03.06.2015 Views

Section 1.1 Section 1.2 Section 1.3 - The Student Room

Section 1.1 Section 1.2 Section 1.3 - The Student Room

Section 1.1 Section 1.2 Section 1.3 - The Student Room

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SECTION 1<br />

<strong>Section</strong> <strong>1.1</strong><br />

1 a 2.0 b 5.3 c <strong>1.3</strong> d 10.0 e 5.0<br />

f 50.2<br />

2 a 144 b Neodymium<br />

3<br />

Mass of Amount of Number of<br />

sample/g sample/mol atoms<br />

– – 6.02 ¥ 10 23<br />

– 2.00 –<br />

56.0 – 6.02 ¥ 10 23<br />

80.0 – 12.04 ¥ 10 23<br />

63.5 0.50 –<br />

4 a 1 b 0.5 c 0.25 d 0.1 e 0.25<br />

f 0.5 g 0.25 h 0.1 i 2 j 5<br />

Atoms of copper are approximately twice as heavy as<br />

atoms of sulphur. Thus the same mass contains only half<br />

as many moles of copper as it does of sulphur.<br />

5 Black copper(II) oxide (CuO) contains equal numbers of<br />

copper and oxygen particles (Cu 2+ and O 2– ions). Red<br />

copper(I) oxide (Cu 2<br />

O) contains twice as many copper<br />

particles as oxygen particles (Cu + and O 2– ions).<br />

6 a <strong>The</strong> mass of the sample is needed to be sure that<br />

iodine and oxygen are the only elements in the<br />

compound.<br />

b <strong>The</strong> relative number of moles of iodine and oxygen.<br />

c To change the relative number of moles into the ratio<br />

of moles of oxygen relative to 1 mole of iodine.<br />

d In order to produce a ratio involving whole numbers<br />

e I 2<br />

O 5<br />

, I 4<br />

O 10<br />

, I 6<br />

O 15<br />

, etc.<br />

f <strong>The</strong> molar mass is needed.<br />

7aH 2<br />

O b CO c CS 2<br />

d CH 4<br />

e Fe 2<br />

O 3<br />

f CuO g CaO h SO 2<br />

i MgH 2<br />

8a92.3 b 7.7 c CH<br />

9aSiH 4<br />

b CO c CO 2<br />

d MgO e C 2<br />

H 6<br />

O<br />

f CaCO 3<br />

g HClO 3<br />

h NaHCO 3<br />

10 a CH 2<br />

b P 2<br />

O 3<br />

c AlCl 3<br />

d BH 3<br />

e C 4<br />

H 5<br />

f C 3<br />

H 4<br />

g CH 2<br />

O h C 12<br />

H 22<br />

O 11<br />

11 a H 2<br />

O 2<br />

b CO c C 2<br />

H 2<br />

d C 6<br />

H 6<br />

e C 6<br />

H 12<br />

12 a 2 b 11 c 2 d 10 e 2<br />

13 a 30 b 78 c 130 d 100 e 158<br />

f 242 g 132<br />

14 a 2 b 4 c 10 d 0.02 e 5<br />

f 1 ¥ 10 6<br />

<strong>Section</strong> <strong>1.2</strong><br />

1 a 2Mg + O 2<br />

Æ 2MgO<br />

b 2H 2<br />

+ O 2<br />

Æ 2H 2<br />

O<br />

c 2Fe + 3Cl 2<br />

Æ 2FeCl 3<br />

d CaO + 2HNO 3<br />

Æ Ca(NO 3<br />

) 2<br />

+ H 2<br />

O<br />

e CaCO 3<br />

+ 2HCl Æ CaCl 2<br />

+ CO 2<br />

+ H 2<br />

O<br />

f H 2<br />

SO 4<br />

+ 2NaOH Æ Na 2<br />

SO 4<br />

+ 2H 2<br />

O<br />

g 2HCl + Ca(OH) 2<br />

Æ CaCl 2<br />

+ 2H 2<br />

O<br />

h 2Na + 2H 2<br />

O Æ 2NaOH + H 2<br />

i CH 4<br />

+ 2O 2<br />

Æ CO 2<br />

+ 2H 2<br />

O<br />

j 2CH 3<br />

OH + 3O 2<br />

Æ 2CO 2<br />

+ 4H 2<br />

O<br />

2 a 2Ca + O 2<br />

Æ 2CaO<br />

b Ca + 2H 2<br />

O Æ Ca(OH) 2<br />

+ H 2<br />

c C + CO 2<br />

Æ 2CO<br />

d N 2<br />

+ 3H 2<br />

Æ 2NH 3<br />

e C 3<br />

H 8<br />

+ 5O 2<br />

Æ 3CO 2<br />

+ 4H 2<br />

O<br />

3 a Zn(s) + H 2<br />

SO 4<br />

(aq) Æ ZnSO 4<br />

(aq) + H 2<br />

(g)<br />

b Mg(s) + 2HCl(aq) Æ MgCl 2<br />

(aq) + H 2<br />

(g)<br />

c MgCO 3<br />

(s) Æ MgO(s) + CO 2<br />

(g)<br />

d 2C 2<br />

H 6<br />

(g) + 7O 2<br />

(g) Æ 4CO 2<br />

(g) + 6H 2<br />

O(l)<br />

e BaO(s) + 2HCl(aq) Æ BaCl 2<br />

(aq) + H 2<br />

O(l)<br />

<strong>Section</strong> <strong>1.3</strong><br />

1 a All the magnesium reacts.<br />

b So that we know the number of moles of each<br />

substance involved in the reaction.<br />

c Mass of 1 mole of magnesium oxide.<br />

d Because 2 moles of magnesium oxide are produced.<br />

e To find the mass of magnesium oxide produced from<br />

1 g of magnesium.<br />

f 80/48 would be multiplied by 50 rather than by 6.<br />

2 20 g<br />

3 a 2.8 g b 3.1 g c 2.5 g<br />

4 3667 g (3.667 kg)<br />

5 a C 8<br />

H 18<br />

+ 12.5O 2<br />

Æ 8CO 2<br />

+ 9H 2<br />

O<br />

b 175 kg<br />

c 154 kg<br />

6 a 56 tonnes<br />

b S + O 2<br />

Æ SO 2<br />

c 64 g<br />

d 64 tonnes<br />

e 2 tonnes<br />

f 112 tonnes<br />

7 a 217 tonnes<br />

b 0.58 tonnes<br />

8 a Fe 2<br />

O 3<br />

+ 3CO Æ 2Fe + 3CO 2<br />

b 160 g<br />

c 1.43 g<br />

d 1.43 tonnes<br />

e 2.86 tonnes<br />

f 11.9 tonnes<br />

162


SECTION 2<br />

<strong>Section</strong> 1.4<br />

1 <strong>The</strong> particles in a gas are much further apart than in a<br />

liquid or solid. In a gas, therefore, the volume of the<br />

particles is a very small part of the total volume and does<br />

not significantly affect it. In a liquid or solid the particles<br />

are close together and their volumes must be taken into<br />

account when deciding on the total volume.<br />

2 a CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b Volume of oxygen is twice that of methane.<br />

c <strong>The</strong> volume of water vapour formed is twice the<br />

volume of methane burnt.<br />

<strong>Section</strong> 1.5<br />

1 a i 0.02 dm 3 ii 1.5 dm 3<br />

b i 220 000 cm 3 ii 1600 cm 3<br />

2 <strong>The</strong>re is 0.4 mole of sodium hydroxide dissolved in every<br />

