13.07.2015 Views

2001 ASD Supplements - unprotected PDF - American Wood Council

2001 ASD Supplements - unprotected PDF - American Wood Council

2001 ASD Supplements - unprotected PDF - American Wood Council

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SUPPLEMENTStructural Lumber<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCanadian <strong>Wood</strong> <strong>Council</strong>Southern Forest Products AssociationSouthern Pine Inspection BureauWest Coast Lumber Inspection BureauWestern <strong>Wood</strong> Products Association


May 2013Codes and Standards Addenda and Amendments Related to Design Value ChangesThe <strong>American</strong> Lumber Standard Committee (ALSC) Board of Review has approved changes to designvalues for all grades and all sizes of visually-graded Southern Pine and Mixed Southern Pine lumber, 2"- 4"thick, with a recommended effective date of June 1, 2013. For more information, visit www.spib.org andwww.southernpine.com.AWC has developed addenda and other updates to use with new construction designed in accordance withmany of its standards and design tools. However, this document has not been updated to include changesto design values. Designers are urged to download the addendum to the 2012 NDS Supplement, whichcontains the new design values, and use them accordingly with this document.For additional information or questions, visit the AWC website at www.awc.org or email your request toinfo@awc.org.Thank you.222 Catoctin Circle, SE, Suite 201 ▪ Leesburg, VA 20175 ▪ 202 463-2766 ▪ www.awc.org ▪ info@awc.org


SUPPLEMENTStructural Lumber<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>2001</strong>Canadian <strong>Wood</strong> <strong>Council</strong>, Southern Forest Products Association, Southern Pine Inspection Bureau,West Coast Lumber Inspection Bureau, Western <strong>Wood</strong> Products Association


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTPrefaceThis Supplement contains adjustment factors, dimensions,member design capacities and other propertiesrequired to design structural lumber in the <strong>ASD</strong> format.The member design capacity values tabulated in thisSupplement are to be used in conjunction with the designmethodologies provided in ANSI/AF&PA NDS-<strong>2001</strong>,National Design Specification ® (NDS ® ) for <strong>Wood</strong> Construction.The tabulated design values are provided in the NDS-<strong>2001</strong> Supplement: Design Values for <strong>Wood</strong> Constructionand were derived according to ASTM Standards D1990,D245, and D2555.The reference member design capacity values are tobe used within the reference end-use conditions definedherein. When the end-use conditions fall outside the rangeof the reference conditions, the capacity values shall bedetermined by calculations according to the NDS. For unusualend-use conditions, the designer should consultadditional literature for possible further adjustments.The development and future maintenance of thisSupplement is a cooperative effort between AF&PA andthe lumber industry. The lumber organizations involvedin the development and review are as follows:Canadian <strong>Wood</strong> <strong>Council</strong> (CWC)Southern Forest Products Association (SFPA)Southern Pine Inspection Bureau (SPIB)West Coast Lumber Inspection Bureau (WCLIB)Western <strong>Wood</strong> Products Association (WWPA)Every effort has been made to ensure the accuracy ofthe information presented. Member selection tables areprovided for materials widely used in wood construction.The purpose of this Supplement is to provide convenientreference and design aids to design professionals.Suggestions for improvement of this Supplement arewelcomed and will be considered for future editions. Allsuggestions and comments should be directed to AF&PAor one of the organizations listed above.AMERICAN WOOD COUNCIL


<strong>ASD</strong> WOOD STRUCTURAL FRAME CONSTRUCTION LUMBER SUPPLEMENT MANUALTable of ContentsChapter/TitlePageChapter/TitlePage1 Designer Flowchart ........................................ L-11.1 Flowchart2 Introduction to StructuralLumber ...................................................................................................L-32.1 Product Information2.2 Common Uses2.3 Availability3 Design Values .................................................................L-53.1 General3.2 Design Values4 Design Adjustment Factors ... L-74.1 General4.2 Use of Adjustment Factors6 Other Considerations ........................ L-256.1 General6.2 Dimensional Changes6.3 Fire Assemblies7 Span Tables .................................................................... L-437.1 Universal Span Tables7.2 Species Specific Span Tables8 Section Properties ..................................... L-618.1 Cross-Section PropertiesAppendix ..................................................................................................L-65Example of Chapter 5 Capacity TableDevelopment5 Member Selection Tables ....... L-135.1 General5.2 Selection Table Checklist5.3 Capacity TablesList of TablesDesign Adjustment Factors4.1 Frequently Used Load Duration Factors, C D ..... L-104.2 Wet Service Factor, C M ................................................................. L-104.3 Temperature Factor, C t ................................................................... L-104.4 Size Factor, C F .......................................................................................... L-114.5 Flat Use Factor, C fu ............................................................................ L-114.6 Incising Factor, C i ................................................................................ L-11Member Selection Tables5.1 Tension Member Capacity (T′), StructuralLumber ............................................................................................................... L-165.2 Wall Stud (Axial Compression Only) Capacity(P′), Structural Lumber ................................................................ L-175.3 Column Capacity (P′, P x ′, P y ′), Timbers ................. L-185.4 Bending Member (Joist) Capacity, (M′, C r M′,V′, and EI), Structural Lumber .......................................... L-215.5 Bending Member (Beam) Capacity (M′, V′,and EI), Timbers ................................................................................... L-22Other Considerations6.1 Coefficient of Moisture Expansion, e ME ,and Fiber Saturation Point, (FSP) for Solid<strong>Wood</strong>s ................................................................................................................. L-276.2 One-Hour Fire-Rated Loadbearing<strong>Wood</strong>-Frame Wall Assemblies ........................ L-286.3 Two-Hour Fire-Rated Loadbearing<strong>Wood</strong>-Frame Wall Assemblies ........................ L-286.4 One-Hour Fire-Rated <strong>Wood</strong> Floor/CeilingAssemblies ...................................................... L-296.5 Two-Hour Fire-Rated <strong>Wood</strong> Floor/CeilingAssemblies ...................................................... L-29Joist and Rafter Span Tables7.1 – 7.9 Span Tables ......................................................... L-45 – L-537.10 – 7.12 Species Specific Span Tables ...L-55 – L-57Section Properties8.1 Section Properties of Standard Dressed (S4S)Sawn Lumber ........................................................................................... L-62AMERICAN FOREST & PAPER ASSOCIATION


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-11DESIGNERFLOWCHART1.1 Flowchart L-2AMERICAN FOREST & PAPER ASSOCIATION


L-2 DESIGNER FLOWCHART1.1 FlowchartStructural LumberSupplementYesPlease read Chapter 2before proceeding. For specificmember design information,see the <strong>ASD</strong> Manual.Are you aFirst-Time User?NoYou may use the SelectionTables in Chapter 5.YesMeets theSelection Table(Section 5.2)Criteria?NoSelect a trial design.(Obtain trial section fromthe Selection Tables.)Determine ApplicableAdjustment Factors.(Chapter 4)Allowable DesignCapacity ≥Load Effect?Allowable Design Value =Adjustment Factors xTabulated Design Value(see NDS Supplement for DesignValues)NoMember Design Capacity =Section Property xAllowable Design ValueYesChoose another section.Allowable DesignCapacity ≥Load Effect?NoChoose another section.YesEndAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-3INTRODUCTIONTO STRUCTURALLUMBER22.1 Product Information L-42.2 Common Uses L-42.3 Availability L-4AMERICAN FOREST & PAPER ASSOCIATION


L-4 INTRODUCTION TO STRUCTURAL LUMBER2.1 Product InformationStructural lumber products are well-known throughoutthe construction industry. The economic advantagesof lumber often dictate its choice as a preferred buildingmaterial.Lumber is available in a wide range of species, grades,sizes, and moisture contents. Structural lumber productsare typically specified by either the stress level required,or by the species, grade, and size required.This Supplement provides information for designingstructural lumber products in accordance with the NationalDesign Specification (NDS) for <strong>Wood</strong> Construction.2.2 Common UsesStructural lumber and timbers have been a primaryconstruction material throughout the world for many centuries.They are the most widely used framing materialfor housing in North America.In addition to use in housing, structural lumber findsbroad use in commercial and industrial construction. Itshigh strength, universal availability, and cost saving attributesmake it a viable option in most low- and mid-riseconstruction projects.Structural lumber is used as beams, columns, headers,joists, rafters, studs and plates in conventional construction.In addition to its use in lumber form, structurallumber is used to manufacture glued-laminated beams,trusses, and wood I-joists.2.3 AvailabilityStructural lumber is a widely available constructionmaterial in the U.S. However, to efficiently specify structurallumber for individual construction projects, the specifiershould be aware of the species, grades, and sizesavailable locally. The best source of this information isyour local lumber supplier.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-53DESIGN VALUES3.1 General L-63.2 Design Values L-6AMERICAN FOREST & PAPER ASSOCIATION


L-6 DESIGN VALUES3.1 GeneralThe NDS Supplement provides <strong>ASD</strong> tabulated designvalues for design of structural lumber members. Thesedesign values are used when manual calculation of membercapacity is required, and shall be used in conjunctionwith the adjustment factors specified in Chapter 4.3.2 Design ValuesDesign values are provided in the NDS Supplement,with values expressed in psi (pounds per square inch).NDSSupplementTable Number4A and 4B4C4D4E4FVisually graded dimension lumberMechanically graded dimension lumberVisually graded timbersVisually graded deckingNon-North <strong>American</strong> visually gradeddimension lumberAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-7DESIGNADJUSTMENTFACTORS44.1 General L-84.2 Use of Adjustment Factors L-8Table 4.1 Frequently Used Load Duration Factors, C D .. L-10Table 4.2 Wet Service Factor, C M .................................... L-10Table 4.3 Temperature Factor, C t .................................... L-10Table 4.4 Size Factor, C F ................................................... L-11Table 4.5 Flat Use Factor, C fu ........................................... L-11Table 4.6 Incising Factor, C i ............................................. L-11AMERICAN FOREST & PAPER ASSOCIATION


L-8 DESIGN ADJUSTMENT FACTORS4.1 GeneralTwo approaches may be used to generate memberdesign capacities. With the calculation method, tabulateddesign values are multiplied by adjustment factors andsection properties to obtain member capacities. With thetabulation method, values for a given set of conditionsare presented in the tables.The member selection tables in Chapter 5 include precalculated<strong>ASD</strong> capacity values for reference conditionsof use. For other conditions, the calculation method is usedrequiring the use of tabulated design values (from NDSSupplement), modified appropriately by the adjustmentfactors discussed in this Chapter.The adjustment factors provided in this Chapter arefor applications outside the reference end-use conditionsor for member configuration effects (i.e., flat use). Adjustmentfactors for the effects of load duration, moisture,temperature, size, flat use, and incising are provided inthis Supplement.4.2 Use of Adjustment FactorsTensionThe design capacities for tension members can becomputed by the following equation:T′ = F ′ Awhere:tT′ is the allowable tension design capacity, F t ′ is theallowable tension design value and A is the cross sectionalarea.The allowable tension design value is computed bymultiplying the tabulated design value by a series of adjustmentfactors.The tabulated design values for F t are provided in theNDS Supplement.and:F ′t = FtCDCMCt CiCFCompressionThe design capacity for compression members canbe computed by the following equation:P′ = F ′c Awhere:P′ is the allowable compression design capacity, F c ′is the allowable compression design value and A is thecross sectional area.The allowable compression design value is computedby multiplying the tabulated design value by a series ofadjustment factors.The tabulated design values for F c are provided in theNDS Supplement.and:F ′c = Fc CDCMCt CiCPC D is 1.0for normal (ten years) load duration, or asshown in Table 4.1 otherwiseC D is 1.0for normal (ten years) load duration, or asshown in Table 4.1 otherwiseC M is 1.0for 19% MC and less, or as shown in Table4.2 otherwiseC M is 1.0for 19% MC and less, or as shown in Table4.2 otherwiseC t is 1.0unless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.3 otherwiseC t is 1.0unless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.3 otherwiseC i is 1.0for members that are not incised, or as shownin Table 4.6 otherwiseC i is 1.0for members that are not incised, or as shownin Table 4.6 otherwiseC F is as shown in Table 4.4C F is as shown in Table 4.4AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-9C P is 1.0for fully supported or “zero length” columns,or as given in NDS Section 3.7 otherwiseBending (Moment and Shear)The capacities for bending members can be computedby the following equations:For moment:M′ = F ′b SC r is 1.15for members used in repetitive member applicationsas defined in NDS Section 4.3.9,or 1.00 otherwiseC F is as shown in Table 4.4C L is 1.0C f is 1.0for fully laterally supported beams, or as givenin NDS Section 3.3.3 otherwisefor rectangular members loaded along a principalaxis, or as given in NDS Section 4.3.10otherwise4For shear:For a rectangular bending member of breadth, b, anddepth, d,2F ′v bdV ′ =3where:M′ and V′ are the allowable moment and shear capacities,F b ′ and F v ′ are the allowable bending and sheardesign values, S is the section modulus.The allowable bending and shear design values arecomputed by multiplying the tabulated design values by aseries of adjustment factors.The tabulated design values for F b and F v are providedin the NDS Supplement.C fu is 1.0for members loaded edgewise, or as shownin Table 4.5 for members loaded flatwiseCombined Axial & FlexuralThe design capacities for members under combinedaxial and flexural loading are based upon the equations inNDS Section 3.9. Users are directed to that section and tothe discussion of tension, compression, and bending above.BearingThe required bearing areas of members are computedbased upon the following equations:For end bearing:DESIGN ADJUSTMENT FACTORSF ′b = FbCDCMCt CiCLCFCfuCr CfF v′ = F vcC DC MC iP g′ = F c′where:and:C D is 1.0C M is 1.0C t is 1.0C i is 1.0for normal (ten years) load duration, or asshown in Table 4.1 otherwisefor 19% MC and less, or as shown in Table4.2 otherwiseunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.3 otherwisefor members that are not incised, or as shownin Table 4.6 otherwiseand:F c′ = F cC DC tC D is 1.0C t is 1.0for normal (ten years) load duration, or asshown in Table 4.1 otherwiseunless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.3 otherwiseAMERICAN FOREST & PAPER ASSOCIATION


L-10 DESIGN ADJUSTMENT FACTORSFor side bearing:P⊥′ = Fc′⊥AnTable 4.1Frequently Used LoadDuration Factors, C D1where:and:F′ = F C C Cc⊥c⊥M t bC M is 1.0for 19% MC and less, or as shown in Table4.2 otherwiseLoad Duration C D Typical Design LoadsPermanent 0.9 Dead Load10 years 1.0 Occupancy Live Load2 months 1.15 Snow Load7 days 1.25 Construction Load10 minutes 1.6 Wind/Earthquake LoadImpact 2 2.0 Impact LoadC t is 1.0C i is 1.0C b is 1.0unless temperatures exceed 100°F for extendedperiods of time, or as shown in Table4.3 otherwisefor members that are not incised, or as shownin Table 4.6 otherwisefor all members, with an increase permittedas given in NDS Section 4.3.13.1Load duration factors shall not apply to modulus of elasticity, E, nor tocompression perpendicular to grain design values, F c⊥ , based on adeformation limit.2Load duration factors greater than 1.6 shall not apply to structuralmembers pressure-treated with water-borne preservatives, or fire retardantchemicals. The impact load duration factor shall not apply to connections.Table 4.2Wet Service Factor, C MNominalThickness F b C F # 1150 psi F b C F > 1150 psi F t F c C F # 750 psi F c C F > 750 psi F v F cz E4 in. or less 1.00 0.85 1.00 1.00 0.80 0.97 0.67 0.90over 4 in. 1.00 1.00 1.00 0.91 0.91 1.00 0.67 1.00Table 4.3 Temperature Factor, C t1End-Use Sustained Temperature, °FProperty Moisture Condition 2 100 < T # 125 125 < T # 150F t, EDry 0.9 0.9Wet 0.9 0.9F b, F v, F c, Dry 0.8 0.7and F c⊥Wet 0.7 0.51No adjustment is needed (C t = 1.0) unless temperatures exceed 100°F for extended periods of time. The adjustments are not required in applications wherediurnal temperatures may exceed 100°F from time to time.2Wet and dry service conditions for sawn lumber are specified in NDS Section 4.1.4.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-11Table 4.4 Size Factor, C F1,2,3F bNominal ThicknessGrades Width 2" & 3" 4" F tF c4" & less 1.5 1.5 1.5 1.15Sel. Struct., 5" 1.4 1.4 1.4 1.10No. 1 & Better, 6" 1.3 1.3 1.3 1.10No. 1, No. 2, 8" 1.2 1.3 1.2 1.05No. 3 10" 1.1 1.2 1.1 1.0012" 1.0 1.1 1.0 1.00$ 14" 0.9 1.0 0.9 0.904" & less 1.1 1.1 1.1 1.05Stud 5" & 6" 1.0 1.0 1.0 1.008" & wider Use No. 3 grade base values and size factorsConst., Stand. 4" & less 1.0 1.0 1.0 1.00Utility4" 1.0 1.0 1.0 1.002" & 3" 0.4 — 0.4 0.601For Southern Pine and Mixed Southern Pine dimension lumber (tabulated design values in Table 4B of NDS Supplement), the value of C F is 1.0 for allproperties and all sizes 12" in width and less, except for material 4" in thickness and 8" and wider, where C F is 1.1 for F b . See NDS Supplement for additionalrequirements.2For mechanically graded dimension lumber (both MSR and MEL, tabulated design values in Table 4C of NDS Supplement), the value of C F is 1.0 for allproperties and all sizes.3For members with tabulated design values listed in Table 4D of NDS Supplement, C F for F b is computed as (12/d) 1/9 ≤ 1.0, where d is the depth of the member.C F for other properties is 1.0. See NDS Supplement for additional requirements.4DESIGN ADJUSTMENT FACTORSTable 4.5 Flat Use Factor, C fuTable 4.6 Incising Factor, C iWidthThickness2" and 3" 4"2" & 3" 1.00 —4" 1.10 1.005" 1.10 1.056" 1.15 1.058" 1.15 1.0510" & wider 1.20 1.10Design ValueC iE 0.95F b , F t , F c 0.80F v , F c⊥ 1.00AMERICAN FOREST & PAPER ASSOCIATION


L-12DESIGN ADJUSTMENT FACTORSAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-13MEMBERSELECTIONTABLES55.1 General L-145.2 Selection Table Checklist L-145.3 Capacity Tables L-15Table 5.1 Tension Member Capacity (T'), StructuralLumber ............................................................... L-16Table 5.2 Wall Stud (Axial Compression Only) Capacity(P'), Structural Lumber ................................... L-17Table 5.3 Column Capacity (P', P' x , P' y ), Timbers ............ L-18Table 5.4 Bending Member (Joist) Capacity(M', C r M', V', and EI), Structural Lumber ... L-21Table 5.5 Bending Member (Beam) Capacity(M', V', and EI), Timbers .................................. L-22AMERICAN FOREST & PAPER ASSOCIATION


L-14 MEMBER SELECTION TABLES5.1 GeneralMember selection tables provide allowable designcapacities for many common designs. Before using theselection tables, please refer to the checklist to be certainthat the tables are appropriate for your application.The tables in this Chapter provide design capacity valuesfor structural lumber and timbers. Moment capacity,M′, shear capacity, V′, and bending stiffness, EI, are providedfor strong axis bending. Tension capacity, T′, andcompression capacity, P′, are also tabulated. The applicableload duration factor, C D , is indicated in each of thetables.5.2 Selection Table ChecklistChecklist for all member types:The selection tables provide values for allowable design capacities for common species, grades, and sizes ofmembers. The tabulated values apply to members that satisfy the following conditions:ü “dry” service conditions (C M = 1.0)ü “normal” temperature range (C t = 1.0)ü members not incised (C i = 1.0)In addition, the beam and joist selection tables require the following check:ü fully laterally supported (C L = 1.0)The column selection tables include the appropriate column stability factor, C P , for the stated column lengthbased on the following condition:ü end conditions pin-pinIf any of these conditions are not satisfied the selection tables should NOT be used directly. The designershould refer to the flowchart (Chapter 1) and follow the procedures for manual calculation.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-15For manual calculation, two approaches are possible:1) review the design equations in the chapter and modifythe tabulated values as necessary; or 2) compute designcapacity directly from the tabulated design values and adjustmentfactors.To compute the design capacity for a specific condition,apply the design equations directly. Tabulated designvalues are provided in the NDS Supplement and designadjustment factors are provided in Chapter 4 of thisSupplement.5.3 Capacity TablesCapacity tables are provided as follows:Table 5.1 = tension membersTable 5.2a = studs (axial compression load only), C D = 1.0Table 5.2b = studs (axial compression load only), C D = 1.15Table 5.3 = compression members (columns)Table 5.4 = joistsTable 5.5 = beamsRefer to the selection table checklist to see whetheryour design condition meets the assumptions built intothe tabulated values. Note that the load duration factor,C D , is shown at the top of the table. Thus, the memberdesign capacity can be used directly to select a memberthat meets the design requirement.Examples of the development of the capacity tablevalues are shown in the Appendix.5MEMBER SELECTION TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-16 MEMBER SELECTION TABLESTable 5.1aTension Member Capacity (T'), Structural Lumber2-inch nominal thickness Visually Graded Lumber (1.5 inch dry dressed size), C D= 1.0.4-inch nominal thickness Visually Graded Lumber (3.5 inch dry dressed size), C D= 1.0.Tension Member Capacity, T' (lbs.)Visually Graded LumberWidth 2" nominal thickness 4" nominal thicknessNominal Actual Select SelectSpecies in. in. Structural No. 1 No. 2 No.3 Structural No. 1 No. 24 3.5 7,870 5,310 4,520 2,550 18,300 12,400 10,5006 5.5 10,700 7,230 6,160 3,480 25,000 16,800 14,300Douglas Fir-Larch 8 7.25 13,000 8,000 7,500 4,240 30,400 20,500 17,50010 9.25 15,260 10,300 8,770 4,960 35,600 24,000 20,40012 11.25 16,800 11,900 9,700 5,480 39,300 26,500 22,6004 3.5 7,280 4,920 4,130 2,360 16,900 11,400 9,6406 5.5 9,900 6,700 5,630 3,210 23,100 15,600 13,100Hem-Fir 8 7.25 12,000 8,150 6,850 3,910 28,100 19,000 15,90010 9.25 14,100 9,530 8,010 4,570 32,900 22,200 18,60012 11.25 15,600 10,500 8,850 5,060 36,400 24,600 20,6004 3.5 8,400 5,510 4,330 2,490 19,600 12,800 10,1006 5.5 11,500 7,420 5,980 3,500 26,900 17,300 13,900Southern Pine 8 7.25 14,100 8,970 7,060 4,350 32,900 20,900 16,40010 9.25 15,200 10,000 9,280 4,500 35,600 23,400 18,60012 11.25 17,700 11,300 9,280 5,480 41,300 26,500 21,6004 3.5 5,510 3,540 3,540 1,960 12,800 8,260 8,2606 5.5 7,510 4,820 4,280 2,680 17,500 11,200 11,200Spruce-Pine-Fir 8 7.25 9,130 5,870 5,870 3,260 21,300 13,700 13,70010 9.25 10,600 6,860 6,860 3,810 24,900 16,000 16,00012 11.25 11,800 7,590 7,590 4,210 27,500 17,700 17,7002" nominal thickness 4" nominal thicknessConstruction Standard Uitility Stud Construction Standard StudDouglas Fir-Larch 4 3.5 3,410 1,960 919 2,590 7,960 4,590 6,060Hem-Fir 4 3.5 3,150 1,700 788 2,310 7,350 3,980 5,390Southern Pine 4 3.5 3,280 1,830 919 2,490 7,560 4,280 5,810Spruce-Pine-Fir 4 3.5 2,620 1,440 656 2,020 6,120 3,360 4,710Table 5.1bTension Member Capacity (T'), Structural Lumber2-inch nominal thickness MSR Lumber (1.5 inch dry dressed size), C D= 1.0.Tension Member Capacity, T' (lbs.)WidthMachine Stress Rated LumberNominal Actual 2" nominal thicknessSpecies in. in. 1200f-1.2E 1350f-1.3E 1450f-1.3E 1650f-1.5E 2100f-1.8E 2250f-1.9E 2400f-2.0E4 3.5 3,150 3,938 4,200 5,355 8,269 9,188 10,1066 5.5 4,950 6,188 6,600 8,415 12,994 14,438 15,881All Species 8 7.25 6,525 8,156 8,700 11,093 17,128 19,031 20,93410 9.25 8,325 10,406 11,100 14,153 21,853 24,281 26,70912 11.25 10,125 12,656 13,500 17,213 26,578 29,531 32,484AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-17Table 5.2aWall Stud (Axial Compression Only) Capacity (P'), Structural Lumber2-inch nominal thickness Visually Graded Lumber (1.5 inch dry dressed size), C D= 1.0.Axial Compression Load Capacity, P' (lbs.)Select Structural No. 1 No. 2 Stud2 x 4 2 x 6 2 x 4 2 x 6 2 x 4 2 x 6 2 x 4 2 x 6Stud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft.) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 8,390 14,500 7,430 12,800 6,770 11,600 4,210 6,7806 5,670 13,100 5,050 11,600 4,690 10,500 3,400 6,4208 3,590 10,700 3,210 9,470 3,000 8,710 2,420 5,80010 2,400 8,090 2,140 7,210 2,010 6,700 1,690 4,930Hem-Fir 4 7,300 12,800 6,650 11,500 6,200 11,000 3,910 6,3506 4,840 11,400 4,490 10,400 4,000 9,710 3,070 5,9708 3,040 9,190 2,840 8,440 2,490 7,690 2,120 5,32010 2,030 6,900 1,890 6,400 1,650 5,700 1,460 4,430Southern Pine 4 8,670 15,400 7,810 13,600 7,080 12,400 4,540 7,3506 5,560 13,500 5,160 12,100 4,780 11,100 3,570 6,9108 3,450 10,700 3,240 9,750 3,020 9,050 2,470 6,17010 2,290 7,900 2,150 7,330 2,020 6,840 1,710 5,150Spruce-Pine-Fir 4 6,830 11,900 5,800 9,890 5,800 9,890 3,600 5,7806 4,530 10,600 4,060 8,990 4,060 8,990 2,910 5,4808 2,850 8,590 2,610 7,510 2,610 7,510 2,070 4,96010 1,900 6,460 1,760 5,820 1,760 5,820 1,440 4,220Table 5.2bWall Stud (Axial Compression Only) Capacity (P'), Structural Lumber2-inch nominal thickness Visually Graded Lumber (1.5 inch dry dressed size), C D= 1.15.5MEMBER SELECTION TABLESAxial Compression Load Capacity, P' (lbs.)Select Structural No. 1 No. 2 Stud2 x 4 2 x 6 2 x 4 2 x 6 2 x 4 2 x 6 2 x 4 2 x 6Stud 4" width 6" width 4" width 6" width 4" width 6" width 4" width 6" widthSpecies Length (ft.) (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5") (=3.5") (=5.5")Douglas Fir-Larch 4 9,240 16,500 8,190 14,600 7,480 13,200 4,740 7,7506 5,900 14,500 5,260 12,800 4,890 11,700 3,660 7,2508 3,650 11,400 3,260 10,100 3,050 9,330 2,500 6,41010 2,420 8,380 2,160 7,470 2,030 6,960 1,720 5,280Hem-Fir 4 8,020 14,500 7,320 13,100 6,780 12,500 4,390 7,2606 5,020 12,600 4,660 11,500 4,140 10,700 3,270 6,7308 3,090 9,760 2,880 9,000 2,530 8,130 2,180 5,84010 2,040 7,130 1,910 6,620 1,670 5,870 1,480 4,700Southern Pine 4 9,470 17,500 8,570 15,400 7,790 14,100 5,100 8,4006 5,750 14,900 5,350 13,400 4,970 12,300 3,810 7,8008 3,500 11,300 3,290 10,400 3,080 9,640 2,540 6,78010 2,310 8,140 2,170 7,570 2,040 7,080 1,730 5,470Spruce-Pine-Fir 4 7,500 13,600 6,430 11,300 6,430 11,300 4,050 6,6106 4,700 11,800 4,250 10,000 4,250 10,000 3,130 6,1908 2,890 9,140 2,660 8,070 2,660 8,070 2,140 5,48010 1,920 6,680 1,770 6,050 1,770 6,050 1,470 4,510AMERICAN FOREST & PAPER ASSOCIATION


L-18 MEMBER SELECTION TABLESTable 5.3aColumn Capacity 1,2 (P', P' x , P' y ), Timbers6-inch nominal thickness (5.5 inch dry dressed size), C D= 1.0.Column Capacity (lbs.)Select Structural No. 1 No. 26 x 6 6 x 8 6 x 6 6 x 86 x 6 6 x 86" width 8" width 6" width 8" width 6" width 8" widthColumn (=5.5") (=7.5") (=5.5") (=7.5") (=5.5") (=7.5")Species Length (ft.) P' P'x P'y P' P'x P'y P' P'x P'y2 34,500 47,200 47,000 30,000 41,100 40,900 21,000 28,800 28,7004 33,400 46,400 45,500 29,200 40,500 39,800 20,500 28,400 28,0006 31,200 45,000 42,500 27,600 39,500 37,600 19,600 27,800 26,700Douglas Fir- 8 27,400 42,800 37,300 24,800 37,800 33,900 18,000 26,900 24,600Larch 10 22,400 39,300 30,500 21,000 35,300 28,600 15,700 25,400 21,40012 17,600 34,700 24,000 16,900 31,900 23,000 13,000 23,400 17,80014 13,800 29,600 18,800 13,400 27,900 18,300 10,500 21,000 14,40016 10,900 24,800 14,900 10,700 23,800 14,600 8,530 18,300 11,6002 29,200 40,000 39,800 25,500 34,900 34,800 17,300 23,600 23,6004 28,200 39,300 38,500 24,800 34,400 33,800 16,900 23,400 23,0006 26,300 38,100 35,800 23,300 33,500 31,800 16,200 22,900 22,0008 22,900 36,000 31,200 20,800 32,000 28,400 14,900 22,100 20,300Hem-Fir 10 18,500 33,000 25,300 17,400 29,700 23,800 13,100 21,000 17,80012 14,400 28,900 19,700 13,900 26,700 19,000 10,900 19,400 14,90014 11,300 24,500 15,300 11,000 23,100 15,000 8,860 17,400 12,10016 8,910 20,400 12,100 8,770 19,600 12,000 7,180 15,300 9,7902 28,500 39,000 38,900 24,800 33,900 33,800 15,800 21,600 21,5004 27,700 38,500 37,800 24,200 33,500 33,000 15,500 21,400 21,1006 26,200 37,500 35,700 23,100 32,800 31,500 15,000 21,000 20,400Southern 8 23,500 35,900 32,100 21,200 31,600 28,800 14,100 20,500 19,200Pine 10 19,800 33,500 27,000 18,400 29,900 25,000 12,700 19,600 17,30012 15,900 30,200 21,700 15,200 27,500 20,700 11,000 18,500 15,00014 12,600 26,300 17,200 12,200 24,500 16,700 9,170 17,000 12,50016 10,100 22,400 13,700 9,880 21,300 13,500 7,560 15,300 10,3002 24,000 32,900 32,700 21,000 28,800 28,700 15,000 20,600 20,5004 23,400 32,400 31,900 20,500 28,400 28,000 14,700 20,300 20,1006 22,100 31,600 30,100 19,600 27,800 26,700 14,100 19,900 19,200Spruce- 8 20,000 30,300 27,200 18,000 26,900 24,600 13,100 19,300 17,800Pine-Fir 10 16,900 28,300 23,100 15,700 25,400 21,400 11,600 18,400 15,80012 13,700 25,700 18,600 13,000 23,400 17,800 9,730 17,100 13,30014 10,900 22,500 14,800 10,500 21,000 14,400 7,960 15,400 10,90016 8,700 19,200 11,900 8,530 18,300 11,600 6,480 13,600 8,8001P' x values are based on a column continuously braced against weak axis buckling.2P' y values are based on a column continuously braced against strong axis buckling.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-19Table 5.3bColumn Capacity 1,2 (P', P' x , P' y ), Timbers8-inch nominal thickness (7.5 inch dry dressed size), C D= 1.0.Column Capacity (lbs.)Select Structural No. 1 No. 28 x 8 8 x 10 8 x 8 8 x 10 8 x 88 x 108" width 10" width 8" width 10" width 8" width 10" widthColumn (=7.5") (=9.5") (=7.5") (=9.5") (=7.5") (=9.5")Species Length (ft.) P' P'x P'y P' P'x P'y P' P'x P'y2 64,400 81,700 81,500 56,000 71,100 70,900 39,200 49,800 49,7004 63,300 80,900 80,200 55,200 70,500 70,000 38,800 49,400 49,1006 61,400 79,500 77,800 53,800 69,400 68,200 37,900 48,800 48,100Douglas Fir- 8 58,300 77,300 73,900 51,600 67,800 65,300 36,600 47,800 46,400Larch 10 53,600 74,100 67,900 48,200 65,500 61,000 34,700 46,500 43,90012 47,400 69,700 60,000 43,500 62,300 55,100 32,000 44,600 40,50014 40,400 63,900 51,200 38,000 58,100 48,100 28,600 42,200 36,<strong>2001</strong>6 33,800 57,200 42,800 32,400 53,000 41,000 24,900 39,200 31,5002 54,600 69,200 69,100 47,600 60,400 60,300 32,200 40,900 40,8004 53,600 68,500 68,000 46,900 59,900 59,400 31,900 40,600 40,4006 51,900 67,300 65,800 45,600 58,900 57,800 31,200 40,100 39,5008 49,100 65,300 62,200 43,600 57,500 55,200 30,200 39,300 38,200Hem-Fir 10 44,900 62,500 56,900 40,500 55,400 51,300 28,600 38,300 36,<strong>2001</strong>2 39,400 58,500 49,900 36,400 52,500 46,100 26,500 36,800 33,50014 33,400 53,400 42,300 31,500 48,700 39,900 23,800 34,900 30,10016 27,800 47,500 35,200 26,700 44,200 33,800 20,800 32,500 26,4002 53,200 67,500 67,400 46,200 58,600 58,600 29,400 37,300 37,3004 52,500 66,900 66,500 45,700 58,200 57,900 29,200 37,100 36,9006 51,100 65,900 64,700 44,700 57,500 56,600 28,700 36,700 36,300Southern 8 48,900 64,400 61,900 43,100 56,300 54,600 27,900 36,200 35,300Pine 10 45,600 62,100 57,800 40,700 54,700 51,600 26,800 35,400 33,90012 41,100 59,000 52,100 37,400 52,500 47,400 25,200 34,400 32,00014 35,800 55,000 45,400 33,400 49,500 42,300 23,200 33,000 29,40016 30,500 50,100 38,600 29,000 45,900 36,700 20,900 31,200 26,4002 44,800 56,800 56,800 39,200 49,800 49,700 28,000 35,500 35,5004 44,200 56,400 56,000 38,800 49,400 49,100 27,700 35,300 35,1006 43,100 55,600 54,600 37,900 48,800 48,100 27,200 34,900 34,400Spruce- 8 41,300 54,300 52,300 36,600 47,800 46,400 26,300 34,300 33,300Pine-Fir 10 38,600 52,500 49,000 34,700 46,500 43,900 25,100 33,400 31,70012 35,000 50,000 44,300 32,000 44,600 40,500 23,300 32,200 29,50014 30,600 46,700 38,800 28,600 42,200 36,200 21,100 30,600 26,70016 26,200 42,700 33,200 24,900 39,200 31,500 18,600 28,700 23,5005MEMBER SELECTION TABLES1P' x values are based on a column continuously braced against weak axis buckling.2P' y values are based on a column continuously braced against strong axis buckling.AMERICAN FOREST & PAPER ASSOCIATION


L-20 MEMBER SELECTION TABLESTable 5.3cColumn Capacity 1,2 (P', P' x , P' y ), Timbers10-inch nominal thickness (9.5 inch dry dressed size), C D= 1.0.Column Capacity (lbs.)Select Structural No. 1 No. 210 x 10 10 x 12 10 x 10 10 x 12 10 x 10 10 x 1210" width 12" width 10" width 12" width 10" width 12" widthColumn (=9.5") (=11.5") (=9.5") (=11.5") (=9.5") (=11.5")Species Length (ft.) P' P'x P'y P' P'x P'y P' P'x P'y2 103,000 125,000 125,000 90,000 109,000 109,000 63,000 76,400 76,3004 102,000 125,000 124,000 89,300 108,000 108,000 62,600 76,000 75,8006 101,000 123,000 122,000 87,900 107,000 106,000 61,800 75,400 74,800Douglas Fir- 8 97,900 121,000 119,000 85,900 106,000 104,000 60,600 74,400 73,300Larch 10 93,900 118,000 114,000 83,000 104,000 100,000 58,900 73,100 71,30012 88,300 114,000 107,000 78,900 101,000 95,500 56,600 71,400 68,50014 81,000 108,000 98,000 73,600 96,700 89,100 53,500 69,100 64,70016 72,500 102,000 87,700 67,100 91,800 81,200 49,700 66,300 60,1002 87,700 106,000 106,000 76,500 92,700 92,600 51,800 62,700 62,7004 86,800 106,000 105,000 75,800 92,100 91,800 51,400 62,400 62,2006 85,200 104,000 103,000 74,600 91,200 90,400 50,800 61,900 61,5008 82,800 102,000 100,000 72,800 89,800 88,100 49,800 61,200 60,300Hem-Fir 10 79,100 99,700 95,800 70,200 87,800 84,900 48,500 60,100 58,70012 74,100 96,000 89,700 66,500 85,100 80,500 46,600 58,800 56,50014 67,600 91,200 81,900 61,700 81,600 74,700 44,200 57,000 53,50016 60,200 85,100 72,800 56,000 77,100 67,800 41,200 54,800 49,9002 85,500 104,000 104,000 74,300 90,000 89,900 47,300 57,300 57,2004 84,800 103,000 103,000 73,700 89,500 89,300 47,000 57,100 56,9006 83,500 102,000 101,000 72,800 88,800 88,100 46,500 56,700 56,300Southern 8 81,500 100,000 98,700 71,300 87,600 86,400 45,800 56,100 55,500Pine 10 78,700 98,300 95,300 69,300 86,100 83,900 44,800 55,400 54,30012 74,800 95,400 90,500 66,500 84,000 80,400 43,500 54,300 52,70014 69,600 91,700 84,300 62,700 81,300 75,900 41,800 53,100 50,60016 63,400 86,900 76,800 58,100 77,800 70,300 39,600 51,500 47,9002 72,000 87,200 87,200 63,000 76,400 76,300 45,000 54,500 54,5004 71,400 86,800 86,500 62,600 76,000 75,800 44,700 54,300 54,1006 70,400 85,900 85,200 61,800 75,400 74,800 44,200 53,900 53,500Spruce- 8 68,800 84,700 83,200 60,600 74,400 73,300 43,400 53,300 52,600Pine-Fir 10 66,500 82,900 80,500 58,900 73,100 71,300 42,300 52,400 51,<strong>2001</strong>2 63,300 80,600 76,600 56,600 71,400 68,500 40,800 51,300 49,40014 59,100 77,500 71,600 53,500 69,100 64,700 38,800 49,800 47,00016 54,000 73,700 65,400 49,700 66,300 60,100 36,300 48,000 44,0001P' x values are based on a column continuously braced against weak axis buckling.2P' y values are based on a column continuously braced against strong axis buckling.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-21Table 5.4aBending Member (Joist) Capacity (M', C r M', V', and EI ), StructuralLumber2-inch nominal thickness (1.5 inch dry dressed size), C D= 1.0, C L= 1.0.Select Structural No. 2Size (b x d) M' C rM' V' x 10 6 EI M' C rM' V' x 10 6 EINominal Actual (Single) (Repetitive) (Repetitive)Species (in.) (in.) lb.-in. lb.-in. lbs. lb.-in. 2 lb.-in. lb.-in. lbs. lb.-in. 22 x 4 1.5 x 3.5 6,890 7,920 630 10 4,130 4,750 630 92 x 6 1.5 x 5.5 14,700 17,000 990 40 8,850 10,200 990 33Douglas Fir-Larch 2 x 8 1.5 x 7.25 23,700 27,200 1,310 91 14,200 16,300 1,310 762 x 10 1.5 x 9.25 35,300 40,600 1,670 188 21,200 24,400 1,670 1582 x 12 1.5 x 11.25 47,500 54,600 2,030 338 28,500 32,700 2,030 2852 x 4 1.5 x 3.5 6,430 7,400 525 9 3,900 4,490 525 72 x 6 1.5 x 5.5 13,800 15,900 825 33 8,360 9,610 825 27Hem-Fir 2 x 8 1.5 x 7.25 22,100 25,400 1,090 76 13,400 15,400 1,090 622 x 10 1.5 x 9.25 32,900 37,900 1,390 158 20,000 23,000 1,390 1292 x 12 1.5 x 11.25 44,300 50,900 1,690 285 26,900 30,900 1,690 2312 x 4 1.5 x 3.5 8,730 10,000 613 10 4,590 5,280 613 92 x 6 1.5 x 5.5 19,300 22,200 963 37 9,450 10,900 963 33Southern Pine 2 x 8 1.5 x 7.25 30,200 34,800 1,270 86 15,800 18,100 1,270 762 x 10 1.5 x 9.25 43,900 50,400 1,620 178 22,500 25,800 1,620 1582 x 12 1.5 x 11.25 60,100 69,100 1,970 320 30,800 35,500 1,970 2852 x 4 1.5 x 3.5 5,740 6,600 473 8 4,020 4,620 473 82 x 6 1.5 x 5.5 12,300 14,100 743 31 8,600 9,890 743 29Spruce-Pine-Fir 2 x 8 1.5 x 7.25 19,700 22,700 979 71 13,800 15,900 979 672 x 10 1.5 x 9.25 29,400 33,800 1,250 148 20,600 23,700 1,250 1392 x 12 1.5 x 11.25 39,600 45,500 1,520 267 27,700 31,800 1,520 249Table 5.4bBending Member (Joist) Capacity (M', C r M', V', and EI ), StructuralLumber4-inch nominal thickness (3.5 inch dry dressed size), C D= 1.0, C L= 1.0.5MEMBER SELECTION TABLESSelect Structural No. 2Size (b x d) M' C rM' V' x 10 6 EI M' C rM' V' x 10 6 EINominal Actual (Single) (Repetitive) (Repetitive)Species (in.) (in.) lb.-in. lb.-in. lbs. lb.-in. 2 lb.-in. lb.-in. lbs. lb.-in. 24 x 4 3.5 x 3.5 16,100 18,500 1,470 24 9,650 11,100 1,470 204 x 6 3.5 x 5.5 34,400 39,600 2,310 92 20,600 23,700 2,310 78Douglas Fir-Larch 4 x 8 3.5 x 7.25 59,800 68,800 3,050 211 35,900 41,300 3,050 1784 x 10 3.5 x 9.25 89,800 103,000 3,890 439 53,900 62,000 3,890 3704 x 12 3.5 x 11.25 122,000 140,000 4,730 789 73,100 84,100 4,730 6644 x 4 3.5 x 3.5 15,000 17,300 1,230 20 9,110 10,500 1,230 164 x 6 3.5 x 5.5 32,100 36,900 1,930 78 19,500 22,400 1,930 63Hem-Fir 4 x 8 3.5 x 7.25 55,800 64,200 2,540 178 33,900 39,000 2,540 1444 x 10 3.5 x 9.25 83,900 96,400 3,240 369 50,900 58,500 3,240 3004 x 12 3.5 x 11.25 114,000 131,000 3,940 664 69,000 79,400 3,940 5404 x 4 3.5 x 3.5 20,400 23,400 1,430 23 10,700 12,300 1,430 204 x 6 3.5 x 5.5 45,000 51,700 2,250 87 22,100 25,400 2,250 78Southern Pine 4 x 8 3.5 x 7.25 77,600 89,200 2,960 200 40,500 46,600 2,960 1784 x 10 3.5 x 9.25 113,000 129,000 3,780 416 57,600 66,300 3,780 3694 x 12 3.5 x 11.25 154,000 177,000 4,590 748 79,200 91,100 4,590 6644 x 4 3.5 x 3.5 13,400 15,400 1,100 19 9,380 10,800 1,100 184 x 6 3.5 x 5.5 28,700 33,000 1,730 73 20,100 23,100 1,730 68Spruce-Pine-Fir 4 x 8 3.5 x 7.25 49,800 57,300 2,280 167 34,900 40,100 2,280 1564 x 10 3.5 x 9.25 74,900 86,100 2,910 346 52,400 60,300 2,910 3234 x 12 3.5 x 11.25 102,000 117,000 3,540 623 71,100 81,700 3,540 581AMERICAN FOREST & PAPER ASSOCIATION


L-22 MEMBER SELECTION TABLESTable 5.5aBending Member (Beam) Capacity (M', V', and EI ), Timbers6-inch nominal thickness (5.5 inch dry dressed size), C D= 1.0, C L= 1.0.Select Structural No. 2Size (b x d) M' V' x 1000 EI M' V' x 10 6 EINominal ActualSpecies (in.) (in.) lb.-in. lbs. lb.-in. 2 lb.-in. lbs. lb.-in. 26 x 6 5.5 x 5.5 41,600 3,430 122 20,800 3,430 996 x 8 5.5 x 7.5 77,300 4,680 309 38,700 4,680 251Douglas Fir-Larch 6 x 10 5.5 x 9.5 132,000 5,920 629 72,400 5,920 5116 x 12 5.5 x 11.5 194,000 7,170 1,120 106,000 7,170 9066 x 14 5.5 x 13.5 264,000 8,420 1,800 144,000 8,420 1,4706 x 16 5.5 x 15.5 342,000 9,660 2,730 187,000 9,660 2,2206 x 6 5.5 x 5.5 33,300 2,820 99 15,900 2,820 846 x 8 5.5 x 7.5 61,900 3,850 251 29,600 3,850 213Hem-Fir 6 x 10 5.5 x 9.5 10,800 4,880 511 55,800 4,880 4326 x 12 5.5 x 11.5 15,800 5,900 906 81,800 5,900 7676 x 14 5.5 x 13.5 214,000 6,930 1,470 111,000 6,930 1,2406 x 16 5.5 x 15.5 278,000 7,960 2,220 144,000 7,960 1,8806 x 6 5.5 x 5.5 41,600 3,330 114 23,600 3,330 92Southern Pine 6 x 8 5.5 x 7.5 77,300 4,540 290 43,800 4,540 2326 x 10 5.5 x 9.5 124,000 5,750 589 70,300 5,750 4726 x 6 5.5 x 5.5 29,100 2,520 99 13,900 2,520 76Spruce-Pine-Fir 6 x 8 5.5 x 7.5 54,100 3,440 251 25,800 3,440 1936 x 10 5.5 x 9.5 91,000 4,350 511 49,600 4,350 393Table 5.5bBending Member (Beam) Capacity (M', V', and EI ), Timbers8-inch nominal thickness (7.5 inch dry dressed size), C D= 1.0, C L= 1.0.Select Structural No. 2Size (b x d) M' V' x 1000 EI M' V' x 10 6 EINominal ActualSpecies (in.) (in.) lb.-in. lbs. lb.-in. 2 lb.-in. lbs. lb.-in. 28 x 8 7.5 x 7.5 105,000 6,380 422 52,700 6,380 3438 x 10 7.5 x 9.5 169,000 8,080 857 84,600 8,080 697Douglas Fir-Larch 8 x 12 7.5 x 11.5 265,000 9,780 1,520 145,000 9,780 1,2408 x 14 7.5 x 13.5 360,000 11,500 2,460 197,000 11,500 2,0008 x 16 7.5 x 15.5 467,000 13,200 3,720 255,000 13,200 3,0308 x 8 7.5 x 7.5 84,400 5,250 343 40,400 5,250 2908 x 10 7.5 x 9.5 135,000 6,650 697 64,900 6,650 589Hem-Fir 8 x 12 7.5 x 11.5 215,000 8,050 1,240 112,000 8,050 1,0508 x 14 7.5 x 13.5 292,000 9,450 2,000 152,000 9,450 1,6908 x 16 7.5 x 15.5 379,000 10,900 3,030 197,000 10,900 2,560Southern Pine 8 x 8 7.5 x 7.5 105,000 6,190 396 59,800 6,190 3168 x 10 7.5 x 9.5 169,000 7,840 804 95,900 7,840 643Spruce-Pine-Fir 8 x 8 7.5 x 7.5 73,800 4,690 343 35,200 4,690 2648 x 10 7.5 x 9.5 118,000 5,940 697 56,400 5,940 536AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-23Table 5.5cBending Member (Beam) Capacity (M', V', and EI ), Timbers10-inch nominal thickness (9.5 inch dry dressed size), C D= 1.0, C L= 1.0.Select Structural No. 2Size (b x d) M' V' x 1000 EI M' V' x 10 6 EINominal ActualSpecies (in.) (in.) lb.-in. lbs. lb.-in. 2 lb.-in. lbs. lb.-in. 210 x 10 9.5 x 9.5 214,000 10,200 1,090 107,000 10,200 88210 x 12 9.5 x 11.5 314,000 12,400 1,930 157,000 12,400 1,570Douglas Fir-Larch 10 x 14 9.5 x 13.5 456,000 14,500 3,120 249,000 14,500 2,53010 x 16 9.5 x 15.5 592,000 16,700 4,720 324,000 16,700 3,83010 x 18 9.5 x 17.5 744,000 18,800 6,790 407,000 18,800 5,52010 x 20 9.5 x 19.5 913,000 21,000 9,390 499,000 21,000 7,63010 x 10 9.5 x 9.5 171,000 8,420 882 82,200 8,420 74710 x 12 9.5 x 11.5 251,000 10,200 1,570 120,000 10,200 1,320Hem-Fir 10 x 14 9.5 x 13.5 370,000 12,000 2,530 192,000 12,000 2,14010 x 16 9.5 x 15.5 418,000 13,700 3,830 250,000 13,700 3,24010 x 18 9.5 x 17.5 604,000 15,500 5,520 314,000 15,500 4,67010 x 20 9.5 x 19.5 742,000 17,300 7,630 385,000 17,300 6,46010 x 10 9.5 x 9.5 214,000 9,930 1,020 121,000 9,930 815Southern Pine 10 x 12 9.5 x 11.5 314,000 12,000 1,810 178,000 12,000 1,44010 x 14 9.5 x 13.5 427,000 14,100 2,920 242,000 14,100 2,34010 x 10 9.5 x 9.5 150,000 7,520 882 71,000 7,520 679Spruce-Pine-Fir 10 x 12 9.5 x 11.5 220,000 9,100 1,570 105,000 9,100 1,<strong>2001</strong>0 x 14 9.5 x 13.5 313,000 10,700 2,530 171,000 10,700 1,950Table 5.5dBending Member (Beam) Capacity (M', V', and EI ), TimbersNominal Dimensions > 10 inch (actual = nominal - 1/2 inch), C D= 1.0, C L= 1.0.5MEMBER SELECTION TABLESSelect Structural No. 2Size (b x d) M' V' x 1000 EI M' V' x 10 6 EINominal ActualSpecies (in.) (in.) lb.-in. lbs. lb.-in. 2 lb.-in. lbs. lb.-in. 212 x 12 11.5 x 11.5 380,000 15,000 2,330 190,000 15,000 1,89014 x 14 13.5 x 13.5 607,000 20,700 4,430 304,000 20,700 3,600Douglas Fir-Larch 16 x 16 15.5 x 15.5 905,000 27,200 7,700 452,000 27,200 6,25018 x 18 17.5 x 17.5 1,280,000 34,700 12,500 642,000 34,700 10,20020 x 20 19.5 x 19.5 1,760,000 43,100 19,300 878,000 43,100 15,70012 x 12 11.5 x 11.5 304,000 12,300 1,890 146,000 12,300 1,60014 x 14 13.5 x 13.5 486,000 17,000 3,600 233,000 17,000 3,040Hem-Fir 16 x 16 15.5 x 15.5 724,000 22,400 6,250 347,000 22,400 5,29018 x 18 17.5 x 17.5 1,030,000 28,600 10,200 493,000 28,600 8,60020 x 20 19.5 x 19.5 1,410,000 35,500 15,700 673,000 35,500 13,300Southern Pine 12 x 12 11.5 x 11.5 380,000 14,500 2,190 215,000 14,500 1,75014 x 14 13.5 x 13.5 607,000 20,000 4,150 344,000 20,000 3,320Spruce-Pine-Fir 12 x 12 11.5 x 11.5 266,000 11,000 1,890 127,000 11,000 1,46014 x 14 13.5 x 13.5 425,000 15,200 3,600 202,000 15,200 2,770AMERICAN FOREST & PAPER ASSOCIATION


L-24MEMBER SELECTION TABLESAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-25OTHERCONSIDERATIONS6.1 General L-266.2 Dimensional Changes L-266.3 Fire Assemblies L-276Table 6.1 Coefficient of Moisture Expansion, e ME ,and Fiber Saturation Point, (FSP) for Solid<strong>Wood</strong>s.................................................................. L-27Table 6.2 One-Hour Fire-Rated Loadbearing<strong>Wood</strong>-Frame Wall Assemblies .......................... L-28Table 6.3 Two-Hour Fire-Rated Loadbearing<strong>Wood</strong>-Frame Wall Assemblies .......................... L-28Table 6.4 One-Hour Fire-Rated <strong>Wood</strong> Floor/CeilingAssemblies .......................................................... L-29Table 6.5 Two-Hour Fire-Rated <strong>Wood</strong> Floor/CeilingAssemblies .......................................................... L-29AMERICAN FOREST & PAPER ASSOCIATION


L-26 OTHER CONSIDERATIONS6.1 GeneralWith proper detailing and protection, structural lumbercan perform well in a variety of environments. Onekey to proper detailing is planning for the natural shrinkageand swelling of wood members as they are subjectedto various drying and wetting cycles. While moisturechanges have the largest impact on lumber dimensions,some designs must also check the effects of temperatureon dimensions as well.The table in Section 6.2 is extracted from more precisescientific and research reports on these topics. Thecoefficients are conservative (yielding more shrinkage andexpansion than one might expect for most species). Thislevel of information should be adequate for common structuralapplications. Equations are provided at the end ofSection 6.2 for those designers who require more precisecalculations.In addition to designing to accommodate dimensionalchanges and detailing for durability, another significantissue in the planning of wood structures is that of fire performance.6.2 Dimensional ChangesApproximate Moisture and Thermal Dimensional ChangesDescriptionDimensional change due to moisture content change 1Dimensional change due to temperature change 2Radial or Tangential Direction1% change in dimension per 4% change in MC. 20 x 10 -6 in./in. per degree Ft1Corresponding longitudinal direction shrinkage/expansion is about 1 to 5 percent of that in radial and tangential directions.2Corresponding longitudinal direction coefficient is about one-tenth as large as radial and tangential.Equations for Computing Moistureand Thermal Shrinkage/Expansionwhere:M o= initial moisture content % (M o≤ FSP)M = new moisture content % (M ≤ FSP)Due to Moisture ChangesFor more precise computation of dimensional changesdue to changes in moisture, the change in radial (R), tangential(T), and volumetric (V) dimensions due to changesin moisture content can be computed as:X = X ( ∆MC ) ewhere:oX 0ME= initial dimension or volumeX = new dimension or volume∆MC = moisture content change (%)FSP = fiber saturation pointValues for e ME and FSP are shown in Table 6.1.Due to Temperature ChangesFor more precise computation of dimensional changesdue to changes in temperature, the shrinkage/expansionof solid wood including lumber and timbers can be computedas:X = X ( ∆T) ewhere:oTEand:e ME= coefficient of moisture expansion: linear(in./in./%MC), or volumetric (in. 3 /in. 3 /%MC)X 0= reference dimension at T 0X = computed dimension at TT 0= reference temperature (°F)∆MC = M − M oAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-27and:where:e TE∆T = T −T oT = temperature at which the new dimension is-60°F ≤ T o≤ 130°Fcomputed (°F)= coefficient of thermal expansion (in./in./°F)The coefficient of thermal expansion of oven-drywood parallel to grain ranges from about 1.7x10 -6 to2.5x10 -6 per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to wood density.These coefficients are about five to ten times greater thanthe parallel-to-the-grain coefficients and are given as:Radial:−6( ) ⎤( )eTE= ⎡⎣18 G + 5.5⎦10 in./in./ ° FTangential:−6( ) ⎤( )eTE= ⎡⎣18 G + 10.2⎦10 in./in./ ° Fwhere:G is the tabulated specific gravity for the species.6Table 6.1Coefficient of Moisture Expansion, e ME, and Fiber Saturation Point,(FSP) for Solid <strong>Wood</strong>sRadial Tangential Volumetric FSPSpecies (in./in./%) (in./in./%) (in. 3 /in. 3 /%) (%)Alaska Cedar 0.0010 0.0021 0.0033 28Douglas Fir-Larch 0.0018 0.0033 0.0050 28Englemann Spruce 0.0013 0.0024 0.0037 30Redwood 0.0012 0.0022 0.0032 22Red Oak 0.0017 0.0038 0.0063 30Southern Pine 0.0020 0.0030 0.0047 26Western Hemlock 0.0015 0.0028 0.0044 28Yellow Poplar 0.0015 0.0026 0.0041 31e MEOTHER CONSIDERATIONS6.3 Fire AssembliesBuilding Code RequirementsFor occupancies such as stores, apartments, offices,and other commercial and industrial uses, building codescommonly require floor/ceiling and wall assemblies to befire-resistance rated in accordance with standard fire tests.Depending on the application, wall assemblies mayneed to be rated either from one side or both sides. Forspecific exterior wall applications, the 2000 InternationalBuilding Code (IBC), the 1999 National Building Code(NBC), and the 1999 Standard Building Code (SBC) allowwood-frame, wood-sided walls to be tested for exposureto fire from the inside only. Rating for both interiorand exterior exposure is only required when the wall hasa fire separation distance of less than 5 feet. Code recog-nition of one- and two-hour wood-frame wall systems isalso predicated on successful fire and hose stream testingin accordance with ASTM E119, Standard Test Methodsfor Fire Tests of Building Construction Materials.Fire Tested AssembliesFire-rated wood-frame assemblies can be found in anumber of sources including the IBC, Underwriters Laboratories(UL) Fire Resistance Directory, Intertek TestingServices’ Directory of Listed Products, and the GypsumAssociation’s Fire Resistance Design Manual. The <strong>American</strong>Forest & Paper Association (AF&PA) and its membershave tested a number of wood-frame fire-ratedAMERICAN FOREST & PAPER ASSOCIATION


L-28 OTHER CONSIDERATIONSassemblies. Descriptions of these successfully tested assembliesare provided in Tables 6.2 – 6.5.UpdatesAdditional tests are being conducted and the Tableswill be updated periodically. AF&PA’s Design for CodeAcceptance (DCA) No. 3, Fire Rated <strong>Wood</strong> Floor and WallAssemblies incorporates many of these assemblies and isavailable at www.awc.org.Table 6.2One-Hour Fire-Rated Loadbearing <strong>Wood</strong>-Frame Wall AssembliesAssemblies Rated From Both SidesStuds Insulation Sheathing on Both Sides Fasteners Details2x4 @ 16" o.c. 3½" mineral fiber batts 5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 12" o.c. Figure 6.12x6 @ 16" o.c. (none) 5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 7" o.c. Figure 6.22x6 @ 16" o.c. 5½" mineral fiber batts 5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 12" o.c. Figure 6.3Assemblies Rated From One Side (Fire on Interior Only)Studs Insulation Sheathing Fasteners Details2x4 @ 16" o.c. 3½" mineral fiber battsI 5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 12" o.c.E 3/8" wood structural panels (V) 6d common nails @ 6" edges/12" fieldI 5/8" Type X Gypsum Wallboard (V) 6d cement coated box nails @ 7" o.c.4 mil polyethylene2x4 @ 16" o.c. ½" fiberboard (V) 1½" roofing nails @ 3" edges/6" field3½" mineral fiber batts E3/8" hardboard shiplapped panel siding 8d galv. nails @ 4" edges/8" field2x6 @ 16" o.c. 5½" mineral fiber battsI 5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 12" o.c.E 7/16" wood structural panels (V) 6d common nails @ 6" edges/12" fieldH- applied horizontally with vertical joints over studs; I- Interior sheathing; V- applied vertically with vertical joints over studs; E- Exterior sheathingFigure 6.4Figure 6.5Figure 6.6Table 6.3Two-Hour Fire-Rated Loadbearing <strong>Wood</strong>-Frame Wall AssembliesAssemblies Rated From Both SidesStuds Insulation Sheathing on Both Sides Fasteners Details2x6 @ 24" o.c. 5½" mineral fiber battsBF5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 24" o.c.5/8" Type X Gypsum Wallboard (H) 2¼" #6 Type S drywall screws @ 8" o.c.H- applied horizontally with vertical joints over studs; B- Base layer sheathing; F- Face layer sheathingFigure 6.7AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-29Table 6.4One-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling AssembliesJoists Insulation Furring Ceiling Sheathing Floor Sheathing Details2x10 @ 16"5/8" Type X Gypsum Nom. 1" wood flooring or 19/32" T&G plywood*o.c. none Optional F Wallboard or ½" Type Xgypsum wallboardunderlayment (single floor); building paper, andNom. 1" T&G boards or 15/32" plywood* subfloorFigure 6.82x10 @ 16"o.c. none (none) F2x10 @ 16"o.c.2x10 @ 24"o.c.nonenoneResilientchannelsResilientchannelsFF½" x24"x48" mineral acousticalceiling panels (see griddetails)5/8" Type X GypsumWallboard or ½" proprietaryType gypsum wallboard5/8" proprietary Type gypsumwallboardNom. 19/32" T&G plywood* underlayment (singlefloor); building paper, and 15/32" plywood*subfloorNom. 19/32" T&G plywood* underlayment (singlefloor) or 15/32" plywood* subfloorNom. 23/32" T&G plywood* underlayment (singlefloor) or 15/32" plywood* subfloorFigure 6.9Figure 6.10Figure 6.11F- Face layer sheathing; *Oriented Strand Board (OSB) panels are permitted for certain designs. Subfloors for certain designs may be nom. 7/16" OSB.Table 6.5Two-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assemblies6Joists Insulation Furring Ceiling Sheathing Floor Sheathing Details5/8" proprietary Type X gypsum(none) Bwallboard2x10 @ 16"o.c.noneResilientchannelsF5/8" proprietary Type X gypsumwallboardNom. 1" wood flooring or 19/32" T&Gplywood* underlayment (single floor);building paper, and Nom. 1" T&G boardsor 15/32" plywood* subfloorFigure 6.12B- Base layer sheathing (direct attached); F- Face layer sheathing; *Oriented Strand Board (OSB) panels are permitted for certain designs. Subfloors for certaindesigns may be nom. 7/16" OSB.OTHER CONSIDERATIONSAMERICAN FOREST & PAPER ASSOCIATION


L-30 OTHER CONSIDERATIONSFigure 6.1One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS4-1.1)(2x4 <strong>Wood</strong> Stud Wall with Insulation: 100% Design Load – Gypsum Both Sides)1. Framing: Nominal 2x4 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Sheathing: 5/8 in. Type X gypsum wallboard, 4 ft.wide, applied horizontally, unblocked. Horizontal applicationof wallboard represents the direction of leastfire resistance as opposed to vertical application.3. Insulation: 3-1/2 in. thick mineral wool insulation.4. Fasteners: 2-1/4 in. Type S drywall screws, spaced12 in. o.c.5. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No: WP-1248 (Fire Endurance), March 29, 2000WP-1246 (Hose Stream), March 9, 2000Third Party Witness: Intertek Testing ServicesReport J20-06170.1This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-31Figure 6.2One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS6-1.1)(2x6 <strong>Wood</strong> Stud Wall without Insulation: 100% Design Load – Gypsum Both Sides)61. Framing: Nominal 2x6 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Sheathing: 5/8 in. Type X gypsum wallboard, 4 ft.wide, applied horizontally, unblocked. Horizontal applicationof wallboard represents the direction of leastfire resistance as opposed to vertical application.3. Fasteners: 2-1/4 in. Type S drywall screws, spaced 7in. o.c.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No: WP-1232 (Fire Endurance), September 16,1999WP-1234 (Hose Stream), September 27, 1999Third Party Witness: Intertek Testing ServicesReport J99-22441.2OTHER CONSIDERATIONS4. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.AMERICAN FOREST & PAPER ASSOCIATION


L-32 OTHER CONSIDERATIONSFigure 6.3One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS6-1.2)(2x6 <strong>Wood</strong> Stud Wall with Insulation: 100% Design Load – Gypsum Both Sides)1. Framing: Nominal 2x6 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Sheathing: 5/8 in. Type X gypsum wallboard, 4 ft.wide, applied horizontally, unblocked. Horizontal applicationof wallboard represents the direction of leastfire resistance as opposed to vertical application.3. Insulation: 5-1/2 in. thick mineral wool insulation.4. Fasteners: 2-1/4 in. Type S drywall screws, spaced12 in. o.c.5. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No:WP-1231 (Fire Endurance), September 14,1999WP-1230 (Hose Stream), August 30, 1999Third Party Witness: Intertek Testing ServicesReport J99-22441.1This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-33Figure 6.4One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS4-1.2)(2x4 <strong>Wood</strong> Stud Wall with Insulation: 100% Design Load – Gypsum One Side, <strong>Wood</strong> Structural PanelsOne Side)61. Framing: Nominal 2x4 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Interior Sheathing: 5/8 in. Type X gypsum wallboard,4 ft. wide, applied horizontally, unblocked.Horizontal application of wallboard represents thedirection of least fire resistance as opposed to verticalapplication.3. Exterior Sheathing: 3/8 in. wood structural panels(oriented strand board), applied vertically, horizontaljoints blocked.4. Gypsum Fasteners: 2-1/4 in. Type S drywall screws,spaced 12 in. o.c.5. Panel Fasteners: 6d common nails (bright): 12 in.o.c. in the field, 6 in. o.c. panel edges.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No: WP-1261 (Fire Endurance & Hose Stream),November 1, 2000Third Party Witness: Intertek Testing ServicesReport J20-006170.2This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.OTHER CONSIDERATIONS6. Insulation: 3-1/2 in. thick mineral wool insulation.7. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.AMERICAN FOREST & PAPER ASSOCIATION


L-34 OTHER CONSIDERATIONSFigure 6.5One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS4-1.3)(2x4 <strong>Wood</strong> Stud Wall with Insulation: 78% Design Load – Gypsum One Side, Fiberboard One Side)1. Framing: Nominal 2x4 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Interior Sheathing: 5/8 in. Type X gypsum wallboard,4 ft. wide, applied vertically, unblocked.3. Exterior Sheathing: 1/2 in. fiberboard sheathing. Alternateconstruction: minimum 1/2 in. lumber sidingor 1/2 in. wood-based sheathing.4. Exterior Siding: 3/8 in. hardboard shiplap edge panelsiding. Alternate construction: lumber, wood based,vinyl, or aluminum siding.5. Vapor Barrier: 4-mil polyethylene sheeting.6. Insulation: 3-1/2 in. thick mineral wool insulation.7. Gypsum Fasteners: 6d cement coated box nailsspaced 7 in. o.c.Tests conducted at the Gold Bond Building ProductsFire Testing LaboratoryTest No: WP-584 (Fire Endurance & HoseStream), March 19, 1981Third Party Witness: Warnock Hersey International,Inc.Report WHI-690-003This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.8. Fiberboard Fasteners: 1-1/2 in. galvanized roofingnails: 6 in. o.c. in the field, 3 in. o.c. panel edges.9. Hardboard Fasteners: 8d galvanized nails: 8 in. o.c.in the field, 4 in. o.c. panel edges.10. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-35Figure 6.6One-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS6-1.3)(2x6 <strong>Wood</strong> Stud Wall with Insulation: 100% Design Load – Gypsum One Side, <strong>Wood</strong> Structural PanelsOne Side)61. Framing: Nominal 2x6 wood studs, spaced 16 in. o.c.,double top plates, single bottom plate.2. Interior Sheathing: 5/8 in. Type X gypsum wallboard,4 ft. wide, applied horizontally, unblocked.Horizontal application of wallboard represents thedirection of least fire resistance as opposed to verticalapplication.3. Exterior Sheathing: 7/16 in. wood structural panels(oriented strand board), applied vertically, horizontaljoints blocked.4. Gypsum Fasteners: 2-1/4 in. Type S drywall screws,spaced 12 in. o.c.5. Panel Fasteners: 6d common nails (bright): 12 in.o.c. in the field, 6 in. o.c. panel edges.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No: WP-1244 (Fire Endurance & HoseStream), February 25, 2000Third Party Witness: Intertek Testing ServicesReport J99-27259.2This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.OTHER CONSIDERATIONS6. Insulation: 5-1/2 in. thick mineral wool insulation.7. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.AMERICAN FOREST & PAPER ASSOCIATION


L-36 OTHER CONSIDERATIONSFigure 6.7Two-Hour Fire-Rated <strong>Wood</strong> Wall Assembly (WS6-2.1)(2x6 <strong>Wood</strong> Stud Wall with Insulation: 100% Design Load – Gypsum Both Sides)1. Framing: Nominal 2x6 wood studs, spaced 24 in. o.c.,double top plates, single bottom plate.2. Sheathing:Base Layer: 5/8 in. Type X gypsum wallboard, 4ft. wide, applied horizontally, unblocked.Face Layer: 5/8 in. Type X gypsum wallboard, 4ft. wide, applied horizontally, unblocked.Horizontal application of wallboard represents thedirection of least fire resistance as opposed to verticalapplication.3. Insulation: 5-1/2 in. thick mineral wool insulation.4. Gypsum Fasteners: Base Layer: 2-1/4 in. Type S drywallscrews, spaced 24 in. o.c.5. Gypsum Fasteners: Face Layer: 2-1/4 in. Type S drywallscrews, spaced 8 in. o.c.Tests conducted at the Fire Test Laboratory of NationalGypsum Research CenterTest No: WP-1262 (Fire Endurance), November 3,2000WP-1268 (Hose Stream), December 8, 2000Third Party Witness: Intertek Testing ServicesReport J20-006170.3This assembly was tested at 100% design load, calculatedin accordance with the National DesignSpecification for <strong>Wood</strong> Construction. The authorityhaving jurisdiction should be consulted to assureacceptance of this report.6. Joints and Fastener Heads: Wallboard joints coveredwith paper tape and joint compound, fastenerheads covered with joint compound.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-37Figure 6.8One-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assembly(2x10 <strong>Wood</strong> Joists 16” o.c. – Gypsum Directly Applied or on Optional Resilient Channels)61. Nom. 1 in. wood flooring or 19/32 in. T&G plywoodunderlayment (single floor). Oriented Strand Board(OSB) panels are permitted for certain designs.2. Building paper.3. Nom. 1 in. T&G boards or 15/32 in. plywood subfloor.Subfloors for certain designs may be nom. 7/16 in.OSB.4. ½ in. Type X gypsum wallboard (may be attached directlyto joists or on resilient channels) or 5/8 in. TypeX gypsum wallboard directly applied to joists.Fire Tests:½ in. Type X gypsum directly appliedUL R1319-66, 11-9-64, Design L512;UL R3501-45, 5-27-65, Design L522;UL R2717-38, 6-10-65, Design L503;UL R3543-6, 11-10-65, Design L519;ULC Design M502½ in. Type X gypsum on resilient channelsUL R1319-65, 11-16-64, Design L514OTHER CONSIDERATIONS5. 2x10 <strong>Wood</strong> joists spaced 16 in. o.c.5/8 in. Type X Gypsum directly appliedUL R3501-5, 9, 7-15-52;UL R1319-2, 3, 6-5-52, Design L 501;ULC Design M500AMERICAN FOREST & PAPER ASSOCIATION


L-38 OTHER CONSIDERATIONSFigure 6.9One-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assembly(2x10 <strong>Wood</strong> Joists 16” o.c. – Suspended Acoustical Ceiling Panels)1. Nom. 19/32 in. T&G plywood underlayment (singlefloor). Oriented Strand Board (OSB) panels are permittedfor certain designs.2. Building paper.3. 15/32 in. plywood subfloor. Subfloors for certain designsmay be nom. 7/16 in. OSB.4. 2x10 wood joists spaced 16 in. o.c.5. T-bar grid ceiling system.6. Main runners spaced 48 in. o.c.7. Cross-tees spaced 24 in. o.c.8. ½ in. x 24 in. x 48 in. mineral acoustical ceiling panelsinstalled with hold-down clips.Fire tests:UL L209AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-39Figure 6.10 One-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assembly(2x10 <strong>Wood</strong> Joists 16” o.c. – Gypsum on Resilient Channels)61. 1-1/2 in. lightweight concrete or min. ¾ in. proprietarygypsum concrete floor topping. Building papermay be optional and is not shown.2. 15/32 in. plywood subfloor (subfloors for certain designsmay be nom. 7/16 in. OSB) or Nom. 19/32 in.T&G plywood underlayment (single floor). OrientedStrand Board (OSB) panels are permitted for certaindesigns.Fire Tests:UL R1319-65, 11-16-64, Design L514 5/8 in. Type XgypsumUL R6352, 4-21-71, Design L502 ½ in. proprietaryType X gypsumOTHER CONSIDERATIONS3. 2x10 wood joists spaced 16 in. o.c.4. 5/8 in. Type X Gypsum Wallboard or ½ in. proprietaryType X gypsum wallboard ceiling attached toresilient channels.AMERICAN FOREST & PAPER ASSOCIATION


L-40 OTHER CONSIDERATIONSFigure 6.11 One-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assembly(2x10 <strong>Wood</strong> Joists 24” o.c. – Gypsum on Resilient Channels)41, 2 not shown3651. 1-1/2 in. lightweight concrete or min. ¾ in. proprietarygypsum concrete floor topping.2. Building paper (may be optional).Fire Tests:UL R5229-2, 5-25-73, Design L5133. Nom. 23/32 in. T&G plywood or Oriented StrandBoard (OSB) underlayment (single floor).4. 2x10 wood joists spaced 24 in. o.c.5. Resilient channels.6. 5/8 in. Type X gypsum wallboard ceiling.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-41Figure 6.12 Two-Hour Fire-Rated <strong>Wood</strong> Floor/Ceiling Assembly(2x10 <strong>Wood</strong> Joists 16” o.c. – Gypsum Directly Applied with Second Layer on Resilient Channels)61. Nom. 1 in. wood flooring or 19/32 in. T&G plywoodunderlayment (single floor). Oriented Strand Board(OSB) panels are permitted for certain designs.2. Building paper.3. Nom. 1x6 T&G boards or 15/32 in. plywood subfloor.Subfloors for certain designs may be nom. 7/16 in.OSB.4. 5/8 in. proprietary Type X gypsum wallboard ceilingattached directly to joists.Fire Tests:UL R1319-114, 7-21-67, Design L511UL R2717-35, 10-21-64, Design L505; ULC DesignM503OTHER CONSIDERATIONS5. 2x10 <strong>Wood</strong> joists space 16 in. o.c.6. Resilient channels.7. 5/8 in. proprietary Type X gypsum wallboard ceilingattached to resilient channels.AMERICAN FOREST & PAPER ASSOCIATION


L-42OTHER CONSIDERATIONSAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-43SPAN TABLES7.1 Universal Span Tables L-447.2 Species Specific Span Tables L-54Table 7.1 Floor Joist 40/10 - L/360 .................................. L-45Table 7.2 Floor Joist 30/10 - L/360 .................................. L-46Table 7.3 Ceiling Joist 10/5 - L/240 ................................. L-47Table 7.4 Ceiling Joist 20/10 - L/240 ............................... L-48Table 7.5 Rafters 20/15 - L/240........................................ L-49Table 7.6 Rafters 30/15 - L/240........................................ L-50Table 7.7 Rafters 40/15 - L/240........................................ L-51Table 7.8 Rafters 20/10 - L/240........................................ L-52Table 7.9 Rafters 20/10 - L/180........................................ L-53Table 7.10 Floor Joist Spans for Common LumberSpecies (Residential Sleeping Areas, LiveLoad = 40 psf, L/∆ = 360) ................................ L-55Table 7.11 Ceiling Joist Spans for Common LumberSpecies (Uninhabitable Attics With LimitedStorage, Live Load = 20 psf, L/∆ = 240)......... L-56Table 7.12 Rafter Spans for Common Lumber Species(Ceiling Attached to Rafters, LiveLoad = 20 psf, L/∆ = 240) ................................ L-577AMERICAN FOREST & PAPER ASSOCIATION


