

August 26, 2019

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

111 Maplewood Street Portsmouth, NH

Dear Sir/Madam:

On behalf of Boston Environmental Company (BEC) and 111 Maplewood Avenue LLC (Maplewood), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management of groundwater that will be generated during dewatering activities associated with construction of a new office building located at 111 Maplewood Street in Portsmouth, New Hampshire (the Site). This work will take place on lot 8, a 101,362 sqft. (2.3 acre) parcel. The new building will have a footprint of approximately 74,000 sqft. and is anticipated to be completed within twelve months. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The project includes the construction of an approximately 74,000 square foot office building and general site improvements. To complete portions of the excavations in the dry, dewatering is required to lower the groundwater table as the work is being performed. To achieve this, filtered sumps will be placed in low spots within the excavation. The water generated during dewatering (Source water) will be pumped to a treatment system prior to discharge to a storm drain with a final outfall in North Mill Pond. To characterize groundwater from the proposed excavation area, BEC collected representative groundwater samples from two monitoring wells on site on July 16, 2019, a sample of the receiving water (North Mill

Pond) was collected on the same date. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of ammonia and chloride where detected over detection limits. In addition, several Category A Inorganics were detected in groundwater samples at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, Source water will undergo treatment that includes a settling basin and bag filtration. It is assumed that metal concentrations will be addressed through settling and bag filtration. If analytes are detected over effluent limitations, the water treatment system will be modified with carbon filtration and ion exchange prior to discharge. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to a treatment system with a design flow of up to 100 gallons per minute (gpm); the average effluent flow of the system is estimated to be 75 gpm, and the maximum flow will not exceed 100 gpm. Source water will enter one 18,000-gallon weir tank at the head of the system from the weir tank, the water will be pumped to a triple-bag filter skid (with three single bag filters), followed by two contingent carbon vessels plumbed in series. Each contingent carbon vessel will contain 2,000 pounds of reactivated liquid-phase carbon. Following the carbon, water will be pumped into two contingent resin media vessels one vessel will hold 40 cubic yards cation resin media and the other 40 cubic yards anion resin media. Discharge from the resin vessels will pass through a flow/totalizer meter prior to discharge into a storm drain with an outfall in North Mill Pond. The discharge will be at one location as depicted on **Figure 2**.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Arc Global Information System (ArcGIS) the New Hampshire Natural Heritage Bureau, and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern

(ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

No formal or informal consultation with National Marine Fisheries Service (NMFS) has been conducted. However, the Operator (Maplewood) certifies eligibility according to the NMFS Criterion as the remediation activity discharges are not likely to adversely affect listed species and will result in either no effect or no adverse modification of critical habitat and also result in no impact of a listed species. In support of this certification, the remaining Documentation for Eligibility Determination is provided.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of BEC and 111 Maplewood Avenue LLC., we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to North Mill Pond in support of construction dewatering activities that are to take place at 111 Maplewood Street Portsmouth, NH.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, 111 Maplewood Aveune LLC is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

Jacob Jennings Staff Scientist Kim Gravelle, P.G. Senior Project Manager

Kim Gravelle

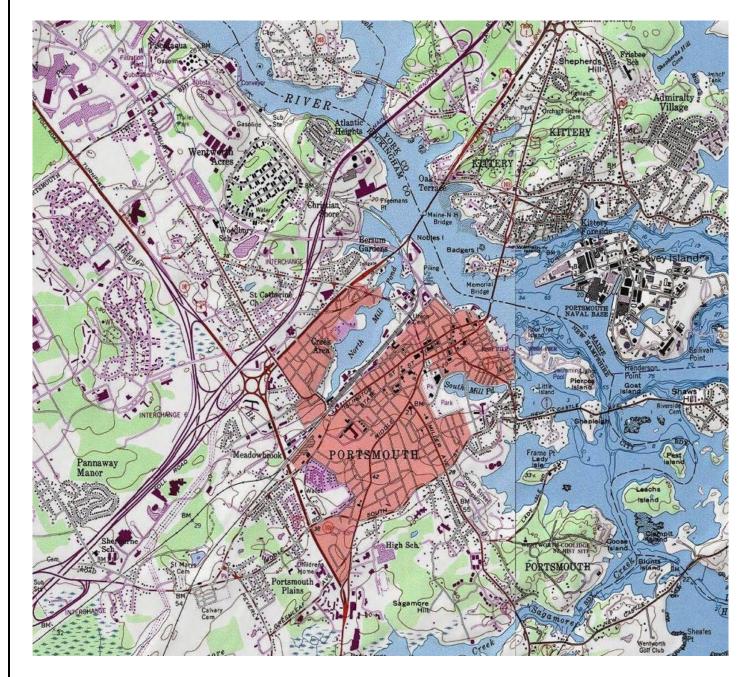
Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form Appendix B - Laboratory Data

Appendix C - Water Treatment System Appendix D - Supplemental Information


cc: Richard Stromberg – BEC

Mike Toomey - BEC

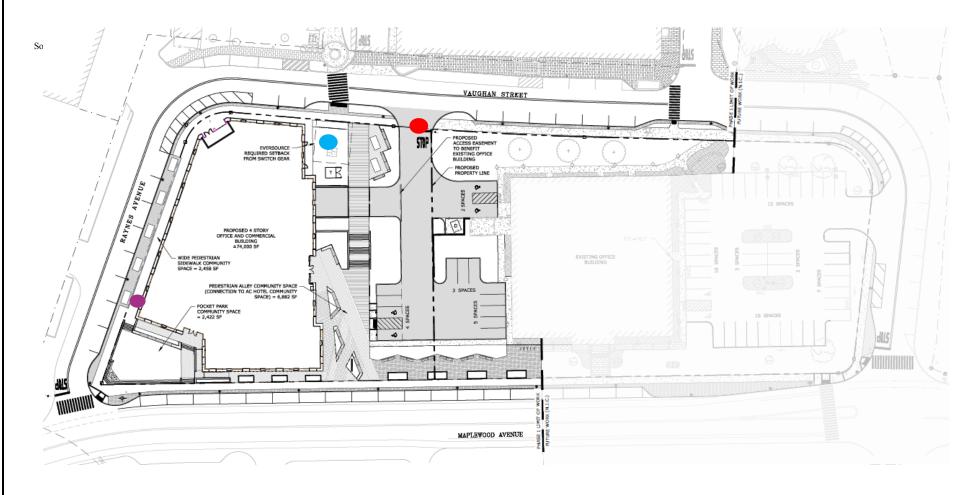
Eric Nelson - 111 Maple wood Ave. LLC

Hayley Franz - DES

Source: MassGIS,.Oliver Mapping Tool

<u>Notes</u>

1. Figure is not to scale.



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617

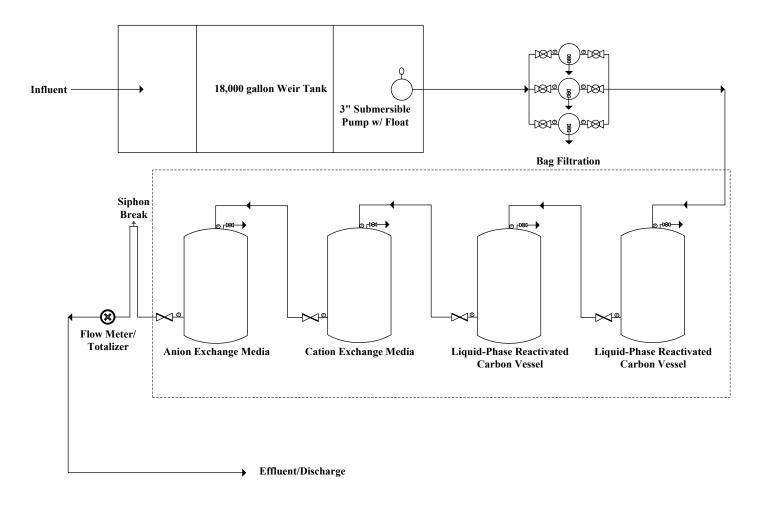
www.lrt-llc.net

Figure 1 – Locus Plan 111 Maplewood Street Portsmouth, NH

Source: 111 Maplewood Street Drawing set

Notes

1. Figure is not to scale


Key

- Discharge location
- Water Treatment System location
- Monitoring Well Location

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Fax: 888.835.0617 www.lrt-llc.net Figure 2 – Site plan 111 Maplewood Street Portsmouth, NH

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 100 GPM

Key:	
Piping/Hose	\longrightarrow
Butterfly valve	\bowtie
Pressure gauge	©
Ball valve	1921
Contingency	_~~

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: JHJ

DATE:

CHECKED BY:

Water Treatment System Schematic

111 Maplewood Street Portsmouth, NH PROJECT No.

FIGURE No.

Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:	l						
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: State: Zip:							
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		LΑ					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	☐ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:		☐ POTW Pretreatment						
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S						

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water((S): Classific	silication of receiving water(s):						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in							
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No						
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?						
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 µg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP will be developed and maintained that meets the requirements of this permit. The BMPP will BMPP certification statement: be implemented on-site prior to initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes □ No ■ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify Signature: Print Name and Title:

City or Portsmouth, NH - Approval to Discharge

Jake Jennings; Kim Gravelle; Paul Lockwood

Fwd: Revised Dewatering plan for 111 Maplewood Avenue Subject:

Date: Tuesday, November 19, 2019 9:28:18 PM

Jake here is the email with the City of Portsmouth which states that we have approval to use the catch basin for a alternative discharge point

Sent from my iPad

Begin forwarded message:

 $From: "Raymond C.\ Pezzullo" < rcpezzullo@cityofportsmouth.com >$

Date: November 19, 2019 at 5:49:59 PM EST

To: "Nicholas J. Cracknell" <njcracknell@cityofportsmouth.com>

 $\label{lem:comey} \begin{tabular}{ll} Cc: "James V. Tow" < jvtow@cityofportsmouth.com>, Mike Toomey < toomey@bostonenvcorp.com>, "Terry L. Desmarais" \\ \end{tabular}$

<tld><tldesmarais@cityofportsmouth.com>

Subject: FW: Revised Dewatering plan for 111 Maplewood Avenue

DPW has reviewed SUR's revised temporary Construction Dewatering Plan (Plan), dated 11/6/19, for the 111 Maplewood Avenue site and the developments team's request to connect/discharge to a City catch basin, if needed, after treatment of the groundwater. DPW approves the request to connect to the City's stormwater system with the following conditions:

- A copy of EPA's approval of the Remediation General Permit and associated documentation must be submitted to the City.
- A detail showing the pipe connection to the catch basin must be approved by DPW.
- SUR must provide notification to DPW when they will begin discharging to the City's stormwater system and also when they stop discharging.
- SUR must monitor the Catch Basin into which they will be connecting/discharging to insure that no overflow is occurring. Discharge into the CB should not occur when the downstream stormwater system is restricted, i.e.: by a tidal influence, a significant rainfall event, a blockage, etc..
- The rate of flow of the discharge must be monitored and limited to the Plan requirements.

As we discussed, this approval with the above conditions is recommended to be included in an amended CMMP for the project.

If you have any questions, please let me know.

Thanks,

Rav

Raymond C. Pezzullo, P.E. DPW Engineer City of Portsmouth Public Works Department Office: 603-766-1755 Cell: 603-957-8843

From: Terry L. Desmarais

Sent: Thursday, November 14, 2019 8:48 AM

To: Raymond C. Pezzullo rcpezzullo@cityofportsmouth.com Subject: FW: Revised Dewatering plan for 111 Maplewood Avenue

Terry Desmarais, Jr., P.E. City Engineer City of Portsmouth Public Works Department 680 Peverly Hill Road Portsmouth, NH 03801 Office: 603.766.1421 Cell: 603.828.1915

Fax: 603.427.1539

email: tldesmarais@cityofportsmouth.com<<u>mailto:tldesmarais@cityofportsmouth.com</u>>

From: Nicholas J. Cracknell

Sent: Thursday, November 7, 2019 8:27 AM

To: Terry L. Desmarais <tldesmarais@cityofportsmouth.com<mailto:tldesmarais@cityofportsmouth.com>>>

<jthwalker@cityofportsmouth.com<<u>mailto:jthwalker@cityofportsmouth.com</u>>>; Raymond C. Pezzullo

<rcpezzullo@cityofportsmouth.com<com>>

Subject: RE: Revised Dewatering plan for 111 Maplewood Avenue

Thanks for the heads up Terry. I'll check with Juliet but I think it makes sense for you folks to bless the modification before we make any changes to the default setting for dewatering of the site that's listed in the CMMP.

Nick

From: Terry L. Desmarais

Sent: Wednesday, November 06, 2019 4:25 PM

To: Nicholas J. Cracknell <njcracknell@cityofportsmouth.com<mailto:njcracknell@cityofportsmouth.com>>>

Cc: Peter H. Rice <phrice@cityofportsmouth.com<mailto:phrice@cityofportsmouth.com>>; Dave Desfosses

<jthwalker@cityofportsmouth.com<<u>mailto:jthwalker@cityofportsmouth.com</u>>>; Raymond C. Pezzullo

<rcpezzullo@cityofportsmouth.com<<u>mailto:rcpezzullo@cityofportsmouth.com</u>>>

Subject: Fwd: Revised Dewatering plan for 111 Maplewood Avenue

Nick,

Just so you are aware, the team at the 111 Maplewood has requested an alternative dewatering discharge approach that will (should) require a modification to the

You will see they reached out to us first and have asked for DPW ok on the approach before going to planning. They are aware that they need to get a revision to the CMMP approved. We will look at their information and see if it acceptable to DPW.

Please let me know if you see any issues with this procedural approach.

Thanks,

Terry

Terry Desmarais, P.E., City Engineer City of Portsmouth NH Cell: 603-828-1915

Begin forwarded message:

From: Mike Toomey <toomey@bostonenvcorp.com<mailto:toomey@bostonenvcorp.com>>>

Date: November 6, 2019 at 2:17:01 PM EST

 $To: "Terry\ L.\ Desmarais" < tldesmarais@cityofportsmouth.com < \underline{mailto: tldesmarais@cityofportsmouth.com} >>>, Richard\ Stromberg$

<rstromberg@bostonenvcorp.com</p>
_mailto:rstromberg@bostonenvcorp.com
>, Kim Gravelle <kgravelle@lrt-llc.net</p>
_mailto:kgravelle@lrt-llc.net

Cahill cpanill@proconinc.commailto:pcahill@proconinc.com>>, Scott Martinelli smartinelli@proconinc.commailto:pcahill@proconinc.com>>,

Subject: FW: Revised Dewatering plan for 111 Maplewood Avenue

Terry

Thank you again for meeting with Rick Stromberg last week. Attached is SUR's revised dewatering plan with the contingency for off site discharge through the EPA RGP permit, should the on site infiltration become over taxed.

Tighe Bond performed a watershed analysis on the existing system previously and confirmed that the permitted flow rate of 100 GPM will not overburden the system.