dm 3 of the solution.<br />

3 a 0.5 b 0.4 c 1 d 0.2 e 0.05 f 0.002<br />

4 a 2 b 2 c 5 d 0.2 e 4 f 0.2<br />

5 a 0.25 b 0.2 c 5 d 0.4 e 0.5 f 0.125<br />

6 a 40 g b 4g c 20 g d 0.4 g e 800 g f 1g<br />

7 a 117 g b 3.95 g c 1.4 g d 9930 g<br />

e 0.0024 g f 2.385 g g 0.0126 g h 0.1825 g<br />

i 25 .0 g j 13.9 g<br />

8<br />

Concentration/g dm –3 Concentration/mol dm –3<br />

– 5.15<br />

– 1.51<br />

31.5 –<br />

13.4 –<br />

– 0.174<br />

– 0.065<br />

0.6 –<br />

3 a H 2<br />

(g) + Cl 2<br />

(g) Æ 2HCl(g)<br />

b Volumes of hydrogen and chlorine are the same.<br />

Volume of hydrogen chloride is twice the volume of<br />

hydrogen or chlorine.<br />

4 a 2H 2<br />

(g) + O 2<br />

(g) Æ 2H 2<br />

O(l) b 5cm 3<br />

5 a C 3<br />

H 8<br />

(g) + 5O 2<br />

(g) Æ 3CO 2<br />

(g) + 4H 2<br />

O(l)<br />

b 500 cm 3 c 300 cm 3<br />

6 a 3 b 3 c 4 d 2 e C 3<br />

H 4<br />

7 0.414 dm 3 (414 cm 3 )<br />

8 a 0.25 b 2 c 48 dm 3 d 240 dm 3 e 30 dm 3<br />

9 Na + Cl –<br />

Na + 2–<br />

CO 3<br />

Ag + –<br />

NO 3<br />

Mg 2+ Br –<br />

H + SO 2– 4<br />

(or HSO – 4<br />

)<br />

10 a 1moldm –3 b 0.02 mol dm –3<br />

c 0.3 mol dm –3 d 0.4 mol dm –3<br />

11 a 0.0019 mol b 0.0019 mol<br />

c 0.076 mol d 0.076 mol dm –3 or 2.77 g dm –3<br />

12 a 0.0022 mol b 0.0044 mol<br />

c 0.176 mol d 0.176 mol dm –3<br />

13 a 7.75 ¥ 10 –4 (0.000 775) mol dm –3 b 0.0574 g dm –3<br />

14 a 0.0025 b 0.0025 c 25 cm 3<br />

15 a 0.02 mol b 0.04 mol c 1dm 3 d 500 cm 3<br />

e 20 cm 3<br />

<strong>Section</strong> 2.1<br />

1 3 a A r<br />

(Br) = 80.0<br />

Isotope Symbol Atomic Mass Number of<br />

b A r<br />

(Ca) = 40.1<br />

number number neutrons<br />

2<br />

carbon-12<br />

12<br />

6<br />

C 6 12 6<br />

carbon-13<br />

13<br />

6<br />

C 6 13 7<br />

oxygen-16<br />

16<br />

8<br />

O 8 16 8<br />

strontium-90<br />

90<br />

38<br />

Sr 38 90 52<br />

131<br />

iodine-131<br />

53I 53 131 78<br />

123<br />

iodine-123<br />

53I 53 123 70<br />

a<br />

b<br />

c<br />

d<br />

Protons Neutrons Electrons<br />

35 44 35<br />

35 46 35<br />

17 18 17<br />

17 20 17<br />

4 a 100 – x<br />

b 193x<br />

c 191(100 – x)<br />

d 193x + 191(100 – x)<br />

e [193x + 191(100 – x)] ∏ 100<br />

f 60% iridium-193, 40% iridium-191<br />

5 37.5% antimony-123, 62.5% antimony-121<br />

6 23.5% rubidium-87<br />

163


SECTION 2<br />

<strong>Section</strong> 2.2<br />

1 a 238 234<br />

94Pu Æ<br />

92 U + 4 2 He<br />

b 221 217<br />

87Fr Æ<br />

85 At + 4 2 He<br />

c 230 226<br />

90Th Æ<br />

88 Ra + 4 2 He<br />

2 a<br />

38 90 90<br />

Sr Æ<br />

39 Y + –1 0e<br />

b 131<br />

53 I Æ 131<br />

54 Xe + –1 0e<br />

c 231 231<br />

90Th Æ<br />

91 Pa + –1 0e<br />

3 a<br />

3 7Li + 1 1 p Æ 24 2 He<br />

b 14 7 N + 0 1n Æ 14 6 C + 1 1 p<br />

<strong>Section</strong> 2.3<br />

1 No. Isotopes have the same number of protons and the<br />

same number of electrons.<br />

2<br />

core<br />

nucleus plus<br />

filled shell 1<br />

3 a 2.1 b 2.8.5 c 2.8.8.2<br />

4 Electronic shell configuration Group Period<br />

– 3 2<br />

– 6 3<br />

2.4 – –<br />

2.8.4 – –<br />

– 1 2<br />

– 1 3<br />

– 1 4<br />

5 Elements A, C and E are in the same group.<br />

<strong>Section</strong> 2.4<br />

outer shell<br />

with seven electrons<br />

1 s block: metals<br />

p block: mixture of metals and non-metals<br />

d block: metals<br />

f block: metals<br />

2 a <strong>The</strong> electron is in the first electron shell.<br />

b <strong>The</strong> electron is in an s type orbital.<br />

c <strong>The</strong>re are two electrons in this orbital.<br />

3 a s block b p block<br />

c p block<br />

d f block<br />

e d block<br />

f p block<br />

g f block<br />

h s block<br />

c 14 7 N + 2 4He Æ 17 8 O + 1 1 p<br />

d<br />

13 27Al<br />

+ 2 4 30<br />

He Æ<br />

15 P + 0 1n<br />

4 226<br />

88<br />

222 218<br />

Ra Æ<br />

86Rn Æ<br />

a a 84 a<br />

Po Æ<br />

214<br />

82 Pb<br />

5 232<br />

90 Th – 64 2He – 4–1 0 e Æ 208<br />

82 Pb<br />

6 a 5g b 0.625 g c 4.5 ¥ 10 –4 s d 0.039 g<br />

7 b Approx. 4.3 g<br />

c Approx. 185 days<br />

6 a X is in Group 1.<br />

b Y is in Group 0.<br />

Group 1 elements have a single electron in their outer<br />

shell, which they lose readily. Noble gases in Group 0<br />

have 2 or 8 electrons in their outer shell and it is<br />

difficult to remove one of these electrons.<br />

7 a lst ionisation Ca(g) Æ Ca + (g) + e –<br />

2nd ionisation Ca + (g) Æ Ca 2+ (g) + e –<br />

3rd ionisation Ca 2+ (g) Æ Ca 3+ (g) + e –<br />

b Once an electron has been removed the remaining<br />

electrons are held more tightly. Hence it is more<br />

difficult to remove a second electron.<br />

c Second ionisation enthalpy involves removal of an<br />

electron from shell 4 but third involves removal of an<br />

electron from shell 3 which is closer to the nucleus.<br />

8 <strong>The</strong> second ionisation enthalpy for sodium is high<br />

because removing a second electron involves removing<br />

an electron from the full second shell. This requires<br />

much more energy than removing the second electron<br />

from the third shell of magnesium which is further from<br />

the nucleus.<br />

4 Z = 16. <strong>The</strong> element is sulphur.<br />

5 a Chlorine b Potassium<br />

c Titanium d Tin<br />

6 a 1s 2 2s 2 2p 1<br />

b 1s 2 2s 2 2p 6 3s 2 3p 3<br />

c 1s 2 2s 2 2p 6 3s 2 3p 5<br />

d 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2<br />

e 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2<br />

<strong>Section</strong> 3.1<br />

1 a, c, e 2.8.8<br />

3 a<br />

b, d 2.8<br />

f 2.8.14<br />

g 2.8.13<br />

b<br />

h 2.8.17<br />

2 K + , Ca 2+ , (Sc 3+ ), Cl – , S 2– , P 3–<br />

Li<br />

K<br />

+ –<br />

X<br />

H<br />

+<br />

XX<br />

F<br />

X<br />

XX<br />

X<br />

X<br />

–<br />

164


SECTION 3<br />

c<br />

d<br />

e<br />

f<br />

Mg<br />

Ca<br />

Ca<br />

Na<br />

2+<br />

2+<br />

2+<br />

+<br />

X<br />

O<br />

X<br />

XX<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

S<br />

X<br />

XX<br />

Na<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

+<br />

2–<br />

–<br />

2–<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

S<br />

X<br />

XX<br />

X<br />

X<br />

X<br />

X<br />

–<br />

2–<br />

5 a In a normal covalent bond, each atom supplies a single<br />

electron to make up the pair of electrons involved in<br />

the bond. In a dative covalent bond one atom supplies<br />

both electrons.<br />

b<br />

+<br />

H<br />

6<br />

H<br />

H<br />

X<br />

N<br />

X<br />

X<br />

H<br />

X<br />

O<br />

X<br />

H<br />

H<br />

H<br />

+<br />

H<br />

X<br />

N<br />

X<br />

H<br />

X<br />

H<br />

g<br />

h<br />

Na<br />

Al<br />

+<br />

3+<br />

X<br />

X<br />

Na<br />

F<br />

X<br />

XX<br />

+<br />

X<br />

X<br />

–<br />

Na<br />

X<br />

X<br />

F<br />

X<br />

XX<br />

+<br />

X<br />

X<br />

–<br />

X<br />

X<br />

N<br />

X<br />

X<br />

X<br />

X<br />

X<br />

F<br />

X<br />

XX<br />

3–<br />

X<br />

X<br />

–<br />

7<br />

H<br />

H<br />

X<br />

X<br />

N<br />

X<br />

H<br />

X<br />

X<br />

XX<br />

X<br />

X F<br />

X<br />

X<br />

X XX<br />

B<br />

X<br />

F<br />

X<br />

X<br />

X XX<br />

X<br />

X F<br />

X<br />

X<br />

XX<br />

4 a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

X<br />

X<br />

H<br />

H<br />

H<br />

X<br />

X<br />

XX<br />

Cl X Cl<br />

XX<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

H<br />

X<br />

C<br />

X<br />

X<br />

X<br />

X<br />

H<br />

XX<br />

S<br />

X X<br />

XX<br />

XX<br />

X<br />

Br<br />

XX<br />

XX<br />

X<br />

X Br<br />

X<br />

Al<br />

XX X<br />

X X<br />

X Cl<br />

XX X<br />

H<br />

H<br />

X<br />

X<br />

Si<br />

H<br />

H<br />

XX<br />

X X<br />

X Cl X<br />

X X<br />

X Cl X<br />

XX<br />

C<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

XX<br />

X<br />

Br<br />

XX<br />

X<br />

X<br />

XX<br />

X X<br />

Cl X<br />

XX<br />

C<br />

X<br />

X<br />

H<br />

H<br />

8 Chlorine has a stronger electron pulling power. Thus in a<br />

covalent bond between carbon and chlorine, the<br />

electron pair forming the bond is more strongly attracted<br />

by the chlorine atom than by the carbon atom.<br />

9 a H—F b N∫N<br />

d+ d– non-polar<br />

c H—Cl<br />

d Cl—F<br />

d+ d– d+ d–<br />

e H—I<br />

f S=C=S<br />

d+ d– non-polar<br />

10 a Three<br />

b <strong>The</strong> delocalised electrons form a pool of electrons<br />

which are free to move around the positive ions in the<br />

metal. When a potential difference is applied across<br />

the metal, electrons move towards the positive<br />

terminal, ie a current flows.<br />

11 a Metallic b Covalent c Covalent<br />

d Ionic e Ionic f Covalent<br />

Silicon tetrafluoride contains polar covalent bonds.<br />

12 a NaCl<br />

b MgCl 2<br />

c FeCl 3<br />

d Al 2<br />

O 3<br />

e NH 4<br />

Cl<br />

f NaOH<br />

g K 2<br />

CO 3<br />

h MgSO 4<br />

h<br />

i<br />

H<br />

H<br />

X<br />

X<br />

C<br />

H<br />

X<br />

X<br />

X<br />

C<br />

H<br />

X<br />

X<br />

X<br />

O<br />

X<br />

X C H<br />

X<br />

X<br />

X<br />

H<br />

13 a NH 3<br />

b H 2<br />

S<br />

c CO 2<br />

d HCl<br />

e CO<br />

f SO 2<br />

g N 2<br />

O<br />

h SO 3<br />

165


SECTION 3<br />

<strong>Section</strong> 3.2<br />

1 a Li(g) because it has an extra electron shell.<br />

b Li + (aq) because the ion is surrounded by water<br />

molecules.<br />

c Cl – (g) because it has an extra electron.<br />

d Cl – (aq) because the ion is surrounded by water<br />

molecules.<br />

2 a K + (g) because it has an extra electron shell.<br />

b Br – (g) because it has an extra electron shell.<br />

c Na + (g) because it has one less proton in the nucleus<br />

and therefore attracts the same number of electrons<br />

less strongly.<br />

d Fe 2+ (g) because it has one more electron.<br />

3 a K + (aq)<br />

b K + (aq)<br />

c K + (aq)<br />

4 a Na +<br />

b Na + Cl –<br />

c Na + Cl –<br />

5 a i 11, 12, 13, 15, 16, 17<br />

ii Na + , Mg 2+ , Al 3+ 1s 2 2s 2 2p 6<br />

P 3– , S 2– , Cl – 1s 2 2s 2 2p 6 3s 2 3p 6<br />

b i<br />

ii<br />

Same electronic configuration.<br />

Different number of protons in the nucleus<br />

leading to different ionic charges.<br />

c Contraction of ion size as the number of protons<br />

relative to the number of electrons increases.<br />

d P 3– is the biggest and Cl – is the smallest because of the<br />

increasing attraction on the same number of electrons<br />

of an increasing number of protons in the nucleus.<br />

e <strong>The</strong>y each contain an extra shell of electrons.<br />

<strong>Section</strong> 3.3<br />

1 a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

2 a<br />

b<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

X<br />

X<br />

Si<br />

X<br />

H<br />

XX<br />

S<br />

X<br />

X X<br />

XX<br />

XX<br />

X X<br />

X<br />

X<br />

P<br />

H<br />

H<br />

H<br />

H<br />

H<br />

X<br />

X<br />

109°<br />

O X C O 180°<br />

XX<br />

X<br />

S X<br />

XX<br />

Approx. 109°<br />

Approx. 109°<br />

F F Approx. 109°<br />

Cl X Cl<br />

X<br />

B 120°<br />

X<br />

Cl<br />

C<br />

X<br />

H<br />

C<br />

H<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

C<br />

X<br />

H<br />

180°<br />

H<br />

C H<br />

H 109∞<br />

3<br />

d<br />

e<br />

f<br />

g<br />

F<br />

H<br />

H<br />

H<br />

C<br />

109∞<br />

H<br />

Cl<br />

Cl<br />

X<br />

C<br />

F<br />

N<br />

H<br />

X<br />

X<br />

N<br />

XX<br />

H<br />

C<br />

H<br />

C<br />

120∞<br />

O<br />

F<br />

a Tetrahedral<br />

b Pyramidal<br />

4 a Tetrahedral<br />

b Planar<br />

c Linear<br />

5 a i<br />

H<br />

X<br />

O<br />

H<br />

H<br />

H<br />

180∞<br />

C<br />

N<br />

H<br />

+<br />

X<br />

C<br />

X<br />

H<br />

All bond angles 120°<br />

All bond angles approx. 109°<br />

H<br />

C<br />

O<br />

H<br />

All bond angles approx. 109°<br />

ii Planar (trigonal)<br />

c<br />

H<br />

H<br />

H<br />

C<br />

H<br />

N<br />

H<br />

H<br />

All bond angles approx. 109°<br />

b<br />

i<br />

H<br />

H<br />

–<br />

X<br />

X X<br />

C<br />

XX<br />

H<br />

ii Pyramidal (tetrahedral with respect to electron<br />

pairs)<br />

166


SECTION 3<br />

6 a<br />

H<br />

XX<br />

X X<br />

N<br />

XX<br />

H<br />

–<br />

About 109°<br />

b<br />

H<br />

X<br />

XX<br />

N<br />

X<br />

H<br />

+<br />

About 120°<br />

<strong>Section</strong> 3.4<br />

1 a C 6<br />

H 14<br />

, C 6<br />

H 12<br />

, not isomers<br />

b C 4<br />

H 9<br />

Cl, C 4<br />

H 9<br />

Cl, isomers<br />

c C 3<br />

H 8<br />

O, C 3<br />

H 6<br />

O, not isomers<br />

d C 7<br />

H 8<br />

O, C 7<br />

H 8<br />

O, isomers<br />

e C 3<br />

H 9<br />

N, C 3<br />

H 9<br />

N, isomers<br />

2 Isomers of C 5<br />

H 12<br />

:<br />

C C C C C<br />

C<br />

pentane<br />

4 Isomers of C 8<br />

H 10<br />

(containing a benzene ring):<br />

CH 3 CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 2 CH 3<br />

CH 3<br />

C C C C<br />

2-methylbutane<br />

5<br />

OH<br />

C C C C OH<br />

C C C C<br />

C<br />

C C C<br />

2,2-dimethylpropane<br />

C<br />

3 <strong>The</strong>re are 4 isomers of C 4<br />

H 9<br />

Br:<br />

C C C C Br C C C C<br />

Br<br />

C<br />

C C C OH<br />

C O C C C<br />

C<br />

C C OH<br />

C<br />

C<br />

C C C Br<br />

C<br />

C C C<br />

Br<br />

C<br />

C O C C<br />

C C O C C<br />

167


SECTION 3<br />

<strong>Section</strong> 3.5<br />

1 F F<br />

4 a F<br />

2<br />

H<br />

F<br />

H<br />

H 3 C<br />

H<br />

H 3 C<br />

H<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

H<br />

H<br />

F<br />

H<br />

CH 2 CH 3<br />

CH 2 CH 3<br />

H<br />

cis-1,2-difluoroethene<br />

trans-1,2-difluoroethene<br />

trans-pent-2-ene<br />

cis-pent-2-ene<br />

F<br />

C<br />

C<br />

H<br />

H<br />

b No<br />

c <strong>The</strong>re must be the same two atoms or groups of atoms<br />

on each C atom attached to the double bond.<br />

Geometric isomers are not possible if two groups on<br />

one side of the double bond are the same.<br />

5 a Cis–trans isomers<br />

b 2 moles of H 2<br />

c Citronellol is a partially hydrogenated form of nerol<br />

(or geraniol).<br />

d Structural isomers of the cis- and trans-isomers.<br />

6<br />

3 a<br />

Cl<br />

H<br />

C<br />

C<br />

Cl<br />

H<br />

cis-1,2-dichloroethene<br />

cis-poly(ethyne)<br />

n<br />

Cl<br />

H<br />

C<br />

C<br />

H<br />

Cl<br />

trans-1,2-dichloroethene<br />

trans-poly(ethyne)<br />

n<br />

b Cis-1,2-dichloroethene<br />

c <strong>The</strong> cis-isomer has a dipole moment whereas the<br />

trans-isomer does not. <strong>The</strong> permanent<br />

dipole–permanent dipole intermolecular forces in the<br />

cis-isomer make it more difficult to separate the<br />

molecules.<br />

7 a<br />

H<br />

H<br />

X<br />

X<br />

C<br />

X<br />

H<br />

X<br />

N<br />

X<br />

X<br />

b H 3 C CH 3<br />

N<br />

N<br />

XX<br />

N<br />

X<br />

H<br />

X<br />

C<br />

X<br />

H<br />

X<br />

H<br />

H 3 C<br />

N<br />

N<br />

cis form<br />

CH 3<br />

trans form<br />

<strong>Section</strong> 3.6<br />

1 a A chiral centre.<br />

b iii<br />

2 a Br<br />

b<br />

3 a b<br />

c<br />

CH 3<br />

H 3 C<br />

H<br />

CH<br />

CH 2 CH 3<br />

CH 3<br />

CH CH 2 C *<br />

3 CH 2 CH 2 CH 3<br />

H<br />

Br<br />

C<br />

H 3 C<br />

H 3 CH 2 CH 2 C<br />

C<br />

CH 2 CH 3<br />

H<br />

CH 2 CH 3<br />

CH 3 CH 2<br />

Br<br />

C<br />

H<br />

H 3 CH 2 C<br />

4 a b<br />

CH 2 OH<br />

NH 2 COOH<br />

C *<br />

CH 2 CH 2 CH 3<br />

H<br />

c d H<br />

H<br />

C<br />

C<br />

CH 3<br />

HOOC NH 2<br />

H 2 N COOH<br />

CH 2 OH<br />

HOH 2 C<br />

D-isomer<br />

L-isomer<br />

(Use the CORN rule to name the isomers.)<br />

5 L-Cysteine is readily available as a hydrolysis product of<br />

CH 3<br />

proteins.<br />

D-Cysteine has to be made synthetically. It is probably<br />

C<br />

made together with L-cysteine from which it must be<br />

H<br />

separated.<br />

168


SECTION 4<br />

6 a<br />

H<br />

H<br />

H<br />

H<br />

b<br />

H 3 C<br />

H 3 C<br />

C<br />

C C<br />

* H C C<br />

H H<br />

CH 3<br />

H 3 C<br />

C<br />

C C<br />

* H C C<br />

H<br />

CH 3<br />

H 3 C<br />

CH<br />

CH 3<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

limonene<br />

carvone<br />

c<br />

No: the carbon which was chiral is<br />

now bonded in the same way in both<br />

directions around the ring.<br />

<strong>Section</strong> 4.1<br />

1 a Standard enthalpy change of combustion is the<br />

enthalpy change when 1 mole of the compound is<br />

burnt completely in oxygen, under standard<br />

conditions (ie the compound and the products in their<br />

most stable states at 1 atmosphere pressure and at a<br />

stated temperature, often 298 K).<br />

b Standard enthalpy change of formation is the<br />

enthalpy change when 1 mole of a compound is<br />

formed from its elements, with both the compound<br />

and its elements being in their standard states (ie their<br />

most stable state at 1 atmosphere pressure and at a<br />

stated temperature, often 298 K).<br />

2 <strong>The</strong> formation of a compound from its elements may be<br />

an exothermic reaction (DH f<br />

negative) or an<br />

endothermic reaction (DH f<br />

positive). However, energy is<br />

liberated whenever a substance burns, so combustion<br />

reactions are always exothermic (DH c<br />

negative).<br />

3<br />

Enthalpy<br />

1<br />

1<br />

2 H 2 (g) + 2 Cl 2 (g)<br />

DH = –92.3 kJ mol –1<br />

HCl(g)<br />

Progress of reaction<br />

e 6C(s) + 6H 2<br />

(g) + 3O 2<br />

(g) Æ C 6<br />

H 12<br />

O 6<br />

(s)<br />

f C 6<br />

H 12<br />

O 6<br />

(s) + 6O 2<br />

(g) Æ 6CO 2<br />

(g) + 6H 2<br />

O(l)<br />

5 DH c<br />

!(C) is enthalpy change when 1 mole of carbon<br />

burned completely under standard conditions, ie<br />

C(s) + O 2<br />

(g) Æ CO 2<br />

(g)<br />

DH f<br />

!(CO 2<br />

) is enthalpy change when 1 mole of carbon<br />

dioxide is formed from its elements with both the carbon<br />

dioxide and its constituent elements in their standard<br />

states, ie<br />

C(s) + O 2<br />

(g) Æ CO 2<br />

(g)<br />

6 a <strong>The</strong>rmometer, measuring cylinder, gas meter.<br />

b Volume of water used, temperature rise of water,<br />

volume of gas used.<br />

c Cooling losses, impurity of the gas, etc.<br />

7 a DH = –667 kJ mol –1<br />

b Much heat was lost to the surroundings in the<br />

experiment whereas the accurate DH value in the data<br />

book would have been determined using a calorimeter<br />

in which very little heat is lost.<br />

8 a M r<br />

(C 7<br />

H 16<br />

) = 100<br />

b i 481.7 kJ released ii 481 700 kJ released<br />

(Assumed combustion is complete and CO 2<br />

and H 2<br />

O<br />

are the only products. Also, that combustion is carried<br />

out under standard conditions.)<br />

c Density of heptane<br />

9 a H 2<br />

(g) + O 2<br />

(g) Æ H 2<br />

O(l)<br />

b DH f,<br />

! 298<br />

(H 2<br />

O) = –286 kJ mol –1<br />

c –143 kJ (assuming combustion takes place under<br />

standard conditions)<br />

d +286 kJ mol –1<br />

Enthalpy<br />

1<br />

1<br />

2<br />

2 H 2 (g) + I 2 (s)<br />

HI(g)<br />

DH = +26.5 kJ mol –1<br />

Progress of reaction<br />

10 a Enthalpy change of formation of propane.<br />

b Enthalpy change of combustion of 3 moles of carbon<br />

and 4 moles of hydrogen.<br />

c Enthalpy change of combustion of propane.<br />

d DH 1<br />

+ DH 3<br />

= DH 2<br />

e DH 1<br />

= DH 2<br />

– DH 3<br />

= 3(–393) kJ mol –1 + 4(–286) kJ mol –1<br />

– (–2220) kJ mol –1<br />

= –103 kJ mol –1<br />

11 a 4C(s) + 5H 2<br />

(g) Æ C 4<br />

H 10<br />

(g)<br />

b<br />

DH<br />

4C(s) + 5H 2<br />

(g)<br />

1<br />

C 4<br />

H 10<br />

(g)<br />

4 a 2C(s) + 3H 2<br />

(g) + O 2<br />

(g) Æ C 2<br />

H 5<br />

OH(l)<br />

b C 2<br />

H 5<br />

OH(l) + 3O 2<br />

(g) Æ 2CO 2<br />

(g) + 3H 2<br />

O(l)<br />

c 4C(s) + 5H 2<br />

(g) Æ C 4<br />

H 10<br />

(g)<br />

d C 4<br />

H 10<br />

(g) + 6 O 2<br />

(g) Æ 4CO 2<br />

(g) + 5H 2<br />

O(l)<br />

+ 6 O 2<br />

(g) DH 2<br />

DH 3<br />

+ 6 O 2<br />

(g)<br />

4CO 2<br />

(g) + 5H 2<br />

O(l)<br />

169


SECTION 4<br />

CH 3<br />

CHO(l) +2 O 2<br />

(g) Æ 2CO 2<br />

(g) + 2H 2<br />

O(l)<br />

<br />

c DH 1<br />

+ DH 3<br />

= DH 2<br />

13 a<br />

DH 1<br />

= DH 2<br />

– DH 3<br />

b<br />

= –890 kJ mol –1<br />

= 4(–393) kJ mol –1 + 5(–286) kJ mol –1<br />

– (–2877) kJ mol –1<br />

CH 3<br />

CHO(l) + 2 O 2<br />

(g)<br />

DH 1<br />

2CO 2<br />

(g) + 2H 2<br />

O(l)<br />

= –125 kJ mol –1<br />

12 a Enthalpy change of combustion of methane.<br />

DH 2<br />

DH 3<br />

b Enthalpy change of formation of methane.<br />

c Enthalpy change of combustion of carbon or enthalpy<br />

2C(s) + 2H 2<br />

(g) + 30 2<br />

(g)<br />

change of formation of carbon dioxide; the enthalpy of<br />

combustion of 2 moles of hydrogen or enthalpy<br />

c Standard enthalpy change of combustion of ethanol<br />

change of formation of 2 moles of water.<br />

= DH 1<br />

= – DH 2<br />

+ DH 3<br />

d DH 1<br />

= – DH 2<br />

+ DH<br />

= – (–192) kJ mol –1 + 2(–393) kJ mol –1 + 2(–286) kJ mol –1<br />

3<br />

e DH 1<br />

= – (–75) kJ mol –1 + (–393) kJ mol –1<br />

= –1166 kJ mol –1<br />

+ 2(–286) kJ mol –1<br />

<strong>Section</strong> 4.2<br />

1 a CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b H<br />

H<br />

C<br />

H<br />

H + 2O O O C O + 2H O H<br />

c 4 (C–H)<br />

2 (O=O)<br />

d 2 (C=O)<br />

4 (O–H)<br />

e +2648 kJ mol –1 (or +2737 kJ mol –1 depending on the<br />

value used for E(C–H))<br />

f –3466 kJ mol –1<br />

g –818 kJ mol –1 (or –729 kJ mol –1 )<br />

(<strong>The</strong> value of the standard enthalpy change of<br />

combustion at 298 K is for H 2<br />

O(l) and hence that value<br />

will be more exothermic than the value obtained here.)<br />

2 a C 3<br />

H 8<br />

(g) + 5O 2<br />

(g) Æ 3CO 2<br />

(g) + 4H 2<br />

O(g)<br />

b H H H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

H<br />

c 2 (C–C)<br />

8 (C–H)<br />

5 (O=O)<br />

d 6 (C=O)<br />

8 (O–H)<br />

e +6488 kJ mol –1<br />

f –8542 kJ mol –1<br />

g –2054 kJ mol –1<br />

H + 5 O O 3 O C O + 4 H<br />

O<br />

H<br />

3 a CH 3<br />

OH(l) + 1 O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b H<br />

H<br />

C<br />

H<br />

c 3 (C–H)<br />

1 (C–O)<br />

1 (O–H)<br />

l.5 (O=O)<br />

d 2 (C=O)<br />

4 (O–H)<br />

e +2786 kJ mol –1<br />

f –3466 kJ mol –1<br />

g –680 kJ mol –1<br />

O H + 1 1 2O<br />

O O C O + 2H O H<br />

4 N 2<br />

(g) + 3H 2<br />

(g) Æ 2NH 3<br />

(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+945) + 3(+436) Æ 2(3 ¥ +391)<br />

DH ! = –93 kJ mol –1<br />

5 N 2<br />

H 4<br />

(g) + O 2<br />

(g) Æ N 2<br />

(g) + 2H 2<br />

O(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+158) + 4(+391) + (+498) Æ (+945) + 4(+464)<br />

DH ! = –581 kJ mol –1<br />

6 C 2<br />

H 4<br />

(g) + Br 2<br />

(g) Æ C 2<br />

H 4<br />

Br 2<br />

(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+612) + 4(+413) + (+193) Æ 4(+413) + 2(+290)<br />

+ (+347) DH ! = –122 kJ mol –1<br />

<strong>Section</strong> 4.3<br />

1 a Increase b Decrease c Increase<br />

d Increase e Decrease f Decrease<br />

2 a Molten wax (Liquids have higher entropies than solids.)<br />

b Br 2<br />

(g) (Gases have higher entropies than liquids.)<br />

c Brass (Mixtures have higher entropies than the<br />

pure substances.)<br />

d Octane (Complex molecules have higher<br />

entropies than simpler molecules.)<br />

3 1 in 256<br />

4 a Ar molecule larger than He.<br />

b Gases have higher entropies than liquids.<br />

c Cl 2<br />

molecule larger than F 2<br />

.<br />

5 a Greater. A gas is formed as a product.<br />

b Smaller. Number of molecules of gas in product<br />

smaller than the number of molecules of gas in<br />

reactants.<br />

c Smaller. One reactant is a gas; product only solid.<br />

170


SECTION 4<br />

<strong>Section</strong> 4.4<br />

1 <strong>The</strong> entropies increase for the first four alkanes as the<br />

molecules become heavier and composed of more atoms<br />

(the number of energy levels increases with the number<br />

of atoms). Pentane is a liquid and so has a lower entropy<br />

than butane.<br />

2 a Entropy decrease, because the number of moles of gas<br />

is reduced by half as reaction proceeds.<br />

b Entropy increase; the number of moles of gas doubles<br />

during the reaction and a solid has much lower<br />

entropy than a gas.<br />

c Entropy decrease; 2 moles of gaseous reactants are<br />

replaced by 1 mole of solid.<br />

d Entropy decrease; 5 moles of gaseous oxygen are<br />

removed, the only product is a solid.<br />

e Entropy increase; 5 moles of gaseous product are<br />

formed.<br />

<strong>Section</strong> 4.5<br />

1 a When 1 mole of sodium fluoride is formed from 1 mole<br />

of Na + (g) and 1 mole of F – (g), 915 kJ mol –1 of energy are<br />

released. This is the lattice enthalpy of sodium fluoride.<br />

b <strong>The</strong> lattice enthalpy becomes more negative as the<br />

ionic radii decrease.<br />

2 a LiF; Li + has a smaller radius than Na + and attracts F –<br />

ions more strongly.<br />

b Na 2<br />

O; Na + has a smaller radius than Rb + and attracts<br />

O 2– more strongly.<br />

c MgO; Mg 2+ is smaller and more highly charged than<br />

Na + , and attracts O 2– more strongly.<br />

d KF; F – has a smaller radius than Cl – and attracts K +<br />

more strongly.<br />

3 a SrF 2<br />

; Sr 2+ is smaller and more highly charged than Rb +<br />

and will attract F – more strongly.<br />

b By the same arguments as in a, BaO should have the<br />

more exothermic lattice enthalpy.<br />

c Cu 2+ is more highly charged than Cu + , so CuO should<br />

have the more exothermic lattice enthalpy.<br />

4 a Li + attracts water molecules more strongly than Na +<br />

because of its smaller size.<br />

b Mg 2+ attracts water molecules more strongly than<br />

Ca 2+ because of its smaller size.<br />

c Ca 2+ and Na + have similar sizes, but Ca 2+ is more highly<br />

charged and so attracts water molecules more strongly.<br />

5 a <strong>The</strong> ions in the lattice attract each other less strongly<br />

