15.01.2013 Views

Instruction manual - Emotron

Instruction manual - Emotron

Instruction manual - Emotron

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Emotron</strong> FDU 2.0<br />

AC drive<br />

<strong>Instruction</strong> <strong>manual</strong><br />

English<br />

Software version 4.3X


<strong>Emotron</strong> FDU 2.0<br />

INSTRUCTION MANUAL - ENGLISH<br />

Software version 4.3X<br />

Document number: 01-5325-01<br />

Edition: r1<br />

Date of release: 02-07-2012<br />

© Copyright CG Drives & Automation Sweden AB 2005 - 2012<br />

CG Drives & Automation Sweden AB retains the right to change<br />

specifications and illustrations in the text, without prior notification. The<br />

contents of this document may not be copied without the explicit<br />

permission of CG Drives & Automation Sweden AB.


Safety <strong>Instruction</strong>s<br />

Congratulations for choosing a product from CG Drives &<br />

Automation!<br />

Before you begin with installation, commissioning or<br />

powering up the unit for the first time it is very important<br />

that you carefully study this <strong>Instruction</strong> <strong>manual</strong>.<br />

Following symbols can appear in this <strong>manual</strong>. Always read<br />

these first before continuing:<br />

NOTE: Additional information as an aid to avoid<br />

problems.<br />

!<br />

CAUTION!<br />

Failure to follow these instructions can result<br />

in malfunction or damage to the AC drive.<br />

Warning!<br />

Failure to follow these instructions can result<br />

in serious injury to the user in addition to<br />

serious damage to the AC drive.<br />

HOT SURFACE!<br />

Failure to follow these instructions can result<br />

in injury to the user.<br />

Handling the AC drive<br />

Installation, commissioning, demounting, taking<br />

measurements, etc, of or on the AC drive may only be<br />

carried out by personnel technically qualified for the task.<br />

A number of national, regional and local regulations govern<br />

handling, storage and installation of the equipment. Always<br />

observe current rules and legislation.<br />

Opening the AC drive<br />

WARNING!<br />

Always switch off the mains voltage before<br />

opening the AC drive and wait at least<br />

7minutes to allow the buffer capacitors to<br />

discharge.<br />

Always take adequate precautions before opening the AC<br />

drive. Although the connections for the control signals and<br />

the switches are isolated from the main voltage, do not<br />

touch the control board when the AC drive is switched on.<br />

Precautions to be taken with a<br />

connected motor<br />

If work must be carried out on a connected motor or on the<br />

driven machine, the mains voltage must always be<br />

disconnected from the AC drive first. Wait at least 7 minutes<br />

before starting work.<br />

CG Drives & Automation, 01-5325-01r1<br />

Earthing<br />

The AC drive must always be earthed via the mains safety<br />

earth connection.<br />

Earth leakage current<br />

CAUTION!<br />

This AC drive has an earth leakage current<br />

!<br />

which does exceed 3.5 mA AC. Therefore the<br />

minimum size of the protective earth<br />

conductor must comply with the local safety regulations<br />

for high leakage current equipment which means that<br />

according the standard IEC61800-5-1 the protective<br />

earth connection must be assured by one of following<br />

conditions:<br />

PE conductor cross-sectional area shall for cable size<br />

< 16mm 2 be equal to the used phase conductors, for<br />

cable size above 16mm 2 but smaller or equal to 35mm 2<br />

the PE conductor cross-sectional area shall be at least<br />

16mm2 . For cables >35mm 2 the PE conductor crosssectional<br />

area should be at least 50% of the used phase<br />

conductor.<br />

When the PE conductor in the used cable type is not in<br />

accordance with the above mentioned cross-sectional<br />

area requirements, a separate PE conductor should be<br />

used to establish this.<br />

Residual current device (RCD)<br />

compatibility<br />

This product cause a DC current in the protective<br />

conductor. Where a residual current device (RCD) is used<br />

for protection in case of direct or indirect contact, only a<br />

Type B RCD is allowed on the supply side of this product.<br />

Use RCD of 300 mA minimum.<br />

EMC Regulations<br />

In order to comply with the EMC Directive, it is absolutely<br />

necessary to follow the installation instructions. All<br />

installation descriptions in this <strong>manual</strong> follow the EMC<br />

Directive.<br />

Mains voltage selection<br />

The AC drive may be ordered for use with the mains voltage<br />

range listed below.<br />

FDU48: 230-480 V<br />

FDU52: 440-525 V<br />

FDU69: 500-690 V<br />

Voltage tests (Megger)<br />

Do not carry out voltage tests (Megger) on the motor, before<br />

all the motor cables have been disconnected from the AC<br />

drive.


Condensation<br />

If the AC drive is moved from a cold (storage) room to a<br />

room where it will be installed, condensation can occur.<br />

This can result in sensitive components becoming damp. Do<br />

not connect the mains voltage until all visible dampness has<br />

evaporated.<br />

Incorrect connection<br />

The AC drive is not protected against incorrect connection<br />

of the mains voltage, and in particular against connection of<br />

the mains voltage to the motor outlets U, V and W. The AC<br />

drive can be damaged in this way.<br />

Power factor capacitors for improving<br />

cos�<br />

Remove all capacitors from the motor and the motor outlet.<br />

Precautions during Autoreset<br />

When the automatic reset is active, the motor will restart<br />

automatically provided that the cause of the trip has been<br />

removed. If necessary take the appropriate precautions.<br />

Transport<br />

To avoid damage, keep the AC drive in its original<br />

packaging during transport. This packaging is specially<br />

designed to absorb shocks during transport.<br />

IT Mains supply<br />

The AC drives can be modified for an IT mains supply,<br />

(non-earthed neutral), please contact your supplier for<br />

details.<br />

Alarms<br />

Never disregard an alarm. Always check and remedy the<br />

cause of an alarm.<br />

Heat warning<br />

HOT SURFACE!<br />

Be aware of specific parts on the AC drive<br />

having high temperature.<br />

DC-link residual voltage<br />

WARNING!<br />

After switching off the mains supply,<br />

dangerous voltage can still be present in the<br />

AC drive. When opening the AC drive for<br />

installing and/or commissioning activities<br />

wait at least 7 minutes. In case of malfunction a<br />

qualified technician should check the DC-link or wait for<br />

one hour before dismantling the AC drive for repair.<br />

CG Drives & Automation, 01-5325-01r1


Contents<br />

Safety <strong>Instruction</strong>s<br />

Contents.......................................................... 5<br />

1. Introduction..................................................... 7<br />

1.1 Delivery and unpacking ............................................ 7<br />

1.2 Using of the instruction <strong>manual</strong>............................... 7<br />

1.3 Warranty .................................................................... 7<br />

1.4 Type code number..................................................... 7<br />

1.5 Standards .................................................................. 8<br />

1.5.1 Product standard for EMC ........................................ 8<br />

1.6 Dismantling and scrapping....................................... 9<br />

1.6.1 Disposal of old electrical and electronic<br />

equipment ................................................................. 9<br />

1.7 Glossary ................................................................... 10<br />

1.7.1 Abbreviations and symbols..................................... 10<br />

1.7.2 Definitions................................................................ 10<br />

2. Mounting ...................................................... 11<br />

2.1 Lifting instructions................................................... 11<br />

2.2 Stand-alone units.................................................... 12<br />

2.2.1 Cooling ..................................................................... 12<br />

2.2.2 Mounting schemes.................................................. 12<br />

2.3 Cabinet mounting.................................................... 15<br />

2.3.1 Cooling ..................................................................... 15<br />

2.3.2 Recommended free space in front of cabinet ...... 15<br />

2.3.3 Mounting schemes.................................................. 16<br />

3. Installation ................................................... 19<br />

3.1 Before installation................................................... 19<br />

3.2 Cable connections for model 003 to 074 ............. 19<br />

3.2.1 Mains cables ........................................................... 19<br />

3.2.2 Motor cables............................................................ 20<br />

3.3 Connection of motor and mains cables for model<br />

090 and up.............................................................. 22<br />

3.3.1 Connection of mains and motor cables on IP20<br />

modules ................................................................... 23<br />

3.4 Cable specifications................................................ 24<br />

3.5 Stripping lengths ..................................................... 24<br />

3.5.1 Dimension of cables and fuses.............................. 25<br />

3.5.2 Tightening torque for mains and motor cables..... 25<br />

3.6 Thermal protection on the motor ........................... 25<br />

3.7 Motors in parallel .................................................... 25<br />

4. Control Connections.................................... 27<br />

4.1 Control board........................................................... 27<br />

4.2 Terminal connections ............................................. 28<br />

4.3 Inputs configurationwith the switches................... 28<br />

4.4 Connection example ............................................... 29<br />

4.5 Connecting the Control Signals.............................. 30<br />

4.5.1 Cables ...................................................................... 30<br />

4.5.2 Types of control signals .......................................... 31<br />

4.5.3 Screening................................................................. 31<br />

4.5.4 Single-ended or double-ended connection? ......... 31<br />

4.5.5 Current signals ((0)4-20 mA).................................. 32<br />

4.5.6 Twisted cables......................................................... 32<br />

4.6 Connecting options ................................................. 32<br />

5. Getting Started............................................. 33<br />

5.1 Connect the mains and motor cables ................... 33<br />

5.1.1 Mains cables ........................................................... 33<br />

5.1.2 Motor cables............................................................ 33<br />

5.2 Using the function keys .......................................... 33<br />

5.3 Remote control........................................................ 34<br />

5.3.1 Connect control cables ........................................... 34<br />

5.3.2 Switch on the mains ............................................... 34<br />

5.3.3 Set the Motor Data.................................................. 34<br />

5.3.4 Run the AC drive...................................................... 34<br />

5.4 Local control............................................................ 35<br />

5.4.1 Switch on the mains ............................................... 35<br />

5.4.2 Select <strong>manual</strong> control............................................. 35<br />

5.4.3 Set the Motor Data.................................................. 35<br />

5.4.4 Enter a Reference Value......................................... 35<br />

5.4.5 Run the AC drive...................................................... 35<br />

6. Applications.................................................. 37<br />

6.1 Application overview ............................................... 37<br />

6.1.1 Pumps...................................................................... 37<br />

6.1.2 Fans ......................................................................... 37<br />

6.1.3 Compressors ........................................................... 38<br />

6.1.4 Blowers .................................................................... 38<br />

7. Main Features .............................................. 39<br />

7.1 Parameter sets........................................................ 39<br />

7.1.1 One motor and one parameter set ........................ 40<br />

7.1.2 One motor and two parameter sets....................... 40<br />

7.1.3 Two motors and two parameter sets..................... 40<br />

7.1.4 Autoreset at trip ...................................................... 40<br />

7.1.5 Reference priority.................................................... 41<br />

7.1.6 Preset references.................................................... 41<br />

7.2 Remote control functions ....................................... 42<br />

7.3 Performing an Identification Run........................... 44<br />

7.4 Using the Control Panel Memory............................ 44<br />

7.5 Load Monitor and Process Protection [400]......... 45<br />

7.5.1 Load Monitor [410]................................................. 45<br />

7.6 Pump function ......................................................... 47<br />

7.6.1 Introduction ............................................................. 47<br />

7.6.2 Fixed MASTER ......................................................... 48<br />

7.6.3 Alternating MASTER ................................................ 48<br />

7.6.4 Feedback 'Status' input .......................................... 49<br />

7.6.5 Fail safe operation .................................................. 49<br />

7.6.6 PID control ............................................................... 50<br />

7.6.7 Wiring Alternating Master....................................... 51<br />

7.6.8 Checklist And Tips................................................... 52<br />

7.6.9 Functional Examples of Start/Stop Transitions .... 53<br />

8. EMC and standards...................................... 55<br />

8.1 EMC standards........................................................ 55<br />

8.2 Stop categories and emergency stop .................... 55<br />

9. Operation via the Control Panel.................. 57<br />

9.1 General .................................................................... 57<br />

9.2 The control panel .................................................... 57<br />

9.2.1 The display............................................................... 57<br />

CG Drives & Automation, 01-5325-01r1 5


9.2.2 Indications on the display....................................... 58<br />

9.2.3 LED indicators ......................................................... 58<br />

9.2.4 Control keys............................................................. 58<br />

9.2.5 The Toggle and Loc/Rem Key ................................ 59<br />

9.2.6 Function keys .......................................................... 60<br />

9.3 The menu structure................................................. 60<br />

9.3.1 The main menu ....................................................... 60<br />

9.4 Programming during operation .............................. 61<br />

9.5 Editing values in a menu ........................................ 61<br />

9.6 Copy current parameter to all sets ........................ 61<br />

9.7 Programming example............................................ 62<br />

10. Serial communication ................................. 63<br />

10.1 Modbus RTU ............................................................ 63<br />

10.2 Parameter sets........................................................ 63<br />

10.3 Motor data ............................................................... 64<br />

10.4 Start and stop commands...................................... 64<br />

10.5 Reference signal ..................................................... 64<br />

10.5.1 Process value .......................................................... 64<br />

10.6 Description of the EInt formats .............................. 65<br />

11. Functional Description ............................... 67<br />

11.1 Preferred View [100]............................................... 67<br />

11.1.1 1st Line [110].......................................................... 67<br />

11.1.2 2nd Line [120] ........................................................ 68<br />

11.2 Main Setup [200].................................................... 68<br />

11.2.1 Operation [210]....................................................... 68<br />

11.2.2 Remote Signal Level/Edge [21A]........................... 72<br />

11.2.3 Mains supply voltage [21B].................................... 72<br />

11.2.4 Motor Data [220] .................................................... 73<br />

11.2.5 Motor Protection [230] ........................................... 79<br />

11.2.6 Parameter Set Handling [240]............................... 83<br />

11.2.7 Trip Autoreset/Trip Conditions [250]..................... 85<br />

11.2.8 Serial Communication [260] .................................. 93<br />

11.3 Process and Application Parameters [300] .......... 97<br />

11.3.1 Set/View Reference Value [310] ........................... 97<br />

11.3.2 Process Settings [320] ........................................... 98<br />

11.3.3 Start/Stop settings [330] ..................................... 102<br />

11.3.4 Mechanical brake control..................................... 107<br />

11.3.5 Speed [340]........................................................... 111<br />

11.3.6 Torques [350]........................................................ 113<br />

11.3.7 Preset References [360] ...................................... 116<br />

11.3.8 PID Process Control [380] .................................... 117<br />

11.3.9 Pump/Fan Control [390] ...................................... 121<br />

11.4 Load Monitor and Process Protection [400]....... 128<br />

11.4.1 Load Monitor [410]............................................... 128<br />

11.4.2 Process Protection [420]...................................... 133<br />

11.5 I/Os and Virtual Connections [500]..................... 134<br />

11.5.1 Analogue Inputs [510] .......................................... 134<br />

11.5.2 Digital Inputs [520] ............................................... 141<br />

11.5.3 Analogue Outputs [530] ....................................... 143<br />

11.5.4 Digital Outputs [540] ............................................ 147<br />

11.5.5 Relays [550] .......................................................... 149<br />

11.5.6 Virtual Connections [560]..................................... 151<br />

11.6 Logical Functions and Timers [600] .................... 152<br />

11.6.1 Comparators [610] ............................................... 152<br />

11.6.2 Logic Output Y [620]............................................. 162<br />

11.6.3 Logic Output Z [630]............................................. 164<br />

11.6.4 Timer1 [640] ......................................................... 165<br />

11.6.5 Timer2 [650] ......................................................... 167<br />

11.6.6 Counters [660]...................................................... 169<br />

11.7 View Operation/Status [700] ............................... 172<br />

11.7.1 Operation [710]..................................................... 172<br />

11.7.2 Status [720] .......................................................... 174<br />

11.7.3 Stored values [730] .............................................. 178<br />

11.8 View Trip Log [800] ............................................... 179<br />

11.8.1 Trip Message log [810]......................................... 179<br />

11.8.2 Trip Messages [820] - [890] ................................ 180<br />

11.8.3 Reset Trip Log [8A0] ............................................. 180<br />

11.9 System Data [900]................................................ 181<br />

11.9.1 VSD Data [920] ..................................................... 181<br />

12. Troubleshooting, Diagnoses and<br />

Maintenance .............................................. 183<br />

12.1 Trips, warnings and limits..................................... 183<br />

12.2 Trip conditions, causes and remedial action ...... 184<br />

12.2.1 Technically qualified personnel............................ 185<br />

12.2.2 Opening the AC drive ............................................ 185<br />

12.2.3 Precautions to take with a connected motor ...... 185<br />

12.2.4 Autoreset Trip ........................................................ 185<br />

12.3 Maintenance ......................................................... 189<br />

13. Options........................................................ 191<br />

13.1 Options for the control panel................................ 191<br />

13.2 Handheld Control Panel 2.0................................. 191<br />

13.3 EmoSoftCom.......................................................... 191<br />

13.4 Brake chopper....................................................... 192<br />

13.5 I/O Board ............................................................... 193<br />

13.6 Encoder.................................................................. 193<br />

13.7 PTC/PT100 ............................................................ 193<br />

13.8 Serial communication and fieldbus..................... 194<br />

13.9 Standby supply board option................................ 194<br />

13.10 Safe Stop option.................................................... 195<br />

13.11 Output chokes ....................................................... 197<br />

13.12 Liquid cooling ........................................................ 197<br />

13.13 AFE - Active Front End........................................... 197<br />

14. Technical Data ........................................... 199<br />

14.1 Electrical specifications related to model ........... 199<br />

14.2 General electrical specifications.......................... 204<br />

14.3 Operation at higher temperatures ....................... 205<br />

14.4 Operation at higher switching frequency............. 205<br />

14.5 Dimensions and Weights...................................... 206<br />

14.6 Environmental conditions..................................... 207<br />

14.7 Fuses, cable cross-sections and glands.............. 208<br />

14.7.1 According to IEC ratings........................................ 208<br />

14.7.2 Fuses and cable dimensions according to<br />

NEMA ratings......................................................... 210<br />

14.8 Control signals....................................................... 212<br />

15. Menu List ................................................... 213<br />

Index ........................................................... 219<br />

6 CG Drives & Automation, 01-5325-01r1


1. Introduction<br />

<strong>Emotron</strong> FDUis used most commonly to control and<br />

protect pump and fan applications that put high demands<br />

on flow control, process uptime and low maintenance costs.<br />

It can also be used for e.g. compressors and blowers. The<br />

used motor control method is V/Hz-control.<br />

Several options are available, listed in chapter 13. page 191,<br />

that enable you to customize the AC drive for your specific<br />

needs.<br />

NOTE: Read this instruction <strong>manual</strong> carefully before<br />

starting installation, connection or working with the AC<br />

drive.<br />

Users<br />

This instruction <strong>manual</strong> is intended for:<br />

• installation engineers<br />

• maintenance engineers<br />

• operators<br />

• service engineers<br />

Motors<br />

The AC drive is suitable for use with standard 3-phase<br />

asynchronous motors. Under certain conditions it is possible<br />

to use other types of motors. Contact your supplier for<br />

details.<br />

1.1 Delivery and unpacking<br />

Check for any visible signs of damage. Inform your supplier<br />

immediately of any damage found. Do not install the AC<br />

drive if damage is found.<br />

The AC drives are delivered with a template for positioning<br />

the fixing holes on a flat surface. Check that all items are<br />

present and that the type number is correct.<br />

1.2 Using of the instruction<br />

<strong>manual</strong><br />

Within this instruction <strong>manual</strong> the abbreviation “AC drive”<br />

is used to indicate the complete variable speed drive as a<br />

single unit.<br />

Check that the software version number on the first page of<br />

this <strong>manual</strong> matches the software version in the AC drive.<br />

See chapter 11.9 page 181<br />

With help of the index and the table of contents it is easy to<br />

track individual functions and to find out how to use and set<br />

them.<br />

The Quick Setup Card can be put in a cabinet door, so that<br />

it is always easy to access in case of an emergency.<br />

1.3 Warranty<br />

The warranty applies when the equipment is installed,<br />

operated and maintained according to instructions in this<br />

instruction <strong>manual</strong>. Duration of warranty as per contract.<br />

Faults that arise due to faulty installation or operation are<br />

not covered by the warranty.<br />

1.4 Type code number<br />

Fig. 1 gives an example of the type code numbering used on<br />

all AC drives. With this code number the exact type of the<br />

drive can be determined. This identification will be required<br />

for type specific information when mounting and installing.<br />

The code number is located on the product label, on the<br />

front of the unit.<br />

FDU48-175-54 C E – – – A – N N N N A N –<br />

Position number:<br />

1 2 3 4 5 6 7 8 9 10111213141516 1718<br />

Fig. 1 Type code number<br />

Position<br />

for 003-<br />

074<br />

Position<br />

for 090-<br />

3K0<br />

Configuration<br />

1 1 AC drive type<br />

2 2 Supply voltage<br />

3 3<br />

Rated current (A)<br />

continuous<br />

4 4 Protection class<br />

5 5 Control panel<br />

6 6 EMC option<br />

7 7<br />

8 8<br />

- 9<br />

Brake chopper<br />

option<br />

Stand-by power<br />

supply option<br />

Safe stop option<br />

(Only valid for<br />

090-3k0)<br />

CG Drives & Automation, 01-5325-01r1 Introduction 7<br />

FDU<br />

VFX<br />

48=400 V mains<br />

52=525 V mains<br />

69=690 V mains<br />

-003=2.5 A<br />

-<br />

-3K0=3000 A<br />

20=IP20<br />

54=IP54<br />

–=Blank panel<br />

C=Standard panel<br />

E=Standard EMC<br />

(Category C3)<br />

F=Extended EMC<br />

(Category C2)<br />

I=IT-Net<br />

–=No chopper<br />

B=Chopper built in<br />

D=DC+/- interface<br />

–=No SBS<br />

S=SBS included<br />

–=No safe stop<br />

T=Safe stop incl.<br />

9 10 Brand label A=Standard


Position<br />

for 003-<br />

074<br />

10 - Painted AC drive A=Standard paint<br />

11 11<br />

Coated boards,<br />

option<br />

- =Standard boards<br />

V=Coated boards<br />

12 12 Option position 1 N=No option<br />

13 13 Option position 2<br />

C=Crane I/O<br />

E=Encoder<br />

P=PTC/PT100<br />

14 14 Option position 3<br />

I=Extended I/O<br />

S=Safe Stop (only<br />

003-074)<br />

15 15<br />

Option position,<br />

communication<br />

N=No option<br />

D=DeviceNet<br />

P=Profibus<br />

S=RS232/485<br />

M=Modbus/TCP<br />

E= EtherCAT<br />

A=Profinet IO 1-port<br />

B=Profinet IO 2-port<br />

16 16 Software type A=Standard<br />

17 -<br />

18 -<br />

Position<br />

for 090-<br />

3K0<br />

Configuration<br />

Motor PTC. (Only<br />

valid for 003-074)<br />

Gland kit.<br />

(Only valid for<br />

003-074)<br />

N=No option<br />

P=PTC<br />

–=Glands not<br />

included<br />

G=Gland kit<br />

included<br />

1.5 Standards<br />

The AC drives described in this instruction <strong>manual</strong> comply<br />

with the standards listed in Table 1. For the declarations of<br />

conformity and manufacturer’s certificate, contact your<br />

supplier for more information or visit www.emotron.com/<br />

www.cgglobal.com.<br />

1.5.1Product standard for EMC<br />

Product standard EN(IEC)61800-3, second edition of 2004<br />

defines the:<br />

First Environment (Extended EMC) as environment that<br />

includes domestic premises. It also includes establishments<br />

directly connected without intermediate transformers to a<br />

low voltage power supply network that supplies buildings<br />

used for domestic purposes.<br />

Category C2: Power Drive System (PDS) of rated<br />

voltage


Table 1 Standards<br />

European<br />

All<br />

USA<br />

Market Standard Description<br />

EMC Directive 2004/108/EC<br />

Low Voltage Directive 2006/95/EC<br />

WEEE Directive 2002/96/EC<br />

EN 60204-1<br />

EN(IEC)61800-3:2004<br />

EN(IEC)61800-5-1 Ed.<br />

2.0<br />

IEC 60721-3-3<br />

1.6 Dismantling and scrapping<br />

The enclosures of the drives are made from recyclable<br />

material as aluminium, iron and plastic. Each drive contains<br />

a number of components demanding special treatment, for<br />

example electrolytic capacitors. The circuit boards contain<br />

small amounts of tin and lead. Any local or national<br />

regulations in force for the disposal and recycling of these<br />

materials must be complied with.<br />

Safety of machinery - Electrical equipment of machines<br />

Part 1: General requirements.<br />

Adjustable speed electrical power drive systems<br />

Part 3: EMC requirements and specific test methods.<br />

EMC Directive: Declaration of Conformity and<br />

CE marking<br />

Adjustable speed electrical power drive systems Part 5-1.<br />

Safety requirements - Electrical, thermal and energy.<br />

Low Voltage Directive: Declaration of Conformity and<br />

CE marking<br />

Classification of environmental conditions. Air quality chemical vapours, unit in<br />

operation. Chemical gases 3C2, Solid particles 3S2.<br />

Optional with coated boards<br />

Unit in operation. Chemical gases Class 3C3, Solid particles 3S2.<br />

UL508C UL Safety standard for Power Conversion Equipment<br />

�90 A only<br />

UL 840<br />

Russian GOST R For all sizes<br />

UL Safety standard for Power Conversion Equipment.<br />

Insulation coordination including clearances and creepage distances for<br />

electrical equipment.<br />

1.6.1Disposal of old electrical and<br />

electronic equipment<br />

This information is applicable in the European Union and<br />

other European countries with separate collection systems.<br />

This symbol on the product or on its packaging indicates<br />

that this product shall be taken to the applicable collection<br />

point for the recycling of electrical and electronic<br />

equipment. By ensuring this product is disposed of correctly,<br />

you will help prevent potentially negative consequences for<br />

the environment and human health, which could otherwise<br />

be caused by inappropriate waste handling of this product.<br />

The recycling of materials will help to conserve natural<br />

resources. For more detailed information about recycling<br />

this product, please contact the local distributor of the<br />

product.<br />

CG Drives & Automation, 01-5325-01r1 Introduction 9


1.7 Glossary<br />

1.7.1 Abbreviations and symbols<br />

In this <strong>manual</strong> the following abbreviations are used:<br />

Table 2 Abbreviations<br />

Abbreviation/<br />

symbol<br />

Description<br />

DSP Digital signals processor<br />

AC drive Frequency converter<br />

PEBB Power Electronic Building Block<br />

IGBT Insulated Gate Bipolar Transistor<br />

CP<br />

Control panel, the programming and<br />

presentation unit on the AC drive<br />

HCP Handheld control panel (option)<br />

EInt Communication format<br />

UInt Communication format (Unsigned integer)<br />

Int Communication format (Integer)<br />

Long Communication format<br />

�<br />

The function cannot be changed in run mode<br />

1.7.2 Definitions<br />

In this <strong>manual</strong> the following definitions for current, torque<br />

and frequency are used:<br />

Table 3 Definitions<br />

Name Description Quantity<br />

IIN Nominal input current of AC drive ARMS INOM Nominal output current of AC drive ARMS IMOT Nominal motor current ARMS PNOM Nominal power of AC drive kW<br />

P MOT Motor power kW<br />

T NOM Nominal torque of motor Nm<br />

T MOT Motor torque Nm<br />

f OUT Output frequency of AC drive Hz<br />

f MOT Nominal frequency of motor Hz<br />

n MOT Nominal speed of motor rpm<br />

ICL Maximum output current ARMS Speed Actual motor speed rpm<br />

Torque Actual motor torque Nm<br />

Sync<br />

speed<br />

Synchronous speed of the motor rpm<br />

10 Introduction CG Drives & Automation, 01-5325-01r1


2. Mounting<br />

This chapter describes how to mount the AC drive.<br />

Before mounting it is recommended that the installation is<br />

planned out first.<br />

• Be sure that the AC drive suits the mounting location.<br />

• The mounting site must support the weight of the AC<br />

drive.<br />

• Will the AC drive continuously withstand vibrations<br />

and/or shocks?<br />

• Consider using a vibration damper.<br />

• Check ambient conditions, ratings, required cooling air<br />

flow, compatibility of the motor, etc.<br />

• Know how the AC drive will be lifted and transported.<br />

2.1 Lifting instructions<br />

Note: To prevent personal risks and any damage to the<br />

unit during lifting, it is advised that the lifting methods<br />

described below are used.<br />

Recommended for AC drive models<br />

-090 to -250<br />

Fig. 2 Lifting AC drive model -090 to -250<br />

Load: 56 to 74 kg<br />

Recommended for AC drive models<br />

-300 to - 3K0<br />

Lifting eyes<br />

Fig. 3 Remove the roof unit and use the lifting eyes to lift<br />

single unit 600mm and 900mm.<br />

Single cabinet drives can be lifted/transported safely using<br />

the eyebolts supplied and lifting cables/chains as in<br />

illustration Fig. 3 above.<br />

Depending on the cable/chain angle A (in Fig. 3),<br />

following loads are permitted:<br />

Cable/chain angle A Permitted load<br />

45 ° 4 800 N<br />

60 ° 6 400 N<br />

90 ° 13 600N<br />

Regarding lifting instructions for other cabinet sizes, please<br />

contact CG Drives & Automation.<br />

CG Drives & Automation, 01-5325-01r1 Mounting 11<br />


2.2 Stand-alone units<br />

The AC drive must be mounted in a vertical position against<br />

a flat surface. Use the template (in the File archive on our<br />

homepage) to mark out the position of the fixing holes.<br />

Fig. 4 AC drive mounting model 003 to 3K0<br />

2.2.1 Cooling<br />

Fig. 4 shows the minimum free space required around the<br />

AC drive for the models 003 to 3K0 in order to guarantee<br />

adequate cooling. Because the fans blow the air from the<br />

bottom to the top it is advisable not to position an air inlet<br />

immediately above an air outlet.<br />

The following minimum separation between two AC drives,<br />

or a AC drive and a non-dissipating wall must be<br />

maintained. Valid if free space on opposite side.<br />

Table 4 Mounting and cooling<br />

FDU-FDU<br />

(mm)<br />

FDU-wall,<br />

wall-one<br />

side<br />

(mm)<br />

003-018 026-074 090-250 300-3K0<br />

cabinet<br />

a 200 200 200 100<br />

b 200 200 200 0<br />

c 0 0 0 0<br />

d 0 0 0 0<br />

a 100 100 100 100<br />

b 100 100 100 0<br />

c 0 0 0 0<br />

d 0 0 0 0<br />

NOTE: When a 300 to 3K0 model is placed between two<br />

walls, a minimum distance at each side of 200 mm must<br />

be maintained.<br />

2.2.2 Mounting schemes<br />

128.5 37<br />

Fig. 5 FDU48/52: Model 003 to 018 (B)<br />

Fig. 6 Cable interface for mains, motor and communication,FDU48/52:<br />

Model 003 to 018 (B)<br />

Fig. 7 FDU48/52: Model 003 to 018 (B), with optional<br />

gland plate<br />

12 Mounting CG Drives & Automation, 01-5325-01r1<br />

416<br />

Glands<br />

M20<br />

Glands<br />

M32<br />

202.6<br />

10<br />

396<br />

Ø 13 (2x)<br />

Ø 7 (4x)<br />

Gland<br />

M16<br />

Gland<br />

M25


512<br />

Fig. 8 FDU48/52: Model 026 to 046 (C)<br />

Gland<br />

M25 (026-031)<br />

M32 (037-046)<br />

Glands<br />

M32 (026-031)<br />

M40 (037-046)<br />

128,5<br />

178<br />

Fig. 9 Cable interface for mains, motor and communication,<br />

FDU48/52: Model 026 to 046 (C)<br />

24,8<br />

10<br />

492<br />

Ø 13 (2x)<br />

Ø 7 (4x)<br />

292,1<br />

Glands<br />

M20<br />

Fig. 10 FDU48/52: Model 061 to 074 (D)<br />

Fig. 11 Cable interface for mains, motor and communication,<br />

FDU48/52: Model 061 to 074 (D).<br />

NOTE: Glands for size B, C and D are available as<br />

option kit.<br />

CG Drives & Automation, 01-5325-01r1 Mounting 13<br />

Glands<br />

M20<br />

Glands<br />

M50<br />

Glands<br />

M40<br />

10<br />

570<br />

30 160<br />

Ø 13 (2x)<br />

Ø 7 (4x)<br />

220<br />

590<br />

Glands<br />

M20


22.5 240<br />

120<br />

10 30<br />

925<br />

Ø16(3)<br />

Cable glands M20<br />

Cable flexible leadthrough<br />

Ø17-42 /M50<br />

Cable flexible leadthrough<br />

Ø11-32 /M40<br />

Ø9(6x)<br />

952.5<br />

284.5<br />

275<br />

Fig. 12 FDU48: Model 090 to 175 (E) including cable interface<br />

for mains, motor and communication<br />

922.5<br />

314<br />

Cable glands M20<br />

Cable flexible leadthrough<br />

Ø23-55 /M63<br />

Cable flexible leadthrough<br />

Ø17-42 /M50<br />

22.5 300<br />

344.5<br />

150<br />

335<br />

10 30<br />

Fig. 13 FDU48: Model 210 to 250 (F)<br />

FDU69: Model 90 to 200 (F69) including cable<br />

interface for mains, motor and communication<br />

Frame FDU model<br />

Dimension in mm<br />

A B C<br />

F 210 - 250 925 950 920<br />

F69 90 - 200 1065 1090 1060<br />

14 Mounting CG Drives & Automation, 01-5325-01r1<br />

Ø9(x6)<br />

A B C<br />

314


2.3 Cabinet mounting<br />

2.3.1 Cooling<br />

If the variable speed drive is installed in a cabinet, the rate of<br />

airflow supplied by the cooling fans must be taken into<br />

consideration.<br />

Frame FDU Model Flow rate [m3 /hour]<br />

B 003-018 75<br />

C 026 – 031 120<br />

C 037 - 046 170<br />

D 061-074 170<br />

E 090 - 175 510<br />

F<br />

F69<br />

210 - 250<br />

090 - 200<br />

800<br />

G 300 - 375 1020<br />

H<br />

H69<br />

430 - 500<br />

250 - 400<br />

1600<br />

I<br />

I69<br />

600 - 750<br />

430 - 595<br />

2400<br />

J<br />

J69<br />

860 - 1K0<br />

650 - 800<br />

3200<br />

KA<br />

KA69<br />

1K15 - 1K25<br />

905 - 995<br />

4000<br />

K<br />

K69<br />

1K35 - 1K5<br />

1K2<br />

4800<br />

L<br />

L69<br />

1K75<br />

1K4<br />

5600<br />

M<br />

M69<br />

2K0<br />

1K6<br />

6400<br />

N<br />

N69<br />

2K25<br />

1K8<br />

7200<br />

O<br />

O69<br />

2K5<br />

2K0<br />

8000<br />

P69 2K2 8800<br />

Q69 2K4 9600<br />

R69 2K6 10400<br />

S69 2K8 11200<br />

T69 3K0 12000<br />

NOTE: For the models 48-860/69-650 to 69-3K0 the<br />

mentioned amount of air flow should be divided equally<br />

over the cabinets.<br />

2.3.2 Recommended free space in<br />

front of cabinet<br />

All cabinet mounted AC drives are designed in modules, so<br />

called PEBBs. These PEBBs can be folded out to be<br />

replaced. To be able to remove a PEBB in the future, we<br />

recommend 1.30 meter free space in front of the cabinet, see<br />

Fig. 14.<br />

1300<br />

Fig. 14 Recommended free space in front of the cabinet<br />

mounted AC drive<br />

CG Drives & Automation, 01-5325-01r1 Mounting 15<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

NZM3<br />

PN3


2.3.3 Mounting schemes<br />

Fig. 15<br />

FDU48: Model 300 to 500 (G and H)<br />

FDU69: Model 250 to 400 (H69)<br />

150<br />

2250<br />

2000<br />

100<br />

150<br />

2250<br />

2000<br />

100<br />

RITTAL<br />

RITTAL<br />

FDU48: Model 860 to 1K 0(J)<br />

FDU69: Model 650 to 800 (J69)<br />

RITTAL<br />

RITTAL<br />

600<br />

RITTAL<br />

1200<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

600<br />

RITTAL<br />

600<br />

FDU48: Model 600 to 750 (I)<br />

FDU69: Model 430 to 595 (I69)<br />

FDU48: Model 1K15 to 1K25 (KA)<br />

FDU69: Model 905 to 995 (KA69)<br />

16 Mounting CG Drives & Automation, 01-5325-01r1<br />

150<br />

2250<br />

2000<br />

100<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

900<br />

RITTAL<br />

RITTAL<br />

600


Fig. 16<br />

2250<br />

2000<br />

2250<br />

2000<br />

2250<br />

2000<br />

150<br />

150<br />

150<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

RITTAL<br />

1800<br />

FDU48: Model 1K35 to 1K5 (K)<br />

FDU69: Model 1K2 (K69)<br />

RITTAL<br />

2400<br />

FDU48: Model 2K0(M)<br />

FDU69: Model 1K6 (M69)<br />

RITTAL<br />

RITTAL<br />

3000<br />

FDU48: Model 2K5(O)<br />

FDU69: Model 2K0 (O69)<br />

RITTAL<br />

RITTAL<br />

600<br />

600<br />

2250<br />

2000<br />

2250<br />

2000<br />

FDU48: Model 1K75 (L)<br />

FDU69: Model 1K4 (L69)<br />

CG Drives & Automation, 01-5325-01r1 Mounting 17<br />

150<br />

150<br />

600<br />

2100<br />

2700<br />

FDU48: Model 2K25 (N)<br />

FDU69: Model 1K8 (N69)<br />

600<br />

600


18 Mounting CG Drives & Automation, 01-5325-01r1


3. Installation<br />

The description of installation in this chapter complies with<br />

the EMC standards and the Machine Directive.<br />

Select cable type and screening according to the EMC<br />

requirements valid for the environment where the AC drive<br />

is installed.<br />

3.1 Before installation<br />

Read the following checklist and prepare for your<br />

application before installation.<br />

• Local or remote control.<br />

• Long motor cables (>100m), refer to section Long motor<br />

cables page 22.<br />

• Functions used.<br />

• Suitable AC drive size in proportion to the<br />

motor/application.<br />

If the AC drive is temporarily stored before being connected,<br />

please check the technical data for environmental<br />

conditions. If the AC drive is moved from a cold storage<br />

room to the room where it is to be installed, condensation<br />

can form on it. Allow the AC drive to become fully<br />

acclimatised and wait until any visible condensation has<br />

evaporated before connecting the mains voltage.<br />

3.2 Cable connections for<br />

model 003 to 074<br />

3.2.1 Mains cables<br />

Dimension the mains and motor cables according to local<br />

regulations. The cable must be able to carry the AC drive<br />

load current.<br />

Recommendations for selecting mains<br />

cables<br />

• To fulfil EMC purposes it is not necessary to use<br />

screened mains cables.<br />

• Use heat-resistant cables, +60�C or higher.<br />

• Dimension the cables and fuses in accordance with local<br />

regulations and the nominal current of the motor. See<br />

table 50, page 208.<br />

• PE conductor cross-sectional area shall for cable size<br />

< 16mm 2 be equal to the used phase conductors, for<br />

cable size above 16mm 2 but smaller or equal to 35mm 2<br />

the PE conductor cross-sectional area shall be at least<br />

16mm 2 . For cables >35mm 2 the PE conductor cross-sectional<br />

area should be at least 50% of the used phase conductor.<br />

When the PE conductor in the used cable type is not in<br />

accordance with the above mentioned cross-sectional<br />

area requirements, a separate PE conductor should be<br />

used to establish this.<br />

• The litz ground connection see fig. 21, is only necessary<br />

if the mounting plate is painted. All the AC drives have<br />

an unpainted back side and are therefore suitable for<br />

mounting on an unpainted mounting plate.<br />

Connect the mains cables according to fig. 17 or 18. The<br />

AC drive has as standard a built-in RFI mains filter that<br />

complies with category C3 which suits the Second<br />

Environment standard.<br />

L1 L2 L3 DC- DC+ R<br />

U V W<br />

Fig. 17 Mains and motor connections, model 003-018<br />

Fig. 18 Mains and motor connections, 026-046<br />

Screen connection<br />

of motor cables<br />

CG Drives & Automation, 01-5325-01r1 Installation 19<br />

PE<br />

PE<br />

L1 L2 L3 DC-DC+ R U V W<br />

Screen connection<br />

of motor cables


PE<br />

Fig. 19 Mains and motor connection, model 061 - 074<br />

Table 5 Mains and motor connections<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

DC-,DC+,R<br />

L1 L2 L3 PE DC- DC+ R U V W<br />

Screen connection<br />

of motor cables<br />

Mains supply, 3 -phase<br />

Safety earth (protected earth)<br />

Motor earth<br />

Motor output, 3-phase<br />

Brake resistor, DC-link<br />

connections (optional)<br />

NOTE: The Brake and DC-link Terminals are only fitted if<br />

the DC+/DC- option or Brake Chopper Option is built-in.<br />

WARNING!<br />

The Brake Resistor must be connected<br />

between terminals DC+ and R.<br />

WARNING!<br />

In order to work safely, the mains earth must<br />

be connected to PE and the motor earth<br />

to .<br />

3.2.2 Motor cables<br />

To comply with the EMC emission standards the AC drive<br />

is provided with a RFI mains filter. The motor cables must<br />

also be screened and connected on both sides. In this way a<br />

so-called “Faraday cage” is created around the AC drive,<br />

motor cables and motor. The RFI currents are now fed back<br />

to their source (the IGBTs) so the system stays within the<br />

emission levels.<br />

Recommendations for selecting motor<br />

cables<br />

• Use screened cables according to specification in table 6.<br />

Use symmetrical shielded cable; three phase conductors<br />

and a concentric or otherwise symmetrically constructed<br />

PE conductor, and a shield.<br />

• PE conductor cross-sectional area shall for cable size<br />

< 16mm2 be equal to the used phase conductors, for<br />

cable size above 16mm2 but smaller or equal to 35mm2 the PE conductor cross-sectional area shall be at least<br />

16mm2 . For cables >35mm2 the PE conductor crosssectional<br />

area should be at least 50% of the used phase<br />

conductor.<br />

When the PE conductor in the used cable type is not in<br />

accordance with the above mentioned cross-sectional<br />

area requirements, a separate PE conductor should be<br />

used to establish this.<br />

• Use heat-resistant cables, +60�C or higher.<br />

• Dimension the cables and fuses in accordance with the<br />

nominal output current of the motor. See table 50, page<br />

208.<br />

• Keep the motor cable between AC drive and motor as<br />

short as possible.<br />

• The screening must be connected with a large contact<br />

surface of preferable 360� and always at both ends, to<br />

the motor housing and the AC drive housing. When<br />

painted mounting plates are used, do not be afraid to<br />

scrape away the paint to obtain as large contact surface as<br />

possible at all mounting points for items such as saddles<br />

and the bare cable screening. Relying just on the<br />

connection made by the screw thread is not sufficient.<br />

NOTE: It is important that the motor housing has the<br />

same earth potential as the other parts of the machine.<br />

• The litz ground connection, see fig. 21, is only necessary<br />

if the mounting plate is painted. All the AC drives have<br />

an unpainted back side and are therefore suitable for<br />

mounting on an unpainted mounting plate.<br />

Connect the motor cables according to U - U, V - V and<br />

W - W, see Fig. 17, Fig. 18 and Fig. 19 .<br />

NOTE: The terminals DC-, DC+ and R are options.<br />

20 Installation CG Drives & Automation, 01-5325-01r1


Switches between the motor and the<br />

AC drive<br />

If the motor cables are to be interrupted by maintenance<br />

switches, output coils, etc., it is necessary that the screening<br />

is continued by using metal housing, metal mounting plates,<br />

etc. as shown in the Fig. 21.<br />

Fig. 20 Screen connection of cables.<br />

Screen connection<br />

of signal cables<br />

Pay special attention to the following points:<br />

• If paint must be removed, steps must be taken to prevent<br />

subsequent corrosion. Repaint after making connections!<br />

• The fastening of the whole AC drive housing must be<br />

electrically connected with the mounting plate over an<br />

area which is as large as possible. For this purpose the<br />

removal of paint is necessary. An alternative method is to<br />

connect the AC drive housing to the mounting plate<br />

with as short a length of litz wire as possible.<br />

• Try to avoid interruptions in the screening wherever<br />

possible.<br />

• If the AC drive is mounted in a standard cabinet, the<br />

internal wiring must comply with the EMC standard.<br />

Fig. 21 shows an example of a AC drive built into a<br />

cabinet.<br />

PE<br />

Motor cable<br />

shield connection<br />

AC drive built into cabinet<br />

RFI-Filter<br />

Mains<br />

AC drive<br />

Fig. 21 AC drive in a cabinet on a mounting plate<br />

Fig. 22 shows an example when there is no metal mounting<br />

plate used (e.g. if IP54 AC drives are used). It is important<br />

to keep the “circuit” closed, by using metal housing and<br />

cable glands.<br />

Fig. 22 AC drive as stand alone<br />

Metal EMC cable glands<br />

Output coil (option)<br />

Screened cables<br />

Unpainted mounting plate<br />

Metal connector housing<br />

CG Drives & Automation, 01-5325-01r1 Installation 21<br />

Litz<br />

Mains<br />

(L1,L2,L3,PE)<br />

RFI-Filter<br />

Mains<br />

Mains<br />

AC drive<br />

Brake<br />

resistor<br />

(option)<br />

Motor<br />

Metal EMC<br />

coupling nut<br />

Brake resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal cable gland<br />

Motor<br />

Metal EMC cable<br />

glands<br />

Screened cables<br />

Metal housing<br />

Metal connector housing<br />

Motor


Connect motor cables<br />

1. Remove the cable interface plate from the AC drive<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 7.<br />

4. Connect the stripped cables to the respective motor<br />

terminal.<br />

5. Put the cable interface plate in place and secure with the<br />

fixing screws.<br />

6. Tighten the EMC gland with good electrical contact to<br />

the motor and brake chopper cable screens.<br />

Placing of motor cables<br />

Keep the motor cables as far away from other cables as<br />

possible, especially from control signals. The minimum<br />

distance between motor cables and control cables is 300<br />

mm.<br />

Avoid placing the motor cables in parallel with other cables.<br />

The power cables should cross other cables at an angle of<br />

90�.<br />

Long motor cables<br />

If the connection to the motor is longer than 100 m (for<br />

powers below 7.5 kW please contact CG Drives &<br />

Automation), it is possible that capacitive current peaks will<br />

cause tripping at overcurrent. Using output coils can prevent<br />

this. Contact the supplier for appropriate coils.<br />

Switching in motor cables<br />

Switching in the motor connections is not advisable. In the<br />

event that it cannot be avoided (e.g. emergency or<br />

maintenance switches) only switch if the current is zero. If<br />

this is not done, the AC drive can trip as a result of current<br />

peaks.<br />

3.3 Connection of motor and<br />

mains cables for model<br />

090 and up<br />

<strong>Emotron</strong> FDU48-090 and up, <strong>Emotron</strong> FDU69-<br />

090 and up<br />

To simplify the connection of thick motor and mains cables<br />

to the AC drive, the cable interface plate can be removed.<br />

Motor cable<br />

DC+, DC-, R (optional)<br />

Mains cable<br />

Fig. 23 Connecting motor and mains cables<br />

Clamps for screening<br />

Cable interface<br />

1. Remove the cable interface plate from the AC drive<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 7.<br />

4. Connect the stripped cables to the respective mains/<br />

motor terminal.<br />

5. Fix the clamps on appropriate place and tighten the<br />

cable in the clamp with good electrical contact to the<br />

cable screen.<br />

6. Put the cable interface plate in place and secure with the<br />

fixing screws.<br />

22 Installation CG Drives & Automation, 01-5325-01r1


AC drive model 48-300 & 69-210 and up<br />

L1sp<br />

eisung<br />

Power supply<br />

L2<br />

L2<br />

U<br />

Kabelabfangschiene Cable clamp rail<br />

V<br />

W<br />

PEN-Schiene PEN-bus<br />

T1<br />

1 L1 3 L2 5 L3<br />

11 COM<br />

11 COM<br />

NO 14<br />

NO 14<br />

NC 12<br />

NC 12<br />

2 5 A<br />

I<br />

2 3<br />

2 0<br />

-ÜÜÜÜÜ-<br />

0<br />

3RV1021-4DA15<br />

Q1 F1 K1<br />

Fig. 24 Connect motor cables and mains cables to the<br />

terminals and earth/ground to the bus bar.<br />

2 T1 4 T2 6 T3<br />

AC drive models 48-300 & 69-210 and up are supplied<br />

with power clamps for mains and motors, for connection of<br />

PE and earth there is a bus bar.<br />

For all type of wires to be connected the stripping length<br />

should be 32 mm.<br />

A2 COIL A1<br />

A COIL A<br />

X3<br />

Motor connection<br />

U<br />

V<br />

W<br />

Mains Connection<br />

L1<br />

L2<br />

L3<br />

Ground / earth<br />

connection<br />

bus bar<br />

3.3.1 Connection of mains and<br />

motor cables on IP20 modules<br />

The <strong>Emotron</strong> IP 20 modules are delivered complete with<br />

factory mounted cables for mains and motor. The length of<br />

the cables are app. 1100 mm. The cables are marked L1, L2,<br />

L3 for mains connection and U, V, W for motor<br />

connection.<br />

For detailed information about use of the IP20 modules,<br />

please contact CG Drives & Automation.<br />

PEBB 1<br />

(Master)<br />

Fig. 25 IP20 module size G, with qty 2 x 3 mains cables and<br />

qty 2 x 3 motor cables.<br />

CG Drives & Automation, 01-5325-01r1 Installation 23<br />

PEBB 2<br />

Mains cables Motor cables<br />

L1, L2, L3<br />

U, V, W


PEBB 1<br />

(Master) PEBB 2 PEBB 3<br />

Mains cables Motor cables<br />

L1, L2, L3 U, V, W<br />

Fig. 26 IP20 module size H/H69 with qty 3 x 3 Mains cables<br />

and qty 3 x 3 motor cables.<br />

3.4 Cable specifications<br />

Table 6 Cable specifications<br />

Cable Cable specification<br />

3.5 Stripping lengths<br />

Fig. 27 indicates the recommended stripping lengths for<br />

motor and mains cables.<br />

Fig. 27 Stripping lengths for cables<br />

24 Installation CG Drives & Automation, 01-5325-01r1<br />

Mains<br />

Motor<br />

Control<br />

Power cable suitable for fixed installation for the<br />

voltage used.<br />

Symmetrical three conductor cable with<br />

concentric protection (PE) wire or a four<br />

conductor cable with compact low-impedance<br />

concentric shield for the voltage used.<br />

Control cable with low-impedance shield,<br />

screened.<br />

Table 7 Stripping lengths for mains and motor cables<br />

Model<br />

Mains cable Motor cable<br />

a<br />

(mm)<br />

b<br />

(mm)<br />

a<br />

(mm)<br />

b<br />

(mm)<br />

c<br />

(mm)<br />

003-018 90 10 90 10 20<br />

026–046 150 14 150 14 20<br />

061–074 110 17 110 17 34<br />

090-175 160 16 160 16 41<br />

FDU48-210–250<br />

FDU69-090-200<br />

Mains<br />

170 24 170 24 46<br />

Motor<br />

(06-F45-cables only)


3.5.1 Dimension of cables and fuses<br />

Please refer to the chapter Technical data, section 14.7, page<br />

208.<br />

3.5.2 Tightening torque for mains<br />

and motor cables<br />

Table 8 Model FDU48/52 003 to 046<br />

Brake chopper Mains/motor<br />

Tightening torque, Nm 1.2-1.4 1.2-1.4<br />

Table 9 Model FDU48/52 061 to 074<br />

All cables 60 A All cables 73 A<br />

Tightening torque, Nm 2.8 5.0<br />

Table 10 Model FDU48 090 to 109<br />

Block, mm 2<br />

Cable diameter, mm 2<br />

Brake chopper Mains/motor<br />

95 95<br />

16-95 16-95<br />

Tightening torque, Nm 14 14<br />

Table 11 Model FDU48 146 to 175<br />

Block, mm 2<br />

Cable diameter, mm 2<br />

Brake chopper Mains/motor<br />

95 150<br />

16-95 35-95 120-150<br />

Tightening torque, Nm 14 14 24<br />

Table 12 Model FDU48 210 to 250 and<br />

FDU69 090 to 200<br />

Brake chopper Mains/motor<br />

Block, mm2 150 240<br />

Cable diameter, mm 2<br />

35-95 120-150 35-70 95-240<br />

Tightening torque, Nm 14 24 14 24<br />

3.6 Thermal protection on the<br />

motor<br />

Standard motors are normally fitted with an internal fan.<br />

The cooling capacity of this built-in fan is dependent on the<br />

frequency of the motor. At low frequency, the cooling<br />

capacity will be insufficient for nominal loads. Please<br />

contact the motor supplier for the cooling characteristics of<br />

the motor at lower frequency.<br />

WARNING!<br />

Depending on the cooling characteristics of<br />

the motor, the application, the speed and the<br />

load, it may be necessary to use forced<br />

cooling on the motor.<br />

Motor thermistors offer better thermal protection for the<br />

motor. Depending on the type of motor thermistor fitted,<br />

the optional PTC input may be used. The motor thermistor<br />

gives a thermal protection independent of the speed of the<br />

motor, thus of the speed of the motor fan. See the functions,<br />

Motor I 2 t type [231] and Motor I 2 t current [232].<br />

3.7 Motors in parallel<br />

It is possible to have motors in parallel as long as the total<br />

current does not exceed the nominal value of the AC drive.<br />

The following has to be taken into account when setting the<br />

motor data:<br />

Menu [221]<br />

Motor Voltage:<br />

Menu [222]<br />

Motor Frequency:<br />

Menu [223]<br />

Motor Power:<br />

Menu [224]<br />

Motor Current:<br />

Menu [225]<br />

Motor Speed:<br />

Menu [227]<br />

Motor Cos PHI:<br />

The motors in parallel must have the<br />

same motor voltage.<br />

The motors in parallel must have the<br />

same motor frequency.<br />

Add the motor power values for the<br />

motors in parallel.<br />

Add the current for the motors in parallel.<br />

Set the average speed for the motors in<br />

parallel.<br />

Set the average Cos PHI value for the<br />

motors in parallel.<br />

CG Drives & Automation, 01-5325-01r1 Installation 25


26 Installation CG Drives & Automation, 01-5325-01r1


4. Control Connections<br />

4.1 Control board<br />

Fig. 28 shows the layout of the control board which is where<br />

the parts most important to the user are located. Although<br />

the control board is galvanically isolated from the mains, for<br />

safety reasons do not make changes while the mains supply<br />

is on!<br />

X1<br />

Fig. 28 Control board layout<br />

X4<br />

Communication<br />

C<br />

S1 S2 S3 S4<br />

I U I U I U I U<br />

12 13 14 15 16 17 18 19 20 21 22<br />

1<br />

AO1 AO2 DI4 DI5 DI6 DI7 DO1 DO2 DI8<br />

+10V AI1<br />

Switches<br />

X5<br />

2 3 4 5 6 7 8 9 10<br />

AI2<br />

AI3<br />

AI4<br />

1<br />

Option<br />

-10V<br />

Control<br />

signals<br />

WARNING!<br />

Always switch off the mains voltage and wait<br />

at least 7 minutes to allow the DC capacitors<br />

to discharge before connecting the control<br />

signals or changing position of any switches. If the<br />

option External supply is used, switch of the mains to<br />

the option. This is done to prevent damage on the<br />

control board.<br />

CG Drives & Automation, 01-5325-01r1 Control Connections 27<br />

11<br />

DI1 DI2 DI3 +24V<br />

2<br />

X2<br />

X6 X7<br />

41<br />

R02<br />

42 43<br />

NC<br />

31 32 33 51 52<br />

NC<br />

C<br />

NO<br />

X3<br />

C NO NO C<br />

R01<br />

3<br />

Control<br />

Panel<br />

Relay outputs<br />

R03<br />

X8


4.2 Terminal connections<br />

The terminal strip for connecting the control signals is<br />

accessible after opening the front panel.<br />

The table describes the default functions for the signals. The<br />

inputs and outputs are programmable for other functions as<br />

described in chapter 11. page 67. For signal specifications<br />

refer to chapter 14. page 199.<br />

NOTE: The maximum total combined current for outputs<br />

11, 20 and 21 is 100mA.<br />

NOTE: It is possible to use external 24V DC if connection<br />

to Common (15).<br />

Table 13 Control signals<br />

Terminal Name Function (Default)<br />

Outputs<br />

1 +10 V +10 VDC supply voltage<br />

6 -10 V -10 VDC supply voltage<br />

7 Common Signal ground<br />

11 +24 V +24 VDC supply voltage<br />

12 Common Signal ground<br />

15<br />

Digital inputs<br />

Common Signal ground<br />

8 DigIn 1 RunL (reverse)<br />

9 DigIn 2 RunR (forward)<br />

10 DigIn 3 Off<br />

16 DigIn 4 Off<br />

17 DigIn 5 Off<br />

18 DigIn 6 Off<br />

19 DigIn 7 Off<br />

22 DigIn 8 RESET<br />

Digital outputs<br />

20 DigOut 1 Ready<br />

21 DigOut 2 No trip<br />

Analogue inputs<br />

2 AnIn 1 Process Ref<br />

3 AnIn 2 Off<br />

4 AnIn 3 Off<br />

5 AnIn 4 Off<br />

Analogue outputs<br />

13 AnOut 1 Min speed to max speed<br />

14 AnOut 2 0 to max torque<br />

Table 13 Control signals<br />

Terminal Name Function (Default)<br />

Relay outputs<br />

31 N/C 1<br />

32 COM 1<br />

33 N/O 1<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

51 COM 3 Relay 3 output<br />

52 N/O 3 Off<br />

Relay 1 output<br />

Trip, active when the AC drive is<br />

in a TRIP condition.<br />

Relay 2 output<br />

Run, active when the AC drive is<br />

started.<br />

NOTE: N/C is opened when the relay is active and N/O is<br />

closed when the relay is active.<br />

4.3 Inputs configuration<br />

with the switches<br />

The switches S1 to S4 are used to set the input configuration<br />

for the 4 analogue inputs AnIn1, AnIn2, AnIn3 and AnIn4<br />

as described in table 14. See Fig. 28 for the location of the<br />

switches.<br />

Table 14 Switch settings<br />

Input Signal type Switch<br />

28 Control Connections CG Drives & Automation, 01-5325-01r1<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

S1<br />

S1<br />

S2<br />

S2<br />

S3<br />

S3<br />

S4<br />

S4<br />

NOTE: Scaling and offset of AnIn1 - AnIn4 can be<br />

configured using the software. See menus [512], [515],<br />

[518] and [51B] in section 11.5, page 134.<br />

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can<br />

be configured using the software. See menu [530]<br />

section 11.5.3, page 143<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U


4.4 Connection example<br />

Fig. 29 gives an overall view of a AC drive connection<br />

example.<br />

Alternative for<br />

potentiometer control**<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

NQE1<br />

TGO<br />

Fig. 29 Connection example<br />

0 - 10 V<br />

4 - 20 mA<br />

TGUGV<br />

CE"FTKXG<br />

RTGX PGZV GUE<br />

GPVGT<br />

* Default setting<br />

** The switch S1 is set to U<br />

*** = Optional terminals X1: 78 - 79<br />

for connection of Motor-PTC on<br />

sizes B, C and D.<br />

RFIfilter<br />

Optional ***<br />

Motor PTC<br />

+10 VDC<br />

AnIn 1: Reference<br />

AnIn 2<br />

AnIn 3<br />

AnIn 4<br />

Common<br />

-10 VDC<br />

AnOut 1<br />

Common<br />

AnOut 2<br />

DigIn 1:RunL*<br />

DigOut 2<br />

DigIn 2:RunR*<br />

DigOut 1<br />

DigIn3<br />

+24 VDC<br />

Common<br />

Relay 1<br />

DigIn 4<br />

DigIn 5<br />

DigIn 6<br />

DigIn 7<br />

Relay 2<br />

DigIn 8:Reset*<br />

Comm. options<br />

Fieldbus option<br />

or PC<br />

Relay 3<br />

Optional<br />

Other options<br />

Option board<br />

CG Drives & Automation, 01-5325-01r1 Control Connections 29<br />

Motor


4.5 Connecting the Control<br />

Signals<br />

4.5.1 Cables<br />

The standard control signal connections are suitable for<br />

stranded flexible wire up to 1.5 mm 2 and for solid wire up to<br />

2.5 mm 2 .<br />

Terminal 78 & 79 for<br />

connection of Motor<br />

PTC option<br />

Control signals<br />

Fig. 30 Connecting the control signals, 003 to 018<br />

Terminal 78 & 79 for<br />

connection of Motor<br />

PTC option<br />

Control signals<br />

Fig. 31 Connecting the control signals, 026 to 046<br />

L1 L2 L3 PE DC- DC+ R U V<br />

Fig. 32 Connecting the control signals, 061 to 074<br />

Fig. 33 Connecting the control signals, 090 to 250<br />

Terminal 78 & 79 for<br />

connection of Motor<br />

PTC option<br />

Terminal A- & B+ for<br />

connection of<br />

Stand by supply<br />

option board<br />

Control signals<br />

Control signals<br />

30 Control Connections CG Drives & Automation, 01-5325-01r1


NOTE: The screening of control signal cables is<br />

necessary to comply with the immunity levels given in<br />

the EMC Directive (it reduces the noise level).<br />

NOTE: Control cables must be separated from motor and<br />

mains cables.<br />

4.5.2 Types of control signals<br />

Always make a distinction between the different types of<br />

signals. Because the different types of signals can adversely<br />

affect each other, use a separate cable for each type. This is<br />

often more practical because, for example, the cable from a<br />

pressure sensor may be connected directly to the AC drive.<br />

We can distinguish between the following types of control<br />

signals:<br />

Analogue inputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) normally<br />

used as control signals for speed, torque and PID feedback<br />

signals.<br />

Analogue outputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) which<br />

change slowly or only occasionally in value. In general, these<br />

are control or measurement signals.<br />

Digital<br />

Voltage or current signals (0-10 V, 0-24 V, 0/4-20 mA)<br />

which can have only two values (high or low) and only<br />

occasionally change in value.<br />

Data<br />

Usually voltage signals (0-5 V, 0-10 V) which change rapidly<br />

and at a high frequency, generally data signals such as<br />

RS232, RS485, Profibus, etc.<br />

Relay<br />

Relay contacts (0-250 VAC) can switch highly inductive<br />

loads (auxiliary relay, lamp, valve, brake, etc.).<br />

Signal<br />

type<br />

Maximum wire size Tightening<br />

torque<br />

Cable type<br />

Analogue Rigid cable:<br />

0.14-2.5 mm 2<br />

Flexible cable:<br />

0.14-1.5 mm 2<br />

Cable with ferrule:<br />

0.25-1.5 mm 2<br />

Screened<br />

Digital<br />

Data<br />

0.5 Nm<br />

Screened<br />

Screened<br />

Relay Not screened<br />

Example:<br />

The relay output from a AC drive which controls an<br />

auxiliary relay can, at the moment of switching, form a<br />

source of interference (emission) for a measurement signal<br />

from, for example, a pressure sensor. Therefore it is advised<br />

to separate wiring and screening to reduce disturbances.<br />

4.5.3 Screening<br />

For all signal cables the best results are obtained if the<br />

screening is connected to both ends: the AC drive side and<br />

at the source (e.g. PLC, or computer). See Fig. 34.<br />

It is strongly recommended that the signal cables be allowed<br />

to cross mains and motor cables at a 90� angle. Do not let<br />

the signal cable go in parallel with the mains and motor<br />

cable.<br />

4.5.4 Single-ended or double-ended<br />

connection?<br />

In principle, the same measures applied to motor cables<br />

must be applied to all control signal cables, in accordance<br />

with the EMC-Directives.<br />

For all signal cables as mentioned in section 4.5.2 the best<br />

results are obtained if the screening is connected to both<br />

ends. See Fig. 34.<br />

NOTE: Each installation must be examined carefully<br />

before applying the proper EMC measurements.<br />

Control board<br />

Pressure<br />

sensor<br />

(example)<br />

External control<br />

(e.g. in metal housing)<br />

Control consol<br />

Fig. 34 Electro Magnetic (EM) screening of control signal<br />

cables.<br />

CG Drives & Automation, 01-5325-01r1 Control Connections 31


4.5.5 Current signals ((0)4-20 mA)<br />

A current signal like (0)4-20 mA is less sensitive to<br />

disturbances than a 0-10 V signal, because it is connected to<br />

an input which has a lower impedance (250 �) than a<br />

voltage signal (20 k�). It is therefore strongly advised to use<br />

current control signals if the cables are longer than a few<br />

metres.<br />

4.5.6 Twisted cables<br />

Analogue and digital signals are less sensitive to interference<br />

if the cables carrying them are “twisted”. This is certainly to<br />

be recommended if screening cannot be used. By twisting<br />

the wires the exposed areas are minimised. This means that<br />

in the current circuit for any possible High Frequency (HF)<br />

interference fields, no voltage can be induced. For a PLC it<br />

is therefore important that the return wire remains in<br />

proximity to the signal wire. It is important that the pair of<br />

wires is fully twisted over 360°.<br />

4.6 Connecting options<br />

The option cards are connected by the optional connectors<br />

X4 or X5 on the control board see Fig. 28, page 27 and<br />

mounted above the control board. The inputs and outputs<br />

of the option cards are connected in the same way as other<br />

control signals.<br />

32 Control Connections CG Drives & Automation, 01-5325-01r1


5. Getting Started<br />

This chapter is a step by step guide that will show you the<br />

quickest way to get the motor shaft turning. We will show<br />

you two examples, remote control and local control.<br />

We assume that the AC drive is mounted on a wall or in a<br />

cabinet as in the chapter 2. page 11.<br />

First there is general information of how to connect mains,<br />

motor and control cables. The next section describes how to<br />

use the function keys on the control panel. The subsequent<br />

examples covering remote control and local control describe<br />

how to program/set the motor data and run the AC drive<br />

and motor.<br />

5.1 Connect the mains and<br />

motor cables<br />

Dimension the mains and motor cables according to local<br />

regulations. The cable must be able to carry the AC drive<br />

load current.<br />

5.1.1 Mains cables<br />

1. Connect the mains cables as in Fig. 35. The AC drive<br />

has, as standard, a built-in RFI mains filter that complies<br />

with category C3 which suits the Second Environment<br />

standard.<br />

5.1.2 Motor cables<br />

2. Connect the motor cables as in Fig. 35. To comply with<br />

the EMC Directive you have to use screened cables and<br />

the motor cable screen has to be connected on both<br />

sides: to the housing of the motor and the housing of the<br />

AC drive.<br />

RFI-Filter<br />

Mains<br />

Mains<br />

AC drive<br />

Brake<br />

resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal EMC<br />

cable gland<br />

Fig. 35 Connection of mains and motor cables<br />

Metal EMC cable<br />

glands<br />

Screened cables<br />

Metal housing<br />

Metal connector housing<br />

Motor<br />

Table 15 Mains and motor connection<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

