Partially Linear Additive Models 1

Supplemental Materials for “Separation of Covariates into Nonparametric and
Parametric Parts in High-Dimensional Partially Linear Additive Models”

by Heng Lian, Hua Liang and David Ruppert

Nanyang Technological University, George Washington University, and Cornell
University

Proofsof Main Results

In this Appendix, we present the conditions, prepare several preliminary results, and
give the proofs of the main results.

A.1 Notationsand assumptions

We first introduce some notations and additional definitions. In our pro6fgje-
notes a generic positive constant that might assume different values at different places.
bo = (biy, - - -, bp,)" denotes @K -dimensional vector that satisfiglgo; — b, B;l| =
O(K%) for1 < j < pi and fo; = bj;B; for j > p;. Due to Proposition 1,
we will frequently use centered covariaf€;; — > . X;;/n. For simplicity in nota-
tion, we assume such centering has been done and we stilXyséo denote it. Let
zW = (2,...,7,,) be then x pyK submatrix ofZ containing the columns corre-
sponding to truly nonparametric components, and similarlyZ&Y be the submatrix
corresponding to parametric components &fd the submatrix corresponding to zero
components. In the same spirit, we can defiig), X (2, X®) as suitable submatrices
of then x p covariate matrixX. Similar notations are also applied to other vectors such
asb = (b7, pT p3TT

Let A denote the subspace of functions Bfi* that take an additive form

A = {h(@W): h@W) = hy(z) + -+ hy, (), ERj(X;)? < oo andEhj(X;) = 0}

and for any random variabl8” with E(1W?2) < oo, let E 4(W) denote the projection of
W onto A in the sense that

B [{W = EAW)HIW = EaOV)}] = juf B [{(W — X)W = R(x )],
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Definition of E 4 () trivially extends to the casB’ is a random vector by component-
wise projection.
In the theoretical studies of our estimator, we will use the decomposition

X® =X+ U =0(XD) = (XD 4+ o(XxD) 4+ U, (A.1)

with /(X D) = B(X@| XM, n( X)) = E4(X@)andU = X@) — B(X@|x 1),
In the decomposition above, each componen‘t@((1 ) = (hy(XW), .. hippy (XONT
can be written in the fornk () = > %L, h(y);(z;) for someh,; € S

Note that since the conditional expectatlEr(uX(2 | X (1) can be mterpreted as pro-
jection onto the spacgh(X (V) : Eh? < oo} of which A is a subspace, we see that we
also haveh(X (M) = E4(0(XM)). LetZ = E{X® — (X (1))}®2,

In some of the proofs below we will make use of the concept of subdifferential and
thus we first mention the following frequently used fact. For any matriand vectomn
(as long as the dimensions are compatible), the subdifferentjalof| is

o114 = {ATAb/||Ab||}  if Ab+£0
| {ATAa:||4d|| <1} if Ab=0.

Note that the subdifferential is a set and its elements are called subgradients. Alvken
0 the subgradient is not unique. In the following we will use the same notatjp||
to denote either subdifferential or subgradient, when the specific element selected has
no significance in our proofs.
The following regularity conditions are used.

(c1) The covariate vectoX has a continuous density supported [on1]?. Further-
more, the marginal densities fof;,1 < j < p are all bounded from below and
above by two fixed positive constants respectively.

(c2) The noises; are independent of covariates, have mean zero, variahcand have
sub-Gaussian tails.

(c3) The number of nonzero components fixed. £ f;(X;) = 0,1 < j <s. fj(z)is
linearinz forp; +1 < j <s,andf; =0forj > s.

(cd4) Forg = f;,1 < j < prorg = hy;1 < s < pg,1 < j < py, g satisfies a
Lipschitz condition of ordedl > 1/2: |¢g(l4)(t) — g(ld)(s)| < C|s — t|¢-L4,
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where |d] is the biggest integer strictly smaller thanand (L%} is the |d]-th
derivative ofg. The order of the B-spline used satisfies d + 2.

(c5) For some fixed positive constantsC, ¢ < Amin(4;) < Amax(4;) < C, where
Amin(-) @NdApax(.) denote the smallest and largest eigenvalue respectively.

(c6) For anyb € RX, ||b||p, = 0if and only if b” B;(x) is a linear function.D; is
nonnegative definite, of rank” — 1, and all itsK — 1 nonzero eigenvalues are
bounded and bounded away from zero. With abuse of notation, we\lisg D)
to denote its minimapositiveeigenvalue.

(€7) /n/K{\/1og(pK)+/K + n/K?*+vnK (M| |wl|[+Xz2|[wd]])} = 0p(nAgws;)
forp1+1 < j < sand\/n/K{\/log(pK) + /K + n/K* +vnK (A ||[wl]| +
Ao|[wh] )} = op(nArwij) for s +1 < j <p.

(c8) The eigenvalues &t are bounded away from zero and infinity.

(c9) minlgjgs ||f03|| andminlgjgpl infmbeR ||f03(l') — ar — b”2 are bounded away
from zero.

