J xﬂ RISC-Linz
Research Institute for Symbolic Computation

N / Johannes Kepler University
A-4040 Linz, Austria, Europe

Fifth International Symposium on

SYMBOLIC COMPUTATION IN
SOFTWARE SCIENCE

SCSS 2013

SYMPOSIUM PROCEEDINGS

July 5-6, 2013
Research Institute for Symbolic Computation
Johannes-Kepler University Linz, Austria

Laura Kovacs and Temur Kutsia
(Editors)

RISC-Linz Report Series No. 13-06

Editors: RISC-Linz Faculty
K. Bosa, B. Buchberger, R. Hemmecke, T. Jebelean, M. Kauers, T. Kutsia,

G. Landsmann, F. Lichtenberger, P. Paule, V. Pillwein, N. Popov, H. Rolletschek,
J. Schicho, C. Schneider, W. Schreiner, W. Windsteiger, F. Winkler.

Supported by: the strategical program Innovative Upper Austria 2010 Plus and the Doctoral
Program “Computational Mathematics” (W1214) - DK1 project.

Copyright notice: Permission to copy is granted provided the title page is also copied.

Fifth International Symposium on

SYMBOLIC COMPUTATION IN
SOFTWARE SCIENCE

SCSS 2013

SYMPOSIUM PROCEEDINGS

July 5-6, 2013
Research Institute for Symbolic Computation
Johannes-Kepler University Linz, Austria

Preface

Symbolic Computation is the science of computing with symbolic objects (terms, formulae,
programs, representations of algebraic objects etc.). Powerful symbolic algorithms have been
developed during the past decades like theorem proving, automated reasoning, software veri-
fication, model checking, rewriting, formalization of mathematics, network security, Grébner
bases, characteristic sets, telescoping for recurrence relations, etc.

The purpose of the International Symposium on Symbolic Computation in Software Science
- SCSS is to promote research on theoretical and practical aspects of symbolic computation
in software sciences. The symposium provides a forum for active dialog between researchers
from several fields of computer algebra, algebraic geometry, algorithmic combinatorics, compu-
tational logic, and software analysis and verification.

This year’s SCSS edition is the fifth in the SCSS workshop series and is organized at the
Research Institute for Symbolic Computation (RISC) of the Johannes Kepler University Linz,
during July 5-6, 2013. With the focus of promoting the exchange of ideas and experiences from
applications of symbolic computation in software science, SCSS 2013 has attracted researchers
from across a number of fields, including computer algebra, algebraic geometry, term rewriting,
process algebras, and program verification.

We are very excited to have three excellent keynote speakers: Bruno Buchberger (RISC-
Linz), Wei Li (Beihang University) and Joel Ouaknine (Oxford University). Our invited speak-
ers have significant research expertise and insights into the challenges and opportunities for the
growing SCSS community.

We would like to thank the program committee members and reviewers for all their efforts.
Thanks also go to the steering committee members for their valuable advice and guidance.
We would also like to thank Andrei Voronkov for his help on EasyChair. Finally, we also
acknowledge partial funding from the strategical program Innovative Upper Austria 2010 Plus
and the Doctoral Program “Computational Mathematics” (W1214) - DK1 project.

Laura Kovécs, Programme Chair
Temur Kutsia, Symposium Chair

Symposium Organization

Symposium Chair

Temur Kutsia

Program Chair

Laura Kovacs

Program Committee

Maria Alpuente
Serge Autexier
Nikolaj Bjorner
Adel Bouhoula

[liano Cervesato

Horatiu Cirstea
Jirgen Giesl
Tetsuo Ida
Paul Jackson

Tudor Jebelean

Cezary Kaliszyk
Fairouz Kamareddine
Laura Kovacs

Research Institute for Symbolic Computa-
tion - RISC, Austria

Chalmers University of Technology, Sweden

Technical University of Valencia, Spain
DFKI, Germany

Microsoft Research, USA

Ecole superieure des communications de Tu-
nis, Tunisia

Carnegie Mellon University - Qatar Cam-
pus, Qatar

Loria, France

RWTH Aachen, Germany

Tsukuba University, Japan

School of Informatics, University of Edin-
burgh, UK

Research Institute for Symbolic Computa-
tion - RISC, Austria

University of Innsbruck, Austria
Heriot-Watt University, UK

Chalmers University of Technology, Sweden

Temur Kutsia

Stephan Merz

Ali Mili

Yasuhiko Minamide
Pierre-Etienne Moreau
André Platzer

Stefan Ratschan

Rachid Rebiha

Enric Rodriguez Car-
bonell

Sorin Stratulat
Thomas Sturm

Additional Reviewers

Cabarcas, Daniel
Eder, Christian
Gay, Simon
Ghorbal, Khalil
Ghourabi, Fadoua
Kredel, Heinz
Martins, Joao G.
Vigneron, Laurent

Research Institute for Symbolic Computa-
tion - RISC, Austria

INRIA-LORIA Nancy, France

New Jersey Institute of Technology, USA
University of Tsukuba, Japan
INRIA-LORIA Nancy, France

Carnegie Mellon University, USA

Czech Academy of Sciences, The Czech Re-
public

University of Lugano, Switzerland and IC
Unicamp, Brazil

Technical University of Catalonia, Spain

Universite Paul Verlaine, France
Max Planck Institute for Informatics, Ger-
many

Table of Contents

Invited Papers

Mathematics of 21st Century: A Personal View

Bruno Buchberger

A Semantic Framework for Program Debugging
Wer L1
Decision Problems for Linear Recurrence Sequences............

Joel Ouaknine

Regular Papers

Parametric Exploration of Rewriting Logic Computations......
Maria Alpuente, Demis Ballis, Francisco Frechina and Julia
Sapina

Automatic Inference of Term Equivalence in Term Rewriting

SV SEOINIS ot ettt
Marco Comini and Luca Torella

A Condensed Goal-Independent Fixpoint Semantics Modeling

the Small-Step Behavior of Rewriting

Marco Comini and Luca Torella

Logical and Algebraic Views of a Knot Fold of a Regular

Fadoua Ghourabi, Tetsuo Ida and Kazuko Takahashi

Automated Verification of Equivalence on Quantum
Cryptographic Protocols................. ... i i

Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito
Kawano and Hideki Sakurada

A modified parallel F4 algorithm for shared and distributed

memory architectures............. .. .

Severin Neumann

Generating Asymptotically Non-terminant Initial Variable

Values for Linear Diagonalizable Programs.

Rachid Rebitha, Nadir Matringe and Arnaldo Moura

Data Conversion Method between a Natural Number and a

Binay Tree for an Inductive Proof and Its Application.........

Kazuko Takahashi, Shizuo Yoshimaru and Mizuki Goto

Computer algebra investigation of known primitive

triangle-free strongly regular graphs........................ ...

Matan Ziv-Av and Mikhail Klin

Short Papers

Usage of Invariants for Symbolic Verification of Requirements . .

Alexander Letichevsky, Alexander Godlevsky, Anton Guba,
Alexander Kolchin, Oleksandr Letychevsky: and Viadimar
Peschanenko

Lebesgue Constants and Optimal Node Systems via Symbolic

Computations

Robert Vajda

.81

124

Mathematics of 215¢ Century:
A Personal View

Bruno Buchberger

Research Institute for Symbolic Computation - RISC
Johannes Kepler University Linz, Austria
Bruno.Buchberger@risc.uni-linz.ac.at

Extended Abstract.

Mathematics of 19*" century and before was rich in content, intuition, strong ideas, motivation
from natural sciences, and had a coherent view of all fields of mathematics (geometry, algebra,
analysis, number theory, ...).

Mathematics of 20*" century added three important aspects: mathematical logic as the
mathematical meta-theory of mathematics; formalism and abstractness and reduction to first
principles (“Bourbakism”); and the notion of computing (both as an exact mathematical
notion and as the foundation of the revolutionary device ”programmable computer”). In fact,
the three aspects have a lot to do with each other and are fundamentally interrelated. However,
in practice, the three aspects were (and still are) pursued by three different communities: The
deep insights of logicians on the nature of mathematics are hardly used in ever-day practice
of “working mathematicians”; “pure mathematicians” are often proud that they do not touch
the computer except for writing e-mails, typing in LaTeX, and using web search; and computer
scientists often think that what they are doing does not need mathematics or, even, is opposite
to mathematics.

In my view, as indicated by trends in late 20*" century, in 215 century mathematics will
evolve as - or return to be - a unified body of mathematical logic, abstract structural math-
ematics, and computer mathematics with no boundaries between the three aspects. “Working
mathematicians” will have to master the three aspects equally well and integrate them in their
daily work. More specifically, working in mathematics will proceed on the “object level” of
developing new mathematical content (abstract knowledge and computational methods) and,
at the same time, on the “meta-level” of developing automated reasoning methods for support-
ing research on the object level. This “massage of the mathematical brain” by jumping back
and forth between the object and the meta-level will guide mathematics onto a new level of
sophistication.

Symbolic computation is just a way of expressing this general view of mathematics of the
21%¢ century and it also should be clear that software science is just another way of expressing
the algorithmic aspect of this view.

In the talk, we will exemplify the spirit of this new type of mathematics by a report on
the Theorema system being developed in the speaker’s research group. Theorema is both a
logic and a software frame for doing mathematics in the way sketched above. On the object
level, Theorema allows to prove and program within the same logical frame and, on the meta-
level, it allows to formulate reasoning techniques that help proving and programming on the
object level. In particular, we will show how this type of doing mathematics allows to mimic
the invention process behind the speaker’s theory of Grébner bases, which provides a general
method for dealing with multivariate nonlinear polynomial systems.

A Semantic Framework for Program Debugging

Wei Li

State Key Laboratory of Software Development Environment
School of Computer Science and Engineering
Beihang University, China
liwei@nlsde.buaa.edu.cn

Abstract.

This work aims to build a semantic framework for automated debugging. A debugging pro-
cess consists of tracing, locating, and fixing processes consecutively. The first two processes
are accomplished by a tracing procedure and a locating procedure, respectively. The tracing
procedure reproduces the execution of a failed test case with well-designed data structures and
saves necessary information for locating bugs. The locating procedure will use the informa-
tion obtained from the tracing procedure to locate ill-designed statements and to generate a
fix-equation, the solution of which is a function that will be used to fix the bugs. A structural
operational semantics is given to define the functions of the tracing and locating procedure.
Both procedures are proved to terminate and produces one fix-equation. The main task of
fixing process is to solve the fix-equation. It turns out that for a given failed test case, there
exist three different types of solutions: 1. the bug is solvable, there exists a solution of the
fix-equation, and the program can be repaired. 2. There exists a non-linear error in the pro-
gram, the fix-equation generated at each round of the locating procedure is solvable, but a new
bug will arise when the old bug is being fixed. 3. There exists a logical design error and the
fix-equation is not solvable.

Decision Problems for Linear Recurrence
Sequences

Joel Ouaknine

Department of Computer Science
Oxford University, United Kingdom
Joel.(Quaknine@cs.ox.ac.uk

Abstract.

Linear recurrence sequences (LRS), such as the Fibonacci numbers, permeate vast areas of
mathematics and computer science. In this talk, we consider three natural decision problems
for LRS, namely the Skolem Problem (does a given LRS have a zero?), the Positivity Problem
(are all terms of a given LRS positive?), and the Ultimate Positivity Problem (are all but finitely
many terms of a given LRS positive?). Such problems (and assorted variants) have applications
in a wide array of scientific areas, such as theoretical biology (analysis of L-systems, pop-
ulation dynamics), economics (stability of supply-and-demand equilibria in cyclical markets,
multiplier-accelerator models), software verification (termination of linear programs), proba-
bilistic model checking (reachability and approximation in Markov chains, stochastic logics),
quantum computing (threshold problems for quantum automata), discrete linear dynamical
systems (reachability and invariance problems), as well as combinatorics, statistical physics,
term rewriting, formal languages, cellular automata, generating functions, etc.

We shall see that these problems have deep and fascinating connections to rich mathematical
concepts and conjectures, particularly in the fields of analytic and algebraic number theory,
diophantine geometry and approximation, real algebraic geometry, mathematical logic, and
complexity theory.

Parametric Exploration of
Rewriting Logic Computations

*x

M. Alpuente!, D. Ballis?, F. Frechina! and J. Sapina!

! DSIC-ELP, Universitat Politecnica de Valéncia,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain,
{alpuente,ffrechina, jsapina}@dsic.upv.es
2 DIMI, Universita degli Studi di Udine,

Via delle Scienze 206, 33100 Udine, Italy, demis.ballis@uniud.it

Abstract

This paper presents a parameterized technique for the inspection of Rewriting Logic
computations that allows the non-deterministic execution of a given rewrite theory to be
followed up in different ways. Starting from a selected state in the computation tree, the
exploration is driven by a user-defined, inspection criterion that specifies the exploration
mode. By selecting different inspection criteria, one can automatically derive useful debug-
ging facilities such as program steppers and more sophisticated dynamic trace slicers that
facilitate the detection of control and data dependencies across the computation tree. Our
methodology, which is implemented in the Anima graphical tool, allows users to capture the
impact of a given criterion, validate input data, and detect improper program behaviors.

1 Introduction

Program animation or stepping refers to the very common debugging technique of executing
code one step at a time, allowing the user to inspect the program state and related data
before and after the execution step. This allows the user to evaluate the effects of a given
statement or instruction in isolation and thereby gain insight into the program behavior (or
misbehavior). Nearly all modern IDEs, debuggers and testing tools currently support this mode
of execution optionally, where animation is achieved either by forcing execution breakpoints,
code instrumentation or instruction simulation.

Rewriting Logic (RWL) is a very general logical and semantic framework, which is particu-
larly suitable for formalizing highly concurrent, complex systems (e.g., biological systems [7] and
Web systems [2]6]). RWL is efficiently implemented in the high-performance system Maude [9].
Roughly speaking, a rewriting logic theory seamlessly combines a term rewriting system (TRS),
together with an equational theory that may include equations and axioms (i.e., algebraic laws
such as commutativity, associativity, and unity) so that rewrite steps are performed modulo the
equations and axioms.

In recent years, debugging and optimization techniques based on RWL have received growing
attention [I3, [16, [I7], but to the best of our knowledge, no practical animation tool for
RWL/Maude has been formally developed. To debug Maude programs, Maude has a basic
tracing facility that allows the user to advance through the program execution letting him /her
select the statements to be traced, except for the application of algebraic axioms that are not

*This work has been partially supported by the EU (FEDER) and the Spanish MEC project ref. TIN2010-
21062-C02-02, and by Generalitat Valenciana ref. PROMETEO2011/052. This work was carried out during the
tenure of D. Ballis’” ERCIM ‘Alain Bensoussan” Postdoctoral Fellowship. The research leading to these results
has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n. 246016. F. Frechina was supported by FPU-ME grant AP2010-5681.

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

under user control and are never recorded as execution steps in the trace. All rewrite steps that
are obtained by applying the equations or rules for the selected function symbols are shown in
the output trace so that the only way to simplify the displayed view of the trace is by manually
fixing the traceable equations or rules. Thus, the trace is typically huge and incomplete, and
when the user detects an erroneous intermediate result, it is difficult to determine where the
incorrect inference started. Moreover, this trace is either directly displayed or written to a
file (in both cases, in plain text format) thus only being amenable for manual inspection by
the user. This is in contrast with the enriched traces described below, which are complete (all
execution steps are recorded by default) and can be sliced automatically so that they can be
dramatically simplified in order to facilitate a specific analysis. Also, the trace can be directly
displayed or delivered in its meta-level representation, which is very useful for further automated
manipulation.

Contributions. This paper presents the first parametric (forward) exploration technique for
RWL computations. Our technique is based on a generic animation algorithm that can be tuned
to work with different modalities, including incremental stepping and automated forward slicing.
The algorithm is fully general and can be applied for debugging as well as for optimizing any
RWL-based tool that manipulates RWL computations. Our formulation takes into account the
precise way in which Maude mechanizes the rewriting process and revisits all those rewrite steps
in an instrumented, fine-grained way where each small step corresponds to the application of
an equation, equational axiom, or rule. This allows us to explain the input execution trace with
regard to the set of symbols of interest (input symbols) by tracing them along the execution
trace so that, in the case of the forward slicing modality, all data that are not descendants of
the observed symbols are simply discarded.

Related Work. Program animators have existed since the early years of programming.
Although several steppers have been implemented in the functional programming community
(see [I0] for references), none of these systems applies to the animation and forward slicing of
Maude computations. An algebraic stepper for Scheme is defined and formally proved in [I0],
which is included in the DrScheme programming environment. The stepper reduces Scheme
programs to values (according to the reduction semantics of Scheme) and is useful for explaining
the semantics of linguistic facilities and for studying the behavior of small programs. It explains
a program’s execution as a sequence of reduction steps based on the ordinary laws of algebra for
the functional core of the language and more general algebraic laws for the rest of the language.
In order to discover all of the steps that occur during the program evaluation, the stepper
rewrites (or ”instruments”) the code. The inserted code uses a mechanism called “continuation
marks” to store information about the program’s execution as it is running and makes calls to
the stepper before, after, and during the evaluation of each program expression. Continuation
marks allow the stepper to reuse the underlying Scheme implementation without having to re-
implement the evaluator. The stepper’s implementation technique also applies to both ML and
Haskell since it supports states, continuations, multiple threads of control, and lazy evaluation
[10].

In [4, 5], an incremental, backward trace slicer was presented that generates a trace slice of
an execution trace T by tracing back a set of symbols of interest along (an instrumented version
of) T, while data that are not required to produce the target symbols are simply discarded. This
can be very helpful in debugging since any information that is not strictly needed to deliver
a critical part of the result is discarded, which helps answer the question of what program
components might affect a ‘selected computation”. However, for the dual problem of “what
program components might be affected by a selected computation”, a kind of forward expansion
is needed which has been overlooked to date.

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

Plan of the paper. Section [2] recalls some fundamental notions of RWL, and Section [3]
summarizes the rewriting modulo equational theories defined in Maude. Section {| formulates
the exploration as a parameterized procedure that is completely controlled by the user, while
Section [5| formalizes three different inspection techniques that are obtained as an instance of
the generic scheme. Finally, Section [f] reports on a prototypical implementation of the proposed
techniques, and Section [7] concludes.

2 Preliminaries

Let us recall some important notions that are relevant to this work. We assume some basic
knowledge of term rewriting [I8] and Rewriting Logic [I4]. Some familiarity with the Maude
language [9] is also required.

We consider an order-sorted signature ¥, with a finite poset of sorts (S, <) that models the
usual subsort relation [9]. We assume an S-sorted family V = {V;}ses of disjoint variable sets.
T(X,V)s and 7(X)s are the sets of terms and ground terms of sort s, respectively. We write
7(%,V) and 7(X) for the corresponding term algebras. The set of variables that occur in a term
t is denoted by Var(t). In order to simplify the presentation, we often disregard sorts when no
confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that addresses
a subterm of ¢ (A denotes the empty sequence, i.e., the root position). By notation w;.ws,
we denote the concatenation of positions (sequences) wy and we. Positions are ordered by the
prefix ordering; that is, given the positions wy and wsg, wy < wy if there exists a position u such
that wi.u = ws.

Given a term t, we let Pos(t) denote the set of positions of ¢. By t|,, we denote the subterm
of t at position w, and t[s],, specifies the result of replacing the subterm t|,, by the term s.

A substitution o = {x1/t1,x2/t2, ...} is a mapping from the set of variables V to the set of
terms 7(%, V) which is equal to the identity almost everywhere except over a set of variables
{z1,...,2,}. The domain of o is the set Dom(o) = {x € V | xo # z}. By id we denote the
identity substitution. The application of a substitution ¢ to a term ¢, denoted to, is defined by
induction on the structure of terms:

y To ift=x,z€V
o =
fltio, ... tho) ift=f(t1,...,tn),n >0

For any substitution o and set of variables V', o1, denotes the substitution obtained from o
by restricting its domain to V' (i.e., o (2) = zo if 2 € V, otherwise oy (z) =). Given two
terms s and t, a substitution o is a matcher of t in s, if so = ¢. The term t is an instance of
the term s, iff there exists a matcher o of ¢t in s. By matchs(t), we denote the function that
returns a matcher of ¢ in s if such a matcher exists.

A (labelled) equation is an expression of the form [I] : A = p, where A, p € 7(2, V), Var(p) C
Var(X), and [is a label, i.e., a name that identifies the equation. A (labelled) rewrite rule is
an expression of the form [I] : A — p, where A\, p € 7(X£,V), Var(p) C Var(\), and [is a label.
When no confusion can arise, rule and equation labels are often omitted. The term A (resp., p)
is called left-hand side (resp. right-hand side) of the rule A — p (resp. equation A = p).

6

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

3 Rewriting Modulo Equational Theories

An order-sorted equational theory is a pair E = (X, AUB), where ¥ is an order-sorted signature,
A is a collection of (oriented) equations, and B is a collection of equational axioms (i.e., algebraic
laws such as associativity, commutativity, and unity) that can be associated with any binary
operator of X. The equational theory F induces a congruence relation on the term algebra
7(%,V), which is denoted by =g. A rewrite theory is a triple R = (X,A U B, R), where
(X, AU B) is an order-sorted equational theory, and R is a set of rewrite rules.

Example 3.1
The following rewrite theory, encoded in Maude, specifies a close variant of the fault-tolerant
client-server communication protocol of [I5].

mod CLIENT-SERVER-TRANSF is inc INT + QID . vars C S Addr : Qid .
sorts Content State Msg Cli Serv Addressee vars Q D A : Nat .
Sender Data CliName ServName Question Answer . var CNT : [Content] .
subsort Msg Cli Serv < State .
subsort Addressee Sender CliName ServName < Qid . eq [succ] : £(s, C, Q) = s(@Q .
subsort Question Answer Data < Nat .
rl [req] : [C, S, Q, nal =>
ops Srv Srv-A Srv-B Cli Cli-A Cli-B : -> Qid . [C, S, Q, nal & S <- {C, Q} .
op null : -> State . rl [reply] : S <- {C, Q} & [S] =>
op _&_ : State State -> State [assoc comm id: null] . [S] & C <- {s, f(s, C, Q} .
op _<-_ : Addressee Content -> Msg . rl [rec] : C <= {S, D} & [C, S, Q, A] =>
op {_,_} : Sender Data -> Content . [C, S, Q, A] .
op [_,_,_,_] : CliName ServName Question Answer -> Cli . rl [dupl] : (Addr <- CNT) =>
op na : -> Answer . (Addr <- CNT) & (Addr <- CNT) .
op [_] : ServName -> Serv [ctor] . rl [loss] : (Addr <- CNT) => null .
op f : ServName CliName Data -> Data . endm

The specification models an environment where several clients and servers coexist. Each
server can serve many clients, while, for the sake of simplicity, we assume that each client
communicates with a single server.

The names of clients and servers belong to the sort Qid. Clients are represented as 4-tuples
of the form [C, S, Q, D], where C is the client’s name, S is the name of the server it wants to
communicate with, Q is a natural number that identifies a client request, and D is either a natural
number that represents the server response, or the constant value na (not available) when the
response has not been yet received. Servers are stateless and are represented as structures [S],
with S being the server’s name. All messages are represented as pairs of the form Addr <- CNT,
where Addr is the addressee’s name, and CNT stands for the message contents. Such contents
are pairs {Addr,N}, with Addr being the sender’s name and N being a number that represents
either a request or a response.

The server S uses a function £ (only known to the server itself) that, given a question Q
from client C, the call £(S,C, Q) computes the answer s(Q) where s(Q) is the successor of Q. This
function is specified by means of the equation succ.

Program states are formalized as a soup (multiset) of clients, servers, and messages, whereas
the system behavior is formalized through five rewrite rules that model a faulty communication
environment in which messages can arrive out of order, can be duplicated, and can be lost.
Specifically, the rule req allows a client C to send a message with request Q to the server S.
The rule reply lets the server S consume the client request Q and send a response message
that is computed by means of the function f. The rule rec specifies the client reception of a
server response D that should be stored in the client data structure. Indeed, the right-hand
side [C, S, Q, A] of the rule includes an intentional, barely perceptible bug that does not let the
client structure be correctly updated with the incoming response D. The correct right-hand side
should be [C,8,Q,D]. Finally, the rules dupl and loss model the faulty environment and have

7

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

the obvious meaning: messages can either be duplicated or lost.

Given a rewrite theory (X, E,R), with F = A U B, the rewriting modulo E relation (in
symbols, — /) can be defined by lifting the usual rewrite relation on terms [12] to the E-
congruence classes [t]g on the term algebra 7(X,V) that are induced by =g [8]; that is, [t|g
is the class of all terms that are equal to ¢ modulo E. Unfortunately, —r,/p is in general
undecidable since a rewrite step ¢ — /g t' involves searching through the possibly infinite
equivalence classes [t]g and [t']g.

The exploration technique formalized in this work is formulated by considering the precise
way in which Maude proves the rewrite steps (see Section 5.2 in [9]). Actually, the Maude
interpreter implements rewriting modulo £ by means of two much simpler relations, namely
—a,B and — g . These allow rewrite rules and equations to be intermixed in the rewriting
process by simply using an algorithm of matching modulo B. We define —rua B a5 —Rr.B
U —a 5. Roughly speaking, the relation —a p uses the equations of A (oriented from left
to right) as simplification rules: thus, for any term ¢, by repeatedly applying the equations as
simplification rules, we eventually reach a normalized term ¢ |a to which no further equations
can be applied. The term t | A is called a canonical form of t w.r.t. A. On the other hand,
the relation —r p implements rewriting with the rules of R, which might be non-terminating
and non-confluent, whereas A is required to be terminating and Church-Rosser modulo B in
order to guarantee the existence and unicity (modulo B) of a canonical form w.r.t. A for any
term [9].

Formally, =g p and —a p are defined as follows: given a rewrite rule r = (A — p) € R
(resp., an equation e = (A = p) € A), a substitution o, a term ¢, and a position w of ¢,
t "Bp gt (vesp., t “BApt)iff Ao =p tjw and t' = t[pc],. When no confusion can arise, we
simply write t —g p t’ (resp. t—a, pt’) instead of ¢ T’gwRVB t' (resp. t e’iﬁwA,B).

Under appropriate conditions on the rewrite theory, a rewrite step modulo £ on a term ¢ can
be implemented without loss of completeness by applying the following rewrite strategy [11]:
(i) reduce t w.r.t. —a, p until the canonical form ¢ | is reached; (ii) rewrite t Jo w.r.t. =g p.

A computation C in the rewrite theory (X, A U B, R) is a rewrite sequence

S0 —A.B SobA —RB S1 —Ap Sl ...

that interleaves —a p rewrite steps and —pr p rewrite steps following the strategy mentioned
above. Terms that appear in computations are also called (program) states.

A computation tree Tr(s) for a term s and a rewrite theory R is a tree-like representation
of all the possible computations in R that originate from the initial state s. More precisely,
Tr(s) is a labelled tree whose root node label identifies the initial state s and whose edges are
labelled with rewrite steps of the form ¢ —rua g ¢’ so that any node in Tr(s) represents a
program state of a computation stemming from s.

Example 3.2
Consider the rewrite theory of Example together with the initial state [Srv-A] & [Cli-A,
Srv-A,7,nal] & [Cli-B,Srv-A,17,nal]. In this case, the computation tree consists of several
infinite computations that start from the considered initial state and model interactions between
clients C1i-A and C1i-B and server Srv-A. The computed tree is depicted in the following picture
where, for the sake of simplicity, we only display the equations and rules that have been applied
at each rewrite step, while other information such as the computed substitution and the rewrite

8

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

position are omitted in the depicted tree.

S
0
[[Srv—A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]]
1

R lreq S, lreq
[Stv-A] & (Srv-A <- {Cli-A,7}) & [Cli-A,Srv][[Srv-A] & (Srv-A <- {Cli-B,17}) & [Cli-A,Sr
A,7,na] & [Cli-B,Srv-A,17,na] -A,7,na] & [Cli-B,Srv-A,17,na]
I
Sy lreply Sy lreq/dupl Sg lreq Sg lloss i
[Stv-A] & (CLi-A <-)[IStrv-A] & (stv-A <- |[TStv-A] & (Srv-A <- |[(Srv-A] & [Cli-A,Sr

{Srv-A,f(Serv-A,Cli-||{Cli-A,7}) & (Srv-A {Cli-A,7}) & (Srv-A v-A,7,na] & [Cli-B,
A,7)}) & [Cli-A,Srv-||<- {cli-A,7}) & [cli|]<- {c1i-B,17}) & [cl||Srv-A,17,na]
A,7,na] & [Cli-B,Srv|]-A,Srv-A,7,na] & [Cl|]i-A,Srv-A,7,na] & [C l
-A,17,na] i-B,Srv-A,17,na] 1i-B,Srv-A,17,na]

Sq lsucc l' ‘I'

[Srv-A] & (Cli-A <-
{Srv-A,8}) & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

i

Given a computation C, it is always possible to expand C in an instrumented computation
Cinst in which each application of the matching modulo B algorithm is mimicked by the explicit
application of a suitable equational axiom, which is also oriented as a rewrite rule [3].

Also, typically hidden inside the B-matching algorithms, some flat/unflat transformations
allow terms that contain operators that obey associative-commutative axioms to be rewritten.
These transformations allow terms to be reordered and correctly parenthesized in order to
enable subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary
representative of their AC congruence class [3]. For example, consider a binary AC operator
f together with the standard lexicographic ordering over symbols. Given the B-equivalence
fb, f(f(bya),c)) =5 f(f(b,c), f(a,b)), we can represent it by using the “internal sequence”

of transformations f(b, f(f(b,a),c)) ﬂit)*Bf(a, b,b,c) unflal 5f(f(b,c), f(a,b)), where the first
subsequence corresponds to a flattening transformation sequence that obtains the AC canonical
form, while the second one corresponds to the inverse, unflattening transformation. This way,
any given instrumented computation consists of a sequence of (standard) rewrites using the
equations (—a), rewrite rules (—g), equational axioms and flat/unflat transformations (—p).
By abuse of notation, since equations and axioms are both interpreted as rewrite rules in our
formulation, we often abuse the notation A — p to denote rules as well as (oriented) equations
and axioms. Given an instrumented computation C;,st, by |Cinst| we denote its length —that is,
the number of rewrite steps that occur in C;y,st. We use the functions head(C;y,s:) and tail(Cipst)
to respectively select the first rewrite step in C;,s¢ and the instrumented computation yielded
by removing the first rewrite step from C;,s:. In the sequel, we also assume the existence of a
function instrument(C), which takes a computation C and delivers its instrumented counterpart.

Example 3.3
Consider the rewrite theory of Example together with the following computation:

C= [Cli, Srv, 7, nal & [Srv] & Cli <- {Srv, £f(Srv, Cli, 7)} —asn
[Cli, Srv, 7, nal& [Srv] & Cli <- {Srv, 8} =g B
[Cli, Srv, 7 , 7] & [Srv]

The corresponding instrumented computation C;,s¢, which is produced by instrument(C), is
given by 1) suitably parenthesizing states by means of flattening/unflattening transformations

9

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

when needed, and 2) making commutative “steps” explicit by using the (oriented) equational
axiom (X & Y — Y & X) in B that models the commutativity property of the (juxtaposition)
operator &. Note these transformations are needed to enable the application of the rule rec
(of R) to the seventh state.

[Srv] & Cli <- {Srv, f(Srv, Cli, 7)} 2%,

unflat

Cinst = [Cli, Srv, 7, nal
[Cli, Srv, 7, nal & [Srv] & Cli <- {Srv, 8} ——p
comm

&
&

[Cli, Srv, 7, nal & ([Srv] & Cli <- {Srv, 8}) —p5
&
& unflat

([Cli, Srv, 7, nal & Cli <- {Srv, 8}) & [Srvl —p

[Cli, Srv, 7, nal & (Cli <- {Srv, 8} & [Srv]) MB
[Cli, Srv, 7, nal & Cli <- {Srv, 8} & [Srvl ——p

comm
(Cli <- {srv, 8} & [Cli, Srv, 7, nal) & [Srv] 5g
[Cli, Srv, 7, 7] & [Srv]

4 Exploring the Computation Tree

Computation trees are typically large and complex objects to deal with because of the highly-
concurrent, nondeterministic nature of rewrite theories. Also, their complete generation and
inspection are generally not feasible since some of their branches may be infinite as they encode
nonterminating computations.

However, one may still be interested in analysing a fragment of a given computation tree for
debugging or program comprehension purposes. This section presents an exploration technique
that allows the user to incrementally generate and inspect a portion 73(s®) of a computation
tree Tr(s) by expanding (fragments of) its program states into their descendants starting from
the root node. The exploration is an interactive procedure that is completely controlled by the
user, who is free to choose the program state fragments to be expanded.

4.1 Expanding a Program State

A state fragment of a state s is a term s® that hides part of the information in s, that is, the
irrelevant data in s are simply replaced by special e-variables of appropriate sort, denoted by
o;, with ¢ = 0,1,2,....Given a state fragment s®, a meaningful position p of s® is a position
p € Pos(s®) such that s} # e;, for all i = 0,1,.... By MPos(s*), we denote the set that
contains all the meaningful positions of s®*. Symbols that occur at meaningful positions of a
state fragment are called meaningful symbols. By Var®(exp) we define the set of all e-variables
that occur in the expression exp.

Basically, a state fragment records just the information the user wants to observe of a given
program state.

The next auxiliary definition formalizes the function fragment(t, P) that allows a state
fragment of ¢ to be constructed w.r.t. a set of positions P of ¢. The function fragment relies on
the function fresh® whose invocation returns a (fresh) variable o; of appropriate sort, which is
distinct from any previously generated variable e;.

Definition 4.1 Let t € 7(X,V) be a state, and let P be a set of positions s.t. P C Pos(t).
Then, the function fragment(t, P) is defined as follows.

fragment(t, P) = recfrag(t, P, \), where

10

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

function inspect(s®, Cinstr, I) function ezpand(s®,s,R,T)

1. if |Cinstr] = 1 then 1. & =

2. return I(S.a Cinstr) 2. for each s r,gwRUA,B t

3. elseif [Cipger| > 1 with w € MPos(s*)

4. if Z(s*, head(Cipstr))! = nil then Cinst = instrument (s T A t)
5. return inspect(Z(s®, head(Cinstr)), t* = inspect(s°, Cinst, I) ’

3
‘ 4
tail (Cineir),) 5. if t* # il then £ = & U {s* 5 *}
6
7

6. else . end
7. return nil return £
8. ‘end endf
9. end
endf
Figure 1: The inspect function. Figure 2: The expand function.

f(recfrag(ty, P,p.1),. .., recfrag(t,, P,p.n))
ift=f(t1,...,t,) andp € P

t iftcV andpc P

fresh® otherwise

recfrag(t, P,p) =

and P = {u|u < pAp € P} is the prefix closure of P.

Roughly speaking, fragment(t, P) yields a state fragment of ¢ w.r.t. a set of positions P that
includes all symbols of ¢ that occur within the paths from the root to any position in P, while
each maximal subterm ¢),, with p ¢ P, is replaced by means of a freshly generated e-variable.

Example 4.2
Let t = d(f(g(a,h(b)),c),a) be a state, and let P = {1.1, 1.2} be a set of positions of t. By
applying Definition we get the state fragment t* = fragment(t, P) = d(f(g(e1,e2),¢), e3)
and the set of meaningful positions MPos(t*) = {A,1,1.1,1.2}.

An inspection criterion is a function Z(s®, s kg t) that, given a rewrite step s 29 t, with
K € {A, R, B} and a state fragment s® of s, computes a state fragment ¢* of the state t. Roughly
speaking, an inspection criterion controls the information content conveyed by term fragments
resulting from the execution of standard rewrite steps. Hence, distinct implementations of the
inspection criteria Z(s®, s i t) may produce distinct fragments s® - t* of the considered
rewrite step. We assume that the special value nil is returned by the inspection criterion,
whenever no fragment ¢* can be delivered. Several examples of inspection criteria are shown in
Section [l

The function inspect of Figure [1| allows an inspection criterion Z to be sequentially applied
along an instrumented computation C;,s- in order to generate the fragment of the last state
of the computation. Specifically, given an instrumented computation sy =g $1 =K .. = Sn,
n > 0, the computation is traversed and the inspection criterion Z is recursively applied on
each rewrite step s; —x s;+1 w.r.t. the input fragment s7 to generate the next fragment s?, ;.

The expansion of a single program state is specified by the function expand(s®,s, R,Z) of
Figure 2| which takes as input a state s and its fragment s® to be expanded w.r.t. a rewrite
theory R and an inspection criterion Z. Basically, ezpand unfolds the state fragment s® w.r.t.
all the possible rewrite steps s T’gwRuA, B t that occur at the meaningful positions of s® and

stores the corresponding fragments of s* - ¢* in the set £°. Note that, to compute the state

11

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

fragment t® for a rewrite step s T’iSwRuA’ g t and a state fragment s°®, expand first generates the
instrumented computation C;,; of the considered step and then applies the inspection criterion
T over C by using the inspect function.

4.2 Computing a Fragment of the Computation Tree

The construction of a fragment 73 (sg) of a computation tree Tr(so) is specified by the function
explore given in Figure Essentially, explore formalizes an interactive procedure that starts
from a tree fragment (built using the auxiliary function createTree), which only consists of the
root node s3, and repeatedly uses the function expand to compute rewrite step fragments that
correspond to the visited tree edges, w.r.t. a given inspection criterion. The tree 73 (sg) is built
by choosing, at each loop iteration of the algorithm, the tree node that represents the state
fragment to be expanded by means of the auxiliary function pickLeaf (T3 (sg)), which allows
the user to freely select a node s® from the frontier of the current tree 73(s§). Then, T3(s8)
is augmented by calling addChildren(T3(s3), s®, expand(s®, s, R,T)). This function call adds all
the edges s* — t°, which are obtained by expanding s°, to the tree 73(s).

The special value EoE (End of Exploration) is used to terminate the inspection process:
when the function pickLeaf (T3 (s8)) is equal to EoE, no state to be expanded is selected and
the exploration terminates delivering the computed fragment 73 (s§).

function explore(sy, so, R,Z)

1. TR(s8) = createTree(sy)

2. while(s® = pickLeaf (T3(sy)) # EoE) do

3. TR(sy) = addChildren(T3(s3), s*, expand(s®,s, R,T)

4. od
5. return 73(sg)
endf

Figure 3: The ezplore function.

5 Particularizing the Exploration

The methodology given in Section [] provides a generic scheme for the exploration of com-
putation trees w.r.t. a given inspection criterion Z that must be provided by the user. In
this section, we show three implementations of the criterion Z that produce three distinct ex-
ploration strategies. In the first case, the considered criterion allows an interactive program
stepper to be derived in which rewriting logic computations of interest can be animated. In
the second case, we implement a partial stepper that allows computations with partial inputs
to be animated. Finally, in the last example, the chosen inspection criterion implements an
automated, forward slicing technique that allows relevant control and data information to be
extracted from computation trees.

5.1 Interactive Stepper

Given a computation tree Tr(sg) for an initial state so and a rewrite theory R, the stepwise
inspection of the computation tree can be directly implemented by instantiating the exploration
scheme of Section [4| with the inspection criterion

Istep(s.v S 7“7i¢1)l(t) =t

12

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

that always returns the reduced state t of the rewrite step s i t, with K € {A, R, B}.

This way, by starting the exploration from a state fragment that corresponds to the whole
initial state so (i.e., s§ = s¢), the call explore(so, R, Zstep) generates a fragment 73 (sg) of the
computation tree Tz (so) whose topology depends on the program states that the user decides
to expand during the exploration process.

Example 5.1
Consider the rewrite theory R in Example[3.I]and the computation tree in Example[3:2] Assume
the user starts the exploration by calling ezplore(so, R, Zstep), which allows the first level of the
computation tree to be unfolded by expanding the initial state sy w.r.t. the inspection criterion
Zstep- This generates the tree T3 (sg) containing the edges {so s, 50 s2}. Now, if the user
carries on with the exploration of program state s; and then quits, s; will be expanded and the
tree T3 (so) will be augmented accordingly. Specifically, the resulting 73 (so) will include the

. req req suce req dupl req loss
following edges {so — s1,80 — S2,81 — 83,81 — S4, 51 I TR P T S6}-

It is worth noting that all the program state fragments produced by the program stepper
defined above are “concrete” (i.e. state fragments that do not include e-variables). However,
sometimes it may be useful to work with partial information and hence with state fragments
that abstract “concrete” program states by using e-variables. This approach may help to focus
user’s attention on the parts of the program states that the user wants to observe, disregarding
unwanted information and useless rewrite steps.

Example 5.2
Consider the following two rewrite rules [r1] : f(x,b) = g(x) and [ro] : f(a,y) — h(y) together
with the initial state f(a,b). Then, the computation tree in this case is finite and only contains
the tree edges f(a,b) roiziehA g(a) and f(a,b) v yfbhA h(b). Now, consider the state fragment
f(e1,b), where only the second input argument is relevant. If we decided to expand the initial
state fragment f(e1,b), we would get the tree fragment represented by the single rewrite step
f(e1,b) 5 g(ey), since the partial input encoded into f(e;,b) cannot be rewritten via rs.

In light of Example and our previous considerations, we define the following inspection
criterion

Lpstep(s®,s A t) =if s° 73" - t* then return t° else return nil

Roughly speaking, given a rewrite step p : s A b, with K e {A, R, B}, the criterion
ZIpstep Teturns a state fragment ¢® of the reduced state t, whenever s® can be rewritten to t*
using the very same rule r and position w that occur in p.

The particularization of the exploration scheme with the criterion Z,g., allows an interac-
tive, partial stepper to be derived, in which the user can work with state information of interest,
thereby producing more compact and focused representations of the visited fragments of the
computation trees.

5.2 Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows computations to be simplified
w.r.t. a selected fragment of their initial state. More precisely, given a computation C with
initial state sp and a state fragment s of sg, forward slicing yields a simplified view C® of C
in which each state s of the original computation is replaced by a state fragment s® that only

13

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

function Zg;c.(s®, s AZpgw t)

1. if w € MPos(s®) then

2. O={x/fresh® |z € Var(\)}
3. A® = fragment(A, MPos(Var®(s,)) N Pos(A))
4. n = (0, matchre(s,))

5. t* = s*[palw

6. else

7. t®* = nil

8. fi

9. return t*

endf

Figure 4: Inspection criterion that models forward slicing of a rewrite step

records the information that depends on the meaningful symbols of sj, while unrelated data
are simply pruned away.

