17.11.2012 Views

ACS355 user's manual Rev A

ACS355 user's manual Rev A

ACS355 user's manual Rev A

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ABB general machinery drives<br />

User’s <strong>manual</strong><br />

<strong>ACS355</strong> drives


List of related <strong>manual</strong>s<br />

Drive <strong>manual</strong>s and guides Code (English)<br />

<strong>ACS355</strong> user’s <strong>manual</strong> 3AUA0000066143 1)<br />

<strong>ACS355</strong> drives with IP66/67 / UL Type 4x enclosure<br />

supplement<br />

3AUA0000066066 1)<br />

<strong>ACS355</strong> Common DC application guide 3AUA0000070130 4)<br />

Option <strong>manual</strong>s and guides<br />

FCAN-01 CANopen adapter module user’s <strong>manual</strong> 3AFE68615500 1)<br />

FDNA-01 DeviceNet adapter module user’s <strong>manual</strong> 3AFE68573360 1)<br />

FECA-01 EtherCAT adapter module user’s <strong>manual</strong> 3AUA0000068940 1)<br />

FENA-01 Ethernet adapter module Modbus/TCP protocol 3AUA0000022989 1)<br />

<strong>manual</strong><br />

FMBA-01 Modbus adapter module user’s <strong>manual</strong> 3AFE68586704 1)<br />

FLON-01 LONWORKS® adapter module user’s <strong>manual</strong> 3AUA0000041017 1)<br />

FPBA-01 PROFIBUS DP adapter module user’s <strong>manual</strong> 3AFE68573271 1)<br />

FRSA-00 RS-485 adapter board user’s <strong>manual</strong> 3AFE68640300 1)<br />

MFDT-01 FlashDrop user’s <strong>manual</strong> 3AFE68591074 1)<br />

MPOT-01 potentiometer module instructions for<br />

installation and use<br />

3AFE68591082 1), 3)<br />

MREL-01 relay output extension module user’s <strong>manual</strong> 3AUA0000035974 1)<br />

MTAC-01 pulse encoder interface module user’s <strong>manual</strong> 3AFE68591091 1)<br />

MUL1-R1 installation instructions for ACS150, ACS310,<br />

ACS350 and <strong>ACS355</strong><br />

3AFE68642868 1), 3)<br />

MUL1-R3 installation instructions for ACS310, ACS350<br />

and <strong>ACS355</strong><br />

3AFE68643147 1), 3)<br />

MUL1-R4 installation instructions for ACS350 and<br />

<strong>ACS355</strong><br />

3AUA0000025916 1), 3)<br />

SREA-01 Ethernet adapter module quick start-up guide 3AUA0000042902 1)<br />

SREA-01 Ethernet adapter module user’s <strong>manual</strong> 3AUA0000042896 2)<br />

Maintenance <strong>manual</strong>s and guides<br />

Guide for capacitor reforming in ACS50, ACS55, ACS150, 3AFE68735190<br />

ACS310, ACS350, <strong>ACS355</strong>, ACS550 and ACH550<br />

1) Delivered as a printed copy with the drive or optional equipment<br />

2) Delivered in PDF format with the drive or optional equipment<br />

3) Multilingual<br />

4) Available from your local ABB representative<br />

Manuals are available in PDF format on the Internet (unless otherwise noted). See<br />

section Document library on the Internet on the inside of the back cover.


© 2010 ABB Oy. All Rights Reserved.<br />

User’s Manual<br />

<strong>ACS355</strong><br />

Table of contents<br />

1. Safety<br />

4. Mechanical installation<br />

6. Electrical installation<br />

8. Start-up, control with I/O<br />

and ID run<br />

3AUA0000066143 <strong>Rev</strong> A<br />

EN<br />

EFFECTIVE: 2010-01-01


Table of contents<br />

Table of contents 5<br />

List of related <strong>manual</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1. Safety<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Use of warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Safety in installation and maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Electrical safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Safe start-up and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Electrical safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Safety<br />

General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2. Introduction to the <strong>manual</strong><br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

Purpose of the <strong>manual</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

Contents of this <strong>manual</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Categorization by frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Quick installation and commissioning flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

3. Operation principle and hardware description<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Power connections and control interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Type designation label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

Type designation key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

4. Mechanical installation<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Checking the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Requirements for the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Required tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Checking the delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Install the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Fasten clamping plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Attach the optional fieldbus module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


6 Table of contents<br />

5. Planning the electrical installation<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

Implementing the AC power line connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

Selecting the supply disconnecting device (disconnecting means) . . . . . . . . . . . . . . . . . . . . 37<br />

European union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

Other regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

Checking the compatibility of the motor and drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

Alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

Motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

Additional US requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Relay cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

Control panel cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

Routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

Control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

Protecting the drive, input power cable, motor and motor cable in short circuit situations and<br />

against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Protecting the drive and input power cable in short-circuit situations . . . . . . . . . . . . . . . 43<br />

Protecting the motor and motor cable in short-circuit situations . . . . . . . . . . . . . . . . . . . 43<br />

Protecting the drive, motor cable and input power cable against thermal overload . . . . . 43<br />

Protecting the motor against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Implementing the Safe torque off (STO) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Using residual current devices (RCD) with the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Using a safety switch between the drive and the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Implementing a bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Protecting the contacts of relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

6. Electrical installation<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Input power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

Checking the compatibility with IT (ungrounded) and corner-grounded TN systems . . . . . . . 48<br />

Connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

Connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

I/O terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Default I/O connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

Connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

7. Installation checklist<br />

Checking the installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57


8. Start-up, control with I/O and ID run<br />

Table of contents 7<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

How to start up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

How to start up the drive without a control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

How to perform a <strong>manual</strong> start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

How to perform a guided start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

How to perform the ID run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

ID run procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

9. Control panels<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

About control panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

Basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

Output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

Reference mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br />

Copy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

Basic control panel alarm codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

Assistant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

Output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

Parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

Assistants mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

Changed parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

Fault logger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

Time and date mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

Parameter backup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

I/O settings mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

10. Application macros<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Summary of the I/O connections of the application macros . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

ABB standard macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

3-wire macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

Alternate macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Motor potentiometer macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115


8 Table of contents<br />

Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

PID control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Torque control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

11. Program features<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Start-up assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

List of the tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

Contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

Block diagram: Start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

Block diagram: Reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

Reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Programmable analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Programmable analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

Programmable relay output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Frequency input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Transistor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135


Table of contents 9<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

DC magnetizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Maintenance trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

DC hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Speed compensated stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

Flux braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Flux optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

Custom U/f ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

AI


10 Table of contents<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

Process controller PID1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

External/Trim controller PID2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

Sleep function for the process PID (PID1) control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

Jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Timed functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Sequence programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

Safe torque off (STO) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

12. Actual signals and parameters<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175


Table of contents 11<br />

Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

Fieldbus equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

Default values with different macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

01 OPERATING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

03 FB ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

04 FAULT HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br />

10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br />

11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

12 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192<br />

13 ANALOG INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199<br />

15 ANALOG OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

16 SYSTEM CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203<br />

18 FREQ IN & TRAN OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br />

19 TIMER & COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214<br />

21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218<br />

22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223<br />

23 SPEED CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227<br />

24 TORQUE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230<br />

25 CRITICAL SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231<br />

26 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

29 MAINTENANCE TRIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br />

30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

31 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br />

32 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248<br />

33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250<br />

34 PANEL DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251<br />

35 MOTOR TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256<br />

36 TIMED FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

40 PROCESS PID SET 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261<br />

41 PROCESS PID SET 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br />

42 EXT / TRIM PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272<br />

43 MECH BRK CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274<br />

50 ENCODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275<br />

51 EXT COMM MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276<br />

52 PANEL COMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277<br />

53 EFB PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278<br />

54 FBA DATA IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280<br />

55 FBA DATA OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280<br />

84 SEQUENCE PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281<br />

98 OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294<br />

99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294<br />

13. Fieldbus control with embedded fieldbus<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301<br />

System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301


12 Table of contents<br />

Setting up communication through the embedded Modbus . . . . . . . . . . . . . . . . . . . . . . . . . 303<br />

Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304<br />

Fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

Control word and Status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

Fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308<br />

Reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308<br />

Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310<br />

Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311<br />

Actual value scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311<br />

Modbus mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312<br />

Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312<br />

Function codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br />

Exception codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br />

Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br />

ABB drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br />

DCU communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320<br />

14. Fieldbus control with fieldbus adapter<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325<br />

System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325<br />

Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . 327<br />

Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328<br />

Fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330<br />

Control word and Status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

Communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

Fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332<br />

Reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332<br />

Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334<br />

Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334<br />

Actual value scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334<br />

15. Fault tracing<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335<br />

Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335<br />

Alarm and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335<br />

How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335<br />

Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336<br />

Alarm messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337<br />

Alarms generated by the basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341<br />

Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344<br />

Embedded fieldbus faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352<br />

No master device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352<br />

Same device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352<br />

Incorrect wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352


16. Maintenance and hardware diagnostics<br />

Table of contents 13<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

Maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

Cooling fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354<br />

Replacing the cooling fan (frame sizes R1…R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354<br />

Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355<br />

Reforming the capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355<br />

Power connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355<br />

Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

Cleaning the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

Changing the battery in the assistant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

17. Technical data<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357<br />

Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358<br />

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359<br />

Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359<br />

Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359<br />

Power cable sizes and fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361<br />

Dimensions, weights and free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363<br />

Dimensions and weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363<br />

Free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363<br />

Losses, cooling data and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

Losses and cooling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365<br />

Terminal and lead-through data for the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366<br />

Terminal and lead-through data for the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366<br />

Electric power network specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

Motor connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

Control connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369<br />

Brake resistor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370<br />

Common DC connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370<br />

Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370<br />

Degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370<br />

Ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371<br />

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372<br />

Applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372<br />

CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br />

Compliance with the European EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br />

Compliance with EN 61800-3:2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br />

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br />

Category C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br />

Category C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374<br />

Category C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374<br />

UL marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375<br />

UL checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375<br />

C-Tick marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376<br />

TÜV NORD Safety Approved mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376


14 Table of contents<br />

RoHS marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376<br />

Compliance with the Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376<br />

Patent protection in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377<br />

18. Dimension drawings<br />

Frame sizes R0 and R1, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . 380<br />

Frame sizes R0 and R1, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381<br />

Frame size R2, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382<br />

Frame size R2, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383<br />

Frame size R3, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384<br />

Frame size R3, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385<br />

Frame size R4, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386<br />

Frame size R4, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

19. Appendix: Resistor braking<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389<br />

Planning the braking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389<br />

Selecting the brake resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389<br />

Selecting the brake resistor cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391<br />

Placing the brake resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

Protecting the system in brake circuit fault situations . . . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

Electrical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

20. Appendix: Extension modules<br />

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393<br />

Extension modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393<br />

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394<br />

Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396<br />

MTAC-01 pulse encoder interface module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396<br />

MREL-01 output relay module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396<br />

MPOW-01 auxiliary power module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397<br />

Electrical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397<br />

Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398<br />

21. Appendix: Safe torque off (STO)<br />

What this appendix contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399<br />

Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399<br />

Program features, settings and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

Operation of the STO function and its diagnostics function . . . . . . . . . . . . . . . . . . . . . . 400<br />

STO status indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

STO function activation and indication delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<br />

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<br />

Start-up and commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403<br />

Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403<br />

STO components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403


Table of contents 15<br />

Data related to safety standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

Further information<br />

Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

Providing feedback on ABB Drives <strong>manual</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405


16 Table of contents


Safety<br />

What this chapter contains<br />

Safety 17<br />

The chapter contains safety instructions which you must follow when installing,<br />

operating and servicing the drive. If ignored, physical injury or death may follow, or<br />

damage may occur to the drive, motor or driven equipment. Read the safety<br />

instructions before you work on the drive.<br />

Use of warnings<br />

Warnings caution you about conditions which can result in serious injury or death<br />

and/or damage to the equipment, and advise on how to avoid the danger. The<br />

following warning symbols are used in this <strong>manual</strong>:<br />

Electricity warning warns of hazards from electricity which can cause<br />

physical injury and/or damage to the equipment.<br />

General warning warns about conditions, other than those caused by<br />

electricity, which can result in physical injury and/or damage to the equipment.


18 Safety<br />

Safety in installation and maintenance<br />

These warnings are intended for all who work on the drive, motor cable or motor.<br />

� Electrical safety<br />

WARNING! Ignoring the following instructions can cause physical injury or<br />

death, or damage to the equipment.<br />

Only qualified electricians are allowed to install and maintain the drive!<br />

• Never work on the drive, motor cable or motor when input power is applied. After<br />

disconnecting the input power, always wait for 5 minutes to let the intermediate<br />

circuit capacitors discharge before you start working on the drive, motor or motor<br />

cable.<br />

Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that<br />

1. there is no voltage between the drive input phases U1, V1 and W1 and the<br />

ground<br />

2. there is no voltage between terminals BRK+ and BRK- and the ground.<br />

• Do not work on the control cables when power is applied to the drive or to the<br />

external control circuits. Externally supplied control circuits may carry dangerous<br />

voltage even when the input power of the drive is switched off.<br />

• Do not make any insulation or voltage withstand tests on the drive.<br />

• Disconnect the internal EMC filter when installing the drive on an IT system (an<br />

ungrounded power system or a high-resistance-grounded [over 30 ohms] power<br />

system), otherwise the system will be connected to ground potential through the<br />

EMC filter capacitors. This may cause danger or damage the drive. See page 48.<br />

Note: When the internal EMC filter is disconnected, the drive is not EMC<br />

compatible without an external filter.<br />

• Disconnect the internal EMC filter when installing the drive on a corner-grounded<br />

TN system, otherwise the drive will be damaged. See page 48. Note: When the<br />

internal EMC filter is disconnected, the drive is not EMC compatible without an<br />

external filter.<br />

• All ELV (extra low voltage) circuits connected to the drive must be used within a<br />

zone of equipotential bonding, ie within a zone where all simultaneously<br />

accessible conductive parts are electrically connected to prevent hazardous<br />

voltages appearing between them. This is accomplished by a proper factory<br />

grounding.<br />

Note:<br />

• Even when the motor is stopped, dangerous voltage is present at the power<br />

circuit terminals U1, V1, W1 and U2, V2, W2 and BRK+ and BRK-.


Permanent magnet motor drives<br />

Safety 19<br />

These are additional warnings concerning permanent magnet motor drives. Ignoring<br />

the instructions can cause physical injury or death, or damage to the equipment.<br />

WARNING! Do not work on the drive when the permanent magnet motor is<br />

rotating. Also, when the supply power is switched off and the inverter is<br />

stopped, a rotating permanent magnet motor feeds power to the intermediate circuit<br />

of the drive and the supply connections become live.<br />

Before installation and maintenance work on the drive:<br />

• Stop the motor.<br />

• Ensure that there is no voltage on the drive power terminals according to step 1 or<br />

2, or if possible, according to the both steps.<br />

1. Disconnect the motor from the drive with a safety switch or by other means.<br />

Measure that there is no voltage present on the drive input or output terminals<br />

(U1, V1, W1, U2, V2, W2, BRK+, BRK-).<br />

2. Ensure that the motor cannot rotate during work. Make sure that no other<br />

system, like hydraulic crawling drives, is able to rotate the motor directly or<br />

through any mechanical connection like felt, nip, rope, etc. Measure that there<br />

is no voltage present on the drive input or output terminals (U1, V1, W1, U2,<br />

V2, W2, BRK+, BRK-). Ground the drive output terminals temporarily by<br />

connecting them together as well as to the PE.<br />

� General safety<br />

WARNING! Ignoring the following instructions can cause physical injury or<br />

death, or damage to the equipment.<br />

• The drive is not field repairable. Never attempt to repair a malfunctioning drive;<br />

contact your local ABB representative or Authorized Service Center for<br />

replacement.<br />

• Make sure that dust from drilling does not enter the drive during the installation.<br />

Electrically conductive dust inside the drive may cause damage or lead to<br />

malfunction.<br />

• Ensure sufficient cooling.


20 Safety<br />

Safe start-up and operation<br />

These warnings are intended for all who plan the operation, start up or operate the<br />

drive.<br />

� Electrical safety<br />

Permanent magnet motor drives<br />

These warnings concern permanent magnet motor drives. Ignoring the instructions<br />

can cause physical injury or death, or damage to the equipment.<br />

WARNING! It is not recommended to run the permanent magnet motor over<br />

1.2 times the rated speed. Motor overspeed may lead to overvoltage which<br />

may permanently damage the drive.<br />

� General safety<br />

WARNING! Ignoring the following instructions can cause physical injury or<br />

death, or damage to the equipment.<br />

• Before adjusting the drive and putting it into service, make sure that the motor and<br />

all driven equipment are suitable for operation throughout the speed range<br />

provided by the drive. The drive can be adjusted to operate the motor at speeds<br />

above and below the speed provided by connecting the motor directly to the<br />

power line.<br />

• Do not activate automatic fault reset functions if dangerous situations can occur.<br />

When activated, these functions will reset the drive and resume operation after a<br />

fault.<br />

• Do not control the motor with an AC contactor or disconnecting device<br />

(disconnecting means); use instead the control panel start and stop keys and<br />

or external commands (I/O or fieldbus). The maximum allowed number of<br />

charging cycles of the DC capacitors (ie power-ups by applying power) is two per<br />

minute and the maximum total number of chargings is 15 000.<br />

Note:<br />

• If an external source for start command is selected and it is ON, the drive will start<br />

immediately after an input voltage break or fault reset unless the drive is<br />

configured for 3-wire (a pulse) start/stop.<br />

• When the control location is not set to local (LOC not shown on the display), the<br />

stop key on the control panel will not stop the drive. To stop the drive using the<br />

LOC<br />

control panel, first press the LOC/REM key REM<br />

and then the stop key .


Introduction to the <strong>manual</strong> 21<br />

Introduction to the <strong>manual</strong><br />

What this chapter contains<br />

The chapter describes applicability, target audience and purpose of this <strong>manual</strong>. It<br />

describes the contents of this <strong>manual</strong> and refers to a list of related <strong>manual</strong>s for more<br />

information. The chapter also contains a flowchart of steps for checking the delivery,<br />

installing and commissioning the drive. The flowchart refers to chapters/sections in<br />

this <strong>manual</strong>.<br />

Applicability<br />

The <strong>manual</strong> is applicable to the <strong>ACS355</strong> drive firmware version 5.02b or later. See<br />

parameter 3301 FIRMWARE on page 250.<br />

Target audience<br />

The reader is expected to know the fundamentals of electricity, wiring, electrical<br />

components and electrical schematic symbols.<br />

The <strong>manual</strong> is written for readers worldwide. Both SI and imperial units are shown.<br />

Special US instructions for installations in the United States are given.<br />

Purpose of the <strong>manual</strong><br />

This <strong>manual</strong> provides information needed for planning the installation, installing,<br />

commissioning, using and servicing the drive.


22 Introduction to the <strong>manual</strong><br />

Contents of this <strong>manual</strong><br />

The <strong>manual</strong> consists of the following chapters:<br />

• Safety (page 17) gives safety instructions you must follow when installing,<br />

commissioning, operating and servicing the drive.<br />

• Introduction to the <strong>manual</strong> (this chapter, page 21) describes applicability, target<br />

audience, purpose and contents of this <strong>manual</strong>. It also contains a quick<br />

installation and commissioning flowchart.<br />

• Operation principle and hardware description (page 25) describes the operation<br />

principle, layout, power connections and control interfaces, type designation label<br />

and type designation information in short.<br />

• Mechanical installation (page 31) tells how to check the installation site, unpack,<br />

check the delivery and install the drive mechanically.<br />

• Planning the electrical installation (page 37) tells how to check the compatibility of<br />

the motor and the drive and select cables, protections and cable routing.<br />

• Electrical installation (page 47) tells how to check the insulation of the assembly<br />

and the compatibility with IT (ungrounded) and corner-grounded TN systems as<br />

well as connect power cables and control cables.<br />

• Installation checklist (page 57) contains a checklist for checking the mechanical<br />

and electrical installation of the drive.<br />

• Start-up, control with I/O and ID run (page 59) tells how to start up the drive as<br />

well as how to start, stop, change the direction of the motor rotation and adjust the<br />

motor speed through the I/O interface.<br />

• Control panels (page 73) describes the control panel keys, LED indicators and<br />

display fields and tells how to use the panel for control, monitoring and changing<br />

the settings.<br />

• Application macros (page 109) gives a brief description of each application macro<br />

together with a wiring diagram showing the default control connections. It also<br />

explains how to save a user macro and how to recall it.<br />

• Program features (page 121) describes program features with lists of related user<br />

settings, actual signals, and fault and alarm messages.<br />

• Actual signals and parameters (page 175) describes actual signals and<br />

parameters. It also lists the default values for the different macros.<br />

• Fieldbus control with embedded fieldbus (page 301) tells how the drive can be<br />

controlled by external devices over a communication network using embedded<br />

fieldbus.<br />

• Fieldbus control with fieldbus adapter (page 325) tells how the drive can be<br />

controlled by external devices over a communication network using a fieldbus<br />

adapter.<br />

• Fault tracing (page 335) tells how to reset faults and view fault history. It lists all<br />

alarm and fault messages including the possible cause and corrective actions.


Introduction to the <strong>manual</strong> 23<br />

• Maintenance and hardware diagnostics (page 353) contains preventive<br />

maintenance instructions and LED indicator descriptions.<br />

• Technical data (page 357) contains technical specifications of the drive, eg<br />

ratings, sizes and technical requirements as well as provisions for fulfilling the<br />

requirements for CE and other marks.<br />

• Dimension drawings (page 379) shows dimension drawings of the drive.<br />

• Appendix: Resistor braking (page 389) tells how to select the brake resistor.<br />

• Appendix: Extension modules (page 393) describes the MPOW-01 auxiliary<br />

power extension module. It mentions the MREL-01 relay output extension module<br />

and MTAC-01 pulse encoder interface module briefly; readers are referred to the<br />

corresponding user’s <strong>manual</strong>.<br />

• Appendix: Safe torque off (STO) (page 399) describes STO features, installation<br />

and technical data.<br />

• Further information (inside of the back cover, page 405) tells how to make product<br />

and service inquiries, get information on product training, provide feedback on<br />

ABB Drives <strong>manual</strong>s and find documents on the Internet.<br />

Related documents<br />

See List of related <strong>manual</strong>s on page 2 (inside of the front cover).<br />

Categorization by frame size<br />

The <strong>ACS355</strong> is manufactured in frame sizes R0…R4. Some instructions and other<br />

information which only concern certain frame sizes are marked with the symbol of the<br />

frame size (R0…R4). To identify the frame size of your drive, see the table in section<br />

Ratings on page 358.


24 Introduction to the <strong>manual</strong><br />

Quick installation and commissioning flowchart<br />

Task See<br />

Identify the frame size of your drive: R0…R4. Operation principle and hardware description:<br />

Type designation key on page 29<br />

Technical data: Ratings on page 358<br />

Plan the installation: select the cables, etc.<br />

Check the ambient conditions, ratings and<br />

required cooling air flow.<br />

Planning the electrical installation on page 37<br />

Technical data on page 357<br />

Unpack and check the drive. Mechanical installation: Unpacking on page<br />

33<br />

If the drive will be connected to an IT<br />

(ungrounded) or corner-grounded system,<br />

check that the internal EMC filter is not<br />

connected.<br />

Operation principle and hardware description:<br />

Type designation key on page 29<br />

Electrical installation: Checking the<br />

compatibility with IT (ungrounded) and cornergrounded<br />

TN systems on page 48<br />

Install the drive on a wall or in a cabinet. Mechanical installation on page 31<br />

Route the cables. Planning the electrical installation: Routing the<br />

cables on page 41<br />

Check the insulation of the input cable and the<br />

motor and the motor cable.<br />

Electrical installation: Checking the insulation<br />

of the assembly on page 47<br />

Connect the power cables. Electrical installation: Connecting the power<br />

cables on page 49<br />

Connect the control cables. Electrical installation: Connecting the control<br />

cables on page 51<br />

Check the installation. Installation checklist on page 57<br />

Commission the drive. Start-up, control with I/O and ID run on page<br />

59


Operation principle and hardware description 25<br />

Operation principle and<br />

hardware description<br />

What this chapter contains<br />

The chapter briefly describes the operation principle, layout, type designation label<br />

and type designation information. It also shows a general diagram of power<br />

connections and control interfaces.<br />

Operation principle<br />

The <strong>ACS355</strong> is a wall or cabinet mountable drive for controlling asynchronous AC<br />

induction motors and permanent magnet synchronous motors.<br />

The figure below shows the simplified main circuit diagram of the drive. The rectifier<br />

converts three-phase AC voltage to DC voltage. The capacitor bank of the<br />

intermediate circuit stabilizes the DC voltage. The inverter converts the DC voltage<br />

back to AC voltage for the AC motor. The brake chopper connects the external brake<br />

resistor to the intermediate DC circuit when the voltage in the circuit exceeds its<br />

maximum limit.<br />

AC supply<br />

U1<br />

V1<br />

W1<br />

Rectifier Capacitor<br />

bank<br />

Inverter<br />

U2<br />

V2<br />

W2<br />

Brake chopper<br />

BRK- BRK+<br />

M<br />

3~<br />

/ Common DC terminals<br />

AC motor


26 Operation principle and hardware description<br />

Product overview<br />

� Layout<br />

The layout of the drive is presented below. The construction of the different frame<br />

sizes R0…R4 varies to some extent.<br />

2<br />

1<br />

Covers on (R0 and R1) Covers off (R0 and R1)<br />

2<br />

1 Cooling outlet through top cover<br />

2 Mounting holes<br />

3 Panel cover (a) / basic control panel (b) /<br />

assistant control panel (c)<br />

4 Terminal cover (or optional potentiometer<br />

unit MPOT-01)<br />

5 Panel connection<br />

6 Option connection<br />

7 STO (Safe torque off) connection<br />

8 FlashDrop connection<br />

9 Power OK and Fault LEDs. See section<br />

LEDs on page 356.<br />

4<br />

8<br />

3a<br />

3b<br />

3c<br />

10<br />

11<br />

17<br />

12<br />

14<br />

15<br />

10 EMC filter grounding screw (EMC).<br />

Note: The screw is on the front in frame<br />

size R4.<br />

11 Varistor grounding screw (VAR)<br />

12 Fieldbus adapter (serial communication)<br />

connection<br />

13 I/O connections<br />

14 Input power connection (U1, V1, W1),<br />

brake resistor connection (BRK+, BRK-)<br />

and motor connection (U2, V2, W2).<br />

15 I/O clamping plate<br />

16 Clamping plate<br />

17 Clamps<br />

5<br />

6<br />

9<br />

17<br />

16<br />

7<br />

8<br />

13


� Power connections and control interfaces<br />

Operation principle and hardware description 27<br />

The diagram gives an overview of connections. I/O connections are parameterable.<br />

See chapter Application macros on page 109 for I/O connections for the different<br />

macros and chapter Electrical installation on page 47 for installation in general.<br />

Screen<br />

Analog input 1<br />

0…10 V<br />

Reference voltage<br />

+10 V DC, max. 10 mA<br />

Analog input 2<br />

Aux. voltage output<br />

+24 V DC, max. 200 mA<br />

PROGRAMMABLE<br />

DIGITAL INPUTS<br />

DI5 can also be used<br />

as a frequency input<br />

FlashDrop<br />

Fieldbus adapter<br />

6<br />

10<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

SCR<br />

AI1<br />

GND<br />

+10V<br />

AI2<br />

GND<br />

+24 V<br />

GND<br />

DCOM<br />

DI1<br />

DI2<br />

DI3<br />

DI4<br />

DI5<br />

mA<br />

V<br />

S1<br />

AI1<br />

AI2<br />

ON<br />

1 2<br />

8<br />

AO 7<br />

GND 8<br />

ROCOM<br />

RONC<br />

RONO<br />

DOSRC<br />

DOOUT<br />

DOGND<br />

OUT1<br />

OUT2<br />

IN1<br />

IN2<br />

EMC<br />

VAR<br />

PE<br />

L1<br />

PE<br />

U1<br />

Common DC<br />

or U2<br />

L2<br />

V1 brake<br />

chopper<br />

V2<br />

L3<br />

W1 BRK+ BRK- W2<br />

3-phase<br />

power<br />

supply,<br />

200…480<br />

Input<br />

choke<br />

EMC<br />

filter<br />

VAC<br />

t°<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

X1C:STO<br />

1<br />

2<br />

3<br />

4<br />

6<br />

Brake resistor<br />

Control panel<br />

(RJ-45)<br />

Modbus RTU<br />

(RS-232)<br />

Analog output<br />

0…20 mA<br />

PROGRAMMABLE RELAY<br />

AND DIGITAL OUTPUTS<br />

Relay output<br />

250 V AC / 30 V DC / 6 A<br />

Digital/frequency output,<br />

PNP transistor type<br />

30 V DC, max. 100 mA<br />

Extension modules<br />

MPOW-01<br />

MREL-01<br />

MTAC-01<br />

EMC filter grounding screw<br />

Varistor grounding screw<br />

Output<br />

choke<br />

M<br />

3 ~<br />

AC motor


28 Operation principle and hardware description<br />

Type designation label<br />

The type designation label is attached to the left side of the drive. An example label<br />

and explanation of the label contents are shown below.<br />

�������������<strong>ACS355</strong>-03E-08A8-4<br />

IP20 / UL Open type 2 lllllllllllllllllllllllllllllllllllllll<br />

UL Type 1 with MUL1 option S/N MYYWWRXXXX<br />

4 kW (5 HP) llllllllllllllllllllllllllllllllllllllll<br />

U1<br />

I1 3<br />

f1<br />

3~380…480 V<br />

13.6 A<br />

48…63 Hz<br />

3AUA0000058189<br />

RoHS<br />

U2 3~0…U1 V<br />

I2 8.8 A (150% 1/10 min)<br />

f2 0…600 Hz<br />

1 Type designation, see section Type designation key on page 29<br />

2 Degree of protection by enclosure (IP and UL/NEMA)<br />

3 Nominal ratings, see section Ratings on page 358.<br />

4 Serial number of format MYYWWRXXXX, where<br />

M: Manufacturer<br />

YY: 09, 10, 11, … for 2009, 2010, 2011, …<br />

WW: 01, 02, 03, … for week 1, week 2, week 3, …<br />

R: A, B, C, … for product revision number<br />

XXXX: Integer starting every week from 0001<br />

5 ABB MRP code of the drive<br />

6 CE marking and C-Tick, C-UL US, RoHS and TÜV NORD marks (the label of your drive<br />

shows the valid markings)<br />

1<br />

4<br />

5<br />

6


Type designation key<br />

Operation principle and hardware description 29<br />

The type designation contains information on the specifications and configuration of<br />

the drive. You find the type designation on the type designation label attached to the<br />

drive. The first digits from the left express the basic configuration, for example<br />

<strong>ACS355</strong>-03E-09A7-4. The optional selections are given after that, separated by +<br />

signs, for example +J404. The explanations of the type designation selections are<br />

described below.<br />

<strong>ACS355</strong> product series<br />

1-phase/3-phase<br />

01 = 1-phase input<br />

03 = 3-phase input<br />

Configuration<br />

E = EMC filter connected, 50 Hz frequency<br />

U = EMC filter disconnected, 60 Hz frequency<br />

Output current rating<br />

In format xxAy, where xx indicates the integer part and y the fractional part,<br />

eg 09A7 means 9.7 A.<br />

For more information, see section Ratings on page 358.<br />

Input voltage range<br />

2 = 200…240 V AC<br />

4 = 380…480 V AC<br />

Options<br />

B063 = IP66/IP67/UL Type 4x enclosure<br />

(product variant)<br />

J400 = ACS-CP-A assistant control panel 1)<br />

J404 = ACS-CP-C basic control panel 1)<br />

J402 = MPOT-01 potentiometer<br />

K451 = FDNA-01 DeviceNet<br />

K454 = FPBA-01 PROFIBUS DP<br />

K457 = FCAN-01 CANopen<br />

K458 = FMBA-01 Modbus RTU<br />

K466 = FENA-01 EtherNet/IP / Modbus TCP/IP<br />

K452 = FLON-01 LonWorks<br />

<strong>ACS355</strong>-03E-09A7-4+J404+...<br />

K469 = FECA-01 EtherCAT<br />

H376 = Cable gland kit (IP66/IP67/UL Type 4x)<br />

F278 = Input switch kit<br />

C169 = Pressure compensation valve<br />

Extension modules<br />

G406 = MPOW-01auxiliary power module<br />

L502 = MTAC-01 pulse encoder module<br />

L511 = MREL-01 relay output module<br />

1) The <strong>ACS355</strong> is compatible with panels that have the following panel revisions and panel<br />

firmware versions. To find out the revision and firmware version of your panel, see page 74.<br />

Panel type Type code Panel revision Panel firmware<br />

version<br />

Basic control panel ACS-CP-C M or later 1.13 or later<br />

Assistant control panel ACS-CP-A F or later 2.04 or later<br />

Assistant control panel (Asia) ACS-CP-D Q or later 2.04 or later<br />

Note that unlike the other panels, the ACS-CP-D is ordered with a separate material code.


30 Operation principle and hardware description


Mechanical installation<br />

What this chapter contains<br />

Mechanical installation 31<br />

The chapter tells how to check the installation site, unpack, check the delivery and<br />

install the drive mechanically.<br />

Checking the installation site<br />

The drive may be installed on the wall or in a cabinet. Check the enclosure<br />

requirements for the need to use the NEMA 1 option in wall installations (see chapter<br />

Technical data on page 357).<br />

The drive can be installed in three different ways, depending on the frame size:<br />

a) back mounting (all frame sizes)<br />

b) side mounting (frame sizes R0…R2)<br />

c) DIN rail mounting (all frame sizes).<br />

The drive must be installed in an upright position.<br />

Check the installation site according to the requirements below. Refer to chapter<br />

Dimension drawings on page 379 for frame details.<br />

� Requirements for the installation site<br />

Operation conditions<br />

See chapter Technical data on page 357 for the allowed operation conditions of the<br />

drive.<br />

Wall<br />

The wall should be as close to vertical and even as possible, of non-flammable<br />

material and strong enough to carry the weight of the drive.


32 Mechanical installation<br />

Floor<br />

The floor/material below the installation should be non-flammable.<br />

Free space around the drive<br />

The required free space for cooling above and below the drive is 75 mm (3 in). No<br />

free space is required on the sides of the drive, so drives can be mounted<br />

immediately next to each other.<br />

Required tools<br />

To install the drive, you need the following tools:<br />

• screwdrivers (as appropriate for the mounting hardware used)<br />

• wire stripper<br />

• tape measure<br />

• drill (if the drive will be installed with screws/bolts)<br />

• mounting hardware: screws or bolts (if the drive will be installed with screws/<br />

bolts). For the number of screws/bolts, see With screws on page 34.


Unpacking<br />

Mechanical installation 33<br />

The drive (1) is delivered in a package that also contains the following items (frame<br />

size R1 shown in the figure):<br />

• plastic bag (2) including clamping plate (also used for I/O cables in frame sizes<br />

R3 and R4), I/O clamping plate (for frame sizes R0…R2), fieldbus option ground<br />

plate, clamps and screws<br />

• panel cover (3)<br />

• mounting template, integrated into the package (4)<br />

• user’s <strong>manual</strong> (5)<br />

• possible options (fieldbus, potentiometer, extension module, all with instructions,<br />

basic control panel or assistant control panel).<br />

1<br />

Checking the delivery<br />

3<br />

Check that there are no signs of damage. Notify the shipper immediately if damaged<br />

components are found.<br />

Before attempting installation and operation, check the information on the type<br />

designation label of the drive to verify that the drive is of the correct type. See section<br />

Type designation label on page 28.<br />

2<br />

5<br />

4


34 Mechanical installation<br />

Installing<br />

The instructions in this <strong>manual</strong> cover drives with the IP20 degree of protection. To<br />

comply with NEMA 1, use the MUL1-R1, MUL1-R3 or MUL1-R4 option kit, which is<br />

delivered with multilingual installation instructions (3AFE68642868, 3AFE68643147<br />

or 3AUA0000025916, respectively).<br />

� Install the drive<br />

Install the drive with screws or on a DIN rail as appropriate.<br />

Note: Make sure that dust from drilling does not enter the drive during the installation.<br />

With screws<br />

1. Mark the hole locations using for example the mounting template cut out from the<br />

package. The locations of the holes are also shown in the drawings in chapter<br />

Dimension drawings on page 379. The number and location of the holes used<br />

depend on how the drive is installed:<br />

a) back mounting (frame sizes R0…R4): four holes<br />

b) side mounting (frame sizes R0…R2): three holes; one of the bottom holes is<br />

located in the clamping plate.<br />

2. Fix the screws or bolts to the marked locations.<br />

3. Position the drive onto the screws on the wall.<br />

4. Tighten the screws in the wall securely.<br />

On DIN rail<br />

1. Click the drive to the rail.<br />

To detach the drive, press the release lever on top of the drive (1b).<br />

1 1b


� Fasten clamping plates<br />

Mechanical installation 35<br />

Note: Make sure that you do not throw the clamping plates away as they are required<br />

for proper grounding of the power and control cables as well as the fieldbus option.<br />

1. Fasten the clamping plate (A) to the plate at the bottom of the drive with the<br />

provided screws.<br />

2. For frame sizes R0…R2, fasten the I/O clamping plate (B) to the clamping plate<br />

with the provided screws.<br />

1<br />

� Attach the optional fieldbus module<br />

2<br />

B<br />

1<br />

3. Connect the power and control cables as instructed in chapter Electrical<br />

installation on page 47.<br />

4. Place the fieldbus module on the option ground plate (C) and tighten the<br />

grounding screw on the left corner of the fieldbus module. This fastens the<br />

module to the option ground plate.<br />

5. If the terminal cover is not already removed, push the recess in the cover and<br />

simultaneously slide the cover off the frame.<br />

6. Snap the fieldbus module attached to the option ground plate in position so that<br />

the module is plugged to the connection on the drive front and the screw holes in<br />

the option ground plate and the I/O clamping plate are aligned.<br />

7. Fasten the option ground plate to the I/O clamping plate with the provided screws.<br />

8. Slide the terminal cover back in place.<br />

A<br />

2<br />

4<br />

5<br />

6<br />

7<br />

8<br />

4<br />

C<br />

7<br />

3


36 Mechanical installation


Planning the electrical<br />

installation<br />

What this chapter contains<br />

Planning the electrical installation 37<br />

The chapter contains the instructions that you must follow when checking the<br />

compatibility of the motor and drive, and selecting cables, protections, cable routing<br />

and way of operation for the drive.<br />

Note: The installation must always be designed and made according to applicable<br />

local laws and regulations. ABB does not assume any liability whatsoever for any<br />

installation which breaches the local laws and/or other regulations. Furthermore, if the<br />

recommendations given by ABB are not followed, the drive may experience problems<br />

that the warranty does not cover.<br />

Implementing the AC power line connection<br />

See the requirements in section Electric power network specification on page 367.<br />

Use a fixed connection to the AC power line.<br />

WARNING! As the leakage current of the device typically exceeds 3.5 mA, a<br />

fixed installation is required according to IEC 61800-5-1.<br />

Selecting the supply disconnecting device (disconnecting<br />

means)<br />

Install a hand-operated supply disconnecting device (disconnecting means) between<br />

the AC power source and the drive. The disconnecting device must be of a type that<br />

can be locked to the open position for installation and maintenance work.


38 Planning the electrical installation<br />

� European union<br />

To meet the European Union Directives, according to standard EN 60204-1, Safety of<br />

Machinery, the disconnecting device must be one of the following types:<br />

• a switch-disconnector of utilization category AC-23B (EN 60947-3)<br />

• a disconnector having an auxiliary contact that in all cases causes switching<br />

devices to break the load circuit before the opening of the main contacts of the<br />

disconnector (EN 60947-3)<br />

• a circuit breaker suitable for isolation in accordance with EN 60947-2.<br />

� Other regions<br />

The disconnecting device must conform to the applicable safety regulations.<br />

Checking the compatibility of the motor and drive<br />

Check that the 3-phase AC induction motor and the drive are compatible according to<br />

the rating table in section Ratings on page 358. The table lists the typical motor power<br />

for each drive type.<br />

Only one permanent magnet synchronous motor can be connected to the inverter<br />

output.<br />

Selecting the power cables<br />

� General rules<br />

Dimension the input power and motor cables according to local regulations.<br />

• The input power and the motor cables must be able to carry the corresponding<br />

load currents. See section Ratings on page 358 for the rated currents.<br />

• The cable must be rated for at least 70 °C maximum permissible temperature of<br />

the conductor in continuous use. For US, see section Additional US requirements<br />

on page 40.<br />

• The conductivity of the PE conductor must be equal to that of the phase<br />

conductor (same cross-sectional area).<br />

• 600 V AC cable is accepted for up to 500 V AC.<br />

• Refer to chapter Technical data on page 357 for the EMC requirements.<br />

A symmetrical shielded motor cable (see the figure below) must be used to meet the<br />

EMC requirements of the CE and C-Tick marks.<br />

A four-conductor system is allowed for input cabling, but a shielded symmetrical<br />

cable is recommended.<br />

Compared to a four-conductor system, the use of a symmetrical shielded cable<br />

reduces electromagnetic emission of the whole drive system as well as motor bearing<br />

currents and wear.


� Alternative power cable types<br />

Planning the electrical installation 39<br />

Power cable types that can be used with the drive are presented below.<br />

Motor cables<br />

(recommended for input cables also)<br />

Symmetrical shielded cable: three phase<br />

conductors, a concentric or otherwise<br />

symmetrically constructed PE conductor<br />

and a shield<br />

PE<br />

conductor<br />

and shield<br />

Allowed as input cables<br />

� Motor cable shield<br />

Shield Shield<br />

PE<br />

A four-conductor system: three phase<br />

conductors and a protective conductor<br />

Note: A separate PE conductor is required<br />

if the conductivity of the cable shield is not<br />

sufficient for the purpose.<br />

To function as a protective conductor, the shield must have the same cross-sectional<br />

area as the phase conductors when they are made of the same metal.<br />

To effectively suppress radiated and conducted radio-frequency emissions, the shield<br />

conductivity must be at least 1/10 of the phase conductor conductivity. The<br />

requirements are easily met with a copper or aluminium shield. The minimum<br />

requirement of the motor cable shield of the drive is shown below. It consists of a<br />

concentric layer of copper wires. The better and tighter the shield, the lower the<br />

emission level and bearing currents.<br />

PE<br />

Shield<br />

Insulation jacket Copper wire screen Cable core<br />

PE<br />

PE


40 Planning the electrical installation<br />

� Additional US requirements<br />

Type MC continuous corrugated aluminium armor cable with symmetrical grounds or<br />

shielded power cable is recommended for the motor cables if metallic conduit is not<br />

used.<br />

The power cables must be rated for 75 °C (167 °F).<br />

Conduit<br />

Where conduits must be coupled together, bridge the joint with a ground conductor<br />

bonded to the conduit on each side of the joint. Bond the conduits also to the drive<br />

enclosure. Use separate conduits for input power, motor, brake resistors and control<br />

wiring. Do not run motor wiring from more than one drive in the same conduit.<br />

Armored cable / shielded power cable<br />

Six-conductor (three phases and three ground) type MC continuous corrugated<br />

aluminium armor cable with symmetrical grounds is available from the following<br />

suppliers (trade names in parentheses):<br />

• Anixter Wire & Cable (Philsheath)<br />

• BICC General Corp (Philsheath)<br />

• Rockbestos Co. (Gardex)<br />

• Oaknite (CLX).<br />

Shielded power cable is available from the following suppliers:<br />

• Belden<br />

• LAPPKABEL (ÖLFLEX)<br />

• Pirelli.<br />

Selecting the control cables<br />

� General rules<br />

All analog control cables and the cable used for the frequency input must be shielded.<br />

Use a double-shielded twisted pair cable (Figure a, for example JAMAK by Draka NK<br />

Cables) for analog signals. Employ one individually shielded pair for each signal. Do<br />

not use common return for different analog signals.


Planning the electrical installation 41<br />

A double-shielded cable is the best alternative for low-voltage digital signals, but a<br />

single-shielded or unshielded twisted multipair cable (Figure b) is also usable.<br />

However, for frequency input, always use a shielded cable.<br />

a b<br />

Run analog and digital signals in separate cables.<br />

Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in<br />

the same cables as digital input signals. It is recommended that the relay-controlled<br />

signals are run as twisted pairs.<br />

Never mix 24 V DC and 115/230 V AC signals in the same cable.<br />

� Relay cable<br />

Double-shielded twisted<br />

multipair cable<br />

The cable type with braided metallic screen (for example ÖLFLEX by LAPPKABEL)<br />

has been tested and approved by ABB.<br />

� Control panel cable<br />

In remote use, the cable connecting the control panel to the drive must not exceed<br />

3 m (10 ft). The cable type tested and approved by ABB is used in control panel<br />

option kits.<br />

Routing the cables<br />

Single-shielded twisted<br />

multipair cable<br />

Route the motor cable away from other cable routes. Motor cables of several drives<br />

can be run in parallel installed next to each other. It is recommended that the motor<br />

cable, input power cable and control cables are installed on separate trays. Avoid<br />

long parallel runs of motor cables with other cables to decrease electromagnetic<br />

interference caused by the rapid changes in the drive output voltage.<br />

Where control cables must cross power cables make sure that they are arranged at<br />

an angle as near to 90 degrees as possible.<br />

The cable trays must have good electrical bonding to each other and to the grounding<br />

electrodes. Aluminium tray systems can be used to improve local equalizing of<br />

potential.


42 Planning the electrical installation<br />

A diagram of the cable routing is shown below.<br />

Input power cable<br />

min. 200 mm (8 in)<br />

� Control cable ducts<br />

90°<br />

Drive<br />

Control cables<br />

Motor cable<br />

Power cable<br />

Motor cable<br />

min. 500 mm (20 in)<br />

24 V 230 V<br />

24 V<br />

230 V<br />

Not allowed unless the 24 V cable is<br />

insulated for 230 V or insulated with an<br />

insulation sleeving for 230 V.<br />

min. 300 mm (12 in)<br />

Lead 24 V and 230 V control cables in<br />

separate ducts inside the cabinet.


Planning the electrical installation 43<br />

Protecting the drive, input power cable, motor and motor<br />

cable in short circuit situations and against thermal<br />

overload<br />

� Protecting the drive and input power cable in short-circuit situations<br />

Arrange the protection according to the following guidelines.<br />

Distribution<br />

board<br />

1)<br />

2)<br />

I ><br />

Circuit diagram Short-circuit protection<br />

Input cable<br />

Drive<br />

Protect the drive and input<br />

cable with fuses or a<br />

circuit breaker. See<br />

footnotes 1) and 2).<br />

1) Size the fuses according to instructions given in chapter Technical data on page 357. The<br />

fuses will protect the input cable in short-circuit situations, restrict drive damage and prevent<br />

damage to adjoining equipment in case of a short-circuit inside the drive.<br />

2) Circuit breakers which have been tested by ABB with the ACS350 can be used. Fuses must<br />

be used with other circuit breakers. Contact your local ABB representative for the approved<br />

breaker types and supply network characteristics.<br />

WARNING! Due to the inherent operating principle and construction of circuit<br />

breakers, independent of the manufacturer, hot ionized gases may escape<br />

from the breaker enclosure in case of a short-circuit. To ensure safe use, special<br />

attention must be paid to the installation and placement of the breakers. Follow the<br />

manufacturer’s instructions.<br />

� Protecting the motor and motor cable in short-circuit situations<br />

The drive protects the motor and motor cable in a short-circuit situation when the<br />

motor cable is dimensioned according to the nominal current of the drive. No<br />

additional protection devices are needed.<br />

� Protecting the drive, motor cable and input power cable against<br />

thermal overload<br />

The drive protects itself and the input and motor cables against thermal overload<br />

when the cables are dimensioned according to the nominal current of the drive. No<br />

additional thermal protection devices are needed.<br />

M<br />

3~<br />

M<br />

3~


44 Planning the electrical installation<br />

WARNING! If the drive is connected to multiple motors, a separate thermal<br />

overload switch or a circuit breaker must be used for protecting each cable and<br />

motor. These devices may require a separate fuse to cut off the short-circuit current.<br />

� Protecting the motor against thermal overload<br />

According to regulations, the motor must be protected against thermal overload and<br />

the current must be switched off when overload is detected. The drive includes a<br />

motor thermal protection function that protects the motor and switches off the current<br />

when necessary. It is also possible to connect a motor temperature measurement to<br />

the drive. The user can tune both the thermal model and the temperature<br />

measurement function further by parameters.<br />

The most common temperature sensors are:<br />

• motor sizes IEC180…225: thermal switch (for example Klixon)<br />

• motor sizes IEC200…250 and larger: PTC or Pt100.<br />

For more information on the thermal model, see section Motor thermal protection on<br />

page 145. For more information on the temperature measurement function, see<br />

section Motor temperature measurement through the standard I/O on page 155.<br />

Implementing the Safe torque off (STO) function<br />

See Appendix: Safe torque off (STO) on page 399.<br />

Using residual current devices (RCD) with the drive<br />

<strong>ACS355</strong>-01x drives are suitable to be used with residual current devices of Type A,<br />

<strong>ACS355</strong>-03x drives with residual current devices of Type B. For <strong>ACS355</strong>-03x drives,<br />

other measures for protection in case of direct or indirect contact, such as separation<br />

from the environment by double or reinforced insulation or isolation from the supply<br />

system by a transformer, can also be applied.<br />

Using a safety switch between the drive and the motor<br />

It is recommended to install a safety switch between the permanent magnet motor<br />

and the drive output.This is needed to isolate the motor from the drive during<br />

maintenance work on the drive.<br />

Implementing a bypass connection<br />

WARNING! Never connect the supply power to the drive output terminals U2,<br />

V2 and W2. Power line voltage applied to the output can result in permanent<br />

damage to the drive.


Planning the electrical installation 45<br />

If frequent bypassing is required, employ mechanically connected switches or<br />

contactors to ensure that the motor terminals are not connected to the AC power line<br />

and drive output terminals simultaneously.<br />

Protecting the contacts of relay outputs<br />

Inductive loads (relays, contactors, motors) cause voltage transients when switched<br />

off.<br />

Equip inductive loads with noise attenuating circuits (varistors, RC filters [AC] or<br />

diodes [DC]) in order to minimize the EMC emission at switch-off. If not suppressed,<br />

the disturbances may connect capacitively or inductively to other conductors in the<br />

control cable and form a risk of malfunction in other parts of the system.<br />

Install the protective component as close to the inductive load as possible. Do not<br />

install protective components at the I/O terminal block.<br />

230 V AC<br />

230 V AC<br />

24 V DC<br />

Varistor<br />

RC filter<br />

Diode<br />

Drive<br />

relay<br />

output<br />

Drive<br />

relay<br />

output<br />

Drive<br />

relay<br />

output


46 Planning the electrical installation


Electrical installation<br />

What this chapter contains<br />

Electrical installation 47<br />

The chapter tells how to check the insulation of the assembly and the compatibility<br />

with IT (ungrounded) and corner-grounded TN systems as well as connect power<br />

cables and control cables.<br />

WARNING! The work described in this chapter may only be carried out by a<br />

qualified electrician. Follow the instructions in chapter Safety on page 17.<br />

Ignoring the safety instructions can cause injury or death.<br />

Make sure that the drive is disconnected from the input power during<br />

installation. If the drive is already connected to the input power, wait for<br />

5 minutes after disconnecting the input power.<br />

Checking the insulation of the assembly<br />

� Drive<br />

Do not make any voltage tolerance or insulation resistance tests (for example hi-pot<br />

or megger) on any part of the drive as testing can damage the drive. Every drive has<br />

been tested for insulation between the main circuit and the chassis at the factory.<br />

Also, there are voltage-limiting circuits inside the drive which cut down the testing<br />

voltage automatically.<br />

� Input power cable<br />

Check the insulation of the input power cable according to local regulations before<br />

connecting to the drive.


48 Electrical installation<br />

� Motor and motor cable<br />

Check the insulation of the motor and motor cable as follows:<br />

1. Check that the motor cable is connected to the motor and disconnected from the<br />

drive output terminals U2, V2 and W2.<br />

2. Measure the insulation resistance between each phase<br />

conductor and the Protective Earth conductor using a<br />

U1<br />

measuring voltage of 500 V DC. The insulation resistance<br />

3~<br />

ohm<br />

of an ABB motor must exceed 100 Mohm (reference value<br />

at 25 °C or 77 °F). For the insulation resistance of other<br />

motors, please consult the manufacturer’s instructions.<br />

Note: Moisture inside the motor casing will reduce the insulation resistance. If<br />

moisture is suspected, dry the motor and repeat the measurement.<br />

M<br />

V1<br />

W1<br />

PE<br />

Checking the compatibility with IT (ungrounded) and<br />

corner-grounded TN systems<br />

WARNING! Disconnect the internal EMC filter when installing the drive on an<br />

IT system (an ungrounded power system or a high-resistance-grounded [over<br />

30 ohms] power system), otherwise the system will be connected to ground potential<br />

through the EMC filter capacitors. This may cause danger or damage the drive.<br />

Disconnect the internal EMC filter when installing the drive on a corner-grounded TN<br />

system, otherwise the drive will be damaged<br />

Note: When the internal EMC filter is disconnected, the drive is not EMC compatible<br />

without an external filter.<br />

1. If you have an IT (ungrounded) or corner-grounded TN system, disconnect the<br />

internal EMC filter by removing the EMC screw. For 3-phase U-type drives (with<br />

type designation <strong>ACS355</strong>-03U-), the EMC screw is already removed at the factory<br />

and replaced by a plastic one.<br />

1<br />

EMC screw in R0…R2.<br />

In R3, the screw is a little further up.<br />

EMC<br />

VAR<br />

EMC screw in R4, IP20<br />

(behind cover in R4, NEMA 1)<br />

EMC<br />

1


Connecting the power cables<br />

� Connection diagram<br />

For alternatives,<br />

see section<br />

Selecting the<br />

supply<br />

disconnecting<br />

device<br />

(disconnecting<br />

means) on page<br />

37.<br />

PE<br />

1)<br />

PE<br />

INPUT<br />

U1 V1 W1<br />

L1 L2 L3<br />

Drive<br />

1) Ground the other end of the PE conductor at the distribution board.<br />

Electrical installation 49<br />

OUTPUT<br />

U2 V2 W2<br />

V1<br />

U1 W1<br />

3 ~<br />

Motor<br />

2) Use a separate grounding cable if the conductivity of the cable shield is insufficient (smaller<br />

than the conductivity of the phase conductor) and there is no symmetrically constructed<br />

grounding conductor in the cable. See section Selecting the power cables on page 38.<br />

3)<br />

For more information on Common DC, see <strong>ACS355</strong> Common DC application guide<br />

(3AUA0000070130 [EN]).<br />

Note:<br />

BRK+ BRK-<br />

Optional brake<br />

resistor or<br />

Common DC 3)<br />

Do not use an asymmetrically constructed motor cable.<br />

If there is a symmetrically constructed grounding conductor in the motor cable in addition to<br />

the conductive shield, connect the grounding conductor to the grounding terminal at the drive<br />

and motor ends.<br />

Route the motor cable, input power cable and control cables separately. For more<br />

information, see section Routing the cables on page 41.<br />

Grounding of the motor cable shield at the motor end<br />

For minimum radio frequency interference:<br />

• ground the cable by twisting the shield as follows:<br />

flattened width > 1/5 · length<br />

b > 1/5 · a<br />

• or ground the cable shield 360 degrees at the leadthrough<br />

of the motor terminal box. a b<br />

2)


50 Electrical installation<br />

� Connection procedure<br />

1. Fasten the grounding conductor (PE) of the input power cable under the<br />

grounding clamp. Connect the phase conductors to the U1, V1 and W1 terminals.<br />

Use a tightening torque of 0.8 N·m (7 lbf·in) for frame sizes R0…R2, 1.7 N·m<br />

(15 lbf·in) for R3 and 2.5 N·m (22 lbf·in) for R4.<br />

2. Strip the motor cable and twist the shield to form as short a pigtail as possible.<br />

Fasten the twisted shield under the grounding clamp. Connect the phase<br />

conductors to the U2, V2 and W2 terminals. Use a tightening torque of 0.8 N·m<br />

(7 lbf·in) for frame sizes R0…R2, 1.7 N·m (15 lbf·in) for R3 and 2.5 N·m (22 lbf·in)<br />

for R4.<br />

3. Connect the optional brake resistor to the BRK+ and BRK- terminals with a<br />

shielded cable using the same procedure as for the motor cable in the previous<br />

step.<br />

4. Secure the cables outside the drive mechanically.<br />

1 3 2<br />

1<br />

2


Connecting the control cables<br />

� I/O terminals<br />

Electrical installation 51<br />

The figure below shows the I/O terminals. Tightening torque is 0.4 N·m / 3.5 lbf·in.<br />

S1<br />

mA<br />

V<br />

AI1<br />

AI2<br />

X1C:STO<br />

1 2 3 4<br />

1 2 3 4 5 6 7 8 17 18 19<br />

9 10 11 12 13 14 15 16 20 21 22<br />

X1A X1B<br />

Voltage and current selection for analog inputs<br />

X1A:<br />

1: SCR<br />

2: AI1<br />

3: GND<br />

4: +10 V<br />

5: AI2<br />

6: GND<br />

7: AO<br />

8: GND<br />

9: +24 V<br />

10: GND<br />

11: DCOM<br />

12: DI1<br />

13: DI2<br />

14: DI3<br />

15: DI4<br />

X1B:<br />

17: ROCOM<br />

18: RONC<br />

19: RONO<br />

20: DOSRC<br />

21: DOOUT<br />

22: DOGND<br />

X1C:STO<br />

1: OUT1<br />

2: OUT2<br />

3: IN1<br />

4: IN2<br />

16: DI5 digital or frequency input<br />

S1: Selects voltage or current as<br />

the signal types for analog<br />

inputs AI1 and AI2.<br />

Switch S1 selects voltage (0 [2]…10 V / -10…10 V) or current (0 [4]…20 mA /<br />

-20…20 mA) as the signal types for analog inputs AI1 and AI2. The factory settings<br />

are unipolar voltage for AI1 (0 [2]…10 V) and unipolar current for AI2 (0 [4]…20 mA),<br />

which correspond to the default usage in the application macros. The switch is<br />

located to the left of I/O terminal 9 (see the I/O terminal figure above).<br />

S1<br />

1<br />

ON<br />

2<br />

AI1<br />

AI2<br />

Top position (ON): I (0 [4]…20 mA, default for AI2; or -20…20 mA)<br />

Bottom position (OFF): U (0 [2]…10 V, default for AI1; or -10…10 V)


52 Electrical installation<br />

Voltage and current connection for analog inputs<br />

Bipolar voltage (-10…10 V) and current (-20…20 mA) are also possible. If a bipolar<br />

connection is used instead of a unipolar one, see section Programmable analog<br />

inputs on page 130 for how to set parameters accordingly.<br />

Unipolar voltage<br />

1…10 kohm<br />

SCR<br />

AI<br />

GND<br />

+10V<br />

PNP and NPN configuration for digital inputs<br />

You can wire the digital input terminals in either a PNP or NPN configuration.<br />

External power supply for digital inputs<br />

For using an external +24 V supply for the digital inputs, see the figure below.<br />

0VDC<br />

+24 V DC<br />

Frequency input<br />

+10 V GND -10 V<br />

PNP connection (source)<br />

X1<br />

9 +24V<br />

10 GND<br />

11 DCOM<br />

12 DI1<br />

13 DI2<br />

14 DI3<br />

15 DI4<br />

16 DI5<br />

PNP connection (source)<br />

X1<br />

9 +24V<br />

10 GND<br />

11 DCOM<br />

12 DI1<br />

13 DI2<br />

14 DI3<br />

15 DI4<br />

16 DI5<br />

Bipolar voltage Unipolar/Bipolar current<br />

+24 V DC<br />

0VDC<br />

SCR<br />

AI<br />

GND<br />

SCR<br />

AI<br />

GND<br />

Use external power supply.<br />

NPN connection (sink)<br />

X1<br />

9 +24V<br />

10 GND<br />

11 DCOM<br />

12 DI1<br />

13 DI2<br />

14 DI3<br />

15 DI4<br />

16 DI5<br />

NPN connection (sink)<br />

X1<br />

9 +24V<br />

10 GND<br />

11 DCOM<br />

12 DI1<br />

13 DI2<br />

14 DI3<br />

15 DI4<br />

16 DI5<br />

If DI5 is used as a frequency input, see section Frequency input on page 133 for how<br />

to set parameters accordingly.


Connection examples of two-wire and three-wire sensors<br />

Electrical installation 53<br />

Hand/Auto, PID control, and Torque control macros (see section Application macros,<br />

pages 116, 117 and 118, respectively) use analog input 2 (AI2). The macro wiring<br />

diagrams on these pages use an externally powered sensor (connections not shown).<br />

The figures below give examples of connections using a two-wire or three-wire<br />

sensor/transmitter supplied by the drive auxiliary voltage output.<br />

Note: Maximum capability of the auxiliary 24 V (200 mA) output must not be<br />

exceeded.<br />

Two-wire sensor/transmitter<br />

P<br />

I<br />

-<br />

+<br />

4…20 mA<br />

X1A<br />

5 AI2 Process actual value measurement or reference,<br />

6<br />

…<br />

GND 0(4)…20 mA, Rin = 100 ohm<br />

9 +24V Auxiliary voltage output, non-isolated,<br />

10 GND +24VDC, max. 200mA<br />

Note: The sensor is supplied through its current output and the drive feeds the supply<br />

voltage (+24 V). Thus the output signal must be 4…20 mA, not 0…20 mA.<br />

Three-wire sensor/transmitter<br />

P<br />

I<br />

OUT<br />

-<br />

+<br />

X1A<br />

(0)4…20 mA<br />

5 AI2 Process actual value measurement or reference,<br />

6<br />

…<br />

GND 0(4)…20 mA, Rin = 100 ohm<br />

9 +24V Auxiliary voltage output, non-isolated,<br />

10 GND +24VDC, max. 200mA


54 Electrical installation<br />

� Default I/O connection diagram<br />

The default connection of the control signals depends on the application macro in<br />

use, which is selected with parameter 9902 APPLIC MACRO.<br />

The default macro is the ABB standard macro. It provides a general purpose I/O<br />

configuration with three constant speeds. Parameter values are the default values<br />

given in section Default values with different macros on page 176. For information on<br />

other macros, see chapter Application macros on page 109.<br />

The default I/O connections for the ABB standard macro are given in the figure below.<br />

1…10 kohm<br />

max. 500 ohm<br />

4)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Output frequency reference: 0…10 V 1)<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Not in use by default. 0…10 V<br />

6 GND Analog input circuit common<br />

7 AO Output frequency value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1)<br />

13 DI2 Forward (0) / <strong>Rev</strong>erse (1)<br />

14 DI3 Constant speed selection 2)<br />

15 DI4 Constant speed selection 2)<br />

16 DI5 Acceleration and deceleration selection 3)<br />

X1B<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

19 RONO<br />

No fault [Fault (-1)]<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

22 DOGND<br />

X1C:STO<br />

No fault [Fault (-1)]<br />

1 OUT1 STO (Safe torque off) connection<br />

2 OUT2<br />

3 IN1<br />

4 IN2


1) AI1 is used as a speed reference if vector<br />

mode is selected.<br />

2)<br />

See parameter group 12 CONSTANT<br />

SPEEDS:<br />

DI3 DI4 Operation (parameter)<br />

0 0 Set speed through AI1<br />

1 0 Speed 1 (1202)<br />

0 1 Speed 2 (1203)<br />

1 1 Speed 3 (1204)<br />

Electrical installation 55<br />

3) 0 = ramp times according to parameters<br />

2202 and 2203.<br />

1 = ramp times according to parameters<br />

2205 and 2206.<br />

4)<br />

360 degree grounding under a clamp.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.


56 Electrical installation<br />

� Connection procedure<br />

1. Remove the terminal cover by simultaneously pushing the recess and sliding the<br />

cover off the frame.<br />

2. Analog signals: Strip the outer insulation of the analog signal cable 360 degrees<br />

and ground the bare shield under the clamp.<br />

3. Connect the conductors to the appropriate terminals. Use a tightening torque of<br />

0.4 N·m (3.5 lbf·in).<br />

4. Twist the grounding conductors of each pair in the analog signal cable together<br />

and connect the bundle to the SCR terminal (terminal 1).<br />

5. Digital signals: Strip the outer insulation of the digital signal cable 360 degrees<br />

and ground the bare shield under the clamp.<br />

6. Connect the conductors of the cable to the appropriate terminals. Use a tightening<br />

torque of 0.4 N·m (3.5 lbf·in).<br />

7. For double-shielded cables, twist also the grounding conductors of each pair in<br />

the cable together and connect the bundle to the SCR terminal (terminal 1).<br />

8. Secure all cables outside the drive mechanically.<br />

9. Unless you need to install the optional fieldbus module (see section Attach the<br />

optional fieldbus module on page 35), slide the terminal cover back in place.<br />

10. Connect STO conductors to the appropriate terminals. Use a tightening torque of<br />

0.4 N·m (3.5 lbf·in).<br />

1<br />

2<br />

4<br />

3<br />

2<br />

6<br />

10


Installation checklist<br />

Checking the installation<br />

Installation checklist 57<br />

Check the mechanical and electrical installation of the drive before start-up. Go<br />

through the checklist below together with another person. Read chapter Safety on<br />

page 17 of this <strong>manual</strong> before you work on the drive.<br />

Check<br />

MECHANICAL INSTALLATION<br />

The ambient operating conditions are allowed. (See Mechanical installation: Checking the<br />

installation site on page 31 as well as Technical data: Losses, cooling data and noise on<br />

page 364 and Ambient conditions on page 371.)<br />

The drive is fixed properly on an even vertical non-flammable wall. (See Mechanical<br />

installation on page 31.)<br />

The cooling air will flow freely. (See Mechanical installation: Free space around the drive<br />

on page 32.)<br />

The motor and the driven equipment are ready for start. (See Planning the electrical<br />

installation: Checking the compatibility of the motor and drive on page 38 as well as<br />

Technical data: Motor connection data on page 367.)<br />

ELECTRICAL INSTALLATION (See Planning the electrical installation on page 37 and<br />

Electrical installation on page 47.)<br />

For ungrounded and corner-grounded systems: The internal EMC filter is disconnected<br />

(EMC screw removed).<br />

The capacitors are reformed if the drive has been stored over a year.<br />

The drive is grounded properly.<br />

The input power voltage matches the drive nominal input voltage.<br />

The input power connections at U1, V1 and W1 are OK and tightened with the correct<br />

torque.


58 Installation checklist<br />

Check<br />

Appropriate input power fuses and disconnector are installed.<br />

The motor connections at U2, V2 and W2 are OK and tightened with the correct torque.<br />

The motor cable, input power cable and control cables are routed separately.<br />

The external control (I/O) connections are OK.<br />

Safe torque off (STO) connections, operation and reaction are OK.<br />

The input power voltage cannot be applied to the output of the drive (with a bypass<br />

connection).<br />

Terminal cover and, for NEMA 1, hood and connection box, are in place.


Start-up, control with I/O and ID run 59<br />

Start-up, control with I/O and<br />

ID run<br />

What this chapter contains<br />

The chapter tells how to:<br />

• perform the start-up<br />

• start, stop, change the direction of the motor rotation and adjust the speed of the<br />

motor through the I/O interface<br />

• perform an Identification run for the drive.<br />

Using the control panel to do these tasks is explained briefly in this chapter. For<br />

details on how to use the control panel, refer to chapter Control panels on page 73.<br />

How to start up the drive<br />

WARNING! The start-up may only be carried out by a qualified<br />

electrician.<br />

The safety instructions given in chapter Safety on page 17 must be followed during<br />

the start-up procedure.<br />

The drive will start up automatically at power-up if the external run command is on<br />

and the drive is in the remote control mode.<br />

Check that the starting of the motor does not cause any danger. De-couple the<br />

driven machine if:<br />

• there is a risk of damage in case of incorrect direction of rotation, or<br />

• an ID run needs to be performed during the drive start-up. ID run is essential only<br />

in applications that require the ultimate in motor control accuracy.


60 Start-up, control with I/O and ID run<br />

• Check the installation. See the checklist in chapter Installation checklist on page<br />

57.<br />

How you start up the drive depends on the control panel you have, if any.<br />

• If you have no control panel, follow the instructions given in section How to start<br />

up the drive without a control panel on page 60.<br />

• If you have a basic control panel (ACS-CP-C), follow the instructions given in<br />

section How to perform a <strong>manual</strong> start-up on page 61.<br />

• If you have an assistant control panel (ACS-CP-A, ACS-CP-D), you can either<br />

run the Start-up assistant (see section How to perform a guided start-up on page<br />

66) or perform a <strong>manual</strong> start-up (see section How to perform a <strong>manual</strong> start-up<br />

on page 61).<br />

The Start-up assistant, which is included in the assistant control panel only, guides<br />

you through all essential settings to be done. In the <strong>manual</strong> start-up, the drive<br />

gives no guidance; you go through the very basic settings by following the<br />

instructions given in section How to perform a <strong>manual</strong> start-up on page 61.<br />

� How to start up the drive without a control panel<br />

POWER-UP<br />

Apply input power and wait for a moment.<br />

Check that the red LED is not lit and the green LED is lit but not blinking.<br />

The drive is now ready for use.