L-44 SPAN TABLES7.1 Universal Span TablesThe tables in this Section provide joist and rafter spansfor design criteria listed at the top of each table. Spantables are provided for the following commonly used loadand deflection criteria:Applications Live Dead Deflection TableLoad Load Limit No.(psf) (psf)Floor joists 40 10 span/360 7.130 10 span/360 7.2Ceiling joists 10 5 span/240 7.320 10 span/240 7.4Roof rafters 20 15 span/240 7.530 15 span/240 7.640 15 span/240 7.720 10 span/240 7.820 10 span/180 7.9The applications and associated load and deflectioncriteria listed above are commonly encountered in designsof residential wood structures. The use of the tables is notlimited to the applications listed.These span tables for joists and rafters are calculatedon the basis of a series of modulus of elasticity (E) andallowable bending design values (F b ′). The range of valuesin the tables provides allowable spans for all speciesand grades of nominal 2-in. framing lumber customarilyused in construction. These span tables assume installationof at least three joists or rafters that are spaced notmore than 24 in. o.c. The calculated spans assume fullylaterally supported members, properly sheathed and nailedon the top edge of the joist or rafter.Lumber Design ValuesUse of these span tables requires reference to the applicabletabulated design values for the various speciesand grades of lumber. These tabulated design values arefound in Tables 4A, 4B, 4C, and 4F of the NDS Supplement.Span MeasurementThe tabulated spans are shown in feet and inches. Thespans are the distance from face to face of supports whichdoes not include one-half the required bearing length ateach end. For sloping rafters, the span is measured alongthe horizontal projection.Use of Universal Span TablesSpans for floor and ceiling joists are calculated on thebasis of the modulus of elasticity (E) with the requiredallowable bending design value (F b ′) listed below eachspan. Spans for rafters are calculated on the basis of allowablebending design value (F b ′) with the requiredmodulus of elasticity (E) listed below each span. Valuesdetermined from the span tables should be compared tovalues from Tables 4A, 4B, 4C, and 4F of the NDS Supplementmodified appropriately by the adjustment factors.Species and grades with allowable bending design valuesand modulus of elasticity values greater than or equal tothose shown in the span tables are appropriate.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-45Table 7.1 Floor Joist With L/360 Deflection LimitsDesign CriteriaDeflection: For 40 psf live loadLimited to span in inches divided by 360Strength: Live load of 40 psf plus dead load of 10 psf determines the required bending design valueJoistSize Spacing Modulus of Elasticity, E, in 1,000,000 psi(in.) (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.412.0 8-6 8-10 9-2 9-6 9-9 10-0 10-3 10-6 10-9 10-11 11-2 11-4 11-7 11-9 11-11 12-1 12-316.0 7-9 8-0 8-4 8-7 8-10 9-1 9-4 9-6 9-9 9-11 10-2 10-4 10-6 10-8 10-10 11-0 11-219.2 7-3 7-7 7-10 8-1 8-4 8-7 8-9 9-0 9-2 9-4 9-6 9-8 9-10 10-0 10-2 10-4 10-624.0 6-9 7-0 7-3 7-6 7-9 7-11 8-2 8-4 8-6 8-8 8-10 9-0 9-2 9-4 9-6 9-7 9-92 × 612.0 11-3 11-8 12-1 12-6 12-10 13-2 13-6 13-10 14-2 14-5 14-8 15-0 15-3 15-6 15-9 15-11 16-216.0 10-2 10-7 11-0 11-4 11-8 12-0 12-3 12-7 12-10 13-1 13-4 13-7 13-10 14-1 14-3 14-6 14-819.2 9-7 10-0 10-4 10-8 11-0 11-3 11-7 11-10 12-1 12-4 12-7 12-10 13-0 13-3 13-5 13-8 13-1024.0 8-11 9-3 9-7 9-11 10-2 10-6 10-9 11-0 11-3 11-5 11-8 11-11 12-1 12-3 12-6 12-8 12-102 × 812.0 14-4 14-11 15-5 15-11 16-5 16-10 17-3 17-8 18-0 18-5 18-9 19-1 19-5 19-9 20-1 20-4 20-816.0 13-0 13-6 14-0 14-6 14-11 15-3 15-8 16-0 16-5 16-9 17-0 17-4 17-8 17-11 18-3 18-6 18-92 × 1019.2 12-3 12-9 13-2 13-7 14-0 14-5 14-9 15-1 15-5 15-9 16-0 16-4 16-7 16-11 17-2 17-5 17-824.0 11-4 11-10 12-3 12-8 13-0 13-4 13-8 14-0 14-4 14-7 14-11 15-2 15-5 15-8 15-11 16-2 16-512.0 17-5 18-1 18-9 19-4 19-11 20-6 21-0 21-6 21-11 22-5 22-10 23-3 23-7 24-0 24-5 24-9 25-116.0 15-10 16-5 17-0 17-7 18-1 18-7 19-1 19-6 19-11 20-4 20-9 21-1 21-6 21-10 22-2 22-6 22-102 × 1219.2 14-11 15-6 16-0 16-7 17-0 17-6 17-11 18-4 18-9 19-2 19-6 19-10 20-2 20-6 20-10 21-2 21-624.0 13-10 14-4 14-11 15-4 15-10 16-3 16-8 17-0 17-5 17-9 18-1 18-5 18-9 19-1 19-4 19-8 19-1112.0 718 777 833 888 941 993 1043 1092 1140 1187 1233 1278 1323 1367 1410 1452 149416.0 790 855 917 977 1036 1093 1148 1202 1255 1306 1357 1407 1456 1504 1551 1598 1644F b19.2 840 909 975 1039 1101 1161 1220 1277 1333 1388 1442 1495 1547 1598 1649 1698 174724.0 905 979 1050 1119 1186 1251 1314 1376 1436 1496 1554 1611 1667 1722 1776 1829 1882Note: The required bending design value, F b , in pounds per square inch is shown at the bottom of each table and is applicable to all lumber sizes shown.Spans are shown in feet-inches. Check sources of supply for availability of lumber in lengths greater than 20'.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-46 SPAN TABLESTable 7.2 Floor Joist With L/360 Deflection LimitsDesign CriteriaDeflection: For 30 psf live loadLimited to span in inches divided by 360Strength: Live load of 30 psf plus dead load of 10 psf determines the required bending design valueJoistSize Spacing Modulus of Elasticity, E, in 1,000,000 psi(in.) (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.42 × 612.0 9-4 9-9 10-1 10-5 10-9 11-0 11-3 11-7 11-10 12-0 12-3 12-6 12-9 12-11 13-1 13-4 13-616.0 8-6 8-10 9-2 9-6 9-9 10-0 10-3 10-6 10-9 10-11 11-2 11-4 11-7 11-9 11-11 12-1 12-319.2 8-0 8-4 8-8 8-11 9-2 9-5 9-8 9-10 10-1 10-4 10-6 10-8 10-10 11-1 11-3 11-5 11-724.0 7-5 7-9 8-0 8-3 8-6 8-9 8-11 9-2 9-4 9-7 9-9 9-11 10-1 10-3 10-5 10-7 10-92 × 812.0 12-4 12-10 13-4 13-9 14-2 14-6 14-11 15-3 15-7 15-10 16-2 16-6 16-9 17-0 17-4 17-7 17-1016.0 11-3 11-8 12-1 12-6 12-10 13-2 13-6 13-10 14-2 14-5 14-8 15-0 15-3 15-6 15-9 15-11 16-219.2 10-7 11-0 11-4 11-9 12-1 12-5 12-9 13-0 13-4 13-7 13-10 14-1 14-4 14-7 14-9 15-0 15-324.0 9-10 10-2 10-7 10-11 11-3 11-6 11-10 12-1 12-4 12-7 12-10 13-1 13-4 13-6 13-9 13-11 14-22 × 1012.0 15-9 16-5 17-0 17-6 18-0 18-6 19-0 19-5 19-10 20-3 20-8 21-0 21-5 21-9 22-1 22-5 22-916.0 14-4 14-11 15-5 15-11 16-5 16-10 17-3 17-8 18-0 18-5 18-9 19-1 19-5 19-9 20-1 20-4 20-819.2 13-6 14-0 14-6 15-0 15-5 15-10 16-3 16-7 17-0 17-4 17-8 18-0 18-3 18-7 18-10 19-2 19-524.0 12-6 13-0 13-6 13-11 14-4 14-8 15-1 15-5 15-9 16-1 16-5 16-8 17-0 17-3 17-6 17-9 18-02 × 1212.0 19-2 19-11 20-8 21-4 21-11 22-6 23-1 23-7 24-2 24-8 25-1 25-7 26-0 26-0 26-0 26-0 26-016.0 17-5 18-1 18-9 19-4 19-11 20-6 21-0 21-6 21-11 22-5 22-10 23-3 23-7 24-0 24-5 24-9 25-119.2 16-5 17-0 17-8 18-3 18-9 19-3 19-9 20-2 20-8 21-1 21-6 21-10 22-3 22-7 22-11 23-3 23-724.0 15-2 15-10 16-5 16-11 17-5 17-11 18-4 18-9 19-2 19-7 19-11 20-3 20-8 21-0 21-4 21-7 21-1112.0 696 753 808 861 912 962 1011 1058 1105 1150 1195 1239 1282 1324 1366 1407 144816.0 766 829 889 947 1004 1059 1112 1165 1216 1266 1315 1364 1411 1458 1504 1549 1593F b19.2 814 881 945 1007 1067 1125 1182 1238 1292 1345 1398 1449 1499 1549 1598 1646 169324.0 877 949 1018 1084 1149 1212 1273 1333 1392 1449 1506 1561 1615 1669 1721 1773 1824Note: The required bending design value, F b , in pounds per square inch is shown at the bottom of each table and is applicable to all lumber sizes shown.Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-47Table 7.3 Ceiling Joist With L/240 Deflection LimitsDesign CriteriaDeflection: For 10 psf live loadLimited to span in inches divided by 240Strength: Live load of 10 psf plus dead load of 5 psf determines the required bending design valueJoistSize Spacing Modulus of Elasticity, E, in 1,000,000 psi(in.) (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.412.0 9-10 10-3 10-7 10-11 11-3 11-7 11-10 12-2 12-5 12-8 12-11 13-2 13-4 13-7 13-9 14-0 14-216.0 8-11 9-4 9-8 9-11 10-3 10-6 10-9 11-0 11-3 11-6 11-9 11-11 12-2 12-4 12-6 12-9 12-1119.2 8-5 8-9 9-1 9-4 9-8 9-11 10-2 10-4 10-7 10-10 11-0 11-3 11-5 11-7 11-9 12-0 12-224.0 7-10 8-1 8-5 8-8 8-11 9-2 9-5 9-8 9-10 10-0 10-3 10-5 10-7 10-9 10-11 11-1 11-32 × 412.0 15-6 16-1 16-8 17-2 17-8 18-2 18-8 19-1 19-6 19-11 20-3 20-8 21-0 21-4 21-8 22-0 22-416.0 14-1 14-7 15-2 15-7 16-1 16-6 16-11 17-4 17-8 18-1 18-5 18-9 19-1 19-5 19-8 20-0 20-319.2 13-3 13-9 14-3 14-8 15-2 15-7 15-11 16-4 16-8 17-0 17-4 17-8 17-11 18-3 18-6 18-10 19-124.0 12-3 12-9 13-3 13-8 14-1 14-5 14-9 15-2 15-6 15-9 16-1 16-4 16-8 16-11 17-2 17-5 17-82 × 612.0 20-5 21-2 21-11 22-8 23-4 24-0 24-7 25-2 25-8 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-016.0 18-6 19-3 19-11 20-7 21-2 21-9 22-4 22-10 23-4 23-10 24-3 24-8 25-2 25-7 25-11 26-0 26-019.2 17-5 18-1 18-9 19-5 19-11 20-6 21-0 21-6 21-11 22-5 22-10 23-3 23-8 24-0 24-5 24-9 25-224.0 16-2 16-10 17-5 18-0 18-6 19-0 19-6 19-11 20-5 20-10 21-2 21-7 21-11 22-4 22-8 23-0 23-42 × 812.0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-016.0 23-8 24-7 25-5 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-019.2 22-3 23-1 23-11 24-9 25-5 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-024.0 20-8 21-6 22-3 22-11 23-8 24-3 24-10 25-5 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-02 × 1012.0 711 769 825 880 932 983 1033 1082 1129 1176 1221 1266 1310 1354 1396 1438 148016.0 783 847 909 968 1026 1082 1137 1191 1243 1294 1344 1394 1442 1490 1537 1583 1629F b19.2 832 900 965 1029 1090 1150 1208 1265 1321 1375 1429 1481 1533 1583 1633 1682 173124.0 896 969 1040 1108 1174 1239 1302 1363 1423 1481 1539 1595 1651 1706 1759 1812 1864Note: The required bending design value, F b , in pounds per square inch is shown at the bottom of each table and is applicable to all lumber sizes shown.Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-48 SPAN TABLESTable 7.4 Ceiling Joist With L/240 Deflection LimitsDesign CriteriaDeflection: For 20 psf live loadLimited to span in inches divided by 240Strength: Live Load of 20 psf plus dead load of 10 psf determines the required bending design valueJoistSize Spacing Modulus of Elasticity, E, in 1,000,000 psi(in.) (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.42 × 412.0 7-10 8-1 8-5 8-8 8-11 9-2 9-5 9-8 9-10 10-0 10-3 10-5 10-7 10-9 10-11 11-1 11-316.0 7-1 7-5 7-8 7-11 8-1 8-4 8-7 8-9 8-11 9-1 9-4 9-6 9-8 9-9 9-11 10-1 10-319.2 6-8 6-11 7-2 7-5 7-8 7-10 8-1 8-3 8-5 8-7 8-9 8-11 9-1 9-3 9-4 9-6 9-824.0 6-2 6-5 6-8 6-11 7-1 7-3 7-6 7-8 7-10 8-0 8-1 8-3 8-5 8-7 8-8 8-10 8-1112.0 12-3 12-9 13-3 13-8 14-1 14-5 14-9 15-2 15-6 15-9 16-1 16-4 16-8 16-11 17-2 17-5 17-816.0 11-2 11-7 12-0 12-5 12-9 13-1 13-5 13-9 14-1 14-4 14-7 14-11 15-2 15-5 15-7 15-10 16-12 × 619.2 10-6 10-11 11-4 11-8 12-0 12-4 12-8 12-11 13-3 13-6 13-9 14-0 14-3 14-6 14-8 14-11 15-224.0 9-9 10-2 10-6 10-10 11-2 11-5 11-9 12-0 12-3 12-6 12-9 13-0 13-3 13-5 13-8 13-10 14-112.0 16-2 16-10 17-5 18-0 18-6 19-0 19-6 19-11 20-5 20-10 21-2 21-7 21-11 22-4 22-8 23-0 23-416.0 14-8 15-3 15-10 16-4 16-10 17-3 17-9 18-1 18-6 18-11 19-3 19-7 19-11 20-3 20-7 20-11 21-22 × 819.2 13-10 14-5 14-11 15-5 15-10 16-3 16-8 17-1 17-5 17-9 18-1 18-5 18-9 19-1 19-5 19-8 19-1124.0 12-10 13-4 13-10 14-3 14-8 15-1 15-6 15-10 16-2 16-6 16-10 17-2 17-5 17-9 18-0 18-3 18-612.0 20-8 21-6 22-3 22-11 23-8 24-3 24-10 25-5 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-0 26-016.0 18-9 19-6 20-2 20-10 21-6 22-1 22-7 23-1 23-8 24-1 24-7 25-0 25-5 25-10 26-0 26-0 26-02 × 1019.2 17-8 18-4 19-0 19-7 20-2 20-9 21-3 21-9 22-3 22-8 23-1 23-7 23-11 24-4 24-9 25-1 25-524.0 16-5 17-0 17-8 18-3 18-9 19-3 19-9 20-2 20-8 21-1 21-6 21-10 22-3 22-7 22-11 23-4 23-812.0 896 969 1040 1108 1174 1239 1302 1363 1423 1481 1539 1595 1651 1706 1759 1812 186416.0 986 1067 1145 1220 1293 1364 1433 1500 1566 1631 1694 1756 1817 1877 1936 1995 2052F b19.2 1048 1134 1216 1296 1374 1449 1522 1594 1664 1733 1800 1866 1931 1995 2058 2120 218124.0 1129 1221 1310 1396 1480 1561 1640 1717 1793 1866 1939 2010 2080 2149 2217 2283 2349Note: The required bending design value, F b , in pounds per square inch is shown at the bottom of each table and is applicable to all lumber sizes shown.Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-49Table 7.5 Rafters With L/240 Deflection LimitationDesign CriteriaDeflection: For 20 psf live loadLimited to span in inches divided by 240Strength: Live load of 20 psf plus dead load of 15 psf determines the required bending design valueRafterSize Spacing Bending Design Value, F b, (psi)(in.) (in.) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 270012.0 6-7 7-7 8-6 9-4 10-0 10-9 11-5 12-0 12-7 13-2 13-8 14-2 14-8 15-2 15-8 16-1 16-7 17-0 17-5 17-10 18-2 † 18-2 † 18-2 † 18-2 † 18-2 †16.0 5-8 6-7 7-4 8-1 8-8 9-4 9-10 10-5 10-11 11-5 11-10 12-4 12-9 13-2 13-7 13-11 14-4 14-8 15-1 15-5 15-9 16-1 16-5 16-6 † 16-62 × 6†19.2 5-2 6-0 6-9 7-4 7-11 8-6 9-0 9-6 9-11 10-5 10-10 11-3 11-7 12-0 12-4 12-9 13-1 13-5 13-9 14-1 14-5 14-8 15-0 15-4 15-7 †24.0 4-8 5-4 6-0 6-7 7-1 7-7 8-1 8-6 8-11 9-4 9-8 10-0 10-5 10-9 11-1 11-5 11-8 12-0 12-4 12-7 12-10 13-2 13-5 13-8 13-1112.0 8-8 10-0 11-2 12-3 13-3 14-2 15-0 15-10 16-7 17-4 18-0 18-9 19-5 20-0 20-8 21-3 21-10 22-4 22-11 23-6 24-0 † 24-0 † 24-0 † 24-0 † 24-0 †16.0 7-6 8-8 9-8 10-7 11-6 12-3 13-0 13-8 14-4 15-0 15-7 16-3 16-9 17-4 17-10 18-5 18-11 19-5 19-10 20-4 20-9 21-3 21-8 21-9 † 21-92 × 8†19.2 6-10 7-11 8-10 9-8 10-6 11-2 11-10 12-6 13-1 13-8 14-3 14-10 15-4 15-10 16-4 16-9 17-3 17-8 18-1 18-7 19-0 19-5 19-9 20-2 20-6 †24.0 6-2 7-1 7-11 8-8 9-4 10-0 10-7 11-2 11-9 12-3 12-9 13-3 13-8 14-2 14-7 15-0 15-5 15-10 16-3 16-7 17-0 17-4 17-8 18-0 18-512.0 11-1 12-9 14-3 15-8 16-11 18-1 19-2 20-2 21-2 22-1 23-0 23-11 24-9 25-6 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 9-7 11-1 12-4 13-6 14-8 15-8 16-7 17-6 18-4 19-2 19-11 20-8 21-5 22-1 22-10 23-5 24-1 24-9 25-4 25-11 26-0* 26-0* 26-0* 26-0* 26-0*2 × 1019.2 8-9 10-1 11-3 12-4 13-4 14-3 15-2 15-11 16-9 17-6 18-2 18-11 19-7 20-2 20-10 21-5 22-0 22-7 23-1 23-8 24-2 24-9 25-3 25-9 26-0*24.0 7-10 9-0 10-1 11-1 11-11 12-9 13-6 14-3 15-0 15-8 16-3 16-11 17-6 18-1 18-7 19-2 19-8 20-2 20-8 21-2 21-8 22-1 22-7 23-0 23-512.0 13-5 15-6 17-4 19-0 20-6 21-11 23-3 24-7 25-9 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 11-8 13-5 15-0 16-6 17-9 19-0 20-2 21-3 22-4 23-3 24-3 25-2 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*2 × 1219.2 10-8 12-3 13-9 15-0 16-3 17-4 18-5 19-5 20-4 21-3 22-2 23-0 23-9 24-7 25-4 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*24.0 9-6 11-0 12-3 13-5 14-6 15-6 16-6 17-4 18-2 19-0 19-10 20-6 21-3 21-11 22-8 23-3 23-11 24-7 25-2 25-9 26-0* 26-0* 26-0* 26-0* 26-0*12.0 0.12 0.19 0.26 0.35 0.44 0.54 0.64 0.75 0.86 0.98 1.11 1.24 1.37 1.51 1.66 1.81 1.96 2.12 2.28 2.44 2.60 2.60 2.60 2.60 2.6016.0 0.11 0.16 0.23 0.30 0.38 0.46 0.55 0.65 0.75 0.85 0.96 1.07 1.19 1.31 1.44 1.56 1.70 1.83 1.97 2.11 2.26 2.41 2.56 2.60 2.60E19.2 0.10 0.15 0.21 0.27 0.35 0.42 0.51 0.59 0.68 0.78 0.88 0.98 1.09 1.20 1.31 1.43 1.55 1.67 1.80 1.93 2.06 2.20 2.34 2.48 2.6024.0 0.09 0.13 0.19 0.25 0.31 0.38 0.45 0.53 0.61 0.70 0.78 0.88 0.97 1.07 1.17 1.28 1.39 1.50 1.61 1.73 1.85 1.97 2.09 2.22 2.35Note: The required modulus of elasticity, E, in 1,000,000 pounds per square inch is shown at the bottom of each table, is limited to 2.6 million pounds per square inch, and is applicable to all lumber sizesshown.* Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.†Spans are controlled by maximum E value of 2.6 million psi.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-50 SPAN TABLESTable 7.6 Rafters With L/240 Deflection LimitationDesign CriteriaDeflection: For 30 psf live loadLimited to span in inches divided by 240Strength: Live load of 30 psf plus dead load of 15 psf determines the required bending design valueRafterSize Spacing Bending Design Value, F b, (psi)(in.) (in.) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 270012.0 5-10 6-8 7-6 8-2 8-10 9-6 10-0 10-7 11-1 11-7 12-1 12-6 13-0 13-5 13-10 14-2 14-7 15-0 15-4 15-8 15-11 † 15-11 † 15-11 † 15-11 † 15-11 †16.0 5-0 5-10 6-6 7-1 7-8 8-2 8-8 9-2 9-7 10-0 10-5 10-10 11-3 11-7 11-11 12-4 12-8 13-0 13-3 13-7 13-11 14-2 14-5 † 14-5 † 14-52 × 6†19.2 4-7 5-4 5-11 6-6 7-0 7-6 7-11 8-4 8-9 9-2 9-6 9-11 10-3 10-7 10-11 11-3 11-6 11-10 12-2 12-5 12-8 13-0 13-3 13-6 13-7 †24.0 4-1 4-9 5-4 5-10 6-3 6-8 7-1 7-6 7-10 8-2 8-6 8-10 9-2 9-6 9-9 10-0 10-4 10-7 10-10 11-1 11-4 11-7 11-10 12-1 12-412.0 7-8 8-10 9-10 10-10 11-8 12-6 13-3 13-11 14-8 15-3 15-11 16-6 17-1 17-8 18-2 18-9 19-3 19-9 20-3 20-8 20-11 † 20-11 † 20-11 † 20-11 † 20-11 †16.0 6-7 7-8 8-7 9-4 10-1 10-10 11-6 12-1 12-8 13-3 13-9 14-4 14-10 15-3 15-9 16-3 16-8 17-1 17-6 17-11 18-4 18-9 19-0 † 19-0 † 19-02 × 8†19.2 6-0 7-0 7-10 8-7 9-3 9-10 10-6 11-0 11-7 12-1 12-7 13-1 13-6 13-11 14-5 14-10 15-2 15-7 16-0 16-4 16-9 17-1 17-5 17-9 17-11 †24.0 5-5 6-3 7-0 7-8 8-3 8-10 9-4 9-10 10-4 10-10 11-3 11-8 12-1 12-6 12-10 13-3 13-7 13-11 14-4 14-8 15-0 15-3 15-7 15-11 16-312.0 9-9 11-3 12-7 13-9 14-11 15-11 16-11 17-10 18-8 19-6 20-4 21-1 21-10 22-6 23-3 23-11 24-6 25-2 25-10 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 8-5 9-9 10-11 11-11 12-11 13-9 14-8 15-5 16-2 16-11 17-7 18-3 18-11 19-6 20-1 20-8 21-3 21-10 22-4 22-10 23-5 23-11 24-3 † 24-3 † 24-32 × 10†19.2 7-8 8-11 9-11 10-11 11-9 12-7 13-4 14-1 14-9 15-5 16-1 16-8 17-3 17-10 18-4 18-11 19-5 19-11 20-5 20-10 21-4 21-10 22-3 22-8 22-10 †24.0 6-11 8-0 8-11 9-9 10-6 11-3 11-11 12-7 13-2 13-9 14-4 14-11 15-5 15-11 16-5 16-11 17-4 17-10 18-3 18-8 19-1 19-6 19-11 20-4 20-82 × 1212.0 11-10 13-8 15-4 16-9 18-1 19-4 20-6 21-8 22-8 23-9 24-8 25-7 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 10-3 11-10 13-3 14-6 15-8 16-9 17-9 18-9 19-8 20-6 21-5 22-2 23-0 23-9 24-5 25-2 25-10 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*19.2 9-4 10-10 12-1 13-3 14-4 15-4 16-3 17-1 17-11 18-9 19-6 20-3 21-0 21-8 22-4 23-0 23-7 24-2 24-10 25-5 25-11 26-0* 26-0* 26-0* 26-0*24.0 8-5 9-8 10-10 11-10 12-10 13-8 14-6 15-4 16-1 16-9 17-5 18-1 18-9 19-4 20-0 20-6 21-1 21-8 22-2 22-8 23-3 23-9 24-2 24-8 25-2E12.0 0.13 0.19 0.27 0.36 0.45 0.55 0.66 0.77 0.89 1.01 1.14 1.28 1.41 1.56 1.71 1.86 2.02 2.18 2.34 2.51 2.60 2.60 2.60 2.60 2.6016.0 0.11 0.17 0.24 0.31 0.39 0.48 0.57 0.67 0.77 0.88 0.99 1.10 1.22 1.35 1.48 1.61 1.75 1.89 2.03 2.18 2.33 2.48 2.60 2.60 2.6019.2 0.10 0.15 0.22 0.28 0.36 0.44 0.52 0.61 0.70 0.80 0.90 1.01 1.12 1.23 1.35 1.47 1.59 1.72 1.85 1.99 2.12 2.26 2.41 2.55 2.6024.0 0.09 0.14 0.19 0.25 0.32 0.39 0.46 0.54 0.63 0.72 0.81 0.90 1.00 1.10 1.21 1.31 1.43 1.54 1.66 1.78 1.90 2.02 2.15 2.28 2.41Note: The required modulus of elasticity, E, in 1,000,000 pounds per square inch is shown at the bottom of each table, is limited to 2.6 million pounds per square inch, and is applicable to all lumber sizesshown.* Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.†Spans are controlled by maximum E value of 2.6 million psi.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-51Table 7.7 Rafters With L/240 Deflection LimitationDesign CriteriaDeflection: For 40 psf live loadLimited to span in inches divided by 240Strength: Live load of 40 psf plus dead load of 15 psf determines the required bending design valueRafterSize Spacing Bending Design Value, F b, (psi)(in.) (in.) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 270012.0 5-3 6-1 6-9 7-5 8-0 8-7 9-1 9-7 10-0 10-6 10-11 11-4 11-9 12-1 12-6 12-10 13-2 13-6 13-10 14-2 14-5 † 14-5 † 14-5 † 14-5 † 14-5 †16.0 4-6 5-3 5-10 6-5 6-11 7-5 7-10 8-3 8-8 9-1 9-5 9-10 10-2 10-6 10-10 11-1 11-5 11-9 12-0 12-4 12-7 12-10 13-1 † 13-1 † 13-12 × 6†19.2 4-2 4-9 5-4 5-10 6-4 6-9 7-2 7-7 7-11 8-3 8-8 8-11 9-3 9-7 9-10 10-2 10-5 10-8 11-0 11-3 11-6 11-9 12-0 12-2 12-4 †24.0 3-8 4-3 4-9 5-3 5-8 6-1 6-5 6-9 7-1 7-5 7-9 8-0 8-3 8-7 8-10 9-1 9-4 9-7 9-10 10-0 10-3 10-6 10-8 10-11 11-112.0 6-11 8-0 8-11 9-9 10-7 11-3 12-0 12-7 13-3 13-10 14-5 14-11 15-5 16-0 16-5 16-11 17-5 17-10 18-3 18-9 19-0 † 19-0 † 19-0 † 19-0 † 19-0 †16.0 6-0 6-11 7-9 8-6 9-2 9-9 10-4 10-11 11-6 12-0 12-6 12-11 13-5 13-10 14-3 14-8 15-1 15-5 15-10 16-3 16-7 16-11 17-3 † 17-3 † 17-3 †2 × 819.2 5-6 6-4 7-1 7-9 8-4 8-11 9-6 10-0 10-6 10-11 11-5 11-10 12-3 12-7 13-0 13-5 13-9 14-1 14-6 14-10 15-2 15-5 15-9 16-1 16-3 †24.0 4-11 5-8 6-4 6-11 7-6 8-0 8-6 8-11 9-4 9-9 10-2 10-7 10-11 11-3 11-8 12-0 12-4 12-7 12-11 13-3 13-6 13-10 14-1 14-5 14-812.0 8-10 10-2 11-5 12-6 13-6 14-5 15-3 16-1 16-11 17-8 18-4 19-1 19-9 20-4 21-0 21-7 22-2 22-9 23-4 23-11 24-3 † 24-3 † 24-3 † 24-3 † 24-3 †16.0 7-8 8-10 9-10 10-10 11-8 12-6 13-3 13-11 14-8 15-3 15-11 16-6 17-1 17-8 18-2 18-9 19-3 19-9 20-2 20-8 21-2 21-7 22-1 † 22-1 † 22-12 × 10†19.2 7-0 8-1 9-0 9-10 10-8 11-5 12-1 12-9 13-4 13-11 14-6 15-1 15-7 16-1 16-7 17-1 17-7 18-0 18-5 18-11 19-4 19-9 20-2 20-6 20-9 †24.0 6-3 7-2 8-1 8-10 9-6 10-2 10-10 11-5 11-11 12-6 13-0 13-6 13-11 14-5 14-10 15-3 15-8 16-1 16-6 16-11 17-3 17-8 18-0 18-4 18-912.0 10-9 12-5 13-10 15-2 16-5 17-6 18-7 19-7 20-6 21-5 22-4 23-2 24-0 24-9 25-6 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 9-3 10-9 12-0 13-2 14-2 15-2 16-1 17-0 17-9 18-7 19-4 20-1 20-9 21-5 22-1 22-9 23-5 24-0 24-7 25-2 25-9 26-0* 26-0* 26-0* 26-0*2 × 1219.2 8-6 9-10 10-11 12-0 12-11 13-10 14-8 15-6 16-3 17-0 17-8 18-4 19-0 19-7 20-2 20-9 21-4 21-11 22-5 23-0 23-6 24-0 24-6 25-0 25-3 †24.0 7-7 8-9 9-10 10-9 11-7 12-5 13-2 13-10 14-6 15-2 15-9 16-5 17-0 17-6 18-1 18-7 19-1 19-7 20-1 20-6 21-0 21-5 21-11 22-4 22-912.0 0.12 0.19 0.27 0.35 0.44 0.54 0.65 0.76 0.88 1.00 1.13 1.26 1.40 1.54 1.68 1.83 1.99 2.15 2.31 2.48 2.60 2.60 2.60 2.60 2.6016.0 0.11 0.17 0.23 0.31 0.39 0.47 0.56 0.66 0.76 0.86 0.98 1.09 1.21 1.33 1.46 1.59 1.72 1.86 2.00 2.15 2.29 2.45 2.60 2.60 2.60E19.2 0.10 0.15 0.21 0.28 0.35 0.43 0.51 0.60 0.69 0.79 0.89 0.99 1.10 1.22 1.33 1.45 1.57 1.70 1.83 1.96 2.09 2.23 2.37 2.52 2.6024.0 0.09 0.14 0.19 0.25 0.31 0.38 0.46 0.54 0.62 0.71 0.80 0.89 0.99 1.09 1.19 1.30 1.41 1.52 1.63 1.75 1.87 2.00 2.12 2.25 2.38Note: The required modulus of elasticity, E, in 1,000,000 pounds per square inch is shown at the bottom of each table, is limited to 2.6 million pounds per square inch, and is applicable to all lumber sizesshown.* Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.†Spans are controlled by maximum E value of 2.6 million psi.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-52 SPAN TABLESTable 7.8 Rafters With L/240 Deflection LimitationDesign CriteriaDeflection: For 20 psf live loadLimited to span in inches divided by 240Strength: Live load of 20 psf plus dead load of 10 psf determines the required bending design valueRafterSize Spacing Bending Design Value, F b, (psi)(in.) (in.) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 24002 × 612.0 7-1 8-2 9-2 10-0 10-10 11-7 12-4 13-0 13-7 14-2 14-9 15-4 15-11 16-5 16-11 17-5 17-10 18-2 † 18-2 † 18-2 † 18-2 † 18-2 †16.0 6-2 7-1 7-11 8-8 9-5 10-0 10-8 11-3 11-9 12-4 12-10 13-3 13-9 14-2 14-8 15-1 15-6 15-11 16-3 16-6 † 16-6 † 16-6 †19.2 5-7 6-6 7-3 7-11 8-7 9-2 9-9 10-3 10-9 11-3 11-8 12-2 12-7 13-0 13-4 13-9 14-2 14-6 14-10 15-2 15-7 † 15-7 †24.0 5-0 5-10 6-6 7-1 7-8 8-2 8-8 9-2 9-7 10-0 10-5 10-10 11-3 11-7 11-11 12-4 12-8 13-0 13-3 13-7 13-11 14-212.0 9-4 10-10 12-1 13-3 14-4 15-3 16-3 17-1 17-11 18-9 19-6 20-3 20-11 21-7 22-3 22-11 23-7 24-0 † 24-0 † 24-0 † 24-0 † 24-0 †16.0 8-1 9-4 10-6 11-6 12-5 13-3 14-0 14-10 15-6 16-3 16-10 17-6 18-1 18-9 19-4 19-10 20-5 20-11 21-5 21-9 † 21-9 † 21-9 †2 × 819.2 7-5 8-7 9-7 10-6 11-4 12-1 12-10 13-6 14-2 14-10 15-5 16-0 16-7 17-1 17-7 18-1 18-7 19-1 19-7 20-0 20-6 † 20-6 †24.0 6-7 7-8 8-7 9-4 10-1 10-10 11-6 12-1 12-8 13-3 13-9 14-4 14-10 15-3 15-9 16-3 16-8 17-1 17-6 17-11 18-4 18-912.0 11-11 13-9 15-5 16-11 18-3 19-6 20-8 21-10 22-10 23-11 24-10 25-10 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 10-4 11-11 13-4 14-8 15-10 16-11 17-11 18-11 19-10 20-8 21-6 22-4 23-1 23-11 24-7 25-4 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*2 × 10 19.2 9-5 10-11 12-2 13-4 14-5 15-5 16-4 17-3 18-1 18-11 19-8 20-5 21-1 21-10 22-6 23-1 23-9 24-5 25-0 25-7 26-0* 26-0*24.0 8-5 9-9 10-11 11-11 12-11 13-9 14-8 15-5 16-2 16-11 17-7 18-3 18-11 19-6 20-1 20-8 21-3 21-10 22-4 22-10 23-5 23-1112.0 14-6 16-9 18-9 20-6 22-2 23-9 25-2 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 12-7 14-6 16-3 17-9 19-3 20-6 21-9 23-0 24-1 25-2 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*2 × 12 19.2 11-6 13-3 14-10 16-3 17-6 18-9 19-11 21-0 22-0 23-0 23-11 24-10 25-8 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*24.0 10-3 11-10 13-3 14-6 15-8 16-9 17-9 18-9 19-8 20-6 21-5 22-2 23-0 23-9 24-5 25-2 25-10 26-0* 26-0* 26-0* 26-0* 26-0*12.0 0.15 0.24 0.33 0.44 0.55 0.67 0.80 0.94 1.09 1.24 1.40 1.56 1.73 1.91 2.09 2.28 2.47 2.60 2.60 2.60 2.60 2.6016.0 0.13 0.21 0.29 0.38 0.48 0.58 0.70 0.82 0.94 1.07 1.21 1.35 1.50 1.65 1.81 1.97 2.14 2.31 2.48 2.60 2.60 2.60E19.2 0.12 0.19 0.26 0.35 0.44 0.53 0.64 0.75 0.86 0.98 1.10 1.23 1.37 1.51 1.65 1.80 1.95 2.11 2.27 2.43 2.60 2.6024.0 0.11 0.17 0.24 0.31 0.39 0.48 0.57 0.67 0.77 0.88 0.99 1.10 1.22 1.35 1.48 1.61 1.75 1.89 2.03 2.18 2.33 2.48Note: The required modulus of elasticity, E, in 1,000,000 pounds per square inch is shown at the bottom of each table, is limited to 2.6 million pounds per square inch, and is applicable to all lumber sizesshown.* Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.†Spans are controlled by maximum E value of 2.6 million psi.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-53Table 7.9 Rafters With L/180 Deflection LimitationDesign CriteriaDeflection: For 20 psf live loadLimited to span in inches divided by 180Strength: Live load of 20 psf plus dead load of 10 psf determines the required bending design valueRafterSize Spacing Bending Design Value, F b, (psi)(in.) (in.) 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 300012.0 3-8 4-6 5-3 5-10 6-5 6-11 7-5 7-10 8-3 8-8 9-0 9-5 9-9 10-1 10-5 10-9 11-1 11-4 11-8 11-11 12-3 12-6 12-9 † 12-9 † 12-9 † 12-9 † 12-9 † 12-9 † 12-9 †16.0 3-2 3-11 4-6 5-1 5-6 6-0 6-5 6-9 7-2 7-6 7-10 8-2 8-5 8-9 9-0 9-4 9-7 9-10 10-1 10-4 10-7 10-10 11-1 11-4 11-6 11-7 † 11-7 † 11-7 † 11-7 †19.2 2-11 3-7 4-1 4-7 5-1 5-5 5-10 6-2 6-6 6-10 7-2 7-5 7-9 8-0 8-3 8-6 8-9 9-0 9-3 9-5 9-8 9-11 10-1 10-4 10-6 10-910-11 † 10-11 † 10-11 †2 × 424.0 2-7 3-2 3-8 4-1 4-6 4-11 5-3 5-6 5-10 6-1 6-5 6-8 6-11 7-2 7-5 7-7 7-10 8-0 8-3 8-5 8-8 8-10 9-0 9-3 9-5 9-7 9-9 9-11 10-112.0 5-10 7-1 8-2 9-2 10-0 10-10 11-7 12-4 13-0 13-7 14-2 14-9 15-4 15-11 16-5 16-11 17-5 17-10 18-4 18-9 19-3 19-8 20-0 † 20-0 † 20-0 † 20-0 † 20-0 † 20-0 † 20-0 †16.0 5-0 6-2 7-1 7-11 8-8 9-5 10-0 10-8 11-3 11-9 12-4 12-10 13-3 13-9 14-2 14-8 15-1 15-6 15-11 16-3 16-8 17-0 17-5 17-9 18-1 18-2 † 18-2 † 18-2 † 18-2 †19.2 4-7 5-7 6-6 7-3 7-11 8-7 9-2 9-9 10-3 10-9 11-3 11-8 12-2 12-7 13-0 13-4 13-9 14-2 14-6 14-10 15-2 15-7 15-11 16-2 16-6 16-10 17-1 † 17-1 † 17-1 †2 × 624.0 4-1 5-0 5-10 6-6 7-1 7-8 8-2 8-8 9-2 9-7 10-0 10-5 10-10 11-3 11-7 11-11 12-4 12-8 13-0 13-3 13-7 13-11 14-2 14-6 14-9 15-1 15-4 15-7 15-1112.0 7-8 9-4 10-10 12-1 13-3 14-4 15-3 16-3 17-1 17-11 18-9 19-6 20-3 20-11 21-7 22-3 22-11 23-7 24-2 24-9 25-4 25-11 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 6-7 8-1 9-4 10-6 11-6 12-5 13-3 14-0 14-10 15-6 16-3 16-10 17-6 18-1 18-9 19-4 19-10 20-5 20-11 21-5 21-11 22-5 22-11 23-5 23-10 24-0 † 24-0 † 24-0 † 24-0 †2 × 819.2 6-0 7-5 8-7 9-7 10-6 11-4 12-1 12-10 13-6 14-2 14-10 15-5 16-0 16-7 17-1 17-7 18-1 18-7 19-1 19-7 20-0 20-6 20-11 21-4 21-9 22-2 22-7 † 22-7 † 22-7 †24.0 5-5 6-7 7-8 8-7 9-4 10-1 10-10 11-6 12-1 12-8 13-3 13-9 14-4 14-10 15-3 15-9 16-3 16-8 17-1 17-6 17-11 18-4 18-9 19-1 19-6 19-10 20-3 20-7 20-1112.0 9-9 11-11 13-9 15-5 16-11 18-3 19-6 20-8 21-10 22-10 23-11 24-10 25-10 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*16.0 8-5 10-4 11-11 13-4 14-8 15-10 16-11 17-11 18-11 19-10 20-8 21-6 22-4 23-1 23-11 24-7 25-4 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*19.2 7-8 9-5 10-11 12-2 13-4 14-5 15-5 16-4 17-3 18-1 18-11 19-8 20-5 21-1 21-10 22-6 23-1 23-9 24-5 25-0 25-7 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0* 26-0*24.0 6-11 8-5 9-9 10-11 11-11 12-11 13-9 14-8 15-5 16-2 16-11 17-7 18-3 18-11 19-6 20-1 20-8 21-3 21-10 22-4 22-10 23-5 23-11 24-5 24-10 25-4 25-10 26-0* 26-0*2 × 1012.0 0.06 0.12 0.18 0.25 0.33 0.41 0.51 0.60 0.71 0.82 0.93 1.05 1.17 1.30 1.43 1.57 1.71 1.85 2.00 2.15 2.31 2.47 2.60 2.60 2.60 2.60 2.60 2.60 2.6016.0 0.05 0.10 0.15 0.22 0.28 0.36 0.44 0.52 0.61 0.71 0.80 0.91 1.01 1.13 1.24 1.36 1.48 1.60 1.73 1.86 2.00 2.14 2.28 2.42 2.57 2.60 2.60 2.60 2.6019.2 0.05 0.09 0.14 0.20 0.26 0.33 0.40 0.48 0.56 0.64 0.73 0.83 0.93 1.03 1.13 1.24 1.35 1.46 1.58 1.70 1.82 1.95 2.08 2.21 2.34 2.48 2.60 2.60 2.6024.0 0.04 0.08 0.13 0.18 0.23 0.29 0.36 0.43 0.50 0.58 0.66 0.74 0.83 0.92 1.01 1.11 1.21 1.31 1.41 1.52 1.63 1.74 1.86 1.98 2.10 2.22 2.34 2.47 2.60ENote: The required modulus of elasticity, E, in 1,000,000 pounds per square inch is shown at the bottom of each table, is limited to 2.6 million pounds per square inch, and is applicable to all lumber sizesshown.*Spans are shown in feet-inches and are limited to 26 feet. Check sources of supply for availability of lumber in lengths greater than 20'.†Spans are controlled by maximum E value of 2.6 million psi.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-54 SPAN TABLES7.2 Species Specific Span TablesThe tables in this Section provide joist and rafter spansfor design criteria listed at the top of each table. Thesespan tables are based on the most commonly availablesoftwood lumber species used in construction and include:• Douglas Fir-Larch• Hem-Fir• Southern Pine• Spruce-Pine-FirTables have been developed for the following applications:Applications Live Load (psf) Dead Load (psf) Deflection Limit Table No.Floor joists 40 10 & 20 Span/360 7.10Ceiling joists 20 10 Span/240 7.11Rafters 20 10 & 20 Span/240 7.12AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-55Table 7.10Floor Joist Spans for Common Lumber Species(Residential Areas, Live Load = 40 psf, L/∆ = 360)∆Dead Load = 10 psfDead Load = 20 psf2x6 2x8 2x10 2x12 2x6 2x8 2x10 2x12Maximum Floor Joist SpansJoist Spacing Species and Grade (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.)12 in.16 in.19.2 in.24 in.Douglas Fir-Larch SS 11 - 4 15 - 0 19 - 1 23 - 3 11 - 4 15 - 0 19 - 1 23 - 3Douglas Fir-Larch #1 10 - 11 14 - 5 18 - 5 22 - 0 10 - 11 14 - 2 17 - 4 20 - 1Douglas Fir-Larch #2 10 - 9 14 - 2 18 - 0 20 - 11 10 - 8 13 - 6 16 - 5 19 - 1Douglas Fir-Larch #3 8 - 11 11 - 3 13 - 9 16 - 0 8 - 1 10 - 3 12 - 7 14 - 7Hem-Fir SS 10 - 9 14 - 2 18 - 0 21 - 11 10 - 9 14 - 2 18 - 0 21 - 11Hem-Fir #1 10 - 6 13 - 10 17 - 8 21 - 6 10 - 6 13 - 10 17 - 1 19 - 10Hem-Fir #2 10 - 0 13 - 2 16 - 10 20 - 4 10 - 0 13 - 1 16 - 0 18 - 6Hem-Fir #3 8 - 8 11 - 0 13 - 5 15 - 7 7 - 11 10 - 0 12 - 3 14 - 3Southern Pine SS 11 - 2 14 - 8 18 - 9 22 - 10 11 - 2 14 - 8 18 - 9 22 - 10Southern Pine #1 10 - 11 14 - 5 18 - 5 22 - 5 10 - 11 14 - 5 18 - 5 22 - 5Southern Pine #2 10 - 9 14 - 2 18 - 0 21 - 9 10 - 9 14 - 2 16 - 11 19 - 10Southern Pine #3 9 - 4 11 - 11 14 - 0 16 - 8 8 - 6 10 - 10 12 - 10 15 - 3Spruce-Pine Fir SS 10 - 6 13 - 10 17 - 8 21 - 6 10 - 6 13 - 10 17 - 8 21 - 6Spruce-Pine Fir #1 10 - 3 13 - 6 17 - 3 20 - 7 10 - 3 13 - 3 16 - 3 18 - 10Spruce-Pine Fir #2 10 - 3 13 - 6 17 - 3 20 - 7 10 - 3 13 - 3 16 - 3 18 - 10Spruce-Pine Fir #3 8 - 8 11 - 0 13 - 5 15 - 7 7 - 11 10 - 0 12 - 3 14 - 3Douglas Fir-Larch SS 10 - 4 13 - 7 17 - 4 21 - 1 10 - 4 13 - 7 17 - 4 21 - 1Douglas Fir-Larch #1 9 - 11 13 - 1 16 - 5 19 - 1 9 - 8 12 - 4 15 - 0 17 - 5Douglas Fir-Larch #2 9 - 9 12 - 9 15 - 7 18 - 1 9 - 3 11 - 8 14 - 3 16 - 6Douglas Fir-Larch #3 7 - 8 9 - 9 11 - 11 13 - 10 7 - 0 8 - 11 10 - 11 12 - 7Hem-Fir SS 9 - 9 12 - 10 16 - 5 19 - 11 9 - 9 12 - 10 16 - 5 19 - 11Hem-Fir #1 9 - 6 12 - 7 16 - 0 18 - 10 9 - 6 12 - 2 14 - 10 17 - 2Hem-Fir #2 9 - 1 12 - 0 15 - 2 17 - 7 8 - 11 11 - 4 13 - 10 16 - 1Hem-Fir #3 7 - 6 9 - 6 11 - 8 13 - 6 6 - 10 8 - 8 10 - 7 12 - 4Southern Pine SS 10 - 2 13 - 4 17 - 0 20 - 9 10 - 2 13 - 4 17 - 0 20 - 9Southern Pine #1 9 - 11 13 - 1 16 - 9 20 - 4 9 - 11 13 - 1 16 - 4 19 - 6Southern Pine #2 9 - 9 12 - 10 16 - 1 18 - 10 9 - 6 12 - 4 14 - 8 17 - 2Southern Pine #3 8 - 1 10 - 3 12 - 2 14 - 6 7 - 4 9 - 5 11 - 1 13 - 2Spruce-Pine Fir SS 9 - 6 12 - 7 16 - 0 19 - 6 9 - 6 12 - 7 16 - 0 19 - 6Spruce-Pine Fir #1 9 - 4 12 - 3 15 - 5 17 - 10 9 - 1 11 - 6 14 - 1 16 - 3Spruce-Pine Fir #2 9 - 4 12 - 3 15 - 5 17 - 10 9 - 1 11 - 6 14 - 1 16 - 3Spruce-Pine Fir #3 7 - 6 9 - 6 11 - 8 13 - 6 6 - 10 8 - 8 10 - 7 12 - 4Douglas Fir-Larch SS 9 - 8 12 - 10 16 - 4 19 - 10 9 - 8 12 - 10 16 - 4 19 - 6Douglas Fir-Larch #1 9 - 4 12 - 4 15 - 0 17 - 5 8 - 10 11 - 3 13 - 8 15 - 11Douglas Fir-Larch #2 9 - 2 11 - 8 14 - 3 16 - 6 8 - 5 10 - 8 13 - 0 15 - 1Douglas Fir-Larch #3 7 - 0 8 - 11 10 - 11 12 - 7 6 - 5 8 - 2 9 - 11 11 - 6Hem-Fir SS 9 - 2 12 - 1 15 - 5 18 - 9 9 - 2 12 - 1 15 - 5 18 - 9Hem-Fir #1 9 - 0 11 - 10 14 - 10 17 - 2 8 - 9 11 - 1 13 - 6 15 - 8Hem-Fir #2 8 - 7 11 - 3 13 - 10 16 - 1 8 - 2 10 - 4 12 - 8 14 - 8Hem-Fir #3 6 - 10 8 - 8 10 - 7 12 - 4 6 - 3 7 - 11 9 - 8 11 - 3Southern Pine SS 9 - 6 12 - 7 16 - 0 19 - 6 9 - 6 12 - 7 16 - 0 19 - 6Southern Pine #1 9 - 4 12 - 4 15 - 9 19 - 2 9 - 4 12 - 4 14 - 11 17 - 9Southern Pine #2 9 - 2 12 - 1 14 - 8 17 - 2 8 - 8 11 - 3 13 - 5 15 - 8Southern Pine #3 7 - 4 9 - 5 11 - 1 13 - 2 6 - 9 8 - 7 10 - 1 12 - 1Spruce-Pine Fir SS 9 - 0 11 - 10 15 - 1 18 - 4 9 - 0 11 - 10 15 - 1 17 - 9Spruce-Pine Fir #1 8 - 9 11 - 6 14 - 1 16 - 3 8 - 3 10 - 6 12 - 10 14 - 10Spruce-Pine Fir #2 8 - 9 11 - 6 14 - 1 16 - 3 8 - 3 10 - 6 12 - 10 14 - 10Spruce-Pine Fir #3 6 - 10 8 - 8 10 - 7 12 - 4 6 - 3 7 - 11 9 - 8 11 - 3Douglas Fir-Larch SS 9 - 0 11 - 11 15 - 2 18 - 5 9 - 0 11 - 11 15 - 0 17 - 5Douglas Fir-Larch #1 8 - 8 11 - 0 13 - 5 15 - 7 7 - 11 10 - 0 12 - 3 14 - 3Douglas Fir-Larch #2 8 - 3 10 - 5 12 - 9 14 - 9 7 - 6 9 - 6 11 - 8 13 - 6Douglas Fir-Larch #3 6 - 3 8 - 0 9 - 9 11 - 3 5 - 9 7 - 3 8 - 11 10 - 4Hem-Fir SS 8 - 6 11 - 3 14 - 4 17 - 5 8 - 6 11 - 3 14 - 4 16 - 10Hem-Fir #1 8 - 4 10 - 10 13 - 3 15 - 5 7 - 10 9 - 11 12 - 1 14 - 0Hem-Fir #2 7 - 11 10 - 2 12 - 5 14 - 4 7 - 4 9 - 3 11 - 4 13 - 1Hem-Fir #3 6 - 2 7 - 9 9 - 6 11 - 0 5 - 7 7 - 1 8 - 8 10 - 1Southern Pine SS 8 - 10 11 - 8 14 - 11 18 - 1 8 - 10 11 - 8 14 - 11 18 - 1Southern Pine #1 8 - 8 11 - 5 14 - 7 17 - 5 8 - 8 11 - 3 13 - 4 15 - 11Southern Pine #2 8 - 6 11 - 0 13 - 1 15 - 5 7 - 9 10 - 0 12 - 0 14 - 0Southern Pine #3 6 - 7 8 - 5 9 - 11 11 - 10 6 - 0 7 - 8 9 - 1 10 - 9Spruce-Pine Fir SS 8 - 4 11 - 0 14 - 0 17 - 0 8 - 4 11 - 0 13 - 8 15 - 11Spruce-Pine Fir #1 8 - 1 10 - 3 12 - 7 14 - 7 7 - 5 9 - 5 11 - 6 13 - 4Spruce-Pine Fir #2 8 - 1 10 - 3 12 - 7 14 - 7 7 - 5 9 - 5 11 - 6 13 - 4Spruce-Pine Fir #3 6 - 2 7 - 9 9 - 6 11 - 0 5 - 7 7 - 1 8 - 8 10 - 1Check sources for availability of lumber in lengths greater than 20 feet.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-56 SPAN TABLESTable 7.11TABLE 3.25BCeiling CEILING Joist JOIST Spans SPANS for Common FOR COMMON Lumber LUMBER Species SPECIES(Uninhabitable Attics With Limited Storage, Live Load = 20 psf, L/∆ = 240)(Uninhabitable Attics Without Storage, Live Load = 20psf, L/∆=240)Dead Load = 10 psf2x4 2x6 2x8 2x10Maximum Ceiling Joist Spans 1Joist Spacing Species and Grade(ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.)Douglas Fir-Larch SS 10 - 5 16 - 4 21 - 7 *Douglas Fir-Larch #1 10 - 0 15 - 9 20 - 1 24 - 6Douglas Fir-Larch #2 9 - 10 15 - 0 19 - 1 23 - 3Douglas Fir-Larch #3 7 - 10 11 - 6 14 - 7 17 - 9Hem-Fir SS 9 - 10 15 - 6 20 - 5 *Hem-Fir #1 9 - 8 15 - 2 19 - 10 24 - 3Hem-Fir #2 9 - 2 14 - 5 18 - 6 22 - 712 in.Hem-Fir #3 7 - 8 11 - 2 14 - 2 17 - 4Southern Pine SS 10 - 3 16 - 1 21 - 2 *Southern Pine #1 10 - 0 15 - 9 20 - 10 *Southern Pine #2 9 - 10 15 - 6 20 - 1 24 - 0Southern Pine #3 8 - 2 12 - 0 15 - 4 18 - 1Spruce-Pine Fir SS 9 - 8 15 - 2 19 - 11 25 - 5Spruce-Pine Fir #1 9 - 5 14 - 9 18 - 9 22 - 11Spruce-Pine Fir #2 9 - 5 14 - 9 18 - 9 22 - 11Spruce-Pine Fir #3 7 - 8 11 - 2 14 - 2 17 - 4Douglas Fir-Larch SS 9 - 6 14 - 11 19 - 7 25 - 0Douglas Fir-Larch #1 9 - 1 13 - 9 17 - 5 21 - 3Douglas Fir-Larch #2 8 - 11 13 - 0 16 - 6 20 - 2Douglas Fir-Larch #3 6 - 10 9 - 11 12 - 7 15 - 5Hem-Fir SS 8 - 11 14 - 1 18 - 6 23 - 8Hem-Fir #1 8 - 9 13 - 7 17 - 2 21 - 0Hem-Fir #2 8 - 4 12 - 8 16 - 0 19 - 7Hem-Fir #3 6 - 8 9 - 8 12 - 4 15 - 016 in.Southern Pine SS 9 - 4 14 - 7 19 - 3 24 - 7Southern Pine #1 9 - 1 14 - 4 18 - 11 23 - 1Southern Pine #2 8 - 11 13 - 6 17 - 5 20 - 9Southern Pine #3 7 - 1 10 - 5 13 - 3 15 - 8Spruce-Pine Fir SS 8 - 9 13 - 9 18 - 2 23 - 1Spruce-Pine Fir #1 8 - 7 12 - 10 16 - 3 19 - 10Spruce-Pine Fir #2 8 - 7 12 - 10 16 - 3 19 - 10Spruce-Pine Fir #3 6 - 8 9 - 8 12 - 4 15 - 0Douglas Fir-Larch SS 8 - 11 14 - 0 18 - 5 23 - 7Douglas Fir-Larch #1 8 - 7 12 - 6 15 - 10 19 - 5Douglas Fir-Larch #2 8 - 2 11 - 11 15 - 1 18 - 5Douglas Fir-Larch #3 6 - 2 9 - 1 11 - 6 14 - 1Hem-Fir SS 8 - 5 13 - 3 17 - 5 22 - 3Hem-Fir #1 8 - 3 12 - 4 15 - 8 19 - 2Hem-Fir #2 7 - 10 11 - 7 14 - 8 17 - 1019.2 in.Hem-Fir #3 6 - 1 8 - 10 11 - 3 13 - 8Southern Pine SS 8 - 9 13 - 9 18 - 2 23 - 1Southern Pine #1 8 - 7 13 - 6 17 - 9 21 - 1Southern Pine #2 8 - 5 12 - 3 15 - 10 18 - 11Southern Pine #3 6 - 5 9 - 6 12 - 1 14 - 4Spruce-Pine Fir SS 8 - 3 12 - 11 17 - 1 21 - 8Spruce-Pine Fir #1 8 - 0 11 - 9 14 - 10 18 - 2Spruce-Pine Fir #2 8 - 0 11 - 9 14 - 10 18 - 2Spruce-Pine Fir #3 6 - 1 8 - 10 11 - 3 13 - 8Douglas Fir-Larch SS 8 - 3 13 - 0 17 - 2 21 - 3Douglas Fir-Larch #1 7 - 8 11 - 2 14 - 2 17 - 4Douglas Fir-Larch #2 7 - 3 10 - 8 13 - 6 16 - 5Douglas Fir-Larch #3 5 - 7 8 - 1 10 - 3 12 - 7Hem-Fir SS 7 - 10 12 - 3 16 - 2 20 - 6Hem-Fir #1 7 - 7 11 - 1 14 - 0 17 - 1Hem-Fir #2 7 - 1 10 - 4 13 - 1 16 - 024 in.Hem-Fir #3 5 - 5 7 - 11 10 - 0 12 - 3Southern Pine SS 8 - 1 12 - 9 16 - 10 21 - 6Southern Pine #1 8 - 0 12 - 6 15 - 10 18 - 10Southern Pine #2 7 - 8 11 - 0 14 - 2 16 - 11Southern Pine #3 5 - 9 8 - 6 10 - 10 12 - 10Spruce-Pine Fir SS 7 - 8 12 - 0 15 - 10 19 - 5Spruce-Pine Fir #1 7 - 2 10 - 6 13 - 3 16 - 3Spruce-Pine Fir #2 7 - 2 10 - 6 13 - 3 16 - 3Spruce-Pine Fir #3 5 - 5 7 - 11 10 - 0 12 - 31*Bracing shall be provided in accordance with 3.3.1.4.Spans are limited to 26 feet in length. Check sources for availability of lumber in lengths greater than 20feet.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-57Table 7.12Rafter Spans for Common TABLE Lumber 3.26B Species(Ceiling Attached to Rafters,RAFTERLiveSPANSLoadFOR= 2020psf,PSFL/∆LIVE= 240)LOAD(Ceiling Attached to Rafters, L/∆=240)Dead Load = 10 psfDead Load = 20 psf2x4 2x6 2x8 2x10 2x12 2x4 2x6 2x8 2x10 2x12Maximum Rafter Spans 1,2,3Joist Spacing Species and Grade (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.) (ft.-in.)12 in.16 in.19.2 in.24 in.*Douglas Fir-Larch SS 10 - 5 16 - 4 21 - 7 * * 10 - 5 16 - 4 21 - 7 * *Douglas Fir-Larch #1 10 - 0 15 - 9 20 - 10 * * 10 - 0 15 - 4 19 - 5 23 - 9 *Douglas Fir-Larch #2 9 - 10 15 - 6 20 - 5 * * 9 - 10 14 - 7 18 - 5 22 - 6 *Douglas Fir-Larch #3 8 - 9 12 - 10 16 - 3 19 - 10 23 - 0 7 - 7 11 - 1 14 - 1 17 - 2 19 - 11Hem-Fir SS 9 - 10 15 - 6 20 - 5 * * 9 - 10 15 - 6 20 - 5 * *Hem-Fir #1 9 - 8 15 - 2 19 - 11 25 - 5 * 9 - 8 15 - 2 19 - 2 23 - 5 *Hem-Fir #2 9 - 2 14 - 5 19 - 0 24 - 3 * 9 - 2 14 - 2 17 - 11 21 - 11 25 - 5Hem-Fir #3 8 - 7 12 - 6 15 - 10 19 - 5 22 - 6 7 - 5 10 - 10 13 - 9 16 - 9 19 - 6Southern Pine SS 10 - 3 16 - 1 21 - 2 * * 10 - 3 16 - 1 21 - 2 * *Southern Pine #1 10 - 0 15 - 9 20 - 10 * * 10 - 0 15 - 9 20 - 10 25 - 10 *Southern Pine #2 9 - 10 15 - 6 20 - 5 * * 9 - 10 15 - 1 19 - 5 23 - 2 *Southern Pine #3 9 - 1 13 - 6 17 - 2 20 - 3 24 - 1 7 - 11 11 - 8 14 - 10 17 - 6 20 - 11Spruce-Pine Fir SS 9 - 8 15 - 2 19 - 11 25 - 5 * 9 - 8 15 - 2 19 - 11 25 - 5 *Spruce-Pine Fir #1 9 - 5 14 - 9 19 - 6 24 - 10 * 9 - 5 14 - 4 18 - 2 22 - 3 25 - 9Spruce-Pine Fir #2 9 - 5 14 - 9 19 - 6 24 - 10 * 9 - 5 14 - 4 18 - 2 22 - 3 25 - 9Spruce-Pine Fir #3 8 - 7 12 - 6 15 - 10 19 - 5 22 - 6 7 - 5 10 - 10 13 - 9 16 - 9 19 - 6Douglas Fir-Larch SS 9 - 6 14 - 11 19 - 7 25 - 0 * 9 - 6 14 - 11 19 - 7 25 - 0 *Douglas Fir-Larch #1 9 - 1 14 - 4 18 - 11 23 - 9 * 9 - 1 13 - 3 16 - 10 20 - 7 23 - 10Douglas Fir-Larch #2 8 - 11 14 - 1 18 - 5 22 - 6 * 8 - 7 12 - 7 16 - 0 19 - 6 22 - 7Douglas Fir-Larch #3 7 - 7 11 - 1 14 - 1 17 - 2 19 - 11 6 - 7 9 - 8 12 - 2 14 - 11 17 - 3Hem-Fir SS 8 - 11 14 - 1 18 - 6 23 - 8 * 8 - 11 14 - 1 18 - 6 23 - 8 *Hem-Fir #1 8 - 9 13 - 9 18 - 2 23 - 1 * 8 - 9 13 - 1 16 - 7 20 - 4 23 - 7Hem-Fir #2 8 - 4 13 - 1 17 - 3 21 - 11 25 - 5 8 - 4 12 - 3 15 - 6 19 - 0 22 - 0Hem-Fir #3 7 - 5 10 - 10 13 - 9 16 - 9 19 - 6 6 - 5 9 - 5 11 - 11 14 - 6 16 - 10Southern Pine SS 9 - 4 14 - 7 19 - 3 24 - 7 * 9 - 4 14 - 7 19 - 3 24 - 7 *Southern Pine #1 9 - 1 14 - 4 18 - 11 24 - 1 * 9 - 1 14 - 4 18 - 10 22 - 4 *Southern Pine #2 8 - 11 14 - 1 18 - 6 23 - 2 * 8 - 11 13 - 0 16 - 10 20 - 1 23 - 7Southern Pine #3 7 - 11 11 - 8 14 - 10 17 - 6 20 - 11 6 - 10 10 - 1 12 - 10 15 - 2 18 - 1Spruce-Pine Fir SS 8 - 9 13 - 9 18 - 2 23 - 1 * 8 - 9 13 - 9 18 - 2 23 - 0 *Spruce-Pine Fir #1 8 - 7 13 - 5 17 - 9 22 - 3 25 - 9 8 - 6 12 - 5 15 - 9 19 - 3 22 - 4Spruce-Pine Fir #2 8 - 7 13 - 5 17 - 9 22 - 3 25 - 9 8 - 6 12 - 5 15 - 9 19 - 3 22 - 4Spruce-Pine Fir #3 7 - 5 10 - 10 13 - 9 16 - 9 19 - 6 6 - 5 9 - 5 11 - 11 14 - 6 16 - 10Douglas Fir-Larch SS 8 - 11 14 - 0 18 - 5 23 - 7 * 8 - 11 14 - 0 18 - 5 23 - 0 *Douglas Fir-Larch #1 8 - 7 13 - 6 17 - 9 21 - 8 25 - 2 8 - 4 12 - 2 15 - 4 18 - 9 21 - 9Douglas Fir-Larch #2 8 - 5 13 - 3 16 - 10 20 - 7 23 - 10 7 - 10 11 - 6 14 - 7 17 - 10 20 - 8Douglas Fir-Larch #3 6 - 11 10 - 2 12 - 10 15 - 8 18 - 3 6 - 0 8 - 9 11 - 2 13 - 7 15 - 9Hem-Fir SS 8 - 5 13 - 3 17 - 5 22 - 3 * 8 - 5 13 - 3 17 - 5 22 - 3 25 - 9Hem-Fir #1 8 - 3 12 - 11 17 - 1 21 - 5 24 - 10 8 - 2 12 - 0 15 - 2 18 - 6 21 - 6Hem-Fir #2 7 - 10 12 - 4 16 - 3 20 - 0 23 - 2 7 - 8 11 - 2 14 - 2 17 - 4 20 - 1Hem-Fir #3 6 - 9 9 - 11 12 - 7 15 - 4 17 - 9 5 - 10 8 - 7 10 - 10 13 - 3 15 - 5Southern Pine SS 8 - 9 13 - 9 18 - 2 23 - 1 * 8 - 9 13 - 9 18 - 2 23 - 1 *Southern Pine #1 8 - 7 13 - 6 17 - 9 22 - 8 * 8 - 7 13 - 6 17 - 2 20 - 5 24 - 4Southern Pine #2 8 - 5 13 - 3 17 - 5 21 - 2 24 - 10 8 - 4 11 - 11 15 - 4 18 - 4 21 - 6Southern Pine #3 7 - 3 10 - 8 13 - 7 16 - 0 19 - 1 6 - 3 9 - 3 11 - 9 13 - 10 16 - 6Spruce-Pine Fir SS 8 - 3 12 - 11 17 - 1 21 - 9 * 8 - 3 12 - 11 17 - 1 21 - 0 24 - 4Spruce-Pine Fir #1 8 - 1 12 - 8 16 - 7 20 - 3 23 - 6 7 - 9 11 - 4 14 - 4 17 - 7 20 - 4Spruce-Pine Fir #2 8 - 1 12 - 8 16 - 7 20 - 3 23 - 6 7 - 9 11 - 4 14 - 4 17 - 7 20 - 4Spruce-Pine Fir #3 6 - 9 9 - 11 12 - 7 15 - 4 17 - 9 5 - 10 8 - 7 10 - 10 13 - 3 15 - 5Douglas Fir-Larch SS 8 - 3 13 - 0 17 - 2 21 - 10 * 8 - 3 13 - 0 16 - 10 20 - 7 23 - 10Douglas Fir-Larch #1 8 - 0 12 - 6 15 - 10 19 - 5 22 - 6 7 - 5 10 - 10 13 - 9 16 - 9 19 - 6Douglas Fir-Larch #2 7 - 10 11 - 11 15 - 1 18 - 5 21 - 4 7 - 0 10 - 4 13 - 0 15 - 11 18 - 6Douglas Fir-Larch #3 6 - 2 9 - 1 11 - 6 14 - 1 16 - 3 5 - 4 7 - 10 10 - 0 12 - 2 14 - 1Hem-Fir SS 7 - 10 12 - 3 16 - 2 20 - 8 25 - 1 7 - 10 12 - 3 16 - 2 19 - 10 23 - 0Hem-Fir #1 7 - 8 12 - 0 15 - 8 19 - 2 22 - 2 7 - 4 10 - 9 13 - 7 16 - 7 19 - 3Hem-Fir #2 7 - 3 11 - 5 14 - 8 17 - 10 20 - 9 6 - 10 10 - 0 12 - 8 15 - 6 17 - 11Hem-Fir #3 6 - 1 8 - 10 11 - 3 13 - 8 15 - 11 5 - 3 7 - 8 9 - 9 11 - 10 13 - 9Southern Pine SS 8 - 1 12 - 9 16 - 10 21 - 6 * 8 - 1 12 - 9 16 - 10 21 - 6 *Southern Pine #1 8 - 0 12 - 6 16 - 6 21 - 1 25 - 2 8 - 0 12 - 3 15 - 4 18 - 3 21 - 9Southern Pine #2 7 - 10 12 - 3 15 - 10 18 - 11 22 - 2 7 - 5 10 - 8 13 - 9 16 - 5 19 - 3Southern Pine #3 6 - 5 9 - 6 12 - 1 14 - 4 17 - 1 5 - 7 8 - 3 10 - 6 12 - 5 14 - 9Spruce-Pine Fir SS 7 - 8 12 - 0 15 - 10 20 - 2 24 - 7 7 - 8 12 - 0 15 - 4 18 - 9 21 - 9Spruce-Pine Fir #1 7 - 6 11 - 9 14 - 10 18 - 2 21 - 0 6 - 11 10 - 2 12 - 10 15 - 8 18 - 3Spruce-Pine Fir #2 7 - 6 11 - 9 14 - 10 18 - 2 21 - 0 6 - 11 10 - 2 12 - 10 15 - 8 18 - 3Spruce-Pine Fir #3 6 - 1 8 - 10 11 - 3 13 - 8 15 - 11 5 - 3 7 - 8 9 - 9 11 - 10 13 - 9Spans are limited to 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.See footnotes 1-3.7SPAN TABLESAMERICAN FOREST & PAPER ASSOCIATION


L-58 SPAN TABLESFootnotes to Table 7.121Footnotes to Tables 3.26 A-HTabulated rafter spans assume ceiling joists or rafter ties are located at the bottom of the attic space to resist thrust. When ceilingjoists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given in the followingtable:Ceiling Height/Roof Ridge Height(H C /H R )Rafter Span Adjustment FactorsHRH RHCT TTT1/21/31/41/51/61/7.5 and less0.580.670.760.830.901.00Note: Lateral deflection of the rafter below the rafter ties may exceed 3/4 inch when rafter ties are located above onethirdof the ridge height, H r , or when H c is greater than 2 feet and may require additional consideration.2Tabulated rafter spans are based on roof dead and live loads. For Exposure B wind loads, the rafter span adjustment factor, whichshall not exceed 1.0, shall be multiplied times the rafter spans in Table 7.12. For Exposure C, rafter span adjustments shall bemultiplied by 0.8.RAFTER SPAN ADJUSTMENT FOR EXPOSURE B & C WIND LOADSThree Second Gust Wind Speed (mph)Roof Pitch0:121:122:123:124:125:126:127:128:129:1210:1211:1212:1285 90 100 110 120 130 140 150Rafter Span Adjustment Factor for Dual-Pitched Roofs1.18 1.10 0.97 0.87 0.79 0.73 0.67 0.621.17 1.09 0.97 0.87 0.79 0.72 0.67 0.621.16 1.08 0.96 0.86 0.78 0.72 0.66 0.611.34 1.25 1.10 0.98 0.89 0.81 0.75 0.701.30 1.21 1.07 0.96 0.87 0.79 0.73 0.681.24 1.15 1.02 0.91 0.83 0.76 0.70 0.651.17 1.09 0.96 0.86 0.78 0.72 0.66 0.621.52 1.41 1.23 1.09 0.98 0.90 0.82 0.761.42 1.31 1.15 1.02 0.92 0.84 0.78 0.721.32 1.22 1.07 0.96 0.87 0.79 0.73 0.681.22 1.14 1.00 0.89 0.81 0.74 0.68 0.631.14 1.06 0.93 0.84 0.76 0.69 0.64 0.591.06 0.98 0.87 0.78 0.71 0.65 0.60 0.563Tabulated rafter spans in Table 7.12 shall be permitted to be multiplied by the sloped roof adjustment factors in the followingtable, for roof pitches greater than 4:12:20 psf Live, 20 psf Dead 20 psf Live, 20 psf DeadRoof Pitch5:126:127:128:129:1210:1211:1212:12Adjustment Factor for Sloped Roofs1.02 1.011.04 1.031.05 1.041.07 1.051.10 1.071.12 1.081.14 1.101.17 1.12AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-59This page left blank intentionally.AMERICAN FOREST & PAPER ASSOCIATION


L-60SPAN TABLESAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-61SECTIONPROPERTIES8.1 Cross-Section Properties L-62Table 8.1 Section Properties of Standard Dressed (S4S)Sawn Lumber ..................................................... L-628AMERICAN FOREST & PAPER ASSOCIATION


