

Application for Certification - Part 1

Test Group (CBI)

• Model Year:	2024
Manufacturer Name:	Hyundai Motor Company
• Test Group:	RHYXV01.6M13
 Test Group Description: 	1.6 Liter / I4 Turbocharged GDI / Otto-cycle
Durability Group:	RHYXHHGNNM13
 Durability Group Description: 	Monolith, WU-TWC + TWC
Vehicle Class:	LDV
Applicable Standards:	FED: Tier-3 Bin30 / Tier-3 Evap CAL: LEV-III SULEV 30 / LEV-III Evap
Emission Data Vehicle:	MX5U4G6HA148A/0 (Exh.) MQ4U1G6HA581F/0 (Evap.)
Carlines Covered by Certificate:	Santa Fe Hybrid AWD, Santa Fe Hybrid FWD
 EPA Response Requested by: 	Jan 28, 2024
 For Questions, Contact: 	Lillian Klawitter Tel: 201-790-0276 E-mail: <u>Iklawitter@hatci.com</u>

TABLE OF CONTENTS

			Application		
Sec	ction	Contents	Common	Test Group	
01		Correspondence and Communications	x		
02		Durability Group Description		х	
	02.01	List of Vehicles in Durability Groups	x		
	02.02	Catalyst Information		х	
03		Evaporative/Refueling Family Description		х	
	03.01	Evaporative/Refueling General Description	х		
	03.02	List of Vehicles in Evaporative Families	х		
04		Durability Test Procedure Description			
	04.01	Exhaust Durability Vehicle Test Data		х	
	04.02	Evaporative/ORVR Durability Test Data		х	
	04.03	Exhaust Durability Test Procedure	x		
	04.04	Evaporative Durability Test Procedure	х		
05		Test Group Description		х	
06		Test Vehicle Description		х	
07		Test Results		х	
80		Emission Compliance Statement	х		
09		OBD System Description		х	
	09.01	CARB Approval Letter		х	
10		Description of Alternate-Fueled Vehicles		х	
11		AECD Description		х	
12		Description of Vehicles Covered by Certificate and Test Parameters			
	12.01	Vehicle Parameters		х	
	12.02	Test Parameters	x	х	
13		Projected Sales	x		
14		Request for Certification		х	
15		Other Information			
	15.01	Certification Fee Filing Form		х	
	15.02	Vehicle Emission Control Information Label		x	
	15.03	ORVR Safety Statement		х	
	15.04	New Technology System Description	x		
	15.05	Engine Oil Information	X		
16		California ARB Information	X	х	
17		Service of Process	Х		

01.00 Correspondence and Communications

Please refer to Common Section 01.00.

For questions, call Lillian Klawitter (201-790-0276).

02.00 Durability Group Description

1.	Durability Group Name	:	RHYXHHGNNM13
2.	Combustion Cycle	:	Otto cycle / four stroke
3.	Engine Type	:	Piston / water cooled
4.	Fuel Used	:	Gasoline
5.	Basic Fuel Metering System	:	Direct Injection
6.	Catalyst Construction and location	:	See Section 02.02
7.	Precious Metals in Catalyst	:	See Section 02.02
8.	Precious Metal Loading for all Catalysts in the Durability Group	:	See Section 02.02
9.	Range of Catalyst Grouping Statistics	:	See Section 02.02
10	. Battery Capacity(s)	:	5.5Ah
11	. Battery Chemistry(s)	:	NCM(Nickel Cobalt Manganese, Li(NiCoMn)O2)
12	. Battery Duty Cycle Usage(s)	:	20 years / 300,000km
13	. Battery Manufacturer	:	Hyundai Mobis (SK ON)
14	. Battery Construction	:	9 modules with 8 cells each (72 cells in total)
15	. Battery Self-Discharge Information	:	< 3.0% @SOC60%, RT for 6 months

16. Description of the Thermal Management System The thermal management system for the battery is an air-cooling system, in which cabin air is blower through an inlet duct by cooling fan mounted in battery pack and expelled to outside through an outlet duct.

17. Battery Disposal Plan : Please refer to Common Section 02.00

02.01 List of Vehicles in Durability Groups

Please refer to Common Section 02.01.

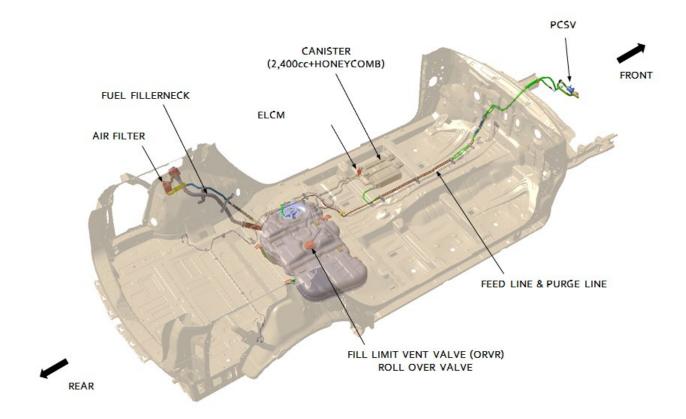
02.02 Catalyst Information

Test Group	Name	RHYXV01.6M13			
Catalyst Type		WU-TWC + TWC			
Brick (in a container)		Dual (Two Monoliths)	Single (One Monolith)		
Substrate	Configuration	Honeycomb & Round	Honeycomb & Round		
Substrate Major Mater		Ceramic	Ceramic		
Active Mate Compositio	erial on for each brick	12.5Pt/12.5Pd/1Rh +7Pt:7Pd:1Rh	25Pt/3Rh		
Active Mate for each br	erial Loading ick (g)	4.8 + 2.4	1.5		
Code (ID)		W2MAE5	U2M645		
Volume (I)		0.4 + 0.6	1.0		
Loading Ra	ate	4.:	35		
Range of C Grouping S		5.	4		

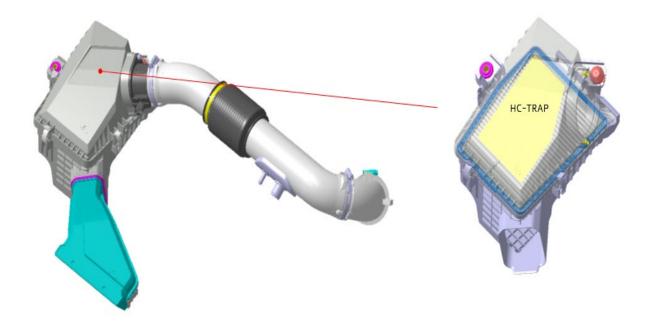
(Note) Pd = Palladium
Pt = Platinum
Rh = Rhodium
TWC = Three Way Catalyst
WU-TWC = Warm-up Three Way Catalyst

03.00 Evaporative/Refueling Family Description

03.00.01 Evaporative/Refueling Family Name: RHYXR0137M1G


03.00.01.01 Evaporative/Refueling Family Parameters

- 1. Type of vapor storage device: Canister (1EA), Air cleaner (1EA)
- 2. Basic canister design


Evap. code	Absorption flow rate (g/hr)	Nominal working capacity (g)	Size (cc)	Material	Medium	Nominal fuel tank capacity (gal)
137M1G	15	137	2400	Plastic	Activated Carbon	17.7

- 3. Fuel system: Returnless fuel system
- 4. Type of refueling emission control system: Integrated type
- 5. Fillpipe seal mechanism: Liquid seal type
- 6. Vapor control system or method of vapor line to the canister:
 - a. Fill Limit Vent valve (ORVR)
 - b. Overfill Limiter (2way valve)
 - c. Canister close valve
- 7. Purge control system
 - a. Type of valve: Duty
 - b. Purge control strategy: Controlled by ECU
 - c. High load purge system : No
 - d. Active purge system : Yes
- 8. Vapor hose material: Rubber
- 9. Fuel tank material: Plastic
- 10. HC-Trap:
 - a. Media: Paper containing activated carbon
 - b. Working capacity: 0.5g

03.00.01.02 Evaporative/Refueling Schematic

03.00.01.03 HC-TRAP Schematic

03.01 Evaporative/Refueling General Description

Please refer to Common Section 03.01.

03.02 List of Vehicles in Evaporative Families

Please refer to Common Section 03.02.

04.00 Durability Procedure Description

04.01 Exhaust Durability Vehicle Test Data

1. Dura Group Name: RHYXHHGNNM13

The exhaust durability tests were conducted according to the Test Procedure of the EPA Standard Bench aging durability procedure with modified low control temperature.

2. Bench Aging Time Calculation Result

Reference Temp.: 914°C Amount of aging required: 38Hr Bench Aging Time performed: 38Hr

3. Test Vehicle General Description

Vehicle ID	ТМ	Curb Weight	ETW	Tire Spec.
5NMS21A1BN1P98405/0	AMS6	4532 lb	4750 lb	235/60 R18

4. Test Data & Deterioration Factor

1) E10

		Emission [g/mile]						
		NMHC	NMOG	NOx	СО	РМ		
	50K DF	-	-	-	0.07	-		
Additive D.F	120K DF	0.0025	-	-	-	-		
	150K DF	-	0.0036	0.0016	0.22	0.0000		

Note: 50k & 120k mile E/M will be determined using linear interpolation.

2) E0

		Emission [g/mile]			
		ТНС	СО	N2O	CH4
Additive D.F	120K DF	0.003	0.14	0.0010	0.0014

Note: 120k mile E/M will be determined using linear interpolation.

04.02 Evap./ORVR Durability Vehicle Test Data (C/O from 21MY Sorento Hybrid)

1. Evap./Refueling Family Name: RHYXR0137M1G

2. 4K Stabilized Vehicles

Vehicle ID: HMQ1RHUR28A/0

	Running Loss (g/mile)	3 Day HSL + DBL (g/test)	2 Day HSL + DBL (g/test)	ORVR (g/gal)
DF (150k - 4k) (Additive)	0	0	0	0

(Note) Negative DF values are reported as zero.

04.03 Exhaust Durability Test Procedure

Please refer to Common Section 04.03 for details.

04.04 Evaporative Durability Test Procedure

Please refer to Common Section 04.04.

05.00 Test Group Description

Test group name	:	RHYXV01.6M13
Engine displacement covered	:	1.6 L
Electric motor capacity	:	47.7 kW @1800~2100rpm
Voltage	:	270 V
Type and size of electric motor	:	Permanent magnet synchronous motor 3.82 L
Battery capacity	:	5.5 Ah
Voltage and type of battery technology	:	270 V, Lithium Ion battery
Arrangement/Number of Cylinders	:	14
Vehicle Class(s) Covered	:	LDV
Sales Location/Emission Standard	:	FED : Tier-3 Bin 30 CAL: LEV-III SULEV 30 See CSI report for emission standard levels

06.00 Test Vehicle Description 1. Exhaust Durability Data Vehicle

Verify Processing Report

Total Datasets Submitted: 1 Accepted Datasets: 1 Rejected Datasets: 0

The original datasets are listed below. In addition, any information generated by the Verify system is also included. For any rejected datasets, the reason(s) the dataset was rejected is provided below in the Transaction Report for that particular dataset.

Test Vehicle Information Submission

Test Vehicle Information Details

Information Process Code : C EPA Manufacturer Code : HYX Vehicle Identification Text : 5NMS21A1BN1P98405 Vehicle Configuration Number : 0

Vehicle Configuration Details

Vehicle Description Details

Manufacturer Vehicle Configuration Number : 0 Test Group Name : RHYXV01.6M13 Evaporative Refueling Family Name : RHYXR0137M1G Leak Family Identifier : MXH Leak Family Name : RHYXR0137M1G-MXH Model Year : 2024 Actual Test Vehicle Make Text : HYUNDAI Actual Test Vehicle Model Text : SANTA FE HYBRID

Drive Source Details

Drive Source Identifier : E Fuel Identifier : EL

Drive Source Details

Drive Source Identifier : C Fuel Identifier : G

Fuel Cell Indicator : N Rechargeable Energy Storage System Indicator : Y Rechargeable Energy Storage Device Identifier : B Off Board Charge Capability Indicator : N Test Drive Code : F Shift Indicator Light Usage Identifier : 1 Aged Component Usage Identifier : 4

Odometer Correction Details

Correction Initial Value : 10 Correction Factor Value : 1.0165 Correction Sign Identifier : -Correction Units Code : M

Engine Code Text : G4FT-AC Engine Rated Horsepower Value : 178 Engine Displacement Value : 1.6

Air Aspiration Details

Air Aspiration Method Identifier : TC Air Aspiration Device Count : 1 Air Aspiration Configuration Identifier : N

Charge Air Cooler Identifier : A

Vehicle Specifications Details

Curb Weight Value : 4532 Equivalent Test Weight Value : 4750 Gross Vehicle Weight Rating Value : 5799 NV Ratio Value : 32.3 Axle Ratio Value : 3.51

Transmission Specifications Details

Light Duty Transmission Type Identifier : AMS Transmission Lockup Indicator : N Transmission Creeper Gear Indicator : N Transmission Gear Count : 6

Target Set Coefficient Details

Test Procedure Dynamometer Coefficients Category : C-H-E Target CoefficientA Value : 39.616 Target CoefficientB Value : 0.19265 Target CoefficientC Value : 0.025583 Set CoefficientA Value : 15.719 Set CoefficientB Value : 0.14134 Set CoefficientC Value : 0.024753

Target Set Coefficient Details

Test Procedure Dynamometer Coefficients Category : Cold-CO Target CoefficientA Value : 43.578 Target CoefficientB Value : 0.21191 Target CoefficientC Value : 0.028141 Set CoefficientA Value : 14.328 Set CoefficientB Value : 0.09642 Set CoefficientC Value : 0.027517

Target Set Coefficient Details

Test Procedure Dynamometer Coefficients Category : US06 Target CoefficientA Value : 39.616 Target CoefficientB Value : 0.19265 Target CoefficientC Value : 0.025583 Set CoefficientA Value : 15.719 Set CoefficientB Value : 0.14134 Set CoefficientC Value : 0.024753

Manufacturer Comment Text : DDV Vehicle ID. Transmission type is corrected to AMS.

EPA Generated Test Vehicle Details

Original Receipt Date : 20231211 Hybrid Vehicle Indicator : Y Adjusted Loaded Vehicle Weight Value : 5165 Loaded Vehicle Weight Value : 4832 Total Road Load Horsepower Value : 15.1

Transaction Status Details

Transaction Status Identifier : ACCEPTED

2. Exhaust & Evaporative Emission Data Vehicle

Please refer to CSI report in 07.00.

07.00 **Test Results** 07.01 **EV-CIS Certification Summary Information**

2024

CSI Revision #

Model Year

Certification Summary Information Report Date: 12/11/2023 08:36:39 PM Manufacturer Hyundai Motor Company Manufacturer Code HYX Test Group RHYXV01.6M13 **Evaporative/Refueling Family** RHYXR0137M1G CARB Executive Order # **Certificate Number** (22) Certificate Issue Date Certificate Revision Date Certificate Effective Date **Conditional Certificate** --------

CSI Submission/Revision Date

12/11/2023 08:36:11 PM

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Fa	amily	RHYXR0137M1C
Test Group Information				
CSI Туре	Update for Correction	Running Change Referen	ice Number	1777
GHG Exempt Status	Not Exempt	v v		
Drive Sources and Fuel(s)				
Drive Source #1:	Combustion Engine			
Fu	el	Basic Fuel Metering System	Lean Burn Strateg	y Indicator
Gaso	line	Spark Ignition Direct fuel injection	No	
Drive Source #2:	Electric Motor			
Fu	el 📃	Basic Fuel Metering System	Lean Burn Strateg	y Indicator
Electr	city			
Hybrid Indicator	Yes			
Multiple Fuel Storage		Rechargeable Energy Sto	orage System Indicator	Yes
Multiple Fuel Combustion	2707	Off-board Charge Capab	le Indicator	No
Fuel Cell Indicator	No	EPA Vehicle Class		LDV
Federal Clean Fuel Vehicle	No	Federal Clean Fuel Vehic	ele Standard	
Federal Clean Fuel Vehicle ILEV	No	California Partial Zero E	missions Vehicle Indicator	No
Durability Group Name	RHYXHHGNNM13	Durability Group Equiva	llency Factor	1.0
Reduced Fee Test Group	No	Certification Region Cod	e(s)	FA, CA
Complies with HD GHG 2b/3 regulations?	No			
Introduction into Commerce Date	<u>2010</u>	CAP2000 Conditional Ce	ertificate?	N/A
Independent Commercial Importer?		Alternative Fuel Convert	er Certificate?	199
SFTP Federal Composite Compliance Identifier	Tier 3	SFTP Tier 2 Composite C	CO Option	No
SFTP LEV-III Composite Compliance Indicator	Yes			
OBD Compliance Type	CARB	OBD Demonstration Veh	icle Test Group	RHYXT01.6L13
Test Group OBD Compliance Level	Full - no deficiencies	Number of Test Group O		0
OBD Deficiencies Comments	02220			
Mfr Test Group Comments	The fuel for Litmus test i RHYX10082583(FTP),F	is E0. Litmus result(Value/Threshold)) HWY(33.3/29.7). Test No: YX10082579(Cold CO),RHYX	(10082576(HWFE)
Mfr Exhaust / Evap Standards Comments	122			

Hyundai Motor Company

Certification Summary Information Report

Test Group		RHYXV01.6M13		Evaporative/Refueling	Family	RHYXR01371	M1G
Evaporative/Refuel	ling Family Informa	ation					
Evaporative Summary	Information Type	New		Submission/Correction Date		11/21/2023 01	:07:47 AM
Integrated ORVR?	, , ,	Yes		Fuel(s)		Gasoline	
Multiple Fuel Storage							
Bladder Fuel Tank?		No					
Fuel Tank Material		Plastic		Fuel Tank Material De	scription	HDPE	
Fill Pipe Seal Type		Liquid seal					
Air Intake System Vapor Storage Device?		Yes		Air Intake System Vap	or Storage Device Descri	ption HC-TRAP	
Fuel System Vapor Storage Canister?		Yes		Other Vapor Storage			
Fuel System Vapor Storage Canister(s) Total Working Capacity (grams)		137		Number of Primary Ca	nisters	1	
Number of Bleed Canisters		0		Bleed Canister Total W	orking Capacity (grams)		
Mfr Evaporative/Refue	ling Family Comments	Since-					
Leak Family Detail	ls						
Leak Family Indicator		Yes					
Canister Bleed Test Ind	licator	Yes		Applicability of Evaporative Canister Bleed Test		t 50 State	
Evaporative Canister B	Bleed Test Comments	(end					
CARB Fuel Only (Rig)	Test Indicator	No		Applicability of CARB Fuel Only (Rig) Test		1000	
CARB Fuel Only (Rig)	Test Comments						
Leak Family Name	Applicability o Family Require	of Leak Leak Fam ements (in	nily Standard nches)		Leak Family Desc	ription	
RHYXR0137M1G-M2	XH 50 State		0.02				
Models Covered by	, this Contificate						
would covered by	a uns cer uncate		Certification Region				
Carline Manufacturer	Division	Carline	Code(s)	Drive System	Trans - Type	- # of Gears	Trans - Lockup
Hyundai Motor	1 - HYUNDAI	58 - Santa Fe Hybrid	California + CAA	All Wiles I Debug	Automated Manual- Selectable (e.g. Automated Manual	C	N
Company	MOTOR COMPANY	AWD	Section 177 states	All Wheel Drive	with paddles) Automated Manual-	6	No
Hyundai Motor Company	1 - HYUNDAI MOTOR COMPANY	58 - Santa Fe Hybrid AWD	Federal	All Wheel Drive	Selectable (e.g. Automated Manual with paddles)	6	No
Hyundai Motor Company	1 - HYUNDAI MOTOR COMPANY	59 - Santa Fe Hybrid FWD		2-Wheel Drive, Front	Automated Manual- Selectable (e.g. Automated Manual with paddles)	6	No
					A		

California + CAA Section 177 states

59 - Santa Fe Hybrid FWD

1 - HYUNDAI MOTOR COMPANY

2-Wheel Drive, Front

Automated Manual-Selectable (e.g. Automated Manual with paddles)

6

No

Test Group RHYXV01.6M13 **Evaporative/Refueling Family** RHYXR0137M1G **Engine Description** Hybrid Type IC Engine/Electric Motor Hybrid Description **Engine Type** 4-Stroke Spark Ignition Mfr Engine Description **Engine Block Arrangement** Inline Mfr Engine Block Arrangement Description No **Camless Valvetrain Indicator Oil Viscosity/Classification** SAE 0W-20, API SN PLUS Number of Cylinders/Rotors 4 Mechanically Variable Compression Ratio Indicator Ν After Treatment Device(s) (ATD) ATD Number ATD Type **ATD Precious Metal** Substrate Material Substrate Construction Three-way catalyst Platinum + Palladium + Rhodium Ceramic Monolith 2 Three-way catalyst Platinum + Rhodium Ceramic Monolith Mfr After Treatment Device (ATD) Comments **Direct Ozone Reduction (DOR) Device** Not Equipped Mfr Emission Control Device Comments 22 **Engine Configuration Number 1 Engine Displacement (liters)** 1.6 **Engine Rated Horsepower** 178 2 2 Number of Inlet Valves Per Cylinder Number of Exhaust Valves Per Cylinder Air Aspiration Method Turbocharged Number of Air Aspiration Devices 1 Air Aspiration Device Configuration Single Charge Air Cooler Type Air Air Aspiration Drive Method(s) Mechanical **Cylinder Deactivation** No Cylinder Deactivation Description ---Variable Valve Timing Yes Variable Valve Timing System Description Fixed 3 (Continuous Variable Valve Timing) Variable Valve Lift? No Variable Valve Lift System Description 1000 Number of Knock Sensors 1 Number of Air/Fuel Sensors 2 Air/Fuel Sensor # 1 Type Other Air/Fuel Sensor #1 Description WR-HO2S Air/Fuel Sensor # 2 Type Heated oxygen Air/Fuel Sensor # 2 Description Mfr Air/Fuel Sensor Comments **Exhaust Gas Recirculation** Yes Cooled Exhaust Gas Recirculation Yes EGR Type Electronic/Electric Exhaust Gas Recirculation Description if 'Other' **Closed Loop Air Injection System** No Air Injection Type Air Injection Type if 'Other' Mfr Engine Configuration Comments ---

Certification Summary Information Report

Date: 12/11/2023 08:36:39 PM

Certification Summary Information Report

Test Group		RHYXVO	01.6M13	Ev	Evaporative/Refueling Family			RHYXR0137M1G		
Official Test	Numbers									
Test Group Fuel	FTP	US06	SC03	Cold CO	Highway	EPA City Litmus Value	EPA City Litmus Threshold	EPA Highway Litmus Value	EPA Highway Litmus Threshold	CREE Weighting Factor
Electricity										
Gasoline	RHYX10082549	RHYX10082551	RHYX10082554	RHYX10082552	RHYX10082550	33.6	228.2	34.1	286.1	
and a second sec	II Official Test N	umbers								
	Group Fuel	F1	ГР	U	S06		SC03			
	lectricity									
	Gasoline	RHYX1	0082549	RHYX1	.0082551	RHY	/X10082554			
Official Chai	rge Depleting Tes	t Numbers								
	Test Group Fuel		UDDS			Highway				
	Electricity									
Hybrid Elect	tric Vehicle And	Fuel Cell Informa	ation							
Rechargable Er	nergy Storage System	ı Battery(s)		Re	chargable Energy St	orage System,	if Other	(222)		
Battery Type		Lithium I	on		umber of Battery Pac			1		
Total Voltage o	f Battery Packs	270			ittery Energy Capaci	ty		5.5		
Battery Specific	e Energy	40.1		Ba	Battery Charger Type			On-Board		
Number of Cap	acitors	1000		Ca	Capacitor Rating (In Farads)			1777		
Mfr Capacitor										
Hydraulic Syste	em Description	3 7.0.0								
Regenerative B	raking Type	Electrical	Regen Brake							
Regenerative B	raking Source	Front Wh	eels	Dr	viver Controlled Reg	enerative Brak	ing	Yes		
Mfr Regenerati	ve Braking Descripti	on								
Drive Motor(s)/	Generator(s)	1								
Motor/Generate	or Type 1	PMSM		Ra	ated Motor/Generato	r Power		48		
Mfr Fuel Cell D	Description	8777								
Fuel Cell On-Bo	oard H2 Storage Cap	acity (kg)		Us	able H2 Fill Capacit	y (kg)		12-21		
Mfr Hybrid Ele Comments	ectric/ Electric Vehicl	e 			<u> </u>	: 6				

Certification Summary Information Report

		~ ·		
Test Group	RHYXV01.6M13	Evaporative/Refueling F	amily	RHYXR0137M1G
Emission Data Vehicle Informati	on			
Vehicle ID / Configuration	MX5U4G6HA148A / 0	Manufacturer Vehicle C	onfiguration Number	0
Original Test Group Name	RHYXV01.6M13	Original Evaporative/Re		RHYXR0137M1G
Original Test Vehicle Model Year	2024		J	
Vehicle Model				
Represented Test Vehicle Make	HYUNDAI	Represented Test Vehicl	e Model	SANTA FE HYBRID
Leak Family Details	in one in			SARTITE HIDIOD
	N (N/LT	T I D I NT		
Leak Family Identifier	MXH	Leak Family Name		RHYXR0137M1G-MXH
Drive Sources and Fuel System D)etails			
Drive Se	ource and Fuel#	Drive Source	Fuel	
	1	Combustion Engine	Gasoline	
	2	Electric Motor	Electricity	/
Hybrid Indicator	Yes			
Multiple Fuel Storage	22	Multiple Fuel Combusti	on	22
Fuel Cell Indicator	No	Rechargeable Energy St		Yes
Rechargeable Energy Storage System	Battery (s)	Rechargeable Energy St		
Off-board charge Capable Indicator	No	0 0		
Odometer Correction Initial	10	Odometer Correction Fa	actor	1.0165
Odometer Correction Sign	- = System Miles is equal	l to (Test odometer reading - Initial system miles) st		
Odometer Correction Units	Miles			
Engine Code	G4FT-AC	Rated Horsepower		178
Displacement (liters)	1.6			
Air Aspiration Method	Turbocharged	Air Aspiration Method,	if 'Other'	
Number of Air Aspiration Devices	1	Air Aspiration Device C	onfiguration	Single
Charge Air Cooler Type	Air	Drive Mode While Testi	Drive Mode While Testing	
CT . C. T. T. T. T.			Aged Emission Components	
Shift Indicator Light Usage	Not eqipped	Aged Emission Compon	01105	4,000 (mi)
Shift Indicator Light Usage Curb Weight (lbs)	Not eqipped 4532	Aged Emission Compon Equivalent Test Weight		4750
0 0				62 32 53
Curb Weight (lbs)	4532	Equivalent Test Weight		4750
Curb Weight (lbs) GVWR (lbs) Axle Ratio	4532 5799 3.51 Automated Manual- Sele	Equivalent Test Weight N/V Ratio	(pounds)	4750 32.3
Curb Weight (lbs) GVWR (lbs)	4532 5799 3.51	Equivalent Test Weight N/V Ratio	(pounds)	4750

Certification Summary Information Report

Test Group	RHYXV01.6M13 Evaporative/Refueling Family		efueling Family	RHYXR0137M1G			
Dynamometer Coe	fficients:						
		Target Coefficien	ts		Set Coefficients		
Coefficient Category	A (lbf)	B (lbf/mph)	C (lbf/mph**2)	A (lbf)	B (lbf/mph)	C (lbf/mph**2)	EPA Calculated Total Road Load Horse Power for City/Highway/Evap Coefficients
City/Highway/Evap	39.616	0.19265	0.025583	15.719	0.14134	0.024753	15.1
Cold CO	43.578	0.21191	0.028141	14.328	0.09642	0.027517	N/A
US06	39.616	0.19265	0.025583	15.719	0.14134	0.024753	N/A

Emission Control Device Comments

Manufacturer Test Vehicle Comments

24MY MX5a HEV AWD 20inch. Rated horse power is corrected to 178 hp. Transmission type is corrected to AMS.

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082549	Test Procedure	21 - Federal fuel 2-day exhaust (w/can load)
Exhaust Test # for this Evap Test		Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	08/17/2023	Fuel	Gasoline
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method	1		
Test Start Odometer Reading	4122	Odometer Units	Μ
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO2 BAG 1 (Bag 1 Carbon Dioxide)	267	
FE BAG 1 (Bag 1 Fuel Economy)	31.3	31.3
CO2 BAG 2 (Bag 2 Carbon Dioxide)	176	
FE BAG 2 (Bag 2 Fuel Economy)	47.5	47.5
CO2 BAG 3 (Bag 3 Carbon Dioxide)	286	
FE BAG 3 (Bag 3 Fuel Economy)	29.2	29.2
CO2 BAG 4 (Bag 4 Carbon Dioxide)	132	
FE BAG 4 (Bag 4 Fuel Economy)	63.4	63.4
METHANE (CH4 - Methane)	0.0023	
CO (Carbon Monoxide)	0.0728	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	1.44	
DT-EER (Drive Trace Energy Economy Rating)	1.33	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	2.01	
MFR FE (Manufacturer Fuel Economy)	39.4512	39.4512
NOX (Nitrogen Oxide)	0.0021	
HC-NM (Non-methane Hydrocarbon)	0.0046	
NMOG (Non-methane organic gases)	0.0051	
PM (Particulate Matter)	0.0006	
HC-TOTAL (Total Hydrocarbon)	0.0069	

Certification Summary Information Report

		Test Resul	t Name		Unrour	ided Test Resul	t	Verify (alculated CR	EE/OPT-CRE	E	
	C	arbon-Related Ex			omoun	212		verny e	999			
	· · · · · · · · · · · · · · · · · · ·											
		Test Resul				ided Test Resul	t	1	erify Calcula	ted CO2		
.	T 10	Carbon d				212.0611						
Manufacture	r Test Commer	115	24MY MX5a HE'	V AWD 201nch	EIU - FIP							
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	120,000 miles	Federal Tier 3 Bin 30	CREE	999				0.229467		999		
Fed	120,000 miles		METHANE	0.0023				0.0014		0.004	0.030	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	CO	0.07		1000	9 <u>1-12</u>	0.22		0.3	1.0	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	CO-COMP	0.29				0		0.3	4.2	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0051		1.10		0.0036		0.009	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0072						0.012	0.030	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX- COMP	0.0126				0		0.013	0.030	Pass
Fed	150,000 miles	Bin 30	NOX	0.0021				0.0016		0.004	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	PM	0.0006				0.0000	-	0.001	0.003	Pass
CA CA	150,000 miles	III SULEV30	CO CO-COMP	0.07				0.22		0.3	1.0 4.2	Pass Pass
CA	150,000 miles	III SULEV30	NMOG	0.29		1.10		0.0036		0.009	99.999	Pass
CA	150,000 miles	III SULEV30	NMOG+NOX	0.0031						0.003	0.030	Pass
CA	150,000 miles	III SULEV30 California LEV-	NMOG+NOX-	0.0126				0		0.012	0.030	Pass
CA	150,000 miles	III SULEV30 California LEV-	COMP NOX	0.0021				0.0016		0.004	99.999	Pass
CA	150,000 miles	III SULEV30	PM	0.0006				0.0000		0.001	0.001	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082552	Test Procedure	11 - Cold CO
Exhaust Test # for this Evap Test		Test Fuel Type	28 - Cold CO E10 Regular Gasoline (Tier 3)
Test Date	08/15/2023	Fuel	Gasoline
Fuel Batch ID	22D-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	4053	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO2 BAG 1 (Bag 1 Carbon Dioxide)	440	
FE BAG 1 (Bag 1 Fuel Economy)	19.6	19.6
CO2 BAG 2 (Bag 2 Carbon Dioxide)	319	
FE BAG 2 (Bag 2 Fuel Economy)	27.1	27.1
CO2 BAG 3 (Bag 3 Carbon Dioxide)	300	
FE BAG 3 (Bag 3 Fuel Economy)	28.8	28.8
CO (Carbon Monoxide)	0.2013	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	0.33	
DT-EER (Drive Trace Energy Economy Rating)	0.55	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	-3.43	
MFR FE (Manufacturer Fuel Economy)	25.5039	25.5039
NOX (Nitrogen Oxide)	0.0061	
HC-NM (Non-methane Hydrocarbon)	0.0279	
HC-TOTAL (Total Hydrocarbon)	0.0331	

Test Result Name	Unrounded Test Result	Verify Calculated CO2
Carbon dioxide	338.7149	

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E10 - 20F

Certification Summary Information Report

Test Group		RHYXV01.6M13			Evaporative/Refueling Family RH			RHYXR0	137M1G			
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	50,000 miles	Federal Tier 3 Bin 30	СО	0.20				0.07		0.3	10.0	Pass
Fed	120,000 miles	Federal Tier 3 Bin 30	HC-NM	0.03	<u>899</u>	122	120	0.0025		0.0	0.3	Pass
CA	50,000 miles	California LEV- III SULEV30	СО	0.20				0.07		0.3	10.0	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082553	Test Procedure	52 - Fed. fuel 50 F exh.
Exhaust Test # for this Evap Test		Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	09/12/2023	Fuel	Gasoline
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	4687	Odometer Units	Μ
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO (Carbon Monoxide)	0.1029	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	2.35	
DT-EER (Drive Trace Energy Economy Rating)	1.9	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	3.66	
MFR FE (Manufacturer Fuel Economy)	36.0429	36.0429
NOX (Nitrogen Oxide)	0.0024	
HC-NM (Non-methane Hydrocarbon)	0.0078	
NMOG (Non-methane organic gases)	0.0086	
HC-TOTAL (Total Hydrocarbon)	0.0114	

Test Result Name	Unrounded Test Result	Verify Calculated CO2
Carbon dioxide	232.3831	

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E10 - 50F

Certification Summary Information Report

Test Group			RHYXV01.6M13			Evaporati	ve/Refueling Fa	amily		RHYXR0	137M1G	
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
CA	4,000 miles	California LEV- III SULEV30	CO	0.10						0.1	1.0	Pass
CA	4,000 miles	California LEV- III SULEV30	NMOG	0.0086		1.10	-22	-22		0.009	99.999	Pass
CA	4,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0110		7				0.011	0.060	Pass
CA	4,000 miles	California LEV- III SULEV30	NOX	0.0024						0.002	99.999	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082583	Test Procedure	21 - Federal fuel 2-day exhaust (w/can load)
Exhaust Test # for this Evap Test		Test Fuel Type	61 - Tier 2 Cert Gasoline
Test Date	08/27/2023	Fuel	Gasoline
Fuel Batch ID	22M-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Туре	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method	103 103 177		
Test Start Odometer Reading	4360	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (mile per gallon)
CO2 BAG 1 (Bag 1 Carbon Dioxide)	275	
FE BAG 1 (Bag 1 Fuel Economy)	32.4	32.4
CO2 BAG 2 (Bag 2 Carbon Dioxide)	105	
FE BAG 2 (Bag 2 Fuel Economy)	84.9	84.9
CO2 BAG 3 (Bag 3 Carbon Dioxide)	279	
FE BAG 3 (Bag 3 Fuel Economy)	31.9	31.9
CO2 BAG 4 (Bag 4 Carbon Dioxide)	128	
FE BAG 4 (Bag 4 Fuel Economy)	69.7	69.7
METHANE (CH4 - Methane)	0.0029	
CO (Carbon Monoxide)	0.0794	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	1.49	
DT-EER (Drive Trace Energy Economy Rating)	1.23	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	2.12	
MFR FE (Manufacturer Fuel Economy)	45.7003	45.7003
NOX (Nitrogen Oxide)	0.0018	
N2O (Nitrous Oxide)	0.0003	
HC-NM (Non-methane Hydrocarbon)	0.0057	
NMOG (Non-methane organic gases)	0.0059	
HC-TOTAL (Total Hydrocarbon)	0.0084	
Test Result Name	Unrounded Test Result	Verify Calculated CREE/OPT-CREE

Test Result Name	Unrounded Test Result	Verify Calculated CREE/OPT-CREE		
Carbon-Related Exhaust Emissions	195	195		

Certification Summary Information Report

		Test Resul	t Nama		Ummour	ded Test Resul			/erify Calcula	ted CO2		
		Carbon d				194.8639	L		erny Calcula			
Manufacture	• Test Commer		24MY MX5a HE	V AWD 20inch		101.0000						
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	120,000 miles	Federal Tier 3 Bin 30	CREE	195				0.229467		195		
Fed	120,000 miles	Federal Tier 3 Bin 30	METHANE	0.0029				0.0014		0.004	0.030	Pass
Fed	120,000 miles	Federal Tier 3 Bin 30	N2O	0.0003				0.0010		0.001	0.010	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	CO	0.08				0.22		0.3	1.0	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0059		1.10		0.0036		0.010	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0077	55					0.013	0.030	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NOX	0.0018				0.0016		0.003	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	CO	0.08				0.22		0.3	1.0	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG	0.0059		1.10	122	0.0036		0.010	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0077						0.013	0.030	Pass
CA	150,000 miles	California LEV- III SULEV30	NOX	0.0018				0.0016		0.003	99.999	Pass
		NOTE: For Non	-charge depleting	tests, the Roun	ded Result	for CREE/OPT	-CREE Emissi	on names are	Verify-calcul	ated values.		

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082550	Test Procedure	3 - HWFE
Exhaust Test # for this Evap Test		Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	08/17/2023	Fuel	Gasoline
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	41 36	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO (Carbon Monoxide)	0.0299	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	2.3	
DT-EER (Drive Trace Energy Economy Rating)	0.38	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	3.38	
MFR FE (Manufacturer Fuel Economy)	38.7361	38.7361
NOX (Nitrogen Oxide)	0.001	
HC-NM (Non-methane Hydrocarbon)	0	
NMOG (Non-methane organic gases)	0	
HC-TOTAL (Total Hydrocarbon)	0.0001	

Test Result Name	Unrounded Test Result	Verify Calculated CREE/OPT-CREE		
Carbon-Related Exhaust Emissions	216	999		

Test Result Name	Unrounded Test Result	Verify Calculated CO2
Carbon dioxide	215.8643	

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E10 - HWY

Certification Summary Information Report

Test Group			RHYXV01.6M13			Evaporativ	/e/Refueling Fa	mily		RHYXR0	137M1G	
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	120,000 miles	Federal Tier 3 Bin 30	CREE	999				0.229467		999		7.000.
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0000		1.03	9 <u>22</u> 2	0.0036		0.004	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0010						0.006	0.030	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NOX	0.0010				0.0016		0.003	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG	0.0000		1.03		0.0036		0.004	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0010		1222)			0.006	0.030	Pass
CA	150,000 miles	California LEV- III SULEV30	NOX	0.0010				0.0016		0.003	99.999	Pass

NOTE: For Non-charge depleting tests, the Rounded Result for CREE/OPT-CREE Emission names are Verify-calculated values.

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082576	Test Procedure	3 - HWFE
Exhaust Test # for this Evap Test		Test Fuel Type	61 - Tier 2 Cert Gasoline
Test Date	08/27/2023	Fuel	Gasoline
Fuel Batch ID	22M-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	4375	Odometer Units	Μ
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)				
CO (Carbon Monoxide)	0.0743					
DT-ASCR (Drive Trace Absolute Speed Change Rating)	4.05					
DT-EER (Drive Trace Energy Economy Rating)	0.5					
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	5.57					
MFR FE (Manufacturer Fuel Economy)	45.0177	45.0177				
NOX (Nitrogen Oxide)	0.0004					
HC-NM (Non-methane Hydrocarbon)	0	55				
NMOG (Non-methane organic gases)	0					
HC-TOTAL (Total Hydrocarbon)	0.0001					

Test Result Name	Unrounded Test Result	Verify Calculated CREE/OPT-CREE			
Carbon-Related Exhaust Emissions	198	198			

Test Result Name	Unrounded Test Result	Verify Calculated CO2			
Carbon dioxide	197.8053				

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E0 - HWY

Certification Summary Information Report

Test Group		RHYXV01.6M13				Evaporative/Refueling Family			RHYXR0137M1G			
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	120,000 miles	Federal Tier 3 Bin 30	CREE	198				0.229467		198		
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0000		1.03	9 <u>22</u> 2	0.0036		0.004	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0004						0.006	0.030	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NOX	0.0004				0.0016		0.002	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG	0.0000		1.03		0.0036		0.004	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0004		1222)			0.006	0.030	Pass
CA	150,000 miles	California LEV- III SULEV30	NOX	0.0004				0.0016	(- 	0.002	99.999	Pass

NOTE: For Non-charge depleting tests, the Rounded Result for CREE/OPT-CREE Emission names are Verify-calculated values.

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082551	Test Procedure	90 - US06
Exhaust Test # for this Evap Test		Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	08/17/2023	Fuel	Gasoline
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	41 57	Odometer Units	Μ
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes	500 ZZ	
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO2 BAG 1 (Bag 1 Carbon Dioxide)	443	
FE BAG 1 (Bag 1 Fuel Economy)	18.9	18.9
CO2 BAG 2 (Bag 2 Carbon Dioxide)	291	
FE BAG 2 (Bag 2 Fuel Economy)	28.7	28.7
CO (Carbon Monoxide)	0.0569	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	-2.12	
DT-EER (Drive Trace Energy Economy Rating)	-0.45	20
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	-3.43	
MFR FE (Manufacturer Fuel Economy)	25.8205	25.8205
NOX (Nitrogen Oxide)	0.0053	
HC-NM (Non-methane Hydrocarbon)	0.0047	227
NMOG (Non-methane organic gases)	0.0048	
PM (Particulate Matter)	0.0013	
HC-TOTAL (Total Hydrocarbon)	0.0074	

Test Result Name	Unrounded Test Result	Verify Calculated CO2
Carbon dioxide	324.4861	

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E10 - US06

Test Group			RHYXV01.6M13			Evaporativ	ve/Refueling Fa	amily		RHYXR01	37M1G	
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Bin 30	CO	0.0569				0.22		0.277	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0048		1.03	8 <u>99</u>	0.0036		0.008	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0101						0.015	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NOX	0.0053				0.0016		0.007	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	PM	0.0013		-22		0.0000		0.001	0.006	Pass
CA	150,000 miles	California LEV- III SULEV30	CO	0.0569		2		0.22	1	0.277	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG	0.0048		1.03		0.0036		0.008	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0101		122	122	-00		0.015	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NOX	0.0053				0.0016		0.007	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	РМ	0.0013		5555	222	0.0000		0.001	0.006	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	RHYX10082554	Test Procedure	95 - SC03
Exhaust Test # for this Evap Test	(22)	Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	08/18/2023	Fuel	Gasoline
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Vehicle Class	LDV/Passenger Car	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method			
Test Start Odometer Reading	4173	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	Yes

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
CO (Carbon Monoxide)	0.0688	
DT-ASCR (Drive Trace Absolute Speed Change Rating)	1.47	
DT-EER (Drive Trace Energy Economy Rating)	1.34	
DT-IWRR (Drive Trace Inertia Work Ratio Rating)	1.75	
MFR FE (Manufacturer Fuel Economy)	23.6995	23.6995
NOX (Nitrogen Oxide)	0.0043	
HC-NM (Non-methane Hydrocarbon)	0.0012	
NMOG (Non-methane organic gases)	0.0012	
HC-TOTAL (Total Hydrocarbon)	0.004	

Test Result Name	Unrounded Test Result	Verify Calculated CO2
Carbon dioxide	353.1541	

Manufacturer Test Comments

24MY MX5a HEV AWD 20inch E10 - SC03

Test Group			RHYXV01.6M13			Evaporativ	ve/Refueling Fa	amily		RHYXR01	37M1G	
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	RAF	NMOG/NM HC Ratio	Diesel Adjustment Factor	Add DF	Mult DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Bin 30	CO	0.0688				0.22		0.289	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG	0.0012		1.03	<u>94400</u>	0.0036	1223	0.005	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NMOG+NOX	0.0055						0.011	99.999	Pass
Fed	150,000 miles	Federal Tier 3 Bin 30	NOX	0.0043				0.0016		0.006	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	CO	0.0688				0.22		0.289	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG	0.0012		1.03		0.0036		0.005	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NMOG+NOX	0.0055						0.011	99.999	Pass
CA	150,000 miles	California LEV- III SULEV30	NOX	0.0043	<u></u>	1222	10212	0.0016		0.006	99.999	Pass

Number of Air Aspiration Devices

Charge Air Cooler Type

Curb Weight (lbs)

Transmission Type

Transmission Lockup

GVWR (lbs)

Axle Ratio

Shift Indicator Light Usage

1

Air

4065

5578

3.51

No

Not eqipped

Automated Manual- Selectable (e.g. Automated Manual with paddles)

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling F	amily	RHYXR0137M1G
Emission Data Vehicle Information	n			
Vehicle ID / Configuration	MQ4U1G6HA581F/0	Manufacturer Vehicle C	onfiguration Number	0
Original Test Group Name	MKMXV01.6]13	Original Evaporative/Re		MKMXR0137J1G
Original Test Vehicle Model Year	2021	5 1	0 ,	i na anti manana anti mangka na kanana katala 🦉 ta makana
Vehicle Model				
Represented Test Vehicle Make	KIA	Represented Test Vehicle	e Model	SORENTO HYBRID
Leak Family Details				
Leak Family Identifier	MQH	Leak Family Name		MKMXR0137J1G-MQH
Drive Sources and Fuel System De	tails			
Drive Sou	rce and Fuel#	Drive Source	Fuel	
	1	Combustion Engine Gasoli		e
	2	Electric Motor Electri		ty
Hybrid Indicator	Yes			
Multiple Fuel Storage		Multiple Fuel Combustic	n	<u>2010</u>
Fuel Cell Indicator	No	Rechargeable Energy St		Yes
Rechargeable Energy Storage System	Battery (s)	Rechargeable Energy St	0 0	
Off-board charge Capable Indicator	No	3		
Odometer Correction Initial	0	Odometer Correction Fa	ictor	0.9976
Odometer Correction Sign	- = System Miles is equ	ual to (Test odometer reading - Initial system miles) st	Correction factor	
Odometer Correction Units	Miles			
Engine Code	G4FT-AC	Rated Horsepower		177
Displacement (liters)	1.6			
Air Aspiration Method	Turbocharged	Air Aspiration Method, i	if 'Other'	

Air Aspiration Device Configuration

Drive Mode While Testing

of Transmission Gears

N/V Ratio

Creeper Gear

Aged Emission Components

Equivalent Test Weight (pounds)

Single

4250

32.3

6

No

4,000 (mi)

2-Wheel Drive, Front

			Certification Su	5	1		
Test Group	RHYXV01.6M13			Evaporative/Refueling Family		RHYXR0137M1G	
Dynamometer (Coefficients:						
	Target	Coefficients		Set Coefficients			
Coefficient Category	Ū	lbf/mph) _ C (lbf/mph**	*2) A (lbf)	B (lbf/mph)	C (lbf/mph**2)	EPA Calculated Total Road Load Horse City/Highway/Evap Coefficien	
City/Highway/Eva	p 33.96 0.	.01277 0.027097	12.811	0.05451	0.025975	13.6	
Emission Control D	evice Comments						
Manufacturer Test	Vehicle Comments	SORENTO HYBRID 21	MY 17" EVAP-correct	TM type(SA to Al	MS)		
Test #		MKMX10064838		Test Procedu	re	38 - CA fuel 3-day	evap.
						46 - CARB LEV3 E10	-
Exhaust Test # for	this Evap Test	MKMX10064829		Test Fuel Type		Gasoline	
Test Date		04/29/2020		Fuel	2724 197	Gasoline	
Fuel Batch ID		19E-03		Fuel Calibratio	n Number	1	
Vehicle Class		N/A		DF Type		Mfr. Determined	
Verify Test Lab ID		772-1, Jangduck-Dong					
	est Measurement Method		'otal Hydrocarbons)				
Test Start Odomete	er Reading	2250		Odometer Unit	s	М	
4WD Test Dyno		No		Diesel Adjustm	ent Factor Usage	an <u>atori</u>	
State of Charge Del	lta	Yes					
Drive Cycle Speed	Tolerance Criteria	Used Part 86 (+/- 2 mph,	+/- 1 sec)	Road Speed Fa	n Usage	No	
Test Results							
	Test Resul	lt Name	Unrounde	d Test Result	Verify	v Calculated FE Equivalent Value (miles per gallon)	
-	HC-TOTAL-EQUIV (equivalent - I		0.	2141			

Region	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Evap	HC-TOTAL-EQUIV	0.2141	0.0000	0.214	0.300	Pass
CA	150,000 miles	California LEV-III Zero Evap (Option 2)	HC-TOTAL-EQUIV	0.2141	0.0000	0.214	0.300	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	MKMX10064840	Test Procedure	27 - California fuel 2-day evap
Exhaust Test # for this Evap Test	MKMX10064831	Test Fuel Type	46 - CARB LEV3 E10 Regular Gasoline
Test Date	04/14/2020	Fuel	Gasoline
Fuel Batch ID	19E-03	Fuel Calibration Number	1
Vehicle Class	N/A	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method	Calculated (1.08 x FID Total Hydrocarbons)		
Test Start Odometer Reading	2185	Odometer Units	Μ
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta	Yes		
Drive Cycle Speed Tolerance Criteria	Used Part 86 (+/- 2 mph, +/- 1 sec)	Road Speed Fan Usage	No

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
HC-TOTAL-EQUIV (Total Hydrocarbon equivalent - Evap only)	0.2418	

Manufacturer Test Comments

ts

2DBL

Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Evap	HC-TOTAL-EQUIV	0.2418	0.0000	0.242	0.300	Pass
CA	150,000 miles	California LEV-III Zero Evap (Option 2)	HC-TOTAL-EQUIV	0.2418	0.0000	0.242	0.300	Pass