as the size of the anion increases from F – to Cl – .<br />

b DH hyd<br />

becomes less exothermic as the anion becomes<br />

bigger and attracts water molecules less strongly.<br />

c<br />

AgF(s) + aq<br />

–DH LE<br />

DH solution<br />

Ag + (g) + F – (g) + aq<br />

Ag + (aq) + F – (aq)<br />

DH hyd<br />

(Ag + )<br />

+<br />

DH hyd<br />

(F – )<br />

3 <strong>Student</strong>s’ answers should be based on the following<br />

deductions.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

DS sys<br />

DS surr<br />

Explanation<br />

/J K –1 mol –1 /J K –1 mol –1<br />

+203 –44 Spontaneous: total<br />

entropy change positive<br />

+63 +329 Spontaneous: total<br />

entropy change positive<br />

+25 –604 Not spontaneous: total<br />

entropy change negative<br />

+209 +416 Spontaneous: total<br />

entropy change positive<br />

–4 –6.7 Not spontaneous: total<br />

entropy change negative<br />

4 Values for both DS sys<br />

and DS surr<br />

are negative. <strong>The</strong>refore<br />

DS total<br />

must always be negative, whatever value of T is<br />

chosen, and the process can never be spontaneous.<br />

Enthalpy<br />

AgCl(s) + aq<br />

–DH LE<br />

DH solution<br />

Ag + (g) + Cl – (g) + aq<br />

Ag + (aq) + Cl – (aq)<br />

DH hyd<br />

(Ag + )<br />

+<br />

DH hyd<br />

(Cl – )<br />

Both silver halides have endothermic enthalpy<br />

changes of solution and the enthalpy level diagrams<br />

will have the form shown below.<br />

–DH LE<br />

AgX(s) + aq<br />

Ag + (g) + X – (g) + aq<br />

Ag + (aq) + X – (aq)<br />

DH solution<br />

d DH solution<br />

= –DH LE<br />

+ DH hyd<br />

(Ag + ) + DH hyd<br />

(X – )<br />

DH solution<br />

(AgF) = +6 kJ mol –1 ;<br />

DH solution<br />

(AgCl) = +95 kJ mol –1<br />

DH hyd (Ag + )<br />

+<br />

DH hyd (X – )<br />

e AgF may be soluble in water. AgCl will be insoluble.<br />

6 a Mg(OH) 2<br />

+ 152 kJ mol –1<br />

Ca(OH) 2<br />

+ 7 kJ mol –1<br />

b Ca(OH) 2<br />

: enthalpy change of solution much less<br />

endothermic.<br />

c Entropy changes of the processes.<br />

171


SECTION 4<br />

<strong>Section</strong> 4.6<br />

1 a i Li(s) + Cl 2<br />

(g) Æ LiCl(s)<br />

ii Li(s) Æ Li(g)<br />

iii Cl 2<br />

(g) Æ Cl(g)<br />

iv Li(g) Æ Li + (g) + e –<br />

v Cl(g) + e – Æ Cl – (g)<br />

vi Li + (g) + Cl – (g) Æ LiCl(s)<br />

Enthalpy/kJ mol –1<br />

+800<br />

+700<br />

Li + (g) + Cl(g)<br />

b<br />

Li(s) + Cl 2<br />

(g)<br />

DH 1<br />

LiCl(s)<br />

DH EA (Cl)<br />

+600<br />

DH 2<br />

DH 4<br />

Li(g) +Cl(g)<br />

DH 3<br />

Li + (g) + Cl – (g)<br />

+500<br />

DH i (1)(Li)<br />

DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! LE<br />

(LiCl) = DH 4<br />

= DH 1<br />

– DH 2<br />

– DH 3<br />

= (– 409 kJ mol –1 – (+ 159 kJ mol –1<br />

+ 121 kJ mol –1 ) – (+519 kJ mol –1<br />

– 355 kJ mol –1 )<br />

DH! LE<br />

(LiCl) = – 853 kJ mol –1<br />

<br />

c See Graph in facing column<br />

2 a i Mg(s) + Cl 2<br />

(g) Æ MgCl 2<br />

(s)<br />

ii Mg(s) Æ Mg(g)<br />

iii Cl 2<br />

(g) Æ Cl(g)<br />

iv Mg(g) Æ Mg + (g) + e –<br />

v Mg + (g) Æ Mg 2+ (g) + e –<br />

vi Cl(g) + e – Æ Cl – (g)<br />

vii Mg 2+ (g) + 2Cl – (g) Æ MgCl 2<br />

(s)<br />

b<br />

Mg(s) + Cl 2<br />

(g)<br />

DH 1<br />

MgCl 2<br />

(s)<br />

+400<br />

+300<br />

+200<br />

+100<br />

0<br />

Li(g) + Cl(g)<br />

DH at (Cl)<br />

1<br />

Li(g) + 2 Cl 2 (g)<br />

DH at (Li)<br />

Li + (g) + Cl – (g)<br />

1<br />

Li(s) + 2 Cl 2 (g)<br />

DH 2<br />

DH 4<br />

Mg(g) + 2Cl(g)<br />

DH 3<br />

Mg 2+ (g) + 2Cl – (g)<br />

–100<br />

DH LE (LiCl)<br />

DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! LE<br />

(MgCl 2<br />

) = DH 4<br />

= DH 1<br />

– DH 2<br />

– DH 3<br />

= (– 641 kJ mol –1 ) – (+ 147 kJ mol –1<br />

+ 2 (+ 121 kJ mol –1 ))<br />

– (+744 kJ mol –1 + 1457 kJ mol –1<br />

+2 (– 355 kJ mol –1 ))<br />

DH! LE<br />

(MgCl 2<br />

) = – 2521 kJ mol –1<br />

–200 DH f (LiCl)<br />

–300<br />

–400<br />

LiCl(s)<br />

–500<br />

As Group 1 is ascended, the enthalpy changes of formation of<br />

the chlorides become less negative and the first ionisation<br />

enthalpies of the elements become more positive.<br />

172


SECTION 4<br />

3 a<br />

DH<br />

Ca(s) + Cl 2<br />

(g)<br />

1<br />

DH<br />

CaCl(s)<br />

Ca(s) + Cl 2<br />

(g) 1<br />

CaCl 2<br />

(s)<br />

DH 2<br />

DH 4<br />

DH 2<br />

DH 4<br />

Ca(g) +Cl(g)<br />

DH 3<br />

Ca + (g) + Cl – (g)<br />

Ca(g) +2Cl(g)<br />

DH 3<br />

Ca 2+ (g) + 2Cl – (g)<br />

DH! f<br />

(CaCl) = DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! f<br />

(CaCl 2<br />

) = DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

= (+178 kJ mol –1 + 121 kJ mol –1 )<br />

+ (+596 kJ mol –1 –355 kJ mol –1 )<br />

+ (–711 kJ mol –1 )<br />

DH! f<br />

(CaCl) = – 171 kJ mol –1<br />

= (+178 kJ mol –1 + 2 (+121 kJ mol –1 ))<br />

+ (+596 kJ mol –1 + 1152 kJ mol –1 )<br />

+ 2 (–355 kJ mol –1 ) +(–2237kJ mol –1 )<br />

DH! f<br />

(CaCl 2<br />

) = – 779 kJ mol –1<br />

b<br />

2DH EA (Cl)<br />

DH i (2)(Ca)<br />

+800<br />

+600<br />

DH i (1)(Ca)<br />

DH EA (Cl)<br />

DH i (1)(Ca)<br />

DH LE (CaCl 2 )<br />

+400<br />

+200<br />

Enthalpy/kJ mol –1 1<br />

+2200<br />

Ca 2+ (g) + 2Cl(g)<br />

+2000<br />

+1800<br />

+1600<br />

+1400<br />

Ca 2+ (g) + 2Cl – (g)<br />

+1200<br />

+1000<br />

Ca + (g) + Cl(g)<br />

Ca + (g) + Cl – (g)<br />

DH at (Cl)<br />

DH LE (CaCl)<br />

2DH at (Cl)<br />

0<br />

–200<br />

DH at (Ca)<br />

DH f (CaCl)<br />

Ca(s) + Cl 2 (g)<br />

2<br />

CaCl(s)<br />

DH at (Ca)<br />

Ca(s) + Cl 2 (g)<br />

–400<br />

DH f (CaCl 2 )<br />

–600<br />

–800<br />

CaCl 2 (s)<br />

c <strong>The</strong> enthalpy change of formation of CaCl 2<br />

is much more negative than<br />

that of CaCl. CaCl 2<br />

has lower energy and is more stable relative to the<br />

elements Ca and Cl 2<br />

, and so it is more likely to be formed.<br />

173


SECTION 5<br />

<strong>Section</strong> 5.1<br />

1 a Ca 2+ (aq) + 2OH – (aq)<br />

b Mg 2+ (aq) + SO 2– 4<br />

(aq)<br />

c 2Na + (aq) + O 2– (aq)<br />

d K + (aq) + OH – (aq)<br />

e Ag + (aq) + NO – 3<br />

(aq)<br />

f 2Al 3+ (aq) + 3SO 2– 4<br />

(aq)<br />

2 a NaBr<br />

b Mg(OH) 2<br />

c Na 2<br />

S<br />

d BaO<br />

e CaCO 3<br />

f Ca(NO 3<br />

) 2<br />

g K 2<br />

CO 3<br />

3 a Ba 2+ (aq) + SO 2– 4<br />

(aq) Æ BaSO 4<br />

(s)<br />

b Mg 2+ (aq) + 2OH – (aq) Æ Mg(OH) 2<br />

(s)<br />

c Ca 2+ (aq) + CO 2– 3<br />

(aq) Æ CaCO 3<br />

(s)<br />

d Ba 2+ (aq) + CrO 2– 4<br />

(aq) Æ BaCrO 4<br />

(s)<br />

<strong>Section</strong> 5.2<br />

1 <strong>The</strong> small size of the carbon atom makes it possible for<br />

carbon to form double bonds with oxygen to produce<br />

discrete covalent molecules. Silicon, on the other hand,<br />

bonds to 4 oxygen atoms to form single bonds and<br />

hence a covalent network structure. <strong>The</strong> attractive forces<br />

between the molecules of carbon dioxide<br />

(intermolecular forces) are weak so that little energy is<br />

needed to separate the individual molecules. Strong<br />

covalent bonds exist throughout the SiO 2<br />

covalent<br />

network structure so a lot of energy is needed to melt it.<br />

2 a Any attractive forces between the solvent and the<br />

atoms in the covalent network structure are too weak<br />

to overcome the strong covalent bonds holding the<br />

network together.<br />

b At room temperature, the kinetic energy of atoms and<br />

molecules is small but it may be enough to overcome<br />

the weak attractive forces between simple molecules<br />

or isolated atoms.<br />

3 a Diamond structure with silicon and carbon atoms<br />

alternating.<br />

4 2Na + (aq) + SO 2– 4<br />

(aq) + 10H 2<br />

O(l) Æ Na 2<br />

SO 4<br />

.10H 2<br />

O(s)<br />

5 a H + (aq) + OH – (aq) Æ H 2<br />

O(l)<br />

b Zn(s) + 2H + (aq) Æ Zn 2+ (aq) + H 2<br />

(g)<br />

c CuO(s) + 2H + (aq) Æ Cu 2+ (aq) + H 2<br />

O(l)<br />

d CaCO 3<br />

(s) + 2H + (aq) Æ Ca 2+ (aq) + H 2<br />

O(l) + CO 2<br />

(g)<br />

6 a i Cubic<br />

ii Eight<br />

iii Eight<br />

b <strong>The</strong> attractions between the oppositely charged<br />

caesium and chloride ions greatly outweigh the<br />

repulsions between ions with the same charge. <strong>The</strong><br />

net attractive force is very high. <strong>The</strong> solid is hard and<br />

has a high melting point as this strong attraction has to<br />

be overcome to separate the particles.<br />

b <strong>The</strong> silicon and carbon atoms are held together by<br />

strong covalent bonds in an extended network<br />

structure. This makes the substance very hard.<br />

4 a Graphite structure with alternating boron and nitrogen<br />

atoms.<br />

b In graphite, each carbon atom has 4 bonding electrons.<br />

Only 3 are needed to form the layer structure. <strong>The</strong><br />

fourth electron is ‘free’ and causes graphite to be a good<br />

electrical conductor. Both boron and nitrogen have only<br />

3 bonding electrons. All 3 are needed to form the<br />

structure of the layer. <strong>The</strong>re are no electrons available to<br />

become delocalised and conduct electricity.<br />

5 It was assumed that buckminsterfullerene was a covalent<br />

network structure and would be insoluble like graphite<br />

and diamond, but solution in benzene showed it,<br />

surprisingly, to be a molecular form of carbon.<br />

Attractive forces between the solvent molecules and<br />

the carbon atoms are sufficient to overcome the weak<br />

intermolecular forces between the buckminsterfullerene<br />

molecules.<br />

<strong>Section</strong> 5.3<br />

1 a Kr, Xe (higher b.p.)<br />

b C 6<br />

H 14<br />

, C 8<br />

H 18<br />

(higher b.p.)<br />

c CH 4<br />

, CCl 4<br />

(higher b.p.)<br />

d CH and<br />

CH 3<br />

CH 3<br />

CH 3 CH 3 CH 2 CH 2<br />

CH 3<br />

(higher b.p.)<br />

3<br />

pentane<br />

e<br />

CH 3<br />

methylbutane<br />

CH 3 CH CH CH 3<br />

CH 3<br />

and<br />

174<br />

CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 (higher b.p.)<br />

2 In the solid or liquid state, noble gas atoms are held<br />

together by weak instantaneous dipole–induced dipole<br />

forces. It takes very little energy to break these attractions<br />

and this results in very low melting and boiling points.<br />

dimethylpropane


SECTION 5<br />

a Pentane has the strongest intermolecular forces and<br />

hence the highest boiling point. Dimethylpropane has<br />

the weakest intermolecular forces and hence the<br />

lowest boiling point.<br />

b <strong>The</strong> molecules of pentane, because it is a straight<br />

chain alkane, can approach closely to each other<br />

which increases the opportunities for<br />

instantaneous–induced dipole interactions and hence<br />

stronger intermolecular attractions. Methylbutane has<br />

one methyl side chain and so it is more difficult for<br />

these molecules to approach each other and<br />

instantaneous–induced dipole interactions are weaker.<br />

Dimethylpropane has two methyl side-chains and so it<br />

is even more difficult for molecules of this compound<br />

to approach each other.<br />

4 <strong>The</strong> strength of instantaneous dipole–induced dipole<br />

forces between molecules increases as the relative<br />

molecular masses of the molecules increase. To be sure<br />

that the higher boiling point of the polar substance is<br />

due only to the increased strength of dipole–dipole<br />

attractions it will be necessary to ensure that the<br />

instantaneous dipole–induced dipole forces in both<br />

polar and non-polar substances are of similar strength.<br />

This can be done by comparing substances of similar<br />

molecular mass.<br />

5 a A and D; C and G.<br />

b A and G have the stronger intermolecular forces<br />

compared to D and C, respectively.<br />

6 Polarity will occur as follows:<br />

C-F; H-Cl; H-N; C-O with charges in the order d+ d– in<br />

each case.<br />

7 CHCl 3<br />

, CH 3<br />

OH, (CH 3<br />

) 2<br />

CO, cis-1,2-difluoroethene and<br />

1,2-dichlorobenzene possess dipoles.<br />

8 a i Eighteen<br />

ii <strong>The</strong> attractions will be similar.<br />

iii H 2<br />

S has a permanent dipole. It is a bent molecule<br />

with two lone pairs. SiH 4<br />

does not have an overall<br />

permanent dipole as it is a symmetrical molecule.<br />

b Both compounds have similar instantaneous<br />

dipole–induced dipole forces. However, H 2<br />

S also has<br />

permanent dipole–permanent dipole attractions so its<br />

boiling point is higher than that of SiH 4<br />

.<br />

9 a Instantaneous dipole–induced dipole.<br />

b Instantaneous dipole–induced dipole.<br />

c Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

d Instantaneous dipole–induced dipole.<br />

e Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

f Instantaneous dipole–induced dipole.<br />

g Instantaneous dipole–induced dipole.<br />

h Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

<strong>Section</strong> 5.4<br />

1 a As the temperature rises, solids and liquids expand.<br />

<strong>The</strong> temperature increase raises the kinetic energy of<br />

the particles present. In solids, the rotational and<br />

vibrational energy increases. In liquids, rotational,<br />

vibrational and translational energy increases. <strong>The</strong><br />

increases in vibrational and translational energy<br />

increase the volume occupied by the particles. As they<br />

occupy an increasing volume, the density of the solid<br />

or liquid decreases.<br />

b i When ice melts, much of the open, hydrogenbonded<br />

structure collapses. This enables the<br />

molecules to occupy less space so the density<br />

increases on melting.<br />

ii <strong>The</strong> boiling point of water is higher than<br />

expected, as more energy is needed to break the<br />

hydrogen bonding.<br />

iii <strong>The</strong> specific heating capacity of water is higher<br />

than expected, as more energy is absorbed by the<br />

water to break hydrogen bonds in the liquid.<br />

2 a i H 2<br />

O instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole<br />

hydrogen bonding.<br />

H 2<br />

S instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

H 2<br />

Se instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

H 2<br />

Te instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

ii Intermolecular forces must be overcome when a<br />

liquid boils.<br />

Hydrogen bonding present between molecules of<br />

H 2<br />

O – but not between those of H 2<br />

S, H 2<br />

Se or H 2<br />

Te.<br />

Hydrogen bonding forces are much stronger than<br />

other intermolecular forces and so the boiling point of<br />

water is higher than that of the other hydrides.<br />

b <strong>The</strong> strength of instantaneous dipole–induced dipole<br />

and permanent dipole–permanent dipole attractions<br />

in a substance gets weaker as its relative molecular<br />

mass gets smaller. This produces a lower boiling point.<br />

<strong>The</strong> boiling point of H 2<br />

O should be lower than that of<br />

H 2<br />

S but it is in fact much higher. This suggests that,<br />

compared to H 2<br />

S, a different and much stronger type<br />

of intermolecular bonding exists in H 2<br />

O.<br />

c ii All have instantaneous dipole–induced dipole<br />

forces.<br />

iii <strong>The</strong> shape of the graph is nearly a straight line<br />

with positive slope. <strong>The</strong>re is no hydrogen<br />

bonding between the hydride molecules of<br />

Group 4. <strong>The</strong> increase in boiling points down the<br />

group is a result of their regularly increasing<br />

molecular masses.<br />

3 A, D, E and F<br />

4 a Hydrogen bonding will be present in NH 3<br />

, CH 3<br />

OH,<br />

and HF.<br />

b<br />

N H CH 3<br />

F<br />

H H O<br />

H<br />

H<br />

H<br />

H<br />

H CH 3 F<br />

F<br />

N<br />

O<br />

H H<br />

H<br />

175


SECTION 5<br />

5 a<br />

H<br />

H<br />

H<br />

c<br />

H<br />

b<br />

H<br />

O<br />

H<br />

C<br />

H<br />

H<br />

C<br />

N<br />

H<br />

O<br />

H<br />

H<br />

O<br />

H H<br />

O C C H<br />

H<br />

O<br />

H<br />

O<br />

O<br />

H<br />

O<br />

H<br />

O<br />

H H H<br />

H<br />

H<br />

H<br />

C<br />

H<br />

H<br />

H<br />

C<br />

H<br />

O<br />

H<br />

H<br />

H<br />

O<br />

H<br />

H<br />

H<br />

6 a Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole, hydrogen.<br />

b Instantaneous dipole–induced dipole.<br />

c Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole, hydrogen.<br />

d Instantaneous dipole–induced dipole.<br />

e Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

<strong>Section</strong> 5.5, Part 1 (Addition polymers)<br />

1 a c<br />

CH 2 CH 2 CH 2 CH 2 CH 2 CH 2<br />

H 3 C<br />

H<br />

b<br />

CH 2 CH CH 2 CH CH 2 CH<br />

C<br />

C<br />

CH 3 CH 3 CH 3<br />

H<br />

CO OCH 3<br />

2 CH 2 CH CH 2 CH CH 2 CH<br />

3 a 1<br />

b 4<br />

4 a<br />

b<br />

c<br />

5 a<br />

b<br />

H<br />

H<br />

H<br />

H 3 C<br />

C<br />

C<br />

C<br />

Cl Cl Cl<br />

C<br />

C<br />

C<br />

H<br />

CN<br />

H<br />

H<br />

H<br />

H CO OCH 3<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

CN<br />

H<br />

C<br />

H<br />

6 But-1-ene and propene<br />

7 H H H H<br />

C C C C<br />

H<br />

Cl<br />

H<br />

O C CH 3<br />

O<br />

8 a Poly(ethene), poly(propene), poly(chloroethene)<br />

b Poly(ethene) instantaneous dipole–induced<br />

dipole<br />

Poly(propene) instantaneous dipole–induced<br />

dipole<br />

Poly(chloroethene) instantaneous dipole–induced<br />

dipole<br />

permanent dipole–permanent<br />

dipole<br />

c Poly(chloroethene)<br />

9 a Isotactic polymer is a stereoregular polymer, that is,<br />

the side-chains all have the same orientation. In an<br />

atactic polymer the side-chains are randomly<br />

orientated.<br />

b <strong>The</strong> regular arrangement of the side-chains in an<br />

isotactic polymer allows the polymer chains to pack<br />

together closely, which means intermolecular forces<br />

are stronger. <strong>The</strong> polymer chains do not slide past<br />

each other easily, making the polymer stronger and<br />

less flexible than the atactic form of the same polymer.<br />

176


SECTION 5<br />

<strong>Section</strong> 5.5, Part 2 (Addition and condensation polymers)<br />

1 a<br />

O O<br />

O O<br />

O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

CH 2<br />

C<br />

O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

CH 2<br />

C<br />

b<br />

O<br />

O<br />

O<br />

O<br />

N<br />

CH 2<br />

CH 2<br />

N<br />

C<br />

CH 2<br />

C<br />

N<br />

CH 2<br />

H H<br />

CH 2<br />

CH 2<br />

N<br />

C<br />

CH 2<br />

CH 2<br />

C<br />

H<br />

H<br />

2 a<br />

O<br />

H 2 N<br />

(CH 2 ) 5<br />

C<br />

OH<br />

b<br />

O<br />

O<br />

HO CH 2 CH 2 CH 2 OH and HO C<br />

C OH<br />

c<br />

CH 3<br />

O<br />

HO<br />

CH<br />

C<br />

OH<br />

3 Polarity increases from –CH 3<br />

to –Cl to –CN so the<br />

intermolecular attractions become stronger which leads<br />

to an increase in T g<br />

.<br />

4 a i Instantaneous dipole–induced dipole.<br />

ii Instantaneous dipole–induced dipole.<br />

Permanent dipole–permanent dipole.<br />

b (CH 2<br />

O) n<br />

would have a higher T g<br />

because of the<br />

permanent dipole–permanent dipole interactions<br />

between the chains.<br />

<strong>Section</strong> 5.6<br />

1 a Ionic lattice<br />

b i Ne monatomic<br />

ii<br />

S<br />

H H<br />

simple molecular (covalent)<br />

iii<br />

H<br />

H<br />

C<br />

H<br />

H<br />

simple molecular (covalent)<br />

iv O C O simple molecular (covalent)<br />

c i See Figure 6, page 92, Chemical Ideas.<br />

ii Covalent network or giant covalent.<br />

d <strong>The</strong> diagram should be similar to Figure 15, page 39,<br />

Chemical Ideas. <strong>The</strong>re will be 2+ charges on the<br />

positive ions as the metal is magnesium. <strong>The</strong> outer<br />

electrons, two from each magnesium atom, contribute<br />

to a ‘pool’ of electrons which move randomly through<br />

the lattice of positive ions. Each positive ion is<br />

attracted to the negatively charged delocalised<br />

electrons and vice versa.<br />

5 <strong>The</strong>re is hydrogen bonding in poly(caprolactam).<br />

In poly(caprolactone) there are only permanent<br />

dipole–permanent dipole and instantaneous<br />

dipole–induced dipole attractions.<br />

6 a Model building should show that the T m<br />

values reflect<br />

the alignment of hydrogen bonding between the<br />

polymer chains for nylon-6. <strong>The</strong>re are fewer<br />

opportunities for hydrogen bonding in nylon-11.<br />

2<br />

b Intermolecular hydrogen bonding is more extensive in<br />

nylon-6,6. <strong>The</strong> chains in nylon-6,10 can slide past one<br />

another more easily.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

Name State at Solubility Electrical<br />

room in water conductivity<br />

temperature<br />

sodium solid soluble conducts<br />

iodide<br />

when molten<br />

or in aqueous<br />

solution<br />

carbon gas insoluble does not conduct<br />

monoxide<br />

diamond solid insoluble does not conduct<br />

tetrachloro- liquid insoluble does not conduct<br />

methane<br />

ethanol liquid soluble does not conduct<br />

copper(II) solid soluble conducts<br />

chloride<br />

when molten<br />

or in aqueous<br />

solution<br />

vanadium solid insoluble conducts when<br />

solid or liquid<br />

poly(propene) solid insoluble does not conduct<br />

3 a Isolated atoms<br />

b Metallic; giant lattice<br />

c Covalent network (or giant covalent); giant lattice<br />

d Macromolecular; covalent molecular<br />

e Ionic; giant lattice<br />

f Simple molecular; covalent molecular<br />

4 A Macromolecular; covalent molecular<br />

B Metallic; giant lattice<br />

C Ionic; giant lattice<br />

D Metallic; giant lattice<br />

E Simple molecular; covalent molecular<br />

177


SECTION 6<br />

5 a In ionic substances, the charge-carriers (ions) are held<br />

in the solid lattice and are not free to move. In metals,<br />

the charge-carriers (electrons) are delocalised and are<br />

free to move throughout the lattice.<br />

b When an ionic melt conducts electricity, the ions move<br />

to opposite electrodes where they are discharged,<br />

leading to decomposition. When a metal conducts,<br />

electrons move towards the more positive terminal<br />

and are replaced at an equal rate at the more negative<br />

terminal.<br />

c Any attractive forces between the solvent and the<br />

atoms in the giant covalent lattice are too weak to<br />

overcome the strong covalent bonds holding the<br />

lattice together.<br />

d At room temperature, the kinetic energy of atoms and<br />

molecules is small. It is not enough to overcome the<br />

energy of attraction between particles in giant or<br />

macromolecular structures, but it may be enough to<br />

overcome the weak intermolecular forces between<br />

simple molecules.<br />

178<br />

<strong>Section</strong> 6.1<br />

1 a 7.22 ¥ 10 –28 J<br />

b 6.6 ¥ 10 –17 J<br />

c 9.2 ¥ 10 10<br />

2 5.5 ¥ 10 13 Hz<br />

3 a <strong>The</strong> four lowest energy lines in the Balmer Series arise<br />

from transitions to level 2 from levels 3, 4, 5 and 6.<br />

b<br />

<strong>Section</strong> 6.2<br />

1<br />

a<br />

b<br />

c<br />

d<br />

3 2<br />

4 2 5 2 6 2<br />

frequency<br />

<strong>The</strong> lines converge towards high frequency. <strong>The</strong> lines<br />