L-62 SECTION PROPERTIES8.1 Cross-Section Properties 1 Approximate weight in pounds per linear foot (lb/ft)Table 8.1Section Properties of Standard Dressed (S4S) Sawn LumberX-X AXISY-Y AXISStandard Area Moment MomentNominal Dressed of Section of Section ofSize Size (S4S) Section Modulus Inertia Modulus Inertiaof piece when density of wood equals:b × d b × d A S x I x S y I yinches × inches in. 2 in. 3 in. 4 in. 3 in. 4 25 lb./ft. 3 30 lb./ft. 3 35 lb./ft. 3 40 lb./ft. 3 45 lb./ft. 3 50 lb./ft. 31 × 3 3/4 × 2-1/2 1.875 0.781 0.977 0.234 0.088 0.326 0.391 0.456 0.521 0.586 0.6511 × 4 3/4 × 3-1/2 2.625 1.531 2.680 0.328 0.123 0.456 0.547 0.638 0.729 0.820 0.9111 × 6 3/4 × 5-1/2 4.125 3.781 10.40 0.516 0.193 0.716 0.859 1.003 1.146 1.289 1.4321 × 8 3/4 × 7-1/4 5.438 6.570 23.82 0.680 0.255 0.944 1.133 1.322 1.510 1.699 1.8881 × 10 3/4 × 9-1/4 6.938 10.70 49.47 0.867 0.325 1.204 1.445 1.686 1.927 2.168 2.4091 × 12 3/4 × 11-1/4 8.438 15.82 88.99 1.055 0.396 1.465 1.758 2.051 2.344 2.637 2.9302 × 3 1-1/2 × 2-1/2 3.750 1.563 1.953 0.938 0.703 0.651 0.781 0.911 1.042 1.172 1.3022 × 4 1-1/2 × 3-1/2 5.250 3.063 5.359 1.313 0.984 0.911 1.094 1.276 1.458 1.641 1.8232 × 5 1-1/2 × 4-1/2 6.750 5.063 11.39 1.688 1.266 1.172 1.406 1.641 1.875 2.109 2.3442 × 6 1-1/2 × 5-1/2 8.250 7.563 20.80 2.063 1.547 1.432 1.719 2.005 2.292 2.578 2.8652 × 8 1-1/2 × 7-1/4 10.88 13.14 47.63 2.719 2.039 1.888 2.266 2.643 3.021 3.398 3.7762 × 10 1-1/2 × 9-1/4 13.88 21.39 98.93 3.469 2.602 2.409 2.891 3.372 3.854 4.336 4.8182 × 12 1-1/2 × 11-1/4 16.88 31.64 178.0 4.219 3.164 2.930 3.516 4.102 4.688 5.273 5.8592 × 14 1-1/2 × 13-1/4 19.88 43.89 290.8 4.969 3.727 3.451 4.141 4.831 5.521 6.211 6.9013 × 4 2-1/2 × 3-1/2 8.750 5.104 8.932 3.646 4.557 1.519 1.823 2.127 2.431 2.734 3.0383 × 5 2-1/2 × 4-1/2 11.25 8.438 18.98 4.688 5.859 1.953 2.344 2.734 3.125 3.516 3.9063 × 6 2-1/2 × 5-1/2 13.75 12.60 34.66 5.729 7.161 2.387 2.865 3.342 3.819 4.297 4.7743 × 8 2-1/2 × 7-1/4 18.13 21.90 79.39 7.552 9.440 3.147 3.776 4.405 5.035 5.664 6.2933 × 10 2-1/2 × 9-1/4 23.13 35.65 164.9 9.635 12.04 4.015 4.818 5.621 6.424 7.227 8.0303 × 12 2-1/2 × 11-1/4 28.13 52.73 296.6 11.72 14.65 4.883 5.859 6.836 7.813 8.789 9.7663 × 14 2-1/2 × 13-1/4 33.13 73.15 484.6 13.80 17.25 5.751 6.901 8.051 9.201 10.35 11.503 × 16 2-1/2 × 15-1/4 38.13 96.90 738.9 15.89 19.86 6.619 7.943 9.266 10.59 11.91 13.244 × 4 3-1/2 × 3-1/2 12.25 7.146 12.51 7.146 12.51 2.127 2.552 2.977 3.403 3.828 4.2534 × 5 3-1/2 × 4-1/2 15.75 11.81 26.58 9.188 16.08 2.734 3.281 3.828 4.375 4.922 5.4694 × 6 3-1/2 × 5-1/2 19.25 17.65 48.53 11.23 19.65 3.342 4.010 4.679 5.347 6.016 6.6844 × 8 3-1/2 × 7-1/4 25.38 30.66 111.1 14.80 25.90 4.405 5.286 6.168 7.049 7.930 8.8114 × 10 3-1/2 × 9-1/4 32.38 49.91 230.8 18.89 33.05 5.621 6.745 7.869 8.993 10.12 11.244 × 12 3-1/2 × 11-1/4 39.38 73.83 415.3 22.97 40.20 6.836 8.203 9.570 10.94 12.30 13.674 × 14 3-1/2 × 13-1/4 46.38 102.4 678.5 27.05 47.34 8.051 9.661 11.27 12.88 14.49 16.104 × 16 3-1/2 × 15-1/4 53.38 135.7 1034 31.14 54.49 9.266 11.12 12.97 14.83 16.68 18.535 × 5 4-1/2 × 4-1/2 20.25 15.19 34.17 15.19 34.17 3.516 4.219 4.922 5.625 6.328 7.0316 × 6 5-1/2 × 5-1/2 30.25 27.73 76.26 27.73 76.26 5.252 6.302 7.352 8.403 9.453 10.506 × 8 5-1/2 × 7-1/2 41.25 51.56 193.4 37.81 104.0 7.161 8.594 10.03 11.46 12.89 14.326 × 10 5-1/2 × 9-1/2 52.25 82.73 393.0 47.90 131.7 9.071 10.89 12.70 14.51 16.33 18.146 × 12 5-1/2 × 11-1/2 63.25 121.2 697.1 57.98 159.4 10.98 13.18 15.37 17.57 19.77 21.966 × 14 5-1/2 × 13-1/2 74.25 167.1 1128 68.06 187.2 12.89 15.47 18.05 20.63 23.20 25.786 × 16 5-1/2 × 15-1/2 85.25 220.2 1707 78.15 214.9 14.80 17.76 20.72 23.68 26.64 29.606 × 18 5-1/2 × 17-1/2 96.25 280.7 2456 88.23 242.6 16.71 20.05 23.39 26.74 30.08 33.426 × 20 5-1/2 × 19-1/2 107.3 348.6 3398 98.31 270.4 18.62 22.34 26.07 29.79 33.52 37.246 × 22 5-1/2 × 21-1/2 118.3 423.7 4555 108.4 298.1 20.53 24.64 28.74 32.85 36.95 41.066 × 24 5-1/2 × 23-1/2 129.3 506.2 5948 118.5 325.8 22.44 26.93 31.41 35.90 40.39 44.888 × 8 7-1/2 × 7-1/2 56.25 70.31 263.7 70.31 263.7 9.766 11.72 13.67 15.63 17.58 19.538 × 10 7-1/2 × 9-1/2 71.25 112.8 535.9 89.06 334.0 12.37 14.84 17.32 19.79 22.27 24.748 × 12 7-1/2 × 11-1/2 86.25 165.3 950.5 107.8 404.3 14.97 17.97 20.96 23.96 26.95 29.958 × 14 7-1/2 × 13-1/2 101.3 227.8 1538 126.6 474.6 17.58 21.09 24.61 28.13 31.64 35.168 × 16 7-1/2 × 15-1/2 116.3 300.3 2327 145.3 544.9 20.18 24.22 28.26 32.29 36.33 40.368 × 18 7-1/2 × 17-1/2 131.3 382.8 3350 164.1 615.2 22.79 27.34 31.90 36.46 41.02 45.578 × 20 7-1/2 × 19-1/2 146.3 475.3 4634 182.8 685.5 25.39 30.47 35.55 40.63 45.70 50.788 × 22 7-1/2 × 21-1/2 161.3 577.8 6211 201.6 755.9 27.99 33.59 39.19 44.79 50.39 55.998 × 24 7-1/2 × 23-1/2 176.3 690.3 8111 220.3 826.2 30.60 36.72 42.84 48.96 55.08 61.2010 × 10 9-1/2 × 9-1/2 90.25 142.9 678.8 142.9 678.8 15.67 18.80 21.94 25.07 28.20 31.3410 × 12 9-1/2 × 11-1/2 109.3 209.4 1204 173.0 821.7 18.97 22.76 26.55 30.35 34.14 37.9310 × 14 9-1/2 × 13-1/2 128.3 288.6 1948 203.1 964.5 22.27 26.72 31.17 35.63 40.08 44.5310 × 16 9-1/2 × 15-1/2 147.3 380.4 2948 233.1 1107 25.56 30.68 35.79 40.90 46.02 51.1310 × 18 9-1/2 × 17-1/2 166.3 484.9 4243 263.2 1250 28.86 34.64 40.41 46.18 51.95 57.7310 × 20 9-1/2 × 19-1/2 185.3 602.1 5870 293.3 1393 32.16 38.59 45.03 51.46 57.89 64.3210 × 22 9-1/2 × 21-1/2 204.3 731.9 7868 323.4 1536 35.46 42.55 49.64 56.74 63.83 70.9210 × 24 9-1/2 × 23-1/2 223.3 874.4 10270 353.5 1679 38.76 46.51 54.26 62.01 69.77 77.521Nominal and minimum dressed sizes are provided in Table 8.1 for boards, dimension lumber, and timbers. The table provides the corresponding sectionproperties about the primary (X-X) and secondary (Y-Y) axes for these products. This table is a reprint of Table 1B of the NDS Supplement.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-63Table 8.1 Section Properties of Standard Dressed (S4S) Sawn Lumber 1(Cont.)X-X AXISY-Y AXISStandard Area Moment MomentNominal Dressed of Section of Section ofApproximate weight in pounds per linear foot (lb/ft)Size Size (S4S) Section Modulus Inertia Modulus Inertiaof piece when density of wood equals:b × d b × d A S x I x S y I yinches × inches in. 2 in. 3 in. 4 in. 3 in. 4 25 lb./ft. 3 30 lb./ft. 3 35 lb./ft. 3 40 lb./ft. 3 45 lb./ft. 3 50 lb./ft. 312 × 12 11-1/2 × 11-1/2 132.3 253.5 1458 253.5 1458 22.96 27.55 32.14 36.74 41.33 45.9212 × 14 11-1/2 × 13-1/2 155.3 349.3 2358 297.6 1711 26.95 32.34 37.73 43.13 48.52 53.9112 × 16 11-1/2 × 15-1/2 178.3 460.5 3569 341.6 1964 30.95 37.14 43.32 49.51 55.70 61.8912 × 18 11-1/2 × 17-1/2 201.3 587.0 5136 385.7 2218 34.94 41.93 48.91 55.90 62.89 69.8812 × 20 11-1/2 × 19-1/2 224.3 728.8 7106 429.8 2471 38.93 46.72 54.51 62.29 70.08 77.8612 × 22 11-1/2 × 21-1/2 247.3 886.0 9524 473.9 2725 42.93 51.51 60.10 68.68 77.27 85.8512 × 24 11-1/2 × 23-1/2 270.3 1058 12440 518.0 2978 46.92 56.30 65.69 75.07 84.45 93.8414 × 14 13-1/2 × 13-1/2 182.3 410.1 2768 410.1 2768 31.64 37.97 44.30 50.63 56.95 63.2814 × 16 13-1/2 × 15-1/2 209.3 540.6 4189 470.8 3178 36.33 43.59 50.86 58.13 65.39 72.6614 × 18 13-1/2 × 17-1/2 236.3 689.1 6029 531.6 3588 41.02 49.22 57.42 65.63 73.83 82.0314 × 20 13-1/2 × 19-1/2 263.3 855.6 8342 592.3 3998 45.70 54.84 63.98 73.13 82.27 91.4114 × 22 13-1/2 × 21-1/2 290.3 1040 11180 653.1 4408 50.39 60.47 70.55 80.63 90.70 100.814 × 24 13-1/2 × 23-1/2 317.3 1243 14600 713.8 4818 55.08 66.09 77.11 88.13 99.14 110.216 × 16 15-1/2 × 15-1/2 240.3 620.6 4810 620.6 4810 41.71 50.05 58.39 66.74 75.08 83.4216 × 18 15-1/2 × 17-1/2 271.3 791.1 6923 700.7 5431 47.09 56.51 65.93 75.35 84.77 94.1816 × 20 15-1/2 × 19-1/2 302.3 982.3 9578 780.8 6051 52.47 62.97 73.46 83.96 94.45 104.916 × 22 15-1/2 × 21-1/2 333.3 1194 12840 860.9 6672 57.86 69.43 81.00 92.57 104.1 115.716 × 24 15-1/2 × 23-1/2 364.3 1427 16760 941.0 7293 63.24 75.89 88.53 101.2 113.8 126.518 × 18 17-1/2 × 17-1/2 306.3 893.2 7816 893.2 7816 53.17 63.80 74.44 85.07 95.70 106.318 × 20 17-1/2 × 19-1/2 341.3 1109 10810 995.3 8709 59.24 71.09 82.94 94.79 106.6 118.518 × 22 17-1/2 × 21-1/2 376.3 1348 14490 1097 9602 65.32 78.39 91.45 104.5 117.6 130.618 × 24 17-1/2 × 23-1/2 411.3 1611 18930 1199 10500 71.40 85.68 99.96 114.2 128.5 142.820 × 20 19-1/2 × 19-1/2 380.3 1236 12050 1236 12050 66.02 79.22 92.42 105.6 118.8 132.020 × 22 19-1/2 × 21-1/2 419.3 1502 16150 1363 13280 72.79 87.34 101.9 116.5 131.0 145.620 × 24 19-1/2 × 23-1/2 458.3 1795 21090 1489 14520 79.56 95.47 111.4 127.3 143.2 159.122 × 22 21-1/2 × 21-1/2 462.3 1656 17810 1656 17810 80.25 96.30 112.4 128.4 144.5 160.522 × 24 21-1/2 × 23-1/2 505.3 1979 23250 1810 19460 87.72 105.3 122.8 140.3 157.9 175.424 × 24 23-1/2 × 23-1/2 552.3 2163 25420 2163 25420 95.88 115.1 134.2 153.4 172.6 191.81Nominal and minimum dressed sizes are provided in Table 8.1 for boards, dimension lumber, and timbers. The table provides the corresponding sectionproperties about the primary (X-X) and secondary (Y-Y) axes for these products. This table is a reprint of Table 1B of the NDS Supplement.8SECTION PROPERTIESAMERICAN FOREST & PAPER ASSOCIATION


L-64SECTION PROPERTIESAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-65APPENDIXExample of Chapter 5 Capacity TableDevelopment L-66Tension Capacity Tables L-66Stud Wall Capacity Tables/ColumnCapacity Tables L-66Joist Capacity Tables L-67Beam Capacity Tables L-68AAMERICAN FOREST & PAPER ASSOCIATION


L-66 APPENDIXAppendix:Example of Chapter 5 Capacity TableDevelopment 1Tension Capacity TablesThe general design equation for tension members is:T¢³TwhereExample 1:T = tension force due to design loadsT′ = allowable tension capacitySpecies: Hem-FirApplication — tension memberSize: 2 x 6 (1.5 in. by 5.5 in.)Grade: 1650f-1.5E MSRF t′: 1,020 psiA: 8.25 in. 2Tension CapacityT′ = FA ′t== 8,415 lbs( 1, 020)( 8.25)Stud Wall Capacity Tables/Column Capacity TablesThe general design equation is:P ¢ ³ Pwhere:P = compressive force due to design loadsP′ = allowable compression capacityAxial CapacityP¢= C AF¢where:CPPc1 + αc ⎛ 1 + αc ⎞ αc= − ⎜ ⎟ −2c ⎝ 2c ⎠ cFcEα c =Fc*2andFcE=KcEE′l e / d2( )F* c= tabulated compression design value multipliedA = areaC Pby all applicable adjustment factors except C p= column stability factorF c′ = allowable parallel-to-grain compression designvalueE′ = allowable modulus of elasticityK cE= 0.3 for visually graded lumber= 0.384 for MEL= 0.418 for MSRc = 0.8 for solid sawn membersExample 2: Application — wall stud laterallysupported in the weak direction and axiallyloaded (prismatic column)Species: Southern PineFSize: 2 x 4 (1.5 in. by 3.5 in.) by 8'Grade: Stud (dry)cE=F c′ : 975 psiE′ : 1.4 x 10 6 psiA: 5.25 in. 2C D= 1.0K e= 1.0K E′cE( le/ d )20.3 × 1,400, 000=( 96/3.5)= 558 psiFcEα c =Fc*558=975= 0.57321Due to rounding, the calculated and tabulated values may differ.AMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL LUMBER SUPPLEMENTL-6721 + αc ⎛ 1 + αc ⎞ αcCP= − ⎜ ⎟ −2c ⎝ 2c ⎠ c1 + 0.573=−16 .= 0.483( 0.483)( 5.25)( 975)P ′ == 2,470 lb.Example 3:Species: Douglas Fir-Larch2⎛ 1 + 0.573⎞0.573⎜ ⎟ −⎝ 16 . ⎠ 080 .Application — Simple columnColumn Capacity — y-axisFcE=KcEE′( le/dy)0.3x1,600,000=2( 144/5.5)= 700 psiFcEαcy=Fc*700=1,000= 0.7002Size: 6 x 8 (5.5 in. by 7.5 in.) by 12 ft.Grade: No. 1 (dry)F cN: 1,000 psiEN: 1,600,000 psiA: 41.25 in 2Column Capacity — x-axisFcE==K E′cE2( le/dx)( 0.3)( 1,600,000)2( 144/7.5)= 1,302 psiFcEαcx=Fc*1,302.08=1,000= 1.30221 + αcy ⎛ 1 + αcy ⎞ αcyCPy= −c⎜⎝ c⎟ −2 2 ⎠ c1 + 0.700=−16 .= 0.5592⎛ 1 + 0.700⎞0.700⎜ ⎟ −⎝ 16 . ⎠ 080 .Joist Capacity TablesThe general design equation for flexural bending is:M¢³Mwhere( 0.559)( 41.25)( 1,000)P′x== 23, 059 lb.M = moment due to design loadsM′ = allowable moment capacityAAPPENDIX21 + αcx ⎛ 1 + αcx ⎞ αcxCPx= − ⎜ ⎟ −2c ⎝ 2c ⎠ c1 + 1.302=−16 .= 0.774( 0.774)( 41.25)( 1,000)P′x== 31,928 lb.2⎛ 1 + 1.302⎞1.302⎜ ⎟ −⎝ 16 . ⎠ 080 .The general design equation for flexural shear is:V ¢³ Vwhere:Example 4:V = shear force due to design loadsV′ = allowable shear capacitySpecies: Douglas Fir-LarchApplication — floor joistSize: 2 x 6 (1.5 in. by 5.5 in.)Grade: No. 2C F: 1.3 (size factor)AMERICAN FOREST & PAPER ASSOCIATION


L-68 APPENDIXC r: 1.15 (repetitive member factor)F b′: 900 psiF v′: 180 psiE: 1,600,000 psiA: 8.25 in. 2S: 7.56 in. 3I: 20.80 in. 4Moment CapacityCM′ r= FCCS ′b F r== 10,172lb.-in.( 900)( 1.3)( 1.15)( 7.56)Shear Capacity2V′ = F′vA ⎛ ⎜ ⎞3⎟⎝ ⎠⎛2⎞= ( 180)( 8.25)⎜ 3⎟⎝ ⎠= 990 lb.Flexural StiffnessEI = (1,600,000)(20.80) = 33 x 10 6 lb.-in. 2Beam Capacity TablesTabulated design values for beams are selected fromTable 4D of NDS Supplement.The general design equation for flexural bending is:M¢³MThe general design equation for flexural shear is:V ¢³ VwhereExample 5:V = shear force due to design loadsV′ = allowable shear capacitySpecies: Douglas Fir-LarchApplication — BeamSize: 6 x 12 (5.5 in. by 11.5 in.)Grade: No. 2F b′: 875 psiF v′: 170 psiE: 1,300,000 psiA: 63.25 in. 2S: 121.23 in. 3I: 697.07 in. 4Moment CapacityM′ = F′Sb= ( 875)( 121.23 )= 106, 076 lb.-in.Shear Capacity2V′ = F′vA ⎛ ⎜ ⎞3⎟⎝ ⎠⎛2⎞= ( 170)( 63.25)⎜ 3⎟⎝ ⎠= 7,168lb.Flexural Stiffnesswhere:M = moment due to design loadsM′ = allowable moment capacityEI = (1,300,000)(697.07) = 906 x 10 6 lb.-in. 2AMERICAN WOOD COUNCIL


SUPPLEMENTStructural GluedLaminated Timber<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION


SUPPLEMENTStructural GluedLaminated Timber<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>2001</strong>APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTPrefaceThis Supplement contains adjustment factors, dimensions,design capacities, allowable stresses and moduli ofelasticity and other properties required to design structuralglued laminated timber in the <strong>ASD</strong> format.The member capacity values tabulated in this supplementare to be used in conjunction with the designmethodologies provided in ANSI/AF&PA NDS-<strong>2001</strong>,National Design Specification ® (NDS ® ) for <strong>Wood</strong> Construction.The tabulated allowable values are to be used withinthe reference end-use conditions defined therein. Whenthe end-use conditions fall outside the range of the referenceconditions, the allowable values shall be adjusted bythe product of applicable adjustment factors provided inthis Supplement, and also as defined in ANSI/AF&PANDS-<strong>2001</strong>. For unusual end-use conditions, the designershould consult additional literature for possible further adjustments.This Supplement was developed by Engineered <strong>Wood</strong>Systems, a related corporation of APA - The Engineered<strong>Wood</strong> Association, phone (253) 565-6600, fax (253) 565-7265, e-mail help@apawood.org, or internet address http://www.apawood.org.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL WOOD FRAME GLUED CONSTRUCTION LAMINATED TIMBER MANUAL SUPPLEMENTTable of ContentsChapter/Title PageChapter/TitlePage4.11 Flat Use Factor, C fu1 Designer Flowchart .................................. GL-11.1 Flowchart5 Capacity SelectionTables ......................................................................................... GL-292 Introduction to StructuralGlued Laminated Timber ............ GL-32.1 Products Description2.2 Common Uses5.1 General5.2 Bending Capacity, M, and Shear Capacity, V5.3 Bending Stiffness, EI5.4 Tension Parallel to Grain Capacity, T5.5 Compression Parallel to Grain Capacity, P2.3 Appearance Classifications2.4 Availability6 Other Considerations ..................GL-553 Allowable Stress andStiffness ................................................................................ GL-73.1 General3.2 Allowable Stress and Modulus of6.1 General6.2 Specific Gravity6.3 Dimensional Changes Due to Moisture6.4 Dimensional Changes Due to Temperature6.5 Fire ConsiderationsElasticity3.3 Straight-Tapered End Cuts on theCompression Face3.4 Radial Tension and Compression3.5 Structural Glued Laminated Timber7 Load and Span Tables ................. GL-617.1 General7.2 Load-Span Tables for Selected BendingMembersCombinations Meeting Stress ClassRequirements8 Design Examples ........................................ GL-774 Design Adjustment8.1 General8.2 ExamplesFactors ................................................................................... GL-134.1 General9 Section Properties .............................. GL-794.2 Load Duration Factor, C D9.1 Cross Sectional Properties4.3 Wet Service Factor, C M4.4 Temperature Factor, C t4.5 Preservative Treatment4.6 Fire Retardant Treatment4.7 Beam Stability Factor, C L4.8 Column Stability Factor, C P4.9 Volume Factor, C V4.10 Curvature Factor, C cList of Tables2.1 Economical Spans for Glued LaminatedTimber Framing Systems ......................................................... GL-53.1 Design Values for Structural GluedLaminated Softwood Timber (Membersstressed primarily in bending) ............................................ GL-93.2 Design Values for Structural Glued LaminatedSoftwood Timber (Members stressedprimarily in axial tension or compression) ........GL-103.3 Allowable Properties and Moduli of Elasticityfor Glued Laminated Timber with TaperedCuts on Compression Face .................................................. GL-11APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENT3.4 Allowable Radial Stresses .................................................... GL-114.1 Load Duration Factor for Glued LaminatedTimber, C D ................................................................................................GL-144.2 Temperature Factor for Glued LaminatedTimber Exposed to Sustained ElevatedTemperature, C t ............................................ GL-144.3 Preservative Treatment Effect on GluedLaminated Timber ..........................................................................GL-154.4 Flat Use Factor, C fu .......................................................................GL-164.5 Volume Factor for Bending about X-X AxisWestern Species Glued Laminated Timber .....GL-174.6 Volume Factor for Bending about X-X AxisSouthern Pine Glued Laminated Timber ...........GL-235.1 Moment and Shear Capacities for Bendingabout X-X Axis (C D = 1.0, C V = 1.0)Western Species Glued Laminated Timber .....GL-315.2 Moment and Shear Capacities for Bendingabout X-X Axis (C D = 1.0, C V = 1.0)Southern Pine Glued Laminated Timber ...........GL-375.3 Stiffness for Bending about X-X AxisWestern Species Glued Laminated Timber .....GL-435.4 Stiffness for Bending about X-X AxisSouthern Pine Glued Laminated Timber ...........GL-496.1 Average Specific Gravity and WeightFactor ..............................................................................................................GL-566.2 Coefficient of Moisture Expansion, e ME , andFiber Saturation Point, FSP, for Solid<strong>Wood</strong>s .............................................................................................................GL-576.3 Coefficient of Thermal Expansion, e TE , forSolid <strong>Wood</strong>s ...........................................................................................GL-586.4 Minimum Depths at Which Selected BeamSizes Can Be Adopted for One-Hour FireRatings ..........................................................................................................GL-597.1 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species 24F-1.8EGlulam Roof Beams — Non-Snow Loads ......GL-647.2 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species 24F-1.8EGlulam Roof Beams — Snow Loads .....................GL-667.3 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species 24F-1.8EGlulam Floor Beams ...................................................................GL-687.4 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Roof Beams — Non-Snow Loads ......GL-707.5 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Roof Beams — Snow Loads .....................GL-727.6 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Floor Beams ...................................................................GL-749.1 Section Properties for Western SpeciesGlued Laminated Timber ......................................................GL-819.2 Section Properties for Southern PineGlued Laminated Timber ......................................................GL-87APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-11DESIGNERFLOWCHART1.1 Flowchart GL-2APA – The Engineered <strong>Wood</strong> Association


GL-2DESIGNER FLOWCHART1.1 FlowchartStructural Glued Laminated TimberDesign SupplementNoEnd-UseConditionsConsistent WithReferenceConditions a ?YesSelect a Trial Size bNoLoad-SpanCriteria Satisfied ?(Section 7)YesDetermine Required AllowableStresses and Modulus of Elasticity(Section 5)Use Load-Span Tables(Section 7)NoAdjusted Allowable Stresses> Applied Stresses ?NoYesNoCalculated Deflections ≤Deflection Criteria ?NoYesAccept The SizeaSee Section 4.bTables 3.1 and 3.2 provide design properties for various layup combinations. This informationcould be used in conjunction with Tables 5.1 through 5.4 to determine the trial size.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-3INTRODUCTIONTO STRUCTURALGLUEDLAMINATEDTIMBER22.1 Products Description GL-42.2 Common Uses GL-42.3 Appearance Classifications GL-52.4 Availability GL-6Table 2.1 Economical Spans for Glued LaminatedTimber Framing Systems................................. GL-5APA – The Engineered <strong>Wood</strong> Association


GL-4INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBER2.1 Products DescriptionStructural glued laminated timber (glulam) is a structuralmember glued up from suitably selected and preparedpieces of wood either in a straight or curved form with thegrain of all pieces parallel to the longitudinal axis of themember. The allowable stresses and capacities given inthis Supplement are applicable only to glued laminatedtimber members produced in accordance with <strong>American</strong>National Standard for <strong>Wood</strong> Products — Structural GluedLaminated Timber, ANSI/AITC A190.1.Glued laminated timber members are produced inlaminating plants by gluing together dry lumber, normallyof 2-inch or 1-inch nominal thickness, under controlledconditions of temperature and pressure. Members with awide variety of sizes, profiles, and lengths can be producedhaving superior characteristics of strength,serviceability, and appearance. Glued laminated timberbeams are manufactured with the strongest laminationson the bottom and top of the beam, where greatest tensionand compression stresses occur in bending. This allows amore efficient use of the lumber resource by placing highergrade lumber in zones that have higher stresses and lumberwith less structural quality in lower stressed zones.Glued laminated timber members are manufacturedfrom several softwood species, primarily Douglas Fir-Larch and Southern Pine, Hem-Fir, Spruce-Pine-Fir,Eastern Spruce, Western <strong>Wood</strong>s, Alaska Cedar, DurangoPine, and California Redwood. In addition, several hardwoodspecies, including Red Oak, Red Maple, and YellowPoplar, are also used. Standard glued laminated timbersizes are given in Section 9 of this Supplement. Any length,up to the maximum length permitted by transportation andhandling restrictions, is available.A glued laminated timber member can be manufacturedusing a single grade or multiple grades of lumber,depending on the intended use. In addition, a mixed-speciesglued laminated timber member is also possible. Whenthe member is intended to be primarily loaded either axiallyor in bending with the loads acting parallel to thewide faces of the laminations, a single grade combinationis recommended. On the other hand, a multiple grade combinationprovides better cost-effectiveness when themember is primarily loaded in bending due to loads appliedperpendicular to the wide faces of the laminations.On a multiple grade combination, a glued laminatedtimber member can be produced as either a balanced orunbalanced combination, depending on the geometricalarrangement of the laminations about the mid-depth ofthe member. As shown in Figure 2.1, a balanced combinationis symmetrical about the mid-depth, so both faceshave the same allowable bending stress. Unbalanced combinationsare asymmetrical and when used as a beam, theface with a lower allowable bending stress is stamped asTOP. The balanced combination is intended for use incontinuous or cantilevered over supports to provide equalcapacity in both positive and negative bending. Whereasthe unbalanced combination is primarily for use in simplespan applications, they can also be used for short cantileverapplications (cantilever less than 20% of the back span)or for continuous span applications when the design iscontrolled by shear or deflection.Figure 2.1No. 2DNo. 2No. 2No. 3No. 3No. 3No. 2No. 1Tension LamUnbalancedUnbalanced and BalancedLayup CombinationsTension LamNo. 1No. 2No. 3No. 3No. 3No. 2No. 1Tension LamBalanced2.2 Common UsesGlued laminated timber members can be used as primaryor secondary load-carrying components in structures.Table 2.1 lists economical spans for selected timber framingsystems using glued laminated timber members inbuildings. Other common uses of glued laminated timbermembers are for utility structures, pedestrian bridges, highwaybridges, railroad bridges, marine structures, noisebarriers, and towers. Table 2.1 may be used for preliminarydesign purposes to determine the economical spanranges for the selected framing systems. However, all systemsrequire a more extensive analysis for final design.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-5Table 2.1Economical Spans for Glued Laminated Timber Framing SystemsType of Framing SystemEconomical Spans (ft.)ROOFSimple Span BeamsStraight or slightly cambered 10 - 100Tapered, double tapered-pitched, or curved 25 - 105Cantilevered Beams (Main span) up to 90Continuous Beams (Interior spans) 10 - 50Girders 40 - 100Three-Hinged ArchesGothic 40 - 100Tudor 40 - 140A-Frame 20 - 100Three-centered, Parabolic, or Radial 40 - 250Two-Hinged ArchesRadial or Parabolic 50 - 200Trusses (4 or more ply chords)Flat or parallel chord 50 - 150Triangular or pitched 50 - 150Bowstring (continuous chord) 50 - 200Trusses (2 or 3 ply chords)Flat or parallel chord 20 - 75Triangular or pitched 20 - 75Tied arches 50 - 200Dome structures 200 - 500+FLOORSimple Span Beams 10 - 40Continuous Beams (Individual spans) 10 - 40HEADERSWindows and Doors < 10Garage Doors 9 - 182INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBER2.3 Appearance ClassificationsGlued laminated timber members are typically producedin four appearance classifications, Premium,Architectural, Industrial, and Framing classifications. Premiumand Architectural beams are higher in appearancequalities and are surfaced for a smooth finish ready forstaining or painting. Industrial classification beams arenormally used in concealed applications or in constructionwhere appearance is not important. Framingclassification beams are typically used for headers andother concealed applications in residential construction.Design values for glued laminated timber members areindependent of the appearance classifications.For more information concerning the detail descriptionof these appearance classifications and their typicaluse, refer to APA EWS Technical Note Y110 or AITC Standard110.APA – The Engineered <strong>Wood</strong> Association


GL-6INTRODUCTION TO STRUCTURAL GLUED LAMINATED TIMBER2.4 AvailabilityGlued laminated timber members are available in bothcustom and stock sizes. Custom beams are manufacturedto the specifications of a specific project, while stockbeams are made in common dimensions, shipped to distributionyards, and cut to length when the beam is ordered.Stock beams are available in virtually every major metropolitanareas. Although glued laminated timber memberscan be custom fabricated to provide a nearly infinite varietyof forms and sizes, the best economy is generallyrealized by using standard-size members as noted in Tables9.1 and 9.2. When in doubt, the designer is advised tocheck with the glued laminated timber suppliers or manufacturersconcerning the availability of a specific size gluedlaminated timber members prior to specification. The followingassociations are available for technical assistance:APA - The Engineered <strong>Wood</strong> Association and Engineered<strong>Wood</strong> Systems, a related corporation of APA7011 South 19th StreetTacoma, WA 98466Phone: (253) 565-6600Fax: (253) 565-7265<strong>American</strong> Institute of Timber Construction7012 South Revere Parkway, Suite 140Englewood, CO 80112Phone: (303) 792-9559Fax: (303) 792-0669APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-7ALLOWABLESTRESS ANDSTIFFNESS33.1 General GL-83.2 Allowable Stress and Modulus ofElasticity3.3 Straight-Tapered End Cuts on theCompression FaceGL-8GL-83.4 Radial Tension and Compression GL-113.5 Structural Glued Laminated TimberCombinations Meeting Stress ClassRequirementsGL-12Table 3.1 Design Values for Structural GluedLaminated Softwood Timber (Membersstressed primarily in bending)......................... GL-9Table 3.2 Design Values for Structural GluedLaminated Softwood Timber (Membersstressed primarily in axial tension orcompression) ................................................... GL-10Table 3.3 Allowable Properties and Moduli ofElasticity for Glued Laminated Timberwith Tapered Cuts on Compression Face ..... GL-11Table 3.4 Allowable Radial Stresses .............................. GL-11APA – The Engineered <strong>Wood</strong> Association


GL-8ALLOWABLE STRESS AND STIFFNESS3.1 GeneralThe allowable stresses and mean moduli of elasticityof glued laminated timber are affected by the layup ofmembers composed of various grades of lumber as wellas the direction of applied bending forces. As a result,different design values are assigned for glued laminatedtimber used primarily in bending, Table 3.1, and primarilyin axial loading, Table 3.2. The design values are usedin conjunction with the dimensions provided in Tables 9.1(Western species) and 9.2 (Southern Pine) of Section 9,but are applicable to any sizes of structural glued laminatedtimber when the appropriate modification factorsgiven in Section 4 are applied. It is noted that the layupcombinations given in Tables 3.1 and 3.2 are those mostoften used by designers. For other layup combinations thatare also available, refer to APA EWS Technical Note Y117,AITC 117, or NDS-<strong>2001</strong>.3.2 Allowable Stress and Modulus of ElasticityAllowable properties are given in Table 3.1 for bendingabout the X-X axis (see Figure 3.1). Althoughpermitted, axial loading or bending about the Y-Y axis(also see Figure 1) is not efficient in using the glued laminatedtimber combinations given in Table 3.1. In suchcases, the designer should select glued laminated timberfrom Table 3.2. Similarly, glued laminated timber combinationsin Table 3.2 are inefficiently utilized if the primaryuse is bending about the X-X axis.The values for allowable stresses and moduli of elasticitygiven in Tables 3.1 and 3.2 are based on use undernormal duration of load (10 years) and dry conditions (lessthan 16% moisture content). When used under other conditions,see Section 4 of this Supplement for adjustmentfactors. The allowable flexural stresses are based on membersloaded as simple beams. When glued laminated timberis used in continuous or cantilevered beams, the allowableflexural stresses given in Column 4 of Table 3.1 shouldbe used for the design of stress reversal (when compressionzone is stressed in tension).It is noted that horizontal shear values for glulam arebased on full scale bending tests. The results of these testssupported values that are 10% higher than the tabulatedvalues. The tabulated values were arbitrarily reduced toallow for checking in the shear critical zone of up to 10%of the width of the member. If the designer does not wantto include this arbitrary allowance for checking, the tabulatedvalues can be increased by 10%. It is noted thatchecking seldom occurs in the shear critical zone of glulambeams.Figure 3.1XYYX - X Axis LoadingLoading in the X-X andY-Y AxesXYXXY - Y Axis LoadingY3.3 Straight-Tapered End Cuts on the CompressionFaceStraight-tapered end cuts on the top of a beam aresometimes used to improve drainage, to provide extra headfor downspouts and scuppers, to facilitate discharge ofwater, and to reduce the height of the wall. Table 3.3 providesallowable stresses and mean moduli of elasticity forglued laminated timber with straight-tapered end cuts onthe compression face. The allowable stresses are providedfor bending, F b, and compression perpendicular to grain,F c⊥ , and replace the allowable values provided in Table3.1 when tapered end cut members are used.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-9Table 3.1 Design Values for Structural Glued Laminated Softwood Timber(Members stressed primarily in bending) (Tabulated design values are for normal load duration and dry service conditions. SeeNDS 5.3 for a comprehensive description of design value adjustment factors.)Bending About X-X Axis Bending About Y-Y Axis Axially Loaded FastenersLoaded Parallel to WideFaces of LaminationsLoaded Perpendicular to WideFaces of LaminationsSpecies Group forSplit Ring and ShearExtreme Fiber inBending Plate ConnectorsCompression Shear Modulus Extreme Compression Shear Modulus Tension Compression Modulus Specific GravityPerpendicular Parallel of Fiber in Perpendicular Parallel of Parallel to Parallel to of for Dowel-Typeto Grain to Grain Elasticity Bending to Grain to Grain Elasticity Grain Grain Elasticity Fastener Design(Horizontal) (Horizontal)Tension CompressionZone ZoneStressed Stressedin Tension in TensionSide FaceTop or BottomFace(Positive Bending) (Negative Bending)GE y F t F c E axialE x F by F c]y F vy(4)(5)F c]x F vx(4)F bx- (1)F bx+Stress Class(psi) (psi) (psi) (psi) (10 6 psi) (psi) (psi) (psi) (10 6 psi) (psi) (psi) (10 6 psi)16F-1.3E 1600 925 315 175 1.3 800 315 155 1.1 625 725 1.2 0.35 C C20F-1.5E 2000 1100 425 190 (6) 1.5 800 315 155 1.2 725 925 1.3 0.42 C C24F-1.7E 2400 1450 500 190 (6) 1.7 850 315 160 1.3 775 1000 1.4 0.42 C C24F-1.8E 2400 1450 (2) 650 240 (3) 1.8 1450 560 210 (3) 1.6 1100 1600 1.7 0.50 (10) A B26F-1.9E (7) 2600 1950 650 240 (3) 1.9 1600 560 210 (3) 1.6 1150 1600 1.7 0.50 (10) A B28F-2.1E SP (7) 2800 2300 740 270 2.1 (9) 1600 650 235 1.7 1250 1750 1.7 0.55 A A30F-2.1E SP (7)(8) 3000 2400 740 270 2.1 (9) 1750 650 235 1.7 1250 1750 1.7 0.55 A AWet-use factors (11) 0.8 0.53 0.875 0.833 0.8 0.53 0.875 0.833 0.8 0.73 0.833 See Section 10.3.3 of NDS-<strong>2001</strong>- +1. For balanced layups, F bx shall be equal to F bx for the stress class. Designer shall specify when balanced layup is required.-2. Negative bending stress, F bx , is permitted to be increased to 1850 psi for Douglas Fir and to 1950 psi for Southern Pine for specific combinations. Designer shall specify when these increased stresses arerequired.3. For structural glued laminated timber of Southern Pine, shear stress is permitted to be increased to: F vx = 270 psi, F vy = 235 psi.4. For non-prismatic members, notched members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the design value for shear shall be multipliedby a factor of 0.8. For the determination of radial tension design values (NDS 5.2.2), the design value for shear shall be multiplied by a factor of 0.7 for DF-L and SP or by 0.8 for all other species.5. Design values are for timbers with laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timbers manufactured from multiple piece laminations(across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members. This reduction shall be cumulative with the adjustment infootnote (4).6. Certain Southern Pine combinations may contain coarse grain lumber with wane. If lumber with wane is used, the design value for shear parallel to grain, F VX , shall be multiplied by 0.67 if wane is allowedon both sides. If wane is limited to one side, F VX shall be multiplied by 0.83. This reduction shall be cumulative with the adjustment in footnote (4).7. 26F, 28F, and 30F beams are not produced by all manufacturers, therefore, availability may be limited. Contact supplier or manufacturer for details.8. 30F combinations are restricted to a maximum 6 in. nominal width. The design value for shear parallel to grain (F vx ) shall be permitted to be increased by 10% when checking is not a design concern.9. For 28F and 30F members with more than 15 laminations, E x = 2.0 million psi.10. For structural glued laminated timber of Southern Pine, specific gravity for fastener design is permitted to be increased to 0.55.11. The tabulated design values are for dry conditions of use (moisture content in service is less than 16% as in most covered structures). For wet conditions of use (moisture content in service is 16% or higher),multiply the tabulated values by the factors shown at the end of the table.Design values in this table represent design values for groups of similar glued laminated timber combinations. Higher design values for some properties may be obtained by specifying aparticular combination listed in AITC 117-<strong>2001</strong> Design, APA Y117, or the <strong>2001</strong> NDS Supplement. Design values are for members with 4 or more laminations. For 2 and 3 lamination members,see Table 3.2. Some stress classes are not available in all species. Contact structural glued laminated timber manufacturer for availability.3ALLOWABLE STRESS AND STIFFNESSAPA – The Engineered <strong>Wood</strong> Association


GL-10ALLOWABLE STRESS AND STIFFNESSTable 3.2 Design Values for Structural Glued Laminated Softwood Timber(Members stressed primarily in axial tension or compression) 1,2,8 (Tabulated design values are for normal load duration and dryservice conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)All Loading Axially LoadedBending about Y-Y Axis Bending About X-X AxisLoaded Parallel to WideLoaded Perpendicular to WideTension CompressionFaces of LaminationsFaces of LaminationsParallel ParallelBendingShear Parallel to Grain (3)BendingShear Parallelto Grain to Grainto Grain (3)2 Lami- 4 or More4 or More nations to Lami-Laminations 15 in. Deep (6) nationsfor members without withModulus Compression 2 or More 4 or More 2 or 3 4 or More 3 2 with 4 or More 3 2 Special Special 2 or MoreCombination Species Grade of Perpendicular Lami- Lami- Lami- Lami- Lami- Lami- multiple piece Lami- Lami- Lami- Tension Tension Lami-Symbol Elasticity to Grain nations nations nations nations nations nations laminations (4) nations nations nations Lams Lams (7) nationsE F c⊥ F t F c F c F by F by F by F vy F vy F vy F vy F bx F bx F vx(10 6 psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi) (psi)Visually Graded Western Species1 DF L3 1.5 560 900 1550 1200 1450 1250 1000 105 210 200 180 1250 1500 2402 DF L2 1.6 560 1250 1950 1600 1800 1600 1300 105 210 200 180 1700 2000 2403 DF L2D 1.9 650 1450 2300 1850 2100 1850 1550 105 210 200 180 2000 2300 2405 DF L1 2.0 650 1600 2400 2100 2400 2100 1800 105 210 200 180 2200 2400 24022 (5) SW L3 1.0 315 525 850 675 800 700 550 80 155 145 130 725 850 17570 AC L2 1.3 470 975 1450 1450 1400 1250 1000 105 210 200 180 1350 1550 240Visually Graded Southern Pine47 SP N2M14 1.4 650 1200 1900 1150 1750 1550 1300 120 235 225 205 1400 1600 27048 SP N2D14 1.7 740 1400 2200 1350 2000 1800 1500 120 235 225 205 1600 1900 27049 SP N1M16 1.7 650 1350 2100 1450 1950 1750 1500 120 235 225 205 1800 2100 27050 SP N1D14 1.9 740 1550 2300 1700 2300 2100 1750 120 235 225 205 2100 2400 270Wet Service Factors (9) 0.833 0.53 0.8 0.73 0.73 0.8 0.8 0.8 0.875 0.875 0.875 0.875 0.8 0.8 0.8751. Design values in this table are for combinations conforming to AITC 117-<strong>2001</strong> Design or APA-EWS Y117 and manufactured in accordance with <strong>American</strong> National Standard ANSI/AITC A190.1-1992.2. The combinations in this table are intended primarily for members loaded axially or in bending with the loads acting parallel to the wide faces of the laminations (bending about Y-Y axis). Design values forbending due to loading applied perpendicular to the wide faces of the laminations (bending about X-X axis) are also included; however, the combinations in Table 3.1 are preferred for this condition ofloading.3. For non-prismatic members, notched members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the design value for shear shall be multipliedby 0.8. For the determination of radial tension design values (NDS 5.2.2), the design value for shear shall be multiplied by a factor of 0.7 for DF-L and SP or by 0.8 for all other species.4. Values apply to members manufactured using multiple piece laminations with unbonded edge joints. For members with 5, 7, or 9 laminations, value shall be multiplied by 0.8. This reduction shall becumulative with the reduction in footnote (3).5. When Western Cedars, Western Cedars (North), Western <strong>Wood</strong>s, and Redwood (open grain) are used in combinations for Softwood Species (SW), the design values for modulus of elasticity (E x and E y ) shallbe reduced by 100,000 psi. When Coast Sitka Spruce, Coast Species, Western White Pine and Eastern White Pine are used in combinations for Softwood Species (SW) design values for shear parallel to grain(F vx and F vy ) shall be reduced by 10 psi.6. For members greater than 15 in. deep, values shall be reduced by multiplying by a factor of 0.88.7. These design values require the use of special tension laminations. If these design values are used, the designer shall specify the required design value as well as the combination symbol.8. Species groups for split ring and shear plate connectors shall be determined by associated compression design values perpendicular to grain, F c⊥ , as follows:Species GroupF c⊥for Split Ring and(psi) Shear Plate Connectors650 or 740 A560 or 590 B315, 375, 470, or 500 C255 D9. The tabulated design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the factors shown at the end of the table.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-113.4 Radial Tension and CompressionWhen a curved member is loaded in bending, radialstresses are induced. When the bending moment is in thedirection that tends to decrease the curvature or increasethe radius, the radial stress is in radial tension, F rt . On theother hand, when the bending moment is in the directionthat tends to increase the curvature or decrease the radius,the radial stress is in radial compression, F rc . Table 3.4provides allowable radial tensile stresses for glued laminatedtimber. These values are subject to adjustments forduration of load and wet conditions of use (16% moisturecontent or higher). If the adjusted value is exceeded, appropriatemechanical reinforcements shall be used to resistall applied radial tensile stresses. The maximum moisturecontent of the laminations shall not exceed 12% at thetime of the reinforcement manufacturing.Table 3.3The allowable radial compressive stress has been traditionallylimited to the design value in compressionperpendicular to grain, F c⊥ , of the grade and species beingused. Also given in Table 3.4 are allowable radial compressivestresses for glued laminated timber. Theseallowable radial compressive stresses are not subject tothe adjustments for the duration of load, but shall be adjustedfor wet conditions of use when appropriate.Allowable Properties and Moduli of Elasticity for Glued LaminatedTimber with Tapered Cuts on Compression FaceStress class(a)F bx , psi F (b) c⊥x , psi(a)E x , 10 6 psi16F-1.3E 1,050 315 1.220F-1.5E 1,250 375 1.424F-1.7E 1,250 375 1.424F-1.8E 2,000 560 1.726F-1.9E 2,000 560 1.728F-2.1E 2,400 650 1.930F-2.1E 2,400 650 1.9aValue is applicable to members that have up to 2/3 the depth on the compression side removed by taper cutting. Value is for dry conditions of use.bDesign value in compression perpendicular to grain for the core laminations of the combination.3ALLOWABLE STRESS AND STIFFNESSTable 3.4Allowable Radial Stresses aaSpecies Radial Tension (F rt ), psi Radial Compression (F rc ),Wind and Earthquake Other Loadings psiAlaska Cedar 63 15 470California Redwood 42 42 315Canadian Spruce Pine 53 15 560Douglas Fir-Larch 55 15 560Douglas Fir-South 55 15 560Eastern Spruce 48 15 300Hem-Fir 52 15 375Softwood Species (WW) 47 15 255Southern Pine 67 67 650The wet use factor, C M , is equal to 0.875 for radial tensile stresses and 0.53 for radial compressive stresses.APA – The Engineered <strong>Wood</strong> Association


GL-12ALLOWABLE STRESS AND STIFFNESS3.5 Structural Glued Laminated Timber CombinationsMeeting Stress Class RequirementsExamples of the structural glued laminated timbercombinations from AITC 117 and APA Y117 that meetthe requirements of each stress class are listed below. Thespecies group used in the outer laminations/core laminationsfor each combination is also shown. Combinationsthat are not included in AITC 117 or APA Y117, but meetall requirements of a stress class, are permitted for use inthat stress class. Combinations not included in AITC 117or APA Y117 shall be developed in accordance with NER-466 or NER-486.Stress Class Western Species Southern PineUnbalanced Balanced Unbalanced Balanced16F-1.3E 16F-V1 (DF/SW) 16F-V6 (DF/DF) 16F-V2 (SP/SP) 16F-V5 (SP/SP)16F-V2 (HF/HF) 16F-V7 (HF/HF) 16F-V3 (SP/SP) 16F-E3 (SP/SP)16F-V3 (DF/DF)16F-E1 (SP/SP)16F-V4 (DF/SW)16F-E1 (SW/SW)16F-E2 (HF/HF)16F-E3 (DF/DF)20F-1.5E 20F-V3 (DF/DF) 20F-V7 (DF/DF) 20F-V2 (SP/SP) 20F-V5 (SP/SP)20F-V4 (DF/DF) 20F-V8 (DF/DF) 20F-E1 (SP/SP) 20F-E3 (SP/SP)20F-V10 (DF/HF) 20F-V9 (HF/HF) 22F-V1 (SP/SP) 22F-V5 (SP/SP)20F-V12 (AC/AC) 20F-V13 (AC/AC) 22F-V2 (SP/SP) 22F-E3 (SP/SP)20F-E2 (HF/HF) 20F-E6 (DF/DF) 22F-V3 (SP/SP)20F-E3 (DF/DF) 20F-E7 (HF/HF) 22F-V4 (SP/SP)20F-E8 (ES/ES) 22F-V8 (DF/DF) 22F-E1 (SP/SP)22F-V3 (DF/DF)22F-V10 (DF/DFS)24F-1.7E 24F-V5 (DF/HF) 24F-V10 (DF/HF) 24F-V1 (SP/SP) 24F-V5 (SP/SP)24F-V11 (DF/DFS) 24F-E10 (DF/HF) 24F-V4 (SP/SP)24F-E2 (HF/HF)24F-E11 (HF/HF)24F-E3 (DF/HF)24F-E15 (HF/HF)24F-1.8E 24F-V4 (DF/DF) 24F-V8 (DF/DF) 24F-V3 (SP/SP) 24F-E4 SP (SP/SP)24F-E1 (DF/DF) 24F-E13 (DF/DF) 24F-E1 (SP/SP) 24F-V5M1 (SP/SP)24F-E4 (DF/DF) 24F-E18 (DF/DF) 24F-E2 (SP/SP)26F-1.9E 26F-E/DF1 (DF/DF) 26F-E/DF1M1 (DF/DF) 26F-V1 (SP/SP) 26F-V4 (SP/SP)26F-V2 (SP/SP)26F-V3 (SP/SP)28F-2.1E 28F-E1 (SP/SP) 28F-E2 (SP/SP)28F-E1M1 (SP/SP) 28F-E2M1 (SP/SP)30F-2.1E 30F-E1 (SP/SP) 30F-E2 (SP/SP)APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-13DESIGNADJUSTMENTFACTORS44.1 General GL-144.2 Load Duration Factor, C DGL-144.3 Wet Service Factor, C MGL-144.4 Temperature Factor, C tGL-144.5 Preservative Treatment GL-154.6 Fire Retardant Treatment GL-154.7 Beam Stability Factor, C LGL-154.8 Column Stability Factor, C PGL-154.9 Volume Factor, C VGL-164.10 Curvature Factor, C cGL-164.11 Flat Use Factor, C fuGL-16Table 4.1Table 4.2Table 4.3Table 4.4Table 4.5Table 4.6Load Duration Factor for Glued Laminated Timber,C D ......................................................................................... GL-14Temperature Factor for Glued Laminated TimberExposed to Sustained Elevated Temperature, C t ............. GL-14Preservative Treatment Effect on Glued LaminatedTimber .................................................................................. GL-15Flat Use Factor, C fu .............................................................. GL-16Volume Factor for Bending about X-X Axis WesternSpecies Glued Laminated Timber ...................................... GL-17Volume Factor for Bending about X-X Axis SouthernPine Glued Laminated Timber ........................................... GL-23APA – The Engineered <strong>Wood</strong> Association


GL-14DESIGN ADJUSTMENT FACTORS4.1 GeneralThe adjustment factors provided in this section arefor non-reference end use conditions and material modificationeffects. These factors shall be used to modify theallowable properties when one or more of the specific enduse or material modification conditions fall outside thelimits of the reference conditions given in this section.4.2 Load Duration Factor, C DAllowable properties tabulated in Section 3 apply tonormal load duration, which means a structural memberis subject to full design loads for a cumulative duration ofapproximately 10 years. For other cumulative duration ofthe full design loads, the allowable properties, except formodulus of elasticity and compression perpendicular tograin, shall be adjusted by the load duration factor givenin Table 4.1.Table 4.1aLoad Duration Factor forGlued Laminated Timber, C DLoad Duration C D Typical Design LoadsPermanent 0.9 Dead Load10 Years 1.0 Occupancy Live Load2 Months 1.15 Snow Load7 Days 1.25 Construction Load10 Minutes 1.6 Wind/Earthquake LoadImpact a 2.0 Impact LoadThe impact load duration factor shall not apply to glued laminated timbermembers treated with waterborne preservatives to a heavy retentionrequired for marine exposure, nor to members pressured treated with fireretardant chemicals.4.3 Wet Service Factor, C MDesign values provided in this Supplement are applicableto dry use conditions of glued laminated timber(moisture content in service is less than 16%, as in mostcovered structures) and its connections. When glued laminatedtimber members are exposed to wet service conditions,the adjustment factors given in Tables 3.1 and 3.2apply.4.4 Temperature Factor, C tThe temperature factor, C t , shall be applied when gluedlaminated timber member is exposed to a sustained elevatedtemperature ranging from 100° to 150°F. Whenthe equilibrium moisture content of a glued laminated timbermember exceeds the reference condition limitationduring sustained elevated temperature exposure, both thetemperature and wet service (moisture) factors shall beapplied. When the equilibrium moisture content of a gluedlaminated timber falls within the limits of the referenceconditions during sustained exposure to elevated temperatures,only the temperature factor shall be applied. Thetemperature factors are given in Table 4.2.Table 4.2Temperature Factor for Glued Laminated Timber Exposed toSustained Elevated Temperature, C tDesign Values In Service Moisture C tConditions a T≤100°F 100°F


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-154.5 Preservative TreatmentTable 4.3Whenever practical, the moisture content of permanentstructural wood members should be kept below 20%.If this is not feasible then preservative treatment may berequired unless the heartwood of a naturally decay resistantspecies such as Redwood and Cedar is used.Most preservative chemicals used today do not significantlyalter the strength properties of structural woodproducts. However, the method of pre- and post-conditioning,as well as the treatment method itself, may weakenthe wood. For preservative treatment methods with AWPAaccepted manufacturing control, as listed in Table 4.3, theeffect on strength degradation of glulam can be eliminated.For more information concerning preservative treatmentof glulam, refer to APA Technical Note S580 or AITCStandard 109.Preservative Treatment Effect on Glued Laminated Timber4No adjustment is required when glued laminated timber is preservative-treated using the following <strong>American</strong><strong>Wood</strong> Preservers’ Association StandardsDesignationTitleC1-98 All Timber Products - Preservative Treatment by Pressure ProcessesC14-98 <strong>Wood</strong> For Highway Construction - Preservative Treatment by Pressure ProcessesC15-98 <strong>Wood</strong> for Commercial - Residential Construction - Preservative Treatment by Pressure ProcessesC28-98 Standard for Preservative Treatment of Structural Glued Laminated Members and LaminationsBefore Gluing of Southern Pine, Coastal Douglas fir, Hem Fir, and Western Hemlock by PressureProcesses4.6 Fire Retardant TreatmentDESIGN ADJUSTMENT FACTORSEffects of fire retardant treatments on allowable designstresses shall be considered for wood products treatedwith pressure impregnated fire-retardants. However, theglued laminated timber industry does not recommend theuse of fire-retardant treatments with glued laminated timberand therefore, specific adjustment factors forfire-retardants used in conjunction with glued laminatedtimber shall be obtained from the company providing thetreatment services and the glulam manufacturer acceptsno responsibility for any structural glued laminated timberthat is fire retardant treated.4.7 Beam Stability Factor, C LAllowable bending stresses of glued laminated timbershall be adjusted by the beam stability factor, C L ,whenever applicable Refer to Section 3.3.3 of the NDSfor the determination of an appropriate beam stability factor.It is important to note that C L is not accumulative withthe volume factor, C v , given in Section 4.9 of this Supplementfor the design of structural glued laminated timber.4.8 Column Stability Factor, C PAllowable values for compression parallel to grainof glued laminated timber are affected by the dimensionsand modulus of elasticity. Refer to Section 3.7.1 of theNDS for the determination of an appropriate column stabilityfactor.APA – The Engineered <strong>Wood</strong> Association


GL-16DESIGN ADJUSTMENT FACTORS4.9 Volume Factor, C vAllowable bending stresses of glued laminated timberare affected by geometry and size. Generally, largersizes have a correspondingly lower allowable bendingstress than smaller members. To account for this behavior,a volume factor, C v , shall be applied. C v shall notexceed 1.0 and is computed as follows:C V= (21/L) 1/x (12/d) 1/x (5.125/b) 1/x ≤ 1.0 (4.1)L = length of bending member between points ofzero moment, ft.d = depth of bending member, in.b = width (breadth) of bending member. For multiplepiece width layups, b = width of widest pieceused in the layup. Thus, b ≤ 10.75"x = 20 for Southern Pinex = 10 for all other speciesNote that separate exponent values are given for Westernspecies and for Southern Pine. No volume adjustmentis required for properties other than allowable bendingstresses when the load is applied perpendicular to the wideface of the laminations. Tables 4.5 and 4.6 give some C vvalues for Western species and Southern Pine glued laminatedtimbers, respectively.4.10 Curvature Factor, C cThe curvature factor, C c , is used to adjust the allowablebending stresses of curved glued laminated timbermembers only. It takes into account the difference in extremeouter fiber stress between a curved member and astraight prismatic member, as well as any residual stressesthat may remain in a lamination that has been bent to thestated curvature. However, the curvature factor, C c , shallnot be applied to the allowable bending stress in the straightportion of a member, regardless of curvature in other portions.Also, this factor is not applicable to cambered gluedlaminated timber members or in the design of pitched andtapered curved glued laminated timber members. The curvaturefactor, C c , shall be calculated in accordance withthe following equation:tCc = 1 −20002( ) [4.2]Rwhere:t = thickness of lamination, in.R = radius of curvature of inside face of lamination,in.t/R ≤ 1/100 for hardwoods and Southern Pinet/R ≤ 1/125 for other species4.11 Flat Use Factor, C fuTable 4.4 Flat Use Factor a , C fuAllowable bending stresses of glued laminated timbershall be adjusted by the flat use factor, C fu , when loadedin bending parallel to wide faces of the laminations (they-y axis). The allowable bending stresses in the parallelto wide faces of the laminations, F by , as given in Tables3.1 and 3.2 of this Supplement, are based on memberswith laminations 12 inches wide. For members with laminationsless than 12 inches wide, the tabulated F by valuesshall be adjusted by a flat use factor, C fu , as listed in Table4.4. When the width of the laminations is greater than 12inches, as may occur in members with multiple-piece laminations,C fu shall be obtained by use of the equation givenin footnote (a) to Table 4.4.aMember Dimensions Parallel toWide Faces of LaminationsC fu10-3/4 or 10-1/2 1.018-3/4 or 8-1/2 1.046-3/4 1.075-1/8 or 5 1.103-1/8 or 3 1.162-1/2 1.19Values for C fu are rounded values from the equation (12/d) 1/9 where d isthe dimension of the wide faces of the laminations.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-17Table 4.5Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 8 12 16 20 24 28 32 36 40 44 482-1/2 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.986 0.976 -- --18 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.978 0.967 0.958 --19-1/2 1.000 1.000 1.000 1.000 1.000 0.994 0.981 0.970 0.960 0.951 0.94221 1.000 1.000 1.000 1.000 1.000 0.987 0.974 0.963 0.953 0.944 0.9353-1/8 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.996 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 0.998 0.985 0.974 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.989 0.976 0.964 0.954 -- --18 1.000 1.000 1.000 1.000 0.996 0.980 0.967 0.956 0.946 0.937 --19-1/2 1.000 1.000 1.000 1.000 0.988 0.973 0.960 0.948 0.938 0.930 0.92221 1.000 1.000 1.000 0.998 0.980 0.965 0.953 0.941 0.932 0.923 0.91522-1/2 1.000 1.000 1.000 0.992 0.974 0.959 0.946 0.935 0.925 0.916 0.90824 1.000 1.000 1.000 0.985 0.967 0.953 0.940 0.929 0.919 0.910 0.9033-1/2 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-1/2 1.000 1.000 1.000 1.000 1.000 0.998 0.984 -- -- -- --15 1.000 1.000 1.000 1.000 1.000 0.987 0.974 0.963 -- -- --16-1/2 1.000 1.000 1.000 1.000 0.993 0.978 0.965 0.954 0.944 -- --18 1.000 1.000 1.000 1.000 0.984 0.969 0.956 0.945 0.935 0.926 --19-1/2 1.000 1.000 1.000 0.994 0.977 0.962 0.949 0.938 0.928 0.919 0.91121 1.000 1.000 1.000 0.987 0.969 0.954 0.942 0.931 0.921 0.912 0.90422-1/2 1.000 1.000 1.000 0.980 0.963 0.948 0.935 0.924 0.915 0.906 0.89824 1.000 1.000 0.996 0.974 0.956 0.942 0.929 0.918 0.909 0.900 0.8924DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-18DESIGN ADJUSTMENT FACTORSTable 4.5(Cont.)Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 8 12 16 20 24 28 32 36 40 44 485-1/8 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12 1.000 1.000 1.000 1.000 0.987 0.972 -- -- -- -- --13-1/2 1.000 1.000 1.000 0.993 0.975 0.960 0.948 -- -- -- --15 1.000 1.000 1.000 0.983 0.965 0.950 0.938 0.927 -- -- --16-1/2 1.000 1.000 0.995 0.973 0.956 0.941 0.929 0.918 0.908 -- --18 1.000 1.000 0.987 0.965 0.948 0.933 0.921 0.910 0.900 0.892 --19-1/2 1.000 1.000 0.979 0.957 0.940 0.926 0.913 0.903 0.893 0.885 0.87721 1.000 1.000 0.972 0.950 0.933 0.919 0.907 0.896 0.887 0.878 0.87122-1/2 1.000 0.993 0.965 0.944 0.927 0.912 0.900 0.890 0.880 0.872 0.86524 1.000 0.987 0.959 0.938 0.921 0.907 0.895 0.884 0.875 0.867 0.85925-1/2 1.000 0.981 0.953 0.932 0.915 0.901 0.889 0.879 0.870 0.861 0.85427 1.000 0.975 0.948 0.927 0.910 0.896 0.884 0.874 0.865 0.856 0.84928-1/2 1.000 0.970 0.942 0.922 0.905 0.891 0.879 0.869 0.860 0.852 0.84430 1.000 0.965 0.938 0.917 0.900 0.887 0.875 0.865 0.856 0.847 0.84031-1/2 1.000 0.960 0.933 0.912 0.896 0.882 0.871 0.860 0.851 0.843 0.83633 0.995 0.956 0.929 0.908 0.892 0.878 0.867 0.856 0.847 0.839 0.83234-1/2 0.991 0.952 0.925 0.904 0.888 0.874 0.863 0.853 0.844 0.836 0.82836 0.987 0.948 0.921 0.900 0.884 0.871 0.859 0.849 0.840 0.832 0.8255-1/2 in. Width6 1.000 1.000 -- -- -- -- -- -- -- -- --7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 1.000 0.993 -- -- -- -- -- --12 1.000 1.000 1.000 0.998 0.980 0.965 -- -- -- -- --13-1/2 1.000 1.000 1.000 0.986 0.968 0.954 0.941 -- -- -- --15 1.000 1.000 0.998 0.976 0.958 0.944 0.931 0.920 -- -- --16-1/2 1.000 1.000 0.988 0.967 0.949 0.935 0.922 0.911 0.902 -- --18 1.000 1.000 0.980 0.958 0.941 0.926 0.914 0.903 0.894 0.886 --19-1/2 1.000 1.000 0.972 0.951 0.933 0.919 0.907 0.896 0.887 0.878 0.87121 1.000 0.993 0.965 0.944 0.926 0.912 0.900 0.890 0.880 0.872 0.86422-1/2 1.000 0.986 0.958 0.937 0.920 0.906 0.894 0.884 0.874 0.866 0.85824 1.000 0.980 0.952 0.931 0.914 0.900 0.888 0.878 0.869 0.860 0.85325-1/2 1.000 0.974 0.946 0.925 0.909 0.895 0.883 0.873 0.863 0.855 0.84827 1.000 0.968 0.941 0.920 0.903 0.890 0.878 0.868 0.858 0.850 0.84328-1/2 1.000 0.963 0.936 0.915 0.899 0.885 0.873 0.863 0.854 0.846 0.83830 0.998 0.958 0.931 0.910 0.894 0.880 0.869 0.858 0.849 0.841 0.83431-1/2 0.993 0.954 0.926 0.906 0.890 0.876 0.864 0.854 0.845 0.837 0.83033 0.988 0.949 0.922 0.902 0.886 0.872 0.860 0.850 0.841 0.833 0.82634-1/2 0.984 0.945 0.918 0.898 0.882 0.868 0.857 0.847 0.838 0.830 0.82336 0.980 0.941 0.914 0.894 0.878 0.864 0.853 0.843 0.834 0.826 0.819APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-19Table 4.5(Cont.)Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 10 14 18 22 26 30 34 38 42 46 506-3/4 in. Width7-1/2 1.000 1.000 1.000 -- -- -- -- -- -- -- --9 1.000 1.000 1.000 0.997 -- -- -- -- -- -- --10-1/2 1.000 1.000 1.000 0.981 0.965 -- -- -- -- -- --12 1.000 1.000 0.988 0.968 0.952 0.939 -- -- -- -- --13-1/2 1.000 1.000 0.976 0.957 0.941 0.928 -- -- -- -- --15 1.000 0.991 0.966 0.947 0.931 0.918 0.907 -- -- -- --16-1/2 1.000 0.981 0.957 0.938 0.922 0.909 0.898 0.888 -- -- --18 1.000 0.973 0.949 0.930 0.914 0.901 0.890 0.880 0.872 -- --19-1/2 0.998 0.965 0.941 0.922 0.907 0.894 0.883 0.873 0.865 0.857 --21 0.991 0.958 0.934 0.916 0.900 0.888 0.877 0.867 0.858 0.851 0.84322-1/2 0.984 0.951 0.928 0.909 0.894 0.882 0.871 0.861 0.852 0.845 0.83824 0.978 0.945 0.922 0.903 0.889 0.876 0.865 0.855 0.847 0.839 0.83225-1/2 0.972 0.940 0.916 0.898 0.883 0.871 0.860 0.850 0.842 0.834 0.82727 0.966 0.934 0.911 0.893 0.878 0.866 0.855 0.845 0.837 0.829 0.82328-1/2 0.961 0.929 0.906 0.888 0.873 0.861 0.850 0.841 0.832 0.825 0.81830 0.956 0.924 0.901 0.884 0.869 0.857 0.846 0.837 0.828 0.821 0.81431-1/2 0.951 0.920 0.897 0.879 0.865 0.852 0.842 0.832 0.824 0.817 0.81033 0.947 0.916 0.893 0.875 0.861 0.848 0.838 0.829 0.820 0.813 0.80634-1/2 0.943 0.912 0.889 0.871 0.857 0.845 0.834 0.825 0.817 0.809 0.80336 0.939 0.908 0.885 0.868 0.853 0.841 0.831 0.821 0.813 0.806 0.79937-1/2 0.935 0.904 0.882 0.864 0.850 0.838 0.827 0.818 0.810 0.803 0.79639 0.931 0.900 0.878 0.861 0.846 0.834 0.824 0.815 0.807 0.799 0.79340-1/2 0.928 0.897 0.875 0.857 0.843 0.831 0.821 0.812 0.804 0.796 0.79042 0.924 0.894 0.872 0.854 0.840 0.828 0.818 0.809 0.801 0.794 0.78743-1/2 0.921 0.891 0.869 0.851 0.837 0.825 0.815 0.806 0.798 0.791 0.78445 0.918 0.888 0.866 0.848 0.834 0.823 0.812 0.803 0.795 0.788 0.78246-1/2 0.915 0.885 0.863 0.846 0.832 0.820 0.810 0.801 0.793 0.786 0.77948 0.912 0.882 0.860 0.843 0.829 0.817 0.807 0.798 0.790 0.783 0.77749-1/2 0.909 0.879 0.857 0.840 0.826 0.815 0.805 0.796 0.788 0.781 0.77451 0.907 0.877 0.855 0.838 0.824 0.812 0.802 0.793 0.785 0.778 0.77252-1/2 0.904 0.874 0.852 0.835 0.822 0.810 0.800 0.791 0.783 0.776 0.77054 0.901 0.872 0.850 0.833 0.819 0.808 0.798 0.789 0.781 0.774 0.76755-1/2 0.899 0.869 0.848 0.831 0.817 0.805 0.795 0.787 0.779 0.772 0.76557 0.897 0.867 0.845 0.829 0.815 0.803 0.793 0.785 0.777 0.770 0.76358-1/2 0.894 0.865 0.843 0.826 0.813 0.801 0.791 0.783 0.775 0.768 0.76160 0.892 0.862 0.841 0.824 0.811 0.799 0.789 0.781 0.773 0.766 0.7594DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-20DESIGN ADJUSTMENT FACTORSTable 4.5(Cont.)Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 10 14 18 22 26 30 34 38 42 46 508-3/4 in. Width9 1.000 1.000 0.991 0.971 -- -- -- -- -- -- --10-1/2 1.000 1.000 0.976 0.956 0.940 -- -- -- -- -- --12 1.000 0.987 0.963 0.944 0.928 0.915 -- -- -- -- --13-1/2 1.000 0.976 0.951 0.932 0.917 0.904 -- -- -- -- --15 0.998 0.965 0.941 0.923 0.907 0.895 0.883 -- -- -- --16-1/2 0.989 0.956 0.932 0.914 0.899 0.886 0.875 0.865 -- -- --18 0.980 0.948 0.924 0.906 0.891 0.878 0.867 0.858 0.849 -- --19-1/2 0.973 0.940 0.917 0.899 0.884 0.871 0.861 0.851 0.843 0.835 --21 0.965 0.933 0.910 0.892 0.877 0.865 0.854 0.845 0.836 0.829 0.82222-1/2 0.959 0.927 0.904 0.886 0.871 0.859 0.848 0.839 0.831 0.823 0.81624 0.953 0.921 0.898 0.880 0.866 0.853 0.843 0.834 0.825 0.818 0.81125-1/2 0.947 0.915 0.893 0.875 0.861 0.848 0.838 0.828 0.820 0.813 0.80627 0.941 0.910 0.888 0.870 0.856 0.843 0.833 0.824 0.816 0.808 0.80128-1/2 0.936 0.905 0.883 0.865 0.851 0.839 0.828 0.819 0.811 0.804 0.79730 0.932 0.901 0.878 0.861 0.847 0.835 0.824 0.815 0.807 0.800 0.79331-1/2 0.927 0.896 0.874 0.857 0.843 0.831 0.820 0.811 0.803 0.796 0.78933 0.923 0.892 0.870 0.853 0.839 0.827 0.816 0.807 0.799 0.792 0.78634-1/2 0.919 0.888 0.866 0.849 0.835 0.823 0.813 0.804 0.796 0.789 0.78236 0.915 0.884 0.862 0.845 0.831 0.820 0.809 0.800 0.792 0.785 0.77937-1/2 0.911 0.881 0.859 0.842 0.828 0.816 0.806 0.797 0.789 0.782 0.77639 0.907 0.877 0.856 0.839 0.825 0.813 0.803 0.794 0.786 0.779 0.77340-1/2 0.904 0.874 0.852 0.835 0.822 0.810 0.800 0.791 0.783 0.776 0.77042 0.901 0.871 0.849 0.832 0.819 0.807 0.797 0.788 0.780 0.773 0.76743-1/2 0.898 0.868 0.846 0.830 0.816 0.804 0.794 0.785 0.778 0.771 0.76445 0.895 0.865 0.843 0.827 0.813 0.801 0.791 0.783 0.775 0.768 0.76246-1/2 0.892 0.862 0.841 0.824 0.810 0.799 0.789 0.780 0.772 0.765 0.75948 0.889 0.859 0.838 0.821 0.808 0.796 0.786 0.778 0.770 0.763 0.75749-1/2 0.886 0.857 0.835 0.819 0.805 0.794 0.784 0.775 0.768 0.761 0.75451 0.883 0.854 0.833 0.816 0.803 0.791 0.782 0.773 0.765 0.758 0.75252-1/2 0.881 0.852 0.831 0.814 0.801 0.789 0.779 0.771 0.763 0.756 0.75054 0.878 0.849 0.828 0.812 0.798 0.787 0.777 0.769 0.761 0.754 0.74855-1/2 0.876 0.847 0.826 0.810 0.796 0.785 0.775 0.766 0.759 0.752 0.74657 0.874 0.845 0.824 0.807 0.794 0.783 0.773 0.764 0.757 0.750 0.74458-1/2 0.871 0.843 0.822 0.805 0.792 0.781 0.771 0.762 0.755 0.748 0.74260 0.869 0.840 0.820 0.803 0.790 0.779 0.769 0.761 0.753 0.746 0.740APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-21Table 4.5(Cont.)Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 12 16 20 24 28 32 36 40 44 48 5210-3/4 in. Width12 0.982 0.954 0.933 0.916 0.902 -- -- -- -- -- --13-1/2 0.971 0.943 0.922 0.906 0.892 0.880 -- -- -- -- --15 0.960 0.933 0.913 0.896 0.882 0.871 0.860 -- -- -- --16-1/2 0.951 0.924 0.904 0.888 0.874 0.862 0.852 0.843 -- -- --18 0.943 0.916 0.896 0.880 0.866 0.855 0.845 0.836 0.828 -- --19-1/2 0.936 0.909 0.889 0.873 0.860 0.848 0.838 0.829 0.822 0.814 --21 0.929 0.902 0.882 0.866 0.853 0.842 0.832 0.823 0.815 0.808 0.80222-1/2 0.922 0.896 0.876 0.860 0.847 0.836 0.826 0.818 0.810 0.803 0.79624 0.916 0.890 0.871 0.855 0.842 0.831 0.821 0.812 0.805 0.798 0.79125-1/2 0.911 0.885 0.865 0.850 0.837 0.826 0.816 0.807 0.800 0.793 0.78727 0.906 0.880 0.860 0.845 0.832 0.821 0.811 0.803 0.795 0.788 0.78228-1/2 0.901 0.875 0.856 0.840 0.828 0.817 0.807 0.799 0.791 0.784 0.77830 0.896 0.871 0.851 0.836 0.823 0.812 0.803 0.794 0.787 0.780 0.77431-1/2 0.892 0.866 0.847 0.832 0.819 0.808 0.799 0.791 0.783 0.776 0.77033 0.888 0.862 0.843 0.828 0.815 0.805 0.795 0.787 0.779 0.773 0.76734-1/2 0.884 0.859 0.840 0.824 0.812 0.801 0.792 0.783 0.776 0.769 0.76336 0.880 0.855 0.836 0.821 0.808 0.798 0.788 0.780 0.773 0.766 0.76037-1/2 0.876 0.851 0.833 0.818 0.805 0.794 0.785 0.777 0.770 0.763 0.75739 0.873 0.848 0.829 0.814 0.802 0.791 0.782 0.774 0.767 0.760 0.75440-1/2 0.870 0.845 0.826 0.811 0.799 0.788 0.779 0.771 0.764 0.757 0.75142 0.866 0.842 0.823 0.808 0.796 0.785 0.776 0.768 0.761 0.754 0.74843-1/2 0.863 0.839 0.820 0.806 0.793 0.783 0.774 0.765 0.758 0.752 0.74645 0.860 0.836 0.818 0.803 0.791 0.780 0.771 0.763 0.756 0.749 0.74346-1/2 0.858 0.833 0.815 0.800 0.788 0.778 0.768 0.760 0.753 0.747 0.74148 0.855 0.831 0.812 0.798 0.785 0.775 0.766 0.758 0.751 0.744 0.73849-1/2 0.852 0.828 0.810 0.795 0.783 0.773 0.764 0.756 0.748 0.742 0.73651 0.850 0.826 0.807 0.793 0.781 0.770 0.761 0.753 0.746 0.740 0.73452-1/2 0.847 0.823 0.805 0.791 0.778 0.768 0.759 0.751 0.744 0.738 0.73254 0.845 0.821 0.803 0.788 0.776 0.766 0.757 0.749 0.742 0.736 0.73055-1/2 0.843 0.819 0.801 0.786 0.774 0.764 0.755 0.747 0.740 0.734 0.72857 0.840 0.817 0.799 0.784 0.772 0.762 0.753 0.745 0.738 0.732 0.72658-1/2 0.838 0.814 0.796 0.782 0.770 0.760 0.751 0.743 0.736 0.730 0.72460 0.836 0.812 0.794 0.780 0.768 0.758 0.749 0.741 0.734 0.728 0.7224DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-22DESIGN ADJUSTMENT FACTORSTable 4.5(Cont.)Volume Factor for Bending about X-X Axis Western Species GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 12 16 20 24 28 32 36 40 44 48 5212-1/4 in. Width13-1/2 0.958 0.931 0.910 0.894 0.880 0.868 -- -- -- -- --15 0.948 0.921 0.901 0.884 0.871 0.859 0.849 -- -- -- --16-1/2 0.939 0.912 0.892 0.876 0.863 0.851 0.841 0.832 -- -- --18 0.931 0.904 0.884 0.868 0.855 0.844 0.834 0.825 0.817 -- --19-1/2 0.923 0.897 0.877 0.862 0.848 0.837 0.827 0.819 0.811 0.804 --21 0.917 0.891 0.871 0.855 0.842 0.831 0.821 0.813 0.805 0.798 0.79222-1/2 0.910 0.884 0.865 0.849 0.836 0.825 0.816 0.807 0.799 0.792 0.78624 0.904 0.879 0.859 0.844 0.831 0.820 0.810 0.802 0.794 0.787 0.78125-1/2 0.899 0.873 0.854 0.839 0.826 0.815 0.805 0.797 0.789 0.783 0.77627 0.894 0.868 0.849 0.834 0.821 0.810 0.801 0.792 0.785 0.778 0.77228-1/2 0.889 0.864 0.845 0.829 0.817 0.806 0.796 0.788 0.781 0.774 0.76830 0.884 0.859 0.840 0.825 0.813 0.802 0.792 0.784 0.777 0.770 0.76431-1/2 0.880 0.855 0.836 0.821 0.809 0.798 0.789 0.780 0.773 0.766 0.76033 0.876 0.851 0.832 0.817 0.805 0.794 0.785 0.777 0.769 0.763 0.75734-1/2 0.872 0.847 0.829 0.814 0.801 0.791 0.781 0.773 0.766 0.759 0.75336 0.868 0.844 0.825 0.810 0.798 0.787 0.778 0.770 0.763 0.756 0.75037-1/2 0.865 0.840 0.822 0.807 0.795 0.784 0.775 0.767 0.760 0.753 0.74739 0.862 0.837 0.819 0.804 0.792 0.781 0.772 0.764 0.757 0.750 0.74440-1/2 0.858 0.834 0.816 0.801 0.789 0.778 0.769 0.761 0.754 0.747 0.74142 0.855 0.831 0.813 0.798 0.786 0.775 0.766 0.758 0.751 0.744 0.73943-1/2 0.852 0.828 0.810 0.795 0.783 0.773 0.764 0.756 0.748 0.742 0.73645 0.849 0.825 0.807 0.792 0.780 0.770 0.761 0.753 0.746 0.739 0.73346-1/2 0.847 0.823 0.804 0.790 0.778 0.767 0.758 0.750 0.743 0.737 0.73148 0.844 0.820 0.802 0.787 0.775 0.765 0.756 0.748 0.741 0.735 0.72949-1/2 0.841 0.817 0.799 0.785 0.773 0.763 0.754 0.746 0.739 0.732 0.72651 0.839 0.815 0.797 0.783 0.771 0.760 0.751 0.744 0.737 0.730 0.72452-1/2 0.836 0.813 0.795 0.780 0.768 0.758 0.749 0.741 0.734 0.728 0.72254 0.834 0.810 0.792 0.778 0.766 0.756 0.747 0.739 0.732 0.726 0.72055-1/2 0.832 0.808 0.790 0.776 0.764 0.754 0.745 0.737 0.730 0.724 0.71857 0.829 0.806 0.788 0.774 0.762 0.752 0.743 0.735 0.728 0.722 0.71658-1/2 0.827 0.804 0.786 0.772 0.760 0.750 0.741 0.733 0.726 0.720 0.71460 0.825 0.802 0.784 0.770 0.758 0.748 0.739 0.732 0.725 0.718 0.713APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-23Table 4.6Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 8 12 16 20 24 28 32 36 40 44 482-1/2 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.993 0.988 -- --17-7/8 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.989 0.984 0.979 --19-1/4 1.000 1.000 1.000 1.000 1.000 0.998 0.991 0.985 0.980 0.976 0.97120-5/8 1.000 1.000 1.000 1.000 1.000 0.994 0.988 0.982 0.977 0.972 0.96822 1.000 1.000 1.000 1.000 0.999 0.991 0.985 0.979 0.974 0.969 0.96523-3/8 1.000 1.000 1.000 1.000 0.996 0.988 0.982 0.976 0.971 0.966 0.9623 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 0.999 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.988 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.996 0.990 0.984 0.979 -- --17-7/8 1.000 1.000 1.000 1.000 1.000 0.992 0.986 0.980 0.975 0.970 --19-1/4 1.000 1.000 1.000 1.000 0.996 0.989 0.982 0.976 0.971 0.967 0.96320-5/8 1.000 1.000 1.000 1.000 0.993 0.985 0.979 0.973 0.968 0.963 0.95922 1.000 1.000 1.000 0.999 0.990 0.982 0.976 0.970 0.965 0.960 0.95623-3/8 1.000 1.000 1.000 0.996 0.987 0.979 0.973 0.967 0.962 0.957 0.9533-1/8 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 1.000 0.997 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.986 -- -- --16-1/2 1.000 1.000 1.000 1.000 1.000 0.994 0.988 0.982 0.977 -- --17-7/8 1.000 1.000 1.000 1.000 0.998 0.990 0.984 0.978 0.973 0.968 --19-1/4 1.000 1.000 1.000 1.000 0.994 0.987 0.980 0.974 0.969 0.965 0.96120-5/8 1.000 1.000 1.000 1.000 0.991 0.983 0.977 0.971 0.966 0.961 0.95722 1.000 1.000 1.000 0.997 0.988 0.980 0.974 0.968 0.963 0.958 0.95423-3/8 1.000 1.000 1.000 0.994 0.985 0.977 0.971 0.965 0.960 0.955 0.9514DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-24DESIGN ADJUSTMENT FACTORSTable 4.6(Cont.)Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 8 12 16 20 24 28 32 36 40 44 483-1/2 in. Width5-1/2 1.000 1.000 -- -- -- -- -- -- -- -- --6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 1.000 1.000 -- -- -- -- --13-3/4 1.000 1.000 1.000 1.000 1.000 0.998 0.991 -- -- -- --15-1/8 1.000 1.000 1.000 1.000 1.000 0.993 0.987 0.981 -- -- --16-1/2 1.000 1.000 1.000 1.000 0.996 0.989 0.982 0.976 0.971 -- --17-7/8 1.000 1.000 1.000 1.000 0.992 0.985 0.978 0.973 0.967 0.963 --19-1/4 1.000 1.000 1.000 0.998 0.989 0.981 0.975 0.969 0.964 0.959 0.95520-5/8 1.000 1.000 1.000 0.994 0.985 0.978 0.971 0.966 0.961 0.956 0.95222 1.000 1.000 1.000 0.991 0.982 0.975 0.968 0.963 0.957 0.953 0.94923-3/8 1.000 1.000 0.999 0.988 0.979 0.972 0.965 0.960 0.955 0.950 0.9465 in. Width6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 0.999 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 0.993 0.985 -- -- -- -- --13-3/4 1.000 1.000 1.000 0.997 0.988 0.980 0.974 -- -- -- --15-1/8 1.000 1.000 1.000 0.992 0.983 0.976 0.969 0.963 -- -- --16-1/2 1.000 1.000 0.999 0.988 0.979 0.971 0.965 0.959 0.954 -- --17-7/8 1.000 1.000 0.995 0.984 0.975 0.967 0.961 0.955 0.950 0.946 --19-1/4 1.000 1.000 0.991 0.980 0.971 0.964 0.957 0.952 0.947 0.942 0.93820-5/8 1.000 1.000 0.988 0.977 0.968 0.961 0.954 0.949 0.944 0.939 0.93522 1.000 0.999 0.985 0.974 0.965 0.957 0.951 0.946 0.941 0.936 0.93223-3/8 1.000 0.996 0.982 0.971 0.962 0.955 0.948 0.943 0.938 0.933 0.92924-3/4 1.000 0.993 0.979 0.968 0.959 0.952 0.946 0.940 0.935 0.931 0.92726-1/8 1.000 0.990 0.976 0.965 0.957 0.949 0.943 0.937 0.933 0.928 0.92427-1/2 1.000 0.988 0.974 0.963 0.954 0.947 0.941 0.935 0.930 0.926 0.92228-7/8 1.000 0.985 0.971 0.961 0.952 0.945 0.938 0.933 0.928 0.923 0.91930-1/4 1.000 0.983 0.969 0.958 0.950 0.942 0.936 0.931 0.926 0.921 0.91731-5/8 1.000 0.981 0.967 0.956 0.948 0.940 0.934 0.929 0.924 0.919 0.91533 0.999 0.979 0.965 0.954 0.946 0.938 0.932 0.927 0.922 0.917 0.91334-3/8 0.997 0.977 0.963 0.952 0.944 0.936 0.930 0.925 0.920 0.915 0.91135-3/4 0.995 0.975 0.961 0.950 0.942 0.935 0.928 0.923 0.918 0.914 0.910APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-25Table 4.6(Cont.)Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 8 12 16 20 24 28 32 36 40 44 485-1/8 in. Width6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 0.998 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 1.000 0.992 0.984 -- -- -- -- --13-3/4 1.000 1.000 1.000 0.996 0.987 0.979 0.973 -- -- -- --15-1/8 1.000 1.000 1.000 0.991 0.982 0.974 0.968 0.962 -- -- --16-1/2 1.000 1.000 0.998 0.987 0.978 0.970 0.964 0.958 0.953 -- --17-7/8 1.000 1.000 0.994 0.983 0.974 0.966 0.960 0.954 0.949 0.945 --19-1/4 1.000 1.000 0.990 0.979 0.970 0.963 0.956 0.951 0.946 0.941 0.93720-5/8 1.000 1.000 0.987 0.976 0.967 0.959 0.953 0.947 0.942 0.938 0.93422 1.000 0.998 0.983 0.973 0.964 0.956 0.950 0.944 0.939 0.935 0.93123-3/8 1.000 0.995 0.980 0.970 0.961 0.953 0.947 0.941 0.937 0.932 0.92824-3/4 1.000 0.992 0.978 0.967 0.958 0.951 0.944 0.939 0.934 0.929 0.92526-1/8 1.000 0.989 0.975 0.964 0.955 0.948 0.942 0.936 0.931 0.927 0.92327-1/2 1.000 0.987 0.973 0.962 0.953 0.946 0.939 0.934 0.929 0.925 0.92128-7/8 1.000 0.984 0.970 0.959 0.951 0.943 0.937 0.932 0.927 0.922 0.91830-1/4 1.000 0.982 0.968 0.957 0.948 0.941 0.935 0.929 0.925 0.920 0.91631-5/8 1.000 0.980 0.966 0.955 0.946 0.939 0.933 0.927 0.922 0.918 0.91433 0.998 0.978 0.964 0.953 0.944 0.937 0.931 0.925 0.921 0.916 0.91234-3/8 0.996 0.976 0.962 0.951 0.942 0.935 0.929 0.924 0.919 0.914 0.91035-3/4 0.994 0.974 0.960 0.949 0.941 0.933 0.927 0.922 0.917 0.913 0.9095-1/2 in. Width6-7/8 1.000 1.000 1.000 -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 1.000 -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 1.000 1.000 -- -- -- -- -- --11 1.000 1.000 1.000 1.000 0.994 -- -- -- -- -- --12-3/8 1.000 1.000 1.000 0.997 0.988 0.981 -- -- -- -- --13-3/4 1.000 1.000 1.000 0.992 0.983 0.976 0.969 -- -- -- --15-1/8 1.000 1.000 0.998 0.987 0.978 0.971 0.964 0.959 -- -- --16-1/2 1.000 1.000 0.994 0.983 0.974 0.967 0.960 0.955 0.950 -- --17-7/8 1.000 1.000 0.990 0.979 0.970 0.963 0.956 0.951 0.946 0.941 --19-1/4 1.000 1.000 0.987 0.976 0.967 0.959 0.953 0.947 0.942 0.938 0.93420-5/8 1.000 0.997 0.983 0.972 0.963 0.956 0.950 0.944 0.939 0.935 0.93122 1.000 0.994 0.980 0.969 0.960 0.953 0.947 0.941 0.936 0.932 0.92823-3/8 1.000 0.991 0.977 0.966 0.957 0.950 0.944 0.938 0.933 0.929 0.92524-3/4 1.000 0.988 0.974 0.963 0.955 0.947 0.941 0.935 0.931 0.926 0.92226-1/8 1.000 0.986 0.972 0.961 0.952 0.945 0.938 0.933 0.928 0.924 0.92027-1/2 1.000 0.983 0.969 0.958 0.950 0.942 0.936 0.931 0.926 0.921 0.91728-7/8 1.000 0.981 0.967 0.956 0.947 0.940 0.934 0.928 0.923 0.919 0.91530-1/4 0.998 0.978 0.964 0.954 0.945 0.938 0.932 0.926 0.921 0.917 0.91331-5/8 0.996 0.976 0.962 0.952 0.943 0.936 0.930 0.924 0.919 0.915 0.91133 0.994 0.974 0.960 0.950 0.941 0.934 0.928 0.922 0.917 0.913 0.90934-3/8 0.992 0.972 0.958 0.948 0.939 0.932 0.926 0.920 0.915 0.911 0.90735-3/4 0.990 0.970 0.956 0.946 0.937 0.930 0.924 0.918 0.914 0.909 0.9054DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-26DESIGN ADJUSTMENT FACTORSTable 4.6(Cont.)Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 10 14 18 22 26 30 34 38 42 46 506-3/4 in. Width6-7/8 1.000 1.000 -- -- -- -- -- -- -- -- --8-1/4 1.000 1.000 1.000 -- -- -- -- -- -- -- --9-5/8 1.000 1.000 1.000 0.995 -- -- -- -- -- -- --11 1.000 1.000 0.998 0.988 0.980 -- -- -- -- -- --12-3/8 1.000 1.000 0.992 0.983 0.974 0.967 -- -- -- -- --13-3/4 1.000 1.000 0.987 0.977 0.969 0.962 0.956 -- -- -- --15-1/8 1.000 0.995 0.983 0.973 0.965 0.958 0.952 -- -- -- --16-1/2 1.000 0.991 0.978 0.968 0.960 0.954 0.948 0.942 -- -- --17-7/8 1.000 0.987 0.974 0.965 0.957 0.950 0.944 0.939 0.934 -- --19-1/4 1.000 0.983 0.971 0.961 0.953 0.946 0.940 0.935 0.930 0.926 --20-5/8 0.996 0.980 0.967 0.958 0.950 0.943 0.937 0.932 0.927 0.923 0.91922 0.993 0.976 0.964 0.955 0.947 0.940 0.934 0.929 0.924 0.920 0.91623-3/8 0.990 0.974 0.961 0.952 0.944 0.937 0.931 0.926 0.921 0.917 0.91324-3/4 0.987 0.971 0.959 0.949 0.941 0.934 0.929 0.923 0.919 0.915 0.91126-1/8 0.985 0.968 0.956 0.946 0.939 0.932 0.926 0.921 0.916 0.912 0.90827-1/2 0.982 0.966 0.954 0.944 0.936 0.930 0.924 0.919 0.914 0.910 0.90628-7/8 0.980 0.963 0.951 0.942 0.934 0.927 0.921 0.916 0.912 0.908 0.90430-1/4 0.977 0.961 0.949 0.940 0.932 0.925 0.919 0.914 0.910 0.906 0.90231-5/8 0.975 0.959 0.947 0.937 0.930 0.923 0.917 0.912 0.908 0.904 0.90033 0.973 0.957 0.945 0.935 0.928 0.921 0.915 0.910 0.906 0.902 0.89834-3/8 0.971 0.955 0.943 0.934 0.926 0.919 0.913 0.908 0.904 0.900 0.89635-3/4 0.969 0.953 0.941 0.932 0.924 0.917 0.912 0.907 0.902 0.898 0.89437-1/8 0.967 0.951 0.939 0.930 0.922 0.916 0.910 0.905 0.900 0.896 0.89338-1/2 0.966 0.950 0.938 0.928 0.921 0.914 0.908 0.903 0.899 0.895 0.89139-7/8 0.964 0.948 0.936 0.927 0.919 0.912 0.907 0.902 0.897 0.893 0.88941-1/4 0.962 0.946 0.934 0.925 0.917 0.911 0.905 0.900 0.896 0.892 0.88842-5/8 0.961 0.945 0.933 0.924 0.916 0.909 0.904 0.899 0.894 0.890 0.88644 0.959 0.943 0.931 0.922 0.914 0.908 0.902 0.897 0.893 0.889 0.88545-3/8 0.958 0.942 0.930 0.921 0.913 0.907 0.901 0.896 0.891 0.887 0.88446-3/4 0.956 0.940 0.929 0.919 0.912 0.905 0.900 0.895 0.890 0.886 0.88248-1/8 0.955 0.939 0.927 0.918 0.910 0.904 0.898 0.893 0.889 0.885 0.88149-1/2 0.954 0.938 0.926 0.917 0.909 0.903 0.897 0.892 0.888 0.884 0.88050-7/8 0.952 0.936 0.925 0.915 0.908 0.901 0.896 0.891 0.886 0.882 0.87952-1/4 0.951 0.935 0.923 0.914 0.907 0.900 0.895 0.890 0.885 0.881 0.87753-5/8 0.950 0.934 0.922 0.913 0.905 0.899 0.893 0.888 0.884 0.880 0.87655 0.949 0.933 0.921 0.912 0.904 0.898 0.892 0.887 0.883 0.879 0.87556-3/8 0.947 0.932 0.920 0.911 0.903 0.897 0.891 0.886 0.882 0.878 0.87457-3/4 0.946 0.930 0.919 0.910 0.902 0.896 0.890 0.885 0.881 0.877 0.87359-1/8 0.945 0.929 0.918 0.909 0.901 0.895 0.889 0.884 0.880 0.876 0.87260-1/2 0.944 0.928 0.917 0.908 0.900 0.894 0.888 0.883 0.879 0.875 0.871APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-27Table 4.6(Cont.)Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 10 14 18 22 26 30 34 38 42 46 508-1/2 in. Width9-5/8 1.000 1.000 0.993 0.984 -- -- -- -- -- -- --11 1.000 0.999 0.987 0.977 0.969 -- -- -- -- -- --12-3/8 1.000 0.993 0.981 0.971 0.963 0.956 -- -- -- -- --13-3/4 1.000 0.988 0.976 0.966 0.958 0.951 0.945 -- -- -- --15-1/8 1.000 0.984 0.971 0.962 0.954 0.947 0.941 -- -- -- --16-1/2 0.996 0.979 0.967 0.957 0.949 0.943 0.937 0.932 -- -- --17-7/8 0.992 0.975 0.963 0.954 0.946 0.939 0.933 0.928 0.923 -- --19-1/4 0.988 0.972 0.960 0.950 0.942 0.935 0.930 0.924 0.920 0.916 --20-5/8 0.985 0.968 0.956 0.947 0.939 0.932 0.926 0.921 0.917 0.912 0.90922 0.982 0.965 0.953 0.944 0.936 0.929 0.923 0.918 0.914 0.910 0.90623-3/8 0.979 0.962 0.950 0.941 0.933 0.926 0.921 0.915 0.911 0.907 0.90324-3/4 0.976 0.960 0.948 0.938 0.930 0.924 0.918 0.913 0.908 0.904 0.90026-1/8 0.973 0.957 0.945 0.936 0.928 0.921 0.915 0.910 0.906 0.902 0.89827-1/2 0.971 0.955 0.943 0.933 0.925 0.919 0.913 0.908 0.904 0.899 0.89628-7/8 0.968 0.952 0.940 0.931 0.923 0.917 0.911 0.906 0.901 0.897 0.89430-1/4 0.966 0.950 0.938 0.929 0.921 0.915 0.909 0.904 0.899 0.895 0.89131-5/8 0.964 0.948 0.936 0.927 0.919 0.912 0.907 0.902 0.897 0.893 0.88933 0.962 0.946 0.934 0.925 0.917 0.911 0.905 0.900 0.895 0.891 0.88834-3/8 0.960 0.944 0.932 0.923 0.915 0.909 0.903 0.898 0.894 0.889 0.88635-3/4 0.958 0.942 0.930 0.921 0.913 0.907 0.901 0.896 0.892 0.888 0.88437-1/8 0.956 0.940 0.929 0.919 0.912 0.905 0.900 0.895 0.890 0.886 0.88238-1/2 0.955 0.939 0.927 0.918 0.910 0.904 0.898 0.893 0.888 0.884 0.88139-7/8 0.953 0.937 0.925 0.916 0.908 0.902 0.896 0.891 0.887 0.883 0.87941-1/4 0.951 0.935 0.924 0.915 0.907 0.900 0.895 0.890 0.885 0.881 0.87842-5/8 0.950 0.934 0.922 0.913 0.905 0.899 0.893 0.888 0.884 0.880 0.87644 0.948 0.932 0.921 0.912 0.904 0.898 0.892 0.887 0.883 0.879 0.87545-3/8 0.947 0.931 0.919 0.910 0.903 0.896 0.891 0.886 0.881 0.877 0.87446-3/4 0.945 0.930 0.918 0.909 0.901 0.895 0.889 0.884 0.880 0.876 0.87248-1/8 0.944 0.928 0.917 0.907 0.900 0.894 0.888 0.883 0.879 0.875 0.87149-1/2 0.943 0.927 0.915 0.906 0.899 0.892 0.887 0.882 0.877 0.873 0.87050-7/8 0.941 0.926 0.914 0.905 0.897 0.891 0.885 0.881 0.876 0.872 0.86952-1/4 0.940 0.924 0.913 0.904 0.896 0.890 0.884 0.879 0.875 0.871 0.86753-5/8 0.939 0.923 0.912 0.903 0.895 0.889 0.883 0.878 0.874 0.870 0.86655 0.938 0.922 0.911 0.901 0.894 0.888 0.882 0.877 0.873 0.869 0.86556-3/8 0.937 0.921 0.909 0.900 0.893 0.886 0.881 0.876 0.872 0.868 0.86457-3/4 0.935 0.920 0.908 0.899 0.892 0.885 0.880 0.875 0.871 0.867 0.86359-1/8 0.934 0.919 0.907 0.898 0.891 0.884 0.879 0.874 0.870 0.866 0.86260-1/2 0.933 0.918 0.906 0.897 0.890 0.883 0.878 0.873 0.869 0.865 0.8614DESIGN ADJUSTMENT FACTORSAPA – The Engineered <strong>Wood</strong> Association


