) taken
collectively show that

[t e < mace (|0 o (Dl o} <24/ 2 (109)
Inequality (107) taken together with (109) leads to
|\P,zP,Z - 2P, .|, . = |4}, 2P, Z- ZPWHQOO

o ZP,Z - ZP;

< ||u]1||oo H ]k+1”

k
SW*IIZII
mq

< 21/5; (Co (Vmiwmax logm - o2,y + (y/mims +my) wi,, log? m))k (110)
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Step 3.2: bounding ||Z’l7\|200 Turning to £ > 2, we see from the triangle inequality that

|P;,ZP,,Z - ZP,

erillae < |

{—1
Zl- 1P Z ZIJWHIHQOOJFZHZZ 1p_ Z‘Pj+1Z Z‘P]k+1
=1

L (1)

To bound the right-hand side of (111), it is helpful to bound ||le7HQDO first.

Step 3.2.1: bounding HZZ U ||2.00. Recognizing that for any matrices A, B € R™*™1 we see that the
following equation holds:

i—1
(A+B)'=B'+) B'A(A+B)7".
j=0

This allows one to derive

Z'UW = (Z, + Zy + Z3)' UW

i—1 i—1
=z;0W +> " 22,2770 + > 2] 2,27\ UW. (112)
j=0 =0

By virtue of Lemma 5 and (107), one has

i—1
12TV, <1250V, +> 12321+ 22) 27T
=0

||2,c>o

1—1

<10V, + D122, + 12220, )| 27 0
7=0
i—1

<||Z5U 0|, + D (12820, 0 + 128 22],,.) 1 2]
7=0

i—j—1

< 403, /% (Cs (Vmmmz + my) w?,, log” m)’
1

1—1
+ Z Co/pr (03,1 + Vmywmaxlogm) (Cs (v/mima + my) w2, log? m)J Wmax log m-

7=0
(C2 (Vimiwmax logm - 074y + (v/mumz + my) whay log? m))i_j_l
5 403\/7 (Co (vmiwmalogm - o7,y + (/s + mi) w2y log? m))'

i—1
T 1
+1/M (Cg (\/ 1Wmax logm - o7y + (y/mima +my) maxlog m Z E —
mi = 27

<Oy ,/T'l:: (Cs (Vmiwmax logm - o2, + (y/mims +m1) wh.y log? m))l, (113)
1
provided that Cy > 4C53 + 1.

Step 3.2.2: bounding || Z'U®|5.. Note that U® is also the column subspace of P(ﬁ(l))lU*(Q) €
R™1"=7 In view of Lemma 5, (94), (98) and (113), we arrive at

12T, . < 2P g0y, U, 7 (P, U)

2 T Tx i
= (HZ U@, +z 7’6<1>U*(2)H2,oo)
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2 L TH z r7 *
<7 (Izv* @, + 2TV, JTOTT=])
\/§<3031) Hr (03 (\/ +m1) maxlOg m)
+ Oy ,/:; (C’2 (\/ 1Wmax logm - o7, 1 + (y/mimg +my)w Xlog2m))i';>
<y ”m (Cs (Vmiwmaxlogm - o5, 1 + (v/ma 2+m1)wiaxlog2m))i. (114)
1

Putting (113) and (114) together and recognizing that U = [U®) U®], we conclude that
12U, < 2TV, + 12T,
<204,/ 7;;1' (Co (Vmiwmax logm - a2, 1 + (y/mima +m1) wioy log? m))Z (115)
Step 4: bounding ||P ZP A Zf)jk+1H2 oo When ¢ > 1. Plugging (107) and (115) into (111) yields

that, for £ > 2,

|P,ZP;,Z - ZP;

k+1 HZ,OO

-1
N2 il oo 1852 - ZPris [y + D112 7O (U 2P, 2 2Py o
=1
_ -1 o 4
<270, 1217+ D12 O, 2
i=1

{—1

§2021/m (Co (Vmiwmaxlogm - o2y + (y/mima +mp)w w2 log? m))
(CZ (\/ M1 Wmax 1Ogm or 7+1 + (\/ +m1) Wmax log m))k76+1
—1—22021/ KT (C’g (VMiwmax logm - 05,1 + (/mima +m1) wi,, log? m))iil.

=1

(CQ (meaxbgm O’+1—|—(\/;+m1) aaxlong))k*i+1
_ZCQ\/W(CE (meaxlogm orq + (Vmamg +my)w maXIOg m))k~€

< 2021/m (2C5 (Vmiwmax logm - 05,1 + (v/mimz + my) w?, log? m))k

The last inequality comes from ¢ < k + 1 < 2¥. Combining the previous inequality and (110) reveals that:
for any 1 < k <logn and (ji,...,jks1) € {0,1,...,7}*T1\0, it holds that

|P;,ZP;,Z - ZP,

k+1H2oo

<209,/ T/;L: (205 (Vmiwmax logm - 02,1 + (v/mima +m1) wh,y, log? m))k (116)

Step 5 boundmg HUoracIerracIeT fj' 1 T"ﬁ:—,rl:r’HZOO‘ NOW we are ready to bound ||Uorac|erracleT

U. 1 T/U 1o . As a consequence of (116), for any 1 < k < logn, one has

S k
(Uzgzﬂ> Y. |PzP.zZP, |,

0<j1,.- Jk+1S<T
. . T
(]1 ,,,,, Jk+1) #0p 41
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8 F [ ur k
= (OM> . (T * 1)k+1 126 my (202 (V M1 Wmax logm ox T+1 + (\/74_ ml) r%]ax 10g2 m))

T 7‘+1

k
< 40y e (32027‘ (1/ M1Wmax logm - o7, + (,/ 5+ ml) Wiax log m)) . (117)
\/ 1

*2 k2
Oy 0r’+1

Recalling that o > o > Cor[(mima)*/* + rm}m} logm, we know from (104) that there exists some large
constant C' > 0 such that

(3202r (,/ M1 Wmax l0gm - 0% 1t (,/ +m1) Xlog2 m))k_1

*2 *2
O-T/ - /+1

< (32027" (‘/ 1Wmax logm - 0= +1+ (./ +m1) Xlogzrn))k_1

7/ (4r)
1\ 1
<l\czz < o (118)
For any k > |logm]| + 1, in view of (107) and the the previous inequality, we have
3 k
(oom) X IBzRuzzP,.
r’'+1 0<j1.ipp1 <7

(9150 dn41) | #Opp1

8 b k
< (o) o120
T/ r+1

5 (167"6’2 (‘ /M1 Wmax logm - a;_H + (‘/ 1Mo + ml) wfnax log;2 m) ) g
S ar-

*2 *2
0-1"' g 41

_ 2r 167Gy (Vmiwmaddogm - oF .y + (Vimams + 1) Wi, log” m) (119)
S coR o2 _ g*2 '
r/ Orit1

Combining (108), (117), (118) and (119), one can obtain
HUoracIerracIeT ﬁ— L. ’ﬁ—l—l ,

2,00
k
< AC 32C,r (./ 1Wmax logm - o7, + (,/ 5+ ml) ?nax log2 m)
— Z 2 ml (7'*/2 - /
1<k<logm r Orit1
N Z 2r  16Cor (\/miwmax logm - 0% 4 + (y/mimz +my) wa,, log? m)
Ck 0.*/2 _ *2
k>|logm]+1 r Trit1
- 7“3 r (,/ M1Wmax logm - 05,1 + (,/ 5+ ml) %ax log2 m)
~ N ox — :2+1
< Lr3 72/ Wmax log m n r2 (dmlmz + ml) Wiax log?m
N m o or?
prd (2 /Miwmaxlogm 12 /mimaw?,,, log m
= o —~ + 2 . (120)
1 ! !

Here, the second last line holds due to (104) and the the last line makes use of the inequality

2 2
r’miw?, log®m _ 2 (w/mlwmax logm> <2 /M1Wmax log m
~Y b

or? o¥ o

provided that o}, 2 \/MiwWmax logm.
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Step 6: bounding ||U. ;. T/T}Tl o — UM UNl2,00- To control |USRSEUESET — UL, UM, one
still needs to bound || U, 1.+ U, = U T,U*Irr, l|2.00- Recall that UM SOW DT is the SVD of UM 5+
EV*Y) = U* ;35517 + EV. 17 and U. ... (resp. U’,.,.) is the matrix containing the first 7’ columns of

UD (resp. U*(l)). We make the observation that

*

P(ﬁ - /) U:,l'?"'

L

- 7) U. L/ (U*l TIET L 7") (Ir/ OT/X(?*T'))T (EIZT/,IZT‘l)_l

)

=PG....). (U SOWOT gy _ur,, ;,HMF) (L 0y o) (Zhrinr)

- 7) U.oi), (U 1: wzglﬁf 1 W(}) U(i)ﬂ rzv(” )+ T/ 1 TW(}")II T EV*(1)> (Ir’ OT’X(?—W))T
(Bhne)

= U(i)-u ?Eﬁlll T 41 TWE’Il")Il:T (Ir’ Or’X(Ffr’))T (Ef:rgl:r')_l

-1

* T *
7P(U 1o/ ) Ev+Y (I’“' OT'X(F—T')) (21:7“’,1:7"’) ) (121)
where the second identity is valid since
T T
2:'+1;?71;? (Ir’ Or’x(Ffr’)) = (O(Ffr’)xr’ 2:'+1;?yr/+1;?) (Ir’ 0W><(Fﬂ~’)> = O(Ffr’)xr’
1 ,)Lﬁ:(,?r/ = 0 and P(I} 1.,/)Lﬁ:(,71"2+1:F - fj:(,i2+l:?' Note that W(,})r’
(resp. (I,» 0)") is the leading r’ right singular space of U*M3*M) 4 EV*() (resp. U*M*(M) and

and the last line comes from P(g

s s 4
Chen et al. (2021a, Lemma 2.6, Eqn. (2.26a)) and Lemma 4 taken together imply that

1 C
Of =0 > EU:/ >0 [(m1m2)1/4 + rmi/Q]wmax logm > rv/mywmax log m.

(1)
T TN s 1T T [EV*D] _ ry/mwmax logm
HW 417 Ir’ OT’X(FfT/)) H = H(W,l:r/)J_ (Ir’ Or’x(Ffr’)) H S o — o* ,S ! oF )
T’ r’+1 r’
(122a)
r T EV*(l) m xl
H(U:*l.T,)IU;,l:T, < H* . | < TVmyna: logm. (122b)
7. Opr — Opryq O
Moreover, combining (90a) and the assumption o > Cor[(mymsa)/* + rmi’?|wmax log m gives
G <or +||EV*|| <207, Vi € [7]. (123)