Most of the assumptions are standard in the literature. We assurigetixed in
(c3) as in Huang et al. (2010). Some discussions on relaxing this are contained in
the Supplementary Material. Assumption (c4) is used to control approximation error.
Assumption (c7) looks quite complicated. These expressions roughly require that the
weightsw ;, j > s associated with zero components and the weighis p; < j < s
associated with parametric components should be sufficiently large. When the weights
are defined by the initial lasso estimator, the expressions in (c7) can be made clearer as
discussed in Section 2.3. Assumption (c8) is necessary for identifiability of the linear
components, as argued in Li (2000) for partially linear additive models. Assumption
(c9) roughly speaking imposes condition to distinguish different types of components.
Assumptions (c5) and (c6) may seem more restrictive than they really are. What is re-
ally meant is that the maximum and minimum positive eigenvalued pind D, are
of the same asymptotic order. For example, if ftiek’) entry of A; is [ BBy, its
minimum and maximum eigenvalues are of ordgi< (Huang et al. (2010)). A simple
multiplication by K’ makesA; satisfy the assumption. In practice, this kind of rescaling
is of course unnecessary and assuming eigenvalues to be bounded and bounded away
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from zero, instead of that they are of the same order, is only used for convenience in
proof.

A.2 Proof of Proposition 1

If ||b;]p, = 0 then by the stated assumption we h@fij(x) = a;z + c; for some

aj,c; € R. Sinceb] Bj(x) is centered (that ig)] B;(x) € S5), we havec; = —a; X,
and thus|b,[|*/K ~ [|b] B;(x)||*> = [laj(z — X;)||* ~ 3. The linearity of the mapping
is obvious. The uniqueness is also easy to show sifigek = 1,..., K are assumed
to be linearly independent. The other direction is obvious.

Equivalence between (ii) and (iii) is trivial. We also note that sgghs unique and

11| ~ VK by part ii). 0

A.3 Somepreliminary resultson regularized oracle estimator

The strategy of proof for our main results is by way of considering the following “regu-
larized oracle estimator”. If we had the additional knowledge regarding which compo-
nents are zero or linear, we could take into account this information and instead mini-
mize the following constrained problem:

. 1 p p
min §||Y—Zb||2+m1 > wijllbs|la; +nAa Y wayllbsl| ;s (A.2)
=1 =1
s.t. ||bj||A].:0,j:s—|—1,...,p and ||bj||Dj:0,j:p1—|—1,...,s.

We will show in Section A.4 that the solutions to (1.4) and (A.2) are the same with
probability approaching one under appropriate conditions, and thus tseenote the
minimizer for both. As an immediate corollary, the zero and linear components are
correctly identified with probability approaching one, and the convergence rates and
asymptotic normality results stated below for (A.2) also apply to estimators obtained
from (1.4).

The following lemmais the key to our theoretical investigations, which characterize
the solution to the regularized oracle estimator.

LemmaA.1 A sufficient and necessary condition for= (607 p@7T p()T)T tg be
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the solution of (A.2) is that

0 € —ZJT(Y — Zb) + n/\1w1j6||bj||Aj + ’I’L/\g’ngaHijDj, i=1,...,p1, (A3)
—ZJT(Y — Zb) + n\wi;0||bj|la; € span(Dj), j=p1+1,...,s, and (A.4)
b =0, [lbjp, =0, j=p1 +1,....5,

wherespan(D;) is the linear subspace ak’ spanned by columns a@p;.

Proof. Denotez(1?) = (z(), Zz(?)) and similarlyb™?) = (6(UT pAT)T Due to
the constraints, (A.2) is obviously equivalent&6) = 0 together with the following
minimization problem fob(1:2):

) 1 S p1
min - Q(b) = g[[Y — ZO2pD|2 4 p)y leleijAj + 1A z;wszbjl(ﬁﬁ)
j= j=
s.t. 1bjllp; =0, =p1+1,...,s.

DenotelF’ : RX — R U {oo} with F(x) = 0 if x = 0 andoo otherwise. Notd" is
a convex function (see for example section 111.4 in Ekeland and Turnbull (1983) for the
definition of convex function that can take value). Using F, the constrained problem
(A.5) can be written as an unconstrained convex problem

. 1 S P1 S
gﬁlg §||Y _ Z(1,2)b(1,2)||2 + A1 ZwleijAj + A Zw2j||bj||Dj + ' Z F(Djbj).
J=1 Jj=1 j=p1+1
Using the KKT condition (Proposition 111.3.1 in Ekeland and Turnbull (1983)), a suffi-
cient and necessary condition fo':) to be its solution is that
0e —ZJT(Y — Z(l’z)b(l’z)) + n/\1w1j6||bj||Aj + ’I’L/\g’ngaHijDj, j = 1, e ,%6)
0€ —ZF(Y — ZW2b02) + nX\ywy;0||bj|l a, + OF(Djb)), j =p1+1,...,6A.7)

Furthermore, we have, by Proposition 111.2.12 in Ekeland and Turnbull (1983),

D if D;b;: =0
OF(Djb;) = span(D;) if Djb; =0,
0 otherwise.
and thus (A.7) is same as (A.4) togetherwithb; =0, j=pi1 +1,...,s. O

We present the following two results regarding the convergence of the regularized
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oracle estimator. These are obviously the same as those stated in Theorems 2 and 3
respectively for the doubly penalized estimator.

