03.06.2015 Views

Section 1.1 Section 1.2 Section 1.3 - The Student Room

Section 1.1 Section 1.2 Section 1.3 - The Student Room

Section 1.1 Section 1.2 Section 1.3 - The Student Room

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECTION 1<br />

<strong>Section</strong> <strong>1.1</strong><br />

1 a 2.0 b 5.3 c <strong>1.3</strong> d 10.0 e 5.0<br />

f 50.2<br />

2 a 144 b Neodymium<br />

3<br />

Mass of Amount of Number of<br />

sample/g sample/mol atoms<br />

– – 6.02 ¥ 10 23<br />

– 2.00 –<br />

56.0 – 6.02 ¥ 10 23<br />

80.0 – 12.04 ¥ 10 23<br />

63.5 0.50 –<br />

4 a 1 b 0.5 c 0.25 d 0.1 e 0.25<br />

f 0.5 g 0.25 h 0.1 i 2 j 5<br />

Atoms of copper are approximately twice as heavy as<br />

atoms of sulphur. Thus the same mass contains only half<br />

as many moles of copper as it does of sulphur.<br />

5 Black copper(II) oxide (CuO) contains equal numbers of<br />

copper and oxygen particles (Cu 2+ and O 2– ions). Red<br />

copper(I) oxide (Cu 2<br />

O) contains twice as many copper<br />

particles as oxygen particles (Cu + and O 2– ions).<br />

6 a <strong>The</strong> mass of the sample is needed to be sure that<br />

iodine and oxygen are the only elements in the<br />

compound.<br />

b <strong>The</strong> relative number of moles of iodine and oxygen.<br />

c To change the relative number of moles into the ratio<br />

of moles of oxygen relative to 1 mole of iodine.<br />

d In order to produce a ratio involving whole numbers<br />

e I 2<br />

O 5<br />

, I 4<br />

O 10<br />

, I 6<br />

O 15<br />

, etc.<br />

f <strong>The</strong> molar mass is needed.<br />

7aH 2<br />

O b CO c CS 2<br />

d CH 4<br />

e Fe 2<br />

O 3<br />

f CuO g CaO h SO 2<br />

i MgH 2<br />

8a92.3 b 7.7 c CH<br />

9aSiH 4<br />

b CO c CO 2<br />

d MgO e C 2<br />

H 6<br />

O<br />

f CaCO 3<br />

g HClO 3<br />

h NaHCO 3<br />

10 a CH 2<br />

b P 2<br />

O 3<br />

c AlCl 3<br />

d BH 3<br />

e C 4<br />

H 5<br />

f C 3<br />

H 4<br />

g CH 2<br />

O h C 12<br />

H 22<br />

O 11<br />

11 a H 2<br />

O 2<br />

b CO c C 2<br />

H 2<br />

d C 6<br />

H 6<br />

e C 6<br />

H 12<br />

12 a 2 b 11 c 2 d 10 e 2<br />

13 a 30 b 78 c 130 d 100 e 158<br />

f 242 g 132<br />

14 a 2 b 4 c 10 d 0.02 e 5<br />

f 1 ¥ 10 6<br />

<strong>Section</strong> <strong>1.2</strong><br />

1 a 2Mg + O 2<br />

Æ 2MgO<br />

b 2H 2<br />

+ O 2<br />

Æ 2H 2<br />

O<br />

c 2Fe + 3Cl 2<br />

Æ 2FeCl 3<br />

d CaO + 2HNO 3<br />

Æ Ca(NO 3<br />

) 2<br />

+ H 2<br />

O<br />

e CaCO 3<br />

+ 2HCl Æ CaCl 2<br />

+ CO 2<br />

+ H 2<br />

O<br />

f H 2<br />

SO 4<br />

+ 2NaOH Æ Na 2<br />

SO 4<br />

+ 2H 2<br />

O<br />

g 2HCl + Ca(OH) 2<br />

Æ CaCl 2<br />

+ 2H 2<br />

O<br />

h 2Na + 2H 2<br />

O Æ 2NaOH + H 2<br />

i CH 4<br />

+ 2O 2<br />

Æ CO 2<br />

+ 2H 2<br />

O<br />

j 2CH 3<br />

OH + 3O 2<br />

Æ 2CO 2<br />

+ 4H 2<br />

O<br />

2 a 2Ca + O 2<br />

Æ 2CaO<br />

b Ca + 2H 2<br />

O Æ Ca(OH) 2<br />

+ H 2<br />

c C + CO 2<br />

Æ 2CO<br />

d N 2<br />

+ 3H 2<br />

Æ 2NH 3<br />

e C 3<br />

H 8<br />

+ 5O 2<br />

Æ 3CO 2<br />

+ 4H 2<br />

O<br />

3 a Zn(s) + H 2<br />

SO 4<br />

(aq) Æ ZnSO 4<br />

(aq) + H 2<br />

(g)<br />

b Mg(s) + 2HCl(aq) Æ MgCl 2<br />

(aq) + H 2<br />

(g)<br />

c MgCO 3<br />

(s) Æ MgO(s) + CO 2<br />

(g)<br />

d 2C 2<br />

H 6<br />

(g) + 7O 2<br />

(g) Æ 4CO 2<br />

(g) + 6H 2<br />

O(l)<br />

e BaO(s) + 2HCl(aq) Æ BaCl 2<br />

(aq) + H 2<br />

O(l)<br />

<strong>Section</strong> <strong>1.3</strong><br />

1 a All the magnesium reacts.<br />

b So that we know the number of moles of each<br />

substance involved in the reaction.<br />

c Mass of 1 mole of magnesium oxide.<br />

d Because 2 moles of magnesium oxide are produced.<br />

e To find the mass of magnesium oxide produced from<br />

1 g of magnesium.<br />

f 80/48 would be multiplied by 50 rather than by 6.<br />

2 20 g<br />

3 a 2.8 g b 3.1 g c 2.5 g<br />

4 3667 g (3.667 kg)<br />

5 a C 8<br />

H 18<br />

+ 12.5O 2<br />

Æ 8CO 2<br />

+ 9H 2<br />

O<br />

b 175 kg<br />

c 154 kg<br />

6 a 56 tonnes<br />

b S + O 2<br />

Æ SO 2<br />

c 64 g<br />

d 64 tonnes<br />

e 2 tonnes<br />

f 112 tonnes<br />

7 a 217 tonnes<br />

b 0.58 tonnes<br />

8 a Fe 2<br />

O 3<br />

+ 3CO Æ 2Fe + 3CO 2<br />

b 160 g<br />

c 1.43 g<br />

d 1.43 tonnes<br />

e 2.86 tonnes<br />

f 11.9 tonnes<br />

162


SECTION 2<br />

<strong>Section</strong> 1.4<br />

1 <strong>The</strong> particles in a gas are much further apart than in a<br />

liquid or solid. In a gas, therefore, the volume of the<br />

particles is a very small part of the total volume and does<br />

not significantly affect it. In a liquid or solid the particles<br />

are close together and their volumes must be taken into<br />

account when deciding on the total volume.<br />

2 a CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b Volume of oxygen is twice that of methane.<br />

c <strong>The</strong> volume of water vapour formed is twice the<br />

volume of methane burnt.<br />

<strong>Section</strong> 1.5<br />

1 a i 0.02 dm 3 ii 1.5 dm 3<br />

b i 220 000 cm 3 ii 1600 cm 3<br />

2 <strong>The</strong>re is 0.4 mole of sodium hydroxide dissolved in every<br />