Mains supply, 3 -phase<br />

Safety earth<br />

Motor earth<br />

Motor output, 3-phase<br />

WARNING!<br />

In order to work safely the mains earth must<br />

be connected to PE and the motor earth to<br />

.<br />

5.2 Using the function keys<br />

100 200 300<br />

Fig. 36 Example of menu navigation when entering motor<br />

voltage<br />

step to lower menu level or confirm changed setting<br />

step to higher menu level or ignore changed setting<br />

step to next menu on the same level<br />

step to previous menu on the same level<br />

increase value or change selection<br />

decrease value or change selection<br />

CG Drives & Automation, 01-5325-01r1 Getting Started 33<br />

ESC<br />

NEXT<br />

NEXT<br />

210<br />

NEXT<br />

220<br />

221<br />

ESC


5.3 Remote control<br />

In this example external signals are used to control the AC<br />

drive/motor.<br />

A standard 4-pole motor for 400 V, an external start button<br />

and a reference value will also be used.<br />

5.3.1 Connect control cables<br />

Here you will make up the minimum wiring for starting. In<br />

this example the motor/AC drive will run with right rotation.<br />

To comply with the EMC standard, use screened control<br />

cables with plaited flexible wire up to 1.5 mm 2 or solid wire<br />

up to 2.5 mm 2 .<br />

3. Connect a reference value between terminals 7 (Common)<br />

and 2 (AnIn 1) as in Fig. 37.<br />

4. Connect an external start button between terminal 11<br />

(+24 VDC) and 9 (DigIn2, RUNR) as in Fig. 37.<br />

Reference<br />

4-20 mA<br />

Start<br />

Fig. 37 Wiring<br />

+<br />

0V<br />

X3<br />

5.3.2 Switch on the mains<br />

Once the mains is switched on, the internal fan in the AC<br />

drive will run for 5 seconds.<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

X2<br />

31<br />

32<br />

33<br />

51<br />

52<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

41<br />

42<br />

43<br />

5.3.3 Set the Motor Data<br />

Enter correct motor data for the connected motor. The<br />

motor data is used in the calculation of complete operational<br />

data in the AC drive.<br />

Change settings using the keys on the control panel. For<br />

further information about the control panel and menu<br />

structure, see the chapter 9. page 57.<br />

Menu [100], “Preferred View” is displayed when started.<br />

1. Press NEXT to display menu [200], “Main Setup”.<br />

2. Press and then NEXT<br />

to display menu [220], “Motor<br />

Data”.<br />

3. Press to display menu [221] and set motor voltage.<br />

4. Change the value using the and keys. Confirm<br />

with .<br />

5. Set motor frequency [222].<br />

6. Set motor power [223].<br />

7. Set motor current [224].<br />

8. Set motor speed [225].<br />

9. Set power factor (cos �) [227].<br />

10. Select supply voltage level used [21B]<br />

11. [229] Motor ID run: Choose Short, confirm with<br />

and give start command .<br />

The AC drive will now measure some motor parameters.<br />

The motor makes some beeping sounds but the shaft<br />

does not rotate. When the ID run is finished after about<br />

one minute ("Test Run OK!" is displayed), press to<br />

continue.<br />

12. Use AnIn1 as input for the reference value. The default<br />

range is 4-20 mA. If you need a 0-10 V reference value,<br />

change switch (S1) on control board.<br />

13. Switch off power supply.<br />

14. Connect digital and analogue inputs/outputs as in<br />

Fig. 37.<br />

15. Ready!<br />

16. Switch on power supply.<br />

5.3.4 Run the AC drive<br />

Now the installation is finished, and you can press the<br />

external start button to start the motor.<br />

When the motor is running the main connections are OK.<br />

34 Getting Started CG Drives & Automation, 01-5325-01r1


5.4 Local control<br />

Manual control via the control panel can be used to carry<br />

out a test run.<br />

Use a 400 V motor and the control panel.<br />

5.4.1 Switch on the mains<br />

Once the mains is switched on, the AC drive is started and<br />

the internal fan will run for 5 seconds.<br />

5.4.2 Select <strong>manual</strong> control<br />

Menu [100], “Preferred View” is displayed when started.<br />

1. Press NEXT to display menu [200], “Main Setup”.<br />

2. Press to display menu [210], “Operation”.<br />

3. Press to display menu [211], “Language”.<br />

4. Press NEXT to display menu [214], “Reference Control”.<br />

5. Select Keyboard using the key<br />

confirm.<br />

and press to<br />

6. Press NEXT to get to menu [215], “Run/Stop Control”.<br />

7. Select Keyboard using the key<br />

confirm.<br />

and press to<br />

8. Press ESC to get to previous menu level and then NEXT to<br />

display menu [220], “Motor Data”.<br />

5.4.3 Set the Motor Data<br />

Enter correct motor data for the connected motor.<br />

9. Press to display menu [221].<br />

10. Change the value using the and keys. Confirm<br />

with .<br />

11. Press NEXT to display menu [222].<br />

12. Repeat step 9 and 10 until all motor data is entered.<br />

13. Press ESC twice and then to display menu [100],<br />

Preferred View.<br />

5.4.4 Enter a Reference Value<br />

Enter a reference value.<br />

14. Press NEXT<br />

until menu [300], “Process” is displayed.<br />

15. Press<br />

value.<br />

to display menu [310], “Set/View reference”<br />

16. Use the and keys to enter, for example, 300<br />

rpm. We select a low value to check the rotation<br />

direction without damaging the application.<br />

5.4.5 Run the AC drive<br />

Press the key on the control panel to run the motor<br />

forward.<br />

If the motor is running the main connections are OK.<br />

CG Drives & Automation, 01-5325-01r1 Getting Started 35


36 Getting Started CG Drives & Automation, 01-5325-01r1


6. Applications<br />

This chapter contains tables giving an overview of many different<br />

applications/duties in which it is suitable to use AC<br />

drives from CG Drives & Automation. Further on you will<br />

find application examples of the most common applications<br />

and solutions.<br />

6.1 Application overview<br />

6.1.1Pumps<br />

6.1.2Fans<br />

Challenge <strong>Emotron</strong> FDU solution Menu<br />

Dry-running, cavitation and overheating damage<br />

the pump and cause downtime.<br />

Sludge sticks to impeller when pump has been<br />

running at low speed or been stationary for a while.<br />

Reduces the pump’s efficiency.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked pipe, a<br />

valve not fully opened or a worn impeller.<br />

Water hammer damages the pump when stopped.<br />

Mechanical stress on pipes, valves, gaskets, seals.<br />

Pump Curve Protection detects deviation. Sends<br />

warning or activates safety stop.<br />

Automatic pump rinsing function: pump is set to<br />

run at full speed at certain intervals, then return<br />

to normal speed.<br />

PID continuously adapts pressure/flow to the<br />

level required. Sleep function activated when<br />

none is needed.<br />

Pump Curve Protection detects deviation.<br />

Warning is sent or safety stop activated.<br />

Smooth linear stops protect the equipment.<br />

Eliminates need for costly motorized valves.<br />

411–419, 41C1– 41C9<br />

362–368, 560, 640<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

331–336<br />

Challenge <strong>Emotron</strong> FDU solution Menu<br />

Starting a fan rotating in the wrong direction can be<br />

critical, e.g. a tunnel fan in event of a fire.<br />

Draft causes turned off fan to rotate the wrong way.<br />

Starting causes high current peaks and mechanical<br />

stress.<br />

Regulating pressure/flow with dampers causes<br />

high energy consumption and equipment wear.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked filter, a<br />

damper not fully opened or a worn belt.<br />

Fan is started at low speed to ensure correct<br />

direction and proper function.<br />

Motor is gradually slowed to complete stop before<br />

starting. Avoids blown fuses and breakdown.<br />

Automatic regulation of pressure/flow with motor<br />

speed gives more exact control.<br />

PID continuously adapts to the level required.<br />

Sleep function is activated when none is needed.<br />

Load Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

219, 341<br />

219, 33A, 335<br />

321, 354<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

CG Drives & Automation, 01--5325-01r1 Applications 37


6.1.3Compressors<br />

6.1.4Blowers<br />

Challenge <strong>Emotron</strong> FDU solution Menu<br />

Compressor is damaged when cooling media<br />

enters the compressor screw.<br />

Pressure is higher than needed, causing leaks,<br />

stress on the equipment and excessive air use.<br />

Motor runs at same speed when no air is<br />

compressed. Energy is lost and equipment<br />

stressed.<br />

Process inefficiency and energy wasted due to e.g.<br />

the compressor idling.<br />

Overload situation is quickly detected and safety<br />

stop can be activated to avoid breakdown.<br />

Load Curve Protection function detects deviation.<br />

Warning is sent or safety stop activated.<br />

PID continuously adapts to the level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

411–41A<br />

411–419, 41C1–41C9<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

Challenge <strong>Emotron</strong> FDU solution Menu<br />

Difficult to compensate for pressure fluctuations.<br />

Wasted energy and risk of production stop.<br />

Motor runs at same speed despite varying<br />

demands. Energy is lost and equipment stressed.<br />

Process inefficiency due to e.g. a broken damper, a<br />

valve not fully opened or a worn belt.<br />

PID function continuously adapts pressure to the<br />

level required.<br />

PID continuously adapts air flow to level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

320, 380<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

38 Applications CG Drives & Automation, 01-5325-01r1


7. Main Features<br />

This chapter contains descriptions of the main features of<br />

the AC drive.<br />

7.1 Parameter sets<br />

Only valid if the option HCP - Handheld Control Panel is<br />

used.<br />

Parameter sets are used if an application requires different<br />

settings for different modes. For example, a machine can be<br />

used for producing different products and thus requires two<br />

or more maximum speeds and acceleration/deceleration<br />

times. With the four parameter sets different control options<br />

can be configured with respect to quickly changing the<br />

behaviour of the AC drive. It is possible to adapt the AC<br />

drive online to altered machine behaviour. This is based on<br />

the fact that at any desired moment any one of the four<br />

parameter sets can be activated during Run or Stop, via the<br />

digital inputs or the control panel and menu [241].<br />

Each parameter set can be selected externally via a digital<br />

input. Parameter sets can be changed during operation and<br />

stored in the control panel.<br />

NOTE: The only data not included in the parameter set is<br />

Motor data 1-4, (entered separately), language,<br />

communication settings, selected set, local remote, and<br />

keyboard locked.<br />

Define parameter sets<br />

When using parameter sets you first decide how to select<br />

different parameter sets. The parameter sets can be selected<br />

via the control panel, via digital inputs or via serial<br />

communication. All digital inputs and virtual inputs can be<br />

configured to select parameter set. The function of the<br />

digital inputs is defined in the menu [520].<br />

Fig. 38 shows the way the parameter sets are activated via<br />

any digital input configured to Set Ctrl 1 or Set Ctrl 2.<br />

11 +24 V<br />

10 Set Ctrl1<br />

16 Set Ctrl2<br />

Fig. 38 Selecting the parameter sets<br />

Select and copy parameter set<br />

The parameter set selection is done in menu [241], “Select<br />

Set”. First select the main set in menu [241], normally A.<br />

Adjust all settings for the application. Usually most<br />

parameters are common and therefore it saves a lot of work<br />

by copying set A>B in menu [242]. When parameter set A is<br />

copied to set B you only change the parameters in the set<br />

that need to be changed. Repeat for C and D if used.<br />

With menu [242], Copy Set, it is easy to copy the complete<br />

contents of a single parameter set to another parameter set.<br />

If, for example, the parameter sets are selected via digital<br />

inputs, DigIn 3 is set to Set Ctrl 1 in menu [523] and DigIn<br />

4 is set to Set Ctrl 2 in menu [524], they are activated as in<br />

Table 16.<br />

Activate the parameter changes via digital input by setting<br />

menu [241], “Select Set” to DigIn.<br />

Table 16 Parameter set<br />

Parameter set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: The selection via the digital inputs is immediately<br />

activated. The new parameter settings will be activated<br />

on-line, also during Run.<br />

NOTE: The default parameter set is parameter set A.<br />

CG Drives & Automation, 01--5325-01r1 Main Features 39<br />

{<br />

Parameter Set A<br />

Run/Stop<br />

-<br />

-<br />

Torques<br />

-<br />

-<br />

Controllers<br />

-<br />

-<br />

Limits/Prot.<br />

-<br />

-Max Alarm<br />

Set B<br />

Set C<br />

Set D<br />

(NG06-F03_1)


Examples<br />

Different parameter sets can be used to easily change the<br />

setup of a AC drive to adapt quickly to different application<br />

requirements. For example when<br />

• a process needs optimized settings in different stages of<br />

the process, to<br />

- increase the process quality<br />

- increase control accuracy<br />

- lower maintenance costs<br />

- increase operator safety<br />

With these settings a large number of options are available.<br />

Some ideas are given here:<br />

Multi frequency selection<br />

Within a single parameter set the 7 preset references can be<br />

selected via the digital inputs. In combination with the<br />

parameter sets, 28 preset references can be selected using all<br />

5 digital inputs: DigIn1, 2 and 3 for selecting preset<br />

reference within one parameter set and DigIn 4 and DigIn 5<br />

for selecting the parameter sets.<br />

Bottling machine with 3 different products<br />

Use 3 parameter sets for 3 different Jog reference speeds<br />

when the machine needs to be set up. The 4th parameter set<br />

can be used for “normal” remote control when the machine<br />

is running at full production.<br />

Manual - automatic control<br />

If in an application something is filled up <strong>manual</strong>ly and then<br />

the level is automatically controlled using PID regulation,<br />

this is solved using one parameter set for the <strong>manual</strong> control<br />

and one for the automatic control.<br />

7.1.1 One motor and one parameter<br />

set<br />

This is the most common application for pumps and fans.<br />

Once default motor M1 and parameter set A have been<br />

selected:<br />

1. Enter the settings for motor data.<br />

2. Enter the settings for other parameters e.g. inputs and<br />

outputs<br />

7.1.2 One motor and two parameter<br />

sets<br />

This application is useful if you for example have a machine<br />

running at two different speeds for different products.<br />

Once default motor M1 is selected:<br />

1. Select parameter set A in menu [241].<br />

2. Enter motor data in menu [220].<br />

3. Enter the settings for other parameters e.g. inputs and<br />

outputs.<br />

4. If there are only minor differences between the settings<br />

in the parameter sets, you can copy parameter set A to<br />

parameter set B, menu [242].<br />

5. Enter the settings for parameters e.g. inputs and outputs.<br />

Note: Do not change motor data in parameter set B.<br />

7.1.3 Two motors and two parameter<br />

sets<br />

This is useful if you have a machine with two motors that<br />

can not run at the same time, such as a cable winding<br />

machine that lifts up the reel with one motor and then turns<br />

the wheel with the other motor.<br />

One motor must stop before changing to an other motor.<br />

1. Select parameter set A in menu [241].<br />

2. Select motor M1 in menu [212].<br />

3. Enter motor data and settings for other parameters e.g.<br />

inputs and outputs.<br />

4. Select parameter set B in menu [241].<br />

5. Select M2 in menu [212].<br />

6. Enter motor data and settings for other parameters e.g.<br />

inputs and outputs.<br />

7.1.4 Autoreset at trip<br />

For several non-critical application-related failure<br />

conditions, it is possible to automatically generate a reset<br />

command to overcome the fault condition. The selection<br />

can be made in menu [250]. In this menu the maximum<br />

number of automatically generated restarts allowed can be<br />

set, see menu [251], after this the AC drive will stay in fault<br />

condition because external assistance is required.<br />

40 Main Features CG Drives & Automation, 01--5325-01r1


Example<br />

The motor is protected by an internal protection for thermal<br />

overload. When this protection is activated, the AC drive<br />

should wait until the motor is cooled down enough before<br />

resuming normal operation. When this problem occurs<br />

three times in a short period of time, external assistance is<br />

required.<br />

The following settings should be applied:<br />

• Insert maximum number of restarts; set menu [251] to<br />

3.<br />

• Activate Motor I 2 t to be automatically reset; set menu<br />

[25A] to 300 s.<br />

• Set relay 1, menu [551] to “AutoRst Trip”; a signal will<br />

be available when the maximum number of restarts is<br />

reached and the AC drive stays in fault condition.<br />

• The reset input must be constantly activated.<br />

7.1.5 Reference priority<br />

The active speed reference signal can be programmed from<br />

several sources and functions. The table below shows the<br />

priority of the different functions with regards to the speed<br />

reference.<br />

Table 17 Reference priority<br />

Jog<br />

Mode<br />

Preset<br />

Reference<br />

Motor Pot Ref. Signal<br />

On/Off On/Off On/Off Option cards<br />

On On/Off On/Off Jog Ref<br />

Off On On/Off Preset Ref<br />

Off Off On Motor pot commands<br />

7.1.6 Preset references<br />

The AC drive is able to select fixed speeds via the control of<br />

digital inputs. This can be used for situations where the<br />

required motor speed needs to be adapted to fixed values,<br />

according to certain process conditions. Up to 7 preset<br />

references can be set for each parameter set, which can be<br />

selected via all digital inputs that are set to Preset Ctrl1,<br />

Preset Ctrl2 or Preset Ctrl3. The amount digital inputs used<br />

that are set to Preset Ctrl determines the number of Preset<br />

References available; using 1 input gives 1 speed, using 2<br />

inputs gives 3 speeds and using 3 inputs gives 7 speeds.<br />

Example<br />

The use of four fixed speeds, at 50 / 100 / 300 / 800 rpm,<br />

requires the following settings:<br />

• Set DigIn 5 as first selection input; set [525] to Preset<br />

Ctrl1.<br />

• Set DigIn 6 as second selection input; set [526] to Preset<br />

Ctrl2.<br />

• Set menu [341] “Min Speed” to 50 rpm.<br />

• Set menu [362] “Preset Ref 1” to 100 rpm.<br />

• Set menu [363] “Preset Ref 2” to 300 rpm.<br />

• Set menu [364] “Preset Ref 3” to 800 rpm.<br />

With these settings, the AC drive switched on and a RUN<br />

command given, the speed will be:<br />

• 50 rpm, when both DigIn 5 and DigIn 6 are low.<br />

• 100 rpm, when DigIn 5 is high and DigIn 6 is low.<br />

• 300 rpm, when DigIn 5 is low and DigIn 6 is high.<br />

• 800 rpm, when both DigIn 5 and DigIn 6 are high.<br />

CG Drives & Automation, 01--5325-01r1 Main Features 41


7.2 Remote control functions<br />

Operation of the Run/Stop/Enable/Reset functions<br />

As default, all the run/stop/reset related commands are<br />

programmed for remote operation via the inputs on the<br />

terminal strip (terminals 1-22) on the control board. With<br />

the function “Run/Stp Ctrl” [215] and “Reset Control”<br />

[216], this can be selected for keyboard or serial communication<br />

control.<br />

NOTE: The examples in this paragraph do not cover all<br />

possibilities. Only the most relevant combinations are<br />

given. The starting point is always the default setting<br />

(factory) of the AC drive.<br />

Default settings of the Run/Stop/<br />

Enable/Reset functions<br />

The default settings are shown in Fig. 39. In this example<br />

the AC drive is started and stopped with DigIn 2 and a reset<br />

after trip can be given with DigIn 8.<br />

RunR<br />

Reset<br />

+24 V<br />

Fig. 39 Default setting Run/Reset commands<br />

The inputs are default set for level-control. The rotation is<br />

determined by the setting of the digital inputs.<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

X<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

Enable and Stop functions<br />

Both functions can be used separately or simultaneously.<br />

The choice of which function is to be used depends on the<br />

application and the control mode of the inputs (Level/Edge<br />

[21A]).<br />

NOTE: In Edge mode, at least one digital input must be<br />

programmed to “stop”, because the Run commands are<br />

only able to start the AC drive.<br />

Enable<br />

Input must be active (HI) to allow any Run signal. If the<br />

input is made LOW, the output of the AC drive is<br />

immediately disabled and the motor will coast.<br />

CAUTION!<br />

If the Enable function is not programmed to a<br />

digital input, it is considered to be active<br />

internally.<br />

Stop<br />

If the input is low then the AC drive will stop according to<br />

the selected stop mode set in menu [33B] “Stop Mode”. Fig.<br />

40 shows the function of the Enable and the Stop input and<br />

the Stop Mode=Decel [33B].<br />

To run the input must be high.<br />

NOTE: Stop Mode=Coast [33B] will give the same<br />

behaviour as the Enable input.<br />

Fig. 40 Functionality of the Stop and Enable input<br />

42 Main Features CG Drives & Automation, 01--5325-01r1<br />

!<br />

STOP<br />

(STOP=DECEL)<br />

OUTPUT<br />

SPEED<br />

ENABLE<br />

OUTPUT<br />

SPEED<br />

(06-F104_NG)<br />

(or if Spinstart is selected)<br />

t<br />

t


Reset and Autoreset operation<br />

If the AC drive is in Stop Mode due to a trip condition, the<br />

AC drive can be remotely reset by a pulse (“low” to “high”<br />

transition) on the Reset input, default on DigIn 8.<br />

Depending on the selected control method, a restart takes<br />

place as follows:<br />

Level-control<br />

If the Run inputs remain in their position the AC drive will<br />

start immediately after the Reset command is given.<br />

Edge-control<br />

After the Reset command is given a new Run command<br />

must be applied to start the AC drive again.<br />

Autoreset is enabled if the Reset input is continuously active.<br />

The Autoreset functions are programmed in menu “Autoreset<br />

[240]”.<br />

NOTE: If the control commands are programmed for<br />

Keyboard control or Com, Autoreset is not possible.<br />

Run Inputs Level-controlled.<br />

The inputs are set as default for level-control. This means<br />

that an input is activated by making the input continuously<br />

“High”. This method is commonly used if, for example,<br />

PLCs are used to operate the AC drive.<br />

!<br />

CAUTION!<br />

Level-controlled inputs DO NOT comply with the<br />

Machine Directive, if the inputs are directly<br />

used to start and stop the machine.<br />

The examples given in this and the following paragraphs<br />

follow the input selection shown in Fig. 41.<br />

Stop<br />

RunL<br />

RunR<br />

Enable<br />

Reset<br />

+24 V<br />

Fig. 41 Example of wiring for Run/Stop/Enable/Reset inputs<br />

The Enable input must be continuously active in order to<br />

accept any run-right or run-left command. If both RunR<br />

and RunL inputs are active, then the AC drive stops<br />

according to the selected Stop Mode. Fig. 42 gives an<br />

example of a possible sequence.<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 42 Input and output status for level-control<br />

(06-F103new_1)<br />

Run Inputs Edge-controlled<br />

Menu “[21A] Start signal” Level/Edge must be set to Edge<br />

to activate edge control. This means that an input is activated<br />

by a “low” to “high” transition or vice versa.<br />

NOTE: Edge-controlled inputs comply with the Machine<br />

Directive (see Chapter 8. page 55), if the inputs are<br />

directly used for starting and stopping the machine.<br />

See Fig. 41. The Enable and Stop input must be active<br />

continuously in order to accept any run-right or run-left<br />

command. The last edge (RunR or RunL) is valid. Fig. 43<br />

gives an example of a possible sequence.<br />

CG Drives & Automation, 01--5325-01r1 Main Features 43


INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 43 Input and output status for edge-control<br />

(06-F94new_1)<br />

7.3 Performing an<br />

Identification Run<br />

To get the optimum performance out of your AC drive/<br />

motor combination, the AC drive must measure the<br />

electrical parameters (resistance of stator winding, etc.) of<br />

the connected motor. See menu [269] “Motor ID-Run”.<br />

7.4 Using the Control Panel<br />

Memory<br />

Data can be copied from the AC drive to the memory in the<br />

control panel and vice versa. To copy all data (including<br />

parameter set A-D and motor data) from the AC drive to the<br />

control panel, select Copy to CP[234], Copy to CP.<br />

To copy data from the control panel to the AC drive, enter<br />

the menu [235], Load from CP and select what you want to<br />

copy.<br />

The memory in the control panel is useful in applications<br />

with AC drives without a control panel and in applications<br />

where several AC drives have the same setup. It can also be<br />

used for temporary storage of settings. Use a control panel to<br />

upload the settings from one AC drive and then move the<br />

control panel to another AC drive and download the settings.<br />

NOTE: Load from and copy to the AC drive is only<br />

possible when the AC drive is in stop mode.<br />

AC drive<br />

Fig. 44 Copy and load parameters between AC drive and<br />

control panel<br />

44 Main Features CG Drives & Automation, 01--5325-01r1


7.5 Load Monitor and Process<br />

Protection [400]<br />

7.5.1 Load Monitor [410]<br />

The monitor functions enable the AC drive to be used as a<br />

load monitor. Load monitors are used to protect machines<br />

and processes against mechanical overload and underload,<br />

such as a conveyer belt or screw conveyer jamming, belt<br />

failure on a fan or a pump dry running. The load is<br />

measured in the AC drive by the calculated motor shaft<br />

torque. There is an overload alarm (Max Alarm and Max<br />

Pre-Alarm) and an underload alarm (Min Alarm and Min<br />

Pre-Alarm).<br />

The Basic Monitor type uses fixed levels for overload and<br />

underload (pre-)alarms over the whole speed range. This<br />

function can be used in constant load applications where the<br />

torque is not dependent on the speed, e.g. conveyor belt,<br />

displacement pump, screw pump, etc.<br />

For applications with a torque that is dependent on the<br />

speed, the Load Curve monitor type is preferred. By<br />

measuring the actual load curve of the process,<br />

characteristically over the range of minimum speed to<br />

maximum speed, an accurate protection at any speed can be<br />

established.<br />

The max and min alarm can be set for a trip condition. The<br />

pre-alarms act as a warning condition. All the alarms can be<br />

monitored on the digital or relay outputs.<br />

The autoset function automatically sets the 4 alarm levels<br />

whilst running: maximum alarm, maximum pre-alarm,<br />

minimum alarm and minimum pre-alarm.<br />

Fig. 7.6 gives an example of the monitor functions for<br />

constant torque applications<br />

CG Drives & Automation, 01--5325-01r1 Main Features 45


.<br />

Ramp-down phase<br />

Stationary phase<br />

Stationary phase<br />

Ramp-up phase<br />

[413] Ramp Alarm=On or Off [413] Ramp Alarm=On<br />

[413] Ramp Alarm=On or Off<br />

[413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max+Min [411] Alarm Select=Max or Max+Min [411] Alarm Select=Max or Max+Min<br />

[411] Alarm Select=Max or Max+Min<br />

Torque [%]<br />

[4161] MaxAlarmMar (15%)<br />

[4171] MaxPreAlMar (10%)<br />

100%<br />

Default: TNOM or<br />

Autoset: TMOMENTARY [41B]<br />

[4181] MinPreAlMar (10%)<br />

[4191] MinAlarmMar (15%)<br />

46 Main Features CG Drives & Automation, 01--5325-01r1<br />

t [s]<br />

[4162] MaxAlarmDel (0.1s)<br />

[4162] MaxAlarmDel (0.1s)<br />

Max Alarm<br />

Must be


7.6 Pump function<br />

7.6.1 Introduction<br />

A maximum of 4 pumps can be controlled with the standard<br />

AC drive.<br />

If I/O Board options are installed, a maximum of 7 pumps<br />

can be controlled. The I/O Board can also be used as a general<br />

extended I/O.<br />

The Pump Control function is used to control a number of<br />

drives (pumps, fans, etc., with a maximum of 3 additional<br />

drives per I/O-board connected) of which one is always<br />

driven by the AC drive. Other names for this kind of controllers<br />

are 'Cascade controller' or 'Hydrophore controller'.<br />

Depending on the flow, pressure or temperature, additional<br />

pumps can be activated via the appropriate signals by the<br />

output relays of the AC drive and/or the I/O Board. The<br />

system is developed in such a way that one AC drive will be<br />

the master of the system.<br />

Select relay on the control board or on an option board. The<br />

relays are set to functions for controlling pumps. In the pictures<br />

in this section, the relays are named R:Function, e.g.<br />

R:SlavePump1, which means a relay on the control board or<br />

on a option board set to function SlavePump1.<br />

Set FLOW<br />

Feedback<br />

FLOW<br />

FDU<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PID<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

R:SlavePump5<br />

R:SlavePump6<br />

Pressure<br />

Power<br />

P1 P2 P3 P4 P5 P6<br />

1 2 3 4<br />

Fig. 45 Flow control with pump control option<br />

Flow<br />

(50-PC-1_1)<br />

All additional pumps can be activated via an AC drive, soft<br />

starter, Y/ � or D.O.L. switches.<br />

Set<br />

PRESSURE<br />

Feedback<br />

PRESSURE<br />

FDU<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

R:SlavePump3<br />

R:SlavePump4<br />

Fig. 46 Pressure control with pump control option<br />

Pumps in parallel will operate as a flow controller, See Fig.<br />

45.<br />

Pumps in series will operate as a pressure controller see Fig.<br />

46. The basic control principle is shown in Fig. 42.<br />

NOTE: Read this instruction <strong>manual</strong> carefully before<br />

commencing installation, connecting or working with<br />

the AC drive with Pump Control option.<br />

Fig. 47 Basic Control principle<br />

CG Drives & Automation, 01--5325-01r1 Main Features 47<br />

AnIn<br />

PID<br />

AnIn<br />

PM<br />

R:SlavePump5<br />

R:SlavePump6<br />

FREQUENCY (master pump P)<br />

Add pump<br />

Stop pump<br />

P=on<br />

FLOW /<br />

PRESSURE<br />

Pressure<br />

4<br />

3<br />

2<br />

1<br />

P1 P2 P3 P4 P5 P6<br />

Power<br />

Flow<br />

P1=on P2=on P3=on P4=on P5=on P6=on<br />

(50-PC-3_1)<br />

(50-PC-2_1)<br />

FLOW /<br />

PRESSURE<br />

TIM E


7.6.2 Fixed MASTER<br />

This is the default setting of the Pump Control. The AC<br />

drive controls the Master pump which is always running.<br />

The relay outputs start and stop the other pumps P1 to P6,<br />

depending on flow/pressure. In this configuration a maximum<br />

of 7 pumps can be controlled, see Fig. 43. To equalize<br />

the lifetime of the additional pumps it is possible to select<br />

the pumps depending on the run time history of each pump.<br />

R:SlavePump6<br />

R:SlavePump5<br />

FDU R:SlavePump4<br />

MASTER R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

(NG_50-PC-4_1)<br />

PM<br />

See menu:<br />

[393] Select Drive<br />

[39H] to [39N] Run Time 1 - 6, Pump<br />

[554] to [55C] Relays<br />

Fig. 48 Fixed MASTER control<br />

P1 P2 P3 P4 P5 P6<br />

NOTE: The pumps MAY have different powers, however<br />

the MASTER pump MUST always be the largest.<br />

7.6.3 Alternating MASTER<br />

With this function the Master pump is not fixed to the AC<br />

drive all the time. After the AC drive is powered up or<br />

started again after a stop or sleep mode the Master pump is<br />

selected via the relay set to function Master Pump. section<br />

7.6.7 on page 44 shows a detailed wiring diagram with 3<br />

pumps. The purpose of this function is that all pumps are<br />

used equally, so the lifetime of all pumps, including the<br />

Master pump, will be equalized. Maximum 6 pumps can be<br />

controlled with this function.<br />

Fig. 49 Alternating MASTER Control<br />

P1 P2 P3 P4 P5 P6<br />

NOTE: The pumps MUST have all the same power.<br />

48 Main Features CG Drives & Automation, 01--5325-01r1<br />

FDU<br />

MASTER<br />

(NG_50-PC-5_1)<br />

R: SlavePump6<br />

R: SlavePump5<br />

R: SlavePump4<br />

R: SlavePump3<br />

R: SlavePump2<br />

R: SlavePump1<br />

R: MasterPump6<br />

R: MasterPump5<br />

R: MasterPump4<br />

R: MasterPump3<br />

R: MasterPump2<br />

R: MasterPump1<br />

See menu:<br />

[393] to [396]<br />

[553] to [55C]


7.6.4 Feedback 'Status' input<br />

In this example the additional pumps are controlled by an<br />

other kind of drive (e.g. soft starter, frequency inverter, etc.).<br />

The digital inputs on the I/O Board can be programmed as a<br />

"Error" input for each pump. If a drive fails the digital input<br />

will monitor this and the PUMP CONTROL option will<br />

not use that particular drive anymore and automatically<br />

FDU<br />

MASTER<br />

feedback<br />

inputs<br />

(NG_50-PC-6_1)<br />

Fig. 50 Feedback "Status" input<br />

PM<br />

7.6.5 Fail safe operation<br />

Some pump systems must always have a minimum flow or<br />

pressure level, even if the frequency inverter is tripped or<br />

damaged. So at least 1 or 2 (or maybe all) additional pumps<br />

must keep running after the inverter is powered down or<br />

tripped. This kind of "safe" pump operation can be<br />

FDU<br />

MASTER<br />

(50-PC-7_1)<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

DI:Pump1Feedb<br />

DI:Pump2Feedb<br />

DI:Pump3Feedb<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

PM<br />

Fig. 51 Example of "Fail safe" operation<br />

other<br />

drive<br />

other<br />

drive<br />

P1 P2 P3<br />

switch to another drive. This means that the control continues<br />

without using this (faulty) drive. This function can also<br />

be used to <strong>manual</strong>ly stop a particular pump for maintenance<br />

purposes, without shutting down the whole pump system.<br />

Of course the maximum flow/pressure is then limited to the<br />

maximum pump power of the remaining pumps.<br />

obtained by using the NC contacts of the pump control<br />

relays. These can be programmed for each individual additional<br />

pump. In this example pumps P5 and P6 will run at<br />

maximum power if the inverter fails or is powered down.<br />

CG Drives & Automation, 01--5325-01r1 Main Features 49<br />

other<br />

drive<br />

P1 P2 P3 P4 P5 P6<br />

See menu:<br />

[529] to [52H] Digital Input<br />

[554] to [55C] Relay<br />

See menu:<br />

[554] to [55C] Relays<br />

[55D4] to [55DC] Mode


7.6.6 PID control<br />

When using the Pump Control option it is mandatory to<br />

activate the PID controller function. Analogue inputs AnIn1<br />

to AnIn4 can be set as functions for PID set values and/or<br />

feedback values.<br />

Set<br />

Value<br />

Feedback<br />

Value<br />

FDU<br />

MASTER<br />

AnIn<br />

PID<br />

AnIn<br />

Fig. 52 PID control<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

PM<br />

Flow/Pressure<br />

measurement<br />

P1 P2 P3 P4 P5 P6<br />

(NG_50-PC-8_1)<br />

See menu:<br />

[381] to [385]<br />

[553] to [55C]<br />

[411] to [41C]<br />

50 Main Features CG Drives & Automation, 01--5325-01r1


7.6.7 Wiring Alternating Master<br />

Fig. 48 and Fig. 49 show the relay functions MasterPump1-<br />

6 and SlavePump1-6. The Master and Additional contactors<br />

also interlock with each other to prevent dual powering of<br />

the pump and damage to the inverter. (K1M/K1S, K2M/<br />

K2S, K3M/K3S). Before running, the FDU will select a<br />

pump to be Master, depending on the pump run times.<br />

Fig. 53 Power connections for Alternating MASTER circuit<br />

with 3 pumps<br />

~<br />

B1:R1<br />

Master<br />

Pump1<br />

N<br />

K1M<br />

PE<br />

L1<br />

L2<br />

L3<br />

B2:R1<br />

Slave<br />

Pump1<br />

PE L1 L2 L3<br />

FDU<br />

U V W<br />

K1S<br />

K1M K2M<br />

(NG_50-PC-10_1)<br />

K1S<br />

B1:R2<br />

Master<br />

Pump2<br />

K2M<br />

Fig. 54 Control connections for Alternating MASTER circuit<br />

with 3 pumps<br />

P1<br />

3~<br />

B2:R2<br />

Slave<br />

Pump2<br />

CAUTION!<br />

The wiring for the Alternating Master control<br />

needs special attention and should be wired<br />

exactly as described here, to avoid<br />

destructive short circuit at the output of the<br />

inverter.<br />

CG Drives & Automation, 01--5325-01r1 Main Features 51<br />

K2S<br />

!<br />

K2S K3S<br />

P2<br />

3~<br />

B1:R3<br />

Master<br />

Pump3<br />

K3M<br />

K3M<br />

P3<br />

3~<br />

B2:R3<br />

Slave<br />

Pump3<br />

K1S K1M K2S K2M<br />

K3S<br />

K3M<br />

K3S<br />

(NG_50-PC-11_3)


7.6.8 Checklist And Tips<br />

1. Main Functions<br />

Start by choosing which of the two main functions to use:<br />

- "Alternating MASTER" function<br />

In this case the “Master” pump can be alternated, although this function needs slightly more complicated wiring than the<br />

“Fixed MASTER” function described below. The I/O Board option is necessary.<br />

- "Fixed MASTER" function:<br />

One pump is always the master, only the additional pumps alternate.<br />

Notice that there is a big difference in the wiring of the system between these main functions, so it not possible to switch<br />

between these 2 functions later on. For further information see section 7.6.2, page 41.<br />

2. Number of pumps/drives<br />

3. Pump size<br />

If the system consists of 2 or 3 pumps the I/O Board option is not needed. However, this does mean that the following<br />

functions are not then possible:<br />

- "Alternating MASTER" function<br />

- With isolated inputs<br />

With the I/O Board option installed, the maximum number of pumps is:<br />

- 6 pumps if "Alternating MASTER" function is selected. (see section 7.6.3 on page 41)<br />

- 7 pumps if "Fixed MASTER" function is selected. (see section 7.6.2, page 41)<br />

- "Alternating MASTER" function:<br />

The sizes of the pumps must be equal.<br />

- "Fixed MASTER" function:<br />

The pumps may have different power sizes, but the master pump (FDU) must always have the greatest power.<br />

4. Programming the Digital inputs<br />

If the digital inputs are used, the digital input function must be set to Drive feedback.<br />

5. Programming the Relay outputs<br />

After the Pump controller is switched on in menu [391] the number of drives (pumps, fans, etc.) must be set in menu [392]<br />

(Number of Drives). The relays themselves must be set to the function SlavePump1-6 and if Alternate master is used,<br />

MasterPump1-6 as well.<br />

6. Equal Pumps<br />

If all pumps are equal in power size it is likely that the Upper band is much smaller than the Lower band, because the<br />

maximum pump discharge of the master pump is the same if the pump is connected to the mains (50Hz). This can give a<br />

very narrow hysteresis causing an unstable control area in the flow/pressure. By setting the maximum frequency of the<br />

inverter only slightly above 50Hz it means that the master pump has a slightly bigger pump discharge than the pump on<br />

the mains. Of course caution is essential in order to prevent the master pump running at a higher frequency for a longer<br />

period of time, which in turn prevents the master pump from overloading.<br />

7. Minimum Speed<br />

With pumps and fans it is normal to use a minimum speed, because at lower speed the discharge of the pump or fan will<br />

be low until 30-50% of the nominal speed (depending on size, power, pump properties, etc.). When using a minimum<br />

speed, a much smoother and better control range of the whole system will be achieved.<br />

52 Main Features CG Drives & Automation, 01--5325-01r1


7.6.9 Functional Examples of Start/<br />

Stop Transitions<br />

Starting an additional pump<br />

This figure shows a possible sequence with all levels and<br />

functions involved when a additional pump is started by<br />

means of the pump control relays. The starting of the second<br />

pump is controlled by one of the relay outputs. The<br />

Flow<br />

Speed<br />

Max speed<br />

[343]<br />

Transition Speed Start<br />

[39E]<br />

Min speed<br />

[341]<br />

Master pump<br />

2nd pump<br />

Speed<br />

Upper band<br />

Lower band<br />

Fig. 55 Time sequence starting an additional pump<br />

relay in this example starts the pump directly on line. Of<br />

course other start/stop equipment like a soft starter could be<br />

controlled by the relay output.<br />

Set view ref. [310]<br />

Start delay [399] Settle time start [39D]<br />

Start command<br />

Start ramp depends<br />

on start method<br />

Feedback Flow<br />

CG Drives & Automation, 01--5325-01r1 Main Features 53<br />

time<br />

time<br />

time


Stopping an additional pump<br />

This figure shows a possible sequence with all levels and<br />

functions involved when an additional pump is stopped by<br />

means of the pump control relays. The stopping of the second<br />

pump is controlled by one of the relay outputs. The<br />

relay in this example stops the pump directly on line. Of<br />

course other start/stop equipment like a soft starter could be<br />

controlled by the relay output.<br />

Speed<br />

Max speed<br />

[343]<br />

Transition Speed Stop<br />

[39G]<br />

Min speed<br />

[341]<br />

Master pump<br />

2nd pump<br />

Speed<br />

(NG_50-PC-20_1)<br />

Upper band<br />

Lower band<br />

Fig. 56 Time sequence stopping an additional pump<br />

Set view ref. [310]<br />

Stop delay [39A] Settle time stop [39F]<br />

Stop ramp depends<br />

on start method<br />

Stop command<br />

Feedback Flow<br />

54 Main Features CG Drives & Automation, 01--5325-01r1<br />

time<br />

time<br />

time


8. EMC and standards<br />

8.1 EMC standards<br />

The AC drive complies with the following standards:<br />

EN(IEC)61800-3:2004 Adjustable speed electronic power<br />

drive systems, part 3, EMC product standards:<br />

Standard: category C3, for systems of rated supply voltage<<br />

1000 VAC, intended for use in the second environment.<br />

Optional: Category C2, for systems of rated supply<br />

voltage


56 EMC and standards CG Drives & Automation, 01-25-01r1


9. Operation via the Control Panel<br />

This chapter describes how to use the control panel. The AC<br />

drive can be delivered with a control panel or a blank panel.<br />

-<br />

9.1 General<br />

The control panel displays the status of the AC drive and is<br />

used to set all the parameters. It is also possible to control<br />

the motor directly from the control panel. The control panel<br />

can be built-in or located externally via serial<br />

communication. The AC drive can be ordered without the<br />

control panel. Instead of the control panel there will be a<br />

blank panel.<br />

NOTE: The AC drive can run without the control panel<br />

being connected. However the settings must be such<br />

that all control signals are set for external use.<br />

9.2 The control panel<br />

Fig. 57 Control panel<br />

LC Display<br />

LEDs<br />

Control Keys<br />

Toggle Key<br />

Function Keys<br />

9.2.1 The display<br />

The display is back lit and consists of 2 rows, each with<br />

space for 16 characters. The display is divided into six areas.<br />

The different areas in the display are described below:<br />

A B C<br />

221T Motor Volt<br />

StpA M1: 400V<br />

D E<br />

F<br />

Fig. 58 The display<br />

Area A: Shows the actual menu number (3 or 4<br />

digits).<br />

Area B Shows if the menu is in the toggle loop or the<br />

AC drive is set for Local operation.<br />

Area C: Shows the heading of the active menu.<br />

Area D: Shows the status of the AC drive (3 digits).<br />

The following status indications are possible:<br />

Acc : Acceleration<br />

Dec : Deceleration<br />

I 2 t : Active I 2 t protection<br />

Run : Motor runs<br />

Trp : Tripped<br />

Stp : Motor is stopped<br />

VL : Operating at Voltage limit<br />

slp : Sleep mode<br />

SL : Operating at Speed limit<br />

CL : Operating at Current limit<br />

TL : Operating at Torque limit<br />

OT : Operating at Temperature Limit<br />

LV : Operating at Low Voltage<br />

Sby : Operating from Standby power supply<br />

SST : Operating Safe Stop, is flashing when<br />

activated<br />

LCL : Operating with low cooling liquid level<br />

Area E: Shows active parameter set and if it is a motor<br />

parameter.<br />

Area F: Shows the setting or selection in the active menu.<br />

This area is empty at the 1st level and 2nd level<br />

menu. This area also shows warnings and alarm<br />

messages. In some situations this area could<br />

indicate<br />

“+++” or ” - - -” please see further<br />

information in<br />

chapter 9.2.2 page 58<br />

CG Drives & Automation, 01-5325-01r1Operation via the Control Panel 57


300 Process<br />

StpA<br />

Fig. 59 Example 1st level menu<br />

220 Motor Data<br />

StpA<br />

Fig. 60 Example 2nd level menu<br />

221 Motor Volt<br />

Stp M1: 400V<br />

A<br />

Fig. 61 Example 3d level menu<br />

4161MaxAlarm Mar<br />

Stp 15%<br />

A<br />

Fig. 62 Example 4th level menu<br />

9.2.2 Indications on the display<br />

The display can indicate “+++” or “- - -” if a parameter is out<br />

of range. In the AC drive there are parameters which are<br />

dependent on other parameters. For example, if the speed<br />

reference is 500 and the maximum speed value is set to a<br />

value below 500, this will be indicated with “+++” on the<br />

display. If the minimum speed value is set over 500, “- - -”<br />

is displayed.<br />

9.2.3 LED indicators<br />

The symbols on the control panel have the following<br />

functions:<br />

Run<br />

Green<br />

Fig. 63 LED indications<br />

Table 18 LED indication<br />

Symbol<br />

POWER<br />

(green)<br />

TRIP (red)<br />

RUN<br />

(green)<br />

Function<br />

ON FLASHING OFF<br />

Power on ---------------- Power off<br />

AC drive<br />

tripped<br />

Motor shaft<br />

rotates<br />

Warning/Limit No trip<br />

Motor speed<br />

increase/<br />

decrease<br />

Motor<br />

stopped<br />

9.2.4 Control keys<br />

The control keys are used to give the Run, Stop or Reset<br />

commands directly. As default these keys are disabled, set for<br />

remote control. Activate the control keys by selecting<br />

Keyboard in the menus “Ref Control [214]”,<br />

“Run/Stop Control [215]” and “Reset Ctrl [216]”.<br />

If the Enable function is programmed on one of the digital<br />

inputs, this input must be active to allow Run/Stop<br />

commands from the control panel.<br />

Table 19 Control keys<br />

RUN L:<br />

STOP/RESET:<br />

RUN R:<br />

gives a start with<br />

left rotation<br />

stops the motor or resets<br />

the AC drive after a trip<br />

gives a start with<br />

right rotation<br />

NOTE: It is not possible to simultaneously activate the<br />

Run/Stop commands from the keyboard and remotely<br />

from the terminal strip (terminals 1-22). Exception is the<br />

JOG-function which can give start command, see “Jog<br />

Speed [348]” on page 113<br />

58 Operation via the Control Panel CG Drives & Automation, 01-5325-01r1<br />

Trip<br />

Red<br />

Power<br />

Green


9.2.5 The Toggle and Loc/Rem Key<br />

This key has two functions: Toggle and<br />

switching between Loc/Rem function.<br />

Press one second to use the toggle function<br />

Press and hold the toggle key for more than<br />

five seconds to switch between Local and Remote function,<br />

depending on the settings in [2171] and [2172].<br />

When editing values, the toggle key can be used to change<br />

the sign of the value, see section 9.5, page 61.<br />

Toggle function<br />

Using the toggle function makes it possible to easily step<br />

through selected menus in a loop. The toggle loop can<br />

contain a maximum of ten menus. As default the toggle loop<br />

contains the menus needed for Quick Setup. You can use the<br />

toggle loop to create a quick-menu for the parameters that<br />

are most importance to your specific application.<br />

NOTE: Do not keep the Toggle key pressed for more than<br />

five seconds without pressing either the +, - or Esc key,<br />

as this may activate the Loc/Rem function of this key<br />

instead. See menu [217].<br />

Add a menu to the toggle loop<br />

1. Go to the menu you want to add to the loop.<br />

2. Press the Toggle key and keep it pressed while pressing<br />

the + key.<br />

Delete a menu from the toggle loop<br />

1. Go to the menu you want to delete using the toggle key.<br />

2. Press the Toggle key and keep it pressed while pressing<br />

the - key.<br />

Delete all menus from the toggle loop<br />

1. Press the Toggle key and keep it pressed while pressing<br />

the Esc key.<br />

2. Confirm with Enter.<br />

Default toggle loop<br />

Fig. 64 shows the default toggle loop. This loop contains the<br />

necessary menus that need to be set before starting. Press<br />

Toggle to enter menu [211] then use the Next key to enter<br />

the sub menus [212] to [21A] and enter the parameters.<br />

When you press the Toggle key again, menu [221] is<br />

displayed.<br />

Fig. 64 Default toggle loop<br />

Indication of menus in toggle loop<br />

Menus included in the toggle loop are indicated with a<br />

in area B in the display.<br />

Loc/Rem function<br />

The Loc/Rem function of this key is disabled as default.<br />

Enable the function in menu [2171] and/or [2172].<br />

With the function Loc/Rem you can change between local<br />

and remote control of the AC drive from the control panel.<br />

The function Loc/Rem can also be changed via the DigIn,<br />

see menu “Digital inputs [520]”.<br />

Change control mode<br />

1. Press the Loc/Rem key for five seconds, until Local? or<br />

Remote? is displayed.<br />

2. Confirm with Enter.<br />

3. Cancel with Esc.<br />

Local mode<br />

Local mode is used for temporary operation. When switched<br />

to LOCAL operation, the AC drive is controlled via the<br />

defined Local operation mode, i.e. [2171] and [2172]. The<br />

actual status of the AC drive will not change, e.g. Run/Stop<br />

conditions and the actual speed will remain exactly the<br />

same. When the AC drive is set to Local operation, the<br />

display will show in area B in the display.<br />

CG Drives & Automation, 01-5325-01r1Operation via the Control Panel 59<br />

100<br />

511 Toggle loop 211<br />

341<br />

331<br />

L<br />

213<br />

221<br />

212<br />

Sub menus<br />

NEXT<br />

222<br />

Sub menus<br />

NEXT<br />

228<br />

T


Remote mode<br />

When the AC drive is switched to REMOTE operation, the<br />

AC drive will be controlled according to selected control<br />

methods in the menu’s “Reference Control [214]”, “Run/<br />

Stop Control [215]” and “Reset Control [216]”.<br />

To monitor the actual Local or Remote status of the AC<br />

drive control, a “Loc/Rem” signal is available on the<br />

Digital Outputs or Relays. When the AC drive is set to<br />

Local, the signal on the DigOut or Relay will be active/high,<br />

in Remote the signal will be inactive/low. See menu “Digital<br />

Outputs [540]” and “Relays [550]”.<br />

9.2.6 Function keys<br />

The function keys operate the menus and are also used for<br />

programming and read-outs of all the menu settings.<br />

Table 20 Function keys<br />

ESC<br />

NEXT<br />

ENTER key:<br />

ESCAPE key:<br />

PREVIOUS key:<br />

NEXT key:<br />

- key:<br />

+ key:<br />

Fig. 65 Menu structure<br />

- step to a lower menu<br />

level<br />

- confirm a changed<br />

setting<br />

- step to a higher<br />

menu level<br />

- ignore a changed<br />

setting, without<br />

confirming<br />

- step to a previous<br />

menu within the same<br />

level<br />

- go to more significant<br />

digit in edit mode<br />

- step to a next menu<br />

within the same level<br />

- go to less significant<br />

digit in edit mode<br />

- decrease a value<br />

- change a selection<br />

- increase a value<br />

- change a selection<br />

9.3 The menu structure<br />

The menu structure consists of 4 levels:<br />

Main Menu<br />

1st level<br />

The first character in the menu number.<br />

2nd level The second character in the menu number.<br />

3rd level The third character in the menu number.<br />

4th level The fourth character in the menu number.<br />

This structure is consequently independent of the number<br />

of menus per level.<br />

For instance, a menu can have one selectable menu (Set/<br />

View Reference Value [310]), or it can have 17 selectable<br />

menus (menu Speeds [340]).<br />

NOTE: If there are more than 10 menus within one level,<br />

the numbering continues in alphabetic order.<br />

Fig. 66 Menu structure<br />

9.3.1 The main menu<br />

This section gives you a short description of the functions in<br />

the Main Menu.<br />

100 Preferred View<br />

Displayed at power-up. It displays the actual process value as<br />

default. Programmable for many other read-outs.<br />

200 Main Setup<br />

Main settings to get the AC drive operable. The motor data<br />

settings are the most important. Also option utility and<br />

settings.<br />

300 Process and Application Parameters<br />

Settings more relevant to the application such as Reference<br />

Speed, torque limitations, PID control settings, etc.<br />

400 Shaft Power Monitor and Process<br />

Protection<br />

The monitor function enables the AC drive to be used as a<br />

load monitor to protect machines and processes against<br />

mechanical overload and underload.<br />

60 Operation via the Control Panel CG Drives & Automation, 01-5325-01r1<br />

4161<br />

4162<br />

NG_06-F28


500 Inputs/Outputs and Virtual<br />

Connections<br />

All settings for inputs and outputs are entered here.<br />

600 Logical Functions and Timers<br />

All settings for conditional signals are entered here.<br />

700 View Operation and Status<br />

Viewing all the operational data like frequency, load, power,<br />

current, etc.<br />

800 View Trip Log<br />

Viewing the last 10 trips in the trip memory.<br />

900 Service Information and AC drive Data<br />

Electronic type label for viewing the software version and<br />

AC drive type.<br />

9.4 Programming during<br />

operation<br />

Most of the parameters can be changed during operation<br />

without stopping the AC drive. Parameters that can not be<br />

changed are marked with a lock symbol in the display.<br />

NOTE: If you try to change a function during operation<br />

that only can be changed when the motor is stopped, the<br />

message “Stop First” is displayed.<br />

9.5 Editing values in a menu<br />

Most values in the second row in a menu can be changed in<br />

two different ways. Enumerated values like the baud rate can<br />

only be changed with alternative 1.<br />

2621 Baudrate<br />

Stp 38400<br />

Alternative 1<br />

When you press the + or - keys to change a value, the cursor<br />

is flashing to the left in the display and the value is increased<br />

or decreased when you press the appropriate key. If you keep<br />

the + or - keys pressed, the value will increase or decrease<br />

continuously. When you keep the key pressed the change<br />

speed will increase. The Toggle key is used to change the<br />

sign of the entered value. The sign of the value will also<br />

change when zero is passed. Press Enter to confirm the value.<br />

331 Acc Time<br />

Stp 2.00s<br />

A<br />

Flashing<br />

Alternative 2<br />

Press the + or - key to enter edit mode. Then press the Prev<br />

or Next key to move the cursor to the right most position of<br />

the value that should be changed. The cursor will make the<br />

selected character flashes. Move the cursor using the Prev or<br />

Next keys. When you press the + or - keys, the character at<br />

the cursor position will increase or decrease. This alternative<br />

is suitable when you want to make large changes, i.e. from 2<br />

s to 400 s.<br />

To change the sign of the value, press the toggle key. This<br />

makes it possible to enter negative values (Only valid for<br />

certain parameters).<br />

Example: When you press Next the 4 will flash.<br />

331 Acc Time<br />

Stp 4.00s<br />

A<br />

Flashing<br />

Press Enter to save the setting and Esc to leave the edit<br />

mode.<br />

9.6 Copy current parameter to<br />

all sets<br />

When a parameter is displayed, press the Enter key for<br />

5 seconds. Now the text To all sets? is displayed. Press Enter<br />

to copy the setting for current parameter to all sets.<br />

CG Drives & Automation, 01-5325-01r1Operation via the Control Panel 61


9.7 Programming example<br />

This example shows how to program a change of the Acc.<br />

Time set from 2.0 s to 4.0 s.<br />

The flashing cursor indicates that a change has taken place<br />

but is not saved yet. If at this moment, the power fails, the<br />

change will not be saved.<br />

Use the ESC, Prev, Next or the Toggle keys to proceed and<br />

to go to other menus.<br />

100 0rpm<br />

Stp 0.0A<br />

A<br />

Fig. 67 Programming example<br />

Menu 100 appears<br />

after power-up.<br />

Press Next for menu<br />

[200].<br />

Press Next for menu<br />

[300].<br />

Press Enter for menu<br />

[310].<br />

Press Next two times<br />

for menu [330].<br />

Press Enter for menu<br />

[331].<br />

Keep key pressed<br />

until desired value has<br />

been reached.<br />

Save the changed<br />

value by pressing<br />

Enter.<br />

62 Operation via the Control Panel CG Drives & Automation, 01-5325-01r1<br />

NEXT<br />

200 MAIN SETUP<br />

StpA<br />

NEXT<br />

300 Process<br />

StpA<br />

310 Set/View Ref<br />

StpA<br />

NEXT<br />

330 Run/Stop<br />

StpA<br />

331 Acc Time<br />

Stp 2.00s<br />

A<br />

331 Acc Time<br />

Stp 2.00s<br />

A<br />

Flashing<br />

331 Acc Time<br />

Stp 4.00s<br />

A


10. Serial communication<br />

The AC drive provides possibility for different types of serial<br />

communication.<br />

• Modbus RTU via RS232/485<br />

• Fieldbuses as Profibus DP and DeviceNet<br />

• Industrial Ethernet as Modbus/TCP, Profinet IO and<br />

EtherCAT<br />

10.1 Modbus RTU<br />

The AC drive has an asynchronous serial communication<br />

interface behind the control panel. It is also possible to use<br />

the isolated RS232/485 option board (if installed).<br />

The protocol used for data exchange is based on the Modbus<br />

RTU protocol, originally developed by Modicon. The<br />

physical connection is RS232. The AC drive acts as a slave<br />

with address 1 in a master-slave configuration. The<br />

communication is half-duplex. It has a standard non return<br />

zero (NRZ) format.<br />

The baud rate is fixed to 9600 (Control panel RS232 port).<br />

The character frame format (always 11 bits) has:<br />

• one start bit<br />

• eight data bits<br />

• two stop bits<br />

• no parity<br />

It is possible to temporarily connect a personal computer<br />

with for example the software EmoSoftCom (programming<br />

and monitoring software) to the RS232 connector on the<br />

control panel . This can be useful when copying parameters<br />

between AC drives etc. For permanent connection of a<br />

personal computer you have to use one of the<br />

communication option boards.<br />

NOTE: This RS232 port is not isolated.<br />

WARNING!<br />

Correct and safe use of a RS232 connection<br />

depends on the ground pins of both ports<br />

being the same potential. Problems can<br />

occur when connecting two ports of e.g. machinery and<br />

computers where both ground pins are not the same<br />

potential. This may cause hazardous ground loops that<br />

can destroy the RS232 ports.<br />

The control panel RS232 connection is not galvanically<br />

isolated.<br />

The RS232/485 option board from CG Drives &<br />

Automation is galvanically isolated.<br />

Note that the control panel RS232 connection can<br />

safely be used in combination with commercial available<br />

isolated USB to RS232 converters.<br />

Fig. 68 RS232 connector behind the control panel<br />

10.2 Parameter sets<br />

Communication information for the different parameter<br />

sets.<br />

The different parameter sets in the AC drive have the<br />

following DeviceNet instance numbers, Profibus slot/index<br />

numbers, Profinet IO index and EtherCAT index numbers:<br />

Parameter set A contains parameters 43001 to 43899. The<br />

parameter sets B, C and D contains the same type of<br />

information. For example parameter 43123 in parameter set<br />

A contain the same type of information as 44123 in<br />

parameter set B.<br />

CG Drives & Automation, 01-5325-01r1 Serial communication 63<br />

A<br />

B<br />

C<br />

D<br />

Param.<br />

set<br />

Modbus/<br />

DeviceNet<br />

Instance<br />

number<br />

43001–<br />

43899<br />

44001–<br />

44899<br />

45001–<br />

45899<br />

46001–<br />

46899<br />

Profibus<br />

Slot/Index<br />

168/160 to<br />

172/38<br />

172/140 to<br />

176/18<br />

176/120 to<br />

179/253<br />

180/100 to<br />

183/233<br />

Profinet IO<br />

index<br />

19385 -<br />

20283<br />

20385 -<br />

21283<br />

21385 -<br />

22283<br />

22385 -<br />

23283<br />

EtherCAT<br />

index<br />

(hex)<br />

4bb9 - 4f3b<br />

4fa1 - 5323<br />

5389 - 5706<br />

5771 - 5af3


10.3 Motor data<br />

Communication information for the different motors.<br />

Motor<br />

M1<br />

M2<br />

M3<br />

M4<br />

Modbus/<br />

DeviceNet<br />

Instance<br />

number<br />

43041–<br />

43048<br />

44041–<br />

44048<br />

45041–<br />

45048<br />

46041–<br />

46048<br />

Profibus<br />

Slot/<br />

Index<br />

168/200<br />

to<br />

168/207<br />

172/180<br />

to<br />

174/187<br />

176/160<br />

to<br />

176/167<br />

180/140<br />

to<br />

180/147<br />

Profinet IO<br />

index<br />

19425 -<br />

19432<br />

20425 -<br />

20432<br />

21425 -<br />

21432<br />

22425 -<br />

22432<br />

EtherCAT<br />

index<br />

(hex)<br />

4be1 - 4be8<br />

4fc9 - 4fd0<br />

53b1 - 53b8<br />

5799 - 57a0<br />

M1 contains parameters 43041 to 43048. The M2, M3, and<br />

M4 contains the same type of information. For example<br />

parameter 43043 in motor M1 contain the same type of<br />

information as 44043 in M2.<br />

10.4 Start and stop commands<br />

Set start and stop commands via serial communication.<br />

Modbus/DeviceNet<br />

Instance number<br />

42901 Reset<br />

42902<br />

42903 RunR<br />

42904 RunL<br />

Function<br />

Run, active together with either<br />

RunR or RunL to<br />

perform start.<br />

Note! Bipolar reference mode is activated if both RunR<br />

and RunL is active.<br />

10.5 Reference signal<br />

When menu “Reference Control [214 ]” is set to “Com” the<br />

following parameter data should be used:<br />

Default 0<br />

Range -16384 to 16384<br />

Corresponding to -100% to 100% ref<br />

Communication information<br />

Modbus /DeviceNet Instance number 42905<br />

Profibus slot /Index 168/64<br />

EtherCAT index (hex) 4b59<br />

Profinet IO index 19289<br />

Fieldbus format Int<br />

Modbus format Int<br />

10.5.1 Process value<br />

It is also possible to send the Process value feedback<br />

signal over a bus (e.g. from a process or temperature sensor)<br />

for use with PID Process controller [380].<br />

Set menu “Process Source [321 ]” to F(Bus). Use following<br />

parameter data for the process value:<br />

Default 0<br />

Range -16384 to 16384<br />

Corresponding to -100% to 100% process value<br />

Communication information<br />

Modbus /DeviceNet Instance number 42906<br />

Profibus slot /Index 168/65<br />

EtherCAT index (hex) 4b5a<br />

Profinet IO index 19290<br />

Fieldbus format Int<br />

Modbus format Int<br />

Example:<br />

(See <strong>Emotron</strong> Fielbus <strong>manual</strong> for detailed information)<br />

