

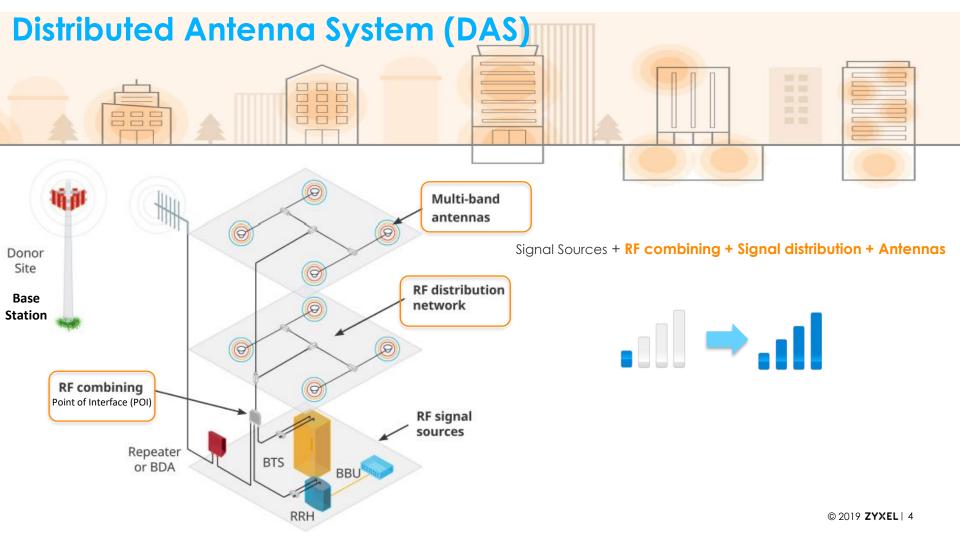
© 2019 ZYXEL | 1

YUnderstanding DAS Solutions.

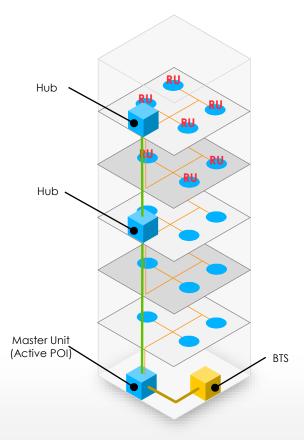
Active DAS, Passive DAS vs Zyxel DAS

What Causes Poor Mobile Signal?

Distance


Farther away from a base station, weaker mobile signal received. A BTS can transmit at higher power e.g. 50 - 60W, the limitation still resides in a cellular phone which transmits at a max. power of 2W only.

Terrain


Mountains, hills, or high buildings impact direct line of sight to a base station and cellular signal propagation. Cellular signal cannot penetrate into tunnels or undergrounds.

Building Materials

Construction materials used in walls and insulation in buildings such as metal, glass, concrete and energyefficient materials can slow or stop cellular signal penetration.



Traditional Active DAS Solution

Designed for very large scale deployments

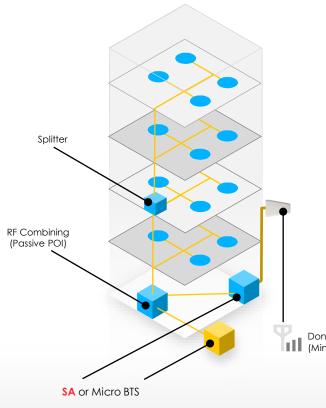
• Highly scalable for Stadiums, Airports etc. but costly due to the need to convert Analog to Digital and then back, Digital to Analog.

- Additional power source required for each fiber device.
- Architecture is same regardless of size, difficult to scale down for smaller deployments (sub 80,000m²).
- Can introduce latency due the Analog to Digital conversion.

Remote Unit + Antennas

Fiber or CAT6/CAT7 cable

Fiber cable


Coax

RU

Sianal Amplifier

 Requires support from Tier1 Telco in most cases, for direct access to BTS (Base Station Subsystem).

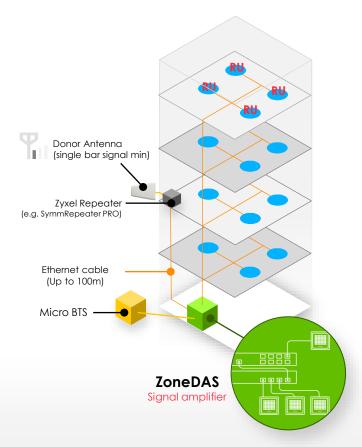
Traditional Passive DAS / Repeater Solution

Designed for smaller deployments max 10,000m²

High-Power BTS/Repeater + Passive DAS

- Must use passive components, large diameter (carrier grade) cabling to minimize signal loss in cable.
- When using repeater, the signal strength needs to be 3 bars minimum (approx. -80 dBm RSRP) otherwise the deployment will not function.
- Need very skilled RF engineers for complex calculations to calculate cable loss for each point before deploying.
- Deployment is lengthy (survey takes at least 1 month) + Long Physical deployment with carrier grade coax.
- In most cases Passive DAS can only deliver voice (not data services 3G/4G)
- In 5G era, the upper frequency limit of coaxial cable is 2.7GHz.

Donor Antenna (Min. 3 bar "good" signal)


Indoor Antennas (Passive)

Coax 1/2" (12.7mm)

SA Signal Amplifier (High Power Repeater)

Coax 7/8" (22.23mm)

Zyxel Ethernet Active DAS Solution

Designed for Easy Planning & Flexible Deployments

- Flexible 2 tier or 3 tier approach for simpler and more efficient installation.
- When using repeater, the signal strength can be as low as 1 bar signal strength.
- Unique technology that allow RF over Ethernet removing the need for complex calculations and reducing cost by utilizing standard RJ45 cabling
- Guaranteed for both Voice and Data services.
- Support hybrid signal source and multi-carriers co-location for smooth data and voice quality
- Rapid / scalable deployment with simple installation process/ modular design / PoE to power each RU built directly into each ZoneDAS or ZoneDAS One unit.

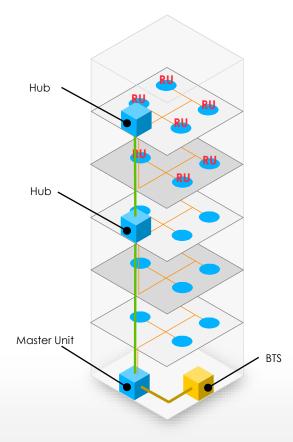
🕨 Remote Unit (embedded Antennas) 🛛 — Coax

RU Signal Amplifier

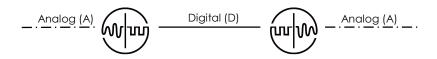
Market Position – 2G/3G/4G/5G & Co-Location

ZYXEL

Your Networking Ally


1	SOLID COMMSCOPE	Star	ts & Stations diums ollege Campuses	
	HUAWEI ERICSSON SUNWAVE Solutions	40,000 ~ 80,000m ²	Convention Centers Shopping Malls/Plazas Complex Buildings/Office	Indoor BTS
	Rosenberger Comba	10,000 ~ 40,000m ²	Hospitals Hotels & Resorts High-Rises Community Apartr	Off-Air Signal
	High Power China Cellular Repeater+ Passive DAS	2,500 ~ 10,000m ²	Elevators, High F Basements Warehouse &	
	Small Power China Cellular Repeater	100 ~ 2,500m2	floor space Small Offic	ces 8

DAS Product Solution – Flexible & Easy to Use



Traditional Active DAS Solution

Designed for very large scale deployments

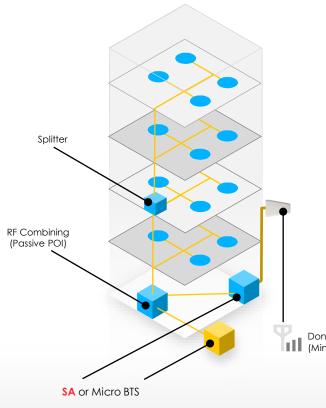
• Highly scalable for Stadiums, Airports etc. but costly due to the need to convert Analog to Digital and then back, Digital to Analog.

- Additional power source required for each fiber device.
- Architecture is same regardless of size, difficult to scale down for smaller deployments (sub 80,000m²).
- Can introduce latency due the Analog to Digital conversion.

Remote Unit + Antennas

Fiber or CAT6/CAT7 cable

Fiber cable


Coax

RU

Sianal Amplifier

 Requires support from Tier1 Telco in most cases, for direct access to BTS (Base Station Subsystem).

Traditional Passive DAS / Repeater Solution

Designed for smaller deployments max 10,000m²

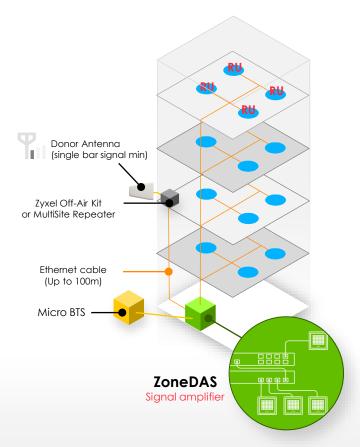
High-Power BTS/Repeater + Passive DAS

- Must use passive components, large diameter (carrier grade) cabling to minimize signal loss in cable.
- When using repeater, the signal strength needs to be 3 bars minimum (approx. -80 dBm RSRP) otherwise the deployment will not function.
- Need very skilled RF engineers for complex calculations to calculate cable loss for each point before deploying.
- Deployment is lengthy (survey takes at least 1 month) + Long Physical deployment with carrier grade coax.
- In most cases Passive DAS can only deliver voice (not data services 3G/4G)
- In 5G era, the upper frequency limit of coaxial cable is 2.7GHz.