GL-28DESIGN ADJUSTMENT FACTORSTable 4.6(Cont.)Volume Factor for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthC v when Span (ft.) isd (in.) 12 16 20 24 28 32 36 40 44 48 5210-1/2 in. Width11 0.996 0.982 0.971 0.963 -- -- -- -- -- -- --12-3/8 0.991 0.976 0.966 0.957 0.950 -- -- -- -- -- --13-3/4 0.985 0.971 0.961 0.952 0.945 0.938 -- -- -- -- --15-1/8 0.981 0.967 0.956 0.947 0.940 0.934 0.928 -- -- -- --16-1/2 0.976 0.963 0.952 0.943 0.936 0.930 0.924 0.919 -- -- --17-7/8 0.973 0.959 0.948 0.939 0.932 0.926 0.921 0.916 0.911 -- --19-1/4 0.969 0.955 0.945 0.936 0.929 0.923 0.917 0.912 0.908 0.904 --20-5/8 0.966 0.952 0.941 0.933 0.926 0.919 0.914 0.909 0.905 0.901 --22 0.963 0.949 0.938 0.930 0.923 0.916 0.911 0.906 0.902 0.898 0.89423-3/8 0.960 0.946 0.935 0.927 0.920 0.914 0.908 0.904 0.899 0.895 0.89224-3/4 0.957 0.943 0.933 0.924 0.917 0.911 0.906 0.901 0.897 0.893 0.88926-1/8 0.954 0.941 0.930 0.922 0.915 0.909 0.903 0.899 0.894 0.890 0.88727-1/2 0.952 0.938 0.928 0.919 0.912 0.906 0.901 0.896 0.892 0.888 0.88528-7/8 0.950 0.936 0.926 0.917 0.910 0.904 0.899 0.894 0.890 0.886 0.88230-1/4 0.947 0.934 0.923 0.915 0.908 0.902 0.897 0.892 0.888 0.884 0.88031-5/8 0.945 0.932 0.921 0.913 0.906 0.900 0.895 0.890 0.886 0.882 0.87833 0.943 0.930 0.919 0.911 0.904 0.898 0.893 0.888 0.884 0.880 0.87734-3/8 0.941 0.928 0.918 0.909 0.902 0.896 0.891 0.886 0.882 0.878 0.87535-3/4 0.939 0.926 0.916 0.907 0.900 0.894 0.889 0.885 0.880 0.877 0.87337-1/8 0.938 0.924 0.914 0.906 0.899 0.893 0.888 0.883 0.879 0.875 0.87138-1/2 0.936 0.923 0.912 0.904 0.897 0.891 0.886 0.881 0.877 0.873 0.87039-7/8 0.934 0.921 0.911 0.903 0.896 0.890 0.884 0.880 0.876 0.872 0.86841-1/4 0.933 0.919 0.909 0.901 0.894 0.888 0.883 0.878 0.874 0.870 0.86742-5/8 0.931 0.918 0.908 0.900 0.893 0.887 0.881 0.877 0.873 0.869 0.86544 0.930 0.916 0.906 0.898 0.891 0.885 0.880 0.875 0.871 0.867 0.86445-3/8 0.928 0.915 0.905 0.897 0.890 0.884 0.879 0.874 0.870 0.866 0.86346-3/4 0.927 0.914 0.904 0.895 0.888 0.883 0.877 0.873 0.869 0.865 0.86148-1/8 0.926 0.912 0.902 0.894 0.887 0.881 0.876 0.872 0.867 0.864 0.86049-1/2 0.924 0.911 0.901 0.893 0.886 0.880 0.875 0.870 0.866 0.862 0.85950-7/8 0.923 0.910 0.900 0.892 0.885 0.879 0.874 0.869 0.865 0.861 0.85852-1/4 0.922 0.909 0.899 0.890 0.884 0.878 0.873 0.868 0.864 0.860 0.85753-5/8 0.921 0.907 0.897 0.889 0.882 0.877 0.871 0.867 0.863 0.859 0.85655 0.919 0.906 0.896 0.888 0.881 0.875 0.870 0.866 0.862 0.858 0.85456-3/8 0.918 0.905 0.895 0.887 0.880 0.874 0.869 0.865 0.861 0.857 0.85357-3/4 0.917 0.904 0.894 0.886 0.879 0.873 0.868 0.864 0.859 0.856 0.85259-1/8 0.916 0.903 0.893 0.885 0.878 0.872 0.867 0.863 0.858 0.855 0.85160-1/2 0.915 0.902 0.892 0.884 0.877 0.871 0.866 0.862 0.858 0.854 0.850APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-29CAPACITYSELECTIONTABLES55.1 General GL-305.2 Bending Capacity, M, and ShearCapacity, VGL-305.3 Bending Stiffness, EI GL-305.4 Tension Parallel to GrainCapacity, T5.5 Compression Parallel to GrainCapacity, PGL-30GL-30Table 5.1 Moment and Shear Capacities for Bendingabout X-X Axis (C D = 1.0, C V = 1.0) WesternSpecies Glued Laminated Timber ................. GL-31Table 5.2 Moment and Shear Capacities for Bendingabout X-X Axis (C D = 1.0, C V = 1.0) SouthernPine Glued Laminated Timber ..................... GL-37Table 5.3 Stiffness for Bending about X-X Axis WesternSpecies Glued Laminated Timber ................. GL-43Table 5.4 Stiffness for Bending about X-X Axis SouthernPine Glued Laminated Timber ..................... GL-49APA – The Engineered <strong>Wood</strong> Association


GL-30CAPACITY SELECTION TABLES5.1 GeneralCapacity and stiffness values for structural glued laminatedtimber are provided in this section. The capacityvalue is based on a normal load duration (10 years). Forother load durations, the tabulated capacities should bemultiplied by the appropriate load duration factor (seeSection 4.2).5.2 Bending Capacity, M, and Shear Capacity, VBending capacity, M, and shear capacity, V, are givenfor various allowable stress levels in Table 5.1 for Westernspecies glued laminated timber and Table 5.2 forSouthern Pine glued laminated timber. These capacitiesshall be further multiplied by applicable design adjustmentfactors given in Section 4 of this Supplement. Notethat the tabulated values for bending capacity, M, haveNOT been adjusted for volume factor (see Section 4.9of this Supplement) as the length of the glued laminatedtimber member is not specified in the tables.The bending capacities in Tables 5.1 and 5.2 are basedon fully laterally supported members. When members arenot laterally supported, see the NDS for design details.As noted in Section 3.2, tabulated horizontal shearvalues have been arbitrarily reduced by 10% to allow forin-service checking. The designer may increase the tabulatedshear capacity values by 10% if allowance forchecking is not a design concern.5.3 Bending Stiffness, EITables 5.3 (Western species) and 5.4 (Southern Pine)provides the bending stiffness for various glued laminatedtimber sizes at different E levels. The EI values may beused for deflection computations.5.4 Tension Parallel to Grain Capacity, TTension parallel to grain capacity, T, can be calculatedby multiplying the tensile strength parallel to grain(given in Tables 3.1 and 3.2) by the cross sectional area(given in Tables 9.1 and 9.2). This capacity shall be furthermultiplied by applicable design adjustment factorsgiven in Section 4 of this Supplement.5.5 Compression Parallel to Grain Capacity, PCapacity for compression parallel-to-grain, P, (crushing)can be calculated by multiplying the allowablecompressive stress parallel to grain (given in Tables 3.1and 3.2) by the cross sectional area (given in Tables 9.1and 9.2). This capacity shall be further multiplied by applicabledesign adjustment factors, especially the columnstability factor when appropriate, given in Section 4 ofthis Supplement.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-31Table 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 1752-1/2 in. Width6 3,000 2,500 2,000 2,400 1,900 1,7507-1/2 4,688 3,906 3,125 3,000 2,375 2,1889 6,750 5,625 4,500 3,600 2,850 2,62510-1/2 9,188 7,656 6,125 4,200 3,325 3,06312 12,000 10,000 8,000 4,800 3,800 3,50013-1/2 15,188 12,656 10,125 5,400 4,275 3,93815 18,750 15,625 12,500 6,000 4,750 4,37516-1/2 22,688 18,906 15,125 6,600 5,225 4,81318 27,000 22,500 18,000 7,200 5,700 5,25019-1/2 31,688 26,406 21,125 7,800 6,175 5,68821 36,750 30,625 24,500 8,400 6,650 6,1253-1/8 in. Width6 3,750 3,125 2,500 3,000 2,375 2,1887-1/2 5,859 4,883 3,906 3,750 2,969 2,7349 8,438 7,031 5,625 4,500 3,563 3,28110-1/2 11,484 9,570 7,656 5,250 4,156 3,82812 15,000 12,500 10,000 6,000 4,750 4,37513-1/2 18,984 15,820 12,656 6,750 5,344 4,92215 23,438 19,531 15,625 7,500 5,938 5,46916-1/2 28,359 23,633 18,906 8,250 6,531 6,01618 33,750 28,125 22,500 9,000 7,125 6,56319-1/2 39,609 33,008 26,406 9,750 7,719 7,10921 45,938 38,281 30,625 10,500 8,313 7,65622-1/2 52,734 43,945 35,156 11,250 8,906 8,20324 60,000 50,000 40,000 12,000 9,500 8,7503-1/2 in. Width6 4,200 3,500 2,800 3,360 2,660 2,4507-1/2 6,563 5,469 4,375 4,200 3,325 3,0639 9,450 7,875 6,300 5,040 3,990 3,67510-1/2 12,863 10,719 8,575 5,880 4,655 4,28812 16,800 14,000 11,200 6,720 5,320 4,90013-1/2 21,263 17,719 14,175 7,560 5,985 5,51315 26,250 21,875 17,500 8,400 6,650 6,12516-1/2 31,763 26,469 21,175 9,240 7,315 6,73818 37,800 31,500 25,200 10,080 7,980 7,35019-1/2 44,363 36,969 29,575 10,920 8,645 7,96321 51,450 42,875 34,300 11,760 9,310 8,57522-1/2 59,063 49,219 39,375 12,600 9,975 9,18824 67,200 56,000 44,800 13,440 10,640 9,800Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-32CAPACITY SELECTION TABLESTable 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 1755-1/8 in. Width6 6,150 5,125 4,100 4,920 3,895 3,5887-1/2 9,609 8,008 6,406 6,150 4,869 4,4849 13,838 11,531 9,225 7,380 5,843 5,38110-1/2 18,834 15,695 12,556 8,610 6,816 6,27812 24,600 20,500 16,400 9,840 7,790 7,17513-1/2 31,134 25,945 20,756 11,070 8,764 8,07215 38,438 32,031 25,625 12,300 9,738 8,96916-1/2 46,509 38,758 31,006 13,530 10,711 9,86618 55,350 46,125 36,900 14,760 11,685 10,76319-1/2 64,959 54,133 43,306 15,990 12,659 11,65921 75,338 62,781 50,225 17,220 13,633 12,55622-1/2 86,484 72,070 57,656 18,450 14,606 13,45324 98,400 82,000 65,600 19,680 15,580 14,35025-1/2 111,084 92,570 74,056 20,910 16,554 15,24727 124,538 103,781 83,025 22,140 17,528 16,14428-1/2 138,759 115,633 92,506 23,370 18,501 17,04130 153,750 128,125 102,500 24,600 19,475 17,93831-1/2 169,509 141,258 113,006 25,830 20,449 18,83433 186,038 155,031 124,025 27,060 21,423 19,73134-1/2 203,334 169,445 135,556 28,290 22,396 20,62836 221,400 184,500 147,600 29,520 23,370 21,5255-1/2 in. Width6 6,600 5,500 4,400 5,280 4,180 3,8507-1/2 10,313 8,594 6,875 6,600 5,225 4,8139 14,850 12,375 9,900 7,920 6,270 5,77510-1/2 20,213 16,844 13,475 9,240 7,315 6,73812 26,400 22,000 17,600 10,560 8,360 7,70013-1/2 33,413 27,844 22,275 11,880 9,405 8,66315 41,250 34,375 27,500 13,200 10,450 9,62516-1/2 49,913 41,594 33,275 14,520 11,495 10,58818 59,400 49,500 39,600 15,840 12,540 11,55019-1/2 69,713 58,094 46,475 17,160 13,585 12,51321 80,850 67,375 53,900 18,480 14,630 13,47522-1/2 92,813 77,344 61,875 19,800 15,675 14,43824 105,600 88,000 70,400 21,120 16,720 15,40025-1/2 119,213 99,344 79,475 22,440 17,765 16,36327 133,650 111,375 89,100 23,760 18,810 17,32528-1/2 148,913 124,094 99,275 25,080 19,855 18,28830 165,000 137,500 110,000 26,400 20,900 19,25031-1/2 181,913 151,594 121,275 27,720 21,945 20,21333 199,650 166,375 133,100 29,040 22,990 21,17534-1/2 218,213 181,844 145,475 30,360 24,035 22,13836 237,600 198,000 158,400 31,680 25,080 23,100Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-33Table 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 1756-3/4 in. Width7-1/2 12,656 10,547 8,438 8,100 6,413 5,9069 18,225 15,188 12,150 9,720 7,695 7,08810-1/2 24,806 20,672 16,538 11,340 8,978 8,26912 32,400 27,000 21,600 12,960 10,260 9,45013-1/2 41,006 34,172 27,338 14,580 11,543 10,63115 50,625 42,188 33,750 16,200 12,825 11,81316-1/2 61,256 51,047 40,838 17,820 14,108 12,99418 72,900 60,750 48,600 19,440 15,390 14,17519-1/2 85,556 71,297 57,038 21,060 16,673 15,35621 99,225 82,688 66,150 22,680 17,955 16,53822-1/2 113,906 94,922 75,938 24,300 19,238 17,71924 129,600 108,000 86,400 25,920 20,520 18,90025-1/2 146,306 121,922 97,538 27,540 21,803 20,08127 164,025 136,688 109,350 29,160 23,085 21,26328-1/2 182,756 152,297 121,838 30,780 24,368 22,44430 202,500 168,750 135,000 32,400 25,650 23,62531-1/2 223,256 186,047 148,838 34,020 26,933 24,80633 245,025 204,188 163,350 35,640 28,215 25,98834-1/2 267,806 223,172 178,538 37,260 29,498 27,16936 291,600 243,000 194,400 38,880 30,780 28,35037-1/2 316,406 263,672 210,938 40,500 32,063 29,53139 342,225 285,188 228,150 42,120 33,345 30,71340-1/2 369,056 307,547 246,038 43,740 34,628 31,89442 396,900 330,750 264,600 45,360 35,910 33,07543-1/2 425,756 354,797 283,838 46,980 37,193 34,25645 455,625 379,688 303,750 48,600 38,475 35,43846-1/2 486,506 405,422 324,338 50,220 39,758 36,61948 518,400 432,000 345,600 51,840 41,040 37,80049-1/2 551,306 459,422 367,538 53,460 42,323 38,98151 585,225 487,688 390,150 55,080 43,605 40,16352-1/2 620,156 516,797 413,438 56,700 44,888 41,34454 656,100 546,750 437,400 58,320 46,170 42,52555-1/2 693,056 577,547 462,038 59,940 47,453 43,70657 731,025 609,188 487,350 61,560 48,735 44,88858-1/2 770,006 641,672 513,338 63,180 50,018 46,06960 810,000 675,000 540,000 64,800 51,300 47,250Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-34CAPACITY SELECTION TABLESTable 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 1758-3/4 in. Width9 23,625 19,688 15,750 12,600 9,975 9,18810-1/2 32,156 26,797 21,438 14,700 11,638 10,71912 42,000 35,000 28,000 16,800 13,300 12,25013-1/2 53,156 44,297 35,438 18,900 14,963 13,78115 65,625 54,688 43,750 21,000 16,625 15,31316-1/2 79,406 66,172 52,938 23,100 18,288 16,84418 94,500 78,750 63,000 25,200 19,950 18,37519-1/2 110,906 92,422 73,938 27,300 21,613 19,90621 128,625 107,188 85,750 29,400 23,275 21,43822-1/2 147,656 123,047 98,438 31,500 24,938 22,96924 168,000 140,000 112,000 33,600 26,600 24,50025-1/2 189,656 158,047 126,438 35,700 28,263 26,03127 212,625 177,188 141,750 37,800 29,925 27,56328-1/2 236,906 197,422 157,938 39,900 31,588 29,09430 262,500 218,750 175,000 42,000 33,250 30,62531-1/2 289,406 241,172 192,938 44,100 34,913 32,15633 317,625 264,688 211,750 46,200 36,575 33,68834-1/2 347,156 289,297 231,438 48,300 38,238 35,21936 378,000 315,000 252,000 50,400 39,900 36,75037-1/2 410,156 341,797 273,438 52,500 41,563 38,28139 443,625 369,688 295,750 54,600 43,225 39,81340-1/2 478,406 398,672 318,938 56,700 44,888 41,34442 514,500 428,750 343,000 58,800 46,550 42,87543-1/2 551,906 459,922 367,938 60,900 48,213 44,40645 590,625 492,188 393,750 63,000 49,875 45,93846-1/2 630,656 525,547 420,438 65,100 51,538 47,46948 672,000 560,000 448,000 67,200 53,200 49,00049-1/2 714,656 595,547 476,438 69,300 54,863 50,53151 758,625 632,188 505,750 71,400 56,525 52,06352-1/2 803,906 669,922 535,938 73,500 58,188 53,59454 850,500 708,750 567,000 75,600 59,850 55,12555-1/2 898,406 748,672 598,938 77,700 61,513 56,65657 947,625 789,688 631,750 79,800 63,175 58,18858-1/2 998,156 831,797 665,438 81,900 64,838 59,71960 1,050,000 875,000 700,000 84,000 66,500 61,250Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-35Table 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 17510-3/4 in. Width12 51,600 43,000 34,400 20,640 16,340 15,05013-1/2 65,306 54,422 43,538 23,220 18,383 16,93115 80,625 67,188 53,750 25,800 20,425 18,81316-1/2 97,556 81,297 65,038 28,380 22,468 20,69418 116,100 96,750 77,400 30,960 24,510 22,57519-1/2 136,256 113,547 90,838 33,540 26,553 24,45621 158,025 131,688 105,350 36,120 28,595 26,33822-1/2 181,406 151,172 120,938 38,700 30,638 28,21924 206,400 172,000 137,600 41,280 32,680 30,10025-1/2 233,006 194,172 155,338 43,860 34,723 31,98127 261,225 217,688 174,150 46,440 36,765 33,86328-1/2 291,056 242,547 194,038 49,020 38,808 35,74430 322,500 268,750 215,000 51,600 40,850 37,62531-1/2 355,556 296,297 237,038 54,180 42,893 39,50633 390,225 325,188 260,150 56,760 44,935 41,38834-1/2 426,506 355,422 284,338 59,340 46,978 43,26936 464,400 387,000 309,600 61,920 49,020 45,15037-1/2 503,906 419,922 335,938 64,500 51,063 47,03139 545,025 454,188 363,350 67,080 53,105 48,91340-1/2 587,756 489,797 391,838 69,660 55,148 50,79442 632,100 526,750 421,400 72,240 57,190 52,67543-1/2 678,056 565,047 452,038 74,820 59,233 54,55645 725,625 604,688 483,750 77,400 61,275 56,43846-1/2 774,806 645,672 516,538 79,980 63,318 58,31948 825,600 688,000 550,400 82,560 65,360 60,20049-1/2 878,006 731,672 585,338 85,140 67,403 62,08151 932,025 776,688 621,350 87,720 69,445 63,96352-1/2 987,656 823,047 658,438 90,300 71,488 65,84454 1,044,900 870,750 696,600 92,880 73,530 67,72555-1/2 1,103,756 919,797 735,838 95,460 75,573 69,60657 1,164,225 970,188 776,150 98,040 77,615 71,48858-1/2 1,226,306 1,021,922 817,538 100,620 79,658 73,36960 1,290,000 1,075,000 860,000 103,200 81,700 75,250Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-36CAPACITY SELECTION TABLESTable 5.1 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Western Species Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) when F vx (psi) isd (in.) 2,400 2,000 1,600 240 190 17512-1/4 in. Width13-1/2 74,419 62,016 49,613 26,460 20,948 19,29415 91,875 76,563 61,250 29,400 23,275 21,43816-1/2 111,169 92,641 74,113 32,340 25,603 23,58118 132,300 110,250 88,200 35,280 27,930 25,72519-1/2 155,269 129,391 103,513 38,220 30,258 27,86921 180,075 150,063 120,050 41,160 32,585 30,01322-1/2 206,719 172,266 137,813 44,100 34,913 32,15624 235,200 196,000 156,800 47,040 37,240 34,30025-1/2 265,519 221,266 177,013 49,980 39,568 36,44427 297,675 248,063 198,450 52,920 41,895 38,58828-1/2 331,669 276,391 221,113 55,860 44,223 40,73130 367,500 306,250 245,000 58,800 46,550 42,87531-1/2 405,169 337,641 270,113 61,740 48,878 45,01933 444,675 370,563 296,450 64,680 51,205 47,16334-1/2 486,019 405,016 324,013 67,620 53,533 49,30636 529,200 441,000 352,800 70,560 55,860 51,45037-1/2 574,219 478,516 382,813 73,500 58,188 53,59439 621,075 517,563 414,050 76,440 60,515 55,73840-1/2 669,769 558,141 446,513 79,380 62,843 57,88142 720,300 600,250 480,200 82,320 65,170 60,02543-1/2 772,669 643,891 515,113 85,260 67,498 62,16945 826,875 689,063 551,250 88,200 69,825 64,31346-1/2 882,919 735,766 588,613 91,140 72,153 66,45648 940,800 784,000 627,200 94,080 74,480 68,60049-1/2 1,000,519 833,766 667,013 97,020 76,808 70,74451 1,062,075 885,063 708,050 99,960 79,135 72,88852-1/2 1,125,469 937,891 750,313 102,900 81,463 75,03154 1,190,700 992,250 793,800 105,840 83,790 77,17555-1/2 1,257,769 1,048,141 838,513 108,780 86,118 79,31957 1,326,675 1,105,563 884,450 111,720 88,445 81,46358-1/2 1,397,419 1,164,516 931,613 114,660 90,773 83,60660 1,470,000 1,225,000 980,000 117,600 93,100 85,750Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply the tabulatedvalues by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-37Table 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,C V= 1.0) Southern Pine Glued Laminated TimberDepth M (lbf-ft.) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 2702-1/2 in. Width5-1/2 3,151 2,941 2,731 2,521 2,101 2,4756-7/8 4,924 4,595 4,267 3,939 3,282 3,0948-1/4 7,090 6,617 6,145 5,672 4,727 3,7139-5/8 9,650 9,007 8,363 7,720 6,433 4,33111 12,604 11,764 10,924 10,083 8,403 4,95012-3/8 15,952 14,889 13,825 12,762 10,635 5,56913-3/4 19,694 18,381 17,068 15,755 13,129 6,18815-1/8 23,830 22,241 20,652 19,064 15,887 6,80616-1/2 28,359 26,469 24,578 22,688 18,906 7,42517-7/8 33,283 31,064 28,845 26,626 22,189 8,04419-1/4 38,600 36,027 33,454 30,880 25,734 8,66320-5/8 44,312 41,357 38,403 35,449 29,541 9,28122 50,417 47,056 43,694 40,333 33,611 9,90023-3/8 56,916 53,121 49,327 45,533 37,944 10,5193 in. Width5-1/2 3,781 3,529 3,277 3,025 2,521 2,9706-7/8 5,908 5,514 5,120 4,727 3,939 3,7138-1/4 8,508 7,941 7,373 6,806 5,672 4,4559-5/8 11,580 10,808 10,036 9,264 7,720 5,19811 15,125 14,117 13,108 12,100 10,083 5,94012-3/8 19,143 17,866 16,590 15,314 12,762 6,68313-3/4 23,633 22,057 20,482 18,906 15,755 7,42515-1/8 28,596 26,689 24,783 22,877 19,064 8,16816-1/2 34,031 31,763 29,494 27,225 22,688 8,91017-7/8 39,939 37,277 34,614 31,952 26,626 9,65319-1/4 46,320 43,232 40,144 37,056 30,880 10,39520-5/8 53,174 49,629 46,084 42,539 35,449 11,13822 60,500 56,467 52,433 48,400 40,333 11,88023-3/8 68,299 63,746 59,192 54,639 45,533 12,6233-1/8 in. Width5-1/2 3,939 3,676 3,414 3,151 2,626 3,0946-7/8 6,154 5,744 5,334 4,924 4,103 3,8678-1/4 8,862 8,271 7,681 7,090 5,908 4,6419-5/8 12,063 11,258 10,454 9,650 8,042 5,41411 15,755 14,705 13,655 12,604 10,503 6,18812-3/8 19,940 18,611 17,281 15,952 13,293 6,96113-3/4 24,618 22,976 21,335 19,694 16,412 7,73415-1/8 29,787 27,801 25,816 23,830 19,858 8,50816-1/2 35,449 33,086 30,723 28,359 23,633 9,28117-7/8 41,604 38,830 36,056 33,283 27,736 10,05519-1/4 48,250 45,034 41,817 38,600 32,167 10,82820-5/8 55,389 51,697 48,004 44,312 36,926 11,60222 63,021 58,819 54,618 50,417 42,014 12,37523-3/8 71,145 66,402 61,659 56,916 47,430 13,148Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations, multiply thetabulated values by an appropriate load duration factor (see Section 4.2).a5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-38CAPACITY SELECTION TABLESTable 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Southern Pine Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 2703-1/2 in. Width5-1/2 4,411 4,117 3,823 3,529 2,941 3,4656-7/8 6,893 6,433 5,974 5,514 4,595 4,3318-1/4 9,926 9,264 8,602 7,941 6,617 5,1989-5/8 13,510 12,609 11,709 10,808 9,007 6,06411 17,646 16,469 15,293 14,117 11,764 6,93012-3/8 22,333 20,844 19,355 17,866 14,889 7,79613-3/4 27,572 25,734 23,895 22,057 18,381 8,66315-1/8 33,362 31,138 28,913 26,689 22,241 9,52916-1/2 39,703 37,056 34,409 31,763 26,469 10,39517-7/8 46,596 43,490 40,383 37,277 31,064 11,26119-1/4 54,040 50,438 46,835 43,232 36,027 12,12820-5/8 62,036 57,900 53,765 49,629 41,357 12,99422 70,583 65,878 61,172 56,467 47,056 13,86023-3/8 79,682 74,370 69,058 63,746 53,121 14,7265 in. Width6-7/8 9,847 9,191 8,534 7,878 6,565 6,1888-1/4 14,180 13,234 12,289 11,344 9,453 7,4259-5/8 19,300 18,013 16,727 15,440 12,867 8,66311 25,208 23,528 21,847 20,167 16,806 9,90012-3/8 31,904 29,777 27,650 25,523 21,270 11,13813-3/4 39,388 36,762 34,136 31,510 26,259 12,37515-1/8 47,660 44,482 41,305 38,128 31,773 13,61316-1/2 56,719 52,938 49,156 45,375 37,813 14,85017-7/8 66,566 62,128 57,690 53,253 44,377 16,08819-1/4 77,201 72,054 66,907 61,760 51,467 17,32520-5/8 88,623 82,715 76,807 70,898 59,082 18,56322 100,833 94,111 87,389 80,667 67,222 19,80023-3/8 113,831 106,243 98,654 91,065 75,888 21,03824-3/4 127,617 119,109 110,602 102,094 85,078 22,27526-1/8 142,191 132,711 123,232 113,753 94,794 23,51327-1/2 157,552 147,049 136,545 126,042 105,035 24,75028-7/8 173,701 162,121 150,541 138,961 115,801 25,98830-1/4 190,638 177,929 165,220 152,510 127,092 27,22531-5/8 208,363 194,472 180,581 166,690 138,908 28,46333 226,875 211,750 196,625 181,500 151,250 29,70034-3/8 246,175 229,763 213,352 196,940 164,117 30,93835-3/4 266,263 248,512 230,761 213,010 177,509 32,175Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations,multiply the tabulated values by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-39Table 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Southern Pine Glued Laminated TimberaDepth M (lbf-ft) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 2705-1/8 in. Width6-7/8 10,093 9,420 8,747 8,075 6,729 6,3428-1/4 14,534 13,565 12,596 11,627 9,689 7,6119-5/8 19,783 18,464 17,145 15,826 13,188 8,87911 25,839 24,116 22,393 20,671 17,226 10,14812-3/8 32,702 30,522 28,342 26,162 21,801 11,41613-3/4 40,373 37,681 34,990 32,298 26,915 12,68415-1/8 48,851 45,594 42,338 39,081 32,567 13,95316-1/2 58,137 54,261 50,385 46,509 38,758 15,22117-7/8 68,230 63,681 59,133 54,584 45,487 16,49019-1/4 79,131 73,855 68,580 63,304 52,754 17,75820-5/8 90,839 84,783 78,727 72,671 60,559 19,02722 103,354 96,464 89,574 82,683 68,903 20,29523-3/8 116,677 108,899 101,120 93,342 77,785 21,56324-3/4 130,808 122,087 113,367 104,646 87,205 22,83226-1/8 145,746 136,029 126,313 116,596 97,164 24,10027-1/2 161,491 150,725 139,959 129,193 107,661 25,36928-7/8 178,044 166,174 154,305 142,435 118,696 26,63730-1/4 195,404 182,377 169,350 156,323 130,269 27,90631-5/8 213,572 199,334 185,095 170,857 142,381 29,17433 232,547 217,044 201,541 186,038 155,031 30,44334-3/8 252,330 235,508 218,686 201,864 168,220 31,71135-3/4 272,920 254,725 236,530 218,336 181,946 32,9795-1/2 in. Width6-7/8 10,832 10,110 9,387 8,665 7,221 6,8068-1/4 15,598 14,558 13,518 12,478 10,398 8,1689-5/8 21,230 19,815 18,399 16,984 14,153 9,52911 27,729 25,881 24,032 22,183 18,486 10,89012-3/8 35,095 32,755 30,415 28,076 23,396 12,25113-3/4 43,327 40,438 37,550 34,661 28,885 13,61315-1/8 52,425 48,930 45,435 41,940 34,950 14,97416-1/2 62,391 58,231 54,072 49,913 41,594 16,33517-7/8 73,222 68,341 63,459 58,578 48,815 17,69619-1/4 84,921 79,259 73,598 67,936 56,614 19,05820-5/8 97,485 90,986 84,487 77,988 64,990 20,41922 110,917 103,522 96,128 88,733 73,944 21,78023-3/8 125,215 116,867 108,519 100,172 83,476 23,14124-3/4 140,379 131,020 121,662 112,303 93,586 24,50326-1/8 156,410 145,983 135,555 125,128 104,273 25,86427-1/2 173,307 161,753 150,200 138,646 115,538 27,22528-7/8 191,071 178,333 165,595 152,857 127,381 28,58630-1/4 209,702 195,722 181,742 167,761 139,801 29,94831-5/8 229,199 213,919 198,639 183,359 152,799 31,30933 249,563 232,925 216,288 199,650 166,375 32,67034-3/8 270,793 252,740 234,687 216,634 180,528 34,03135-3/4 292,889 273,363 253,837 234,311 195,260 35,393Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations,multiply the tabulated values by an appropriate load duration factor (see Section 4.2).5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-40CAPACITY SELECTION TABLESTable 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Southern Pine Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 2706-3/4 in. Width6-7/8 NA 12,407 11,521 10,635 8,862 8,3538-1/4 NA 17,866 16,590 15,314 12,762 10,0249-5/8 NA 24,318 22,581 20,844 17,370 11,69411 NA 31,763 29,494 27,225 22,688 13,36512-3/8 NA 40,199 37,328 34,457 28,714 15,03613-3/4 NA 49,629 46,084 42,539 35,449 16,70615-1/8 NA 60,051 55,762 51,472 42,894 18,37716-1/2 NA 71,466 66,361 61,256 51,047 20,04817-7/8 NA 83,873 77,882 71,891 59,909 21,71819-1/4 NA 97,273 90,325 83,377 69,480 23,38920-5/8 NA 111,665 103,689 95,713 79,761 25,05922 NA 127,050 117,975 108,900 90,750 26,73023-3/8 NA 143,428 133,183 122,938 102,448 28,40124-3/4 NA 160,798 149,312 137,827 114,855 30,07126-1/8 NA 179,160 166,363 153,566 127,972 31,74227-1/2 NA 198,516 184,336 170,156 141,797 33,41328-7/8 NA 218,863 203,230 187,597 156,331 35,08330-1/4 NA 240,204 223,046 205,889 171,574 36,75431-5/8 NA 262,537 243,784 225,032 187,526 38,42433 NA 285,863 265,444 245,025 204,188 40,09534-3/8 NA 310,181 288,025 265,869 221,558 41,76635-3/4 NA 335,491 311,528 287,564 239,637 43,43637-1/8 NA 361,795 335,952 310,110 258,425 45,10738-1/2 NA 389,091 361,298 333,506 277,922 46,77839-7/8 NA 417,379 387,566 357,754 298,128 48,44841-1/4 NA 446,660 414,756 382,852 319,043 50,11942-5/8 NA 476,934 442,867 408,800 340,667 51,78944 NA 508,200 471,900 435,600 363,000 53,46045-3/8 NA 540,459 501,855 463,250 386,042 55,13146-3/4 NA 573,710 532,731 491,752 409,793 56,80148-1/8 NA 607,954 564,529 521,104 434,253 58,47249-1/2 NA 643,191 597,248 551,306 459,422 60,14350-7/8 NA 679,420 630,890 582,360 485,300 61,81352-1/4 NA 716,641 665,453 614,264 511,887 63,48453-5/8 NA 754,856 700,937 647,019 539,183 65,15455 NA 794,063 737,344 680,625 567,188 66,82556-3/8 NA 834,262 774,672 715,082 595,901 68,49657-3/4 NA 875,454 812,921 750,389 625,324 70,16659-1/8 NA 917,638 852,093 786,547 655,456 71,83760-1/2 NA 960,816 892,186 823,556 686,297 73,508Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations,multiply the tabulated values by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-41Table 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Southern Pine Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 2708-1/2 in. Width9-5/8 NA 30,623 28,436 26,248 21,873 14,72611 NA 39,997 37,140 34,283 28,569 16,83012-3/8 NA 50,621 47,006 43,390 36,158 18,93413-3/4 NA 62,496 58,032 53,568 44,640 21,03815-1/8 NA 75,620 70,218 64,817 54,014 23,14116-1/2 NA 89,994 83,566 77,138 64,281 25,24517-7/8 NA 105,618 98,074 90,529 75,441 27,34919-1/4 NA 122,491 113,742 104,993 87,494 29,45320-5/8 NA 140,615 130,571 120,527 100,439 31,55622 NA 159,989 148,561 137,133 114,278 33,66023-3/8 NA 180,612 167,712 154,811 129,009 35,76424-3/4 NA 202,486 188,023 173,559 144,633 37,86826-1/8 NA 225,609 209,494 193,379 161,150 39,97127-1/2 NA 249,983 232,127 214,271 178,559 42,07528-7/8 NA 275,606 255,920 236,234 196,861 44,17930-1/4 NA 302,479 280,873 259,268 216,056 46,28331-5/8 NA 330,602 306,988 283,373 236,144 48,38633 NA 359,975 334,263 308,550 257,125 50,49034-3/8 NA 390,598 362,698 334,798 278,998 52,59435-3/4 NA 422,471 392,294 362,118 301,765 54,69837-1/8 NA 455,593 423,051 390,509 325,424 56,80138-1/2 NA 489,966 454,968 419,971 349,976 58,90539-7/8 NA 525,588 488,046 450,504 375,420 61,00941-1/4 NA 562,461 522,285 482,109 401,758 63,11342-5/8 NA 600,583 557,684 514,786 428,988 65,21644 NA 639,956 594,244 548,533 457,111 67,32045-3/8 NA 680,578 631,965 583,352 486,127 69,42446-3/4 NA 722,450 670,846 619,243 516,036 71,52848-1/8 NA 765,572 710,888 656,204 546,837 73,63149-1/2 NA 809,944 752,091 694,238 578,531 75,73550-7/8 NA 855,566 794,454 733,342 611,118 77,83952-1/4 NA 902,437 837,978 773,518 644,598 79,94353-5/8 NA 950,559 882,662 814,765 678,971 82,04655 NA 999,931 928,507 857,083 714,236 84,15056-3/8 NA 1,050,552 975,513 900,473 750,394 86,25457-3/4 NA 1,102,423 1,023,679 944,934 787,445 88,35859-1/8 NA 1,155,545 1,073,006 990,467 825,389 90,46160-1/2 NA 1,209,916 1,123,493 1,037,071 864,226 92,565Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations,multiply the tabulated values by an appropriate load duration factor (see Section 4.2).5CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-42CAPACITY SELECTION TABLESTable 5.2 Moment and Shear Capacities a for Bending about X-X Axis (C D= 1.0,(Cont.) C V= 1.0) Southern Pine Glued Laminated TimberaDepth M (lbf-ft.) when F bx (psi) is V (lbf) whenF vx (psi) isd (in.) 3,000 2,800 2,600 2,400 2,000 27010-1/2 in. Width11 NA 49,408 45,879 42,350 35,292 20,79012-3/8 NA 62,532 58,066 53,599 44,666 23,38913-3/4 NA 77,201 71,686 66,172 55,143 25,98815-1/8 NA 93,413 86,740 80,068 66,723 28,58616-1/2 NA 111,169 103,228 95,288 79,406 31,18517-7/8 NA 130,469 121,150 111,830 93,192 33,78419-1/4 NA 151,313 140,505 129,697 108,081 36,38320-5/8 NA 173,701 161,294 148,887 124,072 38,98122 NA 197,633 183,517 169,400 141,167 41,58023-3/8 NA 223,110 207,173 191,237 159,364 44,17924-3/4 NA 250,130 232,263 214,397 178,664 46,77826-1/8 NA 278,694 258,787 238,880 199,067 49,37627-1/2 NA 308,802 286,745 264,688 220,573 51,97528-7/8 NA 340,454 316,136 291,818 243,182 54,57430-1/4 NA 373,651 346,961 320,272 266,893 57,17331-5/8 NA 408,391 379,220 350,049 291,708 59,77133 NA 444,675 412,913 381,150 317,625 62,37034-3/8 NA 482,503 448,039 413,574 344,645 64,96935-3/4 NA 521,876 484,599 447,322 372,768 67,56837-1/8 NA 562,792 522,592 482,393 401,994 70,16638-1/2 NA 605,252 562,020 518,788 432,323 72,76539-7/8 NA 649,256 602,881 556,505 463,755 75,36441-1/4 NA 694,805 645,176 595,547 496,289 77,96342-5/8 NA 741,897 688,904 635,912 529,926 80,56144 NA 790,533 734,067 677,600 564,667 83,16045-3/8 NA 840,714 780,663 720,612 600,510 85,75946-3/4 NA 892,438 828,692 764,947 637,456 88,35848-1/8 NA 945,706 878,156 810,605 675,505 90,95649-1/2 NA 1,000,519 929,053 857,588 714,656 93,55550-7/8 NA 1,056,875 981,384 905,893 754,911 96,15452-1/4 NA 1,114,776 1,035,149 955,522 796,268 98,75353-5/8 NA 1,174,220 1,090,347 1,006,474 838,729 101,35155 NA 1,235,208 1,146,979 1,058,750 882,292 103,95056-3/8 NA 1,297,741 1,205,045 1,112,349 926,958 106,54957-3/4 NA 1,361,817 1,264,545 1,167,272 972,727 109,14859-1/8 NA 1,427,438 1,325,478 1,223,518 1,019,598 111,74660-1/2 NA 1,494,602 1,387,845 1,281,088 1,067,573 114,345Applicable to fully laterally supported members. For other conditions of lateral support, see NDS-<strong>2001</strong>. For other load durations,multiply the tabulated values by an appropriate load duration factor (see Section 4.2).APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-43Table 5.3Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.32-1/2 in. Width6 95 86 81 77 68 597-1/2 185 167 158 149 132 1149 319 289 273 258 228 19710-1/2 506 458 434 410 362 31412 756 684 648 612 540 46813-1/2 1,076 974 923 871 769 66615 1,477 1,336 1,266 1,195 1,055 91416-1/2 1,965 1,778 1,685 1,591 1,404 1,21718 2,552 2,309 2,187 2,066 1,823 1,58019-1/2 3,244 2,935 2,781 2,626 2,317 2,00821 4,052 3,666 3,473 3,280 2,894 2,5083-1/8 in. Width6 118 107 101 96 84 737-1/2 231 209 198 187 165 1439 399 361 342 323 285 24710-1/2 633 573 543 512 452 39212 945 855 810 765 675 58513-1/2 1,346 1,217 1,153 1,089 961 83315 1,846 1,670 1,582 1,494 1,318 1,14316-1/2 2,457 2,223 2,106 1,989 1,755 1,52118 3,189 2,886 2,734 2,582 2,278 1,97419-1/2 4,055 3,669 3,476 3,283 2,896 2,51021 5,065 4,582 4,341 4,100 3,618 3,13522-1/2 6,229 5,636 5,339 5,043 4,449 3,85624 7,560 6,840 6,480 6,120 5,400 4,6803-1/2 in. Width6 132 120 113 107 95 827-1/2 258 234 221 209 185 1609 447 404 383 361 319 27610-1/2 709 642 608 574 506 43912 1,058 958 907 857 756 65513-1/2 1,507 1,363 1,292 1,220 1,076 93315 2,067 1,870 1,772 1,673 1,477 1,28016-1/2 2,751 2,489 2,358 2,227 1,965 1,70318 3,572 3,232 3,062 2,892 2,552 2,21119-1/2 4,542 4,109 3,893 3,677 3,244 2,81121 5,672 5,132 4,862 4,592 4,052 3,51122-1/2 6,977 6,312 5,980 5,648 4,983 4,31924 8,467 7,661 7,258 6,854 6,048 5,2425CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-44CAPACITY SELECTION TABLESTable 5.3(Cont.)Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.35-1/8 in. Width6 194 175 166 157 138 1207-1/2 378 342 324 306 270 2349 654 592 560 529 467 40510-1/2 1,038 939 890 840 742 64312 1,550 1,402 1,328 1,255 1,107 95913-1/2 2,207 1,996 1,891 1,786 1,576 1,36615 3,027 2,739 2,595 2,450 2,162 1,87416-1/2 4,029 3,645 3,453 3,261 2,878 2,49418 5,231 4,732 4,483 4,234 3,736 3,23819-1/2 6,650 6,017 5,700 5,384 4,750 4,11721 8,306 7,515 7,119 6,724 5,933 5,14222-1/2 10,216 9,243 8,757 8,270 7,297 6,32424 12,398 11,218 10,627 10,037 8,856 7,67525-1/2 14,871 13,455 12,747 12,039 10,622 9,20627 17,653 15,972 15,131 14,291 12,609 10,92828-1/2 20,762 18,785 17,796 16,807 14,830 12,85330 24,216 21,909 20,756 19,603 17,297 14,99131-1/2 28,033 25,363 24,028 22,693 20,023 17,35433 32,231 29,161 27,627 26,092 23,022 19,95334-1/2 36,829 33,321 31,568 29,814 26,306 22,79936 41,845 37,859 35,867 33,874 29,889 25,9045-1/2 in. Width6 208 188 178 168 149 1297-1/2 406 367 348 329 290 2519 702 635 601 568 501 43410-1/2 1,114 1,008 955 902 796 69012 1,663 1,505 1,426 1,346 1,188 1,03013-1/2 2,368 2,143 2,030 1,917 1,692 1,46615 3,248 2,939 2,784 2,630 2,320 2,01116-1/2 4,324 3,912 3,706 3,500 3,088 2,67718 5,613 5,079 4,811 4,544 4,010 3,47519-1/2 7,137 6,457 6,117 5,777 5,098 4,41821 8,914 8,065 7,640 7,216 6,367 5,51822-1/2 10,963 9,919 9,397 8,875 7,831 6,78724 13,306 12,038 11,405 10,771 9,504 8,23725-1/2 15,960 14,440 13,680 12,920 11,400 9,88027 18,945 17,141 16,238 15,336 13,532 11,72828-1/2 22,281 20,159 19,098 18,037 15,915 13,79330 25,988 23,513 22,275 21,038 18,563 16,08831-1/2 30,084 27,219 25,786 24,354 21,488 18,62333 34,589 31,295 29,648 28,001 24,707 21,41234-1/2 39,524 35,760 33,877 31,995 28,231 24,46736 44,906 40,630 38,491 36,353 32,076 27,799APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-45Table 5.3(Cont.)Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.36-3/4 in. Width7-1/2 498 451 427 403 356 3089 861 779 738 697 615 53310-1/2 1,367 1,237 1,172 1,107 977 84712 2,041 1,847 1,750 1,652 1,458 1,26413-1/2 2,906 2,630 2,491 2,353 2,076 1,79915 3,987 3,607 3,417 3,227 2,848 2,46816-1/2 5,306 4,801 4,548 4,296 3,790 3,28518 6,889 6,233 5,905 5,577 4,921 4,26519-1/2 8,759 7,925 7,508 7,090 6,256 5,42221 10,940 9,898 9,377 8,856 7,814 6,77222-1/2 13,455 12,174 11,533 10,892 9,611 8,32924 16,330 14,774 13,997 13,219 11,664 10,10925-1/2 19,587 17,721 16,789 15,856 13,991 12,12527 23,251 21,036 19,929 18,822 16,608 14,39328-1/2 27,345 24,741 23,438 22,136 19,532 16,92830 31,894 28,856 27,338 25,819 22,781 19,74431-1/2 36,921 33,405 31,647 29,888 26,372 22,85633 42,451 38,408 36,386 34,365 30,322 26,27934-1/2 48,506 43,887 41,577 39,267 34,647 30,02836 55,112 49,864 47,239 44,615 39,366 34,11737-1/2 62,292 56,360 53,394 50,427 44,495 38,56239 70,071 63,397 60,060 56,724 50,050 43,37740-1/2 78,471 70,997 67,261 63,524 56,050 48,57742 87,516 79,182 75,014 70,847 62,512 54,17743-1/2 97,232 87,972 83,342 78,712 69,451 60,19145 107,641 97,390 92,264 87,138 76,887 66,63546-1/2 118,768 107,457 101,801 96,146 84,835 73,52348 130,637 118,195 111,974 105,754 93,312 80,87049-1/2 143,271 129,626 122,803 115,981 102,336 88,69151 156,694 141,771 134,309 126,848 111,924 97,00152-1/2 170,931 154,651 146,512 138,372 122,093 105,81454 186,004 168,290 159,432 150,575 132,860 115,14655-1/2 201,939 182,707 173,091 163,475 144,242 125,01057 218,759 197,925 187,508 177,091 156,257 135,42258-1/2 236,488 213,965 202,704 191,443 168,920 146,39760 255,150 230,850 218,700 206,550 182,250 157,9505CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-46CAPACITY SELECTION TABLESTable 5.3(Cont.)Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.38-3/4 in. Width9 1,116 1,010 957 904 797 69110-1/2 1,773 1,604 1,519 1,435 1,266 1,09712 2,646 2,394 2,268 2,142 1,890 1,63813-1/2 3,767 3,409 3,229 3,050 2,691 2,33215 5,168 4,676 4,430 4,184 3,691 3,19916-1/2 6,879 6,223 5,896 5,568 4,913 4,25818 8,930 8,080 7,655 7,229 6,379 5,52819-1/2 11,354 10,273 9,732 9,191 8,110 7,02921 14,181 12,830 12,155 11,480 10,129 8,77922-1/2 17,442 15,781 14,950 14,120 12,458 10,79724 21,168 19,152 18,144 17,136 15,120 13,10425-1/2 25,390 22,972 21,763 20,554 18,136 15,71827 30,140 27,269 25,834 24,399 21,528 18,65828-1/2 35,447 32,071 30,383 28,695 25,319 21,94330 41,344 37,406 35,438 33,469 29,531 25,59431-1/2 47,861 43,302 41,023 38,744 34,186 29,62833 55,029 49,788 47,167 44,547 39,306 34,06534-1/2 62,879 56,890 53,896 50,902 44,913 38,92536 71,442 64,638 61,236 57,834 51,030 44,22637-1/2 80,750 73,059 69,214 65,369 57,678 49,98839 90,832 82,182 77,856 73,531 64,880 56,22940-1/2 101,721 92,033 87,190 82,346 72,658 62,97042 113,447 102,643 97,241 91,838 81,034 70,22943-1/2 126,042 114,038 108,036 102,034 90,030 78,02645 139,535 126,246 119,602 112,957 99,668 86,37946-1/2 153,959 139,296 131,965 124,633 109,971 95,30848 169,344 153,216 145,152 137,088 120,960 104,83249-1/2 185,721 168,034 159,190 150,346 132,658 114,97051 203,122 183,777 174,104 164,432 145,087 125,74252-1/2 221,577 200,474 189,923 179,372 158,269 137,16754 241,117 218,153 206,672 195,190 172,226 149,26355-1/2 261,773 236,842 224,377 211,912 186,981 162,05057 283,577 256,569 243,066 229,562 202,555 175,54858-1/2 306,559 277,363 262,765 248,167 218,971 189,77460 330,750 299,250 283,500 267,750 236,250 204,750APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-47Table 5.3(Cont.)Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.310-3/4 in. Width12 3,251 2,941 2,786 2,632 2,322 2,01213-1/2 4,629 4,188 3,967 3,747 3,306 2,86515 6,349 5,745 5,442 5,140 4,535 3,93016-1/2 8,451 7,646 7,244 6,841 6,036 5,23118 10,971 9,927 9,404 8,882 7,837 6,79219-1/2 13,949 12,621 11,956 11,292 9,964 8,63521 17,422 15,763 14,933 14,104 12,444 10,78522-1/2 21,429 19,388 18,367 17,347 15,306 13,26524 26,006 23,530 22,291 21,053 18,576 16,09925-1/2 31,194 28,223 26,737 25,252 22,281 19,31027 37,029 33,502 31,739 29,976 26,449 22,92228-1/2 43,549 39,402 37,328 35,254 31,107 26,95930 50,794 45,956 43,538 41,119 36,281 31,44431-1/2 58,800 53,200 50,400 47,600 42,000 36,40033 67,606 61,168 57,948 54,729 48,290 41,85234-1/2 77,251 69,894 66,215 62,536 55,179 47,82236 87,772 79,412 75,233 71,053 62,694 54,33537-1/2 99,207 89,758 85,034 80,310 70,862 61,41439 111,594 100,966 95,652 90,338 79,710 69,08240-1/2 124,972 113,070 107,119 101,168 89,265 77,36342 139,378 126,104 119,467 112,830 99,556 86,28243-1/2 154,851 140,103 132,730 125,356 110,608 95,86045 171,429 155,102 146,939 138,776 122,449 106,12346-1/2 189,150 171,135 162,128 153,121 135,107 117,09348 208,051 188,237 178,330 168,422 148,608 128,79449-1/2 228,172 206,441 195,576 184,711 162,980 141,24951 249,550 225,783 213,900 202,016 178,250 154,48352-1/2 272,223 246,297 233,334 220,371 194,445 168,51954 296,229 268,017 253,911 239,805 211,592 183,38055-1/2 321,607 290,978 275,663 260,349 229,719 199,09057 348,394 315,214 298,624 282,034 248,853 215,67358-1/2 376,629 340,760 322,825 304,890 269,021 233,15160 406,350 367,650 348,300 328,950 290,250 251,5505CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-48CAPACITY SELECTION TABLESTable 5.3(Cont.)Stiffness for Bending about X-X Axis Western Species GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 1.9 1.8 1.7 1.5 1.312-1/4 in. Width13-1/2 5,274 4,772 4,521 4,270 3,767 3,26515 7,235 6,546 6,202 5,857 5,168 4,47916-1/2 9,630 8,713 8,254 7,796 6,879 5,96118 12,502 11,312 10,716 10,121 8,930 7,74019-1/2 15,896 14,382 13,625 12,868 11,354 9,84021 19,853 17,962 17,017 16,072 14,181 12,29022-1/2 24,419 22,093 20,930 19,767 17,442 15,11624 29,635 26,813 25,402 23,990 21,168 18,34625-1/2 35,546 32,161 30,468 28,776 25,390 22,00527 42,195 38,177 36,168 34,158 30,140 26,12128-1/2 49,626 44,900 42,537 40,173 35,447 30,72130 57,881 52,369 49,613 46,856 41,344 35,83131-1/2 67,005 60,623 57,433 54,242 47,861 41,47933 77,040 69,703 66,034 62,366 55,029 47,69134-1/2 88,030 79,646 75,454 71,262 62,879 54,49536 100,019 90,493 85,730 80,968 71,442 61,91637-1/2 113,049 102,283 96,899 91,516 80,750 69,98339 127,165 115,054 108,999 102,943 90,832 78,72140-1/2 142,410 128,847 122,065 115,284 101,721 88,15842 158,826 143,700 136,137 128,574 113,447 98,32143-1/2 176,458 159,653 151,250 142,847 126,042 109,23645 195,349 176,745 167,442 158,140 139,535 120,93046-1/2 215,543 195,015 184,751 174,487 153,959 133,43148 237,082 214,502 203,213 191,923 169,344 146,76549-1/2 260,010 235,247 222,866 210,484 185,721 160,95851 284,371 257,288 243,746 230,205 203,122 176,03952-1/2 310,207 280,664 265,892 251,120 221,577 192,03354 337,563 305,415 289,340 273,266 241,117 208,96855-1/2 366,482 331,579 314,128 296,676 261,773 226,87057 397,007 359,197 340,292 321,387 283,577 245,76758-1/2 429,182 388,308 367,870 347,433 306,559 265,68460 463,050 418,950 396,900 374,850 330,750 286,650APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-49Table 5.4Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.52-1/2 in. Width5-1/2 73 69 66 62 59 526-7/8 142 135 129 122 115 1028-1/4 246 234 222 211 199 1759-5/8 390 372 353 334 316 27911 582 555 527 499 471 41612-3/8 829 790 750 711 671 59213-3/4 1,137 1,083 1,029 975 921 81215-1/8 1,514 1,442 1,370 1,298 1,225 1,08116-1/2 1,965 1,872 1,778 1,685 1,591 1,40417-7/8 2,499 2,380 2,261 2,142 2,023 1,78519-1/4 3,121 2,972 2,824 2,675 2,526 2,22920-5/8 3,838 3,656 3,473 3,290 3,107 2,74222 4,659 4,437 4,215 3,993 3,771 3,32823-3/8 5,588 5,322 5,056 4,789 4,523 3,9913 in. Width5-1/2 87 83 79 75 71 626-7/8 171 162 154 146 138 1228-1/4 295 281 267 253 239 2119-5/8 468 446 424 401 379 33411 699 666 632 599 566 49912-3/8 995 948 900 853 805 71113-3/4 1,365 1,300 1,235 1,170 1,105 97515-1/8 1,817 1,730 1,644 1,557 1,471 1,29816-1/2 2,358 2,246 2,134 2,021 1,909 1,68517-7/8 2,998 2,856 2,713 2,570 2,427 2,14219-1/4 3,745 3,567 3,388 3,210 3,032 2,67520-5/8 4,606 4,387 4,167 3,948 3,729 3,29022 5,590 5,324 5,058 4,792 4,525 3,99323-3/8 6,705 6,386 6,067 5,747 5,428 4,7893-1/8 in. Width5-1/2 91 87 82 78 74 656-7/8 178 169 161 152 144 1278-1/4 307 292 278 263 249 2199-5/8 488 464 441 418 395 34811 728 693 659 624 589 52012-3/8 1,036 987 938 888 839 74013-3/4 1,422 1,354 1,286 1,219 1,151 1,01515-1/8 1,892 1,802 1,712 1,622 1,532 1,35216-1/2 2,457 2,340 2,223 2,106 1,989 1,75517-7/8 3,123 2,975 2,826 2,677 2,528 2,23119-1/4 3,901 3,715 3,530 3,344 3,158 2,78620-5/8 4,798 4,570 4,341 4,113 3,884 3,42722 5,823 5,546 5,269 4,991 4,714 4,15923-3/8 6,985 6,652 6,319 5,987 5,654 4,9895CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-50CAPACITY SELECTION TABLESTable 5.4(Cont.)Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.53-1/2 in. Width5-1/2 102 97 92 87 82 736-7/8 199 190 180 171 161 1428-1/4 344 328 311 295 278 2469-5/8 546 520 494 468 442 39011 815 776 738 699 660 58212-3/8 1,161 1,105 1,050 995 940 82913-3/4 1,592 1,516 1,441 1,365 1,289 1,13715-1/8 2,119 2,018 1,917 1,817 1,716 1,51416-1/2 2,751 2,620 2,489 2,358 2,227 1,96517-7/8 3,498 3,332 3,165 2,998 2,832 2,49919-1/4 4,369 4,161 3,953 3,745 3,537 3,12120-5/8 5,374 5,118 4,862 4,606 4,350 3,83822 6,522 6,211 5,901 5,590 5,280 4,65923-3/8 7,823 7,450 7,078 6,705 6,333 5,5885 in. Width6-7/8 284 271 257 244 230 2038-1/4 491 468 445 421 398 3519-5/8 780 743 706 669 632 55711 1,165 1,109 1,054 998 943 83212-3/8 1,658 1,579 1,500 1,421 1,342 1,18413-3/4 2,275 2,166 2,058 1,950 1,841 1,62515-1/8 3,028 2,883 2,739 2,595 2,451 2,16316-1/2 3,931 3,743 3,556 3,369 3,182 2,80817-7/8 4,997 4,759 4,521 4,284 4,046 3,57019-1/4 6,242 5,944 5,647 5,350 5,053 4,45820-5/8 7,677 7,311 6,946 6,580 6,215 5,48422 9,317 8,873 8,430 7,986 7,542 6,65523-3/8 11,175 10,643 10,111 9,579 9,047 7,98224-3/4 13,266 12,634 12,002 11,371 10,739 9,47626-1/8 15,602 14,859 14,116 13,373 12,630 11,14427-1/2 18,197 17,331 16,464 15,598 14,731 12,99828-7/8 21,066 20,062 19,059 18,056 17,053 15,04730-1/4 24,221 23,067 21,914 20,760 19,607 17,30031-5/8 27,676 26,358 25,040 23,722 22,404 19,76833 31,445 29,948 28,450 26,953 25,455 22,46134-3/8 35,542 33,849 32,157 30,464 28,772 25,38735-3/4 39,979 38,076 36,172 34,268 32,364 28,557APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-51Table 5.4(Cont.)Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.55-1/8 in. Width6-7/8 291 278 264 250 236 2088-1/4 504 480 456 432 408 3609-5/8 800 762 724 685 647 57111 1,194 1,137 1,080 1,023 966 85312-3/8 1,700 1,619 1,538 1,457 1,376 1,21413-3/4 2,332 2,220 2,109 1,998 1,887 1,66515-1/8 3,103 2,955 2,808 2,660 2,512 2,21716-1/2 4,029 3,837 3,645 3,453 3,261 2,87817-7/8 5,122 4,878 4,635 4,391 4,147 3,65919-1/4 6,398 6,093 5,788 5,484 5,179 4,57020-5/8 7,869 7,494 7,119 6,745 6,370 5,62122 9,550 9,095 8,640 8,186 7,731 6,82123-3/8 11,455 10,909 10,364 9,818 9,273 8,18224-3/4 13,597 12,950 12,302 11,655 11,007 9,71226-1/8 15,992 15,230 14,469 13,707 12,946 11,42327-1/2 18,652 17,764 16,876 15,988 15,099 13,32328-7/8 21,592 20,564 19,536 18,508 17,479 15,42330-1/4 24,826 23,644 22,462 21,279 20,097 17,73331-5/8 28,368 27,017 25,666 24,315 22,964 20,26333 32,231 30,696 29,161 27,627 26,092 23,02234-3/8 36,430 34,695 32,961 31,226 29,491 26,02135-3/4 40,979 39,028 37,076 35,125 33,173 29,2715-1/2 in. Width6-7/8 313 298 283 268 253 2238-1/4 540 515 489 463 438 3869-5/8 858 817 776 736 695 61311 1,281 1,220 1,159 1,098 1,037 91512-3/8 1,824 1,737 1,650 1,563 1,477 1,30313-3/4 2,502 2,383 2,264 2,145 2,026 1,78715-1/8 3,330 3,172 3,013 2,855 2,696 2,37916-1/2 4,324 4,118 3,912 3,706 3,500 3,08817-7/8 5,497 5,235 4,974 4,712 4,450 3,92719-1/4 6,866 6,539 6,212 5,885 5,558 4,90420-5/8 8,445 8,043 7,640 7,238 6,836 6,03222 10,249 9,761 9,273 8,785 8,297 7,32123-3/8 12,293 11,708 11,122 10,537 9,951 8,78124-3/4 14,592 13,898 13,203 12,508 11,813 10,42326-1/8 17,162 16,345 15,528 14,710 13,893 12,25927-1/2 20,017 19,064 18,111 17,157 16,204 14,29828-7/8 23,172 22,069 20,965 19,862 18,758 16,55230-1/4 26,643 25,374 24,105 22,837 21,568 19,03031-5/8 30,443 28,994 27,544 26,094 24,645 21,74533 34,589 32,942 31,295 29,648 28,001 24,70734-3/8 39,096 37,234 35,372 33,511 31,649 27,92535-3/4 43,977 41,883 39,789 37,695 35,601 31,4125CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-52CAPACITY SELECTION TABLESTable 5.4(Cont.)Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.56-3/4 in. Width6-7/8 384 366 347 329 311 2748-1/4 663 632 600 569 537 4749-5/8 1,053 1,003 953 903 853 75211 1,572 1,497 1,423 1,348 1,273 1,12312-3/8 2,239 2,132 2,025 1,919 1,812 1,59913-3/4 3,071 2,925 2,778 2,632 2,486 2,19315-1/8 4,087 3,893 3,698 3,503 3,309 2,91916-1/2 5,306 5,054 4,801 4,548 4,296 3,79017-7/8 6,747 6,425 6,104 5,783 5,461 4,81919-1/4 8,426 8,025 7,624 7,222 6,821 6,01920-5/8 10,364 9,870 9,377 8,883 8,390 7,40322 12,578 11,979 11,380 10,781 10,182 8,98423-3/8 15,087 14,368 13,650 12,932 12,213 10,77624-3/4 17,909 17,056 16,203 15,350 14,498 12,79226-1/8 21,063 20,060 19,057 18,054 17,051 15,04527-1/2 24,566 23,396 22,227 21,057 19,887 17,54728-7/8 28,439 27,084 25,730 24,376 23,022 20,31330-1/4 32,698 31,141 29,584 28,027 26,470 23,35631-5/8 37,362 35,583 33,804 32,025 30,246 26,68733 42,451 40,429 38,408 36,386 34,365 30,32234-3/8 47,981 45,696 43,411 41,127 38,842 34,27235-3/4 53,972 51,402 48,832 46,262 43,692 38,55237-1/8 60,442 57,564 54,686 51,808 48,930 43,17338-1/2 67,410 64,200 60,990 57,780 54,570 48,15039-7/8 74,893 71,327 67,761 64,194 60,628 53,49541-1/4 82,911 78,963 75,015 71,067 67,119 59,22242-5/8 91,482 87,126 82,769 78,413 74,057 65,34444 100,624 95,832 91,040 86,249 81,457 71,87445-3/8 110,355 105,100 99,845 94,590 89,335 78,82546-3/4 120,694 114,947 109,200 103,452 97,705 86,21048-1/8 131,660 125,391 119,121 112,851 106,582 94,04349-1/2 143,271 136,448 129,626 122,803 115,981 102,33650-7/8 155,545 148,138 140,731 133,324 125,917 111,10352-1/4 168,500 160,476 152,453 144,429 136,405 120,35753-5/8 182,156 173,482 164,808 156,134 147,460 130,11255 196,530 187,172 177,813 168,455 159,096 140,37956-3/8 211,642 201,564 191,485 181,407 171,329 151,17357-3/4 227,509 216,675 205,841 195,007 184,174 162,50659-1/8 244,149 232,523 220,897 209,271 197,645 174,39260-1/2 261,582 249,126 236,669 224,213 211,757 186,844APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-53Table 5.4(Cont.)Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.58-1/2 in. Width9-5/8 1,326 1,263 1,200 1,137 1,074 94711 1,980 1,886 1,791 1,697 1,603 1,41412-3/8 2,819 2,685 2,551 2,416 2,282 2,01413-3/4 3,867 3,683 3,499 3,315 3,130 2,76215-1/8 5,147 4,902 4,657 4,412 4,167 3,67616-1/2 6,682 6,364 6,046 5,727 5,409 4,77317-7/8 8,496 8,091 7,687 7,282 6,877 6,06819-1/4 10,611 10,106 9,600 9,095 8,590 7,57920-5/8 13,051 12,429 11,808 11,186 10,565 9,32222 15,839 15,085 14,330 13,576 12,822 11,31423-3/8 18,998 18,093 17,189 16,284 15,379 13,57024-3/4 22,552 21,478 20,404 19,330 18,256 16,10826-1/8 26,523 25,260 23,997 22,734 21,471 18,94527-1/2 30,935 29,462 27,989 26,516 25,043 22,09728-7/8 35,812 34,106 32,401 30,696 28,990 25,58030-1/4 41,175 39,214 37,254 35,293 33,332 29,41131-5/8 47,049 44,808 42,568 40,328 38,087 33,60633 53,456 50,911 48,365 45,820 43,274 38,18334-3/8 60,421 57,543 54,666 51,789 48,912 43,15835-3/4 67,965 64,729 61,492 58,256 55,019 48,54637-1/8 76,113 72,488 68,864 65,239 61,615 54,36638-1/2 84,887 80,844 76,802 72,760 68,718 60,63339-7/8 94,310 89,819 85,328 80,837 76,346 67,36441-1/4 104,407 99,435 94,463 89,492 84,520 74,57642-5/8 115,199 109,714 104,228 98,742 93,257 82,28544 126,711 120,677 114,643 108,610 102,576 90,50845-3/8 138,965 132,348 125,731 119,113 112,496 99,26146-3/4 151,985 144,748 137,511 130,273 123,036 108,56148-1/8 165,794 157,899 150,004 142,109 134,214 118,42449-1/2 180,415 171,824 163,233 154,641 146,050 128,86850-7/8 195,871 186,544 177,217 167,889 158,562 139,90852-1/4 212,186 202,082 191,977 181,873 171,769 151,56153-5/8 229,382 218,459 207,536 196,613 185,690 163,84455 247,483 235,698 223,913 212,128 200,343 176,77356-3/8 266,512 253,821 241,130 228,439 215,748 190,36657-3/4 286,492 272,850 259,207 245,565 231,922 204,63759-1/8 307,447 292,807 278,166 263,526 248,886 219,60560-1/2 329,400 313,714 298,028 282,343 266,657 235,2855CAPACITY SELECTION TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-54CAPACITY SELECTION TABLESTable 5.4(Cont.)Stiffness for Bending about X-X Axis Southern Pine GluedLaminated TimberDepthEI (10 6 lbf-in. 2 ) when E (10 6 psi) isd (in.) 2.1 2.0 1.9 1.8 1.7 1.510-1/2 in. Width11 2,446 2,329 2,213 2,096 1,980 1,74712-3/8 3,482 3,316 3,151 2,985 2,819 2,48713-3/4 4,777 4,549 4,322 4,094 3,867 3,41215-1/8 6,358 6,055 5,752 5,450 5,147 4,54116-1/2 8,254 7,861 7,468 7,075 6,682 5,89617-7/8 10,495 9,995 9,495 8,995 8,496 7,49619-1/4 13,107 12,483 11,859 11,235 10,611 9,36220-5/8 16,122 15,354 14,586 13,819 13,051 11,51522 19,566 18,634 17,702 16,771 15,839 13,97623-3/8 23,468 22,351 21,233 20,116 18,998 16,76324-3/4 27,858 26,532 25,205 23,878 22,552 19,89926-1/8 32,764 31,204 29,644 28,083 26,523 23,40327-1/2 38,214 36,395 34,575 32,755 30,935 27,29628-7/8 44,238 42,131 40,025 37,918 35,812 31,59830-1/4 50,863 48,441 46,019 43,597 41,175 36,33131-5/8 58,119 55,352 52,584 49,816 47,049 41,51433 66,034 62,890 59,745 56,601 53,456 47,16734-3/8 74,637 71,083 67,529 63,975 60,421 53,31235-3/4 83,957 79,959 75,961 71,963 67,965 59,96937-1/8 94,021 89,544 85,067 80,590 76,113 67,15838-1/2 104,860 99,867 94,873 89,880 84,887 74,90039-7/8 116,501 110,953 105,406 99,858 94,310 83,21541-1/4 128,973 122,832 116,690 110,548 104,407 92,12442-5/8 142,305 135,529 128,752 121,976 115,199 101,64744 156,526 149,072 141,618 134,165 126,711 111,80445-3/8 171,663 163,489 155,314 147,140 138,965 122,61746-3/4 187,747 178,806 169,866 160,926 151,985 134,10548-1/8 204,805 195,052 185,299 175,547 165,794 146,28949-1/2 222,866 212,253 201,640 191,028 180,415 159,19050-7/8 241,958 230,437 218,915 207,393 195,871 172,82752-1/4 262,112 249,630 237,149 224,667 212,186 187,22353-5/8 283,354 269,861 256,368 242,875 229,382 202,39655 305,714 291,156 276,598 262,041 247,483 218,36756-3/8 329,221 313,543 297,866 282,189 266,512 235,15857-3/4 353,902 337,050 320,197 303,345 286,492 252,78759-1/8 379,788 361,702 343,617 325,532 307,447 271,27760-1/2 406,905 387,529 368,153 348,776 329,400 290,647APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-55OTHERCONSIDERATIONS6.1 General GL-566.2 Specific Gravity GL-566.3 Dimensional Changes Due toMoisture6.4 Dimensional Changes Due toTemperatureGL-56GL-576.5 Fire Considerations GL-586Table 6.1 Average Specific Gravity and WeightFactor ............................................................... GL-56Table 6.2 Coefficient of Moisture Expansion, e ME ,and Fiber Saturation Point, FSP, forSolid <strong>Wood</strong>s ..................................................... GL-57Table 6.3 Coefficient of Thermal Expansion, e TE , forSolid <strong>Wood</strong>s ..................................................... GL-58Table 6.4 Minimum Depths at Which Selected BeamSizes Can Be Adopted for One-Hour FireRatings ............................................................. GL-59APA – The Engineered <strong>Wood</strong> Association


