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THE OLYMPIAD CORNER

No. 196

R.E. Woodrow

All communications about this column should be sent to Professor R.E.

Woodrow, Department of Mathematics and Statistics, University of Calgary,

Calgary, Alberta, Canada. T2N 1N4.

We lead o� this issue with the problems of the 19th Austrian-Polish
Mathematics Competitions, written in Poland, June 26{28, 1996. My thanks
go to Ravi Vakil, Canadian Team Leader to the IMO at Mumbai as well as to
regular supportersMarcin E. Kuczma, Warszawa, Poland andWalther Janous,
Ursulinengymnasium, Innsbruck, Austria for supplying copies of the contest
material.

19th AUSTRIAN-POLISH MATHEMATICS
COMPETITION 1996

Problems of the Individual Context
June 26{27, 1996 (Time: 4.5 hours)

1. Let k � 1 be an integer. Show that there are exactly 3k�1 positive
integers n with the following properties:

(a) The decimal representation of n consists of exactly k digits.

(b) All digits of n are odd.

(c) The number n is divisible by 5.

(d) The numberm = n

5
has k odd (decimal) digits.

2. A convex hexagon ABCDEF satis�es the following conditions:

(a) The opposite sides are parallel; that is, ABkDE, BCkEF , CDkFA.

(b) The distances between the opposite sides are equal; that is,
d(AB;DE) = d(BC;EF ) = d(CD;FA), where d(g; h) denotes the
distance between lines g and h.

(c) \FAB and \CDE are right angles.

Show that diagonals BE and CF intersect at an angle of 45�.

3. The polynomials Pn(x) are de�ned recursively by P0(x) = 0,
P1(x) = x and

Pn(x) = xPn�1(x) + (1� x)Pn�2(x) for n � 2 .

For every natural number n � 1 �nd all real numbers x satisfying the equa-
tion Pn(x) = 0.
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4. The real numbers x, y, z, t satisfy the equalities x+ y+ z + t = 0

and x2 + y2 + z2 + t2 = 1. Prove that �1 � xy + yz+ zt+ tx � 0.

5. A convex polyhedron P and a sphere S are situated in space in
such a manner that S intercepts on each edge AB of P a segment XY with
AX = XY = Y B = 1

3
AB. Prove that there exists a sphere T tangent to

all edges of P .

6. Natural numbers k, n are given such that 1 < k < n. Solve the
system of n equations

x
3

i � (x
2

i + x
2

i+1 + � � �+ x
2

i+k�1) = x
2

i�1 for 1 � i � n

with n real unknowns x1, x2, : : : , xn. Note: x0 = xn, xn+1 = x1,
xn+2 = x2, and so on.

Problems of the Team Contest (Poland)
June 28, 1996 (Time: 4 hours)

7. Show that there do not exist non-negative integers k and m such
that k! + 48 = 48(k+ 1)m.

8. Show that there is no polynomial P (x) of degree 998 with real
coe�cients satisfying for all real numbers x the equation

P (x)2� 1 = P (x2 + 1) .

9. We are given a collection of rectangular bricks, no one of which is
a cube. The edge lengths are integers. For every triple of positive integers
(a; b; c), not all equal, there is a su�cient supply of a�b�c bricks. Suppose
that the bricks are completely tiling a cubic 10� 10� 10 box.

(a) Assume that at least 100 bricks have been used. Prove that there exist
at least two bricks situated in parallel, in the sense that if AB is an edge of
one of them and A0B0 is an edge of one of the other, and if ABkA0B0, then
AB = A0B0.

(b) Prove the same statement for a number less than 100 (of bricks used).
The smaller number, the better the solution.

Next we move to a country whose contest materials have not been very
often available in CRUX withMAYHEMwith the problems of the 3rd Turkish
Mathematical Olympiad, Second Round, written December 8{9, 1995. My
thanks go to Ravi Vakil, Canadian Team Leader to the IMO at Mumbai for
collecting the problems.
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3rd TURKISH MATHEMATICAL OLYMPIAD
Second Round { First Day

December 8, 1995 (Time: 4.5 hours)

1. Let a1; a2; : : : ; ak and m1;m2; : : : ;mk be integers with 2 � m1

and 2mi � mi+1 for 1 � i � k � 1. Show that there are in�nitely many
integers x which do not satisfy any of the congruences

x � ai (mod m1) , x � a2 (mod m2) , : : : , x � ak (mod mk) .