Donor Antenna (Min. 3 bar "good" signal)

Indoor Antennas (Passive)

Coax 1/2" (12.7mm)

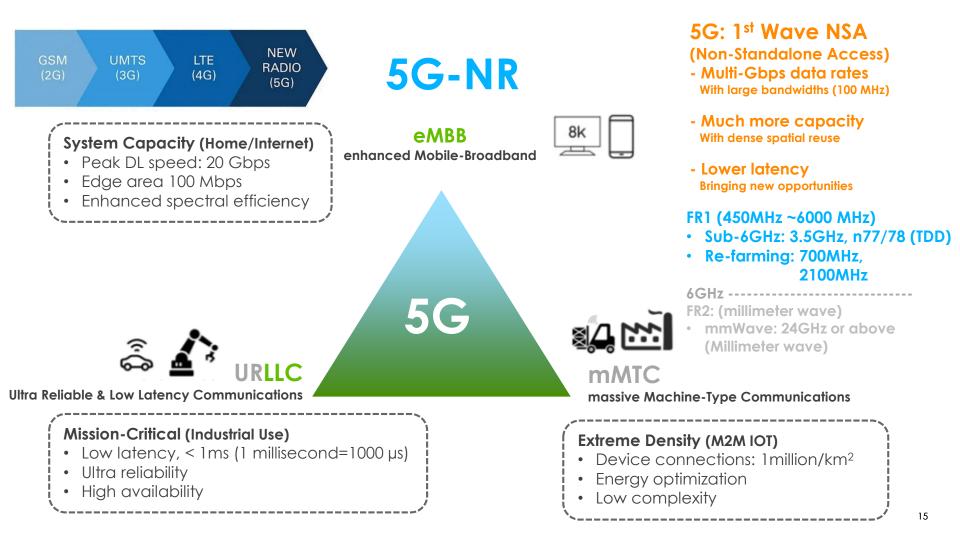

SA Signal Amplifier (High Power Repeater)

Coax 7/8" (22.23mm)

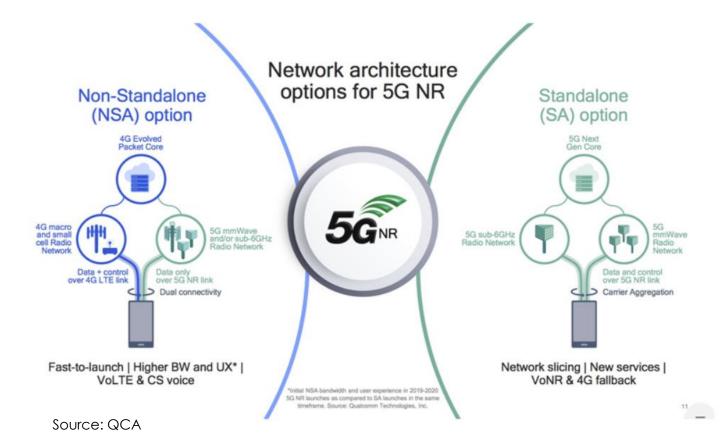
Traditional DAS Deployment Phases (approximation) & Steps

				Le	ength of	cable		Spli	tter			Cou	pler		100	nnector			1					
					Τ	Τ		Γ			6 dB		10 dB			Loss		na Gain			Link Budget Calculation			
	Deployment Step	Resource	SI Ante No na M	en 1/	2 7/8	Loss	2 14 24	3	4 way Los	~				٦.,				1	losses	EIRP	a			
				inc	th inch	1		way	4 1169		50		5	Los	Qty	Los	s g	tion	(dB)	(dBm)		Down Link		
											de la	SS I	de Lu	Tota			1	Dire			Up Link (RSSI at Micro BTS)	(RSSI at Mobile)		
	Design & RF Survey	RF Engineer	1	1 61	1 0			0	1	9	1	0	0 0	6	8	4	1	0		16.73	-49,48	-42.48		
			3 3	2 25		1.75		0	2	12	0	0		1.5	8	4	1	0	20.75		-46.96 -47.56	-39,96 -40,56		
				4 62		4.34		0	2	_	0	1	0 0	1.5	8	4	1	0	21.84		-48.05	-41.05		
	Installation	DM Construction	5	5 77		5.39		0	2	12	0	1	0 0	1.5	8	4	1	0	22.89		-49.1	-42.1		
	Installation	PM Construction	6 1	6 85		5.95		0	2		0		0 0	1.5	8	4	1	0	23.45		-49.66	-42.66		
		Crew Technicians		7 92		6.44		0	3			0	0 0	0	8	4	1	0	28.44		-54.65 -55	-47.65		
				9 65		4.55	0	0	3			0		0	0	-	1	0	26.55		-52.76	-45.76		
				10 77		5.39	0	0	3		_	0	0 0	0	8	4	1	0	27.39		-53.6	-46.6		
				11 65		4.55		0	3		-	_	0 0	_	8	4	1	0	26.55		-52.76	-45.76		
	Validation od	PM Construction Crew		12 47		3.29		0	3			0	0 0		8	4	1	0	25.29		-51.5	-44.5		
			13 1	13 65	5 0	4.55	0	0	3	18	0	0	0 0	0	8	4	0	1	26.55		-52.76	-41.76		
	DAS Completion	RF Engineers	14 1	14 57				0	3	18	0	0	0 0	0	8	4	0	1	25.99		-52.2	-41.2		
		-		15 32		2.24		0	3		-	0	0 0	0	8	4	1	0	24.24		-50.45	-43.45		
6			16 1	16 62		4.34		0	3		_	_	0 0	_	8	4	1	0	26.34		-52.55	-45.55		
Z			17 1	17 47		3.29		0	3		_	_	0 0	-	8	4	1	0	25.29		-51.5	-44.5		
E E	Developed to the second second	Construction Crew RF Engineers	18 1	18 57 19 44		3.99		0	3	18	-	0		0	8	4	1	0	25.99		-52.2	-45.2 -44.29		
5	Baseline Measurement		201 2	20 59		4,13		0	4	-	0	_	0 0	1.5	10		1	0	28.63					
i ĭ ĭ			21 2	21 54		3.78		0	3		0	1	0 0	1.5			1	0	28.28					
DNINOISIMMOD									-						-	-			-	-				
-Σ											RF CABLES - COAXIAL CABLE 1					E 1/4 1	12 7/8							
5	DAS Parameter Normalization	RF Engineers												I.I.	CAI	DEL	5 0		UAL	CADI		2, 110		
5	CW Testing															-	100	100	1					
	Cw lesting																							
Ŭ			-						1									-TV						
		DE Englander																100	100	-	100			
	Maximize Sensitivity	RF Engineers	100mm	5				-							-			11		100				
					-17-	-		-					1		1000			~	-					
			Contraction of the local division of the loc	-		6	1 Sale		-			1	/	1	100		1							
			Mi marti	1.3	4.5		-	-	1		1	1		200	<u> </u>		1				200			
	RAN Integration	RF Engineers				-		-		and the second	1	/			-	-	- 0	-		1	and the			
						1	The second	An	1					-			/		1	r .	ALC: NO			
	Pre Optimization Testing	Cell Technicians					-	-		11	24													
						States of	1	The	- mail		X							1	1		/			
			and the second division of the second divisio						1		NOY.		-							2	/			
	On Air Optimization Acceptance	PM RF Engineers		No. of Concession, name	-		-				100								1		1			
	err in openingererr independe						-		F	and the											12/			
								13	1 TE	Sec.		-							1	1	0			
						-			Nº 1	1			6							12	r			
Sour	ce: Anritsu								19	1										1				
0001	0017 4 4 1 1 0 0																			-				

Zyxel Ethernet Active DAS Solution



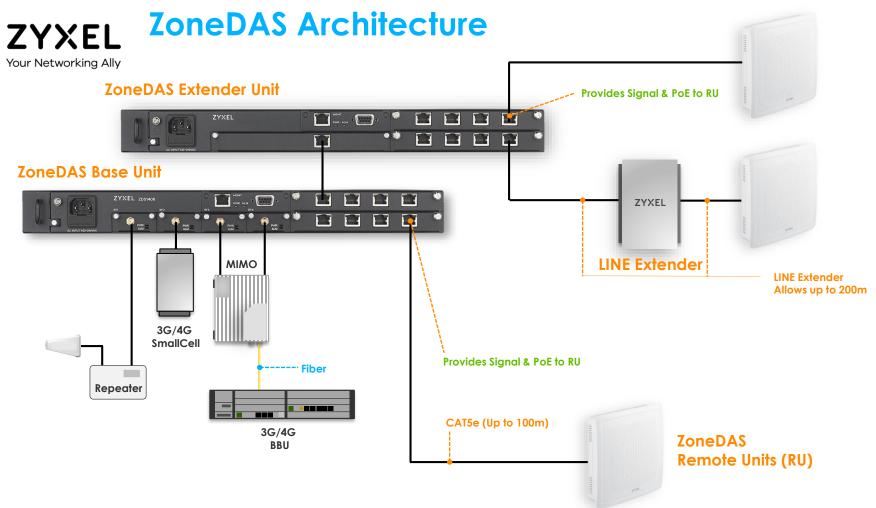
Designed for Easy Planning & Flexible Deployments


- Flexible 2 tier or 3 tier approach for simpler and more efficient installation.
- When using repeater, the signal strength can be as low as 1 bar signal strength.
- Unique technology that allow RF over Ethernet removing the need for complex calculations and reducing cost by utilizing standard RJ45 cabling
- Guaranteed for both Voice and Data services.
- Support hybrid signal source and multi-carriers co-location for smooth data and voice quality
- Rapid / scalable deployment with simple installation process/ modular design / PoE to power each RU built directly into each ZoneDAS or ZoneDAS One unit.