We would like to control the AC drive over a bus system<br />

using the first two bytes of the Basic Control Message by<br />

setting menu “[2661 ] FB Signal 1” to 49972. Further, we<br />

also want to transmit a 16 bit signed reference and a 16 bit<br />

process value. This is done by setting menu<br />

“[2662 ] FB Signal 2” to 42905 and menu “[2663 ] FB<br />

Signal 3” to 42906.<br />

NOTE! It is possible to view the transmitted process<br />

value in control panel menu Operation [710 ]. The<br />

presented value is depending on settings in menus<br />

“Process Min [324 ]” and “Process Max [325 ]”.<br />

64 Serial communication CG Drives & Automation, 01-5325-01r1


10.6 Description of the EInt<br />

formats<br />

A parameter with Eint format can be represented in two<br />

different formats (F). Either as a 15 bit unsigned integer<br />

format (F= 0) or a <strong>Emotron</strong> floating point format (F=1).<br />

The most significant bit (B15) indicates the format used.<br />

See detailed description below.<br />

All parameters written to a register may be rounded to the<br />

number of significant digits used in the internal system.<br />

The matrix below describes the contents of the 16-bit word<br />

for the two different EInt formats:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

F=1 e3 e2 e1 e0 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0<br />

F=0 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

If the format bit (B15) is 0, then all bits may be treated as a<br />

standard unsigned integer (UInt)<br />

If the format bit is 1, then is the number interpreted as this:<br />

Value = M * 10^E, where M=m10..m0 represents a<br />

two- complement signed mantissa and E= e3..e0 represents a<br />

two- complement signed exponent.<br />

NOTE: Parameters with EInt format may return values<br />

both as 15 bit unsigned int (F=0) or in <strong>Emotron</strong> floating<br />

point (F=1).<br />

Example, resolution<br />

If you write the value 1004 to a register and this register has<br />

3 significant digits, it will be stored as 1000.<br />

In the <strong>Emotron</strong> floating point format (F=1), one 16-bit<br />

word is used to represent large (or very small numbers) with<br />

3 significant digits.<br />

If data is read or written as a fixed point (i.e. no decimals)<br />

number between 0-32767, the 15 bit Unsigned integer<br />

format (F=0) may be used.<br />

Detailed description of <strong>Emotron</strong> floating point<br />

format<br />

e3-e0 4-bit signed exponent. Gives a value<br />

range:<br />

-8..+7 (binary 1000 .. 0111)<br />

m10-m0 11-bit signed mantissa.Gives a value<br />

range:<br />

-1024..+1023 (binary<br />

10000000000..01111111111)<br />

A signed number should be represented as a two<br />

complement binary number, like below:<br />

Value Binary<br />

-8 1000<br />

-7 1001<br />

..<br />

-2 1110<br />

-1 1111<br />

0 0000<br />

1 0001<br />

2 0010<br />

..<br />

6 0110<br />

7 0111<br />

The value represented by the <strong>Emotron</strong> floating point format<br />

is m·10e.<br />

To convert a value from the <strong>Emotron</strong> floating point format<br />

to a floating point value, use the formula above.<br />

To convert a floating point value to the <strong>Emotron</strong> floating<br />

point format, see the C-code example below.<br />

Example, floating point format<br />

The number 1.23 would be represented by this in <strong>Emotron</strong><br />

floating point format,<br />

F EEEE MMMMMMMMMMM<br />

1 1110 00001111011<br />

F=1 -> floating point format used<br />

E=-2<br />

M=123<br />

The value is then 123x10 -2 = 1.23<br />

Example 15bit unsigned int format<br />

The value 72.0 can be represented as the fixed point number<br />

72. It is within the range 0-32767, which means that the<br />

15-bit fixed point format may be used.<br />

The value will then be represented as:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0<br />

Where bit 15 indicates that we are using the fixed point<br />

format (F=0).<br />

CG Drives & Automation, 01-5325-01r1 Serial communication 65


Programming example:<br />

typedef struct<br />

{<br />

int m:11; // mantissa, -1024..1023<br />

int e: 4; // exponent -8..7<br />

unsigned int f: 1; // format, 1->special emoint format<br />

} eint16;<br />

//---------------------------------------------------------------------------<br />

unsigned short int float_to_eint16(float value)<br />

{<br />

eint16 etmp;<br />

int dec=0;<br />

while (floor(value) != value && dec=0 && value=-1000 && value=0)<br />

etmp.m=1; // Set sign<br />

else<br />

etmp.m=-1; // Set sign<br />

value=fabs(value);<br />

while (value>1000)<br />

{<br />

etmp.e++; // increase exponent<br />

value=value/10;<br />

}<br />

value+=0.5; // round<br />

etmp.m=etmp.m*value; // make signed<br />

}<br />

Rreturn (*(unsigned short int *)&etmp);<br />

}<br />

//---------------------------------------------------------------------------<br />

float eint16_to_float(unsigned short int value)<br />

{<br />

float f;<br />

eint16 evalue;<br />

evalue=*(eint16 *)&value;<br />

if (evalue.f)<br />

{<br />

if (evalue.e>=0)<br />

f=(int)evalue.m*pow10(evalue.e);<br />

else<br />

f=(int)evalue.m/pow10(abs(evalue.e));<br />

}<br />

else<br />

f=value;<br />

return f;<br />

}<br />

//---------------------------------------------------------------------------<br />

66 Serial communication CG Drives & Automation, 01-5325-01r1


11. Functional Description<br />

This chapter describes the menus and parameters in the<br />

software. You will find a short description of each function<br />

and information about default values, ranges, etc. There are<br />

also tables containing communication information. You will<br />

find the parameter number for all available fieldbus options<br />

as well as the enumeration for the data.<br />

On our home page in the download area, you could find a<br />

"Communication information" list and a list to note<br />

“Parameter set” information.<br />

NOTE: Functions marked with the sign cannot be<br />

changed during Run Mode.<br />

Description of table layout<br />

Default:<br />

Selection or<br />

range<br />

Resolution of settings<br />

The resolution for all range settings described in this chapter<br />

is 3 significant digits. Exceptions are speed values which are<br />

presented with 4 significant digits. Table 21 shows the<br />

resolutions for 3 significant digits.<br />

Table 21<br />

Integer value of<br />

selection<br />

Description<br />

3 Digit Resolution<br />

0.01-9.99 0.01<br />

10.0-99.9 0.1<br />

100-999 1<br />

1000-9990 10<br />

10000-99900 100<br />

�<br />

Menu no. Menu name<br />

Status Selected value<br />

11.1 Preferred View [100]<br />

This menu is displayed at every power-up. During<br />

operation, the menu [100] will automatically be displayed<br />

when the keyboard is not operated for 5 minutes. The<br />

automatic return function will be switched off when the<br />

Toggle and Stop key is pressed simultaneously. As default it<br />

displays the reference and current values.<br />

100 0rpm<br />

Stp 0.0A<br />

A<br />

Menu “[100] Preferred View” displays the settings made in<br />

menu “[110], 1st line”, and “[120], 2nd line”. See Fig. 69.<br />

100 (1st Line)<br />

Stp (2nd Line)<br />

A<br />

Fig. 69 Display functions<br />

11.1.1 1st Line [110]<br />

Sets the content of the upper row in the menu<br />

“[100] Preferred View.”<br />

Default: Process Val<br />

Dependent on menu<br />

Process Val 0 Process value<br />

Speed 1 Speed<br />

Torque 2 Torque<br />

Process Ref 3 Process reference<br />

Shaft Power 4 Shaft power<br />

El Power 5 Electrical power<br />

Current 6 Current<br />

Output volt 7 Output voltage<br />

Frequency 8 Frequency<br />

DC Voltage 9 DC voltage<br />

Heatsink Tmp 10 Heatsink temperature<br />

Motor Temp * 11 Motor temperature<br />

AC drive Status 12 AC drive status<br />

Run Time 13 Run Time<br />

Energy 14 Energy<br />

Mains Time 15 Mains time<br />

110 1st Line<br />

Stp Process Val<br />

A<br />

* The “Motor temp” is only visible if you have the option<br />

PTC/PT100 card installed and a PT100 input is<br />

selected in menu[ 236].<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 67


Communication information<br />

Modbus Instance no/DeviceNet no: 43001<br />

Profibus slot/index 168/160<br />

EtherCAT index (hex) 4bb9<br />

Profinet IO index 19385<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.1.2 2nd Line [120]<br />

Sets the content of the lower row in the menu<br />

“[100] Preferred View”. Same selection as in menu [110].<br />

Default: Current<br />

Communication information<br />

120 2nd Line<br />

Stp Current<br />

A<br />

Modbus Instance no/DeviceNet no: 43002<br />

Profibus slot/index 168/161<br />

EtherCAT index (hex) 4bba<br />

Profinet IO index 19386<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.2 Main Setup [200]<br />

The Main Setup menu contains the most important settings<br />

to get the AC drive operational and set up for the<br />

application. It includes different sub menus concerning the<br />

control of the unit, motor data and protection, utilities and<br />

automatic resetting of faults. This menu will instantaneously<br />

be adapted to build in options and show the required<br />

settings.<br />

11.2.1 Operation [210]<br />

Selections concerning the used motor, AC drive mode,<br />

control signals and serial communication are described in<br />

this submenu and is used to set the AC drive up for the<br />

application.<br />

Language [211]<br />

Select the language used on the LC Display. Once the<br />

language is set, this selection will not be affected by the Load<br />

Default command.<br />

Default: English<br />

English 0 English selected<br />

Svenska 1 Swedish selected<br />

Nederlands 2 Dutch selected<br />

Deutsch 3 German selected<br />

Français 4 French selected<br />

Español 5 Spanish selected<br />

Руccкий 6 Russian selected<br />

Italiano 7 Italian selected<br />

Cesky 8 Czech selected<br />

Turkish 9 Turkish selected<br />

211 Language<br />

Stp English<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43011<br />

Profibus slot/index 168/170<br />

EtherCAT index (hex) 4bc3<br />

Profinet IO index 19395<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

68 Functional Description CG Drives & Automation, 01-5325-01r1


Select Motor [212]<br />

This menu is used if you have more than one motor in your<br />

application. Select the motor to define. It is possible to<br />

define up to four different motors, M1 to M4, in the AC<br />

drive. For parameter set handling including Motor sets<br />

M1 - M4 see Chapter 11.2.6 page 83<br />

Default: M1<br />

M1 0<br />

M2 1<br />

M3 2<br />

M4 3<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43012<br />

Profibus slot/index 168/171<br />

EtherCAT index (hex) 4bc4<br />

Profinet IO index 19396<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Drive Mode [213]<br />

This menu is used to set the control mode for the motor.<br />

Settings for the reference signals and read-outs is made in<br />

menu “Process source, [321]”.<br />

• V/Hz Mode (output speed [712] in rpm) .<br />

Default: V/Hz<br />

V/Hz 2<br />

Communication information<br />

212 Select Motor<br />

Stp M1<br />

A<br />

Motor Data is connected to selected<br />

motor.<br />

213 Drive Mode<br />

Stp V/Hz<br />

A<br />

All control loops are related to frequency<br />

control. In this mode multi-motor<br />

applications are possible.<br />

NOTE: All the functions and menu<br />

read-outs with regard to speed and rpm<br />

(e.g. Max Speed = 1500 rpm, Min<br />

Speed=0 rpm, etc.) remain speed and<br />

rpm, although they represent the output<br />

frequency.<br />

Modbus Instance no/DeviceNet no: 43013<br />

Profibus slot/index 168/172<br />

EtherCAT index (hex) 4bc5<br />

Profinet IO index 19397<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Reference control [214]<br />

To control the speed of the motor, the AC drive needs a<br />

reference signal. This reference signal can be controlled by a<br />

remote source from the installation, the keyboard of the AC<br />

drive, or by serial or fieldbus communication. Select the<br />

required reference control for the application in this menu.<br />

Default: Remote<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Option 3<br />

Communication information<br />

214 Ref Control<br />

Stp Remote<br />

A<br />

The reference signal comes from the<br />

analogue inputs of the terminal strip<br />

(terminals 1-22).<br />

Reference is set with the + and - keys on<br />

the Control Panel. Can only be done in<br />

menu “Set/View reference [310]”.<br />

The reference is set via the serial<br />

communication (RS 485, Fieldbus.)<br />

See section 10.5, page 64 for further<br />

information.<br />

The reference is set via an option. Only<br />

available if the option can control the<br />

reference value.<br />

NOTE: If the reference is switched from Remote to<br />

Keyboard, the last remote reference value will be the<br />

default value for the control panel.<br />

Modbus Instance no/DeviceNet no: 43014<br />

Profibus slot/index 168/173<br />

EtherCAT index (hex) 4bc6<br />

Profinet IO index 19398<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 69


Run/Stop Control [215]<br />

This function is used to select the source for run and stop<br />

commands. This is described on page 111.<br />

Start/stop via analogue signals can be achieved by using<br />

function “Stp


Local/Remote key function [217]<br />

The Toggle key on the keyboard, see section 9.2.5, page 59,<br />

has two functions and is activated in this menu. As default<br />

the key is just set to operate as a Toggle key that moves you<br />

easily through the menus in the toggle loop. The second<br />

function of the key allows you to easily swap between Local<br />

and normal operation (set up via [214] and [215]) of the AC<br />

drive. Local mode can also be activated via a digital input. If<br />

both [2171] and [2172] is set to Standard, the function is<br />

disabled.<br />

Default: Standard<br />

Standard 0 Local reference control set via [214]<br />

Remote 1 Local reference control via remote<br />

Keyboard 2 Local reference control via keyboard<br />

Com 3 Local reference control via communication<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43009<br />

Profibus slot/index 168/168<br />

EtherCAT index (hex) 4bc1<br />

Profinet IO index 19393<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: Standard<br />

2171 LocRefCtrl<br />

Stp Standard<br />

A<br />

2172 LocRunCtrl<br />

Stp Standard<br />

A<br />

Standard 0 Local Run/Stop control set via [215]<br />

Remote 1 Local Run/Stop control via remote<br />

Keyboard 2 Local Run/Stop control via keyboard<br />

Com 3 Local Run/Stop control via communication<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43010<br />

Profibus slot/index 168/169<br />

EtherCAT index (hex) 4bc2<br />

Profinet IO index 19394<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Lock Code? [218]<br />

To prevent the keyboard being used or to change the setup<br />

of the AC drive and/or process control, the keyboard can be<br />

locked with a password. This menu, “Lock Code [218]”, is<br />

used to lock and unlock the keyboard. Enter the password<br />

“291” to lock/unlock the keyboard operation. If the<br />

keyboard is not locked (default) the selection “Lock Code?”<br />

will appear. If the keyboard is already locked, the selection<br />

“Unlock Code?” will appear.<br />

When the keyboard is locked, parameters can be viewed but<br />

not changed. The reference value can be changed and the<br />

AC drive can be started, stopped and reversed if these<br />

functions are set to be controlled from the keyboard.<br />

Default: 0<br />

Range: 0–9999<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43018<br />

Profibus slot/index 168/177<br />

EtherCAT index (hex) 4bca<br />

Profinet IO index 19402<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Rotation [219]<br />

218 Lock Code?<br />

Stp 0<br />

A<br />

Overall limitation of motor rotation direction<br />

This function limits the overall rotation, either to left or<br />

right or both directions. This limit is prior to all other<br />

selections, e.g.: if the rotation is limited to right, a Run-Left<br />

command will be ignored. To define left and right rotation<br />

we assume that the motor is connected U-U, V-V and W-W.<br />

Speed Direction and Rotation<br />

The speed direction can be controlled by:<br />

• RunR/RunL commands on the control panel.<br />

• RunR/RunL commands on the terminal strip<br />

(terminals 1-22).<br />

• Via the serial interface options.<br />

• The parameter sets.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 71


Fig. 70 Rotation<br />

In this menu you set the general rotation for the motor.<br />

Default: R + L<br />

R 1<br />

L 2<br />

Speed direction is limited to right<br />

rotation. The input and key RunL are<br />

disabled.<br />

Speed direction is limited to left rotation.<br />

The input and key RunR are disabled.<br />

R+L 3 Both speed directions allowed.<br />

Right<br />

Left<br />

219 Rotation<br />

Stp R+L<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43019<br />

Profibus slot/index 168/178<br />

EtherCAT index (hex) 4bcb<br />

Profinet IO index 19403<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.2.2 Remote Signal Level/Edge<br />

[21A]<br />

In this menu you select the way to control the inputs for<br />

RunR, RunL and Reset that are operated via the digital<br />

inputs on the terminal strip. The inputs are default set for<br />

level-control, and will be active as long as the input is made<br />

and kept high. When edge-control is selected, the input will<br />

be activated by the low to high transition of the input. See<br />

Chapter 7.2 page 42 for more information.<br />

Default: Level<br />

Level 0<br />

Edge 1<br />

Communication information<br />

21A Level/Edge<br />

Stp Level<br />

A<br />

The inputs are activated or deactivated<br />

by a continuous high or low signal. Is<br />

commonly used if, for example, a PLC is<br />

used to operate the AC drive.<br />

The inputs are activated by a transition;<br />

for Run and Reset from “low” to “high”<br />

and for Stop from "high" to "low".<br />

Modbus Instance no/DeviceNet no: 43020<br />

Profibus slot/index 168/179<br />

EtherCAT index (hex) 4bcc<br />

Profinet IO index 19404<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CAUTION!<br />

Level controlled inputs DO NOT comply with the<br />

Machine Directive if the inputs are directly<br />

used to start and stop the machine.<br />

NOTE: Edge controlled inputs can comply with the<br />

Machine Directive (see the Chapter 8. page 55) if the<br />

inputs are directly used to start and stop the machine.<br />

11.2.3 Mains supply voltage [21B]<br />

WARNING!<br />

This menu must be set according to the AC<br />

drive product lable and the supply voltage<br />

used. Wrong setting might damage the AC<br />

drive or brake resistor.<br />

In this menu the nominal mains supply voltage connected to<br />

the AC drive can be selected. The setting will be valid for all<br />

parameter sets. The default setting, Not defined, is never<br />

selectable and is only visible until a new value is selected.<br />

Once the supply voltage is set, this selection will not be<br />

affected by the Load Default command [243].<br />

72 Functional Description CG Drives & Automation, 01-5325-01r1<br />

!


Brake chopper activation level is adjusted using the setting<br />

of [21B].<br />

NOTE: The setting is affected by the “Load from CP”<br />

command [245] and if loading parameter file via<br />

EmoSoftCom.<br />

Default: Not defined<br />

Not Defined 0<br />

21B Supply Volts<br />

Stp Not defined<br />

A<br />

Inverter default value used. Only valid if<br />

this parameter is never set.<br />

220-240 V 1 Only valid for FDU48/52<br />

380-415 V 3 Only valid for FDU48/52/69<br />

440-480 V 4 Only valid for FDU48/52/69<br />

500-525 V 5 Only valid for FDU52/69<br />

550-600 V 6 Only valid for FDU69<br />

660-690 V 7 Only valid for FDU69<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43381<br />

Profibus slot/index 170/30<br />

EtherCAT index (hex) 4d35<br />

Profinet IO index 19765<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.2.4 Motor Data [220]<br />

In this menu you enter the motor data to adapt the AC drive<br />

to the connected motor. This will increase the control<br />

accuracy as well as different read-outs and analogue output<br />

signals.<br />

Motor M1 is selected as default and motor data entered will<br />

be valid for motor M1. If you have more than one motor<br />

you need to select the correct motor in menu [212] before<br />

entering motor data.<br />

NOTE 1: The parameters for motor data cannot be<br />

changed during run mode.<br />

NOTE 2: The default settings are for a standard 4-pole<br />

motor according to the nominal power of the AC drive.<br />

NOTE 3: Parameter set cannot be changed during run if<br />

the sets is set for different motors.<br />

NOTE 4: Motor Data in the different sets M1 to M4 can<br />

be revert to default setting in menu “[243] Default>Set”.<br />

WARNING!<br />

Enter the correct motor data to prevent<br />

dangerous situations and assure correct<br />

control.<br />

Motor Voltage [221]<br />

Set the nominal motor voltage.<br />

Default:<br />

400 V for FDU48<br />

500 V for FDU52<br />

690 V for FDU69<br />

Range: 100-700 V<br />

Resolution 1 V<br />

NOTE: The Motor Volts value will always be stored as a 3<br />

digit value with a resolution of 1 V.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43041<br />

Profibus slot/index 168/200<br />

EtherCAT index (hex) 4be1<br />

Profinet IO index 19425<br />

Fieldbus format Long, 1=0.1 V<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 73<br />

�<br />

221 Motor Volts<br />

Stp M1: 400V<br />

A


Motor Frequency [222]<br />

Set the nominal motor frequency.<br />

�<br />

Default: 50 Hz<br />

Range: 24-300 Hz<br />

Resolution 1 Hz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43042<br />

Profibus slot/index 168/201<br />

EtherCAT index (hex) 4be2<br />

Profinet IO index 19426<br />

Fieldbus format Long, 1=1 Hz<br />

Modbus format EInt<br />

Motor Power [223]<br />

Set the nominal motor power. If parallel motors, set the<br />

value as sum of motors power.<br />

�<br />

Default: P NOM AC drive<br />

Range: 1W-150% x PNOM Resolution 3 significant digits<br />

NOTE: The Motor Power value will always be stored as a<br />

3 digit value in W up to 999 W and in kW for all higher<br />

powers.<br />

Communication information<br />

222 Motor Freq<br />

Stp M1: 50Hz<br />

A<br />

223 Motor Power<br />

Stp M1: (P NOM)kW<br />

A<br />

Modbus Instance no/DeviceNet no: 43043<br />

Profibus slot/index 168/202<br />

EtherCAT index (hex) 4be3<br />

Profinet IO index 19427<br />

Fieldbus format Long, 1=1 W<br />

Modbus format EInt<br />

P NOM is the nominal AC drive power.<br />

Motor Current [224]<br />

Set the nominal motor current. If parallel motors, set the<br />

value as sum of motors current.<br />

Default: I MOT (see Note 2 page 73)<br />

Range: 25 - 150 % x I NOM<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43044<br />

Profibus slot/index 168/203<br />

EtherCAT index (hex) 4be4<br />

Profinet IO index 19428<br />

Fieldbus format Long, 1=0.1 A<br />

Modbus format EInt<br />

NOTE: The default settings are for a standard 4-pole<br />

motor according to the nominal power of the AC drive.<br />

Motor Speed [225]<br />

Set the nominal asynchronous motor speed.<br />

Default: nMOT (see Note 2 page 73)<br />

Range: 50 - 18000 rpm<br />

Resolution 1 rpm, 4 sign digits<br />

WARNING!<br />

Do NOT enter a synchronous (no-load) motor<br />

speed.<br />

NOTE: Maximum speed [343] is not automatically<br />

changed when the motor speed is changed.<br />

NOTE: Entering a wrong, too low value can cause a<br />

dangerous situation for the driven application due to<br />

high speeds.<br />

74 Functional Description CG Drives & Automation, 01-5325-01r1<br />

�<br />

�<br />

224 Motor Curr<br />

Stp M1: (IMOT)A<br />

A<br />

225 Motor Speed<br />

Stp M1: (n MOT )rpm<br />

A


Communication information<br />

Modbus Instance no/DeviceNet no: 43045<br />

Profibus slot/index 168/204<br />

EtherCAT index (hex) 4be5<br />

Profinet IO index 19429<br />

Fieldbus format UInt. 1=1 rpm<br />

Modbus format UInt<br />

Motor Poles [226]<br />

When the nominal speed of the motor is �500 rpm, the<br />

additional menu for entering the number of poles, [226],<br />

appears automatically. In this menu the actual pole number<br />

can be set which will increase the control accuracy of the AC<br />

drive.<br />

�<br />

Default: 4<br />

Range: 2-144<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43046<br />

Profibus slot/index 168/205<br />

EtherCAT index (hex) 4be6<br />

Profinet IO index 19430<br />

Fieldbus format Long, 1=1 pole<br />

Modbus format EInt<br />

Motor Cos � [227]<br />

Set the nominal Motor cosphi (power factor).<br />

�<br />

Default: Cosφ NOM (see Note 2 page 73)<br />

Range: 0.50 - 1.00<br />

226 Motor Poles<br />

Stp M1: 4<br />

A<br />

227 Motor Cos�<br />

Stp M1:CosφNOM<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43047<br />

Profibus slot/index 168/206<br />

EtherCAT index (hex) 4be7<br />

Profinet IO index 19431<br />

Fieldbus format Long, 1=0.01<br />

Modbus format EInt<br />

Motor ventilation [228]<br />

Parameter for setting the type of motor ventilation. Affects<br />

the characteristics of the I 2 t motor protection by lowering<br />

the actual overload current at lower speeds.<br />

Default: Self<br />

None 0 Limited I 2 t overload curve.<br />

Self 1 Normal I2 t overload curve. Means that the<br />

motor stands lower current at low speed.<br />

Forced 2<br />

Communication information<br />

When the motor has no cooling fan, None is selected and<br />

the current level is limited to 55% of rated motor current.<br />

With a motor with a shaft mounted fan, Self is selected and<br />

the current for overload is limited to 87% from 20% of<br />

synchronous speed. At lower speed, the overload current<br />

allowed will be smaller.<br />

When the motor has an external cooling fan, Forced is<br />

selected and the overload current allowed starts at 90% from<br />

rated motor current at zero speed, up to nominal motor<br />

current at 70% of synchronous speed.<br />

Fig. 71 shows the characteristics with respect for Nominal<br />

Current and Speed in relation to the motor ventilation type<br />

selected.<br />

Fig. 71 I 2 t curves<br />

Expanded I 2 t overload curve. Means that the<br />

motor stands almost the whole current also<br />

at lower speed.<br />

Modbus Instance no/DeviceNet no: 43048<br />

Profibus slot/index 168/207<br />

EtherCAT index (hex) 4be8<br />

Profinet IO index 19432<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

xI nom for I 2 t<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 75<br />

1.00<br />

0.90<br />

0.87<br />

0.55<br />

Forced<br />

�<br />

Self<br />

None<br />

228 Motor Vent<br />

Stp M1: Self<br />

A<br />

0.20 0.70 2.00<br />

xSync Speed


Motor Identification Run [229]<br />

This function is used when the AC drive is put into<br />

operation for the first time. To achieve an optimal control<br />

performance, fine tuning of the motor parameters using a<br />

motor ID run is needed. During the test run the display<br />

shows “Test Run” flashing.<br />

To activate the Motor ID run, select “Short” and press<br />

Enter. Then press RunL or RunR on the control panel to<br />

start the ID run. If menu<br />

“[219] Rotation” is set to L the RunR key is inactive and<br />

vice versa. The ID run can be aborted by giving a Stop<br />

command via the control panel or Enable input. The<br />

parameter will automatically return to OFF when the test is<br />

completed. The message “Test Run OK!” is displayed.<br />

Before the AC drive can be operated normally again, press<br />

the STOP/RESET key on the control panel.<br />

During the Short ID run the motor shaft does not rotate.<br />

The AC drive measures the rotor and stator resistance.<br />

�<br />

Default: Off, see Note<br />

Off 0 Not active<br />

Short 1<br />

Communication information<br />

229 Motor ID-Run<br />

Stp M1: Off<br />

A<br />

Parameters are measured with injected DC<br />

current. No rotation of the shaft will occur.<br />

Modbus Instance no/DeviceNet no: 43049<br />

Profibus slot/index 168/208<br />

EtherCAT index (hex) 4be9<br />

Profinet IO index 19433<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: To run the AC drive it is not mandatory for the ID<br />

RUN to be executed, but without it the performance will<br />

not be optimal.<br />

NOTE: If the ID Run is aborted or not completed the<br />

message “Interrupted!” will be displayed. The previous<br />

data do not need to be changed in this case. Check that<br />

the motor data are correct.<br />

Motor Sound [22A]<br />

Sets the sound characteristic of the AC drive output stage by<br />

changing the switching frequency and/or pattern. Generally<br />

the motor noise will go down at higher switching<br />

frequencies.<br />

Default: F<br />

E 0 Switching frequency 1.5 kHz<br />

F 1 Switching frequency 3 kHz<br />

G 2 Switching frequency 6 kHz<br />

H 3<br />

Advanced 4<br />

Communication information<br />

Encoder Feedback [22B]<br />

Only visible if the Encoder option board is installed. This<br />

parameter enables or disables the encoder feedback from the<br />

motor to the AC drive.<br />

Communication information<br />

Switching frequency 6 kHz, random<br />

frequency (+750 Hz)<br />

Switching frequency and PWM mode<br />

setup via [22E]<br />

Modbus Instance no/DeviceNet no: 43050<br />

Profibus slot/index 168/209<br />

EtherCAT index (hex) 4bea<br />

Profinet IO index 19434<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: At switching frequencies >3 kHz derating may<br />

become necessary.<br />

NOTE: If the heat sink temperature gets too high the<br />

switching frequency is decreased to avoid tripping. This<br />

is done automatically in the AC drive. The default<br />

switching frequency is 3 kHz.<br />

Default: Off<br />

Off 0 Encoder feedback disabled<br />

On 1 Encoder feedback enabled<br />

Modbus Instance no/DeviceNet no: 43051<br />

Profibus slot/index 168/210<br />

EtherCAT index (hex) 4beb<br />

Profinet IO index 19435<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

76 Functional Description CG Drives & Automation, 01-5325-01r1<br />

�<br />

�<br />

22A Motor Sound<br />

Stp M1: F<br />

A<br />

22B Encoder<br />

Stp M1: Off<br />

A


Encoder Pulses [22C]<br />

Only visible if the Encoder option board is installed. This<br />

parameter describes the number of pulses per rotation for<br />

your encoder, i.e. it is encoder specific. For more<br />

information please see the encoder <strong>manual</strong>.<br />

�<br />

Default: 1024<br />

Range: 5–16384<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43052<br />

Profibus slot/index 168/211<br />

EtherCAT index (hex) 4bec<br />

Profinet IO index 19436<br />

Fieldbus format Long, 1=1 pulse<br />

Modbus format EInt<br />

Encoder Speed [22D]<br />

Only visible if the Encoder option board is installed. This<br />

parameter shows the measured motor speed. To check if the<br />

encoder is correctly installed, set Encoder Feedback [22B] to<br />

Off, run the AC drive at any speed and compare with the<br />

value in this menu. The value in this menu [22D] should be<br />

about the same as the motor speed [230]. If you get the<br />

wrong sign for the value, swap encoder input A and B.<br />

Unit: rpm<br />

22C Enc Pulses<br />

Stp M1: 1024<br />

A<br />

22D Enc Speed<br />

Stp M1: XXrpm<br />

A<br />

Resolution: speed measured via the encoder<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42911<br />

Profibus slot/index 168/70<br />

EtherCAT index (hex) 4b5f<br />

Profinet IO index 19295<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int<br />

Motor PWM [22E]<br />

Menus for advanced setup of motor modulation properties<br />

PWM = Pulse Width Modulation).<br />

Note: Menus [22E1] - [22E3] are only visible if [22A] is<br />

set to “Advanced”.<br />

PWM Fswitch [22E1]<br />

Set the PWM switching frequency of the AC drive<br />

Default: 3.00 kHz<br />

Range 1.50 - 6.00kHz<br />

Resolution 0.01kHz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43053<br />

Profibus slot/index 168/212<br />

EtherCAT index (hex) 4bed<br />

Profinet IO index 19437<br />

Fieldbus format Long, 1=1Hz<br />

Modbus format EInt<br />

PWM Mode [22E2]<br />

Default: Standard<br />

Standard 0 Standard<br />

Sine Filt 1<br />

Communication information<br />

PWM Random [22E3]<br />

Sine Filter mode for use with output Sine<br />

Filters<br />

NOTE: Switching frequency is fixed when “Sine Filt” is<br />

selected. This means that it is not possible to control the<br />

switching frequency based on temperature.<br />

Modbus Instance no/DeviceNet no: 43054<br />

Profibus slot/index 168/213<br />

EtherCAT index (hex) 4bee<br />

Profinet IO index 19438<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: Off<br />

22E1 PWM Fswitch<br />

Stp 3.00kHz<br />

A<br />

22E2 PWM Mode<br />

Stp Standard<br />

A<br />

22E3 PWM Random<br />

Stp Off<br />

A<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 77


Off 0 Random modulation is Off.<br />

On 1<br />

Communication information<br />

Random modulation is active. Random<br />

frequency variation range is ± 1/8 of level<br />

set in [E22E1].<br />

Modbus Instance no/DeviceNet no: 43055<br />

Profibus slot/index 168/214<br />

EtherCAT index (hex) 4bef<br />

Profinet IO index 19439<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Encoder Pulse counter [22F]<br />

Only visible if the Encoder option is installed. Added menu/<br />

parameter for accumulated QEP (Quadrature Encoder<br />

Pulse) encoder pulses. Can be preset to any value within bus<br />

format used (Int = 2 byte, Long = 4 byte).<br />

Default: 0<br />

Resolution 1<br />

22F Enc Puls Ctr<br />

Stp 0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42912<br />

Profibus slot/index 168/71<br />

EtherCAT index (hex) 4b60<br />

Profinet IO index 19296<br />

Fieldbus format<br />

Long, 1=1 quad<br />

encoder pulse<br />

Modbus format Int<br />

Note: For a 1024 pulse encoder [22F] will count<br />

1024 * 4= 4096 pulses per turn.<br />

Encoder fault and speed monitoring<br />

[22G]<br />

Parameters for encoder fault monitoring and speed<br />

supervision by use of the encoder feedback for detecting<br />

speed deviation compared to internal speed reference signal.<br />

Similar speed deviation functionality is also available in the<br />

Crane option, with parameters for speed bandwidth and<br />

delay time.<br />

Encoder fault trip conditions:<br />

1. No encoder board detected after power up and AC drive<br />

is setup to use encoder.<br />

2. Lost communication to encoder board for more than 2<br />

seconds.<br />

3. If no pulses detected for set delay time [22G1] and drive<br />

in Torque Limit (TL) or Current Limit (CL).<br />

Encoder speed deviation trip condition:<br />

Encoder speed outside set speed deviation band [22G2] for<br />

set delay time [22G1].<br />

Note: Encoder speed deviation trip re-uses “Deviation 2”<br />

trip message with ID = 2.<br />

Encoder fault delay time [22G1]<br />

Define the encoder fault and speed deviation delay time.<br />

Default: Off<br />

Range Off, 0.01 - 10.00 s where Off = 0<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43056<br />

Profibus slot/index 168/215<br />

EtherCAT index (hex) 4bf0<br />

Profinet IO index 19440<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Encoder fault speed deviation band [22G2]<br />

Defines the max allowed speed deviation band = difference<br />

between measured encoder speed and speed ramp output.<br />

Default: 10%<br />

Range 0 - 400 %<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43057<br />

Profibus slot/index 168/216<br />

EtherCAT index (hex) 4bf1<br />

Profinet IO index 19441<br />

Fieldbus format Long, 1=1 %<br />

Modbus format EInt<br />

Encoder max fault counter [22G3]<br />

This parameter shows the maximum time that speed<br />

deviation exceeds the allowed deviation band set in [22G2].<br />

The parameter is intended to be used during commissioning<br />

for setting up [22G1] and [22G2] to avoid nuisance trips<br />

and can be cleared by setting to 0.<br />

Default: 0.000s<br />

Range 0.00 - 10.00 s<br />

22G1 Enc F Delay<br />

Stp M1:Off<br />

A<br />

22G2 Enc F Band<br />

Stp M1:10%<br />

A<br />

22G3 Max EncFCtr<br />

Stp 0.000s<br />

78 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information 11.2.5 Motor Protection [230]<br />

Modbus Instance no/DeviceNet no: 42913<br />

Profibus slot/index 168/78<br />

EtherCAT index (hex) 4b61<br />

Profinet IO index 19297<br />

Fieldbus format Long, 1=0.001s<br />

Modbus format EInt<br />

NOTE: The value is volatile and lost at power down. It is<br />

possible to reset the value by clearing the parameter.<br />

This function protects the motor against overload based on<br />

the standard IEC 60947-4-2.<br />

Motor I 2 t Type [231]<br />

The motor protection function makes it possible to protect<br />

the motor from overload as published in the standard IEC<br />

60947-4-2. It does this using Motor I2t Current, [232] as a<br />

reference. The Motor I2t Time [233] is used to define the<br />

time behaviour of the function. The current set in [232] can<br />

be delivered infinite in time. If for instance in [233] a time<br />

of 1000 s is chosen the upper curve of Fig. 72 is valid. The<br />

value on the x-axis is the multiple of the current chosen in<br />

[232]. The time [233] is the time that an overloaded motor<br />

is switched off or is reduced in power at 1.2 times the<br />

current set in [232].<br />

Default: Trip<br />

Off 0 I2t motor protection is not active.<br />

Trip 1 When the I2t time is exceeded, the AC<br />

drive will trip on “Motor I 2t”. Limit 2<br />

Communication information<br />

231 Mot I 2 t Type<br />

Stp Trip<br />

A<br />

This mode helps to keep the inverter<br />

running when the Motor I2t function is just<br />

before tripping the AC drive. The trip is<br />

replaced by current limiting with a<br />

maximum current level set by the value<br />

out of the menu [232]. In this way, if the<br />

reduced current can drive the load, the AC<br />

drive continues running. If there is no<br />

reduction in thermal load, the drive will<br />

trip.<br />

Modbus Instance no/DeviceNet no: 43061<br />

Profibus slot/index 168/220<br />

EtherCAT index (hex) 4bf5<br />

Profinet IO index 19445<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: When Mot I2t Type=Limit, the AC drive can control<br />

the speed < MinSpeed to reduce the motor current.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 79


Motor I 2 t Current [232]<br />

Sets the current limit for the motor I 2 t protection.<br />

Default: 100% of I MOT<br />

Range: 0–150% of I MOT ( set in menu [224])<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43062<br />

Profibus slot/index 168/221<br />

EtherCAT index (hex) 4bf6<br />

Profinet IO index 19446<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

NOTE: When the selection Limit is set in menu [231], the<br />

value must be above the no-load current of the motor.<br />

t [s]<br />

Fig. 72 I 2 t function<br />

232 Mot I 2 t Curr<br />

Stp 100%<br />

A<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

60 s (120%)<br />

120 s (120%)<br />

Motor I 2 t Time [233]<br />

Sets the time of the I 2 t function. After this time the limit for<br />

the I 2 t is reached if operating with 120% of the I 2 t current<br />

value. Valid when start from 0 rpm.<br />

NOTE: Not the time constant of the motor.<br />

Default: 60 s<br />

Range: 60–1200 s<br />

233 Mot I 2 t Time<br />

Stp 60s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43063<br />

Profibus slot/index 168/222<br />

EtherCAT index (hex) 4bf7<br />

Profinet IO index 19447<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

240 s (120%)<br />

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

i / I2t-current<br />

480 s (120%)<br />

1000 s (120%)<br />

Actual output current/ I 2 t-current<br />

80 Functional Description CG Drives & Automation, 01-5325-01r1


Fig. 72 shows how the function integrates the square of the<br />

motor current according to the “Mot I 2 t Curr [232]” and<br />

the “Mot I 2 t Time [233]”.<br />

When the selection Trip is set in menu [231] the AC drive<br />

trips if this limit is exceeded.<br />

When the selection Limit is set in menu [231] the AC drive<br />

reduces the torque if the integrated value is 95% or closer to<br />

the limit, so that the limit cannot be exceeded.<br />

NOTE: If it is not possible to reduce the current, the AC<br />

drive will trip after exceeding 110% of the limit.<br />

Example<br />

In Fig. 72 the thick grey line shows the following example.<br />

• Menu “[232] Mot I 2 t Curr” is set to 100%.<br />

1.2 x 100% = 120%<br />

• Menu “[233] Mot I2t Time” is set to 1000 s.<br />

This means that the AC drive will trip or reduce after 1000 s<br />

if the current is 1.2 times of 100% nominal motor current.<br />

Thermal Protection [234]<br />

Only visible if the PTC/PT100 option board is installed. Set<br />

the PTC input for thermal protection of the motor. The<br />

motor thermistors (PTC) must comply with DIN 44081/<br />

44082. Please refer to the <strong>manual</strong> for the PTC/PT100<br />

option board.<br />

Menu [234] Thermal Prot” contains functions to enable or<br />

disable the PTC input. Here you can select and activate<br />

PTC and/or PT100.<br />

Default: Off<br />

Off 0<br />

PTC 1<br />

PT100 2<br />

PTC+PT100 3<br />

Communication information<br />

234 Thermal Prot<br />

Stp Off<br />

A<br />

PTC and PT100 motor protection are<br />

disabled.<br />

Enables the PTC protection of the motor<br />

via the insulated option board.<br />

Enables the PT100 protection for the<br />

motor via the insulated option board.<br />

Enables the PTC protection as well as the<br />

PT100 protection for the motor via the<br />

insulated option board.<br />

Modbus Instance no/DeviceNet no: 43064<br />

Profibus slot/index 168/223<br />

EtherCAT index (hex) 4bf8<br />

Profinet IO index 19448<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: PTC option and PT100 selections can only be<br />

selected in menu [234] if the option board is mounted.<br />

NOTE: If you select the PTC option, the PT100 inputs as<br />

motor protection are ignored.<br />

Motor Class [235]<br />

Only visible if the PTC/PT100 option board is installed. Set<br />

the class of motor used. The trip levels for the PT100 sensor<br />

will automatically be set according to the setting in this<br />

menu.<br />

Default: F 140�C<br />

A 100�C 0<br />

E 115�C 1<br />

B 120�C 2<br />

F 140�C 3<br />

F Nema 145�C 4<br />

H 165�C 5<br />

235 Mot Class<br />

Stp F 140�C<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43065<br />

Profibus slot/index 168/224<br />

EtherCAT index (hex) 4bf9<br />

Profinet IO index 19449<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: This menu is only valid for PT 100.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 81


PT100 Inputs [236]<br />

Sets which of PT100 inputs that should be used for thermal<br />

protection. Deselecting not used PT100 inputs on the PTC/<br />

PT100 option board in order to ignore those inputs, i.e.<br />

extra external wiring is not needed if port is not used.<br />

Default: PT100 1+2+3<br />

Selection:<br />

Communication information<br />

PT100 1, PT100 2, PT100 1+2, PT100<br />

3, PT100 1+3, PT100 2+3, PT100<br />

1+2+3<br />

PT100 1 1 Channel 1 used for PT100 protection<br />

PT100 2 2 Channel 2 used for PT100 protection<br />

PT100 1+2 3 Channel 1+2 used for PT100 protection<br />

PT100 3 4 Channel 3 used for PT100 protection<br />

PT100 1+3 5 Channel 1+3 used for PT100 protection<br />

PT100 2+3 6 Channel 2+3 used for PT100 protection<br />

PT100 1+2+3 7<br />

236 PT100 Inputs<br />

Stp PT100 1+2+3<br />

A<br />

Channel 1+2+3 used for PT100<br />

protection<br />

Modbus Instance no/DeviceNet no: 43066<br />

Profibus slot/index 168/225<br />

EtherCAT index (hex) 4bfa<br />

Profinet IO index 19450<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: This menu is only valid for PT 100 thermal<br />

protection if PT100 is enabled in menu [234].<br />

Motor PTC [237]<br />

For AC drive sizes B to D (FDU48/52-003-074) there is<br />

optional possibility to directly connect motor PTC (not to<br />

be mixed up with PTC/PT100 option board, see Chapter<br />

13.7 page 193).<br />

In this menu the internal motor PTC hardware option is<br />

enabled. This PTC input complies with DIN 44081/44082.<br />

For electrical specification please refer to the separate<br />

<strong>manual</strong> for the PTC/PT100 option board, same data applies<br />

(could be found on www.emotron.com/www.cgglobal.com).<br />

This menu is only visible if a PTC (or resistor


11.2.6 Parameter Set Handling<br />

[240]<br />

There are four different parameter sets available in the AC<br />

drive. These parameter sets can be used to set the AC drive<br />

up for different processes or applications such as different<br />

motors used and connected, activated PID controller,<br />

different ramp time settings, etc.<br />

A parameter set consists of all parameters with the exception<br />

of the Global parameters. The Global parameters are only<br />

able to have one value for all parameter sets.<br />

Following parameters are Global: [211] Language, [217]<br />

Local Remote, [218] Lock Code, [220] Motor Data, [241]<br />

Select Set, [260] Serial Communication and [21B]Mains<br />

Supply Voltage .<br />

NOTE: Actual timers are common for all sets. When a set<br />

is changed the timer functionality will change according<br />

to the new set, but the timer value will stay unchanged.<br />

Select Set [241]<br />

Here you select the parameter set. Every menu included in<br />

the parameter sets is designated A, B, C or D depending on<br />

the active parameter set. Parameter sets can be selected from<br />

the keyboard, via the programmable digital inputs or via<br />

serial communication. Parameter sets can be changed during<br />

the run. If the sets are using different motors (M1 to M4)<br />

the set will be changed only when the motor is stopped.<br />

Default: A<br />

Selection: A, B, C, D, DigIn, Com, Option<br />

A 0<br />

B 1<br />

C 2<br />

D 3<br />

DigIn 4<br />

Com 5<br />

Option 6<br />

241 Select Set<br />

Stp A<br />

A<br />

Fixed selection of one of the 4 parameter<br />

sets A, B, C or D.<br />

Parameter set is selected via a digital<br />

input. Define which digital input in menu<br />

“[520] Digital inputs”.<br />

Parameter set is selected via serial<br />

communication.<br />

The parameter set is set via an option.<br />

Only available if the option can control the<br />

selection.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43022<br />

Profibus slot/index 168/181<br />

EtherCAT index (hex) 4bce<br />

Profinet IO index 19406<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

The active set can be viewed with function<br />

[721] VSD status.<br />

NOTE: Parameter set cannot be changed during run if<br />

the parameter set includes change of the motor set<br />

(M2-M4). In this case always stop the motor before<br />

changing parameter set.<br />

Prepare parameter Set when different Motor data<br />

M1 - M4:<br />

1. Select desired parameter Set to be set in [241] A - D.<br />

2. Select “Motor Set [212]” if other than the default Set<br />

M1.<br />

3. Set relevant motor data in the Menu group [220].<br />

4. Set other desired parameter settings to belong to this<br />

parameter Set.<br />

To prepare a Set for another motor, repeat these steps.<br />

Copy Set [242]<br />

This function copies the content of a parameter set into<br />

another parameter set.<br />

242 Copy Set<br />

Stp A>B<br />

A<br />

Default: A>B<br />

A>B 0 Copy set A to set B<br />

A>C 1 Copy set A to set C<br />

A>D 2 Copy set A to set D<br />

B>A 3 Copy set B to set A<br />

B>C 4 Copy set B to set C<br />

B>D 5 Copy set B to set D<br />

C>A 6 Copy set C to set A<br />

C>B 7 Copy set C to set B<br />

C>D 8 Copy set C to set D<br />

D>A 9 Copy set D to set A<br />

D>B 10 Copy set D to set B<br />

D>C 11 Copy set D to set C<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 83


Communication information<br />

Modbus Instance no/DeviceNet no: 43021<br />

Profibus slot/index 168/180<br />

EtherCAT index (hex) 4bcd<br />

Profinet IO index 19405<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into the other set.<br />

A>B means that the content of parameter set A is copied<br />

into parameter set B.<br />

Load Default Values Into Set [243]<br />

With this function three different levels (factory settings)<br />

can be selected for the four parameter sets. When loading<br />

the default settings, all changes made in the software are set<br />

to factory settings. This function also includes selections for<br />

loading default settings to the four different Motor Data<br />

Sets.<br />

Default: A<br />

A 0<br />

B 1<br />

C 2<br />

D 3<br />

ABCD 4<br />

Factory 5<br />

M1 6<br />

M2 7<br />

M3 8<br />

M4 9<br />

M1234 10<br />

Communication information<br />

243 Default>Set<br />

Stp A<br />

A<br />

Only the selected parameter set will revert<br />

to its default settings.<br />

All four parameter sets will revert to the<br />

default settings.<br />

All settings, except [211], [221]-[22D],<br />

[261] and [923], will revert to the default<br />

settings.<br />

Only the selected motor set will revert to its<br />

default settings.<br />

All four motor sets will revert to default<br />

settings.<br />

Modbus Instance no/DeviceNet no: 43023<br />

Profibus slot/index 168/182<br />

EtherCAT index (hex) 4bcf<br />

Profinet IO index 19407<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: Trip log hour counter and other VIEW ONLY menus<br />

are not regarded as settings and will be unaffected.<br />

NOTE: If “Factory” is selected, the message “Sure?” is<br />

displayed. Press the + key to display “Yes” and then<br />

Enter to confirm.<br />

NOTE: The parameters in menu “[220] Motor data”, are<br />

not affected by loading defaults when restoring<br />

parameter sets A–D.<br />

Copy All Settings to Control Panel [244]<br />

All the settings can be copied into the control panel<br />

including the motor data. Start commands will be ignored<br />

during copying.<br />

Default: No Copy<br />

No Copy 0 Nothing will be copied<br />

Copy 1 Copy all settings<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43024<br />

Profibus slot/index 168/183<br />

EtherCAT index (hex) 4bd0<br />

Profinet IO index 19408<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into control panel memory set.<br />

84 Functional Description CG Drives & Automation, 01-5325-01r1<br />

�<br />

244 Copy to CP<br />

Stp No Copy<br />

A


Load Settings from Control Panel [245]<br />

This function can load all four parameter sets from the<br />

control panel to the AC drive. Parameter sets from the<br />

source AC drive are copied to all parameter sets in the target<br />

AC drive, i.e. A to A, B to B, C to C and D to D.<br />

Start commands will be ignored during loading.<br />

Default: No Copy<br />

No Copy 0 Nothing will be loaded.<br />

A 1 Data from parameter set A is loaded.<br />

B 2 Data from parameter set B is loaded.<br />

C 3 Data from parameter set C is loaded.<br />

D 4 Data from parameter set D is loaded.<br />

ABCD 5<br />

A+Mot 6<br />

B+Mot 7<br />

C+Mot 8<br />

D+Mot 9<br />

�<br />

ABCD+Mot 10<br />

245 Load from CP<br />

Stp No Copy<br />

A<br />

Data from parameter sets A, B, C and D are<br />

loaded.<br />

Parameter set A and Motor data are<br />

loaded.<br />

Parameter set B and Motor data are<br />

loaded.<br />

Parameter set C and Motor data are<br />

loaded.<br />

Parameter set D and Motor data are<br />

loaded.<br />

Parameter sets A, B, C, D and Motor data<br />

are loaded.<br />

M1 11 Data from motor 1 is loaded.<br />

M2 12 Data from motor 2 is loaded.<br />

M3 13 Data from motor 3 is loaded.<br />

M4 14 Data from motor 4 is loaded.<br />

M1M2M3<br />

M4<br />

15 Data from motor 1, 2, 3 and 4 are loaded.<br />

All 16 All data is loaded from the control panel.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43025<br />

Profibus slot/index 168/184<br />

EtherCAT index (hex) 4bd1<br />

Profinet IO index 19409<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: Loading from the control panel will not affect the<br />

value in menu [310].<br />

11.2.7 Trip Autoreset/Trip Conditions<br />

[250]<br />

The benefit of this feature is that occasional trips that do not<br />

affect the process will be automatically reset. Only when the<br />

failure keeps on coming back, recurring at defined times and<br />

therefore cannot be solved by the AC drive, will the unit give<br />

an alarm to inform the operator that attention is required.<br />

For all trip functions that can be activated by the user you<br />

can select to control the motor down to zero speed according<br />

to set deceleration ramp to avoid water hammer.<br />

Also see section 12.2, page 184.<br />

Autoreset example:<br />

In an application it is known that the main supply voltage<br />

sometimes disappears for a very short time, a so-called “dip”.<br />

That will cause the AC drive to trip an “Undervoltage<br />

alarm”. Using the Autoreset function, this trip will be<br />

acknowledged automatically.<br />

• Enable the Autoreset function by making the reset input<br />

continuously high.<br />

• Activate the Autoreset function in the menu [251],<br />

Number of trips.<br />

• Select in menus [252] to [25N] the Trip condition that<br />

are allowed to be automatically reset by the Autoreset<br />

function after the set delay time has expired.<br />

Number of Trips [251]<br />

Any number set above 0 activates the Autoreset. This means<br />

that after a trip, the AC drive will restart automatically<br />

according to the number of attempts selected. No restart<br />

attempts will take place unless all conditions are normal.<br />

If the Autoreset counter (not visible) contains more trips<br />

than the selected number of attempts, the Autoreset cycle<br />

will be interrupted. No Autoreset will then take place.<br />

If there are no trips for more than 10 minutes, the Autoreset<br />

counter decreases by one.<br />

If the maximum number of trips has been reached, the trip<br />

message hour counter is marked with an “A”.<br />

If the Autoreset is full then the AC drive must be reset by a<br />

normal Reset.<br />

Example:<br />

• Autoreset = 5<br />

• Within 10 minutes 6 trips occur<br />

• At the 6th trip there is no Autoreset, because the<br />

Autoreset trip log contains 5 trips already.<br />

• To reset, apply a normal reset: set the reset input high to<br />

low and high again to maintain the Autoreset function.<br />

The Autoreset counter is reset (not visible).<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 85


Default: 0 (no Autoreset)<br />

Range: 0–10 attempts<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43071<br />

Profibus slot/index 168/230<br />

EtherCAT index (hex) 4bff<br />

Profinet IO index 19455<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Over temperature [252]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

251 No of Trips<br />

Stp 0<br />

A<br />

252 Overtemp<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43072<br />

Profibus slot/index 168/231<br />

EtherCAT index (hex) 4c00<br />

Profinet IO index 19456<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Overvolt D [253]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43075<br />

Profibus slot/index 168/234<br />

EtherCAT index (hex) 4c03<br />

Profinet IO index 19459<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Overvolt G [254]<br />

Delay time starts counting when the fault is gone When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

253 Overvolt D<br />

Stp Off<br />

A<br />

254 Overvolt G<br />

Stp Off<br />

A<br />

Modbus Instance no/DeviceNet no: 43076<br />

Profibus slot/index 168/235<br />

EtherCAT index (hex) 4c04<br />

Profinet IO index 19460<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

86 Functional Description CG Drives & Automation, 01-5325-01r1


Overvolt [255]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43077<br />

Profibus slot/index 168/236<br />

EtherCAT index (hex) 4c05<br />

Profinet IO index 19461<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Motor Lost [256]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

NOTE: Only visible when Motor Lost is selected in menu<br />

[423].<br />

Communication information<br />

255 Overvolt<br />

Stp Off<br />

A<br />

256 Motor Lost<br />

Stp Off<br />

A<br />

Modbus Instance no/DeviceNet no: 43083<br />

Profibus slot/index 168/242<br />

EtherCAT index (hex) 4c0b<br />

Profinet IO index 19467<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Locked Rotor [257]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43086<br />

Profibus slot/index 168/245<br />

EtherCAT index (hex) 4c0e<br />

Profinet IO index 19470<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Power Fault [258]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

257 Locked Rotor<br />

Stp Off<br />

A<br />

258 Power Fault<br />

Stp Off<br />

A<br />

Modbus Instance no/DeviceNet no: 43087<br />

Profibus slot/index 168/246<br />

EtherCAT index (hex) 4c0f<br />

Profinet IO index 19471<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 87


Undervoltage [259]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43088<br />

Profibus slot/index 168/247<br />

EtherCAT index (hex) 4c10<br />

Profinet IO index 19472<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Motor I 2 t [25A]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

259 Undervoltage<br />

Stp Off<br />

A<br />

25A Motor I 2 t<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43073<br />

Profibus slot/index 168/232<br />

EtherCAT index (hex) 4c01<br />

Profinet IO index 19457<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Motor I 2 t Trip Type [25B]<br />

Select the preferred way to react to a Motor I 2 t trip.<br />

Default: Trip<br />

Trip 0 The motor will trip<br />

Deceleration 1 The motor will decelerate<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43074<br />

Profibus slot/index 168/233<br />

EtherCAT index (hex) 4c02<br />

Profinet IO index 19458<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

PT100 [25C]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43078<br />

Profibus slot/index 168/237<br />

EtherCAT index (hex) 4c06<br />

Profinet IO index 19462<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

PT100 Trip Type [25D]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Trip<br />

25B Motor I 2 t TT<br />

Stp Trip<br />

A<br />

25C PT100<br />

Stp Off<br />

A<br />

25D PT100 TT<br />

Stp Trip<br />

A<br />

Selection: Same as menu [25B]<br />

88 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information<br />

Modbus Instance no/DeviceNet no: 43079<br />

Profibus slot/index 168/238<br />

EtherCAT index (hex) 4c07<br />

Profinet IO index 19463<br />

Fieldbus format Uint<br />

Modbus format UInt<br />

PTC [25E]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43084<br />

Profibus slot/index 168/243<br />

EtherCAT index (hex) 4c0c<br />

Profinet IO index 19468<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

PTC Trip Type [25F]<br />

Select the preferred way to react to a PTC trip.<br />

Default: Trip<br />

25E PTC<br />

Stp Off<br />

A<br />

25F PTC TT<br />

Stp Trip<br />

A<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43085<br />

Profibus slot/index 168/244<br />

EtherCAT index (hex) 4c0d<br />

Profinet IO index 19469<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

External Trip [25G]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43080<br />

Profibus slot/index 168/239<br />

EtherCAT index (hex) 4c08<br />

Profinet IO index 19464<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

External Trip Type [25H]<br />

Select the preferred way to react to an alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

25G Ext Trip<br />

Stp Off<br />

A<br />

25H Ext Trip TT<br />

Stp Trip<br />

A<br />

Modbus Instance no/DeviceNet no: 43081<br />

Profibus slot/index 168/240<br />

EtherCAT index (hex) 4c09<br />

Profinet IO index 19465<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 89


Communication Error [25I]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43089<br />

Profibus slot/index 168/248<br />

EtherCAT index (hex) 4c11<br />

Profinet IO index 19473<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Communication Error Trip Type [25J]<br />

Select the preferred way to react to a communication trip.<br />

Default: Trip<br />

25I Com Error<br />

Stp Off<br />

A<br />

25J Com Error TT<br />

Stp Trip<br />

A<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43090<br />

Profibus slot/index 168/249<br />

EtherCAT index (hex) 4c12<br />

Profinet IO index 19474<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Min Alarm [25K]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43091<br />

Profibus slot/index 168/250<br />

EtherCAT index (hex) 4c13<br />

Profinet IO index 19475<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Min Alarm Trip Type [25L]<br />

Select the preferred way to react to a min alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

25K Min Alarm<br />

Stp Off<br />

A<br />

25L Min Alarm TT<br />

Stp Trip<br />

A<br />

Modbus Instance no/DeviceNet no: 43092<br />

Profibus slot/index 168/251<br />

EtherCAT index (hex) 4c14<br />

Profinet IO index 19476<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

90 Functional Description CG Drives & Automation, 01-5325-01r1


Max Alarm [25M]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43093<br />

Profibus slot/index 168/252<br />

EtherCAT index (hex) 4c15<br />

Profinet IO index 19477<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Max Alarm Trip Type [25N]<br />

Select the preferred way to react to a max alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43094<br />

Profibus slot/index 168/253<br />

EtherCAT index (hex) 4c16<br />

Profinet IO index 19478<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Over current F [25O]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25M Max Alarm<br />

Stp Off<br />

A<br />

25N Max Alarm TT<br />

Stp Trip<br />

A<br />

25O Over curr F<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43082<br />

Profibus slot/index 168/241<br />

EtherCAT index (hex) 4c0a<br />

Profinet IO index 19466<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Pump [25P]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43095<br />

Profibus slot/index 168/254<br />

EtherCAT index (hex) 4c17<br />

Profinet IO index 19479<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Over Speed [25Q]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25P Pump<br />

Stp Off<br />

A<br />

25Q Over speed<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43096<br />

Profibus slot/index 169/0<br />

EtherCAT index (hex) 4c18<br />

Profinet IO index 19480<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 91


External Motor Temperature [25R]<br />

Delay time starts counting when the fault disappears. When<br />

the time delay has elapsed, the alarm will be reset if the<br />

function is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43097<br />

Profibus slot/index 168/239<br />

EtherCAT index (hex) 4c19<br />

Profinet IO index 19481<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

External Motor Trip Type [25S]<br />

Select the preferred way to react to an alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43098<br />

Profibus slot/index 168/240<br />

EtherCAT index (hex) 4c1a<br />

Profinet IO index 19482<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Liquid cooling low level [25T]<br />

Delay time starts counting when the fault disappears. When<br />

the time delay has elapsed, the alarm will be reset if the<br />

function is active.<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25R Ext Mot Temp<br />

Stp Off<br />

A<br />

25S Ext Mot TT<br />

Stp Trip<br />

A<br />

25T LC Level<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43099<br />

Profibus slot/index 169/3<br />

EtherCAT index (hex) 4c1b<br />

Profinet IO index 19483<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Liquid Cooling Low level Trip Type [25U]<br />

Select the preferred way to react to an alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43100<br />

Profibus slot/index 169/4<br />

EtherCAT index (hex) 4c1c<br />

Profinet IO index 19484<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Brake Fault [25V]<br />

Delay time starts counting when the fault disappears. When<br />

the time delay has elapsed, the alarm will be reset if the<br />

function is active.<br />

Default Off<br />

25U LC Level TT<br />

Stp Trip<br />

A<br />

25V Brk Fault<br />

Stp Off<br />

A<br />

Off 0 Autoreset not activated.<br />

1 - 3600s 1 - 3600s Brake fault auto reset delay time.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43070<br />

Profibus slot/index 168/229<br />

EtherCAT index (hex) 4bfe<br />

Profinet IO index 19454<br />

Fieldbus format Long, 1=1s<br />

Modbus format EInt<br />

92 Functional Description CG Drives & Automation, 01-5325-01r1


Encoder [25W]<br />

Encoder delay time, starts counting when the fault<br />

disappears. When the time delay has elapsed, the alarm will<br />

be reset if the function is active.<br />

Default: Off<br />

Off 0 Off<br />

1 3600 1 3600 1 3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43561<br />

Profibus slot/index 170/210<br />

EtherCAT index (hex) 4de9<br />

Profinet IO index 19945<br />

Fieldbus format Long, 1=1s<br />

Modbus format EInt<br />

Deviation [25X]<br />

Deviation delay time, starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be reset if<br />

the function is active.<br />

Default: Off<br />

Off 0 Off<br />

1 3600 1 3600 1 3600 s<br />

25W Encoder<br />

Stp Off<br />

A<br />

25X Deviation<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43562<br />

Profibus slot/index 170/211<br />

EtherCAT index (hex) 4dea<br />

Profinet IO index 19946<br />

Fieldbus format Long, 1=1s<br />

Modbus format EInt<br />

11.2.8 Serial Communication [260]<br />

This function is to define the communication parameters for<br />

serial communication. There are two types of options<br />

available for serial communication, RS232/485 (Modbus/<br />

RTU) and fieldbus modules (Profibus, DeviceNet,<br />

Modbus/TCP, Profinet IO and EtherCAT).<br />

For more information see Chapter 10. page 63 and<br />

respective option <strong>manual</strong>.<br />

Comm Type [261]<br />

Select RS232/485 [262] or Fieldbus [263].<br />

Default: RS232/485<br />

RS232/485 0 RS232/485 selected<br />

Fieldbus 1<br />

Communication information<br />

Fieldbus selected (Profibus, DeviceNet,<br />

Modbus/TCP, Profinet IO or EtherCAT)<br />

Modbus Instance no/DeviceNet no: 43031<br />

Profibus slot/index 168/190<br />

EtherCAT index (hex) 4bd7<br />

Profinet IO index 19415<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: Toggling the setting in this menu will perform a<br />

soft reset (re-boot) of the Fieldbus module.<br />

RS232/485 [262]<br />

Press Enter to set up the parameters for RS232/485<br />

(Modbus/RTU) communication.<br />

Baud rate [2621]<br />

Set the baud rate for the communication.<br />

NOTE: This baud rate is only used for the isolated<br />

RS232/485 option.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 93<br />

�<br />

261 Com Type<br />

Stp RS232/485<br />

A<br />

262 RS232/485<br />

Stp A


Default: 9600<br />

2400 0<br />

4800 1<br />

9600 2<br />

19200 3<br />

38400 4<br />

Selected baud rate<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43032<br />