� How to perform a <strong>manual</strong> start-up<br />

Start-up, control with I/O and ID run 61<br />

For the <strong>manual</strong> start-up, you can use the basic control panel or the assistant control<br />

panel. The instructions below are valid for both control panels, but the displays shown<br />

are the basic control panel displays, unless the instruction applies to the assistant<br />

control panel only.<br />

Before you start, ensure that you have the motor nameplate data on hand.<br />

POWER-UP<br />

Apply input power.<br />

The basic control panel powers up into the Output<br />

mode.<br />

The assistant control panel asks if you want to run<br />

EXIT<br />

the Start-up assistant. If you press , the Startup<br />

assistant is not run, and you can continue with<br />

<strong>manual</strong> start-up in a similar manner as described<br />

below for the basic control panel.<br />

REM CHOICE<br />

MANUAL ENTRY OF START-UP DATA (parameter group 99)<br />

If you have an assistant control panel, select the REM PAR EDIT<br />

language (the basic control panel does not<br />

support languages). See parameter 9901 for the<br />

values of the available language alternatives.<br />

9901 LANGUAGE<br />

For instructions on how to set parameters with the<br />

assistant control panel, see section Assistant control<br />

panel on page 87.<br />

Select the motor type (9903).<br />

• 1 (AM): Asynchronous motor<br />

• 2 (PMSM): Permanent magnet motor.<br />

Setting of parameter 9903 is shown below as an<br />

example of parameter setting with the basic control<br />

panel. You find more detailed instructions in section<br />

Basic control panel on page 75.<br />

1. To go to the Main menu, press if the bottom line<br />

shows OUTPUT; otherwise press<br />

until you see MENU at the bottom.<br />

repeatedly<br />

2. Press keys / until you see “PAr”, and<br />

press .<br />

3. Find the appropriate parameter group with keys<br />

/ and press .<br />

4. Find the appropriate parameter in the group with<br />

keys / .<br />

00 .<br />

REM Hz<br />

OUTPUT FWD<br />

REM<br />

REM<br />

REM<br />

REM<br />

REM<br />

Do you want to<br />

use the start-up<br />

assistant?<br />

Yes<br />

No<br />

EXIT 00:00 OK<br />

ENGLISH<br />

[0]<br />

CANCEL 00:00 SAVE<br />

9903<br />

PAR FWD<br />

rEF<br />

MENU FWD<br />

-01-<br />

PAR FWD<br />

9901<br />

PAR FWD<br />

9903<br />

PAR FWD


62 Start-up, control with I/O and ID run<br />

5. Press and hold for about two seconds until the<br />

parameter value is shown with SET under the value. REM<br />

6. Change the value with keys / . The value<br />

changes faster while you keep the key pressed<br />

down.<br />

7. Save the parameter value by pressing .<br />

Select the application macro (parameter 9902)<br />

according to how the control cables are<br />

connected.<br />

The default value 1 (ABB STANDARD) is suitable in<br />

most cases.<br />

Select the motor control mode (parameter 9904).<br />

1(VECTOR: SPEED) is suitable in most cases.<br />

2(VECTOR: TORQ) is suitable for torque control<br />

applications.<br />

3(SCALAR: FREQ) is recommended<br />

• for multimotor drives when the number of the motors<br />

connected to the drive is variable<br />

• when the nominal current of the motor is less than<br />

20% of the nominal current of the drive<br />

• when the drive is used for test purposes with no motor<br />

connected.<br />

3(SCALAR: FREQ) is not recommended for permanent<br />

magnet motors.<br />

Enter the motor data from the motor nameplate.<br />

Asynchronous motor nameplate example:<br />

6312/C3<br />

ABB Motors<br />

3 motor<br />

M2AA 200 MLA 4<br />

IEC 200 M/L 55<br />

No<br />

Ins.cl. F IP 55<br />

V Hz kW r/min A cos IA/IN t E/s<br />

690 Y 50 30 1475 32.5 0.83<br />

400 D 50 30 1475 56 0.83<br />

660 Y 50 30 1470 34 0.83<br />

380 D 50 30 1470 59 0.83<br />

415 D 50 30 1475 54 0.83<br />

440 D 60 35 1770 59 0.83<br />

Cat. no 3GAA 202 001 - ADA<br />

6210/C3<br />

IEC 34-1<br />

180<br />

380 V<br />

supply<br />

voltage<br />

REM<br />

REM<br />

REM<br />

REM<br />

1<br />

PAR SET FWD<br />

2<br />

PAR SET FWD<br />

9903<br />

PAR FWD<br />

9902<br />

PAR FWD<br />

9904<br />

PAR FWD<br />

Note: Set the motor data to<br />

exactly the same value as on<br />

the motor nameplate. For<br />

example, if the motor nominal<br />

speed is 1440 rpm on the<br />

nameplate, setting the value of<br />

parameter 9908 MOTOR NOM<br />

SPEED to 1500 rpm results in<br />

the wrong operation of the drive.


Permanent magnet motor nameplate example:<br />

• motor nominal voltage (parameter 9905).<br />

For permanent magnet motors, enter the back emf<br />

voltage at nominal speed here. Otherwise use<br />

nominal voltage and perform ID run.<br />

If the voltage is given as voltage per rpm, eg 60 V per<br />

1000 rpm, the voltage for 3000 rpm nominal speed is<br />

3 · 60 V = 180 V.<br />

• motor nominal current (parameter 9906)<br />

Allowed range: 0.2…2.0 · I2N A<br />

• motor nominal frequency (parameter 9907)<br />

• motor nominal speed (parameter 9908)<br />

• motor nominal power (parameter 9909)<br />

Start-up, control with I/O and ID run 63<br />

REM<br />

REM<br />

REM<br />

REM<br />

REM<br />

9905<br />

PAR FWD<br />

9906<br />

PAR FWD<br />

9907<br />

PAR FWD<br />

9908<br />

PAR FWD<br />

9909<br />

PAR FWD


64 Start-up, control with I/O and ID run<br />

Select the motor identification method (parameter 9910).<br />

The default value 0 (OFF/IDMAGN) using the identification magnetization is<br />

suitable for most applications. It is applied in this basic start-up procedure. Note<br />

however that this requires that parameter 9904 is set to 1 (VECTOR: SPEED) or<br />

2(VECTOR: TORQ).<br />

If your selection is 0 (OFF/IDMAGN), move to the next step.<br />

Value 1 (ON) should be selected if:<br />

• the operation point is near zero speed, and/or<br />

• operation at torque range above the motor nominal torque over a wide speed<br />

range and without any measured speed feedback is required.<br />

If you decide to perform the ID run (value 1 [ON]), continue by following the<br />

separate instructions given on page 69 in section How to perform the ID run and<br />

then return to step DIRECTION OF THE MOTOR ROTATION on page 64.<br />

IDENTIFICATION MAGNETIZATION WITH ID RUN SELECTION 0 (OFF/IDMAGN)<br />

LOC<br />

Press key REM to switch to local control (LOC<br />

shown on the left).<br />

Press to start the drive. The motor model is<br />

now calculated by magnetizing the motor for 10 to<br />

15 s at zero speed.<br />

DIRECTION OF THE MOTOR ROTATION<br />

Check the direction of the motor rotation.<br />

• If the drive is in remote control (REM shown on LOC<br />

LOC<br />

the left), switch to local control by pressing .<br />

Hz<br />

REM xxx .<br />

• To go to the Main menu, press if the bottom<br />

SET FWD<br />

line shows OUTPUT; otherwise press<br />

repeatedly until you see MENU at the bottom.<br />

• Press keys / until you see “rEF” and<br />

press .<br />

• Increase the frequency reference from zero to a<br />

small value with key .<br />

• Press to start the motor.<br />

• Check that the actual direction of the motor is<br />

the same as indicated on the display (FWD<br />

means forward and REV reverse).<br />

• Press to stop the motor.<br />

To change the direction of the motor rotation:<br />

forward<br />

direction<br />

reverse<br />

direction


• Invert the phases by changing the value of<br />

parameter 9914 to the opposite, ie from 0 (NO)<br />

to 1 (YES), or vice versa.<br />

• Verify your work by applying input power and<br />

repeating the check as described above.<br />

Start-up, control with I/O and ID run 65<br />

SPEED LIMITS AND ACCELERATION/DECELERATION TIMES<br />

Set the minimum speed (parameter 2001).<br />

Set the maximum speed (parameter 2002).<br />

Set the acceleration time 1 (parameter 2202).<br />

Note: Set also acceleration time 2 (parameter<br />

2205) if two acceleration times will be used in the<br />

application.<br />

Set the deceleration time 1 (parameter 2203).<br />

Note: Set also deceleration time 2 (parameter<br />

2206) if two deceleration times will be used in the<br />

application.<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

SAVING A USER MACRO AND FINAL CHECK<br />

The start-up is now completed. However, it might LOC<br />

be useful at this stage to set the parameters<br />

required by your application and save the settings<br />

as a user macro as instructed in section User<br />

macros on page 119.<br />

Check that the drive state is OK.<br />

Basic control panel: Check that there are no faults<br />

or alarms shown on the display.<br />

If you want to check the LEDs on the front of the<br />

drive, switch first to remote control (otherwise a<br />

fault is generated) before removing the panel and<br />

verifying that the red LED is not lit and the green<br />

LED is lit but not blinking.<br />

Assistant control panel: Check that there are no<br />

faults or alarms shown on the display and that the<br />

panel LED is green and does not blink.<br />

The drive is now ready for use.<br />

9914<br />

PAR FWD<br />

2001<br />

PAR FWD<br />

2002<br />

PAR FWD<br />

2202<br />

PAR FWD<br />

2203<br />

PAR FWD<br />

9902<br />

PAR FWD


66 Start-up, control with I/O and ID run<br />

� How to perform a guided start-up<br />

To be able to perform the guided start-up, you need the assistant control panel.<br />

Guided start-up is applicable to AC induction motors.<br />

Before you start, ensure that you have the motor nameplate data on hand.<br />

POWER-UP<br />

Apply input power. The control panel first asks if you<br />

want to use the Start-up assistant.<br />

OK<br />

• Press (when Yes is highlighted) to run the<br />

Start-up assistant.<br />

EXIT<br />

• Press if you do not want to run the Start-up<br />

assistant.<br />

OK<br />

• Press key to highlight No and then press<br />

if you want to make the panel ask (or not ask) the<br />

question about running the Start-up assistant again<br />

the next time you switch on the power to the drive.<br />

SELECTING THE LANGUAGE<br />

If you decided to run the Start-up assistant, the<br />

display then asks you to select the language. Scroll to<br />

the desired language with keys / and press<br />

SAVE<br />

to accept.<br />

EXIT<br />

If you press , the Start-up assistant is stopped.<br />

STARTING THE GUIDED SET-UP<br />

The Start-up assistant now guides you through the<br />

set-up tasks, starting with the motor set-up. Set the<br />

motor data to exactly the same value as on the motor<br />

nameplate.<br />

Scroll to the desired parameter value with keys<br />

SAVE<br />

/ and press to accept and continue<br />

with the Start-up assistant.<br />

EXIT<br />

Note: At any time, if you press , the Start-up<br />

assistant is stopped and the display goes to the<br />

Output mode.<br />

The basic start-up is now completed. However, it<br />

might be useful at this stage to set the parameters<br />

required by your application and continue with the<br />

application set-up as suggested by the Start-up<br />

assistant.<br />

REM CHOICE<br />

Do you want to<br />

use the start-up<br />

assistant?<br />

Yes<br />

No<br />

EXIT 00:00 OK<br />

REM CHOICE<br />

Show start-up<br />

assistant on<br />

next boot?<br />

Yes<br />

No<br />

EXIT 00:00 OK<br />

REM<br />

PAR EDIT<br />

9901 LANGUAGE<br />

ENGLISH<br />

[0]<br />

EXIT 00:00 SAVE<br />

REM<br />

PAR EDIT<br />

9905 MOTOR NOM VOLT<br />

220 V<br />

EXIT 00:00 SAVE<br />

REM CHOICE<br />

Do you want to<br />

continue with<br />

application setup?<br />

Continue<br />

Skip<br />

EXIT 00:00 OK


Select the application macro according to which the<br />

control cables are connected.<br />

Continue with the application set-up. After completing<br />

a set-up task, the Start-up assistant suggests the next<br />

one.<br />

OK<br />

• Press (when Continue is highlighted) to<br />

continue with the suggested task.<br />

• Press key to highlight Skip and then press<br />

OK<br />

to move to the following task without doing the<br />

suggested task.<br />

EXIT<br />

• Press to stop the Start-up assistant.<br />

DIRECTION OF THE MOTOR ROTATION<br />

LOC<br />

Press key REM to switch to local control (LOC shown<br />

on the left).<br />

• If the drive is in remote control (REM shown on the<br />

LOC<br />

status line), switch to local control by pressing REM .<br />

EXIT<br />

• If you are not in the Output mode, press<br />

repeatedly until you get there.<br />

• Increase the frequency reference from zero to a<br />

small value with key .<br />

• Press to start the motor.<br />

• Check that the actual direction of the motor is the<br />

same as indicated on the display ( means forward<br />

and reverse).<br />

• Press to stop the motor.<br />

To change the direction of the motor rotation:<br />

• Invert the phases by changing the value of<br />

parameter 9914 to the opposite, ie from 0 (NO) to<br />

1(YES), or vice versa.<br />

• Verify your work by applying input power and<br />

repeating the check as described above.<br />

FINAL CHECK<br />

After the whole set-up is completed, check that there<br />

are no faults or alarms shown on the display and the<br />

panel LED is green and does not blink.<br />

The drive is now ready for use.<br />

Start-up, control with I/O and ID run 67<br />

REM<br />

PAR EDIT<br />

9902 APPLIC MACRO<br />

ABB STANDARD<br />

[1]<br />

EXIT 00:00 SAVE<br />

REM CHOICE<br />

Do you want to<br />

continue with<br />

EXT1 reference setup?<br />

Continue<br />

Skip<br />

EXIT 00:00 OK<br />

LOC xx.xHz<br />

xx. x Hz<br />

x . x A<br />

xx. x %<br />

DIR 00:00 MENU<br />

forward<br />

direction<br />

LOC<br />

PAR EDIT<br />

reverse<br />

direction<br />

9914 PHASE INVERSION<br />

YES<br />

[1]<br />

CANCEL 00:00 SAVE


68 Start-up, control with I/O and ID run<br />

How to control the drive through the I/O interface<br />

The table below instructs how to operate the drive through the digital and analog<br />

inputs when:<br />

• the motor start-up is performed, and<br />

• the default (standard) parameter settings are valid.<br />

Displays of the basic control panel are shown as an example.<br />

PRELIMINARY SETTINGS<br />

If you need to change the direction of rotation, check<br />

that parameter 1003 DIRECTION is set to 3<br />

(REQUEST).<br />

Ensure that the control connections are wired<br />

according to the connection diagram given for the<br />

ABB standard macro.<br />

See section Default I/O<br />

connection diagram on page 54.<br />

Ensure that the drive is in remote control. Press key In remote control, the panel<br />

LOC<br />

REM to switch between remote and local control. display shows text REM.<br />

STARTING AND CONTROLLING THE SPEED OF THE MOTOR<br />

Start by switching digital input DI1 on.<br />

Basic control panel: Text FWD starts flashing fast and 00 .<br />

stops after the setpoint is reached<br />

Assistant control panel: The arrow starts rotating. It is<br />

dotted until the setpoint is reached.<br />

OUTPUT FWD<br />

Regulate the drive output frequency (motor speed) by<br />

adjusting the voltage of analog input AI1.<br />

CHANGING THE DIRECTION OF THE MOTOR ROTATION<br />

<strong>Rev</strong>erse direction: Switch digital input DI2 on.<br />

Forward direction: Switch digital input DI2 off.<br />

STOPPING THE MOTOR<br />

Switch digital input DI1 off. The motor stops.<br />

Basic control panel: Text FWD starts flashing slowly.<br />

Assistant control panel: The arrow stops rotating.<br />

REM Hz<br />

500 .<br />

REM Hz<br />

OUTPUT FWD<br />

500 .<br />

500 .<br />

REM Hz<br />

OUTPUT REV<br />

REM Hz<br />

OUTPUT FWD<br />

00 .<br />

REM Hz<br />

OUTPUT FWD


How to perform the ID run<br />

Start-up, control with I/O and ID run 69<br />

The drive estimates motor characteristics automatically when the drive is started for<br />

the first time and after any motor parameter (group 99 START-UP DATA) is changed.<br />

This is valid when parameter 9910 ID RUN has value 0 (OFF/IDMAGN).<br />

In most applications there is no need to perform a separate ID run. The ID run should<br />

be selected if:<br />

• vector control mode is used (parameter 9904 = 1 [VECTOR: SPEED] or<br />

2[VECTOR: TORQ]), and<br />

• operation point is near zero speed and/or<br />

• operation at torque range above the motor nominal torque, over a wide speed<br />

range, and without any measured speed feedback (ie without a pulse encoder) is<br />

needed or<br />

• permanent magnet motor is used and the back emf voltage is unknown.<br />

Note: If motor parameters (group 99 START-UP DATA) are changed after the ID run,<br />

it must be repeated.<br />

� ID run procedure<br />

The general parameter setting procedure is not repeated here. For basic control<br />

panel, see page 75 and for assistant control panel, see page 87 in chapter Control<br />

panels. The ID run cannot be performed without a control panel.<br />

PRE-CHECK<br />

WARNING! The motor will run at up to approximately 50…80% of the<br />

nominal speed during the ID run. The motor will rotate in the forward<br />

direction. Ensure that it is safe to run the motor before performing the ID run!<br />

De-couple the motor from the driven equipment<br />

If parameter values (group 01 OPERATING DATA to group 98 OPTIONS) are<br />

changed before the ID run, check that the new settings meet the following<br />

conditions:<br />

2001 MINIMUM SPEED < 0 rpm<br />

2002 MAXIMUM SPEED > 80% of the motor rated speed<br />

2003 MAX CURRENT > I2N 2017 MAX TORQUE 1 > 50% or 2018 MAX TORQUE 2 > 50%, depending on<br />

which limit is in use according to parameter 2014 MAX TORQUE SEL.<br />

Check that the Run enable signal is on (parameter 1601).<br />

LOC<br />

Ensure that the panel is in local control (LOC shown at the top). Press key REM<br />

to<br />

switch between local and remote control.


70 Start-up, control with I/O and ID run<br />

ID RUN WITH THE BASIC CONTROL PANEL<br />

Change parameter 9910 ID RUN to 1 (ON). Save LOC<br />

the new setting by pressing .<br />

If you want to monitor actual values during the ID<br />

run, go to the Output mode by pressing<br />

repeatedly until you get there.<br />

Press to start the ID run. The panel keeps<br />

switching between the display that was shown<br />

when you started the run and the alarm display<br />

presented on the right.<br />

In general, it is recommended not to press any<br />

control panel keys during the ID run. However, you<br />

can stop the ID run at any time by pressing .<br />

After the ID run is completed, the alarm display is<br />

not shown any more.<br />

If the ID run fails, the fault display presented on<br />

the right is shown.<br />

ID RUN WITH THE ASSISTANT CONTROL PANEL<br />

Change parameter 9910 ID RUN to 1 (ON). Save REM<br />

SAVE<br />

the new setting by pressing .<br />

If you want to monitor actual values during the ID<br />

EXIT<br />

run, go to the Output mode by pressing<br />

repeatedly until you get there.<br />

Press to start the ID run. The panel keeps<br />

switching between the display that was shown<br />

when you started the run Run and the alarm<br />

display presented on the right.<br />

In general, it is recommended not to press any<br />

control panel keys during the ID run. However, you<br />

can stop the ID run at any time by pressing .<br />

LOC<br />

LOC<br />

9910<br />

PAR FWD<br />

1<br />

PAR SET FWD<br />

00 .<br />

OUTPUT FWD<br />

LOC<br />

LOC<br />

A2019FWD<br />

F0011FWD<br />

PAR EDIT<br />

9910 ID RUN<br />

ON<br />

[1]<br />

CANCEL 00:00 SAVE<br />

DIR 00:00 MENU<br />

Hz<br />

LOC 50.0Hz<br />

LOC<br />

ID RUN<br />

0. 0 Hz<br />

0. 0 A<br />

0. 0 %<br />

ALARM<br />

ALARM 2019<br />

00:00


After the ID run is completed, the alarm display is<br />

not shown any more.<br />

If the ID run fails, the fault display presented on<br />

the right is shown.<br />

Start-up, control with I/O and ID run 71<br />

LOC<br />

FAULT<br />

FAULT 11<br />

ID RUN FAIL<br />

00:00


72 Start-up, control with I/O and ID run


Control panels<br />

What this chapter contains<br />

Control panels 73<br />

The chapter describes the control panel keys, LED indicators and display fields. It<br />

also instructs in using the panel in control, monitoring and changing the settings.<br />

About control panels<br />

Use a control panel to control the <strong>ACS355</strong>, read status data, and adjust parameters.<br />

The drive works with either of two different control panel types:<br />

• Basic control panel – This panel (described in section Basic control panel on page<br />

75) provides basic tools for <strong>manual</strong> entry of parameter values.<br />

• Assistant control panel – This panel (described in section Assistant control panel<br />

on page 87) includes pre-programmed assistants to automate the most common<br />

parameter setups. The panel provides language support. It is available with<br />

different language sets.<br />

Applicability<br />

The <strong>manual</strong> is applicable to panels with the panel revisions and the panel firmware<br />

versions given in the table below.<br />

Panel type Type code Panel revision Panel firmware<br />

version<br />

Basic control panel ACS-CP-C M or later 1.13 or later<br />

Assistant control panel ACS-CP-A F or later 2.04 or later<br />

Assistant control panel (Asia) ACS-CP-D Q or later 2.04 or later


74 Control panels<br />

To find out the panel revision, see the label on the back of the panel. An example<br />

label and explanation of the label contents are shown below.<br />

1<br />

2<br />

ABB Oy, ACS-CP-A<br />

S/N M0935E0001 RoHS<br />

1 Panel type code<br />

2 Serial number of format MYYWWRXXXX, where<br />

M: Manufacturer<br />

YY: 09, 10, 11, …, for 2009, 2010, 2011, …<br />

WW: 01, 02, 03, … for week 1, week 2, week 3, …<br />

R: A, B, C, … for panel revision<br />

XXXX: Integer starting every week from 0001<br />

3 RoHS mark (the label of your drive shows the valid markings)<br />

3<br />

To find out the panel firmware version of your assistant control panel, see page 91.<br />

For the basic control panel, see page 78.<br />

See parameter 9901 LANGUAGE to find out the languages supported by the different<br />

assistant control panels.


Basic control panel<br />

� Features<br />

Control panels 75<br />

The basic control panel features:<br />

• numeric control panel with an LCD display<br />

• copy function – parameters can be copied to the control panel memory for later<br />

transfer to other drives or for backup of a particular system.


76 Control panels<br />

� Overview<br />

The following table summarizes the key functions and displays on the basic control<br />

panel.<br />

No. Use<br />

1 LCD display – Divided into five areas:<br />

a. Upper left – Control location:<br />

LOC: drive control is local, that is, from the<br />

control panel<br />

REM: drive control is remote, such as the drive<br />

I/O or fieldbus.<br />

b. Upper right – Unit of the displayed value.<br />

1a<br />

1d<br />

LOC<br />

OUTPUT<br />

A<br />

1c 11.<br />

FWD<br />

1b<br />

1e<br />

c. Center – Variable; in general, shows parameter<br />

and signal values, menus or lists. Shows also<br />

2<br />

4<br />

3<br />

fault and alarm codes.<br />

6 5<br />

7<br />

d. Lower left and center – Panel operation state:<br />

OUTPUT: Output mode<br />

PAR: Parameter mode<br />

MENU: Main menu.<br />

FAULT : Fault mode.<br />

e. Lower right – Indicators:<br />

8 9<br />

2<br />

FWD (forward) / REV (reverse): direction of the motor rotation<br />

Flashing slowly: stopped<br />

Flashing rapidly: running, not at setpoint<br />

Steady: running, at setpoint<br />

SET<br />

: Displayed value can be modified (in the Parameter and Reference modes).<br />

RESET/EXIT – Exits to the next higher menu level without saving changed values.<br />

Resets faults in the Output and Fault modes.<br />

3 MENU/ENTER – Enters deeper into menu level. In the Parameter mode, saves the<br />

displayed value as the new setting.<br />

4 Up –<br />

• Scrolls up through a menu or list.<br />

• Increases a value if a parameter is selected.<br />

• Increases the reference value in the Reference mode.<br />

• Holding the key down changes the value faster.<br />

5 Down –<br />

• Scrolls down through a menu or list.<br />

• Decreases a value if a parameter is selected.<br />

• Decreases the reference value in the Reference mode.<br />

• Holding the key down changes the value faster.<br />

6 LOC/REM – Changes between local and remote control of the drive.<br />

7 DIR – Changes the direction of the motor rotation.<br />

8 STOP – Stops the drive in local control.<br />

9 START – Starts the drive in local control.


� Operation<br />

Control panels 77<br />

You operate the control panel with the help of menus and keys. You select an option,<br />

eg operation mode or parameter, by scrolling the and arrow keys until the<br />

option is visible in the display and then pressing the key.<br />

With the key, you return to the previous operation level without saving the made<br />

changes.<br />

The basic control panel has five panel modes: Output mode, Reference mode,<br />

Parameter mode, Copy mode and Fault mode. The operation in the first four modes<br />

is described in this chapter. When a fault or alarm occurs, the panel goes<br />

automatically to the Fault mode showing the fault or alarm code. You can reset the<br />

fault or alarm in the Output or Fault mode (see chapter Fault tracing on page 335).<br />

After the power is switched on, the panel is in the<br />

Output mode, where you can start, stop, change the<br />

direction, switch between local and remote control and<br />

monitor up to three actual values (one at a time). To do<br />

other tasks, go first to the Main menu and select the<br />

appropriate mode.<br />

How to do common tasks<br />

491 .<br />

PAr<br />

REM Hz<br />

OUTPUT FWD<br />

The table below lists common tasks, the mode in which you can perform them and the page<br />

number where the steps to do the task are described in detail.<br />

Task Mode Page<br />

How to find out the panel firmware version At power up 78<br />

How to switch between local and remote control Any 78<br />

How to start and stop the drive Any 78<br />

How to change the direction of the motor rotation Any 79<br />

How to browse the monitored signals Output 80<br />

How to set the speed, frequency or torque reference Reference 81<br />

How to change the value of a parameter Parameter 82<br />

How to select the monitored signals Parameter 83<br />

How to reset faults and alarms Output, Fault 335<br />

How to copy parameters from the drive to the control panel Copy 86<br />

How to restore parameters from the control panel to the drive Copy 86<br />

REM<br />

MENU FWD


78 Control panels<br />

How to find out the panel firmware version<br />

Step Action Display<br />

1. If the power is switched on, switch it off.<br />

2. Keep key pressed down while you switch on the<br />

power and read the panel firmware version shown on<br />

the display.<br />

When you release the<br />

Output mode.<br />

key, the panel goes to the<br />

How to start, stop and switch between local and remote control<br />

You can start, stop and switch between local and remote control in any mode. To be<br />

able to start or stop the drive, the drive must be in local control.<br />

After pressing the key, the display briefly shows<br />

message “LoC” or “rE”, as appropriate, before<br />

returning to the previous display.<br />

The very first time the drive is powered up, it is in<br />

remote control (REM) and controlled through the<br />

drive I/O terminals. To switch to local control (LOC)<br />

and control the drive using the control panel, press<br />

. The result depends on how long you press<br />

XXX .<br />

Step Action Display<br />

1. • To switch between remote control (REM shown on<br />

the left) and local control (LOC shown on the left),<br />

LOC press REM .<br />

Note: Switching to local control can be disabled<br />

with parameter 1606 LOCAL LOCK.<br />

LOC<br />

OUTPUT<br />

Hz 491 .<br />

FWD<br />

LOC<br />

REM<br />

the key:<br />

• If you release the key immediately (the display<br />

flashes “LoC”), the drive stops. Set the local<br />

control reference as instructed on page 81.<br />

• If you press the key for about two seconds<br />

(release when the display changes from “LoC”<br />

to “LoC r”), the drive continues as before. The<br />

drive copies the current remote values for the<br />

run/stop status and the reference, and uses<br />

them as the initial local control settings.<br />

• To stop the drive in local control, press . Text FWD or REV on the bottom<br />

line starts flashing slowly.<br />

• To start the drive in local control, press . Text FWD or REV on the bottom<br />

line starts flashing rapidly. It<br />

stops flashing when the drive<br />

reaches the setpoint.<br />

LOC<br />

LoC<br />

FWD


How to change the direction of the motor rotation<br />

You can change the direction of the motor rotation in any mode.<br />

Control panels 79<br />

Step Action Display<br />

1. If the drive is in remote control (REM shown on the<br />

LOC<br />

left), switch to local control by pressing REM . The<br />

display briefly shows message “LoC” before<br />

returning to the previous display.<br />

LOC<br />

OUTPUT<br />

Hz 491 .<br />

FWD<br />

2. To change the direction from forward (FWD shown at<br />

the bottom) to reverse (REV shown at the bottom), or<br />

vice versa, press .<br />

LOC<br />

OUTPUT<br />

Hz 491 .<br />

REV<br />

Note: Parameter 1003 DIRECTION must be set to 3<br />

(REQUEST).


80 Control panels<br />

� Output mode<br />

In the Output mode, you can:<br />

• monitor actual values of up to three group 01 OPERATING DATA signals, one<br />

signal at a time<br />

• start, stop, change the direction and switch between local and remote control.<br />

You get to the Output mode by pressing until the display shows text OUTPUT at<br />

the bottom.<br />

The display shows the value of one group 01<br />

OPERATING DATA signal. The unit is shown on the<br />

right. Page 83 tells how to select up to three signals to<br />

be monitored in the Output mode. The table below<br />

shows how to view them one at a time.<br />

How to browse the monitored signals<br />

491 .<br />

REM Hz<br />

OUTPUT FWD<br />

Step Action Display<br />

1. If more than one signals have been selected to be<br />

monitored (see page 83), you can browse them in<br />

the Output mode.<br />

To browse the signals forward, press key<br />

repeatedly. To browse them backward, press key<br />

repeatedly.<br />

REM<br />

OUTPUT<br />

REM<br />

Hz 491 .<br />

FWD<br />

A<br />

05 .<br />

OUTPUT FWD<br />

107 .<br />

REM %<br />

OUTPUT FWD


� Reference mode<br />

Control panels 81<br />

In the Reference mode, you can:<br />

• set the speed, frequency or torque reference<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to set the speed, frequency or torque reference<br />

Step Action Display<br />

1. Go to the Main menu by pressing if you are in<br />

the Output mode, otherwise by pressing<br />

repeatedly until you see MENU at the bottom.<br />

REM PAr<br />

MENU FWD<br />

2. If the drive is in remote control (REM shown on the<br />

LOC<br />

left), switch to local control by pressing REM . The<br />

display briefly shows “LoC” before switching to local<br />

control.<br />

Note: With group 11 REFERENCE SELECT, you<br />

can allow the reference modification in remote<br />

control (REM).<br />

3. If the panel is not in the Reference mode (“rEF” not<br />

visible), press key or until you see “rEF”<br />

and then press . Now the display shows the<br />

current reference value with SET under the value.<br />

4. • To increase the reference value, press .<br />

• To decrease the reference value, press .<br />

The value changes immediately when you press the<br />

key. It is stored in the drive permanent memory and<br />

restored automatically after power switch-off.<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

PAr<br />

MENU FWD<br />

rEF<br />

491 .<br />

MENU FWD<br />

SET FWD<br />

500 .<br />

SET FWD<br />

Hz<br />

Hz


82 Control panels<br />

� Parameter mode<br />

In the Parameter mode, you can:<br />

• view and change parameter values<br />

• select and modify the signals shown in the Output mode<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to select a parameter and change its value<br />

Step Action Display<br />

1. Go to the Main menu by pressing if you are in<br />

the Output mode, otherwise by pressing<br />

repeatedly until you see MENU at the bottom.<br />

LOC<br />

rEF<br />

MENU FWD<br />

2. If the panel is not in the Parameter mode (“PAr” not<br />

visible), press key or until you see “PAr”<br />

and then press . The display shows the number<br />

of one of the parameter groups.<br />

3. Use keys and to find the desired<br />

parameter group.<br />

4. Press . The display shows one of the<br />

parameters in the selected group.<br />

5. Use keys and to find the desired<br />

parameter.<br />

6. Press and hold for about two seconds until the<br />

display shows the value of the parameter with SET<br />

underneath indicating that changing of the value is<br />

now possible.<br />

Note: When SET is visible, pressing keys and<br />

simultaneously changes the displayed value to<br />

the default value of the parameter.<br />

7. Use keys and to select the parameter<br />

value. When you have changed the parameter value,<br />

SET starts flashing.<br />

• To save the displayed parameter value, press<br />

.<br />

• To cancel the new value and keep the original,<br />

press .<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

PAr<br />

-01-<br />

MENU FWD<br />

PAR FWD<br />

-11-<br />

PAR FWD<br />

1101<br />

PAR FWD<br />

1103<br />

PAR FWD<br />

1<br />

PAR SET FWD<br />

2<br />

PAR SET FWD<br />

1103<br />

PAR FWD


How to select the monitored signals<br />

Step Action Display<br />

1. You can select which signals are monitored in the<br />

Output mode and how they are displayed with group<br />

34 PANEL DISPLAY parameters. See page 82 for<br />

detailed instructions on changing parameter values.<br />

By default, the display shows three signals.<br />

Signal 1: 0102 SPEED for macros 3-wire, Alternate,<br />

Motor potentiometer, Hand/Auto and PID control;<br />

0103 OUTPUT FREQ for macros ABB standard and<br />

Torque control<br />

Signal 2: 0104 CURRENT<br />

Signal 3: 0105 TORQUE.<br />

To change the default signals, select up to three<br />

signals from group 01 OPERATING DATA to be<br />

shown.<br />

Signal 1: Change the value of parameter 3401<br />

SIGNAL1 PARAM to the index of the signal<br />

parameter in group 01 OPERATING DATA<br />

(= number of the parameter without the leading<br />

zero), eg 105 means parameter 0105 TORQUE.<br />

Value 100 means that no signal is displayed.<br />

Repeat for signals 2 (3408 SIGNAL2 PARAM) and 3<br />

(3415 SIGNAL3 PARAM). For example, if 3401 = 0<br />

and 3415 = 0, browsing is disabled and only the<br />

signal specified by 3408 appears in the display. If all<br />

three parameters are set to 0, ie no signals are<br />

selected for monitoring, the panel displays text “n.A”.<br />

2. Specify the decimal point location, or use the decimal<br />

point location and unit of the source signal (setting 9<br />

[DIRECT]). Bar graphs are not available for basic<br />

control panel. For details, see parameter 3404.<br />

Signal 1: parameter 3404 OUTPUT1 DSP FORM<br />

Signal 2: parameter 3411 OUTPUT2 DSP FORM<br />

Signal 3: parameter 3418 OUTPUT3 DSP FORM.<br />

3. Select the units to be displayed for the signals. This<br />

has no effect if parameter 3404/3411/3418 is set to 9<br />

(DIRECT). For details, see parameter 3405.<br />

Signal 1: parameter 3405 OUTPUT1 UNIT<br />

Signal 2: parameter 3412 OUTPUT2 UNIT<br />

Signal 3: parameter 3419 OUTPUT3 UNIT.<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

Control panels 83<br />

103<br />

PAR SET FWD<br />

104<br />

PAR SET FWD<br />

105<br />

PAR SET FWD<br />

9<br />

PAR SET FWD<br />

3<br />

PAR SET FWD


84 Control panels<br />

Step Action Display<br />

4. Select the scalings for the signals by specifying the<br />

minimum and maximum display values. This has no<br />

effect if parameter 3404/3411/3418 is set to 9<br />

(DIRECT). For details, see parameters 3406 and<br />

3407.<br />

Signal 1: parameters 3406 OUTPUT1 MIN and 3407<br />

OUTPUT1 MAX<br />

Signal 2: parameters 3413 OUTPUT2 MIN and 3414<br />

OUTPUT2 MAX<br />

Signal 3: parameters 3420 OUTPUT3 MIN and 3421<br />

OUTPUT3 MAX.<br />

LOC<br />

LOC<br />

00 .<br />

PAR SET FWD<br />

5000 .<br />

PAR SET FWD<br />

Hz<br />

Hz


� Copy mode<br />

Control panels 85<br />

The basic control panel can store a full set of drive parameters and up to three user<br />

sets of drive parameters to the control panel. Uploading and downloading can be<br />

performed in local control. The control panel memory is non-volatile.<br />

In the Copy mode, you can do the following:<br />

• Copy all parameters from the drive to the control panel (uL – Upload). This<br />

includes all defined user sets of parameters and internal (not adjustable by the<br />

user) parameters such as those created by the ID run.<br />

• Restore the full parameter set from the control panel to the drive (dL A –<br />

Download all). This writes all parameters, including the internal non-useradjustable<br />

motor parameters, to the drive. It does not include the user sets of<br />

parameters.<br />

Note: Only use this function to restore a drive, or to transfer parameters to<br />

systems that are identical to the original system.<br />

• Copy a partial parameter set from the control panel to a drive (dL P – Download<br />

partial). The partial set does not include user sets, internal motor parameters,<br />

parameters 9905…9909, 1605, 1607, 5201, nor any group 51 EXT COMM<br />

MODULE and 53 EFB PROTOCOL parameters.<br />

The source and target drives and their motor sizes do not need to be the same.<br />

• Copy user set 1 parameters from the control panel to the drive (dL u1 – Download<br />

user set 1). A user set includes group 99 START-UP DATA parameters and the<br />

internal motor parameters.<br />

The function is only shown on the menu when user set 1 has been first saved<br />

using parameter 9902 APPLIC MACRO (see section User macros on page 119)<br />

and then uploaded to panel.<br />

• Copy user set 2 parameters from the control panel to the drive (dL u2 – Download<br />

user set 2). As dL u1 – Download user set 1 above.<br />

• Copy user set 3 parameters from the control panel to the drive (dL u3 – Download<br />

user set 2). As dL u1 – Download user set 1 above.<br />

• Start, stop, change the direction and switch between local and remote control.


86 Control panels<br />

How to upload and download parameters<br />

For the upload and download functions available, see above. Note that the drive has<br />

to be in local control for uploading and downloading.<br />

Step Action Display<br />

1. Go to the Main menu by pressing if you are in<br />

the Output mode, otherwise by pressing<br />

repeatedly until you see MENU at the bottom. – If<br />

LOC<br />

REM is shown on the left, press first REM to switch to<br />

local control.<br />

LOC<br />

PAr<br />

MENU FWD<br />

2. If the panel is not in the Copy mode (“CoPY” not<br />

visible), press key or until you see<br />

“CoPY”.<br />

LOC<br />

CoPY<br />

MENU FWD<br />

Press .<br />

3. To upload all parameters (including user sets) from<br />

the drive to the control panel, step to “uL” with keys<br />

and .<br />

Press . During the transfer, the display shows<br />

the transfer status as a percentage of completion.<br />

To perform downloads, step to the appropriate<br />

operation (here “dL A”, Download all, is used as an<br />

example) with keys and .<br />

Press . During the transfer, the display shows<br />

the transfer status as a percentage of completion.<br />

� Basic control panel alarm codes<br />

In addition to the faults and alarms generated by the drive (see chapter Fault tracing<br />

on page 335), the basic control panel indicates control panel alarms with a code of<br />

form A5xxx. See section Alarms generated by the basic control panel on page 341 for<br />

a list of the alarm codes and descriptions.<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

LOC<br />

uL<br />

MENU FWD<br />

uL<br />

MENU FWD<br />

uL 50<br />

dL A<br />

FWD<br />

MENU FWD<br />

dL 50<br />

FWD<br />

%<br />

%


Assistant control panel<br />

� Features<br />

Control panels 87<br />

The assistant control panel features:<br />

• alphanumeric control panel with an LCD display<br />

• language selection for the display<br />

• Start-up assistant to ease drive commissioning<br />

• copy function – parameters can be copied to the control panel memory for later<br />

transfer to other drives or for backup of a particular system.<br />

• context sensitive help<br />

• real time clock.


88 Control panels<br />

� Overview<br />

The following table summarizes the key functions and displays on the assistant<br />

control panel<br />

No. Use<br />

1<br />

1 Status LED – Green for normal operation. If LED is<br />

2<br />

flashing, or red, see section LEDs on page 356.<br />

LCD display – Divided into three main areas:<br />

f. Status line – variable, depending on the mode of<br />

operation, see section Status line on page 89.<br />

g. Center – variable; in general, shows signal and<br />

2a<br />

2b<br />

2c<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

parameter values, menus or lists. Shows also<br />

faults and alarms.<br />

3<br />

5<br />

4<br />

h. Bottom line – shows current functions of the two 7 6<br />

8<br />

3<br />

soft keys and, if enabled, the clock display.<br />

Soft key 1 – Function depends on the context. The<br />

text in the lower left corner of the LCD display<br />

indicates the function.<br />

9 10<br />

4 Soft key 2 – Function depends on the context. The text in the lower right corner of the<br />

LCD display indicates the function.<br />

5 Up –<br />

• Scrolls up through a menu or list displayed in the center of the LCD display.<br />

• Increments a value if a parameter is selected.<br />

• Increments the reference value if the upper right corner is highlighted.<br />

Holding the key down changes the value faster.<br />

6 Down –<br />

• Scrolls down through a menu or list displayed in the center of the LCD display.<br />

• Decrements a value if a parameter is selected.<br />

• Decrements the reference value if the upper right corner is highlighted.<br />

Holding the key down changes the value faster.<br />

7 LOC/REM – Changes between local and remote control of the drive.<br />

8 Help – Displays context sensitive information when the key is pressed. The information<br />

displayed describes the item currently highlighted in the center of the display.<br />

9 STOP – Stops the drive in local control.


Status line<br />

Control panels 89<br />

The top line of the LCD display shows the basic status information of the drive.<br />

No. Field Alternatives Significance<br />

1 Control location LOC Drive control is local, that is, from the<br />

control panel.<br />

REM Drive control is remote, such as the drive<br />

I/O or fieldbus.<br />

2 State Forward shaft direction<br />

<strong>Rev</strong>erse shaft direction<br />

Rotating arrow Drive is running at setpoint.<br />

Dotted rotating arrow Drive is running but not at setpoint.<br />

Stationary arrow Drive is stopped.<br />

Dotted stationary arrow Start command is present, but the motor is<br />

not running, eg because start enable is<br />

3 Panel operation<br />

mode<br />

� Operation<br />

LOC 49.1Hz<br />

4 Reference value or<br />

number of the<br />

selected item<br />

LOC MAIN MENU<br />

1 2 4 1 2 3 4<br />

missing.<br />

• Name of the current mode<br />

• Name of the list or menu shown<br />

• Name of the operation state, eg PAR<br />

EDIT.<br />

• Reference value in the Output mode<br />

• Number of the highlighted item, eg<br />

mode, parameter group or fault.<br />

You operate the control panel with menus and keys. The keys include two contextsensitive<br />

soft keys, whose current function is indicated by the text shown in the<br />

display above each key.<br />

You select an option, eg operation mode or parameter, by scrolling the and<br />

arrow keys until the option is highlighted (in reverse video) and then pressing<br />

the relevant soft key. With the right soft key you usually enter a mode, accept an<br />

option or save the changes. The left soft key is used to cancel the made changes<br />

and return to the previous operation level.<br />

The assistant control panel has nine panel modes: Output mode, Parameter mode,<br />

Assistants mode, Changed parameters mode, Fault logger mode, Time and date<br />

mode, Parameter backup mode, I/O settings mode and Fault mode. The operation in<br />

the first eight modes is described in this chapter. When a fault or alarm occurs, the<br />

panel goes automatically to the Fault mode showing the fault or alarm. You can reset<br />

it in the Output or Fault mode (see chapter Fault tracing on page 335).<br />

1


90 Control panels<br />

Initially, the panel is in the Output mode, where you can<br />

start, stop, change the direction, switch between local and<br />

remote control, modify the reference value and monitor up<br />

to three actual values.<br />

To do other tasks, go first to the Main menu and select the<br />

appropriate mode on the menu. The status line (see<br />

section Status line on page 89) shows the name of the<br />

current menu, mode, item or state.<br />

How to do common tasks<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC MAIN MENU 1<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

The table below lists common tasks, the mode in which you can perform them and<br />

the page number where the steps to do the task are described in detail.<br />

Task Mode Page<br />

How to get help Any 91<br />

How to find out the panel version At power up 91<br />

How to adjust the display contrast Output 94<br />

How to switch between local and remote control Any 92<br />

How to start and stop the drive Any 93<br />

How to change the direction of the motor rotation Output 93<br />

How to set the speed, frequency or torque reference Output 94<br />

How to change the value of a parameter Parameters 95<br />

How to select the monitored signals Parameters 96<br />

How to do guided tasks (specification of related parameter sets)<br />

with assistants<br />

Assistants 98<br />

How to view and edit changed parameters Changed<br />

parameters<br />

100<br />

How to view faults Fault logger 101<br />

How to reset faults and alarms Output, Fault 335<br />

How to show/hide the clock, change date and time formats, set the Time and date<br />

clock and enable/disable automatic clock transitions according to<br />

the daylight saving changes<br />

102<br />

How to copy parameters from the drive to the control panel Parameter<br />

backup<br />

105<br />

How to restore parameters from the control panel to the drive Parameter<br />

backup<br />

105<br />

How to view backup information Parameter<br />

backup<br />

106<br />

How to edit and change parameter settings related to I/O terminals I/O settings 107


How to get help<br />

If help text exists for the item, it is shown on the display.<br />

2. If the whole text is not visible, scroll the lines with keys<br />

and .<br />

How to find out the panel version<br />

Control panels 91<br />

Step Action Display<br />

1. Press ? to read the context-sensitive help text for the<br />

item that is highlighted.<br />

LOC PAR GROUPS 10<br />

01 OPERATING DATA<br />

03 FB ACTUAL SIGNALS<br />

04 FAULT HISTORY<br />

10 START/STOP/DIR<br />

11 REFERENCE SELECT<br />

EXIT 00:00 SEL<br />

LOC HELP<br />

This group defines<br />

external sources<br />

(EXT1 and EXT2) for<br />

commands that enable<br />

start, stop and<br />

EXIT 00:00<br />

LOC HELP<br />

external sources<br />

(EXT1 and EXT2) for<br />

commands that enable<br />

start, stop and<br />

direction changes.<br />

EXIT 00:00<br />

3. After reading the text, return to the previous display by<br />

EXIT<br />

pressing .<br />

LOC PAR GROUPS 10<br />

01 OPERATING DATA<br />

03 FB ACTUAL SIGNALS<br />

04 FAULT HISTORY<br />

10 START/STOP/DIR<br />

11 REFERENCE SELECT<br />

EXIT 00:00 SEL<br />

Step Action Display<br />

1. If the power is switched on, switch it off.<br />

2. Keep key ? pressed down while you switch on the<br />

power and read the information. The display shows the<br />

following panel information:<br />

Panel SW: panel firmware version<br />

ROM CRC: panel ROM check sum<br />

Flash <strong>Rev</strong>: flash content version<br />

Flash content comment.<br />

PANEL VERSION INFO<br />

Panel SW: x.xx<br />

Rom CRC: xxxxxxxxxx<br />

Flash <strong>Rev</strong>: x.xx<br />

xxxxxxxxxxxxxxxxxxxxx<br />

When you release the<br />

Output mode.<br />

? key, the panel goes to the


92 Control panels<br />

How to start, stop and switch between local and remote control<br />

You can start, stop and switch between local and remote control in any mode. To be<br />

able to start or stop the drive, the drive must be in local control.<br />

Step Action Display<br />

1. • To switch between remote control (REM shown on the<br />

status line) and local control (LOC shown on the status<br />

LOC<br />

line), press REM .<br />

LOC MESSAGE<br />

Switching to the<br />

local control mode.<br />

Note: Switching to local control can be disabled with<br />

parameter 1606 LOCAL LOCK.<br />

The very first time the drive is powered up, it is in<br />

remote control (REM) and controlled through the drive<br />

I/O terminals. To switch to local control (LOC) and<br />

LOC<br />

control the drive using the control panel, press REM<br />

.<br />

00:00<br />

The result depends on how long you press the key:<br />

• If you release the key immediately (the display<br />

flashes “Switching to the local control mode”), the<br />

drive stops. Set the local control reference as<br />

instructed on page 94.<br />

• If you press the key for about two seconds, the drive<br />

continues as before. The drive copies the current<br />

remote values for the run/stop status and the<br />

reference, and uses them as the initial local control<br />

settings.<br />

• To stop the drive in local control, press . The arrow ( or ) on the<br />

status line stops rotating.<br />

• To start the drive in local control, press . The arrow ( or ) on the<br />

status line starts rotating. It<br />

is dotted until the drive<br />

reaches the setpoint.


� Output mode<br />

Control panels 93<br />

In the Output mode, you can:<br />

• monitor actual values of up to three signals in group 01 OPERATING DATA<br />

• change the direction of the motor rotation<br />

• set the speed, frequency or torque reference<br />

• adjust the display contrast<br />

• start, stop, change the direction and switch between local and remote control.<br />

EXIT<br />

You get to the Output mode by pressing repeatedly.<br />

The top right corner of the<br />

display shows the reference<br />

value. The center can be<br />

configured to show up to three<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

0. 4 A<br />

24. 4 %<br />

signal values or bar graphs. If<br />

just one or two signals are<br />

DIR 00:00 MENU<br />

00:00<br />

selected for display, the number and name of each displayed signal are shown in<br />

addition to the value or bar graph. See page 96 for instructions on selecting and<br />

modifying the monitored signals.<br />

How to change the direction of the motor rotation<br />

Step Action Display<br />

1.<br />

EXIT<br />

If you are not in the Output mode, press repeatedly<br />

until you get there.<br />

REM 49.1Hz<br />

2. If the drive is in remote control (REM shown on the status<br />

LOC<br />

line), switch to local control by pressing REM . The display<br />

briefly shows a message about changing the mode and<br />

then returns to the Output mode.<br />

3. To change the direction from forward ( shown on the<br />

status line) to reverse (<br />

DIR<br />

vice versa, press .<br />

shown on the status line), or<br />

Note: Parameter 1003 DIRECTION must be set to 3<br />

(REQUEST).<br />

LOC 5.0Hz<br />

Hz50%<br />

DIR MENU<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU


94 Control panels<br />

How to set the speed, frequency or torque reference<br />

Step Action Display<br />

1.<br />

EXIT<br />

If you are not in the Output mode, press repeatedly<br />

until you get there.<br />

REM 49.1Hz<br />

2. If the drive is in remote control (REM shown on the status<br />

LOC<br />

line), switch to local control by pressing REM . The display<br />

briefly shows a message about changing the mode and<br />

then returns to the Output mode.<br />

Note: With group 11 REFERENCE SELECT, you can<br />

allow the reference modification in remote control.<br />

3. • To increase the highlighted reference value shown in<br />

the top right corner of the display, press . The<br />

value changes immediately. It is stored in the drive<br />

permanent memory and restored automatically after<br />

power switch-off.<br />

• To decrease the value, press .<br />

How to adjust the display contrast<br />

Step Action Display<br />

1.<br />

EXIT<br />

If you are not in the Output mode, press repeatedly<br />

until you get there.<br />

LOC 49.1Hz<br />

MENU<br />

2. • To increase the contrast, press keys<br />

simultaneously.<br />

and<br />

MENU<br />

• To decrease the contrast, press keys and<br />

simultaneously.<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC 50.0Hz<br />

50. 0 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU


� Parameters mode<br />

Control panels 95<br />

In the Parameters mode, you can:<br />

• view and change parameter values<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to select a parameter and change its value<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

2. Go to the Parameters mode by selecting PARAMETERS<br />

on the menu with keys<br />

ENTER<br />

.<br />

and , and pressing<br />

3. Select the appropriate parameter group with keys<br />

and .<br />

SEL<br />

Press .<br />

4. Select the appropriate parameter with keys and<br />

. The current value of the parameter is shown<br />

below the selected parameter.<br />

EDIT<br />

Press .<br />

5. Specify a new value for the parameter with keys<br />

and .<br />

Pressing the key once increments or decrements the<br />

value. Holding the key down changes the value faster.<br />

Pressing the keys simultaneously replaces the displayed<br />

value with the default value.<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

LOC PAR GROUPS 01<br />

01 OPERATING DATA<br />

03 FB ACTUAL SIGNALS<br />

04 FAULT HISTORY<br />

10 START/STOP/DIR<br />

11 REFERENCE SELECT<br />

EXIT 00:00 SEL<br />

LOC PAR GROUPS 99<br />

99 START-UP DATA<br />

01 OPERATING DATA<br />

03 FB ACTUAL SIGNALS<br />

04 FAULT HISTORY<br />

10 START/STOP/DIR<br />

EXIT 00:00 SEL<br />

LOC PARAMETERS<br />

9901 LANGUAGE<br />

ENGLISH<br />

9902 APPLIC MACRO<br />

9903 MOTOR TYPE<br />

9904 MOTOR CTRL MODE<br />

EXIT 00:00 EDIT<br />

LOC PARAMETERS<br />

9901 LANGUAGE<br />

9902 APPLIC MACRO<br />

ABB STANDARD<br />

9903 MOTOR TYPE<br />

9904 MOTOR CTRL MODE<br />

EXIT 00:00 EDIT<br />

LOC<br />

PAR EDIT<br />

9902 APPLIC MACRO<br />

ABB STANDARD<br />

[1]<br />

CANCEL 00:00 SAVE<br />

LOC<br />

PAR EDIT<br />

9902 APPLIC MACRO<br />

3-WIRE<br />

[2]<br />

CANCEL 00:00 SAVE


96 Control panels<br />

Step Action Display<br />

SAVE<br />

6. • To save the new value, press .<br />

• To cancel the new value and keep the original, press<br />

CANCEL<br />

.<br />

How to select the monitored signals<br />

Step Action Display<br />

1. You can select which signals are monitored in the Output<br />

mode and how they are displayed with group 34 PANEL<br />

DISPLAY parameters. See page 95 for detailed<br />

instructions on changing parameter values.<br />

LOC PAR EDIT<br />

3401 SIGNAL1 PARAM<br />

By default, the display shows three signals.<br />

Signal 1: 0102 SPEED for macros 3-wire, Alternate,<br />

Motor potentiometer, Hand/Auto and PID control;<br />

[103]<br />

CANCEL 00:00<br />

LOC PAR EDIT<br />

SAVE<br />

0103 OUTPUT FREQ for macros ABB standard and<br />

Torque control<br />

Signal 2: 0104 CURRENT<br />

3408 SIGNAL2 PARAM<br />

CURRENT<br />

[104]<br />

Signal 3: 0105 TORQUE.<br />

CANCEL 00:00 SAVE<br />

To change the default signals, select up to three signals<br />

from group 01 OPERATING DATA to be shown.<br />

Signal 1: Change the value of parameter 3401 SIGNAL1<br />

PARAM to the index of the signal parameter in group 01<br />

OPERATING DATA (= number of the parameter without<br />

the leading zero), eg 105 means parameter 0105<br />

TORQUE. Value 0 means that no signal is displayed.<br />

Repeat for signals 2 (3408 SIGNAL2 PARAM) and 3<br />

(3415 SIGNAL3 PARAM).<br />

LOC PAR EDIT<br />

3415 SIGNAL3 PARAM<br />

TORQUE<br />

[105]<br />

CANCEL 00:00 SAVE<br />

2. Select how you want the signals to be displayed: as a<br />

decimal number or a bar graph. For decimal numbers,<br />

you can specify the decimal point location, or use the<br />

decimal point location and unit of the source signal<br />

(setting 9 [DIRECT]). For details, see parameter 3404.<br />

Signal 1: parameter 3404 OUTPUT1 DSP FORM<br />

Signal 2: parameter 3411 OUTPUT2 DSP FORM<br />

Signal 3: parameter 3418 OUTPUT3 DSP FORM.<br />

3. Select the units to be displayed for the signals. This has<br />

no effect if parameter 3404/3411/3418 is set to 9<br />

(DIRECT). For details, see parameter 3405.<br />

Signal 1: parameter 3405 OUTPUT1 UNIT<br />

Signal 2: parameter 3412 OUTPUT2 UNIT<br />

Signal 3: parameter 3419 OUTPUT3 UNIT.<br />

LOC PARAMETERS<br />

9901 LANGUAGE<br />

9902 APPLIC MACRO<br />

3-WIRE<br />

9903 MOTOR TYPE<br />

9904 MOTOR CTRL MODE<br />

EXIT 00:00 EDIT<br />

OUTPUT FREQ<br />

LOC<br />

PAR EDIT<br />

3404 OUTPUT1 DSP FORM<br />

DIRECT<br />

[9]<br />

CANCEL 00:00 SAVE<br />

LOC<br />

PAR EDIT<br />

3405 OUTPUT1 UNIT<br />

Hz<br />

[3]<br />

CANCEL 00:00 SAVE


4. Select the scalings for the signals by specifying the<br />

minimum and maximum display values. This has no<br />

effect if parameter 3404/3411/3418 is set to 9 (DIRECT).<br />

For details, see parameters 3406 and 3407.<br />

Signal 1: parameters 3406 OUTPUT1 MIN and 3407<br />

OUTPUT1 MAX<br />

Signal 2: parameters 3413 OUTPUT2 MIN and 3414<br />

OUTPUT2 MAX<br />

Signal 3: parameters 3420 OUTPUT3 MIN and 3421<br />

OUTPUT3 MAX.<br />

Control panels 97<br />

Step Action Display<br />

LOC<br />

PAR EDIT<br />

3406 OUTPUT1 MIN<br />

0.0 Hz<br />

CANCEL 00:00 SAVE<br />

LOC<br />

PAR EDIT<br />

3407 OUTPUT1 MAX<br />

500.0 Hz<br />

CANCEL 00:00 SAVE


98 Control panels<br />

� Assistants mode<br />

When the drive is first powered up, the Start-up assistant guides you through the<br />

setup of the basic parameters. The Start-up assistant is divided into assistants, each<br />

of which is responsible for the specification of a related parameter set, for example<br />

Motor set-up or PID control. The Start-up assistant activates the assistants one after<br />

the other. You may also use the assistants independently. For more information on<br />

the tasks of the assistants, see section Start-up assistant on page 121.<br />

In the Assistants mode, you can:<br />

• use assistants to guide you through the specification of a set of basic parameters<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to use an assistant<br />

The table below shows the basic operation sequence which leads you through<br />

assistants. The Motor set-up assistant is used as an example.<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

2. Go to the Assistants mode by selecting ASSISTANTS on<br />

ENTER<br />

the menu keys and , and pressing .<br />

LOC ASSISTANTS<br />

Start-up assistant<br />

Motor Set-up<br />

Application<br />

Speed control EXT1<br />

Speed control EXT2<br />

1<br />

EXIT 00:00 SEL<br />

3. Select the assistant with keys and , and<br />

SEL<br />

press .<br />

If you select any other assistant than the Start-up<br />

assistant, it guides you through the task of specification<br />

LOC PAR EDIT<br />

9905 MOTOR NOM VOLT<br />

200 V<br />

of its parameter set as shown in steps 4. and 5. below.<br />

After that you can select another assistant on the<br />

Assistants menu or exit the Assistants mode. The Motor<br />

set-up assistant is used here as an example.<br />

EXIT 00:00 SAVE<br />

If you select the Start-up assistant, it activates the first<br />

assistant, which guides you through the task of<br />

specification of its parameter set as shown in steps 4.<br />

and 5. below. The Start-up assistant then asks if you<br />

want to continue with the next assistant or skip it – select<br />

the appropriate answer with keys and , and<br />

SEL<br />

press . If you choose to skip, the Start-up assistant<br />

asks the same question about the next assistant, and so<br />

on.<br />

LOC CHOICE<br />

Do you want to<br />

continue with<br />

application setup?<br />

Continue<br />

Skip<br />

EXIT 00:00 OK


4. • To specify a new value, press keys and .<br />

• To ask for information on the requested parameter,<br />

press key ? . Scroll the help text with keys and<br />

EXIT<br />

. Close the help by pressing .<br />

5. • To accept the new value and continue to the setting of<br />

SAVE<br />

the next parameter, press .<br />

EXIT<br />

• To stop the assistant, press .<br />

Control panels 99<br />

Step Action Display<br />

LOC<br />

PAR EDIT<br />

9905 MOTOR NOM VOLT<br />

240 V<br />

EXIT 00:00 SAVE<br />

LOC HELP<br />

Set as given on the<br />

motor nameplate.<br />

Voltage value must<br />

correspond to motor<br />

D/Y connection.<br />

EXIT 00:00<br />

LOC<br />

PAR EDIT<br />

9906 MOTOR NOM CURR<br />

1.2 A<br />

EXIT 00:00 SAVE


100 Control panels<br />

� Changed parameters mode<br />

In the Changed parameters mode, you can:<br />

• view a list of all parameters that have been changed from the macro default<br />

values<br />

• change these parameters<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to view and edit changed parameters<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

2. Go to the Changed parameters mode by selecting<br />

CHANGED PAR on the menu with keys<br />

ENTER<br />

and pressing .<br />

and ,<br />

3. Select the changed parameter on the list with keys<br />

and . The value of the selected parameter is shown<br />

EDIT<br />

below it. Press to modify the value.<br />

4. Specify a new value for the parameter with keys<br />

and .<br />

Pressing the key once increments or decrements the<br />

value. Holding the key down changes the value faster.<br />

Pressing the keys simultaneously replaces the displayed<br />

value with the default value.<br />

SAVE<br />

5. • To accept the new value, press . If the new value<br />

is the default value, the parameter is removed from the<br />

list of changed parameters.<br />

• To cancel the new value and keep the original, press<br />

CANCEL<br />

.<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

LOC CHANGED PAR<br />

1202 CONST SPEED 1<br />

10.0 Hz<br />

1203 CONST SPEED 2<br />

1204 CONST SPEED 3<br />

9902 APPLIC MACRO<br />

EXIT 00:00 EDIT<br />

LOC<br />

PAR EDIT<br />

1202 CONST SPEED 1<br />

10.0 Hz<br />

CANCEL 00:00 SAVE<br />

LOC<br />

PAR EDIT<br />

1202 CONST SPEED 1<br />

15.0 Hz<br />

CANCEL 00:00 SAVE<br />

LOC CHANGED PAR<br />

1202 CONST SPEED 1<br />

15.0 Hz<br />

1203 CONST SPEED 2<br />

1204 CONST SPEED 3<br />

9902 APPLIC MACRO<br />

EXIT 00:00 EDIT


� Fault logger mode<br />

Control panels 101<br />

In the Fault logger mode, you can:<br />

• view the drive fault history of maximum ten faults (after a power off, only the three<br />

latest faults are kept in the memory)<br />

• see the details of the three latest faults (after a power off, the details of only the<br />

most recent fault is kept in the memory)<br />

• read the help text for the fault<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to view faults<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

4. To show the help text, press . Scroll the help text with<br />

keys and .<br />

After reading the help, press<br />

previous display.<br />

OK<br />

to return to the<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

2. Go to the Fault logger mode by selecting FAULT<br />

LOGGER on the menu with keys and , and<br />

ENTER<br />

pressing . The display shows the fault log starting<br />

with the latest fault.<br />

LOC FAULT LOGGER<br />

10: PANEL LOSS<br />

19.03.05 13:04:57<br />

6: DC UNDERVOLT<br />

7: AI1 LOSS<br />

1<br />

The number on the row is the fault code according to<br />

which the causes and corrective actions are listed in<br />

chapter Fault tracing on page 335.<br />

EXIT 00:00 DETAIL<br />

3. To see the details of a fault, select it with keys<br />

DETAIL<br />

, and press .<br />

and LOC PANEL LOSS<br />

DI STATUS AT FLT<br />

00000 bin<br />

FAULT TIME 1<br />

13:04:57<br />

FAULT TIME 2<br />

EXIT 00:00 DIAG<br />

DIAG<br />

LOC DIAGNOSTICS<br />

Check: comm lines<br />

and connections,<br />

parameter 3002,<br />

parameters in groups<br />

10 and 11.<br />

EXIT 00:00 OK


102 Control panels<br />

� Time and date mode<br />

In the Time and date mode, you can:<br />

• show or hide the clock<br />

• change date and time display formats<br />

• set the date and time<br />

• enable or disable automatic clock transitions according to the daylight saving<br />

changes<br />

• start, stop, change the direction and switch between local and remote control.<br />

The assistant control panel contains a battery to ensure the function of the clock<br />

when the panel is not powered by the drive.<br />

How to show or hide the clock, change display formats, set the date and time<br />

and enable or disable clock transitions due to daylight saving changes<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

2. Go to the Time and date mode by selecting TIME &<br />

DATE on the menu with keys<br />

ENTER<br />

pressing .<br />

and , and<br />

3. • To show (hide) the clock, select CLOCK VISIBLILITY<br />

SEL<br />

on the menu, press , select Show clock (Hide<br />

SEL<br />

clock) and press , or, if you want to return to the<br />

EXIT<br />

previous display without making changes, press .<br />

• To specify the date format, select DATE FORMAT on<br />

SEL<br />

the menu, press and select a suitable format.<br />

OK CANCEL<br />

Press to save or to cancel your changes.<br />

• To specify the time format, select TIME FORMAT on<br />

SEL<br />

the menu, press and select a suitable format.<br />

OK CANCEL<br />

Press to save or to cancel your changes.<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

LOC TIME & DATE<br />

CLOCK VISIBILITY<br />

TIME FORMAT<br />

DATE FORMAT<br />

SET TIME<br />

SET DATE<br />

1<br />

EXIT 00:00 SEL<br />

LOC CLOCK VISIB 1<br />

Show clock<br />

Hide clock<br />

EXIT 00:00 SEL<br />

LOC DATE FORMAT 1<br />

dd.mm.yy<br />

mm/dd/yy<br />

dd.mm.yyyy<br />

mm/dd/yyyy<br />

CANCEL 00:00 OK<br />

LOC TIME FORMAT 1<br />

24-hour<br />

12-hour<br />

CANCEL 00:00 SEL


• To set the time, select SET TIME on the menu and<br />

SEL<br />

press . Specify the hours with keys and<br />

OK<br />

, and press .Then specify the minutes. Press<br />

OK CANCEL<br />

to save or to cancel your changes.<br />

• To set the date, select SET DATE on the menu and<br />

SEL<br />

press . Specify the first part of the date (day or<br />

month depending on the selected date format) with<br />

OK<br />

keys and , and press . Repeat for the<br />

OK<br />

second part. After specifying the year, press . To<br />

CANCEL<br />

cancel your changes, press .<br />

• To enable or disable the automatic clock transitions<br />

according to the daylight saving changes, select<br />

SEL<br />

DAYLIGHT SAVING on the menu and press .<br />

Pressing ? opens the help that shows the beginning<br />

and end dates of the period during which daylight<br />

saving time is used in each country or area whose<br />

daylight saving changes you can select to be followed.<br />

Scroll the help text with keys and .<br />

• To disable automatic clock transitions according to<br />

the daylight saving changes, select Off and press<br />

SEL<br />

.<br />

• To enable automatic clock transitions, select the<br />

country or area whose daylight saving changes are<br />

SEL<br />

followed and press .<br />

• To return to the previous display without making<br />

EXIT<br />

changes, press .<br />

Control panels 103<br />

Step Action Display<br />

LOC<br />

SET TIME<br />

15:41<br />

CANCEL 00:00 OK<br />

LOC<br />

SET DATE<br />

19.03.05<br />

CANCEL 00:00 OK<br />

LOC DAYLIGHT SAV 1<br />

Off<br />

EU<br />

US<br />

Australia1:NSW,Vict..<br />

Australia2:Tasmania..<br />

EXIT 00:00 SEL<br />

LOC HELP<br />

EU:<br />

On: Mar last Sunday<br />

Off: Oct last Sunday<br />

US:<br />

EXIT 00:00


104 Control panels<br />

� Parameter backup mode<br />

The Parameter backup mode is used to export parameters from one drive to another<br />

or to make a backup of the drive parameters. Uploading to the panel stores all drive<br />

parameters, including up to three user sets, to the assistant control panel. The full set,<br />

partial parameter set (application) and user sets can then be downloaded from the<br />

control panel to another drive or the same drive. Uploading and downloading can be<br />

performed in local control.<br />

The control panel memory is non-volatile and does not depend on the panel battery.<br />

In the Parameter backup mode, you can:<br />

• Copy all parameters from the drive to the control panel (UPLOAD TO PANEL).<br />

This includes all defined user sets of parameters and internal (not adjustable by<br />

the user) parameters such as those created by the ID run.<br />

• View the information about the backup stored to the control panel with UPLOAD<br />

TO PANEL (BACKUP INFO). This includes eg the type and rating of the drive<br />

where the backup was made. It is useful to check this information when you are<br />

going to copy the parameters to another drive with DOWNLOAD FULL SET to<br />

ensure that the drives match.<br />

• Restore the full parameter set from the control panel to the drive (DOWNLOAD<br />

FULL SET). This writes all parameters, including the internal non-user-adjustable<br />

motor parameters, to the drive. It does not include the user sets of parameters.<br />

Note: Only use this function to restore a drive from a backup or to transfer<br />

parameters to systems that are identical to the original system.<br />

• Copy a partial parameter set (part of the full set) from the control panel to a drive<br />

(DOWNLOAD APPLICATION). The partial set does not include user sets, internal<br />

motor parameters, parameters 9905…9909, 1605, 1607, 5201, nor any group 51<br />

EXT COMM MODULE and 53 EFB PROTOCOL parameters.<br />

The source and target drives and their motor sizes do not need to be the same.<br />

• Copy user set 1 parameters from the control panel to the drive (DOWNLOAD<br />

USER SET1). A user set includes group 99 START-UP DATA parameters and the<br />

internal motor parameters.<br />

The function is only shown on the menu when user set 1 has been first saved<br />

using parameter 9902 APPLIC MACRO (see section User macros on page 119)<br />

and then uploaded to the control panel with UPLOAD TO PANEL.<br />

• Copy user set 2 parameters from the control panel to the drive (DOWNLOAD<br />

USER SET2). As DOWNLOAD USER SET1 above.<br />

• Copy user set 3 parameters from the control panel to the drive (DOWNLOAD<br />

USER SET3). As DOWNLOAD USER SET1 above.<br />

• Start, stop, change the direction and switch between local and remote control.