Lemma A.2 (Convergence rates) Under conditions (c1)—(c6) and thalog K /n —
0, K — oo, the estimator obtained from (A.2) satisfies

S
R K 1
SO = ful = 0p (5 + ez + ORIl + Ml ).
j=1
For the parametric components, under the additional assumption (c8) and thati 2¢ —
0, we have the faster rate

I 1
> (85 =0, (1 + (Rl + Ml ).
J=p1+1
Proof. The first part is relatively easy to establish.
Using (A.5) and the definition of, we have

Q) — Q(bo)
¥ = 202022 — [y — 2020 )2

0

Y

Y

S p1
—nA1 Y wiyllby — bojlla, —nAa Y wayllb; — bYlIp,
7=1

j=1
= (v = 20T 702 (1D _ 5120y )| 721D _ 12129
S p1
—’I’L/\1 Zwlebj - bOjHAj - ’I’L/\2 szijy’ - bOjHDj' (A8)
j=1 J=1

Letn = Pyas (Y — 202612, whereP, ) = 212 (Z(1:97 7(12))-1 7097
is the matrix of projection onto the columns &f!+2). Denoter; = UL foj(Xi5) and
r=(r1,...,r,)". We haveY’ — Zby = e+ (r — ZWb(") and||n||2 < 2||P €2 +
2(jr—ZWp(V||2. By the approximation property of spling; — Z2(V5{"[|2 = O, (n/K24).
Also, E||P,a¢el|? = E(eFPyunye) = a*tr(Pyuz2) = O,(K) and an application of
Markov inequality gives
n[* = Op(K + n/K>?). (A.9)
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Using the Cauchy-Schwartz inequality, equation (A.8) can be continued as
1 N
0> —[Op(K +n/K*)| + 7| 200 = 502

S p1
—’I’L/\1 Zwlebj — bgHAJ — ’I’L/\2 Z’ngHbj — bgHD] (A.].O)
j=1 j=1

Using now properties of the matrif as in Huang et al. (2010), we ggzz(1:? b\ —
b(12)[12 ~ (n/K)|[bS"*) b1 2. Furthermore, sincgh|"? —b1:2)| 1. < C||p{"* -
b(1:2)]|, it follows from Cauchy-Schwartz inequality that, for a sufficiently latge> 0,

- o CKn < R
ny_ Avwyl by = 502 |p, < == 3" (wy)? + (0/CK)| b — 52
Jj=1 j=1

p1 s
- CKn .
n Y Ayl = 60 llp, < =3 (wwny)® + (n/CHROlIE - 52,
j=1 j=1

which along with (A.10) implieg|b"? —5(1:2)[|2 = O, (K?/n+1/K2~14 ()2 dio wijt
A3 ya w3;)K?). Using the definition oy, we get the rates given in (1.5).
Now consider the faster convergence rates for the parametric components, which
we show by profiling out(") in (A.5). For any giverb®) that satisfiegv(?) || p, = 0, let
b (b)) be the minimizer of (A.5) wheh(? is fixed. By the KKT condition, we know

thatb™) (b(?) satisfies
0e —Z;‘»F(Y—Z(l)b(l)—Z(z)b(z))—l—n/\lwljm|bj||A]. —I—’I’L/\g’ngaHijDj,j = 1, ey P1-

By Proposition 1, there exists a unique—dimensional vecto such thatZ(?p?2) =
X @3, and thus we can writé()(3) instead ofb(!)(b(2)). By this change of notation
using 3, in the rest of the proof we writé, b, b(3) in place ofb() b)), p(1)(3) for
simplicity.

From the above displayed expression we get

b(B) = (zWTzW)=1zWT(y — X)) 4 (zWT 201y (p), (A.11)

whereuv((3) is ap; KK -dimensional vector with its components giveniy; w1 ;0| |Bj(ﬁ) ||a,+
n/\2w2ja||l;j(ﬁ)||Djy 1<7<p1
Let 5y be the true slope parameter for the linear components and under the corre-
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spondence given in Proposition 1 we have sobffé that satisfiesz?5\> = X(2)3,.
Consider ang(® € RP2K given byb{” +yu, with v = CVE (\/1/n+VE (M |[w?]|+
Aollwl]) and|juy|| = 1, |lus|| o, = 0. Again by Proposition 1, we can write this equiv-
alently in terms ofp,-dimensional vector$ = 3, + ~v1u under the correspondence,
wherey; = C(y/1/n + VE (A||wf|| + Xa|[w)|[)) for someC > 0, and||u|| = 1. We
will show thatinf |, - Q(B), B) — Q(b(Boy), Bo) > 0 with probability approaching 1
for C' large enough and (1.6) will follow.

Using the closed-form expression fb(rﬁ), we get

= —(V - XPB) (X Pu+ zW(ZzWT2zW)~Ly(3))

+(1/2)| | X Pu 4 20 (ZzWT 7)1y () |2

+(V = X@30)TzW (20T 20 (Bo) — (1/2)]1 20207 20) = ()2
p1 P1 S

+nn Y wijlbi(B)][a; + e Y wasllbi(B)l[p, +nA Y willblla
j=1 j=1 j=p1+1
P1 ~ p1 R s

—nAr Y wil[bi(Bo)lla; — nA2 Y wayl[bi(Bo)llp; —nAr D wiylllboslla;s
j=1 j=1 j=p1+1

(A.12)

where for any random matri¥’ with n rows, we sefl/ = QW =W —-P,u; W
to be the projection of columns d#/ onto the orthogonal complement of the column
space ofZz(1), whereP, ) = 21 (ZzMWT z()=1 7T,
Using thatz(W)(zMT z(1)) =1 z(WTy(3) is inside the column space ¢f!), while
all variables with™ are orthogonal to it, the first four terms in (A.12) are simplified to

(¥ = XD (1 X @) + (1/2)[|1n X Dul? + (1/2)[| 20207 200) =L B 2
—(1/2)]1 20207 Z0) (o) |2

We will derive the orders in three steps for these four terms} () — X ) 50)T (X @) || =
Op(vn), (i) |ZM(ZWTZW)"o(B)]] = Op(VK (Aa|[wl]] + Aof[wd])), (i) the
termsin the last two terms in (A.12) involving the penalty terms are of afgjgn/K Ay ||w?]|y1+
nE (Af[[w]|? + A3[wg]]?)).