Profibus slot/index 168/191<br />

EtherCAT index (hex) 4bd8<br />

Profinet IO index 19416<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Address [2622]<br />

Enter the unit address for the AC drive.<br />

NOTE: This address is only used for the isolated RS232/<br />

485 option.<br />

Default: 1<br />

Selection: 1–247<br />

Communication information<br />

2621 Baudrate<br />

Stp 9600<br />

A<br />

2622 Address<br />

Stp 1<br />

A<br />

Modbus Instance no/DeviceNet no: 43033<br />

Profibus slot/index 168/192<br />

EtherCAT index (hex) 4bd9<br />

Profinet IO index 19417<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Fieldbus [263]<br />

Press Enter to set up the parameters for fieldbus<br />

communication.<br />

263 Fieldbus<br />

Stp A<br />

Address [2631]<br />

Enter/view the unit/node address of the AC drive. Read &<br />

write access for Profibus, DeviceNet. Read - only for<br />

EtherCAT.<br />

Default: 62<br />

Range: Profibus 0–126, DeviceNet 0–63<br />

Node address valid for Profibus(RW), DeviceNet (RW) and<br />

EtherCAT (RO).<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43034<br />

Profibus slot/index 168/199<br />

EtherCAT index (hex) 4bda<br />

Profinet IO index 19418<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Process Data Mode [2632]<br />

Enter the mode of process data (cyclic data). For further<br />

information, see the Fieldbus option <strong>manual</strong>.<br />

Default: Basic<br />

None 0 Control/status information is not used.<br />

Basic 4<br />

Extended 8<br />

Communication information<br />

2631 Address<br />

Stp 62<br />

A<br />

2632 PrData Mode<br />

Stp Basic<br />

A<br />

4 byte process data control/status<br />

information is used.<br />

4 byte process data (same as Basic<br />

setting) + additional proprietary protocol<br />

for advanced users is used.<br />

Modbus Instance no/DeviceNet no: 43035<br />

Profibus slot/index 168/194<br />

EtherCAT index (hex) 4bdb<br />

Profinet IO index 19419<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

94 Functional Description CG Drives & Automation, 01-5325-01r1


Read/Write [2633]<br />

Select read/write to control the inverter over a fieldbus<br />

network. For further information, see the Fieldbus option<br />

<strong>manual</strong>.<br />

Default: RW<br />

RW 0<br />

Read 1<br />

Valid for process data. Select R (read only) for logging<br />

process without writing process data. Select RW in normal<br />

cases to control inverter.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43036<br />

Profibus slot/index 168/195<br />

EtherCAT index (hex) 4bdc<br />

Profinet IO index 19420<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Additional Process Values [2634]<br />

Define the number of additional process values sent in cyclic<br />

messages.<br />

Default: 0<br />

Range: 0-8<br />

2633 Read/Write<br />

Stp RW<br />

A<br />

2634 AddPrValues<br />

Stp 0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43039<br />

Profibus slot/index 168/198<br />

EtherCAT index (hex) 4bdf<br />

Profinet IO index 19423<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Communication Fault [264]<br />

Main menu for communication fault/warning settings. For<br />

further details please see the Fieldbus option <strong>manual</strong>.<br />

Communication Fault Mode [2641]]<br />

Selects action if a communication fault is detected.<br />

Default: Off<br />

Off 0 No communication supervision.<br />

Trip 1<br />

Warning 2<br />

Communication information<br />

RS232/485 selected:<br />

The AC drive will trip if there is no<br />

communication for time set in parameter<br />

[2642].<br />

Fieldbus selected:<br />

The AC drive will trip if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

RS232/485 selected:<br />

The AC drive will give a warning if there is<br />

no communication for time set in<br />

parameter [2642].<br />

Fieldbus selected:<br />

The AC drive will give a warning if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

NOTE: Menu [214] and/or [215] must be set to COM to<br />

activate the communication fault function.<br />

Modbus Instance no/DeviceNet no: 43037<br />

Profibus slot/index 168/196<br />

EtherCAT index (hex) 4bdd<br />

Profinet IO index 19421<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Communication Fault Time [2642]]<br />

Defines the delay time for the trip/warning.<br />

Default: 0.5 s<br />

Range: 0.1-15 s<br />

2641 ComFlt Mode<br />

Stp Off<br />

A<br />

2642 ComFlt Time<br />

Stp 0.5s<br />

A<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 95


Communication information<br />

Modbus Instance no/DeviceNet no: 43038<br />

Profibus slot/index 168/197<br />

EtherCAT index (hex) 4bde<br />

Profinet IO index 19422<br />

Fieldbus format Long, 1=0.1 s<br />

Modbus format EInt<br />

Ethernet [265]<br />

Settings for Ethernet module (Modbus/TCP, Profinet IO).<br />

For further information, see the Fieldbus option <strong>manual</strong>.<br />

NOTE: The Ethernet module must be re-booted to<br />

activate the below settings. For example by toggling<br />

parameter [261]. Non-initialized settings indicated by<br />

flashing display text.<br />

IP Address [2651]<br />

Default: 0.0.0.0<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

MAC Address [2652]<br />

Communication information<br />

42701, 42702, 42703,<br />

42704<br />

Profibus slot/index<br />

167/115, 167/116,<br />

167/117, 167/118<br />

EtherCAT index (hex) 4a8d, 4a8e, 4a8f, 4a90<br />

Profinet IO index<br />

19085, 19086, 19087,<br />

19088<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Default: An unique number for the Ethernet module.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

2651 IP Address<br />

000.000.000.000<br />

2652 MAC Address<br />

Stp 000000000000<br />

A<br />

42705, 42706, 42707,<br />

42708, 42709, 42710<br />

167/119, 167/120,<br />

167/121, 167/122,<br />

167/123, 167/124<br />

4a91, 4a92, 4a93,<br />

4a94, 4a95, 4a96,<br />

Profinet IO index<br />

19089, 19090, 19091,<br />

19092, 19093, 19094<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Subnet Mask [2653]<br />

Default: 0.0.0.0<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Gateway [2654]<br />

Communication information<br />

DHCP [2655]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42719<br />

Profibus slot/index 167/133<br />

EtherCAT index (hex) 4a9f<br />

Profinet IO index 19103<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

42711, 42712, 42713,<br />

42714<br />

Profibus slot/index<br />

167/125, 167/126,<br />

167/127, 167/128<br />

EtherCAT index (hex) 4a97, 4a98, 4a99, 4a9a<br />

Profinet IO index<br />

19095, 19096, 19097,<br />

19098<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Default: 0.0.0.0<br />

Modbus Instance no/DeviceNet no:<br />

42715, 42716, 42717,<br />

42718<br />

Profibus slot/index<br />

167/129, 167/130,<br />

167/131, 167/132<br />

EtherCAT index (hex) 4a9b, 4a9c, 4a9e, 4a9f<br />

Profinet IO index<br />

19099, 19100, 19101,<br />

19102<br />

Fieldbus format UInt, 1=1<br />

Modbus formatPicknik UInt<br />

Default: Off<br />

Selection: On/Off<br />

2653 Subnet Mask<br />

0.000.000.000<br />

2654 Gateway<br />

0.000.000.000<br />

2655 DHCP<br />

Stp Off<br />

A<br />

96 Functional Description CG Drives & Automation, 01-5325-01r1


Fieldbus Signals [266]<br />

Defines modbus mapping for additional process values. For<br />

further information, see the Fieldbus option <strong>manual</strong>.<br />

FB Signal 1 - 16 [2661]-[266G]<br />

Used to create a block of parameters which are read/written<br />

via communication. 1 to 8 read + 1 to 8 write parameters<br />

possible.<br />

Default: 0<br />

Range: 0-65535<br />

2661 FB Signal 1<br />

Stp 0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42801-42816<br />

Profibus slot/index 167/215-167/230<br />

EtherCAT index (hex) 4af1 - 4b00<br />

Profinet IO index 19185 - 19200<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

FB Status [269]<br />

Sub menus showing status of fieldbus parameters. Please see<br />

the Fieldbus <strong>manual</strong> for detailed information.<br />

269 FB Status<br />

Stp A<br />

11.3 Process and Application<br />

Parameters [300]<br />

These parameters are mainly adjusted to obtain optimum<br />

process or machine performance.<br />

The read-out, references and actual values depends on<br />

selected process source, [321}:<br />

Table 22<br />

Selected process<br />

source<br />

Unit for reference and<br />

actual value<br />

Speed rpm 4 digits<br />

Torque % 3 digits<br />

PT100 �C 3 digits<br />

Frequency Hz 3 digits<br />

Resolution<br />

11.3.1 Set/View Reference Value<br />

[310]<br />

View reference value<br />

As default the menu [310] is in view operation. The value of<br />

the active reference signal is displayed. The value is displayed<br />

according to selected process source, [321] or the process<br />

unit selected in menu [322].<br />

Set reference value<br />

If the function “Reference Control [214]” is set to<br />

“Keyboard”, the reference value can be set in menu “Set/<br />

View Ref [310]” or as a motor potentiometer with the + and<br />

- keys (default) on the control panel. Selection is made with<br />

parameter Keyboard Reference Mode in menu [369]. The<br />

ramp times used when setting the reference value with<br />

MotPot function selected in [369] are according to menus<br />

“Acc MotPot [333]” and “Dec MotPot [334]”.<br />

The ramp times used for the reference value when Normal<br />

function is selected in menu [369], are according to “Acc<br />

Time [331]” and “Dec Time [332]”.<br />

Menu [310] displays on-line the actual reference value<br />

according to the Mode Settings in Table 22.<br />

Default: 0 rpm<br />

Dependent on:<br />

Process Source [321] and Process Unit<br />

[322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

310 Set/View ref<br />

Stp 0rpm<br />

A<br />

Min according to menu [324] - max<br />

according to menu [325]<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 97


Communication information<br />

Modbus Instance no/DeviceNet no: 42991<br />

Profibus slot/index 168/150<br />

EtherCAT index (hex) 4baf<br />

Profinet IO index 19375<br />

Long, 1=1 rpm,<br />

1 %,1 °C or<br />

Fieldbus format<br />

0.001 if Process<br />

Value/Process Ref<br />

using a [322] unit<br />

Modbus format EInt<br />

NOTE: The actual value in menu [310] is not copied, or<br />

loaded from the control panel memory when Copy Set<br />

[242], Copy to CP [244] or Load from CP [245] is<br />

performed.<br />

NOTE: If the MotPot function is used, the reference value<br />

ramp times are according to the “Acc MotPot [333]” and<br />

“Dec MotPot [334]” settings. Actual speed ramp will be<br />

limited according to “Acc Time [331]” and<br />

“Dec Time [332]”.<br />

NOTE: Write access to this parameter is only allowed<br />

when menu “Ref Control [214]” is set to Keyboard. When<br />

Reference control is used, see section “10. Serial<br />

communication” on page 63<br />

11.3.2 Process Settings [320]<br />

With these functions, the AC drive can be set up to fit the<br />

application. The menus [110], [120], [310], [362]-[368]<br />

and [711] use the process unit selected in [321] and [322]<br />

for the application, e.g. rpm, bar or m3/h. This makes it<br />

possible to easily set up the AC drive for the required process<br />

requirements, as well as for copying the range of a feedback<br />

sensor to set up the Process Value Minimum and Maximum<br />

in order to establish accurate actual process information.<br />

Process Source [321]<br />

Select the signal source for the process value that controls<br />

the motor. The Process Source can be set to act as a function<br />

of the process signal on AnIn F(AnIn), a function of the<br />

motor speed F(Speed), a function of the shaft torque<br />

F(Torque) or as a function of a process value from serial<br />

communication F(Bus). The right function to select<br />

depends on the characteristics and behaviour of the process.<br />

If the selection Speed, Torque or Frequency is set, the AC<br />

drive will use speed, torque or frequency as reference value.<br />

Example<br />

An axial fan is speed-controlled and there is no feedback<br />

signal available. The process needs to be controlled within<br />

fixed process values in “m 3 /hr” and a process read-out of the<br />

air flow is needed. The characteristic of this fan is that the air<br />

flow is linearly related to the actual speed. So by selecting<br />

F(Speed) as the Process Source, the process can easily be<br />

controlled.<br />

The selection F(xx) indicates that a process unit and scaling<br />

is needed, set in menus [322]-[328]. This makes it possible<br />

to e.g. use pressure sensors to measure flow etc. If F(AnIn) is<br />

selected, the source is automatically connected to the AnIn<br />

which has Process Value as selected.<br />

Default: Speed<br />

F(AnIn) 0<br />

Function of analogue input. E.g. via PID<br />

control, [380].<br />

Speed 1 Speed as process reference.<br />

PT100 3 Temperature as process reference.<br />

F(Speed) 4 Function of speed<br />

F(Bus) 6 Function of communication reference<br />

Frequency 7 Frequency as process reference1 .<br />

1 . Only when Drive mode [213] is set to Speed or V/Hz.<br />

NOTE: When PT100 is selected, use PT100 channel 1 on<br />

the PTC/PT100 option board.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

“[321] Proc Source”, menus [322] - [328] are hidden.<br />

NOTE: If F (Bus) is chosen in menu [321] see section<br />

10.5.1 Process value.<br />

Communication information<br />

321 Proc Source<br />

Stp Speed<br />

A<br />

Modbus Instance no/DeviceNet no: 43302<br />

Profibus slot/index 169/206<br />

EtherCAT index (hex) 4ce6<br />

Profinet IO index 19686<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

98 Functional Description CG Drives & Automation, 01-5325-01r1


Process Unit [322]<br />

Default: rpm<br />

Off 0 No unit selection<br />

% 1 Percent<br />

°C 2 Degrees Centigrade<br />

°F 3 Degrees Fahrenheit<br />

bar 4 bar<br />

Pa 5 Pascal<br />

Nm 6 Torque<br />

Hz 7 Frequency<br />

rpm 8 Revolutions per minute<br />

m3 /h 9 Cubic meters per hour<br />

gal/h 10 Gallons per hour<br />

ft3 /h 11 Cubic feet per hour<br />

User 12 User defined unit<br />

Communication information<br />

322 Proc Unit<br />

Stp rpm<br />

A<br />

Modbus Instance no/DeviceNet no: 43303<br />

Profibus slot/index 169/207<br />

EtherCAT index (hex) 4ce7<br />

Profinet IO index 19687<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

User-defined Unit [323]<br />

This menu is only displayed if User is selected in menu<br />

[322]. The function enables the user to define a unit with six<br />

symbols. Use the Prev and Next key to move the cursor to<br />

required position. Then use the + and - keys to scroll down<br />

the character list. Confirm the character by moving the<br />

cursor to the next position by pressing the Next key.<br />

Character<br />

No. for serial<br />

comm.<br />

Character<br />

Space 0 m 58<br />

0–9 1–10 n 59<br />

A 11 ñ 60<br />

B 12 o 61<br />

C 13 ó 62<br />

D 14 ô 63<br />

E 15 p 64<br />

F 16 q 65<br />

G 17 r 66<br />

H 18 s 67<br />

I 19 t 68<br />

J 20 u 69<br />

K 21 ü 70<br />

L 22 v 71<br />

M 23 w 72<br />

N 24 x 73<br />

O 25 y 74<br />

P 26 z 75<br />

Q 27 å 76<br />

R 28 ä 77<br />

S 29 ö 78<br />

T 30 ! 79<br />

U 31 ¨ 80<br />

Ü 32 # 81<br />

V 33 $ 82<br />

W 34 % 83<br />

X 35 & 84<br />

Y 36 · 85<br />

Z 37 ( 86<br />

Å 38 ) 87<br />

Ä 39 * 88<br />

Ö 40 + 89<br />

a 41 , 90<br />

á 42 - 91<br />

b 43 . 92<br />

c 44 / 93<br />

d 45 : 94<br />

e 46 ; 95<br />

é 47 < 96<br />

No. for serial<br />

comm.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 99


Character<br />

No. for serial<br />

comm.<br />

ê 48 = 97<br />

ë 49 > 98<br />

f 50 ? 99<br />

g 51 @ 100<br />

h 52 ^ 101<br />

i 53 _ 102<br />

í 54 � 103<br />

j 55 2 104<br />

k 56 3 105<br />

l 57<br />

Example:<br />

Create a user unit named kPa.<br />

1. When in the menu [323] press to show the cursor.<br />

2. Press NEXT to move the cursor to the right most position.<br />

3. Press until the character a is displayed.<br />

4. Press .<br />

5. Then press the until P is displayed and press .<br />

6. Repeat until you have entered kPa, confirm with .<br />

Default: No characters shown<br />

Communication information<br />

Character<br />

323 User Unit<br />

Stp A<br />

No. for serial<br />

comm.<br />

Modbus Instance no/DeviceNet no: 43304 - 43309<br />

Profibus slot/index<br />

169/208 -<br />

169/213<br />

EtherCAT index (hex) 4ce8 - 4ced<br />

Profinet IO index 19688 - 19693<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

When sending a unit name you send one character at a time<br />

starting at the right most position.<br />

Process Min [324]<br />

This function sets the minimum process value allowed.<br />

Default: 0<br />

Range:<br />

Communication information<br />

Process Max [325]<br />

This menu is not visible when speed, torque or frequency is<br />

selected. The function sets the value of the maximum<br />

process value allowed.<br />

Communication information<br />

0.000-10000 (Speed, Torque, F(Speed),<br />

F(Torque))<br />

-10000– +10000 (F(AnIn, PT100, F(Bus))<br />

Modbus Instance no/DeviceNet no: 43310<br />

Profibus slot/index 169/214<br />

EtherCAT index (hex) 4cee<br />

Profinet IO index 19694<br />

Long, 1=1 rpm,<br />

1 %,1 °C or<br />

Fieldbus format<br />

0.001 if Process<br />

Value/Process Ref<br />

using a [322] unit<br />

Modbus format EInt<br />

Default: 0<br />

Range: 0.000-10000<br />

324 Process Min<br />

Stp 0<br />

A<br />

325 Process Max<br />

Stp 0<br />

A<br />

Modbus Instance no/DeviceNet no: 43311<br />

Profibus slot/index 169/215<br />

EtherCAT index (hex) 4cef<br />

Profinet IO index 19695<br />

Long, 1=1 rpm,<br />

1 %,1 °C or<br />

Fieldbus format<br />

0.001 if Process<br />

Value/Process Ref<br />

using a [322] unit<br />

Modbus format EInt<br />

100 Functional Description CG Drives & Automation, 01-5325-01r1


Ratio [326]<br />

This menu is not visible when speed, frequency or torque is<br />

selected. The function sets the ratio between the actual<br />

process value and the motor speed so that it has an accurate<br />

process value when no feedback signal is used. See Fig. 73.<br />

Default: Linear<br />

Linear 0 Process is linear related to speed/torque<br />

Quadratic 1<br />

Communication information<br />

Fig. 73 Ratio<br />

326 Ratio<br />

Stp Linear<br />

A<br />

Process is quadratic related to speed/<br />

torque<br />

Modbus Instance no/DeviceNet no: 43312<br />

Profibus slot/index 169/216<br />

EtherCAT index (hex) 4cf0<br />

Profinet IO index 19696<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Process<br />

unit<br />

Process<br />

Max<br />

[325]<br />

Ratio=Linear<br />

Ratio=Quadratic<br />

Process<br />

Min<br />

Speed<br />

[324] Min Max<br />

Speed<br />

Speed<br />

[341]<br />

[343]<br />

F(Value), Process Min [327]<br />

This function is used for scaling if no sensor is used. It offers<br />

you the possibility of increasing the process accuracy by<br />

scaling the process values. The process values are scaled by<br />

linking them to known data in the AC drive. With<br />

“F(Value) Proc Min [327]” the precise value at which the<br />

entered “Process Min [324]“ is valid can be entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

“[321] Proc Source”, menus [322]- [328] are hidden.<br />

Default: Min<br />

Min -1<br />

Communication information<br />

According to Min Speed setting in<br />

[341].<br />

Max -2<br />

According to Max Speed setting in<br />

[343].<br />

0.000-10000 0-10000 0.000-10000<br />

Modbus Instance no/DeviceNet no: 43313<br />

Profibus slot/index 169/217<br />

EtherCAT index (hex) 4cf1<br />

Profinet IO index 19697<br />

Fieldbus format<br />

Long, 1=1 rpm,<br />

1 %<br />

Modbus format EInt<br />

F(Value), Process Max [328]<br />

This function is used for scaling if no sensor is used. It offers<br />

you the possibility of increasing the process accuracy by<br />

scaling the process values. The process values are scaled by<br />

linking them to known data in the AC drive. With F(Value),<br />

Proc Max the precise value at which the entered “Process<br />

Max [525]” is valid can be entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

“[321] Proc Source”, menus [322]- [328] are hidden.<br />

Default: Max<br />

Min -1 Min<br />

Max -2 Max<br />

0.000-<br />

10000<br />

0-10000 0.000-10000<br />

327 F(Val) PrMin<br />

Stp Min<br />

A<br />

328 F(Val) PrMax<br />

Stp Max<br />

A<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 101


Communication information<br />

Modbus Instance no/DeviceNet no: 43314<br />

Profibus slot/index 169/218<br />

EtherCAT index (hex) 4cf2<br />

Profinet IO index 19698<br />

Fieldbus format<br />

Long, 1=1 rpm,<br />

1 %<br />

Modbus format EInt<br />

Example<br />

A conveyor belt is used to transport bottles. The required<br />

bottle speed needs to be within 10 to 100 bottles/s. Process<br />

characteristics:<br />

10 bottles/s = 150 rpm<br />

100 bottles/s = 1500 rpm<br />

The amount of bottles is linearly related to the speed of the<br />

conveyor belt.<br />

Set-up:<br />

“Process Min [324]” = 10<br />

“Process Max [325]” = 100<br />

“Ratio [326]” = linear<br />

“F(Value), ProcMin [327]” = 150<br />

“F(Value), ProcMax [328]” = 1500<br />

With this set-up, the process data is scaled and linked to<br />

known values which results in an accurate control.<br />

F(Value)<br />

PrMax 1500<br />

[328]<br />

F(Value<br />

PrMin<br />

[327]<br />

Fig. 74<br />

150<br />

10<br />

Process Min [324]<br />

Linear<br />

Bottles/s<br />

100<br />

Process Max [325]<br />

11.3.3 Start/Stop settings [330]<br />

Submenu with all the functions for acceleration,<br />

deceleration, starting, stopping, etc.<br />

Acceleration Time [331]<br />

The acceleration time is defined as the time it takes for the<br />

motor to accelerate from 0 rpm to nominal motor speed.<br />

NOTE: If the Acc Time is too short, the motor is<br />

accelerated according to the Torque Limit. The actual<br />

Acceleration Time may then be longer than the value<br />

set.<br />

Default: 10.0 s<br />

Range: 0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43101<br />

Profibus slot/index 169/5<br />

EtherCAT index (hex) 4c1d<br />

Profinet IO index 19485<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Fig. 75 shows the relationship between nominal motor<br />

speed/max speed and the acceleration time. The same is<br />

valid for the deceleration time.<br />

Nominal<br />

Speed<br />

Max Speed 80% nMOT 331 Acc Time<br />

Stp 10.0s<br />

A<br />

Fig. 75 Acceleration time and maximum speed<br />

Fig. 76 shows the settings of the acceleration and<br />

deceleration times with respect to the nominal motor speed.<br />

102 Functional Description CG Drives & Automation, 01-5325-01r1<br />

100% n MOT<br />

rpm<br />

(06-F12)<br />

8s<br />

10s<br />

t


pm<br />

(NG_06-F11)<br />

Nom. Speed<br />

Acc Time [331] Dec Time [332]<br />

Fig. 76 Acceleration and deceleration times<br />

Deceleration Time [332]<br />

The deceleration time is defined as the time it takes for the<br />

motor to decelerate from nominal motor speed to 0 rpm.<br />

Default: 10.0 s<br />

Range: 0.50–3600 s<br />

332 Dec Time<br />

Stp 10.0s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43102<br />

Profibus slot/index 169/6<br />

EtherCAT index (hex) 4c1e<br />

Profinet IO index 19486<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

NOTE: If the Dec Time is too short and the generator<br />

energy cannot be dissipated in a brake resistor, the<br />

motor is decelerated according to the overvoltage limit.<br />

The actual deceleration time may be longer than the<br />

value set.<br />

Acceleration Time Motor Potentiometer<br />

[333]<br />

It is possible to control the speed of the AC drive using the<br />

motor potentiometer function. This function controls the<br />

speed with separate up and down commands, over remote<br />

signals. The MotPot function has separate ramps settings<br />

which can be set in “Acc MotPot [333]” and “Dec MotPot<br />

[334]”.<br />

If the MotPot function is selected, this is the acceleration<br />

time for the MotPot up command. The acceleration time is<br />

defined as the time it takes for the motor potentiometer<br />

value to increase from 0 rpm to nominal speed.<br />

Default: 16.0 s<br />

Range: 0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43103<br />

Profibus slot/index 169/7<br />

EtherCAT index (hex) 4c1f<br />

Profinet IO index 19487<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Deceleration Time Motor Potentiometer<br />

[334]<br />

If the MotPot function is selected, this is the deceleration<br />

time for the “MotPot” down command. The deceleration<br />

time is defined as the time it takes for the motor<br />

potentiometer value to decrease from nominal speed to 0<br />

rpm.<br />

Default: 16.0 s<br />

Range: 0.50–3600 s<br />

333 Acc MotPot<br />

Stp 16.0s<br />

A<br />

334 Dec MotPot<br />

Stp 16.0s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43104<br />

Profibus slot/index 169/8<br />

EtherCAT index (hex) 4c20<br />

Profinet IO index 19488<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 103


Acceleration Time to Minimum Speed<br />

[335]<br />

If minimum speed, [341]>0 rpm, is used in an application,<br />

the AC drive uses separate ramp times below this level. With<br />

“Acc>MinSpeed [335]” and “DecMin Spd<br />

Stp 10.0s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43105<br />

Profibus slot/index 169/9<br />

EtherCAT index (hex) 4c21<br />

Profinet IO index 19489<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

rpm<br />

Motor Speed Max speed<br />

3000<br />

[225]<br />

[343]<br />

Min speed<br />

[341]<br />

600<br />

Fig. 77 Calculation example of accelerating times<br />

(graphics not proportional).<br />

Example:<br />

“Motor speed [225]” 3000 rpm<br />

Minimum speed [341] 600 rpm<br />

Maximum speed [343] 3000 rpm<br />

Acceleration time [331] 10 seconds<br />

Deceleration time [332] 10 seconds<br />

Acc>Min speed[335] 40 seconds<br />

DecMin speed [335].<br />

Calculated as following:<br />

600 rpm is 20% of 3000 rpm => 20% of 40 s = 8 s.<br />

B. The acceleration continues from minimum speed level<br />

600 rpm to maximum speed level 3000 rpm with<br />

acceleration rate according to ramp time Acceleration<br />

time [331].<br />

Calculate by following:<br />

3000 - 600= 2400 rpm which is 80 % of 3000 rpm =><br />

acceleration tim is 80 % x 10 s = 8 s.<br />

This means that the total acceleration time from 0 -<br />

3000 rpm will take 8 + 8 = 16 seconds.<br />

Deceleration Time from Minimum<br />

Speed [336]<br />

If a minimum speed is programmed, this parameter will be<br />

used to set the deceleration time from the minimum speed<br />

to 0 rpm at a stop command. The ramp time is defined as<br />

the time it takes for the motor to decelerate from the<br />

nominal motor speed to 0 rpm.<br />

Default: 10.0 s<br />

Range: 0.50-3600 s<br />

336 Dec


Acceleration Ramp Type [337]<br />

Sets the type of all the acceleration ramps in a parameter set.<br />

See Fig. 78. Depending on the acceleration and deceleration<br />

requirements for the application, the shape of both the<br />

ramps can be selected. For applications where speed changes<br />

need to be started and stopped smoothly, such as a conveyor<br />

belt with materials that can drop following a quick speed<br />

change, the ramp shape can be adapted to a S-shape and<br />

prevent speed change shocks. For applications that are not<br />

critical in this, the speed change can be fully linear over the<br />

complete range.<br />

Default: Linear<br />

Linear 0 Linear acceleration ramp.<br />

S-Curve 1 S-shape acceleration ramp.<br />

NOTE: For S-curve ramps the ramp times, [331] and<br />

[332], defines the maximum acceleration and<br />

deceleration rated, i.e. linear part of S-curve, just as for<br />

the linear ramps. The S-curves are implemented so that<br />

for a speed step below sync speed the ramps are fully<br />

S-shaped while for larger steps the middle part will be<br />

linear. Therefore will a S-curve ramp from 0 –sync speed<br />

take 2 x Time while a step from 0–2 x sync speed will<br />

take 3 x Time (middle part 0.5sync speed – 1.5sync<br />

speed linear). Also valid for menu [338], Deceleration<br />

ramp type.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43107<br />

Profibus slot/index 169/11<br />

EtherCAT index (hex) 4c23<br />

Profinet IO index 19491<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

rpm<br />

Linear<br />

Fig. 78 Shape of acceleration ramp<br />

337 Acc Rmp<br />

Stp Linear<br />

A<br />

S-curve<br />

t<br />

Deceleration Ramp Type [338]<br />

Sets the ramp type of all deceleration parameters in a<br />

parameter set Fig. 79.<br />

Default: Linear<br />

Selection: Same as menu [337]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43108<br />

Profibus slot/index 169/12<br />

EtherCAT index (hex) 4c24<br />

Profinet IO index 19492<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Fig. 79 Shape of deceleration ramp<br />

Start Mode [339]<br />

Sets the way of starting the motor when a run command is<br />

given.<br />

Default: Fast (fixed)<br />

Fast 0<br />

Communication information<br />

338 Dec Rmp<br />

Stp Linear<br />

A<br />

The motor flux increases gradually. The<br />

motor shaft starts rotating immediately<br />

once the Run command is given.<br />

Modbus Instance no/DeviceNet no: 43109<br />

Profibus slot/index 169/13<br />

EtherCAT index (hex) 4c25<br />

Profinet IO index 19493<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 105<br />

Linear<br />

S-curve<br />

339 Start Mode<br />

Stp Fast<br />

A<br />

t


Spinstart [33A]<br />

The spinstart will smoothly start a motor which is already<br />

rotating by catching the motor at the actual speed and<br />

control it to the desired speed. If in an application, such as<br />

an exhausting fan, the motor shaft is already rotating due to<br />

external conditions, a smooth start of the application is<br />

required to prevent excessive wear. With the spinstart=On,<br />

the actual control of the motor is delayed due to detecting<br />

the actual speed and rotation direction, which depend on<br />

motor size, running conditions of the motor before the<br />

Spinstart, inertia of the application, etc. Depending on the<br />

motor electrical time constant and the size of the motor, it<br />

can take maximum a couple of minutes before the motor is<br />

caught.<br />

Default: Off<br />

Off 0<br />

On 1<br />

Use<br />

Encoder 2<br />

Communication information<br />

33A Spinstart<br />

Stp Off<br />

A<br />

No spinstart. If the motor is already running<br />

the AC drive can trip or will start with high<br />

current.<br />

Spinstart will allow the start of a running<br />

motor without tripping or high inrush currents.<br />

If encoder feedback is used, both encoder<br />

speed and current signals are used to<br />

perform spinstart function.<br />

Only encoder speed used for detecting<br />

rotating machine, i.e. no rotating machine<br />

detection via initial motor current.<br />

Note: Only active if encoder is present. If no<br />

Encoder, functionality is equal to selection<br />

Off.<br />

Modbus Instance no/DeviceNet no: 43110<br />

Profibus slot/index 169/14<br />

EtherCAT index (hex) 4c26<br />

Profinet IO index 19494<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Stop Mode [33B]<br />

When the AC drive is stopped, different methods to come to<br />

a standstill can be selected in order to optimize the stop and<br />

prevent unnecessary wear, like water hammer. Stop Mode<br />

sets the way of stopping the motor when a Stop command is<br />

given.<br />

Default: Decel<br />

Decel 0<br />

33B Stop Mode<br />

Stp Decel<br />

A<br />

The motor decelerates to 0 rpm according<br />

to the set deceleration time.<br />

Coast 1 The motor freewheels naturally to 0 rpm.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43111<br />

Profibus slot/index 169/15<br />

EtherCAT index (hex) 4c27<br />

Profinet IO index 19495<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

106 Functional Description CG Drives & Automation, 01-5325-01r1


11.3.4 Mechanical brake control<br />

The four brake-related menus [33C] to [33F] can be used to<br />

control mechanical brakes<br />

Support is included for a Brake Acknowledge signal via a<br />

digital input. It is monitored using a brake fault time<br />

parameter. Additional output and trip/warning signals are<br />

also included. The acknowledge signal is either connected<br />

from the brake contactor or from a proximity switch on the<br />

brake.<br />

Brake not released - Brake Fault trip<br />

During start and running the brake acknowledge signal is<br />

compared to the actual brake output signal and if no<br />

acknowledge, i.e. brake not released, while brake output is<br />

high for the Brake Fault time [33H], then a Brake trip is<br />

generated.<br />

Brake not engaged - Brake Warning and<br />

continued operation (keep torque)<br />

The brake acknowledge signal is compared to the actual<br />

brake output signal at stop. If acknowledge is still active, i.e.<br />

brake not engaged, while brake output is low for the Brake<br />

Engage time [33E] then a Brake warning is generated and<br />

the torque is kept, i.e. prolonging normal brake engage<br />

mode, until brake closes or an emergency action is needed<br />

by the operator, such as setting down the load.<br />

Brake Release Time [33C]<br />

The Brake Release Time sets the time the AC drive delays<br />

before ramping up to whatever final reference value is<br />

selected. During this time a predefined speed can be<br />

generated to hold the load where after the mechanical brake<br />

finally releases. This speed can be selected at Release Speed,<br />

[33D]. Immediate after the brake release time expiration the<br />

brake lift signal is set. The user can set a digital output or<br />

relay to the function Brake. This output or relay can control<br />

the mechanical brake.<br />

Default: 0.00 s<br />

Range: 0.00–3.00 s<br />

Communication information<br />

33C Brk Release<br />

Stp 0.00s<br />

A<br />

Modbus Instance no/DeviceNet no: 43112<br />

Profibus slot/index 169/16<br />

EtherCAT index (hex) 4c28<br />

Profinet IO index 19496<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Fig. 80 shows the relation between the four Brake functions.<br />

• Brake Release Time [33C]<br />

• Start Speed [33D]<br />

• Brake Engage Time [33E]<br />

• Brake Wait Time [33F]<br />

The correct time setting depends on the maximum load and<br />

the properties of the mechanical brake. During the brake<br />

release time it is possible to apply extra holding torque by<br />

setting a start speed reference with the function start speed<br />

[33D].<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 107


Release Speed [33D]<br />

Mechanical<br />

Brake<br />

Brake Relay<br />

Output<br />

Start<br />

Open<br />

Closed<br />

On<br />

Off<br />

Fig. 80 Brake Output functions<br />

Release Speed [33D]<br />

The release speed only operates with the brake function:<br />

brake release [33C]. The release speed is the initial speed<br />

reference during the brake release time.<br />

Communication information<br />

Brake release<br />

time [33C]<br />

NOTE: This function is designed to operate a mechanical<br />

brake via the digital outputs or relays (set to brake<br />

function) controlling a mechanical brake.<br />

Default: 0 rpm<br />

Range: - 4x Sync. Speed to 4x Sync.<br />

Depend on:<br />

33D Release Spd<br />

Stp 0rpm<br />

A<br />

4xmotor sync speed, 1500 rpm for 1470<br />

rpm motor.<br />

Modbus Instance no/DeviceNet no: 43113<br />

Profibus slot/index 169/17<br />

EtherCAT index (hex) 4c29<br />

Profinet IO index 19497<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Action must take place within<br />

these time intervals<br />

Brake wait<br />

time [33F]<br />

Brake Engage Time [33E]<br />

The brake engage time is the time the load is held while the<br />

mechanical brake engages. It is also used to get a firm stop<br />

when transmissions, etc. cause “whiplash” effects. In other<br />

words, it compensates for the time it takes to engage a<br />

mechanical brake.<br />

Default: 0.00 s<br />

Range: 0.00–3.00 s<br />

Communication information<br />

Brake engage<br />

time [33E]<br />

33E Brk Engage<br />

Stp 0.00s<br />

A<br />

Modbus Instance no/DeviceNet no: 43114<br />

Profibus slot/index 169/18<br />

EtherCAT index (hex) 4c2a<br />

Profinet IO index 19498<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

108 Functional Description CG Drives & Automation, 01-5325-01r1


Wait Before Brake Time [33F]<br />

The brake wait time is the time to keep brake open and to<br />

hold the load, either in order to be able to speed up<br />

immediately, or to stop and engage the brake.<br />

Default: 0.00 s<br />

Range: 0.00–30.0 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43115<br />

Profibus slot/index 169/19<br />

EtherCAT index (hex) 4c2b<br />

Profinet IO index 19499<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Vector Brake [33G]<br />

Braking by increasing the internal electrical losses in the<br />

motor.<br />

Default: Off<br />

Off 0<br />

On 1<br />

Communication information<br />

33F Brk Wait<br />

Stp 0.00s<br />

A<br />

33G Vector Brake<br />

Stp Off<br />

A<br />

Vector brake switched off. AC drive brakes<br />

normal with voltage limit on the DC link.<br />

Maximum AC drive current (I CL ) is available<br />

for braking.<br />

Modbus Instance no/DeviceNet no: 43116<br />

Profibus slot/index 169/20<br />

EtherCAT index (hex) 4c2c<br />

Profinet IO index 19500<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Brake Fault trip time [33H]<br />

The “Brake Fault trip time” for “Brake not released”<br />

function is specified in this menu.<br />

Default: 1.00s<br />

Range 0.00 - 5.00s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43117<br />

Profibus slot/index 169/21<br />

EtherCAT index (hex) 4c2d<br />

Profinet IO index 19501<br />

Fieldbus format Long, 1=0.01s<br />

Modbus format EInt<br />

Note: The Brake Fault trip time should be set to longer<br />

time than the Brake release time[33C].<br />

The “Brake not engaged” warning is using the setting of<br />

parameter “Brake Engaged time [33E]”.<br />

Following Figure shows principle of brake operation for<br />

fault during run (left) and during stop (right).<br />

Release torque [33I]<br />

The Brake Release Time [33C] sets the time the AC drive<br />

delays before ramping up to whatever final speed reference<br />

value is selected, to allow the brake to be fully opened.<br />

During this time a holding torque to prevent roll-back of the<br />

load can be activated. The parameter Release Torque [33I] is<br />

used for this purpose.<br />

The release torque initiates the torque reference from the<br />

speed controller during the Brake Release Time [33C]. The<br />

release torque defines a minimum level of release (holding)<br />

torque. The set release torque is internally overruled if the<br />

actual required holding torque measured at the previous<br />

closing of brake is higher.<br />

The release torque is set with sign in order to define the<br />

holding torque direction.<br />

Default: 0%<br />

33H Brk Fault<br />

Stp 1.00s<br />

A<br />

33I Release Trq<br />

Stp 0%<br />

A<br />

Range -400% to 400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43118<br />

Profibus slot/index 169/22<br />

EtherCAT index (hex) 4c2e<br />

Profinet IO index 19502<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 109


Note! Function is deactivated if set to 0%.<br />

Note! Release Torque [33I] has priority over torque<br />

reference initialization by Release Speed [33D].<br />

*<br />

Start<br />

Running<br />

Torque<br />

Speed>0<br />

Brake relay<br />

Brake acknowledge<br />

Brake Trip<br />

Brake warning<br />

Brake<br />

release time<br />

33C<br />


11.3.5 Speed [340]<br />

Menu with all parameters for settings regarding to speeds,<br />

such as Min/Max speeds, Jog speeds, Skip speeds.<br />

Minimum Speed [341]<br />

Sets the minimum speed. The minimum speed will operate<br />

as an absolute lower limit. Used to ensure the motor does<br />

not run below a certain speed and to maintain a certain<br />

performance.<br />

Default: 0 rpm<br />

Range: 0 - Max Speed<br />

Dependent on: Set/View ref [310]<br />

NOTE: A lower speed value than the set minimum speed<br />

can be shown in the display due to motor slip.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43121<br />

Profibus slot/index 169/25<br />

EtherCAT index (hex) 4c31<br />

Profinet IO index 19505<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Stop/Sleep when less than Minimum<br />

Speed [342]<br />

With this function it is possible to put the AC drive in “sleep<br />

mode” when it is running at minimum speed for the length<br />

of time set in menu “Stp


Communication information<br />

Modbus Instance no/DeviceNet no: 43123<br />

Profibus slot/index 169/27<br />

EtherCAT index (hex) 4c33<br />

Profinet IO index 19507<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

NOTE: It is not possible to set the maximum speed lower<br />

than the minimum speed.<br />

Note: Maximum speed [343] has priority over Min Speed<br />

[341], i.e. if [343] is set below [341] then the drive will<br />

run at [343] Max Speed with acceleration times given by<br />

[335] and [336] respectively.<br />

Skip Speed 1 Low [344]<br />

Within the Skip Speed range High to Low, the speed cannot<br />

be constant in order to avoid mechanical resonance in the<br />

AC drive system.<br />

When Skip Speed Low ��Ref Speed ��Skip Speed High, then<br />

Output Speed=Skip Speed HI during deceleration and<br />

Output Speed=Skip Speed LO during acceleration. Fig. 83<br />

shows the function of skip speed hi and low.<br />

Between Skip Speed HI and LO, the speed changes with the<br />

set acceleration and deceleration times. Skipspd1 LO sets<br />

the lower value for the 1st skip range.<br />

Default: 0 rpm<br />

344 SkipSpd 1 Lo<br />

Stp 0rpm<br />

A<br />

Range: 0 - 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43124<br />

Profibus slot/index 169/28<br />

EtherCAT index (hex) 4c34<br />

Profinet IO index 19508<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Skip Speed HI<br />

Skip Speed LO<br />

(NG_06-F17)<br />

Fig. 83 Skip Speed<br />

NOTE: The two Skip Speed ranges may be overlapped.<br />

Skip Speed 1 High [345]<br />

Skipspd1 HI sets the higher value for the 1st skip range.<br />

Default: 0 rpm<br />

Range: 0 – 4 x Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43125<br />

Profibus slot/index 169/29<br />

EtherCAT index (hex) 4c35<br />

Profinet IO index 19509<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

112 Functional Description CG Drives & Automation, 01-5325-01r1<br />

n<br />

Speed Reference<br />

345 SkipSpd 1 Hi<br />

Stp 0rpm<br />

A


Skip Speed 2 Low [346]<br />

The same function as menu [344] for the 2nd skip range.<br />

Default: 0 rpm<br />

Range: 0 – 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43126<br />

Profibus slot/index 169/30<br />

EtherCAT index (hex) 4c36<br />

Profinet IO index 19510<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Skip Speed 2 High [347]<br />

The same function as menu [345] for the 2nd skip range.<br />

Default: 0 rpm<br />

Range: 0 – 4 x Motor Sync Speed<br />

Communication information<br />

346 SkipSpd 2 Lo<br />

Stp 0rpm<br />

A<br />

347 SkipSpd 2 Hi<br />

Stp 0rpm<br />

A<br />

Modbus Instance no/DeviceNet no: 43127<br />

Profibus slot/index 169/31<br />

EtherCAT index (hex) 4c37<br />

Profinet IO index 19511<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Jog Speed [348]<br />

The Jog Speed function is activated by one of the digital<br />

inputs. The digital input must be set to the Jog function<br />

[520]. The Jog command/function will automatically<br />

generate a run command as long as the Jog command/<br />

function is active. This is valid independent of settings in<br />

menu [215]. The rotation is determined by the polarity of<br />

the set Jog Speed.<br />

Example<br />

If Jog Speed = -10, this will give a Run Left command at<br />

10 rpm regardless of RunL or RunR commands. Fig. 84<br />

shows the function of the Jog command/function.<br />

Default: 50 rpm<br />

Range:<br />

Dependent on:<br />

Communication information<br />

Fig. 84 Jog command<br />

348 Jog Speed<br />

Stp 50rpm<br />

A<br />

-4 x motor sync speed to +4 x motor sync<br />

speed<br />

Defined motor sync speed. Max = 400%,<br />

normally max=AC drive I max/motor I nom x<br />

100%.<br />

Modbus Instance no/DeviceNet no: 43128<br />

Profibus slot/index 169/32<br />

EtherCAT index (hex) 4c38<br />

Profinet IO index 19512<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 113<br />

Jog<br />

Freq<br />

Jog<br />

command<br />

f<br />

t<br />

t<br />

(NG_06-F18)


11.3.6 Torques [350]<br />

Menu with all parameters for torque settings.<br />

Maximum Torque [351]<br />

Sets the maximum motor torque (according to menu group<br />

“Motor Data [220]”). This Maximum Torque operates as an<br />

upper torque limit. A Speed Reference is always necessary to<br />

run the motor.<br />

TMOT�Nm� PMOT�kw�x9550 = ----------------------------------------- = 100%<br />

nMOT�rpm� Default: 120% calculated from the motor data<br />

Range: 0–400%<br />

351 Max Torque<br />

Stp 120%<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43141<br />

Profibus slot/index 169/45<br />

EtherCAT index (hex) 4c45<br />

Profinet IO index 19525<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

NOTE: The Max Torque parameter will limit the maxmum<br />

output current of the AC drive following the relation:<br />

100% Tmot corresponds to 100% Imot.<br />

The maximum possible setting for parameter 351 is<br />

limited by Inom/Imot x 120%, but not higher than 400%.<br />

NOTE: The power loss in the motor will increase by the<br />

square of the torque when operating above 100%. 400%<br />

torque will result in 1600% power loss, which will<br />

increase the motor temperature very quickly.<br />

IxR Compensation [352]<br />

This function compensates for the drop in voltage over<br />

different resistances such as (very) long motor cables, chokes<br />

and motor stator by increasing the output voltage at a<br />

constant frequency. IxR Compensation is most important at<br />

low frequencies and is used to obtain a higher starting<br />

torque. The maximum voltage increase is 25% of the<br />

nominal output voltage. See Fig. 85.<br />

Selecting “Automatic” will use the optimal value according<br />

to the internal model of motor. “User-Defined” can be<br />

selected when the start conditions of the application do not<br />

change and a high starting torque is always required. A fixed<br />

IxR Compensation value can be set in the menu [353].<br />

Default: Off<br />

Off 0 Function disabled<br />

Automatic 1 Automatic compensation<br />

User Defined 2 User defined value in percent.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43142<br />

Profibus slot/index 169/46<br />

EtherCAT index (hex) 4c46<br />

Profinet IO index 19526<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Fig. 85 IxR Comp at Linear V/Hz curve<br />

IxR Comp_user [353]<br />

Only visible if User-Defined is selected in previous menu.<br />

Default: 0.0%<br />

352 IxR Comp<br />

Stp Off<br />

A<br />

10 20 30 40<br />

f<br />

50 Hz<br />

Range: 0-25% x U NOM (0.1% of resolution)<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43143<br />

Profibus slot/index 169/47<br />

EtherCAT index (hex) 4c47<br />

Profinet IO index 19527<br />

Fieldbus format Long, 1= 0.1 %<br />

Modbus format EInt<br />

114 Functional Description CG Drives & Automation, 01-5325-01r1<br />

%<br />

100<br />

25<br />

U<br />

IxR Comp=25%<br />

IxR Com=0%<br />

353 IxR CompUsr<br />

Stp 0.0%<br />

A


NOTE: A too high level of IxR Compensation could cause<br />

motor saturation. This can cause a “Power Fault” trip.<br />

The effect of IxR Compensation is stronger with higher<br />

power motors.<br />

NOTE: The motor may be overheated at low speed.<br />

Therefore it is important that the Motor I 2 t Current [232]<br />

is set correctly.<br />

Flux Optimization [354]<br />

Flux Optimization reduces the energy consumption and the<br />

motor noise, at low or no load conditions.<br />

Flux Optimization automatically decreases the V/Hz ratio,<br />

depending on the actual load of the motor when the process<br />

is in a steady situation. Fig. 86 shows the area within which<br />

the Flux Optimization is active.<br />

Default: Off<br />

Off 0 Function disabled<br />

On 1 Function enabled<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43144<br />

Profibus slot/index 169/48<br />

EtherCAT index (hex) 4c48<br />

Profinet IO index 19528<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

U<br />

%<br />

100<br />

Fig. 86 Flux Optimizing<br />

354 Flux optim<br />

Stp Off<br />

A<br />

Flux optimizing<br />

area<br />

f<br />

50 Hz<br />

NOTE: Flux optimization works best at stable situations<br />

in slow changing processes.<br />

Maximum power [355]<br />

Sets maximum power. Can be used for limiting motor<br />

power in field weakening operation. This function operates<br />

as an upper power limit and internally limits the parameter<br />

“Max Torque [351]” according to :<br />

Tlimit = Plimit[%] / (Actual Speed / Sync Speed)<br />

Default: Off<br />

Off 0 Off. No power limit<br />

1 - 400 1 - 400 1 - 400% of motor nominal power<br />

NOTE: The maximum possible setting for parameter<br />

[355] is limited by I NOM/I MOT x 120%, but not higher<br />

than 400%.<br />

Communication information<br />

355 Max Power<br />

Stp Off<br />

A<br />

Modbus Instance no/DeviceNet no: 43145<br />

Profibus slot/index 169/49<br />

EtherCAT index (hex) 4c49<br />

Profinet IO index 19529<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 115


11.3.7 Preset References [360]<br />

Motor Potentiometer [361]<br />

Sets the properties of the motor potentiometer function. See<br />

the parameter “DigIn1 [521]” for the selection of the motor<br />

potentiometer function.<br />

Default: Non Volatile<br />

Volatile 0<br />

Non volatile 1<br />

Communication information<br />

Fig. 87 MotPot function<br />

361 Motor Pot<br />

Stp Non Volatie<br />

A<br />

After a stop, trip or power down, the AC<br />

drive will start always from zero speed (or<br />

minimum speed, if selected).<br />

Non Volatile. After a stop, trip or power<br />

down of the AC drive, the reference value<br />

at the moment of the stop will be<br />

memorized. After a new start command<br />

the output speed will resume to this saved<br />

value.<br />

Modbus Instance no/DeviceNet no: 43131<br />

Profibus slot/index 169/35<br />

EtherCAT index (hex) 4c3b<br />

Profinet IO index 19515<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Motpot<br />

UP<br />

Motpot<br />

DOWN<br />

n<br />

t<br />

t<br />

t<br />

Preset Ref 1 [362] to Preset Ref 7<br />

[368]<br />

Preset speeds have priority over the analogue inputs. Preset<br />

speeds are activated by the digital inputs. The digital inputs<br />

must be set to the function Pres. Ref 1, Pres. Ref 2 or Pres.<br />

Ref 4.<br />

Depending on the number of digital inputs used, up to 7<br />

preset speeds can be activated per parameter set. Using all<br />

the parameter sets, up to 28 preset speeds are possible.<br />

Default: Speed, 0 rpm<br />

Dependent on: Process Source [321] and Process Unit [322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

362 Preset Ref 1<br />

Stp 0rpm<br />

A<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 43132–43138<br />

Profibus slot/index 169/36–169/42<br />

EtherCAT index (hex) 4c3c - 4c42<br />

Profinet IO index 19516 - 19522<br />

Long, 1= 1 rpm, 1 %,<br />

1°C or<br />

Fieldbus format<br />

0.001 if Process<br />

Value/Process Ref<br />

using a [322] unit<br />

Modbus format EInt<br />

The same settings are valid for the menus:<br />

“[363] Preset Ref 2”, with default 250 rpm<br />

“[364] Preset Ref 3”, with default 500 rpm<br />

“[365] Preset Ref 4”, with default 750 rpm<br />

“[366] Preset Ref 5”, with default 1000 rpm<br />

“[367] Preset Ref 6”, with default 1250 rpm<br />

“[368] Preset Ref 7”, with default 1500 rpm<br />

The selection of the presets is as in Table 23.<br />

116 Functional Description CG Drives & Automation, 01-5325-01r1


Table 23<br />

Preset<br />

Ctrl3<br />

Preset<br />

Ctrl2<br />

Preset<br />

Ctrl1<br />

1)<br />

= selected if only one preset reference is active<br />

1 = active input<br />

0 = non active input<br />

Keyboard reference mode [369]<br />

This parameter sets how the reference value [310] is edited.<br />

Communication information<br />

Output Speed<br />

0 0 0 Analogue reference<br />

0 0 1 1) Preset Ref 1<br />

0 1 1) 0 Preset Ref 2<br />

0 1 1 Preset Ref 3<br />

1 1)<br />

0 0 Preset Ref 4<br />

1 0 1 Preset Ref 5<br />

1 1 0 Preset Ref 6<br />

1 1 1 Preset Ref 7<br />

NOTE: If only Preset Ctrl3 is active, then the Preset Ref 4<br />

can be selected. If Presets Ctrl2 and 3 are active, then<br />

the Preset Ref 2, 4 and 6 can be selected.<br />

Default: MotPot<br />

Normal 0<br />

MotPot 1<br />

369 Key Ref Mode<br />

Stp MotPot<br />

A<br />

The reference value is edited as a normal<br />

parameter (the new reference value is<br />

activated when Enter is pressed after the<br />

value has been changed). The “Acc Time<br />

[331]” and “Dec Time [332]” are used.<br />

The reference value is edited using the<br />

motor potentiometer function (the new<br />

reference value is activated directly when<br />

the key + or - is pressed). The “Acc MotPot<br />

[333]” and “Dec MotPot [334]” are used.<br />

Modbus Instance no/DeviceNet no: 43139<br />

Profibus slot/index 169/43<br />

EtherCAT index (hex) 4c43<br />

Profinet IO index 19523<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: When Key Ref Mode is set to MotPot, the<br />

reference value ramp times are according to the “Acc<br />

MotPot [333]” and “Dec MotPot [334]” settings. Actual<br />

speed ramp will be limited according to “Acc Time<br />

[331]” and “Dec Time [332]”.<br />

11.3.8 PID Process Control [380]<br />

The PID controller is used to control an external process via<br />

a feedback signal. The reference value can be set via analogue<br />

input AnIn1, at the Control Panel [310] by using a Preset<br />

Reference, or via serial communication. The feedback signal<br />

(actual value) must be connected to an analogue input that<br />

is set to the function Process Value.<br />

Process PID Control [381]<br />

This function enables the PID controller and defines the<br />

response to a changed feedback signal.<br />

Default: Off<br />

Off 0 PID control deactivated.<br />

On 1<br />

Invert 2<br />

Communication information<br />

The speed increases when the feedback<br />

value decreases. PID settings according to<br />

menus [381] to [385].<br />

The speed decreases when the feedback<br />

value decreases. PID settings according to<br />

menus [383] to [385].<br />

Modbus Instance no/DeviceNet no: 43154<br />

Profibus slot/index 169/58<br />

EtherCAT index (hex) 4c52<br />

Profinet IO index 19538<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

PID P Gain [383]<br />

Setting the P gain for the PID controller.<br />

Default: 1.0<br />

Range: 0.0–30.0<br />

381 PID Control<br />

Stp Off<br />

A<br />

383 PID P Gain<br />

Stp 1.0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43156<br />

Profibus slot/index 169/60<br />

EtherCAT index (hex) 4c54<br />

Profinet IO index 19540<br />

Fieldbus format Long, 1=0.1<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 117


Process<br />

reference<br />

Process<br />

feedback<br />

+<br />

-<br />

Fig. 88 Closed loop PID control<br />

PID I Time [384]<br />

Setting the integration time for the PID controller.<br />

Default: 1.00 s<br />

Process<br />

PID<br />

Range: 0.01–300 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43157<br />

Profibus slot/index 169/61<br />

EtherCAT index (hex) 4c55<br />

Profinet IO index 19541<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

Process PID D Time [385]<br />

Setting the differentiation time for the PID controller.<br />

Default: 0.00 s<br />

Range: 0.00–30 s<br />

Communication information<br />

AC drive<br />

384 PID I Time<br />

Stp 1.00s<br />

A<br />

385 PID D Time<br />

Stp 0.00s<br />

A<br />

Modbus Instance no/DeviceNet no: 43158<br />

Profibus slot/index 169/62<br />

EtherCAT index (hex) 4c56<br />

Profinet IO index 19542<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

M<br />

Process<br />

06-F95<br />

PID sleep functionality<br />

This function is controlled via a wait delay and a separate<br />

wake-up margin condition. With this function it is possible<br />

to put the AC drive in “sleep mode” when the process value<br />

is at it’s set point and the motor is running at minimum<br />

speed for the length of the time set in [386]. By going into<br />

sleep mode, the by the application consumed energy is<br />

reduced to a minimum. When the process feedback value<br />

goes below the set margin on the process reference as set in<br />

[387], the AC drive will wake up automatically and normal<br />

PID operation continues, see examples.<br />

NOTE: When the drive is in Sleep mode, this is indicated<br />

with “slp” in the lower left corner of the display.<br />

PID sleep when less than minimum<br />

speed [386]<br />

If the PID output is equal to or less than minimum speed<br />

for given delay time, the AC drive will go to sleep.<br />

Default: Off<br />

386 PID


PID Activation Margin [387]<br />

The PID activation (wake-up) margin is related to the<br />

process reference and sets the limit when the AC drive<br />

should wake-up/start again.<br />

Default: 0<br />

387 PID Act Marg<br />

Stp 0rpm<br />

A<br />

Range: 0 –10000 in Process unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43372<br />

Profibus slot/index 170/21<br />

EtherCAT index (hex) 4d2c<br />

Profinet IO index 19756<br />

Long, 1= 1 rpm, 1<br />

%, 1°C or<br />

Fieldbus format<br />

0.001 if Process<br />

Value/Process Ref<br />

using a [322] unit<br />

Modbus format EInt<br />

NOTE: The margin is always a positive value.<br />

Example 1 PID control = normal (flow or<br />

pressure control)<br />

[321] = F (AnIn)<br />

[322] = Bar<br />

[310] = 20 Bar<br />

[342] = 2 s (inactive since [386] is activated and have higher<br />

priority)<br />

[381]= On<br />

[386] = 10 s<br />

[387] = 1 Bar<br />

The AC drive will stop/sleep when the speed (PID output) is<br />

below or equal to Min Speed for 10 seconds. The AC drive<br />

will activate/wake up when the “Process value” goes below<br />

the PID Activation Margin which is related to the process<br />

reference, i.e. goes below (20-1) Bar. See Fig. 89.<br />

[711] Process Value<br />

[387]<br />

[712] Speed<br />

[386]<br />

Stop/Sleep<br />

[341] Min Speed<br />

[310] Process Ref<br />

Fig. 89 PID Stop/sleep with normal PID<br />

Activate/Wake up<br />

Example 2 PID control = inverted (tank level<br />

control)<br />

[321] = F (AnIn)<br />

[322] = m<br />

[310] = 7 m<br />

[342] = 2 s (inactive since [386] is activated and have higher<br />

priority)<br />

[381]= Inverted<br />

[386] = 30 s<br />

[387] = 1 m<br />

The AC drive will stop/sleep when the speed (PID output) is<br />

below or equal to Min Speed for 30 seconds. The AC drive<br />

will activate/wake up when the “Process value” goes above<br />

the PID Activation Margin which is related to the process<br />

reference, i.e. goes above (7+1) m. See Fig. 90.<br />

[711] Process Value<br />

[387]<br />

[310] Process Ref<br />

[712] Speed<br />

[386]<br />

Stop/Sleep<br />

[341] Min Speed<br />

Fig. 90 PID Stop/sleep with inverted PID<br />

Activate/Wake up<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 119


PID Steady State Test [388]<br />

In application situations where the feedback can become<br />

independent of the motor speed, this PID Steady Test<br />

function can be used to overrule the PID operation and<br />

force the AC drive to go in sleep mode i.e. the AC drive<br />

automatically reduces the output speed while at the same<br />

time ensures the process value.<br />

Example: pressure controlled pump systems with low/no<br />

flow operation and where the process pressure has become<br />

independent of the pump speed, e.g. due to slowly closed<br />

valves. By going into Sleep mode, heating of the pump and<br />

motor will be avoided and no energy is spilled.<br />

PID Steady state test delay.<br />

NOTE: It is important that the system has reached a<br />

stable situation before the Steady State Test is initiated.<br />

Default: Off<br />

Range: Off, 0.01–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43373<br />

Profibus slot/index 170/22<br />

EtherCAT index (hex) 4d2d<br />

Profinet IO index 19757<br />

Fieldbus format Long, 1=0.01 s<br />

Modbus format EInt<br />

[711] Process Value<br />

[310] Process Ref<br />

[712] Speed<br />

Fig. 91 Steady state test<br />

388 PID Stdy Tst<br />

Stp Off<br />

A<br />

[389]<br />

[389]<br />

[387]<br />

Normal PID<br />

[388]<br />

Start steady<br />

state test<br />

Steady state<br />

test<br />

Stop steady<br />

state test<br />

PID Steady State Margin [389]<br />

PID steady state margin defines a margin band around the<br />

reference that defines “steady state operation”. During the<br />

steady state test the PID operation is overruled and the AC<br />

drive is decreasing the speed as long as the PID error is<br />

within the steady state margin. If the PID error goes outside<br />

the steady state margin the test failed and normal PID<br />

operation continues, see example.<br />

Default: 0<br />

[341] Min Speed [386] PID


11.3.9 Pump/Fan Control [390]<br />

The Pump Control functions are in menu [390]. The<br />

function is used to control a number of drives (pumps, fans,<br />

etc.) of which one is always driven by the AC drive.<br />

Pump enable [391]<br />

This function will enable the pump control to set all relevant<br />

pump control functions.<br />

Default: Off<br />

Off 0 Pump control is switched off.<br />

On 1<br />

Communication information<br />

Pump control is on:<br />

- Pump control parameters [392] to [39G]<br />

appear and are activated according to<br />

default settings.<br />

- View functions [39H] to [39M] are added<br />

in the menu structure.<br />

Modbus Instance no/DeviceNet no: 43161<br />

Profibus slot/index 169/65<br />

EtherCAT index (hex) 4c59<br />

Profinet IO index 19545<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Number of Drives [392]<br />

Sets the total number of drives which are used, including the<br />

Master AC drive. The setting here depends on the parameter<br />

“Select Drive [393]”. After the number of drives is chosen it<br />

is important to set the relays for the pump control. If the<br />

digital inputs are also used for status feedback, these must be<br />

set for the pump control according to; Pump 1 OK– Pump6<br />

OK in menu [520].<br />

Default: 1<br />

1-3 Number of drives if I/O Board is not used.<br />

1-6<br />

1-7<br />

391 Pump enable<br />

Stp Off<br />

A<br />

A<br />

392 No of Drives<br />

Stp 1<br />

Number of drives if 'Alternating MASTER' is<br />

used, see Select Drive [393]. (I/O Board is<br />

used.)<br />

Number of drives if 'Fixed MASTER' is used,<br />

see Select Drive [393].<br />

(I/O Board is used.)<br />

NOTE: Used relays must be defined as Slave Pump or<br />

Master Pump. Used digital inputs must be defined as<br />

Pump Feedback.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43162<br />

Profibus slot/index 169/66<br />

EtherCAT index (hex) 4c5a<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Select Drive [393]<br />