How to upload and download parameters<br />

Control panels 105<br />

For the upload and download functions available, see above. Note that the drive has<br />

to be in local control for uploading and downloading.<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu. – If REM is shown on the<br />

LOC<br />

status line, press first REM to switch to local control.<br />

LOC MAIN MENU<br />

PARAMETERS<br />

ASSISTANTS<br />

1<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

2. Go to the Par backup mode by selecting PAR BACKUP<br />

on the menu with keys and , and pressing<br />

ENTER<br />

.<br />

LOC PAR BACKUP 1<br />

UPLOAD TO PANEL<br />

BACKUP INFO<br />

DOWNLOAD FULL SET<br />

DOWNLOAD APPLICATION<br />

DOWNLOAD USER SET1<br />

EXIT 00:00 SEL<br />

3. • To copy all parameters (including user sets and<br />

internal parameters) from the drive to the control<br />

panel, select UPLOAD TO PANEL on the Par backup<br />

SEL<br />

menu with keys and , and press .<br />

LOC PAR BACKUP<br />

Copying parameters<br />

50%<br />

During the transfer, the display shows the transfer<br />

ABORT<br />

status as a percentage of completion. Press if you<br />

want to stop the operation.<br />

ABORT 00:00<br />

After the upload is completed, the display shows a<br />

OK<br />

message about the completion. Press to return to<br />

the Par backup menu.<br />

LOC MESSAGE<br />

Parameter upload<br />

successful<br />

OK 00:00<br />

• To perform downloads, select the appropriate<br />

operation (here DOWNLOAD FULL SET is used as an<br />

example) on the Par backup menu with keys<br />

SEL<br />

and , and press . The display shows the<br />

transfer status as a percentage of completion. Press<br />

ABORT<br />

if you want to stop the operation.<br />

LOC PAR BACKUP<br />

Downloading<br />

parameters (full<br />

set)<br />

50%<br />

ABORT 00:00<br />

After the download is completed, the display shows a<br />

OK<br />

message about the completion. Press to return to<br />

the Par backup menu.<br />

LOC MESSAGE<br />

Parameter download<br />

successfully<br />

completed.<br />

OK 00:00


106 Control panels<br />

How to view information about the backup<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

2. Go to the Par backup mode by selecting PAR BACKUP<br />

on the menu with keys<br />

ENTER<br />

.<br />

and , and pressing<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

LOC PAR BACKUP 1<br />

UPLOAD TO PANEL<br />

BACKUP INFO<br />

DOWNLOAD FULL SET<br />

DOWNLOAD APPLICATION<br />

DOWNLOAD USER SET1<br />

EXIT 00:00 SEL<br />

3. Select BACKUP INFO on the Par backup menu with keys<br />

SEL<br />

and , and press . The display shows the<br />

following information about the drive where the backup<br />

was made:<br />

DRIVE TYPE: type of the drive<br />

DRIVE RATING: rating of the drive in format XXXYZ,<br />

where<br />

XXX: Nominal current rating. If<br />

present, an “A” indicates a decimal<br />

point, eg 9A7 means 9.7 A.<br />

Y: 2 = 200 V<br />

4 = 400 V<br />

LOC BACKUP INFO<br />

DRIVE TYPE<br />

<strong>ACS355</strong><br />

3304 DRIVE RATING<br />

9A74i<br />

3301 FIRMWARE<br />

EXIT 00:00<br />

LOC BACKUP INFO<br />

<strong>ACS355</strong><br />

3304 DRIVE RATING<br />

9A74i<br />

3301 FIRMWARE<br />

241A hex<br />

EXIT 00:00<br />

Z: i = European loading package<br />

n = US loading package<br />

FIRMWARE: firmware version of the drive.<br />

You can scroll the information with keys and .<br />

4.<br />

EXIT<br />

Press to return to the Par backup menu.<br />

LOC PAR BACKUP 1<br />

UPLOAD TO PANEL<br />

BACKUP INFO<br />

DOWNLOAD FULL SET<br />

DOWNLOAD APPLICATION<br />

DOWNLOAD USER SET1<br />

EXIT 00:00 SEL


� I/O settings mode<br />

Control panels 107<br />

In the I/O settings mode, you can:<br />

• check the parameter settings related to any I/O terminal<br />

• edit the parameter setting. For example, if “1103: REF1” is listed under Ain1<br />

(Analog input 1), that is, parameter 1103 REF1 SELECT has value AI1, you can<br />

change its value to eg AI2. You cannot, however, set the value of parameter 1106<br />

REF2 SELECT to AI1.<br />

• start, stop, change the direction and switch between local and remote control.<br />

How to edit and change parameter settings related to I/O terminals<br />

Step Action Display<br />

1.<br />

MENU<br />

Go to the Main menu by pressing if you are in the<br />

EXIT<br />

Output mode, otherwise by pressing repeatedly until<br />

you get to the Main menu.<br />

LOC MAIN MENU 1<br />

2. Go to the I/O settings mode by selecting I/O SETTINGS<br />

on the menu with keys<br />

ENTER<br />

.<br />

and , and pressing<br />

3. Select the I/O group, eg DIGITAL INPUTS, with keys<br />

and , and press . After a brief pause, the<br />

display shows the current settings for the selection.<br />

SEL -DI1-<br />

4. Select the setting (line with a parameter number) with<br />

EDIT LOC PAR EDIT<br />

keys and , and press .<br />

1001 EXT1 COMMANDS<br />

5. Specify a new value for the setting with keys<br />

.<br />

and<br />

6.<br />

Pressing the key once increments or decrements the<br />

value. Holding the key down changes the value faster.<br />

Pressing the keys simultaneously replaces the displayed<br />

value with the default value.<br />

SAVE<br />

• To save the new value, press .<br />

• To cancel the new value and keep the original, press<br />

CANCEL<br />

.<br />

PARAMETERS<br />

ASSISTANTS<br />

CHANGED PAR<br />

EXIT 00:00 ENTER<br />

LOC I/O SETTINGS 1<br />

DIGITAL INPUTS (DI)<br />

ANALOG INPUTS (AI)<br />

RELAY OUTPUTS (ROUT)<br />

ANALOG OUTPUTS (AOUT)<br />

PANEL<br />

EXIT 00:00 SEL<br />

LOC I/O SETTINGS<br />

1001:START/STOP (E1)<br />

-DI2-<br />

1001:DIR (E1)<br />

-DI3-<br />

EXIT 00:00<br />

DI1,2<br />

[2]<br />

CANCEL 00:00 SAVE<br />

LOC<br />

PAR EDIT<br />

1001 EXT1 COMMANDS<br />

DI1P,2P<br />

[3]<br />

CANCEL 00:00 SAVE<br />

LOC I/O SETTINGS<br />

-DI1-<br />

1001:START PLS(E1)<br />

-DI2-<br />

1001:STOP PLS (E1)<br />

-DI3-<br />

EXIT 00:00


108 Control panels


Application macros<br />

What this chapter contains<br />

Application macros 109<br />

The chapter describes the application macros. For each macro, there is a wiring<br />

diagram showing the default control connections (digital and analog I/O). The chapter<br />

also explains how to save a user macro and how to recall it.<br />

Overview of macros<br />

Application macros are pre-programmed parameter sets. While starting up the drive,<br />

the user typically selects one of the macros - the one that is best suited for the<br />

purpose - with parameter 9902 APPLIC MACRO, makes the essential changes and<br />

saves the result as a user macro.<br />

The <strong>ACS355</strong> has seven standard macros and three user macros. The table below<br />

contains a summary of the macros and describes suitable applications.<br />

Macro Suitable applications<br />

ABB standard Ordinary speed control applications where no, one, two or three constant<br />

speeds are used. Start/stop is controlled with one digital input (level start<br />

and stop). It is possible to switch between two acceleration and<br />

deceleration times.<br />

3-wire Ordinary speed control applications where no, one, two or three constant<br />

speeds are used. The drive is started and stopped with push buttons.<br />

Alternate Speed control applications where no, one, two or three constant speeds<br />

are used. Start, stop and direction are controlled by two digital inputs<br />

(combination of the input states determines the operation).<br />

Motor<br />

potentiometer<br />

Speed control applications where no or one constant speed is used. The<br />

speed is controlled by two digital inputs (increase / decrease / keep<br />

unchanged).


110 Application macros<br />

Macro Suitable applications<br />

Hand/Auto Speed control applications where switching between two control devices is<br />

needed. Some control signal terminals are reserved for one device, the<br />

rest for the other. One digital input selects between the terminals (devices)<br />

in use.<br />

PID control Process control applications, for example different closed loop control<br />

systems such as pressure control, level control and flow control. It is<br />

possible to switch between process and speed control: Some control<br />

signal terminals are reserved for process control, others for speed control.<br />

One digital input selects between process and speed control.<br />

Torque control Torque control applications. It is possible to switch between torque and<br />

speed control: Some control signal terminals are reserved for torque<br />

control, others for speed control. One digital input selects between torque<br />

and speed control.<br />

User The user can save the customized standard macro, ie the parameter<br />

settings including group 99 START-UP DATA, and the results of the motor<br />

identification run into the permanent memory, and recall the data at a later<br />

time.<br />

For example, three user macros can be used when switching between<br />

three different motors is required.


Application macros 111<br />

Summary of the I/O connections of the application macros<br />

The following table gives the summary of the default I/O connections of all application<br />

macros.<br />

Input/<br />

output<br />

AI1<br />

(0…10 V)<br />

AI2<br />

(0…20 mA)<br />

ABB<br />

standard<br />

Macro<br />

3-wire Alternate Motor<br />

potentiom.<br />

Hand/Auto PID<br />

control<br />

Freq. ref. Speed ref. Speed ref. - Speed ref.<br />

(Hand)<br />

- - - - Speed ref.<br />

(Auto)<br />

AO Output<br />

freq.<br />

DI1 Stop/Start Start<br />

(pulse)<br />

DI2 Fwd/<strong>Rev</strong> Stop<br />

(pulse)<br />

DI3 Const.<br />

speed<br />

input 1<br />

DI4 Const.<br />

speed<br />

input 2<br />

DI5 Ramp pair<br />

selection<br />

Speed ref.<br />

(Hand) /<br />

Proc. ref.<br />

(PID)<br />

Process<br />

value<br />

Torque<br />

control<br />

Speed ref.<br />

(Speed)<br />

Torque<br />

ref.<br />

(Torque)<br />

Speed Speed Speed Speed Speed Speed<br />

Fwd/<strong>Rev</strong> Const.<br />

speed<br />

input 1<br />

Const.<br />

speed<br />

input 1<br />

Const.<br />

speed<br />

input 2<br />

Start (fwd) Stop/Start Stop/Start<br />

(Hand)<br />

Start (rev) Fwd/<strong>Rev</strong> Fwd/<strong>Rev</strong><br />

(Hand)<br />

Const.<br />

speed<br />

input 2<br />

Ramp pair<br />

selection<br />

Speed ref.<br />

up<br />

Speed ref.<br />

down<br />

Const.<br />

speed 1<br />

Stop/Start<br />

(Hand)<br />

Hand/Auto Const.<br />

speed 1<br />

Fwd/<strong>Rev</strong><br />

(Auto)<br />

Stop/Start<br />

(Auto)<br />

Stop/Start<br />

(Speed)<br />

Hand/PID Fwd/<strong>Rev</strong><br />

Run<br />

enable<br />

Stop/Start<br />

(PID)<br />

Speed/<br />

Torque<br />

Const.<br />

speed 1<br />

Ramp pair<br />

selection<br />

RO Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1)<br />

DO Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1) Fault (-1)


112 Application macros<br />

ABB standard macro<br />

This is the default macro. It provides a general purpose I/O configuration with three<br />

constant speeds. Parameter values are the default values given in section<br />

Parameters on page 185.<br />

If you use other than the default connections presented below, see section I/O<br />

terminals on page 51.<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) AI1 is used as a speed reference if vector<br />

mode is selected.<br />

2)<br />

See parameter group 12 CONSTANT<br />

SPEEDS:<br />

DI3 DI4 Operation (parameter)<br />

0 0 Set speed through AI1<br />

1 0 Speed 1 (1202)<br />

0 1 Speed 2 (1203)<br />

1 1 Speed 3 (1204)<br />

4)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Output frequency reference: 0…10 V 1)<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Not in use by default. 0…10 V<br />

6 GND Analog input circuit common<br />

7 AO Output frequency value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1)<br />

13 DI2 Forward (0) / <strong>Rev</strong>erse (1)<br />

14 DI3 Constant speed selection 2)<br />

15 DI4 Constant speed selection 2)<br />

16 DI5 Acceleration and deceleration selection 3)<br />

X1B<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

No fault [Fault (-1)]<br />

19 RONO<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

No fault [Fault (-1)]<br />

22 DOGND<br />

3) 0 = ramp times according to parameters<br />

2202 and 2203.<br />

1 = ramp times according to parameters<br />

2205 and 2206.<br />

4)<br />

360 degree grounding under a clamp.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


3-wire macro<br />

Application macros 113<br />

This macro is used when the drive is controlled using momentary push-buttons. It<br />

provides three constant speeds. To enable the macro, set the value of parameter<br />

9902 APPLIC MACRO to 2 (3-WIRE).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

Note: When the stop input (DI2) is deactivated (no input), the control panel start and<br />

stop buttons are disabled.<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) See parameter group 12 CONSTANT<br />

SPEEDS:<br />

DI3 DI4 Operation (parameter)<br />

0 0 Set speed through AI1<br />

1 0 Speed 1 (1202)<br />

0 1 Speed 2 (1203)<br />

1 1 Speed 3 (1204)<br />

2)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Motor speed reference: 0…10 V<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Not in use by default. 0…10 V<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Start (pulse )<br />

13 DI2 Stop (pulse )<br />

14 DI3 Forward (0) / <strong>Rev</strong>erse (1)<br />

15 DI4 Constant speed selection 1)<br />

16 DI5 Constant speed selection 1)<br />

X1B<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

No fault [Fault (-1)]<br />

19 RONO<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

No fault [Fault (-1)]<br />

22 DOGND<br />

2) 360 degree grounding under a clamp.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


114 Application macros<br />

Alternate macro<br />

This macro provides an I/O configuration adapted to a sequence of DI control signals<br />

used when alternating the rotation direction of the motor. To enable the macro, set the<br />

value of parameter 9902 APPLIC MACRO to 3 (ALTERNATE).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) See parameter group 12 CONSTANT<br />

SPEEDS:<br />

DI3 DI4 Operation (parameter)<br />

0 0 Set speed through AI1<br />

1 0 Speed 1 (1202)<br />

0 1 Speed 2 (1203)<br />

1 1 Speed 3 (1204)<br />

3)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Motor speed reference: 0…10 V<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Not in use by default. 0…10 V<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Start forward: If DI1 = DI2, the drive stops.<br />

13 DI2 Start reverse<br />

14 DI3 Constant speed selection 1)<br />

15 DI4 Constant speed selection 1)<br />

16 DI5 Acceleration and deceleration selection 2)<br />

X1B<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

No fault [Fault (-1)]<br />

19 RONO<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

No fault [Fault (-1)]<br />

22 DOGND<br />

2) 0 = ramp times according to parameters<br />

2202 and 2203.<br />

1 = ramp times according to parameters<br />

2205 and 2206.<br />

3) 360 degree grounding under a clamp.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


Motor potentiometer macro<br />

Application macros 115<br />

This macro provides a cost-effective interface for PLCs that vary the speed of the<br />

motor using only digital signals. To enable the macro, set the value of parameter 9902<br />

APPLIC MACRO to 4 (MOTOR POT).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

� Default I/O connections<br />

max. 500 ohm<br />

1) If DI3 and DI4 are both active or inactive, the<br />

speed reference is unchanged.<br />

The existing speed reference is stored<br />

during stop and power down.<br />

2)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Not in use by default. 0…10 V<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Not in use by default. 0…10 V<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1)<br />

13 DI2 Forward (0) / <strong>Rev</strong>erse (1)<br />

14 DI3 Speed reference up 1)<br />

15 DI4 Speed reference down 1)<br />

16 DI5<br />

X1B<br />

Constant speed 1: parameter 1202<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

19 RONO<br />

No fault [Fault (-1)]<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

22 DOGND<br />

No fault [Fault (-1)]<br />

2) 360 degree grounding under a clamp.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


116 Application macros<br />

Hand/Auto macro<br />

This macro can be used when switching between two external control devices is<br />

needed. To enable the macro, set the value of parameter 9902 APPLIC MACRO to<br />

5(HAND/AUTO).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

Note: Parameter 2108 START INHIBIT must remain in the default setting 0 (OFF).<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) 360 degree grounding under a clamp.<br />

2) The signal source is powered externally. See<br />

the manufacturer’s instructions. To use<br />

sensors supplied by the drive aux. voltage<br />

output, see page 53.<br />

1)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Motor speed reference (Hand): 0…10 V<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Motor speed reference (Auto): 0…20 mA 2)<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1) (Hand)<br />

13 DI2 Forward (0) / <strong>Rev</strong>erse (1) (Hand)<br />

14 DI3 Hand (0) / Auto (1) control selection<br />

15 DI4 Forward (0) / <strong>Rev</strong>erse (1) (Auto)<br />

16 DI5<br />

X1B<br />

Stop (0) / Start (1) (Auto)<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

19 RONO<br />

No fault [Fault (-1)]<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

22 DOGND<br />

No fault [Fault (-1)]<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


PID control macro<br />

Application macros 117<br />

This macro provides parameter settings for closed-loop control systems such as<br />

pressure control, flow control, etc. Control can also be switched to speed control<br />

using a digital input. To enable the macro, set the value of parameter 9902 APPLIC<br />

MACRO to 6 (PID CONTROL).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

Note: Parameter 2108 START INHIBIT must remain in the default setting 0 (OFF).<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) Hand: 0…10 V -> speed reference.<br />

PID: 0…10 V -> 0…100% PID setpoint.<br />

2) 360 degree grounding under a clamp.<br />

3) The signal source is powered externally. See<br />

the manufacturer’s instructions. To use<br />

2)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Motor speed ref. (Hand) / Proc. ref. (PID): 0…10 V 1)<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Process actual value: 4…20 mA 3)<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1) (Hand)<br />

13 DI2 Hand (0) / PID (1) control selection<br />

14 DI3 Constant speed 1: parameter 1202<br />

15 DI4 Run enable<br />

16 DI5<br />

X1B<br />

Stop (0) / Start (1) (PID)<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

19 RONO<br />

No fault [Fault (-1)]<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

22 DOGND<br />

No fault [Fault (-1)]<br />

sensors supplied by the drive aux. voltage<br />

output, see page 53.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


118 Application macros<br />

Torque control macro<br />

This macro provides parameter settings for applications that require torque control of<br />

the motor. Control can also be switched to speed control using a digital input. To<br />

enable the macro, set the value of parameter 9902 APPLIC MACRO to 8 (TORQUE<br />

CTRL).<br />

For the parameter default values, see section Default values with different macros on<br />

page 176. If you use other than the default connections presented below, see section<br />

I/O terminals on page 51.<br />

� Default I/O connections<br />

1…10 kohm<br />

max. 500 ohm<br />

1) Speed control: Changes rotation direction.<br />

Torque control: Changes torque direction.<br />

2) 0 = ramp times according to parameters<br />

2202 and 2203.<br />

1 = ramp times according to parameters<br />

2205 and 2206.<br />

3) 360 degree grounding under a clamp.<br />

3)<br />

X1A<br />

1 SCR Signal cable shield (screen)<br />

2 AI1 Motor speed reference (Speed): 0…10 V<br />

3 GND Analog input circuit common<br />

4 +10V Reference voltage: +10 V DC, max. 10 mA<br />

5 AI2 Motor torque reference (Torque): 4…20 mA 4)<br />

6 GND Analog input circuit common<br />

7 AO Motor speed value: 0…20 mA<br />

8 GND Analog output circuit common<br />

9 +24V Auxiliary voltage output: +24 V DC, max. 200 mA<br />

10 GND Auxiliary voltage output common<br />

11 DCOM Digital input common<br />

12 DI1 Stop (0) / Start (1) (Speed)<br />

13 DI2 Forward (0) / <strong>Rev</strong>erse (1) 1)<br />

14 DI3 Speed (0) / Torque (1) control selection<br />

15 DI4 Constant speed 1: parameter 1202<br />

16 DI5 Acceleration and deceleration selection 2)<br />

X1B<br />

17 ROCOM Relay output 1<br />

18 RONC<br />

No fault [Fault (-1)]<br />

19 RONO<br />

20 DOSRC Digital output, max. 100 mA<br />

21 DOOUT<br />

No fault [Fault (-1)]<br />

22 DOGND<br />

4) The signal source is powered externally. See<br />

the manufacturer’s instructions. To use<br />

sensors supplied by the drive aux. voltage<br />

output, see page 53.<br />

Tightening torque = 0.4 N·m / 3.5 lbf·in.<br />

Safe torque off connections (X1C:STO; not<br />

shown in the diagram) are jumpered by default.


User macros<br />

Application macros 119<br />

In addition to the standard application macros, it is possible to create three user<br />

macros. The user macro allows the user to save the parameter settings, including<br />

group 99 START-UP DATA, and the results of the motor identification into the<br />

permanent memory and recall the data at a later time. The panel reference is also<br />

saved if the macro is saved and loaded in local control. The remote control setting is<br />

saved into the user macro, but the local control setting is not.<br />

The steps below show how to create and recall User macro 1. The procedure for the<br />

other two macros is identical, only the parameter 9902 APPLIC MACRO values are<br />

different.<br />

To create User macro 1:<br />

• Adjust the parameters. Perform the motor identification if it is needed in the<br />

application but it is not done yet.<br />

• Save the parameter settings and the results of the motor identification to the<br />

permanent memory by changing parameter 9902 APPLIC MACRO to -1 (USER<br />

S1 SAVE).<br />

MENU<br />

SAVE ENTER<br />

• Press (assistant control panel) or (basic control panel) to save.<br />

To recall User macro 1:<br />

• Change parameter 9902 APPLIC MACRO to 0 (USER S1 LOAD).<br />

MENU<br />

SAVE ENTER<br />

• Press (assistant control panel) or (basic control panel) to load.<br />

The user macro can also be switched through digital inputs (see parameter 1605<br />

USER PAR SET CHG).<br />

Note: User macro load restores the parameter settings, including group 99 START-<br />

UP DATA and the results of the motor identification. Check that the settings<br />

correspond to the motor used.<br />

Hint: The user can for example switch the drive between three motors without having<br />

to adjust the motor parameters and to repeat the motor identification every time the<br />

motor is changed. The user needs only to adjust the settings and perform the motor<br />

identification once for each motor and then to save the data as three user macros.<br />

When the motor is changed, only the corresponding user macro needs to be loaded,<br />

and the drive is ready to operate.


120 Application macros


Program features<br />

What this chapter contains<br />

Program features 121<br />

The chapter describes program features. For each feature, there is a list of related<br />

user settings, actual signals, and fault and alarm messages.<br />

Start-up assistant<br />

� Introduction<br />

The Start-up assistant (requires the assistant control panel) guides the user through<br />

the start-up procedure, helping to enter the requested data (parameter values) to the<br />

drive. The Start-up assistant also checks that the entered values are valid, ie within<br />

the allowed range.<br />

The Start-up assistant calls other assistants, each of which guides the user through<br />

the task of specifying a related parameter set. At the first start, the drive suggests<br />

entering the first task, Language select, automatically. The user may activate the<br />

tasks either one after the other as the Start-up assistant suggests, or independently.<br />

The user may also adjust the drive parameters in the conventional way without using<br />

the assistant at all.<br />

See section Assistants mode on page 98 for how to start the Start-up assistant or<br />

other assistants.


122 Program features<br />

� Default order of the tasks<br />

Depending on the selection made in the Application task (parameter 9902 APPLIC<br />

MACRO), the Start-up assistant decides which consequent tasks it suggests. The<br />

default tasks are shown in the table below.<br />

Application selection Default tasks<br />

ABB STANDARD Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT1, Speed control EXT2, Start/Stop control, Timed<br />

functions, Protections, Output signals<br />

3-WIRE Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT1, Speed control EXT2, Start/Stop control, Timed<br />

functions, Protections, Output signals<br />

ALTERNATE Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT1, Speed control EXT2, Start/Stop control, Timed<br />

functions, Protections, Output signals<br />

MOTOR POT Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT1, Speed control EXT2, Start/Stop control, Timed<br />

functions, Protections, Output signals<br />

HAND/AUTO Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT1, Speed control EXT2, Start/Stop control, Timed<br />

functions, Protections, Output signals<br />

PID CONTROL Language select, Motor set-up, Application, Option modules, PID<br />

control, Speed control EXT2, Start/Stop control, Timed functions,<br />

Protections, Output signals<br />

TORQUE CTRL Language select, Motor set-up, Application, Option modules, Speed<br />

control EXT2, Start/Stop control, Timed functions, Protections,<br />

Output signals


� List of the tasks and the relevant drive parameters<br />

Program features 123<br />

Depending on the selection made in the Application task (parameter 9902 APPLIC<br />

MACRO), the Start-up assistant decides which consequent tasks it suggests.<br />

Name Description Set parameters<br />

Language select Selecting the language 9901<br />

Motor set-up Setting the motor data<br />

9904…9909<br />

Performing the motor identification. (If the<br />

speed limits are not in the allowed range:<br />

Setting the limits.)<br />

9910<br />

Application Selecting the application macro 9902, parameters<br />

associated to the macro<br />

Option modules Activating the option modules Group 35 MOTOR TEMP<br />

MEAS, group 52 PANEL<br />

COMM<br />

9802<br />

Speed control EXT1 Selecting the source for the speed<br />

reference<br />

1103<br />

(If AI1 is used: Setting analog input AI1<br />

limits, scale, inversion)<br />

(1301…1303, 3001)<br />

Setting the reference limits 1104, 1105<br />

Setting the speed (frequency) limits 2001, 2002 (2007, 2008)<br />

Setting the acceleration and deceleration<br />

times<br />

2202, 2203<br />

Speed control EXT2 Selecting the source for the speed<br />

reference<br />

1106<br />

(If AI1 is used: Setting analog input AI1<br />

limits, scale, inversion)<br />

(1301…1303, 3001)<br />

Setting the reference limits 1107, 1108<br />

Torque control Selecting the source for the torque<br />

reference<br />

1106<br />

(If AI1 is used: Setting analog input AI1<br />

limits, scale, inversion)<br />

(1301…1303, 3001)<br />

Setting the reference limits 1107, 1108<br />

Setting the torque ramp up and ramp down 2401, 2402<br />

times<br />

PID control Selecting the source for the process<br />

reference<br />

1106<br />

(If AI1 is used: Setting analog input AI1<br />

limits, scale, inversion)<br />

(1301…1303, 3001)<br />

Setting the reference limits 1107, 1108<br />

Setting the speed (frequency) limits 2001, 2002 (2007, 2008)<br />

Setting the source and limits for the<br />

process actual value<br />

4016, 4018, 4019


124 Program features<br />

Name Description Set parameters<br />

Start/Stop control Selecting the source for start and stop<br />

signals of the two external control<br />

locations, EXT1 and EXT2<br />

1001, 1002<br />

Selecting between EXT1 and EXT2 1102<br />

Defining the direction control 1003<br />

Defining the start and stop modes 2101…2103<br />

Selecting the use of Run enable signal 1601<br />

Protections Setting the current and torque limits 2003, 2017<br />

Output signals Selecting the signals indicated through Group 14 RELAY<br />

relay output RO1 and, if MREL-01 relay<br />

output extension module is in use,<br />

RO2…RO4.<br />

OUTPUTS<br />

Selecting the signals indicated through<br />

analog output AO<br />

Setting the minimum, maximum, scaling<br />

and inversion<br />

� Contents of the assistant displays<br />

Group 15 ANALOG<br />

OUTPUTS<br />

Timed functions Setting the timed functions 36 TIMED FUNCTIONS<br />

Selecting the timed start/stop control for<br />

external control locations EXT1 and EXT2<br />

1001, 1002<br />

Selecting timed EXT1/EXT2 control 1102<br />

Activation of timed constant speed 1 1201<br />

Selecting timed function status indicated<br />

through relay output RO1 or, if MREL-01<br />

relay output extension module is in use,<br />

RO2…RO4.<br />

1401…1403, 1410<br />

Selecting timed PID1 parameter set 1/2<br />

control<br />

4027<br />

There are two types of displays in the Start-up assistant: Main displays and<br />

information displays. The main displays prompt the user to feed in information. The<br />

assistant steps through the main displays. The information displays contain help texts<br />

for the main displays. The figure below shows a typical example of both and<br />

explanations of the contents.<br />

1<br />

2<br />

Main display Information display<br />

REM PAR EDIT<br />

9905 MOTOR NOM VOLT<br />

220 V<br />

LOC HELP<br />

Set exactly as given<br />

on the motor<br />

nameplate<br />

If connected to<br />

multiple motors<br />

CANCEL 00:00 SAVE<br />

EXIT 00:00<br />

1 Parameter Help text …<br />

2 Feed-in field … help text continued


Local control vs. external control<br />

Program features 125<br />

The drive can receive start, stop and direction commands and reference values from<br />

the control panel or through digital and analog inputs. Embedded fieldbus or an<br />

optional fieldbus adapter enables control over an open fieldbus link. A PC equipped<br />

with the DriveWindow Light 2 PC tool can also control the drive.<br />

Local control<br />

Control panel<br />

or<br />

PC tool<br />

� Local control<br />

Panel<br />

connection (X2)<br />

Drive<br />

Panel<br />

connection (X2)<br />

or<br />

FBMA adapter<br />

connected to X3<br />

Fieldbus adapter<br />

connection (X3)<br />

External control<br />

Embedded<br />

fieldbus<br />

(Modbus*)<br />

Fieldbus<br />

adapter<br />

Standard I/O<br />

Potentiometer<br />

* With SREA-01 Ethernet adapter module it is possible to use Modbus TCP/IP with the<br />

Ethernet. For more information, see SREA-01 Ethernet adapter module user’s <strong>manual</strong><br />

(3AUA0000042896 [English]).<br />

The control commands are given from the control panel keypad when the drive is in<br />

local control. LOC indicates local control on the panel display.<br />

Assistant control panel Basic control panel<br />

LOC 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

The control panel always overrides the external control signal sources when used in<br />

local control.<br />

LOC<br />

491 .<br />

OUTPUT FWD<br />

Hz


126 Program features<br />

� External control<br />

When the drive is in external (remote) control, the commands are given through the<br />

standard I/O terminals (digital and analog inputs) and/or the fieldbus interface. In<br />

addition, it is also possible to set the control panel as the source for the external<br />

control.<br />

External control is indicated with REM on the panel display.<br />

The user can connect the control signals to two external control locations, EXT1 or<br />

EXT2. Depending on the user selection, either one is active at a time. This function<br />

operates on a 2 ms time level.<br />

� Settings<br />

Panel key Additional information<br />

LOC/REM<br />

Parameter<br />

Selection between local and external (remote) control<br />

1102 Selection between EXT1 and EXT2<br />

1001/1002 Start, stop, direction source for EXT1/EXT2<br />

1103/1106 Reference source for EXT1/EXT2<br />

� Diagnostics<br />

Assistant control panel Basic control panel<br />

REM 49.1Hz<br />

49. 1 Hz<br />

0. 5 A<br />

10. 7 %<br />

DIR 00:00 MENU<br />

Actual signal Additional information<br />

0111/0112 EXT1/EXT2 reference<br />

491 .<br />

REM Hz<br />

OUTPUT FWD


� Block diagram: Start, stop, direction source for EXT1<br />

Program features 127<br />

The figure below shows the parameters that select the interface for start, stop, and<br />

direction for external control location EXT1.<br />

DI1<br />

DI5<br />

Embedded fieldbus<br />

Fieldbus adapter<br />

Control panel<br />

Timed function<br />

Timer/Counter<br />

Sequence<br />

programming<br />

Fieldbus selection<br />

See chapters<br />

Fieldbus control with<br />

embedded fieldbus<br />

on page 301 and<br />

Fieldbus control with<br />

fieldbus adapter on<br />

page 325.<br />

COMM<br />

KEYPAD<br />

TIMED FUNC 1…4<br />

� Block diagram: Reference source for EXT1<br />

Select<br />

1001<br />

The figure below shows the parameters that select the interface for the speed<br />

reference of external control location EXT1.<br />

AI1<br />

AI2<br />

DI3<br />

DI4<br />

DI5<br />

Embedded fieldbus<br />

Fieldbus adapter<br />

Frequency input<br />

Control panel<br />

Sequence<br />

programming<br />

Fieldbus selection<br />

See chapters<br />

Fieldbus control with<br />

embedded fieldbus<br />

on page 301 and<br />

Fieldbus control with<br />

fieldbus adapter on<br />

page 325.<br />

DI1<br />

DI5<br />

START/STOP<br />

SEQ PROG<br />

AI1, AI2, DI3, DI4, DI5<br />

COMM<br />

FREQ INPUT<br />

KEYPAD<br />

SEQ PROG<br />

Select<br />

1103<br />

EXT1<br />

Start/stop/<br />

direction<br />

EXT1<br />

Reference<br />

REF1<br />

(Hz/rpm)


128 Program features<br />

Reference types and processing<br />

The drive can accept a variety of references in addition to the conventional analog<br />

input and control panel signals.<br />

• The drive reference can be given with two digital inputs: One digital input<br />

increases the speed, the other decreases it.<br />

• The drive can form a reference out of two analog input signals by using<br />

mathematical functions: addition, subtraction, multiplication and division.<br />

• The drive can form a reference out of an analog input signal and a signal received<br />

through a serial communication interface by using mathematical functions:<br />

addition and multiplication.<br />

• The drive reference can be given with frequency input.<br />

• In external control location EXT1/2, the drive can form a reference out of an<br />

analog input signal and a signal received through Sequence programming by<br />

using a mathematical function: addition.<br />

It is possible to scale the external reference so that the signal minimum and<br />

maximum values correspond to a speed other than the minimum and maximum<br />

speed limits.<br />

� Settings<br />

Parameter Additional information<br />

Group 11 REFERENCE SELECT External reference source, type and scaling<br />

Group 20 LIMITS Operating limits<br />

Group 22 ACCEL/DECEL Speed reference acceleration/deceleration ramps<br />

Group 24 TORQUE CONTROL Torque reference ramp times<br />

Group 32 SUPERVISION Reference supervision<br />

� Diagnostics<br />

Actual signal Additional information<br />

0111/0112 REF1/REF2 reference<br />

Group 03 FB ACTUAL SIGNALS References in different stages of the reference<br />

processing chain


Reference trimming<br />

Program features 129<br />

In reference trimming, the external reference is corrected depending on the<br />

measured value of a secondary application variable. The block diagram below<br />

illustrates the function.<br />

1105 REF1 MAX /<br />

1108 REF2 MAX 2)<br />

max.<br />

freq<br />

max.<br />

speed<br />

PID2 ref<br />

PID2 act<br />

Switch<br />

9904<br />

MOTOR CTRL<br />

MODE<br />

max.<br />

torque<br />

� Settings<br />

PID2<br />

Switch<br />

4233<br />

TRIM<br />

SELECTION 1)<br />

PID2<br />

output<br />

Switch 3)<br />

Switch<br />

REF1<br />

(Hz/rpm) /<br />

REF2 (%) 1)<br />

4232 CORRECTION SRC<br />

Parameter Additional information<br />

1102 REF1/2 selection<br />

4230 …4232 Trimming function settings<br />

4201 …4229 PID control settings<br />

Group 20 LIMITS Drive operation limits<br />

0<br />

Select<br />

2 (DIRECT)<br />

1<br />

(PROPORTION<br />

AL)<br />

0 (NOT SEL)<br />

REF1 (Hz/rpm) /<br />

REF2 (%)<br />

Mul.<br />

1)<br />

Mul.<br />

REF1 (Hz/rpm) / REF2 (%) = Drive reference before trimming<br />

REF’ = Drive reference after trimming<br />

max. speed = par. 2002 (or 2001 if the absolute value is greater)<br />

max. freq = par. 2008 (or 2007 if the absolute value is greater)<br />

max. torque = par. 2014 (or 2013 if the absolute value is greater)<br />

PID2 ref = par. 4210<br />

PID2 act = par. 4214…4221<br />

1) Note: Torque reference trimming is only for external reference REF2 (%)<br />

2) REF1 or REF2 depending on which is active. See parameter 1102.<br />

3) When par. 4232 = PID2REF, the maximum trimming reference is defined by parameter<br />

1105 when REF1 is active and by parameter 1108 when REF2 is active.<br />

When par. 4232 = PID2OUTPUT, the maximum trimming reference is defined by parameter<br />

2002 if parameter 9904 value is VECTOR: SPEED or VECTOR: TORQ and by parameter<br />

2008 value if parameter 9904 value is SCALAR: FREQ.<br />

4230<br />

4231 TRIM SCALE<br />

Add<br />

REF’


130 Program features<br />

� Example<br />

The drive runs a conveyor line. It is speed controlled but the line tension also needs<br />

to be taken into account: If the measured tension exceeds the tension setpoint, the<br />

speed will be slightly decreased, and vice versa.<br />

To accomplish the desired speed correction, the user<br />

• activates the trimming function and connects the tension setpoint and the<br />

measured tension to it.<br />

• tunes the trimming to a suitable level.<br />

Speed controlled conveyor line<br />

Simplified block diagram<br />

Speed reference<br />

Tension<br />

measurement<br />

Tension<br />

setpoint<br />

Programmable analog inputs<br />

The drive has two programmable analog voltage/current inputs. The inputs can be<br />

inverted, filtered and the maximum and minimum values can be adjusted. The update<br />

cycle for the analog input is 8 ms (12 ms cycle once per second). The cycle time is<br />

shorter when information is transferred to the application program (8 ms -> 2 ms).<br />

� Settings<br />

PID<br />

Tension measurement<br />

Parameter Additional information<br />

Group 11 REFERENCE SELECT AI as reference source<br />

Group 13 ANALOG INPUTS Analog input processing<br />

3001, 3021, 3022, 3107 AI loss supervision<br />

Group 35 MOTOR TEMP MEAS AI in motor temperature measurement<br />

Groups 40 PROCESS PID SET 1 AI as PID process control reference or actual value<br />

…42 EXT / TRIM PID<br />

source<br />

Add<br />

Drive rollers (pull)<br />

Trimmed speed<br />

reference


Parameter Additional information<br />

8420, 8425, 8426<br />

8430, 8435, 8436<br />

…<br />

8490, 8495, 8496<br />

� Diagnostics<br />

Programmable analog output<br />

Program features 131<br />

One programmable current output (0…20 mA) is available. Analog output signal can<br />

be inverted, filtered and the maximum and minimum values can be adjusted. The<br />

analog output signals can be proportional to motor speed, output frequency, output<br />

current, motor torque, motor power, etc. The update cycle for the analog output is<br />

2ms.<br />

Analog output can be controlled with Sequence programming. It is also possible to<br />

write a value to an analog output through a serial communication link.<br />

� Settings<br />

� Diagnostics<br />

AI as Sequence programming reference or trigger<br />

signal<br />

Actual signal Additional information<br />

0120, 0121 Analog input values<br />

1401 AI1/A2 signal loss through RO 1<br />

1402/1403/1410 AI1/A2 signal loss through RO 2…4. With option<br />

MREL-01 only.<br />

Alarm<br />

AI1 LOSS / AI2 LOSS AI1/AI2 signal below limit 3021 AI1 FAULT LIMIT /<br />

3022 AI2 FAULT LIMIT<br />

Fault<br />

AI1 LOSS / AI2 LOSS AI1/AI2 signal below limit 3021 AI1 FAULT LIMIT /<br />

3022 AI2 FAULT LIMIT<br />

PAR AI SCALE Incorrect AI signal scaling (1302 < 1301 or 1305 <<br />

1304)<br />

Parameter Additional information<br />

Group 15 ANALOG OUTPUTS AO value selection and processing<br />

Group 35 MOTOR TEMP MEAS AO in motor temperature measurement<br />

8423/8433/…/8493 AO control with Sequence programming<br />

Actual signal Additional information<br />

0124 AO value<br />

0170<br />

Fault<br />

AO control values defined by Sequence programming


132 Program features<br />

Actual signal Additional information<br />

PAR AO SCALE Incorrect AO signal scaling (1503 < 1502)<br />

Programmable digital inputs<br />

The drive has five programmable digital inputs. The update time for the digital inputs<br />

is 2 ms.<br />

One digital input (DI5) can be programmed as a frequency input. See section<br />

Frequency input on page 133.<br />

� Settings<br />

Parameter Additional information<br />

Group 10 START/STOP/DIR DI as start, stop, direction<br />

Group 11 REFERENCE SELECT DI in reference selection, or reference source<br />

Group 12 CONSTANT SPEEDS DI in constant speed selection<br />

Group 16 SYSTEM CONTROLS DI as external Run enable, fault reset or user macro<br />

change signal<br />

Group 19 TIMER & COUNTER DI as timer or counter control signal source<br />

2013, 2014 DI as torque limit source<br />

2109 DI as external emergency stop command source<br />

2201 DI as acceleration and deceleration ramp selection<br />

signal<br />

2209 DI as zero ramp force signal<br />

3003 DI as external fault source<br />

Group 35 MOTOR TEMP MEAS DI in motor temperature measurement<br />

3601 DI as timed function enable signal source<br />

3622 DI as booster activation signal source<br />

4010/4110/4210 DI as PID controller reference signal source<br />

4022/4122 DI as sleep function activation signal in PID1<br />

4027 DI as PID1 parameter set 1/2 selection signal source<br />

4228 DI as external PID2 function activation signal source<br />

Group 84 SEQUENCE PROG DI as Sequence programming control signal source<br />

� Diagnostics<br />

Actual signal Additional information<br />

0160 DI status<br />

0414 DI status at the time the latest fault occurred


Programmable relay output<br />

Program features 133<br />

The drive has one programmable relay output. It is possible to add three additional<br />

relay outputs with the optional MREL-01 relay output extension module. For more<br />

information, see MREL-01 relay output extension module <strong>user's</strong> <strong>manual</strong><br />

(3AUA0000035974 [English]).<br />

With a parameter setting it is possible to choose what information to indicate through<br />

the relay output: Ready, running, fault, alarm, etc. The update time for the relay<br />

output is 2 ms.<br />

A value can be written to a relay output through a serial communication link.<br />

� Settings<br />

Parameter Additional information<br />

Group 14 RELAY OUTPUTS RO value selections and operation times<br />

8423 RO control with Sequence programming<br />

� Diagnostics<br />

Actual signal Additional information<br />

0134 RO Control word through fieldbus control<br />

0162 RO 1 status<br />

0173 RO 2…4 status. With option MREL-01 only.<br />

Frequency input<br />

Digital input DI5 can be programmed as a frequency input. Frequency input<br />

(0…16000 Hz) can be used as the external reference signal source. The update time<br />

for the frequency input is 50 ms. Update time is shorter when information is<br />

transferred to the application program (50 ms -> 2 ms).<br />

� Settings<br />

Parameter Additional information<br />

Group 18 FREQ IN & TRAN OUT Frequency input minimum and maximum values and<br />

filtering<br />

1103/1106 External reference REF1/2 through frequency input<br />

4010, 4110, 4210 Frequency input as PID reference source<br />

� Diagnostics<br />

Actual signal Additional information<br />

0161 Frequency input value


134 Program features<br />

Transistor output<br />

The drive has one programmable transistor output. The output can be used either as<br />

a digital output or frequency output (0…16000 Hz). The update time for the<br />

transistor/frequency output is 2 ms.<br />

� Settings<br />

Parameter Additional information<br />

Group 18 FREQ IN & TRAN OUT Transistor output settings<br />

8423 Transistor output control with Sequence programming<br />

� Diagnostics<br />

Actual signal Additional information<br />

0163 Transistor output status<br />

0164 Transistor output frequency<br />

Actual signals<br />

Several actual signals are available:<br />

• Drive output frequency, current, voltage and power<br />

• Motor speed and torque<br />

• Intermediate circuit DC voltage<br />

• Active control location (LOCAL, EXT1 or EXT2)<br />

• Reference values<br />

• Drive temperature<br />

• Operating time counter (h), kWh counter<br />

• Digital I/O and analog I/O status<br />

• PID controller actual values.<br />

Three signals can be shown simultaneously on the assistant control panel display<br />

(one signal on the basic control panel display). It is also possible to read the values<br />

through the serial communication link or through the analog outputs.<br />

� Settings<br />

Parameter Additional information<br />

1501 Selection of an actual signal to AO<br />

1808 Selection of an actual signal to frequency output<br />

Group 32 SUPERVISION Actual signal supervision<br />

Group 34 PANEL DISPLAY Selection of an actual signals to be displayed on the<br />

control panel


� Diagnostics<br />

Actual signal Additional information<br />

Groups 01 OPERATING DATA …<br />

04 FAULT HISTORY<br />

Lists of actual signals<br />

Motor identification<br />

Program features 135<br />

The performance of vector control is based on an accurate motor model determined<br />

during the motor start-up.<br />

A motor Identification magnetization is automatically performed the first time the start<br />

command is given. During this first start-up, the motor is magnetized at zero speed<br />

for several seconds to allow the motor model to be created. This identification method<br />

is suitable for most applications.<br />

In demanding applications a separate Identification run (ID run) can be performed.<br />

� Settings<br />

Parameter 9910 ID RUN


136 Program features<br />

Power loss ride-through<br />

If the incoming supply voltage is cut off, the drive will continue to operate by utilizing<br />

the kinetic energy of the rotating motor. The drive will be fully operational as long as<br />

the motor rotates and generates energy to the drive. The drive can continue the<br />

operation after the break if the main contactor remained closed.<br />

TM fout (N·m) (Hz)<br />

160<br />

120<br />

80<br />

40<br />

80<br />

60<br />

40<br />

20<br />

� Settings<br />

Parameter 2006 UNDERVOLT CTRL<br />

DC magnetizing<br />

When DC magnetizing is activated, the drive automatically magnetizes the motor<br />

before starting. This feature guarantees the highest possible break-away torque, up<br />

to 180% of the motor nominal torque. By adjusting the premagnetizing time, it is<br />

possible to synchronize the motor start and eg a mechanical brake release. The<br />

Automatic start feature and DC magnetizing cannot be activated at the same time.<br />

� Settings<br />

U DC<br />

(Vdc)<br />

520<br />

390<br />

260<br />

130<br />

0 0 0<br />

1.6 4.8 8 11.2 14.4<br />

U DC = Intermediate circuit voltage of the drive, f out = Output frequency of the drive,<br />

T M = Motor torque<br />

Loss of supply voltage at nominal load (f out = 40 Hz). The intermediate circuit DC voltage<br />

drops to the minimum limit. The controller keeps the voltage steady as long as the input<br />

power is switched off. The drive runs the motor in generator mode. The motor speed falls but<br />

the drive is operational as long as the motor has enough kinetic energy.<br />

Parameters 2101 START FUNCTION and 2103 DC MAGN TIME<br />

U input power<br />

U DC<br />

f out<br />

T M<br />

t (s)


Maintenance trigger<br />

Program features 137<br />

A maintenance trigger can be activated to show a notice on the panel display when<br />

eg drive power consumption has exceeded the defined trigger point.<br />

� Settings<br />

Parameter group 29 MAINTENANCE TRIG<br />

DC hold<br />

With the motor DC hold feature, it is possible<br />

to lock the rotor at zero speed. When both the<br />

reference and the motor speed fall below the<br />

preset DC hold speed, the drive stops the<br />

motor and starts to inject DC into the motor.<br />

When the reference speed again exceeds the<br />

DC hold speed, the normal drive operation<br />

resumes.<br />

� Settings<br />

Parameters 2101…2106<br />

Speed compensated stop<br />

Speed compensation stop is available eg for<br />

applications where a conveyer needs to travel<br />

a certain distance after receiving the stop<br />

command. At maximum speed, the motor is<br />

stopped normally along the defined<br />

deceleration ramp. Below maximum speed,<br />

stop is delayed by running the drive at current<br />

speed before the motor is ramped to a stop.<br />

As shown in the figure, the distance travelled<br />

after the stop command is the same in both<br />

cases, ie area A equals area B.<br />

Speed compensation can be restricted to forward or reverse rotating direction.<br />

� Settings<br />

Parameter 2102 STOP FUNCTION<br />

Motor speed<br />

DC hold<br />

speed<br />

Speed reference<br />

DC hold<br />

speed<br />

Max.<br />

speed<br />

Used<br />

speed<br />

Motor speed<br />

DC hold<br />

Stop command<br />

t (s)<br />

t (s)<br />

area A = area B<br />

A<br />

B<br />

t (s)


138 Program features<br />

Flux braking<br />

The drive can provide greater deceleration by raising the level of magnetization in the<br />

motor. By increasing the motor flux, the energy generated by the motor during<br />

braking can be converted to motor thermal energy.<br />

Motor speed<br />

Flux braking<br />

Braking torque (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3<br />

3<br />

2<br />

2<br />

No Flux braking<br />

1<br />

1<br />

TBr TN 60<br />

40<br />

(%)<br />

T Br = Braking torque<br />

T N = 100 N·m<br />

Flux braking<br />

20<br />

No Flux braking<br />

t (s) f (Hz)<br />

50 Hz / 60 Hz<br />

0 5 10 15 20 25 30 35 40 45<br />

Braking torque (%)<br />

Flux braking<br />

No Flux braking<br />

0 5 10 15 20 25 30 35 40 45<br />

Rated<br />

motor power<br />

1<br />

2<br />

3<br />

f (Hz)<br />

f (Hz)<br />

7.5 kW<br />

2.2 kW<br />

0.37 kW


Program features 139<br />

The drive monitors the motor status continuously, also during the Flux braking.<br />

Therefore, Flux braking can be used both for stopping the motor and for changing the<br />

speed. The other benefits of Flux braking are:<br />

• The braking starts immediately after a stop command is given. The function does<br />

not need to wait for the flux reduction before it can start the braking.<br />

• The cooling of the motor is efficient. The stator current of the motor increases<br />

during the Flux braking, not the rotor current. The stator cools much more<br />

efficiently than the rotor.<br />

� Settings<br />

Parameter 2602 FLUX BRAKING<br />

Flux optimization<br />

Flux optimization reduces the total energy consumption and motor noise level when<br />

the drive operates below the nominal load. The total efficiency (motor and the drive)<br />

can be improved by 1% to 10%, depending on the load torque and speed.<br />

� Settings<br />

Parameter 2601 FLUX OPT ENABLE<br />

Acceleration and deceleration ramps<br />

Two user-selectable acceleration and<br />

deceleration ramps are available. It is possible to<br />

adjust the acceleration/deceleration times and<br />

the ramp shape. Switching between the two<br />

ramps can be controlled through a digital input or<br />

fieldbus.<br />

The available ramp shape alternatives are<br />

Linear and S-curve.<br />

Linear shape is suitable for drives requiring<br />

steady or slow acceleration/deceleration.<br />

S-curve shape is ideal for conveyors carrying fragile loads, or other applications<br />

where a smooth transition is required when changing the speed.<br />

� Settings<br />

Parameter group 22 ACCEL/DECEL<br />

Motor speed<br />

Linear<br />

S-curve<br />

Sequence programming offers eight additional ramp times. See section Sequence<br />

programming on page 166.<br />

2<br />

t (s)


140 Program features<br />

Critical speeds<br />

Critical speeds function is available for applications where it is necessary to avoid<br />

certain motor speeds or speed bands because of eg mechanical resonance<br />

problems. The user can define three critical speeds or speed bands.<br />

� Settings<br />

Parameter group 25 CRITICAL SPEEDS<br />

Constant speeds<br />

It is possible to define seven positive constant speeds. Constant speeds are selected<br />

with digital inputs. Constant speed activation overrides the external speed reference.<br />

Constant speed selections are ignored if<br />

• torque control is active, or<br />

• PID reference is being followed, or<br />

• drive is in local control mode.<br />

This function operates on a 2 ms time level.<br />

� Settings<br />

Parameter Additional information<br />

Group 12 CONSTANT SPEEDS Constant speed settings<br />

1207 Constant speed 6. Used also for jogging function. See<br />

section Jogging on page 161.<br />

1208 Constant speed 7. Used also for fault functions (see group<br />

30 FAULT FUNCTIONS) and for jogging function (see<br />

section Jogging on page 161).


Custom U/f ratio<br />

Program features 141<br />

The user can define a U/f curve (output voltage as a function of frequency). This<br />

custom ratio is used only in special applications where linear and squared U/f ratio<br />

are not sufficient (eg when motor break-away torque needs to be boosted).<br />

Voltage (V)<br />

Par. 2618<br />

Par. 2616<br />

Par. 2614<br />

Par. 2612<br />

Par. 2610<br />

Par. 2603<br />

Note: The U/f curve can be used in scalar control only, ie when 9904 MOTOR CTRL<br />

MODE setting is SCALAR: FREQ.<br />

Note: The voltage and the frequency points of the U/f curve must fulfill the following<br />

requirements:<br />

2610 < 2612 < 2614 < 2616 < 2618 and<br />

2611 < 2613 < 2615 < 2617 < 9907<br />

WARNING! High voltage at low frequencies may result in poor performance or<br />

motor damage (overheating).<br />

� Settings<br />

Parameter Additional information<br />

2605 Custom U/f ratio activation<br />

2610…2618 Custom U/f ratio settings<br />

� Diagnostics<br />

Custom U/f ratio<br />

f (Hz)<br />

Par. 2611 Par. 2613 Par. 2615 Par. 2617 Par. 9907<br />

Fault Additional information<br />

PAR CUSTOM U/F Incorrect U/f ratio


142 Program features<br />

Speed controller tuning<br />

It is possible to <strong>manual</strong>ly adjust the controller gain, integration time and derivation<br />

time, or let the drive perform a separate speed controller Autotune run (parameter<br />

2305 AUTOTUNE RUN). In Autotune run, the speed controller is tuned based on the<br />

load and inertia of the motor and the machine. The figure below shows speed<br />

responses at a speed reference step (typically, 1 to 20%).<br />

n<br />

n N<br />

(%)<br />

t<br />

A: Undercompensated<br />

B: Normally tuned (autotuning)<br />

C: Normally tuned (<strong>manual</strong>ly). Better dynamic performance than with B<br />

The figure below is a simplified block diagram of the speed controller. The controller<br />

output is the reference for the torque controller.<br />

Speed<br />

reference<br />

Note: The speed controller can be used in vector control, ie when 9904 MOTOR<br />

CTRL MODE setting is VECTOR: SPEED or VECTOR: TORQ.<br />

� Settings<br />

A<br />

+<br />

-<br />

Calculated actual speed<br />

B C D<br />

Error<br />

value<br />

Derivative<br />

acceleration<br />

Proportional,<br />

integral<br />

Derivative<br />

Parameter groups 23 SPEED CONTROL and 20 LIMITS<br />

+<br />

+<br />

+<br />

Torque<br />

reference


� Diagnostics<br />

Actual signal 0102 SPEED<br />

Speed control performance figures<br />

The table below shows typical performance figures for speed control.<br />

Speed<br />

control<br />

Static<br />

accuracy<br />

Dynamic<br />

accuracy<br />

No pulse<br />

encoder<br />

20% of motor<br />

nominal slip<br />

< 1% s with<br />

100% torque<br />

step<br />

With pulse<br />

encoder<br />

2% of motor<br />

nominal slip<br />

< 1% s with<br />

100% torque<br />

step<br />

Torque control performance figures<br />

T<br />

(%)<br />

TN Program features 143<br />

The drive can perform precise torque control without any speed feedback from the<br />

motor shaft. The table below shows typical performance figures for torque control.<br />

Torque No pulse<br />

control encoder<br />

Non-linearity ± 5% with<br />

nominal<br />

torque<br />

(± 20% at the<br />

most<br />

demanding<br />

operating<br />

point)<br />

Torque step < 10 ms with<br />

rise time nominal<br />

torque<br />

With pulse<br />

encoder<br />

± 5% with<br />

nominal<br />

torque<br />

< 10 ms with<br />

nominal<br />

torque<br />

100<br />

T load<br />

nact-nref nN TN = rated motor torque<br />

nN = rated motor speed<br />

nact = actual speed<br />

T<br />

(%)<br />

T N<br />

100<br />

90<br />

10<br />

T ref<br />

< 5 ms<br />

T act<br />

TN = rated motor torque<br />

Tref = torque reference<br />

t (s)<br />

Area < 1% s<br />

t (s)


144 Program features<br />

Scalar control<br />

It is possible to select scalar control as the motor control method instead of vector<br />

control. In the scalar control mode, the drive is controlled with a frequency reference.<br />

It is recommended to activate the scalar control mode in the following special<br />

applications:<br />

• In multimotor drives: 1) if the load is not equally shared between the motors,<br />

2) if the motors are of different sizes, or 3) if the motors are going to be changed<br />

after the motor identification.<br />

• If the nominal current of the motor is less than 20% of the nominal output current<br />

of the drive.<br />

• When the drive is used for test purposes with no motor connected.<br />

The scalar control mode is not recommended for permanent magnet motors.<br />

In the scalar control mode, some standard features are not available.<br />

� Settings<br />

Parameter 9904 MOTOR CTRL MODE<br />

IR compensation for a scalar controlled drive<br />

IR compensation is active only when the motor<br />

control mode is scalar (see section Scalar<br />

control on page 144). When IR compensation is<br />

activated, the drive gives an extra voltage boost<br />

to the motor at low speeds. IR compensation is<br />

useful in applications that require high breakaway<br />

torque. In vector control, no IR<br />

compensation is possible/needed.<br />

� Settings<br />

Parameter 2603 IR COMP VOLT<br />

Programmable protection functions<br />

� AI


� Panel loss<br />

Program features 145<br />

Panel loss function defines the operation of the drive if the control panel selected as<br />

the control location for the drive stops communicating.<br />

Settings<br />

Parameter 3002 PANEL COMM ERR<br />

� External fault<br />

External faults (1 and 2) can be supervised by defining one digital input as a source<br />

for an external fault indication signal.<br />

Settings<br />

Parameters 3003 EXTERNAL FAULT 1 and 3004 EXTERNAL FAULT 2<br />

� Stall protection<br />

The drive protects the motor in a stall situation. It is possible to adjust the supervision<br />

limits (frequency, time) and choose how the drive reacts to the motor stall condition<br />

(alarm indication / fault indication & drive stop / no reaction).<br />

Settings<br />

Parameters 3010 STALL FUNCTION, 3011 STALL FREQUENCY and 3012 STALL<br />

TIME<br />

� Motor thermal protection<br />

The motor can be protected against overheating by activating the Motor thermal<br />

protection function.<br />

The drive calculates the temperature of the motor on the basis of the following<br />

assumptions:<br />

• The motor is in the ambient temperature of 30 °C when power is applied to the<br />

drive.<br />

• Motor temperature is calculated using either the user-adjustable or automatically<br />

calculated motor thermal time constant and motor load curve (see the figures<br />

below). The load curve should be adjusted if the ambient temperature exceeds<br />

30 °C


146 Program features<br />

.<br />

Motor<br />

load<br />

100%<br />

Temp.<br />

rise<br />

100%<br />

63%<br />

Motor thermal time constant<br />

Settings<br />

Parameters 3005…3009<br />

Note: It is also possible to use the motor temperature measurement function. See<br />

section Motor temperature measurement through the standard I/O on page 155.<br />

� Underload protection<br />

Loss of motor load may indicate a process malfunction. The drive provides an<br />

underload function to protect the machinery and process in such a serious fault<br />

condition. Supervision limits - underload curve and underload time - can be specified<br />

as well as the action taken by the drive upon the underload condition (alarm<br />

indication / fault indication & drive stop / no reaction).<br />

Settings<br />

Parameters 3013…3015<br />

� Earth fault protection<br />

The Earth fault protection detects earth faults in the motor or motor cable. The<br />

protection can be selected to be active during start and run or during start only.<br />

An earth fault in the input power line does not activate the protection.<br />

Settings<br />

}<br />

Parameter 3017 EARTH FAULT<br />

� Incorrect wiring<br />

t<br />

t<br />

P 3007<br />

P 3008<br />

100 =<br />

127%<br />

Defines the operation when incorrect input power cable connection is detected.<br />

150<br />

50<br />

Output current relative (%) to<br />

motor nominal current<br />

Break point<br />

Zero speed load<br />

P 3009<br />

Motor load curve<br />

f


Settings<br />

Parameter 3023 WIRING FAULT<br />

� Input phase loss<br />

Program features 147<br />

Input phase loss protection circuits supervise the input power cable connection status<br />

by detecting intermediate circuit ripple. If a phase is lost, the ripple increases.<br />

Settings<br />

Parameter 3016 SUPPLY PHASE<br />

Pre-programmed faults<br />

� Overcurrent<br />

The overcurrent trip limit for the drive is 325% of the drive nominal current.<br />

� DC overvoltage<br />

The DC overvoltage trip limit is 420 V (for 200 V drives) and 840 V (for 400 V drives).<br />

� DC undervoltage<br />

The DC undervoltage trip limit is adaptive. See parameter 2006 UNDERVOLT CTRL.<br />

� Drive temperature<br />

The drive supervises the IGBT temperature. There are two supervision limits: Alarm<br />

limit and fault trip limit.<br />

� Short circuit<br />

If a short circuit occurs, the drive will not start and a fault indication is given.<br />

� Internal fault<br />

If the drive detects an internal fault, the drive is stopped and a fault indication is given.<br />

Operation limits<br />

The drive has adjustable limits for speed, current (maximum), torque (maximum) and<br />

DC voltage.<br />

� Settings<br />

Parameter group 20 LIMITS


148 Program features<br />

Power limit<br />

Power limitation is used to protect the input bridge and the DC intermediate circuit.<br />

If the maximum allowed power is exceeded, the drive torque is automatically limited.<br />

Maximum overload and continuous power limits depend on the drive hardware.<br />

For specific values, see chapter Technical data on page 357.<br />

Automatic resets<br />

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage,<br />

external and “analog input below a minimum” faults. The Automatic resets must be<br />

activated by the user.<br />

� Settings<br />

Parameter Additional information<br />

Group 31 AUTOMATIC RESET Automatic reset settings<br />

� Diagnostics<br />

Alarm Additional information<br />

AUTORESET Automatic reset alarm<br />

Supervisions<br />

The drive monitors whether certain user selectable variables are within the userdefined<br />

limits. The user may set limits for speed, current etc. The supervision status<br />

can be indicated through relay or digital output.<br />

The supervision functions operate on a 2 ms time level.<br />

� Settings<br />

Parameter group 32 SUPERVISION<br />

� Diagnostics<br />

Actual signal Additional information<br />

1401 Supervision status through RO 1<br />

1402/1403/1410 Supervision status through RO 2…4. With option<br />

MREL-01 only.<br />

1805 Supervision status through DO<br />

8425, 8426 / 8435, 8436 /…/8495, Sequence programming state change according to<br />

8496<br />

supervision functions


Parameter lock<br />

Program features 149<br />

The user can prevent parameter adjustment by activating the parameter lock.<br />

� Settings<br />

Parameters 1602 PARAMETER LOCK and 1603 PASS CODE<br />

PID control<br />

There are two built-in PID controllers in the drive:<br />

• Process PID (PID1) and<br />

• External/Trim PID (PID2).<br />

The PID controller can be used when the motor speed needs to be controlled based<br />

on process variables such as pressure, flow or temperature.<br />

When the PID control is activated, a process reference (setpoint) is connected to the<br />

drive instead of a speed reference. An actual value (process feedback) is also<br />

brought back to the drive. The drive compares the reference and the actual values,<br />

and automatically adjusts the drive speed in order to keep the measured process<br />

quantity (actual value) at the desired level (reference).<br />

The control operates on a 2 ms time level.<br />

� Process controller PID1<br />

PID1 has two separate sets of parameters (40 PROCESS PID SET 1, 41 PROCESS<br />

PID SET 2). Selection between parameter sets 1 and 2 is defined by a parameter.<br />

In most cases when there is only one transducer signal wired to the drive, only<br />

parameter set 1 is needed. Two different parameter sets (1 and 2) are used eg when<br />

the load of the motor changes considerably in time.<br />

� External/Trim controller PID2<br />

PID2 (42 EXT / TRIM PID) can be used in two different ways:<br />

• External controller: Instead of using additional PID controller hardware, the user<br />

can connect PID2 output through drive analog output or fieldbus controller to<br />

control a field instrument like a damper or a valve.<br />

• Trim controller: PID2 can be used to trim or fine tune the reference of the drive.<br />

See section Reference trimming on page 129.