Step 1. Proof of [|[(Y — X®)3)T(X®u)|| = O,(y/n). We first write down the de-
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composition
XY =0-H+H+U.

The above uppercase letters represent p, matrices, and correspond to the decompo-
sition in (A.1) evaluated at observations. After projection, we havé(®) = © — I +

H + U. Together with the decompositidi — X (23, = ¢ + (r — Z(Db,) (same as in
the proof of Lemma A.2y = (rq,...,7r,)T withr; = ?1:1 fo;(Xij), bo contains the
spline coefficients that achieve optimal approximationfgf, 1 < j < p;), the bound
for [|(Y — X2 3))T X )| is obtained from the following expressions.

1€ Q0 X P = Op(vn), (A.13a)

1= 2060)7 Q0 (€ = H)I| = Oyl 7252) (A13)
1r=2M00)" Q0 Ul = Oy 3550): (A.130)
Itr=2Db0) Qu HI| = Opl) = Op(v).  (A130)

where (A.13a) is obvious from condition (c8), (A.13b) is based on that entriés-off
have mean zero and are orthogonaldowhile entries of(r — Z(by)T and z(Y) are
inside A and thus we can calculate the bound by considering its variance, (A.13c) is
obtained similarly, and finally A.13d) is obtained fromj|r — ZMpg|| = O, (y/n/K24)
and||Q ) H|| = O,(1/n/K22) by condition (c4).

Step 2. Proof of [| 21 (2T ZW)"Lu(B)[| = O, (v (As][wl]] + Aal[wd]])). Us-

ing the fact thatd||b;||4, and d||b;||p, havel, norm bounded by/\maX(A;/z) and
/\maX(Djl»/z) respectively, it easily follows from the definition of 3) that||v(5)||> =
Op(n2 (A3 [w?]? + A3/ [wd][2).

Step 3. Proof for that the last two lines in (A.12) involving the penalty terms is of order
Op(nv/E A [uf| |71 + nI (A [[w]|? + A3[[wS][2)). We have

P1
nA1 > wiglbi(B) = bi(Bo)lla; < Cnllwd]] - [1B(3) — b(Bo)l
j=1

< Cnnfwf] - ([(ZT20) 1 205 = o)l + [1(Z2DTZ20) " (0(5) = v(Bo))])
= Cna||wd]|(y1v/ K /n+ K (Al [w?]] + Ao [w3]])
= Op(VnK | [wh]|y1 +nk (A[[w?|* + N[ [w][?)),
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where in the 1st line above we used Cauchy-Schwartz inequality, in the 2nd line we
used (A.11), in the 3rd line we used (ii) above. We can bound > 2L, wa;|[b;(3) —
b;(Bo)l| p, in asimilar way. Finally, we haveX; Y5_ 4 willbj—bojla, < CndVE |[w?||y
using Cauchy-Schwartz inequality.

Since the eigenvalues of (27X (2) /n, are bounded away from zero as shown in
part | in the proof of Theorem 1 in Li (20009 (b(3), 3) — Q(b(5o), Bo) is bounded be-
low by Clmlz—()gawl —C3b,, for some positive constan€s, Cs, Cs anda,, = v/n+
nVEM [wd]], by = nEK (A3[|wd]2 + A3[lwd|?). Thusifyr = Cmax{an/n, \/by/n}
for C > 0 sufficiently large, the above displayed expression will be positive. The ex-
pressionmax{a,, /n, \/b,/n} is exactly the same ag'1/n + VK (A||w?|] + Ao|[w]|)
as in the statement of the Theorem. O

Lemma A.3 (Asymptotic normality) Under the same assumption as in Lemma A.2, and
that VK (A |w|| + X2 ||wy]]) — 0, (B — By) — N(0,0*2~") in distribution.

Proof. Lemma A.1 states that the KKT conditions for (A.2) are

0€ —ZF(Y — ZObM — Z@)) 4 ndywy;0|[bj||a; + nAewz;d|lbsl b, j <(Bs14)
—ZI(Y = 2WpM) — ZGp@) - nXywy;9||bjl 4, € span(D;),j = p1+ 1, .. (As15)

By pre-multiplying the second equation above @;1 which is defined in Proposition
1, (A.15) becomes- X7 (Y — ZWpM) — Z@p2)) 4 nxjw;£70bjlla, = 0,5 =
p1+1,...,s.

Since we have the constraifib;||p, = 0,5 = p1 + 1,...,s, similar as in the
proof of Lemma A.2 we can use a change of parameter (and a similar simplification of
notation as in the proof of Lemma A.2) to write the above as

—XT(v = ZWb - X@B) 4y, =0, (A.16)

wherey; = nAywi;€] 9||b;|| 4, and we notéy;| = Op(nAwi;VK) dueto thaf|¢|| =
O(VK).