Sets the main operation of the pump system. 'Sequence' and<br />

'Runtime' are Fixed MASTER operation. 'All' means<br />

Alternating MASTER operation.<br />

Default: Sequence<br />

Sequence 0<br />

Run Time 1<br />

All 2<br />

Communication information<br />

393 Select Drive<br />

Stp Sequence<br />

A<br />

Fixed MASTER operation:<br />

- The additional drives will be selected in<br />

sequence, i.e. first pump 1 then pump 2<br />

etc.<br />

- A maximum of 7 drives can be used.<br />

Fixed MASTER operation:<br />

- The additional drives will be selected<br />

depending on the Run Time. So the drive<br />

with the lowest Run Time will be selected<br />

first. The Run Time is monitored in menus<br />

[39H] to [39M] in sequence. For each drive<br />

the Run Time can be reset.<br />

- When drives are stopped, the drive with<br />

the longest Run Time will be stopped first.<br />

- Maximum 7 drives can be used.<br />

Alternating MASTER operation:<br />

- When the drive is powered up, one drive is<br />

selected as the Master drive. The selection<br />

criteria depends on the Change Condition<br />

[394]. The drive will be selected according<br />

to the Run Time. So the drive with the<br />

lowest Run Time will be selected first. The<br />

Run Time is monitored in menus [39H] to<br />

[39M] in sequence. For each drive the Run<br />

Time can be reset.<br />

- A maximum of 6 drives can be used.<br />

Modbus Instance no/DeviceNet no: 43163<br />

Profibus slot/index 169/67<br />

EtherCAT index (hex) 4c5b<br />

Profinet IO index 19547<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

NOTE: This menu will NOT be active if less than 3 drives<br />

are selected.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 121


Change Condition [394]<br />

This parameter determines the criteria for changing the<br />

master. This menu only appears if Alternating MASTER<br />

operation is selected. The elapsed run time of each drive is<br />

monitored. The elapsed run time always determines which<br />

drive will be the 'new' master drive.<br />

This function is only active if the parameter “Select Drive<br />

[393]”=All.<br />

Default: Both<br />

Stop 0<br />

Timer 1<br />

Both 2<br />

A<br />

Communication information<br />

394 Change Cond<br />

Stp Both<br />

The Runtime of the master drive<br />

determines when a master drive has to be<br />

changed. The change will only take place<br />

after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition<br />

- Trip condition.<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The change will take place<br />

immediately. So during operation the<br />

additional pumps will be stopped<br />

temporarily, the 'new' master will be<br />

selected according to the Run Time and the<br />

additional pumps will be started again.<br />

It is possible to leave 2 pumps running<br />

during the change operation. This can be<br />

set with Drives on Change [396].<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The 'new' master will be selected<br />

according to the elapsed Run Time. The<br />

change will only take place after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition.<br />

- Trip condition.<br />

Modbus Instance no/DeviceNet no: 43164<br />

Profibus slot/index 169/68<br />

EtherCAT index (hex) 4c5c<br />

Profinet IO index 19548<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: If the Status feedback inputs (DigIn 9 to Digin 14)<br />

are used, the master drive will be changed immediately<br />

if the feedback generates an 'Error'.<br />

Change Timer [395]<br />

When the time set here is elapsed, the master drive will be<br />

changed. This function is only active if “Select Drive<br />

[393]”=All and “Change Cond [394]”= Timer/ Both.<br />

Default: 50 h<br />

Range: 1-3000 h<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43165<br />

Profibus slot/index 169/69<br />

EtherCAT index (hex) 4c5d<br />

Profinet IO index 19549<br />

Fieldbus format UInt, 1=1 h<br />

Modbus format UInt, 1=1 h<br />

Drives on Change [396]<br />

If a master drive is changed according to the timer function<br />

(Change Condition=Timer/Both [394]), it is possible to<br />

leave additional pumps running during the change<br />

operation. With this function the change operation will be<br />

as smooth as possible. The maximum number to be<br />

programmed in this menu depends on the number of a<br />

dditional drives.<br />

Example:<br />

If the number of drives is set to 6, the maximum value will<br />

be 4. This function is only active if “Select Drive [393]”=All.<br />

Default: 0<br />

395 Change Timer<br />

Stp 50h<br />

A<br />

396 Drives on Ch<br />

Stp 0<br />

Range: 0 to (the number of drives - 2)<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43166<br />

Profibus slot/index 169/70<br />

EtherCAT index (hex) 4c5e<br />

Profinet IO index 19550<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

122 Functional Description CG Drives & Automation, 01-5325-01r1<br />

A


Upper Band [397]<br />

If the speed of the master drive comes into the upper band,<br />

an additional drive will be added after a delay time that is set<br />

in “Start delay [399]”.<br />

Default: 10%<br />

Range: 0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43167<br />

Profibus slot/index 169/71<br />

EtherCAT index (hex) 4c5f<br />

Profinet IO index 19551<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Upper Band = 10%<br />

Start delay will be activated:<br />

Range = Max Speed to Min Speed = 1500–300 = 1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 1500–120 = 1380 rpm<br />

Speed<br />

Max<br />

Min<br />

Fig. 92 Upper band<br />

Lower Band [398]<br />

If the speed of the master drive comes into the lower band<br />

an additional drive will be stopped after a delay time. This<br />

delay time is set in the parameter “Stop Delay [39A]”.<br />

Default: 10%<br />

397 Upper Band<br />

Stp 10%<br />

A<br />

Upper band<br />

A<br />

Start Delay [399]<br />

398 Lower Band<br />

Stp 10%<br />

next pump starts<br />

Flow/Pressure<br />

(NG_50-PC-12_1)<br />

Range: 0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43168<br />

Profibus slot/index 169/72<br />

EtherCAT index (hex) 4c60<br />

Profinet IO index 19552<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Lower Band = 10%<br />

Stop delay will be activated:<br />

Range = Max Speed - Min Speed = 1500–300 = 1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 300 + 120 = 420 rpm<br />

Fig. 93 Lower band<br />

Start Delay [399]<br />

This delay time must have elapsed before the next pump is<br />

started. A delay time prevents the nervous switching of<br />

pumps.<br />

Default: 0 s<br />

Range: 0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43169<br />

Profibus slot/index 169/73<br />

EtherCAT index (hex) 4c61<br />

Profinet IO index 19553<br />

Fieldbus format Long, 1=1s<br />

Modbus format EInt<br />

(NG_50-PC-13_1)<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 123<br />

Speed<br />

Max<br />

Min<br />

“top” pump stops<br />

Stop Delay [39A]<br />

Lower band<br />

399 Start Delay<br />

Stp 0s<br />

A<br />

Flow/Pressure


Stop Delay [39A]<br />

This delay time must have elapsed before the 'top' pump is<br />

stopped. A delay time prevents the nervous switching of<br />

pumps.<br />

Default: 0 s<br />

Range: 0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43170<br />

Profibus slot/index 169/74<br />

EtherCAT index (hex) 4c62<br />

Profinet IO index 19554<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Upper Band Limit [39B]<br />

If the speed of the pump reaches the upper band limit, the<br />

next pump is started immediately without delay. If a start<br />

delay is used this delay will be ignored. Range is between<br />

0%, equalling max speed, and the set percentage for the<br />

“UpperBand [397]”.<br />

Default: 0%<br />

Range:<br />

Communication information<br />

Fig. 94 Upper band limit<br />

39A Stop Delay<br />

Stp 0s<br />

A<br />

39B Upp Band Lim<br />

Stp 0%<br />

A<br />

0 to Upper Band level. 0% (=max speed) means<br />

that the Limit function is switched off.<br />

Modbus Instance no/DeviceNet no: 43171<br />

Profibus slot/index 169/75<br />

EtherCAT index (hex) 4c63<br />

Profinet IO index 19555<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Speed<br />

Max<br />

Min<br />

Upper band<br />

Start Delay [399]<br />

next pump starts<br />

immediately<br />

Upper band<br />

limit [39B]<br />

Flow/Pressure<br />

(NG_50-PC-14_2)<br />

Lower Band Limit [39C]<br />

If the speed of the pump reaches the lower band limit, the<br />

'top' pump is stopped immediately without delay. If a stop<br />

delay is used this delay will be ignored. Range is from 0%,<br />

equalling min speed, to the set percentage for the “Lower<br />

Band [398]”.<br />

Default: 0%<br />

Range:<br />

Communication information<br />

Fig. 95 Lower band limit<br />

39C Low Band Lim<br />

Stp 0%<br />

0 to Lower Band level. 0% (=min speed) means<br />

that he Limit function is switched off.<br />

Modbus Instance no/DeviceNet no: 43172<br />

Profibus slot/index 169/76<br />

EtherCAT index (hex) 4c64<br />

Profinet IO index 19556<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

124 Functional Description CG Drives & Automation, 01-5325-01r1<br />

Speed<br />

Max<br />

Min<br />

A<br />

Lower band<br />

“top” pump stops<br />

immediately<br />

Stop Delay [39A]<br />

Lower band<br />

limit [39C]<br />

Flow/Pressure<br />

(NG_50-PC-15_2)


Settle Time Start [39D]<br />

The settle start allows the process to settle after a pump is<br />

switched on before the pump control continues. If an<br />

additional pump is started D.O.L. (Direct On Line) or Y/<br />

�,<br />

the flow or pressure can still fluctuate due to the 'rough'<br />

start/stop method. This could cause unnecessary starting<br />

and stopping of additional pumps.<br />

During the Settle start:<br />

• PID controller is off.<br />

• The speed is kept at a fixed level after adding a pump.<br />

Default: 0 s<br />

Range: 0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43173<br />

Profibus slot/index 169/77<br />

EtherCAT index (hex) 4c65<br />

Profinet IO index 19557<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Transition Speed Start [39E]<br />

The transition speed start is used to minimize a flow/<br />

pressure overshoot when adding another pump. When an<br />

additional pump needs to be switched on, the master pump<br />

will slow down to the set transition speed start value, before<br />

the additional pump is started. The setting depends on the<br />

dynamics of both the master drive and the additional drives.<br />

The transition speed is best set by trial and error.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

39D Settle Start<br />

Stp 0s<br />

A<br />

39E TransS Start<br />

Stp 60%<br />

A<br />

Range: 0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43174<br />

Profibus slot/index 169/78<br />

EtherCAT index (hex) 4c66<br />

Profinet IO index 19558<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

NOTE: If set to 100 %, the transition speed, when<br />

starting pumps, is ignored and no speed adaption is<br />

made.<br />

I.e. the slave pump is started directly and speed of the<br />

master pump is maintained.<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When an additional pump is needed, the speed will be<br />

controlled down to min speed + (60% x (1500 rpm - 200<br />

rpm)) = 200 rpm + 780 rpm = 980 rpm. When this speed is<br />

reached, the additional pump with the lowest run time<br />

hours will be switched on.<br />

Fig. 96 Transition speed start<br />

Fig. 97 Effect of transition speed<br />

(NG_50-PC-16_1)<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 125<br />

Speed<br />

Actual<br />

Trans<br />

Min<br />

Flow/Pressure<br />

Switch on<br />

procedure starts<br />

Additional pump<br />

Master pump<br />

Actual start<br />

command of next<br />

pump (RELAY)<br />

Transition speed<br />

decreases overshoot<br />

Flow/Pressure<br />

Time


Settle Time Stop [39F]<br />

The settle stop allows the process to settle after a pump is<br />

switched off before the pump control continues. If an<br />

additional pump is stopped D.O.L. (Direct On Line) or Y/<br />

�,<br />

the flow or pressure can still fluctuate due to the 'rough'<br />

start/stop method. This could cause unnecessary starting<br />

and stopping of additional pumps.<br />

During the Settle stop:<br />

• PID controller is off.<br />

• the speed is kept at a fixed level after stopping a pump<br />

Default: 0 s<br />

Range: 0–999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43175<br />

Profibus slot/index 169/79<br />

EtherCAT index (hex) 4c67<br />

Profinet IO index 19559<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Transition Speed Stop [39G]<br />

The transition speed stop is used to minimize a flow/<br />

pressure overshoot when shutting down an additional pump.<br />

The setting depends on the dynamics of both the master<br />

drive and the additional drives.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

39F Settle Stop<br />

Stp 0s<br />

A<br />

39G TransS Stop<br />

Stp 60%<br />

A<br />

Range: 0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43176<br />

Profibus slot/index 169/80<br />

EtherCAT index (hex) 4c68<br />

Profinet IO index 19560<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

NOTE: If set to 0 %, the transition speed when stopping<br />

pumps, is ignored and no speed adaption is made.<br />

I.e. the slave pump is stopped directly and speed of the<br />

master pump is continued.<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When less additional pumps are needed, the speed will be<br />

controlled up to min speed + (60% x (1500 rpm - 200<br />

rpm)) = 200 rpm + 780 rpm = 980 rpm. When this speed is<br />

reached, the additional pump with the highest run time<br />

hours will be switched off.<br />

Fig. 98 Transition speed stop<br />

126 Functional Description CG Drives & Automation, 01-5325-01r1<br />

Speed<br />

Max<br />

Trans<br />

Actual<br />

Min<br />

Actual shut down of pump<br />

Master pump<br />

Additional pump<br />

Flow/Pressure<br />

Switch off procedure starts


Run Times 1-6 [39H] to [39M]<br />

Unit: h:mm:ss (hours:minutes:seconds)<br />

Range: 0:00:00–262143:59:59<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

31051 : 31052 : 31053(hr:min:sec)<br />

31054 : 31055: 31056(hr:min:sec)<br />

31057 : 31058: 31059(hr:min:sec)<br />

31060 : 31061: 31062(hr:min:sec)<br />

31063 : 31064: 31065(hr:min:sec)<br />

31066 : 31067: 31068(hr:min:sec)<br />

121/195, 121/196, 121/197,<br />

121/198, 121/199, 121/200,<br />

121/201, 121/202, 121/203,<br />

121/204, 121/205, 121/206,<br />

121/207, 121/208, 121/209,<br />

121/210, 121/211, 121/212<br />

241b : 241c : 241d<br />

241e : 241f : 2420<br />

2421 : 2422 : 2423<br />

2424 : 2425 : 2426<br />

2427 : 2428 : 2429<br />

242a : 242b : 242c<br />

Profinet IO index<br />

1051:1052:1053<br />

- 1068<br />

Fieldbus format Long, 1=1h/m/s<br />

Modbus format EInt<br />

Reset Run Times 1-6 [39H1] to [39M1]<br />

Default: No<br />

No 0<br />

Yes 1<br />

39H Run Time 1<br />

Stp h:mm:ss<br />

A<br />

39H1 Rst Run Tm1<br />

Stp No<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 38–43, pump 1 -6<br />

Profibus slot/index 0/37–0/42<br />

EtherCAT index (hex) 2026 - 202b<br />

Profinet IO index 38 - 43<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Pump Status [39N]<br />

39N Pump 123456<br />

Stp OCD<br />

A<br />

Indication Description<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31069<br />

Profibus slot/index 121/213<br />

EtherCAT index (hex) 242d<br />

Profinet IO index 1069<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Number backup/reserve [39P]<br />

Sets the number of pumps used for backup/reserve which in<br />

normal conditions can not be selected. This function can be<br />

used for increasing redundancy in the pump system by<br />

having pumps in reserve that can be activated when some<br />

pumps indicate fault or are shut off for maintenance.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43177<br />

Profibus slot/index 169/81<br />

EtherCAT index (hex) 4c69<br />

Profinet IO index 19561<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 127<br />

C<br />

Control, master pump, only when alternating<br />

master is used<br />

D Direct control<br />

O Pump is off<br />

E Pump error<br />

Default: 0<br />

Range: 0-3<br />

39P No of Backup<br />

Stp 0<br />

A


11.4 Load Monitor and Process<br />

Protection [400]<br />

11.4.1 Load Monitor [410]<br />

The monitor functions enable the AC drive to be used as a<br />

load monitor. Load monitors are used to protect machines<br />

and processes against mechanical overload and underload,<br />

e.g. a conveyer belt or screw conveyer jamming, belt failure<br />

on a fan and a pump dry running. See explanation in section<br />

Fig. 44, page 44.<br />

Alarm Select [411]<br />

Selects the types of alarms that are active.<br />

Default: Off<br />

Off 0 No alarm functions active.<br />

Min 1<br />

Max 2<br />

Max+Min 3<br />

Communication information<br />

411 Alarm Select<br />

Stp Off<br />

A<br />

Min Alarm active. The alarm output<br />

functions as an underload alarm.<br />

Max Alarm active. The alarm output<br />

functions as an overload alarm.<br />

Both Max and Min alarm are active. The<br />

alarm outputs function as overload and<br />

underload alarms.<br />

Modbus Instance no/DeviceNet no: 43321<br />

Profibus slot/index 169/225<br />

EtherCAT index (hex) 4cf9<br />

Profinet IO index 19705<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Alarm Trip [412]<br />

Selects which alarm must cause a trip to the AC drive.<br />

Default: Off<br />

Selection: Same as in menu [411]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43322<br />

Profibus slot/index 169/226<br />

EtherCAT index (hex) 4cfa<br />

Profinet IO index 19706<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Ramp Alarm [413]<br />

This function inhibits the (pre) alarm signals during<br />

acceleration/deceleration of the motor to avoid false alarms.<br />

Default: Off<br />

Off 0<br />

On 1<br />

Communication information<br />

412 Alarm trip<br />

Stp Off<br />

A<br />

413 Ramp Alarm<br />

Stp Off<br />

A<br />

(Pre) alarms are inhibited during<br />

acceleration/deceleration.<br />

(Pre) alarms active during acceleration/<br />

deceleration.<br />

Modbus Instance no/DeviceNet no: 43323<br />

Profibus slot/index 169/227<br />

EtherCAT index (hex) 4cfb<br />

Profinet IO index 19707<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

128 Functional Description CG Drives & Automation, 01-5325-01r1


Alarm Start Delay [414]<br />

This parameter is used if, for example, you want to override<br />

an alarm during the start-up procedure.<br />

Sets the delay time after a run command, after which the<br />

alarm may be given.<br />

• If Ramp Alarm=On. The start delay begins after a RUN<br />

command.<br />

• If Ramp Alarm=Off. The start delay begins after the<br />

acceleration ramp.<br />

Default: 2 s<br />

Range: 0-3600 s<br />

414 Start Delay<br />

Stp 2s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43324<br />

Profibus slot/index 169/228<br />

EtherCAT index (hex) 4cfc<br />

Profinet IO index 19708<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Load Type [415]<br />

In this menu you select monitor type according to the load<br />

characteristic of your application. By selecting the required<br />

monitor type, the overload and underload alarm function<br />

can be optimized according to the load characteristic.<br />

When the application has a constant load over the whole<br />

speed range, i.e. extruder or screw compressor, the load type<br />

can be set to basic. This type uses a single value as a reference<br />

for the nominal load. This value is used for the complete<br />

speed range of the AC drive. The value can be set or<br />

automatically measured. See Autoset Alarm [41A] and<br />

“Normal Load [41B]” about setting the nominal load<br />

reference.<br />

The load curve mode uses an interpolated curve with 9 load<br />

values at 8 equal speed intervals. This curve is populated by<br />

a test run with a real load. This can be used with any smooth<br />

load curve including constant load.<br />

Fig. 99<br />

Default: Basic<br />

Basic 0<br />

Load<br />

Curve<br />

Communication information<br />

Max Alarm [416]<br />

Uses a fixed maximum and minimum load<br />

level over the full speed range. Can be used<br />

in situations where the torque is<br />

independent of the speed.<br />

Max Alarm Margin [4161]<br />

With load type Basic, [415], used the Max Alarm Margin<br />

sets the band above the “Normal Load [41B]” menu that<br />

does not generate an alarm. With load type Load Curve<br />

[415], used the Max Alarm Margin sets the band above the<br />

Load Curve [41C], that does not generate an alarm. The<br />

Max Alarm Margin is a percentage of nominal motor<br />

torque.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 129<br />

Load<br />

1<br />

Uses the measured actual load<br />

characteristic of the process over the speed<br />

range.<br />

Modbus Instance no/DeviceNet no: 43325<br />

Profibus slot/index 169/229<br />

EtherCAT index (hex) 4cfd<br />

Profinet IO index 19709<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: 15%<br />

Range: 0–400%<br />

Load curve<br />

415 Load Type<br />

Stp Basic<br />

A<br />

4161 MaxAlarmMar<br />

Stp 15%<br />

A<br />

Max Alarm<br />

Basic<br />

Min Alarm<br />

Speed


Communication information<br />

Modbus Instance no/DeviceNet no: 43326<br />

Profibus slot/index 169/230<br />

EtherCAT index (hex) 4cfe<br />

Profinet IO index 19710<br />

Fieldbus format Long, 1=1%<br />

Modbus format Eint<br />

Max Alarm delay [4162]<br />

When the load level without interruption exceeds the alarm<br />

level longer than set “Max Alarm delay” time, an alarm is<br />

activated.<br />

Default: 0.1 s<br />

Range: 0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43330<br />

Profibus slot/index 169/234<br />

EtherCAT index (hex) 4d02<br />

Profinet IO index 19714<br />

Fieldbus format Long, 1=0.1 s<br />

Modbus format EInt<br />

Max Pre Alarm [417]<br />

Max Pre AlarmMargin [4171]<br />

With load type Basic [415], used the Max Pre-Alarm Margin<br />

sets the band above the Normal Load, [41B], menu that<br />

does not generate a pre-alarm. With load type Load Curve,<br />

[415], used the Max Pre-Alarm Margin sets the band above<br />

the Load Curve, [41C], that does not generate a pre-alarm.<br />

The Max Pre-Alarm Margin is a percentage of nominal<br />

motor torque.<br />

Default: 10%<br />

Range: 0–400%<br />

4162 MaxAlarmDel<br />

Stp 0.1s<br />

A<br />

4171 MaxPreAlMar<br />

Stp 10%<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43327<br />

Profibus slot/index 169/231<br />

EtherCAT index (hex) 4cff<br />

Profinet IO index 19711<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Max Pre Alarm delay [4172]<br />

When the load level without interruption exceeds the alarm<br />

level longer than set “Max PreAlarm delay” time, a warning<br />

is activated.<br />

Default: 0.1 s<br />

Range: 0–90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43331<br />

Profibus slot/index 169/235<br />

EtherCAT index (hex) 4d03<br />

Profinet IO index 19715<br />

Fieldbus format Long, 1=0.1 s<br />

Modbus format EInt<br />

Min Pre Alarm [418]<br />

Min Pre Alarm Margin [4181]<br />

With load type Basic, [415], used the Min Pre-Alarm<br />

Margin sets the band under the Normal Load, [41B], menu<br />

that does not generate a pre-alarm. With load type Load<br />

Curve, [415], used the Min Pre-Alarm Margin sets the band<br />

under the Load Curve, [41C], that does not generate a<br />

pre-alarm. The Min Pre-Alarm Margin is a percentage of<br />

nominal motor torque.<br />

Default: 10%<br />

Range: 0-400%<br />

Communication information<br />

4172 MaxPreAlDel<br />

Stp 0.1s<br />

A<br />

4181 MinPreAlMar<br />

Stp 10%<br />

A<br />

Modbus Instance no/DeviceNet no: 43328<br />

Profibus slot/index 169/232<br />

EtherCAT index (hex) 4d00<br />

Profinet IO index 19712<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

130 Functional Description CG Drives & Automation, 01-5325-01r1


Min Pre Alarm Response delay [4182]<br />

When the load level without interruption is below the alarm<br />

level longer than set “Min PreAlarm delay” time, a warning<br />

is activated.<br />

Default: 0.1 s<br />

Range: 0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43332<br />

Profibus slot/index 169/236<br />

EtherCAT index (hex) 4d04<br />

Profinet IO index 19716<br />

Fieldbus format Long, 1=0.1 s<br />

Modbus format EInt<br />

Min Alarm [419]<br />

Min Alarm Margin [4191]<br />

With load type Basic, [415], used the Min Alarm Margin<br />

sets the band under the “Normal Load [41B]”, menu that<br />

does not generate an alarm. With load type “Load Curve<br />

[415]”, used the Min Alarm Margin sets the band under the<br />

“Load Curve [41C]”, that does not generate an alarm. The<br />

Max Alarm Margin is a percentage of nominal motor<br />

torque.<br />

Default: 15%<br />

Range: 0-400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43329<br />

Profibus slot/index 169/233<br />

EtherCAT index (hex) 4d01<br />

Profinet IO index 19713<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Min Alarm Response delay [4192]<br />

When the load level without interruption is below the alarm<br />

level longer than set “Min Alarm delay” time, an alarm is<br />

activated.<br />

Default: 0.1 s<br />

Range: 0-90 s<br />

4182 MinPreAlDel<br />

Stp 0.1s<br />

A<br />

4191 MinAlarmMar<br />

Stp 15%<br />

A<br />

4192 MinAlarmDel<br />

Stp 0.1s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43333<br />

Profibus slot/index 169/237<br />

EtherCAT index (hex) 4d05<br />

Profinet IO index 19717<br />

Fieldbus format Long, 1=0.1 s<br />

Modbus format EInt<br />

Autoset Alarm [41A]<br />

The Autoset Alarm function can measure the nominal load<br />

that is used as reference for the alarm levels. If the selected<br />

“Load Type [415]” is Basic it copies the load the motor is<br />

running with to the menu “Normal Load [41B]”. The<br />

motor must run on the speed that generates the load that<br />

needs to be recorded. If the selected “Load Type [415]” is<br />

Load Curve it performs a test-run and populates the “Load<br />

Curve [41C]” with the found load values.<br />

WARNING!<br />

When autoset does a test run the motor and<br />

application/machine will ramp up to<br />

maximum speed.<br />

NOTE: The motor must be running for the Autoset Alarm<br />

function to succeed. A not running motor generates a<br />

“Failed!” message.<br />

Default: No<br />

No 0<br />

Yes 1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43334<br />

Profibus slot/index 169/238<br />

EtherCAT index (hex) 4d06<br />

Profinet IO index 19718<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

The default set levels for the (pre)alarms are:<br />

Overload<br />

Underload<br />

41A AutoSet Alrm<br />

Stp No<br />

A<br />

Max Alarm menu [4161] + [41B]<br />

Max Pre Alarm menu [4171] + [41B]<br />

Min Pre Alarm menu [41B] - [4181]<br />

Min Alarm menu [41B] - [4191]<br />

These default set levels can be <strong>manual</strong>ly changed in menus<br />

[416] to [419]. After execution the message “Autoset OK!” is<br />

displayed for 1s and the selection reverts to “No”.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 131


Normal Load [41B]<br />

Set the level of the normal load. The alarm or pre alarm will<br />

be activated when the load is above/under normal load ±<br />

margin.<br />

Default: 100%<br />

Range: 0-400% of max torque<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and AC drive max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43335<br />

Profibus slot/index 169/239<br />

EtherCAT index (hex) 4d07<br />

Profinet IO index 19719<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Load Curve [41C]<br />

The load curve function can be used with any smooth load<br />

curve. The curve can be populated with a test-run or the<br />

values can be entered or changed <strong>manual</strong>ly.<br />

Load Curve 1-9 [41C1]-[41C9]<br />

The measured load curve is based on 9 stored samples. The<br />

curve starts at minimum speed and ends at maximum speed,<br />

the range in between is divided into 8 equal steps. The<br />

measured values of each sample are displayed in [41C1] to<br />

[41C9] and can be adapted <strong>manual</strong>ly. The value of the 1st<br />

sampled value on the load curve is displayed.<br />

Default: 100%<br />

41B Normal Load<br />

Stp 100%<br />

A<br />

41C1 Load Curve1<br />

Stp 0rpm 100%<br />

A<br />

Range: 0–400% of max torque<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Fig. 100<br />

43336%, 43337 rpm,<br />

43338 %, 43339 rpm,<br />

43340 %, 43341 rpm,<br />

43342 %, 43343 rpm,<br />

43344 %, 43345 rpm,<br />

43346 %, 43347 rpm,<br />

43348 %, 43349 rpm,<br />

43350 %, 43351 rpm,<br />

43352 %, 43353 rpm<br />

169/240, 169/242, 169/<br />

244, 169/246, 169/248,<br />

169/250, 169/252, 169/<br />

254, 170/1<br />

4d08 %, 4d09 rpm,<br />

4d0a %, 4d0b rpm,<br />

4d0c %, 4d0d rpm,<br />

4d0e %, 4d0f rpm,<br />

4d10 %, 4d11 rpm,<br />

4d12 %, 4d13 rpm,<br />

4d14 %, 4d15 rpm,<br />

4d16 %, 4d17 rpm,<br />

4d18 %, 4d19 rpm<br />

19720 %, 19721 rpm,<br />

19722 %, 19723 rpm,<br />

19724 %, 19725 rpm,<br />

19726 %, 19727 rpm,<br />

19728 %, 19729 rpm,<br />

19730 %, 19731 rpm,<br />

19732 %, 19733 rpm,<br />

19734 %, 19735 rpm,<br />

19736 %, 19738 rpm,<br />

Fieldbus format<br />

Long, 1= 1 %,<br />

Int 1=1 rpm<br />

Modbus format EInt<br />

NOTE: The speed values depend on the Min- and Max<br />

Speed values. they are read only and cannot be<br />

changed.<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

132 Functional Description CG Drives & Automation, 01-5325-01r1<br />

1<br />

0.5<br />

Min Speed<br />

Min-Max alarm tolerance band graph<br />

Speed<br />

Measured load samples<br />

Min-max tolerance band<br />

Max alarm limit<br />

Min alarm limit<br />

Max Speed


11.4.2 Process Protection [420]<br />

Submenu with settings regarding protection functions for<br />

the AC drive and the motor.<br />

Low Voltage Override [421]<br />

If a dip in the mains supply occurs and the low voltage<br />

override function is enabled, the AC drive will automatically<br />

decrease the motor speed to keep control of the application<br />

and prevent an under voltage trip until the input voltage<br />

rises again. Therefore the rotating energy in the motor/load<br />

is used to keep the DC link voltage level at the override level,<br />

for as long as possible or until the motor comes to a<br />

standstill. This is dependent on the inertia of the motor/load<br />

combination and the load of the motor at the time the dip<br />

occurs, see Fig. 101.<br />

Default: On<br />

Off 0 At a voltage dip the low voltage trip will protect.<br />

On 1<br />

Communication information<br />

Fig. 101 Low voltage override<br />

421 Low Volt OR<br />

Stp On<br />

A<br />

At mains dip, AC drive ramps down until<br />

voltage rises.<br />

Modbus Instance no/DeviceNet no: 43361<br />

Profibus slot/index 170/10<br />

EtherCAT index (hex) 4d21<br />

Profinet IO index 19745<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

DC link voltage<br />

Override<br />

level<br />

Low Volt.<br />

level<br />

Speed<br />

(06-F60new)<br />

NOTE: During the low voltage override the LED trip/limit<br />

blinks.<br />

t<br />

t<br />

Rotor locked [422]<br />

With the rotor locked function enabled, the AC drive will<br />

protect the motor and application when this is stalled whilst<br />

increasing the motor speed from standstill. This protection<br />

will coast the motor to stop and indicate a fault when the<br />

Torque Limit has been active at very low speed for more<br />

than 5 seconds.<br />

Default: Off<br />

Off 0 No detection<br />

On 1<br />

Communication information<br />

Motor lost [423]<br />

With the motor lost function enabled, the AC drive is able<br />

to detect a fault in the motor circuit: motor, motor cable,<br />

thermal relay or output filter. Motor lost will cause a trip,<br />

and the motor will coast to standstill, when a missing motor<br />

phase is detected during a period of 5 s.<br />

Communication information<br />

AC drive will trip when locked rotor is<br />

detected. Trip message “Locked Rotor”.<br />

Modbus Instance no/DeviceNet no: 43362<br />

Profibus slot/index 170/11<br />

EtherCAT index (hex) 4d22<br />

Profinet IO index 19746<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: Off<br />

Off 0<br />

Trip 1<br />

Start 2<br />

422 Rotor locked<br />

Stp Off<br />

A<br />

423 Motor lost<br />

Stp Off<br />

A<br />

Function switched off to be used if no<br />

motor or very small motor connected.<br />

AC drive will trip when the motor is<br />

disconnected. Trip message “Motor Lost”.<br />

Test for disconnected motor will only be<br />

performed during start routine.<br />

Modbus Instance no/DeviceNet no: 43363<br />

Profibus slot/index 170/12<br />

EtherCAT index (hex) 4d23<br />

Profinet IO index 19747<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 133


Overvolt control [424]<br />

Used to switch off the overvoltage control function when<br />

only braking by brake chopper and resistor is required. The<br />

overvoltage control function, limits the braking torque so<br />

that the DC link voltage level is controlled at a high, but<br />

safe, level. This is achieved by limiting the actual<br />

deceleration rate during stopping. In case of a defect at the<br />

brake chopper or the brake resistor the AC drive will trip for<br />

“Overvoltage” to avoid a fall of the load e.g. in crane<br />

applications.<br />

NOTE: Overvoltage control should not be activated if<br />

brake chopper is used.<br />

Default: On<br />

On 0 Overvoltage control activated<br />

Off 1 Overvoltage control off<br />

Communication information<br />

424 Over Volt Ctl<br />

Stp On<br />

A<br />

Modbus Instance no/DeviceNet no: 43364<br />

Profibus slot/index 170/13<br />

EtherCAT index (hex) 4d24<br />

Profinet IO index 19748<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.5 I/Os and Virtual<br />

Connections [500]<br />

Main menu with all the settings of the standard inputs and<br />

outputs of the AC drive.<br />

11.5.1 Analogue Inputs [510]<br />

Submenu with all settings for the analogue inputs.<br />

AnIn1 Function [511]<br />

Sets the function for Analogue input 1. Scale and range are<br />

defined by AnIn1 Advanced settings [513].<br />

Default: Process Ref<br />

Off 0 Input is not active<br />

Max Speed 1 The input acts as an upper speed limit.<br />

Max Torque 2 The input acts as an upper torque limit.<br />

Process Val 3<br />

Communication information<br />

511 AnIn1 Fc<br />

Stp Process Ref<br />

A<br />

The input value equals the actual process<br />

value (feedback) and is compared to the<br />

reference signal (set point) by the PID<br />

controller, or can be used to display and<br />

view the actual process value.<br />

Process Ref 4<br />

Reference value is set for control in<br />

process units, see Process Source [321]<br />

and Process Unit [322].<br />

Min Speed 5 The input acts as a lower speed limit.<br />

Modbus Instance no/DeviceNet no: 43201<br />

Profibus slot/index 169/105<br />

EtherCAT index (hex) 4c81<br />

Profinet IO index 19585<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: When AnInX Func=Off, the connected signal will<br />

still be available for Comparators [610].<br />

Adding analogue inputs<br />

If more than one analogue input is set to the same function,<br />

the values of the inputs can be added together. In the<br />

following examples we assume that Process Source [321] is<br />

set to Speed.<br />

Example 1: Add signals with different weight (fine tuning).<br />

Signal on AnIn1 = 10 mA<br />

Signal on AnIn2 = 5 mA<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 4-20 mA<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

134 Functional Description CG Drives & Automation, 01-5325-01r1


[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 4-20 mA<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = User defined<br />

[5167] AnIn2 Value Max = 300 rpm<br />

[5168] AnIn2 Operation = Add+<br />

Calculation:<br />

AnIn1 = (10-4) / (20-4) x (1500-0) + 0 = 562.5 rpm<br />

AnIn2 = (5-4) / (20-4) x (300-0) + 0 = 18.75 rpm<br />

The actual process reference will be:<br />

+562.5 + 18.75 = 581 rpm<br />

Analogue Input Selection via Digital Inputs:<br />

When two different external Reference signals are used,<br />

e.g. 4-20mA signal from control centre and a 0-10 V locally<br />

mounted potentiometer, it is possible to switch between<br />

these two different analogue input signals via a Digital Input<br />

set to “AnIn Select”.<br />

AnIn1 is 4-20 mA<br />

AnIn2 is 0-10 V<br />

DigIn3 is controlling the AnIn selection; HIGH is 4-20 mA,<br />

LOW is 0-10 V<br />

“[511] AnIn1 Fc” = Process Ref;<br />

set AnIn1 as reference signal input<br />

“[512] AnIn1 Setup” = 4-20mA;<br />

set AnIn1 for a current reference signal<br />

“[513A] AnIn1 Enabl” = DigIn;<br />

set AnIn1 to be active when DigIn3 is HIGH<br />

“[514] AnIn2 Fc” = Process Ref;<br />

set AnIn2 as reference signal input<br />

“[515] AnIn2 Setup” = 0-10V;<br />

set AnIn2 for a voltage reference signal<br />

“[516A] AnIn2 Enabl” = !DigIn;<br />

set AnIn2 to be active when DigIn3 is LOW<br />

“[523] DigIn3=AnIn”;<br />

set DIgIn3 as input fot selection of AI reference<br />

Subtracting analogue inputs<br />

Example 2: Subtract two signals<br />

Signal on AnIn1 = 8 V<br />

Signal on AnIn2 = 4 V<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 0-10 V<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 0-10 V<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = Max (1500 rpm)<br />

[5168] AnIn2 Operation = Sub-<br />

Calculation:<br />

AnIn1 = (8-0) / (10-0) x (1500-0) + 0 = 1200 rpm<br />

AnIn2 = (4-0) / (10-0) x (1500-0) + 0 = 600 rpm<br />

The actual process reference will be:<br />

+1200 - 600 = 600 rpm<br />

AnIn1 Setup [512]<br />

The analogue input setup is used to configure the analogue<br />

input in accordance with the signal used that will be<br />

connected to the analogue input. With this selection the<br />

input can be determined as current (4-20 mA) or voltage<br />

(0-10 V) controlled input. Other selections are available for<br />

using a threshold (live zero), a bipolar input function, or a<br />

user defined input range. With a bipolar input reference<br />

signal, it is possible to control the motor in two directions.<br />

See Fig. 102.<br />

NOTE: The selection of voltage or current input is done<br />

with S1. When the switch is in voltage mode only the<br />

voltage menu items are selectable. With the switch in<br />

current mode only the current menu items are<br />

selectable.<br />

Default: 4-20 mA<br />

Dependent on Setting of switch S1<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

The current input has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the input signal. See Fig. 104.<br />

Normal full current scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 103.<br />

The scale of the current controlled input,<br />

that controls the full range for the input<br />

signal. Can be defined by the advanced<br />

AnIn Min and AnIn Max menus.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 135<br />

3<br />

0–10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol<br />

V<br />

7<br />

512 AnIn1 Setup<br />

Stp 4-20mA<br />

A<br />

Sets the input for a bipolar current input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

Normal full voltage scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 103.<br />

The voltage input has a fixed threshold<br />

(Live Zero) of 2 V and controls the full range<br />

for the input signal. See Fig. 104.<br />

The scale of the voltage controlled input,<br />

that controls the full range for the input<br />

signal. Can be defined by the advanced<br />

AnIn Min and AnIn Max menus.<br />

Sets the input for a bipolar voltage input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.


NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

NOTE: Always check the needed set up when the setting<br />

of S1 is changed; selection will not adapt automatically.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43202<br />

Profibus slot/index 169/106<br />

EtherCAT index (hex) 4c82<br />

Profinet IO index 19586<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

-10 V<br />

Fig. 102<br />

100 %<br />

n<br />

0<br />

Speed<br />

100 %<br />

100 %<br />

Fig. 103 Normal full-scale configuration<br />

n<br />

0<br />

10 V<br />

20 mA<br />

(NG_06-F21)<br />

0–10 V<br />

0–20 mA<br />

Ref<br />

10 V<br />

20mA<br />

(NG_06-F21)<br />

Fig. 104 2–10 V/4–20 mA (Live Zero)<br />

AnIn1 Advanced [513]<br />

NOTE: The different menus will automatically be set to<br />

either “mA” or “V”, based on the selection in AnIn 1<br />

Setup [512].<br />

AnIn1 Min [5131]<br />

Parameter to set the minimum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

Default: 0 V/4.00 mA<br />

Range:<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43203<br />

Profibus slot/index 169/107<br />

EtherCAT index (hex) 4c83<br />

Profinet IO index 19587<br />

Fieldbus format<br />

Long, 1=0.01 mA,<br />

0.01 V<br />

Modbus format EInt<br />

AnIn1 Max [5132]<br />

Parameter to set the maximum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

Default: 10.00 V/20.00 mA<br />

Range:<br />

0.00–20.00 mA<br />

0–10.00 V<br />

136 Functional Description CG Drives & Automation, 01-5325-01r1<br />

100 %<br />

n<br />

0<br />

2 V<br />

4mA<br />

513 AnIn1 Advan<br />

Stp A<br />

10 V<br />

2 0mA<br />

5131 AnIn1 Min<br />

Stp 0V/4.00mA<br />

A<br />

5132 AnIn1 Max<br />

Stp 10.0V/20.00mA<br />

2–10 V<br />

4–20 mA<br />

Ref


Communication information<br />

Modbus Instance no/DeviceNet no: 43204<br />

Profibus slot/index 169/108<br />

EtherCAT index (hex) 4c84<br />

Profinet IO index 19588<br />

Fieldbus format<br />

Long, 1=0.01 mA,<br />

0.01 V<br />

Modbus format EInt<br />

Special function: Inverted reference signal<br />

If the AnIn minimum value is higher than the AnIn<br />

maximum value, the input will act as an inverted reference<br />

input, see Fig. 105.<br />

100 %<br />

n<br />

0 1 0 V<br />

Fig. 105 Inverted reference<br />

AnIn1 Bipol [5133]<br />

This menu is automatically displayed if AnIn1 Setup is set to<br />

User Bipol mA or User Bipol V. The window will<br />

automatically show mA or V range according to selected<br />

function. The range is set by changing the positive<br />

maximum value; the negative value is automatically adapted<br />

accordingly. Only visible if [512] = User Bipol mA/V. The<br />

inputs RunR and RunL input need to be active, and<br />

“Rotation [219]”, must be set to “R+L”, to operate the<br />

bipolar function on the analogue input.<br />

Default: 10.00 V/20.00 mA<br />

Range: 0.0–20.0 mA, 0.00–10.00 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43205<br />

Profibus slot/index 169/109<br />

EtherCAT index (hex) 4c85<br />

Profinet IO index 19589<br />

Invert<br />

AnIn Min ><br />

AnIn Max<br />

Fieldbus format<br />

Long, 1=0.01 mA,<br />

0.01 V<br />

Modbus format EInt<br />

Ref<br />

5133 AnIn1 Bipol<br />

Stp 10.00V/20.00mA<br />

A<br />

(NG_06-F25)<br />

AnIn1 Function Min [5134]<br />

With AnIn1 Function Min the physical minimum value is<br />

scaled to selected process unit. The default scaling is<br />

dependent of the selected function of AnIn1 [511].<br />

Default: Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

Userdefined<br />

2 Define user value in menu [5135]<br />

Table 24 shows corresponding values for the min and max<br />

selections depending on the function of the analogue input<br />

[511].<br />

Table 24<br />

AnIn Function Min Max<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Process Value Process Min [324] Process Max [325]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43206<br />

Profibus slot/index 169/110<br />

EtherCAT index (hex) 4c86<br />

Profinet IO index 19590<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn1 Function Value Min [5135]<br />

With AnIn1 Function ValMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5134].<br />

Default: 0.000<br />

5134 AnIn1 FcMin<br />

Stp Min<br />

A<br />

5135 AnIn1 VaMin<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 137


Communication information<br />

Modbus Instance no/DeviceNet no: 43541<br />

Profibus slot/index 170/190<br />

EtherCAT index (hex) 4dd5<br />

Profinet IO index 19925<br />

Long, 1=1 rpm, 1 %, 1°<br />

or 0.001 if Process Value/<br />

Fieldbus format<br />

Process Ref using a [322]<br />

unit<br />

Modbus format EInt<br />

AnIn1 Function Max [5136]<br />

With AnIn1 Function Max the physical maximum value is<br />

scaled to selected process unit. The default scaling is<br />

dependent of the selected function of AnIn1 [511]. See<br />

Table 24.<br />

Default: Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5137]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43207<br />

Profibus slot/index 169/111<br />

EtherCAT index (hex) 4c87<br />

Profinet IO index 19591<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn1 Function Value Max [5137]<br />

With AnIn1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5136].<br />

Default: 0.000<br />

5136 AnIn1 FcMax<br />

Stp Max<br />

A<br />

5137 AnIn1 VaMax<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43551<br />

Profibus slot/index 170/200<br />

EtherCAT index (hex) 4ddf<br />

Profinet IO index 19935<br />

Long, 1=1 rpm, 1 %, 1°<br />

or 0.001 if Process Value/<br />

Fieldbus format<br />

Process Ref using a [322]<br />

unit<br />

Modbus format EInt<br />

NOTE: With AnIn Min, AnIn Max, AnIn Function Min and<br />

AnIn Function Max settings, loss of feedback signals<br />

(e.g. voltage drop due to long sensor wiring) can be<br />

compensated to ensure an accurate process control.<br />

Example:<br />

Process sensor is a sensor with the following specification:<br />

Range: 0–3 bar<br />

Output: 2–10 mA<br />

Analogue input should be set up according to:<br />

[512] AnIn1 Setup = User mA<br />

[5131] AnIn1 Min = 2 mA<br />

[5132] AnIn1 Max = 10 mA<br />

[5134] AnIn1 Function Min = User-defined<br />

[5135] AnIn1 VaMin = 0.000 bar<br />

[5136] AnIn 1 Function Max = User-defined<br />

[5137] AnIn1 VaMax = 3.000 bar<br />

AnIn1 Operation [5138]<br />

Default: Add+<br />

Add+ 0<br />

Sub- 1<br />

Communication information<br />

5138 AnIn1 Oper<br />

Stp Add+<br />

A<br />

Analogue signal is added to selected<br />

function in menu [511].<br />

Analogue signal is subtracted from<br />

selected function in menu [511].<br />

Modbus Instance no/DeviceNet no: 43208<br />

Profibus slot/index 169/112<br />

EtherCAT index (hex) 4c88<br />

Profinet IO index 19592<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

138 Functional Description CG Drives & Automation, 01-5325-01r1


AnIn1 Filter [5139]<br />

If the input signal is unstable (e.g. fluctuation reference<br />

value), the filter can be used to stabilize the signal. A change<br />

of the input signal will reach 63% on AnIn1 within the set<br />

AnIn1 Filter time. After 5 times the set time, AnIn1 will<br />

have reached 100% of the input change. See Fig. 106.<br />

Default: 0.1 s<br />

Range: 0.001 – 10.0 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43209<br />

Profibus slot/index 169/113<br />

EtherCAT index (hex) 4c89<br />

Profinet IO index 19593<br />

Fieldbus format Long, 1=0.001 s<br />

Modbus format EInt<br />

AnIn change<br />

100%<br />

63%<br />

Fig. 106<br />

AnIn1 Enable [513A]<br />

Parameter for enable/disable analogue input selection via<br />

digital inputs (DigIn set to function AnIn Select).<br />

Default: On<br />

5139 AnIn1 Filt<br />

Stp 0.1s<br />

A<br />

Original input signal<br />

T 5 X T<br />

Filtered AnIn signal<br />

513A AnIn1 Enabl<br />

Stp On<br />

A<br />

On 0 AnIn1 is always active<br />

!DigIn 1 AnIn1 is only active if the digital input is low.<br />

DigIn 2 AnIn1 is only active if the digital input is high.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43210<br />

Profibus slot/index 169/114<br />

EtherCAT index (hex) 4c8a<br />

Profinet IO index 19594<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn2 Function [514]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same function as “AnIn1 Fc [511]”.<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43211<br />

Profibus slot/index 169/115<br />

EtherCAT index (hex) 4c8b<br />

Profinet IO index 19595<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn2 Setup [515]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same functions as “AnIn1 Setup [512]”.<br />

Default: 4 – 20 mA<br />

Dependent on Setting of switch S2<br />

Selection: Same as in menu [512].<br />

Communication information<br />

514 AnIn2 Fc<br />

Stp Off<br />

A<br />

515 AnIn2 Setup<br />

Stp 4-20mA<br />

A<br />

Modbus Instance no/DeviceNet no: 43212<br />

Profibus slot/index 169/116<br />

EtherCAT index (hex) 4c8c<br />

Profinet IO index 19596<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn2 Advanced [516]<br />

Same functions and submenus as under “AnIn1 Advan<br />

[513]”.<br />

516 AnIn2 Advan<br />

Stp A<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 139


Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Fieldbus format<br />

Modbus format<br />

AnIn3 Function [517]<br />

Parameter for setting the function of Analogue Input 3.<br />

Same function as “AnIn1 Fc [511]”.<br />

Communication information<br />

AnIn3 Setup [518]<br />

Same functions as “AnIn1 Setup [512]”.<br />

43213–43220,<br />

43542,<br />

43552<br />

169/117–124,<br />

170/191,<br />

170/201<br />

4c8d - 4c94,<br />

4dd6,<br />

4de0<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

19597-19604,<br />

19926,<br />

19936<br />

See [5131] - [5137].<br />

Modbus Instance no/DeviceNet no: 43221<br />

Profibus slot/index 169/125<br />

EtherCAT index (hex) 4c95<br />

Profinet IO index 19605<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: 4–20 mA<br />

517 AnIn3 Fc<br />

Stp Off<br />

A<br />

518 AnIn3 Setup<br />

Stp 4-20mA<br />

A<br />

Dependent on Setting of switch S3<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43222<br />

Profibus slot/index 169/126<br />

EtherCAT index (hex) 4c96<br />

Profinet IO index 19606<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn3 Advanced [519]<br />

Same functions and submenus as under “AnIn1 Advan<br />

[513]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Fieldbus format<br />

Modbus format<br />

519 AnIn3 Advan<br />

Stp A<br />

43223–43230,<br />

43543,<br />

43553<br />

169/127–169/134,<br />

170/192,<br />

170/202<br />

4c97 - 4c9e,<br />

4dd7,<br />

4de1<br />

19607-19614,<br />

19927,<br />

19937<br />

AnIn4 Function [51A]<br />

Parameter for setting the function of Analogue Input 4.<br />

Same function as “AnIn1 Fc [511].”<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43231<br />

Profibus slot/index 169/135<br />

EtherCAT index (hex) 4c9f<br />

Profinet IO index 19615<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

See [5131] - [5137].<br />

51A AnIn4 Fc<br />

Stp Off<br />

A<br />

140 Functional Description CG Drives & Automation, 01-5325-01r1


AnIn4 Set-up [51B]<br />

Same functions as “AnIn1 Setup [512]”.<br />

Default: 4-20 mA<br />

Dependent on Setting of switch S4<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43232<br />

Profibus slot/index 169/136<br />

EtherCAT index (hex) 4ca0<br />

Profinet IO index 19616<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnIn4 Advanced [51C]<br />

Same functions and submenus as under “AnIn1<br />

Advan[513]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Fieldbus format<br />

Modbus format<br />

51B AnIn4 Setup<br />

Stp 4-20mA<br />

A<br />

51C AnIn4 Advan<br />

Stp A<br />

43233–43240,<br />

43544,<br />

43554<br />

169/137–144,<br />

170/193,<br />

170/203<br />

4ca1 - 4ca8,<br />

4dd8,<br />

4de2<br />

19617-19624,<br />

19928,<br />

19938<br />

See [5131] - [5137].<br />

11.5.2 Digital Inputs [520]<br />

Submenu with all the settings for the digital inputs.<br />

NOTE: Additional inputs will become available when the<br />

I/O option boards are connected.<br />

Digital Input 1 [521]<br />

To select the function of the digital input.<br />

On the standard control board there are eight digital inputs.<br />

If the same function is programmed for more than one input<br />

that function will be activated according to “OR” logic if<br />

nothing else is stated.<br />

Default: RunL<br />

Off 0 The input is not active.<br />

Ext. Trip 3<br />

Stop 4<br />

Enable 5<br />

RunR 6<br />

RunL 7<br />

Be aware that if there is nothing connected<br />

to the input, the AC drive will trip at<br />

“External trip” immediately.<br />

NOTE: The External Trip is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Stop command according to the selected<br />

Stop mode in menu [33B].<br />

NOTE: The Stop command is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Enable command. General start condition<br />

to run the AC drive. If made low during<br />

running the output of the AC drive is cut off<br />

immediately, causing the motor to coast to<br />

zero speed.<br />

NOTE: If none of the digital inputs are<br />

programmed to “Enable”, the internal<br />

enable signal is active.<br />

NOTE: Activated according to “AND” logic.<br />

Run Right command (positive speed). The<br />

output of the AC drive will be a<br />

clockwise rotary field.<br />

Run Left command (negative speed). The<br />

output of the AC drive will be a<br />

counter-clockwise rotary field.<br />

Reset command. To reset a Trip condition<br />

Reset 9<br />

and to enable the Autoreset function.<br />

Preset Ctrl1 10 To select the Preset Reference.<br />

Preset Ctrl2 11 To select the Preset Reference.<br />

Preset Ctrl3 12 To select the Preset Reference.<br />

MotPot Up 13<br />

MotPot<br />

Down<br />

Increases the internal reference value<br />

according to the set AccMotPot time [333].<br />

Has the same function as a “real” motor<br />

potentiometer, see Fig. 87.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 141<br />

14<br />

521 DigIn 1<br />

Stp RunL<br />

A<br />

Decreases the internal reference value<br />

according to the set DecMotPot time<br />

[334]. See MotPot Up.


Pump1<br />

Feedb<br />

Pump2<br />

Feedb<br />

Pump3<br />

Feedb<br />

Pump4<br />

Feedb<br />

Pump5<br />

Feedb<br />

Pump6<br />

Feedb<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

Timer 1 21<br />

Timer 2 22<br />

Set Ctrl 1 23<br />

Set Ctrl 2 24<br />

Mot PreMag 25<br />

Jog 26<br />

Ext Mot<br />

Temp<br />

27<br />

Loc/Rem 28<br />

AnIn select 29<br />

LC Level 30<br />

Brk Ackn 31<br />

Feedback input pump1 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 2 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump3 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 4 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump5 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 6 for Pump/Fan<br />

control and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Timer 1 Delay [643] will be activated on the<br />

rising edge of this signal.<br />

Timer 2 Delay [653] will be activated on the<br />

rising edge of this signal.<br />

Activates other parameter set. See Table<br />

25 for selection possibilities.<br />

Activates other parameter set. See Table<br />

25 for selection possibilities.<br />

Pre-magnetises the motor. Used for faster<br />

motor start.<br />

To activate the Jog function. Gives a Run<br />

command with the set Jog speed and<br />

Direction, page 113.<br />

Be aware that if there is nothing connected<br />

to the input, the AC drive will trip at<br />

“External Motor Temp” immediately.<br />

NOTE: The External Motor Temp is active<br />

low.<br />

Activate local mode defined in [2171] and<br />

[2172].<br />

Activate/deactivate analogue inputs<br />

defined in [513A], [516A], [519A] and<br />

[51CA]<br />

Liquid cooling low level signal.<br />

NOTE: The Liquid Cooling Level is active<br />

low.<br />

Brake acknowledge input for Brake Fault<br />

control. Function is activated via this<br />

selection see menu [33H] page 109<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and “Rotation [219]” must be set to “R+L”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43241<br />

Profibus slot/index 169/145<br />

EtherCAT index (hex) 4ca9<br />

Profinet IO index 19625<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Table 25<br />

Parameter Set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: To activate the parameter set selection, menu<br />

241 must be set to DigIn.<br />

Digital Input 2 [522] to Digital Input 8<br />

[528]<br />

Same function as “DigIn 1[521]”. Default function for<br />

DigIn 8 is Reset. For DigIn 3 to 7 the default function is<br />

Off.<br />

Default: RunR<br />

Selection: Same as in menu [521]<br />

Communication information<br />

522 DigIn 2<br />

Stp RunR<br />

A<br />

Modbus Instance no/DeviceNet no: 43242 – 43248<br />

Profibus slot/index 169/146 – 169/152<br />

EtherCAT index (hex) 4caa - 4cb0<br />

Profinet IO index 19626 - 19632<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

142 Functional Description CG Drives & Automation, 01-5325-01r1


Additional digital inputs [529] to [52H]<br />

Additional digital inputs with I/O option board installed,<br />

“B1 DigIn 1 [529]” - “B3 DigIn 3 [52H]”. B stands for<br />

board and 1 to 3 is the number of the board which is related<br />

to the position of the I/O option board on the option<br />

mounting plate. The functions and selections are the same as<br />

“DigIn 1 [521]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43501–43509<br />

Profibus slot/index 170/150–170/158<br />

EtherCAT index (hex) 4dad - 4db5<br />

Profinet IO index 19885 - 19893<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.5.3 Analogue Outputs [530]<br />

Submenu with all settings for the analogue outputs.<br />

Selections can be made from application and AC drive<br />

values, in order to visualize actual status. Analogue outputs<br />

can also be used as a mirror of the analogue input. Such a<br />

signal can be used as:<br />

• a reference signal for the next AC drive in a Master/Slave<br />

configuration (see Fig. 107).<br />

• a feedback acknowledgement of the received analogue<br />

reference value.<br />

AnOut1 Function [531]<br />

Sets the function for the Analogue Output 1. Scale and<br />

range are defined by AnOut1 Advanced settings [533].<br />

Default: Speed<br />

Process Val 0<br />

Actual process value according to<br />

Process feedback signal.<br />

Speed 1 Actual speed.<br />

Torque 2 Actual torque.<br />

Process Ref 3 Actual process reference value.<br />

Shaft Power 4 Actual shaft power.<br />

Frequency 5 Actual frequency.<br />

Current 6 Actual current.<br />

El power 7 Actual electrical power.<br />

Output volt 8 Actual output voltage.<br />

DC-voltage 9 Actual DC link voltage.<br />

AnIn1 10<br />

AnIn2 11<br />

AnIn3 12<br />

AnIn4 13<br />

Speed Ref 14<br />

Torque Ref 15<br />

531 AnOut1 Fc<br />

Stp Speed<br />

A<br />

Mirror of received signal value on<br />

AnIn1.<br />

Mirror of received signal value on<br />

AnIn2.<br />

Mirror of received signal value on<br />

AnIn3.<br />

Mirror of received signal value on<br />

AnIn4.<br />

Actual internal speed reference Value<br />

after ramp and V/Hz.<br />

Actual torque reference value<br />

(=0 in V/Hz mode)<br />

NOTE: When selections AnIn1, AnIn2 …. AnIn4 is<br />

selected, the setup of the AnOut (menu [532] or [535])<br />

has to be set to 0-10V or 0-20mA. When the AnOut Setup<br />

is set to e.g. 4-20mA, the mirroring is not working<br />

correct.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 143


Communication information<br />

Modbus Instance no/DeviceNet no: 43251<br />

Profibus slot/index 169/155<br />

EtherCAT index (hex) 4cb3<br />

Profinet IO index 19635<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnOut 1 Setup [532]<br />

Preset scaling and offset of the output configuration.<br />

Default: 4-20mA<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

3<br />

0-10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol V 7<br />

Communication information<br />

532 AnOut1 Setup<br />

Stp 4-20mA<br />

A<br />

The current output has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the output signal. See Fig. 104.<br />

Normal full current scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 103.<br />

The scale of the current controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar current<br />

output, where the scale controls the<br />

range for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Normal full voltage scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 103.<br />

The voltage output has a fixed threshold<br />

(Live Zero) of 2 V and controls the full<br />

range for the output signal. See Fig. 104.<br />

The scale of the voltage controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar voltage<br />

output, where the scale controls the<br />

range for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Modbus Instance no/DeviceNet no: 43252<br />

Profibus slot/index 169/156<br />

EtherCAT index (hex) 4cb4<br />

Profinet IO index 19636<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Fig. 107<br />

AC drive 1<br />

Master<br />

AnOut1 Advanced [533]<br />

With the functions in the AnOut1 Advanced menu, the<br />

output can be completely defined according to the<br />

application needs. The menus will automatically be adapted<br />

to “mA” or “V”, according to the selection in “AnOut1<br />

Setup [532]”.<br />

AnOut1 Min [5331]<br />

This parameter is automatically displayed if User mA or<br />

User V is selected in menu “AnOut 1 Setup [532]”. The<br />

menu will automatically adapt to current or voltage setting<br />

according to the selected setup. Only visible if [532] = User<br />

mA/V.<br />

Default: 4 mA<br />

Range: 0.00 – 20.00 mA, 0 – 10.00 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43253<br />

Profibus slot/index 169/157<br />

EtherCAT index (hex) 4cb5<br />

Profinet IO index 19637<br />

AC drive 2<br />

Slave<br />

Fieldbus format<br />

Long, 1=0.01 V,<br />

0.01 mA<br />

Modbus format EInt<br />

144 Functional Description CG Drives & Automation, 01-5325-01r1<br />

Ref.<br />

AnOut<br />

Ref.<br />

533 AnOut 1 Adv<br />

Stp A<br />

5331 AnOut 1 Min<br />

Stp 4mA<br />

A


AnOut1 Max [5332]<br />

This parameter is automatically displayed if User mA or<br />

User V is selected in menu “AnOut1 Setup [532]”. The<br />

menu will automatically adapt to current or voltage setting a<br />

ccording to the selected setup. Only visible if [532] = User<br />

mA/V.<br />

Default: 20.00 mA<br />

Range: 0.00–20.00 mA, 0–10.00 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43254<br />

Profibus slot/index 169/158<br />

EtherCAT index (hex) 4cb6<br />

Profinet IO index 19638<br />

Fieldbus format<br />

Long, 1=0.01 V,<br />

0.01 mA<br />

Modbus format EInt<br />

AnOut1 Bipol [5333]<br />

Automatically displayed if User Bipol mA or User Bipol V is<br />

selected in menu AnOut1 Setup. The menu will<br />

automatically show mA or V range according to the selected<br />

function. The range is set by changing the positive<br />

maximum value; the negative value is automatically adapted<br />

accordingly. Only visible if [512] = User Bipol mA/V.<br />

Default: -10.00–10.00 V<br />

Range: -10.00–10.00 V, -20.0–20.0 mA<br />

Communication information<br />

5332 AnOut 1 Max<br />

Stp 20.0mA<br />

A<br />

5333 AnOut1Bipol<br />

Stp -10.00-10.00V<br />

A<br />

Modbus Instance no/DeviceNet no: 43255<br />

Profibus slot/index 169/159<br />

EtherCAT index (hex) 4cb7<br />

Profinet IO index 19639<br />

Fieldbus format<br />

Long, 1=0.01 V,<br />

0.01 mA<br />

Modbus format EInt<br />

AnOut1 Function Min [5334]<br />

With AnOut1 Function Min the physical minimum value is<br />

scaled to selected presentation. The default scaling is<br />

dependent of the selected function of “AnOut1 [531]”.<br />

Default: Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5335]<br />

Table 26 shows corresponding values for the min and max<br />

selections depending on the function of the analogue output<br />

[531].<br />

Table 26<br />

AnOut<br />

Function<br />

5334 AnOut1FCMin<br />

Stp Min<br />

A<br />

Min Value Max Value<br />

Process Value Process Min [324] Process Max [325]<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Shaft Power 0% Motor Power [223]<br />

Frequency Fmin * Motor Frequency [222]<br />

Current 0 A Motor Current [224]<br />

El Power 0 W Motor Power [223]<br />

Output Voltage 0 V Motor Voltage [221]<br />

DC voltage 0 V 1000 V<br />

AnIn1 AnIn1 Function Min AnIn1 Function Max<br />

AnIn2 AnIn2 Function Min AnIn2 Function Max<br />

AnIn3 AnIn3 Function Min AnIn3 Function Max<br />

AnIn4 AnIn4 Function Min AnIn4 Function Max<br />

*) Fmin is dependent on the set value in menu<br />

“Minimum Speed [341]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43256<br />

Profibus slot/index 169/160<br />

EtherCAT index (hex) 4cb8<br />

Profinet IO index 19640<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 145


Example<br />

Set the AnOut function for Motorfrequency to 0Hz, set<br />

AnOut functionMin [5334] to “User-defined” and AnOut1<br />

VaMin[5335] = 0.0. This results in an anlogue output signal<br />

from 0/4 mA to 20mA: 0Hz to Fmot.<br />

This principle is valid for all Min to Max settings.<br />

AnOut1 Function Value Min [5335]<br />

With AnOut1 Function VaMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5334].<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43545<br />

Profibus slot/index 170/194<br />

EtherCAT index (hex) 4dd9<br />

Profinet IO index 19929<br />

Long, 1=1 rpm, 1 %, 1W,<br />

0.1 Hz, 0.1 V, 0.1 A or<br />

Fieldbus format<br />

0.001 via process value<br />

[322]<br />

Modbus format EInt<br />

AnOut1 Function Max [5336]<br />

With AnOut1 Function Min the physical minimum value is<br />

scaled to selected presentation. The default scaling is<br />

dependent on the selected function of AnOut1 [531]. See<br />

Table 26.<br />

Default: Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User defined 2 Define user value in menu [5337]<br />