After you get a chance to review it and if acceptable Lance Bennett will revise the Site CMMP to incorporate this into the CMMP plan for the Site

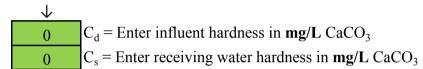
If you have any questions please feel free to give me a call. Thank you in advance to taking the time to review this

Mike

T. Michael Toomey Executive Vice President Boston Environmental Corporation 203 Spark St. Brockton, MA 02302 O 508.897.8062 | C 617.877.6648

 $www.bostonenvironmental corp.com < https://linkprotect.cudasvc.com/url?a=http%3a%2f%2fwww.bostonenvironmentalcorp.com%2f&c=E, l, x-QcDrGMI2ZKDTXr3ItaVDNR_uR24gXtIHQDxO6vup1W8elJCwTqQGrz4QGTWpTGJuKV498UbzAFQDPVTXmClZwSEsh2lnG4fKpElfD03QlZg,.&typo=l>$

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
0	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.4	pH in Standard Units
21.4	Temperature in °C
0.122	Ammonia in mg /L
0	Hardness in mg/L CaCO ₃
28.5	Salinity in ppt
0	Antimony in μg/L
33	Arsenic in μg/L
0	Cadmium in µg/L
2	Chromium III in µg/L
0	Chromium VI in µg/L
79	Copper in µg/L
280	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
14	Nickel in μg/L
120	Selenium in μg/L
0	Silver in µg/L
0	Zinc in μ g /L

Enter **influent** concentrations in the units specified

\downarrow	_
0	TRC in µg/L
4.04	Ammonia in mg/L
0	Antimony in μg/L
79	Arsenic in μg/L
1.5	Cadmium in μg /L
39	Chromium III in μg/L
0	Chromium VI in µg/L
100	Copper in µg/L
110000	Iron in μg/L
210	Lead in μg/L
0.53	Mercury in μg/L
92	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
290	Zinc in μg/L
3	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in μg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg /L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

	0.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded			
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L		
Total Suspended Solids	30	mg/L		μg/L		
Antimony		-	 640	~/I		
Arsenic	206	μg/L		μg/L		
	104	μg/L	36	μg/L		
Cadmium	10.2	μg/L	8.9	μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	μ g/L	50	μ g/L		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	μg/L		μg/L		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L		
Silver	35.1	μg/L	2.2	μg/L		
Zinc	420	μg/L	86	μg/L		
Cyanide	178	mg/L	1.0	μg/L		
B. Non-Halogenated VOCs	1,0	111-5/2	100	MB 2		
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	$\mu g/L$				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs	4.4		1.6	/T		
Carbon Tetrachloride	4.4	/T	1.6	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene1,4 Dichlorobenzene	320 5.0	μg/L				
Total dichlorobenzene	5.0	μg/L μg/L				
1,1 Dichloroethane	70	μg/L μg/L				
1,2 Dichloroethane	5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	3.3	$\mu g/L$		
cis-1,2 Dichloroethylene	70	μg/L				

Vinyl Chloride	2.0	$\mu g/L$		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	$\mu g/L$
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0038	μ g/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Appendix B

Laboratory Data

July 22, 2019

Rick Stromberg Boston Environmental Corp. - Brockton, MA 203 Spark St., Brockton, MA Brockton, MA 02302

Project Location: 111 Maplewood Ave., Portsmouth, NH

Client Job Number:

Project Number: BEC19157

Laboratory Work Order Number: 19G0771

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on July 16, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	9
19G0771-01	9
19G0771-02	18
19G0771-03	20
Sample Preparation Information	24
QC Data	26
Volatile Organic Compounds by GC/MS	26
B235689	26
B235796	28
Semivolatile Organic Compounds by GC/MS	29
B235695	29
Semivolatile Organic Compounds by - GC/MS	30
B235593	30
Polychlorinated Biphenyls By GC/ECD	34
B235659	34
Metals Analyses (Total)	35
B235599	35
B235657	35
B235658	35
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	37
B235663	37
B235664	37
B235670	37

Table of Contents (continued)

B235677	37
B235678	38
B235858	38
Dual Column RPD Report	39
Flag/Qualifier Summary	41
Certifications	42
Chain of Custody/Sample Receipt	46

Boston Environmental Corp. - Brockton, MA 203 Spark St., Brockton, MA Brockton, MA 02302 ATTN: Rick Stromberg

REPORT DATE: 7/22/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: BEC19157

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19G0771

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 111 Maplewood Ave., Portsmouth, NH

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
VB-5 (MW)	19G0771-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 4500 H B	
				Tri Chrome Calc.	
VB-1 (MW)	19G0771-02	Ground Water		624.1	
RW-1	19G0771-03	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 3500 Cr B	
				SM21-22 4500 H B	
				SM2520B	MA M-CT007/CT PH-0618/NY11301
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

PR-17

Preservation of pH<4 does not meet method specifications for Acrolein and/or Acrylonitrile. Reported results are estimated.

Analyte & Samples(s) Qualified:

19G0771-01[VB-5 (MW)], 19G0771-02[VB-1 (MW)]

Acrylonitrile

19G0771-01[VB-5 (MW)], 19G0771-02[VB-1 (MW)]

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

Bromomethane

19G0771-01[VB-5 (MW)], 19G0771-02[VB-1 (MW)], B235689-BLK1, B235689-BS1, B235689-BSD1

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

N-Nitrosodimethylamine

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

Benzidine

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1, S038183-CCV1

Benzidine

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1, S038183-CCV1

Bis(2-ethylhexyl)phthalate (SIM)

19G0771-01[VB-5 (MW)], B235695-BLK1, B235695-BS1, B235695-BSD1, S038176-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1, S038183-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

2.4-Dinitrophenol

19G0771-01[VB-5 (MW)], B235593-BLK1, B235593-BS1, B235593-BSD1, S038183-CCV1

Bis(2-ethylhexyl)phthalate (SIM)

B235695-BS1, B235695-BSD1, S038176-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

B235593-BLK1, S038183-CCV1

Bis(2-ethylhexyl)phthalate (SIM)

19G0771-01[VB-5 (MW)], B235695-BLK1

EPA 1664B

Qualifications:

R-02

Duplicate RPD is outside of control limits. Outlier can be attributed to sample non-homogeneity encountered during sample prep.

Analyte & Samples(s) Qualified:

Silica Gel Treated HEM (SGT-HEN

19G0771-01[VB-5 (MW)], B235677-DUP1

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

Antimony

19G0771-03[RW-1], B235658-DUP1

Cadmium

19G0771-03[RW-1], B235658-DUP1

19G0771-03[RW-1], B235658-DUP1

19G0771-03[RW-1], B235658-DUP1

Zinc

19G0771-03[RW-1], B235658-DUP1

EPA 300.0

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

Chloride

19G0771-01[VB-5 (MW)], B235858-MS1

SM21-22 2540D

Qualifications:

R-02

Duplicate RPD is outside of control limits. Outlier can be attributed to sample non-homogeneity encountered during sample prep.

Analyte & Samples(s) Qualified:

Total Suspended Solids

19G0771-01[VB-5 (MW)], B235678-DUP1

SM21-22 4500 CL G

Qualifications:

W-06

Elevated method reporting limit due to intense color of sample

Analyte & Samples(s) Qualified:

Chlorine, Residual

19G0771-01[VB-5 (MW)], B235663-DUP1

Z-01

SM4500 test had calibration points outside of acceptable back calculated recoveries. Reanalysis yielded similar nonconformance.

Analyte & Samples(s) Qualified:

Chlorine, Residual

19G0771-01[VB-5 (MW)], B235663-BLK1, B235663-BS1, B235663-BSD1, B235663-DUP1, B235663-MS1

SM21-22 4500 H B

Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded

exceeded.

Analyte & Samples(s) Qualified:

pН

19G0771-01[VB-5 (MW)], 19G0771-03[RW-1], B235670-DUP1

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Lua Watslengton

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019
Field Sample #: VB-5 (MW)

Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<50.0	50.0	3.79	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Acrolein	<20	20	3.9	μg/L	1	PR-17	624.1	7/18/19	7/18/19 13:15	MFF
Acrylonitrile	< 5.0	5.0	0.52	μg/L	1	PR-17	624.1	7/18/19	7/18/19 13:15	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Bromomethane	< 5.00	5.00	0.780	μg/L	1	R-05	624.1	7/17/19	7/17/19 10:07	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
2-Chloroethyl Vinyl Ether	<10	10	2.2	μg/L	1		624.1	7/18/19	7/18/19 12:44	MFF
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,2-Dichlorobenzene	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,3-Dichlorobenzene	< 2.00	2.00	0.120	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,4-Dichlorobenzene	< 2.00	2.00	0.130	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,2-Dichloroethane	< 2.00	2.00	0.410	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,1-Dichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,1-Dichloroethylene	< 2.00	2.00	0.320	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
1,2-Dichloropropane	< 2.00	2.00	0.200	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
1,4-Dioxane	< 50.0	50.0	22.5	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Ethanol	< 50.0	50.0	10.5	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,1,1-Trichloroethane	< 2.00	2.00	0.200	μg/L	1		624.1	7/17/19	7/17/19 10:07	MFF
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	7/17/19	7/17/19 10:07	MFF
Surrogates		% Reco	verv	Recovery Limi	ts	Flag/Qual				

 1,2-Dichloroethane-d4
 88.8
 70-130
 7/17/19
 10:07

 1,2-Dichloroethane-d4
 89.4
 70-130
 7/18/19
 13:15

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Surrogates		% Recov	ery	Recovery Limits	5	Flag/Qual				
1,2-Dichloroethane-d4		87.8		70-130					7/18/19 12:44	
Toluene-d8		110		70-130					7/18/19 13:15	
Toluene-d8		112		70-130					7/18/19 12:44	
Toluene-d8		110		70-130					7/17/19 10:07	
4-Bromofluorobenzene		99.9		70-130					7/17/19 10:07	
4-Bromofluorobenzene		96.6		70-130					7/18/19 13:15	
4-Bromofluorobenzene		97.8		70-130					7/18/19 12:44	

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

			Semire	natine organic co	ompounds by	GC/MB				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.052	0.052	0.016	$\mu g/L$	1		625.1	7/16/19	7/17/19 10:30	CLA
Benzo(a)pyrene (SIM)	< 0.10	0.10	0.012	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Benzo(b)fluoranthene (SIM)	< 0.052	0.052	0.015	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Benzo(k)fluoranthene (SIM)	< 0.21	0.21	0.012	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Bis(2-ethylhexyl)phthalate (SIM)	<1.0	1.0	1.0	μg/L	1	V-04, V-20	625.1	7/16/19	7/17/19 10:30	CLA
Chrysene (SIM)	< 0.21	0.21	0.015	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Dibenz(a,h)anthracene (SIM)	< 0.21	0.21	0.018	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.21	0.21	0.019	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Pentachlorophenol (SIM)	<1.0	1.0	1.0	μg/L	1		625.1	7/16/19	7/17/19 10:30	CLA
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		36.7		15-110					7/17/19 10:30	
Phenol-d6 (SIM)		28.9		15-110					7/17/19 10:30	
Nitrobenzene-d5 (SIM)		60.3		30-130					7/17/19 10:30	
2-Fluorobiphenyl (SIM)		39.1		30-130					7/17/19 10:30	
2,4,6-Tribromophenol (SIM)		61.3		15-110					7/17/19 10:30	
p-Terphenyl-d14 (SIM)		40.0		30-130					7/17/19 10:30	

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

		Sem	ivolatile Organic C	ompounds by	y - GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	<5.15	5.15	μg/L	1	riag/Quai	625.1	7/16/19	7/17/19 9:44	KLB
Acenaphthylene	<5.15	5.15	μg/L μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Anthracene	<5.15	5.15	μg/L μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Benzidine	<20.6	20.6	μg/L μg/L	1	V-04, V-05, R-05	625.1	7/16/19	7/17/19 9:44	KLB
Benzo(g,h,i)perylene	<5.15	5.15	μg/L μg/L	1	, ,	625.1	7/16/19	7/17/19 9:44	KLB
4-Bromophenylphenylether	<10.3	10.3	μg/L μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Butylbenzylphthalate	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
4-Chloro-3-methylphenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Bis(2-chloroethyl)ether	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Bis(2-chloroisopropyl)ether	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
2-Chloronaphthalene	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
2-Chlorophenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
4-Chlorophenylphenylether	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Di-n-butylphthalate	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
1,3-Dichlorobenzene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
1,4-Dichlorobenzene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
1,2-Dichlorobenzene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
3,3-Dichlorobenzidine	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
2,4-Dichlorophenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Diethylphthalate	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
2,4-Dimethylphenol	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Dimethylphthalate	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
4,6-Dinitro-2-methylphenol	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
2,4-Dinitrophenol	<10.3	10.3	$\mu g/L$	1	V-04, V-06	625.1	7/16/19	7/17/19 9:44	KLB
2,4-Dinitrotoluene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
2,6-Dinitrotoluene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Di-n-octylphthalate	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
1,2-Diphenylhydrazine/Azobenzene	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Bis(2-Ethylhexyl)phthalate	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Fluoranthene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Fluorene	<5.15	5.15	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Hexachlorobenzene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Hexachlorobutadiene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Hexachlorocyclopentadiene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Hexachloroethane	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Isophorone	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Naphthalene	<5.15	5.15	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Nitrobenzene	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
2-Nitrophenol	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
4-Nitrophenol	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
N-Nitrosodimethylamine	<10.3	10.3	$\mu g/L$	1	L-04	625.1	7/16/19	7/17/19 9:44	KLB
N-Nitrosodiphenylamine	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
N-Nitrosodi-n-propylamine	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
2-Methylnaphthalene	<5.15	5.15	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB

Page 12 of 47

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analysi
Phenanthrene	<5.15	5.15	μg/L	1	8.0	625.1	7/16/19	7/17/19 9:44	KLB
2-Methylphenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Phenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
3/4-Methylphenol	<10.3	10.3	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
Pyrene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
1,2,4-Trichlorobenzene	<5.15	5.15	μg/L	1		625.1	7/16/19	7/17/19 9:44	KLB
2,4,6-Trichlorophenol	<10.3	10.3	$\mu g/L$	1		625.1	7/16/19	7/17/19 9:44	KLB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		37.4	15-110					7/17/19 9:44	
Phenol-d6		27.4	15-110					7/17/19 9:44	
Nitrobenzene-d5		60.7	30-130					7/17/19 9:44	
2-Fluorobiphenyl		66.1	30-130					7/17/19 9:44	
2,4,6-Tribromophenol		75.3	15-110					7/17/19 9:44	
p-Terphenyl-d14		69.7	30-130					7/17/19 9:44	

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	< 0.100	0.100	0.0920	μg/L	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1221 [1]	< 0.100	0.100	0.0805	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1232 [1]	< 0.100	0.100	0.0995	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1242 [1]	< 0.100	0.100	0.0865	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1248 [1]	< 0.100	0.100	0.0950	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1254 [1]	< 0.100	0.100	0.0525	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH
Aroclor-1260 [1]	< 0.100	0.100	0.0980	$\mu g/L$	1		608.3	7/16/19	7/17/19 14:50	AYH

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	45.9	30-150		7/17/19 14:50
Decachlorobiphenyl [2]	53.6	30-150		7/17/19 14:50
Tetrachloro-m-xylene [1]	74.1	30-150		7/17/19 14:50
Tetrachloro-m-xylene [2]	69.5	30-150		7/17/19 14:50

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	МЈН
Arsenic	79	0.80		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Cadmium	1.5	0.20		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Chromium	39	1.0		μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Chromium, Trivalent	0.039			mg/L	1		Tri Chrome Calc.	7/16/19	7/17/19 12:49	MJH
Copper	100	1.0		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Iron	110	1.0		mg/L	20		EPA 200.7	7/16/19	7/18/19 14:13	EJB
Lead	210	5.0		μg/L	10		EPA 200.8	7/16/19	7/17/19 16:36	QNW
Mercury	0.00053	0.00010		mg/L	1		EPA 245.1	7/17/19	7/17/19 11:26	AJL
Nickel	92	5.0		μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Selenium	ND	5.0	1.6	μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Silver	ND	0.20		μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Zinc	290	10		μg/L	1		EPA 200.8	7/16/19	7/17/19 11:43	MJH
Hardness	330			mg/L	1		EPA 200.7	7/16/19	7/17/19 10:33	EJB