Fest Group		RHYXV01.6M13		Evaporati	/e/Refueling Fa	mily	RHYXR0137M1G	615 1
Test #		MKMX1006483	9	Test Proc	edure		37 - California F Loss	uel Running
					-		46 - CARB LEV3 I	E10 Regular
Exhaust Test # for	this Evap Test	MKMX10064829		Test Fuel	ype		Gasoline	
Test Date		04/29/2020		Fuel			Gasoline	
Fuel Batch ID		19E-03			ration Number		1	
Vehicle Class		N/A		DF Type			Mfr. Determined	
Verify Test Lab II		772-1, Jangduck-D	1999 - 1993 - 1999 - 19					
	Test Measurement Method		FID Total Hydrocar	00000000000				
Test Start Odome	ter Reading	2250		Odometer			М	
4WD Test Dyno		No		Diesel Adj	ustment Factor	Usage	(
State of Charge D		Yes						
Drive Cycle Speed	Tolerance Criteria	Used Part 86 (+/- 2	2 mph, +/- 1 sec)	Road Spee	d Fan Usage		No	
Test Results								
	Test Resu	ılt Name	U	nrounded Test Resul	t	Verify Calculated FE Equi per gallor	valent Value (miles n)	
	HC-TOTAL-EQUIV	(Total Hydrocarbon		0.0002		_	1	
	equivalent -	Evap only)						
Manufacturer Tes		RL						
Manufacturer Tes Certification Region	t Comments	RL	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail
	t Comments Useful Life	RL Standard Level	Emission Name C-TOTAL-EQUIV	Rounded Result	Add DF 0.000	Certification Level	Standard 0.05	Pass/Fail Pass

st Group RHYXV01.6M13			3	Evaporativ	e/Refueling Fami	ly	RHYXR0137M	1G	
Test # MKMX10064841			1841	Test Procedure				24 - Federal fuel refueling test (ORVR)	
Exhaust Test # fo	r this Evan Test	MKMX100648	24	Test Fuel T	vne		48 - Tier 3 E10 F RVP @Low Alt	Regular Gasoline (9)	
Fest Date	r and Litup reat	03/19/2020		Fuel	<i>JPC</i>		Gasoline		
uel Batch ID		19T-02			ation Number		1		
/ehicle Class		N/A		DF Type			Mfr. Determined		
/erify Test Lab I	D	772-1, Jangducl	k-Dong	51					
•			3 x FID Total Hydrocar	bons)					
Test Start Odometer Reading 2114				Odometer I	Units		М		
WD Test Dyno		No		Diesel Adju	stment Factor U	sage			
tate of Charge I	Delta	-221							
Orive Cycle Spee	d Tolerance Criteria	Used Part 1066	(+/- 2.0 mph, +/- 1.0 se	ec) Road Speed	l Fan Usage		No		
Fest Results									
rest results	ĭ							_	
	Test Res	sult Name	U	nrounded Test Result	V	erify Calculated FE Equi per gallor			
	HC-TOTAL-EQUIN equivalent	/ (Total Hydrocarb - Evap only)	on	0.0304			.,		
Certification		ORVR	Emission Nome	Pounded Posult		Cartification Laval	Standard	Boss/Epil	
Manufacturer Te Certification Region Fed	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF 0.000	Certification Level	Standard 0.20	Pass/Fail Pass	

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	MKMX10064842	Test Procedure	65 - Evap Canister Bleed Test
Exhaust Test # for this Evap Test		Test Fuel Type	46 - CARB LEV3 E10 Regular Gasoline
Test Date	03/24/2020	Fuel	Gasoline
Fuel Batch ID	19E-03	Fuel Calibration Number	1
Vehicle Class	N/A	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method	Calculated (1.08 x FID Total Hydrocarbons)		
Test Start Odometer Reading	2141	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta			
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	No

Test Results

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value (miles per gallon)
HC-TOTAL (Total Hydrocarbon)	0.0077	

Manufacturer Test Comments

BLEED-CORRECT E10 MEASUREMENT METHOD

Certification

Region	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Evap	HC-TOTAL	0.0077	0.0000	0.008	0.020	Pass
CA	150,000 miles	California LEV-III Zero Evap (Option 2)	HC-TOTAL	0.0077	0.0000	0.008	0.020	Pass

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Test #	MKMX10064832	Test Procedure	67 - Leak Test - Port Near Canister
Exhaust Test # for this Evap Test		Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)
Test Date	03/13/2020	Fuel	Gasoline
Fuel Batch ID	19T-02	Fuel Calibration Number	1
Vehicle Class	N/A	DF Type	Mfr. Determined
Verify Test Lab ID	772-1, Jangduck-Dong		
E10 Evaporative Test Measurement Method	-		
Test Start Odometer Reading	2045	Odometer Units	М
4WD Test Dyno	No	Diesel Adjustment Factor Usage	
State of Charge Delta			
Drive Cycle Speed Tolerance Criteria	Used Part 1066 (+/- 2.0 mph, +/- 1.0 sec)	Road Speed Fan Usage	No
Test Results			

Test Result Name	Unrounded Test Result	Verify Calculated FE Equivalent Value
LEAK-DIA (Effective Leak Diameter (inches))	0	

Manufacturer Test Comments

Leak Test Port Near Canister

Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail
Fed	150,000 miles	Federal Tier 3 Evap	LEAK-DIA	0.0000	0.0000	0.000	0.020	Pass
CA	150,000 miles	California LEV-III Zero Evap (Option 2)	LEAK-DIA	0.000	0.000	0.00	0.02	Pass

Test Group		RHYXV01.6M13	}	Evaporativ	e/Refueling Fami	ily	RHYXR0137M	G	
Test #		MKMX100648	337	Test Proc	edure		68 - Leak Test Pipe	- Port Near Fue	
Exhaust Test # for	this Evap Test	223		Test Fuel T	`ype			legular Gasoline (9	
Test Date		03/13/2020		Fuel			Gasoline		
Fuel Batch ID		19T-02		Fuel Calibr	ration Number		1		
Vehicle Class		N/A		DF Type			Mfr. Determined		
Verify Test Lab ID)	772-1, Jangduck	Dong						
·	est Measurement Meth	od							
Test Start Odomet		2045		Odometer 1	Units		М		
4WD Test Dyno		No		Diesel Adju	ustment Factor U	sage			
State of Charge De	lta			Just Construction Dependent					
	Tolerance Criteria	Used Part 1066	(+/- 2.0 mph, +/- 1.0 s	sec) Road Speed	d Fan Usage		No		
Test Results									
	Test P	esult Name	T	Jnrounded Test Result		Verify Calculated FE	Equivalent Value		
	LEAK-DIA (Effective			0	-		Equivalent value	-	
	EEAR-DIA (Ellection	e Leak Diameter (mer		0					
Manufacturer Tes	t Comments	Leak Test Port N	ear Fuel Pipe						
Certification Region	Useful Life	Standard Level	Emission Name	Rounded Result	Add DF	Certification Level	Standard	Pass/Fail	
Fed	150,000 miles	Federal Tier 3 Evap	LEAK-DIA	0.0000	0.0000	0.000	0.020	Pass	
CA	150,000 miles	California LEV-III Zero Evap (Option	LEAK-DIA	0.000	0.0000	0.00	0.02	Pass	

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
Fuel Properties			
Fuel Batch ID	23T-01	Fuel Calibration Number	1
Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)	Fuel Batch Calibration Date	09/29/2022
Fuel Batch Calibration Effective Date	08/07/2023	Fuel Batch Calibration Ineffective Date	08/07/2026
Carbon Weight Fraction NMHC		Carbon Weight Fraction HC	
Exhaust Carbon Weight Fraction		Fuel Methanol Volume Fraction	
Fuel Density (grams/cubic ft)		Fuel Specific Gravity	0.74
Fuel Ethanol Volume Percent (%)	9.8	Fuel Net Heating Value (BTU / lb)	18779
Fuel Blend Carbon Weight Fraction	0.824	Weight Fraction CO2	
Fuel Batch ID	19E-03	Fuel Calibration Number	1
Test Fuel Type	46 - CARB LEV3 E10 Regular Gasoline	Fuel Batch Calibration Date	08/08/2019
Fuel Batch Calibration Effective Date	10/29/2019	Fuel Batch Calibration Ineffective Date	10/29/2022
Carbon Weight Fraction NMHC		Carbon Weight Fraction HC	
Exhaust Carbon Weight Fraction		Fuel Methanol Volume Fraction	
Fuel Density (grams/cubic ft)		Fuel Specific Gravity	0.75
Fuel Ethanol Volume Percent (%)	9.6	Fuel Net Heating Value (BTU / lb)	17917
Fuel Blend Carbon Weight Fraction	0.827	Weight Fraction CO2	(***)
Fuel Batch ID	22M-01	Fuel Calibration Number	1
Test Fuel Type	61 - Tier 2 Cert Gasoline	Fuel Batch Calibration Date	02/14/2022
Fuel Batch Calibration Effective Date	02/14/2022	Fuel Batch Calibration Ineffective Date	02/14/2025
Carbon Weight Fraction NMHC		Carbon Weight Fraction HC	
Exhaust Carbon Weight Fraction		Fuel Methanol Volume Fraction	
Fuel Density (grams/cubic ft)		Fuel Specific Gravity	0.743
Fuel Ethanol Volume Percent (%)	-7.5	Fuel Net Heating Value (BTU / lb)	18435
Fuel Blend Carbon Weight Fraction	0.867	Weight Fraction CO2	
Fuel Batch ID	19T-02	Fuel Calibration Number	1
Test Fuel Type	48 - Tier 3 E10 Regular Gasoline (9 RVP @Low Alt.)	Fuel Batch Calibration Date	06/05/2019
Fuel Batch Calibration Effective Date	12/10/2019	Fuel Batch Calibration Ineffective Date	12/10/2022
Carbon Weight Fraction NMHC		Carbon Weight Fraction HC	
Exhaust Carbon Weight Fraction		Fuel Methanol Volume Fraction	
Fuel Density (grams/cubic ft)		Fuel Specific Gravity	0.744
Fuel Ethanol Volume Percent (%)	9.8	Fuel Net Heating Value (BTU / lb)	17949
Fuel Blend Carbon Weight Fraction	0.826	Weight Fraction CO2	2002-00-0 200
Fuel Batch ID	22D-01	Fuel Calibration Number	1
	28 - Cold CO E10 Regular Gasoline (Tier 3)		

Page 32 of 43 CSI Submission/Revision Date: 12/11/2023 08:36:11 PM

RHYXV01.6M13	Evaporative/Refueling Family	RHYXR0137M1G
05/10/2022	Fuel Batch Calibration Ineffective Date	05/10/2025
	Carbon Weight Fraction HC	
17.0	Fuel Methanol Volume Fraction	1771
	Fuel Specific Gravity	0.742
9.9	Fuel Net Heating Value (BTU / lb)	17925
0.828	Weight Fraction CO2	
	05/10/2022 9.9	05/10/2022 Fuel Batch Calibration Ineffective Date Carbon Weight Fraction HC Fuel Methanol Volume Fraction Fuel Specific Gravity 9.9 Fuel Net Heating Value (BTU / Ib)

Test Group	RH	YXV01.6M13		Evaporat	ive/Refueling Fam	uly	RHYXR0137M1G		
			Consolida	ted List of Sta	Indards				
Exhaust Standar	rds								
Cert Region	Fed	eral		Cert/In-U	Jse Code		Cer	t	
Vehicle Class	LD	V/Passenger Car		Standard	Level		Fed	leral Tier 3 Bin 30	
		205						leral fuel 2-day ext	naust (w/car
Fuel	Gas	oline		Test Proc	edure		load	1)	
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
120,000 miles	CREE							0.229467	999
120,000 miles	METHANE							0.0014	0.030
120,000 miles	N2O							0.0010	0.010
150,000 miles	СО							0.22	1.0
150,000 miles	CO-COMP							0	4.2
150,000 miles	HCHO								0.004
150,000 miles	NMOG			1.10				0.0036	99.999
150,000 miles	NMOG+NOX							0	0.030
150,000 miles	NMOG+NOX-COMP							0	0.030
150,000 miles	NOX							0.0016	99.999
150,000 miles	PM							0.0000	0.003
Cert Region Vehicle Class Fuel	LD	ifornia + CAA Sectio V/Passenger Car oline	n 177 states	Cert/In-U Standard Test Proc	Level		Cer Cal SC(ifornia LEV-III SU	JLEV30
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
150,000 miles	CO							0.22	99.999
	NMOG			1.03				0.0036	99.999
150,000 miles								0	99.999
150,000 miles 150,000 miles 150,000 miles	NMOG+NOX NOX							0.0016	99.999

Test Group	RHYXV01.6M13 Evaporative/Refueling Family			RHYXR0137M1G					
Cert Region Vehicle Class Fuel	FederalCert/In-Use CodeLDV/Passenger CarStandard LevelGasolineTest Procedure				Cert Federal Tier 3 Bin 30 HWFE				
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
120,000 miles	CREE					()		0.229467	999
150,000 miles	NMOG		1221	1.03				0.0036	99.999
150,000 miles	NMOG+NOX					()		0	0.030
150,000 miles	NOX		7 <u>-11</u> -					0.0016	99.999
Cert Region		Federal		Cert/In-U	Jse Code		Cer	t	
Vehicle Class		LDV/Passenger Car		Standard	Level		Fed	eral Tier 3 Bin 30	
Fuel		Gasoline		Test Proc	edure		Col	dCO	
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
			I'L II	TALVILLO	I detoi				oru
								0.07	10.0
50,000 miles	СО		: -			- 7 7		0.07	10.0
								0.07 0.0025	10.0 0.3
50,000 miles 120,000 miles Cert Region	CO HC-NM	 California + CAA Section		 Cert/In-U	 Jse Code		 Cer	0.0025 t	0.3
50,000 miles 120,000 miles Cert Region	CO HC-NM	 California + CAA Section LDV/Passenger Car		 Cert/In-U Standard	 Jse Code Level		 Cer Cali	0.0025 t ifornia LEV-III SU	0.3
50,000 miles 120,000 miles	CO HC-NM	 California + CAA Section		 Cert/In-U	 Jse Code Level		 Cer Cali	0.0025 t	0.3
50,000 miles 120,000 miles Cert Region Vehicle Class	CO HC-NM	 California + CAA Section LDV/Passenger Car		 Cert/In-U Standard	 Jse Code Level		 Cer Cali	0.0025 t ifornia LEV-III SU	0.3
50,000 miles 120,000 miles Cert Region Vehicle Class Fuel	CO HC-NM	California + CAA Section LDV/Passenger Car Gasoline Rounded	177 states	Cert/In-U Standard Test Proc NMOG /	Jse Code Level cedure Upward Diesel Adjustment	 Downward Diesel Adjustment	 Cer Cali Fed	0.0025 t ifornia LEV-III SU . fuel 50 F exh.	0.3 'LEV30
50,000 miles 120,000 miles Cert Region Vehicle Class Fuel Useful Life	CO HC-NM Emission Name	California + CAA Section LDV/Passenger Car Gasoline Rounded Result	 177 states RAF	 Cert/In-U Standard Test Proc NMOG / NMHC	Jse Code Level cedure Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	 Cer Cali Fed Mult DF	0.0025 t ifornia LEV-III SU . fuel 50 F exh. Add DF	0.3 ILEV30 Std
50,000 miles 120,000 miles Cert Region Vehicle Class Fuel Useful Life 4,000 miles	CO HC-NM Emission Name CO	California + CAA Section LDV/Passenger Car Gasoline Rounded Result 	 1 177 states RAF	Cert/In-U Standard Test Proc NMOG / NMHC 	Jse Code Level redure Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	 Cer Cali Fed Mult DF	0.0025 t ifornia LEV-III SU . fuel 50 F exh. Add DF 	0.3 /LEV30 <u>Std</u> 1.0
50,000 miles 120,000 miles Cert Region Vehicle Class Fuel Useful Life 4,000 miles 4,000 miles	CO HC-NM Emission Name CO HCHO	California + CAA Section LDV/Passenger Car Gasoline Rounded Result 	 1 177 states RAF 	Cert/In-U Standard Test Proc NMOG / NMHC 	Jse Code Level Sedure Upward Diesel Adjustment Factor 	Downward Diesel Adjustment Factor 	 Cer Cali Fed Mult DF 	0.0025 t ifornia LEV-III SU . fuel 50 F exh. Add DF 	0.3 ILEV30 Std 1.0 0.008

Certification Summary Information Report

Test Group	RHY	XV01.6M13		Evapora	tive/Refueling Fam	uly	RH	YXR0137M1G		
Cert Region Vehicle Class		ornia + CAA Section /Passenger Car	177 states	Cert/In-U Standard	Use Code 1 Level		Cert California LEV-III S Federal fuel 2-day ex			
Fuel	Gaso	line		Test Pro	cedure		load			
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std	
150,000 miles	СО							0.22	1.0	
150,000 miles	CO-COMP		1000		55	1777)	55	0	4.2	
150,000 miles	НСНО								0.004	
150,000 miles	NMOG		855	1.10	55	177	65	0.0036	99.999	
150,000 miles	NMOG+NOX							0	0.030	
150,000 miles	NMOG+NOX-COMP		0000	5.000	55	1000	55	0	0.030	
150,000 miles	NOX							0.0016	99.999	
150,000 miles	PM	55	10 1111 1		55	(707)	22	0.0000	0.001	
Cert Region Vehicle Class	Fede LDV	ral /Passenger Car		Cert/In-U Standard	Use Code 1 Level		Cert	t eral Tier 3 Bin 30		
Fuel	Gaso	2.77		Test Pro			SCO			
Fuel Useful Life		2.77	RAF			Downward Diesel Adjustment Factor			Std	
	Gaso	line Rounded	RAF	Test Proo NMOG /	cedure Upward Diesel Adjustment	Diesel Adjustment	SCO	03	Std 99.999	
Useful Life	Gaso Emission Name	line Rounded Result		Test Proo NMOG /	cedure Upward Diesel Adjustment Factor	Diesel Adjustment Factor	SC0 Mult DF	Add DF	CONTRACTOR OF A	
Useful Life 150,000 miles	Gaso <u>Emission Name</u> CO	Rounded Result		Test Prov NMOG / NMHC	cedure Upward Diesel Adjustment Factor 	Diesel Adjustment Factor 	SC0 Mult DF 	Add DF 0.22	99.999	
150,000 miles 150,000 miles	Gaso Emission Name CO NMOG	line Rounded Result		Test Prov NMOG / NMHC 1.03	cedure Upward Diesel Adjustment Factor 	Diesel Adjustment Factor 	SCC Mult DF 	Add DF 0.22 0.0036	99.999 99.999	
Useful Life 150,000 miles 150,000 miles 150,000 miles	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede	line Rounded Result ral /Passenger Car		Test Prov NMOG / NMHC 1.03 	cedure Upward Diesel Adjustment Factor Use Code Level	Diesel Adjustment Factor 	SC0 Mult DF Cert	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30	99.999 99.999 99.999	
Useful Life 150,000 miles 150,000 miles 150,000 miles 150,000 miles Cert Region Vehicle Class Fuel	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede LDV Gaso	line Rounded Result ral /Passenger Car line Rounded		Test Prov NMOG / NMHC 1.03 Cert/In-t Standard Test Prov NMOG /	cedure Upward Diesel Adjustment Factor Use Code Level cedure Upward Diesel Adjustment	Diesel Adjustment Factor Diesel Downward Diesel Adjustment	SCO Mult DF Cert Fed USO	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30 06	99.999 99.999 99.999 99.999	
Useful Life 150,000 miles 150,000 miles 150,000 miles 150,000 miles Cert Region Vehicle Class Fuel Useful Life	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede LDV Gaso Emission Name	line Rounded Result ral /Passenger Car line		Test Prov NMOG / NMHC 1.03 Cert/In-I Standard Test Prov	cedure Upward Diesel Adjustment Factor Use Code Level cedure Upward Diesel	Diesel Adjustment Factor Downward Diesel	SCC Mult DF Cert Fed	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30 06 Add DF	99.999 99.999 99.999 99.999 Std	
Useful Life 150,000 miles 150,000 miles 150,000 miles 150,000 miles Cert Region Vehicle Class Fuel Useful Life 150,000 miles	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede LDV Gaso Emission Name CO	line Rounded Result ral /Passenger Car line Rounded Result		Test Prov NMOG / NMHC 1.03 Cert/In-U Standard Test Prov NMOG / NMHC	cedure Upward Diesel Adjustment Factor Use Code Level cedure Upward Diesel Adjustment Factor	Diesel Adjustment Factor Diesel Adjustment Factor 	SCC Mult DF Cert Fed USC Mult DF	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30 06 Add DF 0.22	99.999 99.999 99.999 99.999 50.999 50.999	
Useful Life 150,000 miles 150,000 miles 150,000 miles 150,000 miles Cert Region Vehicle Class Fuel Useful Life 150,000 miles 150,000 miles	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede LDV Gaso Emission Name CO NMOG	line Rounded Result ral /Passenger Car line Rounded Result	 RAF 	Test Prov NMOG / NMHC 1.03 Cert/In-I Standard Test Prov NMOG / NMHC	cedure Upward Diesel Adjustment Factor Use Code Level cedure Upward Diesel Adjustment Factor	Diesel Adjustment Factor Downward Diesel Adjustment Factor	SCO Mult DF Cert Fed USO Mult DF	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30 06 Add DF 0.22 0.0036	99.999 99.999 99.999 99.999 99.999 99.999 99.999	
Useful Life 150,000 miles 150,000 miles 150,000 miles 150,000 miles Cert Region Vehicle Class Fuel Useful Life 150,000 miles	Gaso Emission Name CO NMOG NMOG+NOX NOX Fede LDV Gaso Emission Name CO	line Rounded Result ral /Passenger Car line Rounded Result	 RAF 	Test Prov NMOG / NMHC 1.03 Cert/In-U Standard Test Prov NMOG / NMHC 1.03	cedure Upward Diesel Adjustment Factor Use Code t Level cedure Upward Diesel Adjustment Factor	Diesel Adjustment Factor Downward Diesel Adjustment Factor 	SCO Mult DF Cert Fed USO Mult DF 	Add DF 0.22 0.0036 0 0.0016 t eral Tier 3 Bin 30 06 Add DF 0.22	99.999 99.999 99.999 99.999 50.999 50.999	

Page 36 of 43 CSI Submission/Revision Date: 12/11/2023 08:36:11 PM

Certification Summary Information Report

Test Group]	RHYXV01.6M13		Evapora	ive/Refueling Fam	iily	RH	YXR0137M1G	
Cert Region Vehicle Class Fuel	California + CAA Section 177 states LDV/Passenger Car Gasoline		Standard	Cert/In-Use Code Standard Level Test Procedure			Cert California LEV-III SULEV30 US06		
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
150,000 miles	СО		07770					0.22	99.999
150,000 miles	NMOG			1.03				0.0036	99.999
150,000 miles	NMOG+NOX		2777					0	99.999
150,000 miles	NOX							0.0016	99.999
150,000 miles	PM		07770			1771	2 127	0.0000	0.006
Cert Region Vehicle Class Fuel	icle Class LDV/Passenger Car		on 177 states	Cert/In-U Standard Test Proc	l Level		Cer Cal HW	ifornia LEV-III SU	JLEV30
Useful Life	Emission Name	Rounded Result	RAF	NMOG / NMHC	Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Mult DF	Add DF	Std
150,000 miles	NMOG			1.03				0.0036	99.999
150,000 miles	NMOG+NOX							0	0.030
150,000 miles	NOX		-			(ana)		0.0016	99.999
Cert Region Vehicle Class	1	California + CAA Sectio LDV/Passenger Car	on 177 states	Cert/In-U Standard	Level			ifornia LEV-III SU	JLEV30
Fuel Useful Life	Emission Name	Gasoline Rounded Result	RAF	Test Proo NMOG / NMHC	cedure Upward Diesel Adjustment Factor	Downward Diesel Adjustment Factor	Col Mult DF	d CO Add DF	Std
50,000 miles	CO					10000		0.07	10.0
Evaporative/Refu	eling Standards							â	
Evaporative/Refuelin		RHYXR0137M1G		Cert Reg	ion			ifornia + CAA Sec ifornia LEV-III Ze	
Cert/In-Use Code Test Procedure		Cert California Fuel Running	Loss	Standard	l Level		2)		
								825 - 2	
Fuel	Useful	Life	Emission Name	R	ounded Result		Std	Ad	d DF

Page 37 of 43 CSI Submission/Revision Date: 12/11/2023 08:36:11 PM

Test Group	RHYXV01.6M	113	Evaporative/Refueling Family	R	RHYXR0137M1G
Evaporative/Refueling Family Cert/In-Use Code Test Procedure	RHYXR0137M Cert California Fue		Cert Region Standard Level	no o Reference or antipart to the second secon	
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.05	0.000
Evaporative/Refueling Family	RHYXR0137N	//1G	Cert Region		California + CAA Section 177 states
Cert/In-Use Code	Cert		Standard Level	2	California LEV-III Zero Evap (Optic)
Test Procedure	Federal fuel re	fueling test (ORVR)			
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.20	0.000
Evaporative/Refueling Family	RHYXR0137N	A1G	Cert Region		California + CAA Section 177 states
Cert/In-Use Code	Cert		Standard Level	C 2	California LEV-III Zero Evap (Optic
Test Procedure	CA fuel 3-day	evap.	Standard Ecter		I.
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.300	0.0000
Evaporative/Refueling Family Cert/In-Use Code	RHYXR0137M Cert	ИIG	Cert Region Standard Level		ederal ederal Tier 3 Evap
Test Procedure	Federal fuel re	fueling test (ORVR)			•
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.20	0.000
Evaporative/Refueling Family Cert/In-Use Code Test Procedure	RHYXR0137M Cert CA fuel 3-day		Cert Region Standard Level		ederal ederal Tier 3 Evap
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
	150,000 miles	HC-TOTAL-EQUIV		0.300	0.0000

Test Group	RHYXV01.6M	13	Evaporative/Refueling Family	RH	YXR0137M1G
Evaporative/Refueling Family Cert/In-Use Code Test Procedure	RHYXR0137M Cert California fuel		Cert Region Standard Level	Fed Fed	eral eral Tier 3 Evap
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.300	0.0000
Evaporative/Refueling Family	RHYXR0137M	1G	Cert Region	Fed	eral
Cert/In-Use Code	Cert		Standard Level	Fed	eral Tier 3 Evap
Test Procedure	Evap Canister I	Bleed Test			
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL		0.020	0.0000
Evaporative/Refueling Family	RHYXR0137M1G		Cert Region		fornia + CAA Section 177 states
Cert/In-Use Code	Cert		Standard Level	Cali 2)	fornia LEV-III Zero Evap (Optio
Test Procedure	Leak Test - Port Near Fuel Pipe		Standard Herei	-)	
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	LEAK-DIA		0.02	0.0000
Evaporative/Refueling Family	RHYXR0137M	1G	Cert Region		fornia + CAA Section 177 states
Cert/In-Use Code	Cert		Standard Level	Cali 2)	fornia LEV-III Zero Evap (Optio
Test Procedure	Evap Canister I	Bleed Test			
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL		0.020	0.0000
Evaporative/Refueling Family	RHYXR0137M	1G	Cert Region		fornia + CAA Section 177 states
Cert/In-Use Code	Cert		Standard Level	Cali 2)	fornia LEV-III Zero Evap (Optio
Test Procedure	California fuel	2-dav evap	Stanuaru Etwi	2)	
Fuel	Useful Life	Emission Name	Rounded Result	Std	Add DF
Gasoline	150,000 miles	HC-TOTAL-EQUIV		0.300	0.0000

Certification Summary Information Report Date: 12/11/2023 08:36:40 PM **Test Group** RHYXV01.6M13 RHYXR0137M1G **Evaporative/Refueling Family Evaporative/Refueling Family** RHYXR0137M1G Cert Region Federal Cert/In-Use Code Cert Standard Level Federal Tier 3 Evap **Test Procedure** Leak Test - Port Near Canister Fuel Useful Life **Emission Name Rounded Result** Std Add DF Gasoline 150,000 miles LEAK-DIA 0.020 0.0000 **Evaporative/Refueling Family** RHYXR0137M1G Cert Region California + CAA Section 177 states California LEV-III Zero Evap (Option 2) Cert/In-Use Code Cert Standard Level **Test Procedure** Leak Test - Port Near Canister Fuel **Useful** Life **Emission Name Rounded Result** Std Add DF Gasoline 150,000 miles LEAK-DIA 0.02 0.000 **Evaporative/Refueling Family** RHYXR0137M1G **Cert Region** Federal Cert/In-Use Code Standard Level Federal Tier 3 Evap Cert **Test Procedure** Leak Test - Port Near Fuel Pipe Fuel **Useful Life Emission Name Rounded Result** Std Add DF Gasoline 150,000 miles LEAK-DIA 0.020 0.0000 22

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refueling	g Family RHYXR0137M1G
1000 010 0.		ossary	
Useful Life			
4	4,000 miles	120	120,000 miles
50	50,000 miles	150	150,000 miles
100	100,000 miles		
Emission Name			
HC-TOTAL	Total Hydrocarbon	N2O	Nitrous Oxide
CO	Carbon Monoxide	SPITBACK	Spitback Hydrocarbon in grams
CO2	Carbon dioxide	AMP-HRS	Integrated Amp-hours
CREE	Carbon-Related Exhaust Emissions	START-SOC	System Start State of Charge Watt-hours
OPT-CREE	Optional Carbon-Related Exhaust Emissions	END-SOC	System End State of Charge Watt-hours
NOX	Nitrogen Oxide	ACT-DISTANCE	Actual Distance Driven (miles)
PM	Particulate Matter	AS-VOLT	Average System Voltage
PM-COMP	SFTP Composite Particulate Matter	CO2 BAG 1	Bag 1 Carbon Dioxide
HC-NM	Non-methane Hydrocarbon	CO2 BAG 2	Bag 2 Carbon Dioxide
OMHCE	Organic material Hydrocarbon Equivalent	CO2 BAG 3	Bag 3 Carbon Dioxide
OMNMHCE	Organic material non-methane HC equivalent	CO2 BAG 4	Bag 4 Carbon Dioxide
NMOG	Non-methane organic gases	NMOG+NOX	Non-methane organic gases plus Nitrogen Oxides
НСНО	Formaldehyde	NMOG+NOX-COMP	SFTP Composite Non-methane Organic Gases + Nitrogen Oxides
H3C2HO	Acetaldehyde	DT-IWRR	Drive Trace Inertia Work Ratio Rating
HC-NM+NOX	SFTP Non-methane Hydrocarbon + Nitrogen Oxides for US06 or SC03	DT-ASCR	Drive Trace Absolute Speed Change Rating
HC-NM+NOX-COMP	SFTP Composite Non-methane Hydrocarbon + Nitrogen Oxides	DT-EER	Drive Trace Energy Economy Rating
CO-COMP	SFTP Composite Carbon Monoxide	COMB-CREE	Combined Carbon-Related Exhaust Emissions
ETHANOL	C2H5OH - Ethanol	COMB-OPT-CREE	Combined Optional Carbon-Related Exhaust Emissions
FE BAG 1	Bag 1 Fuel Economy	HC-TOTAL-EQUIV	Total Hydrocarbon equivalent - Evap only
FE BAG 2	Bag 2 Fuel Economy	METHANE-COMB	Combined CH4 for HD 2b/3 vehicles only
FE BAG 3	Bag 3 Fuel Economy	N2O-COMB	Combined Nitrous Oxide for HD 2b/3 vehicles only
FE BAG 4	Bag 4 Fuel Economy	LEAK-DIA	Effective Leak Diameter (inches)
MFR FE	Manufacturer Fuel Economy	LEAK-GAS CAP	Gas Cap Leakage (cc/min)
HC	Hydrocarbon for Running Loss and ORVR	CO2-COMB	Combined Carbon Dioxide for HD 2b/3 Vehicles Only
METHANE	CH4 - Methane	KW-HRS	Integrated DC KW-HRS
METHANOL	CH3OH - Methanol		
Certification Region			
CA	California + CAA Section 177 states	FA	Federal
Exhaust Emission Stan			
B1	Federal Tier 2 Bin 1	L3ULEV340	California LEV-III ULEV340
B2	Federal Tier 2 Bin 2	L3ULEV250	California LEV-III ULEV250
B3	Federal Tier 2 Bin 3	L3ULEV200	California LEV-III ULEV200
B4	Federal Tier 2 Bin 4 Page 41 of 43 CSI Submission/Re	L3SULEV170	California LEV-III SULEV170

Certification Summary Information Report

Test Group	RHYXV01.6M13	Evaporative/Refue	ling Family	RHYXR0137M1G
B5	Federal Tier 2 Bin 5	L3SULEV150	California LEV-III	I SULEV150
B6	Federal Tier 2 Bin 6	L3LEV630	California LEV-III	[LEV630
B7	Federal Tier 2 Bin 7	L3ULEV570	California LEV-III	I ULEV570
B8	Federal Tier 2 Bin 8	L3ULEV400	California LEV-III	I ULEV400
В9	Federal Tier 2 Bin 9	L3ULEV270	California LEV-III	I ULEV270
B10	Federal Tier 2 Bin 10	L3SULEV230	California LEV-III	I SULEV230
B11	Federal Tier 2 Bin 11	L3SULEV200	California LEV-III	I SULEV200
HDV1	HDV1 (Federal HD chassis Class 2b GVW 8501-10000)	T3B160	Federal Tier 3 Bin	160
HDV2	HDV2 (Federal HD chassis Class 3 GVW 10001-14000)	T3B125	Federal Tier 3 Bin	125
L2	California LEV-II LEV	T3B110	Federal Tier 3 Tra	nsitional Bin 110
L2OP	California LEV-II LEV Optional	T3B85	Federal Tier 3 Tra	nsitional Bin 85
U2	California LEV-II ULEV	T3SULEV30	Federal Tier 3 Tra	nsitional LEV-II SULEV30 Carryover
S2	California LEV-II SULEV	T3B70	Federal Tier 3 Bin	
ZEV	California ZEV	T3B50	Federal Tier 3 Bin	50
OT	Other	T3B30	Federal Tier 3 Bin	30
T1	Federal Tier 1	T3B20	Federal Tier 3 Bin	20
PZEV	California PZEV	T3B0	Federal Tier 3 Bin	0
L2LEV160	California LEV-II LEV160	HDV2B395	Federal Tier 3 HD	Class 2b Transitional Bin 395
L2ULEV125	California LEV-II ULEV125	HDV2B340	Federal Tier 3 HD	Class 2b Transitional Bin 340
L2SULEV30	California LEV-II SULEV30	HDV2B250	Federal Tier 3 HD	Class 2b Bin 250
L2LEV395	California LEV-II LEV395	HDV2B200	Federal Tier 3 HD	Class 2b Bin 200
L2ULEV340	California LEV-II ULEV340	HDV2B170	Federal Tier 3 HD	Class 2b Bin 170
L2LEV630	California LEV-II LEV630	HDV2B150	Federal Tier 3 HD	Class 2b Bin 150
L2ULEV570	California LEV-II ULEV570	HDV2B0	Federal Tier 3 HD	Class 2b Bin 0
L3LEV160	California LEV-III LEV160	HDV3B630	Federal Tier 3 HD	Class 3 Transitional Bin 630
L3ULEV125	California LEV-III ULEV125	HDV3B570	Federal Tier 3 HD	Class 3 Transitional Bin 570
L3ULEV70	California LEV-III ULEV70	HDV3B400	Federal Tier 3 HD	Class 3 Bin 400
L3ULEV50	California LEV-III ULEV50	HDV3B270	Federal Tier 3 HD	Class 3 Bin 270
L3SULEV30	California LEV-III SULEV30	HDV3B230	Federal Tier 3 HD	Class 3 Bin 230
L3SULEV20	California LEV-III SULEV20	HDV3B200	Federal Tier 3 HD	Class 3 Bin 200
L3LEV395	California LEV-III LEV395	HDV3B0	Federal Tier 3 HD	Class 3 Bin 0
Transmission Type C	ode			
AMS	Automated Manual- Selectable (e.g. Automated Manual with paddles)	Μ	Manual	
А	Automatic	OT	Other	
AM	Automated Manual	SA	Semi-Automatic	
CVT	Continuously Variable	SCV	Selectable Continu	iously Variable (e.g. CVT with paddles)
Drive System Code		2014		
4	4-Wheel Drive	Р	Part-time 4-Wheel	Drive
F	2-Wheel Drive, Front	A evision Date: 12/11	All Wheel Drive	

Page 42 of 43 CSI Submission/Revision Date: 12/11/2023 08:36:11 PM

Test Group	RHYXV01.6M13	Evaporative/Refueling Family		RHYXR0137M1G	
R	2-Wheel Drive, Rear				
Additional Terms	s and Acronyms				
AFC	Alternative Fuel Converter	ICI	Independent Comm	ercial Importer	
CSI	Certificate Summary Information	ORVR	Onboard Refueling	Vapor Recovery	
DF	Deterioration Factor	SIL	Shift Indicator Ligh	t	
Evap	Evaporation, Evaporative	Trans	Transmission		

07.02 Litmus Test Sheet

2. LITMUS TEST SHEET

₭ Reference : §600.115-11

EDV	FTP(75°F)	Cold FTP (20°F)	HFET	US06	SC03
BAG1	32.4	21.9		20.0	
BAG2	84.9	45.9	1	35.8	
BAG3	31.9	31.9	45.0	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	33.6
BAG4	69.7	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$]	\geq	
TOTAL	45.7	$>\!\!<$]	30.4	
Cycle City Specific 5 c	Criteria ycle City FE ≥ 0.96	Mpg Based City FE)	Passed	
		UNROUNDED	ADJ. ROUNDED	Examination	Decision
	MPG BASED	33.9258	32.6	Applicable	
			02.0	Applicable	
CITY FE	5-CYCLE	34.1754	34.2	Applicable	Selected
CITY FE	5-CYCLE			Applicable	
) Determinii	5-CYCLE Ratio of 5CYCLE to	34.1754 0.96 MPG-BASED	34.2		
) Determinii 5 Cycle High	5-CYCLE Ratio of 5CYCLE to	34.1754 0 0.96 MPG-BASED od	34.2 104.91	Applicable	
) Determinii 5 Cycle High	5-CYCLE Ratio of 5CYCLE to ng the Hwy FE Meth way Criteria	34.1754 0.96 MPG-BASED od Mpg Based HWY	34.2 104.91 FE)	Applicable CRITERIA : 10 Passed	0%
) Determinii 5 Cycle High	5-CYCLE Ratio of 5CYCLE to ng the Hwy FE Meth way Criteria ycle HWY FE ≥ 0.95	34.1754 0 0.96 MPG-BASED od 5 Mpg Based HWY UNROUNDED	34.2 104.91 FE) ADJ. ROUNDED	Applicable CRITERIA : 10 Passed Examination	
Determinin Cycle High	5-CYCLE Ratio of 5CYCLE to ng the Hwy FE Meth way Criteria ycle HWY FE ≥ 0.95 MPG BASED	34.1754 0.96 MPG-BASED od Mpg Based HWY UNROUNDED 31.2914	34.2 104.91 FE) ADJ. ROUNDED 29.7	Applicable CRITERIA : 10 Passed Examination Not Applicable	0% Decision
) Determinii Cycle High	5-CYCLE Ratio of 5CYCLE to ng the Hwy FE Meth way Criteria ycle HWY FE ≥ 0.95 MPG BASED 5-CYCLE	34.1754 0 0.96 MPG-BASED od 5 Mpg Based HWY UNROUNDED 31.2914 33.2811	34.2 104.91 FE) ADJ. ROUNDED 29.7 33.3	Applicable CRITERIA : 10 Passed Examination Not Applicable Select This	0%
) Determinii 5 Cycle High Specific 5 c	5-CYCLE Ratio of 5CYCLE to ng the Hwy FE Meth way Criteria ycle HWY FE ≥ 0.95 MPG BASED 5-CYCLE MODIFIED	34.1754 0.96 MPG-BASED od Mpg Based HWY UNROUNDED 31.2914	34.2 104.91 FE) ADJ. ROUNDED 29.7	Applicable CRITERIA : 10 Passed Examination Not Applicable	0% Decision

RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:

08.00 Emission Compliance Statement

Please refer to Common Section 08.00.

09.00 OBD System Description

The on-board diagnostic (OBD) system complies with 40 CFR 86.1806-05, 86.1806-17 per the compliance option allowing demonstration of compliance with California OBD II requirements in Title 13 California Code of Regulation 1968.2 (13 CCR 1968.2) approved on July 31, 2013.

Please refer to OBD application uploaded in EV-CIS system.

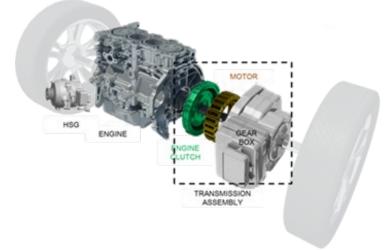
10.00 Description of Alternate-Fueled Vehicles: Not Applicable

RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:

11.05.06 11.05.07 11.05.08 11.05.09	Exhaust heat recovery system (EHRS) - N/A Variable Displacement Oil Pump System Active Cabin Ventilation After Blower	
11.06	Hybrid controls	
$\begin{array}{c} 11.06.01\\ 11.06.02\\ 11.06.02.01\\ 11.06.02.02\\ 11.06.03\\ 11.06.04\\ 11.06.04.01\\ 11.06.04.02\\ 11.06.04.03\\ 11.06.04.03\\ 11.06.04.05\\ 11.06.04.05\\ 11.06.04.06\\ 11.06.04.07\\ 11.06.04.08\\ 11.06.04.09\\ \end{array}$	 Hybrid control overview High voltage battery SOC management SOC management – critical low band SOC management – critical high band Control priority Engine engagement and torque control strategy HEV operation based on traction energy HEV operation to delay the engine disengagement Idle operation on charging high voltage battery Idle and HEV operation during the catalyst heating request HEV operation at extreme battery discharge condition HEV operation request at extreme battery discharge condition [PHEV only] Idle operation to protect the engine [PHEV only] Switch from CD mode to CS mode in cold condition 	- N/A - N/A
11.06.05 11.06.06 11.06.06.01 11.06.06.02	Regenerative braking control Driver selectable mode HEV operation control in sport mode Hybrid multi switch button (Plug-in hybrid forced charge or charge s	sustaining mode) - N/A
11.06.07 11.06.07.01 11.06.07.02	Eco-driving assistance system (Eco-DAS) Coasting guide control Predictive energy control	- N/A

11.01 Overview

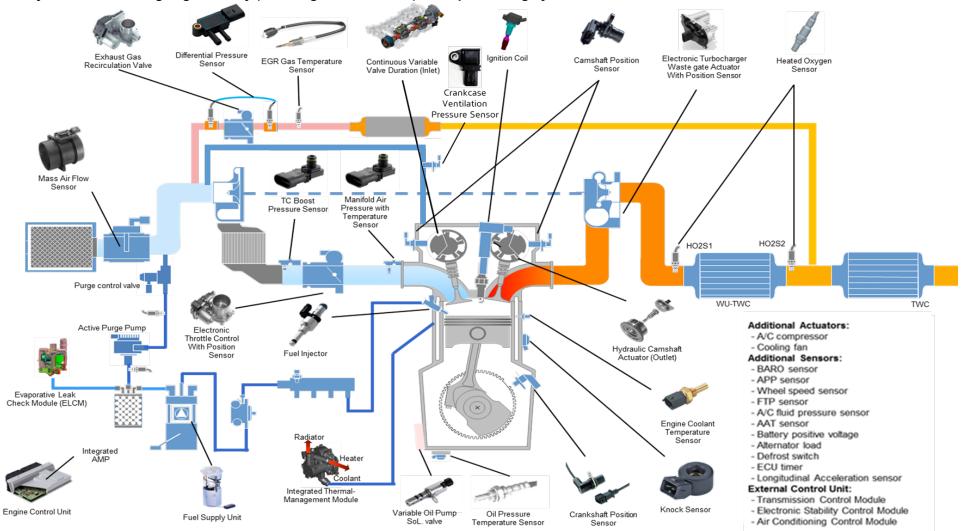
11.01.01 System configuration


11.01.01.01 Hybrid system

A hybrid electric vehicle (HEV) is a type of vehicle that combines a conventional internal combustion engine (ICE) with an electric propulsion system. The electric powertrain can impart several benefits, including better fuel economy than traditional vehicles or better performance in certain conditions. This system also uses regenerative braking control for converting the kinetic energy of the vehicle into electric energy. This energy can be stored for later use in powering the vehicle.

The hybrid powertrain system uses a multi-gear transmission with Transmission-Mounted Electrical Device (TMED) including a traction motor and an engine clutch in place of a torque converter. In addition, a hybrid starter & generator (HSG) is employed to start the engine and charge the high voltage battery. The power control unit is equipped with an inverter that performs power conversion between a high voltage battery and an electric motor and a low voltage DC to DC converter that converts high voltage of the main battery to low voltage (12V). In the plug-in hybrid vehicle, an on board charger is equipped so that it can charge the main battery using external power source.

In most driving conditions, hybrid powertrain system operates as what is commonly referred to as a parallel hybrid system. The engine and the electric motor are both connected to the mechanical transmission and can simultaneously transmit power to drive the wheels. In some cases, this hybrid system can also operate as what is commonly referred to as a series hybrid system. In this instance, the engine and the HSG generate electric energy, and the electric motor transmits power to the wheels.



Powertrain Specification								
Engine	4 Cylinder, 1.6L T-GDI 132kW(180PS)							
Hybrid Starter & Generator	13kW							
Motor	47.7kW							
Battery	1.49kWh, LiB							
Transmission	6 speed AT							

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.01.01.02 Engine system

This system uses existing engine family (refer to gasoline vehicle) for implementing hybrid

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.01.02 Sensed parameters vs. controlled parameters matrix (Engine only)

•	•	Parameter controlled						Model														
	Abbreviation	Fuel control	Ignition control	Cylinder valve timing control	Exhaust gas recirculation (EGR) valve control	Wastegate control	Engine cooling control	Evaporative emission canister purge control	Idle control	Desired torque	Relative load	Catalyst oxygen storage	Catalyst temperature	Exhaust gas temperature	Mass flow rate through EVAP canister purge valve	Fuel density	Engine oil temperature	Exhaust mass flow	Exhaust pressure	Residual gas	EGR ratio setpoint	Engine Roughness
Engine coolant temperature	ECT	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	
Intake air temperature	IAT	Х	Х		Х	Х		Х			Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	
Manifold absolute pressure	MAP				Х	Х				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Boost pressure	BP					Х																
Ambient air temperature	AAT				Х		Х						Х			Х	Х		Х			
Mass air flow	MAF				Х						Х		Х	Х						Х		
Fuel rail pressure	FRP	Х																				
Barometric pressure	BARO	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	
Crankshaft position	СКР	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х
Camshaft position (inlet)	CMP IN			Х	Х						Х								Х	Х		
Camshaft position (outlet)	CMP OUT			Х	Х						Х								Х	Х		
Accelerator pedal position	APP	Х		Х	Х					Х											Х	
Throttle position	TP				Х						Х											
EGR valve position	EGRP		Х																		Х	
Heated O2 sensor 1	HO2S1	Х										Х	Х	Х					Х		Х	
Heated O2 sensor 2	HO2S2	Х										Х									Х	
Knock sensor	KS		Х		Х																Х	
Wheel speed	WSS	Х			Х		Х						Х	Х		Х	Х		Х		Х	
Battery positive voltage	B+			Х	Х			Х													Х	
Blower switch							Х															
ECU time		Х																				
CAN - Hybrid control unit request		Х	İ		l –			1	Х	Х												
Model - Desired Torque							Х															
Model - Relative load		Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х		Х	
Model - Catalyst oxygen storage		Х																				
Model - Catalyst temperature		Х																				
Model - Exhaust gas temperature		Х				Х					Х		Х								Х	
Model - Mass flow rate through EVAP canister purge valve		Х																			Х	
Model - Fuel density																						
Model - Engine oil temperature		Х		Х		Х															Х	
Model - Exhaust mass flow											Х	Х	Х	Х								
Model - Exhaust pressure					X	Х					Х											
Model - Residual gas			Х								Х								Х			
Model - EGR ratio setpoint					X																	
Model - Engine Roughness	ER																					

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.01.03 Abbreviations and acronyms

Acronym	Definition
A/C	Air Conditioning
A/F	Air Fuel Ratio
AAT	Ambient Air Temperature
APP	Accelerator Pedal Position
B+	Battery Positive Voltage
BARO	Barometric Pressure
BP	Boost Pressure
CKP	Crankshaft Position
CMP_IN	Camshaft Position (inlet)
CMP_OUT	Camshaft Position (outlet)
ECT	Engine Coolant Temperature
ECU	Engine Control Unit
EGR	Exhaust Gas Recirculation
EGRP	EGR Valve Position
ER	Engine Roughness
ESC	Electronic Stability Control Unit
FRP	Fuel Rail Pressure
FTP	Fuel Tank Pressure
GDI	Gasoline Direct Injection
GHG	Greenhouse Gas
HO2S1	Heated Oxygen Sensor 1
HO2S2	Heated Oxygen Sensor 2
IAT	Intake Air Temperature
ITM	Integrated Thermal-management Module
KS	Knock Sensor
LOT	Catalyst Light-Off Temperature
MAF	Mass air flow
MAP	Manifold Absolute Pressure
TCU	Transmission Control Unit
TP	Throttle Position
TWC	Three Way Catalytic Converter
VIM	Variable Intake Manifold
VS	Vehicle Speed
VVT	Variable Valve Timing
WG	Wastegate
WSS	Wheel Speed Sensor
WU-TWC	Warm Up Three Way Catalytic Converter

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.01.04 Justification codes

Justification / rationale Code
A. Substantially included during regulated test procedures
B. Engine/Emission system protection
C. Protection against accident
D. Engine starting stabilization
E. OBD intrusive monitor
F. Base operation
G. Electric propulsion system protection

11.02 Engine base controls / AECDs

11.02.01 Fuel control

The lambda control is normally controlled as closed loop by the fuel injection system including the oxygen sensors. It is responsible for controlling the content of the catalytic converter feed gas and ultimately determines the exhaust gases like HC, CO, and NOx. The closed loop control system makes adjustments to injection duration based on signals from the exhaust oxygen sensor. During closed loop control, the ECU keeps the air-fuel mixture modulated around the ideal 14.7 to 1 ratio (stoichiometry). By precisely controlling fuel delivery, the oxygen content of the exhaust stream is held within a narrow range that supports efficient operation of the three-way catalytic converter. During closed loop operation, the ECU uses the oxygen sensor signal to determine the exact concentration of oxygen in the exhaust gas. From this signal, the ECU determines whether the mixture is richer or leaner than the ideal air/fuel ratio.

Target lambda coordination

The basic target lambda is stoichiometric air/fuel ratio (i.e. lambda=1.0). And the target lambda can be coordinated during the condition as follows:

- Oxygen sensor diagnosis refer to OBD document
- Component overheating protection
- Catalyst purge
- Driver's request torque interface

Mixture calculation

The mixture control calculates the relative fuel mass for the relative air charge which is required for combustion at a lambda value =1.0. The variables of the relative air charge and the relative fuel mass have been standardized such that 100% air charging require 100% fuel for the combustion at a lambda value =1.0. The complete relative fuel mass should be corrected the following factors:

- The compensation for any air leakage is made as a form of additive fuel adaption value which is adapted lambda deviation during idle condition.
- The target relative fuel mass are then corrected with dividing by the associated target lambda value.
- The lambda control maintains this commanded lambda value and compensates any deviation by means of the lambda sensor feedback control gain.
- The increase or reduction in the fuel mass flow required during dynamic load changes is accounted for by the additive intervention.
- Long-term deviations from the desired lambda value are also adapted and are included as a multiplier in the factor controller adaptation.
- Finally, the part of the fuel, which is conducted from the canister purge valve through evaporation into the intake manifold, is subtracted from the relative fuel mass which has been associated to the desired lambda RHYXV01.6M13 Hyundai Santa Fe Hybrid 1.6L T-GDI Part 1 Issued : 12-8-2023
 Revised:

value by the precedent calculations.