Communication information<br />

5335 AnOut1VaMin<br />

Stp 0.000<br />

A<br />

5336 AnOut1FCMax<br />

Stp Max<br />

A<br />

Modbus Instance no/DeviceNet no: 43257<br />

Profibus slot/index 169/161<br />

EtherCAT index (hex) 4cb9<br />

Profinet IO index 19641<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: It is possible to set AnOut1 up as an inverted<br />

output signal by setting AnOut1 Min > AnOut1 Max. See<br />

Fig. 105.<br />

AnOut1 Function Value Max [5337]<br />

With AnOut1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5334].<br />

Default: 0.000<br />

5337 AnOut1VaMax<br />

Stp 0.000<br />

A<br />

Range: -10000.000–10000.000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43555<br />

Profibus slot/index 170/204<br />

EtherCAT index (hex) 4de3<br />

Profinet IO index 19939<br />

Long, 1=1 rpm, 1 %, 1W,<br />

0.1 Hz, 0.1 V, 0.1 A or<br />

Fieldbus format<br />

0.001 via process value<br />

[322]<br />

Modbus format EInt<br />

AnOut2 Function [534]<br />

Sets the function for the Analogue Output 2.<br />

534 AnOut2 Fc<br />

Stp Torque<br />

A<br />

Default: Torque<br />

Selection: Same as in menu [531]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43261<br />

Profibus slot/index 169/165<br />

EtherCAT index (hex) 4cbd<br />

Profinet IO index 19645<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

146 Functional Description CG Drives & Automation, 01-5325-01r1


AnOut2 Setup [535]<br />

Preset scaling and offset of the output configuration for<br />

analogue output 2.<br />

Default: 4-20mA<br />

Selection: Same as in menu [532]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43262<br />

Profibus slot/index 169/166<br />

EtherCAT index (hex) 4cbe<br />

Profinet IO index 19646<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

AnOut2 Advanced [536]<br />

Same functions and submenus as under AnOut1 Advanced<br />

[533].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Fieldbus format<br />

Modbus format<br />

535 AnOut2 Setup<br />

Stp 4-20mA<br />

A<br />

536 AnOut2 Advan<br />

Stp A<br />

43263–43267,<br />

43546,<br />

43556<br />

169/167–169/171,<br />

170/195,<br />

170/205<br />

4cbf - 4cc3,<br />

4dda,<br />

4de4<br />

19647 - 19651,<br />

19930,<br />

19940<br />

See [533]- [5367].<br />

11.5.4 Digital Outputs [540]<br />

Submenu with all the settings for the digital outputs.<br />

Digital Out 1 [541]<br />

Sets the function for the digital output 1.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Default: Ready<br />

Off 0<br />

On 1<br />

Output is not active and constantly<br />

low.<br />

Output is made constantly high, i.e.<br />

for checking circuits and trouble<br />

shooting.<br />

Run 2<br />

Running. The AC drive output is active<br />

= produces current for the motor.<br />

Stop 3 The AC drive output is not active.<br />

0Hz 4<br />

The output frequency=0±0.1Hz when<br />

in Run condition.<br />

Acc/Dec 5<br />

The speed is increasing or decreasing<br />

along the acc. ramp dec. ramp.<br />

At Process 6 The output = Reference.<br />

At Max spd 7<br />

The frequency is limited by the<br />

Maximum Speed.<br />

No Trip 8 No Trip condition active.<br />

Trip 9 A Trip condition is active.<br />

AutoRst Trip 10 Autoreset trip condition active.<br />

Limit 11 A Limit condition is active.<br />

Warning 12 A Warning condition is active.<br />

Ready 13<br />

T= T lim<br />

The AC drive is ready for operation<br />

and to accept a start command. This<br />

means that the AC drive is powered<br />

up and healthy.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 147<br />

I>I nom<br />

14<br />

15<br />

Brake 16<br />

Sgnl


Max Alarm 20<br />

Max PreAlarm 21<br />

Min Alarm 22<br />

The max alarm ,<br />

level has been<br />

reached.<br />

The max pre alarm level has been<br />

reached.<br />

The min alarm level has been<br />

reached.<br />

Min PreAlarm 23<br />

The min pre alarm Level has been<br />

reached.<br />

LY 24 Logic output Y.<br />

!LY 25 Logic output Y inverted.<br />

LZ 26 Logic output Z.<br />

!LZ 27 Logic output Z inverted.<br />

CA 1 28 Analogue comparator 1 output.<br />

!A1 29 Analogue comp 1 inverted output.<br />

CA 2 30 Analogue comparator 2 output.<br />

!A2 31 Analogue comp 2 inverted output.<br />

CD 1 32 Digital comparator 1 output.<br />

!D1 33 Digital comp 1 inverted output.<br />

CD 2 34 Digital comparator 2 output.<br />

!D2 35 Digital comp 2 inverted output.<br />

Operation 36<br />

Run command is active or AC drive<br />

running. The signal can be used to<br />

control the mains contactor if the AC<br />

drive is equipped with Standby supply<br />

option.<br />

T1Q 37 Timer1 output<br />

!T1Q 38 Timer1 inverted output<br />

T2Q 39 Timer2 output<br />

!T2Q 40 Timer2 inverted output<br />

Sleeping 41 Sleeping function activated<br />

PumpSlave1 43 Activate pump slave 1<br />

PumpSlave2 44 Activate pump slave 2<br />

PumpSlave3 45 Activate pump slave 3<br />

PumpSlave4 46 Activate pump slave 4<br />

PumpSlave5 47 Activate pump slave 5<br />

PumpSlave6 48 Activate pump slave 6<br />

PumpMaster1 49 Activate pump master 1<br />

PumpMaster2 50 Activate pump master 2<br />

PumpMaster3 51 Activate pump master 3<br />

PumpMaster4 52 Activate pump master 4<br />

PumpMaster5 53 Activate pump master 5<br />

PumpMaster6 54 Activate pump master 6<br />

All Pumps 55 All pumps are running<br />

Only Master 56 Only the master is running<br />

Loc/Rem 57 Local/Rem function is active<br />

Standby 58 Standby supply option is active<br />

PTC Trip 59 Trip when function is active<br />

PT100 Trip 60 Trip when function is active<br />

Overvolt 61 Overvoltage due to high main voltage<br />

Overvolt G 62 Overvoltage due to generation mode<br />

Overvolt D 63 Overvoltage due to deceleration<br />

Acc 64 Acceleration along the acc. ramp<br />

Dec 65 Deceleration along the dec. ramp<br />

I 2 t 66 I 2 t limit protection active<br />

V-Limit 67 Overvoltage limit function active<br />

C-Limit 68 Overcurrent limit function active<br />

Overtemp 69 Over temperature warning<br />

Low voltage 70 Low voltage warning<br />

DigIn 1 71 Digital input 1<br />

DigIn 2 72 Digital input 2<br />

DigIn 3 73 Digital input 3<br />

DigIn 4 74 Digital input 4<br />

DigIn 5 75 Digital input 5<br />

DigIn 6 76 Digital input 6<br />

DigIn 7 77 Digital input 7<br />

DigIn 8 78 Digital input 8<br />

ManRst Trip 79<br />

Active trip that needs to be <strong>manual</strong>ly<br />

reset<br />

Com Error 80 Serial communication lost<br />

External Fan 81<br />

The AC drive requires external cooling.<br />

Internal fans are active.<br />

LC Pump 82 Activate liquid cooling pump<br />

LC HE Fan 83<br />

Activate liquid cooling heat exchanger<br />

fan<br />

LC Level 84 Liquid cooling low level signal active<br />

Run Right 85<br />

Positive speed (>0.5%), i.e. forward/<br />

clockwise direction.<br />

Run Left 86<br />

Negative speed (


!D3 96 Digital comparator 3 inverted output<br />

CD4 97 Digital comparator 4 output<br />

!D4 98 Digital comparator 4 inverted output<br />

C1Q 99 Counter 1 output<br />

!C1Q 100 Counter 1 inverted output<br />

C2Q 101 Counter 2 output<br />

!C2Q 102 Counter 2 Inverted output<br />

Enc Error 103 Tripped on Encoder error<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43271<br />

Profibus slot/index 169/175<br />

EtherCAT index (hex) 4cc7<br />

Profinet IO index 19655<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Digital Out 2 [542]<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Sets the function for the digital output 2.<br />

Default: Brake<br />

Selection: Same as in menu [541]<br />

Communication information<br />

542 DigOut2<br />

Stp Brake<br />

A<br />

Modbus Instance no/DeviceNet no: 43272<br />

Profibus slot/index 169/176<br />

EtherCAT index (hex) 4cc8<br />

Profinet IO index 19656<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.5.5 Relays [550]<br />

Submenu with all the settings for the relay outputs. The<br />

relay mode selection makes it possible to establish a “fail<br />

safe” relay operation by using the normal closed contact to<br />

function as the normal open contact.<br />

NOTE: Additional relays will become available when I/O<br />

option boards are connected. Maximum 3 boards with 3<br />

relays each.<br />

Relay 1 [551]<br />

Sets the function for the relay output 1. Same function as<br />

digital output 1 [541] can be selected.<br />

Default: Trip<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43273<br />

Profibus slot/index 169/177<br />

EtherCAT index (hex) 4cc9<br />

Profinet IO index 19657<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Relay 2 [552]<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Sets the function for the relay output 2.<br />

Default: Run<br />

Selection: Same as in menu [541]<br />

Communication information<br />

551 Relay 1<br />

Stp Trip<br />

A<br />

552 Relay 2<br />

Stp Run<br />

A<br />

Modbus Instance no/DeviceNet no: 43274<br />

Profibus slot/index 169/178<br />

EtherCAT index (hex) 4cca<br />

Profinet IO index 19658<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 149


Relay 3 [553]<br />

Sets the function for the relay output 3.<br />

Default: Off<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43275<br />

Profibus slot/index 169/179<br />

EtherCAT index (hex) 4ccb<br />

Profinet IO index 19659<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Board Relay [554] to [55C]<br />

These additional relays are only visible if an I/O option<br />

board is fitted in slot 1, 2, or 3. The outputs are named B1<br />

Relay 1–3, B2 Relay 1–3 and B3 Relay 1–3. B stands for<br />

board and 1–3 is the number of the board which is related to<br />

the position of the I/O option board on the option<br />

mounting plate.<br />

NOTE: Visible only if optional board is detected or if any<br />

input/output is activated.<br />

Communication information<br />

553 Relay 3<br />

Stp Off<br />

A<br />

Modbus Instance no/DeviceNet no: 43511–43519<br />

Profibus slot/index 170/160–170/168<br />

EtherCAT index (hex) 4db7 - 4dbf<br />

Profinet IO index 19895 - 19903<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Relay Advanced [55D]<br />

This function makes it possible to ensure that the relay will<br />

also be closed when the AC drive is malfunctioning or<br />

powered down.<br />

Example<br />

A process always requires a certain minimum flow. To<br />

control the required number of pumps by the relay mode<br />

NC, the e.g. the pumps can be controlled normally by the<br />

pump control, but are also activated when the AC drive is<br />

tripped or powered down.<br />

Relay 1 Mode [55D1]<br />

Default: N.O<br />

N.O 0<br />

N.C 1<br />

Communication information<br />

The normal open contact of the relay will<br />

be activated when the function is active.<br />

The normally closed contact of the relay<br />

will act as a normal open contact. The<br />

contact will be opened when function is<br />

not active and closed when function is<br />

active.<br />

Modbus Instance no/DeviceNet no: 43276<br />

Profibus slot/index 169/180<br />

EtherCAT index (hex) 4ccc<br />

Profinet IO index 19660<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Relay Modes [55D2] to [55DC]<br />

Same function as for “Relay 1 Mode [55D1]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

55D Relay Adv<br />

Stp A<br />

55D1 Relay1 Mode<br />

Stp N.O<br />

A<br />

43277, 43278,<br />

43521–43529<br />

169/181, 169/182,<br />

170/170–170/178<br />

4ccd, 4cce,<br />

4dc1 - 4dc9<br />

Profinet IO index<br />

19661, 19662,<br />

19905 - 19913<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

150 Functional Description CG Drives & Automation, 01-5325-01r1


11.5.6 Virtual Connections [560]<br />

Functions to enable eight internal connections of<br />

comparator, timer and digital signals, without occupying<br />

physical digital in/outputs. Virtual connections are used to<br />

wireless connection of a digital output function to a digital<br />

input function. Available signals and control functions can<br />

be used to create your own specific functions.<br />

Example of start delay<br />

The motor will start in RunR 10 seconds after DigIn1 gets<br />

high. DigIn1 has a time delay of 10 s.<br />

Menu Parameter Setting<br />

[521] DigIn1 Timer 1<br />

[561] VIO 1 Dest RunR<br />

[562] VIO 1 Source T1Q<br />

[641] Timer1 Trig DigIn 1<br />

[642] Timer1 Mode Delay<br />

[643] Timer1 Delay 0:00:10<br />

NOTE: When a digital input and a virtual destination are<br />

set to the same function, this function will act as an OR<br />

logic function.<br />

Virtual Connection 1 Destination [561]<br />

With this function the destination of the virtual connection<br />

is established. When a function can be controlled by several<br />

sources, e.g. VC destination or Digital Input, the function<br />

will be controlled in conformity with “OR logic”. See DigIn<br />

for descriptions of the different selections.<br />

Default: Off<br />

Selection:<br />

Communication information<br />

561 VIO 1 Dest<br />

Stp Off<br />

A<br />

Same selections as for Digital Input 1,<br />

menu [521].<br />

Modbus Instance no/DeviceNet no: 43281<br />

Profibus slot/index 169/185<br />

EtherCAT index (hex) 4cd1<br />

Profinet IO index 19665<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Virtual Connection 1 Source [562]<br />

With this function the source of the virtual connection is<br />

defined. See DigOut 1 for description of the different<br />

selections.<br />

Default: Off<br />

Selection: Same as for menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43282<br />

Profibus slot/index 169/186<br />

EtherCAT index (hex) 4cd2<br />

Profinet IO index 19666<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Virtual Connections 2-8 [563] to [56G]<br />

Same function as virtual connection 1 [561] and [562].<br />

Communication information for virtual connections 2-8<br />

Destination.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

43283, 43285, 43287,<br />

43289, 43291, 43293,<br />

43295<br />

169/ 187, 189, 191, 193,<br />

195, 197, 199<br />

4cd3, 4cd5, 4cd17, 4cd9,<br />

4cdb, 4cdd, 4cdf<br />

19667, 19669, 19671,<br />

Profinet IO index<br />

19673, 19675, 19677,<br />

19679<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Communication information for virtual connections 2-8<br />

Source.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

562 VIO 1 Source<br />

Stp Off<br />

A<br />

43284, 43286, 43288,<br />

43290, 43292, 43294,<br />

43296<br />

169/ 188, 190, 192, 194,<br />

196, 198, 200<br />

4cd4, 4cd6, 4cd8, 4cda,<br />

4cdc, 4cde, 4ce0<br />

19668, 19670, 19672,<br />

Profinet IO index<br />

19674, 19676, 19678,<br />

19680<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 151


11.6 Logical Functions and<br />

Timers [600]<br />

With the Comparators, Logic Functions and Timers,<br />

conditional signals can be programmed for control or<br />

signalling features. This gives you the ability to compare<br />

different signals and values in order to generate monitoring/<br />

controlling features.<br />

11.6.1 Comparators [610]<br />

The comparators available make it possible to monitor<br />

different internal signals and values, and visualize via digital<br />

relay outputs, when a specific value or status is reached or<br />

established.<br />

Analogue comparators [611] - [614]<br />

There are 4 analogue comparators that compare any<br />

available analogue value (including the analogue reference<br />

inputs) with two adjustable levels. The two levels available<br />

are Level HI and Level LO. There are two analogue<br />

comparator types selectable, an analogue comparator with<br />

hysteresis and an analogue window comparator.<br />

The analogue hysteresis type comparator uses the two<br />

available levels to create a hysteresis for the comparator<br />

between setting and resetting the output. This function gives<br />

a clear difference in switching levels, which lets the process<br />

adapt until a certain action is started. With such a hysteresis,<br />

even an unstable analogue signal can be monitored without<br />

getting a nervous comparator output signal. Another feature<br />

is the possibility to get a fixed indication that a certain level<br />

has been passed. The comparator can latch by setting Level<br />

LO to a higher value than Level HI.<br />

The analogue window comparator uses the two available<br />

levels to define the window in which the analogue value<br />

should be within for setting the comparator output.<br />

The input analogue value of the comparator can also be<br />

selected as bipolar, i.e. treated as signed value or<br />

unipolar, i.e. treated as absolute value.<br />

Refer to Fig. 112, page 157 where these functions are<br />

illustrated.<br />

Digital comparators [615]<br />

There are 4 digital comparators that compare any available<br />

digital signal.<br />

The output signals of these comparators can be logically tied<br />

together to yield a logical output signal.<br />

All the output signals can be programmed to the digital or<br />

relay outputs or used as a source for the virtual connections<br />

[560].<br />

CA1 Setup [611]<br />

Analogue comparator 1, parameter group.<br />

Analogue Comparator 1, Value [6111]<br />

Selection of the analogue value for Analogue Comparator 1<br />

(CA1).<br />

Analogue comparator 1 compares the selectable analogue<br />

value in menu [6111] with the constant Level HI in menu<br />

[6112] and constant Level LO in menu [6113]. If Bipolar<br />

type[6115] input signal is selected then the comparison is<br />

made with sign otherwise if unipolar selected then<br />

comparison is made with absolute values.<br />

For Hysteresis comparator type [6114], when the value<br />

exceeds the upper limit level high, the output signal CA1 is<br />

set high and !A1 low, see Fig. 108. When the value decreases<br />

below the lower limit, the output signal CA1 is set low and<br />

!A1 high.<br />

Analogue value:<br />

Menu [6111]<br />

Adjustable Level HI.<br />

Menu [6112]<br />

Adjustable Level LO.<br />

Menu [6113]<br />

Fig. 108 Analogue comparator type Hysteresiss<br />

For Window comparator type [6114], when the value is<br />

between the lower and upper levels, the output signal value<br />

CA1 is set high and !A1 low, see Fig. 111. When the value is<br />

outside the band of lower and upper levels, the output CA1<br />

is set low and !A1 high.<br />

Level High[6112]<br />

An Value [6111]<br />

Level Low [6113]<br />

Fig. 109 Analogue comparator type “Window”<br />

152 Functional Description CG Drives & Automation, 01-5325-01r1<br />

0<br />

1<br />

Signal:CA1<br />

(NG_06-F125)<br />

AND Signal<br />

CA1


The output signal can be programmed as a virtual<br />

connection source and to the digital or relay outputs.<br />

Default: Speed<br />

Process Val 0<br />

Speed 1 rpm<br />

Torque 2 %<br />

Shaft Power 3 kW<br />

El Power 4 kW<br />

Current 5 A<br />

Output Volt 6 V<br />

Frequency 7 Hz<br />

DC Voltage 8 V<br />

Heatsink Tmp 9 °C<br />

PT100_1 10 °C<br />

PT100_2 11 °C<br />

PT100_3 12 °C<br />

Energy 13 kWh<br />

Run Time 14 h<br />

Mains Time 15 h<br />

AnIn1 16 %<br />

AnIn2 17 %<br />

AnIn3 18 %<br />

AnIn4 19 %<br />

Communication information<br />

6111 CA1 Value<br />

Stp Speed<br />

A<br />

Set by Process settings [321] and<br />

[322]<br />

Process Ref 20 Set by Process settings [321] and<br />

[322]<br />

Process Err 21<br />

Modbus Instance no/DeviceNet no: 43401<br />

Profibus slot/index 170/50<br />

EtherCAT index (hex) 4d49<br />

Profinet IO index 19758<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Example<br />

Create automatic RUN/STOP signal via the analogue<br />

reference signal. Analogue current reference signal, 4-20<br />

mA, is connected to Analogue Input 1. “AnIn1 Setup”,<br />

menu [512] = 4-20 mA and the threshold is 4 mA. Full scale<br />

(100%) input signal on “AnIn 1” = 20 mA. When the<br />

reference signal on “AnIn1” increases 80% of the threshold<br />

(4 mA x 0.8 = 3.2 mA), the AC drive will be set in RUN<br />

mode. When the signal on “AnIn1” goes below 60% of the<br />

threshold (4 mA x 0.6 = 2.4 mA) the AC drive is set to<br />

STOP mode. The output of CA1 is used as a virtual<br />

connection source that controls the virtual connection<br />

destination RUN.<br />

Menu Function Setting<br />

511 AnIn1 Function Process reference<br />

512 AnIn1 Set-up 4-20 mA, threshold is 4 mA<br />

341 Min Speed 0<br />

343 Max Speed 1500<br />

6111 CA1 Value AnIn1<br />

6112 CA1 Level HI 16% (3.2mA/20mA x 100%)<br />

6113 CA1 Level LO 12% (2.4mA/20mA x 100%)<br />

6114 CA1 Type Hysteresis<br />

561 VIO 1 Dest RunR<br />

562 VIO 1 Source CA1<br />

215 Run/Stp Ctrl Remote<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 153


20 mA<br />

4 mA<br />

3.2 mA<br />

2.4 mA<br />

CA1<br />

Mode<br />

RUN<br />

STOP<br />

Fig. 110<br />

No. Description<br />

1<br />

2<br />

3<br />

T<br />

4<br />

5<br />

6<br />

Reference signal AnIn1<br />

T<br />

1 2 3 4 5 6<br />

Max speed<br />

CA1 Level HI = 16%<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 output stays<br />

low, mode=RUN.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is set<br />

high, mode=RUN.<br />

The reference signal passes the threshold level of 4 mA,<br />

the motor speed will now follow the reference signal.<br />

During this period the motor speed will follow the<br />

reference signal.<br />

CA1 Level LO = 12%<br />

The reference signal reaches the threshold level, motor<br />

speed is 0 rpm, mode = RUN.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 output stays<br />

high, mode =RUN.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1<br />

output=STOP.<br />

t<br />

t<br />

t<br />

Analogue Comparator 1,<br />

Level High [6112]<br />

Sets the analogue comparator high level, with range<br />

according to the selected value in menu [6111].<br />

Default: 300 rpm<br />

Range: See min/max in table below.<br />

Min/Max setting range for menu [6112]<br />

Mode Min Max Decimals<br />

Process Val<br />

Set by Process settings<br />

[321] and [322]<br />

3<br />

Speed, rpm 0 Max speed 0<br />

Torque, % 0 Max torque 0<br />

Shaft Power, kW 0 Motor Pnx4 0<br />

El Power, kW 0 Motor Pnx4 0<br />

Current, A 0 Motor Inx4 1<br />

Output volt, V 0 1000 1<br />

Frequency, Hz 0 400 1<br />

DC voltage, V 0 1250 1<br />

Heatsink temp, �C 0 100 1<br />

PT 100_1_2_3, �C -100 300 1<br />

Energy, kWh 0 1000000 0<br />

Run time, h 0 65535 0<br />

Mains time, h 0 65535 0<br />

AnIn 1-4% 0 100 0<br />

Process Ref<br />

Process Err<br />

Communication information<br />

6112 CA1 Level HI<br />

Stp 300rpm<br />

A<br />

Set by Process settings<br />

[321] and [322]<br />

Set by Process settings<br />

[321] and [322]<br />

NOTE: If Bipolar selected [6115] then Min value is equal<br />

to -Max in the table.<br />

Modbus Instance no/DeviceNet no: 43402<br />

Profibus slot/index 170/51<br />

EtherCAT index (hex) 4d4a<br />

Profinet IO index 19786<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

154 Functional Description CG Drives & Automation, 01-5325-01r1<br />

3<br />

3


Example<br />

This example describes, both for hysteresis and window type<br />

comparator, the normal use of the constant level high and<br />

low.<br />

Menu Function Setting<br />

343 Max Speed 1500<br />

6111 CA1 Value Speed<br />

6112 CA1 Level HI 300 rpm<br />

6113 CA1 Level LO 200 rpm<br />

6114 CA1 Type Hysteresis<br />

561 VC1 Dest Timer 1<br />

562 VC1 Source CA1<br />

MAX<br />

speed<br />

[343]<br />

300<br />

200<br />

Output<br />

CA1<br />

High<br />

Low<br />

Output<br />

CA1<br />

High<br />

Low<br />

Fig. 111<br />

[6114] Hysteresis<br />

[6114] Window<br />

1 2 3 4 5 6 7 8<br />

CA1 Level HI [6112]<br />

Hysteresis/Window<br />

band<br />

CA1 Level LO [6113]<br />

t<br />

t<br />

t<br />

Table 27 Comments to Fig. 111 regarding Hysteresis<br />

selection.<br />

No. Description Hysteresis<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 155<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

The reference signal passes the Level LO<br />

value from below (positive edge), the<br />

comparator CA1 does not change, output<br />

stays low.<br />

The reference signal passes the Level HI<br />

value from below (positive edge), the<br />

comparator CA1 output is set high.<br />

The reference signal passes the Level HI<br />

value from above (negative edge), the<br />

comparator CA1 does not change, output<br />

stays high.<br />

The reference signal passes the Level LO<br />

value from above (negative edge), the<br />

comparator CA1 is reset, output is set low.<br />

The reference signal passes the Level LO<br />

value from below (positive edge), the<br />

comparator CA1 does not change, output<br />

stays low.<br />

The reference signal passes the Level HI<br />

value from below (positive edge), the<br />

comparator CA1 output is set high.<br />

The reference signal passes the Level HI<br />

value from above (negative edge), the<br />

comparator CA1 does not change, output<br />

stays high.<br />

The reference signal passes the Level LO<br />

value from above (negative edge), the<br />

comparator CA1 is reset, output is set low.


Table 28 Comments to Fig. 111 regarding Window<br />

selection.<br />

No. Description Window<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

The reference signal passes the Level LO<br />

value from below (signal inside Window<br />

band), the comparator CA1 output is set high.<br />

The reference signal passes the Level LO<br />

value from above (signal outside Window<br />

band), the comparator CA1 is reset, output is<br />

set low.<br />

The reference signal passes the Level HI<br />

value from above (signal inside Window<br />

band), the comparator CA1 output is set high.<br />

The reference signal passes the Level LO<br />

value from above (signal outside Window<br />

band), the comparator CA1 is reset, output is<br />

set low.<br />

The reference signal passes the Level LO<br />

value from below (signal inside Window<br />

band), the comparator CA1 output is set high.<br />

The reference signal passes the Level HI<br />

value from below (signal outside Window<br />

band),the comparator CA1 is reset, output is<br />

set low.<br />

The reference signal passes the Level HI<br />

value from above (signal inside Window<br />

band), the comparator CA1 output is set high.<br />

The reference signal passes the Level LO<br />

value from above (signal outside Window<br />

band), the comparator CA1 is reset, output is<br />

set low.<br />

Analogue Comparator 1,<br />

Level Low [6113]<br />

Sets the analogue comparator low level, with unit and range<br />

according to the selected value in menu [6111].<br />

Default: 200 rpm<br />

Range: Range as [6112].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43403<br />

Profibus slot/index 170/52<br />

EtherCAT index (hex) 4d4b<br />

Profinet IO index 19787<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator 1, Type [6114]<br />

Selects the analogue comparator type, i.e. Hysteresis or<br />

Window type. See Fig. 112 and Fig. 113.<br />

Default: Hysteresis<br />

6113 CA1 Level LO<br />

Stp 200rpm<br />

A<br />

6114 CA1 Type<br />

Stp Hysteresis<br />

A<br />

Hysteresis 0 Hysteresis type comparator<br />

Window 1 Window type comparator<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43481<br />

Profibus slot/index 170/130<br />

EtherCAT index (hex) 4d99<br />

Profinet IO index 19865<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

156 Functional Description CG Drives & Automation, 01-5325-01r1


Analogue Comparator 1, Polarity[6115]<br />

Selects how the selected value in [6111] should be handled<br />

prior to the the analogue comparator , i.e. as absolute value<br />

or handled with sign. See Fig. 112<br />

Default: Unipolar<br />

6115 CA1 Polar<br />

Stp Unipolar<br />

A<br />

Unipolar 0 Absolute value of [6111] used<br />

Bipolar 1 Signed value of [6111] used<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43486<br />

Profibus slot/index 170/135<br />

EtherCAT index (hex) 4d9e<br />

Profinet IO index 19870<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Example<br />

See Fig. 112 and Fig. 113 for different principle<br />

functionality of comparator features 6114 and 6115.<br />

Type [6114]= Hysteresis<br />

CA1<br />

[6115] Unipolar<br />

[6112] HI > 0<br />

[6113] LO > 0<br />

[6115] Bipolar<br />

[6112] HI > 0<br />

[6113] LO > 0<br />

[6115] Bipolar<br />

[6112] HI > 0<br />

[6113] LO < 0<br />

[6115] Bipolar<br />

[6112] HI < 0<br />

[6113] LO < 0<br />

CA1<br />

CA1<br />

CA1<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

Fig. 112 Principle functionality of comparator features for<br />

“Type [6114] = Hysteresis ” and “Polar [6115]”.<br />

[6115] Unipolar<br />

[6112] HI > 0<br />

[6113] LO > 0<br />

[6115] Bipolar<br />

[6112] HI > 0<br />

[6113] LO > 0<br />

[6115] Bipolar<br />

[6112] HI > 0<br />

[6113] LO < 0<br />

[6115] Bipolar<br />

[6112] HI < 0<br />

[6113] LO < 0<br />

Fig. 113 Principle functionality of comparator features for<br />

“Type [6114] =Window ” and “Polar [6115]”.<br />

NOTE: When “Unipolar “ is selected, absolute value of<br />

signal is used.<br />

NOTE: When “Bipolar” is selected in [6115] then:<br />

1. Functionality is not symmetrical and<br />

2. Ranges for high/low are bipolar<br />

CA2 Setup [612]<br />

Analogue comparator 2, parameter group.<br />

Analogue Comparator 2, Value [6121]<br />

Function is identical to analogue comparator 1,<br />

value [6111].<br />

Default: Torque<br />

Type [6114] = Window<br />

Selections: Same as in menu [6111]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43404<br />

Profibus slot/index 170/53<br />

EtherCAT index (hex) 4d4c<br />

Profinet IO index 19788<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

An.Value<br />

[6111]<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 157<br />

CA1<br />

CA1<br />

CA1<br />

CA1<br />

6121 CA2 Value<br />

Stp Torque<br />

A


Analogue Comparator 2,<br />

Level High [6122]<br />

Function is identical to analogue comparator 1,<br />

level high [6112].<br />

Default: 20%<br />

Range: Enter a value for the high level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43405<br />

Profibus slot/index 170/54<br />

EtherCAT index (hex) 4d4d<br />

Profinet IO index 19789<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator 2,<br />

Level Low [6123]<br />

Function is identical to analogue comparator 1,<br />

level low [6113].<br />

Default: 10%<br />

6122 CA2 Level HI<br />

Stp 20%<br />

A<br />

6123 CA2 Level LO<br />

Stp 10%<br />

A<br />

Range: Enter a value for the low level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43406<br />

Profibus slot/index 170/55<br />

EtherCAT index (hex) 4d4e<br />

Profinet IO index 19790<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator 2, Type [6124]<br />

Function is identical to analogue comparator 1,<br />

Type [6114].<br />

Default: Hysteresis<br />

Hysteresis 0 Hysteresis type comparator<br />

Window 1 Window type comparator<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43482<br />

Profibus slot/index 170/131<br />

EtherCAT index (hex) 4d9a<br />

Profinet IO index 19866<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Analogue Comparator 2, Polar [6125]<br />

Function is identical to analogue comparator 1,<br />

Polar [6115].<br />

Default: Unipolar<br />

6124 CA2 Type<br />

Stp Hysteresis<br />

A<br />

6125 CA2 Polar<br />

Stp Unipolar<br />

A<br />

Unipolar 0 Absolute value of [6111] used<br />

Bipolar 1 Signed value of [6111] used<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43487<br />

Profibus slot/index 170/136<br />

EtherCAT index (hex) 4d9f<br />

Profinet IO index 19871<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

158 Functional Description CG Drives & Automation, 01-5325-01r1


CA3 Setup [613]<br />

Analogue comparators 3, parameter group.<br />

Analogue Comparator 3, Value [6131]<br />

Function is identical to analogue comparator 1,<br />

value [6111].<br />

Default: Process Value<br />

Selections: Same as in menu [6111]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43471<br />

Profibus slot/index 170/120<br />

EtherCAT index (hex) 4d8f<br />

Profinet IO index 19855<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Analogue Comparator 3,<br />

Level High [6132]<br />

Function is identical to analogue comparator 1,<br />

level high [6112].<br />

Default: 300rpm<br />

6131 CA3 Value<br />

Stp Process Val<br />

A<br />

6132 CA3 Level HI<br />

Stp 300rpm<br />

A<br />

Range: Enter a value for the high level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43472<br />

Profibus slot/index 170/121<br />

EtherCAT index (hex) 4d90<br />

Profinet IO index 19856<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator 3,<br />

Level Low [6133]<br />

Function is identical to analogue comparator 1,<br />

level low [6113].<br />

Default: 200 rpm<br />

Range: Enter a value for the low level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43473<br />

Profibus slot/index 170/122<br />

EtherCAT index (hex) 4d91<br />

Profinet IO index 19857<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator, 3 Type [6134]<br />

Function is identical to analogue comparator 1, level Type<br />

[6114].<br />

Default: Hysteresis<br />

6133 CA3 Level LO<br />

Stp 200rpm<br />

A<br />

6134 CA3 Type<br />

Stp Hysteresis<br />

A<br />

Hysteresis 0 Hysteresis type comparator<br />

Window 1 Window type comparator<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43483<br />

Profibus slot/index 170/132<br />

EtherCAT index (hex) 4d9b<br />

Profinet IO index 19867<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 159


Analogue Comparator 3, Polar [6135]<br />

Function is identical to analogue comparator 1,<br />

Polar [6115].<br />

Default: Unipolar<br />

Unipolar 0 Absolute value of [6111] used<br />

Bipolar 1 Signed value of [6111] used<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43488<br />

Profibus slot/index 170/137<br />

EtherCAT index (hex) 4da0<br />

Profinet IO index 19872<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CA4 Setup [614]<br />

Analogue comparators 4, parameter group.<br />

Analogue Comparator 4, Value [6141]<br />

Function is identical to analogue comparator 1,<br />

value [6111].<br />

Default: Process Error<br />

6135 CA3 Polar<br />

Stp Unipolar<br />

A<br />

6141 CA4 Value<br />

Stp Process Err<br />

A<br />

Selections: Same as in menu [6111]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43474<br />

Profibus slot/index 170/123<br />

EtherCAT index (hex) 4d92<br />

Profinet IO index 19858<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Analogue Comparator 4, Level High<br />

[6142]<br />

Function is identical to analogue comparator 1 level high<br />

[6112].<br />

Default: 100rpm<br />

Range: Enter a value for the high level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43475<br />

Profibus slot/index 170/124<br />

EtherCAT index (hex) 4d93<br />

Profinet IO index 19859<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

Analogue Comparator 4,<br />

Level Low [6143]<br />

Function is identical to analogue comparator 1, level low<br />

[6113].<br />

Default: -100 rpm<br />

6142 CA4 Level HI<br />

Stp 100rpm<br />

A<br />

6143 CA4 Level LO<br />

Stp -100rpm<br />

A<br />

Range: Enter a value for the low level.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43476<br />

Profibus slot/index 170/125<br />

EtherCAT index (hex) 4d94<br />

Profinet IO index 19860<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

Fieldbus format<br />

0.1 Hz, 0.1�C, 1 kWh, 1H,<br />

1%, 1 rpm or 0.001 via<br />

process value<br />

Modbus format EInt<br />

160 Functional Description CG Drives & Automation, 01-5325-01r1


Analogue Comparator 4, Type [6144]<br />

Function is identical to analogue comparator 1, level Type<br />

[6114]<br />

Default: Window<br />

Hysteresis 0 Hysteresis type comparator<br />

Window 1 Window type comparator<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43484<br />

Profibus slot/index 170/133<br />

EtherCAT index (hex) 4d9c<br />

Profinet IO index 19868<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Analogue Comparator 4, Polar [6145]<br />

Function is identical to analogue comparator 1,<br />

Polar [6115]<br />

Default: Bipolar<br />

6144 CA4 Type<br />

Stp Window<br />

A<br />

6145 CA4 Polar<br />

Stp Bipolar<br />

A<br />

Unipolar 0 Absolute value of [6111] used<br />

Bipolar 1 Signed value of [6111] used<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43489<br />

Profibus slot/index 170/138<br />

EtherCAT index (hex) 4da1<br />

Profinet IO index 19873<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Digital comparator Setup [615]<br />

Digital comparators, parameter group.<br />

Digital Comparator 1 [6151]<br />

Selection of the input signal for digital comparator 1 (CD1).<br />

The output signal CD1 is set high if the selected input<br />

signal is active. See Fig. 114.<br />

The output signal can be programmed to the digital or relay<br />

outputs or used as a source for the virtual connections<br />

[560].<br />

Digital signal:<br />

Menu [6151]<br />

Fig. 114 Digital comparator<br />

Default: Run<br />

Selection: Same selections as for “DigOut 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43407<br />

Profibus slot/index 170/56<br />

EtherCAT index (hex) 4d4f<br />

Profinet IO index 19791<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Digital Comparator 2 [6152]<br />

Function is identical to digital comparator 1 [6151].<br />

Default: DigIn 1<br />

Selection: Same selections as for “DigOut 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43408<br />

Profibus slot/index 170/57<br />

EtherCAT index (hex) 4d50<br />

Profinet IO index 19792<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 161<br />

+<br />

-<br />

DComp 1<br />

Signal: CD1<br />

(NG_06-F126)<br />

6151 CD1<br />

Stp Run<br />

A<br />

6152 CD 2<br />

Stp DigIn 1<br />

A


Digital Comparator 3 [6153]<br />

Function is identical to digital comparator 1 [6151].<br />

Default: Trip<br />

Selection: Same selections as for “DigOut 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43477<br />

Profibus slot/index 170/126<br />

EtherCAT index (hex) 4d95<br />

Profinet IO index 19861<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Digital Comparator 4 [6154]<br />

Function is identical to digital comparator 1 [6151].<br />

Default: Ready<br />

6153 CD 3<br />

Stp Trip<br />

A<br />

6154 CD 4<br />

Stp Ready<br />

A<br />

Selection: Same selections as for “DigOut 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43478<br />

Profibus slot/index 170/127<br />

EtherCAT index (hex) 4d96<br />

Profinet IO index 19862<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.6.2 Logic Output Y [620]<br />

By means of an expression editor, the comparator signals can<br />

be logically combined into the Logic Y function.<br />

The expression editor has the following features:<br />

• The following signals can be used:<br />

CA1, CA2, CD1, CD2 or LZ (or LY)<br />

• The following signals can be inverted:<br />

!A1, !A2, !D1, !D2, or !LZ (or !LY)<br />

• The following logical operators are available:<br />

"+" : OR operator<br />

"&" : AND operator<br />

"^" : EXOR operator<br />

Expressions according to the following truth table can be<br />

made:<br />

The output signal can be programmed to the digital or relay<br />

outputs or used as a Virtual Connection Source [560].<br />

The expression must be programmed by means of the<br />

menus [621] to [625].<br />

Example:<br />

Input Result<br />

A B & (AND) + (OR) ^(EXOR)<br />

0 0 0 0 0<br />

0 1 0 1 1<br />

1 0 0 1 1<br />

1 1 1 1 0<br />

620 LOGIC Y<br />

Stp CA1&!A2&CD1<br />

Broken belt detection for Logic Y<br />

This example describes the programming for a so-called<br />

“broken belt detection” for fan applications.<br />

The comparator CA1 is set for frequency>10Hz.<br />

The comparator !A2 is set for load < 20%.<br />

The comparator CD1 is set for Run.<br />

The 3 comparators are all AND-ed, given the “broken belt<br />

detection”.<br />

In menus [621]-[625] expression entered for Logic Y is<br />

visible.<br />

Set menu [621] to CA1<br />

Set menu [622] to &<br />

Set menu [623] to !A2<br />

Set menu [624] to &<br />

Set menu [625] to CD1<br />

162 Functional Description CG Drives & Automation, 01-5325-01r1


Menu [620] now holds the expression for Logic Y:<br />

CA1&!A2&CD1<br />

which is to be read as:<br />

(CA1&!A2)&CD1<br />

NOTE: Set menu [624] to "�" to finish the expression<br />

when only two comparators are required for Logic Y.<br />

Y Comp 1 [621]<br />

Selects the first comparator for the logic Y function.<br />

Default: CA1<br />

CA1 0<br />

!A1 1<br />

CA2 2<br />

!A2 3<br />

CD1 4<br />

!D1 5<br />

CD2 6<br />

!D2 7<br />

LZ/LY 8<br />

!LZ/!LY 9<br />

T1 10<br />

!T1 11<br />

T2 12<br />

!T2 13<br />

CA3 14<br />

!A3 15<br />

CA4 16<br />

!A4 17<br />

CD3 18<br />

!D3 19<br />

CD4 20<br />

!D4 21<br />

C1 22<br />

!C1 23<br />

C2 24<br />

!C2 25<br />

621 Y Comp 1<br />

Stp CA1<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43411<br />

Profibus slot/index 170/60<br />

EtherCAT index (hex) 4d53<br />

Profinet IO index 19795<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Y Operator 1 [622]<br />

Selects the first operator for the logic Y function.<br />

Default: &<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43412<br />

Profibus slot/index 170/61<br />

EtherCAT index (hex) 4d54<br />

Profinet IO index 19796<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Y Comp 2 [623]<br />

Selects the second comparator for the logic Y function.<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

622 Y Operator 1<br />

Stp &<br />

A<br />

623 Y Comp 2<br />

Stp !A2<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43413<br />

Profibus slot/index 170/62<br />

EtherCAT index (hex) 4d55<br />

Profinet IO index 19797<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 163


Y Operator 2 [624]<br />

Selects the second operator for the logic Y function.<br />

Default: &<br />

. 0<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

When · (dot) is selected, the Logic Y<br />

expression is finished (when only two<br />

expressions are tied together).<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43414<br />

Profibus slot/index 170/63<br />

EtherCAT index (hex) 4d56<br />

Profinet IO index 19798<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Y Comp 3 [625]<br />

Selects the third comparator for the logic Y function.<br />

Default: CD1<br />

Selection: Same as menu [621]<br />

624 Y Operator 2<br />

Stp &<br />

A<br />

625 Y Comp 3<br />

Stp CD1<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43415<br />

Profibus slot/index 170/64<br />

EtherCAT index (hex) 4d57<br />

Profinet IO index 19799<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.6.3 Logic Output Z [630]<br />

630 LOGIC Z<br />

Stp CA1&!A2&CD1<br />

A<br />

The expression must be programmed by means of the<br />

menus [631] to [635].<br />

Z Comp 1 [631]<br />

Selects the first comparator for the logic Z function.<br />

Default: CA1<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43421<br />

Profibus slot/index 170/70<br />

EtherCAT index (hex) 4d5d<br />

Profinet IO index 19805<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Z Operator 1 [632]<br />

Selects the first operator for the logic Z function.<br />

Default: &<br />

631 Z Comp 1<br />

Stp CA1<br />

A<br />

632 Z Operator 1<br />

Stp &<br />

A<br />

Selection: Same as menu [622]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43422<br />

Profibus slot/index 170/71<br />

EtherCAT index (hex) 4d5e<br />

Profinet IO index 19806<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

164 Functional Description CG Drives & Automation, 01-5325-01r1


Z Comp 2 [633]<br />

Selects the second comparator for the logic Z function.<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43423<br />

Profibus slot/index 170/72<br />

EtherCAT index (hex) 4d5f<br />

Profinet IO index 19807<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Z Operator 2 [634]<br />

Selects the second operator for the logic Z function.<br />

Default: &<br />

Selection: Same as menu [624]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43424<br />

Profibus slot/index 170/73<br />

EtherCAT index (hex) 4d60<br />

Profinet IO index 19808<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Z Comp 3 [635]<br />

Selects the third comparator for the logic Z function.<br />

Default: CD1<br />

633 Z Comp 2<br />

Stp !A2<br />

A<br />

634 Z Operator 2<br />

Stp &<br />

A<br />

635 Z Comp 3<br />

Stp CD1<br />

A<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43425<br />

Profibus slot/index 170/74<br />

EtherCAT index (hex) 4d61<br />

Profinet IO index 19809<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

11.6.4 Timer1 [640]<br />

The Timer functions can be used as a delay timer or as an<br />

interval with separate On and Off times (alternate mode). In<br />

delay mode, the output signal T1Q becomes high if the set<br />

delay time is expired. See Fig. 115.<br />

Timer1 Trig<br />

Fig. 115<br />

In alternate mode, the output signal T1Q will switch<br />

automatically from high to low etc. according to the set<br />

interval times. See Fig. 116.<br />

The output signal can be programmed to the digital or relay<br />

outputs used in logic functions [620] and [630], or as a<br />

virtual connection source [560].<br />

NOTE: The actual timers are common for all parameter<br />

sets. If the actual set is changed, the timer functionality<br />

[641] to [645] will change according set settings but the<br />

timer value will stay unchanged. So initialization of the<br />

timer might differ for a set change compared to normal<br />

triggering of a timer.<br />

Fig. 116<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 165<br />

T1Q<br />

Timer1 Trig<br />

T1Q<br />

Timer1 delay<br />

T1 T2 T1 T2


Timer 1 Trig [641]<br />

Default: Off<br />

Selection: Same selections as Digital Output 1 menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43431<br />

Profibus slot/index 170/80<br />

EtherCAT index (hex) 4d67<br />

Profinet IO index 19815<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Timer 1 Mode [642]<br />

Default: Off<br />

Off 0<br />

Delay 1<br />

Alternate 2<br />

641 Timer1 Trig<br />

Stp Off<br />

A<br />

642 Timer1 Mode<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43432<br />

Profibus slot/index 170/81<br />

EtherCAT index (hex) 4d68<br />

Profinet IO index 19816<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Timer 1 Delay [643]<br />

This menu is only visible when timer mode is set to delay.<br />

This menu can only be edited as in alternative 2, see section<br />

9.5, page 61.<br />

Timer 1 delay sets the time that will be used by the first<br />

timer after it is activated. Timer 1 can be activated by a high<br />

signal on a DigIn that is set to Timer 1 or via a virtual<br />

destination [560].<br />

Default: 0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

643 Timer1Delay<br />

Stp 0:00:00<br />

A<br />

43433 hours<br />

43434 minutes<br />

43435 seconds<br />

Profibus slot/index<br />

170/82, 170/83,<br />

170/84<br />

EtherCAT index (hex) 4d69, 4d6a, 4d6b<br />

Profinet IO index 19817, 19818, 19819<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

Timer 1 T1 [644]<br />

When timer mode is set to Alternate and Timer 1 is enabled,<br />

this timer will automatically keep on switching according to<br />

the independently programmable up and down times. The<br />

Timer 1 in Alternate mode can be enabled by a digital input<br />

or via a virtual connection. See Fig. 116. Timer 1 T1 sets the<br />

up time in the alternate mode.<br />

644 Timer 1 T1<br />

Stp 0:00:00<br />

A<br />

Default: 0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

166 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Timer 1 T2 [645]<br />

Timer 1 T2 sets the down time in the alternate mode.<br />

Communication information<br />

Timer 1 Value [649]<br />

Timer 1 Value shows actual value of the timer.<br />

Communication information<br />

43436 hours<br />

43437 minutes<br />

43438 seconds<br />

Profibus slot/index<br />

170/85, 170/86,<br />

170/87<br />

EtherCAT index (hex) 4d6c, 4d6d, 4d6e<br />

Profinet IO index 19820, 19821, 19822<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

43439 hours<br />

43440 minutes<br />

43441 seconds<br />

Profibus slot/index<br />

170/88, 170/89,<br />

170/90<br />

EtherCAT index (hex) 4d6f, 4d70, 4d71<br />

Profinet IO index 19823, 19824, 19825<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

NOTE: “Timer 1 T1 [644]” and “Timer 2 T1 [654]” are<br />

only visible when Timer Mode is set to Alternate.<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

645 Timer1 T2<br />

Stp 0:00:00<br />

A<br />

649 Timer1 Value<br />

Stp 0:00:00<br />

A<br />

42921 hours<br />

42922 minutes<br />

42923 seconds<br />

Profibus slot/index<br />

168/80, 168/81,<br />

168/82<br />

EtherCAT index (hex) 4b69, 4b6a, 4b6b<br />

Profinet IO index 19305, 19306, 19307<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

11.6.5 Timer2 [650]<br />

Refer to the descriptions for Timer1.<br />

Timer 2 Trig [651]<br />

Default: Off<br />

Selection:<br />

Communication information<br />

Timer 2 Mode [652]<br />

Same selections as Digital Output 1 menu<br />

[541].<br />

Modbus Instance no/DeviceNet no: 43451<br />

Profibus slot/index 170/100<br />

EtherCAT index (hex) 4d7b<br />

Profinet IO index 19835<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Default: Off<br />

651 Timer2 Trig<br />

Stp Off<br />

A<br />

652 Timer2 Mode<br />

Stp Off<br />

A<br />

Selection: Same as in menu [642]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43452<br />

Profibus slot/index 170/101<br />

EtherCAT index (hex) 4d7c<br />

Profinet IO index 19836<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 167


Timer 2 Delay [653]<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Timer 2 T1 [654]<br />

Communication information<br />

43453 hours<br />

43454 minutes<br />

43455 seconds<br />

Profibus slot/index<br />

170/102, 170/103,<br />

170/104<br />

EtherCAT index (hex) 4d7d, 4d7e, 4d7f<br />

Profinet IO index 19837, 19838, 19839<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

653 Timer2Delay<br />

Stp 0:00:00<br />

A<br />

654 Timer 2 T1<br />

Stp 0:00:00<br />

A<br />

43456 hours<br />

43457 minutes<br />

43458 seconds<br />

Profibus slot/index<br />

170/105, 170/106,<br />

170/107<br />

EtherCAT index (hex) 4d80, 4d81, 4d82<br />

Profinet IO index 19840, 19841, 19842<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

Timer 2 T2 [655]<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Timer 2 Value [659]<br />

Timer 2 Value shows actual value of the timer.<br />

Communication information<br />

43459 hours<br />

43460 minutes<br />

43461 seconds<br />

Profibus slot/index<br />

170/108, 170/109,<br />

170/110<br />

EtherCAT index (hex) 4d83, 4d84, 4d85<br />

Profinet IO index 19843, 19844, 19845<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

Default: 0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

655 Timer 2 T2<br />

Stp 0:00:00<br />

A<br />

659 Timer2 Value<br />

Stp 0:00:00<br />

A<br />

42924 hours<br />

42925 minutes<br />

42926 seconds<br />

Profibus slot/index<br />

168/83, 168/84,<br />

168/84<br />

EtherCAT index (hex) 4b6c, 4b6d, 4b6f<br />

Profinet IO index 19308, 19309, 19310<br />

Fieldbus format UInt, 1=1 h/m/s<br />

Modbus format UInt, 1=1 h/m/s<br />

168 Functional Description CG Drives & Automation, 01-5325-01r1


11.6.6 Counters [660]<br />

Counter functions for counting pulses and signalling on<br />

digital output when counter reaches specified high and low<br />

limit levels.<br />

The counter is counting up on positive flanks on the<br />

triggered signal, the counter is cleared as long as the Reset<br />

signal is active.<br />

The counter can be automatically decremented with<br />

specified decrement time, if no new trigger signal has<br />

occurred within the decrement time.<br />

The counter value is clamped to the high limit value and the<br />

digital output function (C1Q or C2Q) is active when<br />

counter value equals high limit value.<br />

See Fig. 117 for more information of the counters.<br />

6613<br />

6614<br />

6611<br />

6612<br />

541<br />

Fig. 117 Counters, operating principle.<br />

Counter 1 [661]<br />

Counter 1 parameter group.<br />

Counter 1 Trigger [6611]<br />

Selection of the digital output signal used as trigger signal<br />

for counter 1. Counter 1 is incremented by 1 on every<br />

positive flank on the trigger signal.<br />

NOTE: Maximum counting frequency is 8 Hz.<br />

Default: Off<br />

6619<br />

541 = Digital Out 1 function<br />

6611= Counter 1 trigger<br />

6612= Counter 1 reset<br />

6613= Counter 1 High value<br />

6614= Counter 1 Low value<br />

6615= Counter 1 Decrement timer<br />

6619= Counter 1 value<br />

6615<br />

6611 C1 Trig<br />

Stp Off<br />

A<br />

Selection: Same selections as “Digital Out 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43571<br />

Profibus slot/index 170/220<br />

EtherCAT index (hex) 4df3<br />

Profinet IO index 19955<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Counter 1 Reset [6612]<br />

Selection of the digital signal used as reset signal for counter<br />

1. Counter 1 is cleared to 0 and held to 0 as long as reset<br />

input is active (high).<br />

NOTE: Reset input has top priority.<br />

Default: Off<br />

Selection: Same selections as “Digital Out 1 [541]”.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43572<br />

Profibus slot/index 170/221<br />

EtherCAT index (hex) 4df4<br />

Profinet IO index 19956<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Counter 1 High value [6613]<br />

Sets counter 1 high limit value. Counter 1 value is clamped<br />

to selected high limit value and the counter 1 output (C1Q)<br />

is active (high) when the counter value equals the high value.<br />

NOTE: Value 0 means that counter output is always<br />

true (high).<br />

Default: 0<br />

Range: 0 - 10000<br />

6612 C1 Reset<br />

Stp Off<br />

A<br />

6613 C1 High Val<br />

Stp 0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43573<br />

Profibus slot/index 170/222<br />

EtherCAT index (hex) 4df5<br />

Profinet IO index 19957<br />

Fieldbus format Long, 1=1<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 169


Counter 1 Low value [6614]<br />

Sets counter 1 low limit value. Counter 1 output (C1Q) is<br />

de-activated (low) when the counter value is equal or smaller<br />

than the low value.<br />

NOTE: Counter high value has priority so if high and low<br />

values are equal then the counter output is de-activated<br />

when the value is smaller than the low value.<br />

Default: 0<br />

Range: 0 - 10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43574<br />

Profibus slot/index 170/223<br />

EtherCAT index (hex) 4df6<br />

Profinet IO index 19958<br />

Fieldbus format Long, 1=1<br />

Modbus format EInt<br />

Counter 1 Decrement timer [6615]<br />

Sets counter 1 automatic decrement timer value. The<br />

counter 1 is decremented by 1 after elapsed decrement time<br />

and if no new trigger has happened within the decrement<br />

time. The decrement timer is reset to 0 at every counter 1<br />

trig pulse<br />

Default: Off<br />

Off 0 Off<br />

6614 C1 Low Val<br />

Stp 0<br />

A<br />

1 - 3600 1 - 3600 1 - 3600 s<br />

6615 C1 DecTimer<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43575<br />

Profibus slot/index 170/224<br />

EtherCAT index (hex) 4df7<br />

Profinet IO index 19959<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Counter 1 Value [6619]<br />

Parameter shows the actual value of counter 1.<br />

NOTE: Counter 1 value is common for all parameter sets.<br />

NOTE: The value is volatile and lost at power down.<br />

Default: 0<br />

Range: 0 - 10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42927<br />

Profibus slot/index 168/86<br />

EtherCAT index (hex) 4b6f<br />

Profinet IO index 19311<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Counter 2 [662]<br />

Refer to description for Counter 1 [661].<br />

Counter 2 Trigger [6621]<br />

Function is identical to Counter 1 Trigger [6611].<br />

Default: Off<br />

Selection: Same selections as Digital Out 1 [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43581<br />

Profibus slot/index 170/230<br />

EtherCAT index (hex) 4dfd<br />

Profinet IO index 19965<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Counter 2 Reset [6622]<br />

Function is identical to Counter 1 Reset [6612].<br />

Default: Off<br />

6619 C1 Value<br />

Stp 0<br />

A<br />

6621 C2 Trig<br />

Stp Off<br />

A<br />

6622 C2 Reset<br />

Stp Off<br />

A<br />

Selection: Same selections as Digital Out 1 [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43582<br />

Profibus slot/index 170/231<br />

EtherCAT index (hex) 4dfe<br />

Profinet IO index 19966<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

170 Functional Description CG Drives & Automation, 01-5325-01r1


Counter 2 High value [6623]<br />

Function is identical to Counter 1 High value [6613].<br />

Default: 0<br />

Range: 0 - 10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43583<br />

Profibus slot/index 170/232<br />

EtherCAT index (hex) 4dff<br />

Profinet IO index 19967<br />

Fieldbus format Long, 1=1<br />

Modbus format EInt<br />

Counter 2 Low value [6624]<br />

Function is identical to Counter 1 Low value [6614].<br />

Default: 0<br />

Range: 0 - 10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43584<br />

Profibus slot/index 170/233<br />

EtherCAT index (hex) 4e00<br />

Profinet IO index 19968<br />

Fieldbus format Long, 1=1<br />

Modbus format EInt<br />

Counter 2 Decrement timer [6625]<br />

Function is identical to Counter 1 Decrement timer [6615].<br />

Default: Off<br />

Off 0 Off<br />

6623 C2 High Val<br />

Stp 0<br />

A<br />

6624 C2 Low Val<br />

Stp 0<br />

A<br />

1 - 3600 1 - 3600 1 - 3600 s<br />

6625 C2 DecTimer<br />

Stp Off<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43585<br />

Profibus slot/index 170/234<br />

EtherCAT index (hex) 4e01<br />

Profinet IO index 19969<br />

Fieldbus format Long, 1=1 s<br />

Modbus format EInt<br />

Counter 2 Value [6629]<br />

Parameter shows the actual value of counter 2.<br />

NOTE: Counter 2 value is common for all parameter sets.<br />

NOTE: The value is volatile and lost at power down.<br />

Default: 0<br />

Range: 0 - 10000<br />

6629 C2 Value<br />

Stp 0<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42928<br />

Profibus slot/index 168/87<br />

EtherCAT index (hex) 4b70<br />

Profinet IO index 19312<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 171


11.7 View Operation/Status<br />

[700]<br />

Menu with parameters for viewing all actual operational<br />

data, such as speed, torque, power, etc.<br />

11.7.1 Operation [710]<br />

Process Value [711]<br />

The process value is showing the process actual value,<br />

depending on selection done in chapter, Process Source<br />

[321].<br />

Unit<br />

Resolution<br />

Communication information<br />

Speed [712]<br />

Displays the actual shaft speed.<br />

Depends on selected Pocess source [321]<br />

and Process Unit [322].<br />

Speed: 1 rpm, 4 digits<br />

Other units: 3 digits<br />

Modbus Instance no/DeviceNet no: 31001<br />

Profibus slot/index 121/145<br />

EtherCAT index (hex) 23e9<br />

Profinet IO index 1001<br />

Long, 1=1rpm, 1%, 1°C or<br />

0.001 if Process Value/<br />

Fieldbus format<br />

Process Ref using a [322]<br />

unit<br />

Modbus format EInt<br />

Unit: rpm<br />

711 Process Val<br />

Stp<br />

Resolution: 1 rpm, 4 digits<br />

712 Speed<br />

Stp rpm<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31002<br />

Profibus slot/index 121/146<br />

EtherCAT index (hex) 23ea<br />

Profinet IO index 1002<br />

Fieldbus format Int, 1=1 rpm<br />

Modbus format Int, 1=1 rpm<br />

Torque [713]<br />

Displays the actual shaft torque.<br />

Unit: %, Nm<br />

Resolution: 1 %, 0.1 Nm<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

EtherCAT index (hex)<br />

Profinet IO index<br />

Shaft power [714]<br />

Displays the actual shaft power.<br />

31003 Nm<br />

31004 %<br />

121/147<br />

121/148<br />

23eb Nm<br />

23ec %<br />

1003 Nm<br />

1004 %<br />

Fieldbus format<br />

Long, 1=0.1 Nm<br />

Long, 1=1 %<br />

Modbus format EInt<br />

Unit: W<br />

Resolution: 1W<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31005<br />

Profibus slot/index 121/149<br />

EtherCAT index (hex) 23ed<br />

Profinet IO index 1005<br />

Fieldbus format Long, 1=1W<br />

Modbus format EInt<br />

Electrical Power [715]<br />

Displays the actual electrical output power.<br />

Unit: kW<br />

Resolution: 1 W<br />

713 Torque<br />

Stp 0% 0.0Nm<br />

714 Shaft Power<br />

Stp W<br />

715 El Power<br />

Stp kW<br />

172 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information<br />

Modbus Instance no/DeviceNet no: 31006<br />

Profibus slot/index 121/150<br />

EtherCAT index (hex) 23ee<br />

Profinet IO index 1006<br />

Fieldbus format Long, 1=1W<br />

Modbus format EInt<br />

Current [716]<br />

Displays the actual output current.<br />

Unit: A<br />

Resolution: 0.1 A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31007<br />

Profibus slot/index 121/151<br />

EtherCAT index (hex) 23ef<br />

Profinet IO index 1007<br />

Fieldbus format Long, 1=0.1 A<br />

Modbus format EInt<br />

Output Voltage [717]<br />

Displays the actual output voltage.<br />

Unit: V<br />

Resolution: 0.1 V<br />

716 Current<br />

Stp A<br />

717 Output Volt<br />

Stp V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31008<br />

Profibus slot/index 121/152<br />

EtherCAT index (hex) 23f0<br />

Profinet IO index 1008<br />

Fieldbus format Long, 1=0.1 V<br />

Modbus format EInt<br />

Frequency [718]<br />

Displays the actual output frequency.<br />

Unit: Hz<br />

Resolution: 0.1 Hz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31009<br />

Profibus slot/index 121/153<br />

EtherCAT index (hex) 23f1<br />

Profinet IO index 1009<br />

Fieldbus format Long, 1=0.1 Hz<br />

Modbus format EInt<br />

DC Link Voltage [719]<br />

Displays the actual DC link voltage.<br />

Unit: V<br />

Resolution: 0.1 V<br />

718 Frequency<br />

Stp Hz<br />

719 DC Voltage<br />

Stp V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31010<br />

Profibus slot/index 121/154<br />

EtherCAT index (hex) 23f2<br />

Profinet IO index 1010<br />

Fieldbus format Long, 1=0.1 V<br />

Modbus format EInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 173


Heatsink Temperature [71A]<br />

Displays the actual heatsink temperature, measured. The<br />

signal is generated by a sensor in the IGBT module.<br />

Unit: °C<br />

Resolution: 0.1°C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31011<br />

Profibus slot/index 121/155<br />

EtherCAT index (hex) 23f3<br />

Profinet IO index 1011<br />

Fieldbus format Long, 1=0.1 �C<br />

Modbus format EInt<br />

PT100_1_2_3 Temp [71B]<br />

Displays the actual PT100 temperature.<br />

Unit: °C<br />

Resolution: 1°C<br />

71A Heatsink Tmp<br />

Stp °C<br />

71B PT100 1,2,3<br />

Stp °C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31012, 31013, 31014<br />