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	580	25		mg/L	25	MS-19	EPA 300.0	7/19/19	7/19/19 8:17	MMH
Chlorine, Residual	ND	0.10		mg/L	5	W-06, Z-01	SM21-22 4500 CL G	7/16/19	7/16/19 21:00	MJG
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	7/16/19	7/16/19 21:20	MJG
pH @21.4°C	7.9		ŗ	oH Units	1	H-05	SM21-22 4500 H B	7/16/19	7/16/19 22:25	MG2
Total Suspended Solids	6100	50		mg/L	1	R-02	SM21-22 2540D	7/17/19	7/17/19 9:10	LL
Silica Gel Treated HEM (SGT-HEM)	ND	28		mg/L	1	R-02	EPA 1664B	7/17/19	7/17/19 9:10	LL

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-5 (MW) Sampled: 7/16/2019 08:20

Sample ID: 19G0771-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	4.04	0.375	0.12	mg/L	5		SM19-22 4500 NH3 C			AAL
Cyanide	0.003	0.005	0.001	mg/L	1		SM21-22 4500 CN E			AAL

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-1 (MW) Sampled: 7/16/2019 10:35

Sample ID: 19G0771-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<50.0	50.0	3.79	μg/L	1	0 -	624.1	7/17/19	7/17/19 9:36	MFF
Acrolein	<20	20	3.9	μg/L	1	PR-17	624.1	7/18/19	7/18/19 14:16	MFF
Acrylonitrile	<5.0	5.0	0.52	μg/L	1	PR-17	624.1	7/18/19	7/18/19 14:16	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Bromomethane	< 5.00	5.00	0.780	μg/L	1	R-05	624.1	7/17/19	7/17/19 9:36	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
2-Chloroethyl Vinyl Ether	<10	10	2.2	μg/L	1		624.1	7/18/19	7/18/19 13:45	MFF
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,2-Dichlorobenzene	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,3-Dichlorobenzene	< 2.00	2.00	0.120	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,4-Dichlorobenzene	< 2.00	2.00	0.130	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,2-Dichloroethane	< 2.00	2.00	0.410	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,1-Dichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,1-Dichloroethylene	< 2.00	2.00	0.320	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,2-Dichloropropane	< 2.00	2.00	0.200	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,4-Dioxane	<50.0	50.0	22.5	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Ethanol	<50.0	50.0	10.5	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Ethylbenzene	< 2.00	2.00	0.130	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Tetrachloroethylene	< 2.00	2.00	0.180	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,1,1-Trichloroethane	< 2.00	2.00	0.200	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
1,1,2-Trichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Vinyl Chloride	< 2.00	2.00	0.450	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
m+p Xylene	< 2.00	2.00	0.300	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
o-Xylene	< 2.00	2.00	0.170	μg/L	1		624.1	7/17/19	7/17/19 9:36	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				

1,2-Dichloroethane-d4	88.8	70-130	7/18/19 14:16
1,2-Dichloroethane-d4	90.2	70-130	7/18/19 13:45

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: VB-1 (MW) Sampled: 7/16/2019 10:35

Sample ID: 19G0771-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Surrogates		% Recov	ery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		90.2		70-130					7/17/19 9:36	
Toluene-d8		111		70-130					7/18/19 13:45	
Toluene-d8		111		70-130					7/17/19 9:36	
Toluene-d8		110		70-130					7/18/19 14:16	
4-Bromofluorobenzene		92.6		70-130					7/18/19 14:16	
4-Bromofluorobenzene		98.9		70-130					7/18/19 13:45	
4-Bromofluorobenzene		97.8		70-130					7/17/19 9:36	

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: RW-1 Sampled: 7/16/2019 12:30

Sample ID: 19G0771-03
Sample Matrix: Ground Water

Analyta	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date	Date/Time	Anakat
Analyte	Results	KL	DL	Units	Dilution	riag/Quai	Method	Prepared	Analyzed	Analyst
Antimony	ND	10		$\mu g/L$	10	DL-15	EPA 200.8	7/16/19	7/17/19 16:32	QNW
Arsenic	33	8.0		$\mu g/L$	10		EPA 200.8	7/16/19	7/18/19 11:55	QNW
Cadmium	ND	2.0		$\mu g/L$	10	DL-15	EPA 200.8	7/16/19	7/17/19 16:32	QNW
Chromium	2.0	1.0		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:40	MJH
Chromium, Trivalent	0.0020			mg/L	1		Tri Chrome Calc.	7/16/19	7/17/19 12:49	MJH
Copper	79	1.0		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:40	MJH
Iron	0.28	0.25		mg/L	5		EPA 200.7	7/16/19	7/17/19 12:28	EJB
Lead	ND	5.0		$\mu g/L$	10	DL-15	EPA 200.8	7/16/19	7/17/19 16:32	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	7/17/19	7/17/19 11:32	AJL
Nickel	14	5.0		$\mu g/L$	1		EPA 200.8	7/16/19	7/17/19 11:40	MJH
Selenium	120	50	16	$\mu g/L$	10		EPA 200.8	7/16/19	7/17/19 16:32	QNW
Silver	ND	2.0		$\mu g/L$	10	DL-15	EPA 200.8	7/16/19	7/17/19 16:32	QNW
Zine	ND	100		$\mu g/L$	10	DL-15	EPA 200.8	7/16/19	7/17/19 16:32	QNW

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: RW-1 Sampled: 7/16/2019 12:30

Sample ID: 19G0771-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	7/16/19	7/16/19 21:20	MJG
рН @21.4°C	7.4			pH Units	1	H-05	SM21-22 4500 H B	7/16/19	7/16/19 22:25	MG2

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: RW-1 Sampled: 7/16/2019 12:30

Sample ID: 19G0771-03
Sample Matrix: Ground Water

SM2520B-10

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		28.5	0.5		ppt	1		SM2520B-10		7/18/19 20:16	PEL

Project Location: 111 Maplewood Ave., Portsmouth Sample Description: Work Order: 19G0771

Date Received: 7/16/2019

Field Sample #: RW-1 Sampled: 7/16/2019 12:30

Sample ID: 19G0771-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.122	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C			AAL

Sample Extraction Data

Prep Method:	SW-846	3510C-	-608.3
--------------	--------	--------	--------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235659	1000	5.00	07/16/19

Prep Method: SW-846 5035-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235689	5	5.00	07/17/19
19G0771-02 [VB-1 (MW)]	B235689	5	5.00	07/17/19

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235796	5	5.00	07/18/19
19G0771-02 [VB-1 (MW)]	B235796	5	5.00	07/18/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235593	970	1.00	07/16/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235695	970	1.00	07/16/19

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
19G0771-01 [VB-5 (MW)]	B235677	50.0	07/17/19

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19G0771-01 [VB-5 (MW)]	B235657	50.0	50.0	07/16/19	
19G0771-01 [VB-5 (MW)]	B235657	50.0		07/16/19	
19G0771-03 [RW-1]	B235657	50.0	50.0	07/16/19	

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19G0771-01 [VB-5 (MW)]	B235658	50.0	50.0	07/16/19
19G0771-03 [RW-1]	B235658	50.0	50.0	07/16/19

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field 1D] Date Date	Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
---------------------------------	-----------------------	-------	--------------	------------	------	--

Sample Extraction Data

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19G0771-01 [VB-5 (MW)]	B235599	6.00	6.00	07/17/19	
19G0771-03 [RW-1]	B235599	6.00	6.00	07/17/19	
EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19G0771-01 [VB-5 (MW)]	B235858	10.0	10.0	07/19/19	
SM21-22 2540D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
19G0771-01 [VB-5 (MW)]	B235678	10.0		07/17/19	
SM21-22 3500 Cr B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19G0771-01 [VB-5 (MW)]	B235664	50.0	50.0	07/16/19	
19G0771-03 [RW-1]	B235664	50.0	50.0	07/16/19	
SM21-22 4500 CL G					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19G0771-01 [VB-5 (MW)]	B235663	100	100	07/16/19	
SM21-22 4500 H B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	

Prep Method: EPA 200.8-Tri Chrome Calc.

19G0771-01 [VB-5 (MW)]

19G0771-03 [RW-1]

Lab Number [Field ID]	Batch	Initial [mL]	Date
19G0771-01 [VB-5 (MW)]	B235658	50.0	07/16/19
19G0771-03 [RW-1]	B235658	50.0	07/16/19

50.0

50.0

B235670

B235670

07/16/19

07/16/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B235689 - SW-846 5035										
Blank (B235689-BLK1)				Prepared &	Analyzed: 07	/17/19				
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	$\mu g/L$							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu g/L$							R-05
ert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	$\mu g/L$							
Chlorobenzene	ND	2.00	$\mu g/L$							
Chlorodibromomethane	ND	2.00	$\mu g/L$							
Chloroethane	ND	2.00	$\mu g/L$							
Chloroform	ND	2.00	$\mu g/L$							
Chloromethane	ND	2.00	$\mu g \! / \! L$							
,2-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
,3-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
,4-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
,2-Dichloroethane	ND	2.00	$\mu \text{g/L}$							
,1-Dichloroethane	ND	2.00	$\mu \text{g/L}$							
,1-Dichloroethylene	ND	2.00	μg/L							
ans-1,2-Dichloroethylene	ND	2.00	μg/L							
,2-Dichloropropane	ND	2.00	μg/L							
is-1,3-Dichloropropene	ND	2.00	μg/L							
,4-Dioxane	ND	50.0	μg/L							
ans-1,3-Dichloropropene	ND	2.00	μg/L							
thanol	ND	50.0	μg/L							
thylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
fethylene Chloride	ND	5.00	μg/L							
,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
etrachloroethylene	ND	2.00	μg/L							
oluene	ND	1.00	μg/L							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
richlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
-Xylene	ND	2.00	μg/L							
urrogate: 1,2-Dichloroethane-d4	22.2		$\mu g/L$	25.0		88.9	70-130			
surrogate: Toluene-d8	27.7		$\mu g/L$	25.0		111	70-130			
urrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130			
CS (B235689-BS1)				Prepared &	Analyzed: 07	/17/19				
Acetone	170	50.0	$\mu \text{g/L}$	200		85.8	70-160			
ert-Amyl Methyl Ether (TAME)	17	0.500	$\mu \text{g}/L$	20.0		84.0	70-130			
enzene	19	1.00	$\mu \text{g}/L$	20.0		94.8	65-135			
romodichloromethane	18	2.00	$\mu \text{g}/L$	20.0		92.0	65-135			
Bromoform	18	2.00	$\mu \text{g/L}$	20.0		91.7	70-130			
Bromomethane	7.3	2.00	$\mu \text{g/L}$	20.0		36.4	15-185			R-05
ert-Butyl Alcohol (TBA)	200	20.0	$\mu g/L$	200		97.6	40-160			
arbon Tetrachloride	17	2.00	$\mu \text{g}/L$	20.0		84.2	70-130			
Chlorobenzene	19	2.00	$\mu g/L$	20.0		96.9	65-135			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235689 - SW-846 5035										
LCS (B235689-BS1)				Prepared &	Analyzed: 07	/17/19				
Chlorodibromomethane	20	2.00	μg/L	20.0		97.7	70-135			
Chloroethane	16	2.00	μg/L	20.0		80.0	40-160			
Chloroform	17	2.00	μg/L	20.0		83.4	70-135			
Chloromethane	13	2.00	μg/L	20.0		65.7	20-205			
1,2-Dichlorobenzene	19	2.00	$\mu g/L$	20.0		94.9	65-135			
1,3-Dichlorobenzene	19	2.00	μg/L	20.0		93.2	70-130			
1,4-Dichlorobenzene	18	2.00	$\mu g/L$	20.0		91.3	65-135			
1,2-Dichloroethane	18	2.00	$\mu g/L$	20.0		92.0	70-130			
1,1-Dichloroethane	20	2.00	μg/L	20.0		97.8	70-130			
1,1-Dichloroethylene	16	2.00	μg/L	20.0		79.8	50-150			
trans-1,2-Dichloroethylene	20	2.00	μg/L	20.0		101	70-130			
1,2-Dichloropropane	22	2.00	μg/L	20.0		111	35-165			
cis-1,3-Dichloropropene	19	2.00	μg/L	20.0		93.6	25-175			
1,4-Dioxane	250	50.0	μg/L	200		123	40-130			
trans-1,3-Dichloropropene	18	2.00	μg/L	20.0		88.4	50-150			
Ethanol	200	50.0	μg/L	200		98.7	40-160			
Ethylbenzene	19	2.00	μg/L μg/L	20.0		94.0	60-140			
Methyl tert-Butyl Ether (MTBE)	18	2.00	μg/L μg/L	20.0		90.2	70-130			
Methylene Chloride	21	5.00	μg/L μg/L	20.0		104	60-140			
1,1,2,2-Tetrachloroethane	21	2.00	μg/L μg/L	20.0		104	60-140			
Tetrachloroethylene		2.00	μg/L μg/L	20.0		104	70-130			
Toluene	21	1.00	μg/L μg/L							
1,1,1-Trichloroethane	19	2.00	μg/L μg/L	20.0		94.3	70-130			
1,1,2-Trichloroethane	17	2.00		20.0		83.1	70-130			
	20		μg/L	20.0		102	70-130			
Tricklare flyeremethane (Freen 11)	19	2.00	μg/L	20.0		94.6	65-135			
Trichlorofluoromethane (Freon 11)	14	2.00	μg/L	20.0		70.8	50-150			
Vinyl Chloride	17	2.00	μg/L	20.0		82.9	5-195			
m+p Xylene	37	2.00	μg/L	40.0		91.4	70-130			
o-Xylene	19	2.00	μg/L	20.0		92.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	22.0		μg/L	25.0		87.8	70-130			
Surrogate: Toluene-d8	25.9		μg/L	25.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	26.6		μg/L	25.0		106	70-130			
LCS Dup (B235689-BSD1)				Prepared &	Analyzed: 07	/17/19				
Acetone	170	50.0	$\mu \text{g/L}$	200		84.6	70-160	1.47	25	
tert-Amyl Methyl Ether (TAME)	17	0.500	μg/L	20.0		82.7	70-130	1.50	25	
Benzene	18	1.00	$\mu g/L$	20.0		90.0	65-135	5.30	20	
Bromodichloromethane	17	2.00	$\mu g/L$	20.0		86.7	65-135	5.88	20	
Bromoform	18	2.00	$\mu g/L$	20.0		89.4	70-130	2.48	20	
Bromomethane	9.8	2.00	$\mu g/L$	20.0		49.0	15-185	29.6	* 20	R-05
tert-Butyl Alcohol (TBA)	190	20.0	$\mu \text{g/L}$	200		96.5	40-160	1.17	25	
Carbon Tetrachloride	16	2.00	$\mu \text{g/L}$	20.0		79.2	70-130	6.12	20	
Chlorobenzene	18	2.00	$\mu \text{g}/L$	20.0		91.2	65-135	6.01	20	
Chlorodibromomethane	19	2.00	$\mu g/L$	20.0		95.2	70-135	2.54	20	
Chloroethane	15	2.00	μg/L	20.0		77.0	40-160	3.82	20	
Chloroform	16	2.00	μg/L	20.0		79.1	70-135	5.35	20	
Chloromethane	13	2.00	μg/L	20.0		63.2	20-205	3.96	20	
1,2-Dichlorobenzene	18	2.00	μg/L	20.0		91.2	65-135	4.03	20	
1,3-Dichlorobenzene	18	2.00	μg/L	20.0		89.0	70-130	4.56	20	
1,4-Dichlorobenzene	18	2.00	μg/L μg/L	20.0		89.4	65-135	2.05	20	
1,2-Dichloroethane		2.00	μg/L μg/L	20.0		88.2	70-130	4.16	20	
	18									
1,1-Dichloroethane	19	2.00	μg/L	20.0		93.2	70-130	4.82	20	

