

lso, UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

MAR 0 6 2015

Mr. Gary Talbot Project Superintendent Bowdoin Construction Corporation 220-1 Reservoir Street Needham Heights, MA 02494

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Construction of a three-story mixed structure site located at 111 Elm Street, Newton, MA 02134, Suffolk County: Authorization # MAG910665

Dear Mr. Talbot:

Based on the review of a Notice of Intent (NOI) submitted by Amy M. Falconeiri from McPhail Associates, LL, on behalf of Waypoint KLA, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that your consultant marked "Believed Present". The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP. Also, total petroleum hydrocarbons (PAHs), BTX, total metals, and polycyclic aromatic hydrocarbons, are included in view of the historic contamination and to guard against potential fluctuations of contamination that could be detected during the clean-up mitigation. Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 50.2 for this site is within a dilution range greater than fifty to one hundred (>50-100), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for antimony of 141 ug/L, arsenic of 500 ug/L, cadmium of 10 ug/L, hexavalent chromium of 1,710 ug/L mg/L, copper of 260 ug/L, lead of 66 ug/L, nickel of 1,451 ug/L, selenium of 250 ug/L, zinc of 1,480 ug/L and iron of 5,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on December 31, 2015. Please be advised that you may need to reapply for this permit authorization after the permit expiration date if the discharge termination is extended further than the termination date indicated above. Also regardless of the termination date you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP David Turocy, Newton DPW Amy M. Falconeiri, McPhail Associates, LLC

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	1	MAG910665					
Authorization Issued:	Febru	ary, 2015					
Facility/Site Name:		Iding Construction Siete					
Eacility/Site Address	111 E	Im Street, Newton, MA 02134, Suffolk County					
Facility/Site Address:	Email	address of owner: mariapaul15@comcast.net					
Legal Name of Operat	or:	Bowdoin Construction Corporation					
Operator contact name, title, and Address:		Mr. Gary Talbot, Project Superintendent, 220-1 Reservoir Street Needham Heights, MA 02494					
		Email: gtalbot@bowdoinconstruction					
Estimated date of the s Completion:	site's	December 31, 2015					
Category and Sub-Category:		Category III- Contaminated Construction Site Subcategory A. General Urban Fill Sites					
RGP Termination Date:		September 10, 2015					
Receiving Water:		Cheesecake Brook to Charles River					
To Charles River		A					

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	 Total Suspended Solids (TSS) Total Residual Chlorine (TRC) ¹ Total Petroleum Hydrocarbons (TPH) Cyanide (CN) ^{2, 3} Benzene (B) Toluene (T) Ethylbenzene (E) 	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
9.	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

		Effluent Limit/Method#/ML
	Parameter	(All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
V	 Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX)⁴ 	100 ug/L/ Me#8260C/ ML 2ug/L
14	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
√	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
\checkmark	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
V	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
\checkmark	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

		<u>Total Recove</u> <u>MA/Metal</u> <u>H ¹⁰ = 50 u</u> <u>CaCO3, Un</u> ug/l ^{(11/}	<u>Limit</u> ng/l its =	<u>Minir</u> level	
	Metal parameter	Freshwater Limits			
\checkmark	39. Antimony	141		MI	10
V	40. Arsenic **	500		ML	
V	41. Cadmium **	10		ML	-
V	42. Chromium III (trivalent) **	1,710		ML	
	43. Chromium VI (hexavalent)	11.4		ML	
\checkmark	44. Copper **	260		ML	
V	45. Lead **	66	12.92	ML	20
	46. Mercury **	0.9		ML	
	47. Nickel **	1,451		ML	
V	48. Selenium **	250		ML	
	49. Silver	1.2		ML	10
\checkmark	50. Zinc **	1,480		ML	15
\checkmark	51. Iron	5,000		ML	IO 10 10 10 10 10 10 10 10 15 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 313 30 30 30 30 30 313 30 30 313 30 314 30 314 314 314 314 314 314 32 32 33 34 34
	Other Parameters		Limit		
	52. Instantaneous Flow		Site spe	cific in CFS	
	53. Total Flow			cific in CFS	
	54. pH Range for Class A & Class B Wa	aters in MA	6.5-8.3;	1/Month/0	Grab ¹³
-	55. pH Range for Class SA & Class SB	the state of the local division of the local		1/Month/0	
	56. pH Range for Class B Waters in NH			/Month/Gr	
	57. Daily maximum temperature - Wa fisheries			/Month/Gra	
	58. Daily maximum temperature - Col	d water fisheries	68°F; 1	/Month/Gra	EML 10 20 10 15 10 15 20 20 20 20 10 15 20 20 20 10 15 20 30 313 b14 b14 b14 b14 ab14 14 14 14 14
	59. Maximum Change in Temperature Class A water body			/Month/Gr	
	60. Maximum Change in Temperature Class B water body- Warm Water	in MA - Any	5°F; 1/1	Month/Grat	D ¹⁴
	61. Maximum Change in Temperature Class B water body - Cold water and L		3°F; 1/1	Month/Grat	014
	62. Maximum Change in Temperature Class SA water body - Coastal		1.5°F; 1	l/Month/Gr	ab14
	63. Maximum Change in Temperature	in MA - Any	1.5°F; 1	L/Month/Gr	ab14
	Class SB water body - July to Septemi 64. Maximum Change in Temperature	per			1

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l). ² Limits for cyanide are based on EPA's water quality criteria expressed as

micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds (not including the #34, Bis (2-Ethylhexyl) Phthalate. The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Aroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

NOTICE OF INTENT FOR DISCHARGE -UNDER MASSACHUSETTS REMEDIAL -GENERAL PERMIT MAG910000 -

111 ELM STREET -

NEWTON, MASSACHUSETTS -

FEBRUARY 12, 2015 -

Prepared For: -UNITED STATES ENVIRONMENTAL PROTECTION AGENCY -5 POST OFFICE SQUARE, SUITE 100 -MAIL CODE OEP06-4 -BOSTON, MA 02109-3912 -

> <u>On Behalf Of:</u> -Bowdoin Construction Corp. -220-1 Reservoir Street -Needham Heights, MA 02494 -

PROJECT NO. 5780

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868 1420

February 12, 2015

United States Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912

Attention: RGO-NOC Processing

Reference: 111 Elm Street; Newton, Massachusetts Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remedial General Permit MAG910000

Ladies and Gentlemen:

The purpose of this letter report is to provide a summary of the site and groundwater quality information in support of an application for approval from the U.S. Environmental Protection Agency (EPA) for the temporary discharge of groundwater into the Charles River via a storm drain system during construction at the above referenced site. Refer to **Figure 1** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization of Waypoint KLA. These services are subject to the limitations contained in **Attachment A**.

The required Notice of Intent Form contained in the RGP permit is included in **Appendix B**.

Operator

The applicant for the Notice of Intent-Remedial General Permit is:

Bowdoin Construction Corp. 220-1 Reservoir Street Needham Heights, MA 02494

Attention: Mark Doran

Tel: 781-444-6302 Fax: 781-444-4970

Existing Conditions

Fronting onto Elm Street to the east, the subject site is bounded by Border Street to the north and commercial properties to the south and west. The subject site consists of two (2) contiguous parcels of land. The subject site parcels with the addresses of 111 Elm Street and 8 Border Street are undeveloped.

Proposed Scope of Site Development

The proposed development of 111 Elm Street will include the construction of a three-story mixed use structure. An approximate 20 foot wide driveway will run through the western portion of the proposed structure. A basement will occupy the eastern portion of the proposed structure. The proposed structure will front onto Elm Street and Border Street. A paved surface parking lot is proposed to the south of the existing and proposed building.

Based on the DLA Architecture plans, the proposed structure will occupy a footprint of approximately 5,000 square feet. The basement floor slab at the eastern portion of the proposed structure will be at Elevation +40.7. The floor slab at the western portion of the proposed structure will be at Elevation +50.6.

Site Environmental Setting and Surrounding Historical Places

Based on an on-line edition of the Massachusetts DEP Phase I Site Assessment Map, the subject site is not located within the boundaries of a Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. The Map indicates that there are no wetland areas on or within 500 feet of the subject site. The map indicates that Protected Open Space is located approximately 300 feet to the north of the subject site at the intersection of Elm Street and Webster Street. No areas designated as solid waste landfills are noted as being located within 1,000 feet of the site. A copy of the DEP Priority Resources Map depicting the location of the subject site is included in **Appendix C**.

A review of the most recent federal listing of threatened and endangered species published by the U.S. Fish and Wildlife Service identified no threatened and/or endangered species at or in the vicinity of the proposed discharge location and/or discharge outfall. In addition, a review of the Massachusetts Division of Fisheries and Wildlife on-line database identified no threatened or endangered species at the point of discharge and/or the discharge outfall. Based upon the above, the site is considered criterion A pursuant to Appendix IV of the RGP. A list of threatened and endangered species from the U.S. Fish and Wildlife Services and Massachusetts Division of Fisheries on-line databases is included in **Appendix C**.

The subject site is not listed on the State and National Register of Historical Places.

As further discussed below, treated construction dewatering effluent will be discharged into dedicated storm drains that flow into the Charles River. The dewatering of groundwater at the site will be temporary and intermittent. Therefore, based on the anticipated duration of construction dewatering and the location of its discharge into the Charles River, construction dewatering activities are not considered to affect the historical elements of the nearby

historical listings. Hence, the site meets Permit Eligibility Criteria 2 under the Remedial General Permit.

Site History

In summary, the 111 Elm Street portion of the subject site had been occupied by a filling station from at least 1931 to at least 1963. The 8 Border Street portion of the subject site had been occupied by an auto body shop from at least 1931 to at least 2003. Currently, the subject site is an active construction site.

Construction Site Dewatering

In connection with the redevelopment of the subject site, it is anticipated that excavation for the 1-level below grade basement will extend to the surface of groundwater. In addition, storm water run-off is anticipated to accumulate within localized trenches after periods of heavy precipitation requiring dewatering. Hence, groundwater dewatering will be necessary to facilitate construction of the proposed building.

It is anticipated that dewatering by means of strategically located sumps and trenches should suffice during the excavation and foundation construction operations. Intermittent groundwater discharge will be required during excavation at an estimated rate of 20 to 45 gallons per minute (GPM).

Given that the footprint of the proposed building occupies a majority of the subject site, temporary on-site collection and recharge of groundwater is not feasible. As a result, construction dewatering will require the discharge of collected groundwater and stormwater into the storm drain system under the requested Remedial General Permit.

A review of available subgrade utility plans provided by the City of Newton Engineering Department indicates the presence of a dedicated storm drain located beneath Elm Street. The stormwater drain located beneath Elm Street flows north approximately 15 feet and connects to the Cheesecake Brook culvert, which flows to the northeast where it eventually discharges into the Charles River. The Cheesecake Brook is a 6-foot by 10-foot culvert, which eventually changes to an 8 feet wide, open field stone culvert that flows north along Albemarle Road and discharges into the Charles River. The location of the relevant stormwater drain in relation to the subject site is indicated on **Figure 2**. The flow path of the discharge is shown in plans provided by the City of Newton Engineering Department which are included in **Figure 3**.

Summary of Groundwater Analysis

On September 5, 2014, a representative of McPhail Associates, LLC obtained groundwater a groundwater sample from monitoring well B-1(OW) located on the subject site. The purpose of the sampling and analysis was to further assess the presence of the contaminants of concern. The groundwater sample did not exhibit the presence of a sheen nor other visual or olfactory evidence of petroleum contamination. Prior to sampling, the well was purged using a peristaltic pump at a low flow rate. The groundwater sample was sent to a certified laboratory and chemically analyzed for the presence of VOCs. The results did not indicate concentrations of VOCs above the laboratory method detection limits with the exception of acetone. Specifically, acetone was detected at a concentration of 0.012 milligrams per liter (mg/l), which is below the Massachusetts Contingency Plan (MCP) RCGW-2 threshold of 50 mg/l. The location of the groundwater monitoring well is shown on Figure 2. Chemical test results are summarized in Table 1 and laboratory data is attached, and laboratory data is included in **Appendix D**.

Further, a report entitled "Environmental Assessment Report, 111 Elm Street and 8 Border Street, West Newton, MA" dated May 2006 and prepared by ENSOL, Inc. (ENSOL) was provided to McPhail by Waypoint KLA. ENSOL performed a subsurface investigation at the subject site to assess the presence of contamination in soil and groundwater. Specifically, the investigation included the advancement of soil borings and the installation of groundwater monitoring wells across the subject site. From each exploration, selected samples of soil and groundwater were obtained and submitted to a laboratory for chemical analyses. Based upon the analysis of soil samples obtained from explorations performed by ENSOL at the site, a release to soil was not been identified at the subject site. Visual and olfactory observations, field screening observations and analytical results of soil conducted by others at the site indicated that soil at the subject site had not been impacted by a release. Further, the ENSOL report indicated that three (3) monitoring wells identified as MW-1, MW-2 and MW-3 were installed and sampled by ENSOL on May 8, 2006. The three (3) groundwater samples were submitted to a laboratory for analyses for the presence of volatile petroleum hydrocarbons (VPH), extractable petroleum hydrocarbons (EPHs) and volatile organic compounds (VOCs). The ENSOL report indicated that the groundwater samples identified as MW-2 and MW-3 did not indicate the presence of VPHs, EPHs or VOCs above laboratory detection limits. The groundwater sample identified as MW-1 indicated the presence of some VPH, EPH and VOC constituents above laboratory detection limits, but below the applicable RCGW-2 Reporting Standards. The results of groundwater analysis during this time period are shown tables included in **Appendix E**.

Subsurface explorations performed at the subject site indicate that portions of the building are underlain by urban fill material that generally consists of a grayish-brown to black, silty sand and gravel which contains varying amounts of clay, brick, concrete, organics, ash and cinders. As a result, the dewatered groundwater will be passed through a treatment system that is discussed below, which include sedimentation components that will reduce potential concentrations of TSS in the effluent to below the applicable RGP discharge limits.

Groundwater Treatment

Based on the results of the above referenced groundwater analyses, it is our opinion that a 5,000-gallon capacity settling tank and bag filter in series will be required to settle out suspended particulates during construction dewatering to meet the applicable effluent limits established by the US EPA prior to off-site discharge. A schematic of the treatment system is shown on **Figure 4**.

A Best Management Practices Plan (BMPP) has been prepared as **Appendix F** to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Summary and Conclusions

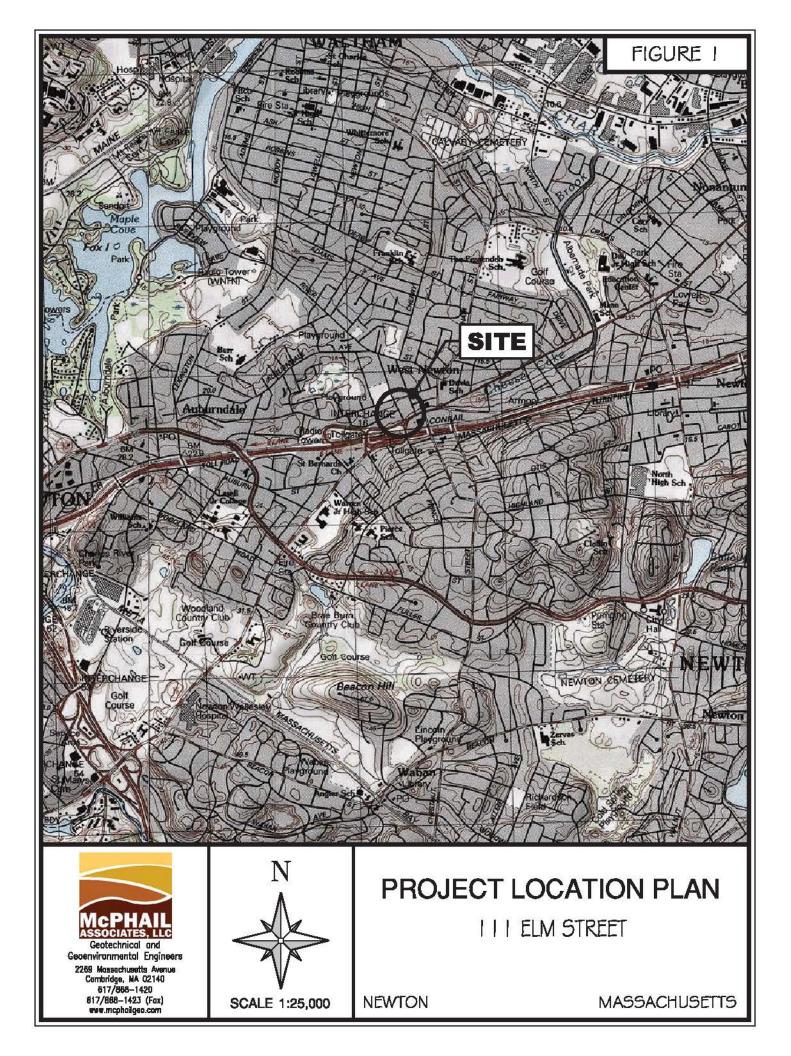
The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Remedial General Permit for off-site discharge of groundwater which will be encountered during the redevelopment of the property located at 111 Elm Street in Newton, Massachusetts. The groundwater testing results reported in this application have been provided to the site owner.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable effluent limits for TSS established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of one settling tank 5,000-gallons in capacity and bag filter in series in order to meet the applicable discharge limits for TSS established by the RGP. However, should the effluent monitoring results indicate levels of TSS in excess of the limits established in the Massachusetts Remedial General Permit, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,

McPHAIL ASSOCIATES, LLC


Amy M. Falconeiri

Ambrose J. Donovan, P.E., L.S.P.

AMF/ajd

F:\WP5\Reports\5780_RGP_020915.docx

C: Elm Trust 96 Bowdoin Construction Corp.