2. For an acute triangle ABC, k1, k2, k3 are the circles with diam-
eters [BC], [CA], [AB], respectively. If K is the radical centre of these
circles, [AK] \ k1 = fDg, [BK] \ k2 = fEg, [CK] \ k3 = fFg and
Area(ABC) = u, Area(DBC) = x, Area(ECA) = y, and Area(FAB) = z,
show that u2 = x2 + y2 + z2.

3. Let N denote the set of positive integers. Let A be a real number
and fang

1
n=1 be a sequence of real numbers such that a1 = 1 and

1 <
an+1

an
� A for all n 2 N .

(a) Show that there is a unique non-decreasing surjective function k : N! N

such that 1 < Ak(n)

an
� A for all n 2 N.

(b) If k takes every value at most m times, show that there exists a real
number C > 1 such that Cn � Aan for all n 2 N.

Second Round { Second Day
December 9, 1995 (Time: 4.5 hours)

4. In a triangle ABC with jABj 6= jACj, the internal and external
bisectors of the angleA intersect the lineBC atD andE, respectively. If the
feet of the perpendiculars from a point F on the circle with diameter [DE] to
the linesBC,CA,AB areK, L,M , respectively, show that jKLj = jKM j.

5. Let t(A) denote the sum of elements of A for a non-empty subset
A of integers, and de�ne t(�) = 0. Find a subset X of the set of positive
integers such that for every integer k there is a unique ordered pair of subsets
(Ak; Bk) of X with Ak \ Bk = � and t(Ak)� t(Bk) = k.

6. Let N denote the set of positive integers. Find all surjective
functions f : N! N satisfying the condition

m j n (==) f(m) j f(n)

for allm, n 2 N.
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Along with the Turkish Olympiad we have the questions of the Turkish
Team Selection Examination for the 37th IMO, written March 23{24, 1996.
Thanks again go to Ravi Vakil, Canadian Team Leader to the IMO at Mumbai
for forwarding these to me.

TURKISH TEAM SELECTION EXAMINATION FOR
THE 37th IMO

First Day | March 23, 1996
Time: 4.5 hours

1. Let
Q1996

n=1(1 + nx3n) = 1 + a1x
k1 + a2x

k2 + � � � + amx
km where

a1, a2, : : : , am are non-zero and k1 < k2 < � � � < km. Find a1996.

2. In a parallelogram ABCD withm(Â) < 90�, the circle with diam-
eter [AC] intersects the lines CB and CD at E and F besides C, and the
tangent to this circle at A intersects the line BD at P . Show that the points
P , F , E are collinear.

3. Given real numbers 0 = x1 < x2 < � � � < x2n < x2n+1 = 1 with
xi+1 � xi � h for 1 � i � 2n, show that

1� h

2
<

nX
i=1

x2i(x2i+1 � x2i�1) �
1 + h

2
.

Second Day | March 24, 1996
Time: 4.5 hours

4. In a convex quadrilateral ABCD, Area(ABC) = Area(ADC) and
[AC] \ [BD] = fEg, and the parallels from E to the line segments [AD],
[DC], [CB], [BA] intersect [AB], [BC], [CD], [DA] at the points K, L,
M , N , respectively. Compute the ratio

Area(KLMN)

Area(ABCD)
.

5. Find the maximum number of pairwise disjoint sets of the form
Sa;b = fn2 + an+ b : n 2 Zg with a, b 2 Z.

6. For which ordered pairs of positive real numbers (a; b) is zero the
value of the limit of every sequence fxng satisfying the condition

lim
n!1

(axn+1 � bxn) = 0 ?
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To round out the contests for your puzzling pleasure we give the two
papers of the Australian Mathematical Olympiad 1996. My thanks go to
Ravi Vakil, Canadian Team Leader of the IMO at Mumbai, once again, for
providing me with the contest materials.

AUSTRALIANMATHEMATICAL OLYMPIAD 1996
Paper 1

February 6, 1996 (Time: 4 hours)

1. Let ABCDE be a convex pentagon such that BC = CD = DE

and each diagonal of the pentagon is parallel to one of its sides. Prove that
all the angles in the pentagon are equal, and that all sides are equal.