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B235689 - SW-846 5035											_
LCS Dup (B235689-BSD1)				Prepared &	Analyzed: 07	7/17/19					_
1,1-Dichloroethylene	15	2.00	μg/L	20.0		73.8	50-150	7.75	20		
trans-1,2-Dichloroethylene	19	2.00	$\mu g/L$	20.0		94.4	70-130	6.65	20		
1,2-Dichloropropane	21	2.00	$\mu g/L$	20.0		107	35-165	4.40	20		
cis-1,3-Dichloropropene	18	2.00	$\mu g/L$	20.0		89.8	25-175	4.20	20		
1,4-Dioxane	260	50.0	$\mu g/L$	200		129	40-130	4.31	50		†
trans-1,3-Dichloropropene	17	2.00	$\mu g/L$	20.0		84.7	50-150	4.33	20		
Ethanol	200	50.0	$\mu g/L$	200		100	40-160	1.38	25		
Ethylbenzene	18	2.00	$\mu g/L$	20.0		88.5	60-140	6.03	20		
Methyl tert-Butyl Ether (MTBE)	18	2.00	$\mu g/L$	20.0		88.6	70-130	1.73	20		
Methylene Chloride	20	5.00	$\mu g/L$	20.0		99.5	60-140	4.57	20		
1,1,2,2-Tetrachloroethane	21	2.00	μg/L	20.0		104	60-140	0.193	20		
Tetrachloroethylene	20	2.00	μg/L	20.0		99.5	70-130	5.14	20		
Toluene	18	1.00	μg/L	20.0		90.0	70-130	4.61	20		
1,1,1-Trichloroethane	15	2.00	μg/L	20.0		77.4	70-130	7.17	20		
1,1,2-Trichloroethane	19	2.00	μg/L	20.0		97.0	70-130	4.93	20		
Trichloroethylene	18	2.00	μg/L	20.0		90.4	65-135	4.54	20		
Trichlorofluoromethane (Freon 11)	13	2.00	μg/L	20.0		65.2	50-150	8.31	20		
Vinyl Chloride	15	2.00	μg/L	20.0		75.8	5-195	8.88	20		
m+p Xylene	35	2.00	μg/L	40.0		87.2	70-130	4.73	25		
o-Xylene	18	2.00	μg/L	20.0		88.0	70-130	5.09	20		
Surrogate: 1,2-Dichloroethane-d4	21.8		μg/L	25.0		87.4	70-130				_
Surrogate: Toluene-d8	25.7		μg/L	25.0		103	70-130				
Surrogate: 4-Bromofluorobenzene	26.2		μg/L	25.0		105	70-130				
Batch B235796 - SW-846 5030B											_
LCS (B235796-BS1)				Prepared &	Analyzed: 07	7/18/19					
Acrolein	99.0	20	$\mu g/L$	100		99.0	60-140				
Acrylonitrile	12.6	5.0	$\mu g/L$	10.0		126	60-140				
2-Chloroethyl Vinyl Ether	77.8	10	$\mu g/L$	100		77.8	10-225				
Surrogate: 1,2-Dichloroethane-d4	21.8		μg/L	25.0		87.2	70-130				_
Surrogate: Toluene-d8	26.1		$\mu g/L$	25.0		104	70-130				
Surrogate: 4-Bromofluorobenzene	26.4		$\mu g/L$	25.0		106	70-130				
LCS Dup (B235796-BSD1)				Prepared &	Analyzed: 07	7/18/19					
Acrolein	102	20	μg/L	100		102	60-140	3.42	20		
Acrylonitrile	13.0	5.0	$\mu g \! / \! L$	10.0		130	60-140	2.50	20		
2-Chloroethyl Vinyl Ether	76.0	10	μg/L	100		76.0	10-225	2.28	20		
Surrogate: 1,2-Dichloroethane-d4	22.1		μg/L	25.0		88.6	70-130				_
Surrogate: Toluene-d8	26.4		$\mu g/L$	25.0		106	70-130				
Surrogate: 4-Bromofluorobenzene	26.7		μg/L	25.0		107	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235695 - SW-846 3510C										
Blank (B235695-BLK1)				Prepared: 07	//16/19 Anal	yzed: 07/17/	19			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							V-04, V-20
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.20	$\mu g/L$							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol (SIM)	74.6		μg/L	200		37.3	15-110			
Surrogate: Phenol-d6 (SIM)	52.7		μg/L	200		26.4	15-110			
Surrogate: Nitrobenzene-d5 (SIM)	65.7		μg/L	100		65.7	30-130			
Surrogate: 2-Fluorobiphenyl (SIM)	42.7		μg/L	100		42.7	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	130		μg/L	200		64.9	15-110			
Surrogate: p-Terphenyl-d14 (SIM)	46.2		$\mu g/L$	100		46.2	30-130			
LCS (B235695-BS1)				Prepared: 07	//16/19 Anal	yzed: 07/17/	19			
Benzo(a)anthracene (SIM)	34.5	1.0	μg/L	50.0		69.0	33-143			
Benzo(a)pyrene (SIM)	38.6	2.0	μg/L	50.0		77.2	17-163			
Benzo(b)fluoranthene (SIM)	38.4	1.0	μg/L	50.0		76.8	24-159			
Benzo(k)fluoranthene (SIM)	38.3	4.0	μg/L	50.0		76.6	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	51.1	20	μg/L	50.0		102	8-158			V-04, V-06
Chrysene (SIM)	34.0	4.0	μg/L	50.0		68.0	17-168			, , , , , , , , , , , , , , , , , , , ,
Dibenz(a,h)anthracene (SIM)	41.1	4.0	μg/L	50.0		82.2	10-227			
Indeno(1,2,3-cd)pyrene (SIM)	41.8	4.0	μg/L	50.0		83.7	10-171			
Pentachlorophenol (SIM)	30.7	20	μg/L	50.0		61.4	14-176			
Surrogate: 2-Fluorophenol (SIM)	70.8		μg/L	200		35.4	15-110			
Surrogate: Phenol-d6 (SIM)	57.2		μg/L	200		28.6	15-110			
Surrogate: Nitrobenzene-d5 (SIM)	62.1		μg/L	100		62.1	30-130			
Surrogate: 2-Fluorobiphenyl (SIM)	51.4		μg/L	100		51.4	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	147		μg/L	200		73.4	15-110			
Surrogate: p-Terphenyl-d14 (SIM)	57.3		μg/L	100		57.3	30-130			
LCS Dup (B235695-BSD1)				Prepared: 07	//16/19 Anal	vzed: 07/17/	19			
Benzo(a)anthracene (SIM)	35.6	1.0	μg/L	50.0	·	71.2	33-143	3.02	53	
Benzo(a)pyrene (SIM)	39.7	2.0	μg/L	50.0		79.4	17-163	2.81	72	
Benzo(b)fluoranthene (SIM)	39.4	1.0	μg/L	50.0		78.9	24-159	2.62	71	
Benzo(k)fluoranthene (SIM)	39.3	4.0	μg/L	50.0		78.7	11-162	2.73	63	
Bis(2-ethylhexyl)phthalate (SIM)	52.8	20	μg/L	50.0		106	8-158	3.31	82	V-04, V-06
Chrysene (SIM)	34.8	4.0	μg/L	50.0		69.6	17-168	2.27	87	,
Dibenz(a,h)anthracene (SIM)	42.2	4.0	μg/L	50.0		84.3	10-227	2.55	126	
Indeno(1,2,3-cd)pyrene (SIM)	42.8	4.0	μg/L	50.0		85.7	10-171	2.36	99	
Pentachlorophenol (SIM)	31.9	20	μg/L	50.0		63.9	14-176	3.89	86	
Surrogate: 2-Fluorophenol (SIM)	59.3		μg/L	200		29.6	15-110		-	
Surrogate: Phenol-d6 (SIM)	53.0		μg/L μg/L	200		26.5	15-110			
Surrogate: Nitrobenzene-d5 (SIM)	62.0		μg/L μg/L	100		62.0	30-130			
Surrogate: 2-Fluorobiphenyl (SIM)	52.3		μg/L μg/L	100		52.3	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	151		μg/L μg/L	200		75.7	15-110			
Surrogate: p-Terphenyl-d14 (SIM)	58.9		μg/L μg/L	100		58.9	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235593 - SW-846 3510C										
Blank (B235593-BLK1)				Prepared: 07	7/16/19 Analy	/zed: 07/17/1	.9			
Acenaphthene	ND	5.00	μg/L							
Acenaphthylene	ND	5.00	μg/L							
Anthracene	ND	5.00	$\mu g/L$							
Benzidine	ND	20.0	$\mu g/L$							R-05, V-04, V-05
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
4-Bromophenylphenylether	ND	10.0	$\mu g \! / \! L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10.0	$\mu g/L$							
Bis(2-chloroethyl)ether	ND	10.0	$\mu g/L$							
Bis(2-chloroisopropyl)ether	ND	10.0	$\mu g/L$							
2-Chloronaphthalene	ND	10.0	$\mu g/L$							
2-Chlorophenol	ND	10.0	$\mu g/L$							
4-Chlorophenylphenylether	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	5.00	$\mu g/L$							
1,4-Dichlorobenzene	ND	5.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	5.00	$\mu g/L$							
3,3-Dichlorobenzidine	ND	10.0	$\mu g/L$							
2,4-Dichlorophenol	ND	10.0	$\mu g/L$							
Diethylphthalate	ND	10.0	$\mu g/L$							
2,4-Dimethylphenol	ND	10.0	$\mu g/L$							
Dimethylphthalate	ND	10.0	μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
2,4-Dinitrophenol	ND	10.0	μg/L							V-04, V-06, V-20
2,4-Dinitrotoluene	ND	10.0	μg/L							
2,6-Dinitrotoluene	ND	10.0	μg/L							
Di-n-octylphthalate	ND	10.0	$\mu g/L$							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10.0	μg/L							
Fluoranthene	ND	5.00	$\mu g/L$							
Fluorene	ND	5.00	$\mu g/L$							
Hexachlorobenzene	ND	10.0	$\mu g/L$							
Hexachlorobutadiene	ND	10.0	μg/L							
Hexachlorocyclopentadiene	ND	10.0	$\mu g \! / \! L$							
Hexachloroethane	ND	10.0	μg/L							
Isophorone	ND	10.0	μg/L							
Naphthalene	ND	5.00	μg/L							
Nitrobenzene	ND	10.0	μg/L							
2-Nitrophenol	ND	10.0	μg/L							
4-Nitrophenol	ND	10.0	μg/L							
N-Nitrosodimethylamine	ND	10.0	μg/L							L-04
N-Nitrosodiphenylamine	ND	10.0	μg/L							
N-Nitrosodi-n-propylamine	ND	10.0	μg/L							
2-Methylnaphthalene	ND	5.00	μg/L							
Phenanthrene	ND	5.00	μg/L							
2-Methylphenol	ND	10.0	μg/L							
Phenol	ND	10.0	μg/L							
3/4-Methylphenol	ND	10.0	μg/L							
Pyrene	ND	5.00	μg/L							
1,2,4-Trichlorobenzene	ND	5.00	μg/L							
2,4,6-Trichlorophenol	ND	10.0	μg/L							
<u> </u>				200		29.7	15 110			
Surrogate: 2-Fluorophenol	76.7		μg/L	200		38.3	15-110			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235593 - SW-846 3510C					· · · · · ·					
Blank (B235593-BLK1)				Prepared: 07	7/16/19 Analy	zed: 07/17/	19			
Surrogate: Phenol-d6	51.7		μg/L	200		25.9	15-110			
Surrogate: Nitrobenzene-d5	70.1		$\mu g/L$	100		70.1	30-130			
Surrogate: 2-Fluorobiphenyl	77.4		$\mu g/L$	100		77.4	30-130			
Surrogate: 2,4,6-Tribromophenol	170		$\mu g/L$	200		85.2	15-110			
Surrogate: p-Terphenyl-d14	84.0		$\mu g/L$	100		84.0	30-130			
LCS (B235593-BS1)				Prepared: 07	7/16/19 Analy	zed: 07/17/	19			
Acenaphthene	39.4	5.00	μg/L	50.0		78.7	47-145			
Acenaphthylene	39.4	5.00	$\mu g/L$	50.0		78.9	33-145			
Anthracene	41.0	5.00	$\mu g/L$	50.0		82.0	27-133			
Benzidine	42.2	20.0	$\mu g/L$	50.0		84.4	40-140			V-04, V-05, R-05
Benzo(g,h,i)perylene	43.1	5.00	μg/L	50.0		86.1	10-219			
4-Bromophenylphenylether	39.7	10.0	$\mu \text{g}/L$	50.0		79.4	53-127			
Butylbenzylphthalate	41.8	10.0	$\mu g/L$	50.0		83.6	10-152			
4-Chloro-3-methylphenol	41.2	10.0	μg/L	50.0		82.4	22-147			
Bis(2-chloroethyl)ether	33.1	10.0	μg/L	50.0		66.1	12-158			
Bis(2-chloroisopropyl)ether	36.2	10.0	μg/L	50.0		72.4	36-166			
2-Chloronaphthalene	35.1	10.0	μg/L	50.0		70.2	60-120			
2-Chlorophenol	31.1	10.0	μg/L	50.0		62.2	23-134			
4-Chlorophenylphenylether	40.0	10.0	μg/L	50.0		80.0	25-158			
Di-n-butylphthalate	39.8	10.0	μg/L	50.0		79.7	10-120			
1,3-Dichlorobenzene	28.0	5.00	μg/L	50.0		56.0	10-172			
1,4-Dichlorobenzene	28.8	5.00	μg/L	50.0		57.7	20-124			
1,2-Dichlorobenzene	28.8	5.00	μg/L	50.0		57.5	32-129			
3,3-Dichlorobenzidine	45.6	10.0	μg/L	50.0		91.3	10-262			
2,4-Dichlorophenol	39.8	10.0	μg/L	50.0		79.5	39-135			
Diethylphthalate		10.0	μg/L	50.0		81.2	10-120			
2,4-Dimethylphenol	40.6	10.0	μg/L μg/L	50.0		75.6	32-120			
Dimethylphthalate	37.8	10.0	μg/L μg/L	50.0		81.7	10-120			
4,6-Dinitro-2-methylphenol	40.9	10.0	μg/L μg/L	50.0		87.1	10-120			
2,4-Dinitrophenol	43.5	10.0								V 04 V 06
2,4-Dinitrotoluene	51.3	10.0	μg/L	50.0		103	10-191			V-04, V-06
	43.9		μg/L	50.0		87.8	39-139			
2,6-Dinitrotoluene	46.9	10.0	μg/L	50.0		93.9	50-158			
Di-n-octylphthalate	40.4	10.0	μg/L	50.0		80.8	4-146			
1,2-Diphenylhydrazine/Azobenzene	38.9	10.0	μg/L	50.0		77.8	40-140			
Bis(2-Ethylhexyl)phthalate	41.0	10.0	μg/L	50.0		82.1	8-158			
Fluoranthene	42.2	5.00	μg/L	50.0		84.4	26-137			
Fluorene	40.5	5.00	μg/L	50.0		81.0	59-121			
Hexachlorobenzene	40.3	10.0	μg/L	50.0		80.6	10-152			
Hexachlorobutadiene	34.1	10.0	μg/L	50.0		68.3	24-120			
Hexachlorocyclopentadiene	35.3	10.0	μg/L	50.0		70.6	40-140			
Hexachloroethane	29.2	10.0	μg/L	50.0		58.3	40-120			
Isophorone	41.6	10.0	μg/L	50.0		83.3	21-196			
Naphthalene	36.2	5.00	μg/L	50.0		72.3	21-133			
Nitrobenzene	36.0	10.0	μg/L	50.0		72.0	35-180			
2-Nitrophenol	39.1	10.0	μg/L	50.0		78.2	29-182			
4-Nitrophenol	23.1	10.0	μg/L	50.0		46.2	10-132			
N-Nitrosodimethylamine	18.6	10.0	$\mu g/L$	50.0		37.3 *	40-140			L-04
N-Nitrosodiphenylamine	ND	10.0	$\mu g/L$	50.0		*	40-140			
N-Nitrosodi-n-propylamine	37.0	10.0	$\mu g/L$	50.0		74.1	10-230			
2-Methylnaphthalene	41.5	5.00	$\mu g/L$	50.0		83.0	40-140			
Phenanthrene	41.3	5.00	μg/L	50.0		82.5	54-120			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235593 - SW-846 3510C										
LCS (B235593-BS1)				Prepared: 07	7/16/19 Anal	yzed: 07/17/1	19			
2-Methylphenol	30.8	10.0	μg/L	50.0		61.7	40-140			
Phenol	15.1	10.0	$\mu g/L$	50.0		30.2	5-120			
3/4-Methylphenol	29.6	10.0	$\mu g/L$	50.0		59.2	40-140			
Pyrene	42.2	5.00	$\mu g/L$	50.0		84.3	52-120			
1,2,4-Trichlorobenzene	34.9	5.00	$\mu g/L$	50.0		69.9	44-142			
2,4,6-Trichlorophenol	40.2	10.0	$\mu g/L$	50.0		80.3	37-144			
Surrogate: 2-Fluorophenol	76.0		μg/L	200		38.0	15-110			
Surrogate: Phenol-d6	59.1		μg/L	200		29.6	15-110			
Surrogate: Nitrobenzene-d5	76.4		μg/L	100		76.4	30-130			
Surrogate: 2-Fluorobiphenyl	84.3		μg/L	100		84.3	30-130			
Surrogate: 2,4,6-Tribromophenol	189		μg/L	200		94.3	15-110			
Surrogate: p-Terphenyl-d14	89.8		μg/L	100		89.8	30-130			
			1.0		7/1.6/10 41-					
LCS Dup (B235593-BSD1)	70.0	5.00	a/T		7/16/19 Analy	•		0.002	40	
Acenaphthene	39.0	5.00	μg/L	50.0		78.0	47-145	0.893	48	
Acenaphthylene	39.1	5.00	μg/L	50.0		78.1	33-145	0.994	74	
Anthracene	40.8	5.00	μg/L	50.0		81.7	27-133	0.415	66	D 05 1104 1105
Benzidine	30.3	20.0	μg/L	50.0		60.6	40-140	32.8	50	R-05, V-04, V-05
Benzo(g,h,i)perylene	42.2	5.00	μg/L	50.0		84.5	10-219	1.95	97	
4-Bromophenylphenylether	39.7	10.0	μg/L	50.0		79.4	53-127	0.0252	43	
Butylbenzylphthalate	41.4	10.0	μg/L	50.0		82.7	10-152	1.13	60	
4-Chloro-3-methylphenol	40.2	10.0	μg/L	50.0		80.5	22-147	2.43	73	
Bis(2-chloroethyl)ether	29.3	10.0	μg/L	50.0		58.6	12-158	12.1	108	
Bis(2-chloroisopropyl)ether	33.1	10.0	μg/L	50.0		66.1	36-166	9.07	76	
2-Chloronaphthalene	32.6	10.0	μg/L	50.0		65.3	60-120	7.18	24	
2-Chlorophenol	28.3	10.0	μg/L	50.0		56.5	23-134	9.60	61	
4-Chlorophenylphenylether	40.4	10.0	$\mu g/L$	50.0		80.9	25-158	1.14	61	
Di-n-butylphthalate	40.4	10.0	$\mu g/L$	50.0		80.8	10-120	1.47	47	
1,3-Dichlorobenzene	23.0	5.00	$\mu g/L$	50.0		46.0	10-172	19.6	30	
1,4-Dichlorobenzene	23.1	5.00	$\mu g/L$	50.0		46.3	20-124	22.0	30	
1,2-Dichlorobenzene	24.0	5.00	μg/L	50.0		47.9	32-129	18.2	30	
3,3-Dichlorobenzidine	44.4	10.0	μg/L	50.0		88.7	10-262	2.87	108	
2,4-Dichlorophenol	39.0	10.0	μg/L	50.0		78.0	39-135	1.93	50	
Diethylphthalate	40.7	10.0	$\mu g/L$	50.0		81.5	10-120	0.270	100	
2,4-Dimethylphenol	36.5	10.0	$\mu g \! / \! L$	50.0		73.0	32-120	3.50	58	
Dimethylphthalate	40.8	10.0	μg/L	50.0		81.7	10-120	0.0979	183	
4,6-Dinitro-2-methylphenol	44.2	10.0	μg/L	50.0		88.4	10-181	1.53	203	
2,4-Dinitrophenol	53.1	10.0	μg/L	50.0		106	10-191	3.54	132	V-04, V-06
2,4-Dinitrotoluene	44.5	10.0	μg/L	50.0		89.0	39-139	1.38	42	,
2,6-Dinitrotoluene	47.5	10.0	μg/L	50.0		95.0	50-158	1.19	48	
Di-n-octylphthalate	41.0	10.0	μg/L	50.0		82.0	4-146	1.52	69	
1,2-Diphenylhydrazine/Azobenzene	38.8	10.0	μg/L	50.0		77.6	40-140	0.258	30	
Bis(2-Ethylhexyl)phthalate	41.8	10.0	μg/L	50.0		83.7	8-158	1.95	82	
Fluoranthene	42.6	5.00	μg/L	50.0		85.1	26-137	0.873	66	
Fluorene	40.8	5.00	μg/L	50.0		81.5	59-121	0.689	38	
Hexachlorobenzene	40.4	10.0	μg/L μg/L	50.0		80.9	10-152	0.322	55	
Hexachlorobutadiene	30.6	10.0	μg/L μg/L	50.0		61.2	24-120	10.9	62	
Hexachlorocyclopentadiene		10.0	μg/L μg/L	50.0		67.9	40-140	3.87	30	
Hexachloroethane	34.0	10.0	μg/L μg/L	50.0		46.0	40-140	23.5	52	
Isophorone	23.0	10.0	μg/L μg/L							
•	40.8			50.0		81.5	21-196	2.16	93	
Naphthalene	33.8	5.00	μg/L	50.0		67.7	21-133	6.63	65	
Nitrobenzene	32.6	10.0	μg/L	50.0		65.1	35-180	10.1	62	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte	Result	Liiiit	Onits	Level	Result	/0KEC	Lillits	KFD	Lillit	ivotes
Batch B235593 - SW-846 3510C										
LCS Dup (B235593-BSD1)				Prepared: 07	7/16/19 Anal	yzed: 07/1'	7/19			
2-Nitrophenol	37.2	10.0	μg/L	50.0		74.4	29-182	4.95	55	
4-Nitrophenol	22.7	10.0	$\mu g/L$	50.0		45.4	10-132	1.83	131	
N-Nitrosodimethylamine	15.7	10.0	$\mu g/L$	50.0		31.4	* 40-140	17.0	30	L-04
N-Nitrosodiphenylamine	ND	10.0	$\mu g/L$	50.0			* 40-140	NC	30	
N-Nitrosodi-n-propylamine	35.0	10.0	$\mu g/L$	50.0		70.0	10-230	5.66	87	
2-Methylnaphthalene	39.9	5.00	$\mu g/L$	50.0		79.8	40-140	3.93	30	
Phenanthrene	41.1	5.00	$\mu g/L$	50.0		82.1	54-120	0.510	39	
2-Methylphenol	29.6	10.0	$\mu g/L$	50.0		59.2	40-140	4.17	30	
Phenol	14.4	10.0	$\mu g/L$	50.0		28.8	5-120	4.61	64	
3/4-Methylphenol	28.6	10.0	$\mu g/L$	50.0		57.1	40-140	3.54	30	
Pyrene	41.6	5.00	$\mu g/L$	50.0		83.2	52-120	1.29	49	
1,2,4-Trichlorobenzene	31.5	5.00	$\mu g/L$	50.0		63.1	44-142	10.3	50	
2,4,6-Trichlorophenol	39.4	10.0	$\mu g/L$	50.0		78.9	37-144	1.81	58	
Surrogate: 2-Fluorophenol	65.3		μg/L	200		32.6	15-110			
Surrogate: Phenol-d6	56.4		μg/L	200		28.2	15-110			
Surrogate: Nitrobenzene-d5	69.8		μg/L	100		69.8	30-130			
Surrogate: 2-Fluorobiphenyl	83.0		μg/L	100		83.0	30-130			
Surrogate: 2,4,6-Tribromophenol	188		μg/L	200		93.9	15-110			
Surrogate: p-Terphenyl-d14	89.3		μg/L	100		89.3	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235659 - SW-846 3510C										
Blank (B235659-BLK1)				Prepared: 07	/16/19 Analy	zed: 07/17/1	9			
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1260	ND	0.100	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.100	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	0.821		μg/L	1.00		82.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.872		$\mu g/L$	1.00		87.2	30-150			
Surrogate: Tetrachloro-m-xylene	0.749		$\mu g/L$	1.00		74.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.694		$\mu g/L$	1.00		69.4	30-150			
LCS (B235659-BS1)				Prepared: 07	/16/19 Analy	zed: 07/17/1	9			
Aroclor-1016	0.464	0.200	μg/L	0.500		92.8	50-140			
Aroclor-1016 [2C]	0.440	0.200	$\mu g/L$	0.500		88.0	50-140			
Aroclor-1260	0.478	0.200	$\mu g/L$	0.500		95.6	8-140			
Aroclor-1260 [2C]	0.469	0.200	$\mu g/L$	0.500		93.7	8-140			
Surrogate: Decachlorobiphenyl	1.86		μg/L	2.00		92.9	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.99		μg/L	2.00		99.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.64		$\mu g/L$	2.00		81.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.52		$\mu g/L$	2.00		76.0	30-150			
LCS Dup (B235659-BSD1)				Prepared: 07	/16/19 Analy	zed: 07/17/1	9			
Aroclor-1016	0.488	0.200	μg/L	0.500		97.7	50-140	5.16		
Aroclor-1016 [2C]	0.471	0.200	μg/L	0.500		94.3	50-140	6.93		
Aroclor-1260	0.482	0.200	μg/L	0.500		96.3	8-140	0.738		
Aroclor-1260 [2C]	0.506	0.200	$\mu g/L$	0.500		101	8-140	7.60		
Surrogate: Decachlorobiphenyl	1.89		μg/L	2.00		94.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.07		μg/L	2.00		103	30-150			
Surrogate: Tetrachloro-m-xylene	1.74		μg/L	2.00		86.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.63		$\mu g/L$	2.00		81.6	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