Inequality (90d) combined with (122a) and (123) gives

HU r/41: 725‘111 /41 rﬁvf:si’)llz? (IT/ OT,X(F*T/))T (2,1(1’“7127")_1 H

2,00
T _
HU(UHz 00H2£1+1 7+ 1 TH HW i)Il T (IT’ OT’X(?*T/)) H H(EI:T’,I:T’) 1H
<o [FT G5, TVMwmadogm 1
mq i oy o

<o [HT o5 » VM Wmaxlogm 1
—_— . 0' 7 - —_— .
~ my r’+1 o* o*

< /er\/ﬁlwnlaxlogm. (124)
mq O
In addition, Lemma 2 and (90d) taken together imply that

“P(ﬁ:,l:r/)LEV*(l) (Ir’ Or’x(Ffr’))T (Efzrl,l:rl)_lH

2,00
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1

*
O-’I"

T/ (HEV*(UHZ,OO + Hpﬁ:,lzr' EV*U)HQ,O@)

1
UT’
1
JT
1

IN

P 2V

2,00

IN

IN

Hﬁ:,l:r'|

’
H2,oo

— (IBv- 0|, . + [T

)

N

o* (\/ UTWmax log n + 2\ / % © /M1 Wmax log n)
! 1

ur /M Wmax log m

mq o¥
< | Tv/M;Wmax log m
2,00 ~ mq O—:/

The previous inequality taken together with (122b) and (90d) reveals that

(125)

Taking (121), (124) and (125) together gives

*

Hp(fjr,l:r/)L U:,l:'r’

I rrT * *T
HUI’ll”"U:,l:r’ - U:,l:'r"U:,lt'r"

2,00

< || (U:Tl:r/ - ﬁ:,l:r’ ﬁ:—,rl:r’ U:l:r’)U:lT:r’

* *T
= H (P(ﬁ:,Lw)LUl,lZT’) U:,l:r/

r rr 1 * *T r rrT
0o + ||U:,l:r/U;71;7«/U;71;7«/U;71;7»/ - U171:7"/U:,1:7"

2,
0T (U2), U ]

2,00

T~
2 |2,oo H(U:l:r’)LU:,lzr’
< [HErTVmemadogm ) [T Ty Wna logm
~ ma 0':, my 0.:[

!
- el o

r!

+ Hﬁ:71:7"

S HP((}:,I:H) U:fl:r’

L

By virtue of (120) and (126), we arrive at

oracley roracleT * *T
HU:,lz'r’ U:,l:r’ - U:,l:r’U:,l:r’

2,00

oracley roracle T I rr 1T
< ||U:,1:r’ U:,l:r’ - UiyliT'U:,lzr/

r rr T * * T
00 + HU:,liTIU:,lzr’ - U:,l:r/U:,lzr’

2, 2,00
< Lr?’ 72 /M1 Wmax log m . r2,/m1m2w§m log2 m (127)
~\ oma ok or? ’
O
C.3 Proof of Lemma 1
Denote by v; the following counterclockwise contour on the complex plane:
yi=Rz+yi:xz= Ay +)‘T1+1,_>\”1 — Arit1 <y< Mj
2 2 2
~ Xr‘ *Xr 1 )\r *Xr +1 X’I" +Xr‘ +1
=\ 1 1+l Ary 1 << 1 1
or x 1+ 5 ) B Sy B )
ory = :t>\7‘1 _2/\7'1+17 >\7‘1 +2/\7'1+1 S x S Xl + )\7"1 _2>\7"1+1 }

Then {A\;}/L; lie inside the contour v and {\;}7, ., (where A\; = 0 for i > r + 1) reside outside 1.
Moreover, for any n € y; and 1 <1 < n, one has

(128)
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Step 1: decompose U,;U," —UlﬁlT. First, we invoke a similar argument as in Xia (2021, Theorem 1) to

— T
express U U, — U U, as an infinite sum. Denote by A\; > --- > ), the eigenvalues of M. Apply Weyl’s
inequality to obtain

- A — A
max [\ — \| < [|Z] < Z 1
1<i<r 2

As a result, we know that {\;};1, are inside the contour v, and {A\;};_, ,, are outside the contour. Similar
to Eqn. (10) in Xia (2021), one has

1
uU = — I — M)d. 129
WUy = o ﬁ (n )dn (129)
We define N
— -1 1 _
Rag(m) = (nI —M) = — uJ'uJT
i=1 n—Aj
In view of (128), for any 1 € v;, we have
2
Rﬁ < f)
Rt < 55—
and consequently,
2|Z|
IR0 2] < [Raz]| 121 < —Z— <1
r1 — A\ri+1
A similar argument in Xia (2021, Eqn. (13)) yields
T = =T 1 k
uu, -U,U, = Z 2 [Rﬁ(n)z} RM(W)dn
k>1 71
1 d
:Z Z Tm% 3 ! 3 Py, 2Py, Z - Py, ZPg; |
k31 1<, fi1 < o (1= A30) -+ (1= Ajusa)
1 dn B p— R p—
-y Y = P, ZP,Z-- P, ZP, .. (130)

E>10<51, . jpp1<r 2mi Jy, (77 - le) (77 - )\jk+1)

Here, we define Ao = 0 and the last line holds since \; = 0 for all ¢ > r+1 and Py = ULUI = Z?:TH ﬁlﬁj

Step 2: bounding ||[U,U, — ﬁlﬁjﬂgm. By virtue of (130) and the triangle inequality, we see that: to

prove (87a), it suffices to bound |ﬁ 5571 (n—le)'~(~l(nn—Xjk ) |. We consider two scenarios: all of jq, ..., jg+1 lie
+1

in the set {0} U{r1 +1,...,71}, and at least one of jq,..., k41 is in the set {1,...,71}.

Case 1: all of ji,...,ji+1 are either 0 or larger than ;. In this case, none of le, oo vy Ay, 18 inside
v and as a result, f(n) = ————2—— is analytic within and on ;. Cauchy’s integral theorem tells us
(W—/\j1)"‘(n—>\jk+1)
that
1 d
— _ 7, (131)
2mi Y1 (77—)\3‘1)"'(77—>\jk+1)
and thus we have
1 dn [ — [ —
— — — P.ZP. 7Z.---P, ZP; . =0. 132
2 %71 (77 _ )‘j1) (T] _ /\jk+1) J1 J2 Jk Jk+1 ( )



Case 2: at least one of ji,...,jr+1 is between 1 and r;. Let
J=4j:1<j<r, AN <l<k+1st je=j}, (133)

and let jmax and jmin denote the largest and smallest elements in 7, respectively. We define the following
counterclockwise rectangular contour:

. N Xr - )\r 1 Xr - Xr +1 >\r - Ar +1
_ cr =N\ — 1 1+l Ary 1 < g < 2rn T Al
V2 {Ierl x Jmax 9 ) 9 SY> 9 )
A 1 A 1+1 Xh - 1+1 /\71 A 1+1
or x = \j,. + — 2T , 27" <y< 27" ,
)\1‘ )\7‘ +1 ¥ X7‘ - Xr +1 Ey X7‘ Xr +1
ory= + - 2 : > NJmax - 2 : <z S )\]min + - 9 - .
It is easy to verify that
Ay = Ar
In—A,,| > 2o —2ntl VI<{<k+1ner (134)
and
Ljf A - L% A (135)
2mi Y1 (77 - )‘j1) to (77 - )\jk+1) 2mi Y2 (77 - )‘j1) T (77 - )\jk+1)

Moreover, the length of 75 is
L(’YQ) =2 (ijxn - ijax) +4 (Xﬁ - XT’1+1) .

If jmax = Jmin, i-€., there is only one element in Z, then applying the triangle inequality for contour integrals
yields

1
< -—sup
T nEY2

L dy
2mi Y2 (W—le)”'(ﬁ—xjkﬂ) (n_xj1)"'(77_)‘jk+1)

(134) 1 2 M
() G
27T )\Tl_)\’r‘l-'rl

()
<—|=—— .
n )‘7’1 7/\7”14-1

If jmax 7 Jmin, then the triangle inequality tells us that for any n € s,

maX{"I’] _ ijax L= ijin } Z |<n B )\jmax) ; (n _ )\jmi") — )\jmin ; )\jmax . (136)
In view of (134), (136) and the basic inequality min{%, 5} < Zi{i for a, b, c,d > 0, one has
! < min { 1 ( 2 )2}
‘(T] 7jmax) (n 7jmin) B (ijin - ijax) (X"’l - X""1“1’1) 7 X""1 - XT1+1
(o) ) o
/\7'1 - )‘7‘1+1 )‘7‘1 - /\7'1 +1+ A jmax Ajmin
for all € 72, and consequently, one has
1 f dn 1 1
5 = = < -— sup = -~ L(72)
2mi V2 (n_)‘jl)"'(n_)‘jkﬂ) 27 ney. (77_)\j1)"'(77_)\jk+1) ’
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o) =)
-2 XH - Xrﬁ»l Xm - )‘T’1+1 + )\Jmln - ijin

m
2 bt _
’ <AJ,_1) ’ (2 ()\jmin - )\Jmax) + 4 ()\ - )\T1+1))

IN

Therefore, it is guaranteed that

1 ?{ dn 8 ( 2 )’“
= _ _ <S(_—= ) 138
2mi Y2 (77 - )‘j1> e (7] - /\jk+1) n /\7'1 - /\7'1+1 ( )

Combining (130), (132), (138) and the triangle inequality finishes the proof of (87a).

Step 3: bounding ||(ﬁlﬁ1T — UU{ )M ||2.00- Next, we move on to control H(ﬁlﬁf -U,U" M
By virtue of (130), we have

2,00
(U] -T, 0, )M

B Z Z Z 27-“]{ (n—X' ﬁJ'lZﬁhZ'“ﬁijﬁjkﬂM

k>10<]1,0 il <1 jrg1=1 (=X,

dn - —
=2 > Z oo 7{ J’““(n - P.ZP,Z Py 2P, (30)
71

k>10<]1, 0 ji <1 jrg1=1 Jir)

The second line and the third line make use of U, M = 0 and P; M = u; ﬂ;r S Nwiw ) = X
A3k+1dn

respectively. In the rest of the proof, we will establish upper bounds for |2+rl ﬁﬂ S S s
G\ T A g

justify the validity of (87b).