in the Balmer Series are at lower frequency than the<br />

lines in the Lyman Series.<br />

Energy of Frequency/Hz Type of Type of<br />

photon radiation energy<br />

emitted or<br />

change<br />

absorbed/J<br />

in molecule<br />

4.6 ¥ 10 –17 6.9 ¥ 10 16 u.v. electronic<br />

2.3 ¥ 10 –20 3.5 ¥ 10 13 i.r. vibrational<br />

2.1 ¥ 10 –22 3.2 ¥ 10 11 microwave rotational<br />

5.5 ¥ 10 –19 8.3 ¥ 10 14 visible electronic<br />

2 a 5.43 ¥ 10 –20 J<br />

b 8.19 ¥ 10 13 Hz; infrared<br />

c 3.66 ¥ 10 –6 m<br />

3<br />

+214 kJ mol<br />

a E = ¥ 1000<br />

6.02 ¥ 10 23 mol –1 = + 3.55 ¥ 10 –19 J<br />

b E = hν<br />

3.55 ¥ 10 –19 J = 6.63 ¥ 10 –34 J Hz –1 ¥ ν Hz<br />

ν = 5.36 ¥ 10 14 Hz<br />

c This is in the visible region of the electromagnetic<br />

spectrum.<br />

<strong>Section</strong> 6.3<br />

1 F, OH, NO 2<br />

and CH 3<br />

are radicals.<br />

2 a i Photodissociation<br />

ii Homolytic<br />

b Reaction A initiation<br />

Reaction B ⎞<br />

⎬<br />

Reaction C ⎠<br />

propagation<br />

c H. and HO2 .<br />

d i 2O 3<br />

Æ 3O 2<br />

ii Catalyst<br />

e <strong>The</strong> rates of radical reactions depend on the<br />

concentrations of the radicals involved.<br />

f Termination<br />

c <strong>The</strong> line must go from a lower energy level to a<br />

higher level.<br />

4 a Ground state<br />

b i DE = hν<br />

= 6.63 ¥ 10 –34 J Hz –1 ¥ 3.27 ¥ 10 15 Hz<br />

= 2.17 ¥ 10 –18 J<br />

ii One photon of frequency<br />

3.27 ¥ 10 15 Hz provides this energy.<br />

For 1 mole of hydrogen atoms<br />

DE = 6.02 ¥ 10 23 mol –1 ¥ 2.17 ¥ 10 –18 J<br />

= 1310 kJ mol –1 .<br />

Data book value for the ionisation enthalpy of<br />

hydrogen is 1318 kJ mol –1 .<br />

4 a 1.89 ¥ 10 4 J<br />

b 1.62 ¥ 10 –24 J<br />

c 0.978 J<br />

d 19 330 moles of photons<br />

5 a CO 2<br />

absorbs infrared radiation of specific frequencies<br />

corresponding to transitions between vibrational<br />

energy levels. (Vibrational energy is quantised.) <strong>The</strong><br />

specific frequencies absorbed make the molecules<br />

vibrate in particular ways. <strong>The</strong> vibrational energy<br />

increases.<br />

b <strong>The</strong> molecules which have absorbed radiation have<br />

more kinetic energy. (A more complete answer could<br />

include energy being subsequently transferred to<br />

other molecules in the air by collision.)<br />

3 a Oxidation of N 2<br />

in internal combustion engines.<br />

b Exothermic<br />

c i O 3<br />

+OÆ O 2<br />

+ O 2<br />

ii Catalyst<br />

iii DH = –292 kJ mol –1<br />

d It catalyses breakdown of ozone, thus removing it<br />

from the stratosphere.<br />

4 a Initiation: reaction 1<br />

Propagation: reactions 2, 3 and 4<br />

Termination: reactions 5 and 6<br />

b i Endothermic: reaction 1 (C–C bond broken)<br />

ii Exothermic: reaction 6 (C–C bond formed)


c CH 3<br />

. methyl radical<br />

C 2<br />

H 5<br />

. ethyl radical<br />

H. hydrogen radical<br />

5 a Cl 2<br />

+ hν Æ Cl. + Cl . initiation<br />

CH 4<br />

+ Cl. Æ CH 3<br />

. + HCl ⎞<br />

⎬ propagation<br />

CH 3<br />

. + Cl2 Æ CH 3<br />

Cl + Cl. ⎠<br />

Cl. + Cl . Æ Cl ⎞<br />

2 termination<br />

CH 3<br />

. + CH3 . Æ C2 H 6<br />

⎬<br />

⎠<br />

SECTION 6<br />

b <strong>The</strong> chloromethane formed can also react with Cl.<br />

radicals.<br />

CH 3<br />

Cl + Cl. Æ . CH2 Cl + HCl<br />

. CH2 Cl + Cl 2<br />

Æ CH 2<br />

Cl 2<br />

+ Cl.<br />

Similarly, CH 2<br />

Cl 2<br />

can react with Cl. , and so on, until<br />

CCl 4<br />

is produced. <strong>The</strong> chlorinated products react with<br />

Cl. radicals more quickly than CH4 does, so a mixture<br />

of products is always obtained.<br />

<strong>Section</strong> 6.4<br />

1 a 4.24 mm<br />

b 7.08 ¥ 10 13 Hz<br />

2<br />

Absorption/cm –1 Bond<br />

3660 O–H<br />

3060 C–H<br />

(arene)<br />

3 a<br />

OH<br />

CH 3 CH CH 3<br />

butan-2-ol<br />

cA butan-2-ol<br />

B butan-2-one<br />

4 a<br />

Compound Absorption/cm –1 Bond<br />

C 3580 O-H<br />

2990 C-H (alkane)<br />

1775 C=O<br />

D 3670 O-H<br />

2950 C-H (alkane)<br />

E 2990 C-H (alkane)<br />

1770 C=O<br />

CH 2<br />

CH 3 CH 3<br />

b<br />

CH 3 CH 2<br />

O<br />

C CH 3<br />

butan-2-one<br />

Compound Absorption/cm –1 Bond<br />

A 3660 O–H<br />

2970 C–H (alkane)<br />

B 2990 C–H (alkane)<br />

1730 C=O<br />

5<br />

bC A carboxylic acid<br />

D An alcohol<br />

E An ester<br />

Bond Absorption/cm –1<br />

O-H (phenol) 3600–3640<br />

C-H (arene) 3000–3100<br />

C=O (ester) 1735–1750<br />

<strong>Section</strong> 6.5<br />

b<br />

[CH 3<br />

] +<br />

1 a 78, 72, 106<br />

15<br />

b Two isotopes of chlorine leading to C 3<br />

H 35 7<br />

Cl (78) and<br />

C 3<br />

H 37 7<br />

Cl (80)<br />

2 43, [C 3<br />

H 7<br />

] +<br />

43, [CH 3<br />

CO] +<br />

77, [C 6<br />

H 5<br />

] +<br />

3 a, b A Ethanoic acid<br />

B Ethanol<br />

A 43, [CH 3<br />

CO] +<br />

45, [COOH] +<br />

60, [CH 3<br />

COOH] +<br />

B 31, [CH 3<br />

O] + or [CH 2<br />

OH] +<br />

46, [C 2<br />

H 5<br />

OH] +<br />

6 a<br />

4 a 88, molecular ion<br />

43, [CH 3<br />

CO[ +<br />

b [CH 3<br />

COOCH 2<br />

CH 3<br />

] + Æ [CH 3<br />

CO] + + OCH 2<br />

CH 3<br />

5 a Mass of peak<br />

Possible fragment<br />

58 [C 4<br />

H 10<br />

] +<br />

43 [C 3<br />

H 7<br />

] +<br />

29 [C 2<br />

H 5<br />

] +<br />

CH 3<br />

CH 2<br />

CH 2 CH 3 CH CH 3<br />

c Adopting a ‘Lego’ approach to these fragment ions,<br />

the full structural formula of the hydrocarbon must be:<br />

CH 3 CH 2<br />

CH 2 CH 3<br />

Fragmentation of this by breaking C–C bonds leads to<br />

the four ions in the table.<br />

<strong>The</strong> branched isomer would not produce the C 2<br />

H 5<br />

+<br />

ion by breaking C–C bonds. However, the other three<br />

ions will also appear in the spectrum of this isomer.<br />

CH 3<br />

CH 2<br />

H<br />

C<br />

b 58 – 43 = 15; CH 3<br />

c i 58 – 57 = 1; H<br />

ii 57 – 29 = 28; CO or C 2<br />

H 4<br />

d i [CH 3<br />

CO + ]<br />

ii 28 [CO] + or [C 2<br />

H 4<br />

] +<br />

29 [CH 3<br />

CH 2<br />

] +<br />

57 [CH 3<br />

CH 2<br />

CO] +<br />

eCis CH 3<br />

COCH 3<br />

O<br />

D is CH 3<br />

CH 2<br />

CHO<br />

CH 3<br />

O<br />

C CH 3<br />

179


SECTION 6<br />

7 Accurate atomic masses give C 4<br />

H 8<br />

O as the formula.<br />

Peaks to be identified:<br />

Mass of peak<br />

Possible fragment<br />

15 [CH 3<br />

] +<br />

29 [CH 3<br />

CH 2<br />

] +<br />

43 [CH 3<br />

CO] +<br />

57 [CH 3<br />

CH 2<br />

CO] +<br />

72 [CH 3<br />

CH 2<br />

COCH 3<br />

] +<br />

8 <strong>The</strong> sketch should show two molecular ion peaks of<br />

equal height at 108 [C 2<br />

H 79 5<br />

Br] + and 110 [C 2<br />

H 81 5<br />

Br] + .<br />

Also peaks at 93 [CH 79 2<br />

Br] + and 95 [CH 81 2<br />

Br] + .<br />

(Actual data have 29 as the base peak (100%) and peaks<br />

at 108 and 110 (94%). <strong>The</strong> next largest peak is 27 (70%).<br />

Peaks at 79 and 81 are very small (3%).)<br />

<strong>The</strong> compound has the structure<br />

O<br />

CH 3 CH 2 C CH 3<br />

<strong>Section</strong> 6.6<br />

1 a 3<br />

b<br />

Chemical shift Relative number of protons<br />

1.0 3<br />

2.1 3<br />

2.4 2<br />

6<br />

Chemical shift Relative number of protons<br />

<strong>1.3</strong> 3<br />

2.1 3<br />

4.1 2<br />

O<br />

CH 3<br />

cd CH 3<br />

– CH 2<br />

– CO – CH 3<br />

CH 3<br />

(<strong>1.3</strong>), CH 3 CO (2.1), C O CH 2 R (4.1)<br />

1.0 2.4 2.1<br />

O<br />

2 a b Tartaric acid 3 signals 1 : 1 : 1<br />

CH 2<br />

Succinic acid 2 signals 2 : 1<br />

CH 3 C O CH 2 CH 3<br />

Citric acid 3 signals 1 : 4 : 3<br />

H is ethyl ethanoate.<br />

3 a<br />

Chemical shift Relative number of protons<br />

7<br />

Chemical shift Relative number of protons<br />

<strong>1.2</strong> 3<br />

4.0 3<br />

2.6 1<br />

6.4 1<br />

3.7 2<br />

7.0 1<br />

b CH 3<br />

(<strong>1.2</strong>), OH (2.6), CH 2<br />

(3.7)<br />

7.4 2<br />

c CH 3<br />

–CH 2<br />

–OH<br />

9.8 1<br />

E is ethanol.<br />

4 a<br />

CH 3 O (4.0),<br />

Chemical shift Relative number of protons<br />

<strong>1.3</strong> 9<br />

OH (6.4),<br />

2.0 1<br />

H<br />

b CH 3<br />

(<strong>1.3</strong>), OH (2.0)<br />

c CH 3<br />

(7.0–7.4),<br />

CH 3 C OH<br />

H H<br />

CH 3<br />

CHO (9.8)<br />

F is 2-methylpropan-2-ol.<br />

8 a<br />

Protons in Expected Relative numbers<br />

5<br />

Chemical shift Relative number of protons<br />

the molecule chemical of each type<br />

shift<br />

of proton<br />

<strong>1.2</strong> 3<br />

2.7 2<br />

CH 3<br />

O ca 3.7 3<br />

7.0–7.4 5<br />

C 6<br />

H 4<br />

6.0–9.0 2<br />

H H<br />

It is good enough to identify two types of proton (CH 3<br />

and C 6<br />

H 4<br />

), in the ratio of 3 : 2. However, there are<br />

CH<br />

actually two different environments for the protons on<br />

3 (<strong>1.2</strong>),<br />

CH 2 R (2.7), H (7.0–7.4)<br />

the aryl group, one being adjacent to the ester group,<br />

and the better answer would be 3 : 1 : 1.<br />

H H<br />

180<br />

G is ethylbenzene.


SECTION 7<br />

<strong>Section</strong> 6.7<br />

1 a Green 520 nm–580 nm approx.<br />

b Red 620 nm–700 nm approx.<br />

2 Blue and blue-green; approx. 440 nm – 520 nm<br />

3 It will appear green. <strong>The</strong> sketch should show two peaks<br />

with λ max<br />

at about 640 nm and 410 nm.<br />

<strong>Section</strong> 6.8<br />

1 a Spectrum (b) b Violet<br />

2 a i<br />

ii<br />

Intensity of<br />

absorption<br />

300 500 700<br />

l / nm<br />

4 a 6.97 ¥ 10 14 Hz<br />

b 8.57 ¥ 10 14 Hz<br />

c 4.29 ¥ 10 14 Hz<br />

b A reflectance spectrum of a black pigment would show<br />

a low percentage of reflected light for all wavelengths<br />

in the visible region.<br />

3 a Spectrum (a) λ max<br />

= 440 nm (approx.)<br />

Spectrum (b) λ max<br />

= 420 nm (approx.)<br />

b Spectrum (b) corresponds to haemoglobin.<br />

4 a Red ochre.<br />

b It absorbs violet, blue and green light<br />

(λ = 400 nm–530 nm) but reflects yellow and red light<br />

(λ = 530 nm–700 nm).<br />

Intensity of<br />

absorption<br />

300 500 700<br />

l / nm<br />

<strong>Section</strong> 6.9<br />

1 a A chromophore is the part of a dye molecule<br />

responsible for its colour. It contains unsaturated<br />

groups such as C=O and –N=N– which are often part<br />

of an extended delocalised electron system involving<br />

arene rings.<br />

b<br />

N N<br />

2 a Cyanidin contains an extended delocalised<br />

(conjugated) electron system. <strong>The</strong> electrons in such<br />

systems require less energy to excite them than those<br />

in single bonds or in isolated double bonds. <strong>The</strong><br />

excitation energy corresponds to the visible region.<br />

b Molecule absorbs orange light; the diagram should<br />

show a smaller excitation energy.<br />

c An extended delocalised system of electrons.<br />

<strong>Section</strong> 7.1<br />

1 a Rate of evaporation = rate of condensation.<br />

b It is a closed system, in which there is a dynamic<br />

equilibrium between water vapour and liquid.<br />

c No longer a closed system, H 2<br />

O(g) escapes.<br />

d i Towards H 2<br />

O(l)<br />

ii Towards H 2<br />

O(g).<br />

2 a Equilibrium lies to the reactants’ side because at<br />

equilibrium there is a greater concentration of<br />

reactants than products.<br />

b Equilibrium is reached at the point where the graphs<br />

become horizontal.<br />

3 B<br />

4 a left Æ right b right Æ left c no change<br />

d left Æ right e left Æ right<br />

5 a <strong>The</strong> concentrated hydrochloric acid moves the<br />

position for the equilibrium to the left, the bismuth<br />

trichloride is predominantly present as BiCl 3<br />

(aq).<br />

b <strong>The</strong> equilibrium would move to the right due to the<br />

large amount of water, hence a white precipitate of<br />

BiOCl(s) would be seen.<br />

6 a <strong>The</strong>re would be no change to fizziness as the<br />

concentration of CO 2<br />

(g) is not influenced by the<br />

amount of air present since the system had already<br />

come to equilibrium.<br />

b <strong>The</strong> increase in concentration of CO 2<br />

(g) would make<br />

the first equilibrium move to the right and form more<br />

CO 2<br />

(aq) which in turn would make the second<br />

equilibrium move to the right and increase the<br />

concentration of H + (aq).<br />

c Dilute alkali would react with H + (aq) and the<br />

reduction in concentration of H + (aq) would cause the<br />

second equilibrium to move to the right. <strong>The</strong> resulting<br />

reduction in the concentration of CO 2<br />

(aq) would<br />

cause the first equilibrium to move to the right and<br />

more CO 2<br />

(g) would dissolve and so the equilibrium<br />

pressure of carbon dioxide would decrease.<br />

181


SECTION 7<br />

<strong>Section</strong> 7.2<br />

1 a 0.09<br />

5 a 2H 2<br />

(g) + O 2<br />

(g) D 2H 2<br />

O(g)<br />

0.08<br />

[H<br />

b K c<br />

= 2<br />

O(g)] 2<br />

[H 2<br />

(g)] 2 [O 2<br />

(g)]<br />

0.07<br />

c i Equilibrium moves towards reactants (reaction is<br />

0.06<br />

exothermic)<br />

ii Equilibrium moves towards products (fewer<br />

0.05<br />

gaseous molecules).<br />

0.04<br />

d i Decreases<br />

ii No effect<br />

0.03<br />

0 1 2 3<br />

[PCl 3<br />

(g)][Cl 2<br />

(g)]<br />

Pressure CO 6 a K c<br />

=<br />

2 (g)/atm<br />

[PCl 5<br />

(g)]<br />

b [CO b 0.196 mol dm –3<br />

Gradient = 2<br />

(aq)] (0.09–0.03) mol dm –3<br />

=<br />

p CO2(g)<br />

(2.6–0.8) atm<br />

[H<br />

7 a K c<br />

= 2<br />

S(g)] 2<br />

= 0.033 mol dm –3 atm –1<br />

[H 2<br />

(g)] 2 [S 2<br />

(g)]<br />

= equilibrium constant at 292 K<br />

Concentration CO 2 (aq)/mol dm –3<br />

c Drawing a ‘best fit’ line eliminates errors more<br />

effectively than taking an average.<br />

[NO<br />

2 a K c<br />

= 2<br />

(g)] 2<br />

mol –1 dm<br />

[NO(g)] 2 [O 3<br />

2<br />

(g)]<br />

[C 2<br />

H 4<br />

(g)][H 2<br />

(g)]<br />

b K c<br />

= mol dm –3<br />

[C 2<br />

H 6<br />

(g)]<br />

c K c<br />

=<br />

d K c<br />

=<br />

[H 2<br />

(g)][I 2<br />

(g)]<br />

[HI(g)] 2<br />

(no units)<br />

[HCO 3 – (aq)][H + (aq)]<br />

[CO 2<br />

(aq)][H 2<br />

O(l)]<br />

[In<br />

e K c<br />

= 2<br />

(aq)] 3<br />

mol 2 dm – 6<br />

[In 6<br />

(aq)]<br />

(no units)<br />

0.442 2 ⎞<br />

b At equilibrium, [S 2<br />

(g)] = mol dm –3<br />

9.4 ¥ 10 5 ¥ 0.234 2 ⎠<br />

= 3.80 ¥ 10 –6 mol dm –3<br />

8 a Products<br />

[NO(g)] 2 [O<br />

b K c<br />

=<br />

2<br />

(g)]<br />

[NO 2<br />

(g)] 2<br />

c 0.083 mol dm –3<br />

d Yes. <strong>The</strong> equilibrium concentration of NO 2<br />

(g) is much<br />

lower than the concentrations of NO(g) and O 2<br />

(g).<br />

9 a K c<br />

=<br />

[CH 3<br />

CH(OC 2<br />

H 5<br />

) 2<br />

(l)][H 2<br />

O(l)]<br />

[C 2<br />

H 5<br />

OH(l)] 2 [CH 3<br />

CHO(l)]<br />

⎞ ⎠<br />

f K c<br />

=<br />

[CH 3<br />

COOC 3<br />

H 7<br />

(l)][H 2<br />

O(l)]<br />

[CH 3<br />

COOH(l)][C 3<br />

H 7<br />

OH(l)]<br />

3 2SO 2<br />

(g) + O 2<br />

(g) D 2SO 3<br />

(g)<br />

[NH 3<br />

(g)] 2<br />

4 a K c<br />

=<br />

[N 2<br />

(g)] [H 2<br />

(g)] 3<br />

b K c<br />

= 2.09 mol –2 dm 6<br />

(no units)<br />

b Reactants<br />

c Low<br />

d 0.074 mol –1 dm 3<br />

10 Likely to be low.<br />

<strong>Section</strong> 7.3<br />

p H2 O 2<br />

1 a K p<br />

= atm<br />

p –1<br />

f K 2 p<br />

= (no units)<br />

H2 p O2 p N2 p O2<br />

p NO<br />

2<br />

p CH3 OH<br />

b K p<br />

= 2 atm<br />

p –2<br />

CO p H2<br />

p H2 p CO2<br />

c K p<br />

= (no units)<br />

p H2 O p CO<br />

p C2 H 5 OH<br />

d K p<br />

= atm<br />

p –1<br />

C2 H 4<br />

p H2 O<br />

2<br />

p SO3<br />

e K p<br />

= 2 atm<br />

p –1<br />

SO2 p O2<br />

3<br />

p CO p H2<br />

2 a K p<br />

=<br />

p CH4 p H2 O<br />

b i K p<br />

increases<br />

ii K p<br />

unchanged<br />

iii K p<br />

unchanged<br />

c i A larger proportion of reactants (fewer gaseous<br />

molecules)<br />

ii A larger proportion of products (reaction is<br />

endothermic)<br />

iii No effect<br />

182


SECTION 7<br />

3 a K p<br />

=<br />

p O<br />

2<br />

p O2<br />

b 3 ¥ 10 –8 atm<br />

<strong>The</strong> position of the equilibrium is much further to the<br />

right at this altitude compared to lower regions of the<br />

atmosphere because of the higher intensity of the<br />

ultraviolet radiation with the right frequency to cause<br />

this dissociation.<br />

p NH3<br />

2<br />

4 a K p<br />

=<br />

3<br />

p N2 p H2<br />

b 1.7 ¥ 10 –4 atm –2 (<strong>The</strong> calculation follows the steps in<br />

the worked example on page 179.)<br />

c 23.7 atm<br />

d 100 atm, 24%<br />

<strong>Section</strong> 7.4<br />

1 Experiment number K<br />

1 87.1<br />

2 87.6<br />

3 87.3<br />

An average value of 87.3<br />

2 a Partition coefficient = [butanedioic acid] ethoxyethane<br />

[butanedioic acid] water<br />

= 0.148<br />

b [butanedioic acid] ethoxyethane<br />

= 0.148 ¥ 0.036 mol dm –3<br />

= 0.0053 mol dm –3<br />

[DDT(octan-1-ol)]<br />

3 a K ow<br />

=<br />

[DDT(aq)]<br />

b K ow<br />

is greater than 1<br />

c Lower<br />

<strong>Section</strong> 7.5<br />

1 <strong>The</strong> position of equilibrium would move toward the<br />

products, ie Ca 2+ ions will displace Mg 2+ ions from the<br />

clay surface.<br />

2 <strong>The</strong> equilibrium involved is<br />

R–H + (s) + Na + (aq) D R–Na + (s) + H + (aq)<br />

Washing with acid moves the equilibrium back to the left<br />

(the regenerated form). A high volume of concentrated<br />

acid is used to ensure that the equilibrium moves as far<br />

as possible to the left so that regeneration is as near<br />

complete as possible.<br />

3 a resin –OH – (s) + Cl – (aq) Æ resin –Cl – (s) + OH – (aq)<br />

b One might expect I – (aq) to be held more strongly by<br />

the resin than Cl – (aq), because I – has fewer<br />

surrounding water molecules.<br />

c H + (aq) reacts with OH – (aq) to form H 2<br />

O(l)<br />

4 <strong>The</strong> caesium, as Cs + ions, was deposited by rain. In the<br />