GL-56OTHER CONSIDERATIONS6.1 GeneralThe section contains information concerning physicalproperties of glued laminated timber members. Otherdesign considerations, such as fire protection, are alsogiven.6.2 Specific GravityTable 6.1 provides specific gravity values for someof the most common wood species used for glued laminatedtimber. These values are used in determining variousphysical and connection properties. Further, weight factorsare provided at four moisture contents. When thecross-sectional area (in. 2 ) is multiplied by the appropriateweight factor, it provides the weight of the glued laminatedtimber member per linear foot of length. For othermoisture contents, the tabulated weight factors can be interpolatedor extrapolated.Glued laminated timber members often are manufacturedusing different species at different portions of thecross section. In this case the weight of the glued laminatedtimber may be computed by the sum of the productsof the cross-sectional area and the weight factor for eachspecies.Table 6.1Average Specific Gravity and Weight FactoraWeight Factor bSpecies Combination Specific Gravity a 12% 15% 19% 25%California Redwood (Close Grain) 0.44 0.195 0.198 0.202 0.208Douglas Fir-Larch 0.50 0.235 0.238 0.242 0.248Douglas Fir (South) 0.46 0.221 0.225 0.229 0.235Eastern Spruce 0.41 0.191 0.194 0.198 0.203Hem-Fir 0.43 0.195 0.198 0.202 0.208Red Maple 0.58 0.261 0.264 0.268 0.274Red Oak 0.67 0.307 0.310 0.314 0.319Southern Pine 0.55 0.252 0.255 0.259 0.265Spruce-Pine-Fir (North) 0.42 0.195 0.198 0.202 0.208Yellow Poplar 0.43 0.213 0.216 0.220 0.226Specific gravity is based on weight and volume when oven-dry.b Weight factor shall be multiplied by net cross-sectional area in in. 2 to obtain weight in pounds per lineal foot.6.3 Dimensional Changes Due to MoistureDue to the hygroscopic nature of wood, it changesdimensions as its moisture content is altered below thefiber saturation point. For most species the longitudinalshrinkage of normal wood drying from fiber saturationpoint to oven-dry condition is approximately 0.1 to 0.2percent. However, certain atypical types of wood mayexhibit excessive longitudinal shrinkage and these typesshould be avoided in use where longitudinal stability isimportant.The change in radial (R), tangential (T) and volumetric(V) dimensions are computed as:where:X= X o( ∆MC)e ME[6.1]X oe ME= initial dimension or volumeX = new dimension or volume= coefficient of moisture expansion (in./in./%MCfor linear expansion, in. 3 /in. 3 /%MC forvolumetric expansion), as given in Table 6.2∆MC = moisture content change (%), as defined asfollows:APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-57∆MCwhere:= M - M o[6.2]M o= initial moisture content % (M o≤ FSP)For more information concerning the effects of moisturechanges on glued laminated timber, refer to APA EWSTechnical Note Y260.M = new moisture content % (M ≤ FSP)FSP = fiber saturation point, as given in Table 6.2 forselected speciesTable 6.2Coefficient of Moisture Expansion, e ME, and Fiber Saturation Point,FSP, for Solid <strong>Wood</strong>sRadial Tangential Volumetric FSPSpecies (in./in./%) (in./in./%) (in. 3 /in. 3 /%) (%)Alaska Cedar 0.0010 0.0021 0.0033 28Douglas Fir-Larch 0.0018 0.0033 0.0050 28Englemann Spruce 0.0013 0.0024 0.0037 30Redwood 0.0012 0.0022 0.0032 22Red Oak 0.0017 0.0038 0.0063 30Southern Pine 0.0020 0.0030 0.0047 26Western Hemlock 0.0015 0.0028 0.0044 28Yellow Poplar 0.0015 0.0026 0.0041 316.4 Dimensional Changes Due to TemperatureThe thermal expansion of solid wood, including gluedlaminated timber, is computed by the relationship:X = X ( ∆ T)e[6.3]where:oX oe TETE= reference dimension at T oX = computed dimension at T= coefficient of thermal expansion (in./in./°F), seeTable 6.3e MEsoftwoods, the parallel-to-grain values have ranged fromabout 1.7x10 -6 to 2.5x10 -6 per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to the density of wood.These coefficients are about 5 to 10 times greater than theparallel-to-grain coefficients. The radial and tangentialthermal expansion coefficients for oven-dry wood in theoven-dry specific gravity (SG) range of about 0.1 to 0.8can be approximated by the following equations.Radial:6OTHER CONSIDERATIONS∆Twhere:∆T = temperature change (°F), as defined as follows:= T-T o[6.4]T o= reference temperature (°F), -60°F ≤ T o≤ 130°FT = new temperature (°F), -60°F ≤ T o≤ 130°F.e TE= [18(SG) + 5.5] (10 -6 in./in./°F) [6.5]Tangential:e TE= [18(SG) + 10.2] (10 -6 in./in./°F) [6.6]where:SG = specific gravity provided in Table 6.1The coefficient of thermal expansion of oven-drywood parallel to grain appears to be independent of specificgravity and species. In tests of both hardwoods andAPA – The Engineered <strong>Wood</strong> Association


GL-58OTHER CONSIDERATIONSTable 6.3 provides the numerical values for e TE forthe most commonly used commercial species or speciesgroups.<strong>Wood</strong> that contains moisture reacts to varying temperaturedifferently than does dry wood. When moist woodis heated, it tends to expand because of normal thermalexpansion and to shrink because of loss in moisture content.Unless the wood is very dry initially (perhaps 3 or 4percent MC or less), the shrinkage due to moisture losson heating will be greater than the thermal expansion, sothe net dimensional change on heating will be negative.<strong>Wood</strong> at intermediate moisture levels (about 8 to 20 percent)will expand when first heated, then gradually shrinkto a volume smaller than the initial volume, as the woodgradually loses water while in the heated condition.Even in the longitudinal (grain) direction, where dimensionalchange due to moisture change is very small,such changes will still predominate over correspondingdimensional changes due to thermal expansion unless thewood is very dry initially. For wood at usual moisturelevels, net dimensional changes will generally be negativeafter prolonged heating.Computation of actual changes in dimensions can beaccomplished by determining the equilibrium moisturecontent of wood at the temperature value and relative humidityof interest. Then the relative dimensional changesdue to temperature change alone and moisture contentchange alone are computed. By combining these twochanges the final dimension of lumber and timber can beestablished.Table 6.3Coefficient of Thermal Expansion, e TE, for Solid <strong>Wood</strong>saSpecies Radial (10 -6 in./in./°F) Tangential (10 -6 in./in./°F)California Redwood 13 18Douglas Fir-Larch a 15 19Douglas Fir, South 14 19Eastern Spruce 13 18Hem-Fir a 13 18Red Oak 18 22Southern Pine 15 20Spruce-Pine-Fir 13 18Yellow Poplar 14 18Also applies when species name includes the designation “North.”e TE6.5 Fire ConsiderationsFires do not normally start in structural framing, butrather in the building’s contents. These fires generallyreach temperatures of between 1,290°F and 1,650°F. Gluedlaminated timber members perform very well under theseconditions. Unprotected steel members typically suffersevere buckling and twisting during fires, often collapsingcatastrophically.<strong>Wood</strong> ignites at about 480°F, but charring may beginas low as 300°F. <strong>Wood</strong> typically chars at 1/40 in. perminute. Thus, after half an hour’s fire exposure, only theouter 3/4 in. of the glued laminated timber will be damaged.Char insulates a wood member and hence raises thetemperature it can withstand. Most of the cross sectionwill remain intact, and the member will continue supportingloads during a typical building fire.It is important to note that neither building materialsalone, nor building features alone, nor detection and fireextinguishing equipment alone can provide adequate safetyfrom fire in buildings. To ensure a safe structure in theevent of fire, authorities base fire and building code requirementson research and testing, as well as fire histories.The model building codes classify Heavy Timber as a specifictype of construction and give minimum sizes for roofand floor beams.The requirements set out for Heavy Timber constructionin model building codes do not constitute one-hourfire resistance. However, procedures are available to calculatethe glued laminated timber size required for projectsin which one-hour fire resistance is required (see Section16.2 of NDS and AF&PA Technical Report 10 available atwww.awc.org). The minimum depths for selected gluedlaminated timber sizes that can be adopted for one-hourfire ratings are given in Table 6.4 for glued laminated timberbeams.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-59To achieve a one-hour fire rating for beams whosedimensions qualify them for this rating, the basic layupmust be modified - one core lamination must be removedfrom the center and the tension face augmented with theaddition of a tension lamination. For more informationconcerning the effects of fire on glued laminated timber,refer to APA EWS Technical Note Y245 or AITC TechnicalNote 7. For determining fire resistance other than onehour, see Section 16.2 of NDS and AF&PA Technical Report10 available at www.awc.org.Table 6.4Minimum Depths at Which Selected Beam Sizes Can Be Adopted forOne-Hour Fire Ratings aaBeam Depth (in.)Beam Width (in.) 3 Sides Exposed 4 Sides Exposed6-3/4 13-1/2 or 13-3/4 27 or 27-1/28-1/2 7-1/2 or 8-1/4 15 or 15-1/88-3/4 6-7/8 or 7-1/2 13-1/2 or 13-3/410-1/2 6 or 6-7/8 12 or 12-3/810-3/4 6 or 6-7/8 12 or 12-3/8Assuming a load factor of 1.0 (design loads are equal to the capacity of the member). The minimumdepths may be reduced when the design loads are less than the member capacity.6OTHER CONSIDERATIONSAPA – The Engineered <strong>Wood</strong> Association


GL-60OTHER CONSIDERATIONSAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-61LOAD AND SPANTABLES7.1 General GL-627.2 Load-Span Tables for SelectedBending MembersGL-64Table 7.1 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species 24F-1.8EGlulam Roof Beams — Non-Snow Loads .. GL-64Table 7.2 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species Glulam24F-1.8E Roof Beams — Snow Loads ......... GL-66Table 7.3 Allowable Loads in Pounds per Lineal Footfor Simple Span Western Species 24F-1.8EGlulam Floor Beams....................................... GL-68Table 7.4 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Roof Beams — Non-Snow Loads .... GL-70Table 7.5 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Roof Beams — Snow Loads ............. GL-72Table 7.6 Allowable Loads in Pounds per Lineal Footfor Simple Span Southern Pine 24F-1.8EGlulam Floor Beams....................................... GL-747APA – The Engineered <strong>Wood</strong> Association


GL-62LOAD AND SPAN TABLES7.1 GeneralThe section contains load-span tables for selectedglued laminated timber bending members made of 24F-1.8E Douglas fir-Larch (such as 24F-V4/WS) or SouthernPine (such as 24F-V3/SP) when subjected to uniform loadsin simple-span applications. These tables can be used tosize such members for preliminary design. Final designshould include a complete analysis, including bearingstress and lateral stability.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-637This page left blank intentionally.LOAD AND SPAN TABLESAPA – The Engineered <strong>Wood</strong> Association


GL-64LOAD AND SPAN TABLES7.2 Load-Span Tables for Selected Bending MembersTable 7.1Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Roof Beams — Non-Snow Loads5-1/8 Inch WidthDepthLoad Duration Factor = 1.25, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psi3-1/8 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 581 295 169 105 69 — — — — — — — — — — — — — — — —7-1/2 910 580 333 208 137 95 68 — — — — — — — — — — — — — —9 1312 837 579 362 240 167 120 88 66 51 — — — — — — — — — — —10-1/2 1786 1140 790 578 385 268 193 143 108 84 65 52 — — — — — — — — —12 2335 1491 1033 756 577 402 291 216 164 127 100 80 64 52 — — — — — — —13-1/2 2925 1888 1308 958 731 576 417 311 237 184 145 116 94 77 63 52 — — — — —15 3398 2332 1616 1184 904 712 575 429 328 255 202 162 132 108 89 74 62 52 — — —16-1/2 3916 2823 1957 1434 1095 863 696 573 439 342 272 219 178 146 121 101 85 72 61 52 —18 4486 3201 2330 1708 1305 1028 830 684 570 447 355 286 234 192 160 134 113 96 81 70 6019-1/2 5117 3596 2736 2006 1532 1208 975 801 664 559 454 367 299 247 206 173 146 124 106 91 7821 5817 4023 3072 2328 1778 1402 1131 923 766 645 550 460 377 311 260 218 185 158 135 116 10022-1/2 6601 4483 3392 2673 2043 1611 1290 1053 874 736 628 541 466 385 322 271 230 196 169 145 12624 7482 4982 3732 2982 2326 1825 1459 1191 989 834 711 612 533 467 393 332 282 241 207 179 15525-1/2 8481 5524 4094 3250 2627 2049 1639 1338 1111 936 799 688 599 525 463 400 340 291 251 217 18927 9622 6116 4479 3532 2914 2286 1828 1493 1240 1045 891 768 668 586 517 460 407 348 300 260 2273-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 651 331 189 117 77 53 — — — — — — — — — — — — — — —7-1/2 1019 650 373 233 154 106 76 55 — — — — — — — — — — — — —9 1469 937 649 406 269 187 134 99 74 57 — — — — — — — — — — —10-1/2 <strong>2001</strong> 1277 884 647 431 300 216 160 121 94 73 58 — — — — — — — — —12 2615 1670 1156 847 646 451 326 242 184 143 112 89 72 58 — — — — — — —13-1/2 3275 2115 1465 1073 819 645 467 348 265 206 163 130 105 86 71 58 — — — — —15 3805 2612 1810 1327 1013 797 643 480 367 286 226 182 147 121 100 83 69 58 — — —16-1/2 4386 3162 2192 1606 1227 966 780 642 491 384 304 245 199 164 136 113 95 80 68 58 —18 5025 3585 2610 1913 1461 1151 930 760 631 501 398 321 262 216 179 150 126 107 91 78 6719-1/2 5731 4028 3064 2247 1716 1353 1086 886 736 619 509 411 335 277 231 194 164 139 119 102 8821 6515 4505 3441 2607 1992 1566 1252 1022 848 714 609 516 422 349 291 245 207 177 151 130 11222-1/2 7393 5021 3799 2994 2288 1787 1428 1166 968 815 695 599 520 432 361 304 258 220 189 163 14124 8380 5580 4180 3340 2594 2021 1616 1319 1095 923 787 678 589 517 440 371 316 270 232 201 17425-1/2 9498 6187 4585 3640 2912 2269 1814 1481 1230 1037 884 762 663 581 513 448 381 326 281 243 21227 10777 6850 5017 3956 3247 2531 2024 1653 1373 1157 987 851 740 649 573 509 454 390 336 292 254Span (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 3829 2445 1693 1240 946 660 477 355 270 209 164 131 105 85 69 57 — — — — —13-1/2 4796 3097 2145 1572 1199 944 684 509 389 302 238 191 154 126 103 85 71 59 — — —15 5572 3825 2651 1942 1483 1160 926 703 537 419 332 266 216 177 146 121 101 85 72 60 5116-1/2 6422 4630 3209 2352 1788 1392 1111 906 720 562 446 358 292 240 199 166 139 118 100 85 7218 7358 5249 3821 2802 2111 1644 1313 1071 888 733 583 470 383 316 262 220 185 157 134 114 9819-1/2 8391 5898 4487 3264 2460 1915 1530 1248 1036 872 743 601 491 405 338 284 240 204 174 149 12821 9541 6597 5039 3759 2833 2207 1763 1439 1194 1005 857 738 618 511 426 358 303 259 221 191 16522-1/2 10825 7352 5563 4287 3232 2518 2012 1642 1363 1148 979 843 732 632 528 445 377 322 277 239 20724 12270 8170 6120 4848 3655 2848 2277 1858 1543 1300 1108 954 830 727 641 544 462 395 340 294 25525-1/2 13908 9060 6713 5330 4103 3197 2556 2087 1733 1460 1245 1073 933 817 721 641 558 478 412 356 31027 15781 10030 7346 5793 4576 3566 2851 2328 1934 1629 1390 1198 1042 913 806 716 639 572 493 427 37228-1/2 17941 11093 8023 6281 5073 3953 3162 2582 2145 1807 1542 1329 1156 1014 895 795 710 638 575 506 44130 20463 12263 8748 6796 5554 4360 3487 2848 2366 1994 1701 1467 1276 1119 988 878 785 705 636 576 51931-1/2 23443 13555 9527 7341 5968 4785 3827 3126 2597 2189 1868 1611 1402 1230 1086 965 863 775 699 633 57633 27019 14992 10367 7918 6402 5229 4183 3417 2839 2394 2043 1762 1533 1345 1188 1056 944 848 765 694 631APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-65Table 7.1(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Roof Beams — Non-Snow Loads5-1/2 Inch WidthDepthLoad Duration Factor = 1.25, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psiSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 4109 2624 1817 1331 1015 708 512 381 290 224 176 140 113 91 74 61 — — — — —13-1/2 5147 3323 2302 1687 1287 1010 734 547 417 324 256 205 165 135 111 92 76 63 53 — —15 5980 4105 2845 2085 1588 1235 986 755 577 449 356 286 232 190 157 130 109 91 77 65 5516-1/2 6892 4969 3444 2524 1905 1483 1184 965 772 603 478 385 313 257 213 178 150 126 107 91 7718 7896 5633 4101 2985 2249 1751 1399 1141 946 787 625 504 411 339 281 236 199 168 143 122 10519-1/2 9006 6329 4815 3478 2621 2041 1631 1330 1104 929 791 645 527 435 362 304 257 219 187 160 13821 10239 7080 5407 4005 3019 2351 1879 1533 1272 1071 913 786 663 548 457 384 326 277 238 205 17722-1/2 11617 7890 5970 4568 3444 2683 2144 1750 1453 1223 1043 898 780 678 567 477 405 346 297 256 22224 13168 8768 6568 5166 3895 3034 2426 1980 1644 1385 1180 1017 884 774 683 584 496 424 365 315 27325-1/2 14926 9722 7205 5720 4372 3407 2724 2224 1847 1556 1326 1143 994 871 769 682 599 513 442 382 33227 16935 10764 7884 6217 4876 3800 3038 2481 2060 1736 1481 1276 1110 973 859 763 681 611 529 458 39928-1/2 19254 11905 8610 6740 5405 4212 3369 2751 2285 1926 1643 1416 1232 1080 953 847 757 679 612 543 47430 21960 13160 9388 7293 5960 4646 3716 3034 2521 2125 1813 1563 1360 1192 1053 936 836 751 677 613 55731-1/2 25158 14547 10225 7878 6404 5099 4078 3331 2768 2333 1991 1716 1494 1310 1157 1028 919 825 745 675 61333 28996 16089 11125 8497 6870 5572 4457 3641 3025 2550 2176 1877 1633 1433 1266 1125 1006 904 815 739 6726-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5018 6913 4972 3589 2704 2105 1681 1371 1137 957 767 618 504 416 345 289 244 207 176 150 129 11019-1/2 7768 5791 4181 3151 2453 1960 1599 1326 1116 951 792 647 534 445 373 316 268 229 197 169 14621 8689 6636 4815 3629 2826 2259 1843 1529 1287 1097 944 813 672 561 472 400 341 292 251 217 18822-1/2 9683 7327 5492 4140 3225 2577 2103 1746 1470 1253 1079 937 821 696 586 497 424 364 314 272 23624 10761 8061 6211 4682 3648 2916 2380 1976 1664 1419 1222 1062 930 821 716 609 520 447 387 336 29225-1/2 11932 8842 6971 5256 4095 3274 2673 2219 1870 1594 1373 1194 1046 923 820 732 630 542 469 408 35627 13210 9676 7629 5862 4568 3652 2982 2476 2086 1779 1533 1333 1169 1031 916 818 734 649 562 490 42828-1/2 14610 10567 8272 6498 5064 4050 3307 2747 2314 1974 1702 1480 1297 1145 1017 909 816 735 666 581 50930 16151 11522 8951 7166 5585 4467 3647 3030 2554 2178 1878 1634 1433 1265 1124 1004 902 813 736 669 59931-1/2 17854 12548 9668 7860 6130 4903 4004 3327 2804 2392 2063 1795 1574 1390 1235 1104 991 894 810 736 67233 19746 13654 10428 8432 6698 5358 4376 3636 3065 2616 2256 1963 1722 1521 1352 1208 1085 979 887 807 73634-1/2 21861 14847 11234 9031 7291 5833 4764 3959 3338 2849 2457 2138 1876 1657 1473 1317 1183 1068 968 880 80336 24241 16141 12091 9661 7907 6326 5168 4295 3621 3091 2666 2321 2036 1799 1600 1430 1285 1160 1052 957 87337-1/2 26938 17547 13003 10323 8547 6839 5587 4644 3916 3342 2883 2510 2203 1947 1731 1548 1391 1256 1139 1036 94639 30022 19081 13976 11020 9093 7370 6022 5005 4221 3603 3109 2707 2375 2099 1867 1670 1501 1356 1229 1118 10217LOAD AND SPAN TABLES8-3/4 Inch widthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024 13949 10449 7844 5913 4606 3682 3005 2494 2101 1790 1542 1340 1174 1035 919 789 675 580 501 435 37925-1/2 15468 11462 8804 6638 5172 4134 3375 2802 2360 2012 1733 1507 1320 1165 1034 923 816 703 608 529 46227 17124 12543 9817 7403 5768 4612 3765 3126 2634 2246 1935 1683 1475 1301 1156 1032 926 834 729 635 55528-1/2 18939 13698 10723 8206 6395 5114 4175 3468 2922 2492 2148 1868 1637 1445 1284 1146 1029 927 839 753 66030 20936 14936 11603 9049 7052 5640 4605 3826 3224 2750 2370 2062 1808 1596 1418 1267 1137 1025 928 843 76931-1/2 23144 16266 12533 9931 7741 6191 5056 4200 3540 3020 2604 2265 1986 1754 1559 1393 1251 1128 1021 928 84733 25596 17699 13518 10852 8459 6766 5526 4591 3870 3302 2847 2478 2173 1919 1706 1524 1369 1235 1119 1017 92834-1/2 28338 19247 14563 11707 9207 7365 6016 4999 4214 3596 3101 2699 2368 2091 1859 1662 1493 1347 1220 1110 101336 31423 20923 15673 12523 9986 7988 6526 5423 4572 3902 3365 2929 2570 2271 2019 1805 1621 1463 1326 1206 110137-1/2 34920 22746 16856 13382 10794 8636 7055 5863 4944 4220 3640 3168 2780 2457 2184 1953 1755 1584 1436 1307 119339 38917 24735 18117 14285 11632 9307 7604 6320 5329 4549 3924 3417 2998 2650 2356 2107 1894 1710 1550 1411 128840-1/2 43161 26914 19466 15238 12500 10002 8172 6793 5728 4890 4219 3673 3224 2850 2535 2267 2038 1840 1668 1518 138742 46252 29311 20911 16244 13274 10720 8759 7282 6141 5243 4524 3939 3458 3056 2719 2432 2187 1975 1791 1630 148943-1/2 49444 31960 22463 17307 14070 11462 9366 7787 6568 5608 4839 4214 3699 3270 2909 2603 2340 2114 1917 1745 159445 52737 34904 24135 18434 14904 12228 9992 8308 7008 5984 5164 4497 3948 3491 3106 2779 2499 2257 2048 1864 1703Notes:• Span = simply supported beam.• Maximum deflection = L/180 under total load. Other deflection limits may apply.• Service condition = dry.• Tabulated values represent total loads and have taken the dead weight of the beam (assumed 35 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-66LOAD AND SPAN TABLESTable 7.2Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Roof Beams — Snow Loads3-1/8 Inch WidthDepthLoad Duration Factor = 1.15, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psiSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 535 295 169 105 69 — — — — — — — — — — — — — — — —7-1/2 837 533 333 208 137 95 68 — — — — — — — — — — — — — —9 1206 769 532 362 240 167 120 88 66 51 — — — — — — — — — — —10-1/2 1643 1049 726 531 385 268 193 143 108 84 65 52 — — — — — — — — —12 2147 1371 949 695 530 402 291 216 164 127 100 80 64 52 — — — — — — —13-1/2 2690 1736 1203 881 672 529 417 311 237 184 145 116 94 77 63 52 — — — — —15 3125 2145 1486 1089 831 654 528 429 328 255 202 162 132 108 89 74 62 52 — — —16-1/2 3602 2597 1799 1319 1007 793 640 527 439 342 272 219 178 146 121 101 85 72 61 52 —18 4126 2943 2143 1571 1199 945 763 628 523 440 355 286 234 192 160 134 113 96 81 70 6019-1/2 4706 3307 2516 1844 1409 1110 896 735 610 513 437 367 299 247 206 173 146 124 106 91 7821 5351 3699 2825 2140 1635 1288 1039 848 703 592 504 434 377 311 260 218 185 158 135 116 10022-1/2 6071 4123 3119 2458 1878 1480 1186 967 803 676 576 496 431 378 322 271 230 196 169 145 12624 6882 4582 3432 2742 2138 1678 1341 1095 909 765 652 562 488 428 377 332 282 241 207 179 15525-1/2 7801 5081 3765 2988 2415 1884 1506 1229 1021 860 733 632 549 481 425 377 336 291 251 217 18927 8851 5625 4119 3248 2679 2101 1680 1372 1139 960 818 705 613 537 474 421 376 338 300 260 2273-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 599 331 189 117 77 53 — — — — — — — — — — — — — — —7-1/2 937 597 373 233 154 106 76 55 — — — — — — — — — — — — —9 1351 862 596 406 269 187 134 99 74 57 — — — — — — — — — — —10-1/2 1840 1174 813 595 431 300 216 160 121 94 73 58 — — — — — — — — —12 2405 1535 1063 778 594 451 326 242 184 143 112 89 72 58 — — — — — — —13-1/2 3013 1945 1347 987 753 592 467 348 265 206 163 130 105 86 71 58 — — — — —15 3500 2402 1664 1219 931 733 591 480 367 286 226 182 147 121 100 83 69 58 — — —16-1/2 4034 2908 2015 1477 1127 888 717 590 490 384 304 245 199 164 136 113 95 80 68 58 —18 4621 3297 2400 1759 1343 1058 854 698 579 487 398 321 262 216 179 150 126 107 91 78 6719-1/2 5271 3704 2818 2066 1578 1243 998 814 675 568 484 411 335 277 231 194 164 139 119 102 8821 5993 4143 3164 2397 1831 1440 1150 938 779 655 558 481 417 349 291 245 207 177 151 130 11222-1/2 6800 4618 3494 2753 2103 1642 1313 1071 889 748 638 549 477 418 361 304 258 220 189 163 14124 7708 5132 3844 3071 2385 1858 1485 1212 1006 847 722 622 541 474 418 371 316 270 232 201 17425-1/2 8737 5690 4216 3347 2677 2086 1668 1361 1130 952 812 699 608 533 470 417 372 326 281 243 21227 9913 6300 4614 3638 2986 2326 1860 1519 1261 1062 906 781 679 595 525 466 416 373 336 292 2545-1/8 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 3521 2248 1557 1140 869 660 477 355 270 209 164 131 105 85 69 57 — — — — —13-1/2 4411 2848 1972 1445 1102 867 684 509 389 302 238 191 154 126 103 85 71 59 — — —15 5125 3518 2437 1786 1363 1065 850 693 537 419 332 266 216 177 146 121 101 85 72 60 5116-1/2 5907 4258 2951 2163 1643 1279 1021 832 689 562 446 358 292 240 199 166 139 118 100 85 7218 6767 4827 3514 2576 1940 1510 1206 983 815 686 583 470 383 316 262 220 185 157 134 114 9819-1/2 7718 5424 4126 3001 2261 1760 1406 1146 951 800 681 586 491 405 338 284 240 204 174 149 12821 8775 6067 4633 3456 2605 2028 1620 1322 1097 923 786 677 587 511 426 358 303 259 221 191 16522-1/2 9957 6762 5116 3942 2971 2314 1849 1509 1252 1054 898 773 672 588 518 445 377 322 277 239 20724 11286 7514 5628 4458 3360 2618 2092 1707 1417 1193 1017 876 761 666 588 521 462 395 340 294 25525-1/2 12793 8332 6174 4901 3773 2939 2349 1917 1592 1341 1143 984 856 750 661 587 524 470 412 356 31027 14516 9225 6756 5327 4207 3278 2621 2139 1776 1496 1276 1099 956 837 739 656 585 525 473 427 37228-1/2 16503 10203 7378 5775 4664 3634 2906 2372 1970 1660 1416 1220 1061 930 820 729 651 584 526 476 43230 18823 11279 8045 6249 5106 4008 3205 2617 2174 1832 1562 1346 1171 1027 906 805 719 645 582 527 47831-1/2 21564 12468 8762 6750 5487 4399 3518 2873 2387 2011 1716 1479 1287 1128 996 885 791 710 640 579 52733 24854 13790 9534 7281 5886 4807 3845 3140 2609 2199 1876 1617 1407 1234 1090 968 865 777 701 635 577APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-67Table 7.2(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Roof Beams — Snow Loads5-1/2 Inch WidthDepthLoad Duration Factor = 1.15, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psiSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 3779 2413 1671 1223 933 708 512 381 290 224 176 140 113 91 74 61 — — — — —13-1/2 4734 3056 2117 1550 1183 927 734 547 417 324 256 205 165 135 111 92 76 63 53 — —15 5500 3775 2615 1916 1459 1135 906 738 577 449 356 286 232 190 157 130 109 91 77 65 5516-1/2 6339 4570 3167 2321 1751 1362 1088 886 735 603 478 385 313 257 213 178 150 126 107 91 7718 7262 5181 3771 2744 2067 1609 1285 1048 869 730 622 504 411 339 281 236 199 168 143 122 10519-1/2 8283 5821 4428 3197 2409 1875 1498 1222 1013 852 726 624 527 435 362 304 257 219 187 160 13821 9417 6511 4972 3683 2775 2161 1726 1408 1168 983 837 721 626 548 457 384 326 277 238 205 17722-1/2 10685 7256 5490 4200 3166 2466 1970 1607 1334 1123 957 824 715 626 552 477 405 346 297 256 22224 12112 8064 6040 4750 3581 2789 2229 1819 1510 1271 1083 933 811 710 626 555 495 424 365 315 27325-1/2 13729 8942 6626 5259 4020 3132 2503 2043 1696 1428 1218 1049 912 798 704 625 558 500 442 382 33227 15578 9900 7250 5716 4483 3493 2792 2279 1893 1594 1359 1171 1018 892 787 699 624 559 504 456 39928-1/2 17711 10949 7918 6198 4970 3872 3096 2528 2099 1769 1508 1300 1130 990 874 776 693 622 560 507 46030 20200 12104 8634 6707 5480 4271 3415 2788 2316 1951 1664 1435 1248 1094 965 858 766 687 620 561 50931-1/2 23142 13380 9403 7244 5889 4687 3749 3061 2543 2143 1828 1576 1371 1202 1061 943 842 756 682 617 56133 26673 14799 10232 7814 6317 5123 4097 3346 2780 2343 1999 1723 1499 1315 1161 1032 922 828 747 676 6156-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5018 6358 4572 3299 2485 1934 1544 1259 1044 878 747 618 504 416 345 289 244 207 176 150 129 11019-1/2 7144 5325 3844 2896 2254 1801 1468 1218 1024 872 750 647 534 445 373 316 268 229 197 169 14621 7991 6102 4427 3336 2598 2075 1692 1404 1182 1006 866 752 658 561 472 400 341 292 251 217 18822-1/2 8905 6738 5050 3806 2964 2368 1932 1603 1349 1150 990 859 752 663 586 497 424 364 314 272 23624 9897 7413 5711 4305 3353 2679 2186 1815 1528 1302 1121 974 853 752 667 595 520 447 387 336 29225-1/2 10974 8131 6410 4833 3764 3009 2456 2038 1717 1463 1260 1095 959 846 751 670 600 541 469 408 35627 12150 8898 7015 5389 4199 3356 2740 2275 1916 1633 1407 1223 1072 945 839 749 672 605 547 490 42828-1/2 13438 9718 7607 5975 4655 3722 3038 2523 2125 1812 1562 1358 1190 1050 932 832 747 673 609 553 50330 14855 10596 8231 6589 5134 4105 3352 2784 2345 2000 1724 1499 1314 1160 1030 920 825 744 673 612 55731-1/2 16421 11540 8891 7227 5635 4506 3680 3056 2576 2197 1894 1647 1444 1275 1132 1012 908 819 741 673 61433 18162 12557 9590 7753 6158 4925 4022 3341 2816 2402 2071 1802 1580 1395 1239 1107 994 897 812 738 67334-1/2 20108 13655 10331 8304 6703 5361 4379 3638 3066 2616 2256 1963 1721 1520 1351 1207 1084 978 886 805 73436 22297 14845 11119 8883 7270 5815 4750 3947 3327 2839 2448 2130 1869 1651 1467 1311 1178 1063 963 875 79937-1/2 24778 16138 11958 9492 7859 6287 5135 4267 3597 3070 2648 2304 2022 1786 1588 1419 1275 1151 1043 948 86539 27615 17550 12853 10133 8360 6775 5535 4600 3878 3310 2855 2485 2180 1926 1713 1531 1376 1242 1126 1024 9347LOAD AND SPAN TABLES8-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024 12829 9609 7212 5436 4234 3383 2760 2291 1928 1643 1415 1229 1076 948 841 750 672 580 501 435 37925-1/2 14226 10541 8095 6103 4753 3799 3100 2573 2167 1847 1590 1382 1210 1067 947 845 757 682 608 529 46227 15750 11535 9027 6806 5302 4238 3459 2872 2418 2062 1776 1543 1352 1193 1058 945 847 763 690 626 55528-1/2 17419 12597 9860 7545 5878 4700 3836 3185 2683 2288 1971 1713 1501 1325 1176 1050 942 848 767 697 63430 19256 13736 10670 8320 6483 5184 4232 3514 2961 2525 2176 1892 1658 1463 1299 1160 1041 938 849 771 70231-1/2 21287 14960 11525 9132 7116 5690 4646 3859 3251 2773 2390 2079 1822 1608 1429 1276 1145 1032 934 849 77433 23543 16278 12431 9978 7777 6219 5078 4218 3555 3032 2614 2274 1994 1760 1564 1397 1254 1131 1024 930 84834-1/2 26065 17701 13392 10765 8465 6770 5529 4593 3871 3303 2847 2477 2172 1918 1704 1523 1367 1233 1117 1015 92636 28903 19243 14413 11515 9181 7343 5997 4983 4200 3584 3090 2689 2358 2083 1851 1654 1486 1340 1214 1104 100737-1/2 32120 20920 15501 12305 9924 7938 6484 5388 4542 3876 3342 2909 2551 2254 2003 1791 1608 1451 1315 1196 109139 35797 22750 16661 13136 10695 8556 6989 5808 4896 4179 3604 3137 2752 2431 2161 1932 1736 1567 1420 1291 117840-1/2 39701 24754 17901 14012 11493 9195 7511 6242 5263 4492 3875 3373 2959 2615 2325 2079 1868 1686 1528 1390 126942 42545 26959 19231 14937 12205 9855 8052 6692 5643 4817 4155 3617 3174 2805 2494 2230 2004 1810 1640 1492 136343-1/2 45481 29396 20659 15915 12937 10538 8610 7156 6035 5152 4444 3869 3396 3001 2669 2387 2146 1937 1756 1598 145945 48510 32104 22197 16951 13704 11242 9185 7635 6439 5497 4743 4130 3625 3204 2850 2549 2291 2069 1876 1708 1559Notes:• Span = simply supported beam.• Maximum deflection = L/180 under total load. Other deflection limits may apply.• Service condition = dry.• Tabulated values represent total loads and have taken the dead weight of the beam (assumed 35 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-68LOAD AND SPAN TABLESTable 7.3Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Floor BeamsLoad Duration Factor = 1.00, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psi3-1/8 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 362 183 104 64 — — — — — — — — — — — — — — — — —7-1/2 710 361 206 128 84 57 — — — — — — — — — — — — — — —9 1048 626 359 224 148 102 72 53 — — — — — — — — — — — — —10-1/2 1428 911 574 358 237 164 118 86 65 — — — — — — — — — — — —12 1866 1191 824 538 357 248 178 132 99 76 59 — — — — — — — — — —13-1/2 2338 1508 1044 765 511 356 257 190 144 111 87 69 55 — — — — — — — —15 2716 1864 1291 945 704 491 355 264 201 155 122 97 78 63 51 — — — — — —16-1/2 3130 2256 1563 1145 874 656 475 354 270 209 165 132 106 87 71 59 — — — — —18 3586 2558 1861 1364 1041 820 619 462 353 274 217 174 141 115 95 79 65 55 — — —19-1/2 4090 2874 2186 1602 1223 963 777 590 451 351 278 224 182 149 123 102 86 72 61 51 —21 4651 3215 2455 1859 1420 1118 901 735 566 441 350 282 229 189 156 131 110 93 78 67 5722-1/2 5277 3583 2710 2135 1631 1285 1029 839 696 545 433 349 285 234 195 163 137 116 99 84 7224 5982 3982 2982 2382 1857 1457 1164 950 788 663 528 426 348 287 239 200 169 144 123 105 9025-1/2 6781 4415 3271 2596 2097 1636 1307 1067 885 745 635 514 420 347 289 243 206 175 150 129 11127 7694 4889 3579 2822 2327 1824 1458 1190 988 832 709 611 501 414 346 291 246 210 180 155 1343-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486 405 205 116 71 — — — — — — — — — — — — — — — — —7-1/2 795 404 231 143 94 64 — — — — — — — — — — — — — — —9 1174 701 403 251 165 114 81 59 — — — — — — — — — — — — —10-1/2 1599 1020 642 401 266 184 132 97 72 55 — — — — — — — — — — —12 2090 1334 923 602 400 278 200 148 111 85 66 52 — — — — — — — — —13-1/2 2618 1690 1170 856 573 399 288 213 162 125 97 77 62 — — — — — — — —15 3042 2087 1446 1059 788 550 397 295 225 174 137 109 87 71 58 — — — — — —16-1/2 3506 2527 1751 1282 979 735 532 396 302 234 185 148 119 97 80 66 54 — — — —18 4017 2865 2085 1528 1166 918 693 517 395 307 243 195 158 129 106 88 73 61 51 — —19-1/2 4581 3219 2448 1794 1370 1079 866 660 505 394 312 250 203 167 138 115 96 81 68 57 —21 5209 3601 2749 2082 1590 1249 998 814 633 494 392 316 257 211 175 146 123 104 88 75 6422-1/2 5910 4013 3035 2392 1827 1426 1139 929 771 611 485 391 319 263 218 183 154 130 111 95 8124 6700 4460 3340 2668 2071 1613 1289 1051 872 734 592 477 390 322 268 225 190 161 137 118 10125-1/2 7594 4945 3663 2908 2325 1811 1447 1181 980 825 703 575 470 388 324 272 230 196 168 144 12427 8617 5475 4009 3160 2593 2020 1614 1317 1094 921 785 676 561 464 387 326 276 235 202 174 1505-1/8 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 3060 1953 1352 882 586 407 293 216 163 125 97 76 60 — — — — — — — —13-1/2 3834 2474 1713 1254 838 584 421 312 237 182 143 113 90 72 58 — — — — — —15 4454 3056 2117 1550 1154 805 582 433 329 255 200 159 128 104 84 69 56 — — — —16-1/2 5134 3700 2563 1878 1426 1076 779 580 442 343 271 216 175 142 117 96 79 66 55 — —18 5882 4195 3053 2237 1684 1310 1015 757 578 450 356 285 231 189 156 129 107 90 75 63 5319-1/2 6708 4713 3585 2606 1963 1527 1219 967 739 576 457 367 298 244 202 168 141 118 100 84 7121 7627 5272 4026 3002 2261 1760 1406 1146 928 724 574 462 376 309 256 214 180 152 129 109 9322-1/2 8654 5876 4445 3424 2580 2008 1604 1308 1085 895 711 573 467 385 320 267 225 191 162 139 11924 9810 6530 4890 3873 2918 2272 1815 1481 1228 1034 867 699 571 471 392 329 278 236 201 172 14825-1/2 11120 7241 5364 4257 3276 2551 2039 1663 1380 1162 990 843 689 569 474 398 337 287 245 211 18227 12618 8017 5870 4627 3654 2846 2274 1856 1540 1297 1105 951 821 679 567 477 404 345 295 254 22028-1/2 14346 8867 6411 5017 4051 3156 2522 2058 1709 1439 1226 1056 918 803 671 565 479 409 351 303 26230 16363 9803 6991 5429 4435 3480 2782 2271 1885 1588 1354 1166 1013 888 783 663 563 481 414 358 31031-1/2 18746 10837 7614 5865 4766 3820 3054 2493 2070 1744 1487 1281 1114 976 861 764 656 561 483 418 36333 21607 11986 8285 6326 5113 4175 3338 2725 2263 1907 1626 1401 1218 1068 942 837 747 649 559 484 421APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-69Table 7.3(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span WesternSpecies 24F-1.8E Glulam Floor BeamsLoad Duration Factor = 1.00, F b = 2,400 psi, F v = 240 psi, E x = 1,800,000 psi5-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812 3284 2096 1451 946 628 437 314 232 175 134 104 82 65 51 — — — — — — —13-1/2 4114 2655 1838 1346 900 626 452 335 254 196 153 121 97 78 63 50 — — — — —15 4780 3280 2272 1664 1239 864 624 464 353 273 215 171 137 111 90 74 61 — — — —16-1/2 5509 3971 2751 2015 1520 1155 836 622 474 368 291 232 187 153 125 103 85 71 59 — —18 6312 4502 3276 2383 1795 1396 1090 813 620 483 382 306 248 203 167 138 115 96 81 67 5719-1/2 7199 5058 3847 2777 2091 1627 1299 1038 793 618 490 393 320 262 217 180 151 127 107 90 7621 8185 5658 4320 3199 2410 1875 1498 1221 995 777 616 496 404 332 275 230 193 163 138 117 10022-1/2 9288 6306 4770 3649 2749 2140 1709 1394 1156 960 763 614 501 413 343 287 242 205 174 149 12724 10528 7008 5248 4126 3110 2421 1934 1578 1309 1101 930 750 612 505 421 353 298 253 216 185 15925-1/2 11934 7771 5757 4569 3491 2719 2172 1772 1470 1238 1054 904 739 610 509 428 362 308 263 226 19527 13541 8604 6300 4966 3893 3032 2423 1977 1641 1381 1177 1014 881 729 608 512 434 370 317 273 23628-1/2 15396 9516 6881 5385 4317 3362 2687 2193 1820 1533 1306 1125 978 856 720 606 515 439 377 325 28230 17560 10520 7503 5827 4760 3708 2964 2419 2009 1692 1442 1242 1080 946 834 712 604 517 444 384 33331-1/2 20118 11629 8171 6294 5115 4071 3254 2656 2206 1858 1584 1365 1186 1040 917 814 704 602 518 448 39033 23188 12863 8891 6789 5487 4449 3557 2904 2411 2031 1732 1493 1298 1137 1004 891 796 697 600 520 4526-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5018 5525 3972 2865 2157 1678 1337 997 761 593 469 375 304 249 205 170 141 118 99 83 69 5819-1/2 6208 4626 3338 2514 1956 1562 1272 974 759 601 483 392 322 266 221 185 156 131 111 94 7921 6944 5302 3845 2897 2254 1800 1467 1216 954 757 609 495 407 338 282 237 200 169 144 123 10422-1/2 7739 5854 4386 3305 2572 2054 1675 1389 1169 936 754 615 506 421 352 297 251 214 183 156 13424 8601 6441 4961 3738 2910 2325 1896 1573 1323 1127 921 752 620 516 433 366 310 265 227 195 16825-1/2 9537 7065 5569 4197 3268 2611 2130 1767 1487 1267 1090 907 749 625 525 444 378 323 278 239 20727 10559 7732 6095 4681 3645 2913 2376 1972 1660 1415 1218 1058 895 747 628 532 454 389 335 289 25128-1/2 11679 8444 6608 5189 4042 3230 2636 2188 1842 1570 1352 1175 1029 884 744 631 539 463 399 346 30030 12911 9208 7151 5723 4458 3563 2908 2414 2033 1733 1493 1297 1136 1002 873 742 634 545 471 409 35631-1/2 14273 10028 7724 6278 4893 3912 3193 2651 2233 1904 1640 1425 1249 1102 978 864 739 636 550 478 41733 15786 10912 8332 6734 5348 4276 3490 2898 2442 2082 1794 1560 1367 1206 1071 956 855 737 638 555 48534-1/2 17478 11867 8976 7214 5821 4655 3800 3156 2659 2268 1954 1699 1489 1315 1167 1042 935 843 734 640 55936 19381 12901 9661 7717 6314 5049 4123 3424 2885 2461 2121 1845 1617 1428 1268 1132 1016 916 829 732 64137-1/2 21538 14025 10390 8246 6826 5459 4457 3703 3120 2662 2294 1996 1750 1545 1373 1226 1101 993 899 816 72939 24005 15252 11168 8803 7261 5883 4804 3991 3364 2870 2474 2152 1888 1667 1481 1323 1188 1072 970 882 8047LOAD AND SPAN TABLES8-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024 11149 8349 6265 4720 3675 2935 2394 1985 1670 1422 1193 974 804 669 561 474 402 343 294 253 21825-1/2 12363 9159 7032 5300 4126 3297 2689 2231 1877 1599 1376 1176 971 810 680 575 490 419 360 310 26827 13688 10023 7842 5911 4603 3678 3000 2490 2096 1785 1537 1335 1160 968 814 690 588 504 434 375 32528-1/2 15139 10946 8566 6553 5104 4079 3328 2762 2325 1981 1706 1482 1298 1144 965 819 699 600 517 448 39030 16736 11936 9270 7227 5629 4499 3672 3048 2566 2187 1884 1637 1434 1264 1122 962 822 707 610 530 46131-1/2 18501 13000 10013 7932 6179 4939 4031 3347 2819 2403 2070 1799 1576 1390 1234 1101 958 825 713 620 54133 20463 14145 10800 8668 6753 5399 4407 3659 3082 2628 2264 1968 1724 1521 1351 1205 1081 955 827 720 62934-1/2 22656 15383 11636 9351 7351 5877 4798 3984 3357 2862 2466 2144 1879 1658 1473 1315 1180 1063 952 829 72536 25123 16723 12523 10003 7973 6375 5205 4323 3642 3106 2677 2328 2041 1801 1600 1428 1282 1155 1046 949 83137-1/2 27920 18181 13469 10689 8619 6893 5628 4675 3939 3360 2896 2519 2208 1949 1732 1547 1388 1252 1133 1029 93839 31117 19772 14477 11412 9289 7429 6066 5039 4247 3623 3123 2717 2382 2103 1869 1669 1499 1351 1224 1112 101440-1/2 34512 21514 15555 12173 9983 7984 6520 5417 4566 3895 3358 2922 2562 2262 2010 1796 1613 1455 1318 1198 109242 36984 23431 16711 12977 10602 8558 6990 5807 4895 4177 3601 3134 2748 2427 2157 1928 1731 1562 1415 1286 117343-1/2 39537 25550 17952 13827 11238 9151 7475 6211 5236 4468 3853 3353 2941 2598 2309 2064 1854 1673 1515 1378 125745 42170 27904 19289 14728 11904 9763 7975 6627 5587 4768 4112 3579 3139 2773 2465 2204 1980 1787 1619 1472 1344Notes:• Span = simply supported beam.• Maximum deflection = L/360 under live load, based on live/total load = 0.8. Where additional stiffness is desired or for other live/total load ratios, design fordeflection must be modified per requirements.• Service condition = dry.• Tabulated values represent total loads based on live/total load = 0.8 and have taken the dead weight of the beam (assumed 35 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-70LOAD AND SPAN TABLESTable 7.4Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Roof Beams — Non-Snow LoadsLoad Duration Factor = 1.25, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psi3 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 733 428 246 153 101 69 — — — — — — — — — — — — — — —8-1/4 1057 674 427 267 177 122 87 64 — — — — — — — — — — — — —9-5/8 1440 919 636 426 283 197 141 104 79 60 — — — — — — — — — — —11 1882 1202 832 609 425 296 214 158 120 93 73 57 — — — — — — — — —12-3/8 2384 1522 1054 772 589 424 307 228 174 134 106 84 68 55 — — — — — — —13-3/4 2944 1880 1303 954 728 573 423 315 240 187 148 118 95 78 64 53 — — — — —15-1/8 3563 2276 1577 1156 882 695 561 422 322 251 199 160 129 106 88 73 61 51 — — —16-1/2 4230 2710 1878 1377 1051 828 668 550 421 328 260 209 170 140 116 97 81 68 58 — —17-7/8 4793 3182 2205 1617 1235 973 785 647 537 420 333 269 219 180 150 125 106 89 76 65 5519-1/4 5409 3691 2559 1876 1433 1129 912 751 627 527 419 338 276 228 189 159 134 114 97 83 7220-5/8 6087 4227 2939 2155 1646 1297 1048 861 718 607 517 418 342 282 235 198 167 142 122 105 9022 6837 4673 3345 2453 1874 1477 1192 978 815 689 590 509 417 345 288 242 205 175 150 129 11223-3/8 7671 5152 3777 2770 2117 1669 1343 1101 919 777 665 575 502 416 347 293 249 212 182 157 13624-3/4 8604 5669 4224 3107 2374 1869 1502 1232 1028 870 744 644 562 494 415 350 297 254 219 189 16426-1/8 9654 6227 4593 3463 2646 2078 1670 1370 1143 967 828 716 625 550 487 414 352 301 259 225 1953-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 856 499 287 178 117 81 57 — — — — — — — — — — — — — —8-1/4 1234 787 498 311 206 143 102 75 56 — — — — — — — — — — — —9-5/8 1680 1072 742 497 330 229 165 122 92 70 55 — — — — — — — — — —11 2196 1402 971 711 496 345 249 185 140 108 85 67 54 — — — — — — — —12-3/8 2781 1776 1230 901 687 495 358 266 202 157 123 98 79 64 52 — — — — — —13-3/4 3434 2194 1520 1113 850 669 493 368 280 218 172 138 111 91 75 62 51 — — — —15-1/8 4157 2656 1840 1348 1029 811 654 492 376 293 232 186 151 124 102 85 71 59 — — —16-1/2 4936 3162 2191 1606 1226 966 780 642 491 383 304 244 199 163 135 113 95 80 68 57 —17-7/8 5592 3712 2573 1886 1440 1135 916 752 627 490 389 313 255 210 175 146 123 104 89 76 6519-1/4 6311 4306 2985 2189 1672 1317 1062 870 725 613 489 394 322 265 221 185 157 133 113 97 8320-5/8 7102 4932 3428 2514 1921 1513 1216 997 831 703 601 487 398 329 274 231 195 166 142 122 10522 7977 5452 3902 2862 2186 1717 1380 1132 944 798 683 590 486 402 336 283 240 204 175 151 13123-3/8 8950 6011 4406 3232 2468 1934 1554 1275 1063 899 770 665 580 485 405 342 290 248 213 184 15924-3/4 10038 6613 4928 3625 2760 2163 1739 1426 1190 1007 862 745 650 572 484 408 347 297 255 221 19226-1/8 11263 7265 5359 4040 3068 2405 1933 1586 1323 1120 959 829 724 636 563 483 411 352 303 262 2285 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 3973 2537 1757 1287 982 707 511 380 289 224 176 141 113 92 75 61 50 — — — —13-3/4 4906 3134 2171 1590 1214 955 705 525 401 311 246 197 159 130 107 88 73 61 51 — —15-1/8 5939 3794 2629 1926 1470 1155 927 703 537 419 331 266 216 177 146 121 101 85 71 60 5116-1/2 7051 4517 3130 2294 1750 1370 1100 901 701 547 434 349 284 233 193 161 135 114 97 82 7017-7/8 7988 5303 3676 2695 2047 1603 1288 1055 879 700 556 448 365 301 250 209 176 149 127 108 9219-1/4 9015 6152 4265 3120 2367 1854 1489 1221 1017 860 698 563 460 379 316 265 224 190 162 139 11920-5/8 10145 7046 4898 3571 2710 2123 1706 1398 1166 985 843 696 569 470 392 330 279 237 203 175 15122 11396 7788 5568 4052 3075 2410 1936 1588 1324 1119 958 828 695 575 480 404 342 292 250 216 18623-3/8 12786 8587 6269 4562 3463 2714 2181 1789 1492 1261 1080 933 814 693 579 488 414 354 304 262 22724-3/4 14340 9448 7010 5102 3873 3035 2440 <strong>2001</strong> 1669 1412 1209 1045 912 802 691 583 495 424 365 315 27426-1/8 16090 10379 7655 5671 4305 3375 2713 2225 1857 1571 1345 1163 1015 892 790 689 586 502 432 374 32627-1/2 18075 11389 8308 6269 4760 3731 3000 2461 2054 1738 1488 1287 1123 988 875 780 688 589 508 440 38428-7/8 20346 12488 9003 6897 5237 4105 3301 2709 2260 1913 1638 1417 1237 1088 964 859 770 686 592 514 44830-1/4 22969 13689 9744 7553 5735 4497 3616 2968 2477 2096 1795 1554 1356 1193 1057 942 845 761 684 594 51831-5/8 26006 15007 10535 8112 6257 4906 3945 3238 2703 2288 1960 1696 1481 1303 1155 1029 923 831 752 683 596APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-71Table 7.4(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Roof Beams — Non-Snow LoadsLoad Duration Factor = 1.25, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psi5-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 4370 2791 1933 1415 1080 777 562 418 318 247 194 155 124 101 82 67 55 — — — —13-3/4 5397 3447 2388 1750 1335 1048 775 578 441 343 271 216 175 143 117 97 80 67 56 — —15-1/8 6532 4173 2892 2119 1615 1264 1015 774 591 460 364 292 237 194 160 133 111 93 78 66 5616-1/2 7756 4969 3443 2524 1916 1500 1204 986 772 602 478 384 312 257 213 177 149 126 106 90 7717-7/8 8787 5833 4043 2955 2241 1755 1409 1155 962 770 611 492 401 331 275 230 194 164 139 119 10219-1/4 9917 6767 4691 3416 2592 2030 1630 1336 1114 941 768 619 506 417 347 291 246 209 178 153 13120-5/8 11160 7750 5373 3910 2967 2324 1867 1531 1276 1079 923 766 626 517 431 362 307 261 223 192 16622 12535 8567 6096 4436 3366 2638 2120 1738 1449 1225 1048 906 764 632 528 444 376 321 275 237 20523-3/8 14064 9446 6863 4995 3791 2971 2387 1958 1633 1381 1182 1022 891 762 637 537 456 389 334 289 25024-3/4 15774 10393 7674 5585 4240 3323 2671 2191 1827 1546 1323 1144 998 877 760 641 545 466 401 347 30126-1/8 17699 11417 8421 6208 4713 3694 2970 2436 2032 1719 1472 1273 1111 977 865 758 645 552 476 412 35827-1/2 19883 12528 9139 6863 5211 4085 3284 2694 2248 1902 1629 1409 1230 1081 958 853 757 648 559 484 42228-7/8 22381 13737 9903 7550 5733 4494 3614 2965 2474 2094 1793 1551 1354 1191 1055 940 843 755 651 565 49230-1/4 25266 15058 10718 8269 6279 4923 3959 3249 2711 2295 1965 1701 1485 1306 1157 1031 924 832 753 654 57031-5/8 28500 16507 11588 8923 6849 5371 4319 3545 2958 2504 2145 1856 1621 1426 1264 1127 1010 910 823 748 6566-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5017-7/8 7159 4934 3589 2722 2132 1712 1403 1169 945 750 604 493 406 337 282 238 201 171 146 125 10719-1/4 8303 5703 4149 3148 2466 1980 1623 1353 1143 942 760 621 512 426 358 302 256 219 187 161 13920-5/8 9501 6527 4749 3603 2823 2268 1859 1550 1310 1120 940 768 635 529 445 376 320 274 236 203 17622 10514 7405 5388 4089 3204 2574 2111 1760 1488 1273 1100 938 776 648 545 462 394 338 291 252 21823-3/8 11592 8336 6067 4605 3608 2900 2378 1983 1677 1435 1241 1082 935 782 659 559 478 410 354 307 26724-3/4 12755 9321 6784 5150 4036 3244 2661 2219 1877 1607 1389 1212 1065 933 787 669 572 492 426 370 32226-1/8 14011 10335 7541 5725 4487 3607 2959 2468 2088 1788 1546 1349 1186 1050 931 792 678 584 505 440 38427-1/2 15375 11216 8337 6329 4962 3989 3273 2730 2310 1978 1711 1493 1313 1163 1036 928 796 686 595 518 45328-7/8 16859 12154 9171 6963 5459 4389 3602 3005 2543 2178 1884 1645 1447 1281 1142 1023 921 799 693 604 52930-1/4 18480 13154 10044 7627 5980 4808 3946 3293 2787 2387 2065 1803 1586 1405 1253 1122 1011 914 802 700 61331-5/8 20259 14222 10951 8320 6524 5246 4305 3593 3041 2605 2255 1969 1732 1535 1368 1226 1105 999 908 805 70633 22219 15365 11737 9042 7090 5702 4680 3907 3307 2833 2452 2141 1884 1670 1489 1335 1202 1088 988 901 80734-3/8 24390 16593 12566 9793 7680 6177 5070 4233 3583 3070 2657 2321 2043 1811 1615 1448 1304 1180 1073 978 89535-3/4 26807 17913 13443 10574 8293 6670 5476 4571 3870 3316 2871 2508 2208 1957 1745 1565 1410 1277 1160 1058 96837-1/8 29516 19338 14372 11384 8928 7182 5896 4923 4168 3572 3093 2702 2378 2109 1881 1687 1520 1376 1251 1141 10457LOAD AND SPAN TABLES8-1/2 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024-3/4 16061 11603 8445 6410 5024 4038 3312 2762 2336 1999 1729 1508 1326 1173 991 842 720 620 536 465 40626-1/8 17644 12896 9387 7126 5585 4489 3683 3072 2599 2225 1924 1679 1476 1307 1164 997 854 735 637 554 48327-1/2 19361 14124 10377 7878 6176 4965 4073 3398 2875 2462 2129 1858 1634 1447 1289 1155 1002 864 749 652 57028-7/8 21230 15305 11416 8667 6795 5463 4483 3740 3165 2710 2345 2047 1800 1594 1421 1273 1146 1006 873 761 66630-1/4 23271 16564 12503 9493 7443 5985 4911 4098 3468 2970 2570 2244 1974 1749 1558 1396 1257 1137 1010 881 77231-5/8 25511 17909 13638 10356 8120 6530 5359 4472 3785 3242 2806 2450 2156 1910 1702 1526 1374 1243 1129 1013 88933 27980 19349 14780 11255 8825 7097 5825 4862 4116 3526 3052 2665 2345 2078 1853 1661 1496 1354 1230 1121 101634-3/8 30714 20895 15824 12190 9560 7688 6311 5268 4460 3821 3307 2888 2542 2253 2009 1801 1623 1469 1334 1217 111335-3/4 33758 22557 16928 13162 10322 8302 6815 5690 4817 4127 3573 3121 2747 2435 2172 1947 1755 1588 1443 1316 120537-1/8 37168 24352 18098 14170 11113 8939 7339 6127 5188 4445 3849 3362 2960 2624 2340 2099 1892 1712 1556 1420 129938-1/2 40008 26294 19337 15214 11933 9599 7881 6580 5572 4775 4134 3612 3180 2820 2515 2256 2033 1841 1674 1527 139839-7/8 42844 28402 20655 16220 12781 10282 8442 7049 5969 5116 4430 3871 3408 3022 2696 2419 2180 1974 1795 1638 150041-1/4 45775 30699 22057 17203 13657 10987 9022 7534 6380 5469 4736 4138 3644 3232 2883 2587 2332 2112 1921 1753 160542-5/8 48800 33211 23553 18237 14562 11716 9620 8034 6804 5833 5051 4414 3888 3448 3077 2760 2489 2254 2050 1871 171444 51920 35699 25152 19326 15495 12467 10238 8550 7242 6208 5377 4699 4139 3671 3276 2940 2651 2401 2184 1994 1826Notes:• Span = simply supported beam.• Maximum deflection = L/180 under total load. Other deflection limits may apply.• Service condition = dry.• Tabulated values represent total loads and have taken the dead weight of the beam (assumed 36 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-72LOAD AND SPAN TABLESTable 7.5Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Roof Beams — Snow LoadsLoad Duration Factor = 1.15, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psi3 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 674 428 246 153 101 69 — — — — — — — — — — — — — — —8-1/4 972 620 427 267 177 122 87 64 — — — — — — — — — — — — —9-5/8 1324 845 585 426 283 197 141 104 79 60 — — — — — — — — — — —11 1731 1105 765 560 425 296 214 158 120 93 73 57 — — — — — — — — —12-3/8 2192 1400 969 710 541 424 307 228 174 134 106 84 68 55 — — — — — — —13-3/4 2707 1729 1198 877 669 527 423 315 240 187 148 118 95 78 64 53 — — — — —15-1/8 3277 2093 1450 1062 811 638 515 422 322 251 199 160 129 106 88 73 61 51 — — —16-1/2 3891 2492 1727 1266 966 761 614 505 421 328 260 209 170 140 116 97 81 68 58 — —17-7/8 4408 2926 2028 1486 1135 894 721 594 497 420 333 269 219 180 150 125 106 89 76 65 5519-1/4 4975 3395 2353 1725 1317 1038 838 690 575 486 416 338 276 228 189 159 134 114 97 83 7220-5/8 5599 3888 2702 1981 1513 1192 963 791 659 557 476 412 342 282 235 198 167 142 122 105 9022 6289 4298 3076 2255 1723 1358 1095 898 749 633 541 468 408 345 288 242 205 175 150 129 11223-3/8 7056 4739 3473 2547 1946 1534 1234 1012 844 713 610 528 460 404 347 293 249 212 182 157 13624-3/4 7914 5214 3885 2857 2183 1718 1381 1132 944 799 683 591 515 453 401 350 297 254 219 189 16426-1/8 8880 5728 4224 3184 2433 1910 1535 1259 1050 888 760 657 574 504 446 397 352 301 259 225 1953-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 787 499 287 178 117 81 57 — — — — — — — — — — — — — —8-1/4 1134 723 498 311 206 143 102 75 56 — — — — — — — — — — — —9-5/8 1545 986 682 497 330 229 165 122 92 70 55 — — — — — — — — — —11 2020 1289 892 653 496 345 249 185 140 108 85 67 54 — — — — — — — —12-3/8 2557 1633 1131 828 631 495 358 266 202 157 123 98 79 64 52 — — — — — —13-3/4 3159 2017 1397 1023 781 614 493 368 280 218 172 138 111 91 75 62 51 — — — —15-1/8 3823 2442 1692 1240 946 745 601 492 376 293 232 186 151 124 102 85 71 59 — — —16-1/2 4540 2908 2015 1476 1127 887 716 589 491 383 304 244 199 163 135 113 95 80 68 57 —17-7/8 5143 3414 2366 1734 1324 1043 842 691 575 486 389 313 255 210 175 146 123 104 89 76 6519-1/4 5804 3961 2745 2012 1537 1211 975 799 666 563 481 394 322 265 221 185 157 133 113 97 8320-5/8 6532 4536 3153 2311 1765 1391 1117 916 763 645 551 476 398 329 274 231 195 166 142 122 10522 7337 5014 3588 2631 2010 1578 1268 1040 867 733 627 541 472 402 336 283 240 204 175 151 13123-3/8 8232 5528 4052 2972 2269 1778 1428 1171 977 826 706 611 532 468 405 342 290 248 213 184 15924-3/4 9233 6083 4532 3333 2538 1989 1598 1311 1093 924 791 684 596 524 464 408 347 297 255 221 19226-1/8 10360 6682 4928 3715 2821 2211 1777 1458 1216 1028 880 761 664 584 517 460 411 352 303 262 2285 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 3654 2333 1615 1183 902 707 511 380 289 224 176 141 113 92 75 61 50 — — — —13-3/4 4512 2882 1996 1462 1115 878 705 525 401 311 246 197 159 130 107 88 73 61 51 — —15-1/8 5462 3489 2417 1771 1351 1061 851 697 537 419 331 266 216 177 146 121 101 85 71 60 5116-1/2 6485 4154 2878 2109 1608 1259 1010 827 689 547 434 349 284 233 193 161 135 114 97 82 7017-7/8 7347 4877 3380 2477 1882 1473 1183 969 807 681 556 448 365 301 250 209 176 149 127 108 9219-1/4 8292 5658 3922 2869 2176 1704 1368 1121 934 789 675 563 460 379 316 265 224 190 162 139 11920-5/8 9332 6480 4504 3284 2491 1951 1567 1284 1070 905 773 668 569 470 392 330 279 237 203 175 15122 10482 7163 5121 3726 2827 2215 1779 1458 1216 1028 879 759 662 575 480 404 342 292 250 216 18623-3/8 11760 7898 5765 4195 3183 2494 2004 1643 1370 1158 991 856 747 656 579 488 414 354 304 262 22724-3/4 13190 8689 6446 4691 3561 2790 2242 1839 1533 1297 1109 959 836 735 650 579 495 424 365 315 27426-1/8 14800 9546 7040 5215 3958 3102 2493 2045 1705 1442 1234 1067 931 818 724 645 577 502 432 374 32627-1/2 16627 10475 7641 5765 4376 3430 2757 2262 1887 1596 1366 1181 1031 906 802 714 640 576 508 440 38428-7/8 18716 11486 8280 6342 4815 3774 3034 2489 2077 1757 1504 1301 1135 998 884 787 705 635 574 514 44830-1/4 21129 12591 8961 6946 5274 4134 3324 2727 2275 1925 1649 1426 1245 1095 970 864 774 697 630 572 51831-5/8 23922 13803 9689 7460 5753 4510 3626 2976 2483 2101 1800 1557 1359 1196 1059 944 846 761 689 625 570APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-73Table 7.5(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Roof Beams — Snow LoadsLoad Duration Factor = 1.15, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psi5-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 4019 2566 1777 1301 992 777 562 418 318 247 194 155 124 101 82 67 55 — — — —13-3/4 4964 3170 2196 1608 1227 963 772 578 441 343 271 216 175 143 117 97 80 67 56 — —15-1/8 6008 3838 2659 1948 1484 1161 932 763 591 460 364 292 237 194 160 133 111 93 78 66 5616-1/2 7134 4569 3166 2320 1761 1378 1106 906 754 602 478 384 312 257 213 177 149 126 106 90 7717-7/8 8082 5365 3718 2716 2060 1613 1295 1061 883 746 611 492 401 331 275 230 194 164 139 119 10219-1/4 9121 6224 4314 3140 2382 1865 1498 1227 1023 864 738 619 506 417 347 291 246 209 178 153 13120-5/8 10265 7128 4941 3595 2727 2136 1716 1406 1172 990 847 731 626 517 431 362 307 261 223 192 16622 11530 7879 5606 4079 3095 2424 1948 1597 1331 1125 962 831 724 632 528 444 376 321 275 237 20523-3/8 12936 8687 6311 4592 3485 2730 2194 1799 1500 1268 1085 937 817 718 635 537 456 389 334 289 25024-3/4 14509 9558 7057 5136 3898 3054 2454 2013 1678 1419 1214 1050 915 804 712 634 545 466 401 347 30126-1/8 16280 10500 7744 5709 4333 3396 2729 2238 1867 1579 1351 1168 1019 896 793 706 632 552 476 412 35827-1/2 18289 11522 8405 6311 4791 3755 3018 2476 2065 1747 1495 1293 1128 992 878 782 700 630 559 484 42228-7/8 20587 12635 9108 6943 5271 4132 3321 2725 2273 1923 1646 1424 1243 1093 968 862 772 695 628 565 49230-1/4 23242 13850 9857 7604 5773 4526 3639 2985 2491 2108 1805 1561 1363 1198 1061 946 847 763 689 626 57031-5/8 26216 15183 10658 8206 6298 4938 3970 3258 2718 2300 1970 1704 1488 1309 1159 1033 926 833 754 684 6236-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5017-7/8 6584 4537 3299 2502 1959 1572 1288 1073 906 750 604 493 406 337 282 238 201 171 146 125 10719-1/4 7636 5244 3815 2893 2266 1819 1491 1242 1049 897 760 621 512 426 358 302 256 219 187 161 13920-5/8 8738 6002 4366 3312 2594 2084 1708 1423 1202 1028 888 768 635 529 445 376 320 274 236 203 17622 9670 6809 4954 3759 2945 2365 1939 1616 1366 1168 1009 880 772 648 545 462 394 338 291 252 21823-3/8 10662 7666 5578 4233 3317 2665 2185 1821 1540 1317 1138 992 872 771 659 559 478 410 354 307 26724-3/4 11731 8572 6238 4734 3710 2981 2445 2038 1724 1475 1275 1112 977 864 769 669 572 492 426 370 32226-1/8 12887 9504 6934 5263 4125 3315 2719 2267 1918 1641 1419 1238 1088 963 857 767 678 584 505 440 38427-1/2 14141 10315 7666 5819 4561 3666 3007 2508 2122 1816 1570 1370 1205 1066 949 850 765 686 595 518 45328-7/8 15506 11178 8434 6402 5018 4034 3310 2761 2336 2000 1729 1509 1327 1175 1047 937 843 762 692 604 52930-1/4 16998 12097 9237 7013 5497 4420 3626 3025 2560 2192 1896 1655 1455 1289 1148 1029 926 837 760 692 61331-5/8 18634 13080 10071 7650 5997 4822 3957 3302 2794 2393 2070 1807 1589 1408 1254 1124 1012 915 831 757 69233 20437 14132 10794 8314 6519 5242 4301 3590 3038 2602 2251 1965 1729 1532 1365 1224 1102 996 905 825 75434-3/8 22434 15261 11556 9005 7061 5678 4660 3889 3292 2820 2440 2131 1875 1661 1481 1327 1195 1081 982 895 81935-3/4 24658 16475 12363 9723 7625 6132 5033 4201 3556 3046 2636 2302 2026 1795 1601 1435 1293 1170 1062 969 88637-1/8 27149 17786 13217 10468 8209 6602 5419 4524 3830 3281 2840 2480 2183 1935 1725 1547 1394 1261 1146 1045 9567LOAD AND SPAN TABLES8-1/2 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024-3/4 14772 10670 7765 5893 4618 3710 3043 2537 2145 1835 1586 1383 1215 1075 957 842 720 620 536 465 40626-1/8 16228 11860 8631 6551 5134 4126 3384 2822 2386 2042 1766 1540 1353 1198 1066 954 854 735 637 554 48327-1/2 17807 12990 9542 7243 5677 4563 3743 3122 2640 2260 1954 1705 1499 1327 1181 1058 951 859 749 652 57028-7/8 19526 14076 10498 7969 6246 5021 4119 3436 2907 2488 2152 1878 1651 1462 1302 1166 1049 948 860 761 66630-1/4 21405 15234 11497 8729 6842 5501 4513 3765 3186 2728 2359 2059 1811 1604 1429 1280 1152 1041 945 861 77231-5/8 23465 16471 12541 9522 7465 6002 4925 4109 3477 2978 2576 2248 1978 1752 1561 1398 1259 1138 1033 941 86033 25736 17796 13592 10349 8114 6524 5354 4468 3781 3238 2802 2446 2152 1906 1699 1522 1371 1240 1126 1026 93834-3/8 28251 19217 14553 11209 8789 7067 5800 4841 4097 3509 3037 2651 2333 2067 1842 1651 1487 1345 1222 1114 101835-3/4 31051 20747 15568 12103 9490 7632 6264 5228 4426 3791 3281 2865 2521 2234 1992 1785 1608 1455 1322 1205 110237-1/8 34188 22397 16643 13030 10218 8218 6745 5630 4766 4084 3535 3087 2717 2408 2147 1925 1734 1569 1426 1300 118938-1/2 36800 24184 17784 13991 10972 8825 7244 6047 5120 4387 3797 3316 2919 2587 2307 2069 1864 1687 1533 1398 127939-7/8 39410 26123 18996 14916 11752 9453 7760 6478 5485 4700 4069 3554 3129 2774 2474 2218 1999 1810 1645 1500 137341-1/4 42106 28236 20286 15820 12558 10101 8293 6924 5863 5024 4350 3800 3346 2966 2646 2373 2139 1936 1760 1606 147042-5/8 44889 30547 21661 16771 13390 10771 8843 7384 6253 5359 4640 4054 3569 3165 2823 2532 2283 2067 1879 1714 156944 47759 32836 23132 17772 14248 11462 9411 7858 6655 5704 4939 4316 3800 3370 3006 2697 2431 2202 2002 1827 1673Notes:• Span = simply supported beam.• Maximum deflection = L/180 under total load. Other deflection limits may apply.• Service condition = dry.• Tabulated values represent total loads and have taken the dead weight of the beam (assumed 36 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-74LOAD AND SPAN TABLESTable 7.6Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Floor Beams3 Inch WidthDepthLoad Duration Factor = 1.00, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psiSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 524 266 152 94 61 — — — — — — — — — — — — — — — —8-1/4 845 462 265 164 108 74 52 — — — — — — — — — — — — — —9-5/8 1151 734 423 264 174 120 86 63 — — — — — — — — — — — — —11 1504 960 634 396 263 182 130 96 72 55 — — — — — — — — — — —12-3/8 1905 1216 842 566 376 262 188 139 105 81 63 — — — — — — — — — —13-3/4 2353 1502 1040 761 519 361 260 193 146 113 88 70 56 — — — — — — — —15-1/8 2848 1819 1260 922 693 483 349 259 197 153 120 95 77 62 50 — — — — — —16-1/2 3382 2166 1500 1099 838 630 456 339 258 201 158 126 102 83 68 56 — — — — —17-7/8 3832 2543 1762 1291 985 776 582 434 331 257 203 163 132 108 89 73 61 51 — — —19-1/4 4324 2950 2044 1498 1144 901 727 544 416 324 256 206 167 137 113 94 78 66 55 — —20-5/8 4867 3379 2348 1721 1314 1035 835 671 513 401 318 255 208 171 141 118 99 83 70 60 5122 5467 3735 2672 1959 1496 1179 950 779 625 488 388 312 254 209 174 145 122 103 88 75 6423-3/8 6134 4118 3018 2213 1690 1332 1071 878 731 588 467 377 307 253 211 176 149 126 107 92 7924-3/4 6880 4531 3376 2482 1896 1491 1198 982 819 692 557 449 367 303 252 212 179 152 130 111 9626-1/8 7719 4978 3671 2766 2113 1658 1332 1092 911 770 657 531 434 358 299 251 213 181 155 133 1153-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 486-7/8 611 310 177 109 71 — — — — — — — — — — — — — — — —8-1/4 985 539 309 192 126 86 61 — — — — — — — — — — — — — —9-5/8 1343 856 493 308 203 140 100 73 54 — — — — — — — — — — — —11 1755 1120 739 462 306 212 152 112 84 64 — — — — — — — — — — —12-3/8 2222 1418 982 661 439 305 219 162 122 94 73 57 — — — — — — — — —13-3/4 2745 1753 1213 888 605 421 304 225 171 132 103 82 65 52 — — — — — — —15-1/8 3323 2122 1470 1076 808 564 407 303 230 178 140 111 89 72 59 — — — — — —16-1/2 3946 2527 1750 1282 978 734 531 396 301 234 185 147 119 97 79 65 54 — — — —17-7/8 4470 2967 2055 1506 1149 905 678 506 386 300 237 190 154 126 103 86 71 59 — — —19-1/4 5045 3442 2385 1748 1334 1051 846 634 485 378 299 240 195 160 132 110 92 77 65 54 —20-5/8 5678 3942 2739 2008 1533 1207 969 783 599 467 371 298 242 199 165 137 115 97 82 70 5922 6378 4358 3118 2286 1745 1370 1100 902 730 570 452 364 297 244 203 169 143 120 102 87 7423-3/8 7156 4805 3521 2581 1970 1543 1239 1016 847 686 545 439 358 295 246 206 174 147 125 107 9224-3/4 8026 5286 3938 2895 2204 1726 1387 1137 948 801 650 524 428 353 294 247 209 177 151 130 11226-1/8 9006 5808 4282 3227 2450 1920 1542 1264 1054 891 762 619 506 418 349 293 248 211 181 155 1345 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 3175 2026 1403 944 627 436 314 232 175 134 104 82 65 51 — — — — — — —13-3/4 3922 2504 1733 1269 864 602 434 322 244 188 147 117 93 75 60 — — — — — —15-1/8 4747 3031 2099 1537 1154 805 582 432 329 255 200 159 128 103 84 69 56 — — — —16-1/2 5637 3609 2500 1831 1396 1049 759 565 431 334 264 210 170 138 113 93 77 64 53 — —17-7/8 6386 4238 2936 2151 1633 1278 969 723 551 429 339 271 220 179 148 122 102 85 71 59 —19-1/4 7207 4917 3407 2491 1889 1479 1187 906 693 540 427 343 278 228 188 156 131 110 92 78 6620-5/8 8111 5631 3913 2852 2163 1693 1359 1114 856 668 529 426 346 284 235 196 165 139 117 99 8422 9111 6225 4449 3236 2455 1922 1543 1265 1042 814 646 520 424 349 289 242 204 172 146 124 10623-3/8 10223 6864 5009 3644 2764 2165 1739 1425 1187 980 779 628 512 422 351 294 248 210 179 153 13124-3/4 11466 7552 5601 4075 3092 2422 1946 1595 1329 1123 928 749 612 505 420 353 298 253 216 185 15926-1/8 12866 8296 6118 4530 3438 2693 2164 1774 1479 1250 1069 885 723 597 498 419 354 302 258 222 19127-1/2 14453 9104 6640 5009 3801 2978 2393 1962 1636 1383 1183 1023 847 701 585 492 417 355 305 262 22728-7/8 16270 9983 7195 5510 4182 3277 2634 2160 1801 1523 1303 1127 983 815 681 573 486 415 356 307 26630-1/4 18368 10944 7787 6035 4581 3590 2885 2367 1974 1669 1429 1235 1078 940 786 663 563 481 414 357 31031-5/8 20797 11997 8420 6482 4997 3917 3148 2583 2154 1822 1560 1349 1177 1035 902 761 647 553 476 412 358APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-75Table 7.6(Cont.)Allowable Loads in Pounds per Lineal Foot for Simple Span SouthernPine 24F-1.8E Glulam Floor BeamsLoad Duration Factor = 1.00, F b = 2,400 psi, F v = 270 psi, E x = 1,800,000 psi5-1/2 Inch WidthDepthSpan (ft.)(in) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 4812-3/8 3492 2229 1543 1038 690 479 345 255 192 148 115 90 71 57 — — — — — — —13-3/4 4314 2754 1907 1396 951 662 478 354 268 207 162 128 102 82 66 53 — — — — —15-1/8 5222 3334 2309 1691 1270 886 640 476 362 280 220 175 141 114 93 76 62 51 — — —16-1/2 6200 3970 2750 2015 1528 1154 835 622 474 368 290 231 187 152 124 102 85 70 58 — —17-7/8 7025 4662 3230 2359 1788 1399 1066 795 607 472 373 299 242 197 162 134 112 93 78 65 5419-1/4 7928 5408 3748 2727 2068 1619 1299 997 762 594 470 377 306 251 207 172 144 121 101 85 7220-5/8 8922 6194 4293 3122 2368 1854 1488 1219 941 734 582 468 381 313 259 216 181 153 129 109 9322 10022 6848 4871 3543 2687 2104 1690 1384 1147 895 711 572 466 384 318 266 224 189 161 137 11723-3/8 11245 7550 5484 3989 3026 2370 1903 1560 1300 1078 857 691 563 464 386 323 273 231 197 168 14424-3/4 12612 8307 6132 4461 3385 2652 2130 1746 1455 1230 1021 824 673 555 462 388 328 279 238 204 17526-1/8 14152 9126 6730 4959 3763 2948 2369 1942 1619 1368 1170 973 795 657 548 461 390 332 284 244 21027-1/2 15899 10014 7304 5483 4161 3260 2620 2148 1791 1514 1295 1120 932 771 643 541 459 391 335 289 24928-7/8 17897 10982 7915 6032 4578 3588 2883 2364 1971 1667 1427 1233 1075 896 749 631 535 457 392 338 29330-1/4 20205 12038 8566 6607 5015 3930 3159 2591 2161 1827 1564 1352 1179 1034 865 729 619 529 455 393 34131-5/8 22791 13197 9262 7130 5471 4288 3446 2827 2358 1995 1707 1476 1288 1132 992 837 712 609 524 453 3936-3/4 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5017-7/8 5721 3941 2865 2172 1699 1308 976 744 579 458 366 297 242 199 165 137 114 96 80 67 5619-1/4 6636 4556 3313 2512 1966 1578 1224 935 728 577 463 376 308 254 211 176 148 125 105 88 7520-5/8 7594 5215 3792 2876 2251 1807 1480 1155 901 715 574 467 384 318 265 222 187 158 134 114 9722 8404 5916 4303 3264 2556 2052 1681 1401 1099 872 702 572 471 391 327 275 232 197 168 143 12323-3/8 9266 6661 4846 3676 2879 2312 1895 1579 1323 1051 847 691 570 474 397 335 284 242 207 177 15224-3/4 10195 7449 5419 4111 3221 2587 2120 1767 1493 1253 1011 826 681 568 476 402 342 292 250 215 18626-1/8 11200 8259 6024 4571 3581 2877 2358 1966 1662 1421 1194 976 807 672 565 478 407 348 299 258 22327-1/2 12291 8964 6660 5054 3960 3182 2609 2175 1839 1573 1360 1144 946 789 664 563 480 411 354 306 26628-7/8 13477 9714 7327 5561 4358 3502 2871 2394 2025 1732 1498 1306 1100 919 774 657 561 481 415 359 31230-1/4 14774 10513 8025 6091 4774 3836 3146 2624 2219 1899 1642 1432 1259 1061 895 760 649 558 482 418 36431-5/8 16197 11367 8750 6645 5208 4186 3434 2864 2422 2074 1793 1564 1375 1217 1027 873 747 643 556 483 42133 17764 12281 9378 7222 5661 4551 3733 3114 2634 2255 1950 1702 1496 1325 1172 997 854 735 637 554 48334-3/8 19501 13263 10041 7823 6133 4930 4045 3374 2855 2444 2114 1845 1623 1437 1280 1132 970 836 724 631 55135-3/4 21434 14319 10742 8447 6622 5324 4368 3645 3084 2641 2285 1994 1754 1553 1384 1240 1096 945 820 714 62537-1/8 23600 15458 11485 9095 7130 5733 4704 3926 3322 2845 2461 2149 1890 1674 1492 1337 1204 1064 923 805 7057LOAD AND SPAN TABLES8-1/2 Inch WidthDepthSpan (ft.)(in) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5024-3/4 12838 9272 6745 5117 4008 3220 2639 2199 1858 1578 1273 1040 858 715 600 507 431 368 315 271 23426-1/8 14104 10306 7498 5689 4457 3580 2935 2447 2068 1769 1504 1229 1016 847 712 602 513 439 377 325 28127-1/2 15477 11288 8290 6291 4929 3960 3247 2707 2288 1958 1692 1440 1191 994 836 709 604 518 446 386 33428-7/8 16971 12232 9120 6922 5424 4358 3574 2980 2520 2156 1863 1625 1385 1157 975 827 706 606 523 453 39330-1/4 18604 13238 9989 7582 5942 4775 3916 3266 2762 2364 2043 1782 1566 1337 1127 957 818 703 607 527 45931-5/8 20396 14314 10897 8271 6483 5210 4274 3564 3015 2580 2231 1946 1711 1514 1294 1100 941 809 700 608 53033 22370 15465 11810 8990 7046 5664 4646 3876 3279 2807 2427 2118 1862 1648 1468 1256 1075 926 802 697 60934-3/8 24556 16701 12645 9738 7633 6136 5034 4200 3553 3042 2631 2296 2019 1788 1593 1425 1221 1053 912 794 69435-3/4 26991 18031 13528 10514 8243 6627 5437 4536 3838 3287 2843 2481 2183 1933 1722 1543 1380 1190 1032 900 78737-1/8 29718 19466 14462 11320 8875 7136 5855 4886 4134 3541 3063 2674 2352 2083 1856 1663 1497 1339 1162 1014 88838-1/2 31990 21018 15454 12155 9530 7663 6288 5248 4441 3804 3291 2873 2528 2239 1996 1788 1610 1456 1302 1137 99639-7/8 34258 22705 16507 12959 10208 8209 6737 5622 4759 4076 3527 3080 2710 2401 2140 1918 1727 1563 1419 1269 111341-1/4 36602 24542 17628 13745 10908 8772 7200 6009 5087 4357 3771 3293 2898 2568 2289 2052 1848 1672 1519 1385 123842-5/8 39022 26551 18824 14572 11632 9354 7678 6409 5425 4648 4023 3513 3092 2740 2443 2190 1973 1785 1622 1479 135344 41517 28541 20103 15442 12377 9955 8171 6821 5775 4948 4283 3740 3292 2918 2602 2333 2102 1902 1729 1576 1442Notes:• Span = simply supported beam.• Maximum deflection = L/360 under live load, based on live/total load = 0.8. Where additional stiffness is desired or for other live/total load ratios, design fordeflection must be modified per requirements.• Service condition = dry.• Tabulated values represent total loads based on live/total load = 0.8 and have taken the dead weight of the beam (assumed 36 pcf) into account.• Sufficient bearing length shall be provided at supports.• Maximum beam shear is located at a distance from the supports equal to the depth of the beam.APA – The Engineered <strong>Wood</strong> Association