Profibus slot/index<br />

121/156<br />

121/157<br />

121/158<br />

EtherCAT index (hex) 23f4, 23f5, 23f6<br />

Profinet IO index 1012, 1013, 1014<br />

Fieldbus format Long, 1=1 °C<br />

Modbus format EInt<br />

11.7.2 Status [720]<br />

VSD Status [721]<br />

Indicates the overall status of the AC drive.<br />

721 VSD Status<br />

Stp 1/222/333/44<br />

Fig. 118 AC drive status<br />

Display<br />

position<br />

Example: “A/Key/Rem/TL”<br />

This means:<br />

A: Parameter Set A is active.<br />

Key: Reference value comes from the keyboard (CP).<br />

Rem: Run/Stop commands come from terminals 1-22.<br />

TL: Torque Limit active.<br />

Communication information<br />

Function Status value<br />

1 Parameter Set A,B,C,D<br />

174 Functional Description CG Drives & Automation, 01-5325-01r1<br />

222<br />

333<br />

Source of reference<br />

value<br />

Source of Run/<br />

Stop/Reset<br />

command<br />

44 Limit functions<br />

-Rem (remote)<br />

-Key (keyboard)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

-Rem (remote)<br />

-Key (keyboard)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

- - - -No limit active<br />

-VL (Voltage Limit)<br />

-SL (Speed Limit)<br />

-CL (Current Limit)<br />

-TL (Torque Limit)<br />

Modbus Instance no/DeviceNet no: 31015<br />

Profibus slot/index 121/159<br />

EtherCAT index (hex) 23f7<br />

Profinet IO index 1015<br />

Fieldbus format UInt<br />

Modbus format UInt


Description of communication format<br />

Integer values and bits used<br />

1 - 0<br />

4 - 2<br />

7 - 5<br />

13 - 8<br />

14<br />

Bit Integer representation<br />

Active Parameter set, where<br />

0=A, 1=B, 2=C, 3=D<br />

Source of Reference control value, where<br />

0=Rem, 1=Key, 2=Com, 3=Option<br />

Source of Run/Stop/Reset command, where<br />

0=Rem, 1=Key, 2=Com, 3=Option<br />

Active limit functions, where<br />

0=No limit, 1=VL, 2=SL, 3=CL, 4=TL<br />

Inverter is in warning (A warning condition is<br />

active)<br />

15 Inverter is tripped (A Trip condition is active)<br />

Example:<br />

Previous example “A/Key/Rem/TL”<br />

is interpreted “ 0/1/0/4”<br />

In bit format this is presented as<br />

Bit Interpretation Integer representation<br />

0 LSB 0<br />

1 0<br />

2 1<br />

3 0<br />

4 0<br />

5 0<br />

6 0<br />

7 0<br />

8 0<br />

A(0) Parameter set<br />

Key (1) Source of control<br />

Rem (0) Source of command<br />

9 0<br />

10<br />

11<br />

1<br />

0<br />

TL (4) Limit functions<br />

12 0<br />

13 0<br />

14 0 Warning condition<br />

15 MSB 0 Trip condition<br />

In the example above it is assumed that we have no trip or<br />

warning condition (the alarm LED on the control panel is<br />

off).<br />

Warning [722]<br />

Display the actual or last warning condition. A warning<br />

occurs if the AC drive is close to a trip condition but still in<br />

operation. During a warning condition the red trip LED<br />

will start to blink as long as the warning is active.<br />

722 Warnings<br />

Stp warn.msg<br />

The active warning message is displayed in menu [722]. If<br />

no warning is active the message “No Error” is displayed.<br />

The following warnings are possible:<br />

Fieldbus<br />

integer<br />

value<br />

0 No Error<br />

1 Motor I²t<br />

2 PTC<br />

3 Motor lost<br />

4 Locked rotor<br />

5 Ext trip<br />

6 Mon MaxAlarm<br />

7 Mon MinAlarm<br />

8 Comm error<br />

9 PT100<br />

11 Pump<br />

12 Ext Mot Temp<br />

13 LC Level<br />

14 Brake<br />

15 Option<br />

16 Over temp<br />

17 Over curr F<br />

18 Over volt D<br />

19 Over volt G<br />

20 Over volt M<br />

21 Over speed<br />

22 Under voltage<br />

23 Power fault<br />

24 Desat<br />

25 DClink error<br />

26 Int error<br />

27 Ovolt m cut<br />

28 Over voltage<br />

29 Not used<br />

30 Not used<br />

31 Encoder<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31016<br />

Profibus slot/index 121/160<br />

EtherCAT index (hex) 23f8<br />

Profinet IO index 1016<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

See also the Chapter 12. page 183.<br />

Warning message<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 175


Digital Input Status [723]<br />

Indicates the status of the digital inputs. See Fig. 119.<br />

1 DigIn 1<br />

2 DigIn 2<br />

3 DigIn 3<br />

4 DigIn 4<br />

5 DigIn 5<br />

6 DigIn 6<br />

7 DigIn 7<br />

8 DigIn 8<br />

The positions one to eight (read from left to right) indicate<br />

the status of the associated input:<br />

1 High<br />

0 Low<br />

The example in Fig. 119 indicates that DigIn 1,<br />

DigIn 3 and DigIn 6 are active at this moment.<br />

723 DigIn Status<br />

Stp 1010 0100<br />

Fig. 119 Digital input status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31017<br />

Profibus slot/index 121/161<br />

EtherCAT index (hex) 23f9<br />

Profinet IO index 1017<br />

Fieldbus format UInt, bit 0=DigIn1,<br />

Modbus format<br />

bit 8=DigIn8<br />

Digital Output Status [724]<br />

Indicates the status of the digital outputs and relays. See Fig.<br />

120.<br />

RE indicate the status of the relays on position:<br />

1 Relay1<br />

2 Relay2<br />

3 Relay3<br />

DO indicate the status of the digital outputs on position:<br />

1 DigOut1<br />

2 DigOut2<br />

The status of the associated output is shown.<br />

1 High<br />

0 Low<br />

The example in Fig. 120 indicates that DigOut1 is active<br />

and Digital Out 2 is not active. Relay 1 is active, relay 2 and<br />

3 are not active.<br />

724 DigOutStatus<br />

Stp RE 100 DO 10<br />

Fig. 120 Digital output status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31018<br />

Profibus slot/index 121/162<br />

EtherCAT index (hex) 23fa<br />

Profinet IO index 1018<br />

Fieldbus format UInt, bit 0=DigOut1,<br />

bit 1=DigOut2<br />

Modbus format<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

Analogue Input Status [725]<br />

Indicates the status of the analogue inputs 1 and 2.<br />

725 AnIn 1 2<br />

Stp -100% 65%<br />

Fig. 121 Analogue input status<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31019, 31020<br />

Profibus slot/index 121/163, 121/164<br />

EtherCAT index (hex) 23fb, 23fc<br />

Profinet IO index 1019, 1020<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

The first row indicates the analogue inputs.<br />

1 AnIn 1<br />

2 AnIn 2<br />

Reading downwards from the first row to the second row the<br />

status of the belonging input is shown in %:<br />

-100% AnIn1 has a negative 100% input value<br />

65% AnIn2 has a 65% input value<br />

So the example in Fig. 121 indicates that both the Analogue<br />

inputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- or output; so<br />

related to either 0–10 V or 0–20 mA.<br />

Analogue Input Status [726]<br />

Indicates the status of the analogue inputs 3 and 4.<br />

726 AnIn 3 4<br />

Stp -100% 65%<br />

Fig. 122 Analogue input status<br />

176 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information<br />

Modbus Instance no/DeviceNet no: 31021, 31022<br />

Profibus slot/index 121/165, 121/166<br />

EtherCAT index (hex) 23fd, 23fe<br />

Profinet IO index 1021, 1022<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

Analogue Output Status [727]<br />

Indicates the status of the analogue outputs. Fig. 119. E.g. if<br />

4-20 mA output is used, the value 20% equals to 4 mA.<br />

727 AnOut 1 2<br />

Stp -100% 65%<br />

Fig. 123 Analogue output status<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31023, 31024<br />

Profibus slot/index 121/167, 121/168<br />

EtherCAT index (hex) 23ff, 2400<br />

Profinet IO index 1023, 1024<br />

Fieldbus format Long, 1=1%<br />

Modbus format EInt<br />

The first row indicates the Analogue outputs.<br />

1 AnOut 1<br />

2 AnOut 2<br />

Reading downwards from the first row to the second row the<br />

status of the belonging output is shown in %:<br />

-100%AnOut1 has a negative 100% output value<br />

65%AnOut2 has a 65% output value<br />

The example in Fig. 119 indicates that both the Analogue<br />

outputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- or output; so<br />

related to either 0–10 V or 0–20 mA.<br />

I/O board Status [728] - [72A]<br />

Indicates the status for the additional I/O on option boards<br />

1 (B1), 2 (B2) and 3 (B3).<br />

728 IO B1<br />

Stp RE 000 DI100<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31025 - 31027<br />

Profibus slot/index 121/170 - 172<br />

EtherCAT index (hex) 2401 - 2403<br />

Profinet IO index 1025 - 1027<br />

Fieldbus format UInt, bit 0=DigIn1<br />

bit 1=DigIn2<br />

bit 2=DigIn3<br />

Modbus format<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 177


11.7.3 Stored values [730]<br />

The shown values are the actual values built up over time.<br />

Values are stored at power down and updated again at power<br />

up.<br />

Run Time [731]<br />

Displays the total time that the AC drive has been in the<br />

Run Mode.<br />

Unit: h: mm:ss (hours: minutes: seconds)<br />

Range: 00: 00: 00–262143: 59: 59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Reset Run Time [7311]<br />

Reset the run time counter. The stored information will be<br />

erased and a new registration period will start.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 7<br />

Profibus slot/index 0/6<br />

EtherCAT index (hex) 2007<br />

Profinet IO index 7<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

31028:31029:31030<br />

(hr:min:sec)<br />

Profibus slot/index<br />

121/172:121/173: 121/<br />

174<br />

EtherCAT index (hex) 2404:2405:2406<br />

Profinet IO index 1028:1029:1030<br />

Fieldbus format Long, 1=1h:m:s<br />

Modbus format Eint<br />

Default: No<br />

No 0<br />

Yes 1<br />

731 Run Time<br />

Stp h:mm:ss<br />

7311 Reset RunTm<br />

Stp No<br />

A<br />

NOTE: After reset the setting automatically reverts to<br />

“No”.<br />

Mains time [732]<br />

Displays the total time that the AC drive has been connected<br />

to the mains supply. This timer cannot be reset.<br />

Unit: h: mm:ss (hours: minutes: seconds)<br />

Range: 00: 00: 00–262143: 59: 59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

732 Mains Time<br />

Stp h:mm:ss<br />

31031:31032:31033<br />

(hr:min:sec)<br />

121/175:121/176: 121/<br />

177<br />

EtherCAT index (hex)<br />

2407 : 2408 :<br />

2409<br />

Profinet IO index 1031:1032:1033<br />

Fieldbus format Long, 1=1h:m:s<br />

Modbus format Eint<br />

Energy [733]<br />

Displays the total energy consumption since the last energy<br />

reset [7331] took place.<br />

733 Energy<br />

Stp kWh<br />

Unit: Wh (shows Wh, kWh, MWh or GWh)<br />

Range: 0.0–999999GWh<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31034<br />

Profibus slot/index 121/178<br />

EtherCAT index (hex) 240a<br />

Profinet IO index 1034<br />

Fieldbus format Long, 1=1 Wh<br />

Modbus format EInt<br />

178 Functional Description CG Drives & Automation, 01-5325-01r1


Reset Energy [7331]<br />

Resets the energy counter. The stored information will be<br />

erased and a new registration period will start.<br />

Default: No<br />

Selection: No, Yes<br />

7331 Rst Energy<br />

Stp No<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 6<br />

Profibus slot/index 0/5<br />

EtherCAT index (hex) 2006<br />

Profinet IO index 6<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: After reset the setting automatically goes back to<br />

“No”.<br />

11.8 View Trip Log [800]<br />

Main menu with parameters for viewing all the logged trip<br />

data. In total the AC drive saves the last 10 trips in the trip<br />

memory. The trip memory refreshes on the FIFO principle<br />

(First In, First Out). Every trip in the memory is logged on<br />

the time of the “Run Time [731]” counter. At every trip, the<br />

actual values of several parameter are stored and available for<br />

troubleshooting.<br />

11.8.1 Trip Message log [810]<br />

Display the cause of the trip and what time that it occurred.<br />

When a trip occurs the status menus are copied to the trip<br />

message log. There are nine trip message logs [810]–[890].<br />

When the tenth trip occurs the oldest trip will disappear.<br />

After reset of occurred trip, the trip message will be removed<br />

and menu [100] will be indicated.<br />

Unit: h: m (hours: minutes)<br />

Range: 0h: 0m–65355h: 59m<br />

For fieldbus integer value of trip message, see message table<br />

for warnings, [722].<br />

NOTE: Bits 0–5 used for trip message value. Bits 6–15<br />

for internal use.<br />

Communication information<br />

8x0 Trip message<br />

Stp h:mm:ss<br />

810 Ext Trip<br />

Stp 132:12:14<br />

Modbus Instance no/DeviceNet no: 31101<br />

Profibus slot/index 121/245<br />

EtherCAT index (hex) 244d<br />

Profinet IO index 1101<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 179


Trip message [811]-[81O]<br />

The information from the status menus are copied to the<br />

trip message log when a trip occurs.<br />

Trip menu Copied from Description<br />

811 711 Process Value<br />

812 712 Speed<br />

813 712 Torque<br />

814 714 Shaft Power<br />

815 715 Electrical Power<br />

816 716 Current<br />

817 717 Output voltage<br />

818 718 Frequency<br />

819 719 DC Link voltage<br />

81A 71A Heatsink Temperature<br />

81B 71B PT100_1, 2, 3<br />

81C 721 AC drive Status<br />

81D 723 Digital input status<br />

81E 724 Digital output status<br />

81F 725 Analogue input status 1-2<br />

81G 726 Analogue input status 3-4<br />

81H 727 Analogue output status 1-2<br />

81I 728 I/O status option board 1<br />

81J 729 I/O status option board 2<br />

81K 72A I/O status option board 3<br />

81L 731 Run Time<br />

81M 732 Mains Time<br />

81N 733 Energy<br />

81O 310 Process reference<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31102 - 31135<br />

Profibus slot/index<br />

121/246 - 254,<br />

122/0 - 24<br />

EtherCAT index (hex) 244e - 246f<br />

Profinet IO index 1102 - 1135<br />

Fieldbus format<br />

Modbus format<br />

Depends on parameter, see<br />

respective parameter.<br />

Depends on parameter, see<br />

respective parameter.<br />

Example:<br />

Fig. 120 shows the third trip memory menu [830]: Over<br />

temperature trip occurred after 1396 hours and 13 minutes<br />

in Run time.<br />

Fig. 124 Trip 3<br />

11.8.2 Trip Messages [820] - [890]<br />

Same information as for menu [810].<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Profinet IO index<br />

Fieldbus format<br />

Modbus format<br />

31151–31185<br />

31201–31235<br />

31251–31285<br />

31301–31335<br />

31351–31385<br />

31401–31435<br />

31451–31485<br />

31501–31535<br />

122/40–122/74<br />

122/90–122/124<br />

122/140–122/174<br />

122/190–122/224<br />

122/240–123/18<br />

123/35 - 123/68<br />

123/85–123/118<br />

123/135–123/168<br />

All nine alarm lists contain the same type of data. For<br />

example DeviceNet parameter 31101 in alarm list 1<br />

contains the same data information as 31151 in alarm list 2.<br />

11.8.3 Reset Trip Log [8A0]<br />

Resets the content of the 10 trip memories.<br />

Default: No<br />

No 0<br />

Yes 1<br />

830 Over temp<br />

Stp 1396h:13m<br />

1151 - 1185<br />

1201 - 1235<br />

1251 - 1285<br />

1301 - 1335<br />

1351 - 1385<br />

1401 - 1435<br />

1451 - 1485<br />

1501 - 1535<br />

See Trip 811 - 81O<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

8A0 Reset Trip<br />

Stp No<br />

180 Functional Description CG Drives & Automation, 01-5325-01r1


Communication information 11.9 System Data [900]<br />

Modbus Instance no/DeviceNet no: 8<br />

Profibus slot/index 0/7<br />

EtherCAT index (hex) 2008<br />

Profinet IO index 8<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

NOTE: After the reset the setting goes automatically<br />

back to “NO”. The message “OK” is displayed for 2 sec.<br />

Main menu for viewing all the AC drive system data.<br />

11.9.1 VSD Data [920]<br />

VSD Type [921]<br />

Shows the AC drive type according to the type number.<br />

The options are indicated on the type plate of the AC drive.<br />

NOTE: If the control board is not configured, then type<br />

type shown is FDU40-XXX.<br />

921 FDU2.0<br />

Stp FDU48-046<br />

Example of type<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31037<br />

Profibus slot/index 121/181<br />

EtherCAT index (hex) 240d<br />

Profinet IO index 1037<br />

Fieldbus format UInt, 1=1<br />

Modbus format UInt<br />

Examples:<br />

FDU48-046AC drive-series suited for 380-480 volt mains<br />

supply, and a rated output current of 46 A.<br />

CG Drives & Automation, 01-5325-01r1 Functional Description 181


Software [922]<br />

Shows the software version number of the AC drive.<br />

Fig. 125 gives an example of the version number.<br />

922 Software<br />

Stp V 4.32 - 03.07<br />

Fig. 125 Example of software version<br />

V 4.32 = Software version<br />

- 03.07 = option version, is only visible and valid for special<br />

software, type OEM adapted software.<br />

03 = (major) special software variant number<br />

07= (minor) revision of this special software<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

31038 software version<br />

31039 option version<br />

Profibus slot/index 121/182-183<br />

EtherCAT index (hex) 240e, 240f<br />

Profinet IO index 1038, 1039<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

Table 29 Information for Modbus and Profibus number,<br />

software version<br />

Bit Example Description<br />

7–0 32 minor<br />

13–8 4 major<br />

15–14<br />

release<br />

00: V, release version<br />

01: P, pre-release<br />

version<br />

10: �, Beta version<br />

11: �, Alpha version<br />

Table 30 Information for Modbus and Profibus number,<br />

option version<br />

Bit Example Description<br />

7–0 07 minor<br />

15–8 03 major<br />

NOTE: It is important that the software version displayed<br />

in menu [922] is the same software version number as<br />

the software version number written on the title page of<br />

this instruction <strong>manual</strong>. If not, the functionality as<br />

described in this <strong>manual</strong> may differ from the<br />

functionality of the AC drive.<br />

Unit name [923]<br />

Option to enter a name of the unit for service use or<br />

customer identity. The function enables the user to define a<br />

name with max 12 characters. Use the Prev and Next key to<br />

move the cursor to the required position. Then use the +<br />

and - keys to scroll in the character list. Confirm the<br />

character by moving the cursor to the next position by<br />

pressing the Next key. See section User-defined Unit [323].<br />

Example<br />

Create user name USER 15.<br />

1. When in the menu [923] press Next to move the cursor<br />

to the right most position.<br />

2. Press the + key until the character U is displayed.<br />

3. Press Next.<br />

4. Then press the + key until S is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered USER15.<br />

923 USER 15<br />

Stp<br />

Default: No characters shown<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42301–42312<br />

Profibus slot/index 165/225–236<br />

EtherCAT index (hex) 48fd - 4908<br />

Profinet IO index 18685 - 18696<br />

Fieldbus format UInt<br />

Modbus format UInt<br />

When sending a unit name you send one character at a time<br />

starting at the right most position.<br />

182 Functional Description CG Drives & Automation, 01-5325-01r1


12. Troubleshooting, Diagnoses and Maintenance<br />

12.1 Trips, warnings and limits<br />

In order to protect the AC drive the principal operating<br />

variables are continuously monitored by the system. If one<br />

of these variables exceeds the safety limit an error/warning<br />

message is displayed. In order to avoid any possibly<br />

dangerous situations, the inverter sets itself into a stop Mode<br />

called Trip and the cause of the trip is shown in the display.<br />

Trips will always stop the AC drive. Trips can be divided into<br />

normal and soft trips, depending on the setup Trip Type, see<br />

menu “[250] Autoreset”. Normal trips are default. For normal<br />

trips the AC drive stops immediately, i.e. the motor<br />

coasts naturally to a standstill. For soft trips the AC drive<br />

stops by ramping down the speed, i.e. the motor decelerates<br />

to a standstill.<br />

“Normal Trip”<br />

• The AC drive stops immediately, the motor coasts to<br />

naturally to a standstill.<br />

• The Trip relay or output is active (if selected).<br />

• The Trip LED is on.<br />

• The accompanying trip message is displayed.<br />

• The “TRP” status indication is displayed (area D of the<br />

display).<br />

• After reset command, the trip message will disappear and<br />

menu [100] will be indicated.<br />

“Soft Trip”<br />

• the AC drive stops by decelerating to a standstill.<br />

During the deceleration.<br />

• The accompanying trip message is displayed, including<br />

an additional soft trip indicator “S” before the trip time.<br />

• The Trip LED is flashing.<br />

• The Warning relay or output is active (if selected).<br />

After standstill is reached.<br />

• The Trip LED is on.<br />

• The Trip relay or output is active (if selected).<br />

• The “TRP” status indication is displayed (area D of the<br />

display).<br />

• After reset command, the trip message will disappear and<br />

menu [100] will be indicated.<br />

Apart from the TRIP indicators there are two more<br />

indicators to show that the inverter is in an “abnormal”<br />

situation.<br />

“Warning”<br />

• The inverter is close to a trip limit.<br />

• The Warning relay or output is active (if selected).<br />

• The Trip LED is flashing.<br />

• The accompanying warning message is displayed in<br />

window “[722] Warning”.<br />

• One of the warning indications is displayed (area F of<br />

the display).<br />

“Limits”<br />

• The inverter is limiting torque and/or frequency to avoid<br />

a trip.<br />

• The Limit relay or output is active (if selected).<br />

• The Trip LED is flashing.<br />

• One of the Limit status indications is displayed (area D<br />

of the display).<br />

CG Drives & Automation, 01-5325-01r1 Troubleshooting, Diagnoses and Maintenance 183


Table 31 List of trips and warnings<br />

Trip/Warning<br />

messages<br />

Selections<br />

Trip<br />

(Normal/<br />

Soft)<br />

Motor I2 t Trip/Off/Limit Normal/Soft I 2 t<br />

PTC Trip/Off Normal/Soft<br />

Motor PTC On Normal<br />

PT100 Trip/Off Normal/Soft<br />

Motor lost Trip/Off Normal<br />

Locked rotor Trip/Off Normal<br />

Ext trip Via DigIn Normal/Soft<br />

Ext Mot Temp Via DigIn Normal/Soft<br />

Mon MaxAlarm Trip/Off/Warn Normal/Soft<br />

Mon MinAlarm Trip/Off/Warn Normal/Soft<br />

Comm error Trip/Off/Warn Normal/Soft<br />

Deviation Via Option Normal<br />

Encoder Trip/Off Normal<br />

Pump Via Option Normal<br />

Over temp On Normal OT<br />

Over curr F On Normal<br />

Over volt D On Normal<br />

Over volt G On Normal<br />

Over volt On Normal<br />

Under voltage On Normal LV<br />

LC Level<br />

Trip/Off/Warn<br />

Via DigIn<br />

Normal/Soft LCL<br />

Desat ### * On Normal<br />

DClink error On Normal<br />

Power Fault<br />

PF #### *<br />

On Normal<br />

Ovolt m cut On Normal<br />

Over voltage Warning VL<br />

Safe stop Warning SST<br />

Brake Trip/Off/Warn Normal<br />

OPTION On Normal<br />

*) Refer to table Table 32regarding which Desat or<br />

Power Fault is triggered.<br />

Warning<br />

indicators<br />

(Area D)<br />

12.2 Trip conditions, causes and<br />

remedial action<br />

The table later on in this section must be seen as a basic aid<br />

to find the cause of a system failure and to how to solve any<br />

problems that arise. An AC drive is mostly just a small part<br />

of a complete AC drive system. Sometimes it is<br />

difficult to determine the cause of the failure, although the<br />

AC drive gives a certain trip message it is not always easy to<br />

find the right cause of the failure. Good knowledge of the<br />

complete drive system is therefore<br />

necessary. Contact your supplier if you have any questions.<br />

The AC drive is designed in such a way that it tries to avoid<br />

trips by limiting torque, overvolt etc.<br />

Failures occurring during commissioning or shortly after<br />

commissioning are most likely to be caused by incorrect<br />

settings or even bad connections.<br />

Failures or problems occurring after a reasonable period of<br />

failure-free operation can be caused by changes in the system<br />

or in its environment (e.g. wear).<br />

Failures that occur regularly for no obvious reasons are<br />

generally caused by Electro Magnetic Interference. Be sure<br />

that the installation fulfils the demands for installation<br />

stipulated in the EMC directives. See chapter 8. page 55.<br />

Sometimes the so-called “Trial and error” method is a<br />

quicker way to determine the cause of the failure. This can<br />

be done at any level, from changing settings and functions to<br />

disconnecting single control cables or replacing entire drives.<br />

The Trip Log can be useful for determining whether certain<br />

trips occur at certain moments. The Trip Log also records<br />

the time of the trip in relation to the run time counter.<br />

WARNING!<br />

If it is necessary to open the AC drive or any<br />

part of the system (motor cable housing,<br />

conduits, electrical panels, cabinets, etc.) to<br />

inspect or take measure-ments as suggested in this<br />

instruction <strong>manual</strong>, it is absolutely necessary to read<br />

and follow the safety instructions in the <strong>manual</strong>.<br />

184 Troubleshooting, Diagnoses and Maintenance CG Drives & Automation, 01-5325-01r1


12.2.1 Technically qualified personnel<br />

Installation, commissioning, demounting, making measurements,<br />

etc., of or at the AC drive may only be carried out by<br />

personnel technically qualified for the task.<br />

12.2.2 Opening the AC drive<br />

The connections for the control signals and the switches are<br />

isolated from the mains voltage. Always take adequate<br />

precautions before opening the AC drive.<br />

12.2.3 Precautions to take with a<br />

connected motor<br />

If work must be carried out on a connected motor or on the<br />

driven machine, the mains voltage must always first be<br />

disconnected from the AC drive. Wait at least 7 minutes<br />

before continuing.<br />

12.2.4 Autoreset Trip<br />

If the maximum number of Trips during Autoreset has been<br />

reached, the trip message hour counter is marked with an<br />

“A”.<br />

Fig. 126 Autoreset trip<br />

WARNING!<br />

Always switch the mains voltage off if it is<br />

necessary to open the AC drive and wait at<br />

least 7 minutes to allow the capacitors to<br />

discharge.<br />

WARNING!<br />

In case of malfunctioning always check the<br />

DC-link voltage, or wait one hour after the<br />

mains voltage has been switched off, before<br />

dismantling the AC drive for repair.<br />

830 OVERVOLT G<br />

Trp A 345:45:12<br />

Fig. 126 shows the 3rd trip memory menu [830]:<br />

Overvoltage G trip after the maximum Autoreset attempts<br />

took place after 345 hours, 45 minutes and 12 seconds of<br />

run time.<br />

CG Drives & Automation, 01-5325-01r1 Troubleshooting, Diagnoses and Maintenance 185


Table 32 Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy Size**<br />

Motor I 2 t<br />

“I 2 t”<br />

PTC<br />

Motor PTC<br />

PT100<br />

Motor lost<br />

Locked rotor<br />

Ext trip<br />

Ext Mot Temp<br />

Mon MaxAlarm<br />

Mon MinAlarm<br />

I 2 t value is exceeded.<br />

- Overload on the motor according to the<br />

programmed I 2 t settings.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/<br />

PT100 is used.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if [237] is enabled.<br />

Motor PT100 elements exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/<br />

PT100 is used.<br />

Phase loss or too great imbalance on the<br />

motor phases<br />

Torque limit at motor standstill:<br />

- Mechanical blocking of the rotor.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

Max alarm level (overload) has been<br />

reached.<br />

Min alarm level (underload) has been<br />

reached.<br />

Comm error Error on serial communication (option)<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Change the Motor I 2 t Current setting in<br />

menu group [230]<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [234] to OFF<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [237] to OFF<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PT100 to OFF, menu [234]<br />

- Check the motor voltage on all phases.<br />

- Check for loose or poor motor cable<br />

connections<br />

- If all connections are OK, contact your<br />

supplier<br />

- Set motor lost alarm to OFF.<br />

- Check for mechanical problems at the<br />

motor or the machinery connected to the<br />

motor<br />

- Set locked rotor alarm to OFF.<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.4.1, page<br />

128.<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.4.1, page<br />

128.<br />

- Check cables and connection of the<br />

serial communication.<br />

- Check all settings with regard to the<br />

serial communication<br />

- Restart the equipment including the<br />

AC drive<br />

186 Troubleshooting, Diagnoses and Maintenance CG Drives & Automation, 01-5325-01r1<br />

B,C,D


Table 32 Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy Size**<br />

Deviation1<br />

Deviation2<br />

Encoder<br />

Pump<br />

Over temp<br />

Over curr F<br />

Over volt<br />

D(eceleration)<br />

Over volt<br />

G(eneration)<br />

CRANE board detecting deviation in motor<br />

operation.<br />

NOTE: Only used in Crane Control.<br />

Motor speed deviation in between reference<br />

and measured speed detected.<br />

NOTE: Only valid if option board Encoder is<br />

used.<br />

Lost encoder board, encoder cable or<br />

encoder pulses.<br />

NOTE: Only valid if option board Encoder is<br />

used.<br />

No master pump can be selected due to<br />

error in feedback signalling.<br />

NOTE: Only used in Pump Control.<br />

Heatsink temperature too high:<br />

- Too high ambient temperature of the<br />

AC drive<br />

- Insufficient cooling<br />

- Too high current<br />

- Blocked or stuffed fans<br />

Motor current exceeds the peak AC drive<br />

current:<br />

- Too short acceleration time.<br />

- Too high motor load<br />

- Excessive load change<br />

- Soft short-circuit between phases or<br />

phase to earth<br />

- Poor or loose motor cable connections<br />

- Too high IxR Compensation level<br />

Too high DC Link voltage:<br />

- Too short deceleration time with<br />

respect to motor/machine inertia.<br />

- Too small brake resistor malfunctioning<br />

Brake chopper<br />

Over volt (Mains)<br />

Too high DC Link voltage, due to too high<br />

O(ver) volt mains voltage<br />

M(ains) cut<br />

Under voltage<br />

LC Level<br />

Too low DC Link voltage:<br />

- Too low or no supply voltage<br />

- Mains voltage dip due to starting other<br />

major power consuming machines on<br />

the same line.<br />

Low liquid cooling level in external reservoir.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

NOTE: Only valid for AC drive types with Liquid<br />

Cooling option.<br />

- Check encoder signals<br />

- Check Deviation jumper on Crane option board.<br />

- Check the settings in menus [3AB] & [3AC]<br />

- Check motor operation.<br />

- Check speed deviation settings [22G#].<br />

- Check speed PI controller settings [37#].<br />

- Check torque limit setting [351]<br />

- Check encoder board.<br />

- Check encoder cable and signals.<br />

- Disable encoder, set menu [22B] to OFF.<br />

- Check cables and wiring for Pump feedback<br />

signals<br />

- Check settings with regard to the pump feedback<br />

digital inputs<br />

- Check the cooling of the AC drive cabinet.<br />

- Check the functionality of the built-in fans. The<br />

fans must switch on automatically if the heatsink<br />

temperature gets too high. At power up the fans<br />

are briefly switched on.<br />

- Check AC drive and motor rating<br />

- Clean fans<br />

- Check the acceleration time settings and<br />

make them longer if necessary.<br />

- Check the motor load.<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing<br />

and cable connections.<br />

- Lower the level of IxR Compensation [352]<br />

- Check the deceleration time settings and make<br />

them longer if necessary.<br />

- Check the dimensions of the brake resistor and<br />

the functionality of the Brake chopper (if used)<br />

- Check the main supply voltage<br />

- Try to take away the interference cause or use<br />

other main supply lines.<br />

- Make sure all three phases are properly connected<br />

and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the<br />

limits of the AC drive.<br />

- Try to use other mains supply lines if dip is caused<br />

by other machinery<br />

- Use the function low voltage override [421]<br />

- Check liquid cooling<br />

- Check the equipment and wiring that initiates the<br />

external input<br />

- Check the programming of the digital inputs DigIn<br />

1-8<br />

OPTION If an Option specific trip occurs Check the description of the specific option<br />

CG Drives & Automation, 01-5325-01r1 Troubleshooting, Diagnoses and Maintenance 187


Table 32 Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy Size**<br />

Desat<br />

Desat U+ *<br />

Desat U- *<br />

Desat V+ *<br />

Desat V- *<br />

Desat W+ *<br />

Desat W- *<br />

Desat BCC *<br />

DC link error<br />

Power Fault<br />

Failure in output stage,<br />

- desaturation of IGBTs<br />

- Hard short circuit between phases or<br />

phase to earth<br />

- Earth fault<br />

- For size B - D also the Brake IGBT<br />

DC link voltage ripple exceeds maximum<br />

level<br />

One of the 10 PF (Power Fault) trips below<br />

has occured, but could not be determined.<br />

* = 2...6 Module number if parallel power units (size 300–1500 A)<br />

** = If no size is mentioned in this column, the information is valid for all sizes.<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connections<br />

- Check on water and moisture in the<br />

motor housing and cable connections<br />

- Check that the rating plate data of the motor is<br />

correctly entered.<br />

- Check the brake resistor, brake IGBT and wiring.<br />

- For size G and up, check the cables from the<br />

PEBBs to the motor, that all are in correct order in<br />

parallell connection<br />

- Make sure all three phases are properly connected<br />

and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the<br />

limits of the AC drive.<br />

- Try to use other mains supply lines if dip is caused<br />

by other machinery.<br />

- Check the PF errors and try to determine the<br />

cause. The trip history can be helpful.<br />

188 Troubleshooting, Diagnoses and Maintenance CG Drives & Automation, 01-5325-01r1<br />

B - D<br />

E & Up<br />

PF Fan Err * Error in fan module<br />

- Check for clogged air inlet filters in panel door and<br />

E & Up<br />

blocking material in fan module.<br />

PF HCB Err* Error in controlled rectifier module (HCB) - Check mains supply voltage D & Up<br />

PF Curr Err *<br />

PF Overvolt *<br />

Error in current balancing:<br />

- between different modules.<br />

- between two phases within one module.<br />

Error in voltage balancing, overvoltage<br />

detected in one of the power modules<br />

(PEBB)<br />

- Check motor.<br />

- Check fuses and line connections<br />

- Check the individual motor current leads with an<br />

clamp on amp meter.<br />

- Check motor.<br />

- Check fuses and line connections.<br />

PF Comm Err * Internal communication error Contact service<br />

PF Int Temp * Internal temperature too high Check internal fans<br />

PF Temp Err * Malfunction in temperature sensor Contact service<br />

PF DC Err * DC-link error and mains supply fault<br />

PF Sup Err * Mains supply fault<br />

Brake<br />

Brake tripped on brake fault (not released)<br />

or Brake not engaged during stop.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check Brake acknowledge signal wiring to selected<br />

digital input.<br />

- Check programming of digital input DigIn 1-8,<br />

[520].<br />

- Check circuit breaker feeding mechanical brake<br />

circuit.<br />

- Check mechanical brake if acknowledge signal is<br />

wired from brake limit switch.<br />

- Check brake contactor.<br />

- Check settings [33C], [33D], [33E], [33F].<br />

G& Up<br />

G& Up<br />

D & Up


12.3 Maintenance<br />

The AC drive is designed not to require any servicing or<br />

maintenance. There are however some things which must be<br />

checked regularly.<br />

All AC drives have built-in fan which is speed controlled<br />

using heatsink temperature feedback. This means that the<br />

fans are only running if the AC drive is running and loaded.<br />

The design of the heatsinks is such that the fan does not<br />

blow the cooling air through the interior of the AC drive,<br />

but only across the outer surface of the heatsink. However,<br />

running fans will always attract dust. Depending on the<br />

environment the fan and the heatsink will collect dust.<br />

Check this and clean the heatsink and the fans when<br />

necessary.<br />

If AC drives are built into cabinets, also check and clean the<br />

dust filters of the cabinets regularly.<br />

Check external wiring, connections and control signals.<br />

Tighten terminal screws if necessary. For more information<br />

on maintenance, please contact your CG Drives & Automation<br />

service partner.<br />

CG Drives & Automation, 01-5325-01r1 Troubleshooting, Diagnoses and Maintenance 189


190 Troubleshooting, Diagnoses and Maintenance CG Drives & Automation, 01-5325-01r1


13. Options<br />

The standard options available are described here briefly.<br />

Some of the options have their own instruction or<br />

installation <strong>manual</strong>. For more information please contact<br />

your supplier. See also <strong>Emotron</strong> VFX/FDU 2.0 Technical<br />

catalogue for more info.<br />

13.1 Options for the control<br />

panel<br />

Part number Description<br />

01-3957-00 Panel kit complete including panel<br />

01-3957-01 Panel kit complete including blank panel<br />

Mounting cassette, blank panel and straight RS232-cable are<br />

available as options for the control panel. These options may<br />

be useful, for example for mounting a control panel in a<br />

cabinet door.<br />

Fig. 127 Control panel in mounting cassette<br />

13.2 Handheld<br />

Control Panel 2.0<br />

Part number Description<br />

01-5039-00<br />

Handheld Control Panel 2.0 complete for<br />

FDU/VFX2.0 or CDU/CDX 2.0<br />

The Handheld Control Panel - HCP 2.0 is a complete<br />

control panel, easy to connect to the AC drive, for<br />

temporary use when e.g. commissioning, servicing and so<br />

on.<br />

The HCP has full functionality including memory. It is<br />

possible to set parameters, view signals, actual values, fault<br />

logger information and so on. It is also possible to use the<br />

memory to copy all data (such as parameter set data and<br />

motor data) from one AC drive to the HCP and then load<br />

this data to other AC drives<br />

13.3 EmoSoftCom<br />

EmoSoftCom is an optional software that runs on a personal<br />

computer. It can also be used to load parameter settings<br />

from the AC drive to the PC for backup and printing.<br />

Recording can be made in oscilloscope mode. Please contact<br />

CG Drives & Automation sales for further information.<br />

CG Drives & Automation, 01-5325-01r1 Options 191


13.4 Brake chopper<br />

All AC drive sizes can be fitted with an optional built-in<br />

brake chopper. The brake resistor must be mounted outside<br />

the AC drive. The choice of the resistor depends on the<br />

application switch-on duration and duty-cycle. This option<br />

can not be after mounted.<br />

WARNING!<br />

The table gives the minimum values of the<br />

brake resistors. Do not use resistors lower<br />

than this value. The AC drive can trip or even<br />

be damaged due to high braking currents.<br />

The following formula can be used to define the power of<br />

the connected brake resistor:<br />

P resistor =<br />

Where:<br />

Presistor required power of brake<br />

resistor<br />

Brake level VDC DC brake voltage level (see Table 34)<br />

Rmin minimum allowable brake resistor<br />

(see Table 35, Table 36 and Table 37<br />

ED effective braking period. Defined as:<br />

ED = tbr<br />

120 [s]<br />

tbr Active braking time at nominal braking<br />

power during a 2 minute operation<br />

cycle.<br />

Maximum value of ED = 1, meaning continuous braking.<br />

Table 33<br />

(Brake level V DC ) 2<br />

R min<br />

x ED<br />

Supply voltage (VAC) (set in menu [21B]<br />

Brake level (VDC) 220–240 380<br />

380–415 660<br />

440–480 780<br />

500–525 860<br />

550–600 1000<br />

660–690 1150<br />

Table 34 Brake resistor FDU48 V types<br />

192 Options CG Drives & Automation, 01-5325-01r1<br />

Type<br />

Rmin [ohm] if<br />

supply 380–415<br />

V AC<br />

Rmin [ohm] if<br />

supply 440–480<br />

V AC<br />

FDU48-<br />

003<br />

43 50<br />

-004 43 50<br />

-006 43 50<br />

-008 43 50<br />

-010 43 50<br />

-013 43 50<br />

-018 43 50<br />

-026 26 30<br />

-031 26 30<br />

-037 17 20<br />

-046 17 20<br />

-061 10 12<br />

-074 10 12<br />

-090 3.8 4.4<br />

-109 3.8 4.4<br />

-146 3.8 4.4<br />

-175 3.8 4.4<br />

-210 2.7 3.1<br />

-250 2.7 3.1<br />

-300 2 x 3.8 2 x 4.4<br />

-375 2 x 3.8 2 x 4.4<br />

-430 2 x 2.7 2 x 3.1<br />

-500 2 x 2.7 2 x 3.1<br />

-600 3 x 2.7 3 x 3.1<br />

-650 3 x 2.7 3 x 3.1<br />

-750 3 x 2.7 3 x 3.1<br />

-860 4 x 2.7 4 x 3.1<br />

-1K0 4 x 2.7 4 x 3.1<br />

-1K15 5 x 2.7 5 x 3.1<br />

-1K25 5 x 2.7 5 x 3.1<br />

-1K35 6 x 2.7 6 x 3.1<br />

-1K5 6 x 2.7 6 x 3.1<br />

-1K75 7 x 2.7 7 x 3.1<br />

-2K0 8 x 2.7 8 x 3.1<br />

-2K25 9 x 2.7 9 x 3.1<br />

-2K5 10 x 2.7 10 x 3.1


Table 35 Brake resistor FDU52 V types<br />

Type<br />

Rmin [ohm] if<br />

supply 440–480<br />

V AC<br />

Rmin [ohm] if<br />

supply 500–525<br />

V AC<br />

FDU52-<br />

003<br />

50 55<br />

-004 50 55<br />

-006 50 55<br />

-008 50 55<br />

-010 50 55<br />

-013 50 55<br />

-018 50 55<br />

-026 30 32<br />

-031 30 32<br />

-037 20 22<br />

-046 20 22<br />

-061 12 14<br />

-074 12 14<br />

Table 36 Brake resistor FDU69 V types<br />

Type<br />

Rmin [ohm]<br />

if supply<br />

500–525<br />

V AC<br />

Rmin [ohm]<br />

if supply<br />

550–600<br />

V AC<br />

Rmin [ohm]<br />

if supply<br />

660–690<br />

V AC<br />

FDU69-<br />

090<br />

4.9 5.7 6.5<br />

-109 4.9 5.7 6.5<br />

-146 4.9 5.7 6.5<br />

-175 4.9 5.7 6.5<br />

-200 4.9 5.7 6.5<br />

-250 2 x 4.9 2 x 5.7 2 x 6.5<br />

-300 2 x 4.9 2 x 5.7 2 x 6.5<br />

-375 2 x 4.9 2 x 5.7 2 x 6.5<br />

-400 2 x 4.9 2 x 5.7 2 x 6.5<br />

-430 3 x 4.9 3 x 5.7 3 x 6.5<br />

-500 3 x 4.9 3 x 5.7 3 x 6.5<br />

-595 3 x 4.9 3 x 5.7 3 x 6.5<br />

-650 4 x 4.9 4 x 5.7 4 x 6.5<br />

-720 4 x 4.9 4 x 5.7 4 x 6.5<br />

-800 4 x 4.9 4 x 5.7 4 x 6.5<br />

-905 5 x 4.9 5 x 5.7 5 x 6.5<br />

-995 5 x 4.9 5 x 5.7 5 x 6.5<br />

-1K2 6 x 4.9 6 x 5.7 6 x 6.5<br />

-1K4 7 x 4.9 7 x 5.7 7 x 6.5<br />

-1K6 8 x 4.9 8 x 5.7 8 x 6.5<br />

-1K8 9 x 4.9 9 x 5.7 9 x 6.5<br />

-2K0 10 x 4.9 10 x 5.7 10 x 6.5<br />

-2K2 11 x 4.9 11 x 5.7 11 x 6.5<br />

-2K4 12 x 4.9 12 x 5.7 12 x 6.5<br />

-2K6 13 x 4.9 13 x 5.7 13 x 6.5<br />

-2K8 14 x 4.9 14 x 5.7 14 x 6.5<br />

-3K0 15 x 4.9 15 x 5.7 15 x 6.5<br />

NOTE: Although the AC drive will detect a failure in the<br />

brake electronics, the use of resistors with a thermal<br />

overload which will cut off the power at overload is<br />

strongly recommended.<br />

The brake chopper option is built-in by the manufacturer<br />

and must be specified when the AC drive is ordered.<br />

13.5 I/O Board<br />

Part number Description<br />

01-3876-01 I/O option board 2.0<br />

Each I/O option board 2.0 provides three extra relay outputs<br />

and three extra isolated digital inputs (24V). The I/O Board<br />

works in combination with the Pump/Fan Control, but can<br />

also be used as a separate option. Maximum 3 I/O boards<br />

possible. This option is described in a separate <strong>manual</strong>.<br />

13.6 Encoder<br />

Part number Description<br />

01-3876-03 Encoder 2.0 option board<br />

The Encoder 2.0 option board, used for connection of<br />

feedback signal of the actual motor speed via an incremental<br />

encoder is described in a separate <strong>manual</strong>.<br />

For <strong>Emotron</strong> FDU this function is for speed read-out only<br />

or for spin start function. No speed control.<br />

13.7 PTC/PT100<br />

Part number Description<br />

01-3876-08 PTC/PT100 2.0 option board<br />

The PTC/PT100 2.0 option board for connecting motor<br />

thermistors and max 3 PT100 elements to the AC drive is<br />

described in a separate <strong>manual</strong>.<br />

CG Drives & Automation, 01-5325-01r1 Options 193


13.8 Serial communication<br />

and fieldbus<br />

Part number Description<br />

From FDUsoftware<br />

version<br />

(see menu [922])<br />

01-3876-04 RS232/485 4.0<br />

01-3876-05 Profibus DP 4.0<br />

01-3876-06 DeviceNet 4.0<br />

01-3876-09<br />

01-3876-10<br />

01-3876-11<br />

01-3876-12<br />

Modbus/TCP, Industrial<br />

Ethernet<br />

EtherCAT, Industrial<br />

Ethernet<br />

Profinet IO, one port<br />

Industrial Ethernet<br />

Profinet IO, two port<br />

Industrial Ethernet<br />

4.11<br />

4.32<br />

For communication with the AC drive there are several<br />

option boards for communication. There are different<br />

options for Fieldbus communication and one serial<br />

communication option with RS232 or RS485 interface<br />

which has galvanic isolation.<br />

13.9 Standby supply board<br />

option<br />

Part number Description<br />

4.32<br />

4.32<br />

01-3954-00 Standby power supply kit for after mounting<br />

The standby supply board option provides the possibility of<br />

keeping the communication system up and running without<br />

having the 3-phase mains connected. One advantage is that<br />

the system can be set up without mains power. The option<br />

will also give backup for communication failure if main<br />

power is lost.<br />

The standby supply board option is supplied with external<br />

±10% 24 VDC protected by a 2 A slow acting fuse, from a<br />

double isolated transformer. The terminals X1:1, X1:2 (on<br />

size B,C and E to F) are voltage polarity independent.<br />

The terminals A- and B+ (on size D) are voltage polarity<br />

dependent.<br />

Fig. 128 Connection of standby supply option on size B,C and<br />

E-F<br />

X1<br />

terminal<br />

1 Ext. supply 1<br />

2 Ext. supply 2<br />

Name Function Specification<br />

External, AC drive<br />

main power independent,<br />

supply<br />

voltage for control<br />

and communication<br />

circuits<br />

Fig. 129 Connection of standby supply option on size D<br />

24 V DC ±10%<br />

Double isolated<br />

Terminal Name Function Specification<br />

A - 0V<br />

B + +24V<br />

External, AC drive<br />

main power<br />

independent, supply<br />

voltage for control and<br />

communication<br />

circuits<br />

24 V DC ±10%<br />

Double isolated<br />

194 Options CG Drives & Automation, 01-5325-01r1<br />

Z3<br />

~<br />

X1:1 Left terminal<br />

X1:2 Right terminal<br />

Connect the<br />

power supply<br />

board to the<br />

two blue<br />

terminals<br />

marked<br />

A- and B+<br />

=<br />

0V to A-<br />

24V to B+


13.10 Safe Stop option<br />

To realize a Safe Stop configuration in accordance with Safe<br />

Torque Off (STO) EN-IEC 62061:2005 SIL 2 & EN-ISO<br />

13849-1:2006, the following three parts need to be attended<br />

to:<br />

1. Inhibit trigger signals with safety relay K1 (via Safe Stop<br />

option board).<br />

2. Enable input and control of AC drive (via normal I/O<br />

control signals of AC drive).<br />

3. Power conductor stage (checking status and feedback of<br />

driver circuits and IGBT’s).<br />

To enable the AC drive to operate and run the motor, the<br />

following signals should be active:<br />

• "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the<br />

Safe Stop option board should be made active by connecting<br />

24 VDC to secure the supply voltage for the<br />

driver circuits of the power conductors via safety relay<br />

K1. See also Fig. 132.<br />

• High signal on the digital input, e.g. terminal 10 in Fig.<br />

132, which is set to "Enable". For setting the digital<br />

input please refer to section 11.5.2, page 141.<br />

These two signals need to be combined and used to enable<br />

the output of the AC drive and make it possible to activate a<br />

Safe Stop condition.<br />

NOTE: The "Safe Stop" condition according to EN-IEC<br />

62061:2005 SIL 2 & EN-ISO 13849-1:2006, can only be<br />

realized by de-activating both the "Inhibit" and "Enable"<br />

inputs.<br />

When the "Safe Stop" condition is achieved by using these<br />

two different methods, which are independently controlled,<br />

this safety circuit ensures that the motor will not start<br />

running because:<br />

• The 24VDC signal is disconnected from the "Inhibit"<br />

input, terminals 1 and 2, the safety relay K1 is switched<br />

off.<br />

The supply voltage to the driver circuits of the power<br />

conductors is switched off. This will inhibit the trigger<br />

pulses to the power conductors.<br />

• The trigger pulses from the control board are shut down.<br />

The Enable signal is monitored by the controller circuit<br />

which will forward the information to the PWM part on<br />

the Control board.<br />

To make sure that the safety relay K1 has been switched off,<br />

this should be guarded externally to ensure that this relay did<br />

not refuse to act. The Safe Stop option board offers a<br />

feedback signal for this via a second forced switched safety<br />

relay K2 which is switched on when a detection circuit has<br />

confirmed that the supply voltage to the driver circuits is<br />

shut down. See Table 37 for the contacts connections.<br />

To monitor the "Enable" function, the selection "RUN" on<br />

a digital output can be used. For setting a digital output, e.g.<br />

terminal 20 in the example Fig. 132, please refer to section<br />

11.5.4, page 147 [540].<br />

When the "Inhibit" input is de-activated, the AC drive<br />

display will show a flashing "SST" indication in section D<br />

(bottom left corner) and the red Trip LED on the Control<br />

panel will be flashing.<br />

To resume normal operation, the following steps have to be<br />

taken:<br />

• Release "Inhibit" input; 24VDC (High) to terminal 1<br />

and 2.<br />

• Give a STOP signal to the AC drive, according to the set<br />

Run/Stop Control in menu [215].<br />

• Give a new Run command, according to the set Run/<br />

Stop Control in menu [215].<br />

NOTE: The method of generating a STOP command is<br />

dependent on the selections made in Start Signal Level/<br />

Edge [21A] and the use of a separate Stop input via<br />

digital input.<br />

WARNING!<br />

The safe stop function can never be used for<br />

electrical maintenance. For electrical<br />

maintenance the AC drive should always be<br />

disconnected from the supply voltage.<br />

Fig. 130 Connection of safe stop option in size B - D.<br />

CG Drives & Automation, 01-5325-01r1 Options 195<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1


Fig. 131 Connection of safe stop option in size E and up.<br />

NC<br />

Enable<br />

Stop<br />

Safe Stop<br />

K1<br />

Fig. 132 Safe Stop connection<br />

K2<br />

+24 V DC<br />

DigIn<br />

DigOut<br />

1 2 3 4 5 6<br />

+5V<br />

Controller<br />

PWM<br />

Table 37 Specification of Safe Stop option board<br />

196 Options CG Drives & Automation, 01-5325-01r1<br />

X1<br />

pin<br />

Name Function Specification<br />

1 Inhibit + Inhibit driver circuits of<br />

2 Inhibit - power conductors<br />

3<br />

4<br />

NO contact<br />

relay K2 Feedback; confirmation<br />

P contact<br />

relay K2<br />

of activated inhibit<br />

5 GND Supply ground<br />

6 +24 VDC<br />

Power board<br />

Supply Voltage for operating<br />

Inhibit input only.<br />

DC 24 V<br />

(20–30 V)<br />

48 V DC /<br />

30 V AC /2 A<br />

+24 V DC ,<br />

50 mA


13.11 Output chokes<br />

Output chokes, which are supplied separately, are<br />

recommended for lengths of screened motor cable longer<br />

than 100 m. Because of the fast switching of the motor<br />

voltage and the capacitance of the motor cable (both line to<br />

line and line to earth screen), large switching currents can be<br />

generated with long lengths of motor cable. Output chokes<br />

prevent the AC drive from tripping and should be installed<br />

as closely as possible to the AC drive.<br />

See also <strong>Emotron</strong> VFX/FDU 2.0 Technical catalogue for<br />

filter selection guide.<br />

13.12 Liquid cooling<br />

AC drive modules in frame sizes E - O and F69 - T69 are<br />

available in a liquid cooled version. These units are designed<br />

for connection to a liquid cooling system, normally a heat<br />

exchanger of liquid-liquid or liquid-air type. Heat exchanger<br />

is not part of the liquid cooling option.<br />

Drive units with parallel power modules (frame size<br />

G - T69) are delivered with a dividing unit for connection of<br />

the cooling liquid. The drive units are equipped with rubber<br />

hoses with leak-proof quick couplings.<br />

The Liquid cooling option is described in a separate <strong>manual</strong>.<br />

13.13 AFE - Active Front End<br />

<strong>Emotron</strong> AC Drives from CG Drives & Automation are also<br />

available as Low harmonic drives and Regenerative drives.<br />

You will find more information on www.emotron.com /<br />

www.cgglobal.com.<br />

CG Drives & Automation, 01-5325-01r1 Options 197


198 Options CG Drives & Automation, 01-5325-01r1


14. Technical Data<br />

14.1 Electrical specifications related to model<br />

Table 38 Typical motor power at mains voltage 400 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Heavy duty<br />

(150%, 1 min every 10 min) Frame size<br />

Power<br />

@400V<br />

[kW]<br />

Rated<br />

current<br />

[A]<br />

FDU48-003 3.0 0.75 2.5 0.55 2.0<br />

FDU48-004 4.8 1.5 4.0 1.1 3.2<br />

FDU48-006 7.2 2.2 6.0 1.5 4.8<br />

FDU48-008 9.0 3 7.5 2.2 6.0<br />

FDU48-010 11.4 4 9.5 3 7.6<br />

FDU48-013 15.6 5.5 13.0 4 10.4<br />

FDU48-018 21.6 7.5 18.0 5.5 14.4<br />

FDU48-026 31 11 26 7.5 21<br />

FDU48-031 37 15 31 11 25<br />

FDU48-037 44 18.5 37 15 29.6<br />

FDU48-046 55 22 46 18.5 37<br />

FDU48-061 73 30 61 22 49<br />

FDU48-074 89 37 74 30 59<br />

FDU48-090 108 45 90 37 72<br />

FDU48-109 131 55 109 45 87<br />

FDU48-146 175 75 146 55 117<br />

FDU48-175 210 90 175 75 140<br />

FDU48-210 252 110 210 90 168<br />

FDU48-228 300 110 228 90 182<br />

FDU48-250 300 132 250 110 200<br />

FDU48-300 360 160 300 132 240<br />

FDU48-375 450 200 375 160 300<br />

FDU48-430 516 220 430 200 344<br />

FDU48-500 600 250 500 220 400<br />

FDU48-600 720 315 600 250 480<br />

FDU48-650 780 355 650 315 520<br />

(Number of<br />

PEBB´s)<br />

FDU48-750 900 400 750 355 600<br />

FDU48-860<br />

FDU48-1K0<br />

1032<br />

1200<br />

450<br />

560<br />

860<br />

1000<br />

400<br />

450<br />

688<br />

800<br />

J(4)<br />

FDU48-1K15<br />

FDU48-1K25<br />

1380<br />

1500<br />

630<br />

710<br />

1150<br />

1250<br />

500<br />

560<br />

920<br />

1000<br />

KA(5)<br />

FDU48-1K35<br />

FDU48-1K5<br />

1620<br />

1800<br />

710<br />

800<br />

1350<br />

1500<br />

600<br />

630<br />

1080<br />

1200<br />

K(6)<br />

FDU48-1K75 2100 900 1750 800 1400 L(7)<br />

FDU48-2K0 2400 1120 2000 900 1600 M(8)<br />

FDU48-2K25 2700 1250 2250 1000 1800 N(9)<br />

FDU48-2K5 3000 1400 2500 1120 2000 O(10)<br />

Larger sizes available on request<br />

CG Drives & Automation 01-5325-01r1 Technical Data 199<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G(2)<br />

H(2)<br />

I(3)


Table 39 Typical motor power at mains voltage 460 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @460V<br />

[hp]<br />

Rated current<br />

[A]<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @460V<br />

[hp]<br />

Rated current<br />

[A]<br />

FDU48-003 3.0 1 2.5 1 2.0<br />

FDU48-004 4.8 2 4.0 1.5 3.2<br />

FDU48-006 7.2 3 6.0 2 4.8<br />

FDU48-008 9.0 3 7.5 3 6.0<br />

FDU48-010 11.4 5 9.5 3 7.6<br />

FDU48-013 15.6 7.5 13.0 5 10.4<br />

FDU48-018 21.6 10 18.0 7.5 14.4<br />

FDU48-026 31 15 26 10 21<br />

FDU48-031 37 20 31 15 25<br />

FDU48-037 44 25 37 20 29.6<br />

FDU48-046 55 30 46 25 37<br />

FDU48-061 73 40 61 30 49<br />

FDU48-074 89 50 74 40 59<br />

FDU48-090 108 60 90 50 72<br />

FDU48-109 131 75 109 60 87<br />

FDU48-146 175 100 146 75 117<br />

FDU48-175 210 125 175 100 140<br />

FDU48-210 252 150 210 125 168<br />

FDU48-228 300 200 228 150 182<br />

FDU48-250 300 200 250 150 200<br />

FDU48-300 360 250 300 200 240<br />

FDU48-375 450 300 375 250 300<br />

FDU48-430 516 350 430 250 344<br />

FDU48-500 600 400 500 350 400<br />

FDU48-600 720 500 600 400 480<br />

FDU48-650 780 550 650 400 520<br />

Frame size<br />

(Number of<br />

PEBB´s)<br />

FDU48-750 900 600 750 500 600<br />

FDU48-860<br />

FDU48-1K0<br />

1032<br />

1200<br />

700<br />

800<br />

860<br />

1000<br />

550<br />

650<br />

688<br />

800<br />

J(4)<br />

FDU48-1K15<br />

FDU48-1K25<br />

1380<br />

1500<br />

900<br />

1000<br />

1150<br />

1250<br />

750<br />

800<br />

920<br />

1000<br />

KA(5)<br />

FDU48-1K35<br />

FDU48-1K5<br />

1620<br />

1800<br />

1100<br />

1250<br />

1350<br />

1500<br />

900<br />

1000<br />

1080<br />

1200<br />

K(6)<br />

FDU48-1K75 2100 1500 1750 1200 1400 L(7)<br />

FDU48-2K0 2400 1700 2000 1300 1600 M(8)<br />

FDU48-2K25 2700 1900 2250 1500 1800 N(9)<br />

FDU48-2K5 3000 2100 2500 1700 2000 O(10)<br />

Larger sizes available on request<br />

200 Technical Data CG Drives & Automation 01-5325-01r1<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G(2)<br />

H(2)<br />

I(3)


Table 40 Typical motor power at mains voltage 525 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @525V<br />

[kW]<br />

Rated current<br />

[A]<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @525V<br />

[kW]<br />

Rated current<br />

[A]<br />

FDU52-003 3.0 1.1 2.5 1.1 2.0<br />

FDU52-004 4.8 2.2 4.0 1.5 3.2<br />

FDU52-006 7.2 3 6.0 2.2 4.8<br />

FDU52-008 9.0 4 7.5 3 6.0<br />

FDU52-010 11.4 5.5 9.5 4 7.6<br />

FDU52-013 15.6 7.5 13.0 5.5 10.4<br />

FDU52-018 21.6 11 18.0 7.5 14.4<br />

FDU52-026 31 15 26 11 21<br />

FDU52-031 37 18.5 31 15 25<br />

FDU52-037 44 22 37 18.5 29.6<br />

FDU52-046 55 30 46 22 37<br />

FDU52-061 73 37 61 30 49<br />

FDU52-074 89 45 74 37 59<br />

FDU69-090 108 55 90 45 72<br />

FDU69-109 131 75 109 55 87<br />

FDU69-146 175 90 146 75 117<br />

FDU69-175 210 110 175 90 140<br />

FDU69-200 240 132 200 110 160<br />

FDU69-250 300 160 250 132 200<br />

FDU69-300 360 200 300 160 240<br />

FDU69-375 450 250 375 200 300<br />

FDU69-400 480 250 400 220 320<br />

FDU69-430 516 300 430 250 344<br />

FDU69-500 600 315 500 300 400<br />

Frame size<br />

(Number of<br />

PEBB´s)<br />

CG Drives & Automation 01-5325-01r1 Technical Data 201<br />

B<br />

C<br />

D<br />

F69<br />

H69 (2)<br />

I69 (3)<br />

FDU69-595 720 400 600 315 480<br />

FDU69-650 780 450 650 355 520<br />

FDU69-720 864 500 720 400 576<br />

J69 (4)<br />

FDU69-800 960 560 800 450 640<br />

FDU69-995 1200 630 1000 500 800 KA69 (5)<br />

FDU69-1K2 1440 800 1200 630 960 K69 (6)<br />

FDU69-1K4 1680 1000 1400 800 1120 L69 (7)<br />

FDU69-1K6 1920 1100 1600 900 1280 M69 (8)<br />

FDU69-1K8 2160 1300 1800 1000 1440 N69 (9)<br />

FDU69-2K0 2400 1400 2000 1100 1600 O69 (10)<br />

FDU69-2K2 2640 1600 2200 1200 1760 P69 (11)<br />

FDU69-2K4 2880 1700 2400 1400 1920 Q69 (12)<br />

FDU69-2K6 3120 1900 2600 1500 2080 R69 (13)<br />

FDU69-2K8 3360 2000 2800 1600 2240 S69 (14)<br />

FDU69-3K0 3600 2200 3000 1700 2400 T69 (15)


Table 41 Typical motor power at mains voltage 575 V<br />

Model<br />

Max.<br />

output<br />

current<br />

[A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @575V<br />

[hp]<br />

Rated current<br />

[A]<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @575V<br />

[hp]<br />

Rated current<br />

[A]<br />

FDU69-090 108 75 90 60 72<br />

FDU69-109 131 100 109 75 87<br />

FDU69-146 175 125 146 100 117<br />

FDU69-175 210 150 175 125 140<br />

FDU69-200 240 200 200 150 160<br />

FDU69-250 300 250 250 200 200<br />

FDU69-300 360 300 300 250 240<br />

FDU69-375 450 350 375 300 300<br />

FDU69-400 480 400 400 300 320<br />

FDU69-430 516 400 430 350 344<br />

FDU69-500 600 500 500 400 400<br />

FDU69-595 720 600 600 500 480<br />

FDU69-650 780 650 650 550 520<br />

FDU69-720 864 750 720 600 576<br />

Frame size<br />

(Number of<br />

PEBB´s)<br />

202 Technical Data CG Drives & Automation 01-5325-01r1<br />

F69<br />

H69 (2)<br />

I69 (3)<br />

J69 (4)<br />

FDU69-800 960 850 800 650 640<br />

FDU69-905<br />

FDU69-995<br />

1080<br />

1200<br />

950<br />

1000<br />

900<br />

1000<br />

750<br />

850<br />

720<br />

800<br />

KA69 (5)<br />

FDU69-1K2 1440 1200 1200 1000 960 K69 (6)<br />

FDU69-1K4 1680 1500 1400 1200 1120 L69 (7)<br />

FDU69-1K6 1920 1700 1600 1300 1280 M69 (8)<br />

FDU69-1K8 2160 1900 1800 1500 1440 N69 (9)<br />

FDU69-2K0 2400 2100 2000 1700 1600 O69 (10)<br />

FDU69-2K2 2640 2300 2200 1800 1760 P69 (11)<br />

FDU69-2K4 2880 2500 2400 2000 1920 Q69 (12)<br />

FDU69-2K6 3120 2700 2600 2200 2080 R69 (13)<br />

FDU69-2K8 3360 3000 2800 2400 2240 S69 (14)<br />

FDU69-3K0 3600 3200 3000 2500 2400 T69 (15)