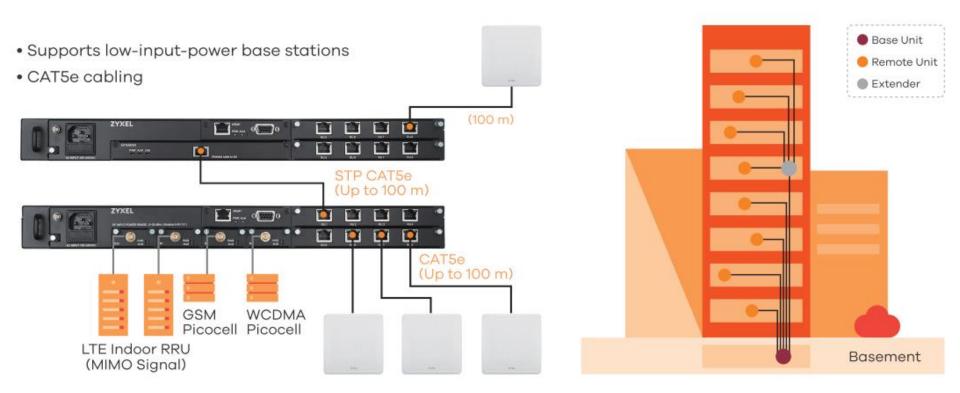
🕨 Remote Unit (embedded Antennas) 🛛 — Coax

RU Signal Amplifier

ZYXEL The difference between NSA and SA deployment option

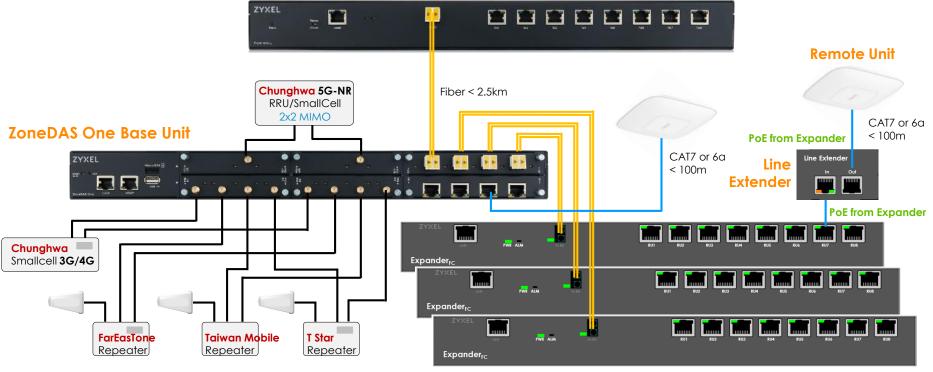


ZYXEL 1st Wave (Early) 5G Deployments & Example Usage Models

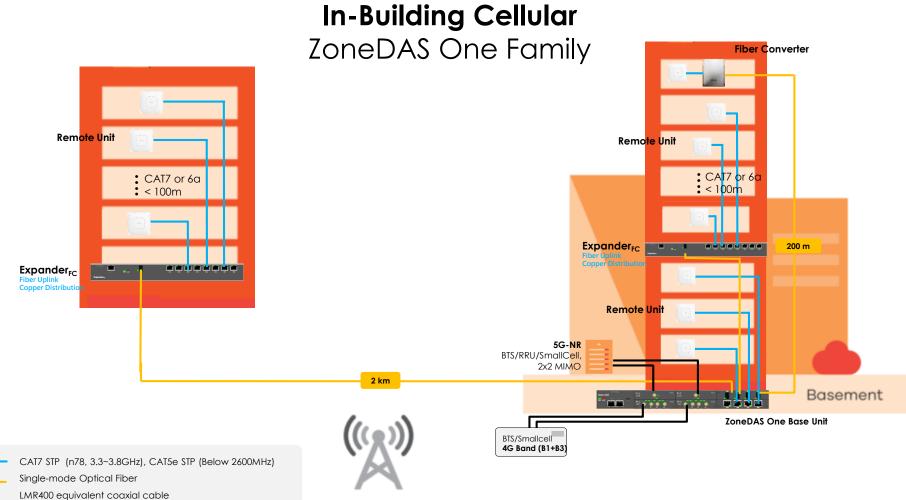

Your Networking Ally

Re-farming: Outdoor & Macro coverage

			Carrier bandwidth: e.g. 1, 5,10 and 20 MHz	Macro
600 MHz	LTE/5G	North America	Full coverage with <1	
700 MHz	LTE/5G	APAC, EMEA, LatAm	GHz	
3.3-3.4	LTE/5G	APAC, Africa, LatAm	Sub-6 GHz: Indoor & Outdoor Carrier bandwidth: e.g. 100 MHz	
3.4-3.6	LTE/5G	Global	Dense urban high data	
3.55-4.2	LTE/5G	US	rates	
3.6-3.8	5G	Europe	at 3.5 – 4.5 GHz	small Cell
4.5	5G	Japan China	mmWave: 24GHz or above	
28	5G	US, Korea Japan	Carrier bandwidth: e.g. 400 MHz Hotspot 10 Gbps at	
39	5G	US	28/39 GHz	
24.25-27.5	5G	WRC-19 band		Ultra
31.8-33.4	5G	WRC-19 band (Fra, UK)	Future mmwave	small Cell
~40,~50,~70	5G	WRC-19 bands	options	



In-Building Cellular ZoneDAS Family



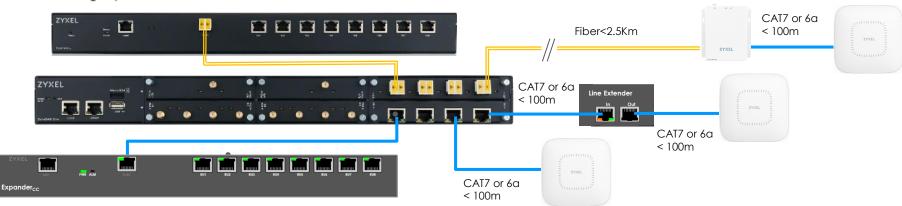
Fiber Expander F-C (support copper PoE)

Fiber Expander F-C (support copper PoE)

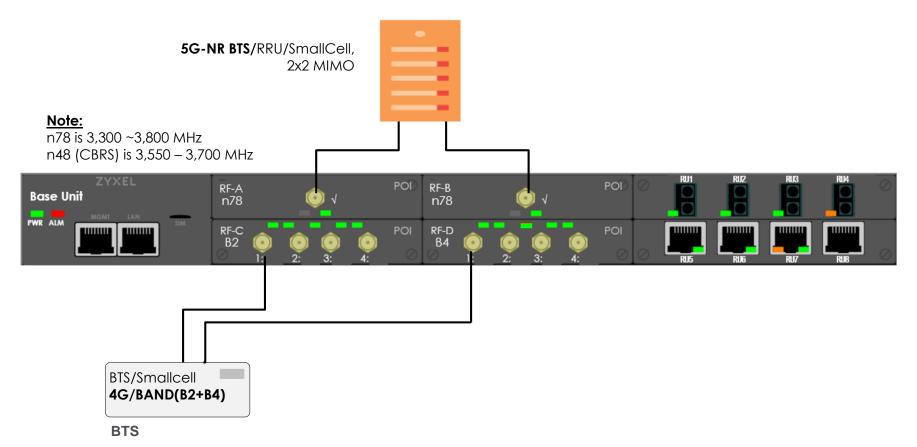
Operator's BTS (4G/5G)

Ethernet Active DAS Family.

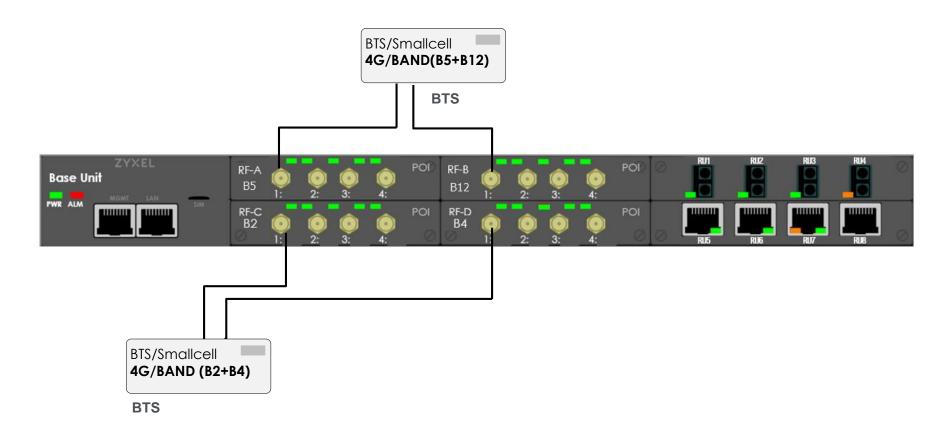
In-Building Coverage Solutions.


ZoneDAS One Family – Flexible and Easy to Use ZYXEL

Your Networking Ally

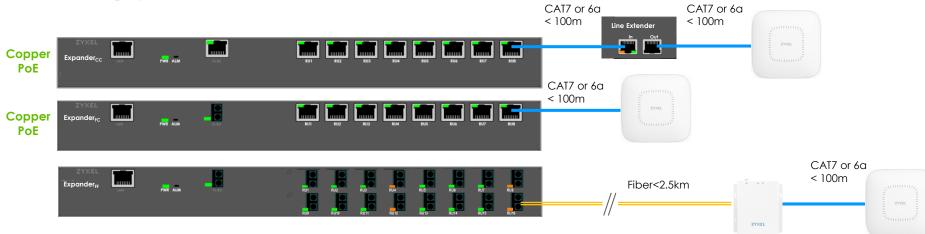

ZYXEL Base Unit

Your Networking Ally



- Total relay bandwidth: 320MHz DL/ 250MHz UL (FDD mode); 400MHz DL/ 280 MHz UL (5G-NR TDD)
- Band 1/2/3/4/5/7/8/12/13/20/28/39/40/41/n78 selectable by hardware module
- End-to-end delay: < 3 micro-sec (plus 400m CAT6a delay)
- Signal Quality: 256QAM quality
- 4-ports smart POI with SMA interface on each band
- Analog RF signal source; BTS or Repeater (Vendor Independent)
- Support up to 4 x n78 5G-NR TDD module (100MHz max. relay bandwidth on each module)
- LC/duplex Expansion module (Optional)
- OTA/LAN management interfaces; Carrier-grade NMS
- 1U/19" rack-mount

ZoneDAS One Base Unit (LTE/5G)



ZoneDAS One Base Unit - LTE

ZYXEL Expander/LINE Extender/Fiber Converter

Your Networking Ally

- LC/duplex fiber or CAT7 or 6a interface signal expander
- Copper port provides PoE power source to RU or Line Extender at remote
- LC/APC port connects to a Fiber Converter via a pair of LC cables, the Fiber Converter then converts signal to copper
- 1U/19" rack-mount
- Expander Models are: Expander_{FC}, Expander_{CC}, Expander_{FF}