. . 1 Aj dn
Step 3.1: bounding |5~ fyl (anjl)J-k--Jr(;*XjHl)

or ji1,j2 € {r1+1,...,7} U{0} and (2) only one of j; and j5 falls into the set {1,...,71}.

| for k =1. We consider two scenarios: (1) 1 < j1,72 <7

Case 1: 1 < j1,jo <1 or ji,jo € {r1 +1,...,7} U{0}. In this case, Cauchy’s integral formula asserts
that

1 dn _0
2mi e (7) - le) (7’ - Xjé) ’
and consequently,
= f ndn (140)
2mi 71 (77 - Ajl)(ﬁ - )‘jz)

Case 2: exactly one of j; € {1,...,71}. Apply Cauchy’s integral formula to yield

27” >‘ /\j 7)‘j2}

1

Ly
2wt b ) ()

Observing that the function f(z) = ﬁ is increasing on (—o0, 1) and decreasing on (1, 00), one has
1 7{ Ajigr A DY S S 1 _
2mi Y1 (77_)‘j1)(n_>‘J2) |>‘j1 >‘j2| iﬂ—l’ B max{,)‘i—Ll—M} )\m_)‘T1+1
/\jz /\7"1+1 >‘T1

(141)



Njpaqd
35’% (”—Xn)]‘kf(;—%jkﬂﬂ for £k > 1. If (1) all j1,...,Jk+1 lie in the set {1,...,71}
or (2) all jy,...,jk+1 are all in the set {0} U {r; +1,...,r}, then the function

— Xjk+1 —
n- )‘jl) T (77 - /\jk+1)

is analytic in and on 7; or outside on on 7;. As a result, Cauchy’s integral formula tells us that

Step 3.2: bounding |2i7T1

g(x) = (

Njppd
if _ St (142)
2mi 71 (77 - )\jl) e (77 - /\jk+1)
In the following proof, we assume that these two cases would not happen, i.e.,
T< Wi, derrt NA{L,...,r1} < k. (143)

Let 73 denote the following counterclockwise rectangular contour:

. Nwe F A1 N = Arig1 Nwe = Arat1
— : — max _ max < < max
3 {55 +yl:x 2 , B SYs 72 ,

- N — A N —A N — A
orx =N\ + Jmax 5 7“1—&-1,7 Jmax 5 rit1 <y< Jmax 5 T1+17

_ X"01 +1 ijax + X7'1"!‘1 N ijax - X'f’l-‘rl
2 ? 2 ST 'Jmin + 2 )

by
ory = + Jmax

where we recall that jmin (resp. jmax) is the smallest (resp. largest) element in the set J defined in (133).
Then one can check that

In =N, | > Al ;A”“, VI<l<k+1,1€ s, (144)
and the length of -3 satisfies
L(73) =2 (Nmw = Nmar) 4 Nje = A1) = 2050 + 200, — 400 11 (145)
In addition, we have
e (146)
2mi Sy (=) (= Nn)  2m sy (=) - (0= N
Case 1: .. — Aj.. <3(Nj... — A1) In this scenario, one has
Njmin = A1 = N = N T N = A1 <4 (N = Ari1) (147)

which further leads to

L(y3) <10 (Ajis = Ari41) -
In view of (144), (146), (147) and the previous inequality, one has
< —

k+1
1 2
Aj - L
= or k41 ()\jmax - )\T1+1> (73)

1 9 k+1 B B
o Adin (>\>\+1> 10 (Njpae = Ara41)
Jmax T1

0 e ( )
™ ijin - X7‘1“!‘1 ijax - X7"1"‘1

kv k—1 k
i - 2
<80 A < 2 ) _ 403, <) . (148)
™ /\T1 - /\T1+1 >‘T1 - /\T1+1 ™ )\Tl - /\T1+1

The third inequality holds because of (147), whereas the last one applies the monotonicity of the function

f(z) = w—XilH for z > A, 41 and the inequality Aj . > Xj... > Ay

i% _ >\jk+1d77 _
2mi Y1 (77 - )‘j1) (77 - )\jk+1>

IN

IN
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> 3(Ajooe — Ari41).  Denote the following two disjoint sets

Case 2: )\j,, — A

jmax
. . < 2+ 1-
11 = {Z 1 <i<k+ 1,/\]'1, > g/\‘min + 3)\]'“)(} (149)
and
. . - 1— 2
IQ = {Z : 1 S ¢ S k + 1’)\]2 S gAjmin + 3)\jmax} ° (150)

By the definition of jmin and jmax, we know that Z; and Z; are nonempty. We consider the following three
scenarios: (1) min{|Z4],|Z2|} > 2; (2) |Z1| =1 and (3) |Z2| = 1.

Case 2.1: min{|Z;],|Z2|} > 2. When it comes to this case, one can find four different indices i1, iz, 43,4
such that i1,i3 € Iy, i2,i4 € Io, Aj; = Aj,, and Aj, = Aj . Then the triangle inequality tells us that

1 _

_ _ 1 _
max {|n =X, |, [n =N, |} > 5 PYREPYINE 3 (Ao = Njar)
and
_ _ 1 — _ 1 — _
max {[n — Az, | [n = Az, [} > 3 (Njiy = Nii,) = 6 (Njmin = M) -

Similar to (137), one can derive
1
(0 =2) (1= A0y) (0= Aii,) (= X5,
1 1

|77 - >\ji3

|77 - >‘j7:4

. 4 4
= min — = — ~ [ p— -
{ ()\jmin - )\jmax) ()\jmax - )\Tl"’_l) ()\jmax - >\T1+1)2 }

- min { 12 4 }
(ijin - ijax) (ijax - X7'1"1‘1) 7 (ijax - Xr1+1)2

8 16
< — — — — B — — — —
- (Ajmax - A7"1"‘1) (Ajmin - A""1"’1) (Ajmax - A""1"‘1) (Ajmin - A"”1"1‘1)
B 128
(ijax - X7"1“1‘1)2 (ijin - X'f'l"!‘1)2

The penultimate line uses the basic inequality min{a/b,c/d} < (a+ ¢)/(b+ d) for a,b,c,d > 0. Putting the
previous inequality, (144), (145) and (123) together, we reach

1 128 ( 2 )’““4 _ -
N — _ AN =,
27T " (X - X’I“1*'r1)2 (ijin - Xrl“rl)z A.jma>< - )\"'1"!‘1 ( o 1+1)

Jmax

64 A ( 2 )’“
< —= me = —
oo )\ - )\T1+1 )\jmax - )\Tl“l’l

Jmin

IN
|
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IN

% er.l < 2 )k‘,—l
™ Xﬁ - X?”1Jr1 ijax - X7“1+1

k
2 2 —
< 32 () Ay, (151)
™ )‘Tl - )‘7"1+1

< A, and the fifth line holds since f(z) =

The fourth line is due to \;

Jk+1

= is a decreasing function
T—Ary41

on (Ary+1,00).

Case 2.2: |Z;] = 1. Let us choose
le argmax  )\j,. (152)
#1<i<k+1,i¢T,

We can see from the definition of Z; that

— — 2— 1— 1 - —
)\jmin - )‘jz > >\jmin - (3)\jmin + §>‘ ’max> = g (Ajmin - Ajmax) > /\jmax - )‘7’1+1~

> 3(Njow — Arm41)- We let y4 and 75 denote the following

The last inequality is valid since Xj. — Aj..
counterclockwise contours:

vy = {x +yi cp = ijax +X7‘1+1 7ijax _X?”lJrl <y< ijax _XT1+1

2 ’ 2 2 ’

By Ajmax - >‘T1+1 _Ajmax — >‘T1+1 <y< )\jmax - )‘T1+1

or x je 9 ) 5 SYS 2 )
N = At1 A Ar = N — Ar
or y _ i Jmax 1+1, Jmax + 1+1 S T S )\]2 + 'Jmax 1+1
2 2 2
and
, = N — Ar Njooe — Ar Njooe — Ar
v5 = {x_i_yl cp = )\jﬁ + Jmax 5 1+17_ Jmax 5 1+1 S y S ' Jmax 5 1"1’17
- N = Artl Ao — Arptl Njoe — Ay a1
=\ Jmax 1+l AJmax r1+ < o < Dmax 1
or Jmin T 5 ) D) SYs 5 )
Nivwe = Mtl ~ - Aoy — A - N — Ar
ory=+ Jmax 1+1’)\j£ + Jmax 1+1 <z< Ajmin + Jmax 1+1 .
2 2 2
For any complex number n = x + yi with z = X;, + w and *w <y < w,
we know that g(n) = —1 # 0, and thus g(n) is analytic on {n = z +yi : z = Aj, +
-~ B B -~ (U_Ajl)";(n_)‘J'EJrl)
Ajmax;)\rlﬂ , — Sinex ;AHH <y < D ;Arlﬂ 1. Applying Cauchy’s integral formula yields
1 dn
2mi 3 (77 - le) e (77 - Xjk-u)
1 d d
= 7% = i = + 7]{ = 1 < . (153)
2mi Ya (77 - /\j1) e (77 - )\jk+1) 2mi Y5 (77 - )\jl) (77 - /\jk+1)
Repeating a similar argument as for (138) reveals that
k—1
1 1 8 2
L T o N T
2T nea H1§i§k+1,i¢ll (=) T Ay = Ar1

In addition, for any n € 74, we know that its real part

A.jmax — )\Tl +1
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— X _ Ajmin — A]‘max + >\jma>< — >\T1+1

min 3 2
D VI VI P N — N
< N = g = 2 (N = Ara1) + %
By X in Xr +1
j— A _ min 1
min 8 9
which further tells us that
BY 7'min — Xrl 1
|n_>\jmin 2 %, Vn € vy.

Putting (154) and the previous inequality together, one has

i% _ Xjk+1d77 _
2mi Ya (77 - )‘j1) (77_ >‘jk+1)
1

< -—sup
27 NEY4

1
H1gigk,z‘¢zl (77 - in)

k—1 ~
8 < 2 ) SN,
™ )\Tl - >‘7‘1+1 )\jmin - )‘T1+1

k
<32 ( 2 > .. (155)
™ )\7‘1 - )‘T1+1

Here, the second and the third lines also make use of |Z;| = 1. Note that for all i € {1,.... k+ 1}\Z3, A, is
not in or on ~s. By virtue of Cauchy’s integral formula, one has

by
Ssup — 2L ()
NE€EY4 ’77 = N

1

1 j{ dn 1 j{ Ih<ichirign — 1
2 X VRN = “dn = — (156
2mi s (n_)\jl)('f]_)\ ) 2mi s 'r]—)\ H — N\ ( )

Jk+1 Jmin 1<i<k+1,i¢T, Ajimin Ji

Moreover, the definition of Z; tells us that

> )\jmin — )\jmax
- 3

min )‘jmin - )‘37

i1<i<k+1,i¢T;

>\jmin — >\jma>< + >\jmin — Ajmax

A A - )\r By Y
( Jmin 1 ' Jmax + Jmax 1 1+1> \/ ()\jmax — )\T1+1)
A

v

= A _ —
= mflﬂ Vi (Ajmax _ >‘T1+1)’

Combining (156) and the previous inequality, one has

1<i<k+1,i¢T, i
1 4\

Jmin

(ijax - X’I“1+1)k:_1 ijin - )\T1+1

1 4Xr,
(s = Arg) 7 A = A

IA
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k
2 _
S () )\7.1,
)\’l"l - )\T1+1