				a "	_		0/220		222	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235599 - EPA 245.1										
Blank (B235599-BLK1)				Prepared & A	Analyzed: 07	//17/19				
Mercury	ND	0.00010	mg/L							
LCS (B235599-BS1)				Prepared & A	Analyzed: 07	//17/19				
Mercury	0.00380	0.00010	mg/L	0.00400		95.1	85-115			
LCS Dup (B235599-BSD1)				Prepared & A	Analyzed: 07	//17/19				
Mercury	0.00381	0.00010	mg/L	0.00400		95.2	85-115	0.108	20	
Datah D225657 - EDA 200-7										
Batch B235657 - EPA 200.7										
Blank (B235657-BLK1)				Prepared: 07	/16/19 Anal	yzed: 07/17/	19			
Iron	ND	0.050	mg/L							
LCS (B235657-BS1)				Prepared: 07	/16/19 Anal	yzed: 07/17/	19			
Iron	4.41	0.050	mg/L	4.00		110	85-115			
LCS Dup (B235657-BSD1)				Prepared: 07	/16/19 Anal	yzed: 07/17/	19			
ron	4.32	0.050	mg/L	4.00		108	85-115	1.90	20	
Batch B235658 - EPA 200.8										
Blank (B235658-BLK1)				Prepared: 07	/16/19 Anal	yzed: 07/17/	19			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	$\mu \text{g/L}$							
Cadmium	ND	0.20	$\mu g \! / \! L$							
Chromium	ND	1.0	$\mu g/L$							
Copper	ND	1.0	$\mu g/L$							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	$\mu g/L$							
Selenium	ND	5.0	$\mu g/L$							
Silver	ND	0.20	$\mu g/L$							
Zinc	ND	10	$\mu g/L$							
LCS (B235658-BS1)				Prepared: 07	/16/19 Anal	yzed: 07/17/	19			
	527	10	μg/L	Prepared: 07	/16/19 Anal	yzed: 07/17/2	85-115			
Antimony	527 539	10 8.0	μg/L μg/L		/16/19 Anal	-				
Antimony Arsenic				500	/16/19 Anal	105	85-115			
Antimony Arsenic Cadmium	539	8.0	$\mu g/L$	500 500	/16/19 Anal	105 108	85-115 85-115			
Antimony Arsenic Cadmium Chromium	539 521	8.0 2.0	μg/L μg/L	500 500 500	/16/19 Anal	105 108 104	85-115 85-115 85-115			
Antimony Arsenic Cadmium Chromium Copper	539 521 506	8.0 2.0 10	μg/L μg/L μg/L	500 500 500 500	/16/19 Anal	105 108 104 101	85-115 85-115 85-115 85-115			
Antimony Arsenic Cadmium Chromium Copper Lead	539 521 506 1010 521	8.0 2.0 10 10	μg/L μg/L μg/L μg/L	500 500 500 500 1000	/16/19 Anal	105 108 104 101 101	85-115 85-115 85-115 85-115 85-115			
Antimony Arsenic Cadmium Chromium Copper Lead Nickel	539 521 506 1010	8.0 2.0 10 10 5.0	μg/L μg/L μg/L μg/L μg/L	500 500 500 500 1000 500	/16/19 Anal	105 108 104 101 101 104	85-115 85-115 85-115 85-115 85-115 85-115			
LCS (B235658-BS1) Antimony Arsenic Cadmium Chromium Copper Lead Nickel Selenium Silver	539 521 506 1010 521 516	8.0 2.0 10 10 5.0 50	μg/L μg/L μg/L μg/L μg/L μg/L	500 500 500 500 1000 500 500	/16/19 Anal	105 108 104 101 101 104 103	85-115 85-115 85-115 85-115 85-115 85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235658 - EPA 200.8										
LCS Dup (B235658-BSD1)				Prepared: 07	7/16/19 Analy	zed: 07/17/	/19			
Antimony	529	10	μg/L	500		106	85-115	0.333	20	
Arsenic	553	8.0	$\mu g/L$	500		111	85-115	2.63	20	
Cadmium	525	2.0	$\mu g \! / \! L$	500		105	85-115	0.679	20	
Chromium	513	10	$\mu g/L$	500		103	85-115	1.29	20	
Copper	1020	10	$\mu g/L$	1000		102	85-115	1.58	20	
Lead	528	5.0	$\mu g/L$	500		106	85-115	1.36	20	
Nickel	523	50	$\mu g/L$	500		105	85-115	1.18	20	
Selenium	551	50	$\mu g/L$	500		110	85-115	4.24	20	
Silver	522	2.0	$\mu g/L$	500		104	85-115	0.607	20	
Zinc	1080	100	$\mu g/L$	1000		108	85-115	1.58	20	
Duplicate (B235658-DUP1)	Sou	rce: 19G0771-	03	Prepared: 07	7/16/19 Analy	zed: 07/17/	19			
Antimony	ND	10	μg/L		ND			NC	20	DL-15
Arsenic	33.7	8.0	$\mu g/L$		33.0			2.38	20	
Cadmium	ND	2.0	$\mu g/L$		ND			NC	20	DL-15
Chromium	1.82	1.0	$\mu g/L$		1.99			8.91	20	
Chromium, Trivalent	0.00		mg/L		0.00200					
Copper	84.9	1.0	$\mu g/L$		79.2			6.89	20	
Lead	ND	5.0	$\mu g/L$		ND			NC	20	DL-15
Nickel	15.3	5.0	$\mu g/L$		14.2			7.47	20	
Selenium	110	50	$\mu g/L$		116			5.08	20	
Silver	ND	2.0	$\mu g/L$		ND			NC	20	DL-15
Zinc	ND	100	$\mu g/L$		ND			NC	20	DL-15
Matrix Spike (B235658-MS1)	Sou	rce: 19G0771-	03	Prepared: 07	7/16/19 Analy	zed: 07/17/	19			
Antimony	541	10	μg/L	500	ND	108	70-130			
Arsenic	549	8.0	$\mu g/L$	500	33.0	103	70-130			
Cadmium	516	2.0	$\mu g/L$	500	ND	103	70-130			
Chromium	501	10	$\mu g/L$	500	ND	100	70-130			
Copper	1030	10	$\mu g/L$	1000	79.2	95.2	70-130			
Lead	533	5.0	$\mu g/L$	500	3.12	106	70-130			
Nickel	519	50	$\mu g/L$	500	14.2	101	70-130			
Selenium	554	50	$\mu g/L$	500	116	87.7	70-130			
Silver	499	2.0	$\mu g/L$	500	ND	99.8	70-130			
Zinc	985	100	μg/L	1000	ND	98.5	70-130			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235663 - SM21-22 4500 CL G										
Blank (B235663-BLK1)				Prepared &	Analyzed: 07	/16/19				
Chlorine, Residual	ND	0.020	mg/L							Z-01
LCS (B235663-BS1)				Prepared &	Analyzed: 07	/16/19				
Chlorine, Residual	1.4	0.020	mg/L	1.28		110	66.3-134			Z-01
LCS Dup (B235663-BSD1)				Prepared &	Analyzed: 07	/16/19				
Chlorine, Residual	1.4	0.020	mg/L	1.28		111	66.3-134	0.865	9.96	Z-01
Duplicate (B235663-DUP1)	Sou	rce: 19G0771-	-01	Prepared & A	Analyzed: 07	/16/19				
Chlorine, Residual	ND	0.10	mg/L		ND)		NC	32.5	Z-01, W-06
Matrix Spike (B235663-MS1)	Sou	rce: 19G0771-	-01	Prepared & A	Analyzed: 07	/16/19				
Chlorine, Residual	3.8	0.10	mg/L	1.00	ND		10-167			Z-01
Batch B235664 - SM21-22 3500 Cr B										
Blank (B235664-BLK1)				Prepared &	Analyzed: 07	/16/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B235664-BS1)				Prepared &	Analyzed: 07	/16/19				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		100	83.9-121			
LCS Dup (B235664-BSD1)				Prepared &	Analyzed: 07	/16/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	83.9-121	6.17	10	
Duplicate (B235664-DUP1)	Sou	rce: 19G0771-	-03	Prepared &	Analyzed: 07	/16/19				
Hexavalent Chromium	ND	0.0040	mg/L		ND)		NC	45.7	
Matrix Spike (B235664-MS1)	Sou	rce: 19G0771-	-03	Prepared & A	Analyzed: 07	/16/19				
Hexavalent Chromium	0.099	0.0040	mg/L	0.100	ND	98.8	25.5-193			
Batch B235670 - SM21-22 4500 H B										
LCS (B235670-BS1)				Prepared & A	Analyzed: 07	/16/19				
рН	5.97		pH Units	6.00	<u> </u>	99.5	90-110			
Duplicate (B235670-DUP1)	Sou	rce: 19G0771-	-03	Prepared &	Analyzed: 07	/16/19				
pH	7.5		pH Units		7.4			0.606	5	H-05
Batch B235677 - EPA 1664B										
Blank (B235677-BLK1)				Prepared & A	Analyzed: 07	/17/19				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L	-	-					