dm 3 of the solution.<br />

3 a 0.5 b 0.4 c 1 d 0.2 e 0.05 f 0.002<br />

4 a 2 b 2 c 5 d 0.2 e 4 f 0.2<br />

5 a 0.25 b 0.2 c 5 d 0.4 e 0.5 f 0.125<br />

6 a 40 g b 4g c 20 g d 0.4 g e 800 g f 1g<br />

7 a 117 g b 3.95 g c 1.4 g d 9930 g<br />

e 0.0024 g f 2.385 g g 0.0126 g h 0.1825 g<br />

i 25 .0 g j 13.9 g<br />

8<br />

Concentration/g dm –3 Concentration/mol dm –3<br />

– 5.15<br />

– 1.51<br />

31.5 –<br />

13.4 –<br />

– 0.174<br />

– 0.065<br />

0.6 –<br />

3 a H 2<br />

(g) + Cl 2<br />

(g) Æ 2HCl(g)<br />

b Volumes of hydrogen and chlorine are the same.<br />

Volume of hydrogen chloride is twice the volume of<br />

hydrogen or chlorine.<br />

4 a 2H 2<br />

(g) + O 2<br />

(g) Æ 2H 2<br />

O(l) b 5cm 3<br />

5 a C 3<br />

H 8<br />

(g) + 5O 2<br />

(g) Æ 3CO 2<br />

(g) + 4H 2<br />

O(l)<br />

b 500 cm 3 c 300 cm 3<br />

6 a 3 b 3 c 4 d 2 e C 3<br />

H 4<br />

7 0.414 dm 3 (414 cm 3 )<br />

8 a 0.25 b 2 c 48 dm 3 d 240 dm 3 e 30 dm 3<br />

9 Na + Cl –<br />

Na + 2–<br />

CO 3<br />

Ag + –<br />

NO 3<br />

Mg 2+ Br –<br />

H + SO 2– 4<br />

(or HSO – 4<br />

)<br />

10 a 1moldm –3 b 0.02 mol dm –3<br />

c 0.3 mol dm –3 d 0.4 mol dm –3<br />

11 a 0.0019 mol b 0.0019 mol<br />

c 0.076 mol d 0.076 mol dm –3 or 2.77 g dm –3<br />

12 a 0.0022 mol b 0.0044 mol<br />

c 0.176 mol d 0.176 mol dm –3<br />

13 a 7.75 ¥ 10 –4 (0.000 775) mol dm –3 b 0.0574 g dm –3<br />

14 a 0.0025 b 0.0025 c 25 cm 3<br />

15 a 0.02 mol b 0.04 mol c 1dm 3 d 500 cm 3<br />

e 20 cm 3<br />

<strong>Section</strong> 2.1<br />

1 3 a A r<br />

(Br) = 80.0<br />

Isotope Symbol Atomic Mass Number of<br />

b A r<br />

(Ca) = 40.1<br />

number number neutrons<br />

2<br />

carbon-12<br />

12<br />

6<br />

C 6 12 6<br />

carbon-13<br />

13<br />

6<br />

C 6 13 7<br />

oxygen-16<br />

16<br />

8<br />

O 8 16 8<br />

strontium-90<br />

90<br />

38<br />

Sr 38 90 52<br />

131<br />

iodine-131<br />

53I 53 131 78<br />

123<br />

iodine-123<br />

53I 53 123 70<br />

a<br />

b<br />

c<br />

d<br />

Protons Neutrons Electrons<br />

35 44 35<br />

35 46 35<br />

17 18 17<br />

17 20 17<br />

4 a 100 – x<br />

b 193x<br />

c 191(100 – x)<br />

d 193x + 191(100 – x)<br />

e [193x + 191(100 – x)] ∏ 100<br />

f 60% iridium-193, 40% iridium-191<br />

5 37.5% antimony-123, 62.5% antimony-121<br />

6 23.5% rubidium-87<br />

163


SECTION 2<br />

<strong>Section</strong> 2.2<br />

1 a 238 234<br />

94Pu Æ<br />

92 U + 4 2 He<br />

b 221 217<br />

87Fr Æ<br />

85 At + 4 2 He<br />

c 230 226<br />

90Th Æ<br />

88 Ra + 4 2 He<br />

2 a<br />

38 90 90<br />

Sr Æ<br />

39 Y + –1 0e<br />

b 131<br />

53 I Æ 131<br />

54 Xe + –1 0e<br />

c 231 231<br />

90Th Æ<br />

91 Pa + –1 0e<br />

3 a<br />

3 7Li + 1 1 p Æ 24 2 He<br />

b 14 7 N + 0 1n Æ 14 6 C + 1 1 p<br />

<strong>Section</strong> 2.3<br />

1 No. Isotopes have the same number of protons and the<br />

same number of electrons.<br />

2<br />

core<br />

nucleus plus<br />

filled shell 1<br />

3 a 2.1 b 2.8.5 c 2.8.8.2<br />

4 Electronic shell configuration Group Period<br />

– 3 2<br />

– 6 3<br />

2.4 – –<br />

2.8.4 – –<br />

– 1 2<br />

– 1 3<br />

– 1 4<br />

5 Elements A, C and E are in the same group.<br />

<strong>Section</strong> 2.4<br />

outer shell<br />

with seven electrons<br />

1 s block: metals<br />

p block: mixture of metals and non-metals<br />

d block: metals<br />

f block: metals<br />

2 a <strong>The</strong> electron is in the first electron shell.<br />

b <strong>The</strong> electron is in an s type orbital.<br />

c <strong>The</strong>re are two electrons in this orbital.<br />

3 a s block b p block<br />

c p block<br />

d f block<br />

e d block<br />

f p block<br />

g f block<br />

h s block<br />

c 14 7 N + 2 4He Æ 17 8 O + 1 1 p<br />

d<br />

13 27Al<br />

+ 2 4 30<br />

He Æ<br />

15 P + 0 1n<br />

4 226<br />

88<br />

222 218<br />

Ra Æ<br />

86Rn Æ<br />

a a 84 a<br />

Po Æ<br />

214<br />

82 Pb<br />

5 232<br />

90 Th – 64 2He – 4–1 0 e Æ 208<br />

82 Pb<br />

6 a 5g b 0.625 g c 4.5 ¥ 10 –4 s d 0.039 g<br />

7 b Approx. 4.3 g<br />

c Approx. 185 days<br />

6 a X is in Group 1.<br />

b Y is in Group 0.<br />

Group 1 elements have a single electron in their outer<br />

shell, which they lose readily. Noble gases in Group 0<br />

have 2 or 8 electrons in their outer shell and it is<br />

difficult to remove one of these electrons.<br />

7 a lst ionisation Ca(g) Æ Ca + (g) + e –<br />

2nd ionisation Ca + (g) Æ Ca 2+ (g) + e –<br />

3rd ionisation Ca 2+ (g) Æ Ca 3+ (g) + e –<br />

b Once an electron has been removed the remaining<br />

electrons are held more tightly. Hence it is more<br />

difficult to remove a second electron.<br />

c Second ionisation enthalpy involves removal of an<br />

electron from shell 4 but third involves removal of an<br />

electron from shell 3 which is closer to the nucleus.<br />

8 <strong>The</strong> second ionisation enthalpy for sodium is high<br />

because removing a second electron involves removing<br />

an electron from the full second shell. This requires<br />

much more energy than removing the second electron<br />

from the third shell of magnesium which is further from<br />

the nucleus.<br />

4 Z = 16. <strong>The</strong> element is sulphur.<br />

5 a Chlorine b Potassium<br />

c Titanium d Tin<br />

6 a 1s 2 2s 2 2p 1<br />

b 1s 2 2s 2 2p 6 3s 2 3p 3<br />

c 1s 2 2s 2 2p 6 3s 2 3p 5<br />

d 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2<br />

e 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2<br />

<strong>Section</strong> 3.1<br />

1 a, c, e 2.8.8<br />

3 a<br />

b, d 2.8<br />

f 2.8.14<br />

g 2.8.13<br />

b<br />

h 2.8.17<br />

2 K + , Ca 2+ , (Sc 3+ ), Cl – , S 2– , P 3–<br />

Li<br />

K<br />

+ –<br />

X<br />

H<br />

+<br />

XX<br />

F<br />

X<br />

XX<br />

X<br />

X<br />

–<br />

164


SECTION 3<br />

c<br />

d<br />

e<br />

f<br />

Mg<br />

Ca<br />

Ca<br />

Na<br />

2+<br />

2+<br />

2+<br />

+<br />

X<br />

O<br />

X<br />

XX<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

S<br />

X<br />

XX<br />

Na<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

+<br />

2–<br />

–<br />

2–<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

S<br />

X<br />

XX<br />

X<br />

X<br />

X<br />

X<br />

–<br />

2–<br />

5 a In a normal covalent bond, each atom supplies a single<br />

electron to make up the pair of electrons involved in<br />

the bond. In a dative covalent bond one atom supplies<br />

both electrons.<br />

b<br />

+<br />

H<br />

6<br />

H<br />

H<br />

X<br />

N<br />

X<br />

X<br />

H<br />

X<br />

O<br />

X<br />

H<br />

H<br />

H<br />

+<br />

H<br />

X<br />

N<br />

X<br />

H<br />

X<br />

H<br />

g<br />

h<br />

Na<br />

Al<br />

+<br />

3+<br />

X<br />

X<br />

Na<br />

F<br />

X<br />

XX<br />

+<br />

X<br />

X<br />

–<br />

Na<br />

X<br />

X<br />

F<br />

X<br />

XX<br />

+<br />

X<br />

X<br />

–<br />

X<br />

X<br />

N<br />

X<br />

X<br />

X<br />

X<br />

X<br />

F<br />

X<br />

XX<br />

3–<br />

X<br />

X<br />

–<br />

7<br />

H<br />

H<br />

X<br />

X<br />

N<br />

X<br />

H<br />

X<br />

X<br />

XX<br />

X<br />

X F<br />

X<br />

X<br />

X XX<br />

B<br />

X<br />

F<br />

X<br />

X<br />

X XX<br />

X<br />

X F<br />

X<br />

X<br />

XX<br />

4 a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

X<br />

X<br />

H<br />

H<br />

H<br />

X<br />

X<br />

XX<br />

Cl X Cl<br />

XX<br />

XX<br />

Cl<br />

X<br />

XX<br />

X<br />

H<br />

X<br />

C<br />

X<br />

X<br />

X<br />

X<br />

H<br />

XX<br />

S<br />

X X<br />

XX<br />

XX<br />

X<br />

Br<br />

XX<br />

XX<br />

X<br />

X Br<br />

X<br />

Al<br />

XX X<br />

X X<br />

X Cl<br />

XX X<br />

H<br />

H<br />

X<br />

X<br />

Si<br />

H<br />

H<br />

XX<br />

X X<br />

X Cl X<br />

X X<br />

X Cl X<br />

XX<br />

C<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

XX<br />

X<br />

Br<br />

XX<br />

X<br />

X<br />

XX<br />

X X<br />

Cl X<br />

XX<br />

C<br />

X<br />

X<br />

H<br />

H<br />

8 Chlorine has a stronger electron pulling power. Thus in a<br />

covalent bond between carbon and chlorine, the<br />

electron pair forming the bond is more strongly attracted<br />

by the chlorine atom than by the carbon atom.<br />

9 a H—F b N∫N<br />

d+ d– non-polar<br />

c H—Cl<br />

d Cl—F<br />

d+ d– d+ d–<br />

e H—I<br />

f S=C=S<br />

d+ d– non-polar<br />

10 a Three<br />

b <strong>The</strong> delocalised electrons form a pool of electrons<br />

which are free to move around the positive ions in the<br />

metal. When a potential difference is applied across<br />

the metal, electrons move towards the positive<br />

terminal, ie a current flows.<br />

11 a Metallic b Covalent c Covalent<br />

d Ionic e Ionic f Covalent<br />

Silicon tetrafluoride contains polar covalent bonds.<br />

12 a NaCl<br />

b MgCl 2<br />

c FeCl 3<br />

d Al 2<br />

O 3<br />

e NH 4<br />

Cl<br />

f NaOH<br />

g K 2<br />

CO 3<br />

h MgSO 4<br />

h<br />

i<br />

H<br />

H<br />

X<br />

X<br />

C<br />

H<br />

X<br />

X<br />

X<br />

C<br />

H<br />

X<br />

X<br />

X<br />

O<br />

X<br />

X C H<br />

X<br />

X<br />

X<br />

H<br />

13 a NH 3<br />

b H 2<br />

S<br />

c CO 2<br />

d HCl<br />

e CO<br />

f SO 2<br />

g N 2<br />

O<br />

h SO 3<br />

165


SECTION 3<br />

<strong>Section</strong> 3.2<br />

1 a Li(g) because it has an extra electron shell.<br />

b Li + (aq) because the ion is surrounded by water<br />

molecules.<br />

c Cl – (g) because it has an extra electron.<br />

d Cl – (aq) because the ion is surrounded by water<br />

molecules.<br />

2 a K + (g) because it has an extra electron shell.<br />

b Br – (g) because it has an extra electron shell.<br />

c Na + (g) because it has one less proton in the nucleus<br />

and therefore attracts the same number of electrons<br />

less strongly.<br />

d Fe 2+ (g) because it has one more electron.<br />

3 a K + (aq)<br />

b K + (aq)<br />

c K + (aq)<br />

4 a Na +<br />

b Na + Cl –<br />

c Na + Cl –<br />

5 a i 11, 12, 13, 15, 16, 17<br />

ii Na + , Mg 2+ , Al 3+ 1s 2 2s 2 2p 6<br />

P 3– , S 2– , Cl – 1s 2 2s 2 2p 6 3s 2 3p 6<br />

b i<br />

ii<br />

Same electronic configuration.<br />

Different number of protons in the nucleus<br />

leading to different ionic charges.<br />

c Contraction of ion size as the number of protons<br />

relative to the number of electrons increases.<br />

d P 3– is the biggest and Cl – is the smallest because of the<br />

increasing attraction on the same number of electrons<br />

of an increasing number of protons in the nucleus.<br />

e <strong>The</strong>y each contain an extra shell of electrons.<br />

<strong>Section</strong> 3.3<br />

1 a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

2 a<br />

b<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

X<br />

X<br />

Si<br />

X<br />

H<br />

XX<br />

S<br />

X<br />

X X<br />

XX<br />

XX<br />

X X<br />

X<br />

X<br />

P<br />

H<br />

H<br />

H<br />

H<br />

H<br />

X<br />

X<br />

109°<br />

O X C O 180°<br />

XX<br />

X<br />

S X<br />

XX<br />

Approx. 109°<br />

Approx. 109°<br />

F F Approx. 109°<br />

Cl X Cl<br />

X<br />

B 120°<br />

X<br />

Cl<br />

C<br />

X<br />

H<br />

C<br />

H<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

C<br />

X<br />

H<br />

180°<br />

H<br />

C H<br />

H 109∞<br />

3<br />

d<br />

e<br />

f<br />

g<br />

F<br />

H<br />

H<br />

H<br />

C<br />

109∞<br />

H<br />

Cl<br />

Cl<br />

X<br />

C<br />

F<br />

N<br />

H<br />

X<br />

X<br />

N<br />

XX<br />

H<br />

C<br />

H<br />

C<br />

120∞<br />

O<br />

F<br />

a Tetrahedral<br />

b Pyramidal<br />

4 a Tetrahedral<br />

b Planar<br />

c Linear<br />

5 a i<br />

H<br />

X<br />

O<br />

H<br />

H<br />

H<br />

180∞<br />

C<br />

N<br />

H<br />

+<br />

X<br />

C<br />

X<br />

H<br />

All bond angles 120°<br />

All bond angles approx. 109°<br />

H<br />

C<br />

O<br />

H<br />

All bond angles approx. 109°<br />

ii Planar (trigonal)<br />

c<br />

H<br />

H<br />

H<br />

C<br />

H<br />

N<br />

H<br />

H<br />

All bond angles approx. 109°<br />

b<br />

i<br />

H<br />

H<br />

–<br />

X<br />

X X<br />

C<br />

XX<br />

H<br />

ii Pyramidal (tetrahedral with respect to electron<br />

pairs)<br />

166


SECTION 3<br />

6 a<br />

H<br />

XX<br />

X X<br />

N<br />

XX<br />

H<br />

–<br />

About 109°<br />

b<br />

H<br />

X<br />

XX<br />

N<br />

X<br />

H<br />

+<br />

About 120°<br />

<strong>Section</strong> 3.4<br />

1 a C 6<br />

H 14<br />

, C 6<br />

H 12<br />

, not isomers<br />

b C 4<br />

H 9<br />

Cl, C 4<br />

H 9<br />

Cl, isomers<br />

c C 3<br />

H 8<br />

O, C 3<br />

H 6<br />

O, not isomers<br />

d C 7<br />

H 8<br />

O, C 7<br />

H 8<br />

O, isomers<br />

e C 3<br />

H 9<br />

N, C 3<br />

H 9<br />

N, isomers<br />

2 Isomers of C 5<br />

H 12<br />

:<br />

C C C C C<br />

C<br />

pentane<br />

4 Isomers of C 8<br />

H 10<br />

(containing a benzene ring):<br />

CH 3 CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 2 CH 3<br />

CH 3<br />

C C C C<br />

2-methylbutane<br />

5<br />

OH<br />

C C C C OH<br />

C C C C<br />

C<br />

C C C<br />

2,2-dimethylpropane<br />

C<br />

3 <strong>The</strong>re are 4 isomers of C 4<br />

H 9<br />

Br:<br />

C C C C Br C C C C<br />

Br<br />

C<br />

C C C OH<br />

C O C C C<br />

C<br />

C C OH<br />

C<br />

C<br />

C C C Br<br />

C<br />

C C C<br />

Br<br />

C<br />

C O C C<br />

C C O C C<br />

167


SECTION 3<br />

<strong>Section</strong> 3.5<br />

1 F F<br />

4 a F<br />

2<br />

H<br />

F<br />

H<br />

H 3 C<br />

H<br />

H 3 C<br />

H<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

H<br />

H<br />

F<br />

H<br />

CH 2 CH 3<br />

CH 2 CH 3<br />

H<br />

cis-1,2-difluoroethene<br />

trans-1,2-difluoroethene<br />

trans-pent-2-ene<br />

cis-pent-2-ene<br />

F<br />

C<br />

C<br />

H<br />

H<br />

b No<br />

c <strong>The</strong>re must be the same two atoms or groups of atoms<br />

on each C atom attached to the double bond.<br />

Geometric isomers are not possible if two groups on<br />

one side of the double bond are the same.<br />

5 a Cis–trans isomers<br />

b 2 moles of H 2<br />

c Citronellol is a partially hydrogenated form of nerol<br />

(or geraniol).<br />

d Structural isomers of the cis- and trans-isomers.<br />

6<br />

3 a<br />

Cl<br />

H<br />

C<br />

C<br />

Cl<br />

H<br />

cis-1,2-dichloroethene<br />

cis-poly(ethyne)<br />

n<br />

Cl<br />

H<br />

C<br />

C<br />

H<br />

Cl<br />

trans-1,2-dichloroethene<br />

trans-poly(ethyne)<br />

n<br />

b Cis-1,2-dichloroethene<br />

c <strong>The</strong> cis-isomer has a dipole moment whereas the<br />

trans-isomer does not. <strong>The</strong> permanent<br />

dipole–permanent dipole intermolecular forces in the<br />

cis-isomer make it more difficult to separate the<br />

molecules.<br />

7 a<br />

H<br />

H<br />

X<br />

X<br />

C<br />

X<br />

H<br />

X<br />

N<br />

X<br />

X<br />

b H 3 C CH 3<br />

N<br />

N<br />

XX<br />

N<br />

X<br />

H<br />

X<br />

C<br />

X<br />

H<br />

X<br />

H<br />

H 3 C<br />

N<br />

N<br />

cis form<br />

CH 3<br />

trans form<br />

<strong>Section</strong> 3.6<br />

1 a A chiral centre.<br />

b iii<br />

2 a Br<br />

b<br />

3 a b<br />

c<br />

CH 3<br />

H 3 C<br />

H<br />

CH<br />

CH 2 CH 3<br />

CH 3<br />

CH CH 2 C *<br />

3 CH 2 CH 2 CH 3<br />

H<br />

Br<br />

C<br />

H 3 C<br />

H 3 CH 2 CH 2 C<br />

C<br />

CH 2 CH 3<br />

H<br />

CH 2 CH 3<br />

CH 3 CH 2<br />

Br<br />

C<br />

H<br />

H 3 CH 2 C<br />

4 a b<br />

CH 2 OH<br />

NH 2 COOH<br />

C *<br />

CH 2 CH 2 CH 3<br />

H<br />

c d H<br />

H<br />

C<br />

C<br />

CH 3<br />

HOOC NH 2<br />

H 2 N COOH<br />

CH 2 OH<br />

HOH 2 C<br />

D-isomer<br />

L-isomer<br />

(Use the CORN rule to name the isomers.)<br />

5 L-Cysteine is readily available as a hydrolysis product of<br />

CH 3<br />

proteins.<br />

D-Cysteine has to be made synthetically. It is probably<br />

C<br />

made together with L-cysteine from which it must be<br />

H<br />

separated.<br />

168


SECTION 4<br />

6 a<br />

H<br />

H<br />

H<br />

H<br />

b<br />

H 3 C<br />

H 3 C<br />

C<br />

C C<br />

* H C C<br />

H H<br />

CH 3<br />

H 3 C<br />

C<br />

C C<br />

* H C C<br />

H<br />

CH 3<br />

H 3 C<br />

CH<br />

CH 3<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

limonene<br />

carvone<br />

c<br />

No: the carbon which was chiral is<br />

now bonded in the same way in both<br />

directions around the ring.<br />

<strong>Section</strong> 4.1<br />

1 a Standard enthalpy change of combustion is the<br />

enthalpy change when 1 mole of the compound is<br />

burnt completely in oxygen, under standard<br />

conditions (ie the compound and the products in their<br />

most stable states at 1 atmosphere pressure and at a<br />

stated temperature, often 298 K).<br />

b Standard enthalpy change of formation is the<br />

enthalpy change when 1 mole of a compound is<br />

formed from its elements, with both the compound<br />

and its elements being in their standard states (ie their<br />

most stable state at 1 atmosphere pressure and at a<br />

stated temperature, often 298 K).<br />

2 <strong>The</strong> formation of a compound from its elements may be<br />

an exothermic reaction (DH f<br />

negative) or an<br />

endothermic reaction (DH f<br />

positive). However, energy is<br />

liberated whenever a substance burns, so combustion<br />

reactions are always exothermic (DH c<br />

negative).<br />

3<br />

Enthalpy<br />

1<br />

1<br />

2 H 2 (g) + 2 Cl 2 (g)<br />

DH = –92.3 kJ mol –1<br />

HCl(g)<br />

Progress of reaction<br />

e 6C(s) + 6H 2<br />

(g) + 3O 2<br />

(g) Æ C 6<br />

H 12<br />

O 6<br />

(s)<br />

f C 6<br />

H 12<br />

O 6<br />

(s) + 6O 2<br />

(g) Æ 6CO 2<br />

(g) + 6H 2<br />

O(l)<br />

5 DH c<br />

!(C) is enthalpy change when 1 mole of carbon<br />

burned completely under standard conditions, ie<br />

C(s) + O 2<br />

(g) Æ CO 2<br />

(g)<br />

DH f<br />

!(CO 2<br />

) is enthalpy change when 1 mole of carbon<br />

dioxide is formed from its elements with both the carbon<br />

dioxide and its constituent elements in their standard<br />

states, ie<br />

C(s) + O 2<br />

(g) Æ CO 2<br />

(g)<br />

6 a <strong>The</strong>rmometer, measuring cylinder, gas meter.<br />

b Volume of water used, temperature rise of water,<br />

volume of gas used.<br />

c Cooling losses, impurity of the gas, etc.<br />

7 a DH = –667 kJ mol –1<br />

b Much heat was lost to the surroundings in the<br />

experiment whereas the accurate DH value in the data<br />

book would have been determined using a calorimeter<br />

in which very little heat is lost.<br />

8 a M r<br />

(C 7<br />

H 16<br />

) = 100<br />

b i 481.7 kJ released ii 481 700 kJ released<br />

(Assumed combustion is complete and CO 2<br />

and H 2<br />

O<br />

are the only products. Also, that combustion is carried<br />

out under standard conditions.)<br />

c Density of heptane<br />

9 a H 2<br />

(g) + O 2<br />

(g) Æ H 2<br />

O(l)<br />

b DH f,<br />

! 298<br />

(H 2<br />

O) = –286 kJ mol –1<br />

c –143 kJ (assuming combustion takes place under<br />

standard conditions)<br />

d +286 kJ mol –1<br />

Enthalpy<br />

1<br />

1<br />

2<br />

2 H 2 (g) + I 2 (s)<br />

HI(g)<br />

DH = +26.5 kJ mol –1<br />

Progress of reaction<br />

10 a Enthalpy change of formation of propane.<br />

b Enthalpy change of combustion of 3 moles of carbon<br />

and 4 moles of hydrogen.<br />

c Enthalpy change of combustion of propane.<br />

d DH 1<br />

+ DH 3<br />

= DH 2<br />

e DH 1<br />

= DH 2<br />

– DH 3<br />

= 3(–393) kJ mol –1 + 4(–286) kJ mol –1<br />

– (–2220) kJ mol –1<br />

= –103 kJ mol –1<br />

11 a 4C(s) + 5H 2<br />

(g) Æ C 4<br />

H 10<br />

(g)<br />

b<br />

DH<br />

4C(s) + 5H 2<br />

(g)<br />

1<br />

C 4<br />

H 10<br />

(g)<br />

4 a 2C(s) + 3H 2<br />

(g) + O 2<br />

(g) Æ C 2<br />

H 5<br />

OH(l)<br />

b C 2<br />

H 5<br />

OH(l) + 3O 2<br />

(g) Æ 2CO 2<br />

(g) + 3H 2<br />

O(l)<br />

c 4C(s) + 5H 2<br />

(g) Æ C 4<br />

H 10<br />

(g)<br />

d C 4<br />

H 10<br />

(g) + 6 O 2<br />

(g) Æ 4CO 2<br />

(g) + 5H 2<br />

O(l)<br />

+ 6 O 2<br />

(g) DH 2<br />

DH 3<br />

+ 6 O 2<br />

(g)<br />

4CO 2<br />

(g) + 5H 2<br />

O(l)<br />

169


SECTION 4<br />

CH 3<br />

CHO(l) +2 O 2<br />

(g) Æ 2CO 2<br />

(g) + 2H 2<br />

O(l)<br />

<br />

c DH 1<br />

+ DH 3<br />

= DH 2<br />

13 a<br />

DH 1<br />

= DH 2<br />

– DH 3<br />

b<br />

= –890 kJ mol –1<br />

= 4(–393) kJ mol –1 + 5(–286) kJ mol –1<br />

– (–2877) kJ mol –1<br />

CH 3<br />

CHO(l) + 2 O 2<br />

(g)<br />

DH 1<br />

2CO 2<br />

(g) + 2H 2<br />

O(l)<br />

= –125 kJ mol –1<br />

12 a Enthalpy change of combustion of methane.<br />

DH 2<br />

DH 3<br />

b Enthalpy change of formation of methane.<br />

c Enthalpy change of combustion of carbon or enthalpy<br />

2C(s) + 2H 2<br />

(g) + 30 2<br />

(g)<br />

change of formation of carbon dioxide; the enthalpy of<br />

combustion of 2 moles of hydrogen or enthalpy<br />

c Standard enthalpy change of combustion of ethanol<br />

change of formation of 2 moles of water.<br />

= DH 1<br />

= – DH 2<br />

+ DH 3<br />

d DH 1<br />

= – DH 2<br />

+ DH<br />

= – (–192) kJ mol –1 + 2(–393) kJ mol –1 + 2(–286) kJ mol –1<br />

3<br />

e DH 1<br />

= – (–75) kJ mol –1 + (–393) kJ mol –1<br />

= –1166 kJ mol –1<br />

+ 2(–286) kJ mol –1<br />

<strong>Section</strong> 4.2<br />

1 a CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b H<br />

H<br />

C<br />

H<br />

H + 2O O O C O + 2H O H<br />

c 4 (C–H)<br />

2 (O=O)<br />

d 2 (C=O)<br />

4 (O–H)<br />

e +2648 kJ mol –1 (or +2737 kJ mol –1 depending on the<br />

value used for E(C–H))<br />

f –3466 kJ mol –1<br />

g –818 kJ mol –1 (or –729 kJ mol –1 )<br />

(<strong>The</strong> value of the standard enthalpy change of<br />

combustion at 298 K is for H 2<br />

O(l) and hence that value<br />

will be more exothermic than the value obtained here.)<br />

2 a C 3<br />

H 8<br />

(g) + 5O 2<br />

(g) Æ 3CO 2<br />

(g) + 4H 2<br />

O(g)<br />

b H H H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

H<br />

c 2 (C–C)<br />

8 (C–H)<br />

5 (O=O)<br />

d 6 (C=O)<br />

8 (O–H)<br />

e +6488 kJ mol –1<br />

f –8542 kJ mol –1<br />

g –2054 kJ mol –1<br />

H + 5 O O 3 O C O + 4 H<br />

O<br />

H<br />

3 a CH 3<br />

OH(l) + 1 O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(g)<br />

b H<br />

H<br />

C<br />

H<br />

c 3 (C–H)<br />

1 (C–O)<br />

1 (O–H)<br />

l.5 (O=O)<br />

d 2 (C=O)<br />

4 (O–H)<br />

e +2786 kJ mol –1<br />

f –3466 kJ mol –1<br />

g –680 kJ mol –1<br />

O H + 1 1 2O<br />

O O C O + 2H O H<br />

4 N 2<br />

(g) + 3H 2<br />

(g) Æ 2NH 3<br />

(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+945) + 3(+436) Æ 2(3 ¥ +391)<br />

DH ! = –93 kJ mol –1<br />

5 N 2<br />

H 4<br />

(g) + O 2<br />

(g) Æ N 2<br />

(g) + 2H 2<br />

O(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+158) + 4(+391) + (+498) Æ (+945) + 4(+464)<br />

DH ! = –581 kJ mol –1<br />

6 C 2<br />

H 4<br />

(g) + Br 2<br />

(g) Æ C 2<br />

H 4<br />

Br 2<br />

(g)<br />

Bond enthalpies/kJ mol –1 :<br />

(+612) + 4(+413) + (+193) Æ 4(+413) + 2(+290)<br />

+ (+347) DH ! = –122 kJ mol –1<br />

<strong>Section</strong> 4.3<br />

1 a Increase b Decrease c Increase<br />

d Increase e Decrease f Decrease<br />

2 a Molten wax (Liquids have higher entropies than solids.)<br />

b Br 2<br />

(g) (Gases have higher entropies than liquids.)<br />

c Brass (Mixtures have higher entropies than the<br />

pure substances.)<br />

d Octane (Complex molecules have higher<br />

entropies than simpler molecules.)<br />

3 1 in 256<br />

4 a Ar molecule larger than He.<br />

b Gases have higher entropies than liquids.<br />

c Cl 2<br />

molecule larger than F 2<br />

.<br />

5 a Greater. A gas is formed as a product.<br />

b Smaller. Number of molecules of gas in product<br />

smaller than the number of molecules of gas in<br />

reactants.<br />

c Smaller. One reactant is a gas; product only solid.<br />

170


SECTION 4<br />

<strong>Section</strong> 4.4<br />

1 <strong>The</strong> entropies increase for the first four alkanes as the<br />

molecules become heavier and composed of more atoms<br />

(the number of energy levels increases with the number<br />

of atoms). Pentane is a liquid and so has a lower entropy<br />

than butane.<br />

2 a Entropy decrease, because the number of moles of gas<br />

is reduced by half as reaction proceeds.<br />

b Entropy increase; the number of moles of gas doubles<br />

during the reaction and a solid has much lower<br />

entropy than a gas.<br />

c Entropy decrease; 2 moles of gaseous reactants are<br />

replaced by 1 mole of solid.<br />

d Entropy decrease; 5 moles of gaseous oxygen are<br />

removed, the only product is a solid.<br />

e Entropy increase; 5 moles of gaseous product are<br />

formed.<br />

<strong>Section</strong> 4.5<br />

1 a When 1 mole of sodium fluoride is formed from 1 mole<br />

of Na + (g) and 1 mole of F – (g), 915 kJ mol –1 of energy are<br />

released. This is the lattice enthalpy of sodium fluoride.<br />

b <strong>The</strong> lattice enthalpy becomes more negative as the<br />

ionic radii decrease.<br />

2 a LiF; Li + has a smaller radius than Na + and attracts F –<br />

ions more strongly.<br />

b Na 2<br />

O; Na + has a smaller radius than Rb + and attracts<br />

O 2– more strongly.<br />

c MgO; Mg 2+ is smaller and more highly charged than<br />

Na + , and attracts O 2– more strongly.<br />

d KF; F – has a smaller radius than Cl – and attracts K +<br />

more strongly.<br />

3 a SrF 2<br />

; Sr 2+ is smaller and more highly charged than Rb +<br />

and will attract F – more strongly.<br />

b By the same arguments as in a, BaO should have the<br />

more exothermic lattice enthalpy.<br />

c Cu 2+ is more highly charged than Cu + , so CuO should<br />

have the more exothermic lattice enthalpy.<br />

4 a Li + attracts water molecules more strongly than Na +<br />

because of its smaller size.<br />

b Mg 2+ attracts water molecules more strongly than<br />

Ca 2+ because of its smaller size.<br />

c Ca 2+ and Na + have similar sizes, but Ca 2+ is more highly<br />

charged and so attracts water molecules more strongly.<br />

5 a <strong>The</strong> ions in the lattice attract each other less strongly<br />