- LINE Extender is a CAT7 or 6a extender
- Fiber Converter is a fiber to copper converter

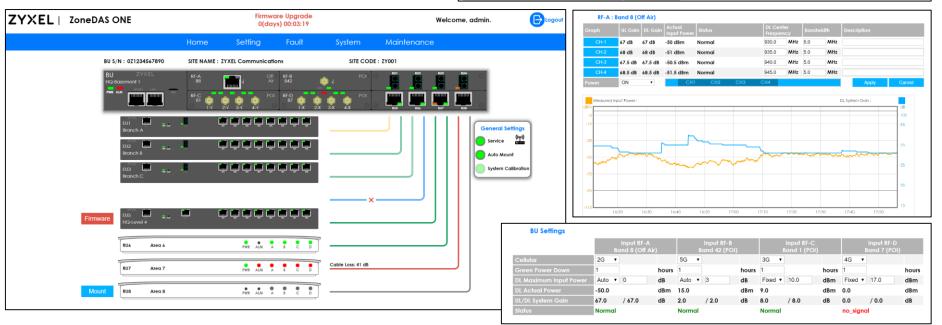
ZYXEL Remote Unit – Active Antenna Design up to 200mW

Your Networking Ally

- Total relay bandwidth: 320MHz DL/ 250MHz UL (FDD mode), 400MHz DL/ 280 MHz UL (5G-NR TDD)
- Band 1/2/3/4/5/7/8/12/13/20/28/39/40/41/n78 selectable by hardware module
- 23dBm (200mW) output power per band, max. 4 bands (antenna gain excluded)
- Built-in Omni antennas on each band
- Omni antenna gain: max. 3dBi
- PoE power feeding from copper SD port
- Ultra-slim and **fan-less** design
- Dimension: 270 x 270 x 80 mm
- Weight: 2.7Kg
- Ceiling-mount

Band Module

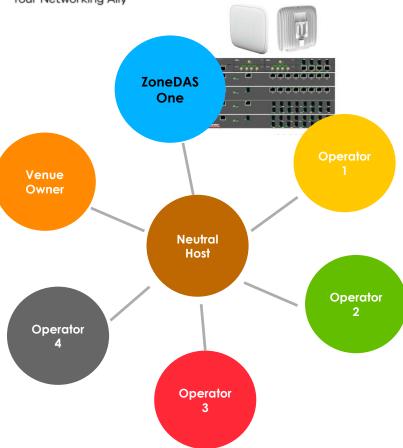
Remote Unit – RU4C for external antennas, ideal for multiple partition space e.g. hotels




ZYXEL Mgmt. Console

Your Networking Ally

- ✓ Support http/https protocol
- ✓ Intuitive User Interface(UI) built into the device
- ✓ Real-time power/thermal monitoring.
- ✓ Easy configuration, Plug-n-Play


Total Number of Power Licenses in BU: 8 🔯					Output Power (dBm) Max / Actual										
Active licenses: 8		Required total: 12 Deactivate RUs Redeem		8	Input RF-A and 8 (Off Air)		Input RF-B Band 42 (POI)		Input RF-C Band 1 (POI)						
To all RU			RU bands												
RU3: Lo	cation 3		1,1,,8	17	23 16.3	17	16.5	17	23 16						
RU4 :			1,1,7,8	17	16.5	17	23 17	17	16.						
RU5 : Lo	cation 5		1,1,7,8	17	16.3	17	23 16.1	17	23 18						
RU6: Lo	cation 6		1,,,7,8	17	16.1	17	20 16.3	17	16.						
RU7: Lo	cation 7		1,1,7,8	17	16.3	17	16.1	17	16						

ZYXEL Perfect DAS Solution for Neutral Host Deployment

Key Features:

- Ethernet (CAT7 or 6a) Active DAS
- 4 band selectable, analog-based system
- Bandwidth: 320MHz DL/ 250MHz UL (FDD mode), 400MHz DL/ 280 MHz UL (5G-NR TDD)
- Perfect for Multi-Carriers co-location
- Multi-system co-exist (2G/ 3G/ 4G/ 5G/ NB-IoT)
- No more RF link budget calculation
- "Off-air" signal source applicable
- Support **copper** and/or single mode **fiber** installation
- Signal coverage up to 64 x active antennas (with 200mW/23dBm output power in 4 bands)

TCO ZoneDAS One vs Off-Air Passive DAS

Off-Air Passive DAS Zvxel ZoneDAS Series One Project can be done in **2 Days** One Project takes Months For System For End For System For End Integrator (SI) Integrator (SI) Customer Customer High TCO \$10/m² not cost Low TCO \$3/m² Suitable for effective solution for Hospitality Hospitality or Enterprise or Enterprise deployments. deployments. **Device** Cost **Device** Cost Shorter Deployment Need skillful RF engineer to ✓ Easy planning. . Deployment **Project Cycle** calculate link budget, Cost **Longer Project** Cost splitter/cable loss and etc. ✓ Easy Cabling both in cost Cvcle. = and deployment (RJ45 & Planning and site survey CATV cables). . = MORE takes at least 1 month. Revenue ✓ Active DAS with auto **LESS Projects** Income High cost carrier grade power & auto levelina Closed coax cables support, Plug-n-Play, 2-day deployment. Longer deployment cycle man-days, takes 1~1.5 ✓ Suitable for IT-based SL. months per install.

Key Takeaway for ZYXEL Active DAS Family.

For IT-based System

- ZoneDAS series has been designed to be a "installer-friendly" solution in DAS market.
- Ability to deploy with RJ45, with simply plug & play functionality.
- Enable existing IT-based System Integrator to pursue new business opportunities.

Zyxel walks with you side-by-side from initial planning to real deployment, as a strong backup for your project success!!

For IBS System Integrators

- ZoneDAS series significantly shortens the project cycle from months to days, meaning more we can help with business growth (more projects in same timescales as traditional deployment methods).
- ZoneDAS series deployment is flexible and scalable solution up to 80,000 m2, ZoneDASseries has a lower TCO than Traditional DAS solution, while providing supreme Voice and Data quality.
- ZoneDAS series has been approved by Tier 1 operators in France and Italy.

ZoneDAS One Flexible and Easy to Use

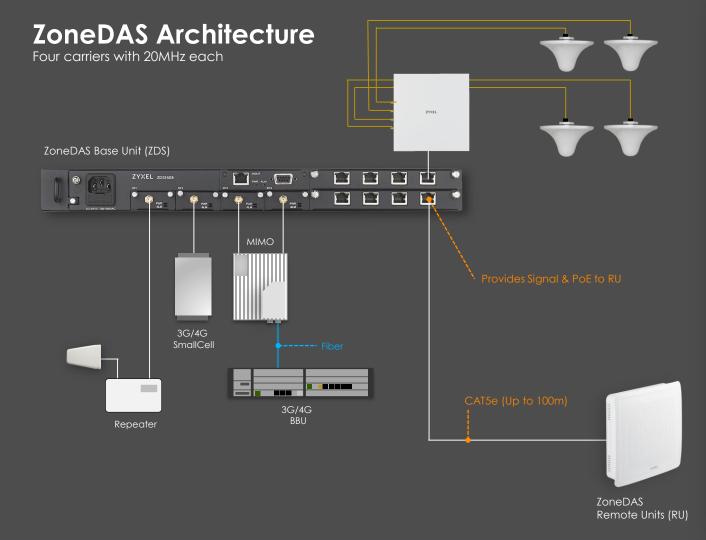
- <mark>Scenario</mark>

- ✓ Airports & Stations
- 🗸 Stadiums
- College Campuses
- Convention Centers
- Shopping Malls/Plazas
- Complex Buildings/Offices

- Capable with Off-Air, Micro Base Station or Hybrid Signal Source
- Multi-system co-exist for 2G/3G/4G/5G/NB-IoT
- Possibility to combine FDD and TDD in the same remote unit
- 4 Bands selectable & built-in smart POI, ideal for full band co-construction/sharing
- Applicable to Extra-Low Voltage (ELV) installation with copper or fiber
- No more RF link budget calculation
- Signal coverage up to 64 x active antennas (4 x 23 dBm PA, 200mW/4 bands)
- Power supply via PoE, flexible installation either from central or at remote node
- Carrier-grade Network Management System
- Intuitive GUI like existing ZoneDAS product
- International Tier-1 Carrier Certified & CE RED Certified

ZoneDAS Family – Target at Single Carrier

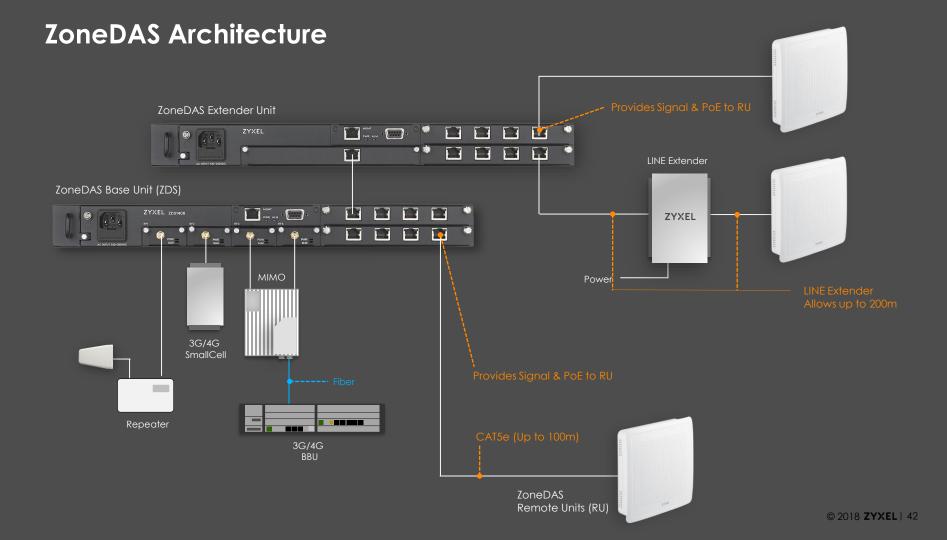
Design Concept - Simple and Flexible


Relay Bandwidth (4x 20MHz)	4x SISO	2x SISO 1x MIMO _{2x2}	2x MIN	10 _{2x2}	1x N	/IMO _{4x4}
Multi-System	GSM	UMTS L	TE FDD	TDL	.TE	
Multi-Band	Band 1/2/3/4/5/7/8/12/13/17/20/28/38/39/40/41					
Multi-Carrier	Operator A	Operator B	Operc	itor C	Op	erator D