soil, the caesium ions exchanged with other cations such<br />

as hydrogen ions on the surface of the clays.<br />

Soil–H + (s) + Cs + (aq) Æ Soil–Cs + (s) + H + (aq)<br />

<strong>The</strong> caesium is thus held in the soil rather than being<br />

rapidly leached away. Like any nutrient cation, it is slowly<br />

released from the soil by exchange with hydrogen ions in<br />

subsequent rainfall. <strong>The</strong> initial ion exchange reaction is<br />

reversed<br />

Soil–Cs + (s) + H + (aq) Æ Soil–H + (s) + Cs + (aq)<br />

<strong>The</strong> rate of release will be greater in areas of higher<br />

rainfall. This will lead to a greater concentration in grass<br />

and a consequently higher level in livestock. This higher<br />

level is likely to exceed that acceptable in food.<br />

<strong>Section</strong> 7.6<br />

1 a X = 0.75; Y = 0.25<br />

b Compared to compound X, compound Y has a greater<br />

affinity for the stationary phase and/or a lower affinity<br />

for the mobile phase.<br />

c To maintain constant conditions in which the space<br />

around the thin layer is saturated with solvent vapour.<br />

2 a Retention time depends on the affinity of the<br />

compound for the stationary phase compared to its<br />

affinity for the carrier gas. More volatile compounds<br />

usually have shorter retention times. Other factors<br />

include the length and packing of the column, the<br />

flow rate of the gas and the temperature.<br />

b <strong>The</strong> extent to which a compound distributes itself<br />

between the mobile phase and the stationary phase,<br />

and hence the retention time for that compound,<br />

depends on the temperature, so this must be constant<br />

throughout the column. Most columns are kept above<br />

room temperature to give reasonably short retention<br />

times. <strong>The</strong> temperature (and other conditions) must<br />

be recorded and kept constant in order to obtain<br />

reproducible results. If the temperature varies, the<br />

rates of elution of the substances will vary and results<br />

will be inconsistent between experiments.<br />

c Compounds with very high boiling points would have<br />

very long retention times. Compounds which<br />

decompose on heating may break down into smaller<br />

compounds in the column.<br />

3 a Ratio of cis : trans isomers was 1 : 1.4.<br />

b <strong>The</strong>y are likely to be similar because they are isomers.<br />

4 a Methylpropane<br />

b <strong>The</strong> more carbon atoms in the molecule, the longer<br />

the compound takes to travel through the column.<br />

Larger molecules are less volatile, spend more time<br />

dissolved in the stationary liquid phase and less time<br />

in the gas phase.<br />

c All the times would be longer and the peaks would be<br />

further apart.<br />

183


SECTION 8<br />

<strong>Section</strong> 7.7<br />

1 a i AgI(s) D Ag + (aq) + I – (aq)<br />

ii BaSO 4<br />

(s) D Ba 2+ (aq) + SO 4 2– (aq)<br />

iii PbI 2<br />

(s) D Pb 2+ (aq) + 2I – (aq)<br />

iv Fe(OH) 3<br />

(s) D Fe 3+ (aq) + 3OH – (aq)<br />

b i K sp<br />

= [Ag + (aq)] [I – (aq)] mol 2 dm –6<br />

ii K sp<br />

= [Ba 2+ (aq)] [SO 4 2– (aq)] mol 2 dm –6<br />

iii K sp<br />

= [Pb 2+ (aq)] [I – (aq)] 2 mol 3 dm –9<br />

iv K sp<br />

= [Fe 3+ (aq)] [OH – (aq)] 3 mol 4 dm –12<br />

c <strong>The</strong> reactant is a solid and so its concentration can be<br />

regarded as constant.<br />

2 a<br />

Product of ion<br />

K sp<br />

concentrations<br />

/ mol 2 dm –6<br />

i<br />

ii<br />

iii<br />

iv<br />

<strong>Section</strong> 8.1<br />

4.0 ¥ 10 –12 5.0 ¥ 10 –13 mol 2 dm –6<br />

9.0 ¥ 10 –12 1.0 ¥ 10 –10 mol 2 dm –6<br />

2.0 ¥ 10 –9 1.6 ¥ 10 –8 mol 2 dm –6<br />

2.0 ¥ 10 –6 5.0 ¥ 10 –9 mol 2 dm –6<br />

b A precipitate will form in i and iv as in these cases the<br />

product of the ion concentrations is greater than the<br />

solubility product.<br />

3 a [Ag + (aq)] = 0.005 mol dm –3 ;<br />

[Cl – (aq)] = 0.005 mol dm –3<br />

b [Ca 2+ (aq)] = 0.001 mol dm –3<br />

4 a [Tl + (aq)] = 0.5 ¥ 7.0 ¥ 10 –3 mol dm –3 .<br />

(Remember the concentration will be halved on<br />

mixing with an equal volume of sodium chloride.)<br />

1 Acid donates hydrogen ions/protons and the base<br />

accepts hydrogen ions/protons.<br />

2 a HNO 3<br />

+ H 2<br />

O Æ H 3<br />

O + –<br />

+ NO 3<br />

acid base<br />

b NH 3<br />

+ H 2<br />

O Æ NH + 4<br />

+ OH –<br />

base acid<br />

c NH + 4<br />

+ OH – Æ NH 3<br />

+ H 2<br />

O<br />

acid base<br />

d SO 2– 4<br />

+ H 3<br />

O + Æ HSO – 4<br />

+ H 2<br />

O<br />

base acid<br />

e H 2<br />

O + H – Æ H 2<br />

+ OH –<br />

acid base<br />

f H 3<br />

O + + OH – Æ 2H 2<br />

O<br />

acid base<br />

g NH 3<br />

+ HBr Æ NH + 4<br />

+ Br –<br />

base acid<br />

h H 2<br />

SO 4<br />

+ HNO 3<br />

Æ HSO – +<br />

4<br />

+ H 2<br />

NO 3<br />

acid base<br />

i CH 3<br />

COOH + H 2<br />

O Æ CH 3<br />

COO – + H 3<br />

O +<br />

acid base<br />

3 a Acid–base<br />

b Acid–base<br />

c Redox<br />

d Redox<br />

K sp<br />

= (0.5 ¥ 7.0 ¥ 10 – 3<br />

mol dm –3 ) ¥ [Cl – (aq)]<br />

1.75 ¥ 10 –4 mol 2 dm –6<br />

[Cl – (aq)] =<br />

0.5 ¥ 7.0 ¥ 10 –3 mol dm –3<br />

= 0.05 mol dm –3<br />

As with the thallium ion, the concentration of chloride<br />

ion will be halved on mixing. Hence the concentration<br />

of sodium chloride above which a precipitate will just<br />

form is 0.10 mol dm –3 .<br />

b <strong>The</strong> volume of the mixture becomes 200 cm 3 , therefore<br />

both ionic concentrations become 5 ¥ 10 –3 mol dm –3 .<br />

Hence [Ag + (aq)] ¥ [BrO – 3<br />

(aq)] = 2.5 ¥ 10 –5 mol 2 dm –6<br />

at 298 K, which is less than K sp<br />

so no precipitate would<br />

be observed.<br />

5 a [Ag + (aq)] = 1.41 ¥ 10 –5 mol dm –3 ,<br />

[Cl – (aq)] = 1.41 ¥ 10 –5 mol dm –3<br />

b 2.02 ¥ 10 –3 gdm –3<br />

c <strong>The</strong> new [Cl – (aq)] = 5.0 ¥ 10 –1 mol dm –3 .<br />

(<strong>The</strong> Cl – ions from AgCl will be negligible in<br />

comparison.) <strong>The</strong> product of the concentrations of<br />

silver and chloride ions<br />

= (5.0 ¥ 10 –1 mol dm –3 ) ¥ (0.5 ¥ 1.41 ¥ 10 –5 mol dm –3 )<br />

= 3.5 ¥ 10 –6 mol 2 dm –6<br />

which exceeds the K sp<br />

at this temperature and so a<br />

white precipitate of silver chloride would be observed.<br />

4 Conjugate pairs: acid base<br />

a<br />

+<br />

NH 4<br />

NH 3<br />

H 3<br />

O +<br />

H 2<br />

O<br />

b H 2<br />

SO 4<br />

–<br />

HSO 4<br />

+<br />

H 2<br />

NO 3<br />

HNO 3<br />

c HClO 4<br />

–<br />

ClO 4<br />

+<br />

CH 3<br />

COOH 2<br />

CH 3<br />

COOH<br />

5 a CH 3<br />

COOH + OH – Æ CH 3<br />

COO – + H 2<br />

O<br />

Conjugate pairs: acid<br />

base<br />

CH 3<br />

COOH CH 3<br />

COO –<br />

H 2<br />

O OH –<br />

b HCO – 3<br />

+ HCl Æ H 2<br />

CO 3<br />

+ Cl –<br />

Conjugate pairs: acid<br />

base<br />

HCl Cl –<br />

H 2<br />

CO 3<br />

–<br />

HCO 3<br />

c H 2<br />

O + HSO – 4<br />

Æ SO 2– 4<br />

+ H 3<br />

O +<br />

Conjugate pairs: acid<br />

base<br />

–<br />

HSO 4<br />

2–<br />

SO 4<br />

H 3<br />

O +<br />

H 2<br />

O<br />

184


SECTION 8<br />

<strong>Section</strong> 8.2<br />

1 a [H + (aq)] = 1 ¥ 10 –2 mol dm –3 ; therefore pH = 2<br />

b [H + (aq)] = 2 ¥ 10 –1 mol dm –3 ; therefore pH = 0.7<br />

c [H + (aq)] = 4 ¥ 10 –1 mol dm –3 ; therefore pH = 0.4<br />

d [H + (aq)] = 4 ¥ 10 –1 mol dm –3 ; therefore pH = 0.4<br />

[H + (aq)] 2<br />

2 a 1.7 ¥ 10 –5 =<br />

1 ¥ 10 –1<br />

[H + (aq)] 2 = 1.7 ¥ 10 –6 mol 2 dm –6<br />

[H + (aq)] = <strong>1.3</strong> ¥ 10 –3 mol dm –3<br />

pH = 2.9<br />

[H + (aq)] 2<br />

b 1.7 ¥ 10 –5 =<br />

5 ¥ 10 –2<br />

[H + (aq)] 2 = 8.5 ¥ 10 –7 mol 2 dm –6<br />

[H + (aq)] = 9.2 ¥ 10 –4 mol dm –3<br />

pH = 3.0<br />

[H + (aq)] 2<br />

c 6.3 ¥ 10 –5 =<br />

1 ¥ 10 –3<br />

[H + (aq)] 2 = 6.3 ¥ 10 –8 mol 2 dm –6<br />

[H + (aq)] = 2.5 ¥ 10 –4 mol dm –3<br />

pH = 3.6<br />

[H + (aq)] 2<br />

d 1.6 ¥ 10 –4 =<br />

2.5<br />

[H + (aq)] 2 = 4.0 ¥ 10 –4 mol 2 dm –6<br />

[H + (aq)] = 2.0 ¥ 10 –2 mol dm –3<br />

pH = 1.7<br />

3 a <strong>The</strong> reaction of the acid with water goes to<br />

completion.<br />

b [H + (aq)] = [A – (aq)]<br />

[HA(aq)] at equilibrium = original [HA(aq)].<br />

4 a Strong acid – hydrochloric acid<br />

Weak acid – nitrous acid (nitric(III) acid)<br />

5<br />

b <strong>The</strong> position of the equilibrium for the reaction of the<br />

strong acid with water is completely to the right:<br />

HCl(aq) + H 2<br />

O(l) Æ Cl – (aq ) + H 3<br />

O + (aq)<br />

<strong>The</strong> amount in moles of H + (aq) ions is equal to the<br />

amount in moles of HCl put into solution. Thus,<br />

[H + (aq)] = 0.01 mol dm –3 and pH = 2.<br />

<strong>The</strong> position of the equilibrium for the reaction of the<br />

weak acid with water is more to the left:<br />

HNO 2<br />

(aq) + H 2<br />

O(l) D NO 2 – (aq) + H 3<br />

O + (aq)<br />

<strong>The</strong> amount in moles of H + (aq) ions is very much less<br />

than the amount in moles of HNO 2<br />

put into solution.<br />

To obtain a solution with pH = 2, the nitrous acid<br />

solution must be more concentrated than the<br />

hydrochloric acid solution.<br />

a<br />

b<br />

c<br />

[OH – (aq)]/mol dm –3 [H + (aq)]/mol dm –3 pH<br />

1 1 ¥ 10 –14 14<br />

0.01 1 ¥ 10 –12 12<br />

0.2 5 ¥ 10 –14 13.3<br />

6 a In alkaline solution, the equilibrium shifts to the right<br />

as H + (aq) is removed by reaction with OH – (aq), so the<br />

indicator will be present as the pink In – form.<br />

b K a<br />

= [H+ (aq)][In – (aq)]<br />

[HIn(aq)]<br />

c K a<br />

= 5.01 ¥ 10 –10 mol dm –3<br />

= [H+ (aq)][In – (aq)]<br />

[HIn(aq)]<br />

At the end point [HIn(aq)] = [In – (aq)]<br />

Hence 5.01 ¥ 10 –10 mol dm –3 = [H + (aq)]<br />

pH at end point = 9.3<br />

7 a i K a<br />

= 5.0 ¥ 10 –10 mol dm –3 , pK a<br />

= 9.3<br />

ii K a<br />

= <strong>1.3</strong> ¥ 10 –10 mol dm –3 , pK a<br />

= 9.9<br />

iii K a<br />

= 4.8 ¥ 10 –4 mol dm –3 , pK a<br />

= 3.3<br />

b HF, HCN, phenol<br />

<strong>Section</strong> 8.3<br />

1 a 1.6 ¥ 10 –4 mol dm –3 = [H + 0.1 mol dm–3<br />

f In 750 cm<br />

(aq)] ¥ 3 of solution the concentrations of acid and<br />

0.1 mol dm –3<br />

salt are<br />

<strong>The</strong>refore [H + (aq)] = 1.6 ¥ 10 –4 mol dm –3<br />

0.1 ¥ 250<br />

pH = 3.8<br />

[acid] = mol dm<br />

750<br />

–3<br />

b 6.3 ¥ 10 –5 mol dm –3 = [H + 0.03 mol dm–3<br />

(aq)] ¥<br />

0.01 mol dm –3<br />

0.1 ¥ 500<br />

<strong>The</strong>refore [H + (aq)] = 2.1 ¥ 10 –5 mol dm –3<br />

[salt] = mol dm –3<br />

750<br />

pH = 4.7<br />

0.1 ¥ 500 mol dm –3<br />

c <strong>The</strong> concentrations of acid and salt in the mixture will<br />

1.7 ¥ 10 –5 mol dm 3 = [H + (aq)] ¥<br />

0.1 ¥ 250 moldm –3<br />

both be 0.05 mol dm –3 . This is equivalent to diluting<br />

the buffer in 1 a with an equal volume of water. <strong>The</strong><br />

[H + (aq)] = 8.5 ¥ 10 –6 mol dm –3<br />

pH remains unchanged at 3.8.<br />

pH = 5.1<br />

d <strong>1.3</strong> ¥ 10 –5 mol dm –3 = [H + (aq)] ¥ 5.0 ¥ 10–3 mol dm –3<br />

1 ¥ 10 –1 mol dm –3<br />

g 1.7 ¥ 10 –5 mol dm –3 = [H + 0.1 mol dm –3<br />

(aq)] ¥<br />

<strong>The</strong>refore [H + (aq)] = 2.6 ¥ 10 –4 mol dm –3<br />

0.2 mol dm –3<br />

pH = 3.6<br />

[H + (aq)] = 3.4 ¥ 10 –5 mol dm –3<br />

2 ¥ 1.5 ¥ 10 –2 mol dm –3<br />

e 1.6 ¥ 10 –4 mol dm –3 = [H + pH = 4.5<br />

(aq)] ¥<br />

2 ¥ 5 ¥ 10 –3 mol dm –3 <strong>The</strong> pH of the buffer solution, on adding a higher<br />