GL-76LOAD AND SPAN TABLESAMERICAN WOOD COUNCIL


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-77DESIGNEXAMPLES8.1 General GL-788.2 Examples GL-788APA – The Engineered <strong>Wood</strong> Association


GL-78DESIGN EXAMPLES8.1 GeneralGeneral design examples for tension members, compressionmembers, and bending members are available invarious wood engineering handbooks, such as theMcGraw-Hill APA Engineered <strong>Wood</strong> Handbook, <strong>Wood</strong>Engineering and Construction Handbook, and AITC TimberConstruction Manual. See Section 2.4 for theassociations that are available for technical assistance.8.2 ExamplesDesign Example 1: Low Slope RoofDesign Using Section CapacitiesGiven:• 24-ft. x 24-ft. column grid layout• Live load = 30 psf (snow); C D = 1.15• Dead load = 10 psf (actual)• Allowable total load deflection = L / 180• Allowable live load deflection = L / 240• Use 24F-1.8E/DF• The compression edge of the beam is supported bysheathing throughout its lengthThen:• Glulam span = 24 ft.• Load w = (30 + 10)(24) = 960 plf• Moment max = w L 2 / 8 = (960)(24) 2 / 8 = 69,120 lbf-ft.• Shear max = wL / 2 = (960)(24) / 2 = 11,520 lbfNote: For preliminary design, all loads within a distancefrom supports equal to the beam depth are not neglected.Design:• From Table 5.1, try 5-1/8 x 21• Beam wt = (35 pcf)(5.125/12 ft.)(21/12 ft.) = 26 plfNote: Beam weight has been assumed to be 35 pcf, whichis typical for glulam beams made of Douglas fir-Larch.See Section 6.2 for more information.• Total load = 960 + 26 = 986 plf• From Table 4.5, volume factor = 0.9330• From Table 5.1, Design Moment Capacity = (75,338)(0.933)(1.15) = 80,834 lbf-ft.Note: Beam stability factor is equal to 1 as the compressionedge of the beam is supported by sheathing throughoutits length.• Moment max = (69,120)(986) / (960) = 70,992 lbf-ft.


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-79SECTIONPROPERTIES9.1 Cross Sectional Properties GL-80Table 9.1 Section Properties for Western Species GluedLaminated Timber .......................................... GL-81Table 9.2 Section Properties for Southern Pine GluedLaminated Timber .......................................... GL-879APA – The Engineered <strong>Wood</strong> Association


GL-80SECTION PROPERTIES9.1 Cross Sectional PropertiesCross sectional properties are provided for glued laminatedtimber manufactured from Western species in Table9.1 and from Southern Pine in Table 9.2. These tables listthe beam depths; the reference and actual beam widths,the cross-sectional areas, moments of inertia, sectionmoduli and radii of gyration. Note that the plane of theglueline is in the X-X direction. Further, the width of gluedlaminated timber is in the X-X direction and its depth isin the Y-Y direction. The thickness of each lamination providedhere for Western species and Southern Pine gluedlaminated timber members is based on 1-1/2 and 1-3/8inches, respectively. However, other lamination thicknessesmay be used in glued laminated timber manufacturing andthe availability shall be verified prior to design.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-81Table 9.1Section Properties for Western Species Glued Laminated TimberDepth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )2-1/2 in. Width (ry = 0.722 in.)6 15.00 45.00 15.00 1.732 7.813 6.2507-1/2 18.75 87.89 23.44 2.165 9.766 7.8139 22.50 151.9 33.75 2.598 11.72 9.37510-1/2 26.25 241.2 45.94 3.031 13.67 10.9412 30.00 360.0 60.00 3.464 15.63 12.5013-1/2 33.75 512.6 75.94 3.897 17.58 14.0615 37.50 703.1 93.75 4.330 19.53 15.6316-1/2 41.25 935.9 113.4 4.763 21.48 17.1918 45.00 1215 135.0 5.196 23.44 18.7519-1/2 48.75 1545 158.4 5.629 25.39 20.3121 52.50 1929 183.8 6.062 27.34 21.883-1/8 in. Width (ry = 0.902 in.)6 18.75 56.25 18.75 1.732 15.26 9.7667-1/2 23.44 109.9 29.30 2.165 19.07 12.219 28.13 189.8 42.19 2.598 22.89 14.6510-1/2 32.81 301.5 57.42 3.031 26.70 17.0912 37.50 450.0 75.00 3.464 30.52 19.5313-1/2 42.19 640.7 94.92 3.897 34.33 21.9715 46.88 878.9 117.2 4.330 38.15 24.4116-1/2 51.56 1170 141.8 4.763 41.96 26.8618 56.25 1519 168.8 5.196 45.78 29.3019-1/2 60.94 1931 198.0 5.629 49.59 31.7421 65.63 2412 229.7 6.062 53.41 34.1822-1/2 70.31 2966 263.7 6.495 57.22 36.6224 75.00 3600 300.0 6.928 61.04 39.063-1/2 in. Width (ry = 1.010 in.)6 21.00 63.00 21.00 1.732 21.44 12.257-1/2 26.25 123.0 32.81 2.165 26.80 15.319 31.50 212.6 47.25 2.598 32.16 18.3810-1/2 36.75 337.6 64.31 3.031 37.52 21.4412 42.00 504.0 84.00 3.464 42.88 24.5013-1/2 47.25 717.6 106.3 3.897 48.23 27.5615 52.50 984.4 131.3 4.330 53.59 30.6316-1/2 57.75 1310 158.8 4.763 58.95 33.6918 63.00 1701 189.0 5.196 64.31 36.7519-1/2 68.25 2163 221.8 5.629 69.67 39.8121 73.50 2701 257.3 6.062 75.03 42.8822-1/2 78.75 3322 295.3 6.495 80.39 45.9424 84.00 4032 336.0 6.928 85.75 49.009SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-82SECTION PROPERTIESTable 9.1(Cont.)Section Properties for Western Species Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )5-1/8 in. Width (r y = 1.479 in.)6 30.75 92.25 30.75 1.732 67.31 26.277-1/2 38.44 180.2 48.05 2.165 84.13 32.839 46.13 311.3 69.19 2.598 101.0 39.4010-1/2 53.81 494.4 94.17 3.031 117.8 45.9612 61.50 738.0 123.0 3.464 134.6 52.5313-1/2 69.19 1051 155.7 3.897 151.4 59.1015 76.88 1441 192.2 4.330 168.3 65.6616-1/2 84.56 1919 232.5 4.763 185.1 72.2318 92.25 2491 276.8 5.196 201.9 78.8019-1/2 99.94 3167 324.8 5.629 218.7 85.3621 107.6 3955 376.7 6.062 235.6 91.9322-1/2 115.3 4865 432.4 6.495 252.4 98.5024 123.0 5904 492.0 6.928 269.2 105.125-1/2 130.7 7082 555.4 7.361 286.0 111.627 138.4 8406 622.7 7.794 302.9 118.228-1/2 146.1 9887 693.8 8.227 319.7 124.830 153.8 11530 768.8 8.660 336.5 131.331-1/2 161.4 13350 847.5 9.093 353.4 137.933 169.1 15350 930.2 9.526 370.2 144.534-1/2 176.8 17540 1017 9.959 387.0 151.036 184.5 19930 1107 10.39 403.8 157.65-1/2 in. Width (r y = 1.588 in.)6 33.00 99.00 33.00 1.732 83.19 30.257-1/2 41.25 193.4 51.56 2.165 104.0 37.819 49.50 334.1 74.25 2.598 124.8 45.3810-1/2 57.75 530.6 101.1 3.031 145.6 52.9412 66.00 792.0 132.0 3.464 166.4 60.5013-1/2 74.25 1128 167.1 3.897 187.2 68.0615 82.50 1547 206.3 4.330 208.0 75.6316-1/2 90.75 2059 249.6 4.763 228.8 83.1918 99.00 2673 297.0 5.196 249.6 90.7519-1/2 107.3 3398 348.6 5.629 270.4 98.3121 115.5 4245 404.3 6.062 291.2 105.922-1/2 123.8 5221 464.1 6.495 312.0 113.424 132.0 6336 528.0 6.928 332.8 121.025-1/2 140.3 7600 596.1 7.361 353.5 128.627 148.5 9021 668.3 7.794 374.3 136.128-1/2 156.8 10610 744.6 8.227 395.1 143.730 165.0 12380 825.0 8.660 415.9 151.331-1/2 173.3 14330 909.6 9.093 436.7 158.833 181.5 16470 998.3 9.526 457.5 166.434-1/2 189.8 18820 1091 9.959 478.3 173.936 198.0 21380 1188 10.39 499.1 181.5APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-83Table 9.1(Cont.)Section Properties for Western Species Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )6-3/4 in. Width (r y = 1.949 in.)7-1/2 50.63 237.3 63.28 2.165 192.2 56.959 60.75 410.1 91.13 2.598 230.7 68.3410-1/2 70.88 651.2 124.0 3.031 269.1 79.7312 81.00 972.0 162.0 3.464 307.5 91.1313-1/2 91.13 1384 205.0 3.897 346.0 102.515 101.3 1898 253.1 4.330 384.4 113.916-1/2 111.4 2527 306.3 4.763 422.9 125.318 121.5 3281 364.5 5.196 461.3 136.719-1/2 131.6 4171 427.8 5.629 499.8 148.121 141.8 5209 496.1 6.062 538.2 159.522-1/2 151.9 6407 569.5 6.495 576.7 170.924 162.0 7776 648.0 6.928 615.1 182.325-1/2 172.1 9327 731.5 7.361 653.5 193.627 182.3 11070 820.1 7.794 692.0 205.028-1/2 192.4 13020 913.8 8.227 730.4 216.430 202.5 15190 1013 8.660 768.9 227.831-1/2 212.6 17580 1116 9.093 807.3 239.233 222.8 20210 1225 9.526 845.8 250.634-1/2 232.9 23100 1339 9.959 884.2 262.036 243.0 26240 1458 10.39 922.6 273.437-1/2 253.1 29660 1582 10.83 961.1 284.839 263.3 33370 1711 11.26 999.5 296.240-1/2 273.4 37370 1845 11.69 1038 307.542 283.5 41670 1985 12.12 1076 318.943-1/2 293.6 46300 2129 12.56 1115 330.345 303.8 51260 2278 12.99 1153 341.746-1/2 313.9 56560 2433 13.42 1192 353.148 324.0 62210 2592 13.86 1230 364.549-1/2 334.1 68220 2757 14.29 1269 375.951 344.3 74620 2926 14.72 1307 387.352-1/2 354.4 81400 3101 15.16 1346 398.754 364.5 88570 3281 15.59 1384 410.155-1/2 374.6 96160 3465 16.02 1422 421.557 384.8 104200 3655 16.45 1461 432.858-1/2 394.9 112600 3850 16.89 1499 444.260 405.0 121500 4050 17.32 1538 455.69SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-84SECTION PROPERTIESTable 9.1(Cont.)Section Properties for Western Species Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )8-3/4 in. Width (r y = 2.526 in.)9 78.75 531.6 118.1 2.598 502.4 114.810-1/2 91.88 844.1 160.8 3.031 586.2 134.012 105.0 1260 210.0 3.464 669.9 153.113-1/2 118.1 1794 265.8 3.897 753.7 172.315 131.3 2461 328.1 4.330 837.4 191.416-1/2 144.4 3276 397.0 4.763 921.1 210.518 157.5 4253 472.5 5.196 1005 229.719-1/2 170.6 5407 554.5 5.629 1089 248.821 183.8 6753 643.1 6.062 1172 268.022-1/2 196.9 8306 738.3 6.495 1256 287.124 210.0 10080 840.0 6.928 1340 306.325-1/2 223.1 12090 948.3 7.361 1424 325.427 236.3 14350 1063 7.794 1507 344.528-1/2 249.4 16880 1185 8.227 1591 363.730 262.5 19690 1313 8.660 1675 382.831-1/2 275.6 22790 1447 9.093 1759 402.033 288.8 26200 1588 9.526 1842 421.134-1/2 301.9 29940 1736 9.959 1926 440.236 315.0 34020 1890 10.39 2010 459.437-1/2 328.1 38450 2051 10.83 2094 478.539 341.3 43250 2218 11.26 2177 497.740-1/2 354.4 48440 2392 11.69 2261 516.842 367.5 54020 2573 12.12 2345 535.943-1/2 380.6 60020 2760 12.56 2428 555.145 393.8 66450 2953 12.99 2512 574.246-1/2 406.9 73310 3153 13.42 2596 593.448 420.0 80640 3360 13.86 2680 612.549-1/2 433.1 88440 3573 14.29 2763 631.651 446.3 96720 3793 14.72 2847 650.852-1/2 459.4 105500 4020 15.16 2931 669.954 472.5 114800 4253 15.59 3015 689.155-1/2 485.6 124700 4492 16.02 3098 708.257 498.8 135000 4738 16.45 3182 727.358-1/2 511.9 146000 4991 16.89 3266 746.560 525.0 157500 5250 17.32 3350 765.6APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-85Table 9.1(Cont.)Section Properties for Western Species Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )10-3/4 in. Width (ry = 3.103 in.)12 129.0 1548 258.0 3.464 1242 231.113-1/2 145.1 2204 326.5 3.897 1398 260.015 161.3 3023 403.1 4.330 1553 288.916-1/2 177.4 4024 487.8 4.763 1708 317.818 193.5 5225 580.5 5.196 1863 346.719-1/2 209.6 6642 681.3 5.629 2019 375.621 225.8 8296 790.1 6.062 2174 404.522-1/2 241.9 10200 907.0 6.495 2329 433.424 258.0 12380 1032 6.928 2485 462.325-1/2 274.1 14850 1165 7.361 2640 491.127 290.3 17630 1306 7.794 2795 520.028-1/2 306.4 20740 1455 8.227 2950 548.930 322.5 24190 1613 8.660 3106 577.831-1/2 338.6 28000 1778 9.093 3261 606.733 354.8 32190 1951 9.526 3416 635.634-1/2 370.9 36790 2133 9.959 3572 664.536 387.0 41800 2322 10.39 3727 693.437-1/2 403.1 47240 2520 10.83 3882 722.339 419.3 53140 2725 11.26 4037 751.240-1/2 435.4 59510 2939 11.69 4193 780.042 451.5 66370 3161 12.12 4348 808.943-1/2 467.6 73740 3390 12.56 4503 837.845 483.8 81630 3628 12.99 4659 866.746-1/2 499.9 90070 3874 13.42 4814 895.648 516.0 99070 4128 13.86 4969 924.549-1/2 532.1 108700 4390 14.29 5124 953.451 548.3 118800 4660 14.72 5280 982.352-1/2 564.4 129600 4938 15.16 5435 101154 580.5 141100 5225 15.59 5590 104055-1/2 596.6 153100 5519 16.02 5746 106957 612.8 165900 5821 16.45 5901 109858-1/2 628.9 179300 6132 16.89 6056 112760 645.0 193500 6450 17.32 6211 11569SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-86SECTION PROPERTIESTable 9.1(Cont.)Section Properties for Western Species Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )12-1/4 in. Width (ry = 3.536 in.)13-1/2 165.4 2512 372.1 3.897 2068 337.615 183.8 3445 459.4 4.330 2298 375.216-1/2 202.1 4586 555.8 4.763 2528 412.718 220.5 5954 661.5 5.196 2757 450.219-1/2 238.9 7569 776.3 5.629 2987 487.721 257.3 9454 900.4 6.062 3217 525.222-1/2 275.6 11630 1034 6.495 3447 562.724 294.0 14110 1176 6.928 3677 600.325-1/2 312.4 16930 1328 7.361 3906 637.827 330.8 20090 1488 7.794 4136 675.328-1/2 349.1 23630 1658 8.227 4366 712.830 367.5 27560 1838 8.660 4596 750.331-1/2 385.9 31910 2026 9.093 4825 787.833 404.3 36690 2223 9.526 5055 825.334-1/2 422.6 41920 2430 9.959 5285 862.936 441.0 47630 2646 10.39 5515 900.437-1/2 459.4 53830 2871 10.83 5745 937.939 477.8 60550 3105 11.26 5974 975.440-1/2 496.1 67810 3349 11.69 6204 101342 514.5 75630 3602 12.12 6434 105043-1/2 532.9 84030 3863 12.56 6664 108845 551.3 93020 4134 12.99 6893 112546-1/2 569.6 102600 4415 13.42 7123 116348 588.0 112900 4704 13.86 7353 120149-1/2 606.4 123800 5003 14.29 7583 123851 624.8 135400 5310 14.72 7813 127652-1/2 643.1 147700 5627 15.16 8042 131354 661.5 160700 5954 15.59 8272 135155-1/2 679.9 174500 6289 16.02 8502 138857 698.3 189100 6633 16.45 8732 142658-1/2 716.6 204400 6987 16.89 8962 146360 735.0 220500 7350 17.32 9191 1501APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-87Table 9.2Section Properties for Southern Pine Glued Laminated TimberDepth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in. ) I y (in. 4 ) S y (in. 3 )2-1/2 in. Width (r y = 0.722 in.)5-1/2 13.75 34.66 12.60 1.588 7.161 5.7296-7/8 17.19 67.70 19.69 1.985 8.952 7.1618-1/4 20.63 117.0 28.36 2.382 10.74 8.5949-5/8 24.06 185.8 38.60 2.778 12.53 10.0311 27.50 277.3 50.42 3.175 14.32 11.4612-3/8 30.94 394.8 63.81 3.572 16.11 12.8913-3/4 34.38 541.6 78.78 3.969 17.90 14.3215-1/8 37.81 720.9 95.32 4.366 19.69 15.7616-1/2 41.25 935.9 113.4 4.763 21.48 17.1917-7/8 44.69 1190 133.1 5.160 23.27 18.6219-1/4 48.13 1486 154.4 5.557 25.07 20.0520-5/8 51.56 1828 177.2 5.954 26.86 21.4822 55.00 2218 201.7 6.351 28.65 22.9223-3/8 58.44 2661 227.7 6.748 30.44 24.353 in. Width (r y = 0.866 in.)5-1/2 16.50 41.59 15.13 1.588 12.38 8.2506-7/8 20.63 81.24 23.63 1.985 15.47 10.318-1/4 24.75 140.4 34.03 2.382 18.56 12.389-5/8 28.88 222.9 46.32 2.778 21.66 14.4411 33.00 332.8 60.50 3.175 24.75 16.5012-3/8 37.13 473.8 76.57 3.572 27.84 18.5613-3/4 41.25 649.9 94.53 3.969 30.94 20.6315-1/8 45.38 865.0 114.4 4.366 34.03 22.6916-1/2 49.50 1123 136.1 4.763 37.13 24.7517-7/8 53.63 1428 159.8 5.160 40.22 26.8119-1/4 57.75 1783 185.3 5.557 43.31 28.8820-5/8 61.88 2193 212.7 5.954 46.41 30.9422 66.00 2662 242.0 6.351 49.50 33.0023-3/8 70.13 3193 273.2 6.748 52.59 35.063-1/8 in. Width (r y = 0.902 in.)5-1/2 17.19 17.19 43.33 15.76 13.99 8.9526 7/8 21.48 21.48 84.62 24.62 17.48 11.198-1/4 25.78 25.78 146.2 35.45 20.98 13.439-5/8 30.08 30.08 232.2 48.25 24.48 15.6711 34.38 34.38 346.6 63.02 27.97 17.9012-3/8 38.67 38.67 493.5 79.76 31.47 20.1413-3/4 42.97 42.97 677.0 98.47 34.97 22.3815-1/8 47.27 47.27 901.1 119.1 38.46 24.6216-1/2 51.56 51.56 1170 141.8 41.96 26.8617-7/8 55.86 55.86 1487 166.4 45.46 29.0919-1/4 60.16 60.16 1858 193.0 48.96 31.3320-5/8 64.45 64.45 2285 221.6 52.45 33.5722 68.75 68.75 2773 252.1 55.95 35.8123-3/8 73.05 73.05 3326 284.6 59.45 38.059SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-88SECTION PROPERTIESTable 9.2(Cont.)Section Properties for Southern Pine Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in. ) I y (in. 4 ) S y (in. 3 )3-1/2 in. Width (r y = 1.010 in.)5-1/2 19.25 48.53 17.65 1.588 19.65 11.236-7/8 24.06 94.78 27.57 1.985 24.56 14.048-1/4 28.88 163.8 39.70 2.382 29.48 16.849-5/8 33.69 260.1 54.04 2.778 34.39 19.6511 38.50 388.2 70.58 3.175 39.30 22.4612-3/8 43.31 552.7 89.33 3.572 44.21 25.2713-3/4 48.13 758.2 110.3 3.969 49.13 28.0715-1/8 52.94 1009 133.4 4.366 54.04 30.8816-1/2 57.75 1310 158.8 4.763 58.95 33.6917-7/8 62.56 1666 186.4 5.160 63.87 36.4919-1/4 67.38 2081 216.2 5.557 68.78 39.3020-5/8 72.19 2559 248.1 5.954 73.69 42.1122 77.00 3106 282.3 6.351 78.60 44.9223-3/8 81.81 3725 318.7 6.748 83.52 47.725 in. Width (r y = 1.443 in.)6-7/8 34.38 135.4 39.39 1.985 71.61 28.658-1/4 41.25 234.0 56.72 2.382 85.94 34.389-5/8 48.13 371.5 77.20 2.778 100.3 40.1011 55.00 554.6 100.8 3.175 114.6 45.8312-3/8 61.88 789.6 127.6 3.572 128.9 51.5613-3/4 68.75 1083 157.6 3.969 143.2 57.2915-1/8 75.63 1442 190.6 4.366 157.6 63.0216-1/2 82.50 1872 226.9 4.763 171.9 68.7517-7/8 89.38 2380 266.3 5.160 186.2 74.4819-1/4 96.25 2972 308.8 5.557 200.5 80.2120-5/8 103.1 3656 354.5 5.954 214.8 85.9422 110.0 4437 403.3 6.351 229.2 91.6723-3/8 116.9 5322 455.3 6.748 243.5 97.4024-3/4 123.8 6317 510.5 7.145 257.8 103.126-1/8 130.6 7429 568.8 7.542 272.1 108.927-1/2 137.5 8665 630.2 7.939 286.5 114.628-7/8 144.4 10030 694.8 8.335 300.8 120.330-1/4 151.3 11530 762.6 8.732 315.1 126.031-5/8 158.1 13180 833.5 9.129 329.4 131.833 165.0 14970 907.5 9.526 343.8 137.534-3/8 171.9 16920 984.7 9.923 358.1 143.235-3/4 178.8 19040 1065 10.32 372.4 149.0APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-89Table 9.2(Cont.)Section Properties for Southern Pine Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in. ) I y (in. 4 ) S y (in. 3 )5-1/8 in. Width (r y = 1.479 in.)6-7/8 35.23 138.8 40.37 1.985 77.12 30.108-1/4 42.28 239.8 58.14 2.382 92.55 36.129-5/8 49.33 380.8 79.13 2.778 108.0 42.1311 56.38 568.4 103.4 3.175 123.4 48.1512-3/8 63.42 809.4 130.8 3.572 138.8 54.1713-3/4 70.47 1110 161.5 3.969 154.2 60.1915-1/8 77.52 1478 195.4 4.366 169.7 66.2116-1/2 84.56 1919 232.5 4.763 185.1 72.2317-7/8 91.61 2439 272.9 5.160 200.5 78.2519-1/4 98.66 3047 316.5 5.557 215.9 84.2720-5/8 105.7 3747 363.4 5.954 231.4 90.2922 112.8 4548 413.4 6.351 246.8 96.3123-3/8 119.8 5455 466.7 6.748 262.2 102.324-3/4 126.8 6475 523.2 7.145 277.6 108.326-1/8 133.9 7615 583.0 7.542 293.1 114.427-1/2 140.9 8882 646 7.939 308.5 120.428-7/8 148.0 10280 712.2 8.335 323.9 126.430-1/4 155.0 11820 781.6 8.732 339.3 132.431-5/8 162.1 13510 854.3 9.129 354.8 138.433 169.1 15350 930.2 9.526 370.2 144.534-3/8 176.2 17350 1009 9.923 385.6 150.535-3/4 183.2 19510 1092 10.32 401.0 156.55-1/2 in. Width (r y = 1.588 in.)6-7/8 37.81 148.9 43.33 1.985 95.32 34.668-1/4 45.38 257.4 62.39 2.382 114.4 41.599-5/8 52.94 408.7 84.92 2.778 133.4 48.5311 60.50 610.0 110.9 3.175 152.5 55.4612-3/8 68.06 868.6 140.4 3.572 171.6 62.3913-3/4 75.63 1191 173.3 3.969 190.6 69.3215-1/8 83.19 1586 209.7 4.366 209.7 76.2616-1/2 90.75 2059 249.6 4.763 228.8 83.1917-7/8 98.31 2618 292.9 5.160 247.8 90.1219-1/4 105.9 3269 339.7 5.557 266.9 97.0520-5/8 113.4 4021 389.9 5.954 286.0 104.022 121.0 4880 443.7 6.351 305.0 110.923-3/8 128.6 5854 500.9 6.748 324.1 117.824-3/4 136.1 6949 561.5 7.145 343.1 124.826-1/8 143.7 8172 625.6 7.542 362.2 131.727-1/2 151.3 9532 693.2 7.939 381.3 138.628-7/8 158.8 11030 764.3 8.335 400.3 145.630-1/4 166.4 12690 838.8 8.732 419.4 152.531-5/8 173.9 14500 916.8 9.129 438.5 159.433 181.5 16470 998.3 9.526 457.5 166.434-3/8 189.1 18620 1083 9.923 476.6 173.335-3/4 196.6 20940 1172 10.32 495.7 180.29SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-90SECTION PROPERTIESTable 9.2(Cont.)Section Properties for Southern Pine Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )6-3/4 in. Width (r y = 1.949 in.)6-7/8 46.41 182.8 53.17 1.985 176.2 52.218-1/4 55.69 315.9 76.57 2.382 211.4 62.659-5/8 64.97 501.6 104.2 2.778 246.7 73.0911 74.25 748.7 136.1 3.175 281.9 83.5312-3/8 83.53 1066 172.3 3.572 317.2 93.9713-3/4 92.81 1462 212.7 3.969 352.4 104.415-1/8 102.1 1946 257.4 4.366 387.6 114.916-1/2 111.4 2527 306.3 4.763 422.9 125.317-7/8 120.7 3213 359.5 5.160 458.1 135.719-1/4 129.9 4012 416.9 5.557 493.4 146.220-5/8 139.2 4935 478.6 5.954 528.6 156.622 148.5 5990 544.5 6.351 563.8 167.123-3/8 157.8 7184 614.7 6.748 599.1 177.524-3/4 167.1 8528 689.1 7.145 634.3 187.926-1/8 176.3 10030 767.8 7.542 669.6 198.427-1/2 185.6 11700 850.8 7.939 704.8 208.828-7/8 194.9 13540 938.0 8.335 740.0 219.330-1/4 204.2 15570 1029 8.732 775.3 229.731-5/8 213.5 17790 1125 9.129 810.5 240.233 222.8 20210 1225 9.526 845.8 250.634-3/8 232.0 22850 1329 9.923 881.0 261.035-3/4 241.3 25700 1438 10.32 916.2 271.537-1/8 250.6 28780 1551 10.72 951.5 281.938-1/2 259.9 32100 1668 11.11 986.7 292.439-7/8 269.2 35660 1789 11.51 1022 302.841-1/4 278.4 39480 1914 11.91 1057 313.242-5/8 287.7 43560 2044 12.30 1092 323.744 297.0 47920 2178 12.70 1128 334.145-3/8 306.3 52550 2316 13.10 1163 344.646-3/4 315.6 57470 2459 13.50 1198 355.048-1/8 324.8 62700 2606 13.89 1233 365.449-1/2 334.1 68220 2757 14.29 1269 375.950-7/8 343.4 74070 2912 14.69 1304 386.352-1/4 352.7 80240 3071 15.08 1339 396.853-5/8 362.0 86740 3235 15.48 1374 407.255 371.3 93590 3403 15.88 1410 417.756-3/8 380.5 100800 3575 16.27 1445 428.157-3/4 389.8 108300 3752 16.67 1480 438.559-1/8 399.1 116300 3933 17.07 1515 449.060-1/2 408.4 124600 4118 17.46 1551 459.4APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> STRUCTURAL GLUED LAMINATED TIMBER SUPPLEMENTGL-91Table 9.2(Cont.)Section Properties for Southern Pine Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )8 1/2 in. Width (ry = 2.454 in.)9-5/8 81.81 631.6 131.2 2.778 492.6 115.911 93.50 942.8 171.4 3.175 562.9 132.512-3/8 105.2 1342 216.9 3.572 633.3 149.013-3/4 116.9 1841 267.8 3.969 703.7 165.615-1/8 128.6 2451 324.1 4.366 774.1 182.116-1/2 140.3 3182 385.7 4.763 844.4 198.717-7/8 151.9 4046 452.6 5.160 914.8 215.219-1/4 163.6 5053 525.0 5.557 985.2 231.820-5/8 175.3 6215 602.6 5.954 1056 248.422 187.0 7542 685.7 6.351 1126 264.923-3/8 198.7 9047 774.1 6.748 1196 281.524-3/4 210.4 10740 867.8 7.145 1267 298.026-1/8 222.1 12630 966.9 7.542 1337 314.627-1/2 233.8 14730 1071 7.939 1407 331.128-7/8 245.4 17050 1181 8.335 1478 347.730-1/4 257.1 19610 1296 8.732 1548 364.331-5/8 268.8 22400 1417 9.129 1618 380.833 280.5 25460 1543 9.526 1689 397.434-3/8 292.2 28770 1674 9.923 1759 413.935-3/4 303.9 32360 1811 10.32 1830 430.537-1/8 315.6 36240 1953 10.72 1900 447.038-1/2 327.3 40420 2100 11.11 1970 463.639-7/8 338.9 44910 2253 11.51 2041 480.241-1/4 350.6 49720 2411 11.91 2111 496.742-5/8 362.3 54860 2574 12.30 2181 513.344 374.0 60340 2743 12.70 2252 529.845-3/8 385.7 66170 2917 13.10 2322 546.446-3/4 397.4 72370 3096 13.50 2393 562.948-1/8 409.1 78950 3281 13.89 2463 579.549-1/2 420.8 85910 3471 14.29 2533 596.150-7/8 432.4 93270 3667 14.69 2604 612.652-1/4 444.1 101000 3868 15.08 2674 629.253-5/8 455.8 109200 4074 15.48 2744 645.755 467.5 117800 4285 15.88 2815 662.356-3/8 479.2 126900 4502 16.27 2885 678.857-3/4 490.9 136400 4725 16.67 2955 695.459-1/8 502.6 146400 4952 17.07 3026 712.060-1/2 514.3 156900 5185 17.46 3096 728.59SECTION PROPERTIESAPA – The Engineered <strong>Wood</strong> Association


GL-92SECTION PROPERTIESTable 9.2(Cont.)Section Properties for Southern Pine Glued Laminated Timber(Cont.)Depth Area X-X Axis Y-Y Axisd (in.) A (in. 2 ) I x (in. 4 ) S x (in. 3 ) r x (in.) I y (in. 4 ) S y (in. 3 )10-1/2 in. Width (r y = 3.031 in.)11 115.5 1165 211.8 3.175 1061 202.112-3/8 129.9 1658 268.0 3.572 1194 227.413-3/4 144.4 2275 330.9 3.969 1326 252.715-1/8 158.8 3028 400.3 4.366 1459 277.916-1/2 173.3 3931 476.4 4.763 1592 303.217-7/8 187.7 4997 559.2 5.160 1724 328.519-1/4 202.1 6242 648.5 5.557 1857 353.720-5/8 216.6 7677 744.4 5.954 1990 379.022 231.0 9317 847.0 6.351 2122 404.323-3/8 245.4 11180 956.2 6.748 2255 429.524-3/4 259.9 13270 1072 7.145 2388 454.826-1/8 274.3 15600 1194 7.542 2520 480.027-1/2 288.8 18200 1323 7.939 2653 505.328-7/8 303.2 21070 1459 8.335 2786 530.630-1/4 317.6 24220 1601 8.732 2918 555.831-5/8 332.1 27680 1750 9.129 3051 581.133 346.5 31440 1906 9.526 3183 606.434-3/8 360.9 35540 2068 9.923 3316 631.635-3/4 375.4 39980 2237 10.32 3449 656.937-1/8 389.8 44770 2412 10.72 3581 682.238-1/2 404.3 49930 2594 11.11 3714 707.439-7/8 418.7 55480 2783 11.51 3847 732.741-1/4 433.1 61420 2978 11.91 3979 758.042-5/8 447.6 67760 3180 12.30 4112 783.244 462.0 74540 3388 12.70 4245 808.545-3/8 476.4 81740 3603 13.10 4377 833.846-3/4 490.9 89400 3825 13.50 4510 859.048-1/8 505.3 97530 4053 13.89 4643 884.349-1/2 519.8 106100 4288 14.29 4775 909.650-7/8 534.2 115200 4529 14.69 4908 934.852-1/4 548.6 124800 4778 15.08 5040 960.153-5/8 563.1 134900 5032 15.48 5173 985.455 577.5 145600 5294 15.88 5306 101156-3/8 591.9 156800 5562 16.27 5438 103657-3/4 606.4 168500 5836 16.67 5571 106159-1/8 620.8 180900 6118 17.07 5704 108660-1/2 635.3 193800 6405 17.46 5836 1112APA – The Engineered <strong>Wood</strong> Association


SUPPLEMENTTimber Polesand Piles<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION<strong>American</strong>Forest &PaperAssociation<strong>American</strong> <strong>Wood</strong> <strong>Council</strong>


SUPPLEMENTTimber Polesand Piles<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>2001</strong><strong>American</strong> Forest & Paper Association, Inc.


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENT


<strong>ASD</strong> WOOD TIMBER FRAME POLES CONSTRUCTION AND PILES SUPPLEMENTMANUALPrefaceThis Supplement contains adjustment factors, dimensions,allowable design capacities, tabulated design values,and other properties required to design timber poles andpiles in <strong>ASD</strong> format.Allowable design capacities tabulated in this supplementare to be used in conjunction with design methodologiesprovided in ANSI/AF&PA NDS-<strong>2001</strong> National DesignSpecification ® (NDS ® ) for <strong>Wood</strong> Construction.Tabulated design values were derived according tothe principles of ASTM D2899-95 Establishing DesignStresses for Round Timber Piles.Tabulated design values are to be used within the referenceend-use conditions defined therein. When end-useconditions fall outside the range of reference conditions,the tabulated design values shall be adjusted by the productof applicable adjustment factors as defined in NDSand also provided in this Supplement. For unusual enduseconditions, the designer should consult additionalliterature for possible further adjustments.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENT


<strong>ASD</strong> WOOD TIMBER FRAME POLES CONSTRUCTION AND PILES SUPPLEMENTMANUALTable of ContentsChapter/TitlePageChapter/TitlePage1 Designer Flowchart .................................PP-11.1 Flowchart2 Introduction to TimberPoles and Piles ................................................... PP-32.1 Product Information2.2 Common Uses2.3 Availability3 Design AdjustmentFactors ....................................................................................... PP-53.1 General3.2 Use of Adjustment Factors5 Timber Pole and PileSelection Tables ........................................PP-155.1 General5.2 Selection Table Checklists6 Other Considerations .................PP-236.1 General6.2 Dimensional Changes6.3 Durability6.4 Fire Performance7 Section Properties ............................. PP-277.1 Section Properties4 Design Values .................................................... PP-114.1 General4.2 Tables of Design ValuesList of Tables3.1 Applicability of Adjustment Factors forPoles and Piles .......................................................................................... PP-73.2 Frequently Used Load Duration Factors, C D ...... PP-83.3 Temperature Effect Factor, C t , for Poles andPiles Exposed to Sustained ElevatedTemperatures ............................................................................................... PP-83.4 Untreated Factor, C u , for Poles and Piles thatare Either Air-Dried Before Treating or arenot Treated at All .................................................................................... PP-83.5 Single Pile Factors, C sp , for Round TimberPiles ........................................................................................................................ PP-93.6 Compression Parallel to Grain CriticalSection Modification Factor, C cs , for Polesand Piles ............................................................................................................ PP-93.7 Bearing Area Factors, C b , for Poles and Piles ... PP-94.1 Design Values for Poles Graded inAccordance with ASTM D3200 ..................................... PP-134.2 Design Values for Treated Round TimberPiles Graded in Accordance withASTM D25 ................................................................................................ PP-135.1 Pole Selection Table - Pacific CoastDouglas-Fir ............................................................................................... PP-185.2 Pole Selection Table - Jack Pine .................................... PP-185.3 Pole Selection Table - Lodgepole Pine .................. PP-185.4 Pole Selection Table - Northern White Cedar .. PP-195.5 Pole Selection Table - Ponderosa Pine ................... PP-195.6 Pole Selection Table - Red Pine ...................................... PP-195.7 Pole Selection Table - Southern Pine ....................... PP-205.8 Pole Selection Table - Western Hemlock ............ PP-205.9 Pole Selection Table - Western Larch ...................... PP-205.10 Pole Selection Table - Western Red Cedar ........ PP-215.11 Pile Selection Table - Compression Parallelto Grain Design Capacity ........................................................ PP-216.1 Coefficient of Moisture Expansion (e ME )and Fiber Saturation Point (FSP) for Solid<strong>Wood</strong>s ............................................................................................................... PP-257.1 Minimum Butt Circumferences –Timber Poles (ASTM D3200) ........................................... PP-287.2 Minimum Butt Circumferences –Southern Pine Piles (ASTM D25) ................................ PP-297.3 Minimum Tip Circumferences –Southern Pine Piles (ASTM D25) ................................ PP-29AMERICAN FOREST & PAPER ASSOCIATION


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENT7.4 Minimum Butt Circumferences –Other Species Piles (ASTM D25) ................................ PP-307.5 Minimum Tip Circumferences –Other Species Piles (ASTM D25) ................................ PP-317.6 Minimum Butt Circumferences – Class Aand Class B Douglas-Fir Piles (ASTM D25) .... PP-31AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-11DESIGNERFLOWCHART1.1 Flowchart PP-2AMERICAN FOREST & PAPER ASSOCIATION


PP-2DESIGNER FLOWCHART1.1 FlowchartTimber Poles and PilesSupplementNoEnd-UseConditionsConsistent With ReferenceConditions (Section 3) andSection 5.2 SelectionTable ChecklistYesSelect Adjustment FactorsSelect A Trial Size (a)DetermineReference Design Capacities(Section 5)NoReference Design Capacity ≥Load Effects?YesAccept The Size(a)Tables 4.1 and 4.2 provide tabulated design values for various poles and piles. This informationcould be used in conjunction with Tables 5.1 through 5.11 to determine the trial size.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-3INTRODUCTIONTO TIMBERPOLES ANDPILES22.1 Product Information PP-42.2 Common Uses PP-42.3 Availability PP-4AMERICAN FOREST & PAPER ASSOCIATION


PP-4INTRODUCTION TO TIMBER POLES AND PILES2.1 Product InformationA pole is a round, tapered timber with its larger (butt)end embedded in the ground. A pile is a round, taperedtimber with its small (tip) end embedded in the ground.The tabulated values and adjustment factors shall be usedaccording to these definitions.This Supplement provides tabulated design values, F,tabulated modulus of elasticity, E, and tabulated designcapacities for poles graded according to ASTM D3200and for piles graded according to ASTM D25 specifications.2.2 Common UsesTimber poles are used extensively in Post-Frame constructionand are also used architecturally. This Supplementis not for use with poles used in the support of utilitylines. Timber piles are generally used as part of foundationsystems.Timber poles and piles offer many advantages relativeto competing materials. As with other wood products,timber poles and piles offer the unique advantage ofbeing the only major construction material that is a renewableresource. Additional information regarding theenvironmental advantages of wood is provided on the insidecover of this Supplement.2.3 AvailabilityTimber piles are typically available in four species:Pacific Coast Douglas-Fir, Southern Pine, Red Oak, andRed Pine. However, local pile suppliers should be contactedbecause availability is dependent upon geographiclocations.Timber poles are supplied to the utility industry in avariety of grades and species. Because these poles aregraded according to ANSI 05.1, Specifications and Dimensionsfor <strong>Wood</strong> Poles, they must be regraded accordingto ASTM D3200 if they are to be used with this Supplement.The organizations listed below can provide additionalinformation regarding pole and pile availability:Western <strong>Wood</strong> Preservers Institute(360) 693-9958<strong>American</strong> <strong>Wood</strong> Products Institute1-800-356-AWPIAMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-5DESIGNADJUSTMENTFACTORS33.1 General PP-63.2 Use of Adjustment Factors PP-63.2.1 Bending (Moment and Shear) PP-63.2.2 Compression PP-63.2.3 Bearing PP-73.2.4 Load Duration Factor, C DPP-73.2.5 Temperature Effect Factor, C tPP-73.2.6 Untreated Factor, C uPP-73.2.7 Single Pile Factor, C spPP-73.2.8 Critical Section Factor, C csPP-73.2.9 Bearing Area Factor, C bPP-83.2.10 Wet Service Factor, C MPP-8Table 3.1 Applicability of Adjustment Factors for Polesand Piles ...................................................................PP-7Table 3.2 Frequently Used Load Duration Factors, C D .......PP-8Table 3.3 Temperature Effect Factor, C t , for Poles andPiles Exposed to Sustained ElevatedTemperatures ..........................................................PP-8Table 3.4 Untreated Factor, C u , for Poles and Piles thatare Either Air-Dried Before Treating or are notTreated at All ...........................................................PP-8Table 3.5 Single Pile Factors, C sp , for Round Timber Piles ...PP-9Table 3.6 Compression Parallel to Grain Critical SectionModification Factor, C cs , for Poles and Piles ........PP-9Table 3.7 Bearing Area Factors, C b , for Poles and Piles ......PP-9AMERICAN FOREST & PAPER ASSOCIATION


PP-6DESIGN ADJUSTMENT FACTORS3.1 GeneralTwo alternative approaches may be used to generatemember design capacity — the calculation method, inwhich tabulated design values are multiplied by adjustmentfactors and section properties to obtain member capacity,and the tabulation method, in which tabulatedvalues are fully adjusted for a given set of conditions.The selection tables in Chapter 5 include pre-calculated<strong>ASD</strong> capacities for members under “standard” (reference)conditions of use. For conditions that fall outsidethe reference conditions, an alternative approach permitsthe use of tabulated design values (from Chapter 4), modifiedappropriately by the adjustment factors included inthis Chapter.The adjustment factors provided in this Chapter arefor applications outside the reference end-use conditionsand for member configuration effects (i.e., size, lateralsupport conditions, etc.). When one or more of the specificend-use or member configuration conditions fall outsidethe range of the reference conditions defined inSection 2.2 and 6.3 of NDS, these adjustment factors shallbe used to modify the appropriate properties. Adjustmentfactors for the effects of moisture, temperature, preservativetreatment, member configuration and size are providedin this Supplement. Table 3.1 specifies adjustment factorswhich apply to each tabulated design value.3.2 Use of Adjustment Factors3.2.1 Bending (Moment and Shear)Allowable moment and shear design capacity is basedupon the following equations:For moment:M ′ = F b′ SFor shear:FV ′ = ′ vIb3FA′for round sections V ′ = vQ4where:F b′ = F b(C DC FC tC uC sp)F v′ = F v(C DC tC u)C u is 1.0C sp is 1.0for poles and piles treated in conjunction witha steam conditioning or Boultonizing and asshown in Table 3.4 otherwise. See 3.2.6.for piles used in a load sharing system suchas a pile cluster and as shown in Table 3.5 fora pile supporting its own load individually.See 3.2.7.3.2.2 CompressionThe allowable compression design capacity is computedas follows:P ′ = F c′Awhere:F c′ = F c(C DC tC uC spC PC cs)and where:and where:C D is 1.0C t is 1.0C F is 1.0for poles and piles under normal load duration(10 years) and as shown in Table 3.2 otherwise.up to 100°F and otherwise as shown in Table3.2. See 3.2.5.for piles with circumferences less than orequal to 43" and as given in NDS section 6.3.7otherwise.C P is 1.0C cs is 1.0for fully supported or “zero length” columnsand as given in NDS section 3.7.1 otherwise.for compression parallel to grain strength atthe tip of a pole or pile and increased as shownin Table 3.6 to account for strength increasesas the critical section becomes further fromthe tip. See 3.2.8.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-73.2.3 BearingFor parallel to grain (end bearing):Allowable bearing design capacity parallel to grainfor timber poles are computed based upon the followingequations:where:P g′ = F g′AF g′ = F g(C DC tC u)For perpendicular to grain:Allowable bearing design capacity perpendicular tograin for timber poles and piles:where:C b is 1.0P ⊥′ = F c⊥′AF c⊥′ = F c⊥(C tC uC b)for bearings of any length at the ends of amember, and to all bearings 6" or more inlength at any other location, and as stated in3.2.9 otherwise.3.2.4 Load Duration Factor, C Dor fire retardant chemicals. The impact load duration factorshall not apply to connections.3.2.5 Temperature Effect Factor, C tEnd-use temperature conditions, other than those definedin Section 2.3.4 of NDS, require use of the temperatureeffect factor, C t . Temperature effect factors for polesand piles exposed to sustained temperatures between therange of 100°F to 150°F are provided in Table 3.3.3.2.6 Untreated Factor, C uIf preservative treatment is necessary, poles and pilesshall be treated in accordance with <strong>American</strong> <strong>Wood</strong> PreserversAssociation standards. The Untreated Factors providedin Table 3.4 apply for poles and piles that are eitherair-dried prior to treatment or are not treated.3.2.7 Single Pile Factor, C spTabulated compression parallel to grain and bendingdesign values for timber piles assume use of piles in clusters.The corresponding single pile (load sharing) factoris 1.0. For design of single piles, reduction factors providedin Table 3.5 shall be applied.3DESIGN ADJUSTMENT FACTORSAll tabulated design values except modulus of elasticity,E, shall be multiplied by load duration factors, C D ,as specified in 2.3.2 of NDS (see Table 3.2). Load durationfactors greater than 1.6 shall not apply to structuralmembers pressure-treated with water-borne preservatives3.2.8 Critical Section Factor, C csTabulated compression parallel to grain design valuesat the tip of a pole or pile shall be permitted to beincreased as shown in Table 3.6 to account for strengthTable 3.1 Applicability of Adjustment Factors for Poles and PilesLoadDurationFactorTemperatureFactorUntreatedFactorSizeFactorSinglePile FactorColumnStabilityFactorCriticalSection FactorBearingAreaFactorF c ' = F c C D C t C u – C sp C P C cs –F b ' = F b C D C t C u C F C sp – – –F v ' = F v C D C t C u – – – – –F c⊥ '= F c⊥ – C t C u – – – – C bE' = E – C t – – – – – –F g ' = F g C D C t C u – – – – –AMERICAN FOREST & PAPER ASSOCIATION


PP-8DESIGN ADJUSTMENT FACTORSincreases as the critical section becomes further from thetip. Critical section factors, C cs , are independent of taperedcolumn provisions in Section 3.7.2 of NDS and bothshall be permitted to be used in design calculations.3.2.9 Bearing Area Factor, C bTabulated compression design values perpendicularto grain, F c⊥ , for timber poles and piles shall be permittedto be multiplied by the bearing area factor, C b , specifiedin NDS section 2.3.10. Table 3.7 provides bearingarea factors for the indicated bearing length on such smallareas as plates and washers.3.2.10 Wet Service Factor, C MTabulated design values apply to wet or dry serviceconditions.Table 3.2 Frequently Used Load Duration Factors, C D1Load Duration C D Typical Design LoadsPermanent 0.9 Dead LoadTen years 1.0 Occupancy Live LoadTwo months 1.15 Snow LoadSeven days 1.25 Construction LoadTen minutes 1.6 Wind/Earthquake LoadImpact 2 2.0 Impact Load1.Load duration factors shall not apply to modulus of elasticity, E, nor to compression perpendicular to grain design values, F c⊥ , based on a deformation limit.2.Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives or fire retardant chemicals. Theimpact load duration factor shall not apply to connections.Table 3.3Temperature Effect Factor, C t, for Poles and Piles Exposed toSustained Elevated TemperaturesDesign ValuesEOther Propertiesand ConnectionsIn ServiceMoisture ConditionC t100


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-9Table 3.5Single Pile Factors, C sp, for Round Timber PilesReferenceResistancePileClusterC spSingle PileF b 1.0 0.77F c 1.0 0.803Table 3.6Table 3.7Compression Parallel to Grain Critical Section Modification Factor,C cs, for Poles and PilesSpeciesPacific Coast Douglas-Fir, Southern PineC csPile Cluste r1 + 0.002L, where L = length (ft.) from tip tocriticalsection. Note C shall not exceed 1.10OtherSpecies1. 0c s.Bearing Area Factors, C b, for Poles and PilesDESIGN ADJUSTMENT FACTORS b 0.5" 1" 1.5" 2" 3" 4" 6" or moreC b 1.75 1.38 1.25 1.19 1.13 1.10 1.00AMERICAN FOREST & PAPER ASSOCIATION


PP-10DESIGN ADJUSTMENT FACTORSAMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-11DESIGN VALUES44.1 General PP-124.2 Tables of Design Values PP-124.2.1 Pole Design Values PP-124.2.2 Pile Design Values PP-12Table 4.1 Design Values for Poles Graded inAccordance with ASTM D3200 ...................... PP-13Table 4.2 Design Values for Treated Round TimberPiles Graded in Accordance withASTM D25 ........................................................ PP-13AMERICAN FOREST & PAPER ASSOCIATION


PP-12DESIGN VALUES4.1 GeneralThe tables in this Chapter provide design values fortimber pole and pile members. These design values areused when manual calculation of member strength is requiredand shall be used in conjunction with adjustmentfactors specified in Chapter 3.4.2 Tables of Design Values4.2.1 Pole Design ValuesDesign values for poles are provided in Table 4.1.These values, with the exception of F c , are applicable forall locations in the pole. The F c values are for the tip ofthe pole and can be increased for Pacific Coast Douglas-Fir and Southern Pine poles in accordance with Table 3.6.Design values are applicable for wet exposure andfor poles treated with a steam conditioning or Boultonizingprocess. For poles that are not treated, or are air-dried orkiln-dried prior to treating, the factors in Table 3.4 shallbe applied.4.2.2 Pile Design ValuesDesign values for piles are provided in Table 4.2.These values, with the exception of F c , are applicable atany location along the length of the pile. The tabulated F cvalues for Pacific Coast Douglas-Fir and Southern Pinemay be increased for locations other than the tip as providedby Table 3.6.Design values in Table 4.2 are applicable for wet exposures.These tabulated values are given for air-dried pilestreated with a preservative using a steam conditioning orBoultonizing processes. For piles that are not treated, orare air-dried or kiln-dried prior to treating, the factors inTable 3.4 shall be applied.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-13Table 4.1Design Values for Poles Graded in Accordance withASTM D3200Design values in pounds per square inch (psi)Compression Compressionperpendicular parallel Modulus ofBending Shear to grain to grain Bearing ElasticitySpecies F b F v F c⊥ F c F g EPacific Coast Douglas-Fir 1850 115 375 1000 1200 1,500,000Jack Pine 1500 95 280 800 875 1,070,000Lodgepole Pine 1350 85 240 700 875 1,080,000Northern White Cedar 1050 80 225 525 675 640,000Ponderosa Pine 1300 90 320 650 825 1,000,000Red Pine 1450 85 265 725 800 1,280,000Southern Pine 1700 105 320 900 1125 1,400,000Western Hemlock 1650 115 245 900 950 1,310,000Western Larch 2050 120 375 1075 1125 1,460,000Western Red Cedar 1350 95 255 750 1200 940,0004DESIGN VALUESTable 4.2Design Values for Treated Round Timber Piles Graded in Accordancewith ASTM D25Design values in pounds per square inch (psi)Species F c F b F v F c⊥ EPacific Coast Douglas Fir 1 1250 2450 115 230 1,500,000Red Oak 2 1100 2450 135 350 1,250,000Red Pine 3 900 1900 85 155 1,280,000Southern Pine 4 1200 2400 110 250 1,500,0001. Pacific Coast Douglas Fir design values apply to this species as defined in ASTM Standard D1760-86. For connection design use Douglas Fir-Larch designvalues.2. Red Oak design values apply to Northern and Southern Red Oak.3. Red Pine design values apply to Red Pine grown in the United States. For connection design use Northern Pine design values.4. Southern Pine design values apply to Loblolly, Longleaf, Shortleaf, and Slash Pines.AMERICAN FOREST & PAPER ASSOCIATION


PP-14DESIGN VALUESAMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-15TIMBER POLEAND PILESELECTIONTABLES55.1 General PP-165.1.1 Selection Tables for Poles PP-165.1.2 Selection Tables for Piles PP-165.2 Selection Table Checklists PP-17Table 5.1 Pole Selection Table - Pacific CoastDouglas-Fir ....................................................... PP-18Table 5.2 Pole Selection Table - Jack Pine ...................... PP-18Table 5.3 Pole Selection Table - Lodgepole Pine ............ PP-18Table 5.4 Pole Selection Table - Northern WhiteCedar.................................................................PP-19Table 5.5 Pole Selection Table - Ponderosa Pine ............ PP-19Table 5.6 Pole Selection Table - Red Pine ....................... PP-19Table 5.7 Pole Selection Table - Southern Pine .............. PP-20Table 5.8 Pole Selection Table - Western Hemlock ........ PP-20Table 5.9 Pole Selection Table - Western Larch ............. PP-20Table 5.10 Pole Selection Table - Western Red Cedar .....PP-21Table 5.11 Pile Selection Table - Compression Parallelto Grain Design Capacity ................................ PP-21AMERICAN FOREST & PAPER ASSOCIATION


PP-16TIMBER POLE AND PILE SELECTION TABLES5.1 GeneralPole and pile selection tables provide allowable designcapacities that include all factors needed for manycommon designs. Before using the selection tables, pleaserefer to the checklists to be certain that tabulated valuesare appropriate for your application.Refer to the selection table checklist to see whetheryour design condition meets the assumptions built intothe tabulated values. Note that tabulated values includeadjustment factors for the assumed design conditions.Thus, the force or moment on the member can be useddirectly to select a member that meets the design requirement.5.1.1 Selection Tables for PolesTables 5.1 through 5.10 provide allowable momentcapacity, M', for poles at the groundline locationpreservatively treated according to AWPA standards.These values apply for wet exposures. However, for polesthat are not treated or are air-dried or kiln-dried prior totreatment, the appropriate adjustment factors given inTable 3.4 shall be used. Allowable M' values are applicableonly for poles graded in accordance with ASTMD3200. Additionally, M' values apply 3-ft. from the buttof the pole. When the location of maximum stress is not3-ft. from the butt, M' values shall be adjusted by assuminga linear taper along the pole.5.1.2 Selection Tables for PilesTable 5.11 provides allowable compression parallelto-graincapacity, P', as a function of ASTM D25 specifiedpile tip circumference and species. The allowable P'values are applicable only when the pile tip circumferenceis specified according to Tables 7.2 through 7.6, andthe piles are graded according to ASTM D25 specifications.These values do not consider buckling capacity ofpiles.As the tip represents the smallest circumference andthe lowest strength section of a pile, the P' values are applicableat any other location in the pile. Additional capacitymay be computed at other locations by consideringthe increased cross-sectional area away from the tip usinglinear taper and specified butt circumference. Further, forPacific Coast Douglas-Fir and Southern Pine piles, an additionalincrease in P' may be obtained by the applicationof the critical section modification factor provided in Table3.6.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-175.2 Selection Table ChecklistsChecklist for Poles and Piles:The selection tables provide values for allowable design capacities for common species, grades, and sizes.Tabulated values apply to members that satisfy the following conditions:ü “normal” temperature range (C t = 1.0)ü material treated in an approved process (C u = 1.0)ü load duration factor based on “wind” (W) load (C D = 1.6) for Poles and “snow” (S) load (C D = 1.15) for Pilesü compression members fully laterally supported (C P = 1.0)ü wet or dry service conditionsü piles in a cluster (C sp = 1.0)ü critical location for compression parallel to grain is the tip for Pacific Coast Douglas-Fir and Southern Pinepiles and polesIf the answer to any of these questions is NO, the selection tables should NOT be used directly. For thesecases the designer should refer to the flowchart (Chapter 1) and follow the procedures for manual calculation oftimber pole or pile capacity.For manual calculation, two approaches are possible— review the governing design equations and modifythe tabulated values as necessary or compute allowabledesign capacity directly from the tabulated design valuesand adjustment factors.To compute allowable design capacity for a specificcondition, apply the design equations directly. Design adjustmentfactors and tabulated design values are providedin Chapters 3 and 4 of this Supplement, respectively.5TIMBER POLE AND PILE SELECTION TABLESAMERICAN FOREST & PAPER ASSOCIATION


PP-18TIMBER POLE AND PILE SELECTION TABLESTable 5.1Pole Selection Table - Pacific Coast Douglas-FirGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 59.34 93.14 137.83 194.91 265.91 352.35 494.24 618.0015 72.75 111.08 160.95 223.88 301.39 394.98 547.44 684.5020 99.80 129.56 184.47 253.05 336.81 437.27 599.82 745.1625 102.54 149.98 210.18 284.65 374.90 482.47 655.44 809.3030 121.63 174.41 240.61 321.73 419.30 534.84 719.46 882.8335 142.95 201.36 273.84 361.90 467.07 590.87 787.52 960.6840 164.73 228.58 307.11 401.83 514.27 645.94 854.04 1036.491 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.Table 5.2Pole Selection Table - Jack PineGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 48.11 75.52 111.75 158.04 215.61 285.69 400.73 501.0815 58.99 90.07 130.50 181.53 244.37 320.26 443.87 555.0020 80.92 105.05 149.57 205.18 273.09 354.54 486.34 604.1825 83.14 121.61 170.42 230.79 303.98 391.19 531.44 656.1930 98.62 141.42 195.09 260.86 339.97 433.65 583.35 715.8135 115.91 163.27 222.03 293.43 378.71 479.08 638.53 778.9340 133.56 185.33 249.01 325.81 416.98 523.74 692.47 840.401Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.Table 5.3Pole Selection Table - Lodgepole PineGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 43.30 67.97 100.58 142.23 194.05 257.12 360.66 450.9715 53.09 81.06 117.45 163.37 219.93 288.23 399.48 499.5020 72.82 94.54 134.62 184.66 245.78 319.09 437.71 543.7625 74.83 109.45 153.37 207.71 273.58 352.07 478.29 590.5730 88.76 127.27 175.58 234.78 305.98 390.29 525.01 644.2335 104.32 146.94 199.83 264.09 340.84 431.17 574.68 701.0440 120.21 166.80 224.11 293.23 375.28 471.36 623.22 756.361 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-19Table 5.4Pole Selection Table - Northern White CedarGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 33.68 52.87 78.23 110.63 150.92 199.98 280.51 350.7515 41.29 63.05 91.35 127.07 171.06 224.18 310.71 388.5020 56.64 73.53 104.70 143.62 191.16 248.18 340.44 422.9325 58.20 85.13 119.29 161.56 212.78 273.83 372.01 459.3330 69.03 98.99 136.56 182.60 237.98 303.56 408.34 501.0635 81.14 114.29 155.42 205.40 265.10 335.36 446.97 545.2540 93.49 129.73 174.30 228.07 291.88 366.62 484.73 588.281 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.5Table 5.5Pole Selection Table - Ponderosa PineGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 41.70 65.45 96.85 136.97 186.86 247.60 347.30 434.2715 51.12 78.06 113.10 157.32 211.78 277.56 384.69 481.0020 70.13 91.04 129.63 177.82 236.68 307.27 421.50 523.6225 72.06 105.39 147.69 200.02 263.45 339.03 460.58 568.7030 85.47 122.56 169.08 226.08 294.64 375.83 505.57 620.3735 100.45 141.50 192.43 254.31 328.21 415.21 553.40 675.0740 115.75 160.62 215.81 282.37 361.38 453.91 600.14 728.351 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.TIMBER POLE AND PILE SELECTION TABLESTable 5.6Pole Selection Table - Red PineGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 46.51 73.01 108.03 152.77 208.42 276.17 387.38 484.3815 57.02 87.06 126.15 175.48 236.22 309.58 429.08 536.5020 78.22 101.55 144.59 198.34 263.99 342.72 470.13 584.0425 80.37 117.55 164.73 223.10 293.84 378.15 513.72 634.3230 95.33 136.70 188.58 252.17 328.64 419.20 563.90 691.9535 112.05 157.82 214.63 283.65 366.08 463.11 617.25 752.9740 129.11 179.16 240.71 314.95 403.08 506.28 669.38 812.391 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.AMERICAN FOREST & PAPER ASSOCIATION