Injection time conversion

The injector characteristic value is a constant factor for a conversion of fuel mass into effective injection duration. This conversion factor is valid only in certain circumstances with respect to engine displacement and injector flow rate. Thus, the following correction factors are required.

• Fuel density correction: The change of fuel density depending on the temperature is also corrected. For higher fuel temperatures the injection times have to be longer to inject the same amount of fuel mass as at low temperatures.

GDI injection mode

The injection process of the GDI engine utilizes several different modes, depending on engine operation conditions.

- 1. Homogeneous injection: Normal operating injection mode
- 2. Homogeneous split injection

The GDI operation mode of "homogeneous split" is a strategy for fast heating of the primary catalytic converter. Due to the late secondary injection the air-fuel mixture inside the combustion chamber can be ignited and burn effectively at very late ignition angles and cold engine temperatures. Thus a large amount of heat is transferred to the catalytic converter while at the same time a good exhaust gas composition is achieved.

3. Start injection

During cold starts, the fuel is injected into the cylinder during the compression stroke and the fuel being injected is heated by the air. This means that the fuel mixture does not need to be as rich as it does in a conventional PFI (port fuel injection) system. During the cold start, fuel pressure is increased to produce fine droplets through the injector. The smaller droplets are easier to ignite, thus improving starting characteristics. Less fuel and easier burning work to reduce cold engine emission levels.

For more details, refer to AECD <u>'11.03.07 Combustion mode strategy'</u>

Injection mode	Intake	Compression	Power	Exhaust
Homogeneous injection (single)				
Homogeneous injection (double)				
Homogeneous injection (triple)				
Homogeneous split injection (double)				
Homogeneous split injection (triple)				
GDI start injection (single)				
GDI start injection (double)				
GDI start injection (triple)				
Fuel injection 🕴 Ignition				

Injection angle control

The injection angle can be maintained by controlling a start of injection angle as well as an end of it. These control methods are chosen by the injection mode, as described in "Injection mode". During normal operation mode (Homogeneous injection), the injection is controlled by a start angle which is defined as a map of engine speed and RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

relative load. If the engine is operated under the homogeneous split injection mode, the first injection is controlled by the start of injection and the followings are controlled by the end of injection angles. These angles are all defined as maps of engine speed and relative load.

For more details, refer to AECD <u>'11.02.01.12 Injection angle'</u>

Fuel cut off control

Deceleration fuel cut off is a kind of engine operation mode, in which the injection as well as combustion does not take place, or in other words, the engine is in a non-fired mode. This function determines the working ranges and limits for the engine in which an overrun fuel cut off is allowed.

The following status is necessary to generate the condition of readiness for overrun fuel cut off:

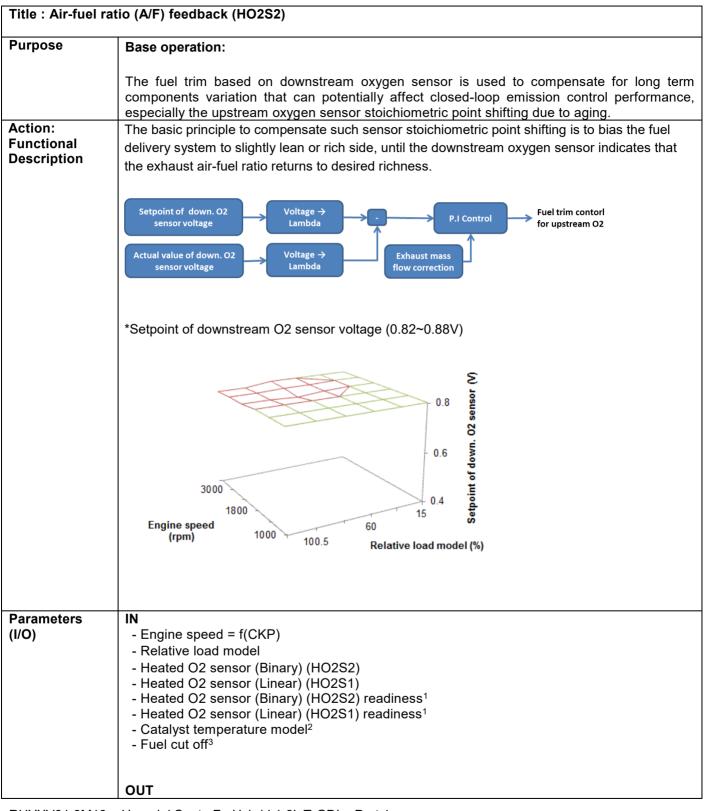
- The engine speed is above the overrun fuel cut off speed threshold
- The idle condition has been set

When all of the above conditions are set, the fuel cut off condition is only set after an activation delay time. This depends on engine temperature and speed. The delay time is necessary for prevent fuel cut off during gear shifting.

For more details, refer to AECD <u>'11.02.01.10 Fuel cut off for component protection'</u>, AECD <u>'11.06.02.02 SOC</u> <u>management – critical high band'</u>

Injector fuel mass control

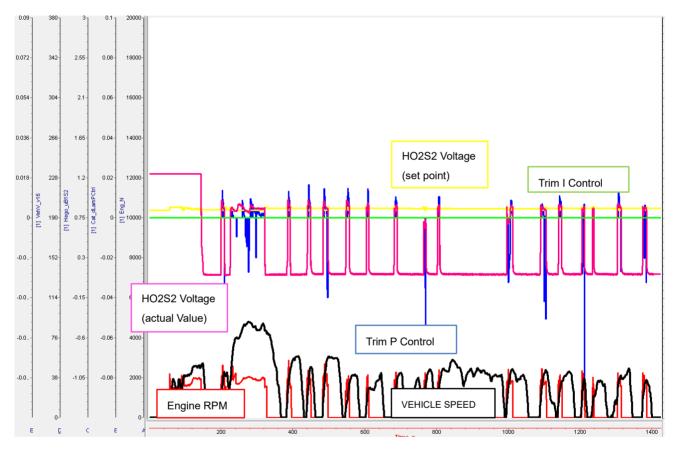
The aim of the injector fuel mass control is to ensure that injectors for each cylinder inject the same amount of fuel mass exactly as required. The injector fuel mass control consists of the dynamic feedback control of injection timings, called Valve Controlled Injection (VCI) and the static fuel quantity compensation control, called Qstatic Adaptation.


- Valve Controlled Injection (VCI): VCI is a control method of the injector opening duration using the multiple derivatives of injector voltage signals to detect actual injection valve timings and to realize accurate fuel metering even for small injection amounts in turn.
- Qstatic Adaptation: The injected fuel amount is physically correlated with the rail pressure drop over the injection event in principle. The injection amount is then relatively corrected over different cylinders by comparing rail pressure drop amounts for different cylinders while the overall injection amount from all cylinders is kept unchanged.

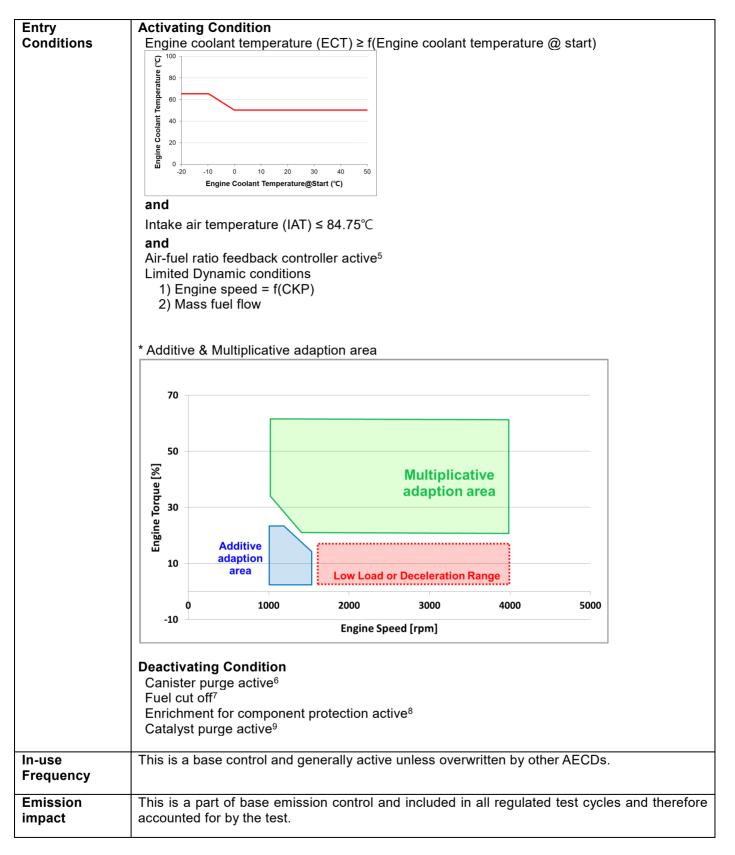
11.02.01.01 Air-fuel ratio (A/F) feedback (HO2S1)

Purpose	Base operation
	The air-fuel ratio feedback control maintains the air fuel ratio at a preset value to keep the
	optimum catalyst efficiency and reduced emission.
Action: Functional Description	The air-fuel ratio (A/F) feedback (HO2S1) corrects the injected fuel based on the exhaust ga oxygen concentration and deviation from stoichiometric operation (towards rich or lean) as closed loop controls.
	*Air-fuel ratio (A/F) feedback (HO2S1) control
	Lambda setpoint Control error PI Feedback Controller
	Upstream 1.0 Upstream O2 02 sensor
	sensor signal
	Downstream
	lambda offset Downstream 02 sensor sensor singnal
	Calculate LSU Offset
Devenueteve	IN
Parameters (I/O)	- Heated O2 sensor (Linear) (HO2S1)
	 Heated O2 sensor (Binary) (HO2S2) Heated O2 sensor (Linear) (HO2S1) readiness¹
	- Heated O2 sensor (Binary) (HO2S2) readiness ¹
	- OBD fault detection (HO2S1, Fuel injector, Catalyst damage misfire) ²
	- Lambda setpoint ³
	 Catalyst temperature model⁴ Engine speed = f(CKP)
	- Fuel cut off for component protection ⁵
	OUT
F to A to a	- Air-fuel ratio controller value ⁶
Entry Conditions	Activating Condition Sensor operation readiness is reached.
	after dew point has been reached
	and the ceramic temperature of upstream O2 sensor > 685℃
	Deactivating Condition
	Interruption during fuel cut off ⁷
	or
	OBD fault detection (HO2S1, Injector, Catalyst damage misfire) ⁸

In-use Frequency	This is a base control and generally active unless overwritten by other AECDs. * air-fuel feedback control (HO2S1) active time (via ECT) under normal condition.
	-40 -20 0 20 40 60 ECT@ start (℃)
Emission impact	This is a part of base emission control and included in all regulated test cycles and therefore accounted for by the test.
Justification	A. Substantially included during regulated test procedures:
	FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base operation
Reference	 Oxygen sensor heating strategy OBD Document Enrichment for torque demand, Enrichment for component protection, Catalyst purge Exhaust system temperature determination Fuel cut off for component protection Air-fuel ratio (A/F) feedback (HO2S2), Air-fuel ratio adaptation, Canister purge Fuel cut off for component protection OBD Document


11.02.01.02 Air-fuel ratio (A/F) feedback (HO2S2)

	5
	15 15 10
	20
	25
Frequency	* air-fuel feedback control (HO2S2) active time (via ECT) under normal condition.
In-use	Fuel cut off ¹⁰ This is a base control and generally always active unless overwritten by other AECDs.
	Deactivating Condition
	350°C< Catalyst temperature model < 925°C ⁸ and No overheating protection with rich lambda is active ⁹
	and
	Catalyst purge inactive and Air-fuel ratio controller value in normal range (-25% < normal range < +25%) ⁷
	Catalyst enrichment function is not active ⁶ and
	Heated O2 sensor (Linear) (HO2S1) readiness ⁵ and
Conditions	Heated O2 sensor (Binary) (HO2S2) readiness ⁵ and
Entry	(-0.03 < and < 0.03) - OBD Fault detection ⁴ Activating Condition
	- Trim controller value adaption (I Gain)

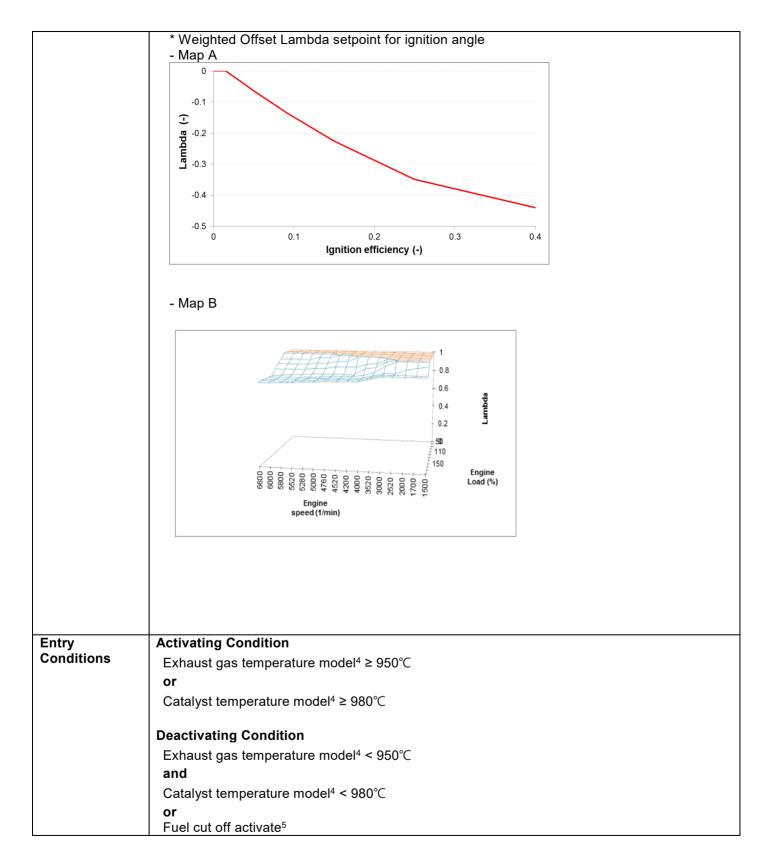

Reference	1. Oxygen sensor heating strategy
	2. Exhaust system temperature determination
	3. Fuel cut off for component protection
	4. OBD Document
	5. Oxygen sensor heating strategy
	 Enrichment component protection, Catalyst purge, Enrichment for torque demand
	7. Air-fuel ratio (A/F) feedback (HO2S1)
	8. Exhaust system temperature determination
	9. Enrichment component protection
	10. Fuel cut off for component protection

* Heated O2 sensor (Binary) (HO2S2) feedback control during FTP mode

11.02.01.03 Air-fuel ratio adaptation

Purpose	Base operation
	Compensation serial production tolerances of components (E.g. fuel system, MAP sensor, etc.)
Action: Functional Description	Adaptation of air-fuel ratio control deviation from stoichiometric operation by a fuel mass offse in idle speed and a fuel mass factor in part load. The additive and multiplicative air-fuel ratio adaptations are used for calculating the injection time for all engine operating states.
Parameters (I/O)	IN - Engine speed = f(CKP) - Relative load model - Air-fuel ratio controller value ¹ - Heated O2 sensor (Linear) (HO2S1) - Lambda setpoint ² - Engine coolant temperature (ECT) - Intake air temperature (IAT) - Accelerator pedal position (APP) - Vehicle speed = f(WSS) - Fuel cut off ³ - Canister purge active ⁴ OUT - Multiplicative Air-fuel ratio adaptation - Additive Air-fuel ratio adaptation

Justification	A. Substantially included during regulated test procedures
	FTP75, US06, SC03, HwFET, FTP75@-7℃
	F. Base operation
Reference	1. Air-fuel ratio feedback (HO2S1)
	2. Enrichment for torque demand, Enrichment for component protection
	Catalyst purge
	3. Fuel cut off for component protection
	4. AECD Canister purge
	5. Air-fuel ratio feedback (HO2S1)
	6. Canister purge
	7. Fuel cut off for component protection
	8. Enrichment for component protection
	9. Catalyst purge

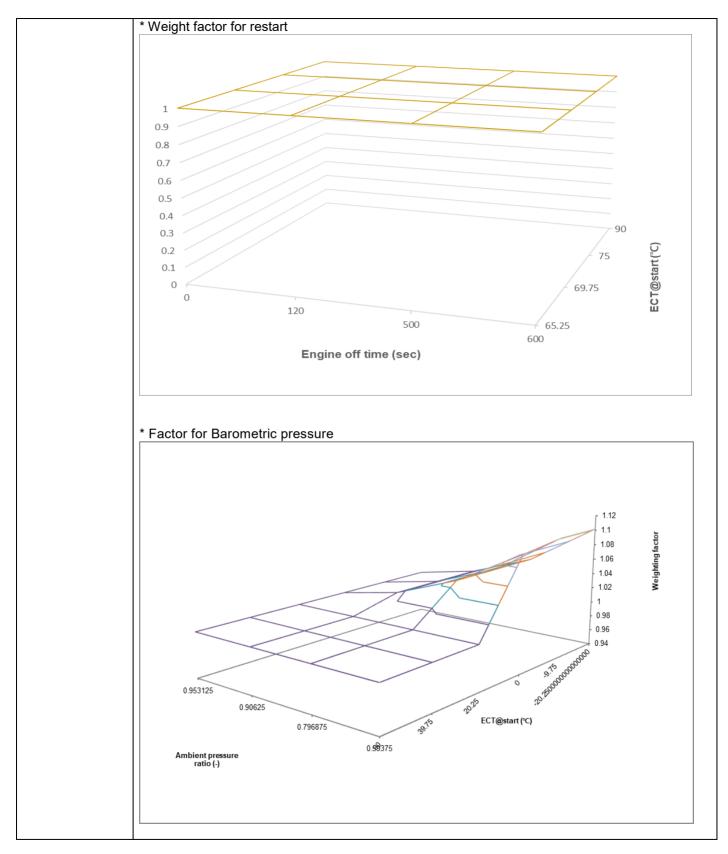

11.02.01.04 Enrichment for torque demand

Title: Enrichme	nt for torque demand
Purpose	Protection against accident
	When the hybrid control unit requests maximum engine torque, torque demand enrichment is used. This will help driver safety and could prevent accidents when the driver is merging into traffic, passing another vehicle, etc
Action:	The need for torque demand is determined by hybrid control unit and then engine control unit
Functional Description	sets the lambda setpoint to minimum lambda value of 0.85. Enrichment level depends on fueling map.
Description	For more details, refer to <u>AECD '11.06.04.05 HEV operation in high-load</u> '
Parameters	IN
(I/O)	- hybrid control unit request ¹
	 Engine speed = f(CKP) Engine coolant temperature (ECT)
	OUT
	- Lambda setpoint : depends on Engine Speed and ECT ²
	: Driver request lambda enrichment (minimum : 0.85)
Entry Conditions	Activating Condition/Deactivating Condition
Conditions	hybrid control unit request ³
In-use	- For more details, refer to HEV operation in high-load ⁴
Frequency	· · · · · · · · · · · · · · · · · · ·
Emission impact	May momentarily increase NMHC and CO emission while active.
Justification	C = Protection against accident
Reference	1. HEV operation in high-load
	2. Air-fuel ratio (A/F) feedback (HO2S1),
	Air-fuel ratio adaptation
	3. HEV operation in high-load4. HEV operation in high-load

11.02.01.05 Enrichment component protection

Purpose	Engine/component Protection
	Protection of components in exhaust gas system (exhaust manifold, O2 sensor, catalyst) against thermal overheating. Because operating under heavy loads and high engine speeds can result in excessively hot exhaust temperatures, there is a potential to overheat emission components
Action: Functional Description	Lambda setpoint enrichment to reduce exhaust temperature. High exhaust gas temperature can be decreased by an enrichment of the air/fuel mixture. By this enrichment, cylinder charge gets more fuel than necessary for a stoichiometric combustion
Parameters (I/O)	IN • Engine Speed = f(CKP) • Relative load model • Exhaust gas temperature model ¹ • Catalyst temperature model ¹ • Catalyst temperature model ¹ • Iambda setpoint ² = Nominal Lambda setpoint for component protection + Weighted Offset Lambda setpoint for component protection Map * Nominal Lambda setpoint for component protection Map * Nominal Lambda setpoint for component protection Map • Nominal Lambda setpoint for component protection Map • Nominal Lambda setpoint for component protection Map

Revised:

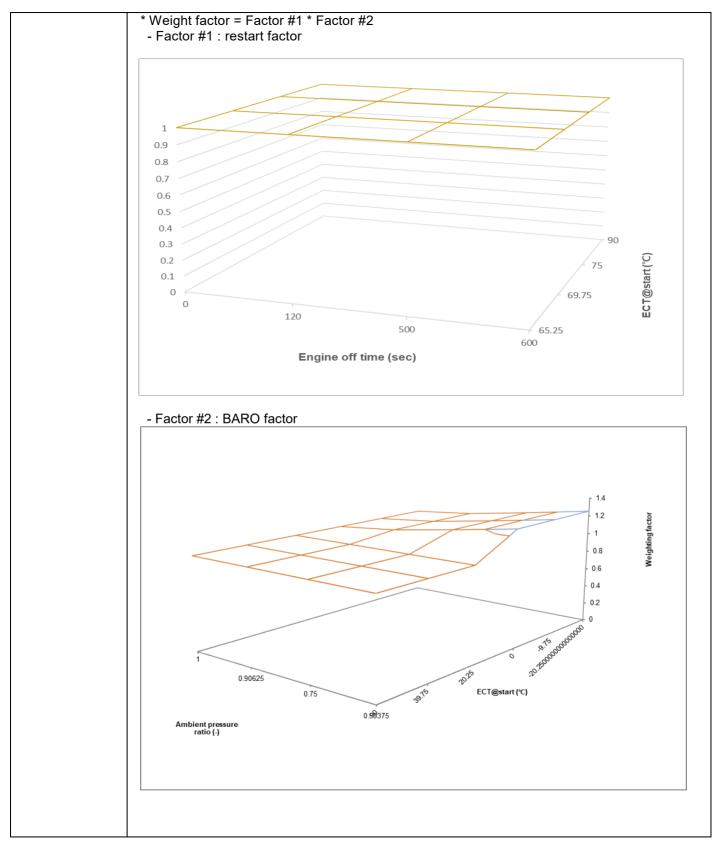


In-use	- Activation in road driving test (summer test @ Stove Pipe to Pahrump)
In-use Frequency	- Activation in road driving test (summer test @ Stove Pipe to Pahrump)
Emission impact	May momentarily increase HC and CO emission while active, and is accounted.
Justification	B. Engine/Emission system protection.
Reference	 Exhaust system temperature determination Air-fuel ratio (A/F) feedback (HO2S1) Air-fuel ratio adaptation Exhaust system temperature determination Exhaust system temperature determination Exhaust system temperature determination

11.02.01.06 Enrichment for starting

Purpose	Engine Starting
	In comparison with normal operation, the fuel mixture must be enriched during start becaus fuel atomization is not performed well. Starting enrichment is needed to ensure complete combustion. In case of restart, enrichment must be reduced, because the air-fuel ratio is too rich.
Action: Functional Description	Starting enrichment factor is used until the start is completed. Base Start Enrichment Weighting factor for restart Weighting factor for Baro
Parameters (I/O)	IN - Engine speed = f(CKP) - Intake air temperature (IAT) - Engine coolant temperature (ECT) - ECU time Foot with the second (FDD)
	 Fuel rail pressure (FRP) Combustion mode¹ OUT A/Fuel Ratio = 'Normal' quantity(lambda=1) * Starting enrichment factor
	- Combustion mode ¹
	 Combustion mode¹ OUT A/Fuel Ratio = 'Normal' quantity(lambda=1) * Starting enrichment factor

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:


RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

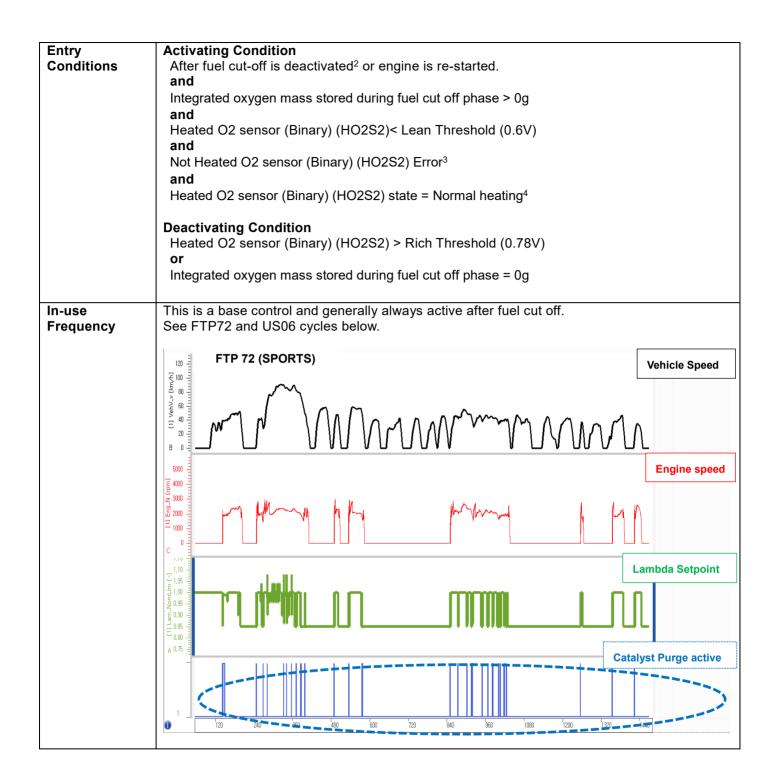
Entry Conditions	Activating Condition Engine start * Engine start : 0 rpm < Engine speed < f(ECT)	
	Image: second	
	-20 -10 0 10 20 30 ECT at start (°C)	
	Deactivating Condition Complete engine start (Engine speed > f(ECT))	
In-use Frequency	It is active only starting duration, After start, it becomes deactivated.	
Emission impact	May momentarily increase HC and CO emission while active.	
Justification	 A. Substantially included during regulated test procedures : FTP75, US06, SC03, HwFET, FTP75@-7℃ D. Engine starting stabilization. 	
Reference	1. Combustion mode	

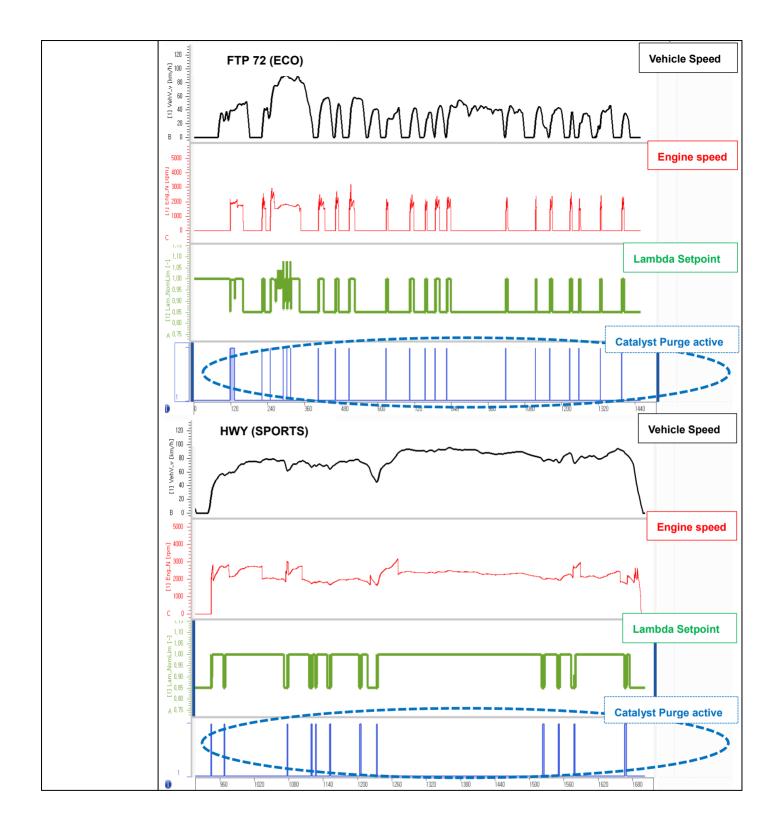
11.02.01.07 Open loop enrichment for after starting

Purpose	After engine starting
	In comparison with normal operation, the fuel mixture must be enriched during after s because fuel atomization isn't performed well.
Action: Functional Description	Fuel enrichment after engine start. During the post start, enrichment factor is normally dependent on the coolant temperature. The open loop enrichment ends as soon as the air-fuel ratio (A/F) feedback control begins. Base A/Start Enrichment
Parameters (I/O)	IN • Engine speed = f(CKP) • Engine coolant temperature (ECT) • Barometric pressure (BARO) • ECU time • Engine speed = f(CKP) • Relative load model • Air-fuel ratio (A/F) control active ¹ OUT • Air-fuel ratio = 'Normal' quantity * (1.0 + After start enrichment factor) * Base After start enrichment 1 1 1 0 1 0 0.8 0.7 0.6 0.5 0.0 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.5 0.0 0.5

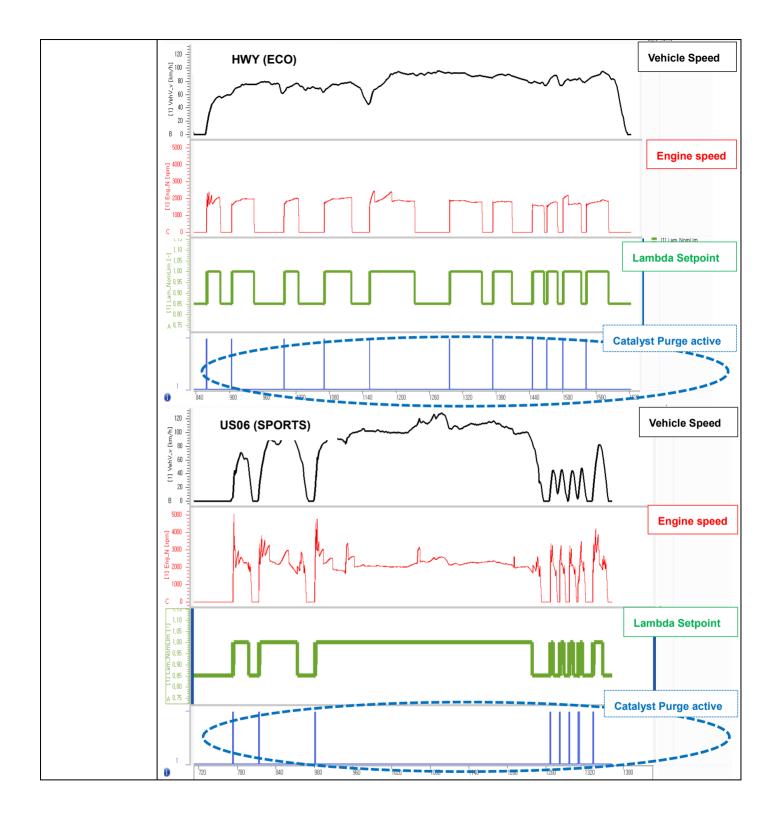
RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:


Entry Conditions	Activating Condition After engine start. ² * Engine start : 0rpm < Engine speed < f(ECT)
In-use Frequency	After Air-fuel ratio (A/F) feedback control is active, the open loop enrichment after engine start is deactivated.
Emission impact	This is part of base emission control and included in a regulated test cycle and therefore accounted for by the test.
Justification	 A. Substantially included during a regulated test procedure : FTP75@-7°C D. Engine starting stabilization.
Reference	 Air-fuel ratio (A/F) feedback (HO2S1) Enrichment for starting Air-fuel ratio (A/F) feedback (HO2S1)


11.02.01.08 Fuel compensation for fuel property - N/A

11.02.01.09 Catalyst purge


Purpose	Emission reduction				
	Catalyst Purge is activated through the lambda enrichment to reduce the Oxygen storage Catalyst				
Action: Functional Description	Set lambda setpoint to rich The fuel enrichment depends on the O2 mass in the catalyst and exhaust mass flow. Lambda enrichment Oxgen stroge model Max oxgen stroge (depend on catalyst) Fuel cut off Catalyst purge				
Parameters (I/O)	IN - Engine speed = f(CKP) - Catalyst temperature model ¹ - Fuel cut off ² - Relative load model - Heated O2 sensor (Binary) (HO2S2) ¹ - Heated O2 sensor (Binary) (HO2S2) operation readiness - Oxygen storage model OUT - Lambda setpoint ³				
	Lishbust mass (gg/h)				

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

	120 म ⊊100 म	06 (ECO)	~~~	~~~~	~~~	Vehicle Speed
		\sim	~/) WM	
	5000 E					Engine speed
	иооо 4000	Mph				
	1,10					Lambda Setpoint
	L) 0.00 mm L) 0.00 mm					
	A 0.75					Catalyst Purge active
		780 840				1/260
	Continuously active when entry conditions are met. Number of engagements in the emission test modes:					
	E/M N	Mode	FTP-4Bag Mode	HWY Mode	US06 Mode	
	Operation	SPORTS	57	12	8	
	Count	ECO	42	11	14	
Emission impact	This is a part accounted for		ion control and	d included in a	all regulated test	t cycles and therefore
Justification	A. Substantiall FTP75, US0 F. Base operat	6, SC03, HwF	ing regulated t ET, FTP75@-7		es :	
Reference	 Air-fuel ratio Fuel cut off OBD Docun Oxygen sen 	for component nent	protection			

11.02.01.10 Fuel cut off for component protection

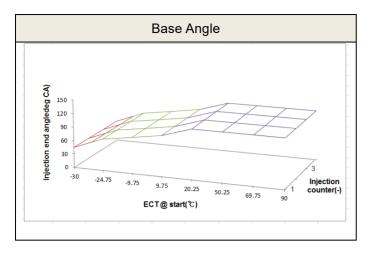
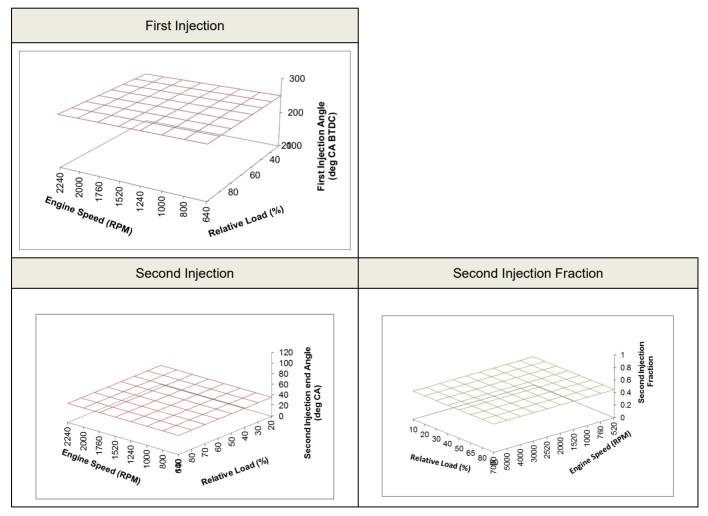
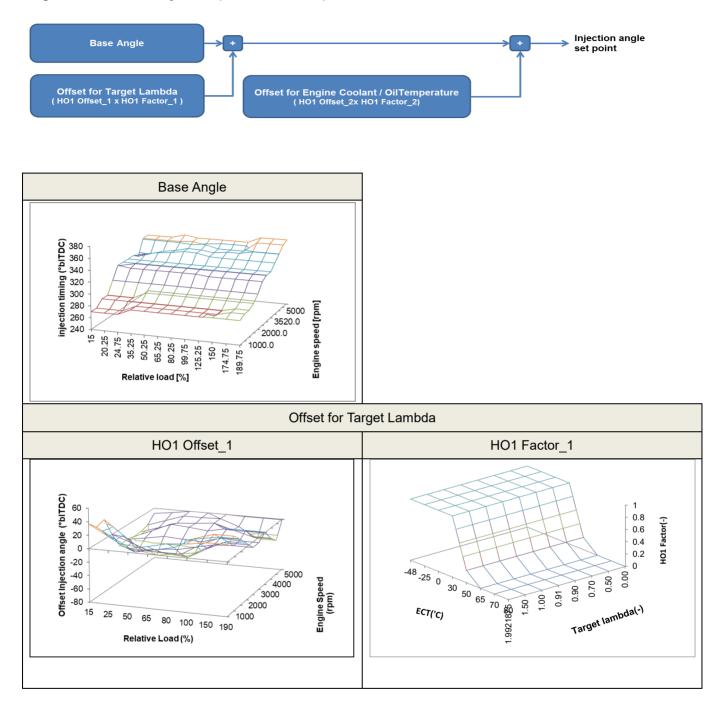
Purpose	Component protection
	The fuel cutoff is required for torque reduction for component protection.
Action: Functional Description	Fuel injectors shut off1. to protect an engine when the engine speed exceeds a maximum allowable speed.2. when a vehicle speed exceeds a maximum allowable speed due to tire speed rating.3. when limp-home control occurs due to misfire
Parameters (I/O)	IN - Catalyst temperature (modeled) - Hybrid Control Unit Request - OBD Fault detection (catalyst damage misfire) ¹ OUT - Fuel cut off
Entry	Activating Condition
Conditions	At detecting catalyst damage (catalyst temperature > 1050°C) due to multiple misfire or Hybrid Control Unit Request
	Deactivating Condition All of the activating conditions are no longer met.
In-use Frequency	Estimated to be rare due to extreme conditions.
Emission impact	There is no emission effect because fuel is cut off.
Justification	B. Engine emission system protection
Reference	1. OBD Document

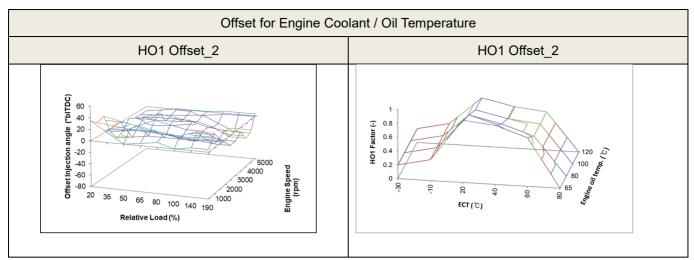
11.02.01.11 Fuel cut off for GHG - N/A

11.02.01.12 Injection angle

Title : Injection	angle
Purpose	Base operation :
	The adjustment of the Injection angle optimizes engine operation.
	- Stabilized combustion
	- Fuel efficiency - Lower emissions
	- Lower emissions
Action: Functional Description	Adjustment of injection angle and split ratio of multiple injection in specific operation. (See attached figures)
Parameters (I/O)	IN - Engine speed = f(CKP) - Relative load model - Engine oil temperature model - Engine coolant temperature (ECT) - Intake air temperature (IAT) - Combustion mode ¹ - Lambda setpoint - Injection counter OUT - Number of injection - Injection angle
Entry	- Injection fraction Activating Condition
Conditions	Activated when engine runs according to the combustion mode.
In-use Frequency	This is a base control and generally always active.
Emission impact	This is a part of base emission control and included in all regulated test cycles and therefore accounted for by the test.
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base operation
Reference	1. Combustion Mode strategy

Figure 1. SH1 Mode Injection (1x compression stroke)


Figure 2. HP2 Mode Injection (1x compression stroke, 1x intake stroke)

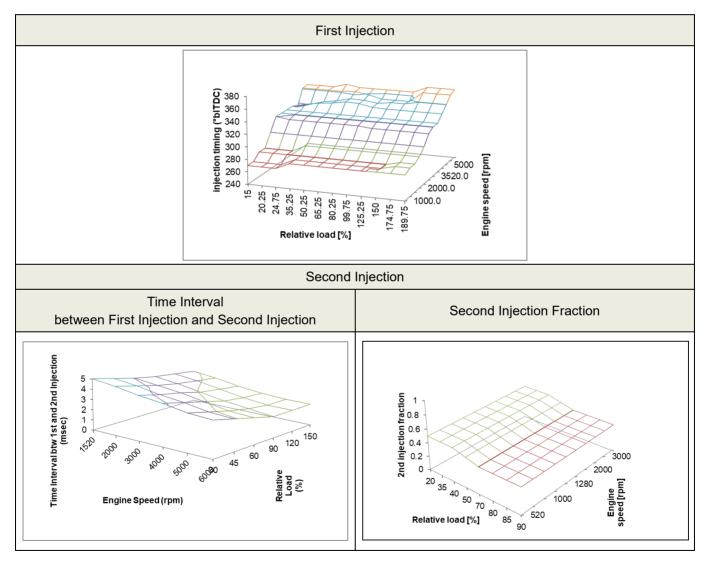
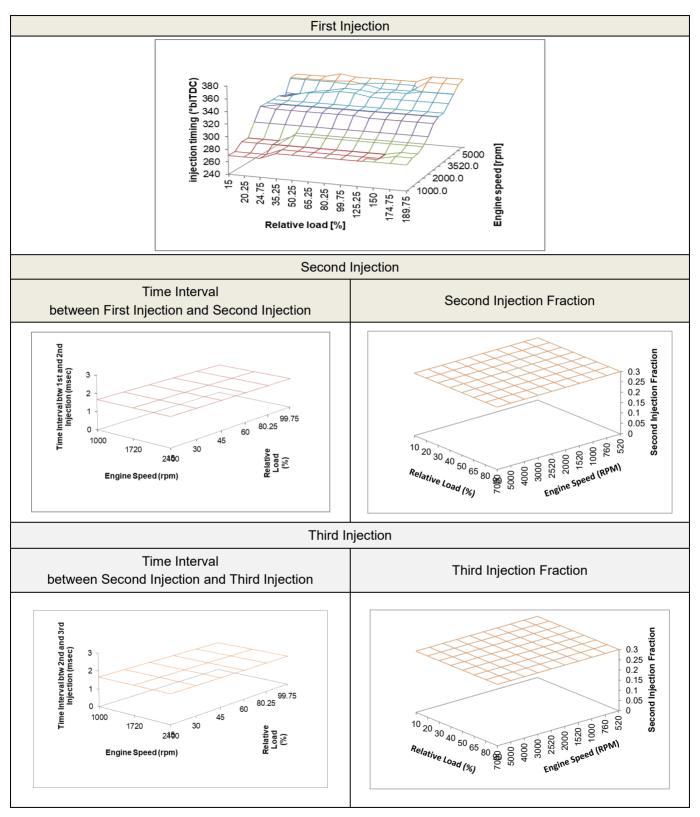
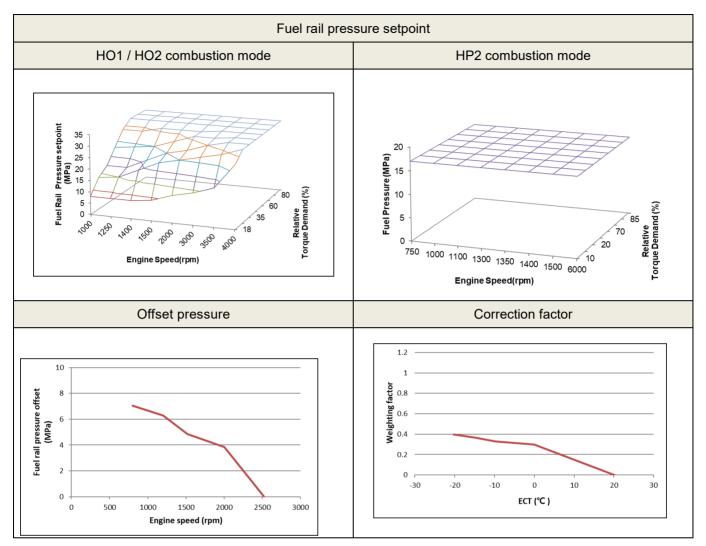

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

Figure 3. HO1 Mode Injection (1x intake stroke)



RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

Figure 5. HO3 Mode Injection (3x intake stroke)



RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.02.01.13 Fuel rail pressure (High)

Purpose	Base Operation
	Adjust the fuel pressure optimizing engine fuel efficiency, emission.
Action: Functional Description	Basic fuel pressure setpoint is determined based on engine operation states and/or combustion mode.
	Base Fuel Rail Pressure
	Engine speed correction
Parameters (I/O)	IN - Engine speed = f(CKP) - Relative load model - Engine coolant temperature (ECT) - Combustion mode ¹ OUT - Fuel rail pressure setpoint (see attached figures)
Entry Conditions	Activating Condition Activated when engine runs according to the combustion mode.
In-use Frequency	This is a base control and always active.
Emission impact	This is a base control and always active.
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base operation
Reference	1. Combustion mode strategy

11.02.01.14 Acceleration / deceleration compensation - N/A

11.02.02 Ignition control

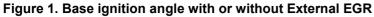
The aim of the ignition control is to ensure spark generation inside the ignition-plugs at a given crank angle with the correct energy in order to ignite the air fuel mixture at the correct time. The desired ignition angle is calculated from the desired torque using the inverted torque model. For that purpose, a desired value for the ignition efficiency is calculated by dividing the desired torque by the optimum torque. The optimum torque is the torque which the engine could deliver theoretically at an ignition efficiency of 100%. The desired value for the ignition efficiency is converted into an ignition angle offset using a predetermined curve. To get the desired ignition angle, this offset has to be subtracted of the optimum ignition angle where the engine could deliver theoretically the optimum torque. This desired ignition angle is limited between the latest permissible ignition angle and the basic ignition angle, which is the earliest possible angle.

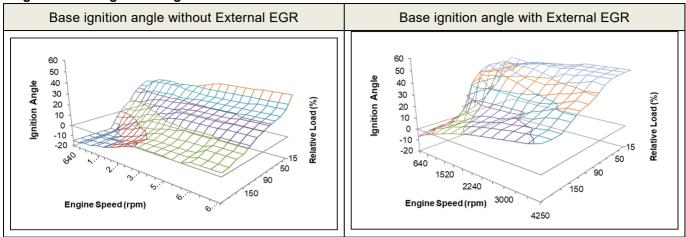
Latest ignition angle

The latest permissible ignition angle is restricted by flammability, which means misfires can occur when the ignition angle is retarded more than the latest ignition angle. The latest ignition angle is the output of an engine speed and the relative load dependent map. It is corrected by the following factors:

- If the injection mode of homogeneous split for GDI system is active (refer to AECD <u>'11.4.07 Combustion mode</u> <u>strategy</u>'), the retarded ignition angle map is adopted instead of the base characteristic map, which depends on engine speed and relative load.
- When the catalyst is heated, the combustion limit is calculated from map which depends on engine speed and relative load.
- The combustion limit is dependent upon the engine coolant temperature and the air-fuel mixture ratio.

Basic ignition angle


The most-advanced basic ignition angle describes knocking limit and is calculated from pre-controlled map and knock control intervention. The pre-controlled basic angle is formed directly from the engine speed and relative load dependent characteristic map. It is corrected by the following factors:


- If the system has a variable camshaft adjustment, the influence of a variable residual gas quantity on the basic ignition angle is corrected.
- The lambda dependency of the basic ignition angle is taken into account via the corrections of the knock limit by lambda. The calculation is carried out using the map depending on engine speed and lambda.
- Delta ignition angle from engine temperature correction.
- Ignition retard of knock control.

If torque intervention is not required, the earliest possible ignition angle is given as output. In the case of fuel cut off, the latest possible ignition angle is given as output. During start, the ignition angle for the start condition is given as the output.