Key Features:

✓ WiFi RF planning, LAN cabling

- ✓ Remote power feeding (PoE)
- ✓ Analog-based system
- ✓ Signal sources: BTS or/and Repeater
- ✓ Coverage: 2,500 ~ 40,000m²
- ✓ Distance from BTS to antenna: 400m (Delay < 3µs)
- ✓ Carrier-grade management



ZYXEL Tu **RU Output power** configurable from 14~23 dBm

Hotel:25x25m²Office:35x35m²Open Area:50x50m²

Base Unit

BU Chassis

- 2x SD module slots
- 4x RF module slots (4xSISO/2xSISO+1xMIMO/2x MIMO with Intra-band/Inter-band CA supported)
- Hot-swap fan module
- Management Interfaces: 10/100
 RJ45 FastEthernet and console
- AC power input: 100~240V
- Max. power consumption: 450W (full configuration and max. output power)
- 10, 19" rack-mount

RF Module (BTS Mode)

- Band Selectable B1/2/3/4/5/7/8/12/13/17/20/28/38/39/40/41
- Low input power range: 0~24dBm
- ALC range: 24dBm~33dBm
- Damage over 33dBm(2Watt)
- Max. output power: -25dBm
- Continuous 20MHz service channel
- SMA connector

SD: Signal Distribution

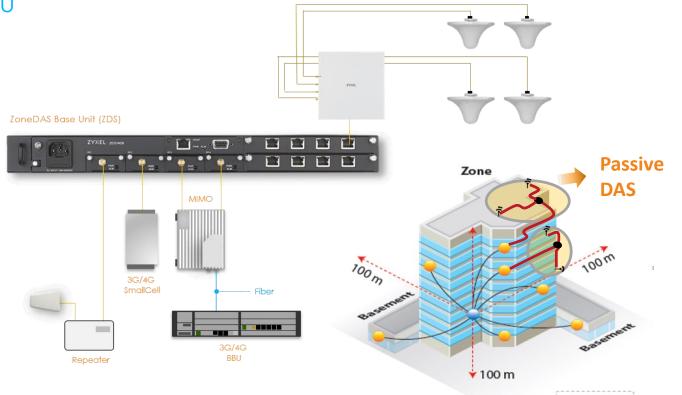
SD Module

- 4x RJ45 ports (connect to 4xRUs)
- Up to 100m CAT5e cabling
- PoE power feeding to RUs
- Each port can carry 4 separate RF channels
- Max. -10dBm output power @240MHz IF frequency

Remote Unit Build-in antenna SKU

RU Box

- RJ45 interface (PoE)
- Power consumption: 6.5W, RF Modules excluded
- 4 Slots for RF modules
- Antenna isolation between RU modules: 20dB
- Replaceable silent-fan module (L10: 80,000 hours)
- Mount-kit for ceiling/wall mount


RF Module

- Band Selectable B1/2/3/4/5/7/8/12/13/17/20/28/38/39/40/41
- Output power range: 14 ~ 23dBm (antenna gain excluded)
- Build-in dual antennas with software switch Omni for ceiling mount with ~3dBi gain Panel for wall mount with ~6dBi gain
- Max. power consumption: 9W per module

Remote Unit – RU-4C

External antenna SKU

🔵 EU 🛛 😑 RU

- Scenario

- College Campuses
- Convention Centers
- Shopping Malls/Plazas
- Complex Buildings/Offices

ZoneDAS Flexible and Easy to Use

- Capable with Off-Air, Micro Base Station or Hybrid Signal Source
- Multi-system co-exist for 2G/3G/4G/5G (Re-farming from 4G)
- WiFi RF planning, LAN cabling
- Analog-based system, 4 Bands selectable by hardware module
- Distance from BTS to antenna: 400m (Delay < 3µs via CAT5e cable)
- Applicable to Extra-Low Voltage (ELV) installation with Ethernet cable
- No more RF link budget calculation
- Signal coverage up to 64 x active antennas (4 x 23 dBm PA, 200mW/4 bands)
- Power feeding to Remote Unit via PoE
- Intuitive GUI, Carrier-grade Network Management System
- International Tier-1 Carrier Certified & CE RED Certified

Success References

ZYXEL Belgium's Car Show Room

Success Story

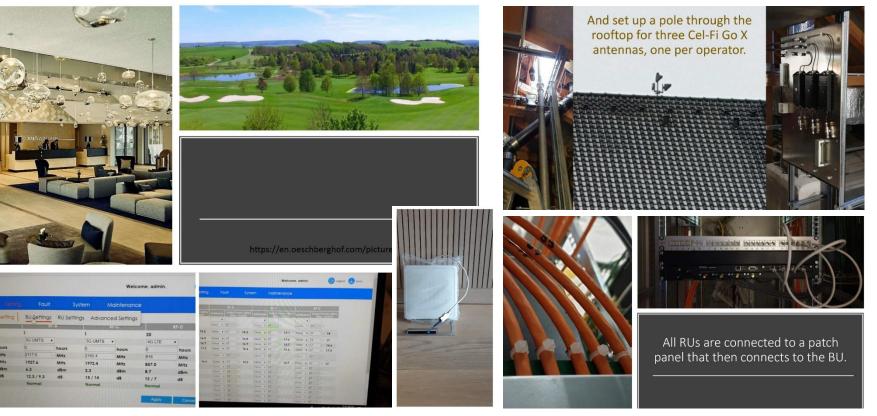
Mercedes Benz Dealership uses Zyxel CAT5 DAS to Achieve In-Building Cellular Connectivity

Overview

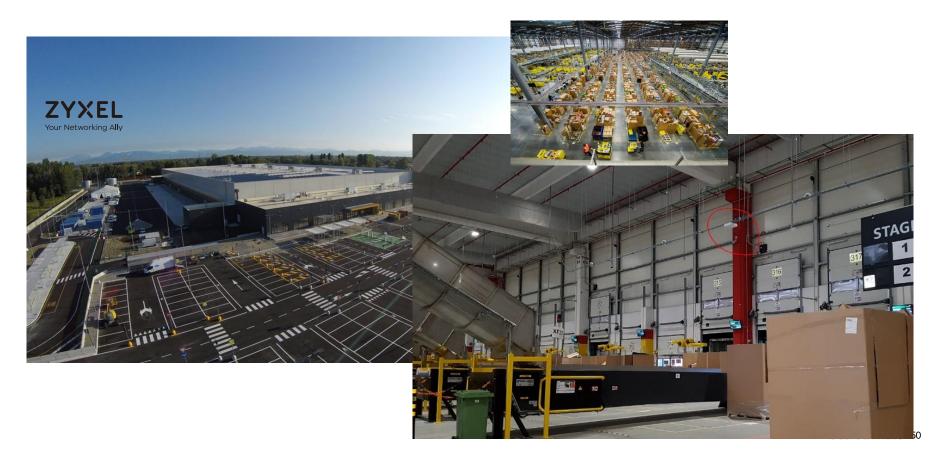
Challenges

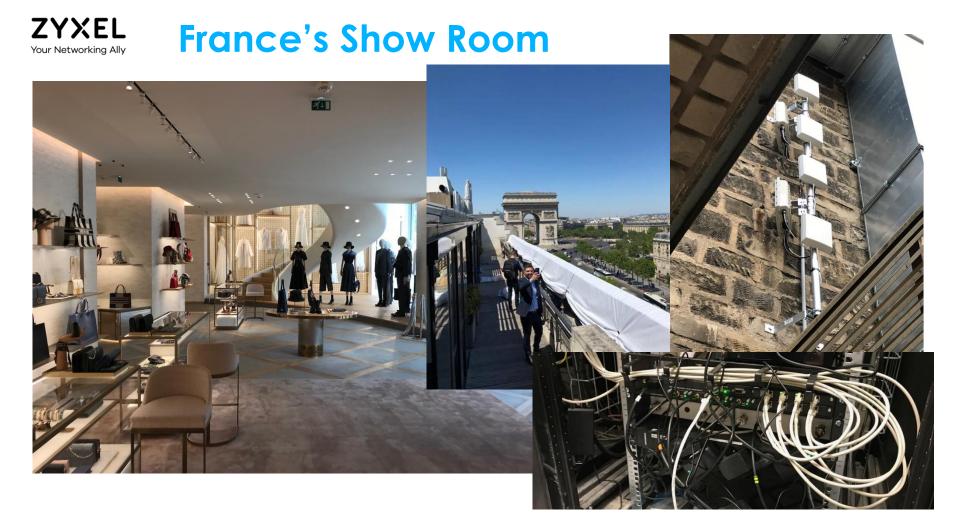
- Establish cellular connectivity throughout the dealership, including show room, service area, and office space.
- Obtain a wired (not off-air) signal source from the operator(s) to ensure a first class experience for Mercedes Benz customers.
- Minimize cost, especially recurring fees.

Solution


Zyxel SlimDAS
 One femtacell from Orange as the signal source

Re

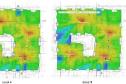

 Strong cellular signal throughout the building, with clear voice calls and fast darts transfer speeds.
 SimDAS enabled the Marcades Benz dealership is provide the coverage of 3 small cells for the upfrant and mentify cost of just one fernitosell.
 With room to spare for future expansion, the dealership can add sinvise bays and/or showroo cell deployment.