PP-20TIMBER POLE AND PILE SELECTION TABLESTable 5.7Pole Selection Table - Southern PineGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 54.53 85.59 126.65 179.11 244.35 323.78 454.16 567.8915 66.85 102.08 147.90 205.73 276.95 362.96 503.05 629.0020 91.70 119.06 169.52 232.53 309.50 401.82 551.19 684.7425 94.23 137.82 193.14 261.57 344.51 443.35 602.30 743.6830 111.77 160.27 221.10 295.64 385.30 491.47 661.13 811.2535 131.36 185.03 251.64 332.56 429.20 542.96 723.67 882.7940 151.37 210.05 282.21 369.25 472.57 593.57 784.80 952.451 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.Table 5.8Pole Selection Table - Western HemlockGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 52.93 83.07 122.93 173.84 237.17 314.26 440.81 551.1915 64.89 99.07 143.55 199.68 268.80 352.28 488.26 610.5020 89.01 115.55 164.53 225.69 300.40 390.00 534.98 664.6025 91.46 133.77 187.46 253.87 334.37 430.31 584.58 721.8130 108.48 155.56 214.60 286.95 373.97 477.02 641.68 787.3935 127.50 179.59 244.23 322.78 416.58 526.99 702.39 856.8240 146.92 203.87 273.91 358.39 458.67 576.11 761.71 924.441 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.Table 5.9Pole Selection Table - Western LarchGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 65.76 103.21 152.73 215.98 294.66 390.44 547.67 684.8115 80.62 123.09 178.35 248.09 333.97 437.69 606.62 758.5020 110.58 143.57 204.42 280.41 373.22 484.54 664.67 825.7125 113.63 166.20 232.90 315.42 415.43 534.63 726.30 896.7930 134.78 193.27 266.62 356.51 464.63 592.66 797.24 978.2735 158.41 223.13 303.44 401.03 517.57 654.75 872.66 1064.5440 182.53 253.29 340.31 445.27 569.87 715.77 946.37 1148.541 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-21Table 5.10Pole Selection Table - Western Red CedarGraded to ASTM D3200, C D=1.6Allowable Moment Capacity 1 , M' (inch-kips)PoleMinimum Tip Circumference (in.)Length (ft) 16 19 22 25 28 31 35 3810 43.30 67.97 100.58 142.23 194.05 257.12 360.66 450.9715 53.09 81.06 117.45 163.37 219.93 288.23 399.48 499.5020 72.82 94.54 134.62 184.66 245.78 319.09 437.71 543.7625 74.83 109.45 153.37 207.71 273.58 352.07 478.29 590.5730 88.76 127.27 175.58 234.78 305.98 390.29 525.01 644.2335 104.32 146.94 199.83 264.09 340.84 431.17 574.68 701.0440 120.21 166.80 224.11 293.23 375.28 471.36 623.22 756.361 Allowable moment capacity is three feet from butt with minimum circumferences as specified in Table 7.1.5Table 5.11Pile Selection Table - Compression Parallel to Grain Design CapacityGraded to ASTM D25, C D=1.15Allowable Compression Parallel to Grain Capacity 1 , P' (inch-kips)Minimum Tip Circumference (in.)Species 16 19 22 25 28 31 35 38Pacific Coast Douglas fir 29.28 41.30 55.37 71.50 89.68 109.93 140.13 165.18Red Oak 25.77 36.34 48.72 62.92 78.92 96.74 123.32 145.36Red Pine 21.08 29.73 39.86 51.48 64.57 79.15 100.89 118.93Southern Pine 28.11 39.64 53.15 68.64 86.10 105.53 134.53 158.581 Allowable capacities do not consider buckling capacities of piles.TIMBER POLE AND PILE SELECTION TABLESAMERICAN FOREST & PAPER ASSOCIATION


PP-22TIMBER POLE AND PILE SELECTION TABLESAMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-23OTHERCONSIDERATIONS6.1 General PP-246.2 Dimensional Changes PP-246.2.1 Approximate Moisture andThermal DimensionalChanges6.2.2 Equations for ComputingMoisture and ThermalShrinkage/ExpansionPP-24PP-246.3 Durability PP-256.4 Fire Performance PP-266Table 6.1 Coefficient of Moisture Expansion (e ME ) andFiber Saturation Point (FSP) for Solid<strong>Wood</strong>s................................................................ PP-25AMERICAN FOREST & PAPER ASSOCIATION


PP-24OTHER CONSIDERATIONS6.1 GeneralWith proper detailing and protection, timber poles andpiles can perform well in a variety of environments. Onekey to proper detailing is planning for the natural shrinkageand swelling of wood products as they are subjectedto various drying and wetting cycles (Table 6.1). Whilemoisture changes have the largest impact on product dimensions,some designs must also check the effects oftemperature as well.In addition to designing to accommodate dimensionalchanges and detailing for durability, another significantissue in the planning of wood structures is that of fire performance.Several facets of this issue are discussed in thisChapter.6.2 Dimensional Changes6.2.1 Approximate Moisture and Thermal Dimensional ChangestDescriptionRadial or Tangential Direction1Dimensionalchange due to moisture content change 1% change in dimension per 4% change in MC2Dimensionchange due to temperature change ≈ 0 x 1062 - in/in per degree F1Corresponding longitudinal direction shrinkage/expansion is about 0.1 to 0.2 percent.2Corresponding longitudinal direction coefficient is about one-tenth as large as radial and tangential.6.2.2 Equations for ComputingMoisture and ThermalShrinkage/Expansionwhere:M o= initial moisture content % (M o≤FSP)M = new moisture content % (M≤FSP)Due to Moisture ChangesFor more precise computation of dimensional changesdue to changes in moisture, the change in radial (R), tangential(T), and volumetric (V) dimensions due to changesin moisture content can be computed as:X = X ( ∆MC)ewhere:oX oME= initial dimension or volumeX = new dimension or volumeFSP = fiber saturation pointValues for e ME are tabulated in Table 6.1.Due to Temperature ChangesFor more precise computation of dimensional changesdue to changes in temperature, the shrinkage/expansionof solid wood including lumber and timber can be computedas:X = X o( ∆Te ) TE∆MC = moisture content change (%)where:e ME= coefficient of moisture expansion linearX o= reference dimension at T oand:(in./in./%MC), or volumetric (in. 3 /in. 3 /%MC)X = computed dimension at TT o= reference temperature (°F)∆MC = M - M oT = temperature at which the new dimension iscomputed (°F)e TE= coefficient of thermal expansion (in./in./°F)AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-25and:where:∆T = T -T o-60°F ≤ T o≤ 130°FThe coefficient of thermal expansion of oven-drywood parallel to grain ranges from about 1.7x10 -6 to2.5x10 -6 per °F.The linear expansion coefficients across the grain (radialand tangential) are proportional to wood density.These coefficients are about five to ten times greater thanthe parallel-to-the-grain coefficients and are given as:Radial:e TE= [18(G) + 5.5] (10 -6 in./in.°F)Tangential:e TE= [18(G) + 10.2] (10 -6 in./in.°F)where:G = tabulated specific gravity for the speciesTable 6.1Coefficient of Moisture Expansion (e ME) and Fiber Saturation Point(FSP) for Solid <strong>Wood</strong>s6Radial Tangential Volumetric FSPSpecies (in./in./%) (in./in./%) (in. 3 /in. 3 /%) (%)Alaska Cedar 0.0010 0.0021 0.0033 28Douglas Fir-Larch 0.0018 0.0033 0.0050 28Englemann Spruce 0.0013 0.0024 0.0037 30Redwood 0.0012 0.0022 0.0032 22Red Oak 0.0017 0.0038 0.0063 30Southern Pine 0.0020 0.0030 0.0047 26Western Hemlock 0.0015 0.0028 0.0044 28Yellow Poplar 0.0015 0.0026 0.0041 316.3 Durabilitye MEOTHER CONSIDERATIONSDesigning for durability is a key part of the architecturaland engineering design of the building. This issue isparticularly important in the design of buildings that usepoles and piles. Many design conditions can be detailedto minimize the potential for decay; for other problemconditions, preservatively treated wood or naturally durablespecies should be specified.This Supplement does not cover the topic of designingfor durability in detail. There are many excellent textson the topic, including AF&PA’s Design of <strong>Wood</strong> Structuresfor Permanence, WCD No. 6, and designers are advisedto use this type of information to assist in designing“difficult” design areas, such as:• in moist or humid structures• where wood comes in contact with concrete or masonry• where wood members are supported in steel hangers orconnectors in which condensation could collect• anywhere that wood is directly or indirectly exposed tothe elements• where wood, if it should ever become wet, could notnaturally dry out.This list is not intended to be all-inclusive — it ismerely an attempt to alert designers to special conditionsthat have been found to cause problems when not designedwith durability in mind.Durability issues related to piles are generally bothmore critical and more easily accommodated. Since pilesare in constant ground contact, they cannot be “insulated”from contact with moisture — thus, the standard referencecondition for piles is to be preservatively treated.The importance of proper treatment processing of pilescannot be overemphasized.AMERICAN FOREST & PAPER ASSOCIATION


PP-26OTHER CONSIDERATIONS6.3 Fire PerformanceVery few elements of modern structures can be called“fire-proof.” Even in buildings where the major structuralmembers are noncombustible, most of the furnishingsare flammable. It is for this reason that much of theattention in modern building codes addresses issues relatedto containing and limiting fires, rather than simplycalling materials combustible and noncombustible.While this topic is fairly complex for other types ofproducts, fire performance is relatively straightforwardfor poles and piles. Poles are generally used in cross-sectionalsizes that qualify as heavy timber construction inthe model codes. On this basis, timber poles compare favorablywith other construction materials in their performanceunder fire conditions. Piles are generally not exposedto fire conditions unless they extend substantiallyabove the groundline.This Supplement does not address fire performancein an all-inclusive manner — it is merely an attempt toalert designers to the need to address fire performanceissues in the design of their structures.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-27SECTIONPROPERTIES7.1 Section Properties PP-287.1.1 Pole Dimensions PP-287.1.2 Pile Dimensions PP-287Table 7.1 Minimum Butt Circumferences –Timber Poles (ASTM D3200) ......................... PP-28Table 7.2 Minimum Butt Circumferences –Southern Pine Piles (ASTM D25) ................... PP-29Table 7.3 Minimum Tip Circumferences –Southern Pine Piles (ASTM D25) ................... PP-29Table 7.4 Minimum Butt Circumferences –Other Species Piles (ASTM D25) ................... PP-30Table 7.5 Minimum Tip Circumferences –Other Species Piles (ASTM D25) ................... PP-31Table 7.6 Minimum Circumferences –Class A and Class B Douglas-FirPiles (ASTM D25) ............................................ PP-31AMERICAN FOREST & PAPER ASSOCIATION


PP-28SECTION PROPERTIES7.1 Section Properties7.1.1 Pole DimensionsPole sizes are standardized by ASTM D3200. Standardizedsizes are independent of species. For a given pole,minimum circumference at the tip is specified along withminimum circumference 3 ft. from the butt, the latter beinga function of pole length. These specified dimensions(Table 7.1) with assumed linear taper shall be used in designcomputations associated with NDS.7.1.2 Pile DimensionsPile dimensions are specified either by minimum tipcircumference or by minimum butt circumference. Thesedimensions are specified by ASTM D25 as a function ofpile length, species, and class. These dimensions (Tables7.2 through 7.6) with assumed linear taper or the actualmeasured dimensions shall be used in computations associatedwith NDS.Table 7.2 provides the specified tip circumferenceswith corresponding minimum butt circumferences, andTable 7.3 gives the specified butt circumferences with correspondingminimum tip circumferences for Southern Pinepiles. Tables 7.4 and 7.5 provide similar minimum circumferencesfor piles of Pacific Coast Douglas-Fir andother species, except Southern Pine. Note that the buttcircumference is specified at 3 ft. from the butt.Pacific Coast Douglas-Fir piles may be specified intoClass A and Class B. This classification depends on theminimum pile circumferences given in Table 7.6. The designershould inquire as to the availability of Class A andB sizes, which generally represent larger circumferencesthan the minimums specified in Table 7.6.Table 7.1Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Poles Graded to (ASTM D3200)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft.)Minimum Circumference 3 feet from butt (in.)10 18.5 21.5 24.5 27.5 30.5 33.5 37.5 40.515 19.8 22.8 25.8 28.8 31.8 34.8 38.8 41.820 22.0 24.0 27.0 30.0 33.0 36.0 40.0 43.025 22.2 25.2 28.2 31.2 34.2 37.2 41.2 44.230 23.5 26.5 29.5 32.5 35.5 38.5 42.5 45.535 24.8 27.8 30.8 33.8 36.8 39.8 43.8 46.840 26.0 29.0 32.0 35.0 38.0 41.0 45.0 48.0AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-29Table 7.2Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Southern Pine Piles 1 (ASTM D25)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft.)Minimum Circumference 3 feet from butt (in.)20 19 22 25 28 31 34 38 4125 20 23 26 29 32 35 39 4230 21 24 27 30 33 36 40 4335 22 25 28 31 34 37 41 4440 26 29 32 35 38 42 4545 27 30 33 36 39 43 4650 31 34 37 40 44 4755 32 35 38 41 45 4860 33 36 39 42 46 4965 34 37 40 43 47 5070 35 38 41 44 48 5175 36 39 42 45 49 5280 37 40 43 46 50 5385 38 41 44 47 51 5490 39 42 45 48 52 551. Piles purchased as “8 in. and natural taper” have a required minimum tip circumference of 25 in. and are available in lengths of 20 to 45 ft.7Table 7.3Specified Butt Circumferences with Corresponding Minimum TipCircumferences for Southern Pine Piles 1,2,3 (ASTM D25)Minimum Circumference 3 feet from butt (in.)22 25 28 31 35 38 41 44 47 50 57Length (ft.)Minimum Tip Circumference (in.)20 16 16 18 21 25 28 31 34 37 40 4725 16 16 17 20 24 27 30 33 36 39 4630 16 16 16 19 23 26 29 32 35 38 4535 18 22 25 28 31 34 37 4440 17 21 24 27 30 33 36 4345 20 23 26 29 32 35 4250 19 22 25 28 31 34 4155 21 24 27 30 33 4060 20 23 26 29 32 3965 19 22 25 28 31 3870 18 21 24 27 30 3775 20 23 26 29 3680 19 22 25 28 3585 18 21 24 27 341. Where the taper applied to the butt circumference calculates to a tip circumference of less than 16 in., corresponding values have been increased to 16 in. toassure a minimum 5 in. diameter tip for purposes of driving.SECTION PROPERTIES2. Class A piles are all those listed with a specified required minimum circumference of 44 in. at 3 ft. from butt.3. Class B piles are those listed with a specified required minimum circumference at 3 ft. from butt of 35 in. and lengths of 20 to 25 ft. minimum circumference at 3 ft.from butt of 38 in. and lengths of 20 to 50 ft. and minimum circumference at 3 ft. from butt of 41 in. and lengths of 55 to 80 ft.AMERICAN FOREST & PAPER ASSOCIATION


PP-30SECTION PROPERTIESTable 7.4Specified Tip Circumferences with Corresponding Minimum ButtCircumferences for Piles of Pacific Coast Douglas-Fir and OtherSpecies Except Southern Pine 1 (ASTM D25)Minimum Tip Circumference (in.)16 19 22 25 28 31 35 38Length (ft.)Minimum Circumference 3 feet from butt (in.)20 21.0 24.0 27.0 30.0 33.0 36.0 40.0 43.025 22.8 25.3 28.3 31.3 34.3 37.3 41.3 44.330 23.5 26.5 29.5 32.5 35.5 38.5 42.5 45.535 24.8 27.8 30.8 33.8 36.8 39.8 43.8 46.840 26.0 29.0 32.0 35.0 38.0 41.0 45.0 48.045 27.3 30.3 33.3 36.3 39.3 42.3 46.3 49.350 28.5 31.5 34.5 37.5 40.5 43.5 47.5 50.555 29.8 32.8 35.8 38.8 41.8 44.8 48.8 51.860 31.0 34.0 37.0 40.0 43.0 46.0 50.0 53.065 32.3 35.3 38.3 41.3 44.3 47.3 51.3 54.370 33.5 36.5 39.5 42.5 45.5 48.5 52.5 55.575 34.8 37.8 40.8 43.8 46.8 49.8 53.8 56.880 36.0 39.0 42.0 45.0 48.0 51.0 55.0 58.085 37.3 40.3 43.3 46.3 49.3 52.3 56.3 59.390 38.5 41.5 44.5 47.5 50.5 53.5 57.5 60.595 39.8 42.8 45.8 48.8 51.8 54.8 58.8 61.8100 41.0 44.0 47.0 50.0 53.0 56.0 60.0105 42.3 45.3 48.3 51.3 54.3 57.3110 43.5 46.5 49.5 52.5 55.5 58.5115 44.8 47.8 50.8 53.8 56.8120 46.0 49.0 52.0 55.0 58.01. Piles purchased as “8 in. and natural taper” have a required minimum tip circumference of 25 in. and are available in lengths of 20 to 45 ft.AMERICAN WOOD COUNCIL


<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENTPP-31Table 7.5Specified Butt Circumferences with Corresponding Minimum TipCircumferences for Piles of Pacific Coast Douglas-Fir and OtherSpecies Except Southern Pine 1 (ASTM D25)Minimum Circumference 3 feet from butt (in.)22 25 28 31 35 38 41 44 47 50 57Length (ft.)Minimum Tip Circumference (in.)20 16 16 16 18 22 25 2825 16 16 16 17 20.5 23.5 26.5 29.530 16 16 16 16 19 22 25 2835 16 18 21 24 27 3040 16 17 20 23 26 2945 16.5 18.5 21 24 27 3050 16 17 19 22 25 2855 16.5 17.5 20.3 23.3 26.3 31.360 16 16 18.6 21.6 24.6 31.665 16 16 17.3 18.9 21.9 28.970 16 16 16 16.2 19.2 26.275 16 16 16.1 17.6 2480 16 16 16 16 21.885 16 16 16 16 20.690 16 16 16 16 19.595 16 16 16 16 18.8100 16 16 16 16 18105 16 17110 16 16115 16120 161. Where the taper applied to the butt circumference calculates to a tip circumference of less than 16 in., corresponding values have been increased to 16 in. to assure aminimum 5 in. diameter tip for purposes of driving.Table 7.6Minimum Circumferences (in.) of Class A and Class B Pacific CoastDouglas-Fir and Southern Pine Piles (ASTM D25)7SECTION PROPERTIES3 feet from butt minimum Tip minimumLength (ft.) Class A Class B Class A Class B20 to 25 -- 34 (optional) -- 2520 to 39 44 38 28 2540 to 54 44 38 28 2255 to 74 44 41 25 2275 to 90 44 41 22 1991 to 120 44 41 19 16AMERICAN FOREST & PAPER ASSOCIATION


PP-32<strong>ASD</strong> TIMBER POLES AND PILES SUPPLEMENT


SUPPLEMENT<strong>Wood</strong> StructuralPanels<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION


SUPPLEMENT<strong>Wood</strong> StructuralPanels<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>2001</strong>APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD FRAME STRUCTURAL CONSTRUCTION PANELS SUPPLEMENTMANUALPrefaceThis Supplement contains adjustment factors, sectionproperties, design capacities, load-span tables, and otherproperties required to design wood structural panels in the<strong>ASD</strong> format. Design capacities are based on data from testingconducted by APA – The Engineered <strong>Wood</strong> Associationand other organizations. Application recommendationsgiven herein have been developed by APA through fieldexperience and laboratory testing over more than 60 years.<strong>Wood</strong> structural sheathing and floor panels are classifiedby span rating. Panel span ratings identify the maximumrecommended support spacings for these specific end uses.Design capacities are provided on the basis of the span ratings.For sanded plywood panels, design capacities areprovided on the basis of nominal thickness of panels identifiedas having species Group 1 faces.The design capacities tabulated in this Supplementare used in conjunction with the design methodologiesprovided in ANSI/AF&PA NDS-<strong>2001</strong>, National DesignSpecification ® (NDS ® ) for <strong>Wood</strong> Construction.The tabulated design capacities are to be used withinthe reference end-use conditions defined therein. Whenthe end-use conditions fall outside the range of the referenceconditions in the tables, the design capacities shallbe adjusted by the product of the applicable factors definedin this Supplement, or contact one of the inspectionand testing agencies listed in Section 6.4 of this Supplement.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD FRAME STRUCTURAL CONSTRUCTION PANELS SUPPLEMENTMANUALTable of ContentsChapter/TitlePageDesigner Flowchart ..................................SP-11.1 FlowchartIntroduction to <strong>Wood</strong>Structural Panels ..........................................2.1 Product Description2.2 Typical Applications2.3 AvailabilityDesign Capacities ......................................3.1 General3.2 Flexural Bending Capacities3.3 Axial Capacities3.4 Shear CapacitiesDesign AdjustmentFactors ...................................................................................SP-194.1 General4.2 Grade and Construction Factor,4.3 Load Duration Factor, C D4.4 Creep Adjustment Factor, C CChapter/Title4.5 Moisture Effect Factor,4.6 Preservative Treatment4.7 Fire Retardant Treatment4.8 Panel Size Factor,4.9 Temperature Factor,5 Section Properties5.1 General5.2 Panel Section Properties6 Other Considerations6.1 Fastening (Nailing)6.2 Panel Spacing6.3 Panel Edge Support6.4 Panel Specification7 Supplemental DesignAssistance ..................................................................SP-297.1 Uniform Loads forStructural Panels7.2 Load-Span TablesPageSP-23SP-251 C M2 C sSP-3C t.............................3 SP-9.................Schedules4C G<strong>Wood</strong>7.3 Design ExamplesList of Tables2.1 Guide to Panel Use ............................................................................. SP-72.2 Typical Panel Constructions ................................................... SP-83.1 Panel Dry Design Bending Stiffness andStrength Capacities ........................................................................ SP-123.1.1Adjustments to Flexural Design CapacitiesBased on Panel Grade and Construction, C G .. SP-133.2 Panel Dry Design Axial Stiffness, Tension,and Compression Capacities .............................................. SP-143.2.1Adjustments to Axial Design CapacitiesBased on Panel Grade and Construction, C G .. SP-153.3 Panel Dry Shear Capacities in the Plane ............. SP-163.3.1Adjustments to Shear Capacities in thePlane Based on Panel Grade andConstruction, C G ................................................................................. SP-163.4 Panel Dry Rigidity and Shear CapacitiesThrough the Thickness .............................................................. SP-173.4.1Adjustments to Design Capacities Based onPanel Grade and Construction, C G ............................... SP-184.2 Frequently Used Load Duration Factors, C D .... SP-204.3 Creep Adjustment Factor, C C ............................................ SP-204.4 Moisture Effect Factor, C M .................................................. SP-214.5 Panel Size Factor, C s .................................................................... SP-215.1 Panel Section Properties .......................................................... SP-245.2 Relationship Between Span Rating andNominal Thickness ......................................................................... SP-246.1 Minimum Nailing Recommendations for<strong>Wood</strong> Structural Panel Applications ........................ SP-266.2 Panel Edge Support ....................................................................... SP-277.1 Uniform Load (psf) on Sheathing ............................... SP-327.2 Uniform Load (psf) on Single Floor ........................ SP-337.3 Uniform Load (psf) on Group 1 SandedPanels ............................................................................................................... SP-347.4 Adjustments to Allowable Load CapacitiesBased on Panel Grade and Construction, C G ..... SP-357.5 Application Adjustment Factors .................................... SP-36APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-11DESIGNERFLOWCHART1.1 Flowchart SP-2APA – The Engineered <strong>Wood</strong> Association


SP-2DESIGNER FLOWCHART1.1 FlowchartStructural Panel DesignSpecificationEnd-UseConditionsConsistent WithReferenceConditions?Select a Trial PanelNoLoad-SpanCriteria Satisfied?YesDetermine RequiredAllowable CapacitiesUse Load-Span TablesNoAdjusted AllowableCapacities ≥ AppliedCapacities?NoYesCalculated Deflections ≤Deflection Criteria?YesAccept The PanelAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-3INTRODUCTIONTO WOODSTRUCTURALPANELS22.1 Product Description SP-42.2 Typical Applications SP-72.3 Availability SP-8Table 2.1 Guide to Panel Use ............................................ SP-7Table 2.2 Typical Panel Constructions............................. SP-8APA – The Engineered <strong>Wood</strong> Association


SP-4INTRODUCTION TO WOOD STRUCTURAL PANELS2.1 Product Description<strong>Wood</strong> Structural Panels<strong>Wood</strong> structural panels are wood-based panel productsthat have been rated for use in structural applications.Common applications for wood structural panels includeroof sheathing, wall sheathing, subflooring, and singlelayerflooring (combination subfloor-underlayment).Plywood is also manufactured in various sanded grades.<strong>Wood</strong> structural panels are classified by span ratings.Panel span ratings identify the maximum recommendedsupport spacings for specific end uses. Design capacitiesare provided on the basis of span ratings.Sanded grades are classed according to nominal thicknessand design capacities are provided on that basis.Standards• PRP-108 and PRP-133: APA and TECO PerformanceStandards PRP-108 and PRP-133, respectively, are orientedtoward the end use of the product and do notprescribe by what means the product will be manufactured.The overall objective is to assure, for a particularend use, that the product will satisfy the requirementsof the application for which it is intended.• PS 1: Voluntary Product Standard PS 1 provides requirementsfor producing, marketing, and specifyingplywood for construction and industrial uses. It coversmanufacture of such plywood from some 70 wood species.• PS 2: Voluntary Product Standard PS 2 provides requirementsfor producing, marketing, and specifyingwood-based wood structural panels. It covers performancerequirements, qualification procedures and testmethods for such panels, which may be manufacturedas plywood, composites, or as mat-formed panels.Panel GradesBased on PS 2 (see Section 6.4), wood structural panelgrade names include Sheathing, Single Floor, and StructuralI Sheathing. Corresponding grade names in PS 1 areC-D, Underlayment, and Structural I C-D.• Sheathing grade panels are rated for use in subfloor,roof, and wall applications.• Single Floor panels are rated for use as single floor(combination subfloor-underlayment) and are usuallymanufactured with tongue-and-groove (T&G) edgeprofiles. Single Floor panels are typically sanded ortouch-sanded while Sheathing panels are usuallyunsanded.• Structural I Sheathing panels meet the requirements ofthe sheathing grade as well as additional requirementsassociated with use in panelized roof systems, diaphragms,and shear walls.• Sanded plywood panels are provided for in PS 1 (seeSection 6.4) and are sanded on the faces which are A orB grade. High Density Overlay (HDO) and MediumDensity Overlay (MDO) are also assumed to havesanded faces.Span RatingsSpan ratings indicate the maximum recommendedsupport spacing, in inches, for specific applications. Thespan rating system applies when the panel is applied withthe strength axis across two or more supports. The strengthaxis is usually the primary axis (which is usually the longdimension) of the panel.• Sheathing: Sheathing panels rated for use in roof orsubfloor applications are identified with a dual spanindex – two numbers separated by a slash. The numberpreceding the slash is the maximum recommended supportspacing for roof applications. The numberfollowing the slash is the maximum recommended supportspacing for subfloor applications. For example, apanel rated as 24/16 may be applied as roof sheathingover supports spaced 24 inches oc (on center) or assubfloor over supports spaced 16 inches oc. Recommendationsfor use of sheathing panels also include wallapplications.Certain roof sheathing spans are dependent upon paneledge support (see Section 6.3).Sheathing panels rated for use only as wall sheathingare usually identified as either Wall-24 or Wall-16. Thenumerical index (24 or 16) corresponds to the maximumwall stud spacing. Wall sheathing panels areperformance tested with the secondary axis (usually theshort dimension of panel) spanning across supports. ForAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-5this reason, wall sheathing panels may be applied witheither the strength (primary) or secondary axis acrosssupports.• Single Floor: The Single Floor span rating is an indexnumber that provides the maximum recommended supportspacing with the strength axis across two or moresupports. Typical Single Floor span ratings are 20 ocand 24 oc, although 16 oc, 32 oc, and 48 oc Single Floorpanels are also available.Panel Constructions• Plywood: Plywood is comprised of alternating layersof veneer (plies). Each layer consists of one or moreplies. <strong>Wood</strong> structural plywood panels are assembledwith waterproof adhesive applied between plies. Theadhesive cures upon application of heat and pressure.Plywood has been manufactured since the early 1930sand was the original wood structural panel. Plywoodpanels were originally manufactured from Douglas-firlogs. Presently a variety of domestic species are usedin plywood manufacture. Due to continued strong demandfor forest products, along with artificialconstraints on wood supply, imported species are becominga factor in domestic plywood production.• Veneer Classifications: Veneer is divided into five levelsas follows:N, A: Highest grade level. No knots, restricted patches.N is intended for natural finish while A is intended fora paintable surface. Check local suppliers for availabilityof N grade before specifying.B: Solid surface - Small round knots. Patches and roundplugs are allowed.C Plugged: Special improved C grade. Used in SingleFloor, Underlayment, C-C Plugged, and C-D Plugged.in a minimum of three cross-aligned layers and bondedunder heat and pressure with a waterproof and boilproofadhesive. OSB’s predecessor product waswaferboard, a wood panel product that was first commerciallyproduced in the mid-1960s. Waferboardmanufacture involved a mat-formed panel product withrandom distribution of rectangular wafers. Orientedstrand board, a significantly improved structural panelcompared to waferboard, was first produced in the early1980s.Oriented strand board is manufactured from hardwoodspecies, softwood species, and mixed species. The hardwoodspecies used are selectively harvested from foreststhat naturally regenerate. The softwood resource is derivedfrom fast-maturing species from managed forests.Much of the softwood resource represents selective harvestingfrom these managed forests.• COM-PLY®: COM-PLY panels are composite panelsof wood veneer and other wood-based material. COM-PLY panels are typically manufactured with five layers.The outer layers and the center layer are wood veneer,and the two remaining core layers are comprised of reconstitutedwood fiber sandwiched between the veneerlayers. COM-PLY panels are manufactured with waterproofadhesives.COM-PLY was developed as a cooperative effort ofthe U.S. Forest Service and APA to more efficientlyutilize the wood resource.Bond ClassificationThe following bond classifications are based on productcomposition and adhesive bond durability.• Exterior: Exterior panels may be used in applicationsthat are subject to long-term exposure to the weather orto moisture or other conditions of similar severity.2INTRODUCTION TO WOOD STRUCTURAL PANELSC: Small knots, knotholes, patches. Lowest grade allowedin Exterior plywood. For sheathing faces andinner plies in Exterior panels.D: Larger knots, knotholes, some limited white pocketin sheathing grades. This grade not permitted in Exteriorpanels.• Oriented Strand Board: Oriented strand board (OSB)is comprised of thin rectangular wood strands arranged• Exposure 1: Exposure 1 panels may be used in applicationsthat are not subject to long-term exposure toweather or moisture, but where resistance to moistureeffects due to exposure during construction or otherconditions of similar severity is required.• Interior: Interior panels may be used for permanentlyprotected interior applications.APA – The Engineered <strong>Wood</strong> Association


SP-6INTRODUCTION TO WOOD STRUCTURAL PANELSDesign capacities in this specification are based onpanels bonded with exterior glue (Exterior and Exposure1 grades). For adjustments for interior glue (Interior andExposure 2 grades), see applicable capacity tables.Panel ApplicationsIn addition to roof, subfloor, wall, and single-layerfloor applications, wood structural panels are used in otherapplications. Such applications include structural insulatedpanels, I-joist webs, materials handling systems (pallets,bins, crating), transportation equipment, and concreteforming.Shear Walls and Diaphragms<strong>Wood</strong> structural panels are used as components ofwall, floor, and roof systems to resist and transfer in-planeforces as may be imposed by wind or seismic loading.Shear walls and diaphragms represent an important applicationfor wood structural panels. See <strong>Wood</strong> StructuralPanel Shear Wall and Diaphragm Supplement.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-72.2 Typical ApplicationsTable 2.1Guide to Panel UsePanel Grade Description & Use CommonNominalThicknessSheathingEXP 1Structural ISheathingEXP 1Single FloorEXP 1Unsanded sheathing grade for wall, roof,subflooring, and industrial applications such aspallets and for engineering design with propercapacities. Manufactured with intermediate andexterior glue. For long-term exposure toweather or moisture, only Exterior typeplywood is suitable.Panel grades to use where shear and crosspanelstrength properties are of maximumimportance. Made with exterior glue only.Plywood Structural I is made from all Group 1woods.Combination subfloor-underlayment. Providessmooth surface for application of carpet andpad. Possesses high concentrated and impactload resistance during construction andoccupancy. Manufactured with intermediate(plywood) and exterior glue. Touch-sanded.Available with tongue-and-groove edges.5/16, 3/8,15/32, 1/2,19/32, 5/8,23/32, 3/419/32, 5/8,23/32, 3/419/32, 5/8,23/32, 3/4,7/8, 1, 1-3/32,1-1/8Panel ConstructionOSB COM-PLY Plywood &Veneer GradeYes Yes Yes,face C,back D,Inner DYes Yes Yes,face C,back D,Inner DYes Yes Yes,faceC-Plugged,back D,Inner D2INTRODUCTION TO WOOD STRUCTURAL PANELSUnderlaymentEXP 1or INTFor underlayment under carpet and pad.Available with exterior glue. Touch-sanded.Available with tongue-and-groove edges.1/4, 11/32,3/8, 15/32,1/2, 19/32,5/8, 23/32,3/4No No Yes,faceC-Plugged,back D,Inner DC-D-PluggedEXP 1For built-ins, wall and ceiling tile backing. Notfor underlayment. Available with exterior glue.Touch-sanded.1/2, 19/32,5/8, 23/32,3/4No No Yes, faceC-Plugged,back D,Inner DSanded GradesEXP 1or INTGenerally applied where a high quality surfaceis required. Includes APA N-N, N-A, N-B, N-D, A-A, A-D, B-B, and B-D INT grades1/4, 11/32,3/8, 15/32,1/2, 19/32,5/8, 23/32,3/4No No Yes,face B orbetter, back Dor better,Inner C & DMarine EXTSuperior Exterior-type plywood made onlywith Douglas-fir or Western Larch. Specialsolid-core construction. Available with MDOor HDO face. Ideal for boat hull construction.1/4, 11/32,3/8, 15/32,1/2, 19/32,5/8, 23/32,3/4No No Yes,face Aor face B,back Aor Inner BAPA – The Engineered <strong>Wood</strong> Association


SP-8INTRODUCTION TO WOOD STRUCTURAL PANELS2.3 AvailabilityAlthough other panel constructions may be available,Table 2.1 shows constructions most typically manufactured.Check with suppliers concerning availability.Table 2.2Typical Panel Constructions aabPlywood3-ply 4-ply 5-ply b COM-PLY OSBSpan RatingSheathing24/0 ü ü24/16 ü32/16 ü ü ü ü40/20 ü ü ü ü48/24 ü ü üSpan RatingSingle Floor16 oc ü20 oc ü ü ü ü24 oc ü ü ü ü32 oc ü ü ü48 oc ü ü üNominal Thickness Sanded Plywood1/4 ü11/32 ü3/8 ü15/32 ü ü1/2 ü ü19/32 ü5/8 ü23/32 ü3/4 ü7/8 ü1 ü1-1/8 üConstructions listed may not be available in every area. Check with suppliers concerning availability.Applies to plywood with 5 or more layers.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-9DESIGNCAPACITIES33.1 General SP-103.2 Flexural Bending Capacities SP-103.3 Axial Capacities SP-103.4 Shear Capacities SP-11Table 3.1 Panel Dry Design Bending Stiffnessand Strength Capacities ........................ SP-12Table 3.1.1 Adjustments to Flexural DesignCapacities Based on Panel Gradeand Construction, C G............................ SP-13Table 3.2 Panel Dry Design Axial Stiffness,Tension, and Compression Capacities .... SP-14Table 3.2.1 Adjustments to Axial DesignCapacities Based on Panel Gradeand Construction, C G............................ SP-15Table 3.3 Panel Dry Shear Capacities in the Plane .. SP-16Table 3.3.1 Adjustments to Shear Capacities in thePlane Based on Panel Grade andConstruction, C G................................... SP-16Table 3.4 Panel Dry Rigidity and ShearCapacities Through the Thickness ....... SP-17Table 3.4.1 Adjustments to Design Capacities Basedon Panel Grade and Construction, C G.. SP-18APA – The Engineered <strong>Wood</strong> Association


SP-10DESIGN CAPACITIES3.1 GeneralPanel design capacities listed in Tables 3.1 through3.4 are minimum for grade and span rating. Tables 3.1.1through 3.4.1 list allowable increases in capacity for specificpanel constructions and grades. To take advantageof these, the specifier must insure that the correct panel isused in construction.The tabulated capacities and adjustment factors arebased on data from tests of panels manufactured in accordancewith one or more of the standards listed in Section2.1 and which bear the trademark of a qualified inspectionand testing agency.Structural panels have a strength direction and a crosspanel direction. In general, the strength direction is alongthe standard 8-ft. length and the weaker direction is in the4-ft. direction. This is illustrated in Figure 3.1.Figure 3.1 Structural panel withstrength direction acrosssupports.4-ft TypicalStrengthDirection8-ft Typical3.2 Flexural Bending CapacitiesPanel design capacities listed in Table 3.1 are based onflat panel bending as measured by testing according to principlesof ASTM D3043 Method C (large panel testing).Figure 3.2 Example of structuralpanel in bending.Stiffness (EI)Panel bending stiffness is the capacity to resist deflectionand is represented as EI. The E is the modulus ofelasticity of the material and the I is the moment of inertiaof the cross section. The units of EI are lb.-in. 2 per foot ofpanel width.Strength (F bS)Allowable bending strength capacity is the designmaximum moment, represented as F b S. The F b is the allowableextreme fiber stress of the material and the S isthe section modulus of the cross section. The units of F b Sare lb.-in. per foot of panel width.3.3 Axial CapacitiesAxial Stiffness (EA)Panel axial stiffnesses listed in Table 3.2 are basedon testing according to the principles of ASTM D3501Method B. Axial stiffness is the capacity to resist axialstrain and is represented as EA. The E is the axial modulusof elasticity of the material and A is the area of thecross section. The units of EA are lb. per foot of panelwidth.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-11Tension (F tA)Allowable tension capacities listed in Table 3.2 arebased on testing according to the principles of ASTMD3500 Method B. Tension capacity is given as F t A. TheF t is the allowable tensile stress of the material and A isthe area of the cross section. The units of F t A are lb. perfoot of panel width.Compression (F cA)Figure 3.3 Structural panel with axialcompression load in theplane of the panel.3Allowable compression capacities listed in Table 3.2are based on testing according to the principles of ASTMD3501 Method B. Compressive properties are generallyinfluenced by buckling; however, this effect was eliminatedby restraining edges of specimens during testing.Compression capacity is given as F c A. The F c is the allowablecompression stress of the material and A is thearea of the cross section. The units of F c A are lb. per footof panel width.DESIGN CAPACITIES3.4 Shear CapacitiesShear in the Plane (Rolling Shear)(F s[Ib/Q])Allowable shear in the plane of the panel (rolling shear)listed in Table 3.3 are based on testing according to theprinciples of ASTM D2718. Shear strength in the plane ofthe panel is the capacity to resist horizontal shear breakingloads when loads are applied or developed on opposite facesof the panel, as in flat panel bending. Planar shear capacityis given as F s [Ib/Q]. The F s is the allowable material stressand Ib/Q is the panel cross sectional shear constant. Theunits of F s [Ib/Q] are lb. per foot of panel width.Rigidity Through the Thickness(G vt v)Panel rigidity listed in Table 3.4 are based on testingaccording to the principles of ASTM D2719 Method C.Panel rigidity is the capacity to resist deformation undershear-through-the-thickness stress. Rigidity is representedas G v t v , where G v is the modulus of rigidity and t v is theeffective panel thickness for shear. The units of G v t v arelb. per inch of panel depth (for vertical applications). Multiplicationof G v t v by panel depth gives GA, used bydesigners for some applications.Figure 3.4 Two types of panel shear:shear-through-thethicknessand shear-inthe-planeof the panelcalled rolling shear inplywood.APA – The Engineered <strong>Wood</strong> Association


SP-12DESIGN CAPACITIESShear Through the Thickness (F vt v)Allowable shear through the thickness values listedin Table 3.4 are based on testing according to the principlesof ASTM D2719 Method C. Allowable shearthrough the thickness is the capacity to resist horizontalshear breaking loads when loads are applied or developedon opposite edges of the panel, such as in an I-beam. Whereadditional support is not provided to prevent bucking,design capacities in Table 3.4 are limited to sections 2 ft.or less in depth. Deeper sections may require additionalreductions. The term F v is the allowable stress of the materialand the t v is the effective panel thickness for shear.The units of F v t v are lb. per inch of shear resisting panellength.Table 3.1Panel Dry Design Bending Stiffness and Strength CapacitiesaBending Stiffness, EI (lb.-in. 2 /ft. width)Bending Strength, F bS (lb.-in./ft. width)Stress Applied Stress Applied Stress Applied Stress AppliedParallel to Perpendicular to Parallel to Perpendicular toStrength Axis a Strength Axis a Strength Axis a Strength Axis aSpan RatingSheathing24/0 60,000 3,600 250 5424/16 78,000 5,200 320 6432/16 115,000 8,100 370 9240/20 225,000 18,000 625 15048/24 400,000 29,500 845 225Span RatingSingle Floor16 oc 150,000 11,000 415 10020 oc 210,000 13,000 480 14024 oc 300,000 26,000 640 21532 oc 650,000 75,000 870 38048 oc 1,150,000 160,000 1,600 680Nominal ThicknessSanded Plywood1/4 15,000 700 97 1411/32 34,000 1,750 155 263/8 49,000 2,750 205 3715/32 120,000 11,000 355 1101/2 140,000 15,500 390 14519/32 205,000 37,500 520 2255/8 230,000 48,500 560 27023/32 320,000 90,500 645 3803/4 355,000 115,000 680 4707/8 500,000 185,000 850 6501 760,000 330,000 1,100 9751-1/8 985,000 490,000 1,350 1,250The strength axis is the long panel dimension unless otherwise identified.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-13Table 3.1.1Adjustments to Flexural Design Capacities Based on Panel Gradeand Construction, C GabPanel Bending Stiffness, EIParallel to Strength Axis aStress AppliedPerpendicular to Strength Axis aOther Structural I Other Structural IRated Panels3-Ply Plywood 1.1 1.1 1.0 1.54-Ply Plywood, COM-PLY 1.1 1.1 2.2 3.35-Ply Plywood b 1.1 1.1 3.1 5.2OSB 1.0 1.0 3.1 5.2Sanded PlywoodA-A, A-C 1.0 1.0 1.0 1.4Marine 1.0 1.0 1.4 1.4Other 1.0 1.0 1.0 1.4Panel Bending Strength, F bSRated Panels3-Ply Plywood 1.0 1.0 1.0 1.34-Ply Plywood 1.1 1.1 1.2 1.7COM-PLY 1.2 1.2 1.2 1.75-Ply Plywood b , OSB 1.2 1.2 1.8 2.8Sanded PlywoodA-A, A-C 1.2 1.3 1.2 1.7Marine 1.1 1.1 1.4 1.4Other 1.0 1.1 1.0 1.4The strength axis is the long panel dimension unless otherwise identified.Adjustments apply to plywood with 5 or more layers; for 5-ply/3-layer plywood, use adjustments for 4-ply.3DESIGN CAPACITIESAPA – The Engineered <strong>Wood</strong> Association


SP-14DESIGN CAPACITIESTable 3.2Panel Dry Design Axial Stiffness, Tension, and CompressionCapacitiesSpan RatingAxial Stiffness, EA (lb./ft. width) Tension, F tA (lb./ft. width) Compression, F cA (lb./ft. width)Stress Applied Stress Applied Stress Applied Stress Applied Stress Applied Stress AppliedParallel Perpendicular Parallel Perpendicular Parallel PerpendicularStrength Axis a Strength Axis a Strength Axis a Strength Axis a Strength Axis a Strength Axis aSheathing24/0 3,350,000 2,900,000 2,300 600 2,850 2,50024/16 3,800,000 2,900,000 2,600 990 3,250 2,50032/16 4,150,000 3,600,000 2,800 1,250 3,550 3,10040/20 5,000,000 4,500,000 2,900 1,600 4,200 4,00048/24 5,850,000 5,000,000 b 4,000 1,950 5,000 4,800 bSpan RatingSingle Floor16 oc 4,500,000 4,200,000 2,600 1,450 4,000 3,60020 oc 5,000,000 4,500,000 2,900 1,600 4,200 4,00024 oc 5,850,000 5,000,000 b 3,350 1,950 5,000 4,800 b32 oc 7,500,000 7,300,000 c 4,000 2,500 6,300 6,20048 oc 8,200,000 7,300,000 5,600 3,650 8,100 6,750NominalThicknessSanded Plywood1/4 1,800,000 625,000 1,650 550 1,550 55011/32 1,800,000 750,000 1,650 700 1,550 6503/8 2,350,000 1,150,000 2,150 1,050 2,000 95015/32 3,500,000 2,150,000 3,200 2,000 3,000 1,8501/2 3,500,000 2,250,000 3,200 2,050 3,000 1,90019/32 4,350,000 2,500,000 4,000 2,300 3,750 2,1505/8 4,450,000 2,750,000 4,100 2,500 3,800 2,35023/32 5,100,000 3,150,000 4,650 2,850 4,350 2,6503/4 5,200,000 3,750,000 4,750 3,450 4,450 3,2007/8 5,300,000 4,750,000 4,850 4,350 4,550 4,1001 6,700,000 5,700,000 6,150 5,200 5,750 4,8501-1/8 6,950,000 5,700,000 6,350 5,250 5,950 4,900aThe strength axis is the long panel dimension unless otherwise identified.bCapacity shall be adjusted for OSB by multiplying by 0.9.cCapacity shall be adjusted for OSB by multiplying by 0.8.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-15Table 3.2.1Adjustments to Axial Design Capacities Based on Panel Grade andConstruction, C GPanel Axial Stiffness, EAParallel to Strength Axis aStress AppliedPerpendicular to Strength Axis aOther Structural I Other Structural IRated Panels3-Ply Plywood, COM-PLY 1.0 1.0 1.0 1.04-Ply Plywood 1.0 1.0 1.0 1.05-Ply Plywood b , OSB 1.0 1.0 1.0 1.0Sanded PlywoodA-A, A-C 1.0 1.0 1.0 1.8Marine 1.0 1.0 1.8 1.8Other 1.0 1.0 1.0 1.8Panel Tension, F t ARated Panels3-Ply Plywood, COM-PLY 1.0 1.0 1.0 1.04-Ply Plywood 1.0 1.0 1.0 1.05-Ply Plywood b 1.3 1.3 1.3 1.3OSB 1.0 1.0 1.3 1.3Sanded PlywoodA-A, A-C 1.2 1.2 1.2 2.1Marine 1.0 1.0 1.8 1.8Other 1.0 1.0 1.0 1.8Panel Compression, F c A3DESIGN CAPACITIESRated Panels3-Ply Plywood, COM-PLY 1.0 1.0 1.0 1.04-Ply Plywood 1.5 1.5 1.5 c 1.5 c5-Ply Plywood b 1.5 1.5 1.5 c 1.5 cOSB 1.0 1.0 1.0 1.0Sanded PlywoodA-A, A-C 1.1 1.1 1.1 2.0Marine 1.0 1.0 1.8 1.8Other 1.0 1.0 1.0 1.8aThe strength axis is the long panel dimension unless otherwise identified.bAdjustments apply to plywood with 5 or more layers; for 5-ply/3-layer plywood, use adjustments for 4-ply.cPanel grade and construction factor for 48 oc shall be 1.6.APA – The Engineered <strong>Wood</strong> Association


SP-16DESIGN CAPACITIESTable 3.3Panel Dry Shear Capacities in the PlaneSpan RatingShear in the Plane (F s [Ib/Q]) (lb./ft. width)Stress AppliedStress AppliedParallel toPerpendicular toStrength Axis b Strength Axis bSheathing24/0 130 13024/16 150 15032/16 165 16540/20 205 20548/24 250 250Span RatingSingle Floor16 oc 205 20520 oc 205 20524 oc 250 25032 oc 300 30048 oc 385 385Nominal ThicknessSanded Plywood aab1/4 105 10511/32 145 1353/8 165 18515/32 220 1301/2 235 14519/32 290 1505/8 310 16523/32 350 2003/4 360 2157/8 425 2701 470 3751-1/8 525 445Exterior glue assumed (Exterior or Exposure 1 grades). For interior glue (Interior or Exposure 2 grades),multiply F s [Ib/Q] by 0.90.The strength axis is the long panel dimension unless otherwise identified.Table 3.3.1Adjustments to Shear Capacities in the Plane Based on PanelGrade and Construction, C GPanel Shear in the Plane, F s [Ib/Q]Stress AppliedParallel to Strength Axis aPerpendicular to Strength Axis aOther Structural I Other Structural IabRated Panels3-Ply Plywood 1.2 1.7 2.1 3.04-Ply Plywood 1.2 1.7 2.9 4.15-Ply Plywood b 1.3 1.9 1.0 1.0OSB, COM-PLY 1.0 1.0 1.0 1.0Sanded PlywoodA-A, A-C 1.0 1.3 1.0 1.4Marine 1.3 1.3 1.4 1.4Other 1.0 1.3 1.0 1.4The strength axis is the long panel dimension unless otherwise identified.Adjustments apply to plywood with 5 or more layers; for 5-ply/3-layer plywood, use adjustments for 4-ply.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-17Table 3.4Panel Dry Rigidity and Shear Capacities Through the ThicknessSpan RatingRigidity Through the Thickness, G v t v(lb./in. of panel depth)Shear Through the Thickness, F v t v(lb./in. of shear-resisting panel length)Stress Applied Stress Applied Stress Applied Stress AppliedParallel to Perpendicular to Parallel to Perpendicular toStrength Axis b Strength Axis b Strength Axis b Strength Axis bSheathing324/0 25,000 25,000 53 5324/16 27,000 27,000 57 5732/16 27,000 27,000 62 6240/20 28,500 28,500 68 6848/24 31,000 31,000 75 75Span RatingSingle Floor16 oc 27,000 27,000 58 5820 oc 28,000 28,000 67 6724 oc 30,000 30,000 74 7432 oc 36,000 36,000 80 8048 oc 50,500 50,500 105 105Nominal ThicknessSanded Plywood aDESIGN CAPACITIES1/4 24,000 24,000 51 5111/32 25,500 25,500 54 543/8 26,000 26,000 55 5515/32 38,000 38,000 80 801/2 38,500 38,500 81 8119/32 49,000 49,000 105 1055/8 49,500 49,500 105 10523/32 50,500 50,500 105 1053/4 51,000 51,000 110 1107/8 52,500 52,500 110 1101 73,500 73,500 155 1551-1/8 75,000 75,000 160 160aExterior glue assumed (Exterior or Exposure 1 grades). For interior glue (Interior or Exposure 2 grades), multiply G v t v by 0.90 and multiply F v t v by 0.84.bThe strength axis is the long panel dimension unless otherwise identified.APA – The Engineered <strong>Wood</strong> Association


SP-18DESIGN CAPACITIESTable 3.4.1Adjustments to Design Capacities Based on Panel Grade andConstruction, C GPanel Rigidity Through the Thickness, G vt vParallel to Strength Axis aStress AppliedPerpendicular to Strength Axis aOther Structural I Other Structural IRated Panels3-Ply Plywood 1.0 1.3 1.0 1.34-Ply Plywood, COM-PLY 1.3 1.7 1.3 1.75-Ply Plywood b 1.5 1.7 1.5 1.7OSB 3.1 3.1 3.1 3.1Sanded PlywoodA-A, A-C 1.0 1.3 1.0 1.3Marine 1.3 1.3 1.3 1.3Other 1.0 1.3 1.0 1.3Panel Shear Through the Thickness, F vt vabRated Panels3-Ply Plywood 1.0 1.3 1.0 1.34-Ply Plywood, COM-PLY 1.3 1.7 1.3 1.75-Ply Plywood b 1.5 2.0 1.5 2.0OSB 2.9 2.9 2.9 2.9Sanded PlywoodA-A, A-C 1.0 1.3 1.0 1.3Marine 1.3 1.3 1.3 1.3Other 1.0 1.3 1.0 1.3The strength axis is the long panel dimension unless otherwise identified.Adjustments apply to plywood with 5 or more layers; for 5-ply/3-layer plywood, use adjustments for 4-ply.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-19DESIGNADJUSTMENTFACTORS44.1 General SP-204.2 Grade and Construction Factor, C GSP-204.3 Load Duration Factor, C DSP-204.4 Creep Adjustment Factor, C CSP-204.5 Moisture Effect Factor, C MSP-214.6 Preservative Treatment SP-214.7 Fire Retardant Treatment SP-214.8 Panel Size Factor, C sSP-224.9 Temperature Factor, C tSP-22Table 4.2 Frequently Used Load Duration Factors, C D .. SP-20Table 4.3 Creep Adjustment Factor, C C ............................ SP-20Table 4.4 Moisture Effect Factor, C M ............................. SP-21Table 4.5 Panel Size Factor, C s ........................................ SP-21APA – The Engineered <strong>Wood</strong> Association


SP-20DESIGN ADJUSTMENT FACTORS4.1 GeneralPanel design capacities are determined by multiplyingbaseline capacities, as given in Tables 3.1 through 3.4,by the adjustment factors in NDS Section 9.3.Tabulated capacities provided in this Supplement aresuitable for reference end-use conditions. Reference enduseconditions are consistent with conditions typicallyassociated with light-frame construction. For wood structuralpanels, these typical conditions involve the use offull-sized untreated panels in moderate temperature andmoisture exposures.Appropriate adjustment factors are provided for applicationsin which the conditions of use are inconsistentwith reference conditions. In addition to temperature andmoisture, this includes consideration of panel treatmentand size effects. Reference conditions and adjustment factorsare provided in Sections 4.2 through 4.9.The tabulated adjustment factors are applicable foruse with capacities of wood structural panels.4.2 Grade and Construction Factor, C GAdjustments to wood structural panel design valuesfor grade and construction and panel size, shall be in accordancewith NDS Section 9.3.4. Reference capacitiespresented in Tables 3.1 through 3.4 of this Supplementrepresent minimum values for each listed grade and construction.Tables 3.1.1, 3.2.1, 3.3.1, and 3.4.1 provideadjustments to the minimum capacities as appropriate forspecific constructions and grades. These Tables are locatedclose to the capacity tables for convenience. To takeadvantage of these, the specifier must insure that the correctpanel is used in the final construction.4.3 Load Duration Factor, C DDesign capacities listed are based on normal loadduration. Adjustment factors for strength capacities shallbe based on NDS Section 9.3.2 (see Table 4.2).Table 4.2Frequently Used LoadDuration Factors, C D1Load Duration C D Typical Design LoadsPermanent 0.9 Dead LoadTen years 1.0 Occupancy Live LoadTwo months 1.15 Snow LoadSeven days 1.25 Construction LoadTen minutes 1.6 Wind/Earthquake LoadImpact 2 2.0 Impact Load1. Load duration factors shall not apply to modulus of elasticity, E, nor tocompression perpendicular to grain design values, F c⊥ , based on a deformationlimit.2. Load duration factors greater than 1.6 shall not apply to structural memberspressure-treated with water-borne preservatives, or fire retardant chemicalsand are not recommended for wood structural panels. The impact loadduration factor shall not apply to connections.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-214.4 Creep Adjustment Factor, C C<strong>Wood</strong>-based panels under constant load will creep (deflectionwill increase) over time. For typical constructionapplications, panels are not normally under constant loadand, accordingly, creep need not be considered in design.When panels will sustain permanent loads which will stressthe product to one-half or more of its design capacity, allowanceshould be made for creep. Limited data indicatesthat under such conditions, creep may be taken into accountin deflection calculations by applying the applicablefollowing adjustment factor (C C ) to panel stiffness EI. SeeSection 4.5 for additional adjustments related to servicemoisture conditions, for which EI is cumulative with theadjustment for creep.4.5 Moisture Effect Factor, C MDesign capacities apply to panels under moisture conditionswhich are continuously dry in service; that is, whereequilibrium moisture content is less than 16%.Adjustment factors for conditions where the panelmoisture content in service is expected to be 16% or greaterare as follows (see NDS Section 9.3.3):Table 4.3Moisture Condition Plywood OSBDry 1/2 1/216% MC or greater 1/2 1/6Table 4.4Reference CapacityCreep Adjustment Factor, C CMoisture Effect Factor, C MC MStrength (F bS, F tA, F cA, F s(Ib/Q), F vt v) 0.75Stiffness (EI, EA, G vt v) 0.854DESIGN ADJUSTMENT FACTORS4.6 Preservative TreatmentCapacities given in Tables 3.1 through 3.4 apply withoutadjustment to plywood pressure-impregnated withpreservative chemicals and redried in accordance with<strong>American</strong> <strong>Wood</strong> Preservers Association (AWPA) SpecificationC-9 or Specification C-22. However, due to theabsence of applicable treating industry standards, OSBand COM-PLY panels are not currently recommended forapplications requiring pressure-preservative treating.4.7 Fire Retardant TreatmentThe information provided in this Supplement does notapply to fire-retardant-treated panels. All capacities andend-use conditions for fire-retardant-treated panels shallbe in accordance with the recommendations of the companyproviding the treating and redrying service.APA – The Engineered <strong>Wood</strong> Association


SP-22DESIGN ADJUSTMENT FACTORS4.8 Panel Size Factor, C SStrength capacity in bending and tension are appropriatefor panels 24 inches or greater in width (w,dimension perpendicular to the applied stress). For panelsless than 24 inches in width used in applications wherefailure could endanger human life, the adjustment in Table4.5 shall be made (see NDS Section 9.3.4).Single strips less than 8 inches wide used in stressedapplications shall be chosen such that they are relativelyfree of surface defects.Table 4.5 Panel Size Factor, C sPanel Width, ww ≤ 8 inches 0.58 inches < w < 24 inches8 + w32C s( )w ≥ 24 inches 1.04.9 Temperature Factor, C tThe temperature factor, C t, shall be applied when woodstructural panels are exposed to in-service sustained temperatures.In the range of 100° to 200°F, the temperatureeffect factor is applicable only when moisture content ofwood structural panels at the elevated temperature can beexpected to remain at 16% or greater for wet-use (moisturecontent 16% or greater) conditions or at 12% or abovefor dry-use conditions (moisture content below 16%).The temperature factor shall be computed accordingto the following equation (see NDS Section 9.3.3):C t= 1.0 - α t(T - 100)where:α t= temperature effect coefficient= 0.005 for wood structural panelsT = temperature (°F)This factor is applicable to the capacities given inTables 3.1 through 3.4 of this Supplement.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-23SECTIONPROPERTIES5.1 General SP-245.2 Panel Section Properties SP-245Table 5.1 Panel Section Properties ................................. SP-24Table 5.2 Relationship Between Span Rating andNominal Thickness ......................................... SP-24APA – The Engineered <strong>Wood</strong> Association


SP-24SECTION PROPERTIES5.1 GeneralSection properties are provided in Section 5.2. Nominalpanel thicknesses tabulated in Table 5.1 were used tocalculate section properties. The tabulated section propertieswere calculated assuming homogeneous rectangularcross sections of 1-ft. width.Relationships between nominal thickness and spanrating are provided in Table 5.2. The predominant nomi-nal thickness available for each span rating is designatedby the letter “P”. The predominant nominal thickness isalso the appropriate thickness for establishing section propertiesfor design.Design stresses may be calculated by dividing designcapacities in Tables 3.1 through 3.4 by applicable sectionproperties from Table 5.1.5.2 Panel Section PropertiesTable 5.1 Panel Section Properties aMoment of Section Statical ShearNominal Approximate Thickness Area Inertia Modulus Moment ConstantThickness Weight b t A I S Q Ib/Q(in.) (psf) (in.) (in. 2 /ft.) (in. 4 /ft.) (in. 3 /ft.) (in. 3 /ft.) (in. 2 /ft.)3/8 1.1 0.375 4.500 0.053 0.281 0.211 3.0007/16 1.3 0.437 5.250 0.084 0.383 0.287 3.50015/32 1.4 0.469 5.625 0.103 0.440 0.330 3.7501/2 1.5 0.500 6.000 0.125 0.500 0.375 4.00019/32 1.8 0.594 7.125 0.209 0.705 0.529 4.7505/8 1.9 0.625 7.500 0.244 0.781 0.586 5.00023/32 2.2 0.719 8.625 0.371 1.033 0.775 5.7503/4 2.3 0.750 9.000 0.422 1.125 0.844 6.0007/8 2.6 0.875 10.500 0.670 1.531 1.148 7.0001 3.0 1.000 12.000 1.000 2.000 1.500 8.0001-1/8 3.3 1.125 13.500 1.424 2.531 1.898 9.000aProperties based on rectangular cross section of 1-ft. width.bApproximate plywood weight for calculating actual dead loads. For OSB and COM-PLY panels, increase tabulated weights by 10%.Table 5.2Relationship Between Span Rating and Nominal ThicknessNominal Thickness (in.)Span Rating 3/8 7/16 15/32 1/2 19/32 5/8 23/32 3/4 7/8 1 1-1/8Sheathing24/0 P A A A24/16 P A A32/16 P A A A40/20 P A A A48/24 P A ASingle Floor16 oc P A20 oc P A24 oc P A32 oc P A48 oc PP = Predominant nominal thickness for each span rating.A = Alternative nominal thickness that may be available for each span rating. Check with suppliers regarding availability.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-25OTHERCONSIDERATIONS6.1 Fastening (Nailing) Schedules SP-266.2 Panel Spacing SP-266.3 Panel Edge Support SP-276.4 Panel Specification SP-276Table 6.1 Minimum Nailing Recommendations for<strong>Wood</strong> Structural Panel Applications ............. SP-26Table 6.2 Panel Edge Support ......................................... SP-27APA – The Engineered <strong>Wood</strong> Association


SP-26OTHER CONSIDERATIONS6.1 Fastening (Nailing) SchedulesTable 6.1Minimum Nailing Recommendations for <strong>Wood</strong> Structural PanelApplicationsabcdNail Spacing (in.)Recommended Panel IntermediateApplication Nail Size & Type Edges SupportsSingle Floor—Glue-nailed installationRing- or screw-shank16, 20, 24 oc, 3/4-in. thick or less 6d a 12 1224 oc, 7/8-in. or 1-in. thick 8d a 6 1232, 48 oc, 32-in. span (c-c) 8d a 6 1248 oc, 48-in. span (c-c) 8d b 6 6Single Floor—Nailed-only installationRing- or screw-shank16, 20, 24 oc, 3/4-in. thick or less 6d 6 1224 oc, 7/8-in. or 1-in. thick 8d 6 1232, 48 oc, 32-in. span 8d b 6 1248 oc, 48-in. span 8d b 6 6Sheathing—SubflooringCommon smooth, ring- or screw-shank c7/16-in. to 1/2-in. thick 6d 6 127/8-in. thick or less 8d 6 12Thicker panels 10d 6 6Sheathing—Wall sheathingCommon smooth, ring- or screw-shank or galvanized box c1/2-in. thick or less 6d 6 12Over 1/2-in. thick 8d 6 12Sheathing—Roof sheathingCommon smooth, ring- or screw-shank c5/16-in. to 1-in. thick 8d 6 12 dThicker panels 8d ring- or screw-shank 6 12 dor 10d common smooth8d common nails may be substituted if ring- or screw-shank nails are not available.10d ring-shank, screw-shank, or common nails may be substituted if supports are well seasoned.Other code-approved fasteners may be used.For spans 48 in. or greater, space nails 6 in. at all supports.6.2 Panel Spacing<strong>Wood</strong>-based panel products expand and contractslightly as a natural response to changes in panel moisturecontent. To provide for in-plane dimensional changes,panels should be installed with a 1/8-inch spacing at allpanel end and edge joints. A standard 10d box nail may beused to check panel edge and panel end spacing.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-276.3 Panel Edge SupportFor certain span ratings, the maximum recommendedroof span for sheathing panels is dependent upon panel edgesupport. Although edge support may be provided by lumberblocking, panel clips are typically used when edgesupport is required. Table 6.2 summarizes the relationshipbetween panel edge support and maximum recommendedspans.Table 6.2aPanel Edge SupportMaximum Recommended Span (in.)Sheathing With WithoutSpan Rating Edge Support Edge Support24/0 24 20 a24/16 24 2432/16 32 2840/20 40 3248/24 48 3620 in. for 3/8-in. and 7/16-in. panels, 24 in. for 15/32-in. and 1/2-in.panels.6.4 Panel Specification6General<strong>Wood</strong> structural panel recommendations provided inthis design supplement are applicable to panels producedin accordance with one or more of the standards listed inSection 2.1 and which bear the trademark of a qualifiedinspection and testing agency. Design recommendationsare based on structural capacities associated with specificpanel classifications. <strong>Wood</strong> structural panels are classifiedby span ratings.Designers must specify wood structural panels by thespan ratings, nominal thicknesses, grades, and constructionsassociated with tabulated design recommendations.Exposure durability classification must also be identified.Single Floor panels may have tongue-and-groove orsquare edges. If square edge Single Floor panels are specified,the specification shall require lumber blockingbetween supports.Further information regarding specification of woodstructural panels is provided in the following references.References — <strong>Wood</strong> StructuralPanelsA partial listing of references for further informationon wood structural panels and panel applications follows.Additional information is available from organizationsproviding trademarking and quality assurance services.APA - The Engineered <strong>Wood</strong> Association7011 South 19th StreetP.O. Box 11700Tacoma, Washington 98411-0700Phone: 253-565-6600Fax: 253-565-7265Internet Address: www.apawood.orgProfessional Services Industries, Inc.Pittsburgh Testing Laboratory Division2710 West 5th Ave.Eugene, OR 97402Phone: 541-484-9212Fax: 541-344-2735Internet Address: www.psiusa.comTECO2402 Daniels St.Madison, WI 53718Phone: 608-221-3361Fax: 608-226-0885Internet Address: www.tecotested.comPublicationsThe following publications provide information onwood structural panels and panel applications:• Performance Standards and Policies for <strong>Wood</strong> StructuralPanels, APA PRP-108 and TECO PRP-133• Voluntary Product Standard PS 1 — Construction andIndustrial PlywoodOTHER CONSIDERATIONSAPA – The Engineered <strong>Wood</strong> Association


SP-28OTHER CONSIDERATIONS• Voluntary Product Standard PS 2 — Performance Standardfor <strong>Wood</strong>-Based Structural-Use Panels• APA Panel Handbook & Grade Glossary• Residential & Commercial, APA Design/ConstructionGuide• Diaphragms & Shear Walls, APA Design/ConstructionGuide• Fire Rated Systems, APA Design/Construction Guide• Nonresidential Roof Systems, APA Design/ConstructionGuide• Performance Rated Panels, APA Product Guide• Sanded Plywood, APA Product GuideAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-29SUPPLEMENTALDESIGNASSISTANCE7.1 Uniform Loads for <strong>Wood</strong>Structural PanelsSP-307.2 Load-Span Tables SP-317.3 Design Examples SP-367Table 7.1 Uniform Load (psf) on Sheathing .................. SP-32Table 7.2 Uniform Load (psf) on Single Floor ............... SP-33Table 7.3 Uniform Load (psf) on Group 1 SandedPanels ................................................................ SP-34Table 7.4 Adjustments to Allowable Load CapacitiesBased on Panel Grade andConstruction, C G .............................................. SP-35Table 7.5 Application Adjustment Factors .................... SP-36APA – The Engineered <strong>Wood</strong> Association


SP-30SUPPLEMENTAL DESIGN ASSISTANCE7.1 Uniform Loads for <strong>Wood</strong> Structural PanelsComputation of uniform-load capacity of wood structuralpanels shall be as outlined in this section for suchapplications as roofs, floors, and walls. The design capacitiesare subject to adjustment as specified in Section 4.Three basic span conditions are presented for computinguniform-load capacities of wood structural panels.For normal framing practice and a standard panel size(4x8 ft.), the following assumptions are used in computingrecommendations for load-span tables. When the panelstrength axis is perpendicular to the supports, the threespancondition is assumed for support spacing up to andincluding 32 inches. The two-span condition is assumedfor support spacing greater than 32 inches.When the panel strength axis is placed parallel to thesupports, the three-span condition is assumed for supportsspacing up to and including 16 inches, the two-span conditionis assumed when the support spacing is greater than16 inches up to 24 inches, and a single-span condition isassumed for spans greater than 24 inches.Two-inch-nominal framing is assumed for supportspacing less than 48 inches. Four-inch-nominal framingis assumed for support spacing of 48 inches or greater.The equations presented in this section are standardbeam formulas altered to accept the mixed units noted.These formulas are provided for computing uniform loadson wood structural panels over conventional framing. Becauseit is assumed that no blocking is used, the formulasare for one-way “beam” action, rather than two-way“plate” action. The resulting loads are assumed to be appliedto full-sized panels in standard sheathing-typeapplications. Loads are for the panels only, and in no wayaccount for the design of the framing supports.Further consideration should be given to concentratedloads, in compliance with local building codes and withmaximum span recommendations.Uniform Loads Based on BendingStrengthThe following formulas shall be used for computingloads based on design bending strength capacity (F bS).For a single span:wb96FbS=l 12For a two-span condition:wb96FbS=l 12For a three-span condition:where:120FbSwb=2l 1w b= uniform load based on bending strength (psf)F bS = design bending strength capacity (lb-in./ft.)l 1= span (in., center-to-center of supports)Uniform Loads Based on ShearStrengthThe following formulas shall be used for computingloads based on design shear strength capacity (F s[Ib/Q]).For a single span:w s = 24 Fs Ib/Ql2For a two-span condition:w s = 19 . 2 Fs Ib/Ql2For a three-span condition:w s = 20 Fs Ib/Ql21 11 1 1ccchhhAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-31where:where:w s= uniform load based on shear strength (psf)∆ = deflection (in.)F s(Ib/Q) = design shear strength capacity (lb.-in./ft.)w = uniform load (psf)l 2= clear span (in., center-to-center of supportsminus support width)EI = design bending stiffness capacity (lb.-in. 2 /ft.)l 3= clear span + SW (in.)Uniform Loads Based onDeflection RequirementsThe following formulas shall be used for computingdeflection under uniform load, or allowable loads basedon deflection requirements.For a single span:4wlD= 3921. 6 EΙSW = support width factor, equal to 0.25 inch for 2-inch nominal lumber framing and 0.625 inch for4-inch-nominal lumber framing. For additionalinformation on this factor see APA ResearchReport 120.For uniform load based on deflection requirements,compute bending deflection with a uniform load (w) equalto 1 psf. The allowable uniform load based on the allowabledeflection is then computed as:For a two-span condition:D=wl 342220 EΙwhere:w = d∆ all∆7For a three-span condition:D=wl 341743 EΙ7.2 Load-Span TablesThe following load-span tables apply to wood structuralpanels manufactured in accordance with one or moreof the standards listed in Section 2.1 and bearing the trademarkof a qualified inspection and testing agency. Loadsare provided for applications where the panel strength axisis applied perpendicular to supports and parallel to supports.For each combination of span and span rating, orspan and Group 1 sanded panel grade, loads are given fordeflections of L/360, L/240, L/180, and maximum loadcontrolled by bending and shear capacity.The values given in Tables 7.1 and 7.2 represent themaximum allowable loads without regard to panel type.These values may be adjusted for panel type using Table7.4, Adjustments to Allowable Load Capacities Based onPanel Grade and Construction. Once the allowable loadshave been adjusted for panel type, they should be furtheradjusted for application conditions using Table 7.5.w d∆ all= uniform load based on deflection requirement(psf)= allowable deflection (in.)∆ = computed deflection with a uniform load (w)equal to 1 psf, using either of the above threeformulas whichever is applicableNote: Spans shown in the tables may be in excess ofthe maximum recommended span (or span rating) for aspecific application, since other factors such as concentratedloads may be more critical than uniform load.Always check the maximum recommended floor and roofspans for wood structural panels before making a finalpanel selection for these applications.SUPPLEMENTAL DESIGN ASSISTANCEAPA – The Engineered <strong>Wood</strong> Association


SP-32SUPPLEMENTAL DESIGN ASSISTANCETable 7.1Uniform Load (psf) on Sheathing(Multi-Span, Normal Duration of Load, Dry Conditions)Span, Center-to-Center Supports (in.)Span Load Strength AxisRating Governed Strength Axis Perpendicular to Supports Parallel to SupportsBy 12 16 19.2 24 30 32 36 40 48 60 12 16 24L/360 261 98 54 26 13 10 9 16 6L/240 392 147 81 39 19 16 14 23 924/0 L/180 522 196 107 52 26 21 18 31 12Bending 208 117 81 52 33 29 19 45 25Shear 248 179 147 116 91 85 72 248 179L/360 339 128 70 34 17 14 12 9 23 9L/240 509 191 105 51 25 20 18 13 34 1324/16 L/180 679 255 140 68 33 27 24 17 45 17Bending 267 150 104 67 43 38 24 19 53 30Shear 286 207 169 133 105 98 83 75 286 207L/360 500 188 103 50 24 20 18 13 35 13 4L/240 750 282 154 75 37 30 26 19 53 20 732/16 L/180 1001 376 206 100 49 40 35 25 70 27 9Bending 308 173 120 77 49 43 27 22 77 43 15Shear 314 228 186 147 116 108 92 82 314 228 141L/360 979 368 201 98 48 39 34 25 16 78 29 10L/240 1468 552 302 146 72 58 51 37 24 117 44 1540/20 L/180 1958 736 403 195 96 78 69 49 32 157 59 20Bending 521 293 203 130 83 73 46 38 26 125 70 25Shear 390 283 232 182 144 134 114 102 88 390 283 175L/360 1740 655 358 174 85 69 61 44 29 14 128 48 16L/240 2610 982 537 260 128 104 91 66 43 21 193 72 2448/24 L/180 3480 1309 716 347 170 139 122 88 57 28 257 97 33Bending 704 396 275 176 113 99 63 51 35 23 188 105 38Shear 476 345 282 222 175 164 139 125 108 85 476 345 213APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-33Table 7.2Uniform Load (psf) on Single Floor(Multi-Span, Normal Duration of Load, Dry Conditions)Span, Center-to-Center Supports (in.)Span Load Strength AxisRating Governed Strength Axis Perpendicular to Supports Parallel to SupportsBy 12 16 19.2 24 30 32 36 40 48 60 12 16 24L/360 653 245 134 65 32 26 23 16 11 48 18 6L/240 979 368 201 98 48 39 34 25 16 72 27 916 oc L/180 1305 491 269 130 64 52 46 33 21 96 36 12Bending 346 195 135 86 55 49 31 25 17 83 47 17Shear 390 283 232 182 144 134 114 102 88 390 283 175L/360 914 344 188 91 45 36 32 23 15 57 21 7L/240 1370 516 282 137 67 55 48 34 22 85 32 1120 oc L/180 1827 687 376 182 89 73 64 46 30 113 43 14Bending 400 225 156 100 64 56 36 29 20 117 66 23Shear 390 283 232 182 144 134 114 102 88 390 283 175L/360 1305 491 269 130 64 52 46 33 21 10 113 43 14L/240 1958 736 403 195 96 78 69 49 32 16 170 64 2224 oc L/180 2610 982 537 260 128 104 91 66 43 21 226 85 29Bending 533 300 208 133 85 75 47 38 27 17 179 101 36Shear 476 345 282 222 175 164 139 125 108 85 476 345 213L/360 2828 1064 582 282 138 113 99 71 46 23 326 123 41L/240 4242 1596 873 473 207 169 148 107 70 34 489 184 6232 oc L/180 5656 2128 1164 564 276 225 198 142 93 45 653 245 83Bending 725 408 283 181 116 102 64 52 36 23 317 178 63Shear 571 414 339 267 211 197 167 150 129 102 571 414 256L/360 5003 1882 1030 499 244 199 175 126 82 40 696 262 88L/240 7505 2823 1545 748 367 299 263 189 123 60 1044 393 13348 oc L/180 10006 3764 2060 998 489 399 350 252 164 80 1392 524 177Bending 1333 750 521 333 213 188 119 96 67 43 567 319 113Shear 733 531 435 342 270 252 214 192 166 131 733 531 3297SUPPLEMENTAL DESIGN ASSISTANCEAPA – The Engineered <strong>Wood</strong> Association