11.02.02.01 Base ignition angle

Title : Base ignit	ion angle				
Purpose	Base operation Ignition angle is determined to operate the engine under most efficient conditions.				
Action: Functional Description	Ignition angle setpoint Base ignition angle is based on a current engine operating point. In addition, the ignition angle is corrected by other operating conditions. (see attached figures) Base Ignition timing + + + + + Ignition angle set point Lambda correction (Offset x factor) Temp. correction (Offset x factor)				
Parameters (I/O)	IN - Engine Speed = f(CKP) - Relative load model - Barometric pressure (BARO) - Engine Coolant Temperature (ECT) - Intake Air Temperature (IAT) - Lambda setpoint - Internal EGR - External EGR rate - Knock Sensor (KS) ¹ - Combustion mode ² OUT - Ignition angle ³ (basic + correction map)				
Entry Conditions	Activating Condition The strategy is calculated under all engine running (engine speed > 32rpm).				
In-use Frequency	This is a base control and always active.				
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.				
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base operation				
Reference	 Knock control Combustion mode strategy Exhaust system temperature determination 				
	Hyundai Santa Eo Hybrid 1.61 T.CDL Bart 1				

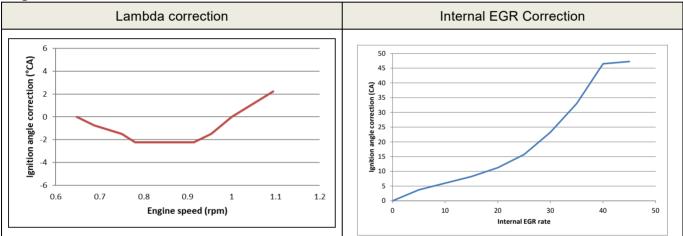
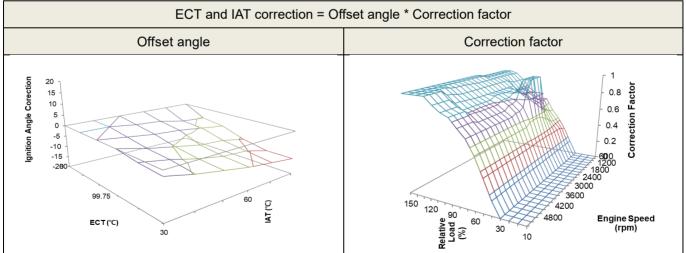
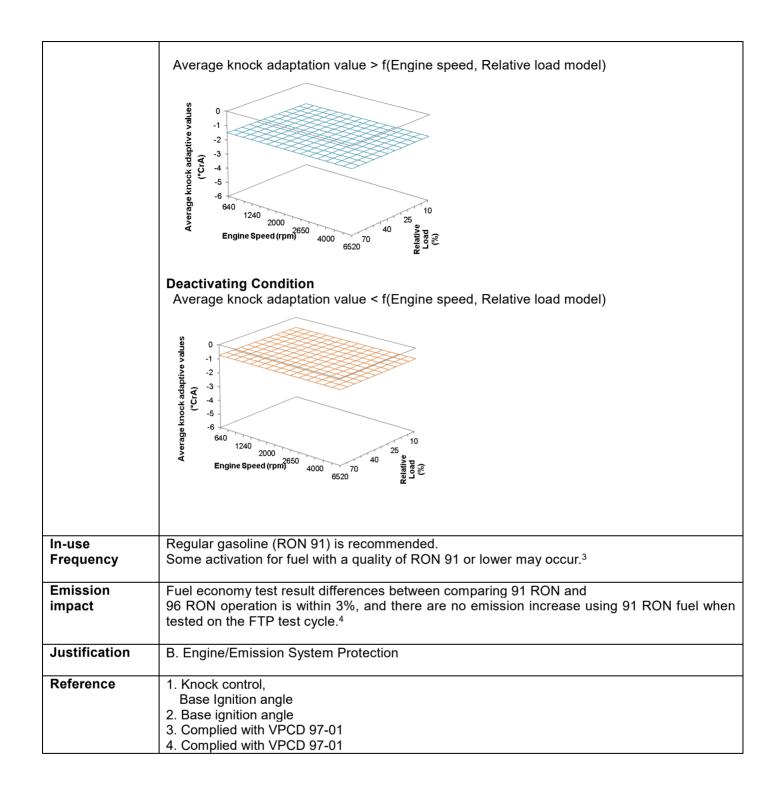



Figure 3. Temperature Correction ignition angle


11.02.02.02 Knock control

Title : Knock cor	ntrol
Purpose	Engine/Component Protection Preventing the engine components, <i>i.e.</i> cylinder head, piston, etc, from damage due to engine knock.
Action: Functional Description	Index. Ignition angle adjustment Spark retardation is executed when knocking is detected up to maximum 9degCA The actions will be deactivated if knock is not detected. (see attached figures) * Ignition angle retard function A: If knocking is detected, ignition angle is retarded. Image: the second se
	engine cycles
Parameters (I/O)	IN - Knock Sensor (KS) - Engine speed = f(CKP) - Relative load model - Engine Coolant Temperature (ECT)
	OUT - Adjustment Ignition angle

Entry	Activating Condition							
Conditions	Engine coolant temperature > 40℃							
	and							
	Relative load model > f(rpm)							
	100							
	80							
	60 30 40 40							
	20							
	°							
	0 1000 2000 3000 4000 5000 6000 7000							
	Engine speed (rpm)							
	Deactivating Condition							
	If there is no more engine knock, ignition angle is advanced gradually to the base ignition angle by 0.75 crk after a delay. (see graph above)							
In-use	This is a base control and always active. ²							
Frequency								
Emission	Fuel economy test result differences between comparing 91 RON and							
impact	96 RON operation is within 3%, and there are no emission increase (beyond normal test							
	variability) using 91 RON fuel when tested on the FTP test cycle. ³							
Justification	B. Engine System Protection							
Reference	1. Base Ignition Angle, Global Knock Adaptation							
	2. Compiled with VPCD 97-01							
	3. Compiled with VPCD 97-01							

11.02.02.03 Global knock adaptation

Title : Global k	nock adaptation
Purpose	Engine/Component protection: Adaptation to different markets' fuel quality to avoid damage the cylinder head and piston due to engine knock.
Action: Functional Description	Ignition angle adjustment Adjusting basic ignition angle based on the calculated fuel quality. The following procedure is activated, in order 1. Knock sensors detect engine knock. 2. Adapt knock and estimate fuel quality with averaged knock adaptation value; and then 3. Correct basic ignition angle by estimated fuel quality (Delta ignition angle map * Factor of delta ignition angle)
Parameters (I/O)	IN - Knock Sensors (KS) ¹ - Engine Speed (CKP) - Relative load model - Engine coolant temperature (ECT)
	OUT - Adjusted basic ignition angle ²
	Engine Speed (rpm) ³⁵²⁰ 5000 160 5520 ¹⁶⁰
Entry Conditions	Activating Condition Engine coolant temperature : > 60°C and Relative load model > 30%
) Huundai Santa Ea Hubrid 1 GLT CDL Dart 1

11.02.03 Cylinder valve timing control

In internal combustion engines, variable valve actuation (VVT, VVL, VVD) is the process of altering the timing of a valve lift event, and it can improve power performance, fuel economy, and emissions. Combination of the CVVD (Continuously Variable Valve Duration) system and CVVT (Continuously Variable Valve Timing) system can help to control valve open/close timing independently by changes in valve duration and phasing. The valves within an internal combustion engine are used to control the flow of the intake and exhaust gases in-and-out of the combustion chamber. The timing, duration, and lift of these valve events have a significant impact on engine performance. Without variable valve timing or variable valve lift or variable valve duration, the valve timing will be the same for all engine speeds and conditions. An engine equipped with a variable valve timing actuation system can allow performance to be improved over the engine operating range.

The variable camshaft adjustment is achieved by a phase adjustment of the camshaft with respect to the crankshaft. The position controller receives an actual angle position from the camshaft sensor (phase sensor) and balances the difference between target and actual angle with a duty cycle as the output. The camshaft phasing is realized by means of an actuator that works with the electrical motor or engine oil (system dependency equipped). The CVVD adaptation is achieved by counting control shaft revolution. The CVVD controller receives actual revolution from left stop position to right stop position and adjusts end to end position. The first adaptation process is worked during EOL test. After EOL, the adaptation process is enabled during fuel cut off condition. Additionally if charge, engine speed, coolant temperature and so on conditions are fulfilled, the fuel cut off adaptation process is worked. The valve duration control is realized by means of an electrical motor.

Target valve timing

The target valve timing is assigned by each configuration's map. The desired value assignment can be assigned by the maps only when the camshaft adjustment and CVVD adaption have been enabled. If camshaft adjustment and CVVD adaptation have not been enabled, then the reference position is output for the desired value. The valve open/close timing is selected by different maps depending on driving, idling, and catalyst heating activation. Each map is formed directly from the engine speed and relative load.

Enable condition

The valve timing control enable condition is determined by considering the engine oil temperature value, battery voltage, and engine speed. An adjustment enable is given when the actuator hardware is able to realize a target value demand for adjustment under the given engine operating conditions.

An enable of the camshaft adjustment may take place only when no inhibiting faults are present for the adjustment. Inhibiting faults are when during the check of the alignment camshaft with crankshaft in reference position of the camshaft, a fault was detected or when there is a fault in the battery voltage detection of the phase sensor. Additionally, the adaptation of the camshaft and crankshaft alignment must have occurred.

11.02.03.01 Variable valve timing

Title : Variable	valve timing
Purpose	Base operation :
	Adjustment of valve timing for emission reduction, improving fuel consumption, and optimizing full load performance.
Action: Functional Description	Inlet/outlet valve timing adjustment Adjustment of inlet/outlet valve timing depends on engine speed, engine load, and engine oil temperature and acceleration pedal position. Cold inlet/outlet valve open/close timing Hot inlet/outlet valve open/close timing Engine oil temp. factor Ambient Press. correction (Offset x factor) (see attached figures)
Parameters (I/O)	In - Engine speed = f(CKP) - Relative load model - Engine coolant temperature (ECT) - Engine oil temperature model - Battery voltage (B+) - Camshaft position inlet (CMP_IN) - Camshaft position outlet (CMP_OUT) - Barometric pressure (BARO) Out - Inlet valve open/close timing setpoint outlet valve open/close timing setpoint
Entry Conditions	 - outlet valve open/close timing setpoint Activating Condition 10V < Battery voltage < 16V and Engine oil temperature model > -5°C and Accumulated crankshaft rev. > f(ECT)

	Deactivating Condition Engine oil temperature model > 140°C
In-use Frequency	This is a base control and generally always active.
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base Operation
Reference	

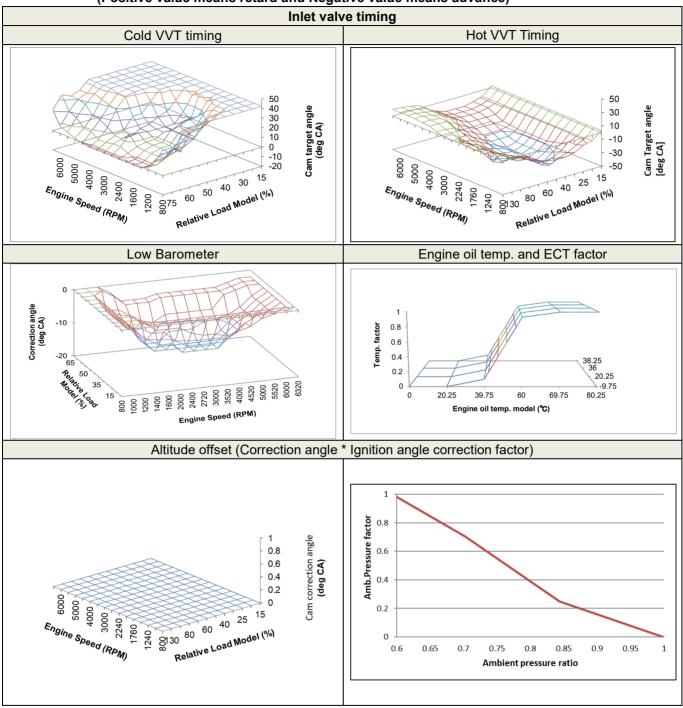
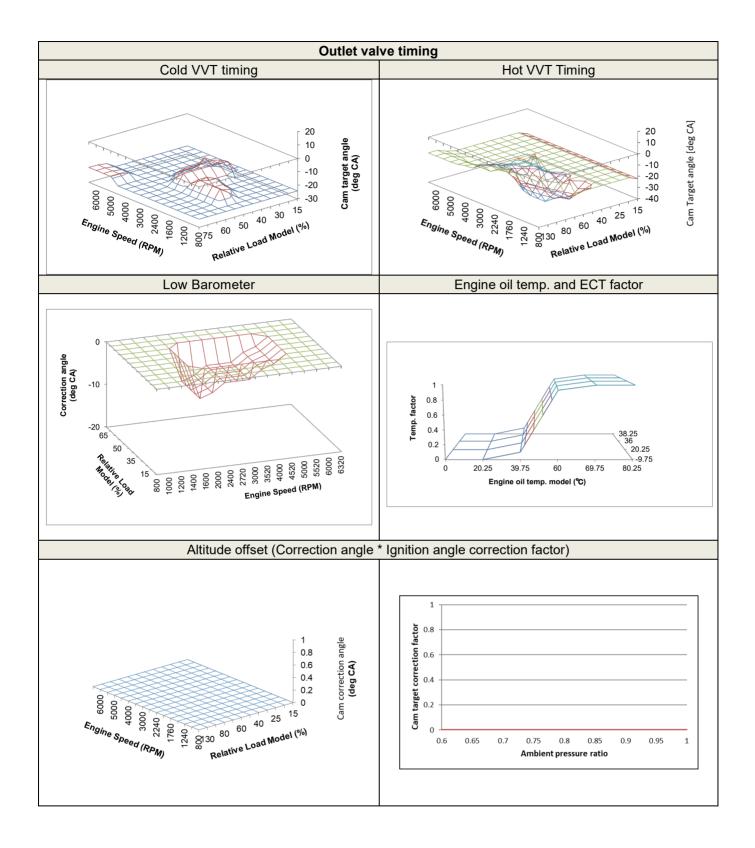
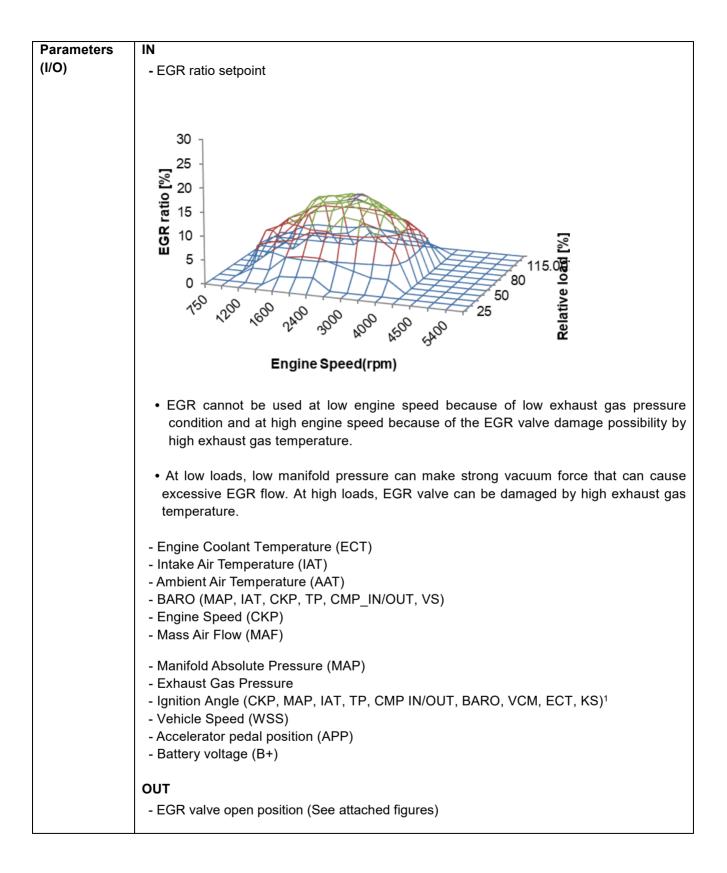



Figure 1. Adjustment inlet/outlet valve timing (Positive value means retard and Negative value means advance)

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.02.04 Exhaust gas recirculation (EGR) valve control


In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique, as well as a fuel economy improvement measure. The EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. In a gasoline engine, this inert exhaust displaces the amount of combustible matter in the cylinder. This dilutes the O2 in the incoming air stream and provides inert gases to the combustion to act as absorbents of combustion heat to reduce peak in-cylinder temperatures. Because NOx forms primarily when a mixture of nitrogen and oxygen is subjected to high temperature, the lower combustion chamber temperatures caused by EGR reduces the amount of NOx the combustion generates.

EGR valve position control: The desired position of the EGR valve is calculated out of the desired flow over the valve and a flow model considering the temperatures and the pressures upstream and downstream of the EGR valve. The actual position of the EGR valve is measured with a sensor, to which production tolerances are adapted. The actual mass flow over EGR valve is calculated depending on the EGR valve position, the pressure upstream and downstream of the EGR valve, and the temperature of the EGR gas. A second value of the mass flow over the EGR valve is calculated out of the change in the intake manifold pressure. This second mass flow value is used for adaptation and diagnostics. Diagnostic functions monitor the EGR valve position, the position sensor, and the EGR system.

Desired EGR rate: The desired EGR inert gas rate in the cylinder is calculated depending on the engine operating point.

11.02.04.01 EGR valve control

Title : Exhaust	Gas Recirculation									
Purpose	Base Operation									
	Improvement of fuel efficiency									
	Reduction of raw NOx emission									
Action: Functional	EGR valve control according to the EGR ratio setpoint Max EGR Ratio limited by intake manifold and water condensation conditions.									
Description	EGR ratio Setpoint Calculate EGR ratio setpoint (from Table 1.)									
	EGR Batio [%] = EGR mass flow									
	Saturated Vanar Breed Eresh)									
	$Max EGR Ratio(\%) = \frac{Suth acta vapor Press(Pesh)}{water partial pressure(EGR) - Water Partial Press(EGR)}$									
	EGR mass flow setpoint Calculate EGR mass flow setpoint									
	EGR valve open setpoint Calculate base EGR valve open setpoint									
	Correction of EGR valveCalculate EGR valve open setpoint byOpen setpointEGR valve position adaptation									
	EGR valve open position =f(Effective open valve area)									
	Exhaust gas recirculation helps decrease combustion temperature and reduce pumping loss									
	during intake stroke. EGR is a substantial engine feature for:									
	Improvement of fuel efficiency by advancing ignition angle and reducing pumping loss									
	during intake stroke.									
	Reduction of raw NOx emission by decreasing combustion temperature.									

Entry	Activating Condition
Conditions	Lambda feedback control (O2S1, O2S2) ²
Conditionio	and
	1000 rpm < Engine speed < 4200 rpm
	and 27 % < Relative load model < 62 %
	and
	50℃ < Engine coolant temperature (ECT) < 120℃
	and
	-48°C < intake manifold temperature
	and
	2.25°C < Ambient Air Temperature (AAT)
	and Vehicle speed (VS) >= 15KPH (9.3MPH)
	and
	10V < Battery voltage < 16V:
	Deactivating Condition
	If any of activating conditions are not met.
	or
	Ambient Air Temperature (AAT) <= 2.25℃
	Reason for preventing water condensation due to EGR gas in low temperature
	or
	 Catalyst heating Reason for combustion stability / catalyst heating performance
	or
	After fuel cut off (0.1s)
	Reason for control exact EGR rate due to accumulated oxygen
	or Front O2 sensor diagnosis and catalyst diagnosis
	Reason for misdiagnosis probability
	or
	Accumulation of air flow after starting < 0.35g
	Reason for Elimination of disturbance by residual air or
	Full load request
	Reason for Prevent hardware failure at high temperatures
	Or Vahiala anald a EKDLI (2.1MDLI)
	 Vehicle speed < 5KPH (3.1MPH) Reason for Improves vehicle drivability due to sudden change in ignition timing
	or
	- EGR exhaust temperature > 200℃
	Reason for protect EGR valve and hose
In-use	Continuously active when entry conditions are met.
Frequency	

Emission impact	May momentarily decrease raw NOx emission while active.					
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET,					
Reference	 Ignition Angle Base Control Air-fuel ratio (A/F) feedback control strategy 					

Figure 1. EGR Rate correction factor

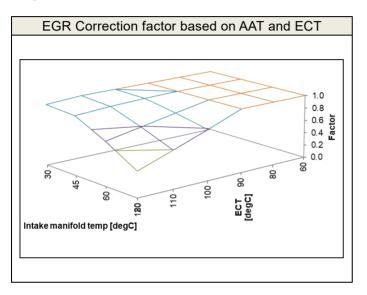


Figure 2. EGR target Rate based on AAT and humidity

		Ambient Temp. (°C)								
		0	5	15	20	25	30	35	40	45
	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	90	0.0	0.0	0.5	1.1	2.2	3.0	4.7	6.4	7.8
	80	0.0	0.0	1.1	2.1	4.3	6.0	9.4	12.7	15.5
9	70	0.0	0.0	1.6	3.1	6.3	8.7	11.4	14.1	15.5
Ś	60	0.0	0.0	2.1	EGR lii	mited	11.4	13.5	15.5	15.5
dit	50	EGR D	isabled	2.6	5.0	10.0	13.8	14.6	15.5	15.5
Humidity (%)	40	0.0	0.0	3.0	6.0	11.8	15.5	15.5	15.5	15.5
	30	0.0	0.0	3.5	6.8	13.4	15.5	15.5	Norm	15.5
	20	0.0	0.0	4.0	7.7	15.0	15.5	EGR	Norm	al _{15.5}
	10	0.0	0.0	4.4	8.5	15.3	15.5	15.5	15.5	15.5
	0	0.0	0.0	4.9	9.4	15.5	15.5	15.5	15.5	15.5

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.02.05 Wastegate control

On turbo-charged internal combustion engines, efficiency can be reached by increasing the gas pressure before the cylinder intake. This boost pressure is controlled with a wastegate (WG). The task of WG control is to realize the requested actuator position dependent on the engine operating states and the driver request. For this purpose, the final wastegate set-point includes all necessary functions for the closed-loop boost pressure actuator position control and the corresponding diagnosis functions.

Base boost pressure

The base boost pressure is defined as the pressure at operating points where the pressure within the WG actuator is maximum controlled open and throttle is at wide open position. Its value mainly depends on engine speed, with influences of ambient pressure and intake air temperature. Engine individual tolerances are learned in module basic boost pressure adaptation and are coordinated here. This base boost pressure is the lower limit for the desired boost pressure value, below which the boost pressure control cannot intervene.

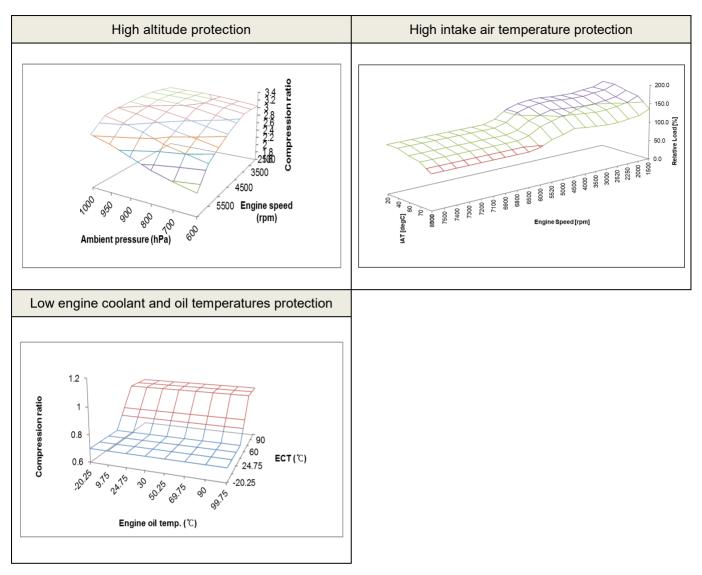
Desired boost pressure

The desired boost pressure is derived from the air charge control. If the desired boost pressure is lower than that of downstream air filter, it is raised for a faster response of the turbo charger. It means that the boost pressure control activates the air charge control only when the desired boost pressure is greater than the base boost pressure.

Target WG valve position control

If the desired target boost pressure is larger than the base boost pressure, the required compressor power can be derived using the target boost pressure. The base of the pre-control of WG is the power provided by the turbine which has to be equal to the power consumed by the compressor. This is the underlying idea of the feed forward control of the boost pressure package. The power of turbine and the compressor can be calculated by the temperature model of upstream turbine/compressor, efficiency of turbine/compressor, air mass flow rate through turbine/compressor, pressure ratio at turbine/compressor, and specific heat capacity.

Considering the above calculations, the desired compressor power using the desired boost pressure and the desired mass flow over the compressor can be computed. This power has to be provided by the turbine. Based on the known power from above can be solved for the necessary mass flow over the turbine to set this power utilizing known actual values.


The duty cycle for the electric WG actuator is necessary for reaching the desired lift of the WG flap. The position of the electric WG flap is controlled by PID closed loop controllers.

11.02.05.01 Turbo charger boost control and protection

Title : Turbo cha	rger boost control and protection						
Purpose	Engine/Component Protection:						
	Protection of turbocharger against over-speeding and avoiding damage from engine knock or						
	pre-ignition.						
Action:	Boost pressure setpoint (Torque limitation)						
Functional							
Description	Torque limitation:						
	- to avoid turbocharger over-speeding at high altitude.						
	 to avoid the damage from engine knock at high intake air temperature. to avoid pre-ignition at low engine coolant and oil temperatures. 						
	- to avoid pre-ignition acrow engine boolant and on temperatures.						
	Boost Pressure Regeust						
	Ligh altitude protection						
	High altitude protection						
	set point						
	High IAT protection						
	Low ECT protection						
Parameters							
(I/O)	- Engine speed = f(CKP) - Intake air temperature (IAT)						
	- Barometric pressure (BARO)						
	- Relative load model						
	- Engine coolant temperature (ECT)						
	- Engine oil temperature model						
	Out						
	- Boost pressure setpoint (see attached figures) ¹						
Fata							
Entry Conditions	This is a base control and generally active setting boost pressure and protecting turbocharger.						
In-use Fragueney	This is a base control and generally active.						
Frequency	Turbo charger boost control actuator activated @ US06 cycle.						

	200 300 0.5 200 200 0.25 200
	$\begin{bmatrix} 20 \\ 90 \\ 90 \\ 90 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.
Justification	 A. Substantially included during regulated test procedures: FTP75, US06, SC03, HwFET, FTP75@-7°C B. Engine System Protection F. Base Control
Reference	1. Torque set-point strategy

11.02.06 Port flap control - N/A
11.02.06.01 Variable charge motion - N/A
11.02.07 Variable intake manifold control - N/A
11.02.07.01 Variable intake manifold (VIM) - N/A

11.02.08 Engine cooling control

Internal combustion engines are cooled by circulating coolant through the engine block where it is heated, and then through a radiator where it loses heat to the atmosphere. The engine coolant is then returned to the engine. A typical automotive cooling system comprises:

- a series of channels cast into the engine block and cylinder head, surrounding the combustion chambers with circulating liquid to carry away heat;
- a radiator, consisting of many small tubes equipped with a honeycomb of fins to transfer heat rapidly, that receives and cools hot liquid from the engine;
- a water pump, usually of the centrifugal type, to circulate the liquid through the system;
- a thermostat to control temperature by varying the amount of liquid going to the radiator;
- a fan to draw fresh air through the radiator.

Cooling fan control: The operation of the cooling fan is determined by considering the following conditions.

- Engine coolant temperature
- Thermal system cooling demand (A/C)
- A/C fluid pressure
- Vehicle speed
- Request of Other controller (Motor Control Unit, Battery Management Unit, Hybrid Control Unit, ETC.)

A/CON	AmbT	A/CON Pressure	A/CON Pressure (P)	Vehicle Speed							Co	olant t	emper	rature(°C)																	
S/W	(°C)	[Absolute Pressure]	[Gauge Pressure]	(KPH)	39	40	82	89	90	94	96	98	101	103	105	106	107	108	109	110	111											
							82		90	94	96	98	101	103	105																	
				V < 45			90		90	90	90	90	90	90	90																	
		P ≥ 1,621 kPa	P ≥ A	45≤V < 80			90		90	90	90	90	90	90	90																	
				80 ≤ V			90		90	90	90	90	90	90	90																	
							82		90		96	98	101	103	105		107															
		1.621 kPa >		V < 45			50	50	50	50	55	60	60	60	70		90	90	90	90	90											
		P ≥ 1,278 kPa	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	$A > P \ge B$	45≤V < 80			10	10	35	35	40	45	60	60	70		90	90	90	90	90
ON	Amb≥3	F ≤ 1,270 KFd		80 ≤ V			10	10	10	10	10	30	50	60	70		90	90	90	90	90											
					39	40				94	96		101	103	105		107															
		1,278 kPa >		V < 45	10	- 30				- 30	35		40	50	60		90															
		$P \ge 689 \text{ kPa}$	$\mathbf{B} \ge \mathbf{P} \ge \mathbf{C}$	45≤V < 80	10	10				10	35		40	50	60		90															
		F = 005 KF8		80 ≤ V	10	10				10	10		30	50	60		90															
									90				102.9	103	105	106	107	108	109													
		689 kPa 〉 P	C > P	ALL					10				10	30	50	60	70	90	90													
A/CON	AmbT	A/CON Pressure	A/CON Pressure (P)	Vehicle Speed					90						105	106	107	108	109	110	111											
S/W	(°C)	[Absolute Pressure]	[Gauge Pressure]	(KPH)																												
				V < 10					10						10	40	50	60	70	80	90											
OFF	Amb≥3	-	-	10 ≤ V < 80					10						10	30	40	50	70	80	90											
				80 < V					10						10	10	30	40	70	80	90											

A/C: Air conditioner, AAT: Ambient air temperature, VS: Vehicle speed, ECT: Engine coolant temperature

Integrated thermal-management module (ITM): ITM is a system that determines the path of coolant. The coolant is typically used to control the engine temperature, but is also used to maintain the transmission fluid temperature and provide the heat source for the cabin heater. When the coolant temperature is low, the ITM cuts off all connected valves, such as the automatic transmission fluid, cabin heaters, and radiators, allowing the coolant to flow only through the engine to get a faster warm-up condition.

11.02.08.01 Electrical thermostat heating - N/A

11.02.08.02 Integrated Thermal Management (ITM) System Coolant Control

The ITM system controls engine coolant flow electromechanically rather than mechanically as with a traditional thermostat. This system controls and optimizes coolant flow to separate devices depending on various engine states. The ITM module and system architecture are shown in figures 1 & 2.

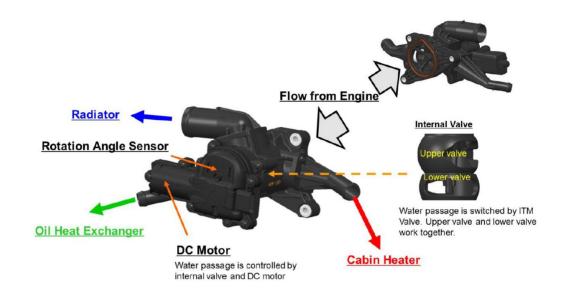


Figure 1. ITM Module Layout

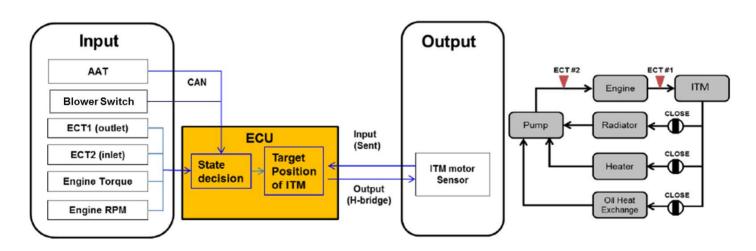


Figure 2. ITM System Architecture

■ITM System Architecture Description

- o ITM's electric valve position is controlled using an electric motor.
- ECT1 is engine outlet coolant temperature
- Used for engine control
- Emission control (fuel, ignition timing)
- o Enable condition of other monitors
- o Used for control of the ITM valve
- o ECT2 is engine inlet coolant temperature
- o Used to correct the ITM valve in control phase

Control Strategy of the ITM system

Ambient air temperature at initial engine start determines the mode; Fuel Economy Priority vs. Cabin Heating Priority. Once the mode is decided, the engine coolant temperature (ECT1) and cabin blower switch signal determine the state. See figure 3.

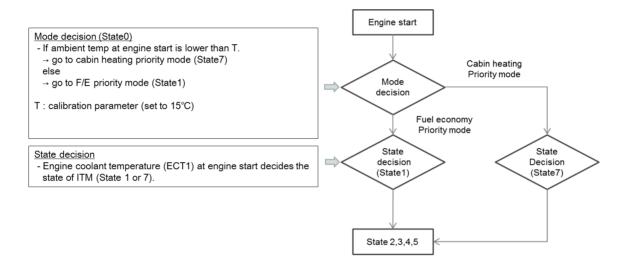


Figure 3. ITM Control Strategy Mode/State Decision Flow Chart

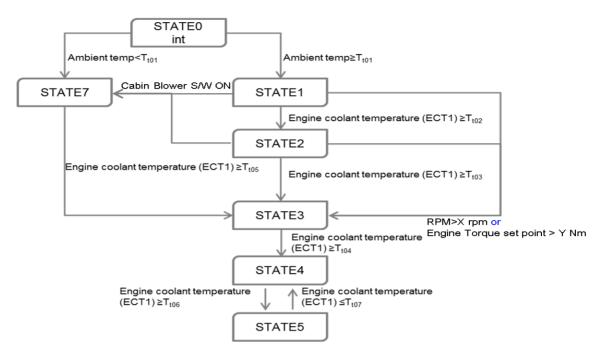
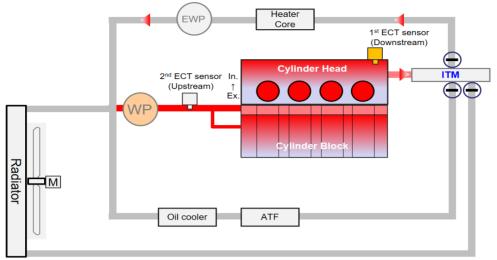
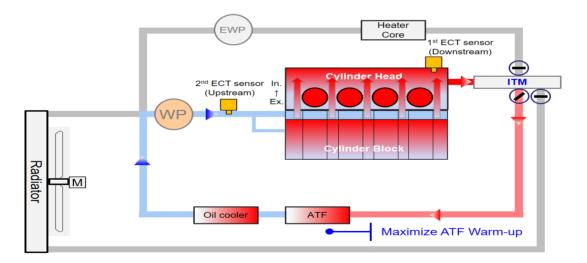



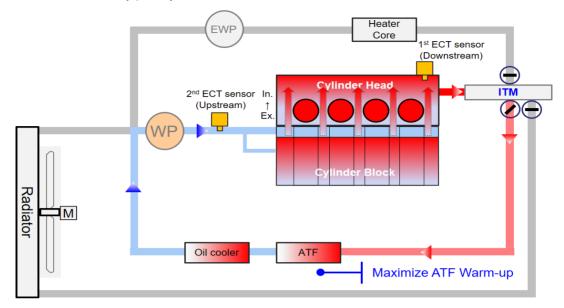
Figure 4. Control Flow Chart of the ITM System:

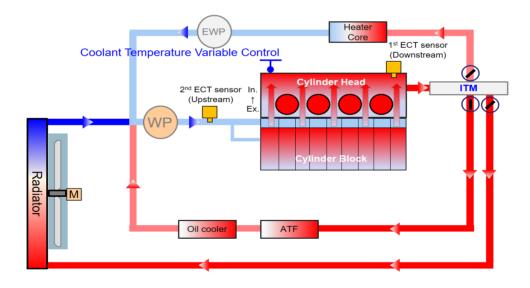
See table below for a description of each state.


State	Definition	Control Characteristics
STATE1	Flow Stop	Stop the coolant flow of all ports for rapid engine warm-up
STATE2 Heat Exchanger control		After coolant stop is deactivated (State1), the logic warms up coolant giving a partial flow to heat exchanger (Auto Transmission Fluid Warmer)
STATE3	Fuel economy priority	After State2, the logic warms up coolant giving a partial flow to heat exchanger (Auto Transmission Fluid Warmer) for Fuel economy
STATE4	Temperature control	Engine coolant temperature (ECT1 & ECT2) control to target temperature (calibration table) by adjusting radiator valve opening
STATE5	Forced cooling	If the engine coolant temperature (ECT1) deviates too much from target temperature, ITM controls the flow for maximizing the radiator coolant flow
STATE7	Cabin Heating	Maximize the heater-core coolant flow for rapid warmup of cabin

- Valve position of the ITM System
 - State 1: Flow Stop

* ATF : Auto Transmission Fluid Warmer, WP : Water Pump, EWP : Electronic Water Pump, M : Motor

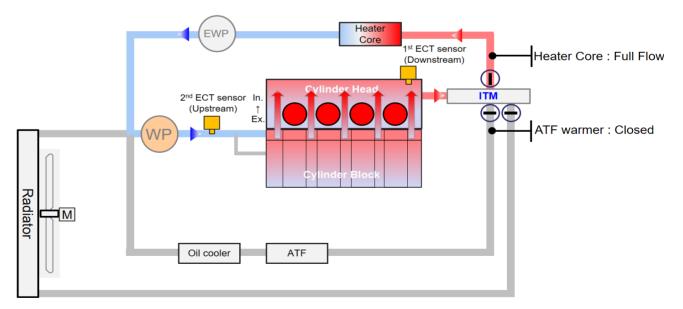

- ※ Deactivation Condition
 - ① Blower Switch ON **or**
 - ② Engine Coolant Temperature Threshold or
 - ③ Desired torque
- State 2: Heat Exchanger Control


* Deactivation Condition

- ① Blower Switch ON or
- ② Engine Coolant Temperature Threshold or
- ③ Desired torque

• State 3: Fuel economy priority mode


- ※ Deactivation Condition
 - ① Engine Coolant Temperature Threshold
- State 4: Temperature control


※ Deactivation Condition

① Engine Coolant Temperature Threshold

• State 5: Forced cooling

- ※ Deactivation Condition
 - ① Engine Coolant Temperature Threshold
- State 7: Cabin Heating Priority Mode

- ※ Deactivation Condition
 - ① Engine Coolant Temperature Threshold

11.02.08.02.01 ITM Fast Warm-up

Purpose	GHG Emission reduction									
	required component	s (i.e. decre	eases heat loss to other							
Action: Functional	- Depending on Engine Speed, torque, vehicle speed, and ambient air temperature, target engine coolant temperature will be changed by the coolant port opening control.									
Description	MODE	state	State definition	Description						
	Fast Warm-up	State1	EHRS control	All ITM ports are closed to realize fast engine warm-up.						
		State2	Warm up Automatic Transmission Fluid (ATF)	Open ATF port to get heat exchange to ATF. Open ATF & heater port to get heat exchange to heater						
		State3	Warmup heater							
	Control Flow									
		Ambient te	mp <t<sub>t01 Engine</t<sub>	Start						
	Ambient temp ≥T _{t01} STATE7 Cabin Blower S/W ON STATE1									
				Engine coolant temperature (ECT1) ≥T _{t02}						
	STATE2									
	Engine coolant temperature (ECT1) ≥ T _{t03} Engine coolant temperature (ECT1) ≥ T _{t05} STATE3									
	T_{t01} = 15 °C, T_{t02} = 65.25 °C T_{t03} = Ambient Temp<39.75°C : 80.25 °C, Ambient									
	Temp>39.75℃ : 75	℃,RPM>	3,700 RPM, TQ > 200 I	Nm						
	ITM valve angle (Se	- · · ·								

In-use Frequency Emission impact	 Heater Blower S/W on or Engine speed > 3,700 RPM or Desired torque model ¹ > 200 Nm Whenever Ambient Air Temperature or Engine Coolant Temperature (ECT1) at initial engine start > 15 °C. This is a part of base emission control and included in FTP test cycles and therefore accounted for by the test
In-use Frequency	or - Engine speed > 3,700 RPM or - Desired torque model ¹ > 200 Nm Whenever Ambient Air Temperature or Engine Coolant Temperature (ECT1) at initial engine
	or - Engine speed > 3,700 RPM or - Desired torque model ¹ > 200 Nm
	Deactivating Condition
Entry Conditions	Activating Condition - Ambient Air Temperature > 15 ℃
Parameters (I/O)	IN - Engine speed = f(CKP) - Engine coolant temperature (ECT) - Ambient air temperature (AAT) - Blower S/W - Desired torque model OUT - ITM valve angle
	100.0% 90.0 STATES STATE4 F STATE3 F STATE2 Phase 7 Phase 8 90.0% 70.0% 90.

11.02.08.02.02 ITM Coolant Temperature Control

Purpose	GHG Emi	ssion reduction							
Action:	conditions both engir - Dependi	and operation. The l ne operation and environing on engine speed,	engine torque, vehicle speed, and ambient air temperature, targe						
Functional Description	engine co	engine coolant temperature will be changed.							
	State	State definition	Description						
	State4	Engine coolant temp control	If engine coolant temp is close to target engine coolant temp, PID control of radiator port will be active.						
	- ITM valv	e angle (See State 4)							
	100.0% 90.0 STATI 80.0%	E5 STATE4	F STATE3 F STATE2 Phase 7 Phase 8 Phase 5 Phase 5 Phase 7 Phase 7 Phase 8						
	Phase 2 Phase 3 Heater 50.0% Rad Oil								
	30.0%								
	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 STATE1,7 - Engine Coolant target temperature (Min value of figure 1 and figure 2)								
Parameters (I/O)	- Engine - Ambien - Vehicle	speed = f(CKP) coolant temperature (I t air temperature (AAT speed = f(WSS) torque model							
	OUT - ITM Val - Engine	0	ature (select lower value of figure 1 and 2 below)						
Entry Conditions	Activating Condition								
Conditions	- Engine Coolant temperature (ECT1) > 90°C(Ambient Temp<39.75°C), (ECT1) > 84.75°C(Ambient								
	Temp>39.	,							
	Deactivating Condition - Engine Coolant temperature (ECT1) > 108 ℃								

In-use Frequency	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.
Emission impact	May momentarily increase CO2 emission
Justification	A. Substantially included during regulated test procedures : FTP75, Cold FTP, US06, SC03, HWY F. Base operation
Reference	

				E	ngine Sp	eed (RPM)		
		0	2000	3200	3600	4000	5000	5500	
	0								
Ē	150		99.7	5°C					
Torque (Nm)	180		ę	95.25°C					
Tor	200		ę	ວ 00.00					
	210		ş	34.75℃					
	230								

Figure 1 Engine speed vs. Torque Engine coolant map

				Ar	nbient Te	emper	ature (°C)		
	-	-20.25	-9.75	0	20.25	30	35.25	39.75	45
Ê	50								
Vehicle seed(kpf	100		00.75%0		05.05	· •••	00.05 %	00 %	04.75%
Veh	120	99.75°C		95.25°C		92.25°C	90 C	84.75℃	
5	140								

Figure 2 Vehicle speed vs. Ambient Air temperature Engine coolant map

11.02.08.02.03 ITM Forced coolant cooling

Purpose			ection I overheating, the ITM system will open all available ports fo						
Action:	- Open every port for cooling								
Functional Description	State	State definition	Description						
	State5	Forced coolant cooling	When engine coolant temperature cannot be controlled, the ITM moves to state5 to open every port including radiator, heater, and ATF.						
	100.0%	e angle (See State 5)							
	90.C STATE 80.0% 70.0% 60.0% 40.0% 30.0% 20.0%		P STATE3 P STATE2 Phase 7 Phase 8 Phase 5 Phase 7 Phase 8 Phase 5 Phase 7 Phase 8 Phase 6 Phase 7 Phase 8 Phase 8 Phase 8 Phase 8 Phase 9 Phase 8 Phase 9 Phase 9 Phase 9 Phase 9 Phase 9 Phase 9 Pha						
Parameters	10.0% 0.0% 0 10	20 30 40 50 60 70	80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 STATE1,7						
(I/O)		coolant temperature (E re angle	ECT1)						
Entry Conditions	Activating Condition - Engine Coolant temperature (ECT1) > 108 ℃								
		ng Condition Coolant temperature(ECT1) ≤ 104.25 °C						
In-use Frequency		o high speed, high loa							
Emission impact	It does not	affect emission contro	ol system since it reduces temperature of overheated engine.						
Justification	B. Engine/	Emission system prote	ection						
Reference									

11.02.08.02.04 Cabin Heating Priority mode

Purpose	Comfort/occupant feature
	To enhance cabin heating and defrosting capability, the ITM system will open a valve to the heater core for transferring maximum engine heat to the heater core.
Action: Functional Description	If ambient air temperature falls below a predetermined value, the ITM system goes to the maximum heater state and opens the heater port fully.
Parameters (I/O)	IN - Ambient air temperature (AAT) - Engine coolant temperature(ECT) OUT - ITM valve angle (See State 7) ^{100.0%} - ITM valve angle (See State 7) - ITM valve
Entry Conditions	Activating Condition - Ambient Air Temperature or Engine Coolant Temperature (ECT1) at initial engine start ≤15°C Deactivating Condition - Engine coolant Temperature (ECT1) ≥99.75°C
In-use Frequency	Whenever Ambient Air Temperature or Engine Coolant Temperature (ECT1) at initial engine start ≤15°C
Emission impact	May momentarily increase CO2 emission
Justification	A. Substantially included during regulated test procedures : FTP @ -7°C
Reference	

11.02.09 Canister purge control

Canister purge is needed to purge the fuel vapors generated from the fuel storage tank that have been stored in the evaporative canister. If the fuel tank would be a closed system, this would cause strong over pressure and under pressure in the tank which then could lead to damage of the fuel tank or fuel system components. Therefore, it is necessary to vent the fuel tank by creating a connection to its surroundings. In order to avoid fuel vapor to escape into the environment, the activated carbon canister is used to filter these vapors. As the loading capacity of the filter is limited, the filter must be periodically purged to allow for continuous storage capability. Therefore the canister purge solenoid valve that is positioned between the canister and the air duct in front of the compressor is opened and the canister purge pump that is positioned between the canister purging functionality represents the regeneration process of the canister. In order to avoid a breakthrough which would result in fuel vapor escaping into the environment, this functionality ensures that the activated carbon canister is purged with air and the fuel carried along is purposefully entered in the combustion process.

Mass flow through the canister purge control valve (PCV)

To prevent drivability and emission problems, the opening of the canister purge solenoid valve and the operating of canister purge pump and so the purge flow for canister purge must be controlled. With the evaporative emission control function the opening of the canister purge solenoid valve is controlled depending upon the fuel mass stored in the canister.

Canister load is calculated using the differential pressure across the pump when the purge pump is operating.

The more hydrocarbons in the purge gas, the higher the density of the purge flow rate, and thus the differential pressure across the canister pump increases. The opening period of canister purge solenoid valve is controlled in dependence on the canister load.

PCV PWM duty

Canister purging is physically based on a desired value for the air mass flow which flows through the EVAP canister purge valve. This desired mass flow is converted into component dependent variables. The actual duty cycle is determined by the following steps;

Calculation of the demanded duty cycle using the desired mass flow rate through the EVAP canister purge valve Correction of the duty cycle to compensate delay time caused by battery voltage and coil temperature of the valve. These dependencies are corrected by a battery voltage and intake air temperature.

Canister Purge Pump Speed

In order to perform the canister purge, a difference pressure between the PCV must be formed. The canister purge pump builds upstream pressure of the canister purge valve, the purge flow is through the PCV when the PCV is opened. The speed of the purge pump is calculated by the target purge flow rate.

Enable condition

Following input values are used for the EVAP canister purge valve activation.

The canister purge control is disabled at trailing fuel cut off and enabled again with a delay.

The engine temperature must be above the threshold value.

The intake air temperature must be above the threshold value during idling.

Battery voltage within threshold to protect the EVAP canister purge valve output variable.

For high fuel tank under pressure, the EVAP canister purge valve can be closed to prevent damage to the fuel tank.