Table 42 Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @690V<br />

[kW]<br />

Rated current<br />

[A]<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V<br />

[kW]<br />

Rated current<br />

[A]<br />

FDU69-090 108 90 90 75 72<br />

FDU69-109 131 110 109 90 87<br />

FDU69-146 175 132 146 110 117<br />

FDU69-175 210 160 175 132 140<br />

FDU69-200 240 200 200 160 160<br />

FDU69-250 300 250 250 200 200<br />

FDU69-300 360 315 300 250 240<br />

FDU69-375 450 355 375 315 300<br />

FDU69-400 480 400 400 315 320<br />

FDU69-430 516 450 430 315 344<br />

FDU69-500 600 500 500 355 400<br />

FDU69-595 720 600 600 450 480<br />

FDU69-650 780 630 650 500 520<br />

FDU69-720 864 710 720 560 576<br />

Frame size<br />

(Number of<br />

PEBB´s)<br />

CG Drives & Automation 01-5325-01r1 Technical Data 203<br />

F69<br />

H69 (2)<br />

I69 (3)<br />

J69 (4)<br />

FDU69-800 960 800 800 630 640<br />

FDU69-905<br />

FDU69-995<br />

1080<br />

1200<br />

900<br />

1000<br />

900<br />

1000<br />

710<br />

800<br />

720<br />

800<br />

KA69 (5)<br />

FDU69-1K2 1440 1200 1200 900 960 K69 (6)<br />

FDU69-1K4 1680 1400 1400 1120 1120 L69 (7)<br />

FDU69-1K6 1920 1600 1600 1250 1280 M69 (8)<br />

FDU69-1K8 2160 1800 1800 1400 1440 N69 (9)<br />

FDU69-2K0 2400 2000 2000 1600 1600 O69 (10)<br />

FDU69-2K2 2640 2200 2200 1700 1760 P69 (11)<br />

FDU69-2K4 2880 2400 2400 1900 1920 Q69 (12)<br />

FDU69-2K6 3120 2600 2600 2000 2080 R69 (13)<br />

FDU69-2K8 3360 2800 2800 2200 2240 S69 (14)<br />

FDU69-3K0 3600 3000 3000 2400 2400 T69 (15)


14.2 General electrical specifications<br />

Table 43 General electrical specifications<br />

General<br />

Mains voltage:FDU48<br />

FDU52<br />

FDU69<br />

Mains frequency:<br />

Input power factor:<br />

Output voltage:<br />

Output frequency:<br />

Output switching frequency:<br />

Efficiency at nominal load:<br />

Control signal inputs:<br />

Analogue (differential)<br />

Analogue Voltage/current:<br />

Max. input voltage:<br />

Input impedance:<br />

Resolution:<br />

Hardware accuracy:<br />

Non-linearity<br />

Digital:<br />

Input voltage:<br />

Max. input voltage:<br />

Input impedance:<br />

Signal delay:<br />

Control signal outputs<br />

Analogue<br />

Output voltage/current:<br />

Max. output voltage:<br />

Short-circuit current (�):<br />

Output impedance:<br />

Resolution:<br />

Maximum load impedance for current<br />

Hardware accuracy:<br />

Offset:<br />

Non-linearity:<br />

Digital<br />

Output voltage:<br />

Shortcircuit current(�):<br />

Relays<br />

230-480V +10%/-15% (-10% at 230 V)<br />

440-525 V +10 %/-15 %<br />

500-690V +10%/-15%<br />

45 to 65 Hz<br />

0.95<br />

0–Mains supply voltage:<br />

0–400 Hz<br />

3 kHz (adjustable 1,5-6 kHz)<br />

97% for models 003 to 018<br />

98% for models 026 to 3K0<br />

0-±10 V/0-20 mA via switch<br />

+30 V/30 mA<br />

20 k��(voltage)<br />

250 ��(current)<br />

11 bits + sign<br />

1% type + 1 ½ LSB fsd<br />

1½ LSB<br />

High: >9 VDC, Low: 23 VDC open<br />

Low:


14.3 Operation at higher<br />

temperatures<br />

Most <strong>Emotron</strong> AC drives are made for operation at<br />

maximum of 40°C ambient temperature. However, for most<br />

models, it is possible to use the AC drive at higher<br />

temperatures with little loss in performance. Table 44 shows<br />

ambient temperatures as well as derating for higher<br />

temperatures.<br />

Table 44 Ambient temperature and derating 400–690 V types<br />

Model<br />

Example<br />

In this example we have a motor with the following data that<br />

we want to run at the ambient temperature of 45°C:<br />

Voltage400 V<br />

Current68 A<br />

Power37 kW<br />

Select AC drive<br />

The ambient temperature is 5 °C higher than the maximum<br />

ambient temperature. The following calculation is made to<br />

select the correct AC drive model.<br />

Derating is possible with loss in performance of 2.5%/°C.<br />

Derating will be: 5 X 2.5% = 12.5%<br />

Calculation for model FDU48-074<br />

74 A - (12.5% x 74) = 64.8 A; this is not enough.<br />

Calculation for model FDU48-090<br />

90 A - (12.5% x 90) = 78.8A<br />

In this example we select the FDU48-090.<br />

IP20 IP54<br />

Max temp. Derating: possible Max temp. Derating: possible<br />

FDU**-003 to FDU**-074 – – 40°C -2.5%/°C to max +10°C<br />

FDU48-090 to FDU48-250<br />

FDU69-090 to FDU69-200<br />

FDU48-300 to FDU48-2K5<br />

FDU69-250 to FDU69-3K0<br />

– – 40°C -2.5%/°C to max +5°C<br />

40°C -2.5%/°C to max +5°C 40°C -2.5%/°C to max +5°C<br />

14.4 Operation at higher<br />

switching frequency<br />

Table 45 shows the switching frequency for the different AC<br />

drive models. With the possibility of running at higher<br />

switching frequency you can reduce the noise level from the<br />

motor. The switching frequency is set in menu [22A],<br />

Motor sound, see section section 11.2.3, page 72. At<br />

switching frequencies >3 kHz derating might be needed.<br />

Table 45 Switching frequency<br />

Models<br />

Standard<br />

Switching<br />

frequency<br />

Range<br />

FDU**-003 to FDU**-3K0 3 kHz 1.5–6 kHz<br />

CG Drives & Automation 01-5325-01r1 Technical Data 205


14.5 Dimensions and Weights<br />

The table below gives an overview of the dimensions and<br />

weights. The models 003 to 250 is available in IP54 as wall<br />

mounted modules.<br />

The models 300 to 3K0 consist of 2, 3, 4 .... 15 paralleled<br />

power electronic building block (PEBB) available in IP20 as<br />

wall mounted modules and in IP54 mounted standard<br />

cabinet.<br />

Protection class IP54 is according to the EN 60529<br />

standard.<br />

Table 46 Mechanical specifications, FDU48, FDU52<br />

Models Frame size<br />

Dim. H x W x D [mm]<br />

IP20<br />

Dim. H x W x D [mm]<br />

IP54<br />

Weight<br />

IP20 [kg]<br />

Weight IP54<br />

[kg]<br />

003 to 018 B – 350(416)x 203 x 200 – 12.5<br />

026 to 046 C – 440(512)x178x292 – 24<br />

061 to 074 D – 545(590) x 220 x 295 – 32<br />

90 to 109 E – 950 x 285 x 314 – 56<br />

146 to 175 E – 950 x 285 x 314 – 60<br />

210 to 250 F – 950 x 345 x 314 – 74<br />

300 to 375 G (2xE) 1036 x 500 x 390 2250 x 600 x 600 140 350<br />

430 to 500 H (2xF) 1036 x 500 x 450 2250 x 600 x 600 170 380<br />

600 to 750 I (3xF) 1036 x 730 x 450 2250x 900 x 600 248 506<br />

860 to 1K0 J (2xH) 1036 x 1100 x 450 2250 x 1200 x 600 340 697<br />

1K15 to 1K25 KA (H+I) 1036 x 1365 x 450 2250 x 1500 x 600 418 838<br />

1K35 to 1K5 K (2xI) 1036 x 1630 x 450 2250 x 1800 x 600 496 987<br />

1K75 L (2xH+I) 1036 x 2000 x 450 2250 x 2100 x 600 588 1190<br />

2K0 M(H+2xI) 1036 x 2230 x 450 2250 x 2400 x 600 666 1323<br />

2K25 N (3xI) 1036 x 2530 x 450 2250 x 2700 x 600 744 1518<br />

2K5 O (2xH+2xI) 1036 x 2830 x 450 2250 x 3000 x 600 836 1772<br />

Table 47 Mechanical specifications, FDU69<br />

Models Frame size<br />

Dim. H x W x D [mm]<br />

IP20<br />

Dim. H x W x D [mm]<br />

IP54<br />

Weight<br />

IP20 [kg]<br />

Weight IP54<br />

[kg]<br />

90 to 200 F69 – 1090 x 345 x 314 – 77<br />

250 to 375 H69 (2xF69) 1176 x 500 x 450 2250 x 600 x 600 176 399<br />

430 to 595 I69 (3xF69) 1176 x 730 x 450 2250 x 900 x 600 257 563<br />

650 to 800 J69 (2xH69) 1176 x 1100 x 450 2250 x 1200 x 600 352 773<br />

905 to 995 KA69 (H69+I69) 1176 x 1365 x 450 2250 x 1500 x 600 433 937<br />

750 to 1K2 K69 (2xI69) 1176 x 1630 x 450 2250 x 1800 x 600 514 1100<br />

1K4 L69 (2xH69+I69) 1176 x 2000 x 450 2250 x 2100 x 600 609 1311<br />

1K6 M69 (H69+2xI69) 1176 x 2230 x 450 2250 x 2400 x 600 690 1481<br />

1K8 N69 (3xI69) 1176 x 2530 x 450 2250 x 2700 x 600 771 1651<br />

2K0<br />

O69<br />

(2xH69+2xI69)<br />

1176 x 2830 x 450 2250 x 3000 x 600 866 1849<br />

2K2 P69 (H69+3xI69) 1176 x 3130 x 450 2250 x 3300 x 600 947 2050<br />

2K4 Q69 (4xI69) 1176 x 3430 x 450 2250 x 3600 x 600 1028 2214<br />

2K6<br />

R69<br />

(2xH69+3xI69)<br />

1176 x 3730 x 450 2250 x 3900 x 600 1123 2423<br />

2K8 S69 (H69+4xI69) 1176 x 4030 x 450 2250 x 4200 x 600 1204 2613<br />

3K0 T69 (5xI69) 1176 x 4330 x 450 2250 x 4500 x 600 1285 2777<br />

206 Technical Data CG Drives & Automation 01-5325-01r1


14.6 Environmental conditions<br />

Table 48 Operation<br />

Parameter Normal operation<br />

Nominal ambient temperature 0�C–40�C See table, see Table 44 for different conditions<br />

Atmospheric pressure 86–106 kPa<br />

Relative humidity, non-condensing 0–90%<br />

Contamination,<br />

according to IEC 60721-3-3<br />

Table 49 Storage<br />

Vibrations<br />

Altitude<br />

No electrically conductive dust allowed. Cooling air must be clean and free from corrosive<br />

materials. Chemical gases, class 3C2. Solid particles, class 3S2.<br />

According to IEC 600068-2-6, Sinusodial vibrations:<br />

10


14.7 Fuses, cable crosssections<br />

and glands<br />

14.7.1 According to IEC ratings<br />

Use mains fuses of the type gL/gG conforming to IEC 269<br />

or installation cut-outs with similar characteristics. Check<br />

the equipment first before installing the glands.<br />

Max. Fuse = maximum fuse value that still protects the AC<br />

drive and upholds warranty.<br />

Table 50 Fuses, cable cross-sections and glands<br />

Model<br />

FDU**-<br />

003<br />

FDU**-<br />

004<br />

FDU**-<br />

006<br />

FDU**-<br />

008<br />

FDU**-<br />

010<br />

FDU**-<br />

013<br />

FDU**-<br />

018<br />

FDU**-<br />

026<br />

FDU**-<br />

031<br />

FDU**-<br />

037<br />

FDU**-<br />

046<br />

FDU**-<br />

061<br />

FDU**-<br />

074<br />

FDU**-<br />

090<br />

FDU**-<br />

109<br />

FDU**-<br />

146<br />

FDU**-<br />

175<br />

Nominal<br />

input<br />

current<br />

[A]<br />

2.2<br />

3.5<br />

5.2<br />

6.9<br />

8.7<br />

11.3<br />

15.6<br />

Maximu<br />

m value<br />

fuse [A]<br />

4<br />

4<br />

6<br />

10<br />

10<br />

16<br />

20<br />

22 25<br />

26 35<br />

31 35<br />

38 50<br />

52 63<br />

65 80<br />

78 100<br />

94 100<br />

126 160<br />

152 160<br />

NOTE: The dimensions of fuse and cable cross-section<br />

are dependent on the application and must be<br />

determined in accordance with local regulations.<br />

NOTE: The dimensions of the power terminals used in the<br />

models 300 to3K00 can differ depending on customer<br />

specification.<br />

Cable cross section connector range [mm 2 ] for<br />

mains/ motor Brake PE<br />

0.5–10 0.5–10 1.5–16<br />

2.5 - 16 stranded wire<br />

2.5 - 25 solid wire<br />

1 - 35 stranded wire<br />

1 - 50 solid wire<br />

16 - 95 16 - 95<br />

35 - 150 16 - 95<br />

Cable glands (clamping<br />

range [mm])<br />

mains /<br />

motor<br />

M32 opening<br />

M20 +<br />

reducer (6–<br />

12)<br />

M32 (12–<br />

20)/M32<br />

opening<br />

M25+reduc<br />

er (10-14)<br />

M32 (16–<br />

25)/M32<br />

(13–18)<br />

208 Technical Data CG Drives & Automation 01-5325-01r1<br />

6 - 35<br />

16-95<br />

(16-70)¹<br />

35-150<br />

(16-70)¹<br />

M32 (15–<br />

21)<br />

M40 (19–<br />

28)<br />

M50 (27 -<br />

35)<br />

FDU48: Ø17-<br />

42 cable<br />

flexible<br />

leadthrough<br />

or M50<br />

opening.<br />

FDU69:<br />

Ø23-55<br />

Cable flexible<br />

leadthrough<br />

or M63<br />

opening.<br />

Brake<br />

M25 opening<br />

M20 +<br />

reducer (6–<br />

12)<br />

M25 (10–<br />

14)<br />

M25<br />

M32<br />

M40 (19 -<br />

28)<br />

FDU48:<br />

Ø11-32<br />

Cable flexible<br />

leadthrough<br />

or M40<br />

opening.<br />

FDU69:<br />

Ø17-42<br />

Cable flexible<br />

leadthrough<br />

or M50<br />

opening.


Table 50 Fuses, cable cross-sections and glands<br />

Model<br />

FDU**-<br />

210<br />

FDU**-<br />

228<br />

FDU**-<br />

250<br />

FDU**-<br />

300<br />

FDU**-<br />

375<br />

FDU**-<br />

430<br />

FDU**-<br />

500<br />

FDU**-<br />

600<br />

FDU**-<br />

650<br />

FDU**-<br />

720, 750<br />

FDU**-<br />

860<br />

FDU**-<br />

900<br />

FDU**-<br />

1K0<br />

FDU**-<br />

1K2<br />

FDU**-<br />

1K5<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximu<br />

m value<br />

fuse [A]<br />

182 200<br />

216 250<br />

260 300<br />

324 355<br />

372 400<br />

432 500<br />

520 630<br />

562 630<br />

648 710<br />

744 800<br />

795 900<br />

864 1000<br />

1037 1250<br />

1296 1500<br />

FDU48: 35-250<br />

FDU69: 35-150<br />

Note: For models 003 to 074 cable glands are optional.<br />

1. Values are valid when brake chopper electronics are built<br />

in.<br />

Cable cross section connector range [mm 2 ] for<br />

mains/ motor Brake PE<br />

FDU48: 35-<br />

150<br />

FDU69: 16-<br />

95<br />

FDU48: (2x)35-240<br />

FDU69: (2x)35-150<br />

FDU48: (2x)35-240<br />

FDU69: (3x)35-150<br />

FDU48: (3x)35-240<br />

FDU69: (4x)35-150<br />

FDU48: (3x)35-240<br />

FDU69: (4x)35-150<br />

FDU48: 35-<br />

250<br />

(95-185)¹<br />

FDU69: 35-<br />

150<br />

(16-70)¹<br />

Cable glands (clamping<br />

range [mm])<br />

mains /<br />

motor<br />

Ø23-55<br />

cable flexible<br />

leadthrough<br />

or M63<br />

opening.<br />

Brake<br />

Ø17-42<br />

cable flexible<br />

leadthrough<br />

or M50<br />

opening.<br />

frame --- --<br />

frame -- --<br />

frame -- --<br />

frame -- --<br />

FDU48: (4x)35-240 frame -- --<br />

FDU48: (6x)35-240 frame -- --<br />

CG Drives & Automation 01-5325-01r1 Technical Data 209


14.7.2 Fuses and cable dimensions<br />

according to NEMA ratings<br />

Table 51 Types and fuses<br />

Model<br />

Input<br />

current<br />

[Arms]<br />

UL<br />

Class J TD<br />

(A)<br />

Mains input fuses<br />

Ferraz-Shawmut<br />

type<br />

FDU48-003 2,2 6 AJT6<br />

FDU48-004 3,5 6 AJT6<br />

FDU48-006 5,2 6 AJT6<br />

FDU48-008 6,9 10 AJT10<br />

FDU48-010 8,7 10 AJT10<br />

FDU48-013 11,3 15 AJT15<br />

FDU48-018 15,6 20 AJT20<br />

FDU48-026 22 25 AJT25<br />

FDU48-031 26 30 AJT30<br />

FDU48-037 31 35 AJT35<br />

FDU48-046 38 45 AJT45<br />

FDU48-061 52 60 AJT60<br />

FDU48-074 65 80 AJT80<br />

FDU48-090 78 100 AJT100<br />

FDU48-109 94 110 AJT110<br />

FDU48-146 126 150 AJT150<br />

FDU48-175 152 175 AJT175<br />

FDU48-210 182 200 AJT200<br />

FDU48-228 216 250 AJT250<br />

FDU48-250 216 250 AJT250<br />

FDU48-300 260 300 AJT300<br />

FDU48-375 324 350 AJT350<br />

FDU48-430 372 400 AJT400<br />

FDU48-500 432 500 AJT500<br />

FDU48-600 520 600 AJT600<br />

FDU48-650 562 600 AJT600<br />

FDU48-750 648 700 A4BQ700<br />

FDU48-860 744 800 A4BQ800<br />

FDU48-1K0 864 1000 A4BQ1000<br />

FDU48-1K25 1037 1200 A4BQ1200<br />

FDU48-1K5 1296 1500 A4BQ1500<br />

210 Technical Data CG Drives & Automation 01-5325-01r1


Table 52 Type cables cross-sections and glands<br />

Model<br />

1. Values are valid when brake chopper electronics are built<br />

in.<br />

2. AWG 2 - AWG 3/0 = 14 Nm / 124 Lb-In<br />

AWG 4/0 - 300kcmil = 24 Nm / 212 Lb-In<br />

Cable cross section connector<br />

Mains and motor Brake PE<br />

Range<br />

Tightening<br />

torque<br />

Nm/Lb-In<br />

Range<br />

Tightening<br />

torque<br />

Nm/Lb-In<br />

14 / 124 -<br />

24 / 212 2 AWG 2- AWG 3/0 14 / 124<br />

Range<br />

Tightening<br />

torque<br />

Nm/Lb-In<br />

FDU48-003<br />

FDU48-004<br />

AWG 20 - AWG 6<br />

AWG 20 - AWG 6<br />

AWG 20 - AWG 6<br />

FDU48-006<br />

FDU48-008<br />

AWG 16 - AWG 6<br />

1.3 / 11.5<br />

AWG 16 - AWG 6<br />

1.3 / 11.5<br />

AWG 16 - AWG 6<br />

2.6/23<br />

FDU48-010 AWG 14 - AWG 6 AWG 14 - AWG 6 AWG 14 - AWG 6<br />

FDU48-013 AWG 12 - AWG 6 AWG 12 - AWG 6 AWG 12 - AWG 6<br />

FDU48-018<br />

FDU48-026<br />

AWG 10 - AWG 6 AWG 10 - AWG 6 AWG 10 - AWG 6<br />

FDU48-031<br />

FDU48-037<br />

AWG 8 - AWG 6<br />

1.3 / 11.5<br />

AWG 8 - AWG 6<br />

1.3 / 11.5<br />

AWG 8 - AWG 6<br />

2.6/23<br />

FDU48-046 AWG 6 AWG 6 AWG 6<br />

FDU48-061 AWG 4 1.6/14 AWG 4 1.6/14 AWG 4 1.6/14<br />

FDU48-074 AWG 3 2.8/25 AWG 3 2.8/25 AWG 3 2.8/25<br />

FDU48-090<br />

FDU48-109<br />

AWG 2- 300 kcmil<br />

AWG 1/0- 300<br />

kcmil<br />

AWG 2- 300 kcmil<br />

AWG 1/0- 300<br />

kcmil<br />

14 / 124<br />

(10 / 88)¹<br />

FDU48-146<br />

FDU48-175<br />

AWG 3/0 - 300<br />

kcmil<br />

AWG 4/0 - 300<br />

kcmil<br />

AWG 3/0 - 300<br />

kcmil 14 / 124<br />

AWG 4/0 - 300<br />

kcmil<br />

(10 / 88)¹<br />

FDU48-210<br />

300 kcmil<br />

300 kcmil 24 / 212<br />

FDU48-228<br />

24 / 212 300 kcmil 24 / 212<br />

(10 / 88)¹<br />

FDU48-250 400 kcmil 400 kcmil<br />

FDU48-300<br />

2 x AWG 3/0 -<br />

2 x 300 kcmil<br />

FDU48-375<br />

2 x 250 kcmil -<br />

2 x 300 kcmil<br />

FDU48-430 2 x 300 kcmil<br />

24 / 212<br />

2 x AWG 3/0 -<br />

2 x 300 kcmil<br />

2 x 250 kcmil -<br />

2 x 300 kcmil<br />

2 x 300 kcmil<br />

FDU48-500 2 x 400 kcmil<br />

24 / 212<br />

2 x 400 kcmil<br />

FDU48-600<br />

FDU48-650<br />

3x 300 kcmil<br />

24 / 212<br />

3x 300 kcmil<br />

FDU48-750 3x 400 kcmil 3x 400 kcmil<br />

FDU48-860<br />

FDU48-1k0<br />

4 x 300 kcmil<br />

4 x 400 kcmil<br />

24 / 212<br />

4 x 300 kcmil<br />

4 x 400 kcmil<br />

FDU48-<br />

1k25<br />

5 x 300 kcmil<br />

24 / 212<br />

5 x 300 kcmil<br />

FDU48-1k5 6 x 400 kcmil 6 x 400 kcmil<br />

24 / 212 frame -<br />

24 / 212 frame -<br />

24 / 212 frame -<br />

24 / 212 frame -<br />

24 / 212 frame -<br />

Cable type<br />

Copper (Cu)<br />

75°C<br />

CG Drives & Automation 01-5325-01r1 Technical Data 211


14.8 Control signals<br />

Table 53<br />

Terminal X1 Name: Function (Default): Signal: Type:<br />

1 +10 V +10 VDC Supply voltage +10 VDC, max 10 mA output<br />

2 AnIn1 Process reference<br />

3 AnIn2 Off<br />

4 AnIn3 Off<br />

0 -10 VDC or 0/4–20 mA<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

analogue input<br />

analogue input<br />

analogue input<br />

5 AnIn4 Off<br />

0 -10 VDC or 0/4–20 mA<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

analogue input<br />

6 -10 V -10VDC Supply voltage -10 VDC, max 10 mA output<br />

7 Common Signal ground 0V output<br />

8 DigIn 1 RunL 0-8/24 VDC digital input<br />

9 DigIn 2 RunR 0-8/24 VDC digital input<br />

10 DigIn 3 Off 0-8/24 VDC digital input<br />

11 +24 V +24VDC Supply voltage +24 VDC, 100 mA output<br />

12 Common Signal ground 0 V output<br />

13 AnOut 1 Min speed to max speed 0 ±10 VDC or 0/4– +20 mA analogue output<br />

14 AnOut 2 0 to max torque 0 ±10 VDC or 0/4– +20 mA analogue output<br />

15 Common Signal ground 0 V output<br />

16 DigIn 4 Off 0-8/24 VDC digital input<br />

17 DigIn 5 Off 0-8/24 VDC digital input<br />

18 DigIn 6 Off 0-8/24 VDC digital input<br />

19 DigIn 7 Off 0-8/24 VDC digital input<br />

20 DigOut 1 Ready 24 VDC, 100 mA digital output<br />

21 DigOut 2 No trip 24 VDC, 100 mA digital output<br />

22 DigIn 8 RESET 0-8/24 VDC digital input<br />

Terminal X2<br />

31 N/C 1 Relay 1 output<br />

32 COM 1<br />

Trip, active when the<br />

AC drive is in a TRIP condition<br />

N/C is opened when the relay is active<br />

33 N/O 1<br />

(valid for all relays)<br />

N/O is closed when the relay is active<br />

(valid for all relays)<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Terminal X3<br />

Relay 2 Output<br />

Run, active when the<br />

AC drive is started<br />

51 COM 3 Relay 3 Output<br />

52 N/O 3<br />

Off<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

relay output<br />

relay output<br />

212 Technical Data CG Drives & Automation 01-5325-01r1


15. Menu List<br />

On our home page in the download area, you could find a<br />

"Communication information" list and a list to note Parameter<br />

set information .<br />

Factory setting Customer Page<br />

100 Preferred View 67<br />

110 1st Line Process Val<br />

120 2nd Line Current<br />

200 Main Setup<br />

210 Operation 68<br />

211 Language English<br />

212 Select Motor M1<br />

213 Drive Mode V/Hz<br />

214 Ref Control Remote<br />

215 Run/Stp Ctrl Remote<br />

216 Reset Ctrl Remote<br />

217 Local/Rem<br />

2171 LocRefCtrl Standard<br />

2172 LocRunCtrl Standard<br />

218 Lock Code? 0<br />

219 Rotation R+L<br />

21A Level/Edge Level<br />

21B Supply Volts Not Defined<br />

220 Motor Data 73<br />

221 Motor Volts UNOM V<br />

222 Motor Freq 50Hz<br />

223 Motor Power (PNOM) W<br />

224 Motor Curr (IMOT) A<br />

225 Motor Speed (nMOT) rpm<br />

226 Motor Poles 4<br />

227 Motor Cos� CosφNOM 228 Motor Vent Self<br />

229 Motor ID-Run Off<br />

22A Motor Sound F<br />

22B Encoder Off<br />

22C Enc Pulses 1024<br />

22D Enc Speed 0rpm<br />

22E Motor PWM<br />

22E1 PWM Fswitch 3.00 kHz<br />

22E2 PWM Mode Standard<br />

22E3 PWM Random Off<br />

22F Enc Puls Ctr 0<br />

230 Mot Protect 79<br />

231 Mot I 2 t Type Trip<br />

232 Mot I 2 t Curr 100%<br />

233 Mot I 2 t Time 60s<br />

234 Thermal Prot Off<br />

235 Motor Class F 140�C<br />

236 PT100 Inputs PT100 1+2+3<br />

237 Motor PTC Off<br />

240 Set Handling 83<br />

241 Select Set A<br />

242 Copy Set A>B<br />

243 Default>Set A<br />

244 Copy to CP No Copy<br />

245 Load from CP No Copy<br />

250 Autoreset 85<br />

251 No of Trips 0<br />

Factory setting Customer Page<br />

252 Overtemp Off<br />

253 Overvolt D Off<br />

254 Overvolt G Off<br />

255 Overvolt Off<br />

256 Motor Lost Off<br />

257 Locked Rotor Off<br />

258 Power Fault Off<br />

259 Undervoltage Off<br />

25A Motor I 2 t Off<br />

25B Motor I 2 t TT Trip<br />

25C PT100 Off<br />

25D PT100 TT Trip<br />

25E PTC Off<br />

25F PTC TT Trip<br />

25G Ext Trip Off<br />

25H Ext Trip TT Trip<br />

25I Com Error Off<br />

25J Com Error TT Trip<br />

25K Min Alarm Off<br />

25L Min Alarm TT Trip<br />

25M Max Alarm Off<br />

25N Max Alarm TT Trip<br />

25O Over curr F Off<br />

25P Pump Off<br />

25Q Over speed Off<br />

25R Ext Mot Temp Off<br />

25S Ext Mot TT Trip<br />

25T LC Level Off<br />

25U LC Level TT Trip<br />

25V<br />

25W<br />

25X<br />

Brk Fault Off<br />

260 Serial Com 93<br />

261 Com Type RS232/485<br />

262 RS232/485 93<br />

2621 Baudrate 9600<br />

2622 Address 1<br />

263 Fieldbus 94<br />

2631 Address 62<br />

2632 PrData Mode Basic<br />

2633 Read/Write RW<br />

2634 AddPrValue 0<br />

264 Comm Fault 95<br />

2641 ComFlt Mode Off<br />

2642 ComFlt Time 0.5 s<br />

265 Ethernet 96<br />

2651 IP Address 0.0.0.0<br />

2652 MAC Address 000000000000<br />

2653 Subnet Mask 0.0.0.0<br />

2654 Gateway 0.0.0.0<br />

2655 DHCP Off<br />

266 FB Signal 97<br />

2661 FB Signal 1 0<br />

2662 FB Signal 2 0<br />

2663 FB Signal 3 0<br />

2664 FB Signal 4 0<br />

2665 FB Signal 5 0<br />

2666 FB Signal 6 0<br />

CG Drives & Automation, 01-5325-01r1 Menu List 213


Factory setting Customer Page<br />

2667 FB Signal 7 0<br />

2668 FB Signal 8 0<br />

2669 FB Signal 9 0<br />

266A FB Signal 10 0<br />

266B FB Signal 11 0<br />

266C FB Signal 12 0<br />

266D FB Signal 13 0<br />

266E FB Signal 14 0<br />

266F FB Signal 15 0<br />

266G FB Signal 16 0<br />

269 FB Status<br />

300 Process 97<br />

310 Set/View ref 0rpm<br />

320 Proc Setting 98<br />

321 Proc Source Speed<br />

322 Proc Unit rpm<br />

323 User Unit 0<br />

324 Process Min 0<br />

325 Process Max 0<br />

326 Ratio Linear<br />

327 F(Val) PrMin Min<br />

328 F(Val) PrMax Max<br />

330 Start/Stop 102<br />

331 Acc Time 10.00s<br />

332 Dec Time 10.00s<br />

333 Acc MotPot 16.00s<br />

334 Dec MotPot 16.00s<br />

335 Acc>Min Spd 10.00s<br />

336 Dec


Factory setting Customer Page<br />

4161 MaxAlarmMar 15%<br />

4162 MaxAlarmDel 0.1s<br />

417 Max Pre alarm<br />

4171 MaxPreAlMar 10%<br />

4172 MaxPreAlDel 0.1s<br />

418 Min Pre Alarm<br />

4181 MinPreAlMar 10%<br />

4182 MinPreAlDel 0.1s<br />

419 Min Alarm<br />

4191 MinAlarmMar 15%<br />

4192 MinAlarmDel 0.1s<br />

41A Autoset Alrm No<br />

41B Normal Load 100%<br />

41C Load Curve<br />

41C1 Load Curve 1 100%<br />

41C2 Load Curve 2 100%<br />

41C3 Load Curve 3 100%<br />

41C4 Load Curve 4 100%<br />

41C5 Load Curve 5 100%<br />

41C6 Load Curve 6 100%<br />

41C7 Load Curve 7 100%<br />

41C8 Load Curve 8 100%<br />

41C9 Load Curve 9 100%<br />

420 Process Prot 133<br />

421 Low Volt OR On<br />

422 Rotor Locked Off<br />

423 Motor lost Off<br />

424 Overvolt Ctrl On<br />

500 I/Os 134<br />

510 An Inputs<br />

511 AnIn1 Fc Process Ref<br />

512 AnIn1 Setup 4-20mA<br />

513 AnIn1 Advn<br />

5131 AnIn1 Min 4mA<br />

5132 AnIn1 Max 10.00V/20.00mA<br />

5133 AnIn1 Bipol 10.00V/20.00mA<br />

5134 AnIn1 FcMin Min<br />

5135 AnIn1 ValMin 0<br />

5136 AnIn1 FcMax Max<br />

5137 AnIn1 ValMax 0<br />

5138 AnIn1 Oper Add+<br />

5139 AnIn1 Filt 0.1s<br />

513A AnIn1 Enabl On<br />

514 AnIn2 Fc Off 139<br />

515 AnIn2 Setup 4-20mA<br />

516 AnIn2 Advan 143<br />

5161 AnIn2 Min 4mA<br />

5162 AnIn2 Max 20.00mA<br />

5163 AnIn2 Bipol 20.00mA<br />

5164 AnIn2 FcMin Min<br />

5165 AnIn2 ValMin 0<br />

5166 AnIn2 FcMax Max<br />

5167 AnIn2 ValMax 0<br />

5168 AnIn2 Oper Add+<br />

5169 AnIn2 Filt 0.1s<br />

516A AnIn2 Enabl On<br />

517 AnIn3 Fc Off 143<br />

518 AnIn3 Setup 4-20mA<br />

Factory setting Customer Page<br />

519 AnIn3 Advan<br />

5191 AnIn3 Min 4mA<br />

5192 AnIn3 Max 20.00mA<br />

5193 AnIn3 Bipol 20.00mA<br />

5194 AnIn3 FcMin Min<br />

5195 AnIn3 ValMin 0<br />

5196 AnIn3 FcMax Max<br />

5197 AnIn3 ValMax 0<br />

5198 AnIn3 Oper Add+<br />

5199 AnIn3 Filt 0.1s<br />

519A AnIn3 Enabl On<br />

51A AnIn4 Fc Off 144<br />

51B AnIn4 Setup 4-20mA<br />

51C AnIn4 Advan<br />

51C1 AnIn4 Min 4mA<br />

51C2 AnIn4 Max 20.00mA<br />

51C3 AnIn4 Bipol 20.00mA<br />

51C4 AnIn4 FcMin Min<br />

51C5 AnIn4 ValMin 0<br />

51C6 AnIn4 FcMax Max<br />

51C7 AnIn4 ValMax 0<br />

51C8 AnIn4 Oper Add+<br />

51C9 AnIn4 Filt 0.1s<br />

51CA AnIn4 Enabl On<br />

520 Dig Inputs 141<br />

521 DigIn 1 RunL<br />

522 DigIn 2 RunR<br />

523 DigIn 3 Off<br />

524 DigIn 4 Off<br />

525 DigIn 5 Off<br />

526 DigIn 6 Off<br />

527 DigIn 7 Off<br />

528 DigIn 8 Reset<br />

529 B(oard)1 DigIn 1 Off<br />

52A B(oard)1 DigIn 2 Off<br />

52B B(oard)1 DigIn 3 Off<br />

52C B(oard)2 DigIn 1 Off<br />

52D B(oard)2 DigIn 2 Off<br />

52E B(oard)2 DigIn 3 Off<br />

52F B(oard)3 DigIn 1 Off<br />

52G B(oard)3 DigIn 2 Off<br />

52H B(oard)3 DigIn 3 Off<br />

530 An Outputs 143<br />

531 AnOut1 Fc Speed<br />

532 AnOut1 Setup 4-20mA<br />

533 AnOut1 Adv<br />

5331 AnOut 1 Min 4mA<br />

5332 AnOut 1 Max 20.0mA<br />

5333 AnOut1Bipol -10.00-10.00 V<br />

5334 AnOut1 FcMin Min<br />

5335 AnOut1 VlMin 0<br />

5336 AnOut1 FcMax Max<br />

5337 AnOut1 VlMax 0<br />

534 AnOut2 FC Torque<br />

535 AnOut2 Setup 4-20mA<br />

536 AnOut2 Advan<br />

5361 AnOut 2 Min 4mA<br />

5362 AnOut 2 Max 20.0mA<br />

CG Drives & Automation, 01-5325-01r1 Menu List 215


Factory setting Customer Page<br />

5363 AnOut2Bipol -10.00-10.00 V<br />

5364 AnOut2 FcMin Min<br />

5365 AnOut2 VlMin 0<br />

5366 AnOut2 FcMax Max<br />

5367 AnOut2 VlMax 0<br />

540 Dig Outputs 147<br />

541 DigOut 1 Ready<br />

542 DigOut 2 No Trip<br />

550 Relays 149<br />

551 Relay 1 Trip<br />

552 Relay 2 Run<br />

553 Relay 3 Off<br />

554<br />

B(oard)1 Relay<br />

1<br />

Off<br />

555 B1 Relay 2 Off<br />

556 B1 Relay 3 Off<br />

557 B2 Relay 1 Off<br />

558 B2 Relay 2 Off<br />

559 B2 Relay 3 Off<br />

55A B3 Relay 1 Off<br />

55B B3 Relay 2 Off<br />

55C B3 Relay 3 Off<br />

55D Relay Adv<br />

55D1 Relay 1 Mode N.O<br />

55D2 Relay 2 Mode N.O<br />

55D3 Relay 3 Mode N.O<br />

55D4 B1R1 Mode N.O<br />

55D5 B1R2 Mode N.O<br />

55D6 B1R3 Mode N.O<br />

55D7 B2R1 Mode N.O<br />

55D8 B2R2 Mode N.O<br />

55D9 B2R3 Mode N.O<br />

55DA B3R1 Mode N.O<br />

55DB B3R2 Mode N.O<br />

55DC B3R3 Mode N.O<br />

560 Virtual I/Os 151<br />

561 VIO 1 Dest Off<br />

562 VIO 1 Source Off<br />

563 VIO 2 Dest Off<br />

564 VIO 2 Source Off<br />

565 VIO 3 Dest Off<br />

566 VIO 3 Source Off<br />

567 VIO 4 Dest Off<br />

568 VIO 4 Source Off<br />

569 VIO 5 Dest Off<br />

56A VIO 5 Source Off<br />

56B VIO 6 Dest Off<br />

56C VIO 6 Source Off<br />

56D VIO 7 Dest Off<br />

56E VIO 7 Source Off<br />

56F VIO 8 Dest Off<br />

56G VIO 8 Source Off<br />

600 Logical&Timers 152<br />

610 Comparators<br />

611 CA1 Setup<br />

6111 CA1 Value Speed<br />

6112 CA1 Level HI 300rpm<br />

6113 CA1 Level LO 200rpm<br />

Factory setting Customer Page<br />

6114 CA1 Type Hysteresis<br />

6115 CA1 Polar Unipolar<br />

612 CA2 Setup 162<br />

6121 CA2 Value Torque<br />

6122 CA2 Level HI 20%<br />

6123 CA2 Level LO 10%<br />

6124 CA2 Type Hysteresis<br />

6125 CA2 Polar Unipolar<br />

613 CA3 Setup 159<br />

6131 CA3 Value Process Val<br />

6132 CA3 Level HI 300rpm<br />

6133 CA3 Level LO 200rpm<br />

6134 CA3 Type Hysteresis<br />

6135 CA3 Polar Unipolar<br />

614 CA4 Setup 160<br />

6141 CA4 Value Process Err<br />

6142 CA4 Level HI 100 rpm<br />

6143 CA4 Level LO - 100 rpm<br />

6144 CA4 Type Window<br />

6145 CA4 Polar Bipolar<br />

615 CD Setup 161<br />

6151 CD1 Run<br />

6152 CD2 DigIn 1<br />

6153 CD3 Trip<br />

6154 CD4 Ready<br />

620 Logic Output Y 162<br />

621 Y Comp 1 CA1<br />

622 Y Operator 1 &<br />

623 Y Comp 2 !A2<br />

624 Y Operator 2 &<br />

625 Y Comp 3 CD1<br />

630 Logic Z 164<br />

631 Z Comp 1 CA1<br />

632 Z Operator 1 &<br />

633 Z Comp2 !A2<br />

634 Z Operator 2 &<br />

635 Z Comp 3 CD1<br />

640 Timer1 165<br />

641 Timer1 Trig Off<br />

642 Timer1 Mode Off<br />

643 Timer1 Delay 0:00:00<br />

644 Timer 1 T1 0:00:00<br />

645 Timer1 T2 0:00:00<br />

649 Timer1 Value 0:00:00<br />

650 Timer2 167<br />

651 Timer2 Trig Off<br />

652 Timer2 Mode Off<br />

653 Timer2 Delay 0:00:00<br />

654 Timer 2 T1 0:00:00<br />

655 Timer2 T2 0:00:00<br />

659 Tmer2 Value 0:00:00<br />

660 Counters<br />

661 Counter 1<br />

6611 C1 Trig Off<br />

6612 C1 Reset Off<br />

6613 C1 High Val 0<br />

6614 C1 Low Val 0<br />

6615 C1 DecTimer Off<br />

216 Menu List CG Drives & Automation, 01-5325-01r1


Factory setting Customer Page<br />

6619 C1 Value 0<br />

662 Counter 2<br />

6621 C2 Trig Off<br />

6622 C2 Reset Off<br />

6623 C2 High Val 0<br />

6624 C2 Low Val 0<br />

6625 C2 DecTimer Off<br />

6629 C2 Value 0<br />

700 Oper/Status 172<br />

710 Operation<br />

711 Process Val<br />

712 Speed<br />

713 Torque<br />

714 Shaft Power<br />

715 Electrical Power<br />

716 Current<br />

717 Output volt<br />

718 Frequency<br />

719 DC Voltage<br />

71A Heatsink Tmp<br />

71B PT100_1_2_3<br />

720 Status 174<br />

721 AC drive Status<br />

722 Warning<br />

723 DigIn Status<br />

724 DigOut Status<br />

725 AnIn Status 1-2<br />

726 AnIn Status 3-4<br />

727<br />

AnOut Status 1-<br />

2<br />

728 IO Status B1<br />

729 IO Status B2<br />

72A IO Status B3<br />

730 Stored Val 178<br />

731 Run Time 00:00:00<br />

7311 Reset RunTm No<br />

732 Mains Time 00:00:00<br />

733 Energy kWh<br />

7331 Rst Energy No<br />

800 View TripLog<br />

810 Trip Message (log list 1) 179<br />

811 Process Value<br />

812 Speed<br />

813 Torque<br />

814 Shaft Power<br />

815 Electrical Power<br />

816 Current<br />

817 Output voltage<br />

818 Frequency<br />

819 DC Link voltage<br />

81A Heatsink Tmp<br />

81B PT100_1, 2, 3<br />

81C AC drive Status<br />

81D DigIn status<br />

81E DigOut status<br />

81F AnIn status 1 2<br />

81G AnIn status 3 4<br />

81H AnOut status 1 2<br />

Factory setting Customer Page<br />

81I IO Status B1<br />

81J IO Status B2<br />

81K IO Status B3<br />

81L Run Time<br />

81M Mains Time<br />

81N Energy<br />

81O Process reference<br />

820 Trip Message 821- 82O (log list 2) 180<br />

830 Trip Message 831 - 83O (log list 3)<br />

840 Trip Message 841 - 84O (log list 4)<br />

850 Trip Message 851 - 85O (log list 5)<br />

860 Trip Message 861 - 86O (log list 6)<br />

870 Trip Message 871 - 87O (log list 7)<br />

880 Trip Message 881 - 88O (log list 8)<br />

890 Trip Message 891 - 89O (log list 9)<br />

8A0 Reset Trip No 185<br />

900 System Data<br />

920 AC drive Data 181<br />

921 AC drive Type<br />

922 Software<br />

923 Unit name 0<br />

CG Drives & Automation, 01-5325-01r1 Menu List 217


218 Menu List CG Drives & Automation, 01-5325-01r1


Index<br />

A<br />

Abbreviations ...................................10<br />

Acceleration ...........................102, 105<br />

Acceleration ramp ...................105<br />

Acceleration time ....................102<br />

Ramp type ..............................105<br />

Alarm trip ......................................128<br />

Alternating MASTER ..48, 51, 52, 121<br />

Ambient temperature and derating 205<br />

Analogue comparators ...................152<br />

Analogue input ..............................134<br />

AnIn1 .....................................134<br />

AnIn2 .............................139, 140<br />

Offset .............................135, 144<br />

Analogue Output ...........143, 146, 212<br />

AnOut 1 .........................143, 146<br />

Output configuration .....144, 147<br />

AND operator ...............................162<br />

AnIn2 ............................................139<br />

AnIn3 ............................................140<br />

AnIn4 ............................................141<br />

Autoreset .......................4, 43, 85, 185<br />

B<br />

Baudrate ..............................61, 94, 95<br />

Brake chopper ................................192<br />

Brake function .......................107, 108<br />

Bake release time ....................107<br />

Brake ......................................108<br />

Brake Engage Time ................108<br />

Brake wait time ......................109<br />

Release speed ..........................108<br />

Vector Brake ...........................109<br />

Brake functions<br />

Frequency ...............................134<br />

Brake resistors ................................192<br />

C<br />

Cable cross-section .........................208<br />

Cable specifications ..........................24<br />

Cascade controller ............................47<br />

CE-marking .......................................9<br />

Change Condition .........................122<br />

Change Timer ...............................122<br />

Checklist ..........................................52<br />

Clockwise rotary field ....................141<br />

Com Type .......................................93<br />

Comparators ..................................152<br />

Connecting control signals ...............30<br />

Connections<br />

Brake chopper connections .......20<br />

Control signal connections .......30<br />

Mains supply ......................20, 33<br />

Motor earth ........................20, 33<br />

Motor output .....................20, 33<br />

Safety earth .........................20, 33<br />

Control panel ..................................57<br />

control panel ..................................191<br />

Control Panel memory<br />

Copy all settings to Control Panel .<br />

84<br />

Frequency ...............................134<br />

Control signal connections ...............30<br />

Control signals ...........................28, 31<br />

Edge-controlled ..................43, 72<br />

Level-controlled ..................43, 72<br />

Counter-clockwise rotary field .......141<br />

ctrical .............................................172<br />

Current ............................................28<br />

Current control (0-20mA) ...............32<br />

D<br />

DC-link residual voltage ....................4<br />

Deceleration ...................................103<br />

Deceleration time ...................103<br />

Ramp type ..............................105<br />

Declaration of Conformity .................9<br />

Default .............................................84<br />

Definitions .......................................10<br />

Derating .........................................205<br />

Digital comparators ........................152<br />

Digital inputs<br />

Board Relay ............................150<br />

DigIn 1 ...................................141<br />

DigIn 2 ...................................142<br />

DigIn 3 ...................................143<br />

Dismantling and scrapping ................9<br />

Display .............................................57<br />

Double-ended connection ................31<br />

Drive mode ......................................69<br />

Frequency ...............................134<br />

Drives on Change ..........................122<br />

E<br />

ECP ...............................................191<br />

Edge control ...............................43, 72<br />

Electrical specification ....................204<br />

EMC ................................................20<br />

Current control (0-20mA) ........32<br />

Double-ended connection .........31<br />

RFI mains filter .........................20<br />

Single-ended connection ...........31<br />

Twisted cables ...........................32<br />

Emergency stop ................................55<br />

EN60204-1 ........................................9<br />

EN61800-3 ........................................9<br />

EN61800-5-1 ....................................9<br />

Enable ................................42, 58, 141<br />

EtherCAT ................................63, 194<br />

EXOR operator ..............................162<br />

Expression ......................................162<br />

External Control Panel ...................191<br />

F<br />

Factory settings ................................ 84<br />

Fail safe ........................................... 49<br />

Fans ............................................... 121<br />

Feedback 'Status' input .................... 49<br />

Fieldbus ............................. 63, 94, 194<br />

Fixed MASTER ....................... 52, 121<br />

Flux optimization .......................... 115<br />

Frequency<br />

Frequency priority .................... 41<br />

Jog Frequency ........................ 113<br />

Maximum Frequency ............. 111<br />

Minimum Frequency ............. 111<br />

Preset Frequency .................... 116<br />

Skip Frequency ...................... 112<br />

Frequency priority ........................... 41<br />

Fuses, cable cross-sections and glands ..<br />

208<br />

G<br />

General electrical specifications ..... 204<br />

Global parameters ........................... 83<br />

H<br />

Hydrophore controller .................... 47<br />

I<br />

I/O Board ...................................... 193<br />

I/O board option ............................. 47<br />

I2t protection<br />

Motor I2t Current ............. 80, 81<br />

Motor I2t Type ........................ 79<br />

ID run ............................................. 76<br />

Identification Run ..................... 44, 76<br />

IEC269 ......................................... 208<br />

Industrial Ethernet .................. 63, 194<br />

Interrupt ............................. 95, 96, 97<br />

IT Mains supply ................................ 4<br />

IxR Compensation ........................ 114<br />

J<br />

Jog Frequency ............................... 113<br />

K<br />

Keyboard reference ........................ 117<br />

Keys ................................................ 58<br />

- Key ........................................ 60<br />

+ Key ....................................... 60<br />

Control keys ............................. 58<br />

ENTER key ............................. 60<br />

ESCAPE key ............................ 60<br />

Function keys ........................... 60<br />

NEXT key ................................ 60<br />

PREVIOUS key ....................... 60<br />

RUN L ..................................... 58<br />

RUN R .................................... 58<br />

CG Drives & Automation, 01-5325-01r1 219


STOP/RESET ..........................58<br />

Toggle Key ...............................59<br />

L<br />

LCD display ....................................57<br />

Level control ..............................43, 72<br />

Load default .....................................84<br />

Load monitor ...........................45, 128<br />

Local/Remote ..................................71<br />

Lock code ........................................71<br />

Long motor cables ...........................22<br />

Low Voltage Directive .......................9<br />

Lower Band ...................................123<br />

Lower Band Limit ..........................124<br />

M<br />

Machine Directive .............................9<br />

Main menu ......................................60<br />

Mains supply .......................20, 27, 33<br />

Maintenance ..................................189<br />

Manis cables ....................................19<br />

Max Frequency ......................102, 111<br />

Memory ...........................................44<br />

Menu<br />

(110) ........................................67<br />

(120) ........................................68<br />

(210) ........................................68<br />

(211) ........................................68<br />

(212) ........................................69<br />

(213) ........................................69<br />

(214) ........................................69<br />

(215) ........................................70<br />

(216) ........................................70<br />

(217) ........................................71<br />

(218) ........................................71<br />

(219) ........................................71<br />

(21A) ........................................72<br />

(21B) ........................................72<br />

(220) ........................................73<br />

(221) ........................................73<br />

(222) ........................................74<br />

(223) ........................................74<br />

(224) ........................................74<br />

(225) ........................................74<br />

(226) ........................................75<br />

(227) ........................................75<br />

(228) ........................................75<br />

(229) ........................................76<br />

(22A) ........................................76<br />

(22B) ........................................76<br />

(22C) ........................................77<br />

(22D) .......................................77<br />

(230) ........................................79<br />

(231) ........................................79<br />

(232) ........................................80<br />

(233) ........................................80<br />

(234) ........................................81<br />

(235) ........................................81<br />

(236) ........................................82<br />

(237) ........................................82<br />

(240) .........................................83<br />

(241) .........................................83<br />

(242) .........................................83<br />

(243) .........................................84<br />

(244) .........................................84<br />

(245) .........................................85<br />

(250) .........................................85<br />

(251) .........................................85<br />

(252) .........................................86<br />

(253) .........................................86<br />

(254) .........................................86<br />

(255) .........................................87<br />

(256) .........................................87<br />

(257) .........................................87<br />

(258) .........................................87<br />

(259) .........................................88<br />

(25A) ........................................88<br />

(25B) ........................................88<br />

(25C) ........................................88<br />

(25D) ........................................88<br />

(25E) ........................................89<br />

(25F) ........................................89<br />

(25G) ........................................89<br />

(25H) .......................................89<br />

(25I) .........................................90<br />

(25J) .........................................90<br />

(25K) ........................................90<br />

(25L) ........................................90<br />

(25M) .......................................91<br />

(25N) .................................85, 91<br />

(25O) .......................................91<br />

(25P) ........................................91<br />

(25Q) .......................................91<br />

(25R) ........................................92<br />

(25S) .........................................92<br />

(25T) ........................................92<br />

(25U) ........................................92<br />

(260) .........................................93<br />

(261) .........................................93<br />

(262) .........................................93<br />

(2621) .......................................94<br />

(2622) .......................................94<br />

(263) .........................................94<br />

(2631) .......................................94<br />

(2632) .......................................94<br />

(2633) .......................................95<br />

(2634) .......................................95<br />

(264) .........................................95<br />

(265) .........................................96<br />

(269) .........................................97<br />

(310) .........................................97<br />

(320) .........................................98<br />

(321) .........................................98<br />

(322) .........................................99<br />

(323) .........................................99<br />

(324) .......................................100<br />

(325) .......................................100<br />

(326) .......................................101<br />

(327) .......................................101<br />

(328) .......................................101<br />

(331) ...................................... 102<br />

(332) ...................................... 103<br />

(333) ...................................... 103<br />

(334) ...................................... 103<br />

(335) ...................................... 104<br />

(336) ...................................... 104<br />

(337) ...................................... 105<br />

(338) ...................................... 105<br />

(339) ...................................... 105<br />

(33A) ..................................... 106<br />

(33B) ...................................... 106<br />

(33C) ..................................... 107<br />

(33D) ..................................... 108<br />

(33E) ...................................... 108<br />

(33F) ...................................... 109<br />

(33G) ..................................... 109<br />

(33H1) ................................... 109<br />

(341) ...................................... 111<br />

(342) ...................................... 111<br />

(343) ...................................... 111<br />

(344) ...................................... 112<br />

(345) ...................................... 112<br />

(346) ...................................... 113<br />

(347) ...................................... 113<br />

(348) ...................................... 113<br />

(351) ...................................... 113<br />

(354) ...................................... 115<br />

(361) ...................................... 116<br />

(362) ...................................... 116<br />

(363) ...................................... 116<br />

(364) ...................................... 116<br />

(365) ...................................... 116<br />

(366) ...................................... 116<br />

(367) ...................................... 116<br />

(368) ...................................... 116<br />

(369) ...................................... 117<br />

(380) ...................................... 117<br />

(381) ...................................... 117<br />

(383) ...................................... 117<br />

(384) ...................................... 118<br />

(385) ...................................... 118<br />

(386) ...................................... 118<br />

(387) ...................................... 119<br />

(388) ...................................... 120<br />

(389) ...................................... 120<br />

(391) ...................................... 121<br />

(392) ...................................... 121<br />

(393) ...................................... 121<br />

(394) ...................................... 122<br />

(395) ...................................... 122<br />

(396) ...................................... 122<br />

(398) ...................................... 123<br />

(399) ...................................... 123<br />

(39A) ..................................... 124<br />

(39B) ...................................... 124<br />

(39C) ..................................... 124<br />

(39D) ..................................... 125<br />

(39E) ...................................... 125<br />

(39F) ...................................... 126<br />

(39G) ..................................... 126<br />

220 CG Drives & Automation, 01-5325-01r1


(39H-39M) ............................127<br />

(410) ......................................128<br />

(411) ......................................128<br />

(412) ......................................128<br />

(413) ......................................128<br />

(414) ......................................129<br />

(415) ......................................129<br />

(416) ......................................129<br />

(4162) ....................................130<br />

(417) ......................................130<br />

(4171) ....................................130<br />

(4172) ....................................130<br />

(418) ......................................130<br />

(4181) ....................................130<br />

(4182) ....................................131<br />

(419) ......................................131<br />

(4191) ....................................131<br />

(4192) ....................................131<br />

(41A) ......................................131<br />

(41B) ......................................132<br />

(41C) ......................................132<br />

(421) ......................................133<br />

(422) ......................................133<br />

(423) ......................................133<br />

(424) ......................................134<br />

(511) ......................................134<br />

(512) ......................................135<br />

(513) ......................................136<br />

(514) ......................................139<br />

(515) ......................................139<br />

(516) ......................................139<br />

(517) ......................................140<br />

(518) ......................................140<br />

(519) ......................................140<br />

(51A) ......................................140<br />

(51B) ......................................141<br />

(51C) ......................................141<br />

(521) ..............................109, 141<br />

(522) ......................................142<br />

(529-52H) ..............................143<br />

(531) ......................................143<br />

(532) ......................................144<br />

(533) ......................................144<br />

(534) ......................................146<br />

(535) ......................................147<br />

(536) ......................................147<br />

(541) ......................................147<br />

(542) ......................................149<br />

(551) ......................................149<br />

(552) ......................................149<br />

(553) ......................................150<br />

(55D) .....................................150<br />

(561) ......................................151<br />

(562) ......................................151<br />

(563-56G) ..............................151<br />

(610) ......................................152<br />

(6111) ....................................152<br />

(6112) ....................................154<br />

(6113) ....................................156<br />

(6114) ....................................156<br />

(6115) .....................................157<br />

(6121) .....................................157<br />

(6122) .....................................158<br />

(6123) .....................................158<br />

(6124) .....................................158<br />

(6125) .....................................158<br />

(6131) .....................................159<br />

(6132) .....................................159<br />

(6133) .....................................159<br />

(6134) .....................................159<br />

(6135) .....................................160<br />

(6141) .....................................160<br />

(6142) .....................................160<br />

(6143) .....................................160<br />

(6144) .....................................161<br />

(6145) .....................................161<br />

(6151) .....................................161<br />

(6152) .....................................161<br />

(6153) .....................................162<br />

(6154) .....................................162<br />

(620) .......................................162<br />

(621) ...............................162, 163<br />

(622) ...............................162, 163<br />

(623) ...............................162, 163<br />

(624) .......................................162<br />

(625) .......................................162<br />

(630) .......................................164<br />

(631) .......................................164<br />

(632) .......................................164<br />

(633) .......................................165<br />

(634) .......................................165<br />

(635) .......................................165<br />

(640) .......................................165<br />

(641) .......................................166<br />

(642) .......................................166<br />

(643) .......................................166<br />

(644) .......................................166<br />

(645) .......................................167<br />

(649) .......................................167<br />

(650) .......................................167<br />

(651) .......................................167<br />

(652) .......................................167<br />

(653) .......................................168<br />

(654) .......................................168<br />

(655) .......................................168<br />

(659) .......................................168<br />

(711) .......................................172<br />

(712) .......................................172<br />

(713) .......................................172<br />

(714) .......................................172<br />

(715) .......................................172<br />

(716) .......................................173<br />

(717) .......................................173<br />

(718) .......................................173<br />

(719) .......................................173<br />

(71A) ......................................174<br />

(71B) ......................................174<br />

(720) .......................................174<br />

(721) .......................................174<br />

(722) .......................................175<br />

(723) ...................................... 176<br />

(724) ...................................... 176<br />

(725) ...................................... 176<br />

(726) ...................................... 176<br />

(727) ...................................... 177<br />

(728-72A) .............................. 177<br />

(730) ...................................... 178<br />

(731) ...................................... 178<br />

(7311) .................................... 178<br />

(732) ...................................... 178<br />

(733) ...................................... 178<br />

(7331) .................................... 179<br />

(800) ...................................... 179<br />

(810) ...................................... 179<br />

(811-81N) .............................. 180<br />

(820) ...................................... 180<br />

(830) ...................................... 180<br />

(8A0) ..................................... 180<br />

(900) ...................................... 181<br />

(920) ...................................... 181<br />

(922) ...................................... 182<br />

33F ........................................ 109<br />

616 ........................................ 158<br />

Minimum Frequency .................... 104<br />

Modbus ........................................... 63<br />

Modbus/TCP .......................... 63, 194<br />

Monitor function<br />

Alarm Select ........................... 132<br />

Auto set .................................. 131<br />

Delay time ............................. 129<br />

Max Alarm ............................. 128<br />

Overload .......................... 45, 128<br />

Ramp Enable ......................... 128<br />

Response delay ....... 129, 130, 132<br />

Start delay .............................. 129<br />

Motor cables .................................... 20<br />

Motor cos phi (power factor) ........... 75<br />

Motor data ...................................... 73<br />

Motor frequency ............................. 74<br />

Motor I2t Current ......................... 186<br />

Motor identification run ................. 76<br />

Motor Lost ...................................... 87<br />

Motor lost ..................................... 133<br />

Motor Potentiometer ............ 116, 141<br />

Motor potentiometer ..................... 141<br />

Motor PTC ......................... 29, 30, 82<br />

Motor ventilation ............................ 75<br />

Motors .............................................. 7<br />

Motors in parallel ............................ 25<br />

MotPot .......................................... 103<br />

Multi-motor application .................. 69<br />

N<br />

Nominal motor frequency ............. 111<br />

Number of drives .......................... 121<br />

O<br />

Operation ........................................ 68<br />

Options ................................... 32, 191<br />

Brake chopper ........................ 192<br />

CG Drives & Automation, 01-5325-01r1 221


External Control Panel (ECP) 191<br />

I/O Board ...............................193<br />

OR operator ..................................162<br />

Output chokes ...............................197<br />

Output Voltage .............................173<br />

Overload ..................................45, 128<br />

Overload alarm ................................45<br />

P<br />

Parameter sets<br />

Load default values ...................84<br />

Load parameter sets from Control<br />

Panel ........................................85<br />

Parameter Set Selection ............39<br />

Select a Parameter set ................83<br />

PID control .....................................50<br />

PID Controller ..............................117<br />

Closed loop PID control .........118<br />

Feedback signal .......................117<br />

PID D Time ...........................118<br />

PID I Time ............................118<br />

PID P Gain ............................117<br />

Priority ............................................41<br />

Process Protection ..........................133<br />

Process Value .................................172<br />

Product standard, EMC .....................8<br />

Programming ...................................61<br />

PT100 Inputs ..................................82<br />

PTC input .......................................81<br />

Pump size ........................................52<br />

Pump/Fan Control ........................121<br />

Q<br />

Quick Setup Card ..............................7<br />

R<br />

Reference<br />

Frequency ...............................133<br />

Motor potentiometer ..............141<br />

Reference signal ..................69, 97<br />

Set reference value ....................97<br />

Torque ...................................133<br />

View reference value .................97<br />

Reference control .............................69<br />

Reference signal .........................69, 70<br />

Relay output ..................................149<br />

Relay 1 ...................................149<br />

Relay 2 ...................................149<br />

Relay 3 ...................................150<br />

Release speed .................................108<br />

Remote control ................................42<br />

Reset command .............................141<br />

Reset control ....................................70<br />

Resolution .......................................67<br />

RFI mains filter ...............................20<br />

Rotation ..........................................71<br />

RS232/485 ......................................93<br />

RUN ...............................................58<br />

Run command .................................58<br />

Run Left command ........................141<br />

Run Right command .....................141<br />

Running motor ..............................106<br />

S<br />

Select Drive ....................................121<br />

Settle Time ....................................125<br />

Setup menu ......................................60<br />

Menu structure .........................60<br />

Shaft power ....................................172<br />

Signal ground .................................212<br />

Single-ended connection ..................31<br />

Software .........................................182<br />

Sound characteristic .........................76<br />

Speed .............................................172<br />

Spinstart .........................................106<br />

Standards ...........................................8<br />

Standby supply board .....................194<br />

Start Delay .....................................123<br />

Start/Stop settings ..........................102<br />

Status indications .............................57<br />

Stop categories .................................55<br />

Stop command ...............................141<br />

Stop Delay .....................................124<br />

Stripping lengths ..............................24<br />

Switches ...........................................28<br />

Switching frequency .........................76<br />

Switching in motor cables ................22<br />

T<br />

Technical Data ...............................199<br />

Terminal connections ......................28<br />

Test Run ..........................................76<br />

Timer .............................................122<br />

Torque ...........................................113<br />

Transition Frequency .....................125<br />

Trip .................................................58<br />

Trip causes and remidial action ......184<br />

Trip Message log ............................179<br />

Trips, warnings and limits ..............183<br />

Twisted cables ..................................32<br />

Type code number .............................7<br />

U<br />

Underload ........................................45<br />

Underload alarm ............................128<br />

Unlock Code ...................................71<br />

Upper Band ...................................123<br />

Menu<br />

(397) 123<br />

Upper Band Limit ..........................124<br />

V<br />

V/Hz Mode .....................................69<br />

Vector Brake ..................................109<br />

Ventilation .......................................75<br />

View reference value .........................97<br />

Voltage .............................................28<br />

VSD Data ......................................181<br />

W<br />

Wiring ............................................. 51<br />

222 CG Drives & Automation, 01-5325-01r1


CG Drives & Automation Sweden AB<br />

Mörsaregatan 12<br />

01-5323-01r1<br />

Box 222 25<br />

SE-250 24 Helsingborg<br />

set:<br />

Sweden<br />

T +46 42 16 99 00<br />

F +46 42 16 99 49<br />

www.emotron.com/www.cgglobal.com Document<br />

<strong>Instruction</strong> <strong>manual</strong>, 01-5325-01r1<br />

Quick setup card, 01-5327-01r0<br />

2012-07-02

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!