as the size of the anion increases from F – to Cl – .<br />

b DH hyd<br />

becomes less exothermic as the anion becomes<br />

bigger and attracts water molecules less strongly.<br />

c<br />

AgF(s) + aq<br />

–DH LE<br />

DH solution<br />

Ag + (g) + F – (g) + aq<br />

Ag + (aq) + F – (aq)<br />

DH hyd<br />

(Ag + )<br />

+<br />

DH hyd<br />

(F – )<br />

3 <strong>Student</strong>s’ answers should be based on the following<br />

deductions.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

DS sys<br />

DS surr<br />

Explanation<br />

/J K –1 mol –1 /J K –1 mol –1<br />

+203 –44 Spontaneous: total<br />

entropy change positive<br />

+63 +329 Spontaneous: total<br />

entropy change positive<br />

+25 –604 Not spontaneous: total<br />

entropy change negative<br />

+209 +416 Spontaneous: total<br />

entropy change positive<br />

–4 –6.7 Not spontaneous: total<br />

entropy change negative<br />

4 Values for both DS sys<br />

and DS surr<br />

are negative. <strong>The</strong>refore<br />

DS total<br />

must always be negative, whatever value of T is<br />

chosen, and the process can never be spontaneous.<br />

Enthalpy<br />

AgCl(s) + aq<br />

–DH LE<br />

DH solution<br />

Ag + (g) + Cl – (g) + aq<br />

Ag + (aq) + Cl – (aq)<br />

DH hyd<br />

(Ag + )<br />

+<br />

DH hyd<br />

(Cl – )<br />

Both silver halides have endothermic enthalpy<br />

changes of solution and the enthalpy level diagrams<br />

will have the form shown below.<br />

–DH LE<br />

AgX(s) + aq<br />

Ag + (g) + X – (g) + aq<br />

Ag + (aq) + X – (aq)<br />

DH solution<br />

d DH solution<br />

= –DH LE<br />

+ DH hyd<br />

(Ag + ) + DH hyd<br />

(X – )<br />

DH solution<br />

(AgF) = +6 kJ mol –1 ;<br />

DH solution<br />

(AgCl) = +95 kJ mol –1<br />

DH hyd (Ag + )<br />

+<br />

DH hyd (X – )<br />

e AgF may be soluble in water. AgCl will be insoluble.<br />

6 a Mg(OH) 2<br />

+ 152 kJ mol –1<br />

Ca(OH) 2<br />

+ 7 kJ mol –1<br />

b Ca(OH) 2<br />

: enthalpy change of solution much less<br />

endothermic.<br />

c Entropy changes of the processes.<br />

171


SECTION 4<br />

<strong>Section</strong> 4.6<br />

1 a i Li(s) + Cl 2<br />

(g) Æ LiCl(s)<br />

ii Li(s) Æ Li(g)<br />

iii Cl 2<br />

(g) Æ Cl(g)<br />

iv Li(g) Æ Li + (g) + e –<br />

v Cl(g) + e – Æ Cl – (g)<br />

vi Li + (g) + Cl – (g) Æ LiCl(s)<br />

Enthalpy/kJ mol –1<br />

+800<br />

+700<br />

Li + (g) + Cl(g)<br />

b<br />

Li(s) + Cl 2<br />

(g)<br />

DH 1<br />

LiCl(s)<br />

DH EA (Cl)<br />

+600<br />

DH 2<br />

DH 4<br />

Li(g) +Cl(g)<br />

DH 3<br />

Li + (g) + Cl – (g)<br />

+500<br />

DH i (1)(Li)<br />

DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! LE<br />

(LiCl) = DH 4<br />

= DH 1<br />

– DH 2<br />

– DH 3<br />

= (– 409 kJ mol –1 – (+ 159 kJ mol –1<br />

+ 121 kJ mol –1 ) – (+519 kJ mol –1<br />

– 355 kJ mol –1 )<br />

DH! LE<br />

(LiCl) = – 853 kJ mol –1<br />

<br />

c See Graph in facing column<br />

2 a i Mg(s) + Cl 2<br />

(g) Æ MgCl 2<br />

(s)<br />

ii Mg(s) Æ Mg(g)<br />

iii Cl 2<br />

(g) Æ Cl(g)<br />

iv Mg(g) Æ Mg + (g) + e –<br />

v Mg + (g) Æ Mg 2+ (g) + e –<br />

vi Cl(g) + e – Æ Cl – (g)<br />

vii Mg 2+ (g) + 2Cl – (g) Æ MgCl 2<br />

(s)<br />

b<br />

Mg(s) + Cl 2<br />

(g)<br />

DH 1<br />

MgCl 2<br />

(s)<br />

+400<br />

+300<br />

+200<br />

+100<br />

0<br />

Li(g) + Cl(g)<br />

DH at (Cl)<br />

1<br />

Li(g) + 2 Cl 2 (g)<br />

DH at (Li)<br />

Li + (g) + Cl – (g)<br />

1<br />

Li(s) + 2 Cl 2 (g)<br />

DH 2<br />

DH 4<br />

Mg(g) + 2Cl(g)<br />

DH 3<br />

Mg 2+ (g) + 2Cl – (g)<br />

–100<br />

DH LE (LiCl)<br />

DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! LE<br />

(MgCl 2<br />

) = DH 4<br />

= DH 1<br />

– DH 2<br />

– DH 3<br />

= (– 641 kJ mol –1 ) – (+ 147 kJ mol –1<br />

+ 2 (+ 121 kJ mol –1 ))<br />

– (+744 kJ mol –1 + 1457 kJ mol –1<br />

+2 (– 355 kJ mol –1 ))<br />

DH! LE<br />

(MgCl 2<br />

) = – 2521 kJ mol –1<br />

–200 DH f (LiCl)<br />

–300<br />

–400<br />

LiCl(s)<br />

–500<br />

As Group 1 is ascended, the enthalpy changes of formation of<br />

the chlorides become less negative and the first ionisation<br />

enthalpies of the elements become more positive.<br />

172


SECTION 4<br />

3 a<br />

DH<br />

Ca(s) + Cl 2<br />

(g)<br />

1<br />

DH<br />

CaCl(s)<br />

Ca(s) + Cl 2<br />

(g) 1<br />

CaCl 2<br />

(s)<br />

DH 2<br />

DH 4<br />

DH 2<br />

DH 4<br />

Ca(g) +Cl(g)<br />

DH 3<br />

Ca + (g) + Cl – (g)<br />

Ca(g) +2Cl(g)<br />

DH 3<br />

Ca 2+ (g) + 2Cl – (g)<br />

DH! f<br />

(CaCl) = DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

DH! f<br />

(CaCl 2<br />

) = DH 1<br />

= DH 2<br />

+ DH 3<br />

+ DH 4<br />

= (+178 kJ mol –1 + 121 kJ mol –1 )<br />

+ (+596 kJ mol –1 –355 kJ mol –1 )<br />

+ (–711 kJ mol –1 )<br />

DH! f<br />

(CaCl) = – 171 kJ mol –1<br />

= (+178 kJ mol –1 + 2 (+121 kJ mol –1 ))<br />

+ (+596 kJ mol –1 + 1152 kJ mol –1 )<br />

+ 2 (–355 kJ mol –1 ) +(–2237kJ mol –1 )<br />

DH! f<br />

(CaCl 2<br />

) = – 779 kJ mol –1<br />

b<br />

2DH EA (Cl)<br />

DH i (2)(Ca)<br />

+800<br />

+600<br />

DH i (1)(Ca)<br />

DH EA (Cl)<br />

DH i (1)(Ca)<br />

DH LE (CaCl 2 )<br />

+400<br />

+200<br />

Enthalpy/kJ mol –1 1<br />

+2200<br />

Ca 2+ (g) + 2Cl(g)<br />

+2000<br />

+1800<br />

+1600<br />

+1400<br />

Ca 2+ (g) + 2Cl – (g)<br />

+1200<br />

+1000<br />

Ca + (g) + Cl(g)<br />

Ca + (g) + Cl – (g)<br />

DH at (Cl)<br />

DH LE (CaCl)<br />

2DH at (Cl)<br />

0<br />

–200<br />

DH at (Ca)<br />

DH f (CaCl)<br />

Ca(s) + Cl 2 (g)<br />

2<br />

CaCl(s)<br />

DH at (Ca)<br />

Ca(s) + Cl 2 (g)<br />

–400<br />

DH f (CaCl 2 )<br />

–600<br />

–800<br />

CaCl 2 (s)<br />

c <strong>The</strong> enthalpy change of formation of CaCl 2<br />

is much more negative than<br />

that of CaCl. CaCl 2<br />

has lower energy and is more stable relative to the<br />

elements Ca and Cl 2<br />

, and so it is more likely to be formed.<br />

173


SECTION 5<br />

<strong>Section</strong> 5.1<br />

1 a Ca 2+ (aq) + 2OH – (aq)<br />

b Mg 2+ (aq) + SO 2– 4<br />

(aq)<br />

c 2Na + (aq) + O 2– (aq)<br />

d K + (aq) + OH – (aq)<br />

e Ag + (aq) + NO – 3<br />

(aq)<br />

f 2Al 3+ (aq) + 3SO 2– 4<br />

(aq)<br />

2 a NaBr<br />

b Mg(OH) 2<br />

c Na 2<br />

S<br />

d BaO<br />

e CaCO 3<br />

f Ca(NO 3<br />

) 2<br />

g K 2<br />

CO 3<br />

3 a Ba 2+ (aq) + SO 2– 4<br />

(aq) Æ BaSO 4<br />

(s)<br />

b Mg 2+ (aq) + 2OH – (aq) Æ Mg(OH) 2<br />

(s)<br />

c Ca 2+ (aq) + CO 2– 3<br />

(aq) Æ CaCO 3<br />

(s)<br />

d Ba 2+ (aq) + CrO 2– 4<br />

(aq) Æ BaCrO 4<br />

(s)<br />

<strong>Section</strong> 5.2<br />

1 <strong>The</strong> small size of the carbon atom makes it possible for<br />

carbon to form double bonds with oxygen to produce<br />

discrete covalent molecules. Silicon, on the other hand,<br />

bonds to 4 oxygen atoms to form single bonds and<br />

hence a covalent network structure. <strong>The</strong> attractive forces<br />

between the molecules of carbon dioxide<br />

(intermolecular forces) are weak so that little energy is<br />

needed to separate the individual molecules. Strong<br />

covalent bonds exist throughout the SiO 2<br />

covalent<br />

network structure so a lot of energy is needed to melt it.<br />

2 a Any attractive forces between the solvent and the<br />

atoms in the covalent network structure are too weak<br />

to overcome the strong covalent bonds holding the<br />

network together.<br />

b At room temperature, the kinetic energy of atoms and<br />

molecules is small but it may be enough to overcome<br />

the weak attractive forces between simple molecules<br />

or isolated atoms.<br />

3 a Diamond structure with silicon and carbon atoms<br />

alternating.<br />

4 2Na + (aq) + SO 2– 4<br />

(aq) + 10H 2<br />

O(l) Æ Na 2<br />

SO 4<br />

.10H 2<br />

O(s)<br />

5 a H + (aq) + OH – (aq) Æ H 2<br />

O(l)<br />

b Zn(s) + 2H + (aq) Æ Zn 2+ (aq) + H 2<br />

(g)<br />

c CuO(s) + 2H + (aq) Æ Cu 2+ (aq) + H 2<br />

O(l)<br />

d CaCO 3<br />

(s) + 2H + (aq) Æ Ca 2+ (aq) + H 2<br />

O(l) + CO 2<br />

(g)<br />

6 a i Cubic<br />

ii Eight<br />

iii Eight<br />

b <strong>The</strong> attractions between the oppositely charged<br />

caesium and chloride ions greatly outweigh the<br />

repulsions between ions with the same charge. <strong>The</strong><br />

net attractive force is very high. <strong>The</strong> solid is hard and<br />

has a high melting point as this strong attraction has to<br />

be overcome to separate the particles.<br />

b <strong>The</strong> silicon and carbon atoms are held together by<br />

strong covalent bonds in an extended network<br />

structure. This makes the substance very hard.<br />

4 a Graphite structure with alternating boron and nitrogen<br />

atoms.<br />

b In graphite, each carbon atom has 4 bonding electrons.<br />

Only 3 are needed to form the layer structure. <strong>The</strong><br />

fourth electron is ‘free’ and causes graphite to be a good<br />

electrical conductor. Both boron and nitrogen have only<br />

3 bonding electrons. All 3 are needed to form the<br />

structure of the layer. <strong>The</strong>re are no electrons available to<br />

become delocalised and conduct electricity.<br />

5 It was assumed that buckminsterfullerene was a covalent<br />

network structure and would be insoluble like graphite<br />

and diamond, but solution in benzene showed it,<br />

surprisingly, to be a molecular form of carbon.<br />

Attractive forces between the solvent molecules and<br />

the carbon atoms are sufficient to overcome the weak<br />

intermolecular forces between the buckminsterfullerene<br />

molecules.<br />

<strong>Section</strong> 5.3<br />

1 a Kr, Xe (higher b.p.)<br />

b C 6<br />

H 14<br />

, C 8<br />

H 18<br />

(higher b.p.)<br />

c CH 4<br />

, CCl 4<br />

(higher b.p.)<br />

d CH and<br />

CH 3<br />

CH 3<br />

CH 3 CH 3 CH 2 CH 2<br />

CH 3<br />

(higher b.p.)<br />

3<br />

pentane<br />

e<br />

CH 3<br />

methylbutane<br />

CH 3 CH CH CH 3<br />

CH 3<br />

and<br />

174<br />

CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 (higher b.p.)<br />

2 In the solid or liquid state, noble gas atoms are held<br />

together by weak instantaneous dipole–induced dipole<br />

forces. It takes very little energy to break these attractions<br />

and this results in very low melting and boiling points.<br />

dimethylpropane


SECTION 5<br />

a Pentane has the strongest intermolecular forces and<br />

hence the highest boiling point. Dimethylpropane has<br />

the weakest intermolecular forces and hence the<br />

lowest boiling point.<br />

b <strong>The</strong> molecules of pentane, because it is a straight<br />

chain alkane, can approach closely to each other<br />

which increases the opportunities for<br />

instantaneous–induced dipole interactions and hence<br />

stronger intermolecular attractions. Methylbutane has<br />

one methyl side chain and so it is more difficult for<br />

these molecules to approach each other and<br />

instantaneous–induced dipole interactions are weaker.<br />

Dimethylpropane has two methyl side-chains and so it<br />

is even more difficult for molecules of this compound<br />

to approach each other.<br />

4 <strong>The</strong> strength of instantaneous dipole–induced dipole<br />

forces between molecules increases as the relative<br />

molecular masses of the molecules increase. To be sure<br />

that the higher boiling point of the polar substance is<br />

due only to the increased strength of dipole–dipole<br />

attractions it will be necessary to ensure that the<br />

instantaneous dipole–induced dipole forces in both<br />

polar and non-polar substances are of similar strength.<br />

This can be done by comparing substances of similar<br />

molecular mass.<br />

5 a A and D; C and G.<br />

b A and G have the stronger intermolecular forces<br />

compared to D and C, respectively.<br />

6 Polarity will occur as follows:<br />

C-F; H-Cl; H-N; C-O with charges in the order d+ d– in<br />

each case.<br />

7 CHCl 3<br />

, CH 3<br />

OH, (CH 3<br />

) 2<br />

CO, cis-1,2-difluoroethene and<br />

1,2-dichlorobenzene possess dipoles.<br />

8 a i Eighteen<br />

ii <strong>The</strong> attractions will be similar.<br />

iii H 2<br />

S has a permanent dipole. It is a bent molecule<br />

with two lone pairs. SiH 4<br />

does not have an overall<br />

permanent dipole as it is a symmetrical molecule.<br />

b Both compounds have similar instantaneous<br />

dipole–induced dipole forces. However, H 2<br />

S also has<br />

permanent dipole–permanent dipole attractions so its<br />

boiling point is higher than that of SiH 4<br />

.<br />

9 a Instantaneous dipole–induced dipole.<br />

b Instantaneous dipole–induced dipole.<br />

c Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

d Instantaneous dipole–induced dipole.<br />

e Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

f Instantaneous dipole–induced dipole.<br />

g Instantaneous dipole–induced dipole.<br />

h Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

<strong>Section</strong> 5.4<br />

1 a As the temperature rises, solids and liquids expand.<br />

<strong>The</strong> temperature increase raises the kinetic energy of<br />

the particles present. In solids, the rotational and<br />

vibrational energy increases. In liquids, rotational,<br />

vibrational and translational energy increases. <strong>The</strong><br />

increases in vibrational and translational energy<br />

increase the volume occupied by the particles. As they<br />

occupy an increasing volume, the density of the solid<br />

or liquid decreases.<br />

b i When ice melts, much of the open, hydrogenbonded<br />

structure collapses. This enables the<br />

molecules to occupy less space so the density<br />

increases on melting.<br />

ii <strong>The</strong> boiling point of water is higher than<br />

expected, as more energy is needed to break the<br />

hydrogen bonding.<br />

iii <strong>The</strong> specific heating capacity of water is higher<br />

than expected, as more energy is absorbed by the<br />

water to break hydrogen bonds in the liquid.<br />

2 a i H 2<br />

O instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole<br />

hydrogen bonding.<br />

H 2<br />

S instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

H 2<br />

Se instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

H 2<br />

Te instantaneous dipole–induced dipole<br />

permanent dipole–permanent dipole.<br />

ii Intermolecular forces must be overcome when a<br />

liquid boils.<br />

Hydrogen bonding present between molecules of<br />

H 2<br />

O – but not between those of H 2<br />

S, H 2<br />

Se or H 2<br />

Te.<br />

Hydrogen bonding forces are much stronger than<br />

other intermolecular forces and so the boiling point of<br />

water is higher than that of the other hydrides.<br />

b <strong>The</strong> strength of instantaneous dipole–induced dipole<br />

and permanent dipole–permanent dipole attractions<br />

in a substance gets weaker as its relative molecular<br />

mass gets smaller. This produces a lower boiling point.<br />

<strong>The</strong> boiling point of H 2<br />

O should be lower than that of<br />

H 2<br />

S but it is in fact much higher. This suggests that,<br />

compared to H 2<br />

S, a different and much stronger type<br />

of intermolecular bonding exists in H 2<br />

O.<br />

c ii All have instantaneous dipole–induced dipole<br />

forces.<br />

iii <strong>The</strong> shape of the graph is nearly a straight line<br />

with positive slope. <strong>The</strong>re is no hydrogen<br />

bonding between the hydride molecules of<br />

Group 4. <strong>The</strong> increase in boiling points down the<br />

group is a result of their regularly increasing<br />

molecular masses.<br />

3 A, D, E and F<br />

4 a Hydrogen bonding will be present in NH 3<br />

, CH 3<br />

OH,<br />

and HF.<br />

b<br />

N H CH 3<br />

F<br />

H H O<br />

H<br />

H<br />

H<br />

H<br />

H CH 3 F<br />

F<br />

N<br />

O<br />

H H<br />

H<br />

175


SECTION 5<br />

5 a<br />

H<br />

H<br />

H<br />

c<br />

H<br />

b<br />

H<br />

O<br />

H<br />

C<br />

H<br />

H<br />

C<br />

N<br />

H<br />

O<br />

H<br />

H<br />

O<br />

H H<br />

O C C H<br />

H<br />

O<br />

H<br />

O<br />

O<br />

H<br />

O<br />

H<br />

O<br />

H H H<br />

H<br />

H<br />

H<br />

C<br />

H<br />

H<br />

H<br />

C<br />

H<br />

O<br />

H<br />

H<br />

H<br />

O<br />

H<br />

H<br />

H<br />

6 a Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole, hydrogen.<br />

b Instantaneous dipole–induced dipole.<br />

c Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole, hydrogen.<br />

d Instantaneous dipole–induced dipole.<br />

e Instantaneous dipole–induced dipole, permanent<br />

dipole–permanent dipole.<br />

<strong>Section</strong> 5.5, Part 1 (Addition polymers)<br />

1 a c<br />

CH 2 CH 2 CH 2 CH 2 CH 2 CH 2<br />

H 3 C<br />

H<br />

b<br />

CH 2 CH CH 2 CH CH 2 CH<br />

C<br />

C<br />

CH 3 CH 3 CH 3<br />

H<br />

CO OCH 3<br />

2 CH 2 CH CH 2 CH CH 2 CH<br />

3 a 1<br />

b 4<br />

4 a<br />

b<br />

c<br />

5 a<br />

b<br />

H<br />

H<br />

H<br />

H 3 C<br />

C<br />

C<br />

C<br />

Cl Cl Cl<br />

C<br />

C<br />

C<br />

H<br />

CN<br />

H<br />

H<br />

H<br />

H CO OCH 3<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

CN<br />

H<br />

C<br />

H<br />

6 But-1-ene and propene<br />

7 H H H H<br />

C C C C<br />

H<br />

Cl<br />

H<br />

O C CH 3<br />

O<br />

8 a Poly(ethene), poly(propene), poly(chloroethene)<br />

b Poly(ethene) instantaneous dipole–induced<br />

dipole<br />

Poly(propene) instantaneous dipole–induced<br />

dipole<br />

Poly(chloroethene) instantaneous dipole–induced<br />

dipole<br />

permanent dipole–permanent<br />

dipole<br />

c Poly(chloroethene)<br />

9 a Isotactic polymer is a stereoregular polymer, that is,<br />

the side-chains all have the same orientation. In an<br />

atactic polymer the side-chains are randomly<br />

orientated.<br />

b <strong>The</strong> regular arrangement of the side-chains in an<br />

isotactic polymer allows the polymer chains to pack<br />

together closely, which means intermolecular forces<br />

are stronger. <strong>The</strong> polymer chains do not slide past<br />

each other easily, making the polymer stronger and<br />

less flexible than the atactic form of the same polymer.<br />

176


SECTION 5<br />

<strong>Section</strong> 5.5, Part 2 (Addition and condensation polymers)<br />

1 a<br />

O O<br />

O O<br />

O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

CH 2<br />

C<br />

O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

CH 2<br />

C<br />

b<br />

O<br />

O<br />

O<br />

O<br />

N<br />

CH 2<br />

CH 2<br />

N<br />

C<br />

CH 2<br />

C<br />

N<br />

CH 2<br />

H H<br />

CH 2<br />

CH 2<br />

N<br />

C<br />

CH 2<br />

CH 2<br />

C<br />

H<br />

H<br />

2 a<br />

O<br />

H 2 N<br />

(CH 2 ) 5<br />

C<br />

OH<br />

b<br />

O<br />

O<br />

HO CH 2 CH 2 CH 2 OH and HO C<br />

C OH<br />

c<br />

CH 3<br />

O<br />

HO<br />

CH<br />

C<br />

OH<br />

3 Polarity increases from –CH 3<br />

to –Cl to –CN so the<br />

intermolecular attractions become stronger which leads<br />

to an increase in T g<br />

.<br />

4 a i Instantaneous dipole–induced dipole.<br />

ii Instantaneous dipole–induced dipole.<br />

Permanent dipole–permanent dipole.<br />

b (CH 2<br />

O) n<br />

would have a higher T g<br />

because of the<br />

permanent dipole–permanent dipole interactions<br />

between the chains.<br />

<strong>Section</strong> 5.6<br />

1 a Ionic lattice<br />

b i Ne monatomic<br />

ii<br />

S<br />

H H<br />

simple molecular (covalent)<br />

iii<br />

H<br />

H<br />

C<br />

H<br />

H<br />

simple molecular (covalent)<br />

iv O C O simple molecular (covalent)<br />

c i See Figure 6, page 92, Chemical Ideas.<br />

ii Covalent network or giant covalent.<br />

d <strong>The</strong> diagram should be similar to Figure 15, page 39,<br />

Chemical Ideas. <strong>The</strong>re will be 2+ charges on the<br />

positive ions as the metal is magnesium. <strong>The</strong> outer<br />

electrons, two from each magnesium atom, contribute<br />

to a ‘pool’ of electrons which move randomly through<br />

the lattice of positive ions. Each positive ion is<br />

attracted to the negatively charged delocalised<br />

electrons and vice versa.<br />

5 <strong>The</strong>re is hydrogen bonding in poly(caprolactam).<br />

In poly(caprolactone) there are only permanent<br />

dipole–permanent dipole and instantaneous<br />

dipole–induced dipole attractions.<br />

6 a Model building should show that the T m<br />

values reflect<br />

the alignment of hydrogen bonding between the<br />

polymer chains for nylon-6. <strong>The</strong>re are fewer<br />

opportunities for hydrogen bonding in nylon-11.<br />

2<br />

b Intermolecular hydrogen bonding is more extensive in<br />

nylon-6,6. <strong>The</strong> chains in nylon-6,10 can slide past one<br />

another more easily.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

Name State at Solubility Electrical<br />

room in water conductivity<br />

temperature<br />

sodium solid soluble conducts<br />

iodide<br />

when molten<br />

or in aqueous<br />

solution<br />

carbon gas insoluble does not conduct<br />

monoxide<br />

diamond solid insoluble does not conduct<br />

tetrachloro- liquid insoluble does not conduct<br />

methane<br />

ethanol liquid soluble does not conduct<br />

copper(II) solid soluble conducts<br />

chloride<br />

when molten<br />

or in aqueous<br />

solution<br />

vanadium solid insoluble conducts when<br />

solid or liquid<br />

poly(propene) solid insoluble does not conduct<br />

3 a Isolated atoms<br />

b Metallic; giant lattice<br />

c Covalent network (or giant covalent); giant lattice<br />

d Macromolecular; covalent molecular<br />

e Ionic; giant lattice<br />

f Simple molecular; covalent molecular<br />

4 A Macromolecular; covalent molecular<br />

B Metallic; giant lattice<br />

C Ionic; giant lattice<br />

D Metallic; giant lattice<br />

E Simple molecular; covalent molecular<br />

177


SECTION 6<br />

5 a In ionic substances, the charge-carriers (ions) are held<br />

in the solid lattice and are not free to move. In metals,<br />

the charge-carriers (electrons) are delocalised and are<br />

free to move throughout the lattice.<br />

b When an ionic melt conducts electricity, the ions move<br />

to opposite electrodes where they are discharged,<br />

leading to decomposition. When a metal conducts,<br />

electrons move towards the more positive terminal<br />

and are replaced at an equal rate at the more negative<br />

terminal.<br />

c Any attractive forces between the solvent and the<br />

atoms in the giant covalent lattice are too weak to<br />

overcome the strong covalent bonds holding the<br />

lattice together.<br />

d At room temperature, the kinetic energy of atoms and<br />

molecules is small. It is not enough to overcome the<br />

energy of attraction between particles in giant or<br />

macromolecular structures, but it may be enough to<br />

overcome the weak intermolecular forces between<br />

simple molecules.<br />

178<br />

<strong>Section</strong> 6.1<br />

1 a 7.22 ¥ 10 –28 J<br />

b 6.6 ¥ 10 –17 J<br />

c 9.2 ¥ 10 10<br />

2 5.5 ¥ 10 13 Hz<br />

3 a <strong>The</strong> four lowest energy lines in the Balmer Series arise<br />

from transitions to level 2 from levels 3, 4, 5 and 6.<br />

b<br />

<strong>Section</strong> 6.2<br />

1<br />

a<br />

b<br />

c<br />

d<br />

3 2<br />

4 2 5 2 6 2<br />

frequency<br />

<strong>The</strong> lines converge towards high frequency. <strong>The</strong> lines<br />