11.02.09.01 Canister purge

Purpose	Emission reduction:
	Purge of evaporative HC gas from canister and fuel tank
Action: Functional Description	Purge valve control considering combustion stability and drivability. Purged evaporative HC gas is sent to engine intake system for combustion. Actual pump speed Air charge Upstream purge pressure/temperature Downstream purge pressure before Turbine HC concentration Purge fuel rate Pump Purge fuel rate
Parameters	IN
(I/O)	 Engine Speed =f(CKP) Relative load model Barometric pressure (BARO) Engine Coolant Temperature (ECT) Air-fuel ratio controller value¹ Intake air temperature (IAT) Battery voltage (B+) Fuel cut off² Active Purge Pump actual speed OUT EVAP canister purge valve PWM duty Active Purge Pump target speed
Entry Conditions	Activating Condition
Conditions	Engine Coolant Temperature (ECT) > 30°C and Air-fuel ratio (A/F) feedback control active ³ and Intake air temperature (IAT) > 0°C and 9V < battery voltage (B+) < 16V
	Deactivating Condition Fuel cut off ⁴
	or Air-fuel ratio adaptation active

In-use Frequency	This is a base control and generally always active unless overwritten by other AECDs.
Emission impact	EVAP Emission reduction.
Justification	A. Substantially included during regulated test procedures: FTP75, US06, SC03, HwFET, FTP75@-7°C
Reference	 Air-fuel ratio (A/F) feedback (HO2S1) Fuel cut off for component protection

11.03. OBD intrusive

11.03.01. Catalyst monitoring

Purpose	OBD intrusive monitor
	The OBD II system shall monitor the catalyst system for proper conversion capability.
Action: Functional Description	Catalyst monitoring process has the following 2 steps; 1) Rich mixture is filled-in until the downstream O2S signal transit to rich phase. 2) Lean mixture is introduced and the oxygen mass is calculated up to the downstream O2S signal transit to lean phase. The OSC (Oxygen Storage Capacity) can be defined as following $OSC = \int \left[\left(1 - \frac{1}{Lambda}\right) \times Exhaust gas flow \times 0.23 \right] dt$ where, (1-1/lambda) : air portion of mixture, 0.23 : weight ratio of oxygen in dry air STEP 1 STEP 2 EnRiCH ($\lambda = 0.96$) Target Lambda with Good Catalyst Target Lambda STEP 1 STEP 2 $Find (\lambda = 1.04)$ Target Lambda Target Lambda Target Lambda Target Lambda Target Lambda STEP 1 STEP 2 STEP 2 STEP 2 STEP 2 STEP 2 STEP 3 STEP 2 STEP 3 STEP 3 STEP 4 STEP 4 STEP 4 STEP 4 STEP 5 STEP 5 STEP 5 STEP 6 STEP 6 STEP 6 STEP 7 STEP 7

Parameters	IN
(I/O)	- Engine speed = f(CKP)
("0)	- Relative load model
	- Catalyst temperature model ¹
	- Heated O2 sensor (Linear) (HO2S1)
	- Heated O2 sensor (Binary) (HO2S2)
	- Air-fuel ratio (A/F) control active ²
	OUT
	- Lambda setpoint ³
	- Catalyst Monitor Index = <u>Actual OSC(mg)</u> <u>OSC from Threshold Catalyst(mg)</u>
	OSC from Threshold Catalyst(mg)
	- OBD Fault detection ⁴
Entry	Activating Condition
Conditions	1320rpm < Engine speed < 2600rpm
	and
	30% < Relative load model < 80%
	and
	530°C < Catalyst temperature model < 850°C
	and
	ΔCatalyst temperature model < 40°C
	and
	Air-fuel ratio (A/F) control active
	Deactivating Condition
	If any of activating conditions are not met.
	, , , , , , , , , , , , , , , , , , , ,
In-use	Maximum one time per driving.
Frequency	
Emission	This is a part of OPD manitoring and included in all regulated test evaluation therefore appounted
impact	This is a part of OBD monitoring and included in all regulated test cycles, therefore accounted for by the test.
impact	for by the test.
Justification	A. Substantially included during regulated test procedures:
•••••	FTP75, US06, SC03, HwFET, FTP75@-7°C
	E. OBD intrusive monitor
Reference	1. Oxygen sensor heating strategy
	2. OBD Document
	3. Enrichment for torque demand, Enrichment for component protection, Catalyst purge
	4. Exhaust system temperature determination
	5. Fuel cut off
	6. Canister purge
	7. Air-fuel ratio (A/F) feedback (HO2S2)

11.03.02. Heated O2 sensor (Linear) (HO2S1) monitoring

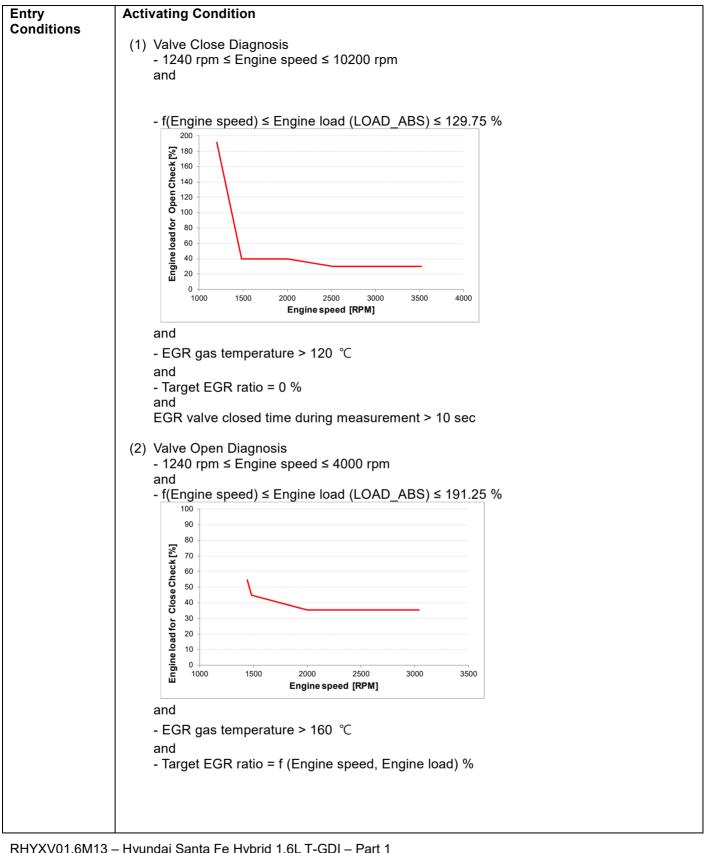
Title : Heated C	D2 sensor (Linear) (HO2S1) monitoring
Purpose	OBD intrusive monitor
	The OBD II system shall monitor the response rate, and any other parameter which can affect emissions of all oxygen sensors for malfunction.
Action: Functional Description	The oxygen sensor signal dynamic monitoring detects greater deviations of the dynamic behavior of the sensor signal compared to the nominal behavior, controlled by the lambda controller. The change of the dynamic behavior is caused by extreme aging of the sensor or a low sensor temperature which slows down the sensor compared to the nominal behavior. The monitoring is based on an amplitude criterion, i.e. the relation between the amplification of the oxygen sensor and the model is monitored and detects the malfunction. The monitor uses step-changes (Rich-Lean & Lean-Rich) of the injected fuel quantity. When such an event occurs, the measured oxygen sensor signal is compared to the expected one. Starting with the reaction to the fuel step, the area between the inverted signal and a horizontal line through the start value is determined for both the expected and the measured signal, and the quotient between measured and expected area is computed. The slower the oxygen sensor is, the smaller the quotient of the areas. Quotient of the areas = Actual Area (measured Area) / Expected Area $ \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^$
Parameters (I/O)	IN - Engine speed = f(CKP) - Relative load model - Catalyst temperature model ¹ - Air-fuel ratio (A/F) control active ² - Heated O2 sensor (Linear) (HO2S1)

	- Heated O2 sensor (Binary) (HO2S2)
	- Fuel cut off ³
	- Engine coolant temperature (ECT)
	- EVAP canister purge active ⁴
	- HO2S1 ceramic temperature
	- ECU time
	OUT
	- Lambda setpoint ⁵
	- Quotient of the areas = Actual Area (measured Area) / Expected Area
	- OBD Fault detection ⁶
Entry	Activating Condition
Conditions	1200rpm < Engine speed < 3520rpm
	and
	25% < Relative load model < 65%
	and
	400°C < Catalyst temperature model
	and
	Air-fuel ratio (A/F) control active
	and
	Fuel cut off inactive
	and
	HO2S1 ceramic temperature > 685℃
	and
	Engine coolant temperature (ECT) > 50℃
	Deactivating Condition
	If any of activating conditions are not met.
In-use	Rare due to only activation with OBD fault detected (P2097 or P2096)
Frequency	
F minaian	During the rich shift to leave manifering, equaing UC and CO increases
Emission	During the rich shift to lean monitoring, causing HC and CO increase.
impact	During the lean shift to rich monitoring, causing NOx increase.
luctification	A Substantially included during regulated test precedures: ETD75_US06_SC02_HwEET
Justification	A. Substantially included during regulated test procedures: FTP75, US06, SC03, HwFET, FTP75@-7°C
	E. OBD intrusive monitor
Reference	1. Oxygen sensor heating strategy
IVEIGIGIICE	2. OBD Document
	3. Air-fuel ratio (A/F) feedback (HO2S1)
	4. Exhaust system temperature determination
	5. Fuel cut off
	6. Canister purge
	7. Enrichment for torque demand, Enrichment for component protection, Catalyst purge
	8. OBD Document

11.03.03. Heated O2 sensor (Binary) (HO2S2) monitoring

Purpose	OBD intrusive monitor
	The OBD II system shall monitor the response rate, and any other parameter which can affect emissions of all oxygen sensors for malfunction.
Action: Functional Description	Rationality check, stuck lean/rich (Oscillation check) During normal engine operation the normalized A/F ratio and therefore the downstrear oxygen sensor signal voltage is oscillating about the set point value. If the measure downstream oxygen sensor signal voltage remains permanently below or above the set poin value for a calibrated period of time, an oscillation check is triggered. This test function applie a rich A/F ratio if the voltage was below the set point value or a lean A/F ratio if the voltage was above the set point value. If the downstream oxygen sensor signal voltage, after the lead or rich A/F ratio application, does not cross the set point value in the expected direction, a malfunction is detected and a stuck rich or a stuck lean fault is set.
Parameters (I/O)	IN - Engine speed = f(CKP) - Relative load model - Exhaust gas temperature ¹ - Air-fuel ratio (A/F) control active ² - Heated O2 sensor (Linear) (HO2S1) - Heated O2 sensor (Binary) (HO2S2) - Heated O2 sensor (Binary) (HO2S2) operation readiness ³ - Air mass flow model - HO2S2 heating voltage ³ - ECU time
	OUT - Lambda setpoint ⁴ (Lambda setpoint = 1.1 for 8 sec, Lambda setpoint = 0.8 for 8 sec) - OBD Fault detection ⁵
Entry Conditions	Activating Condition Heated O2 sensor (Binary) (HO2S2) > 0.76~0.82V for 95 sec and Air-fuel ratio (A/F) control active and 1200rpm < Engine speed < 3520rpm and 180(< Deletive load model < 65%
	18% < Relative load model < 65% and Air mass flow model > 6kg/h and
	Exhaust gas temperature (around HO2S2) > 150℃ and HO2S2 heating voltage > 9.2V and Heated O2 sensor (Binary) (HO2S2) operation readiness

Revised:


	Deactivating Condition If any of activating conditions are not met.
In-use Frequency	Rare due to only activate when heated O2 sensor (Binary) (HO2S2) > 0.76~0.82V .3for 95sec.
Emission impact	During the rich shift to lean monitoring, causing HC and CO increase. During the lean shift to rich monitoring, causing NOx increase.
Justification	E. OBD intrusive monitor
Reference	 Air-fuel ratio (A/F) feedback (HO2S1) Air-fuel ratio (A/F) feedback (HO2S2) Oxygen sensor heating strategy OBD document Exhaust system temperature determination Fuel cut off Canister purge Enrichment for component protection , Air-fuel ratio (A/F) feedback (HO2S1) OBD document

11.03.04. Evaporative system leak monitoring

Title : Evaporativ	ve system monitoring
Purpose	OBD intrusive monitor
	The OBD II system shall monitor the complete evaporative system for vapor leaks to the atmosphere. This monitoring is activated during the vehicle 5hour later soak (key off) and the pump in ELCM makes fuel system to vacuum through canister. So this monitoring does not affect the emission increase.
Action: Functional Description	The ELCM leak detection function permits the detection of leaks in the evaporative emission control system with a diameter of 0.5 mm and more. ECU wakes up after the defined soaking time and activates ELCM. If there is a sufficient pressure or vacuum buildup in the fuel tank, the tank is sealed and there is no leak. In such a case, isolation valve lefts normal closed position and leakage of canister system is monitored with absolute pressure sensor of ELCM, located at canister. If the tank pressure is near atmosphere, then the isolation valve is commanded open and leakage of overall system including fuel tank system and canister system is monitored.
Parameters	
(I/O)	
Entry Conditions	
In-use Frequency	For more details, refer to OBD document
Emission impact	This monitoring does not affect the emission increase. This monitoring is activated after key off and the pump in ELCM makes fuel system to vacuum through canister.
Justification	E. OBD intrusive monitor Regulatory Required.
Reference	1. OBD document

11.03.05 EGR flow monitoring

Title : EGR flow	monitoring
Purpose	OBD intrusive monitor:
	The OBD II system shall monitor the EGR system on vehicles so-equipped for low and high flow rate malfunctions.
Action:	EGR flow is detectable by measuring EGR gas temperature increasing rate when exhaust
Functional Description	pressure is high. When vehicle is accelerating, increased engine load causes high exhaust gas pressure and temperature and if EGR valve is open, EGR gas temperature increases a lot. Otherwise, if EGR valve is closed when vehicle is accelerating, EGR gas temperature increases a little. By evaluate this EGR gas temperature increasing rate, EGR flow can be detected. From several EGR gas temperature checks, correlation between EGR effective flow and EGR valve position is estimated. This relationship can be modeled as follows;
	EGR effective flow = A x EGR valve position + B Where, A : Flow gradient per unit valve position [kg/h/%] B : Effective flow offset [kg/h]
	To estimate reliable relationship, EGR gas temperature check should be performed in various EGR valve positions NCLOSED times at nearly closed position and NOPEN times at wide open position. This temperature measurement is attempted in normal EGR control conditions and/or in propulsion driving condition intrusively.
	reliable EGR gas temperature check nearly closed position check position check EGR valve position [%] insufficient EGR gas temperature check Insufficient EGR gas temperature check EGR valve position [%]
Parameters (I/O)	In - Engine speed - Engine load (LOAD_ABS) - EGR gas temperature - EGR valve position for target EGR ratio Out - Effective EGR flow per average EGR valve position - OBD Fault detection ¹

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

	$\label{eq:spectral_static} \begin{aligned} & \int_{1}^{4} \int_{$
In-use Frequency	Maximum one time per driving cycle
Emission impact	This is part of the OBD monitoring and included in a regulated test cycle, therefore accounted for by the test.
Justification	A. Substantially included during regulated test procedures: US06, SC03, HwFET E. OBD intrusive monitor
Reference	1. OBD document

Purpose	OBD intrusive monitor
	The OBD II system shall monitor the cylinder to cylinder air-fuel ratio imbalance
Action: Functional Description	 A/F-cylinder Imbalance is corrected by cylinder specific injection correction calculated and learned via the amount of engine roughness deviation with cylinder-specific lambda modulation. The test cylinders are enleaned successively by the components till the unsteady run signal has changed by a certain calibrated value. At the same time of enleaning individual test cylinders, the remaining cylinders are enriched so that the global lambda of 1.0 within an exhaust-gas bank is not changed. After testing all the cylinders, the quantity change of all cylinders required for changing the unsteady run signal is compared with one another and calculated based on the deviation from the mean value of a cylinder individual correction value. If the amount of the injection correction factor is greater than a threshold the system stores a DTC for the specific cylinder.
	engine speed roughness $\lambda = 0.95$ $\lambda = 1.05$ $d\lambda_2/\lambda = 10\%$ $d\lambda_2/\lambda = 10\%$ $d\lambda_3/\lambda = 15\%$ $\lambda = 1.00$ $d\lambda_3/\lambda = 15\%$ $\lambda = 1.00$ $d\lambda_3/\lambda = 15\%$ z calibrated duts z calibrated duts z calibrated duts $Deviation: d\lambda_3/\lambda - mean(d\lambda_3/\lambda)$ Cyl 1 2 3 4 Dev 5% -5% 0% 0%
	 ※ Physical Background – nonlinear change of engine roughness versus lambda: Generally Engine Roughness (ER) correlates with A/F-ratio. Absolute ER-values show a cylinder-to-cylinder variance. Relative ER-values (ΔER) show same behaviour for all cylinders. This relation between A/F-ratio changes (Δλ) and ΔER is evaluated to determine the actual lambda of a cylinder. Therefore on one cylinder the A/F-ratio is shifted stepwise to lean while the other cylinders are shifted to rich. The overall engine lambda keeps equal to 1.0 during this period. Starting at unknown A/F-ratio with known absolute ER-value the A/F-ratio set point is shifted lean until a certain ΔER set point is reached. ΔER set point is taken from an engine speed and load dependent table. The Δλ is derived from how much the injection time needs to be corrected to reach the ΔER set point. When this procedure has been executed on all cylinders for each cylinder individually the needed correction and a new adaptive value are calculated.

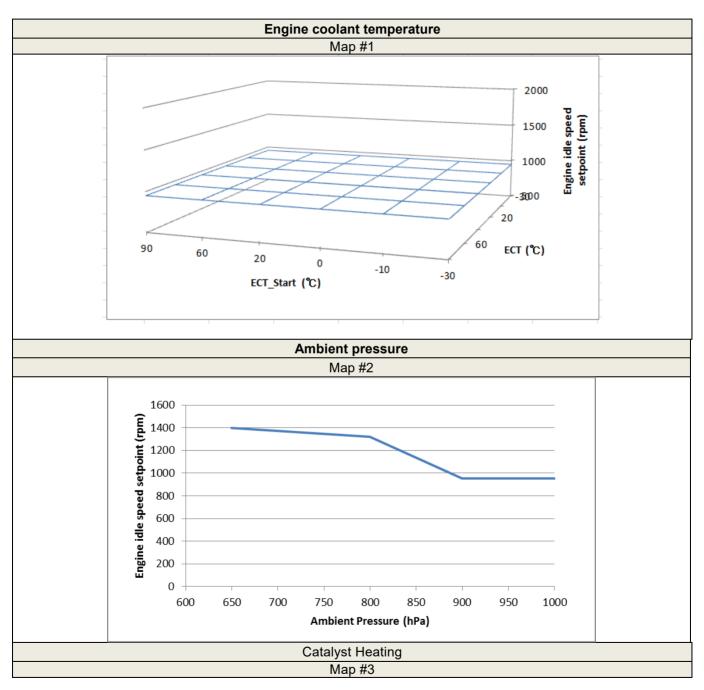
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,1- fuel trim [-] -0,1- -0,1- cal. cylinder is enleaned
	 ※ Process of adaption Coordination of the steps to be executed at the moment Filtering and storing of the unsteady run values for each cylinder Selection of the current bank and the current cylinder in the respective operation mode Selective enleaning of individual cylinders in the calibrated sequence and calculation of the associated ramp increase Evaluation of the enleaning end values
	 A/F Ratio Cylinder Imbalance Monitoring If the sum of the old adaptive value and the needed correction exceed a certain threshold or the new adaptive value exceeds a certain threshold, a DTC is stored for the affected cylinder. A/F deviation of specific cylinder > High Threshold OR A/F deviation of specific cylinder < Low Threshold
Parameters (I/O)	IN - Engine Coolant temperature (ECT). - Catalyst temperature (model) - Engine speed - Engine load - Barometric pressure (BARO) - Gear Position - Air-fuel ratio (A/F) control active
	OUT - OBD fault detection (P219C, P219D, P219E, P219F)

Entry Conditions	Activating Condition - ECT > 55°C - Catalyst Temperature > 500 °C - Engine Speed > 1320 rpm - Engine Load > 30 % - BARO > 74.5 kPa - Engaged Gear > 3 - Fuel System Status = close loop - Rough road detection = Not detected - Gear change = No - Circuit Error of Upstream O2S = Not detected.
	Deactivating Condition - If any of activating conditions are not met.
In-use Frequency	Once per driving cycle after cold start.
Emission impact	This is a part of OBD monitoring and included in all regulated test cycles, therefore accounted for by the test.
Justification	 A. Substantially included during regulated test procedures: FTP75, US06, SC03, HwFET, FTP75@-7°C E. OBD intrusive monitor
Reference	 OBD Document Exhaust system temperature determination Air-fuel ratio (A/F) feedback (HO2S1)

11.04 Other strategies

11.04.01 Torque setpoint strategy

Title : Torque set	tpoint strategy		
Purpose	Base operation:		
	Adjust engine torque according to driver's request hybrid control unit request, auxiliary or external torque request.		
Action: Functional Description	Torque setpoint is calculated by Torque requests and Torque Losses (Friction, Air Conditioner, Generator) Coordinated by drivability (TCU, ESC) Hybrid control unit request Vehicle speed control Engine speed control Driveability		
Parameters (I/O)	IN - Engine Speed = f(CKP) - Relative load model - Generator Load - Hybrid control unit (HCU) request ¹ - External Torque Request : a) Transmission Unit (TCU) b) Stability Control Unit (ESP)		
	OUT - Torque setpoint (Relative load model, Ignition angle) ²		
Entry Conditions	Activating Condition This is a base control and always active.		
In-use Frequency	This is a base control and always active.		
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.		


Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base operation
Reference	 SOC management – critical low band SOC management – critical high band Engine engagement and torque control strategy HEV operation based on traction energy Idle operation on charging high voltage battery HEV operation control in sport mode Combustion Mode strategy, Base Ignition angle

11.04.02 Idle control strategy

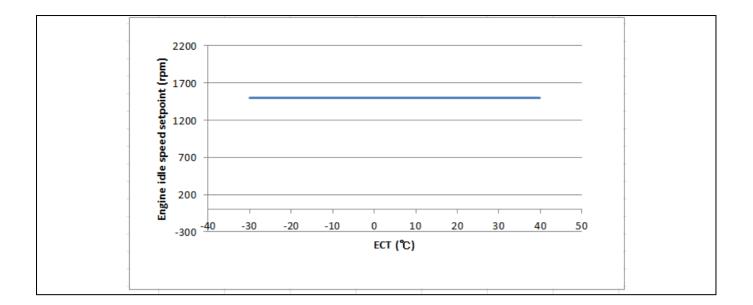

Title : Idle cont	rol strategy		
Purpose	Base operation Stabilize engine speed in idle condition Adjustment of engine idle speed setpoint and control to minimize the deviation setpoint and current engine speed by torque controller. All actions will be deactivated if engine operating condition is out of idle.		
Action: Functional Description			
Parameters (I/O)	 IN Barometric pressure (BARO) Engine coolant temperature (ECT) Hybrid control unit (HCU) request¹ OUT Engine Idle speed setpoint¹ Torque control² 		
Entry Conditions	Activating Condition Accelerator pedal position < 0.1% and Fuel cut off not active or hybrid control unit (HCU) request ³		
	Deactivating Condition Accelerator pedal position >= 0.1% or Fuel cut off active or hybrid control unit (HCU) request ³		
In-use Frequency	Continuously active in idle condition.		
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.		
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base Operation		
Reference	 Engine engagement and torque control strategy, Torque setpoint strategy, Fuel cut off for component protection Engine engagement and torque control strategy, Idle operation on charging high voltage battery 		

Table 1. Engine Idle speed setpoint (Max selection)

Parameter	Engine coolant temperature	Ambient pressure	Catalyst Heating request	HCU request
Мар	Map #1	Map #2	Мар #3	-

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

4. Engine idle speed setpoint by hybrid control unit

For more information, refer to <u>'11.06.04.03 Idle operation on charging high voltage battery'</u>

11.04.03 Oxygen sensor heating strategy 11.04.03.01 Oxygen sensor heating strategy

Purpose	Base operation: The goal of the heater control shall be to control the oxygen sensor heating such that the optimal operating temperature is reached.		
Action: Functional Description	The ceramic of HO2S1/2 sensors are preheated for protecting O2 sensor until dew point end is detected. After dew-point has been reached, oxygen sensor heating is activated for HO2S1 and HO2S2 to reach closed loop operation (readiness).		
	* Upstream O2 sensor (linear) heating management		
	* Downstream O2 sensor (binary) heating management fully heated fully heated pre-heated Dew point Heating voltage gradient during ramp up Time Heater control during drive operation		
Parameters (I/O)	IN - Internal resistance of sensor element (oxygen sensor tip temperature) - Exhaust gas mass flow model		

	 Exhaust gas temperature model¹ OBD Fault detection (HO2S1, HO2S2)² Dew point detected³ Target HO2S1 ceramic temperature. 800°C OUT HO2S1 heater PID-controller value Control voltage for HO2S2 heating 	
	- Sensor operation readiness	
Entry Conditions	Activating Condition After engine start. Deactivating Condition Fault detection (HO2S1, HO2S2) ⁴	
In-use Frequency	This is a base control and always active.	
Emission impact	This is part of base emission control and included in all regulated test cycles and therefore accounted for by the test.	
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base Operation	
Reference	 Dewpoint detection Exhaust system temperature determination OBD Document Air-fuel ratio (A/F) feedback (HO2S1) Air-fuel ratio (A/F) feedback (HO2S2) OBD Document 	

11.04.03.02 Oxygen sensor heating (HO2S1) strategy before engine cold start

Purpose	Base operation: The oxygen sensor heating is to ensure proper operation of the oxygen sensor by controlling the appropriate ceramic temperature.			
Action: Functional Description	The ceramic of oxygen sensor heating is activated for upstream O2 sensor to reach closed loop operation before engine cold start.			
	* Every oxygen sensor has an individual heating resistance. * Upstream Oxygen sensor (linear) heating management			
	Pre-heating phase Normal heating			
	Voltage			
	LSH_POW_RED LSH_POW_FALL LSH_POW_CTL			
	No condensed water left Heating up (open loop controlled) Start of closed loop control (PI-controller) O2 sensor heating PWM split into max. 4 states dependent upon system status Preheating; Reduced power (Dew); Post dew heating; Pre-control power reduction; Controlled heating (= f(Engine rpm, exhaust temperature))			
Parameters (I/O)	IN - Heated O2 sensor (Linear) (HO2S1) - OBD Fault Detection. ¹			
	*HO2S1 tip temperature setpoint = 800℃			
	 Intake manifold temperature @ hybrid ready Ambient air temperature @ hybrid ready Engine coolant temperature @ hybrid ready Engine off time @ hybrid ready 			
	OUT - Control voltage for HO2S1 heating - request motor only drive to HCU ²			
Entry Conditions	Activating Condition After hybrid ready			

	And		
	(Ambient air temperature @ hybrid ready > 8.25℃		
	and		
	149℃ > Intake manifold temperature @ hybrid ready > 8℃		
	and		
	143°C > Engine coolant temperature @ hybrid ready > 8.25°C)		
	and		
	15V >Battery Voltage @ hybrid ready >10V		
	and HEV Start enable		
	and		
	O2 sensor (HO2S1) Tip Temperature < 790℃		
	Departmenting Condition		
	Deactivating Condition O2 sensor can be controlled close-loop		
	or		
	OBD fault detection ³		
	or hybrid control unit request ⁴		
In-use	Once per drive cycle at hybrid system ready		
Frequency			
Emission	Emission reduction		
impact			
Justification	A. Cub stantially included during regulated test presedures		
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C @ hot transient		
	D. Engine starting stabilization		
Reference	1. OBD Document		
	2. Engine engagement and torque control strategy		
	3. OBD Document		
	4. SOC management – critical low band		

11.04.04 Dewpoint detection strategy

	t detection strategy		
Purpose	Engine/Component protection:		
	Protection of oxygen sensor elements against water splash.		
Action: Functional Description	This is necessary because the oxygen sensors can only be heated with full power if there is no risk of thermal shock due to water drops. Therefore for each sensor (up/down stream) a dew-point end flag is set when the dew phase is over. The weighted integral of the Mass air flow (model) is calculated If this calculated value is above the following thresholds then the dew-point end flag is set. In case the dew-point has not been reached before engine stops the threshold a weighted integral of the Mass air flow (model) will be increased for the next engine start. In case the dewpoint has not been reached before engine stops the threshold of accumulated amount of heat will be weighted by cold engine start counter.		
	- Heat quantity threshold		
	 Weighting factor for restart counter In case of the dew point has not been reached b 	heat-quantity threshold for downstream heat-quantity threshold for downstream heat-quantity threshold for downstream for the state of the state o	

Parameters	IN
(I/O)	- Exhaust mass flow
	- Engine coolant temperature (ECT)
	- Exhaust gas temperature model ¹
	- ECU time
	OUT
	- Dew point end flag ²
Entry	Activating Condition
Conditions	After engine start.
	Deactivating Condition
	Dewpoint detection limit reached.
In-use	Just once per each driving cycle.
Frequency	
Emission	This is part of base emission control and included in all regulated test cycles and therefore
impact	accounted for by the test.
Justification	A. Substantially included during regulated test procedures
	FTP75, SC03, FTP75@-7°C
	B. Engine System Protection
	F. Base operation
Reference	1. Oxygen sensor heating strategy

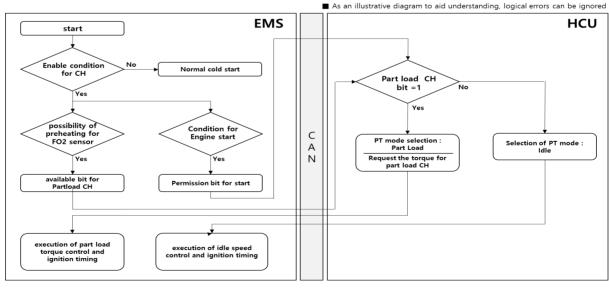
11.04.05 Catalyst heating strategy

When the catalyst is cold and inactive, it is necessary to reach the catalyst light-off temperature (LOT) as quickly as possible.

Injection and ignition control

An effective catalyst heating method is ignition retard. It is used after the starting phase to bring the catalytic converter up to operating temperature. Prior to LOT, the engine runs less efficiently to generate energy to heat the catalyst. This is accomplished by increasing the air mass and delaying the ignition timing.

When catalyst heating is needed, the required engine efficiency is set based on the current desired torque and the engine speed. Based on this setting, the desired throttle position and ignition angle is determined. The required engine efficiency is weighted by the engine start temperature, the engine running roughness, the weighting factor for torque reserve, and the catalyst heating factor.


Two operation modes of catalyst heating

In the temperature range where the linear oxygen sensor heating is feasible, the 'Part load Catalytic Heating' is prioritized. The engine rpm is dependent on the vehicle speed and gear shift, and at this point, the air mass and ignition timing are controlled to a predetermined operating point for optimal catalytic heating. During part load catalytic heating, when the driven torque is no longer needed (such as during braking), the control mode switches to 'idle Catalytic Heating' performing additional catalytic heating needed.

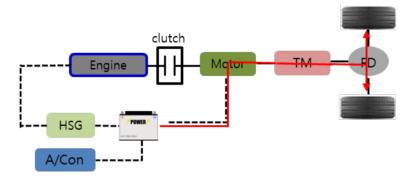
In addition, in environments where preheating of the oxygen sensor is not possible, specifically at ambient temperatures below 8 degrees Celsius, a conventional form of idle catalytic heating control is implemented.

Strategy 1 : Part load Catalyst Heating (ENG clutch lock-up state)

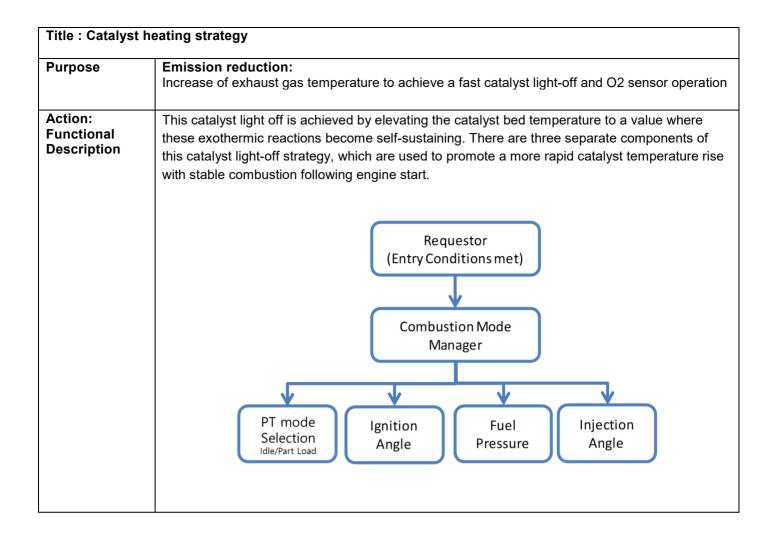
"In conditions where preheating of the upstream oxygen sensor is possible, Priority is given to performing Part Load Catalytic Heating (PL CH), and it is implemented through collaborative control between the Engine Management System (EMS) and the Hybrid Control Unit (HCU).

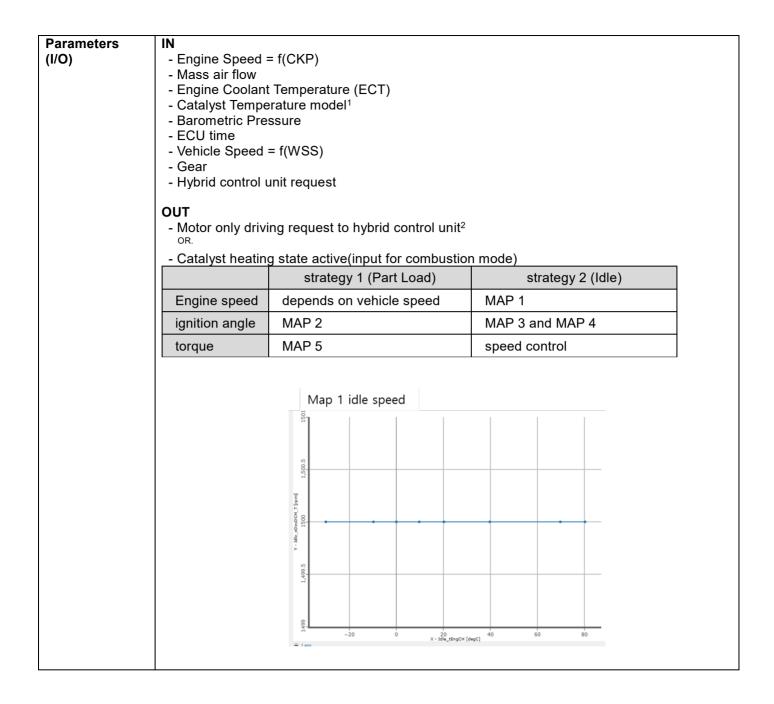
RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

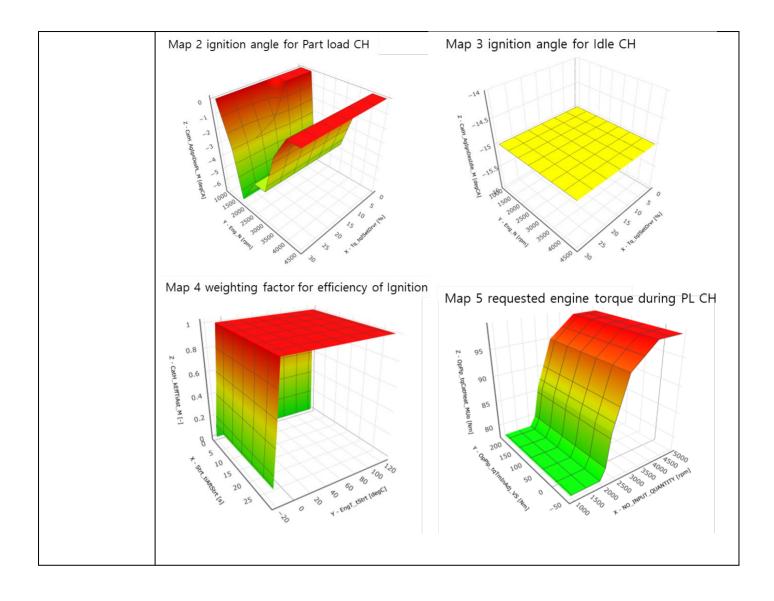
Strategy 2 : Idle Catalyst Heating (ENG clutch open state)

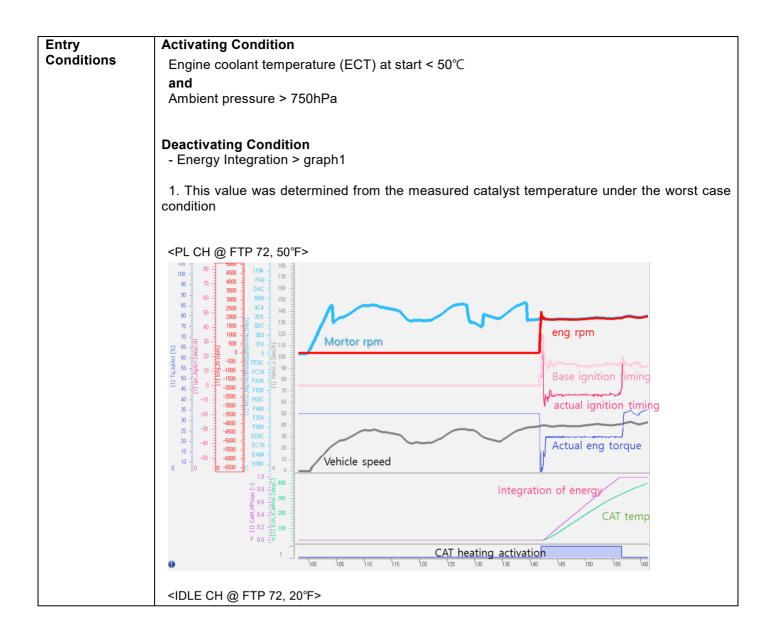

There is also a traditional idle catalytic heating control. It involves operating the engine at a specific operating point with the engine clutch in the open position to heat the catalyst. This control is performed in low-temperature conditions

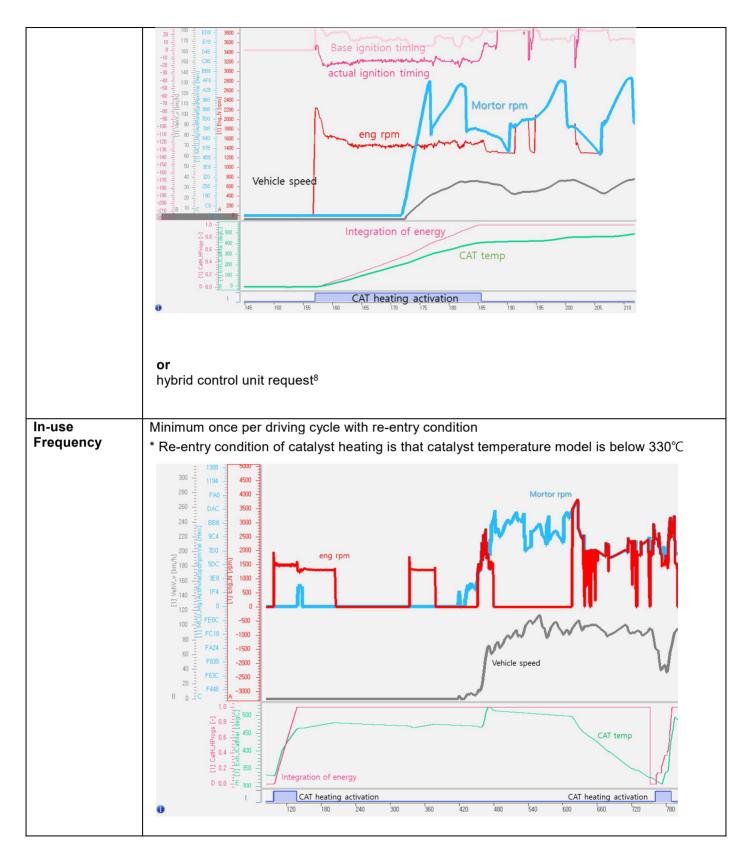
where preheating of the front oxygen sensor is not possible (the entire range below 8°C), and it is also performed when the battery state of charge (SOC) is insufficient.

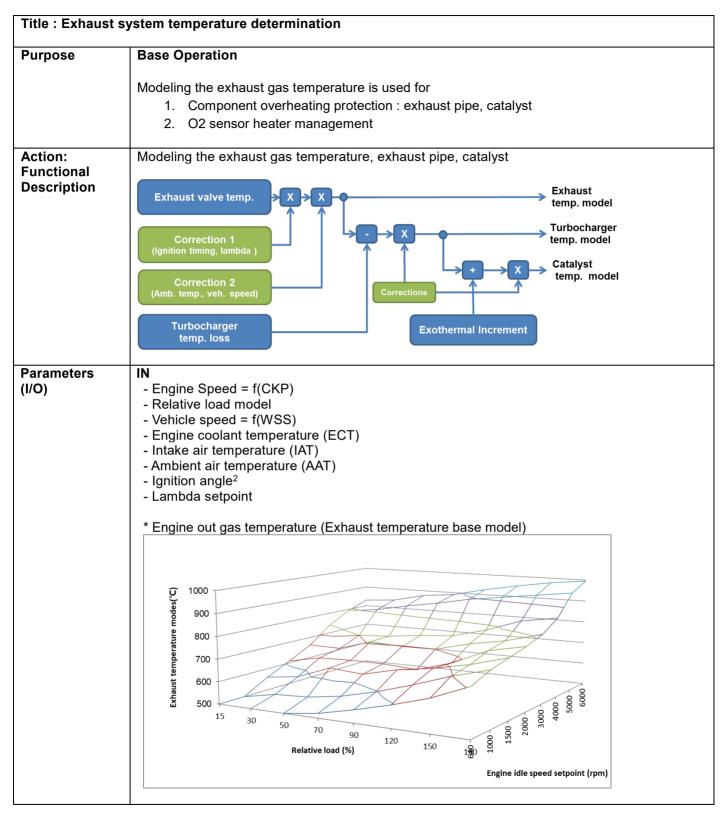

Enable condition


Since the catalyst temperature is subject to uncertainty during the start phase, the need for catalyst heating is determined based on engine coolant, intake air temperature and Catalyst temperature(modeled)


Motor only driving and clutch control (for hybrid and plug-in hybrid)




Hybrid vehicle powertrain has transmission, motor (for driving and regenerating), (engine) clutch, engine and HSG (Hybrid Starter and Generator). In the catalytic heating condition, the system will choose one of the two strategies mentioned earlier.



RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

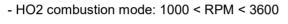
Emission impact	Emission reduction
Justification	A. Substantially included during regulated test procedures FTP75, FTP75@-7°C C. Protection against accident (Deactivation : lack of Battery power in cold condition) G. Electric propulsion system protection
Reference	 Exhaust system temperature determination Engine engagement and torque control strategy Idle control strategy Base ignition angle Fuel rail pressure Injection angle Exhaust system temperature determination SOC management – critical low band

11.04.06 Exhaust system temperature determination

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

	* Exothermic reaction table (Catalyst temperature model correction)
Entry Conditions	The strategy is calculated under all engine running.
In-use Frequency	This is a base control and generally always active.
Emission impact	N/A
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base Operation
Reference	 Air-fuel ratio (A/F) feedback (HO2S1) Base Ignition angle Oxygen sensor heating strategy, Catalyst heating Strategy, Enrichment Component Protection

11.04.07 Combustion mode strategy


Title : Combust	ion mode strategy									
Purpose	Base Operation									
	-									
Action: Functional Description	Switching combusti (see attached figure	vitching combustion modes for optimized operation								
Parameters (I/O)	 Relative load model Engine coolant to a coolant to a coolant to con Air-fuel ratio con Catalyst heating Engine start 	 Engine speed = f(CKP) Relative load model Engine coolant temperature (ECT) Air-fuel ratio controller value1 Catalyst heating active2 Engine start 								
Entry Activating Condition										
Conditions	Combustion Mode	Injection angle	Usage	Conditions						
	SH1	1 x compression stroke	x	Start mode ECT ≥ 9.25℃						
	SH2	2 x compression stroke	х	Start mode ECT < 9.25℃						
	SH3	3 x compression stroke	-	-						
	HP2	1 x compression stroke 1 x intake stroke	х	Catalyst heating mode						
	HP3 2 x compression strok 1 x intake stroke		-	-						
	HO1	1 x intake stroke	х	Normal mode						
	HO2 2 x intake stro		х	Normal mode						
	НОЗ	3 x intake stroke	х	Normal mode						
	Linua dei Cente Fe Li									

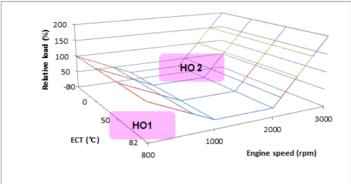

In-use Frequency	This is part of base emiss accounted for by the test. The combustion mode us					nd therefore			
	Combustion mode	FTP-4BAG	HwFET	US06	SC03	FTP75@-7℃			
	SH1 Start mode (1x compression storke)	x	x	x	х	x			
	SH2 Start mode (2x compression storke)					x			
	HP2 Catalyst heating mode (1x compression stroke 1x intake stroke)	x				x			
	HO1 Normal mode (1x intake stroke)	x	x	x	х	x			
	HO2 Normal mode (2x intake stroke)	x	x	x	х	x			
	HO3 Normal mode (3x intake stroke)	x	x	x	х	x			
Emission impact	This is part of base emission control and included in all regulated test cycles and ther accounted for by the test.								
Justification	A. Substantially included during regulated test procedures FTP75, US06, SC03, HwFET, FTP75@-7°C F. Base Operation								
Reference	 Torque setpoint strategy Catalyst heating strategy Fuel rail pressure, Injection angle 								

Figure 1. Combustion mode

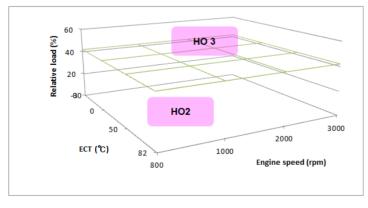
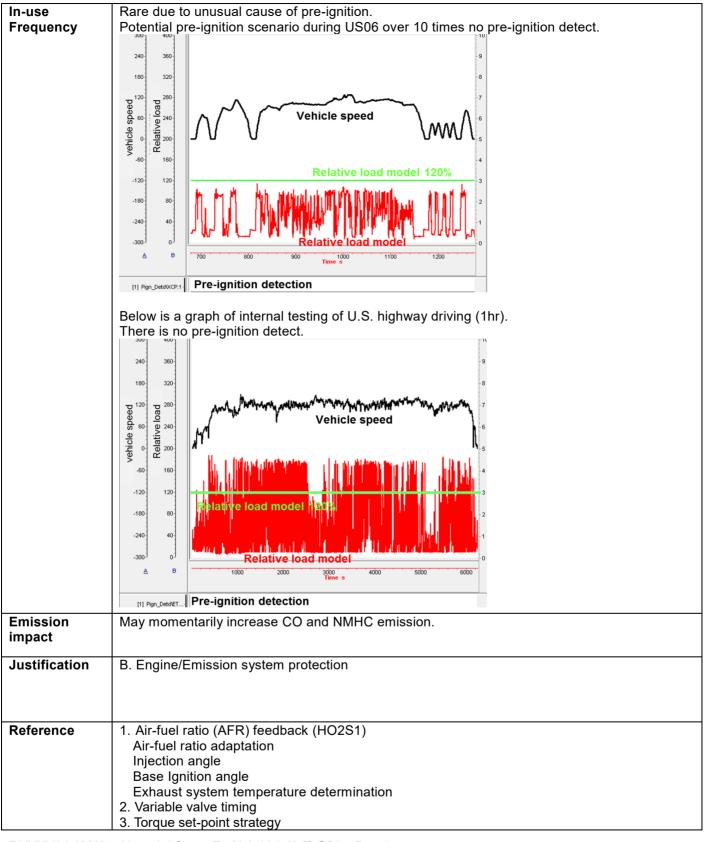

Combustion				Change parameters by combustioon mode				
Mode	Injection angle	Usage	Conditions	lgnition angle	Fuel rail pressure	Injection angle	number of injections	
SH1	1 x compression stroke	х	Start mode ECT ≥ 9.25°C	х	х	х	1	
SH2	2 x compression stroke	x	Start mode ECT < 9.25℃	х	x	x	2	
SH3	3 x compression stroke	-	-	-	-	-	-	
HP2	1 x compression stroke 1 x intake stroke	x	Catalyst heating mode	х	х	х	2	
HP3	2 x compression stroke 1 x intake stroke	-	-	-	-	-	-	
HO1	1 x intake stroke	x	Normal mode			x	1	
HO2	2 x intake stroke	x	Normal mode	х	x	x	2	
HO3	3 x intake stroke	х	Normal mode			х	3	

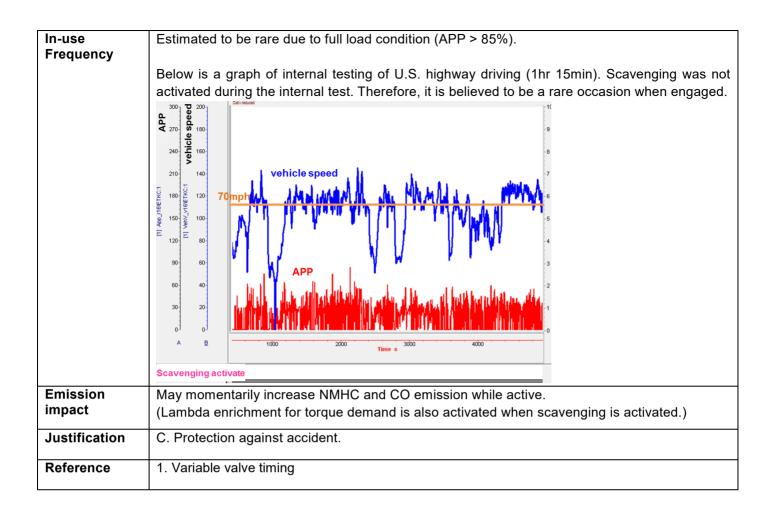
Figure 2. Combustion mode of normal condition (HOx)

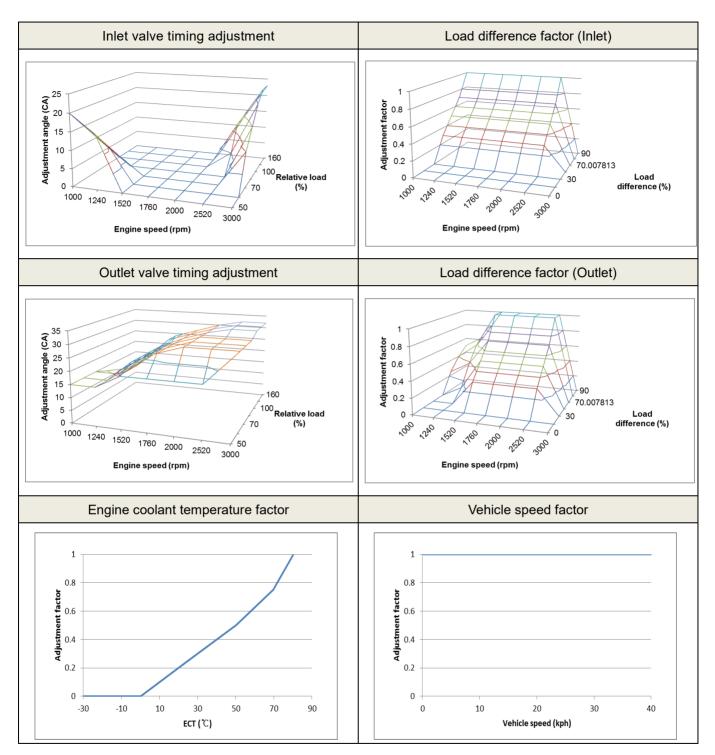


- HO3 combustion mode: 1120 < RPM < 2100

11.04.08 Pre-ignition protection strategy

Title : Pre-ignit	ion protection strategy							
Purpose	Engine/component Protection							
	Preventing the engine components (cylinder head, piston, etc) from damage due to pre-							
	ignition.							
Action:	Enrichment \rightarrow Reduction of engine load \rightarrow Camshaft control							
Functional	(see attached figures)							
Description								
Parameters (I/O)	In - Knock sensors (KS)							
(110)	- Engine speed = f(CKP)							
	- Relative load model							
	- Engine coolant temperature (ECT)							
	- Camshaft position inlet (CMP_IN)							
	- Camshaft position outlet (CAM_OUT)							
	- Crankshaft position (CKP)							
	Out :							
	- Lambda setpoint ¹							
	- Camshaft setpoint ²							
	- Torque reduction ³							
Entry	Activating condition							
Conditions	- Engine coolant temperature > 70℃							
	and							
	- Relative load model > f(rpm)							
	RPM 1520 2000 2520 3000 4000 5000 6000							
	Load 120 120 120 120 120 120 120 120							
	and							
	- Pre-ignition detected							
	*knock sensor value > f(rpm, relative load)							
	E C							
	9520 9520 9520 9520 9520 9520 9520 9520							
	6520 5520 100 100 100 100							
	520 650 650 145 145 145 145 145 145 145 145 145 145							
	Engine speed (rom)							
	Relative load (%)							
	Deactivating condition							
	Pre-ignition does not appear furthermore.							




Figure 1. Pre-ignition protection actions

Actions		Preignition counter (countinously in each cylinder)							
Actions	1			2			3		
		Target Lambda enrichment During 5sec							
Enrichment of air-fuel ratio		RPM	0	1500	2000	2500	3000		
		Targer Lambda	0.750	0.750	0.750	0.725	0.725		
						•	•	-	
reduction of engine load		15% During 7sec		30% During 7se	c	40% During 7sec			
adjustment of camshaft position		N/A			Default During				

11.04.09 Scavenging strategy

Purpose	Protection against accident							
	Avoid putting the driver in a dangerous situation when turbocharger lag typically happens.							
Action: Functional Description	Valve overlap is increased by inlet/outlet valve timing adjusting. During valve overlap, lambda closed loop controlled.							
-	Base valve timing + + + > Valve timing Setpoint							
	Adjustment angle X X Load correction factor (Load diff. / ECT / VSS)							
Parameters (I/O)	In - Engine speed = f(CKP) - Relative load model - Accelerator pedal position (APP) - Transmission gear information (GEAR) - Transmission slope information (SLOP) - Engine coolant temperature (ECT) - Vehicle speed = f(WSS)							
	Out - Adjustment inlet/outlet valve timing setpoint ¹							
Entry Conditions	Activating Condition - Accelerator pedal position > 85% and - ECT > 0°C and - Load difference (Target – Actual) > 30% (depend on engine rpm) Deactivating Condition - any of activating condition is no longer met							

Figure 1. Adjustment of inlet/outlet valve timing for scavenging

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

11.04.10 Engine warm-up strategy

Purpose	varm-up strategy Base Operation
Fulpose	
	- In order to reduce the exhaust emission (cold start) caused by the frequent engine on/off.
	- Increase the engine efficiency
Action:	Request the hybrid control unit (HCU) to keep the engine on ¹
Functional Description	
Parameters	
(I/O)	- Engine coolant temperature (ECT)
	ОИТ
	- Request the hybrid control unit (HCU) to keep the engine on ²
Entry	Activating Condition
Conditions	Engine coolant temperature (ECT) < 30℃
	Deactivating Condition
	Engine coolant temperature (ECT) > 48℃
In-use	Minimum once per driving cycle at cold start.
Frequency	
Emission impact	Emission reduction
Justification	A. Substantially included during regulated test procedures
	FTP75, FTP75@-7°C
	F. Base Operation
Reference	1. Engine engagement and torque control strategy
	2. Engine engagement and torque control strategy

11.04.10.01 Engine warm-up strategy for Engine Oil Dilution State

Purpose	Base Operation					
	 A control to evaporate and control fuel components accumulated in engine oil. It determines the accumulation of fuel components in engine oil and performs control to maintain engine start-up to heal the oil dilution state. 					
Action: Functional Description	 Request the hybrid control unit (HCU) for engine on Increase engine oil control target pressure 					
Parameters (I/O)	IN - Engine coolant temperature (ECT) - Engine Oil temperature (OilT) - Engine speed = f(CKP) - Engine Control State - Vehicle Speed					
	OUT - Request the hybrid control unit (HCU) for engine on - Increase engine oil control target pressure					
Entry Conditions	Activating Condition					
Conditions	- Engine coolant temperature (ECT) > 80°C					
	 Moving average value of Engine Oil Temperature (OilT) > 85°C Counter* of driving times determined to be cold > 20 					
	*Condition for counter increase : ① AAT < 10° C and driving distance < 10 km					
	② AAT < 10℃ and OilT < 60℃					
	*Condition for counter reset : ① Success of healing mode					
	(Accumulated healing control mode operation time > 600s					
	② OilT > 80°C under normal mode					
	 Accumulated mileage > 1000 Km (The accumulated mileage is reset when the healing mode is "off".) 					
	Deactivating Condition - Accumulated healing mode operation time > 600s					
In-use Frequency	Estimated to be rare because it is activated only when the cold operation conditions are repeated and accumulated.					
Emission impact	May increase CO2 emission while active.					