SinceY = r + Xy + e wherer = (r1,...,7,)" with r; = Z?lzl foj(Xi;), and
denote byby the vector containing the spline coefficients that achieve optimal approxi-
mation of fo;(z), 1 < j < p1, and sew = r — Z(Vby, (A.16) is rewritten as-X7 (e +
a—ZM0b -0 - XA (B~ By))+x; =0,5=p1 +1,...,s From (A.14), we get
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ZW(b—by) = zW(zMWT ZzW)=1 zT (e a— X @) (8—Fy))+2MD (ZzMWT (D) ~1y(3)
(v(p) defined right after equation (A.11)) and plug into the above displayed equation we
get

~XT(e+a—2W(zWTZO)ZWT (e + 0 — XB(B - Bo)) +v(8)] — XP(B - Bo))
X :Ovj:pl"i'lv"'vsv

that is,
_XJT(E/::?I X(2 (ﬁ 50) Z(l (Z(I)TZ(I)) (ﬁ))—I_XJ:Ovj:pl"i'lvvsv

from which we get

V(3 — fo)
= Vn(XATXO)1XOT (¢ 4 q) + /n(XPTX Y71 x AT 7() (7T 701y )
+/n(XATX @)1, (A.17)
whereA is ap,—dimensional vector with components, j = p1 +1, ..., s. By part (1)

in the proof of Theorem 1 in Li (2000), we can replack @7 X (?) /n)~1 by == which
only results in a multiplicative factar + o, (1) and thus does not disturb the asymptotic

distribution.
Using || X @ Ta|| = 0, (\/n/ K2 + n/K?%) (combining (A.13b)-(A.13d)) and
|X@TZW(ZWT 7O "1(B)[] = Op(nv/K (Ar|[wl]] + Az|lwil])) ((ii) in the proof

of Lemma A.2) and||A|| = O,(n\VEK]||wl|]), all terms in (A.17) areo,(1) ex-
cept /n(XATX2)~1 XA Te which can be shown to converge (0, 0?=~1) by
Lindeberg-Feller central limit theorem using standard arguments. O.

A.4 Proofsof themain results

Proofs of Theorems 1-3. As explained before, we only need to show that the solution
b= (bM, 3@ p3) to (A.2) is also the solution to (1.4). Sinbesolves the optimization
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problem (A.5), by Lemma A.1 we have

~ZI(v — zWpM) — @@ 1 nxjwy;9]|bj|| 4, + nAaws;0|bsl|p, = 0,5 =1,...,p1,
(A.18)
—ZI(v — 20 — Z@p@)) 4 nxywy;0||bjl|a, € span(D;),j =p1+1,...,s. (A.19)

We remind the readers that these equations mean “there exists some subgradient that
makes the left hand side satisfy the condition”, in case the subgradientis not unigue.

In order to show that the K -dimensional vectob is also the solution to (1.4), we
only need to verify the corresponding KKT conditions

~ZI (v =z — 2@ — 23 L ywy;9][bj|| 4, +ndowa;d]|bslp, = 0,5 =1,...,p.
(A.20)
First, forl < j < py1, (A.20) is obviously the same as (A.18) and there is nothing
to show.
Next, forp; + 1 < j < s, we first show that

||ZJT(Y - ZB)H + n/\l’wlj = op(n/\gng). (A.21)

In fact, we havel| 27 (v — 2b)|| < ||27el| + ||2F 20D (602 — b)) 4 1127 (r —
ZWp(V)||, wherer is as defined as in the proof of Lemma A.2. Using exactly the
same arguments as in showing (A.9) and Theorem 1 of Huang et al. (2010), we have
max; || Z7e|| = Op(y/(n/K)log(pK)). Besides, using Lemma A.2 we obtaj&” z(1:2) (5(1:2)
b5 )+ 28 (r =208 = 0, (VI KYE + 0/ K2+ nK (P + A3l[wdP) )-
Thus,||ZjT(Y — Zb)|| = op(nAaws;) by assumption (c7). Finally, assumption (c7) also
trivially implies thatAjwy; < Ai|[wd]] = op(Aawsy), p1 + 1 < j < s, and (A.21) is
proved. Sincé satisfies (A.19), we can write

2Ty — 206 — 2@ — 25O 4 nayw;0l[byl|a, + D) Pa=0 (A22)

for somea € RE, whereDjl./2 is the matrix square root ab; (note thatspan(D;)
is the same aSpan(Djl./z)) and furthermore by (A.21) we ha\,{ﬂ);/zan/(n/\gng) =
op(1). Let Pp be the projection matrix onto the column span/of, obviously we have
D}?Ppa = D}*a. Then| Ppal| < || D}/*Ppall/Awin(D;) = | D} *all/Amin(D;) =
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op(nAaws;). Settinga = Djl./ 2PDa/ (nAawa;), (A.22) can be rewritten as
—ZI(v — zWp) — 2@ — ZOpE)) 4 nA1wy;0|[bjl |4, + nAaws;a = 0,

which can be seento verify (A.20) for +1 < j < ssinceitis easyto seee 6||13j||D]..