2. Let p(x) be a cubic polynomial with roots r1, r2, r3. Suppose that
p
�
1

2

�
+ p

�
�1

2

�
p(0)

= 1000 . Find the value of
1

r1r2
+

1

r2r3
+

1

r3r1
.

3. A number of tubes are bundled together into a hexagonal form:

f f f f

f f f f f

f f f f f f

f f f f f f f

f f f f f f

f f f f f

f f f f

A number of tubes in the bundle can be 1, 7, 19, 37 (as shown), 61, 91; : : : .
If this sequence is continued, it will be noticed that the total number of tubes
is often a number ending in 69. What is the 69th number in the sequence
which ends in 69?

4. For which positive integers n can we rearrange the sequence
1, 2, : : : , n to a1, a2, : : : , an in such a way that jak � kj = ja1 � 1j 6= 0

for k = 2, 3, : : : , n?

Paper 2
February 7, 1996 (Time: 4 hours)

5. Let a1, a2, : : : , an be real numbers and s a non-negative real
number such that

(i) a1 � a2 � � � � � an;

(ii) a1 + a2 + � � �+ an = 0;

(iii) ja1j+ ja2j+ � � �+ janj = s.

Prove that

an � a1 �
2s

n
.
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6. Let ABCD be a cyclic quadrilateral and let P and Q be points on
the sidesAB andAD respectively such that AP = CD and AQ = BC. Let
M be the point of intersection ofAC andPQ. Show thatM is the mid-point
of PQ.

7. For each positive integer n, let �(n) denote the sum of all positive
integers that divide n. Let k be a positive integer and n1 < n2 < � � � be an
in�nite sequence of positive integers with the property that �(ni)� ni = k

for i = 1, 2, : : : . Prove that ni is a prime for i = 1, 2, : : : .

8. Let f be a function that is de�ned for all integers and takes only the
values 0 and 1. Suppose f has the following properties:

(i) f(n+ 1996) = f(n) for all integers n;

(ii) f(1) + f(2) + � � �+ f(1996) = 45.

Prove that there exists an integer t such that f(n+ t) = 0 for all n for which
f(n) = 1 holds.

Now, an alternate and more general solution to problem 2 of the Dutch
Mathematical Olympiad, Second Round, 1993 than the one given in the Cor-
ner in the October 1998 number [1997: 197], [1998: 330].

2. Given a triangle ABC, \A = 90�. D is the mid-point of BC, F
is the mid-point of AB, E the midpoint of AF andG the mid-point of FB.
AD intersects CE, CF and CG respectively in P , Q and R. Determine the
ratio PQ

QR
.

A E F G B

C

P Q
R

D

q

q

q

q

q

q
q

q q q

Alternate Solutionby Geo�rey A. Kandall, Hamden, Connecticut,USA.

We �rst establish the following:
Lemma.

PQ

QR
=

CP

CE
�
EF

FG
�
CG

CR
.

Proof.

PQ

QR
=

[CPQ]

[CQR]
=

[CPQ]

[CEF ]
�
[CEF ]

[CFG]
�
[CFG]

[CQR]

=
CP � CQ

CE � CF
�
EF

FG
�
CF � CG

CQ �CR
=

CP

CE
�
EF

FG
�
CG

CR
.
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We now solve the problem, without using the hypothesis that \A = 90�.

By the lemma

PQ

QR
=

CP

CE
�
EF

FG
�
CG

RC
=

CP

CE
�
CG

RC
.

By Menelaus' Theorem we have

CD

DB
�
BA

AE
�
EP

PC
= 1 , hence

EP

PC
=

1

4
,

CP

CE
=

4

5
; (1)

CD

DB
�
BA

AG
�
GR

CR
= 1 , hence

GR

CR
=

3

4
,

CG

CR
=

7

4
. (2)

Consequently
PQ

QR
=

4

5
�
7

4
=

7

5
.

This method can be used with di�erent ratiosCD : DB andAE : EF :

FG : GB.

After the February number was �nalized we received a package of so-
lutions from Michael Selby, University of Windsor, Windsor, Ontario. This
included solutions to problems 1 through 4 of the Croatian National Math-
ematics Competition (4th Class) May 13, 1994 for which the problems were
given [1997: 454] and the solutions [1999: 12]. He also sent a solution to
a problem of the Additional Competition for the Olympiad of the Croatian

National Mathematical Competition, given [1997: 454].