Justification	B. Engine/Emission system protection
Reference	1. Engine engagement and torque control strategy

11.05 Fuel economy related controls

11.05.01 Transmission shift pattern for hybrid vehicle

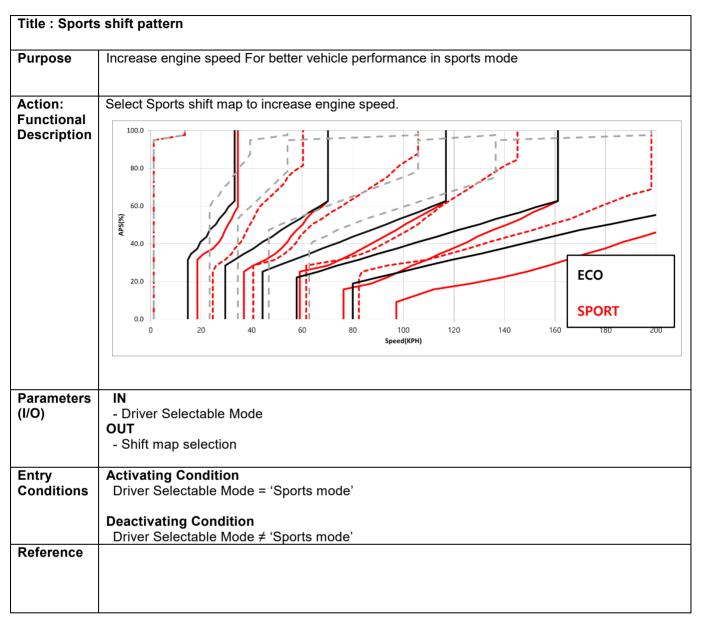
The shift pattern of the transmission is determined by transmission control unit (TCU). Specific to hybrid vehicles, the shift pattern can be changed upon the request of the hybrid control unit to maintain the hybrid system such as cooling down the engine clutch, maintaining the SOC of a high-voltage battery within the normal range, etc. Thus the hybrid control system requests TCU to select hybrid system specified shift pattern. The hybrid system specified shift pattern logic is classified as follows.

- ECO: General shift pattern for better fuel efficiency in ECO mode
- SPORT: Increase engine speed for better vehicle performance in sports mode
- SMART: When the driver selects MY DRIVE mode, the driver can select SMART in MY DRIVE mode from the infotainment for the powertrain mode. The shift pattern for SMART in MY DRIVE mode is automatically selected as one of the aforementioned ECO and SPORT modes by TCU in accordance with determining driver's behavior based on the fuzzy logic which has inputs as accelerator position, shift lever position, Gsensor and vehicle speed
- UPHILL shift pattern: Increase engine speed to obtain additional traction power at uphill
- Cabin heating function: Increase engine speed to increase engine coolant temperature for cabin heating at low temperature
- LFU prevention: Prohibit upshift and hold low gear when accelerator pedal is released quickly during acceleration in order to improve re-acceleration performance and response (LFU: Lift Foot Upshift)
- Heavy braking function: High BPS Downshift to low gear occurs earlier than low BPS downshift rpm in the shift pattern during braking. The maximum value of the normal shift pattern and the regenerative braking pattern determines the shift point for (P)HEV
- Downhill function: This function makes downshift with brake pedal operation on the downhill to prevent busy shift as bps tip-in/out. Using this function, the downshift occurs at a lower vehicle speed than the flat regenerative braking pattern, and the upshift occurs at a higher vehicle speed.
- Curve function: Prohibit upshift when the lateral G is above a set value. Upshift prevention is lifted when engine rpm reaches a set value. Set rpm will be higher with higher lateral acceleration.
- High speed shift pattern: Increase hysteresis of up and down shifting points at a high speed to prevent busy shifting, in order to increase powertrain efficiency
- High traction driving shift pattern: Increase engine speed to obtain high engine power to prevent excessive use of SOC in high traction driving mode
- Charge sustaining shift pattern: Increase engine speed for charging the battery

- Shift pattern for extreme condition of high voltage battery: Increase engine speed for compensate for low battery power in extreme condition
- Engine clutch protection: Increase engine speed to protect for engine clutch against high temperature

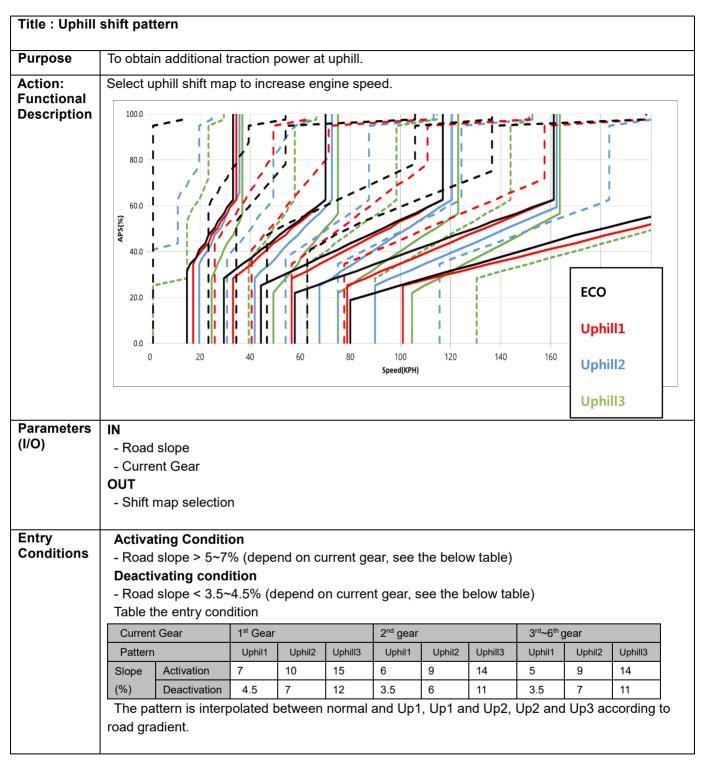
Determination of shift patterns

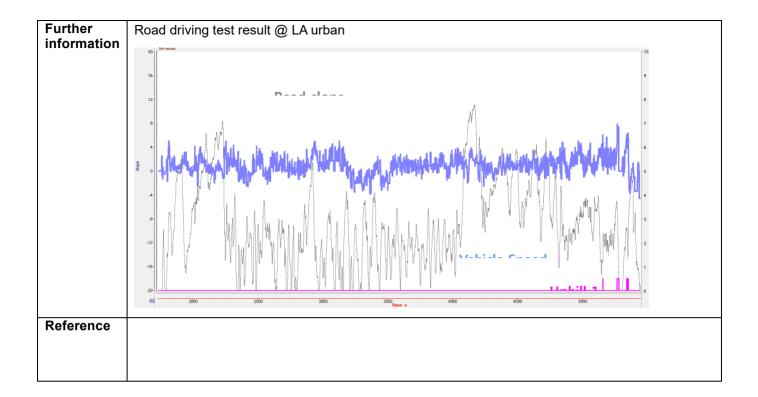
- A shift pattern is determined through following chart.


					High priorit	ty					
		Driver Selectable Mode									
			EC	0		\rightarrow	Spo	orts			
	Slope Condition	Normal	Uphill 1	Uphill 2	Uphill 3	Normal	Uphill 1	Uphill 2	Uphill 3		
ority	ECO	ECO	ECO Uphill1	ECO Uphill2	ECO Uphill2	Sports	Sports Uphill 1	Sports Uphill 2	Sports Uphill 3		
High priority	High speed	HWY	ECO Uphill1	ECO Uphill2	ECO Uphill3	Sports	Sports Uphill 1	Sports Uphill 2	Sports Uphill 3		
	Charge sustaining	Charge sustaining	Charge sustaining Uphill1	Charge sustaining Uphill2	Charge sustaining Uphill3	Sports Uphill 1	Sports Uphill 2	Sports Uphill 3	Sports Uphill 3		
	Cabin heating	Cabin heating	ECO Uphill1	ECO Uphill2	ECO Uphill3	Sports	Sports Uphill 1	Sports Uphill 2	Sports Uphill 3		
	Extreme Condition	Extreme temperature	ECO Uphill3	ECO Uphill3	ECO Uphill3	Sports Uphill 1	Sports Uphill 2	Sports Uphill 3	Sports Uphill 3		
	High traction driving	High traction driving	High traction driving Uphill	High traction driving Uphill	High traction driving Uphill	High traction driving	High traction driving Uphill	High traction driving Uphill	High traction driving Uphill		
	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection	Engine clutch protection		

11.05.01.01 COMFORT shift pattern - N/A

11.05.01.02 ECO shift pattern


Title : ECO s	shift pattern
Purpose	General shift pattern for better fuel efficiency in ECO mode
Action: Functional Descriptio n	See shift pattern below
Parameter s (I/O)	IN - Driver Selectable Mode
(OUT
	- Shift map selection
Entry Conditions	Activating Condition Driver Selectable Mode = 'ECO mode'
	Deactivating Condition Driver Selectable Mode ≠ 'ECO mode'
Reference	


11.05.01.03 SPORT shift pattern

11.05.01.04 SPORT+ shift pattern - N/A

11.05.01.05 UPHILL shift pattern

11.05.01.06 Cabin heating function

Purpose	Enhance cabin heating and defrosting capability by delayed shifting point in extreme cold conditions.
Action: Functional Descriptio n	Select Extreme cold cabin heating shift map to increase engine speed.
Parameter s (I/O)	IN - Engine coolant temperature - Ambient air temperature - Transmission Oil temperature OUT - Shift map selection
Entry Condition s	Activating Condition - Ambient air temperature < -10°C
Reference	

11.05.01.07 Transmission temperature protection function – N/A

11.05.01.08 Heavy braking function

Purpose	To improve re-acceleration performance and response right after heavy deceleration									
	To improve regenerative braking efficiency considering brake depth for (P)HEV.									
Action: Functional Description	High BPS Downshift to low gear occurs earlier than low BPS downshift rpm in the shift pattern during braking.									
	The maximum value of the normal shift pattern and the regenerative braking pattern determines shift point for (P)HEV									
	100.0 80.0 60.0 40.0 20.0 0 200				120 1	40 160	180	200		
				Speed(KPH)						
)							
	IN - APS, BPS, TM OUT - Target gear	output SPE)							
(I/O) Entry	- APS, BPS, TM	ition (AND) e (below tal)							
(I/O) Entry	- APS, BPS, TM OUT - Target gear Activating Cond - APS < set value	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal) ble) R) ble)	e)						
(I/O) Entry	- APS, BPS, TM OUT - Target gear Activating Condi - APS < set value - TM input Torqu Deactivating Con - APS > set value	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal) ble) s) ble) ue (below tabl TmOutSpd	0	992	2016	3008	4512	6016	
(I/O) Entry	- APS, BPS, TM OUT - Target gear Activating Condi - APS < set value - TM input Torqu Deactivating Con - APS > set value	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal e > set valu Act) ble) ble) ue (below tabl TmOutSpd Value(%)	,	7.1	7.1	6.7	5.9	6016 5.1 6016	
(I/O) Entry	- APS, BPS, TM OUT - Target gear Activating Condi - APS < set value - TM input Torqu Deactivating Con - APS > set value - TM input Torqu	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal e > set valu) ble) s) ble) ue (below tabl TmOutSpd	0					5.1	
(I/O) Entry	- APS, BPS, TM OUT - Target gear Activating Condi - APS < set value - TM input Torqu Deactivating Con - APS > set value - TM input Torqu APS	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal e > set valu Act) ble) ue (below tabl TmOutSpd Value(%) TmOutSpd	0 0 0	7.1 992	7.1 2016	6.7 3008	5.9 4512	5.1 6016	
Parameters (I/O) Entry Conditions	- APS, BPS, TM OUT - Target gear Activating Condi - APS < set value - TM input Torqu Deactivating Con - APS > set value - TM input Torqu	ition (AND) e (below tal e < 10Nm ndition (OF e (below tal e > set valu Act Deact.) ble) ue (below tabl TmOutSpd Value(%) TmOutSpd	0 0 0	7.1 992	7.1 2016 7.1	6.7 3008	5.9 4512	5.1 6016	

11.05.01.09 LFU prevention

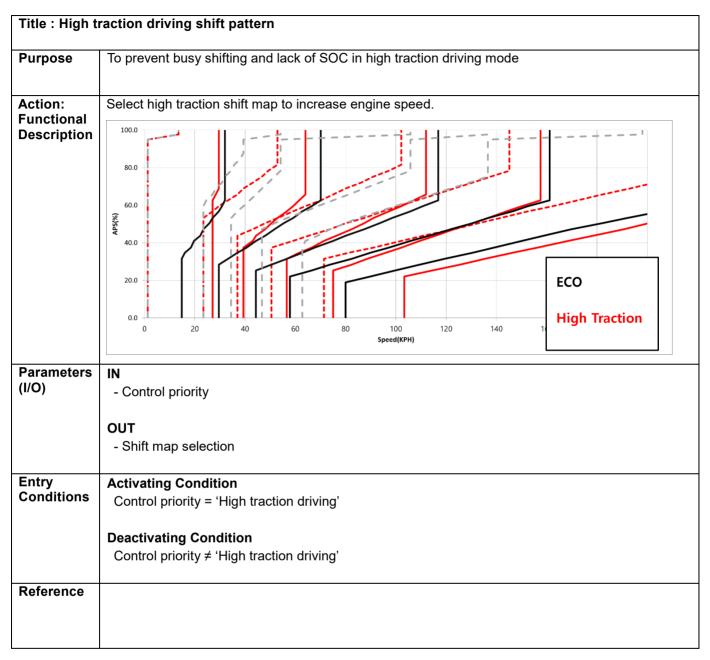
Purpose	To improve re-acceleration performance and response by holding low gear when tip-ou						
Action: Functional Description	Upshift is prohibited when quick accelerator pedal release is detected. If upshift is prevented, transmission remains in low gear and high rpm for better re-acceleration performance.						
	[No LFU prevention] [LFU prevention]						
	Engine rpm 6 3 rd gear 3 APS Normal tip-out Fast tip-out						
	time time						
Parameters (I/O)	IN - APS gradient, APS, Gear, Engine rpm OUT - Target gear						
Entry Conditions	Activating Condition (AND) - APS < 5.1% - APS gradient > 2607~6585%/s (Higher value with low gear) - Engine rpm < 2500~3500 for ECO, and 4800~5920 for SPORT (depends on road gradient and gear, Higher value with high road gradient) Deactivating Condition (OR) - APS > 5.1%						
	- elapsed time > 1.0~2.0s (depends on APS and gear)						
Reference							

11.05.01.10 Downhill function

Purpose	To prevent busy shift as bps tip-in /out according to road gradient when downhill coasting									
Action: Functional Description	This function makes downshift with brake pedal operation on the downhill to prevent busy shift as bps tip-in/out. Using this function, the downshift occurs at a lower vehicle speed than the flat regenerative brake pattern, and the upshift occurs at a higher vehicle speed.									
							rative bra	ıking ve brakin	g	
	IN - Road gradient, BPS, TM output Speed OUT - Target gear									
	Activating Cond - APS < set value - TM input Torqu - Road Gradient Deactivating Con	e (below ta e < 10Nm < -4% ndition (O e (below ta	able) R) able)	e)						
	- APS > set value - TM input Torqu - Road Gradient			-)						
	- TM input Torqu - Road Gradient		TmOutSpd Value(%)	0 0	992 7.1	2016 7.1	3008 6.7	4512 5.9	6016 5.1	
	- TM input Torqu	> -1%	TmOutSpd	0						
	- TM input Torqu - Road Gradient	> -1%	TmOutSpd Value(%) TmOutSpd	0 0 0	7.1 992	7.1 2016	6.7 3008	5.9 4512	5.1 6016	
	- TM input Torqu - Road Gradient	> -1% Act Deact.	TmOutSpd Value(%) TmOutSpd	0 0 0	7.1 992	7.1 2016 7.1	6.7 3008	5.9 4512	5.1 6016	

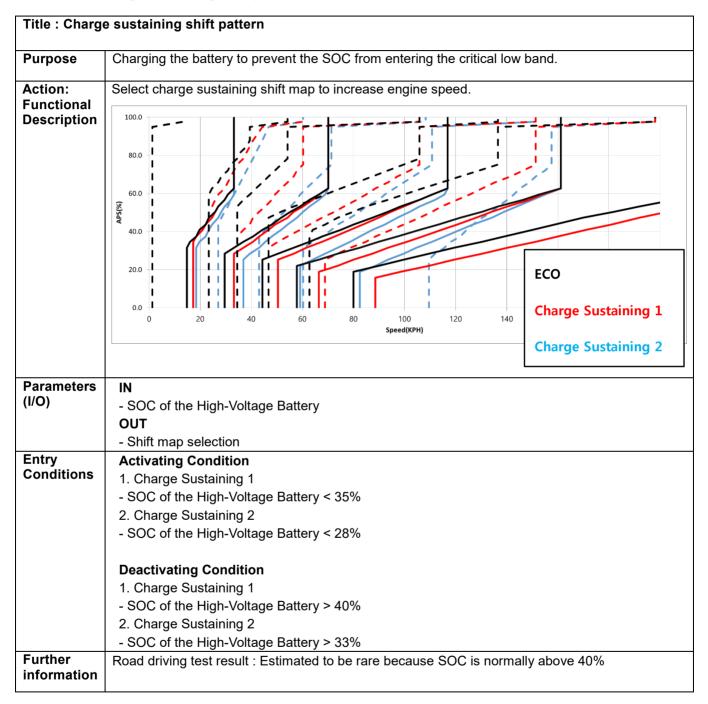
11.05.01.11 Curve function

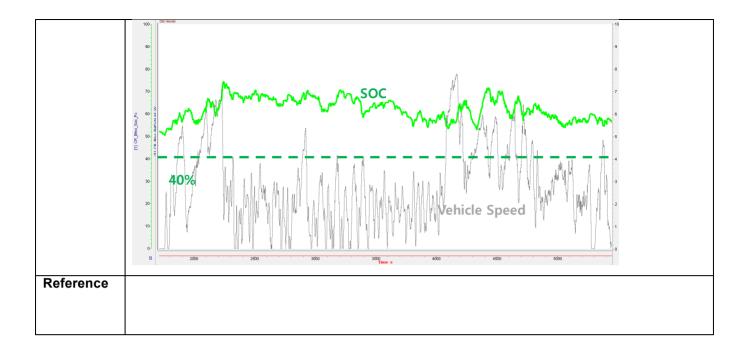
Purpose	To improve re-ad	celeratior	n performance a	and response aft	er turning with h	nigh lateral G					
Action:	Brabibit upshift when the lateral C is shown a set value										
Functional	Prohibit upshift when the lateral G is above a set value.										
Description	Upshift prevention is lifted when engine rpm reaches a set value. Set rpm will be higher with high lateral acceleration.										
	[Curve function			on 6 th dea arly downshift / leavy braking fn. Brake	5 5 4 Afte		6 ntion by Curve				
Parameters (I/O)	IN - Steering angle	e, gear, T/	/M input rpm, ve	ehicle speed	Entry - C	ornering	Exit				
	- Target gear										
	× T/M input m	※ T/M input rpm is equal to engine rpm when lock-up engine clutch engaged									
				n lock-up engine ci	uten engaged						
Entry Conditions	Activating Condition(AND) - Vehicle Speed > 15kph - T/M input rpm < 5500rpm - Cur gear >= 2 - lateral acceleration speed > 3m/s^2 Deactivating Condition(OR) - T/M input rpm > set value (below table) - lateral acceleration speed < 2m/s^2 - Vehicle Speed < 15kph - Cur Gear = 1 - elapsed time > 1.0~2.0s (depends on APS and gear)										
	Lateral acceleration(m/s^2)										
			0	2	5	7.5	10				
		1	0	0	0	0	0				
				2500	3000	3250	3750				
		2	2000								
	Cur gear	3	2250	2750	3250	3500	4000				
	Cur gear	3 4	2250 2250	2750 2750	3250 3250	3500	4000				
	Cur gear	3	2250	2750	3250						

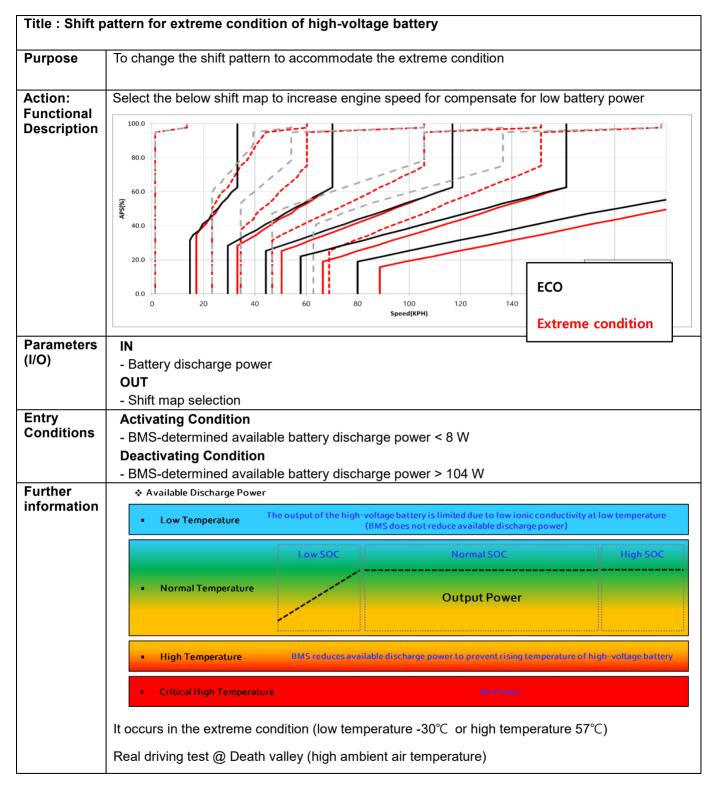

11.05.01.12 Kick down shift for fast tip-in – N/A

11.05.01.13 Lock up clutch control – N/A

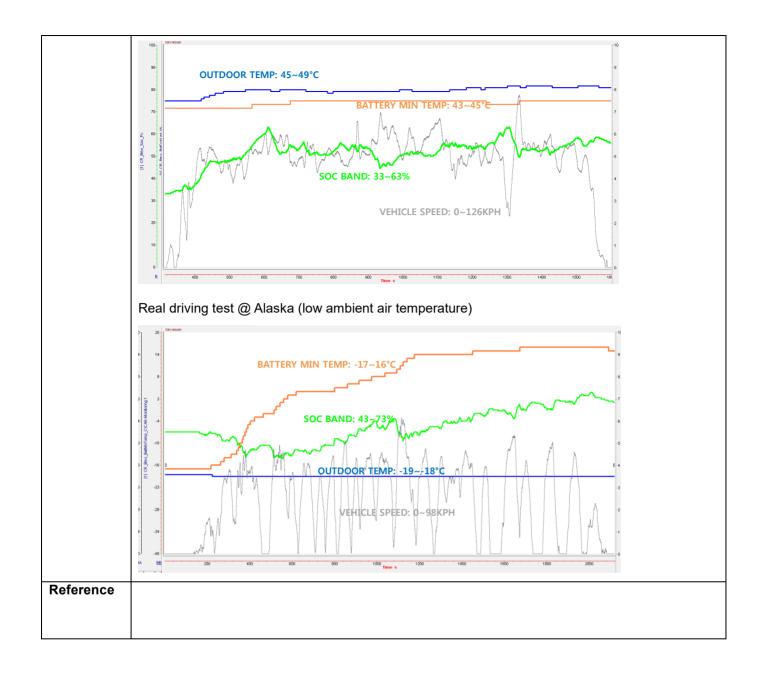
1.05.01.14 High speed shift pattern

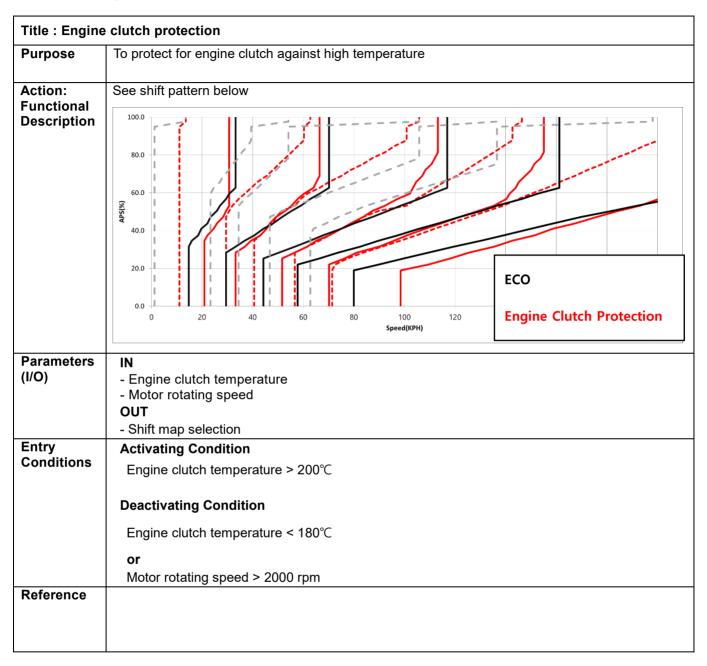

Title : High speed shift pattern To prevent busy shifting and obtain engine power to charge the battery in highway driving Purpose condition Action: Select high speed shift map to Increase hysteresis of up and down shifting Functional 100.0 Description 80.0 60.0 APS(%) 40.0 ECO 20.0 HWY 0.0 20 120 140 160 0 40 60 80 100 Speed(KPH) **Parameters** IN (I/O) - Driver selectable mode - Control priority OUT - Shift map selection **Activating Condition** Entry Conditions Driver selectable mode = 'ECO mode' and Control priority = 'High speed driving' **Deactivating Condition** Driver selectable mode ≠ 'ECO mode' or Control priority ≠ 'High speed driving' Reference


11.05.01.15 High traction driving shift pattern

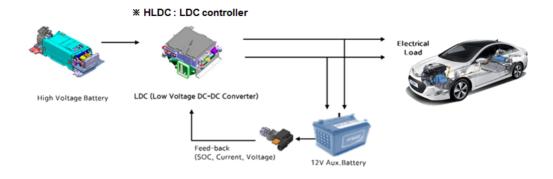


11.05.01.16 High auxiliary electric power shift pattern – N/A

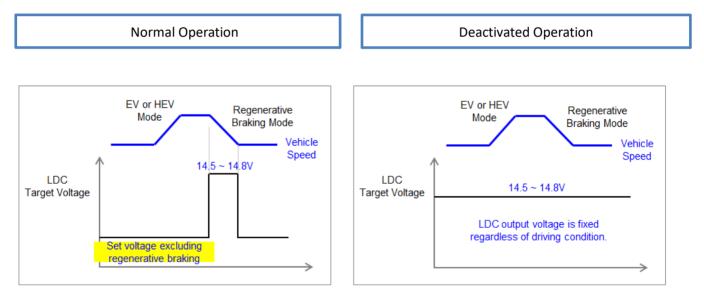

11.05.01.17 Charge sustaining shift pattern



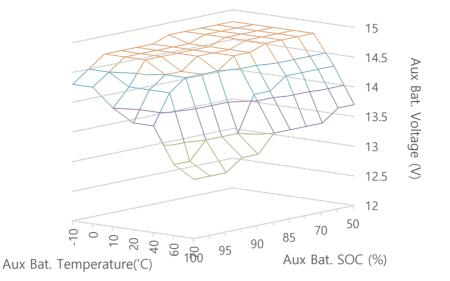
11.05.01.18 Shift pattern for extreme condition of high voltage battery


11.05.01.19 PHEV Charge Depleting shift pattern – N/A

11.05.01.20 Engine clutch protection



11.05.02 Low voltage battery control


LDC supplies the electrical power to vehicle electrical systems in HEV instead of the alternator. It is important to optimize the output power of the LDC to improve system efficiency. In order to achieve this, the LDC's output voltage is controlled as below.

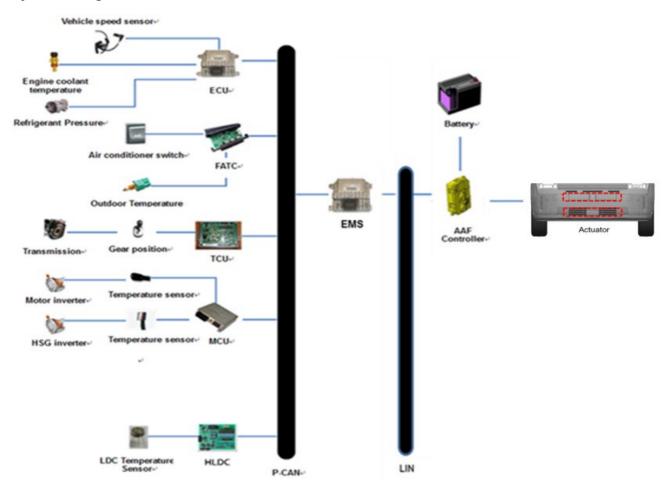
[Low Voltage Control for auxiliary Battery] Equipped

Set voltage excluding regenerative braking

Low voltage battery control is the control normally active unless other protection modes that require the driver's safety are activated.

Constant voltage output request from other system

- Max blower operation
- Radiator cooling fan operation
- Head lamps operation
- Wipers operation
- Rear Window Defogger operation
- Delivery Mode (except for Aux. battery in high temperature)
- Sports driving Mode


11.05.03 Idle Stop & Go Reengagement - N/A 11.05.04 Neutral control - N/A

11.05.05 Active air flap

Active air flap system has a flap, which can be open and closed, between radiator and radiator grill. The flap is closed while the vehicle maneuver fast in order to reduce the air drag and improve driving stability. If the temperature of engine room increases to certain degree that might cause some thermal damages, the flap is open and cool down the engine room.

- Flap is open in high temperature condition by checking temperature of main parts (engine coolant temperature, motor inverter temperature, HSG inverter temperature, LDC temperature, transmission oil temperature)
- Flap is open when the air-conditioner is on to regulate the pressure of refrigerant
- Flap is closed to ree air drag and improve fuel economy

System configuration

Details

AAF fail-safety mode

The flap necessarily has to be open in case of any malfunction of any part of AAF system in order to protect parts from thermal damage.

• Engine thermostat diagnosis mode

```
RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1
Issued : 12-8-2023
Revised:
```

ECU thermostat diagnosis process requires certain amount of air flow. So the flap is open in advance.

Safe mode

The flap is open in advance to prevent adherence that can be caused by high speed driving wind (over 150KPH(93.2MPH))

High-fan mode

The flap is open if the fan state is high

Normal mode

AAF control by temperatures: engine coolant, transmission oil, motor inverter, HSG inverter and LDC AAF is open if the temperature of any of above parts is higher than open reference temperature. Otherwise AAF is closed. These reference temperatures use hysteresis in order to prevent frequent opening and closing.

• High engine load mode

If the vehicle needs excessive driving performance, such as rapid acceleration, while the flap is closed, the temperature of main parts can increase dramatically. In order to prevent thermal damages on parts, Open/close reference temperature has to be lowered. So in high engine load mode, all the open/close reference temperature tables are adjusted by revision map.

High vehicle speed mode

In the high vehicle speed mode, the flap is more likely to be closed in order to reduce the air drag.

• Air conditioner mode

AAF in air conditioner mode is controlled by fan state and the pressure of refrigerant (APT). The flap is open when the fan is faster than 'low' state(A/C switch ON and compressor power>0W) or when the pressure of refrigerant is higher than reference pressure. Otherwise, the flap is closed.

Intercooler Efficiency prior mode

If the temperature of intercooler outlet is too high, while the flap is closed, the power of engine can be decreased. In order to make a driver-demand power without deduction of engine power, the flap is open when acceleration pedal value is higher than reference.

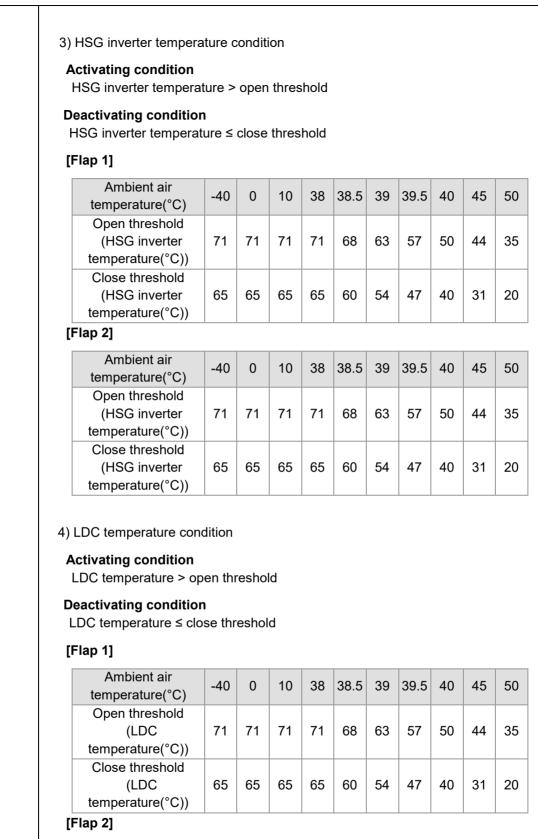
Low vehicle speed mode

While the vehicle maneuver slowly, the control range, which opens flap, is widened in order to cool down.

Intake air temperature control mode

AAF is open if intake air temperature is higher than open reference temperature and AAF is closed if the intake air temperature is lower than close reference temperature. The open/close reference temperature uses hysteresis in order to prevent frequent opening and closing.

The open/close reference temperature varies from HEV mode to EV mode. The HEV/EV mode is determined by engine speed.


• **Upper and lower flap separation control mode** When the vehicle has two flaps, upper and lower, the above modes can be operated to each flap separately.

AECD Title :	Active air flap
Purpose	Active Air Flap system has a flap, which can be open and closed, between radiator and radiator grill. The flap is closed while the vehicle maneuver fast in order to reduce the air drag and improve driving stability. If the temperature of engine room increases to certain degree that might cause some thermal damages, the flap is open and cool down the engine room.
Action: Functional Description	AAF is normally closed but the flap is open only to cool down or prevent any malfunction of hardware that could happen because of thermal damages.
	The conditions that open AAF are listed below.
	AAF open/close threshold condition
	 Engine coolant temperature Motor inverter temperature condition HSG inverter temperature condition LDC temperature condition Transmission oil temperature condition High engine load condition High vehicle speed condition Air conditioner status condition Safe mode condition High fan mode condition AAF control mode by intake air temperature Low speed mode condition AAF fail safety mode condition Acceleration pedal position
Parameters	
(I/O)	IN Vehicle speed Engine speed Cooling/condenser fan on/off status Cooling/condenser fan state Cooling/condenser fan state Active air flap open request by ECU Calculated load value by ECU APT(Refrigerant) value Intake air temperature A/C request switch A/C compressor consumption power Motor inverter temperature AlsG inverter temperature LDC fault status LDC temperature Ambient air temperature Acceleration pedal position Engine oil temperature Cruise control status

	OUT
	- Actuator flap open status - AAF mode status
Entry Conditions	Activating(AAF Open) / Deactivating(AAF Close) Conditions
Conditions	1. AAF fail-safety mode condition
	Activating condition If bellow error conditions are set, AAF opens
	Deactivating condition If bellow error conditions aren't set, AAF doesn't open
	① P-Can bus off error
	 Delay error of CAN signal reception
	③ CAN timeout error
	④ Input sensed signal error
	2. Safe mode condition
	Activating condition Vehicle speed > 150 km/h (93.2 mile/h)
	Deactivating condition Vehicle speed ≤ 140 km/h (87.0 mile/h)
	3. High fan mode condition
	Activating condition ECU fan status = 'High'
	Deactivating condition ECU fan status ≠ 'High'
	4. Normal mode1) Engine coolant temperature condition
	Activating condition Engine coolant temperature > open threshold
	Deactivating condition Engine coolant temperature ≤ close threshold

Issued : 12-8-2023 Revised:

Ambient air	-40	25	30	38	38.5	39	39.5	40	45	50
temperature(°C)										
Open threshold	00 5	00 5	00 F	00 F	05.5	07	70	60	50	45
(engine coolant	99.5	99.5	99.5	99.5	95.5	87	76	62	52	45
temperature(°C)) Close threshold										
-	96.0	0.5	00 F	02 5	0.5	74	60		32	25
(engine coolant temperature(°C))	96.0	95	93.5	93.5	85	74	60	44	32	25
Flap 2]										
Ambient air	-40	25	30	38	38.5	39	39.5	40	45	50
temperature(°C)		20	00		00.0	00	00.0	40		
Open threshold										
(engine coolant	99.5	99.5	99.5	99.5	95.5	87	76	62	52	45
temperature(°C))										
Close threshold										
(engine coolant	96.0	95	93.5	93.5	85	74	60	44	32	25
temperature(°C))										
Activating condition Motor inverter temper Deactivating conditi	on									
Motor inverter temper Deactivating conditi Motor inverter tem	on									
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1]	on									
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air	on					39	39.5	40	45	50
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C)	on peratu	re ≤ c	lose t	hresh	old	39	39.5	40	45	50
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold	on peratu -40	re ≤ c	lose t 10	hresh 38	old 38.5					
Motor inverter temper Deactivating conditi Motor inverter temper Flap 1] Ambient air temperature(°C) Open threshold (engine coolant	on peratu	re ≤ c	lose t	hresh	old	39 99	39.5 95	40 90	45 83	
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C))	on peratu -40	re ≤ c	lose t 10	hresh 38	old 38.5					
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold	on peratu -40 100	re ≤ c 0 100	lose t 10 105	hresh 38 105	old 38.5 103	99	95	90	83	74
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant	on peratu -40	re ≤ c	lose t 10	hresh 38	old 38.5					74
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C))	on peratu -40 100	re ≤ c 0 100	lose t 10 105	hresh 38 105	old 38.5 103	99	95	90	83	74
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2]	on peratu -40 100	re ≤ c 0 100	lose t 10 105	hresh 38 105	old 38.5 103	99	95	90	83	74
Motor inverter temper Deactivating conditi Motor inverter temperature (°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air	on peratu -40 100	re ≤ c 0 100	lose t 10 105	hresh 38 105	old 38.5 103	99	95	90	83	74 60
Motor inverter temper Deactivating conditi Motor inverter temper Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C)	on peratu -40 100 95	re ≤ c 0 100 95	lose t 10 105 100	hresh 38 105 100	old 38.5 103 96	99	95 87	90 80	83	74 60
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C) Open threshold	on peratu 100 95	re ≤ c 0 100 95 0	lose t 10 105 100	hresh 38 105 100 38	old 38.5 103 96 38.5	99 92 39	95 87 39.5	90 80 40	83 70 45	74 60 50
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C) Open threshold (engine coolant	on peratu -40 100 95	re ≤ c 0 100 95	lose t 10 105 100	hresh 38 105 100	old 38.5 103 96	99	95 87	90 80	83	74 60 50
Motor inverter temper Deactivating conditi Motor inverter temper Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C))	on peratu 100 95	re ≤ c 0 100 95 0	lose t 10 105 100	hresh 38 105 100 38	old 38.5 103 96 38.5	99 92 39	95 87 39.5	90 80 40	83 70 45	50 74 60 50 74
Motor inverter temper Deactivating conditi Motor inverter tem Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Close threshold	on peratu 100 95 -40 100	re ≤ c 0 100 95 0 100	lose t 10 105 100 105	hresh 38 105 100 38 105	old 38.5 103 96 38.5 103	99 92 39 99	95 87 39.5 95	90 80 40 90	 83 70 45 83 	74 60 50 74
Motor inverter temper Deactivating conditi Motor inverter temper Flap 1] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C)) Close threshold (engine coolant temperature(°C)) Flap 2] Ambient air temperature(°C) Open threshold (engine coolant temperature(°C))	on peratu 100 95	re ≤ c 0 100 95 0	lose t 10 105 100	hresh 38 105 100 38	old 38.5 103 96 38.5	99 92 39	95 87 39.5	90 80 40	83 70 45	74 60 50

Ambient air temperature(°C)	-40	0	10	38	38.5	39	39.5	40	45	50	
Open threshold (LDC	71	71	71	71	68	63	57	50	44	35	
temperature(°C))											
Close threshold (LDC temperature(°C))	65	65	65	65	60	54	47	40	31	20	

5) Transmission oil temperature condition

Activating condition

Transmission oil temperature >Activating Threshold

Deactivating condition

Transmission oil temperature ≤Deactivating Threshold

[Flap 1]

Ambient air temperature(°C)	-40	0	10	38	38.5	39	39.5	40	45	50
Activating(Open) Transmission oil temperature (°C)	110	110	110	110	106	98	90	80	70	60
Deactivating(Close) Transmission oil temperature (°C)	100	100	100	100	90	82	70	60	50	10

[Flap 2]

Ambient air temperature(°C)	-40	0	10	38	38.5	39	39.5	40	45	50
Activating(Open) Transmission oil temperature (°C)	110	110	110	110	106	98	90	80	70	60
Deactivating(Close) Transmission oil temperature (°C)	100	100	100	100	90	82	70	60	50	10

5. High engine load mode (correction value)

When this mode is activated, open/close thresholds are adjusted by below correction value. Open/close threshold = normal mode open/close threshold + correction value

Activating condition

Engine speed ≥ 3500rpm and

Engine load by ECU \ge 70.2%

and

maintain condition for more than 5 seconds

Deactivating condition

Engine speed < 3300rpm

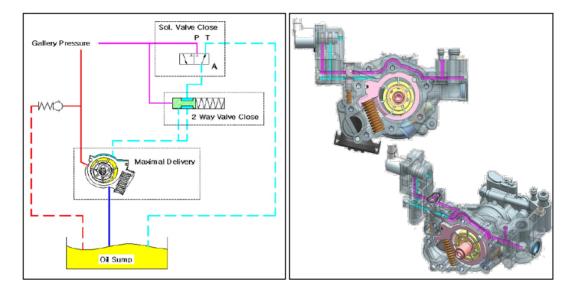
or
Engine load by ECU < 54.6%
Correction value Open correction value : -10°C Close correction value : -10°C
 6. High vehicle speed mode (correction value) When this mode is activated, open/close thresholds are adjusted by below correction value. Open/close threshold = base mode open/close threshold + correction value Activating condition Vehicle speed ≥ 80km/h (49.7mile/h) and maintain condition for more than 5 seconds
Deactivating condition Vehicle speed < 75km/h (46.6mile/h) and maintain condition for more than 5 seconds
Correction value The temperature threshold of normal mode
① Engine coolant temperature correction
Open correction value: +5.5°C
Close correction value: +5.5°C
② Motor inverter temperature correction:
Open correction value: +2°C Close correction value: +4°C
③ HSG inverter temperature correction:
Open correction value: +2°C
Close correction value: +4°C
LDC temperature condition correction:
Open correction value: +2°C
Close correction value: +4°C
(5) Transmission oil temperature condition correction:
Open correction value: +0°C

Close correction	on value	e: +6°C									
2) The refrigerant p	ressure	thresh	old of a	air con	dition	er mo	de				
Open correction	value: +	+1380	hPa								
Close correction	value: +	-2068	hPa								
7. Air conditioner sta	atus cor	ndition									
1) ECU fan speed	conditio	n									
Activating condi	ition										
ECU fan speed	status ≥	Low s	peed s	status							
and											
A/C switch on											
and											
A/C compressor	power	> 0W									
Deactivating con			vatina	conditi	on is r	not sa	tisfied	4			
2) Refrigerant pres			-					-			
Activating condi		nanion									
Refrigerant press		non th	reshold	4							
		pen in	reshold	1							
Deactivating con											
Refrigerant press	sure ≤ c	lose th	reshold	3							
[Flap 1]						1					
Ambient air temperature(°C)	-40	0	10	38	38.5	39	39.5	40	45	50	
Open threshold											
(Refrigerant pressure(hPa))	13790	13790	13790	13790	11032	8964	7584	6206	5516	4826	
Close threshold											
(Refrigerant	10342	10342	10342	10342	8274	6206	4826	3448	2758	2068	
pressure(hPa)) [Flap 2]											
Ambient air											
temperature(°C)	-40	0	10	38	38.5	39	39.5	40	45	50	
Open threshold											
(Refrigerant	13790	13790	13790	13790	11032	8964	7584	6206	5516	4826	
pressure(hPa))											

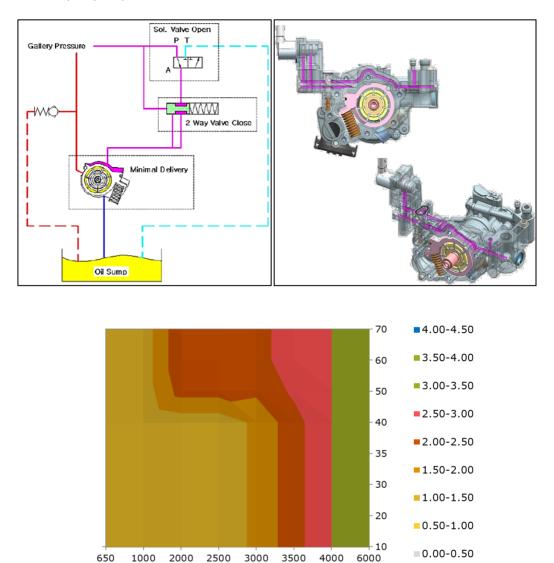
	Close threshold (Refrigerant	103421	0342 ⁻	10342	10342	8274	6206	4826	3448	2758	2068
	pressure(hPa))										
A - - -	Low speed mode of ctivating condition Vehicle speed ≤ 55 and (Engine coola or Engine coola or Engine coola eactivating conditi Vehicle speed ≥ 65 or (if activated by coordinated	n 5km/h nt temp bil temp ition for on km/h	beratur eratur more	e > Or than t	ben thi	reshol nds	d)	tempe	eratur	e ≤ C	lose ti
	or (if activated by o		•					•			
-	and maintain condi	tion for	more	than 5	seco	nds					
	[Flap 1]										
	Ambient air temperature(°C) -40) 25	30	38	38.5	39	39.5	40	45	50
	Open threshold (engine coolant temperature(°C)	80	80	80	80	80	80	80	80	80	80
	Close threshold (engine coolant temperature(°C)	70	70	70	70	70	70	70	70	70	70
	[Flap 2]										
	Ambient air temperature(°C)) 25	30	38	38.5	39	39.5	40	45	50
	Open threshold (engine coolant temperature(°C)	80	80	80	80	80	80	80	80	80	80
	Close threshold (engine coolant temperature(°C)	70	70	70	70	70	70	70	70	70	70
	[Flap 1]										

	Open threshold (engine oil	85	85	85	85	85	85	85	85	85	85	
	temperature(°C)) Close threshold (engine oil	80	80	80	80	80	80	80	80	80	80	
	temperature(°C))	00	00	00	00	00	00	00	00	00	00	
	[Flap 2]											
	Ambient air temperature(°C)	-40	25	30	38	38.5	39	39.5	40	45	50	
	Open threshold (engine oil temperature(°C))	85	85	85	85	85	85	85	85	85	85	
	Close threshold (engine oil temperature(°C))	80	80	80	80	80	80	80	80	80	80	
A	Activating condition	<u>ə</u> > Or	oen th	resho	ld							
	Intake air temperature Deactivating condition	·										
C	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo	e ≤ Clo										
C	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo Ambient air temperature(°C)	e ≤ Clo				20	25	30	38	40	50	
C	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo Ambient air temperature(°C) Open threshold (intake air temperature(°C))	e ≤ Clo ode	ose th	resho	ld	20 57	25 57	30 57	38 57	40 55	50 55	
C	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo Ambient air temperature(°C) Open threshold (intake air	e ≤ Clo ode -40	ose th	resho 0	ld 10							
1	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo Ambient air temperature(°C) Open threshold (intake air temperature(°C)) Close threshold (engine oil	e ≤ Clo ode -40 57 47	-10 57	o 57	10 57	57	57	57	57	55	55	
1	Intake air temperature Deactivating condition Intake air temperature) [Flap1] in the HEV Mo Ambient air temperature(°C) Open threshold (intake air temperature(°C)) Close threshold (engine oil temperature(°C))	e ≤ Clo ode -40 57 47	-10 57	o 57	10 57	57	57	57	57	55	55	

	Close threshold											
	(engine oil	47	47	47	47	47	47	53	53	50	50	
	temperature(°C))											
	3) [Flap2] in the HEV Mo	de										
	Ambient air	-40	-10	0	10	20	25	30	38	40	50	
	temperature(°C)	-40	-10	0	10	20	25	50	50	40	50	
	Open threshold											
	(intake air temperature(°C))	57	57	57	57	57	57	57	57	55	55	
	Close threshold											
	(engine oil	47	47	47	47	47	47	53	53	50	50	
	temperature(°C))											
	4) [Flap2] in the EV Mod	е										
	Ambient air					_			_	_		
	temperature(°C)	-40	-10	0	10	20	25	30	38	40	50	
	Open threshold											
	(intake air	62	62	62	62	62	62	62	62	60	60	
	temperature(°C))											
	Close threshold											
	(engine oil	47	47	47	47	47	47	53	53	50	50	
	temperature(°C))											
	10. Intercooler efficiency	prior	contro	ol mo	de							
	Activating condition											
	Not active cruise cont	rol op	eratin	g								
	Acceleration pedal po	sition	> Op	en thr	eshol	d						
	Deactivating condition											
	If activation condition	is not	satist	ied.								
	[Flap 1]											
	Open threshold = 92											
	[Flap 2]											
	Open threshold = 92											
n-use Frequency	AAF operation by engine c	oolan	t temp	peratu	ire an	d veh	icle s	peed	durin	g norr	nal dri	/ing
IGUUGIILV	1											


	10 10 10 10 10 10 10 10 10 10
Emission impact	CO2 improvement
Justification	 A. Substantially included during regulated test procedures FTP75, HwFET, US06, SC03,FTP75@-7℃ F. Base control
Reference	

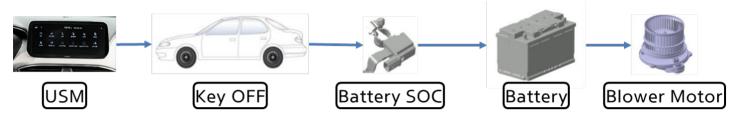
11.05.06 Exhaust heat recovery system (EHRS) - N/A


11.05.07 Variable Displacement Oil Pump System

Variable Displacement Oil Pump System is an electronic oil pressure feedback control system which controls oil pressure of the engine lubrication system. The system runs according to engine operating condition by integrating variable oil pump, sensors and control logic. Variable Displacement Oil Pump System is controlled by proportional solenoid valve using hydraulic pressure of the engine oil and mapped according to the rpm, torque and oil temperature. The Variable Displacement Oil Pump System is beneficial for fuel economy by reducing oil pressure during normal driving condition.