Eqn. (146) together with (153), (155) and (157) implies that

k
36 2 -
<= ( ) Ary -
™ >\T‘1 - )\r1+1

e argmin )\
i1<i<k+1,i¢ T,

if Jk+1d77 _
2mi Y1 (77 - >‘j1) T (77 - )\jk+1)

Case 2.3: |Z5] = 1. In this case, we define
Denote by v and 77 the following counterclockwise contours:

74 — {x _|_ yi = )\]max + A71"1‘1 _ijax - X’Fl-‘rl < y < Ajmax - X’I']-‘rl

2 ’ 2 -0 2 ’

- N —A N —A N — A
Orx:)\jll _ DMmax 5 r1+17_ Jmax 5 ri+l <y< Jmax 5 r1+17

— A4l 7 N T Ari 11 <e<X, - Njmwe — A 41
2 2 2

A.
ory::I: Jmax

and

B VI | N — X N — A
75:{x+yi:3;:)\jel_ Jmax 5 7"1+17_ Jmax 5 ri+1 <y< Jmax 5 T1+1’

or r = ijin + /\jmax _2)\T1+1 ; _)\jmax _2)\7'1"1‘1 S y S )\jmax _2)\71"!‘1,

- X7“1Jr1 By )\jmax - )‘T1+1
2 ’)\jz/ - 2 < € < )\]mm

)\.
ory::I: Jmax

Similar to (153), one has

1 dn

)‘j1) (T]_Xjk+1)

% V3 (77_

R
2mi Y6 (U—le) (77 >‘Jk+1) 2mi Y7 (n_le)"'(n_x',

Repeating similar arguments as in (155) and (157) yields

k
f Jk+1d77 _ ( 27 ) X
27“ : (77 - )‘jk+1) )‘7’1 - )‘T1+1 '

}g mldn 32 ( 2 )’“A
77 >‘J1 (77 )\]k+1) m )‘7“1 - >‘T’1+1 '

Putting (146), (159), (160a) and (160b) together, one has

;?{ Njipa A1 _ 36( 2 )’“A
2mi Y1 (777>‘j1) (77 )‘jk+1) oo >‘7‘1 7)‘T’1+1 '

In summary, we are guaranteed to have

L% _ Ngendn <40<2)’“A
2mi Y1 (U_Ajl)"'(n_)‘l oo )‘7"1 _/\7“1+1 "

]k+1)

IN

>

IN

This together with (139) finishes the proof of (87b).
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C.4 Proof of Lemma 5
Throughout the subsection, we assume that £ holds.

Proof of (92a). (92a) clearly holds for ¢ = 0 due to the definition of . Now we consider the case i > 1.
It is easy to verify that for any matrices A, B € R™1*™m1,

1—1
(A+B)'=B'+) B'A(A+B)7". (162)
j=0

This allows us to decompose ZiU* as follows:
ZiU* = [Pofraging (EET — EV*V*TET)]' U*

i—j—1

=- Z [ Poft-diag (EET)]j Poit-diog (EV'V*TET) [Posr.ding (EET — EV*V*TET)] U
+ [Poff diag (EET)}Z U~
i—1 ) o
= =" [Potrtios (EET)]' EV*V*ET [Pasrang (EET — EV*V*TET)]"' " U*
7=0
+ > [Potrdio (EE )" Patag (EV'V'TET) [Potraing (EET — EV'V*TET)]"" U

I
<

J
+ [Pot-diag (EET)}Z U”.
In view of (88), (89), (90a) and (90b), one can obtain the following upper bound for || Z*U*||2,0:

| ziUu*

||200

i—j—1

U*

< Z H off- dlag EET)] EV* 5
7=0

|V TET [Putses (BET ~ BV'V'TET)]

i—1 . .
+ H [Posr-disg (EE")]” Paiag (EV*V*TET) [Potr_ding (EE" — EV*V*TET)]Z_J_l U*

Jj=0

+ [Poff—diag (EET)]Z

2,00

|
—

i
i—j—1

= 1BV ||| Potrsiog (BET — EV*V*TET)]|

™

<
I
7o

| [Perng (BET)) BV?||

1 . .
+ ||PofF diag (EET)H ||EV*||2 ,00 Hpoff diag (EET - EV*V*TET)Hlijil

Jj=

+ |[[Potrog (BET)]'

o

2,00

i—

S (Cd\/ (C3 (\/ mims + ml) Winax IOg m)j Wmax log m) : CS V 111 Wmax IOg m

j=

(=)

i—1
- (3C5 (vmama + m1) wi,, log? m)l !

i—1
j—1

+ Z (Cs (Vmama +my) wl,y log” m)j (Ca/1Twmax logm)? - (3Cs (v/mima + mi) w2y, log? m)i_J

=0

[ i
+ C5 1/;—1 (Cg (v/mimg + mq) waax log? m)
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<303,/ % (Cs (Vmims +mq) w log? m)Z , (163)
1
provided that C3 > 6C5.

Proof of (92b). When i = 0, (92b) is a direct consequence of Lemma 2. For ¢ > 1, similar to (163), one
has

|ziEv-

1

HZ,oo

%

<

™

<
+ b

H [Poft.diag (EET)]j EV*

|V TET [Putses (BET - BV*V'TET)] T BV

2,00
1 ] .
+ 3" | [Potttos (EET)] Pang (BV* V' TET) [Putrig (BET —EV*V'ET)] " BV

J

Il
=)

+ [Poff_diag (EET)]i EV*

2,00

S
|
—

< H [Poff_diag (EET)]j EV*

LBV ||[Pesag (BET — EV*V*TET) [
,00

<.
oo

+ ||Pofr_diag (EET) Hj ”EV*Hg,oo Hpoff-diag (EET - EV*V*TET) Hlijil ”EV*”

j=

[ Poft.diag (EET)]Z EV*

(=)

+

‘ 2,00
i—1 4 2
< (03\//1/1“ (C3 (y/mima +mq) w?nax log? m)j Wmax log m) . (\/C51/m1wmax log m)
j=0
9 9 Ni—j—1
- (3C5 (vmimz + my) wi,, log” m)
i—1

j i—j—1
+ Z (Cs (Vmima +my) wihay log? m)] (Csv/IiTwmax logm)? - (3Cs (v/mima + my) w2, log? m) !

7=0
"V C’5\/ M1Wmax 10g m
+ Csy/pr (Cg (y/mimag +my) w2, log? m)i Wmax log m
< 3C3\/pr (Cs (vmama + my) wiy, log? m)i Wmax log m, (164)

provided that C3 > 6C5. In the last inequality, we used the assumption that mi > ur.

Proof of (92c). We can directly use the same argument of Zhou and Chen (2023, Eqn. (121)) to prove
(92¢). We omit the details here for the sake of brevity.

Proof of (92d). Putting (78), (90a), (92a) and (92b) together shows that: for all 0 < i < logm, we have

}]Z§Z1||2 = HZ:Z” (U*(Q)E*(Q)V*@)TE LBV @pur@T 4 EV*(Q)V*(Q)TE)

HZ,OO

< HZ};U*@)E*@)V*@)TETH2 n HZ;Z;EV*(Q)E*@)U*@)THQ n ”Z§EV*(2)V*(2)TET”2

< |z @, = OBV + | ZEV-Q, =] +|ziEv@| |BV-O)|

2,00

<or | 25U, N BV + or || ZSEVH|,  + || ZEEVT |EV*||

H2,oo|

r i
< oy - 303 :T (Cs (Vmima +mq) w, log® m) - VCs5v/m wmax logm
Vo ma

3,00 [y
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+ 07 1wWmax log m - 3Cs/pr (Cs (y/myma + my) w2, log? m) Wmax log m

+3C3/pr (C’g (v/mima +my) Wi, log? m)i Wmax log m - \/55\/Elwmax logm
< Con/ur (cr%_s_1 + /M Wmax log m) (03 (ymimg + ml) Wiax log? m) Wmax log m,

provided that Cy > 9C'5
for any A and its submatrix B.

Proof of (92e). By virtue of (78), (92a), (92¢) and (94), we know that for all 0 < i < logm,

12525,

HZ3 ( o U* (2) (2*(2)) U*(2)TP( o

< ||Z§l7(”Hz,oo||l7“”U*(2)||HE*(2 I +llz5o @], =@ o Tu )|
<2500, MO O, o7 + 25U O, JTOT 7)., o7

0'7

[ pr i Wmax logm
S 571 (03 (v/mima + ml)wrznax 10g2 m)Z \Flm—axaﬁl

=
< \/:;T (Cs (V/mumg + my) wi, log? m) VM wmaxo7 oy logm
1

ur (Cs (/mima + my) wi,, log? m) WmaxO7 41 log m.

The third line holds since U*)TU*() = 0, whereas the fifth line is due to the basic fact that o > o y1

D Proof of Theorem 6

D.1 Several notation

First, we introduce some notation that will be useful throughout the proof. We let
Gy, =Gy, V0 <k < Kmax,
For any 0 <t <tpy1 and 0 < k < kpax, we define
U Aj Uk+1 := the leading 7}, eigendecomposition of G7, 1,
and denote
G = Pofr-diog (Glii1) + Paiag (Ui 114711 Uk 1) -
Recall that we can decompose M°™? into four terms:
Mo -~ N+ Z, + Zo+Zs =M+ Z,

where M, Z1,Z5 and Zs are defined in (84).

For notational convenience, we let

Dt = |G — More|| Fl = || Paing (G — M), and Lt =Gt -

In addition, we let

T o T7 oracle __ g roracle *
Up = U1, prace — goracle, and  U; =U",

) + U*(Q) (2*(2))2U*(2)TP6(1)>

(165)

< [|All2,00

(166)

O

(167)

(168)

(169)

(170)

(171)

(172)

where U (resp. U°?°) is the rank-r leading eigenspace of M (resp. M°?9) We also let £ denote the

following event:

€ = {(88) and (89) hold for 0 < k < logn} N {(90a), (90b), (90c) and (90d) hold}
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N {(39a) and (39b) for all ' € A}. (173)
We know from Lemmas 2, 3, 4, Theorem 5 and the union bound that
PE)>1-0(m™ ). (174)

Throughout the rest of the proof, we assume that £ occurs.