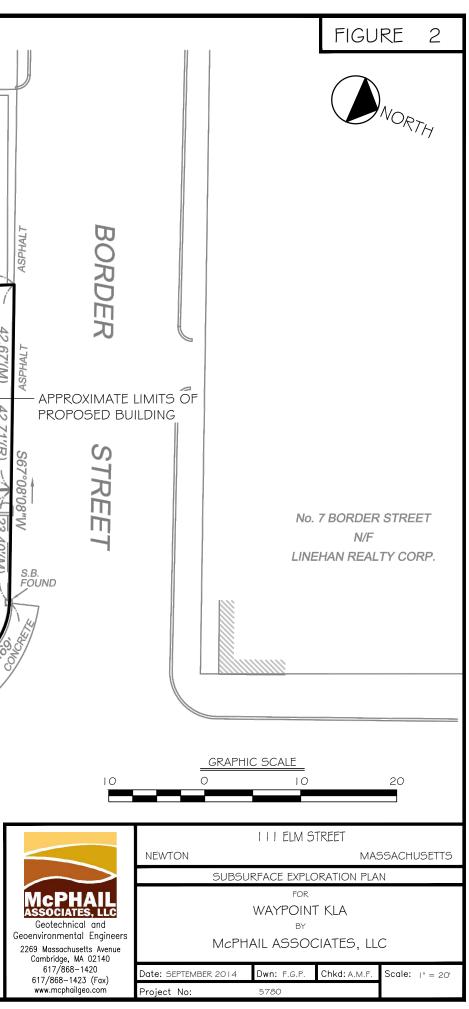
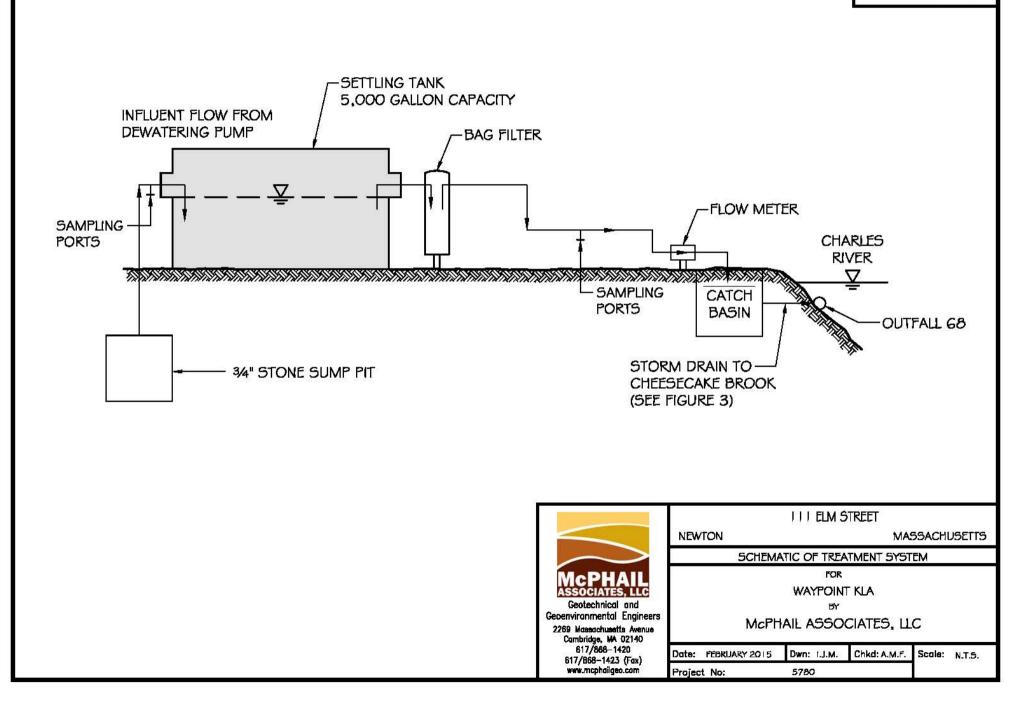



FIGURE 4

Table 1 111 Elm Street, Newton, MA Job #5780 Summary of Chemical Test Results - Groundwater

LOCATION SAMPLING DATE	RCGW-2-14	B-1 (OW) 9/5/2014		
LAB SAMPLE ID	KCGW-2-14	L1420386-01		
Volatile Organic Compounds (mg/l)		L1420380-01		
1,1,1,2-Tetrachloroethane	0.01	ND		
1,1,1-Trichloroethane	4	ND		
1,1,2,2-Tetrachloroethane	0.009	ND		
1,1,2-Trichloroethane	0.9	ND		
1,1-Dichloroethane	2	ND		
1,1-Dichloroethene	0.08	ND		
1,1-Dichloropropene		ND		
1,2,3-Trichlorobenzene		ND		
1,2,3-Trichloropropane	10	ND		
1,2,4-Trichlorobenzene	0.2	ND		
1,2,4-Trimethylbenzene	100	ND		
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.002	ND ND		
1,2-Dichlorobenzene	2	ND		
1,2-Dichloroethane	0.005	ND		
1,2-Dichloroethene (total)	0.005	ND		
1,2-Dichloropropane	0.003	ND		
1,3,5-Trimethylbenzene	1	ND		
1,3-Dichlorobenzene	6	ND		
1,3-Dichloropropane	50	ND		
1,3-Dichloropropene, Total	0.01	ND		
1,4-Dichlorobenzene	0.06	ND		
1,4-Dioxane	6	ND		
2,2-Dichloropropane		ND		
2-Butanone	50	ND		
2-Hexanone	10	ND		
4-Methyl-2-pentanone	50	ND		
Acetone	50	0.012		
Benzene	1	ND		
Bromobenzene	10	ND		
Bromochloromethane		ND		
Bromodichloromethane	0.006	ND		
Bromoform	0.7	ND		
Bromomethane	0.007	ND		
Carbon disulfide	10	ND		
Carbon tetrachloride Chlorobenzene	0.002	ND		
	10	ND ND		
Chloroethane Chloroform	0.05	ND		
Chloromethane	10	ND		
cis-1,2-Dichloroethene	0.02	ND		
cis-1,3-Dichloropropene	0.01	ND		
Dibromochloromethane	0.02	ND		
Dibromomethane	50	ND		
Dichlorodifluoromethane	100	ND		
Ethyl ether	10	ND		
Ethyl-Tert-Butyl-Ether		ND		
Ethylbenzene	5	ND		
Hexachlorobutadiene	0.05	ND		
Isopropyl Ether	10	ND		
Isopropylbenzene	100	ND		
Methyl tert butyl ether	5	ND		
Methylene chloride	2	ND		
n-Butylbenzene		ND		
n-Propylbenzene	10	ND		
Naphthalene	0.7	ND		
o-Chlorotoluene	10	ND		
o-Xylene	3	ND		
p-Chlorotoluene	10	ND		
p-Isopropyltoluene	10	ND		
p/m-Xylene sec-Butylbenzene	3	ND ND		
Styrene	0.1	ND		
tert-Butylbenzene	10	ND		
Tertiary-Amyl Methyl Ether	10	ND		
Tetrachloroethene	0.05	ND		
Tetrahydrofuran	50	ND		
Toluene	40	ND		
trans-1,2-Dichloroethene	0.08	ND		
trans-1,3-Dichloropropene	0.00	ND		
Trichloroethene	0.005	ND		
Trichlorofluoromethane	100	ND		
Vinyl chloride	0.002	ND		
Xylene (Total)	3	ND		

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of a groundwater sample obtained from a monitoring well located at 111 Elm Street in Newton, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remedial General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the widely spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon chemical test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Waypoint KLA. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORM

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : 111 Elm Street		Facility/site mailing address:						
Location of facility/site : longitude: -71.134639 latitude: 42.205666	Facilit code(s	ty SIC s):	Street:	111 Elm Street				
b) Name of facility/site owner: Elm Trust	96		Town	Newton				
Email address of facility/site owner: mariapaul15@comcast.net Telephone no. of facility/site owner :617-787-0300				State: Zip: County: MA 02134 Sufflolk				
Fax no. of facility/site owner:			Owner is (check one): 1. Federal <u>O</u> 2. State/Tribal <u>O</u>					
Address of owner (if different from site):			3. Private • 4. Other • if so, describe:					
Street: 196 Harvard Ave., #7								
Town: Allston	State:	MA	Zip: 0	2134	County:	Suffolk		
c) Legal name of operator :	Opera	ator tel	ephone no: 781-444-6302					
Bowdoin Construction Corp.	Opera	ator fa	<u>k no.:</u> 78	31-444-4970	Operato	or email:	ndoran@bowdoinconstructio	
Operator contact name and title: Mr. Mark								
Address of operator (if different from owner):	Street:	220-1	Reservo	ir Street				
Town: Needham Heights	State:	MA	Zip: 02	2494	County:	Norfolk		

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y ○ N ○, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y ○ N ○, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y ○ N ○ 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y ○ N ○ 					
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O NO, if Y, number: 2. Final Dewatering General Permit? Y O NO, if Y, number: 3. EPA Construction General Permit? Y O NO, if Y, number: 4. Individual NPDES permit? Y O NO, if Y, number: 5. any other water quality related individual or general permit? Y O NO, if Y, number: 				
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y O N O				
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential				
Activity Category	Activity Sub-Category				
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination 				
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites				
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites				

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
-	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit) □

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge acti	ivities for which the owner/applicant is seeking coverage:
Temporary Construction Dewate	ring
5102 12	
b) Provide the following info	rmation about each discharge:
1) Number of discharge	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)?
points:	Max flow 0.5 Is maximum flow a design value? Y O N O
1	Average flow (include units) ^{0.2} Is average flow a design value or estimate? Estimated
3) Latitude and longitude of e	each discharge within 100 feet:
	-71.105711 pt.2: lat. long.;
pt.3: lat	
pt.5: lat long	
pt.7: lat long	
4) If hydrostatic testing,	5) Is the discharge intermittent \odot or seasonal \bigcirc ?
total volume of the	Is discharge ongoing? Y O N O
discharge (gals):	
c) Expected dates of discharg	e (mm/dd/yy): start Feb 16, 2015 end Dec 31, 2015
	g or flow schematic showing water flow through the facility including:
1. sources of intake water. 2.	contributing flow from the operation. 3. treatment units, and 4. discharge points and receiving
waters(s). Please refer to the attache	d report

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

		r			Sample	Analytical	Minimum	Maximum dai	<u>ly value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)			X								
2. Total Residual Chlorine (TRC)		×									
3. Total Petroleum Hydrocarbons (TPH)		×									
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432	×		1	grab	8260C	0.5 ug/l	ND			
6. Toluene (T)	108883	×		1	grab	8260C	1 ug/l	ND			
7. Ethylbenzene (E)	100414	×		1	grab	8260C	1 ug/l	ND			
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	grab	8260C	1 ug/l	ND			
9. Total BTEX ²	n/a	×		1	grab			ND			
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×		1	grab	8260C	2 ug/l	ND			
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	grab	8260C	2 ug/l	ND			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	grab	8260C	10 ug/l	ND			

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 $^{^{2}}$ BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	grab	8260C	2 ug/l	ND			
14. Naphthalene	91203	×		1	grab	8260C	2 ug/l	ND			
15. Carbon Tetrachloride	56235	×		1	grab	8260C	1 ug/l	ND			
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	grab	8260C	2 ug/l	ND			
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	grab	8260C	2 ug/l	ND			
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	grab	8260C	2 ug/l	ND			
18a. Total dichlorobenzene		×		1	grab			ND			
19. 1,1 Dichloroethane (DCA)	75343	×		1	grab	8260C	1 ug/l	ND			
20. 1,2 Dichloroethane (DCA)	107062	×		1	grab	8260C	1 ug/l	ND			
21. 1,1 Dichloroethene (DCE)	75354	×		1	grab	8260C	1 ug/l	ND			
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	grab	8260C	1 ug/l	ND			
23. Methylene Chloride	75092	×		1	grab	8260C	2 ug/1	ND			
24. Tetrachloroethene (PCE)	127184	×		1	grab	8260C	1 ug/l	ND			
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	grab	8260C	1 ug/l	ND			
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	grab	8260C	1 ug/l	ND			
27. Trichloroethene (TCE)	79016	×		1	grab	8260C	1 ug/l	ND			

					Sample Analytical		Minimum	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	grab	8260C	1 ug/l	ND			
29. Acetone	67641	×		1	grab	8260C	5 ug/1	0.000012			
30. 1,4 Dioxane	1 239 11	X		1	grab	8260C	250 ug/l	ND			
31. Total Phenols	108952	×			grab			ND			
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		×									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	X									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×									
b. Benzo(a) Pyrene	50328	×									
c. Benzo(b)Fluoranthene	205992	×									
d. Benzo(k)Fluoranthene	207089	×									
e. Chrysene	21801	×									
f. Dibenzo(a,h)anthracene	53703	×									
g. Indeno(1,2,3-cd) Pyrene	193395	×									
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×									

⁴ The sum of individual phthalate compounds.

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

					Sample	Sample Analytical		Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329	×									
i. Acenaphthylene	208968	×									
j. Anthracene	120127	×									
k. Benzo(ghi) Perylene	191242	×									
1. Fluoranthene	206440	×									
m. Fluorene	86737	×									
n. Naphthalene	91203	×									
o. Phenanthrene	85018	×									
p. Pyrene	129000	×									
	85687; 84742; 117840; 84662;	×									
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006	×									
39. Antimony	7440360	×									
40. Arsenic	7440382	x									
41. Cadmium	7440439	×									
42. Chromium III (trivalent)	16065831	×									
43. Chromium VI (hexavalent)	18540299	×									
44. Copper	7440508	×									
45. Lead	7439921	×									
46. Mercury	7439976	×									
47. Nickel	7440020	×									
48. Selenium	7782492	×									
49. Silver	7440224	×									
50. Zinc	7440666	×									
51. Iron	7439896	×									
Other (describe):											

				and the second sec	<u>Type</u> (e.g.,	Analytical <u>Method</u> <u>Used</u> (method #)	<u>Minimum</u> <u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	Maximum daily value		Average daily value	
<u>Parameter *</u>		Believed Absent	<u>Believed</u> <u>Present</u>					<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
Total Chromium		×									

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y \bigcirc N \oslash$	If ves, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF Metal: DF	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? $Y _ \bigcirc N _ \odot$ If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

Sediment tank and/or bag filters in series.

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator 🗖	Equalization tanks	Bag filter 🗵	GAC filter 🗖
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

Remediation General Permit Appendix V - NOI Page 17 of 22

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge ⁵⁰ gpm Maximum flow rate of treatment system ²⁰⁰ gpm Design flow rate of treatment system ⁵⁰⁰ gpm
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):

5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:

a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands 	Other (describe)				
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:									
Please refer to the attached report for de	scription of disch	arge pathway.							
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 									
d) Provide the state water quality classification of the receiving water Class B									
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 24.6 cfs Please attach any calculation sheets used to support stream flow and dilution calculations.									
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O NO If yes, for which pollutant(s)? chlorophyll-a, combined biota/habitat bioassesements, DDT, dissolved oxygen, oil and grease, secchi disk transparency, nutruent /eutrophication, biological indicators, phosphorous, PCB in tish tissue. Is there a final TMDL? Y O NO If yes, for which pollutant(s)? TMDL for pathogens and nutrients									

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A <u>O</u> B <u>O</u> C <u>O</u> D <u>O</u> E <u>O</u> F <u>O</u>

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y_O_N_O_

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 O 2 O 3 O

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

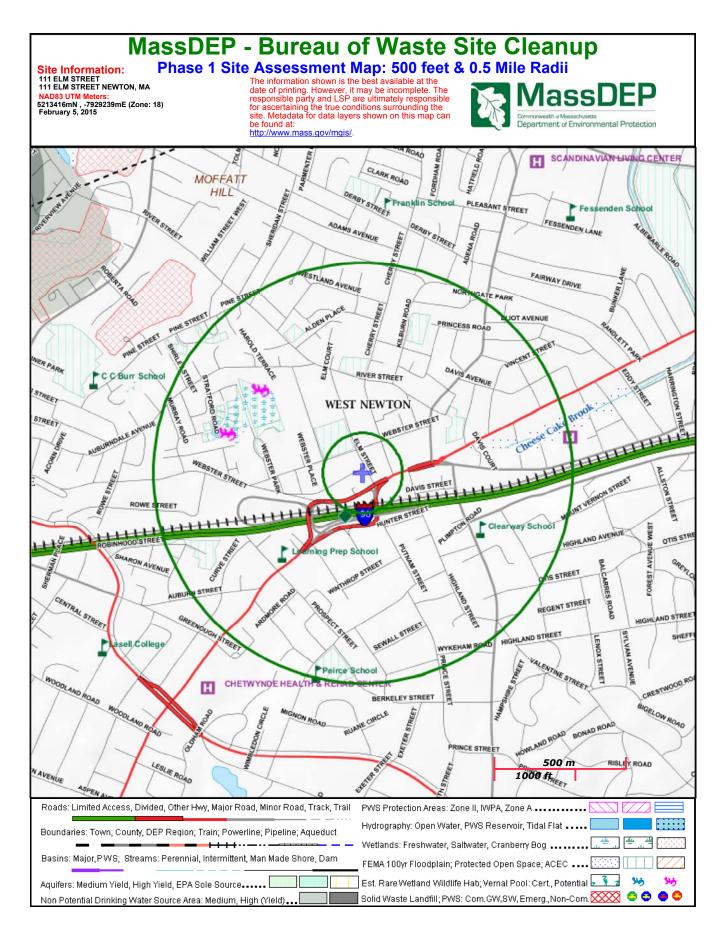
Please refer to the attached report.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:	111 Elm Street, Newton, MA	
Operator signature:	Ser Mar	
Printed Name & Titl	le: Gary Tal Bot Job SUPT	
Date: 2 - 1	13-15	

Remediation General Permit Appendix V - NOI



APPENDIX C:

DEP PRIORITY RESOURCES MAP

U.S. FISH AND WILDLIFE SERVICES - LIST OF THREATENED AND ENDANGERED SPECIES

MASSACHUSETTS DIVISION OF FISHERIES - LIST OF THREATENED AND ENDANGERED SPECIES

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquolt Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

.