Fors 4+ 1 < j < p, using similar arguments, we only need to verjfo(Y -
Zb)|| = op(nA1w1;), which can be shown in the same way as before. O
Proof of Theorem 4. For any given pair of regularization parameters= (A1, \2), we
denote byb, the minimizer of (1.4), and by the minimizer when the optimal sequence
of regularization parameters is chosen such thasults in a consistent model selection.
We consider the underfitting and overfitting case separately below.
Case 1. UnderfittingWe only consider the case where some nonparametric components
are estimated as nonzero parametric componeby ifother cases, such as estimating a
nonzero linear component as zero, are similar). Similar to the calculations performed in
the proof of Lemma A.2, we have

1 . 1 . 1 . 1 S
— Y = Zby |12 — —|IY — Zbl|12 > —Z||PA(Y — ZD)|IZ + —||1Z(b — b))%
2nll Al 2nll I[* > nll 7( || +4n|| ( W

Since there is somé < j < p; for which Bj represents a nonparametric component
with convergence rate given by Lemma A.2, whilg; satisfies|b;||p, = 0, it is easy
to show that|Z(b — by)||?/n > C||Z;(b; — bx;)||?/n is bounded away from zero by
condition (c9). Besides|P;(Y — Zb)||/n = 0,(1) (using the same arguments as in
proving (A.9) as well as the convergence rates stated in Lemma A.2) and the penalty
terms in BIC are all of ordes,(1). Also note that it is easy to shoy||Y — Zb||? is
bounded away from zero, which implies tHag || Y — Zby| |2 —log || Y — Zb||2 > O,(1).
Thus the eBIC whern is used is bigger than the eBIC when the optimal regularization
sequence is used.

Case 2. OverfittingWe only consider the case where some zero or linear compo-
nents are estimated as nonparametrigjjnLet b* be the minimizer of the least square
|l — Zb||? under the additional constraint that the model identifiedkys used when
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minimizing the least square. We have that
1 - 1 - 1 N 1 N
SV = 20512 = —[|Y = Z0]|* > —[|Y — Zb*|* — - |[Y — Zb||?
2n 2n 2n 2n

(Y — zb)TZ(b—b") + %HZ(B —b)|P?

SI=3=

> (Y — Zb)TZ(b - b"). (A.23)

By the definition ofb* and the fact that we only search over models with size bounded
by some constant of ordé€d(1), the convergence rate of can be obtained using similar
arguments as Lemma A.2 but without the terms involvingand \s appearing. Argu-
ments similar to those used in showing (A.21) in the proof of Theorem 1 can be used
to show that the (A.23) is bounded below by a negative term whose absolute value is of
order

L ntogpr) + o) - (5 4 L) — oCogt/ )+ g (/50

n

Thus eBIC cannot select sueh similar as in Case 1. O

A discussion for thecase s — oo

The reason we need to assumeés fixed is that we need to use the property that the
eigenvalues oZ(1:2) are of ordem/K in the proof. For fixeds, this property has been
shownin Lemma 3 of Huang et al. (2010). It is not clear how this lemma can be extended
to the case — oo. Ravikumar et al. (2009) assumed directly the order of eigenvalues of
Z(1:2) which is the reason why they can let— co. As long as we assume eigenvalues
of Z(12) are of ordem/ K, the proof can be straightforwardly modified in a few places
to allow s — oo. We now briefly mention the changes required in the proof for the
theoretical results in Section 2.2.

To incorporate diverging, assumption (c7) is slightly changed to the following

(c7) \/n/K{\/log(pK)—l-\/Ks + ns/ K24/ nK (M| |wl||+Xa||wd]])} = 0p(nAaws;)
forpi+1 < j < sandy/n/K{\/log(pK)++/Ks +ns/ K> +vnK (A [wf||+
Aol|wd]])} = op(nAiwi;) for s +1 < j < p.
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In Lemma A.2, the rates will now be

S
R Ks S
SO - fosll? = 0, (7 b+ O3t + A§||w8||2>K> .
j=1

s

> (B =60 = 0p (B 4+ O3 2 + Il K )

Jj=p1+1

The appearance afin the first equation above comes from (A.9), which now will be
In]1* = Op(K's +ns/K>?).

For the rates of the parameter part (now we requjfiepz / K 2d _, (), an additional
/@2 factor will appear in the bounds (A.13a)-(A.13d). By changing the definitions of
and-y; (in the paragraph following (A.11)) to be = CVK (\/pa/n + VK (A|w?|| +
Aollwd|)) andy = C(y/pa/n + VE (M ||| + Ao|lwl]|), the rates can be shown fol-
lowing the same lines.

For asymptotic normality, due to the diverging dimensiorspthe asymptotic nor-
mality is more appropriately stated as

VnaZV2(3 — By) — N(0, o2) in distribution

for any deterministigs-vectora with ||a|| = 1, using basically the same proof as before.