in the Balmer Series are at lower frequency than the<br />

lines in the Lyman Series.<br />

Energy of Frequency/Hz Type of Type of<br />

photon radiation energy<br />

emitted or<br />

change<br />

absorbed/J<br />

in molecule<br />

4.6 ¥ 10 –17 6.9 ¥ 10 16 u.v. electronic<br />

2.3 ¥ 10 –20 3.5 ¥ 10 13 i.r. vibrational<br />

2.1 ¥ 10 –22 3.2 ¥ 10 11 microwave rotational<br />

5.5 ¥ 10 –19 8.3 ¥ 10 14 visible electronic<br />

2 a 5.43 ¥ 10 –20 J<br />

b 8.19 ¥ 10 13 Hz; infrared<br />

c 3.66 ¥ 10 –6 m<br />

3<br />

+214 kJ mol<br />

a E = ¥ 1000<br />

6.02 ¥ 10 23 mol –1 = + 3.55 ¥ 10 –19 J<br />

b E = hν<br />

3.55 ¥ 10 –19 J = 6.63 ¥ 10 –34 J Hz –1 ¥ ν Hz<br />

ν = 5.36 ¥ 10 14 Hz<br />

c This is in the visible region of the electromagnetic<br />

spectrum.<br />

<strong>Section</strong> 6.3<br />

1 F, OH, NO 2<br />

and CH 3<br />

are radicals.<br />

2 a i Photodissociation<br />

ii Homolytic<br />

b Reaction A initiation<br />

Reaction B ⎞<br />

⎬<br />

Reaction C ⎠<br />

propagation<br />

c H. and HO2 .<br />

d i 2O 3<br />

Æ 3O 2<br />

ii Catalyst<br />

e <strong>The</strong> rates of radical reactions depend on the<br />

concentrations of the radicals involved.<br />

f Termination<br />

c <strong>The</strong> line must go from a lower energy level to a<br />

higher level.<br />

4 a Ground state<br />

b i DE = hν<br />

= 6.63 ¥ 10 –34 J Hz –1 ¥ 3.27 ¥ 10 15 Hz<br />

= 2.17 ¥ 10 –18 J<br />

ii One photon of frequency<br />

3.27 ¥ 10 15 Hz provides this energy.<br />

For 1 mole of hydrogen atoms<br />

DE = 6.02 ¥ 10 23 mol –1 ¥ 2.17 ¥ 10 –18 J<br />

= 1310 kJ mol –1 .<br />

Data book value for the ionisation enthalpy of<br />

hydrogen is 1318 kJ mol –1 .<br />

4 a 1.89 ¥ 10 4 J<br />

b 1.62 ¥ 10 –24 J<br />

c 0.978 J<br />

d 19 330 moles of photons<br />

5 a CO 2<br />

absorbs infrared radiation of specific frequencies<br />

corresponding to transitions between vibrational<br />

energy levels. (Vibrational energy is quantised.) <strong>The</strong><br />

specific frequencies absorbed make the molecules<br />

vibrate in particular ways. <strong>The</strong> vibrational energy<br />

increases.<br />

b <strong>The</strong> molecules which have absorbed radiation have<br />

more kinetic energy. (A more complete answer could<br />

include energy being subsequently transferred to<br />

other molecules in the air by collision.)<br />

3 a Oxidation of N 2<br />

in internal combustion engines.<br />

b Exothermic<br />

c i O 3<br />

+OÆ O 2<br />

+ O 2<br />

ii Catalyst<br />

iii DH = –292 kJ mol –1<br />

d It catalyses breakdown of ozone, thus removing it<br />

from the stratosphere.<br />

4 a Initiation: reaction 1<br />

Propagation: reactions 2, 3 and 4<br />

Termination: reactions 5 and 6<br />

b i Endothermic: reaction 1 (C–C bond broken)<br />

ii Exothermic: reaction 6 (C–C bond formed)


c CH 3<br />

. methyl radical<br />

C 2<br />

H 5<br />

. ethyl radical<br />

H. hydrogen radical<br />

5 a Cl 2<br />

+ hν Æ Cl. + Cl . initiation<br />

CH 4<br />

+ Cl. Æ CH 3<br />

. + HCl ⎞<br />

⎬ propagation<br />

CH 3<br />

. + Cl2 Æ CH 3<br />

Cl + Cl. ⎠<br />

Cl. + Cl . Æ Cl ⎞<br />

2 termination<br />

CH 3<br />

. + CH3 . Æ C2 H 6<br />

⎬<br />

⎠<br />

SECTION 6<br />

b <strong>The</strong> chloromethane formed can also react with Cl.<br />

radicals.<br />

CH 3<br />

Cl + Cl. Æ . CH2 Cl + HCl<br />

. CH2 Cl + Cl 2<br />

Æ CH 2<br />

Cl 2<br />

+ Cl.<br />

Similarly, CH 2<br />

Cl 2<br />

can react with Cl. , and so on, until<br />

CCl 4<br />

is produced. <strong>The</strong> chlorinated products react with<br />

Cl. radicals more quickly than CH4 does, so a mixture<br />

of products is always obtained.<br />

<strong>Section</strong> 6.4<br />

1 a 4.24 mm<br />

b 7.08 ¥ 10 13 Hz<br />

2<br />

Absorption/cm –1 Bond<br />

3660 O–H<br />

3060 C–H<br />

(arene)<br />

3 a<br />

OH<br />

CH 3 CH CH 3<br />

butan-2-ol<br />

cA butan-2-ol<br />

B butan-2-one<br />

4 a<br />

Compound Absorption/cm –1 Bond<br />

C 3580 O-H<br />

2990 C-H (alkane)<br />

1775 C=O<br />

D 3670 O-H<br />

2950 C-H (alkane)<br />

E 2990 C-H (alkane)<br />

1770 C=O<br />

CH 2<br />

CH 3 CH 3<br />

b<br />

CH 3 CH 2<br />

O<br />

C CH 3<br />

butan-2-one<br />

Compound Absorption/cm –1 Bond<br />

A 3660 O–H<br />

2970 C–H (alkane)<br />

B 2990 C–H (alkane)<br />

1730 C=O<br />

5<br />

bC A carboxylic acid<br />

D An alcohol<br />

E An ester<br />

Bond Absorption/cm –1<br />

O-H (phenol) 3600–3640<br />

C-H (arene) 3000–3100<br />

C=O (ester) 1735–1750<br />

<strong>Section</strong> 6.5<br />

b<br />

[CH 3<br />

] +<br />

1 a 78, 72, 106<br />

15<br />

b Two isotopes of chlorine leading to C 3<br />

H 35 7<br />

Cl (78) and<br />

C 3<br />

H 37 7<br />

Cl (80)<br />

2 43, [C 3<br />

H 7<br />

] +<br />

43, [CH 3<br />

CO] +<br />

77, [C 6<br />

H 5<br />

] +<br />

3 a, b A Ethanoic acid<br />

B Ethanol<br />

A 43, [CH 3<br />

CO] +<br />

45, [COOH] +<br />

60, [CH 3<br />

COOH] +<br />

B 31, [CH 3<br />

O] + or [CH 2<br />

OH] +<br />

46, [C 2<br />

H 5<br />

OH] +<br />

6 a<br />

4 a 88, molecular ion<br />

43, [CH 3<br />

CO[ +<br />

b [CH 3<br />

COOCH 2<br />

CH 3<br />

] + Æ [CH 3<br />

CO] + + OCH 2<br />

CH 3<br />

5 a Mass of peak<br />

Possible fragment<br />

58 [C 4<br />

H 10<br />

] +<br />

43 [C 3<br />

H 7<br />

] +<br />

29 [C 2<br />

H 5<br />

] +<br />

CH 3<br />

CH 2<br />

CH 2 CH 3 CH CH 3<br />

c Adopting a ‘Lego’ approach to these fragment ions,<br />

the full structural formula of the hydrocarbon must be:<br />

CH 3 CH 2<br />

CH 2 CH 3<br />

Fragmentation of this by breaking C–C bonds leads to<br />

the four ions in the table.<br />

<strong>The</strong> branched isomer would not produce the C 2<br />

H 5<br />

+<br />

ion by breaking C–C bonds. However, the other three<br />

ions will also appear in the spectrum of this isomer.<br />

CH 3<br />

CH 2<br />

H<br />

C<br />

b 58 – 43 = 15; CH 3<br />

c i 58 – 57 = 1; H<br />

ii 57 – 29 = 28; CO or C 2<br />

H 4<br />

d i [CH 3<br />

CO + ]<br />

ii 28 [CO] + or [C 2<br />

H 4<br />

] +<br />

29 [CH 3<br />

CH 2<br />

] +<br />

57 [CH 3<br />

CH 2<br />

CO] +<br />

eCis CH 3<br />

COCH 3<br />

O<br />

D is CH 3<br />

CH 2<br />

CHO<br />

CH 3<br />

O<br />

C CH 3<br />

179


SECTION 6<br />

7 Accurate atomic masses give C 4<br />

H 8<br />

O as the formula.<br />

Peaks to be identified:<br />

Mass of peak<br />

Possible fragment<br />

15 [CH 3<br />

] +<br />

29 [CH 3<br />

CH 2<br />

] +<br />

43 [CH 3<br />

CO] +<br />

57 [CH 3<br />

CH 2<br />

CO] +<br />

72 [CH 3<br />

CH 2<br />

COCH 3<br />

] +<br />

8 <strong>The</strong> sketch should show two molecular ion peaks of<br />

equal height at 108 [C 2<br />

H 79 5<br />

Br] + and 110 [C 2<br />

H 81 5<br />

Br] + .<br />

Also peaks at 93 [CH 79 2<br />

Br] + and 95 [CH 81 2<br />

Br] + .<br />

(Actual data have 29 as the base peak (100%) and peaks<br />

at 108 and 110 (94%). <strong>The</strong> next largest peak is 27 (70%).<br />

Peaks at 79 and 81 are very small (3%).)<br />

<strong>The</strong> compound has the structure<br />

O<br />

CH 3 CH 2 C CH 3<br />

<strong>Section</strong> 6.6<br />

1 a 3<br />

b<br />

Chemical shift Relative number of protons<br />

1.0 3<br />

2.1 3<br />

2.4 2<br />

6<br />

Chemical shift Relative number of protons<br />

<strong>1.3</strong> 3<br />

2.1 3<br />

4.1 2<br />

O<br />

CH 3<br />

cd CH 3<br />

– CH 2<br />

– CO – CH 3<br />

CH 3<br />

(<strong>1.3</strong>), CH 3 CO (2.1), C O CH 2 R (4.1)<br />

1.0 2.4 2.1<br />

O<br />

2 a b Tartaric acid 3 signals 1 : 1 : 1<br />

CH 2<br />

Succinic acid 2 signals 2 : 1<br />

CH 3 C O CH 2 CH 3<br />

Citric acid 3 signals 1 : 4 : 3<br />

H is ethyl ethanoate.<br />

3 a<br />

Chemical shift Relative number of protons<br />

7<br />

Chemical shift Relative number of protons<br />

<strong>1.2</strong> 3<br />

4.0 3<br />

2.6 1<br />

6.4 1<br />

3.7 2<br />

7.0 1<br />

b CH 3<br />

(<strong>1.2</strong>), OH (2.6), CH 2<br />

(3.7)<br />

7.4 2<br />

c CH 3<br />

–CH 2<br />

–OH<br />

9.8 1<br />

E is ethanol.<br />

4 a<br />

CH 3 O (4.0),<br />

Chemical shift Relative number of protons<br />

<strong>1.3</strong> 9<br />

OH (6.4),<br />

2.0 1<br />

H<br />

b CH 3<br />

(<strong>1.3</strong>), OH (2.0)<br />

c CH 3<br />

(7.0–7.4),<br />

CH 3 C OH<br />

H H<br />

CH 3<br />

CHO (9.8)<br />

F is 2-methylpropan-2-ol.<br />

8 a<br />

Protons in Expected Relative numbers<br />

5<br />

Chemical shift Relative number of protons<br />

the molecule chemical of each type<br />

shift<br />

of proton<br />

<strong>1.2</strong> 3<br />

2.7 2<br />

CH 3<br />

O ca 3.7 3<br />

7.0–7.4 5<br />

C 6<br />

H 4<br />

6.0–9.0 2<br />

H H<br />

It is good enough to identify two types of proton (CH 3<br />

and C 6<br />

H 4<br />

), in the ratio of 3 : 2. However, there are<br />

CH<br />

actually two different environments for the protons on<br />

3 (<strong>1.2</strong>),<br />

CH 2 R (2.7), H (7.0–7.4)<br />

the aryl group, one being adjacent to the ester group,<br />

and the better answer would be 3 : 1 : 1.<br />

H H<br />

180<br />

G is ethylbenzene.


SECTION 7<br />

<strong>Section</strong> 6.7<br />

1 a Green 520 nm–580 nm approx.<br />

b Red 620 nm–700 nm approx.<br />

2 Blue and blue-green; approx. 440 nm – 520 nm<br />

3 It will appear green. <strong>The</strong> sketch should show two peaks<br />

with λ max<br />

at about 640 nm and 410 nm.<br />

<strong>Section</strong> 6.8<br />

1 a Spectrum (b) b Violet<br />

2 a i<br />

ii<br />

Intensity of<br />

absorption<br />

300 500 700<br />

l / nm<br />

4 a 6.97 ¥ 10 14 Hz<br />

b 8.57 ¥ 10 14 Hz<br />

c 4.29 ¥ 10 14 Hz<br />

b A reflectance spectrum of a black pigment would show<br />

a low percentage of reflected light for all wavelengths<br />

in the visible region.<br />

3 a Spectrum (a) λ max<br />

= 440 nm (approx.)<br />

Spectrum (b) λ max<br />

= 420 nm (approx.)<br />

b Spectrum (b) corresponds to haemoglobin.<br />

4 a Red ochre.<br />

b It absorbs violet, blue and green light<br />

(λ = 400 nm–530 nm) but reflects yellow and red light<br />

(λ = 530 nm–700 nm).<br />

Intensity of<br />

absorption<br />

300 500 700<br />

l / nm<br />

<strong>Section</strong> 6.9<br />

1 a A chromophore is the part of a dye molecule<br />

responsible for its colour. It contains unsaturated<br />

groups such as C=O and –N=N– which are often part<br />

of an extended delocalised electron system involving<br />

arene rings.<br />

b<br />

N N<br />

2 a Cyanidin contains an extended delocalised<br />

(conjugated) electron system. <strong>The</strong> electrons in such<br />

systems require less energy to excite them than those<br />

in single bonds or in isolated double bonds. <strong>The</strong><br />

excitation energy corresponds to the visible region.<br />

b Molecule absorbs orange light; the diagram should<br />

show a smaller excitation energy.<br />

c An extended delocalised system of electrons.<br />

<strong>Section</strong> 7.1<br />

1 a Rate of evaporation = rate of condensation.<br />

b It is a closed system, in which there is a dynamic<br />

equilibrium between water vapour and liquid.<br />

c No longer a closed system, H 2<br />

O(g) escapes.<br />

d i Towards H 2<br />

O(l)<br />

ii Towards H 2<br />

O(g).<br />

2 a Equilibrium lies to the reactants’ side because at<br />

equilibrium there is a greater concentration of<br />

reactants than products.<br />

b Equilibrium is reached at the point where the graphs<br />

become horizontal.<br />

3 B<br />

4 a left Æ right b right Æ left c no change<br />

d left Æ right e left Æ right<br />

5 a <strong>The</strong> concentrated hydrochloric acid moves the<br />

position for the equilibrium to the left, the bismuth<br />

trichloride is predominantly present as BiCl 3<br />

(aq).<br />

b <strong>The</strong> equilibrium would move to the right due to the<br />

large amount of water, hence a white precipitate of<br />

BiOCl(s) would be seen.<br />

6 a <strong>The</strong>re would be no change to fizziness as the<br />

concentration of CO 2<br />

(g) is not influenced by the<br />

amount of air present since the system had already<br />

come to equilibrium.<br />

b <strong>The</strong> increase in concentration of CO 2<br />

(g) would make<br />

the first equilibrium move to the right and form more<br />

CO 2<br />

(aq) which in turn would make the second<br />

equilibrium move to the right and increase the<br />

concentration of H + (aq).<br />

c Dilute alkali would react with H + (aq) and the<br />

reduction in concentration of H + (aq) would cause the<br />

second equilibrium to move to the right. <strong>The</strong> resulting<br />

reduction in the concentration of CO 2<br />

(aq) would<br />

cause the first equilibrium to move to the right and<br />

more CO 2<br />

(g) would dissolve and so the equilibrium<br />

pressure of carbon dioxide would decrease.<br />

181


SECTION 7<br />

<strong>Section</strong> 7.2<br />

1 a 0.09<br />

5 a 2H 2<br />

(g) + O 2<br />

(g) D 2H 2<br />

O(g)<br />

0.08<br />

[H<br />

b K c<br />

= 2<br />

O(g)] 2<br />

[H 2<br />

(g)] 2 [O 2<br />

(g)]<br />

0.07<br />

c i Equilibrium moves towards reactants (reaction is<br />

0.06<br />

exothermic)<br />

ii Equilibrium moves towards products (fewer<br />

0.05<br />

gaseous molecules).<br />

0.04<br />

d i Decreases<br />

ii No effect<br />

0.03<br />

0 1 2 3<br />

[PCl 3<br />

(g)][Cl 2<br />

(g)]<br />

Pressure CO 6 a K c<br />

=<br />

2 (g)/atm<br />

[PCl 5<br />

(g)]<br />

b [CO b 0.196 mol dm –3<br />

Gradient = 2<br />

(aq)] (0.09–0.03) mol dm –3<br />

=<br />

p CO2(g)<br />

(2.6–0.8) atm<br />

[H<br />

7 a K c<br />

= 2<br />

S(g)] 2<br />

= 0.033 mol dm –3 atm –1<br />

[H 2<br />

(g)] 2 [S 2<br />

(g)]<br />

= equilibrium constant at 292 K<br />

Concentration CO 2 (aq)/mol dm –3<br />

c Drawing a ‘best fit’ line eliminates errors more<br />

effectively than taking an average.<br />

[NO<br />

2 a K c<br />

= 2<br />

(g)] 2<br />

mol –1 dm<br />

[NO(g)] 2 [O 3<br />

2<br />

(g)]<br />

[C 2<br />

H 4<br />

(g)][H 2<br />

(g)]<br />

b K c<br />

= mol dm –3<br />

[C 2<br />

H 6<br />

(g)]<br />

c K c<br />

=<br />

d K c<br />

=<br />

[H 2<br />

(g)][I 2<br />

(g)]<br />

[HI(g)] 2<br />

(no units)<br />

[HCO 3 – (aq)][H + (aq)]<br />

[CO 2<br />

(aq)][H 2<br />

O(l)]<br />

[In<br />

e K c<br />

= 2<br />

(aq)] 3<br />

mol 2 dm – 6<br />

[In 6<br />

(aq)]<br />

(no units)<br />

0.442 2 ⎞<br />

b At equilibrium, [S 2<br />

(g)] = mol dm –3<br />

9.4 ¥ 10 5 ¥ 0.234 2 ⎠<br />

= 3.80 ¥ 10 –6 mol dm –3<br />

8 a Products<br />

[NO(g)] 2 [O<br />

b K c<br />

=<br />

2<br />

(g)]<br />

[NO 2<br />

(g)] 2<br />

c 0.083 mol dm –3<br />

d Yes. <strong>The</strong> equilibrium concentration of NO 2<br />

(g) is much<br />

lower than the concentrations of NO(g) and O 2<br />

(g).<br />

9 a K c<br />

=<br />

[CH 3<br />

CH(OC 2<br />

H 5<br />

) 2<br />

(l)][H 2<br />

O(l)]<br />

[C 2<br />

H 5<br />

OH(l)] 2 [CH 3<br />

CHO(l)]<br />

⎞ ⎠<br />

f K c<br />

=<br />

[CH 3<br />

COOC 3<br />

H 7<br />

(l)][H 2<br />

O(l)]<br />

[CH 3<br />

COOH(l)][C 3<br />

H 7<br />

OH(l)]<br />

3 2SO 2<br />

(g) + O 2<br />

(g) D 2SO 3<br />

(g)<br />

[NH 3<br />

(g)] 2<br />

4 a K c<br />

=<br />

[N 2<br />

(g)] [H 2<br />

(g)] 3<br />

b K c<br />

= 2.09 mol –2 dm 6<br />

(no units)<br />

b Reactants<br />

c Low<br />

d 0.074 mol –1 dm 3<br />

10 Likely to be low.<br />

<strong>Section</strong> 7.3<br />

p H2 O 2<br />

1 a K p<br />

= atm<br />

p –1<br />

f K 2 p<br />

= (no units)<br />

H2 p O2 p N2 p O2<br />

p NO<br />

2<br />

p CH3 OH<br />

b K p<br />

= 2 atm<br />

p –2<br />

CO p H2<br />

p H2 p CO2<br />

c K p<br />

= (no units)<br />

p H2 O p CO<br />

p C2 H 5 OH<br />

d K p<br />

= atm<br />

p –1<br />

C2 H 4<br />

p H2 O<br />

2<br />

p SO3<br />

e K p<br />

= 2 atm<br />

p –1<br />

SO2 p O2<br />

3<br />

p CO p H2<br />

2 a K p<br />

=<br />

p CH4 p H2 O<br />

b i K p<br />

increases<br />

ii K p<br />

unchanged<br />

iii K p<br />

unchanged<br />

c i A larger proportion of reactants (fewer gaseous<br />

molecules)<br />

ii A larger proportion of products (reaction is<br />

endothermic)<br />

iii No effect<br />

182


SECTION 7<br />

3 a K p<br />

=<br />

p O<br />

2<br />

p O2<br />

b 3 ¥ 10 –8 atm<br />

<strong>The</strong> position of the equilibrium is much further to the<br />

right at this altitude compared to lower regions of the<br />

atmosphere because of the higher intensity of the<br />

ultraviolet radiation with the right frequency to cause<br />

this dissociation.<br />

p NH3<br />

2<br />

4 a K p<br />

=<br />

3<br />

p N2 p H2<br />

b 1.7 ¥ 10 –4 atm –2 (<strong>The</strong> calculation follows the steps in<br />

the worked example on page 179.)<br />

c 23.7 atm<br />

d 100 atm, 24%<br />

<strong>Section</strong> 7.4<br />

1 Experiment number K<br />

1 87.1<br />

2 87.6<br />

3 87.3<br />

An average value of 87.3<br />

2 a Partition coefficient = [butanedioic acid] ethoxyethane<br />

[butanedioic acid] water<br />

= 0.148<br />

b [butanedioic acid] ethoxyethane<br />

= 0.148 ¥ 0.036 mol dm –3<br />

= 0.0053 mol dm –3<br />

[DDT(octan-1-ol)]<br />

3 a K ow<br />

=<br />

[DDT(aq)]<br />

b K ow<br />

is greater than 1<br />

c Lower<br />

<strong>Section</strong> 7.5<br />

1 <strong>The</strong> position of equilibrium would move toward the<br />

products, ie Ca 2+ ions will displace Mg 2+ ions from the<br />

clay surface.<br />

2 <strong>The</strong> equilibrium involved is<br />

R–H + (s) + Na + (aq) D R–Na + (s) + H + (aq)<br />

Washing with acid moves the equilibrium back to the left<br />

(the regenerated form). A high volume of concentrated<br />

acid is used to ensure that the equilibrium moves as far<br />

as possible to the left so that regeneration is as near<br />

complete as possible.<br />

3 a resin –OH – (s) + Cl – (aq) Æ resin –Cl – (s) + OH – (aq)<br />

b One might expect I – (aq) to be held more strongly by<br />

the resin than Cl – (aq), because I – has fewer<br />

surrounding water molecules.<br />

c H + (aq) reacts with OH – (aq) to form H 2<br />

O(l)<br />

4 <strong>The</strong> caesium, as Cs + ions, was deposited by rain. In the<br />