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	-	Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Booton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Oncana	Pleasant Bay
Donne		Dopporall	
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	D	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	075800 - 2 C 3 3	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Oadgus	Golden Hills
Lasinam	Wellfleet Harbor	Sharon	Canoe River Aquifer
Faster		Sharon	
Easton	Canoe River Aquifer	Obeffield	Fowl Meadow and Ponkapoag Bog
<u>ena.</u> 19	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	Hashington	Upper Housatonic River
ningnam		Wellfleet	Wellfleet Harbor
llaadala	Weymouth Back River		
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
lpswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
	East Mandaly and Dealerson Deal		
Milton	Fowl Meadow and Ponkapoag Bog Neponset River Estuary		

- 2 Canoe River Aquifer
- 3 Cedar Swamp

14

15

- 4 Central Nashua River Valley
- 5 Cranberry Brook Watershed
- 6 Ellisville Harbor
- 8 Golden Hills
- 9 Great Marsh
- 10 Herring River Watershed
- 1' Hinsdale Flats Watershed
- 12 Hockomock Swamp
- 13 Inner Cape Cod Bay
- 14 Kampoosa Bog Drainage Basin
- 15 Kamer Erook Watershed

16 Miscoe, Warren and Whitehall Watersheds

Massachusetts Areas of Critical Environmental Concern (ACECs)

18

172

25

28

22

20

Mes

20

- 17 Neponset River Estuary
- 18 Petapawag
- 19 Pleasant Bay
- 20 Pocasset River
- **21 Rumney Marshes**
- 7 Fowl Meadow and Ponkapoag Bog 22 Sandy Neck Barrier Beach System
 - 23 Schenob Brook Drainage Basin
 - 24 Squannassit
 - 25 Three Mile River Watershed
 - 26 Upper Housatonic River
 - 27 Waquoit Bay
 - 28 Weir River
 - 29 Wellfleet Harbor
 - 30 Weymouth Back River

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tem	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Reverse Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampto
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American barying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beachea	Scituate, Marshfield, Duxbury, Plymouth Wareham and Mattapoisett
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymout Bourne, and Wareham
۰.	Roseate Tern	Endangered	Coastal beaches and the Atlantic Occan	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk '	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

-Eastern cougar and gray wolf are considered extirpated in Massachusetts. -Endangered gray wolves are not known to be present in Massachusetts, but dispersing

individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

7/31/2008

APPENDIX D:

LABORATORY ANALYTICAL DATA – GROUNDWATER

ANALYTICAL REPORT

Lab Number:	L1420386
Client:	McPhail Associates
	2269 Massachusetts Avenue
	Cambridge, MA 02140
ATTN:	Ambrose Donovan
Phone:	(617) 868-1420
Project Name:	111 ELM ST.
Project Number:	5780.9.01
Report Date:	09/10/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09101410:27

 Lab Number:
 L1420386

 Report Date:
 09/10/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1420386-01	B-1 (OW)	WATER	NEWTON, MA	09/05/14 11:00	09/05/14

Project Name:

Project Number:

111 ELM ST.

5780.9.01

Project Number: 5780.9.01

Lab Number: L1420386

Report Date: 09/10/14

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Were results reported for the complete analyte list specified in the selected CAM protocol(s)?

Please note that sample matrix information is located in the Sample Results section of this report.

YES

I

Project Name:111 ELM ST.Project Number:5780.9.01

 Lab Number:
 L1420386

 Report Date:
 09/10/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 111 ELM ST.

 Project Number:
 5780.9.01

 Lab Number:
 L1420386

 Report Date:
 09/10/14

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1420386-01, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00297), as well as the average response factor for acetone, 1,4-dioxane.

The continuing calibration standard, associated with L1420386-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/10/14

ORGANICS

VOLATILES

			Serial_No	:09101410:27
Project Name:	111 ELM ST.		Lab Number:	L1420386
Project Number:	5780.9.01		Report Date:	09/10/14
		SAMPLE RESULTS		
Lab ID:	L1420386-01		Date Collected:	09/05/14 11:00
Client ID:	B-1 (OW)		Date Received:	09/05/14
Sample Location:	NEWTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	97,8260C			
Analytical Date:	09/09/14 15:44			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
rans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

						Serial_No	:09101410:27
Project Name:	111 ELM ST.				Lab Nu		L1420386
Project Number:	5780.9.01				Report	Date:	09/10/14
	0100.0.01	SAMP	LE RESULTS	S			00/10/14
Lab ID: Client ID:	L1420386-01 B-1 (OW)				Date Co Date Re		09/05/14 11:00 09/05/14
Sample Location:	NEWTON, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	nics - Westborough La	ab					
1,3-Dichlorobenzene		ND		ug/l	1.0		1
1,4-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	2.0		1
p/m-Xylene		ND		ug/l	2.0		1
o-Xylene		ND		ug/l	1.0		1
Xylene (Total)		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	,	ND		ug/l	2.0		1
1,2,3-Trichloropropane		ND		ug/l	2.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		12		ug/l	5.0		1
Carbon disulfide		ND		ug/l	2.0		1
2-Butanone		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	2.0		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethan	0	ND		ug/l	1.0		1
Bromobenzene	6	ND		ug/l	2.0		1
n-Butylbenzene		ND		ug/l	2.0		1
sec-Butylbenzene		ND		ug/l	2.0		1
tert-Butylbenzene		ND		ug/l	2.0		1
o-Chlorotoluene		ND		-	2.0		
p-Chlorotoluene		ND		ug/l ug/l	2.0		1
	2222	ND		-	2.0		1
1,2-Dibromo-3-chloropro	μαιισ	ND		ug/l	0.60		1
		ND		ug/l	2.0		1
		ND		ug/l	2.0		1
p-Isopropyltoluene				ug/l			
Naphthalene		ND		ug/l	2.0		1
n-Propylbenzene		ND		ug/l	2.0		1
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1

						Serial_No	:09101410:27
Project Name:	111 ELM ST.				Lab Nu	umber:	L1420386
Project Number:	5780.9.01				Report	Date:	09/10/14
		SAMP	LE RESULTS	5			
Lab ID:	L1420386-01				Date Co	llected:	09/05/14 11:00
Client ID:	B-1 (OW)				Date Re	ceived:	09/05/14
Sample Location:	NEWTON, MA				Field Pre	əp:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	anics - Westborough Lab	1					
Ethyl ether		ND		ug/l	2.0		1
Isopropyl Ether		ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1
		ND		ug/l	2.0		1
Tertiary-Amyl Methyl Eth	er						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	102		70-130	

Project Number: 5780.9.01

 Lab Number:
 L1420386

 Report Date:
 09/10/14

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:09/09/14 06:54Analyst:MM

Parameter	Result	Qualifier L	Jnits	RL	MDL	
MCP Volatile Organics -	Westborough Lab for	sample(s): 0	1 Batc	h: WG7203	12-3	
Methylene chloride	ND		ug/l	2.0		
1,1-Dichloroethane	ND		ug/l	1.0		
Chloroform	ND		ug/l	1.0		
Carbon tetrachloride	ND		ug/l	1.0		
1,2-Dichloropropane	ND		ug/l	1.0		
Dibromochloromethane	ND		ug/l	1.0		
1,1,2-Trichloroethane	ND		ug/l	1.0		
Tetrachloroethene	ND		ug/l	1.0		
Chlorobenzene	ND		ug/l	1.0		
Trichlorofluoromethane	ND		ug/l	2.0		
1,2-Dichloroethane	ND		ug/l	1.0		
1,1,1-Trichloroethane	ND		ug/l	1.0		
Bromodichloromethane	ND		ug/l	1.0		
trans-1,3-Dichloropropene	ND		ug/l	0.50		
cis-1,3-Dichloropropene	ND		ug/l	0.50		
1,3-Dichloropropene, Total	ND		ug/l	0.50		
1,1-Dichloropropene	ND		ug/l	2.0		
Bromoform	ND		ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		
Benzene	ND		ug/l	0.50		
Toluene	ND		ug/l	1.0		
Ethylbenzene	ND		ug/l	1.0		
Chloromethane	ND		ug/l	2.0		
Bromomethane	ND		ug/l	2.0		
Vinyl chloride	ND		ug/l	1.0		
Chloroethane	ND		ug/l	2.0		
1,1-Dichloroethene	ND		ug/l	1.0		
trans-1,2-Dichloroethene	ND		ug/l	1.0		
Trichloroethene	ND		ug/l	1.0		

Project Number: 5780.9.01

 Lab Number:
 L1420386

 Report Date:
 09/10/14

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:09/09/14 06:54Analyst:MM

Parameter	Result	Qualifier I	Jnits	RL	MDL
ICP Volatile Organics - Westh	orough Lab for sa	ample(s): C	1 Batch:	WG720312	-3
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	2.0	
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0	
1,2-Dichloroethene (total)	ND		ug/l	1.0	
Dibromomethane	ND		ug/l	2.0	
1,2,3-Trichloropropane	ND		ug/l	2.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	2.0	
2-Butanone	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	2.0	
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	2.0	
1,2-Dibromoethane	ND		ug/l	2.0	
1,3-Dichloropropane	ND		ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	
Bromobenzene	ND		ug/l	2.0	
n-Butylbenzene	ND		ug/l	2.0	
sec-Butylbenzene	ND		ug/l	2.0	
tert-Butylbenzene	ND		ug/l	2.0	
o-Chlorotoluene	ND		ug/l	2.0	

Project Number: 5780.9.01

Report Date:

Lab Number:

L1420386 09/10/14

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:09/09/14 06:54Analyst:MM

arameter	Result	Qualifier	Unit	s	RL	MDL	
ICP Volatile Organics - Westbo	orough Lab for	sample(s):	01	Batch:	WG72	0312-3	
p-Chlorotoluene	ND		ug/l		2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l		2.0		
Hexachlorobutadiene	ND		ug/l		0.60		
Isopropylbenzene	ND		ug/l		2.0		
p-Isopropyltoluene	ND		ug/l		2.0		
Naphthalene	ND		ug/l		2.0		
n-Propylbenzene	ND		ug/l		2.0		
1,2,3-Trichlorobenzene	ND		ug/l		2.0		
1,2,4-Trichlorobenzene	ND		ug/l		2.0		
1,3,5-Trimethylbenzene	ND		ug/l		2.0		
1,2,4-Trimethylbenzene	ND		ug/l		2.0		
Ethyl ether	ND		ug/l		2.0		
Isopropyl Ether	ND		ug/l		2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l		2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l		2.0		
1,4-Dioxane	ND		ug/l		250		

Curre note			Acceptance Criteria	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	100		70-130	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1420386 Report Date: 09/10/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01 B	atch: WG720312	2-1 WG720312-2			
Methylene chloride	107		112	70-130	5	20	
1,1-Dichloroethane	110		114	70-130	4	20	
Chloroform	107		112	70-130	5	20	
Carbon tetrachloride	86		96	70-130	11	20	
1,2-Dichloropropane	107		108	70-130	1	20	
Dibromochloromethane	87		95	70-130	9	20	
1,1,2-Trichloroethane	101		108	70-130	7	20	
Tetrachloroethene	101		106	70-130	5	20	
Chlorobenzene	104		111	70-130	7	20	
Trichlorofluoromethane	105		111	70-130	6	20	
1,2-Dichloroethane	106		111	70-130	5	20	
1,1,1-Trichloroethane	100		107	70-130	7	20	
Bromodichloromethane	96		102	70-130	6	20	
trans-1,3-Dichloropropene	96		103	70-130	7	20	
cis-1,3-Dichloropropene	98		102	70-130	4	20	
1,1-Dichloropropene	106		111	70-130	5	20	
Bromoform	81		90	70-130	11	20	
1,1,2,2-Tetrachloroethane	108		114	70-130	5	20	
Benzene	106		111	70-130	5	20	
Toluene	105		110	70-130	5	20	
Ethylbenzene	107		113	70-130	5	20	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1420386 Report Date: 09/10/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery .imits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01 Ba	atch: WG720312	2-1 WG720312-2	2			
Chloromethane	86		89	7	0-130	3		20
Bromomethane	94		102	7	0-130	8		20
Vinyl chloride	98		105	7	0-130	7		20
Chloroethane	124		128	7	0-130	3		20
1,1-Dichloroethene	108		115	7	0-130	6		20
trans-1,2-Dichloroethene	107		114	7	0-130	6		20
Trichloroethene	106		111	7	0-130	5		20
1,2-Dichlorobenzene	105		106	7	0-130	1		20
1,3-Dichlorobenzene	106		108	7	0-130	2		20
1,4-Dichlorobenzene	103		106	7	0-130	3		20
Methyl tert butyl ether	105		110	7	0-130	5		20
p/m-Xylene	106		111	7	0-130	5		20
o-Xylene	105		111	7	0-130	6		20
cis-1,2-Dichloroethene	112		117	7	0-130	4		20
Dibromomethane	104		110	7	0-130	6		20
1,2,3-Trichloropropane	105		110	7	0-130	5		20
Styrene	107		112	7	0-130	5		20
Dichlorodifluoromethane	76		82	7	0-130	8		20
Acetone	129		130	7	0-130	1		20
Carbon disulfide	97		105	7	0-130	8		20
2-Butanone	111		111	7	0-130	0		20

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1420386 Report Date: 09/10/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG720312-1 WG720312-2 4-Methyl-2-pentanone 102 102 70-130 0 20 2-Hexanone 105 106 70-130 20 1 Bromochloromethane 102 111 70-130 20 8 Tetrahydrofuran 20 111 119 70-130 7 2,2-Dichloropropane 102 107 70-130 20 5 1.2-Dibromoethane 70-130 20 95 103 8 1,3-Dichloropropane 104 110 70-130 6 20 1,1,1,2-Tetrachloroethane 96 104 70-130 20 8 Bromobenzene 70-130 20 102 106 4 n-Butylbenzene 70-130 20 110 109 1 sec-Butylbenzene 107 110 70-130 20 3 tert-Butylbenzene 105 107 70-130 2 20 o-Chlorotoluene 114 70-130 20 111 3 106 70-130 20 p-Chlorotoluene 111 5 1,2-Dibromo-3-chloropropane 70-130 20 82 97 17 Hexachlorobutadiene 107 70-130 20 107 0 Isopropylbenzene 124 126 70-130 2 20 p-Isopropyltoluene 107 110 70-130 3 20 Naphthalene 70-130 20 80 82 2 n-Propylbenzene 70-130 20 111 115 4 1,2,3-Trichlorobenzene 81 87 70-130 20 7

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1420386 Report Date: 09/10/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01	Batch: WG72031	2-1 WG720	312-2			
1,2,4-Trichlorobenzene	89		92		70-130	3	20	
1,3,5-Trimethylbenzene	107		110		70-130	3	20	
1,2,4-Trimethylbenzene	108		110		70-130	2	20	
Ethyl ether	112		116		70-130	4	20	
Isopropyl Ether	111		118		70-130	6	20	
Ethyl-Tert-Butyl-Ether	103		109		70-130	6	20	
Tertiary-Amyl Methyl Ether	98		102		70-130	4	20	
1,4-Dioxane	103		99		70-130	4	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
	0.4		25		70.400	
1,2-Dichloroethane-d4	94		95		70-130	
Toluene-d8	96		97		70-130	
4-Bromofluorobenzene	104		101		70-130	
Dibromofluoromethane	99		100		70-130	

Serial_N	o:09101410:27
----------	---------------

Lab Number: L1420386 Report Date: 09/10/14

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on:	NA
--	----

Absent

111 ELM ST.

Cooler Information Custody Seal Cooler

Α

Project Name:

Project Number: 5780.9.01

Container Information							
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1420386-01A	Vial HCI preserved	А	N/A	5.1	Y	Absent	MCP-8260-10(14)
L1420386-01B	Vial HCI preserved	А	N/A	5.1	Y	Absent	MCP-8260-10(14)

Serial_No:09101410:27

Project Name: 111 ELM ST.