[H + (aq)] = 5.3 ¥ 10 –5 mol dm –3<br />

proportion of acid, has decreased. Changing the ratio<br />

pH = 4.3<br />

of [salt] : [acid] provides a way of ‘fine tuning’ the pH<br />

of a buffer solution.<br />

185


SECTION 9<br />

2 a Buffer solutions are made of either a weak acid and<br />

one of its salts or a weak base and one of its salts.<br />

b i Ethanoate ions from the salt react with the extra<br />

H + (aq) ions to form ethanoic acid and water and<br />

so prevent a fall in the pH.<br />

ii <strong>The</strong> addition of OH – (aq) ions removes H + (aq)<br />

but these are replaced by further dissociation of<br />

the ethanoic acid so the pH will remain constant.<br />

iii Addition of a small amount of water will change<br />

the concentration of the acid and the salt by the<br />

same factor which means the ratio of [salt] to<br />

[acid] will remain constant and the pH will<br />

remain constant.<br />

3 Ethanoic acid, because its K a<br />

is close to the required<br />

[H + (aq)] (pK a<br />

close to the required pH).<br />

<strong>Section</strong> 9.1<br />

1 a b i K Æ K + + e – oxidation<br />

ii H 2<br />

Æ 2H + + 2e – oxidation<br />

iii O+2e – Æ O 2– reduction<br />

iv Cu + Æ Cu 2+ + e – oxidation<br />

v Cr 3+ + e – Æ Cr 2+ reduction<br />

2 a Ag(+1) f N(–3) k S(+6), F(–1)<br />

b Br(0) g Mg(+2), Cl(–1) l S(+6), O(–2)<br />

c P(0) h C(+4), O(–2) m N(+5), O(–2)<br />

d H(+1) i P(+5), Cl(–1) n P(+5), O(–2)<br />

e H(–1) j Al(+3), O(–2)<br />

3 a Cl(0) Æ Cl(–1) reduced<br />

Fe(0) Æ Fe(+3) oxidised<br />

b Cl(0) Æ Cl(–1)<br />

reduced<br />

H(0) Æ H(+1)<br />

oxidised<br />

c Cl(0) Æ Cl(–1)<br />

reduced<br />

Fe(+2) Æ Fe(+3) oxidised<br />

d F(0) Æ F(–1)<br />

reduced<br />

O(–2) Æ O(0)<br />

oxidised<br />

4 a i Cl 2<br />

ii Fe<br />

b i Cl 2<br />

ii H 2<br />

c i Cl 2<br />

ii FeCl 2<br />

d i F 2<br />

ii H 2<br />

O<br />

5 a Cl(+5) Æ Cl(–1) reduced<br />

O(–2) Æ O(0)<br />

oxidised<br />

b S(+6) Æ S(+4) reduced<br />

Br(–1) Æ Br(0)<br />

oxidised<br />

c S(+6) Æ S(–2)<br />

reduced<br />

I(–1) Æ I(0)<br />

oxidised<br />

d I(0) Æ I(–1)<br />

reduced<br />

S(+4) Æ S(+6) oxidised<br />

6 a Cu 2<br />

O + 2H + Æ Cu 2+ + Cu + H 2<br />

O<br />

Cu: 2(+1) +2 0 oxidised and<br />

reduced<br />

O: –2 –2 no change<br />

H: 2(+1) 2(+1) no change<br />

b 3Br 2<br />

+ 6OH – Æ BrO – 3<br />

+ 5Br – + 3H 2<br />

O<br />

Br: 3(0) +5 5(–1) oxidised and<br />

reduced<br />

O: 6(–2) 3(–2) 3(–2) no change<br />

H: 6(+1) 6(+1) no change<br />

c 4IO – 3<br />

Æ 3IO – 4<br />

+ I –<br />

I: 4(+5) 3(+7) –1 oxidised and reduced<br />

O: 12(–2) 12(–2) no change<br />

7 a tin(II) oxide h nitrate(III)<br />

b tin(IV) oxide i nitrate(V)<br />

c iron(II) chloride j sulphate(IV)<br />

d iron(III) chloride k sulphate(VI)<br />

e lead(IV) chloride l manganate(VII)<br />

f copper(I) oxide m chromate(VI)<br />

g manganese(II) hydroxide n vanadate(V)<br />

8 a KClO 2<br />

b NaClO 3<br />

c Fe(OH) 3<br />

d Cu(NO 3<br />

) 2<br />

<strong>Section</strong> 9.2<br />

1 a Pb 2+ (aq) + 2e – Æ Pb(s) Zn(s) Æ Zn 2+ (aq) + 2e –<br />

b 6H + (aq) + 6e – Æ 3H 2<br />

(g) 2Al(s) Æ 2Al 3+ (aq) + 6e –<br />

c 2Ag + (aq) + 2e – Æ 2Ag(s) Cu(s) Æ Cu 2+ (aq) + 2e –<br />

d Cl 2<br />

(g) + 2e – Æ 2Cl – (aq) 2I – (aq) Æ I 2<br />

(aq) + 2e –<br />

e S(s) + 2e – Æ S 2– (s) Zn(s) Æ Zn 2+ (s) + 2e –<br />

2 a Mg(s) + Cu 2+ (aq) Æ Mg 2+ (aq) + Cu(s)<br />

b Zn(s) + 2Ag + (aq) Æ Zn 2+ (aq) + 2Ag(s)<br />

c 3Mg(s) + 2Au 3+ (aq) Æ 3Mg 2+ (aq) + 2Au(s)<br />

d 2Fe 2+ (aq) + Cl 2<br />

(g) Æ 2Fe 3+ (aq) + 2Cl – (aq)<br />

3 a i 3.16 V<br />

ii <strong>1.1</strong>0 V<br />

iii 0.18 V<br />

iv 0.32 V<br />

v <strong>1.3</strong>6 V<br />

b i Ag + (aq)/Ag(s)<br />

ii Cu 2+ (aq)/Cu(s)<br />

iii Ni 2+ (aq)/Ni(s)<br />

iv Fe 2+ (aq)/Fe(s)<br />

v MnO – 4<br />

(aq)/Mn 2+ (aq)<br />

186


SECTION 9<br />

c i 2Ag + (aq) + Mg(s) Æ 2Ag(s) + Mg 2+ (aq)<br />

ii Cu 2+ (aq) + Zn(s) Æ Cu(s) + Zn 2+ (aq)<br />

iii Ni 2+ (aq) + Fe(s) Æ Ni(s) + Fe 2+ (aq)<br />

iv Fe 2+ (aq) + Zn(s) Æ Fe(s) + Zn 2+ (aq)<br />

v 2MnO – 4<br />

(aq) + 5Sn 4+ (aq) + 16H + (aq)<br />

Æ 2Mn 2+ (aq) + 5Sn 2+ (aq) + 8H 2<br />

O(l)<br />

4 Cd 2+ (aq)/Cd(s) E! = –0.40 V<br />

5 Co 2+ (aq)/Co(s) E! = –0.28 V<br />

6 Pb 2+ (aq)/Pb(s) E! = –0.13 V<br />

7 Fe 3+ (aq)/Fe 2+ (aq) E! = + 0.77 V<br />

8 F 2<br />

(g)/2F – (aq) E! = +2.85 V<br />

9 K, Ce, Cd, Ni, Sn, Ag<br />

10 2H + (aq)/H 2<br />

(g) E! = 0 V by definition<br />

Pb 2+ (aq)/Pb(s) E! = –0.13 V<br />

Cd 2+ (aq)/Cd(s) E! = –0.40 V<br />

Ag + (aq)/Ag (s) E! = +0.80 V<br />

Cr 3+ (aq)/Cr(s) E! = –0.74 V<br />

<strong>Section</strong> 9.3<br />

1 i 2I – (aq) Æ I 2<br />

(aq) + 2e – ; Cl 2<br />

(g) + 2e – Æ 2Cl – (aq)<br />

overall: Cl 2<br />

(g) + 2I – (aq) Æ 2Cl – (aq) + I 2<br />

(aq)<br />

ii 2Br – (aq) Æ Br 2<br />

(aq) + 2e – ;<br />

MnO – 4<br />

(aq) + 8H + (aq) + 5e –<br />

Æ Mn 2+ (aq) + 4H 2<br />

O(l)<br />

overall: 2MnO – 4<br />

(aq) + 16H + (aq) + 10Br – (aq)<br />

Æ 2Mn 2+ (aq) + 8H 2<br />

O(l) + 5Br 2<br />

(aq)<br />

iii 2I – (aq) Æ 2I 2<br />

(aq) + 2e – ; Br 2<br />

(aq)+ 2e – Æ 2Br – (aq)<br />

overall: 2I – (aq) + Br 2<br />

(aq) Æ I 2<br />

(aq) + 2Br – (aq)<br />

2 a Yes c No<br />

b Yes<br />

d Yes<br />

3 I 2<br />

(aq) + 2e – Æ 2I – (aq)<br />

Cr 2<br />

O 2– 7<br />

(aq) + 14H + (aq)+6e – Æ 2Cr 3+ (aq) + 7H 2<br />

O(l)<br />

overall: Cr 2<br />

O 2– 7<br />

(aq) + 14H + (aq) + 6I – (aq)<br />

Æ2Cr 3+ (aq)+ 7H 2<br />

O(l) + 3I 2<br />

(aq)<br />

<strong>Section</strong> 9.4<br />

1 a i Cobalt(III) fluoride dissolves in water to form<br />

cobalt(III) ions, [Co(H 2<br />

O) 6<br />

] 3+ . E! for the<br />

[Co(H 2<br />

O) 6<br />

] 3+ /[Co(H 2<br />

O) 6<br />

] 2+ half-cell is more<br />

positive than E! for the O 2<br />

(g), H + (aq)/H 2<br />

O(l)<br />

half-cell. Electrons are supplied to the more<br />

positive half-cell, so cobalt(III) ions are reduced<br />

to cobalt(II) ions and water is oxidised to release<br />

oxygen.<br />

ii <strong>The</strong> overall equation is<br />

4[Co(H 2<br />

O) 6<br />

] 3+ (aq) + 2H 2<br />

O(l)<br />

Æ 4[Co(H 2<br />

O) 6<br />

] 2+ (aq) + O 2<br />

(g) + 4H + (aq)<br />

iii <strong>The</strong> hydrated Co 2+ ion is more stable than the<br />

hydrated Co 3+ ion.<br />

b Oxygen in the air is unable to oxidise the pink cobalt(II)<br />

ion as the E! for the oxygen half equation is less positive<br />

than that required for oxidising [Co(H 2<br />

O) 6<br />

] 2+ (aq).<br />

c <strong>The</strong> E! for the oxygen half equation is more positive<br />

than that needed to oxidise the yellow-brown<br />

[Co(NH 3<br />

) 6<br />

] 2+ (aq) to the dark brown [Co(NH 3<br />

) 6<br />

] 3+ (aq).<br />

<strong>The</strong> overall equation is<br />

O 2<br />

(g) + 4H + (aq) + 4[Co(NH 3<br />

) 6<br />

] 2+ (aq)<br />

Æ 2H 2<br />

O(l) + 4[Co(NH 3<br />

) 6<br />

] 3+ (aq)<br />

d [Co(NH 3<br />

) 6<br />

] 3+ is more stable than [Co(NH 3<br />

) 6<br />

] 2+ .<br />

4 b i No<br />

ii No<br />

iii Yes<br />

5 a Yes b No<br />

c Yes<br />

d Yes<br />

e Yes<br />

6 a,b i CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(l)<br />

ii 2CH 3<br />

OH(aq) + O 2<br />

(g) Æ 2HCHO(aq) + 2H 2<br />

O(l)<br />

iii 2HCHO(aq) + O 2<br />

(g) Æ 2HCOOH(aq)<br />

2 b i As the E! for aqueous iron(III), [Fe(H 2<br />

O) 6<br />

] 3+ (aq),<br />

is more positive than that of the iodine half-cell,<br />

the iron(III) will oxidise the aqueous iodide ion<br />

to iodine.<br />

<strong>The</strong> overall equation is<br />

2[Fe(H 2<br />

O) 6<br />

] 3+ (aq) + 2I – (aq)<br />

Æ 2[Fe(H 2<br />

O) 6<br />

] 2+ (aq) + I 2<br />

(aq)<br />

E cell = +0.77 V – (+0.54 V) = +0.23 V<br />

ii As the E! for the iodine half-cell is more positive<br />

than that of hexacyanoferrate half-cell, iodine will<br />

oxidise the hexacyanoferrate(II) to<br />

hexacyanoferrate(III).<br />

<strong>The</strong> overall equation is<br />

I 2<br />

(aq) + 2[Fe(CN) 6<br />

] 4– (aq)<br />

Æ 2I – (aq) + [Fe(CN) 6<br />

] 3– (aq)<br />

E cell = +0.54 V – (+0.36 V) = +0.18 V<br />

c A major reason why many predicted reactions do not<br />

occur is because of high activation enthalpies, ie there<br />

is a kinetic barrier to the reaction despite it appearing<br />

thermodynamically feasible. Also, these calculations<br />

assume standard conditions: if conditions are not<br />

standard, the results may be different.<br />

187


SECTION 10<br />

<strong>Section</strong> 10.1<br />

1<br />

a b c<br />

A rate will increase with rate will increase with rate will increase with<br />

temperature temperature temperature temperature<br />

B rate of forward reaction not rate increases rate of forward reaction not<br />

total pressure of gas affected affected<br />

C increasing the concentration solutions not involved increasing the concentration of<br />

concentration of solution of acid will increase the rate peroxide will increase the rate<br />

D the more finely divided the the more finely divided the solids not involved<br />

surface area of solid magnesium, the faster the rate catalyst, the faster the rate<br />

2 Both the acid and the enzyme can act as catalysts for the<br />

hydrolysis of a protein.<br />

3 a <strong>The</strong> greater the concentration of reactants, the greater<br />

the rate of collisions and hence the faster the reaction<br />

proceeds.<br />

b A change of temperature has little effect. Most<br />

collisions result in a reaction.<br />

4 a B and C<br />

bAand D<br />

cD<br />

dB<br />

eB<br />

f D<br />

<strong>Section</strong> 10.2<br />

1 a A b A c B d Mainly B, with A to a minor extent.<br />

2 a This reaction has a high activation enthalpy that<br />

prevents it occurring at a significant rate at room<br />

temperature, but the reaction is exothermic, and once<br />

the spark has provided the energy needed to get it<br />

started, the reaction produces enough energy to<br />

sustain itself regardless of how much is present.<br />

b <strong>The</strong> platinum catalyst lowers the activation enthalpy to<br />

such an extent that it is close to the thermal energy of<br />

molecules at room temperature.<br />

3 Above a certain temperature, enzymes are denatured and<br />

become inactive.<br />

4 a <strong>The</strong> surface area of the coal is much greater in the<br />

powder than in the lump. Many more collisions with<br />

oxygen molecules are possible and the speed of<br />

reaction will be much greater.<br />

b Although the gas molecules are moving freely, the<br />

molecules have insufficient kinetic energy to<br />

overcome the activation enthalpy for reaction.<br />

c <strong>The</strong> particles in the solids are in fixed positions in their<br />

respective lattices. <strong>The</strong> only movement will be due to<br />

low energy vibrations or rotations about these fixed<br />

positions. <strong>The</strong> number of collisions is very low indeed.<br />

<strong>The</strong>re is also unlikely to be sufficient energy available<br />

to overcome the activation enthalpy for reaction.<br />

d <strong>The</strong> fine flour dust allows maximum chances of<br />

collisions with oxygen molecules. A spark will cause<br />

instant ignition followed by a very rapid reaction<br />

amounting to an explosion.<br />

5 Catalytic converters catalyse redox reactions involving<br />

CO, NO x<br />

and oxygen from the air (see Developing<br />

Fuels for details). <strong>The</strong> catalyst lowers the activation<br />

enthalpies of these reactions, but the activation<br />

enthalpies are still high, and the reactions do not occur<br />

at a significant rate until the catalyst is hot.<br />

6 <strong>The</strong> added curve is above the original, with a greater<br />

slope at the start of the reaction but plateauing at the<br />

same final volume of hydrogen given off.<br />

7 a <strong>The</strong> area shaded is underneath the T 1<br />

curve and to the<br />

right of E a<br />

.<br />

b <strong>The</strong> area shaded a different colour is underneath the<br />

T 2<br />

curve and to the right of E a<br />

, encompassing the firstcoloured<br />

area. <strong>The</strong> T 2<br />

curve has a lower and broader<br />

maximum than the T 1<br />

curve and the maximum value is<br />

shifted to the right. It tails off above the T 1<br />

curve.<br />

188<br />

<strong>Section</strong> 10.3<br />

1 a <strong>The</strong> reaction is first order with respect to<br />

bromoethane and zero order with respect to<br />

hydroxide ion.<br />

b <strong>The</strong> reaction is first order with respect to methyl<br />

methanoate, zero order with respect to water and first<br />

order with respect to H + .<br />

c <strong>The</strong> reaction is first order with respect to urea, zero<br />

order with respect to water and first order with<br />

respect to urease.<br />

d <strong>The</strong> reaction is a single step in the mechanism. It is<br />

first order with respect to the methyl radical and first<br />

order with respect to the chlorine molecule.<br />

e <strong>The</strong> reaction is order with respect to carbon<br />

monoxide and first order with respect to chlorine.<br />

f <strong>The</strong> reaction is second order with respect to nitrogen<br />

dioxide.<br />

2 a Rate = k[CH 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

Cl] [OH – ]<br />

b Rate = k[C 12<br />

H 22<br />

O 11<br />

] [H + ]


SECTION 11<br />

3 a i First order<br />

ii Second order<br />

b Rate = k[H 2<br />

][NO] 2<br />

c k = 0.384 mol –2 dm 6 s –1<br />

4 b All are ca 1150 s (Allow within 1100–1200 s.)<br />

First order.<br />

e Rate = k[N 2<br />

O 5<br />

] or –d[N 2<br />

O 5<br />

]/dt = k[N 2<br />

O 5<br />

]<br />

f 6.2 ¥ 10 –4 s –1<br />

(Method is difficult to use. Allow for an answer<br />

between 5 and 7 ¥ 10 –4 s –1 .)<br />

5 a Structural isomerism<br />

b 0.5 atm<br />

d t <br />

is constant and about 55 ¥ 10 3 s. First order.<br />

<strong>Section</strong> 10.4<br />

1 a Platinum on aluminium oxide (heterogeneous<br />

catalyst).<br />

b Zeolite (heterogeneous catalyst).<br />

c Platinum on aluminium oxide (heterogeneous<br />

catalyst).<br />

2 a 2CO(g) + 2NO(g) Æ 2CO 2<br />

(g) + N 2<br />

(g)<br />

b <strong>The</strong>se gases are hazardous to health, produce acid rain<br />

and can take part in producing photochemical smog.<br />

c i A substance is adsorbed when it is bound to the<br />

surface of another substance.<br />

ii <strong>The</strong> mechanism should show CO and NO being<br />

adsorbed to the catalyst surface.<br />

O N N O C O<br />

<strong>The</strong> bonds in the molecules are weakened and<br />

new bonds form between the atoms.<br />

O N N<br />

catalyst surface<br />

Products are released from the surface.<br />

d <strong>The</strong> reaction between nitrogen and carbon monoxide<br />

on the surface of the catalyst is faster at high<br />

temperature.<br />

e i Lead poisons the catalyst in the converter. It is<br />

adsorbed strongly to the surface of the catalyst<br />

and prevents CO and NO being adsorbed.<br />

ii Use unleaded fuel.<br />

O<br />

C<br />

O<br />

catalyst surface<br />

<strong>Section</strong> 10.5<br />

1 a<br />

Enthalpy<br />

Platinum<br />

catalyst<br />

Reactants<br />

<strong>Section</strong> 1<strong>1.1</strong><br />

Enzyme<br />

catalyst<br />

Progress of reaction<br />

+ 49 kJ mol –1<br />

+ 36 kJ mol –1<br />

DH<br />

Products<br />

1 a d block b p block c s block d f block<br />

2 a Peaks: carbon, silicon<br />

Troughs: helium, neon, argon<br />

b Elements in the same group occur at similar positions<br />

on graph eg Group 4 at peaks, Group 0 in troughs.<br />

3 a <strong>The</strong>y are all in Group 1.<br />

b <strong>The</strong> molar atomic volumes for each period of elements<br />

vary in similar regular patterns.<br />

4 a LiCl, BeCl 2<br />

, BCl 3<br />

, CCl 4<br />

, NCl 3<br />

, OCl 2<br />

, FCl<br />

NaCl, MgCl 2<br />

, AlCl 3<br />

, SiCl 4<br />

, PCl 5<br />

, SCl 4<br />

, Cl 2<br />

c Second period: number of chlorine atoms same as<br />

group number for Groups 1–4. After Group 4, falls by<br />

b <strong>The</strong> rate will be faster for the enzyme catalysed<br />

reaction, as the activation enthalpy is significantly<br />

lower. This means that more pairs of colliding<br />

molecules have sufficient energy to react at room<br />

temperature.<br />

2 a <strong>The</strong> catalyst is in the same phase as the reactants.<br />

b i An intermediate is formed. In this example, the<br />

intermediate is the radical, ClO.<br />

ii <strong>The</strong> first peak represents the energy that must be<br />

supplied to enable bonds in the reactants (Cl and<br />

O 3<br />

) to stretch and break as new bonds form in<br />

the products (ClO and O 2<br />

). <strong>The</strong> trough<br />

represents the energy released when ClO and O 2<br />

are formed from Cl and O 3<br />

. <strong>The</strong> second peak<br />

represents the energy required for ClO and O to<br />

come together and allow the formation of Cl and<br />

O 2<br />

which are the products.<br />

one chlorine atom for each subsequent group.<br />

Similar pattern for third period, rise continues to<br />

Group 5 before falling.<br />

d Same formulae.<br />

5 a Li 2<br />

O, BeO, B 2<br />

O 3<br />

, CO 2<br />

, N 2<br />

O 5<br />

, F 2<br />

O<br />

Na 2<br />

O, MgO, Al 2<br />

O 3<br />

, SiO 2<br />

, P 2<br />

O 5<br />

, SO 3<br />

, Cl 2<br />

O 7<br />

c Second period: number of oxygen atoms per atom of<br />

element increases by a half up to Group 5 before falling.<br />

Third period, increases from Groups 1 through to 7.<br />

d Same formulae except for halogens where fluorine is<br />

unable to form the higher oxides.<br />

189


SECTION 11<br />

<strong>Section</strong> 1<strong>1.2</strong><br />

1<br />

Element Trend in reactivity Trend in thermal Trend in pH of Trend in solubility Trend in solubility<br />

with water stability of carbonate hydroxide with water of hydroxide of carbonate<br />

Mg<br />

Ca<br />

Sr<br />

Ba<br />

increases<br />

decompose<br />

at increasingly<br />

higher temperature<br />

increases<br />

increases<br />

increases<br />

2 Sulphate solubility decreases down group.<br />

3 a magnesium + steam<br />

Æ magnesium hydroxide + hydrogen<br />

Mg(s) + 2H 2<br />

O(g) Æ Mg(OH) 2<br />

(s) + H 2<br />

(g)<br />

b calcium oxide + hydrochloric acid<br />

Æ calcium chloride + water<br />

CaO(s) + 2HCl(aq) Æ CaCl 2<br />

(aq) + H 2<br />

O(l)<br />

c beryllium carbonate<br />

Æ beryllium oxide + carbon dioxide<br />

BeCO 3<br />

(s) Æ BeO(s) + CO 2<br />

(g)<br />

d barium hydroxide + sulphuric acid<br />

Æ barium sulphate + water<br />

Ba(OH) 2<br />

(aq or s) + H 2<br />

SO 4<br />

(aq) Æ BaSO 4<br />

(s) + 2H 2<br />

O(l)<br />

4 a Cs (or Fr)<br />

b Cs (or Fr)<br />

c +1<br />

di M 2<br />

O ii MOH iii M 2<br />

CO 3<br />

5 a lithium + water Æ lithium hydroxide + hydrogen<br />

2Li(s) + 2H 2<br />

O(l) Æ 2LiOH(aq) + H 2<br />

(g)<br />

b hydrochloric acid + sodium hydroxide<br />

Æ sodium chloride + water<br />

HCl(aq) + NaOH(aq) Æ NaCl(aq) + H 2<br />

O(l)<br />

c Little reaction even at high temperatures<br />

d sodium oxide + sulphuric acid<br />

Æ sodium sulphate + water<br />

Na 2<br />

O(s) + H 2<br />

SO 4<br />

(aq) Æ Na 2<br />

SO 4<br />

(aq) + H 2<br />

O(l)<br />

<strong>Section</strong> 1<strong>1.3</strong><br />

1 <strong>The</strong> triple bond in N 2<br />

is very strong (bond enthalpy =<br />

945 kJ mol –1 ), so a great deal of activation enthalpy must<br />

be supplied before N 2<br />

will react. P 4<br />

, on the other hand,<br />

needs only enough energy to break one of the P–P bonds<br />

(bond enthalpy = 198 kJ mol –1 ) to start it reacting. <strong>The</strong><br />

reason that P does not form triple bonds like those in N 2<br />

is related to its larger size.<br />

2 a i +3 Æ +5<br />

ii +5 Æ 0<br />

iii –3 Æ –3<br />

iv 0 Æ –3<br />

v +2 Æ +4<br />

b i A<br />

ii B<br />

iii C<br />

iv B<br />

v A<br />

3 a +2 to +1<br />

<strong>Section</strong> 11.4<br />

1 a i Deep brown colour<br />

2I – (aq) + Cl 2<br />

(aq) Æ I 2<br />

(aq/s) + 2Cl – (aq)<br />

ii No change<br />

iii Light brown/red colour deepens in tone,<br />

becoming dark brown<br />

2I – (aq) + Br 2<br />

(aq) Æ I 2<br />

(aq/s) + 2Br – (aq)<br />

iv Light brown/red colour<br />

2Br – (aq) + Cl 2<br />

(aq) Æ Br 2<br />

(aq) + 2Cl – (aq)<br />

b i Ag + (aq) + Cl – (aq) Æ AgCl(s)<br />

ii Ag + (aq) + Br – (aq) Æ AgBr(s)<br />

iii Ag + (aq) + I – (aq) Æ AgI(s)<br />

b 2NO(g) + 2H + (aq) + 2e – Æ N 2<br />

O(g) + H 2<br />

O(l)<br />

4 i NO – 2<br />

(aq) + H 2<br />

O(l) Æ NO – 3<br />

(aq) + 2H + (aq) + 2e –<br />

ii NO – 3<br />

(aq) + 6H + (aq) + 5e – Æ N 2<br />

(g) + 3H 2<br />

O(l)<br />

iii NH + 4<br />

(aq) + OH – (aq) Æ NH 3<br />

(g) + H 2<br />

O(l)<br />

iv N 2<br />

(g) + 6H + (aq) + 6e – Æ 2NH 3<br />

(g)<br />

v NO(g) + H 2<br />

O(l) Æ NO 2<br />

(g) + 2H + (aq) + 2e –<br />

5 a <strong>The</strong> NO is oxidised by air as in reaction (2), to produce<br />

further NO 2<br />

which takes part in reaction (3).<br />

b Ammonium nitrate fertiliser.<br />

c i 1 mole of NH 3<br />

Æ mole of HNO 3<br />

1000 kg ¥ (63/17) ¥ = 2471 kg<br />

ii Incomplete reaction at each of the three stages.<br />

Loss of intermediates.<br />

d <strong>The</strong> reactants and intermediates include serious<br />

environmental pollutants, particularly NO x<br />

. Escape of<br />

these, even in small quantities, would lead to acid rain<br />

and direct effects on living things. <strong>The</strong> NO x<br />

could be<br />

absorbed in aqueous sodium hydroxide.<br />

c i 2Na(s) + Br 2<br />

(l/g) Æ 2NaBr(s)<br />

ii Mg(s) + Cl 2<br />

(g) Æ MgCl 2<br />

(s)<br />

iii 2K(s) + I 2<br />

(s/g) Æ 2KI(s)<br />

iv Ca(s) + Cl 2<br />

(g) Æ CaCl 2<br />

(s)<br />

2 a I +1, Cl –1<br />

b Br +3, F –1<br />

c Br +1<br />

d I +5<br />

e I +7<br />

190


SECTION 11<br />

3 a Cl 2<br />

(g) + 2NaOH(aq)<br />

Æ NaCl(aq) + NaClO(aq) + H 2<br />

O(l)<br />

b i Chlorine<br />

ii Cl from 0 in Cl 2<br />

to –1 in NaCl, ie reduction<br />

Cl from 0 in Cl 2<br />

to +1 in NaClO, ie oxidation<br />

c i 2NaClO(aq) Æ 2NaCl(aq) + O 2<br />

(g)<br />

ii Oxygen and chlorine.<br />

iii Oxygen from –2 in NaClO to 0 in O 2<br />

, ie oxidation<br />

Chlorine from +1 in NaClO to –1 in NaCl, ie<br />

reduction.<br />

4 a isotopes and<br />

210 At<br />

abundances<br />

melting point/K 575<br />

(allow<br />

480–600)<br />

boiling point/K 610<br />

(allow<br />

550–700)<br />

b<br />

i <strong>The</strong> orange aqueous bromine water turns a dark<br />

brown/black and a black precipitate may form.<br />

Br 2<br />

(aq) + 2At – (aq) Æ 2Br – (aq) + At 2<br />

(s)<br />

ii <strong>The</strong> orange-brown colour of iodine is replaced by<br />

a much darker colour and/or a black precipitate.<br />

I 2<br />

(aq) + 2At – (aq) Æ 2I – (aq) + At 2<br />

(s)<br />

iii <strong>The</strong> two colourless solutions produce a yellow<br />

precipitate.<br />

Ag + (aq) + At – (aq) Æ AgAt(s)<br />

iv <strong>The</strong> sodium burns with an orange flame and a<br />

white solid is produced.<br />

2Na(s) + At 2<br />

(g) Æ 2NaAt(s)<br />

solubility<br />

at 293 K/g per<br />

100 g water<br />

allow any<br />

low value<br />

<strong>Section</strong> 11.5<br />

1<br />

Element Electronic Element Electronic<br />

configuration<br />

configuration<br />

Sc [Ar] 3d 1 4s 2 Fe [Ar] 3d 6 4s 2<br />

Ti [Ar] 3d 2 4s 2 Co [Ar] 3d 7 4s 2<br />

V [Ar] 3d 3 4s 2 Ni [Ar] 3d 8 4s 2<br />

Cr [Ar] 3d 5 4s 1 Cu [Ar] 3d 10 4s 1<br />

Mn [Ar] 3d 5 4s 2 Zn [Ar] 3d 10 4s 2<br />

2 a i Cu 2+ [Ar] 3d 9 4s 0<br />

ii Cu + [Ar] 3d 10 4s 0<br />

iii Fe 3+ [Ar] 3d 5 4s 0<br />

iv V 3+ [Ar] 3d 2 4s 0<br />

v Cr 3+ [Ar] 3d 3 4s 0<br />

vi Ni 2+ [Ar] 3d 8 4s 0<br />

b Cu 2+ has a partially filled 3d sub-shell and behaves as a<br />

typical d block transition metal ion.<br />

Cu + has a filled 3d sub-shell and cannot show such<br />

properties.<br />

3 a <strong>The</strong> three transition metals atoms (Cr, Fe, Co) are the<br />