D.2 Main steps for proving Theorem 6
Step 1: a key property of r; selected in Algorithm 1. First, we show that
rr € R1NA, (175)

where

o1 (G 1
Rl = {?"l S T 0':/((C;)0)) S 4 and (o (G()) — Op/41 (Go) Z ;O’r/ (Go)} . (176)

and A is defined in (38). Noting that U = [U®) U®] and putting (90d) and (99) together, one has

ur
mq '

O], = [T T] [Ty + [T, < (177)

HQ,oo

In view of (107), (177) and the definition G = Go = Pofrdiag(M) = Pot_diag (M) = Poff_diag(ﬁKﬁT—FZ),

we can derive
L} = ||Go - M|
= ’|Pdiag (ﬁKﬁT) - Poff—diag (Z) H
< |[Peiag(UATT) || + | Por-aiag (2)]|
<|IO]; Nl +2112

< 16— 7+ O (Vmiwmaxlogm - o2,y + (y/mims +m1) wi,, log? m) . (178)
This together with Weyl’s inequality shows that, for all i € [m4],
|0i (Go) — 77| = |03 (Go) — 01(1\7-’/)|
< 16— T+ O (Vmiwmax logm - 0% 4 + (y/mima + my)w w2, log? m) . (179)
Moreover, (90a) tells us that

- 1
0; < 0 4+ v/ Cs5y/Miwmax logm < <1 + Crz) oy, Vi € [7]

for some large constant C' > 0, where 7 = max .4 and the last inequality holds since o* > C’or[(mlmg)l/ 44

rmi/ Q}wmax logm. Similarly, one can show that

(1 - 01712) of <G < (1 + 012) vi e [, (180)

By virtue of (180) and the assumption o > Cor[(m1m2)1/4 + rm}/g]wmax log m, one has

r_
M—Uf + Co (VMiwmax logm - 05,1 + (/mams + m1) whs, log? m)
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KT g 1 2
< 16m710'1 + Cy <meax logm - 0r+1 + 02 2 : )

- 4
< 16£0% + Cy (2,/ M1Wmax l0OgM - 0741 + 2)
my

02 2 07
2 4

C (2 o7 CQ
16c1~2 1,
= r2 1+QC’ 277
1
< 5300 (181)

provided that Cy > 8C - Cy and ¢; < % 14 4

rm}/Q}wmaX logm and (180), whereas the penultimate line uses the assumption p < comy/r®. Combining
(179) and (181) gives

Here, the fourth line comes from o > C’or[(mlmg)

1 1,1
01 (Go) >0} — =071 > max{a%, 0{2,7}, (182)

Cr? 2 772

where the last inequality holds due to (180) and C%/2 > C,.

Equipped with (179), (180), (181) and (182), we can establish the property r; € R using a similar
argument as in the proof of Zhou and Chen (2023, Eqn. (62)). Therefore, we only need to prove r; € A. In
view of (180), (182) and the definition of R;, we know that

1
o1, (Go) = ;01 (Go) = 2ot (183)
and consequently,

* C\ < c 1 ~2 12 c 1 *2 4 *2 12
Tpy 2 (1_,’,2> Opy 2 <1_r2> {Grl (Go) — W01] > <1—> <8 o1~ 5201

1/4

V

1
> go’f > QC’OT[(mlmg) + rm}m]wmax log m. (184)

Furthermore, inequality (179), (181) and (183) combined imply that

1 1 1 1 1 1 1
oy, > op (Go) — G20l > 1% (Gy) — o 501 >~ 1 ( e ) C’rQal > - £ 01 (185)

Inequalities (179), (181), (185) and the triangle inequality taken together show that

57, = 51 = 0r, (Go) = 07,41 (Go) = |ov, (Go) = 57, | = |ov, 11 (Go) — 7, 4,
> %0—7’1 (Go) — 022~2
z% > |JT1 (Go) — 2, %af
271"0’%1 %5%
> %031 - %531
9
T (186)

Note that (78) together with (184) reveals that r1 <7, where 7 is the largest element in A. Putting (90a),
(103), (180) and the previous inequality together, we arrive at

* * ~ ~ ~ * ~ *
Opy = Opy41 > Opy — Opy+1 — |UT1 - Url’ - |UT1+1 — 041

o1



1 ~ ~
#(ofl — afﬁ_l) — V Cs5v/Miwmax logm — 24/ Cs51/M1Wmax logm
Ory + 0 41

1 9 52 1
= o, — o,
20, 100 Tt 207277

9 1 1
> - 1 _ * *
= 20r ( C’r) Iri T 90,27m

1
>
— A4r

v

ot (187)
Inequality (184) taken together with (187) validates r € A, thus finishing the proof of (175).

Step 2: bounding D! = |G} —M°2“||. Now, we would like to deal with the quantities { D%}. Recognizing
that for all ¢ and k,

Poft-diag (GZ) = Poft-diag (Morade) = Poft-diag (YYT) )
we can deduce that
D}, = |[Paiag (G — M| (188)

We would like to prove the following inequalities by induction:

KT =2 1 0 pr® KT 52
F{ 40 Hzn—zo,/ml P < | F a0y /B z) 20, [B052 ) (1892)

DY < Fl +6C3, | :Ti\/%lwmax logm - 05,1 + Courw?, Jog>m,  (189b)

Dt 1
tyrtT _ groracleyroracleT
HUlUl U1 U1 || S 2)\1.1 (Moracle) _ )\ " (Moracle) = 8 (189(?)
HU{:H&(X) < HUlthT _ UfracIeU{)racleTH + Hl—ji)racIeH2 < 4i (189(1)

Step 2.1: the base case (¢t = 0) for (189a)-(189d). Note that (189a) automatically holds when ¢ = 0.
Recalling that Peiag(GY) = 0, we can invoke Zhang et al. (2022, Lemma 1) together with (177) to obtain

FY = [Paiag (M) = [[Paog (TATT) | < | O]1; I A]| < 167 5% (190)
Furthermore, putting Lemma 2, (84), (90d), (94) and (190) together, we have
Df = [Py (M%) | = [Pag (¥ + 21 + 25+ 2)|
< [[Puiag (M) | + [Paiag (Z0)1| + | Paiog (Z2)I| + [ Paiag (Z5)|

< F}+ ‘ Posi—diag (U*@)E*@)V*@)TET + EV@Osp@T EV*(Q)V*(Q)TET) H

+2]

Pdiag (Pﬁ<1)U*(2)(2*(2)) U~ 2)TP( (1) )H +0
< F +2[Ur @], BV, [[Z]] + HEV*(”HE,OO + 2HT7“’||2 OOHWTU*(”HHE*(”Hz

Wmax logm
§F{)+21/ - O3/ pirwmax logm - o7 1 + (Cs/pr wmaxlogm) +4 - \Fl—aggril

1 O-F

< F} +6031/ J»Iwmaxlogm ok 4+ Ciurw?, log® m, (191)
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which validates (189b) for t = 0. Here, the last line holds since u < comq/r3 and o > 07,1- Combining
(184), (185), (186) and (187), one has

*x2 *2

5 g2 — 52 o 1
max{o—l’ fl} <3 and Inin{ 71 — r1+1, T r1+1} > Z (192)
ag r

*2
O

Moreover, by virtue of (90a), (103) and the fact 1 € A, we know that
|(Gry — Gris1) = (0F, — 0k 1) < |0r — 08 | + [Gri41 — 0 44| < VC s /Miwmax log m + 21/ Cs /M1 wmax log m
1 1
< 70‘r1 SJ ; (0:1 - 0:1+1) )

where the last inequality comes from (187). This implies that

1 . . - 1 X *
<1 - CVT> (Um - Um-‘rl) < Op —0Or+1 < <1 + CVT> (07'1 - 0.7"1""1)'

The previous inequality together with (180), (107) and (192) gives

572“1 - ~31+1 - 0:12 - Jr1+1 > ||Z||

Recalling that Moradle = M+ Z , one can invoke Weyl’s inequality to obtain

A’r'l (Morac|e> _ )\r1+1 (Moracle) ~ 32 _ £1+1 — 0_:12 T1+1 > ||Z|| (193)

T1

Note that UY (resp. UP?®) is the rank-r leading eigenspace of Gy (resp. M°?“®). We know from the
Davis-Kahan Theorem (Chen et al., 2021a, Theorem 2.7), (191), (192) and (193) that

G — Moracle DO
||U10[j{)—r - UfradeUfrade—r H < 2 L|raclz || oracle) 2 oracle . oracle
)\Tl (M ) - A r1+1 (M ) )\ (M ) - /\T1+1 (M )
(123) a1 52 \/Eflwmax logm - o7, prw?, log?m
<m0 +
0'2 — 7%1-&-1 0'*2 _UT1+1 0*2 _0T1+1

(122) L 52 \/ VM wmalogm - o7 | Hrw 2 log®m
~ w gt o/ or/r

ur
(122) pr? N \/ o "V Wmax log N prw?,, log?m

~

* *2
my oy, ox2/r

1
<<,/’” <5 (194)

which proves (189c) for ¢ = 0. Here, the last inequality is due to u < comy/r® and oy > o >
Cor[(m1m2)1/4 + rm}m]wmax log m. Inequality (39b) and the fact r; € A together imply that

[ 3
||[]or'ac|e’|2,Oo _ Hl-]i)racleUlora\cleT||2’OO S ||Ufrac|eU{>racleT — Ul*Ul*THloo —+ ||Uf||2,oo S 2 % (195)

Combining (194) and (195), one can further obtain that

HUl <3

HQ,OO -

||2 . _ ||U{)U{)T||2’oo S ||U?UPT _ Ui)racleU{)racleTH + ||Ui)rac|e

i.e., (189d) holds for ¢ = 0.
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Step 2.2: induction step (¢t > 0) for (189a)-(189d). Suppose that (189a)-(189d) hold for t = ¢'. We
aim to show that they continue to hold for t = ¢' + 1.
Recognizing that U} is the top-r; singular space of

Gl =Pg, M + (G =Py M),
we have

F{ ! = |[Paag (G~ M|
= || Paiog (Pyy Gt — M) H

< |[Peine (Puf (G = 21))|| + |Pase (P(oy), MP)|
<|lor], _llet - |+ @], | @f) M|
’ ’ /_j/[" ’ — —~
S Uf 2,00 Li + 4\/;1 (H(Uf )J‘PﬁlMH + Hpﬁ:wr1+1:rMH>
t’ 4 ur + Y - —
< |oi|, B +4\/;1(2"G1 ~ Py, M||+ P, M|)
t t ur + ~ ~ —~
<ot . m +4\/;1(2"G1 - M| +3|Py . M)
< HUt' +8 Lt 12, /52 (197)
> 1 m1 my 7’1+1

Here, the second line holds since ’Pdiag(GfH) = Puing(UL AU T = Paiag (Pysy G'); the fourth line comes
from Zhang et al. (2022, Lemma 1); the fifth line makes use of (177); the sixth line applies Zhou and Chen
(2023, Lemma 8); and the penultimate line invokes the triangle inequality. Note that

Lﬁl < Ff/ + ||Poff—diag(G§l+1 - M) || = Ffl + ||,Poff—diag(-Z\d'oraCIe - M) ||
< FY 4 | Potrding (Z2)|| < FY + 1| Z]| + | Paing (2)|| < F{ +2] 2],

Inequality (197) taken together with the previous inequality leads us to

P < (HUlt’ +8,/m1> FY 42 (HU1 WL ) 12| +12\/71 »
(189d) 1 oracley roracle oracle Ur
< <4e + 4 )Fl +2 (HUlU — UREeURee T || - [Jupee |, +8,/ ) 1Z|| + 12\/71 2

(189¢) and (195) 1 _, Dt ,W"
SR 7o S R V0.7 0 B w0 v o e 8\/7 12l 12\/7 T
(189b) 1 _, Ft w3 W
< —F! +2|2 1 104/ — | 1|1 Z| + 12 2
= 9 1+ )\7"1 (Moracle) _ )\r1+1 (Moracle) + \/:1 || H + \/71 Ori+1

603\ /'m £ TV 11 Wmax logm - 0-;+1 + Cgru’rw?nax 10g2 m
Moracle _ T1+1 (Moracle)

(192) and (193) 1 N ,/7’::; VMg Wmaxlogm - 0% | + prwd,, log?m
< *Fl +20 ||Z|| +12 r1+1+CS ey 1Z||
Tl

< F1 +21,/ ||Z||+12 ’” 5, (198)
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where the last inequality is a consequence of o} > or > Cor[(m1m2)1/4 + rmiﬂ]wmax logm. Then one

immediately has
m’
FY —40\/ HZII 20 N

R a0y /A7) - 20, [ 252
my
[ ;u"
< 7t,+1 —40 ||ZH —20 LA I
which confirms that (189a) holds for t = ¢/ + 1.