In the following, we define an inspection criterion Zsj;.. that implements the forward slicing
of a single rewrite step. The considered criterion takes two parameters as input, namely, a
rewrite step p = (s DYk t) (with r = A = p and K € {A,R,B}) and a state fragment
s® of a state s. It delivers the state fragment ¢®* which includes only those data that are
related to the meaningful symbols of s®. Intuitively, the state fragment ¢*® is obtained from
s* by “rewriting” s® at position w with the rule r and a suitable substitution that abstracts
unwanted information of the computed substitution with e-variables. A rigorous formalization
of the inspection criterion Zgj;c. is provided by the algorithm in Figure [4]

Note that, by adopting the inspection criterion Zgjc., the exploration scheme of Section [4]
automatically turns into an interactive, forward trace slicer that expands program states using
the slicing methodology encoded into the inspection criterion Zgj... In other words, given a
computation tree Tr(s9) and a user-defined state fragment s$ of the initial state sg, any branch
sy — sY... — sp in the tree T3 (sy), which is computed by the ezplore function, is the sliced
counterpart of a computation sy —grua,B S1-.. —RUA,B Sn (W.I.t. the state fragment sg) that
appears in the computation tree T (so).

Roughly speaking, the inspection criterion Zg;.. works as follows. When the rewrite step
i occurs at a position w that is not a meaningful position of s* (in symbols, w & MPos(s®)),
trivially g does not contribute to producing the meaningful symbols of ¢*. This amounts to
saying that no relevant information descends from the state fragment s® and, hence, the function
returns the nil value.

On the other hand, when w € MPos(s®), the computation of ¢* involves a more in-depth
analysis of the rewrite step, which is based on a refinement process that allows the descendants
of s* in t* to be computed. The following definition is auxiliary.

Definition 5.3 (substitution update) Let o1 and oq be two substitutions. The update of
o1 w.r.t. oo is defined by the operator (-,) as follows:
{o1,02) = OtDom(0r), where

Tog if x € Dom(o1) N Dom(o2)
o = }
TOq otherwise

The operator (o1, 02)) updates (overrides) a substitution oy with a substitution o3, where both
o1 and o9 may contain e-variables. The main idea behind (_, _)) is that, for the slicing of the

14

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

rewrite step p, all variables in the applied rewrite rule r are naively assumed to be initially
bound to irrelevant data e, and the bindings are incrementally updated as we apply the rule r.

More specifically, we initially define the substitution § = {z/fresh® | © € Var(p)} that
binds each variable in A — p to a fresh e-variable. This corresponds to assuming that all the
information in p, which is introduced by the substitution o, can be marked as irrelevant. Then,
0 is refined as follows.

We first compute the state fragment A* = fragment (A, MPos(Var®(s},))NPos(A)) that only
records the meaningful symbols of the left-hand side X\ of the rule r w.r.t. the set of meaningful
positions of s? . Then, by matching A* with sl'w, we generate a matcher matchy. (sl'w) that
extracts the meaningful symbols from s"w. Such a matcher is then used to compute ¥, which

is an update of 8 w.r.t. matchye (srw) containing the meaningful information to be tracked.
Finally, the state fragment ¢® is computed from s® by replacing its subterm at position w with
the instance piy of the right-hand side of the applied rule r. This way, we can transfer all the

relevant information marked in s® into the fragment of the resulting state ¢°.

Example 5.4
Consider the computation tree of Example whose initial state is

sg = [Srv-A] & [Cli-A,Srv-A,7,nal & [Cli-B,Srv-A,17,na].

Let s§ = e & [Cli-A,e,7,] & e be a state fragment! of sy where only request 7 of Client
Cli-A is considered of interest. By sequentially expanding the nodes s3, s7, s3, and sg w.r.t.
the inspection criterion Z;.., we get the following fragment of the given computation tree:

.
So

[_- & [Cli-A,*,7,°] & -]

L]
Sy req

[+ & (» <- {Cli-A,7}) & [Cli-A,e*,7,na] & °]

s3 lreq/dupl s 1 reply sy lloss

e & (* <- {Cli-A,7}) & [*] & (Cli-A <- {e,f(e,|[* & [Cli-A,*,7,na] & °*]
(s <- {Ccli-aA,7}) & [cli||c1i-a,7)}) & [Cli-A,»,7
-A,*,7,nal & ° ,nal & e

S; succ
(T°7 & (CLi-A <- {*,8}) & [Cli-A,*,7,na] &)
1
sg lreq sy l dupl sg loss s l rec
T°] & (° <- {CLi-&,7}) §| [°1 & (CIi-2 <- {*,8}) &|(T°] & [CIi-R,*,7,na] & J(I°] & [Cli-R,*,7,7] & *)

(Cli-A <- {¢,8}) & [Cli](Cli-A <- {e,8}) & [Cli-]
A,*,7,nal] & * A,*,7,nal] & *

Note that the slicing process automatically computes a tree fragment that represents a
partial view of the protocol interactions from client C1i-A’s perspective. Actually, irrelevant
information is hidden and rules applied on irrelevant positions are directly ignored, which
allows a simplified fragment to be obtained favoring its inspection for debugging and analysis
purposes. In fact, if we observe the highlighted computation in the tree, we can easily detect
the wrong behaviour of the rule rec. Specifically, by inspecting the state fragment s§ = ([o]
& [C1li — A,e,7,7] & @), which is generated by an application of the rule rec, we immediately
realize that the response 8 produced in the parent state s§ has not been stored in s§, which
clearly indicates a buggy implementation of the considered rule.

IThroughout the example, we omit indices from the considered e-variables to keep notation lighter and
improve readability. So, any variable o;, i = 0,1,..., is simply denoted by e.

15

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

Finally, it is worth noting that the forward trace slicer implemented via the criterion Zgjce
differs from the partlal stepper given at the end of Section [5.1] Given a state fragment s®* and
a rewrite step kg t, Lsiice always yields a fragment t®* when the rewrite occurs at a meaningful
position. By contrast, the inspection criterion Z,se, encoded in the partial stepper may fail to
provide a computed fragment t* when s® does not rewrite to ¢°.

Example 5.5
Consider the same rewrite rules and initial state f(e1,b) of Example By expanding f(e1,b)
w.r.t. the inspection criterion Zg;.., we get the computation tree fragment with tree edges
f(e1,0) 3 g(e1) and f(e1,b) 3 h(b), whereas the partial stepper only computes the tree edge
f(e1,b) > g(e1) as shown in Example

6 Implementation

The exploration methodology developed in this paper has been implemented in the Anima
tool, which is publicly available at http://safe-tools.dsic.upv.es/anima/. The underlying
rewriting machinery of Anima is written in Maude and consists of about 150 Maude function
definitions (approximately 1600 lines of source code).
Anima also comes with an intuitive Web user inter- | Mt Statel Re;"‘;:ic?gc:‘:%sl T
face based on AJAX technology, which allows users Animation
to graphically display and animate computation tree

fragments. The core exploration engine is specified as Anima Client ’

a RESTful Web service by means of the Jersey JAX-
JAX-RS API

RS APL

The architecture of Anima is depicted in Figure
and consists of five main components: Anima Client, ’
JAX-RS API, Anima Web Service, Database, and An-
ima Core. The Anima Client is purely implemented Database Amma Core
in HTML5 and JSP. It represents the front-end layer
of our tool and provides an intuitive, versatile Web
user interface, which interacts with the Anima Web Service to invoke the capabilities of the
Anima Core and save partial results in the Database component.

A screenshot that shows the Anima tool at work on the case study that is described in
Example is given in Figure [6]

These are the main features provided by Anima:

Figure 5: Anima architecture.

1. Inspection strategies. The tool implements the three inspection strategies described in
Section [5} As shown in Figure [the user can select a strategy by using the selector
provided in the option pane.

2. Ezpanding/Folding program states. The user can expand or fold states by right-clicking on
them with the mouse and by selecting the Expand/Fold Node options from the contextual
menu. For instance, in Figure [6] a state fragment on the frontier of the computed tree
has been selected and is ready to be expanded through the Fxpand Node option.

3. Selecting meaningful symbols. State fragments can be specified by highlighting the state
symbols of interest either directly on the tree or in the detailed information window.

16

http://safe-tools.dsic.upv.es/anima/

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

Anima | uezr... l ﬂ

Options = s

[- & [Cli-A,e,7,°] &]

Interactive Stepper s? req
. (¢ & (+ <- {Cli-A,7}) & [Cli-A,*,7,na] & ¢)

View |

s5 l req/dupl s$ l reply S5 l loss

e & (* <- {Cli-A,7}) & ([*] & (Cli=A <- fe . f(e Clfe & [Cli-A,*,7,nal & * ,

<- {Cli-A,7}) & [Cli-A,*[J|i-a,7
Rule Labels 7,na] & o :.—L Expand node

Show full information
State Labels

Transition info) Show transition information —m

Zoom: 100% Ul

-——+ rl [reply] : S <- {C, Q} & » @O ¢

Figure 6: Anima at work.

4. Search mechanism. The search facility implements a pattern language that allows state
information of interest to be searched on huge states and complex computation trees. The
user only has to provide a filtering pattern (the query) that specifies the set of symbols that
he/she wants to search for, and then all the states matching the query are automatically
highlighted in the computation tree.

5. Transition information. Anima facilitates the inspection of a selected rewrite step s — ¢
that occurs in the computation tree by underlining its redex in s and the reduced subterm
in t. Some additional transition information is also displayed in the transition informa-
tion window (e.g., the rule/equation applied, the rewrite position, and the computed
substitution of the considered rewrite step) by right-clicking on the corresponding option.

7 Conclusions

The analysis of execution traces plays a fundamental role in many program analysis approaches,
such as runtime verification, monitoring, testing, and specification mining. We have presented
a parametrized exploration technique that can be applied to the inspection of rewriting logic
computations and that can work in different ways. Three instances of the parameterized ex-
ploration scheme (an incremental stepper, an incremental partial stepper, and a forward trace
slicer) have been formalized and implemented in the Anima tool, which is a novel program an-
imator for RWL. The tool is useful for Maude programmers in two ways. First, it concretely
demonstrates the semantics of the language, allowing the evaluation rules to be observed in
action. Secondly, it can be used as a debugging tool, allowing the users to step forward and
backward while slicing the trace in order to validate input data or locate programming mis-
takes.

17

Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

References

1]

2]

8l

(4]

[5]

(6]

(7]

(9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

18]

18

M. Alpuente, D. Ballis, M. Baggi, and M. Falaschi. A Fold/Unfold Transformation Framework
for Rewrite Theories extended to CCT. In Proc. 2010 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2010, pages 43-52. ACM, 2010.

M. Alpuente, D. Ballis, J. Espert, and D. Romero. Model-checking Web Applications with Web-
TLR. In Proc. of 8th Int’l Symposium on Automated Technology for Verification and Analysis
(ATVA 2010), volume 6252 of LNCS, pages 341-346. Springer-Verlag, 2010.

M. Alpuente, D. Ballis, J. Espert, and D. Romero. Backward Trace Slicing for Rewriting Logic
Theories. In Proc. CADE 2011, volume 6803 of LNCS/LNAI pages 34-48. Springer-Verlag, 2011.
M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Backward Trace Slicing for Conditional
Rewrite Theories. In Proc. LPAR-18, volume 7180 of LNCS, pages 62—76. Springer-Verlag, 2012.
M. Alpuente, D. Ballis, F. Frechina, and J. Sapina. Slicing-Based Trace Analysis of Rewriting
Logic Specifications with iJulienne. In Matthias Felleisen and Philippa Gardner, editors, Proc.
of 22nd European Symposium on Programming, ESOP 2013, volume 7792 of Lecture Notes in
Computer Science, pages 121-124. Springer, 2013.

M. Alpuente, D. Ballis, and D. Romero. Specification and Verification of Web Applications in
Rewriting Logic. In Formal Methods, Second World Congress FM 2009, volume 5850 of LNCS,
pages 790-805. Springer-Verlag, 2009.

M. Baggi, D. Ballis, and M. Falaschi. Quantitative Pathway Logic for Computational Biology. In
Proc. of Tth Int’l Conference on Computational Methods in Systems Biology (CMSB ’09), volume
5688 of LNCS, pages 68-82. Springer-Verlag, 2009.

R. Bruni and J. Meseguer. Semantic Foundations for Generalized Rewrite Theories. Theoretical
Computer Science, 360(1-3):386-414, 2006.

M. Clavel, F. Durédn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. Maude
Manual (Version 2.6). Technical report, SRI Int’l Computer Science Laboratory, 2011. Available
at: http://maude.cs.uiuc.edu/maude2-manual/.

J. Clements, M. Flatt, and M. Felleisen. Modeling an Algebraic Stepper. In Proc. 10th European
Symposium on Programming, volume 2028 of LNCS, pages 320-334. Springer-Verlag, 2001.

F. Durdan and J. Meseguer. A Maude Coherence Checker Tool for Conditional Order-Sorted
Rewrite Theories. In Proc. of 8th International Workshop on Rewriting Logic and Its Applications
(WRLA’10), number 6381 in LNCS, pages 86-103. Springer-Verlag, 2010.

J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume I, pages 1-112. Oxford University Press, 1992.
N. Marti-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bibliography. Theoretical Com-
puter Science, 285(2):121-154, 2002.

J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Com-
puter Science, 96(1):73-155, 1992.

J. Meseguer. The Temporal Logic of Rewriting: A Gentle Introduction. In Concurrency, Graphs
and Models: Essays Dedicated to Ugo Montanari on the Occasion of his 65th Birthday, volume
5065, pages 354-382, Berlin, Heidelberg, 2008. Springer-Verlag.

A. Riesco, A. Verdejo, R. Caballero, and N. Marti-Oliet. Declarative Debugging of Rewriting
Logic Specifications. In Recent Trends in Algebraic Development Techniques, 19th Int’l Workshop,
WADT 2008, volume 5486 of LNCS, pages 308-325. Springer-Verlag, 2009.

A. Riesco, A. Verdejo, and N. Marti-Oliet. Declarative Debugging of Missing Answers for Maude.
In 21st Int’l Conference on Rewriting Techniques and Applications, RTA 2010, volume 6 of LIPIcs,
pages 277—294. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003.

http://maude.cs.uiuc.edu/maude2-manual/

Automatic Inference of Term Equivalence in
Term Rewriting Systems

Marco Comini! and Luca Torella?

! DIMI, University of Udine, Italy
marco.comini@uniud.it

2 DIISM, University of Siena, Italy
luca.torella@unisi.it

Abstract

In this paper we propose a method to automatically infer algebraic property-oriented
specifications from Term Rewriting Systems. Namely, having three semantics with suitable
properties, given the source code of a TRS we infer a specification which consists of a set
of most general equations relating terms that rewrite, for all possible instantiations, to the
same set of constructor terms.

The semantic-based inference method that we propose can cope with non-constructor-
based TRSs, and considers non-ground terms. Particular emphasis is put on avoiding the
generation of “redundant” equations that can be a logical consequence of other ones.

1 Introduction

In the last years there has been a growing interest in the research on automatic inference of
high-level specifications from an executable or the source code of a system. This is probably
due to the fact that the size of software systems is growing over time and certainly one can

greatly benefit from the use of automatic tools. There are several proposals, like [1, 7, 6], which
have proven to be very helpful.
Specifications have been classified by their characteristics [8]. It is common to distin-

guish between property-oriented specifications and model-oriented or functional specifications.
Property-oriented specifications are of higher description level than other kinds of specifications:
they consist of an indirect definition of the system’s behavior by stating a set of properties,
usually in the form of axioms, that the system must satisfy [11, 10]. In other words, a specifi-
cation does not represent the functionality of the program (the output of the system) but its
properties in terms of relations among the operations that can be invoked in the program (i.e.,
identifies different calls that have the same behavior when executed). This kind of specifica-
tions is particularly well suited for program understanding: the user can realize non-evident
information about the behavior of a given function by observing its relation to other functions.
Moreover, the inferred properties can manifest potential symptoms of program errors which can
be used as input for (formal) validation and verification purposes.

We can identify two mainstream approaches to perform the inference of specifications: glass-
box and black-box. The glass-box approach [1] assumes that the source code of the program
is available. In this context, the goal of inferring a specification is mainly applied to document
the code, or to understand it. Therefore, the specification must be more succinct and compre-
hensible than the source code itself. The inferred specification can also be used to automate
the testing process of the program or to verify that a given property holds [1]. The black-box
approach [7, 6] works only by running the executable. This means that the only information
used during the inference process is the input-output behavior of the program. In this setting,

19

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

the inferred specification is often used to discover the functionality of the system (or services in
a network) [6]. Although black-box approaches work without any restriction on the considered
language — which is rarely the case in a glass-box approach — in general, they cannot guarantee
the correctness of the results (whereas indeed semantics-based glass-box approaches can).

For this work, we developed a (glass-box) semantic-based algebraic specification synthesis
method for the Term Rewriting Systems formalism that is completely automatic, i.e., needs
only the source TRS to run. Moreover, the outcomes are very intuitive since specifications are
sets of equations of the form e; = es, where e;, es are generic TRS expressions, so the user
does not need any kind of extra knowledge to interpret the results. The underpinnings of our
proposal are radically different from other works for functional programming, since the presence
of non-confluence or non-constructor-based TRSs poses several additional problems.

1.1 Notations

We assume that the reader is familiar with the basic notions of term rewriting. For a thorough
discussion of these topics, see [9]. In the paper we use the following notations. V denotes a
(fixed) countably infinite set of variables and 7(X,V) denotes the terms built over signature
Y and variables V. T(X,@) are ground terms. Substitutions over 7(X, @) are called ground
substitutions. X is partitioned in D, the defined symbols, and C, the constructor symbols.
T(C,V) are constructor terms. Substitutions over T(C,)V) are said constructor substitutions.
C[t1,...,t,] denotes the replacement of ¢1,...,t, in context C. A TRS R is a set of rules | - r
where [= f(t1,...,tn), l,7 € T(X,V), var(r) € var(l) and f € D. ty,...,t, are the argument
patterns of | - r and need not necessarily be in 7(C,V), unlike in functional programming,
where only constructor-based TRSs are considered (with ¢; € 7(C,V)).

2 Many notions of equivalence

In the functional programming paradigm an equation e; = es is typically interpreted as a
property that holds for any well-typed constructor ground instance of the variables occurring
in the equation. Namely, for all bindings of variables with well-typed (constructor ground)
terms 9 the constructor term computed for the calls e; and es?) is the same. In functional
programming we can consider only constructor instances because, by having constructor-based
confluent TRSs, the set of values for non-constructor instances is the same as for constructor
ones.

Differently from the functional programming case, the TRS formalism admits variables in
initial terms and defined symbols in the patterns of the rules; moreover rules are evaluated
non-deterministically and can rewrite to many constructor terms. Thus an equation can be
interpreted in many different ways. We will discuss the key points of the problem by means of
a (very simple) illustrative example.

Example 2.1 Consider the following (non constructor based) TRS R where we provide a pretty
standard definition of the arithmetic operations +, - and (modulo) %:

0+x —>x x -0 ->x x % s(y) > (x - sy)) % sy
s(x) +y —> s(x+y) s(x) - s(y) >x -y 0 -sx) %hsly) >y -x

Note that, since the TRS formalism is untyped, a term like 0 + a is admissible and is evaluated
to constructor term a. |

20

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

For this TRS, one could expect to have in its property-oriented specification equations like:

x+y)+z=x+ (y + 2) (2.1)
x-G+z2)=Gx-y) -z (2.2)
-y -z=&x-2) -y (2.3)
0 +x=x (2.4)
X+ 0=x (2.5)
X+y=y+x (2.6)

These equations, of the form e; = ey, can be read as the (observable) outcomes of e; are the
same of eo. The first essential thing is to formalize the meaning of “observable outcomes” of
the evaluation of an expression e (which contains variables). In the TRS formalism we have
several possible combinations. First it is technically possible to literally interpret variables in
e and decide to observe either the set of normal forms of e or the set of constructor terms of
e. However, as can be quickly verified, only (2.4) is valid in either of these forms. Indeed,
consider, for example, terms x - (y + z) and (x - y) - z. For both terms no rule can be
applied, hence they are both (non constructor) normal forms and thus (2.2) is not literally valid.
Clearly this is quite a radical choice. An interesting alternative would be to request that, for
any possible interpretation of variables with any term, the expressions rewrite to the same set
of constructor terms. Formally, by defining the rewriting behavior of a term ¢ as

B[t; R] = {9 s|tv ?* s,5€T(C,V), 0:V - T(X,V), dom(9) < var(t) (2.7

we can interpret ey = eg as e =g e <= Ble1; R] = Blea; R]. In the following, we call this
equivalence rewriting behavior equivalence. Actually, egs. (2.1) to (2.4) are valid w.r.t. =zp.
Note that if we would have chosen to use normal forms instead of constructor terms in (2.7)
(i.e., s # instead of s € T(C,V)), then we would still have the same situation described before
where only (2.4) holds.
The other equations (egs. (2.5) and (2.6)) are not valid in this sense. For instance, B[x + 0] =
{{x/t}-s'(0)|t =* s%(0) * while B[x] = {{x/t} vt —7?* v,veT(C,V) (and then €-x € Bx] ~

B[x + 0]). These equations are not valid essentially because we have variables which cannot
be instantiated, but, if we consider ground constructor instancies which “trigger” in either term
an evaluation to constructor terms, then we actually obtain the same constructor terms. For
example for ¢; =x and 5 = x + 0, for all ¥; = {x/s°(0)}, we have B[[t19;] = B[[t29;] = {e-s*(0)].
Thus (2.5) holds in this sense.

Decidedly, also this notion of equivalence is interesting for the user. We can formalize it as
t1 =¢ to <= V1 ground constructor. Bt19] v B[t29] € {e-t|t € T(C,V) = B[t19] = B[t21}] We
will call it ground constructor equivalence. Note that =, is the only possible notion in the pure
functional paradigm where we can just have evaluations of ground terms and where we have
only confluent constructor-based TRSs. In this case the latter definition boils down to: two
expressions are equivalent if all its ground constructor instances rewrite to the same constructor
term. This fact allows one to have an intuition of the reason why the problem of specification
synthesis is definitively more complex in the full TRS paradigm.

Since we do not consider only constructor-based TRSs, there is another very relevant differ-
ence w.r.t. the pure functional case. For instance, let us consider the TRS @ obtained by adding
the rule g((x - y) - 2z) -> x - (y + 2) to TRS R of Example 2.1. Let t; =x - (y + 2z)

Here by si(O) we mean ¢ repeated applications of s to 0, including the degenerate case for 7 = 0.

21

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

and t2 = (x-y)-z. We have B[t;;Q] = B[t2; Q] = {{z/0,y/0,2/0}-0,{x/s(0),y/0,z/0} - s(0),
{z/s(0),y/s(0),2/0}-0,{x/s(0),y/0,2/s(0)}-0,...]. While the term g(t2) has this same be-
havior, Blg(t1); Q] = @.

In general, in the case of the TRS formalism, terms embedded within a context do not
necessarily manifest the same behavior. Thus, it is also interesting to additionally ask to the
equivalence notion =5 that the behaviors must be the same also when the two terms are
embedded within any context. Namely, e; =, eg :<==> V context C. B[C[e1]; R] = B[C[e2]; R]
We call this equivalence contextual equivalence. We can see that =, is (obviously) stronger
than =,;, which is in turn stronger than =,. Actually they are strictly stronger. Indeed, only
egs. (2.1) and (2.4) are valid w.r.t. =, (while egs. (2.2) and (2.3) are not).

We believe that all these notions are interesting for the user, thus we formalize our notion
of (algebraic) specification as follows.

Definition 2.2 A specification S is a set of (sequences of) equations of the form t1 =y ta =g
.=k tn, with K e {C,RB, G} and t1,ta,...,t, € T(X,V).

Thus, for TRS @ we would get the following (partial) specification:

(x+y) +z=x+ (y + 2) 0+ x=cx

x - (y+ 2= &-y) -z X -y) —z=p(x-2) -y
X+ y=y +x X +0=4%x

x+y) hz=x%h2z)+Ghz)hz x+y) hy=exhy

-y hz=((x+2) %2 -Ghz)%z

In the following we present a first proposal of a semantics-based method that infers such spec-
ifications for TRSs and tackles the presented issues (and discuss about its limitations). It is
an adaptation for the TRS paradigm of ideas from [2] for the Functional Logic paradigm. This
adaptation is not straightforward, since the Functional Logic paradigm is quite similar to the
Functional paradigm, but considerably different from the TRS paradigm. Moreover, this work
significantly extends the inference process by tackling equations like f(x,y) = f(y,x) which are
really important.

3 Deriving specifications from TRSs

The methodology we are about to present is parametric w.r.t. three semantics evaluation func-
tions which need to enjoy some properties. Namely,

ERB[t; R] gives the rewriting behavior (RB) semantics of term ¢ with (definitions from) TRS
R. This semantics has to be fully abstract w.r.t. rewriting behavior equivalence. Namely,
we require that ERB[ty; R] = ERP[ty; R] <= t1 =ps to.

ECt; R] gives the contextual (C) semantics of the term ¢ with the TRS R. This semantics has
to be fully abstract w.r.t. contextual equivalence. Namely, £°[t1; R] = £ [to; R] <
t1 =¢ to.

ECt; R] gives the ground (G) semantics of the term ¢ with the TRS R. This semantics
has to be fully abstract w.r.t. ground constructor equivalence. Namely, £%[t;; R] =
EGHtQ; R]] <t =¢ to.

22

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

The idea underlying the process of inferring specifications is that of computing the semantics
of various terms and then identify all terms which have the same semantics. However, not all
equivalences are as important as others, given the fact that many equivalences are simple
logical consequences of others. For example, if ¢; =, s; then, for all constructor contexts C,
Clt1, .- tn] =c C[S1,---,5,], thus the latter derived equivalences are uninteresting and should
be omitted. Indeed, it would be desirable to synthesize the minimal set of equations from which,
by deduction, all valid equalities can be derived. This is certainly a complex issue in testing
approaches. With a semantics-based approach it is fairly natural to produce just the relevant
equations. The (high level) idea is to proceed bottom-up, by starting from the evaluation of
simpler terms and then newer terms are constructed (and evaluated) by using only semantically
different arguments. Thus, by construction, only non-redundant equations are produced.

There is also another source of redundancy due to the inclusion of relations =,. For example,
since = is the finer relation, ¢t =, s implies t =;; s and ¢ =; s. To avoid the generation of coarser
redundant equations, a simple solution is that of starting with =, equivalences and, once these
are all settled, to proceed only with the evaluation of the =, equivalences of non =, equivalent
terms. Thereafter, we can evaluate the =, equivalences of non =,; equivalent terms.

Clearly, the full computation of a programs’ semantics is not feasible in general. For the
moment, for the sake of comprehension, we prefer to present the conceptual framework leaving
out of the picture the issues related to decidability. We will show a possible decidable instance
of the method in Section 3.1.

Let us describe in more detail the specification inference process. The input of the process
consists of a TRS to be analyzed and two additional parameters: a relevant API, X" and a
maximum term size, maz_size. The relevant API allows the user to choose the operations in
the program that will be present in the inferred specification, whereas the maximum term size
limits the size of the terms in the specification. As a consequence, these two parameters tune
the granularity of the specification, both making the process terminating and allowing the user
to keep the specification concise and easy to understand.

The output consists of a set of equations represented by equivalence classes of terms (with
distinct variables). Note that inferred equations may differ for the same program depending
on the considered API and on the maximum term size. Similarly to other property-oriented
approaches, the computed specification is complete up to terms of size maz _size, i.e., it includes
all the properties (relations) that hold between the operations in the relevant API and that are
expressible by terms of size less or equal than max_size.

Terms are classified by their semantics into a data structure, which we call classification,
consisting (conceptually) of a set of equivalence classes (ec) formed by

sem(ec): the semantics of (all) the terms in that class;

rep(ec): the representative term of the class (rep(ec) € terms(ec));

terms(ec): the set of terms belonging to that equivalence class;

epoch(ec): an integer to record the moment of introduction of that equivalence class.

The representative term is the term which is used in the construction of nested expressions
when the equivalence class is considered. To output smaller equations it is better to choose the
smallest term in the class (w.r.t. the function size), but any element of terms(ec) can be used.

The inference process consists of successive phases, one for each kind of equality (in order
of discriminating power, i.e., C, RB, G), as depicted in Figure 1.

Computation of the initial classification (epochs 0 and 1). The first phase of the algo-

rithm, is the computation of the initial classification that is needed to compute the classification
w.r.t. =c. We initially create a classification which contains:

23

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Inference Process

TRS [Computation of the initial classification]
Program \L

[Generation of =¢-classification]—)[Generation of =¢-equations
API J
[Generation of =gpg-classification)—)[Generation of =gp-equations —> Specification

l

[Generation of =g-classification]—)[Generation of =g-equations

max_size —|

Figure 1: A general view of the inference process.

e one class for a free (logical) variable (€€ [z], =, {z}, 0);
e the classes for any constructor symbol, i.e., for all c/n2 eCandxq,...,x, distinct variables,
(ECTH], t, {t}, 0), where t = c(x1,...,2p).

Then, for all symbols f;, of the relevant API, X", and distinct variables zi,...,x,, we add
to classification the term t = f(x1,...,r,) with semantics s = E“[t; R] and epoch m = 1.
This operation, denoted addEC(t,s,m) is the most delicate part of the method. If we would
not consider the generation of “permuted” equations like f(x,y) = f(y,z), then the whole
activity would just boil down to look for the presence of s in some equivalence class and then
updating the classification accordingly (like in [2]). Handling of permutations cannot be done by
naively adding all (different) permutations of s. In this way we would generate many redundant
equations. Consider for instance the TRS @

f(a,b,c) -> 0 f(a,c,b) -> 0 f(c,a,b) -> 0
f(b,a,c) -> 0 f(b,c,a) -> 0 f(c,b,a) -> 0

From the minimal set f(x,y,2) =¢ f(y,x,2) =c f(x,2,y) we can generate all other valid per-
mutations, like f(z,y,2) =¢ f(y,2,2) =¢ f(2,2,y). Thus in this case we should only generate
permutated equations where we just swap two variables. However, for the TRS R

f(a,b,c) -> 0 f(b,c,a) -> 0 f(c,a,b) -> 0

f(x,y,z) *c f(ywxvz) *c f(x,z,y) but f(x,y,z) =c f(y,Z,J?) Moreover f(x,y,z) =c f(z,x,y)
can be deduced by this. Thus in this case we should only generate permutated equations with
a rotation of three variables, since all other rotations of three variables are just a consequence.

Thus, not all permutations have to be considered while adding a semantics to a classification,
and it is not necessary to look for all permutations within the semantics already present in the
classification. To generate only a minimal set of necessary permutated equations we need to
consider, for each k variables, a set II}} of generators of the permutations of n variables which
do not move n — k variables (note that II}" = {id}). Then, for a term ¢t = f(z1,...,z,), we
start, sequentially for ¢ from 1 to n, and look if, for some 7 € I}, we have an equivalence class
ec in the current classification whose semantics coincides with s (i.e., ec = (sm, t', T, m')). If
it is found, then the term t7~! is added to the set of terms in ec (i.e., ec is transformed in
ec’ = (sm, t', Tu{tr~'}, m’)) and we stop. Otherwise, we iterate with next i. If all fails, a new
equivalence class (s, t, T, m) has to be created, but we have to determine the right term set

2Following the standard notation f/n denotes a function f of arity n.

24

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

T (to possibly generate equations like f(x,y) = f(y,)). We initially start with 7' = {t} and
J = n, and sequentially for ¢ from 2 to j, we check if, for some 7 € II, we have s = sm. If we
find it, we add t7 to T, and decrement j by ¢ — 1 (i variables are now used in a valid equation
and thus from this moment on ¢ — 1 variables have no longer to be considered). Otherwise we
continue with next i. The final T is used for the new equivalence class.

For example, for t = f(x,y,2) in TRS @, we start with variables {z,y, 2} and T = {¢}. Now
consider, for instance, m = (zy) € 3. Since EC[t] = E[tn] then T = {f(z,y,2), f(y,z,2)}
and then we drop 2 and remain with variables {y,z}. Now we have only 7’ = (y2) € II3, and
since ECt] = EC[tn'] then T = {f(x,y,2), f(y,z,2), f(x,2,9)}, we drop y and (thus) finish.
Instead, for ¢t = f(x,y,2) in TRS R we start with variables {x,y,2} and T = {¢}. Now consider,
for instance, m = (zy) € II3. Since EC[t] # £tr1] then we consider 75 = (y 2) € I3, and since
ECt] # ECtms] we increase i. Now we have only 73 = (zy 2) € I13, and since E°t] = £ [tms]
then T = {f(z,vy, 2), f(y,2,2)}, we drop z,y and (thus) finish.

Generation of =, classification (epochs 2 and above). The second phase of the algo-
rithm, is the (iterative) computation of the successive epochs, until we complete the construction
of the classification of terms w.r.t. =;. At each iteration (with epoch k), for all symbols f,
of the relevant API X", we select from the current classification all possible combinations of n
equivalence classes ecy,...,ec, such that at least one ec; was newly produced in the previous
iteration (i.e., whose epoch is k —1). We build the term ¢ = f(rep(ec1),...,rep(ecy)) which,
by construction, has surely not been considered yet. Then, if size(t) < maz_size, we compute
the semantics s = € C[[t; R] and update the current classification by adding to classification the
term ¢ and its semantics s (addEC(t, s, k)) as described before.

If we have produced new equivalence classes then we continue to iterate. This phase eventu-
ally terminates because at each iteration we consider, by construction, terms which are different
from those already existing in the classification and whose size is strictly greater than the size
of its subterms (but the size is bounded by max _size).

The following example illustrates how the iterative process works:

Example 3.1 Let us use the program R of Example 2.1 and choose as relevant API the func-
tions +, - and %. In the first step, the terms

tha=x+y tio=x -y tis=xhy

are built. Since (all permutations of) the semantics of all these terms are different, and different
from the other semantics already in the initial classification, three new classes are added to the
initial classification.

During the second iteration, the following two terms (among others) are built:

e the term to1 = (x’ + y’) + y is built as the instantiation of x in ¢;.; with (a renamed
apart variant of) t1 1, and
e the term t30=x + (x’ + y’) as the instantiation of y in 1 ; with ¢1 ;.

The semantics of these two terms is the same s, but it is different from the semantics of the
existing equivalence classes. Thus, during this iteration (at least) the new equivalence class
ec' := (s, ta1, {t2.1,t2.2}, n) is computed. Hereafter, only the representative of the class will be
used for constructing new terms. Since we have chosen t5 1 instead of ¢4 5 as the representative,
terms like (x + (x’ + y’)) % z will never be built.]

Thanks to the closedness w.r.t. context of the semantics, this strategy for generating terms is
safe. In other words, when we avoid to build a term, it is because it is not able to produce a

25

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

behavior different from the behaviors already included by the existing terms, thus we are not
losing completeness.

Generation of the =, specification Since, by construction, we have avoided much redun-
dancy thanks to the strategy used to generate the equivalence classes, we now have only to take
each equivalence class with more than one term and generate equations for these terms.

Generation of =,; equations The third phase of the algorithm works on the former clas-
sification by first transforming each equivalence class ec by replacing the C-semantics sem(ec)
with E#B[rep(ec); R] and terms(ec) with the (singleton) set {rep(ec)}. After the transforma-
tion, some of the previous equivalence classes which had different semantic constructor terms
may now have the same RB-semantics and then we merge them, making the union of the term
sets terms(ec).

Thanks to the fact that, before merging, all equivalence classes were made of just singleton
term sets, we cannot generate (again) equations t; =5 to when an equation ¢; =, ¢t had been
already issued. Let us clarify this phase by an example.

Example 3.2 Assume we have a classification consisting of three equivalence classes with C-
semantics s1, So and s3 and representative terms t11, too and t31:

ec1 = (s1,t11, {ti1,t12, t13}) eco = (82,22, {t21,t22}) ecs = (83,31, {t31})

We generate equations t11 =¢ t12 =¢ t13 and to1 = tos.
Now, assume that Ef5[t1,] = wo and EFB[tas] = EB[t31] = wy. Then (since ¢y, t13 and
to1 are removed) we obtain the new classification

ecq = (wo, t11, {t11}, n) ecs = (w1, tag, {taz, a1}, n)

Hence, the only new equation is too =5 t31. Indeed, equation t1; =5 t12 is uninteresting,
since we already know t17 =¢ t12 and equation t9 =,5 t31 is redundant (because ta1 = ta2 and
to2 =pp t31).]

The resulting (coarser) classification is then used to produce the =g, equations, as done
before, by generating equations for all non-singletons term sets.

Generation of the =, equations In the last phase, we transform again the classification
by replacing the RB-semantics with the G-semantics (and terms(ec) with the set {rep(ec)}).
Then we merge eventual equivalence classes with the same semantics and, finally, we generate
=, equations for non singleton term sets.

Theorem 3.3 (Correctness) For all equations e; = ey generated in the second, third and
forth phase we have that e1 =¢ ea, €1 = €2 and ey = ea, Tespectively.

Proof. By construction of equivalence classes, in the second phase an equation t; = t5 is
generated if and only if the semantics E°t;; R] = £°[ta; R]. Then, since £°t1; R] =
& C[[tg; R] <= t1 =¢ ta, the first part of thesis follows immediately. Then, by the succes-
sive trasformation and reclassification, in the third phase we issue an equation t; = t5 if and
only if ERB[t1; R] = EFB[ty; R]. Then, since EXP[t1; R] = ERB[ty; R] <= t1 =ps ta, we have
the second part of thesis. The proof of the third part of thesis, since £%[t1; R] = E%[t2; R] <
t1 =¢ ta, is analogous. O

26

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Example 3.4 Let usrecall (again) the program R of Example 2.1. The termsx + yandy + x,
before the transformation, belong to two different equivalence classes (since their rewriting
behavior is different). Anyway, after the transformation, the two classes are merged since their
G-semantics is the same, namely {{z/0,y/0} -0, {z/s(0),y/0} - 5(0),{z/0,y/s(0)} - 5(0),...|. m

We now present some examples to show how our proposal deals with non-contructor based
or non-confluent TRS, plus some to show that we can infer several non-trivial equations.

Example 3.5 Consider the definition for the boolean data type with constructor terms true
and false and boolean operations and, or, not and imp:

and (true,x) -> x not (true) -> false
and (false,x) -> false not (false) -> true
or (true ,x) -> true imp(false,x) -> true
or (false,x) -> x imp (true ,x) -> x

This is a pretty standard “short-cut” definition of boolean connectives. With our method we
get the following equations:

not (or(x,y)) = and(not(x) ,not(y)) imp(x,y) =¢ or(not(x),y)
not (and(x,y)) =¢ or(not(x) ,not(y)) not (not(x)) =4 x
and(x,and(y,z)) =, and(and(x,y),2z) and(x,y) =¢ and(y,x)

Example 3.6 Let us consider the following non-constructor based TRS implementing some
operations over the naturals in Peano notation.

x -0 -> x chk (0) -> 0
s(x) - s(y) ->x -y chk(s(x)) -> s(x)
g(x) -> chk(x - s(x)) chk (0 - s(x)) -> err

The definition of - is a standard definition of the minus operation over naturals. The chk
function simply returns the natural passed as argument, or returns err if the argument is a
not defined subtraction. It is easy to see that the TRS is not constructor-based because of
the presence of the - in the pattern of a rule. The artificial function g, which checks if the
subtraction of a number by its successor is a natural number, is doomed to return err. With
our classification we actually derive equation g(x) =, err.]

Example 3.7 Let us consider the following (artificial) non-orthogonal TRS.

coin -> 0 d(x) -> g(x,x) t(x) -> k(x,x,x)
coin -> 1 g(0,1) -> true k(1,0,1) -> true

The coin function can return both 0 and 1. The functions d and t call an auxiliary function,
duplicating and triplicating (respectively) the variable received as argument. Functions £ and
g require a specific combination of 0 and 1 to return the constructor term true. Notice that,
to reach the constructor term true from d and t respectively, it is necessary to use a non
deterministic function able to rewrite to both 0 and 1. Some of the inferred equations for this
TRS are t(x) =, d(x) and t(coin) =, g(coin,coin) =, k(coin,coin,coin) =, d(coin).

|

27

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

Example 3.8 Let us consider the following TRS that computes the double of numbers in
Peano notation:

double (0) -> 0 plus(0,y) ->y
double(s(x)) -> s(s(double(x))) plus(s(x),y) -> s(plus(x,y))
dbl(x) -> plus(x,x)

Some of the inferred equations for the TRS are:

dbl (dbl(double(x))) =, dbl(double(dbl(x)))

double(x) =, dbl(x)

dbl (dbl(x)) =, dbl(double(x))=,double(dbl(x)) =, double(double(x))
plus(double(x),y) = plus(dbl(x),y)

W W w w

= W N
N NG NN

(
(
(
(

We can observe that all equations hold with the =, relation, and not with the =5, relation.
This is due to the fact that the two functions dbl and dbl, even if at a first sight could seem
to evaluate the same constructor terms, can behave differently. For instance, if we add to the
TRS the two rules coin -> 0 and coin -> s(0) we can notice that the terms double(coin)
and dbl(coin) return different constructor terms. This is due to the non determinism of
the coin function that exploits the right non-linearity of function dbl. While double(coin)
evaluates to 0 and s(s(0)), the term dbl(coin) can be reduced even to s(0) (by dbl(coin)
- plus(coin,coin) -2 plus(0,s(0)) - s(0)).

This characteristic of the program is not easy to realize by just looking at the code.]