ZYXEL Germany's Resort

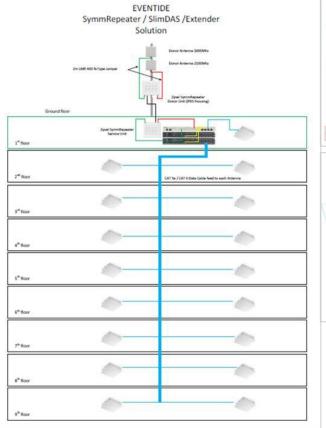
ZYXEL Los Angeles' Apartment Your Networking Ally

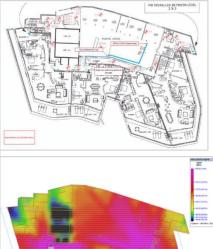
2100 MHz Propagation LTE Signal Strength



Level 5

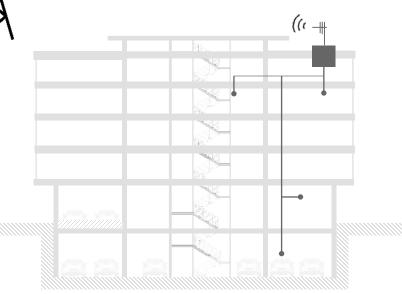
2108 Mills Propagation LTE Reterence Signal Received Power


Equipment List Report				
Project name: Project creation	date:		Design company: Designer:	
Туре	Manufacturer	Model	Description	Qty
Antenna	Advanced RF Technologies	AD-PA-1900- 2600-DIN	High-Isolation Donor Antenna / 1900 MHz - 2600 MHz / 18 - 20.5 dBi / 19 - 14 degree beam	4
Cable	CommScope	AL4RPV-50	HELIAX [®] Plenum Rated Air Dielectric Coaxial Cable - Corrugated Aluminum - 1/2 in - Off White PVC Jacket	534.42 feet
Cable	Generic	CAT-6	CAT-6 - 24 AWG min 100m Maximum Cable Length	2377.00 feet
Network Equipment	Zyxel	Extender	Zyxel extender 8 output ports, RU only connectable	2
Repeater	SureCall	Fusion5X	All-Carrier Cellular Signal Booster - 72 dB Gain - N-Female Connectors - 700 Band (728-746 MHz / 746-757 MHz DL 698-716 MHz / 776-787 MHz UL) - 850 Band (869-894 MHz DL 824- 849 MHz UL) - 1900 PCS Band (1930-1995 MHz DL 1850-1915 MHz UL) - 2100 AWS Band (2110-2155 MHz Cel-Fi GO X: Band 2 (1850-1910/1930-	1
Repeater			 Sand 2 (1850-1910) 1950- Sand 2 (1710-1755/2110- St Miz, Band 5 (824-849/869-894 MHz, Band 12 (699-716/729-746 MHz) and Band 13 (777-787/746-756 MHz) and Band 13 (560 entry 	
Connector	CommScope	L4TNM-PSA	N Male Positive Stop for 1/2 in AL4RP V-50, LDF450A, HL4RPV50 cable	
Connector	Generic	RJ-45	RJ-45 connector	44
Radio Transceiver	Zyxel	RU ceiling mount	omni internal Remote Unit zyxel	20
Network Equipment	Zyxel	ZONEDAS	ZONEDAS Base Unit 8 output ports connectable to RU/exntender 4 RF input signals	1

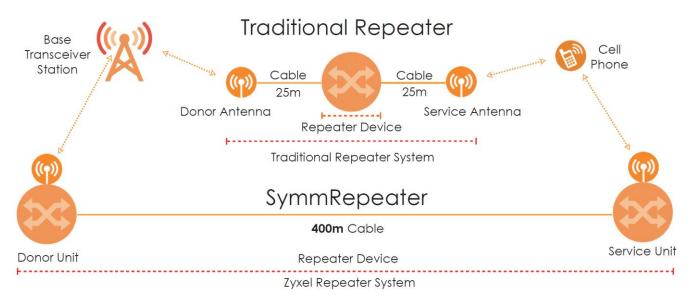


ZYXEL
Your Networking AllySouth Africa's Apartments

© 2016 ZYXEL | 54

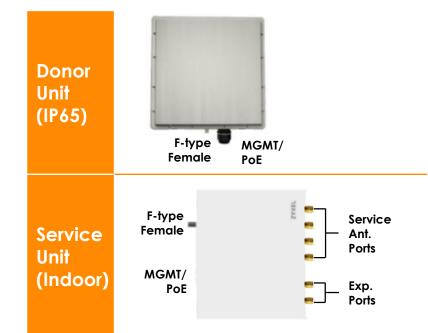


Traditional Repeater Application & Their Issues


Traditional Repeater's Challenges

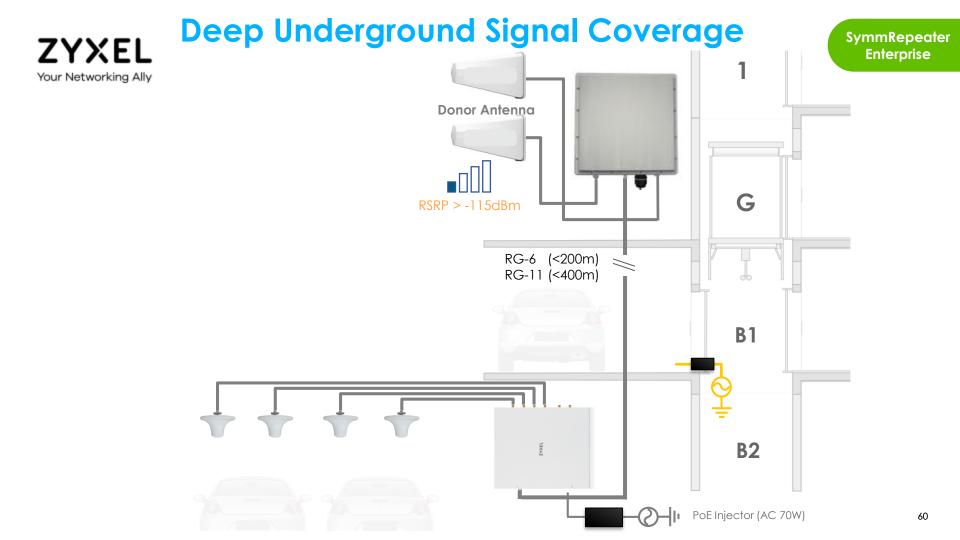
- 1- level signal amplification only.
- Mobile device is limited to 1W output power. Uplink is always a crucial challenge.
- **Complex planning** and **link budget calculation** for large multi-floors deployment.
- Cannot guarantee voice and data quality
- Typical coverage is up to 2,500m²

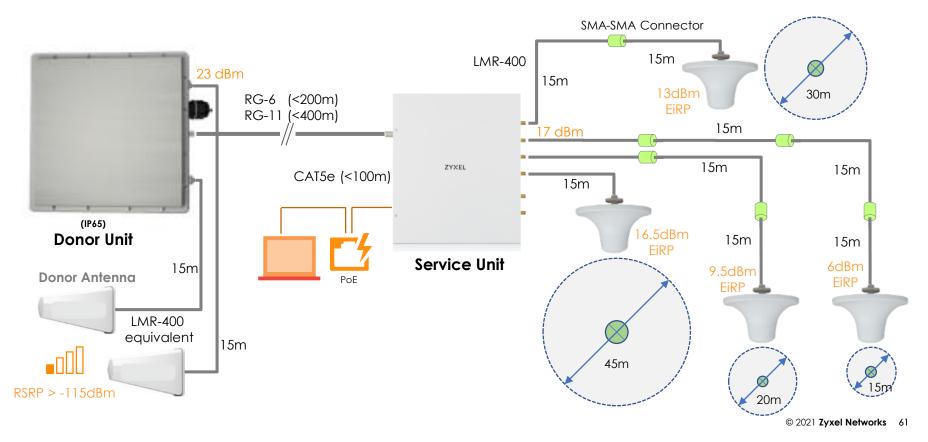
Donor Antenna
Traditional Repeater
Service Antenna


What scenarios SymmRepeater^{Enterprise} excel at?

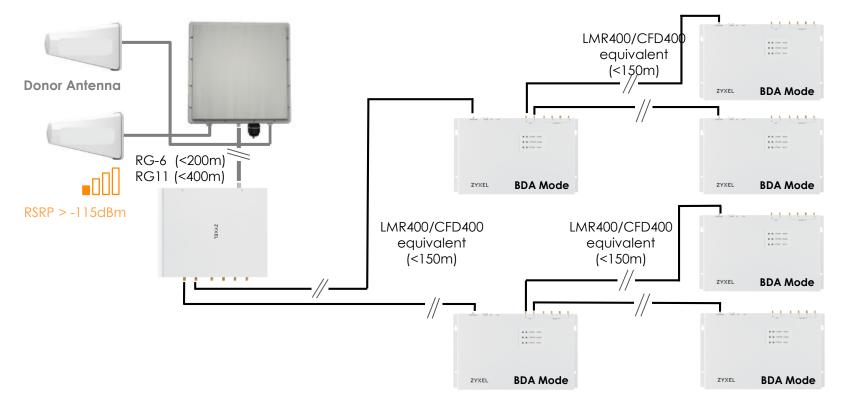
Demand for ubiquitous coverage within the building keeps increasing. Elevators, high floor areas, underground parking lots and basements are the most challenging areas for mobile signal coverage. Traditional repeaters cannot respond the demand perfectly due to its limit of system gain and end-to-end system length.