1. Find all ordered triples (a; b; c) of real numbers such that for every
three integers x, y, z the following identity holds:

jax+ by+ czj+ jbx+ cy + azj+ jcx + ay + bzj = jxj + jyj+ jzj .

Solution by Michael Selby, University of Windsor, Windsor, Ontario.

Set x = y = z = 1; we obtain ja+ b+ cj = 1 (1)

Set x = 1; y = z = 0 we obtain jaj + jbj+ jcj = 1 (2)

Set x = 1; y = �1, z = 0 we obtain ja� bj+ jb� cj+ jc� aj = 2 (3)

This system is symmetric. Without loss of generality we may assume
a � b � c.

Now (3) becomes 2(a� c) = 2 or a� c = 1. Substituting into (1) and
(2) gives

j1 + b+ 2cj = 1 (4)
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and

j1 + cj+ jbj+ jcj = 1 . (5)

Squaring (4) and expanding gives

1 + (b+ 2c)2 + 2(b+ 2c) = 1 .

Thus b+ 2c = 0 or b+ 2c = �2.

If b+ 2c = 0, then from (5)

j1 + cj+ 3jcj = 1 .

Since jcj � 1, 1 + c � 0, therefore 1 + c + 3jcj = 1 and c + 3jcj = 0. If
c � 0, we have 4c = 0 and then c = 0. If c � 0, �2c = 0 giving c = 0.
Therefore b = �2c = 0, a = 1+ c = 1, in this case.

In case b+ 2c = �2, substitution into (5) yields

j1 + cj+ 2j1 + cj+ jcj = 1 .

Since 1 + c � 0, 3(1 + c) + jcj = 1. If c � 0, 3 + 4c = 1 and c = �1

2
. This

is impossible.

If c � 0, 3+3c� c = 1 giving c = �1. Then b = 0 and a = 1+ c = 0.
Therefore we have the solution a = 0, b = 0, c = �1, and these are the
solutions for a � b � c.

Hence there are six solutions

(1; 0; 0) , (�1; 0; 0) , (0; 1; 0) , (0;�1; 0) , (0; 0; 1) , (0;0;�1) .

Next we turn to solutions by the readers to problems of the 17th Austrian-
PolishMathematics Competition given in the February 1998number [1998: 4].

17th AUSTRIAN{POLISH MATHEMATICS
COMPETITION

Poland, June 29{July 1, 1994

1. The function f : R! R satis�es for all x 2 R the conditions

f(x+ 19) � f(x) + 19 and f(x+ 94) � f(x) + 94 .

Show that f(x+ 1) = f(x) + 1 for all x 2 R.
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Solutions by Michel Bataille, Rouen, France; by Pierre Bornsztein,

Courdimanche, France; by Pavlos Maragoudakis, Pireas, Greece; and by

Edward T.H. Wang, Wilfrid Laurier University, Waterloo, Ontario. We give

the solution by Bataille.

Let x be an arbitrary real number. Applying the given conditions to
x� 19 and x� 94 respectively, we obtain

f(x� 19) � f(x)� 19 and f(x� 94) � f(x)� 94 .

Now an easy induction shows that for all n 2 N,

f(x+ 19n) � f(x) + 19n , f(x+ 94n) � f(x) + 94n ,

f(x� 19n) � f(x)� 19n , and f(x� 94n) � f(x)� 94n .

Since 1 = 5� 19� 94 and 1 = 18� 94� 89� 19, we get:

f(x+ 1) = f(x+ 5� 19� 94) � f(x+ 5� 19)� 94

� f(x) + 5� 19� 94

= f(x) + 1 ,

and

f(x+ 1) = f(x+ 18� 94� 89� 19) � f(x+ 18� 94)� 89� 19

� f(x) + 18 + 94� 89� 19

= f(x) + 1 ,

so that f(x+ 1) = f(x) + 1, as required.

Comment: the same result can be obtained from the more general hy-
pothesis: for all x 2 R, f(x + a) � f(x) + a and f(x + b) � f(x) + b

where a and b are positive relatively prime integers. Indeed, the preced-
ing proof adapts easily as we can �nd positive integers m, n, p, q such that
ma� nb = 1 and pb� qa = 1.