same size as each other, but are smaller than the<br />

atoms of sodium (Na) and magnesium (Mg).<br />

b <strong>The</strong> melting and boiling points of the transition metals<br />

are much higher than those of sodium and magnesium.<br />

c <strong>The</strong> three transition metals are much denser than<br />

sodium and magnesium.<br />

d Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1<br />

Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2<br />

Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2<br />

Na 1s 2 2s 2 2p 6 3s 1<br />

Mg 1s 2 2s 2 2p 6 3s 2<br />

e <strong>The</strong> properties of elements are governed by the<br />

arrangement of electrons in the outermost incomplete<br />

shells. In the first row of the d block, the inner 3d<br />

orbital is being filled and most elements have two<br />

electrons in the outer 4s shell. (Chromium is an<br />

exception, having only one electron in the 4s shell.)<br />

Thus, transition elements have similar properties<br />

because they have essentially the same outer<br />

electronic arrangement as each other, in the same way<br />

as the elements in a vertical group. <strong>The</strong>y differ only by<br />

the number of electrons in the inner incomplete 3d<br />

sub-shell.<br />

Metals in different groups in the periodic table have<br />

different numbers of outer electrons and hence<br />

different properties.<br />

4 a <strong>The</strong> E! for the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell is more<br />

positive and receives electrons from the<br />

Fe 3+ (aq)/Fe 2+ (aq) half-cell. So overall O 2<br />

is reduced to<br />

water and the Fe 2+ (aq) is oxidised to Fe 3+ (aq).<br />

O 2<br />

(g) + 4H + (aq) + 4Fe 2+ (aq)<br />

Æ 2H 2<br />

O(l) + 4Fe 3+ (aq)<br />

E cell = +<strong>1.2</strong>3 V – (+0.77 V) = +0.46 V<br />

<strong>The</strong> E! for the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell is less<br />

positive than that for the Mn 3+ (aq)/Mn 2+ (aq) half-cell<br />

and so it is not oxidising enough to form Mn(III) from<br />

Mn(II). <strong>The</strong> Mn 3+ (aq)/Mn 2+ (aq) half-cell receives<br />

electrons from the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell. In<br />

the presence of water, Mn 3+ (aq) is reduced to<br />

Mn 2+ (aq) and the water oxidised to oxygen.<br />

4Mn 3+ (aq) + 2H 2<br />

O(l)<br />

Æ 4Mn 2+ (aq) + O 2<br />

(g) + 4H + (aq)<br />

E cell = +1.56 V – (+<strong>1.2</strong>3 V) = +0.33 V<br />

b i An acidified solution of iron(II) will be oxidised<br />

by air.<br />

ii An acidified solution of marganese(II) will not be<br />

oxidised by air.<br />

c <strong>The</strong> flow of electrons is to the half-cell with the most<br />

positive E! value. Cu + (aq) will be expected to be<br />

oxidised to Cu(s) and reduced to Cu 2+ (aq)<br />

(disproportionation).<br />

2Cu + (aq) Æ Cu 2+ (aq) + Cu(s)<br />

E cell = +0.52 V – (+0.16 V) = +0.36 V<br />

191


SECTION 12<br />

<strong>Section</strong> 11.6<br />

1 a 2<br />

b 4<br />

c 6<br />

d 6<br />

2 a [Mn(H 2<br />

O) 6<br />

] 2+<br />

b [Zn(NH 3<br />

) 4<br />

] 2+<br />

c [FeF 6<br />

] 3–<br />

d [Cr(H 2<br />

O) 5<br />

OH] 2+<br />

3 a +1<br />

b +2<br />

c +3<br />

d +3<br />

4 a Hexaaquavanadium(III) ion<br />

b Hexacyanoferrate(II) ion<br />

c Tetrachlorocobaltate(II) ion<br />

d Diamminesilver(I) ion<br />

e Tetraaquadichlorochromium(III) ion<br />

5 a TiO 2<br />

(s) contains titanium with a 3d 0 electron<br />

configuration. It is white as no 3d electron transitions<br />

are possible.<br />

b Sc 3+ [Ar]<br />

Zn 2+ [Ar] 3d 10 no 3d electron transitions<br />

Cu + [Ar] 3d 10 possible, hence colourless<br />

6 a 6<br />

b +4<br />

c Hexachlorotitanate(IV) ion<br />

d<br />

Cl<br />

Cl<br />

Cl<br />

Ti<br />

Cl<br />

7 A five-membered chelate ring seems to lead to a more<br />

stable complex than a six-membered one.<br />

8 a Monodentate<br />

b Bidentate<br />

c Polydentate<br />

d Bidentate<br />

9 A complex of a metal ion with edta contains six<br />

5-membered chelate ring systems (see Figure 32 on page<br />

270 of Chemical Ideas). <strong>The</strong> complex is much more<br />

stable than the corresponding complexes with NH 3<br />

or<br />

H 2<br />

O which contain no chelate rings. <strong>The</strong> extra stability is<br />

due to the large increase in entropy when edta 4–<br />

displaces six ligands.<br />

Cl<br />

Cl<br />

2–<br />

<strong>Section</strong> 12.1<br />

1<br />

Empirical formula Molecular formula M r<br />

7 a C 7<br />

H 16<br />

b C 8<br />

H 18<br />

c C 10<br />

H 22<br />

C 3<br />

H 8<br />

C 3<br />

H 8<br />

44 8 a H H<br />

CH 2<br />

C 12<br />

H 24<br />

168<br />

X X<br />

CH C 6<br />

H 6<br />

78<br />

H X C<br />

X<br />

X C X H<br />

H<br />

C H C H 282<br />

X X<br />

H H<br />

10 21<br />

CH 2<br />

20 42<br />

C 5<br />

H 10<br />

70<br />

CH C 2<br />

H 2<br />

26<br />

C 5<br />

H 4<br />

C 10<br />

H 8<br />

128<br />

b H H H<br />

2 a CH 2<br />

b C 2<br />

H 4<br />

3 a CH b C 6<br />

H 6<br />

4 a, b C : H<br />

Ratio by mass 82.8 : 17.2<br />

Ratio by moles 6.9 : 17.2<br />

Simplest ratio 1 : 2.5<br />

Whole number ratio 2 : 5<br />

\ Empirical formula is C 2<br />

H 5<br />

But M r<br />

(C 2<br />

H 5<br />

) = 29<br />

So, the molecular formula is C 4<br />

H 10<br />

.<br />

5 a 0.085 g C 0.014 g H<br />

b 0.0071 mol C 0.014 mol H<br />

c CH 2<br />

d C 6<br />

H 12<br />

e<br />

(or a hexene such as )<br />

c<br />

H<br />

H<br />

H<br />

X<br />

X<br />

X<br />

H<br />

C<br />

X<br />

C<br />

X<br />

H<br />

X<br />

X<br />

X<br />

C<br />

X<br />

C<br />

X<br />

H<br />

X<br />

X X<br />

X X<br />

X<br />

X<br />

X<br />

X<br />

H<br />

C<br />

X<br />

X<br />

X<br />

C<br />

X<br />

X<br />

H<br />

H<br />

H<br />

H<br />

9 a Cyclooctane b Methylcyclopentane<br />

c Cycloheptane<br />

d Butylcyclohexane<br />

10 a b c<br />

d<br />

H<br />

H<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

6 a B D E<br />

bA C F<br />

e<br />

f<br />

192


SECTION 12<br />

11 butane<br />

methylpropane<br />

12 a C 5<br />

H 12<br />

+ 8O 2<br />

Æ 5CO 2<br />

+ 6H 2<br />

O b C 5<br />

H 12<br />

+ 5 O 2<br />

Æ 5CO + 6H 2<br />

O<br />

13 a For ‘cat’ cracking, high temperature (500 °C) and zeolite catalyst.<br />

For steam cracking, high temperature (900 °C) with short<br />

residence time and steam as dilutent.<br />

b True: (ii), (iv), (v)<br />

c Three from:<br />

+<br />

+<br />

+<br />

+<br />

14 a A B C<br />

D<br />

E<br />

bD c A d B e Cand E<br />

f eg C or E could have been produced by cracking D<br />

+<br />

gA<br />

<strong>Section</strong> 12.2<br />

1 a<br />

b<br />

c<br />

3 a<br />

b<br />

c<br />

d<br />

e<br />

d<br />

2 a propene<br />

b hept-2-ene<br />

c 2-methylbut-2-ene<br />

d hept-1,4-diene<br />

e 2,4-dimethylpent-2-ene<br />

f cyclopentene<br />

4<br />

e<br />

H<br />

H CH 3 H H<br />

C C C C C<br />

H CH 3 H H<br />

H<br />

193


SECTION 12<br />

5 a<br />

H<br />

H<br />

H<br />

Br<br />

Br<br />

+ 2Br 2 Br<br />

Br<br />

H C C C + Br 2 H C C C H<br />

H H<br />

H<br />

H H H<br />

+ H 2 One of the carbon atoms has become positively<br />

b H<br />

H<br />

H H H<br />

Br<br />

H C C C + H<br />

8 a Bromine; room temperature; non polar solvent<br />

2 H C C C H<br />

b Steam; catalyst, phosphoric acid on silica; 300 °C; high<br />

H H<br />

H<br />

H H H<br />

pressure (60 atm)<br />

c Hydrogen; catalyst, nickel; 150 °C; 5 atm pressure;<br />

6 H Br H<br />

H H Br<br />

(or platinum at lower temperatures and atmospheric<br />

pressure)<br />

H C C C H H C C C H<br />

d Hydrogen; catalyst, nickel; 150 °C.<br />

H H H<br />

H H H<br />

9 a H<br />

H<br />

H<br />

H<br />

7 a<br />

C C H C<br />

+<br />

C<br />

+ Br 2<br />

H<br />

H d+ H<br />

H<br />

H<br />

Br<br />

Br d–<br />

Br<br />

b<br />

Br<br />

H<br />

H<br />

H H<br />

+ Br 2 (aq)<br />

H C<br />

+<br />

C<br />

H C C H<br />

c<br />

OH<br />

H<br />

H<br />

H Br<br />

+ HBr<br />

–<br />

Br<br />

Br<br />

b <strong>The</strong> hydrogen bromide is polarised with the hydrogen<br />

d + 2H atom being slightly positively charged. <strong>The</strong> hydrogen<br />

2<br />

atom behaves as an electrophile and reacts with the<br />

e<br />

double bond.<br />

charged and so it reacts with the bromide ion to form<br />

a C–Br covalent bond.<br />

10 Shake the compound with about 1 cm depth of bromine<br />

water in a stoppered test-tube. If the compound is<br />

unsaturated, the bromine will be decolorised. <strong>The</strong><br />

reaction occurs quickly at room temperature.<br />

f<br />

Br<br />

Br<br />

–<br />

<strong>Section</strong> 12.3<br />

1 a i 1,4-dimethylbenzene<br />

ii 1-ethy1-3-methylbenzene<br />

iii 1,2,4-trimethylbenzene<br />

d<br />

Cl<br />

e<br />

b i ii iii<br />

Cl<br />

2 a 1,3,5-trimethylbenzene<br />

b 1-methyl-3-propylbenzene<br />

c bromobenzene<br />

d 1,3-dinitrobenzene<br />

e 4-methylphenylamine<br />

f 2,6-dimethylphenol<br />

3 a b c OH<br />

4 a 0.154 nm <strong>The</strong> ring is not a regular<br />

hexagon, but has alternating<br />

0.134 nm long and short bonds.<br />

b<br />

c All the bonds in the ring are the same and so only one<br />

isomer is possible.<br />

CH 3<br />

CH 3<br />

194


SECTION 12<br />

<strong>Section</strong> 12.4<br />

1 a Product: Cl<br />

2 a CH 3<br />

b<br />

Cl<br />

CHClCH 2 Cl<br />

b Reagents and conditions: Br 2<br />

; AlBr 3<br />

or Fe; reflux<br />

c Product: NO 2<br />

CH 3<br />

d Reactant:<br />

3 a Difference in electronegativity between I and Cl<br />

b<br />

I<br />

+ I Cl<br />

+ HCl<br />

e Product:<br />

H 3 C<br />

CH 3<br />

CH<br />

CH 3<br />

c As the molecule is permanently polarised, a catalyst is<br />

not needed.<br />

d– d+<br />

Cl—I<br />

d Formation of chlorobenzene requires a chlorine with a<br />

d+ charge.<br />

4 a NO 2<br />

f Product:<br />

O<br />

C CH 2 CH 3<br />

g Reagents and conditions: CH 3<br />

COCl; AlCl 3<br />

; reflux<br />

h Product: SO 2 OH<br />

b<br />

+ HNO 3<br />

c. H 2 SO 4<br />

< 55 ∞C<br />

+ H 2 O<br />

SO 2 OH<br />

+ H 2 SO 4 + H 2 O<br />

5 a <strong>The</strong> benzene ring is resistant to hydrogenation<br />

because this destroys the stable delocalised electron<br />

system. <strong>The</strong> reaction has a high activation enthalpy.<br />

6 a Electrophilic substitution<br />

b Electrophilic addition<br />

c Radical substitution<br />

d Radical addition<br />

<strong>Section</strong> 13.1<br />

1 a trichloromethane<br />

b 2-chloropropane<br />

c 1,1,1,–trichloro–2,2,2–trifluoroethane<br />

d 2–chloro–1,1,1–trifluoropropane<br />

e 2,2–dibromo–3–chlorobutane<br />

2 d<br />

Cl<br />

F<br />

4 a<br />

H<br />

b<br />

H Cl<br />

C C Cl<br />

H Cl<br />

F F H<br />

H C C C H<br />

e<br />

F<br />

Cl<br />

F<br />

F F H<br />

c Cl H H Br H<br />

H C C C C C H<br />

Br<br />

Br<br />

3 a CH 3<br />

CH 2<br />

CH 2<br />

Cl(l) + NaOH(aq)<br />

Æ CH 3<br />

CH 2<br />

CH 2<br />

OH(aq) + NaCl(aq)<br />

b <strong>The</strong> chlorine atom in 1-chloropropane has been<br />

replaced by a hydroxyl group, –OH.<br />

c XX<br />

–<br />

H<br />

X O X<br />

XX<br />

5 a D<br />

bA<br />

cA<br />

dE<br />

e<br />

Cl<br />

H<br />

OH<br />

H<br />

H<br />

H<br />

cyclohexanol<br />

195


SECTION 13<br />

6 a<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

I<br />

+ OH – H C C<br />

OH<br />

+ I –<br />

H<br />

H<br />

H<br />

H<br />

b<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

Br<br />

+ CN – H C C<br />

CN<br />

+ Br –<br />

H<br />

H<br />

H<br />

H<br />

c<br />

Cl + OH – OH + Cl –<br />

d<br />

H<br />

H<br />

H C H H C<br />

H H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

C<br />

H<br />

+ H 2 O H C C C H + HCl<br />

H<br />

Cl<br />

H<br />

H<br />

OH<br />

H<br />

e<br />

H<br />

H<br />

H<br />

H<br />

Br<br />

C<br />

C<br />

Br<br />

+ 2OH – HO C C<br />

OH<br />

+ 2Br –<br />

H<br />

H<br />

H<br />

H<br />

f<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

Br<br />

+ H C C O –<br />

H C O C C H + Br –<br />

g<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

CH 3<br />

H<br />

C<br />

O<br />

H<br />

Cl<br />

H<br />

O<br />

H<br />

O<br />

H<br />

H<br />

C<br />

C<br />

C<br />

H<br />

+ H C O –<br />

H C C C H + Cl –<br />

3 C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

7 a CH 3<br />

CH 2<br />

Br + NH 3<br />

Æ CH 3<br />

CH 2<br />

NH 2<br />

+ H + +Br –<br />

b H H<br />

H<br />

H<br />

H<br />

H C C Br<br />

H C C<br />

N +<br />

H +<br />

Br<br />

–<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H N H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H C C<br />

N +<br />

H H C C<br />

N<br />

H + H +<br />

196<br />

H<br />

H<br />

H<br />

c d Explanation along similar lines to that on pages 302–303 in Chemical Ideas.<br />

Ammonia is the nucleophile because of its lone pair.<br />

8 a 1-iodopentane (or bromo or chloro); aqueous NaOH; reflux.<br />

b 2-iodopropane (or bromo or chloro): concentrated aqueous solution of NH 3<br />

(heat under pressure in a sealed tube).<br />

c 1-iodopropane (or bromo or chloro); alcoholic solution of KCN (or NaCN); reflux.<br />

hv<br />

9 a CH 3<br />

I æÆ CH 3 + I .<br />

hv<br />

CH 3<br />

Cl æÆ CH 3<br />

. + Cl .<br />

b Bond enthalpy of C–I bond is less than that of C–Cl bond. C–I bond can be broken<br />

by ultraviolet radiation in the troposphere although this has relatively less energy<br />

than the ultraviolet radiation in the stratosphere.<br />

H<br />

H


SECTION 13<br />

<strong>Section</strong> 13.2<br />

1 a pentan-1-ol e 2-methylbutan-2-ol<br />

b heptan-3-ol<br />

f ethoxypropane<br />

c butane-2,3-diol g decanol<br />

d cyclohexanol<br />

2 O<br />

methoxybutane<br />

O<br />

ethoxypropane<br />

Some students may give this isomer:<br />

O<br />

ethoxy-2-propane<br />

3 a Hydrogen bonding between ethanol and water<br />

molecules (see Chemical Ideas, page 306). As the<br />

hydrocarbon chain becomes longer, the importance of<br />

the –OH group relative to that of the alkyl group<br />

becomes less and hexanol is unable to mix with water.<br />

b No hydrogen bonding occurs.<br />

4 a B D F<br />

bA<br />

cC<br />

dE<br />

eAand B; C and F<br />

f A<br />

gE<br />

5 a Ethanol has hydrogen bonds between molecules, ethane<br />

does not. Hydrogen bonds require more energy to be<br />

broken than the weak attractive forces between ethane<br />

molecules, so boiling point of ethanol is higher.<br />

b Water forms more hydrogen bonds than ethanol so its<br />

boiling point is higher.<br />

c Both have –OH group and form hydrogen bonds<br />

between molecules. Boiling point increases down a<br />

homologous series as M r<br />

increases. Hence butan-1-ol<br />

has a higher boiling point than ethanol.<br />

d Butan-1-ol forms hydrogen bonds, ethoxyethane does<br />

not. Hence boiling point of butan-1-ol is higher.<br />

<strong>Section</strong> 13.3<br />

O<br />

CH 3<br />

CH 2<br />

1 a methanoic acid<br />

d<br />

b pentanoic acid<br />

CH<br />

c 2-methylbutanoic acid<br />

3 CH 2 C<br />

CH 3 CH 2 C<br />

CH 3<br />

2 a butanoic acid<br />

O<br />

b octanoic acid<br />

CH 3 CH 2 C<br />

c pentanedioic acid<br />

O<br />

d benzene-1,2-dicarboxylic acid<br />

e O<br />

O<br />

3 a H H H H H<br />

O<br />

C CH 2 CH 2 CH 2 CH 2 C<br />

H C C C C C C<br />

Cl<br />

Cl<br />

H H H H H O H<br />

b O H H H H<br />

O<br />

5<br />

O<br />

C C C C C C<br />

C<br />

propyl ethanoate<br />

H O<br />

O<br />

H H H H O H<br />

CH 2 CH 2 CH 3<br />

c O O H<br />

O<br />

C<br />

H C<br />

butyl methanoate<br />

O CH 2 CH 2 CH 2 CH 3<br />

O<br />

C<br />

O<br />

O<br />

H<br />

CH 3 CH 2 C<br />

ethyl propanoate<br />

O CH 2 CH 3<br />

O CH 3<br />

CH 3 CH 2 CH 2 C<br />

methyl butanoate<br />

4 a<br />

O<br />

CH 3 CH 2 C<br />

O<br />

O CH 3<br />

b Cl O<br />

C<br />

<strong>Student</strong> may also draw isomers with branched chains,<br />

for example<br />

O<br />

CH 3<br />

C<br />

2-propyl ethanoate<br />

c<br />

O<br />

O CH CH 3<br />

NH 2<br />

197


SECTION 13<br />

<strong>Section</strong> 13.4<br />

1 a A butan-1-ol<br />

B butan-2-ol<br />

C 2,4-dichlorophenol<br />

b D<br />

E<br />

F<br />

CH 3<br />

CH 3<br />

CH 2 CH 2<br />

CH 2 CH 2<br />

O<br />

O<br />

C<br />

H<br />

O<br />

C<br />

O<br />

H<br />

b<br />

5 a<br />

CH 3<br />

b<br />

O<br />

C<br />

O – Na +<br />

O<br />

CH 2 CH 2 C<br />

O – Na +<br />

CH 3<br />

2-methylpropanal<br />

CH CHO<br />

O<br />

cyclohexanone<br />

3<br />

CH 3 CH 2 C CH 3<br />

G<br />

CH<br />

CH 3 CH 2 C CH 2 CH 3<br />

c<br />

OH<br />

COOH<br />

2-hydroxybenzoic acid<br />

(salicylic acid)<br />

OH<br />

2 a B b D<br />

cC<br />

dF<br />

eG<br />

f C<br />

gE<br />

hA and D<br />

3 a OH O – Na +<br />

6 a A F<br />

bC<br />

cD E<br />

dB D E<br />

eA<br />

7 a H<br />

O<br />

H<br />

+ NaOH + H 2 O<br />

H C O C C H<br />

b CH 3<br />

CH 2<br />

COOH + KOH Æ CH 3<br />

CH 2<br />

COO – K + + H 2<br />

O<br />

c 2CH 3<br />

CH 2<br />

CH 2<br />

COOH + Na 2<br />

CO 3<br />

Æ 2CH 3<br />

CH 2<br />

CH 2<br />

COO – Na + + CO 2<br />

+ H 2<br />

O<br />

H<br />

b methyl ethanoate<br />

c H H<br />

H<br />

O<br />

d CH 3<br />

COOH + NaHCO 3Æ<br />

CH3 COO – Na + + CO 2<br />

+ H 2<br />

O<br />

e 2CH 3<br />

CH 2<br />

COOH + Mg<br />

Æ (CH 3<br />

CH 2<br />

COO – ) 2<br />

Mg 2+ + H 2<br />

4 a O – K + O –<br />

O – K +<br />

O –<br />

H C C O C H<br />

H<br />

H<br />

d ethyl methanoate<br />

e ethanol; methanoic acid<br />

or<br />

198


SECTION 13<br />

<strong>Section</strong> 13.5<br />

CH 3 C OH<br />

CH 3 CH 2 OH<br />

1 a methyl propanoate<br />

b propyl ethanoate<br />

c ethyl propanoate<br />

d methyl methanoate<br />

e methyl butanoate<br />

2 a and b<br />

Ester Alcohol Acid<br />

ethyl methanoate ethanol methanoic acid<br />

H C O CH 2 CH 3<br />

H C OH<br />

CH 3 CH 2 OH<br />

O<br />

O<br />

3–methylbutyl ethanoate 3–methylbutanol ethanoic acid<br />

CH 3 C O CH 2 CH 2 CHCH 3<br />

CH 3 CHCH 2 CH 2 OH<br />

O<br />

CH 3<br />

CH 3<br />

O<br />

ethyl 2–methylbutanoate ethanol 2–methylbutanoic acid<br />

CH 3 CH 2 CH C O CH 2 CH 3<br />

CH 3 CH 2 CH C OH<br />

CH 3 O<br />

CH 3 O<br />

phenylmethyl ethanoate phenylmethanol ethanoic acid<br />

O<br />

CH 2 OH<br />

CH 2 O C CH 3<br />

CH 3 C OH<br />

O<br />

c <strong>The</strong>y are structural isomers.<br />

3 a<br />

CH 3<br />

CH<br />

CH 3<br />

CH 3 CH 2 CH 3 CH<br />

O<br />

O<br />

OH<br />

+<br />

C<br />

OH<br />

CH 3<br />

C CH 2<br />

CH 3 H 2 O<br />

O<br />

+<br />

b<br />

HO<br />

O<br />

O<br />

O<br />

CH 2 CH 2 OH + 2CH 3 C OH CH 3 C O CH 2 CH 2 O C CH 3<br />

+ 2H 2 O<br />

4<br />

O<br />

O<br />

O<br />

O<br />

O CH 2 CH 2 O C<br />

C O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

C<br />

5 a <strong>The</strong> C–O bond next to the C=O in the ester is broken. c A hydrogen ion attaches itself to the oxygen of the<br />