Project Number: 5780.9.01

Lab Number: L1420386

Report Date: 09/10/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: Data Usability Report

Serial_No:09101410:27

Project Name:	111 ELM ST.	Lab Number:	L1420386
Project Number:	5780.9.01	Report Date:	09/10/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:111 ELM ST.Project Number:5780.9.01

 Lab Number:
 L1420386

 Report Date:
 09/10/14

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

												1	S	erial_N	lo:09101410:27	
Арна	CHAIN OF		РА	ge \ _0	F	Date Re	c'd in La	b:	9/2	5/14		ALI	PHA J	ob #:	L1420386	1
World Class Chemitary		Project Information	on			Repor	t Inform	ation - D	ata De	liveral	oles	Bil	ling In	format	ion	
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project Name:	FIM	S+			x	a em/	AIL			🗆 Sa	ame as	Client ir	nfo PO #:	
Client Informatio		Project Location:	o. to	m, m	\wedge	Regula	atory Re	quireme	ents &	& Pro	oject li	nform	ation	Requir	ements	
	hail Associates	Project #:	30,9.	\sim	F 1	D;XYes D	No MA	MCP Ana	lytical M	ethods	5062	C (Reg	Yes C	MOR C	T RCP Analytical Metho norganics)	ods
Address: 7760	Mass Are.			Falco	onici	🗆 Yes 🎗	≮ No GW	1 Standar	ds (Info	Require	ed for N	/letals	& EPH	with Tai	rgets)	
Camb	ridge, MA	ALPHA Quote #:	Ince 1	$\alpha \alpha$	<u>nenn</u>		No NPI State /Fe						Crit	eria		
Phone: 10()-	868-1420	Turn-Around Tin	ie				/ /	2	~			_/	11			
Email:								RCP /	LI PP13 Tes Only	5						
	· · ·			onfirmed if pre-appro	oved!)	ANALYSIS	\$	LINCP 14 LIRCP 1	Ranges Only	ange	L'Fingerprint	$\left \right $		/ /		T
Additional P	oject Information:	Date Due: 9/13	2/14			7	<u>ран</u>	RCRA	0		inger,		/ /	' /		οĮ
						A \ 85			arget arget	5/ /	ā /				/ <i>Filtration</i>	#
							MCp.	22	5 5 J					/ /	Lab to do	E
						K 8260 [] 624			Rang					[].	Preservation	C 1
ALPHA Lab ID		Colle	ction	Sample	Sampler	SVOC:	METALS: CIMCP	EPH: LRanges CRAS	VPH: LRanges & Targets L Ranges Only L PCD	TPH: DOUant Oc.			//		<u> </u>	
(Lab Use Only)	Sample ID	Date	Time	Matrix	Initials	<u>í í</u>	/ 💐 / :	<u> </u>	\$ 9	/ # /	_/	/ /		-{{	Sample Comments	
20396 21	B-1(0w)	9/5/14	11:00	HZO	NG	X		_						_	2-vials	3
														_		
	Ч. с С															
									-							
	······												-			
															,	
				<u> </u>				-			<u> </u>					
	· · · · ·															
								+		$\left - \right $				_	~	+-
							+				<u> </u>					
																+-
Container Type P= Plastic A= Amber glass	Preservative A≕ None B≔ HCl	· .	· -		ner Type	N		·							· · · · · · · · · · · · · · · · · · ·	
V= Vial G= Glass B= Bacteria cup	$D = H_{2}SO_{4}$ $E = N_{2}OH$				servative	B							<u> </u>			 2 3
C= Cube C= Other E≈ Encore	F= MeOH G= NaHSO4	Relinquished By:		Date/	Time	000	Rece	eived By:		91	Date	e/Time	<u></u>		bles submitted are subject	ect to
D= BOD Bottle	$H = Na_2S_2O_3$ $I = Ascorbic Åcid$ $J = NH_4CI$ $K = Zn Acetate$	and AA		25-14	114		Ĕ		at		9/5	FIL			Ferms and Conditions. arse side.	
															01-01 (rev, 12-Mar-2012)	

.

and the second second

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1420386

Instrument ID: Jack.i	Calibration Date: 09-SEP-2014 Time: 05:17
Lab File ID: 0909A01	Init. Calib. Date(s): 03-AUG-2 03-AUG-2
Sample No: 8260 CCAL	Init. Calib. Times : 10:51 15:43

Compound	RRF	RRF	MIN RRF	%D	MAX %D
dichlorodifluoromethane chloromethane bromomethane chloroethane trichlorofluoromethane ethyl ether 1,1,-dichloroethene carbon disulfide freon-113 iodomethane acrolein methylene chloride acetone trans-1,2-dichloroethene methyl acetate methyl tert butyl ether tert butyl alcohol Diisopropyl Ether 1,1-dichloroethane acrylonitrile	.66841 1.0074 .81524 .34785 .39941 .81598 .25173 .52186 1.6481 .59423 .87469 .07267 .58757 .09353 .58845 .28304 1.1953 .03317 2.4301 1.2108 .15032 .467878 2.00381 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2442 .91063 1.2841 .41394 .90594 .1261	51083 86696 8014 32666 49701 85956 28249 5612 1.5979 64001 29577 08503 62787 12034 63006 32854 1.2541 03139 2.7074 1.3276 16856 46788 2.0637 1.2874 .71043 92471 1.5177 .30875 1.1169 .73861 .14288 41188 .949	$\begin{array}{c} .1\\ .1\\ .1\\ .05\\ .05\\ .05\\ .05\\ .05\\ .05\\ .05\\ .05$	$\begin{array}{c} -24\\ -14\\ -2\\ -6\\ 24\\ 5\\ 12\\ 8\\ -3\\ -66\\ 17\\ 29\\ 7\\ 16\\ 5\\ -5\\ 11\\ 10\\ 2\\ 3\\ 3\\ 12\\ 2\\ 3\\ 3\\ 7\\ -14\\ 11\\ 0\\ 0\\ 6\\ 11\\ 6\\ -2\end{array}$	20 F

FORM VII MCP-8260-10

- .

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1420386

Instrument ID: Jack.i	Calibration Date: 09-SEP-2014 T	ime: 05:17
Lab File ID: 0909A01	<pre>Init. Calib. Date(s): 03-AUG-2</pre>	03-AUG-2
Sample No: 8260 CCAL	Init. Calib. Times : 10:51	15:43

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
=======================================		======			====	
methyl cyclohexane	1.2408	1.3167			30	
trichloroethene	.64419				20	
dibromomethane1,2-dichloropropane	.2963	.30772			20	
1,2-dichloropropane	.84958		.1	7	20	
bromodichloromethane	.58885	.56546	.2	-4	20	
1,4-dioxane	.00348		.05		20	F
1,4-dioxane 2-chloroethylvinyl ether	.3551	.32966	.05		20	
cis-1,3-dichloropropene	.3551	.9911	.2	-2	20	
toluene	2.0706		.4	5	20	
toluenetetrachloroethene	.98952	.99915	.2	1	20	
4-methyl-2-pentanone	1.15978	.16223		2	20	
trans-1,3-dichloropropene	.95062	.91561	.1	-4	20	
1,1,2-trichloroethane	.44412	.44917	.1	1	20	
ethyl-methacrylate	.70765	.68865	.01	-3	30	
chlorodibromomethane	.67641	.59099	.1	-13	20	
1,3-dichloropropane	.93244	.97062	.05	4	20	
1,2-dibromoethane	.54529	.52033	.1	-5	20	
2-hexanone	.31922	.33463	.1	5	20	
chlorobenzene	2.3048		.5	4	20	
ethyl benzene	3.9654	4.2469			20	
1,1,1,2-tetrachloroethane	.78942	.75995	.05	-4	20	
p/m xylene	1.5882		.1	6	20	
o xylene	1.5283	1.6093	.3	5	20	
lbromotorm	.72678	.59158	.1	-19	20	1
styreneisopropylbenzene	2.4262	2.5890	.3	7	20	1
isopropylbenzene	7.9361	9.8511	.1	24	20	F
bromobenzene	1.8553	1.8847		2	20	1
1,4-dichlorobutane	1.9729	2.1423	.01	9	30	1
n-propylbenzene	8.7262		.05	11	20	
1,1,2,2,-tetrachloroethane	.98443		.3	8	20	
4-ethyltoluene	7.7565	8.5246	.05	10	20	
2-chlorotoluene	5.5913		.05	11	20	
1,2,3-trichloropropane		.88544	.05	5	20	
1,3,5-trimethybenzene	6.2558	6.7166		7	20	
trans-1,4-dichloro-2-butene	.33143	.26331	.05	-21	20	F
4-chorotoluene	5.0967		.05	6	20	-
tert-butylbenzene		5.965	.05	5	20	
1,2,4-trimethylbenzene	6.1973		.05	8	20	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1420386

Instrument ID: Jack.i	Calibration Date: 09-SEP-2014 Time: 05:1	7
Lab File ID: 0909A01	Init. Calib. Date(s): 03-AUG-2 03-AUG-2	
Sample No: 8260 CCAL	Init. Calib. Times : 10:51 15:43	

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
				~D ======	∿D ====	
		8.6949	.01	====== 7	20	
sec-butylbenzene		7.3601			20	
p-isopropyltoluene	0.8094	7.30UL	.05	7		
1,3-dichlorobenzene	3.4533	3.6779 3.5342	.6		20	
1,4-dichlorobenzene	3.4256	3.5342	.5	3	20	
p-diethylbenzene		4.1906	.05	3	20	
n-butylbenzene		5.9896	.05	10	20	
1,2-dichlorobenzene	3.0361	3.1826	.4	5	20	
1,2,4,5-tetramethylbenzene		5.7468	.05	3	20	
1,2-dibromo-3-chloropropane		.13103	.05	-18	20	
1,3,5-trichlorobenzene	.9941	.95414	.05	-4	20	
1,2,4-trichlorobenzene	$ \begin{array}{ } .9941 \\ 1.6306 \\ 73128 \end{array} $	1.4574	.2	-11	20	
hexachlorobutadiene	• / J I Z O	. 10205	.05	7	20	
naphthalene 1,2,3-trichlorobenzene		2.4720	.05	-20	20	F
1,2,3-trichlorobenzene	1.3046		.05	-19	20	
	======		=====	====	====	
dibromofluoromethane		.24258	.05	-1	20	
1,2-dichloroethane-d4	.27173	.25514	.05	-6	20	
toluene-d8		1.2352	.01	-4	20	
4-bromofluorobenzene	.91741	.95385	.05	4	20	
	1					
	·					
	·					
	I	I		I	I ———	I

FORM VII MCP-8260-10

APPENDIX E:

ENSOL'S GROUNDWATER RESULTS SUMMARY TABLE

ENSOL'S LABORATORY TEST DATA REPORT

Elm & Border Sts., W. Newton, MA May 2006, Page 11

ENSOL, Inc.

4

collected from well MW-2 or MW-3. Groundwater collected from well MW-1 was reported to contain low levels of compounds associated with a mixture of oil, gasoline, and cleaning solvent. However, all of the reported concentrations are below the applicable regulatory release notification and cleanup criteria, and hence the levels do not represent a reportable release and notification to the DEP is not required.

Compound	MW-1	MW-2	MW-3	MCP RCGW-2
A				
VPH compounds:				
C5-C8 VPH aliphatics	390	<20	<20	1,000
C9-C12 VPH aliphatics	200	<20	<20	1,000
C9-C10 VPH aromatics	2,200	<20	<20	4,000
ethylbenzene	60	<5	<5	4,000
xylenes	80	<5	<5	500
all other VPH VOCs	ND	ND	ND	
EPH compounds:		Connect Frank Constanting Constanting		
C9-C18 EPH aliphatics	<530	na	na	1,000
C19-C36 EPH aliphatics	<530	па	na	20,000
C11-C22 EPH aromatics	570	na	na	30,000
naphthalene	0.6	na	na	1,000
2-methylnaphthalene	32	na	na	3,000
other PAHs	trace	na	na	>>10
chlorinated VOCs:				
cis-1,2-dichloroethene	10	<5	<5	100
tetrachloroethene	36	<5	<5	50
all other VOCs	ND	ND	ND	

Table 3: Summary of Groundwater Chemistry, ug/L

ENSOL - Environmental Solutions for Business

Groundwater Analytical, Inc. P.O. Box 1200 228 Main Street Buzzards Bay, MA 02532

Telephone (508) 759-4441 FAX (508) 759-4475

May 15, 2006

Mr. David A. Wright ENSOL, Inc. 100 Treble Cove Road Suite 5 Billerica, MA 01862

LABORATORY REPORT

Project:	Elm/2241
Lab ID:	94446
Received:	05-08-06

Dear David:

Enclosed are the analytical results for the above referenced project. The project was processed for Priority turnaround.

This letter authorizes the release of the analytical results, and should be considered a part of this report. This report contains a sample receipt report detailing the samples received, a project narrative indicating project changes and non-conformances, a quality control report, and a statement of our state certifications.

The analytical results contained in this report meet all applicable NELAC standards, except as may be specifically noted, or described in the project narrative. This report may only be used or reproduced in its entirety.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Should you have any questions concerning this report, please do not hesitate to contact me.

Sincerely,

Eric H. Jensen Operations Manager EHJ/kh Enclosures

Page 1 of 32

Sample Receipt Report

Project: Elm/2241 Client: ENSOL, Inc. Lab ID: 94446 Delivery: GWA Courier Airbill: n/a Lab Receipt: 05-08-06

Temperature: 2.0'C Chain of Custody: Present Custody Seal(s): n/a

Lab ID	Field ID		Matrix	Sampled	Method	Same and the state	Notes	
94446-1	MW-1		Aqueous	5/8/06 0:00	EPA 8260B V	260B Volatile Halocarbons	the second se	
Con ID	Container Vendor	Vendor	QC Lot	Preserv	QC Lot	Prep		
C774367	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a	
C774366	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a	
C774365	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a	

Lab ID	Field ID		Matrix	Sampled	Method				Notes
94446-2	MW-2		Aqueous 5/8/06 0:00 EPA 8260B Volatile Halocarbons						
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C723192	40 mL VOA Vial	Proline	BX19927	HCI	- R-4601F	02-13-06	02-17-06		
C774369	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a		
C774368	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a		

Lab ID	Field ID		Matrix	Sampled	Method			Notes
94446-3	MW-3		Aqueous	s 5/8/06 0:00 EPA 8260B Volatile Halocarbons	:00 EPA 8260B Volatile Halocarbons			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C723193	40 mL VOA Vial	Proline	BX19927	HCI	R-4601F	02-13-06	02-17-06	
C774381	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a	
C774380	40 mL VOA Vial	Proline	BX19715	HCI	R-4601F	01-27-06	n/a	

Lab ID	Field ID		Matrix	Sampled	Method			1. 1. T. A.	Notes	
94446-4	B1A-S4		Soil	5/8/06 0:00		EPA 6010B Pb Total MA DEP EPH with PAHs				
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship			
C760239	250 mL Glass	n/a	n/a	None	n/a	n/a	n/a			

Lab ID	Field ID		Matrix	Sampled	Method			an in Alla	Notes
94446-5	B4-S4		Soil	5/8/06 0:00	EPA 6010B Pb Total				
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C760240	250 mL Glass	n/a	n/a	None	n/a	n/a	n/a		

Lab ID	Field ID	Market Th	Matrix	Sampled	Method		Notes	atal a		
94446-6	B1A-S4		Soil	5/8/06 0:00	MA DEP VPH	with Targets				
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship			
C776603	40 mL VOA Vial	Proline	BX19597	Methanol	R-4727W	01-16-06	02-08-06			

Lab ID	Field ID		Matrix	Sampled	Method			Notes
94446-7	B4-54	Soil	5/8/06 0:00	MA DEP VPH	with Targets			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C776580	40 mL VOA Vial	Proline	BX19597	Methanol	R-4727W	01-16-06	02-08-06	
								with the part of the second
Lab ID	Field ID		Matrix	Sampled	Method	1 4 4 4	1 35 115 11 114	Notes
94446-8	B5-S4		Soil	5/8/06 0:00	MA DEP VPH	with Targets		
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C741509	40 mL VOA Vial	Proline	BX19597	Methanol	R-4727W	01-16-06	02-08-06	
C760238	250 mL Glass	n/a	n/a	None	n/a	n/a	n/a	

Lab ID	Field ID		Matrix	Sampled	Method			Notes
94446-9	MW-1		Aqueous	Aqueous 5/8/06 0:00		with PAHs by 8		
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C727486	1 L Amber Glass	Proline	BX20829	H2SO4	R-4845B	04-12-06	n/a	

Page 2 of 32

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

Sample Receipt Report (Continued)

Project: Elm/2241 Client: ENSOL, Inc. Lab ID: 94446 Delivery: GWA Courier Airbill: n/a Lab Receipt: 05-08-06

Temperature: 2.0'C Chain of Custody; Present Custody Seal(s): n/a

Lab ID	Field ID		Matrix	Sampled	Method	- an the seal		Notes
94446-10	MW-1	Aqueous	5/8/06 0:00	MA DEP VPH	with Targets			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C735799	40 mL VOA Vial	n/a	n/a	HCI	n/a	n/a	n/a	
Lab ID	Field ID	12.15	Matrix	Sampled	Method	Altan and a		Notes
94446-11	MW-2		Aqueous	5/8/06 0:00	MA DEP VPH	with Targets		
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C735797	40 mL VOA Vial	n/a	n/a	HCI	n/a	n/a	n/a	
Lab ID	Field ID		Matrix	Sampled	Method			Notes
94446-12	MW-3		Aqueous	5/8/06 0:00	MA DEP VPH	with Targets		
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship	
C735798	40 mL VOA Vial	n/a	n/a	HCI	n/a	n/a	n/a	

Page 3 of 32

Data Certification

lient:	ent: ENSOL, Inc.						Lab ID: Received:	94446 05-08-06 18:35				
		19 - 19 - 19 19 - 19 - 19	M	A DEP Compend	ium o	f Analytical Met	hods	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1	- 1. A.Y		
Proje	ect Location:	n/a						A DEP RTN:		n/a		
This	Form provides co	ertifications for th	e foll	owing data set:								
MAI	8021B: DEP VPH: DEP EPH: 6010B:	94446-01,-02,-0 94446-06,-07,-0 94446-04,-09 94446-04,-05		0,-11,-12								
Same	ole Matrices:	Groundwater	(X)	Soil/Sediment	(X)	Drinking Water	()	Other	()			
	SW-846	8260B	()	8151A	()	8330	()	6010B	(X)	7470A/1A ()		
	ods Used	8270C		8081A	()	VPH	(X)	6020	()	9012A ² ()		
As spe	cified in MA DEP	8082	()	8021B	(X)	EPH	(X)	7000 S ³	()	Other ()		
Compe	endium of Analytical	1. List Release Tracking Number (RTN), if known.										
Metho	ds.	2. SW-846 Method 9	the second second	and the second se	the second second second	the second s	ilable Cy	anide (PAC) Meth	hod			
	all that apply)	3. S - SW-846 Metho		the second s					(注意)			
	An affirmative res	sponse to questio	ns A,	B, C and D is re	quired	for "Presumptiv	ve Certa	ainty" status.		-		
A.	A. Were all samples received by the laboratory in a condition consistent with that described on the Chain-of-Custody documentation for the data set?									Yes		
В.	3. Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?									Yes		
C.	C. Does the analytical data included in this report meet all the requirements for "Presumptive Certainty," as described in Section 2.0 of the MA DEP document CAM VII A, Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data ?									Yes		
D.	<u>VPH and EPH methods only</u> : Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?									Yes		
1	A response to que	estions E and F be	low	is required for "P	resum	ptive Certainty"	status.	l,				
E.	E. Were all QC performance standards and recommendations for the specified methods achieved?								No			
F.	Were results for all analyte-list compounds/elements for the specified method(s) reported?									No		
A	II No answers a	re addressed in tl	ne at	tached Project N	arrati	ve.		ls				
inqui	ry of those resp	attest under the consible for obt to the best of m	ainir	ng the informati	ion, tl	ne material con	tained	I in this	onal			
Signa		12/	7			Position: C	Operatio	ons Manager				
10 million (1997)	d Name:	Eric H. Jenseh		and the second division of the second divisio	. 61	Date: 0	5-16-0	-				