Example 3.9 Let us consider the following TRS defining two functions over an extension of
the Peano notation able to handle negative integers:

abs (-(x)) -> abs(x) f(-(-(x))) -> £(x)
abs(s(x)) -> s(x) £(0) -> 0
abs (0) -> 0 f(s(x)) -> s(x)

f(-(s(x))) -> 0

Function abs is a standard definition of the absolute value; function f returns its input if it is
a positive number, and 0 if it is not. Some of the inferred equations are f (f (x)) =, abs(f (x))
and f (abs(x)) =, abs(abs(x)). [|

Example 3.10 Let us consider the following program which implements a two-sided queue in a
(non-trivial) efficient way. The queue is implemented as two lists where the first list corresponds
to the first part of the queue and the second list is the second part of the queue reversed. The
inl function adds the new element to the head of the first list, whereas the inr function adds
the new element to the head of the second list (the last element of the queue). The outl (outr)
function drops one element from the left (right) list, unless the list is empty, in which case it
reverses the other list and then swaps the two lists before removal.

new -> Q(Nil,Nil) outr (Q(xs,Nil)) ->
inl(x,Q(xs,ys)) -> Q(:(x,xs),ys) Q(Nil,tail(rev(xs)))
inr (x,Q(xs,ys)) -> Q(xs,:(x,ys)) outr(Q(xs,:(y,ys))) -> Q(xs,ys)
outl(Q(Nil,ys)) -> null(Q(:(x,xs),ys)) -> False
Q(tail(rev(ys)),Nil) null (Q(Nil,:(x,xs))) -> False
outl(Q(:(x,xs),ys)) -> Q(xs,ys) null (Q(Nil,Nil)) -> True

28

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

tail (: (x,xs)) -> xs rv’(Nil,ys) -> ys
rev(xs) -> rv’(xs,Nil) rv’ (:(x,xs),ys) -> rv’(xs,:(x,ys))

With our method (amongst others) we derive:

null(new) =, True (3.5)
new =, outl(inl (x,new)) =, outr (inr(x,new)) (3.6)
outl(inl(x,q)) = outr(inr(x,q)) (3.7)
inr(x,inl(y,q)) =¢ inl(y,inr(x,q)) (3.8)
inl(x,outl(inl(y,q))) =¢ outr(inl(x,inr(y,q))) (3.9)
null(inl(x,new)) =, null(inr(x,new)) =, False (3.10)

We can see different kinds of non-trivial equations: egs. (3.6) and (3.7) state that adding and
removing one element produces always the same result independently from the side in which we
add and remove it. Equations (3.8) and (3.9) show a sort of restricted commutativity between
functions. |

3.1 An effective instance of the presented method

In a semantics-based approach, one of the main problems to be tackled is effectiveness. The
semantics of a program is in general infinite and thus some approximation has to be used in
order to have a terminating method. To experiment on the validity of our proposal we started
by using a novel (condensed) fixpoint semantics which we have developed for left-linear TRSs
that is fully abstract w.r.t. =, 3. Such semantics is defined as the fixpoint of an immediate
consequences operator P[R]. We have opted for this semantics because it has some properties
which are very important from a pragmatical point of view:

e it is condensed, meaning that denotations are the smallest possible (between all those
semantics which induce the same program equivalence). This is a very relevant (if not
essential) feature to develop a semantic-based tool which has to compute the semantics.

e The semantics £ can be obtained directly by transforming the £ semantics, concretely
just by loosing internal structure. Therefore, no (costly) computation of £2P is needed.

We have implemented the basic functionality of the proposed methodology in a prototype writ-
ten in Haskell, TRSynth, available at http://safe-tools.dsic.upv.es/trsynth (for a detailed
description see [4]). The implementation of = equality is still ongoing work, because we are
lacking of a suitable implementation of the G-semantics.

To achieve termination, the prototype computes a fixed number k of steps of P[R]. Then,
it proceeds with the classification as described in Section 3. Clearly, in presence of terms with
infinite solutions, with such a rough approximation we may loose both correctness (by mis-
takenly equating terms which become semantically different after k iterates) and completeness
(by mistakenly not equating terms which will become semantically equivalent). Nevertheless
the results are encouraging. For instance TRSynth detects all =, and =;; which we showed in
examples (except of Example 3.8 because of a bug in the computation of the semantics).

3The writing of articles related to the formal definition of this semantics is in progress [3].

29

http://safe-tools.dsic.upv.es/trsynth

Automatic Inference of Term Equivalence in Term Rewriting Systems Comini and Torella

4 Conclusions and future work

This paper discusses about the issues that arise for the automatic inference of high-level,
property-oriented (algebraic) specifications because of non-confluent or non-constructor based
TRS. Then, a first proposal which overcomes these issues is presented.

Our method computes a concise specification of program properties from the source code of
a TRS. We hope to have convinced the reader (with all examples) that we reached our main
goal, that is, to get a concise and clear specification (that is useful for the programmer in order
to discover unseen properties or detect possible errors).

We have developed a prototype that implements the basic functionality of the approach. We
are aware that many other attempts to guarantee termination could be used in other instancies
of the presented method. Certainly, given our know-how, in the future we will experiment with
abstractions obtained by abstract interpretation [5] (our novel semantics itself has been obtained
as an abstract interpretation). Actually we already have an ongoing work to implement the
depth(k) abstract version of our semantics. In the depth(k) abstraction, terms (occurring in the
nodes of the semantic trees) are “cut” at depth k by replacing them with cut variables, distinct
from program variables. Hence, for a given signature 3, the universe of abstract semantic trees
is finite (although it increases exponentially w.r.t. k). Therefore, the finite convergence of the
computation of the abstract semantics is guaranteed.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’02), pages 4-16, New York, NY, USA,
2002. Acm.

[2] G. Bacci, M. Comini, M. A. Felii, and A. Villanueva. Automatic Synthesis of Specifications for
First Order Curry Programs. In Proceedings of the 14th symposium on Principles and practice of
declarative programming, pages 25-34, New York, NY, USA, 2012. ACM.

[3] M. Comini and L. Torella. A Condensed Goal-Independent Fixpoint Semantics Modeling the
Small-Step Behavior of Rewriting. Technical Report DIMI-UD/01/2013/RR, Dipartimento di
Matematica e Informatica, Universita di Udine, 2013.

[4] M. Comini and L. Torella. TRSynth: a Tool for Automatic Inference of Term Equivalence in
Left-linear Term Rewriting Systems. In E. Albert and S.-C. Mu, editors, PEPM ’13, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages 67-70.
Acm, 2013.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, Los Angeles, California,
January 17-19, pages 238-252, New York, NY, USA, 1977. ACM Press.

[6] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by graph trans-
formation. In 81st International Conference on Software Engineering (ICSE’09), pages 430-440,
2009.

[7] J. Henkel, C. Reichenbach, and A. Diwan. Discovering Documentation for Java Container Classes.
IEEE Transactions on Software Engineering, 33(8):526-542, 2007.

[8] A. A. Khwaja and J. E. Urban. A property based specification formalism classification. The
Journal of Systems and Software, 83:2344-2362, 2010.

[9] TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003.
[10] H. van Vliet. Software Engineering—Principles and Practice. John Wiley, 1993.
[11] J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):10-24, 1990.

30

A Condensed Goal-Independent Fixpoint
Semantics Modeling the Small-Step Behavior of
Rewriting

1

Marco Comini! and Luca Torella?

1 DIMI, University of Udine, Italy — marco.comini@uniud.it
2 DIISM, University of Siena, Italy — luca.torella@unisi.it

Abstract

In this paper we present a novel condensed narrowing-like semantics that contains the
minimal information which is needed to describe compositionally all possible rewritings of
a term rewriting system. We provide its goal-dependent top-down definition and, more
importantly, an equivalent goal-independent bottom-up fixpoint characterization.

We prove soundness and completeness w.r.t. the small-step behavior of rewriting for
the full class of term rewriting systems.

1 Introduction

Nowadays the formalism of Term Rewriting Systems (TRSs) is used, besides for functional
programming, also for many other applications (like specification of communication protocols,
to mention one). There has been a lot of research on the development of tools for the formal
verification and (in general) automatic treatment/manipulation of TRSs. Within the proposals
there are semantics-based approaches which can guarantee correctness by construction. How-
ever they cannot employ directly the construction of the semantics, since in general it is infinite.
Thus some kind of approximation has to be used.

Given the potentiality of application of the TRS formalism, we have turned our attention
toward the development of semantics-based TRS manipulation tools with the intention to use
Abstract Interpretation theory as fundament to devise semantics approximations correct by
construction. However, as also noted by [9], defining a suitable (concrete) semantics is usually
the first crucial step in adapting the general methodology of Abstract Interpretation to the
semantic framework of the programming language at hand. When a concrete semantics is
used to define, via abstract interpretation, abstract (approximate) semantics to be employed
to develop semantics-based manipulation tools, it is particularly relevant if it is condensed
and defined compositionally. In the literature, a semantics is said to be condensing when the
semantics of an instance of an expression (term, goal, call) can be obtained with a semantic
operation directly from the semantics of the (un-instantiated) expression. In such a situation,
only the semantics for most general expressions can be maintained in denotations. We say
that a semantics is condensed when the denotations themselves do not contain redundancy, i.e.,
when it is not possible to semantically derive the components of a denotation from the other
components. Indeed, the abstract semantics operations which are obtained from a condensed
concrete semantics involve the use of the join operation (of the abstract domain) at each iteration
in parallel onto all components of rules, instead of using several subsequent applications for all
components. This has a twofold benefit. On one side, it speeds up convergence of the abstract
fixpoint computation. On the other side, it considerably improves precision.

In [2], we developed an automatic debugging methodology for the TRS formalism based on
abstract interpretation of the big-step rewriting semantics that is most commonly considered

31

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

in functional programming, i.e., the set of constructor terms/normal forms. However, the
resulting tool was inefficient. The main reason for this inefficiency is because the chosen concrete
semantics is not condensing and thus, because of its accidental high redundancy, it causes the
algorithms to use and produce much redundant information at each stage. In contrast, the
same methodology gave good results in [5] because it was applied to a condensed semantics.
The constructor terms/normal forms semantics is not condensed because it contains all
possible rewritings, but there are many possible rewritings which can be obtained by some
other ones, since rewriting is closed under substitution (stability) and replacement (¢ ?* S

implies C[t], ?* C[s]p). Thus, in [1] we tried to directly devise a semantics, fully abstract

w.r.t. the big-step rewriting semantics, with the specific objective to avoid all redundancy while
still characterizing the rewritings of any term. In particular we searched a semantics which

e has a compositional goal-independent definition,
e is the fixpoint of a bottom-up construction,
e is as condensed as possible.

Unfortunately (in [1]) we just partially achieved this goal since the semantics is defined only for
some classes of TRSs. In the meantime, for a (quite) different language, in [4, 3] we obtained—
for the full language—a semantics with the mentioned characteristics, by following a different
approach:

1. Define a denotation, fully abstract w.r.t. the small-step behavior of evaluation of expres-
sions, which enjoys the mentioned properties.

2. Obtain by abstraction of this small-step semantics a denotation (which enjoys the men-
tioned properties) correct w.r.t. the big-step behavior.

This approach has the additional advantage that the small-step semantics can be reused also
to develop other semantics more concrete than the big-step one (for instance semantics which
can model functional dependencies that are suitable to develop pre-post verification methods).

Unfortunately in the case of the TRS formalism we do not have a suitable small-step se-
mantics to start with. For Curry we defined the small-step semantics by collecting just the
most general traces of the small-step operational semantics, which correspond (in our case) to

the rewriting derivations of the terms f(z1,...,2,). The problem is that we cannot obtain,
just from the traces of all f(x1,...,z,), the rewriting derivations of all (nested) terms, without
using again (directly or indirectly) the rewriting mechanism. In fact, usually f(z1,...,2,) is

immediately a normal form, because we cannot instantiate variables; however, there are many
instances which can trigger the rules. Narrowing [7] can seem a possible solution to this prob-
lem but we have an issue related to the interference of non-confluence (i.e., non-determinism)
with non-linearity, as shown by this example.

Example 1.1
Let us consider the following TRS R:
coin — Tail Head # Tail — True diff(x) »x#x
coin - Head Tail # Head — True

We have rewriting derivations diff (¢) — x + = +, diff (Head) — Head + Head +, diff (Tail) —
Tail + Tail +, while diff (coin) —* True. Moreover, we have the narrowing derivation diff (z) ~

T EX A

32

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Narrowing can instantiate variables (according to rules), but a variable is instantiated with the
same term in all of its occurrences (it would make little sense to do differently, for a top-down
resolution mechanism). However, Example 1.1 shows that it is not possible to retrieve that
diff (coin) —* True from all possible narrowing derivations of diff (x), since the only narrowing
derivation (of diff (x)) does not reach True.

In this paper we define a variation of narrowing (linearizing narrowing) which admits dif-
ferent instances of variables with multiple occurrences. With linearizing narrowing we define
a denotation, fully abstract w.r.t. the small-step behavior of rewriting, which enjoys the men-
tioned properties for generic TRSs without restrictions. The outline to achieve this is the
following.

e We gather all linearizing narrowing derivations into trees (Definition 3.10).

o We show that all possible rewritings can be reconstructed from linearizing narrowing trees
(Theorem 3.14).

e We define top-down condensed denotations @[R] by collecting just the linearizing nar-
rowing trees of most general terms (f(z,,)) and we prove that, with a suitable semantic
evaluation function £, we can reconstruct any linearizing narrowing tree starting from
O[R] (Theorem 3.23).

e By using £ we define a (bottom-up) immediate consequence operator whose least fixpoint
F[R] is equal to O[R] (Theorem 3.30). Thus from F[R] we can reconstruct all possible
rewritings of R and we have full abstraction w.r.t. the rewriting behavior (Corollary 3.31).

Note that the proofs of all results are in the appendix.

2 Preliminaries

We assume that the reader is familiar with the basic notions of term rewriting. For a thorough
discussion of these topics, see [10]. In the paper we use the following notions and notations.

We write o,, for the list of syntactic objects o1, ...,0,. Given a monotonic function F: £ — L,
over lattice £ whose bottom is 1 and lub is ||, by Ftk we denote function)\.T.Fk(l‘) and by
Ftw function \z.||{F*(z)|k e N. By Ifp(F) we denote the least fixed point of F (and recall
that, for a continuos F, Ifp(F') = Fiw).

Terms and Substitutions

¥ denotes a signature and V denotes a (fixed) countably infinite set of variables. T(%,V)
denotes the terms built over signature ¥ and variables V. X is partitioned in D, the defined
symbols (also called operations), and C, the constructor symbols (also called data constructors).
T(C,V) are called constructor terms. The set of variables occurring in a term ¢ is denoted by
var(t), while the sequence (in order) of variables occurring in a term ¢ is denoted by var(t). A
term is linear if it does not contain multiple occurrences of any variable. £7(%,)) denotes the
set of linear terms.

t|, denotes the subterm of t at position p, and t[s], denotes the result of replacing the
subterm t|, by the term s.

Given a substitution ¢ = {z1/t1,...,2,/t,} we denote by dom(o) and range(o) the domain
set {z1,...,2,} and the range set Ul"; var(t;) respectively. The identity substitution is denoted
by €. By to we denote the application of ¢ to t. oy denotes the restriction of substitution o
to set V ¢ V. ov denotes the composition of ¥ and o i.e., the substitution s.t. x(o¥) = (zo)d
for any x € V. Given two substitutions ¢; and 95 and two terms t; and t5, we say that ¢,

33

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

(respectively ¢1) is more general than ¥5 (respectively t5), denoted ¥ < Jo (respectively ¢1 < t3)
if and only if there exists a substitution o s.t. ¥10 = ¥2 (respectively t10 = t3). We denote by
~ the induced equivalence, i.e., ¥ ~ ¢ if and only if there exists a renaming p s.t. ¥p = o (and
op~! =9). With o 1 ¢’ we indicate the lub (w.r.t. <) of o and o’

A substitution ¥ is an unifier for terms ¢ and s if t9 = s¢. ¢ and s unify/are unifiable when
there exists a unifier. A unifier o for t and s is a most general unifier, denoted as o = mgu(t, s),
when o < ¢ for any unifier ¢ of ¢ and s.

Rewriting

A term rewriting system (TRS for short) R is a set of rules | - r where I,7 € T(X,V), var(r) €
var(l), I = f(t1,...,t,) and f € D. t,...,t, are the argument patterns of [- r and need
not necessarily be in 7(C,V), unlike in functional programming, where only constructor-based
TRSs are considered (i.e., with ¢; € 7(C,V)). We denote by Ry, the set of all TRSs defined on
signature X.

Given TRS R, a rewrite step t % t' is defined if there are a position p in ¢, | —» r € R and

a substitution n with dom(n) ¢ var(l) such that ¢|, = In and ¢’ = t[rn],. As usual, we omit to
write position p when it is not relevant and omit R when is clear from the context. Moreover
we use —* to denote the transitive and reflexive closure of the rewriting relation —.

A term t is called a normal form, denoted by t +, if there is no term s such that t =~ s.

A substitution {x1/t1,...,2,/ty} is R-normalized (w.r.t. a TRS R) if all ¢; are normal forms
(which trivially includes the case when t; € T(C,V)).

Full Narrowing

In the paper with s «< X we denote a renamed apart variant s of an element belonging to a set
of syntactic objects X, i.e., a renaming of variable names of some x € X that does not contain
variables that appear in the context of the definition where s << X is used (this is also called
“using fresh variables names in s”).

The combination of variable instantiation and rewriting is called narrowing [7]. Formally, a
(full) narrowing step ¢ a:p t’ is defined if there is a position p in ¢, | > r < R and o = mgu(t|,,!)

such that t|, ¢ V and t' = (t[r]p)o. In such a case we have that to % t’. Again, we omit to

write position p when it is not relevant and omit R when is clear from the context.
t + denotes that there is no term s such that ¢ ~ s.

3 Modeling the small-step rewriting behavior
In this section we introduce the concrete semantics which is suitable to model the small-step

rewriting behavior. In order to formally state such relationship we first need to formally define
the concept of small-step rewriting behavior.

Definition 3.1 (Rewriting behavior) Giventge T(X,V) and R € Ry, the small-step rewrit-
ing behavior of ¢ty in R is

B*[tg in R] = {to = t1 Pl th-1 = ta| YVt € T(X,V) (3.1)
and the small-step rewriting behavior of R is B*[R] := User(x,vy B[t in R].

34

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

This notion of observable behavior induces the definition of TRS equivalence:
VR, Ry € Rs R, s Ry i B[R] = B [R,] (3.2

Thanks to the following property we can restrain the check of B* equivalence of two TRSs to
linear terms. Moreover in the sequel we will also restrict our attention only to denotations for
linear terms.

Proposition 3.2 Let R;,R, € Ry. Then R, ng3s Ry <= R, is a variant of R, < Vte
LT(E,V). B[t inR,] = B*[tinR,].

3.1 The semantic domain

We now define a notion of “hypothetical rewriting” which resembles full narrowing [7], but
it “decouples” multiple occurrences of variables. This way we maintain the potentiality to
choose different evolutions of the rewritings of redexes once variables are instantiated with non
constructor terms.

The semantic domain of our semantics will be made of trees with all possible derivations of
this variation of narrowing.

3.1.1 Linearizing Narrowing
Definition 3.3 (Term Linearization) Lett e 7(X,V), r € LT(X,V) and o:V — V. We say

that (r,0) is a linearization of t, denoted (r,c) = lin(t), if ro =t and var(t) € var(r). The
substitution o will be called delinearizator.

If a term is linear then lin(t) = (¢,), while for non-linear terms we can have different possibilities
(for instance lin(f(x,x)) = (f(z,y),{y/z}) = (f(z,2),{z/z}) = ...). However the following
constructions which involve linearization are actually independent upon the particular choice
of linearization, in the sense that all possible different results are variants (analogously to what
happens for the choice of different mgu’s).

It may be useful to note that a delinearizer o has one binding for each (further) multiple
occurrence of a variable.

Definition 3.4 (Linearizing Narrowing Derivation) Lett,s € LT(X,V) and R € Ry. There
erists a linearizing narrowing step t LN if there exist a position p of t, | - r < R,
o, R

0" = mgu(t|p,l) and o:V -V such that
tlp ¢V, (s,0) = lin(t[rd'],), 0 =0 yar(t)-

We omit to write position p when it is not relevant and omit R when is clear from the context.

A sequence tg = ty... =5 t, is called linearizing narrowing derivation. With ¢ =+ t, we

denote the emstence of a lmeamzmg narrowing derivation such that 0 = 61---0,, and o = 01---0,.

Note that in linearizing narrowing derivations we do not apply mgu 6 to all reduct (¢[r],)0 as
narrowing does. This would not make any difference since terms are kept linear by construction
and thus # cannot alter the context outside positions being reduced.

Linearizing narrowing is correct w.r.t. rewriting (as narrowing is) as proven by the following
theorem which is the analogous of Theorem 3.8 of [8] (Theorem 1 of [7]) where we use linearizing

35

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

narrowing instead of narrowing. Actually linearizing narrowing is more general than narrowing,
in the sense that when we have a narrowing derivation then we will surely have a linearizing
narrowing derivation which possibly compute more general instances (in case there are non-
linear terms).

Theorem 3.5 Let R € Ry, sp € LT(X,V), to € T(X,V), no an R-normalized substitution such
that to = sono and V ¢V such that var(so) U dom(ng) € V. If tg —* t,, then there exist a term
Sn € LT(X,V) and substitutions n,, 0, o such that

S0 :6>* Sny tn = Sp0Nn, (977n) tv =no0lv, N 18 R-normalized,

0 . ..
where sg = s, and tg —* t, employ the same rewrite rules at the same positions.

Note that while it is always possible to transform rewrite derivations into linearizing narrowing
derivations (in the sense of Theorem 3.5), the opposite does not hold in general as we will show
in Example 3.7. As anticipated, we gather all linearizing narrowing derivations (of the same
term t) into a tree.

Definition 3.6 (Linearizing Narrowing Trees) Let t € L7(3,V). A linearizing narrowing
tree T fort is a (not necessarily finite) labelled tree which is rooted in t and where

1. paths are linearizing narrowing derivations;
2. sibling subtrees have the same root terms if and only if their incoming arcs have different
substitutions.

We denote with LNTy, (or simply LNT when clear from the context) the set of all the
linearizing narrowing trees (over 3). Moreover, for any t € LT(X,V), we denote with LNT; the
set of all linearizing narrowing trees for t.

Point 2 ensures that all sibling steps in a linearizing tree are pairwise distinct and thus that we
cannot have two different paths of the tree with the same terms and labels.

Example 3.7
Consider TRS R of Example 1.1. The linearizing narrowing tree starting from term diff (x) is:

) HeadY s True
Tail, 1
(] =

diff (v) ———= 7 # 11 __{2/t10,,

€
/) Ty

{x/Head,x [Tail}
>

True

This linearizing narrowing derivation diff (z) * True can be read as: if there is a

{e1/a}

term ¢ that can rewrite both to Head and Tail, then diff (t) rewrites to True. Indeed diff (coin)
does rewrite to True (a possible rewriting derivation is diff (coin) — coin # coin — Head #
coin — Head # Tail — True).

In this case is not possible to transform these linearizing narrowing derivations into rewrite
derivations (since diff (z) — « # © +, as well as diff (t) =t +t +», for all t € T(C,V)).

This example also shows that linearizing narrowing can have longer derivations w.r.t. (stan-
dard) narrowing since diff (z) ~ = # = 4.

36

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Definition 3.8 (Variance on LNT) Lette L7(3,V) and Ty, T, e LNT,. We say that Ty and
Ty are local variants if there exists a renaming p, such that Tip =Ts.

Two linearizing narrowing trees are local variants if and only if they have the same root ¢ and
their steps are equal up to renaming of variables which do not occur in ¢.

Note: Since the actual choices of local variable names is completely irrelevant, from now on,
with an abuse of notation, by LNT we will actually indicate its quotient w.r.t. local
variance. Moreover all linearizing narrowing trees presented in the sequel will actually
be an arbitrary representative of an equivalence class.

Definition 3.9 (Order on LNT) Let denote with paths(T') the set of all the paths of T' start-
ing from the root.

Given T1,Ts € LNT, we define Ty € Ty if and only if paths(Ty) < paths(Ts).

Given a set T € LNT,, the least upper bound || T is the tree whose paths are Urer paths(T).
Dually for the greatest lower bound [7.

It is worth noticing that, for any ¢t € £7(3,V), LNT, is a complete lattice.

By Point 2 of Definition 3.6, paths is injective, thus it establishes an order preserving iso-
fxt
morphism (LNT;, ©) % (paths(LNT}), c), where the adjoint of paths, prfrtree, builds
paths

a tree from a set of paths (by merging all common prefixes). So we have two isomorphic rep-
resentations of linearizing narrowing trees and in the sequel we can simply write d € T for
d € paths(T). The set representation is very convenient for technical definitions, while for
examples the tree representation is better suited.

Definition 3.10 (Linearizing Narrowing Tree of a term) Let ¢t € L7(X,V) and R € Ry.
A linearizing narrowing tree Nt in R] for term t in TRS R is

Nt in R] := {d € LNT¢|d uses rules from R

Intuitively, Nt in R] denotes the linearizing narrowing behavior of linear term ¢ in TRS R
modulo local variance (i.e., local variables are up to renaming).

Example 3.11
Given the following TRS R:

m(H(z)) » d(z, K(z)) d(C(z),K(E(y))) — f(z,2,y,y)
f(Az,y,F) > B(y,y) [(E(z),y,A, A) - K(E(y))

The linearizing narrowing tree Nm(z) in R] is:

{@1/C(z3), %K(E(m))

zo/E
2/EW) f(l’371’47y>y1) {5

€
—_—
{@a/zs,y1/y} w}
{yz/y} B(ya y2)

Linearizing narrowing trees “capture” the behavioral TRS equivalence w~,4 since the TRS
equivalence induced by N coincides with = .

x/H(x
m(e) LD, i, K (22))

Theorem 3.12 Let R,,R, € Ry. Then R, ~y Ry if and only if, for every t € LT(X,V),
Nitin R, =Nt inR,].

37

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Even more, from linearizing narrowing trees we can completely reconstruct the small-step
rewriting behavior. To formally prove this we need to introduce the following operation to build
rewriting derivations from linearizing narrowing derivations.

ope 01 02 On
Definition 3.13 Let R € Ry and d = sg = s1 = ... = s, be a linearizing narrowing deriva-
1

o9 on

tion. The linear narrowing to rewriting operator is defined as

& 1s an R-normalized substitution, 0 < k < n,
|d] = {to = t1... — t&]) (3.3)
77=91T01T...T9kT0'k, VOSZSk.ti=$i77£

We abuse notation and lift |-] also to sets as | S| = Uges|d].

Intuitively, this operation takes a prefix d of a linear narrowing derivation and, if it can simulta-
neously satisfy all its computed answers and delinearizators, with substitution 7, then it builds
a rewriting sequence by applying n¢ to all terms of d, for any R-normalized substitution &.

Theorem 3.14 Let R € Ry and t € LT(X,V). Then B[t n R] = [Nt in R]|.

Hence Nt in R] is indeed a condensed representation of B[t in R]. Now the next step for the
construction of a semantics with the desired characteristics is to achieve compositionality. To
do so we should look for a denotation for most general terms f(z,,) (of a TRS R) which could
be used to retrieve, with suitable semantic operations, Nt in R] for any t € LT(X,V).

3.2 Operational denotations of TRSs

The operational denotation of a TRS can be defined as an interpretation giving meaning to the
defined symbols over linearizing narrowing trees “modulo variance”. Essentially we define the
semantics of each function in D over formal parameters (whose names are actually irrelevant).

Definition 3.15 (Interpretations) Let MGTp := {f(Zn) | f/, € D, Ty, are distinct variables}.

Two functions I, J:MGTp — LNTy, are (global) variants, denoted by I = J, if for each
m € MGTyp there exists a renaming p such that (I(7))p=J(7p).

An interpretation is a function T:MGTp — LNTyx, modulo variance? such that, for every
m € MGTp, Z () is a linearizing narrowing tree for m.

The semantic domain Iy, (or simply 1 when clear from the context) is the set of all inter-
pretations ordered by the pointwise extension of E.

The partial order on I formalizes the evolution of the computation process. (I, £) is a complete
lattice and its least upper bound and greatest lower bound are the pointwise extension of | |
and [, respectively. In the sequel we abuse the notations for LNT for I as well. The bottom
element of T is 1y := Awr.{m} (for each m € MGTp). In the sequel we abuse the notations for
LNT for I as well.

It is important to note that MGTp (modulo variance) has the same cardinality of D (and
is then finite) and thus each interpretation is a finite collection (of possibly infinite elements).
Hence we will often explicitly write interpretations by cases, like

m =17 I(m):=T
T:=4: for :
T = Ty, IZ(mn) =T,

?i.e., a family of elements of LNTy;, indexed by MGTp, modulo variance.

38

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

In the following, any Z € I is implicitly considered as an arbitrary function MGT — LNT
obtained by choosing an arbitrary representative of the elements of Z in the equivalence class
generated by ~. Actually, in the sequel, all the operators that we use on I are also independent
of the choice of the representative. Therefore, we can define any operator on I in terms of its
counterpart defined on functions MGT — LNT.

Moreover, we also implicitly assume that the application of an interpretation Z to a specific

7w € MGT, denoted by Z(=), is the application I(7) of any representative I of Z which is

defined exactly on 7. For example if Z = (\f(z,y). f(z,y) {T/%L c(y,z))/; then Z(f(u,v)) =

Flu,0) 22 (v, 2).

While defined symbols have to be interpreted according to TRS rules, constructor symbols
are meant to be interpreted as themselves. In order to treat them as a generic case of function
application, we assume that any interpretation Z is also implicitly extended on constructors as
TZ(c(zy)) = c(z,). In the sequel we will use ¢ when we refer to a generic (either constructor
or defined) symbol, whence f for defined symbols and ¢ for constructor ones.

Definition 3.16 (Operational denotation of TRSs) Let R € Ry. Then the operational
denotation of R is

OIR] = (M (@n). Nf () in R])/. (3-4)

Intuitively, O collects the linearizing narrowing tree of each f(z,) in R, abstracting from the
particular choice of the variable names z,,.

Example 3.17
The operational denotation of TRS R of Example 1.1 is:

/E TCL’LZ
€
—

coin - coin

Head

d
{m’ T(Lilvy’ Hea®d Trye
£

TEYP> TEY {“Z'/Heg

O[R] = 20 Y/ Tuy
H dJlI
b

diff (x) » diff () ———px #+ 21 {

- Z/ Tui,
(onfa) 7 T

The (small-step) rewriting behavior of any term ¢ can be “reconstructed” from O[R] by
means of the following evaluation function £.

True

Taily Prye

True

3.2.1 Evaluation Function

When we have the interpretation with the linearizing narrowing tree of f(z,), we can easily

reconstruct the rewriting behavior of any f (E:) for (renamed apart) t, € L7(C,V), by sim-
ply replacing the most general bindings along a derivation with constructor terms ¢; (clearly

39

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

pruning branches with inconsistent instances). However, with non-constructor nested terms
things gets more involved. In practice we have an interleaving of parts of all sub-derivations
corresponding to the evaluation of arguments, leaded by the derivation of f(z,,). Intuitively the
basic building block of our proposal is the definition of a semantics embedding operation that
mimics parameter passing. Namely taken two linearizing narrowing trees T3, T and a variable
x of (the root of) T, the tree-embedding operation T;[xz/T»] transforms T; by modifying its
steps accordingly to steps of T5, which provides specific actual parameter values to z in places
where x in T7 was originally “freely” instantiated.

In order to define Tj[x/T2] we need to introduce an auxiliary (technical) relation which
works on single derivations. Note that in the sequel, to shorten definitions, when we adorn
linearizing narrowing derivations or trees with a term s, like dg or T, we mean that the head
of dg or the root of T is term s.

Definition 3.18 Let m € L7(X,V), d, be a linearizing narrowing derivation with head g and
Ty, e LNTy. Then dg;m; Ty = d is the least relation that satisfies the rules:

— i =Tngu(s, 3.5
e vl ingu(s,) (3.5a)
dy;m; Ty +-d »
AKE w=1ngu(s,m) , s 28T, €Ty, 3q. 8|p = tilq (3.5b)

de;m; Ty i—t/,Le——’q>d

= TWL(S(), 7T):
0/ = 7’<TL_g7.L(tlu,t9) rvar(tu) s
{z1/y1,- .. @n/yn} = proj(var(m0),o),
dig;m0; Tso Fdty - di T3 Ty, Fdtyy Ty, T, < Ty,
mo=mh, Vie{l,...,n} m =mo{yi/z:},
n+1 vje{0,...,n} v; = var(s;),
" =(ou Ul Ui [00) Yoar (1)

i=

(3.5¢)

(t 28 diy);m; sy F 9:} dy

where

e proj(Vio) ={zfyco|yeV},
e ngu(t,s) is an mgu 0 of t and s such that Y € var(t) 0 ¢ V.

Broadly speaking, the role of 7 in a statement d;; ;T + d is that of the “parameter pattern”
responsible to constrain “freely” instantiated formal parameters in d; to the actual parameters
values which are actually “coming” from 7. More specifically, Rules 3.5 govern the inlaying of
the steps of a linearizing narrowing tree T into a derivation d;. In particular

e The axiom 3.5a stops any further possible inlaying.

e The rule 3.5b considers the case when we want to proceed with an inner linearizing
narrowing step employing a step coming from 7. In this case t plays the role of context
and the inner step is done accordingly to the one chosen from T;. Note that is it possible
to do the step only if exists ¢ such that s|, = tu|,. Namely the defined symbol, over which
the step is done, needs to be “visible” in tu.

e The rule 3.5¢ considers the case when we want to do an outermost step. First, the step
has to be compatible with the way we instantiated ¢ so far, namely exists mgu(tu,t0).
Then, we choose from ¢ only the delinearizers that depend on the variable from which
we started the embedding. Fach of these delinearizer comes from the linearization of a
multiple occurrence of a same variable z. Thus, for each rename z’ of z we sequentially
embed into 2’ a (possibly different) sub-derivation coming from a renamed apart variant of

40

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Ts. Note that if we would not have multiple occurrences of z (i.e., proj(var(w0),0) = @),
the rule would simply be

/J'/: mgu(507 7T))
” o 0" = mgu(tu,t6)|
(t =ds,);m; Ty Ftu=>dy, mo =m0

dto; T‘-O; TSD = dtl

var(tp) »

Note that in Rules 3.5 we use a selected form of mgu (i.e., ngu which does not rename variables
in the left argument) in order to avoid to change variable names along the way.

Example 3.19

Consider O[R] of Example 3.17. Let Teos = O[R](coin) and do := diff (x) . E/} dy €
xy/x

{z/Head,z1/Tail}

O[R](diff (x)), where dy = x + 1 =————= True.

Let us build a proof tree to find a derivation d such that dy;z; Teoin + d. We have to start
with an application of rule (3.5¢) which (in this case) has two premises since the delinearizator
{z1/x} in the first step of dy has one binding. The first subtree which embeds the Head branch
of T.pin into x is

(3.5¢) (3:52) True; Head; Head + True
dy;x; Head — Head # 21 LT e (PT)
(3.5b) c

. e {z1/Tail}
dy;x; Teoin + coin + x1 = Head + 11 =—= True
€ €

ds

Now we can build the full proof tree (by building the second subtree which, starting from ds,
can finish to embed the Tail branch of Ty, into x1).

(3.5a)

True; Tail; Tail - True
do:x1; Tail - Head + Tail = True

(3.5¢)

(3.5b)

do;x1; Teoin + Head # coin = Head + Tail = True

(3'5C) € - 5 - €
(PT) d3;x1; Tepin F coin £ coin = Head # coin = Head + Tail = True

(3.5¢)

d; x; Tepin + diff (coin) = coin # coin = Head # coin = Head # Tail = True

€ €

We have analogous proof tree for d; 2; Teoin + diff (coin) = coin # coin = Tail # coin = Tail #

€

Head = True. In total we have ten possible proof trees, four of whom that have derivations

which rEeaCh True.

Tree-embedding is simply defined by collecting all contributes of d;z;T + d'.
Definition 3.20 (Tree-embedding) Let T, € LNT, and T} € LNT, such that

1. Ty and T}y do not share any local variable;
2. x is a variable which does not occur in Ty.

Then the tree-embedding operation Ty[x/Ty] is defined as Ty[x/Ty] = {d|dg € Ty, dg;; Ty, + d.

41

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

The evaluation function is obtained by repeated application of tree-embedding.

Definition 3.21 (Evaluation Function) Let t € L7(X,V) and Z € 1. The evaluation of t
w.r.t. , denoted E[t]z, is defined by induction on the structure of t as follows:

Elz]z == (3.6a)
5[[90(5:)]]1 =TZ(p(@a)[z1/E[t1]z]-- [0/ EMta]z] Tn renamed apart distinct (3.6b)

Example 3.22
Consider O[R] of Example 3.17. The evaluation of £[diff (coin)]orry is

E[diff (coin)]ogr] = [by Equation (3.6b) with n=1]
O[R] (diff (x))[x] E[coin] opry] = [by Equation (3.6b) with n =0]
OIR] (diff (z)) [/ O[R] (coin)]

Then, by completing what shown in Example 3.19, we have that £[diff (coin)]ojry is

Tail # Tail ey Tail # Tail
MTFW coin = Tail \5}
dﬁ(T l) € 7 Head # Tazl%} True
i ai
% _Es Tail + Head :§> True
/ . goin # Head \5)
i LN _Ey - /6 ¢” Head #+ Head
diff (coin) ==» coin * coin
T < Tail # Tail
\ Tail # coin \gg}
diff (Head) \ ¢ 7 Tail + Head —=> True
i ea
ofo _ts Head + Tail :§> True
Head + coin _¢&
Head + Head ead = commn -

Head + Head

3.2.2 Properties of the TRS operational denotation

The following result states formally that from O[R] the evaluation function £ can reconstruct
the linearizing narrowing tree of any linear term.

Theorem 3.23 For all R € Ry and t € LT(X,V), E[t]orry = Nt in R].
A straightforward consequence of Theorems 3.23 and 3.12 is
Corollary 3.24 For all R,, R, €Rxs, O[R,] = O[R,] if and only if R; »ss Ry.

Thus semantics @ is fully abstract w.r.t. ~,.

3.3 Fixpoint denotations of TRSs

We will now define a bottom-up goal-independent denotation which is equivalent to @ and thus
(by Corollary 3.24) adequate to characterize the small-step behavior for TRSs. It is defined
as the fixpoint of an abstract immediate operator over interpretations P[R]. This operator
is essentially given in terms of evaluation £ of right hand sides of rules. Namely, given an
interpretation Z, it essentially consists in:

42

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

e building an initial linearizing narrowing step for a most general term according to rules’
left hand side;
e applying the evaluation operator £ to the right hand side of the rule over Z.

Definition 3.25 Let R € Ry. P[R]:1 =1 is defined, for all f € D (of arity n), as

f@n)o »r <R,

PIRL (/) = LI G 2 €l)

Moreover we define our fizpoint semantics as F[R] = lfp P[R].
F[R] is well defined since P[R] is continuous.
Proposition 3.26 Let R € Ry. Then P[R] is continuous.

Example 3.27
Let us consider the (artificial) TRS R := {g - f(h(a)), h(a) = h(b), f(h(d)) — a} taken from
[1], which is neither constructor-based nor confluent. The evaluation of the right hand sides
of all rules is E[f(h(a))].; = 1(f(x))[z/E[M()]] = f(2)[z/h(a)] = f(h(a)); E[R(B)]s =
h(z)[x/b] = h(b) and E[a],, = a. Hence

9+ 9—>f(h(a))
T, = PIRIM = { h(z) > h(z) =25 h(b)
f@) > f@)
In the next iteration we have to evaluate E[f(h(a))]z, = Z;(f(z))[x/ E[M(a)]z,]- Since E[h(a)]z, =
T, (h(z))[z/ Ealz,] = h(a) % h(b) we have
g 9——==>f(Ma)) —==> f(h(b)) —=—>a
PIR]12 = h(x) = h(x) =L h(b)
f@) = fa) s a

Now, since P[R]13 = P[R]12, this is also the fixpoint F[R].

Example 3.28
Consider TRS R of Example 1.1. The iterates of P[R] are

£ Tail

coin — coin

X

€ Head

PRI =

TEYH TFY {$/He
ad
= ’g/TQZ'/

diff (z) » diff (1) ———3 2 # 11
{w1/x}

43

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

e s Tail
coin w coin <
Head
d
’Tail’y’Hea True

TEYS> TEY {Q;/Head

PIR]12= Y Ty

True
(x Headﬂ“[Toill, True

diff (x) — diff (z) :>{ ! x;txl%

Now, since P[R]13 = P[R]12, this is also the fixpoint F[R].

True

Example 3.29
Let us consider the TRS R := {zeros — :(0, zeros), take(0,z) — nil, take(s(n),:(y,2))) —
(y, take(n, z)), f(n) — take(n, zeros)}. The first two iterates of P[R] are

E 8 () lnpro:
zeros = zeros —:(0,'zeros)
I

take(w1,y1) = take(zs,y;) o S5 (y)

=91/ (% ot
PIR]11 = 1z /S
s (yo.itake (o, 2))
m] 7777777777
(z0) = f(zo) — ‘take(xo, zeros) !
zeros — zeros — (0, zeros) —— *(E)i Ed 7zé1:0735)‘1
take(z2,y2) — take(zs, yg)ig/ ((@1),
oy
s | (1, take(ml,zl)) 1/9(%) |
nil 4 ’zo)} |
ypmil) (o, take(wo, 20));
PIR]12 =1 f(x1) ~ f(z1)

‘il take(x1,:(0, zeros) !
‘ S Z1/s :
: % N |
: nil :(0, take (=g, zeros)) |

,,

Note that, to highlight the construction order of the various subtrees, we used indices in variables
names that respect the order of introduction and boxed the subtrees which correspond to the

44

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

previous iterate. By continuing the computation of the iterates, we obtain

zeros v zeros —=»:(0, zeros) —=%:(0,:(0, zeros)) -+
take(x,y) — take(z,y) i@/s(@’)
L//;(Z,/ ;)
~ 2y
g : [
S ;(y/, tak@(x” Z)) Z‘Z/és(zu)’
nil 66 22
{(y', mil) (YY", take (2", 2")))
f(@) f(x)
FIR] = P
[®] ta\l::e(w, zeros)
S
nil t\ake(x, :(0, zeros)){x/
\Q S(l")
% ol \
nil :(0, take(2', zeros))
take(x,:(0,:(0, zeros))) o ';’;@
- N e
\\f?’ . A\ Rl
........... J‘)
:(0, nil) (0, take(x",:(0, zeros)))

We can observe that, since terms in R are linear, the linearizing narrowing trees have just
€ as delinearizers and actually they are isomorphic to full narrowing trees.

3.3.1 Properties of the TRS fixpoint denotation

The top-down goal-dependent denotation @ and the bottom-up goal-independent denotation
F are actually equivalent.

Theorem 3.30 (Equivalence of denotations) Let R € Ry. Then O[R] = F[R].
A straightforward consequence of Theorem 3.30 and Corollary 3.24 is

Corollary 3.31 (Correctness and full abstraction of F) LetR,,R, € Ry. Then F[R,] =
FIR,] if and only if R, mss R,.

4 Conclusions

We have presented a condensed compositional bottom-up semantics for the full class of term
rewriting systems which is fully abstract w.r.t. the small-step behavior of rewriting.