150 Program features<br />

� Block diagrams<br />

The figure below shows an application example: The controller adjusts the speed of a<br />

pressure boost pump according to the measured pressure and the set pressure<br />

reference.<br />

Example:<br />

Pressure boost pump<br />

!<br />

Drive<br />

) + 6 2 ) 4 . 7 � + , 4 18 -<br />

� � +<br />

4 - �<br />

- � 6 - 4<br />

4 - 5 - 6<br />

4 - .<br />

!<br />

) + 5 $<br />

��� > = H<br />

" ��� � )<br />

PID control block diagram<br />

%ref<br />

4014<br />

4021<br />

AI1<br />

AI2<br />

IMOT<br />

.<br />

.<br />

Actual values<br />

4001<br />

4002<br />

4003<br />

4004<br />

4005<br />

PIDmax<br />

PIDmin<br />

…<br />

ref<br />

k<br />

ti<br />

td<br />

i<br />

dFiltT<br />

errVInv<br />

oh1<br />

ol1<br />

PID<br />

%ref = 4010<br />

Switch<br />

9904 = 0<br />

Frequency<br />

reference<br />

Speed<br />

reference


Program features 151<br />

The following figure presents the speed/scalar control block diagram for process<br />

controller PID1.<br />

Switch<br />

PID act<br />

selection<br />

Panel ref2<br />

PID1<br />

controller<br />

PID ACT<br />

value<br />

n<br />

PID1 Out<br />

Local ref<br />

switch<br />

4014…4021/<br />

4141…4121*<br />

AI<br />

Current<br />

Torque<br />

Power<br />

COMM ACT<br />

1106<br />

Group<br />

40/41*<br />

Limiter<br />

LOC<br />

LOC/REM<br />

switch<br />

Panel ref1<br />

Panel ref2<br />

Alarm<br />

speed<br />

500%<br />

-500%<br />

Speed<br />

REM ref<br />

1101<br />

EXT1 ref<br />

select<br />

Group 30<br />

Limiter<br />

Constant<br />

speed<br />

Control panel<br />

n<br />

Panel ref1<br />

AI<br />

…<br />

Average speed<br />

Const speed 7<br />

Group 12<br />

1103<br />

AI2+SEQ<br />

1104<br />

Constant<br />

speed<br />

EXT2 ref<br />

select<br />

n<br />

Panel ref2<br />

AI<br />

…<br />

EXT1/EXT2<br />

switch<br />

Group 12<br />

1106<br />

AI2+SEQ<br />

Limiter<br />

Switch<br />

PID act<br />

selection<br />

PID1<br />

controller<br />

PID ACT<br />

value<br />

n<br />

1102<br />

1107<br />

PID1 Out<br />

4014…4021/<br />

4114…4121*<br />

AI<br />

Current<br />

Torque<br />

Power<br />

COMM ACT<br />

1106<br />

Group<br />

40/41*<br />

Limiter<br />

PID1 ref<br />

select<br />

n<br />

*Parameter 4027 selects between PID parameter set 1 and 2, ie group 40 and 41.<br />

Panel ref2<br />

AI<br />

…<br />

4012,4013/<br />

4112,4113*<br />

4010/4110*<br />

SEQ PROG


152 Program features<br />

� Settings<br />

Parameter Additional information<br />

1101 Local control mode reference type selection<br />

1102 EXT1/EXT2 selection<br />

1106 PID1 activation<br />

1107 REF2 minimum limit<br />

1501 PID2 output (external controller) connection to AO<br />

9902 PID control macro selection<br />

Groups 40 PROCESS PID SET<br />

1…41 PROCESS PID SET 2<br />

PID1 settings<br />

Group 42 EXT / TRIM PID PID2 settings<br />

� Diagnostics<br />

Actual signal Additional information<br />

0126/0127 PID 1/2 output value<br />

0128/0129 PID 1/2 setpoint value<br />

0130/0131 PID 1/2 feedback value<br />

0132/0133 PID 1/2 deviation<br />

0170 AO value defined by Sequence programming


Sleep function for the process PID (PID1) control<br />

The sleep function operates on a 2 ms time level.<br />

Program features 153<br />

The block diagram below illustrates the sleep function enable/disable logic. The sleep<br />

function can be put into use only when the PID control is active.<br />

Output<br />

frequency<br />

Motor<br />

speed<br />

0132<br />

4025<br />

Switch<br />

Compare<br />

Select<br />

1 NOT SEL<br />

4023<br />

9904<br />

MOTOR CTRL<br />

MODE<br />

12<br />

2<br />

NOT SEL<br />

INTERNAL<br />

DI1 .<br />

Select<br />

%refActive<br />

PIDCtrlActive<br />

modulating<br />

5320 (B1)<br />

5320 (B2)<br />

Delay<br />

4022 4026<br />

Delay<br />

1) 1 = Activate sleeping<br />

0 = Deactivate sleeping<br />

Motor speed: Actual speed of the motor<br />

%refActive: The % reference (EXT REF2) is in use. See parameter 1102 EXT1/EXT2 SEL.<br />

PIDCtrlActive: Parameter 9902 APPLIC MACRO = PID CONTROL.<br />

modulating: Drive IGBT control is operating.<br />

t<br />

Or<br />


154 Program features<br />

� Example<br />

The time scheme below visualizes the operation of the sleep function.<br />

Sleep function for a PID controlled pressure boost pump (when parameter 4022<br />

SLEEP SELECTION is set to INTERNAL): The water consumption falls at night. As a<br />

consequence, the PID process controller decreases the motor speed. However, due<br />

to natural losses in the pipes and the low efficiency of the centrifugal pump at low<br />

speeds, the motor does not stop but keeps rotating. The sleep function detects the<br />

slow rotation, and stops the unnecessary pumping after the sleep delay has passed.<br />

The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts<br />

when the pressure falls under the allowed minimum level and the wake-up delay has<br />

passed.<br />

� Settings<br />

Motor speed<br />

Parameter Additional information<br />

9902 PID control activation<br />

4022…4026, 4122…4126 Sleep function settings<br />

� Diagnostics<br />

Sleep level<br />

(4023)<br />

Actual value<br />

t d = Sleep delay (4024)<br />

t


Program features 155<br />

Motor temperature measurement through the standard I/O<br />

This section describes the temperature measurement of one motor when the drive<br />

I/O terminals are used as the connection interface.<br />

Motor temperature can be measured using PT100 or PTC sensors connected to<br />

analog input and output.<br />

One sensor Three sensors<br />

Motor<br />

T<br />

3.3 nF<br />

AI1<br />

GND<br />

AO<br />

GND<br />

WARNING! According to IEC 664, the connection of the motor temperature<br />

sensor requires double or reinforced insulation between motor live parts and<br />

the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm<br />

(400/500 V AC equipment).<br />

If the assembly does not fulfill the requirement, the I/O board terminals must be<br />

protected against contact and they may not be connected to other equipment, or the<br />

temperature sensor must be isolated from the I/O terminals.<br />

T<br />

Motor<br />

T<br />

T<br />

3.3 nF<br />

AI1<br />

GND<br />

AO<br />

GND


156 Program features<br />

It is also possible to monitor motor temperature by connecting a PTC sensor and<br />

a thermistor relay between the +24 V DC voltage supply offered by the drive and a<br />

digital input. The figure below displays the connection.<br />

WARNING! According to IEC 664, the connection of the motor thermistor to<br />

the digital input requires double or reinforced insulation between motor live<br />

parts and the thermistor. Reinforced insulation entails a clearance and creeping<br />

distance of 8 mm (400/500 V AC equipment).<br />

If the thermistor assembly does not fulfill the requirement, the other I/O terminals of<br />

the drive must be protected against contact, or a thermistor relay must be used to<br />

isolate the thermistor from the digital input.<br />

� Settings<br />

Parameter Additional information<br />

Group 13 ANALOG INPUTS Analog input settings<br />

Group 15 ANALOG OUTPUTS Analog output settings<br />

Group 35 MOTOR TEMP MEAS Motor temperature measurement settings<br />

Other<br />

At the motor end the cable shield should be earthed through, eg a 3.3 nF capacitor. If this is not<br />

possible, the shield is to be left unconnected.<br />

� Diagnostics<br />

Thermistor<br />

relay<br />

T<br />

Motor<br />

Par. 3501 = THERM(0) or THERM(1)<br />

DI1…5<br />

+24 V DC<br />

Actual signal Additional information<br />

0145 Motor temperature<br />

Alarm/Fault Additional information<br />

MOTOR TEMP/MOT OVERTEMP Excessive motor temp


Control of a mechanical brake<br />

Program features 157<br />

The mechanical brake is used for holding the motor and driven machinery at zero<br />

speed when the drive is stopped, or not powered.<br />

� Example<br />

The figure below shows a brake control application example.<br />

WARNING! Make sure that the machinery into which the drive with brake<br />

control function is integrated fulfills the personnel safety regulations. Note that<br />

the frequency converter (a Complete Drive Module or a Basic Drive Module, as<br />

defined in IEC 61800-2), is not considered a safety device mentioned in the<br />

European Machinery Directive and related harmonized standards. Thus, the<br />

personnel safety of the complete machinery must not be based on a specific<br />

frequency converter feature (such as the brake control function), but it has to be<br />

implemented as defined in the application specific regulations.<br />

Brake control logic is integrated<br />

in the drive application<br />

program. The user has to take<br />

care of the power supply and<br />

wiring.<br />

Brake on/off control is through<br />

relay output RO.<br />

Emergency<br />

brake<br />

M<br />

Motor<br />

Power supply<br />

230 VAC<br />

Mechanical brake<br />

X1B<br />

17 ROCOM<br />

18 RONC<br />

19 RONO


158 Program features<br />

� Operation time scheme<br />

The time scheme below illustrates the operation of the brake control function. See<br />

also section State shifts on page 159.<br />

Start command<br />

External speed<br />

reference<br />

Inverter modulating<br />

Motor magnetized<br />

Open brake command<br />

(RO/DO)<br />

Internal speed<br />

reference (actual<br />

motor speed)<br />

I output / Torque<br />

1<br />

t md<br />

2<br />

I s/T s<br />

t od<br />

3<br />

4<br />

n cs<br />

I mem/T mem<br />

Is/Ts Brake open current/torque (parameter 4302 BRAKE OPEN LVL or<br />

current/torque from parameter 0179 BRAKE TORQUE MEM)<br />

Imem/Tmem Brake close current/torque (saved in parameter 0179 BRAKE TORQUE MEM)<br />

tmd Motor magnetizing delay (parameter 4305 BRAKE MAGN DELAY)<br />

tod Brake open delay (parameter 4301 BRAKE OPEN DLY)<br />

ncs Brake close speed (parameter 4303 BRAKE CLOSE LVL)<br />

Mechanical brake close delay<br />

t cd<br />

7<br />

t cd<br />

t


� State shifts<br />

From any state<br />

1)<br />

NO<br />

MODULATION<br />

2)<br />

OPEN<br />

BRAKE<br />

3)<br />

RELEASE RFG<br />

INPUT<br />

8)<br />

4)<br />

RFG INPUT<br />

TO ZERO<br />

7)<br />

CLOSE<br />

BRAKE<br />

9)<br />

(rising edge)<br />

0/0/1<br />

1/1/0<br />

1/1/0<br />

1/1/1<br />

0/1/1<br />

A<br />

A<br />

5)<br />

6)<br />

Program features 159<br />

RFG = Ramp function<br />

generator in the speed control<br />

loop (reference handling).<br />

State (Symbol NN X/Y/Z )<br />

- NN: State name<br />

- X/Y/Z: State outputs/operations<br />

X = 1 Open the brake. The relay output set to brake on/off control energizes.<br />

Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in<br />

spite of the status of the external Start signal.<br />

Z = 1 Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.<br />

State change conditions (Symbol )<br />

1) Brake control active 0 -> 1 OR Inverter is modulating = 0<br />

2) Motor magnetised = 1 AND Drive running = 1<br />

3) Brake is open AND Brake open delay passed AND Start = 1<br />

4) Start = 0<br />

5) Start = 0<br />

6) Start = 1<br />

7) Actual motor speed < Brake close speed AND Start = 0<br />

8) Start = 1<br />

9) Brake is closed AND Brake close delay passed = 1 AND Start = 0


160 Program features<br />

� Settings<br />

Parameter Additional information<br />

1401/1805 Mechanical brake activation through RO 1 / DO<br />

1402/1403/1410 Mechanical brake activation through RO 2…4. With<br />

option MREL-01 only.<br />

2112 Zero speed delay<br />

Group 43 MECH BRK CONTROL Brake function settings


Jogging<br />

Program features 161<br />

The jogging function is typically used to control a cyclical movement of a machine<br />

section. One push button controls the drive through the whole cycle: When it is on,<br />

the drive starts, accelerates to a preset speed at a preset rate. When it is off, the drive<br />

decelerates to zero speed at a preset rate.<br />

The figure and table below describe the operation of the drive. They also represent<br />

how the drive shifts to normal operation (= jogging inactive) when the drive start<br />

command is switched on. Jog cmd = State of the jogging input, Start cmd = State of<br />

the drive start command.<br />

The function operates on a 2 ms time level<br />

Speed<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

Phase Jog<br />

cmd Start<br />

cmd Description<br />

1-2 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the<br />

jogging function.<br />

2-3 1 0 Drive runs at the jogging speed.<br />

3-4 0 0 Drive decelerates to zero speed along the deceleration ramp of the<br />

jogging function.<br />

4-5 0 0 Drive is stopped.<br />

5-6 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the<br />

jogging function.<br />

6-7 1 0 Drive runs at the jogging speed.<br />

7-8 x 1 Normal operation overrides the jogging. Drive accelerates to the speed<br />

reference along the active acceleration ramp.<br />

8-9 x 1 Normal operation overrides the jogging. Drive follows the speed<br />

reference.<br />

9-10 0 0 Drive decelerates to zero speed along the active deceleration ramp.<br />

10-11 0 0 Drive is stopped.<br />

11-12 x 1 Normal operation overrides the jogging. Drive accelerates to the speed<br />

reference along the active acceleration ramp.<br />

12-13 x 1 Normal operation overrides the jogging. Drive follows the speed<br />

reference.<br />

13-14 1 0 Drive decelerates to the jogging speed along the deceleration ramp of the<br />

jogging function.<br />

14-15 1 0 Drive runs at the jogging speed.<br />

15-16 0 0 Drive decelerates to zero speed along the deceleration ramp of the<br />

jogging function.<br />

x = state can be either 1 or 0<br />

Note: The jogging is not operational when the drive start command is on.<br />

t


162 Program features<br />

Note: The jogging speed overrides the constant speeds.<br />

Note: The jogging uses ramp stop even if parameter 2102 STOP FUNCTION<br />

selection is COAST.<br />

Note: The ramp shape time is set to zero during the jogging (ie linear ramp).<br />

Jogging function uses constant speed 7 as jogging speed and<br />

acceleration/deceleration ramp pair 2.<br />

It is also possible to activate jogging function 1 or 2 through fieldbus. Jogging<br />

function 1 uses constant speed 7 and jogging function 2 uses constant speed 6. Both<br />

functions use acceleration/deceleration ramp pair 2.<br />

� Settings<br />

Parameter Additional information<br />

1010 Jogging activation<br />

1208 Jogging speed<br />

1208/1207 Jogging speed for jogging function 1/2 activated through<br />

fieldbus<br />

2112 Zero speed delay<br />

2205, 2206 Acceleration and deceleration times<br />

2207 Acceleration and deceleration ramp shape time: Set to<br />

zero during the jogging (ie linear ramp).<br />

� Diagnostics<br />

Actual signal Additional information<br />

0302 Jogging 1/2 activation through fieldbus<br />

1401 Jogging function status through RO 1<br />

1402/1403/1410 Jogging function status through RO 2…4. With option<br />

MREL-01 only.<br />

1805 Jogging function status through DO


Timed functions<br />

Program features 163<br />

A variety of drive functions can be time controlled, eg start/stop and EXT1/EXT2<br />

control. The drive offers<br />

• four start and stop times (START TIME 1…START TIME 4, STOP TIME 1…STOP<br />

TIME 4)<br />

• four start and stop days (START DAY 1…START DAY 4, STOP DAY 1…STOP<br />

DAY 4)<br />

• four timed functions for collecting the selected time periods 1…4 together (TIMED<br />

FUNC 1 SRC…TIMED FUNC 4 SRC)<br />

• booster time (an additional booster time connected to timed functions).<br />

A timed function can be connected to multiple time periods:<br />

Time period 1<br />

3602 START TIME 1<br />

3603 STOP TIME 1<br />

3604 START DAY 1<br />

3605 STOP DAY 1<br />

Time period 2<br />

3606 START TIME 2<br />

3607 STOP TIME 2<br />

3608 START DAY 2<br />

3609 STOP DAY 2<br />

Time period 3<br />

3610 START TIME 3<br />

3611 STOP TIME 3<br />

3612 START DAY 3<br />

3613 STOP DAY 3<br />

Time period 4<br />

3614 START TIME 4<br />

3615 STOP TIME 4<br />

3616 START DAY 4<br />

3617 STOP DAY 4<br />

Booster<br />

3622 BOOSTER SEL<br />

3623 BOOSTER TIME<br />

Timed function 1<br />

3626 TIMED FUNC 1 SRC<br />

Timed function 2<br />

3627 TIMED FUNC 2 SRC<br />

Timed function 3<br />

3628 TIMED FUNC 3 SRC<br />

Timed function 4<br />

3629 TIMED FUNC 4 SRC


164 Program features<br />

A parameter which is triggered by a timed function can be connected to only one<br />

timed function at a time.<br />

Timed function 1<br />

3626 TIMED FUNC 1 SRC<br />

Timed function 2<br />

3627 TIMED FUNC 2 SRC<br />

You can use the Timed functions assistant for easy configuring. For more information<br />

on the assistants, see section Assistants mode on page 98.<br />

� Example<br />

1001 EXT1 COMMANDS<br />

1002 EXT2 COMMANDS<br />

1102 EXT1/EXT2 SEL<br />

1201 CONST SPEED SEL<br />

1209 TIMED MODE SEL<br />

1401 RELAY OUTPUT 1<br />

1402 RELAY OUTPUT 2, 1403 RELAY OUTPUT 3,<br />

1410 RELAY OUTPUT 4 (with option MREL-01 only)<br />

1805 DO SIGNAL<br />

4027 PID 1 PARAM SET<br />

4228 ACTIVATE<br />

8402 SEQ PROG START<br />

8406 SEQ LOGIC VAL 1<br />

8425/35/45/55/65/75/85/95 ST1 TRIG TO ST 2 …<br />

ST8 TRIG TO ST 2<br />

8426/36/46/56/66/76/86/96 ST1 TRIG TO ST N …<br />

ST8 TRIG TO ST N<br />

Air conditioning is active on weekdays from 8:00 to 15:30 (8 a.m to 3:30 p.m) and on<br />

Sundays from 12:00 to 15:00 (12 to 3 p.m). By pressing the extension time switch,<br />

the air-conditioning is on for an extra hour.<br />

Parameter Setting<br />

3601 TIMERS ENABLE DI1<br />

3602 START TIME 1 08:00:00<br />

3603 STOP TIME 1 15:30:00<br />

3604 START DAY 1 MONDAY<br />

3605 STOP DAY 1 FRIDAY<br />

3606 START TIME 2 12:00:00<br />

3607 STOP TIME 2 15:00:00<br />

3608 START DAY 2 SUNDAY<br />

3609 STOP DAY 2 SUNDAY<br />

3622 BOOSTER SEL DI5 (cannot be the same as parameter 3601 value)<br />

3623 BOOSTER TIME 01:00:00<br />

3626 TIMED FUNC 1 SRC T1+T2+B


� Settings<br />

Timer<br />

Drive start and stop can be controlled with timer functions.<br />

� Settings<br />

� Diagnostics<br />

Counter<br />

Program features 165<br />

Parameter Additional information<br />

36 TIMED FUNCTIONS Timed functions settings<br />

1001, 1002 Timed start/stop control<br />

1102 Timed EXT1/EXT2 selection<br />

1201 Timed constant speed 1 activation<br />

1209 Timed speed selection<br />

1401 Timed function status indicated through relay output RO 1<br />

1402/1403/1410 Timed function status indicated through relay output RO 2…4.<br />

With option MREL-01 only.<br />

1805 Timed function status indicated through digital output DO<br />

4027 Timed PID1 parameter set 1/2 selection<br />

4228 Timed external PID2 activation<br />

8402 Timed Sequence programming activation<br />

8425/8435/…/8495<br />

Sequence programming state change trigger with timed<br />

8426/8436/…/8496<br />

function<br />

Parameter Additional information<br />

1001, 1002 Start/stop signal sources<br />

Group 19 TIMER & COUNTER Timer for start and stop<br />

Actual signal Additional information<br />

0165 Start/stop control time count<br />

Drive start and stop can be controlled with counter functions. The counter function<br />

can also be used as state change trigger signal in Sequence programming. See<br />

section Sequence programming on page 166.<br />

� Settings<br />

Parameter Additional information<br />

1001, 1002 Start/Stop signal sources<br />

Group 19 TIMER & COUNTER Timer for start and stop<br />

8425, 8426 / 8435, 8436 /…/8495, Counter signal as state change trigger in Sequence<br />

8496<br />

programming


166 Program features<br />

� Diagnostics<br />

Actual signal Additional information<br />

0166 Start/stop control pulse count<br />

Sequence programming<br />

The drive can be programmed to perform a sequence where the drive shifts typically<br />

through 1…8 states. User defines the operation rules for the whole sequence and for<br />

each state. The rules of a particular state are effective when the Sequence program is<br />

active and the program has entered the state. The rules to be defined for each state<br />

are:<br />

• Run, stop and direction commands for the drive (forward/reverse/stop)<br />

• Acceleration and deceleration ramp time for the drive<br />

• Source for the drive reference value<br />

• State duration<br />

• RO/DO/AO status<br />

• Signal source for triggering the shift to the next state<br />

• Signal source for triggering the shift to any state (1…8).<br />

Every state can also activate drive outputs to give an indication to external devices.<br />

Sequence programming allows state transitions either to the next state or to a<br />

selected state. State change can be activated with eg timed functions, digital inputs<br />

and supervision functions.<br />

Sequence programming can be applied in simple mixer applications as well as in<br />

more complicated traverse applications.<br />

The programming can be done with control panel or with a PC tool. The drive is<br />

supported by version 2.91 or later of the DriveWindow Light 2 PC tool which includes<br />

a graphical Sequence programming tool.<br />

Note: By default all Sequence programming parameters can be changed even when<br />

the Sequence programming is active. It is recommended that after the Sequence<br />

programming parameters are set, parameters are locked with parameter 1602<br />

PARAMETER LOCK.<br />

� Settings<br />

Parameter Additional information<br />

1001/1002 Start, stop and direction commands for EXT1/EXT2<br />

1102 EXT1/EXT2 selection<br />

1106 REF2 source<br />

1201 Constant speed deactivation. Constant speed always<br />

overrides the Sequence programming reference.<br />

1401 Sequence programming output through RO 1


Parameter Additional information<br />

� Diagnostics<br />

Program features 167<br />

1402/1403/1410 Sequence programming output through relay output RO 2…4.<br />

With option MREL-01 only.<br />

1501 Sequence programming output through AO<br />

1601 Run enable activation/deactivation<br />

1805 Sequence programming output through DO<br />

Group 19 TIMER & COUNTER State change according to counter limit<br />

Group 32 SUPERVISION Timed state change<br />

2201…2207 Acceleration/deceleration and ramp time settings<br />

Group 32 SUPERVISION Supervision settings<br />

4010/4110/4210 Sequence programming output as PID reference signal<br />

Group 84 SEQUENCE PROG Sequence programming settings<br />

Actual signal Additional information<br />

0167 Sequence programming status<br />

0168 Sequence programming active state<br />

0169 Current state time counter<br />

0170 Analog output PID reference control values<br />

0171 Executed sequence counter


168 Program features<br />

� State shifts<br />

State N<br />

State N<br />

State N<br />

State N<br />

State N<br />

State N<br />

State N<br />

State N<br />

Go to state N (par 8426, 8427)*<br />

Go to state N (par 8436, 8437)*<br />

Go to state N (par 8446, 8447)*<br />

Go to state N (par 8456, 8457)*<br />

Go to state N (par 8466, 8467)*<br />

Go to state N (par 8476, 8477)*<br />

Go to state N (par 8486, 8487)*<br />

Go to state N (par 8496, 8497)*<br />

*State change to state N has a<br />

higher priority than state change to<br />

the next state.<br />

Sequence programming<br />

ENABLE<br />

STATE 1<br />

(par. 8420…8424)<br />

STATE 2<br />

(par. 8430…8434)<br />

STATE 3<br />

(par. 8440…8444)<br />

STATE 4<br />

(par. 8450…8454)<br />

STATE 5<br />

(par. 8460…8464)<br />

STATE 6<br />

(par. 8470…8474)<br />

STATE 7<br />

(par. 8480…8484)<br />

STATE 8<br />

(par. 8490…8494)<br />

Go to state 2 (par 8425)*<br />

Go to state 3 (par 8435)*<br />

Go to state 4 (par 8445)*<br />

Go to state 5 (par 8455)*<br />

Go to state 6 (par 8465)*<br />

Go to state 7 (par 8475)*<br />

Go to state 8 (par 8485)*<br />

Go to state 1 (par 8495)*<br />

NN X<br />

0167 bit 0 = 1<br />

0168 = 1 (State 1)<br />

0168 = 2 (State 2)<br />

0168 = 3 (State 3)<br />

0168 = 4 (State 4)<br />

0168 = 5 (State 5)<br />

0168 = 6 (State 6)<br />

0168 = 7 (State 7)<br />

0168 = 8 (State 8)<br />

NN = State<br />

X = Actual signal<br />

State change


� Example 1<br />

50 Hz<br />

0Hz<br />

-50 Hz<br />

DI1<br />

DI2<br />

Sequence programming is activated by digital input DI1.<br />

Program features 169<br />

ST1 ST2 ST3 ST4 ST3<br />

Seq. start<br />

State change trigger<br />

ST1: Drive is started in reverse direction with -50 Hz reference and 10 s ramp time.<br />

State 1 is active for 40 s.<br />

ST2: Drive is accelerated to 20 Hz with 60 s ramp time. State 2 is active for 120 s.<br />

ST3: Drive is accelerated to 25 Hz with 5 s ramp time. State 3 is active until the<br />

Sequence programming is disabled or until booster start is activated by DI2.<br />

ST4: Drive is accelerated to 50 Hz with 5 s ramp time. State 4 is active for 200 s and<br />

after that the state shifts back to state 3.<br />

Parameter Setting Additional information<br />

1002 EXT2 COMMANDS SEQ PROG Start, stop, direction commands for EXT2<br />

1102 EXT1/EXT2 SEL EXT2 EXT2 activation<br />

1106 REF2 SELECT SEQ PROG Sequence programming output as REF2<br />

1601 RUN ENABLE NOT SEL Deactivation of Run enable<br />

2102 STOP FUNCTION RAMP Ramp stop<br />

2201 ACC/DEC 1/2 SEL SEQ PROG Ramp as defined by parameter 8422/…/8452.<br />

8401 SEQ PROG ENABLE ALWAYS Sequence programming enabled<br />

8402 SEQ PROG START DI1 Sequence programming activation through<br />

digital input (DI1)<br />

8404 SEQ PROG RESET DI1(INV) Sequence programming reset (ie reset to state<br />

1, when DI1 signal is lost (1 -> 0)


170 Program features<br />

ST1 ST2 ST3 ST4 Additional<br />

information<br />

Par. Setting Par. Setting Par. Setting Par. Setting<br />

8420 ST1 REF<br />

SEL<br />

8421 ST1<br />

COMMANDS<br />

8422 ST1<br />

RAMP<br />

8424 ST1<br />

CHANGE DLY<br />

8425 ST1 TRIG<br />

TO ST 2<br />

8426 ST1 TRIG<br />

TO ST N<br />

8427 ST1<br />

STATE N<br />

� Example 2<br />

AI1 + 15%<br />

AI1 + 10%<br />

AI1<br />

AI1 - 10%<br />

AI1 - 15%<br />

DI1<br />

RO<br />

100% 8430 40% 8440 50% 8450 100% State<br />

reference<br />

START<br />

REV<br />

8431 START<br />

FRW<br />

8441 START<br />

FRW<br />

Drive is programmed for traverse control with 30 sequences.<br />

Sequence programming is activated by digital input DI1<br />

8451 START<br />

FRW<br />

Run, direction<br />

and stop<br />

command<br />

10 s 8432 60 s 8442 5 s 8452 5 s Ramp time<br />

40 s 8434 120 s 8444 8454 200 s State change<br />

delay<br />

CHANGE<br />

DLY<br />

8435 CHANGE<br />

DLY<br />

8445 DI2 8455<br />

NOT SEL 8436 NOT SEL 8446 NOT SEL 8456 CHANGE<br />

DLY<br />

- 8437 - 8447 - 8457 STATE 3<br />

ST2 (error:<br />

acceleration<br />

ST1 ST2 ST4 ST2 ST4 ST2 ST4 too slow) ST8<br />

ST3 ST3 ST3<br />

ST5 ST5 ST5<br />

Seq. start Error<br />

State change<br />

trigger<br />

ST8<br />

ERROR<br />

ST1: Drive is started in forward direction with AI1 (AI1 + 50% - 50%) reference and<br />

ramp pair 2. State shifts to the next state when reference is reached. All relay and<br />

analog outputs are cleared.


Program features 171<br />

ST2: Drive is accelerated with AI1 + 15% (AI1 + 65% - 50%) reference and 1.5 s<br />

ramp time. State shifts to the next state when reference is reached. If reference is not<br />

reached within 2 s, state shifts to state 8 (error state).<br />

ST3: Drive is decelerated with AI1 + 10% (AI1 + 60% - 50%) reference and 0 s ramp<br />

time 1) . State shifts to the next state when reference is reached. If reference is not<br />

reached within 0.2 s, state shifts to state 8 (error state).<br />

ST4: Drive is decelerated with AI1 - 15% (AI1 + 35% -50%) reference and 1.5 s ramp<br />

time. State shifts to the next state when reference is reached. If reference is not<br />

reached within 2 s, state shifts to state 8 (error state). 2)<br />

ST5: Drive is accelerated with AI1 -10% (AI1 + 40% -50%) reference and 0 s ramp<br />

time 1) . State shifts to the next state when reference is reached. Sequence counter<br />

value is increased by 1. If sequence counter elapses, state shifts to state 7 (sequence<br />

completed).<br />

ST6: Drive reference and ramp times are the same as in state 2. Drive state shifts<br />

immediately to state 2 (delay time is 0 s).<br />

ST7 (sequence completed): Drive is stopped with ramp pair 1. Digital output DO is<br />

activated. If Sequence programming is deactivated by the falling edge of digital input<br />

DI1, state machine is reset to state 1. New start command can be activated by digital<br />

input DI1 or by digital inputs DI4 and DI5 (both inputs DI4 and DI5 must be<br />

simultaneously active).<br />

ST8 (error state): Drive is stopped with ramp pair 1. Relay output RO is activated. If<br />

Sequence programming is deactivated by the falling edge of digital input DI1, state<br />

machine is reset to state 1. New start command can be activated by digital input DI1<br />

or by digital inputs DI4 and DI5 (both inputs DI4 and DI5 must be simultaneously<br />

active).<br />

1) 0 second ramp time = drive is accelerated/decelerated as rapidly as possible.<br />

2) State reference must be between 0…100%, ie scaled AI1 value must be between<br />

15…85%. If AI1 = 0, reference = 0% + 35% -50% = -15% < 0%.


172 Program features<br />

Parameter Setting Additional information<br />

1002 EXT2 COMMANDS SEQ PROG Start, stop, direction commands for EXT2<br />

1102 EXT1/EXT2 SEL EXT2 EXT2 activation<br />

1106 REF2 SELECT AI1+SEQ<br />

PROG<br />

Sequence programming output as REF2<br />

1201 CONST SPEED SEL NOT SEL Deactivation of constant speeds<br />

1401 RELAY OUTPUT 1 SEQ PROG Relay output RO 1 control as defined by<br />

parameter 8423/…/8493<br />

1601 RUN ENABLE NOT SEL Deactivation of Run enable<br />

1805 DO SIGNAL SEQ PROG Digital output DO control as defined by<br />

parameter 8423/…/8493<br />

2102 STOP FUNCTION RAMP Ramp stop<br />

2201 ACC/DEC 1/2 SEL SEQ PROG Ramp as defined by parameter 8422/…/8452.<br />

2202 ACCELER TIME 1 1 s Acceleration/deceleration ramp pair 1<br />

2203 DECELER TIME 1 0s<br />

2205 ACCELER TIME 2 20 s Acceleration/deceleration ramp pair 2<br />

2206 DECELER TIME 2 20 s<br />

2207 RAMP SHAPE 2 5 s Shape of the acceleration/deceleration ramp 2<br />

3201 SUPERV 1 PARAM 171 Sequence counter (signal 0171 SEQ CYCLE<br />

CNTR) supervision<br />

3202 SUPERV 1 LIM LO 30 Supervision low limit<br />

3203 SUPERV 1 LIM HI 30 Supervision high limit<br />

8401 SEQ PROG ENABLE EXT2 Sequence programming enabled<br />

8402 SEQ PROG START DI1 Sequence programming activation through<br />

digital input (DI1)<br />

8404 SEQ PROG RESET DI1(INV) Sequence programming reset (ie reset to<br />

state 1, when DI1 signal is lost (1 -> 0)<br />

8406 SEQ LOGIC VAL 1 DI4 Logic value 1<br />

8407 SEQ LOGIC OPER 1 AND Operation between logic value 1 and 2<br />

8408 SEQ LOGIC VAL 2 DI5 Logic value 2<br />

8415 CYCLE CNT LOC ST5 TO NEXT Sequence counter activation, ie sequence<br />

count increases every time the state changes<br />

from state 5 to state 6.<br />

8416 CYCLE CNT RST STATE 1 Sequence counter reset during state transition<br />

to state 1


Program features 173<br />

ST1 ST2 ST3 ST4 Additional<br />

information<br />

Par. Setting Par. Setting Par. Setting Par. Setting<br />

8420 ST1 REF<br />

SEL<br />

8421 ST1<br />

COMMANDS<br />

8422 ST1<br />

RAMP<br />

8423 ST1 OUT<br />

CONTROL<br />

8424 ST1<br />

CHANGE DLY<br />

8425 ST1 TRIG<br />

TO ST 2<br />

8426 ST1 TRIG<br />

TO ST N<br />

8427 ST1<br />

STATE N<br />

50% 8430 65% 8440 60% 8450 35% State<br />

reference<br />

START<br />

FRW<br />

-0.2<br />

(ramp<br />

pair 2)<br />

R=0,D=0,<br />

AO=0<br />

8431 START<br />

FRW<br />

8441 START<br />

FRW<br />

8451 START<br />

FRW<br />

Run, direction<br />

and stop<br />

commands<br />

8432 1.5 s 8442 0 s 8452 1.5 s Acceleration/<br />

deceleration<br />

ramp time<br />

8433 AO=0 8443 AO=0 8453 AO=0 Relay, digital<br />

and analog<br />

output control<br />

0 s 8434 2 s 8444 0.2 s 8454 2 s State change<br />

delay<br />

ENTER<br />

SETPNT<br />

8435 ENTER<br />

SETPNT<br />

NOT SEL 8436 CHANGE<br />

DLY<br />

8445 ENTER<br />

SETPNT<br />

8446 CHANGE<br />

DLY<br />

8455 ENTER<br />

SETPNT<br />

8456 CHANGE<br />

DLY<br />

STATE 1 8437 STATE 8 8447 STATE 8 8457 STATE 8<br />

State change<br />

trigger<br />

ST5 ST6 ST7 ST8 Additional<br />

information<br />

Par. Setting Par. Setting Par. Setting Par. Setting<br />

8460 ST5 REF<br />

SEL<br />

8461 ST5<br />

COMMANDS<br />

8462 ST5<br />

RAMP<br />

8463 ST5 OUT<br />

CONTROL<br />

8464 ST5<br />

CHANGE DLY<br />

8465 ST5 TRIG<br />

TO ST6<br />

8466 ST5 TRIG<br />

TO ST N<br />

8467 ST5<br />

STATE N<br />

40% 8470 65% 8480 0% 8490 0% State<br />

reference<br />

START<br />

FRW<br />

8471 START<br />

FRW<br />

8481 DRIVE<br />

STOP<br />

0s 8472 1.5 s 8482 -0.1<br />

(ramp<br />

pair 1)<br />

8491 DRIVE<br />

STOP<br />

8492 -0.1<br />

(ramp<br />

pair 1)<br />

Run, direction<br />

and stop<br />

commands<br />

Acceleration/<br />

deceleration<br />

ramp time<br />

AO=0 8473 AO=0 8483 DO=1 8493 RO=1 Relay, digital<br />

and analog<br />

output control<br />

0.2 s 8474 0 s 8484 0 s 8494 0 s State change<br />

delay<br />

ENTER<br />

SETPNT<br />

SUPRV1<br />

OVER<br />

8475 NOT SEL 8485 NOT SEL 8495 LOGIC<br />

VAL<br />

8476 CHANGE<br />

DLY<br />

8486 LOGIC<br />

VAL<br />

8496 NOT SEL<br />

STATE 7 8477 STATE 2 8487 STATE 1 8497 STATE 1<br />

State change<br />

trigger


174 Program features<br />

Safe torque off (STO) function<br />

See Appendix: Safe torque off (STO) on page 399.


Actual signals and parameters 175<br />

Actual signals and parameters<br />

What this chapter contains<br />

The chapter describes the actual signals and parameters and gives the fieldbus<br />

equivalent values for each signal/parameter. It also contains a table of the default<br />

values for the different macros.<br />

Terms and abbreviations<br />

Term Definition<br />

Actual signal Signal measured or calculated by the drive. Can be monitored by the user.<br />

No user setting possible. Groups 01…04 contain actual signals.<br />

Def Parameter default value<br />

Parameter A user-adjustable operation instruction of the drive. Groups 10…99 contain<br />

parameters.<br />

Note: Parameter selections are shown on the basic control panel as integer<br />

values. Eg parameter 1001 EXT1 COMMANDS selection COMM is shown as<br />

value 10 (which is equal to the fieldbus equivalent FbEq).<br />

FbEq Fieldbus equivalent: The scaling between the value and the integer used in<br />

serial communication.<br />

E Refers to types 01E- and 03E- with European parametrization<br />

U Refers to types 01U- and 03U- with US parametrization<br />

Fieldbus addresses<br />

For FCAN-01 CANopen adapter, FDNA-01 DeviceNet adapter, FECA-01 EtherCAT<br />

adapter, FENA-01 Ethernet adapter, FMBA-01 Modbus adapter, FLON-01<br />

LonWorks® adapter, and FPBA-01 PROFIBUS DP adapter, see the user’s <strong>manual</strong> of<br />

the adapter.


176 Actual signals and parameters<br />

Fieldbus equivalent<br />

Example: If 2017 MAX TORQUE 1 (see page 217) is set from an external control<br />

system, an integer value of 1000 corresponds to 100.0%. All the read and sent values<br />

are limited to 16 bits (-32768…32767).<br />

Default values with different macros<br />

When application macro is changed (parameter 9902 APPLIC MACRO), the software<br />

updates the parameter values to their default values. The table below shows the<br />

parameter default values for different macros. For other parameters, the default<br />

values are the same for all macros (shown in the parameter list starting on page 185).<br />

Index Name/ ABB 3-WIRE ALTERNA MOTOR HAND/ PID TORQUE<br />

Selection STANDARD<br />

TE POT AUTO CONTROL CONTROL<br />

9902 APPLIC 1 = 2 = 3= 4 = 5 = 6 = 7 =<br />

MACRO ABB 3-WIRE ALTERNAT MOTOR HAND/AUT PID TORQUE<br />

STANDARD<br />

E POT O CONTROL CTRL<br />

1001 EXT1 2 = DI1,2 4 = 9 = DI1F,2R 2 = DI1,2 2 = DI1,2 1 = DI1 2 = DI1,2<br />

COMMANDS<br />

DI1P,2P,3<br />

1002 EXT2 0 = NOT 0 = NOT 0 = NOT 0 = NOT 21 = DI5,4 20 = DI5 2 = DI1,2<br />

COMMANDS SEL SEL SEL SEL<br />

1003 DIRECTION 3 = 3 = 3 = 3 = 3 = 1 = 3 =<br />

REQUEST REQUEST REQUEST REQUEST REQUEST FORWARD REQUEST<br />

1102 EXT1/EXT2<br />

SEL<br />

0 = EXT1 0 = EXT1 0 = EXT1 0 = EXT1 3 = DI3 2 = DI2 3 = DI3<br />

1103 REF1 SELECT 1 = AI1 1 = AI1 1 = AI1 12 =<br />

DI3U,4D(N<br />

C)<br />

1 = AI1 1 = AI1 1 = AI1<br />

1106 REF2 SELECT 2 = AI2 2 = AI2 2 = AI2 2 = AI2 2 = AI2 19 =<br />

PID1OUT<br />

2 = AI2<br />

1201 CONST 9 = DI3,4 10 = DI4,5 9 = DI3,4 5 = DI5 0 = NOT 3 = DI3 4 = DI4<br />

SPEED SEL<br />

SEL<br />

1304 MINIMUM AI2 1.0% 1.0% 1.0% 1.0% 20.0% 20.0% 20.0%<br />

1501 AO1<br />

CONTENT SEL<br />

103 102 102 102 102 102 102<br />

1601 RUN ENABLE 0 = NOT 0 = NOT 0 = NOT 0 = NOT 0 = NOT 4 = DI4 0 = NOT<br />

SEL SEL SEL SEL SEL<br />

SEL<br />

2201 ACC/DEC 1/2 5 = DI5 0 = NOT 5 = DI5 0 = NOT 0 = NOT 0 = NOT 5 = DI5<br />

SEL<br />

SEL<br />

SEL SEL SEL<br />

3201 SUPERV 1<br />

PARAM<br />

103 102 102 102 102 102 102<br />

3401 SIGNAL1<br />

PARAM<br />

103 102 102 102 102 102 102<br />

9904 MOTOR CTRL 3 = 1 = 1 = 1 = 1 = 1 = 2 =<br />

MODE SCALAR: VECTOR: VECTOR: VECTOR: VECTOR: VECTOR: VECTOR:<br />

FREQ SPEED SPEED SPEED SPEED SPEED TORQ<br />

Note: It is possible to control several functions with one input (DI or AI), and there is a<br />

chance of mismatch between these functions. In some cases it is desired to control<br />

several functions with one input.<br />

For example in the ABB standard macro, DI3 and DI4 are set to control constant<br />

speeds. On the other hand, it is possible to select value 6 (DI3U,4D) for parameter


Actual signals and parameters 177<br />

1103 REF1 SELECT. That would mean a mismatched duplicate functionality for DI3<br />

and DI4: either constant speed or acceleration and deceleration. The function that is<br />

not required must be disabled. In this case the constant speed selection must be<br />

disabled by setting parameter 1201 CONST SPEED SEL to NOT SEL or to values<br />

not related to DI3 and DI4.<br />

Remember to also check the default values of the selected macro when configuring<br />

the drive inputs.


178 Actual signals and parameters<br />

Actual signals<br />

Actual signals<br />

No. Name/Value Description FbEq<br />

01 OPERATING<br />

DATA<br />

Basic signals for monitoring the drive (read-only)<br />

0101 SPEED & DIR Calculated motor speed in rpm. A negative value indicates<br />

reverse direction.<br />

1 = 1 rpm<br />

0102 SPEED Calculated motor speed in rpm 1 = 1 rpm<br />

0103 OUTPUT Calculated drive output frequency in Hz. (Shown by default 1 = 0.1 Hz<br />

FREQ on the panel Output mode display.)<br />

0104 CURRENT Measured motor current in A. (Shown by default on the<br />

panel Output mode display.)<br />

1 = 0.1 A<br />

0105 TORQUE Calculated motor torque in percent of the motor nominal<br />

torque<br />

1 = 0.1%<br />

0106 POWER Measured motor power in kW 1 = 0.1<br />

kW<br />

0107 DC BUS<br />

VOLTAGE<br />

Measured intermediate circuit voltage in V DC 1 = 1 V<br />

0109 OUTPUT<br />

VOLTAGE<br />

Calculated motor voltage in V AC 1 = 1 V<br />

0110 DRIVE TEMP Measured IGBT temperature in °C 1 = 0.1 °C<br />

0111 EXTERNAL External reference REF1 in rpm or Hz. Unit depends on 1 = 0.1 Hz<br />

REF 1 parameter 9904 MOTOR CTRL MODE setting.<br />

/ 1 rpm<br />

0112 EXTERNAL<br />

REF 2<br />

External reference REF2 in percent. Depending on the use, 1 = 0.1%<br />

100% equals the maximum motor speed, nominal motor<br />

torque, or maximum process reference.<br />

0113 CTRL<br />

LOCATION<br />

Active control location. (0) LOCAL; (1) EXT1; (2) EXT2. See<br />

section Local control vs. external control on page 125.<br />

0114 RUN TIME (R) Elapsed drive running time counter (hours). Runs when the<br />

drive is modulating. The counter can be reset by pressing<br />

the UP and DOWN keys simultaneously when the control<br />

panel is in the Parameter mode.<br />

0115 KWH<br />

COUNTER (R)<br />

kWh counter. The counter value is accumulated till it<br />

reaches 65535 after which the counter rolls over and starts<br />

again from 0. The counter can be reset by pressing UP and<br />

DOWN keys simultaneously when the control panel is in the<br />

Parameter mode.<br />

1 = 1<br />

1 = 1 h<br />

1 = 1 kWh<br />

0120 AI 1 Relative value of analog input AI1 in percent 1 = 0.1%<br />

0121 AI 2 Relative value of analog input AI2 in percent 1 = 0.1%<br />

0124 AO 1 Value of analog output AO in mA 1 = 0.1<br />

mA<br />

0126 PID 1 OUTPUT Output value of the process PID1 controller in percent 1 = 0.1%<br />

0127 PID 2 OUTPUT Output value of the PID2 controller in percent 1 = 0.1%<br />

0128 PID 1 SETPNT Setpoint signal (reference) for the process PID1 controller.<br />

Unit depends on parameter 4006 UNITS, 4007 UNIT<br />

SCALE and 4027 PID 1 PARAM SET settings.<br />

-


Actual signals<br />

Actual signals and parameters 179<br />

No. Name/Value Description FbEq<br />

0129 PID 2 SETPNT Setpoint signal (reference) for the PID2 controller. Unit<br />

depends on parameter 4106 UNITS and 4107 UNIT SCALE<br />

settings.<br />

0130 PID 1 FBK Feedback signal for the process PID1 controller. Unit<br />

depends on parameter 4006 UNITS, 4007 UNIT SCALE<br />

and 4027 PID 1 PARAM SET settings.<br />

0131 PID 2 FBK Feedback signal for the PID2 controller. Unit depends on<br />

parameter 4106 UNITS and 4107 UNIT SCALE settings.<br />

0132 PID 1<br />

DEVIATION<br />

0133 PID 2<br />

DEVIATION<br />

0134 COMM RO<br />

WORD<br />

0135 COMM VALUE<br />

1<br />

0136 COMM VALUE<br />

2<br />

0137 PROCESS<br />

VAR 1<br />

0138 PROCESS<br />

VAR 2<br />

0139 PROCESS<br />

VAR 3<br />

Deviation of the process PID1 controller, ie the difference<br />

between the reference value and the actual value. Unit<br />

depends on parameter 4006 UNITS, 4007 UNIT SCALE<br />

and 4027 PID 1 PARAM SET settings.<br />

Deviation of the PID2 controller, ie the difference between<br />

the reference value and the actual value. Unit depends on<br />

parameter 4106 UNITS and 4107 UNIT SCALE settings.<br />

Relay output Control word through fieldbus (decimal). See<br />

parameter 1401 RELAY OUTPUT 1.<br />

-<br />

-<br />

-<br />

-<br />

-<br />

1 = 1<br />

Data received from fieldbus 1 = 1<br />

Data received from fieldbus 1 = 1<br />

Process variable 1 defined by parameter group 34 PANEL<br />

DISPLAY<br />

Process variable 2 defined by parameter group 34 PANEL<br />

DISPLAY<br />

Process variable 3 defined by parameter group 34 PANEL<br />

DISPLAY<br />

0140 RUN TIME Elapsed drive running time counter (thousands of hours).<br />

Runs when the drive is modulating. Counter cannot be<br />

reset.<br />

0141 MWH<br />

COUNTER<br />

0142 REVOLUTION<br />

CNTR<br />

0143 DRIVE ON<br />

TIME HI<br />

0144 DRIVE ON<br />

TIME LO<br />

MWH counter. The counter value is accumulated till it<br />

reaches 65535 after which the counter rolls over and starts<br />

again from 0. Cannot be reset.<br />

Motor revolution counter (millions of revolutions). The<br />

counter can be reset by pressing UP and DOWN keys<br />

simultaneously when the control panel is in the Parameter<br />

mode.<br />

Drive control board power-on time in days. Counter cannot<br />

be reset.<br />

Drive control board power-on time in 2 second ticks (30<br />

ticks = 60 seconds). Counter cannot be reset.<br />

0145 MOTOR TEMP Measured motor temperature. Unit depends on the sensor<br />

type selected by group 35 MOTOR TEMP MEAS<br />

parameters.<br />

-<br />

-<br />

-<br />

1 = 0.01<br />

kh<br />

1 = 1<br />

MWh<br />

1 = 1<br />

Mrev<br />

1 = 1<br />

days<br />

1 = 2 s<br />

1 = 1<br />

0146 MECH ANGLE Calculated mechanical angle 1 = 1


180 Actual signals and parameters<br />

Actual signals<br />

No. Name/Value Description FbEq<br />

0147 MECH REVS Mechanical revolutions, ie the motor shaft revolutions<br />

calculated by the encoder<br />

1 = 1<br />

0148 Z PLS<br />

DETECTED<br />

Encoder zero pulse detector. 0 = not detected, 1 = detected. 1 = 1<br />

0150 CB TEMP Temperature of the drive control board in degrees Celsius<br />

(0.0…150.0 °C).<br />

1 = 0.1 °C<br />

0158 PID COMM<br />

VALUE 1<br />

Data received from fieldbus for PID control (PID1 and PID2) 1 = 1<br />

0159 PID COMM<br />

VALUE 2<br />

Data received from fieldbus for PID control (PID1 and PID2) 1 = 1<br />

0160 DI 1-5 STATUS Status of digital inputs.<br />

Example: 10000 = DI1 is on, DI2…DI5 are off.<br />

0161 PULSE INPUT<br />

FREQ<br />

Value of frequency input in Hz 1 = 1 Hz<br />

0162 RO STATUS Status of relay output 1. 1 = RO is energized, 0 = RO is deenergized.<br />

1 = 1<br />

0163 TO STATUS Status of transistor output, when transistor output is used as 1 = 1<br />

a digital output.<br />

0164 TO<br />

FREQUENCY<br />

Transistor output frequency, when transistor output is used<br />

as a frequency output.<br />

0165 TIMER VALUE Timer value of timed start/stop. See parameter group 19<br />

TIMER & COUNTER.<br />

0166 COUNTER<br />

VALUE<br />

0167 SEQ PROG<br />

STS<br />

0168 SEQ PROG<br />

STATE<br />

0169 SEQ PROG<br />

TIMER<br />

0170 SEQ PROG AO<br />

VAL<br />

0171 SEQ CYCLE<br />

CNTR<br />

Pulse counter value of counter start/stop. See parameter<br />

group 19 TIMER & COUNTER.<br />

Status word of the Sequence programming:<br />

Bit 0 = ENABLED (1 = enabled)<br />

Bit 1 = STARTED<br />

Bit 2 = PAUSED<br />

Bit 3 = LOGIC VALUE (logic operation defined by<br />

parameters 8406…8410).<br />

Active state of the Sequence programming. 1…8 = state<br />

1…8.<br />

1 = 1 Hz<br />

1 = 0.01 s<br />

1 = 1<br />

1 = 1<br />

1 = 1<br />

Current state time counter of the Sequence programming 1 = 2 s<br />

Analog output control values defined by the Sequence<br />

programming. See parameter 8423 ST1 OUT CONTROL.<br />

Executed sequence counter of the Sequence programming.<br />

See parameters 8415 CYCLE CNT LOC and 8416 CYCLE<br />

CNT RST.<br />

0172 ABS TORQUE Calculated absolute value of the motor torque in percent of<br />

the motor nominal torque<br />

1 = 0.1%<br />

1 = 1<br />

1 = 0.1%


Actual signals<br />

0173 RO 2-4<br />

STATUS<br />

0179 BRAKE<br />

TORQUE MEM<br />

0180 ENC<br />

SYNCHRONIZ<br />

ED<br />

03 FB ACTUAL<br />

SIGNALS<br />

0301 FB CMD<br />

WORD 1<br />

0302 FB CMD<br />

WORD 2<br />

0303 FB STS WORD<br />

1<br />

0304 FB STS WORD<br />

2<br />

0305 FAULT WORD<br />

1<br />

Actual signals and parameters 181<br />

No. Name/Value Description FbEq<br />

Status of the relays in the MREL-01 relay output extension<br />

module. See MREL-01 relay output extension module<br />

<strong>user's</strong> <strong>manual</strong> (3AUA0000035974 [English]).<br />

Example: 100 = RO 2 is on, RO 3 and RO 4 are off.<br />

Vector control: Torque value (0…180% of the motor nominal<br />

torque) saved before the mechanical brake is taken in use.<br />

Scalar control: Current value (0…180% of the motor<br />

nominal current) saved before the mechanical brake is<br />

taken in use.<br />

This torque or current is applied when the drive is started.<br />

See parameter 4307 BRK OPEN LVL SEL.<br />

Monitors the synchronization of the measured position with<br />

the estimated position for permanent magnet motors. 0 =<br />

NOT SYNC, 1 = SYNC.<br />

Data words for monitoring the fieldbus communication<br />

(read-only). Each signal is a 16-bit data word.<br />

Data words are displayed on the panel in hexadecimal<br />

format.<br />

A 16-bit data word. See section DCU communication profile<br />

on page 320.<br />

A 16-bit data word. See section DCU communication profile<br />

on page 320<br />

A 16-bit data word. See section DCU communication profile<br />

on page 320.<br />

A 16-bit data word. See section DCU communication profile<br />

on page 320<br />

A 16-bit data word. For the possible causes and remedies<br />

and fieldbus equivalents, see chapter Fault tracing on page<br />

335.<br />

Bit 0 = OVERCURRENT<br />

Bit 1 = DC OVERVOLT<br />

Bit 2 = DEV OVERTEMP<br />

Bit 3 = SHORT CIRC<br />

Bit 4 = Reserved<br />

Bit 5 = DC UNDERVOLT<br />

Bit 6 = AI1 LOSS<br />

Bit 7 = AI2 LOSS<br />

Bit 8 = MOT OVERTEMP<br />

Bit 9 = PANEL LOSS<br />

Bit 10 = ID RUN FAIL<br />

Bit 11 = MOTOR STALL<br />

Bit 12 = CB OVERTEMP<br />

Bit 13 = EXT FAULT 1<br />

1 = 0.1%<br />

1 = 1


182 Actual signals and parameters<br />

Actual signals<br />

No. Name/Value Description FbEq<br />

0306 FAULT WORD<br />

2<br />

0307 FAULT WORD<br />

3<br />

0308 ALARM WORD<br />

1<br />

Bit 14 = EXT FAULT 2<br />

Bit 15 = EARTH FAULT<br />

A 16-bit data word. For the possible causes and remedies<br />

and fieldbus equivalents, see chapter Fault tracing on page<br />

335.<br />

Bit 0 = UNDERLOAD<br />

Bit 1 = THERM FAIL<br />

Bit 2…3 = Reserved<br />

Bit 4 = CURR MEAS<br />

Bit 5 = SUPPLY PHASE<br />

Bit 6 = ENCODER ERR<br />

Bit 7 = OVERSPEED<br />

Bit 8…9 = Reserved<br />

Bit 10 = CONFIG FILE<br />

Bit 11 = SERIAL 1 ERR<br />

Bit 12 = EFB CON FILE. Configuration file reading error.<br />

Bit 13 = FORCE TRIP<br />

Bit 14 = MOTOR PHASE<br />

Bit 15 = OUTP WIRING<br />

A 16-bit data word. For the possible causes and remedies<br />

and fieldbus equivalents, see chapter Fault tracing on page<br />

335.<br />

Bit 0…2 Reserved<br />

Bit 3 = INCOMPATIBLE SW<br />

Bit 4 = SAFE TORQUE OFF<br />

Bit 5 = STO1 LOST<br />

Bit 6 = STO2 LOST<br />

Bit 7…10 Reserved<br />

Bit 11 = CB ID ERROR<br />

Bit 12 = DSP STACK ERROR<br />

Bit 13 = DSP T1 OVERLOAD…DSP T3 OVERLOAD<br />

Bit 14 = SERF CORRUPT / SERF MACRO<br />

Bit 15 = PAR PCU 1 / PAR PCU 2 / PAR HZRPM / PAR AI<br />

SCALE / PAR AO SCALE / PAR FBUSMISS / PAR<br />

CUSTOM U/F<br />

A 16-bit data word. For the possible causes and remedies<br />

and fieldbus equivalents, see chapter Fault tracing on page<br />

335.<br />

An alarm can be reset by resetting the whole alarm word:<br />

Write zero to the word.<br />

Bit 0 = OVERCURRENT<br />

Bit 1 = OVERVOLTAGE


0309 ALARM WORD<br />

2<br />

Bit 2 = UNDERVOLTAGE<br />

Bit 3 = DIR LOCK<br />

Bit 4 = IO COMM<br />

Bit 5 = AI1 LOSS<br />

Bit 6 = AI2 LOSS<br />

Bit 7 = PANEL LOSS<br />

Bit 8 = DEVICE OVERTEMP<br />

Bit 9 = MOTOR TEMP<br />

Bit 10 = UNDERLOAD<br />

Bit 11 = MOTOR STALL<br />

Bit 12 = AUTORESET<br />

Bit 13…15 = Reserved<br />

Actual signals and parameters 183<br />

Actual signals<br />

No. Name/Value Description FbEq<br />

A 16-bit data word. For the possible causes and remedies<br />

and fieldbus equivalents, see chapter Fault tracing on page<br />

335.<br />

An alarm can be reset by resetting the whole alarm word:<br />

Write zero to the word.<br />

Bit 0 = Reserved<br />

Bit 1 = PID SLEEP<br />

Bit 2 = ID RUN<br />

Bit 3 = Reserved<br />

Bit 4 = START ENABLE 1 MISSING<br />

Bit 5 = START ENABLE 2 MISSING<br />

Bit 6 = EMERGENCY STOP<br />

Bit 7 = ENCODER ERROR<br />

Bit 8 = FIRST START<br />

Bit 9 = INPUT PHASE LOSS<br />

Bit 10…11 = Reserved<br />

Bit 12 = MOTOR BACK EMF<br />

Bit 13 = SAFE TORQUE OFF<br />

Bit 14…15 = Reserved<br />

04 FAULT HISTORY Fault history (read-only)<br />

0401 LAST FAULT Code of the latest fault. See chapter Fault tracing on page<br />

335 for the codes. 0 = Fault history is clear (on panel display<br />

= NO RECORD).<br />

1 = 1<br />

0402 FAULT TIME 1 Day on which the latest fault occurred.<br />

Format: Date if the real time clock is operating. / The<br />

number of days elapsed after the power-on if the real time<br />

clock is not used, or was not set.<br />

1 = 1<br />

days


184 Actual signals and parameters<br />

Actual signals<br />

No. Name/Value Description FbEq<br />

0403 FAULT TIME 2 Time at which the latest fault occurred.<br />

Format on the assistant control panel: Real time (hh:mm:ss)<br />

if the real time clock is operating. / Time elapsed after the<br />

power-on (hh:mm:ss minus the whole days stated by signal<br />

0402 FAULT TIME 1) if real time clock is not used, or was<br />

not set.<br />

Format on the basic control panel: Time elapsed after<br />

power-on in 2 second ticks (minus the whole days stated by<br />

signal 0402 FAULT TIME 1). 30 ticks = 60 seconds. Eg<br />

value 514 equals 17 minutes and 8 seconds (= 514/30).<br />

1 = 2 s<br />

0404 SPEED AT FLT Motor speed in rpm at the time the latest fault occurred 1 = 1 rpm<br />

0405 FREQ AT FLT Frequency in Hz at the time the latest fault occurred 1 = 0.1 Hz<br />

0406 VOLTAGE AT Intermediate circuit voltage in V DC at the time the latest 1 = 0.1 V<br />

FLT<br />

fault occurred<br />

0407 CURRENT AT<br />

FLT<br />

Motor current in A at the time the latest fault occurred 1 = 0.1 A<br />

0408 TORQUE AT Motor torque in percent of the motor nominal torque at the 1 = 0.1%<br />

FLT<br />

time the latest fault occurred<br />

0409 STATUS AT Drive status in hexadecimal format at the time the latest<br />

FLT<br />

fault occurred<br />

0412 PREVIOUS Fault code of the 2nd latest fault. See chapter Fault tracing 1 = 1<br />

FAULT 1 on page 335 for the codes.<br />

0413 PREVIOUS Fault code of the 3rd latest fault. See chapter Fault tracing 1 = 1<br />

FAULT 2 on page 335 for the codes.<br />

0414 DI 1-5 AT FLT Status of digital inputs DI1…5 at the time the latest fault<br />

occurred (binary).<br />

Example: 10000 = DI1 is on, DI2…DI5 are off.


Parameters<br />

All parameters<br />

Actual signals and parameters 185<br />

No. Name/Value Description Def/FbEq<br />

10 START/STOP/DIR The sources for external start, stop and direction control<br />

1001 EXT1<br />

COMMANDS<br />

Defines the connections and the source for the start, stop<br />

and direction commands for external control location 1<br />

(EXT1).<br />

Note: Start signal must be reset if the drive has been<br />

stopped through STO (Safe torque off) input (see parameter<br />

3025 STO OPERATION) or emergency stop selection (see<br />

parameter 2109 EMERG STOP SEL).<br />

NOT SEL No start, stop and direction command source 0<br />

DI1 Start and stop through digital input DI1. 0 = stop, 1 = start.<br />

Direction is fixed according to parameter 1003 DIRECTION<br />

(setting REQUEST = FORWARD).<br />

1<br />

DI1,2 Start and stop through digital input DI1. 0 = stop, 1 = start.<br />

Direction through digital input DI2. 0 = forward, 1 = reverse.<br />

To control direction, parameter 1003 DIRECTION setting<br />

must be REQUEST.<br />

DI1P,2P Pulse start through digital input DI1. 0 -> 1: Start. (In order to<br />

start the drive, digital input DI2 must be activated prior to the<br />

pulse fed to DI1.)<br />

Pulse stop through digital input DI2. 1 -> 0: Stop. Direction<br />

of rotation is fixed according to parameter 1003 DIRECTION<br />

(setting REQUEST = FORWARD).<br />

Note: When the stop input (DI2) is deactivated (no input),<br />

the control panel start and stop keys are disabled.<br />

DI1P,2P,3 Pulse start through digital input DI1. 0 -> 1: Start. (In order to<br />

start the drive, digital input DI2 must be activated prior to the<br />

pulse fed to DI1.)<br />

Pulse stop through digital input DI2. 1 -> 0: Stop. Direction<br />

through digital input DI3. 0 = forward, 1 = reverse. To control<br />

direction, parameter 1003 DIRECTION setting must be<br />

REQUEST.<br />

Note: When the stop input (DI2) is deactivated (no input),<br />

the control panel start and stop keys are disabled.<br />

DI1P,2P,3P Pulse start forward through digital input DI1. 0 -> 1: Start<br />

forward. Pulse start reverse through digital input DI2. 0 -> 1:<br />

Start reverse. (In order to start the drive, digital input DI3<br />

must be activated prior to the pulse fed to DI1/DI2). Pulse<br />

stop through digital input DI3. 1 -> 0: Stop. To control the<br />

direction, parameter 1003 DIRECTION setting must be<br />

REQUEST.<br />

Note: When the stop input (DI3) is deactivated (no input),<br />

the control panel start and stop keys are disabled.<br />

DI1,2<br />

2<br />

3<br />

4<br />

5


186 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

KEYPAD Start, stop and direction commands through control panel<br />

when EXT1 is active. To control the direction, parameter<br />

1003 DIRECTION setting must be REQUEST.<br />

DI1F,2R Start, stop and direction commands through digital inputs<br />

DI1 and DI2.<br />

DI1 DI2 Operation<br />

0 0 Stop<br />

1 0 Start forward<br />

0 1 Start reverse<br />

1 1 Stop<br />

Parameter 1003 DIRECTION setting must be REQUEST.<br />

COMM Fieldbus interface as the source for the start and stop<br />

commands, ie control word 0301 FB CMD WORD 1 bits<br />

0…1. The control word is sent by the fieldbus controller<br />

through the fieldbus adapter or embedded fieldbus<br />

(Modbus) to the drive. For the control word bits, see section<br />

DCU communication profile on page 320.<br />

TIMED FUNC 1 Timed start/stop control. Timed function 1 active = start,<br />

timed function 1 inactive = stop. See parameter group 36<br />

TIMED FUNCTIONS.<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 12<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 13<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 14<br />

DI5 Start and stop through digital input DI5. 0 = stop, 1 = start.<br />

Direction is fixed according to parameter 1003 DIRECTION<br />

(setting REQUEST = FORWARD).<br />

20<br />

DI5,4 Start and stop through digital input DI5. 0 = stop, 1 = start.<br />

Direction through digital input DI4. 0 = forward, 1 = reverse.<br />

To control direction, parameter 1003 DIRECTION must be<br />

REQUEST.<br />

TIMER STOP Stop when timer delay defined by parameter 1901 TIMER<br />

DELAY has passed. Start with timer start signal. Source for<br />

the signal is selected by parameter 1902 TIMER START.<br />

TIMER START Start when timer delay defined by parameter 1901 TIMER<br />

DELAY has passed. Stop when timer is reset by parameter<br />

1903 TIMER RESET.<br />

COUNTER<br />

STOP<br />

COUNTER<br />

START<br />

Stop when counter limit defined by parameter 1905<br />

COUNTER LIMIT has been exceeded. Start with counter<br />

start signal. Source for the signal is selected by parameter<br />

1911 CNTR S/S COMMAND.<br />

Start when counter limit defined by parameter 1905<br />

COUNTER LIMIT has been exceeded. Stop with counter<br />

stop signal. Source for the signal is selected by parameter<br />

1911 CNTR S/S COMMAND.<br />

8<br />

9<br />

10<br />

11<br />

21<br />

22<br />

23<br />

24<br />

25


All parameters<br />

Actual signals and parameters 187<br />

No. Name/Value Description Def/FbEq<br />

SEQ PROG Start, stop and direction commands through Sequence<br />

programming. See parameter group 84 SEQUENCE<br />

PROG.<br />

1002 EXT2<br />

COMMANDS<br />

Defines the connections and the source for the start, stop<br />

and direction commands for external control location 2<br />

(EXT2).<br />

26<br />

NOT SEL<br />

1003 DIRECTION<br />

See parameter 1001 EXT1 COMMANDS.<br />

Enables the control of rotation direction of the motor, or fixes REQUES<br />

the direction.<br />

T<br />

FORWARD Fixed to forward 1<br />

REVERSE Fixed to reverse 2<br />

REQUEST Control of rotation direction allowed 3<br />

1010 JOGGING SEL Defines the signal that activates the jogging function. See<br />

section Control of a mechanical brake on page 157.<br />

NOT SEL<br />

DI1 Digital input DI1. 0 = jogging inactive, 1 = jogging active. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

COMM Fieldbus interface as the source for jogging 1 or 2<br />

activation, ie control word 0302 FB CMD WORD 2 bits 20<br />

and 21. The control word is sent by the fieldbus controller<br />

through the fieldbus adapter or embedded fieldbus<br />

(Modbus) to the drive. For the control word bits, see section<br />

DCU communication profile on page 320.<br />

6<br />

NOT SEL Not selected 0<br />

DI1(INV) Inverted digital input DI1. 1 = jogging inactive, 0 = jogging<br />

active.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

11 REFERENCE Panel reference type, external control location selection and<br />

SELECT<br />

external reference sources and limits<br />

1101 KEYPAD REF<br />

SEL<br />

Selects the type of the reference in local control mode. REF1(Hz/<br />

rpm)<br />

REF1(Hz/rpm) Frequency reference in rpm. Frequency reference (Hz) if<br />

parameter 9904 MOTOR CTRL MODE setting is SCALAR:<br />

FREQ.<br />

1<br />

REF2(%) %-reference 2<br />

1102 EXT1/EXT2<br />

SEL<br />

Defines the source from which the drive reads the signal<br />

that selects between the two external control locations,<br />

EXT1 or EXT2.<br />

EXT1


188 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

EXT1 EXT1 active. The control signal sources are defined by<br />

parameters 1001 EXT1 COMMANDS and 1103 REF1<br />

SELECT.<br />

DI1 Digital input DI1. 0 = EXT1, 1 = EXT2. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

EXT2 EXT2 active. The control signal sources are defined by<br />

parameters 1002 EXT2 COMMANDS and 1106 REF2<br />

SELECT.<br />

7<br />

COMM Fieldbus interface as the source for EXT1/EXT2 selection,<br />

ie control word 0301 FB CMD WORD 1 bit 5 (with ABB<br />

drives profile 5319 EFB PAR 19 bit 11). The control word is<br />

sent by the fieldbus controller through the fieldbus adapter<br />

or embedded fieldbus (Modbus) to the drive. For the control<br />

word bits, see sections DCU communication profile on page<br />

320 and ABB drives communication profile on page 315.<br />

TIMED FUNC 1 Timed EXT1/EXT2 control selection. Timed function 1 active<br />

= EXT2, timed function 1 inactive = EXT1. See parameter<br />

group 36 TIMED FUNCTIONS.<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 10<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 11<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 12<br />

DI1(INV) Inverted digital input DI1. 1 = EXT1, 0 = EXT2. -1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

1103 REF1 SELECT Selects the signal source for external reference REF1. See<br />

section Block diagram: Reference source for EXT1 on page<br />

127.<br />

AI1<br />

KEYPAD Control panel 0<br />

AI1 Analog input AI1 1<br />

AI2 Analog input AI2 2<br />

0<br />

8<br />

9


All parameters<br />

Actual signals and parameters 189<br />

No. Name/Value Description Def/FbEq<br />

AI1/JOYST Analog input AI1 as joystick. The minimum input signal runs<br />

the motor at the maximum reference in the reverse<br />

direction, the maximum input at the maximum reference in<br />

the forward direction. Minimum and maximum references<br />

are defined by parameters 1104 REF1 MIN and 1105 REF1<br />

MAX.<br />

Note: Parameter 1003 DIRECTION must be set to<br />

REQUEST.<br />

Speed ref<br />

(REF1)<br />

1105<br />

1104<br />

0<br />

-1104<br />

-1105<br />

par. 1301 = 20%, par 1302 = 100%<br />

1104 -2%<br />

-1104<br />

WARNING! If parameter 1301 MINIMUM AI1 is set to<br />

0 V and analog input signal is lost (ie 0 V), the<br />

rotation of the motor is reversed to the maximum reference.<br />

Set the following parameters to activate a fault when analog<br />

input signal is lost:<br />

Set parameter 1301 MINIMUM AI1 to 20% (2 V or 4 mA).<br />

Set parameter 3021 AI1 FAULT LIMIT to 5% or higher.<br />

Set parameter 3001 AI


190 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI3U,4D(RNC) Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease. Stop command resets the reference to<br />

zero.<br />

The reference is not saved if the control source is changed<br />

(from EXT1 to EXT2, from EXT2 to EXT1 or from LOC to<br />

REM). Parameter 2205 ACCELER TIME 2 defines the rate<br />

of the reference change.<br />

11<br />

DI3U,4D(NC) Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease.<br />

The program stores the active speed reference (not reset by<br />

a stop command). The reference is not saved if the control<br />

source is changed (from EXT1 to EXT2, from EXT2 to EXT1<br />

or from LOC to REM). When the drive is restarted, the motor<br />

ramps up at the selected acceleration rate to the stored<br />

reference. Parameter 2205 ACCELER TIME 2 defines the<br />

rate of the reference change.<br />

12<br />

AI1+AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + AI2(%) - 50%<br />

14<br />

AI1*AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (AI2(%) / 50%)<br />

15<br />

AI1-AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + 50% - AI2(%)<br />

16<br />

AI1/AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (50% / AI2 (%))<br />

17<br />

KEYPAD(RNC) Defines the control panel as the reference source. Stop<br />

command resets the reference to zero (the R stands for<br />

reset). The reference is not saved if the control source is<br />

changed (from EXT1 to EXT2, from EXT2 to EXT1).<br />

20<br />

KEYPAD(NC) Defines the control panel as the reference source. Stop<br />

command does not reset the reference to zero. The<br />

reference is stored. The reference is not saved if the control<br />

source is changed (from EXT1 to EXT2, from EXT2 to<br />

EXT1).<br />

21<br />

DI4U,5D See selection DI3U,4D. 30<br />

DI4U,5D(NC) See selection DI3U,4D(NC). 31<br />

FREQ INPUT Frequency input 32<br />

SEQ PROG Sequence programming output. See parameter 8420 ST1<br />

REF SEL.<br />

33<br />

AI1+SEQ Addition of analog input AI1 and Sequence programming 34<br />

PROG output<br />

AI2+SEQ Addition of analog input AI2 and Sequence programming 35<br />

PROG output<br />

1104 REF1 MIN Defines the minimum value for external reference REF1. 0.0 Hz /<br />

Corresponds to the minimum setting of the used source<br />

signal.<br />

1rpm


All parameters<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

Actual signals and parameters 191<br />

No. Name/Value Description Def/FbEq<br />

Minimum value in rpm. Hz if parameter 9904 MOTOR CTRL<br />

MODE setting is SCALAR: FREQ.<br />

Example: Analog input AI1 is selected as the reference<br />

source (value of parameter 1103 is AI1). The reference<br />

minimum and maximum correspond to the 1301 MINIMUM<br />

AI1 and 1302 MAXIMUM AI1 settings as follows:<br />

1105 REF1 MAX Defines the maximum value for external reference REF1.<br />

Corresponds to the maximum setting of the used source<br />

signal.<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

REF1 MAX<br />

(1105)<br />

REF1 MIN<br />

(1104)<br />

-REF1 MIN<br />

(1104)<br />

-REF1 MAX<br />

(1105)<br />

REF (Hz/rpm)<br />

1302 1301<br />

AI1 signal (%)<br />

1301 1302<br />

Maximum value in rpm. Hz if parameter 9904 MOTOR<br />

CTRL MODE setting is SCALAR: FREQ. See the example<br />

for parameter 1104 REF1 MIN.<br />

1106 REF2 SELECT Selects the signal source for external reference REF2. AI2<br />

KEYPAD See parameter 1103 REF1 SELECT. 0<br />

AI1 See parameter 1103 REF1 SELECT. 1<br />

AI2 See parameter 1103 REF1 SELECT. 2<br />

AI1/JOYST See parameter 1103 REF1 SELECT. 3<br />

AI2/JOYST See parameter 1103 REF1 SELECT. 4<br />

DI3U,4D(R) See parameter 1103 REF1 SELECT. 5<br />

DI3U,4D See parameter 1103 REF1 SELECT. 6<br />

COMM See parameter 1103 REF1 SELECT. 8<br />

COMM+AI1 See parameter 1103 REF1 SELECT. 9<br />

COMM*AI1 See parameter 1103 REF1 SELECT. 10<br />

DI3U,4D(RNC) See parameter 1103 REF1 SELECT. 11<br />

DI3U,4D(NC) See parameter 1103 REF1 SELECT. 12<br />

AI1+AI2 See parameter 1103 REF1 SELECT. 14<br />

AI1*AI2 See parameter 1103 REF1 SELECT. 15<br />

AI1-AI2 See parameter 1103 REF1 SELECT. 16<br />

AI1/AI2 See parameter 1103 REF1 SELECT. 17<br />

PID1OUT PID controller 1 output. See parameter groups<br />

40 PROCESS PID SET 1 and 41 PROCESS PID SET 2.<br />

19<br />

1 = 0.1 Hz<br />

/ 1 rpm<br />

E: 50.0 Hz<br />

U: 60.0 Hz<br />

1 = 0.1 Hz<br />

/ 1 rpm


192 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

KEYPAD(RNC) See parameter 1103 REF1 SELECT. 20<br />

KEYPAD(NC) See parameter 1103 REF1 SELECT. 21<br />

DI4U,5D See parameter 1103 REF1 SELECT. 30<br />

DI4U,5D(NC) See parameter 1103 REF1 SELECT. 31<br />

FREQ INPUT See parameter 1103 REF1 SELECT. 32<br />

SEQ PROG See parameter 1103 REF1 SELECT. 33<br />

AI1+SEQ<br />

PROG<br />

See parameter 1103 REF1 SELECT. 34<br />

AI2+SEQ<br />

PROG<br />

See parameter 1103 REF1 SELECT. 35<br />

1107 REF2 MIN Defines the minimum value for external reference REF2.<br />

Corresponds to the minimum setting of the used source<br />

signal.<br />

0.0%<br />

0.0…100.0% Value in percent of the maximum frequency / maximum<br />

speed / nominal torque. See the example for parameter<br />

1104 REF1 MIN for correspondence to the source signal<br />

limits.<br />

1108 REF2 MAX Defines the maximum value for external reference REF2.<br />

Corresponds to the maximum setting of the used source<br />

signal.<br />

0.0…100.0% Value in percent of the maximum frequency / maximum<br />

speed / nominal torque. See the example for parameter<br />

1104 REF1 MIN for correspondence to the source signal<br />

limits.<br />

12 CONSTANT<br />

SPEEDS<br />

1201 CONST<br />

SPEED SEL<br />

Constant speed selection and values. See section Constant<br />

speeds on page 140.<br />

Activates the constant speeds or selects the activation<br />

signal.<br />

NOT SEL No constant speed in use 0<br />

DI1 Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through digital input DI1. 1 = active, 0 = inactive.<br />

1<br />

DI2 Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through digital input DI2. 1 = active, 0 = inactive.<br />

2<br />

DI3 Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through digital input DI3. 1 = active, 0 = inactive.<br />

3<br />

DI4 Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through digital input DI4. 1 = active, 0 = inactive.<br />

4<br />

DI5 Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through digital input DI5. 1 = active, 0 = inactive.<br />

5<br />

1 = 0.1%<br />

100.0%<br />

1 = 0.1%<br />

DI3,4


All parameters<br />

Actual signals and parameters 193<br />

No. Name/Value Description Def/FbEq<br />

DI1,2 Constant speed selection through digital inputs DI1 and<br />

DI2.1 = DI active, 0 = DI inactive.<br />

DI1 DI2 Operation<br />

0 0 No constant speed<br />

1 0 Speed defined by par. 1202 CONST SPEED 1<br />

0 1 Speed defined by par. 1203 CONST SPEED 2<br />

1 1 Speed defined by par. 1204 CONST SPEED 3<br />

DI2,3 See selection DI1,2. 8<br />

DI3,4 See selection DI1,2. 9<br />

DI4,5 See selection DI1,2. 10<br />

DI1,2,3 Constant speed selection through digital inputs DI1, DI2 and 12<br />

DI3. 1 = DI active, 0 = DI inactive.<br />

DI DI2 DI3 Operation<br />

0 0 0 No constant speed<br />

1 0 0 Speed defined by par. 1202 CONST SPEED 1<br />

0 1 0 Speed defined by par. 1203 CONST SPEED 2<br />

1 1 0 Speed defined by par. 1204 CONST SPEED 3<br />

0 0 1 Speed defined by par. 1205 CONST SPEED 4<br />

1 0 1 Speed defined by par. 1206 CONST SPEED 5<br />

0 1 1 Speed defined by par. 1207 CONST SPEED 6<br />

1 1 1 Speed defined by par. 1208 CONST SPEED 7<br />

DI3,4,5 See selection DI1,2,3. 13<br />

TIMED FUNC 1 External speed reference, speed defined by parameter<br />

1202 CONST SPEED 1 or speed defined by parameter<br />

1203 CONST SPEED 2 is used, depending on the selection<br />

of parameter 1209 TIMED MODE SEL and the state of<br />

timed function 1. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

15<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 16<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 17<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 18<br />