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B235677 - EPA 1664B										
Blank (B235677-BLK2)				Prepared &	Analyzed: 07	//17/19				
Silica Gel Treated HEM (SGT-HEM)	ND	28	mg/L							
LCS (B235677-BS1)				Prepared &	Analyzed: 07	//17/19				
Silica Gel Treated HEM (SGT-HEM)	11		mg/L	10.0		113	64-132			
LCS (B235677-BS2)				Prepared &	Analyzed: 07	//17/19				
Silica Gel Treated HEM (SGT-HEM)	170		mg/L	200		86.0	64-132			
Duplicate (B235677-DUP1)	Sou	rce: 19G0771-	.01	Prepared &	Analyzed: 07	//17/19				
Silica Gel Treated HEM (SGT-HEM)	ND	28	mg/L	•	NE			NC	18	R-02
Matrix Spike (B235677-MS1)	Sou	rce: 19G0771-	.01	Prepared &	Analyzed: 07	//17/19				
Silica Gel Treated HEM (SGT-HEM)	90	14	mg/L	100	10		64-132			
Batch B235678 - SM21-22 2540D										
Blank (B235678-BLK1)				Prepared &	Analyzed: 07	//17/19				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B235678-BS1)				Prepared &	Analyzed: 07	//17/19				
Total Suspended Solids	200	10	mg/L	200		100	57.6-118			
Duplicate (B235678-DUP1)	Sou	rce: 19G0771-	01	Prepared &	Analyzed: 07	//17/19				
Total Suspended Solids	6400	50	mg/L		6100)		5.10 *	• 5	R-02
Batch B235858 - EPA 300.0										
Blank (B235858-BLK1)				Prepared &	Analyzed: 07	//19/19				
Chloride	ND	1.0	mg/L							
LCS (B235858-BS1)				Prepared &	Analyzed: 07	//19/19				
Chloride	4.6	1.0	mg/L	5.00		91.0	90-110			
LCS Dup (B235858-BSD1)				Prepared &	Analyzed: 07	//19/19				
Chloride	4.6	1.0	mg/L	5.00		91.5	90-110	0.546	20	
Duplicate (B235858-DUP1)	Sou	rce: 19G0771-	01	Prepared &	Analyzed: 07	//19/19				
Chloride	580	25	mg/L		580)		0.386	20	
Matrix Spike (B235858-MS1)	Sou	rce: 19G0771-	01	Prepared &	Analyzed: 07	//19/19				
Chloride	770	25	mg/L	250	580	74.1 *	80-120			MS-19

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

608.3

Lab Sample ID:	B235659-BS1		Date(s) Analyzed:	07/17/2019	07/17/2019	9
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.W. Z. I. Z.	002	111	FROM	TO	OONOLIVITUUTOIV	70111 D
Aroclor-1016	1	0.000	0.000	0.000	0.464	
	2	0.000	0.000	0.000	0.440	4.4
Aroclor-1260	1	0.000	0.000	0.000	0.478	
	2	0.000	0.000	0.000	0.469	2.3

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

608.3

Lab Sample ID:	B235659-BSD1		Date(s) Analyzed:	07/17/2019	07/17/	/2019
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.1.0.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.488	
	2	0.000	0.000	0.000	0.471	4.0
Aroclor-1260	1	0.000	0.000	0.000	0.482	
	2	0.000	0.000	0.000	0.506	5.3

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
H-05	Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits Reported value for this compound is likely to be biased on the low side.
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.
PR-17	Preservation of pH<4 does not meet method specifications for Acrolein and/or Acrylonitrile. Reported results are estimated.
R-02	Duplicate RPD is outside of control limits. Outlier can be attributed to sample non-homogeneity encountered during sample prep.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
W-06	Elevated method reporting limit due to intense color of sample
Z-01	SM4500 test had calibration points outside of acceptable back calculated recoveries. Reanalysis yielded similar nonconformance.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
Acrolein	CT,MA,NH,NY,RI,NC,ME,VA
Acrolein	CT,NY,MA,NH,RI,NC,ME,VA
Acrylonitrile	CT,NY,MA,NH,RI,NC,ME,VA
Acrylonitrile	CT,MA,NH,NY,RI,NC,ME,VA
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,NY,MA,NH,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA,NH

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
Naphthalene	NY,MA,NC
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
625.1 in Water	
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 2540D in Water

Total Suspended Solids CT,MA,NH,NY,RI,NC,ME,VA

SM21-22 3500 Cr B in Water

Hexavalent Chromium NY,CT,NH,RI,ME,VA,NC

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

SM21-22 4500 H B in Water

pH CT,MA,RI

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2019
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Table of Contents analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Construction to a second the same of the laboratory's responsibility. Construction and will try to assist with missing information, but will not held accountable. Chain of Custody is a legal document that must be complete and accurate and is used to determine wh *Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Prepackaged Cooler? Y / N N = Nitric Acid S = Sulfuric Acid B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium Glassware in the fridge? Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water ² Preservation Codes: Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. S = Soil SL = Studge SOL = Solid O = Other (please define) Total Number Of. O = Other (please define) Non Soxhlet PCB ONLY Soxhlet I = Iced H = HCL M = Methanol coolers Thiosulfate 1 Preservation Code SACTERIA, GLASS PLASTIK_ ENCORE VIALS A :: Air possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Unknown please use the following codes to indicate BORDY NELAC and AlHA-LAP, LLC Accredited Chromatogram AIHA-LAP,LLC Code column above: ANALYSIS REQUESTED Doc # 381 Rev 2_06262019 SOSK MCP Certification Form Required Siranorisc MA INCP Required WRTA MA SLATE DW REGINTED CT RCP Require RCP Certification Form K 39 Spruce Street East Longmeadow, MA 01028 Plojet manufacture BACTERIA EXCEL School Field Filtered Field Filtered Lab to Filter MBTA Lab to Fitter GLASS PLASTIC Client Comments: Acology Coly CHAIN OF CUSTODY RECORD Conc Code VIALS X Q 0 0 0 0 \mathcal{C} `) Municipality Brownfield 쯩 http://www.contestlabs.com 'Matrix Code Due Date: 3 3 Ç 2 10-Day 3-Day 4-Day LP Like Data Pkg Required: COMP/GRAB - Sa KKM ジャログジ PFAS 10-Day (std) Government Federal Ending Date/Time S S S 5801 1230 Email To: -ax To #: Ş ormat: Project Entity 1-Day Flore -Day Beginning Date/Time Mappines Ave Persons 7/4 1/2 Jack e: 1029 CC Bill Med Brockton 70 0 Email: info@contestlabs.com Client Sample ID / Description Date/Time: きょくし Phone: 413-525-2332 VB-SCMW Fax: 413-525-6405 Project Manager: XDV R. CIC Stern Inc VB-1 ₹ 3 MOCKON MOCKON $\overline{\Delta}$ 5/6/ 1515m Con-Test Quote Name/Number: Relinquished by: (signature) ceived by: (signature) ved by: (signature) CON-TEST Phone: \$75-847 Sampled By: 192 Work Order# Con-Test Invoice Recipient, Address: 338 Project Location: Project Number: inguished t Page 46 of 47

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	
Statement will be brought to the attention of the Client - State True or False	

Client Receive	By	36		Date	3/16/14		Time		
How were the	e samples	In Cooler		No Cooler		On Ice	1	No Ice	
receive	-	Direct from Samp	 oling			Ambient		Melted Ice	
Were sampl	lee within		By Gun #	1		Actual Tem	o- 4.4		
Temperatur			By Blank #			Actual Temp	p -		
,	Custody Se	aal Intact?	•		ere Samole	s Tampered		MA	•
	COC Relin		44A		•	ree With Sar			•
		eaking/loose caps	on any sam	-	· · · · · · · · · · · · · · · · · · ·				•
Is COC in ink		•	on any can		noles recei	ived within ho	oldina time?	1	
Did COC in		Client		Analysis	*****		er Name	***	-
pertinent Info		Project	7	ID's		-	Dates/Time	s T	•
•		d out and legible?				••			•
Are there Lat				-	Who wa	s notified?			
Are there Lat		•		<u></u>		s notified?	Mirandu, N	lotalic	•
Are there Sho						s notified?	min be	•	-
Is there enou		.?		_					•
	•	ere applicable?	410	•••	MS/MSD?	F			
Proper Media	•			_		samples req	juired?	Ē	
Were trip bla			73	_	On COC?	and the same of th	•		•
Do all sample				- Acid	KL		Base		-
	#	Containers:	#			#			#
Vials Unp-	#	1 Liter Amb.	4	1 Liter	Plastic		16 c	z Amb.	
HCL-	15	500 mL Amb.			Plastic			mb/Clear	
Meoh-	1 2	250 mL Amb.			Plastic	11		mb/Clear	
Bisulfate-	····	Flashpoint			acteria	1 1 1	2oz A	mb/Clear	
DI-		Other Glass	3	Other	Plastic		E:	ncore	
Thiosulfate-		SOC Kit		Plast	ic Bag		Frozen:		
Sulfuric-	***	Perchlorate		Zip	lock				
				Unused	Media				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter	Plastic		16 c	oz Amb.	
HCL-		500 mL Amb.			_ Plastic			mb/Clear	
Meoh-		250 mL Amb.		250 ml	_ Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			hpoint			mb/Clear	
DI-		Other Plastic			Glass		<u> </u>	ncore	
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate		Zip	lock	1			
Comments:									

NHDES Supplementary
Sample Data

October 25, 2019

Rick Stromberg Boston Environmental Corp. - Brockton, MA 203 Spark St., Brockton, MA Brockton, MA 02302

Project Location: 111 Maplewood Dr. Portsmouth, NH

Client Job Number:

Project Number: BEC19157

Laboratory Work Order Number: 19J1136

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 17, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
19J1136-01	5
19J1136-02	6
19J1136-03	7
19J1136-04	8
Sample Preparation Information	9
QC Data	10
Semivolatile Organic Compounds by - LC/MS-MS	10
B243571	10
Flag/Qualifier Summary	11
Certifications	12
Chain of Custody/Sample Receipt	13

Boston Environmental Corp. - Brockton, MA 203 Spark St., Brockton, MA Brockton, MA 02302 ATTN: Rick Stromberg

REPORT DATE: 10/25/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: BEC19157

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19J1136

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 111 Maplewood Dr. Portsmouth, NH

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
VB-1	19J1136-01	Ground Water		SOP-454 PFAS	
VB-1 Blank	19J1136-02	Field Blank		SOP-454 PFAS	
RW-1	19J1136-03	Surface Water		SOP-454 PFAS	
RW-1 Blank	19J1136-04	Field Blank		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: 111 Maplewood Dr. Portsmouth, N Sample Description: Work Order: 19J1136

Date Received: 10/17/2019

Field Sample #: VB-1 Sampled: 10/17/2019 10:25

Sample ID: 19J1136-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:17	ZZZ
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:17	ZZZ
Perfluorooctanesulfonic acid (PFOS)	3.4	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:17	ZZZ
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:17	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
M3PFHxS		111	50-150					10/23/19 14:17	
M8PFOA		103	50-150					10/23/19 14:17	
M8PFOS		96.5	50-150					10/23/19 14:17	
M9PFNA		92.9	50-150					10/23/19 14:17	

Project Location: 111 Maplewood Dr. Portsmouth, N Sample Description: Work Order: 19J1136

Date Received: 10/17/2019

Field Sample #: VB-1 Blank Sampled: 10/17/2019 10:25

Sample ID: 19J1136-02

Sample Matrix: Field Blank

Semivolatile (Organic	Compounds I	bv - L	C/MS-MS
----------------	----------------	-------------	--------	---------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 13:59	ZZZ
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 13:59	ZZZ
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 13:59	ZZZ
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 13:59	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
M3PFHxS		103	50-150					10/23/19 13:59	
M8PFOA		104	50-150					10/23/19 13:59	
M8PFOS		84.8	50-150					10/23/19 13:59	
M9PFNA		94.1	50-150					10/23/19 13:59	

Project Location: 111 Maplewood Dr. Portsmouth, N Sample Description: Work Order: 19J1136

Date Received: 10/17/2019

Field Sample #: RW-1 Sampled: 10/17/2019 11:30

Sample ID: 19J1136-03
Sample Matrix: Surface Water

Semivolatile Organic Compounds by - LC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorohexanesulfonic acid (PFHxS)	4.0	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:35	ZZZ
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:35	ZZZ
Perfluorooctanesulfonic acid (PFOS)	16	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:35	ZZZ
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:35	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
M3PFHxS		104	50-150					10/23/19 14:35	
M8PFOA		106	50-150					10/23/19 14:35	
M8PFOS		89.9	50-150					10/23/19 14:35	
M9PFNA		100	50-150					10/23/19 14:35	