Page 4 of 31

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID: Project: Client:	B1A-S4 Elm/2241 ENSOL, Inc.				Matrix: Container: Preservation:	Soil 250 mL Glass Cool		
Laboratory ID: Sampled: Received:	94446-04 05-08-06 00:00 05-08-06 18:35				QC Batch ID: Instrument ID: Sample Weight:	EP-2310-M GC-9 Agile 16 g		
Extracted: Analyzed (AL): Analyzed (AR): Analyst:	05-10-06 20:00 05-13-06 00:04 05-13-06 00:48 CMM				Final Volume: % Solids: Aliphatic Dilution Facto Aromatic Dilution Facto	-		
EPH Ranges	· · · · · · · · · · · · · · · · · · ·		Con	centration	Notes	Units	Reporting Limit	
the second se	liphatic Hydrocarbons [†]	1000	Con	BRL	Hotes	mg/Kg	31	
	Aliphatic Hydrocarbons [†]			BRL		mg/Kg	31	
	Aromatic Hydrocarbons + •			BRL		mg/Kg	31	
	11 to n-C22 Aromatic Hydr	ocarbons [†]	1	BRL		mg/Kg	31	
CAS Number	Analyte		Con	centration	Notes	Units	Reporting Limit	
91-20-3	Naphthalene	12 122 124	Con	BRL	indices	mg/Kg	0.52	
91-57-6	2-Methylnaphthalene			BRL		mg/Kg	0.52	
85-01-8	Phenanthrene		-	BRL		mg/Kg	0.52	
83-32-9	Acenaphthene			BRL		mg/Kg	0.52	
208-96-8	Acenaphthylene			BRL		mg/Kg	0.52	
86-73-7	Fluorene			BRL	mg/Kg	0.52		
120-12-7	Anthracene			BRL	mg/Kg	0.52		
206-44-0	Fluoranthene			BRL	mg/Kg	0.52		
129-00-0	Pyrene			BRL		mg/Kg	0.52	
56-55-3	Benzo[a]anthracene			BRL		mg/Kg	0.52	
218-01-9	Chrysene			BRL		mg/Kg	0.52	
205-99-2	Benzo[b]fluoranthene			BRL		mg/Kg	0.52	
207-08-9	Benzo[k]fluoranthene			BRL		mg/Kg	0.52	
50-32-8	Benzo[a]pyrene			BRL		mg/Kg	0.52	
193-39-5	Indeno[1,2,3-c,d]pyrene			BRL	A company of the second second second	mg/Kg	0.52	
53-70-3	Dibenzo[a,h]anthracene			BRL		mg/Kg	0.52	
191-24-2	Benzo[g,h,i]perylene		1	BRL		mg/Kg	0.52	
QC Surrogate Co	ompound	Spiked	Measured	Recover	y	Q	C Limits	
Fractionation:	2-Fluorobiphenyl	2.8	2.5	89 %			- 140 %	
	2-Bromonaphthalene	2.8	2.3	83 %		- 140 %		
Extraction:	Chloro-octadecane	2.8	2.4	85 %	and the second s	- 140 %		
	ortho-Terphenyl	2.8	2.5	88 %		40	- 140 %	
and a state			QA/QC Cert	ification			Carl and Task	
. Were all perform	C procedures required by the m nance/acceptance standards for icant modifications made to the	the required (QA/QC procedu				Yes Yes No	

and quality control report are considered part of this data report.

Method Reference:

ence: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

Report Notations:

Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis. BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.
 Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Page 5 of 32

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID:	MW-1		Matrix:	Aqueous	
Project:	Elm/2241		Container:	1 L Amber	Glass
Client:	ENSOL, Inc.		Preservation:	H2SO4/Co	ol
Laboratory ID:	94446-09		QC Batch ID:	EP-1732-F	
Sampled:	05-08-06 00:00		Instrument ID:	GC-9 Agile	nt 6890
Received:	05-08-06 18:35		Sample Volume:	950 mL	
Extracted:	05-11-06 10:00		Final Volume:	1 mL	
Analyzed (AL):	05-15-06 18:47		Aliphatic Dilution Facto	r. 1	
Analyzed (AR):	05-15-06 19:31		Aromatic Dilution Factor	r. 1	
Analyst:	СММ				
EPH Ranges		Concentration	Notes	Units	Reporting Lin
n-C9 to n-C18 /	Aliphatic Hydrocarbons [†]	BRL		ug/L	530
n-C19 to n-C36	Aliphatic Hydrocarbons [†]	BRL		ug/L	530
n-C11 to n-C22	Aromatic Hydrocarbons + 0	570		ug/L	160
Unadjusted n-C	11 to n-C22 Aromatic Hydrocarbons ⁺	640		ug/L	160

QC Surrogate Co	QC Surrogate Compound		Measured	Recovery	QC Limits
Fractionation:	2-Fluorobiphenyl	42	39	92 %	40 - 140 %
	2-Bromonaphthalene	42	38	91 %	40 - 140 %
Extraction:	Chloro-octadecane	42	27	65 %	40 - 140 %
	ortho-Terphenyl	42	24	58 %	40 - 140 %

1. Were all QA/QC procedures required by the method followed?

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

3. Were any significant modifications made to the method, as specified in Section 11.3?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Sample extraction performed by separatory funnel technique.

Report Notations:

Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be BRL reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

t Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range. 0

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Page 6 of 32

mit

Yes

Yes

No

EPA Method 8270C (Modified) MA DEP EPH Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

Field ID:	MW-1	Matrix:	Aqueous
Project:	Elm/2241	Container:	1 L Amber Glass
Client:	ENSOL, Inc.	Preservation:	H25O4
Laboratory ID:	94446-09	QC Batch ID:	EP-1732-F
Sampled:	05-08-06 00:00	Instrument ID:	MS-6 HP 6890
Received:	05-08-06 18:35	Sample Volume:	950 mL
Extracted:	05-11-06 10:00	Final Volume:	1 mL
Analyzed:	05-16-06 09:06	Dilution Factor:	2
Analyst:	мјв		

CAS Number	Analyte	Co	ncentration	Notes	Units	Reporting Limit
91-20-3	Naphthalene		0.6	j	ug/L	1.1
91-57-6	2-Methylnaphthalene		32	an a	ug/L	1.1
208-96-8	Acenaphthylene		B	RL	ug/L	1.1
83-32-9	Acenaphthene		2.1		ug/L	1.1
86-73-7	Fluorene		3.1		ug/L	1.1
85-01-8	Phenanthrene		3.2		ug/L	1.1
120-12-7	Anthracene		BI	RL	ug/L	1.1
206-44-0	Fluoranthene		0.7	j	ug/L	1.1
129-00-0	Pyrene		0.7	j	ug/L	1.1
56-55-3	Benzo[a]anthracene		0.2		ug/L	0.2
218-01-9	Chrysene		0.1	j	ug/L	0.2
205-99-2	Benzo[b]fluoranthene		0.1	j	ug/L	0.2
207-08-9	Benzo[k]fluoranthene		BI	RL	ug/L	0.2
50-32-8	Benzo[a]pyrene		BI	RL	ug/L	0.2
193-39-5	Indeno[1,2,3-c,d]pyrene		0.2		ug/L	0.2
53-70-3	Dibenzo[a,h]anthracene		BF	RL	ug/L	0.2
191-24-2	Benzo[g,h,i]perylene		BF	RL	ug/L	0.2
QC Surrogate C	ompound Spi	ked Measure	d Rec	overy	Q	C Limits
ortho-Terpheny	1	12 19	45 %		40	- 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996).

Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method.

Method protocol modified to include acidification and the surrogate compound in accordance

with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

Sample extraction performed by EPA Method 3510C.

Report Notations:

j

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Indicates an estimated value detected below the reporting limit for the analyte.

Page 7 of 32

-

EPA Method 8260B Volatile Organics by GC/MS

Field ID: Project: Client:	MW-1 Elm/2241 ENSOL, Inc.				Matrix: Container: Preservation:	Aqueous 40 mL VOA HCl/Cool	Vial
Laboratory ID: Sampled: Received: Analyzed: Analyst:	94446-01 05-08-06 00:00 05-08-06 18:35 05-13-06 03:54 EMC		÷.,		QC Batch ID: Instrument ID: Sample Volume: Dilution Factor:	VM4-3538-1 MS-4 HP 68 25 mL 10	
CAS Number	Analyte		Conc	entration	Notes	Units	Reporting Limit
75-71-8	Dichlorodifluoromethane			BRL	and the second state of th	ug/L	5
74-87-3	Chloromethane			BRL		ug/L	5
75-01-4	Vinyl Chloride			BRL		ug/L	5
74-83-9	Bromomethane			BRL		ug/L	5
75-00-3	Chloroethane			BRL	tok and a star	ug/L	5
75-69-4	Trichlorofluoromethane			BRL		ug/L	5
75-35-4	1,1-Dichloroethene			BRL		ug/L	5
75-09-2	Methylene Chloride			BRL		ug/L	5
156-60-5	trans -1,2-Dichloroethene			BRL		ug/L	5
75-34-3	1,1-Dichloroethane			BRL		ug/L	5
156-59-2	cis-1,2-Dichloroethene			10		ug/L	5
67-66-3	Chloroform			BRL		ug/L	5
107-06-2	1,2-Dichloroethane			BRL		ug/L	5
71-55-6	1,1,1-Trichloroethane			BRL		ug/L	5
56-23-5	Carbon Tetrachloride			BRL		ug/L	5
78-87-5	1,2-Dichloropropane			BRL		ug/L	5
79-01-6	Trichloroethene			BRL		ug/L	5
75-27-4	Bromodichloromethane		-	BRL		ug/L	5
10061-01-5	cis-1,3-Dichloropropene			BRL		ug/L	5
10061-02-6	trans-1,3-Dichloroproper	e		BRL		ug/L	5
79-00-5	1,1,2-Trichloroethane			BRL		ug/L	5
124-48-1	Dibromochloromethane			BRL		ug/L	5
127-18-4	Tetrachloroethene			36		ug/L	5
108-90-7	Chlorobenzene			BRL		ug/L	5
75-25-2	Bromoform			BRL		ug/L	5
79-34-5	1,1,2,2-Tetrachloroethane			BRL		ug/L	5
541-73-1	1,3-Dichlorobenzene		1	BRL		ug/L	5
106-46-7	1,4-Dichlorobenzene			BRL		ug/L	5
95-50-1	1,2-Dichlorobenzene			BRL		ug/L	5
QC Surrogate C	Compound	Spiked	Measured	Recover	y	Q	Limits
Dibromofluoron	nethane	10	8.8	88 %			- 130 %
1,2-Dichloroeth	ane-d ₄	10	8.7	87 %		70	- 130 %
Toluene-d ₈		10	8.9	89 %		70 -	- 130 %
4-Bromofluorob	enzene	10	8.7	87 %		70 -	130 %

Method Reference:

e: Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Sample preparation performed by EPA Method 5030B.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

EPA Method 8260B Volatile Organics by GC/MS

Field ID: Project: Client:	MW-2 Elm/2241 ENSOL, Inc.				Matrix: Container: Preservation:	Aqueous 40 mL VOA HCl/Cool	Vial
Laboratory ID: Sampled: Received: Analyzed: Analyst:	94446-02 05-08-06 00:00 05-08-06 18:35 05-13-06 04:22 EMC			QC Batch ID: Instrument ID: Sample Volume: Dilution Factor:	VM4-3538-W MS-4 HP 6890 25 mL 1		
CAS Number	Analyte	科学校	Conce	ntration	Notes	Units	Reporting Limit
75-71-8	Dichlorodifluoromethane	•		BRL		ug/L	0.5
74-87-3	Chloromethane	and the second second		BRL		ug/L	0.5
75-01-4	Vinyl Chloride			BRL		ug/L	0.5
74-83-9	Bromomethane			BRL		ug/L	0.5
75-00-3	Chloroethane			BRL		ug/L	0.5
75-69-4	Trichlorofluoromethane			BRL		ug/L	0.5
75-35-4	1,1-Dichloroethene			BRL		ug/L	0.5
75-09-2	Methylene Chloride			BRL		ug/L	0.5
156-60-5	trans-1,2-Dichloroethene	:		BRL	a second second second	ug/L	0.5
75-34-3	1,1-Dichloroethane			BRL			0.5
156-59-2	cis-1,2-Dichloroethene			BRL		ug/L ug/L	0.5
67-66-3	Chloroform			BRL		ug/L	0.5
107-06-2	1,2-Dichloroethane			BRL		ug/L	0.5
71-55-6	1,1,1-Trichloroethane		BRL			ug/L	0.5
56-23-5	Carbon Tetrachloride		BRL			ug/L	0.5
78-87-5	1,2-Dichloropropane			BRL	ug	ug/L	0.5
79-01-6	Trichloroethene			BRL		ug/L	0.5
75-27-4	Bromodichloromethane			BRL		ug/L	0.5
10061-01-5	cis-1,3-Dichloropropene			BRL		ug/L	0.5
10061-02-6	trans -1,3-Dichloropropen	е		BRL		ug/L	0.5
79-00-5	1,1,2-Trichloroethane			BRL		ug/L	0.5
124-48-1	Dibromochloromethane			BRL	a second second	ug/L	0.5
127-18-4	Tetrachloroethene			BRL		ug/L	0.5
108-90-7	Chlorobenzene			BRL		ug/L	0.5
75-25-2	Bromoform			BRL		ug/L	0.5
79-34-5	1,1,2,2-Tetrachloroethane			BRL		ug/L	0.5
541-73-1	1,3-Dichlorobenzene		BRL			ug/L	0.5
106-46-7	1,4-Dichlorobenzene			BRL		ug/L	0.5
95-50-1	1,2-Dichlorobenzene			BRL		ug/L	0.5
QC Surrogate C	ompound	Spiked	Measured	Recove	ry	QC	Limits
Dibromofluoron		10	8.8	88 %	the literature the literature	and the second se	130 %
1,2-Dichloroeth		10	8.9	89 %			130 %
Toluene-d ₈		10	8.5	85 %			130 %
4-Bromofluorob	enzene	10	8.2	82 %		70 -	130 %

Method Reference: Te

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Sample preparation performed by EPA Method 5030B.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

.

EPA Method 8260B Volatile Organics by GC/MS

Field ID:	MW-3	Matrix:	Aqueous
Project:	Elm/2241	Container:	40 mL VOA Vial
Client:	ENSOL, Inc.	Preservation:	HCI/Cool
Laboratory ID:	94446-03	QC Batch ID:	VM4-3538-W
Sampled:	05-08-06 00:00	Instrument ID:	MS-4 HP 6890
Received:	05-08-06 18:35	Sample Volume:	25 mL
Analyzed:	05-13-06 04:52	Dilution Factor:	1
Analyst:	EMC		

CAS Number	Analyte	H	Concer	ntration	Notes	Units	Reporting Limit
75-71-8	Dichlorodifluoromethane			BR	L	ug/L	0.5
74-87-3	Chloromethane		BRL		ug/L	0.5	
75-01-4	Vinyl Chloride			BR	L	ug/L	0.5
74-83-9	Bromomethane			BRI	L	ug/L	0.5
75-00-3	Chloroethane			BRI	L	ug/L	0.5
75-69-4	Trichlorofluoromethane			BRI	L	ug/L	0.5
75-35-4	1,1-Dichloroethene			BRI	L	ug/L	0.5
75-09-2	Methylene Chloride			BRI	L	ug/L	0.5
156-60-5	trans -1,2-Dichloroethene			BRI	-	ug/L	0.5
75-34-3	1,1-Dichloroethane			BRI	_	ug/L	0.5
156-59-2	cis-1,2-Dichloroethene			BRI	_	ug/L	0.5
67-66-3	Chloroform			BRI	_	ug/L	0.5
107-06-2	1,2-Dichloroethane			BRI	-	ug/L	0.5
71-55-6	1,1,1-Trichloroethane		BRL			ug/L	0.5
56-23-5	Carbon Tetrachloride			BRL		ug/L	0.5
78-87-5	1,2-Dichloropropane			BRL	-	ug/L	0.5
79-01-6	Trichloroethene			BRL		ug/L	0.5
75-27-4	Bromodichloromethane			BRL		ug/L	0.5
10061-01-5	cis-1,3-Dichloropropene		BRL		ug/L	0.5	
10061-02-6	trans-1,3-Dichloropropene		BRL		ug/L	0.5	
79-00-5	1,1,2-Trichloroethane		BRL		ug/L	0.5	
124-48-1	Dibromochloromethane			BRL		ug/L	0.5
127-18-4	Tetrachloroethene			BRL		ug/L	0.5
108-90-7	Chlorobenzene			BRL		ug/L	0.5
75-25-2	Bromoform			BRL		ug/L	0.5
79-34-5	1,1,2,2-Tetrachloroethane			BRL		ug/L	0.5
541-73-1	1,3-Dichlorobenzene			BRL		ug/L	0.5
106-46-7	1,4-Dichlorobenzene			BRL		ug/L	0.5
95-50-1	1,2-Dichlorobenzene			BRL		ug/L	0.5
QC Surrogate Co	ompound Sp	iked	Measured	Measured Recovery		QC	Limits
Dibromofluorom	ethane	10	8.9	89 %		70 -	130 %
1,2-Dichloroetha	ne-d ₄	10	9.3	93 %		70 -	130 %
Toluene-d ₈		10	8.5	and the second se			130 %
-Bromofluorobe	nzene	10	8.5	The second se		70 -	130 %

Method Reference: Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996).

Sample preparation performed by EPA Method 5030B.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Trace Metals

Field ID: Project: Client:	B1A-S4 Elm/2241 ENSOL, Inc.				Matrix: Container: Preservation	:	Soil 250 mL Glass Cool	
Laboratory ID: Sampled: Received:	94446-04 05-08-06 00:00 05-08-06 18:35				Percent Solid	ds:	91	
Analysis Method EPA 6010B ¹	<u>QC Batch ID</u> MB-0860-S	Prep Method EPA 3050B	Prepare 05-11-06		Sample Weigh 0.5 g	1	Instrument ID ICP-1 PE 3000	<u>Analyst</u> MFP
CAS Number	Analyte	Concentration	Notes	Units	Reporting Limit	DF	Analyzed	Method
7439-92-1	Lead, Total	BRL		mg/Kg	11	1	05-11-06 15:24	EPA 6010B1

Method Reference: Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Results are reported on a dry weight basis.

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

DF Dilution Factor.

Report Notations:

Page 11 of 32

Trace Metals

Field ID: Project: Client:	B4-S4 Elm/2241 ENSOL, Inc.				Matrix: Container: Preservation:		Soil 250 mL Glass Cool	
Laboratory ID: Sampled: Received:	94446-05 05-08-06 00:00 05-08-06 18:35				Percent Solic	ds:	95	
Analysis Method EPA 6010B ¹	OC Batch ID MB-0860-S	Prep Method EPA 3050B	Prepare 05-11-00		<u>Sample Weigh</u> 0.5 g	t	Instrument ID ICP-1 PE 3000	Analyst MFP
CAS Number	Analyte	Concentration	Notes	Units	Reporting Limit	DF	Analyzed	Method
7439-92-1	Lead, Total	39		mg/Kg	10	1	05-11-06 15:09	EPA 6010B1

Method Reference: Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Results are reported on a dry weight basis.

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

DF Dilution Factor.

Report Notations:

Page 12 of 32

-

Field ID:	B1A-S4	Matrix:	Soil
Project:	Elm/2241	Container:	40 mL VOA Vial
Client:	ENSOL, Inc.	Preservation:	Methanol/Cool
Laboratory ID:	94446-06	QC Batch ID:	VG3-2142-E
Sampled:	05-08-06 00:00	Instrument ID:	GC-3 HP 5890
Received:	05-08-06 18:35	Sample Weight:	15 g
Analyzed:	05-10-06 21:52	Final Volume:	15 mL
Analyst:	јн	% Solids:	91
		Dilution Factor:	1

VPH Ranges		17 Jahr.	Concer	tration	Notes	Units	Reporting Limit	
n-C5 to n-C8 Alip	hatic Hydrocarbons + •			BRL		mg/Kg	1.1	
n-C9 to n-C12 Ali	phatic Hydrocarbons *®			BRL	mg/Kg	1.1		
	omatic Hydrocarbons [†]			BRL	mg/Kg	1.1		
Unadjusted n-C5	to n-C8 Aliphatic Hydrocarbo	ons t	T	BRL	-14-14-14-14-14-14-14-14-14-14-14-14-14-	mg/Kg	1.1	
	to n-C12 Aliphatic Hydrocark			BRL	mg/Kg	1.1		
CAS Number	Analyte		Concer	tration	Units	Reporting Limit		
1634-04-4	Methyl tert-butyl Ether "			BRL	mg/Kg	0.11		
71-43-2	Benzene "			BRL		mg/Kg	0.11	
108-88-3	Toluene "			BRL	mg/Kg	0.11		
100-41-4	Ethylbenzene [‡]			BRL	mg/Kg	0.11		
108-38-3 and 106-42-3	meta- Xylene and para -Xyle	ene *		BRL	mg/Kg	0.11		
95-47-6	ortho- Xylene *			BRL	mg/Kg	0.11		
91-20-3	Naphthalene			BRL	mg/Kg	0.54		
QC Surrogate Co	mpound	Spiked	Measured	Recovery	QC Limits			
2,5-Dibromotolu	ene (PID)	2.7	2.6	96 %	70 - 130 %			
2,5-Dibromotolu	ene (FID)	2.7	2.6	99 %	70	70 - 130 %		

1. Were all QA/QC procedures required by the method followed?

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

QA/QC Certification

Method Reference: Report Notations:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Results are reported on a dry weight basis.

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

+ Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.

n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Page 13 of 32

Yes

Yes

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

Field ID:	B4-S4	Matrix:	Soil
Project:	Elm/2241	Container:	40 mL VOA Vial
Client:	ENSOL, Inc.	Preservation:	Methanol/Cool
Laboratory ID:	94446-07	QC Batch ID:	VG3-2142-E
Sampled:	05-08-06 00:00	Instrument ID:	GC-3 HP 5890
Received:	05-08-06 18:35	Sample Weight:	14 g
Analyzed:	05-10-06 22:33	Final Volume:	15 mL
Analyst:	JH	% Solids:	95
		Dilution Factor:	1

VPH Ranges	、研究、後期業品がない可能です。		Conce	ntration Notes	Units	Reporting Limit			
n-C5 to n-C8 Alip	hatic Hydrocarbons ^{† 0}			BRL	mg/Kg	1.1			
	phatic Hydrocarbons * ®			BRL	mg/Kg	1.1			
	omatic Hydrocarbons [†]			BRL	mg/Kg	1.1			
Unadjusted n-C5	to n-C8 Aliphatic Hydrocarbons	; †		BRL	mg/Kg	1.1			
Unadjusted n-C9	to n-C12 Aliphatic Hydrocarbon	ns [†]		BRL	mg/Kg	1.1			
CAS Number	Analyte	an teach	Conce	ntration Notes	Units	Reporting Limit			
1634-04-4	Methyl tert-butyl Ether #			BRL	mg/Kg	0.11			
71-43-2	Benzene "			BRL	mg/Kg	0.11			
108-88-3	Toluene "			BRL	mg/Kg	0.11			
100-41-4	Ethylbenzene [‡]			BRL	mg/Kg	0.11			
108-38-3 and 106-42-3	meta- Xylene and para-Xylene	*		BRL	mg/Kg	0.11			
95-47-6	ortho- Xylene *			BRL	mg/Kg	0.11			
91-20-3	Naphthalene			BRL	mg/Kg	0.57			
QC Surrogate Co	ompound	oiked	Measured	Recovery	Q	C Limits			
2,5-Dibromotolu	ene (PID)	2.9	2.5	89 %	70	- 130 %			
2,5-Dibromotolu	ene (FID)	2.9	2.6	90 %	70	70 - 130 %			

1. Were all QA/QC procedures required by the method followed?

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Results are reported on a dry weight basis.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

+ Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.

In-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.

‡ Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Page 14 of 32

Yes

Yes

No

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

.

Field ID:	B5-S4				Soil					
Project:	Elm/2241			1	Container:	40 mL VOA	Vial			
Client:	ENSOL, Inc.				Methanol/Cool					
Laboratory ID:	94446-08				VG3-2142-E					
Sampled:	05-08-06 00:00			1	GC-3 HP 5890					
Received:	05-08-06 18:35				13 g					
Analyzed:	05-10-06 23:13			1	inal Volume:	15 mL				
Analyst:	јн				% Solids:	95				
				1	Dilution Factor:	1				
VPH Ranges		- Starting	Concer	ntration	Notes	Units	Reporting Limit			
n-C5 to n-C8 Ali	phatic Hydrocarbons ^{† 0}			BRL		mg/Kg	1.2			
n-C9 to n-C12 A	liphatic Hydrocarbons **			BRL	mg/Kg	1.2				
n-C9 to n-C10 A	romatic Hydrocarbons [†]		1	BRL	mg/Kg	1.2				
Unadjusted n-C5	to n-C8 Aliphatic Hydrocart	oons [†]		BRL	mg/Kg	1.2				
Unadjusted n-C9	to n-C12 Aliphatic Hydroca	rbons [†]		BRL		mg/Kg	1.2			
CAS Number	Analyte		Concen	itration	Notes	Units	Reporting Limit			
1634-04-4	Methyl tert-butyl Ether #			BRL	mg/Kg	0.12				
71-43-2	Benzene [#]			BRL	mg/Kg	0.12				
108-88-3	Toluene "			BRL	mg/Kg	0.12				
100-41-4	Ethylbenzene [‡]			BRL	mg/Kg	0.12				
108-38-3 and 106-42-3	meta- Xylene and para-Xy	lene [‡]		BRL	mg/Kg	0.12				
95-47-6	ortho- Xylene *			BRL	mg/Kg	0.12				
91-20-3	Naphthalene			BRĻ		mg/Kg	0.62			
QC Surrogate C	ompound	Spiked	Measured	Recovery		Q	C Limits			
2,5-Dibromotolu	iene (PID)	3.1	2.7	89 %		70	- 130 %			
2,5-Dibromotolu	Jene (FID)	3.1	2.7	87 %	70	- 130 %				
	and the second states		QA/QC Certi	fication		法保守工作				
1. Were all QA/QO	c procedures required by the met	hod followe	ed?		Yes					
2. Were all perform	nance/acceptance standards for th	ne required	QA/QC procedu			Yes				
3. Were any signif	icant modifications made to the n	nethod, as s	pecified in Section	on 11.3.2.1?	No					
control report. Rele	mances indicated above are deta ease of this data is authorized by report are considered part of this	the accomp	anying signed pro							

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Results are reported on a dry weight basis.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

t Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.

n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Page 15 of 32

Field ID:	MW-1	Matrix:	Aqueous
Project:	Elm/2241	Container:	40 mL VOA Vial
Client:	ENSOL, Inc.	Preservation:	HCI/Cool
Laboratory ID:	94446-10	QC Batch ID:	VG1-2448-W
Sampled:	05-08-06 00:00	Instrument ID:	GC-1 HP 5890
Received:	05-08-06 18:35	Sample Volume:	5 mL
Analyzed:	05-11-06 23:16	Dilution Factor:	5
Analyst:	TA		

VPH Ranges		A. Com	Conce	ntration	Notes	Units	Reporting Limit		
n-C5 to n-C8 Alip	hatic Hydrocarbons + *			390	and the second second	ug/L	100		
n-C9 to n-C12 Ali	phatic Hydrocarbons ^{†®}			200		ug/L	100		
	omatic Hydrocarbons [†]			2,200	ug/L	100			
Unadjusted n-C5	to n-C8 Aliphatic Hydrocarl	bons ⁺		390	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	ug/L	100		
Unadjusted n-C9	to n-C12 Aliphatic Hydroca	rbons ⁺		2,500	Contract of the second	ug/L	100		
CAS Number	Analyte		Conce	ntration	Notes	Units	Reporting Limit		
1634-04-4	Methyl tert-butyl Ether #			BRL		ug/L	25		
71-43-2	Benzene "			BRL	ug/L	5			
108-88-3	Toluene [#]			BRL		ug/L	25		
100-41-4	Ethylbenzene *			60	ug/L	25			
108-38-3 and 106-42-3	meta-Xylene and para-Xy	lene *		80	ug/L	25			
95-47-6	ortho- Xylene [‡]			BRL	ug/L	25			
91-20-3	Naphthalene			BRL	ug/L	25			
QC Surrogate Co	mpound	Spiked	Measured	Recovery		Q	C Limits		
2,5-Dibromotolu	ene (PID)	50	50	100 %		70	- 130 %		
2,5-Dibromotolu	ene (FID)	50	47 95 % 70 - 130 %						
法可以注意主义			QA/QC Certi	fication		and the second			
	procedures required by the met ance/acceptance standards for the			L' D			Yes Yes		

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and guality control report are considered part of this data report.

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range. t

0 n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.

0 n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

п Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range. ±

Page 16 of 32

No

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID:	MW-2	Matrix:	Aqueous
Project:	Elm/2241	Container:	40 mL VOA Vial
Client:	ENSOL, Inc.	Preservation:	HCI/Cool
Laboratory ID:	94446-11	QC Batch ID:	VG10-2608-W
Sampled:	05-08-06 00:00	Instrument ID:	GC-10 Agilent 6890
Received:	05-08-06 18:35	Sample Volume:	5 mL
Analyzed:	05-12-06 11:58	Dilution Factor:	1
Analyst:	TA		

VPH Ranges			Concer	ntration Notes	Units	Reporting Limit
n-C5 to n-C8 Alip	hatic Hydrocarbons ^{† ¢}			BRL	ug/L	20
n-C9 to n-C12 Ali	phatic Hydrocarbons * ®			BRL	ug/L	20
	omatic Hydrocarbons [†]			BRL	ug/L	20
Unadjusted n-C5	to n-C8 Aliphatic Hydrocart	oons [†]	1	BRL	ug/L	20
Unadjusted n-C9	to n-C12 Aliphatic Hydroca	rbons [†]		BRL	ug/L	20
CAS Number	Analyte		Concer	ntration Notes	Units	Reporting Limit
1634-04-4	Methyl tert-butyl Ether "			BRL	ug/L	5
71-43-2	Benzene "			BRL	ug/L	1
108-88-3	Toluene "			BRL	ug/L	5
100-41-4	Ethylbenzene *			BRL	ug/L	5
108-38-3 and 106-42-3	meta- Xylene and para -Xy	lene [‡]		BRL	ug/L	5
95-47-6	ortho- Xylene [‡]			BRL	ug/L	5
91-20-3	Naphthalene		1.	BRL	ug/L	5
QC Surrogate Co	mpound	Spiked	Measured	Recovery	Q	C Limits
2,5-Dibromotolu	ene (PID)	50	54	109 %	70	- 130 %
2,5-Dibromotolu	ene (FID)	50	53	106 %	70	- 130 %
A here and a second			QA/QC Certi	fication		
1. Were all OA/OC	procedures required by the met	hod followe	d?	an a second that and a state of a second		Yes

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Method Reference:

Report Notations:

Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be BRL reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range. ŧ

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations. 0

n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and 8 the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range. п

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range. ‡

Page 17 of 32

Yes

No

Field ID:	MW-3	Matrix:	Aqueous
Project:	Elm/2241	Container:	40 mL VOA Via
Client:	ENSOL, Inc.	Preservation:	HCI/Cool
Laboratory ID:	94446-12	QC Batch ID:	VG1-2448-W
Sampled:	05-08-06 00:00	Instrument ID:	GC-1 HP 5890
Received:	05-08-06 18:35	Sample Volume:	5 mL
Analyzed:	05-12-06 00:37	Dilution Factor:	1
Analyst:	TA		

VPH Ranges		1. 1.1.4	Conce	entration	Notes	Units	Reporting Limit	
n-C5 to n-C8 Alip	hatic Hydrocarbons ^{† 0}			BR	L	ug/L	20	
n-C9 to n-C12 Al	iphatic Hydrocarbons ^{† ®}			BR	L	ug/L	20	
	omatic Hydrocarbons [†]			BR	L	ug/L	20	
Unadjusted n-C5	to n-C8 Aliphatic Hydrocark	oons [†]	1	BR	ug/L	20		
Unadjusted n-C9	to n-C12 Aliphatic Hydroca	rbons [†]		BR	ug/L	20		
CAS Number	Analyte	1947 - A. B.	Conce	entration	Notes	Units	Reporting Limit	
1634-04-4	Methyl tert-butyl Ether "			BR	ug/L	5		
71-43-2	Benzene #			BR	ug/L	1		
108-88-3	Toluene "			BR	ug/L	5		
100-41-4	Ethylbenzene [‡]			BR	ug/L	5		
108-38-3 and 106-42-3	meta-Xylene and para-Xy	lene [‡]		BR	ug/L	5		
95-47-6	ortho- Xylene *			BR	ug/L	5		
91-20-3	Naphthalene			BR	ug/L	5		
QC Surrogate Co	mpound	Spiked	Measured	Reco	very	Q	C Limits	
2,5-Dibromotolu	ene (PID)	50	52	104 %	70	- 130 %		
2,5-Dibromotolu	ene (FID)	50	49	97 %	70 - 130 %			
the approved as	The state of the second	Winds?	QA/QC Cer	tification		Participant 2.1	TELEVILLE VILLE	
1. Were all QA/QC	procedures required by the met	hod followe	ed?	and the second se		Yes		

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Method Reference:

Report Notations:

Indicates concentration, If any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be BRL reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

t Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations. 0

n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and \otimes the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range. п

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range. ŧ

Page 18 of 32

Yes

No

Project Narrative

Project: Elm/2241 Client: ENSOL, Inc. Lab ID: 94446 Received: 05-08-06 18:35

A. Documentation and Client Communication

The following documentation discrepancies, and client changes or amendments were noted for this project:

1. Samples 94446-01 through -03 were analyzed by EPA 8260B versus EPA 8021B due to instrument repair.

B. Method Modifications, Non-Conformances and Observations

The sample(s) in this project were analyzed by the references analytical method(s), and no method modifications, non-conformances or analytical issues were noted, except as indicated below:

- MA DEP VPH Note: Sample 94446-10. Sample was diluted prior to analysis. Dilution was required to keep all target analytes within calibration.
- 2. EPA 8260B Note: Sample 94446-01. Sample was diluted prior to analysis. Dilution was required to keep all target analytes within calibration.
- 3. EPA 8260B Note: Samples 94446-01, -02, -03. Samples were analyzed for select analytes only, as requested by client.
- 4. MA DEP EPH Note: Sample 94446-09. Sample was diluted prior to analysis. Dilution was required to keep all target analytes within calibration.

Page 19 of 32

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

ENS	0]	L,	In	с.	(Ch	air	1 0	f(Cu	st	00	ly				1(N)0] . Bi	l'reb lleri	ica,	INLA	R	oad 186:	2				te fa	l: 1	978-	-670 -670	-07:	55 57	
کی ل Yurn-Around Tin	1 t ne:	5	Name ELN - dr	ny s		_	Samp Samp	ampling Date: <u>MAy 8, 2006</u> ampling Time: ampled by: <u>D. Wrighr</u>							.	Comments: 2.0°C							C sar	sampling ramts, met)										
SAMPLE ID	N	IAT	RIX	# 0	ON	TĄ	INER	S	PR	ESE	RV	AT	101	ł		li sa p	A-2447			25 6	AN	AL	YSI	SR	EQ	UIF	REL)		and a second				300
	şoil	water	air ·	glass jar - 8 oz.	VOA vialijar	plastic bottle - 250 mL	amber litre	on loc	methanol - VOAs	hydrochloric acid JV Orly	sulfuric acid -1; hee,	nitric acid	filtered - 0.45 µ		VOCs - 8260	VOCs - 8010 by \$021	VOCs - 8020 by 8021.	TPH - fingerprint	IPH-CT	MADEP VPH w/ VOC3	MADEP EPH w/ PAHs	me Level	ABNs-8270	PCBs - 8082	RCRA-8 metals	Priority-13 metals	TOP .	ignit / react / pH ·	sulfate / nitratis	Fe/Mn ·				
B1A - 54	V			TI.	1			1	~			* 5kr	100	14,14		106.0				V	~	V		1944 - 1944 1944 - 1944 1944 - 1944		2			1					-
B4- 54	V			1	1			1	1						6.1	1700			A.	V		V	14											
B5- 54	V			1	1			. 1	10					「「「「				10		V		Barr		8 A 4					1					
mw - 1		~			3		1	V		V	V	1. 1.	1000 C	1.14	1	~				V	V	1	-	in the	1	a.								
MW-2 -		1			3		1.	V		1		17		. 792	4	V	10			V			210											
MW-3		V			3	-	100 2	V		V	1			1200		V				V				195								14		-
	<u> </u>			_	-	1.1		1	1	(T)			10			1		1	T.							-								
				-	-	-						1.3				τ 			1 23	1		in A		-			-		·	-		199		-
		+-				-	-	1	1	123			100	00,004 1990 1990			-	1	1				t Tana ba	10.50		-	-	-	-	-		a na at 1		
	-	-			-	-			1	1	1	1-1	Sec.1.		题	100	100 - 100 100-	1.1.1		100	1. 19 A.		-	- H-		Cherry P.	-		1-	-			-	-
	-	1-						_	1		4.4	1		-		1	- daya	111				-				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-	-	-	-			
and the second		-			-	-		101	1 and the	-	3100	in all	e de la				1.7.7.4	-		3.0					-	-	-		-	-				
	-	-			+				11.		10er	1	- AL	124	There are	19. inc.		122.1	1000	100	10.992			-			-		-	-	10. 1			
Page						-		-		1990 - 19 1990 - 19 1990 - 19	1		-	-	1 State	10 de la	1000	1.2.5	19923				-	-			-			281	-	the set		
REGINQUIS	L	DP	V		OR	CW	VIZA			120		THE	I	NT TT			Inte		1 Vind		GA	DIT!	7 17	TO	AT.	L	1000	I I)AT	T	T	-	TIN	TE
A S L.		17 1)	-	VALUE AND DESCRIPTION OF	Training Street, and	of some subscription of the local diversion o	And the local division in the local division		Strapper.C.	-			INC		and the second	and successive	tering in standard such		and a special division of	1.	N.S. P.B.	ACCRET IN CASE OF		-	COTTO A COLORIDA		F	WWWWWWWWWW	AND MARKED MORE	NAME OF TAXABLE	-	-		
Dai th	IN	-			El	12	or	110.00	0		al	au	r	Ŋa	ad	4	any,		G		Ar	Jay	57	ICA	<u>-C</u>				3 7-(2		130 13	_

Quality Assurance/Quality Control

A. Program Overview

Groundwater Analytical conducts an active Quality Assurance program to ensure the production of high quality, valid data. This program closely follows the guidance provided by *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans,* US EPA QAMS-005/80 (1980), and Test Methods for Evaluating Solid Waste, US EPA, SW-846, Update III (1996).

Quality Control protocols include written Standard Operating Procedures (SOPs) developed for each analytical method. SOPs are derived from US EPA methodologies and other established references. Standards are prepared from commercially obtained reference materials of certified purity, and documented for traceability.

Quality Assessment protocols for most organic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. All samples, standards, blanks, laboratory control samples, matrix spikes and sample duplicates are spiked with internal standards and surrogate compounds. All instrument sequences begin with an initial calibration verification standard and a blank; and excepting GC/MS sequences, all sequences close with a continuing calibration standard. GC/MS systems are tuned to appropriate ion abundance criteria daily, or for each 12 hour operating period, whichever is more frequent.

Quality Assessment protocols for most inorganic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. Standard curves are derived from one reagent blank and four concentration levels. Curve validity is verified by standard recoveries within plus or minus ten percent of the curve.

B. Definitions

Batches are used as the basic unit for Quality Assessment. A Batch is defined as twenty or fewer samples of the same matrix which are prepared together for the same analysis, using the same lots of reagents and the same techniques or manipulations, all within the same continuum of time, up to but not exceeding 24 hours.

Laboratory Control Samples are used to assess the accuracy of the analytical method. A Laboratory Control Sample consists of reagent water or sodium sulfate spiked with a group of target analytes representative of the method analytes. Accuracy is defined as the degree of agreement of the measured value with the true or expected value. Percent Recoveries for the Laboratory Control Samples are calculated to assess accuracy.

Method Blanks are used to assess the level of contamination present in the analytical system. Method Blanks consist of reagent water or an aliquot of sodium sulfate. Method Blanks are taken through all the appropriate steps of an analytical method. Sample data reported is not corrected for blank contamination.

Surrogate Compounds are used to assess the effectiveness of an analytical method in dealing with each sample matrix. Surrogate Compounds are organic compounds which are similar to the target analytes of interest in chemical behavior, but which are not normally found in environmental samples. Percent Recoveries are calculated for each Surrogate Compound.

Page 21 of 32

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

Quality Control Report Laboratory Control Samples

		LCS		LCSD	
Category: OC Batch ID:	MA DEP VPH VG3-2142-E	Instrument ID: Analyzed:	GC-3 HP 5890 05-10-06 09:25	Instrument ID: Analyzed:	GC-3 HP 5890 05-10-06 10:05
Matrix: Units:	Soil mg/Kg	Analyst:	јн	Analyst:	јн
CAS Number	Analyte	LCS		LCS Duplicate	QC Limits
A State of the sta		Spiled Mexured Roc	avary Snikad Massur	Pacovary Pi	PD Snike PPI

		Spiked	Measured	Recovery	Spiked	Measured	Recovery	RPD	Spike	RPD
109-66-0	n-Pentane	2.5	2.2	86 %	2.5	2.2	88 %	2 %	70 - 130 %	25%
107-83-5	2-Methylpentane	2.5	2.2	90 %	2.5	2.3	92 %	3 %	70 - 130 %	25%
540-84-1	2,2,4-Trimethylpentane	2.5	2.2	87 %	2.5	2.2	89 %	3 %	70 - 130 %	25%
n/a	Aliphatic Group 1	7.5	6.6	88 %	7.5	6.7	90 %	2 %	70 - 130 %	25%
111-84-2	n-Nonane	2.5	2.6	102 %	2.5	2.6	103 %	1 %	70 - 130 %	25%
124-18-5	n-Decane	2.5	2.7	110 %	2.5	2.7	107 %	3 %	70 - 130 %	25%
1678-93-9	n-Butylcyclohexane	2.5	2.7	108 %	2.5	2.7	109 %	0 %	70 - 130 %	25%
n/a	Aliphatic Group 2	7.5	8.0	107 %	7.5	8.0	106 %	1 %	70 - 130 %	25%
1634-04-4	Methyl tert-butyl Ether	2.5	2.2	88 %	2.5	2.3	91 %	3 %	70 - 130 %	25%
71-43-2	Benzene	2.5	2.5	100 %	2.5	2.6	103 %	3 %	70 - 130 %	25%
108-88-3	Toluene	2.5	2.4	95 %	2.5	2.4	98 %	2 %	70 - 130 %	25%
100-41-4	Ethylbenzene	2.5	2.5	99 %	2.5	2.5	101 %	2 %	70 - 130 %	25%
108-38-3 and 106-42-3	meta-Xylene and para -Xylene	5.0	5.0	100 %	5.0	5.1	103 %	2 %	70 - 130 %	25%
95-47-6	ortho- Xylene	2.5	2.3	94 %	2.5	2.4	96 %	2 %	70 - 130 %	25%
95-63-6	1,2,4-Trimethylbenzene	2.5	2.4	98 %	2.5	2.5	100 %	2 %	70 - 130 %	25%
91-20-3	Naphthalene	2.5	2.1	83 %	2.5	2.2	89 %	6 %	70 - 130 %	25%
n/a	Aromatic Group	23	21	95 %	23	22	98 %	3 %	70 - 130 %	25%
QC Surrogate Co	ompound	Spiked	Measured	Recovery	Spiked	Measured	Recovery	and the	QC Lim	its
2,5-Dibromotolu	ene (PID)	2.5	2.3	93 %	2.5	2.3	94 %	No. Con Million State State	70 - 130 %	
2,5-Dibromotolu	ene (FID)	2.5	2.3	93 %	2.5	2.3	93 %		70 - 130 %	

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

Report Notations:

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Page 22 of 32

Quality Control Report Method Blank

Category: QC Batch ID: Matrix:	MA DEP VPH VG3-2142-E Soil			Instrument ID; Analyzed: Analyst:			GC-3 HP 5890 05-10-06 10:45 JH		
VPH Ranges			Concen	tration	Notes	Units	Reporting Limit		
	phatic Hydrocarbons ^{+ 0}			BRL		mg/Kg	1.0		
n-C9 to n-C12 A	-C9 to n-C12 Aliphatic Hydrocarbons +®			BRL		mg/Kg	1.0		
n-C9 to n-C10 Aromatic Hydrocarbons [†]				BRL	mg/Kg	1.0			
Unadjusted n-C5	to n-C8 Aliphatic Hydrocarb	ons [†]	T	BRL	mg/Kg	1.0			
and the state of t	to n-C12 Aliphatic Hydrocar			BRL		mg/Kg	1.0		
CAS Number	Analyte	Le Har	Concen	tration	Notes	Units	Reporting Limit		
1634-04-4	Methyl tert-butyl Ether "			BRL	mg/Kg	0.10			
71-43-2	Benzene [#]			BRL	mg/Kg	0.10			
108-88-3	Toluene [#]			BRL	mg/Kg	0.10			
100-41-4	Ethylbenzene [‡]			BRL	mg/Kg	0.10			
108-38-3 and 106-42-3	meta-Xylene and para-Xyl	ene [‡]		BRL	The second second second	mg/Kg	0.10		
95-47-6	ortho- Xylene *			BRL		mg/Kg	0.10		
91-20-3				BRL		mg/Kg	0.10		
QC Surrogate C	QC Surrogate Compound Spiked			Recove	ry	Q	C Limits		
	2,5-Dibromotoluene (PID) 2.5			96 %	-	70 - 130 %			
2,5-Dibromotolu	,5-Dibromotoluene (FID) 2.5		2.4	96 %		70 - 130 %			

Method Reference:

Report Notations:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be BRL reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range. t

n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations. ٥

n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and \otimes the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.

Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range. п

Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range. ŧ

Page 23 of 32

Quality Control Report Laboratory Control Samples

Category: Matrix: Units:	Metals Soil mg/Kg											
Sample Type	Method	QC Ba	tch ID	Prep Meth	od Pr	repared		Analyzed	In	strument ID		Analyst
LCS	EPA 6010B EPA 6010B	MB-08 MB-08		EPA 3050E EPA 3050E		5-11-06 08 5-11-06 08		05-11-06 15: 05-11-06 15:		P-1 PE 3000 P-1 PE 3000		MFP
CAS Number	Analyte	12.34	1-1-1-1	LCS		1000	LCS	Duplicate		QC Lin	nits	Method
			Spiked	Measured	Recovery	Spiked	Measured	Recovery	RPD	LCS	RPD	
7439-92-1	Lead		120	98	83%	120	100	86%	2 %	80-120 %	30 %	EPA 6010B

Method Reference: T

e: Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996).

Report Notations:

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units.

ð

Quality Control Report Method Blank

Matrix: 5	Metals Soil							
Analysis Method EPA 6010B	QC Batch ID MB-0860-SB	Prep Method EPA 3050B	Prepare 05-11-06		Sample Volum 0.5 g	e	Instrument ID ICP-1 PE 3000	Analyst MFP
CAS Number	Analyte	Concentration	Notes	Units	Reporting Limit	DF	Analyzed	Method
7439-92-1	Lead	BF	RL	mg/Kg	10	1	05-11-06 14:59	EPA 6010B

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution. DF

Dilution Factor.

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

Quality Control Report Laboratory Control Samples

Category: QC Batch ID: Matrix: Units:	h ID: EP-2310-M Soil mg/Kg		Extr Ana Ana	rument ID: acted: Ilyzed (AL): Ilyzed (AR): Ilyst:	05-10 05-15	Agilent 1-06 20: 1-06 18: 1-06 19:	00 Extr 53 Ana 37 Ana	rument ID: acted: Ilyzed (AL): Ilyzed (AR): Ilyst:	GC-9 Agilent 6890 05-10-06 20:00 05-15-06 20:21 05-15-06 21:05 CMM	
CAS Number	Analyte	100	LC	CS		APRIL L	CS Duplicate	e	QC Lin	nits
	and the start	Spike	Measured	Recovery	Spike	d Measured	Recovery	RPD	Spike	RPD
111-84-2	n-Nonane (C ₉)	3.3	2.0	60 %	3.3	2.1	62 %	3 %	30 - 140 %	25%
124-18-5	n-Decane (C10)	3.3	2.3	68 %	3.3	2.3	70 %	2 %	40 - 140 %	25%
112-40-3	n-Dodecane (C12)	3.3	2.3	70 %	3.3	2.4	73 %	4 %	40 - 140 %	25%
629-59-4	n-Tetradecane (C14)	3.3	2.6	79 %	3.3	2.6	80 %	2 %	40 - 140 %	25%
544-76-3	n-Hexadecane (C16)	3.3	2.9	88 %	3.3	3.0	91 %	3 %	40 - 140 %	25%
593-45-3	n-Octadecane (C18)	3.3	3.3	99 %	3.3	3.4	102 %	3 %	40 - 140 %	25%
n/a	n-C9 to n-C18 Group	20	15	77 %	20	16	80 %	3 %	40 - 140 %	25%
629-92-5	n-Nonadecane (C19)	3.3	3.2	96 %	3.3	3.2	96 %	0 %	40 - 140 %	25%
112-95-8	n-Eicosane (C20)	3.3	3.1	94 %	3.3	3.2	98 %	4 %	40 - 140 %	25%
629-97-0	n-Docosane (C22)	3.3	3.1	93 %	3.3	3.2	96 %	4 %	40 - 140 %	25%
646-31-1	n-Tetracosane (C24)	3.3	2.8	85 %	3.3	2.9	88 %	4 %	40 - 140 %	25%
630-01-3	n-Hexacosane (C26)	3.3	2.8	86 %	3.3	2.9	89 %	4 %	40 - 140 %	25%
630-02-4	n-Octacosane (C28)	3.3	2.7	83 %	3.3	2.8	86 %	4 %	40 - 140 %	25%
638-68-6	n-Triacontane (C30)	3.3	2.7	81 %	3.3	2.8	84 %	4 %	40 - 140 %	25%
630-06-8	n-Hexatriacontane (C36)	3.3	2.4	73 %	3.3	2.5	75 %	3 %	40 - 140 %	25%
n/a	n-C19 to n-C36 Group	26	23	86 %	26	24	89 %	3 %	40 - 140 %	25%
91-20-3	Naphthalene	3.3	2.3	69 %	3.3	2.3	70 %	1 %	40 - 140 %	25%
91-57-6	2-Methylnaphthalene	3.3	2.5	75 %	3.3	2.5	76 %	1 %	40 - 140 %	25%
208-96-8	Acenaphthylene	3.3	2.5	76 %	3.3	2.6	77 %	1 %	40 - 140 %	25%
83-32-9	Acenaphthene	3.3	2.6	79 %	3.3	2.6	80 %	1 %	40 - 140 %	25%
86-73-7	Fluorene	3.3	2.8	84 %	3.3	2.8	85 %	1 %	40 - 140 %	25%
85-01-8	Phenanthrene	3.3	3.0	92 %	3.3	3.1	94 %	2 %	40 - 140 %	25%
120-12-7	Anthracene	3.3	3.2	98 %	3.3	3.3	100 %	2 %	40 - 140 %	25%
206-44-0	Fluoranthene	3.3	3.1	93 %	3.3	3.2	96 %	3 %	40 - 140 %	25%
129-00-0	Pyrene	3.3	3.1	95 %	3.3	3.1	95 %	0 %	40 - 140 %	25%
56-55-3	Benzo[a]anthracene	3.3	3.1	94 %	3.3	3.1	95 %	1 %	40 - 140 %	25%
218-01-9	Chrysene	3.3	3.0	92 %	3.3	3.1	95 %	3 %	40 - 140 %	25%
205-99-2	Benzo[b]fluoranthene	3.3	2.7	81 %	3.3	2.8	84 %	3 %	40 - 140 %	25%
207-08-9	Benzo[k]fluoranthene	3.3	2.9	88 %	3.3	3.0	90 %	2 %	40 - 140 %	25%
50-32-8	Benzo[a]pyrene	3.3	2.8	84 %	3.3	2.9	87 %	4 %	40 - 140 %	25%
193-39-5	Indeno[1,2,3-c,d]pyrene	3.3	2.7	83 %	3.3	2.8	86 %	4 %	40 - 140 %	25%
53-70-3	Dibenzo[a,h]anthracene	3.3	2.8	84 %	3.3	2.8	86 %	2 %	40 - 140 %	25%
191-24-2	Benzo[g,h,i]perylene	3.3	2.7	81 %	3.3	2.8	85 %	4 %	40 - 140 %	25%
n/a	PAH Group	56	48	85 %	56	49	87 %	2 %	40 - 140 %	25%
QC Surrogate	Compound	Spiked	Measured	Recovery	Spiked	Measured	Recovery	14-150 C	QC Limi	its
Fractionation:	2-Fluorobiphenyl	2.7	2.6	96 %	2.7	2.5	93 %		40 - 140	and the second second
	2-Bromonaphthalene	2.7	2.6	96 %	2.7	2.5	93 %		40 - 140	
Extraction:	Chloro-octadecane	2.7	2.4	89 %	2.7	2.4	89 %		40 - 140	
Extraction	ortho -Terphenyl	2.7	2.4	89 %	2.7	2.5	93 %		40 - 140	%
18 1 1 1 1	Fracti	onatio	n Breakt	nrough Evalu	ation		- Barris	1. 1 M. 1	QC Limi	ts
91-20-3	Naphthalene	LCS		0 %	LCSD		0 %		5%	and the second se
91-57-6	2-Methylnaphthalene	LCS		1 %	LCSD		1 %		5%	

Report Notations:

1

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units. The LCS and LCSD are prepared from separate source standards than those used for calibration.