TIMED External speed reference or speed defined by parameter 19<br />

FUN1&2 1202 CONST SPEED 1 … 1205 CONST SPEED 4 is used,<br />

depending on the selection of parameter 1209 TIMED<br />

MODE SEL and the state of timed functions 1 and 2. See<br />

parameter group 36 TIMED FUNCTIONS.<br />

DI1(INV) Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through inverted digital input DI1. 0 = active, 1 =<br />

inactive.<br />

DI2(INV) Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through inverted digital input DI2. 0 = active, 1 =<br />

inactive.<br />

7<br />

-1<br />

-2


194 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI3(INV) Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through inverted digital input DI3. 0 = active, 1 =<br />

inactive.<br />

DI4(INV) Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through inverted digital input DI4. 0 = active, 1 =<br />

inactive.<br />

DI5(INV) Speed defined by parameter 1202 CONST SPEED 1 is<br />

activated through inverted digital input DI5. 0 = active, 1 =<br />

inactive.<br />

DI1,2(INV) Constant speed selection through inverted digital inputs DI1<br />

and DI2. 1 = DI active, 0 = DI inactive.<br />

DI2,3(INV) See selection DI1,2(INV). -8<br />

DI3,4(INV) See selection DI1,2(INV). -9<br />

DI4,5(INV) See selection DI1,2(INV). -10<br />

DI1,2,3(INV) Constant speed selection through inverted digital inputs DI1, -12<br />

DI2 and DI3. 1 = DI active, 0 = DI inactive.<br />

DI3,4,5(INV) See selection DI1,2,3(INV). -13<br />

1202 CONST<br />

SPEED 1<br />

Defines constant speed (or drive output frequency) 1. E: 5.0 Hz<br />

U: 6.0 Hz<br />

0.0…500.0 Hz Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

1203 CONST<br />

SPEED 2<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

1204 CONST<br />

SPEED 3<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

DI1 DI2 Operation<br />

1 1 No constant speed<br />

0 1 Speed defined by par. 1202 CONST SPEED 1<br />

1 0 Speed defined by par. 1203 CONST SPEED 2<br />

0 0 Speed defined by par. 1204 CONST SPEED 3<br />

DI DI2 DI3 Operation<br />

1 1 1 No constant speed<br />

0 1 1 Speed defined by par. 1202 CONST SPEED 1<br />

1 0 1 Speed defined by par. 1203 CONST SPEED 2<br />

0 0 1 Speed defined by par. 1204 CONST SPEED 3<br />

1 1 0 Speed defined by par. 1205 CONST SPEED 4<br />

0 1 0 Speed defined by par. 1206 CONST SPEED 5<br />

1 0 0 Speed defined by par. 1207 CONST SPEED 6<br />

0 0 0 Speed defined by par. 1208 CONST SPEED 7<br />

-3<br />

-4<br />

-5<br />

-7<br />

1 = 0.1 Hz<br />

/ 1 rpm<br />

Defines constant speed (or drive output frequency) 2. E: 10.0 Hz<br />

U: 12.0 Hz<br />

Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

1 = 0.1 Hz<br />

/ 1 rpm<br />

Defines constant speed (or drive output frequency) 3. E: 15.0 Hz<br />

U: 18.0 Hz<br />

Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

1 = 0.1 Hz<br />

/ 1 rpm


1205 CONST<br />

SPEED 4<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

1206 CONST<br />

SPEED 5<br />

Actual signals and parameters 195<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

1207 CONST<br />

SPEED 6<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

1208 CONST<br />

SPEED 7<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

Defines constant speed (or drive output frequency) 4. E: 20.0 Hz<br />

U: 24.0 Hz<br />

Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

1 = 0.1 Hz<br />

/ 1 rpm<br />

Defines constant speed (or drive output frequency) 5. E: 25.0 Hz<br />

U: 30.0 Hz<br />

Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

1 = 0.1 Hz<br />

/ 1 rpm<br />

Defines constant speed (or drive output frequency) 6. E: 40.0 Hz<br />

U: 48.0 Hz<br />

Speed in rpm. Output frequency in Hz if parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ. Constant<br />

speed 6 is used also as jogging speed. See section Control<br />

of a mechanical brake on page 157.<br />

Defines constant speed (or drive output frequency) 7.<br />

Constant speed 7 is used also as jogging speed (see<br />

section Control of a mechanical brake on page 157) or with<br />

fault functions (3001 AI


196 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

1209 TIMED MODE<br />

SEL<br />

Selects timed function activated speed. Timed function can<br />

be used to change between the external reference and<br />

constant speeds when parameter 1201 CONST SPEED<br />

SEL selection is TIMED FUNC 1 … TIMED FUNC 4 or<br />

TIMED FUN1&2.<br />

EXT/CS1/2/3 When parameter 1201 CONST SPEED SEL = TIMED<br />

FUNC 1 … TIMED FUNC 4, this timed function selects an<br />

external speed reference or constant speed. 1 = timed<br />

function active, 0 = timed function inactive.<br />

Timed function 1…4 Operation<br />

0 External reference<br />

1 Speed defined by par. 1202 CONST<br />

SPEED 1<br />

When parameter 1201 CONST SPEED SEL = TIMED<br />

FUN1&2, timed functions 1 and 2 select an external speed<br />

reference or constant speed. 1 = timed function active, 0 =<br />

timed function inactive.<br />

Timed Timed Operation<br />

function 1 function 2<br />

0 0 External reference<br />

1 0 Speed defined by par. 1202 CONST<br />

SPEED 1<br />

0 1 Speed defined by par. 1203 CONST<br />

SPEED 2<br />

1 1 Speed defined by par. 1204 CONST<br />

SPEED 3<br />

CS1/2/3/4<br />

1


All parameters<br />

Actual signals and parameters 197<br />

No. Name/Value Description Def/FbEq<br />

CS1/2/3/4 When parameter 1201 CONST SPEED SEL = TIMED<br />

FUNC 1 … TIMED FUNC 4, this timed function selects a<br />

constant speed. 1 = timed function active, 0 = timed<br />

function inactive.<br />

Timed function 1…4 Operation<br />

0 Speed defined by parameter 1202<br />

CONST SPEED 1<br />

1 Speed defined by parameter 1203<br />

CONST SPEED 2<br />

When parameter 1201 CONST SPEED SEL = TIMED<br />

FUN1&2, timed functions 1 and 2 select a constant speed.<br />

1 = timed function active, 0 = timed function inactive.<br />

Timed Timed Operation<br />

function 1 function 2<br />

0 0 Speed defined by parameter 1202<br />

CONST SPEED 1<br />

1 0 Speed defined by parameter 1203<br />

CONST SPEED 2<br />

0 1 Speed defined by parameter 1204<br />

CONST SPEED 3<br />

1 1 Speed defined by parameter 1205<br />

CONST SPEED 4<br />

13 ANALOG INPUTS Analog input signal processing<br />

1301 MINIMUM AI1 Defines the minimum %-value that corresponds to minimum<br />

mA/(V) signal for analog input AI1. When used as a<br />

reference, the value corresponds to the reference minimum<br />

setting.<br />

0…20 mA = 0…100%<br />

4…20 mA = 20…100%<br />

-10…10 mA =<br />

-50…50%<br />

Example: If AI1 is selected as the source for external<br />

reference REF1, this value corresponds to the value of<br />

parameter 1104 REF1 MIN.<br />

Note: MINIMUM AI1 value must not exceed MAXIMUM AI1<br />

value.<br />

-100.0…100.0% Value in percent of the full signal range.<br />

Example: If the minimum value for analog input is 4 mA, the<br />

percent value for 0…20 mA range is:<br />

(4 mA / 20 mA) · 100% = 20%<br />

2<br />

1.0%<br />

1 = 0.1%


198 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

1302 MAXIMUM AI1 Defines the maximum %-value that corresponds to<br />

maximum mA/(V) signal for analog input AI1. When used as<br />

a reference, the value corresponds to the reference<br />

maximum setting.<br />

0…20 mA = 0…100%<br />

4…20 mA = 20…100%<br />

-10…10 mA = -50…50%<br />

Example: If AI1 is selected as the source for external<br />

reference REF1, this value corresponds to the value of<br />

parameter 1105 REF1 MAX.<br />

-100.0…100.0% Value in percent of the full signal range.<br />

Example: If the maximum value for analog input is 10 mA,<br />

the percent value for 0…20 mA range is:<br />

(10 mA / 20 mA) · 100% = 50%<br />

1303 FILTER AI1 Defines the filter time constant for analog input AI1, ie the<br />

time within which 63% of a step change is reached.<br />

%<br />

Unfiltered signal<br />

100<br />

63<br />

Time constant<br />

Filtered signal<br />

100.0%<br />

1 = 0.1%<br />

0.1 s<br />

0.0…10.0 s Filter time constant 1 = 0.1 s<br />

1304 MINIMUM AI2 Defines the minimum %-value that corresponds to minimum 1.0%<br />

mA/(V) signal for analog input AI2. See parameter 1301<br />

MINIMUM AI1.<br />

-100.0…100.0% See parameter 1301 MINIMUM AI1. 1 = 0.1%<br />

1305 MAXIMUM AI2 Defines the maximum %-value that corresponds to<br />

maximum mA/(V) signal for analog input AI2. See<br />

parameter 1302 MAXIMUM AI1.<br />

100.0%<br />

-100.0…100.0% See parameter 1302 MAXIMUM AI1. 1 = 0.1%<br />

1306 FILTER AI2 Defines the filter time constant for analog input AI2. See<br />

parameter 1303 FILTER AI1.<br />

0.1 s<br />

0.0…10.0 s Filter time constant 1 = 0.1 s<br />

t


All parameters<br />

Actual signals and parameters 199<br />

No. Name/Value Description Def/FbEq<br />

14 RELAY OUTPUTS Status information indicated through relay output, and relay<br />

operating delays.<br />

Note: Relay outputs 2…4 are available only if the MREL-01<br />

relay output extension module is connected to the drive.<br />

See MREL-01 relay output extension module <strong>user's</strong> <strong>manual</strong><br />

(3AUA0000035974 [English]).<br />

1401 RELAY<br />

OUTPUT 1<br />

Selects a drive status indicated through relay output RO 1.<br />

The relay energizes when the status meets the setting.<br />

NOT SEL Not used 0<br />

READY Ready to function: Run enable signal on, no fault, supply<br />

voltage within acceptable range and emergency stop signal<br />

off.<br />

1<br />

RUN Running: Start signal on, Run enable signal on, no active<br />

fault.<br />

2<br />

FAULT(-1) Inverted fault. Relay is de-energized on a fault trip. 3<br />

FAULT Fault 4<br />

ALARM Alarm 5<br />

REVERSED Motor rotates in reverse direction. 6<br />

STARTED The drive has received start command. Relay is energized<br />

even if Run enable signal is off. Relay is de-energized when<br />

drive receives a stop command or a fault occurs.<br />

7<br />

SUPRV1<br />

OVER<br />

SUPRV1<br />

UNDER<br />

SUPRV2<br />

OVER<br />

SUPRV2<br />

UNDER<br />

SUPRV3<br />

OVER<br />

SUPRV3<br />

UNDER<br />

Status according to supervision parameters 3201…3203.<br />

See parameter group 32 SUPERVISION.<br />

See selection SUPRV1 OVER. 9<br />

Status according to supervision parameters 3204…3206.<br />

See parameter group 32 SUPERVISION.<br />

See selection SUPRV2 OVER. 11<br />

Status according to supervision parameters 3207…3209.<br />

See parameter group 32 SUPERVISION.<br />

See selection SUPRV3 OVER. 13<br />

AT SET POINT Output frequency is equal to the reference frequency. 14<br />

FAULT(RST) Fault. Automatic reset after the autoreset delay. See<br />

parameter group 31 AUTOMATIC RESET.<br />

15<br />

FLT/ALARM Fault or alarm 16<br />

EXT CTRL Drive is under external control. 17<br />

REF 2 SEL External reference REF 2 is in use. 18<br />

CONST FREQ A constant speed is in use. See parameter group 12<br />

CONSTANT SPEEDS.<br />

19<br />

REF LOSS Reference or active control location is lost. 20<br />

OVERCURRE<br />

NT<br />

Alarm/Fault by overcurrent protection function 21<br />

FAULT(-1)<br />

8<br />

10<br />

12


200 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

OVERVOLTAG<br />

E<br />

Alarm/Fault by overvoltage protection function 22<br />

DRIVE TEMP Alarm/Fault by drive overtemperature protection function 23<br />

UNDERVOLTA<br />

GE<br />

Alarm/Fault by undervoltage protection function 24<br />

AI1 LOSS Analog input AI1 signal is lost. 25<br />

AI2 LOSS Analog input AI2 signal is lost. 26<br />

MOTOR TEMP Alarm/Fault by motor overtemperature protection function.<br />

See parameter 3005 MOT THERM PROT.<br />

27<br />

STALL Alarm/Fault by stall protection function. See parameter 3010 28<br />

STALL FUNCTION.<br />

UNDERLOAD Alarm/Fault by underload protection function. See<br />

parameter 3013 UNDERLOAD FUNC.<br />

29<br />

PID SLEEP PID sleep function. See parameter group 40 PROCESS PID 30<br />

SET 1 / 41 PROCESS PID SET 2.<br />

FLUX READY Motor is magnetized and able to supply nominal torque. 33<br />

USER MACRO User macro 2 is active.<br />

2<br />

34<br />

COMM Fieldbus control signal 0134 COMM RO WORD. 0 = deenergize<br />

output, 1 = energize output.<br />

35<br />

0134 Binary RO4 RO3 RO2 DO RO1<br />

value (MREL) (MREL) (MREL)<br />

0 00000 0 0 0 0 0<br />

1 00001 0 0 0 0 1<br />

2 00010 0 0 0 1 0<br />

3 00011 0 0 0 1 1<br />

4 00100 0 0 1 0 0<br />

5…30 … … … … … …<br />

31 11111 1 1 1 1 1<br />

COMM(-1) Fieldbus control signal 0134 COMM RO WORD. 0 = deenergize<br />

output, 1 = energize output.<br />

0134 Binary RO4 RO3 RO2 DO RO1<br />

value (MREL) (MREL) (MREL)<br />

0 00000 1 1 1 1 1<br />

1 00001 1 1 1 1 0<br />

2 00010 1 1 1 0 1<br />

3 00011 1 1 1 0 0<br />

4 00100 1 1 0 1 1<br />

5…30 … … … … … …<br />

31 11111 0 0 0 0 0<br />

TIMED FUNC 1 Timed function 1 is active. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

TIMED FUNC 2 Timed function 2 is active. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

36<br />

37<br />

38


All parameters<br />

Actual signals and parameters 201<br />

No. Name/Value Description Def/FbEq<br />

TIMED FUNC 3 Timed function 3 is active. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

39<br />

TIMED FUNC 4 Timed function 4 is active. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

40<br />

M.TRIG FAN Cooling fan running time counter is triggered. See<br />

parameter group 29 MAINTENANCE TRIG.<br />

41<br />

M.TRIG REV <strong>Rev</strong>olutions counter is triggered. See parameter group 29<br />

MAINTENANCE TRIG.<br />

42<br />

M.TRIG RUN Run time counter is triggered. See parameter group 29<br />

MAINTENANCE TRIG.<br />

43<br />

M.TRIG MWH MWh counter is triggered. See parameter group 29<br />

MAINTENANCE TRIG.<br />

44<br />

SEQ PROG Relay output control with Sequence programming. See<br />

parameter 8423 ST1 OUT CONTROL.<br />

50<br />

MBRK On/Off control of a mechanical brake. See parameter group 51<br />

43 MECH BRK CONTROL.<br />

JOG ACTIVE Jogging function active. See parameter 1010 JOGGING<br />

SEL.<br />

52<br />

STO STO (Safe torque off) has been triggered. 57<br />

STO(-1) STO (Safe torque off) is inactive and the drive operates<br />

normally.<br />

58<br />

1402 RELAY<br />

OUTPUT 2<br />

1403 RELAY<br />

OUTPUT 3<br />

See parameter 1401 RELAY OUTPUT 1. Available only if<br />

the MREL-01 relay output extension module is connected to<br />

the drive.<br />

See parameter 1401 RELAY OUTPUT 1. Available only if<br />

the MREL-01 relay output extension module is connected to<br />

the drive.<br />

NOT SEL<br />

NOT SEL<br />

1404 RO 1 ON<br />

DELAY<br />

Defines the operation delay for relay output RO 1. 0.0 s<br />

0.0…3600.0 s Delay time. The figure below illustrates the operation (on)<br />

and release (off) delays for relay output RO.<br />

1 = 0.1 s<br />

Control event<br />

Relay status<br />

1404 On delay 1405 Off delay<br />

1405 RO 1 OFF<br />

DELAY<br />

Defines the release delay for relay output RO 1. 0.0 s<br />

0.0…3600.0 s Delay time. See the figure for parameter 1404 RO 1 ON<br />

DELAY.<br />

1 = 0.1 s


202 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

1406 RO 2 ON<br />

DELAY<br />

1407 RO 2 OFF<br />

DELAY<br />

1408 RO 3 ON<br />

DELAY<br />

1409 RO 3 OFF<br />

DELAY<br />

1410 RELAY<br />

OUTPUT 4<br />

1413 RO 4 ON<br />

DELAY<br />

1414 RO 4 OFF<br />

DELAY<br />

15 ANALOG<br />

OUTPUTS<br />

See parameter 1404 RO 1 ON DELAY. 0.0 s<br />

See parameter 1405 RO 1 OFF DELAY. 0.0 s<br />

See parameter 1404 RO 1 ON DELAY. 0.0 s<br />

See parameter 1405 RO 1 OFF DELAY. 0.0 s<br />

See parameter 1401 RELAY OUTPUT 1. Available only if<br />

the MREL-01 relay output extension module is connected to<br />

the drive.<br />

NOT SEL<br />

See parameter 1404 RO 1 ON DELAY. 0.0 s<br />

See parameter 1405 RO 1 OFF DELAY. 0.0 s<br />

Selection of the actual signals to be indicated through<br />

analog output and output signal processing.<br />

1501 AO1<br />

Connects a drive signal to analog output AO.<br />

CONTENT SEL<br />

103<br />

x…x Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED.<br />

1502 AO1<br />

CONTENT MIN<br />

Defines the minimum value for the signal selected with<br />

parameter 1501 AO1 CONTENT SEL.<br />

AO minimum and maximum correspond to the 1504<br />

MINIMUM AO1 and 1505 MAXIMUM AO1 settings as<br />

follows:<br />

x…x Setting range depends on the parameter 1501 AO1<br />

CONTENT SEL setting.<br />

1503 AO1<br />

CONTENT<br />

MAX<br />

1505<br />

1504<br />

AO (mA) AO (mA)<br />

1505<br />

1502 1503<br />

AO<br />

content<br />

1504<br />

1503 1502 AO<br />

content<br />

Defines the maximum value for the signal selected with<br />

parameter 1501 AO1 CONTENT SEL. See the figure for<br />

parameter 1502 AO1 CONTENT MIN.<br />

x…x Setting range depends on the parameter 1501 AO1<br />

CONTENT SEL setting.<br />

-<br />

1504 MINIMUM AO1 Defines the minimum value for the analog output signal AO. 0.0 mA<br />

See the figure for parameter 1502 AO1 CONTENT MIN.<br />

0.0…20.0 mA Minimum value 1 =<br />

0.1 mA<br />

-<br />

-<br />

-


All parameters<br />

1505 MAXIMUM<br />

AO1<br />

Actual signals and parameters 203<br />

No. Name/Value Description Def/FbEq<br />

Defines the maximum value for the analog output signal AO.<br />

See the figure for parameter 1502 AO1 CONTENT MIN.<br />

20.0 mA<br />

0.0…20.0 mA Maximum value 1 =<br />

0.1 mA<br />

1506 FILTER AO1 Defines the filter time constant for analog output AO, ie the<br />

time within which 63% of a step change is reached. See the<br />

figure for parameter 1303 FILTER AI1.<br />

0.1 s<br />

0.0…10.0 s Filter time constant 1 = 0.1 s<br />

16 SYSTEM<br />

CONTROLS<br />

Parameter view, Run enable, parameter lock etc.<br />

1601 RUN ENABLE Selects a source for the external Run enable signal. NOT SEL<br />

NOT SEL Allows the drive to start without an external Run enable<br />

signal.<br />

0<br />

DI1 External signal required through digital input DI1. 1 = Run<br />

enable. If Run enable signal is switched off, the drive will not<br />

start or coasts to stop if it is running.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

COMM Fieldbus interface as the source for inverted Run enable<br />

signal (Run disable), ie control word 0301 FB CMD WORD<br />

1 bit 6 (with ABB drives profile 5319 EFB PAR 19 bit 3). The<br />

control word is sent by the fieldbus controller through the<br />

fieldbus adapter or embedded fieldbus (Modbus) to the<br />

drive. For the control word bits, see sections DCU<br />

communication profile on page 320 and ABB drives<br />

communication profile on page 315.<br />

7<br />

DI1(INV) External signal required through inverted digital input DI1. 0 -1<br />

= Run enable. If Run enable signal is switched on, the drive<br />

will not start or coasts to stop if it is running.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

1602 PARAMETER Selects the state of the parameter lock. The lock prevents OPEN<br />

LOCK parameter changing from the control panel.<br />

LOCKED Parameter values cannot be changed from the control<br />

panel. The lock can be opened by entering the valid code to<br />

parameter 1603 PASS CODE.<br />

The lock does not prevent parameter changes made by<br />

macros or fieldbus.<br />

0<br />

OPEN The lock is open. Parameter values can be changed. 1


204 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

NOT SAVED Parameter changes from the control panel are not stored<br />

into the permanent memory. To store changed parameter<br />

values, set parameter 1607 PARAM SAVE value to<br />

SAVE….<br />

1603 PASS CODE Selects the pass code for the parameter lock (see<br />

parameter 1602 PARAMETER LOCK).<br />

0…65535 Pass code. Setting 358 opens the lock. The value reverts<br />

back to 0 automatically.<br />

1604 FAULT RESET<br />

SEL<br />

Selects the source for the fault reset signal. The signal<br />

resets the drive after a fault trip if the cause of the fault no<br />

longer exists.<br />

KEYPAD Fault reset only from the control panel 0<br />

DI1 Reset through digital input DI1 (reset on the rising edge of<br />

DI1) or from the control panel<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

START/STOP Reset along with the stop signal received through a digital<br />

input, or from the control panel.<br />

Note: Do not use this option when start, stop and direction<br />

commands are received through fieldbus communication.<br />

7<br />

COMM Fieldbus interface as the source for the fault reset signal, ie<br />

control word 0301 FB CMD WORD 1 bit 4 (with ABB drives<br />

profile 5319 EFB PAR 19 bit 7). The control word is sent by<br />

the fieldbus controller through the fieldbus adapter or<br />

embedded fieldbus (Modbus) to the drive. For the control<br />

word bits, see sections DCU communication profile on page<br />

320 and ABB drives communication profile on page 315.<br />

DI1(INV) Reset through inverted digital input DI1 (reset on the falling<br />

edge of DI1) or from the control panel<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

2<br />

0<br />

1 = 1<br />

KEYPAD<br />

8


All parameters<br />

1605 USER PAR<br />

SET CHG<br />

Actual signals and parameters 205<br />

No. Name/Value Description Def/FbEq<br />

Enables the change of the User parameter set through a<br />

digital input. See parameter 9902 APPLIC MACRO. The<br />

change is only allowed when the drive is stopped. During<br />

the change, the drive will not start.<br />

Note: Always save the User parameter set with parameter<br />

9902 after changing any parameter setting, or reperforming<br />

the motor identification. The last settings saved by the user<br />

are loaded into use whenever the power is switched off and<br />

on again or the parameter 9902 setting is changed. Any<br />

unsaved changes will be lost.<br />

Note: The value of this parameter is not included in the<br />

User parameter sets. A setting once made remains despite<br />

User parameter set change.<br />

Note: Selection of User parameter set 2 can be supervised<br />

through relay outputs RO 1…4 and digital output DO. See<br />

parameters 1401 RELAY OUTPUT 1 … 1403 RELAY<br />

OUTPUT 3, 1410 RELAY OUTPUT 4 and 1805 DO<br />

SIGNAL.<br />

NOT SEL User parameter set change is not possible through a digital<br />

input. Parameter sets can be changed only from the control<br />

panel.<br />

DI1 User parameter set control through digital input DI1. Falling<br />

edge of digital input DI1: User parameter set 1 is loaded into<br />

use. Rising edge of digital input DI1: User parameter set 2 is<br />

loaded into use.<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DI1,2 User parameter set selection through digital inputs DI1 and<br />

DI2. 1 = DI active, 0 = DI inactive.<br />

7<br />

DI1 DI2 User parameter set<br />

0 0 User parameter set 1<br />

1 0 User parameter set 2<br />

0 1 User parameter set 3<br />

DI2,3 See selection DI1,2. 8<br />

DI3,4 See selection DI1,2. 9<br />

DI4,5 See selection DI1,2. 10<br />

DI1(INV) User parameter set control through inverted digital input<br />

DI1. Falling edge of inverted digital input DI1: User<br />

parameter set 2 is loaded into use. Rising edge of inverted<br />

digital input DI1: User parameter set 1 is loaded into use.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

NOT SEL<br />

0<br />

1


206 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI4(INV) See selection DI1(INV). -4<br />

DI1,2(INV) User parameter set selection through inverted digital inputs<br />

DI1 and DI2. 1 = DI inactive, 0 =DI active.<br />

-7<br />

DI1 DI2 User parameter set<br />

1 1 User parameter set 1<br />

0 1 User parameter set 2<br />

1 0 User parameter set 3<br />

DI2,3(INV) See selection DI1,2. -8<br />

DI3,4(INV) See selection DI1,2. -9<br />

DI4,5(INV) See selection DI1,2. -10<br />

1606 LOCAL LOCK Disables entering local control mode or selects the source<br />

for the local control mode lock signal. When local lock is<br />

active, entering the local control mode is disabled<br />

(LOC/REM key of the panel).<br />

NOT SEL<br />

NOT SEL Local control is allowed. 0<br />

DI1 Local control mode lock signal through digital input DI1.<br />

Rising edge of digital input DI1: Local control disabled.<br />

Falling edge of digital input DI1: Local control allowed.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

ON Local control is disabled. 7<br />

COMM Fieldbus interface as the source for the local lock, ie control 8<br />

word 0301 FB CMD WORD 1 bit 14. The control word is<br />

sent by the fieldbus controller through the fieldbus adapter<br />

or embedded fieldbus (Modbus) to the drive. For the control<br />

word bits, see section DCU communication profile on page<br />

320.<br />

Note: This setting applies only for the DCU profile.<br />

DI1(INV) Local lock through inverted digital input DI1. Rising edge of<br />

inverted digital input DI1: Local control allowed. Falling edge<br />

of inverted digital input DI1: Local control disabled.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

1607 PARAM SAVE Saves the valid parameter values to the permanent<br />

memory.<br />

Note: A new parameter value of a standard macro is saved<br />

automatically when changed from the panel but not when<br />

altered through a fieldbus connection.<br />

DONE<br />

DONE Saving completed 0<br />

-1


All parameters<br />

Actual signals and parameters 207<br />

No. Name/Value Description Def/FbEq<br />

SAVE… Saving in progress 1<br />

1608 START<br />

ENABLE 1<br />

Selects the source for the Start enable 1 signal.<br />

Note: Functionality of the Start enable signal is different<br />

from the Run enable signal.<br />

Example: External damper control application using Start<br />

enable and Run enable. Motor can start only after the<br />

damper is fully open.<br />

Relay<br />

deenergized<br />

Damper<br />

closed<br />

Drive started<br />

Motor<br />

speed<br />

Relay energized<br />

Damper<br />

opening<br />

time<br />

Damper open<br />

Start enable<br />

signals<br />

(1608 and 1609)<br />

Damper<br />

closed<br />

Damper<br />

closing<br />

time<br />

Acceleration<br />

time (2202) Deceleration<br />

time (2203)<br />

Start/Stop<br />

command<br />

(group 10)<br />

Started<br />

output status<br />

(group 14)<br />

Damper<br />

status<br />

Run enable signal<br />

from the damper end<br />

switch when the<br />

damper is fully<br />

opened. (1601)<br />

Motor<br />

status<br />

NOT SEL Start enable signal is on. 0<br />

DI1 External signal required through digital input DI1. 1 = Start<br />

enable. If Start enable signal is switched off, the drive will<br />

not start or it coasts to stop if it is running and alarm START<br />

ENABLE 1 MISSING (2021) is activated<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

NOT SEL


208 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

COMM Fieldbus interface as the source for the inverted Start<br />

enable (Start disable) signal, ie control word 0302 FB CMD<br />

WORD 2 bit 18 (bit 19 for Start enable 2). The control word<br />

is sent by the fieldbus controller through the fieldbus<br />

adapter or embedded fieldbus (Modbus) to the drive. For<br />

the control word bits, see section DCU communication<br />

profile on page 320.<br />

Note: This setting applies only for the DCU profile.<br />

7<br />

DI1(INV) External signal required through inverted digital input DI1. 0<br />

= Start enable. If Start enable signal is switched off, the<br />

drive will not start or it coasts to stop if it is running and<br />

alarm START ENABLE 1 MISSING (2021) is activated.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

1609 START Selects the source for the Start enable 2 signal. See NOT SEL<br />

ENABLE 2 parameter 1608 START ENABLE 1.<br />

See parameter 1608 START ENABLE 1.<br />

1610 DISPLAY<br />

ALARMS<br />

Activates/deactivates alarms OVERCURRENT (2001),<br />

OVERVOLTAGE (2002), UNDERVOLTAGE (2003) and<br />

DEVICE OVERTEMP (2009). For more information, see<br />

chapter Fault tracing on page 335.<br />

NO<br />

NO Alarms are inactive. 0<br />

YES Alarms are active. 1<br />

1611 PARAMETER Selects the parameter view, ie which parameters are shown. DEFAULT<br />

VIEW<br />

Note: This parameter is visible only when it is activated by<br />

the optional FlashDrop device. FlashDrop is designed for<br />

fast copying of parameters to unpowered drives. It allows for<br />

easy customization of the parameter list, eg selected<br />

parameters can be hidden. For more information, see<br />

MFDT-01 FlashDrop user’s <strong>manual</strong> (3AFE68591074<br />

[English]).<br />

FlashDrop parameter values are activated by setting<br />

parameter 9902 APPLIC MACRO to 31 (LOAD FD SET).<br />

DEFAULT Complete long and short parameter lists 0<br />

FLASHDROP FlashDrop parameter list. Does not include short parameter 1<br />

list. Parameters which are hidden by the FlashDrop device<br />

are not visible.<br />

1612 FAN<br />

CONTROL<br />

Selects the fan to be switched on and off automatically or<br />

keeps the fan on all the time.<br />

When the drive is used in ambient temperatures of 35 °C<br />

and above, it is recommended to have the cooling fan<br />

always on (selection ON).<br />

AUTO


Actual signals and parameters 209<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

AUTO Automatic fan control. The fan is switched on when the drive 0<br />

is modulating. After the drive has stopped, the fan stays on<br />

until the temperature of the drive has dropped below 55 °C.<br />

The fan then remains switched off until either the drive is<br />

started or the temperature increases above 65 °C.<br />

If the control board is powered from an external 24 V power<br />

supply, the fan is switched off.<br />

ON Fan always on 1<br />

18 FREQ IN & TRAN<br />

OUT<br />

Frequency input and transistor output signal processing.<br />

1801 FREQ INPUT Defines the minimum input value when DI5 is used as a 0Hz<br />

MIN<br />

frequency input. See section Frequency input on page 133.<br />

0…16000 Hz Minimum frequency 1 = 1 Hz<br />

1802 FREQ INPUT Defines the maximum input value when DI5 is used as a 1000 Hz<br />

MAX<br />

frequency input. See section Frequency input on page 133.<br />

0…16000 Hz Maximum frequency 1 = 1 Hz<br />

1803 FILTER FREQ<br />

IN<br />

Defines the filter time constant for frequency input, ie the<br />

time within which 63% of a step change is reached. See<br />

section Frequency input on page 133.<br />

0.1 s<br />

0.0…10.0 s Filter time constant 1 = 0.1 s<br />

1804 TO MODE Selects the operation mode for the transistor output TO.<br />

See section Transistor output on page 134.<br />

DIGITAL<br />

DIGITAL Transistor output is used as a digital output DO. 0<br />

FREQUENCY Transistor output is used as a frequency output FO. 1<br />

1805 DO SIGNAL Selects a drive status indicated through digital output DO.<br />

See parameter 1401 RELAY OUTPUT 1.<br />

FAULT(-1)<br />

1806 DO ON DELAY Defines the operation delay for digital output DO. 0.0 s<br />

0.0…3600.0 s Delay time 1 = 0.1 s<br />

1807 DO OFF<br />

DELAY<br />

Defines the release delay for digital output DO. 0.0 s<br />

0.0…3600.0 s Delay time 1 = 0.1 s<br />

1808 FO CONTENT Selects a drive signal to be connected to frequency output 104<br />

SEL<br />

FO.<br />

x…x Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED.


210 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

1809 FO CONTENT<br />

MIN<br />

Defines the minimum frequency output FO signal value.<br />

Signal is selected with parameter 1808 FO CONTENT SEL.<br />

FO minimum and maximum correspond to 1811 MINIMUM<br />

FO and 1812 MAXIMUM FO settings as follows:<br />

x…x Setting range depends on parameter 1808 FO CONTENT<br />

SEL setting.<br />

1810 FO CONTENT<br />

MAX<br />

1812<br />

1811<br />

FO FO<br />

1812<br />

1809 1810<br />

FO<br />

content<br />

1811<br />

1809 1810 FO<br />

content<br />

Defines the maximum frequency output FO signal value.<br />

Signal is selected with parameter 1808 FO CONTENT SEL.<br />

See parameter 1809 FO CONTENT MIN.<br />

x…x Setting range depends on parameter 1808 FO CONTENT<br />

SEL setting.<br />

-<br />

1811 MINIMUM FO Defines the minimum value for frequency output FO. 10 Hz<br />

10…16000 Hz Minimum frequency. See parameter 1809 FO CONTENT<br />

MIN.<br />

1 = 1 Hz<br />

1812 MAXIMUM FO Defines the maximum value for frequency output FO. 1000 Hz<br />

10…16000 Hz Maximum frequency. See parameter 1809 FO CONTENT<br />

MIN.<br />

1 = 1 Hz<br />

1813 FILTER FO Defines the filter time constant for frequency output FO, ie<br />

the time within which 63% of a step change is reached.<br />

0.1 s<br />

0.0…10.0 s Filter time constant 1 = 0.1 s<br />

19 TIMER &<br />

COUNTER<br />

Timer and counter for start and stop control<br />

1901 TIMER DELAY Defines the time delay for the timer. 10.00 s<br />

0.01…120.00 s Delay time 1 = 0.01 s<br />

1902 TIMER START Selects the source for the timer start signal. NOT SEL<br />

DI1(INV) Timer start through inverted digital input DI1. Timer start on<br />

the falling edge of digital input DI1.<br />

Note: Timer start is not possible when reset is active<br />

(parameter 1903 TIMER RESET).<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No start signal 0<br />

-<br />

-<br />

-


All parameters<br />

Actual signals and parameters 211<br />

No. Name/Value Description Def/FbEq<br />

DI1 Timer start through digital input DI1. Timer start on the rising<br />

edge of digital input DI1.<br />

Note: Timer start is not possible when reset is active<br />

(parameter 1903 TIMER RESET).<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

START External start signal, eg start signal through fieldbus 6<br />

1903 TIMER RESET Selects the source for the timer reset signal. NOT SEL<br />

DI1(INV) Timer reset through inverted digital input DI1. 0 = active, 1 = -1<br />

inactive.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No reset signal 0<br />

DI1 Timer reset through digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

START Timer reset at start. Start signal source is selected by<br />

parameter 1902 TIMER START.<br />

6<br />

START (INV) Time reset at start (inverted), ie timer is reset when start<br />

signal is deactivated. Start signal source is selected by<br />

parameter 1902 TIMER START.<br />

7<br />

RESET External reset, eg reset through fieldbus 8<br />

1904 COUNTER<br />

ENABLE<br />

Selects the source for the counter enable signal. DISABLE<br />

D<br />

DI1(INV) Counter enable signal through inverted digital input DI1. 0 =<br />

active, 1 = inactive.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

DISABLED No counter enable 0<br />

DI1 Counter enable signal through digital input DI1. 1 = active, 0 1<br />

= inactive.<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

1


212 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI5 See selection DI1. 5<br />

ENABLED Counter enabled 6<br />

1905 COUNTER<br />

LIMIT<br />

Defines the counter limit. 1000<br />

0…65535 Limit value 1 = 1<br />

1906 COUNTER Selects the input signal source for the counter. PLS IN(DI<br />

INPUT<br />

5)<br />

PLS IN(DI 5) Digital input DI5 pulses. When a pulse is detected, the<br />

counter value increases by 1.<br />

1<br />

ENC W/O DIR Encoder pulse edges. When a rising or a falling edge is<br />

detected, the counter value increases by 1.<br />

2<br />

ENC WITH DIR Encoder pulse edges. The direction of rotation is taken into<br />

account. When a rising or a falling edge is detected and the<br />

direction of rotation is forward, the counter value increases<br />

by 1. When the direction of rotation is reverse, the counter<br />

value decreases by 1.<br />

3<br />

FILTERED DI5 Filtered digital input DI5 pulses. When a pulse is detected,<br />

the counter value increases by 1.<br />

Note: Due to filtering, the maximum input signal frequency<br />

is 50 Hz.<br />

1907 COUNTER<br />

RESET<br />

Selects the source for the counter reset signal. NOT SEL<br />

DI1(INV) Counter reset through inverted digital input DI1. 0 = active, 1 -1<br />

= inactive.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No reset signal 0<br />

DI1 Counter reset through digital input DI1. 1 = active, 0 =<br />

inactive.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

AT LIMIT Reset at the limit defined by parameter 1905 COUNTER<br />

LIMIT<br />

6<br />

STRT/STP<br />

CMD<br />

Counter reset at start/stop command. Source for the<br />

start/stop is selected by parameter 1911 CNTR S/S<br />

COMMAND.<br />

S/S CMD(INV) Counter reset at start/stop command (inverted), ie counter is<br />

reset when start/stop command is deactivated. Start signal<br />

source is selected by parameter 1902 TIMER START.<br />

4<br />

7<br />

8


Actual signals and parameters 213<br />

RESET Reset enabled 9<br />

1908 COUNTER<br />

RES VAL<br />

Defines the value for the counter after reset. 0<br />

0…65535 Counter value 1 = 1<br />

1909 COUNT<br />

DIVIDER<br />

Defines the divider for the pulse counter. 0<br />

0…12 Pulse counter divider N. Every 2N All parameters<br />

No. Name/Value Description Def/FbEq<br />

bit is counted. 1 = 1<br />

1910 COUNT<br />

DIRECTION<br />

Defines the source for the counter direction selection. UP<br />

DI1(INV) Counter direction selection through inverted digital input<br />

DI1. 1 = counts up, 0 = counts down.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

UP Counts up 0<br />

DI1 Counter direction selection through digital input DI1. 0 =<br />

counts up, 1 = counts down.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DOWN Counts down 6<br />

1911 CNTR S/S<br />

COMMAND<br />

Selects the source for the drive start/stop command when<br />

parameter 1001 EXT1 COMMANDS value is set to<br />

COUNTER START / COUNTER STOP.<br />

NOT SEL<br />

DI1(INV) Start/stop command through inverted digital input DI1.<br />

When parameter 1001 EXT1 COMMANDS value is<br />

COUNTER STOP: 0 = start. Stop when counter limit defined<br />

by parameter 1905 COUNTER LIMIT has been exceeded.<br />

When parameter 1001 value is COUNTER START: 0 =<br />

stop. Start when counter limit defined by parameter 1905<br />

has been exceeded.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL Not start/stop command source 0<br />

-1


214 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI1 Start/stop command through digital input DI1.<br />

When parameter 1001 EXT1 COMMANDS value is<br />

COUNTER STOP: 1 = start. Stop when counter limit defined<br />

by parameter 1905 COUNTER LIMIT has been exceeded.<br />

When parameter 1001 value is COUNTER START: 1 =<br />

stop. Start when counter limit defined by parameter 1905<br />

has been exceeded.<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

ACTIVATE External start/stop command, eg through fieldbus 6<br />

20 LIMITS Drive operation limits.<br />

Speed values are used in vector control and frequency<br />

values are used in scalar control. The control mode is<br />

selected by parameter 9904 MOTOR CTRL MODE.<br />

2001 MINIMUM<br />

SPEED<br />

-30000…<br />

30000 rpm<br />

2002 MAXIMUM<br />

SPEED<br />

Defines the allowed minimum speed.<br />

A positive (or zero) minimum speed value defines two<br />

ranges, one positive and one negative.<br />

A negative minimum speed value defines one speed range.<br />

Speed<br />

2002<br />

0<br />

2001<br />

2001 value is < 0<br />

Allowed<br />

speed range<br />

Speed<br />

2002<br />

2001 value is > 0<br />

Allowed<br />

speed range<br />

t<br />

2001<br />

0<br />

t<br />

-(2001)<br />

-(2002)<br />

Allowed<br />

speed range<br />

1<br />

0rpm<br />

Minimum speed 1 = 1 rpm<br />

Defines the allowed maximum speed. See parameter 2001<br />

MINIMUM SPEED.<br />

E: 1500 rpm<br />

/<br />

U: 1800 rpm<br />

0…30000 rpm Maximum speed 1 = 1 rpm<br />

2003 MAX<br />

CURRENT<br />

Defines the allowed maximum motor current. 1.8 · I2N A<br />

0.0…1.8 · I2N A Current 1 = 0.1 A


All parameters<br />

2005 OVERVOLT<br />

CTRL<br />

Actual signals and parameters 215<br />

No. Name/Value Description Def/FbEq<br />

Activates or deactivates the overvoltage control of the<br />

intermediate DC link.<br />

Fast braking of a high inertia load causes the voltage to rise<br />

to the overvoltage control limit. To prevent the DC voltage<br />

from exceeding the limit, the overvoltage controller<br />

automatically decreases the braking torque.<br />

Note: If a brake chopper and resistor are connected to the<br />

drive, the controller must be off (selection DISABLE) to<br />

allow chopper operation.<br />

ENABLE<br />

DISABLE Overvoltage control deactivated 0<br />

ENABLE Overvoltage control activated 1<br />

2006 UNDERVOLT<br />

CTRL<br />

Activates or deactivates the undervoltage control of the<br />

intermediate DC link.<br />

If the DC voltage drops due to input power cut off, the<br />

undervoltage controller will automatically decrease the<br />

motor speed in order to keep the voltage above the lower<br />

limit. By decreasing the motor speed, the inertia of the load<br />

will cause regeneration back into the drive, keeping the DC<br />

link charged and preventing an undervoltage trip until the<br />

motor coasts to stop. This will act as a power-loss ridethrough<br />

functionality in systems with a high inertia, such as<br />

a centrifuge or a fan. See section Motor identification on<br />

page 135.<br />

ENABLE(<br />

TIME)<br />

DISABLE Undervoltage control deactivated 0<br />

ENABLE(TIME) Undervoltage control activated. The undervoltage control is<br />

active for 500 ms.<br />

1<br />

ENABLE Undervoltage control activated. No operation time limit. 2<br />

2007 MINIMUM Defines the minimum limit for the drive output frequency. 0.0 Hz<br />

FREQ A positive (or zero) minimum frequency value defines two<br />

ranges, one positive and one negative.<br />

A negative minimum frequency value defines one speed<br />

range.<br />

Note: MINIMUM FREQ < MAXIMUM FREQ.<br />

f<br />

f<br />

2008 value is < 0<br />

2008<br />

Allowed<br />

2008<br />

2007 value is > 0<br />

Allowed<br />

frequency range<br />

0<br />

frequency range<br />

t<br />

2007<br />

0<br />

t<br />

-(2007)<br />

Allowed<br />

2007<br />

frequency range<br />

-(2008)<br />

-500.0…500.0 Hz Minimum frequency 1 = 0.1 Hz


216 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2008 MAXIMUM<br />

FREQ<br />

Defines the maximum limit for the drive output frequency. E: 50.0 Hz<br />

U: 60.0 Hz<br />

0.0…600.0 Hz Maximum frequency 1 = 0.1 Hz<br />

2013 MIN TORQUE<br />

SEL<br />

Selects the minimum torque limit for the drive. MIN<br />

TORQUE<br />

1<br />

MIN TORQUE<br />

1<br />

Value defined by parameter 2015 MIN TORQUE 1 0<br />

DI1 Digital input DI1. 0 = parameter 2015 MIN TORQUE 1<br />

value. 1 = parameter 2016 MIN TORQUE 2 value.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

COMM Fieldbus interface as the source for the torque limit 1/2<br />

selection, ie control word 0301 FB CMD WORD 1 bit 15.<br />

The control word is sent by the fieldbus controller through<br />

the fieldbus adapter or embedded fieldbus (Modbus) to the<br />

drive. For the control word bits, see section DCU<br />

communication profile on page 320.<br />

Minimum torque limit 1 is defined by parameter 2015 MIN<br />

TORQUE 1 and minimum torque limit 2 is defined by<br />

parameter 2016 MIN TORQUE 2.<br />

Note: This setting applies only for the DCU profile.<br />

7<br />

DI1(INV) Inverted digital input DI1. 1 = value of parameter 2015 MIN<br />

TORQUE 1 1. 0 = value of parameter 2016 MIN TORQUE<br />

2.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

2014 MAX TORQUE Selects the maximum torque limit for the drive. MAX<br />

SEL<br />

TORQUE<br />

1<br />

MAX TORQUE<br />

1<br />

Value of parameter 2017 MAX TORQUE 1<br />

DI1 Digital input DI1. 0 = parameter 2017 MAX TORQUE 1<br />

value. 1 = parameter 2018 MAX TORQUE 2 value.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5


Actual signals and parameters 217<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

COMM Fieldbus interface as the source for the torque limit 1/2<br />

selection, ie control word 0301 FB CMD WORD 1 bit 15.<br />

The control word is sent by the fieldbus controller through<br />

the fieldbus adapter or embedded fieldbus (Modbus) to the<br />

drive. For the control word bits, see section DCU<br />

communication profile on page 320.<br />

Maximum torque limit 1 is defined by parameter 2017 MAX<br />

TORQUE 1 and maximum torque limit 2 is defined by<br />

parameter 2018 MAX TORQUE 2.<br />

Note: This setting applies only for the DCU profile.<br />

7<br />

EXT2 Value of signal 0112 EXTERNAL REF 2 11<br />

DI1(INV) Inverted digital input DI1. 1 = parameter 2017 MAX<br />

TORQUE 1 value. 0 = parameter 2018 MAX TORQUE 2<br />

value.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

2015 MIN TORQUE Defines minimum torque limit 1 for the drive. See parameter -300%<br />

1<br />

2013 MIN TORQUE SEL.<br />

-600.0…0.0% Value in percent of the motor nominal torque 1 = 0.1%<br />

2016 MIN TORQUE Defines minimum torque limit 2 for the drive. See parameter -300%<br />

2<br />

2013 MIN TORQUE SEL.<br />

-600.0…0.0% Value in percent of the motor nominal torque 1 = 0.1%<br />

2017 MAX TORQUE Defines maximum torque limit 1 for the drive. See<br />

300%<br />

1<br />

parameter 2014 MAX TORQUE SEL.<br />

0.0…600.0% Value in percent of the motor nominal torque 1 = 0.1%<br />

2018 MAX TORQUE Defines maximum torque limit 2 for the drive. See<br />

300%<br />

2<br />

parameter 2014 MAX TORQUE SEL.<br />

0.0…600.0% Value in percent of the motor nominal torque 1 = 0.1%<br />

2020 BRAKE<br />

CHOPPER<br />

Selects the brake chopper control.<br />

When using the drive in a Common DC bus system, the<br />

parameter must be set to EXTERNAL. When in Common<br />

DC, the drive cannot feed or receive more power than PN. INBUILT<br />

INBUILT Internal brake chopper control.<br />

Note: Ensure the brake resistor(s) is installed and the<br />

overvoltage control is switched off by setting parameter<br />

2005 OVERVOLT CTRL to selection DISABLE.<br />

EXTERNAL External brake chopper control.<br />

Note: The drive is compatible only with ABB ACS-BRK-X<br />

brake units.<br />

Note: Ensure the brake unit is installed and the overvoltage<br />

control is switched off by setting parameter 2005<br />

OVERVOLT CTRL to selection DISABLE.<br />

0<br />

1


218 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2021 MAX SPEED<br />

SEL<br />

Maximum speed source for torque control PAR 2002<br />

PAR 2002 Value of parameter 2002 MAXIMUM SPEED 0<br />

EXT REF 1 Value of signal 0111 EXTERNAL REF 1 1<br />

21 START/STOP Start and stop modes of the motor<br />

2101 START<br />

FUNCTION<br />

Selects the motor starting method. AUTO<br />

AUTO The drive starts the motor instantly from zero frequency if<br />

parameter 9904 MOTOR CTRL MODE setting is SCALAR:<br />

FREQ. If flying start is required use selection SCAN START.<br />

If parameter 9904 MOTOR CTRL MODE value is VECTOR:<br />

SPEED or VECTOR: TORQ, the drive pre-magnetizes the<br />

motor with DC current before the start. The pre-magnetizing<br />

time is defined by parameter 2103 DC MAGN TIME. See<br />

selection DC MAGN.<br />

For permanent magnet motors, flying start is used if the<br />

motor is rotating.<br />

1<br />

DC MAGN The drive pre-magnetizes the motor with DC current before<br />

the start. The pre-magnetizing time is defined by parameter<br />

2103 DC MAGN TIME.<br />

If parameter 9904 MOTOR CTRL MODE value is VECTOR:<br />

SPEED or VECTOR: TORQ, DC magnetizing guarantees<br />

the highest possible break-away torque when the premagnetizing<br />

is set long enough.<br />

Note: Starting the drive connected to a rotating motor is not<br />

possible when DC MAGN is selected. When a permanent<br />

magnet motor is used, alarm MOTOR BACK EMF (2029) is<br />

generated.<br />

WARNING! The drive will start after the set premagnetizing<br />

time has passed even if the motor<br />

magnetization is not completed. In applications where a full<br />

break-away torque is essential, always ensure that the<br />

constant magnetizing time is long enough to allow<br />

generation of full magnetization and torque.<br />

2


All parameters<br />

Actual signals and parameters 219<br />

No. Name/Value Description Def/FbEq<br />

TORQ BOOST Torque boost should be selected if a high break-away<br />

torque is required. Used only when parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

The drive pre-magnetizes the motor with DC current before<br />

the start. The pre-magnetizing time is defined by parameter<br />

2103 DC MAGN TIME.<br />

Torque boost is applied at start. Torque boost is stopped<br />

when output frequency exceeds 20 Hz or when it is equal to<br />

the reference value. See parameter 2110 TORQ BOOST<br />

CURR.<br />

Note: Starting the drive connected to a rotating motor is not<br />

possible when TORQ BOOST is selected.<br />

WARNING! The drive will start after the set premagnetizing<br />

time has passed although the motor<br />

magnetization is not completed. In applications where a full<br />

break-away torque is essential, always ensure that the<br />

constant magnetizing time is long enough to allow<br />

generation of full magnetization and torque.<br />

SCAN START Frequency scanning flying start (starting the drive<br />

connected to a rotating motor). Based on frequency<br />

scanning (interval 2008 MAXIMUM FREQ…2007 MINIMUM<br />

FREQ) to identify the frequency. If frequency identification<br />

fails, DC magnetization is used (see selection DC MAGN).<br />

SCAN +<br />

BOOST<br />

Combines scanning start (starting the drive connected to a<br />

rotating motor) and torque boost. See selections SCAN<br />

START and TORQ BOOST. If frequency identification fails,<br />

torque boost is used.<br />

Used only when parameter 9904 MOTOR CTRL MODE<br />

setting is SCALAR: FREQ.<br />

2102 STOP<br />

FUNCTION<br />

Selects the motor stop function. COAST<br />

COAST Stop by cutting off the motor power supply. The motor<br />

coasts to stop.<br />

1<br />

RAMP Stop along a ramp. See parameter group 22<br />

ACCEL/DECEL.<br />

2<br />

SPEED COMP Speed compensation is used for constant distance braking.<br />

Speed difference (between used speed and maximum<br />

speed) is compensated by running the drive with current<br />

speed before the motor is stopped along a ramp. See<br />

section Acceleration and deceleration ramps on page 139.<br />

3<br />

4<br />

6<br />

7


220 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

SPEED COMP<br />

FWD<br />

SPEED COMP<br />

REV<br />

2103 DC MAGN<br />

TIME<br />

Speed compensation is used for constant distance braking if<br />

the direction of rotation is forward. Speed difference<br />

(between used speed and maximum speed) is<br />

compensated by running the drive with current speed before<br />

the motor is stopped along a ramp. See section<br />

Acceleration and deceleration ramps on page 139.<br />

If the direction of rotation is reverse, the drive is stopped<br />

along a ramp.<br />

Speed compensation is used for constant distance braking if<br />

the direction of rotation is reverse. Speed difference<br />

(between used speed and maximum speed) is<br />

compensated by running the drive with current speed before<br />

the motor is stopped along a ramp. See section<br />

Acceleration and deceleration ramps on page 139.<br />

If the direction of rotation is forward, the drive is stopped<br />

along a ramp.<br />

Defines the pre-magnetizing time. See parameter 2101<br />

START FUNCTION. After the start command, the drive<br />

automatically pre-magnetizes the motor for the defined time.<br />

0.00…10.00 s Magnetizing time. Set this value long enough to allow full<br />

motor magnetization. Too long a time heats the motor<br />

excessively.<br />

4<br />

5<br />

0.30 s<br />

1 = 0.01 s<br />

2104 DC HOLD CTL Activates the DC hold or DC braking function. NOT SEL<br />

NOT SEL Inactive 0


Actual signals and parameters 221<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DC HOLD DC hold function active. DC hold is not possible if parameter<br />

9904 MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

When both the reference and the motor speed drop below<br />

the value of parameter 2105 DC HOLD SPEED, the drive<br />

will stop generating sinusoidal current and start to inject DC<br />

into the motor. The current is set by parameter 2106 DC<br />

CURR REF. When the reference speed exceeds parameter<br />

2105 value, normal drive operation continues.<br />

Note: DC hold has no effect if the start signal is switched<br />

off.<br />

Note: Injecting DC current into the motor causes the motor<br />

to heat up. In applications where long DC hold times are<br />

required, externally ventilated motors should be used. If the<br />

DC hold period is long, the DC hold cannot prevent the<br />

motor shaft from rotating if a constant load is applied to the<br />

motor.<br />

DC BRAKING DC current braking function active.<br />

If parameter 2102 STOP FUNCTION is set to COAST, DC<br />

braking is applied after the start command is removed.<br />

If parameter 2102 STOP FUNCTION is set to RAMP, DC<br />

braking is applied after the ramp.<br />

2105 DC HOLD<br />

SPEED<br />

DC hold speed<br />

Motor speed<br />

Ref<br />

DC hold<br />

Defines the DC hold speed. See parameter 2104 DC HOLD<br />

CTL.<br />

1<br />

2<br />

5rpm<br />

0…360 rpm Speed 1 = 1 rpm<br />

2106 DC CURR REF Defines the DC hold current. See parameter 2104 DC<br />

HOLD CTL.<br />

30%<br />

0…100% Value in percent of the motor nominal current (parameter<br />

9906 MOTOR NOM CURR)<br />

1 = 1%<br />

2107 DC BRAKE<br />

TIME<br />

Defines the DC brake time. 0.0 s<br />

0.0…250.0 s Time 1 = 0.1 s<br />

t<br />

t


222 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2108 START INHIBIT Sets the Start inhibit function on or off. If the drive is not<br />

actively started and running, the Start inhibit function<br />

ignores a pending start command in any of the following<br />

situations and a new start command is required:<br />

• a fault is reset.<br />

• Run enable signal activates while the start command is<br />

active. See parameter 1601 RUN ENABLE.<br />

• control mode changes from local to remote.<br />

• external control mode switches from EXT1 to EXT2 or<br />

from EXT2 to EXT1.<br />

OFF<br />

OFF Disabled 0<br />

ON Enabled 1<br />

2109 EMERG STOP<br />

SEL<br />

Selects the source for the external emergency stop<br />

command.<br />

The drive cannot be restarted before the emergency stop<br />

command is reset.<br />

Note: The installation must include emergency stop devices<br />

and any other safety equipment that may be needed.<br />

Pressing the stop key on the drive’s control panel does<br />

NOT:<br />

• generate an emergency stop of the motor<br />

• separate the drive from dangerous potential.<br />

NOT SEL<br />

NOT SEL Emergency stop function is not selected 0<br />

DI1 Digital input DI1. 1 = stop along the emergency stop ramp.<br />

See parameter 2208 EMERG DEC TIME. 0 = emergency<br />

stop command reset.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DI1(INV) Inverted digital input DI. 0 = stop along the emergency stop<br />

ramp. See parameter 2208 EMERG DEC TIME. 1 =<br />

emergency stop command reset<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

2110 TORQ BOOST Defines the maximum supplied current during torque boost. 100%<br />

CURR See parameter 2101 START FUNCTION.<br />

15…300% Value in percent 1 = 1%<br />

2111 STOP SIGNAL Defines the stop signal delay time when parameter 2102 0ms<br />

DLY<br />

STOP FUNCTION is set to SPEED COMP.<br />

0…10000 ms Delay time 1 = 1 ms


All parameters<br />

2112 ZERO SPEED<br />

DELAY<br />

0.0 = NOT SEL<br />

0.0…60.0 s<br />

Actual signals and parameters 223<br />

No. Name/Value Description Def/FbEq<br />

Defines the delay for the Zero speed delay function. The<br />

function is useful in applications where a smooth and quick<br />

restarting is essential. During the delay the drive knows<br />

accurately the rotor position.<br />

No Zero speed delay<br />

The drive receives a stop command and decelerates along<br />

a ramp. When the motor actual speed falls below an internal<br />

limit (called Zero speed), the speed controller is switched<br />

off. The inverter modulation is stopped and the motor coasts<br />

to standstill.<br />

With Zero speed delay<br />

The drive receives a stop command and decelerates along<br />

a ramp. When the actual motor speed falls below an internal<br />

limit (called Zero speed), the zero speed delay function<br />

activates. During the delay the functions keeps the speed<br />

controller live: The inverter modulates, motor is magnetized<br />

and the drive is ready for a quick restart.<br />

Delay time. If parameter value is set to zero, Zero speed<br />

delay function is disabled.<br />

22 ACCEL/DECEL Acceleration and deceleration times<br />

2201 ACC/DEC 1/2<br />

SEL<br />

No Zero speed delay With Zero speed delay<br />

Speed Speed<br />

Speed controller<br />

switched off: Motor<br />

coasts to stop.<br />

Zero speed<br />

Speed controller<br />

remains live. Motor is<br />

decelerated to true 0<br />

speed.<br />

Zero speed<br />

t t<br />

Delay<br />

Defines the source from which the drive reads the signal<br />

that selects between the two ramp pairs,<br />

acceleration/deceleration pair 1 and 2.<br />

Ramp pair 1 is defined by parameters 2202…2204.<br />

Ramp pair 2 is defined by parameters 2205…2207.<br />

NOT SEL Ramp pair 1 is used. 0<br />

DI1 Digital input DI1. 1 = ramp pair 2, 0 = ramp pair 1. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

0.0 =<br />

NOT SEL<br />

1 = 0.1 s<br />

DI5


224 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

COMM Fieldbus interface as the source for ramp pair 1/2 selection,<br />

ie control word 0301 FB CMD WORD 1 bit 10. The control<br />

word is sent by the fieldbus controller through the fieldbus<br />

adapter or embedded fieldbus (Modbus) to the drive. For<br />

the control word bits, see section DCU communication<br />

profile on page 320.<br />

Note: This setting applies only for the DCU profile.<br />

SEQ PROG Sequence programming ramp defined by parameter 8422<br />

ST1 RAMP (or 8423/…/8492)<br />

10<br />

DI1(INV) Inverted digital input DI1. 0 = ramp pair 2, 1 = ramp pair 1. -1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

2202 ACCELER<br />

TIME 1<br />

Defines the acceleration time 1, ie the time required for the<br />

speed to change from zero to the speed defined by<br />

parameter 2008 MAXIMUM FREQ (in scalar control) / 2002<br />

MAXIMUM SPEED (in vector control). The control mode is<br />

selected by parameter 9904 MOTOR CTRL MODE.<br />

• If the speed reference increases faster than the set<br />

acceleration rate, the motor speed will follow the<br />

acceleration rate.<br />

• If the speed reference increases slower than the set<br />

acceleration rate, the motor speed will follow the<br />

reference signal.<br />

• If the acceleration time is set too short, the drive will<br />

automatically prolong the acceleration in order not to<br />

exceed the drive operating limits.<br />

Actual acceleration time depends on parameter 2204 RAMP<br />

SHAPE 1 setting.<br />

7<br />

5.0 s<br />

0.0…1800.0 s Time 1 = 0.1 s


All parameters<br />

2203 DECELER<br />

TIME 1<br />

Actual signals and parameters 225<br />

No. Name/Value Description Def/FbEq<br />

Defines the deceleration time 1, ie the time required for the<br />

speed to change from the value defined by parameter 2008<br />

MAXIMUM FREQ (in scalar control) / 2002 MAXIMUM<br />

SPEED (in vector control) to zero. The control mode is<br />

selected by parameter 9904 MOTOR CTRL MODE.<br />

• If the speed reference decreases slower than the set<br />

deceleration rate, the motor speed will follow the<br />

reference signal.<br />

• If the reference changes faster than the set deceleration<br />

rate, the motor speed will follow the deceleration rate.<br />

• If the deceleration time is set too short, the drive will<br />

automatically prolong the deceleration in order not to<br />

exceed drive operating limits.<br />

If a short deceleration time is needed for a high inertia<br />

application, the drive should be equipped with a brake<br />

resistor.<br />

Actual deceleration time depends on parameter 2204<br />

RAMP SHAPE 1 setting.<br />

5.0 s<br />

0.0…1800.0 s Time 1 = 0.1 s<br />

2204 RAMP SHAPE<br />

1<br />

0.0 = LINEAR<br />

0.1…1000.0 s<br />

Selects the shape of the acceleration/deceleration ramp 1.<br />

The function is deactivated during emergency stop and<br />

jogging.<br />

0.0: Linear ramp. Suitable for steady acceleration or<br />

deceleration and for slow ramps.<br />

0.1…1000.0 s: S-curve ramp. S-curve ramps are ideal for<br />

conveyors carrying fragile loads, or other applications where<br />

a smooth transition is required when changing from one<br />

speed to another. The S-curve consists of symmetrical<br />

curves at both ends of the ramp and a linear part in<br />

between.<br />

A rule of thumb:<br />

A suitable relation between the ramp shape time and the<br />

acceleration ramp time is 1/5.<br />

Speed<br />

Max<br />

Linear ramp: Par. 2204 = 0 s<br />

Par. 2202<br />

Par. 2204<br />

S-curve ramp:<br />

Par. 2204 > 0 s<br />

t<br />

0.0 =<br />

LINEAR<br />

1 = 0.1 s


226 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2205 ACCELER<br />

TIME 2<br />

Defines the acceleration time 2, ie the time required for the<br />

speed to change from zero to the speed defined by<br />

parameter 2008 MAXIMUM FREQ (in scalar control) / 2002<br />

MAXIMUM SPEED (in vector control). The control mode is<br />

selected by parameter 9904 MOTOR CTRL MODE.<br />

See parameter 2202 ACCELER TIME 1.<br />

Acceleration time 2 is used also as jogging acceleration<br />

time. See parameter 1010 JOGGING SEL.<br />

60.0 s<br />

0.0…1800.0 s Time 1 = 0.1 s<br />

2206 DECELER<br />

TIME 2<br />

Defines the deceleration time 2, ie the time required for the<br />

speed to change from the value defined by parameter 2008<br />

MAXIMUM FREQ (in scalar control) / 2002 MAXIMUM<br />

SPEED (in vector control) to zero. The control mode is<br />

selected by parameter 9904 MOTOR CTRL MODE.<br />

See parameter 2203 DECELER TIME 1.<br />

Deceleration time 2 is used also as jogging deceleration<br />

time. See parameter 1010 JOGGING SEL.<br />

60.0 s<br />

0.0…1800.0 s Time 1 = 0.1 s<br />

2207 RAMP SHAPE<br />

2<br />

0.0 = LINEAR<br />

0.1…1000.0 s<br />

2208 EMERG DEC<br />

TIME<br />

Selects the shape of the acceleration/deceleration ramp 2.<br />

The function is deactivated during emergency stop.<br />

During jogging, parameter value is set to zero (ie linear<br />

ramp). See 1010 JOGGING SEL.<br />

0.0 =<br />

LINEAR<br />

See parameter 2204 RAMP SHAPE 1. 1 = 0.1 s<br />

Defines the time within which the drive is stopped if an<br />

emergency stop is activated. See parameter 2109 EMERG<br />

STOP SEL.<br />

1.0 s<br />

0.0…1800.0 s Time 1 = 0.1 s<br />

2209 RAMP INPUT 0 Defines the source for forcing the ramp input to zero. NOT SEL<br />

NOT SEL Not selected 0<br />

DI1 Digital input DI1. 1 = ramp input is forced to zero. Ramp<br />

output will ramp to zero according to the used ramp time.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

COMM Fieldbus interface as the source for forcing ramp input to<br />

zero, ie control word 0301 FB CMD WORD 1 bit 13 (with<br />

ABB drives profile 5319 EFB PAR 19 bit 6). The control<br />

word is sent by the fieldbus controller through the fieldbus<br />

adapter or embedded fieldbus (Modbus) to the drive. For<br />

the control word bits, see sections DCU communication<br />

profile on page 320 and ABB drives communication profile<br />

on page 315.<br />

7


Actual signals and parameters 227<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI1(INV) Inverted digital input DI1. 0 = ramp input is forced to zero.<br />

Ramp output will ramp to zero according to the used ramp<br />

time.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

23 SPEED<br />

Speed controller variables. See section Speed controller<br />

CONTROL<br />

tuning on page 142.<br />

Note: These parameters do not affect drive operation in<br />

scalar control, ie when parameter 9904 MOTOR CTRL<br />

MODE setting is SCALAR: FREQ.<br />

2301 PROP GAIN Defines a relative gain for the speed controller. High gain<br />

may cause speed oscillation.<br />

The figure below shows the speed controller output after an<br />

error step when the error remains constant.<br />

Controller<br />

output =<br />

K p ·e<br />

%<br />

Error<br />

value<br />

Gain = K p = 1<br />

T I = Integration time = 0<br />

T D= Derivation time = 0<br />

Controller output<br />

e = Error<br />

value<br />

Note: For automatic setting of the gain, use autotune run<br />

(parameter 2305 AUTOTUNE RUN).<br />

5.00<br />

0.00…200.00 Gain 1 = 0.01<br />

t


228 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2302 INTEGRATION<br />

TIME<br />

Defines an integration time for the speed controller. The<br />

integration time defines the rate at which the controller<br />

output changes when the error value is constant. The<br />

shorter the integration time, the faster the continuous error<br />

value is corrected. Too short an integration time makes the<br />

control unstable.<br />

The figure below shows the speed controller output after an<br />

error step when the error remains constant.<br />

K p ·e<br />

K p ·e<br />

%<br />

Controller output<br />

T I<br />

Gain = K p = 1<br />

T I = Integration time > 0<br />

T D= Derivation time = 0<br />

e = Error value<br />

Note: For automatic setting of the integration time, use<br />

autotune run (parameter 2305 AUTOTUNE RUN).<br />

0.50 s<br />

0.00…600.00 s Time 1 = 0.01 s<br />

t


All parameters<br />

2303 DERIVATION<br />

TIME<br />

Actual signals and parameters 229<br />

No. Name/Value Description Def/FbEq<br />

Defines the derivation time for the speed controller.<br />

Derivative action boosts the controller output if the error<br />

value changes. The longer the derivation time, the more the<br />

speed controller output is boosted during the change. If the<br />

derivation time is set to zero, the controller works as a PI<br />

controller, otherwise as a PID controller.<br />

The derivation makes the control more responsive for<br />

disturbances.<br />

The figure below shows the speed controller output after an<br />

error step when the error remains constant.<br />

K p · T D · Δe<br />

T s<br />

K p ·e<br />

K p ·e<br />

%<br />

e = Error value<br />

Gain = K p = 1<br />

T I = Integration time > 0<br />

T D= Derivation time > 0<br />

T s= Sample time period = 2 ms<br />

Δe = Error value change between two samples<br />

Controller<br />

output<br />

0ms<br />

0.…10000 ms Time 1 = 1 ms<br />

T I<br />

Error value<br />

t


230 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2304 ACC<br />

COMPENSATI<br />

ON<br />

Defines the derivation time for acceleration/(deceleration)<br />

compensation. In order to compensate inertia during<br />

acceleration, a derivative of the reference is added to the<br />

output of the speed controller. The principle of a derivative<br />

action is described for parameter 2303 DERIVATION TIME.<br />

Note: As a general rule, set this parameter to the value<br />

between 50 and 100% of the sum of the mechanical time<br />

constants of the motor and the driven machine. (The speed<br />

controller Autotune run does this automatically, see<br />

parameter 2305 AUTOTUNE RUN.)<br />

The figure below shows the speed responses when a high<br />

inertia load is accelerated along a ramp.<br />

No acceleration<br />

compensation<br />

% %<br />

Speed reference<br />

Actual speed<br />

0.00 s<br />

0.00…600.00 s Time 1 = 0.01 s<br />

2305 AUTOTUNE<br />

RUN<br />

Start automatic tuning of the speed controller. Instructions:<br />

• Run the motor at a constant speed of 20 to 40% of the<br />

rated speed.<br />

• Change the autotuning parameter 2305 to ON.<br />

Note: The motor load must be connected to the motor.<br />

OFF<br />

OFF No autotuning 0<br />

ON Activates the speed controller autotuning. The drive<br />

• accelerates the motor<br />

• calculates values for proportional gain, integration time<br />

and acceleration compensation (parameter 2301 PROP<br />

GAIN, 2302 INTEGRATION TIME and 2304 ACC<br />

COMPENSATION values).<br />

Setting is automatically reverted to OFF.<br />

1<br />

24 TORQUE<br />

CONTROL<br />

Torque control variables<br />

2401 TORQ RAMP Defines the torque reference ramp up time, ie the minimum 0.00 s<br />

UP<br />

time for the reference to increase from zero to the nominal<br />

motor torque.<br />

0.00…120.00 s Time 1 = 0.01 s<br />

t<br />

Acceleration<br />

compensation<br />

t


2402 TORQ RAMP<br />

DOWN<br />

Actual signals and parameters 231<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

Defines the torque reference ramp down time, ie the<br />

minimum time for the reference to decrease from the<br />

nominal motor torque to zero.<br />

0.00 s<br />

0.00…120.00 s Time 1 = 0.01 s<br />

25 CRITICAL<br />

SPEEDS<br />

2501 CRIT SPEED<br />

SEL<br />

Speed bands within which the drive is not allowed to<br />

operate.<br />

Activates/deactivates the critical speeds function. The<br />

critical speed function avoids specific speed ranges.<br />

Example: A fan has vibrations in the range of 18 to 23 Hz<br />

and 46 to 52 Hz. To make the drive to jump over the<br />

vibration speed ranges:<br />

• Activate the critical speeds function.<br />

• Set the critical speed ranges as in the figure below.<br />

f output (Hz)<br />

52<br />

46<br />

23<br />

18<br />

1 2 3 4<br />

1 Par. 2502 = 18 Hz<br />

2 Par. 2503 = 23 Hz<br />

3 Par. 2504 = 46 Hz<br />

4 Par. 2505 = 52 Hz<br />

f reference (Hz)<br />

OFF Inactive 0<br />

ON Active 1<br />

2502 CRIT SPEED 1 Defines the minimum limit for critical speed/frequency range 0.0 Hz /<br />

LO<br />

1.<br />

1rpm<br />

0.0…500.0 Hz / Limit in rpm. Limit in Hz if parameter 9904 MOTOR CTRL 1 = 0.1 Hz<br />

0…30000 rpm MODE setting is SCALAR: FREQ. The value cannot be<br />

above the maximum (parameter 2503 CRIT SPEED 1 HI).<br />

/ 1 rpm<br />

2503 CRIT SPEED 1 Defines the maximum limit for critical speed/frequency 0.0 Hz /<br />

HI<br />

range 1.<br />

1rpm<br />

0.0…500.0 Hz / Limit in rpm. Limit in Hz if parameter 9904 MOTOR CTRL 1 = 0.1 Hz<br />

0…30000 rpm MODE setting is SCALAR: FREQ. The value cannot be<br />

below the minimum (parameter 2502 CRIT SPEED 1 LO).<br />

/ 1 rpm<br />

2504 CRIT SPEED 2 See parameter 2502 CRIT SPEED 1 LO. 0.0 Hz /<br />

LO<br />

1rpm<br />

0.0…500.0 Hz / See parameter 2502. 1 = 0.1 Hz<br />

0…30000 rpm<br />

/ 1 rpm<br />

2505 CRIT SPEED 2 See parameter 2503 CRIT SPEED 1 HI. 0.0 Hz /<br />

HI<br />

1rpm<br />

0.0…500.0 Hz / See parameter 2503. 1 = 0.1 Hz<br />

0…30000 rpm<br />

/ 1 rpm<br />

OFF


232 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2506 CRIT SPEED 3<br />

LO<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

2507 CRIT SPEED 3<br />

HI<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

26 MOTOR<br />

CONTROL<br />

2601 FLUX OPT<br />

ENABLE<br />

See parameter 2502 CRIT SPEED 1 LO. 0.0 Hz /<br />

1rpm<br />

See parameter 2502. 1 = 0.1 Hz<br />

/ 1 rpm<br />

See parameter 2503 CRIT SPEED 1 HI. 0.0 Hz /<br />

1rpm<br />

See parameter 2503. 1 = 0.1 Hz<br />

/ 1 rpm<br />

Motor control variables<br />

Activates/deactivates the flux optimization function. Flux<br />

optimization reduces the total energy consumption and<br />

motor noise level when the drive operates below the<br />

nominal load. The total efficiency (motor and the drive) can<br />

be improved by 1% to 10%, depending on the load torque<br />

and speed. The disadvantage of this function is that the<br />

dynamic performance of the drive is weakened.<br />

OFF<br />

OFF Inactive 0<br />

ON Active 1<br />

2602 FLUX Activates/deactivates the Flux braking function. See section OFF<br />

BRAKING Flux braking on page 138.<br />

OFF Inactive 0<br />

ON Active 1


All parameters<br />

2603 IR COMP<br />

VOLT<br />

Actual signals and parameters 233<br />

No. Name/Value Description Def/FbEq<br />

Defines the output voltage boost at zero speed (IR<br />

compensation). The function is useful in applications with a<br />

high break-away torque when vector control cannot be<br />

applied.<br />

To prevent overheating, set IR compensation voltage as low<br />

as possible.<br />

Note: The function can be used only when parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ.<br />

The figure below illustrates the IR compensation.<br />

Type<br />

dependent<br />

0.0…100.0 V Voltage boost 1 = 0.1 V<br />

2604 IR COMP<br />

FREQ<br />

Defines the frequency at which the IR compensation is 0 V.<br />

See the figure for parameter 2603 IR COMP VOLT<br />

Note: If parameter 2605 U/F RATIO is set to USER<br />

DEFINED, this parameter is not active. The IR<br />

compensation frequency is set by parameter 2610 USER<br />

DEFINED U1.<br />

0…100% Value in percent of the motor frequency 1 = 1%<br />

2605 U/F RATIO Selects the voltage to frequency (U/f) ratio below the field<br />

weakening point. For scalar control only.<br />

LINEAR<br />

LINEAR Linear ratio for constant torque applications. 1<br />

SQUARED Squared ratio for centrifugal pump and fan applications.<br />

With squared U/f ratio the noise level is lower for most<br />

operating frequencies. Not recommended for permanent<br />

magnet motors.<br />

2<br />

USER<br />

DEFINED<br />

2603<br />

Typical IR compensation values:<br />

P N (kW) 0.37 0.75 2.2 4.0 7.5<br />

200…240 V units<br />

IR comp (V) 8.4 7.7 5.6 8.4 N/A<br />

380…480 V units<br />

IR comp (V) 14 14 5.6 8.4 7<br />

Motor<br />

voltage<br />

A<br />

B<br />

2604<br />

A = IR compensated<br />

B = No compensation<br />

f (Hz)<br />

Custom ratio defined by parameters 2610…2618. See<br />

section Custom U/f ratio on page 141.<br />

80%<br />

3


234 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2606 SWITCHING<br />

FREQ<br />

Defines the switching frequency of the drive. Higher<br />

switching frequency results in lower acoustic noise.<br />

In multimotor systems, do not change the switching<br />

frequency from the default value.<br />

See also parameter 2607 SWITCH FREQ CTRL and<br />

section Switching frequency derating, I2N on page 360.<br />

4kHz<br />

4 kHz<br />

8 kHz<br />

12 kHz<br />

16 kHz<br />

1 = 1 kHz<br />

2607 SWITCH FREQ Selects the control method for the switching frequency. ON<br />

CTRL Selection has no effect if parameter 2606 SWITCHING<br />

FREQ is 4 kHz.<br />

(LOAD)<br />

ON Drive maximum current is automatically derated according<br />

to the selected switching frequency (see parameter 2607<br />

SWITCH FREQ CTRL and section Switching frequency<br />

derating, I2N on page 360) and adapted according to the<br />

drive temperature.<br />

It is recommended to use this selection when a specific<br />

switching frequency is required with maximum performance.<br />

fsw limit<br />

1<br />

16 kHz<br />

4kHz<br />

Drive<br />

temperature<br />

80…100 °C * 100…120 °C * T<br />

* Temperature depends on the drive output frequency.