SymmRepeater^{Enterprise}




Symmetric Architecture Design

- Dual bands selectable
- **2 level** signal amplification through RG-6 or RG-11 cable. RG-6 up to 200m, RG-11 up to 400m.
- Outstanding oscillation avoidance
- System gain up to 100dB
- Auto gain control (AGC), auto signal levelling
- UL power up to 23dBm, same as a 4G LTE mobile.
- DL power up to 17dBm per antenna port
- Auto uplink mute, no interference to carrier base station, making the SymmRepeater^{Enterprise} invisible for operators.
- Guarantee high quality Voice and Data.
- Ideal for high-rise buildings, tunnels and elevators.
- Hard-line or soft coaxial cables applicable, suitable for ELV (Extra-Low-Voltage) SI as well



Simple Planning – No Splitters Each SymmRepeater^{Enterprise} covers 900 x 4 = 3,600m²

SymmRepeater^{Enterprise} Cascades 6 Nodes Works with MultiSite, up to 28 x 50mw service antenna ports

- Support http/https protocol
- WYSIWYG interface
- Real-time cable loss monitoring
- Plug-n-Play configuration

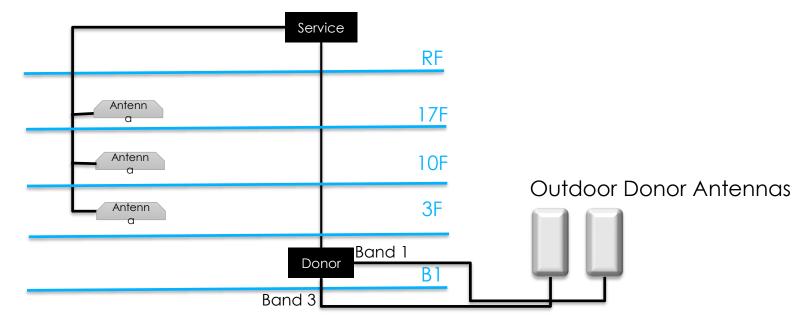
ZYXEL | SymmRepeater - Donor Unit

Site ID: TWN-HSU	Taiwan		
🖤 Donor Unit	Channel 1 : Band 3	Channel 2 : Band 28A	General Settings
Donor Unit Status	Operational	Operational	System Calibration 🔵
Cellular Type	Bi-directional Amp.	Bi-directional Amp.	
Current DL Input RSSI	-108 dBm Poor	-108 dBm Poor	
DL Center Frequency / Bandwidth	1842.0 MHz 10.0 MHz	1842.0 MHz 10.0 MHz	
Maximum UL Output Power	23 dBm	23 dBm	
Maximum UL Output Power Cable Loss > 60 dB (cable out of range) Service Unit Service Unit	23 dBm Channel 1 : Band 3 Operational	Channel 2 : Band 28A Operational]
Maximum UL Output Power Cable Loss > 60 dB (cable out of range) Service Unit Service Unit Status DL Gain (Setting / Actual)	23 dBm Channel 1 : Band 3	Channel 2 : Band 28A]
Maximum UL Output Power Cable Loss > 60 dB (cable out of range) Service Unit Service Unit	23 dBm Channel 1 : Band 3 Operational	Channel 2 : Band 28A Operational	
Maximum UL Output Power Cable Loss > 60 dB (cable out of range) Service Unit Service Unit Status DL Gain (Setting / Actual)	23 dBm Channel 1 : Band 3 Operational Auto 99 dB	Channel 2 : Band 28A Operational Auto -99 dB	

ZYXEL Your Networking Ally **Luxury Apartment in Taipei, Taiwan**

Donor Antenna Installation

Donor Units Installation



A.背養時

九1日户接,

Chunghua Telecom – Elevator Signal Coverage Enhancement at Luxury Apartment (皇翔御琚)

The proposal is to improve elevator signal coverage for 3 lifts at Building A, including Resident Lift, VIP Lift and Service Lift. Service antennas are installed inside the elevator tunnel at the Floor 3, 10, 17 to improve 3G U2100 and LTE L1800 signal.

Scenario

- Elevators
- High floor areas
- Underground parking lots
- Basements

SymmRepeater Enterprise Ultra High Gain, Long Distance Repeater

- Dual-band selectable (B1,3,7,8,20,28a,28b), support full band or single sub-carrier
- Frontend & backend **2-level amplification**.
- Frontend-to-backend extension up to 400m with soft coaxial cables
- Capable to extend with MultiSite Repeater for greater signal coverage
- Multi-system co-exist, compatible with 2G/3G/4G/5G-NR_{FDD}/NB-IoT
- UL Power up to 23dBm
- Ultra-high system gain up to 100dB, perfect for outdoor poor signal (RSRP>-115dBm)
- Support 4 x 17dBm service antenna ports (50mW in dual-band)
- Isolation detection, Downlink Sleep, Uplink Mute, Invisible to BTS
- Power supply via PoE, either from Donor Unit or Service Unit
- Web GUI support, system heartbeat monitoring via Syslog (interval configurable)
- CE RED Certified

SymmRepeater^{Pro}

Symmetric Architecture Design

- Dual bands selectable
- **2 level** signal amplification through RG-6 or RG-11 cable. RG-6 up to 200m, RG-11 up to 400m.
- Outstanding oscillation avoidance
- System gain up to 100dB
- Auto gain control (AGC), auto signal levelling
- UL power up to 23dBm, same as a 4G LTE mobile.
- DL power up to 23dBm per antenna port (non-combined)
- Auto uplink mute, no interference to carrier base station, making the SymmRepeater^{Pro} invisible for operators.
- Guarantee high quality Voice and Data.
- Ideal for tunnels, elevators, temp. coverage improvement or Mountain areas.
- Hard-line or soft coaxial cables applicable, suitable for ELV (Extra-Low-Voltage) SI as well

SymmRepeater

Pro

Scenario

- ✓ Tunnels
- Elevators
- Y Temp. coverage improvement
- Mountain areas

SymmRepeater Pro Ultra High Gain, Long Distance Repeater

- Dual-band selectable (B1,3,7,8,20,28a,28b), support full band or single sub-carrier
- Frontend & backend 2-level amplification.
- Frontend-to-backend extension **up to 400m** with soft coaxial cables
- Capable to extend with MultiSite Repeater for greater signal coverage
- Multi-system co-exist, compatible with 2G/3G/4G/5G-NR_{FDD}/NB-IoT
- UL Power up to 23dBm, DL power up to 23dBm
- Ultra-high system gain **up to 100dB**, perfect for outdoor poor signal (**RSRP>-115dBm**)
- Support 2 x 23dBm service antenna ports (200 mW, non-combined)
- Isolation detection, Downlink Sleep, Uplink Mute, Invisible to BTS
- Power supply via PoE, either from Donor Unit or Service Unit
- Web GUI support, system heartbeat monitoring via Syslog (interval configurable)
- CE RED Certified

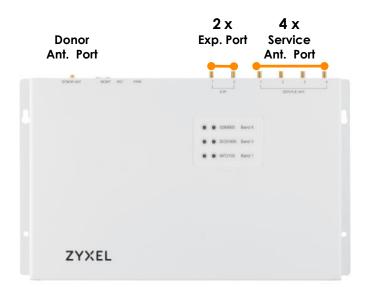
Who Needs MultiSite?

Any business venue owner knows that a strong mobile signal almost represents revenue, service quality & productivity. Poor mobile signal quality or coverage creates customer complaint and low productivity issues. A mobile repeater is the answer to solve the problem, esp. for residential buildings, multi-floor office/basement, hotels/resorts, hospitals, mid-size warehouses.

THE BEST SOLUTION

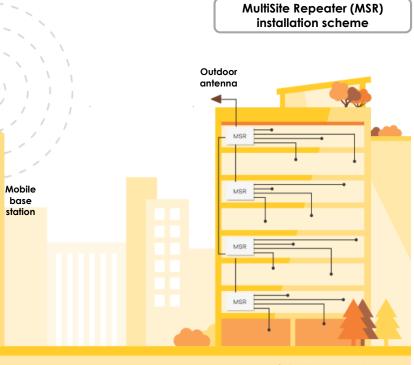
Nodes

cascade maximum square meter


7 X 3,600

coverage Space

MultiSite Repeater

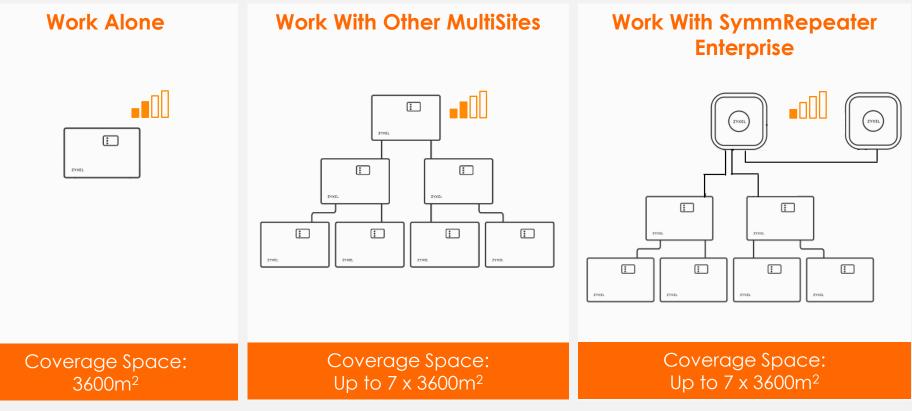

Positioning

- For large multi-floor scenarios such as residential buildings, multi-floor office/basement, hotels/resorts, hospitals, midsize warehouses requiring mobile network indoor coverage improvement.
- Up to 7 x 3,600m²

Benefits

- 2G, 3G, 4G, 5G-NR_{FDD}, NB-IoT support.
- 3 bands support simultaneously.
- Multi-level signal amplification.
- Channelized (single operator) or full band.
- Worry-free installation with selected tool kit. Choose the one which fits the environment the best.
- Easy coverage planning.
 - 4 x SMA service antenna ports, each covers a 30x30m floor space with a 25m soft coaxial cable.
- Cascadable up to 7 x MultiSite.