SP-34SUPPLEMENTAL DESIGN ASSISTANCETable 7.3Uniform Load (psf) on Group 1 Sanded Panels(Multi-Span, Normal Duration of Load, Dry Conditions)Span, Center-to-Center Supports (in.)Nom Load Strength AxisThick Governed Strength Axis Perpendicular to Supports Parallel to Supports(in.) By 12 16 19.2 24 30 32 36 40 48 60 12 16 24L/360 148 56 30 15 7 6 5 8 3 1L/240 222 83 46 22 11 9 8 11 4 111/32 L/180 296 111 61 29 14 12 10 15 6 2Bending 129 73 50 32 21 18 11 22 12 4Shear 276 200 164 129 102 95 81 257 186 115L/360 213 80 44 21 10 8 7 12 5 2L/240 320 120 66 32 16 13 11 18 7 23/8 L/180 426 160 88 43 21 17 15 24 9 3Bending 171 96 67 43 27 24 15 31 17 6Shear 314 228 186 147 116 108 92 352 255 158L/360 522 196 107 52 26 21 18 13 9 48 18 6L/240 783 295 161 78 38 31 27 20 13 72 27 915/32 L/180 1,044 393 215 104 51 42 37 26 17 96 36 12Bending 296 166 116 74 47 42 26 21 15 92 52 18Shear 419 303 249 196 154 144 122 110 95 248 179 111L/360 609 229 125 61 30 24 21 15 10 67 25 9L/240 914 344 188 91 45 36 32 23 15 101 38 131/2 L/180 1,218 458 251 121 60 49 43 31 20 135 51 17Bending 325 183 127 81 52 46 29 23 16 121 68 24Shear 448 324 266 209 165 154 131 117 101 276 200 124L/360 892 336 184 89 44 36 31 22 15 7 163 61 21L/240 1,338 503 275 133 65 53 47 34 22 11 245 92 3119/32 L/180 1,784 671 367 178 87 71 62 45 29 14 326 123 41Bending 433 244 169 108 69 61 39 31 22 14 188 105 38Shear 552 400 328 258 204 190 161 145 125 99 286 207 128L/360 1,001 376 206 100 49 40 35 25 16 8 211 79 27L/240 1,501 565 309 150 73 60 53 38 25 12 317 119 405/8 L/180 2,001 753 412 200 98 80 70 50 33 16 422 159 54Bending 467 263 182 117 75 66 41 34 23 15 225 127 45Shear 590 428 350 276 218 203 173 155 134 105 314 228 141L/360 1,392 524 287 139 68 55 49 35 23 11 394 148 50L/240 2,088 786 430 208 102 83 73 53 34 17 591 222 7523/32 L/180 2,784 1,047 573 278 136 111 97 70 46 22 787 296 100Bending 538 302 210 134 86 76 48 39 27 17 317 178 63Shear 667 483 395 311 246 230 195 175 151 119 381 276 171L/360 1,544 581 318 154 75 62 54 39 25 12 500 188 64L/240 2,317 871 477 231 113 92 81 58 38 19 750 282 953/4 L/180 3,089 1,162 636 308 151 123 108 78 51 25 1,001 376 127Bending 567 319 221 142 91 80 50 41 28 18 392 220 78Shear 686 497 407 320 253 236 200 180 155 122 410 297 183L/360 2,175 818 448 217 106 87 76 55 36 17 805 303 102L/240 3,263 1,227 672 325 159 130 114 82 54 26 1,207 454 1537/8 L/180 4,351 1,637 895 434 213 173 152 109 71 35 1,610 606 204Bending 708 398 277 177 113 100 63 51 35 23 542 305 108Shear 810 586 480 378 298 279 237 212 183 144 514 372 230L/360 3,306 1,244 681 330 162 132 116 83 54 26 1,436 540 182L/240 4,960 1,866 1,021 495 242 198 174 125 81 40 2,154 810 2731 L/180 6,613 2,488 1,361 659 323 263 231 166 109 53 2,871 1,080 365Bending 917 516 358 229 147 129 81 66 46 29 813 457 163Shear 895 648 531 418 330 308 262 234 203 160 714 517 320L/360 4,285 1,612 882 427 209 171 150 108 70 34 2,132 802 271L/240 6,428 2,418 1,323 641 314 256 225 162 105 51 3,198 1,203 4061-1/8 L/180 8,571 3,224 1,764 855 419 341 300 216 141 68 4,264 1,604 541Bending 1,125 633 439 281 180 158 100 81 56 36 1,042 586 208Shear 1000 724 593 467 368 344 292 262 227 178 848 614 380APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-35Table 7.4Adjustments to Allowable Load Capacities Based on Panel Gradeand Construction, C GStrength Axis aPerpendicular toParallel toSupportsSupportsOther Structural I Other Structural IStiffness (L/360, L/240, L/180)Rated Panels3-Ply Plywood 1.1 1.1 1.0 1.54-Ply Plywood, COM-PLY 1.1 1.1 2.2 3.35-Ply Plywood b 1.1 1.1 3.1 5.2OSB 1.0 1.0 3.1 5.2Sanded PlywoodA-A, A-C 1.0 1.0 1.0 1.4Marine 1.0 1.0 1.4 1.4Other 1.0 1.0 1.0 1.4BendingRated Panels3-Ply Plywood 1.0 1.0 1.0 1.34-Ply Plywood 1.1 1.1 1.2 1.7COM-PLY 1.2 1.2 1.2 1.75-Ply Plywood b , OSB 1.2 1.2 1.8 2.8Sanded PlywoodA-A, A-C 1.2 1.3 1.2 1.7Marine 1.1 1.1 1.4 1.4Other 1.0 1.1 1.0 1.4ShearRated Panels3-Ply Plywood 1.2 1.7 2.1 3.04-Ply Plywood 1.2 1.7 2.9 4.15-Ply Plywood b 1.3 1.9 1.0 1.0OSB, COM-PLY 1.0 1.0 1.0 1.0Sanded PlywoodA-A, A-C 1.0 1.3 1.0 1.4Marine 1.3 1.3 1.4 1.4Other 1.0 1.3 1.0 1.4a The strength axis is the long panel dimension unless otherwise identified.Adjustments apply to plywood with 5 or more layers; for 5-ply/3-layer plywood, use adjustments for 4-ply.7SUPPLEMENTAL DESIGN ASSISTANCEAPA – The Engineered <strong>Wood</strong> Association


SP-36SUPPLEMENTAL DESIGN ASSISTANCETable 7.5Application Adjustment FactorsDuration of Load, C D (Applies to Bending and Shear Only)Permanent load (over 10 years) 0.902 months, as for snow 1.157 days 1.25Wind or Earthquake1.60 aImpact 2.00Span Adjustment2-span to 1-spanDeflection 0.42Bending 1.00Shear 1.253-span to 1-spanDeflection 0.53Bending 0.80Shear 1.20Wet or Damp Locations, C M (Moisture Content 16% or more)aDeflection 0.85Bending 0.75Shear 0.75Check local building code.7.3 Design ExamplesExample 1: Conventional RoofA 4-ply plywood, single floor 24 oc panel with tongueand-grooveedges was inadvertently installed over4-in.-nominal roof supports 48 in. on center. The long dimension(strength axis) of the panel was placedperpendicular to supports. The local building code requiresthat the panel support a 25-psf snow load.Bending StrengthFrom Table 3.1, a single floor 24 oc panel with stressapplied parallel to the strength axis (long panel dimensionperpendicular to supports) has a bending strengthcapacity (F b S) of 640 lb.-in./ft. This capacity is adjustedby a C G factor of 1.1 as shown in Table 3.1.1 for 4-plyplywood and by duration-of-load factor (C D ) of 1.15 (seeSection 4.3). From Section 7.1, a two-span condition isassumed.wb96FbS=l 1296 ( 640× 1.1×1.15)=248= 34 psfShear Strength in the PlaneFrom Table 3.3, a single floor 24 oc panel with stressapplied parallel to the strength axis has shear strength inthe plane (F S [Ib/Q]) of 250 lb./ft. This capacity is adjustedby a C G factor of 1.2 as shown in Table 3.3.1 for 4-plyplywood and by a duration-of-load factor (C D ) of 1.15(see Section 4.3).ws( I )19.2 Fsb/Q=l219.2 250 x 1.2 x 1.15== 149 psf( )( 48 − 3.5)APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANELS SUPPLEMENTSP-37Bending StiffnessFrom Table 3.1, a single floor 24 oc panel with stressapplied parallel to the strength axis has a dry stiffness capacity(EI) of 300,000 lb.-in. 2 /ft. This capacity is adjustedby a C Gfactor of 1.1 for 4-ply plywood as shown in Table3.1.1. The deflection limit for live load is l/240.wl3∆ =2220 EIw41. 0 ( 48− 3. 5+0. 625)=2, 220( 300, 000×1. 1)−3= 571 . × 10 in.d∆all48/240= =∆−571 . × 1034= 35 psfBending strength controls (provides the lowest capacity)for this application. The bending strength capacity of34 psf represents total load, from which dead load is subtractedto arrive at live load capacity. The bending stiffnesscapacity of 35 psf represents live load only. Here, if deadload (panel weight plus roofing) is no more than 9 psf, the25-psf snow load capacity is achieved. The tongue-andgrooveedges provide required edge supports.Example 2: Panelized RoofAn oriented strand board (OSB) sheathing 32/16 panelis to be used in a panelized roof system over 2-in.-nominalframing members 24 in. on center. The long paneldimension (strength axis) of the panel will be placed parallelto supports.Bending StrengthFrom Table 3.1, a sheathing 32/16 panel with stressapplied perpendicular to strength axis (long panel dimensionparallel to supports) has a bending strength capacity(F bS) equal to 92 lb.-in./ft. This capacity is adjusted by aC Gfactor of 2.8 for OSB Structural I (Table 3.1.1) and bya duration-of-load factor (C D) of 1.15 (see Section 4.3).This duration-of-load factor is normally associated withsnow loads for roof structures. From Section 7.1., a twospancondition is assumed.Shear Strength in the PlaneFrom Table 3.3, a sheathing 32/16 panel with stressapplied perpendicular to strength axis has shear strengthin the plane (F S[Ib/Q]) of 165 lb./ft. This capacity is adjustedby a C Gfactor of 1.0 for OSB Structural I (Table3.3.1) and by a duration-of-load factor (C D) of 1.15 (seeSection 4.3).ws19.2F s(Ib/ Q)=l 219.2 (165× 1.0×1.15)=(24 −1.5)= 162 psfBending StiffnessFrom Table 3.1, a sheathing 32/16 panel with stressapplied perpendicular to strength axis (long panel dimensionparallel to supports) has a dry stiffness capacity (EI)of 8,100 lb.-in 2 /ft. This capacity is adjusted by a C Gfactorof 5.2 for OSB Structural I as shown in Table 3.1.1. Thedeflection limit for live load is l/240.wl3∆ =2,220 EIw41. 0 ( 24− 1. 5+0. 25)=2, 220( 8, 100×5. 2)−3= 2.865×10 in.d∆all24/240= =∆ 2.865×10Example 3: Floor4−3= 35 psfA COM-PLY single floor 24 oc panel is to be used ina floor system over supports 24 in. on center. The panelswill be placed with the long panel dimension (strengthaxis) perpendicular to supports. Supports are 2-in.-nominalframing members. The capacity of the panel will becomputed based on bending strength, shear strength inthe plane and bending stiffness.7SUPPLEMENTAL DESIGN ASSISTANCEwb96FbS=l 1296 ( 92× 2.8×1.15)=224= 49 psfBending StrengthFrom Table 3.1, a single floor 24 oc panel with stressapplied parallel to the strength axis (long panel dimensionperpendicular to supports) has a bending strengthcapacity (F bS) of 640 lb.-in./ft. This capacity is adjustedby a C Gfactor of 1.2 as shown in Table 3.1.1 for COM-PLY. From Section 7.1, a three-span condition is assumed.APA – The Engineered <strong>Wood</strong> Association


SP-38SUPPLEMENTAL DESIGN ASSISTANCEwb120FbS=l 12120 ( 640×1.2)=224= 160 psfShear Strength in the PlaneFrom Table 3.3, a single floor 24 oc panel with stressapplied parallel to the strength axis has shear strength inthe plane (F S [Ib/Q]) equal to 250 lb./ft. This capacity isadjusted by a C G factor of 1.0 as shown in Table 3.3.1 forCOM-PLY.( I )20 Fsb/Qws=l220 250 x 10=( )( 24 −1.5)= 222 psfBending StiffnessFrom Table 3.1, a single floor 24 oc panel with stressapplied parallel to the strength axis has a dry stiffness capacity(EI) of 300,000 lb.-in. 2 /ft. This capacity is adjustedby a C Gfactor of 1.1 as shown in Table 3.1.1 for COM-PLY. The deflection limit for live load is l/360.wl3∆ =1,743 EIw41. 0 ( 24− 1. 5+0. 25)=1, 743( 300, 000×1. 1)−4= 4.657×10 in.d∆all24/360= =∆ 4.657×104−4= 143 psfWhile the above calculations would indicate that thissingle floor construction has a live load capacity of 143psf (limited by bending stiffness), it is important to notethat some structural panel applications are not controlledby uniform load. Residential floors, commonly designedfor 40 psf live load, are a good example. The calculatedallowable load is greatly in excess of the typical designload.This excess does not mean that floor spans for singlefloor panels can be increased, but only that there is considerablereserve strength and stiffness for uniform loads.Recommended maximum spans for structural panel floorsare based on deflection under concentrated loads, how the“floor” responds to passing foot traffic, and other subjectivefactors which relate to user acceptance. Always checkthe maximum floor and roof spans for structural panelsbefore making a final selection for these applications.APA – The Engineered <strong>Wood</strong> Association


SUPPLEMENT<strong>Wood</strong> StructuralPanel Shear Walland Diaphragm<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTION


SUPPLEMENT<strong>Wood</strong> StructuralPanel Shear Walland Diaphragm<strong>ASD</strong>ALLOWABLE STRESS DESIGNMANUAL FOR ENGINEEREDWOOD CONSTRUCTIONCopyright © <strong>2001</strong>APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL WOOD PANEL FRAME SHEAR CONSTRUCTION WALL AND MANUAL DIAPHRAGM SUPPLEMENTPrefaceThis Supplement contains tabulated recommendedshear values for wood structural panel diaphragms andshear walls framed with lumber, required to design in the<strong>ASD</strong> format. The Supplement also contains methods bywhich diaphragm and shear wall deflection can be calculated,as well as design examples illustrating variousaspects of the document. Design shear values are basedon data from testing conducted by APA–The Engineered<strong>Wood</strong> Association. Application recommendations givenherein have been developed by APA through field experienceand laboratory testing over more than 50 years.The tabulated recommended shear values for diaphragmsand shear walls in this Supplement are used inconjunction with the design methodologies provided inANSI/AF&PA NDS-<strong>2001</strong>, National Design Specification ®(NDS ® ) for <strong>Wood</strong> Construction.The tabulated recommended shear values for diaphragmsand shear walls are to be used within the referenceend-use conditions defined therein. When the end-useconditions fall outside the range of the reference conditionsin the tables, the design capacities shall be adjustedby the product of the applicable factors defined in thisSupplement or contact one of the inspection and testingagencies included in Section 2.4 of this Supplement.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL WOOD PANEL FRAME SHEAR CONSTRUCTION WALL AND MANUAL DIAPHRAGM SUPPLEMENTTable of ContentsChapter/TitlePageChapter/TitlePage1 Designer Flowchart ................................ SW-11.1 Flowchart2 Introduction .................................................................. SW-32.1 Scope2.2 Terminology2.3 Background2.4 Inspection and Testing Agencies3 Diaphragms ....................................................................SW-73.1 General3.2 Using Diaphragm Tables3.3 Diaphragm Deflection5 Other Considerations ................ SW-195.1 Drag Struts/Collectors5.2 Chords5.3 Subdiaphragms5.4 Shear Wall OverturningAAppendices ............................................................... SW-25A.1 Design ExampleA.2 Diaphragm and Shear Wall DesignReferences4 Shear Walls ............................................................. SW-134.1 General4.2 Using Shear Wall Tables4.3 Shear Wall DeflectionList of Tables3.1A Recommended Shear (pounds per foot) ForHorizontal <strong>Wood</strong> Structural Panel Diaphragmswith Framing of Douglas fir-Larch orSouthern Pine for Wind Loading Only ............ SW-103.1B Recommended Shear (pounds per foot) ForHorizontal <strong>Wood</strong> Structural Panel Diaphragmswith Framing of Douglas fir-Larch orSouthern Pine for Seismic Loading ..................... SW-113.2 “e n ” Values (inches) For Use In CalculatingShear Wall and Diaphragm Deflection Dueto Nail Slip (Structural I) .................................................... SW-124.1A Recommended Shear (pounds per foot) For<strong>Wood</strong> Structural Panel Shear Walls withFraming of Douglas fir-Larch or SouthernPine For Wind Loading Only ........................................ SW-154.1B Recommended Shear (pounds per foot) For<strong>Wood</strong> Structural Panel Shear Walls withFraming of Douglas fir-Larch or SouthernPine For Seismic Loading ................................................. SW-16APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-11DESIGNERFLOWCHART1.1 Flowchart SW-2APA – The Engineered <strong>Wood</strong> Association


SW-2DESIGNER FLOWCHART1.1 Flowchart<strong>Wood</strong> Structural PanelShear Wall and DiaphragmSupplementWindType of LateralLoadingSeismicDetermine lateral wind forces onbuilding, calculate diaphragmunit shearDetermine lateral seismic forces ondiaphragm, calculate diaphragmunit shearSelect wood structural panel layoutand fastener schedule for diaphragmSelect wood structural panel layoutand fastener schedule for diaphragmDetermine shear distribution in diaphragm andadjust fastener schedule as required(Table 3.1A or Table 3.1B)Determine shear distribution in diaphragm andadjust fastener schedule as required(Table 3.1B)Design chord size and spliceDesign chord size and spliceDesign connections betweendiaphragm and wallsDesign connections betweendiaphragm and wallsCheck diaphragm deflections andadjust design as requiredCheck diaphragm deflections andadjust design as requiredDetermine unit shear in shear walls,select panels and fastener schedule(Table 4.1A)Determine drag strut forces and designsplices as requiredDetermine unit shear in shear walls (based ondiaphragm loading plus wall mass),select panels and fastener schedule(Table 4.1B)Determine drag strut forces and designsplices as requiredCheck tiedown forces and design tiesCheck tiedown forces and design tiesDesign CompleteAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-3INTRODUCTION22.1 Scope SW-42.2 Terminology SW-42.3 Background SW-52.4 Inspection and Testing Agencies SW-6APA – The Engineered <strong>Wood</strong> Association


SW-4INTRODUCTION2.1 ScopeThis Supplement addresses the design of wood framedwood structural panel sheathed diaphragms and shear walls.The Supplement does not cover the method in which lateralloads are determined, nor cover “prescriptiverequirements” for non-engineered wall and roof construction,as these topics are addressed in complete detail by theapplicable model building codes.2.2 TerminologyBase Shear – the total reaction at the base of a wall parallelto the axis of the wall or structure due to an appliedlateral load; a “sliding” force.Boundary Element – Diaphragm and shear wall boundarymembers to which sheathing transfers forces.Boundary elements include chords and drag struts at diaphragmand shear wall perimeters, interior openings,discontinuities and re-entrant corners.Box-type Structure – when diaphragms and shear wallsare used as the lateral force resisting system of a building,the structural system is called a “box system.”Chord – A boundary element perpendicular to the appliedload that is assumed to resist axial stresses due to the inducedmoment.Collector – A diaphragm or shear wall element paralleland in line with the applied force that collects and transfersdiaphragm shear forces to the vertical elements ofthe lateral force-resisting system and/or distributes forceswithing the diaphragm.Diaphragm – A roof, floor or other membrane bracingsystem acting to transmit lateral forces to the vertical resistingelements. When the term “diaphragm” is used, itincludes horizontal bracing systems.Diaphragm, Blocked – A diaphragm in which all adjacentsheathing edges are fastened to either commonframing or common blocking.Diaphragm, Flexible – A diaphragm is flexible for thepurpose of distribution of story shear and torsional momentwhen the computed maximum in-plane deflectionof the diaphragm itself under lateral load is greater thantwo times the average deflection of adjoining vertical elementsof the lateral force resisting system of theassociated story under equivalent tributary lateral load.Diaphragm, Unblocked – A diaphragm that has edge nailingat supporting members only. Blocking betweensupporting structural members at panel edges is not included.Diaphragm panels are field nailed to supportingmembers.Drag Strut – a structural building component that distributesthe diaphragm shear from one building elementto another; typically served by the double top plate. Dragstruts are oriented parallel to the applied load. Also knownas a collector.Lateral Load – horizontal forces that result from wind orseismic forces. Wind forces act on the side of the buildingand on sloped roofs. Seismic forces result from groundaccelerations causing inertial forces to act on the structuralmass.Load Path – the path taken by a force acting on a building.Loads are transferred by the elements in the buildingand by the connections between those elements into thefoundation.Overturning – the resulting “tip-over” force when a lateralforce acts on a wall or structure and the wall isrestrained from sliding.Shear Wall – a vertical, cantilevered diaphragm that isconstructed to resist lateral shear loads by fastening woodstructural panels over wood wall framing. This structuralsystem transfers lateral forces from the top of the wall tothe bottom of the wall and eventually transfers the lateralloads to the foundation.Shear Wall Segment – a portion of the shear wall thatruns from the diaphragm above to the diaphragm/foundationbelow; also known as “full-height segments”. Shearwall segments occur between building wall discontinuitiessuch as doors, windows or corners in the shear wall.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-5Subdiaphragm – A portion of a larger wood diaphragmdesigned to anchor and transfer local forces to primarydiaphragm struts and the main diaphragm.Tie-Down (Hold-Down) – A device used to resist upliftof the chords of shear walls.Wall Bracing – a building element that resists lateral loadsin conventional (non-engineered) applications; the configurationand connections are prescribed by the buildingcodes for light-framed wood structures.2.3 Background<strong>Wood</strong> Structural Panel – A panel manufactured fromveneers; or wood strands or wafers; or a combination ofveneer and wood strands or wafers; bonded together withwaterproof synthetic resins or other suitable bonding systems.Examples of wood structural panels are plywood,oriented strand board (OSB), or composite panels.2INTRODUCTIONShear walls and diaphragms are designed to transferin-plane forces. When using these two assemblies to resistlateral design forces of buildings, the structural systemis sometimes referred to as a “box system”. The shearwalls provide reactions for the roof and floor diaphragms,and transmit the forces into the foundation (see Figure2.1).With ordinary good construction practice, any sheathedelement in a building adds considerable strength to thestructure. Thus, if the walls and roofs are sheathed withpanels and are adequately tied together, and tied to thefoundation, many of the requirements of a diaphragmstructure are met. This fact explains the durability of woodstructural panel sheathed buildings in hurricane and earthquakeconditions even when they have not been engineeredas diaphragms or shear walls per se.There are various textbooks and other resources whichprovide in-depth coverage of this topic (see section A.2).Figure 2.1Distribution of Lateral Loads on Buildings (Wind Illustrated)Roof (horizontal diaphragm)carries load to end wallsLbvhwvTWind load, F(lb. per sq. ft.)wvCSide wall carries loadto roof diaphragm at topand to foundation at bottomEnd wall (vertical diaphragm or shearwall) carries load to foundationv (lb./ft. of diaphragm width) =w (lb./ft. of wall) = Fh2wL2bT (lb.) = C = vhAPA – The Engineered <strong>Wood</strong> Association


SW-6INTRODUCTIONFor the purposes of this Supplement, the following assumptionsare made:• These assemblies act as deep beams.• In-plane shear resistance is provided by the wood structuralpanels.• Axial tension and compression resistance is providedby the chord members (flange action).• Nailed assemblies, as shown in Tables 3.1A, 3.1B, 4.1Aand 4.1B, exhibit ductile, energy absorbing behavior.While shear resistance of these assemblies can becomputed by principles of engineering mechanics (seeTissell and Elliot, 1997), it is recommended that designersuse Tables 3.1A, 3.1B, 4.1A and 4.1B for typical designpurposes. In addition to eliminating labor intensive calculations,these tables limit configurations to those thathave proven to exhibit the aforementioned ductile behaviorby demonstration via structural testing and years ofsuccessful in-use performance.2.4 Inspection and Testing AgenciesAdditional information is available from organizationsproviding trademarking and quality assurance services:APA - The Engineered <strong>Wood</strong> Association7011 South 19th StreetP.O. Box 11700Tacoma, WA 98411-0700Phone: 253-565-6600Fax: 253-565-7265Internet Address: www.apawood.orgAPA Product Support Help DeskPhone 253-620-7400E-mail help@apawood.orgProfessional Services Industries, Inc.Pittsburgh Testing Laboratory Division2710 West 5th Ave.Eugene, OR 97402Phone: 541-484-9212Fax: 541-344-2735Internet Address: www.psiusa.comTECO2402 Daniels St.Madison, WI 53718Phone: 608-221-3361Fax: 608-226-0885Internet Address: www.tecotested.comAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-7DIAPHRAGMS33.1 General SW-83.2 Using Diaphragm Tables SW-83.3 Diaphragm Deflection SW-12Table 3.1A Recommended Shear (pounds per foot)For Horizontal <strong>Wood</strong> Structural PanelDiaphragms with Framing of Douglasfir-Larch or Southern Pine for WindLoading Only .............................................. SW-10Table 3.1BTable 3.2Recommended Shear (pounds per foot)For Horizontal <strong>Wood</strong> Structural PanelDiaphragms with Framing of Douglasfir-Larch or Southern Pine for SeismicLoading ......................................................... SW-11“e n ” Values (inches) For Use InCalculating Shear Wall and DiaphragmDeflection Due to Nail Slip (Structural I) .. SW-12APA – The Engineered <strong>Wood</strong> Association


SW-8DIAPHRAGMS3.1 GeneralPanel diaphragms have been used extensively forroofs, floors and walls, for new construction and rehabilitationof older buildings. A complete diaphragm analysisincludes analyzing chord forces, connections and, if applicable,cross ties and drag struts.A diaphragm acts in a manner analogous to a deepbeam or girder where the panels act as a “web” resistingshear while the diaphragm edge members perform thefunction of “flanges” resisting axial stresses. These edgemembers are commonly called chords in diaphragm design,and may be joists, ledgers, trusses, bond beams, studs,etc.Due to the great depth of most diaphragms in the directionsparallel to application of load, and to their meansof assembly, their behavior differs slightly from that ofthe usual, relatively shallow beam. Shear stresses havebeen shown to be essentially uniform across the depth ofthe diaphragm rather than showing significant parabolicdistribution as in the web of a shallow beam. Similarly,chords in a diaphragm carry all “flange” stresses acting insimple tension and compression rather than sharing thesestresses significantly with the web. As in any beam, considerationmust be given to bearing stiffeners, continuityof webs and chords, and to web buckling which is normallyresisted by framing members.Diaphragms vary considerably in load-carrying capacity,depending on whether they are “blocked” or“unblocked” (see Figure 3.1). Blocking consists of lightweightnailers, usually 2x4s, framed between the joists orother primary structural supports for the specific purposeof connecting the edges of the panels. Systems which providesupport framing at all panel edges, such as panelizedroofs, are also considered blocked. The reason for blockingin diaphragms is to allow connection of panels at alledges for better shear transfer. Design loads for unblockeddiaphragms may be limited by buckling of the unsupportedpanel edges. Additional nailing will have little effect onthe buckling performance of the unblocked diaphragm.For the same nail spacing, design load on a blocked diaphragmcan be designed to be as high as twice the designload of its unblocked counterpart.Figure 3.1 BlockingTable 3.1A and 3.1B present the tabulated values forboth blocked diaphragms and unblocked diaphragms forwind loading and seismic loading, respectively. Somemodel building codes have adopted a 40% increase forallowable diaphragm resistance when subjected to windloading. For the convenience of the user of this Supplement,Table 3.1A reflects the 40% increase that may bepermissible. The designer should confirm that the increaseis applicable under the local code; if notapplicable, use Table 3.1B. The basis for the increase isa change in design philosophy for estimating wind forces.In addition, the increase helps to account for better understandingof wind loads and the historical excellentperformance of diaphragms subjected to high wind events.3.2 Using Diaphragm TablesExample One:Given:• residential roof diaphragm• wind loading• trussed roof• unblocked diaphragm required• required diaphragm capacity is 250 lb./ft.• panel orientation is unknownFind:Panel thickness, nail size and nailing scheduleSolution:Using Table 3.1A, refer to the “Unblocked Diaphragm”area of the table. As panel orientation is unknown,use the “All other configurations…” column since thesevalues will be conservative. Check “SHEATHING...” rowsfirst since Structural I may not be readily available in allAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-9areas. Similarly, check only rows with 2-inch minimumnominal framing width as the framing is made up oftrusses. From the table, see that 8d nails with 15/32-inchsheathing over 2x framing yields a capacity of 250 lb./ft.with the standard 6- and 12-inch nail spacing. As 250 lb./ft.is equal to the required 250 lb./ft. capacity, this selectionis OK for use.Example Two:Given:• commercial roof diaphragm• seismic loading• trussed roof• required diaphragm capacity is 350 lb./ft.• Case 1 panel orientationFind:Panel thickness, nail size and nailing scheduleSolution:Using Table 3.1B, refer to the “Unblocked Diaphragm”area of the table first. You will find that nosolution is possible. Next, check the “Blocked Diaphragm”area of the table. Check “SHEATHING…” rows first.Similarly, check only rows with 2-inch minimum nominalframing width as the framing is made up of trusses.From the table, see that 8d nails with 15/32-inch Sheathingover 2x framing yields a capacity of 360 lb./ft. Nailsmust be placed 4 inches oc at all diaphragm boundariesand 6 inches oc at all other panel edges. As 360 lb./ft. isgreater than 350 lb./ft., this selection is OK for use.3DIAPHRAGMSAPA – The Engineered <strong>Wood</strong> Association


SW-10DIAPHRAGMSTable 3.1A Recommended Shear (pounds per foot) For Horizontal <strong>Wood</strong>Structural Panel Diaphragms with Framing of Douglas fir-Larch orSouthern Pine a for Wind Loading OnlyPanelGradeStructural IgradesSheathing,Single-Floorsand otherstructuralusepanelgradesCommonNail SizeaFor framing of other species: (1) Find specific gravity for species offraming lumber in the NDS. (2) Find shear value from table above for nailsize of actual grade. (3) Multiply value by the following adjustment factor= [1 - (0.5 - G)], where G = specific gravity of the framing lumber. Thisadjustment factor shall not be greater than 1.bSpace nails maximum 12 in. oc along intermediate framing members (6in. oc when supports are spaced 48 in. oc).cFraming at adjoining panel edges shall be 3 in. nominal or wider, andnails shall be staggered where nails are spaced 2 in. o.c. or 2-1/2 in. ocdFraming at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where 10d nails having penetration into framingof more than 1-5/8 in. are spaced 3 in. oc.LoadMinimumNailPenetrationin Framing(in.)Case 1MinimumNominalPanelThickness(in.)6d e 1-1/4 5/168d 1-3/8 3/810d d 1-1/2 15/326d e 1-1/4 5/168d 1-3/83/83/87/1615/3210d d 1-1/2 15/3219/32FramingWIND LOADING ONLYBlocked DiaphragmsNail Spacing (in.) atdiaphragm boundaries (all cases),at continuous panel edges parallelto load (Cases 3 & 4), and atall panel edges (Cases 5 & 6) b6 4 2-1/2 c 2 cMinimumNominal Width Nail Spacing (in.) atof Framingother panel edgesMember(Cases 1, 2, 3 & 4) b(in.) 6 6 4 32260 350 525 5903295 390 590 6652380 505 740 8403420 560 840 9452450 595 895 10203505 670 1010 11502240 315 470 5303265 350 530 6002260 350 525 5903295 390 590 6652335 450 670 7653380 505 755 8552355 475 705 8053400 530 800 9052380 505 740 8403420 560 840 9452405 540 805 9153455 600 910 10302450 595 895 10203505 670 1010 1150LoadeCase 28d is recommended minimum for roofs due to negative pressures of highwinds.Notes: Design for diaphragm stresses depends on direction of continuouspanel joints with reference to load, not on direction of long dimension ofsheet. Continuous framing may be in either direction for blockeddiaphragms.The recommended shears presented in Table 3.1A are based on thehistorically used design stresses for diaphragms which are listed in Table3.1B multiplied by 1.4. Some building codes, including the 2000International Building Code, have provided for this increase due to thebetter understanding of wind loading. The designer should confirm thatthe increase is applicable under the local code.Blocking,if usedLoadCase 3Unblocked DiaphragmsNails Spaced 6 in. max. atSupported Edges bCase 1 (NoUnblocked edgesor continuousjoints parallelto load)230260335370400450210240230260300335322375335370355405400450All otherconfigurations(Cases 2, 3,4, 5 & 6)175195250280300335155175175195225250240265250280265300300335Continuous panel jointCase 4LoadBlocking,if usedDiaphragm boundaryCase 5LoadBlocking,if usedLoadCase 6FramingContinuous panel jointAPA – The Engineered <strong>Wood</strong> AssociationContinuous panel joint


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-11Table 3.1B Recommended Shear (pounds per foot) For Horizontal <strong>Wood</strong>Structural Panel Diaphragms with Framing of Douglas fir-Larch orSouthern Pine a for Seismic LoadingPanelGradeStructural IGradesSheathing,Single-Floor andotherstructuralusepanelgradesCommonNail SizeMinimumNailPenetrationin Framing(in.)MinimumNominalPanelThickness(in.)6d e 1-1/4 5/168d 1-3/8 3/810d d 1-1/2 15/326d e 1-1/4 5/168d 1-3/8aFor framing of other species: (1) Find specific gravity for species offraming lumber in the NDS.(2) Find shear value from table above for nail size of actual grade.(3) Multiply value by the following adjustment factor = [1 - (0.5 - G)],where G = specific gravity of the framing lumber. This adjustment factorshall not be greater than 1.bSpace nails maximum 12 in. o.c. along intermediate framing members (6in. o.c. when supports are spaced 48 in. o.c.).cFraming at adjoining panel edges shall be 3 in. nominal or wider, andnails shall be staggered where nails are spaced 2 in. o.c. or 2-1/2 in. o.c.3/83/87/1615/3210d d 1-1/2 15/3219/32SEISMIC LOADINGBlocked DiaphragmsNail Spacing (in.) atdiaphragm boundaries (all cases),at continuous panel edges parallelto load (Cases 3 & 4), and atall panel edges (Cases 5 & 6) b6 4 2-1/2 c 2 cMinimumNominal Width Nail Spacing (in.) atof Framingother panel edgesMember(Cases 1, 2, 3 & 4) b(in.) 6 6 4 32185 250 375 4203210 280 420 4752270 360 530 6003300 400 600 6752320 425 640 7303360 480 720 8202170 225 335 3803190 250 380 4302185 250 375 4203210 280 420 4752240 320 480 5453270 360 540 6102255 340 505 5753285 380 570 6452270 360 530 6003300 400 600 6752290 385 575 6553325 430 650 7352320 425 640 7303360 480 720 820deUnblocked DiaphragmsNails Spaced 6 in. max. atSupported Edges bCase 1 (NoUnblocked edgesor continuousjoints parallelto load)165185240265285320150170165185215240230255240265255290285320All otherconfigurations(Cases 2, 3,4, 5 & 6)125140180200215240110125125140160180170190180<strong>2001</strong>90215215240Framing at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where 10d nails having penetration into framingof more than 1-5/8 in. are spaced 3 in. o.c.8d is recommended minimum for roofs due to negative pressures of highwinds.Notes: Design for diaphragm stresses depends on direction of continuouspanel joints with reference to load, not on direction of long dimension ofsheet. Continuous framing may be in either direction for blockeddiaphragms3DIAPHRAGMSLoadCase 1FramingLoadCase 2Blocking,if usedLoadCase 3Continuous panel jointCase 4LoadBlocking,if usedDiaphragm boundaryCase 5LoadBlocking,if usedLoadCase 6FramingContinuous panel jointAPA – The Engineered <strong>Wood</strong> AssociationContinuous panel joint


SW-12DIAPHRAGMS3.3 Diaphragm DeflectionCalculations for diaphragm deflection shall accountfor the usual bending and shear components as well asmany other factors, such as nail deformation, which willcontribute to the deflection.The deflection (∆) of a blocked wood structural paneldiaphragm uniformly nailed throughout may be estimatedby use of the following formula.3∆ = 5 vL vL ∑ ( ∆cX)+ + 0.188Len+8EAb4Gt2bwhere:A = area of chord cross section, in. 2b = diaphragm width, ft.E = elastic modulus of chords, psie n= nail deformation, in. (see Table 3.2).G = modulus of rigidity of wood structural panels,psi (see <strong>Wood</strong> Structural Panel Supplement).v = maximum shear due to design loads in directionunder consideration, pounds per linear foot.∆ = the calculated deflection, in.∑(∆ cX) = sum of individual chord-splice slip values of thediaphragm, each multiplied by its distance tothe nearest support, in.A review of diaphragm tests suggests that the deflectionof an unblocked diaphragm at its tabulated allowableshear capacity will be about 2.5 times the calculated deflectionof a blocked diaphragm of similar constructionand dimensions, at the same shear capacity. If diaphragmframing is spaced more than 24 inches oc, testing indicatesa further increase in deflection of about 20% forunblocked diaphragms (e.g., to 3 times the deflection ona comparable blocked diaphragm). This relationship canbe used to develop an estimate of the deflection of unblockeddiaphragms.L = diaphragm length, ft.t = effective thickness of wood structural panelsfor shear, in. (see <strong>Wood</strong> Structural PanelSupplement).Table 3.2“e n” Values (inches) For Use In Calculating Shear Wall and DiaphragmDeflection Due to Nail Slip (Structural I) aFastener Minimum For Maximum Appropriate Slip, e n (in.) a,bPenetration (in.) Loads Up to (lb.) Green/Dry Dry/Dry6d common nail 1-1/4 180 (V n /434) 2.314 (V n /456) 3.1448d common nail 1-3/8 220 (V n /857) 1.869 (V n /616) 3.01810d common nail 1-1/2 260 (V n /977) 1.894 (V n /769) 3.27614-ga staple 1 to 2 140 (V n /902) 1.464 (V n /596) 1.99914-ga staple 2 170 (V n /674) 1.873 (V n /461) 2.776aFabricated green/tested dry (seasoned); fabricated dry/tested dry. Vn = Fastener Load (lb./nail).bValues based on Structural I plywood fastened to lumber with a specific gravity of 0.50 or greater. Increase slip by 20% when plywood is not Structural I.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-13SHEAR WALLS4.1 General SW-144.2 Using Shear Wall Tables SW-144.3 Shear Wall Deflection SW-174Table 4.1A Recommended Shear (pounds per foot)For <strong>Wood</strong> Structural Panel Shear Wallswith Framing of Douglas fir-Larch orSouthern Pine For Wind Loading Only ... SW-15Table 4.1BRecommended Shear (pounds per foot)For <strong>Wood</strong> Structural Panel Shear Wallswith Framing of Douglas fir-Larch orSouthern Pine For Seismic Loading ......... SW-16APA – The Engineered <strong>Wood</strong> Association


SW-14SHEAR WALLS4.1 GeneralA shear wall behaves similar to a horizontal diaphragm.In fact, a shear wall is simply a cantilevereddiaphragm to which load is applied at the top of the walland is transferred to the foundation along the bottom ofthe wall. This creates a potential for overturning whichmust be accounted for, and any over-turning force is typicallyresisted by hold-downs, or tension ties, at each endof the shear wall segments.Tables 4.1A and 4.1B present the tabulated values forwood structural panel sheathed wood frame shear wallsfor wind loading and seismic loading, respectively. Somemodel building codes have adopted a 40% increase forallowable shear wall resistance when subjected to windloading. For the convenience of the user of this Supplement,Table 4.1A reflects the 40% increase that may bepermissible. The designer should confirm that the increaseis applicable under the local code; if notapplicable, use Table 4.1B. The basis for the increase isa change in design philosophy for estimating wind forces.In addition, the increase helps to account for better understandingof wind loads and the historical excellentperformance of shear walls subjected to high wind events.4.2 Using Shear Wall TablesExample One:Given:• commercial building• wind loading• wall requires 5/8-inch gypsum sheathing on the exteriorof the building for 1-hour fire separation• required shear wall capacity is 670 lb./ft.Find:Panel thickness, nail size and nailing scheduleSolution:Ensure that the locally accepted building code allowsthe 40% increase for wind load incorporated in Table 4.1A.Using Table 4.1A, check the “Panels applied over 1/2- inchor 5/8-inch gypsum sheathing” area of table. Check“SHEATHING…” rows first since Structural I may notbe readily available in all areas. From the table, see that10d nails with a 3- and 12-in. nail spacing and any thicknessof Sheathing will provide a capacity of 685 lb./ft.provided that the framing at adjoining panel edges is 3-inchnominal or wider. As 685 lb./ft. is greater than 670 lb./ft.,this selection is OK for use.Example Two:Given:• residential building• seismic loading• typical wall sheathing thickness of 7/16 inch• typical nail size of 8d common• wall stud spacing of 24 inches oc.• required shear wall capacity is 435 lb./in.Find:Required nail spacingSolution:Using Table 4.1B, check the “Panels applied direct toframing” area of table. Check “SHEATHING…” rows firstbecause Structural I may not be readily available in allareas. From the table, see that 7/16-inch structural-usepanels, 8d nails with a 3- and 6-in. nail spacing (see footnoteb) will provide a capacity of 450 lb./ft. As 450 lb./ft.is greater than 435 lb./ft., this selection is OK for use.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-15Table 4.1A Recommended Shear (pounds per foot) For <strong>Wood</strong> Structural PanelShear Walls with Framing of Douglas fir-Larch or Southern Pine a ForWind Loading Only babcdPanel GradeStructural IgradesSheathing,PlywoodSiding gand otherstructural-usepanel gradesWIND LOADING ONLYNail SizePanels Applied OverPanels Applied Direct to Framing1/2 in. or 5/8 in. Gypsum SheathingMinimum Minimum Nail Nail SizeNail Spacing atNail Spacing atThickness (in.) in Framing (in.) Galvanized box) 6 4 3 2 e Galvanized box) 6 4 3 2 eNominal Panel Penetration (common orPanel Edges (in.)(common or Panel Edges (in.)5/16 1-1/4 6d 280 420 545 715 8d 280 420 545 7153/8 320 d 505 d 645 d 855 d7/16 1-3/8 8d 355 d 555 d 705 d 940 d 10d 390 600 770 f 102015/32 390 600 770 102015/32 1-1/2 10d 480 715 930 f 1220 - - - -5/16 or 1/4 c 250 270 490 630 250 380 490 6303/8 1-1/4 6d 280 420 545 715 8d 280 420 545 7153/8 310 d 450 d 575 d 740 d7/16 1-3/8 8d 335 d 490 d 630 d 820 d 10d 365 530 685 f 89515/32 365 530 685 89515/32 435 645 840 f 1080 - - - - -19/32 1-1/2 10d 475 715 930 f 1220 - - - - -PlywoodSiding gand otherNail Size(galvanized casing)Nail Size(galvanized casing)sructural- use 5/16 c 1-1/4 6d 195 295 385 505 8d 195 295 385 505panel grades 3/8 1-1/2 8d 225 335 435 575 10d 225 335 435 f 575For framing of other species: (1) Find specific gravity for species offraming lumber in the NDS. (2) Find shear value from table above for nailsize of actual grade. (3) Multiply value by the following adjustment factor= [1 - (0.5 - G)], where G = specific gravity of the framing lumber. Thisadjustment factor shall not be greater than 1.All panel edges backed with 2-in. nominal or wider framing. Install panelseither horizontally or vertically. Space nails maximum 6 inches o.c. alongintermediate framing members for 3/8-in. and 7/16-in. panels installed onstuds spaced 24 in. o.c. For other conditions and panel thickness, spacenails maximum 12 in. o.c. on intermediate supports.3/8-in. or Plywood Siding 16 o.c. is minimum recommended whenapplied direct to framing as exterior siding.Shears may be increased to values shown for 15/32-in. sheathing withsame nailing provided (1) studs are spaced a maximum of 16 in. o.c., or(2) if panels are applied with long dimension across studs.Framing at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where nails are spaced 2 in. o.c.LoadFramingefgFraming at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where 10d nails having penetration into framingof more than 1-5/8 in. are spaced 3 in. o.c.Values apply to all-veneer plywood Siding panels only. Other PlywoodSiding panels may also qualify on a proprietary basis. Plywood Siding 16o.c. plywood may be 11/32-in., 3/8-in. or thicker. Thickness at point ofnailing on panel edges governs shear values.Notes:The recommended shears presented in Table 4.1A are based on thehistorically used design stresses for shear walls which are listed in Table4.1B multiplied by 1.4. Some building codes, including the 2000International Building Code, have provided for this increase due to thebetter understanding of wind loading. The designer should confirm thatthe increase is applicable under the local code.4SHEAR WALLSBlocking, allpanel edgesShear wall boundaryBlocking, allpanel edgesFoundation resistanceAPA – The Engineered <strong>Wood</strong> Association


SW-16SHEAR WALLSabcTable 4.1B Recommended Shear (pounds per foot) For <strong>Wood</strong> Structural PanelShear Walls with Framing of Douglas fir-Larch or Southern Pine a ForSeismic Loading bPanel GradeStructural IgradesSheathing,PlywoodSiding gand otherstructural-usepanel gradesNail SizeSEISMIC LOADINGPanels Applied OverPanels Applied Direct to Framing1/2 in. or 5/8 in. Gypsum SheathingMinimum Minimum Nail Nail SizeNail Spacing atNail Spacing atThickness (in.) in Framing (in.) Galvanized box) 6 4 3 2 e Galvanized box) 6 4 3 2 eNominal Panel Penetration (common or Panel Edges (in.) (common or Panel Edges (in.)5/16 1-1/4 6d 200 300 390 510 8d 200 300 390 5103/8 230 d 360 d 460 d 610 d7/16 1-3/8 8d 255 d 395 d 505 d 670 d 10d 280 430 550 f 73015/32 280 430 550 73015/32 1-1/2 10d 340 510 665 f 870 - - - -5/16 or 1/4 c 180 270 350 450 180 270 350 4503/8 1-1/4 6d 200 300 390 510 8d 200 300 390 5103/8 220 d 320 d 410 d 530 d7/16 1-3/8 8d 240 d 350 d 450 d 585 d 10d 260 380 490 f 64015/32 260 380 490 64015/32 310 460 600 f 770 - - - - -19/32 1-1/2 10d 340 510 665 f 870 - - - - -PlywoodSiding gand otherNail Size(galvanized casing)Nail Size(galvanized casing)structural-use 5/16 c 1-1/4 6d 140 210 275 360 8d 140 210 275 360panel grades 3/8 1-3/8 8d 160 240 310 410 10d 160 240 310 f 410For framing of other species: (1) Find specific gravity for species offraming lumber in the NDS.(2) Find shear value from table above for nail size of actual grade.(3) Multiply value by the following adjustment factor = [1 - (0.5 - G)],where G = specific gravity of the framing lumber. This adjustment factorshall not be greater than 1.All panel edges backed with 2-in. nominal or wider framing. Install panelseither horizontally or vertically. Space nails maximum 6 inches o.c. alongintermediate framing members for 3/8-in. and 7/16-in. panels installed onstuds spaced 24 in. o.c. For other conditions and panel thickness, spacenails maximum 12 in. o.c. on intermediate supports.3/8-in. or Plywood Siding 16 o.c. is minimum recommended whenapplied direct to framing as exterior siding.defShears may be increased to values shown for 15/32-in. sheathing withsame nailing provided (1) studs are spaced a maximum of 16 in. o.c., or(2) if panels are applied with long dimension across studs.Framing at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where nails are spaced 2 in. o.c.Framing at adjoining panel edges shall be 3-in. nominal or wider, andnails shall be staggered where 10d nails having penetration into framingof more than 1-5/8 in. are spaced 3 in. o.c.Values apply to all-veneer plywood Siding panels only. Other PlywoodSiding panels may also qualify on a proprietary basis. Plywood Siding 16o.c. plywood may be 11/32-in., 3/8-in. or thicker. Thickness at point ofnailing on panel edges governs shear values.gLoadFramingBlocking, allpanel edgesShear wall boundaryBlocking, allpanel edgesFoundation resistanceAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-174.3 Shear Wall DeflectionThe deflection (∆) of a blocked shear wall uniformlynailed throughout may be estimated by use of the followingformula:E = elastic modulus of boundary element (verticalmember at shear wall boundary), psie n= nail deformation (see Table 3.2), in.38vh vh h∆= + + 0.75hen+ d aEAb Gt bwhere:A = area of boundary element cross section(vertical member at shear wall boundary), in. 2b = wall width, ft.d a= deflection due to vertical anchoragedeformation (rotation and slip at tie-downbolts), in.G = modulus of rigidity of wood structural panel(see <strong>Wood</strong> Structural Panel Supplement), psih = wall height, ft.t = effective panel thickness for shear (see <strong>Wood</strong>Structural Panels Supplement), in.v = maximum shear due to design loads at the topof the wall, plf∆ = the calculated deflection, in.4SHEAR WALLSAPA – The Engineered <strong>Wood</strong> Association


SW-18SHEAR WALLSAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-19OTHERCONSIDERATIONS5.1 Drag Struts/Collectors SW-205.2 Chords SW-215.3 Subdiaphragms SW-225.4 Shear Wall Overturning SW-235APA – The Engineered <strong>Wood</strong> Association


SW-20OTHER CONSIDERATIONS5.1 Drag Struts/CollectorsAs defined in Section 2.2, the load path for a boxtypestructure is from the diaphragm into the shear wallsrunning parallel to the direction of the load (i.e., the diaphragmloads the shear walls that support it). Because thediaphragm acts like a long, deep beam, it loads each ofthe supporting shear walls evenly along the length of thewalls. The problem lies with the fact that seldom is eachshear wall solid throughout its full length. Typically a wallcontains windows and doors.The traditional model used to analyze shear walls onlyrecognizes full height wall segments as shear wall segments.This means that at locations with windows or doors,a structural element is needed to distribute the diaphragmshear over the top of the opening and into the full heightsegments adjacent to it. This element is called a drag strut.In residential construction, the double top-plates existingin most stud walls will serve as a drag strut. It maybe necessary to detail the double top plate such that nosplices occur in critical zones. Or, it may be necessary tospecify the use of a tension strap at butt joints to transferthese forces.The maximum force seen by drag struts is generallyequal to the diaphragm design shear in the direction ofthe shear wall multiplied by the distance between the shearwall segments.Drag struts are also used to tie together different partsof an irregularly shaped building.To simplify design, irregularly shaped buildings (suchas “L” or “T” shaped) are typically divided into simplerectangles. When the structure is “reassembled” after theindividual designs have been completed, drag struts areused to provide the necessary continuity between theseindividual segments to insure that the building will act asa whole.The following figures and generalized equations providemethods to calculate the drag strut forces.Figure 5.1 Shear Wall Drag StrutVLL 1L OL 2Figure 5.2 Shear Wall Special CaseDrag StrutVElevationVUnit shear above opening =L= aUnit shear below opening = =LMax. force in drag strut = Lv ovVvba1LUnit shear above opening = V LUnit shear below opening == v aVL−LMax. force in drag strut = greater ofVL LL 0 1 vaLoL1=( L−L ) ( L−L )000=v bL OElevationL 1orVL LL 0 2 vaLoL2=( L−L ) ( L−L )00APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-21WLUnit shear along L = 1 132LWL1 1Force in drag strut from L 3 structure = ( L5)2L33Figure 5.3Diaphragm Drag Strut(Drag strut parallel to loads)L 3WLUnit shear along L = 2 242LWL2 2Force in drag strut from L 4 structure = ( L5)2LL ⎛WLWLMaximum force in drag strut = ⎜ +2 ⎝ L3 L45.2 Chords4Diaphragms are assumed to act like long deep beams.This model assumes that shear forces are accommodatedby the structural-use panel web of the “beam” and thatmoment forces are carried by the tension or compressionforces in the flanges, or chords of the “beam.” Thesechord forces are often assumed to be carried by the doubletop-plate of the supporting perimeter walls. Given themagnitude of the forces involved in most light framedwood construction projects, the double top-plate has sufficientcapacity to resist the tensile and compressive forcesassuming adequate detailing at the splice locations. A problemlies in wall lines that make a continuous diaphragmchord impossible.Because shear walls are little more than blocked, cantilevereddiaphragms, they too develop chord forces andrequire chords. The chords in a shear wall are the doublestuds that are required at the end of each shear wall. Justas the chords need to be continuous in a diaphragm, thechords in a shear wall also need to maintain their continuity.This is accomplished by the tension ties (holddowns)that are required at each end of each shear walland between the chords of stacked shear walls to provideoverturning restraint.45 1 1 2 2⎞⎟⎠L 2Unit Load(wind or seismic)w 1L 1L 5Diaphragm reaction = Lw 2Unit Load(wind or seismic)w 2Diaphragm unit shear = Lw L 2 2Diaphragm moment = wL28Max. chord force = wL 8LChord force at point x, F(x) = wLx22Figure 5.4 Diaphragm Chord ForcesLPlanwx−2L2L222F(x)xL 4L 25OTHER CONSIDERATIONSF(x)Unit Load (wind or seismic) wPlanAPA – The Engineered <strong>Wood</strong> Association


SW-22OTHER CONSIDERATIONS5.3 SubdiaphragmsAfter the San Fernando earthquake of 1971, a numberof code changes were introduced to the UniformBuilding Code that require continuous cross-ties. Theseand other code changes that require minimum attachmentof concrete and masonry walls to wood diaphragms wereproposed and enacted to improve the seismic performanceof large flat-roofed structures using flexible structural-usepanel diaphragms.Since the enactment of these code changes, thesubdiaphragm (also known as the mini-diaphragm) concepthas been recognized and extensively used to providea method of meeting the wall attachment and continuouscross-tie code requirements while minimizing the numberand length of ties required to achieve continuitybetween chords. A formal definition of a subdiaphragmcan be found in the 2000 International Building Code,“SUBDIAPHRAGM portion of a larger wood diaphragmdesigned to anchor and transfer local forces to primarydiaphragm struts and the main diaphragm.”In practice, the subdiaphragm approach is used toconcentrate and transfer local lateral forces to main structuralmembers that support the roof vertical loads. Thesubdiaphragm approach is often an economical solutionto code required cross-ties for the following reasons:• Main structural members are already present• Main structural members generally span the full lengthand width of the buildings with few connectors.• Main structural members are large enough to easily accommodateloads.• Main structural members are large enough to allow“room” for requisite connections.In general, the bigger the roof, the greater the savingsthat can be made by using subdiaphragms.Each subdiaphragm must meet all applicable diaphragmrequirements provided in the applicable buildingcode. As such, each subdiaphragm must have chords, continuoustension ties, and sufficient sheathing thickness andattachment to transfer the shear stresses generated withinthe diaphragm sheathing by the subdiaphragm. In addition,building codes may contain aspect ratios that arespecific to subdiaphragms.The subdiaphragm is actually the same structure asthe main roof diaphragm, thus the subdiaphragm utilizesthe same roof sheathing to transfer shear stresses as themain diaphragm. As such, sheathing nailing and thicknessrequirements of the roof diaphragm may not besufficient for the subdiaphragm requirements. In this case,the subdiaphragm requirements would control and dictatethe roof sheathing and fastening requirements in thesubdiaphragm locations. Fortunately, the portion of themain diaphragm that is utilized as a subdiaphragm is achoice left to the designer; thus the dimensions of thesubdiaphragm can be chosen to minimize potentialdiscontinuities in sheathing thicknesses or nail schedules.Similarly, the roof diaphragm requirements may be morestringent than those for the subdiaphragm. For more informationon the subdiaphragm concept and a designexample, see APA Form EWS Z350 - Lateral ConnectionDetails for Low-Slope Roofs.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-235.4 Shear Wall OverturningOverturning moments result from shear walls beingloaded by horizontal forces. The overturning moments areresisted by force couples. The tension couple is typicallyachieved by a hold-down. Figure 5.5 and the below equationspresent a method for calculating overturning forcesfor a non-load bearing wall. Figure 5.6 and the equationsbelow present a method for calculating overturning forcesfor a load-bearing wall. Overturning forces for load bearingwalls can utilize the dead load as overturning restraint.To effectively resist uplift forces, the holddown restraintsare required to show very little slip relative to the chord(end post). FEMA 303 presents a detailed discussion onthis topic.5Figure 5.5VOverturning Forces(no dead load)LhFigure 5.6Overturning Force(with dead load)OTHER CONSIDERATIONSTCElevationElevationUnit shear = V L= vOverturning force = chord force = = Vh LOverturning moment = PhwLDead load restraining moment* =22wLNet overturning moment = Ph −2Net overturning force - chord force =2wLPh −2L2Ph wL= −L 2* Some building codes require a reduction to the dead load restrainingmoment to insure an appropriate load factor for overturning.APA – The Engineered <strong>Wood</strong> Association


SW-24OTHER CONSIDERATIONSAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-25APPENDICESA.1 Design Example SW-26A.2 Diaphragm and Shear Wall DesignReferencesSW-37AAPA – The Engineered <strong>Wood</strong> Association


SW-26APPENDICESA.1 Design ExampleBasic Design<strong>Wood</strong> structural panel diaphragms and shear walls inone-story building seismic and wind loadings. 25 psf roofdesign snow loadGiven:In Figure A.1, building dimensions and openings asshown. Exterior walls consist of light-framed woodsheathedshear walls. All framing members are hem-firlumber unless noted otherwise. The floor is framed with11-7/8-inch I-joists and interior post-and-beam system.Interior posts are supported by pad footing and exteriorwalls are supported by continuous concrete wall footings.Determine:1. Seismic load and wind load on roof diaphragmalong each direction (determined in another analysis).2. Design unit shear in roof diaphragm along each direction.3. Roof structural panel layout and fastener schedule.4. Calculate chord forces.5. Connections between roof diaphragm and walls.6. Diaphragm deflection (N-S direction only).7. Shear in shear walls and shear panel fastener schedule(East and West walls only).8. Drag strut forces and drag strut connections (Eastand West walls only).9. Hold-down forces and hold-down connections (Eastand West walls only).Figure A.1 Building Plan View andTypical Section of ExteriorWallsb = 110'Plan ViewN45'45'20' x 20' overhead doorTypical Section of Exterior Walls2'24'L = 240'Roof diaphragm2X8 Hem-fir stud wall15/32" Sheathing, Exposure I20' high windows70'40'Step 1.Seismic Load and Wind Load on Roof Diaphragm Along EachDirectionDetailed seismic force and wind force calculations arebeyond the scope of this Supplement.For this example, assume the following:V seismic N-SV seismic E-WV wind N-S= 53,768 lb.= 37,752 lb.= 61,519 lb.V wind E-W= 28,196 lb.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-27Step 2.Design Unit Shear in Roof Diaphragm Along Each DirectionThe diaphragm is considered flexible if its maximumlateral deformation is more than two times the averageshear wall deflection of the associated story. Without furthercalculations, assume a flexible diaphragm here:Total DiaphragmDesign Load 1Diaphragm DesignUnit Shear (lb./ft.)N-S V seismic N-S = 53,768 lb. ÷ 2 ÷ 110 ft. = 250V wind N-S = 61,519 lb. ÷ 2 ÷ 110 ft. = 280E-W V seismic E-W = 37,752 lb. ÷ 2 ÷ 240 ft. = 79V wind E-W = 28,196 lb. ÷ 2 ÷ 240 ft. = 591Determined in Step 1, these numbers came from a specific design with certain assumptions.Step 3.Roof Structural Panel Layout and Fastener ScheduleARoof sheathing thickness has been previously selectedbased on snow load requirements.Figure A.2 Roof Framing and Sheathing Layout (Northwest Quadrant)APPENDICESNC.L.3'x8' panels (first row along the 240' exterior wall)7'-0"8'-0"27'-6"8'-0"8'-0"8'-0"8'-0"27'-6"C.L.8'-0"30'-0" 30'-0" 30'-0" 30'-0"4'x8' panels (typ.)All framing members to be Hem-fir and sheathing to be 15/32" wood structural panels with 8d common nails.APA – The Engineered <strong>Wood</strong> Association


SW-28APPENDICESBased upon the sheathing panel layout as shown, thediaphragm is Case 1 for the N-S direction and Case 3 forthe E-W direction. The shear capacities for wind loadingper Table 3.1A and seismic load per Table 3.1B (in parentheses)are:PanelGradeRatedSheathingCommonNailMin.Penetrationin Framing(in.)Min.PanelThickness(in.)Min.FramingMemberWidth(in.)8d 1-3/8 15/32 2 380x.93Blocked Diaphragm(lb./ft.)Nail SpacingBoundary/Other EdgesUnblockedDiaphragm(lb./ft.)6/6 4/6 2.5/4 2/3 Case 1 Case 2∼6(270) 505 (360) 740 (530) 840 (600) 335 (240) 250x.93 x.93 x .93 x .93 x .93 x .93 x .93 x .93 x .93 x .93Shear Capacities for Hem-Fir Framing Members: 353 (251) 470 (335) 688 (493) 781 (558) 311 (223) 233 (167)Note that the table values are only valid for framing members (including blocking) with specific gravity greater than 0.49. For framing members withspecific gravity greater than or equal to 0.42 but less than 0.49 such as Hem-fir (specific gravity = 0.43), a factor of (1-(0.50 - 0.43)) = 0.93 must beapplied to the table values.(180)x .93• N-S Direction: (Wind)Below is the shear distribution along the length of the building. Plotting the shear distribution aids in optimizing thenailing (and blocking) along the length of the diaphragm. For a Case 1 unblocked diaphragm, the maximum shearcapacity for wind is 311 plf. As 311 plf is greater than 280 plf, blocking is not required for wind in this direction.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-29A• N-S Direction: (Seismic)250 =223120 120 X X = 13′ Say 16′1− 1APPENDICES• E-W Direction: (Wind)59 lb./ft. < 233 lb./ft. Unblocked Case 3 o.k.• E-W Direction: (Seismic)79 lb./ft. < 167 lb./ft. Unblocked Case 3 o.k.APA – The Engineered <strong>Wood</strong> Association


SW-30APPENDICESRoof Diaphragm Nailing and Blocking PlanStep 4.Calculate Chord ForcesThe chord forces must be calculated to size the chordsand design the splices. The chord and splice design is beyondthe scope of this Supplement, but the chord forcesare shown below.Since the chord must be continuous, it must be spliced,and at least 2 layers of 2x lumber will be required. Forthis building, use double 2x8 top plates as the diaphragmchord. For high tension forces, it is usually most efficientto splice the chord members with metal side plates (topand bottom) and bolts acting in double shear. For low chordforces, splicing can often be achieved by nailing.TotalDesign Load(lb.)ChordForce (lb.)At CenterlineLMoment(ft.-lb.)bN-S V seismic N-S = 53,768 x 240' ÷ 8 = 1,613,040 ÷ 110' = 14,664V wind N-S = 61,519 x 240' ÷ 8 = 1,845,570 ÷ 110' = 16,778E-W V seismic E-W = 37,752 x 110' ÷ 8 = 519,090 ÷ 240' = 2,163V wind E-W = 28,196 x 110' ÷ 8 = 387,695 ÷ 240' = 1,615APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-31Step 5.Connections Between Roof Diaphragm and Wallsa. Wall Anchorage to Prevent WallsFrom Moving Away From Diaphragm:From a more complete wind analysis, the followingwind forces were calculated:FW = 249.2 lb./ft. Œ outward typical= 312.2 lb./ft. outward within 10' of building cornersA similar procedure should be conducted for seismic,but is beyond the scope of this example.Use metal angles to anchor the top plate to either therafters (North and South walls) or the blocking betweenthe rafters (East and West walls) spaced 2'-0" o.c.Note: The listed capacities in most manufacturers’catalogs are for Douglas fir-Larch only and the listed typesof connections may not be identical to the installation herewhich is parallel to grain of rafters (or blocking) and perpendicularto grain of top plates. If not tabulated, designvalues must be obtained from the manufacturer.Œ 249.2 lb./ft. x 2' = 498.4 lb./connection312.2 lb./ft. x 2' = 624.4 lb./connectionConnection ⎦ ⎣ Required connectionspacing lateral capacityNote: To minimize the possibility of field installationerrors, it would be common practice to standardize on oneitem with a capacity of at least 625 lb./connection for allwall anchorage connections.AAPPENDICESAPA – The Engineered <strong>Wood</strong> Association


SW-32APPENDICESb. Wall to Diaphragm Connection:Diaphragm Design Unit Shear:V wind N-S= 280 lb./ft. for East and West WallsVseismic E-W= 79 lb./ft. for North and South WallsEast and West Walls - Hem-fir 2x blocking to Douglas fir-Larch 2x top plates (in a more complete design example itwas determined that Douglas fir-Larch top plates were required to resist chord forces):V 16d Common toenail= 113 lb. x 0.83 x 1.6 = 150 lb./fastenerLoad Duration FactorToenail Factor (C tn) per NDSNDS Table 11N for t s= 1", Hem-fir280 lb./ft. ÷ 150 lb./fastener = 1.9 fasteners/ft. ∴ Provide 16d common toenails spaced 6" o.c. or use appropriate code-approvedmetal framing devices.North and South Walls - Hem-fir 2x blocking to Hem-fir 2x top plates:V 16d Common toenail= 113 lb. x 0.83 x 1.6 = 150 lb./fastenerLoad Duration FactorToenail Factor (C tn) per NDSNDS Table 11N for t s= 1"79 lb./ft. ÷ 150 lb./fastener = 0.5 fasteners/ft. ∴ Provide 16d common toenails spaced no greater than 24" o.c.Wall to Diaphragm Connection DetailParapet bracing (not designed here)Diaphragm boundary nailingToenail to transfer in-plane shearWall anchorageAPA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-33Step 6.Diaphragm Deflection (N-S Direction)35vLvL( DXc)∆ 0.188Diaphragm= + + Len+ ∑8Eab 4Gt 2bFor N-S direction:v = 61,519 lb ÷ 2 ÷ 110' = 280 lb./ft.L = 240 ft.E = 1,700,000 psiA = 21.75 sp. in.(for Douglas fir-Larch No. 1 2x8s)(cross-sectional area for (2) 2x8s)b = 110 ft.G = 90,000 psit = 0.298 in.(for Sheathing grade)(for 15/32" unsanded panels)∆ Diaphragm N-Sv 8d= 280 ÷ 2 = 140 lb./nail (8d spaced 6" o.c., at interior panel edges near East and West boundary)e n= 0.0338 x 1.2 = 0.041 (Table 3.2; 20% increase for non-Structural I)= ∆ bending+ ∆ shear+ ∆ nail slip+ ∆ chord splice slipA35vLvL( DXc)∆ 0.188Diaphragm= + + Len+ ∑8EAb 4Gt 2b+ + + + += + + 0.188(240) (0.041) +8(1,700, 000) (21.75) (110) 4(90, 000) (0.298) 2(110)35(280)(240) (280)(240) 4(1/32)(20 40 60 80 100) 2(1/32)(120)APPENDICES= 0.595" + 0.626" + 1.832" + 0.204"= 3.257"Note: The average chord splice slip on each side of the splice, is assumed to be 1/32 inch (which is half of the 1/16 inch allowable oversize forthe bolt hole, for both tension and compression chords) and these splices are assumed to be located at 20 feet on center along the North andSouth walls.Since the base of the wall is essentially a pinned connection, the diaphragm deflection causes little, if any, out-of-plane bending of the wall. Thecalculated deflection at the top of the wall should be used to evaluate potential vertical instability caused by horizontal deformation (P∆effects). If necessary, diaphragm deflection can be reduced in a number of ways, such as additional nailing, the use of Structural I panels, etc.APA – The Engineered <strong>Wood</strong> Association


SW-34APPENDICESStep 7. Shear Panel Fastener Schedule (East and West Walls Only)Allowable Shear from Tables 4.1A and 4.1BPanelgradeCommonNailMin. Shear Wall Panels Nail SpacingPenetration at Panel Edges (lb./ft.)in Framing(in.)Panel t(in.)6"4" 3" 2"Rated Sheathing 8d 1-3/8 15/32 365 (260) 530 (380) 685 (490) 895 (640)x .93 x .93 x .93 x .93 x .93 x .93 x .93 x .93Shear Capacities for Hem-fir studs: 340 (242) 493 (353) 637 (456) 832 (595)Note: Table values are only good for studs and blocking with specific gravity greater than 0.49. For studs and blocking with specific gravity greater than or equal to 0.42 but less than 0.49 such as Hem-fir(specific gravity = 0.43), a factor of (1 - (0.50 - 0.43)) = 0.93 is used to multiply the table values by.Design Wall for Wind Load Design Wall for Seismic LoadTotal shear to be resisted byEast exterior wall= Total shear to be resisted by West exteriorwallTotal shear wall length in Eastexterior wall = 70 ft.Total shear wall length in Westexterior wall = 45 ft. + 45 ft. = 90 ft.Total shear to be resisted byEast exterior wall= 61,519 lb. ÷ 2 = 53,768 lb. ÷ 2= 30,760 lb. = 26,884 lb.= Total shear to be resisted by Westexterior wallTotal shear wall length inEast exterior wall = 70 ft.Total shear wall length inWest exterior wall = 45 ft. + 45 ft. = 90 ft.Unit shear in East wall = 30,760 lb. ÷ 70 ft. Unit shear in East wall = 26,884 lb. ÷ 70 ft.= 439 lb./ft. = 384 lb./ft.= ∴Use 15/32" sheathing with 8d common nailsspaced 4 in. o.c. at all edges, 6 in. o.c. fieldwhich is good for 493 lb./ft.= ∴Use 15/32" sheathing with 8d common nailsspaced 3 in. o.c. at all edges, 6 in. o.c. fieldwhich is good for 456 lb./ft.Unit shear in West wall = 30,760 lb. ÷ 90 ft. Unit shear in West wall = 26,884 lb. ÷ 90 ft.= 342 lb./ft. = 299 lb./ft.∴Use 15/32" sheathing with 8d common nailsspaced 4 in. o.c. at all edges, 6 in. o.c. fieldwhich is good for 493 lb./ft.∴Use 15/32" sheathing with 8d common nailsspaced 4 in. o.c. at all edges, 6 in. o.c. fieldwhich is good for 353 lb./ft.APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-35Step 8.Drag Strut Forces and Drag Connections (East & West WallsOnly)Drag struts are required where there are openings inthe shear walls to distribute forces from the diaphragm tothe shear walls. The force in the drag strut equals the differencebetween the applied diaphragm shear and theresisting wall shear.East WallWest WallAMaximum force in Drag Strut:APPENDICES280 x 40 = 11,200 lb.Drag force is maximum of:VLLa 0 1L−L =0(280)(20)(45)110 −20= 2,800 lb. for two 2x8sVLLa 0 2L−L =0(280)(20)(45)110 −20= 2,800 lb. for two 2x8s= 1,400 lb. per 2x8Given that the maximum tensile capacity of a single2x8 wall plate is 8,500 lb., this is the maximum capacityat the splice of a double top plate of 2x8s. If the tensilestress exceeds 8,500 lb. at a splice location, then an additional(a third) 2x8 plate must be used. This will increasethe allowable tensile capacity at the splice to 17,000 lb.For this example, the following is used to determine thelocation along the wall plate where three 2x8s are required.On the South end of the East wall:8,500 11,200= , x = 30' ft.x 40On the North end of the East wall:8,500 11,200= , x = 53' ft.x 70In lieu of multiple 2x8s to provide continuity betweenwall plates, framing anchors/straps may be used. A single2x8 with straps at butt joints may be used above, withdouble 2x8s required only when the axial load is greaterthan 8,500 lb. and less than 17,000 lb. Where 2x8s aredoubled up, straps are required at splice locations.Be sure there is no more than one butt joint at each splice location.Space joints at least twice length of splice (or about 5 feet minimum).APA – The Engineered <strong>Wood</strong> Association


SW-36APPENDICESStep 9.Hold-down Design for East and West WallsLOAD ON WALLS:Total Diaphragm Load to beResisted by Lateral SystemDistributed Lateral LoadAlong East and West WallsV seismic = 53,768 lb. ÷ 2 = 26,884 lb.V wind = 61,519 lb. ÷ 2 = 30,760 lb.LATERAL LOADS:East wall (70 ft.)West wall (45 ft.)SeismicWindSeismicWind==At RoofLevel26,884 lb.30,760 lb.26,884 lb.30,760 lb.Contribution FromWall WeightAt Mid-Story Level0.2 x (8 psf x 70'x26') = 2,912 lb.0.2 x (8 psf x 45'x26') = 1,872 lb.OVERTURNING MOMENTS:East wall (70 ft.)West wall (45 ft.)SeismicWindSeismicWindDue to DistributedLateral Loads26,884 lb. x 24'30,760 lb. x 24'26,884 lb. x 24'30,760 lb. x 24'Due toSelf-WeightTotalOverturning+ 2,912 lb. x 13' = 683,072 ft-lb.738,240 ft-lb.+ 1,872 lb. x 13' = 669,552 ft-lb.738,840 ft-lb.RESISTING LOADS:East wall Roof(70 ft.) WallHeaderWest wall(45 ft.)RoofWallHeader10 psf x 15'8 psf x 26'10 psf x 15'10 psf x 15'8 psf x 26'10 psf x 15'==x==x150 lb./ft.208 lb./ft.40'150 lb./ft.208 lb./ft.20'x 70' =x 70' =÷ 2 =x 45' =x 45' =÷ 2 =10,500 lb.14,560 lb.3,000 lb.6,750 lb.9,360 lb.1,500 lb.at centerat centerat int. wall endat centerat centerat int. wall endRESISTING MOMENTS:East wall (70 ft.) w/o headerheaderWest wall (45 ft.) w/o headerheader(10,500 lb. + 14,560 lb.) x 35'3,000 lb. x 70'(6,750 lb. + 9,360 lb.) x 22.5'1,500 lb. x 45'= 877,100 ft.-lb.210,000 ft.-lb.= 362, 475 ft.-lb.67,500 ft.-lb.NET UPLIFT AT THE ENDS OF SHEAR WALLS AND HOLD-DOWN REQUIREMENTS:Gross Overturning(ft.-lb.)ReductionFactorDLGrossResisting(ft.-lb.)DesignResisting(ft.-lb.) (lb.)East wall(70 ft.)West wall(45 ft.)SeismicWindSeismicWindinteriorcornerinteriorcornerinteriorcornerinteriorcorner683,072683,072738,240738,240669,552669,552738,240738,2400.85 x0.85 x2/3 x2/3 x0.85 x0.85 x2/3 x2/3 x1,087,100877,1001,087,100877,100429,975362,475429,975362,475= 924,035= 745,535= 724,733= 584,733= 369,479= 308,104= 286,650= 241,650Net ResistingN/A ÷ 70'N/A ÷ 70'13,507 ÷ 70'153,507 ÷ 70'300,073 ÷ 45'361,448 ÷ 45'451,590 ÷ 45'496,590 ÷ 45'NetUplift(lb.)N/AN/A1932,1936,6688,03210,03511,035APA – The Engineered <strong>Wood</strong> Association


<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTSW-37A.2 Diaphragm and Shear Wall Design ReferencesAPA Publicationsa. APA Design/Construction Guide - Diaphragms and ShearWalls. Form L350. APA - The Engineered <strong>Wood</strong> Association,Tacoma, Washington, 1997.b. Lateral Connection Details for Low-Slope Roofs. FormEWS Z350, 1999.c. Plywood Design Specification. Form Y510, 1997.d. Tissell, John R. and James R. Elliot. Plywood Diaphragms.Research Report 138 (including Application Notes forAppendices A-B-C-E), 1997.e. Tissell, John R. Structural Panel Shear Walls. ResearchReport 154, 1993.Other Publications1. 1997 UBC Earthquake Regulations - Overview and Perspective.Seminar 109. International Conference ofBuilding Officials, Whittier, California, 1998.2. Applied Technology <strong>Council</strong>. Guidelines for the Designof Horizontal <strong>Wood</strong> Diaphragms. Report No. ATC-7. 184pp. Applied Technology <strong>Council</strong>, Suite 550, 555 Twin DolphinDrive, Redwood City, California, 1981.3. Breyer, Donald E., Kenneth J. Fridley and Kelly E. Cobeen.Design of <strong>Wood</strong> Structures <strong>ASD</strong>, 4th edition, McGraw-HillBook Co., New York, New York, 1999.4. Department of the Army, Navy and Air Force. SeismicDesign for Buildings. TM 5-809-10; NAV FAC P-355;AFM 88-3, Chapter 13. (“Tri-Services” Manual). U.S.Government Printing Office, Washington, DC, 1992.5. Duquette, David W. Timber Solutions Manual. ArgulusPublishing, New York, New York, 1997.6. Faherty, Keith F. and Thomas G. Williamson, Editor, <strong>Wood</strong>Engineering and Construction Handbook. Third edition.McGraw-Hill Book Co., New York, New York, 1999.7. Forest Products Laboratory. <strong>Wood</strong>: Engineering DesignConcepts. Materials Education <strong>Council</strong>, 110 Materials ResearchLaboratory, The Pennsylvania State University,University Park, Pennsylvania, 1986.8. Guidelines for <strong>Wood</strong> Diaphragms and Shear Walls. StructuralEngineers Association of California, Sacramento,California, 1997.9. Load Path and Continuity in “Engineered” <strong>Wood</strong> - FrameBuildings. Seminar workbook. International Conferenceof Building Officials, Whittier, California, 1998.10. Minimum Design Loads for Buildings and Other Structures.ASCE 7-98. <strong>American</strong> Society of Civil Engineers,New York, New York, 1998.11. National Institute of Standards and Technology. VoluntaryProduct Standard PS 1-95 for Construction and IndustrialPlywood. Office of Standards Services. Washington, DC,1995.12. National Institute of Standards and Technology. VoluntaryProduct Standard PS 2-92 Performance Standard for<strong>Wood</strong>-Based Structural-Use Panels. Office of StandardsServices. Washington, DC, 1992.13. NEHRP Commentary on the Guidelines for the SeismicRehabilitation of Buildings. FEMA-274. Federal EmergencyManagement Agency (FEMA), Washington, DC,1997.14. NEHRP Guidelines for the Seismic Rehabilitation of Buildings.FEMA-273. Federal Emergency Management Agency(FEMA), Washington, DC, 1997.15. NEHRP Recommended Provisions for Seismic Regulationsfor New Buildings and Other Structures, Part 1 - Provisions;FEMA-302. Federal Emergency ManagementAgency (FEMA), Washington, DC, 1998.16. NEHRP Recommended Provisions for Seismic Regulationsfor New Buildings and Other Structures, Part 2 - Commentary.FEMA-303. Federal Emergency ManagementAgency (FEMA), Washington, DC, 1998.17. Recommended Lateral Force Requirements and Commentary.Sixth Edition. Structural Engineers Association ofCalifornia, Sacramento, California, 1996.18. SEAOC Seismic Design Manual. Volume I - Code ApplicationExamples; Volume II - Building Design Examples.Structural Engineers Association of California, Sacramento,California, (In Process, 1998).19. Seismic Detailing Examples for Engineered Light-FrameTimber Construction. Structural Engineers Association ofCalifornia, Sacramento, California, 1997.20. Seismic Retrofit Training for Building Contractors and Inspectors.Seminar workbook. Federal EmergencyManagement Agency (FEMA), Washington, DC, (In Process,1998).21. Stalnaker, Judith J. and Ernest C. Harris. Structural Designin <strong>Wood</strong>, Van Nostrand Reinhold, New York, NewYork, 1997.22. Timber Construction Manual. John Wiley and Sons, Inc.,New York, New York, 1994.23. Western <strong>Wood</strong> Products Association. Western <strong>Wood</strong>s UseBook. Western <strong>Wood</strong> Products Association, 1500 YeonBuilding, Portland, Oregon, 1996.24. Williams, Alan. Seismic Design of Buildings and Bridges.Second Edition. Engineering Press, Austin, Texas, 1998.25. <strong>Wood</strong> Frame Construction Manual for One- and Two-FamilyDwellings (WFCM). <strong>American</strong> Forest & PaperAssociation, Washington, DC, <strong>2001</strong>.26. International Building Code, International Code <strong>Council</strong>,Falls Church, Virginia, 2000.AAPPENDICESAPA – The Engineered <strong>Wood</strong> Association


SW-38<strong>ASD</strong> WOOD STRUCTURAL PANEL SHEAR WALL AND DIAPHRAGM SUPPLEMENTAPA – The Engineered <strong>Wood</strong> Association

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!