2. The sequence fang is de�ned by the formulae

a0 =
1

2
and an+1 =

2an

1 + a2n

for n � 0 ,

and the sequence fcng is de�ned by the formulae

c0 = 4 and cn+1 = c
2
n � 2cn + 2 for n � 0 .

Prove that

an =
2c0c1 : : : cn�1

cn
for all n � 1 .

Solutions by Michel Bataille, Rouen, France; by Pierre Bornsztein,

Courdimanche, France; by Murray S. Klamkin, University of Alberta, Ed-

monton, Alberta. We give the solution of Klamkin, which gives an indication

of both types of solutions received.
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Letting xn = cn � 1, we have xn+1 = x2n where x0 = 3. Hence,
xn = x2

n

0
and cn = 32

n

+ 1. Since c1 = 10 and a1 = 4

5
it now su�ces to

show that an =
2c0c1:::cn�1

cn
satis�es the recurrence an+1 = 2an

1+a2
n

for n � 0.

Also since (32
n

+1)(32
n

� 1) = 32
n+1

� 1, it follows (multiplying by 32
0
�1

32
0
�1

)

that
2c0c1 : : : cn�1

cn
=

32n � 1

32
n

+ 1

and by substitution and simpli�cation, this satis�es the recurrence relation
for an.

Comment: We can obtain another representation for an by letting it
equal tanh �n, so that tanh �n+1 = tanh2�n, subject to

1

2
= tanh �0. It

then follows that an = tanh2n�0 = tanh
�
2n arctan h1

2

�
= tanh

�
2n�1 ln 3

�
.

4. Let n � 2 be a �xed natural number and let P0 be a �xed vertex
of the regular (n+ 1){gon. The remaining vertices are labelled P1, P2, : : : ,
Pn, in any order. To each side of the (n+1){gon assign a natural number as
follows: if the endpoints of the side are labelled Pi and Pj , then ji� jj is the
number assigned. Let S be the sum of all the n+ 1 numbers thus assigned.
(Obviously, S depends on the order in which the vertices have been labelled.)

(a) What is the least value of S available (for �xed n)?

(b) How many di�erent labellings yield this minimum value of S?

Solution by Pierre Bornsztein, Courdimanche, France.

Pi2

Pi1
P0

Pn

Pik

(a) Soit P0Pn
	

l'arc r �eliant P0 �a Pn dans le sens des aiquilles d'une

montre, P0Pn
�
l'arc r �eliant P0 �a Pn dans le sens contraire.

Notons S� la somme des nombres assign �es sur P0Pn
	
(idem pour S+).

Par d �e�nition,

S
� = j0� i1j+ ji1 � i2j+ � � �+ jik�1 � ikj+ jik � nj

� j0� i1 + i1 � i2 + � � �+ ik�1 � ik + ik � nj = n

avec egalit �e ssi 0 � i1 � i2 < � � � � ik < n.
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De même,
S
+ � n

avec egalit �e ssi les sommets sont class �es dans l'ordre croissant de 1 �a n, d'o �u
on en d �eduit S = S� + S+ � 2n.

(b) Pour Pn �x �e il y a i sommets entre P0 et Pn, le long de P0Pn
	

o �u
i 2 f0, : : : , n�1g. Il y a donc i nombres �a choisir dans f1, : : : ,n�1g, d'o �u�
n�1

i

�
choix.

Les nombres, une foix choisis, sont alors dispos �es dans l'ordre croissant
de P1 �a Pn : l'ordre est donc impos �e.

De même sur P0Pn
�
les nombres restants sont impos �es ainsi que leur

ordre.

Il y a donc
Pn�1

i=0

�
n�1

i

�
= 2n�1 choix pour la disposition.

5. Solve the equation

1

2
(x+ y)(y+ z)(z+ x) + (x+ y+ z)3 = 1� xyz

in integers.

SolutionsbyMichel Bataille, Rouen, France; by Pierre Bornsztein, Cour-

dimanche, France; and byMurray S. Klamkin, University of Alberta, Edmon-

ton, Alberta. We give the write-up of Bataille, although all three solvers used

the same approach.

Let s = x+ y+ z and

P (X) = (X � x)(X � y)(X � z)

= X
3 � sX

2 + (xy + yz+ zx)X � xyz .