In addition, we can prove (189b) for t = ¢’ + 1 by using the same argument as in (191). Combining
(189a), (189b) for t = ¢’ + 1 and Wey!l’s inequality, we further have

IN

’ 7
HUf +1 U{t +1T UloracleUfracleT

Dt’+1
<2 L
— )‘7‘1 (Moracle) _ )\r1+1 (Moracle)
Fr+ 6Cs |/ £ \/my wmax logm - o5y + C3purw?,, log” m
<2 2
— )\7‘1 (Moracle) _ )\r1+1 (Moracle) + )\ (Moracle) _ )‘T1+1 (Moracle)
2F{5/+1 —40 “m—rf |1 Z]| — 20, /£~ ~§1+1 266’3,/ — /My wmax logm - o7y + C3urw?,, logZm
- /\ (Moracle) _ )‘T1+1 (Moracle) + /\r1 (Moracle) _ )‘T1+1 (Moracle)
80/ || z]| + 40, /252,
+ >‘T’1 (Moracle) _ /\r1+1 (Moracle)
3 o~
a9 1 o .\ B |Z|| + /) £557 1
~ et +1 )\ (Moracle) _ )\r1+1 (Moracle) ’531 _ ’531+1
6(731 [ B \Flwmax logm - o5 | + C2urw?, log m
orr = oyl

(190),(192) and (193) W’S 1
< — < 3’

which validates (189c) for ¢t = ¢’ + 1.
Putting the previous inequality and (195) together, one can prove that (189d) also holds for ¢t = ¢’ 4 1:

oracle NTB 1
‘ O e <34 T < 2

Therefore, we have completed the proof of the induction step for (189a) - (189d).

’ ’ ’ ’ ’
HU{ +1H — HUI +1U1t +1TH < HUlt +1Uf +1T UloracIeUloracleT
2,00 2,00

Step 3: bounding D} for k > 1 After establishing upper bounds on {D}}, we now turn attention to the
quantities { D} }1~1. By setting
0_*2
ty > log (C *212) »

rl +1 + wmax

we can show that

(189a)
R = o 2V g, B ||Z||+20,/’”~£1+1+ - FY
mi
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[ + w? T
r +1 X M ~2
< 40 ||ZH+20 T1+1+1Tf2ma 16m1

(107) and (192)

< 40C: U (\/ 1Wmax logm - o7y + (y/mima +my)w maxlog m)

/,ur /ur
+ 20 r1+1 + max + JT1+1)
e
< 4102\/7 (Vmiwmaxlogm - 0%, 1 + (V/mims + my) wi,, log? m) +21,/— K G2 4. (199)
mi

Here, the last line makes use of the following inequality:

(90a) and (103)

:124,_1 < (0r1+1 +2 \/ 51/ 1M1 Wmax IOg m
We define

2 Cauchy-Schwarz 9 9 9
) 20’, 11+ 8Csmiwy,,, log” m.

L ;. Ore_1+1 (GO)
Rk = {r : 70}/ (Go)

Choosing the numbers of iterations {¢;} as in (41a) and (41b) and repeating similar arguments as in (175),
(189a) - (189d), (192), (193) and (199), we know that for all 1 < k < kyax and 1 < ¢ < t,

1
S 4 and 0! (Go) — Op/41 (Go) Z ;G'T/ (Go)} 5 (200)

T € R NA, (201a)
o* = 52 _ 52 0.*2 _ 0.*2 1
max{ ”’k—*l"rl, Ti1+1} <3 and min{ T ~2 ’I‘k+1’ T *2Tk+1} > = (201b)
oy, Ory o ooty 4r
A (M°“°'e) i (M) =32, 3 =0~ 2y > (12 (201¢)

ur MT~
— 40 ”Z”%/ 13k+1s7 40\/ " )12)) - 20 ot | (201d)

D! < F} +6‘C31/ flwmax logm - 0%, 1 + Caprw?, Jog”m, (201e)

D; 1

tyrtT | leT
||UkUk - U]SraceU]grace H S 2/\Tk (Moracle) _ /\Tk+1 (Moracle) S g’

(201f)

HUIi < HUIf:UliT _ U]gracleUlc;racleTH + HU;C)racle

<
Iy e < <

1

[ "
FQ,, = F* <410, (,/ Wmax log m - 021 + (y/mimg +my) w2, log” m) ,/'ul or1- (201h)

Taking k = kmax in (201h) yields that

—~
Ftkmax <410, [ KT (meaxlogm of + (Vmime +mi)w w2 log? m) + 21 il rkmax“ (202)

m1

This together with (201e) implies that

=
Dy <4202,/ (meaxlogm orir + (Vmimg + i) whdog?m) +21, [ 252 L (203)

my

Recall that r;,__ satisfies r},

Kmax

=7 0r 0p, 41(Ghpy) = arkmaXH(Gt’“’“ax) < T.

max

1. If ri,__ = r, then it follows that

max

max

~2
Ol = O'T_,’_l 0.
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2. If oy, . +1(Gr,,,) < 7, then Weyl’s inequality and (202) together show that
71 = Ori 1 (M) < 011 (Gk*;";i*) + || -G

t t
— U’[‘kmax-‘rl (G kmax) _|_ F kmax

Kmax

[ [pr
<7 441C (\/ 1Wmax logm - 02,1 + (y/mimz + my) wi,, log? m) + 21 /~L1 gk max 1

1.
<7+ 41021/ (\/ 1Wmax 1og M - 0% 1 + (v/mama + mq) wi,, log” m) + §Ugl«max+1’
which further gives
<2t + 82021/ (\/ 1Wmax logm - 021 + (y/mimg +my) w2, log® m) < 3. (204)

Therefore, inequality (204) is guaranteed to hold.

Step 4: proving (42a). We know from (201a) that 7y, € A. Also, (39b) tell us that

2 2
< urd [ 1%\ /Miwmax logm N r2/mimaw? . log®m ,ur?’
2,00 ~ \[ my o* o*2 —\ma

T kmax T kmax

HU]cc)racIeUlgracleT Uk U*T
max max

max — Kmax

In view of (203), (201b), (201c) and (201g), we can demonstrate that

Uk Uy, = Uil Ui |

L hmax
Dy,

max

<
~ )‘Tkmax (Moracle) _ )‘Tkmax+1 (Moracle)
\/?f(rwmax logm - 0%y, + (y/mims +my) wh,, log?m) \/%572’kmax+1

max — Km.

N +
~ *2 _ 0.*2 &2 _ "&2
T kmax Thmax 1 T kmax Thmax 1
2 2 purs ~2
. Vi (,/ 1Wmax logm - 0% + (y/mimz + m1) w2, log” m) VESGr
+
~ *2 =2
O ke O ko
3
wr
< e (205)

mi

Here, the last inequality holds since o, >0, 11 and oy, > o5 > Cor[(m1m2)1/4 + Tm%m]wmax log m.
Combining the previous two inequalities yields

max

Uk Uk, = Ui Uil

max

oracley roracle T * * T
» S oot —ug U

max |12, 00

+ Uk U, = Ui U |

3
S (206)

my

which validates (42a).

Step 5: proving (42b) and (42c). Note that

Uk Us,... = UL, Uk ) X
=

||2,oc

(UkmaxUkmax _ U]:max U*T ) (U*(I)E*(l)v*(l)-r U*(Q) E*(Q) V* )H2 -

max

57



— (U UL — U U YU OOy
+ H (UkmaxUk UkmaxUkmax)U*(2)2*(2)V*(2)THQ’OO
< | (Uk,, UL, — Uk, U, JUrOsOyOT

max

Kmax

=:q
+ [(Uk, U, — UL, U, YU S OV OT|)
e
+ |UbnUs,, = Ui, Uk |l o741 (207)
=3
where the last line holds due to [U*@=*@V*@T|| = 2@ = o% . To control ||(Us,, U/l -
Ukmax U,:m—';X)X*HQ - one only needs to bound ay, ap and a3, respectively.

Step 5.1: bounding a;. We first bound ay = [|(Uy,,, U, — ﬁkmaxﬁ,;'—max)U*(l)Z*(l)V*(l)THg}oo

Step 5.1.1: bounding ||(U,

. O U,S:f'eUEZS'eT)M||2)OO. By virtue of Weyl’s inequality and (107),
one has

Ay, (M) <52 1)|Z|| =32 = o7 (208)

T kmax ( Tkmax ©

Em.