MultiSite Quick Overview


-----> Denar Antenna ------ Antenna

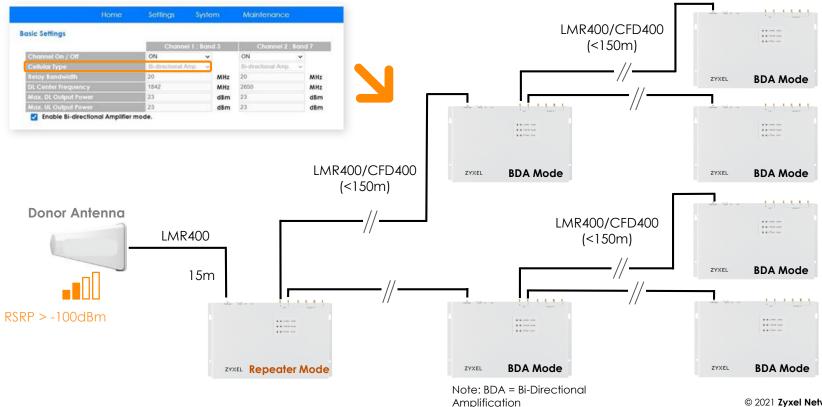
Coverage Space: up to 7 x 3600m²

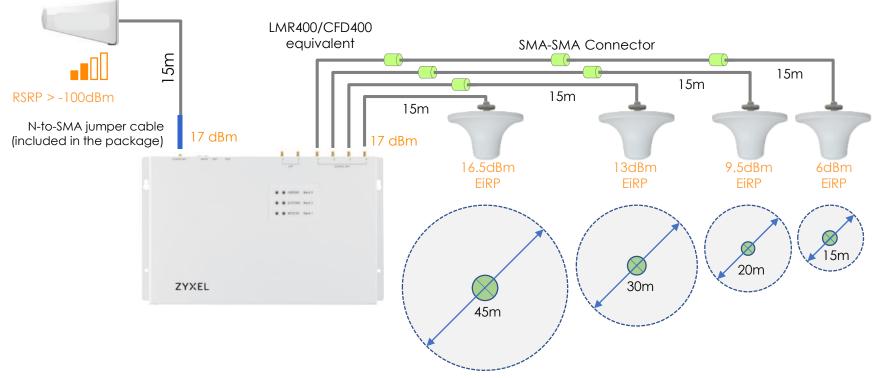
Product Features

- Path length (from donor to service ant.):
 - up to 100m single node
 - up to 300m multi-nodes
- 3 bands selectable (B1,3,7,8,20,28a,28b, by part code definition)
- UL Power: up to 17dBm
- DL Power: up to 17dBm per port
- System Gain: up 80dB
- 256QAM EVM <3.5% (vs. 5G requirement < 4.5%)
- End-to-end latency <1.3µs (vs. 5G requirement < 1ms)
- SMA Female connectors, impedance 50 Ohm for Donor & Service antennas.
- Real-time isolation detection, auto gain control (AGC), uplink mute

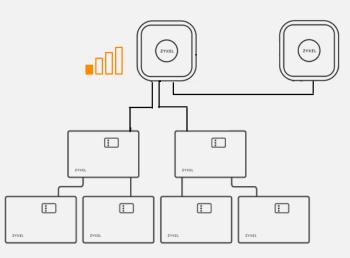
MultiSite Application Diagram

MultiSite Deployment Scenario Work with Other MultiSites


Coverage Space: up to 7 x 3600m²


Ideal for multi-floor deployments, e.g. supermarkets, residential buildings, multi-floors offices/basements, hospitalities and warehouses.

MultiSite Repeater Cascades Up to 7 Nodes Up to 28 x 50mw service antenna ports


MultiSite Installation With LMR400/CFD400 Coaxial Extension Cable

MultiSite Deployment Scenario

Work with SymmRepeater^{Enterprise}

Coverage Space: up to 7 x 3600m²

Ideal for remote industrial parks, country hotels/inns, highfloor areas, metro underground shopping streets or parking space.

MultiSite Cascadable Digital Repeater

- Scenario
- Complex buildings/Offices
- 🗸 Hospitals
- ✓ Hotels & Resorts
- ✓ High-Rises
- Multi-floor Basement

Elevators

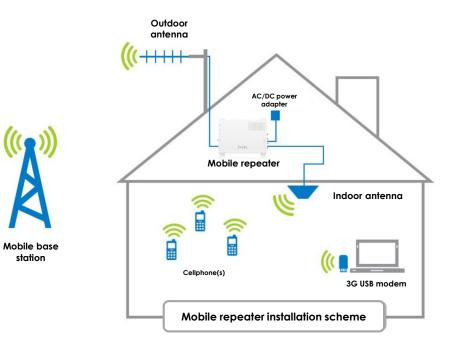
- Tri-band selectable (B1,3,7,8,20,28a,28b)
- Support full band or up to 3 sub-carriers
- Multi-system co-exist, compatible with 2G/3G/4G/5G-NR_{FDD}/NB-IoT
- Cascadable up to 7 x MultiSite Node
 - Signal coverage up to 28 x 17dBm service antenna ports (50mW in tri-band)
 - System cable length up to 150m in radius with soft coaxial cable
- Applicable to Extra-Low Voltage (ELV) installation with soft coaxial cable or traditional IBS installation with hardline coaxial cables
- Real-time isolation detection, Downlink Sleep, Uplink Mute, Invisible to BTS
- UL power up to 17dBm, System gain up to 80dB
- Power by PoE,
- Web GUI support, system heartbeat monitoring via Syslog (interval configurable)
- CE RED Certified

MagicOffice The Ideal Solution For Indoor Signal Enhancement

- For small offices, bars, restaurants, or shops requiring mobile network indoor coverage improvement
- \checkmark Up to 900m² coverage.

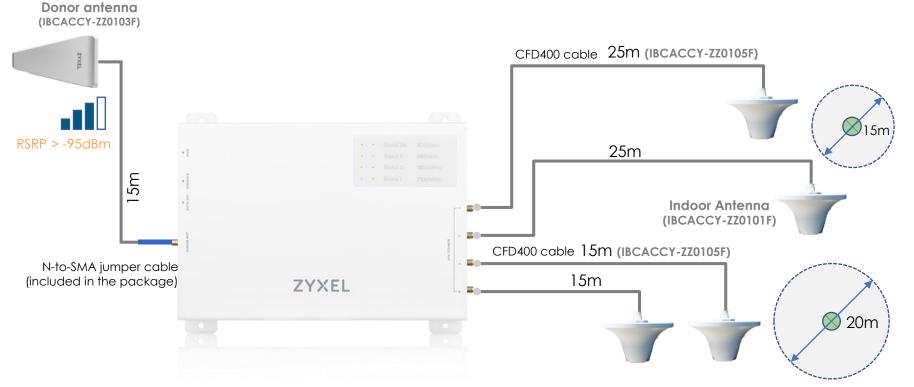
Benefits

- ✓ 2G, 3G, 4G, 5G-NR_{FDD}, NB-IoT support
- ✓ 4 Band (B1-3-8-20/ B1-3-8-28a) support simultaneously
- ✓ Guarantee Voice & Data performance
- ✓ Worry-free installation with selected tool kit Choose the one which fit the environment the best.
- Easy coverage planning
 4 x SMA service antenna ports, each covers a
 15x15m floor space with a 25m soft coaxial cable.


Positioning

MagicOffice Quick Overview

Product Features


- Path length (donor -to service ant.): up to 60m
- 4 bands fixed (Band 1-3-8-20/ Band 1-3-8-28a)
- Full band or channelized configuration support
- UL Power: up to 17dBm
- DL Power: up to 10dBm per port
- System Gain: up 75dB
- SMA Female connectors, impedance 50 Ohm for Donor & Service antennas.
- Real-time isolation detection, auto gain control (AGC), uplink mute

Coverage Space: up to 900m²

MagicOffice Installation With CFD-400 Equivalent Coaxial Extension Cable

— <mark>Scenari</mark>o

- ✓ Large building
- ✓ Small Office
- Factories & Warehouses
- Underground car park

MagicOffice Digital Full Band Repeater

- Soft coaxial cable (LMR-400 equivalent) installation, ideal for ELV system integrators
- Antennas/coaxial cables optional packages available
- Multi-system co-exist, compatible with 2G/3G/4G/5G-NR_{FDD}/NB-IoT
- 4 Bands support: Band 1-3-8-20/ Band 1-3-8-28a (DL:758-788)
- Support full band or channelized configuration
- UL Power up to 17dBm, System gain up to 75dB
- Support 4 x 10dBm service antenna ports (10mW in quad-band)
- Real-time isolation detection, Downlink Sleep, Uplink Mute, Invisible to BTS
- CE RED Certified

2G (GSM) Signal Strength and Quality

2G (GSM) Signal strength is defined by only one value: **RSSI** – Received Signal Strength Indicator; RSSI is a negative value, and the closer to 0, the stronger the signal.

Signal strength	RSSI (dBm)	Description
Excellent	>= -70 dBm	Strong signal with maximum data speeds
Good	-70 dBm to -85 dBm	Strong signal with good data speeds
Fair	-86 dBm to -100 dBm	Fair but useful, fast and reliable data speeds may be attained, but marginal data with drop-outs is possible
Poor	< -100 dBm	Performance will drop drastically
No signal	-110 dBm	Disconnection

3G (UMTS) Signal Strength and Quality

Received Signal Code Power (RSCP) denotes the power measured by a receiver on a particular physical communication channel. It is used as an indication of signal strength, as a handover criterion, in downlink power control, and to calculate path loss. RSCP is also called Receiver Side Call Power.

Signal strength	RSSI (dBm)	RSCP (dBm)	Description
Excellent	>= -70	-60 to 0	Strong signal with maximum data speeds
Good	-70 to -85	-75 to -60	Strong signal with goodta speeds
Fair	-86 to -100	-85 to -75	Fair but useful, fast and reliable data speeds may be attained, but marginal data with drop-outs is possible
Poor	< -100	-95 to -85	Performance will drop drastically, Marginal data with drop-outs is possible
No signal	-110	-124 to -95	Disconnection. Performance will drop drastically, closer to RSCP -124 disconnects are likely

4G (LTE) Signal Strength and Quality

RSRP: the Reference Signal Received Power is the power of the LTE Reference Signals spread over the full bandwidth and narrowband

Signal strength	RSRP (dBm)	RSRQ (dB)	SINR (dB)	Description
Excellent	>= -80	>= -10	>= 20	Strong signal with maximum data speeds
Good	-80 to -90	-10 to -15	13 to 20	Strong signal with good data speeds
Fair to poor	-90 to -100	-15 to -20	0 to 13	Reliable data speeds may be attained, but marginal data with drop-outs is possible. When this value gets close to -100, performance will drop drastically
No signal	<= -100	<= -20	<= 0	Disconnection

No best solution, only most suitable solution

Each IBS architecture has its own strengths and weaknesses.

As a result, **there is no "one size-fits-all" solution that works perfectly for every application.** It is expected that the multiple IBS architectures presented in this document will be available for a long time to come, each finding favor in a different segment of the global IBS market.