soil, the caesium ions exchanged with other cations such<br />

as hydrogen ions on the surface of the clays.<br />

Soil–H + (s) + Cs + (aq) Æ Soil–Cs + (s) + H + (aq)<br />

<strong>The</strong> caesium is thus held in the soil rather than being<br />

rapidly leached away. Like any nutrient cation, it is slowly<br />

released from the soil by exchange with hydrogen ions in<br />

subsequent rainfall. <strong>The</strong> initial ion exchange reaction is<br />

reversed<br />

Soil–Cs + (s) + H + (aq) Æ Soil–H + (s) + Cs + (aq)<br />

<strong>The</strong> rate of release will be greater in areas of higher<br />

rainfall. This will lead to a greater concentration in grass<br />

and a consequently higher level in livestock. This higher<br />

level is likely to exceed that acceptable in food.<br />

<strong>Section</strong> 7.6<br />

1 a X = 0.75; Y = 0.25<br />

b Compared to compound X, compound Y has a greater<br />

affinity for the stationary phase and/or a lower affinity<br />

for the mobile phase.<br />

c To maintain constant conditions in which the space<br />

around the thin layer is saturated with solvent vapour.<br />

2 a Retention time depends on the affinity of the<br />

compound for the stationary phase compared to its<br />

affinity for the carrier gas. More volatile compounds<br />

usually have shorter retention times. Other factors<br />

include the length and packing of the column, the<br />

flow rate of the gas and the temperature.<br />

b <strong>The</strong> extent to which a compound distributes itself<br />

between the mobile phase and the stationary phase,<br />

and hence the retention time for that compound,<br />

depends on the temperature, so this must be constant<br />

throughout the column. Most columns are kept above<br />

room temperature to give reasonably short retention<br />

times. <strong>The</strong> temperature (and other conditions) must<br />

be recorded and kept constant in order to obtain<br />

reproducible results. If the temperature varies, the<br />

rates of elution of the substances will vary and results<br />

will be inconsistent between experiments.<br />

c Compounds with very high boiling points would have<br />

very long retention times. Compounds which<br />

decompose on heating may break down into smaller<br />

compounds in the column.<br />

3 a Ratio of cis : trans isomers was 1 : 1.4.<br />

b <strong>The</strong>y are likely to be similar because they are isomers.<br />

4 a Methylpropane<br />

b <strong>The</strong> more carbon atoms in the molecule, the longer<br />

the compound takes to travel through the column.<br />

Larger molecules are less volatile, spend more time<br />

dissolved in the stationary liquid phase and less time<br />

in the gas phase.<br />

c All the times would be longer and the peaks would be<br />

further apart.<br />

183


SECTION 8<br />

<strong>Section</strong> 7.7<br />

1 a i AgI(s) D Ag + (aq) + I – (aq)<br />

ii BaSO 4<br />

(s) D Ba 2+ (aq) + SO 4 2– (aq)<br />

iii PbI 2<br />

(s) D Pb 2+ (aq) + 2I – (aq)<br />

iv Fe(OH) 3<br />

(s) D Fe 3+ (aq) + 3OH – (aq)<br />

b i K sp<br />

= [Ag + (aq)] [I – (aq)] mol 2 dm –6<br />

ii K sp<br />

= [Ba 2+ (aq)] [SO 4 2– (aq)] mol 2 dm –6<br />

iii K sp<br />

= [Pb 2+ (aq)] [I – (aq)] 2 mol 3 dm –9<br />

iv K sp<br />

= [Fe 3+ (aq)] [OH – (aq)] 3 mol 4 dm –12<br />

c <strong>The</strong> reactant is a solid and so its concentration can be<br />

regarded as constant.<br />

2 a<br />

Product of ion<br />

K sp<br />

concentrations<br />

/ mol 2 dm –6<br />

i<br />

ii<br />

iii<br />

iv<br />

<strong>Section</strong> 8.1<br />

4.0 ¥ 10 –12 5.0 ¥ 10 –13 mol 2 dm –6<br />

9.0 ¥ 10 –12 1.0 ¥ 10 –10 mol 2 dm –6<br />

2.0 ¥ 10 –9 1.6 ¥ 10 –8 mol 2 dm –6<br />

2.0 ¥ 10 –6 5.0 ¥ 10 –9 mol 2 dm –6<br />

b A precipitate will form in i and iv as in these cases the<br />

product of the ion concentrations is greater than the<br />

solubility product.<br />

3 a [Ag + (aq)] = 0.005 mol dm –3 ;<br />

[Cl – (aq)] = 0.005 mol dm –3<br />

b [Ca 2+ (aq)] = 0.001 mol dm –3<br />

4 a [Tl + (aq)] = 0.5 ¥ 7.0 ¥ 10 –3 mol dm –3 .<br />

(Remember the concentration will be halved on<br />

mixing with an equal volume of sodium chloride.)<br />

1 Acid donates hydrogen ions/protons and the base<br />

accepts hydrogen ions/protons.<br />

2 a HNO 3<br />

+ H 2<br />

O Æ H 3<br />

O + –<br />

+ NO 3<br />

acid base<br />

b NH 3<br />

+ H 2<br />

O Æ NH + 4<br />

+ OH –<br />

base acid<br />

c NH + 4<br />

+ OH – Æ NH 3<br />

+ H 2<br />

O<br />

acid base<br />

d SO 2– 4<br />

+ H 3<br />

O + Æ HSO – 4<br />

+ H 2<br />

O<br />

base acid<br />

e H 2<br />

O + H – Æ H 2<br />

+ OH –<br />

acid base<br />

f H 3<br />

O + + OH – Æ 2H 2<br />

O<br />

acid base<br />

g NH 3<br />

+ HBr Æ NH + 4<br />

+ Br –<br />

base acid<br />

h H 2<br />

SO 4<br />

+ HNO 3<br />

Æ HSO – +<br />

4<br />

+ H 2<br />

NO 3<br />

acid base<br />

i CH 3<br />

COOH + H 2<br />

O Æ CH 3<br />

COO – + H 3<br />

O +<br />

acid base<br />

3 a Acid–base<br />

b Acid–base<br />

c Redox<br />

d Redox<br />

K sp<br />

= (0.5 ¥ 7.0 ¥ 10 – 3<br />

mol dm –3 ) ¥ [Cl – (aq)]<br />

1.75 ¥ 10 –4 mol 2 dm –6<br />

[Cl – (aq)] =<br />

0.5 ¥ 7.0 ¥ 10 –3 mol dm –3<br />

= 0.05 mol dm –3<br />

As with the thallium ion, the concentration of chloride<br />

ion will be halved on mixing. Hence the concentration<br />

of sodium chloride above which a precipitate will just<br />

form is 0.10 mol dm –3 .<br />

b <strong>The</strong> volume of the mixture becomes 200 cm 3 , therefore<br />

both ionic concentrations become 5 ¥ 10 –3 mol dm –3 .<br />

Hence [Ag + (aq)] ¥ [BrO – 3<br />

(aq)] = 2.5 ¥ 10 –5 mol 2 dm –6<br />

at 298 K, which is less than K sp<br />

so no precipitate would<br />

be observed.<br />

5 a [Ag + (aq)] = 1.41 ¥ 10 –5 mol dm –3 ,<br />

[Cl – (aq)] = 1.41 ¥ 10 –5 mol dm –3<br />

b 2.02 ¥ 10 –3 gdm –3<br />

c <strong>The</strong> new [Cl – (aq)] = 5.0 ¥ 10 –1 mol dm –3 .<br />

(<strong>The</strong> Cl – ions from AgCl will be negligible in<br />

comparison.) <strong>The</strong> product of the concentrations of<br />

silver and chloride ions<br />

= (5.0 ¥ 10 –1 mol dm –3 ) ¥ (0.5 ¥ 1.41 ¥ 10 –5 mol dm –3 )<br />

= 3.5 ¥ 10 –6 mol 2 dm –6<br />

which exceeds the K sp<br />

at this temperature and so a<br />

white precipitate of silver chloride would be observed.<br />

4 Conjugate pairs: acid base<br />

a<br />

+<br />

NH 4<br />

NH 3<br />

H 3<br />

O +<br />

H 2<br />

O<br />

b H 2<br />

SO 4<br />

–<br />

HSO 4<br />

+<br />

H 2<br />

NO 3<br />

HNO 3<br />

c HClO 4<br />

–<br />

ClO 4<br />

+<br />

CH 3<br />

COOH 2<br />

CH 3<br />

COOH<br />

5 a CH 3<br />

COOH + OH – Æ CH 3<br />

COO – + H 2<br />

O<br />

Conjugate pairs: acid<br />

base<br />

CH 3<br />

COOH CH 3<br />

COO –<br />

H 2<br />

O OH –<br />

b HCO – 3<br />

+ HCl Æ H 2<br />

CO 3<br />

+ Cl –<br />

Conjugate pairs: acid<br />

base<br />

HCl Cl –<br />

H 2<br />

CO 3<br />

–<br />

HCO 3<br />

c H 2<br />

O + HSO – 4<br />

Æ SO 2– 4<br />

+ H 3<br />

O +<br />

Conjugate pairs: acid<br />

base<br />

–<br />

HSO 4<br />

2–<br />

SO 4<br />

H 3<br />

O +<br />

H 2<br />

O<br />

184


SECTION 8<br />

<strong>Section</strong> 8.2<br />

1 a [H + (aq)] = 1 ¥ 10 –2 mol dm –3 ; therefore pH = 2<br />

b [H + (aq)] = 2 ¥ 10 –1 mol dm –3 ; therefore pH = 0.7<br />

c [H + (aq)] = 4 ¥ 10 –1 mol dm –3 ; therefore pH = 0.4<br />

d [H + (aq)] = 4 ¥ 10 –1 mol dm –3 ; therefore pH = 0.4<br />

[H + (aq)] 2<br />

2 a 1.7 ¥ 10 –5 =<br />

1 ¥ 10 –1<br />

[H + (aq)] 2 = 1.7 ¥ 10 –6 mol 2 dm –6<br />

[H + (aq)] = <strong>1.3</strong> ¥ 10 –3 mol dm –3<br />

pH = 2.9<br />

[H + (aq)] 2<br />

b 1.7 ¥ 10 –5 =<br />

5 ¥ 10 –2<br />

[H + (aq)] 2 = 8.5 ¥ 10 –7 mol 2 dm –6<br />

[H + (aq)] = 9.2 ¥ 10 –4 mol dm –3<br />

pH = 3.0<br />

[H + (aq)] 2<br />

c 6.3 ¥ 10 –5 =<br />

1 ¥ 10 –3<br />

[H + (aq)] 2 = 6.3 ¥ 10 –8 mol 2 dm –6<br />

[H + (aq)] = 2.5 ¥ 10 –4 mol dm –3<br />

pH = 3.6<br />

[H + (aq)] 2<br />

d 1.6 ¥ 10 –4 =<br />

2.5<br />

[H + (aq)] 2 = 4.0 ¥ 10 –4 mol 2 dm –6<br />

[H + (aq)] = 2.0 ¥ 10 –2 mol dm –3<br />

pH = 1.7<br />

3 a <strong>The</strong> reaction of the acid with water goes to<br />

completion.<br />

b [H + (aq)] = [A – (aq)]<br />

[HA(aq)] at equilibrium = original [HA(aq)].<br />

4 a Strong acid – hydrochloric acid<br />

Weak acid – nitrous acid (nitric(III) acid)<br />

5<br />

b <strong>The</strong> position of the equilibrium for the reaction of the<br />

strong acid with water is completely to the right:<br />

HCl(aq) + H 2<br />

O(l) Æ Cl – (aq ) + H 3<br />

O + (aq)<br />

<strong>The</strong> amount in moles of H + (aq) ions is equal to the<br />

amount in moles of HCl put into solution. Thus,<br />

[H + (aq)] = 0.01 mol dm –3 and pH = 2.<br />

<strong>The</strong> position of the equilibrium for the reaction of the<br />

weak acid with water is more to the left:<br />

HNO 2<br />

(aq) + H 2<br />

O(l) D NO 2 – (aq) + H 3<br />

O + (aq)<br />

<strong>The</strong> amount in moles of H + (aq) ions is very much less<br />

than the amount in moles of HNO 2<br />

put into solution.<br />

To obtain a solution with pH = 2, the nitrous acid<br />

solution must be more concentrated than the<br />

hydrochloric acid solution.<br />

a<br />

b<br />

c<br />

[OH – (aq)]/mol dm –3 [H + (aq)]/mol dm –3 pH<br />

1 1 ¥ 10 –14 14<br />

0.01 1 ¥ 10 –12 12<br />

0.2 5 ¥ 10 –14 13.3<br />

6 a In alkaline solution, the equilibrium shifts to the right<br />

as H + (aq) is removed by reaction with OH – (aq), so the<br />

indicator will be present as the pink In – form.<br />

b K a<br />

= [H+ (aq)][In – (aq)]<br />

[HIn(aq)]<br />

c K a<br />

= 5.01 ¥ 10 –10 mol dm –3<br />

= [H+ (aq)][In – (aq)]<br />

[HIn(aq)]<br />

At the end point [HIn(aq)] = [In – (aq)]<br />

Hence 5.01 ¥ 10 –10 mol dm –3 = [H + (aq)]<br />

pH at end point = 9.3<br />

7 a i K a<br />

= 5.0 ¥ 10 –10 mol dm –3 , pK a<br />

= 9.3<br />

ii K a<br />

= <strong>1.3</strong> ¥ 10 –10 mol dm –3 , pK a<br />

= 9.9<br />

iii K a<br />

= 4.8 ¥ 10 –4 mol dm –3 , pK a<br />

= 3.3<br />

b HF, HCN, phenol<br />

<strong>Section</strong> 8.3<br />

1 a 1.6 ¥ 10 –4 mol dm –3 = [H + 0.1 mol dm–3<br />

f In 750 cm<br />

(aq)] ¥ 3 of solution the concentrations of acid and<br />

0.1 mol dm –3<br />

salt are<br />

<strong>The</strong>refore [H + (aq)] = 1.6 ¥ 10 –4 mol dm –3<br />

0.1 ¥ 250<br />

pH = 3.8<br />

[acid] = mol dm<br />

750<br />

–3<br />

b 6.3 ¥ 10 –5 mol dm –3 = [H + 0.03 mol dm–3<br />

(aq)] ¥<br />

0.01 mol dm –3<br />

0.1 ¥ 500<br />

<strong>The</strong>refore [H + (aq)] = 2.1 ¥ 10 –5 mol dm –3<br />

[salt] = mol dm –3<br />

750<br />

pH = 4.7<br />

0.1 ¥ 500 mol dm –3<br />

c <strong>The</strong> concentrations of acid and salt in the mixture will<br />

1.7 ¥ 10 –5 mol dm 3 = [H + (aq)] ¥<br />

0.1 ¥ 250 moldm –3<br />

both be 0.05 mol dm –3 . This is equivalent to diluting<br />

the buffer in 1 a with an equal volume of water. <strong>The</strong><br />

[H + (aq)] = 8.5 ¥ 10 –6 mol dm –3<br />

pH remains unchanged at 3.8.<br />

pH = 5.1<br />

d <strong>1.3</strong> ¥ 10 –5 mol dm –3 = [H + (aq)] ¥ 5.0 ¥ 10–3 mol dm –3<br />

1 ¥ 10 –1 mol dm –3<br />

g 1.7 ¥ 10 –5 mol dm –3 = [H + 0.1 mol dm –3<br />

(aq)] ¥<br />

<strong>The</strong>refore [H + (aq)] = 2.6 ¥ 10 –4 mol dm –3<br />

0.2 mol dm –3<br />

pH = 3.6<br />

[H + (aq)] = 3.4 ¥ 10 –5 mol dm –3<br />

2 ¥ 1.5 ¥ 10 –2 mol dm –3<br />

e 1.6 ¥ 10 –4 mol dm –3 = [H + pH = 4.5<br />

(aq)] ¥<br />

2 ¥ 5 ¥ 10 –3 mol dm –3 <strong>The</strong> pH of the buffer solution, on adding a higher<br />