Actual signals and parameters 235<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

ON (LOAD) The drive is started with 4 kHz switching frequency to gain<br />

maximum output during the start. After start-up, the<br />

switching frequency is controlled towards the selected value<br />

(parameter 2607 SWITCH FREQ CTRL) if the output<br />

current or the temperature allows.<br />

This selection provides adaptive switching frequency<br />

control. Adaptation decreases the output performance in<br />

some cases.<br />

fsw limit<br />

2608 SLIP COMP<br />

RATIO<br />

Defines the slip gain for the motor slip compensation<br />

control. 100% means full slip compensation, 0% means no<br />

slip compensation. Other values can be used if a static<br />

speed error is detected despite the full slip compensation.<br />

Can be used only in scalar control (ie when parameter 9904<br />

MOTOR CTRL MODE setting is SCALAR: FREQ).<br />

Example: 35 Hz constant speed reference is given to the<br />

drive. Despite the full slip compensation (SLIP COMP<br />

RATIO = 100%), a <strong>manual</strong> tachometer measurement from<br />

the motor axis gives a speed value of 34 Hz. The static<br />

speed error is 35 Hz - 34 Hz = 1 Hz. To compensate the<br />

error, the slip gain should be increased.<br />

0…200% Slip gain 1 = 1%<br />

2609 NOISE<br />

SMOOTHING<br />

16 kHz<br />

4kHz<br />

Drive current I 2N<br />

Drive<br />

temperature<br />

80…100 °C * 100…120 °C * T<br />

50% ** 100% **<br />

* Temperature depends on the drive output frequency.<br />

** Short term overloading is allowed with each switching<br />

frequency depending on actual loading.<br />

Enables the noise smoothing function. Noise smoothing<br />

distributes the acoustic motor noise over a range of<br />

frequencies instead of a single tonal frequency resulting in<br />

lower peak noise intensity. A random component with an<br />

average of 0 Hz is added to the switching frequency set by<br />

parameter 2606 SWITCHING FREQ.<br />

Note: Parameter has no effect if parameter 2606<br />

SWITCHING FREQ is set to 16 kHz.<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1<br />

2<br />

0%<br />

DISABLE


236 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2610 USER<br />

DEFINED U1<br />

Defines the first voltage point of the custom U/f curve at the<br />

frequency defined by parameter 2611 USER DEFINED F1.<br />

See section Custom U/f ratio on page 141.<br />

19% of<br />

U N<br />

0…120% of UN V Voltage 1 = 1 V<br />

2611 USER<br />

DEFINED F1<br />

Defines the first frequency point of the custom U/f curve. 10.0 Hz<br />

0.0…500.0 Hz Frequency 1 = 0.1 Hz<br />

2612 USER Defines the second voltage point of the custom U/f curve at 38% of<br />

DEFINED U2 the frequency defined by parameter 2613 USER DEFINED<br />

F2. See section Custom U/f ratio on page 141.<br />

UN 0…120% of UN V Voltage 1 = 1 V<br />

2613 USER<br />

DEFINED F2<br />

Defines the second frequency point of the custom U/f curve. 20.0 Hz<br />

0.0…500.0 Hz Frequency 1 = 0.1 Hz<br />

2614 USER<br />

DEFINED U3<br />

Defines the third voltage point of the custom U/f curve at the 47.5% of<br />

frequency defined by parameter 2615 USER DEFINED F3. UN See section Custom U/f ratio on page 141.<br />

0…120% of UN V Voltage 1 = 1 V<br />

2615 USER<br />

DEFINED F3<br />

Defines the third frequency point of the custom U/f curve. 25.0 Hz<br />

0.0…500.0 Hz Frequency 1 = 0.1 Hz<br />

2616 USER<br />

DEFINED U4<br />

Defines the fourth voltage point of the custom U/f curve at<br />

the frequency defined by parameter 2617 USER DEFINED<br />

F4. See section Custom U/f ratio on page 141.<br />

76% of<br />

UN 0…120% of UN V Voltage 1 = 1 V<br />

2617 USER<br />

DEFINED F4<br />

Defines the fourth frequency point of the custom U/f curve. 40.0 Hz<br />

0.0…500.0 Hz Frequency 1 = 0.1 Hz<br />

2618 FW VOLTAGE Defines the voltage of the U/f curve when frequency is equal 95% of<br />

to or exceeds the motor nominal frequency (9907 MOTOR<br />

NOM FREQ). See section Custom U/f ratio on page 141.<br />

UN 0…120% of UN V Voltage 1 = 1 V<br />

2619 DC<br />

Enables or disables the DC voltage stabilizer. The DC DISABLE<br />

STABILIZER stabilizer is used to prevent possible voltage oscillations in<br />

the drive DC bus caused by motor load or weak supply<br />

network. In case of voltage variation, the drive tunes the<br />

frequency reference to stabilize the DC bus voltage and<br />

therefore the load torque oscillation.<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1


2621 SMOOTH<br />

START<br />

Actual signals and parameters 237<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

Selects the forced current vector rotation mode at low<br />

speeds. When the smooth start mode is selected, the rate of<br />

acceleration is limited by the acceleration and deceleration<br />

ramp times (parameters 2202 and 2203). If the process<br />

driven by the permanent magnet motor has high inertia,<br />

slow ramp times are recommended.<br />

Can be used for permanent magnet motors only.<br />

NO Disabled 0<br />

YES Enabled 1<br />

2622 SMOOTH<br />

START CUR<br />

Current used in the current vector rotation at low speeds.<br />

Increase the smooth start current if the application requires<br />

high pull-up torque. Decrease the smooth start current if<br />

motor shaft swinging needs to be minimized. Note that<br />

accurate torque control is not possible in the current vector<br />

rotation mode.<br />

Can be used for permanent magnet motors only.<br />

50%<br />

10…100% Value in percent of the motor nominal current 1 = 1%<br />

2623 SMOOTH<br />

START FRQ<br />

Output frequency up to which the current vector rotation is<br />

used.<br />

Can be used for permanent magnet motors only.<br />

2…100% Value in percent of the motor nominal frequency 1 = 1%<br />

29 MAINTENANCE<br />

TRIG<br />

Maintenance triggers<br />

2901 COOLING FAN<br />

TRIG<br />

Defines the trigger point for the drive cooling fan run time<br />

counter. Value is compared to parameter 2902 COOLING<br />

FAN ACT value.<br />

0.0 kh<br />

0.0…6553.5 kh Time. If parameter value is set to zero, the trigger is<br />

disabled.<br />

2902 COOLING FAN<br />

ACT<br />

Defines the actual value for the cooling fan run time counter.<br />

When parameter 2901 COOLING FAN TRIG has been set<br />

to a non zero value, the counter starts. When the actual<br />

value of the counter exceeds the value defined by<br />

parameter 2901, a maintenance notice is displayed on the<br />

panel.<br />

NO<br />

10%<br />

1 = 0.1 kh<br />

0.0 kh<br />

0.0…6553.5 kh Time. Parameter is reset by setting it to zero. 1 = 0.1 kh<br />

2903 REVOLUTION<br />

TRIG<br />

Defines the trigger point for the motor revolution counter.<br />

Value is compared to parameter 2904 REVOLUTION ACT<br />

value.<br />

0…65535 Mrev Millions of revolutions. If parameter value is set to zero, the<br />

trigger is disabled.<br />

0Mrev<br />

1 =<br />

1Mrev


238 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

2904 REVOLUTION<br />

ACT<br />

Defines the actual value for the motor revolution counter.<br />

When parameter 2903 REVOLUTION TRIG has been set to<br />

a non zero value, the counter starts. When the actual value<br />

of the counter exceeds the value defined by parameter<br />

2903, a maintenance notice is displayed on the panel.<br />

0…65535 Mrev Millions of revolutions. Parameter is reset by setting it to<br />

zero.<br />

2905 RUN TIME<br />

TRIG<br />

Defines the trigger point for the drive run time counter. Value<br />

is compared to parameter 2906 RUN TIME ACT value.<br />

0.0…6553.5 kh Time. If parameter value is set to zero, the trigger is<br />

disabled.<br />

2906 RUN TIME<br />

ACT<br />

Defines the actual value for the drive run time counter.<br />

When parameter 2905 RUN TIME TRIG has been set to a<br />

non zero value, the counter starts. When the actual value of<br />

the counter exceeds the value defined by parameter 2905, a<br />

maintenance notice is displayed on the panel.<br />

0Mrev<br />

1 =<br />

1Mrev<br />

0.0 kh<br />

1 = 0.1 kh<br />

0.0 kh<br />

0.0…6553.5 kh Time. Parameter is reset by setting it to zero. 1 = 0.1 kh<br />

2907 USER MWh<br />

TRIG<br />

0.0…<br />

6553.5 MWh<br />

2908 USER MWh<br />

ACT<br />

00.0…<br />

6553.5 MWh<br />

30 FAULT<br />

FUNCTIONS<br />

3001 AI


All parameters<br />

Actual signals and parameters 239<br />

No. Name/Value Description Def/FbEq<br />

FAULT The drive trips on fault AI1 LOSS (0007) / AI2 LOSS (0008)<br />

and the motor coasts to stop. Fault limit is defined by<br />

parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT LIMIT.<br />

CONST SP 7 The drive generates alarm AI1 LOSS (2006) / AI2 LOSS<br />

(2007) and sets the speed to the value defined by<br />

parameter 1208 CONST SPEED 7. Alarm limit is defined by<br />

parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT LIMIT.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case the analog input signal is lost.<br />

LAST SPEED The drive generates alarm AI1 LOSS (2006) / AI2 LOSS<br />

(2007) and freezes the speed to the level the drive was<br />

operating at. The speed is determined by the average<br />

speed over the previous 10 seconds. Alarm limit is defined<br />

by parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT<br />

LIMIT.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case the analog input signal is lost.<br />

3002 PANEL COMM<br />

ERR<br />

Selects how the drive reacts to a control panel<br />

communication break.<br />

Note: When either of the two external control locations are<br />

active, and start, stop and/or direction are through the<br />

control panel – 1001 EXT1 COMMANDS / 1002 EXT2<br />

COMMANDS = 8 (KEYPAD) – the drive follows the speed<br />

reference according to the configuration of the external<br />

control locations, instead of the value of the last speed or<br />

parameter 1208 CONST SPEED 7.<br />

FAULT Drive trips on fault PANEL LOSS (0010) and the motor<br />

coasts to stop.<br />

CONST SP 7 The drive generates alarm PANEL LOSS (2008) and sets<br />

the speed to the speed defined by parameter 1208 CONST<br />

SPEED 7.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case of a panel communication break.<br />

LAST SPEED The drive generates alarm PANEL LOSS (2008) and<br />

freezes the speed to the level the drive was operating at.<br />

The speed is determined by the average speed over the<br />

previous 10 seconds.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case of a panel communication break.<br />

1<br />

2<br />

3<br />

FAULT<br />

3003 EXTERNAL<br />

FAULT 1<br />

Selects an interface for an external fault 1 signal. NOT SEL<br />

NOT SEL Not selected 0<br />

DI1 External fault indication through digital input DI1. 1: Fault<br />

trip on EXT FAULT 1 (0014). Motor coasts to stop. 0: No<br />

external fault.<br />

1<br />

1<br />

2<br />

3


240 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DI1(INV) External fault indication through inverted digital input DI1. 0: -1<br />

Fault trip on EXT FAULT 1 (0014). Motor coasts to stop. 1:<br />

No external fault.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

3004 EXTERNAL<br />

FAULT 2<br />

Selects an interface for an external fault 2 signal.<br />

See parameter 3003 EXTERNAL FAULT 1.<br />

NOT SEL<br />

3005 MOT THERM Selects how the drive reacts when the motor<br />

FAULT<br />

PROT overtemperature is detected.<br />

NOT SEL Protection is inactive. 0<br />

FAULT The drive trips on fault MOT OVERTEMP (0009) when the<br />

temperature exceeds 110 °C, and the motor coasts to stop.<br />

1<br />

ALARM The drive generates alarm MOTOR TEMP (2010) when the<br />

motor temperature exceeds 90 °C.<br />

2<br />

3006 MOT THERM<br />

TIME<br />

Defines the thermal time constant for the motor thermal<br />

model, ie the time within which the motor temperature has<br />

reached 63% of the nominal temperature with steady load.<br />

For thermal protection according to UL requirements for<br />

NEMA class motors, use the rule of thumb: Motor thermal<br />

time = 35 · t6. t6 (in seconds) is specified by the motor<br />

manufacturer as the time the motor can safely operate at six<br />

times its rated current.<br />

Thermal time for a Class 10 trip curve is 350 s, for a Class<br />

20 trip curve 700 s, and for a Class 30 trip curve 1050 s.<br />

500 s<br />

Motor load<br />

Temp. rise<br />

100%<br />

63%<br />

Par. 3006<br />

256…9999 s Time constant 1 = 1 s<br />

}<br />

t<br />

t


All parameters<br />

3007 MOT LOAD<br />

CURVE<br />

Actual signals and parameters 241<br />

No. Name/Value Description Def/FbEq<br />

Defines the load curve together with parameters 3008<br />

ZERO SPEED LOAD and 3009 BREAK POINT FREQ.<br />

With the default value 100%, motor overload protection is<br />

functioning when the constant current exceeds 127% of the<br />

parameter 9906 MOTOR NOM CURR value.<br />

The default overloadability is at the same level as what<br />

motor manufacturers typically allow below 30 °C (86 °F)<br />

ambient temperature and below 1000 m (3300 ft) altitude.<br />

When the ambient temperature exceeds 30 °C (86 °F) or<br />

the installation altitude is over 1000 m (3300 ft), decrease<br />

the parameter 3007 value according to the motor<br />

manufacturer’s recommendation.<br />

Example: If the constant protection level needs to be 115%<br />

of the motor nominal current, set parameter 3007 value to<br />

91% (= 115/127·100%).<br />

50.…150% Allowed continuous motor load relative to the nominal motor<br />

current<br />

3008 ZERO SPEED<br />

LOAD<br />

Par. 3007<br />

Par. 3008<br />

150<br />

100 =<br />

127%<br />

50<br />

Output current relative (%) to<br />

9906 MOTOR NOM CURR<br />

Par. 3009<br />

Defines the load curve together with parameters 3007 MOT<br />

LOAD CURVE and 3009 BREAK POINT FREQ.<br />

25.…150% Allowed continuous motor load at zero speed in percent of<br />

the nominal motor current<br />

f<br />

100%<br />

1 = 1%<br />

70%<br />

1 = 1%


242 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

3009 BREAK POINT<br />

FREQ<br />

Defines the load curve together with parameters 3007 MOT<br />

LOAD CURVE and 3008 ZERO SPEED LOAD.<br />

Example: Thermal protection trip times when parameters<br />

3006…3008 have default values.<br />

I O/I N<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

I O = Output current<br />

I N = Nominal motor current<br />

f O = Output frequency<br />

f BRK = Break point frequency<br />

A = Trip time<br />

0 0.2 0.4 0.6 0.8 1.0 1.2<br />

35 Hz<br />

1…250 Hz Drive output frequency at 100% load 1 = 1 Hz<br />

A<br />

60 s<br />

90 s<br />

180 s<br />

300 s<br />

600 s<br />

∞<br />

f O/f BRK


All parameters<br />

3010 STALL<br />

FUNCTION<br />

Actual signals and parameters 243<br />

No. Name/Value Description Def/FbEq<br />

Selects how the drive reacts to a motor stall condition. The<br />

protection wakes up if the drive has operated in a stall<br />

region (see the figure below) longer than the time set by<br />

parameter 3012 STALL TIME.<br />

In vector control the user defined limit = 2017 MAX<br />

TORQUE 1 / 2018 MAX TORQUE 2 (applies for positive<br />

and negative torques).<br />

In scalar control the user defined limit = 2003 MAX<br />

CURRENT.<br />

The control mode is selected by parameter 9904 MOTOR<br />

CTRL MODE.<br />

Torque (%) /<br />

Current (A)<br />

0.95 · User defined limit<br />

Stall region<br />

Par. 3011<br />

NOT SEL<br />

NOT SEL Protection is inactive. 0<br />

FAULT The drive trips on fault MOTOR STALL (0012) and the<br />

motor coasts to stop.<br />

1<br />

ALARM The drive generates alarm MOTOR STALL (2012). 2<br />

3011 STALL Defines the frequency limit for the stall function. See 20.0 Hz<br />

FREQUENCY parameter 3010 STALL FUNCTION.<br />

0.5…50.0 Hz Frequency 1 = 0.1 Hz<br />

3012 STALL TIME Defines the time for the stall function. See parameter 3010<br />

STALL FUNCTION.<br />

20 s<br />

10…400 s Time 1 = 1 s<br />

3013 UNDERLOAD Selects how the drive reacts to underload. The protection NOT SEL<br />

FUNC wakes up if:<br />

• the motor torque falls below the curve selected by<br />

parameter 3015 UNDERLOAD CURVE,<br />

• output frequency is higher than 10% of the nominal motor<br />

frequency and<br />

• the above conditions have been valid longer than the time<br />

set by parameter 3014 UNDERLOAD TIME.<br />

NOT SEL Protection is inactive. 0<br />

f


244 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

FAULT The drive trips on fault UNDERLOAD (0017) and the motor<br />

coasts to stop.<br />

Note: Set parameter value to FAULT only after the drive ID<br />

run is performed! If FAULT is selected, the drive may<br />

generate an UNDERLOAD fault during ID run.<br />

ALARM The drive generates alarm UNDERLOAD (2011). 2<br />

3014 UNDERLOAD<br />

TIME<br />

Defines the time limit for the underload function. See<br />

parameter 3013 UNDERLOAD FUNC.<br />

1<br />

20 s<br />

10…400 s Time limit 1 = 1 s<br />

3015 UNDERLOAD<br />

CURVE<br />

Selects the load curve for the underload function. See<br />

parameter 3013 UNDERLOAD FUNC.<br />

1…5 Number of the load curve type in the figure 1 = 1<br />

3016 SUPPLY<br />

PHASE<br />

T M<br />

(%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

T M = nominal torque of the motor<br />

ƒ N = nominal frequency of the motor (9907)<br />

Underload curve types<br />

Selects how the drive reacts to supply phase loss, ie when<br />

DC voltage ripple is excessive.<br />

FAULT The drive trips on fault SUPPLY PHASE (0022) and the<br />

motor coasts to stop when the DC voltage ripple exceeds<br />

14% of the nominal DC voltage.<br />

LIMIT/ALARM Drive output current is limited and alarm INPUT PHASE<br />

LOSS (2026) is generated when the DC voltage ripple<br />

exceeds 14% of the nominal DC voltage.<br />

There is a 10 s delay between the activation of the alarm<br />

and the output current limitation. The current is limited until<br />

the ripple drops under the minimum limit, 0.3 · Ihd. ALARM The drive generates alarm INPUT PHASE LOSS (2026)<br />

when the DC ripple exceeds 14% of the nominal DC<br />

voltage.<br />

f N<br />

2<br />

3<br />

1 5<br />

4<br />

2.4 · f N<br />

70%<br />

50%<br />

30%<br />

f<br />

1<br />

FAULT<br />

0<br />

1<br />

2


All parameters<br />

Actual signals and parameters 245<br />

No. Name/Value Description Def/FbEq<br />

3017 EARTH FAULT Selects how the drive reacts when an earth (ground) fault is<br />

detected in the motor or the motor cable.<br />

Note: Disabling earth (ground) fault may void the warranty.<br />

DISABLE No action 0<br />

ENABLE The drive trips on fault EARTH FAULT (0016) when the<br />

earth fault is detected during run.<br />

1<br />

START ONLY The drive trips on fault EARTH FAULT (0016) when the<br />

earth fault is detected before run.<br />

2<br />

3018 COMM FAULT<br />

FUNC<br />

Selects how the drive reacts in a fieldbus communication<br />

break. The time delay is defined by parameter 3019 COMM<br />

FAULT TIME.<br />

NOT SEL Protection is inactive. 0<br />

FAULT Protection is active. The drive trips on fault SERIAL 1 ERR<br />

(0028) and coasts to stop.<br />

1<br />

CONST SP 7 Protection is active. The drive generates alarm IO COMM<br />

(2005) and sets the speed to the value defined by<br />

parameter 1208 CONST SPEED 7.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case of a communication break.<br />

2<br />

LAST SPEED Protection is active. The drive generates alarm IO COMM<br />

(2005) and freezes the speed to the level the drive was<br />

operating at. The speed is determined by the average<br />

speed over the previous 10 seconds.<br />

WARNING! Make sure that it is safe to continue<br />

operation in case of a communication break.<br />

3019 COMM FAULT<br />

TIME<br />

Defines the time delay for the fieldbus communication break<br />

supervision. See parameter 3018 COMM FAULT FUNC.<br />

ENABLE<br />

NOT SEL<br />

3<br />

3.0 s<br />

0.0…600.0 s Delay time 1 = 0.1 s<br />

3021 AI1 FAULT<br />

LIMIT<br />

Defines a fault level for analog input AI1. If parameter 3001<br />

AI


246 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

3023 WIRING FAULT Selects how the drive reacts when incorrect input power and<br />

motor cable connection is detected (ie the input power cable<br />

is connected to the motor connection of the drive).<br />

Note: Disabling wiring fault (ground fault) may void the<br />

warranty.<br />

ENABLE<br />

DISABLE No action 0<br />

ENABLE The drive trips on fault OUTP WIRING (0035). 1<br />

3025 STO<br />

Selects how the drive reacts when the drive detects that the ONLY<br />

OPERATION STO (Safe torque off) function is active.<br />

ALARM<br />

ONLY FAULT The drive trips on fault SAFE TORQUE OFF (0044). 1<br />

ALARM&FAUL The drive generates alarm SAFE TORQUE OFF (2035) 2<br />

T<br />

when stopped and trips on fault SAFE TORQUE OFF<br />

(0044) when running.<br />

NO & FAULT The drive gives no indication to the user when stopped and<br />

trips on fault SAFE TORQUE OFF (0044) when running.<br />

ONLY ALARM The drive generates alarm SAFE TORQUE OFF (2035).<br />

Note: The start signal must be reset (toggled to 0) if STO<br />

(Safe torque off) has been used while the drive has been<br />

running.<br />

3026 POWER FAIL<br />

START<br />

Selects how the drive reacts when the control board is<br />

externally powered by the MPOW-01 option module (see<br />

Appendix: Extension modules on page 393) and start is<br />

requested by the user.<br />

ALARM The drive generates alarm UNDERVOLTAGE (2003). 1<br />

FAULT The drive trips on fault DC UNDERVOLT (0006). 2<br />

NO The drive gives no indication to the user. 3<br />

31 AUTOMATIC Automatic fault reset. Automatic resets are possible only for<br />

RESET<br />

certain fault types and when the automatic reset function is<br />

activated for that fault type.<br />

3101 NR OF TRIALS Defines the number of automatic fault resets the drive<br />

performs within the time defined by parameter 3102 TRIAL<br />

TIME.<br />

If the number of automatic resets exceeds the set number<br />

(within the trial time), the drive prevents additional automatic<br />

resets and remains stopped. The drive must be reset from<br />

the control panel or from a source selected by parameter<br />

1604 FAULT RESET SEL.<br />

Example: Three faults have occurred during the trial time<br />

defined by parameter 3102. Last fault is reset only if the<br />

number defined by parameter 3101 is 3 or more.<br />

0<br />

Trial time<br />

X X X<br />

t<br />

X = Automatic reset<br />

3<br />

4<br />

ALARM


Actual signals and parameters 247<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

0…5 Number of the automatic resets 1 = 1<br />

3102 TRIAL TIME Defines the time for the automatic fault reset function. See<br />

parameter 3101 NR OF TRIALS.<br />

30.0 s<br />

1.0…600.0 s Time 1 = 0.1 s<br />

3103 DELAY TIME Defines the time that the drive will wait after a fault before<br />

attempting an automatic reset. See parameter 3101 NR OF<br />

TRIALS. If delay time is set to zero, the drive resets<br />

immediately.<br />

0.0 s<br />

0.0…120.0 s Time 1 = 0.1 s<br />

3104 AR<br />

OVERCURRE<br />

NT<br />

Activates/deactivates the automatic reset for the<br />

overcurrent fault. Automatically resets fault<br />

OVERCURRENT (0001) after the delay set by parameter<br />

3103 DELAY TIME.<br />

DISABLE<br />

DISABLE Inactive 0<br />

ENABLE Active 1<br />

3105 AR<br />

Activates/deactivates the automatic reset for the<br />

DISABLE<br />

OVERVOLTAG<br />

E<br />

intermediate link overvoltage fault. Automatically resets fault<br />

DC OVERVOLT (0002) after the delay set by parameter<br />

3103 DELAY TIME.<br />

DISABLE Inactive 0<br />

ENABLE Active 1<br />

3106 AR<br />

Activates/deactivates the automatic reset for the<br />

DISABLE<br />

UNDERVOLTA<br />

GE<br />

intermediate link undervoltage fault. Automatically resets<br />

fault DC UNDERVOLT (0006) after the delay set by<br />

parameter 3103 DELAY TIME.<br />

DISABLE Inactive 0<br />

ENABLE Active 1<br />

3107 AR AI


248 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

32 SUPERVISION Signal supervision. Supervision status can be monitored<br />

with relay or transistor output. See parameter groups 14<br />

RELAY OUTPUTS and 18 FREQ IN & TRAN OUT.<br />

3201 SUPERV 1<br />

PARAM<br />

Selects the first supervised signal. Supervision limits are<br />

defined by parameters 3202 SUPERV 1 LIM LO and 3203<br />

SUPERV 1 LIM HI.<br />

Example 1: If 3202 SUPERV 1 LIM LO < 3203 SUPERV 1<br />

LIM HI<br />

Case A = 1401 RELAY OUTPUT 1 value is set to SUPRV1<br />

OVER. Relay energizes when value of the signal selected<br />

with 3201 SUPERV 1 PARAM exceeds the supervision limit<br />

defined by 3203 SUPERV 1 LIM HI. The relay remains<br />

active until the supervised value drops below the low limit<br />

defined by 3202 SUPERV 1 LIM LO.<br />

Case B = 1401 RELAY OUTPUT 1 value is set to SUPRV1<br />

UNDER. Relay energizes when value of the signal selected<br />

with 3201 SUPERV 1 PARAM drops below the supervision<br />

limit defined by 3202 SUPERV 1 LIM LO. The relay remains<br />

active until the supervised value rises above the high limit<br />

defined by 3203 SUPERV 1 LIM HI.<br />

HI par. 3203<br />

LO par. 3202<br />

Case A<br />

Energized (1)<br />

0<br />

Case B<br />

Energized (1)<br />

0<br />

Value of supervised parameter<br />

t<br />

t<br />

t<br />

103


All parameters<br />

Actual signals and parameters 249<br />

No. Name/Value Description Def/FbEq<br />

Example 2: If 3202 SUPERV 1 LIM LO > 3203 SUPERV 1<br />

LIM HI<br />

The lower limit 3203 SUPERV 1 LIM HI remains active until<br />

the supervised signal exceeds the higher limit 3202<br />

SUPERV 1 LIM LO, making it the active limit. The new limit<br />

remains active until the supervised signal drops below the<br />

lower limit 3203 SUPERV 1 LIM HI, making it the active<br />

limit.<br />

Case A = 1401 RELAY OUTPUT 1 value is set to SUPRV1<br />

OVER. Relay is energized whenever the supervised signal<br />

exceeds the active limit.<br />

Case B = 1401 RELAY OUTPUT 1 value is set to SUPRV1<br />

UNDER. Relay is de-energized whenever the supervised<br />

signal drops below the active limit.<br />

0, x…x Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED. 0 = not selected.<br />

3202 SUPERV 1 LIM<br />

LO<br />

Defines the low limit for the first supervised signal selected<br />

by parameter 3201 SUPERV 1 PARAM. Supervision wakes<br />

up if the value is below the limit.<br />

x…x Setting range depends on parameter 3201 setting. -<br />

3203 SUPERV 1 LIM<br />

HI<br />

Defines the high limit for the first supervised signal selected<br />

by parameter 3201 SUPERV 1 PARAM. Supervision wakes<br />

up if the value is above the limit.<br />

x…x Setting range depends on parameter 3201 setting. -<br />

3204 SUPERV 2<br />

PARAM<br />

Value of supervised parameter<br />

HI par. 3203<br />

LO par. 3202<br />

Case A<br />

Energized (1)<br />

0<br />

Case B<br />

Energized (1)<br />

0<br />

Active limit<br />

Selects the second supervised signal. Supervision limits are<br />

defined by parameters 3205 SUPERV 2 LIM LO and 3206<br />

SUPERV 2 LIM HI. See parameter 3201 SUPERV 1<br />

PARAM.<br />

x…x Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED.<br />

t<br />

t<br />

t<br />

1 = 1<br />

-<br />

-<br />

104<br />

1 = 1


250 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

3205 SUPERV 2 LIM<br />

LO<br />

Defines the low limit for the second supervised signal<br />

selected by parameter 3204 SUPERV 2 PARAM.<br />

Supervision wakes up if the value is below the limit.<br />

x…x Setting range depends on parameter 3204 setting. -<br />

3206 SUPERV 2 LIM<br />

HI<br />

Defines the high limit for the second supervised signal<br />

selected by parameter 3204 SUPERV 2 PARAM.<br />

Supervision wakes up if the value is above the limit.<br />

x…x Setting range depends on parameter 3204 setting. -<br />

3207 SUPERV 3<br />

PARAM<br />

Selects the third supervised signal. Supervision limits are<br />

defined by parameters 3208 SUPERV 3 LIM LO and 3209<br />

SUPERV 3 LIM HI. See parameter 3201 SUPERV 1<br />

PARAM.<br />

x…x Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED.<br />

3208 SUPERV 3 LIM<br />

LO<br />

Defines the low limit for the third supervised signal selected<br />

by parameter 3207 SUPERV 3 PARAM. Supervision wakes<br />

up if the value is below the limit.<br />

x…x Setting range depends on parameter 3207 setting. -<br />

3209 SUPERV 3 LIM<br />

HI<br />

Defines the high limit for the third supervised signal selected<br />

by parameter 3207 SUPERV 3 PARAM. Supervision wakes<br />

up if the value is above the limit.<br />

x…x Setting range depends on parameter 3207 setting. -<br />

33 INFORMATION Firmware package version, test date etc.<br />

3301 FIRMWARE Displays the version of the firmware package.<br />

0000…FFFF<br />

hex<br />

Eg 241A hex<br />

3302 LOADING<br />

PACKAGE<br />

2201…22FF<br />

hex<br />

-<br />

-<br />

105<br />

1 = 1<br />

Displays the version of the loading package. type<br />

dependent<br />

2201 hex = <strong>ACS355</strong>-0nE-<br />

2202 hex = <strong>ACS355</strong>-0nU-<br />

3303 TEST DATE Displays the test date.<br />

Date value in format YY.WW (year, week)<br />

00.00<br />

3304 DRIVE RATING Displays the drive current and voltage ratings. 0000 hex<br />

0000…FFFF Value in format XXXY hex:<br />

hex<br />

XXX = Nominal current of the drive in amperes. An “A”<br />

indicates decimal point. For example if XXX is 9A8, nominal<br />

current is 9.8 A.<br />

Y = Nominal voltage of the drive:<br />

1 = 1-phase 200…240 V<br />

2 = 3-phase 200…240 V<br />

4 = 3-phase 380…480 V<br />

3305 PARAMETER Displays the version of the parameter table used in the<br />

TABLE drive.<br />

-<br />

-


All parameters<br />

0000…FFFF<br />

hex<br />

Eg 400E hex<br />

Actual signals and parameters 251<br />

No. Name/Value Description Def/FbEq<br />

34 PANEL DISPLAY Selection of actual signals to be displayed on the panel<br />

3401 SIGNAL1<br />

PARAM<br />

0= NOT<br />

SELECTED<br />

101…180<br />

Selects the first signal to be displayed on the control panel<br />

in the Output mode.<br />

Assistant control panel 3404 3405<br />

0137<br />

0138<br />

0139<br />

DIR 00:00 MENU<br />

Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED. If value is set to 0, no signal is selected.<br />

3402 SIGNAL1 MIN Defines the minimum value for the signal selected by<br />

parameter 3401 SIGNAL1 PARAM.<br />

Display<br />

value<br />

3407<br />

3406<br />

LOC 15.0Hz<br />

3402<br />

15. 0 Hz<br />

3. 7 A<br />

17. 3 %<br />

3403<br />

Source<br />

value<br />

Note: Parameter is not effective if parameter 3404<br />

OUTPUT1 DSP FORM setting is DIRECT.<br />

x…x Setting range depends on parameter 3401 setting. -<br />

3403 SIGNAL1 MAX Defines the maximum value for the signal selected by<br />

parameter 3401 SIGNAL1 PARAM. See the figure for<br />

parameter 3402 SIGNAL1 MIN.<br />

Note: Parameter is not effective if parameter 3404<br />

OUTPUT1 DSP FORM setting is DIRECT.<br />

-<br />

x…x Setting range depends on parameter 3401 setting. -<br />

103<br />

1 = 1<br />

-


252 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

3404 OUTPUT1 DSP<br />

FORM<br />

Defines the format for the displayed signal (selected by<br />

parameter 3401 SIGNAL1 PARAM).<br />

+/-0 Signed/Unsigned value. Unit is selected by parameter 3405 0<br />

+/-0.0 OUTPUT1 UNIT.<br />

1<br />

+/-0.00 Example: PI (3.14159)<br />

2<br />

+/-0.000 3404 value Display Range 3<br />

+0<br />

+0.0<br />

+0.00<br />

+/-0<br />

+/-0.0<br />

+/-0.00<br />

+/-0.000<br />

+ 3<br />

+ 3.1<br />

+ 3.14<br />

+ 3.142<br />

-32768…+32767 4<br />

5<br />

6<br />

+0.000 +0 3 0…65535 7<br />

+0.0 3.1<br />

+0.00 3.14<br />

+0.000 3.142<br />

BAR METER Bar graph 8<br />

DIRECT Direct value. Decimal point location and units of measure<br />

are the same as for the source signal.<br />

Note: Parameters 3402, 3403 and 3405…3407 are not<br />

effective.<br />

9<br />

3405 OUTPUT1<br />

UNIT<br />

Selects the unit for the displayed signal selected by<br />

parameter 3401 SIGNAL1 PARAM.<br />

Note: Parameter is not effective if parameter 3404<br />

OUTPUT1 DSP FORM setting is DIRECT.<br />

Note: Unit selection does not convert values.<br />

NO UNIT No unit selected 0<br />

A ampere 1<br />

V volt 2<br />

Hz hertz 3<br />

% percent 4<br />

s second 5<br />

h hour 6<br />

rpm revolutions per minute 7<br />

kh kilohour 8<br />

°C celsius 9<br />

lb ft pounds per foot 10<br />

mA milliampere 11<br />

mV millivolt 12<br />

kW kilowatt 13<br />

W watt 14<br />

kWh kilowatt hour 15<br />

°F fahrenheit 16<br />

hp horsepower 17<br />

DIRECT<br />

Hz


Actual signals and parameters 253<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

MWh megawatt hour 18<br />

m/s meters per second 19<br />

m3/h cubic meters per hour 20<br />

dm3/s cubic decimeters per second 21<br />

bar bar 22<br />

kPa kilopascal 23<br />

GPM gallons per minute 24<br />

PSI pounds per square inch 25<br />

CFM cubic feet per minute 26<br />

ft foot 27<br />

MGD millions of gallons per day 28<br />

inHg inches of mercury 29<br />

FPM feet per minute 30<br />

kb/s kilobytes per second 31<br />

kHz kilohertz 32<br />

ohm ohm 33<br />

ppm pulses per minute 34<br />

pps pulses per second 35<br />

l/s liters per second 36<br />

l/min liters per minute 37<br />

l/h liters per hour 38<br />

m3/s cubic meters per second 39<br />

m3/m cubic meters per minute 40<br />

kg/s kilograms per second 41<br />

kg/m kilograms per minute 42<br />

kg/h kilograms per hour 43<br />

mbar millibar 44<br />

Pa pascal 45<br />

GPS gallons per second 46<br />

gal/s gallons per second 47<br />

gal/m gallons per minute 48<br />

gal/h gallons per hour 49<br />

ft3/s cubic feet per second 50<br />

ft3/m cubic feet per minute 51<br />

ft3/h cubic feet per hour 52<br />

lb/s pounds per second 53<br />

lb/m pounds per minute 54<br />

lb/h pounds per hour 55<br />

FPS feet per second 56<br />

ft/s feet per second 57


254 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

inH2O inches of water 58<br />

in wg inches of water gauge 59<br />

ft wg feet on water gauge 60<br />

lbsi pounds per squared inch 61<br />

ms millisecond 62<br />

Mrev millions of revolutions 63<br />

d days 64<br />

inWC inches of water column 65<br />

m/min meters per minute 66<br />

Nm Newton meter 67<br />

Km3/h thousand cubic meters per hour 68<br />

%ref reference in percentage 117<br />

%act actual value in percentage 118<br />

%dev deviation in percentage 119<br />

% LD load in percentage 120<br />

% SP set point in percentage 121<br />

%FBK feedback in percentage 122<br />

Iout output current (in percentage) 123<br />

Vout output voltage 124<br />

Fout output frequency 125<br />

Tout output torque 126<br />

Vdc DC voltage 127<br />

3406 OUTPUT1 MIN Sets the minimum display value for the signal selected by<br />

parameter 3401 SIGNAL1 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

Note: Parameter is not effective if parameter 3404<br />

OUTPUT1 DSP FORM setting is DIRECT.<br />

-<br />

x…x Setting range depends on parameter 3401 setting. -<br />

3407 OUTPUT1<br />

MAX<br />

Sets the maximum display value for the signal selected by<br />

parameter 3401 SIGNAL1 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

Note: Parameter is not effective if parameter 3404<br />

OUTPUT1 DSP FORM setting is DIRECT.<br />

x…x Setting range depends on parameter 3401 setting. -<br />

3408 SIGNAL2<br />

PARAM<br />

0= NOT<br />

SELECTED<br />

101…180<br />

Selects the second signal to be displayed on the control<br />

panel in the Output mode. See parameter 3401 SIGNAL1<br />

PARAM.<br />

Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED. If value is set to 0, no signal is selected.<br />

-<br />

104<br />

1 = 1


All parameters<br />

Actual signals and parameters 255<br />

No. Name/Value Description Def/FbEq<br />

3409 SIGNAL2 MIN Defines the minimum value for the signal selected by<br />

parameter 3408 SIGNAL2 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3408 setting. -<br />

3410 SIGNAL2 MAX Defines the maximum value for the signal selected by<br />

parameter 3408 SIGNAL2 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

-<br />

x…x Setting range depends on parameter 3408 setting. -<br />

3411 OUTPUT2 DSP<br />

FORM<br />

3412 OUTPUT2<br />

UNIT<br />

Defines the format for the displayed signal selected by<br />

parameter 3408 SIGNAL2 PARAM.<br />

DIRECT<br />

See parameter 3404 OUTPUT1 DSP FORM. -<br />

Selects the unit for the displayed signal selected by<br />

parameter 3408 SIGNAL2 PARAM.<br />

-<br />

See parameter 3405 OUTPUT1 UNIT. -<br />

3413 OUTPUT2 MIN Sets the minimum display value for the signal selected by<br />

parameter 3408 SIGNAL2 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3408 setting. -<br />

3414 OUTPUT2<br />

MAX<br />

Sets the maximum display value for the signal selected by<br />

parameter 3408 SIGNAL2 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3408 setting. -<br />

3415 SIGNAL3<br />

PARAM<br />

0= NOT<br />

SELECTED<br />

101…180<br />

Selects the third signal to be displayed on the control panel<br />

in the Output mode. See parameter 3401 SIGNAL1<br />

PARAM.<br />

Parameter index in group 01 OPERATING DATA. Eg 102 =<br />

0102 SPEED. If value is set to 0, no signal is selected.<br />

3416 SIGNAL3 MIN Defines the minimum value for the signal selected by<br />

parameter 3415. See parameter 3402 SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3415 SIGNAL3<br />

PARAM setting.<br />

3417 SIGNAL3 MAX Defines the maximum value for the signal selected by<br />

parameter 3415 SIGNAL3 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3415 SIGNAL3<br />

PARAM setting.<br />

3418 OUTPUT3 DSP<br />

FORM<br />

3419 OUTPUT3<br />

UNIT<br />

-<br />

-<br />

-<br />

105<br />

1 = 1<br />

Defines the format for the displayed signal selected by<br />

parameter 3415 SIGNAL3 PARAM.<br />

DIRECT<br />

See parameter 3404 OUTPUT1 DSP FORM. -<br />

Selects the unit for the displayed signal selected by<br />

parameter 3415 SIGNAL3 PARAM.<br />

-<br />

See parameter 3405 OUTPUT1 UNIT. -<br />

-<br />

-<br />

-<br />

-


256 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

3420 OUTPUT3 MIN Sets the minimum display value for the signal selected by<br />

parameter 3415 SIGNAL3 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3415 SIGNAL3<br />

PARAM setting.<br />

3421 OUTPUT3<br />

MAX<br />

Sets the maximum display value for the signal selected by<br />

parameter 3415 SIGNAL3 PARAM. See parameter 3402<br />

SIGNAL1 MIN.<br />

x…x Setting range depends on parameter 3415 setting. -<br />

35 MOTOR TEMP<br />

MEAS<br />

3501 SENSOR<br />

TYPE<br />

Motor temperature measurement. See section Motor<br />

temperature measurement through the standard I/O on<br />

page 155.<br />

Activates the motor temperature measurement function and<br />

selects the sensor type. See also parameter group 15<br />

ANALOG OUTPUTS.<br />

NONE The function is inactive. 0<br />

1 x PT100 The function is active. The temperature is measured with<br />

one Pt 100 sensor. Analog output AO feeds constant current<br />

through the sensor. The sensor resistance increases as the<br />

motor temperature rises, as does the voltage over the<br />

sensor. The temperature measurement function reads the<br />

voltage through analog input AI1/2 and converts it to<br />

degrees centigrade.<br />

1<br />

2 x PT100 The function is active. Temperature is measured using two<br />

Pt 100 sensors. See selection 1 x PT100.<br />

3 x PT100 The function is active. Temperature is measured using three<br />

Pt 100 sensors. See selection 1 x PT100.<br />

-<br />

-<br />

-<br />

NONE<br />

2<br />

3


All parameters<br />

Actual signals and parameters 257<br />

No. Name/Value Description Def/FbEq<br />

PTC The function is active. The temperature is supervised using<br />

one PTC sensor. Analog output AO feeds constant current<br />

through the sensor. The resistance of the sensor increases<br />

sharply as the motor temperature rises over the PTC<br />

reference temperature (Tref), as does the voltage over the<br />

resistor. The temperature measurement function reads the<br />

voltage through analog input AI1/2 and converts it into<br />

ohms. The figure below shows typical PTC sensor<br />

resistance values as a function of the motor operating<br />

temperature.<br />

THERM(0) The function is active. Motor temperature is monitored using<br />

a PTC sensor (see selection PTC) connected to drive<br />

through a normally closed thermistor relay connected to a<br />

digital input. 0 = motor overtemperature.<br />

THERM(1) The function is active. Motor temperature is monitored using<br />

a PTC sensor (see selection PTC) connected to drive<br />

through a normally open thermistor relay connected to a<br />

digital input. 1 = motor overtemperature.<br />

3502 INPUT<br />

SELECTION<br />

Temperature Resistance<br />

Normal 0…1.5 kohm<br />

Excessive > 4 kohm<br />

ohm<br />

4000<br />

1330<br />

550<br />

100<br />

Selects the source for the motor temperature measurement<br />

signal.<br />

AI1 Analog input AI1. Used when PT100 or PTC sensor is<br />

selected for the temperature measurement.<br />

AI2 Analog input AI2. Used when PT100 or PTC sensor is<br />

selected for the temperature measurement<br />

DI1 Digital input DI1. Used when parameter 3501 SENSOR<br />

TYPE value is set to THERM(0)/THERM(1).<br />

DI2 Digital input DI2. Used when parameter 3501 SENSOR<br />

TYPE value is set to THERM(0)/THERM(1).<br />

T<br />

4<br />

5<br />

6<br />

AI1<br />

1<br />

2<br />

3<br />

4


258 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI3 Digital input DI3. Used when parameter 3501 SENSOR<br />

TYPE value is set to THERM(0)/THERM(1).<br />

DI4 Digital input DI4. Used when parameter 3501 SENSOR<br />

TYPE value is set to THERM(0)/THERM(1).<br />

DI5 Digital input DI5. Used when parameter 3501 SENSOR<br />

TYPE value is set to THERM(0)/THERM(1).<br />

3503 ALARM LIMIT Defines the alarm limit for motor temperature measurement.<br />

Alarm MOTOR TEMP (2010) indication is given when the<br />

limit is exceeded. When parameter 3501 SENSOR TYPE<br />

value is set to THERM(0)/THERM(1): 1 = alarm.<br />

x…x Alarm limit -<br />

3504 FAULT LIMIT Defines the fault trip limit for motor temperature<br />

measurement. The drive trips on fault MOT OVERTEMP<br />

(0009) when the limit is exceeded. When parameter 3501<br />

SENSOR TYPE value is set to THERM(0)/THERM(1): 1 =<br />

fault.<br />

0<br />

x…x Fault limit -<br />

3505 AO<br />

EXCITATION<br />

Enables current feed from analog output AO. Parameter<br />

setting overrides parameter group 15 ANALOG OUTPUTS<br />

settings.<br />

With PTC the output current is 1.6 mA.<br />

With Pt 100 the output current is 9.1 mA.<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1<br />

36 TIMED<br />

Time periods 1 to 4 and booster signal. See section Timed<br />

FUNCTIONS functions on page 163.<br />

5<br />

6<br />

7<br />

0<br />

DISABLE<br />

3601 TIMERS<br />

ENABLE<br />

Selects the source for the timed function enable signal. NOT SEL<br />

NOT SEL Timed function is not selected. 0<br />

DI1 Digital input DI. Timed function enable on the rising edge of<br />

DI1.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

ACTIVE Timed function is always enabled. 7<br />

DI1(INV) Inverted digital input DI1. Timed function enable on the<br />

falling edge of DI1.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5


All parameters<br />

Actual signals and parameters 259<br />

No. Name/Value Description Def/FbEq<br />

3602 START TIME 1 Defines the daily start time 1. The time can be changed in<br />

2-second steps.<br />

00:00:00…<br />

23:59:58<br />

hours:minutes:seconds.<br />

Example: If parameter value is set to 07:00:00, timed<br />

function 1 is activated at 7:00 (7 a.m).<br />

3603 STOP TIME 1 Defines the daily stop time 1. The time can be changed in<br />

2-second steps.<br />

00:00:00<br />

00:00:00<br />

00:00:00… hours:minutes:seconds.<br />

23:59:58 Example: If parameter value is set to 18:00:00, timed<br />

function 1 is deactivated at 18:00 (6 p.m).<br />

3604 START DAY 1 Defines the start day 1. MONDAY<br />

MONDAY<br />

1<br />

TUESDAY Example: If parameter value is set to MONDAY, timed 2<br />

WEDNESDAY<br />

function 1 is active from Monday midnight (00:00:00).<br />

3<br />

THURSDAY 4<br />

FRIDAY 5<br />

SATURDAY 6<br />

SUNDAY 7<br />

3605 STOP DAY 1 Defines the stop day 1.<br />

See parameter 3604 START DAY 1.<br />

Example: If parameter is set to FRIDAY, timed function 1 is<br />

deactivated on Friday midnight (23:59:58).<br />

MONDAY<br />

3606 START TIME 2 See parameter 3602 START TIME 1.<br />

See parameter 3602 START TIME 1.<br />

3607 STOP TIME 2 See parameter 3603 STOP TIME 1.<br />

See parameter 3603 STOP TIME 1.<br />

3608 START DAY 2 See parameter 3604 START DAY 1.<br />

See parameter 3604 START DAY 1.<br />

3609 STOP DAY 2 See parameter 3605 STOP DAY 1.<br />

See parameter 3605 STOP DAY 1.<br />

3610 START TIME 3 See parameter 3602 START TIME 1.<br />

See parameter 3602 START TIME 1.<br />

3611 STOP TIME 3 See parameter 3603 STOP TIME 1.<br />

See parameter 3603 STOP TIME 1.<br />

3612 START DAY 3 See parameter 3604 START DAY 1.<br />

See parameter 3604 START DAY 1.<br />

3613 STOP DAY 3 See parameter 3605 STOP DAY 1.<br />

See parameter 3605 STOP DAY 1.<br />

3614 START TIME 4 See parameter 3602 START TIME 1.<br />

See parameter 3602 START TIME 1.<br />

3615 STOP TIME 4 See parameter 3603 STOP TIME 1.


260 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description<br />

See parameter 3603 STOP TIME 1.<br />

Def/FbEq<br />

3616 START DAY 4 See parameter 3604 START DAY 1.<br />

See parameter 3604 START DAY 1.<br />

3617 STOP DAY 4 See parameter 3605 STOP DAY 1.<br />

See parameter 3605 STOP DAY 1.<br />

3622 BOOSTER<br />

SEL<br />

Selects the source for the booster activation signal. NOT SEL<br />

NOT SEL No booster activation signal 0<br />

DI1 Digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DI1(INV) Inverted digital input DI1. 0 = active, 1 = inactive. -1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

3623 BOOSTER Defines the time inside which the booster is deactivated 00:00:00<br />

TIME<br />

after the booster activation signal is switched off.<br />

00:00:00… hours:minutes:seconds<br />

23:59:58 Example: If parameter 3622 BOOSTER SEL is set to DI1<br />

and 3623 BOOSTER TIME is set to 01:30:00, the booster is<br />

active for 1 hour and 30 minutes after digital input DI is<br />

deactivated.<br />

3626 TIMED FUNC 1<br />

SRC<br />

Booster active<br />

DI<br />

Booster time<br />

Selects the time periods for TIMED FUNC 1 SRC. Timed<br />

function can consist of 0…4 time periods and a booster.<br />

NOT SEL No time periods selected 0<br />

T1 Time period 1 1<br />

T2 Time period 2 2<br />

T1+T2 Time periods 1 and 2 3<br />

T3 Time period 3 4<br />

T1+T3 Time periods 1 and 3 5<br />

T2+T3 Time periods 2 and 3 6<br />

T1+T2+T3 Time periods 1, 2 and 3 7<br />

NOT SEL


Actual signals and parameters 261<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

T4 Time period 4 8<br />

T1+T4 Time periods 1 and 4 9<br />

T2+T4 Time periods 2 and 4 10<br />

T1+T2+T4 Time periods 1, 2 and 4 11<br />

T3+T4 Time periods 4 and 3 12<br />

T1+T3+T4 Time periods 1, 3 and 4 13<br />

T2+T3+T4 Time periods 2, 3 and 4 14<br />

T1+T2+T3+T4 Time periods 1, 2, 3 and 4 15<br />

BOOSTER Booster 16<br />

T1+B Booster and time period 1 17<br />

T2+B Booster and time period 2 18<br />

T1+T2+B Booster and time periods 1 and 2 19<br />

T3+B Booster and time period 3 20<br />

T1+T3+B Booster and time periods 1 and 3 21<br />

T2+T3+B Booster and time periods 2 and 3 22<br />

T1+T2+T3+B Booster and time periods 1, 2 and 3 23<br />

T4+B Booster and time period 4 24<br />

T1+T4+B Booster and time periods 1 and 4 25<br />

T2+T4+B Booster and time periods 2 and 4 26<br />

T1+T2+T4+B Booster and time periods 1, 2 and 4 27<br />

T3+T4+B Booster and time periods 3 and 4 28<br />

T1+T3+T4+B Booster and time periods 1, 3 and 4 29<br />

T2+T3+T4+B Booster and time periods 2, 3 and 4 30<br />

T1+2+3+4+B Booster and time periods 1, 2, 3 and 4 31<br />

3627 TIMED FUNC 2<br />

SRC<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

3628 TIMED FUNC 3<br />

SRC<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

3629 TIMED FUNC 4<br />

SRC<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

See parameter 3626 TIMED FUNC 1 SRC.<br />

40 PROCESS PID Process PID (PID1) control parameter set 1. See section<br />

SET 1<br />

PID control on page 149.<br />

4001 GAIN Defines the gain for the process PID controller. High gain<br />

may cause speed oscillation.<br />

0.1…100.0 Gain. When value is set to 0.1, the PID controller output<br />

changes one-tenth as much as the error value. When value<br />

is set to 100, the PID controller output changes one hundred<br />

times as much as the error value.<br />

1.0<br />

1 = 0.1


262 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

4002 INTEGRATION<br />

TIME<br />

0.0 = NOT SEL<br />

0.1…3600.0 s<br />

Defines the integration time for the process PID1 controller.<br />

The integration time defines the rate at which the controller<br />

output changes when the error value is constant. The<br />

shorter the integration time, the faster the continuous error<br />

value is corrected. Too short an integration time makes the<br />

control unstable.<br />

A = Error<br />

B = Error value step<br />

C = Controller output with gain = 1<br />

D = Controller output with gain = 10<br />

B<br />

D (4001 = 10)<br />

C (4001 = 1)<br />

Integration time. If parameter value is set to zero, integration<br />

(I-part of the PID controller) is disabled.<br />

A<br />

4002<br />

t<br />

60.0 s<br />

1 = 0.1 s


All parameters<br />

4003 DERIVATION<br />

TIME<br />

Actual signals and parameters 263<br />

No. Name/Value Description Def/FbEq<br />

Defines the derivation time for the process PID controller.<br />

Derivative action boosts the controller output if the error<br />

value changes. The longer the derivation time, the more the<br />

speed controller output is boosted during the change. If the<br />

derivation time is set to zero, the controller works as a PI<br />

controller, otherwise as a PID controller.<br />

The derivation makes the control more responsive for<br />

disturbances.<br />

The derivative is filtered with a 1-pole filter. Filter time<br />

constant is defined by parameter 4004 PID DERIV FILTER.<br />

0.0…10.0 s Derivation time. If parameter value is set to zero, the<br />

derivative part of the PID controller is disabled.<br />

4004 PID DERIV<br />

FILTER<br />

Defines the filter time constant for the derivative part of the<br />

process PID controller. Increasing the filter time smooths<br />

the derivative and reduces noise.<br />

0.0…10.0 s Filter time constant. If parameter value is set to zero, the<br />

derivative filter is disabled.<br />

4005 ERROR<br />

VALUE INV<br />

Error Process error value<br />

100%<br />

0%<br />

PID output<br />

Gain<br />

4001<br />

D-part of controller output<br />

4003<br />

Selects the relationship between the feedback signal and<br />

drive speed.<br />

NO Normal: A decrease in feedback signal increases drive<br />

speed. Error = Reference - Feedback<br />

0<br />

YES Inverted: A decrease in feedback signal decreases drive<br />

speed. Error = Feedback - Reference<br />

1<br />

4006 UNITS Selects the unit for PID controller actual values. %<br />

0…68 See parameter 3405 OUTPUT1 UNIT selections in the<br />

given range.<br />

4007 UNIT SCALE Defines the decimal point location for PID controller actual<br />

values.<br />

1<br />

t<br />

t<br />

0.0 s<br />

1 = 0.1 s<br />

1.0 s<br />

1 = 0.1 s<br />

NO


264 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

0…4 Example: PI (3.141593) 1 = 1<br />

4008 0% VALUE Defines together with parameter 4009 100% VALUE the<br />

scaling applied to the PID controller’s actual values.<br />

x…x Unit and range depend on the unit and scale defined by<br />

parameters 4006 UNITS and 4007 UNIT SCALE.<br />

4009 100% VALUE Defines together with parameter 4008 0% VALUE the<br />

scaling applied to the PID controller’s actual values.<br />

x…x Unit and range depend on the unit and scale defined by<br />

parameters 4006 UNITS and 4007 UNIT SCALE.<br />

4010 SET POINT<br />

SEL<br />

4007 value Entry Display<br />

0 00003 3<br />

1 00031 3.1<br />

2 00314 3.14<br />

3 03142 3.142<br />

4 31416 3.1416<br />

Units (4006)<br />

Scale (4007)<br />

4009<br />

4008<br />

-1000%<br />

0%<br />

100%<br />

+1000%<br />

Internal<br />

scale (%)<br />

Selects the source for the process PID controller reference<br />

signal.<br />

KEYPAD Control panel 0<br />

AI1 Analog input AI1 1<br />

AI2 Analog input AI2 2<br />

COMM Fieldbus reference REF2 8<br />

COMM+AI1 Summation of fieldbus reference REF2 and analog input<br />

AI1. See section Reference selection and correction on<br />

page 308.<br />

9<br />

COMM*AI1 Multiplication of fieldbus reference REF2 and analog input<br />

AI1. See section Reference selection and correction on<br />

page 308.<br />

DI3U,4D(RNC) Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease. Stop command resets the reference to<br />

zero. The reference is not saved if the control source is<br />

changed from EXT1 to EXT2, from EXT2 to EXT1 or from<br />

LOC to REM.<br />

0.0<br />

100.0<br />

AI1<br />

10<br />

11


All parameters<br />

Actual signals and parameters 265<br />

No. Name/Value Description Def/FbEq<br />

DI3U,4D(NC) Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease. The program stores the active<br />

reference (not reset by a stop command). The reference is<br />

not saved if the control source is changed from EXT1 to<br />

EXT2, from EXT2 to EXT1 or from LOC to REM.<br />

AI1+AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + AI2(%) - 50%<br />

14<br />

AI1*AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (AI2(%) / 50%)<br />

15<br />

AI1-AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + 50% - AI2(%)<br />

16<br />

AI1/AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (50% / AI2 (%))<br />

17<br />

INTERNAL A constant value defined by parameter 4011 INTERNAL<br />

SETPNT.<br />

19<br />

DI4U,5D(NC) See selection DI3U,4D(NC). 31<br />

FREQ INPUT Frequency input 32<br />

SEQ PROG<br />

OUT<br />

4011 INTERNAL<br />

SETPNT<br />

Sequence programming output. See parameter group 84<br />

SEQUENCE PROG.<br />

Selects a constant value as process PID controller<br />

reference, when parameter 4010 SET POINT SEL value is<br />

set to INTERNAL.<br />

x…x Unit and range depend on the unit and scale defined by<br />

parameters 4006 UNITS and 4007 UNIT SCALE.<br />

4012 SETPOINT<br />

MIN<br />

Defines the minimum value for the selected PID reference<br />

signal source. See parameter 4010 SET POINT SEL.<br />

-500.0…500.0% Value in percent.<br />

Example: Analog input AI1 is selected as the PID reference<br />

source (value of parameter 4010 is AI1). The reference<br />

minimum and maximum correspond to the 1301 MINIMUM<br />

AI1 and 1302 MAXIMUM AI1 settings as follows:<br />

4013 SETPOINT<br />

MAX<br />

4013<br />

(MAX)<br />

4012<br />

(MIN)<br />

Ref Ref<br />

MAX > MIN MIN > MAX<br />

4012<br />

(MIN)<br />

4013<br />

(MAX)<br />

1301 1302 AI1 (%) 1301 1302<br />

AI1 (%)<br />

Defines the maximum value for the selected PID reference<br />

signal source. See parameters 4010 SET POINT SEL and<br />

4012 SETPOINT MIN.<br />

12<br />

33<br />

40<br />

0.0%<br />

1 = 0.1%<br />

100.0%<br />

-500.0…500.0% Value in percent 1 = 0.1%


266 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

4014 FBK SEL Selects the process actual value (feedback signal) for the<br />

process PID controller: The sources for the variables ACT1<br />

and ACT2 are further defined by parameters 4016 ACT1<br />

INPUT and 4017 ACT2 INPUT.<br />

ACT1<br />

ACT1 ACT1 1<br />

ACT1-ACT2 Subtraction of ACT1 and ACT2 2<br />

ACT1+ACT2 Addition of ACT1 and ACT2 3<br />

ACT1*ACT2 Multiplication of ACT1 and ACT2 4<br />

ACT1/ACT2 Division of ACT1 and ACT2 5<br />

MIN(ACT1,2) Selects the smaller of ACT1 and ACT2 6<br />

MAX(ACT1,2) Selects the higher of ACT1 and ACT2 7<br />

sqrt(ACT1-2) Square root of the subtraction of ACT1 and ACT2 8<br />

sqA1+sqA2 Addition of the square root of ACT1 and the square root of<br />

ACT2<br />

9<br />

sqrt(ACT1) Square root of ACT1 10<br />

COMM FBK 1 Signal 0158 PID COMM VALUE 1 value 11<br />

COMM FBK 2 Signal 0159 PID COMM VALUE 2 value 12<br />

4015 FBK<br />

MULTIPLIER<br />

Defines an extra multiplier for the value defined by<br />

parameter 4014 FBK SEL. Parameter is used mainly in<br />

applications where feedback value is calculated from<br />

another variable (eg flow from pressure difference).<br />

0.000<br />

-32.768…<br />

32.767<br />

Multiplier. If parameter value is set to zero, no multiplier is<br />

used.<br />

4016 ACT1 INPUT Defines the source for actual value 1 (ACT1). See also<br />

parameter 4018 ACT1 MINIMUM.<br />

AI2<br />

AI1 Uses analog input 1 for ACT1 1<br />

AI2 Uses analog input 2 for ACT1 2<br />

CURRENT Uses current for ACT1 3<br />

TORQUE Uses torque for ACT1 4<br />

POWER Uses power for ACT1 5<br />

COMM ACT 1 Uses value of signal 0158 PID COMM VALUE 1 for ACT1 6<br />

COMM ACT 2 Uses value of signal 0159 PID COMM VALUE 2 for ACT1 7<br />

FREQ INPUT Frequency input 8<br />

4017 ACT2 INPUT Defines the source for actual value ACT2. See also<br />

parameter 4020 ACT2 MINIMUM.<br />

See parameter 4016 ACT1 INPUT.<br />

AI2<br />

1 = 0.001


All parameters<br />

4018 ACT1<br />

MINIMUM<br />

Actual signals and parameters 267<br />

No. Name/Value Description Def/FbEq<br />

Sets the minimum value for ACT1.<br />

Scales the source signal used as the actual value ACT1<br />

(defined by parameter 4016 ACT1 INPUT). For parameter<br />

4016 values 6 (COMM ACT 1) and 7 (COMM ACT 2)<br />

scaling is not done.<br />

A = Normal; B = Inversion (ACT1 minimum > ACT1<br />

maximum)<br />

-1000…1000% Value in percent 1 = 1%<br />

4019 ACT1<br />

MAXIMUM<br />

Par<br />

4016<br />

Source Source min. Source max.<br />

1 Analog input 1 1301 MINIMUM AI1 1302 MAXIMUM AI1<br />

2 Analog input 2 1304 MINIMUM AI2 1305 MAXIMUM AI2<br />

3 Current 0 2 · nominal current<br />

4 Torque -2 · nominal torque 2 · nominal torque<br />

5 Power -2 · nominal power 2 · nominal power<br />

4019<br />

4018<br />

ACT1 (%) ACT1 (%)<br />

A<br />

Source min. Source max.<br />

Source signal<br />

Defines the maximum value for variable ACT1 if an analog<br />

input is selected as a source for ACT1. See parameter 4016<br />

ACT1 INPUT. The minimum (4018 ACT1 MINIMUM) and<br />

maximum settings of ACT1 define how the voltage/current<br />

signal received from the measuring device is converted to a<br />

percentage value used by the process PID controller.<br />

See parameter 4018 ACT1 MINIMUM.<br />

0%<br />

100%<br />

-1000…1000% Value in percent 1 = 1%<br />

4020 ACT2<br />

MINIMUM<br />

See parameter 4018 ACT1 MINIMUM. 0%<br />

-1000…1000% See parameter 4018. 1 = 1%<br />

4021 ACT2<br />

MAXIMUM<br />

See parameter 4019 ACT1 MAXIMUM. 100%<br />

-1000…1000% See parameter 4019. 1 = 1%<br />

4022 SLEEP Activates the sleep function and selects the source for the NOT SEL<br />

SELECTION activation input. See section Sleep function for the process<br />

PID (PID1) control on page 153.<br />

4018<br />

4019<br />

NOT SEL No sleep function selected 0<br />

B<br />

Source min. Source max.<br />

Source signal


268 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI1 The function is activated/deactivated through digital input<br />

DI1.1 = activation, 0 = deactivation.<br />

The internal sleep criteria set by parameters 4023 PID<br />

SLEEP LEVEL and 4025 WAKE-UP DEV are not effective.<br />

The sleep start and stop delay parameters 4024 PID SLEEP<br />

DELAY and 4026 WAKE-UP DELAY are effective.<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

INTERNAL Activated and deactivated automatically as defined by<br />

parameters 4023 PID SLEEP LEVEL and 4025 WAKE-UP<br />

DEV.<br />

7<br />

DI1(INV) The function is activated/deactivated through inverted digital<br />

input DI1. 1 = deactivation, 0 = activation.<br />

The internal sleep criteria set by parameters 4023 PID<br />

SLEEP LEVEL and 4025 WAKE-UP DEV are not effective.<br />

The sleep start and stop delay parameters 4024 PID SLEEP<br />

DELAY and 4026 WAKE-UP DELAY are effective.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