Project Location: 111 Maplewood Dr. Portsmouth, N Sample Description: Work Order: 19J1136

Date Received: 10/17/2019

Field Sample #: RW-1 Blank Sampled: 10/17/2019 11:30

Sample ID: 19J1136-04

Sample Matrix: Field Blank

Comizzolatila	Organic Compor	ında bızı I	C/MC MC

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:52	ZZZ
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:52	ZZZ
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:52	ZZZ
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP-454 PFAS	10/18/19	10/23/19 14:52	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
M3PFHxS		98.7	50-150					10/23/19 14:52	
M8PFOA		105	50-150					10/23/19 14:52	
M8PFOS		83.2	50-150					10/23/19 14:52	
M9PFNA		94.9	50-150					10/23/19 14:52	

Sample Extraction Data

$Prep\ Method:\ SOP\ 454-PFAAS-SOP-454\ PFAS$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1136-01 [VB-1]	B243571	250	1.00	10/18/19
19J1136-02 [VB-1 Blank]	B243571	250	1.00	10/18/19
19J1136-03 [RW-1]	B243571	250	1.00	10/18/19
19J1136-04 [RW-1 Blank]	B243571	250	1.00	10/18/19

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B243571 - SOP 454-PFAAS										
Blank (B243571-BLK1)				Prepared: 10	/18/19 Analy	yzed: 10/23/1	9			
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Surrogate: MPFBA	5.90		ng/L	40.0		14.8 *	30-110			
Surrogate: M3PFBS	39.4		ng/L	37.2		106	70-130			
Surrogate: M5PFPeA	39.6		ng/L	40.0		99.1	70-130			
Surrogate: M5PFHxA	40.3		ng/L	40.0		101	70-130			
Surrogate: M3PFHxS	38.4		ng/L	37.8		101	50-150			
Surrogate: M4PFHpA	40.9		ng/L	40.0		102	70-130			
Surrogate: M8PFOA	42.0		ng/L	40.0		105	50-150			
Surrogate: M8PFOS	36.0		ng/L	38.3		94.2	50-150			
Surrogate: M9PFNA	37.5		ng/L	40.0		93.7	50-150			
LCS (B243571-BS1)				Prepared: 10	/18/19 Analy	yzed: 10/23/1	9			
Perfluorohexanesulfonic acid (PFHxS)	2.21	2.0	ng/L	1.82		122	50-150			
Perfluorooctanoic acid (PFOA)	2.69	2.0	ng/L	2.00		135	50-150			
Perfluorooctanesulfonic acid (PFOS)	2.46	2.0	ng/L	1.85		133	50-150			
Perfluorononanoic acid (PFNA)	2.63	2.0	ng/L	2.00		131	50-150			
Surrogate: MPFBA	37.6		ng/L	40.0		94.0	30-110			
Surrogate: M3PFBS	34.4		ng/L	37.2		92.5	70-130			
Surrogate: M5PFPeA	31.6		ng/L	40.0		79.1	70-130			
Surrogate: M5PFHxA	38.5		ng/L	40.0		96.3	70-130			
Surrogate: M3PFHxS	32.8		ng/L	37.8		86.7	50-150			
Surrogate: M4PFHpA	38.1		ng/L	40.0		95.2	70-130			
Surrogate: M8PFOA	40.0		ng/L	40.0		100	50-150			
Surrogate: M8PFOS	34.8		ng/L	38.3		90.8	50-150			

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established li	mits.
---	--	-------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SOP-454 PFAS in Water

Perfluoronexanesulfonic acid (PFHxS)

Perfluorooctanoic acid (PFOA)

Perfluorooctanesulfonic acid (PFOS)

NH-P

Perfluorononanoic acid (PFNA)

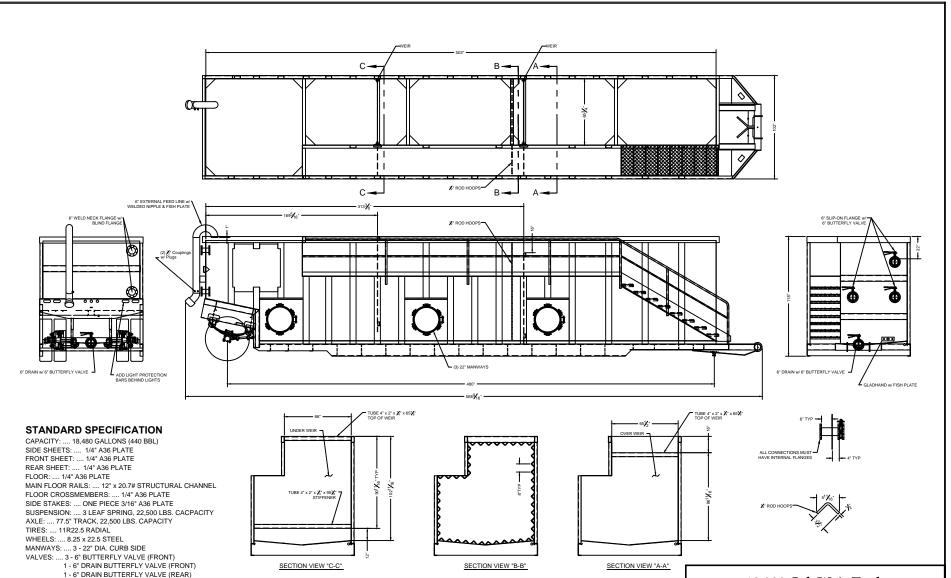
NH-P

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Page 13 of 14

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____


Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Were samples within Temperature? 2-6°C Was Custody Sea Was COC Relinq Are there broken/lea	al Intact?				•		No Ice	
received? Were samples within Temperature? 2-6°C Was Custody Sea Was COC Reling Are there broken/lea s COC in ink/ Legible?	Direct from Sampl	oling By Gun #			•		•	
Were samples within Temperature? 2-6°C Was Custody Sea Was COC Reling Are there broken/lea s COC in ink/ Legible?	al Intact?	By Gun#	2		Ambient		Melted Ice	
Temperature? 2-6°C Was Custody Sea Was COC Reling Are there broken/lea s COC in ink/ Legible? _	al Intact?	•	africa.		Actual Tem	n - 4 2		
Was Custody Sea Was COC Relinq Are there broken/lea s COC in ink/ Legible?	al Intact?	By Blank #		•				•
Was COC Relinq Are there broken/lea s COC in ink/ Legible? _	-			-	Actual Tem			-
Are there broken/leas COC in ink/ Legible? _	uished?	<u></u>		•	s Tampered	-	<u> </u>	-
s COC in ink/ Legible? _	· •		**	_	ree With Sar	mples?	T	-
	_	on any sam		<u> </u>	*			
Did COC include all		<u>.</u>		•		olding time?		•
	Client	T	Analysis			ler Name		-
pertinent Information?	Project	<u> </u>	_ ID's	<u> </u>	Collection	Dates/Times_		-
Are Sample labels filled	out and legible?		_					
Are there Lab to Filters?		ř	_		s notified?	<u></u>		-
Are there Rushes?		<u> </u>			s notified?			
Are there Short Holds?		Ē	****	Who was	s notified?		<u></u>	
s there enough Volume?	1	<u> </u>				_		
s there Headspace wher				MS/MSD?		_	2	
Proper Media/Containers	-	1	•	, –	samples req	quired?	F	<u> </u>
Were trip blanks received	-	F	*	On COC?	6			
Do all samples have the		NA	- Acid		_	Base _		-
	Containers:	#			#			#
Jnp-	1 Liter Amb.	SECURICA PROPERTY.	1 Liter	Plastic	**************************************		Amb.	
HCL-	500 mL Amb.			_ Plastic		8oz Am	nb/Clear	
Meoh-	250 mL Amb.			_ Plastic	6		nb/Clear	
Bisulfate-	Flashpoint			Bacteria		2oz Am	nb/Clear	
DI-	Other Glass			Plastic			core	
Thiosulfate-	SOC Kit		Plasti	ic Bag		Frozen:		
Sulfuric-	Perchlorate		Zip'	lock		1		and the second s
			Unused I	Media				
/ials # (Containers:	#			#			#
Jnp-	1 Liter Amb.		1 Liter	Plastic	<u> </u>	16 oz	Amb.	
HCL-	500 mL Amb.	<u> </u>		L Plastic			nb/Clear	
Vleoh-	250 mL Amb.			L Plastic		4oz Am	nb/Clear	
Bisulfate-	Col./Bacteria		Flash	hpoint			nb/Clear	
DI-	Other Plastic		Other	r Glass			core	
Thiosulfate-	SOC Kit		Plasti	ic Bag		Frozen:		
Sulfuric-	Perchlorate		Zip'	olock				
Comments:								

Appendix C

Cutsheets

2 - 6" BLIND FLANGE CONNECTION (REAR)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)
PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.
(EXTERIOR) FINISH COAT POLURETHANE 4.0 TO 5.0 D.F.T.

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

Centrifugal - Single Phase

Motor Protection

All models provide built-in thermal overload protection that shuts down the pump when operating temperature becomes too high, and automatically restarts once the motor cools and a proper temperature is met.

YELLSUB 1 1/4" Discharge 33 GPM - 15' HEAD

The Yellow Submarine is MQ's most lightweight, compact submersible pump. A great choice for common household moving water applications. One piece polymer pump casing body resists corrosion and heat. Includes internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

Quality and Safety

ST Series Single Phase Pumps are in accordance with ISO9001 Quality Management System standard. Also, all Single Phase models carry the Underwriters Laboratories (UL) Listing for compliance with both U.S. or Canadian electrical safety codes.

SS233 2" Discharge 60 GPM - 20' HEAD

This lightweight, compact submersible pump is the first choice for many applications: flooded rooms, flat roofs, fill tanks, basins, fountains and waterfalls. Hardy thermoplastic pump casing body resists corrosion and heat. Further, the SS233 incorporates internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

MO SHERRET PUMP

ST2038P 2" Discharge 60 GPM - 38' HEAD

This lightweight, compact submersible pump is ideal for moving water in multiple confined and open area applications. The unique casing design permits it to draw water to a level of 1/16" without having to place the pump in any kind of sump. The ST2038P incorporates a rugged cast aluminum housing, internal thermal overload protection, and sealed dual shaft seals and bearings .

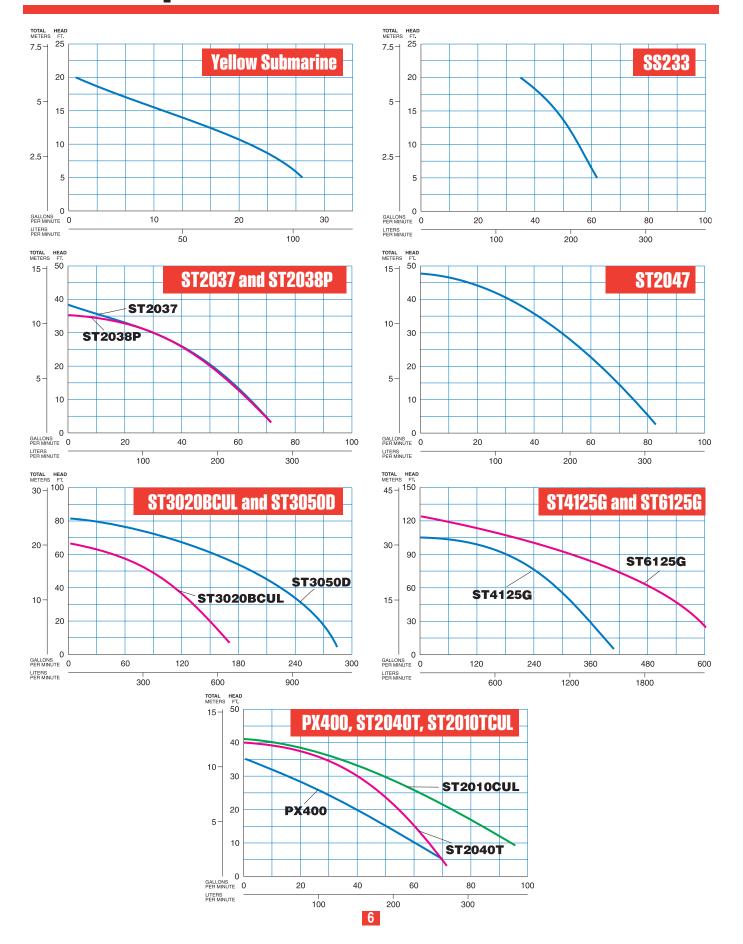
ST2037 2" Discharge

2" Discharge 73 GPM - 37' HEAD

The ST2037 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 25' Power Cable with strain relief. This is a powerful, versatile, low maintenance pump that is perfect for a wide range of operations supporting Contractors Service Utilities, Municipalities, and Homeowners.

ST2047 2" Discharge 87 GPM - 47' HEAD

A compact, powerful pump that tackles tough dewatering jobs. Perfect for Contractors, Service Utilities, Municipalities, and Homeowners. The ST2047 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 50' Power Cable with strain relief.


ST3020BCUL 3" Discharge 170 GPM - 72' HEAD

This is a rugged 2HP 230V pump with a heat conducting cast iron/steel motor casing. Pumps liquid up to 120° and de-waters surfaces up to 1/2. The ST3020BCUL incorporates reliable double mechanical oil-filled seals, internal thermal overload protection, sealed ball bearings, Ductile Iron impeller, carrying handle, and molded 50' Power Cable with strain relief. The 6.7" diameter design permits the pump to fit into tight spaces & conduits.

^{*} All Multiquip single phase submersible pumps do not require a Control Box for safe, efficient operations. However, a Control Box may be desired if operations call for a manual ON/OFF Switch option.

Pump Performance Curves

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

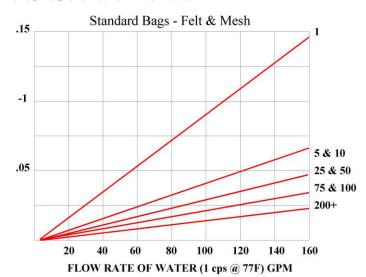
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

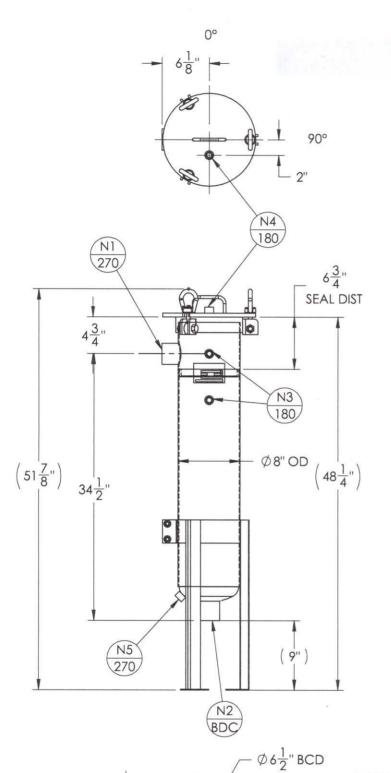
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

		NOZZLE	SCHEDULE		
MARK	QTY	SIZE	/ RATING	DESCI	RIPTION
N1	1	2" 150	# NPT	IN	LET
N2	1	2" 150)# NPT	OU.	TLET
N3	2	1/2" 30	00# NPT	PRES	SS GA
N4	1	1/2" 30	00# NPT	VE	NT
N5	1	1/2" 30	00# NPT	CLEAN	DRAIN
N6	-		-	DIRT	Y DRAIN
	VESS	SEL DESIG	N CONDITION	S	
CODE:	BES	т сомме	RCIAL PRACT	ICE	
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.:	-20° F	@ 150 PS
M.A.E.P.:	15 PSI @	250°F			
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI
STAMP:	'NC'		SERVICE:	NON I	ETHAL
PWHT:	N/A		RADIOGRAP	HY:	N/A
MATERIAL:	SS 304/	L	GASKET:	BUN	IA-N

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

NC •

NOTES:
• VESSEL WILL HOUSE (QTY=1) DOUBLE LENGTH BASKET.