Then (x+y)(y+ z)(z+x) = P (s) = s(xy+yz+xz)�xyz and the given
equation may be written

s(xy+ yz+ xz)� xyz + 2s3 = 2� 2xyz ,

or 2 + P (�s) = 0.

As P (�s) = �(2x + y + z)(2y + z + x)(2z + x + y), the equation
�nally becomes

(2x+ y + z)(2y+ z + x)(2z + x+ y) = 2 .

Either one of the three factors of the left-hand side is 2 and the other two
are 1, 1 (or �1, �1) or one of the factors is�2 and the other two are 1, �1,
(or �1, 1).

The system8<
:

2x+ y+ z = 2

x+ 2y+ z = 1

x+ y+ 2z = 1

is equivalent to x = 1 , y = 0 , z = 0 .
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The system8<
:

2x+ y + z = 2

x+ 2y + z = �1

x+ y + 2z = �1

is equivalent to x = 2 , y = �1 , z = �1 .

When one of the factors is �2, the two corresponding systems lead to
4(x+ y + z) = �2, which is impossible for integral x, y, z.

Since x, y, z have symmetrical roles, there are six solutions altogether
for the triple (x; y; z):

(1; 0; 0) , (0; 1; 0) , (0; 0; 1) , (2;�1;�1) , (�1; 2;�1) , (�1;�1; 2) .

7. Determine all two-digit (in decimal notation) natural numbers
n = (ab)10 = 10a + b (a � 1) with the property that for every integer
x the di�erence xa � xb is divisible by n.

Solutions by Pierre Bornsztein, Courdimanche, France; and by Edward

T.H. Wang, Wilfrid Laurier University, Waterloo, Ontario. We give Wang's

solution.

Clearly, n j xa � xb for all integers x if a = b. We show that besides
11, 22, : : : , 99 there are exactly three more such n's. These are: n = 15, 28,
and 48. We assume that a 6= b and start o� by eliminating some impossible
values of n.

(1) If a is even and b is odd, then setting x = �2 leads to n j 2a � 2b and
n j 2a+2b. Thusn j 2a+1, which is clearly impossible since the only possible
divisors of 2a+1 are powers of two while n > 1 is odd.

(2) If a is odd and b is even, then setting x = �2 again leads to the same
conclusion that n j 2a+1. Hence n must be a power of two. Since a is odd,
the only possible values are n = 16 and 32. However, 16 6 j 2 � 26 and
32 6 j 23 � 22, showing that there are no solutions in this case either.

(3) If b = 0, then n is even and n j 2a � 1, which is clearly impossible.

Using (1), (2), and (3) we narrow the possible values of n down to the
following set of 32 integers:

f13 , 15 , 17 , 19 , 24 , 26 , 28 , 31 , 35 , 37 , 39 , 42 , 46 , 48 , 51 , 53; 57 ,

59 , 62 , 64 , 68 , 71 , 73 , 75 , 79 , 82 , 84 , 86 , 91 , 93 , 95; 97g .

Since n j xa � xb if and only if n j xb � xa we may assume that a > b when
checking whether n satis�es the given property. Note that

23 � 2 = 6 eliminates 13 and 31 ;
24 � 22 = 12 eliminates 24 and 42 ;
25 � 2 = 30 eliminates 51 (but not 15) ;
25 � 23 = 24 eliminates 35 and 53 ;
26 � 22 = 60 eliminates 26 and 62 ;
26 � 24 = 48 eliminates 46 and 64 ;
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27 � 2 = 126 eliminates 17 and 71 ;
27 � 23 = 120 eliminates 37 and 73 ;
27 � 25 = 96 eliminates 57 and 75 ;
28 � 22 = 252 eliminates 82 (but not 28) ;
28 � 24 = 240 eliminates 84 (but not 48) ;
28 � 26 = 192 eliminates 68 and 86 ;
29 � 2 = 510 eliminates 19 and 91;

29 � 23 = 504 eliminates 39 and 94 ;
29 � 25 = 480 eliminates 59 and 95 ;
29 � 27 = 384 eliminates 79 and 97 .

Therefore, the only possible values of n are: n = 15, 28 and 48. We now
show that they indeed satisfy the condition that n j xa�xb for all integers x.