[H + (aq)] = 5.3 ¥ 10 –5 mol dm –3<br />

proportion of acid, has decreased. Changing the ratio<br />

pH = 4.3<br />

of [salt] : [acid] provides a way of ‘fine tuning’ the pH<br />

of a buffer solution.<br />

185


SECTION 9<br />

2 a Buffer solutions are made of either a weak acid and<br />

one of its salts or a weak base and one of its salts.<br />

b i Ethanoate ions from the salt react with the extra<br />

H + (aq) ions to form ethanoic acid and water and<br />

so prevent a fall in the pH.<br />

ii <strong>The</strong> addition of OH – (aq) ions removes H + (aq)<br />

but these are replaced by further dissociation of<br />

the ethanoic acid so the pH will remain constant.<br />

iii Addition of a small amount of water will change<br />

the concentration of the acid and the salt by the<br />

same factor which means the ratio of [salt] to<br />

[acid] will remain constant and the pH will<br />

remain constant.<br />

3 Ethanoic acid, because its K a<br />

is close to the required<br />

[H + (aq)] (pK a<br />

close to the required pH).<br />

<strong>Section</strong> 9.1<br />

1 a b i K Æ K + + e – oxidation<br />

ii H 2<br />

Æ 2H + + 2e – oxidation<br />

iii O+2e – Æ O 2– reduction<br />

iv Cu + Æ Cu 2+ + e – oxidation<br />

v Cr 3+ + e – Æ Cr 2+ reduction<br />

2 a Ag(+1) f N(–3) k S(+6), F(–1)<br />

b Br(0) g Mg(+2), Cl(–1) l S(+6), O(–2)<br />

c P(0) h C(+4), O(–2) m N(+5), O(–2)<br />

d H(+1) i P(+5), Cl(–1) n P(+5), O(–2)<br />

e H(–1) j Al(+3), O(–2)<br />

3 a Cl(0) Æ Cl(–1) reduced<br />

Fe(0) Æ Fe(+3) oxidised<br />

b Cl(0) Æ Cl(–1)<br />

reduced<br />

H(0) Æ H(+1)<br />

oxidised<br />

c Cl(0) Æ Cl(–1)<br />

reduced<br />

Fe(+2) Æ Fe(+3) oxidised<br />

d F(0) Æ F(–1)<br />

reduced<br />

O(–2) Æ O(0)<br />

oxidised<br />

4 a i Cl 2<br />

ii Fe<br />

b i Cl 2<br />

ii H 2<br />

c i Cl 2<br />

ii FeCl 2<br />

d i F 2<br />

ii H 2<br />

O<br />

5 a Cl(+5) Æ Cl(–1) reduced<br />

O(–2) Æ O(0)<br />

oxidised<br />

b S(+6) Æ S(+4) reduced<br />

Br(–1) Æ Br(0)<br />

oxidised<br />

c S(+6) Æ S(–2)<br />

reduced<br />

I(–1) Æ I(0)<br />

oxidised<br />

d I(0) Æ I(–1)<br />

reduced<br />

S(+4) Æ S(+6) oxidised<br />

6 a Cu 2<br />

O + 2H + Æ Cu 2+ + Cu + H 2<br />

O<br />

Cu: 2(+1) +2 0 oxidised and<br />

reduced<br />

O: –2 –2 no change<br />

H: 2(+1) 2(+1) no change<br />

b 3Br 2<br />

+ 6OH – Æ BrO – 3<br />

+ 5Br – + 3H 2<br />

O<br />

Br: 3(0) +5 5(–1) oxidised and<br />

reduced<br />

O: 6(–2) 3(–2) 3(–2) no change<br />

H: 6(+1) 6(+1) no change<br />

c 4IO – 3<br />

Æ 3IO – 4<br />

+ I –<br />

I: 4(+5) 3(+7) –1 oxidised and reduced<br />

O: 12(–2) 12(–2) no change<br />

7 a tin(II) oxide h nitrate(III)<br />

b tin(IV) oxide i nitrate(V)<br />

c iron(II) chloride j sulphate(IV)<br />

d iron(III) chloride k sulphate(VI)<br />

e lead(IV) chloride l manganate(VII)<br />

f copper(I) oxide m chromate(VI)<br />

g manganese(II) hydroxide n vanadate(V)<br />

8 a KClO 2<br />

b NaClO 3<br />

c Fe(OH) 3<br />

d Cu(NO 3<br />

) 2<br />

<strong>Section</strong> 9.2<br />

1 a Pb 2+ (aq) + 2e – Æ Pb(s) Zn(s) Æ Zn 2+ (aq) + 2e –<br />

b 6H + (aq) + 6e – Æ 3H 2<br />

(g) 2Al(s) Æ 2Al 3+ (aq) + 6e –<br />

c 2Ag + (aq) + 2e – Æ 2Ag(s) Cu(s) Æ Cu 2+ (aq) + 2e –<br />

d Cl 2<br />

(g) + 2e – Æ 2Cl – (aq) 2I – (aq) Æ I 2<br />

(aq) + 2e –<br />

e S(s) + 2e – Æ S 2– (s) Zn(s) Æ Zn 2+ (s) + 2e –<br />

2 a Mg(s) + Cu 2+ (aq) Æ Mg 2+ (aq) + Cu(s)<br />

b Zn(s) + 2Ag + (aq) Æ Zn 2+ (aq) + 2Ag(s)<br />

c 3Mg(s) + 2Au 3+ (aq) Æ 3Mg 2+ (aq) + 2Au(s)<br />

d 2Fe 2+ (aq) + Cl 2<br />

(g) Æ 2Fe 3+ (aq) + 2Cl – (aq)<br />

3 a i 3.16 V<br />

ii <strong>1.1</strong>0 V<br />

iii 0.18 V<br />

iv 0.32 V<br />

v <strong>1.3</strong>6 V<br />

b i Ag + (aq)/Ag(s)<br />

ii Cu 2+ (aq)/Cu(s)<br />

iii Ni 2+ (aq)/Ni(s)<br />

iv Fe 2+ (aq)/Fe(s)<br />

v MnO – 4<br />

(aq)/Mn 2+ (aq)<br />

186


SECTION 9<br />

c i 2Ag + (aq) + Mg(s) Æ 2Ag(s) + Mg 2+ (aq)<br />

ii Cu 2+ (aq) + Zn(s) Æ Cu(s) + Zn 2+ (aq)<br />

iii Ni 2+ (aq) + Fe(s) Æ Ni(s) + Fe 2+ (aq)<br />

iv Fe 2+ (aq) + Zn(s) Æ Fe(s) + Zn 2+ (aq)<br />

v 2MnO – 4<br />

(aq) + 5Sn 4+ (aq) + 16H + (aq)<br />

Æ 2Mn 2+ (aq) + 5Sn 2+ (aq) + 8H 2<br />

O(l)<br />

4 Cd 2+ (aq)/Cd(s) E! = –0.40 V<br />

5 Co 2+ (aq)/Co(s) E! = –0.28 V<br />

6 Pb 2+ (aq)/Pb(s) E! = –0.13 V<br />

7 Fe 3+ (aq)/Fe 2+ (aq) E! = + 0.77 V<br />

8 F 2<br />

(g)/2F – (aq) E! = +2.85 V<br />

9 K, Ce, Cd, Ni, Sn, Ag<br />

10 2H + (aq)/H 2<br />

(g) E! = 0 V by definition<br />

Pb 2+ (aq)/Pb(s) E! = –0.13 V<br />

Cd 2+ (aq)/Cd(s) E! = –0.40 V<br />

Ag + (aq)/Ag (s) E! = +0.80 V<br />

Cr 3+ (aq)/Cr(s) E! = –0.74 V<br />

<strong>Section</strong> 9.3<br />

1 i 2I – (aq) Æ I 2<br />

(aq) + 2e – ; Cl 2<br />

(g) + 2e – Æ 2Cl – (aq)<br />

overall: Cl 2<br />

(g) + 2I – (aq) Æ 2Cl – (aq) + I 2<br />

(aq)<br />

ii 2Br – (aq) Æ Br 2<br />

(aq) + 2e – ;<br />

MnO – 4<br />

(aq) + 8H + (aq) + 5e –<br />

Æ Mn 2+ (aq) + 4H 2<br />

O(l)<br />

overall: 2MnO – 4<br />

(aq) + 16H + (aq) + 10Br – (aq)<br />

Æ 2Mn 2+ (aq) + 8H 2<br />

O(l) + 5Br 2<br />

(aq)<br />

iii 2I – (aq) Æ 2I 2<br />

(aq) + 2e – ; Br 2<br />

(aq)+ 2e – Æ 2Br – (aq)<br />

overall: 2I – (aq) + Br 2<br />

(aq) Æ I 2<br />

(aq) + 2Br – (aq)<br />

2 a Yes c No<br />

b Yes<br />

d Yes<br />

3 I 2<br />

(aq) + 2e – Æ 2I – (aq)<br />

Cr 2<br />

O 2– 7<br />

(aq) + 14H + (aq)+6e – Æ 2Cr 3+ (aq) + 7H 2<br />

O(l)<br />

overall: Cr 2<br />

O 2– 7<br />

(aq) + 14H + (aq) + 6I – (aq)<br />

Æ2Cr 3+ (aq)+ 7H 2<br />

O(l) + 3I 2<br />

(aq)<br />

<strong>Section</strong> 9.4<br />

1 a i Cobalt(III) fluoride dissolves in water to form<br />

cobalt(III) ions, [Co(H 2<br />

O) 6<br />

] 3+ . E! for the<br />

[Co(H 2<br />

O) 6<br />

] 3+ /[Co(H 2<br />

O) 6<br />

] 2+ half-cell is more<br />

positive than E! for the O 2<br />

(g), H + (aq)/H 2<br />

O(l)<br />

half-cell. Electrons are supplied to the more<br />

positive half-cell, so cobalt(III) ions are reduced<br />

to cobalt(II) ions and water is oxidised to release<br />

oxygen.<br />

ii <strong>The</strong> overall equation is<br />

4[Co(H 2<br />

O) 6<br />

] 3+ (aq) + 2H 2<br />

O(l)<br />

Æ 4[Co(H 2<br />

O) 6<br />

] 2+ (aq) + O 2<br />

(g) + 4H + (aq)<br />

iii <strong>The</strong> hydrated Co 2+ ion is more stable than the<br />

hydrated Co 3+ ion.<br />

b Oxygen in the air is unable to oxidise the pink cobalt(II)<br />

ion as the E! for the oxygen half equation is less positive<br />

than that required for oxidising [Co(H 2<br />

O) 6<br />

] 2+ (aq).<br />

c <strong>The</strong> E! for the oxygen half equation is more positive<br />

than that needed to oxidise the yellow-brown<br />

[Co(NH 3<br />

) 6<br />

] 2+ (aq) to the dark brown [Co(NH 3<br />

) 6<br />

] 3+ (aq).<br />

<strong>The</strong> overall equation is<br />

O 2<br />

(g) + 4H + (aq) + 4[Co(NH 3<br />

) 6<br />

] 2+ (aq)<br />

Æ 2H 2<br />

O(l) + 4[Co(NH 3<br />

) 6<br />

] 3+ (aq)<br />

d [Co(NH 3<br />

) 6<br />

] 3+ is more stable than [Co(NH 3<br />

) 6<br />

] 2+ .<br />

4 b i No<br />

ii No<br />

iii Yes<br />

5 a Yes b No<br />

c Yes<br />

d Yes<br />

e Yes<br />

6 a,b i CH 4<br />

(g) + 2O 2<br />

(g) Æ CO 2<br />

(g) + 2H 2<br />

O(l)<br />

ii 2CH 3<br />

OH(aq) + O 2<br />

(g) Æ 2HCHO(aq) + 2H 2<br />

O(l)<br />

iii 2HCHO(aq) + O 2<br />

(g) Æ 2HCOOH(aq)<br />

2 b i As the E! for aqueous iron(III), [Fe(H 2<br />

O) 6<br />

] 3+ (aq),<br />

is more positive than that of the iodine half-cell,<br />

the iron(III) will oxidise the aqueous iodide ion<br />

to iodine.<br />

<strong>The</strong> overall equation is<br />

2[Fe(H 2<br />

O) 6<br />

] 3+ (aq) + 2I – (aq)<br />

Æ 2[Fe(H 2<br />

O) 6<br />

] 2+ (aq) + I 2<br />

(aq)<br />

E cell = +0.77 V – (+0.54 V) = +0.23 V<br />

ii As the E! for the iodine half-cell is more positive<br />

than that of hexacyanoferrate half-cell, iodine will<br />

oxidise the hexacyanoferrate(II) to<br />

hexacyanoferrate(III).<br />

<strong>The</strong> overall equation is<br />

I 2<br />

(aq) + 2[Fe(CN) 6<br />

] 4– (aq)<br />

Æ 2I – (aq) + [Fe(CN) 6<br />

] 3– (aq)<br />

E cell = +0.54 V – (+0.36 V) = +0.18 V<br />

c A major reason why many predicted reactions do not<br />

occur is because of high activation enthalpies, ie there<br />

is a kinetic barrier to the reaction despite it appearing<br />

thermodynamically feasible. Also, these calculations<br />

assume standard conditions: if conditions are not<br />

standard, the results may be different.<br />

187


SECTION 10<br />

<strong>Section</strong> 10.1<br />

1<br />

a b c<br />

A rate will increase with rate will increase with rate will increase with<br />

temperature temperature temperature temperature<br />

B rate of forward reaction not rate increases rate of forward reaction not<br />

total pressure of gas affected affected<br />

C increasing the concentration solutions not involved increasing the concentration of<br />

concentration of solution of acid will increase the rate peroxide will increase the rate<br />

D the more finely divided the the more finely divided the solids not involved<br />

surface area of solid magnesium, the faster the rate catalyst, the faster the rate<br />

2 Both the acid and the enzyme can act as catalysts for the<br />

hydrolysis of a protein.<br />

3 a <strong>The</strong> greater the concentration of reactants, the greater<br />

the rate of collisions and hence the faster the reaction<br />

proceeds.<br />

b A change of temperature has little effect. Most<br />

collisions result in a reaction.<br />

4 a B and C<br />

bAand D<br />

cD<br />

dB<br />

eB<br />

f D<br />

<strong>Section</strong> 10.2<br />

1 a A b A c B d Mainly B, with A to a minor extent.<br />

2 a This reaction has a high activation enthalpy that<br />

prevents it occurring at a significant rate at room<br />

temperature, but the reaction is exothermic, and once<br />

the spark has provided the energy needed to get it<br />

started, the reaction produces enough energy to<br />

sustain itself regardless of how much is present.<br />

b <strong>The</strong> platinum catalyst lowers the activation enthalpy to<br />

such an extent that it is close to the thermal energy of<br />

molecules at room temperature.<br />

3 Above a certain temperature, enzymes are denatured and<br />

become inactive.<br />

4 a <strong>The</strong> surface area of the coal is much greater in the<br />

powder than in the lump. Many more collisions with<br />

oxygen molecules are possible and the speed of<br />

reaction will be much greater.<br />

b Although the gas molecules are moving freely, the<br />

molecules have insufficient kinetic energy to<br />

overcome the activation enthalpy for reaction.<br />

c <strong>The</strong> particles in the solids are in fixed positions in their<br />

respective lattices. <strong>The</strong> only movement will be due to<br />

low energy vibrations or rotations about these fixed<br />

positions. <strong>The</strong> number of collisions is very low indeed.<br />

<strong>The</strong>re is also unlikely to be sufficient energy available<br />

to overcome the activation enthalpy for reaction.<br />

d <strong>The</strong> fine flour dust allows maximum chances of<br />

collisions with oxygen molecules. A spark will cause<br />

instant ignition followed by a very rapid reaction<br />

amounting to an explosion.<br />

5 Catalytic converters catalyse redox reactions involving<br />

CO, NO x<br />

and oxygen from the air (see Developing<br />

Fuels for details). <strong>The</strong> catalyst lowers the activation<br />

enthalpies of these reactions, but the activation<br />

enthalpies are still high, and the reactions do not occur<br />

at a significant rate until the catalyst is hot.<br />

6 <strong>The</strong> added curve is above the original, with a greater<br />

slope at the start of the reaction but plateauing at the<br />

same final volume of hydrogen given off.<br />

7 a <strong>The</strong> area shaded is underneath the T 1<br />

curve and to the<br />

right of E a<br />

.<br />

b <strong>The</strong> area shaded a different colour is underneath the<br />

T 2<br />

curve and to the right of E a<br />

, encompassing the firstcoloured<br />

area. <strong>The</strong> T 2<br />

curve has a lower and broader<br />

maximum than the T 1<br />

curve and the maximum value is<br />

shifted to the right. It tails off above the T 1<br />

curve.<br />

188<br />

<strong>Section</strong> 10.3<br />

1 a <strong>The</strong> reaction is first order with respect to<br />

bromoethane and zero order with respect to<br />

hydroxide ion.<br />

b <strong>The</strong> reaction is first order with respect to methyl<br />

methanoate, zero order with respect to water and first<br />

order with respect to H + .<br />

c <strong>The</strong> reaction is first order with respect to urea, zero<br />

order with respect to water and first order with<br />

respect to urease.<br />

d <strong>The</strong> reaction is a single step in the mechanism. It is<br />

first order with respect to the methyl radical and first<br />

order with respect to the chlorine molecule.<br />

e <strong>The</strong> reaction is order with respect to carbon<br />

monoxide and first order with respect to chlorine.<br />

f <strong>The</strong> reaction is second order with respect to nitrogen<br />

dioxide.<br />

2 a Rate = k[CH 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

Cl] [OH – ]<br />

b Rate = k[C 12<br />

H 22<br />

O 11<br />

] [H + ]


SECTION 11<br />

3 a i First order<br />

ii Second order<br />

b Rate = k[H 2<br />

][NO] 2<br />

c k = 0.384 mol –2 dm 6 s –1<br />

4 b All are ca 1150 s (Allow within 1100–1200 s.)<br />

First order.<br />

e Rate = k[N 2<br />

O 5<br />

] or –d[N 2<br />

O 5<br />

]/dt = k[N 2<br />

O 5<br />

]<br />

f 6.2 ¥ 10 –4 s –1<br />

(Method is difficult to use. Allow for an answer<br />

between 5 and 7 ¥ 10 –4 s –1 .)<br />

5 a Structural isomerism<br />

b 0.5 atm<br />

d t <br />

is constant and about 55 ¥ 10 3 s. First order.<br />

<strong>Section</strong> 10.4<br />

1 a Platinum on aluminium oxide (heterogeneous<br />

catalyst).<br />

b Zeolite (heterogeneous catalyst).<br />

c Platinum on aluminium oxide (heterogeneous<br />

catalyst).<br />

2 a 2CO(g) + 2NO(g) Æ 2CO 2<br />

(g) + N 2<br />

(g)<br />

b <strong>The</strong>se gases are hazardous to health, produce acid rain<br />

and can take part in producing photochemical smog.<br />

c i A substance is adsorbed when it is bound to the<br />

surface of another substance.<br />

ii <strong>The</strong> mechanism should show CO and NO being<br />

adsorbed to the catalyst surface.<br />

O N N O C O<br />

<strong>The</strong> bonds in the molecules are weakened and<br />

new bonds form between the atoms.<br />

O N N<br />

catalyst surface<br />

Products are released from the surface.<br />

d <strong>The</strong> reaction between nitrogen and carbon monoxide<br />

on the surface of the catalyst is faster at high<br />

temperature.<br />

e i Lead poisons the catalyst in the converter. It is<br />

adsorbed strongly to the surface of the catalyst<br />

and prevents CO and NO being adsorbed.<br />

ii Use unleaded fuel.<br />

O<br />

C<br />

O<br />

catalyst surface<br />

<strong>Section</strong> 10.5<br />

1 a<br />

Enthalpy<br />

Platinum<br />

catalyst<br />

Reactants<br />

<strong>Section</strong> 1<strong>1.1</strong><br />

Enzyme<br />

catalyst<br />

Progress of reaction<br />

+ 49 kJ mol –1<br />

+ 36 kJ mol –1<br />

DH<br />

Products<br />

1 a d block b p block c s block d f block<br />

2 a Peaks: carbon, silicon<br />

Troughs: helium, neon, argon<br />

b Elements in the same group occur at similar positions<br />

on graph eg Group 4 at peaks, Group 0 in troughs.<br />

3 a <strong>The</strong>y are all in Group 1.<br />

b <strong>The</strong> molar atomic volumes for each period of elements<br />

vary in similar regular patterns.<br />

4 a LiCl, BeCl 2<br />

, BCl 3<br />

, CCl 4<br />

, NCl 3<br />

, OCl 2<br />

, FCl<br />

NaCl, MgCl 2<br />

, AlCl 3<br />

, SiCl 4<br />

, PCl 5<br />

, SCl 4<br />

, Cl 2<br />

c Second period: number of chlorine atoms same as<br />

group number for Groups 1–4. After Group 4, falls by<br />

b <strong>The</strong> rate will be faster for the enzyme catalysed<br />

reaction, as the activation enthalpy is significantly<br />

lower. This means that more pairs of colliding<br />

molecules have sufficient energy to react at room<br />

temperature.<br />

2 a <strong>The</strong> catalyst is in the same phase as the reactants.<br />

b i An intermediate is formed. In this example, the<br />

intermediate is the radical, ClO.<br />

ii <strong>The</strong> first peak represents the energy that must be<br />

supplied to enable bonds in the reactants (Cl and<br />

O 3<br />

) to stretch and break as new bonds form in<br />

the products (ClO and O 2<br />

). <strong>The</strong> trough<br />

represents the energy released when ClO and O 2<br />

are formed from Cl and O 3<br />

. <strong>The</strong> second peak<br />

represents the energy required for ClO and O to<br />

come together and allow the formation of Cl and<br />

O 2<br />

which are the products.<br />

one chlorine atom for each subsequent group.<br />

Similar pattern for third period, rise continues to<br />

Group 5 before falling.<br />

d Same formulae.<br />

5 a Li 2<br />

O, BeO, B 2<br />

O 3<br />

, CO 2<br />

, N 2<br />

O 5<br />

, F 2<br />

O<br />

Na 2<br />

O, MgO, Al 2<br />

O 3<br />

, SiO 2<br />

, P 2<br />

O 5<br />

, SO 3<br />

, Cl 2<br />

O 7<br />

c Second period: number of oxygen atoms per atom of<br />

element increases by a half up to Group 5 before falling.<br />

Third period, increases from Groups 1 through to 7.<br />

d Same formulae except for halogens where fluorine is<br />

unable to form the higher oxides.<br />

189


SECTION 11<br />

<strong>Section</strong> 1<strong>1.2</strong><br />

1<br />

Element Trend in reactivity Trend in thermal Trend in pH of Trend in solubility Trend in solubility<br />

with water stability of carbonate hydroxide with water of hydroxide of carbonate<br />

Mg<br />

Ca<br />

Sr<br />

Ba<br />

increases<br />

decompose<br />

at increasingly<br />

higher temperature<br />

increases<br />

increases<br />

increases<br />

2 Sulphate solubility decreases down group.<br />

3 a magnesium + steam<br />

Æ magnesium hydroxide + hydrogen<br />

Mg(s) + 2H 2<br />

O(g) Æ Mg(OH) 2<br />

(s) + H 2<br />

(g)<br />

b calcium oxide + hydrochloric acid<br />

Æ calcium chloride + water<br />

CaO(s) + 2HCl(aq) Æ CaCl 2<br />

(aq) + H 2<br />

O(l)<br />

c beryllium carbonate<br />

Æ beryllium oxide + carbon dioxide<br />

BeCO 3<br />

(s) Æ BeO(s) + CO 2<br />

(g)<br />

d barium hydroxide + sulphuric acid<br />

Æ barium sulphate + water<br />

Ba(OH) 2<br />

(aq or s) + H 2<br />

SO 4<br />

(aq) Æ BaSO 4<br />

(s) + 2H 2<br />

O(l)<br />

4 a Cs (or Fr)<br />

b Cs (or Fr)<br />

c +1<br />

di M 2<br />

O ii MOH iii M 2<br />

CO 3<br />

5 a lithium + water Æ lithium hydroxide + hydrogen<br />

2Li(s) + 2H 2<br />

O(l) Æ 2LiOH(aq) + H 2<br />

(g)<br />

b hydrochloric acid + sodium hydroxide<br />

Æ sodium chloride + water<br />

HCl(aq) + NaOH(aq) Æ NaCl(aq) + H 2<br />

O(l)<br />

c Little reaction even at high temperatures<br />

d sodium oxide + sulphuric acid<br />

Æ sodium sulphate + water<br />

Na 2<br />

O(s) + H 2<br />

SO 4<br />

(aq) Æ Na 2<br />

SO 4<br />

(aq) + H 2<br />

O(l)<br />

<strong>Section</strong> 1<strong>1.3</strong><br />

1 <strong>The</strong> triple bond in N 2<br />

is very strong (bond enthalpy =<br />

945 kJ mol –1 ), so a great deal of activation enthalpy must<br />

be supplied before N 2<br />

will react. P 4<br />

, on the other hand,<br />

needs only enough energy to break one of the P–P bonds<br />

(bond enthalpy = 198 kJ mol –1 ) to start it reacting. <strong>The</strong><br />

reason that P does not form triple bonds like those in N 2<br />

is related to its larger size.<br />

2 a i +3 Æ +5<br />

ii +5 Æ 0<br />

iii –3 Æ –3<br />

iv 0 Æ –3<br />

v +2 Æ +4<br />

b i A<br />

ii B<br />

iii C<br />

iv B<br />

v A<br />

3 a +2 to +1<br />

<strong>Section</strong> 11.4<br />

1 a i Deep brown colour<br />

2I – (aq) + Cl 2<br />

(aq) Æ I 2<br />

(aq/s) + 2Cl – (aq)<br />

ii No change<br />

iii Light brown/red colour deepens in tone,<br />

becoming dark brown<br />

2I – (aq) + Br 2<br />

(aq) Æ I 2<br />

(aq/s) + 2Br – (aq)<br />

iv Light brown/red colour<br />

2Br – (aq) + Cl 2<br />

(aq) Æ Br 2<br />

(aq) + 2Cl – (aq)<br />

b i Ag + (aq) + Cl – (aq) Æ AgCl(s)<br />

ii Ag + (aq) + Br – (aq) Æ AgBr(s)<br />

iii Ag + (aq) + I – (aq) Æ AgI(s)<br />

b 2NO(g) + 2H + (aq) + 2e – Æ N 2<br />

O(g) + H 2<br />

O(l)<br />

4 i NO – 2<br />

(aq) + H 2<br />

O(l) Æ NO – 3<br />

(aq) + 2H + (aq) + 2e –<br />

ii NO – 3<br />

(aq) + 6H + (aq) + 5e – Æ N 2<br />

(g) + 3H 2<br />

O(l)<br />

iii NH + 4<br />

(aq) + OH – (aq) Æ NH 3<br />

(g) + H 2<br />

O(l)<br />

iv N 2<br />

(g) + 6H + (aq) + 6e – Æ 2NH 3<br />

(g)<br />

v NO(g) + H 2<br />

O(l) Æ NO 2<br />

(g) + 2H + (aq) + 2e –<br />

5 a <strong>The</strong> NO is oxidised by air as in reaction (2), to produce<br />

further NO 2<br />

which takes part in reaction (3).<br />

b Ammonium nitrate fertiliser.<br />

c i 1 mole of NH 3<br />

Æ mole of HNO 3<br />

1000 kg ¥ (63/17) ¥ = 2471 kg<br />

ii Incomplete reaction at each of the three stages.<br />

Loss of intermediates.<br />

d <strong>The</strong> reactants and intermediates include serious<br />

environmental pollutants, particularly NO x<br />

. Escape of<br />

these, even in small quantities, would lead to acid rain<br />

and direct effects on living things. <strong>The</strong> NO x<br />

could be<br />

absorbed in aqueous sodium hydroxide.<br />

c i 2Na(s) + Br 2<br />

(l/g) Æ 2NaBr(s)<br />

ii Mg(s) + Cl 2<br />

(g) Æ MgCl 2<br />

(s)<br />

iii 2K(s) + I 2<br />

(s/g) Æ 2KI(s)<br />

iv Ca(s) + Cl 2<br />

(g) Æ CaCl 2<br />

(s)<br />

2 a I +1, Cl –1<br />

b Br +3, F –1<br />

c Br +1<br />

d I +5<br />

e I +7<br />

190


SECTION 11<br />

3 a Cl 2<br />

(g) + 2NaOH(aq)<br />

Æ NaCl(aq) + NaClO(aq) + H 2<br />

O(l)<br />

b i Chlorine<br />

ii Cl from 0 in Cl 2<br />

to –1 in NaCl, ie reduction<br />

Cl from 0 in Cl 2<br />

to +1 in NaClO, ie oxidation<br />

c i 2NaClO(aq) Æ 2NaCl(aq) + O 2<br />

(g)<br />

ii Oxygen and chlorine.<br />

iii Oxygen from –2 in NaClO to 0 in O 2<br />

, ie oxidation<br />

Chlorine from +1 in NaClO to –1 in NaCl, ie<br />

reduction.<br />

4 a isotopes and<br />

210 At<br />

abundances<br />

melting point/K 575<br />

(allow<br />

480–600)<br />

boiling point/K 610<br />

(allow<br />

550–700)<br />

b<br />

i <strong>The</strong> orange aqueous bromine water turns a dark<br />

brown/black and a black precipitate may form.<br />

Br 2<br />

(aq) + 2At – (aq) Æ 2Br – (aq) + At 2<br />

(s)<br />

ii <strong>The</strong> orange-brown colour of iodine is replaced by<br />

a much darker colour and/or a black precipitate.<br />

I 2<br />

(aq) + 2At – (aq) Æ 2I – (aq) + At 2<br />

(s)<br />

iii <strong>The</strong> two colourless solutions produce a yellow<br />

precipitate.<br />

Ag + (aq) + At – (aq) Æ AgAt(s)<br />

iv <strong>The</strong> sodium burns with an orange flame and a<br />

white solid is produced.<br />

2Na(s) + At 2<br />

(g) Æ 2NaAt(s)<br />

solubility<br />

at 293 K/g per<br />

100 g water<br />

allow any<br />

low value<br />

<strong>Section</strong> 11.5<br />

1<br />

Element Electronic Element Electronic<br />

configuration<br />

configuration<br />

Sc [Ar] 3d 1 4s 2 Fe [Ar] 3d 6 4s 2<br />

Ti [Ar] 3d 2 4s 2 Co [Ar] 3d 7 4s 2<br />

V [Ar] 3d 3 4s 2 Ni [Ar] 3d 8 4s 2<br />

Cr [Ar] 3d 5 4s 1 Cu [Ar] 3d 10 4s 1<br />

Mn [Ar] 3d 5 4s 2 Zn [Ar] 3d 10 4s 2<br />

2 a i Cu 2+ [Ar] 3d 9 4s 0<br />

ii Cu + [Ar] 3d 10 4s 0<br />

iii Fe 3+ [Ar] 3d 5 4s 0<br />

iv V 3+ [Ar] 3d 2 4s 0<br />

v Cr 3+ [Ar] 3d 3 4s 0<br />

vi Ni 2+ [Ar] 3d 8 4s 0<br />

b Cu 2+ has a partially filled 3d sub-shell and behaves as a<br />

typical d block transition metal ion.<br />

Cu + has a filled 3d sub-shell and cannot show such<br />

properties.<br />

3 a <strong>The</strong> three transition metals atoms (Cr, Fe, Co) are the<br />