We are going to use this semantics to define, by abstraction, a condensed bottom-up se-
mantics for the full class of term rewriting systems which is fully abstract w.r.t. the big-step
behavior of rewriting and thus suitable for semantic-based program manipulation tools. Actu-
ally we have developed a first proposal of such a semantics (by following this approach) but

45

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

restricted to the class of left-linear TRSs. We already used it to develop a semantics-based
automatic specification synthesis prototype [6] which is giving promising results.

However, we believe that our notion of linearized narrowing which, differently from nar-
rowing, represents faithfully the small-step behavior of rewriting (in a compact way), could be
interesting for other applications as well.

References

[1] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and J. Iborra. A Compact Fixpoint Semantics
for Term Rewriting Systems. Theoretical Computer Science, 411(37):3348-3371, 2010.

[2] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis of Functional
Programs. In M. Leuschel, editor, Logic Based Program Synthesis and Transformation — 12th
International Workshop, LOPSTR 2002, Revised Selected Papers, volume 2664 of Lecture Notes
in Computer Science, pages 1-16, Berlin, 2003. Springer-Verlag.

[3] G. Bacci. An Abstract Interpretation Framework for Semantics and Diagnosis of Lazy Functional-
Logic Languages. PhD thesis, Dipartimento di matematica e Informatica, Universita di Udine,
2011.

[4] G. Bacci and M. Comini. A Fully-Abstract Condensed Goal-Independent Bottom-Up Fixpoint
Modeling of the Behaviour of First Order Curry. Submitted for Publication., 2012.

[5] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract Diagnosis. Journal of Logic Program-
ming, 39(1-3):43-93, 1999.

[6] M. Comini and L. Torella. TRSynth: a Tool for Automatic Inference of Term Equivalence in
Left-linear Term Rewriting Systems. In E. Albert and S.-C. Mu, editors, PEPM ’13, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages 67—70.
Acm, 2013.

[7] J.-M. Hullot. Canonical Forms and Unification. In Proceedings of the 5th International Conference
on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages 318-334, Berlin,
1980. Springer-Verlag.

[8] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable Algebra in
Engineering, Communication and Computing, 5:213-253, 1994. 10.1007/BF01190830.

[9] H. R. Nielson and F. Nielson. Infinitary Control Flow Analysis: a Collecting Semantics for Closure
Analysis. In Symposium on Principles of Programming Languages, pages 332-345, 1997.

[10] TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003.

A Technical Proofs
Proof of Proposition 3.2.

Point 1 Implication < is straightforward. We prove = by reduction to absurd. Suppose
that R; s R, and R; is not a variant of Ry,. Then there is at least one rule which is
different in R, w.r.t. R, (or vice versa). Thus, by Equation (3.1), we can have rewriting
steps which employ that rule in B%[R ;] which cannot be in B**[R,] which is absurd.

Point 2 Similarly to previous point, but restricting to initial linear terms.

In the sequel we use the following results.

46

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Proposition A.1 ([8]) Suppose we have substitutions 0, p, p’ and sets A, B of variables such
that (B - dom(0)) urange(0) € A. If pt o = p't 4 then (6p)ta = (0p") 4.

Proposition A.2 ([8]) Let R be a TRS and suppose we have substitutions 0, p, p' and sets
A, B of variables such that the following conditions are satisfied:

pta R-normalized 0p'ta=pla Bc (A-dom(0))urange(014)
Then p't g is also R-normalized.

Proof of Theorem 3.5. We prove the thesis by induction on the length of the rewriting derivation
from tg to t,. The case of length zero is straightforward.

Suppose tg — t; — ... — t, is a rewriting derivation of length n > 0. We may assume,
without loss of generality, that var(l) n'V = @. We have (sono)lp, = Solpmo = 71 for some
substitution 7 with dom(7) € war(l). Let p:= 7 Uny. We have so|pu = Solpno = 17 = I, s0 Solp
and [are unifiable. Let 67 := mgu(solp,!) and 0 = 01 ar(s,|,)- Clearly dom(6:)u range(61) <
var(solp) U var(l). Moreover there exists a substitution ¢ such that

019 = p (1)

Now let (s1,01) :=lin(so[r61],). By Definition 3.4

S0 e, s1 (2)

o1, l-r

Let V4 := (V = dom(61)) U range(81) U dom(o1) and

n = (o1¥) My, (3)

Clearly dom(m) € V4. We have var(s1) = dom(o1) Uvar(so[rbh],) € dom(o1)vvar(se[lf1],) =
dom(o1) U wvar(sefr) € V1. Therefore var(s;)udom(61) € Vi. By (1) and (3) we have syo111 =
s1019 = so[1rb1]pY = so[r]pb1% = so[r]pp = sop[rp]p. Since V ndom(7) = @, we have

ply =mnoly. (4)
Likewise ft!yar(ry = 10 var(ry- Hence sou[ru], = sono[r], = to[r7], = t1. Thus
l1 = s101m1. (5)

Next we have to verify that (61m1) 1y = noly. By (3) and by Proposition A.1 we have that
(B1m) My = (B101¢)ty. By (1) and (4), (61m) My = (61019) . Since dom(oy1) ¢ V, we have
that (1o19) v = (019) Iy = plty =noty. Thus

(O1m)ty =noty. (6)

Now we show that n; is R-normalized. Since dom(n:) € Vi, it suffices to show that iy, is
R-normalized. Let B := (V —dom(6;1))urange(6;). Proposition A.2 yields the normalization
of m I 5. Recall that range(01) < var(solp) v var(l). Let = € range(61); since 6 is idempotent,
clearly = ¢ dom(61). If = € var(solp) € V then z € V — dom(6;) ¢ B. If z € var(l) then
x € var(l01) = var(solpf1) thus = € range(611y) € B. Thus range(#1) ¢ B and then V; =
Budom(oy). By this and (3), since 7; | 5 is R-normalized, n; Iy, is R-normalized as well.

47

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

By inductive hypothesis we have a term s,, and substitutions #’, ¢’ and 7,, such that

512" 5, (7)
tn = 8,0 N, (8)
(0n) vy = m v, (9)
Ny, 18 R-normalized. (10)

4 . il
Moreover, s; ==" s, and {; ?* t, apply the same rewrite rules at the same positions.
o', R

Let 6 := 610" and 0 = o10’. By (2) and (7) we obtain sg =* s,. By construction this

narrowing derivation makes use of the same rewriting rules at the same positions as the rewriting
derivation % ?* t,. It remains to show that (09,)y = noly. By (9) and Proposition A.1,

(010'n,) tv = (B1m) 1y Therefore, by (6), (6n,) v = (i) ty =m0ty O

Proof of Theorem 3.12. We prove == by reduction to absurd. Suppose that R, »s R, and
Fte LT(X,V). N[t inR,]] # Nt in R,]. This means that there is at least one derivation which
belongs to Nt in R,;] and not to Nt in R,] (or vice versa). Hence, there is at least a rule
which is not in common to the two programs. Thus R, #s R, which is absurd.

We prove <= by reduction to absurd. Suppose that V¢ e L7(X,V). N[tin R ;] = Nt inR,]
and R, #ss Ry. Then there is at least one rule which is different in R; w.r.t. R,. Thus, by
Equation (3.1) and Theorem 3.5, Nt in R ;]| # Nt in R,] which is absurd. O

Proof of Theorem 3.14. We prove the two inclusions separately. Inclusion 2 is immediate by
Definition 3.13.

Inclusion ¢ is proved by reduction to absurd. Assume that there exists a derivation tg —7;* tn
such that it does not belong to |[NM[tginR]|. Then, by Theorem 3.5, taken ng = €, there exists a
relaxed narrowing derivation of the form s 2 Sn. Note that, for each i € {1..n}, 6; and

o1 on
o; are just renaming, 7; =€ and t; = s;0;...09. Let n:=1ng = €. It is easy to see that there exists
n’ such that ' =6, 1t011...16,10,. By Definition 3.13, there exists a rewriting derivation
to ?* t;, where ¢t} = s;n’ for each i € {1..n}. Moreover, dom(oy) ¢ var(s;) for each k € {i +1..n}

and 0; = (05) M aom(o,) OF 0i = (05)dom(o,) for some j. Hence sin’ = s;0;...00. Thus t; = t; for
each i € {1..n} which is absurd. O

Lemma A.3 Let R a TRS, x €V, and t,s € T(X,V) such that they do not share variables and
zet,x¢s. Then, Nt in R] [/ N]s in R]] = N[t{z/s} in R]

Proof . Tt is sufficient to prove that, given d; € Nt in R] and Ts = Ns in R], if dy;2;Ts + d
then d € N[t{z/s} in R]. To this aim we will prove a stronger result: let m € 7(C,V), let
Ts = Nsin R], and for any d; € Nt in R] such that d;m;Ts + d then d € N[tn in R] where
n = ingu(s, 7). We proceed by structural induction on the proof tree.

rule 3.5a) straightforward.

rule 3.5b) By inductive hypothesis d; m; Ty - dyy, < dyy, € Ntpin R]. If it exists dy,, then
tulp = slp. Moreover, Iu’ such that p' = mgu(s’,n) and tu'|, = §'|,. Thus, tp 2% dyy, €

48

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

rule 3.5¢) By inductive hypothesis we have that di ;mo;Ts, + diyy <= di, € Ntuo in
Rly.-yde,smn; Ts, F dy,,, < dy,,, € N[tin in R], where po = mgu(so,m0), .., fn =
mgu(sy,,m™,). We know that exists a linearizing narrowing step t 28 to where 05 =
mgu(tlp,1),0 = 021 yar(ey, (8,0) = lin(rfz),tu = t[s],. We need to prove that it exists the
linearizing narrowing step tu e:”% tn+1. Since it exists mgu(t|,,!) and mgu(ty,td), then

it exists 03 such that 03 = mgu((ti)lp,1). Now let 0" = 031,41,y and (s',0") = lin(rfs),

then tu[s'], = t. Let us observe that t1 = topo,t2 = topopit, - tns1 = toplo - - - pn, Where
v o~ * * * *

fto = Mgu(s0,m0), - . -, fn = MGU(Sp, Tp). Let p* = po ... fin, then tyq =top™ = tp*[sp*], =

tulsp*], =t. O

O
Proof of Theorem 3.23. We proceed by structural induction on term t
t =z Immediate by Equation (3.6a).

t=o(tn)
5[[90(51))]]0[[72]} =
[by Equation (3.6b)]

= O[R](p(@n))lz1/ E[tilopr1] - - [2n/ Eltn]orry] =
[by inductive hypothesis |

= Np(@n) in R[22/ Nty in R]] .. [0/ Nt in R]] =
[by Lemma A.3]

= Mg(tn) in R]
O

Proof of Proposition 3.26. Tt is straightforward to prove that P[P] is monotone and finitary,
thus it is continuous. O

Proof of Theorem 3.30. We prove the two inclusions separately.

£) Let indicate with Oy, all derivations of O[R] with length < k. by induction we prove that
VEk O e P[R]1k.

k =0) immediate.

k >0) Vd e Ok, we have that d = f(z) 2% &' such that (by Theorem 3.23) d; € E[t]o,_, -

Thus, by monotonicity of £, we have that d; € E[t]pr]tr-1. By the definition of P,
d e P[Plpiryk-1 = P[R]1K

Thus, by Proposition 3.26, O[R] = Lgso Ok E Lkso P[R] 1k = F[R].

3) We need to prove that f(z,) %A> Elrory ENIS(Zn) in R]. By Theorem 3.23, £[r']or]
is a linearizing narrowing tree. Since 6 = mgu(f(zy,1))15 and (o,r") = lin(r), we can
conclude that f(Z;) = Elomry ENLS(Zn) in R].

O

49

Logical and Algebraic Views of a Knot Fold of a
Regular Heptagon

Fadoua Ghourabi', Tetsuo Ida? and Kazuko Takahashi'

! Kwansei Gakuin University, Japan
ghourabi@kwansei.ac.jp, ktka@kwansei.ac.jp
2 University of Tsukuba, Japan
ida@i-eos.org

Abstract

Making a knot on a rectangular origami or more generally on a tape of a finite length
gives rise to a regular polygon. We present an automated algebraic proof that making
two knots leads to a regular heptagon. Knot fold is regarded as a double fold operation
coupled with Huzita’s fold operations. We specify the construction by describing the
geometrical constraints on the fold lines to be used for the construction of a knot. The
algebraic interpretation of the logical formulas allows us to solve the problem of how
to find the fold operations, i.e. to find concrete fold lines. The logical and algebraic
framework incorporated in a system called EOs (e-origami system) is used to simulate the
knot construction as well as to prove the correctness of the construction based on algebraic
proof methods.

1 Introduction

From the early history of mathematics, the correspondence between geometry and algebra has
been recognized and has been the subject of constant study. In some sense, ancient geometry
was a mother of algebra. In particular, solving algebraic equations has been related to the
realm of Euclidean geometry. Early mathematicians, notably Khawarizmi and Khayyam, gave
geometrical meanings to the solutions of equations. Khayyam’s insight was that solutions of
certain cubic equations are points of intersections of conic sections [I]. Seven centuries later,
after freeing algebra from geometrical thinking, Wantzel proved that solving cubic solutions
is impossible by Euclidean tools, i.e. compass and straightedge [2]. Further tools have been
invented and used to perform constructions that are impossible by Euclidean tools.

Paper folding, i.e. origami, allows solving cubic equations and, hence, geometrical construc-
tions such as trisection of an arbitrary angle or a regular heptagon are realizable. Given an
origami paper, what we can do by hand is to construct creases and points. The creases are
constructed by folding the paper along the lines which we call fold lines. The points are con-
structed by the intersection of lines. Huzita presented a set of fold operations (known also as
Huzita’s axioms in literature) with which he showed how to obtain fold lines [3]. Huzita’s fold
operations are simple to perform by hand but powerful enough to solve cubic equations [4].

The geometrical construction of a regular heptagon has a unique history in that it belongs
to the famous classical impossible problems by Euclidean tools. Using paper folding, the con-
struction was shown to be possible. In this paper, we show another method of constructing a
regular heptagon based on an extension of Huzita’s fold operations by introducing knotting.
The constructions of regular n-gons (in particular of regular pentagon and heptagon) by making
knots have not been rigorously specified, and the observation that their constructions purport
to problems of solving geometrical constraints is missing.

50

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

We investigate the geometrical constraints of the knot fold towards constructions of regu-
lar polygons and proofs of the correctness of these constructions. The knot fold operation is
specified by an existentially quantified formula of the first-order predicate logic. The formula
is then translated into a set of algebraic equalities and disequalities, which then are solved by
specialized solvers based on Grobner basis theory and/or CAD (Cylindrical Algebraic Decom-
position). We have developed a computational origami system called Eos [5] using computer
algebra system Mathematica. In brief, it is an e-origami system which allows us to do wvirtual
origami. It has capabilities of constructing and visualizing origami geometrical objects, alge-
braically analyzing origami folds, and proving the correctness of origami constructions. Eos
supports Huzita’s fold operations and has been extended to include multi-fold operations. We
use E0S, to assist us with our mathematical study of the knot fold.

The rest of the paper is organized as follows. In Sect.[2] we give the notations that we use.
In Sect.[3] we present Huzita’s fold operations and their extensions. In Sect. 4] we explain the
geometrical properties of the knot fold. The construction of regular heptagon by E0S is shown
in Sect.[5] and its formal and algebraic proof is discussed in Sect.[6] In Sect.[7] we summarize
our results and point out a direction of further research.

2 Notations

In this paper, we restrict the use of geometrical objects to points, segments and lines. Points
are denoted by a single capital letter of the Latin alphabet, e.g. A, B, C, D, X, Y etc. Lines
are denoted by m, n, t, u and v. Let X and Y be two points, then XY denotes the line passing
through points X and Y. For brevity, we often write XY to refer to the line passing through X
and Y. We use the same notation to denote the segment between points X and Y. Although
the meaning of the notation XY should be clear from the context, we precede the notation XY
with either the word “segment” or the word “line” to emphasize which objects we are working

with. We also use)ﬁ} to denote a vector from point X to point Y. The distance between two
points X and Y is denoted by | XY|.

Since we use Cartesian coordinate system in this paper, a line is represented by a linear
equation ax + by + ¢ = 0 in variables x and y. The sets of all points and lines are denoted by IT
and L, respectively. Abusing the set notation, we use X € m to mean that point X is incident
to line m, and {X;, ..., X,} C m to mean that all the points X, ..., X, are incident to m.

When an origami is folded along a line m, some of the points are moved to superpose with
their reflections across m. We denote by X" the reflection of point X across line m.

A simple knot is denoted by K. K; denotes the ith knot. The notation K = (m,n,t) means
that the knot /C is defined by 3 fold lines (to be explained in Sect. [4]) m, n and ¢, and furthermore
K is obtained by folding along the lines following the order of their appearance in (m,n,t).

3 Origami Geometrical Construction

3.1 Huzita’s Fold Operations

By O we denote an origami. An origami O is supposed to represent a square sheet of paper
with four points on the corners and four edges that is subject to folding'. We call A, B, C
and D, the points on the corner. Some intersections of lines may not fit on the square paper.

1We could take O to be any convex polygon that can be constructed from a square sheet of paper. However,
this could be an unnecessary generalization in our study.

ol

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

As we want to work with these points, we consider O to be a sufficiently large (bounded) 2D
plane so that all the points and lines of interest are on . Huzita observed that the degree
of freedom of paper fold by fold lines can be made finite by specifying how certain points and
lines are superposed. Then, he gave the following operations (O1) ~ (O6), which serve as basic
operations in the geometrical construction of origamis. Operation (O7) was added, later, by
Justin [6]. We call collectively (O1) ~ (O7) Huzita’s fold operations.

(O1) Given two distinct points P and @, fold O along the unique line that passes through P
and Q.

(02) Given two distinct points P and @, fold O along the unique line to superpose P and Q.
(0O3) Given two distinct lines m and n, fold O along a line to superpose m and n.

(O4) Given a line m and a point P, fold O along the unique line passing through P to superpose
m onto itself.

(O5) Given a line m, a point P not on m and a point @, fold O along a line passing through
@ to superpose P and m.

(0O6) Given two lines m and n, a point P not on m and a point () not on n, where m and n are
distinct or P and @ are distinct, fold O along a line to superpose P and m, and @ and n.

(O7) Given two lines m and n and a point P not on m, fold O along the unique line to superpose
P and m, and n onto itself.

We note that the above statements are slightly different from the original ones. To formalize
the above statements with the view to rigorous geometrical construction, we restate Huzita’s
operations by carefully adding and removing side conditions of degeneracy and incidence [7].
In essence, treating origamis with a program requires rigorous specification of these operations.

Huzita’s fold operations determine fold lines by specifying superpositions of constructed
points and lines. In E0s, these specifications are formulas in a language of many-sorted first-
order predicate logic. By the algebraic interpretation of the formulas we derive polynomial
equalities. The problem of finding fold line(s) is therefore reduced to solving constraints ex-
pressed in multi-variate polynomials of degree 3 over the field of origami constructible numbers
[, 5]

3.2 Extensions

The contribution of Huzita’s fold operations is powerful enough to perform relevant geometri-
cal constructions by way of solving algebraic equations of degree up to 3. Examples of such
constructions are trisecting an arbitrary angle, constructing a regular heptagon, etc. Some
studies have explored possible extensions of Huzita’s fold operations in an attempt to increase
the power of paper folding, i.e. to solve higher degree equations.

Alperin and Lang proposed multi-fold method, where the origami is folded along more than
one fold line, simultaneously [9]. The idea is to find fold lines that are mutually dependent.
The multi-fold construction allows solving higher degree equations. We presented a construc-
tion method of angle trisection using 2-fold operation [5] and angle quintisection using 4-fold
operation [I0]. Although the p-fold method generates an arbitrarily high degree polynomial,
accurately folding an origami by p lines simultaneously would be difficult to do by hand even
for p = 2.

92

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

Folding polygonal knots has been traditionally used in Japan. For example, folding a broad
sash for a kimono by a pentagon is a common practice of daily life. However, it is unknown
when the knot fold was first mathematically studied. The earliest contributions of which we
are aware are those of Cundy and Rollett [1I], Brunton [12] and Sakaguchi [I3]. Cundy and
Rollett showed models of knots that make some regular polygons. Brunton elaborated the
mathematical study of the knot fold and showed that the number of necessary knots depends
on the number of the edges of the polygon.

4 Knot Fold

In order to determine the geometrical constraints of knot fold, we first analyze key geometrical
properties of a knot.

4.1 Geometrical Properties

—a
—8

(a) (b) (c)
Figure 1: Knot-fold of regular pentagon FEIHG

Let us examine the operation of knotting in Fig.[]l We make one simple knot by tying
together the two ends of the origami tape in Fig.[I(a)l Note that we use a rectangular shape
of an origami. When the height of the tape, i.e |AD| and |BC], is infinitesimal and both ends
of the paper are connected, the tape becomes a curve, i.e. an object of study in knot theory.
The knot with 3 crossings is the most basic one in knot theory. When we bring the height back
to the original without distorting the tape, except for folds, we obtain the polygonal knot. A
well fastened and well flattened knot becomes a polygonal shape as depicted in Fig. The
obtained polygonal shape exhibits a regular pentagonal form. As it is inferred from the knot
theory, making the knot in Fig. requires 3 folds along the lines m, n and ¢ that extend the
edges FE, GH and IE™, respectively.? The knot K = (m,n,t) is the one in Fig.

When the knot is entirely unfolded, we obtain the tape with the creases and the generated
points as shown in Fig.[2] We note the following geometrical properties. The vertices £, H and
I are lined up on the edge C'D whereas vertices F' and G are incident to the edge AB. The fold
along m passes through F' and superposes point H and line AB. Point F is the intersection
of m and C'D. Similarly, the fold line n passes through G, and the fold along n superposes
point E and line AB. Point H is the intersection of n and C'D. Note that fold lines m and n
are mutually defined. The fold is a 2-fold operation where m and n are defined simultaneously.
Line ¢ can be determined by applying operation (O5) of Huzita’s fold operation set. Namely,

2Recall that E™ is the reflection point of E across line n as defined in Sect.

93

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

i

Figure 2: Unknotted tape

line ¢ passes through I and superposes G and C'D. Note that the parameters of (O5), points I,
G and line C'D are considered with respect to the configuration before the fold. Refer to Fig.
The origami after the the 2-fold (i.e. along m and n) is shown in Fig. The purposes of
the fold along ¢ is, first, to construct the vertex I and, second, to fasten and lock the knot.

A purely geometrical proof that the knot fold creates a regular polygon is sketched in [I4].
In the following, we present a formal and automated algebraic proof that uses properties of the
operation of folding such as preservation of some of distances, parallelism, etc.

4.2 Geometrical Constraint Solving Approach

The question now becomes how to determine the fold lines m, n and ¢ such that the knot is
a regular pentagon. The proof that the knot fold gives rise to regular pentagons shows that
each of the fold line makes angles 2a = 2?” with the edges [14], where « = KGEH = LEHF.
In origami geometry, construction of angles using Huzita’s fold operations is not trivial. The
problem of constructing angles is boiled down to a sequence of fold steps which makes the
construction tedious where the number of intermediate points and lines is prone to increase.
Furthermore, not all angles are constructible by Huzita’s fold operations. The construction of
a regular 11-gon, whose interior angles are equal to ?—7{, is shown to be impossible by Huzita’s
fold operations [I5]. Hence, we carefully choose a specification of the knot fold that could
be extended towards the construction of regular n-gons, where n > 7. We are led to avoid
construction of angles in order to solve the knot fold construction problem. We consider the

knot fold construction as a geometrical constraint solving problem without use of angles.

Example: Regular pentagon

Our method of constructing a regular pentagon by the knot fold uses a multi-fold together
with Huzita’s fold operations. We consider the example in Fig.[I[] where we make a knot
K = (m,n,t). We try to define the geometrical properties of K in a systematic way so that
we can generalize it to the knot fold of regular n-gons, where n > 7. We observe the following
geometrical properties on m, n, t, £, ', G, H and I.

Points E and F are incident to m.

Points G and H are incident to n.

Points £, H and [are incident to C'D.

Points F' and G are incident to AB.

The fold line m superposes H and AB, i.e. H™ € AB.

The fold line n superposes E and AB, i.e. E" € AB.

The fold line ¢ passes through I and superposes G and CD. ie. I €t and Gt € CD.
The distances |EF|, |FG| and |GH| are equal.

o4

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

The above properties are described by the following first order logical formula ¢x.

¢ =3Im,n,t € LIE, F,G, H 1Tl
{E,F} cmA{G,H} CnA{E,H,I} CCDA{F,G} C ABA (1)
H™ e ABNE"€ ABANI€tNG'€ CD A |EF| = |FG| = |GH|

We used EOS to construct the regular pentagon in Fig.[I] It is possible to determine ¢ indepen-
dently from m and n. We consider the formula , that defines the 2-fold operation to solve
lines m and n, first.

Py =3Im,n e LIE, F,G,H el
{E,F}CcmAN{G,H} CnN{E,H} CCDA{F,G} C ABA (2)
H™ e ABAE" € ABA|EF| = |FG| = |GH|

The fold line ¢ is obtained by applying operation (O5). Namely, line ¢ passes through point
I and superposes point H and line AB.

We can prove automatically that the generated shape is a regular pentagon based on Grobner
bases theory. We will omit the proof of the correctness of the pentagon knot construction. In
the next sections, we will discuss the construction and the proof of a regular heptagon by the
knot fold in details.

5 Regular Heptagon by the Knot Fold

Brunton studied the construction of regular n-gons, where n > 3 [I2]. He showed that the
number of necessary knots is # — 1 in order to construct a regular n-gon, where ®(n) is
Euler’s totient function. Hence, to construct a regular heptagon, we perform 2 knots ; and
K2. We explained in Sect. [4] that a knot can be decomposed into 3-fold operations along three
fold lines. In the case of regular heptagon, we need 5 fold lines m, n, t, u and v, where
K1 = (m,n,t) and Ko = (v,u,m). Let EKJIHGF be the constructed regular heptagon.
Figure [3] exhibits the vertices of the regular heptagon after unfolding Ky and K. The fold
lines are extensions of edges of EKJIHGUF as follows. Lines m, n and t are the extension of
segment KF, IJ and GF™, respectively. Lines v and u are extensions of segments K E* and
HI™, respectively. Figure[d]shows a sketch of a regular heptagon with the lines m, n, ¢, u and
.

5.1 Geometrical Constraints

Figure 3: Unfolded regular heptagon EKJIHGF

Lines m and n of the knot K1 = (m, n,t) are defined by the following properties on m, n, ¢,
B, F,I,J,G and H.

95

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

Figure 4: Sketch of a regular heptagon EKJIHGF and lines m, n, t, u and v

e Points F and F' are incident to m.

e Points I and J are incident to n.

e Points F and J are incident to CD.

e Points F', I, G and H are incident to AB.

e The fold line m superposes I and CD, i.e. I"™ € CD.

e The fold line n superposes F' and C'D, i.e. F" € CD.

e The distances |EF|, |[IJ|, |[FG"|, |IH™| and |G"H™| are equal.?
We write formula ¢, in a similar fashion to the formula ().

o, =3Im,n,t € LIE F,1,J,G,H €1l
{E,F}YcmnA{l,J} CnA{F,I,G,H} C ABAN{E,J} C CDA
I"eCDAF"eCDAGEtAJ € ABA
|[EF|=|1J|=|FG"|=|IH™|=|G"H™|
Similarly to our discussion in Sect.[f.2] line ¢ can be constructed independently from lines m
and n. We therefore can separate the construction ¢ and use gbjcl in to solve for m and n,
first.
¢, =3Im,n3E,F,1,J,G,H €1l
{E,F}cmnA{l,J}CcnA{F,I,G,H} C ABAN{E,J} C CDA
I e CDNANF"™ e CDA
|EF|=|1J|=|FG"|=|IH™|=|G"H™|

(4)

Knot Ko = (v, u,m) is defined by the following properties on v, u, m, K, X, H, Y, Z and F.
e Points K and X are on v.
e Points H and Y are on w.
e Points K and Y are on CD.
e Points Z, H, F and X are on AB.
e The fold line v superposes H and CD, i.e. H” € CD.

3Refering to Fig. [3] distances |GF™| and |FG"| are equal due to the fact that reflection across line n preserves
the distances. Similarly, distances |HI™| and |IH™| are equal.

96

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

e The fold line uw superposes X and CD, i.e. X* € CD.
e The fold line m passes through F' and superposes Y and AB, i.e. Y™ € AB.
e The distances |[KX|, |HY|, |XF"|, |HZ"| and |F"Z"| are equal.
dx, =, u,me LIK, X,HY, Z, Fell
{K, X} cuvAn{H, Y} Cun{K, Y} CCDAN{X,H,Z,F} C ABA
H" e CDANX"e€eCDANF emANY™ e ABA
|KX|=|HY|=|XF" =|HZ|=|F"Z"|
However, referring to Fig. |3 points X, Y and Z are equal to points E*, I"™ and ((((G™)™)*)?).
From formula ¢ , F, I and G are obtained. It is possible to determine the fold lines that
make Ko in an easier way than solving constraints in formula , as we explain in the next
sub-section.

()

5.2 Construction by Eos

We first assume that the initial origami is a rectangle ABCD. We work with the Cartesian
coordinate system, and the coordinates of points A, B, C' and D are (0, 0), (wd, 0), (wd, ht)
and (0, ht), respectively. The width wd and the height ht can be taken arbitrary. Of course
wd is sufficiently larger than ht, so that the knot construction is feasible. For concreteness of
our presentation using E0S, we set wd = 900 and ht = 60. Furthermore, let E be an arbitrary
but fixed point on segment C'D. Let the coordinates of E be (400, ht) for simplicity and clarity
of the construction. Our objective is to construct a regular heptagon EK JIHGF by the knot
fold. Recall that the construction requires a 2-fold operation prior to Huzita’s fold operations
(see Sect. . The first folding step is the crucial one, i.e. the 2-fold operation.

In Eos, Huzita’s fold operations can be performed using function HO. The extension to the
multi-fold is natural as HO is implemented with the generality that allows the specification of
logical formulas describing the multi-fold. Multi-fold is realized by the call of the following
Mathematica function.

HO [H, Constraint — ¢]

‘H is a list of points on the origami which determine the faces to be moved. ¢ is a formula in the
first-order predicate logic. The formula ¢ specifies the constraints that the geometrical objects
concerned have to satisfy. In our example, the geometrical constraints that specify the 2-fold
operation are expressed by formula qS;Cl in . We write gZ);Cl in the language of E0s and call
HO as follows.

HO[{C, A}, Constraint — Fm,miLine In,n:Line I}, f:Point J4,i:Point Ij,j:Point Jg,g:Point Ih,h:Point
{E, frcmA{i,j} CnA{f,ig,h} CABAjECDA
i™ € CDA f" € CDA (6)
SqDistance[E, f] == SqDistanceli, j| == SqDistance[f, "] ==
SqDistance(i, h""] == SqDistance[g", h"™])]

The term SqDistance[X,Y] is the square of the distance between X and Y (ie. |XY|?).
Notations like “3,, m.rine”, “{E, f} C m”, “™”, “™ € CD” are EOS extension of Mathematica
syntax.

The evaluation of (@ generates 24 distinct cases of possible configurations of points F, G,
H, I and J and lines m and n. We deduce that the algebraic interpretation of the constraints,
as defined by qu;Cl, is a well constrained system of equations since we obtained finite number of
solutions. However, not all of the 24 cases are relevant to our construction problem. They may

o7

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

D E c D E C
] - { 3 s L,
A A
(a) Case 1 (b) Case 2
D E D E

::P'H'
)
o)
b‘“—'ﬂ
i\
= °n

(c) Case 3 (d) Case 4
D_ E c D 1;, C
X] IB
3 (| y—
(e) Case 5 (f) Case 6

Figure 5: 6 possible cases for lines m and n

correspond to degenerate cases that lead to failure of the proof by Grobner bases. In order to
eliminate the degenerate cases and also to get a reasonable number of cases, we further narrow
the search space of the configuration of points and lines. For that, we add the following extra
constraints.

E ¢ nAj¢ mASgDistance[F,i] == SqDistancelj, f] == SqDistance[F, h] == SqDistance][j, ¢]

The sub-formula E ¢ n A j ¢ m eliminates the degenerate cases where E and j are equal.
Sub-formula SqDistance[F,i| == SqDistance[j, f] == SqDistance[F, h] == SqDistancelj, g]
specifies further conditions on points E, F', G, H, I and J. We evaluate the following HO call.

HO[{C, A}, Constraint — Iy, m:LineIn,n:Line3f, fPoint i i:Point I, j:Point g,g:Point I, h:Point
e, ftcmna{i,j} cnA{f ig,h} CABAjECDA

"™ eCDA f"E€CDA

Squstance[E, f} == Squstance[i,]] == Squstance[f, g"] == (7)
SqDistance[i, h""*] == SqDistance[g", h""|A

E¢ nAj¢ mA Sqbistance|F,i| == SqDistance[], f] == SqDistance[F, h] == SqDistance[], g]),
MarkPointAt — {F,1,J,G,H}]

Consequently, we obtain 6 cases as shown in Fig. [5| Two of them, namely those in Fig. and
in Fig. lead to the construction of a regular heptagon. E0Os allows the user to interactively
choose the suitable case to proceed with the construction. Keyword MarkPointAt tells the Eos
how to label the existentially quantified points f, i, j, g and h. The outcome of folding in the
case 6 is shown in Fig. [f]

Next, we apply two operations (O1) to fold along the line FG™ and IH™ in Fig. |§| by calling
HO with suitable arguments. The lines FFG™ and TH™ are the fold lines t and u, respectively.
The results are shown in Fig. and Finally, given the origami of Fig. [7(b)| we construct
the remaining vertex K. We apply operation (O6) to obtain v, which brings H and G onto IC
and H B, respectively. Point K is the intersection of IC and line v. We obtain the heptagon

EKJIHGF in Fig.

98

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

Figure 6: Step 1: Folds along lines m and n

5.3 Algebraic Interpretation

This algebraic interpretation is used to “evaluate” the function calls of HO as well as the auto-
mated proof of the correctness of the construction. We take HO in as an example. To obtain
geometrical objects m, n, F, G, H, I and J, the formula in is transformed into a set of
algebraic equalities. Further details of the algebraic interpretation are explained in [8] and [5].

Let the coordinates of A, B, D and E be (0, 0), (900, 0), (0, 60) and (400, 60), respectively.
For an atomic formula ¢, let [¢] denote the set of polynomial relations that are the algebraic
meaning of ¢. An atomic formula is interpreted as a set of polynomial relations (equalities or
inequalities), and a term is given as a rational function. The set of (non-simplified) polynomial
equalities — is the algebraic interpretation of formula in .

{400a5 + 60b6 + ¢7 == 0, cT + a5x11 + b6y12 == 0,10 + a8x13 + b9y1ld == 0,
¢10 + a8x15 + b9y16 == 0, —900y12 == 0, —900y14 == 0,

—900y20 == 0, —900y18 == 0, —54000 + 900y16 == 0 (8)
900 (—2b6(c7 + abx13) + a5%y14 — b62y14
5000 + 200 (Z200(e =) ¥ o5y), (9)
ab“ + b6
900 (—2b9(c10 + a8x11) + a82y12 — b9%y12
5000 1 20 (=29 =) 2y n2) __ 7 (10)
a8 + b9

(400 — x11)? + (60 — y12)? == (x13 — x15)* + (y14 — y16)* ==
—2b9(cl 1 2018 — bo2y18\
<y12_ b9(c10 + a8x17) + a8°y18 b9y8) N

a82 + b92

2
I —a8%x17 + b92x17 — 2a8(c10 + b9y18)
<11 —
a82 + b9>2

2
s —2b6(c7 + a5x19) + a52y20 — b62y20 N
Y a52 + b62

2
i —a52x19 + b62x19 — 2a5(c7 + b6y20)
X — ==
a52 + b62

2
<—2b9(c10 + a8x17) + a8%y18 — b9%y18 —2b6(c7 + a5x19) + a5%y20 — b62y20) N

a82 + b9? a52 + b6>
2
—a82x17 + b92x17 — 2a8(c10 + b9y18) —a52x19 + b62x19 — 2a5(c7 + b6y20) (11)
a82 + 192 ab2 + b6> ’

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

400a8 + 60b9 + c10 # 0, c7 + asx15 + b6y16 # 0, (12)
(—400 4 x13)? + (=60 + y14)? ==
(x11 — x15)2 + (y12 — y16)? == (—400 + x19)? + (=60 + y20)* ==

(x15 — x17)2 + (y16 — y18)?, (13)
(=14 b9)b9 == 0, (—1 4 a8)(—1 4+ b9) == 0,1 + a8% # 0, (—1 + b6)b6 ==
(=1 +a5)(—1+4b6) == 0,1+ a5% # 0} (14)

A line a x + b y + ¢ = 0 is represented by (a,b, c), together with the constraint (—1 + b)b =
OA(=1+a)(=1+b) =0Aa®+1+# 0. Lines m and n are represented by (a5,b6,c7) and
(a8,09, c10), respectively. Hence, we have the equalities and disequalities in .

The equalities in (8] are the algebraic interpretation of the sub-formula {E, f} C mA{i,j} C
nA{f,i,g,h} C ABAj € CD. The first equation 400a5 + 6006 + ¢7 == 0 means that point E
at (400, 60) is incident to m defined by the equation abz + b6y + ¢7 = 0. Similarly, the rest of
the equations in are interpretations of f at (z11, y12) is on m, i at (13, y14) is on n, j at
(215, y16) ison n, fis on AB, i is on AB, h at (219, y20) is on AB, g at (17, y18) is on AB
and j is on C'D, respectively.

The reflection of point ¢ at (213, y14) across line m is the point i™ whose coordinates are

—ab%x13 + b6°213 — 2a5(cT 4 bbyl4) —206(cT + adbx13) + ab2yld — b6°yl4

(ab? + b6> ’ ab® + b6>

)

Equation @D states that ¢™ is incident to C'D represented by (0, 1, -60). Similarly, equation
is the algebraic interpretation of f* € CD. EO0S transforms rational form § == 0 to
p == 0. Note that in @7, q comes from coefficient of lines and ¢ # 0 is deduced from .

The disequalities of states that the coordinates of point F and j do not satisfy the
equation of lines n and m, respectively. E0S changes the disequalities into equalities by adding
slack variables introduced by Rabinowitch trick.

Now, we examine the equalities and (13)). [SqDistance[F, f]==SqDistancel[i, j]] gives
rise to the first equality in (11, namely (400—211)2+(60—y12)? == (z13—x15)?+(y14—y16)2,
where E at (400, 60), f at (x11, y12), i at (13, y14) and j at (215, y16). The rest of the
equalities in and equalities in are obtained in the same way.

By solving the above set of polynomial equalities for the coefficients of m and n and coor-
dinates of f, 7, j, g and h, we obtain the 6 cases in Fig.

6 Proof

6.1 Theorem to Prove

We prove the following theorem.

Theorem 6.1. Given the origami in Fig. we have
(a) |EF|=|FG|=|GH|=|HI|=|IJ|=|JK|=|KE|, and
(b) LEOF = LFOG = LGOH = LHOI = LI0J = LJOK = {KOFE = 2%, where O is the
center of EKJIHGF.

Let # = LEOF and o = €. Vector FTCﬁ is the rotation of ﬁ through 6 around center O.
To prove the theorem we show that the rotations of ﬁ through angles 26, 36, 46, 56, and

60

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

(a) () ()

Figure 7: Construction of (a) the edge GF (step 2), (b) the edge IH (step 3) and (c) vertex K
and final heptagon EK JIHG (step 4)

66 gives CT;I) , Iﬁ , 17 , J—K2 and ﬁ, respectively, and furthermore, that 6 = 27” We show that
after the construction, the following holds.

VaeC (aﬁ—ﬁzO:
0?EF —GH = 0N ®EF — HI = 0N a*EF — TJ = 0A (15)
WOEF —JE =0A®EF —~KE=0Aa” —1=0)

Let P be the geometrical constraints accumulated during the construction. Let C = Va €
C (C1 = C2ANC3ANCyNCs ACg ACq) be the formula . P and C form the premise and
conclusion of the proposition that we want to prove.

P=VaecC (61:>CQ/\63/\C4/\C5/\C(;/\C7) (16)
Formula is semantically equivalent to the conjunctions of the formulas f.

P =VaeC(C, = Co) (17)
P =VaeC(C,=Cs) (18)
P =VaeC(C=Cy) (19)
P=VaecC(C; =C5) (20)
P =VaeC(C = Cg) (21)
P =VaeC(C,=Cr) (22)

6.2 Proof by Eos

We show how the validity of is proved and the rest is achieved in a similar way. We add
the conclusion Yo € C C; = Cs by calling E0s function Goal as follows.

Goal [Vmaect,mplexes(VectorToComplex[aﬁ - ﬁ]==0 =

(VectorToComplex[onﬁ — Cﬁ}]==0))])

Expressions C; = aﬁ — }7465 = 0 and Cy = aQﬁ - Cﬁf) = 0 written in the language of
FEos are VectorToComplex[aﬁ — F@] and VectorToComplex[oﬂﬁ — C?{)]==O, respectively.

61

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

Function Goal adds the negation of the conclusion to the premise. By calling Goal, we obtain
P A (Yo € C (Cy = C2)). In order to translate P A =(Ya € C (C; = C3)) into algebraic form,
we fix the coordinate system to be Cartesian with points A, B, C, D and E as follows:

map = DefMapping[{{A, Point[0,-wd]},{B, Point[wd,0]},

24

{C,Point[wd, ht]}, {D,Point[0, ht|}, {E, Point[0,ht]}}, {}]& (24)
Without loss of generality, we set the size of the initial origami to be 2wd x ht, where the width
wd is taken to be arbitrary and the height ht is equal to 1. The point F is fixed at location
(0, ht). Finally, we check whether the reduced Grébner basis of the algebraic interpretation of
P A-(Va € C(C = Cy)) is {1} by calling function Prove.

Prove[“Knot Heptagon”,Mapping — map,GroebnerBasis —
{CoefficientDomain — RationalFunctions, (25)

MonomialOrder — DegreeReverselexicographic}]

The above call of function Prove tells EOS to compute Grobner basis of the polynomial set
[PA-(VaeC(C; =Cy))] . Let V be the set of variables in [P A =(Va € C (C; = C2))]. The
Grobner basis computation is carried out in the domain of polynomials whose variables are in
V\ {wd} and whose coefficients are in functions of Q(wd). E0S computes Grobner basis and
generates a proof document (whose title is given by the first argument of the call of Prove) [16].