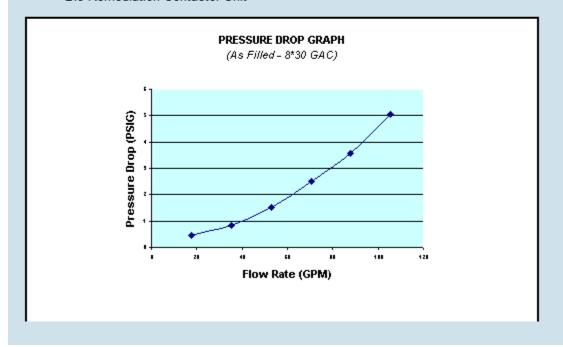
A —	REV. DATE		REVIS	SION	DRAWN APP'D	
THIRD ANGLE PROJECTION TOLERANCES-UNLESS OTHERWISE NOTED DECIMAL X = 1	LR's	Leomi Tel:	awford Street nster, MA 014 774.450.717 388.835.0617	7		
.XX =±.02* .XXX =±.005*	0	LRT	Provided Ba	g Filter Housing		
FRACTIONAL $\leq 24^{\circ} = \pm 1/16^{\circ}$ >24° = $\pm 1/8^{\circ}$	EQUIPMENT:		BAG FILTER H	OUSING (EB SERIES)		
ANGULAR =± 1°	MODEL NO: S4EB112-2P-SW					
MAX. MACHINED 125/ SURFACE FINISH	CUSTOMER:			ī.		
PARENT: NONE	DRAWN: CR	DATE: 3AN 13	JOB No.	DWG. No.	REV. No	
PAGE: 1 OF 4	CHK'D: JM	SCALE: NTS	V-	001-0123	0	

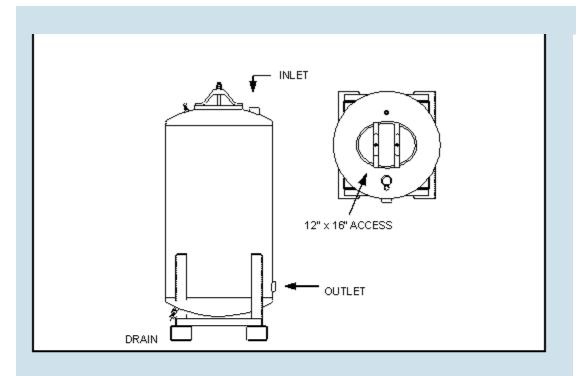
1:1

 $\emptyset \frac{1}{2}$ " TYP.

89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- · Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- · Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- · Dissolved and Precipitated Metals Removal
- · Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- · Bio-Remediation Contactor Unit

Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC
Diameter	48"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²
Shipping / Operational Weight (lbs)	1,295 / 3,295	Bed Depth/Volume	5.5 FT / 68.7 FT ³

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

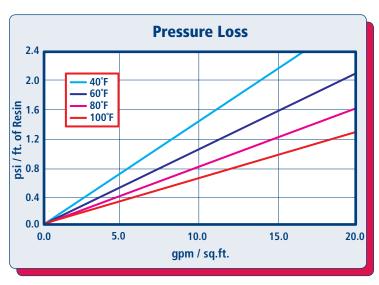
FEATURES & BENEFITS

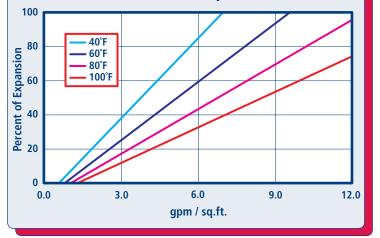
RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop


COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

Backwash Expansion

PRESSURE LOSS

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

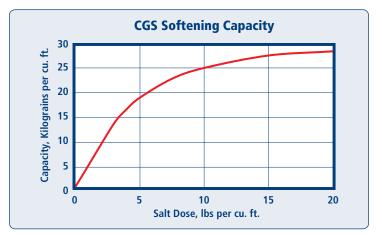
Same as service flow

Rinse volume

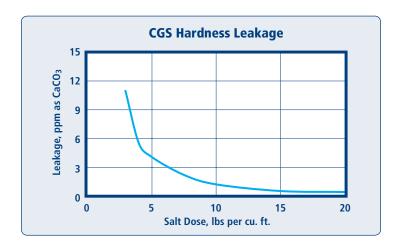
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

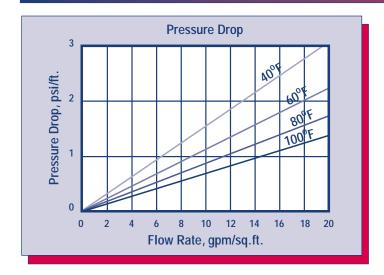
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

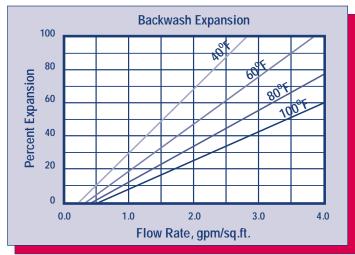
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)

PH Range
93 percent

Sphericity

Uniformity Coefficient

16 to 50

5 percent

1 percent

1 percent

2 page 1 percent

Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent
Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F alt Form 170°F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Cap	acity Kilogra	ms per cubic	foot
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°DF and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below)
HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

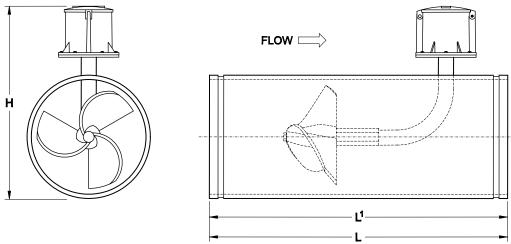
160°F constant

PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.
Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- Certified calibration test results

McCrometer reserves the right to change design or specifications without notice	
---	--

MG100 / MS100							DIMEN	SIONS					
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100	N	ote	13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

LB Series

Top discharge provides maximum motor cooling while allowing continuous duty operation.

Available in single-phase or three-phase. Pumps fit into 8-inch pipes.

LB Series Features

LB(T)-1500:

High chrome semi-open impeller resists wear for adhesive particles.

Diode motor protectors prevent stator damage in high amperage or run-dry situations.

Up to 70' shut off head

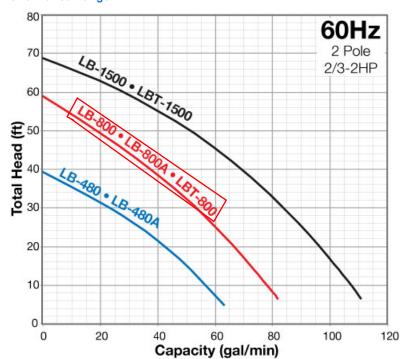
Slimline design allows pumps to fit into 8" pipes.

LB Series Features

LB-800:

Designed to fit an 8" pipe.

Up to 60' shut off head.


Available in 110V and 220V single-phase with 50 foot cables.

Double Inside Mechanical Seal With SiC faces provides the longest operational life.

Oil Lifter provides lubrication of the seal faces.

OPTIONAL ACCESSORIESFloat Switch for automatic operation TS-302 for 110V, TS-303 for 220V.

Performance Range

Model	Discharge Size (in.)	Motor Output (HP)	Voltage (V)	Cable Length (ft.)	Diameter (in.)	Height (in.)	Weight (lbs.)
LB-1500	3	2	110V or 220V	50	7 3/8	23 5/16	72
LB-480	2	2/3	110V	32	7 3/8	11 1/4	28
LB-480A	2	2/3	110V	32	8 3/4	11 1/4	30
LB-800	2	1	115V or 230V	50	7 3/8	13 7/16	35
LB-800A	2	1	115 or 230	50	8 3/4	23 5/16	38
LBT-1500	2 or 3 2		230 or 460 or 575V	50	7 3/8	23 5/16	85
LBT-800	2	1	230 or 460 or 575V	50	7 3/8	13 7/16	35

Appendix D

Supplemental Information

Documentation of the Results of the ESA Eligibility Determination:

Using information in Appendix II of the NPDES RGP, the project located at 111 Maplewood Street Portsmouth, NH is eligible for coverage under this general permit under FWS Criterion C. This project is located in Rockingham County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

• The Northern long-eared bat was listed as "Threatened" wherever it is found;

Temporary dewatering activities at the site are not expected to impact the Northern Long-eared Bat.

Northern long-eared bats spend winter hibernating in caves and mines. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). There are no caves and mines located at the site. There are trees in the immediate vicinity of the site; however, tree removal is not part of the scope of work related to this Notice of Intent. Therefore, temporary dewatering activities will have "no impact" to the Northern Long-eared Bat.

To: Neil Hansen Date: 3/13/2019

177 Corporate Drive Portsmouth, NH 03801

From: NH Natural Heritage Bureau

Re: Review by NH Natural Heritage Bureau of request dated 3/13/2019

NHB File ID: NHB19-0824 Applicant: Michael Kane

Location: Tax Map(s)/Lot(s): Map 124 Lot 8

Portsmouth

Project Description: Construction of a 75,000 SF office building and associated

site improvements

The NH Natural Heritage database has been checked for records of rare species and exemplary natural communities near the area mapped below. The species considered include those listed as Threatened or Endangered by either the state of New Hampshire or the federal government. We currently have no recorded occurrences for sensitive species near this project area.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

This report is valid through 3/12/2020.

MAP OF PROJECT BOUNDARIES FOR NHB FILE ID: NHB19-0824

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: July 09, 2019

Consultation Code: 05E1NE00-2019-SLI-2244

Event Code: 05E1NE00-2019-E-05735

Project Name: 111 Maplewood - Office Building

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-2244

Event Code: 05E1NE00-2019-E-05735

Project Name: 111 Maplewood - Office Building

Project Type: DEVELOPMENT

Project Description: The proposed office building project will include the construction of a 4-

story, 74,000 SF building that consists of parking and commercial space on the basement level, office and commercial space on the ground level, and office space with a roof deck on the upper stories. The project will consist of associated site improvements such as paving, stormwater management, utilities, lighting, landscaping and community space.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.07912206460361N70.76290314575303W

Counties: Rockingham, NH

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. In addition, a request for project review by the New Hampshire Division of Historic Resources was conducted which also found that no historic properties are on or near the project site. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Please mail the completed form and required material to:

New Hampshire Division of Historical Resources State Historic Preservation Office Attention: Review & Compliance 19 Pillsbury Street, Concord, NH 03301-3570

DHR Use Only

R&C# 10880

Log In Date 7/11/19

Response Date 7/16/19

Sent Date 7/17/19

Request for Project Review by the New Hampshire Division of Historical Resources

$oxed{oxtime}$ This	is	a	new	submittal
---------------------	----	---	-----	-----------

☐ This is additional information relating to DHR Review & Compliance (R&C) #:

GENERAL PROJECT INFORMATION

Project Title 111 Maplewood Ave - Office Building

Project Location 111 Maplewood Avenue

City/Town Portsmouth

Tax Map 124

Lot#8

NH State Plane - Feet Geographic Coordinates:

Easting 1225602

Northing 212459

(See RPR Instructions and R&C FAQs for guidance.)

Lead Federal Agency and Contact (if applicable) EPA

(Agency providing funds, licenses, or permits)

Permit Type and Permit or Job Reference # CGP

State Agency and Contact (if applicable)

Permit Type and Permit or Job Reference #

APPLICANT INFORMATION

Applicant Name RW Norfolk Holdings, LLC

Mailing Address 210 Commerce Way, Suite 300

Phone Number 603,430,4000

City Portsmouth

State NH

Zip 03801

Email enelson@netkane.com

CONTACT PERSON TO RECEIVE RESPONSE

Name/Company Neil Hansen / Tighe & Bond, Inc.

Mailing Address 177 Corporate Drive

Phone Number 6034338818

City Portsmouth

State NH

Zip 03801

Email nahansen@tighebond.com

This form is updated periodically. Please download the current form at www.nh.gov/nhdhr/review. Please refer to the Request for Project Review Instructions for direction on completing this form. Submit one copy of this project review form for each project for which review is requested. Include a self-addressed stamped envelope to expedite review response. Project submissions will not be accepted via facsimile or e-mail. This form is required. Review request form must be complete for review to begin. Incomplete forms will be sent back to the applicant without comment. Please be aware that this form may only initiate consultation. For some projects, additional information will be needed to complete the Section 106 review. All items and supporting documentation submitted with a review request, including photographs and publications, will be retained by the DHR as part of its review records. Items to be kept confidential should be clearly identified. For questions regarding the DHR review process and the DHR's role in it, please visit our website at: www.nh.gov/nhdhr/review or contact the R&C Specialist at marka.labash@dncr.nh.gov or 603.271.3558.

PROJECTS CANNOT BE PROCESSED WITHOUT THIS INFORMATION /0880
ies and Description
the Project Mapping using EMMIT or relevant portion of a 7.5' USGS Map. (See RPR cons and R&C FAQs for guidance.) detailed narrative description of the proposed project. site plan. The site plan should include the project boundaries and areas of proposed excavation. Shotos of the project area (overview of project location and area adjacent to project location, and areas of proposed impacts and disturbances.) (Informative photo captions are requested.) records search must be conducted to identify properties within or adjacent to the project area. records search results via EMMIT or in Table 1. (Blank table forms are available on the DHR) or in-house records search conducted on 7/8/2019.
y buildings, structures (bridges, walls, culverts, etc.) objects, districts or landscapes within the area? Yes No ip to Archaeology section. If yes, submit all of the following information:
age(s):
aphs of each resource or streetscape located within the project area, with captions, along with a photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) project involves rehabilitation, demolition, additions, or alterations to existing buildings on es, provide additional photographs showing detailed project work locations. (i.e. Detail photographs if window replacement is proposed.)
osed undertaking involve ground-disturbing activity? $igtiin ext{Yes} igsqcup ext{No}$ ubmit all of the following information:
ion of current and previous land use and disturbances. e information concerning known or suspected archaeological resources within the project area cellar holes, wells, foundations, dams, etc.)
note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process.
This Come for Division of Historical Passages Use Only

Project	Boundaries and Description
	Attach the Project Mapping using EMMIT or relevant portion of a 7.5' USGS Map. (See RPR Instructions and R&C FAQs for guidance.) Attach a detailed narrative description of the proposed project. Attach a site plan. The site plan should include the project boundaries and areas of proposed excavation. Attach photos of the project area (overview of project location and area adjacent to project location, and specific areas of proposed impacts and disturbances.) (Informative photo captions are requested.) A DHR records search must be conducted to identify properties within or adjacent to the project area. Provide records search results via EMMIT or in Table 1. (Blank table forms are available on the DHR website.) EMMIT or in-house records search conducted on 7/8/2019.
<u>Arch</u>	<u>nitecture</u>
Are	there any buildings, structures (bridges, walls, culverts, etc.) objects, districts or landscapes within the project area? \square Yes \boxtimes No If no, skip to Archaeology section. If yes, submit all of the following information:
App	roximate age(s):
	Photographs of <i>each</i> resource or streetscape located within the project area, with captions, along with a mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.)
<u>Arch</u>	haeology
Does	s the proposed undertaking involve ground-disturbing activity? X Yes No If yes, submit all of the following information:
\boxtimes	Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.)
1	Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process.
DE	IR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only
Inst	ufficient information to initiate review. Additional information is needed in order to complete review.
	Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect
	ents:
Resour	rized Signature: Date: 7116/19
Author	rized Signature: