

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JUL 2 4 2013

Marcia Jada Berger, President Clean Properties Inc. 111 Boston Post Road, Suite 211 Sudbury, MA 01776

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Ground excavation at 8 Forest Street and 5 High Street site located in Medford, MA 02155, Middlesex County; Authorization #MAG910586

Dear Ms. Berger:

Based on the review of a Notice of Intent (NOI) submitted on behalf of an undisclosed Owner's name, by your company Clean Properties, Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters you have marked "Believed Present" The checklist also includes all the parameters included in the Volatiles Organics Only (VO) sub-category for a more comprehensive protection of the receiving stream. The permitte may at the end of six months submit a Notice of Change (NOC) and request a deletion of the parameters that haven't been detected above the RGP's Appendix III limitations. EPA at that time will issue a new list which will include only the active (detected) pollutants of concern present at the site.

Also, please note that the metal iron included on the checklist is a dilution dependent pollutant and subject to limitations based on selected dilution range and technology-based ceiling limitations. The dilution factor 76.59 for this parameter is within a dilution range greater than fifty to one hundred (<50 - 100), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the iron limit of 5,000 ug/L is required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on July 15, 2015. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Roy Sorenson, Town of Bedford DPW

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	JM VO	MAG910586 Washington and selection to the selection of th					
Authorization Issued:	July,	2013					
Facility/Site Name:		Excavation					
Facility/Site Address:	8 Fore	est St., Medford, MA 02155, Middlesex County					
racility/Site Address.	Email	Email address of owner:macasoli@comcast.net					
Legal Name of Operate	or:	Clean Properties, Inc.					
Operator contact name, title, and Address:		Marcia Jada Berger, President, 111 Boston Post Road, Suite 211, Sudbury, MA 01776					
- J\@(Email: mberger@cleanproperties.com					
Estimated date of The Completion:	Project	July 15, 2015					
Category and Sub-Category:		Category II- Non Petroleum Site Remediation. Sub-category A. Volatile Organics Only Sites.					
RGP Termination Date:		September 10, 2015					
Receiving Water:	LM VS	Mystic River					
		(BJC)					

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)						
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L						
	Total Residual Chlorine (TRC) 1	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L						
√	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L						
	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L						
- N	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L						
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L						
- 1\	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L						
JM	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L						

	<u>Parameter</u> 199 la 191	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
ıs.	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
teo	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
0	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
/	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
/	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
/	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
V	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
<u> </u>	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
961	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
V	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
V	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
J.I	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
Ç1	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
pr	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
1/2	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
15	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Effluent Limit/Method#/ML	Freshwater	Saltwater		
	39. Antimony	5.6/ML 10			
	40. Arsenic **	10/ML20	36/ML 20		
	41. Cadmium **	0.2/ML10	8.9/ML 10		
	42. Chromium III (trivalent) **	48.8/ML15	100/ML 15	35. Total	
	43. Chromium VI (hexavalent) **	11.4/ML10	50.3/ML 10	Aromatic	
2	44. Copper **	5.2/ML15	3.7/ML 15		
	45. Lead **	1.3/ML20	8.5/ML 20	losnoB d	
	46. Mercury **	0.9/ML0.2	1.1/ML 0.2	losnad a	
	47. Nickel **	29/ML20	8.2/ML 20		14
	48. Selenium **	5/ML20	71/ML 20	d Benzo(
	49. Silver	1.2/ML10	2.2/ML 10		
	50. Zinc **	66.6/ML15	85.6/ML 15	e. Chrysel	
√	51. Iron	5,000/	ML 20	f. Dibenzo	

	Other Parameters	<u>Limit</u>
V .	52. Instantaneous Flow	Site specific in CFS
V	53. Total Flow	Site specific in CFS
√	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
	James COL LIN SO COS Broddings and brodding	(easy) Elymanique

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

	hwater Sellweigr	Effluent Limit/Method#/ML			
	<u>Parameter</u>	(All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)			
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L			
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L			
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L			
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L			
ci s	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
ds	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
E1	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
A.I.	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L			
***	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
=10	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L			
/	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L			
/	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L			

g/I and 7.5 ug/I for freshwater, a	Total Recoverable Metal Limit @ H ¹⁰ = 50	withough the r
e., Method 330.5, 20 ug/l)	mg/l CaCO3 for discharges in	
Metal parameter	Massachusetts (ug/l)	Minimum level=ML

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field

methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

June 28, 2013

US Environmental Protection Agency
5 Post Office Square, Suite 100
Mail Code OEP06-4
Boston, MA 02109-3912

ATTN: Remediation General Permit NOI Processing

Re: Notice of Intent (NOI) for Remediation General Permit

8 Forest Street/ 5 High Street (the Site)

Medford, Massachusetts

Dear Sir/Madam;

Clean Properties is submitting the attached NOI to obtain a Remediation General Permit under the National Pollutant Discharge Elimination System for the properties located at 8 Forest Street/5 High Street. Clean Properties' response actions at the Site are being conducted in accordance with the Massachusetts Contingency Plan 310 CMR 40.000. The Massachusetts Department of Environmental Protection (MassDEP) has assigned Release Tracking Number 3-26842 to the release of chlorinated dry cleaning compounds to soil and groundwater at the Site.

This submittal includes the completed Notice of Intent and supporting documentation, which consists of the following attachments:

Figure 1: Site Location Map Showing Discharge Point to Receiving Water

Figure 2: Site Plan Showing Source of Discharge Subject to this NOI

Figure 3: MassDEP Priority Resource Map of Sensitive Environmental Receptors

Figure 4: Line Drawing Showing Flow of Discharge Water Through the Treatment System

Figure 5: Documentation of Natural Heritage and Endangered Species Program Eligibility

Appendix A: Best Management Practices Plan

Appendix B: Laboratory Data Reports for Sampling Conducted to Support this NOI

Appendix C: US Geological Survey Streamstats Output with Reported 7Q10

Appendix D: MassDEP 303(d) Water Quality Report for the Mystic River watershed

Appendix E: Historic Areas Assessment Appendix F: Material Safety Data Sheets US Environmental Protection Agency 5 Post Office Square, Suite 100 Boston, MA 02109-3912 Remediation General Permit Notice of Intent

Thank you for your review of this report. Please feel free to call me for any reason at: 978-443-6622.

Very truly yours,

CLEAN PROPERTIES, INC.

Marcia J. Berger, P.E., L.S.P.

President/

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site: a) Name of facility/site: 8 Forest Street/5 High Street Facility/site mailing address: Location of facility/site: **Facility SIC** Street: longitude: 71° 6' 37.5" 8 Forest Street code(s): latitude: 42° 25' 6.2" 8651 b) Name of facility/site owner: 8-14 Forest Street LLC Town: Medford Email address of facility/site owner: State: Zip: County: macasoli@comcast.net MΑ 02155 Middlesex Telephone no. of facility/site owner: 781-727-1568 Fax no. of facility/site owner: 781-779-1602 Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private **O** 4. Other **O** if so, describe: Address of **owner** (if different from site): 8-14 Forest Street LLC Street: 825 Main Street Town: Reading State: MA Zip: 01867 County: Middlesex Operator telephone no: 800-977-1982 c) Legal name of operator: Clean Properties, Inc. **Operator** fax no.: 781-577-1510 Operator email: mberger@cleanproperties.com Operator contact name and title: Marcia Jada Berger, PE, LSP, President Address of operator (if different from Street: 111 Boston Post Road, Suite 211 owner): Town: Sudbury State: MA Zip: 01776 County: South Middlesex

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y O N O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y N O								
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y N O, if Y, number: 5. any other water quality related individual or general permit? Y N O, if Y, number:								
	an Area of Critical Environmental Concern (ACEC)? Y O N O							
discharge falls.	al sampling data, identify the sub-category into which the potential							
Activity Category	Activity Sub-Category							
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination							
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites							
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites							

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks
	 D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered
2. Discharge information. Please provide information	by 401/404 permit) about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
Groundwater with concentrations of tetrachloroethylene in excess of sump system to the municipal stormwater system which outfalls to	of the National Recommended Water Quality Criteria being discharged by existing the Mystic River
b) Provide the following information about each discharge	2:
1) Number of discharge points: 2) What is the maximum at Max. flow 0.044 Is Average flow (include units)	nd average flow rate of discharge (in cubic feet per second, ft ³ /s)? s maximum flow a design value? Y O N O s) 0.022 ft3/s Is average flow a design value or estimate? estimate
3) Latitude and longitude of each discharge within 100 fee pt.1: lat 42°25'07" long 70°13'05" pt.2: lat. pt.3: lat long pt.4: lat. pt.5: lat long pt.6: lat. pt.7: lat long pt.8: lat.	long. ; long. ; long. ; long. ; etc.
4) If hydrostatic testing, total volume of the discharge (gals): 5) Is the discharge intermitted in the discharge ongoing? Y	O N O
c) Expected dates of discharge (mm/dd/yy): start Jul 15, 2013	
d) Please attach a line drawing or flow schematic showing 1. sources of intake water. 2. contributing flow from the o waters(s) Please see attached Figure 4	water flow through the facility including: peration. 3. treatment units, and 4. discharge points and receiving

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed .Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids (TSS)		×									
2. Total Residual Chlorine (TRC)		×					opening and the second section and the second section and the second section and the section and the second section and the se				
Total Petroleum Hydrocarbons (TPH)		×		1	grab	EPA 1664	1.4 mg/l	ND		ND	
4. Cyanide (CN)	57125	×									Ann a sur a
5. Benzene (B)	71432	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
6. Toluene (T)	108883	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
7. Ethylbenzene (E)	100414	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	X		1	grab	EPA 8260C	3.0 ug/l	ND		ND	
9. Total BTEX ²	n/a	×									
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	×		1	grab	EPA 8260C	0.50 ug/l	ND		ND	and the second control of the second
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	grab	EPA 8260 C	1.0 ug/l	ND		ND	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×	П								

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

The second control of the second seco				Sample Ana			<u>Minimum</u>	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	X		1	grab	EPA 8260C	0.50 ug/l	ND		ND	
14. Naphthalene	91203	×		1	grab	EPA 8260C	2.0 ug/l	ND		ND	
15. Carbon Tetrachloride	56235	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
18a. Total dichlorobenzene		×									
19. 1,1 Dichloroethane (DCA)	75343	×	I	1	grab	EPA 8260C	1.0 ug/l	ND		ND	
20. 1,2 Dichloroethane (DCA)	107062	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
21. 1,1 Dichloroethene (DCE)	75354	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
22. cis-1,2 Dichloroethene (DCE)	156592		×	1	grab	EPA 8260C	1.0 ug/l	9.2	0.502	9.2	0.251
23. Methylene Chloride	75092	×		1	grab	EPA 8260C	5.0 ug/l	ND		ND	
24. Tetrachloroethene (PCE)	127184		X	1	grab	EPA 8260C	1.0 ug/l	130	7.09	130	3.55
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	grab	EPA 8260C	1.0 ug/l	ND		ND	
27. Trichloroethene (TCE)	79016		×	1	grab	EPA 8260C	1.0 ug/l	1.9	0.104	1.9	0.052

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	grab	EPA 8260C	2.0 ug/l	ND ·		ND	
29. Acetone	67641	×		1	grab	EPA 8260C	10 ug/l	ND		ND	
30. 1,4 Dioxane	123911	X		1	grab	EPA 8260C	50 ug/l	ND		ND	
31. Total Phenols	108952	×		1	grab	EPA 420.1	0.050 mg/l	ND		ND	
32. Pentachlorophenol (PCP)	87865	×		1	grab	EPA 8270D	10 ug/l	ND		ND	
33. Total Phthalates (Phthalate esters) ⁴		×		1	grab	EPA 8270D	10 ug/l	ND		ND	
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	grab	EPA 8270D	10 ug/l	ND		ND	
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	grab	EPA 8270D	5.0 ug/l	ND	ata a dia a di	ND	
a. Benzo(a) Anthracene	56553	X		1	grab	EPA 8270D	5.0 ug/l	ND	ACCUMULATION OF THE PROPERTY O	ND	ACCURATION OF THE OWNER.
b. Benzo(a) Pyrene	50328	×		1	grab	EPA 8270D	5.0 ug/l	ND	heread on the second second second	ND	
c. Benzo(b)Fluoranthene	205992	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
d. Benzo(k)Fluoranthene	207089	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
e. Chrysene	21801	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
f. Dibenzo(a,h)anthracene	53703	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		X		1	grab	EPA 8270D	5.0 ug/l	ND		ND	

⁴ The sum of individual phthalate compounds.

Remediation General Permit Appendix V - NOI

<u>Parameter *</u>	CAS Believed Absent		Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum daily value		Average daily value	
								concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
i. Acenaphthylene	208968	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
j. Anthracene	120127	X		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
k. Benzo(ghi) Perylene	191242	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
l. Fluoranthene	206440	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
m. Fluorene	86737	X		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
n. Naphthalene	91203	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
o. Phenanthrene	85018	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
p. Pyrene	129000	×		1	grab	EPA 8270D	5.0 ug/l	ND		ND	
	85687; 84742; 117840; 84662;	×		1	grab	EPA 8082A	0.20 ug/l	ND		ND	
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.								ASSESSED AND ARTHUR AND ARTHUR AND ARTHUR AR		
38. Chloride	16887006	×							WASSES AND THE RESIDENCE		
39. Antimony	7440360	×									
40. Arsenic	7440382	×						CONTROL OF THE STREET OF THE S	Name of the Control o		AL SECRETARIAN MATERIAL AND
41. Cadmium	7440439	×		SECTION AND STREET, SECTION ASSESSMENT AND ASSESSMENT A		Addition to the second			CONTRACTOR AND		
42. Chromium III (trivalent)	16065831	×									
43. Chromium VI (hexavalent)	18540299	×									
44. Copper	7440508	×									
45. Lead	7439921	×									
46. Mercury	7439976	×									
47. Nickel	7440020	×									
48. Selenium	7782492	X									
49. Silver	7440224	×									
50. Zinc	7440666	×									
51. Iron	7439896		×	1	grab	EPA 6010C	0.050 mg/l	160	8.73	160	4.36
Other (describe):											

Parameter *	CAS Believed Absent			40.	Sample	Analyti	cal Minimum	Maximum d	aily value	Average daily value	
		Believed Absent		# of Samples	# of Type	Metho Used (method	d (ML) of	concentration (ug/l)	mass (kg)	concentration (ug/l)	ma (kg
							Mediou				
b) For discharges when Step 1: Do any of the Appendix III (i.e., the Step 2: For any metals dilution factor (DF)	metals in t limits set s which ex using the f	he influen at zero dil ceed the A ormula in	t exceed th ution)? Y_ appendix I Part I.A.3.	e effluent log N O N O II limits, co (step 2) o	limits in alculate the of the NOI	Look facto	ach results of and acts. which metals which metals are the limit caper in Appendix	s?	correspo		
instructions or as dete What is the dilution fa Metal: Metal: Metal: Metal: Etc.	actor for ar			submissio	n of this NO	efflu cond facto		ppendix IV (i.e	e., is the in it the calc	nfluent	WANGOOD STATES OF THE PROPERTY
4. Treatment system in A description of the									ding:		
Intake water is to be withd to be treated with ozone g remove additional VOCs ar task currently achieved by	as and then nd excess oz	pass throug one from th	h a series of e water strea	granular act m prior to it	ivated carbon s discharge to	(GAC) unithe storm	ts; the ozone will r water system. The	emove VOCs via e treatment syste	oxidation a	nd the GAC will	
b) Identify each	Frac. t	ank 🗖 A	ir stripper	□ Oil/v	vater separa	tor 🔲	Equalization	on tanks 🗖 B	ag filter 🗵	GAC filter	×
applicable treatment unit (check all that apply):	Chlori		e- nlorination	Othe	er (please des	scribe):	Ozone				

c) Proposed average and maximum the treatment system: Average flow rate of discharge 10 Design flow rate of treatment system	gpm N		or the discharge and		rate(s) (gallons per minute) of gpm			
d) A description of chemical additiv	es being used or	planned to be use	d (attach MSDS s	heets):				
Ozone gas; 4.7 wt%								
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:								
a) Identify the discharge pathway:								
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:								
Treatment system for existing storm water	sump system, disc	harge effluent to mu	nicipal storm water s	ystem outfall to Mys	tic River			
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 								
d) Provide the state water quality classification of the receiving water Class B								
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water Please attach any calculation sheets used to support stream flow and dilution calculations.								
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O N O If yes, for which pollutant(s)? See Appendix D								
Is there a final TMDL? Y O N O If yes, for which pollutant(s)?								

6. ESA and NHPA Eligibility. Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.
a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A O B O C O D E O F O b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y_O_N_O_
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 O 2 O 3 O
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
Attached are Appendices A through F, which contain the Best Management Practices Plan (Appendix A), laboratory report for sampling conducted to support this NOI (Appendix B), US Geological Survey Streamstats output reporting 7Q10 of the receiving water body (Appendix C), MassDEP 303(d) Integrated List of Waters Report for the Mystic River Watershed (Appendix D), Historic Areas Assessment (Appendix E), and Chemical Material Safety Data Sheets (Appendix F).

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: 8 Forest Street/5 High Street, Medford, MA	
Operator signature:	
Printed Name &Title: Marcia Jada Berger, PE, LSP, President	
Date: June 28, 2013	

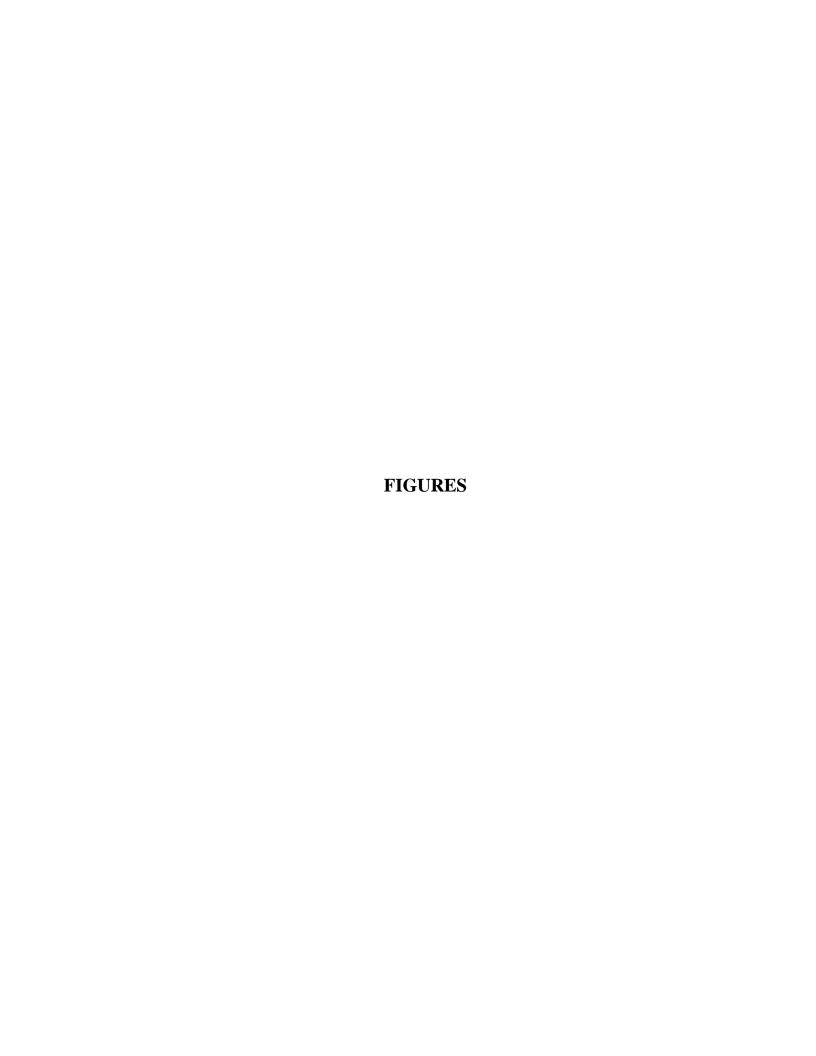
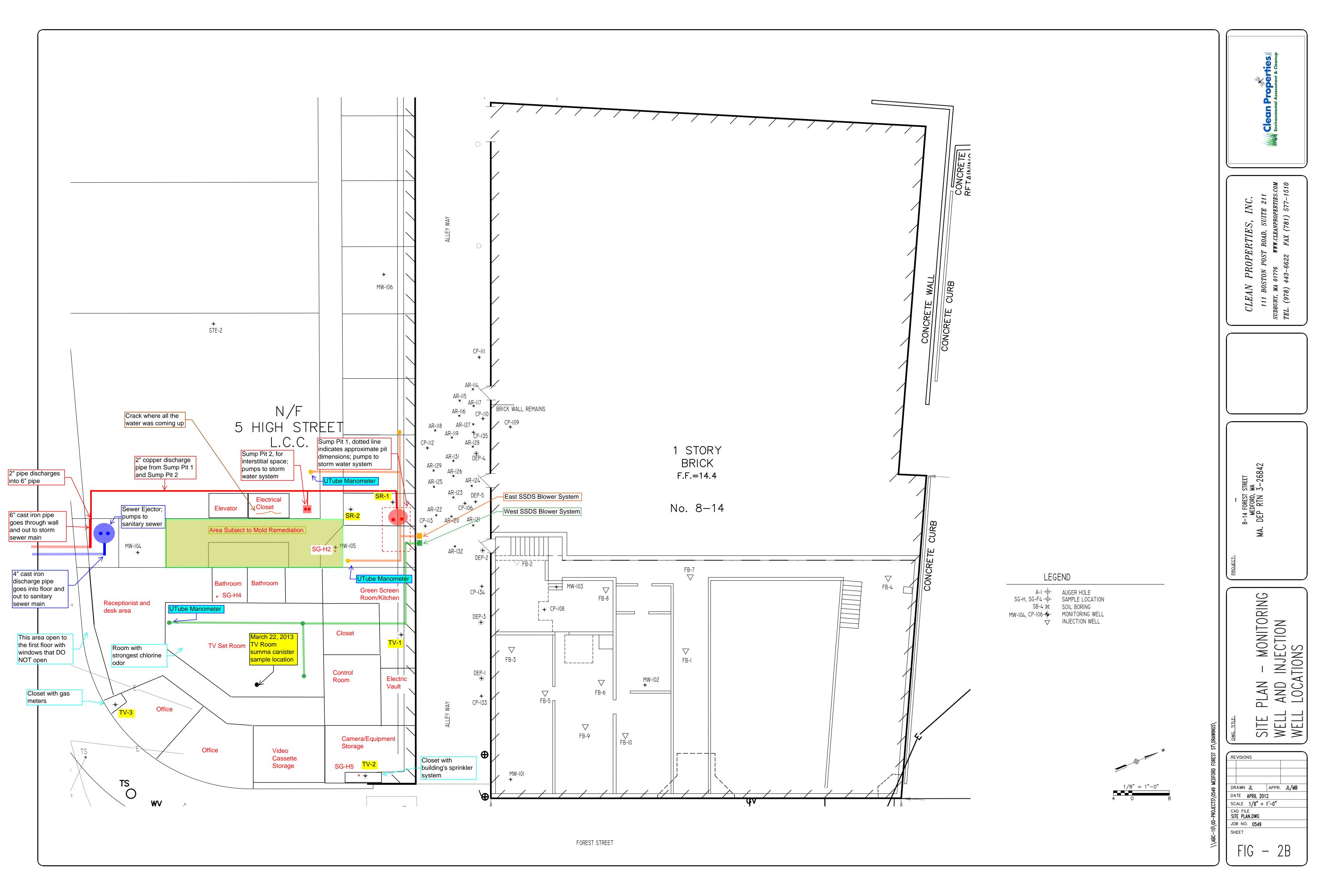
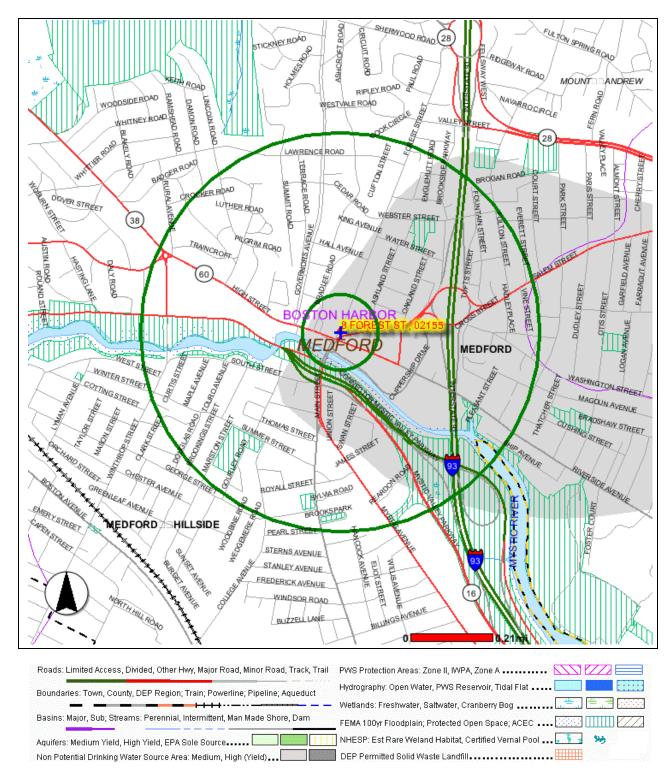
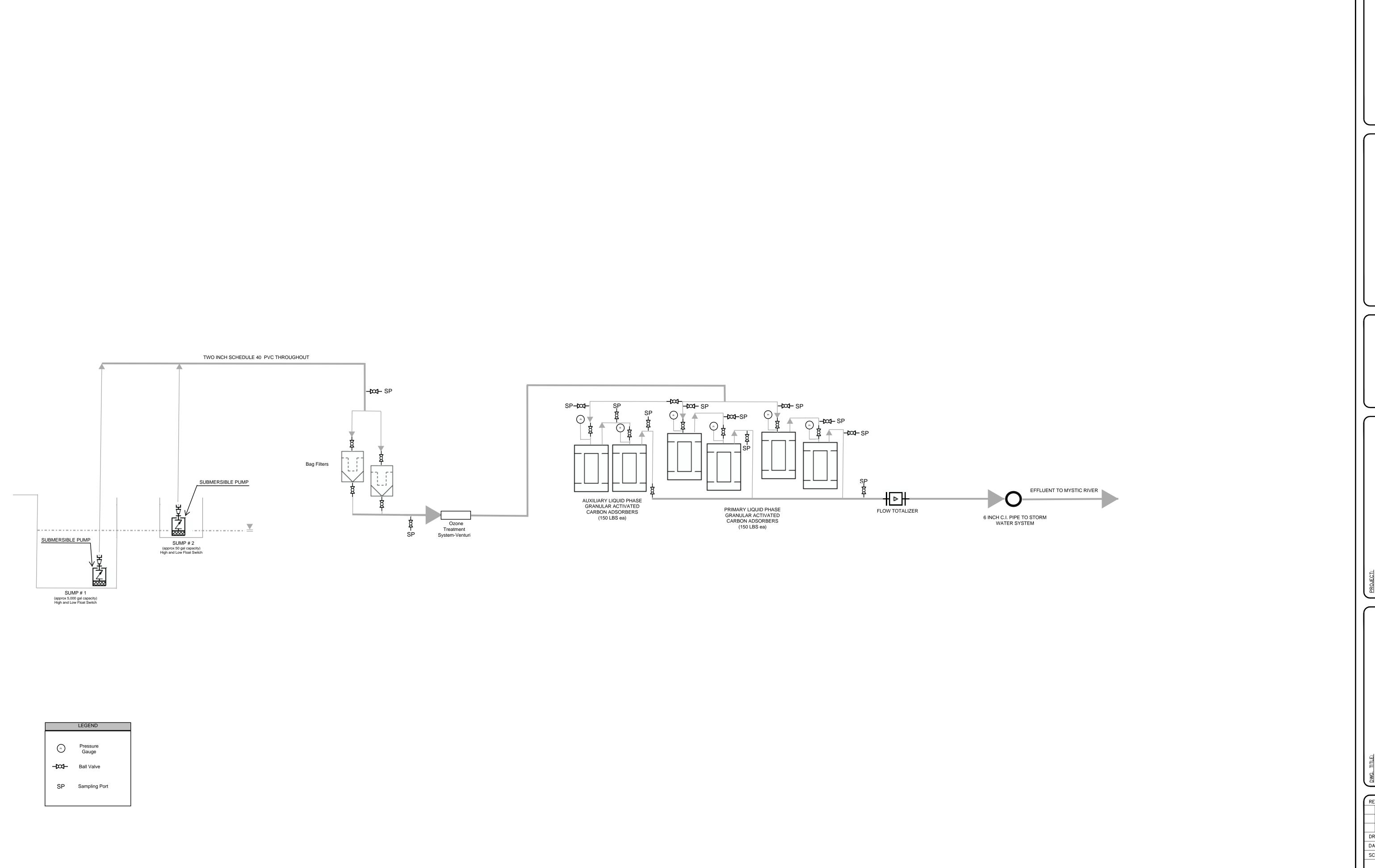
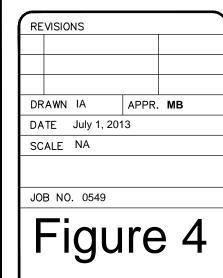



Figure 1 – Site Location Map Showing Discharge Point to Receiving Waters 8 Forest Street/5 High Street, Medford, MA

Base map from US Geological Survey 2008 Color Ortho Imagery produced by MassGis


Figure 3: MassDEP Priority Resource Map Sensitive Environmental Receptors

CLEAN PROPERTIES, INC.
111 BOSTON POST ROAD, SUITE 211
SUDBURY, MA 01776 WWW.CLEANPROPERTIES.COM
TEL. (800)944-1982 FAX (781)577-1510

8 Forest Street/ 5 High Street, Medford MA

теаtment System Flow Line Drawing

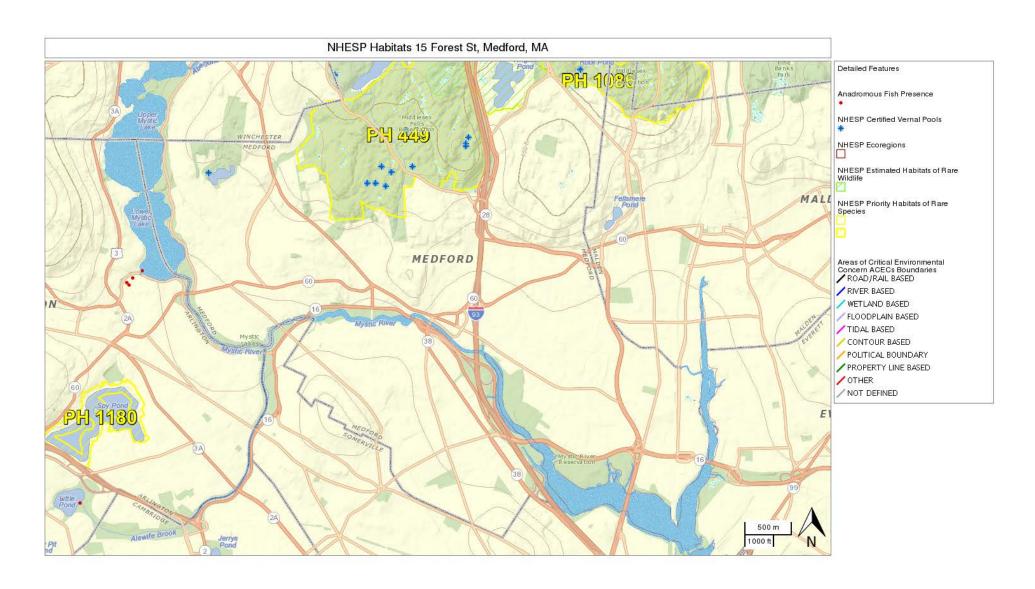


Figure 5 – Documentation of Endangered Species Act Eligibility

Clean Properties Inc Best Management Practices Plan Five High Street, Medford, Massachusetts June 2013

1.0 Introduction

This Stormwater Best Management Practices Plan (BMPP) documents the methodology employed by Clean Properties to address the release of storm water and remedial wastewater into the City of Medford, Massachusetts (City) municipal storm water system. The BMPP contains all of the requisite information pursuant to the Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) for discharges in Massachusetts.

The objective of this BMPP is to minimize chlorinated solvent concentrations in the water that is being discharged to the Mystic River from the sump pits located within the commercial building at Five High Street in Medford, Massachusetts. The BMPP describes procedures for Operation, Maintenance, and Monitoring (OMM) of remedial discharges from Five High Street in Medford, Massachusetts, to protect public health, to safeguard fish and aquatic life and scenic and ecological values, and to enhance the domestic, municipal, recreational, industrial, and other uses of the Mystic River. To achieve this objective, this BMPP outlines specific remedial wastewater discharge design and performance standards.

2.0 Pollutant Sources & Types

2.1 Pollutant Sources

The elevation of the basement floor in the commercial building located at Five High Street is intermittently, when subject to certain conditions, lower than the regional groundwater table elevation. To prevent the infiltration of water into this finished and occupied space, when and as required, there are two separate sump pump systems in place that withdraw groundwater from different regions of the building footprint and discharge it to the municipal storm water system. Present in this intermittently discharged sump water are dissolved phase concentrations of tetrachloroethylene, detected most recently at a concentration of the 130 micrograms per liter (ug/l). The source of the contamination in the sump water is in part attributed to a release of dry cleaning solvent at the neighboring Eight Forest Street property. However, based on historical uses, a release may also have occurred in the past at Five High Street that could potentially be contributing to the sump water concentrations of tetrachloroethylene.

2.2 Pollutant Types and Concentrations

Pollutants associated with remedial wastewater at Five High Street may include the following chlorinated compounds: cis-1,2-dichloroethylene; tetrachloroethylene; and trichloroethylene. These chlorinated compounds have been detected in groundwater samples by laboratory analysis as part of response actions

conducted under the Massachusetts Contingency Plan 310 CMR 40.0000. Tetrachloroethylene is the primary Contaminant of Concern at the Site, and results from historic dry-cleaning releases at Eight Forest Street. The other detected chlorinated compounds are considered to be daughter products resulting from the degradation of tetrachloroethylene. The most recent groundwater sampling results, which are attached to this NPDES permit request, collected from the aforementioned sump detected the above-listed chlorinated compounds ranging in concentrations from 1.9 to 130 ug/l.

3.0 Pollutant Reduction Methodology

Clean Properties intends to employ a combination of technologies to reduce concentrations of chlorinated compounds described in Section 2.0 to below the criteria required by National Recommended Water Quality Criteria for the receiving surface water body. A general schematic of the pollutant reduction processes is shown in Figure 4 – Treatment System Design. Sequentially, the treatment process will include bag filters, ozone treatment, and Granular Activated Carbon (GAC) filtration.

Water to be discharged to the municipal storm water conveyance system will be pumped through parallel inline bag filters to remove any suspended solids as the first step in the treatment process. Reducing the amounts of solids in the sump water is expected to help homogenize ozone delivery to the sample stream and prevent clogging of the system overall.

After solid particle removal in the bag filters, the influent water will be mixed with gas constituted of 4.7 percent ozone by weight, ozone being produced by oxygen supplied to the ozone unit by an in-line oxygen concentrator. The balance of the feed gas is elemental oxygen. A remote ozone monitoring system equipped with an alarm will also be installed to ensure that no ozone gas escapes the confines of the system. Should ozone gas be detected in ambient air at a concentration greater than 0.05 parts per million (ppm), the ozone generator will automatically shut down and Clean Properties will be notified automatically. The Occupational Safety and Health Administration (OSHA) 8 hour exposure limit is set at 0.1 ppm.

Following ozone treatment, the water will enter a series of GAC canisters to remove residual ozone and absorb any potentially remaining Volatile Organic Compounds that were not destroyed by the ozone. Each canister will contain approximately two hundred pounds of GAC and will be rated for a 10 gallon per minute flow rate. A minimum of two and maximum of six GAC canisters will be utilized in series. After the water exits the GAC treatment system, the water will flow through a totalizer, which will track the total volume of water, before being discharged into the six inch cast iron pipe within the basement that ties into the storm water system.

Clean Properties will conduct periodic effluent sampling of the GACs in accordance with the NPDES permit to determine if any contaminants remain in the treated water. Any anomalous increase in contaminant concentrations above surface water quality criteria will be suspect that breakthrough has occurred. Clean Properties will then replace the carbon and recycle the spent material in accordance

with the waste management described in Section 5.0.

4.0 Site Security

Five High street entrance and egress points are locked 24 hours per day with the exception of the front entrance double door facing High Street which is open during normal business hours from approximately 08:00 hours to 17:00 hours Monday through Friday. On weekends the front door is locked and requires key access for admission. All working components of the treatment system will be located inside the Five High Street building. Additionally, working system components identified in Section 3.0 will be located inside locked basement utility rooms within the Five High Street building. Therefore, only persons who are authorized key holders to Five High Street electrical or utility rooms will be able to access the treatment system.

5.0 Management of Generated Waste

Two types of wastes, bag filter sediment and spend carbon from the GACs, are expected to be generated by the treatment processes described in Section 3.0. The volume of bag filter sediment removed from the remedial wastewater is expected to be de minimis. Bag filters will be cleaned using distilled water to loosen the sediment; the rinse water will then be filtered and run through the described treatment process. The expected small volume of sediment so collected will be retained as remediation waste and treated on-Site in accordance with the Massachusetts Contingency Plan 310 CMR 40.0000. The clean bag filters will be reused in the treatment process.

If periodic effluent sampling of the GAC canisters indicates that breakthrough has occurred or is likely to occur, Clean Properties will recycle the spent carbon. A sample of the GAC will be collected and submitted for to a Massachusetts-certified laboratory for landfill disposal characterization. Clean Properties will vacuum out the spent carbon using our vacuum excavation capabilities, package the spent carbon, and arrange for transportation to an approved disposal/recycling facility depending on the results of the disposal characterization. Clean Properties will then refill the GAC canisters with new carbon. Standby canisters will be used in the treatment process while awaiting new carbon to ensure that effluent continues to meet surface water quality criteria.

6.0 Prohibition of Discharge Exceeding Design Flow

The discharge of sump water through the treatment system is expected to be intermittent rather than continuous and is expected to be dependent on the rate of inflow of primarily surface runoff during rainy days and groundwater inflow during periods of dry weather. Based on the surface area of the runoff drains located around the perimeter of Five High Street, Clean Properties estimates that a moderate rain fall event will create a maximum inflow to the sump of approximately 15 gallons of storm runoff per minute. During periods of dry weather, the inflow to the sump is expected to be less than 10 gallons per minute. Therefore, the GAC treatment system will be designed to accommodate a flow of 15 gallons per

minute plus a 40 percent safety margin to be conservative.

Clean Properties will employ a submersible pump to push water through the treatment process described in Section 3.0 and into the municipal storm water conveyance system. The pump will be fitted with a float device to cease pump operation when the sump water level falls below the pump intake. The float device will prevent the sump pump from "running dry".

7.0 Monitoring Total Flow Through the System

Clean Properties will use a flow totalizer as the final component of the treatment system as shown in Figure 1. The flow controller will record daily changes in cumulative flow volumes and can be read on a monthly basis as part of Operation, Maintenance, and Monitoring of this BMPP.

8.0 Employee Training

All response actions that will be performed under this RGP will be conducted under the oversight of a Massachusetts Licensed Site Professional and Licensed Wastewater Treatment Operator of at least Grade 3. Prior to implementing activities under the RGP, Clean Properties will prepare a Health and Safety Plan, which will establish the procedures, personnel responsibilities, and training necessary to protect the health and safety of all on-site personnel. The Health and Safety Plan will serve as the primary training mechanism for all new and seasoned employees in executing responsibilities of the RGP. The Health and Safety Plan provides training for conducting routine and hazardous field activities and preparing for unexpected Site emergencies. Clean Properties personnel and sub-contractors are expected to will familiarize themselves with the Health and Safety Plan and abide by the requirements contained herein.

9.0 Management of Run-On and Run-Off

The treatment system as conceived is self-contained. That is, the sump where groundwater and storm water will accumulate and be pumped through the treatment system described herein is located entirely indoors and is constructed of concrete over the entire surface area. Inflow to the sump pit originates primarily from storm water during rain events and primarily from groundwater during dry periods. Maximum flows are accounted for in the design of the system. Aside from the sources of storm water and groundwater inflow to sump, no other sources of run-on or runoff are expected to be discharged to the sump as the sump is hydraulically isolated from any other source of water inflow.

10.0 Sediment Control, Erosion, and Scouring in the Receiving Water Body

10.1 Sediment Control

Sediment control will be accomplished by utilizing the dual bag filters to remove sediment from sump water as the first step in the treatment process. Clean Properties intends to use bag filters composed of

polyester felt or equivalent material with a design particulate removal size of 50 microns or less. As described previously, these bag filters will be placed in the treatment stream prior to the introduction of ozone and prior to the GAC filtration media.

Clean Properties will examine bag filters at periodic intervals for clogging, rips and deterioration which would reduce filtering capacity. Clean Properties endeavors to reuse and/or recycle where possible. However, if damage or filter wear is observed that could lead to filter failure, one or both bag filters as necessary will be removed and replaced with new units.

10.2 Erosion and Scouring in the Receiving Water Body

Based on the US Geological *Streamstats* output contained in Appendix C, the 7Q10 low flow for the Mystic River in the vicinity of the outfall discharge which is the subject of this Notice of Intent is 3.3 cubic feet per second. As stated in the Notice of Intent, the maximum discharge through the treatment system, which will enter the storm water conveyance system that discharges to the Mystic River, is expected to be 20 gallons per minute. The conversion of 20 gallons per minute, which is expected to occur only infrequently in response to heavy rainfall events, to cubic feet per second results in a discharge through the treatment system of 0.044 or 1.4 percent of the 7Q10. Therefore, under the most adverse combined conditions of heavy precipitation and low river flow, the discharge which is the subject of this Notice of Intent will increase the river flow by approximately 1.4 percent. During the vast majority of the time, the contribution from the treatment system to total river flow will be much less than 1.4 percent. Clean Properties expects that the a flow increase of up to 1.4 percent is a de minimis volume increase and is not likely to exacerbate erosion and scouring in the receiving water body.

APPENDIX B

Laboratory Data Report 13D1148 Sampled April 26, 2013
To Support this Notice of Intent

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

May 6, 2013

Marcia Berger Clean Properties 111 Boston Post Road, Suite 211 Sudbury, MA 01776

Project Location: 8 Forest St., Medford, MA

Client Job Number: Project Number: 0549

Laboratory Work Order Number: 13D1148

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on April 29, 2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

111 Boston Post Road, Suite 211

Sudbury, MA 01776 ATTN: Marcia Berger

Clean Properties

REPORT DATE: 5/6/2013

PURCHASE ORDER NUMBER: 0549

PROJECT NUMBER: 0549

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 13D1148

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 8 Forest St., Medford, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Sump RGP Baseline	13D1148-01	Ground Water		EPA 1664A	
				EPA 420.1	
				SW-846 6010C	
				SW-846 8082A	
				SW-846 8270D	
SR-2	13D1148-02	Ground Water		SW-846 8260C	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Oualifications:

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Bromochloromethane, Carbon Disulfide, Diisopropyl Ether (DIPE), Methylene Chloride

B072135-BS1, B072135-BSD1

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Naphthalene

13D1148-02[SR-2], B072135-BLK1, B072135-BS1, B072135-BSD1

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DBCP), tert-Butyl Ethyl Ether (TBEE)

B072135-BS1, B072135-BSD1

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

B072135-BS1

Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.

Analyte & Samples(s) Qualified:

2-Butanone (MEK), 2-Hexanone (MBK), Acetone, Bromomethane

B072135-BSD1, B072135-BS1

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene, 2-Hexanone (MBK), Naphthalene

13D1148-02[SR-2], B072135-BLK1, B072135-BS1, B072135-BSD1

Elevated reporting limit due to high concentration of target compounds. MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

13D1148-02[SR-2]

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dibromo-3-chloropropane (DBCP), Naphthalene

13D1148-02[SR-2], B072135-BLK1, B072135-BS1, B072135-BSD1

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

13D1148-02[SR-2], B072135-BLK1, B072135-BS1, B072135-BSD1

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Carbon Disulfide, Chloromethane, Diisopropyl Ether (DIPE), Methylene Chloride

B072135-BS1, B072135-BSD1

SW-846 8270D

Qualifications:

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

2-Chloronaphthalene

13D1148-01[Sump RGP Baseline], B072107-BLK1, B072107-BS1, B072107-BSD1

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Benzo(g,h,i)perylene

B072107-BSD1

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

Benzo(g,h,i)perylene

13D1148-01[Sump RGP Baseline], B072107-BLK1, B072107-BS1

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

4-Chloroaniline, Anthracene, Di-n-butylphthalate

13D1148-01[Sump RGP Baseline], B072107-BLK1, B072107-BS1, B072107-BSD1

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director Culu

Project Location: 8 Forest St., Medford, MA Sample Description: Work Order: 13D1148

Date Received: 4/29/2013

Field Sample #: Sump RGP Baseline

Sampled: 4/26/2013 11:23

Sample ID: 13D1148-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Acenaphthylene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Acetophenone	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Aniline	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Anthracene	ND	5.0	μg/L	1	V-05	SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Benzo(a)anthracene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Benzo(a)pyrene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Benzo(b)fluoranthene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	R-05	SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Benzo(k)fluoranthene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Bis(2-chloroethoxy)methane	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Bis(2-chloroethyl)ether	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
4-Bromophenylphenylether	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Butylbenzylphthalate	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
4-Chloroaniline	ND	10	μg/L	1	V-05	SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2-Chloronaphthalene	ND	10	μg/L	1	L-04	SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2-Chlorophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Chrysene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Dibenz(a,h)anthracene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Dibenzofuran	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Di-n-butylphthalate	ND	10	μg/L	1	V-05	SW-846 8270D	4/30/13	5/2/13 15:41	CMR
1,2-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
1,3-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
1,4-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
3,3-Dichlorobenzidine	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4-Dichlorophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Diethylphthalate	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4-Dimethylphenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Dimethylphthalate	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4-Dinitrophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,6-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Di-n-octylphthalate	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Fluoranthene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Fluorene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Hexachlorobenzene	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Hexachlorobutadiene	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Hexachloroethane	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Isophorone	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2-Methylnaphthalene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR

Page 7 of 34 13D1148_1 Contest_Final 05 06 13 1643 05/06/13 16:44:00

Project Location: 8 Forest St., Medford, MA Sample Description: Work Order: 13D1148

Date Received: 4/29/2013

Field Sample #: Sump RGP Baseline Sampled: 4/26/2013 11:23

Sample ID: 13D1148-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
3/4-Methylphenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Naphthalene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Nitrobenzene	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2-Nitrophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
4-Nitrophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Pentachlorophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Phenanthrene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Phenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Pyrene	ND	5.0	$\mu g/L$	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4,5-Trichlorophenol	ND	10	$\mu g/L$	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
2,4,6-Trichlorophenol	ND	10	μg/L	1		SW-846 8270D	4/30/13	5/2/13 15:41	CMR
Surrogates		% Recovery	Recovery Limits		Flag				
2-Fluorophenol		38.2	15-110					5/2/13 15:41	
Phenol-d6		34.3	15-110					5/2/13 15:41	
NG41		(()	20 120					5/0/10 15.41	

Project Location: 8 Forest St., Medford, MA Sample Description: Work Order: 13D1148

Date Received: 4/29/2013

Field Sample #: Sump RGP Baseline

Sampled: 4/26/2013 11:23

Sample ID: 13D1148-01
Sample Matrix: Ground Water

		Po	lychlorinated Bip	henyls By GC/I	ECD				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/L	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1221 [1]	ND	0.20	μg/L	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1232 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1242 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1248 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1254 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1260 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1262 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Aroclor-1268 [1]	ND	0.20	$\mu g/L$	1		SW-846 8082A	4/30/13	5/1/13 15:49	MJC
Surrogates		% Recovery	Recovery Limi	ts	Flag				
Decachlorobiphenyl [1]		87.1	30-150					5/1/13 15:49	
Decachlorobiphenyl [2]		97.7	30-150					5/1/13 15:49	
Tetrachloro-m-xylene [1]		84.5	30-150					5/1/13 15:49	
Tetrachloro-m-xylene [2]		91.7	30-150					5/1/13 15:49	

Project Location: 8 Forest St., Medford, MA Sample Description: Work Order: 13D1148

Date Received: 4/29/2013

Field Sample #: Sump RGP Baseline Sampled: 4/26/2013 11:23

Sample ID: 13D1148-01
Sample Matrix: Ground Water

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Iron		0.16	0.050	mg/L	1		SW-846 6010C	4/30/13	5/1/13 13:48	OP

Metals Analyses (Total)

Work Order: 13D1148 Project Location: 8 Forest St., Medford, MA Sample Description:

Date Received: 4/29/2013

Field Sample #: Sump RGP Baseline

Sampled: 4/26/2013 11:23

Sample ID: 13D1148-01 Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Phenol	ND	0.050	mg/L	1		EPA 420.1	5/6/13	5/6/13 11:00	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L	1		EPA 1664A	5/1/13	5/1/13 12:30	LL

Project Location: 8 Forest St., Medford, MA Work Order: 13D1148 Sample Description:

Date Received: 4/29/2013 Field Sample #: SR-2

Sampled: 4/26/2013 13:00

Sample ID: 13D1148-02 Sample Matrix: Ground Water

Sample Flags: RL-05			Volatile Organic Co	mpounds by GO	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	1900	250	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
tert-Amyl Methyl Ether (TAME)	ND	120	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Benzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Bromobenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Bromochloromethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Bromodichloromethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Bromoform	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Bromomethane	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
2-Butanone (MEK)	3600	250	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
n-Butylbenzene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
sec-Butylbenzene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
tert-Butylbenzene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	120	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Carbon Disulfide	ND	120	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Carbon Tetrachloride	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Chlorobenzene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Chlorodibromomethane	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Chloroethane	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Chloroform	ND	50	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Chloromethane	ND	50	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
2-Chlorotoluene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
4-Chlorotoluene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	$\mu g/L$	25	V-05	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2-Dibromoethane (EDB)	ND	12	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Dibromomethane	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2-Dichlorobenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,3-Dichlorobenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,4-Dichlorobenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Dichlorodifluoromethane (Freon 12)	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1-Dichloroethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2-Dichloroethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1-Dichloroethylene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
cis-1,2-Dichloroethylene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
trans-1,2-Dichloroethylene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2-Dichloropropane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,3-Dichloropropane	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
2,2-Dichloropropane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1-Dichloropropene	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
cis-1,3-Dichloropropene	ND	10	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
trans-1,3-Dichloropropene	ND	10	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Diethyl Ether	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Diisopropyl Ether (DIPE)	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,4-Dioxane	ND	1200	μg/L	25	V-16	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Ethylbenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH

Page 12 of 34 13D1148_1 Contest_Final 05 06 13 1643 05/06/13 16:44:00

Project Location: 8 Forest St., Medford, MA Work Order: 13D1148 Sample Description:

Date Received: 4/29/2013 Field Sample #: SR-2

Sampled: 4/26/2013 13:00

Sample ID: 13D1148-02 Sample Matrix: Ground Water

Sample Flags: RL-05		Vo	latile Organic Comp	pounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
2-Hexanone (MBK)	ND	250	μg/L	25	R-05	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Isopropylbenzene (Cumene)	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
p-Isopropyltoluene (p-Cymene)	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Methyl tert-Butyl Ether (MTBE)	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Methylene Chloride	ND	120	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
4-Methyl-2-pentanone (MIBK)	ND	250	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Naphthalene	ND	50	μg/L	25	L-04, R-05, V-05	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
n-Propylbenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Styrene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1,1,2-Tetrachloroethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1,2,2-Tetrachloroethane	ND	12	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Tetrachloroethylene	31	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Tetrahydrofuran	4900	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Toluene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2,3-Trichlorobenzene	ND	50	μg/L	25	R-05, V-05	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2,4-Trichlorobenzene	ND	25	μg/L	25	V-05	SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1,1-Trichloroethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,1,2-Trichloroethane	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Trichloroethylene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Trichlorofluoromethane (Freon 11)	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2,3-Trichloropropane	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,2,4-Trimethylbenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
1,3,5-Trimethylbenzene	ND	25	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Vinyl Chloride	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
m+p Xylene	ND	50	μg/L	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
o-Xylene	ND	25	$\mu g/L$	25		SW-846 8260C	5/2/13	5/2/13 18:16	EEH
Surrogates		% Recovery	Recovery Limits	·	Flag				
1,2-Dichloroethane-d4		98.8	70-130					5/2/13 18:16	
Toluene-d8		103	70-130					5/2/13 18:16	
4-Bromofluorobenzene		99.0	70-130					5/2/13 18:16	

Sample Extraction Data

EP	Α	1	6	64	A

Lab Number [Field ID]	Batch	Initial [mL]		Date	
13D1148-01 [Sump RGP Baseline]	B072123	1000		05/01/13	
EPA 420.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
13D1148-01 [Sump RGP Baseline]	B072208	50.0	50.0	05/06/13	
Prep Method: SW-846 3005A-SW-846 6010C					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
13D1148-01 [Sump RGP Baseline]	B072099	50.0	50.0	04/30/13	
Prep Method: SW-846 3510C-SW-846 8082A					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
13D1148-01 [Sump RGP Baseline]	B072119	1000	10.0	04/30/13	
Prep Method: SW-846 5030B-SW-846 8260C					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
13D1148-02 [SR-2]	B072135	0.2	5.00	05/02/13	
Prep Method: SW-846 3510C-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
13D1148-01 [Sump RGP Baseline]	B072107	1000	1.00	04/30/13	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072135 - SW-846 5030B										
Blank (B072135-BLK1)				Prepared: 05	5/01/13 Anal	yzed: 05/02/1	13			
Acetone	ND	10	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	5.0	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu \text{g/L}$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	1.0	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	10	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	5.0	μg/L							
Carbon Disulfide	ND	5.0	μg/L							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorodibromomethone	ND	1.0	μg/L							
Chlorodibromomethane Chloroethane	ND	0.50	μg/L μg/I							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0 2.0	μg/L μg/L							
2-Chlorotoluene	ND	1.0	μg/L μg/L							
4-Chlorotoluene	ND ND	1.0	μg/L μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND ND	2.0	μg/L μg/L							V-05
1,2-Dibromoethane (EDB)	ND ND	0.50	μg/L μg/L							V-0 3
Dibromomethane (EBB)	ND ND	1.0	μg/L μg/L							
1,2-Dichlorobenzene	ND ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	$\mu g/L$							
1,1-Dichloropropene	ND	0.50	$\mu g/L$							
cis-1,3-Dichloropropene	ND	0.40	$\mu g/L$							
trans-1,3-Dichloropropene	ND	0.40	$\mu g \! / \! L$							
Diethyl Ether	ND	2.0	$\mu \text{g/L}$							
Diisopropyl Ether (DIPE)	ND	0.50	$\mu \text{g/L}$							
1,4-Dioxane	ND	50	μg/L							V-16
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.50	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							R-05
Isopropylbenzene (Cumene)	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L							T 04 D 05 55 55
Naphthalene	ND	2.0	μg/L							L-04, R-05, V-05

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

1.0 1.0 0.50 1.0 2.0 1.0 2.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 05	5/01/13 Analyzed: 05/	02/13			
1.0 1.0 0.50 1.0 2.0 1.0 2.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 05	5/01/13 Analyzed: 05/	02/13			
1.0 1.0 0.50 1.0 2.0 1.0 2.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L						
1.0 0.50 1.0 2.0 1.0 2.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L						
0.50 1.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L						
1.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L						
2.0 1.0 2.0 1.0 1.0 1.0 2.0	μg/L μg/L μg/L						
1.0 2.0 1.0 1.0 1.0 2.0	μg/L μg/L						
2.0 1.0 1.0 1.0 2.0	$\mu g/L$						
1.0 1.0 1.0 1.0 2.0							
1.0 1.0 1.0 2.0	mo/l						R-05, V-05
1.0 1.0 2.0							V-05
1.0 2.0	μg/L						
2.0	μg/L						
	μg/L						
2 ()	μg/L μg/L						
2.0 1.0	μg/L μg/L						
1.0	μg/L μg/L						
2.0	μg/L μg/L						
2.0	μg/L μg/L						
1.0	μg/L μg/L						
	μg/L	25.0	99.3	70-130			
	μg/L μg/L	25.0	99.5	70-130			
	μg/L μg/L	25.0	97.9	70-130			
	P-6-1		5/01/13 Analyzed: 05/				
10	μg/L	100	124	40-160			
5.0	μg/L μg/L	10.0	116	70-130			
1.0	μg/L	10.0	119	70-130			
1.0	μg/L	10.0	102	70-130			
1.0	μg/L	10.0	134	* 70-130			L-02
1.0	μg/L	10.0	102	70-130			
1.0	μg/L	10.0	83.9	70-130			
2.0	μg/L	10.0	62.5	40-160			L-14
10	μg/L	100	114	40-160			
1.0	$\mu g/L$	10.0	110	70-130			
1.0	μg/L	10.0	117	70-130			
1.0	$\mu g/L$	10.0	116	70-130			
5.0	$\mu g/L$	10.0	122	70-130			
5.0	$\mu g/L$	10.0	141	* 70-130			L-02, V-20
1.0	$\mu g/L$	10.0	103	70-130			
1.0	$\mu g \! / \! L$	10.0	110	70-130			
0.50	$\mu g \! / \! L$	10.0	102	70-130			
2.0	μg/L	10.0	123	70-130			
2.0	μg/L	10.0	98.7	70-130			
2.0	μg/L	10.0	106	40-160			V-20
			113	70-130			
							L-07, V-05
0.50							
• •							
1.0							
1.0							
	1.0 1.0 2.0 0.50 1.0	1.0 µg/L 1.0 µg/L 2.0 µg/L 0.50 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L 1.0 µg/L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 μg/L 10.0 110 70-130 1.0 μg/L 10.0 113 70-130 2.0 μg/L 10.0 64.3 * 70-130 0.50 μg/L 10.0 99.6 70-130 1.0 μg/L 10.0 103 70-130 1.0 μg/L 10.0 109 70-130 1.0 μg/L 10.0 113 70-130 1.0 μg/L 10.0 113 70-130 1.0 μg/L 10.0 113 70-130 1.0 μg/L 10.0 104 70-130	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Page 16 of 34 13D1148_1 Contest_Final 05 06 13 1643 05/06/13 16:44:00

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072135 - SW-846 5030B										
LCS (B072135-BS1)				Prepared: 05	5/01/13 Analy	/zed: 05/02/	13			
Dichlorodifluoromethane (Freon 12)	7.10	2.0	μg/L	10.0		71.0	40-160			
1,1-Dichloroethane	12.0	1.0	μg/L	10.0		120	70-130			
1,2-Dichloroethane	9.55	1.0	μg/L	10.0		95.5	70-130			
1,1-Dichloroethylene	11.9	1.0	μg/L	10.0		119	70-130			
cis-1,2-Dichloroethylene	11.5	1.0	μg/L	10.0		115	70-130			
rans-1,2-Dichloroethylene	12.8	1.0	μg/L	10.0		128	70-130			
1,2-Dichloropropane	11.8	1.0	μg/L	10.0		118	70-130			
1,3-Dichloropropane	10.3	0.50	μg/L	10.0		103	70-130			
2,2-Dichloropropane	10.9	1.0	μg/L	10.0		109	70-130			
1,1-Dichloropropene	11.7	0.50	μg/L	10.0		117	70-130			
cis-1,3-Dichloropropene	11.1	0.40	μg/L	10.0		111	70-130			
trans-1,3-Dichloropropene	11.8	0.40	μg/L	10.0		118	70-130			
Diethyl Ether	11.5	2.0	μg/L	10.0		115	70-130			
Disopropyl Ether (DIPE)	14.8	0.50	μg/L μg/L	10.0		148 *	70-130			L-02, V-20
1,4-Dioxane	97.7	50	μg/L	100		97.7	40-160			V-16
Ethylbenzene	10.9	1.0	μg/L μg/L	10.0		109	70-130			, -10
Hexachlorobutadiene	10.6	0.50	μg/L	10.0		106	70-130			
2-Hexanone (MBK)		10	μg/L μg/L	10.0		107	40-160			R-05
sopropylbenzene (Cumene)	107	1.0	μg/L μg/L	10.0		107	70-130			K-05
o-Isopropyltoluene (p-Cymene)	10.9	1.0	μg/L μg/L	10.0		116	70-130			
Methyl tert-Butyl Ether (MTBE)	11.6	1.0	μg/L μg/L	10.0		114	70-130			
Methylene Chloride	11.4	5.0	μg/L μg/L							L-02, V-20
4-Methyl-2-pentanone (MIBK)	15.6	10		10.0		156 *	70-130			L-02, V-20
	104		μg/L	100		104	40-160			1 04 D 05 W 05
Naphthalene	5.26	2.0	μg/L	10.0		52.6 *	70-130			L-04, R-05, V-05
n-Propylbenzene	10.9	1.0	μg/L	10.0		109	70-130			
Styrene	10.8	1.0	μg/L	10.0		108	70-130			
1,1,2-Tetrachloroethane	10.2	1.0	μg/L	10.0		102	70-130			
1,1,2,2-Tetrachloroethane	8.52	0.50	μg/L	10.0		85.2	70-130			
Fetrachloroethylene	11.1	1.0	μg/L	10.0		111	70-130			
Tetrahydrofuran	11.6	2.0	μg/L	10.0		116	70-130			
Toluene	11.1	1.0	μg/L	10.0		111	70-130			
1,2,3-Trichlorobenzene	5.63	2.0	μg/L	10.0		56.3 *	70-130			L-07A, R-05, V-0
1,2,4-Trichlorobenzene	8.07	1.0	μg/L	10.0		80.7	70-130			V-05
1,1,1-Trichloroethane	10.7	1.0	μg/L	10.0		107	70-130			
1,1,2-Trichloroethane	9.57	1.0	μg/L	10.0		95.7	70-130			
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130			
Trichlorofluoromethane (Freon 11)	10.1	2.0	μg/L	10.0		101	70-130			
1,2,3-Trichloropropane	8.35	2.0	μg/L	10.0		83.5	70-130			
1,2,4-Trimethylbenzene	10.8	1.0	μg/L	10.0		108	70-130			
,3,5-Trimethylbenzene	9.71	1.0	$\mu g/L$	10.0		97.1	70-130			
Vinyl Chloride	10.2	2.0	$\mu g/L$	10.0		102	70-130			
m+p Xylene	22.0	2.0	$\mu g/L$	20.0		110	70-130			
o-Xylene	11.0	1.0	μg/L	10.0		110	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.0		μg/L	25.0		95.8	70-130			
Surrogate: Toluene-d8	25.1		$\mu g/L$	25.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	24.2		$\mu g/L$	25.0		96.6	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Instruction Modely Educ (TAME) 130 50 195 195 196 100 130 70-30 108 20 105 1	Notes	Notes	RPD Limit		RPD	%REC Limits)	%REC	Source Result	Spike Level	Units	Reporting Limit	Result	Analyte
Accessed 148														Batch B072135 - SW-846 5030B
set-Amy Methyl Ether (TAME))2/13	zed: 05/0	5/01/13 Anal	Prepared: 05				LCS Dup (B072135-BSD1)
Reacene	L-14	L-14	20		17.8	40-160		148		100	μg/L	10	148	Acetone
Remonchance 10.4 1.0 μg/L 10.0 10.4 70.130 1.65 2.9 1.00			20		10.8	70-130		130		10.0	$\mu g/L$	5.0	13.0	ert-Amyl Methyl Ether (TAME)
Remarks 133 10			20		1.52	70-130		117		10.0	$\mu g/L$	1.0	11.7	Benzene
Bromodichleromethane 10.3 1.0 μgL 10.0 10.1 70.130 1.56 20 1.56 1.05 1			20		1.65	70-130		104		10.0	$\mu g/L$	1.0	10.4	Bromobenzene
Bromeform 9.01 1.0 μg/L 10.0 90.1 70.130 7.13 2.0 Promomeform 7.42 2.0 μg/L 10.0 74.2 3.0 40.60 17.1 2.0 T.1 2.0 P.1 2.0 T.1 2.0 T.1 2.0 P.1 2.0 T.1	L-02	L-02	20		0.975	70-130	*	133		10.0	$\mu g/L$	1.0	13.3	Bromochloromethane
Assemblane 7.42 2.0 µgL 10.0 74.2 40.160 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 17.1 20 20 20 20 20 20 20 2			20		1.56	70-130		103		10.0	$\mu g/L$	1.0	10.3	Bromodichloromethane
Ellutamone (MEK) 158			20		7.13	70-130		90.1		10.0	$\mu g/L$	1.0	9.01	Bromoform
Figure			20		17.1	40-160		74.2		10.0	$\mu g/L$	2.0	7.42	Bromomethane
See-Burylhenzene 11.3 1.0	L-14	L-14	20		19.4	40-160		138		100	$\mu g/L$	10	138	2-Butanone (MEK)
ert-Buryl Ethyl Ether (TBEE) 13.5			20		2.12	70-130		107		10.0	$\mu g/L$	1.0	10.7	n-Butylbenzene
Carbon Dissilide Carbon Dissiliation Dissilide Carbon Dissilide Carbon Dissilide Carbon Dissilide Carbon Dissilide Carbon Dissilide Carbon Dissiliation Dissi			20		3.57	70-130		113		10.0	$\mu g/L$	1.0	11.3	ec-Butylbenzene
Carbon Disulfide			20		1.21	70-130		115		10.0	$\mu g/L$	1.0	11.5	ert-Butylbenzene
Carbon Tetrachloride	L-07	L-07	20		10.3	70-130	*	135		10.0	$\mu \text{g/L}$	5.0	13.5	tert-Butyl Ethyl Ether (TBEE)
Enlorochenzene 10.8	02, V-20	L-02, V	20		3.10	70-130	*	136		10.0	$\mu g/L$	5.0	13.6	Carbon Disulfide
Chlorodibromenthane			20		1.34	70-130		105		10.0	$\mu \text{g/L}$	1.0	10.5	Carbon Tetrachloride
Enloroethane 122 2.0 µg/L 10.0 122 70.130 0.816 20 Chloroform 102 2.0 µg/L 10.0 102 70.130 0.816 20 Chloroform 102 2.0 µg/L 10.0 102 70.130 0.816 20 Chlorotorm 102 2.0 µg/L 10.0 102 70.130 2.80 20 Chlorotoluene 11.0 1.0 µg/L 10.0 107 70.130 2.87 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 2.87 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 2.87 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 2.87 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 2.87 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 19.4 20 Chlorotoluene 11.0 1.0 µg/L 10.0 110 70.130 19.4 20 Chlorotoluene 11.0 1.0 µg/L 10.0 108 70.130 19.4 20 Chlorotoluene 11.0 10 µg/L 10.0 108 70.130 19.4 20 Chlorotoluene 11.0 10 µg/L 10.0 106 70.130 19.4 20 Chlorotoluene 11.0 10.0 µg/L 10.0 106 70.130 19.8 37 20 Chlorotoluene 11.0 µg/L 10.0 106 70.130 19.8 37 20 Chlorotoluene 11.2 10 µg/L 10.0 106 70.130 2.89 20 Chlorotoluene 11.2 10 µg/L 10.0 112 70.130 19.4 20 Chlorotoluene 11.2 10 µg/L 10.0 114 70.130 19.4 20 Chlorotoluene 11.2 10 µg/L 10.0 104 70.130 19.8 37 20 Chlorotoluene 11.2 10 µg/L 10.0 104 70.130 19.8 30 20 Chlorotoluene 11.1 10 µg/L 10.0 104 70.130 19.8 30 20 Chlorotoluene 11.1 10 µg/L 10.0 104 70.130 19.8 30 20 Chlorotoluene 11.1 10 µg/L 10.0 104 70.130 19.8 30 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.4 30 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 111 70.130 19.1 20 Chlorotoluene 11.1 10 µg/L 10.0 1			20		2.57	70-130		108		10.0	$\mu \text{g/L}$	1.0	10.8	Chlorobenzene
Enlioroform 10.2 2.0 µg/L 10.0 102 70.130 2.80 20 102 102 102 102 103 102 103 102 103 102 103 103 103 103 103 103 103 103 103 103			20		5.83	70-130		108		10.0	$\mu g/L$	0.50	10.8	Chlorodibromomethane
Chlorordibane			20		0.816	70-130		122		10.0	$\mu g/L$	2.0	12.2	Chloroethane
Chlorotoluene			20		2.80	70-130		102		10.0	μg/L	2.0	10.2	Chloroform
Part	V-20	V-20	20		5.87	40-160		112		10.0	μg/L	2.0	11.2	Chloromethane
Performant 1.0			20		2.87	70-130		107		10.0	μg/L	1.0		2-Chlorotoluene
			20		2.33	70-130		110		10.0	μg/L	1.0		1-Chlorotoluene
2.2. Dibromethane (EDB) 10.8 0.50 µg/L 10.0 108 70-130 8.37 20 7.0 Dibromethane (EDB) 10.6 10.6 10.0 µg/L 10.0 106 70-130 2.98 20 7.0 Dibromethane 11.4 1.0 µg/L 10.0 114 70-130 4.1 20 7.0 Dibromethane 11.2 1.0 µg/L 10.0 112 70-130 0.800 20 7.0 Dibromethane (Freen 12) 7.07 2.0 µg/L 10.0 104 70-130 0.289 20 7.0 Dibromethane (Freen 12) 7.07 2.0 µg/L 10.0 104 70-130 0.289 20 7.0 Dibromethane (Freen 12) 7.07 2.0 µg/L 10.0 104 70-130 0.289 20 7.0 Dibromethane (Freen 12) 7.07 2.0 µg/L 10.0 100 70.7 40-160 0.423 20 7.0 Dibromethane 7.0 Dibromethan	V-05	V-05	20		19.4	70-130		78.1		10.0	μg/L	2.0		,2-Dibromo-3-chloropropane (DBCP)
Dichoromethane 10.6 1.0 mg/L 10.0 10.6 70.130 2.98 20 2.2 2.2 2.2 2.2 2.3												0.50		,2-Dibromoethane (EDB)
2-Dichlorobenzene												1.0		Dibromomethane
3-Dichlorobenzene 11.2 1.0												1.0		.2-Dichlorobenzene
4.Dichlorobenzene														
Dichlorodifluoromethane (Fron 12) 7,07 2.0 µg/L 10.0 70.7 40-160 0.423 20 1.														
1.0														
11.6 1.0														
11.6 1.0														
rans-1,2-Dichloroethylene 12,6 1.0 µg/L 10.0 126 70-130 1.02 20 1.2-Dichloropropane 12.1 1.0 µg/L 10.0 121 70-130 2.51 20 1.3-Dichloropropane 11.4 0.50 µg/L 10.0 114 70-130 10.6 20 2.2-Dichloropropane 11.5 1.0 µg/L 10.0 115 70-130 5.35 20 1.1-Dichloropropane 11.3 0.50 µg/L 10.0 115 70-130 3.66 20 1.1-Dichloropropene 11.3 0.50 µg/L 10.0 113 70-130 3.66 20 1.1-Dichloropropene 11.7 0.40 µg/L 10.0 117 70-130 5.01 20 1.0-Dichloropropene 12.8 0.40 µg/L 10.0 117 70-130 5.01 20 1.0-Dichlyl Ether (DIPE) 16.0 0.50 µg/L 10.0 128 70-130 8.03 20 1.4-Dichloropropene 12.4 2.0 µg/L 10.0 124 70-130 7.62 20 1.4-Dichloropropene 13.3 5.0 µg/L 10.0 160 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.5 1.0 µg/L 10.0 160 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.5 1.0 µg/L 10.0 113 40-160 14.3 20 Northyl Ether (DIPE) 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 1.4-Dicklyl Ether (DIPE) 10.0 105 70-130 1.85 20 1.4-Dicklyl Ether (MTBE) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.														-
1,2-Dichloropropane 12,1 1.0 µg/L 10.0 121 70-130 2.51 20 1,3-Dichloropropane 11.4 0.50 µg/L 10.0 114 70-130 10.6 20 2,2-Dichloropropane 11.5 1.0 µg/L 10.0 115 70-130 5.35 20 1,1-Dichloropropane 11.3 0.50 µg/L 10.0 113 70-130 3.66 20 20 20 20 20 20 20														<u> </u>
1,3-Dichloropropane 11.4 0.50 µg/L 10.0 114 70-130 10.6 20 2,2-Dichloropropane 11.5 1.0 µg/L 10.0 115 70-130 5.35 20 1,1-Dichloropropene 11.3 0.50 µg/L 10.0 113 70-130 3.66 20 cis-1,3-Dichloropropene 11.7 0.40 µg/L 10.0 117 70-130 5.01 20 trans-1,3-Dichloropropene 12.8 0.40 µg/L 10.0 117 70-130 5.01 20 Dichly Ether 12.4 2.0 µg/L 10.0 128 70-130 8.03 20 Dichly Ether 12.4 2.0 µg/L 10.0 124 70-130 7.62 20 Dispropyl Ether (DIPE) 16.0 0.50 µg/L 10.0 124 70-130 7.34 20 L-0.1,4-Dioxane 113 50 µg/L 100 113 40-160 14.3 20 V Ethylbenzene 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 Ethylbenzene 10.5 1.0 µg/L 10.0 105 70-130 3.46 20 Ethylbenzene (DIPE) 132 10 µg/L 10.0 105 70-130 3.46 20 Ethylbenzene (MBK) 132 10 µg/L 10.0 132 40-160 21.0 * 20 L-0.1,4-Dioxopropylbenzene (Cumene) 10.7 1.0 µg/L 10.0 132 40-160 21.0 * 20 L-0.1,4-Dioxopropylbenzene (Cumene) 11.3 1.0 µg/L 10.0 132 40-160 21.0 * 20 L-0.1,4-Dioxopropylbenzene (Cumene) 11.3 1.0 µg/L 10.0 132 70-130 1.85 20 P-15opropylbenzene (Cumene) 11.3 1.0 µg/L 10.0 129 70-130 1.85 20 P-15opropylbenzene (MEK) 12.9 1.0 µg/L 10.0 129 70-130 12.8 20 Methyl tert-Butyl Ether (MTBE) 12.9 1.0 µg/L 10.0 129 70-130 12.8 20 Methylene Chloride 16.3 5.0 µg/L 10.0 129 70-130 4.31 20 L-0.1														· · · · · · · · · · · · · · · · · · ·
2,2-Dichloropropane														
1,1-Dichloropropene 11.3 0.50 µg/L 10.0 113 70-130 3.66 20 20 20 20 20 20 20														
11.7 0.40 μg/L 10.0 117 70-130 5.01 20 128 12.8 1														• •
rans-1,3-Dichloropropene 12.8 0.40 μg/L 10.0 128 70-130 8.03 20 Diethyl Ether 12.4 2.0 μg/L 10.0 124 70-130 7.62 20 Diisopropyl Ether (DIPE) 16.0 0.50 μg/L 10.0 160 * 70-130 7.34 20 L-0.0 1,4-Dioxane 113 50 μg/L 100 113 40-160 14.3 20 V Ethylbenzene 10.5 1.0 μg/L 10.0 105 70-130 3.46 20 Ethexachlorobutadiene 9.97 0.50 μg/L 10.0 99.7 70-130 6.31 20 2-Hexanone (MBK) 132 10 μg/L 100 132 40-160 21.0 * 20 L-14 4csopropylbenzene (Cumene) 10.7 1.0 μg/L 10.0 107 70-130 1.85 20 Delsopropyltoluene (p-Cymene) 11.3 1.0 μg/L 10.0 113 70-130 12.8 20 Methyl tert-Butyl Ether (MTBE)														
Diethyl Ether 12.4 2.0 μg/L 10.0 124 70-130 7.62 20 20 20 20 20 20 20														* *
Disopropyl Ether (DIPE) 16.0 0.50 μg/L 10.0 160 * 70-130 7.34 20 L-0.0 1,4-Dioxane 113 50 μg/L 100 113 40-160 14.3 20 No.0 Ethylbenzene 10.5 1.0 μg/L 10.0 105 70-130 3.46 20 Hexachlorobutadiene 9.97 0.50 μg/L 10.0 99.7 70-130 6.31 20 2-Hexanone (MBK) 132 10 μg/L 100 132 40-160 21.0 * 20 L-1.0 despropylbenzene (Cumene) 10.7 1.0 μg/L 10.0 107 70-130 1.85 20 p-Isopropyltoluene (p-Cymene) 11.3 1.0 μg/L 10.0 113 70-130 2.79 20 Methyl tert-Butyl Ether (MTBE) 12.9 1.0 μg/L 10.0 163 * 70-130 4.31 20 L-0.0														
1,4-Dioxane 113 50 μg/L 100 113 40-160 14.3 20 V 15 1.0 μg/L 10.0 105 70-130 3.46 20 Hexachlorobutadiene 9.97 0.50 μg/L 10.0 99.7 70-130 6.31 20 15 15 15 15 15 15 15 15 15 15 15 15 15	02, V-20	1-02 V					*							-
Ethylbenzene 10.5 1.0 μg/L 10.0 105 70-130 3.46 20 Hexachlorobutadiene 9.97 0.50 μg/L 10.0 99.7 70-130 6.31 20 E-Hexanone (MBK) 132 10 μg/L 100 132 40-160 21.0 * 20 L-10 sopropylbenzene (Cumene) 10.7 1.0 μg/L 10.0 107 70-130 1.85 20 E-Isopropylbenzene (p-Cymene) 11.3 1.0 μg/L 10.0 113 70-130 2.79 20 Methyl tert-Butyl Ether (MTBE) 12.9 1.0 μg/L 10.0 129 70-130 12.8 20 Methylene Chloride 16.3 5.0 μg/L 10.0 163 * 70-130 4.31 20 L-0.0 Methylene Chloride	02, v-20 V-16						•							
Hexachlorobutadiene 9.97 0.50 μg/L 10.0 99.7 70-130 6.31 20 2-Hexanone (MBK) 132 10 μg/L 100 132 40-160 21.0 * 20 L-1- sopropylbenzene (Cumene) 10.7 1.0 μg/L 10.0 107 70-130 1.85 20 2-Isopropyltoluene (p-Cymene) 11.3 1.0 μg/L 10.0 113 70-130 2.79 20 Methyl tert-Butyl Ether (MTBE) 12.9 1.0 μg/L 10.0 129 70-130 12.8 20 Methylene Chloride 16.3 5.0 μg/L 10.0 163 * 70-130 4.31 20 L-0.	, 10	v-10												
2-Hexanone (MBK) 132 10 μg/L 100 132 40-160 21.0 * 20 L-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1														
Sopropylbenzene (Cumene) 10.7 1.0 μg/L 10.0 107 70-130 1.85 20 1.85	14, R-05	I_1/ D		*										
p-Isopropyltoluene (p-Cymene) 11.3 1.0 μ g/L 10.0 113 70-130 2.79 20 Methyl tert-Butyl Ether (MTBE) 12.9 1.0 μ g/L 10.0 129 70-130 12.8 20 Methylene Chloride 16.3 5.0 μ g/L 10.0 163 * 70-130 4.31 20 L-0.0	1-t, IX-UJ	L-14, K												· · ·
Methyl tert-Butyl Ether (MTBE) 12.9 1.0 μg/L 10.0 129 70-130 12.8 20 Methylene Chloride 16.3 5.0 μg/L 10.0 163 * 70-130 4.31 20 L-0.														* **
Methylene Chloride 16.3 5.0 μg/L 10.0 163 * 70-130 4.31 20 L-0.														
	02 37 20	T 00 T					44.							
+-iviculyi-2-delitatione (191DN) 121 40-160 14.5 20	02, V-20	L-02, V					*							-
	, R-05, V-05												121	

Page 18 of 34 13D1148_1 Contest_Final 05 06 13 1643 05/06/13 16:44:00

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072135 - SW-846 5030B										
LCS Dup (B072135-BSD1)				Prepared: 05	5/01/13 Anal	yzed: 05/02/	13			
n-Propylbenzene	11.0	1.0	μg/L	10.0		110	70-130	1.46	20	
Styrene	10.8	1.0	$\mu g/L$	10.0		108	70-130	0.278	20	
1,1,1,2-Tetrachloroethane	10.1	1.0	$\mu g/L$	10.0		101	70-130	0.692	20	
1,1,2,2-Tetrachloroethane	9.35	0.50	$\mu g/L$	10.0		93.5	70-130	9.29	20	
Tetrachloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130	2.19	20	
Tetrahydrofuran	11.6	2.0	$\mu g/L$	10.0		116	70-130	0.518	20	
Toluene	11.2	1.0	$\mu g/L$	10.0		112	70-130	0.987	20	
1,2,3-Trichlorobenzene	7.35	2.0	$\mu g/L$	10.0		73.5	70-130	26.5	* 20	R-05, V-05
1,2,4-Trichlorobenzene	8.90	1.0	$\mu g/L$	10.0		89.0	70-130	9.78	20	V-05
1,1,1-Trichloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130	0.659	20	
1,1,2-Trichloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130	10.4	20	
Trichloroethylene	10.5	1.0	$\mu g/L$	10.0		105	70-130	2.21	20	
Trichlorofluoromethane (Freon 11)	9.78	2.0	$\mu g/L$	10.0		97.8	70-130	3.32	20	
1,2,3-Trichloropropane	9.18	2.0	$\mu g/L$	10.0		91.8	70-130	9.47	20	
1,2,4-Trimethylbenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130	1.02	20	
1,3,5-Trimethylbenzene	9.69	1.0	$\mu g/L$	10.0		96.9	70-130	0.206	20	
Vinyl Chloride	10.0	2.0	$\mu \text{g/L}$	10.0		100	70-130	1.59	20	
m+p Xylene	21.3	2.0	$\mu g/L$	20.0		106	70-130	3.42	20	
o-Xylene	10.7	1.0	μg/L	10.0		107	70-130	2.21	20	
Surrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.6	70-130			
Surrogate: Toluene-d8	25.8		$\mu g/L$	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	24.5		μg/L	25.0		97.9	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B072107 - SW-846 3510C										
Blank (B072107-BLK1)				Prepared: 04	1/30/13 Anal	yzed: 05/02/1	13			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu g\!/\!L$							
Acetophenone	ND	10	$\mu g/L$							
Aniline	ND	5.0	$\mu g/L$							
Anthracene	ND	5.0	$\mu g/L$							V-05
Benzo(a)anthracene	ND	5.0	$\mu g/L$							
Benzo(a)pyrene	ND	5.0	$\mu g/L$							
Benzo(b)fluoranthene	ND	5.0	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.0	μg/L							R-05
Benzo(k)fluoranthene	ND	5.0	$\mu g/L$							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
4-Chloroaniline	ND	10	μg/L							V-05
2-Chloronaphthalene	ND	10	μg/L							L-04
2-Chlorophenol	ND	10	μg/L							
Chrysene	ND	5.0	μg/L							
Dibenz(a,h)anthracene	ND	5.0	μg/L							
Dibenzofuran	ND	5.0	μg/L							
Di-n-butylphthalate	ND	10	μg/L							V-05
1,2-Dichlorobenzene	ND	5.0	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L							
1,4-Dichlorobenzene	ND	5.0	μg/L							
3,3-Dichlorobenzidine	ND	10	μg/L							
2,4-Dichlorophenol	ND	10	μg/L							
Diethylphthalate	ND	10	μg/L							
2,4-Dimethylphenol	ND	10	μg/L μα/Ι							
Dimethylphthalate 2,4-Dinitrophenol	ND	10 10	μg/L μα/Ι							
2,4-Dinitrophenoi	ND	10	μg/L μg/I							
2,4-Dinitrotoluene	ND	10	μg/L μg/I							
Di-n-octylphthalate	ND	10	μg/L μα/Ι							
1,2-Diphenylhydrazine (as Azobenzene)	ND ND		μg/L μg/L							
Fluoranthene	ND ND	10 5.0	μg/L μg/L							
Fluorene	ND ND	5.0	μg/L μg/L							
Hexachlorobenzene	ND ND	10	μg/L μg/L							
Hexachlorobutadiene	ND ND	10	μg/L μg/L							
Hexachloroethane	ND ND	5.0	μg/L μg/L							
Indeno(1,2,3-cd)pyrene	ND ND	5.0	μg/L μg/L							
Isophorone	ND ND	10	μg/L μg/L							
2-Methylnaphthalene	ND ND	5.0	μg/L μg/L							
2-Methylphenol	ND ND	10	μg/L μg/L							
3/4-Methylphenol	ND ND	10	μg/L μg/L							
Naphthalene	ND ND	5.0	μg/L μg/L							
Nitrobenzene	ND ND	10	μg/L μg/L							
2-Nitrophenol	ND ND	10	μg/L μg/L							
4-Nitrophenol	ND ND	10	μg/L μg/L							
Pentachlorophenol	ND ND	10	μg/L μg/L							
Phenanthrene		5.0	μg/L μg/L							
i nonumentono	ND	5.0	μg/L							

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072107 - SW-846 3510C										
Blank (B072107-BLK1)				Prepared: 04	1/30/13 Analy	yzed: 05/02/1	13			
Phenol	ND	10	μg/L							
Pyrene	ND	5.0	$\mu g/L$							
,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
2,4,5-Trichlorophenol	ND	10	$\mu g/L$							
2,4,6-Trichlorophenol	ND	10	$\mu g/L$							
Surrogate: 2-Fluorophenol	74.4		μg/L	200		37.2	15-110			
Surrogate: Phenol-d6	72.6		μg/L	200		36.3	15-110			
Surrogate: Nitrobenzene-d5	69.4		μg/L	100		69.4	30-130			
Surrogate: 2-Fluorobiphenyl	61.8		μg/L	100		61.8	30-130			
Surrogate: 2,4,6-Tribromophenol	117		μg/L	200		58.7	15-110			
Surrogate: p-Terphenyl-d14	65.9		μg/L	100		65.9	30-130			
			1.0		1/20/12 A 1-					
Acenaphthene	74.1	5.0	ца/І		1/30/13 Analy					
Acenaphthylene	74.1	5.0	μg/L μg/L	100		74.1 70.4	40-140			
Acetophenone	70.4	10		100		70.4	40-140			
Aniline	81.9	5.0	μg/L μg/I	100		81.9	40-140			
Anthracene	45.7		μg/L μα/Ι	100		45.7 65.7	40-140 40-140			V-05
Antnracene Benzo(a)anthracene	65.7	5.0 5.0	μg/L μα/Ι	100		65.7				v-05
	97.4		μg/L	100		97.4	40-140			
Benzo(a)pyrene	91.5	5.0	μg/L	100		91.5	40-140			
Benzo(b)fluoranthene	108	5.0	μg/L	100		108	40-140			D 0.5
Benzo(g,h,i)perylene	43.6	5.0	μg/L	100		43.6	40-140			R-05
Benzo(k)fluoranthene	71.0	5.0	μg/L	100		71.0	40-140			
Bis(2-chloroethoxy)methane	102	10	μg/L	100		102	40-140			
Bis(2-chloroethyl)ether	87.2	10	μg/L	100		87.2	40-140			
Bis(2-chloroisopropyl)ether	84.6	10	μg/L	100		84.6	40-140			
Bis(2-Ethylhexyl)phthalate	84.7	10	μg/L	100		84.7	40-140			
l-Bromophenylphenylether	73.6	10	μg/L	100		73.6	40-140			
Butylbenzylphthalate	88.8	10	μg/L	100		88.8	40-140			
4-Chloroaniline	52.5	10	$\mu g/L$	100		52.5	15-140			V-05
-Chloronaphthalene	35.6	10	μg/L	100		35.6 *	40-140			L-04
2-Chlorophenol	79.6	10	$\mu g/L$	100		79.6	30-130			
Chrysene	77.1	5.0	$\mu g/L$	100		77.1	40-140			
Dibenz(a,h)anthracene	57.0	5.0	$\mu \text{g/L}$	100		57.0	40-140			
Dibenzofuran	73.9	5.0	$\mu \text{g/L}$	100		73.9	40-140			
Di-n-butylphthalate	77.6	10	$\mu g/L$	100		77.6	40-140			V-05
,2-Dichlorobenzene	77.4	5.0	μg/L	100		77.4	40-140			
,3-Dichlorobenzene	77.0	5.0	μg/L	100		77.0	40-140			
,4-Dichlorobenzene	75.7	5.0	$\mu g/L$	100		75.7	40-140			
3,3-Dichlorobenzidine	59.3	10	$\mu g/L$	100		59.3	40-140			
2,4-Dichlorophenol	79.6	10	μg/L	100		79.6	30-130			
Diethylphthalate	68.5	10	μg/L	100		68.5	40-140			
2,4-Dimethylphenol	83.7	10	μg/L	100		83.7	30-130			
Dimethylphthalate	79.7	10	μg/L	100		79.7	40-140			
2,4-Dinitrophenol	81.2	10	μg/L	100		81.2	15-140			
,4-Dinitrotoluene	69.4	10	μg/L	100		69.4	40-140			
,6-Dinitrotoluene	57.0	10	μg/L	100		57.0	40-140			
Di-n-octylphthalate	106	10	μg/L	100		106	40-140			
,2-Diphenylhydrazine (as Azobenzene)	86.2	10	μg/L μg/L	100		86.2	40-140			
Fluoranthene	80.2 82.5	5.0	μg/L μg/L	100		82.5	40-140			
Fluorene	68.2	5.0	μg/L μg/L	100		68.2	40-140			
Hexachlorobenzene	77.3	10	μg/L μg/L	100		77.3	40-140			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B072107 - SW-846 3510C											_
LCS (B072107-BS1)				Prepared: 04	/30/13 Analy	yzed: 05/02/1	.3				
Hexachlorobutadiene	71.7	10	μg/L	100		71.7	40-140				
Hexachloroethane	65.0	5.0	$\mu g/L$	100		65.0	40-140				
Indeno(1,2,3-cd)pyrene	59.7	5.0	$\mu g/L$	100		59.7	40-140				
Isophorone	87.2	10	$\mu g/L$	100		87.2	40-140				
2-Methylnaphthalene	72.5	5.0	$\mu g/L$	100		72.5	40-140				
2-Methylphenol	89.2	10	$\mu g/L$	100		89.2	30-130				
3/4-Methylphenol	81.6	10	μg/L	100		81.6	30-130				
Naphthalene	70.3	5.0	μg/L	100		70.3	40-140				
Nitrobenzene	78.5	10	μg/L	100		78.5	40-140				
2-Nitrophenol	81.0	10	μg/L	100		81.0	30-130				
4-Nitrophenol	78.9	10	μg/L	100		78.9	15-140				†
Pentachlorophenol	100	10	μg/L	100		100	30-130				
Phenanthrene	80.7	5.0	μg/L	100		80.7	40-140				
Phenol	52.4	10	μg/L	100		52.4	15-140				†
Pyrene	85.5	5.0	μg/L	100		85.5	40-140				
1,2,4-Trichlorobenzene	75.8	5.0	μg/L	100		75.8	40-140				
2,4,5-Trichlorophenol	71.6	10	μg/L	100		71.6	30-130				
2,4,6-Trichlorophenol	93.2	10	μg/L	100		93.2	30-130				
Surrogate: 2-Fluorophenol	130		$\mu g/L$	200		65.0	15-110				
Surrogate: Phenol-d6	94.0		μg/L	200		47.0	15-110				
Surrogate: Nitrobenzene-d5	79.9		μg/L	100		79.9	30-130				
Surrogate: 2-Fluorobiphenyl	75.0		μg/L	100		75.0	30-130				
Surrogate: 2,4,6-Tribromophenol	143		μg/L	200		71.7	15-110				
Surrogate: p-Terphenyl-d14	81.6		μg/L	100		81.6	30-130				
LCS Dup (B072107-BSD1)					/30/13 Analy						
Acenaphthene	71.4	5.0	μg/L	100		71.4	40-140	3.75	20		
Acenaphthylene	69.3	5.0	μg/L	100		69.3	40-140	1.63	20		
Acetophenone	79.5	10	μg/L	100		79.5	40-140	2.98	20		
Aniline	51.7	5.0	μg/L	100		51.7	40-140	12.3	20	*** 0.5	
Anthracene	60.8	5.0	μg/L	100		60.8	40-140	7.73	20	V-05	
Benzo(a)anthracene	86.6	5.0 5.0	μg/L	100		86.6	40-140	11.7	20		
Benzo(a)pyrene Benzo(b)fluoranthene	83.7	5.0	μg/L μg/L	100 100		83.7 98.6	40-140	8.83 8.74	20 20		
Benzo(g,h,i)perylene	98.6	5.0	μg/L μg/L	100		35.3 *	40-140 40-140	21.1 *		L-07A	
Benzo(k)fluoranthene	35.3	5.0	μg/L μg/L	100		67.5	40-140	5.10	20	L-0/A	
Bis(2-chloroethoxy)methane	67.5 94.7	10	μg/L μg/L	100		94.7	40-140	7.77	20		
Bis(2-chloroethyl)ether	82.2	10	μg/L μg/L	100		82.2	40-140	5.95	20		
Bis(2-chloroisopropyl)ether	82.2 80.7	10	μg/L μg/L	100		80.7	40-140	4.83	20		
Bis(2-Ethylhexyl)phthalate	82.4	10	μg/L μg/L	100		82.4	40-140	2.78	20		
4-Bromophenylphenylether	68.0	10	μg/L	100		68.0	40-140	7.92	20		
Butylbenzylphthalate	82.4	10	μg/L	100		82.4	40-140	7.44	20		
4-Chloroaniline	43.5	10	μg/L	100		43.5	15-140	18.7	20	V-05	†
2-Chloronaphthalene	38.6	10	μg/L	100		38.6 *	40-140	8.07	20	L-04	
2-Chlorophenol	76.4	10	μg/L	100		76.4	30-130	4.17	20		
Chrysene	77.9	5.0	μg/L	100		77.9	40-140	1.06	20		
Dibenz(a,h)anthracene	51.7	5.0	μg/L	100		51.7	40-140	9.78	20		
Dibenzofuran	69.0	5.0	μg/L	100		69.0	40-140	6.84	20		
Di-n-butylphthalate	66.8	10	μg/L	100		66.8	40-140	14.9	20	V-05	
1,2-Dichlorobenzene	72.6	5.0	μg/L	100		72.6	40-140	6.41	20		
1,3-Dichlorobenzene	71.8	5.0	μg/L	100		71.8	40-140	6.92	20		
1,4-Dichlorobenzene	71.1	5.0	μg/L	100		71.1	40-140	6.21	20		