6.3 Proof Results

The proofs of f are successful. The CPU time used for Grobner basis computation on
Mac OS X (Intel Core i7 8G 2.4GHz) machine varies from 69.236984 seconds (for proving (17))
to 1994.889588 seconds (for proving (20))).

7 Conclusion

We presented the construction of a regular heptagon using the knot fold. Our method consists
in applying 2-fold operation coupled with Huzita’s fold operations. The fold lines that make
the knot fold are determined by solving geometrical constraints. We further showed the proof
of the correctness of the construction of a regular heptagon based on Grébner bases.

Note that using Huzita’s fold operations (O1) ~ (O7), a regular heptagon is constructible.
With Eos we need 9 Huzita’s fold operations and more than 10 auxiliary operations such as
unfolding and marking supporting points. Further investigation of the geometrical constraints
by the knot fold is required to construct regular 11-gon, which is impossible by Huzita’s fold
operations.

Another issue that should be investigated in the future research is the rigidity of the knot
fold. We need to define the notion of rigidity in mathematical terms in this knot fold as well
as in more general origami that may involve 3D constructions.

7.1 Acknowledgments

We thank Stephen Watt of Western Ontario University for drawing our attention to the knot
fold. This work is supported by JSPS KAKENHI Grant No. 25330007. The first author of this
paper is supported by a postdoctoral fellowship at Kwansei Gakuin University.

62

Knot Fold of a Regular Heptagon F. Ghourabi, T. Ida, and K. Takahashi

References

1]
2]
3]
(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]
[13]

[14]

[15]
[16]

D. S. Kasir. The Algebra of Omar Khayyam (English translation of Khayyam’s original work
Al-Jabr W’al Muqdbalah). Teachers College Press, 1931.

P. L. Wantzel. Recherches sur les moyens de connaitre si un probleme de géométrie peut se résoudre
avec la regle et le compas. Journal de Mathématiques Pures et Appliquées, pages 366—-372, 1837.
H. Huzita. Axiomatic Development of Origami Geometry. In Proceedings of the First International
Meeting of Origami Science and Technology, pages 143—158, 1989.

R. C. Alperin. A Mathematical Theory of Origami Constructions and Numbers. New York Journal
of Mathematics, 6:119-133, 2000.

T. Ida, A. Kasem, F. Ghourabi, and H. Takahashi. Morley’s Theorem Revisited: Origami Con-
struction and Automated Proof. Journal of Symbolic Computation, 46(5):571 — 583, 2011.

J. Justin. Résolution par le pliage de I’équation du troisieme degré et applications géométriques. In
Proceedings of the First International Meeting of Origami Science and Technology, pages 251-261,
1989.

F. Ghourabi, A. Kasem, and C. Kaliszyk. Algebraic Analysis of Huzita’s Origami Operations and
their Extensions. In Automated Deduction in Geometry, LNAI/LNCS. Springer, 2013. (to appear).
F. Ghourabi, T. Ida, H. Takahashi, M. Marin, and A. Kasem. Logical and Algebraic View of
Huzita’s Origami Axioms with Applications to Computational Origami. In Proceedings of the
22nd ACM Symposium on Applied Computing (SAC’07), pages 767-772, Seoul, Korea, 2007.

R. C. Alperin and R. J. Lang. One-, Two, and Multi-fold Origami Axioms. In Origami*, Pro-
ceedings of the Fourth International Meeting of Origami Science, Mathematics, and Education
(4OSME), pages 371-393, 20009.

F. Ghourabi, T. Ida, and H. Takahashi. Computational Origami of Angle Quintisection. In
Proceedings of the Workshop in Symbolic Computation in Software Science (SCSS2008), RISC
Technical Report Series, 08-08, pages 57—68, 2008.

H. M. Cundy and A. P. Rollett. Mathematical Models. Oxford University Press, 1961.

J. K. Brunton. Polygonal Knots. The Mathematical Gazette, 45(354):299-301, 1961.

K. Sakaguchi. On Polygons Made by Knotting Slips of Paper. Technical Report of Research
Institute of Education, Nara University of Education, 18:55-58, 1982.

J. Maekawa. Introduction of the study of knot tape. In Origami®, Proceedings of the Fourth
International Meeting of Origami Science, Mathematics, and Education (50SME), pages 395—
403, 2011.

D. A. Cox. Galois Theory. Wiley-Interscience, 2004.

F. Ghourabi, T. Ida, and A. Kasem. Proof Documents for Automated Origami Theorem Proving.
In Automated Deduction in Geometry, volume 6877 of LNCS, pages 78-97. Springer, 2011.

63

Automated Verification of Equivalence on
Quantum Cryptographic Protocols

Takahiro Kubota!, Yoshihiko Kakutani!, Go Kato?,
Yasuhito Kawano? and Hideki Sakurada?

! The University of Tokyo, Tokyo, Japan
{takahiro.k11_30,kakutani}@is.s.u-tokyo.ac.jp
2 NTT Communication Science Laboratories, Kanagawa, Japan
{kato.go,kawano.yasuhito,sakurada.hideki}@lab.ntt.co.jp

Abstract

It is recognized that security verification of cryptographic protocols tends to be difficult
and in fact, some flaws on protocol designs or security proofs were found after they had been
presented. The use of formal methods is a way to deal with such complexity. Especially,
process calculi are suitable to describe parallel systems. Bisimilarity, which denotes that
two processes behave indistinguishably from the outside, is a key notion in process calculi.
However, by-hand verification of bisimilarity is often tedious when the processes have many
long branches in their transitions. We developed a software tool to automatically verify
bisimulation relation in a quantum process calculus qCCS and applied it to Shor and
Preskill’s security proof of BB84. The tool succeeds to verify the equivalence of BB84 and
an EDP-based protocol, which are discussed in their proof.

1 Introduction

Security proofs of cryptographic protocols tend to be complex and difficult to verify. This
fact has been recognized in the classical cryptography and there is a line of researches to deal
with the complexity of verification [T} [2]. Since by-hand proofs are prone to human error and
time consumption, efforts have been put into automating security proofs and verification in the
classical cryptography. Security proofs are also complex in the quantum cryptography, where we
must also consider attacks using entanglements. The first security proof of BB84 quantum key
distribution (QKD) protocol by Mayers [3] is about 50 pages long. After that paper, researchers
have been seeking simpler proofs [4, [5]. Since QKD is one of the closest application to practice
in the quantum information field, it is important to examine QKD systems’ security formally
and make it machine-checkable.

There are several formal frameworks for quantum protocols. Feng et al. developed a process
calculus qCCS [6]. In this calculus, a protocol is formalized as a configuration. A configuration
is a pair of a process and a quantum state corresponding to quantum variables. Weak open
bisimulation relation on qCCS configurations is defined. Weakly open bisimilar configurations
have the same transitions up to internal ones and reveal the identical quantum states to the
outsider (adversary) in each step. The relation is proven to be closed by parallel composition of
processes. A use case of a process calculus for formal verification is to prove weak bisimilarity
of implementation and specification described as configurations. qCCS has been applied to
quantum teleportation, superdense coding and BB84 protocols.

To extend application of formal methods to security proofs, we applied qCCS to Shor and
Preskill’s security proof of BB84 [4] in the previous paper [7]. In Shor and Preskill’s security
proof, security of BB84 is proven to be equivalent to that of another protocol based on an
entanglement distillation protocol (EDP), and then the latter is proven to be secure. We

64

Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

formalized BB84 and the EDP-based protocol as configurations and proved their bisimilarity
by hand. However, by-hand verification of bisimilarity is often tedious when configurations
have many long branches in their transitions. In this paper, we present a software tool to verify
bisimilarity of given two qCCS configurations. There are two main contributions of our work.

First, we implemented a software tool that formally verifies bisimilarity of qCCS configu-
rations without recursive structures. A protocol possibly takes security parameters for various
purposes. As for BB84, it takes two parameters: one determines the length of qubits which
Alice sends to Bob in the first quantum communication, and the other is for tolerated error-rate
in the eavesdropping detection step. Such parameters are passed to the verifier as symbols and
are interpreted appropriately. In our verifier’s framework, quantum states and operations are
described as symbols. Since attacks from the adversary are also treated as symbols, our verifier
can deal with unspecified attacks. To examine the behavioural equivalence, adversary’s views
denoted by partial traces must be checked to be equal in each step of a protocol. The verifier
automatically checks the equality using user-defined equations.

Second, we applied our verifier to Shor and Preskill’s security proof of BB84 [4]. The verifier
takes as input two configurations denoting BB84 and the EDP-based protocol, and equations
about the properties of error-correcting codes and measurement of the halves of EPR pairs.
The verifier succeeds to verify the bisimilarity of the configurations of the two protocols.

The package of the verifier is available from http://hagi.is.s.u-tokyo.ac.jp/ tk/qccs

verifier.tar.gz. It includes a user manual and and example scripts in the folders doc and
scripts.
Related Work The authors of qCCS presented the notion of symbolic bisimulation for quan-
tum processes [8]. A purpose is to verify bisimilarity algorithmically. They proved the strong
(internal actions should be simulated) symbolic bisimilarity is equivalent to the strong open
bisimilarity, and actually presented an algorithm to verify symbolic ground (outsiders do not
perform quantum operations adaptively) bisimilarity. Since our purpose is to apply a pro-
cess calculus to security proofs where adversarial interference must be taken into account, we
implemented a tool that verifies weak open bisimilarity on the basis of the original qCCS [6].

2 The Verifier

Formal Framework The verifier employs a sublanguage of qCCS, where the syntax of recur-
sion and the use of classical data are restricted. The framework is still expressive, because our
target protocols do not need recursion and classical probability distributions can be represented
as quantum states denoted by diagonal operators. The syntax of the processes in the verifier is
as follows.

P ::= discard(q) | ¢?q.P | c!q.P | meas b then P saem | op[¢].P | P||P | P\L

Intuitively, discard (§) means termination of a process keeping a sequence of quantum variables
q secret. clg.P sends a quantum variable g to a channel ¢ and then executes P. c?q.P receives
quantum data to a variable ¢ from a channel ¢ and then executes P. meas b then P saem
measures a quantum bit b and executes P if the outcome is 0 or terminates if the outcome is
1. op[4].P performs a superoperator op to quantum variables ¢ and then executes P. P||P’
executes P and P’ in parallel. P\L, where L is a set of channels, executes P keeping channels
in L private. Let qv(P) be the set of quantum variables that occur in a process P. clq.P,
meas b then P saem, op[¢].P and P||P’ are defined only if ¢ ¢ qv(P), b € qv(P), § C qv(P)
and qv(P) N qv(P’) = B respectively. In our verifier, each quantum variable is defined with its

65

Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

qubit-length that is indicated by a natural number symbol declared beforehand. The adoption
of natural number symbols is important to treat security parameters in the verifier. Quantum
states are represented as character strings called environments. The syntax of the environments
is given as follows.

pu=XI[q | opl@l(p) | p*p | projildl (p) | TrLql (p)

Let qv(p) be the set of quantum variables that occur in an environment p. X [¢] means
that quantum variables § are in a quantum state X. op[q] (p) is a quantum state after the
application of operation op to quantum variables ¢ in an environment p. p * p’ represents the
tensor product of p and p’ but p*p’ and p’ * p are identified in the verifier. p*p’ is defined
only if qv(p) Nqv(p’) = 0. proji[b] (p) means the reduced density operator |i){i|pp|?)(i|p with
i € {0,1}. Tr[q] (p) means the partial trace of p by ¢. We call a pair (P, p) of a process P
and an environment p a configuration only if qv(P) C qv(p), because quantum states of qubits
occurring in P must be defined in p. For example, an agent that sends the halves of n EPR pairs
to the outside is formalized as a configuration (c!q.discard(r),EPR[q,r]*ANY[s]), where the
quantum variables q, r are of the qubit length n and the quantum variable s is defined with an
arbitrary qubit-length. EPR[q,r] is interpreted to (]00)(00[+ [00)(11] -+ [11)(00] + [11)(11[)$7
and ANY[s] is arbitrarily for adversary’s density operators.

A labelled transition system based on the original one [6] is implemented in the verifier.
Transitions are interpreted as interactions between configurations and the adversary. For exam-

ple, the configuration above performs a transition (c!q.discard(r),EPR[q,r]*ANY[s]) cla,
(discard(r),EPR[q,r] *ANY[s]), where the adversary can recognize that the quantum vari-
able q is sent through the channel c. Transitions caused by internal actions such as quantum
operations, internal communications and conditional branches are labelled 7. The label 7 intu-
itively means that the action is invisible from the outside. The transition rules of conditional
branch are (meas b then P saem,p) — (P,projO[bl(p)) and (meas b then P saem,p) —
(discard(qv(P)),proj1[b]l (p)). These may decrease the trace of the density operator de-
noting a quantum state. Since the trace indicates the probability to reach to a configuration,
we can restore the probability from configurations to conditional branches. We identify the
branches that are evoked by an identical quantum variable. Eventually, probability is absorbed
in quantum states and excluded from the transition system.

The transition system of the original qCCS is probabilistic, which is caused by the mea-
surement construction M|g; z] in the syntax [6]. It measures an observable M of a quantum
variable ¢ and stores the result in a classical variable x. There are two ways to formalize quan-
tum measurement since one can be also formalized as a superoperator. Because only M|g; z]
evokes a probabilistic branch, processes with different formalization of measurement are not
bisimilar in general. We proposed a criteria how to select the way in our previous work [7]; we
should use M|g; x| if a process behaves differently according to the measurement. For example,
the case where a process performs different labeled transitions is typical. Otherwise, we should
formalize measurement by a superoperator. In our verifier’s framework, M|q; x| cannot be writ-
ten independently. Instead, the syntax meas b then P saem is the composition of M[g;x] and
the conditional branch in the original qCCS. This restriction and the conditions on quantum
variables prevent the situation where two configurations with the different ways of formalization
of measurement are not bisimilar.

Procedure to Check Bisimulation Weak bisimulation relation [6] is defined on qCCS con-
figurations. Roughly speaking, weakly bisimilar configurations (1) perform identical labelled
transitions up to 7 transitions and (2) reveal identical density operators whatever operations the
adversary performs to her quantum variables. The adversary’s view is denoted by the partial

66

Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

trace Tr[¢] (p) when the global quantum state is p and ¢ are the quantum variables that are
not revealed to the adversary. The verifier takes as input two configurations and user-defined
equations on environments and returns ¢rue or false. It is designed to be sound with respect
to the original qCCS, that is, two configurations are bisimilar if the verifier returns ¢rue with
them and some valid equations. This is because

Regs = {(C, D) | The verifier returns true, given C, D, and egs.}

is a bisimulation relation for all valid equations egs. Precisely, R¢4s is converted accordingly
because meas b then P saem is decomposed to M [b; z] and a conditional branch, which performs
a two-step transition in the branch with = 0. The recursive procedure to verify bisimilarity
is as follows. Since the transitions of the processes written in our sublanguage are finite, the
procedure always terminates.

1. The procedure takes as input two configurations (P, po), (Qo, 0o) and user-defined equa-
tions on environments.

2. If Py and Qg can perform any 7-transitions of superoperator applications, they are all
performed at this point. Let (P, p) and (Q, o) be the obtained configurations.

3. Whether qv(P) = qv(Q) is checked. If it does not hold, the procedure returns false.

4. Whether Trlqv(P)] (p) = Trlqv(Q)] (o) is checked with user-defined equations. The
procedure to check the equality of quantum states are described in the next subsection.
If it does not hold, the procedure returns false.

5. A new superoperator symbol &€ [qv(p) — qv(P)] that stands for an adversarial operation
is generated.

6. For each (P’,p’) such that (P,&[qv(p) — qv(P)1(p)) = (P’,p'), the procedure checks
whether there exists (Q’,0’) such that (Q, € [qv(c) — qv(Q)] (0)) 555 (Q’,0’) and
the procedure returns true with the input (P’, p’) and (@', ¢’). If there exists, it goes to
the next step 7. Otherwise, it returns false.

7. For each (Q',0’) such that (Q,E[qv(c) — qv(Q)]1(a)) = (Q’,0”), the procedure checks
whether there exists (P, p’) such that (P,&[qv(p) — qv(P)]1(p)) >S5 (P, p') and
the procedure returns true with the input (Q’,o’) and (P’, p'). If there exists, it returns
true. Otherwise, it returns false.

The step 2 prominently reduces the search space. Indeed, (op,[q].P||op,[7].Q,p) and
(P|Q, F},, (€L, (p))) are bisimilar, and F, (€3, (p)) = €3, (F2,,(p)) holds because ¢ N7 = ()
holds. Therefore, superoperators that can originally cause 7 transitions are disposed.
Equality Test of Quantum States To test the equality of given two environments, the verifier
checks whether they are transformed to the same form. There are two kinds of transformations,
trace out and application of user-defined rules.

Partial trace is significant to test the equality of quantum states. For example, two different
quantum states opl[q] (X[ql*Y[r]*Z[s]) and op2[r] (U[q]l*V[r]*Z[s]) have the same par-
tial trace Z[s] under Tr([q,r] for arbitrary interpretation of the superoperators op1, op2 and
the quantum states X,Y,Z,U, V. The verifier eliminates symbols of superoperators and quantum
states according to the partial trace rules below.

TrlGl (€171 (p) = Trlgl (p) if 7 € § (1), Trldl (p) = Trl7l (Trl3]1(p) if g=7U3 (2),
Trlgl (€71 () = ELF (Tr] (o) if GNi=0 (3), Trlgl(pxpsz#0) =pxo (4).

67

Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

If 7 C ¢ holds, Tr[g] (E[71(p)) is rewritten to Tr[q] (p) eliminating £[7] by the rule (1);
otherwise, by the rules (2) and (3), the trace-out symbol with quantum variables that are disjoint
to targets of superoperator goes inside of it’s application. After eliminating superoperators,
quantum states are traced out by the rule (4).

If an objective quantum state has a part that matches to the left-hand side of a user-
defined equation, the part is rewritten to the right-hand side. To apply a user-defined
equation, the verifier automatically solves commutativity of superoperators or partial traces
that are applied to disjoint sets of quantum variables. For example, if the objective
quantum state is Tr[ql] (hadamard[s] (EPR[q,r]*X[s])) and a user defines an equation
Tr[q] (EPR[q,r])=Tr[q]l (PROB [q,r]) (El), the application goes as follows.

Tr[q] (hadamard[s] (EPR[q,r]*X[s])) = hadamards[s] (Tr[ql (EPR[q,r]1*X[s]1)) (by 5)
= hadamard[s] (Tr[q] (PROB[q,r]*X[s])) (by El)

Since the trace-out rules may have become applicable after applications of user-defined rules,
the trace-out procedure is applied again. In each opportunity to test the equality of quantum
states, each user-defined equation is applied only once. This guarantees whatever rules a user
defines, the equality test terminates.

3 Application to Shor and Preskill’s Security Proof

The two protocols BB84 and the EDP-based protocol [4] are formalized as qCCS configurations
on the basis of our previous work [7]. Readers can find the script scripts/shor-preskill.scr
in the package. The interpretations of the symbols of the quantum states and the superoperators
that are used in the formalization are also included as doc/shor-preskill_symbols.pdf.

On Channels As in general QKD protocols, three kinds of channels are used: public quantum
channels, private classical channels and public no-interpolate classical channels. Since the
syntax has channel restriction P\ L, formalization of private channels is straightforward. Public
no-interpolate classical channels are realized by copying the data. If a quantum variable ¢ where
a classical value is assigned is sent through a public no-interpolate channel ¢, this is formalized
as ...copylg,Q].clq.d'Q..\{...,c, ...}, where Q is a new quantum variable, a superoperator
copy copies the value of ¢ to @ and d is a new non-restricted channel. ¢ will securely sent
through the restricted channel ¢ and an adversary obtains the same value accessing) through
a public channel d. Note that the value of ¢ can be copied because it is classical.

Equations for the Proof We defined 10 equations in the verifier. Equations are interpreted
to those on density operators and proven correct. For example, the equation below tells the
verifier that the halves of EPR pairs are indistinguishable from the uniform distribution. This
is used to check that the adversary’s views are identical in the EDP-based protocol and BB84
before Alice in the EDP-based protocol measures her halves of the check qubits.

equation E7
Tr[q1_A] (EPR[q1_A,q2_A]) = Tr(ql_A] (PROB[ql_A,q2_Al)
end

The user-defined rule above is interpreted to an equation tryq; 4y (|00)(00[4[00)(11|+ |11)(00] 4
[11) (1) & q2.a = triqr_ay (|00)(00] + [11)(11])&", 45 s The other rules are related to CSS codes,
partial traces and measurement of quantum states. We obtained them by formalizing the
equality of quantum states that are discussed in the original proof [4].

It is actually natural to express quantum states as symbols with some equations in inputs. In
cryptographic protocols, the dimension of quantum states and superoperators cannot be fixed

68

Automated Verification of Equivalence on Quantum Cryptographic Protocols Kubota et al.

as a certain number as they depend on security parameters. In addition, qubits going through
public channels are potentially interpolated by the adversary. Since arbitrary computation
by the adversary must be considered, it should be described as an unspecified superoperator.
Therefore, quantum states are difficult to be expressed as concrete matrices, which can be
numerically analyzed. Although quantum states are treated symbolically, automatic calculation
of partial traces is still possible focusing on occurrence of quantum variables in environments.
Experiment Result We ran the verifier with the input of shor-preskill.scr. We used a
note PC with Intel Core i5 CPU M 460 @ 2.53GHz and 1GB memory. The transition tree of
the EDP-based protocol has 621 nodes and 165 paths, and that of BB84 has 588 nodes and 165
paths. The verifier checked the bisimilarity of the two protocols in 15.98 seconds. The recursive
procedure was called 951 times.

4 Conclusions

We presented a software tool to check bisimulation of qCCS configurations and applied it to a
security proof of BB84 [4]. In security proofs, equivalence on protocols is often discussed. It
can be described as bisimulation relation but it is nearly impossible to check by hand if state
transitions of processes have many long branches. In addition, the equality of an adversary’s
view between two protocols has to be checked in each step. An adversary’s view is calculated
from a global quantum states, which is possibly denoted by a huge matrix. The verifier does
exhausting parts of proofs of behavioral equivalence, namely, it checks the correspondence of
all state transitions up to invisible ones and an adversary’s view up to equations. On the other
hand, a user only have to examine the correctness of formalization of protocols and validity
of equations that he defines. It could be difficult to find all appropriate equations for a proof
immediately. The verifier is also able to show environments and/or processes when the check
procedure returns false. With the information, a user can modify equations to input.

Future Work We plan to define probabilistic bisimilarity, which denotes that configurations be-
have indistinguishably up to some probability. This will be helpful to prove “indistinguishability
up to negligible probability” of protocols. It is quite common argument in the cryptography.

References

[1] S.Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181, 2005.

[2] B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally sound mechanized proofs
for basic and public-key kerberos. In Proceedings of the 2008 ACM symposium on Information,
computer and communications security, pages 87-99, 2008.

[3] D. Mayers. Unconditional security in quantum cryptography. J. ACM, 48:351-406, May 2001.

[4] P. W. Shor and J. Preskill. Simple proof of security of the bb84 quantum key distribution protocol.
Phys. Rev. Lett., 85(2):441-444, Jul 2000.

[5] H.-K. Lo and H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long
distances. Phys. Rev. Lett., 283(5410):2050-2056, Mar 1999.

[6] Y. Deng and Y. Feng. Open bisimulation for quantum processes. In Theoretical Computer Science,
volume 7604 of LNCS, pages 119-133. 2012.

[7] T. Kubota, Y. Kakutani, G. Kato, Y. Kawano, and H. Sakurada. Application of a process calculus
to security proofs of quantum protocols. In Proceedings of WORLDCOMP/FCS52012, Jul 2012.

[8] Y. Feng, Y. Deng, and M. Ying. Symbolic bisimulation for quantum processes. arXiv preprint
arXiv:1202.3484, 2012.

69

A Modified Parallel F4 Algorithm for Shared
and Distributed Memory Architectures

Severin Neumann

Fakultét fiir Mathematik und Informatik
Universitat Passau, D-94030 Passau, Germany
neumans@fim.uni-passau.de

Abstract

In applications of symbolic computation an often required but complex procedure is finding
Grobner bases for polynomial ideals. Hence it is obvious to realize parallel algorithms to
compute them. There are already flavours of the F4 algorithm like [4] and [13] using the
special structure of the occurring matrices to speed up the reductions on parallel architec-
tures with shared memory. In this paper we start from these and present modifications
allowing efficient computations of Grébner bases on systems with distributed memory. To
achieve this we concentrate on the following objectives: decreasing the memory consump-
tion and avoiding communication overhead. We remove not required steps of the reduction,
split the columns of the matrix in blocks for distribution and review the effectiveness of the
SIMPLIFY function. Finally we evaluate benchmarks with up to 256 distributed threads of
an implementation being available at https://github.com/svrnm/parallelGBC.

1 Introduction

Parallelization is one of the most used methods to improve the performance of existing software.
But it should be introduced systematically. One chooses the most time-consuming segments of
a program and tries to improve these first. In applications of symbolic computation an often
required but complex procedure is finding Grobner bases for polynomial ideals. Therefore it
is obvious to realize parallel versions of algorithms to compute them. Although it is possible
to use Buchberger’s algorithm [14], we favour Fauggre’s algorithm F4 [3] since the reduction is
done due to matrix transformation which is known for being well parallelizable.

There are already parallel flavours of F4 like [4] and [I3] using the special structure of
the occurring matrices to speed up the reduction. Both approaches have been developed for
multicore and multiprocessor systems with shared memory. For these systems the number of
parallel processing units is limited and currently there are not many platforms serving more
than 64 processors. Compared with that clusters of several suchlike computers can have an
theoretical unlimited number of processors. This advantage comes with the downside of dis-
tributed memory: realizing algorithms requires to consider that data has to be transfered. By
that memory duplication and communication overhead are introduced.

In the following we start from the mentioned developments for shared memory systems
and present modifications which will finally allow efficient computation of Grobner bases also
for systems with distributed memory. To achieve this we have concentrated on the following
objectives: reducing the memory consumption and avoiding communication overhead. We
remove needless steps of the reduction, split the columns of the matrix in blocks for distribution
and review the effectiveness of the SIMPLIFY function.

At the end we will evaluate benchmarks of an implementation using eight distributed nodes
having 32 processor cores each. The source code is available at https://github.com/svrnm/
parallelGBCl

70

https://github.com/svrnm/parallelGBC
https://github.com/svrnm/parallelGBC
https://github.com/svrnm/parallelGBC

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

2 Notations

In the following we will use the notation of [I1]. Hence K denotes a field and K[:cl, .., &y] the
polynomial ring over K in n indeterminantes. T™ is defined as the set of all terms z{* -... - 2%».
o is a term ordering on this set. For a polynomial f € Klzq,...,2,] with f = >"1" ¢ - t;,

where ¢; € K and t; € T" for all i, we call the set Supp(f) := {¢1,...,tm} support of f. Then
the leading term of f is defined as LT, (f) := tx = max,(Supp(f)) and the leading coefficient
is LC,(f) == cy.

Let F :={f1,..., fs} € K[z1,...,2,] \ {0} be a set of polynomials. Then I := (F) is the
ideal generated by F. The elements of the set B := {(4,5) | 1 < i<] < s} are called crltlcal

pairs. For each critical pair exists an S-polynomial S; J = 1o (3 fi — i
with ¢ ; := lem(LT, (J:()fiL)T « (i) and £ = lCm(LTLI({J() i 2 (fi))

The set F is a o-Grobner basis of [if for all critical pairs the S-polynomials can be reduced
to zero by the elements of F with respect to o.

If not stated otherwise we will use the degree reverse lexicographic termordering (DegRevLex)
and the finite field with 32003 elements (F32003) for examples and benchmarks.

3 Preliminaries

The F4 algorithm was introduced by Faugere in 1999 [3]. By using the special structure of
the matrix and column-based parallelism Faugere and Lachartre introduced a parallelization
improving the performance remarkable [4]. We have presented another modification [13] for F4
speeding up the computation by row-based parallelization.

In the following we give a quick summary about Groébner bases computation and the men-
tioned developments. For a given set of polynomials F := {fi,..., fs} € K[z1,...,2,] \ {0}
generating an ideal I = (F) a o-Grobuer basis G = {g1,...,9:} € K[x1,...,2,] can be com-
puted using the F4 algorithm by the following four steps:

1. Create and update the set of critical pairs B using Gebauer’s and Méller’s UPDATE func-
tion [6]. This function guarantees that the leading terms ¢; ; - f; = t;,; - f; of the minuend
and subtrahend of the S-polynomial is unique among the critical pairs.

2. Select a subset of all critical pairs for reduction using the normal or the sugar cube
strategy [7]. At this point the details are not relevant. For our benchmarks we chose the
sugar cube strategy. Although we have to mention that our implementation supports the
normal strategy and for some of the polynomial systems we used as example this strategy
might perform better.

3. Symbolic preprocess the selected pairs to obtain a coefficient matrix representing the
S-polynomials. The matrix is additionally filled with rows representing reduction polyno-
mials for each term which can be reduced using elements of the partial computed Grobner
basis G. The SIMPLIFY method can be applied to reuse results of previous reductions.

4. Reduce the generated matrix until row-echelon form. This is equivalent to top-reducing
the S-polynomials. All non-zero rows of this matrix having leading terms which are not
divisible by any element of G are inserted into G. As long as new elements are found the
algorithm continues with step 1.

The most time-consuming step is the reduction of the coefficient matrix. The mentioned par-
allelizations of Lachartre and Faugere as well as our own approach concentrate on speeding

71

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

up this step. We want to show how to use these improvements also for distributed parallel
architectures, therefore we have to review them.

Starting after symbolic preprocessing we obtain a coefficient matrix M which has to be
reduced to a row-echelon form. M has n rows and m columns with m > n and can be
decomposed in submatrices:

1. Submatrices S; and Sy arise from the subtrahends and minuends of the S-polynomials.
Since the UPDATE function guarantees that all polynomials have distinct leading terms the
representing rows have unique pivot columns. Therefore S; and Ss are upper-triangular.

2. Submatrix R represents the reduction polynomials. They were computed during symbolic
preprocessing. For each reducible term there is only one reduction polynomial. Because
of that R is upper-triangular.

3. Finally these submatrices can be split up in pivot and non-pivot columns. The pivots of R
and S; are forming the submatrix A and the non-pivots the submatrix B. The submatrix
So is split into C' containing its pivots and D containing the non-pivot columns. This
notation was introduced in [4].

The following example demonstrates the construction of a matrix occurring during Grébner
bases computations.

Example 1. Let K := K303, P := Klx1, 22, 23] and let the polynomials g1 = 2% + 23,
go = T1 - To + T3 + 32 - 23 and g3 = 23 + 23 + 23 form the ideal I := (g1, g2, g3) for which a
Grébner basis with respect to DegRevLex should be computed. Using UPDATE we get the critical
pairs (2,3) and (1,2). They have the same sugar degree sugar(gz,gs) = 3 = sugar(gi1,gz2). So
we reduce the following polynomials:

2, .2 2 3
x] +x5) - xo =27 To+ 25

2 2 2
z1~x2+x2+x2-x3)~x1:z1~x2+x1-x2—|—xl-x2~x3

Ji2=(
faa =(
foz =(x1 22+ 25+ 20 23) 29 = 21 - T3 + 5 + 23573
f32 =(

2 2 2 2
x5+ a3+ w3) x=x1 05 +x1 -5+ T T3

and as set of reduction polynomials we obtain:

3 2
1 =g3 T2 =Ty + T2 XT3+ To - T3
2 2
T9 =@g2 T3 =Ty T2 T3+ X3 X3+ X2 T3
_ _ .2 3 2
r3 =g3 T3 =T5 T3+ T3+ T3

At the end we get the following matriz M :

fi2 101 00/ 00O0O0TO0O
f23 01 101[0000TG00
7«1 00100010010
To 00011010000
T3 00001001001
f21 1 101 0[000O0TU0O0
f3,2 01 000 100100

One can easily see the mentioned structure of the matrixz. The upper left submatriz is A and
its pivots are highlighted. Below is C' and the non-pivot columns are forming B and D.

72

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Using this decomposition the (full) reduction of the matrix can be computed using the
following algorithm:

1. Primary reduction: Reduce B to A~!- B.

2. Secondary reduction: Reduce D to D —C - A~1. B.

3. Final reduction: Reduce D to its reduced row-echelon form using Gaussian elimination.
4. Optional reduction: Reduce B using the pivots of D.

Especially the primary reduction can be efficiently parallelized since the matrix is in upper
triangular form and so all pivots are known. The primary and secondary reduction can be
computed in parallel because a reduced row of B can be applied independently on rows of D.

After the final reduction all non-zero rows of D are elements of the Grobner basis and
can be used to compute further critical pairs. Matrix (AB) does not contain any required
elements because by construction the pivots of A are equivalent to leading terms which are
already contained in the Grébner basis. Hence the fourth step is optional and only required if
SIMPLIFY is used.

There are two different approaches to achieve parallelization: Column-based as suggested
by Faugeére and Lachatre and row-based as suggested by us. Actually these two are not mu-
tually exclusive and we will use this property to advance the parallelism on architectures with
distributed memory. In the following we will use the row-based approach for shared memory
parallelism but one can easily see that all modifications are also applicable to the column-based
approach of Faugere and Lachatre.

4 Matrix Distribution

In the case of the matrix reduction during Grébner basis computation we have to consider
how to distribute the coefficient matrices with least duplication and communication. Like any
other parallel and distributed algorithm for transforming matrices into row echelon form we
can choose between row- and column-based distribution or a combination of both.

If row-based or combined distribution is chosen the algorithm scatters rows or blocks among
the computation nodes and these need to send rows from one to each other if they are required
for further reductions. To reduce the communication overhead this needs to use a strategy
which decides how the matrix is distributed. Since we use rows-based parallelization for the
shared memory level and since the column-based distribution does play well with the special
properties of Grobner basis computations we didn’t analyse the effectiveness of the row-based
or combined approach.

If column-based distribution is chosen the pivot matrices A and C have to be send to all nodes
and the non-pivot matrices B and D can be distributed without duplication. Since all pivots
are preset for primary and secondary reduction this approach does only require communication
before and after all reductions are done.

Furthermore the matrices are sparse and by using appropriate matrix formats the commu-
nication overhead can be reduced even more. We chose to store the off-diagonal elements of A
and C' in a coordinate list, i.e. there is one list storing tuples of row, column and value. This
format allows reordering in parallel executable sets to improve the row-based parallelization as
presented in [I3]. For B and D a modified list of lists format is used storing pairs of row index
and value for each column. This allows to distribute columns independently. As suggested in
[8, Chapter 6] the columns are distributed round-robin to optimize load balancing. Afterwards

73

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

each node can use row-based parallelism on the local shared memory. The following shows the
distribution of the matrix constructed in example

Example 2. Using two parallel nodes the matrix M of the previous example is decomposed
into one coordinate list and two lists of lists. Afterwards the pivots are sent to both nodes and
the two sets of non pivot columns are distributed among the nodes. Finally the two nodes are
holding the following data:

Node #1 Node #2
(A C) (A C)
(4,1,1) | (4,3,1) | (2,0,1) (B D) (4,1,1) | (4,3,1) | (2,0,1) (B D)
(2,1,1) | (3,5,1) 51 (6,1) (2,1,1) | (3,5,1) 6 |(2,1) (3,1
(0,5,1) 71(4,1) (0,5,1) 8 1(6,1) -
(1,5,1) 91 (4,3) (1,5,1) 10 | (4,1) -
(1,6,1) (1,6,1)

Table [1] shows that the final reduction can be computed on a single node because the
submatrix D consumes only a tiny fraction of the whole matrix. One can easily check that
this is true in general: the submatrices S; and S5 have s rows each and the submatrix R has
r rows. There are p pivot columns and n non-pivot columns. Hence the coefficient matrix has
2-s4r rows and p+n columns. After primary and secondary reduction the final reduction only
requires the submatrix D which has s remaining rows and n columns. Therefore all reduced
columns can be gathered on one node which executes the Gaussian elimination on D.

Polynomial System Sugar degree primary matrix final matrix ratio (%)

Gametwo 7 [10] 17 7731 x 5818 2671x2182 13
Cyclic 8 [1] 14 3819 x 4244 612x1283 4.8
Cyclic 9 16 70251 x 75040 4014x10605 0.8
Katsura 12 [9] 9 12141 x 11490 2064x2155 3.2
Katsura 13 9 26063 x 23531 4962x4346 3.5
Eco 12 [12] 9 12547 x 10937 2394x1269 2.2
Eco 13 10 25707 x 24686 2883x2310 1.0
F966 [5] 9 60274 x 63503 4823x9058 1.1

Table 1: Ratio of primary matrix and final matrix during reduction for selected problems.

The optional reduction is an obstacle for the effectiveness of the algorithm since it requires
that the reduced matrix D has to be distributed again to be applied on B. Because of that we
examine if the optional reduction is useful at all. Even more we put to test, if the SIMPLIFY
method and distributed computation play well together.

5 Simplifying the F4 Algorithm

Removing the optional reduction may scale down the required communication overhead and
the reduction time. Even more, if SIMPLIFY isn’t used during symbolic preprocessing, the

74

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

distributed matrix has not to be gathered completely since the columns of the reduced matrix
B are not required after primary and secondary reduction.

Algorithm 1: SIMPLIFY
Input: t € T" a term, f € K[zy,...,2,] a polynomial, F € (Fi)p=1,. 4—1), Where F} is
finite subset of K[x1, ..., 2]
Output: a non evaluated product, i.e. an element of T" x K[z, ..., x,]
1 foreach u € list of divisors of t do
2 if 3j(1 < j < d) such that (u- f) € F; then
3 Fj is the row echelon form of F; w.r.t. o ;

there exists a (unique) p € Fj+ such that LT, (p) = LT, (u - f) ;
if u # t then return SIMPLIFY(L, p, F) else return (1,p);

TR

end

N o oA

end

The SIMPLIFY method does not guarantee that a reduction is improved by reusing previous
results. Actually SIMPLIFY proves it effectiveness mostly by application. Hence we require
a best possible implementation of the method. Algorithm [I] is a repetition of the original
SIMPLIFY [3]. It leaves some details open and there are some possibilities for optimization:

e Searching through all divisors of ¢ is time consuming regarding the fact that only some
divisors of u will satisfy the condition (u, f) € F; for j € (1 <j < d).

o To check if there exists a j with (u, f) in F} it is important how Fj is stored. A naive
implementation will require to loop over all rows of F; until the condition is satisfied.

e This algorithm does not check if there is another j' # j satisfying the condition and
provides a better replacement.

To address these issues we propose the following modifications:

e Allrows of Fy ..., F;_1 are stored in a two-dimensional map. The first key is a polynomial
f and the second is a term u. This allows to update (u, f) if a better replacement is found.
By that only one value per pair is stored. This will decrease the required memory.

e The first map should provide a fast random access to the value of key f and the second
map should have an ordering to allow a decreasing iteration of the possible terms. In this
way the search space for possible replacements is reduced to the multiples of f only.

e The value of a map element is the reduced form of f - u.

We call this data structure SimplifyDB. We can provide an improved version of SIMPLIFY as
shown by algorithm [2| Additionally we have to introduce a function to update the SimplifyDB.

Therefore after reduction we execute algorithm [3|for each row of Fj+. The insertion step allows
us to compare candidates for the SimplifyDB. In our implementation for two candidates the
better is the one which has less elements in its support. This is equivalent to the first weighted
length function wlen(p) = #Supp(p) in [2]. At this point we didn’t try any other suggested
weighted length function.

SIMPLIFY can be improved even more. During symbolic preprocessing it is called twice:
once for the selected critical pair (m, f) with m € T™ and f € G and once to create reduction

75

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Algorithm 2: SIMPLIFY with SimplifyDB

Input: t € T" a term, f € K[z1,...,2,]| a polynomial, SimplifyDB
Output: a non evaluated product, i.e. an element of T" x K[z, ..., x,]
1 foreach u <t € SimplifyDB[f] do

2 if u divides t then

3 p = SimplifyDB[f][u] ;

4 if w#t¢then return SIMPLIFY(L, p, SimplifyDB) else return (1,p) ;
5 end

6 end

Algorithm 3: Insertion into SimplifyDB

Input: t € T" a term, f,p € K[z1,...,x,] polynomials, SimplifyDB
Output: SimplifyDB

1 if Ju € SimplifyDB[f] : t = u then

2 Replace SimplifyDB|f][u] with p if it is better ;

3 else

4 SimplifyDB[f][t] = p ;

5 end

polynomials m’ - f with m’ € T™ and f’ € G. As one can easily see the second input parameter
is always an element of G. So it stands to reason to restrict SIMPLIFY:

SIMPLIFY(¢,4), where i is the index of g; € G

Still there is the recursive call of SIMPLIFY taking a polynomial p as parameter which might
t

not be an element of G. Recall that p was found in the SimplifyDB using f and a term u = -,
with z € T™. With the knowledge, that f = g; € G we can write p = f-u—r = g; - u—r, where
r € K[zy,...,x,] is the sum of all reductions applied on f during a previous reduction step.
The recursive call is looking for another polynomial p’ which simplifies z-p = z - (g; - u — 7).
If such a polynomial p’ exists we can write p’ = z-(g;-u—r)—1' =z-u-g; — (z-r —1').
Hence if the SimplifyDB stores p’ at index (g;, z - u) instead of (p, z) the recursion is obsolete
and SIMPLIFY can be replaced with algorithm [4] being recursion free.

Algorithm 4: New SIMPLIFY algorithm
Input: ¢t € T™ a term, i is the index of g; € G, SimplifyDB
Output: a non evaluated product, i.e. an element of T" x Kz1, ..., 2]
1 foreach u <t € SimplifyDB[f] do
2 if u divides t then return (L, SimplifyDB[f][u]) ;
3 end

Before benchmarking different variants of the distributed versions of the algorithm a first
look at timings using only shared memory will thin out the number of combinations. For
the following computations we used a system with 48 AMD OpteronTM 6172 cores having
64 gigabyte of main memory. The implementation of the parallelization for the shared memory
is presented in [I3] and in its latest version it is realized using Intel® Threading Building Blocks
(TBB) and Open Multi-Processing (OpenMP) for parallelization.

76

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

Table |2| shows that the optional reduction is mostly useless and can be left out during
Grobner basis computation. Table 3| shows that our new recursion-free SIMPLIFY is also in
practice faster and even more memory efficient.

Finally SIMPLIFY is improving performance by increasing memory usage and so for solving
larger polynomial systems it might be possible to find a solution within the bounds of available
memory by disabling SIMPLIFY. Consequently we will compare computations with and without
the improved SIMPLIFY for the distributed parallel implementation in the following section.