<Solenoid Off - High pump displacement>

<Solenoid On - Low pump displacement>

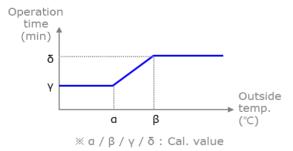

Axis: x (Engine speed, RPM) y (Required torque demand, %), z (engine oil pressure, bar)

The Variable Displacement Engine engagement and torque control strategy System control is a base control generally active except extreme low temperature of engine oil reduces to ensure reliability.

Deactivation condition: engine oil temperature < - 20 °C

11.05.08 Active Cabin Ventilation

The active cabin ventilation function uses a mechanical device during parking to exhaust hot air inside the vehicle to cool the inside temperature of the vehicle. The function can be activated by the operator setting the operating time via the USM(User Setting Mode) setting. It works only once through the one-time setup of the USM, and if driver want further operation afterwards, driver must set it up again through the USM.



Entry conditions (AND conditions)

- KEY OFF
- The active cabin ventilation function is selected through USM
- When specific ambient temperature condition is met.

Operating specifications

The display and operating specifications at the time of KEY OFF and when the active cabin ventilation function is set after KEY OFF are defined as follows. When the key is off, the blower symbol is displayed to notify the active cabin ventilation function setting status. When the active cabin ventilation function reaches the set time after KEY OFF, it operates as follows.

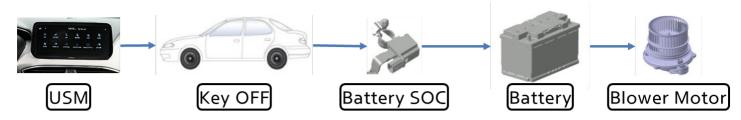
1) In order to notify the active cabin ventilation function, blink the blower symbol ON / OFF repeatedly.

2) The blower is operated by manual two-stage voltage.

3) It operates in the fresh air mode.

4) It operates in vent mode.

5) Temp door operates in the set state when the key is off.


Deactivation condition (OR condition)

- KEY ON

- When the active ventilation operation time has elapsed.

11.05.09 After Blower

The After Blower function uses a mechanical ventilating device during parking to prevent mold formation of the evaporator. The function can be activated by the operator setting via the USM(User Setting Mode) setting.

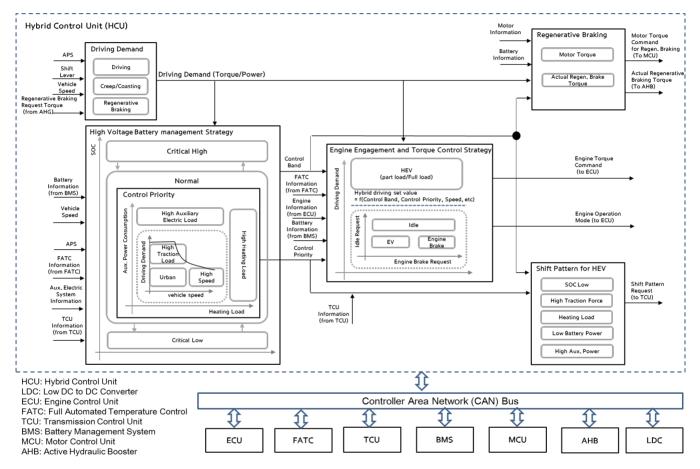
Action: Functional Description

The display and operating specifications at the time of KEY OFF and when the after blower function is set after KEY OFF are defined as follows. When the key is off, the blower symbol is displayed to notify the after blower function setting status. When the after blower function reaches 30 minutes after KEY OFF, it operates as follows

- 1. In order to notify the after blower function, display the blower symbol on the LCD.
- 2. Specific Operation
 - Air intake (Circulation) : It's operated on fresh air mode(outside air circulation).
 - Fan speed : The blower is operated on level 3 of manual fan speed control mode.
 - Mode (Blower Direction) : It's operated in previous mode when the key is off.
 - Temperature : Temp door is operated in previous setting when the key is off.

Activating conditions (AND condition)

- KEY OFF
- The After Blower function is selected through USM
- Specific SOC condition is met and SOC is valid.
- When specific ambient temperature condition is met.
- When e-Comp is operated more than certain time.


Deactivating condition (OR condition)

- KEY ON
- When the After Blower function time has elapsed
- When entering reservation/remote air conditioning logic

11.06 Hybrid controls

11.06.01 Hybrid control overview

The objective of the hybrid control system is to determine how to use electric power and the engine to maximize the efficiency of the overall system. The main function of the hybrid control system is to determine when the engine turns on or off (engine operation mode), and where the engine operates (engine torque, shift pattern). The function is based on the driving demand, the high voltage battery status, and driving conditions (control priority) considering cabin-heating demand, auxiliary electrical power consumption and road condition. In addition, regenerative braking and LDC control are also the main roles in the hybrid control system. Also, the hybrid control system performs control for exhaust gas reduction of the engine and control for stable operation of the high-voltage battery. The following figure and paragraphs describe a block diagram of the hybrid control system and summary of each function, respectively.

<Configuration of hybrid control system>

Driving demand

Driving demand, which is calculated from driver's operation of acceleration pedal position, brake pedal position, shift lever position, vehicle speed, regenerative braking request torque, etc., is defined by the hybrid control system as the target value that the power source should output to drive the wheels. The driving demand is used as a reference value for engine operation.

```
RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1
Issued : 12-8-2023
Revised:
```

High-voltage battery SOC management

One of the most important roles of the hybrid control system is to obtain stable operation of the high-voltage battery so that the SOC is maintained in the normal range. This function monitors the SOC and driving conditions, and classifies the high voltage battery strategy in 3 bands: critical high SOC, normal SOC, and critical low SOC. Based on the SOC, the set point of the engine on/off and the engine operating point are calibrated to maintain the SOC in the normal SOC range.

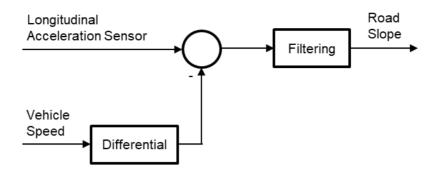
Control priority

Fuel economy of a vehicle is affected by the driving environment. In particular, HEVs have two different power sources, and it is necessary to optimize the powertrain control in consideration of the driving environment. Thus, this function considers the most influential factors of the fuel economy of the HEV and determines the priority into five levels. The purpose of the prioritization is to determine the optimal set point of the engine start/stop and the optimal engine operating point. This prioritization sets a target that is used in other strategies.

Engine engagement and torque control strategy

This function defines the engine operation mode as EV, HEV, idle, and engine brake, and controls the engine system accordingly. In order to determine the operation mode, it is necessary to consider control priority and high voltage battery SOC strategy, etc. In addition, system demands such as emission and system protection are considered.

Regenerative braking control


A hybrid system has an electric motor to convert kinetic energy to electrical energy when braking, and stores the energy in the high voltage battery. To manage, the Active Hydraulic Brake (AHB) system coordinates braking torque demand between mechanical and regenerative braking, and the hybrid control system determines motor torque command and actual regenerative braking torque.

Transmission shift pattern request

The shift pattern of the transmission is determined by transmission control unit (TCU). Specific to hybrid vehicles, the shift pattern can be changed upon the request of the hybrid control unit to maintain the hybrid system such as cooling down the engine clutch, maintaining the SOC of a high-voltage battery within the normal range, etc. Thus the hybrid control system requests TCU to select hybrid system specified shift pattern.

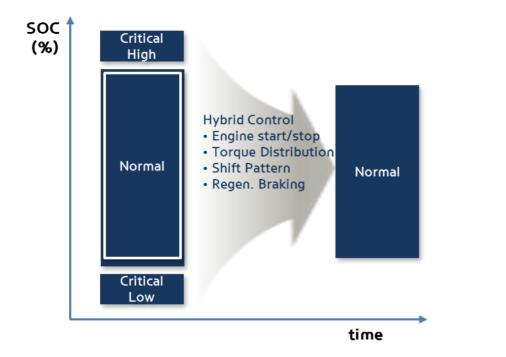
Road Slope Estimation

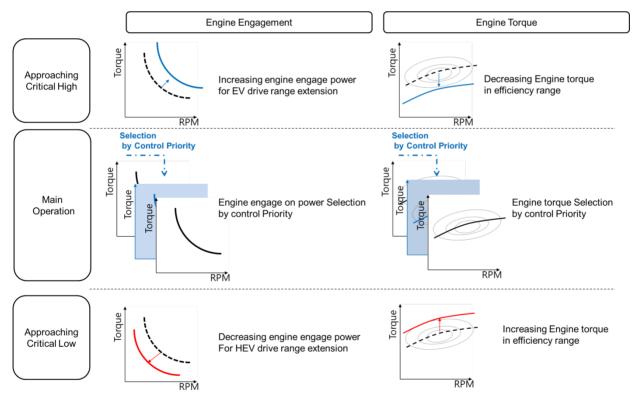
Road slope is estimated by a longitudinal acceleration sensor. The longitudinal acceleration sensor includes sensor noise, longitudinal acceleration term and slope term. In order to extract the slope term, it is necessary to eliminate sensor noise and longitudinal acceleration term from the longitudinal acceleration sensor value. Following figure shows how to estimate the road slope based on the longitudinal acceleration sensor.

The road slope is converted to the road slope level so that each function can use the discrete quantity of the road slope. Following table shows the road slope level regarding estimated road slope range.

11.06.02 High voltage battery SOC management

One of the most important roles of the hybrid control system is to maintain stable operation of the high-voltage battery. If the high voltage battery is overcharged or completely discharged repeatedly, this will shorten the life of the high voltage battery. Thus, the normal SOC band is defined, and if the SOC of the high voltage battery is out of the normal band, the battery system protection function is performed. The following figure provides more detail of the protection function.


	Critical Lo		Critical	
~5%) 5%~) 6%~) 9.5%·	~) 10%~) 10.5%~		High
50/		10% 10.5%	450/	

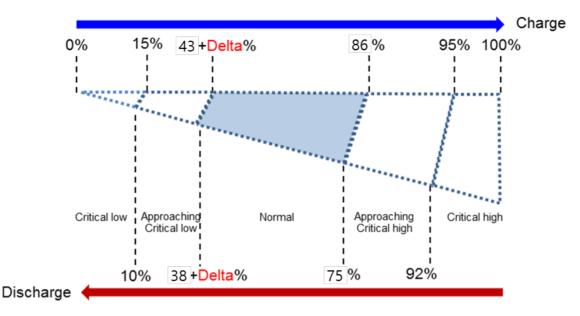

	5%	6%	9.5%	10%	10.5%	15%	95%	SOC(%)	
Band	SOC		Battery system protection function						
Critical high	95%~		EV operati	on as muc	h as possible	e, regenerative b	raking is prohibited	1.	
Normal	15%~95%	%	Normal op	eration					
	10.5% ~1	15%	"Battery So	DC is low"	warning sign	is illuminated if	ngine cranking is al it is once illuminate r SOC reaches 159	éd.	
	10%~10.5% Warning in a cluster as "Battery SOC is low" illuminated Battery discharge of the electric motor and HSG is prohibite				•				
Critical low	9.5%~10%		Battery discharge of A/C and LDC is prohibited. Vehicle speed is limited.					ted.	
	6%~9.5%	, D	Warming in	n the cluste	er as "Do not	drive"			
	5%~6% High voltage battery relay is switched off.								
	~5% Vehicle stops operating.								

In addition to the battery protection function, we classify the high voltage battery strategy as 3-band so that the hybrid control system obtains high fuel economy and system protection. Based on these criteria, the set point of the engine start/stop and the engine operating point are calibrated to keep the SOC in the normal SOC band.

Normal band

Within this band, the hybrid control system can mainly focus on the fuel economy rather than the system protection. Various calculations and strategies are employed to maximize the vehicle operation. All control parameters such as the set point of the engine start/stop, engine operating point, shift pattern, etc. are selected to the optimal values considering the driving environment. The kinetic energy of the vehicle is converted into electric energy as much as possible when braking. As the battery SOC approaches either the critical high or critical low band, the control parameters are adjusted in order to prevent the SOC from escaping the normal band in advance.

Critical low band (refer to AECD "11.06.02.01 SOC management - critical low band")
 The hybrid system in the critical low band is controlled to charge the high voltage battery much faster than the low band. The methods used to raise the SOC become more aggressive the lower the SOC becomes.


• Critical high band (refer to AECD "11.06.02.02 SOC management - critical high band")

In the band of critical high, the hybrid system is controlled to consume the electric energy as much as possible so that the SOC moves into the normal range quickly.

SOC band selection

Below is a figure that demonstrates the SOC band selection. The transition within the Normal band is not fixed, but is variable ("Delta"). Items considered are road slope, auxiliary electric power consumption, ambient correction factor, vehicle average speed, among others.

Band	Activating/Deactivating condition
Critical high	Activating condition: SOC ≥ 95% Deactivating condition: SOC ≤ 92% * No correction of environment condition
Approaching critical high	Activating condition: SOC ≥ 86% Deactivating condition: SOC ≤ 75% * No correction of environment condition
Main	Activating condition: SOC \geq (43 + Delta*)% Deactivating condition: SOC \leq (38 + Delta)%,
Approaching	Activating condition: SOC ≥ 15%
critical low	Deactivating condition: SOC ≤ 10%
Critical low	Activating condition: SOC ≤ 10% Deactivating condition: SOC ≥ 15% * No correction of environment condition

Delta is calculated by below. Delta* = Map1 + Map2

Map 1: correction value of vehicle resistance index derived from ambient correction factor and auxiliary electric power

Vehicle resistance index ¹⁾	0	1	2	3	4	5
Correction value (%)	0	0	0	0	2	3

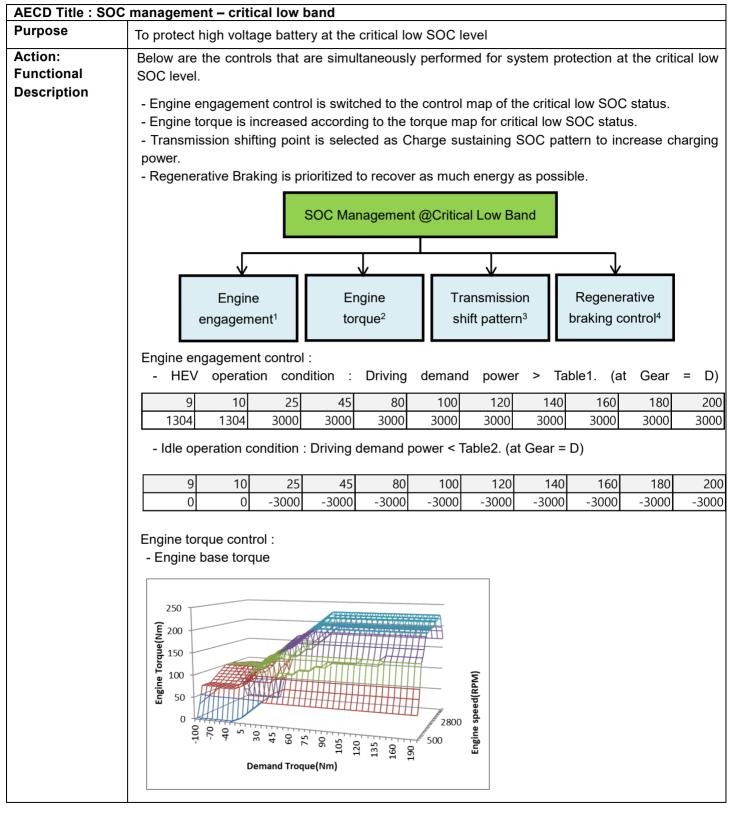
1) Vehicle resistance index

an index of the vehicle load according to auxiliary electric power and ambient correction factor.

Vahiela rasis	Vehicle resistance index		Auxiliary electric power(w)				
Verlicie resis	venicle resistance index		1600~5600	5600~			
Ambient	0.9~1.0	0	1	3			
correction	0.8~0.9	2	3	3			
factor	~0.8	3	4	5			

Map 2: correction value in consideration of vehicle speed index and road slope level.

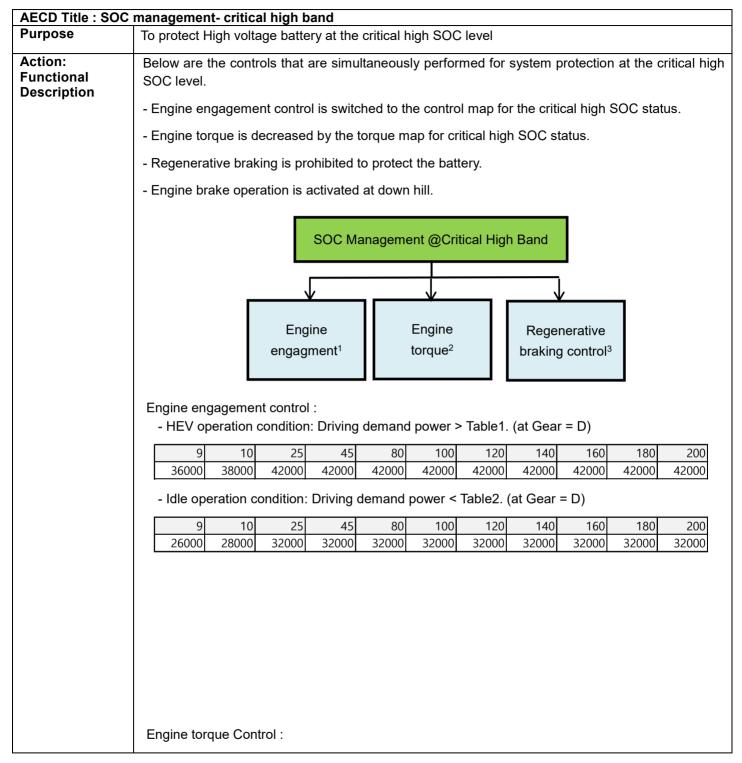
Correction value (%)			Vehicle speed index ²⁾								
Correction	i value (70)	0	1	2	3	4	5				
	-4	-3	-3	-3	-5	-5	-5				
	-3	-3	-3	-3	-5	-5	-5				
	-2	0	0	0	0	0	-3				
Road	-1	0	0	0	0	0	0				
slope level ³⁾	0	0	0	0	0	0	0				
level ³⁾	1	0	0	0	2	2	3				
	2	2	2	2	2	2	3				
	3	8	8	8	8	8	8				
	4	12	12	12	12	12	12				


2) Vehicle speed index

Average vehicle speed(kph)	0~11	11~25	25~65	65~78	78~95	95~
Vehicle speed index	0	1	2	3	4	5

3) Road slope level

Road slope (%)	~-12	-12~ -7.5	-7.5~ -3.7	-3.7~ -2.2	-2.2 2.2	2.2~3. 7	3.7~ 7.5	7.5~ 12	12~
Level	-4	-3	-2	-1	0	1	2	3	4


11.06.02.01 SOC management – critical low band

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

	X axis : Driving demand torque, y-axis: Engine speed
	Transmission shift pattern :
	- shift pattern for SOC Low
	'Oxygen sensor heating strategy before engine cold start' ⁵ is restricted due to relying on motor
	only traction.
Parameters	IN
(I/O)	- State Of Charge (SOC)
	OUT
	- SOC management band = 'critical low band'
	- Engine engagement ⁶ - Engine torque ⁷
	- Shifting pattern request ⁸
Entry	Activating Condition
Conditions	$SOC \le 10\%$
	Deactivating Condition
	SOC ≥ 15%
In-use	The situation of critical low SOC in the real world driving is not appearing except there is empty
Frequency	fuel condition or system has a problem. Also, cluster warning lamp is turned on at the critical low
	SOC band.
Emission	CO2 Emission is increased because engine operation is continuously maintained for vehicle
impact	protection.
Justification	G. Electric propulsion system protection
Reference	 Engine engagement and torque control strategy Engine engagement and torque control strategy
	3. Transmission shift pattern
	4. Regenerative braking control
	5. Oxygen sensor heating strategy before engine cold start
	6. Engine engagement and torque control strategy
	7. Engine engagement and torque control strategy8. Transmission pattern

11.06.02.02 SOC management- critical high band

	Image: space of the space of
	Regeneration brake is restricted in critical high SOC band. Engine brake operation (fuel cut off control) is activated to protect the high-voltage battery from over-charging risk.
Parameters (I/O)	IN - State Of Charge (SOC) OUT - SOC management band = 'critical high band' - Engine engagement ⁴ - Engine torque ⁵ - Shifting pattern request ⁶ - Regenerative braking control is prohibited
Entry Conditions	Activating Condition SOC ≥ 95% Deactivating Condition SOC ≤ 92%
In-use Frequency	The situation of critical high SOC in the real world driving is not appear except long distance downhill (It happens to drive about 11km on Big bear downhill side).

	2) 00 10 0 6 3) 00 10 10 10 10 3) 00 10 10 10 10 10 3) 00 10 10 10 10 10 10 3) 10 10 10 10 10 10 10 10 10 100 10
Emission impact	Emission and CO2 is improved by EV driving.
Justification	G. Electric propulsion system protection
Reference	 Engine engagement and torque control strategy Engine engagement and torque control strategy Regenerative braking control Engine engagement and torque control strategy Engine engagement and torque control strategy Engine engagement and torque control strategy Transmission pattern

11.06.03 Control priority

Fuel economy of a vehicle is affected by the driving environment. In particular, HEVs have two different power sources, and it is necessary to optimize the powertrain control in consideration of the driving environment. Thus, this function considers the most influential factors of the fuel economy of the HEV and determines the priority into five levels. The purpose of the prioritization is to determine the optimal set point of the engine start/stop and the optimal engine operating point. This prioritization sets a target that is used in other strategies.

High heating load

In this mode, there is no electric device for heating cabin; therefore, the system is reliant on the thermal energy of the engine coolant. To minimize energy loss, such as frequent engine start/stop and idle operation during winter season, control parameters are optimized focusing on the high load situation for heating the cabin.

High auxiliary electric system power

Auxiliary electric system primarily consists of a high voltage A/C compressor, a low DC to DC converter, a high voltage electric oil pump (AT only), and A/C compressor consumption power. In summer season, the fuel economy is worse than spring or fall season due to additional energy consumption from A/C. In order to minimize the energy loss due to the A/C operation, control parameters are optimized in consideration of the A/C operation situation so that the SOC remains in the normal range.

High traction driving

In this situation, higher traction loads are requested by the hybrid control system. An example is a high acceleration event. Control parameters are optimized in a similar manner to the high auxiliary electric system load.

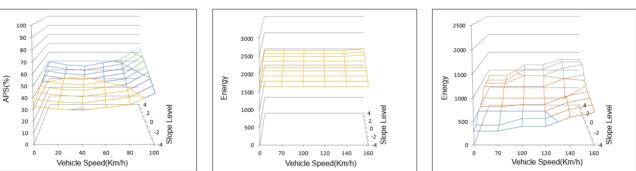
High speed driving

At high speeds, the vehicle travels at a constant speed primarily at high speeds. The control parameters are optimized in consideration of such driving characteristics.

• Urban driving

In the urban driving, the vehicle travels at a relatively low speed and repeats acceleration and deceleration, which causes the inefficient engine operation such as frequent start and stop of the engine. The control parameters are optimized in consideration of such driving characteristics.

Selection mechanism of control priority



	Activating condition	Deactivating condition
High heating load	- Blower switch: on and temperature condition	- Blower switch: off or temperature condition
	target temp. of FATC – ambient air temp. > 22°C	target temp. of FATC – ambient air temp. $\leq 17^{\circ}$ C
High aux. power	 Auxiliary electric power > 1.25 kW * Normal operation of auxiliary electric power consumption is 300~400W 	- Auxiliary electric power ≤ 1.30 kW
High traction driving	 Acceleration pedal position ≥ Map #1 And the number of high acceleration request for 60 seconds ≥ 2 	 Acceleration pedal position ≤ Map #1 And the number of high acceleration request for 60 seconds < 2
	 Driving demand energy per unit distance ≥ Map #2 * Driver demand energy = Target engine energy + Target motor energy 	- Driving demand energy per unit distance ≤ Map #3
High speed driving	- Average vehicle speed for 1 minute > 65KPH(40.4MPH)	- Average vehicle speed for 1 minute ≤ 63KPH(39.1MPH)

Map #1

Map #3

Hybrid control regarding control priority

- Priority #1: High heating load
 - ① Engine engage:

HEV operation is prioritized over idle operation in order to get sufficient thermal energy for heating the cabin.

This means that engine and electric motor are both engaged.

2 Engine torque:

Engine torque is decreased from the normal engine optimal operation value to prevent overcharging of the battery.

- ③ Transmission shift pattern: set as ECO pattern (default setting).
- Priority #2: High auxiliary load
 - ① Engine engage:

HEV operation is prioritized compared to urban driving to compensate the auxiliary power.

2 Engine torque:

Engine torque is increased from urban driving to maintain the high-voltage battery SOC considering the high auxiliary load

③ Transmission shift pattern:

Transmission shift point is basically delayed to prevent discharging of the battery by high auxiliary load.

- Priority #3: High traction driving
 - ① Engine engage:

HEV operation is prioritized compared to urban driving to satisfy driver's high demand power.

② Engine torque:

Engine torque is increased from urban driving to maintain the high-voltage battery SOC considering the high traction driving.

③ Transmission shift pattern:

Transmission shift point is delayed from the urban driving to maintain the high-voltage battery SOC considering driver's high demand power.

- Priority #4: High speed driving
 - 1 Engine engage:

HEV operation is prioritized compared to urban driving to prevent frequent engine on/off.

2 Engine torque:

Engine torque is set in the same manner of the urban driving. RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised: ③ Transmission shift pattern:

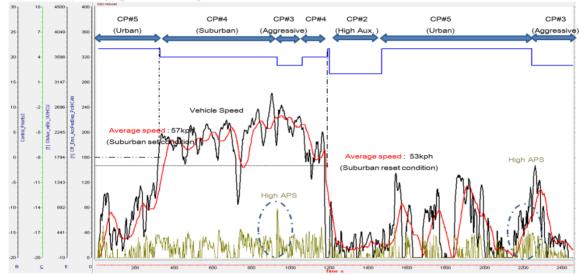
HWY shift pattern is applied and it focus on preventing busy shift and discharging of high voltage battery on the high speed. The hysteresis between up-shift line and down-shift line is expanded, and higher gear upshift is delayed.

- Priority #5: Urban driving
 - 1 Engine engage:

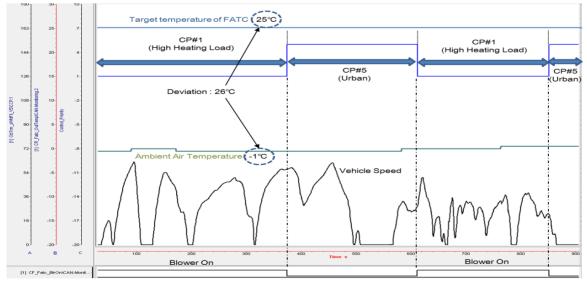
The starting point of the engine optimized for the stop & go driving conditions is determined.

② Engine torque:

Engine torque is set on the optimal operating torque.

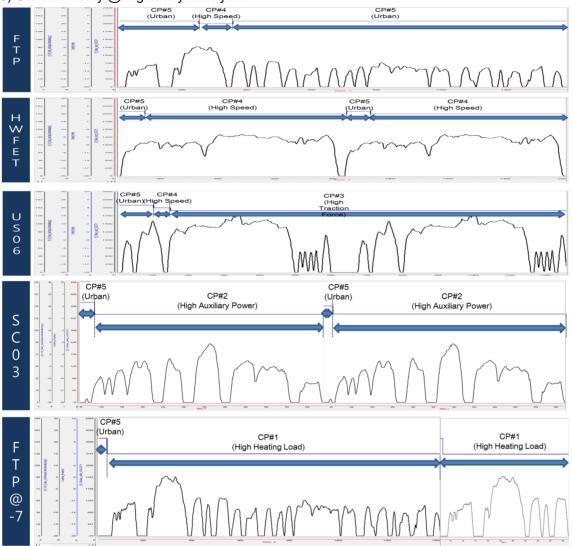

③ Transmission shift pattern:

Transmission shift pattern is set to ECO pattern.


Control Priority observed in regulatory test cycles

Control Priority	Related cycles				
	FTP	HwFET	US06	SC03	FTP@-7
Urban	Х	Х	Х	Х	
High speed	х	х	Х		
High traction force			Х		
High auxiliary power				Х	
High heating load					Х

1) Control priority @ Real driving test



2) Control priority @ Real driving test

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

3) Control Priority @ regulatory test cycles

11.06.04 Engine engagement and torque control strategy

This function defines the engine operation mode as EV, HEV, idle, and engine brake, and controls the engine system accordingly. In order to determine the operation mode, it is necessary to consider certain conditions, such as control priority and high voltage battery SOC management strategy. In addition, system demands such as emission and system protection are considered. The following figure describes each engine operation mode briefly.

Mode	Description	Power flow
EV operation (Engine Off)	Run only on electric motor Engine clutch is not engaged	
HEV operation	The engine and the electric motor are both engaged and transmit power to drive the wheels Engine clutch is engaged. Engine operates part load or full load regarding the driving demand	
Engine brake operation	The engine transmits the negative torque to the wheels. Fueling is cut off. Engine clutch is engaged	
Idle operation	The engine is operating at a set speed. Engine clutch is disengaged.	

EV operation

In the EV operation, the vehicle is driven by the electric motor. In order to separate the engine from the drive shaft, the engine clutch is not engaged.

HEV operation

In the HEV operation, the engine clutch is engaged so that the engine and the electric motor are used to drive the vehicle simultaneously. The following items list situations that typically require the HEV operation.

• HEV operation based on traction energy

```
RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1
Issued : 12-8-2023
Revised:
```

When the driving demand energy exceeds energy threshold of the engine-on, the HEV operation is activated. The threshold of the engine-on is determined by the high-voltage battery management strategy, the control priority, among others.

• HEV operation to delay the engine disengagement

The purpose of delaying engine disengagement under no input of an accelerator is to avoid frequent enginestart/stop and charge the high voltage battery at high engine efficiency. The delay time to disengage the engine is determined by the control priority, high-voltage battery management strategy, vehicle, etc.

• HEV operation for the engine management

The ECU may also request engine warm-up. For further information, refer to <u>'AECD:11.04.10 Engine warm-up</u> <u>strategy'</u>. In that instance, the HEV operation is prioritized.

• HEV operation during cabin heating request

When the full automated temperature control (FATC) requests the engine-on for heating the cabin, the HEV operation is activated as much as possible rather than the idle operation to minimize inefficient engine operation.

• HEV operation in High Load

When the hybrid system needs increased power output of the engine as described in <u>'AECD: 11.06.04.05</u> <u>HEV Operation in High Load'</u>, HEV operation is activated, and enrichment request for torque demand is transmitted to the ECU.

Idle operation

In the idle operation, the engine operates at a specific RPM. Instead, the driving demand is realized by the electric motor only. In order to separate the engine from the drive shaft, the engine clutch is not engaged. The following items list situations that typically require the idle operation.

• Idle operation for heating the catalyst and warming-up the engine coolant.

This operation is described in the section, <u>'AECD:11.04.10 Engine warm-up strategy'</u>

• Idle operation for cabin heating

The heating system monitors the cabin and ambient temperature to determine whether the engine needs to be engaged.

• Idle operation for charging the high voltage battery

When the SOC of the high voltage battery is less than the predetermined value, the engine is started to charge the high voltage battery in order to maintain the SOC within the normal range. For further information, refer to <u>'11.06.04.03 Idle operation on charging high voltage battery'</u>.

Idle operation for maintenance and test mode

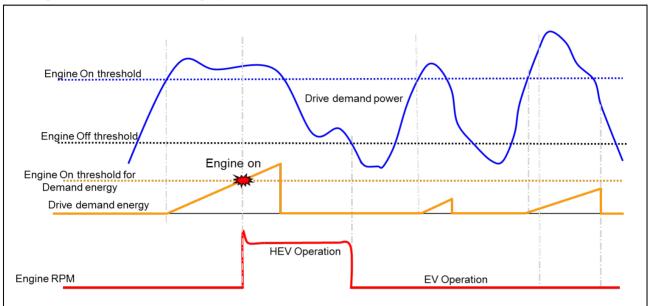
- Idle operation for checking the engine start: This function is to check the engine start when the driver applies the accelerator pedal when the shift lever is in the "Park" position.
- Idle operation for user-charge mode:

This function is activated when the driver purposefully wants to charge the high voltage battery. The idle operation is activated when the driver applies the accelerator pedal and the brake pedal simultaneously when the vehicle is in the "Park" position.

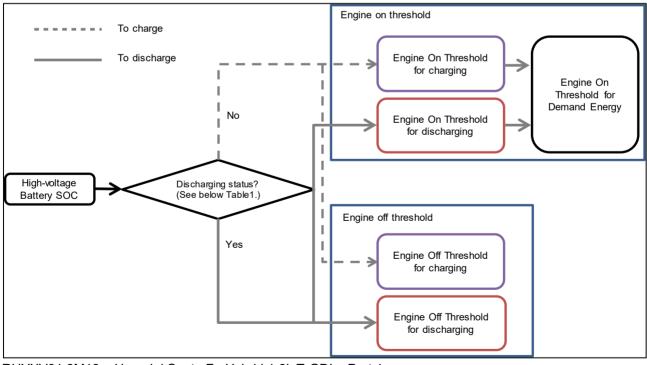
• PHEV engine maintenance mode(N/A)

HEV or idle operation for system limitation

As described in sections <u>'AECD:11.06.04.06</u> Idle operation at extreme battery discharge condition', <u>'AECD:</u> <u>11.06.04.07 HEV operation request at extreme battery discharge condition'</u>


When the maximum available power of the high voltage battery and the electric motor is limited due to extreme low or hot temperature, the engine operates to satisfy the driving demand and protect the hybrid system.

Engine brake operation

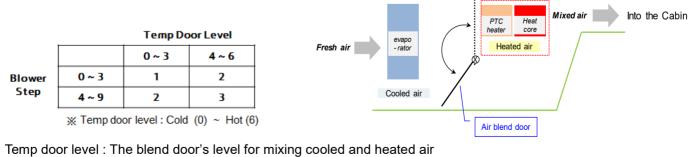

Engine brake operation (Fuel cut-off) occurs when the engine brake is required to generate a negative torque on the drive shaft. This mode is entered in this instance. For further information, refer to section <u>(AECD: 11.06.02.02 SOC</u> <u>management - critical high band</u>)

11.06.04.01 HEV operation based on traction energy

The HEV operation decision is based on the SOC management value, control priority, and battery charge/discharge using the driver demand power. To avoid the frequent engine on/off of the engine, the demand energy level is monitored.

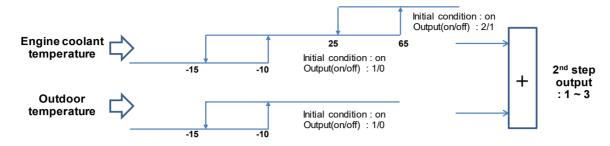
See engine on/off determination graph below:

RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised:

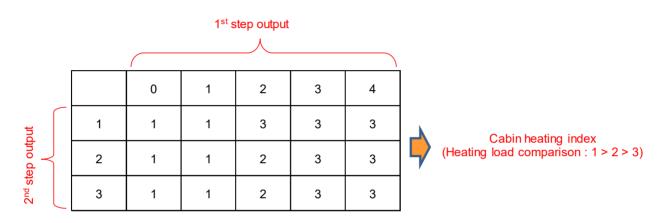

Table1. Criteria for charge and discharge strategy in main operation band of the battery.

	SOC				
Control priority	Cabin heating index ¹⁾	Vehicle speed index ²⁾	Engine coolant index ³⁾	Entry condition for charging	Entry condition for discharging
High	1			40	50
heating	2			40	50
load	3			45	50
High		0		52	57
auxiliary		1		52	57
power		2		52	57
		0		45	53
High traction		1		45	53
		2		45	53
		0		45	55
High speed		1		57	70
		2		45	60
Lirbon			0	63	76
Urban			1	63	76

1) Cabin heating index is calculated by the following 3-step according to heating load.


1st step

Index calculation by combination of blower step and temp door level as below table.


Temp door level : The blend door's level for mixing cooled and heated ai RHYXV01.6M13 – Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-8-2023 Revised : 2nd step

Index calculation by combination of engine coolant temperature and outdoor temperature as below.

• 3rd step

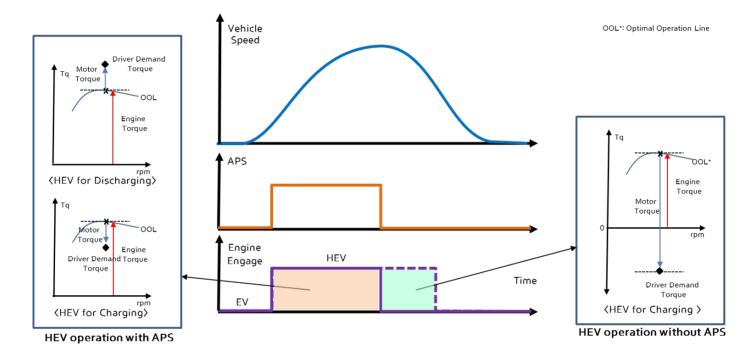
Index calculation by combination of 1st step and 2nd step outputs as below table.

2) Vehicle speed mode is divided into three groups as vehicle speed index

Average vehicle speed [kph]	0~13	13~27	27~67	67~80	80~97	97~
Vehicle speed index	0	0	0	1	2	2

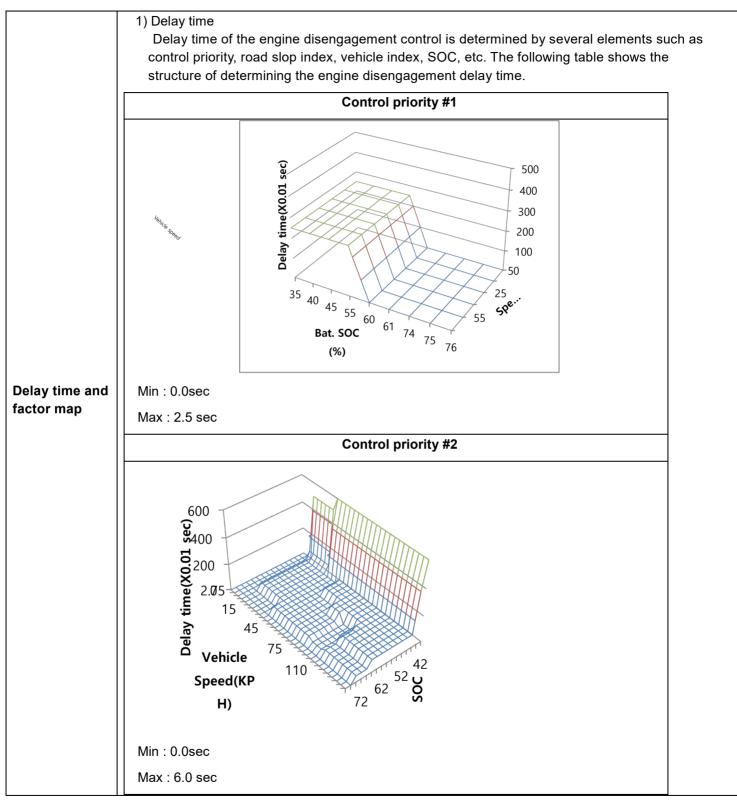
3) Engine coolant Index is determined by the following inequalities

Engine coolant Index 0: Engine coolant temperature < Off threshold

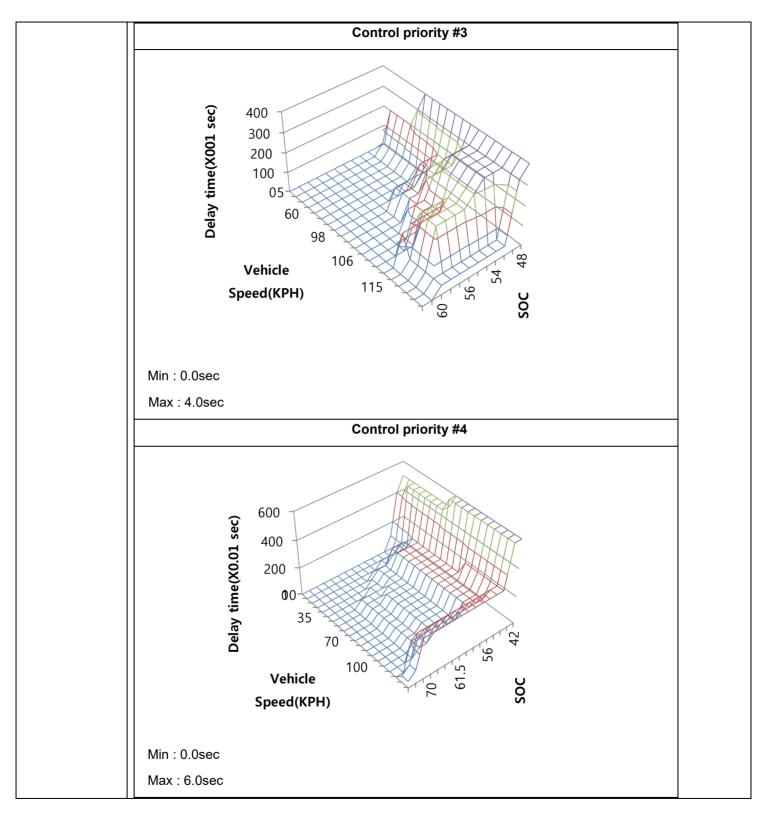

Engine coolant Index 1: Engine coolant temperature > On threshold

Initial value of 'Engine coolant index' is 1

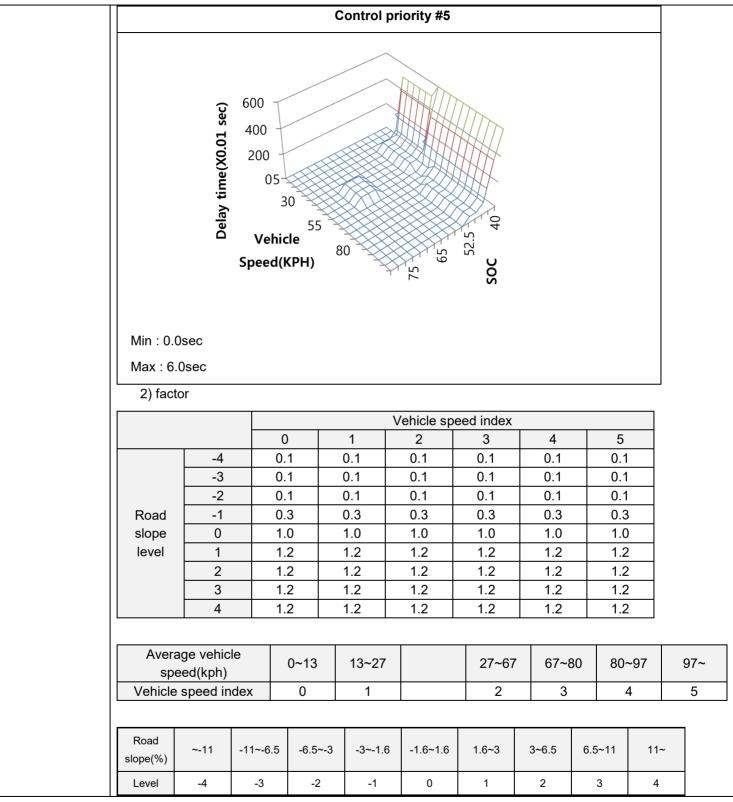
Ambient temperature	-10	-4	0	5	10	15	20	25	30	35
On threshold	94	94	94	94	94	94	94	94	94	94
Off threshold	30	30	30	30	30	30	30	30	30	60


11.06.04.02 HEV operation to delay the engine disengagement

The purpose of delaying engine disengagement under zero acceleration pedal position is to avoid frequent engine-start/stop and charge the high voltage battery at high engine efficiency. In HEV operation, the engine is engaged to the drive shaft so that the electric motor can generate electricity with engine power output. Also, the electric motor has larger generating capacity than the HSG. This control can also prevent inefficient engine operation by repeated engine on/off when driving demand changes frequently.

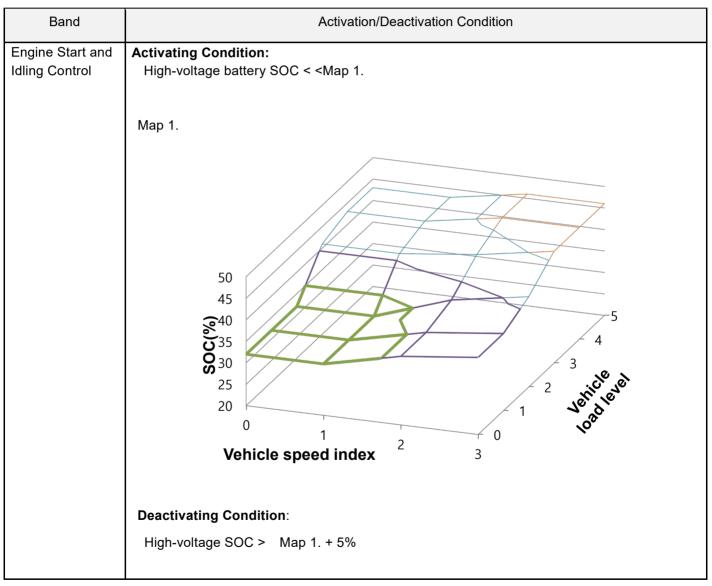


.