(a) For n = 15, we show that x � x5 (mod 15). By Fermat's Little Theorem
(Fthm), we have x3 � x (mod 3) and so x5 � x3 � x (mod 3). Also,
x5 � x (mod 5). Hence x5 � x (mod 15) follows.

(b) For n = 28, we show that x2 � x8 (mod 28). Note that 28 = 22 � 7.
By Fthm, we have x7 � x (mod 7) and so x8 � x2 (mod 7). Further, we
claim that x8 � x2 (mod 4). This is obvious if x is even. On the other
hand, if x is odd, then x2 � 1 (mod 4) implies x8 � 1 (mod 4) and so
x8 � x2 (mod 4). Hence x8 � x2 (mod 28) follows.

(c) For n = 48, we show that x4 � x8 (mod 48). Note that 48 = 24 � 3.
By Fthm, we have x3 � x (mod 3) and so x4 � x2 (mod 3). Hence
x8 � x4 (mod 3). It remains to show that 16 j x8 � x4. This is clear if
x is even. If x is odd, then x = 2k+ 1 for some integer k and thus

x
8 � x

4 = x
4(x2 � 1)(x2 + 1)

= (2k+ 1)4
�
4k2 + 4k

� �
4k2 + 4k+ 2

�
= 8k(k+ 1)

�
2k2 + 2k+ 1

�
(2k+ 1)

4
,

which is divisible by 16 since k(k+ 1) is even.

To summarize, n = 10a + b satis�es n j xa � xb for all integers x if
and only if n = 11, 22, : : : , 99, 15, 28, 48.

Comment: This is one of the most intriguing problems that I have seen
lately. I will be really surprised if there is a much shorter solution!

8. Consider the functional equation f(x; y) = a f(x; z) + b f(y;z)

with real constants a, b. For every pair of real numbers a, b give the general
form of functions f : R2 ! R satisfying the given equation for all x, y,
z 2 R.

Solution by Pierre Bornsztein, Courdimanche, France.
Soient a, b 2 R et pour tous x ,y ,z 2 R

f(x; y) = af(x; z) + bf(y;z) . (�)

Alors :
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Dans le cas o �u x = y = z, f(x; x) = (a + b)f(x;x) donc a + b = 1 ou
f(x; x) = 0. Si a+ b 6= 1, pour tout x 2 R, f(x;x) = 0 et donc pour z = y,
(�) donne

f(x; y) = af(x; y) + bf(y;y) = af(x; y) .

Donc soit a = 1 ou f(x; y) = 0.

Dans le cas ou a = 1

f(x; y) = f(x; z) + bf(y;z) ,

observons qu'avec x = y, f(x;x) = 0 = f(y;z)(1 + b), et donc f � 0 ou
b = �1.

Maintenent si a = 1 et b = �1

f(x; y) = f(x; z)� f(y;z)

ou encore
f(x; z) = f(x; y) + f(y;z)

pour tous x, y, z 2 R.

C'est a dire
f(x; y) = f(x; z) + f(z; y)

pour tous x, y, z 2 R, et donc f(z; y) = �f(y; z). On pose f(x; 0) = g(x),
alors f(0; x) = �g(x) et

f(x; y) = f(x; z) + f(z; y)

= f(x; 0) + f(0; y)

= g(x)� g(y) .

Reciproquement, f(x; y) = g(x)� g(y) o �u g est une fonction arbitraire.

Alors f(x; y) = f(x; z) + f(z; y), et f convient.

Dans le cas o �u a+ b = 1, b = 1� a, et (�) s' �ecrit

f(x; y) = af(x; z) + (1� a)f(y;z) , (��)

et alors f(x;x) = f(x; z) et donc pour tous x, y 2 R, f(x; y) = f(x;x).
Maintenant (��) donne

f(x;x) = af(x; x) + (1� a)f(y;y) ,

et par cons �equence

(1� a)f(x;x) = (1� a)f(y;y) .

Deux possibilit �es se pr �esentent. Soit a = 1 ou f(x;x) = f(y;y) = f(x; y),
et f est constante. Si a = 1, b = 0, alors f(x; y) = f(x; z) pour tous x,
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y, z 2 R. Donc f(x; y) = f(x; x) ind �ependant de y. On a veri� �e que ces
fonctions conviennent.