Polynomial systems without optional reduction with optional reduction
max. matrix size runtime max. matrix size runtime

Gametwo 7 7808 x 5895 28.46 7731 x 5818 29.85
Cyclic 8 3841 x 4295 11.18 3819 x 4244 12.15
Cyclic 9 70292 x 75080 606.7 70251 x 75040 628.3

Katsura 12 12142 x 11491 34.49 12141 x 11490 36.66

Katsura 13 26063 x 23531 152.2 26063 x 23531 169.2
Eco 12 12575 x 11349 25.22 12547 x 10937 28.36
Eco 13 25707 x 24686 91.76 25707 x 24686 103.7

F966 60898 x 63942 98.32 60274 x 63503 118.5

Table 2: Comparison of computations with and without optional reduction. The new SIMPLIFY
algorithm was used in both cases.

Polynomial with new SIMPLIFY with original SIMPLIFY without SIMPLIFY

systems runtime (s) memory runtime memory runtime memory
Gametwo 7 28.46 459 MB 28.82 721 MB 29.97 262MB
Cyclic 8 11.18 262 MB 14.43 393 MB 12.28 131 MB
Cyclic 9 606.7 15.6 GB 649.2 24.0GB 542.9 2.10GB
Katsura 12 34.49 655MB 39.28 1.57GB 43.74 328MB
Katsura 13 152.2 2.56 GB 187.2 7.27GB 207.1 917MB
Eco 12 25.22 328MB 38.75 1.38 GB 50.87 262MB
Eco 13 91.76 1.14GB 136.4 5.77GB 218.2 852MB
F966 98.32 2.56GB 218.2 11.3GB 2125 1.25GB

Table 3: Comparison of original and new SIMPLIFY

6 Benchmarks

For the following benchmarks of our distributed implementation we used a cluster of up to
eight systems having 16 Intel® Xeon® E5-2670 cores with hyperthreading and 64 GB of RAM
allowing us using up to 256 parallel threads. For data distribution we use the Message Passing
Interface (MPI) and the Boost.MPI wrapper.

Table [4] compares once again runtimes for computations with and without SIMPLIFY using
one, two or four nodes. For all polynomial input systems the computation time goes up and
the distribution has no positive effect. However we accomplished to speed-up the reduction
time. This is not an inconsistency. The overall runtime goes up due to the communication

7

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

overhead and the possibility to improve the performance is limited to decreasing the reduction
time. Hence the problem is the small size of the given polynomial systems. Figure [1|illustrates
this issue for Cyclic 9.

Table [5| adds further and more difficult examples. Especially for Katsura 15 and Cyclic 10
the distributed parallelization takes effect providing a speed-up of 2.3 and 2.7 for the overall
computation time and 5.7 and 5.0 for the reduction using four respectively eight nodes. Exclud-
ing the Eco 14 system the computation is most effective without SIMPLIFY and in particular
for Cyclic 10 computations were not even possible with it due to memory overflows.

Eco 14 is an counterexample because it is not possible to decrease the computation time
using a distributed system. This is caused by the effectiveness of SIMPLIFY for the problem
instance.

The crashed computations for Katsura 15 and for Cyclic 10 without SIMPLIFY with two
nodes are caused by a not yet solved overflow in the MPI implementation if more than 512 MB
have to be transfered in one operation. This does not happen with four or eight nodes because
the matrix size for each node decreases by factor two respectively four.

At the end no distributed computation with SIMPLIFY is faster and hence it should be
removed in further developments of distributed parallel algorithms for Grébner bases compu-
tations.

Polynomial systems with SIMPLIFY without SIMPLIFY
nodes 1 2 4 1 2 4
Gametwo 7 29.85 34.55 56.03 28.48 38.53 28.88
(5.549) (6.709) (6.010) (6.630) (4.607) (3.427)
Cyclic 8 7.798 11.12 9.520 7.497 14.06 20.78
(1.327) (1.707) (1.953) (1.332) (1.473) (1.168)
Cyclic 9 506.0 518.2 4947 330.6 361.7 427.6
(222.2) (195.2) (138.8) (149.9) (122.4) (73.73)
Katsura 12 42.00 46.36 55.23 28.59 39.97 66.85
(6.083) (8.220) (7.762) (6.699) (4.535) (3.362)
Katsura 13 187.4 190.0 186.4 139.6 158.8 176.0
(40.46) (46.61) (36.82) (50.03) (31.07) (18.15)
Eco 12 21.35 29.40 41.49 24.98 41.08 88.02
(2.564) (3.760) (3.953) (6.458) (3.664) (3.097)
Eco 13 91.78 106.5 120.9 1114 157.5 212.6
(12.10) (16.32) (14.62) (38.65) (23.10) (14.67)
F966 91.88 106.2 132.1 93.60 139.2 185.1

(20.86) (26.29) (23.91) (38.59) (26.32) (18.70)

Table 4: Distributed computation (and reduction) times for 1,2 or 4 nodes

78

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

600

400
® Overhead
® Reduction
Prepare
 Update

1/woS 2/woS 4/woS 1ws 2/ws 4/ws

8

g

Figure 1: Computation time in detail for Cyclic 9 with and without SIMPLIFY

Poly. sys. with SIMPLIFY without SIMPLIFY
nodes 1 2 4 8 1 2 4 8
Katsura 14 957.5 831.0 748.9 744.8 775.6 659.9 675.4 991
(313.9) (2634) (201.2) 169.1 (398.4) (224.4) (135.1) (86)
Katsura 15 5719 crashed 3440 3252 5615 3857 3252 3372

(2571) -) 1272 1008 (3781) (1960) (1094) (666)
Cyclic 10 crashed crashed crashed crashed 30400 crashed 13270 11280
(-) () (-) () (25240) () (7862) (5010)

Eco14 509.8 5194 5526 626 800.5 787.0 996.7 1660
(110.6) (117.7) (98.02) (89.38) (411.3) (224.0) (127.7) (78.24)

Table 5: Distributed computation (and reduction) times for larger input systems.

7 Conclusion

We have shown that the parallelization of the F4 algorithm can be expanded form a shared
memory system to a cluster of distributed nodes providing a multiple of the computation power
of a single system. This was primarily achieved by using column-based parallelism, removing
the optional reduction and the SIMPLIFY function. It allowed us to solve larger input systems
like Katsura 15 or Cyclic 10 almost three times faster using four or respectively eight distributed
nodes. Some work is still required to optimize the speed-up and the communication of the nodes
has to be improved to make solving of even larger problem instances possible.

79

A Modified Parallel F4 Algorithm for Shared and Distributed Memory Architectures Severin Neumann

References

1
2l
3]

(4]

(5]

(6]

[7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

80

Goran Bjorck and Uffe Haagerup. All cyclic p-roots of index 3, found by symmetry-preserving
calculations, 2008.

Michael Brickenstein. Slimgb: Grébner bases with slim polynomials. Revista Matemdtica Com-
plutense, 23(2):453-466, 2010.

Jean-Charles Faugere. A new efficient algorithm for computing Grébner bases (F4). Journal of
Pure and Applied Algebra, 139(1-3):61-88, June 1999.

Jean-Charles Faugere and Sylvain Lachartre. Parallel Gaussian Elimination for Grébner bases
computations in finite fields. In Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation, PASCO ’10, pages 89-97, New York, USA, July 2010. ACM.
Jean-Charles Faugere, Moreau Francois De Saint Martin, and Fabrice Rouillier. Design of regular
nonseparable bidimensional wavelets using Groebner basis techniques. IFEEE Transactions on
Signal Processing, 46(4):845-856, 1998.

Riidiger Gebauer and H. Michael Moller. On an installation of buchberger’s algorithm. Journal
of Symbolic Computation, 6:275-286, December 1988.

Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso. ”One
sugar cube, please” or selection strategies in the buchberger algorithm. In Proceedings of the 1991
international symposium on Symbolic and algebraic computation, ISSAC ’91, pages 49-54, New
York, USA, 1991. ACM.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 1996.

Shigetoshi Katsura, Wataru Fukuda, Sakari Inawashiro, Nahomi Fujiki, and Riidiger Gebauer.
Distribution of effective field in the ising spin glass of the £5 model at ¢t = 0. Cell Biochemistry
and Biophysics, 11:309-319, 1987.

David M. Kreps and Robert Wilson. Sequential equilibria. Econometrica, 50(4):863-94, July 1982.
Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1. Computational
Commutative Algebra. Springer, 2000.

Alexander Morgan. Solving polynomial systems using continuation for engineering and scientific
problems. Classics in applied mathematics. STAM, 2009.

Severin Neumann. Parallel reduction of matrices in Grobner bases computations. In Vladimir P.
Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pages 260-270. Springer
Berlin Heidelberg, 2012.

Kurt Siegl. A parallel factorization tree grobner basis algorithm. In Parallel Symbolic Computation
PASCO, 1994: Proceedings of the First International Symposium, River Edge, USA, 1994. World
Scientific Publishing Co., Inc.

Generating Asymptotically Non-Terminant
Initial Variable Values for Linear Diagonalizable
Programs

Rachid Rebiha'f Nadir Matringe®® and Arnaldo Vieira Moura!

! Institute of Computing UNICAMP, University of Campinas, SP. Brasil.
rachid@ic.unicamp.br
2 Universit de Poitiers, Laboratoire Mathmatiques et Applications, France.
3 Institue de Mathematiques de Jussieu, Université Paris 7-Denis Diderot, France.

Abstract

We present the key notion of asymptotically non-terminant initial variable values for
non-terminant loop programs. We show that those specific values are directly associated to
inital variable values for which the corresponding loop program does not terminate. Con-
sidering linear diagonalizable programs, we describe powerful computational methods that
generate automatically and symbolically a semi-linear space represented by a linear system
of equalities and inequalities. Each element of this space provides us with asymptotically
non-terminant initial variable values. Our approach is based on linear algebraic methods.
We obtain specific conditions using certain basis and matrix encodings related to the loop
conditions and instructions.

1 Introduction

Research on formal methods for program verification [12] [I5] [8 [I7] aims at discovering math-
ematical techniques and developing their associated algorithms to establish the correctness of
software, hardware, concurrent systems, embedded systems or hybrid systems. Static program
analysis [12] [T5], is used to check that a software is free of defects, such as buffer overflows or
segmentation faults, which are safety properties, or termination and non-termination, which are
liveness properties. Proving termination of while loop programs is necessary for the verification
of liveness properties that any well behaved and engineered system, or any safety critical em-
bedded system must guarantee. We could list here many verification approaches that are only
practical depending on the facility with which termination can be automatically determined.
Verification of temporal properties of infinite state systems [20] is another example.

Recent work on automated termination analysis of imperative loop programs has focused
on a partial decision procedure based on the discovery and synthesis of ranking functions. Such
functions map the loop variable to a well-defined domain where their value decreases further
at each iteration of the loop [0, [10]. Several interesting approaches, based on the generation
of linear ranking functions, have been proposed [3, [4] for loop programs where the guards and
the instructions can be expressed in a logic supporting linear arithmetic. For the generation of
such functions, there are effective heuristics [I4] [10] and, in some cases, there are also complete
methods for the synthesis of linear ranking functions [I6]. On the other hand, it is easy to
generate a simple linear terminant loop program that does not have a linear ranking function.
And in this case such complete synthesis methods [16] fail to provide a conclusion about the
termination or the non termination of such a program.

*Supported by FAPESP grant 2011/08947-1 and FAPESP grant BEPE 2013/04734-9.

81

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

In this work we address the non-termination problem for linear while loop programs. In
other words, we consider the class of loop programs where the loop condition is a conjunc-
tion of linear inequalities and the assignments to each of the variables in the loop instruction
block, are affine or linear forms. In matrix notation, linear loop programs will be represented
in a general form as: while (Bx > b), {z := Az + ¢} (i.e., A and B are matrices, b and c are
vectors of real numbers, and that x is a vector of variables.). Without loss of generality, the
termination/non-termination analysis for such a class of linear programs could be reduced to
the problem of termination/non-termination for homogeneous linear programs [6, 21]. Those
being programs where linear assignments consist of homogeneous expressions, and where the
linear loop condition consists of at most one inequality. Concerning effective program trans-
formations and simplification techniques, non-termination analysis for programs presented in a
more complex form can often be reduced to an analysis of a program expressed in this basic
affine form. Despite tremendous progress over the years [6], 5] [7, [13], 111 2 1], the problem of
finding a practical, sound and complete methods for determining or analyzing non termina-
tion remains very challenging for this class of programs, and for all initial variable values. We
started our investigation from our preliminary technical reports [19] [I8] where we introduced a
termination analysis in which algorithms ran in polynomial time complexity. Here, considering
a non terminating loop, we introduce new static analysis methods that compute automatically,
and in polynomial time complexity, the set of initial input variable values for which the program
does not terminate, and also a set of initial inputs values for which the program does terminate.
This justifies the innovation of our contributions, i.e., none of the other mentioned related work
is capable of generating such critical information over non-terminating loops. We summarize
our contributions as follows:

e To the best of our knowledge, we introduce a new key notion for non-termination and ter-
mination analysis for loop programs: we identify the important concept of asymptotically
non-terminant initial variable values, ANT for short. Any asymptotically non-terminant
initial variable values can be directly related to an initial variable value for which the
considered program does not terminate.

e Our theoretical contributions provide us with efficient computational methods running in
polynomial time complexity and allowing the exact computation of the set of all asymp-
totically non-terminant initial variable values for a given loop program.

o We generate automatically a set of linear equalities and inequalities describing a semi-
linear space that represents symbolically the set of all asymptotically non-terminant initial
variable values. The set of ANT values contains the set of non-terminant initial variable
values. On the other hand the complementary set of ANT values is a precise under-
approximation of the set of terminant inputs for the same program.

Example 1.1. (Motivating Example) Consider the following program depicted below on the
left. We show a part of the output of our algorithm below on the right.

(i) Pseudo code:

while (2z+3y-2>0) {
T:= y + z;
y:==(1/2)z+(3/2)y-(1/2) z;
z2:=(3/2)x-(3/2)y+(1/2) z;}

82

(i) Output of our prototype:

Locus of ANT
[[4ul1]+ul[2]+u[3]>0]
AND [u[1]+4u[2]+4u[3]>0]
AND [-u[1]+u[2]-u[3]=0]]
OR[[-ul1]+u[2]-u[3]>0]]

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

The semi-linear ANT = {u = (uy,us,u3)’ € E | 4uy + us +uz > 0 A ug + 4uy + duz >
OA—uy +ug —ug =0} U{u= (u,ug,uz)’ € E| —uy+us—uz >0} represents symbolically
all asymptotically initial variable values that are directly associated to initial variable values
for which the program does not terminate. On the other hand, the complementary of this set
co-ANT = {u = (uy,uz,u3)’ € E | duy +ug +uz <0V uy +4dug +4duz <0V —uy + ug — uz #
0} N {u = (ur,ug,u3z)" € E| —uy +ug —u3 <0} is a precise under-approzimation of the set
of all initial variable values on which the program terminates. [

The rest of this article is organized as follows. Section [2| can be seen as a preliminary
section where we introduce some key notions and results from linear algebra, which will be used
to build our computational methods. In this section, we also present our computational model
for programs and some further notations. Section [3|introduces the new notion of asymptotically
non-terminant initial variable values. Section M| provides the main theoretical contributions
of this work. This section also presents our computational methods that generate a symbolic
representation of the asymptotically non-terminant variable values for linear programs. We
provide a complete dicussion in Section 5] Finally, Section [f] states our conclusions.

2 Linear Algebra and Linear Loop Programs

Here, we present key linear algebraic notions and results which are central in the theoretical and
algorithmic development of our methods. We denote by M(m,n,K) the set of m x n matrices
with entries in K, and simply M(n,K) when m = n. The Kernel of A, also called its nullspace,
denoted by Ker(A), is Ker(A) = {v € K" | A-v = O0gm}. In fact, when we deal with square
matrices, these Kernels are Eigenspaces. Let A be a n X n square matrix with entries in K. A
nonzero vector x € K is an eigenvector for A associated with the eigenvalue A € K if A-x = Az,
ie, (A— M) -z =0 where I, is the n x n identity matrix. The nullspace of (A — AI,) is
called the eigenspace of A associated with eigenvalue A. Let n be a positive integer, we will
denote R™ by E and its canonical basis by B. = (e1,...,e,). Let A be a square matrix in
M(n,R). Let us introduce the notation Spec(A) for the set of eigenvalues of A in R, and we
will write Spec(A)* for the set Spec(A) — {0}. For A € Spec(A), we will denote by E)(A) the
corresponding eigenspace. Throughout the paper we write dy for the dimension of Fy(A). We
will say that A is diagonalizable if ' = @\cgpec(a)FEr(A). Let A be a diagonalizable matrix.
For each eigenspace E(A), we will take a basis By = (ex1,...,€x,4,), and we define

B= U)\GSpec(A)B/\
as a basis for F.

Definition 2.1. Let x belong to E. We denote by xy its component in Ex(A). If x admits the
decomposition ZAespec(A)(zfgl Zxi€ni) i B, we have x\ = Zf;l TxiCAi- O

We denote by P the transformation matrix corresponding to B, whose columns are the vectors
of B, decomposed in B.. Letting d; denote the integer dy, for the ease of notation, we recall
the following lemma.

Lemma 2.1. We have P~YAP = diag(\1dy, ..., \Id;). We denote by D the matriz P~1AP.
O

As we will obtain our results using the decomposition of in B, we recall how one obtains it
from the decomposition of x in B..

83

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

Lemma 2.2. Let x € E. Ifx = Y| xie; = (x1,...,2,)" € Be, and x decomposes as

t d; .) .
ijl(zi;1 Ty, i€x;,i) in B, the coefficients xy, ; are those of the column vector P L2 in B,.
O

Throughout the paper we write < , > for the canonical scalar product on E, which is given by <
z,y >= Y ., x;y;, and recall, as it is standard in static program analysis, that a primed symbol
2’ refers to the next state value of x after a transition is taken. Next, we present transition
systems as representations of imperative programs and automata as their computational models.

Definition 2.2. A transition system is given by (x, L, T,ly, ©), where x = (x1,...,x,) is a set
of variables, L is a set of locations and ly € L is the initial location. A state is given by an
interpretation of the variables in x. A transition 7 € T is given by a tuple {lpre, lpost, Grs pr),
where lpre and lyost designate the pre- and post- locations of T, respectively, and the transition
relation p; is a first-order assertion over x U x'. The transition guard g, is a conjunction of
inequalities over . © is the initial condition, given as a first-order assertion over x. The
transition system is said to be linear when p, is an affine form. O

We will use the following matrix notations to represent loop programs and their associated
transitions systems.

Definition 2.3. Let P be a loop program represented by the transition system {(x =
(1, s 2n)s lo, T = {I,1,qr, pr), 1o, ©). We say that P is a linear loop program if the following
conditions hold:

o Transition guards are conjunctions of linear inequalities. We represent the loop condition
in matriz form as Vx > b where V€ M(m,n,R) and b € R™. By Vx > b we mean that
each coordinate of vector Vx is greater than the corresponding coordinate of vector b.

o Transition relations are affine or linear forms. We represent the linear assignments in
matriz form as x = Az + ¢, where A € M(n,R) and ¢ € R".

The linear loop program P = P(A,V,b,c) will be represented in its most general form as
while (Va > b), {x := Az + c}. O

In this work, we use the following linear loop program classifications.

Definition 2.4. We identify the following three types of linear loop programs, from the more
specific to the more general form:

e Homogeneous: We denote by P™ the set of programs where all linear assignments consist
of homogeneous expressions, and where the linear loop condition consists of at most one
inequality. If P is in P®, then P will be written in matriz form as while (< v,z >>
0), {x := Az}, where v is a (n x 1)-vector corresponding to the loop condition, and where
A € M(n,R) is related to the list of assignments in the loop. We say that P has a
homogeneous form and it will also be denoted as P(A,v).

o Generalized Condition: We denote by PC the set of linear loop programs where the loop
condition is generalized to a conjunction of multiple linear homogeneous inequalities.

e Affine Form: We denote by P* the set of loop programs where the inequalities and the
assignments are generalized to affine expressions. If P is in PA, it will be written as
while (Va > b), {x:= Az + ¢}, for A and V in M(n,R), b € R™, and c € R™.

84

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

O

Without lost of generality, the static analysis for the class of linear programs P* could be
reduced to the problem of termination/non-termination for homogeneous linear programs in
PH. In this work we consider programs in P™. The generalization to programs in P can
already be done and it will be reported elsewhere.

3 Asymptotically Non-terminant Variable Values

In this section we present the new notion of asymptotically non-terminant variable values. It
will prove to be central in analysis of termination, in general. Let A be a matrix in M(n,R),
and v be a vector in E. Consider the program P(A,v) : while (< v,z >> 0), {x := Az}, which
takes values in E. We first give the definition of the termination of such a program.

Definition 3.1. The program P(A,v) is said to be terminating on x € E, if and only if
< v, A¥(z) > is not positive, for some k > 0. O

In other words, Definition states that if the program P(A,v) performs k& > 0 loop
iterations from initial variables zin E, we obtain z := A¥(z). Thus, if < v, A*¥(z) >< 0,
the loop condition is violated, and so P(a,v) terminates. Next, we introduce the following
important notion.

Definition 3.2. We say that x € E is an asymptotically non terminating value for P(A,v) if
there exists k, > 0 such that P(A,v) is non terminating on AF=(v). We will write that x is
ANT for P(A,v), or simply x is ANT. We will also write that P(A,v) is ANT on . O

Note that if P(A,v) is non terminating on A*«(x) then < v, A*¥(z) > is > 0 for k > k,.
The following result follows directly from the previous definition.

Corollary 3.1. An element x € E is ANT if and only if < v, A¥(x) > is positive for k large
enough. O

If the set of ANT points is not empty, we say that the program P(A,v) is ANT. We will
also write NT for non terminant. For the programs we study here, the following lemma already
shows the importance of such a set.

Lemma 3.1. The program P(A,v) is NT if and only if it is ANT. O

Proof. Tt is clear that NT implies ANT (i.e., NT C ANT), as a NT point of P(A,v) is of
course ANT (with k, = 0). Conversely, if P(A,v) is ANT, call z an ANT point, then A= (z)
is a NT point of P(A,v), and so P(4,v) is NT. O

As one can easily see, the set of NT points is included in the set of ANT points. But the
most important property of the ANT set remains in the fact that each of its point provides us
with an associated element in NT for the corresponding program. In other words, each element
x in the ANT set, even if it does not necessarily belong to the NT set, refers directly to initial
variable values y, = A (z) for which the program does not terminate, i.e., y, is an NT point.
We can say that there exists a number of loop iterations k[,), departing from the initial variable
values x, such that A*=I(z) correspond to initial variable values for which P(A,v) does not
terminate. But, it does not necessarily implies that z is also an NT point for P(A,v). In fact,
program P(A,v) could terminate on the initial variable values x by performing a number of

85

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

loop iterations strictly smaller than kf,;. On the other hand, the complementary set co-ANT
provides us with a quite precise under approximation of the set of all initial variable values for
which the program terminates.

The set of ANT points of a program is also important to the understanding of the termination
of a program with more than one conditional linear inequality, as well as for termination over
the rationals, for example. This will be reported elsewhere.

4 Automated generation of ANT loci

In this section we show how we generate automatically and exactly the ANT Locus, i.e., the set
of all ANT points for linear diagonalizable programs over the reals. We represent symbolically
the computed ANT Locus by a semi-linear space defined by linear equalities and inequalities.
Consider the program P(A,v) : while (< v,z >> 0), {z := Axz}. The study of ANT sets
depends on the spectrum of A. Recall the introductory discussion and Definition[2.1] at Section

Proposition 4.1. For z in E, and k > 1, the scalar product < v, A¥(z) > is equal to

Z N <,y >= Z MNe<vxy>. O
A€Spec(A) AESpec(A)*

Proof. Tt is a direct consequence of the equality A*(x)) = \rx,. O

4.1 The regular case

We first analyze the situation where A is what we call regular:

Definition 4.1. We say that A is regular, if Spec(A) N [— Spec(A)] is an empty set, i.e.: if
A belongs to Spec(A), then —\ does not belong to Spec(A). O

In this case, we make the following observation:

Proposition 4.2. Let u be the nonzero eigenvalue of largest absolute value, if it exists, such that
< w,x, > is nonzero. For k large, the quantity < v, A¥(x) > is equivalent to u* < v, x, >. O

Proof. Indeed, we can write < v, A*(z) > as

)\k
uk<v,x#>+ Z)\k<v,x,\>:,uk(<v7xﬂ>+ Z E<v,ac,\>)7
A<]} {IA<]]}
and 2p approaches zero when k goes to infinity. O]

uk
We then define the following sets.

Definition 4.2. For i a positive eigenvalue of A, we define S,, as follows:

S,={z € E,<v,z, >>0,<v,zy >=0 for [A] > |ul|}

86

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

In order to obtain S, for all positive eigenvalues p of A, one needs to calculate < v, x, >,
and < v,xy > for all eigenvalues A such that |A| > |u|. For all eigenvalues A involved in
the computation of S, one also needs to evaluate the coefficients cy; =< v,ex; > for all
eigenvectors ey ; € B and 1 <7 < dy. Thus, we have < v,2) >= Zf-l;l cx,iTx,;- Now, we only
need to compute the coefficient xy ;, which are those of the column vector P~z in B, where
P is the transformation matrix corresponding to B. See Lemma [2.2

We ca now state the following theorem, allowing the exact computation of the ANT Locus
for the regular case.

Theorem 4.1. The program P(A,v) is ANT on x if and only if x belongs to

U s

u>0€Spec(A)
O

Proof. Let = belong to E. If all < v,z > are zero for A € Spec(A), then < v, A*(x) >= 0
and z is not ANT. Otherwise, let 1 be the eigenvalue of largest absolute value, such that
< v, x, > is nonzero. Then, according to Proposition the sign of < v, A*(z) > is the sign
of ¥ < v, x,, > for k large. If 1t is negative, this sign will be alternatively positive and negative,
depending on the parity of k, and x is not ANT. If u is positive, this sign will be the sign of
<w,x, >, hence x will be ANT if and only if < v,x, > is positive. This proves the result. [

Example 4.1. (Running example) Consider the program P(A,v) depicted as follows:

(i) Pseudo code: (i) Associated matrices:
while (z+y-22>0){ 1 -4 -4 1
Ti= z-4y-42z; A=[8 —-11 —-8|,andv=| 1 |.
y:= 8z-11y-8z; -8 8 5 —2
z:= -8x+8y+5z;}

Step 1: Diagonalization of the matriz A:

1 1 1 1 0 0 1 -1 -1
P=|2 1 0|,D=]|0 -3 0]andP'=|-2 3 2
-2 0 1 0 0 -3 2 -2 -1

Using our notations, the obtained eigenvectors (i.e., the column vectors of P) are denoted as
follows: e11 =(1,2,-2)" ;e_31=(1,1,0)" ;e_32=(1,0,1)T.

Step 2: We compute S, for all positive p € Spec(A)*:

o We compute first the coefficients cy ;:
c11=<wv,e11>=<(1,1,-2)7,(1,2,-2)T >=7,
c_31=<w,e_31>=<(1,1,-2)7,(1,1,0)" >=2,
co3p=<w,e_3;>=<(1,1,-2)7,(1,0,1)" >=—1

o We compute the coefficient z ;, which are those of the column vector P~'-u in B., where
u = (u1,us,us) is the vector encoding the initial variable values.

Uy Ul — Uz — u3) 1,1
Pt us | = | —2u1 + 3us + 2u3) =|x-31
us 2’LL1 — 2’(,L2 — ’LL3) T—-3,2

We can now proceed to the generation of the linear constraints defining a semi-linear space

87

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

describing symbolically and exactly S,,.

<v,T1 >=C1,1T1,1 = 7(“1 — Uy — Ug)

<V,X_3>=C_31T-31+C_32T_32= —6uq + 8us + 5’LL3)

Hence, we have: Sy = {u = (u1,ug,u3)" € E | (ug—ug—uz > 0)A(—6u; +8us+5u3 = 0)}.

Step 3: We apply Theorem[].1 to generate the ANT Locus. It reduces to the semi-linear space
Sy = {u= (ur,ug,u3)" € E | (ug —ug —uz > 0) A (—=6uy + 8uz + 5uz = 0)}. O

4.2 The general case: handling linear diagonalizable programs

For the general case, in the asymptotic expansion of < v, A*(z) > one can have compensations
between A\ < v,z > and (—)\)k < v,x) >, as these terms can be zero when k is even, for
instance, and of a well determined sign when k is odd. We thus need to take care of this issue.
To this end, we introduce the following notation.

Definition 4.3. If A does not belong to Spec(A), for any x € E, we write x5 = 0. O
We have the following propositions, which give the asymptotic behavior of < v, A¥(x) >.

Proposition 4.3. Let y be the nonzero eigenvalue of largest absolute value, if it exists, such
that < v, x|, +x_), > is nonzero. For k large, the quantity < v, A%k (2) > is equivalent to
\,u|2k(< U, Ty —|—x,|ﬂ| >). O

Proof. Indeed, we can write < v, A%*(z) > as

qu(< U, Ty >+ <0,y >)+ Z)\Qk(< U, TN >+ <0, Ty >)
{IALIN<|ul}
A2k
= ,u2k(< U, Ty >+ <0,y >) + W<< U, TN >+ <0,y >))
{IALIA<]}
and ﬁ—i approaches to zero when k goes to infinity. O

Proposition 4.4. Let y be the nonzero eigenvalue of largest absolute value, if it exists, such
that < v,), —x_|, > 18 nonzero. For k large, the quantity < v, A2*HL(2) > is equivalent to
\,u|2k+1(< U, Z|p| — T—|p) >). O

Proof. The proof is similar to the proof of Proposition [£.3] O

As in the previous Section, we introduce the following relevant sets.

Definition 4.4. For |u| in |Spec(A)*|, we define the sets S‘OM and S‘lM as follows:

Spy =1z € E,<w,zpy + 2y >>0,< 0,25 + 25 >=0 for [A] > |u|}, and

Sju = {x € B, < v,), —x_jy >>0,< 0,25 — 2z >= 0 for [A| > |ul}.
O

In order to compute the sets S\(L\ and Sllul’ we obtain the coefficients ¢y ; =< v, ey ; > for all
eigenvalues A. If the A appearing as index in the coefficient c) ; is not an eigenvalue, then we fix
cx,i = 0 and dy = 0 (see Definition . Thus, we have < v, x|y +xT_|y >= Zf';l' CIALITIA]i

d_x| dx| —IAl
D il CoA LT ALy and < U, TN = Toja) >= D0 CALTIAL — Daie] C—|ALiT—| AL

We finally obtain the following main theorem.

88

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

Theorem 4.2. The program P(A,v) is ANT on x if and only if belongs to the set
0 1
U S O S
(Il w1 €lSpec(A)*|x|Spec(A)*|
O

Proof. It is obvious that = is ANT if and only if < v, A%*(z) > and < v, A2**1(2) > are both
positive for k large. Now, reasoning as in the proof of Theorem [£.1] but using Propositions [.3]
and instead of Proposition we obtain that < v, A?*(x) > is positive for k large if and
only if x belongs to S‘OM for some p € |Spec(A)*|, and that < v, A?**1(z) > is positive for k
large if and only if x belongs to Sllu’l for some p' € |Spec(A)*|. The result follows. O

The following two examples illustrate how Theorem applies to different cases.

Example 4.2. (Running example) Consider the program P(A,v) depicted as follows:

(7,) Pseudo code: (1) Associated matrices:

. 15 18 -8 6 -5 1

while (2z+3y-2>0) { 5 3 1 -1 -3 1
T:=15c+18y-82+6s-51; A= 0 —4 5 —4 -2 |,v=1[2
y:=bx+3y+z-t-3s; —43 —46 17 —14 15 3
z:=—4y+52—4s—2t; 26 30 —12 8 —10 1
S:=-43x-46y+172-14s+15¢;
t:=26x+30y-122+8s-10t;}

Step 1: Diagonalization of the matriz A:

2 1 -1 1 1 -3 0 0 0 O -3 -3 1 -1 1
-1 0 2 0 -1 0O -1 0 0 O -1 -2 1 0 1
P=|-2 0 2 -1 =2|,D=1]0 0 0 0 O|landP'=|-5 -4 1 -1 2
-4 -1 0 -2 -1 0 0 0 1 O 10 10 -3 2 —4
2 2 1 2 1 0 0 0 0 2 -7 -6 1 -1 3
We obtain the following eigenvectors written using our notation: eg; = (-1,2,2,0,1) T,
e1n = (1,0,-1,-2,2)", ea; = (1,-1,-2,-1,1)7, e_11 = (1,0,0,-1,2)" and e_3;, =
(2,-1,-2,-4,2)7.
Step 2: Computing S,, for all positive p € Spec(A)*:
o Our algorithm first computes the coefficients cx ;. We obtain : co1 = 6, c11 = =5,

21 = —6, C-1,1 = 0 and C_31 = —13.

o Then, our algorithm computes the coefficients of the decomposition of the initial vari-
able values in B. They are those of the column vector P~' - w in B, where u =
(uq, UQ,Ug,U4,U5)T 18 the vector encoding the initial variable values.

Uy —3ur — Ju2 + u3z — us + us T_31
U2 —u1 — 2u2 + us + us T_1,1
Pt us | = —5u1 — 4us + usz — ug + 2us = ZTo,1
Uy 10u1 + 10us — 3usg + 2uqs — 4us 1,1
us —Tu1 — 6uz + usz — ua + 3us T2,1

Now, the algorithm obtains all the non-zero terms appearing in the definition of S‘O)\l and Sll)\‘:
< v, + T_j1] >=C1,1%1,1 = —5(1OU1 + 10ue — 3usz + 2uq — 4U5)
<0, Z)2] + T2 >= C21%2,1 = —6(—Tu1 — 6uz + uz — usa + 3us)

89

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

<v,x_3 +2_|_3 >=c_31T-31 = —13(—3u1 — 3ua + uz — ua + us)
<V, X|-3] —T_|—3] >= —C-3,1T-3,1 = 13(—3u1 —3us +uz — usa + U5)
All the sets S‘OA| and SllM can now be computed exactly:

S|0H ={u € E|5(10u1 + 10uz — 3us + 2us — 4us) >0 A —6(—Tus — 6uz + uz —us +3us) =0 A
—13(—3u1 — 3uz + us — ua + us) = 0};
S|11‘ ={u € E|5(10u1 + 10uz — 3uz + 2us —4us) >0 A —6(—Tur —6uz +us —us +3us) =0 A
13(—=3u1 — 3uz + uz — ua + us) = 0};
S|02‘ = {U, € E‘ - 6(7711,1 — 6uz +us — uqg + 3U5) >0 A *13(*3U1 — 3ug + us — uqg + 'LL5) = 0};
S|02‘ ={u€ E| —6(—Tu1 —6uz +us —us +3us) >0 A —13(—3u; — 3uz +uz —us +us) = 0};
S|12‘ ={u € E| —6(—Tu1 — 6us + uz —us +3us) >0 A 13(—3u1 — 3uz + uz —us + us) = 0};
S|0,3‘ = {U S E‘ — 13(—3U1 — 3us + u3z — uUsg -|—’U,5) > O};
S|1_3‘ ={u € E| 13(—3u1 — 3uz + uz — ua + us) > 0}.
Step 3: We apply Theorem[.4 to generate the ANT Locus:
The algorithm computes the following intersections: S{NSt, SPNS3, SYNSE, S§NSE, SINSE,
S§N Sk, SN St SIN S and SN ST
In fact, the previous computational step already allows our algorithm to perform implicit sim-
plifications. For instance, it appears that S\01| = S\l1|’ Sloll = S|11 = S‘O_l‘ = S\l—1|7 S\O2I = S|12‘
and that 5‘073| N Sllfg‘ is the empty set. According to Theorem the ANT locus reduces to
the following semi-linear space:

{u= (Ul,UQ,Ug,U4,U5)T € E| —10u; — 10us + 3ug — 2uq + 4us >0 A
— Tup — 6ug +uz —ug +3us =0 A

—3U1—3U,2—|—U3—U4+U5:0} U

{u= (ul,u2,u3,1L4,'u5)T € E| —10u; — 10us + 3ug — 2uq + 4us >0 A
—3u1—3uQ+U3—u4—|—u5)>0 A

—7U1—6’LI,2+U3—U4—|—3U5=O} U

{u= (ul,uQ,1L3,,1L4,u5)T €E| Tuy + 6uy —uz +ug —3us >0 A
—3U1—3U2+U3—U4+U5:0}. O

5 Discussions

This work is complementary to our previous work [I9], which dealt with termination analysis.
In [19] we first prove a sufficient condition for the termination of homogeneous linear programs.
This statement was conjectured in the important work of [2I], where the first attempt to
prove this result contains non trivial mistakes. As we shown in [I9], the actual proof of this
sufficient condition requires expertise in several independent mathematical fields. Also, the
necessary condition proposed in [2I] does not apply as expected in practice. We then went
to generalize the previous result and, to the best of our knowledge, we presented the first
necessary and sufficient condition (NSC, for short) for the termination of linear programs.
In fact, this NSC exhibits a complete decidability result for the class of linear programs on all

90

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

initial values. Moreover, departing from this NSC, we showed the scalability of these approaches
by demonstrating that one can directly extract a sound and complete computational method,
running in polynomial time complexity, to determine termination or nontermination for linear
programs. On the other hand, all other related and previous works mentioned in this paper do
not provide any techniques capable of generating automatically the set of initial input variable
values for which a loop does not terminate. The main contributions of this paper remain on
a sound and complete computational method to compute the set of input variable values for
which the programs do not terminate. The overall time complexity of our algorithm is also of
order O(n?). As can be seen, the main results, i.e., Theorems and provide us with a
direct symbolic representation of the ANT set. Even if those theorems are rigorously stated and
proofs are quite technical, they are really easy to apply: we only need to compute the explicit
terms S (L and S \lu’l in order to directly obtain a formula representing exactly and symbolically
the ANT set. In a same manner, we extended this techniques to linear program not necessarily
diagonalizable and we obtained similar theoretical and practical results. As their associated
proofs are more technical, they would required more space to be fully expressed and we left them
for an ensuing report. In other more recent work on termination static analysis for programs
over the rationals or the integers with several conditional linear inequalities, we also show that
the notion ANT remains central.

6 Conclusion

We presented the new notion of asymptotically non-terminant initial variable values for linear
programs. Considering a linear diagonalizable program, our theoretical results provided us with
sound, complete and fast computational methods allowing the automated generation of the sets
of all asymptotically non-terminant initial variable values, represented symbolically and exactly
by a semi-linear space, e.g., conjunctions and disjunctions of linear equalities and inequalities.
Also, by taking the complementary set of the semi-linear set of ANT initial variable values, we
obtain a precise under-approximation of the set of terminant initial variable values for the (non
-terminant) program. Actually, this type of method can be vastly generalized, to tackle the ter-
mination and non-termination problem of linear programs not necessarily diagonalizable, with
more than one conditional linear inequality, on rational or integer initial values, for instance.
We leave this investigation for an ensuing report.

References

[1] Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for integer linear-
constraint loops. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL 13, pages 51-62, New York, NY, USA, 2013. ACM.

[2] Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer loops.
In VMCAI pages 72-87, 2012.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability. In In
CAV, pages 491-504. Springer, 2005.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of integer linear
loops. In In CONCUR, pages 488-502. Springer-Verlag, 2005.

[6] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial programs.
In In VMCAI’2005: Verification, Model Checking, and Abstract Interpretation, volume 3385 of
LNCS, pages 113-129. Springer, 2005.

91

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

(6]

(7l

(8]

(9]

[10]
[11]
12
13
[14]
[15]
[16]
17)
18]

(19]

[20]

21]

92

Mark Braverman. Termination of integer linear programs. In In Proc. CAV06, LNCS 4144, pages
372-385. Springer, 2006.

Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay. Termination proofs for linear simple
loops. In Proceedings of the 19th international conference on Static Analysis, SAS’12, pages 422—
438, Berlin, Heidelberg, 2012. Springer-Verlag.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, Cambridge,
MA, 2000.

Michael Colén and Henny Sipma. Synthesis of linear ranking functions. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2001, pages 67-81, London, UK, 2001. Springer-Verlag.

Michael A. Colén and Henny B. Sipma. Practical methods for proving program termination. In
In CAV2002: Computer Aided Verification, volume 2404 of LNCS, pages 442—454. Springer, 2002.
Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code.
SIGPLAN Not., 41(6):415-426, June 2006.

P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Journal of
Logic Programming, 13(2-3):103-179, 1992.

Patrick Cousot and Radhia Cousot. An abstract interpretation framework for termination. SIG-
PLAN Not., 47(1):245-258, January 2012.

Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic generation of ranking
functions. In Workshop on Advances in Verification, pages 1-8, 2000.

Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAI, pages 239-251, 2004.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in
cesar. In Proceedings of the 5th International Symposium in Programming, pages 337-351, London,
UK, 1982. Springer-Verlag.

Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. A complete approach for termination
analysis of linear programs. Technical Report 1C-13-08, Institute of Computing, University of
Campinas, February 2013.

Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. Necessary and sufficient condition for
termination of linear programs. Technical Report IC-13-07, Institute of Computing, University of
Campinas, February 2013.

Henny B. Sipma, Tomés E. Uribe, and Zohar Manna. Deductive model checking. Form. Methods
Syst. Des., 15(1):49-74, July 1999.

Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled, editors, Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA, volume 3114 of
Lecture Notes in Computer Science, pages 70-82. Springer, 2004.

Data Conversion Method between a Natural
Number and a Binary Tree for an Inductive
Proof and Its Application

Kazuko Takahashi!, Shizuo Yoshimaru'*
and Mizuki Goto?

1 School of Science and Technology, Kwansei Gakuin University
ktaka@kwansei.ac. jp
2 School of Science and Technology, Kwansei Gakuin University
shizuo.yoshimaru@gmail.com
3 School of Science and Technology, Kwansei Gakuin University
bub85144@kwansei.ac. jp

Abstract

This paper presents modeling of a binary tree that represents a natural number and
gives an inductive proof for its properties using theorem provers. We define a function for
converting data from a natural number into a binary tree and give an inductive proof for
its well-definedness. We formalize this method, develop a computational model based on
it, and apply it to an electronic cash protocol. We also define the payment function on
the binary tree and go on to prove the divisibility of electronic cash using the theorem
provers Isabelle/HOL and Coq, respectively. Furthermore, we discuss the effectiveness of
this method.