Page 22 of 34 13D1148_1 Contest_Final 05 06 13 1643 05/06/13 16:44:00

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072107 - SW-846 3510C										
LCS Dup (B072107-BSD1)		Prepared: 04/30/13 Analyzed: 05/02/13								
3,3-Dichlorobenzidine	60.3	10	μg/L	100		60.3	40-140	1.74	20	
2,4-Dichlorophenol	74.7	10	$\mu g \! / \! L$	100		74.7	30-130	6.40	20	
Diethylphthalate	65.2	10	$\mu g \! / \! L$	100		65.2	40-140	4.98	20	
2,4-Dimethylphenol	79.6	10	μg/L	100		79.6	30-130	4.97	20	
Dimethylphthalate	73.2	10	μg/L	100		73.2	40-140	8.56	20	
2,4-Dinitrophenol	74.7	10	μg/L	100		74.7	15-140	8.37	20	
2,4-Dinitrotoluene	67.7	10	μg/L	100		67.7	40-140	2.51	20	
2,6-Dinitrotoluene	59.2	10	μg/L	100		59.2	40-140	3.78	20	
Di-n-octylphthalate	93.0	10	$\mu g/L$	100		93.0	40-140	12.7	20	
1,2-Diphenylhydrazine (as Azobenzene)	77.0	10	$\mu g/L$	100		77.0	40-140	11.3	20	
Fluoranthene	70.3	5.0	$\mu g/L$	100		70.3	40-140	15.9	20	
Fluorene	65.1	5.0	μg/L	100		65.1	40-140	4.65	20	
Hexachlorobenzene	72.4	10	$\mu g/L$	100		72.4	40-140	6.59	20	
Hexachlorobutadiene	66.2	10	μg/L	100		66.2	40-140	8.02	20	
Hexachloroethane	60.4	5.0	μg/L	100		60.4	40-140	7.23	20	
Indeno(1,2,3-cd)pyrene	49.4	5.0	$\mu g/L$	100		49.4	40-140	19.0	20	
Isophorone	80.7	10	μg/L	100		80.7	40-140	7.76	20	
2-Methylnaphthalene	66.0	5.0	μg/L	100		66.0	40-140	9.33	20	
2-Methylphenol	83.8	10	μg/L	100		83.8	30-130	6.22	20	
3/4-Methylphenol	79.9	10	μg/L	100		79.9	30-130	2.13	20	
Naphthalene	64.4	5.0	μg/L	100		64.4	40-140	8.75	20	
Nitrobenzene	74.2	10	μg/L	100		74.2	40-140	5.71	20	
2-Nitrophenol	75.8	10	μg/L	100		75.8	30-130	6.63	20	
4-Nitrophenol	69.1	10	μg/L	100		69.1	15-140	13.2	20	
Pentachlorophenol	82.1	10	μg/L	100		82.1	30-130	19.6	20	
Phenanthrene	67.3	5.0	μg/L	100		67.3	40-140	18.0	20	
Phenol	43.4	10	μg/L	100		43.4	15-140	18.8	20	
Pyrene	77.0	5.0	μg/L	100		77.0	40-140	10.5	20	
1,2,4-Trichlorobenzene	69.0	5.0	μg/L	100		69.0	40-140	9.50	20	
2,4,5-Trichlorophenol	71.2	10	μg/L	100		71.2	30-130	0.547	20	
2,4,6-Trichlorophenol	85.5	10	μg/L	100		85.5	30-130	8.65	20	
Surrogate: 2-Fluorophenol	119		μg/L	200		59.6	15-110			
Surrogate: Phenol-d6	87.0		$\mu g/L$	200		43.5	15-110			
Surrogate: Nitrobenzene-d5	75.0		$\mu g/L$	100		75.0	30-130			
Surrogate: 2-Fluorobiphenyl	73.8		$\mu g/L$	100		73.8	30-130			
Surrogate: 2,4,6-Tribromophenol	127		$\mu g/L$	200		63.6	15-110			
Surrogate: p-Terphenyl-d14	73.8		$\mu g/L$	100		73.8	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072119 - SW-846 3510C										
Blank (B072119-BLK1)				Prepared: 04	1/30/13 Anal	yzed: 05/01/1	13			
Aroclor-1016	ND	0.20	μg/L							
Aroclor-1016 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1221	ND	0.20	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1232	ND	0.20	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1242	ND	0.20	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1248	ND	0.20	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1254	ND	0.20	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1260	ND	0.20	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1262	ND	0.20	$\mu g/L$							
Aroclor-1262 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1268	ND	0.20	$\mu g/L$							
Aroclor-1268 [2C]	ND	0.20	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	1.85		μg/L	2.00		92.6	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.08		μg/L	2.00		104	30-150			
Surrogate: Tetrachloro-m-xylene	1.71		μg/L	2.00		85.6	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.88		μg/L	2.00		94.2	30-150			
LCS (B072119-BS1)				Prepared: 04	1/30/13 Anal	yzed: 05/01/1	13			
Aroclor-1016	0.55	0.20	$\mu g/L$	0.500		110	40-140			
Aroclor-1016 [2C]	0.55	0.20	$\mu g/L$	0.500		110	40-140			
Aroclor-1260	0.53	0.20	$\mu g/L$	0.500		105	40-140			
Aroclor-1260 [2C]	0.58	0.20	$\mu \text{g}/L$	0.500		116	40-140			
Surrogate: Decachlorobiphenyl	1.92		μg/L	2.00		95.9	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.16		μg/L	2.00		108	30-150			
Surrogate: Tetrachloro-m-xylene	1.79		$\mu g/L$	2.00		89.5	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.99		$\mu g/L$	2.00		99.3	30-150			
LCS Dup (B072119-BSD1)				Prepared: 04	1/30/13 Anal	yzed: 05/01/1	13			
Aroclor-1016	0.51	0.20	μg/L	0.500		103	40-140	6.84	20	
Aroclor-1016 [2C]	0.51	0.20	$\mu g/L$	0.500		102	40-140	7.10	20	
Aroclor-1260	0.49	0.20	$\mu g/L$	0.500		97.1	40-140	8.03	20	
Aroclor-1260 [2C]	0.53	0.20	$\mu \text{g}/L$	0.500		106	40-140	8.20	20	
Surrogate: Decachlorobiphenyl	1.90		μg/L	2.00		94.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.13		$\mu g/L$	2.00		107	30-150			
Surrogate: Tetrachloro-m-xylene	1.72		$\mu g/L$	2.00		85.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.90		$\mu g/L$	2.00		95.0	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B072099 - SW-846 3005A										
Blank (B072099-BLK1)				Prepared: 04	/30/13 Anal	yzed: 05/01/1	13			
Iron	ND	0.050	mg/L							
LCS (B072099-BS1)				Prepared: 04	/30/13 Anal	yzed: 05/01/1	13			
Iron	0.520	0.050	mg/L	0.500		104	80-120			
LCS Dup (B072099-BSD1)				Prepared: 04	/30/13 Anal	yzed: 05/01/1	13			
Iron	0.521	0.050	mg/L	0.500		104	80-120	0.193	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B072123 - EPA 1664A										
Blank (B072123-BLK1)				Prepared &	Analyzed: 05	/01/13				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B072123-BS1)				Prepared &	Analyzed: 05	/01/13				
Silica Gel Treated HEM (SGT-HEM)	20		mg/L	20.0		102	64-132			
Duplicate (B072123-DUP1)	Source	e: 13D1148-	01	Prepared &	Analyzed: 05	/01/13				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L		NE)		NC	18	
Batch B072208 - EPA 420.1										
Blank (B072208-BLK1)				Prepared &	Analyzed: 05	/06/13				
Phenol	ND	0.050	mg/L							
LCS (B072208-BS1)				Prepared &	Analyzed: 05	/06/13				
Phenol	0.57	0.050	mg/L	0.500		113	80.2-133			
LCS Dup (B072208-BSD1)				Prepared &	Analyzed: 05	/06/13				
Phenol	0.56	0.050	mg/L	0.500		111	80.2-133	1.57	20.7	
Duplicate (B072208-DUP1)	Source	e: 13D1148-	01	Prepared & Analyzed: 05/06/13						
Phenol	ND	0.050	mg/L		NE)		NC	20	
Matrix Spike (B072208-MS1)	Sourc	e: 13D1148-	01	Prepared & Analyzed: 05/06/13						
Phenol	0.59	0.050	mg/L	0.500	NE	118	36.6-163			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-05	Elevated reporting limit due to high concentration of target compounds. MA CAM reporting limit not met.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is no affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Dibromomethane

Analyte	Certifications
EPA 420.1 in Water	
	OT MANUAL INDICATE MA
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 6010C in Water	
Iron	CT,NH,NY,ME,NC,VA
SW-846 8082A in Water	
Aroclor-1016	CT,NH,NY,NC,ME,VA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1221	CT,NH,NY,NC,ME,VA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1232	CT,NH,NY,NC,ME,VA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1242	CT,NH,NY,NC,ME,VA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1248	CT,NH,NY,NC,ME,VA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1254	CT,NH,NY,NC,ME,VA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1260	CT,NH,NY,NC,ME,VA
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1262	NC
Aroclor-1262 [2C]	NC
Aroclor-1268	NC
Aroclor-1268 [2C]	NC
SW-846 8260C in Water	
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
5.1	

NH,NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
SW-846 8270D in Water	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8270D in Water	
Aniline	CT,NY
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH
Dibenz(a,h)anthracene	CT,NY,NH
Dibenzofuran	CT,NY,NH
Di-n-butylphthalate	CT,NY,NH
1,2-Dichlorobenzene	CT,NY,NH
1,3-Dichlorobenzene	CT,NY,NH
1,4-Dichlorobenzene	CT,NY,NH
3,3-Dichlorobenzidine	CT,NY,NH
2,4-Dichlorophenol	CT,NY,NH
Diethylphthalate	CT,NY,NH
2,4-Dimethylphenol	CT,NY,NH
Dimethylphthalate	CT,NY,NH
2,4-Dinitrophenol	CT,NY,NH
2,4-Dinitrotoluene	CT,NY,NH
2,6-Dinitrotoluene	CT,NY,NH
Di-n-octylphthalate	CT,NY,NH
Fluoranthene	CT,NY,NH
Fluorene	NY,NH
Hexachlorobenzene	CT,NY,NH
Hexachlorobutadiene	CT,NY,NH
Hexachloroethane	CT,NY,NH
Indeno(1,2,3-cd)pyrene	CT,NY,NH
Isophorone	CT,NY,NH
2-Methylnaphthalene	CT,NY,NH
2-Methylphenol	CT,NY,NH
3/4-Methylphenol	CT,NY,NH
Naphthalene	CT,NY,NH
Nitrobenzene	CT,NY,NH
2-Nitrophenol	CT,NY,NH
4-Nitrophenol	CT,NY,NH
Pentachlorophenol	CT,NY,NH

CERTIFICATIONS

Certified Analyses included in this Report

 Analyte
 Certifications

 SW-846 8270D in Water
 CT,NY,NH

 Phenanthrene
 CT,NY,NH

 Phenol
 CT,NY,NH

 Pyrene
 CT,NY,NH

 1,2,4-Trichlorobenzene
 CT,NY,NH

 2,4,5-Trichlorophenol
 CT,NY,NH

 2,4,6-Trichlorophenol
 CT,NY,NH

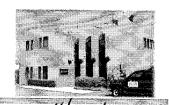
The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2014
MA	Massachusetts DEP	M-MA100	06/30/2013
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2013
NY	New York State Department of Health	10899 NELAP	04/1/2014
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2014
RI	Rhode Island Department of Health	LAO00112	12/30/2013
NC	North Carolina Div. of Water Quality	652	12/31/2013
NJ	New Jersey DEP	MA007 NELAP	06/30/2013
FL	Florida Department of Health	E871027 NELAP	06/30/2013
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2013
WA	State of Washington Department of Ecology	C2065	02/23/2014
ME	State of Maine	2011028	06/9/2013
VA	Commonwealth of Virginia	460217	12/14/2013
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2012

Man 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Relinquished by Jahan San Janes Turnaround II Languished by Jahan San Janes II Languished Turnaround III Languished San Janes II Languished San Janes		Comments:								<i>γ</i>	SUMD RGP BASELINE 4-36-13	Con-Test Lab ID Client Sample ID / Description Beginning Er	Project Proposal Provided? (for billing purposes) O yes		ion: 8 FOREST ST MED JORD MA	0/776	OST R) SUITE 211	١ .	ANALYTICAL LABORATORY www.contestlabs.com	Fax: 413-525-6405	
No.	Connecticut	Wester and or lein	nd Detection Limit Requirements Is your project MCP or RCP?		may be high in concentration in Matrix/Conc. Code Box:	Diagon to the following soules to let Con Test know		\					300 ** X V V V X	*	F	O OTHER O "Enhanced Data Package" O "Enhanced Data Package" O D D D D D D D D D D D D D D D D D D D	Spore Sexcel Odls - 0	64	Client PO# 0519	Project # 0549 ANALYSIS REQUESTED	AA	7		CHAIN OF CUSTODY RECORD 39 Spruce Street
NELAC & AIHA-LAP, LLC Accredited	MA State DW Form Required PWSID#	Required	,	; U - Unknown SL = sludge O = other	_!	www.astewater	GW= groundwater	O = Other	X = Na hydroxide	đ	M = Methanol of 34	H = HCL	ervation	÷	T≍tediar bag O=Other C	V= vial S=summa can		A=amberglass	O Lab to Filter 1643	Dissolved Metals	***Container Code 06/1	** Preservation	# of Containers	w MA 01028 Page of

IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR Date/Time: D'/2-Hr U +---y

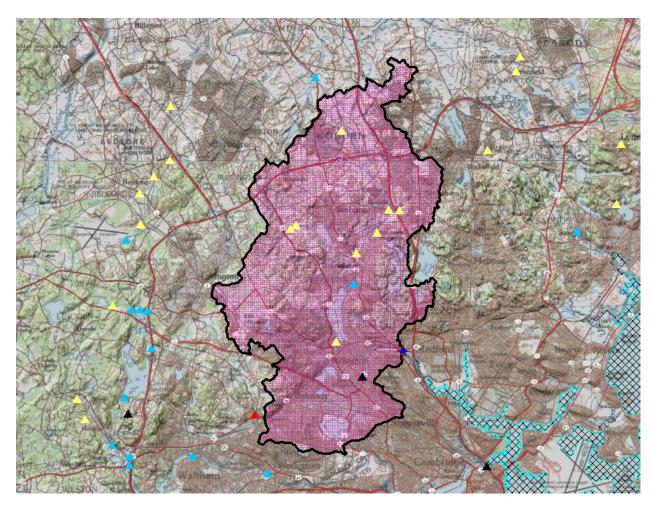
1/3 /7 P Require lab approval Other: PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT


0 [†]72-Hr O [†]4-Day

WBE/DBE Certified

Accredited

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405
www.contestlabs.com



Sample Receipt Checklist

				/// =1,-
CLIENT NAME: CLEAN P	operties	RECEIVED BY:	KKM_DAT	re: <u>4/29//3</u>
) Was the chain(s) of custody r	relinquished and s	signed?	(Yes) No No	CoC Included
Does the chain agree with the		33	(Yes) No	ooo meradea
If not, explain:	•			
) Are all the samples in good could be all the samples in good cou	ondition?		(Yes) No	
) How were the samples receiv	red:			
On Ice Direct from S	Sampling	Ambient	In Cooler(s)	
ere the samples received in Te	emperature Compli	iance of (2-6°C)?	(Yes) No N//	4
emperature °C by Temp blank		Temperature °C t	by Temp gun	5.1
Are there Dissolved samples	for the lab to filter	?	Yes (No)	
Who was notified		Time		
Are there any RUSH or SHOR			Yes (No)	
Who was notified			.00	
			ission to subcontract	t samples? Voc No
Location where samples are store	.nd. 1	↑		-
Location where samples are stor	ed:	<i>f</i>	c-in clients only) if no	t already approved
		I IClient	t Signature:	
		S Conorm		
		3		
) Do all samples have the prope) Do all samples have the prope		No N/A		
) Do all samples have the prope	er Base pH: Yes	No N/A No N/A	ples: Yes No	N/A
Do all samples have the prope D) Was the PC notified of any di	er Base pH: Yes	No N/A No N/A the CoC vs the sam		N/A
Do all samples have the prope D) Was the PC notified of any di	er Base pH: Yes screpancies with ontainers re	No N/A No N/A		
Do all samples have the prope) Was the PC notified of any di	er Base pH: Yes	No N/A No N/A the CoC vs the sam	on-Test	N/A # of containers
Do all samples have the prope D) Was the PC notified of any di	er Base pH: Yes screpancies with ontainers re	No N/A No N/A the CoC vs the sam eceived at Co	on-Test	
Do all samples have the property (a) Was the PC notified of any discourse Control (a) Liter Amber	er Base pH: Yes screpancies with ontainers re	No N/A the CoC vs the same eceived at Co	amber/clear jar	
Do all samples have the property D) Was the PC notified of any di Co	er Base pH: Yes screpancies with ontainers re	No N/A the CoC vs the same eceived at Co 8 oz s 4 oz s 2 oz s	amber/clear jar amber/clear jar amber/clear jar	
Do all samples have the property of the proper	er Base pH: Yes screpancies with ontainers re	No N/A the CoC vs the same ceived at Co 8 oz s 4 oz s 2 oz s	amber/clear jar	
Do all samples have the property D) Was the PC notified of any dictional Company of the PC notified of	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same eceived at Co 8 oz s 4 oz s 2 oz s Hg/F	amber/clear jar amber/clear jar amber/clear jar ir Cassette	
Do all samples have the property of the PC notified of any discourse of the PC notified of the PC n	er Base pH: Yes screpancies with ontainers re	No N/A the CoC vs the same eceived at Co 8 oz s 4 oz s 2 oz s Hg/F Plast	amber/clear jar amber/clear jar amber/clear jar ir Cassette	
Do all samples have the property D) Was the PC notified of any discrete Control of the PC notified	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same eceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM	amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc	
Do all samples have the property of the proper	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same eceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM	amber/clear jar amber/clear jar amber/clear jar ir Cassette lopcalite Tube ic Bag / Ziploc	
Do all samples have the property D) Was the PC notified of any discrete Co. 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same eceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette lopcalite Tube ic Bag / Ziploc 12.5 / PM 10 UF Cartridge SOC Kit	
Do all samples have the property of the PC notified of any discrete property of the PC notified of the PC notified property of the PC notified of the PC notified of any discrete property of the PC notified of the PC not	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same Ceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM PL	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 2.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes	
Do all samples have the property D) Was the PC notified of any discrete Dissolved Oxygen bottle Do all samples have the property Dissolved Oxygen bottle Dissolved Oxygen bottle Encore	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same ceived at Co 8 oz a 4 oz a 2 oz a A Hg/F Plast PM PL TO Non-Co	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 12.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container	
Do all samples have the property D) Was the PC notified of any discrete PC notified Notified Notified PC notified Notified Notified PC notified Notifie	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same ceived at Co 8 oz a 4 oz a 2 oz a A Hg/F Plast PM PL TO Non-Co	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 1 2.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container her glass jar	
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Flashpoint bottle Perchlorate Kit	er Base pH: Yes screpancies with the ontainers re # of containers	No N/A the CoC vs the same ceived at Co 8 oz a 4 oz a 2 oz a A Hg/F Plast PM PL TO Non-Co	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 12.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container	
Do all samples have the property of the proper	er Base pH: Yes screpancies with to ontainers references. # of containers January	No N/A the CoC vs the same eceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM PU TO Non-Co Ott	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 1 2.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container her glass jar Other	
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Flashpoint bottle Perchlorate Kit Other aboratory Comments: 40 mL vials: # HCI	er Base pH: Yes screpancies with the containers # of containers	No N/A the CoC vs the same eceived at Co 8 oz s 4 oz s 2 oz s A Hg/F Plast PM PU TO Non-Co Ott	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 1 2.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container her glass jar Other	# of containers
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Flashpoint bottle Perchlorate Kit Other aboratory Comments:	# Me # DI	No N/A the CoC vs the same eceived at Co 8 oz a 4 oz a 2 oz a Hg/F Plast PM PU TO Non-Co Ott	amber/clear jar amber/clear jar amber/clear jar amber/clear jar ir Cassette dopcalite Tube ic Bag / Ziploc 1 2.5 / PM 10 UF Cartridge SOC Kit D-17 Tubes onTest Container her glass jar Other	# of containers

		MADE	P MCP Analytical N	lethod Report Certi	fication Form		
Labo	ratory Name:	Con-Test Ana	lytical Laboratory		Project #: 13D	1148	
Proje	ect Location:	8 Forest St., N	Medford, MA		RTN:		
This F	orm provide:	s certifications for t	he following data set	: [list Laboratory Sam	nple ID Number(s)]		
130)1148-01 thru	13D1148-02					
Matri	ces:	Water					
CA	AM Protoco	l (check all that l	pelow)				
8260 CAM	VOC II A (X)	7470/7471 Hg CAM IIIB ()	MassDEP VPH CAM IV A ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassD CAM IX	EP APH 〈A()
	SVOC II B (X)	7010 Metals CAM III C ()	MassDEP EPH CAM IV A ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15 CAM IX	
	Metals III A ()	6020 Metals CAM III D ()	8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlorate CAM VIII B ()		
	A	ffirmative response	to Questions A throu	ghF is required for "P	resumptive Certainty"	status	
Α		rved (including temper		described on the Chain-catory, and prepared/analy	•	☑ Yes	□No¹
В		tical method(s) and all	associated QC requirem	ents specificed in the sele	ected CAM	☑ Yes	□No¹
С	Were all requir	ed corrective actions a	ind analytical response a	ctions specified in the sele	ected CAM	☑ Yes	□No¹
D	Does the labor	atory report comply wi	th all the reporting require	ements specified in CAM sition and Reporting of An		☑ Yes	□No¹
Еa			Vas each method conductual method(s) for a list of			☐ Yes	□No¹
Εb	•	•	` '	eported for each method?	?	☐ Yes	□No¹
F				ard non-conformances ide to Qestions A through E)		☑ Yes	□No¹
				d for "Presumptive Ce			
G	protocol(s)?			pecified in the selected Ca		☐Yes	☑No¹
			_	status may not neces R 40. 1056 (2)(k) and W	sarily meet the data us	sability	
Н	Were all QC po	erfomance standards s	pecified in the CAM proto	ocol(s) achieved?		□ _{Yes}	☑ _{No¹}
I	Were results re	eported for the complet	te analyte list specified in	the selected CAM protoco	ol(s)?	☑ Yes	□No¹
¹ All	Negative respo	onses must be addre	essed in an attached Er	nvironmental Laborator	y case narrative.		
thos	se responsible	-	nformation, the mater		oon my personal inqui nalytical report is, to th	-	
Sigi	nature:	m	Culu	Position:	Laboratory Director		
Prin	ited Name:	Michael A. Erickso	on	Date:	5/06/13		

US Geological Survey *Streamstats* Delineation of the Mystic River Watershed Upstream from the Discharge Point

Streamstats Ungaged Site Report

Date: Thu Jun 27 2013 08:47:39 Mountain Daylight Time

Site Location: Massachusetts NAD27 Latitude: 42.4176 (42 25 03) NAD27 Longitude: -71.1104 (-71 06 38) NAD83 Latitude: 42.4177 (42 25 04) NAD83 Longitude: -71.1099 (-71 06 36)

ReachCode: 01090001000242

Measure: 37.60

Drainage Area: 47.2 mi2 Percent Urban: 79.7 % Percent Impervious: 41.3 %

Low Flows Basin Characteristics 100% Statewide Low Flow (47.2 mi2)							
Parameter	Value	Regression Equation Valid Range					
raiametei		Min	Max				
Drainage Area (square miles)	47.2	1.61	149				
Mean Basin Slope from 250K DEM (percent)	2.43	0.32	24.6				
Stratified Drift per Stream Length (square mile per mile)	0.25	0	1.29				
Massachusetts Region (dimensionless)	0	0	1				

Probability of Perennial Flow Basin Characteristics 100% Perennial Flow Probability (47.2 mi2)								
Value Regression Equation Valid Ran								
rai ailletei		Min	Max					
Drainage Area (square miles)	47.2 (above max value 1.99)	0.01	1.99					
Percent Underlain By Sand And Gravel (percent)	44.80	0	100					
Percent Forest (percent)	11.96	0	100					
Massachusetts Region (dimensionless)	0	0	1					

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flows Streamflow Statistics										
			Equivalent	90-Percent Prediction Interva						
Statistic	Flow (ft ³ /s)	Prediction Error (percent)	years of record	Minimum	Maximum					
D50	48.7	18		27.4	86					
D60	38.4	20		16.1	91.1					
D70	25.8	24		10.3	64.2					
D75	20.8	26		8.34	51.2					
D80	17.3	28		6.8	43.2					
D85	13.4	32		5.15	34.4					
D90	10.7	37		3.92	28.5					
D95	6.74	46		2.17	20.2					
D98	4.42	60		1.24	14.9					
D99	3.48	65		0.92	12.4					
M7D2Y	6.97	50		2.12	22.1					
AUGD50	14.3	33		5.5	36.8					
M7D10Y	3.33	71		0.83	12.5					

The equation for estimating the probability of perennial flow is applicable for most areas of Massachusetts except eastern Buzzards Bay, Cape Cod, and the Island regions. The estimate obtained from the equation assumes natural flow conditions at the site. The equation also is best used for sites with drainage areas between 0.01 to 1.99 mi2, as errors beyond for basins beyond these bounds are unknown.

Massachusetts Year 2012 Integrated List of Waters

Final Listing of the Condition of Massachusetts' Waters Pursuant to Sections 305(b), 314 and 303(d) of the Clean Water Act

Featuring new water quality assessments for the Blackstone, Boston Harbor (including Mystic, Neponset and Weymouth/Weir), Merrimack and Parker watersheds and the Cape Cod coastal drainage areas

Commonwealth of Massachusetts
Executive Office of Energy and Environmental Affairs
Richard K. Sullivan, Jr., Secretary
Massachusetts Department of Environmental Protection
Kenneth L. Kimmell, Commissioner
Bureau of Resource Protection
Bethany A. Card, Assistant Commissioner

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Lee River	MA61-01	From confluence with Lewin Brook, Swansea to	0.02	SQUARE	Fecal Coliform	38905
		Route 6, Swansea/Somerset		MILES	Nutrient/Eutrophication Biological Indicators	
Lee River	MA61-02	Route 6, Swansea/Somerset to mouth at Mount	0.51	SQUARE	(Debris/Floatables/Trash*)	
		Hope Bay, Swansea/Somerset		MILES	Chlorophyll-a	
					Fecal Coliform	38906
					Nitrogen (Total)	
					Oxygen, Dissolved	
					Taste and Odor	
Mount Hope Bay	MA61-06	the Massachusetts portion from the Braga Bridge,	2.29	SQUARE	Chlorophyll-a	
		Fall River/Somerset to the state border Fall River, MA/Tiverton, RI to the line from Braton Point		MILES	Fecal Coliform	38908
	Somerset to MA/RI border approximately 3/4 of a		Fishes Bioassessments			
		mile due east of Spar Island, RI			Nitrogen (Total)	
					Temperature, water	
Mount Hope Bay	MA61-07	the Massachusetts portion from mouth of Cole River (at old railway grade), Swansea to state border Swansea, MA/Warren, RI to the line from Brayton Point, Somerset to MA/RI border approximately 3/4 of a mile due east of Spar Island, RI to the line between Bay Point, Swansea and Brayton Point, Somerset (the mouth of the Lee River)	1.84	84 SQUARE MILES	Chlorophyll-a	
					Fecal Coliform	38909
					Fishes Bioassessments	
					Nitrogen (Total)	
					Oxygen, Dissolved	
					Temperature, water	
Mystic			1			
Aberjona River	MA71-01	Source just south of Birch Meadow Drive, Reading	9.1	MILES	(Physical substrate habitat alterations*)	
		to inlet Upper Mystic Lake at Mystic Valley Parkway,			Ammonia (Un-ionized)	
		Winchester (portion culverted underground). (through former pond segments Judkins Pond			Aquatic Macroinvertebrate	
		MA71021 and Mill Pond MA71031).		Bioassessments		
		,			Arsenic	
					Escherichia coli	
					Oxygen, Dissolved	
					Phosphorus (Total)	
				Sediment Bioassays Chronic Toxicity Freshwater		
					Turbidity	

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Alewife Brook	MA71-04	Outlet of Little Pond, Belmont to confluence with	2.3	MILES	(Debris/Floatables/Trash*)	
		Mystic River, Arlington/Somerville (portion in Belmont and Cambridge identified as Little River with name changing to Alewife Brook at Arlington			Copper	
					Escherichia coli	
		corporate boundary).			Foam/Flocs/Scum/Oil Slicks	
					Lead	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Phosphorus (Total)	
					Secchi disk transparency	
					Sediment Bioassays Chronic Toxicity Freshwater	
					Taste and Odor	
Belle Isle Inlet	MA71-14	From tidegate at Bennington Street, Boston/Revere	0.12	SQUARE	Fecal Coliform	
		to confluence with Winthrop Bay, Boston/Winthrop.		MILES	Other	
					PCB in Fish Tissue	
Blacks Nook MA71005	MA71005	MA71005 Cambridge 2	2	ACRES	(Non-Native Aquatic Plants*)	
					Nutrient/Eutrophication Biological Indicators	
					Secchi disk transparency	
Chelsea River	Chelsea River MA71-06	MA71-06 From confluence with Mill Creek, Chelsea/Revere to confluence with Boston Inner Harbor, Chelsea/East Boston/Charlestown.	0.38	38 SQUARE MILES	(Debris/Floatables/Trash*)	
					Ammonia (Un-ionized)	
		Boston/Charlestown.			Fecal Coliform	
					Other	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Petroleum Hydrocarbons	
					Sediment Screening Value (Exceedence)	
					Taste and Odor	
					Turbidity	
Clay Pit Pond	MA71011	Belmont	12	ACRES	Chlordane	
Ell Pond	MA71014	Melrose	23	ACRES	Chlorophyll-a	
					Fecal Coliform	
					Phosphorus (Total)	
					Secchi disk transparency	
					Total Suspended Solids (TSS)	

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Horn Pond	MA71019	Woburn	108	ACRES	(Non-Native Aquatic Plants*)	
					Excess Algal Growth	
					Oxygen, Dissolved	
					Phosphorus (Total)	
Lower Mystic Lake	MA71027	Arlington/Medford	93	ACRES	DDT	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Salinity	
					Sediment Bioassays Chronic Toxicity Freshwater	
					Sulfide-Hydrogen Sulfide	
Malden River	MA71-05	Headwaters south of Exchange Street, Malden to	2.3	MILES	(Debris/Floatables/Trash*)	
		confluence with Mystic River, Everett/Medford.			Chlordane	
					DDT	
					Dissolved oxygen saturation	
					Escherichia coli	
					Fecal Coliform	
					Foam/Flocs/Scum/Oil Slicks	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					pH, High	
					Phosphorus (Total)	
					Secchi disk transparency	
					Sediment Bioassays Chronic Toxicity Freshwater	
					Taste and Odor	
					Total Suspended Solids (TSS)	
Mill Brook	MA71-07	Headwaters south of Massachusetts Avenue,	3.9	MILES	(Physical substrate habitat alterations*)	
		Lexington to inlet of Lower Mystic Lake, Arlington (portions culverted underground).			Escherichia coli	
Mill Creek	MA71-08	From Route 1, Chelsea/Revere to confluence with	0.02	SQUARE	Fecal Coliform	
		Chelsea River, Chelsea/Revere.		MILES	Other	
					PCB in Fish Tissue	

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Mystic River	MA71-02	Outlet Lower Mystic Lake, Arlington/Medford to	4.9	MILES	(Fish-Passage Barrier*)	
		Amelia Earhart Dam, Somerville/Everett.			Arsenic	
					Chlordane	
					Chlorophyll-a	
					DDT	
					Dissolved oxygen saturation	
					Escherichia coli	
					PCB in Fish Tissue	
					Phosphorus (Total)	
					Secchi disk transparency	
					Sediment Bioassays Chronic Toxicity Freshwater	
Mystic River	MA71-03	Amelia Earhart Dam, Somerville/Everett to	0.49	SQUARE	Sediment Screening Value (Exceedence)	
		confluence with Boston Inner Harbor, Chelsea/Charlestown (Includes Island End River).		MILES	Ammonia (Un-ionized)	
					Fecal Coliform	
					Foam/Flocs/Scum/Oil Slicks	
					Other	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Petroleum Hydrocarbons	
					Taste and Odor	
Spy Pond	MA71040	Arlington	98	ACRES	(Eurasian Water Milfoil, Myriophyllum	
					spicatum*) Chlordane	
					DDT	
					Excess Algal Growth Oxygen, Dissolved	
				Phosphorus (Total)		
Unnamed Tributary	MA71-13	Unnamed tributary locally known as 'Meetinghouse	0.1	MILES	Escherichia coli	
Omanieu mouldly	WAT 1-13	Brook', from emergence south of Route 16/east of Winthrop Street, Medford to confluence with the Mystic River, Medford. (brook not apparent on 1985 Boston North USGS quad - 2005 orthophotos used to delineate stream)	0.1	WILES	Escribinalid coll	

SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
MA71043	Winchester/Arlington/Medford	176	ACRES	(Non-Native Aquatic Plants*)	
		Dissolved oxygen saturation			
				Oxygen, Dissolved	
MA71045	Winchester	23	ACRES	Oxygen, Dissolved	
				Phosphorus (Total)	
MA71-09	Headwaters near Juniper Road and the Belmont Hill	1.4	MILES	(Physical substrate habitat alterations*)	
	School, Belmont to confluence with Little Pond, Belmont (portions culverted underground).			Escherichia coli	
MA71047	Winchester	18	ACRES	(Non-Native Aquatic Plants*)	
				Nutrient/Eutrophication Biological Indicators	
MA53-04	From confluence of East and West Branches of the	5.6	MILES	(Low flow alterations*)	
				Fecal Coliform	35086
	dani, Renobotii	in, Renoboti		Nutrient/Eutrophication Biological Indicators	
MA53-01 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly segment MA53001)	MA53-01	MILES	(Debris/Floatables/Trash*)		
				Aquatic Macroinvertebrate Bioassessments	
				Fecal Coliform	38903
				Mercury in Fish Tissue	33880
				Nutrient/Eutrophication Biological Indicators	
				Oil and Grease	
				Oxygen, Dissolved	
		•			
MA81-56	From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden.	2.9	MILES	Ambient Bioassays Chronic Aquatic Toxicity	
MA81008	Lancaster	5	ACRES	Escherichia coli	
MA81046	Lancaster	76	ACRES	Oxygen, Dissolved	
MA81-24	Headwaters west of Prospect Street, West Boylston to inlet Wachusett Reservoir (Gates Cove), West Boylston.	3.4	MILES	Fecal Coliform	
	MA71043 MA71045 MA71-09 MA71047 MA53-04 MA53-01 MA81-56 MA81008 MA81046	MA71043 Winchester/Arlington/Medford MA71045 Winchester MA71-09 Headwaters near Juniper Road and the Belmont Hill School, Belmont to confluence with Little Pond, Belmont (portions culverted underground). MA71047 Winchester MA53-04 From confluence of East and West Branches of the Palmer River, Rehoboth to the Shad Factory Pond dam, Rehoboth MA53-01 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly segment MA53001) MA81-56 From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden. MA81008 Lancaster MA81046 Lancaster MA81-24 Headwaters west of Prospect Street, West Boylston to inlet Wachusett Reservoir (Gates Cove), West	MA71043 Winchester/Arlington/Medford 176 MA71045 Winchester 23 MA71-09 Headwaters near Juniper Road and the Belmont Hill School, Belmont to confluence with Little Pond, Belmont (portions culverted underground). MA71047 Winchester 18 MA53-04 From confluence of East and West Branches of the Palmer River, Rehoboth to the Shad Factory Pond dam, Rehoboth 5.6 MA53-01 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly segment MA53001) 3.7 MA81-56 From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden. 5.6 MA81008 Lancaster 5 MA81046 Lancaster 76 MA81-24 Headwaters west of Prospect Street, West Boylston to inlet Wachusett Reservoir (Gates Cove), West 3.4	MA71043 Winchester/Arlington/Medford 176 ACRES MA71045 Winchester 23 ACRES MA71-09 Headwaters near Juniper Road and the Belmont Hill School, Belmont to confluence with Little Pond, Belmont (portions culverted underground). 1.4 MILES MA71047 Winchester 18 ACRES MA53-04 From confluence of East and West Branches of the Palmer River, Rehoboth to the Shad Factory Pond dam, Rehoboth 5.6 MILES MA53-01 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly segment MA53001) 3.7 MILES MA81-56 From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden. 2.9 MILES MA81008 Lancaster 5 ACRES MA81046 Lancaster 76 ACRES MA81-24 Headwaters west of Prospect Street, West Boylston to inlet Wachusett Reservoir (Gates Cove), West 3.4 MILES	MA71043 Winchester/Arlington/Medford 176 ACRES (Non-Native Aquatic Plants*) Dissolved oxygen saturation Oxygen, Dissolved Oxygen, Dissolved Oxygen, Dissolved Oxygen, Dissolved Phosphorus (Total) Phosphorus (Total) Phosphorus (Total) Phosphorus (Total) Phosphorus (Total) From confluence with Little Pond, Belmont (portions culverted underground). MA71047 Winchester 18 ACRES (Non-Native Aquatic Plants*) Nutrient/Eutrophication Biological Indicators MA53-04 From confluence of East and West Branches of the Palmer River, Rehoboth to the Shad Factory Pond dam, Rehoboth MA53-01 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly's segment MA53001) MA63-04 Route 44, Seekonk to Mobile Dam, Seekonk, MA/East Providence, RI (through Burrs Pond formerly's segment MA53001) MA63-05 From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden. MA81-56 From outlet Eagle Lake, Holden to the confluence with the Quinapoxet River, Holden. MA81-66 Lancaster 5 ACRES Oxygen, Dissolved MA810-86 Lancaster 5 ACRES Oxygen, Dissolved MA810-84 Lancaster 5 ACRES Oxygen, Dissolved MA810-84 Headwaters west of Prospect Street, West Boylston to inlett Wachusett Reservoir (Gates Cove), West

Section 6e Historic Places Documentation

The National Register of Historic Places (NRHP) and Massachusetts Cultural Information Resource System (MCIRS) Databases were searched June 12, 2013.

<u>According to the National Register of Historic Places Database</u> and <u>Massachusetts Cultural</u> <u>Information Resource System Database</u>, the following listed addresses are in the vicinity of the discharge that is the subject of this Notice of Intent:

20-30 High Street

43 High Street

Bigelow Block (NE corner of Forest and Salem Streets)

US Post Office (20 Forest Street)

Salem Street Burying Ground (Medford Square)

The Medford Historical Society was not able to determine the eligibility of 8 Forest St and 5 High Street for inclusion on the National Historic Register.

<u>Per Criteria 2</u>, the project does involve new construction and/or the demolition or rehabilitation of existing buildings or other structures or facilities and historic properties are not affected by the discharge or identified in the path of the discharges regulated by this permit and are not identified where installation or construction of treatment systems or BMPs to control such discharges (e.g., diversion channels or retention ponds) are planned.

SAFETY DATA SHEET for OZONE

(Formerly MSDS)

1. PRODUCT IDENTIFICATION

Product Name: Ozone

Common Names/Synonyms: Triatomic Oxygen, Trioxygen, O₃

Ozone Generator Manufacturer/Supplier

Ozone Solutions, Inc. website: www.ozonesolutions.com
451 Black Forest Rd. email: tech@ozonesolutions.com

Hull, IA 51239 712-439-6880

Product Use: This SDS is limited to ozone produced in gaseous form on site by an ozone generator, in varying concentrations in either air or aqueous solution, for the purposes of odor abatement, oxidation of organic compounds, or antimicrobial intervention, in a variety of applications, from food processing to ground water remediation.

2. HAZARD IDENTIFICATION

GHS Classifications:

Physical Hazards	Health Hazards	Environmental Hazards
Oxidizing Gas	Skin Irritation – Category 3	Acute Aquatic Toxicity
	Eye Irritation – Category 2B	– Category I
	Respiratory Systemic Toxicity – Category 1	
	(Acute & Repeated Exposures)	

NOTE: Severe respiratory toxicity will develop before skin or eye irritation go beyond listed categories. Anyone with chronic pulmonary problems, especially asthma, should avoid exposure to ozone.

WHMIS Classifications (Workplace Hazardous Materials Information System, Canada)

D1A	Acute lethality – Very toxic, immediately	С	Oxidizing
D2A	Chronic Toxicity –Very Toxic	F	Dangerously Reactive
D2B	Mutagenicity – Toxic		

3. COMPOSITION

Chemical name Ozone

Common names Triatomic oxygen, trioxygen

Chemical Formula O₃

CAS Registry Number 10028-15-6

4. FIRST AID MEASURES

Route of Entry		Symptoms	First Aid
Skin Contact	YES	Irritation	Rinse with water
Skin Absorption	NO	NA	NA
Eye Contact	YES	Irritation	Rinse with water, remove
			contacts
Ingestion	NO	NA	NA
Inhalation	YES	Headache, cough, dry throat,	Remove to fresh air, provide
		heavy chest, shortness of breath	oxygen therapy as needed

For severe cases, or when symptoms don't improve, seek medical help.

5. FIRE FIGHTING MEASURES

While ozone itself is not flammable, it is a strong oxidant and may accelerate, even initiate, combustion, or cause explosions. Use whatever extinguishing agents are indicated for burning materials.

6. ACCIDENTAL RELEASE MEASURES

Turn off ozone generator, and ventilate the area. Evacuate the area until ozone levels subside.

7. HANDLING AND STORAGE

Ozone must be contained within ozone-resistant tubing and pipes from the generation point to the application point. Any leaks must be repaired before further use.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

OSHA Permissible Exposure Limit: 8 hour Time Weighted Average **0.1 ppm** ANSI/ASTM: 8 hour TWA **0.1 ppm**, Short Term Exposure Limit **0.3 ppm**

ACGIH: 8 hour TWA 0.1 ppm; STEL 0.3 ppm

NIOSH: Exposure Limit Ceiling Value **0.1 ppm** light; **0.08 ppm** moderate; **0.05 ppm**, heavy;

Light, moderate, heavy work TWA <= 2 hours, .2 ppm

Immediately Dangerous to Life or Health **5 ppm**

Respiratory Protection: Use full face self-contained breathing apparatus for entering areas with high concentration of ozone.

Engineering controls: use ozone destruct units (thermal and/or catalytic) for off gassing ozone.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state	Gas	Нд	NA
Molecular Weight	48.0	Flash point	NA NA
Appearance	Clear at low concentrations,	Evaporation rate	NA
	blue at higher concentrations		
Odor	Distinctive pungent odor	Flammability	NA
Odor threshold	0.02 to 0.05 ppm; exposure	Explosive limits	NA
	desensitizes		

Melting point	-193°C/-315°F	Relative density	NA
Boiling point	-112°C/-169°F	Partition coefficient	NA
Vapor pressure	> 1 atm	Auto-ignition temperature	NA
Vapor density	1.6 (air = 1)	Decomposition temperature	NA
Solubility in water	570 mg/L @20°C, 100% O _{3;}	Viscosity	NA
	0.64 @0°C (vol/vol)		

10. STABILITY AND REACTIVITY

Ozone is highly unstable and highly reactive. Avoid contact with oxidizable substances, including alkenes, benzene and other aromatic compounds, rubber, dicyanogen, bromine diethyl ether, dintrogen tetroxide, nitrogen trichloride, hydrogen bromide, and tetraluorohydrazine. Ozone will readily react and spontaneously decompose under normal ambient temperatures.

11. TOXICOLOGICAL INFORMATION

Likely routes of exposure: inhalation, eyes, skin exposure.

Effects of Acute Exposure: Discomfort, including headache, coughing, dry throat, shortness of breath, heavy feeling in chest (including possible pulmonary edema/fluid in the lungs); higher levels of exposure intensify symptoms. Irritation of skin and/or eyes is also possible.

Effects of Chronic Exposure: Similar to acute exposure effects, with possible development of chronic breathing disorders, including asthma.

Irritancy of Ozone	YES
Sensitization to Ozone	NO
Carcinogenicity (NTP, IARC, OSHA)	NO
Reproductive Toxicity	Not Proven
Teratogenicity	Not Proven
Mutagenicity	Not Proven
Toxicologically Synergistic Products	Increase susceptibility to allergens, pathogens, irritants

12. ECOLOGICAL INFORMATION

The immediate surrounding area may be adversely affected by an ozone release, particularly plant life. Discharge of ozone in water solution would also be harmful to any aquatic life. Due to natural decomposition, bioaccumulation will not occur, and the area affected would be limited.

13. DISPOSAL CONSIDERATIONS

Off-gassing of ozone should be through an ozone destruct unit which uses heat and/or a catalyst to accomplish the breakdown of ozone to oxygen before release into the atmosphere.

14. TRANSPORT INFORMATION

NOT APPLICABLE, as ozone is unstable and either reacts with other substances in the environment or decomposes, and therefore must be generated at the location and time of use.

15. REGULATORY INFORMATION

SARA = Superfund Amendments and Renewal Act

SARA Title III Section 302 Extremely Hazardous Substance TPQ: 100 lbs.

SARA Title III Section 304, EHS RQ: 100 lbs.

SARA Title III Section 313: Ozone is reportable if more than 10,000 lbs. are used/year.

TPQ (Threshold Planning Quantity) requires emergency planning activities if this amount is on site at any time during year

RQ (Reportable Quantity) requires any release of this amount into the environment to be reported to the National Response Center

Source: EPA List of Lists

16. OTHER INFORMATION

The half-life of ozone is much shorter in water than in air. Increased temperature in either solvent decreases the half-life. Published research indicates a half-life of 20 minutes for ozone dissolved in water at 20°C, and a half-life of approximately 25 hours for ozone in dry air at 24°C (McClurkin & Maier, 2010). The practical half-life time is actually less, especially in air, due to air circulation, humidity, the presence of contaminants or walls with which to react, etc. In many situations, with air movement, warmer temperatures, and normal relative humidity, the half-life of ozone in air could be 1 hour or less. Further, ventilation of a closed space to other areas will also disperse the ozone, so that concentration levels can rapidly decrease after generation ceases.

Source websites:

Canadian Centre for Occupational Health and Safety: Chemical Profiles: Ozone

http://www.ccohs.ca/oshanswers/chemicals/chem_profiles/ozone/

Haz-Map: Occupational Exposure to Hazardous Agents: Ozone

http://hazmap.nlm.nih.gov/cgi-bin/hazmap_generic?tbl=TblAgents&id=68

International Chemical Safety Cards #0068: Ozone

http://www.cdc.gov/niosh/ipcsneng/neng0068.html

NIOSH Pocket Guide to Chemical Hazards: Ozone http://www.cdc.gov/niosh/npg/npgd0476.html

United States National Library of Medicine ChemIDplus Lite: Ozone 10028-15-6

http://chem.sis.nlm.nih.gov/chemidplus/ProxyServlet?objectHandle=DBMaint&actionHandle=default&nextPage=jsp/chemidlite/ResultScreen.jsp&TXTSUPERLISTID=0010028156

Preparer: Tim McConnel, Ozone Solutions

Date of Preparation: 5/1/2012

Disclaimer: Ozone Solutions provides this information in good faith, but makes no claim as to its comprehensiveness or accuracy. It is intended solely as a guide for the safe handling of the product by properly trained personnel, and makes no representations or warranties, express or implied, of the merchantability or fitness of the product for any purpose, and Ozone Solutions will not be responsible for any damages resulting from the use of, or reliance upon, this information.

Envirotrol Inc.® P.O. Box 61 432 Green St. Sewickley, PA 15143 Phone: 412.741.2030 Fax: 412.741.2670

Emergency Phone Number: 724.827.8181

MSDS Date: 5/14/2003

Material Safety Data Sheet

Section 1 – Product Identification			
Chemical Name: Carbon Trade I	Name:Activated/	Reactivated Carbon (Granular, Pe	elletized or Powdered)
Formula: C Commo	on Name: <u>Carbon</u>		
CAS Number: 7440-44-0 Chemic	cal Family:Element, @	Group IV-A	
Section 2 – Ingredients (Typical '	Values)		
Carbon	§	00-100% 0-10%	
Section 3 - Physical And Chemic	al Data		
 Boiling Point: 8721° F, 4827° C Vapor Density: N/A Specific Gravity: 0.2 − 0.75 Appearance: Black, Odorless, 	C (Approx.) Pelletized, Powder	Vapor Pressure:Solubility in Water:Percent, Volatile by Volume:Evaporation Rate:	N/A Insoluble N/A N/A
Section 4 - Fire And Explosion H	lazard Data		
 Flash Point: Ignition Point: Extinguishing Media: Special Fire Fighting Procedures: 		og, Foam re self-contained breathing appa gen starved fires may result in	
 Unusual Fires And Explosion Hazards: 	suspensions to sources	ensions of dust during handling, as of ignition. Suspensions of -40 ma exposed to strong sources of igni	esh powdered activated
Section 5 - <u>Health Hazard Data</u>			
 Eye Skin Contact: Skin Adsorption: Ingestion: Inhalation: Systemic And Other Effects: 	Constant prolonged ex Not adsorbed by skin. No adverse affect unle No toxic affect caused	cause physical irritation if not remo posure may cause dryness or cha ss quantity ingested causes phys by dust. As with any dust, excessi ance Dust" limitations should be o	apping of exposed area ical discomfort. ive exposure should be

Phone: 412.741.2030 Fax: 412.741.2670

Emergency Phone Number: 724.827.8181

MSDS Date: 5/14/2003

Section 5 - Health Hazard Data (continued)

Eyes:

Irrigate with water immediately. Repeat as needed to flush particle from eye. If

irritation persists, consult medical personnel.

Skin:

Wash with soap and water to avoid skin drying or chapping.

Ingestion:

Inhalation:

N/A N/A

Section 6 - Reactivity Data Compatibility Data

Stability:

Avoid contact with strong oxidizing chemicals, such as ozone, perchloric acid, permanganate, sodium chlorite, etc. Exposure to hydrocarbons and vegetable oils may cause slow oxidation until ignition point is reached--contact should be avoided.

Incompatibility:

Strong oxidizing materials.

Hazardous Decomposition Products:

Oxygen starved combustion may yield carbon monoxide.

Hazardous Polymerization:

Will not occur.

Section 7 - Storage Handling And Use

Action To Take For Spills:

Shovel and sweep material into appropriate container. If necessary wash area

with water.

Disposal Method:

Reactivation, landfill or incineration, in accordance with applicable regulations.

Section 8 - Personnel Protection

Ventilation:

Local exhaust recommended minimizing dust exposure.

Respiratory Protection:

Approved "nuisance dust" dust masks should be worn in dust exposure areas.

Protective Clothing:

Protective gloves can be worn.

Eye Protection:

150

Safety glasses with side shields should be worn and eve wash capabilities should

be available.

Section 9 - Special Precautions And Additional Information

Precautions to be taken in handling and storage: keep dry; wet carbon will adsorb oxygen and may reduce oxygen levels in confined spaces to dangerous levels. Adequate ventilation and precautions should be employed whenever closed tanks. receptacles or other enclosed spaces containing carbon are accessed. Suspensions of dust should be avoided and exposure of suspensions of dust to sources of ignition should be avoided.