O<br />

carbonyl group, and thus makes the carbon atom in<br />

the group more susceptible to attack by a nucleophile<br />

C CH 3<br />

(eg water).<br />

CH 3 CH 2 O<br />

O<br />

C CH 3 + H +<br />

b <strong>The</strong> C=O bond is very polar with a d+ charge on the<br />

carbon atom. Hydrolysis occurs by nucleophilic attack<br />

CH 3 CH 2 O<br />

on this carbon atom by a lone pair on the oxygen-18 of<br />

a water molecule and the C–O bond break.<br />

HO +<br />

CH 3<br />

CH 2<br />

O<br />

C<br />

CH 3<br />

A water molecule attacks the positive carbon atom, the<br />

CH 3<br />

–CH 2<br />

–O – group is displaced and combines with H + to<br />

form ethanol.<br />

199


SECTION 13<br />

6 a<br />

O<br />

O<br />

CH 3<br />

CH 2 OH + CH 3 C Cl CH 3 CH 2 O C CH 3<br />

+<br />

HCl<br />

b<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

CH 3<br />

C OH + CH 3 C Cl CH 3<br />

C CH 3<br />

CH 3<br />

C O<br />

CH 3<br />

+<br />

HCl<br />

c<br />

O<br />

O O O<br />

CH 3<br />

OH + CH 3 C O C CH 3 CH 3 O C CH 3<br />

+ CH 3 C OH<br />

d<br />

O<br />

CH 3 O C CH 3<br />

+ H 2 O CH 3 OH + CH 3 C<br />

H +<br />

O<br />

OH<br />

e<br />

O<br />

O<br />

O<br />

C<br />

CH 3<br />

+ 2OH – + CH 3 C + H 2 O<br />

O –<br />

O –<br />

(or NaOH as reactant; sodium salts as products)<br />

H<br />

7<br />

OH<br />

8 a Phenylmethanol<br />

C O H<br />

CH 3<br />

4-methylphenol<br />

CH 3<br />

COCl (ethanoyl chloride) or CH 3<br />

CO–O–COCH 3<br />

(ethanoic anhydride)<br />

Mix the reagents carefully. If the anhydride is used, warm<br />

the mixture under reflux.<br />

b ethanoic acid, CH 3<br />

COOH<br />

ethanoyl chloride, CH 3<br />

COCl<br />

ethanoic anhydride (CH 3<br />

CO) 2<br />

O<br />

c H 2<br />

O, water<br />

HCl, hydrogen chloride<br />

CH 3<br />

COOH, ethanoic acid<br />

d<br />

O<br />

CH 2 O C<br />

CH 3<br />

H<br />

CH 2 OH<br />

+ H 2 O + CH 3 COOH<br />

e Becomes increasingly vinegary.<br />

<strong>Section</strong> 13.6<br />

1 a O<br />

b H O<br />

H C O<br />

R O C R¢<br />

(R' can be H)<br />

`<br />

C<br />

O<br />

H C O C<br />

O<br />

H C O C<br />

CH 3<br />

CH 3<br />

CH 3<br />

H<br />

c<br />

H<br />

O<br />

H<br />

H C O<br />

C<br />

O<br />

H C O<br />

H<br />

O<br />

H C O C<br />

O<br />

CH 3<br />

+ 3NaOH H C O H<br />

CH 3<br />

+ 3CH 3 C<br />

O – + Na<br />

H C O C<br />

H<br />

CH 3<br />

H C O H<br />

H<br />

200


SECTION 13<br />

2 a, b 1 mole glycerol (propane-1,2,3-triol)<br />

2 moles oleic acid<br />

1 mole linoleic acid<br />

3 a Saturated fats are esters of fatty acids with no (or few) carbon double bonds.<br />

b Monounsaturated fats contain fatty acids with one carbon double bond (such as oleic acid).<br />

c Polyunsaturated fats contain a high proportion of fatty acid groups with two<br />

or more carbon double bonds (such as linoleic acid).<br />

4 a O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

b<br />

O<br />

Na +<br />

– O<br />

c <strong>The</strong> hydrocarbon chain<br />

Instantaneous dipole–induced dipole forces<br />

d Soaps are sodium and potassium salts of long chain carboxylic acids. <strong>The</strong> ions<br />

in solution are readily hydrated.<br />

5 a 150 °C; pressure (5 atmospheres); nickel as catalyst<br />

b i M r<br />

= 882<br />

ii <strong>1.1</strong>3 ¥ 10 3 moles of oil react with 2.45 ¥ 10 3 moles of hydrogen<br />

iii 4<br />

iv 4 moles<br />

v To fully saturate 1 tonne of oil would require<br />

<strong>1.1</strong>3 ¥ 10 3 ¥ 4 moles hydrogen = 4.52 ¥ 10 3 moles<br />

2.45 ¥ 10 3<br />

Percentage of double bonds hydrogenated = ¥ 100 = 54.2%<br />

vi Easier to spread (less hard); healthier<br />

primary<br />

CH 3<br />

<strong>Section</strong> 13.7<br />

1 a methanal<br />

c<br />

CH 3 O<br />

b propanal<br />

C<br />

c 4-methylpentanal<br />

CH 3 CH 2 C CH 3<br />

CH 3 C C H aldehyde<br />

H<br />

2 a butan-2-one<br />

H<br />

3<br />

b pentan-3-one<br />

5 a H H H H<br />

a H H H H O<br />

O<br />

H C C C C OH<br />

H C C C C C H<br />

4.52 ¥ 10 3<br />

H<br />

H H H H<br />

H H H H<br />

b H OH H H<br />

b H O H H H<br />

O<br />

H C C C C H<br />

H C C C C C H<br />

H H H H<br />

H H H H<br />

4 a<br />

O CH 3<br />

c<br />

H<br />

CH 3 CH 2 C C CH 3 ketone<br />

H H C H OH H<br />

H<br />

H C C C C H<br />

b CH 3 O<br />

H H C H H H<br />

ketone<br />

secondary<br />

secondary<br />

201


SECTION 13<br />

6 a H H OH<br />

b<br />

H<br />

H<br />

OH<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

N<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

C<br />

H<br />

N<br />

H<br />

c Similar argument to Chemical Ideas pages 328–329.<br />

<strong>Section</strong> 13.8<br />

NH 2 NH 2<br />

1 a ethylamine d ethyldimethylamine<br />

b dimethylamine e cyclohexylamine<br />

c 2-aminopropane<br />

2 a CH 3 CH 2 CH 2 NH 2<br />

b<br />

NH 2<br />

c CH 3 CH 2 N CH 3<br />

CH 2 CH 3<br />

d CH 3 e f NH 2<br />

CH 3 CH 2 CH 2 CH 2 NCH 2 CH 3<br />

CH 3 CH 2 CH CH 2 CH 3 CH 2 CH CH 2 CH CH 3<br />

+<br />

3 a NH 3<br />

b NH<br />

c<br />

CH 3 CH CH 3 Cl – CH 3 CH<br />

CH 3<br />

CO CH 3<br />

CH<br />

NH<br />

CH 2 CH 3<br />

+ HCl<br />

CH 3<br />

CH 3<br />

+ HCl<br />

4 a CH CH 2 CH 2 NH 2 + HCl CH 3 CH 2 CH 2 NH 3 + Cl –<br />

3 CH 2<br />

CH 2<br />

+<br />

b<br />

c<br />

N<br />

+ CH 3 COCl + HCl<br />

NH 2 NHCOCH 3<br />

H + C 2 H 5 COCl N C C 2 H 5<br />

+ HCl<br />

O<br />

O<br />

d<br />

+<br />

–<br />

NH 2 + H 2 SO 4 NH 3 HSO 4<br />

or<br />

NH 2 + H 2 SO 4<br />

2<br />

+<br />

NH 3 SO 4<br />

2–<br />

e<br />

f<br />

CH 3 CH 2 NH 2 + CH 3 Br CH 3 CH 2 NH CH 3 + HBr<br />

CH 3 CH 2 CO NH CH 3 + NaOH CH 3 CH 2 COO – Na + + CH 3 NH 2<br />

or<br />

CH 3 CH 2 CO NH CH 3 + OH – CH 3 CH 2 COO – + CH 3 NH 2<br />

5 a Tertiary amines cannot react with acid chlorides<br />

because there is no H atom attached to the nitrogen.<br />

b H<br />

H<br />

C 4 H 9<br />

N<br />

H<br />

H<br />

O<br />

H<br />

6 a Reagents and conditions: HCl(aq) (moderately<br />

concentrated); reflux<br />

b Products:<br />

CH 3<br />

+<br />

CH 3 CH 2 COOH + N H Cl –<br />

c Reactant:<br />

O<br />

CH 3<br />

O<br />

H<br />

Because of strong attraction (hydrogen bonding)<br />

between amine and solvent molecules.<br />

c [Cu(H 2<br />

O) 6<br />

] 2+ + 4C 4<br />

H 9<br />

NH 2<br />

blue<br />

Æ [Cu(C 4<br />

H 9<br />

NH 2<br />

) 4<br />

(H 2<br />

O) 2<br />

] 2+ + 4H 2<br />

O<br />

deep blue<br />

(cf [Cu(NH 3<br />

) 4<br />

(H 2<br />

O) 2<br />

] 2+ )<br />

d Product:<br />

H 2 C<br />

H 2 C<br />

NH<br />

C<br />

O<br />

C<br />

O – Na +<br />

CH 2<br />

NH 2<br />

CH 3<br />

202


SECTION 13<br />

<strong>Section</strong> 13.9<br />

1 a H R<br />

O<br />

H C C O –<br />

N +<br />

H<br />

H<br />

b<br />

i<br />

CH 3 CH 3<br />

+ HCl Cl – H 3 N + CH COOH<br />

H 2 N<br />

CH<br />

COOH<br />

ii<br />

CH 2 OH<br />

CH 2 OH<br />

H 2 N<br />

CH<br />

COOH<br />

+ NaOH H 2 N CH COO – Na +<br />

+ H 2 O<br />

iii<br />

+<br />

(CH 2 ) 4 NH 3 Cl –<br />

(CH 2 ) 4 NH 2<br />

+ 2HCl Cl – H 3 N + CH COOH<br />

H 2 N<br />

CH<br />

COOH<br />

iv<br />

CH 2 COOH<br />

H 2 N<br />

CH<br />

COOH<br />

CH 2 COO – Na +<br />

+ 2NaOH H 2 N CH COO – Na + + 2H 2 O<br />

2<br />

O<br />

H 2 N CH C OH<br />

CH<br />

CH 3<br />

O<br />

CH 3<br />

H 2 N CH C OH<br />

3 a<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

H 2 N CH C N CH 2 C OH<br />

CH 3<br />

H 2 N CH C OH<br />

+ H 2 O<br />

C<br />

OH<br />

CH 3<br />

CH 2<br />

+ H 2 N<br />

H<br />

<strong>The</strong> salts will be formed in the presence of HCl(aq), for example<br />

O<br />

O<br />

+<br />

Cl – H 3 N CH 2 C OH<br />

b<br />

OH<br />

CH 2<br />

O<br />

O<br />

H2N CH C N<br />

C OH<br />

H<br />

CH 2<br />

H 2 N CH C<br />

+ 2OH –<br />

OH<br />

CH 2<br />

CH 2<br />

O<br />

O<br />

C O – + H 2 N O – + H 2 O<br />

c Key points which should be included are: correct choice of solvent; the container used for<br />

the separation should have a lid; authentic samples of the amino acids used alongside the<br />

reaction mixture; R f<br />

values carefully measured.<br />

203


SECTION 14<br />

<strong>Section</strong> 13.10<br />

1 a<br />

+<br />

–<br />

NH 3 HSO 4<br />

b<br />

+<br />

–<br />

N N HSO 4<br />

c<br />

N N OH<br />

(strictly the sodium salt)<br />

2 a<br />

HO<br />

+<br />

N N Cl –<br />

b<br />

i<br />

+<br />

HO N N Cl – + OH HO N N OH + HCl<br />

ii<br />

HO<br />

+<br />

HO N N Cl – + HO N N<br />

+ HCl<br />

HO<br />

iii<br />

+<br />

HO N N Cl – + NH 2 HO N N NH 2 + HCl<br />

3<br />

HOO 2 S<br />

+<br />

N N X –<br />

and<br />

N<br />

CH 3<br />

CH 3<br />

O 2 N<br />

+<br />

N N X –<br />

and<br />

OH<br />

NH 2<br />

and<br />

X – N<br />

+ N<br />

N + N X –<br />

4 <strong>The</strong> diazonium salt is a relatively weak electrophile and will only<br />

react with particularly electron-rich activated benzene rings.<br />

SO 2 OH<br />

204<br />

<strong>Section</strong> 14.1<br />

1 a 73.9%<br />

b 73.1%<br />

2 Route I (Route I 40%; Route II 30%)<br />

3 16.2 g<br />

4 a (Selection of starting materials); reaction; extraction of<br />

product from reaction mixture; purification of product.<br />

<strong>Section</strong> 14.2<br />

1 a A solution of hydrogen bromide (HBr) in a polar<br />

solvent at room temperature.<br />

b Reflux with dilute aqueous sodium hydroxide solution<br />

b A small amount of product is never recovered from the<br />

reaction mixture. This is due to factors such as wetting<br />

of the walls of the reaction vessel, incomplete<br />

crystallisation of the product, loss on filter papers, loss<br />

by evaporation, etc.<br />

c Reflux with an acidified solution of potassium<br />

dichromate(VI)<br />

d Treat with hydrogen cyanide solution with a small<br />

amount of alkali.


SECTION 14<br />

2 a Addition; electrophilic<br />

b Substitution; nucleophilic<br />

c Oxidation<br />

d Addition; nucleophilic<br />

3 a Radical substitution<br />

b <strong>The</strong> mechanism is:<br />

Cl<br />

Cl<br />

hν<br />

2 Cl<br />

initiation<br />

H<br />

CH 3<br />

+ Cl<br />

C<br />

+ HCl<br />

H<br />

propagation<br />

H<br />

H<br />

C<br />

+ Cl 2<br />

C<br />

Cl<br />

+ Cl<br />

H<br />

H<br />

Cl Cl 2<br />

C C<br />

+ Cl<br />

H<br />

H<br />

H<br />

H<br />

C<br />

+<br />

C<br />

H<br />

H<br />

H<br />

H<br />

termination<br />

H<br />

C<br />

H<br />

+ Cl C Cl<br />

H<br />

H<br />

c<br />

CH 2 Cl<br />

CH 2 NH 2<br />

c. NH 3 (aq)<br />

heat in sealed tube<br />

4 a<br />

CH 3<br />

CH 3<br />

Cl<br />

and<br />

Cl<br />

b Electrophilic substitution<br />

c AlCl 3<br />

helps to polarise the chlorine molecule, to produce the electrophile, Cl +<br />

d+ d–<br />

+ Cl Cl<br />

Cl<br />

Cl + + AlCl 4<br />

–<br />

+ AlCl 3<br />

+ + AlCl 3<br />

H<br />

Cl<br />

205


SECTION 14<br />

5 a i Reagents and condition: treat with a nitrating<br />

mixture (conc. HNO 3<br />

and conc. H 2<br />

SO 4<br />

); keep<br />

temperature below 55 °C.<br />

ii Product: Br<br />

iv<br />

H<br />

C<br />

O<br />

OH<br />

+ CH 3<br />

OH<br />

Br<br />

iii Reactant: CH 3<br />

Cl (or CH 4<br />

)<br />

iv Reactant: CH 3<br />

–CH 2<br />

–CH 2<br />

–X<br />

(X = Cl, Br, I)<br />

v Products:<br />

O<br />

O<br />

HO C<br />

C OH<br />

vi Products:<br />

O<br />

CH 2 CH 2<br />

+ HCl<br />

CH 3<br />

+ 2HCl<br />

v<br />

H<br />

H<br />

H<br />

O<br />

C<br />

+ H 2 O<br />

O CH 3<br />

H<br />

C C + H 2 CH 3 CH 3<br />

H<br />

b<br />

6 a i<br />

b<br />

C<br />

CH<br />

i Electrophilic substitution<br />

ii Electrophilic addition<br />

iii Radical substitution<br />

iv Nucleophilic substitution<br />

v Nucleophilic substitution<br />

vi Electrophilic substitution<br />

ii<br />

iii<br />

iv<br />

v<br />

COO – Na +<br />

CH 2 CH 3<br />

+ H 2 O<br />

CH 3 COO – Na + + NH 2<br />

+ H 2 O<br />

CH 3 CH 2 OH<br />

i Acid–base<br />

ii Hydrolysis<br />

iii Dehydration<br />

iv Esterification<br />

v Reduction<br />

+ 3H 2<br />

Pt<br />

c Examples may be:<br />

i CH 3 COOH + NaOH<br />

ii<br />

iii<br />

CH 3<br />

C NH CH 3<br />

O<br />

Al 2 O 3<br />

CH 3 CH 2 OH CH 2 CH 2 + H 2 O<br />

+<br />

CH 3 COO – Na + + CH 3 NH 2<br />

CH 3 COO – Na + + H 2 O<br />

NaOH<br />

7 a React with hydrogen in presence of finely divided<br />

nickel at 150 °C and 5 atm.<br />

CH 3 CH 2 CH CH CH 2 COOH + H 2<br />

CH 3 CH 2 CH 2 CH 2 CH 2 COOH<br />

b Treat with a solution of HBr in a polar solvent at<br />

room temperature.<br />

CH 3 CH 2 CH CH CH 2 COOH HBr<br />

Br<br />

CH 3 CH 2 CH CH 2<br />

(+ isomer)<br />

Br<br />

CH 2<br />

+<br />

CH 3 CH 2 CH CH 2 CH 2 COOH<br />

(prepared as in b)<br />

OH<br />

CH 3 CH 2 CH<br />

<strong>The</strong>n acidify with dilute acid.<br />

OH<br />

OH<br />

COOH<br />

c Hydrolyse by refluxing with a dilute aqueous solution<br />

of NaOH.<br />

2NaOH<br />

CH 2 CH COO – Na + 2<br />

+ NaBr + H 2 O<br />

CH 3 CH 2 CH CH 2 CH 2 COO – Na + + HCl<br />

CH3 CH 2 CH CH 2 CH 2 COOH + NaCl<br />

+<br />

206


SECTION 14<br />

d Dehydrate by heating with Al 2<br />

O 3<br />

at 300 °C or by heating with concentrated sulphuric acid.<br />

OH<br />

CH 3 CH 2<br />

CH CH 2 CH 2 COOH CH 3 CH CH CH 2 CH 2 COOH<br />

(prepared as in c)<br />

(+ isomer) + H 2 O<br />

8 OH<br />

OH<br />

O<br />

H 2 (g) / Ni<br />

300∞C; 30 atm<br />

Cr 2 O 2– 7 / H + (aq)<br />

reflux<br />

cyclohexanol<br />

9<br />

COOH<br />

NO 2<br />

COOC 2 H 5<br />

NO 2<br />

COOC 2 H 5<br />

NH 2<br />

C 2 H 5 OH<br />

Sn + c. HCl<br />

c. H 2 SO 4 as catalyst<br />

reflux<br />

reflux<br />

<strong>Section</strong> 15.1<br />

a Continuous<br />

b Batch<br />

c Continuous<br />

d Continuous<br />

<strong>Section</strong> 15.2<br />

a<br />

Conditions: lower pressure, or less separation required.<br />

Feedstock: methanol can be obtained from a variety of<br />

feedstocks.<br />

Product: higher yield<br />

Co-products: far fewer.<br />

b<br />

Disadvantages: very expensive catalyst, and more than<br />

one stage to process.<br />

<strong>Section</strong> 15.3<br />

2 a i As 3 moles of gas form 1 mole of gas, increasing<br />

the pressure will cause more methanol to form.<br />

ii As the conversion of synthesis gas to methanol is<br />

exothermic, an increase in temperature will<br />

reduce the equilibrium yield of methanol.<br />

b i <strong>The</strong> pressure of 100 atm will increase the yield.<br />

<strong>The</strong> temperature is not too high, otherwise the<br />

yield is decreased. It is sufficient to provide a high<br />

rate of reaction with the catalyst used. It is<br />

carefully controlled to prevent the exothermic<br />

reaction raising the temperature and reducing the<br />

yield.<br />

ii <strong>The</strong> catalyst lowers the temperature required to<br />

give a high rate of reaction. However, some<br />

sacrifice in yield is made to maintain this rate. <strong>The</strong><br />

high pressure also increases the reaction rate.<br />

<strong>Section</strong> 15.4<br />

a<br />

<strong>The</strong>rmal energy released from the reaction can be used<br />

to pre-heat, via a heat exchanger, the water which will be<br />

made into steam as one of the reactants.<br />

b<br />

<strong>The</strong> unreacted feedstock can be recycled again over the<br />

catalyst, saving costs of energy needed in the high<br />

temperature and pressure conditions.<br />

207


SECTION 15<br />

<strong>Section</strong> 15.5<br />

1 a Many of the fixed costs for a 200 tonne day –1 plant are<br />

less than double those of a 100 tonne day –1 plant: for<br />

example, the larger plant will require less than twice<br />

the area of land for building, and the cost of building<br />

access roads will be less than twice as great.<br />

b You have to pay the same fixed costs such as wages<br />

and land rental regardless of how much you are<br />

producing. But variable costs such as costs of raw<br />

materials and energy will double if you double output.<br />

2 a Germany 2.2 ¥ 10 5 US$<br />

France<br />

3.3 ¥ 10 5 US$<br />

UK<br />

2.1 ¥ 10 5 US$<br />

Italy<br />

2.6 ¥ 10 5 US$<br />

Belgium<br />

3.8 ¥ 10 5 US$<br />

Spain<br />

2.5 ¥ 10 5 US$<br />

<strong>The</strong> Netherlands 3.7 ¥ 10 5 US$<br />

Switzerland<br />

3.7 ¥ 10 5 US$<br />

Ireland<br />

7.9 ¥ 10 5 US$<br />

Sweden<br />

2.7 ¥ 10 5 US$<br />

b Ireland<br />

c <strong>The</strong> costs of operating in each country (general level<br />

of wages; workforce productivity; taxation policies);<br />

the age and inherent efficiency of the plant in each of<br />

the countries if similar products are being made; the<br />

type of product each country produces; some of these<br />

factors are controlled by political forces, others are the<br />

results of decisions and developments in the past.<br />

d It may be that a country’s chemical industry is biased<br />

towards products that need a larger number of<br />

employees. Thus, one should also look at other<br />

statistics such as profits per employee.<br />

208

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!