1 Introduction

Theorem proving is an important technique to provide a certified system or to ensure bug-
free programming. Several theorem provers, which may be called proof assistants, have been
developed, including ACL2 [11], PVS [19], Isabelle/HOL [16], Coq [4], Agda [17], and so on.
These tools help users to develop formal proofs, either interactively or semi-automatically,
typically using induction as the proof strategy. There are numerous applications for such
provers. There are relatively few practical applications of these tools in most fields compared
to their use in pure mathematics, although there are some outstanding results in microprocessor
design [10], C compilers [I4], operating system kernels [12], security protocols [1], and secure
card systems [3] [I3]. To use these provers successfully, it is necessary to construct a suitable
model and then select an appropriate proof strategy. In practical applications it may be difficult
to form a natural inductive model, and so it may be necessary to build a data structure, which
can be difficult for these provers to handle.

We have previously attempted to prove the divisibility of an electronic cash protocol [21]. In
this experience, we have encountered difficulties in proving the properties regarding the function
that converts a natural number to a binary tree. The binary tree is a complete binary tree,
where a Boolean value is attached to each node, and the value of which is defined as a sum of
the value of the left and right subtrees. The problem can be reduced to the fact that there exists
a function that cannot be defined in a primitive recursive form on an inductively defined data
structure. Because a natural number has a linear structure with only one successor, whereas a

*Currently, Nochu Information System Co.,LTD.

93

Data Conversion Revisited Takahashi, Yoshimaru and Goto

binary tree has a branching structure with two successors at each branching point, the induction
schemes are different, which complicates the proof.

To solve this problem, we introduced a bit sequence as an intermediate data structure, and
defined the function from a natural number to a binary tree as a composition of two recursive
functions via a bit sequence. Specifically, the first function describes the mapping from a
natural number to an intermediate bit sequence and the second function is the mapping from
the bit sequence to the binary tree. We formalized this model and associated proof method, and
applied it to the divisibility of an electronic cash protocol using Isabelle/HOL. However, this
previous work had several drawbacks. First, the model was complicated, because of an intricate
labeling for the nodes of a tree; a simpler and more natural model for this specific binary tree
has subsequently been identified. Second, the proof was incomplete, as one of the lemmas that
relates the bit sequence to the binary tree was left as an axiom. Third, the effectiveness of the
method was not discussed; we did not know whether this method could be applied similarly
with theorem provers other than Isabelle/HOL, or whether a large number of modifications
would be required. In this paper, we provide a simplified model, give complete proofs of the
divisibility using the theorem provers Isabelle/HOL and Coq, and discuss the effectiveness of
the method.

The rest of this paper is organized as follows. In Section[2] we describe in detail the problems
of data conversion and our solution. In Sections [3| and 4] we present a formalization and an
inductive proof of the divisibility of an electronic cash protocol. In Section [b, we provide a
discussion, and in Section [6] we present our conclusions.

2 Data Conversion Formalization

2.1 Problem

First, we illustrate the problem of converting between a natural number and a binary tree,
which are data structures with different induction schemes.

Let NAT and BTREE be a natural number and a binary tree, respectively. NAT is induc-
tively defined with one successor. BTREE is inductively defined in such a form that there are
two successors, i.e.,

nat_p(0).
nat_p(n) => nat_p(Suc(n)).

tree_p(Tip).
tree_p(lt) & tree_p(rt) => tree_p(Node(_,lt,rt)).

where Suc denotes the successor function; Node is a constructor for a tree; ' denotes an
anonymous variable that corresponds to a parent node; It and rt are the left and right subtrees,
respectively; and T'ip is a leaf node. The symbols & and => denote conjunction and implication,
respectively.

Consider data conversion between NAT and BTREE. Let f be a function that maps from
NAT to BTREE and g be a function that maps from BTREE to NAT. We assume that these
functions are defined inductively in the following form,

f: NAT --> BTREE
f(Suc(n)) = c1(f(n)).
£(0) = Tip.

94

Data Conversion Revisited Takahashi, Yoshimaru and Goto

g: BTREE --> NAT
g(Node(_,1t,rt)) = c2(g(1t), glrt)).
g(Tip) = 0.

where cl is a function from BTREE to BTREE, and ¢2 is a function from NATx NAT to NAT.
Consider proving the following relationship between f and g,

g9(f(n)) = n.

We use the following induction scheme IS on NAT to prove it.

vn.((vn'n" <n = g(f(n')) =n') = g(f(n)) =n) [1S]

The proof proceeds by rewriting g(f(n)) in succession as follows:

9(f(n)) f(e2(nl,n2)))
Node(, f(nl), f(n2)))
(9(f(n1)), g(f(n2)))
c2(nl,n2)

)
9(
9(
2

where ¢2(nl,n2) = n for a certain nl,n2 < n.

The induction scheme IS is used to proceed from the third line to the fourth line. To succeed
in this proof, there are two problems to be solved. The first is the progression from the first line
to the second line: we have to prove the equality f(c2(nl,n2)) = Node(_, f(nl), f(n2)). This
problem is how to divide a natural number into two parts suitably. The second, and arguably
more challenging problem, is that we cannot find cl that defines f in a recursive form naturally.
Consider the function f, which maps a natural number to a binary tree. The forms of the data
structures f(n) and f(Suc(n)) are considerably different, and the differences depend on the
values of n. For example, compare the operation of adding a leaf node labeled “True” to the
binary tree shown in Figure |1l In this figure, (a) shows the operation of adding a node to the
binary tree that has two leaf nodes labeled “True,” and (b) shows the operation of adding a
node to the binary tree that has three leaf nodes labeled “True.” These operations cannot be
represented uniformly, therefore f(n) cannot be uniformly defined for all n. Furthermore, even
if f is defined, the proof over the properties on f is not straightforward.

(a) (b)

Figure 1: Operation on adding a “True” node to a binary tree

On the other hand, the definition of g is simpler because it is a conversion from a data type
that is not totally-ordered to one that is totally-ordered.

2.2 Solution

To solve the problem shown above, we introduce the bit sequence BS as an intermediate data
structure between NAT and BTREE.

95

Data Conversion Revisited Takahashi, Yoshimaru and Goto

2.2.1 Conversion from BS to BTREE

First, we describe the conversion from BS to BTREE. We choose a specific binary tree used in
an electronic cash protocol. This tree is a complete binary tree and a Boolean value is attached
to each node, the value of which is defined as a sum of the values of its left and right subtrees.

Let bgby ...b, be a sequence of Boolean values that corresponds to a natural number k.
Then k = b) - 2" + b} - 2" L + ... + b, - 2 where b} = 1/0 for b; = True/False (1 <i < n),
respectively. We encode b - 2™ as the left tree and the remainder as the right tree. The function
from BS to BTREE is defined as follows:

bs_to_btree() = (Tip,false)

bs_to_btree(b#bs) = (if b
then Node(true, create_btree(true,length(bs)), bs_to_btree(bs))
else Node(true, bs_to_btree(bs), create_btree(false,length(bs)))
)

where # is an operator combining the head and tail of the list; Tip indicates a leaf node; the
function create_btree(bool, nat) creates a binary tree of height nat in which all nodes are labeled
with bool; and length(list) denotes the length of list !. Intuitively, when scanning the data
from the head of BS, descending by one bit corresponds to descending one subtree in BTREE.
The induction scheme for the bit sequence is that if some property holds on a bit sequence bs,
it also holds on b#bs. If b = True (i.e., k > 2™), then all nodes in the left subtree are labeled
True; this is referred to as a full_tree. However, if b = False (i.e., k < 2™), then none of the
nodes in the right tree are labeled True; this is referred to as an empty_tree. Thus, the data
types BS and BTREE are matched in their induction schemes.

Let a bit sequence be represented as a list, the elements of which are either True or False.
Figure [2| shows the conversion of the bit sequence [True, False, True] into a binary tree. In
this figure, the black trees are full trees, the white trees are empty trees, and the dotted trees
are the others.

[True,False, True] [False,True] [True]

Figure 2: The mapping between a bit sequence and a binary tree

Because the binary tree corresponding to [True, False, True] is not an empty tree, the root
node is labeled True. Because the first bit in the sequence is True, the left tree is a full tree.
The tree to the right of it is the tree corresponding to the remaining bit sequence [False, True]
after the first bit has been extracted. Now consider the coding of [False, True]; because the

1We can define a mirror tree in which left and right subtrees are exchanged.

96

Data Conversion Revisited Takahashi, Yoshimaru and Goto

first bit of the sequence is False, the right tree must be an empty tree, and the left tree is
the tree corresponding to the remaining bit sequence. Then we consider the coding of [Truel;
because the first bit of the bit sequence is True, the left tree is a full tree, and the right tree is
the binary tree corresponding to the remaining bit sequence. Finally, we obtain a Tip for [].

Figure 3: The binary tree for [T'rue, False, True]

The binary tree obtained from [True, False, True] is thus as follows (Figure [3):

(True,
(True, (True,True,True), (True,True,True)),
(True, (True,True,False), (False,False,False))

)

The function bs_to_btree can give an inductive definition that provides for the division of n
into nl1 and n2, corresponding to the left and right subtrees, respectively, in the proof process
for IS in the previous subsection.

2.2.2 Conversion from NAT to BS

Next, we give a definition for the conversion from NAT to BS. We show two different models:
one using a general function and one using a primitive recursive function.

First, we define the general function naive_nat_to_bs. This is defined in an iterative form
and determines the value of a a bit sequence from the least-significant bit as follows:

naive_nat_to_bs(0) = [False]
naive_nat_to_bs(1) [Truel
naive_nat_to_bs(n) = (naive_nat_to_bs(div(n,2))) @ ([mod(n,2) = 1])

where @ is the concatenation operator for lists, div(n,2) and mod(n,2) return the result of
division of n by 2 and its remainder, respectively.

Second, we define the primitive recursive function nat_to_bs. This is defined in a tail-
recursive form and determines the value of a bit sequence from the most-significant bit. The
definition is more complex than that of the iterative form.

nat_to_bs(0) = [falsel
nat_to_bs(Suc(n)) = calc(lg(Suc(n)),Suc(n))

calc(0,m) = [truel
calc(Suc(n),m) = (if 2°n <= m) then True#(calc(n,m-2"(Suc(n))))
else False#(calc(n,m))

lg(n) = (if n<=1 then O
else Suc(lg (div(n,2))))

97

Data Conversion Revisited Takahashi, Yoshimaru and Goto

where lg is a key function that returns the place number of the bit sequence corresponding to
a given argument, i.e., the natural number m that satisfies m <log n < m + 1. The following
table shows the relationship of a natural number nat, a bit sequence bs, and the value of Ig.
Note that when n increases by 1, the location in the bit sequence, which is equal to the height
of the tree, increases logarithmically.

nat bs

1

10
11
100
101
110
111
1000
1001

~
<

© 0| O T x| W N+
W W NN N =IO

2.2.3 Conversion from NAT to BTREE

Finally, nat_to_btree is defined as the composition of the two functions naive_nat_to_bs and
bs_to_btree or the composition of nat_to_bs and bs_to_btree. nat_to_bs and bs_to_btree are prim-
itive recursive functions, whereas naive_nat_to_bs is a recursive function.

The definition of nat_to_bs is more suitable to an induction scheme than that of
naive_nat_to_bs, because induction is typically applied from the head to the tail.

In the next two sections, we apply this formalization to the electronic cash protocol defined
in [I8] and prove its divisibility.

3 Modeling of an Electronic Cash Protocol
3.1 Ideal Electronic Cash

An electronic cash (e-cash) protocol is, in general, a combination of cryptography techniques,
such as zero-knowledge proof and public key encryption. We consider the ideal e-cash protocol
proposed by Okamoto [I8]. In this protocol, a coin of some monetary value is encoded as
a binary tree, and a payment function is defined over it. This binary tree approach makes
e-cash efficient and unlinkable, and is used in many divisible e-cash schemes [7] 8, [15] [18].
We formalize this protocol and prove its divisibility on a data level, i.e., a user can spend a
coin in several separate transactions by dividing its value without overspending if and only if
a payment function satisfies the payment rules. This is one of the properties that an ideal
e-cash protocol should satisfy. We define the data structure of money and define two primitive
recursive functions of money_amount and pay on money. The definitions are shown using Coq
code in this section.

3.2 Definition of money

A coin is represented as a binary tree called money. Each node of the tree represents a certain
denomination. The root node is assigned the monetary value of the money, and the values of

98

Data Conversion Revisited Takahashi, Yoshimaru and Goto

all other nodes are defined as half the value of their parent nodes.

Money is defined as an inductive function. It is a binary tree, where nodes are labeled with
Boolean values. The label True means that a node is usable, while F'alse means that it is not.
For a given Boolean value b and a natural number n, we can create money in which all of the
nodes have the label b.

Inductive money : Type :=
| Tip : bool -> money
| Node : bool -> money -> money -> money.

Fixpoint create_money(b : bool)(n : nat) : money :=
match n with

| 0=>Tip b
| S n’> => Node b (create_money b n’) (create_money b n’)
end.

3.3 Creation of money from a natural number

cash is a function that creates money corresponding to a given natural number that is defined as
a composition of bs_to_money and naive_nat_to_bs (or nat_to_bs). bs_to_money can be defined
in a manner similar to that of bs_to_btree.

Definition cash(n : nat) : money := bs_to_money (naive_nat_to_bs n).

Note that cash is the money that satisfies a specific condition, whereas type money al-
lows any complete binary tree whose nodes are labeled as Boolean values. For example,
Node(false, Tip(true), Tip(true)) is an element of money but not a result of a function cash.

3.4 Calculation of the amount of money

The function money_amount computes the amount of money that can be used. If the root
node is labeled True, the amount of the tree is the sum of that of the left tree and the right
tree; otherwise, the amount is 0.

Fixpoint money_amount(m : money) : nat :=

match m with

| Tip true => 1

| Tip false => 0

| Node true 1 r => money_amount 1 + money_amount r
| Node false _ _ => 0

end.

3.5 Payment

Payment rules are set in [I8] as follows: when we spend some amount from the coin, we search
for a node (or combination of nodes) whose value is equal to the payment value, and then cancel
these nodes; at the same time, all of the ancestors and all of the descendants are also canceled.
Overspending is prevented if and only if these rules are satisfied.

The function pay corresponds to payment according to the payment rules. When we pay n
from money, where n is less than or equal to the amount of money, then we pay all of n from
the left tree, and the right tree remains as it is if the amount of the left tree is more than n.

99

Data Conversion Revisited Takahashi, Yoshimaru and Goto

Otherwise, we exhaust the left tree in the payment and pay the remainder from the right tree.
For example, money_amount(pay(cash(13),4) = 9.

In the following code, eq_nat_dec and lt_dec are functions on NAT that denote '="and '<’,
respectively. change_false is a function that changes the label of a node to False.

Fixpoint pay(m : money)(n : nat) : money :=

match m with

| Tip true => Tip (if eq_nat_dec n O then true else false)

| Node true 1 r =>

if 1t_dec (money_amount 1) n

then Node true (change_false 1) (pay r (n - money_amount 1))
else Node true (pay 1 n) r

| _=>m

end.

4 Proof of Properties

We prove three properties on the divisibility of the e-cash protocol. On proving these properties
inductively, we apply the method proposed in Section [2]

In this section, we only show the outline of the proof, focusing on how induction is applied.
The complete Coq proof is shown in the Appendix.

First, the distribution property over money_amount holds.

money-amount(Node(_,left, right)) =
money-amount(left) + money_amount(right) ---(1)

This can readily be proved. We rewrite the left side of the given equation.

4.1 Well-definedness of cash

The monetary value of money created by cash from a natural number is equal to that value.
This property is represented as follows,

Y n. (money_amount (cash(n)) =n)

and is proved using the properties of the bit sequence. Below, we show a case in which the first
bit b of the sequence is True. When it is False, the proof proceeds in the same manner.

money_amount(cash(n))

= money_amount(bs_to_money(b#bs)) -~ (2)
= money_amount(Node(true,
bs_to_money(bs), create_money(true, length(bs)) ---(3)
= money_amount(bs_to_money(bs))+
money_amount(create_money(true, (length(bs)))) - (4)

Formula (2) is obtained by unfolding cash, where nat_to_bs(n) = b#bs, formula (3) is
obtained by unfolding bs_to_money, and formula (4) is obtained by the distribution property
of money_amount (1).

The first term of formula (4) is transformed as follows.

100

Data Conversion Revisited Takahashi, Yoshimaru and Goto

money_amount(bs_to_money(bs))
= money_amount(bs_to_money(nat_to_bs(n — 219 ™)) ... (5)
= money_amount(cash(n — 2!97)) - (6)

Formula (5) is obtained using case split tactics on n, property of lg and several other tactics.
Formula (6) is obtained by unfolding cash.
The second term of formula (4) is transformed as follows:

money-amount(create_money(true, length(bs)))
= money_amount(cash(297)) .. (7

Here we use the following induction scheme of NAT.
itV k; k <n, money_amount(cash(k)) = k,
then money_mount(cash(n)) = n holds.

We can prove 29 ™ < n and n — 29" < n. If 219 ™ < n, we apply this type of induction to
both formulas (6) and (7), and so formula (4) is finally transformed into the following form:

money_amount(cash(29 ™)) + money_amount(cash(n — 2'9 ™))
:2lgn+(n_2lg n)
=n

In case 2!9 ™ = n, the proof is simpler without using induction.

4.2 Well-definedness of pay

The amount remaining after payment is the difference between the original value and the
payment value. This property is represented as follows 2:

YV n.V m. (money_amount(pay(cash(n), m)) =n —m)

This is derived from the following lemma:
Y ¢V n. (money-amount(pay(c,n)) = money-amount(c) —n

which is proved as follows. When we pay n from c, if n does not exceed the amount of ¢, we
pay ml from the left subtree as far as possible, and pay the remainder m2 from the right tree.
ml and m2 are determined as follows: if n < money_amount(left), then m1 = n and m2 = 0;
otherwise, m1 = money_amount(left) and m2 = n — money-amount(left). This is proved
using induction. Below, we show an inductive case, because the proof is simple for the base
case.

money_amount(pay(c, ml + m2))

= money_amount(pay(Node(-,left,right),ml + m2)) -+ (8)
= money_amount(pay(left,ml)) + money_amount(pay(right,m2)) ---(9)
= money_amount(left) — ml + money_amount(right) — m?2 --+(10)
= (money_amount(left) + money_-amount(right)) — (ml + m2)

= money_amount(Node(_,left, right)) — (ml+ m2) < (11)
= money_amount(c) — (ml+m2)

2Note that n —m = 0 when m > n.

101

Data Conversion Revisited Takahashi, Yoshimaru and Goto

Formula (8) is obtained by expanding ¢. Formula (9) is obtained by the distribution property
of money_amount and the property of payment on money. Formula (10) is obtained by applying
induction to money. Formula (11) is obtained from the distribution property of money_amount.

4.3 Divisibility
Given that ms is a list of values, each of which corresponds to a transaction, if a user pays

from the head of this list in succession, then the remainder is the correct value. This property
is represented as follows:

Vn.¥Yms.(n > listsum(ms)
= money_amount (foldl(pay(cash(n),ms))) = n — listsum(ms))

Here, foldl and listsum are the functions handling a list. Let ms be a list [m1,...,mk].
foldl(pay(c,ms)) is rewritten in the following form:

(pay(... (pay(c,ml), ... mk)
and listsum(ms) is rewritten in the following form:
ml + ... + mk

This theorem can be proved using the result of the proofs for the above two properties of
well-definedness.

5 Discussion

Modeling the e-cash protocol and proving the properties described in the previous sections were
performed using the theorem provers Isabelle/HOL and Coq, respectively. First, we compare
these two provers.

Both of them are interactive theorem-proving environments based on inductive theorem
proving. The data types and functions are defined in recursive form, and the proof proceeds by
connecting suitable tactics.

Isabelle/HOL has a more powerful engine for automatic proof than Coq. A proof may suc-
ceed simply by using the ‘auto’ command without connecting multiple lemmas in Isabelle/HOL,
whereas a user must specify tactics manually in Coq. However, the proof procedure in Coq is
easier to understand.

Both provers are based on typed logics and adopt higher-order functions. In Coq, type-
checking is richer and proof-checking is reduced to type checking. It requires the user to prove
the termination of a recursive function. Isabelle/HOL also requires the user to prove the
termination of a recursive function, but has a stronger automatic mechanism, and user does
not need to supply much input.

We developed a model for an e-cash protocol, and set out to prove three properties of the
model using Isabelle/HOL, and subsequently translated the model into Coq. The translation
was basically straightforward. The definition of a primitive recursive function using primrec in
Isabelle/HOL was translated to Fizpoint in Coq; the definition of a recursive function using
fun was translated to Function; the definition of a non-recursive function using de finition
was translated to Definition. In addition, we must prove the termination of the function
introduced via Function.

102

Data Conversion Revisited Takahashi, Yoshimaru and Goto

The tactics used in the proofs of two provers were quite different. Generally, more tactics are
required in Coq; however, the proof in Coq provides a useful basis from which to make a proof
in Isabelle/HOL. Actually, we completed the proof of the unproved lemma in Isabelle/HOL by
referring to the proof in Coq. From this experience, it is expected that similar modeling with
other provers is possible and that the existing proofs will be useful as a basis for forming proofs
in those other provers. All definitions and proofs in Isabelle/HOL and Coq are shown in [22].

In the field of protocol verification, there are a number of works on the verification of
security protocols using Isabelle/HOL (e.g.,[2]). However, they mainly proved security or safety
of protocols. To the best of our knowledge, there exists no research on a proof that focuses on
the divisibility of electronic cash protocols using a theorem-proving approach.

Bijection between the set of natural numbers and rooted trees has been discussed in several
works [0 [6, @]. In these works, prime decomposition of the natural numbers was used to
construct the corresponding rooted tree. They used an incomplete tree, in which each prime
number forms an individual branch. It appears to be impossible to define this bijection in an
inductive manner. Attempts to provide the mechanical proof were not made, and the correctness
of the methods has not been proved using theorem provers. On the other hand, we propose a
method for automated theorem proving using a complete binary tree.

The data conversion method described here is applicable to conversion from an inductively
defined data structure with one successor to one with n successors by introducing a list in
which each element takes n values as an intermediate data structure instead of a bit sequence.
Following this transformation, the proof can proceed in a similar manner to the one shown in
this paper, although the number of lemmas would increase. Moreover, it can be extended to
data conversion from data structures with m successors to data structures with n successors by
composing two data-conversion functions, i.e., one from an inductively defined data structure
with m successors to that with one successor, and then a second function from an inductively
defined data structure with one successor to one with n successors.

6 Conclusion

We have described a function for converting data from a natural number to a binary tree,
and have given an inductive proof for its well-definedness. We have described a method of
introducing a bit sequence as an intermediate data structure to provide a model for inductively
defined data structures with different induction schemes. We formalized this method, developed
a computational model based on it, and applied it to an electronic cash protocol. We succeeded
in proving the properties of divisibility of the protocol using the theorem provers Isabelle/HOL
and Coq, and discussed the effectiveness of the method.

In future, we would like to investigate other functions and/or properties on such a binary
tree that is handled here, and develop methods of their inductive proof.

References

[1] Arsac, W., Bella, G., Chantry, X. and Compagna, L. : Multi-Attacker Protocol Validation, J. of
Automated Reasoning 46(3-4):353-388 (2011).

[2] Bella, G., Massacci, B. and Paulson, L. : Verifying the SET Purchase Protocols, J. of Automated
Reasoning 36:5 37 (2006)

[3] Bella, G. : Inductive Verification of Smart Card Protocols, J. of Computer Security 11(1):87-132
(2003).

103

Data Conversion Revisited Takahashi, Yoshimaru and Goto

[10]
[11]
12
[13)
[14]
[15]
[16]
17)
18]
[19]
[20]
21]

22]

104

Bertot, Y. and Castfan, P. : Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions, Springer Verlag (1998).

Beyer, T. and Hedetniemi, S. M. : Constant Time Generation of Rooted Trees, SIAM J. Comput.,
9(4):706-712 (1980).

Cappello, P. : A New Bijection between Natural Numbers and Rooted Trees, 4th STAM Conference
on Discrete Mathematics (1988).

Chan, A., Frankel, Y. and Tsiounins, Y. : Fasy Come - Fasy Go Divisible Cash, EUROCRYPT9S,
pp. 561-575 (1998).

Canard, S. and Gouget, A. : Divisible E-Cash Systems Can Be Truly Anonymous, EURO-
CRYPT2007, pp.482-497 (2007).

Gobel, F. : On a 1-1-Correspondence between Rooted Trees and Natural Numbers, J. of Combina-
torial Theory, Series B(29):141-143 (1980).

Hardin, D. S. (ed): Design and Verification of Microprocessor Systems for High-Assurance Appli-
cations, Springer Verlag (2010).

Kaufmann,M., Monolios, P. and Moore, J. S. : Computer-Aided Reasoning: An Approach, Kluwer
Academic Publishers (2000).

Klein, G. et al. : seL4: Formal Verification of an Operating-System Kernel, Commun. ACM 53(6):
107-115 (2010).

Kurita, T. and Nakatsugawa, Y. : The Application of VDM to the Industrial Development of
Firmware for a Smart Card IC Chip, Int. J. of Software and Informatics 3(2-3):343-355 (2009).
Leroy, X. Formal Verification of a Realistic Compiler, Communications of the ACM, 52(7):107-115
(2009).

Nakanishi, T. and Sugiyama, Y. : An Efficiently Improvement on an Unlinkable Divisible Electronic
Cash System, IEICE Trans. on Fundamentals, E85-A(19):2326-2335 (2002).

Nipkow, T., Paulson, L. and Wenzel, M. : Isabelle/HOL A Proof Assistant for Higher-Order Logic,
Springer Verlag (2002).

Norell, U. : Dependently Typed Programming in Agda, Advanced Functional Programming 2008:
pp-230-266 (2008).

Okamoto, T. : An Efficient Divisible Electronic Cash Scheme, The proceedings of Crypto’95,
pp-438-451 (1995).

Owre,S., Rushby,J.M. and Shankar,N. : PVS: A Prototype Verification System, The proceedings
of CADE-11, pp.748-752 (1992).

Sprenger, C., Zurich, E. T. H., Basin, D., et al. : Cryptographically Sound Theorem Proving 19th
IEEE Computer Security Foundations Workshop (2006).

Takahashi, K. and Yoshimaru, S. : Formalization of Data Conversion for Inductive Proof Tunisia-
Japan Workshop on Symbolic Computation in Software Science (SCSS 2009), pp.135-150 (2009).
http://ist.ksc.kwansei.ac.jp/ ktaka/EMONEY

Data Conversion Revisited Takahashi, Yoshimaru and Goto

Appendix. Proof for E-cash protocol in Coq (tail-recursive
version)

Require Import Omega List Arith Div2 Bool Recdef Wf_nat.

Theorem well_definedness_of_pay :
forall(m : money)(n : nat),
n <= money_amount m
-> money_amount(pay m n) = money_amount m - n.
Proof.
intros m.
induction m; intros n LNM; destruct b; simpl in *; try reflexivity.
destruct (eq_nat_dec n 0).
rewrite e; reflexivity.
assert(n = 1) by omega.
rewrite H; reflexivity.
destruct (lt_dec (money_amount ml) n); simpl.
rewrite IHm2; try omega.
replace (money_amount (change_false ml1)) with 0; try omega.
destruct ml; simpl; reflexivity.
rewrite IHml; omega.
Qed.

Lemma bit_sequence_distribution :
forall(bs : list bool) (b : bool),
money_amount (bs_to_money(bs ++ (b::nil))) =
2 * money_amount (bs_to_money bs) + (if b then 1 else 0).
Proof.
intros bs b.
induction bs; simpl in *.
destruct b; reflexivity.
assert(forall(bl : bool),money_amount (create_money bl (length
(bs ++ b :: nil))) =
money_amount (create_money bl (length bs)) + money_amount
(create_money bl (length bs))).
intros; clear IHbs; destruct bl; induction bs; simpl; try omega.
destruct a; simpl in *; rewrite IHbs; repeat rewrite plus_O_r;
repeat rewrite plus_assoc; rewrite H; omega.
Qed.

Lemma one_reminder_div2 :
forall(n : nat),
(2 * div2 n) + (if one_reminder n then 1 else 0) = n.
Proof.
intros n.
case_eq (one_reminder n); intros; induction n using 1lt_wf_ind.
destruct n; try discriminate.
destruct n; try reflexivity.
simpl in H.
simpl.
replace (S (div2 n + S (div2 n + 0) + 1))
with (S (S (2 * div2 n + 1))).

105

Data Conversion Revisited Takahashi, Yoshimaru and Goto

repeat f_equal.

rewrite HO; try reflexivity; try omega.
apply H.

simpl.

omega.

destruct n; try reflexivity.

destruct n; try discriminate.

simpl in H.

simpl.

replace (S (div2 n + S (div2 n + 0) + 0))
with (8 (S (2 * div2 n + 0))).

repeat f_equal.

rewrite HO; try reflexivity; try omega.
apply H.

simpl.

omega.

Qed.

Theorem well_definedness_of_cash :

forall(n : nat),

money_amount (cash n) = n.

Proof.

intros n.

induction n using lt_wf_ind.

destruct n; try (simpl; reflexivity).
destruct n; try (simpl; reflexivity).
unfold cash; rewrite bit_sequence_equation.
case_eq (one_reminder (S (S mn))); intros;
rewrite bit_sequence_distribution; unfold cash in H; rewrite H;
try (apply lt_div2; apply 1t_0_Sn);

pose (one_reminder_div2 (S (S n)));
rewrite HO in e; apply e.

Qed.

Definition listsum(ns : list nat) : nat := fold_right plus O ns.

Definition payment_amount(m : money)(ns : list nat) : nat :=
money_amount (fold_left pay ns m).

Theorem Divisibility.

forall(n : nat)(ns : list nat),

listsum ns <= n ->

payment_amount (cash n) ns = n - listsum ns.
Proof.

intros n ns LSM.

induction ns using rev_ind; simpl in *.
rewrite <- minus_n_0.

apply well_definedness_of_cash.

unfold payment_amount in *.

unfold listsum in *.

rewrite fold_left_app;

rewrite fold_right_app in *; simpl in *.
rewrite plus_O_r in *.

106

Data Conversion Revisited Takahashi, Yoshimaru and Goto

assert(fold_right plus O ns + x <= n).
generalize n LSM.
clear IHns LSM n.
induction ns; intros; simpl in *.
omega.
assert(fold_right plus x ns <= n - a) by omega.
apply IHns in H; omega.
rewrite well_definedness_of_pay; rewrite IHns; simpl in *; try omega.
replace (fold_right plus x ns) with ((fold_right plus O ns) + x).
omega.
clear IHns H LSM.
induction ns; simpl.
reflexivity.
rewrite <- IHns; info omega.
Qed.

107

Computer Algebra Investigation of Known
Primitive Triangle-Free Strongly Regular
Graphs

Mikhail Klin and Matan Ziv-Av

Ben-Gurion University of the Negev
klin@cs.bgu.ac.il
matan@svgalib.org

Abstract

With the aid of computer algebra systems COCO and GAP with its packages we are
investigating all seven known primitive triangle-free strongly regular graphs on 5, 10, 16,
50, 56, 77 and 100 vertices. These graphs are rank 3 graphs, having a rich automorphism
group. The embeddings of each graph from this family to other ones are described, the au-
tomorphic equitable partitions are classified, all equitable partitions in the graphs on up to
50 vertices are enumerated. Basing on the reported computer aided results and using tech-
niques of coherent configurations, a few new models of these graphs are suggested, which
are relying on knowledge of just a small part of symmetries of a graph in consideration.

1 Introduction

This paper appears on the edge between computer algebra systems and algebraic graph theory
(briefly AGT) and is mainly devoted to the computer aided investigation of the known primitive
triangle free strongly regular graphs.

In fact, there are 7 such graphs, those on 5, 10, 16, 50, 56, 77 and 100 vertices. The largest
one, denoted by N Ly(10) is the universal graph for this family, in the sense that all seven graphs
are induced subgraphs of NLy(10). We denote by § the family of those 7 graphs.

The history of the discovery of the graphs from §, and in particular of NL(10), is quite
striking. Indeed, the graph NL,(10) was discovered twice: once in 1956 by Dale Mesner, and
second time, independently, in 1968 by D. G. Higman and C. C. Sims. The details of this
history are considered in [I5], see also a very brief summary in Section

The graphs on 5, 10 and 50 vertices form a very significant subfamily, consisting of the
known Moore graphs. One more possible member of this series (see e.g. [16]) would have 3250
vertices; its existence is an open problem of a great significance. Moore graphs and their natural
generalizations are objects of much interest in extremal graph theory; they serve as the best
examples of optimal network topologies. Discovery of a new primitive triangle free strongly
regular graph would be a high level sensation in modern mathematics.

This text is oriented towards an interdisciplinary audience, though its kernel is strictly
related to a concrete kind of application of computer algebra in AGT.

Section 2] provides in compact form the necessary background about strongly regular graphs,
see [L1], [5] for more details, while in section [3] we briefly introduce the tools of computer algebra
used in AGT. The seven graphs from the family § are presented in section

Our first main result is introduced in Section full description of embeddings of (primitive
and imprimitive) triangle free strongly regular graphs into the graphs in §.

108

Triangle-free strongly regular graphs Klin Ziv-Av

The next topic of our investigation is related to equitable partitions with a special emphasis
on automorphic equitable partitions, see definitions in Section [f} The search strategy is de-
scribed in Section [7] though much more details may be found in [28]. We report the complete
enumeration of automorphic equitable partitions and partial results for the general case.

Sections reflect our efforts to understand a few of the computer aided results and to
present them in a computer free form (completely, or at least relatively).

In Section |8 we deal with the graph NL(10) and describe it in a sense locally, that is
via so-called metric equitable partitions, obtained from the embeddings of a quadrangle and
a graph K3 3 without one edge (Atkinson configuration), with 4 and 8 cells respectively. The
spectrum of the second partition contains all of the eigenvalues of NL2(10) (the case of full
spectrum). Some modifications of the famous Robertson model (see [21]) appear in Section [9}
while in Section [10] we present a handful of models for some other graphs in §.

It is worthy to mention that for generations of mathematicians, the graphs in § appear as
a source of ongoing aesthetic admiration; see, especially the home page of Andries Brouwer [6].
We believe that some of our models shed a new light on those graphs.

Last but not least, is that as a rule, the models we suggest rely on a relatively small subgroup
of the group Aut(T'), for I' € §. In this way we provide promising patterns for those researchers
who wish in future to face a challenge: to try to construct new primitive triangle free strongly
regular graphs, cf. Section

2 Strongly regular graphs: a brief survey

An undirected graph T is called a strongly regular graph (SRG) with parameters (v, k, A, p) if
it is a regular graph of order v and valency k, and every pair of adjacent vertices has exactly A
common neighbors, while every pair of non-adjacent vertices has exactly ;1 common neighbors.
Sometimes we use an extended set of parameters, (v, k,I, A, 1), where [is the number of non-
neighbors of a vertex, that isl =v — k — 1.

If A= A(T) is the adjacency matrix of an undirected graph I', then T is strongly regular if
and only if A% = kI + AA + u(J — I — A). This implies that (I, A, J — I — A) is the standard
basis of a rank 3 homogeneous coherent algebra. In other words, (A,T',T) are the basic graphs
of a rank 3 symmetric association scheme (here T is the complement of I', while A contains all
the loops). The adjacency matrix of a strongly regular graph has exactly 3 distinct eigenvalues.
For a strongly regular graph we denote by:

e 1 > g, the two eigenvalues of A(T") different from k; r is always positive, while s is always
negative;

e f g, the multiplicity of the eigenvalues r, s respectively.

.. 1 2k+(v—1)(A—p)

A formula for f and g is given by g, f = 5 |[(v — 1) £ W semereTrmmik

A quadruple of parameters (v, k, A, pt) for which f and g as given by the preceding formulas
are positive integers is called a feasible set of parameters. See [6] for a list of feasible parameter
sets with some information about known graphs for some of the sets.

A strongly regular graph I is called primitive if both I" and its complement I' are connected.
This is equivalent to primitivity of the related association scheme (A,T',T).

109

Triangle-free strongly regular graphs Klin Ziv-Av

3 Computer algebra tools in AGT

During the last two decades the significance of the use of computer algebra systems in AGT
increased drastically. Such systems are exploited in the search for new combinatorial objects,
the enumeration of objects with prescribed parameters and the understanding of algebraic and
structural properties of a given combinatorial object I' (such as the automorphism group Aut(I"),
its action and orbits on the ingredients of I', enumeration of substructures of I', embeddings of
I into larger structures, etc.)

An ideal case is when the computer aided understanding of an object I' is followed by further
theoretical generalizations. The foremost goal of this paper is to share with the reader many
new interesting properties of the graphs in the family § in order to promote the search for new
primitive tfSRGs.

Below are the main tools we use.

e COCO is a set of programs for dealing with coherent configurations, including construc-
tion, enumeration of subschemes, and calculation of automorphism groups.

Developed in 1990-2, Moscow, USSR, mainly by Faradzev and Klin [8], [9].

o WlL-stabilization — Weisfeiler-Leman stabilization is an efficient algorithm for calcu-
lating coherent closure of a given matrix (see [25], [3]). Two implementations of the
WL-stabilization are available (see [2]).

e GAP an acronym for “Groups, Algorithms and Programming”, is a system for com-
putation in discrete abstract algebra [10], [22]. It supports easy addition of extensions
(packages, in gap nomenclature), that are written in the GAP programming language
which can add new features to the GAP system.

One such package, GRAPE [23], is designed for construction and analysis of finite graphs.
GRAPE itself is dependent on an external program, nauty [18] in order to calculate the

automorphism group of a graph. Another package is DESIGN, used for construction and
examination of block designs.

e COCO v.2 — The COCO v.2 initiative aims to re-implement the algorithms in COCOQO,
WL-stabilization and DISCRETA as a GAP package. In addition, the new package should
essentially extend abilities of current version basing on new theoretical results obtained
since the original COCO package was written.

We refer to [14] for a more detailed discussion of the ways in which computer algebra systems
are used in AGT for the purpose of experimentation and further theoretical generalizations.

4 The seven known primitive triangle-free strongly regu-
lar graphs

A graph T is called triangle free if it admits no triangles, that is cliques of size 3. If I is also a

strongly regular graph then it is called a triangle free strongly regular graph (tfSRG for short).

A graph is triangle free if any two neighbors have no common neighbors, therefore a tfSRG is

an SRG with A = 0.
The 7 known primitive tfSRGs, with orders from 5 to 100 vertices are:

1. Pentagon with parameters (5,2,0,1). Its automorphism group is D5 of order 10.

110

Triangle-free strongly regular graphs Klin Ziv-Av

%
26 e
27 28 . e ; g
0 [T TSI
o O,
2 3

Figure 1: Hoffman-Singleton graph, Robertson model

2. Petersen graph with parameters (10, 3,0, 1). Its automorphism group is isomorphic to Sy
of order 120. A simple model has as vertices 2-subsets of a set of size 5, with two vertices
adjacent if the subsets are disjoint.

3. Clebsch graph with parameters (16,5,0,2). Usually denoted by Os. Its automorphism
group is isomorphic to (S5252)P°¢ of order 1920. A simple model is 4-dimensional cube Q4
together with long diagonals, or Cayley graph: C AY (FE,4, {0001, 0010,0100,1000,1111}).

4. Hoffman-Singleton graph (HoSi) with parameters (50,7,0,1). Its automorphism group is
isomorphic to PXU(3,52) of order 252000 ([4]). The simplest model is Robertson model
([21]): 5 pentagons marked P, ..., Py and 5 pentagrams marked Qy, ..., Q4 with vertex
i of P; joined to vertex i + jk (mod 5) of Q.

5. Gewirtz (or Sims-Gewirtz) graph with parameters (56, 10,0, 2). Its automorphism group
of order 80640 is a non split extension of PSLs(4) by Fs:. A simple model is as the
induced subgraph of NL(10) on the common non-neighbors of two adjacent vertices.

6. Mesner graph with parameters (77,16,0,4). The automorphism group is of order 887040
and is isomorphic to the stabilizer of a point in the automorphism group of N L5(10). One
simple model is: induced subgraph of NL5(10) on non-neighbors of a vertex.

7. NLy(10) with parameters (100, 22,0, 6), also known as the Higman-Sims graph. Its auto-
morphism group contains Higman-Sims sporadic simple group as a subgroup of index 2.
We refer to [I5] for a detailed presentation of the original construction of this graph by
Dale Mesner, as it appeared on [19], [20].

Recall that the graph NL5(10) on 100 vertices was constructed twice: by Dale Mesner in
his Thesis in 1956 [19] and later on by Higman and Sims in 1968, when they discovered a
new sporadic simple group. Moreover, in 1964 Mesner proved its uniqueness. We denote this
graph by N Ly(10), following the parametrization for a family of putative graphs, introduced by
Mesner in [20]. In [I5] the history of this discovery, as well as of related events is discussed with
many details. A new wave of interest in tfSRGs, stimulated by [I5], was especially productive
for us. It became clear that this is the time to arrange a serious comprehensive investigation of
diverse structural properties of the graphs in the family §. The goal is to attract the attention
of researchers to such an information in order to provide new ideas how efforts for the search
of new tfSRGs should be arranged. We also wish to share with the reader some surprising new
features of the graphs in the family §, observed with the aid of a computer.

111

Triangle-free strongly regular graphs Klin Ziv-Av

5 Embeddings of tfSRGs into known primitive tfSRGs

Usually in graph theory a graph A = (V' E’) is called a subgraph of a graph T' = (V, E) if
V' CV and E' C E. Of special interest are induced subgraphs, in this case £/ = E N {‘g/},
where {)2(} is the set of all 2-subsets of X.

Proposition 1. A subgraph A of diameter 2 of a graph T with no triangles is an induced
subgraph.

Proof. Assume that A is not induced, then there exists an edge {u,w} € E, {u,w} ¢ E’ with
u,w € V'. Since the diameter of A is 2, there exist a v which is adjacent in A (and therefore
in T') to u, w, thus {u,v,w} is a triangle in T', which is a contradiction. O

The enumeration of all tfSRGs inside of known tfSRGs was the first serious computational
challenge in this project. The results of its complete solution are discussed below.

A non-empty imprimitive tfSRG is either a complete bipartite graph (K;; = 20 Kj), or
a graph s o Ky consisting of s edges with no common vertices. Note that Kj o is simply a
quadrangle.

Lemma 2. Graph NL3(10) does not contain subgraph Ks 3.