1<br />

-1


All parameters<br />

4023 PID SLEEP<br />

LEVEL<br />

0.0…500.0 Hz /<br />

0…30000 rpm<br />

4024 PID SLEEP<br />

DELAY<br />

Actual signals and parameters 269<br />

No. Name/Value Description Def/FbEq<br />

Defines the start limit for the sleep function. If the motor<br />

speed is below a set level (4023) longer than the sleep<br />

delay (4024), the drive shifts to the sleeping mode: The<br />

motor is stopped and the control panel shows alarm<br />

message PID SLEEP (2018).<br />

Parameter 4022 SLEEP SELECTION must be set to<br />

INTERNAL.<br />

PID ref<br />

PID process feedback<br />

Wake-up level<br />

deviation (4025)<br />

PID output level<br />

Sleep level<br />

(4023)<br />

tsd = Sleep delay<br />

(4024)<br />

t < tsd t sd<br />

0.0 Hz /<br />

0rpm<br />

Sleep start level 1 = 0.1 Hz<br />

1rpm<br />

Defines the delay for the sleep start function. See parameter<br />

4023 PID SLEEP LEVEL. When the motor speed falls below<br />

the sleep level, the counter starts. When the motor speed<br />

exceeds the sleep level, the counter is reset.<br />

60.0 s<br />

0.0…3600.0 s Sleep start delay 1 = 0.1 s<br />

Stop<br />

Wake-up delay<br />

(4026)<br />

Control<br />

panel:<br />

PID SLEEP<br />

Start<br />

t<br />

t<br />

t


270 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

4025 WAKE-UP DEV Defines the wake-up deviation for the sleep function. The<br />

drive wakes up if the process actual value deviation from<br />

the PID reference value exceeds the set wake-up deviation<br />

(4025) longer than the wake-up delay (4026). Wake-up level<br />

depends on parameter 4005 ERROR VALUE INV settings.<br />

If parameter 4005 is set to 0:<br />

Wake-up level = PID reference (4010) - Wake-up deviation<br />

(4025).<br />

If parameter 4005 is set to 1:<br />

Wake-up level = PID reference (4010) + Wake-up deviation<br />

(4025)<br />

See also figures for parameter 4023 PID SLEEP LEVEL.<br />

x…x Unit and range depend on the unit and scale defined by<br />

parameters 4026 WAKE-UP DELAY and 4007 UNIT<br />

SCALE.<br />

4026 WAKE-UP<br />

DELAY<br />

Defines the wake-up delay for the sleep function. See<br />

parameter 4023 PID SLEEP LEVEL.<br />

0<br />

0.50 s<br />

0.00…60.00 s Wake-up delay 1 = 0.01 s<br />

4027 PID 1 PARAM<br />

SET<br />

PID reference<br />

4025<br />

4025<br />

Wake-up level<br />

when 4005 = 1<br />

Wake-up level<br />

when 4005 = 0<br />

Defines the source from which the drive reads the signal<br />

that selects between PID parameter set 1 and 2.<br />

PID parameter set 1 is defined by parameters 4001…4026.<br />

PID parameter set 2 is defined by parameters 4101…4126.<br />

SET 1 PID SET 1 is active. 0<br />

DI1 Digital input DI1. 1 = PID SET 2, 0 = PID SET 1. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

SET 2 PID SET 2 is active. 7<br />

TIMED FUNC 1 Timed PID SET 1/2 control. Timed function 1 inactive = PID<br />

SET 1, timed function 1 active = PID SET 2. See parameter<br />

group 36 TIMED FUNCTIONS.<br />

8<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 9<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 10<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 11<br />

DI1(INV) Inverted digital input DI1. 0 = PID SET 2, 1 = PID SET 1. -1<br />

t<br />

SET 1


Actual signals and parameters 271<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

41 PROCESS PID Process PID (PID1) control parameter set 2. See section<br />

SET 2<br />

PID control on page 149.<br />

4101 GAIN See parameter 4001 GAIN.<br />

4102 INTEGRATION See parameter 4002 INTEGRATION TIME.<br />

TIME<br />

4103 DERIVATION See parameter 4003 DERIVATION TIME.<br />

TIME<br />

4104 PID DERIV See parameter 4004 PID DERIV FILTER.<br />

FILTER<br />

4105 ERROR See parameter 4005 ERROR VALUE INV.<br />

VALUE INV<br />

4106 UNITS See parameter 4006 UNITS.<br />

4107 UNIT SCALE See parameter 4007 UNIT SCALE.<br />

4108 0% VALUE See parameter 4008 0% VALUE.<br />

4109 100% VALUE See parameter 4009 100% VALUE.<br />

4110 SET POINT See parameter 4010 SET POINT SEL.<br />

SEL<br />

4111 INTERNAL See parameter 4011 INTERNAL SETPNT.<br />

SETPNT<br />

4112 SETPOINT See parameter 4012 SETPOINT MIN.<br />

MIN<br />

4113 SETPOINT See parameter 4013 SETPOINT MAX.<br />

MAX<br />

4114 FBK SEL See parameter 4014 FBK SEL.<br />

4115 FBK<br />

See parameter 4015 FBK MULTIPLIER.<br />

MULTIPLIER<br />

4116 ACT1 INPUT See parameter 4016 ACT1 INPUT.<br />

4117 ACT2 INPUT See parameter 4017 ACT2 INPUT.<br />

4118 ACT1 See parameter 4018 ACT1 MINIMUM.<br />

MINIMUM<br />

4119 ACT1 See parameter 4019 ACT1 MAXIMUM.<br />

MAXIMUM<br />

4120 ACT2 See parameter 4020 ACT2 MINIMUM.<br />

MINIMUM<br />

4121 ACT2 See parameter 4021 ACT2 MAXIMUM.<br />

MAXIMUM<br />

4122 SLEEP See parameter 4022 SLEEP SELECTION.<br />

SELECTION<br />

4123 PID SLEEP See parameter 4023 PID SLEEP LEVEL.<br />

LEVEL<br />

4124 PID SLEEP See parameter 4024 PID SLEEP DELAY.<br />

DELAY


272 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

4125 WAKE-UP DEV See parameter 4025 WAKE-UP DEV.<br />

4126 WAKE-UP See parameter 4026 WAKE-UP DELAY.<br />

DELAY<br />

42 EXT / TRIM PID External/Trim PID (PID2) control. See section PID control<br />

on page 149.<br />

4201 GAIN See parameter 4001 GAIN.<br />

4202 INTEGRATION See parameter 4002 INTEGRATION TIME.<br />

TIME<br />

4203 DERIVATION See parameter 4003 DERIVATION TIME.<br />

TIME<br />

4204 PID DERIV See parameter 4004 PID DERIV FILTER.<br />

FILTER<br />

4205 ERROR See parameter 4005 ERROR VALUE INV.<br />

VALUE INV<br />

4206 UNITS See parameter 4006 UNITS.<br />

4207 UNIT SCALE See parameter 4007 UNIT SCALE.<br />

4208 0% VALUE See parameter 4008 0% VALUE.<br />

4209 100% VALUE See parameter 4009 100% VALUE.<br />

4210 SET POINT See parameter 4010 SET POINT SEL.<br />

SEL<br />

4211 INTERNAL See parameter 4011 INTERNAL SETPNT.<br />

SETPNT<br />

4212 SETPOINT See parameter 4012 SETPOINT MIN.<br />

MIN<br />

4213 SETPOINT See parameter 4013 SETPOINT MAX.<br />

MAX<br />

4214 FBK SEL See parameter 4014 FBK SEL.<br />

4215 FBK<br />

See parameter 4015 FBK MULTIPLIER.<br />

MULTIPLIER<br />

4216 ACT1 INPUT See parameter 4016 ACT1 INPUT.<br />

4217 ACT2 INPUT See parameter 4017 ACT2 INPUT.<br />

4218 ACT1 See parameter 4018 ACT1 MINIMUM.<br />

MINIMUM<br />

4219 ACT1 See parameter 4019 ACT1 MAXIMUM.<br />

MAXIMUM<br />

4220 ACT2 See parameter 4020 ACT2 MINIMUM.<br />

MINIMUM<br />

4221 ACT2 See parameter 4021 ACT2 MAXIMUM.<br />

MAXIMUM<br />

4228 ACTIVATE Selects the source for the external PID function activation<br />

signal. Parameter 4230 TRIM MODE must be set to NOT<br />

SEL.<br />

NOT SEL No external PID control activation selected 0<br />

DI1 Digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

NOT SEL


All parameters<br />

Actual signals and parameters 273<br />

No. Name/Value Description Def/FbEq<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DRIVE RUN Activation at drive start. Start (drive running) = active. 7<br />

ON Activation at drive power-up. Power-up (drive powered) =<br />

active.<br />

8<br />

TIMED FUNC 1 Activation by a timed function. Timed function 1 active = PID 9<br />

control active. See parameter group 36 TIMED<br />

FUNCTIONS.<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 10<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 11<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 12<br />

DI1(INV) Inverted digital input DI1. 0 = active, 1 = inactive. -1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

4229 OFFSET Defines the offset for the external PID controller output.<br />

When PID controller is activated, controller output starts<br />

from the offset value. When PID controller is deactivated,<br />

controller output is reset to the offset value.<br />

Parameter 4230 TRIM MODE must be set to NOT SEL.<br />

0.0%<br />

0.0…100.0% Value in percent 1 = 0.1%<br />

4230 TRIM MODE Activates the trim function and selects between the direct<br />

and proportional trimming. With trimming it is possible to<br />

combine a corrective factor to the drive reference. See<br />

section Reference trimming on page 129.<br />

NOT SEL<br />

NOT SEL No trim function selected 0<br />

PROPORTION<br />

AL<br />

Active. The trimming factor is proportional to the rpm/Hz<br />

reference before trimming (REF1).<br />

DIRECT Active. The trimming factor is relative to a fixed maximum<br />

limit used in the reference control loop (maximum speed,<br />

frequency or torque).<br />

4231 TRIM SCALE Defines the multiplier for the trimming function. See section<br />

Reference trimming on page 129.<br />

0.0%<br />

-100.0…100.0% Multiplier 1 = 0.1%<br />

4232 CORRECTION<br />

SRC<br />

Selects the trim reference. See section Reference trimming<br />

on page 129.<br />

PID2REF PID2 reference selected by parameter 4210 (ie signal 0129 1<br />

PID 2 SETPNT value)<br />

PID2OUTPUT PID2 output, ie signal 0127 PID 2 OUTPUT value 2<br />

1<br />

2<br />

PID2REF


274 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

4233 TRIM<br />

SELECTION<br />

Selects whether the trimming is used for correcting the<br />

speed or torque reference. See section Reference trimming<br />

on page 129.<br />

SPEED/FREQ Speed reference trimming 0<br />

TORQUE Torque reference trimming (only for REF2 (%)) 1<br />

43 MECH BRK Control of a mechanical brake. See section Control of a<br />

CONTROL<br />

mechanical brake on page 157.<br />

4301 BRAKE OPEN<br />

DLY<br />

Defines the brake open delay (= the delay between the<br />

internal open brake command and the release of the motor<br />

speed control). The delay counter starts when the motor<br />

current/torque/speed has risen to the level required at brake<br />

release (parameter 4302 BRAKE OPEN LVL or 4304<br />

FORCED OPEN LVL) and the motor has been magnetized.<br />

Simultaneously with the start of the counter, the brake<br />

function energizes the relay output controlling the brake and<br />

the brake starts opening.<br />

SPEED/F<br />

REQ<br />

0.20 s<br />

0.00…2.50 s Delay time 1 = 0.01 s<br />

4302 BRAKE OPEN<br />

LVL<br />

Defines the motor starting torque/current at brake release.<br />

After start the drive current/torque is frozen to the set value,<br />

until the motor is magnetized.<br />

0.0…180.0% Value in percent of the nominal torque TN (in vector control)<br />

or the nominal current I2N (in scalar control).<br />

The control mode is selected by parameter 9904 MOTOR<br />

CTRL MODE.<br />

4303 BRAKE<br />

CLOSE LVL<br />

Defines the brake close speed. After stop the brake is<br />

closed when drive speed falls below the set value.<br />

0.0…100.0% Value in percent of the nominal speed (in vector control) or<br />

the nominal frequency (in scalar control). The control mode<br />

is selected by parameter 9904 MOTOR CTRL MODE.<br />

4304 FORCED<br />

OPEN LVL<br />

0.0 = NOT SEL<br />

0.0…100.0%<br />

4305 BRAKE MAGN<br />

DELAY<br />

Defines the speed at brake release. Parameter setting<br />

overrides parameter 4302 BRAKE OPEN LVL setting. After<br />

start, the drive speed is frozen to the set value, until the<br />

motor is magnetized.<br />

The purpose of this parameter is to generate enough start<br />

torque to prevent the motor rotating into the wrong direction<br />

because of the motor load.<br />

Value in percent of the maximum frequency (in scalar<br />

control) or the maximum speed (in vector control). If<br />

parameter value is set to zero, the function is disabled. The<br />

control mode is selected by parameter 9904 MOTOR CTRL<br />

MODE.<br />

Defines motor magnetizing time. After start drive<br />

current/torque/speed is frozen to the value defined by<br />

parameter 4302 BRAKE OPEN LVL or 4304 FORCED<br />

OPEN LVL for the set time.<br />

100%<br />

1 = 0.1%<br />

4.0%<br />

1 = 0.1%<br />

0.0 =<br />

NOT SEL<br />

1 = 0.1%<br />

0 = NOT<br />

SEL


0 = NOT SEL<br />

0…10000 ms<br />

4306 RUNTIME<br />

FREQ LVL<br />

0.0 = NOT SEL<br />

0.0…100.0%<br />

4307 BRK OPEN<br />

LVL SEL<br />

Actual signals and parameters 275<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

magnetizing time. If parameter value is set to zero, the<br />

function is disabled.<br />

Defines the brake close speed. When frequency falls below<br />

the set level during run, the brake is closed. The brake is reopened<br />

when the requirements set by parameters<br />

4301…4305 are met.<br />

Value in percent of the maximum frequency (in scalar<br />

control) or the maximum speed (in vector control). If<br />

parameter value is set to zero, the function is disabled. The<br />

control mode is selected by parameter 9904 MOTOR CTRL<br />

MODE.<br />

Selects the torque (in vector control) or current (in scalar<br />

control) applied at brake release.<br />

1 = 1 ms<br />

0.0 =<br />

NOT SEL<br />

1 = 0.1%<br />

PAR 4302<br />

PAR 4302 Value of parameter 4302 BRAKE OPEN LVL used. 1<br />

MEMORY Torque value (in vector control) or current value (in scalar<br />

control) saved in parameter 0179 BRAKE TORQUE MEM<br />

used.<br />

Useful in applications where initial torque is needed to<br />

prevent unintended movement when the mechanical brake<br />

is released.<br />

2<br />

50 ENCODER Encoder connection.<br />

For more information, see MTAC-01 pulse encoder interface<br />

module user’s <strong>manual</strong> (3AFE68591091 [English]).<br />

5001 PULSE NR States the number of encoder pulses per one revolution. 1024 ppr<br />

32…16384 ppr Pulse number in pulses per round (ppr) 1 = 1 ppr<br />

5002 ENCODER<br />

ENABLE<br />

Enables the encoder. DISABLE<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1<br />

5003 ENCODER Defines the operation of the drive if a failure is detected in FAULT<br />

FAULT communication between the pulse encoder and the pulse<br />

encoder interface module, or between the module and the<br />

drive.<br />

FAULT The drive trips on fault ENCODER ERR (0023). 1<br />

ALARM The drive generates alarm ENCODER ERROR (2024). 2<br />

5010 Z PLS ENABLE Enables the encoder zero (Z) pulse. Zero pulse is used for<br />

position reset.<br />

DISABLE<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1<br />

5011 POSITION<br />

RESET<br />

Enables the position reset. DISABLE<br />

DISABLE Disabled 0<br />

ENABLE Enabled 1


276 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

51 EXT COMM<br />

MODULE<br />

The parameters need to be adjusted only when a fieldbus<br />

adapter module (optional) is installed and activated by<br />

parameter 9802 COMM PROT SEL. For more details on the<br />

parameters, refer to the <strong>manual</strong> of the fieldbus module and<br />

chapter Fieldbus control with fieldbus adapter on page 325.<br />

These parameter settings will remain the same even though<br />

the macro is changed.<br />

Note: In adapter module the parameter group number is 1.<br />

5101 FBA TYPE Displays the type of the connected fieldbus adapter module.<br />

NOT DEFINED Fieldbus module is not found, or it is not properly<br />

connected, or parameter 9802 COMM PROT SEL setting is<br />

not EXT FBA.<br />

0<br />

PROFIBUS-DP Profibus adapter module 1<br />

CANopen CANopen adapter module 32<br />

DEVICENET DeviceNet adapter module 37<br />

5102 FB PAR 2 These parameters are adapter module-specific. For more<br />

… …<br />

information, see the module <strong>manual</strong>. Note that not all of<br />

5126 FB PAR 26<br />

these parameters are necessarily visible.<br />

5127 FBA PAR Validates any changed adapter module configuration<br />

REFRESH parameter settings. After refreshing, the value reverts<br />

automatically to DONE.<br />

DONE Refreshing done 0<br />

REFRESH Refreshing 1<br />

5128 FILE CPI FW Displays the parameter table revision of the fieldbus adapter<br />

REV<br />

module mapping file stored in the memory of the drive.<br />

Format is xyz where:<br />

• x = major revision number<br />

• y = minor revision number<br />

• x = correction letter.<br />

0000…FFFF<br />

hex<br />

Parameter table revision 1 = 1<br />

5129 FILE CONFIG Displays the drive type code of the fieldbus adapter module<br />

ID<br />

mapping file stored in the memory of the drive.<br />

0…65535 Drive type code of fieldbus adapter module mapping file 1 = 1<br />

5130 FILE CONFIG Displays the fieldbus adapter module mapping file revision<br />

REV<br />

stored in the memory of the drive in decimal format.<br />

Example: 1 = revision 1.<br />

0…65535 Mapping file revision 1 = 1<br />

5131 FBA STATUS Displays the status of the fieldbus adapter module<br />

communication.<br />

IDLE Adapter is not configured. 0<br />

EXECUT INIT Adapter is initializing. 1


Actual signals and parameters 277<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

TIME OUT A time-out has occurred in the communication between the<br />

adapter and the drive.<br />

CONFIG<br />

ERROR<br />

Adapter configuration error: The major or minor revision<br />

code of the common program revision in the fieldbus<br />

adapter module is not the revision required by the module<br />

(see parameter 5132 FBA CPI FW REV) or mapping file<br />

upload has failed more than three times.<br />

OFF-LINE Adapter is off-line. 4<br />

ON-LINE Adapter is on-line. 5<br />

RESET Adapter is performing a hardware reset. 6<br />

5132 FBA CPI FW Displays the common program revision of the adapter<br />

REV<br />

module in format axyz, where:<br />

• a = major revision number<br />

• xy = minor revision numbers<br />

• z = correction letter.<br />

Example: 190A = revision 1.90A<br />

Common program revision of the adapter module 1 = 1<br />

5133 FBA APPL FW Displays the application program revision of the adapter<br />

REV<br />

module in format axyz, where:<br />

• a = major revision number<br />

• xy = minor revision numbers<br />

• z = correction letter.<br />

Example: 190A = revision 1.90A<br />

Application program revision of the adapter module 1 = 1<br />

52 PANEL COMM Communication settings for the control panel port on the<br />

drive<br />

5201 STATION ID Defines the address of the drive. Two units with the same<br />

address are not allowed on-line.<br />

1<br />

1…247 Address 1 = 1<br />

5202 BAUD RATE Defines the transfer rate of the link. 9.6 kb/s<br />

1.2 kb/s 1.2 kbit/s 1 =<br />

2.4 kb/s 2.4 kbit/s<br />

0.1 kbit/s<br />

4.8 kb/s 4.8 kbit/s<br />

9.6 kb/s 9.6 kbit/s<br />

19.2 kb/s 19.2 kbit/s<br />

38.4 kb/s 38.4 kbit/s<br />

57.6 kb/s 57.6 kbit/s<br />

115.2 kb/s 115.2 kbit/s<br />

5203 PARITY Defines the use of parity and stop bit(s). The same setting<br />

must be used in all on-line stations.<br />

8 NONE 1<br />

8 NONE 1 8 data bits, no parity bit, one stop bit 0<br />

8 NONE 2 8 data bits, no parity bit, two stop bits 1<br />

2<br />

3


278 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

8 EVEN 1 8 data bits, even parity indication bit, one stop bit 2<br />

8 ODD 1 8 data bits, odd parity indication bit, one stop bit 3<br />

5204 OK<br />

Number of valid messages received by the drive. During 0<br />

MESSAGES normal operation, this number increases constantly.<br />

0…65535 Number of messages 1 = 1<br />

5205 PARITY Number of characters with a parity error received from the 0<br />

ERRORS Modbus link. If the number is high, check that the parity<br />

settings of the devices connected on the bus are the same.<br />

Note: High electromagnetic noise levels generate errors.<br />

0…65535 Number of characters 1 = 1<br />

5206 FRAME<br />

ERRORS<br />

Number of characters with a framing error received by the<br />

Modbus link. If the number is high, check that the<br />

communication speed settings of the devices connected on<br />

the bus are the same.<br />

Note: High electromagnetic noise levels generate errors.<br />

0…65535 Number of characters 1 = 1<br />

5207 BUFFER<br />

OVERRUNS<br />

Number of characters which overflow the buffer, ie number<br />

of characters which exceed the maximum message length,<br />

128 bytes.<br />

0…65535 Number of characters 1 = 1<br />

5208 CRC ERRORS Number of messages with an CRC (cyclic redundancy<br />

check) error received by the drive. If the number is high,<br />

check CRC calculation for possible errors.<br />

Note: High electromagnetic noise levels generate errors.<br />

0<br />

0…65535 Number of messages 1 = 1<br />

53 EFB PROTOCOL Embedded fieldbus link settings. See chapter Fieldbus<br />

control with embedded fieldbus on page 301.<br />

5302 EFB STATION<br />

ID<br />

Defines the address of the device. Two units with the same<br />

address are not allowed on-line.<br />

0…247 Address 1 = 1<br />

5303 EFB BAUD<br />

RATE<br />

Defines the transfer rate of the link. 9.6 kb/s<br />

1.2 kb/s 1.2 kbit/s 1 =<br />

2.4 kb/s 2.4 kbit/s<br />

0.1 kbit/s<br />

4.8 kb/s 4.8 kbit/s<br />

9.6 kb/s 9.6 kbit/s<br />

19.2 kb/s 19.2 kbit/s<br />

38.4 kb/s 38.4 kbit/s<br />

57.6 kb/s 57.6 kbit/s<br />

115.2 kb/s 115.2 kbit/s<br />

5304 EFB PARITY Defines the use of parity and stop bit(s) and the data length. 8 NONE 1<br />

The same setting must be used in all on-line stations.<br />

8 NONE 1 No parity bit, one stop bit, 8 data bits 0<br />

0<br />

0<br />

1


Actual signals and parameters 279<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

8 NONE 2 No parity bit, two stop bits, 8 data bits 1<br />

8 EVEN 1 Even parity indication bit, one stop bit, 8 data bits 2<br />

8 ODD 1 Odd parity indication bit, one stop bit, 8 data bits 3<br />

5305 EFB CTRL Selects the communication profile. See section<br />

ABB DRV<br />

PROFILE Communication profiles on page 315.<br />

LIM<br />

ABB DRV LIM ABB drives limited profile 0<br />

DCU PROFILE DCU profile 1<br />

ABB DRV<br />

FULL<br />

ABB drives profile 2<br />

5306 EFB OK Number of valid messages received by the drive. During 0<br />

MESSAGES normal operation, this number increases constantly.<br />

0…65535 Number of messages 1 = 1<br />

5307 EFB CRC<br />

ERRORS<br />

Number of messages with an CRC (cyclic redundancy<br />

check) error received by the drive. If the number is high,<br />

check CRC calculation for possible errors.<br />

Note: High electromagnetic noise levels generate errors.<br />

0<br />

0…65535 Number of messages 1 = 1<br />

5310 EFB PAR 10 Selects an actual value to be mapped to Modbus register<br />

40005.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5311 EFB PAR 11 Selects an actual value to be mapped to Modbus register<br />

40006.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5312 EFB PAR 12 Selects an actual value to be mapped to Modbus register<br />

40007.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5313 EFB PAR 13 Selects an actual value to be mapped to Modbus register<br />

40008.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5314 EFB PAR 14 Selects an actual value to be mapped to Modbus register<br />

40009.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5315 EFB PAR 15 Selects an actual value to be mapped to Modbus register<br />

40010.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5316 EFB PAR 16 Selects an actual value to be mapped to Modbus register<br />

40011.<br />

0<br />

0…65535 Parameter index 1 = 1<br />

5317 EFB PAR 17 Selects an actual value to be mapped to Modbus register<br />

40012.<br />

0<br />

0…65535 Parameter index 1 = 1


280 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

5318 EFB PAR 18 For Modbus: Sets an additional delay before the drive<br />

begins transmitting response to the master request.<br />

0<br />

0…65535 Delay in milliseconds 1 = 1<br />

5319 EFB PAR 19 ABB drives profile (ABB DRV LIM or ABB DRV FULL)<br />

Control word. Read only copy of the fieldbus Control word.<br />

0000 hex<br />

0000…FFFF<br />

hex<br />

Control word<br />

5320 EFB PAR 20 ABB drives profile (ABB DRV LIM or ABB DRV FULL)<br />

Status word. Read only copy of the fieldbus Status word.<br />

0000 hex<br />

0000…FFFF<br />

hex<br />

Status word<br />

54 FBA DATA IN Data from the drive to the fieldbus controller through a<br />

fieldbus adapter. See chapter Fieldbus control with fieldbus<br />

adapter on page 325.<br />

Note: In adapter module the parameter group number is 3.<br />

5401 FBA DATA IN 1 Selects data to be transferred from the drive to the fieldbus<br />

controller.<br />

0 Not in use<br />

1…6 Control and status data words<br />

101…9999 Parameter index<br />

5402 FBA DATA IN 2 See 5401 FBA DATA IN 1.<br />

… … …<br />

5410 FBA DATA IN<br />

10<br />

See 5401 FBA DATA IN 1.<br />

55 FBA DATA OUT Data from the fieldbus controller to the drive through a<br />

fieldbus adapter. See chapter Fieldbus control with fieldbus<br />

adapter on page 325.<br />

Note: In adapter module the parameter group number is 2.<br />

5501 FBA DATA<br />

OUT 1<br />

0 Not in use<br />

5401 setting Data word<br />

1 Control word<br />

2 REF1<br />

3 REF2<br />

4 Status word<br />

5 Actual value 1<br />

6 Actual value 2<br />

Selects data to be transferred from the fieldbus controller to<br />

the drive.


All parameters<br />

1…6 Control and status data words<br />

101…9999 Drive parameter<br />

5502 FBA DATA<br />

OUT 2<br />

See 5501 FBA DATA OUT 1.<br />

… … …<br />

5510 FBA DATA<br />

OUT 10<br />

See 5501 FBA DATA OUT 1.<br />

84 SEQUENCE Sequence programming. See section Sequence<br />

PROG<br />

programming on page 166.<br />

8401 SEQ PROG<br />

ENABLE<br />

Actual signals and parameters 281<br />

No. Name/Value Description Def/FbEq<br />

5501 setting Data word<br />

1 Control word<br />

2 REF1<br />

3 REF2<br />

4 Status word<br />

5 Actual value 1<br />

6 Actual value 2<br />

Enables Sequence programming.<br />

If Sequence programming enable signal is lost, the<br />

Sequence programming is stopped, Sequence<br />

programming state (0168 SEQ PROG STATE) is set to 1<br />

and all timers and outputs (RO/TO/AO) are set to zero.<br />

DISABLED Disabled 0<br />

EXT2 Enabled in external control location 2 (EXT2) 1<br />

EXT1 Enabled in external control location 1 (EXT1) 2<br />

EXT1&EXT2 Enabled in external control locations 1 and 2 (EXT1 and<br />

EXT2)<br />

3<br />

ALWAYS Enabled in external control locations 1 and 2 (EXT1 and<br />

EXT2) and in local control (LOCAL)<br />

4<br />

DISABLE<br />

D


282 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

8402 SEQ PROG<br />

START<br />

Selects the source for the Sequence programming<br />

activation signal.<br />

When Sequence programming is activated, the<br />

programming starts from the previously used state.<br />

If Sequence programming activation signal is lost, the<br />

Sequence programming is stopped and all timers and<br />

outputs (RO/TO/AO) are set to zero. Sequence<br />

programming state (0168 SEQ PROG STATE) remains<br />

unchanged.<br />

If start from the first Sequence programming state is<br />

required, the Sequence programming must be reset by<br />

parameter 8404 SEQ PROG RESET. If start from the first<br />

Sequence programming state is always required, reset and<br />

start signal sources (8404 and 8402 SEQ PROG START)<br />

must be through the same digital input.<br />

Note: The drive will not start if no Run enable signal is<br />

received (1601 RUN ENABLE).<br />

DI1(INV) Sequence programming activation through inverted digital<br />

input DI1. 0 = active, 1 = inactive.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No Sequence programming activation signal 0<br />

DI1 Sequence programming activation through digital input DI1. 1<br />

1 = active, 0 = inactive.<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

DRIVE START Sequence programming activation at drive start 6<br />

TIMED FUNC 1 Sequence programming is activated by timed function 1.<br />

See parameter group 36 TIMED FUNCTIONS.<br />

7<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 8<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 9<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 10<br />

RUNNING Sequence programming is always active. 11<br />

8403 SEQ PROG<br />

PAUSE<br />

Selects the source for the Sequence programming pause<br />

signal. When Sequence programming pause is activated, all<br />

timers and outputs (RO/TO/AO) are frozen. Sequence<br />

programming state transition is possible only by parameter<br />

8405 SEQ ST FORCE.<br />

NOT SEL<br />

NOT SEL


Actual signals and parameters 283<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DI1(INV) Pause signal through inverted digital input DI1. 0 = active, 1 -1<br />

= inactive.<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No pause signal 0<br />

DI1 Pause signal through digital input DI1. 1 = active, 0 =<br />

inactive.<br />

1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

PAUSED Sequence programming pause enabled 6<br />

8404 SEQ PROG<br />

RESET<br />

Selects the source for the Sequence programming reset<br />

signal. Sequence programming state (0168 SEQ PROG<br />

STATE) is set to the first state and all timers and outputs<br />

(RO/TO/AO) are set to zero.<br />

Reset is possible only when Sequence programming is<br />

stopped.<br />

DI1(INV) Reset through inverted digital input DI1. 0 = active, 1 =<br />

inactive.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No reset signal 0<br />

DI1 Reset through digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

RESET Reset. After reset parameter value is automatically set to<br />

NOT SEL.<br />

6<br />

8405 SEQ ST<br />

FORCE<br />

Forces the Sequence programming to a selected state.<br />

Note: State is changed only when Sequence programming<br />

is paused by parameter 8403 SEQ PROG PAUSE and this<br />

parameter is set to the selected state.<br />

STATE 1 State is forced to state 1. 1<br />

STATE 2 State is forced to state 2. 2<br />

STATE 3 State is forced to state 3. 3<br />

STATE 4 State is forced to state 4. 4<br />

NOT SEL<br />

STATE 1


284 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

STATE 5 State is forced to state 5. 5<br />

STATE 6 State is forced to state 6. 6<br />

STATE 7 State is forced to state 7. 7<br />

STATE 8 State is forced to state 8. 8<br />

8406 SEQ LOGIC Defines the source for the logic value 1. Logic value 1 is NOT SEL<br />

VAL 1 compared to logic value 2 as defined by parameter 8407<br />

SEQ LOGIC OPER 1.<br />

Logic operation values are used in state transitions. See<br />

parameter 8425 ST1 TRIG TO ST 2 / 8426 ST1 TRIG TO<br />

ST N selection LOGIC VAL.<br />

DI1(INV) Logic value 1 through inverted digital input DI1 -1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No logic value 0<br />

DI1 Logic value 1 through digital input DI1 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

SUPRV1 Logic value according to supervision parameters<br />

6<br />

OVER 3201…3203. See parameter group 32 SUPERVISION.<br />

SUPRV2 Logic value according to supervision parameters<br />

7<br />

OVER 3204…3206. See parameter group 32 SUPERVISION.<br />

SUPRV3 Logic value according to supervision parameters<br />

8<br />

OVER 3207…3209. See parameter group 32 SUPERVISION.<br />

SUPRV1<br />

UNDER<br />

See selection SUPRV1 OVER. 9<br />

SUPRV2<br />

UNDER<br />

See selection SUPRV2 OVER. 10<br />

SUPRV3<br />

UNDER<br />

See selection SUPRV3 OVER. 11<br />

TIMED FUNC 1 Logic value 1 is activated by timed function 1. See<br />

parameter group 36 TIMED FUNCTIONS. 1 = timed<br />

function active.<br />

12<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 13<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 14<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 15<br />

8407 SEQ LOGIC Selects the operation between logic value 1 and 2. Logic NOT SEL<br />

OPER 1 operation values are used in state transitions. See<br />

parameter 8425 ST1 TRIG TO ST 2 / 8426 ST1 TRIG TO<br />

ST N selection LOGIC VAL.


Actual signals and parameters 285<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

NOT SEL Logic value 1 (no logic comparison) 0<br />

AND Logic function: AND 1<br />

OR Logic function: OR 2<br />

XOR Logic function: XOR 3<br />

8408 SEQ LOGIC<br />

VAL 2<br />

See parameter 8406 SEQ LOGIC VAL 1.<br />

See parameter 8406.<br />

NOT SEL<br />

8409 SEQ LOGIC Selects the operation between logic value 3 and the result NOT SEL<br />

OPER 2 of the first logic operation defined by parameter 8407 SEQ<br />

LOGIC OPER 1.<br />

NOT SEL Logic value 2 (no logic comparison) 0<br />

AND Logic function: AND 1<br />

OR Logic function: OR 2<br />

XOR Logic function: XOR 3<br />

8410 SEQ LOGIC<br />

VAL 3<br />

See parameter 8406 SEQ LOGIC VAL 1.<br />

See parameter 8406.<br />

NOT SEL<br />

8411 SEQ VAL 1 Defines the high limit for the state change when parameter 0.0%<br />

HIGH<br />

8425 ST1 TRIG TO ST 2 is set to eg AI 1 HIGH 1.<br />

0.0…100.0% Value in percent 1 = 0.1%<br />

8412 SEQ VAL 1 Defines the low limit for the state change when parameter 0.0%<br />

LOW<br />

8425 ST1 TRIG TO ST 2 is set to eg AI 1 LOW 1.<br />

0.0…100.0% Value in percent 1 = 0.1%<br />

8413 SEQ VAL 2 Defines the high limit for the state change when parameter 0.0%<br />

HIGH<br />

8425 ST1 TRIG TO ST 2 is set to eg AI 2 HIGH 1.<br />

0.0…100.0% Value in percent 1 = 0.1%<br />

8414 SEQ VAL 2 Defines the low limit for the state change when parameter 0.0%<br />

LOW<br />

8425 ST1 TRIG TO ST 2 is set to eg AI 2 LOW 1.<br />

0.0…100.0% Value in percent 1 = 0.1%<br />

8415 CYCLE CNT Activates the cycle counter for Sequence programming. NOT SEL<br />

LOC<br />

Example: When parameter is set to ST6 TO NEXT, the<br />

cycle count (0171 SEQ CYCLE CNTR) increases every<br />

time the state changes from state 6 to state 7.<br />

NOT SEL Disabled 0<br />

ST1 TO NEXT From state 1 to state 2 1<br />

ST2 TO NEXT From state 2 to state 3 2<br />

ST3 TO NEXT From state 3 to state 4 3<br />

ST4 TO NEXT From state 4 to state 5 4<br />

ST5 TO NEXT From state 5 to state 6 5<br />

ST6 TO NEXT From state 6 to state 7 6<br />

ST7 TO NEXT From state 7 to state 8 7<br />

ST8 TO NEXT From state 8 to state 1 8


286 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

ST1 TO N From state 1 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST2 TO N From state 2 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST3 TO N From state 3 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST4 TO N From state 4 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST5 TO N From state 5 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST6 TO N From state 6 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST7 TO N From state 7 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

ST8 TO N From state 8 to state n. State n is defined by parameter<br />

8427 ST1 STATE N.<br />

8416 CYCLE CNT<br />

RST<br />

Selects the source for the cycle counter reset signal (0171<br />

SEQ CYCLE CNTR).<br />

DI1(INV) Reset through inverted digital input DI1. 0 = active, 1 =<br />

inactive.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No reset signal 0<br />

DI1 Reset through digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

STATE 1 Reset during state transition to state 1. Counter is reset,<br />

when the state has been reached.<br />

6<br />

STATE 2 Reset during state transition to state 2. Counter is reset,<br />

when the state has been reached.<br />

7<br />

STATE 3 Reset during state transition to state 3. Counter is reset,<br />

when the state has been reached.<br />

8<br />

STATE 4 Reset during state transition to state 4. Counter is reset,<br />

when the state has been reached.<br />

9<br />

STATE 5 Reset during state transition to state 5. Counter is reset,<br />

when the state has been reached.<br />

10<br />

STATE 6 Reset during state transition to state 6. Counter is reset,<br />

when the state has been reached.<br />

11<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

NOT SEL


Actual signals and parameters 287<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

STATE 7 Reset during state transition to state 7. Counter is reset,<br />

when the state has been reached.<br />

STATE 8 Reset during state transition to state 8. Counter is reset,<br />

when the state has been reached.<br />

SEQ PROG<br />

RST<br />

Reset signal source defined by parameter 8404 SEQ PROG<br />

RESET<br />

8420 ST1 REF SEL Selects the source for the Sequence programming state 1<br />

reference. Parameter is used when parameter 1103 REF1<br />

SELECT or 1106 REF2 SELECT is set to SEQ PROG /<br />

AI1+SEQ PROG / AI2+SEQ PROG.<br />

Note: Constant speeds in group 12 CONSTANT SPEEDS<br />

overwrite the selected Sequence programming reference.<br />

0.0%<br />

COMM 0136 COMM VALUE 2. For scaling, see Fieldbus reference -1.3<br />

scaling on page 310.<br />

AI1/AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (50% / AI2 (%))<br />

-1.2<br />

AI1-AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + 50% - AI2(%)<br />

-1.1<br />

AI1*AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) · (AI2(%) / 50%)<br />

-1.0<br />

AI1+AI2 Reference is calculated with the following equation:<br />

REF = AI1(%) + AI2(%) - 50%<br />

-0.9<br />

DI4U,5D Digital input DI4: Reference increase. Digital input DI5:<br />

Reference decrease.<br />

-0.8<br />

DI3U,4D Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease.<br />

-0.7<br />

DI3U,4DR Digital input DI3: Reference increase. Digital input DI4:<br />

Reference decrease.<br />

-0.6<br />

AI2 JOY Analog input AI2 as joystick. The minimum input signal runs -0.5<br />

the motor at the maximum reference in the reverse<br />

direction, the maximum input at the maximum reference in<br />

the forward direction. Minimum and maximum references<br />

are defined by parameters 1104 REF1 MIN and 1105 REF1<br />

MAX. See parameter 1103 REF1 SELECT selection<br />

AI1/JOYST for more information.<br />

AI1 JOY See selection AI2 JOY. -0.4<br />

AI2 Analog input AI2 -0.3<br />

AI1 Analog input AI1 -0.2<br />

KEYPAD Control panel -0.1<br />

0.0 …100.0% Constant speed 1 = 0.1%<br />

8421 ST1<br />

COMMANDS<br />

Selects the start, stop and direction for state 1. Parameter<br />

1002 EXT2 COMMANDS must be set to SEQ PROG.<br />

Note: If change of direction of rotation is required,<br />

parameter 1003 DIRECTION must be set to REQUEST.<br />

DRIVE<br />

STOP<br />

12<br />

13<br />

14


288 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

DRIVE STOP Drive coast or ramps to stop depending on parameter 2102<br />

STOP FUNCTION setting.<br />

START FRW Direction or rotation is fixed to forward. If the drive is not<br />

already running, it is started according to parameter 2101<br />

START FUNCTION settings.<br />

START REV Direction or rotation is fixed to reverse. If the drive is not<br />

already running, it is started according to parameter 2101<br />

START FUNCTION settings.<br />

8422 ST1 RAMP Selects the acceleration/deceleration ramp time for<br />

Sequence programming state 1, ie defines the rate of the<br />

reference change.<br />

-0.2/-0.1/<br />

0.0…1800.0 s<br />

8423 ST1 OUT<br />

CONTROL<br />

Time<br />

When value is set to -0.2, ramp pair 2 is used. Ramp pair 2<br />

is defined by parameters 2205…2207.<br />

When value is set to -0.1, ramp pair 1 is used. Ramp pair 1<br />

is defined by parameters 2202…2204.<br />

With ramp pair 1/2, parameter 2201 ACC/DEC 1/2 SEL<br />

must be set to SEQ PROG. See also parameters<br />

2202…2207.<br />

Selects the relay, transistor and analog output control for<br />

Sequence programming state 1.<br />

The relay/transistor output control must be activated by<br />

setting parameter 1401 RELAY OUTPUT 1 / 1805 DO<br />

SIGNAL to SEQ PROG. Analog output control must be<br />

activated by parameter group 15 ANALOG OUTPUTS.<br />

Analog output control values can be monitored with signal<br />

0170 SEQ PROG AO VAL.<br />

R=0,D=1,AO=0 Relay output is de-energized (opened), transistor output is<br />

energized and analog output is cleared.<br />

R=1,D=0,AO=0 Relay output is energized (closed), transistor output is deenergized<br />

and analog output is cleared.<br />

R=0,D=0,AO=0 Relay and transistor outputs are de-energized (opened) and<br />

analog output value is set to zero.<br />

RO=0,DO=0 Relay and transistor outputs are de-energized (opened) and<br />

analog output control is frozen to the previously set value.<br />

RO=1,DO=1 Relay and transistor outputs are energized (closed) and<br />

analog output control is frozen to the previously set value.<br />

DO=1 Transistor output is energized (closed) and relay output is<br />

de-energized. Analog output control is frozen to the<br />

previously set value.<br />

RO=1 Transistor output is de-energized (opened) and relay output<br />

is energized. Analog output control is frozen to the<br />

previously set value.<br />

0<br />

1<br />

2<br />

0.0 s<br />

1 = 0.1 s<br />

AO=0<br />

-0.7<br />

-0.6<br />

-0.5<br />

-0.4<br />

-0.3<br />

-0.2<br />

-0.1


All parameters<br />

Actual signals and parameters 289<br />

No. Name/Value Description Def/FbEq<br />

AO=0 Analog output value is set to zero. Relay and transistor<br />

outputs are frozen to the previously set value.<br />

0.1…100.0% Value written to signal 0170 SEQ PROG AO VAL. Value can<br />

be connected to control analog output AO by setting<br />

parameter 1501 AO1 CONTENT SEL value to 170 (ie signal<br />

0170 SEQ PROG AO VAL). AO value is frozen to this value<br />

until it is zeroed.<br />

8424 ST1 CHANGE<br />

DLY<br />

Defines the delay time for state 1. When delay has elapsed,<br />

state transition is allowed. See parameters 8425 ST1 TRIG<br />

TO ST 2 and 8426 ST1 TRIG TO ST N.<br />

0.0<br />

0.0 s<br />

0.0…6553.5 s Delay time 1 = 0.1 s<br />

8425 ST1 TRIG TO<br />

ST 2<br />

Selects the source for the trigger signal which changes the<br />

state from state 1 to state 2.<br />

Note: State change to state N (8426 ST1 TRIG TO ST N)<br />

has a higher priority than state change to the next state<br />

(8425 ST1 TRIG TO ST 2).<br />

DI1(INV) Trigger through inverted digital input DI1. 0 = active, 1 =<br />

inactive.<br />

-1<br />

DI2(INV) See selection DI1(INV). -2<br />

DI3(INV) See selection DI1(INV). -3<br />

DI4(INV) See selection DI1(INV). -4<br />

DI5(INV) See selection DI1(INV). -5<br />

NOT SEL No trigger signal. If parameter 8426 ST1 TRIG TO ST N<br />

setting is also NOT SEL, the state is frozen and can be reset<br />

only with parameter 8402 SEQ PROG START.<br />

0<br />

DI1 Trigger through digital input DI1. 1 = active, 0 = inactive. 1<br />

DI2 See selection DI1. 2<br />

DI3 See selection DI1. 3<br />

DI4 See selection DI1. 4<br />

DI5 See selection DI1. 5<br />

AI 1 LOW 1 State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

value.<br />

6<br />

AI 1 HIGH 1 State change when AI1 value > par. 8411 SEQ VAL 1 HIGH<br />

value.<br />

AI 2 LOW 1 State change when AI2 value < par. 8412 SEQ VAL 1 LOW<br />

value.<br />

AI 2 HIGH 1 State change when AI2 value > par. 8411 SEQ VAL 1 HIGH<br />

value.<br />

AI1 OR 2 LO1 State change when AI1 or AI2 value < par. 8412 SEQ VAL 1<br />

LOW value.<br />

AI1LO1AI2HI1 State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

value and AI2 value > par. 8411 SEQ VAL 1 HIGH value.<br />

NOT SEL<br />

7<br />

8<br />

9<br />

10<br />

11


290 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

AI1LO1 ORDI5 State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

value or when DI5 is active.<br />

12<br />

AI2HI1 ORDI5 State change when AI2 value > par. 8411 SEQ VAL 1 HIGH 13<br />

value or when DI5 is active.<br />

AI 1 LOW 2 State change when AI1 value < par. 8414 SEQ VAL 2 LOW<br />

value.<br />

14<br />

AI 1 HIGH 2 State change when AI1 value > par. 8413 SEQ VAL 2 HIGH 15<br />

value.<br />

AI 2 LOW 2 State change when AI2 value < par. 8414 SEQ VAL 2 LOW<br />

value.<br />

16<br />

AI 2 HIGH 2 State change when AI2 value > par. 8413 SEQ VAL 2 HIGH 17<br />

value.<br />

AI1 OR 2 LO2 State change when AI1 or AI2 value < par. 8414 SEQ VAL 2 18<br />

LOW value.<br />

AI1LO2AI2HI2 State change when AI1 value < par. 8414 SEQ VAL 2 LOW<br />

value and AI2 value > par. 8413 SEQ VAL 2 HIGH value.<br />

19<br />

AI1LO2 ORDI5 State change when AI1 value < par. 8414 SEQ VAL 2 LOW<br />

value or when DI5 is active.<br />

20<br />

AI2HI2 ORDI5 State change when AI2 value > par. 8413 SEQ VAL 2 HIGH 21<br />

value or when DI5 is active.<br />

TIMED FUNC 1 Trigger with timed function 1. See parameter group 36<br />

TIMED FUNCTIONS.<br />

22<br />

TIMED FUNC 2 See selection TIMED FUNC 1. 23<br />

TIMED FUNC 3 See selection TIMED FUNC 1. 24<br />

TIMED FUNC 4 See selection TIMED FUNC 1. 25<br />

CHANGE DLY State change after delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed.<br />

26<br />

DI1 OR DELAY State change after DI1 activation or after delay time defined 27<br />

by parameter 8424 ST1 CHANGE DLY has elapsed.<br />

DI2 OR DELAY See selection DI1 OR DELAY. 28<br />

DI3 OR DELAY See selection DI1 OR DELAY. 29<br />

DI4 OR DELAY See selection DI1 OR DELAY. 30<br />

DI5 OR DELAY See selection DI1 OR DELAY. 31<br />

AI1HI1 ORDLY State change when AI1 value > par. 8411 SEQ VAL 1 HIGH 32<br />

value or after delay time defined by parameter 8424 ST1<br />

CHANGE DLY has elapsed.<br />

AI2LO1 ORDLY State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

value or after delay time defined by parameter 8424 ST1<br />

CHANGE DLY has elapsed.<br />

AI1HI2 ORDLY State change when AI1 value > par. 8413 SEQ VAL 2 HIGH<br />

value or after delay time defined by parameter 8424 ST1<br />

CHANGE DLY has elapsed.<br />

33<br />

34


All parameters<br />

Actual signals and parameters 291<br />

No. Name/Value Description Def/FbEq<br />

AI2LO2 ORDLY State change when AI2 value < par. 8414 SEQ VAL 2 LOW<br />

value or after delay time defined by parameter 8424 ST1<br />

CHANGE DLY has elapsed.<br />

SUPRV1<br />

OVER<br />

SUPRV2<br />

OVER<br />

SUPRV3<br />

OVER<br />

SUPRV1<br />

UNDER<br />

SUPRV2<br />

UNDER<br />

SUPRV3<br />

UNDER<br />

SPV1OVRORD<br />

LY<br />

SPV2OVRORD<br />

LY<br />

SPV3OVRORD<br />

LY<br />

Logic value according to supervision parameters<br />

3201…3203. See parameter group 32 SUPERVISION.<br />

Logic value according to supervision parameters<br />

3204…3206. See parameter group 32 SUPERVISION.<br />

Logic value according to supervision parameters<br />

3207…3209. See parameter group 32 SUPERVISION.<br />

See selection SUPRV1 OVER. 39<br />

See selection SUPRV2 OVER. 40<br />

See selection SUPRV3 OVER. 41<br />

State change according to supervision parameters<br />

3201…3203 or when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed. See parameter group 32<br />

SUPERVISION.<br />

State change according to supervision parameters<br />

3204…3206 or when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed. See parameter group 32<br />

SUPERVISION.<br />

State change according to supervision parameters<br />

3207…3209 or when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed. See parameter group 32<br />

SUPERVISION.<br />

SPV1UNDORD<br />

LY<br />

See selection SPV1OVRORDLY. 45<br />

SPV2UNDORD<br />

LY<br />

See selection SPV2OVRORDLY. 46<br />

SPV3UNDORD<br />

LY<br />

See selection SPV3OVRORDLY. 47<br />

CNTR OVER State change when counter value exceeds the limit defined<br />

by par. 1905 COUNTER LIMIT. See parameters<br />

1904…1911.<br />

48<br />

CNTR UNDER State change when counter value is below the limit defined<br />

by par. 1905 COUNTER LIMIT. See parameters<br />

1904…1911.<br />

LOGIC VAL State change according to logic operation defined by<br />

parameters 8406…8410<br />

ENTER<br />

SETPNT<br />

State change when drive output frequency/speed enters the<br />

reference area (ie the difference is less than or equal to 4%<br />

of the maximum reference).<br />

35<br />

36<br />

37<br />

38<br />

42<br />

43<br />

44<br />

49<br />

50<br />

51


292 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

AT SETPOINT State change when drive output frequency/speed equals the<br />

reference value (= is within tolerance limits, ie the error is<br />

less than or equal to 1% of the maximum reference).<br />

AI1 L1 & DI5 State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

and when DI5 is active.<br />

AI2 L2 & DI5 State change when AI2 value < par. 8414 SEQ VAL 2 LOW<br />

value and when DI5 is active.<br />

AI1 H1 & DI5 State change when AI1 value > par. 8411 SEQ VAL 1 HIGH<br />

value and when DI5 is active.<br />

AI2 H2 & DI5 State change when AI2 value > par. 8413 SEQ VAL 2 HIGH<br />

value and when DI5 is active.<br />

AI1 L1 & DI4 State change when AI1 value < par. 8412 SEQ VAL 1 LOW<br />

value and when DI4 is active.<br />

AI2 L2 & DI4 State change when AI2 value < par. 8414 SEQ VAL 2 LOW<br />

value and when DI4 is active.<br />

AI1 H1 & DI4 State change when AI1 value > par. 8411 SEQ VAL 1 HIGH<br />

value and when DI4 is active.<br />

AI2 H2 & DI4 State change when AI2 value > par. 8413 SEQ VAL 2 HIGH<br />

value and when DI4 is active.<br />

DLY AND DI1 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and DI1 is active.<br />

DLY AND DI2 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and DI2 is active.<br />

DLY AND DI3 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and DI3 is active.<br />

DLY AND DI4 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and DI4 is active.<br />

DLY AND DI5 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and DI5 is active.<br />

DLY & AI2 H2 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and AI2 value > par. 8413<br />

SEQ VAL 2 HIGH value.<br />

DLY & AI2 L2 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and AI2 value < par. 8414<br />

SEQ VAL 2 LOW value.<br />

DLY & AI1 H1 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and AI1 value > par. 8411<br />

SEQ VAL 1 HIGH value.<br />

DLY & AI1 L1 State change when delay time defined by parameter 8424<br />

ST1 CHANGE DLY has elapsed and AI1 value < par. 8412<br />

SEQ VAL 1 LOW value.<br />

COMM VAL1<br />

#0<br />

COMM VAL1<br />

#1<br />

0135 COMM VALUE 1 bit 0. 1 = state change. 70<br />

0135 COMM VALUE 1 bit 1. 1 = state change. 71<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69


Actual signals and parameters 293<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

COMM VAL1<br />

#2<br />

0135 COMM VALUE 1 bit 2. 1 = state change. 72<br />

COMM VAL1<br />

#3<br />

0135 COMM VALUE 1 bit 3. 1 = state change. 73<br />

COMM VAL1<br />

#4<br />

0135 COMM VALUE 1 bit 4. 1 = state change. 74<br />

COMM VAL1<br />

#5<br />

0135 COMM VALUE 1 bit 5. 1 = state change. 75<br />

COMM VAL1<br />

#6<br />

0135 COMM VALUE 1 bit 6. 1 = state change. 76<br />

COMM VAL1<br />

#7<br />

0135 COMM VALUE 1 bit 7. 1 = state change. 77<br />

AI2H2DI4SV1O State change according to supervision parameters<br />

3201…3203 when AI2 value > par. 8413 SEQ VAL 2 HIGH<br />

value and DI4 is active.<br />

78<br />

AI2H2DI5SV1O State change according to supervision parameters<br />

3201…3203 when AI2 value > par. 8413 SEQ VAL 2 HIGH<br />

value and DI5 is active.<br />

STO State change when STO (Safe torque off) has been<br />

triggered.<br />

STO(-1) State change when STO (Safe torque off) becomes inactive<br />

and the drive operates normally.<br />

8426 ST1 TRIG TO<br />

ST N<br />

Selects the source for the trigger signal which changes the<br />

state from state 1 to state N. State N is defined with<br />

parameter 8427 ST1 STATE N.<br />

Note: State change to state N (8426 ST1 TRIG TO ST N)<br />

has a higher priority than state change to the next state<br />

(8425 ST1 TRIG TO ST 2).<br />

79<br />

80<br />

81<br />

NOT SEL<br />

8427 ST1 STATE N<br />

See parameter 8425 ST1 TRIG TO ST 2.<br />

Defines the state N. See parameter 8426 ST1 TRIG TO ST<br />

N.<br />

STATE 1<br />

STATE 1 State 1 1<br />

STATE 2 State 2 2<br />

STATE 3 State 3 3<br />

STATE 4 State 4 4<br />

STATE 5 State 5 5<br />

STATE 6 State 6 6<br />

STATE 7 State 7 7<br />

STATE 8<br />

8430 ST2 REF SEL<br />

State 8 8<br />

…<br />

8497 ST8 STATE N<br />

See parameters 8420…8427.


294 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

98 OPTIONS External serial communication activation<br />

9802 COMM PROT<br />

SEL<br />

Activates the external serial communication and selects the<br />

interface.<br />

NOT SEL No communication 0<br />

STD MODBUS Embedded fieldbus. Interface: EIA-485 provided by optional 1<br />

FMBA-01 Modbus adapter connected to drive terminal X3.<br />

See chapter Fieldbus control with embedded fieldbus on<br />

page 301.<br />

EXT FBA The drive communicates through a fieldbus adapter module<br />

connected to drive terminal X3. See also parameter group<br />

51 EXT COMM MODULE.<br />

See chapter Fieldbus control with fieldbus adapter on page<br />

325.<br />

MODBUS<br />

RS232<br />

Embedded fieldbus. Interface: RS-232 (ie control panel<br />

connector). See chapter Fieldbus control with fieldbus<br />

adapter on page 325.<br />

NOT SEL<br />

99 START-UP DATA Language selection. Definition of motor set-up data.<br />

9901 LANGUAGE Selects the display language used on the assistant control<br />

panel.<br />

Note: With the ACS-CP-D assistant control panel, the<br />

following languages are available: English (0), Chinese (1),<br />

Korean (2) and Japanese (3).<br />

ENGLISH<br />

ENGLISH British English 0<br />

ENGLISH (AM) American English 1<br />

DEUTSCH German 2<br />

ITALIANO Italian 3<br />

ESPAÑOL Spanish 4<br />

PORTUGUES Portuguese 5<br />

NEDERLANDS Dutch 6<br />

FRANÇAIS French 7<br />

DANSK Danish 8<br />

SUOMI Finnish 9<br />

SVENSKA Swedish 10<br />

RUSSKI Russian 11<br />

POLSKI Polish 12<br />

TÜRKÇE Turkish 13<br />

CZECH Czech 14<br />

MAGYAR Hungarian 15<br />

ELLINIKA Greek 16<br />

9902 APPLIC Selects the application macro. See chapter Application ABB<br />

MACRO macros on page 109.<br />

STANDA<br />

RD<br />

4<br />

10


All parameters<br />

Actual signals and parameters 295<br />

No. Name/Value Description Def/FbEq<br />

ABB<br />

STANDARD<br />

Standard macro for constant speed applications 1<br />

3-WIRE 3-wire macro for constant speed applications 2<br />

ALTERNATE Alternate macro for start forward and start reverse<br />

applications<br />

3<br />

MOTOR POT Motor potentiometer macro for digital signal speed control<br />

applications<br />

4<br />

HAND/AUTO Hand/Auto macro to be used when two control devices are<br />

connected to the drive:<br />

• Device 1 communicates through the interface defined by<br />

external control location EXT1.<br />

• Device 2 communicates through the interface defined by<br />

external control location EXT2.<br />

EXT1 or EXT2 is active at a time. Switching between<br />

EXT1/2 through digital input.<br />

5<br />

PID CONTROL PID control. For applications in which the drive controls a<br />

process value, eg pressure control by the drive running the<br />

pressure boost pump. Measured pressure and the pressure<br />

reference are connected to the drive.<br />

TORQUE<br />

CTRL<br />

Torque control macro 8<br />

LOAD FD SET FlashDrop parameter values as defined by the FlashDrop<br />

file. Parameter view is selected by parameter 1611<br />

PARAMETER VIEW.<br />

FlashDrop is an optional device for fast copying of<br />

parameters to unpowered drives. FlashDrop allows easy<br />

customization of the parameter list, eg selected parameters<br />

can be hidden. For more information, see MFDT-01<br />

FlashDrop user’s <strong>manual</strong> (3AFE68591074 [English]).<br />

31<br />

USER S1<br />

LOAD<br />

USER S1<br />

SAVE<br />

USER S2<br />

LOAD<br />

USER S2<br />

SAVE<br />

USER S3<br />

LOAD<br />

USER S3<br />

SAVE<br />

User 1 macro loaded into use. Before loading, check that<br />

the saved parameter settings and the motor model are<br />

suitable for the application.<br />

Save User 1 macro. Stores the current parameter settings<br />

and the motor model.<br />

User 2 macro loaded into use. Before loading, check that<br />

the saved parameter settings and the motor model are<br />

suitable for the application.<br />

Save User 2 macro. Stores the current parameter settings<br />

and the motor model.<br />

User 3 macro loaded into use. Before loading, check that<br />

the saved parameter settings and the motor model are<br />

suitable for the application.<br />

Save User 3 macro. Stores the current parameter settings<br />

and the motor model.<br />

6<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5


296 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

9903 MOTOR TYPE Selects the motor type.<br />

Cannot be changed while the drive is running.<br />

AM Asynchronous motor. Three-phase AC voltage-supplied<br />

induction motor with squirrel cage rotor.<br />

PMSM Permanent magnet motor. Three-phase AC voltagesupplied<br />

synchronous motor with permanent magnet rotor<br />

and sinusoidal back emf voltage.<br />

9904 MOTOR CTRL<br />

MODE<br />

VECTOR:<br />

SPEED<br />

VECTOR:<br />

TORQ<br />

SCALAR:<br />

FREQ<br />

Selects the motor control mode. SCALAR:<br />

FREQ<br />

Sensorless vector control mode.<br />

Reference 1 = speed reference in rpm.<br />

Reference 2 = speed reference in percent. 100% is the<br />

absolute maximum speed, equal to the value of parameter<br />

2002 MAXIMUM SPEED (or 2001 MINIMUM SPEED if the<br />

absolute value of the minimum speed is greater than the<br />

maximum speed value).<br />

Vector control mode.<br />

Reference 1 = speed reference in rpm.<br />

Reference 2 = torque reference in percent. 100% equals<br />

nominal torque.<br />

Scalar control mode.<br />

3<br />

Reference 1 = frequency reference in Hz.<br />

Reference 2 = frequency reference in percent. 100% is the<br />

absolute maximum frequency, equal to the value of<br />

parameter 2008 MAXIMUM FREQ (or 2007 MINIMUM<br />

FREQ if the absolute value of the minimum speed is greater<br />

than the maximum speed value).<br />

AM<br />

1<br />

2<br />

1<br />

2


9905 MOTOR NOM<br />

VOLT<br />

200 V units:<br />

115…345 V<br />

400 V E units:<br />

200…600 V<br />

400 V U units:<br />

230…690 V<br />

Actual signals and parameters 297<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

9906 MOTOR NOM<br />

CURR<br />

Defines the nominal motor voltage. For asynchronous<br />

motors, must be equal to the value on the motor rating plate.<br />

For permanent magnet motors, the nominal voltage is the<br />

back emf voltage at nominal speed.<br />

If the voltage is given as voltage per rpm, eg 60 V per<br />

1000 rpm, the voltage for 3000 rpm nominal speed is<br />

3·60V = 180V.<br />

The drive cannot supply the motor with a voltage greater<br />

than the input power voltage.<br />

Note that the output voltage is not limited by the nominal<br />

motor voltage but increased linearly up to the value of the<br />

input voltage.<br />

Output voltage<br />

WARNING! Never connect a motor to a drive which is<br />

connected to power line with voltage level higher than<br />

the rated motor voltage.<br />

Voltage.<br />

Note: The stress on the motor insulations is always<br />

dependent on the drive supply voltage. This also applies to<br />

the case where the motor voltage rating is lower than the<br />

rating of the drive and the supply of the drive.<br />

Defines the nominal motor current. Must be equal to the<br />

value on the motor rating plate.<br />

200 V<br />

units:<br />

230 V<br />

400 V<br />

E units:<br />

400 V<br />

400 V<br />

U units:<br />

460 V<br />

1 = 1 V<br />

0.2…2.0 · I 2N Current 1 = 0.1 A<br />

9907 MOTOR NOM<br />

FREQ<br />

Defines the nominal motor frequency, ie the frequency at<br />

which the output voltage equals the motor nominal voltage:<br />

Field weakening point = Nom. frequency · Supply voltage /<br />

Motor nom. voltage<br />

I 2N<br />

E: 50.0 Hz<br />

U: 60.0 Hz<br />

10.0…500.0 Hz Frequency 1 = 0.1 Hz<br />

9908 MOTOR NOM<br />

SPEED<br />

Defines the nominal motor speed. Must be equal to the<br />

value on the motor rating plate.<br />

Type<br />

dependent<br />

50…30000 rpm Speed 1 = 1 rpm<br />

9909 MOTOR NOM<br />

POWER<br />

Input voltage<br />

9905<br />

9907<br />

Output frequency<br />

Defines the nominal motor power. Must equal the value on<br />

the motor rating plate.<br />

0.2…3.0 · P N kW Power 1 =<br />

0.1 kW /<br />

0.1 hp<br />

P N


298 Actual signals and parameters<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

9910 ID RUN This parameter controls a self-calibration process called the<br />

Motor ID run. During this process, the drive operates the<br />

motor and makes measurements to identify motor<br />

characteristics and create a model used for internal<br />

calculations.<br />

OFF/IDMAGN The Motor ID run process is not run. Identification<br />

magnetization is performed, depending on parameter 9904<br />

MOTOR CTRL MODE. In identification magnetization, the<br />

motor model is calculated at first start by magnetizing the<br />

motor for 10 to 15 s at zero speed (motor not rotating,<br />

except that a permanent magnet motor can rotate a fraction<br />

of a revolution). The model is recalculated always at start<br />

after motor parameter changes.<br />

• Parameter 9904 = 1 (VECTOR: SPEED) or 2 (VECTOR:<br />

TORQ): Identification magnetization is performed.<br />

• Parameter 9904 = 3 (SCALAR: FREQ): Identification<br />

magnetization is not performed.<br />

ON ID run. Guarantees the best possible control accuracy. The<br />

ID run takes about one minute. An ID run is especially<br />

effective when:<br />

• vector control mode is used (parameter 9904 = 1<br />

[VECTOR: SPEED] or 2 [VECTOR: TORQ]), and<br />

• operation point is near zero speed and/or<br />

• operation requires a torque range above the motor<br />

nominal torque, over a wide speed range, and without<br />

any measured speed feedback (ie without a pulse<br />

encoder).<br />

Note: The motor must be de-coupled from the driven<br />

equipment.<br />

Note: Check the direction of rotation of the motor before<br />

starting the ID run. During the run, the motor will rotate in<br />

the forward direction.<br />

Note: If motor parameters are changed after ID run, repeat<br />

the ID run.<br />

WARNING! The motor will run at up to approximately<br />

50…80% of the nominal speed during the ID run.<br />

ENSURE THAT IT IS SAFE TO RUN THE MOTOR<br />

BEFORE PERFORMING THE ID RUN!<br />

9912 MOTOR NOM<br />

TORQUE<br />

Calculated motor nominal torque in N·m (calculation is<br />

based on parameter 9909 MOTOR NOM POWER and 9908<br />

MOTOR NOM SPEED values).<br />

OFF/IDM<br />

AGN<br />

0…3000.0 N·m Read-only 1 =<br />

0.1 N·m<br />

0<br />

1<br />

0


9913 MOTOR POLE<br />

PAIRS<br />

Actual signals and parameters 299<br />

All parameters<br />

No. Name/Value Description Def/FbEq<br />

Calculated motor pole pair number (calculation is based on<br />

parameter 9907 MOTOR NOM FREQ and 9908 MOTOR<br />

NOM SPEED values).<br />

- Read-only 1 = 1<br />

9914 PHASE<br />

INVERSION<br />

Inverts two phases in the motor cable. This changes the<br />

direction of the motor rotation without having to exchange<br />

the positions of two motor cable phase conductors at the<br />

drive output terminals or at the motor connection box.<br />

NO Phases not inverted 0<br />

YES Phases inverted 1<br />

0<br />

NO


300 Actual signals and parameters


Fieldbus control with<br />

embedded fieldbus<br />

What this chapter contains<br />

Fieldbus control with embedded fieldbus 301<br />

The chapter describes how the drive can be controlled by external devices over a<br />

communication network using embedded fieldbus.<br />

System overview<br />

The drive can be connected to an external control system through a fieldbus adapter<br />

or embedded fieldbus. For fieldbus adapter control, see chapter Fieldbus control with<br />

fieldbus adapter on page 325.<br />

The embedded fieldbus supports Modbus RTU protocol. Modbus is a serial,<br />

asynchronous protocol. Transaction is half-duplex.<br />

The embedded fieldbus can be connected with either RS-232 (control panel<br />

connector X2) or EIA-485 (terminal X1 of the optional FMBA-01 Modbus adapter<br />

connected to drive terminal X3). The maximum length of the communication cable<br />

with RS-232 is restricted to 3 meters. For more information on the FMBA-01 Modbus<br />

adapter module, see FMBA-01 Modbus adapter module user’s <strong>manual</strong><br />

(3AFE68586704 [English]).<br />

RS-232 is designed for a point-to-point application (a single master controlling one<br />

slave). EIA-485 is designed for a multipoint application (a single master controlling<br />

one or more slaves).


302 Fieldbus control with embedded fieldbus<br />

Drive<br />

RS-232<br />

panel connector<br />

1)<br />

X3<br />

FMBA-01<br />

Modbus adapter<br />

Other<br />

devices<br />

Data flow<br />

Control word (CW)<br />

References<br />

Status word (SW)<br />

Actual values<br />

Parameter R/W<br />

requests/responses<br />

EIA-485 1)<br />

X1<br />

Fieldbus controller<br />

Fieldbus<br />

1) Embedded fieldbus<br />

(Modbus) connection is<br />

either RS-232 or EIA-485.<br />

Process I/O (cyclic)<br />

Service messages (acyclic)<br />

The drive can be set to receive all of its control information through the fieldbus<br />

interface, or the control can be distributed between the fieldbus interface and other<br />

available sources, eg digital and analog inputs.


Fieldbus control with embedded fieldbus 303<br />

Setting up communication through the embedded Modbus<br />

Before configuring the drive for fieldbus control, the FMBA-01 Modbus adapter (if<br />

used) must be mechanically and electrically installed according to the instructions<br />

given in section Attach the optional fieldbus module on page 35, and the module<br />

<strong>manual</strong>.<br />

The communication through the fieldbus link is initialized by setting parameter 9802<br />

COMM PROT SEL to STD MODBUS or MODBUS RS232. The communication<br />

parameters in group 53 EFB PROTOCOL must also be adjusted. See the table below.<br />

Parameter Alternative<br />

settings<br />

COMMUNICATION INITIALIZATION<br />

9802 COMM PROT<br />

SEL<br />

NOT SEL<br />

STD MODBUS<br />

EXT FBA<br />

MODBUS RS232<br />

ADAPTER MODULE CONFIGURATION<br />

5302 EFB STATION<br />

ID<br />

5303 EFB BAUD<br />

RATE<br />

Setting for<br />

fieldbus control<br />

STD MODBUS<br />

(with EIA-485)<br />

MODBUS RS232<br />

(with RS-232)<br />

Function/Information<br />

Initializes embedded fieldbus<br />

communication.<br />

0…247 Any Defines the station ID address of<br />

the RS-232/EIA-485 link. No two<br />

stations on line may have the<br />

same address.<br />

1.2 kbit/s<br />

2.4 kbit/s<br />

4.8 kbit/s<br />

9.6 kbit/s<br />

19.2 kbit/s<br />

38.4 kbit/s<br />

57.6 kbit/s<br />

115.2 kbit/s<br />

5304 EFB PARITY 8 NONE 1<br />

8 NONE 2<br />

8 EVEN 1<br />

8 ODD 1<br />

5305 EFB CTRL<br />

PROFILE<br />

5310<br />

…<br />

5317<br />

EFB PAR 10<br />

…<br />

EFB PAR 17<br />

ABB DRV LIM<br />

DCU PROFILE<br />

ABB DRV FULL<br />

Defines the communication<br />

speed of the RS-232/EIA-485<br />

link.<br />

Selects the parity setting. The<br />

same settings must be used in all<br />

on-line stations.<br />

Any Selects the communication profile<br />

used by the drive. See section<br />

Communication profiles on<br />

page 315.<br />

0…65535 Any Selects an actual value to be<br />

mapped to Modbus register 400xx.<br />

After the configuration parameters in group 53 EFB PROTOCOL have been set, the<br />

drive control parameters (shown in section Drive control parameters on page 304)<br />

must be checked and adjusted when necessary.<br />

The new settings will take effect when the drive is next powered up, or when<br />

parameter 5302 EFB STATION ID setting is cleared and reset.