same size as each other, but are smaller than the<br />

atoms of sodium (Na) and magnesium (Mg).<br />

b <strong>The</strong> melting and boiling points of the transition metals<br />

are much higher than those of sodium and magnesium.<br />

c <strong>The</strong> three transition metals are much denser than<br />

sodium and magnesium.<br />

d Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1<br />

Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2<br />

Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2<br />

Na 1s 2 2s 2 2p 6 3s 1<br />

Mg 1s 2 2s 2 2p 6 3s 2<br />

e <strong>The</strong> properties of elements are governed by the<br />

arrangement of electrons in the outermost incomplete<br />

shells. In the first row of the d block, the inner 3d<br />

orbital is being filled and most elements have two<br />

electrons in the outer 4s shell. (Chromium is an<br />

exception, having only one electron in the 4s shell.)<br />

Thus, transition elements have similar properties<br />

because they have essentially the same outer<br />

electronic arrangement as each other, in the same way<br />

as the elements in a vertical group. <strong>The</strong>y differ only by<br />

the number of electrons in the inner incomplete 3d<br />

sub-shell.<br />

Metals in different groups in the periodic table have<br />

different numbers of outer electrons and hence<br />

different properties.<br />

4 a <strong>The</strong> E! for the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell is more<br />

positive and receives electrons from the<br />

Fe 3+ (aq)/Fe 2+ (aq) half-cell. So overall O 2<br />

is reduced to<br />

water and the Fe 2+ (aq) is oxidised to Fe 3+ (aq).<br />

O 2<br />

(g) + 4H + (aq) + 4Fe 2+ (aq)<br />

Æ 2H 2<br />

O(l) + 4Fe 3+ (aq)<br />

E cell = +<strong>1.2</strong>3 V – (+0.77 V) = +0.46 V<br />

<strong>The</strong> E! for the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell is less<br />

positive than that for the Mn 3+ (aq)/Mn 2+ (aq) half-cell<br />

and so it is not oxidising enough to form Mn(III) from<br />

Mn(II). <strong>The</strong> Mn 3+ (aq)/Mn 2+ (aq) half-cell receives<br />

electrons from the O 2<br />

(g), 4H + (aq)/2H 2<br />

O(l) half-cell. In<br />

the presence of water, Mn 3+ (aq) is reduced to<br />

Mn 2+ (aq) and the water oxidised to oxygen.<br />

4Mn 3+ (aq) + 2H 2<br />

O(l)<br />

Æ 4Mn 2+ (aq) + O 2<br />

(g) + 4H + (aq)<br />

E cell = +1.56 V – (+<strong>1.2</strong>3 V) = +0.33 V<br />

b i An acidified solution of iron(II) will be oxidised<br />

by air.<br />

ii An acidified solution of marganese(II) will not be<br />

oxidised by air.<br />

c <strong>The</strong> flow of electrons is to the half-cell with the most<br />

positive E! value. Cu + (aq) will be expected to be<br />

oxidised to Cu(s) and reduced to Cu 2+ (aq)<br />

(disproportionation).<br />

2Cu + (aq) Æ Cu 2+ (aq) + Cu(s)<br />

E cell = +0.52 V – (+0.16 V) = +0.36 V<br />

191


SECTION 12<br />

<strong>Section</strong> 11.6<br />

1 a 2<br />

b 4<br />

c 6<br />

d 6<br />

2 a [Mn(H 2<br />

O) 6<br />

] 2+<br />

b [Zn(NH 3<br />

) 4<br />

] 2+<br />

c [FeF 6<br />

] 3–<br />

d [Cr(H 2<br />

O) 5<br />

OH] 2+<br />

3 a +1<br />

b +2<br />

c +3<br />

d +3<br />

4 a Hexaaquavanadium(III) ion<br />

b Hexacyanoferrate(II) ion<br />

c Tetrachlorocobaltate(II) ion<br />

d Diamminesilver(I) ion<br />

e Tetraaquadichlorochromium(III) ion<br />

5 a TiO 2<br />

(s) contains titanium with a 3d 0 electron<br />

configuration. It is white as no 3d electron transitions<br />

are possible.<br />

b Sc 3+ [Ar]<br />

Zn 2+ [Ar] 3d 10 no 3d electron transitions<br />

Cu + [Ar] 3d 10 possible, hence colourless<br />

6 a 6<br />

b +4<br />

c Hexachlorotitanate(IV) ion<br />

d<br />

Cl<br />

Cl<br />

Cl<br />

Ti<br />

Cl<br />

7 A five-membered chelate ring seems to lead to a more<br />

stable complex than a six-membered one.<br />

8 a Monodentate<br />

b Bidentate<br />

c Polydentate<br />

d Bidentate<br />

9 A complex of a metal ion with edta contains six<br />

5-membered chelate ring systems (see Figure 32 on page<br />

270 of Chemical Ideas). <strong>The</strong> complex is much more<br />

stable than the corresponding complexes with NH 3<br />

or<br />

H 2<br />

O which contain no chelate rings. <strong>The</strong> extra stability is<br />

due to the large increase in entropy when edta 4–<br />

displaces six ligands.<br />

Cl<br />

Cl<br />

2–<br />

<strong>Section</strong> 12.1<br />

1<br />

Empirical formula Molecular formula M r<br />

7 a C 7<br />

H 16<br />

b C 8<br />

H 18<br />

c C 10<br />

H 22<br />

C 3<br />

H 8<br />

C 3<br />

H 8<br />

44 8 a H H<br />

CH 2<br />

C 12<br />

H 24<br />

168<br />

X X<br />

CH C 6<br />

H 6<br />

78<br />

H X C<br />

X<br />

X C X H<br />

H<br />

C H C H 282<br />

X X<br />

H H<br />

10 21<br />

CH 2<br />

20 42<br />

C 5<br />

H 10<br />

70<br />

CH C 2<br />

H 2<br />

26<br />

C 5<br />

H 4<br />

C 10<br />

H 8<br />

128<br />

b H H H<br />

2 a CH 2<br />

b C 2<br />

H 4<br />

3 a CH b C 6<br />

H 6<br />

4 a, b C : H<br />

Ratio by mass 82.8 : 17.2<br />

Ratio by moles 6.9 : 17.2<br />

Simplest ratio 1 : 2.5<br />

Whole number ratio 2 : 5<br />

\ Empirical formula is C 2<br />

H 5<br />

But M r<br />

(C 2<br />

H 5<br />

) = 29<br />

So, the molecular formula is C 4<br />

H 10<br />

.<br />

5 a 0.085 g C 0.014 g H<br />

b 0.0071 mol C 0.014 mol H<br />

c CH 2<br />

d C 6<br />

H 12<br />

e<br />

(or a hexene such as )<br />

c<br />

H<br />

H<br />

H<br />

X<br />

X<br />

X<br />

H<br />

C<br />

X<br />

C<br />

X<br />

H<br />

X<br />

X<br />

X<br />

C<br />

X<br />

C<br />

X<br />

H<br />

X<br />

X X<br />

X X<br />

X<br />

X<br />

X<br />

X<br />

H<br />

C<br />

X<br />

X<br />

X<br />

C<br />

X<br />

X<br />

H<br />

H<br />

H<br />

H<br />

9 a Cyclooctane b Methylcyclopentane<br />

c Cycloheptane<br />

d Butylcyclohexane<br />

10 a b c<br />

d<br />

H<br />

H<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

6 a B D E<br />

bA C F<br />

e<br />

f<br />

192


SECTION 12<br />

11 butane<br />

methylpropane<br />

12 a C 5<br />

H 12<br />

+ 8O 2<br />

Æ 5CO 2<br />

+ 6H 2<br />

O b C 5<br />

H 12<br />

+ 5 O 2<br />

Æ 5CO + 6H 2<br />

O<br />

13 a For ‘cat’ cracking, high temperature (500 °C) and zeolite catalyst.<br />

For steam cracking, high temperature (900 °C) with short<br />

residence time and steam as dilutent.<br />

b True: (ii), (iv), (v)<br />

c Three from:<br />

+<br />

+<br />

+<br />

+<br />

14 a A B C<br />

D<br />

E<br />

bD c A d B e Cand E<br />

f eg C or E could have been produced by cracking D<br />

+<br />

gA<br />

<strong>Section</strong> 12.2<br />

1 a<br />

b<br />

c<br />

3 a<br />

b<br />

c<br />

d<br />

e<br />

d<br />

2 a propene<br />

b hept-2-ene<br />

c 2-methylbut-2-ene<br />

d hept-1,4-diene<br />

e 2,4-dimethylpent-2-ene<br />

f cyclopentene<br />

4<br />

e<br />

H<br />

H CH 3 H H<br />

C C C C C<br />

H CH 3 H H<br />

H<br />

193


SECTION 12<br />

5 a<br />

H<br />

H<br />

H<br />

Br<br />

Br<br />

+ 2Br 2 Br<br />

Br<br />

H C C C + Br 2 H C C C H<br />

H H<br />

H<br />

H H H<br />

+ H 2 One of the carbon atoms has become positively<br />

b H<br />

H<br />

H H H<br />

Br<br />

H C C C + H<br />

8 a Bromine; room temperature; non polar solvent<br />

2 H C C C H<br />

b Steam; catalyst, phosphoric acid on silica; 300 °C; high<br />

H H<br />

H<br />

H H H<br />

pressure (60 atm)<br />

c Hydrogen; catalyst, nickel; 150 °C; 5 atm pressure;<br />

6 H Br H<br />

H H Br<br />

(or platinum at lower temperatures and atmospheric<br />

pressure)<br />

H C C C H H C C C H<br />

d Hydrogen; catalyst, nickel; 150 °C.<br />

H H H<br />

H H H<br />

9 a H<br />

H<br />

H<br />

H<br />

7 a<br />

C C H C<br />

+<br />

C<br />

+ Br 2<br />

H<br />

H d+ H<br />

H<br />

H<br />

Br<br />

Br d–<br />

Br<br />

b<br />

Br<br />

H<br />

H<br />

H H<br />

+ Br 2 (aq)<br />

H C<br />

+<br />

C<br />

H C C H<br />

c<br />

OH<br />

H<br />

H<br />

H Br<br />

+ HBr<br />

–<br />

Br<br />

Br<br />

b <strong>The</strong> hydrogen bromide is polarised with the hydrogen<br />

d + 2H atom being slightly positively charged. <strong>The</strong> hydrogen<br />

2<br />

atom behaves as an electrophile and reacts with the<br />

e<br />

double bond.<br />

charged and so it reacts with the bromide ion to form<br />

a C–Br covalent bond.<br />

10 Shake the compound with about 1 cm depth of bromine<br />

water in a stoppered test-tube. If the compound is<br />

unsaturated, the bromine will be decolorised. <strong>The</strong><br />

reaction occurs quickly at room temperature.<br />

f<br />

Br<br />

Br<br />

–<br />

<strong>Section</strong> 12.3<br />

1 a i 1,4-dimethylbenzene<br />

ii 1-ethy1-3-methylbenzene<br />

iii 1,2,4-trimethylbenzene<br />

d<br />

Cl<br />

e<br />

b i ii iii<br />

Cl<br />

2 a 1,3,5-trimethylbenzene<br />

b 1-methyl-3-propylbenzene<br />

c bromobenzene<br />

d 1,3-dinitrobenzene<br />

e 4-methylphenylamine<br />

f 2,6-dimethylphenol<br />

3 a b c OH<br />

4 a 0.154 nm <strong>The</strong> ring is not a regular<br />

hexagon, but has alternating<br />

0.134 nm long and short bonds.<br />

b<br />

c All the bonds in the ring are the same and so only one<br />

isomer is possible.<br />

CH 3<br />

CH 3<br />

194


SECTION 12<br />

<strong>Section</strong> 12.4<br />

1 a Product: Cl<br />

2 a CH 3<br />

b<br />

Cl<br />

CHClCH 2 Cl<br />

b Reagents and conditions: Br 2<br />

; AlBr 3<br />

or Fe; reflux<br />

c Product: NO 2<br />

CH 3<br />

d Reactant:<br />

3 a Difference in electronegativity between I and Cl<br />

b<br />

I<br />

+ I Cl<br />

+ HCl<br />

e Product:<br />

H 3 C<br />

CH 3<br />

CH<br />

CH 3<br />

c As the molecule is permanently polarised, a catalyst is<br />

not needed.<br />

d– d+<br />

Cl—I<br />

d Formation of chlorobenzene requires a chlorine with a<br />

d+ charge.<br />

4 a NO 2<br />

f Product:<br />

O<br />

C CH 2 CH 3<br />

g Reagents and conditions: CH 3<br />

COCl; AlCl 3<br />

; reflux<br />

h Product: SO 2 OH<br />

b<br />

+ HNO 3<br />

c. H 2 SO 4<br />

< 55 ∞C<br />

+ H 2 O<br />

SO 2 OH<br />

+ H 2 SO 4 + H 2 O<br />

5 a <strong>The</strong> benzene ring is resistant to hydrogenation<br />

because this destroys the stable delocalised electron<br />

system. <strong>The</strong> reaction has a high activation enthalpy.<br />

6 a Electrophilic substitution<br />

b Electrophilic addition<br />

c Radical substitution<br />

d Radical addition<br />

<strong>Section</strong> 13.1<br />

1 a trichloromethane<br />

b 2-chloropropane<br />

c 1,1,1,–trichloro–2,2,2–trifluoroethane<br />

d 2–chloro–1,1,1–trifluoropropane<br />

e 2,2–dibromo–3–chlorobutane<br />

2 d<br />

Cl<br />

F<br />

4 a<br />

H<br />

b<br />

H Cl<br />

C C Cl<br />

H Cl<br />

F F H<br />

H C C C H<br />

e<br />

F<br />

Cl<br />

F<br />

F F H<br />

c Cl H H Br H<br />

H C C C C C H<br />

Br<br />

Br<br />

3 a CH 3<br />

CH 2<br />

CH 2<br />

Cl(l) + NaOH(aq)<br />

Æ CH 3<br />

CH 2<br />

CH 2<br />

OH(aq) + NaCl(aq)<br />

b <strong>The</strong> chlorine atom in 1-chloropropane has been<br />

replaced by a hydroxyl group, –OH.<br />

c XX<br />

–<br />

H<br />

X O X<br />

XX<br />

5 a D<br />

bA<br />

cA<br />

dE<br />

e<br />

Cl<br />

H<br />

OH<br />

H<br />

H<br />

H<br />

cyclohexanol<br />

195


SECTION 13<br />

6 a<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

I<br />

+ OH – H C C<br />

OH<br />

+ I –<br />

H<br />

H<br />

H<br />

H<br />

b<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

Br<br />

+ CN – H C C<br />

CN<br />

+ Br –<br />

H<br />

H<br />

H<br />

H<br />

c<br />

Cl + OH – OH + Cl –<br />

d<br />

H<br />

H<br />

H C H H C<br />

H H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

C<br />

C<br />

H<br />

+ H 2 O H C C C H + HCl<br />

H<br />

Cl<br />

H<br />

H<br />

OH<br />

H<br />

e<br />

H<br />

H<br />

H<br />

H<br />

Br<br />

C<br />

C<br />

Br<br />

+ 2OH – HO C C<br />

OH<br />

+ 2Br –<br />

H<br />

H<br />

H<br />

H<br />

f<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

C<br />

Br<br />

+ H C C O –<br />

H C O C C H + Br –<br />

g<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

CH 3<br />

H<br />

C<br />

O<br />

H<br />

Cl<br />

H<br />

O<br />

H<br />

O<br />

H<br />

H<br />

C<br />

C<br />

C<br />

H<br />

+ H C O –<br />

H C C C H + Cl –<br />

3 C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

7 a CH 3<br />

CH 2<br />

Br + NH 3<br />

Æ CH 3<br />

CH 2<br />

NH 2<br />

+ H + +Br –<br />

b H H<br />

H<br />

H<br />

H<br />

H C C Br<br />

H C C<br />

N +<br />

H +<br />

Br<br />

–<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H N H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H C C<br />

N +<br />

H H C C<br />

N<br />

H + H +<br />

196<br />

H<br />

H<br />

H<br />

c d Explanation along similar lines to that on pages 302–303 in Chemical Ideas.<br />

Ammonia is the nucleophile because of its lone pair.<br />

8 a 1-iodopentane (or bromo or chloro); aqueous NaOH; reflux.<br />

b 2-iodopropane (or bromo or chloro): concentrated aqueous solution of NH 3<br />

(heat under pressure in a sealed tube).<br />

c 1-iodopropane (or bromo or chloro); alcoholic solution of KCN (or NaCN); reflux.<br />

hv<br />

9 a CH 3<br />

I æÆ CH 3 + I .<br />

hv<br />

CH 3<br />

Cl æÆ CH 3<br />

. + Cl .<br />

b Bond enthalpy of C–I bond is less than that of C–Cl bond. C–I bond can be broken<br />

by ultraviolet radiation in the troposphere although this has relatively less energy<br />

than the ultraviolet radiation in the stratosphere.<br />

H<br />

H


SECTION 13<br />

<strong>Section</strong> 13.2<br />

1 a pentan-1-ol e 2-methylbutan-2-ol<br />

b heptan-3-ol<br />

f ethoxypropane<br />

c butane-2,3-diol g decanol<br />

d cyclohexanol<br />

2 O<br />

methoxybutane<br />

O<br />

ethoxypropane<br />

Some students may give this isomer:<br />

O<br />

ethoxy-2-propane<br />

3 a Hydrogen bonding between ethanol and water<br />

molecules (see Chemical Ideas, page 306). As the<br />

hydrocarbon chain becomes longer, the importance of<br />

the –OH group relative to that of the alkyl group<br />

becomes less and hexanol is unable to mix with water.<br />

b No hydrogen bonding occurs.<br />

4 a B D F<br />

bA<br />

cC<br />

dE<br />

eAand B; C and F<br />

f A<br />

gE<br />

5 a Ethanol has hydrogen bonds between molecules, ethane<br />

does not. Hydrogen bonds require more energy to be<br />

broken than the weak attractive forces between ethane<br />

molecules, so boiling point of ethanol is higher.<br />

b Water forms more hydrogen bonds than ethanol so its<br />

boiling point is higher.<br />

c Both have –OH group and form hydrogen bonds<br />

between molecules. Boiling point increases down a<br />

homologous series as M r<br />

increases. Hence butan-1-ol<br />

has a higher boiling point than ethanol.<br />

d Butan-1-ol forms hydrogen bonds, ethoxyethane does<br />

not. Hence boiling point of butan-1-ol is higher.<br />

<strong>Section</strong> 13.3<br />

O<br />

CH 3<br />

CH 2<br />

1 a methanoic acid<br />

d<br />

b pentanoic acid<br />

CH<br />

c 2-methylbutanoic acid<br />

3 CH 2 C<br />

CH 3 CH 2 C<br />

CH 3<br />

2 a butanoic acid<br />

O<br />

b octanoic acid<br />

CH 3 CH 2 C<br />

c pentanedioic acid<br />

O<br />

d benzene-1,2-dicarboxylic acid<br />

e O<br />

O<br />

3 a H H H H H<br />

O<br />

C CH 2 CH 2 CH 2 CH 2 C<br />

H C C C C C C<br />

Cl<br />

Cl<br />

H H H H H O H<br />

b O H H H H<br />

O<br />

5<br />

O<br />

C C C C C C<br />

C<br />

propyl ethanoate<br />

H O<br />

O<br />

H H H H O H<br />

CH 2 CH 2 CH 3<br />

c O O H<br />

O<br />

C<br />

H C<br />

butyl methanoate<br />

O CH 2 CH 2 CH 2 CH 3<br />

O<br />

C<br />

O<br />

O<br />

H<br />

CH 3 CH 2 C<br />

ethyl propanoate<br />

O CH 2 CH 3<br />

O CH 3<br />

CH 3 CH 2 CH 2 C<br />

methyl butanoate<br />

4 a<br />

O<br />

CH 3 CH 2 C<br />

O<br />

O CH 3<br />

b Cl O<br />

C<br />

<strong>Student</strong> may also draw isomers with branched chains,<br />

for example<br />

O<br />

CH 3<br />

C<br />

2-propyl ethanoate<br />

c<br />

O<br />

O CH CH 3<br />

NH 2<br />

197


SECTION 13<br />

<strong>Section</strong> 13.4<br />

1 a A butan-1-ol<br />

B butan-2-ol<br />

C 2,4-dichlorophenol<br />

b D<br />

E<br />

F<br />

CH 3<br />

CH 3<br />

CH 2 CH 2<br />

CH 2 CH 2<br />

O<br />

O<br />

C<br />

H<br />

O<br />

C<br />

O<br />

H<br />

b<br />

5 a<br />

CH 3<br />

b<br />

O<br />

C<br />

O – Na +<br />

O<br />

CH 2 CH 2 C<br />

O – Na +<br />

CH 3<br />

2-methylpropanal<br />

CH CHO<br />

O<br />

cyclohexanone<br />

3<br />

CH 3 CH 2 C CH 3<br />

G<br />

CH<br />

CH 3 CH 2 C CH 2 CH 3<br />

c<br />

OH<br />

COOH<br />

2-hydroxybenzoic acid<br />

(salicylic acid)<br />

OH<br />

2 a B b D<br />

cC<br />

dF<br />

eG<br />

f C<br />

gE<br />

hA and D<br />

3 a OH O – Na +<br />

6 a A F<br />

bC<br />

cD E<br />

dB D E<br />

eA<br />

7 a H<br />

O<br />

H<br />

+ NaOH + H 2 O<br />

H C O C C H<br />

b CH 3<br />

CH 2<br />

COOH + KOH Æ CH 3<br />

CH 2<br />

COO – K + + H 2<br />

O<br />

c 2CH 3<br />

CH 2<br />

CH 2<br />

COOH + Na 2<br />

CO 3<br />

Æ 2CH 3<br />

CH 2<br />

CH 2<br />

COO – Na + + CO 2<br />

+ H 2<br />

O<br />

H<br />

b methyl ethanoate<br />

c H H<br />

H<br />

O<br />

d CH 3<br />

COOH + NaHCO 3Æ<br />

CH3 COO – Na + + CO 2<br />

+ H 2<br />

O<br />

e 2CH 3<br />

CH 2<br />

COOH + Mg<br />

Æ (CH 3<br />

CH 2<br />

COO – ) 2<br />

Mg 2+ + H 2<br />

4 a O – K + O –<br />

O – K +<br />

O –<br />

H C C O C H<br />

H<br />

H<br />

d ethyl methanoate<br />

e ethanol; methanoic acid<br />

or<br />

198


SECTION 13<br />

<strong>Section</strong> 13.5<br />

CH 3 C OH<br />

CH 3 CH 2 OH<br />

1 a methyl propanoate<br />

b propyl ethanoate<br />

c ethyl propanoate<br />

d methyl methanoate<br />

e methyl butanoate<br />

2 a and b<br />

Ester Alcohol Acid<br />

ethyl methanoate ethanol methanoic acid<br />

H C O CH 2 CH 3<br />

H C OH<br />

CH 3 CH 2 OH<br />

O<br />

O<br />

3–methylbutyl ethanoate 3–methylbutanol ethanoic acid<br />

CH 3 C O CH 2 CH 2 CHCH 3<br />

CH 3 CHCH 2 CH 2 OH<br />

O<br />

CH 3<br />

CH 3<br />

O<br />

ethyl 2–methylbutanoate ethanol 2–methylbutanoic acid<br />

CH 3 CH 2 CH C O CH 2 CH 3<br />

CH 3 CH 2 CH C OH<br />

CH 3 O<br />

CH 3 O<br />

phenylmethyl ethanoate phenylmethanol ethanoic acid<br />

O<br />

CH 2 OH<br />

CH 2 O C CH 3<br />

CH 3 C OH<br />

O<br />

c <strong>The</strong>y are structural isomers.<br />

3 a<br />

CH 3<br />

CH<br />

CH 3<br />

CH 3 CH 2 CH 3 CH<br />

O<br />

O<br />

OH<br />

+<br />

C<br />

OH<br />

CH 3<br />

C CH 2<br />

CH 3 H 2 O<br />

O<br />

+<br />

b<br />

HO<br />

O<br />

O<br />

O<br />

CH 2 CH 2 OH + 2CH 3 C OH CH 3 C O CH 2 CH 2 O C CH 3<br />

+ 2H 2 O<br />

4<br />

O<br />

O<br />

O<br />

O<br />

O CH 2 CH 2 O C<br />

C O<br />

CH 2<br />

CH 2<br />

O<br />

C<br />

C<br />

5 a <strong>The</strong> C–O bond next to the C=O in the ester is broken. c A hydrogen ion attaches itself to the oxygen of the<br />