Proof. Originally, we obtained this result with the aid of a computer. In fact, easy proof follows
from the non-edge decomposition of I' = N L2(10) (see e.g. [15]), without any assumptions about
its uniqueness. Indeed, let A be a subgraph of I', which is isomorphic to K3 3. Assume that
two bipartite parts of A consist of subsets {a, b, c}, {d, e, f} of vertices. Consider now non-edge
decomposition of T' with respect to {a, b}, then ¢ belongs to the cell of size 60, while d, e, f
belong to the cell of size 6, thus ¢ has just g = 2 neighbors in the latter cell, a contradiction
with the valency of ¢, equal to 3 in A. O

As a corollary, we obtain that every known primitive tfSRG does not contain K33, and
moreover does not contain K;;, when [> 3.
Another simple theoretical result (see e.g. [28]) claims that the number of quadrangles in an

v A v L
SRG with parameters (v, k, 1, A, p) is equal to w When A = 0 this reduces to %.
Similar formula may be obtained for the number of 20 K. The numbers of imprimitive tfSRGs
inside of graphs in § are given in Table [1|in the supplement, while the number of orbits of such
embeddings (with respect to Aut(I') for I € §) are given in Table

Note that there is no induced subgraph of NL2(10), isomorphic to 12 o Ka, so both tables
in Supplement [A] end with s = 11 for s o K».

Similar computer results are presented in Tables and (Supplement [A]) for the embeddings
of a graph from the family § into a larger graph in §.

Here the final picture is less sophisticated. There are just two cases where for pair of graphs
X,Y € § there exist more than one orbit of embeddings (up to action of Aut(Y)) of X into
Y. Namely, in these terms, there are 9 embeddings of Petersen graph into Mesner graph and 5
embeddings into N L(10). Computer free understanding of these embeddings remains a quite
interesting task for future investigations of the links between the graphs in the family §.

In all other cases there exists (up to isomorphism) at most one embedding for considered
pair (X,Y). For most pairs there is a reasonably clear explanation in literature, such as two
HoSi inside NLy(10), see e.g. [12], as well as Robertson model of HoSi [2I], which explains
positions in it for both pentagon and Petersen graph.

Beside this there are two more embeddings, which are not immediately evident.

112

Triangle-free strongly regular graphs Klin Ziv-Av

The first pair is the embedding of the Petersen graph into Gewirtz graph. In fact, in
this embedding the Petersen graph appears as a subgraph of the second constituent of the
Gewirtz graph, which in turn is a graph A of valency 8 on 45 vertices. It turns out that
Aut(A) = Aut(Se). This graph A generates a non-Schurian association scheme with three
classes, see e.g. [24]; [13], example W3g. The graph A may be also described as the distance
2 graph of the distance transitive graph of diameter 4 and valency 4 on 45 vertices, a.k.a
generalized octagon GO(2,1), a.k.a line graph of Tutte’s 8-cage (see [5] for more details). In
this context, the task of explanation of the embedding of Petersen graph into A seems to be a
nice exercise in AGT, though out of the framework of this presentation.

The second exceptional pair is the embedding of the Clebsch graph O into N L2(10). This
pair is of a definite independent interest and thus is considered separately in Section

Finally we mention that the classification of cocliques in graphs from § may be regarded
as a degenerate case of subject in this section. Indeed, empty graph is a particular case of an
imprimitive tfSRG. We however disregard this problem, referring to information presented on
the home page of Andries Brouwer [6].

6 Equitable partitions

Let ' = (V,E) be a graph. A partition 7 of the vertex set V, 7 = {V1,...,V;} is called
equitable partition (briefly, EP) if for ¢,5 € {1,..., s}, the numbers |I'(v) N V;| are equal for all
v € V;. Here T'(v) = {u € V|{u,v} € E}. Usually an EP 7 is accompanied by intersection
diagram, which represents a kind of quotient graph, I'/7, on which all intersection numbers are
depicted. Many such diagrams appear in [5]. The quotient graph I' /7 is, in fact, a multigraph.
Its (collapsed) adjacency matrix B consists of all intersection numbers.

Obviously, entries of B are non-negative integers, and for a regular graph I' of valency k the
sum of each row in B is k.

If H is a subgroup of Aut(T"), then the set of orbits of H is an EP of I'. Such an EP is called
automorphic (briefly AEP).

Proposition 3 ([I1]). Let T be a graph, A = A(T") the adjacency matriz of T'. If a partition
7 is EP of T with matriz B then the characteristic polynomial of B divides the characteristic
polynomial of A.

In fact, there are more necessary conditions for a prescribed matrix B to be the adjacency
matrix of a suitable EP of I, which are formulated in terms of spectral graph theory, see e.g.
[7]. They create a solid background for a clever search of potential EPs in a given graph T

7 Search for equitable partitions

In this project we distinguished two alternative problems for the complete search of EPs in
graphs of §.

First problem is to enumerate all automorphic EPs. Here we strongly rely on the level of
group theoretical “intellect” of GAP. Indeed, for groups of relatively small order (say up to a
few thousands) GAP allows to establish efficiently the structure of a considered group, as well
as the lattice of its subgroups.

However, for four graphs in § the group G = Aut(I") has larger order, thus with the growing
of |G| extra theoretical input is required. For example, in case of G = Aut(N Ly(10)) we were
using information from the website of the Atlas of Finite Group Representations ([26]) about

113

Triangle-free strongly regular graphs Klin Ziv-Av

the maximal subgroups of G (this information goes back to [I7]). This knowledge, together with
ad hoc tricks inside of GAP made it possible to describe all subgroups of G up to equivalency
classes with respect to EPs. The fact that all groups G = Aut(T"), T € §, are subgroups of
Aut(NL2(10)) was also quite beneficial.

Finally, we successfully enumerated all automorphic EPs for all " € §.

The second problem is much more sophisticated: to enumerate all EPs for all graphs in §.

For the smallest three graphs in § the results were achieved via simple brute force, see
corresponding tables in Supplement

For HoSi we used a few complementary strategies in the search for all EPs. First, we attacked
partitions with “large” number of cells, say s > 5. Here we introduced extra parameter: the
size of the smallest cell, which varies from 1 to 9. Each such case was considered separately.

On the second stage, we step by step enumerated cases 2 < s < 5, by enumerating possible
collapsed adjacency matrices for each case, and for any such matrix, enumerating all EPs.

The description of our computer activities together with detailed discussion of the results
is presented in [28]. An extra advantage of the enumeration in HoSi is that it serves as a kind
of a pleasant interaction of a human and a computer. Indeed, in spite of the fact that the main
part of computation was fulfilled by GAP, a human can follow search, explain its logic and step
by step to comprehend all ongoing results.

We admit however that the extra advantage of HoSi, is that here parameter u takes its
smallest possible value of 1 (for a primitive SRG). As soon as g > 1 and v is growing, the
problem is becoming essentially more difficult.

This is why already for the Gewirtz graph, with v = 56 we only succeeded in enumeration of
all EPs for which the stabilizer has order at least 2. There are 688 such EPs. The enumeration
of the rigid EPs cannot be completed by a computer in a reasonable time.

The full enumeration of all EPs for the largest two graphs in § (on 77 and 100 vertices) at
this stage looks intractable. Only modest particular cases may be proceeded efficiently.

We refer to Supplement [B] for Tables [} [6] and [7] which summarize our activities for both
considered problems, see [28] for more information.

As was mentioned in the introduction, one of the main goals of this project is to detect a
number of “nice” EPs, which may serve as a training model for future search of new primitive
tfSRGs. At this stage this kind of job only partially relies on the support from computer, finally
a human’s insight still turns out to be very significant. Below we report about interesting
interpretations created by us for a handful of detected EPs.

8 Quadrangle and Atkinson EPs of N L,(10)

Recall that I' = N L5(10) has % = 28875 quadrangles. This is a simple result, obtained
on a combinatorial level without any knowledge of structure of T".

Provided that T' and G = Aut(T") are known, we easily obtain (with the use of a computer)
that all quadrangles in I' form one orbit under G and stabilizer H of a quadrangle in G has
order 3072, is isomorphic as abstract group to (Zy X Z3).(Z4 X Z3)) : Z3) : Zg) : Zs) : L3) : Zo
and has in action on V(I") four orbits of lengths 4, 8, 24 and 64.

Thus we may consider an automorphic EP of size s = 4. There is sense to try again
combinatorial arguments in order to determine all invariants of this EP without any prior
knowledge of I' and its group. Fortunately, this turns out to be possible.

Proposition 4. Let 7 be a metric decomposition with respect to a prescribed quadrangle Q
inside of T'. Then 7 is EP, s = 4, sizes of cells are 4, 8, 24, 64 and (with respect to this

114

Triangle-free strongly regular graphs Klin Ziv-Av

2 4 0 16

. 2 0 12 8
ordering of cells), B = 0 4 2 16
1 1 6 14

See proof in [28].

In principle, next stage should be to describe a model of NLs(10) in terms of the group
H of order 3072 or one of its subgroups which is transitive on all cells of the quadrangle EP.
Nevertheless, in this text we are avoiding this task. Instead of, we prefer to split the quadrangle
EP to one with larger number of cells and to proceed with that new one.

A note [I] was published before the announcement of CFSG, The author considered 13
parameter sets for tfSRGs, which may be also rank 3 graphs, with the number v of vertices
where 100 < v < 1000 and proved that such graphs can not be constructed with the aid of
known 2-transitive permutation groups. Part of exposed details is related to consideration of a
configuration 2 (graph K33 minus one edge) in putative graph.

We got impression that [I] is overseen through a generation of mathematicians and it might
be helpful to analyze existence of 2 (we call it Atkinson configuration) in known tfSRGs.

It turns out that 21 appears only in graphs on 77 and 100 vertices. Here we analyze its
position in T' = N Ly(10).

Let us fix at 2 a quadrangle, for example with the vertices {a, b, ¢, f}. Then two extra ver-
tices have two neighbors in the selected quadrangle, namely ends of two non-edges respectively.

Now we embed 2 into the considered above quadrangle decomposition splitting in it cell of
size 8 into two cells of size 2 (exactly our {d,e}) and the remainder. This immediately implies
split of the cell of size 64 into two cells of sizes 16 and 48. The cell of size 24 is forced to be
split into subcells of sizes 12, 6, 6, depending on the number of neighbors in {d,e} being 1, 2
and 0, respectively.

A more careful analysis (see [28]) shows that we are still getting an EP.

Proposition 5. A metrical decomposition 7(21) of a tfSRG with the parameters of N Ly(10)
with respect to configuration A is EP with s = 8 and cells of sizes 4, 2, 16, 48, 6, 12, 6, 6. It
has collapsed matriz B as follows, with Spec(B) = {22,2°, (—8)?}.

Originally, the proof was obtained with the aid of com-

puter analysis of I' = NL3(10). Later on an outline of a 2 1 4 12 3 0 0 0
similar proof as for quadrangle configuration was again 208 0 0 6 6 0
obtained without prior knowledge of T 11 2 12 0 3 0 3

Further consideration of 7(2() was fulfilled inside of 10 4 10 1 3 2 1
known graph I' and its group Aut(T"). It turns out that b= 200 8 0 6 2 4
H = Aut(1()) = D4 x Sy is a group of order 192. H has 01 4 12 3 2 0 0
exactly 8 orbits on the set V(I"), thus 2(is an automorphic 02 016 2 0 0 2
EP. 008 8 40 20

Describing further stabilizers of H on each of the 8
orbits we elaborated the following ad hoc model of T.

We start from the auxiliary graph A depicted in Figure [2]

We identify elements of each orbit in 7(2() with suitable sets of structures, described with
the aid of A. In fact, each set of structures appears as orbit of action of the group H. Thus it
is enough to describe a representative of each orbit.

For example, the elements in the cell of size 16 are the vertices of A, while the elements of
the cell of size 4 are the four columns of A. The most tricky to find was a representation of the
7th cell, of size 6.

115

Triangle-free strongly regular graphs Klin Ziv-Av

v
o

We think that this piecewise model of I', appearing from a o
reasonably small solvable group of order 192 may serve as an
optimistic message for those researchers who are hunting for new
tfSRGs, see also comments in Section

3

7

9 Some modifications of Robertson
model 1

{0}
9 1& 11
,XA\

3 1

e
I

O

15
The Robertson model of the Hoffman-Singleton graph (see Figure Figure 2: Auxiliary graph 4
1)) partitions the vertices into five pentagons and five pentagrams,
and describes a simple arithmetic rule for the edges connecting
pentagons and pentagrams (see Section. Let p;j (gi;) be vertex
j of pentagon (pentagram) i.

Since NL3(10) has an EP to two cells of size 50, where the
induced graph on each cell is isomorphic to HoSi, this model can be extended to a model of
N L5(10).

In both cases we get an EP with a collapsed adjacency matrix that has a transitive au-
tomorphism group (a permutation g € S,, is an automorphism of a matrix M € F**" if the
permutation matrix M, commutes with M). We are therefore interested in equitable partitions
with this property.

In the list of equitable partitions of HoSi we find another such partition with 10 cells of size
five. The collapsed adjacency matrix of this partition is M. The spectrum of M is {7,2%, (—3)°},
so it has the full spectrum of HoSi.

The cells of this partition can be de-
scribed in the Robertson model of HoSi: for

0220000111

each ¢ € [1,5], we construct two cells: 2201 01 20010
{p1,1+i,p2,1+ivp3,2+up4,4+i7P5,2+z'}a 21 0 2 0 0 1 0 0 1
{a114i, 92,146, 93,5+ Q4.3+, Q5.5+) - 00 2 011 2 001
If we consider this matrix M as the adjacency 01 01 0 2 010 2
matrix of a color graph, then the basic graph for the M= 0201 201010
color 1 is the Petersen graph, while the basic graph 001 2010120
for the color 2 is a cycle of length 10. For compar- 1 00 01 010 2 2
ison, acting similarly with the Robertson partition 1100 01 2 2 00
we get a graph K 5. 1011200 2 00

The stabilizer of the (ordered) partition in
Aut(HoS%) is isomorphic to the dihedral group Ds
of order 10, as is the automorphism group of M.

The coherent closure of the partition (more specifically, of the graph with its vertices colored
according to the partition) is a Schurian coherent configuration of rank 300, with the stabilizer
of the partition as its automorphism group.

This EP of HoSi can be extended to an EP of NL3(10), of 20 independent sets of size 5. In
this case, the matrix has spectrum {22,213, (—8)6}, so this EP has full spectrum as well.

The automorphism group of this matrix has order 240 and is isomorphic to Zs x Ss, while
the stabilizer of the ordered partition is again Ds of order 10.

The coherent closure of the partition is a Schurian coherent configuration of rank 1200, with
the stabilizer of the partition as its automorphism group.

116

Triangle-free strongly regular graphs Klin Ziv-Av

Figure 3: AEP of Gewirtz graph by a semiregular subgroup of order 7

10 A few more models

The calculated data, both about embeddings of tfSRGs inside tfSRGs and about EPs can be
used to present new models and constructions for tfSRGs. Here we offer a few examples, without
going into a lot of details:

Example 1 (Two Wagner graphs in Clebsch graph). Wagner graph, also known as Mébius
ladder of order 8, denoted by Mg is a cubic graph on 8 vertices. A simple model for it is a
Cay(Zs,{1,—1,4}). The spectrum is {3,12,—1} and Aut(Ms) = Ds.

In one of the three EPs of Os into two cells of size 8, the induced subgraph on each cell is
the Wagner graph. The stabilizer of ordered partition inside Aut(Os) is Dg.

Example 2 (Non-automorphic EP of HoSi). We can construct an EP of HoSi into two cells
by taking one of the cells to be the 20 vertices of two Petersen graphs (any two pentagons and
two pentagrams in Robertson model). The stabilizer of this partition is D1g of order 20, so it
is not automorphic.

Example 3 (Inside Gewirtz graph: six 7-cycles). There is one automorphic partition of Gewirtz
graph into 8 cells of size 7. The induced graph on 6 of the cells is a cycle of length 7, while the
induced graph on the other two cells has no edges.

From the intersection diagram (Figure @ we see that this partition can be merged to an
equitable partition with 2 cells of sizes 42 and 14 with adjacency matrix <§ 1)

The induced graph on the cell of size 42 of valency 8 is a coherent graph. Its coherent closure
is a rank 6 imprimitive non-Schurian association scheme. This graph is not a rational graph,
with spectrum {8,222, (—1)7, (1 ++/2)5, (1 — v/2)%}.

The induced graph on the cell of size 14 is a bipartite graph with two parts of size 7. It is
the co-Heawood graph, that is the bipartite complement to the Heawood graph, the Levi graph of
Fano plane. This is by necessity true, since a regular bipartite graph of valency 4 and order 14
in which every vertex belongs to exactly one quadrangle is the co-Heawood graph.

A. Brouwer ([6]) notes that this co-Heawood graph is a subgraph of the Gewirtz graph.

Example 4 (Gewirtz graph inside of Mesner graph through the group Z7). We start with
a semiregular subgroup Zr of order 7, this time inside of the automorphism group of Mesner
graph. We get an AEP with 11 cells of size 7; the collapsed matriz N of order 11 is presented
in [28]. It turns out that Aut(N) = Sy 1S3 (the wreath product) is a group of order 72 with
orbits of sizes 6,2,13. There are three non-equivalent possibilities to merge from this AEP a

117

Triangle-free strongly regular graphs Klin Ziv-Av

4
non-automorphic EP with 3 cells of sizes 14, 21, 42 and a collapsed matrix (4
2

[l

6

12 |, which
8

has full spectrum.

Each of the cases provides also an EP for the Gewirtz graph with two cells of sizes 14 and
42. Thus, as a by product, we obtain other (cf. Example 3) embeddings of the co-Heawood
graph into the Gewirtz graph. This example demonstrates “irregularities”, which may cause
interesting EPs, unpredictable from the first sight.

Example 5 (Clebsch graph inside NL2(10)). Recall that up to the automorphism group of
I' = NL»(10), there is one embedding of Oy into T'. The equitable partition resulting from this
embedding allows us to describe another model for N L2(10).

We start from a group Ho = Z4 X Sy of order 96, with orbits of lengths 16, 16, 48, 12,
8. The collapsed adjacency matriz of the corresponding automorphic equitable partition is B”,
(shown below). Clearly, the induced graph on the first cell of the partition is isomorphic to Os.

In principle, one may try as in previous sections to reconstruct the corresponding matriz B
from scratch, not relying on knowledge of the graph T' and its group. A promising starting point
would be justification of existence of a coclique of size 8 and its adjacency with the induced Os.

We, however, prefer to exploit at this stage another possibility. Namely, it turns out that
the stabilizers of A and Os inside of ' have mazximal possible intersection K = Z4 X S3 of order
24. K defines an AEP with 11 cells of sizes 2, 4, 4, 6, 6, 6, 12, 12, 12, 12, 2/ and matriz B’.

022006 06 06 0

1213 003 3 3 06

112 03 0303 3 6

02004220 2 6 4 5 4 9 3 1

00240226 20 4 4 2 12 0 4
B=|2002204040 8 B'"=13 4 11 3 1

011112 43 2 3 4 4 0 12 2 4

1100 3 03 2 3 3 6 2 8 6 6 0

01111223 4 3 4

101 3 003 3 3 26

01111223 2 3 6

It is easy to recognize how B’ is split from the matriz B of the metric EP of the configuration
2A. Then we merge the B’ into B”:

The cell of size 48 is a merging of the last 3 cells, the cell of size 8 is merging of cell of sizes
2 and 6 (5th cell), while the cell of size 12 is a merging of two remaining cells of size 6. Each
cell of size 16 is a merging of cells of sizes 4 and 12.

Example 6 (Reconstruction of NL2(10) from a subgroup of order 2). Using information in
the atlas [26] (or direct calculation using GAP), we see that G = Aut(NLy(10)) contains
one conjugacy class of involutions with no fized points. From such an involution, i, we get
an AEP into 50 cells of size 2. We investigated the quotient graph I' of this AEP, and its
collapsed adjacency matriz, denoted by B. The structure of I' may be recovered by considering
the centralizer C(i). However, we prefer to rely on information of combinatorial nature. The
graph T has a natural EP into cells of sizes 20 and 30 (representing edges and non-edges in
NLy(10)).

The induced (color) graph on 20 vertices is the graph K10, 10 from which a 1-factor is removed.

The induced graph on 30 vertices is the incidence graph of generalized quadrangle of order

2, GQ(2).

118

Triangle-free strongly regular graphs Klin Ziv-Av

This equitable partition corresponds to an equitable partition of T' = N L2(10), into two cells
of sizes 40 and 60.

11 Concluding comments

The presentation in this extended abstract is a tip of iceberg. Much more concrete information
may be found in [28], while [27], subject of ongoing polishing and development, will reflect all
detected computer data about the graphs from family §. We see also more potential to return
again to construction of further models for graphs in §, in particular relying on non-automorphic
EPs. The new attempts to achieve, at least in part, enumeration of all EPs of restricted size of
cells for graphs on 77 and 100 vertices are also on agenda. The paper [16] as well as a number
of private communications of M. Macaj to author MK, create a background to attack in nearest
future the problem of existence of new tfSRGs with relatively small parameters. The parameter
set on 162 vertices seems to be first interesting and realistic target.

It should be mentioned that the results in [16], as well as in numerous private communica-
tions of M. Macaj to the author MK, show that a putative new primitive triangle free strongly
regular graph I' with prescribed parameters will have a relatively small automorphism group
Aut(T); very concrete restrictions on the cycle structure of elements in Aut(I') are typically
available. Transformation of those restrictions to the language of equitable partitions may be
regarded as a reasonable starting platform for attempts to construct a new tfSRG.

Note, however, that many experts in AGT do not believe at all that a new tfSRG exists.
Needless to say that this question creates a great challenge for the modern scientific community.

Acknowledgments

We thank Andy Woldar for ongoing collaboration in this project. We acknowledge Sven Re-
ichard and Christian Pech for sharing with us their draft versions of COCO II. Ongoing com-
munication with Martin Macaj is very helpful and stimulative. We also are pleased to thank
Peter Cameron and Jozef Sirdii for interest expressed to the topic of our research.

References

[1] M. D. Atkinson. On rank 3 groups having A = 0. Canad. J. Math., 29(4):845-847, 1977.
[2] L. Babel, S. Baumann, and M. Luedecke. Stabcol: An efficient implementation of the weisfeiler-
leman algorithm. Technical Report TUM-M9611, Technical University Munich, 1996.

[3] L. Babel, I. V. Chuvaeva, M. Klin, and D. V. Pasechnik. Algebraic combinatorics in mathematical
chemistry. methods and algorithms. ii. program implementation of the weisfeiler-leman algorithm.
Technical Report TUM-M9701, Fakultat fiir Mathematik, TU Miinc, 1997. http://www-1it.ma.
tum.de/veroeff/html/960.68019.html.

[4] C. T. Benson and N. E. Losey. On a graph of Hoffman and Singleton. J. Combinatorial Theory
Ser. B, 11:67-79, 1971.

[5] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1989.

[6] A.E. Brouwer. http://www.win.tue.nl/~aeb/graphs/.

119

http://www-lit.ma.tum.de/veroeff/html/960.68019.html
http://www-lit.ma.tum.de/veroeff/html/960.68019.html
http://www.win.tue.nl/~aeb/graphs/

Triangle-free strongly regular graphs Klin Ziv-Av

(7]

8]

9
[10]
[11]
12
[13]
[14]
[15]
[16]
17

18]
19]

[20]
21]
22]
23]
24]
[25]

[26]

27]

28]

120

Dragos Cvetkovi¢, Peter Rowlinson, and Slobodan Simié. An introduction to the theory of graph
spectra, volume 75 of London Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 2010.

I. A. Faradzev and M. H. Klin. Computer package for computations with coherent configurations.
In Proc. ISSAC, pages 219-223, Bonn, 1991. ACM Press.

I. A. Faradzev, M. H. Klin, and M. E. Muzichuk. Cellular rings and groups of automorphisms of
graphs. In Investigations in algebraic theory of combinatorial objects, volume 84 of Math. Appl.
(Soviet Ser.), pages 1-152. Kluwer Acad. Publ., Dordrecht, 1994.

The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008.

Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 2001.

Paul R. Hafner. On the graphs of Hoffman-Singleton and Higman-Sims. FElectron. J. Combin.,
11(1):Research Paper 77, 33 pp. (electronic), 2004.

M. Klin, C. Pech, and P.-H. Zieschang. Flag algebras of block designs. i. initial notions. steiner
2-designs and generalized quadrangles, November 1998.

Mikhail Klin, Christian Pech, Sven Reichard, Andrew Woldar, and Matan Ziv-Av. Examples of
computer experimentation in algebraic combinatorics. Ars Math. Contemp., 3(2):237-258, 2010.
Mikhail H. Klin and Andrew J. Woldar. Dale Mesner, Higman & Sims, and the strongly regular
graph with parameters (100,22,0,6). Bull. Inst. Combin. Appl., 63:13-35, 2011.

Martin Macaj and Jozef Sirdn. Search for properties of the missing Moore graph. Linear Algebra
Appl., 432(9):2381-2398, 2010.

Spyros S. Magliveras. The subgroup structure of the Higman-Sims simple group. Bull. Amer.
Math. Soc., 77:535-539, 1971.

B. D. McKay. nauty user’s guide (version 1.5), 1990.

Dale Marsh Mesner. An investigation of certain combinatorial properties of partially balanced
incomplete block experimental designs and association schemes, with a detailed study of designs of
latin square and related types. ProQuest LLC, Ann Arbor, MI, 1956. Thesis (Ph.D.)-Michigan
State University.

Dale Marsh Mesner. Negative latin square designs. Mimeo notes 410, Institute of Statistics, UNC,
NC, 1964.

George Neil Robertson. Graphs minimal under girth, valency and connectivity constraints. Pro-
Quest LLC, Ann Arbor, MI, 1969. Thesis (Ph.D.)—University of Waterloo (Canada).

Martin Schénert et al. GAP — Groups, Algorithms, and Programming — version 8 release 4 patch-
level 4. Lehrstuhl D fiir Mathematik, Rheinisch Westféalische Technische Hochschule, Aachen,
Germany, 1997.

Leonard H. Soicher. GRAPE: a system for computing with graphs and groups. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 287-291. Amer. Math. Soc., Providence, RI, 1993.

Edwin R. van Dam. Three-class association schemes. J. Algebraic Combin., 10(1):69-107, 1999.
B. Weisfeiler. On construction and identification of graphs. Number 558 in Lecture Notes in Math.
Springer, Berlin, 1976.

Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton,
Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott. Atlas of finite group representa-
tions - version 3. http://brauer.maths.qgmul.ac.uk/Atlas/v3/.

M. Ziv-Av. Protocols with computer data related to the investigation of known primitive trangle-
free strongly regular graphs. http://www.math.bgu.ac.il/~zivav/math/|

M. Ziv-Av. Results of computer algebra calculations for triangle free strongly regular graphs.
http://www.math.bgu.ac.il/~zivav/math/eqpart.pdf.

http://brauer.maths.qmul.ac.uk/Atlas/v3/
http://www.math.bgu.ac.il/~zivav/math/
http://www.math.bgu.ac.il/~zivav/math/eqpart.pdf

Triangle-free strongly regular graphs

Klin Ziv-Av

A Data about embeddings of tfSRGs inside tfSRGs

Quadrangle | edge | 2 edges 3 4 5) 6
Pentagon 0 5 0 0 0 0 0
Petersen 0 15 15 5 0 0 0
Clebsch 40 40 60 40 10 0 0
HoSi 0 175 7875 128625 845250 2170350 1817550
Gewirtz 630 280 15120 245280 | 1370880 2603664 1643040
Mesner 6930 616 55440 | 1330560 | 10589040 | 28961856 | 24641232
NLy(10) 28875 1100 | 154000 | 5544000 | 67452000 | 301593600 | 477338400
7 edges 8 9 10 11
HoSi 40150 15750 3500 350 0
Gewirtz 104160 7560 1400 112 0
Mesner 3664320 166320 30800 2464 0
NL5(10) | 258192000 | 14322000 | 924000 | 154000 | 11200
Table 1: Number of imprimitive tfSRGs inside tfSRGs
Quadrangle | edge | 2edges | 3| 4 | 5 | 6
Pentagon 0 1 0 0| 0|01 O
Petersen 0 1 1 110|070
Clebsch 1 1 1 111010
HoSi 0 1 1 4110]21 |15
Gewirtz 1 1 2 9130 |48 36
Mesner 1 1 1 7126|956 |50
N L5(10) 1 1 1 2|7 | 14|17
Tedges | 8 |9 | 10 | 11
HoSi 8 111110
Gewirtz 5 2121110
Mesner 14 2121 0
NL5(10) 14 312 | 2 1
Table 2: Number of orbits of imprimitive tfSRGs inside t{SRGs
Pentagon | Petersen | Clebsch | HoSi | Gewirtz | Mesner | NL3(10)
Pentagon 1 12 192 1260 8064 88704 443520
Petersen 1 16 525 13440 | 1921920 | 35481600
Clebsch 1 0 0 0 924000
HoSi 1 0 0 704
Gewirtz 1 22 1030
Mesner 1 100
NLy(10) 1

Table 3: Number of primitive tfSRGs inside tfSRGs

121

Triangle-free strongly regular graphs

Klin Ziv-Av

Pentagon

Petersen

Clebsch

Gewirtz

Mesner

NL(10)

Pentagon

1

1

1

1

Petersen

1

1

Clebsch

1

HoSi

Gewirtz

= OO =

Mesner

[l R E=l E==] lNe]

NL(10)

=] =] = = =] o =

Table 4: Number of orbits of primitive tf{SRGs inside tfSRGs

B Data about equitable partitions of primitive tfSRGs

Pentagon | Petersen | Clebsch | HoSi | Gewirtz | Mesner | N Ly(10)
EP 3 11 46 163
Aut 3 11 38 89 154 236 607

Table 5: Number of orbits of equitable partitions and of automorphic equitable partitions for

known t{SRGs.

Size | 1 | 3 | 5 | Total

EP |1|1]|1 3

Aut |1 1|1 3

Size | 112345 |6 10 | Total

EP |1|2]2|2]1]1 1 11

Aut |1 [2]22]1]1 1 11

Size [1|12]|3] 4 |5|6|7[8[]9|10] 12| 16 | Total
EP |1|4|6|12 |5 |7 |34 |11 1 1 46
Aut |1 |4|5|10|3|5(2|4]1] 1 1 1 38
Size | 1 2 (314|516 |7|8]9]10 11
EP 1 |6 |8 (161820 |19 |18 | 11| 11 8
Aut | 1 | 4 | 5| 7|6 |99 |11]4 |9 4
Size | 12 | 13 | 14 | 15| 16 | 18 | 20 | 28 | 30 | 50 | Total
EP T 7T 2] 2 1 2 |3 1 1 1 163
Aut | 4 | 4 | 2 1 1 2 |3 1 1 1 89

Table 6: Numbers of EPs and automorphic EPs by size of partition for four small graphs.

122

Triangle-free strongly regular graphs

Klin Ziv-Av

Size | 1 213|456 7|89]10]|11]12 13

Aut | 1 5 | 9|12 (12|14 |15 |16 |14 |11 | 7 | 7 6

Size | 14 | 16 | 17 | 18 | 19 | 20 | 23 | 28 | 31 | 32 | 35 | 56 | Total

Aut | 5 |3 3|2 |2]|4]|1 1 1 1 1 1 154

Size | 1 213|456 |7 |89]|10|11]12|13 |14 15
Aut | 1 | 3 | 5| 8 |11|10|20| 14|19 |12 |18 | 12| 16| 9 14
Size | 16 | 17 | 18 | 19| 20 | 21 | 23 | 25 | 29 | 33 | 41 | 45 | 49 | 77 | Total
Aut | 5 |12 5 | 9 1 8 | 4| 81| 6 | 2 1 1 1 1 236
Size | 1 213|456 |78 |9]|10]11]12|13 | 14 15
Aut | 1 | 6 | 15|21 | 28|29 |31 |42 |34 |35 |37|49 |30 | 31 27
Size | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29

Aut |26 |18 |18 |13 |26 |14 |11 | 7 | 9 | 6 |6 | 5| 2 1

Size | 30 | 31 | 32 | 33 | 34| 35|39 |40 |45 |50 | 53 | 60 | 65 | 100 | Total
Aut | 7 | 1 312|213 1] 4 1 1 1 1 1 1 607

Table 7: Numbers of automorphic EPs by size of partition for larger graphs.

123

Usage of Invariants for Symbolic Verification of
Requirements

Short Paper

Alexander Letichevsky!, Alexander Godlevsky!, Anton Guba!, Alexander
Kolchin!, Oleksandr Letychevskyi!, Vladimir Peschanenko?

1 V.M. Glushkov Institute of Cybernetics, Kiev, Ukraine
let@cyfra.net, godl@iss.org.ua, antongubaQukr.net, kolchin_av@yahoo.com, 1it@iss.org.ua
2 Kherson State University, Kherson, Ukraine
vladimirius@gmail.com

The main goal of the paper is finding of pre- and post-invariants for transitions between
symbolic states in the system that must be verified and use them for verification purposes.
Systems are specified by basic protocols [I]. This specification defines a transition system with
transitions s — s’ where s and s’ are symbolic states, b is a basic protocol. The main problem
of verification is a reachability problem for given properties expressed in specification logic
language.

We present double approximation method of verification based on computing invariants. The
method is implemented as an iterative algorithm which solves in parallel reachability problem
and computes lower and upper approximations of invariants for basic protocols.

Currently there are a lot of significant works devoted to computing invariants, which are
considered for loops in programs. Loops are marked explicitly - syntactic constructions like
while and others. When we deal with requirement specifications, we do not deal with explicit
marked loops, moreover basic protocols provide non-deterministic order. Existing methods
usually ignore the conditions of the loops. Invariants formulae, which is obtained as a result,
include unreachable states and therefore could be used in verification only in the following way:
if a property does not intersect with the invariant formula, then it is unreachable, if intersects,
then conclusion cannot be done. Therefore, the problem of modification of existing methods,
or to develop a new algorithm that could be applied in practice of requirements verification is
actual.

Research of problems of automatic program invariants generation for a variety of data al-
gebras was performed starting from 70-th years in Institute of Cybernetics of NAS of Ukraine.
Their main results are presented in [2]. Double approximation method, is the dynamic iterative
method of invariants generation and it is based on these results and adapted for requirements
verification. The method also can be applied to program verification if a program is considered
as a special case of basic protocol specification. The method has been implemented in VRS
(Verification of Requirement Specifications) system [3] and IMS (Insertion Modeling System)
system [4].

References

[1] A. Letichevsky, J. Kapitonova, V. Volkov, A. Letichevsky Jr., S. Baranov, V. Kotlyarov, T. Weigert.
System Specification with Basic Protocols. Cybernetics and System Analyses, vol. 4, 2005, p. 3-21.

[2] Godlevsky A.B., Kapitonova Y.V., Krivoy S.L., Letichevsky A.A. Iterative methods of program
analysis. Cybernetics, vol. 2, 1989, . 9-19.

[3] Verification for Requirement Specification (VRS). http://iss.org.ualSS/VRS/tool.htm, last
viewed May 2013.

[4] APS and IMS Systems. http://apsystem.org.ua, last viewed May 2013.

124

http://iss.org.ua ISS/VRS/tool.htm
http://apsystem.org.ua

Lebesgue Constants and Optimal Node Systems

via Symbolic Computations

Short Paper

Robert Vajda

University of Szeged, Szeged, Hungary
vajdar@math.u-szeged.hu

Abstract

Polynomial interpolation is a classical method to approximate continuous functions
by polynomials. To measure the correctness of the approximation, Lebesgue constants
are introduced. For a given node system X"tV = {z; < ... < z,1}(z; € [a,b]),
the Lebesgue function A, (z) is the sum of the modulus of the Lagrange basis polynomials
built on Xt The Lebesgue constant A, assigned to the function A, () is its maximum
over [a,b]. The Lebesgue constant bounds the interpolation error, i.e., the interpolation
polynomial is at most (1 + A,) times worse then the best approximation. The minimum
of the A,’s for fixed n and interval [a, b] is called the optimal Lebesgue constant Aj,. For
specific interpolation node systems such as the equidistant system, numerical results for
the Lebesgue constants A, and their asymptotic behavior are known [3} [7]. However, to
give explicit symbolic expression for the minimal Lebesgue constant A}, is computationally
difficult. In this work, motivated by Rack [5[6], we are interested for expressing the minimal
Lebesgue constants symbolically on [—1, 1] and we are also looking for the characterization
of the those node systems which realize the minimal Lebesgue constants. We exploited the
equioscillation property of the Lebesgue function [4] and used quantifier elimination and
Groebner Basis as tools [T}, 2]. Most of the computation is done in Mathematica [§].

Acknowledgement. The research of the author was partially supported by the HSRF
(OTKA), grant number K83219.

References

1]

[7]
(8]

D. S. Arnon - G. E. Collins - S. McCallum, Cylindrical Algebraic Decomposition I: The Basic
Algorithm. In: Caviness-Johnson (eds): Quantifier Elimination and Cylindrical Algebraic Decom-
position, 136-151, Springer, 1998.

B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal (An algorithm for finding the basis elements in the residue class
ring modulo a zero dimensional polynomial ideal). PhD Thesis, Innsbruck, 1965.

J. S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a
simplex, STAM J. Numer. Anal., Vol. 35, No. 2, 655-676, 1998.

T. A. Kilgore, A characterization of the Lagrange interpolating projection with minimal Tchebycheff
norm, J. Approx. Theory 24 (1978), no. 4, 273-288.

H.-J. Rack, An example of optimal nodes for interpolation, International Journal of Mathematical
Education in Science and Technology 15 (3): 355-357, 1984.

H.-J. Rack, An example of optimal nodes for interpolation revisited, Advances in Applied Mathe-
matics and Approximation Theory, Springer Proceedings in Mathematics & Statistics, Volume 41,
117-120, 2013.

S. J. Simon, Lebesgue constants in polynomial interpolation, Annales Mathematicae et Informaticae
33: 109-123, 2006.

Wolfram Research Inc., Mathematica, Version 9.0, Champaign, Illinois, 2012.

125

Author Index

Alpuente, Maria 4
Ballis, Demis 4
Buchberger, Bruno 1
Comini, Marco 19, 31
Frechina, Francisco 4
Ghourabi, Fadoua 50
Godlevsky, Alexander 124
Goto, Mizuki 93
Guba, Anton 124
Ida, Tetsuo 50
Kakutani, Yoshihiko 64
Kato, Go 64
Kawano, Yasuhito 64
Klin, Mikhail 108
Kolchin, Alexander 124
Kubota, Takahiro 64
Letichevsky, Alexander 124
Letychevskyi, Oleksandr 124
Li, Wei 2
Matringe, Nadir 81
Moura, Arnaldo 81
Neumann, Severin 70
Ouaknine, Joel 3
Peschanenko, Vladimir 124
Rebiha, Rachid 81
Sakurada, Hideki 64
Sapina, Julia 4
Takahashi, Kazuko 50, 93

Torella, Luca 19, 31

Vajda, Robert 125
Yoshimaru, Shizuo 93

Ziv-Av, Matan 108

Keyword Index

algebraic number 125
automated verification 64
BBg&4 64
bottom-up semantics 31
computational model 93
computational origami 50
computer algebra 108
debugging 4
Distributed 70
elecronic cash protocol 93
equitable partitions 108
F4 70
formal methods 64
geometrical constraint solving 50
Groebner basis 125
Grobner Basis 70
induction scheme 93
invariants 124
knot fold 50
Lebesgue constant 125
Linear Algebra 81
maude 4
MPI 70
Parallel 70
polynomial interpolation 125
process calculi 64
program animation 4
property-oriented specifications 19
quantifier elimination 125
quantum cryptography 64

requirements specification 124

resultant 125

rewriting logic 4
semantics-based inference methods 19
slicing 4
Static Analysis 81
stepping 4
strongly regular graphs 108
symbolic verification 124
term rewriting 31
Term Rewriting Systems 19, 31
Termination Analysis 81
theorem proving 50

theorem proving methods 93

	Introduction
	Preliminaries
	Rewriting Modulo Equational Theories
	Exploring the Computation Tree
	Expanding a Program State
	Computing a Fragment of the Computation Tree

	Particularizing the Exploration
	Interactive Stepper
	Forward Trace Slicer

	Implementation
	Conclusions
	Introduction
	Notations

	Many notions of equivalence
	Deriving specifications from TRSs
	An effective instance of the presented method

	Conclusions and future work
	Introduction
	Preliminaries
	Modeling the small-step rewriting behavior
	The semantic domain
	Linearizing Narrowing

	Operational denotations of TRSs
	Evaluation Function
	Properties of the TRS operational denotation

	Fixpoint denotations of TRSs
	Properties of the TRS fixpoint denotation

	Conclusions
	Technical Proofs
	Introduction
	Notations
	Origami Geometrical Construction
	Huzita's Fold Operations
	Extensions

	Knot Fold
	Geometrical Properties
	Geometrical Constraint Solving Approach

	Regular Heptagon by the Knot Fold
	Geometrical Constraints
	Construction by Eos
	Algebraic Interpretation

	Proof
	Theorem to Prove
	Proof by Eos
	Proof Results

	Conclusion
	Acknowledgments

	Introduction
	The Verifier
	Application to Shor and Preskill's Security Proof
	Conclusions
	Introduction
	Notations
	Preliminaries
	Matrix Distribution
	Simplifying the F4 Algorithm
	Benchmarks
	Conclusion
	Introduction
	Linear Algebra and Linear Loop Programs
	Asymptotically Non-terminant Variable Values
	Automated generation of ANT loci
	The regular case
	The general case: handling linear diagonalizable programs

	Discussions
	Conclusion
	Introduction
	Data Conversion Formalization
	Problem
	Solution
	Conversion from BS to BTREE
	Conversion from NAT to BS
	Conversion from NAT to BTREE

	Modeling of an Electronic Cash Protocol
	Ideal Electronic Cash
	Definition of money
	Creation of money from a natural number
	Calculation of the amount of money
	Payment

	Proof of Properties
	Well-definedness of cash
	Well-definedness of pay
	Divisibility

	Discussion
	Conclusion
	Introduction
	Strongly regular graphs: a brief survey
	Computer algebra tools in AGT
	The seven known primitive triangle-free strongly regular graphs
	Embeddings of tfSRGs into known primitive tfSRGs
	Equitable partitions
	Search for equitable partitions
	Quadrangle and Atkinson EPs of NL2(10)
	Some modifications of Robertson model
	A few more models
	Concluding comments
	Data about embeddings of tfSRGs inside tfSRGs
	Data about equitable partitions of primitive tfSRGs