En conclusion :

� si (a; b) = (1;�1), f(x; y) = g(x)� g(y) o �u g : R! R est arbitraire ;

� si a+ b 6= 1 et (a; b) 6= (1;�1), f � 0 ;

� si a+ b = 1 et a 6= 1 : f constante ;

� si (a; b) = (1; 0) : f(x; y) = g(x) pour tous x; y 2 R o �u g : R ! R est
arbitraire.

9. On the plane there are given four distinct points A, B, C, D lying
(in this order) on a line g, at distances AB = a, BC = b, CD = c.

(a) Construct, whenever possible, a point P , not on g, such that the angles
\APB, \BPC, \CPD are equal.

(b) Prove that a point P with the property as above exists if and only if the
following inequality holds: (a+ b)(b+ c) < 4ac.

Solution by Michel Bataille, Rouen, France.

(a) If P is a solution, then the lines PB and PC are interior bisectors

in 4APC and 4BPD respectively. Hence we have:
PA

PC
=

BA

BC

and
PB

PD
=

CB

CD
and P is simultaneously on E1 =

�
M :

MA

MC
=
a

b

�
and

E2 =

�
M :

MB

MD
=
b

c

�
.

In the general case where a 6= b, denoting byB0 the harmonic conjugate
of B with respect to A and C, E1 is the circle with diameter BB0 and, when
a = b, E1 is the perpendicular bisector of the segment AC. Similar results
hold for E2.

Conversely, we may construct E1 and E2 and, assuming that they are
secant, choose for P one of their two distinct points of intersection symmet-

rical about g. From
PA

PC
=
BA

BC
, we deduce that PB is one of the bisectors

of \APC, more precisely the interior bisector in4APC sinceB is between
A and C. Hence \APB = \BPC. Similarly \BPC = \CPD and �nally:
\APB = \BPC = \CPD.

(b) The above construction provides a point P solution whenever E1 and E2

are secant. We �rst examine the general case where a 6= b and b 6= c: E1 and
E2 are circles with centres I1, I2 and radii r1, r2 respectively. These circles
are secant if and only if:

jr1 � r2j < I1I2 < r1 + r2 (1)

Let us denote by k the real number such thatBI1 =
k

b
BC (so that jkj = r1).
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We may compute: I1A = �
k + a

b
BC and I1C =

b� k

b
BC, and from the

Newton's relation, I1B
2
= I1A � I1C, we obtain easily k =

ab

a� b
, so that

r1 =
ab

ja� bj
. Similarly: r2 =

cb

jc� bj
.

We also compute: I1I2 =
b2 � ac

(b� a)(b� c)
BC so that I1I2 =

bjb2 � acj

jb� aj jb� cj
.

The condition (1) may now be successively written:

jcja � bj � ajc� bj j < jb2 � acj < ajc � bj+ cja� bj

a
2(c� b)2 + c

2(a� b)2 � 2acja� bj jc � bj < (b2 � ac)2

< a
2(c� b)2 + c

2(a� b)2 + 2acja � bj jc � bj

j(b2 � ac)2 � a
2(c� b)2 + c

2(a� b)2j < 2acja � bj jc� bj

ja� bj jc� bj jb2 + b(a+ c)� acj < 2acja � bj jc� bj

�2ac < b
2 + b(a+ c)� ac < 2ac

�ac < b
2 + b(a+ c) < 3ac .

Since b2 + b(a + c) is positive, the latter condition is equivalent to
b2 + b(a+ c) < 3ac or (a+ b)(b+ c) < 4ac.

E1 and E2 are both lines when a = b = c, but in this case they are
strictly parallel so that no point P exists (and the condition
(a+ b)(b+ c) < 4ac is not true either).

Lastly, suppose for instance that E1 is a line and E2 is a circle (that is,
a = b and b 6= c). Since E1 is perpendicular to g at B, E1 and E2 are secant

if and only if I2B < r2. We obtain easily: I2B =
b2

jc � bj
and the condition

becomes: b < c (and the inequality (a+ b)(b+ c) < 4ac reduces to b < c

as well). The proof of (b) is now complete.

That completes our �le of solutions for problems of the February 1998
number of the Corner. The Olympiad Season is nearly upon us. Sendme your
national and regional Olympiads for use in the Corner. We also welcome your
nice solutions to problems that appear in the Corner.