O<br />

carbonyl group, and thus makes the carbon atom in<br />

the group more susceptible to attack by a nucleophile<br />

C CH 3<br />

(eg water).<br />

CH 3 CH 2 O<br />

O<br />

C CH 3 + H +<br />

b <strong>The</strong> C=O bond is very polar with a d+ charge on the<br />

carbon atom. Hydrolysis occurs by nucleophilic attack<br />

CH 3 CH 2 O<br />

on this carbon atom by a lone pair on the oxygen-18 of<br />

a water molecule and the C–O bond break.<br />

HO +<br />

CH 3<br />

CH 2<br />

O<br />

C<br />

CH 3<br />

A water molecule attacks the positive carbon atom, the<br />

CH 3<br />

–CH 2<br />

–O – group is displaced and combines with H + to<br />

form ethanol.<br />

199


SECTION 13<br />

6 a<br />

O<br />

O<br />

CH 3<br />

CH 2 OH + CH 3 C Cl CH 3 CH 2 O C CH 3<br />

+<br />

HCl<br />

b<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

CH 3<br />

C OH + CH 3 C Cl CH 3<br />

C CH 3<br />

CH 3<br />

C O<br />

CH 3<br />

+<br />

HCl<br />

c<br />

O<br />

O O O<br />

CH 3<br />

OH + CH 3 C O C CH 3 CH 3 O C CH 3<br />

+ CH 3 C OH<br />

d<br />

O<br />

CH 3 O C CH 3<br />

+ H 2 O CH 3 OH + CH 3 C<br />

H +<br />

O<br />

OH<br />

e<br />

O<br />

O<br />

O<br />

C<br />

CH 3<br />

+ 2OH – + CH 3 C + H 2 O<br />

O –<br />

O –<br />

(or NaOH as reactant; sodium salts as products)<br />

H<br />

7<br />

OH<br />

8 a Phenylmethanol<br />

C O H<br />

CH 3<br />

4-methylphenol<br />

CH 3<br />

COCl (ethanoyl chloride) or CH 3<br />

CO–O–COCH 3<br />

(ethanoic anhydride)<br />

Mix the reagents carefully. If the anhydride is used, warm<br />

the mixture under reflux.<br />

b ethanoic acid, CH 3<br />

COOH<br />

ethanoyl chloride, CH 3<br />

COCl<br />

ethanoic anhydride (CH 3<br />

CO) 2<br />

O<br />

c H 2<br />

O, water<br />

HCl, hydrogen chloride<br />

CH 3<br />

COOH, ethanoic acid<br />

d<br />

O<br />

CH 2 O C<br />

CH 3<br />

H<br />

CH 2 OH<br />

+ H 2 O + CH 3 COOH<br />

e Becomes increasingly vinegary.<br />

<strong>Section</strong> 13.6<br />

1 a O<br />

b H O<br />

H C O<br />

R O C R¢<br />

(R' can be H)<br />

`<br />

C<br />

O<br />

H C O C<br />

O<br />

H C O C<br />

CH 3<br />

CH 3<br />

CH 3<br />

H<br />

c<br />

H<br />

O<br />

H<br />

H C O<br />

C<br />

O<br />

H C O<br />

H<br />

O<br />

H C O C<br />

O<br />

CH 3<br />

+ 3NaOH H C O H<br />

CH 3<br />

+ 3CH 3 C<br />

O – + Na<br />

H C O C<br />

H<br />

CH 3<br />

H C O H<br />

H<br />

200


SECTION 13<br />

2 a, b 1 mole glycerol (propane-1,2,3-triol)<br />

2 moles oleic acid<br />

1 mole linoleic acid<br />

3 a Saturated fats are esters of fatty acids with no (or few) carbon double bonds.<br />

b Monounsaturated fats contain fatty acids with one carbon double bond (such as oleic acid).<br />

c Polyunsaturated fats contain a high proportion of fatty acid groups with two<br />

or more carbon double bonds (such as linoleic acid).<br />

4 a O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

b<br />

O<br />

Na +<br />

– O<br />

c <strong>The</strong> hydrocarbon chain<br />

Instantaneous dipole–induced dipole forces<br />

d Soaps are sodium and potassium salts of long chain carboxylic acids. <strong>The</strong> ions<br />

in solution are readily hydrated.<br />

5 a 150 °C; pressure (5 atmospheres); nickel as catalyst<br />

b i M r<br />

= 882<br />

ii <strong>1.1</strong>3 ¥ 10 3 moles of oil react with 2.45 ¥ 10 3 moles of hydrogen<br />

iii 4<br />

iv 4 moles<br />

v To fully saturate 1 tonne of oil would require<br />

<strong>1.1</strong>3 ¥ 10 3 ¥ 4 moles hydrogen = 4.52 ¥ 10 3 moles<br />

2.45 ¥ 10 3<br />

Percentage of double bonds hydrogenated = ¥ 100 = 54.2%<br />

vi Easier to spread (less hard); healthier<br />

primary<br />

CH 3<br />

<strong>Section</strong> 13.7<br />

1 a methanal<br />

c<br />

CH 3 O<br />

b propanal<br />

C<br />

c 4-methylpentanal<br />

CH 3 CH 2 C CH 3<br />

CH 3 C C H aldehyde<br />

H<br />

2 a butan-2-one<br />

H<br />

3<br />

b pentan-3-one<br />

5 a H H H H<br />

a H H H H O<br />

O<br />

H C C C C OH<br />

H C C C C C H<br />

4.52 ¥ 10 3<br />

H<br />

H H H H<br />

H H H H<br />

b H OH H H<br />

b H O H H H<br />

O<br />

H C C C C H<br />

H C C C C C H<br />

H H H H<br />

H H H H<br />

4 a<br />

O CH 3<br />

c<br />

H<br />

CH 3 CH 2 C C CH 3 ketone<br />

H H C H OH H<br />

H<br />

H C C C C H<br />

b CH 3 O<br />

H H C H H H<br />

ketone<br />

secondary<br />

secondary<br />

201


SECTION 13<br />

6 a H H OH<br />

b<br />

H<br />

H<br />

OH<br />

H<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

H<br />

N<br />

H<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

C<br />

H<br />

N<br />

H<br />

c Similar argument to Chemical Ideas pages 328–329.<br />

<strong>Section</strong> 13.8<br />

NH 2 NH 2<br />

1 a ethylamine d ethyldimethylamine<br />

b dimethylamine e cyclohexylamine<br />

c 2-aminopropane<br />

2 a CH 3 CH 2 CH 2 NH 2<br />

b<br />

NH 2<br />

c CH 3 CH 2 N CH 3<br />

CH 2 CH 3<br />

d CH 3 e f NH 2<br />

CH 3 CH 2 CH 2 CH 2 NCH 2 CH 3<br />

CH 3 CH 2 CH CH 2 CH 3 CH 2 CH CH 2 CH CH 3<br />

+<br />

3 a NH 3<br />

b NH<br />

c<br />

CH 3 CH CH 3 Cl – CH 3 CH<br />

CH 3<br />

CO CH 3<br />

CH<br />

NH<br />

CH 2 CH 3<br />

+ HCl<br />

CH 3<br />

CH 3<br />

+ HCl<br />

4 a CH CH 2 CH 2 NH 2 + HCl CH 3 CH 2 CH 2 NH 3 + Cl –<br />

3 CH 2<br />

CH 2<br />

+<br />

b<br />

c<br />

N<br />

+ CH 3 COCl + HCl<br />

NH 2 NHCOCH 3<br />

H + C 2 H 5 COCl N C C 2 H 5<br />

+ HCl<br />

O<br />

O<br />

d<br />

+<br />

–<br />

NH 2 + H 2 SO 4 NH 3 HSO 4<br />

or<br />

NH 2 + H 2 SO 4<br />

2<br />

+<br />

NH 3 SO 4<br />

2–<br />

e<br />

f<br />

CH 3 CH 2 NH 2 + CH 3 Br CH 3 CH 2 NH CH 3 + HBr<br />

CH 3 CH 2 CO NH CH 3 + NaOH CH 3 CH 2 COO – Na + + CH 3 NH 2<br />

or<br />

CH 3 CH 2 CO NH CH 3 + OH – CH 3 CH 2 COO – + CH 3 NH 2<br />

5 a Tertiary amines cannot react with acid chlorides<br />

because there is no H atom attached to the nitrogen.<br />

b H<br />

H<br />

C 4 H 9<br />

N<br />

H<br />

H<br />

O<br />

H<br />

6 a Reagents and conditions: HCl(aq) (moderately<br />

concentrated); reflux<br />

b Products:<br />

CH 3<br />

+<br />

CH 3 CH 2 COOH + N H Cl –<br />

c Reactant:<br />

O<br />

CH 3<br />

O<br />

H<br />

Because of strong attraction (hydrogen bonding)<br />

between amine and solvent molecules.<br />

c [Cu(H 2<br />

O) 6<br />

] 2+ + 4C 4<br />

H 9<br />

NH 2<br />

blue<br />

Æ [Cu(C 4<br />

H 9<br />

NH 2<br />

) 4<br />

(H 2<br />

O) 2<br />

] 2+ + 4H 2<br />

O<br />

deep blue<br />

(cf [Cu(NH 3<br />

) 4<br />

(H 2<br />

O) 2<br />

] 2+ )<br />

d Product:<br />

H 2 C<br />

H 2 C<br />

NH<br />

C<br />

O<br />

C<br />

O – Na +<br />

CH 2<br />

NH 2<br />

CH 3<br />

202


SECTION 13<br />

<strong>Section</strong> 13.9<br />

1 a H R<br />

O<br />

H C C O –<br />

N +<br />

H<br />

H<br />

b<br />

i<br />

CH 3 CH 3<br />

+ HCl Cl – H 3 N + CH COOH<br />

H 2 N<br />

CH<br />

COOH<br />

ii<br />

CH 2 OH<br />

CH 2 OH<br />

H 2 N<br />

CH<br />

COOH<br />

+ NaOH H 2 N CH COO – Na +<br />

+ H 2 O<br />

iii<br />

+<br />

(CH 2 ) 4 NH 3 Cl –<br />

(CH 2 ) 4 NH 2<br />

+ 2HCl Cl – H 3 N + CH COOH<br />

H 2 N<br />

CH<br />

COOH<br />

iv<br />

CH 2 COOH<br />

H 2 N<br />

CH<br />

COOH<br />

CH 2 COO – Na +<br />

+ 2NaOH H 2 N CH COO – Na + + 2H 2 O<br />

2<br />

O<br />

H 2 N CH C OH<br />

CH<br />

CH 3<br />

O<br />

CH 3<br />

H 2 N CH C OH<br />

3 a<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

H 2 N CH C N CH 2 C OH<br />

CH 3<br />

H 2 N CH C OH<br />

+ H 2 O<br />

C<br />

OH<br />

CH 3<br />

CH 2<br />

+ H 2 N<br />

H<br />

<strong>The</strong> salts will be formed in the presence of HCl(aq), for example<br />

O<br />

O<br />

+<br />

Cl – H 3 N CH 2 C OH<br />

b<br />

OH<br />

CH 2<br />

O<br />

O<br />

H2N CH C N<br />

C OH<br />

H<br />

CH 2<br />

H 2 N CH C<br />

+ 2OH –<br />

OH<br />

CH 2<br />

CH 2<br />

O<br />

O<br />

C O – + H 2 N O – + H 2 O<br />

c Key points which should be included are: correct choice of solvent; the container used for<br />

the separation should have a lid; authentic samples of the amino acids used alongside the<br />

reaction mixture; R f<br />

values carefully measured.<br />

203


SECTION 14<br />

<strong>Section</strong> 13.10<br />

1 a<br />

+<br />

–<br />

NH 3 HSO 4<br />

b<br />

+<br />

–<br />

N N HSO 4<br />

c<br />

N N OH<br />

(strictly the sodium salt)<br />

2 a<br />

HO<br />

+<br />

N N Cl –<br />

b<br />

i<br />

+<br />

HO N N Cl – + OH HO N N OH + HCl<br />

ii<br />

HO<br />

+<br />

HO N N Cl – + HO N N<br />

+ HCl<br />

HO<br />

iii<br />

+<br />

HO N N Cl – + NH 2 HO N N NH 2 + HCl<br />

3<br />

HOO 2 S<br />

+<br />

N N X –<br />

and<br />

N<br />

CH 3<br />

CH 3<br />

O 2 N<br />

+<br />

N N X –<br />

and<br />

OH<br />

NH 2<br />

and<br />

X – N<br />

+ N<br />

N + N X –<br />

4 <strong>The</strong> diazonium salt is a relatively weak electrophile and will only<br />

react with particularly electron-rich activated benzene rings.<br />

SO 2 OH<br />

204<br />

<strong>Section</strong> 14.1<br />

1 a 73.9%<br />

b 73.1%<br />

2 Route I (Route I 40%; Route II 30%)<br />

3 16.2 g<br />

4 a (Selection of starting materials); reaction; extraction of<br />

product from reaction mixture; purification of product.<br />

<strong>Section</strong> 14.2<br />

1 a A solution of hydrogen bromide (HBr) in a polar<br />

solvent at room temperature.<br />

b Reflux with dilute aqueous sodium hydroxide solution<br />

b A small amount of product is never recovered from the<br />

reaction mixture. This is due to factors such as wetting<br />

of the walls of the reaction vessel, incomplete<br />

crystallisation of the product, loss on filter papers, loss<br />

by evaporation, etc.<br />

c Reflux with an acidified solution of potassium<br />

dichromate(VI)<br />

d Treat with hydrogen cyanide solution with a small<br />

amount of alkali.


SECTION 14<br />

2 a Addition; electrophilic<br />

b Substitution; nucleophilic<br />

c Oxidation<br />

d Addition; nucleophilic<br />

3 a Radical substitution<br />

b <strong>The</strong> mechanism is:<br />

Cl<br />

Cl<br />

hν<br />

2 Cl<br />

initiation<br />

H<br />

CH 3<br />

+ Cl<br />

C<br />

+ HCl<br />

H<br />

propagation<br />

H<br />

H<br />

C<br />

+ Cl 2<br />

C<br />

Cl<br />

+ Cl<br />

H<br />

H<br />

Cl Cl 2<br />

C C<br />

+ Cl<br />

H<br />

H<br />

H<br />

H<br />

C<br />

+<br />

C<br />

H<br />

H<br />

H<br />

H<br />

termination<br />

H<br />

C<br />

H<br />

+ Cl C Cl<br />

H<br />

H<br />

c<br />

CH 2 Cl<br />

CH 2 NH 2<br />

c. NH 3 (aq)<br />

heat in sealed tube<br />

4 a<br />

CH 3<br />

CH 3<br />

Cl<br />

and<br />

Cl<br />

b Electrophilic substitution<br />

c AlCl 3<br />

helps to polarise the chlorine molecule, to produce the electrophile, Cl +<br />

d+ d–<br />

+ Cl Cl<br />

Cl<br />

Cl + + AlCl 4<br />

–<br />

+ AlCl 3<br />

+ + AlCl 3<br />

H<br />

Cl<br />

205


SECTION 14<br />

5 a i Reagents and condition: treat with a nitrating<br />

mixture (conc. HNO 3<br />

and conc. H 2<br />

SO 4<br />

); keep<br />

temperature below 55 °C.<br />

ii Product: Br<br />

iv<br />

H<br />

C<br />

O<br />

OH<br />

+ CH 3<br />

OH<br />

Br<br />

iii Reactant: CH 3<br />

Cl (or CH 4<br />

)<br />

iv Reactant: CH 3<br />

–CH 2<br />

–CH 2<br />

–X<br />

(X = Cl, Br, I)<br />

v Products:<br />

O<br />

O<br />

HO C<br />

C OH<br />

vi Products:<br />

O<br />

CH 2 CH 2<br />

+ HCl<br />

CH 3<br />

+ 2HCl<br />

v<br />

H<br />

H<br />

H<br />

O<br />

C<br />

+ H 2 O<br />

O CH 3<br />

H<br />

C C + H 2 CH 3 CH 3<br />

H<br />

b<br />

6 a i<br />

b<br />

C<br />

CH<br />

i Electrophilic substitution<br />

ii Electrophilic addition<br />

iii Radical substitution<br />

iv Nucleophilic substitution<br />

v Nucleophilic substitution<br />

vi Electrophilic substitution<br />

ii<br />

iii<br />

iv<br />

v<br />

COO – Na +<br />

CH 2 CH 3<br />

+ H 2 O<br />

CH 3 COO – Na + + NH 2<br />

+ H 2 O<br />

CH 3 CH 2 OH<br />

i Acid–base<br />

ii Hydrolysis<br />

iii Dehydration<br />

iv Esterification<br />

v Reduction<br />

+ 3H 2<br />

Pt<br />

c Examples may be:<br />

i CH 3 COOH + NaOH<br />

ii<br />

iii<br />

CH 3<br />

C NH CH 3<br />

O<br />

Al 2 O 3<br />

CH 3 CH 2 OH CH 2 CH 2 + H 2 O<br />

+<br />

CH 3 COO – Na + + CH 3 NH 2<br />

CH 3 COO – Na + + H 2 O<br />

NaOH<br />

7 a React with hydrogen in presence of finely divided<br />

nickel at 150 °C and 5 atm.<br />

CH 3 CH 2 CH CH CH 2 COOH + H 2<br />

CH 3 CH 2 CH 2 CH 2 CH 2 COOH<br />

b Treat with a solution of HBr in a polar solvent at<br />

room temperature.<br />

CH 3 CH 2 CH CH CH 2 COOH HBr<br />

Br<br />

CH 3 CH 2 CH CH 2<br />

(+ isomer)<br />

Br<br />

CH 2<br />

+<br />

CH 3 CH 2 CH CH 2 CH 2 COOH<br />

(prepared as in b)<br />

OH<br />

CH 3 CH 2 CH<br />

<strong>The</strong>n acidify with dilute acid.<br />

OH<br />

OH<br />

COOH<br />

c Hydrolyse by refluxing with a dilute aqueous solution<br />

of NaOH.<br />

2NaOH<br />

CH 2 CH COO – Na + 2<br />

+ NaBr + H 2 O<br />

CH 3 CH 2 CH CH 2 CH 2 COO – Na + + HCl<br />

CH3 CH 2 CH CH 2 CH 2 COOH + NaCl<br />

+<br />

206


SECTION 14<br />

d Dehydrate by heating with Al 2<br />

O 3<br />

at 300 °C or by heating with concentrated sulphuric acid.<br />

OH<br />

CH 3 CH 2<br />

CH CH 2 CH 2 COOH CH 3 CH CH CH 2 CH 2 COOH<br />

(prepared as in c)<br />

(+ isomer) + H 2 O<br />

8 OH<br />

OH<br />

O<br />

H 2 (g) / Ni<br />

300∞C; 30 atm<br />

Cr 2 O 2– 7 / H + (aq)<br />

reflux<br />

cyclohexanol<br />

9<br />

COOH<br />

NO 2<br />

COOC 2 H 5<br />

NO 2<br />

COOC 2 H 5<br />

NH 2<br />

C 2 H 5 OH<br />

Sn + c. HCl<br />

c. H 2 SO 4 as catalyst<br />

reflux<br />

reflux<br />

<strong>Section</strong> 15.1<br />

a Continuous<br />

b Batch<br />

c Continuous<br />

d Continuous<br />

<strong>Section</strong> 15.2<br />

a<br />

Conditions: lower pressure, or less separation required.<br />

Feedstock: methanol can be obtained from a variety of<br />

feedstocks.<br />

Product: higher yield<br />

Co-products: far fewer.<br />

b<br />

Disadvantages: very expensive catalyst, and more than<br />

one stage to process.<br />

<strong>Section</strong> 15.3<br />

2 a i As 3 moles of gas form 1 mole of gas, increasing<br />

the pressure will cause more methanol to form.<br />

ii As the conversion of synthesis gas to methanol is<br />

exothermic, an increase in temperature will<br />

reduce the equilibrium yield of methanol.<br />

b i <strong>The</strong> pressure of 100 atm will increase the yield.<br />

<strong>The</strong> temperature is not too high, otherwise the<br />

yield is decreased. It is sufficient to provide a high<br />

rate of reaction with the catalyst used. It is<br />

carefully controlled to prevent the exothermic<br />

reaction raising the temperature and reducing the<br />

yield.<br />

ii <strong>The</strong> catalyst lowers the temperature required to<br />

give a high rate of reaction. However, some<br />

sacrifice in yield is made to maintain this rate. <strong>The</strong><br />

high pressure also increases the reaction rate.<br />

<strong>Section</strong> 15.4<br />

a<br />

<strong>The</strong>rmal energy released from the reaction can be used<br />

to pre-heat, via a heat exchanger, the water which will be<br />

made into steam as one of the reactants.<br />

b<br />

<strong>The</strong> unreacted feedstock can be recycled again over the<br />

catalyst, saving costs of energy needed in the high<br />

temperature and pressure conditions.<br />

207


SECTION 15<br />

<strong>Section</strong> 15.5<br />

1 a Many of the fixed costs for a 200 tonne day –1 plant are<br />

less than double those of a 100 tonne day –1 plant: for<br />

example, the larger plant will require less than twice<br />

the area of land for building, and the cost of building<br />

access roads will be less than twice as great.<br />

b You have to pay the same fixed costs such as wages<br />

and land rental regardless of how much you are<br />

producing. But variable costs such as costs of raw<br />

materials and energy will double if you double output.<br />

2 a Germany 2.2 ¥ 10 5 US$<br />

France<br />

3.3 ¥ 10 5 US$<br />

UK<br />

2.1 ¥ 10 5 US$<br />

Italy<br />

2.6 ¥ 10 5 US$<br />

Belgium<br />

3.8 ¥ 10 5 US$<br />

Spain<br />

2.5 ¥ 10 5 US$<br />

<strong>The</strong> Netherlands 3.7 ¥ 10 5 US$<br />

Switzerland<br />

3.7 ¥ 10 5 US$<br />

Ireland<br />

7.9 ¥ 10 5 US$<br />

Sweden<br />

2.7 ¥ 10 5 US$<br />

b Ireland<br />

c <strong>The</strong> costs of operating in each country (general level<br />

of wages; workforce productivity; taxation policies);<br />

the age and inherent efficiency of the plant in each of<br />

the countries if similar products are being made; the<br />

type of product each country produces; some of these<br />

factors are controlled by political forces, others are the<br />

results of decisions and developments in the past.<br />

d It may be that a country’s chemical industry is biased<br />

towards products that need a larger number of<br />

employees. Thus, one should also look at other<br />

statistics such as profits per employee.<br />

208

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!