Supplementary tables
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Table 1.4: Model identification results with = 50

#N #NT #L #LT

n=50 BIC 29.962 6570 4.980.1414 Op 09

p:50 EBIC 3.545 o723 2.381.1409 0Op 09

0=0.2 BIC/BIC 14.945 0865 20 1.91 8763 0.220 5455
EBIC/EBIC  1.22967ss 1.140.3505 0.980.9792 0.860.8084
BIC/EBIC 2.420 8593 1.920.2740 3.281.7266 2.240.8609

n=50 BIC 31.383.1161 4.960.1979 Op 0o

p:50 EBIC 3.441 3973 2.460. 9304 Og 0o

0=0.5 BIC/BIC 17-762.2818 20 1.681,3915 0.28()'6074
EBIC/EBIC  1.28¢ 5360 1.180.3881 1.120.9176 0.960.7548
BIC/EBIC 1.70.7354 1.560.5014 3.262.4396 2.081.1400

n=50 BIC 37.867.6212 4.860.5349 Op 09

p:100 EBIC 3.541 6189 2.281 0110 0o 09

0=0.2 BIC/BIC 15.65.1070 1.920.2740 2.321.7195 0.70.8864
EBIC/EBIC  1.24¢.4764 1.220.4185 0.980.9581 0.840.8657

n=50 BIC 38.610.0306 4.580.9916 0o 0o

p:100 EBIC 4.269. 0584 2.261.0461 Oo 0o

0=0.5 BIC/BIC 16.25 8310 1.80.4041 2.321 7893  0.46¢ 6131
EBIC/EBIC  1.29.4518 1.160.3703 0.841.1132  0.680.7939
BIC/EBIC 1.444 6440 1.340.4785 1.467.4316 1.221.0934

n=50 BIC 25.8451.9920 3.1216117 Op 0o

p:200 EBIC 4.785 3586 2.11.1294 0o 0o

0=0.2 BIC/BIC 9.387.9972 1.540.5035 1.261.6880 0.340.6581
EBIC/EBIC  1.12.3854 1.10.3030 0.841.1493  0.56¢.7045
BIC/EBIC 1.260'5272 1-220,4185 1.622406 1-021,1865

n=50 BIC 7.084 8481 3.581.7853 0Op 0o

p:200 EBIC 5.545 3142 2.049.7814 Og 0o

0=0.5 BIC/BIC 10.2g.3103 1.560.5014 1.227.9824 0.30.5803
EBIC/EBIC 14 1o 0.560.8369 0.42¢ 6091
BIC/EBIC 2.261.2906 1.70.4620  1.841.8335 1.41.3003




Table 1.5: Root mean squared errors for the first six componentswithb0

Partially Linear Additive Models

Oracle

Our Estimator

Sparse Additive

n=50
p=50
0=0.2

N
f2
fs
fa
fs
fo

0.34850V05593
O. 1 1750.03685
0.06030.04675
0'04700.03255
0.05750.04406
O'OOOOO.OOOOO

00966013139
0.14200. 14434

0.40750.09441
0.2447¢ 16145

n=50
p=50
0=0.5

N
f2
fs
fa
fs
o

0.36450.03977
O. 19300.07206
0.06870.05014
O'OOOOO.OOOOO

04756024023
02990022895

0.35310.14074
0.35040.12749

n=50
p=100
0=0.2

N
f2
fs
fa
fs
o

0.35480.03924
O. 1 1560V04314
O.O4530V02931
0.04930.04085
O'OOOOO.OOOOO

0.39630.09781
02826023158
0.2102¢.19378

0.4141¢.07939
02900017832
0.33080.19054

n=50
p=100
0=0.5

N
f2
fs
fa
fs
fo

0.38480.08284
O. 18230.06987
0'08390.06235
0.08480.06894
0.08200.05971
O'OOOOO.OOOOO

O.55710,18669
0.55800.23714
0.46980.34764
0.4311¢ 21770
0.00000,00000

0.53590.15456
0.45080.15754
0.45280.17077

n=50
p=200
0=0.2

N
f2
fs
fa
fs
o

0.1126¢.04105
0.05640.04377
0.05170.03874

0.50910.14830
0.45030'19922

0.5144¢ 14475
0.66550.27089

n=50
p=200
0=0.5

N
f2
fs
Ja
fs
o

03380002206
0.04830.03864

0.37610.06544
0.3423¢ 37147

0.37910.06867
0.38080.34359
0.31790'21913

17
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Table 1.6: Model identification results with = 200

Partially Linear Additive Models

#N #NT #L #LT

n=200 BIC 5.480 6773 50 0o 0o

p:50 EBIC 5.760.9596 50 ) 0o

0=0.2 BIC/BIC 2.260 5272 29 2.760 5175 2.740.5272
EBIC/EBIC 2, 20 3.040.1979 30
BIC/EBIC 2 20 3.040.1979 30

n=200 BIC 10.625 3704 5o 0o 0o

p:50 EBIC 7.2622114 50 00 00

0=0.5 BIC/BIC 2.180.6289 29 3.10.8631 2.840.5095
EBIC/EBIC 2.0802740 20 2.920,2740 2-920.2740
BIC/EBIC  2.020.1414 20 3.040.2828  2.980.1414

n=200 BIC 6.21 2289 50 0o 0o

p:100 EBIC 5.961.1599 50 0o 0o

0=0.2 BIC/BIC 2-340,6581 20 2.6806833 2.6606581
EBIC/EBIC 2 20 3.020.1414 3o
BIC/EBIC 2.02()'1414 20 30,2020 2-980.1414

n=200 BIC 11.364.6325 5o 0o 0o

p=100 EBIC 5.421 2469 Do 0o 0o

0=0.5 BIC/BIC 2.1603703 20 3-180,9409 2-840,3703
EBIC/EBIC 2.0602399 20 2-940,2399 2-940,2399
BIC/EBIC 2 20 3.060.2399 30

n=200 BIC 7.641 8818 50 0o 0o

p:200 EBIC 7.381 5894 50 0o 0o

0=0.2 BIC/BIC 2-220,6788 20 2.8607562 2-780,6788
EBIC/EBIC  2.020.1414 29 3.020.2466  2.980.1414
BIC/EBIC 2 20 3.040.1979 30

n=200 BIC 7.34.6258 50 0o 0o

p:200 EBIC 5.060 6824 4.920.5656  Oop 0o

0=0.5 BIC/BIC 2.2806402 20 2-720,6402 2-720,6402
EBIC/EBIC  1.980.1414 1.980.1414  2.940.4243 2.940.4243
BIC/EBIC 2.049 1979 20 2.980.2466 2.960.1979