Recognizing that szm";a Moracle (Gtkmax Me?®) and Uy, (resp. Ug™®) is the rank-ry

leading
singular subspace of GZ’;:“ (resp. M°) we invoke Lemma 6 to yield

max

|(Us, UL, — UgeeugeeeT) e,
< || (Ukmax Ukmax Ug;zileU]g;zjleT) MoracleH
(Moracle) ,
~ )\Tkmax (Mor:glza)x - )\Tkmax+1 (Moracle) ||Gk}::ix - Moracle”
(201c) and (208) o2 N
S e Dy

o
T kmax Tkmax T1

(201b) and (203)

| 3 fpr
< T 'l:n (Vmiwmax logm - 0% + (v/mimz + my)w w2, log? m) + —:l ngmaﬁl . (209)
1

Combining (107), (205) and (209) leads to

| Ul - vgeugeT M|
< || (Ukmax Ukmax Ulg;aai:lerracleT) MoracleHz) + || (UkmaxUkmaX Ul(::(x:lerracleT) Z||2)oo
< Ui Us, = UREEURTST) M|, 4 ([ Uki U, = UREURES ||, o 121

T <
S V (meax logm - oF 741 T (vVmima +ma) r2na>< 10g2 m) + A/ ;:Tlo-’%kmax""l

U (\/ M1 Wmax IOgm oy T+1 + (\/ +m1) Wmax log m)

| 1 [ pr3
(«/ 1Wmax 10g M - 021 + (v/mams +my) wi,, log” m) + /:n—lafkmaxﬂ. (210)

58




Step 5.1.2: bounding ||(Uy U,Inax — Uy ﬁ;ﬂax)MHZm. Recalling that (107) holds, we can invoke

Lemma 1 to obtain

max max

| (R U~ O O, )M,
40 _ 2*
< ?ngmax Z Z HP ZP .2 ZPJk+1 HQ,oo' (211)

~ k
2 _ 52 ) -
k>1 (U""kmax arkmax+1) ( OSJL...,JFAST
J1odk41) FOp4a

Here, we recall that P = ﬂ]ﬂT for 1 < j <r and ﬁ’o = fﬁﬁi Repeat similar arguments as in (120) to
deduce that

|| (Uoracle Ulg:(:IET U Ukmax ) M | ’ 2,00

max

FT (rwmax logm - oF 71+ (\/74_ ml) “max IOg m) .52
~ my

*2 T kmax

ok
T kmax T kmax +1

@“b>?d“&0vﬁu3r<vfwmak%nz(7+l+<vf+nn> Ralog’m)
my

~ *2 /7, T kmax
Tkmax

r3
S fali r? (V/Miwmax logm - o3, 1 + (v/mims +my) fwxlog2m). (212)

Inequality (210) taken together with (212) and the triangle inequality shows that

(U, UL, — U UM,
< ,U'r3 ‘LL'I"'?’ ~2
~ (meax logm - o7, F+1 T (V 2+ ml) “max IOg m) + Egrkmax+ll (213)
Step 5.1.3: bounding «;. Equipped with (213), we are now ready to bound «;. Recall that
M=U®D (i(l))Qﬁ(l)T +U® (2(2))2[}(2)T,

where UM and £ (resp. U® and %)) are defined in (82) (resp. (95)). In view of (205) and (213), one
can obtain

Uk, Us,,, = Us, Ui, JUVED,

S (U maXUkmax U maxUkJ )U(l) (i(l))Zij(l)THQ H (i(l))_lH

(0 o 5T T (SO !

s(nmmmmmwmwMMmemWW%W%J@
~ 1

< (MO UL, - B TLN, .+ Ui UL, - 00T, 159)F) 2
[ 3

S (“ml vm M1Wmax logm - o2 +1+(\/7+m1) maxlOg Tn)+ %gfkmax—‘rl

r2 /m wmaxlogm r? mlmemaxlog m\ o 1
o*2 Il | ox
Tk‘max T kmax T
(n) 'ur3~2
7m (vVmiwmax logm - 0% 4 + (v/mima + my)w w?,, log? m) + Ot 1
1

12 /M1 Wnax logm 2 mmgwiadogim\ 5\ 1

o2 I ox

T’cmax T kmax T
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h) 3 g - my) w2 logZm 302
< ﬁrz <\/nTwmxlogm+(V AT 4 1) 108 ) 72 o
1

07 my  on
(i) r3 r3 T
< - (7”2 VM1 Wmax log m + T(m1m2)1/4wmax log m) + Li*
mq mq 0

=4/ l:’; ( /M 1Wmax logm +r(m1m2)1/4wmax log m) , (214)

_ 180 - - .
where (i), (i) and (i7i) are consequences of &, e oy > o0xX0r 2 max{os,,, 0741}, and (iv) makes

Tkmax
use of the fact o > Cor[(mymsg)t/* + rmi/Q]wmax logm and (204). Note that UMNSMOW DT is the SVD of
UMWy 1 Ev*() | By virtue of the previous inequality, (90a), Theorem 5 and the triangle inequality, we
arrive at

o = ||(Uk, UL, = Uk, O YUrOs-Oy=0T)|
— (U, UL =T, O YU 2*1)”200
< OV, B DTS, (00U~ 00 L) BV,
< || (U, U — U, U YUV 1)“2 + Uk Us. . = Un, U, LBV

< UM ( 2 M Wmax logm+r(m1m2)1/4wmax logm>
mi

r3 (12 /miwmalogm 72 /mimaw?. logZm
+,/Z1< Wmax OB R 5 - Viitiwmsxlog m
1

Tkmax T kmax

[ 3 [ 3
< il ( VT Wmax log m + r(my 7712)1/4(,%3X log m) + ﬂw/mlwmax logm
mq mi

= l:: (2\/ wmaxlongrr(m1m2)1/4wmaxlogm>, (215)
\/ 1

+ rmi/z]

1/4

where the penultimate line follows since o > Cor[(mima) Wmax log m.

Step 5.2: bounding «s. In view of (121), we have
Pw,,..), Py, U Oy0T
- (P(ﬁk ). Ukmax) UJ:":XU*(UE*(UV*(I)T

-1
(€] () wT *
[U ’T-I“Imax—"_1 T Tkmax+1 T 7"]“fma><-"_1 7"‘4/:17"1‘7ma><—"_1:F (Irkmax 0> 21 Tkmax71 T kmax

-1
_P(U Loy, ) EV*O (L (L., 0) (EY Thmax s 12 7kmax) }
max / |

* *T
21 rkmax71 Tkmax V 1:Tkma><
_ 77 (1) wT *T
Ummax—i-l T kmax T LT Ty 10 TW,mmax—H T (Irk-max ) V s LTk nax

1 *T
“P@.11,,), BV (T )V (216)

1 Tkmax !

Here, the third line holds since r;_ <7 and

max

U*;EXU*(I)x*( )V*(I)T U*T

s Lk,

* * * T
U:,l:?zle,lz?‘/:J:?

_ *T * * *T * * *T
U [ P (U 1: rkmaxEl:rkmax,l:rkmaxV,l:rkmax + U:,rkmax+1:?E7’kmax+1:?,rkmax+1:?‘/:,rkmax+1:?>
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=37 vy (217)

L kmax s LT kmax 51T kmax

Repeating similar arguments as in (124) and (125), one has

(1 1 ()T ur
HU:(,rlmax+l rzf“k?nax—i-l T kmax 1t rWSrimax—i-l:? (Irkmax ) V [ 7 900 SJ Ermlwmax 1Og m, (2183‘)
_ *(1) Tyt < K"
IP(UA Lirg ) EV ( T kmax 0) ‘/:,lzrkmaX ~ ™y \/Elwmax 10g m. (218b)
U Rmax /L %)

Combining (216), (218a), (218b) and the triangle inequality yields

*(1) 5% (1) 1 +(1)T s
Hp(ﬁkmax)lPUimaxU Wa v Hz,oo S \/Zmlwmax log m. (219)
Then we can bound a» as follows:

Qg = H Kmax Uk? U*

max Kmax

U,jn:x)U*(l)E*(l)V*(l)T H

2,00

2,00

+ Hﬁkmﬁ,:m Vi) W) Uy

2,00

:Hp(ﬁkmx pUgmaXU*(l)E*(l)V*(l)TH

~ *T T
+ HUkmax Kmax (Uk)max) (Ukmax) U;Tkmax+1:F2:kmax+1:T;Tkmax"!‘l:F‘/:f"‘kmax"l‘l?? 2 00
219) |3 _
S Eﬂlwmax logm + HUkmax HUkmax (Ukmax)L H H Phmax -+ 15 kpmax +1: rH
(90d) and (122b) 73 rr w logm
S a \/71Wmax logm + A\ K MU;} +1
ml rkmax max
3
= ﬂ\/Elwmax log m. (220)
my
Step 5.3: bounding «3. By virtue of (78) and (206), one has
T «T * pr3 1/4 1/2
as = HUkmekma Uu; U 5 oot < o (7" [(mlmg) +rm; } Wrnax logm) ) (221)
' 1

Step 5.4: bounding | (Uy,, U, UkmaXU,jm—zx)X*Hg o and ||(I,, — U, U/ )X*|0. Putting (207),

(215), (220) and (221) together, we arrive at

3
H (U maxUkmax U Ukmax) > ||2 00 S ‘L:ni (7"2\/ M1Wmax logm + T(m1m2)1/4wmax log m) . (222)
' \/ 1

Furthermore, we have

* _ LA 74 et avadl
H (Iml - UkmaxUkmax) H 2,00 - HU E V Ukm UkmaxU E V H2
*GVRY K * * * T
- HU 2 V U ,1: ’r‘kmalei’r‘kmax,l:Tkmax ‘/:71:Tkmax 2 00
* * * T
- HU Thmax T 12 rzrkmax+1:r,rkmax+1:rV,rkmax+1:r 9 00
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< U s ||

Thmax T L7 Tkmax T1:7

HT
<,/ —0C
=\ my Trmatl

(90a) and (103)

2 G+ 2/ Ciimelos )
(204)
< \f (V7 + iyt Log m)

.
= 51 ( VM 1Wmax logm + r(mims) /4wmaxlogm>.
1

This together with (222) gives

(Lo, = Uk, Uy, )X

3
N \/!;ﬂbT (szwmax logm + r(mimz) " *wmax 10g m) . (223)
1

E Proof of Theorem 2

For notational convenience, we let U = Ux; € Oniki denote the left singular subspace of X} for all i € [3].
Then we know from (45) that

ki )
oo <4/ Vi€l (224)

In view of Zhou and Chen (2023, Lemma 7), with probability exceeding 1 — O(n~10),

Hpoff—diag (ElEI) H 5 B2 10g2 n+ n1n2n3wr2nax log n < V n1n2n3wr%13x IOg n < n2n3wr2nax' (225)

For any i € [n1], we know that

1oz

ny N3 ng N3 nz2 N3
(BrEV), =D > B2, = Wi+ > > (B —wij). (226)

j=14¢=1 j=14¢=1 j=14=1
If the noise is bounded, i.e., E;jx < B for all (i,5,k) € [n] x [na] x [na], then {E},, — w?, }i ;. are

zero-mean, and
2 2
By — wige| <287

max

B[(B2, —u2,)"] =B [B ] iy, < BE[EL,] - wly, < B2

In view of Bernstein’s inequality and the union bound, one has, with probability exceeding 1 — O(n~19), for
all i € [nq],

Z E; J = 1‘2,3‘,6) < V/nanz Bwmaxy/logn 4+ B logn < nansw?,, . (228)

For the general case where the noise satisfies Assumption 1, using the truncation trick as in Zhou and Chen
(2023, Section B.4.2), one can show that (228) also holds with probability exceeding 1 — O(n~1°). Putting
(225), (226) and (228) together, we know that with probability exceeding 1 — O(n~10),

nz N3

E,E] — diag [Z Z W?,j,f] < Nanzw? .. (229)
j=1/¢=1 1<i<ny
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For all i € [3], let U € Om™-*i denote the left singular subspace of X}. The min-max principle for
singular values reveals that
Okit1 (Y1) = op, 41 (Y1 (Puz, ® Puz,))
= ok (X7 (Pug, ® Puy, ) + B (Pug, ® Puy,))
=041 (B (Pug, ©Pug, )
> ok, 41 (Er) — || By (Pu; ® Puy)

=\/0k+1 (B1E]) — | EL (U3 @ U3)|| — | Ey (Us, @ U3)| — | E1 (Us @ U, )|, (230)

| = 1BL (Puy, © Puy)

| = 181 (Pus @ Py, )|

where the fourth line makes use of Weyl’s inequality. We know from (224) that

koks
U U
|| 3 ® 2 ||2 oo — 52n2n3’
1UZ1 © Ul < U5 ll200 < 4] 22
3L 211200 = 2 112,00 = ﬂn27
105 © U lly o < 102 ll00 < 4] 22
3 21112,00 = 3 112,00 = ﬂnff,.