Title : HEV opera	ation to delay the engine disengagement
	Activating condition
	- Acceleration pedal position = 0% - 1300rpm < motor speed < 4300rpm
	- and shift lever position = 'Drive'
Entry condition	 and engine clutch state = 'lock-up state' and {Control priority ='High traction' } and High-voltage battery SOC < 45% and {Control priority ='Urban' or 'High speed' or 'High heating load' or 'High auxiliary power'} and High-voltage battery SOC < 48% and HEV mode switch is not CD mode(N/A)
	Deactivating condition
	- Motor speed > 4300 + 200(hysteresis) rpm
	- or Motor speed < 1300 - 150(hysteresis) rpm
	- or {Control priority ='High traction'} High-voltage battery SOC > 45% + 5%
	 or {Control priority ='Urban' or 'High speed' or 'High heating load' or 'High auxiliary power'} High-voltage battery SOC > 48% + 5% or Gear step <= '2nd step' or Brake Torque >= 200Nm or time after activating condition > delay time map¹) * factor

RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:

RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:



11.06.04.03 Idle operation on charging high voltage battery.

As the SOC approaches the critical low band, the hybrid control system prioritizes a strategy to increase the SOC closer to the desired point in the Normal range. The order of the strategy is below:

Strategy:

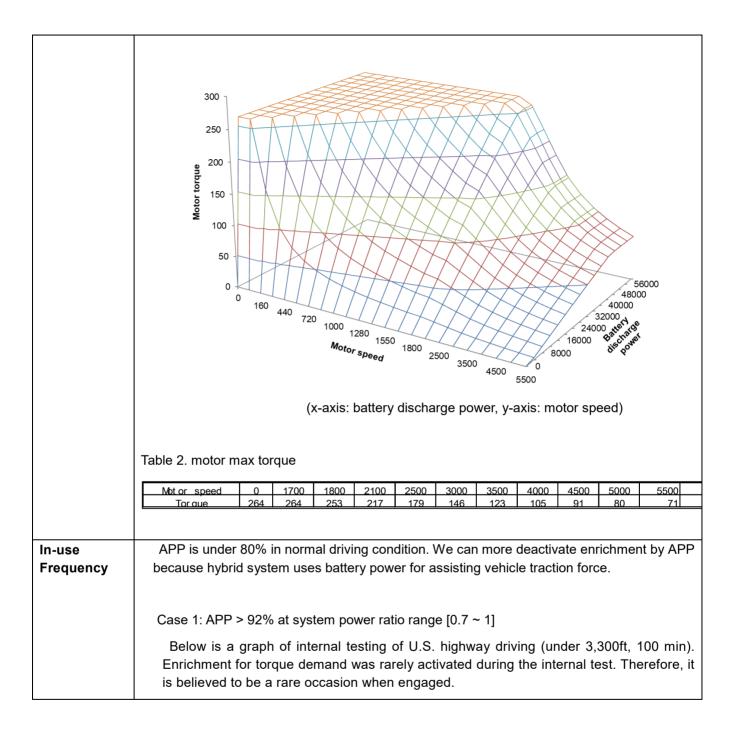
- Driving mode: Idle operation
- Engine target power = 8.5kW
- Engine torque = Engine target power / (engine speed * 2π / 60))
- Engine target speed = 1280 rpm

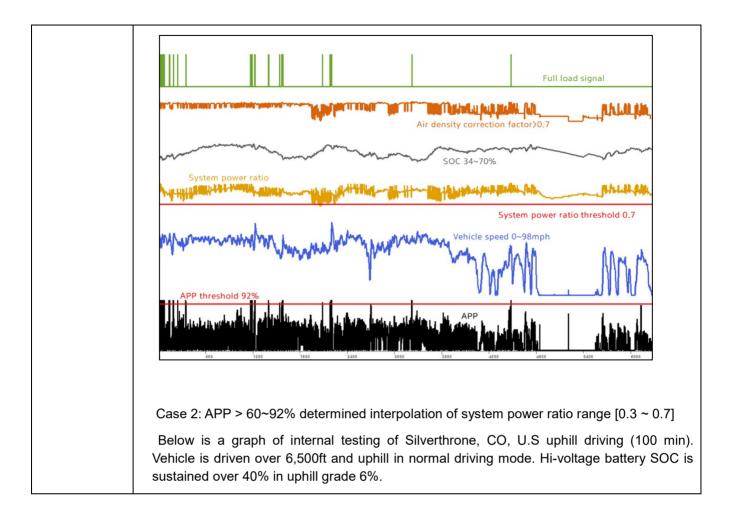
RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:

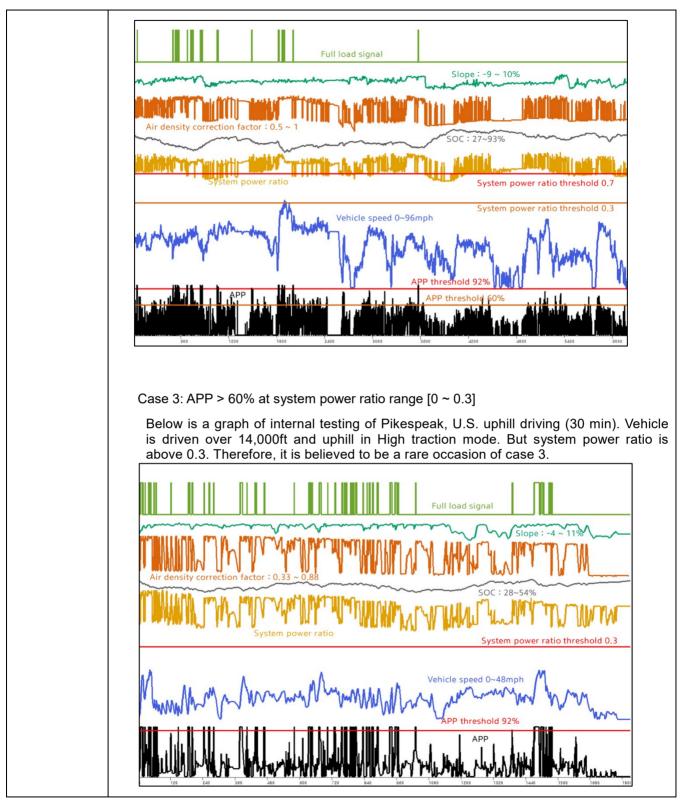
11.06.04.04 Idle and HEV operation during the catalyst heating request

When there is a request from the ECU to heat the catalyst, two main strategies are used as described in section '<u>AECD: 11.04.05 Catalyst heating strategy'</u>. In brief, the catalyst heating request is prioritized and the engine is used to heat the catalyst. The hybrid control system turns on the engine to effectuate the fast heating of the catalyst.

Strategy 1: Idle operation

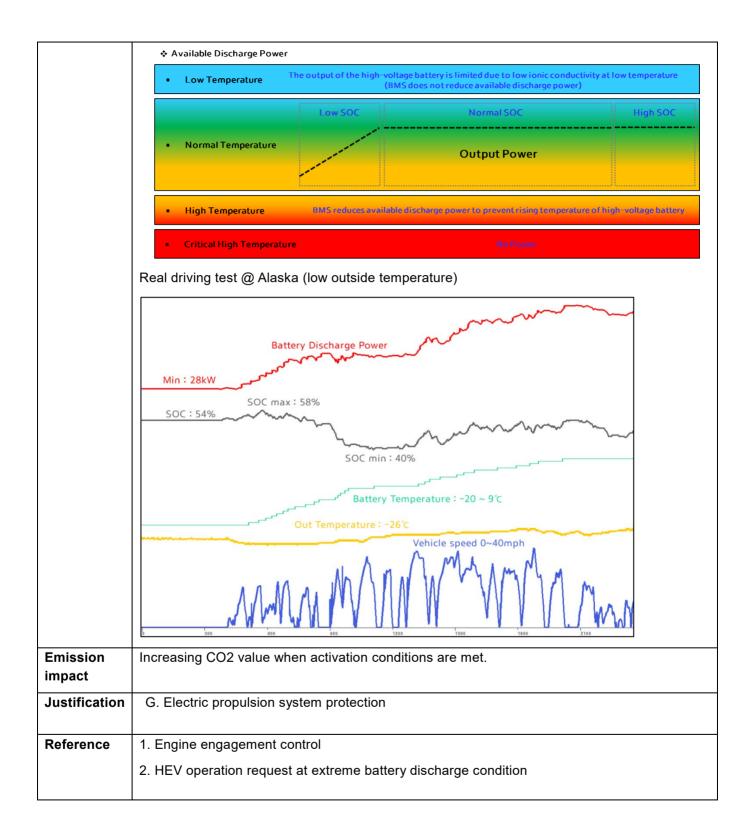

- Engine target power = 3.1kW
- Engine torque = Engine target power / (ENG SPD x $2\pi/60$)


Strategy 2: HEV operation

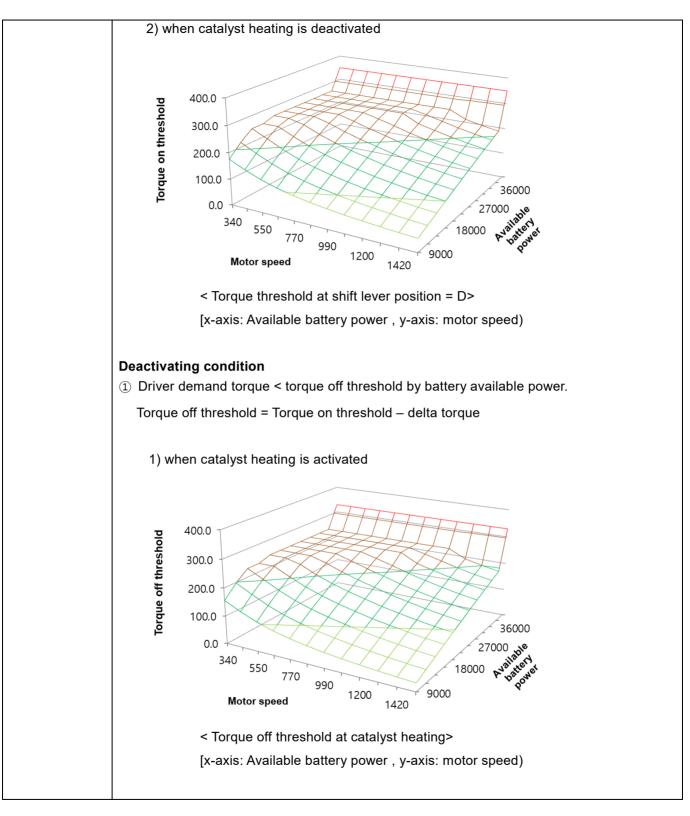

11.06.04.05 HEV operation in high load

AECD Title: I demand)	HEV operation in high loa	ad. (Rela	ited to AE	CD: 11.02	.01.04 Enr	ichment fo	or torque
Purpose	When the driver needs the traffic, uphill and passing a		-	•	•		erging into
	The power of the engine is and the power of the motor			•		intake air te	mperature
Action: Functional	Enrichment request is activa	ated and t	ransmitted	to ECU ¹			
Description	Depending on the high-vo enrichment entry is different the A/C and mitigate the en overload.	iated. In p	particular, if	high-voltage	e SOC band	is critical lo	w, turn off
Parameters (I/O)	 IN Accelerator pedal positio Air density correction factor Battery discharge available Motor speed High-voltage battery SOC Transmission available n Engine max power Motor max power Motor max power OUT Enrichment request for total 	tor from E ble power C (SOC) nax powe	r				
Entry	Activating Condition						
Conditions	Enrichment request is set when APP > APP On-threshold for enrichment If system power ratio* < 0.7, APP On-threshold for enrichment < 92% Else if system power ratio > 0.7, APP On-threshold for enrichment = 92%						
	APP On-threshold	0.0	0.5	0.7	0.0	0.0	4.0
	System power ratio	0.3 60	0.5 75	0.7	0.8	0.9 92	1.0 92
	APP	00	75	92	92	θZ	92
	Deactivating Condition						
	APP Off-threshold						

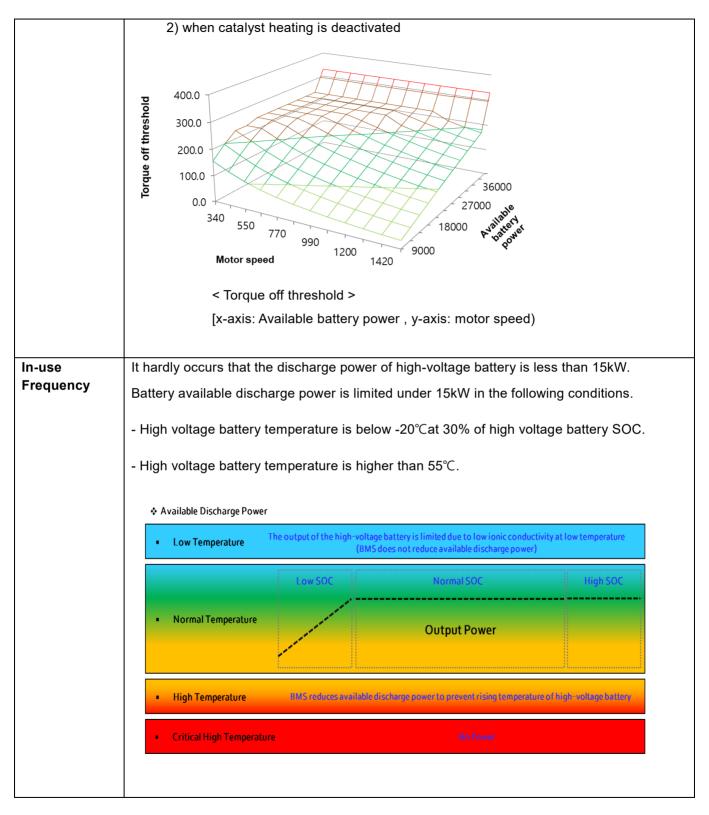
							-					-
S	ystem po	ower ratio	0.3	3	0.5	0.7	7	0.8	0	.9	1.0	
	APP)	50)	64	80)	80	8	30	80	
	* system power ratio(Map1) system power ratio = system available power ¹⁾ @real time / system max power ²⁾ @ldeal											
System	ower ratio	SOC@20°C				Air densit	y correct	ion factor	from ECU		•	
System p		-	0.50	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1
	0.00	10%	0.34	0.41	0.45	0.48	0.52	0.55	0.59	0.62	0.66	0
	0.20	<u>12%</u> 13%	0.41 0.47	0.48	0.51	0.55	0.58	0.61	0.65	0.68	0.72	0
	0.40	13%	0.47	0.55	0.59	0.63	0.66	0.69	0.73	0.74	0.80	0
Motor	0.45	14 %	0.48	0.57	0.60	0.64	0.67	0.70	0.73	0.77	0.80	0
dreation	0.60	18%	0.53	0.60	0.63	0.67	0.70	0.73	0.74	0.80	0.84	0
ration	0.00	21%	0.56	0.63	0.66	0.70	0.73	0.73	0.80	0.84	0.88	
	0.90	28%	0.63	0.70	0.73	0.77	0.80	0.83	0.87	0.90	0.94	d
	0.95	30%	0.64	0.71	0.74	0.78	0.81	0.84	0.88	0.91	0.95	0
	1.00	35%	0.66	0.73	0.76	0.80	0.83	0.86	0.90	0.93	0.97	1
=	Air den: + Motor	railable pov sity correc power der ax power@	tion fac ation fa	tor from Ictor ³⁾ *	n ECU * Motor r	nax pov	ver		wer			
3) motor power deration			n factor = motor torque(MAP2) / motor max torque(Table2)									
				M	ap 2. M	otor tore	que					



RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:


Emission	Increasing Emission value when activation conditions are met.
impact	Case 3 is extremely rare condition.
	In order to protect to battery, full load is activated.
Justification	G. Electric propulsion system protection
Reference	1. Enrichment for torque demand 2. Enrichment for torque demand

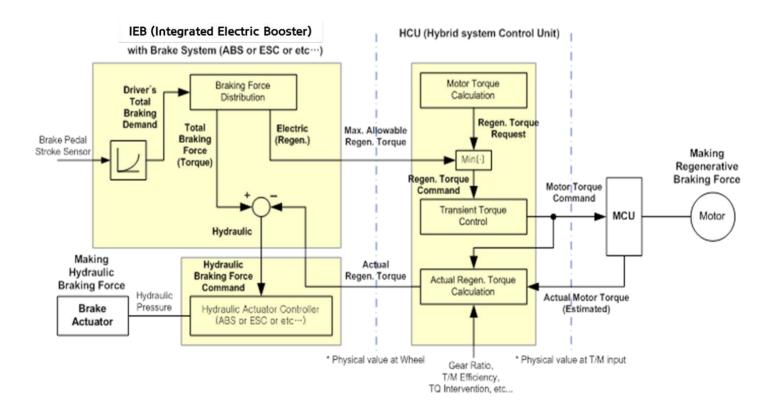
Purpose	To provide traction power in the low speed range when the high-voltage discharge plimited.					
	* the maximum discharge power is varied by SOC and temperature of high-voltage battery					
Action: Functional	1. Engine idle operation is activated.					
Description	2. To secure the motor driving force, demand charge power is determined to the maximum charge amount HSG available					
	demand power at extreme battery discharge condition =					
	Engine speed(RPM) 800 920 1200 1420 1600 3000					
	Power(kW) 3 5 8.504 8.504 0					
(I/O)	 IN Battery discharge available power (BATDCHPWR) Vehicle speed Motor speed Brake switch signal OUT Engine engagement control¹ Demand power at extreme battery discharge condition² 					
Entry Conditions	Activating Condition Battery discharge available power (BATDCHPWR) < 18kW Deactivating Condition Battery discharge available power (BATDCHPWR) > 20kW					
In-use Frequency	It hardly occurs that the discharge power of high-voltage battery is less than 18kW. Battery available discharge power is limited under 18kW in the following conditions.					
	- High voltage battery temperature is below -20°C at 30% of high voltage battery SOC					
	- High voltage battery temperature is higher than 57℃.					



AECD Title: HE	EV operation request at extreme battery discharge condition.
Purpose	To prioritize HEV operation due to system limitation
	* the maximum discharge power is varied by SOC and temperature of high voltage battery
Action: Functional Description	If the engine clutch can be engaged, HEV operation is activated. Otherwise idle operation is activated.
Parameters (I/O)	IN - Shift lever position - Vehicle speed - Motor rotational speed - System demand power - Battery discharge available power - Motor discharge power - Auxiliary electric power - demand power at extreme battery discharge condition ¹
	- Engine engagement control ²
Entry	Activating Condition
Conditions	① Driver demand torque > torque on threshold by battery available power.
	Battery available power = Battery discharge available power + demand power at extreme battery discharge condition ¹ –
	Auxiliary electric power
	1) when catalyst heating request is activated
	b b b c d d d d d d d d d d
	< Torque threshold at catalyst heating>
	[x-axis: Available battery power , y-axis: motor speed)

11.06.04.07 HEV operation request at extreme battery discharge condition

RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:


	Real driving test @ Death valley
	SOC max : 58%
	SOC min : 26% Battery Temperature : 47~53°C
	Out Temperature : 50~30°C
	HEV mode
Emission impact	Increasing CO2 value when activation conditions are met.
Justification	G. Electric propulsion system protection
Reference	 Idle operation at extreme battery discharge condition Engine engagement control

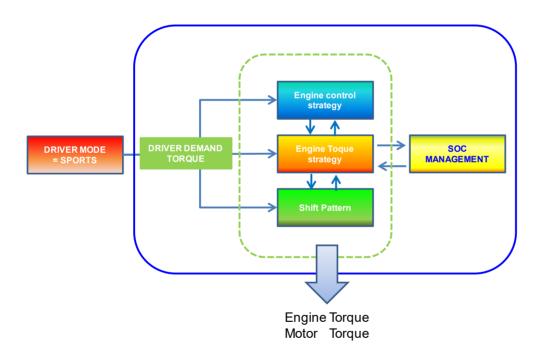
11.06.05 Regenerative braking control

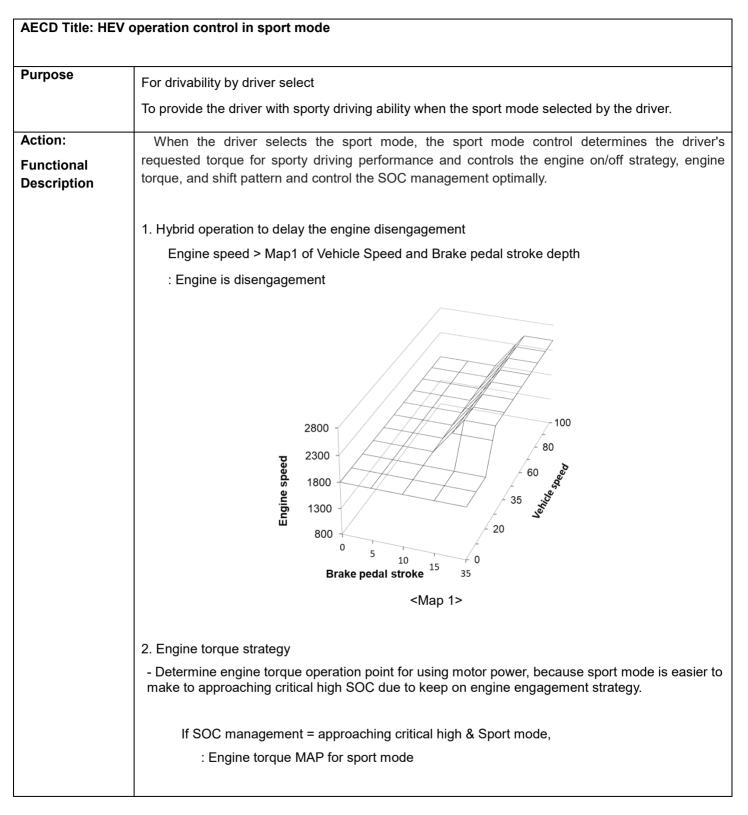
The hybrid system provides regenerative braking through an electric motor. An ICE vehicle performs braking by converting kinetic energy to thermal energy through a friction brake, but this system has an electric motor that can serve as a generator: converting kinetic energy to electric energy, and stores the converted energy in the high voltage battery. However, if a driver requests braking torque larger than is available through regenerative torque, the braking force is provided by a traditional friction brake. The regenerative braking system is configured as follows:

The Integrated Electric Booster (IEB) consists of several braking systems. It is responsible for controlling the brake system, and calculates the total braking torque based on the depth of braking pedal. Then, it distributes total braking torque to hydraulic torque (for the friction brake) and regenerative torque.

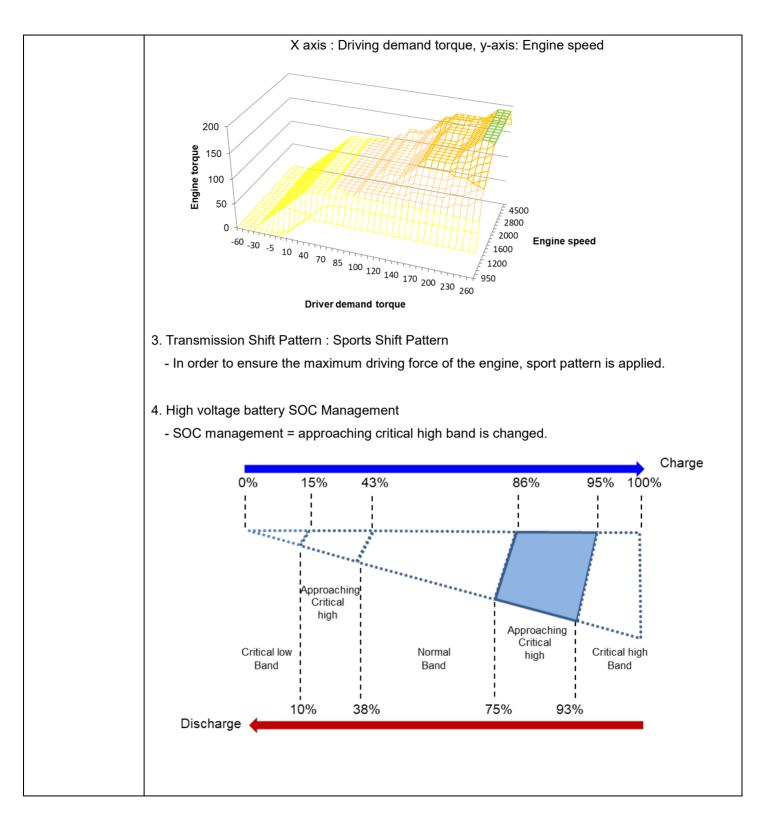
HCU (Hybrid Control Unit) receives the calculated regenerative torque from IEB and transmits a torque command with consideration for electric power system (eg. Motor, Battery). With the command, MCU (Motor Control Unit) performs a power generation control for a motor and then transmits actual torque to HCU. HCU calculates actual regenerative braking and then transmits the result to IEB, and IEB calibrates hydraulic braking force with total braking force and actual regenerative braking force.

11.06.06 Driver selectable mode

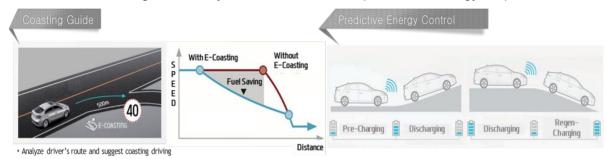

11.06.06.01 HEV operation control in sport mode


Multimode is configured as ECO/SPORT/MY DRIVE/SNOW modes. The ECO mode is set to default mode. The other modes are optional features provided to the driver.

When the driver selects the SPORT mode, the selected mode control determines the driver's requested torque for required performance and controls the engine on/off, engine torque, and shift pattern and control the SOC management optimally.

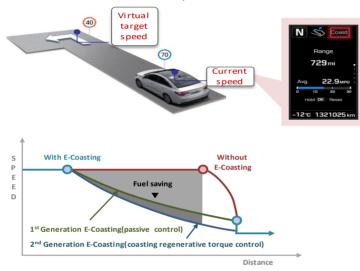

When the driver selects the MY DRIVE mode, the drive mode depends on the powertrain mode selected by the driver. The driver can select ECO/SPORT/SMART for MY DRIVE mode for MY DRIVE mode from the infotainment. When driver select SMART mode for MY DRIVE mode, most of the powertrain control is same as the default ECO mode except shift pattern, the shift pattern is automatically selected as one of the aforementioned ECO and SPORT modes by TCU in accordance with determining driver's behavior based on the fuzzy logic which has inputs as accelerator position, shift lever position, G-sensor and vehicle speed.

When the driver selects the SNOW mode, the selected mode prevents vehicle slip of the vehicle through controlling the driver's demand torque, engine torque, and shift pattern.


RHYXV01.6M13– Hyundai Santa Fe Hybrid 1.6L T-GDI – Part 1 Issued : 12-08-2023 Revised:

Parameters	IN
(I/O)	- Driver selectable mode
	OUT
	- Engine engagement control ¹
	- Engine torque ²
	- SOC management – approaching critical high ³
Entry	Activating Condition:
Conditions	Driver select mode = 'Sports mode'
	Deactivating Condition:
	Driver select mode ‡ 'Sports mode'
In-use	When driver selects the sports mode. ECO mode is default.
Frequency	
Emission impact	CO2 would be increased. Worst case emission meets regulatory guidance.
Justification	F. Base operation
Reference	1. Engine engagement and torque control
	2. Engine engagement and torque control
	3. High voltage battery SOC management
	I

11.06.07 Eco-driving assistant system (Eco-DAS)


Eco-DAS provides fuel efficient driving information and energy control with drivers by GPS predicting driving route. The Eco-DAS consists of two technologies: coasting guide control and predictive energy control. The coasting guide control aims at maximizing fuel economy by coaching the driver on when to coast as well as adjusting coasting torque automatically. Predictive Energy Control, meanwhile, uses the navigation system to anticipate topographical changes on the road ahead and actively manage energy flow, seamlessly determining when its best to recharge the battery and when its best to expend stored energy to optimize overall efficiency.

11.06.07.01 Coasting guide control

The Coasting guide control provides the information when to coast based on looking ahead information from the navigation system and adjusts coasting regenerative torque so that the vehicle speed can reach the target speed.

- When the GPS predicts the situation that vehicle has to decelerate (heading to intersection, downhill, JC, IC, TG, Left/Right turn, etc.), it recommends driver coasting so the vehicle may not loss any unnecessary energy by braking or accelerating.
- 1st generation 'Coasting guide control' is just provide information (recommend driver coasting) with driver. However 2nd generation 'Coasting guide control' controls the coasting regenerative torque by using the information about target vehicle speed and current vehicle speed.

- When the driver sets the destination in the navigation, 'Coasting guide control' is only activated
- Activation condition
- 1) When driver set the destination in the navigation
- 2) And target point is located within 2km
- 3) And driver take off accelerator pedal
- 4) And driver doesn't press the brake pedal
- 5) And road slope (by G-value of the longitudinal sensor value) is less than 2.3%
- Deactivation condition
 - 1) When driver doesn't set the destination in the navigation
 - 2) Or target point is located over 2km
 - 3) Or driver presses accelerator pedal
 - 4) Or driver presses the brake pedal
 - 5) Or road slope (by G-value of the longitudinal sensor value) is higher than 2.3%

11.06.07.02 Predictive energy control – N/A

12.00Description of Vehicles Covered by Certificate and Test Parameters12.01Vehicle Parameters

Carline		58	59	
Model Name		Santa Fe Hybrid AWD	Santa Fe Hybrid FWD	
Vehicle Classification		LDV	LDV	
	Type, number and configuration of catalyst(s)	See Sec. 02.02	See Sec. 02.02	
Emission	EGR Type	Electronic	Electronic	
control System	Air pump type	N/A	N/A	
descripti on	Fuel system type	DFI	DFI	
	Intake air aspiration method	Turbocharger, Charge Air Cooler	Turbocharger, Charge Air Cooler	
	Other	-		
Engine Code		G4FT-AC	G4FT-AC	
Number of valves per cylinder		4	4	
Engine Displacement (L)		1.6	1.6	
Sales area		50-State	50-State	
Transmission and overdrive		AMS6 (Overdrive)	AMS6 (Overdrive)	
SIL		N/A	N/A	
Tire		255/45R20 (PIRELLI/KUMHO ^{*1}) 235/60R18 (GOODYEAR/ KUMHO ^{*1})	255/45R20 (PIRELLI/ KUMHO ^{*1}) 235/60R18 (GOODYEAR/ KUMHO ^{*1})	
N/V Ratios		32.3	32.3	
ETW(lb)		4750	4750 (20" tire) 4500 (18" tire)	
Elec. Dyno. Target Coefficient		Please refer to 12.02.01.	Please refer to 12.02.01.	
Fuel tank volume(gal)		17.7	17.7	
*1) Canad		1	1	

*1) Canada only

12.02 Test Parameters

12.02.01 Test Parameters

T/M Items			AMS6					
Model			Santa Fe Hybrid AWD Santa Fe Hybrid I			lybrid FWD		
ETW			4750	4750	4750	4500		
Tire			255/45R20 (PIRELLI / KUMHO ^{*1})	235/60R18 (GOODYEAR / KUMHO ^{*1})	255/45R20 (PIRELLI / KUMHO ^{*1})	235/60R18 (GOODYEAR / KUMHO ^{*1})		
	Elec. Dyno. Target Coefficient	А	39.616	35.974	38.829	31.781		
Single Roll		в	0.19265	0.06386	0.02779	0.03064		
		С	0.025583	0.024986	0.025199	0.024803		
Shift Schedule IDs		Please refer to 12.02.03						
Evap. Cod	Evap. Code		137M1G					
Canister	Flow Rate(g/hr)	15 (3DBL only) / 40					
Loading	Capacity (g)	137					
Running Loss Fuel Tank Temp.		Please refer to 12.02.05						
Transmission Test Mode(s)			EM: Sport FE: Eco					
Advanced technology system test mode(s)			N/A					

*1) Canada only

12.02.02 Engine Starting Procedures

Please refer to Common Section 12.02.02.

12.02.03 Shift Schedules

Please refer to Common Section 12.02.03.01

12.02.04 Transmission / Advanced Technology System Test Modes

Please refer to Common Section 12.02.04.

12.02.05 Running Loss Fuel Tank Temperature Profile

(C/O from 21MY Sorento Hybrid)

Fuel Temperature Profile tests were conducted according to "California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles," adopted August 5, 1999 (last amended September 2, 2015).

Test Vehicle Description

Vehicle	En sin s	T /N 4	Fuel	Tank	Fuel	
	Engine	T/M	Capacity.	Material	Туре	RVP
Sorento Hybrid	1.6L	AMS6	67L	Plastic	CARB LEV-III	7.2 psi

Ambient Conditions

PROCEDURE	DESCRIPTIONS	REQUIREMENTS
DRAIN &	Fuel : CARB LEV-III (RVP : 7.2psi)	6.9 ~ 7.2 psi
υπαιή α	Fuel Level : 26.8L (7.08Gal)	40% of Fuel Tank Volume
REFILL	Date & Time : 19:30, JAN 23, 2019	
	Odometer : 205mile	
	Date & Time : 19:40, JAN 23, 2019	
PARKING	Location: North Bourke, NSW	
	Orientation : South	
	Odometer : 208mile	
	Date & Time : 16:45, JAN 24, 2019	
DRIVING	Ambient Temp. 109.7 °F	Tamb,o >= 95°F
START	Road Temp. : 143.3°F	Tsur,I >= 135°F or Tsur-Tamb > 30°F
START	Cloud Cover : 0%	Cmax <= 25%
	Wind Speed : 11.0 mph	Wmax <= 15mph
	Date & Time : 17:56, JAN 24, 2019	
DRIVING	Ambient Temp. : 109.5 °F	Tamb,I >= Tamb,o-2°F
END	Road Temp. : 135.5°F	Tsur,I >= 135°F or Tsur-Tamb > 30°F
	Cloud Cover : 0%	Cmax <= 25%
	Wind Speed : 7.0 mph	Wmax <= 15mph

(Note) I: instantaneous measurement, o: initial measurement

Profile Data Summary

(Temp. = Temperature(°C)							
Fuel Tank Temperature							
Cycle Status	Actual Time (sec)	Fuel 1 (°C)	Fuel 2 (°C)	Fuel Average (°C)	Vapor Temp (°C)	Pressure (in H2O)	
Start first UDDS	0	39.7	39.9	39.8	39.9	0	
End first 505 sec	510	40.7	40.8	40.7	41.4	0.1	
End first UDDS	1380	42.6	42.6	42.6	43.7	0	
End first idle	1500	42.6	42.7	42.6	44	0	
End first NYCC	2100	43.8	43.9	43.8	44.1	0	
End second NYCC	2700	45.0	45.1	45.0	44.5	0	
End second idle	2820	45.1	45.3	45.2	44.4	0	
End second 505	3330	46.0	46.1	46.0	45.4	0.1	
End second UDDS	4170	46.9	47.0	46.9	46.1	-1.2	
End third idle	4320	46.8	47.0	46.9	46	0	

Ambient Condition							
Cycle Status	Actual Time (sec)	Ambient Temp (°F)	Road Temp (°F)	Delta Temp (°F)	Wind Speed (mph)	Cloud Cover (%)	
Start first UDDS	0	109.7	143.3	33.6	11.0	0	
End first 505 sec	540	108.7	143.1	34.4	7.0	0	
End first UDDS	1380	109.5	142.7	33.2	4.0	0	
End first idle	1500	109.8	142.5	32.7	6.0	0	
End first NYCC	2100	109.2	139.2	30.0	12.0	0	
End second NYCC	2700	109.1	138.0	28.9	5.0	0	
End second idle	2820	109.3	138.0	28.8	6.0	0	
End second 505	3300	107.7	138.3	30.6	9.0	5%	
End second UDDS	4140	109.0	135.5	26.5	2.0	0	
End third idle	4320	109.5	135.5	26.0	7.0	0	

Measured FTTP Data

Time	Fuel 1	Fuel 2	Fuel AV	Vapor	Pressure
[sec]	[°C]	[°C]	[°C]	[°C]	(in H2O)
0	39.9	39.7	39.8	39.9	0.0
30	40.0	39.8	39.9	40	-0.1
60	40.0	39.8	39.9	39.9	0.0
90	40.0	39.9	40.0	40	0.1
120	40.1	39.9	40.0	40.1	0.0
150	40.1	40.0	40.1	40.2	0.0
180	40.2	40.1	40.2	40.3	0.1
210	40.2	40.1	40.2	40.2	0.0
240	40.3	40.2	40.3	40.4	0.0
270	40.3	40.2	40.3	40.4	0.1
300	40.4	40.2	40.3	40.5	0.0
330	40.5	40.4	40.5	40.8	0.1
360	40.5	40.4	40.5	40.8	-0.1
390	40.6	40.5	40.6	40.9	0.1
420	40.7	40.5	40.6	41	-1.1
450	40.7	40.6	40.7	41.2	0.1
480	40.7	40.7	40.7	41.2	0.1
510	40.8	40.7	40.8	41.5	0.1
540	40.9	40.8	40.9	41.6	0.0
570	40.9	40.8	40.9	41.8	0.1
600	41.0	40.9	41.0	41.9	0.1
630	41.0	41.0	41.0	42	0.1
660	41.1	41.0	41.1	42.2	-0.4
690	41.1	41.0	41.1	42.1	0.1
720	41.2	41.1	41.2	42.1	-0.2
750	41.2	41.2	41.2	42.1	-4.4
780	41.3	41.2	41.3	42.2	-3.7
810	41.3	41.3	41.3	42.3	0.0
840	41.4	41.3	41.4	42.4	0.0
870	41.5	41.4	41.5	42.3	0.0
900	41.5	41.5	41.5	42.5	0.1
930	41.6	41.5	41.6	42.6	-0.3
960	41.7	41.6	41.7	42.7	0.2
990	41.8	41.7	41.8	42.8	0.0
1020	41.8	41.8	41.8	42.8	0.0
1050	41.9	41.8	41.9	42.9	0.0
1080	42.0	41.9	42.0	43	0.1
1110	42.0	42.0	42.0	42.9	0.1

1140	42.1	42.1	42.1	43.2	-1.1
1170	42.2	42.1	42.2	43.2	0.1
1200	42.3	42.2	42.3	43.3	0.1
1230	42.3	42.2	42.3	43.4	0.0
1260	42.3	42.3	42.3	43.4	0.0
1290	42.4	42.4	42.4	43.6	0.0
1320	42.5	42.4	42.5	43.7	0.1
1350	42.5	42.5	42.5	43.6	0.0
1380	42.6	42.6	42.6	43.7	0.0
1410	42.6	42.6	42.6	43.8	0.0
1440	42.7	42.6	42.7	44	0.0
1470	42.7	42.6	42.7	44	0.0
1500	42.7	42.6	42.7	44.1	0.0
1530	42.8	42.7	42.8	44	0.1
1560	42.9	42.8	42.9	43.9	0.0
1590	42.9	42.8	42.9	43.7	0.0
1620	43.0	42.9	43.0	43.8	0.0
1650	43.0	43.0	43.0	43.8	-0.1
1680	43.1	43.0	43.1	43.8	0.0
1710	43.2	43.1	43.2	43.9	-0.9
1740	43.3	43.2	43.3	44.1	0.0
1770	43.3	43.2	43.3	44.1	0.0
1800	43.4	43.3	43.4	44.2	0.0
1830	43.4	43.4	43.4	44.1	0.0
1860	43.5	43.4	43.5	44.2	0.0
1890	43.5	43.4	43.5	44	0.0
1920	43.6	43.5	43.6	44.2	-0.1
1950	43.7	43.6	43.7	44.2	-0.1
1980	43.7	43.6	43.7	44.2	0.0
2010	43.7	43.6	43.7	44.2	-3.2
2040	43.8	43.7	43.8	44.2	0.0
2070	43.9	43.8	43.9	44.2	0.0
2100	43.9	43.8	43.9	44.2	0.0
2130	44.0	43.8	43.9	44.1	-0.2
2160	44.0	43.9	44.0	44.1	-1.0
2190	44.1	44.0	44.1	44.2	0.0
2220	44.2	44.1	44.2	44.2	0.1
2250	44.2	44.2	44.2	44.2	0.0
2280	44.3	44.2	44.3	44.3	-0.3
2310	44.4	44.3	44.4	44.3	-0.2
2340	44.5	44.4	44.5	44.4	0.1
2370	44.6	44.5	44.6	44.4	0.0

2400	44.6	44.5	44.6	44.5	0.0
2430	44.7	44.6	44.7	44.5	0.0
2460	44.7	44.6	44.7	44.4	0.0
2490	44.7	44.7	44.7	44.3	0.0
2520	44.8	44.7	44.8	44.4	0.0
2550	44.9	44.8	44.9	44.6	0.0
2580	44.9	44.8	44.9	44.5	0.0
2610	44.9	44.8	44.9	44.5	-9.6
2640	45.0	44.9	45.0	44.6	0.0
2670	45.1	45.0	45.1	44.7	0.0
2700	45.1	45.0	45.1	44.6	0.0
2730	45.2	45.0	45.1	44.6	0.0
2760	45.2	45.0	45.1	44.5	0.0
2790	45.2	45.1	45.2	44.6	0.0
2820	45.3	45.1	45.2	44.4	0.0
2850	45.4	45.2	45.3	44.6	-8.6
2880	45.4	45.3	45.4	44.5	-0.1
2910	45.4	45.4	45.4	44.5	-2.1
2940	45.5	45.3	45.4	44.7	-1.7
2970	45.6	45.5	45.6	44.8	0.0
3000	45.6	45.5	45.6	44.8	0.0
3030	45.7	45.5	45.6	44.9	-4.7
3060	45.7	45.6	45.7	44.8	-10.0
3090	45.7	45.6	45.7	44.9	-10.0
3120	45.8	45.6	45.7	45	-6.6
3150	45.9	45.8	45.9	45.3	0.1
3180	45.9	45.8	45.9	45.3	-7.0
3210	45.9	45.9	45.9	45.5	-0.1
3240	46.0	45.9	46.0	45.4	-2.5
3270	46.1	45.9	46.0	45.4	0.0
3300	46.1	46.0	46.1	45.6	-10.0
3330	46.1	46.0	46.1	45.5	0.1
3360	46.2	46.0	46.1	45.5	0.0
3390	46.2	46.0	46.1	45.5	0.3
3420	46.2	46.0	46.1	45.6	-0.2
3450	46.2	46.1	46.2	45.7	0.0
3480	46.3	46.1	46.2	45.9	-7.1
3510	46.3	46.1	46.2	45.7	0.0
3540	46.3	46.2	46.3	45.7	0.0
3570	46.4	46.2	46.3	45.7	-0.4
3600	46.4	46.2	46.3	45.7	-2.0
3630	46.4	46.3	46.4	45.7	0.0

3660	46.4	46.3	46.4	45.8	0.1
3690	46.5	46.4	46.5	45.8	0.0
3720	46.5	46.4	46.5	45.8	0.0
3750	46.6	46.4	46.5	45.8	-0.9
3780	46.6	46.5	46.6	45.9	0.0
3810	46.7	46.5	46.6	45.9	0.0
3840	46.7	46.5	46.6	46.2	0.0
3870	46.7	46.6	46.7	46.1	0.0
3900	46.7	46.6	46.7	46.2	0.0
3930	46.8	46.6	46.7	46.2	-0.3
3960	46.8	46.6	46.7	46.1	0.0
3990	46.8	46.7	46.8	46.1	0.0
4020	46.8	46.7	46.8	46.2	0.0
4050	46.9	46.7	46.8	46.4	0.0
4080	46.9	46.7	46.8	46.2	0.1
4110	46.9	46.8	46.9	46.3	0.0
4140	46.9	46.8	46.9	46.4	-0.1
4170	47.0	46.9	47.0	46.2	-1.2
4200	47.0	46.8	46.9	46.1	0.0
4230	47.0	46.8	46.9	46.1	0.0
4260	47.0	46.8	46.9	46.1	0.0
4290	47.0	46.8	46.9	46.3	0.0
4320	45.4	45.3	45.4	44.5	-0.1

13.00 Projected Sales

Please refer to Common Section 13.00.

14.00 Request for Certification

Ms. Kathryn Kochunas Certification Division Mobile Source Pollution Control U.S. Environmental Protection Agency 2000 Traverwood Drive Ann Arbor, Michigan

Subject: Request for Certificate of Conformity for 2024 Model Year Test Group <u>RHYXV01.6M13</u>/Evaporative Family <u>RHYXR0137M1G</u>

Dear Ms. Kathryn Kochunas:

Hyundai Motor Company requests that EPA issue a Certificate of Conformity for the above subject test group.

All vehicles within the above mentioned test group comply with the applicable regulations contained in 40 CFR86.1844-01(d), (14) including the provisions of 40 CFR Parts 85, 86 and 600. This test group also complies with California Air Resources Board, Final Regulation Order, Sections 1961.2 and 1961.3 (1962.2 and 1962.3 for zero-emission vehicles) Title 13, California Code of Regulations.

The Part 1 Application for Certification has been prepared in accordance with the standardized format recommended by EPA via its guidance document CD-14-19 (LDV/LDT/OCO/LIMO) Subject: Certification Application Reporting Guidance, dated November 24, 2014.

If you have any questions in regard to the Certificate of Conformity do not hesitate to contact Lillian Klawitter at <u>lklawitter@hatci.com</u> or 201-790-0276.

Sincerely,

B. R. Yoon General Manager Regulation & Certification Team 2 Hyundai Motor Company

Ms. Robin U. Lang, Chief Emissions Certification and Compliance Division California Air Resources Board 4001 Iowa Ave. Riverside, California 92507

Subject: Request for Certificate of Conformity for 2024 Model Year Test Group <u>RHYXV01.6M13</u>/Evaporative Family <u>RHYXR0137M1G</u>

Dear Ms. Robin U. Lang:

Hyundai Motor Company requests that California Air Resources Board (CARB) issue an Executive Order for the above subject test group.

All vehicles within the above mentioned test group comply with the applicable regulations contained in 40 CFR86.1844-01(d), (14) including the provisions of 40 CFR Parts 85, 86 and 600. This test group also complies with California Air Resources Board, Final Regulation Order, Sections 1961.2 and 1961.3 (1962.2 and 1962.3 for zero-emission vehicles) Title 13, California Code of Regulations.

The Part 1 Application for Certification has been prepared in accordance with the standardized format recommended by EPA via its guidance document CD-14-19 (LDV/LDT/OCO/LIMO) Subject: Certification Application Reporting Guidance, dated November 24, 2014.

If you have any questions in regard to the Certificate of Conformity do not hesitate to contact Lillian Klawitter at <u>lklawitter@hatci.com</u> or 201-790-0276.

Sincerely,

B. R. Yoon General Manager Regulation & Certification Team 2 Hyundai Motor Company

15.00Other Information15.01Certification Fee Filing Form

EPA_MVECP_v1

US EPA Fee Form

Help and EPA Instructions

* Required Field

General Information						
Date: 11/06/2023						
Process Code *						
Submit New Fee Filing Form						
Manufacturer Code *						
НҮХ						
Manufacturer Name *						
Hyundai						
Contact Name *						
Jennifer Cherry						
Contact Email Address *	Contact Phone *					
jcherry@hatci.com	7343372259					
Calendar Year complete application submitted to EPA *						
2023						
PLEASE NOTE: These fees apply to comple from January 1, 2023, through December 31 the calendar year in which the complete cer model year. Engine Family / Evaporative Family / Test Group *						
RHYXVU1.6M13						

Certificate Request Type (Industry Sector Code)

Certificate Request Type *

On-Highway LDV, LTD, MDVPV, HDV Chassis Cert (Federal) (A, B, D, J, T, V)

) On-Highway HDE Dyno Cert (Federal) (E, H)

On-Highway LD ICI, MDPV ICI, HDV ICI (A, B, D, J, T, V)

On-Highway Motorcycle (C)

- On-Highway HDV Evap (F)
- On-Highway LDV, LTD, MDVPV, HDV Chassis Cert (California-Only) (A, B, D, J, T, V)
-) On-Highway HDE Dyno Cert (California-Only) (E, H)
- 🔿 Nonroad CI (L)
- Nonroad SI (B, S)
- 🔵 Locomotive (G, K)
- All Nonroad Recreational, excluding Marine engines (X, Y)
- All Marine (Including IMO) (M, N, W)
- Component Certification for Evaporative Emissions (P)

IMO Name (Required for dual US/IMO Marine Only)

ICI VIN Number (Required for ICIs Only)

Do you qualify for a Reduced Fee? *

No

Payment Information

Amount Owed

\$32,726.00

Payment Type *

Offline Wire

Comments

EPA Form Number 3520-29 OMB Control No. 2060-0545 Approval expires 12/31/2022

The public reporting and recordkeeping burden for this collection of information is estimated to average 12 minutes per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed forms to this address.

The content of this document may contain Sensitive But Unclassified (SBU) data and/or Controlled Unclassified Information (CUI).

1	15.02 Vehicle Emission Control Information (VECI) Label					
	Ð					R COMPANY ITROL INFORMATION
	Conforms to regulations:				2024	MY
	U.S.EPA: T3B30 LDV C		OBD: CA II	Fuel: Gasoline		
	California:	LEV 🏾	SULEV30 PC	(OBD: CA II	Fuel: Gasoline
	No adjustme	ents nee	eded.		DFI, WR-HO2S, HO	225, WU-TWC, TWC, TC, CAC, EGR, EGRC
	Group: RHY Evap.: RHY					32459-2M015

15.03 ORVR Safety Statement

Hyundai Motor Company is using standard technology in all 2024MY vehicles ORVR systems. In accordance with EPA Guidance Letter CISD-06-06, ORVR applications will not be submitted.

15.04 New Technology System Description

Please refer to Common Section 15.04.

15.05 Engine Oil Information

Please refer to Common Section 15.05

16.00 California ARB Information

16.01 Exhaust Emission Control System (Tune-up label)

Test Group Name		Model	Exhaust Emission Control System			
RHYXV01.6M13		Santa Fe Hybrid AWD Santa Fe Hybrid FWD	DFI, WR-HO2S, HO2S, WU-TWC, TWC, TC, CAC, EGR, EGRC, OBD-II			
Note: DFI WR-HO2S HO2S WU-TWC TWC TC CAC EGR EGRC OBD II		: Heated Oxygen Sens : Warm up Three Way : Three Way Catalyst S : Turbocharger : Charge Air Cooler : Exhaust Gas Recircu : EGR Cooler	: Wide Range/Linear/Air-Fuel Ratio Heated Oxygen Sensor : Heated Oxygen Sensor : Warm up Three Way Catalyst System : Three Way Catalyst System : Turbocharger : Charge Air Cooler : Exhaust Gas Recirculation : EGR Cooler : On-Board Diagnostics II			

16.02 Test Procedures

Please refer to Common Section 16.02.

16.03.00 Fill Pipe Access Zones Statement and Specifications

16.03.01 Fill Pipe Access Zones Statement

Please refer to Common Section 16.03.01.

16.04.00 Request for Certificate

Please refer to 14.00.

16.04.01 Statement of Compliance

Please refer to Common Section 16.04.01.

16.04.02 Supplemental Data Sheet

Please refer to E-cert data.

16.05.00 Emission Testing Waiver Statement

Please refer to Common Section 16.05.00.

16.06.00 Projected Sales

Please refer to Common Section 13.00.

16.07.00 OBD-II System Description

Please refer to section 09.00.

16.08.00 New Technology System Description

Please refer to Common Section 15.04.

16.09.00 Environmental Performance Label

Pursuant to CALIFORNIA ENVIRONMENTAL PERFORMANCE LABEL SPECIFICATIONS FOR 2009 AND SUBSEQUENT MODEL YEAR PASSENGER CARS, LIGHT-DUTY TRUCKS, AND MEDIUM-DUTY PASSENGER VEHICLES (adopted May 2, 2008, last amended September 2, 2015), 2012, Hyundai complies Environmental Performance Label requirement by affixing the Federal Fuel Economy and Environment Label in accordance to 40 CFR Parts 85, 86, and 600 as promulgated on July 6, 2011.

16.10.00 AECD General Statements

The vehicles contained in this test group are not equipped with a defeat device and are not equipped with alternative mapping strategies. Furthermore, all AECDs have been declared and described in the application.

As described in our application, the vehicle's transmission is not part of any AECD. However, the transmission gear is an input for the emissions control strategy, as described in that application. The ECU does not provide an output to the TCU to control emissions strategy.

When driving conditions on the road can be properly represented on the dynamometer, the transmission will perform in the same manner. However, there are some different driving conditions, such as an uphill or downhill grade, extreme heat or extreme cold conditions, heavy braking, and curved road driving conditions, which cannot be appropriately represented on the dynamometer. In these conditions where necessary to protect the transmission or to prevent an unnatural shift pattern, a different shift pattern may be executed. It is our understanding that this is commonly used throughout the industry.

The Hyundai-Kia American Technical Center and the Hyundai Motor Group Research and Development Center in Namyang, Korea have endeavored to respond based on our understanding of the regulatory definition of an AECD, the past certification reviews of AECDs conducted by ARB, existing guidance regarding AECDs issued by ARB, and, of course, EPA's and ARB's increased interest in this area. We will continue to monitor guidance issued by ARB regarding the level of information and detail desired in a certification application, and will continue to evaluate AECD issues to ensure transparency with respect to our vehicle and engine performance.

16.11.00 California warranty compliance

Please refer to Common Section 16.11.00.

16.12.00 Description of the Propulsion System: Not Applicable

16.13.00 ZEV Compliance: Not Applicable

17.00.00 Service of Process

Please refer to Common Section 01.00.