Table 1.7: Root mean squared errors for the first six componentswit200

Partially Linear Additive Models

Oracle

Our Estimator

Sparse Additive

n=200
p=50
0=0.2

N
f2
fs
fa
fs
fo

0.01900.01782

0.31930.00718
0.01860.01730

00480002082
0.04870.01755

n=200
p=50
0=0.5

N
f2
fs
fa
fs
o

0.32330.01070
0.08580.02775
0.03040.02401
0.03620.02498

0.1121¢.04732
0.03960.02703
0.03960.03214

0.32380.01087
00823002861
0.07940.03167
00751003022

n=200
p=100
0=0.2

N
f2
fs
fa
fs
o

0.31690.00640
0.05680.01452
0.01990.01731

00709002163
0.01870.01751
0.0242¢ 01714
0.02390.01849

0.05840.01491

n=200
p=100
0=0.5

N
f2
fs
fa
fs
fo

0.08230.03117
0.03060.02241
0.02890'02232

0.03130.02738

0.08370.03341
0.08040.02941
0.07940.03067

n=200
p=200
0=0.2

N
f2
fs
fa
fs
o

00596001189
0.0175¢0.01577

0.31800.00974
0.07860v02325
0'02560.01809
0.01770.01447
0.00000,00000

0.31680.01047
00545002163

n=200
p=200
0=0.5

N
f2
fs
Ja
fs
o

00273002206

03273001200
0.1225¢.05857
00366002661
00288002602

O.32550,01192
0.0845¢.02767
0.08480.03164
0.07560.03741
0'08830.03286
0.00000,00000

19
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Table 1.8: Prediction errors for the three estimators on independent simulated test data.

n p o Oracle Our Estimator Sparse Additive
50 50 0.2 0.809 0.958 1.257
50 50 0.5 0.950 1.754 2.092
50 100 0.2 0.819 1.181 1.461
50 100 0.5 0.876 2.155 2.201
50 200 0.2 0.710 2.252 2.464
50 200 0.5 0.775 1.463 1.497
100 50 0.2 0.416 0.429 0.443
100 50 0.5 0.620 0.633 0.709
100 100 0.2 0.366 0.425 0.438
100 100 0.5 0.646 0.776 0.839
100 200 0.2 0.468 0.698 0.714
100 200 0.5 0.581 1.051 1114
200 50 0.2 0.303 0.287 0.291
200 50 0.5 0481 0.485 0.494
200 100 0.2 0.276 0.290 0.296
200 100 0.5 0.515 0.521 0.533
200 200 0.2 0.288 0.290 0.296

200 200 0.5 0.520 0.541 0.544




Partially Linear Additive Models

Table 1.9: Standard errors of the estimators on the linear coefficients.

21

B3 Ba Bs

n p o SD SE SD SE SD SE

50 50 0.2 0.557 0.192(0.054) 0.302 0.182(0.050) 0.464 0.172(0.050)
50 50 0.5 0.604 0.327(0.064) 0.559 0.245(0.077) 0.648 0.234(0.075)
50 100 0.2 0.481 0.227(0.084) 0.383 0.182(0.052) 0.482 0.179(0.048)
50 100 0.5 0.808 0.375(0.143) 0.588 0.244(0.137) 0.782 0.260(0.133)
50 200 0.2 0.737 0.302(0.121) 0.390 0.192(0.073) 0.525 0.237(0.129)
50 200 0.5 0.750 0.398(0.095) 0.932 0.255(0.114) 0.926 0.374(0.176)
100 50 0.2 0.144 0.134(0.017) 0.183 0.126(0.016) 0.174 0.129(0.015)
100 50 0.5 0.290 0.204(0.025) 0.344 0.191(0.032) 0.228 0.198(0.026)
100 100 0.2 0.179 0.134(0.013) 0.151 0.131(0.013) 0.196 0.132(0.010)
100 100 0.5 0.225 0.205(0.028) 0.285 0.194(0.023) 0.288 0.192(0.026)
100 200 0.2 0.222 0.144(0.027) 0.161 0.131(0.016) 0.271 0.135(0.024)
100 200 0.5 0.286 0.248(0.069) 0.350 0.195(0.031) 0.366 0.207(0.045)
200 50 0.2 0.106 0.093(0.007) 0.091 0.094(0.006) 0.086 0.093(0.007)
200 50 0.5 0.148 0.145(0.010) 0.184 0.145(0.011) 0.172 0.146(0.010)
200 100 0.2 0.097 0.095(0.006) 0.090 0.094(0.006) 0.078 0.094(0.006)
200 100 05 0.153 0.147(0.012) 0.185 0.143(0.011) 0.168 0.145(0.011)
200 200 0.2 0.094 0.095(0.008) 0.086 0.094(0.007) 0.099 0.094(0.008)
200 200 05 0.156 0.149(0.013) 0.127 0.147(0.014) 0.133 0.149(0.015)