Applying Zhou and Chen (2023, Lemma 5) yields that with probability at least 1 — O(n~1Y),

kok
|E: (U @ U3)| < By/ 522 ; 10g 1 + /Miwmaxy/10g 11 < /M2T3wmax, (231a)
2763

| k
|1Ew (Us, @U3)| < B 67;2 logn + \/nl + Icgngwmax\/logn < /MaN3Wmax, (231Db)

k
1B, (Us @Us))| < B BTS logn + /11 + k3Nowmax /1081 < \/NaN3Wmax- (231c)
\/ Bns

Combining (229), (231a) - (231c) and Weyl’s inequality, we obtain that with probability exceeding 1 —
O(n—lo),

1/2

< 24/NoN3Wmax- (232)

1. If (24) holds, then (229), (230) and (231a) - (231c) together show that with probability exceeding 1 —
O(n™17),

o1 (Y1) < 0k, 1 (XT) + | Bnll = | Br|| = (|| ELET )

c
Oky4+1 (}/1) >4/ C’I?,Q?’ngmax \/\/ N2N3Wmax = gx/ N2M3Wmax- (233)
The previous inequality together with (232) shows that

Oky+1 (Yi) = \/mwmax

with probability at least 1—O(n~1Y). As a consequence, there exist two large enough constants C, > ¢, > 0
such that with probability at least 1 — O(n=19),

¢r (ninang) 1/2 log®n < /w2, < Cy (n1n2n3)1/2 log? n. (234)
2. If Assumption 2 in Theorem 2 holds, we choose (¢1,£s,¢3) € [k1] X [k2] X [ks] such that
(1-157, )= w?

1 ,12 ,13 max*

(01,02,03) € arg max S5 inis
’ile[k,‘l],he[kz],ise[kg]
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Then for any (j1, j2,j3) € [n1] X [n2] X [n3] with 27, = £;, i € [3],

2 _ 2
E [Ejl,jz,]'z] = Wmax-
For any i € {j € [n1] : 27 ; = (1},
n2 n3
, . Bna fng
SN ki 2 whli € nal 55 = - |i € Ina] 555 = o] 2 2R < mamas
j=1¢=1

Since [{j € [n1] : 27; = €1} > Bni/k1 > k1 + 1, we can still show that (233) holds with probability

—10)

exceeding 1 — O(n . Repeating similar arguments as in (234) shows that Theorem 2 also holds.

F Technical lemmas
Lemma 6. Suppose that
M=M*"+FE e R"*™ (235)

and the SVDs of M* and M are given by
ni ni
M* = Zai*ufv;T, and M* = Zaiuiv;
i=1 i=1

Here, 07 > --- > on >0 (resp. o1 > --- > 0, > 0) represent the singular values of M* (resp. M ), u}

(resp. u;) denotes the left singular vector associated with the singular value o} (resp. o;), and v} (resp. v;)

denotes the left singular vector associated with o} (resp. 0;). We let U* = [u},...,u}] € R™*" (resp. U =

-

[ug,...,uy] € R"*") denote the rank-r leading singular subspace of M* (resp. M ). If

*
JT

— oy > 2||E|,

then we have

4ok | E
H(UUT _ U*U*T) M*H S *O.T || *H .
Op =041
Proof. We define
Y :=diag(o1,...,04), Y, :=diag (0r41,- -+, 0n, ),
V.= ['Uh < 'avr] € anxr’ VL = [’UT’—Flv e ';/Un2} € ]Rn2><(n27’r)a

and define ¥*, ¥* , V* V} similarly. In view of Chen et al. (2021a, Eqn. (2.27)), we have
Py, Pu-M*=U, (U .U*) (U*TM*)

=U, (2, V]V ! U EV'E ) =vT

U, V/V*'V*T —UEV*V*T,
Recognizing that

v -UvUrT = (UU'Ur-UN U + (UUT —UUTUUT)

=Py, Pu- +UU'UTU}T,

we have
(U —UU*") M*|| < [Py, Pu-M*|| + |UUTUTUTT M|
<z vV v + |[ULEV VT + [uU UL VET ||
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<IELVIVH + B+ (U U] s

(a) 2| E 2| E
Lo 2IBL gy g or,, 2IEL
r 0r+1 or — 0r+1
(b) 21 FE 2| FE
< ot +180) 2Py 4y, 2UEL
r r+1 r r+1
(c) *
Or — 0r+1

Here, (a) comes from (Chen et al., 2021a, Eqn. (2.26a)), (b) makes use of Weyl’s inequality, and (c) holds
due to the assumption o — oy, > 2| E|. O

Lemma 7. Suppose that Assumption 1 holds. We let A denote the following set:

U = {(Ul,UQ,Ug) LU, € RV U < 1, |[Us o < Mnrz € [3]} (237)
and we define
n = max n;, and r= max ;.
1<i<3 1<i<3

If ninans > rin?, then with probability exceeding 1 — O(n=10), the following inequality holds:

sup  ||U M1 () (Us @ Ua) || S wmaxV/ bt papisr3 logn, (238)

(Ul,Uz,Ug)Gu

If, furthermore, the E; j1.’s are wmax-sub-Gaussian, then with probability exceeding 1 — e=C", one has
sup  ||U My (€) (Us @ Us)|| < Virwmas. (239)
(U1,U2,Usz)eU

Proof of Lemma 7. (239) can be proved by simply combining Zhou et al. (2022, Lemma A.2) (or Lemma 8.2
presented in its arxiv version) and the standard epsilon-net technique used in the proof of Zhang and Xia
(2018, Lemma 5) and we omit the details here for the sake of brevity.

Proving (238): the bounded noise case. To prove (238), we first consider the bounded noise case, i.e.,

|E; x| < B holds for all (i, j,k) € [n1] x [n2] x [n3]. For any fixed (U1,Us,Us) € U, note that

ﬁlT/\/h (&) (UsaUsy) = Z (M1 (€)), (ﬁl)lT (Us ®ﬁ2)j,:
i€[n1],jE[nans]

is a sum of independent zero-mean matrices. In addition, we have

3
T g JLfizfiaT 12T
(My (5))” (Ul)i,z (U3 ® U2)j,:H < BE HU%HZOO = Bm7
2
2 :
2

> E[wn@)l] | @0ty || @), @),
E[(M1(€)2,] (@), ||, @s0Ts)), T eT),, H}

L= max
i€[n1],jE€[nang]

V.= max{

i€[n1],jE[nans]

1€[n1],jE€[nansg]

< max {2, || (T3 @ Ua) I3 |0:0]

o[O3 | (O 0 T2) (O 0T2) | }

2 2 .2
S Wi max {rors, 1} < wha, T
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In view of the matrix Bernstein inequality, with probability exceeding 1 — e=¢m7logn,

Hﬁle (&) (U3 ®ﬁ2)H S vV Vnrlogn + Lnrlogn

1/4
< Wmax V113 10g 1+ Winax (manans) \/ H1p23T1T2Ts nrlogn
logn N1MNoN3
< WmaxV/ 1 pra e3> log n. (240)

Here, the last line makes use of ninong > rin2.

Repeating a similar argument as in Vershynin (2010, Lemma 5.2) yields that: there exists a set B; C
D; ={zx:x cR",||x|, < +/piri/ni} with cardinality at most (1 + 8,/x;7;)™ such that for any & € D;, one
can find =’ € B; such that

e — /o < S/ -
4 n;

le—2'||2 < ¢y/1/n;. As adirect consequence, for any U; € U; := {U ER"X L U[ < 1, [|U]lg o < %},
one can find U] € F; := {U e R"*" : U], € B;,Vj € [n;]} such that

1 /1

1 1
U = U eR™™ U €F, inf |[U-Ull,.. <~1/—¢. (241)
Uel; e 4 n;

Let U] denote the following set:

Then we can verify the following three properties:

Ul < |Fi| = |Bi|™ < (14 8y/ars)™™ < mfiTi < emirilogn (242a)

1 /1 1
YU, €Uy, U el st U =Ully,, < 4’/— and  ||U; - U < T (242b)

! !/ ! ]' 1 ! 1
VUiel, el st |Ui-Ulye <7y~ and U-Ul| <7 (242¢)

n;
Here, the last two inequalities make use of ||U; — Uj|| < /ni||U; — Uj||2,00-
We define
A= sup ||U1T./\/l1 (&) (Us@U)|| and B= sup U, "M, (€) (U; o Uj)
(U1,U2,Us)eU (U{,Ug,Ug)eu{ XUL XU

For any (Uy,Us2,Us) € U = Uy X Us X Uz, we know from (242b) and (242c) that there exist (Uj, U, Uj) €
Uy x Uy x U} such that

1
U, — UZI S ZZ/{“ 1€ [3], (243&)
Ul e gu i) (243D)

The triangle inequality, (243a) and (243b) together show that

U7 My (&) (Us 2 Us)| < |1 = UD " My () Us 0 U2)

[ My (€) (Us @ (Us — Ué))H

+Wme&w@tm®w> M (€) U @ Uj)
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<—A+B
~ 64 +&

which implies

A< %43. (244)

Furthermore, (240), (242a), (243b) and the union bound together imply that with probability exceeding
1— e—C’nrlogn . H eniTi logn > 1— e—C’nrlogn’

3
5
B< (4) Wmax V/ 1 2 1373 108 T X Wmax\/ i1 pra b33 log . (245)
Putting (244) and (245) together, we arrive at

sup  ||U M1 () (Us @ Ua)|| = A < wmax /11 papisr® log n

(U1,U2,U3z)eu

with probability exceeding 1 — g=C'nrlogn,

Proving (238): the general case. For the general case where the noise matrix E satisfies Assumption
2, we can prove (238) by repeating a similar argument as in Zhou and Chen (2023, Section B.4.2). O
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