Page 26 of 32

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

Quality Control Report Method Blank

Category: QC Batch ID:	MA DEP EPH EP-2310-M				Instrument ID: Extracted:	GC-9 Agiler 05-10-06 20	
Matrix:	Soil				Analyzed (AL):	05-15-06 1	
					Analyzed (AR):	05-15-06 1	
					Analyst:	CMM	
EPH Ranges			Concer	tration	Notes	Units	Reporting Limit
n-C9 to n-C18 A	liphatic Hydrocarbons [†]	and a second second		BRL	-	mg/Kg	30
n-C19 to n-C36	Aliphatic Hydrocarbons [†]			BRL		mg/Kg	30
	Aromatic Hydrocarbons + •			BRL	•	mg/Kg	30
Unadjusted n-C	11 to n-C22 Aromatic Hydro	carbons [†]	1	BRL	•	mg/Kg	30
CAS Number	Analyte	建制制制	Concen	tration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BRL	•	mg/Kg	0.50
91-57-6	2-Methylnaphthalene			BRL	•	mg/Kg	0.50
85-01-8	Phenanthrene					mg/Kg	0.50
83-32-9	Acenaphthene			BRL	•	mg/Kg	0.50
208-96-8	Acenaphthylene			BRL	mg/Kg	0.50	
86-73-7	Fluorene			BRL		mg/Kg	0.50
120-12-7	Anthracene			BRL		mg/Kg	0.50
206-44-0	Fluoranthene			BRL	mg/Kg	0.50	
129-00-0	Pyrene			BRL		mg/Kg	0.50
56-55-3	Benzo[a]anthracene			BRL		mg/Kg	0.50
218-01-9	Chrysene			BRL		mg/Kg	0.50
205-99-2	Benzo[b]fluoranthene			BRL		mg/Kg	0.50
207-08-9	Benzo[k]fluoranthene			BRL		mg/Kg	0.50
50-32-8	Benzo[a]pyrene			BRL		mg/Kg	0.50
193-39-5	Indeno[1,2,3-c,d]pyrene			BRL	.)	mg/Kg	0.50
53-70-3	Dibenzo[a,h]anthracene			BRL		mg/Kg	0.50
191-24-2	Benzo[g,h,i]perylene			BRL		mg/Kg	0.50
QC Surrogate C	QC Surrogate Compound Spiked		Measured	Recov	ery		C Limits
Fractionation:	2-Fluorobiphenyl	2.7	2.5	96 %		40	- 140 %
	2-Bromonaphthalene	2.7	2.4	89 %		40	- 140 %
Extraction:	Chloro-octadecane	2.7	2.5	93 %		40	- 140 %
						1	and the second sec

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Sample extraction performed by microwave accelerated solvent extraction technique.

2.7

Report Notations: BRL Indicates

t

ortho-Terphenyl

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

91 %

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

2.4

40 - 140 %

Quality Control Report Laboratory Control Samples

Category: QC Batch ID: Matrix: Units:	MA DEP EPH Method EP-1732-F Aqueous ug/L	Extra Anal Anal	LCS Instrument ID: Extracted: Analyzed (AL): Analyzed (AR): Analyst:		Agilent -06 10:0 -06 00:4 -06 01:2	00 Extr 13 Ana	rument ID: acted: lyzed (AL): lyzed (AR):	GC-9 Agilent 6890 05-11-06 10:00 05-12-06 02:11 05-12-06 02:55 CMM		
CAS Number	Analyte		LCS	S	中国人民主义	12 C.L	CS Duplicate	a la Depter	QC Lin	its
	1993年1月1日日本公司新聞	Spiked	Measured	Recovery	Spike	d Measured	Recovery	RPD	Spike	RPD
111-84-2	n-Nonane (C ₉)	50	23	45 %	50	24	49 %	7 %	30 - 140 %	25%
124-18-5	n-Decane (C10)	50	27	54 %	50	29	57 %	6 %	40 - 140 %	25%
112-40-3	n-Dodecane (C12)	50	28	57 %	50	31	61 %	7 %	40 - 140 %	25%
629-59-4	n-Tetradecane (C14)	50	32	63 %	50	34	69 %	8 %	40 - 140 %	25%
544-76-3	n-Hexadecane (C16)	50	36	72 %	50	39	78 %	7 %	40 - 140 %	25%
593-45-3	n-Octadecane (C18)	50	40	81 %	50	44	88 %	9 %	40 - 140 %	25%
n/a	n-C9 to n-C18 Group	300	190	62 %	300	200	67 %	8 %	40 - 140 %	25%
629-92-5	n-Nonadecane (C19)	50	40	79 %	50	43	86 %	8 %	40 - 140 %	25%
112-95-8	n-Eicosane (C20)	50	40	79 %	50	44	87 %	10 %	40 - 140 %	25%
629-97-0	n-Docosane (C22)	50	40	81 %	50	45	89 %	10 %	40 - 140 %	25%
646-31-1	n-Tetracosane (C24)	50	37	75 %	50	42	83 %	11 %	40 - 140 %	25%
630-01-3	n-Hexacosane (C26)	50	38	75 %	50	42	84 %	11 %	40 - 140 %	25%
630-02-4	n-Octacosane (C28)	50	37	73 %	50	41	82 %	12 %	40 - 140 %	25%
638-68-6	n-Triacontane (Cao)	50	37	73 %	50	41	82 %	12 %	40 - 140 %	25%
630-06-8	n -Hexatriacontane (C36)	50	33	67 %	50	38	75 %	12 %	40 - 140 %	25%
n/a	n-C19 to n-C36 Group		300	75 %	400	330	84 %	11 %	40 - 140 %	25%
91-20-3	Naphthalene	50	27	54 %	50	35	69 %	24 %	40 - 140 %	25%
91-57-6	2-Methylnaphthalene	50	29	58 %	50	37	75 %	24 %	40 - 140 %	25%
208-96-8	Acenaphthylene	50	29	59 %	50	38	75 %	25 %	40 - 140 %	25%
83-32-9	Acenaphthene	50	30	61 %	50	39	78 %	24 %	40 - 140 %	25%
86-73-7	Fluorene	50	32	64 %	50	41	81 %	23 %	40 - 140 %	25%
85-01-8	Phenanthrene	50	35	70 %	50	44	88 %	23 %	40 - 140 %	25%
120-12-7	Anthracene	50	38	76 %	50	47	93 %	20 %	40 - 140 %	25%
206-44-0	Fluoranthene	50	36	72 %	50	45	90 %	22 %	40 - 140 %	25%
129-00-0	Pyrene	50	36	72 %	50	45	90 %	22 %	40 - 140 %	25%
56-55-3	Benzo[a]anthracene	50	36	72 %	50	44	89 %	21 %	40 - 140 %	25%
218-01-9	Chrysene	50	38	76 %	50	45	91 %	18 %	40 - 140 %	25%
205-99-2	Benzo[b]fluoranthene	50	35	70 %	50	43	87 %	21 %	40 - 140 %	25%
207-08-9	Benzo[k]fluoranthene	50	39	79 %	50	47	94 %	17 %	40 - 140 %	25%
50-32-8	Benzo[a]pyrene	50	37	75 %	50	45	90 %	19 %	40 - 140 %	25%
193-39-5	Indeno[1,2,3-c,d]pyrene	50	38	76 %	50	47	93 %	20 %	40 - 140 %	25%
53-70-3	Dibenzo[a,h]anthracene	50	38	76 %	50	44	89 %	15 %	40 - 140 %	25%
191-24-2	Benzo[g,h,i]perylene	50	37	74 %	50	45	89 %	18 %	40 - 140 %	25%
n/a	PAH Group	850	590	70 %	850	730	86 %	21 %	40 - 140 %	25%
A				70 10	1		00 /0			
QC Surrogate	the log new party of the second se		Measured	Recovery	the state of the s	Measured	Recovery	Ser Sector	QC Limi	
Fractionation:	2-Fluorobiphenyl	40	31	78 %	40	38	94 %		40 - 140	
	2-Bromonaphthalene	40	31	77 %	40	37	93 %		40 - 140	the second s
Extraction:	Chloro-octadecane	40	29	72 %	40	33	82 %		40 - 140	
	ortho-Terphenyl	40	28	70 %	40	35	87 %		40 - 140	%
	Fract	ionatio	Breakth	rough Evalu	ation	13. 24	C. Martin	State 1	QC Limi	ts
91-20-3	Naphthalene	LCS		0 %	LCSD		0 %		5%	10-0
91-57-6	2-Methylnaphthalene	LCS		3 %	LCSD		2 %		5%	

Report Notations:

Sample extraction performed by separatory funnel technique.

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units. The LCS and LCSD are prepared from separate source standards than those used for calibration.

Page 28 of 32

Quality Control Report Method Blank

Category: QC Batch ID: Matrix:	MA DEP EPH EP-1732-F Aqueous			Instrument ID: Extracted: Analyzed (AL): Analyzed (AR): Analyst:		0:00 3:19
EPH Ranges			Concen	tration Notes	Units	Reporting Limit
n-C9 to n-C18 /	Aliphatic Hydrocarbons [†]			BRL	ug/L	500
n-C19 to n-C36	Aliphatic Hydrocarbons *			BRL	ug/L	500
n-C11 to n-C22	Aromatic Hydrocarbons **			BRL	ug/L	150
Unadjusted n-C	11 to n-C22 Aromatic Hydro	ocarbons [†]		BRL	ug/L	150
QC Surrogate C	Compound	Spiked	Measured	Recovery	Q	C Limits
Fractionation:	2-Fluorobiphenyl	40	33	84 %	40	- 140 %
	2-Bromonaphthalene	40	32	79 %	40	- 140 %
Extraction:	Chloro-octadecane	40	33	83 %	40	- 140 %
	ortho-Terphenyl 40		31	77 %	40	- 140 %

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Sample extraction performed by separatory funnel technique.

Report Notations:

t

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Page 29 of 32

.

Quality Control Report Laboratory Control Samples

Category: QC Batch ID: Matrix: Units:	EPA 8270C Modified EP-1732-F Aqueous ug/L		Extra	ument ID: acted: yzed: yst:	05-11-	HP 6890 06 10:0 06 00:2	0 Extrac	ment ID: cted: zed:	MS-6 HP 689 05-11-06 10: 05-12-06 01: MJB	00
CAS Number	Analyte	A State	LC	S	4.41	LC	S Duplicate		QC Lim	its
	ALC: A COMPANY	Spiked	Measured	Recovery	Spiked	Measured	Recovery	RPD	Spike	RPD
91-20-3	Naphthalene	5.0	2.7	53 %	5.0	2.8	55 %	4 %	40 - 140 %	20%
91-57-6	2-Methylnaphthalene	5.0	2.9	58 %	5.0	3.1	61 %	6 %	40 - 140 %	20%
85-01-8	Phenanthrene	5.0	3.3	66 %	5.0	3.5	70 %	6 %	40 - 140 %	20%
83-32-9	Acenaphthene	5.0	3.4	68 %	5.0	3.6	72 %	6 %	40 - 140 %	20%
208-96-8	Acenaphthylene	5.0	3.2	64 %	5.0	3.3	67 %	5 %	40 - 140 %	20%
86-73-7	Fluorene	5.0	3.5	70 %	5.0	3.7	73 %	4 %	40 - 140 %	20%
120-12-7	Anthracene	5.0	3.3	66 %	5.0	3.5	69 %	4 %	40 - 140 %	20%
206-44-0	Fluoranthene	5.0	3.6	71 %	5.0	3.9	77 %	8 %	40 - 140 %	20%
129-00-0	Pyrene	5.0	3.5	70 %	5.0	3.7	74 %	6 %	40 - 140 %	20%
56-55-3	Benzo[a]anthracene	5.0	3.8	75 %	5.0	4.0	80 %	6 %	40 - 140 %	20%
218-01-9	Chrysene	5.0	3.5	70 %	5.0	3.7	75 %	6 %	40 - 140 %	20%
205-99-2	Benzo[b]fluoranthene	5.0	3.6	73 %	5.0	3.9	79 %	8 %	40 - 140 %	20%
207-08-9	Benzo[k]fluoranthene	5.0	3.7	73 %	5.0	3.8	77 %	5 %	40 - 140 %	20%
50-32-8	Benzo[a]pyrene	5.0	3.9	79 %	5.0	4.2	84 %	7 %	40 - 140 %	20%
193-39-5	Indeno[1,2,3-c,d]pyrene	5.0	3.7	74 %	5.0	3.9	79 %	7 %	40 - 140 %	20%
53-70-3	Dibenzo[a,h]anthracene	5.0	3.4	68 %	5.0	3.7	74 %	7 %	40 - 140 %	20%
191-24-2	Benzo[g,h,i]perylene	5.0	3.9	77 %	5.0	4.1	82 %	6 %	40 - 140 %	20%
QC Surrogate	Compound	Spiked	Measured	Recovery	Spiked	Measured	Recovery		QC Limi	its
ortho -Terphe	nyl	40	25	63 %	40	25	63 %		40 - 140	%

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Sample extraction performed by EPA Method 3510C.

Report Notations:

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units. The LCS and LCSD are prepared from separate source standards than those used for calibration.

Page 30 of 32

Quality Control Report Method Blank

Category: QC Batch ID: Matrix:	EPA Method 8270C (Mod.) - EPH PAH EP-1732-F Aqueous	Instrument ID: Extracted: Analyzed: Analyst:	MS-6 HP 6890 05-11-06 10:00 05-12-06 01:39 MJB		
CAS Number	Analyte	Concentration	Notes	Units	- Reporting Limit
91-20-3	Naphthalene	BRL		ug/L	0.5
91-57-6	2-Methylnaphthalene	BRL		ug/L	0.5
208-96-8	Acenaphthylene	BRL		ug/L	0.5
83-32-9	Acenaphthene	BRL		ug/L	0.5
86-73-7	Fluorene	BRL		ug/L	0.5
85-01-8	Phenanthrene	BRL		ug/L	0.5
120-12-7	Anthracene	BRL		ug/L	0.5
206-44-0	Fluoranthene	BRL		ug/L	0.5
120.00.0	D	001	and the second sec	11	0.5

200-44-0	riuoraninene		DKL	ug/L	0.5	
129-00-0	Pyrene		BRL	ug/L	0.5	
56-55-3	Benzo[a]anthracene		BRL	ug/L	0.1	
218-01-9	Chrysene		BRL	ug/L	0.1	
205-99-2	Benzo[b]fluoranthene		BRL	ug/L	0.1	
207-08-9	Benzo[k]fluoranthene		BRL	ug/L	0.1	
50-32-8	Benzo[a]pyrene		BRL	ug/L	0.1	
193-39-5	Indeno[1,2,3-c,d]pyrene		BRL	ug/L	0.1	
53-70-3	Dibenzo[a,h]anthracene		BRL	ug/L	0.1	
191-24-2	Benzo[g,h,i]perylene		BRL	ug/L	0.1	
QC Surrogate	QC Surrogate Compound Spiked		Recovery	Q	C Limits	
ortho-Terpher	nyl 40	23	59 %	40 - 140 %		

ortho-Terphenyl 40 23 59 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method.

Method protocol modified to include acidification and the surrogate compound in accordance

with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Sample extraction performed by EPA Method 3510C.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Certifications and Approvals

Groundwater Analytical maintains environmental laboratory certification in a variety of states. Copies of our current certificates may be obtained from our website:

http://www.groundwateranalytical.com/qualifications.htm

CONNECTICUT, Department of Health Services, PH-0586

Categories: Potable Water, Wastewater, Solid Waste and Soil http://www.dph.state.ct.us/BRS/Environmental_Lab/OutStateLabList.htm

FLORIDA, Department of Health, Bureau of Laboratories, E87643

Categories: SDWA, CWA, RCRA/CERCLA http://www.floridadep.org/labs/ga/dohforms.htm

MAINE, Department of Human Services, MA103

Categories: Drinking Water and Wastewater http://www.state.me.us/dhs/eng/water/Compliance.htm

MASSACHUSETTS, Department of Environmental Protection, M-MA-103

Categories: Potable Water and Non-Potable Water http://www.state.ma.us/dep/bspt/wes/files/certlabs.pdf

NEW HAMPSHIRE, Department of Environmental Services, 202703

Categories: Drinking Water and Wastewater http://www.des.state.nh.us/asp/NHELAP/labsview.asp

NEW YORK, Department of Health, 11754

Categories: Potable Water, Non-Potable Water and Solid Waste http://www.wadsworth.org/labcert/elap/comm.html

PENNSYLVANIA, Department of Environmental Protection, 68-665

Environmental Laboratory Registration (Non-drinking water and Non-wastewater) http://www.dep.state.pa.us/Labs/Registered/

RHODE ISLAND, Department of Health, 54

Categories: Surface Water, Air, Wastewater, Potable Water, Sewage http://www.healthri.org/labs/labsCT_MA.htm

U.S. Department of Agriculture, Soil Permit, S-53921

Foreign soil import permit

VERMONT, Department of Environmental Conservation, Water Supply Division

Category: Drinking Water

http://www.vermontdrinkingwater.org/wsops/labtable.PDF

Page 32 of 32

Groundwater Analytical, Inc., P.O. Box 1200, 228 Main Street, Buzzards Bay, MA 02532

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that may occur at the 111 Elm Street property located in Newton, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

If groundwater is encountered during construction, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavations directly into a settling tank. The effluent will then flow through any necessary treatment systems and discharge through hoses into a storm water catch basin located on Elm Street. Based upon a review of the City of Newton stormwater drain GIS database, the stormwater drain beneath Elm Street ultimately discharges into the Charles River. Dewatering effluent treatment may consist of bag filters, GAC filtration or ion exchange, as required.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes chemical testing required within days 1 and 3 of initial discharge and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, resin filter system, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements. Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be covered within the overall site security plan.

No adverse affects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Cheesecake Brook which is located 2,000 feet to the west of the subject site. Dewatering effluent will be pumped to a settling tank. Water within the settling tank will pumped through bag filters and a ion resin exchange system in series prior to discharge to the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. If used, the ion exchange resin may be recycled and/or removed from the site to an appropriate receiving facility. Bag filters carbon filtration resin will be disposed of as necessary.