304 Fieldbus control with embedded fieldbus<br />

Drive control parameters<br />

After the Modbus communication has been set up, the drive control parameters listed<br />

in the table below should be checked and adjusted when necessary.<br />

The Setting for fieldbus control column gives the value to use when the Modbus<br />

interface is the desired source or destination for that particular signal. The<br />

Function/Information column gives a description of the parameter.<br />

Parameter Setting for<br />

fieldbus<br />

control<br />

Function/Information Modbus register<br />

address<br />

CONTROL COMMAND SOURCE SELECTION ABB DRV DCU<br />

1001 EXT1<br />

COMMANDS<br />

1002 EXT2<br />

COMMANDS<br />

1003 DIRECTION FORWARD<br />

REVERSE<br />

REQUEST<br />

1010 JOGGING<br />

SEL<br />

1102 EXT1/EXT2<br />

SEL<br />

1103 REF1<br />

SELECT<br />

1106 REF2<br />

SELECT<br />

COMM Enables 0301 FB CMD WORD 1 bits<br />

0…1 (STOP/START) when EXT1 is<br />

selected as the active control<br />

location.<br />

COMM Enables 0301 FB CMD WORD 1 bits<br />

0…1 (STOP/START) when EXT2 is<br />

selected as the active control<br />

location.<br />

Enables the rotation direction control<br />

as defined by parameters 1001 and<br />

1002. The direction control is<br />

explained in section Reference<br />

handling on page 311.<br />

COMM Enables jogging 1 or 2 activation<br />

through 0302 FB CMD WORD 2 bits<br />

20…21 (JOGGING 1 / JOGGING 2).<br />

COMM Enables EXT1/EXT2 selection<br />

through 0301 FB CMD WORD 1 bit 5<br />

(EXT2); with the ABB drives profile<br />

5319 EFB PAR 19 bit 11 (EXT CTRL<br />

LOC).<br />

COMM<br />

COMM+AI1<br />

COMM*AI1<br />

COMM<br />

COMM+AI1<br />

COMM*AI1<br />

Fieldbus reference REF1 is used<br />

when EXT1 is selected as the active<br />

control location. See section Fieldbus<br />

references on page 308 for<br />

information on the alternative<br />

settings.<br />

Fieldbus reference REF2 is used<br />

when EXT2 is selected as the active<br />

control location. See section Fieldbus<br />

references on page 308 for<br />

information on the alternative<br />

settings.<br />

40001<br />

bit 11<br />

40031<br />

bits 0…1<br />

40031<br />

bits 0…1<br />

40031<br />

bit 2<br />

40032<br />

bits<br />

20…21<br />

40031<br />

bit 5<br />

40002 for REF1<br />

40003 for REF2


Parameter Setting for<br />

fieldbus<br />

control<br />

Fieldbus control with embedded fieldbus 305<br />

OUTPUT SIGNAL SOURCE SELECTION ABB DRV DCU<br />

1401 RELAY<br />

OUTPUT 1<br />

1501 AO1<br />

CONTENT<br />

SEL<br />

COMM<br />

COMM(-1)<br />

Enables relay output RO control by<br />

signal 0134 COMM RO WORD.<br />

135 Directs the contents of the fieldbus<br />

reference 0135 COMM VALUE 1 to<br />

analog output AO.<br />

40134 for signal<br />

0134<br />

40135 for signal<br />

0135<br />

SYSTEM CONTROL INPUTS ABB DRV DCU<br />

1601 RUN<br />

ENABLE<br />

1604 FAULT<br />

RESET SEL<br />

1606 LOCAL<br />

LOCK<br />

1607 PARAM<br />

SAVE<br />

1608 START<br />

ENABLE 1<br />

1609 START<br />

ENABLE 2<br />

COMM Enables the control of the inverted<br />

Run enable signal (Run disable)<br />

through 0301 FB CMD WORD 1 bit 6<br />

(RUN_DISABLE); with the ABB<br />

drives profile 5319 EFB PAR 19 bit 3<br />

(INHIBIT OPERATION).<br />

COMM Enables fault reset through the<br />

fieldbus 0301 FB CMD WORD 1 bit 4<br />

(RESET); with the ABB drives profile<br />

5319 EFB PAR 19 bit 7 (RESET).<br />

COMM Local control mode lock signal<br />

through 0301 FB CMD WORD 1 bit<br />

14 (REQ_LOCALLOC)<br />

DONE<br />

SAVE…<br />

Saves parameter value changes<br />

(including those made through<br />

fieldbus control) to permanent<br />

memory.<br />

COMM Inverted Start enable 1 (Start disable)<br />

through 0302 FB CMD WORD 2 bit<br />

18 (START_DISABLE1)<br />

COMM Inverted Start enable 2 (Start disable)<br />

through 0302 FB CMD WORD 2 bit<br />

19 (START_DISABLE2)<br />

40001<br />

bit 3<br />

40001<br />

bit 7<br />

40031<br />

bit 6<br />

40031<br />

bit 4<br />

- 40031<br />

bit 14<br />

41607<br />

- 40032<br />

bit 18<br />

- 40032<br />

bit 19<br />

LIMITS ABB DRV DCU<br />

2013 MIN<br />

TORQUE<br />

SEL<br />

2014 MAX<br />

TORQUE<br />

SEL<br />

2201 ACC/DEC<br />

1/2 SEL<br />

Function/Information Modbus register<br />

address<br />

COMM Minimum torque limit 1/2 selection<br />

through 0301 FB CMD WORD 1 bit<br />

15 (TORQLIM2)<br />

COMM Maximum torque limit 1/2 selection<br />

through 0301 FB CMD WORD 1 bit<br />

15 (TORQLIM2)<br />

COMM Acceleration/deceleration ramp pair<br />

selection through 0301 FB CMD<br />

WORD 1 bit 10 (RAMP_2)<br />

- 40031<br />

bit 15<br />

- 40031<br />

bit 15<br />

- 40031<br />

bit 10


306 Fieldbus control with embedded fieldbus<br />

Parameter Setting for<br />

fieldbus<br />

control<br />

2209 RAMP<br />

INPUT 0<br />

COMM Ramp input to zero through 0301 FB<br />

CMD WORD 1 bit 13 (RAMP_IN_0);<br />

with the ABB drives profile 5319 EFB<br />

PAR 19 bit 6 (RAMP_IN_ ZERO)<br />

40001<br />

bit 6<br />

40031<br />

bit 13<br />

COMMUNICATION FAULT FUNCTIONS ABB DRV DCU<br />

3018 COMM<br />

FAULT FUNC<br />

NOT SEL<br />

FAULT<br />

CONST SP<br />

7<br />

LAST<br />

SPEED<br />

3019 COMM<br />

FAULT TIME 0.1…<br />

600.0 s<br />

Determines the drive action in case<br />

the fieldbus communication is lost.<br />

Defines the time between the<br />

communication loss detection and<br />

the action selected with parameter<br />

3018 COMM FAULT FUNC.<br />

43018<br />

43019<br />

PID CONTROLLER REFERENCE SIGNAL SOURCE SELECTION ABB DRV DCU<br />

4010/<br />

4110/<br />

4210<br />

SET POINT<br />

SEL<br />

COMM<br />

COMM+AI1<br />

COMM*AI1<br />

Function/Information Modbus register<br />

address<br />

PID control reference (REF2) 40003 for REF2


Fieldbus control interface<br />

Fieldbus control with embedded fieldbus 307<br />

The communication between a fieldbus system and the drive consists of 16-bit input<br />

and output data words (with the ABB drives profile) and 32-bit input and output words<br />

(with the DCU profile).<br />

� Control word and Status word<br />

The Control word (CW) is the principal means of controlling the drive from a fieldbus<br />

system. The Control word is sent by the fieldbus controller to the drive. The drive<br />

switches between its states according to the bit-coded instructions of the Control<br />

word.<br />

The Status word (SW) is a word containing status information, sent by the drive to the<br />

fieldbus controller.<br />

� References<br />

References (REF) are 16-bit signed integers. A negative reference (eg reverse<br />

direction of rotation) is formed by calculating the two’s complement from the<br />

corresponding positive reference value. The contents of each reference word can be<br />

used as the speed, frequency, torque or process reference.<br />

� Actual values<br />

Actual values (ACT) are 16-bit words containing selected values of the drive.


308 Fieldbus control with embedded fieldbus<br />

Fieldbus references<br />

� Reference selection and correction<br />

Fieldbus reference (called COMM in signal selection contexts) is selected by setting a<br />

reference selection parameter – 1103 REF1 SELECT or 1106 REF2 SELECT – to<br />

COMM, COMM+AI1 or COMM*AI1. When parameter 1103 or 1106 is set to COMM,<br />

the fieldbus reference is forwarded as such without correction. When parameter 1103<br />

or 1106 is set to COMM+AI1 or COMM*AI1, the fieldbus reference is corrected using<br />

analog input AI1 as shown in the following examples for the ABB drives profile.<br />

Setting When COMM > 0 When COMM < 0<br />

COMM<br />

+AI1<br />

1500<br />

COMM(%) · (MAX-MIN) + MIN<br />

+ (AI(%) - 50%) · (MAX-MIN)<br />

Corrected<br />

reference (rpm)<br />

750<br />

0<br />

0<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

50<br />

Corrected<br />

reference (rpm)<br />

1500<br />

1200<br />

750<br />

300<br />

0<br />

0<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

50<br />

100<br />

100<br />

Max. limit<br />

Min. limit<br />

COMM<br />

REF (%)<br />

Max limit<br />

Min limit<br />

COMM<br />

REF (%)<br />

COMM(%) · (MAX-MIN) - MIN<br />

+ (AI(%) - 50%) · (MAX-MIN)<br />

COMM<br />

REF (%)<br />

Min. limit<br />

Max. limit<br />

COMM<br />

REF (%)<br />

Min. limit<br />

Max. limit<br />

-100 -50 0<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.<br />

Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.<br />

0<br />

-750<br />

-1500<br />

Corrected<br />

reference (rpm)<br />

-100 -50 0<br />

0<br />

-300<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

-750<br />

-1200<br />

-1500<br />

Corrected<br />

reference (rpm)


COMM<br />

*AI1<br />

COMM(%) · (AI(%) / 50%) · (MAX-MIN) +<br />

MIN<br />

Fieldbus control with embedded fieldbus 309<br />

Setting When COMM > 0 When COMM < 0<br />

Corrected<br />

reference (rpm)<br />

1500<br />

750<br />

0<br />

0<br />

AI = 50%<br />

AI = 100%<br />

Corrected<br />

reference (rpm)<br />

1500<br />

1200<br />

750<br />

300<br />

0<br />

0<br />

AI = 100%<br />

AI = 0%<br />

50 100<br />

AI = 50%<br />

50<br />

AI = 0%<br />

100<br />

Max. limit<br />

Min. limit<br />

COMM<br />

REF (%)<br />

Ma.x limit<br />

Min. limit<br />

COMM<br />

REF (%)<br />

COMM(%) · (AI(%) / 50%) · (MAX-MIN) -<br />

MIN<br />

COMM<br />

REF (%)<br />

Min. limit<br />

Max. limit<br />

COMM<br />

REF (%)<br />

Min. limit<br />

Max. limit<br />

-100 -50 0<br />

AI = 0%<br />

AI = 50%<br />

AI = 100%<br />

Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.<br />

Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.<br />

0<br />

-750<br />

-1500<br />

Corrected<br />

reference (rpm)<br />

-100 -50 0<br />

0<br />

AI = 0%<br />

-300<br />

-750<br />

AI = 100%<br />

AI = 50%<br />

-1200<br />

-1500<br />

Corrected<br />

reference (rpm)


310 Fieldbus control with embedded fieldbus<br />

� Fieldbus reference scaling<br />

Fieldbus references REF1 and REF2 are scaled for the ABB drives profile as shown<br />

in the following table.<br />

Note: Any correction of the reference (see section Reference selection and<br />

correction on page 310) is applied before scaling.<br />

Reference Range Reference<br />

type<br />

REF1 -32767<br />

…<br />

+32767<br />

REF2 -32767<br />

…<br />

+32767<br />

Speed or<br />

frequency<br />

Speed or<br />

frequency<br />

Scaling Remarks<br />

-20000 = -(par. 1105)<br />

0 = 0<br />

+20000 = (par. 1105)<br />

(20000 corresponds to 100%)<br />

-10000 = -(par. 1108)<br />

0 = 0<br />

+10000 = (par. 1108)<br />

(10000 corresponds to 100%)<br />

Torque -10000 = -(par. 1108)<br />

0 = 0<br />

+10000 = (par. 1108)<br />

(10000 corresponds to 100%)<br />

PID<br />

reference<br />

-10000 = -(par. 1108)<br />

0 = 0<br />

+10000 = (par. 1108)<br />

(10000 corresponds to 100%)<br />

Final reference limited by<br />

1104/1105. Actual motor<br />

speed limited by 2001/2002<br />

(speed) or 2007/2008<br />

(frequency).<br />

Final reference limited by<br />

1107/1108. Actual motor<br />

speed limited by 2001/2002<br />

(speed) or 2007/2008<br />

(frequency).<br />

Final reference limited by<br />

2015/2017 (torque 1) or<br />

2016/2018 (torque 2).<br />

Final reference limited by<br />

4012/4013 (PID set 1) or<br />

4112/4113 (PID set 2).<br />

Note: The settings of parameters 1104 REF1 MIN and 1107 REF2 MIN have no<br />

effect on the reference scaling.


� Reference handling<br />

Fieldbus control with embedded fieldbus 311<br />

The control of rotation direction is configured for each control location (EXT1 and<br />

EXT2) using the parameters in group 10 START/STOP/DIR. Fieldbus references are<br />

bipolar, ie they can be negative or positive. The following diagrams illustrate how<br />

group 10 parameters and the sign of the fieldbus reference interact to produce the<br />

reference REF1/REF2.<br />

Par. 1003<br />

DIRECTION =<br />

FORWARD<br />

Par. 1003<br />

DIRECTION =<br />

REVERSE<br />

Par. 1003<br />

DIRECTION =<br />

REQUEST<br />

� Actual value scaling<br />

Direction determined by<br />

the sign of COMM<br />

Max. ref.<br />

Fieldbus<br />

ref. 1/2<br />

-100% 100%<br />

-163%<br />

163%<br />

–[Max. ref.]<br />

Resultant<br />

REF1/2<br />

Resultant<br />

REF1/2<br />

Max. ref.<br />

Fieldbus<br />

-163%<br />

163%<br />

-100% 100%<br />

ref. 1/2<br />

Fieldbus<br />

-163%<br />

-100%<br />

ref. 1/2<br />

Max. ref.<br />

Resultant<br />

REF1/2<br />

–[Max. ref.]<br />

100%<br />

163%<br />

–[Max. ref.]<br />

Direction determined by digital<br />

command, eg digital input,<br />

control panel<br />

Max. ref.<br />

Fieldbus<br />

ref. 1/2<br />

-100% 100%<br />

-163%<br />

163%<br />

–[Max. ref.]<br />

Resultant<br />

REF1/2<br />

Max. ref.<br />

Fieldbus<br />

-163%<br />

163%<br />

-100% 100%<br />

ref. 1/2<br />

–[Max. ref.]<br />

Max. ref.<br />

Resultant<br />

REF1/2<br />

Fieldbus<br />

ref. 1/2<br />

-100% 100%<br />

-163%<br />

–[Max. ref.]<br />

Resultant<br />

REF1/2<br />

Direction<br />

command:<br />

FORWARD<br />

The scaling of the integers sent to the master as Actual values depends on the<br />

selected function. See chapter Actual signals and parameters on page 175.<br />

163%<br />

Direction<br />

command:<br />

REVERSE


312 Fieldbus control with embedded fieldbus<br />

Modbus mapping<br />

The following Modbus function codes are supported by the drive.<br />

Function Code<br />

hex (dec)<br />

Read Multiple<br />

Holding<br />

Registers<br />

Write Single<br />

Holding<br />

Register<br />

� Register mapping<br />

Additional information<br />

03 (03) Reads the contents of registers in a slave device.<br />

Parameter sets, control, status and reference values are mapped<br />

as holding registers.<br />

06 (06) Writes to a single register in a slave device.<br />

Parameter sets, control, status and reference values are mapped<br />

as holding registers.<br />

Diagnostics 08 (08) Provides a series of tests for checking the communication between<br />

the master and the slave devices, or for checking various internal<br />

error conditions within the slave.<br />

The following subcodes are supported:<br />

00 Return Query Data: The data passed in the request data field is<br />

to be returned in the response. The entire response message<br />

should be identical to the request.<br />

01 Restart Communications Option: The slave device serial line<br />

port must be initialized and restarted, and all of its communication<br />

event counters cleared. If the port is currently in Listen Only Mode,<br />

no response is returned. If the port is not currently in Listen Only<br />

Mode, a normal response is returned before the restart.<br />

04 Force Listen Only Mode: Forces the addressed slave device to<br />

Listen Only Mode. This isolates it from the other devices on the<br />

network, allowing them to continue communicating without<br />

interruption from the addressed remote device. No response is<br />

returned. The only function that will be processed after this mode is<br />

entered is the Restart Communications Option function (subcode<br />

01).<br />

Write Multiple<br />

Holding<br />

Registers<br />

Read/Write<br />

Multiple<br />

Holding<br />

Registers<br />

10 (16) Writes to the registers (1 to approximately 120 registers) in a slave<br />

device.<br />

Parameter sets, control, status and reference values are mapped<br />

as holding registers.<br />

17 (23) Performs a combination of one read operation and one write<br />

operation (function codes 03 and 10) in a single Modbus<br />

transaction. The write operation is performed before the read<br />

operation.<br />

The drive parameters, Control/Status word, references and actual values are mapped<br />

to the area 4xxxx so that:<br />

• 40001…40099 are reserved for drive control/status, reference and actual values.<br />

• 40101…49999 are reserved for drive parameters 0101…9999 (eg 40102 is<br />

parameter 0102). In this mapping, the thousands and hundreds correspond to the


Fieldbus control with embedded fieldbus 313<br />

group number, while the tens and ones correspond to the parameter number<br />

within a group.<br />

The register addresses that do not correspond with drive parameters are invalid.<br />

If there is an attempt to read or write invalid addresses, the Modbus interface returns<br />

an exception code to the controller. See Exception codes on page 314.<br />

The following table gives information on the contents of the Modbus addresses<br />

40001…40012 and 40031…40034.<br />

Modbus register Access Information<br />

40001 Control word R/W Control word. Supported only by the ABB drives profile,<br />

ie when 5305 EFB CTRL PROFILE setting is ABB DRV<br />

LIM or ABB DRV FULL. Parameter 5319 EFB PAR 19<br />

shows a copy of the Control word in hexadecimal<br />

format.<br />

40002 Reference 1 R/W External reference REF1. See section Fieldbus<br />

references on page 308.<br />

40003 Reference 2 R/W External reference REF2. See section Fieldbus<br />

references on page 308.<br />

40004 Status word R Status word. Supported only by the ABB drives profile,<br />

ie when 5305 EFB CTRL PROFILE setting is ABB DRV<br />

LIM or ABB DRV FULL. Parameter 5320 EFB PAR 20<br />

shows a copy of the Control word in hexadecimal<br />

format.<br />

40005<br />

…<br />

40012<br />

Actual 1…8 R Actual value 1…8. Use parameter 5310… 5317 to<br />

select an actual value to be mapped to Modbus register<br />

40005…40012.<br />

40031 Control word LSW R/W 0301 FB CMD WORD 1, ie the least significant word of<br />

the DCU profile 32-bit Control word.<br />

Supported only by the DCU profile, ie when 5305 EFB<br />

CTRL PROFILE setting is DCU PROFILE.<br />

40032 Control word MSW R/W 0302 FB CMD WORD 2, ie the most significant word of<br />

the DCU profile 32-bit Control word.<br />

Supported only by the DCU profile, ie when 5305 EFB<br />

CTRL PROFILE setting is DCU PROFILE.<br />

40033 Status word LSW R 0303 FB STS WORD 1, ie the least significant word of<br />

the DCU profile 32-bit Status word.<br />

Supported only by the DCU profile, ie when 5305 EFB<br />

CTRL PROFILE setting is DCU PROFILE.<br />

40034 <strong>ACS355</strong> Status<br />

word MSW<br />

R 0304 FB STS WORD 2, ie the most significant word of<br />

the DCU profile 32-bit Status word.<br />

Supported only by the DCU profile, ie when 5305 EFB<br />

CTRL PROFILE setting is DCU PROFILE.<br />

Note: Parameter writes through standard Modbus are always volatile, ie modified<br />

values are not automatically stored to the permanent memory. Use parameter 1607<br />

PARAM SAVE to save all changed values.


314 Fieldbus control with embedded fieldbus<br />

� Function codes<br />

Supported function codes for the holding 4xxxx register:<br />

Code<br />

hex<br />

(dec)<br />

03<br />

(03)<br />

06<br />

(06)<br />

10<br />

(16)<br />

17<br />

(23)<br />

Function name Additional information<br />

Read 4X Register Reads the binary contents of registers (4X references) in a slave<br />

device.<br />

Preset single 4X<br />

register<br />

Preset multiple 4X<br />

registers<br />

Read/Write 4X<br />

registers<br />

Note: In the Modbus data message, register 4xxxx is addressed as xxxx -1. For<br />

example register 40002 is addressed as 0001.<br />

� Exception codes<br />

Presets a value into a single register (4X reference). When<br />

broadcast, the function presets the same register reference in all<br />

attached slaves.<br />

Presets values into a sequence of registers (4X references). When<br />

broadcast, the function presets the same register references in all<br />

attached slaves.<br />

Performs a combination of one read operation and one write<br />

operation (function codes 03 and 10) in a single Modbus<br />

transaction. Write operation is performed before the read<br />

operation.<br />

Exception codes are serial communication responses from the drive. The drive<br />

supports the standard Modbus exception codes listed in the following table.<br />

Code Name Description<br />

01 Illegal Function Unsupported command<br />

02 Illegal Data Address Address does not exist or is read/write protected.<br />

03 Illegal Data Value Incorrect value for the drive:<br />

• Value is outside minimum or maximum limits.<br />

• Parameter is read-only.<br />

• Message is too long.<br />

• Parameter write is not allowed when start is active.<br />

• Parameter write is not allowed when factory macro is<br />

selected.<br />

Drive parameter 5318 EFB PAR 18 holds the most recent exception code.


Communication profiles<br />

Fieldbus control with embedded fieldbus 315<br />

The embedded fieldbus supports three communication profiles:<br />

• DCU communication profile (DCU PROFILE)<br />

• ABB drives limited communication profile (ABB DRV LIM)<br />

• ABB drives full communication profile (ABB DRV FULL).<br />

The DCU profile extends the control and status interface to 32 bits, and it is the<br />

internal interface between the main drive application and the embedded fieldbus<br />

environment. The ABB drives limited profile is based on the PROFIBUS interface.<br />

The ABB drives full profile (ABB DRV FULL) supports two Control word bits not<br />

supported by the ABB DRV LIM implementation.<br />

Modbus<br />

network<br />

ABB drives profile<br />

Embedded fieldbus<br />

RS-232/EIA-485<br />

ABB DRV LIM /<br />

ABB DRV FULL<br />

Data conversion<br />

DCU profile<br />

DCU PROFILE<br />

Control/Status word DCU profile<br />

Data conversion<br />

for REF1/2<br />

� ABB drives communication profile<br />

DCU profile<br />

Drive<br />

Actual values<br />

selected by<br />

parameters<br />

5310…5317<br />

Actual values<br />

selected by<br />

parameters<br />

5310…5317<br />

Two implementations of the ABB drives communication profile are available: ABB<br />

drives full and ABB drives limited. The ABB drives communication profile is active<br />

when parameter 5305 EFB CTRL PROFILE is set to ABB DRV FULL or ABB DRV<br />

LIM. The Control word and Status word for the profile are described below.<br />

The ABB drives communication profiles can be used through both EXT1 and EXT2.<br />

The Control word commands are in effect when parameter 1001 EXT1 COMMANDS<br />

or 1002 EXT2 COMMANDS (whichever control location is active) is set to COMM.


316 Fieldbus control with embedded fieldbus<br />

Control word<br />

The table below and the state diagram on page 319 describe the Control word<br />

content for the ABB drives profile. The upper case boldface text refers to the states<br />

shown in the diagram.<br />

ABB drives profile Control word, parameter 5319 EFB PAR 19<br />

Bit Name Value Comments<br />

0 OFF1 CONTROL 1 Enter READY TO OPERATE.<br />

0 Stop along currently active deceleration ramp (2203/2206).<br />

Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON<br />

unless other interlocks (OFF2, OFF3) are active.<br />

1 OFF2 CONTROL 1 Continue operation (OFF2 inactive).<br />

0 Emergency OFF, drive coast to stop.<br />

Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.<br />

2 OFF3 CONTROL 1 Continue operation (OFF3 inactive).<br />

0 Emergency stop, drive stops within time defined by par.<br />

2208. Enter OFF3 ACTIVE; proceed to SWITCH-ON<br />

INHIBITED.<br />

WARNING! Ensure motor and driven machine can be<br />

stopped using this stop mode.<br />

3 INHIBIT 1 Enter OPERATION ENABLED. (Note: The Run enable<br />

OPERATION<br />

signal must be active; see parameter 1601. If par. 1601 is<br />

set to COMM, this bit also activates the Run enable signal.)<br />

0 Inhibit operation. Enter OPERATION INHIBITED.<br />

4 Note: Bit 4 is supported only by ABB DRV FULL profile.<br />

RAMP_OUT_ 1 Enter RAMP FUNCTION GENERATOR: OUTPUT<br />

ZERO<br />

ENABLED.<br />

(ABB DRV FULL)<br />

0 Force Ramp function generator output to zero.<br />

Drive ramps to stop (current and DC voltage limits in force).<br />

5 RAMP_HOLD 1 Enable ramp function.<br />

Enter RAMP FUNCTION GENERATOR: ACCELERATOR<br />

ENABLED.<br />

0 Halt ramping (Ramp function generator output held).<br />

6 RAMP_IN_ 1 Normal operation. Enter OPERATING.<br />

ZERO<br />

0 Force Ramp function generator input to zero.<br />

7 RESET 0=>1 Fault reset if an active fault exists. Enter SWITCH-ON<br />

INHIBITED. Effective if par. 1604 is set to COMM.<br />

0 Continue normal operation.<br />

8…<br />

9<br />

Not in use


Status word<br />

Fieldbus control with embedded fieldbus 317<br />

ABB drives profile Control word, parameter 5319 EFB PAR 19<br />

Bit Name Value Comments<br />

10 Note: Bit 10 is supported only by ABB DRV FULL.<br />

REMOTE_CMD 1 Fieldbus control enabled.<br />

(ABB DRV FULL) 0 Control word =/ 0 or reference =/<br />

0: Retain last Control word<br />

and reference.<br />

Control word = 0 and reference = 0: Fieldbus control<br />

enabled.<br />

Reference and deceleration/acceleration ramp are locked.<br />

11 EXT CTRL LOC 1 Select external control location EXT2. Effective if par. 1102<br />

is set to COMM.<br />

0 Select external control location EXT1. Effective if par. 1102<br />

is set to COMM.<br />

12…<br />

15<br />

Reserved<br />

The table below and the state diagram on page 319 describe the Status word content<br />

for the ABB drives profile. The upper case boldface text refers to the states shown in<br />

the diagram.<br />

ABB drives profile (EFB) Status word, parameter 5320 EFB PAR 20<br />

Bit Name Value STATE/Description<br />

(Correspond to states/boxes in the state diagram)<br />

0 RDY_ON 1 READY TO SWITCH ON<br />

0 NOT READY TO SWITCH ON<br />

1 RDY_RUN 1 READY TO OPERATE<br />

0 OFF1 ACTIVE<br />

2 RDY_REF 1 OPERATION ENABLED<br />

0 OPERATION INHIBITED<br />

3 TRIPPED 0…1 FAULT. See chapter Fault tracing on page 335.<br />

0 No fault<br />

4 OFF_2_STA 1 OFF2 inactive<br />

0 OFF2 ACTIVE<br />

5 OFF_3_STA 1 OFF3 inactive<br />

0 OFF3 ACTIVE<br />

6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED<br />

0 Switch-on inhibit not active<br />

7 ALARM 1 Alarm. See chapter Fault tracing on page 335.<br />

0 No alarm


318 Fieldbus control with embedded fieldbus<br />

ABB drives profile (EFB) Status word, parameter 5320 EFB PAR 20<br />

Bit Name Value STATE/Description<br />

(Correspond to states/boxes in the state diagram)<br />

8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is<br />

within tolerance limits, ie in speed control the difference<br />

between the output speed and the speed reference is less<br />

than or equal to 4/1%* of the nominal motor speed).<br />

* Asymmetric hysteresis: 4% when speed enters the<br />

reference area, 1% when speed exits the reference area.<br />

0 Actual value differs from reference value (= is outside<br />

tolerance limits).<br />

9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2)<br />

0 Drive control location: LOCAL<br />

10 ABOVE_LIMIT 1 Supervised parameter value exceeds the supervision high<br />

limit. Bit value is 1 until the supervised parameter value falls<br />

below the supervision low limit. See parameter group 32<br />

SUPERVISION.<br />

0 Supervised parameter value falls below the supervision low<br />

limit. Bit value is 0 until the supervised parameter value<br />

exceeds the supervision high limit. See parameter group 32<br />

SUPERVISION.<br />

11 EXT CTRL LOC 1 External control location EXT2 selected<br />

0 External control location EXT1 selected<br />

12 EXT RUN 1 External Run enable signal received<br />

ENABLE<br />

0 No external Run enable received<br />

13… Reserved<br />

15


State diagram<br />

Fieldbus control with embedded fieldbus 319<br />

The state diagram below describes the start-stop function of Control word (CW) and<br />

Status word (SW) bits for the ABB drives profile.<br />

From any state<br />

Emergency Stop<br />

OFF3 (CW Bit2=0)<br />

(SW Bit5=0)<br />

OFF1 (CW Bit0=0)<br />

(SW Bit1=0)<br />

n(f)=0 / I=0<br />

From any state<br />

n(f)=0 / I=0<br />

OFF3<br />

ACTIVE<br />

OFF1<br />

ACTIVE<br />

(SW Bit2 =0)<br />

From any state<br />

OFF2<br />

ACTIVE<br />

INPUT POWER OFF<br />

Power ON (CW Bit0=0)<br />

(CW Bit3 =0)<br />

OPERATION INHIBITED<br />

A B* C D<br />

OPERATION<br />

INHIBITED<br />

(CW Bit4=0)*<br />

State<br />

(CW Bit5=0)<br />

State change<br />

Path described in example<br />

CW = Control word<br />

SW = Status word<br />

(CW Bit6=0)<br />

RFG = Ramp function generator<br />

I = Par. 0104 CURRENT<br />

f = Par. 0103 OUTPUT FREQ<br />

n = Speed<br />

* Supported only by ABB DRV FULL<br />

profile.<br />

** State transition also occurs if the fault<br />

is reset from any other source (eg digital<br />

input).<br />

Emergency Off<br />

OFF2 (CW Bit 1=0)<br />

(SW Bit 4=0)<br />

B* C* D*<br />

C D<br />

D<br />

A<br />

B*<br />

C<br />

D<br />

From any state<br />

FAULT<br />

Fault<br />

SWITCH-ON<br />

INHIBITED<br />

NOT READY<br />

TO SWITCH ON<br />

READY TO<br />

SWITCH ON<br />

READY TO<br />

OPERATE<br />

OPERATION<br />

ENABLED<br />

RFG OUTPUT<br />

ENABLED*<br />

(SW Bit3=1)<br />

(CW Bit7=1)**<br />

RFG: ACCELERATOR<br />

ENABLED<br />

OPERATING<br />

(SW Bit6=1)<br />

(SW Bit0=0)<br />

(CW xxxx x1*xx xxxx x110)<br />

(SW Bit0=1)<br />

(CW= xxxx x1*xx xxxx x111)<br />

(SW Bit1=1)<br />

(CW Bit3=1 and<br />

SW Bit12=1)<br />

(SW Bit2=1)<br />

(CW=xxxx x1*xx xxx1* 1111<br />

ie Bit4=1)*<br />

(CW=xxxx x1*xx xx11* 1111<br />

ie Bit5=1)<br />

(CW=xxxx x1*xx x111* 1111<br />

ie Bit6=1)<br />

(SW Bit8=1)


320 Fieldbus control with embedded fieldbus<br />

� DCU communication profile<br />

Because the DCU profile extends the control and status interface to 32 bits, two<br />

different signals are needed for both the control words (0301 and 0302) and status<br />

words (0303 and 0304).<br />

Control words<br />

The following tables describe the Control word content for the DCU profile.<br />

DCU profile Control word, parameter 0301 FB CMD WORD 1<br />

Bit Name Value Information<br />

0 STOP 1 Stop according to either the stop mode parameter (2102) or<br />

the stop mode requests (bits 7 and 8).<br />

Note: Simultaneous STOP and START commands result in<br />

a stop command.<br />

0 No operation<br />

1 START 1 Start<br />

Note: Simultaneous STOP and START commands result in<br />

a stop command.<br />

0 No operation<br />

2 REVERSE 1 <strong>Rev</strong>erse direction. The direction is defined by using the<br />

XOR operation on bit 2 and 31 (= sign of the reference)<br />

values.<br />

0 Forward direction<br />

3 LOCAL 1 Enter local control mode.<br />

0 Enter external control mode.<br />

4 RESET -> 1 Reset.<br />

other No operation<br />

5 EXT2 1 Switch to external control EXT2.<br />

0 Switch to external control EXT1.<br />

6 RUN_DISABLE 1 Activate Run disable.<br />

0 Activate Run enable.<br />

7 STPMODE_R 1 Stop along currently active deceleration ramp (bit 10). Bit 0<br />

value must be 1 (STOP).<br />

0 No operation<br />

8 STPMODE_EM 1 Emergency stop. Bit 0 value must be 1 (STOP).<br />

0 No operation<br />

9 STPMODE_C 1 Coast to stop. Bit 0 value must be 1 (STOP).<br />

0 No operation<br />

10 RAMP_2 1 Use acceleration/deceleration ramp pair 2 (defined by<br />

parameters 2205…2207).<br />

0 Use acceleration/deceleration ramp pair 1 (defined by<br />

parameters 2202…2204).<br />

11 RAMP_OUT_0 1 Force ramp output to zero.<br />

0 No operation


Fieldbus control with embedded fieldbus 321<br />

DCU profile Control word, parameter 0301 FB CMD WORD 1<br />

Bit Name Value Information<br />

12 RAMP_HOLD 1 Halt ramping (Ramp function generator output held).<br />

0 No operation<br />

13 RAMP_IN_0 1 Force ramp input to zero.<br />

0 No operation<br />

14 REQ_LOCALLOC 1 Enable local lock. Entering the local control mode is<br />

disabled (LOC/REM key of the panel).<br />

0 No operation<br />

15 TORQLIM2 1 Use minimum/maximum torque limit 2 (defined by<br />

parameters 2016 and 2018).<br />

0 Use minimum/maximum torque limit 1 (defined by<br />

parameters 2015 and 2017).<br />

DCU profile Control word, parameter 0302 FB CMD WORD 2<br />

Bit Name Value Information<br />

16 FBLOCAL_CTL 1 Fieldbus local mode for Control word requested.<br />

Example: If the drive is in remote control and the<br />

start/stop/direction command source is DI for external<br />

control location 1 (EXT1): by setting bit 16 to value 1, the<br />

start/stop/direction is controlled by the fieldbus command<br />

word.<br />

0 No fieldbus local mode<br />

17 FBLOCAL_REF 1 Fieldbus local mode Control word for reference requested.<br />

See the example for bit 16 (FBLOCAL_CTL).<br />

0 No fieldbus local mode<br />

18 START_DISABL 1 No Start enable<br />

E1<br />

0 Enable start. Effective if parameter 1608 setting is COMM.<br />

19 START_DISABL 1 No Start enable<br />

E2<br />

0 Enable start. Effective if parameter 1609 setting is COMM.<br />

21 JOGGING 1 1 Activate jogging 1. Effective if parameter 1010 setting is<br />

COMM. See section Jogging on page 161.<br />

0 Jogging 1 disabled<br />

20 JOGGING 2 1 Activate jogging 2. Effective if parameter 1010 setting is<br />

COMM. See section Jogging on page 161.<br />

0 Jogging 2 disabled<br />

22…<br />

26<br />

Reserved<br />

27 REF_CONST 1 Constant speed reference request.<br />

This is an internal control bit. Only for supervision.<br />

0 No operation


322 Fieldbus control with embedded fieldbus<br />

DCU profile Control word, parameter 0302 FB CMD WORD 2<br />

Bit Name Value Information<br />

28 REF_AVE 1 Average speed reference request.<br />

This is an internal control bit. Only for supervision.<br />

0 No operation<br />

29 LINK_ON 1 Master detected on fieldbus link.<br />

This is an internal control bit. Only for supervision.<br />

0 Fieldbus link is down.<br />

30 REQ_STARTINH 1 Start inhibit<br />

0 No start inhibit<br />

31 Reserved<br />

Status words<br />

The following tables describe the Status word content for the DCU profile.<br />

DCU profile Status word, parameter 0303 FB STS WORD 1<br />

Bit Name Value Status<br />

0 READY 1 Drive is ready to receive start command.<br />

0 Drive is not ready.<br />

1 ENABLED 1 External Run enable signal received.<br />

0 No external Run enable signal received.<br />

2 STARTED 1 Drive has received start command.<br />

0 Drive has not received start command.<br />

3 RUNNING 1 Drive is modulating.<br />

0 Drive is not modulating.<br />

4 ZERO_SPEED 1 Drive is at zero speed.<br />

0 Drive has not reached zero speed.<br />

5 ACCELERATE 1 Drive is accelerating.<br />

0 Drive is not accelerating.<br />

6 DECELERATE 1 Drive is decelerating.<br />

0 Drive is not decelerating.<br />

7 AT_SETPOINT 1 Drive is at setpoint. Actual value equals reference<br />

value (ie is within tolerance limits).<br />

0 Drive has not reached setpoint.<br />

8 LIMIT 1 Operation is limited by group 20 LIMITS settings.<br />

0 Operation is within group 20 LIMITS settings.<br />

9 SUPERVISION 1 A supervised parameter (group 32 SUPERVISION) is<br />

outside its limits.<br />

0 All supervised parameters are within limits.<br />

10 REV_REF 1 Drive reference is in reverse direction.<br />

0 Drive reference is in forward direction.<br />

11 REV_ACT 1 Drive is running in reverse direction.<br />

0 Drive is running in forward direction.


Fieldbus control with embedded fieldbus 323<br />

DCU profile Status word, parameter 0303 FB STS WORD 1<br />

Bit Name Value Status<br />

12 PANEL_LOCAL 1 Control is in control panel (or PC tool) local mode.<br />

0 Control is not in control panel local mode.<br />

13 FIELDBUS_LOCAL 1 Control is in fieldbus local mode<br />

0 Control is not in fieldbus local mode.<br />

14 EXT2_ACT 1 Control is in EXT2 mode.<br />

0 Control is in EXT1 mode.<br />

15 FAULT 1 Drive is in a fault state.<br />

0 Drive is not in a fault state.<br />

DCU profile Status word, parameter 0304 FB STS WORD 2<br />

Bit Name Value Status<br />

16 ALARM 1 An alarm is on.<br />

0 No alarms are on.<br />

17 NOTICE 1 A maintenance request is pending.<br />

0 No maintenance request<br />

18 DIRLOCK 1 Direction lock is ON. (Direction change is locked.)<br />

0 Direction lock is OFF.<br />

19 LOCALLOCK 1 Local mode lock is ON. (Local mode is locked.)<br />

0 Local mode lock is OFF.<br />

20 CTL_MODE 1 Drive is in vector control mode.<br />

0 Drive is in scalar control mode.<br />

21 JOGGING ACTIVE 1 Jogging function is active.<br />

0 Jogging function is not active.<br />

22…<br />

25<br />

Reserved<br />

26 REQ_CTL 1 Control word requested from fieldbus<br />

0 No operation<br />

27 REQ_REF1 1 Reference 1 requested from fieldbus<br />

0 Reference 1 is not requested from fieldbus.<br />

28 REQ_REF2 1 Reference 2 requested from fieldbus<br />

0 Reference 2 is not requested from fieldbus.<br />

29 REQ_REF2EXT 1 External PID reference 2 requested from fieldbus<br />

0 External PID reference 2 is not requested from<br />

fieldbus.<br />

30 ACK_STARTINH 1 Start inhibit from fieldbus<br />

0 No start inhibit from fieldbus<br />

31 Reserved


324 Fieldbus control with embedded fieldbus


Fieldbus control with<br />

fieldbus adapter<br />

What this chapter contains<br />

Fieldbus control with fieldbus adapter 325<br />

The chapter describes how the drive can be controlled by external devices over a<br />

communication network through fieldbus adapter.<br />

System overview<br />

The drive can be connected to an external control system through a fieldbus adapter<br />

or embedded fieldbus. For embedded fieldbus control, see chapter Fieldbus control<br />

with embedded fieldbus on page 301.<br />

Fieldbus adapter is connected to drive terminal X3.


326 Fieldbus control with fieldbus adapter<br />

Drive<br />

X3<br />

Fieldbus<br />

adapter<br />

Data flow<br />

Control word (CW)<br />

References<br />

Status word (SW)<br />

Actual values<br />

Parameter R/W<br />

requests/responses<br />

Other<br />

devices<br />

Fieldbus<br />

controller<br />

Fieldbus<br />

Process I/O (cyclic)<br />

Service messages (acyclic)<br />

The drive can be set to receive all of its control information through the fieldbus<br />

interface, or the control can be distributed between the fieldbus interface and other<br />

available sources, eg digital and analog inputs.<br />

The drive can communicate to a control system through a fieldbus adapter using eg<br />

the following serial communication protocols. Other protocols may be available;<br />

contact your local ABB representative.<br />

• PROFIBUS-DP (FPBA-01 adapter)<br />

• CANopen (FCAN-01 adapter)<br />

• DeviceNet (FDNA-01 adapter)<br />

• Ethernet (FENA-01 adapter)<br />

• Modbus RTU (FMBA-01 adapter. See chapter Fieldbus control with embedded<br />

fieldbus on page 301.)<br />

The drive detects automatically which fieldbus adapter is connected to drive terminal<br />

X3 (with the exception of FMBA-01). The DCU profile is always used in<br />

communication between the drive and the fieldbus adapter (see section Fieldbus<br />

control interface on page 330). The communication profile on the fieldbus network<br />

depends on the type and settings of the connected adapter.<br />

The default profile settings are protocol dependent (eg vendor-specific profile (ABB<br />

drives) for PROFIBUS and industry-standard drive profile (AC/DC Drive) for<br />

DeviceNet).


Fieldbus control with fieldbus adapter 327<br />

Setting up communication through a fieldbus adapter<br />

module<br />

Before configuring the drive for fieldbus control, the adapter module must be<br />

mechanically and electrically installed according to the instructions given in section<br />

Attach the optional fieldbus module on page 35, and the module <strong>manual</strong>.<br />

The communication between the drive and the fieldbus adapter module is activated<br />

by setting parameter 9802 COMM PROT SEL to EXT FBA. The adapter-specific<br />

parameters in group 51 EXT COMM MODULE must also be set. See the table below.<br />

Parameter Alternative<br />

settings<br />

COMMUNICATION INITIALIZATION<br />

9802 COMM PROT<br />

SEL<br />

NOT SEL<br />

STD MODBUS<br />

EXT FBA<br />

MODBUS RS232<br />

Setting for<br />

fieldbus control<br />

Function/Information<br />

EXT FBA Initializes the communication<br />

between the drive and the<br />

fieldbus adapter module.<br />

ADAPTER MODULE CONFIGURATION<br />

5101 FBA TYPE - - Displays the type of the<br />

fieldbus adapter module.<br />

5102 FB PAR 2 These parameters are adapter module-specific. For more<br />

… …<br />

information, see the module <strong>manual</strong>. Note that not all of these<br />

5126 FB PAR 26<br />

parameters are necessarily used.<br />

5127 FBA PAR (0) DONE - Validates any changed<br />

REFRESH (1) REFRESH<br />

adapter module<br />

configuration parameter<br />

settings.<br />

Note: In adapter module, the parameter group number is A (group 1) for group 51 EXT<br />

COMM MODULE.<br />

TRANSMITTED DATA SELECTION<br />

5401<br />

…<br />

5410<br />

5501<br />

…<br />

5510<br />

FBA DATA IN 1<br />

…<br />

FBA DATA OUT<br />

10<br />

FBA DATA OUT 1<br />

…<br />

FBA DATA OUT<br />

10<br />

0<br />

1…6<br />

101…9999<br />

0<br />

1…6<br />

101…9999<br />

Defines the data transmitted<br />

from the drive to the fieldbus<br />

controller.<br />

Defines the data transmitted<br />

from the fieldbus controller to<br />

the drive.<br />

Note: In adapter module, the parameter group number is C (group 3) for group 54 FBA DATA<br />

IN and B (group 2) for group 55 FBA DATA OUT.<br />

After the module configuration parameters in groups 51 EXT COMM MODULE, 54<br />

FBA DATA IN and 55 FBA DATA OUT have been set, the drive control parameters<br />

(shown in section Drive control parameters on page 328) must be checked and<br />

adjusted when necessary.


328 Fieldbus control with fieldbus adapter<br />

The new settings will take effect when the drive is next powered up, or when<br />

parameter 5127 FBA PAR REFRESH is activated.<br />

Drive control parameters<br />

After the fieldbus communication has been set up, the drive control parameters listed<br />

in the table below should be checked and adjusted where necessary.<br />

The Setting for fieldbus control column gives the value to use when the fieldbus<br />

interface is the desired source or destination for that particular signal. The<br />

Function/Information column gives a description of the parameter.<br />

Parameter Setting for<br />

fieldbus control<br />

CONTROL COMMAND SOURCE SELECTION<br />

1001 EXT1<br />

COMMANDS<br />

1002 EXT2<br />

COMMANDS<br />

1003 DIRECTION FORWARD<br />

REVERSE<br />

REQUEST<br />

Function/Information<br />

COMM Selects the fieldbus as the source for the start<br />

and stop commands when EXT1 is selected as<br />

the active control location.<br />

COMM Selects the fieldbus as the source for the start<br />

and stop commands when EXT2 is selected as<br />

the active control location.<br />

Enables the rotation direction control as defined<br />

by parameters 1001 and 1002. The direction<br />

control is explained in section Reference<br />

handling on page 311.<br />

1010 JOGGING SEL COMM Enables jogging 1 or 2 activation through the<br />

fieldbus.<br />

1102 EXT1/EXT2<br />

SEL<br />

1103 REF1 SELECT COMM<br />

COMM+AI1<br />

COMM*AI1<br />

1106 REF2 SELECT COMM<br />

COMM+AI1<br />

COMM*AI1<br />

OUTPUT SIGNAL SOURCE SELECTION<br />

1401 RELAY<br />

OUTPUT 1<br />

1501 AO1 CONTENT<br />

SEL<br />

COMM Enables EXT1/EXT2 selection through the<br />

fieldbus.<br />

COMM<br />

COMM(-1)<br />

135 (ie 0135<br />

COMM VALUE 1)<br />

Fieldbus reference REF1 is used when EXT1 is<br />

selected as the active control location. See<br />

section Reference selection and correction on<br />

page 332.<br />

Fieldbus reference REF2 is used when EXT2 is<br />

selected as the active control location. See<br />

section Reference selection and correction on<br />

page 332.<br />

Enables relay output RO control by signal 0134<br />

COMM RO WORD.<br />

Directs the contents of fieldbus reference 0135<br />

COMM VALUE 1 to analog output AO.<br />

SYSTEM CONTROL INPUTS<br />

1601 RUN ENABLE COMM Selects the fieldbus interface as the source for<br />

the inverted Run enable signal (Run disable).


Parameter Setting for<br />

fieldbus control<br />

1604 FAULT RESET<br />

SEL<br />

Fieldbus control with fieldbus adapter 329<br />

COMM Selects the fieldbus interface as the source for<br />

the fault reset signal.<br />

1606 LOCAL LOCK COMM Selects the fieldbus interface as the source for<br />

the local lock signal.<br />

1607 PARAM SAVE DONE<br />

SAVE…<br />

1608 START<br />

ENABLE 1<br />

1609 START<br />

ENABLE 2<br />

LIMITS<br />

2013 MIN TORQUE<br />

SEL<br />

2014 MAX TORQUE<br />

SEL<br />

2201 ACC/DEC 1/2<br />

SEL<br />

Saves parameter value changes (including<br />

those made through fieldbus control) to the<br />

permanent memory.<br />

COMM Selects the fieldbus interface as the source for<br />

the inverted Start enable 1 (Start disable) signal.<br />

COMM Selects the fieldbus interface as the source for<br />

the inverted Start enable 2 (Start disable) signal.<br />

COMM Selects the fieldbus interface as the source for<br />

the minimum torque limit 1/2 selection.<br />

COMM Selects the fieldbus interface as the source for<br />

the maximum torque limit 1/2 selection.<br />

COMM Selects the fieldbus interface as the source for<br />

acceleration/deceleration ramp pair 1/2<br />

selection<br />

2209 RAMP INPUT 0 COMM Selects the fieldbus interface as the source for<br />

forcing ramp input to zero.<br />

COMMUNICATION FAULT FUNCTIONS<br />

3018 COMM FAULT<br />

FUNC<br />

3019 COMM FAULT<br />

TIME<br />

NOT SEL<br />

FAULT<br />

CONST SP 7<br />

LAST SPEED<br />

Determines the drive action in case the fieldbus<br />

communication is lost.<br />

0.1 … 60.0 s Defines the time between the communication<br />

loss detection and the action selected with<br />

parameter 3018 COMM FAULT FUNC.<br />

PID CONTROLLER REFERENCE SIGNAL SOURCE SELECTION<br />

4010/<br />

4110/<br />

4210<br />

SET POINT<br />

SEL<br />

COMM<br />

COMM+AI1<br />

COMM*AI1<br />

Function/Information<br />

PID control reference (REF2)


330 Fieldbus control with fieldbus adapter<br />

Fieldbus control interface<br />

The communication between a fieldbus system and the drive consists of 16-bit input<br />

and output data words. The drive supports at the maximum the use of 10 data words<br />

in each direction.<br />

Data transformed from the drive to the fieldbus controller is defined by parameter<br />

group 54 FBA DATA IN and data transformed from the fieldbus controller to the drive<br />

is defined by parameter group 55 FBA DATA OUT.<br />

Fieldbus network<br />

Fieldbus module<br />

Fieldbusspecific<br />

interface<br />

DATA IN<br />

1<br />

…<br />

10<br />

DATA<br />

OUT<br />

1<br />

…<br />

10<br />

Data in<br />

select<br />

5401/…/5410<br />

Data out<br />

select<br />

5501/…/5510<br />

� Control word and Status word<br />

4 = Status word 1)<br />

5 = ACT1 1)<br />

6 = ACT2 1)<br />

Par. 0101…9914<br />

1 = Control word 1)<br />

2 = REF1 1)<br />

3 = REF2 1)<br />

Par. 0101…9914<br />

1) Some fieldbus adapters map this data automatically. For<br />

the use of virtual addresses, see the <strong>user's</strong> <strong>manual</strong> of<br />

the appropriate fieldbus adapter.<br />

2) See also other COMM selection parameters.<br />

NOT SEL<br />

…<br />

2) COMM<br />

KEYPAD<br />

…<br />

2) COMM<br />

KEYPAD<br />

…<br />

2) COMM<br />

Start, stop,<br />

dir select<br />

1001/1002<br />

REF1 select<br />

REF2 select<br />

The Control word (CW) is the principal means of controlling the drive from a fieldbus<br />

system. The Control word is sent by the fieldbus controller to the drive. The drive<br />

switches between its states according to the bit-coded instructions of the Control<br />

word.<br />

The Status word (SW) is a word containing status information, sent by the drive to the<br />

fieldbus controller.<br />

1103<br />

1106


� References<br />

Fieldbus control with fieldbus adapter 331<br />

References (REF) are 16-bit signed integers. A negative reference (indicating<br />

reversed direction of rotation) is formed by calculating the two’s complement from the<br />

corresponding positive reference value. The contents of each reference word can be<br />

used as speed or frequency reference.<br />

� Actual values<br />

Actual values (ACT) are 16-bit words containing information on selected operations of<br />

the drive.<br />

Communication profile<br />

The communication between the drive and the fieldbus adapter supports the DCU<br />

communication profile. The DCU profile extends the control and status interface to 32<br />

bits.<br />

Fieldbus<br />

network<br />

Fieldbus adapter<br />

Industry standard drive<br />

profile (eg PROFIdrive)<br />

Data conversion<br />

ABB drives<br />

Data conversion<br />

Transparent 16<br />

Optional reference,<br />

actual value scaling<br />

Transparent 32<br />

For the DCU profile Control and Status word contents, see section DCU<br />

communication profile on page 320.<br />

1)<br />

1)<br />

Select<br />

2)<br />

Drive<br />

1) DCU profile<br />

2) Selection through fieldbus adapter configuration parameters (parameter group 51 EXT<br />

COMM MODULE)


332 Fieldbus control with fieldbus adapter<br />

Fieldbus references<br />

� Reference selection and correction<br />

Fieldbus reference (called COMM in signal selection contexts) is selected by setting a<br />

reference selection parameter – 1103 REF1 SELECT or 1106 REF2 SELECT – to<br />

COMM, COMM+AI1 or COMM*AI1. When parameter 1103 or 1106 is set to COMM,<br />

the fieldbus reference is forwarded as such without correction. When parameter 1103<br />

or 1106 is set to COMM+AI1 or COMM*AI1, the fieldbus reference is corrected using<br />

analog input AI1 as shown in the following examples for the DCU profile.<br />

With the DCU profile the fieldbus reference type can be Hz, rpm or percent. In the<br />

following examples the reference is in rpm.<br />

Setting When COMM > 0 rpm When COMM < 0 rpm<br />

COMM<br />

+AI1<br />

COMM/1000 + (AI(%) - 50%) · (MAX-MIN) COMM/1000 + (AI(%) - 50%) · (MAX-MIN)<br />

Corrected<br />

reference (rpm)<br />

1500<br />

750<br />

0<br />

0<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

750000<br />

Corrected<br />

reference (rpm)<br />

1500<br />

1200<br />

750<br />

300<br />

0<br />

0<br />

AI = 100%<br />

1500000<br />

AI = 50%<br />

AI = 0%<br />

750000 1500000<br />

Max. limit<br />

Min. limit<br />

COMM<br />

REF<br />

Max limit<br />

Min limit<br />

COMM<br />

REF<br />

COMM<br />

REF -1500000<br />

Min. limit<br />

-750000 0<br />

0<br />

AI = 100%<br />

Max. limit<br />

COMM<br />

REF<br />

Min. limit<br />

Max. limit<br />

-1500000<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.<br />

Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.<br />

-7500<br />

-1500<br />

Corrected<br />

reference (rpm)<br />

-750000<br />

AI = 50%<br />

AI = 0%<br />

0<br />

0<br />

-300<br />

-750<br />

-1200<br />

-1500<br />

Corrected<br />

reference (rpm)


COMM<br />

*AI1<br />

Fieldbus control with fieldbus adapter 333<br />

Setting When COMM > 0 rpm When COMM < 0 rpm<br />

1500<br />

(COMM/1000) · (AI(%) / 50%) (COMM/1000) · (AI(%) / 50%)<br />

Corrected<br />

reference (rpm)<br />

750<br />

AI = 50%<br />

AI = 100%<br />

0<br />

AI = 0%<br />

0 750000 1500000<br />

Corrected<br />

reference (rpm)<br />

1500<br />

1200<br />

750<br />

300<br />

0<br />

0<br />

AI = 100%<br />

AI = 50%<br />

AI = 0%<br />

750000 1500000<br />

Max. limit<br />

Min. limit<br />

COMM<br />

REF<br />

Ma.x limit<br />

Min. limit<br />

COMM<br />

REF<br />

COMM<br />

REF -1500000 -750000<br />

Min. limit AI = 0%<br />

Max. limit<br />

COMM<br />

REF<br />

Min. limit<br />

Max. limit<br />

-1500000<br />

AI = 50%<br />

AI = 100%<br />

AI = 0%<br />

Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.<br />

Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.<br />

0<br />

0<br />

-750<br />

-1500<br />

Corrected<br />

reference (rpm)<br />

-750000<br />

0<br />

0<br />

-300<br />

-750<br />

AI = 100%<br />

AI = 50%<br />

-1200<br />

-1500<br />

Corrected<br />

reference (rpm)


334 Fieldbus control with fieldbus adapter<br />

� Fieldbus reference scaling<br />

Fieldbus references REF1 and REF2 are scaled for the DCU profile as shown in the<br />

following table.<br />

Note: Any correction of the reference (see section Reference selection and<br />

correction on page 332) is applied before scaling.<br />

Reference Range Reference<br />

type<br />

REF1 -214783648<br />

…<br />

+214783647<br />

REF2 -214783648<br />

…<br />

+214783647<br />

Note: The settings of parameters 1104 REF1 MIN and 1107 REF2 MIN have no<br />

effect on the reference scaling.<br />

� Reference handling<br />

Reference handling is the same for the ABB drives profile (embedded fieldbus) and<br />

DCU profile. See section Reference handling on page 311.<br />

� Actual value scaling<br />

Speed or<br />

frequency<br />

Speed or<br />

frequency<br />

Scaling Remarks<br />

1000 = 1 rpm / 1 Hz Final reference limited by<br />

1104/1105. Actual motor speed<br />

limited by 2001/2002 (speed) or<br />

2007/2008 (frequency).<br />

1000 = 1% Final reference limited by<br />

1107/1108. Actual motor speed<br />

limited by 2001/2002 (speed) or<br />

2007/2008 (frequency).<br />

Torque 1000 = 1% Final reference limited by<br />

2015/2017 (torque 1) or<br />

2016/2018 (torque 2).<br />

PID<br />

reference<br />

1000 = 1% Final reference limited by<br />

4012/4013 (PID set 1) or<br />

4112/4113 (PID set 2).<br />

The scaling of the integers sent to the master as Actual values depends on the<br />

selected function. See chapter Actual signals and parameters on page 175.


Fault tracing<br />

What this chapter contains<br />

Fault tracing 335<br />

The chapter tells how to reset faults and view fault history. It also lists all alarm and<br />

fault messages including the possible cause and corrective actions.<br />

Safety<br />

drive.<br />

WARNING! Only qualified electricians are allowed to maintain the drive. Read<br />

the safety instructions in chapter Safety on page 17 before you work on the<br />

Alarm and fault indications<br />

Fault is indicated with a red LED. See section LEDs on page 356.<br />

An alarm or fault message on the panel display indicates abnormal drive status.<br />

Using the information given in this chapter, most alarm and fault causes can be<br />

identified and corrected. If not, contact an ABB representative.<br />

The four digit code number in parenthesis after the fault is for the fieldbus<br />

communication. See chapters Fieldbus control with embedded fieldbus on page 301<br />

and Fieldbus control with fieldbus adapter on page 325.<br />

How to reset<br />

RESET<br />

EXIT<br />

The drive can be reset either by pressing the keypad key (basic control panel) or<br />

RESET<br />

(assistant control panel), through digital input or fieldbus, or by switching the<br />

supply voltage off for a while. The source for the fault reset signal is selected by


336 Fault tracing<br />

parameter 1604 FAULT RESET SEL. When the fault has been removed, the motor<br />

can be restarted.<br />

Fault history<br />

When a fault is detected, it is stored in the fault history. The latest faults are stored<br />

together with the time stamp.<br />

Parameters 0401 LAST FAULT, 0412 PREVIOUS FAULT 1 and 0413 PREVIOUS<br />

FAULT 2 store the most recent faults. Parameters 0404…0409 show drive operation<br />

data at the time the latest fault occurred. The assistant control panel provides<br />

additional information about the fault history. See section Fault logger mode on page<br />

101 for more information.


Alarm messages generated by the drive<br />

CODE ALARM CAUSE WHAT TO DO<br />

2001 OVERCURRENT<br />

0308 bit 0<br />

(programmable fault<br />

function 1610)<br />

2002 OVERVOLTAGE<br />

0308 bit 1<br />

(programmable fault<br />

function 1610)<br />

2003 UNDERVOLTAGE<br />

0308 bit 2<br />

(programmable fault<br />

function 1610)<br />

2004 DIR LOCK<br />

0308 bit 3<br />

2005 IO COMM<br />

0308 bit 4<br />

(programmable fault<br />

function 3018, 3019)<br />

2006 AI1 LOSS<br />

0308 bit 5<br />

(programmable fault<br />

function 3001, 3021)<br />

2007 AI2 LOSS<br />

0308 bit 6<br />

(programmable fault<br />

function 3001, 3022)<br />

Output current limit<br />

controller is active.<br />

DC overvoltage<br />

controller is active.<br />

DC undervoltage<br />

controller is active.<br />

Change of direction is<br />

not allowed.<br />

Fieldbus<br />

communication break<br />

Analog input AI1 signal<br />

has fallen below limit<br />

defined by parameter<br />

3021 AI1 FAULT<br />

LIMIT.<br />

Analog input AI2 signal<br />

has fallen below limit<br />

defined by parameter<br />

3022 AI2 FAULT<br />

LIMIT.<br />

Fault tracing 337<br />

Check motor load.<br />

Check acceleration time (2202 and<br />

2205).<br />

Check motor and motor cable<br />

(including phasing).<br />

Check ambient conditions. Load<br />

capacity decreases if installation site<br />

ambient temperature exceeds 40 °C.<br />

See section Derating on page 359.<br />

Check deceleration time (2203 and<br />

2206).<br />

Check input power line for static or<br />

transient overvoltage.<br />

Check input power supply.<br />

Check parameter 1003 DIRECTION<br />

settings.<br />

Check status of fieldbus<br />

communication. See chapter Fieldbus<br />

control with embedded fieldbus on<br />

page 301, chapter Fieldbus control<br />

with fieldbus adapter on page 325 or<br />

appropriate fieldbus adapter <strong>manual</strong>.<br />

Check fault function parameter<br />

settings.<br />

Check connections.<br />

Check if master can communicate.<br />

Check fault function parameter<br />

settings.<br />

Check for proper analog control signal<br />

levels.<br />

Check connections.<br />

Check fault function parameter<br />

settings.<br />

Check for proper analog control signal<br />

levels.<br />

Check connections.


338 Fault tracing<br />

CODE ALARM CAUSE WHAT TO DO<br />

2008 PANEL LOSS<br />

0308 bit 7<br />

(programmable fault<br />

function 3002)<br />

2009 DEVICE<br />

OVERTEMP<br />

0308 bit 8<br />

2010 MOTOR TEMP<br />

0308 bit 9<br />

(programmable fault<br />

function<br />

3005…3009 / 3503)<br />

2011 UNDERLOAD<br />

0308 bit 10<br />

(programmable fault<br />

function<br />

3013…3015)<br />

2012 MOTOR STALL<br />

0308 bit 11<br />

(programmable fault<br />

function<br />

3010…3012)<br />

2013<br />

1)<br />

2018<br />

1)<br />

AUTORESET<br />

0308 bit 12<br />

PID SLEEP<br />

0309 bit 1<br />

2019 ID RUN<br />

0309 bit 2<br />

Control panel selected<br />

as active control<br />

location for drive has<br />

ceased<br />

communicating.<br />

Drive IGBT<br />

temperature is<br />

excessive. Alarm limit<br />

is 120 °C.<br />

Motor temperature is<br />

too high (or appears to<br />

be too high) due to<br />

excessive load,<br />

insufficient motor<br />

power, inadequate<br />

cooling or incorrect<br />

start-up data.<br />

Measured motor<br />

temperature has<br />

exceeded alarm limit<br />

set by parameter 3503<br />

ALARM LIMIT.<br />

Motor load is too low<br />

due to eg release<br />

mechanism in driven<br />

equipment.<br />

Motor is operating in<br />

stall region due to eg<br />

excessive load or<br />

insufficient motor<br />

power.<br />

Check panel connection.<br />

Check fault function parameters.<br />

Check control panel connector.<br />

Refit control panel in mounting<br />

platform.<br />

If drive is in external control mode<br />

(REM) and is set to accept start/stop,<br />

direction commands or references<br />

through control panel:<br />

Check group 10 START/STOP/DIR<br />

and 11 REFERENCE SELECT<br />

settings.<br />

Check ambient conditions. See also<br />

section Derating on page 359.<br />

Check air flow and fan operation.<br />

Check motor power against drive<br />

power.<br />

Check motor ratings, load and cooling.<br />

Check start-up data.<br />

Check fault function parameters.<br />

Check value of alarm limit.<br />

Check that actual number of sensors<br />

corresponds to value set by parameter<br />

3501 SENSOR TYPE.<br />

Let motor cool down. Ensure proper<br />

motor cooling: Check cooling fan,<br />

clean cooling surfaces, etc.<br />

Check for problem in driven<br />

equipment.<br />

Check fault function parameters.<br />

Check motor power against drive<br />

power.<br />

Check motor load and drive ratings.<br />

Check fault function parameters.<br />

Automatic reset alarm Check parameter group 31<br />

AUTOMATIC RESET settings.<br />

Sleep function has<br />

entered sleeping<br />

mode.<br />

Motor Identification run<br />

is on.<br />

See parameter groups 40 PROCESS<br />

PID SET 1… 41 PROCESS PID SET<br />

2.<br />

This alarm belongs to normal start-up<br />

procedure. Wait until drive indicates<br />

that motor identification is completed.


CODE ALARM CAUSE WHAT TO DO<br />

2021 START ENABLE 1<br />

MISSING<br />

0309 bit 4<br />

2022 START ENABLE 2<br />

MISSING<br />

0309 bit 5<br />

2023 EMERGENCY<br />

STOP<br />

0309 bit 6<br />

2024 ENCODER ERROR<br />

0309 bit 7<br />

(programmable fault<br />

function 5003)<br />

2025 FIRST START<br />

0309 bit 8<br />

2026 INPUT PHASE<br />

LOSS<br />

0309 bit 9<br />

(programmable fault<br />

function 3016)<br />

2029 MOTOR BACK EMF<br />

0309 bit 12<br />

No Start enable 1<br />

signal received<br />

No Start enable 2<br />

signal received<br />

Drive has received<br />

emergency stop<br />

command and ramps<br />

to stop according to<br />

ramp time defined by<br />

parameter 2208<br />

EMERG DEC TIME.<br />

Communication fault<br />

between pulse<br />

encoder and pulse<br />

encoder interface<br />

module or between<br />

module and drive.<br />

Motor identification<br />

magnetization is on.<br />

This alarm belongs to<br />

normal start-up<br />

procedure.<br />

Intermediate circuit DC<br />

voltage is oscillating<br />

due to missing input<br />

power line phase or<br />

blown fuse.<br />

Alarm is generated<br />

when DC voltage<br />

ripple exceeds 14% of<br />

nominal DC voltage.<br />

Permanent magnet<br />

motor is rotating, start<br />

mode 2 (DC MAGN) is<br />

selected with<br />

parameter 2101<br />

START FUNCTION,<br />

and run is requested.<br />

Drive warns that<br />

rotating motor cannot<br />

be magnetized with<br />

DC current.<br />

Fault tracing 339<br />

Check parameter 1608 START<br />

ENABLE 1 settings.<br />

Check digital input connections.<br />

Check fieldbus communication<br />

settings.<br />

Check parameter 1609 START<br />

ENABLE 2 settings.<br />

Check digital input connections.<br />

Check fieldbus communication<br />

settings.<br />

Check that it is safe to continue<br />

operation.<br />

Return emergency stop push button to<br />

normal position.<br />

Check pulse encoder and its wiring,<br />

pulse encoder interface module and<br />

its wiring and parameter group 50<br />

ENCODER settings.<br />

Wait until drive indicates that motor<br />

identification is completed.<br />

Check input power line fuses.<br />

Check for input power supply<br />

imbalance.<br />

Check fault function parameters.<br />

If start to rotating motor is required,<br />

select start mode 1 (AUTO) with<br />

parameter 2101 START FUNCTION.<br />

Otherwise drive starts after motor has<br />

stopped.


340 Fault tracing<br />

CODE ALARM CAUSE WHAT TO DO<br />

2035 SAFE TORQUE<br />

OFF<br />

0309 bit 13<br />

STO (Safe torque off)<br />

requested and it<br />

functions correctly.<br />

Parameter 3025 STO<br />

OPERATION is set to<br />

react with alarm.<br />

If this was not expected reaction to<br />

safety circuit interruption, check<br />

cabling of safety circuit connected to<br />

STO terminals X1C.<br />

If different reaction is required, change<br />

value of parameter 3025 STO<br />

OPERATION.<br />

Note: Start signal must be reset<br />

(toggled to 0) if STO has been used<br />

while drive has been running.<br />

1) Even when the relay output is configured to indicate alarm conditions (eg parameter 1401<br />

RELAY OUTPUT 1 = 5 (ALARM) or 16 (FLT/ALARM)), this alarm is not indicated by a relay<br />

output.


Alarms generated by the basic control panel<br />

Fault tracing 341<br />

The basic control panel indicates control panel alarms with a code, A5xxx.<br />

ALARM CODE CAUSE WHAT TO DO<br />

5001 Drive is not responding. Check panel connection.<br />

5002 Incompatible<br />

communication profile<br />

Contact your local ABB representative.<br />

5010 Corrupted panel parameter Retry parameter upload.<br />

backup file<br />

Retry parameter download.<br />

5011 Drive is controlled from<br />

another source.<br />

Change drive control to local control mode.<br />

5012 Direction of rotation is Enable change of direction. See parameter<br />

locked.<br />

1003 DIRECTION.<br />

5013 Panel control is disabled Start from panel is not possible. Reset<br />

because start inhibit is emergency stop command or remove 3-wire<br />

active.<br />

stop command before starting from panel.<br />

See section 3-wire macro on page 113 and<br />

parameters 1001 EXT1 COMMANDS, 1002<br />

EXT2 COMMANDS and 2109 EMERG STOP<br />

SEL.<br />

5014 Panel control is disabled<br />

because of drive fault.<br />

Reset drive fault and retry.<br />

5015 Panel control is disabled<br />

because local control<br />

mode lock is active.<br />

Deactivate local control mode lock and retry.<br />

See parameter 1606 LOCAL LOCK.<br />

5018 Parameter default value is<br />

not found.<br />

Contact your local ABB representative.<br />

5019 Writing non-zero<br />

parameter value is<br />

prohibited.<br />

Only parameter reset is allowed.<br />

5020 Parameter or parameter<br />

group does not exist or<br />

parameter value is<br />

inconsistent.<br />

5021 Parameter or parameter<br />

group is hidden.<br />

5022 Parameter is write<br />

protected.<br />

5023 Parameter change is not<br />

allowed when drive is<br />

running.<br />

Contact your local ABB representative.<br />

Contact your local ABB representative.<br />

Parameter value is read-only and cannot be<br />

changed.<br />

Stop drive and change parameter value.<br />

5024 Drive is executing a task. Wait until task is completed.<br />

5025 Software is being uploaded<br />

or downloaded.<br />

Wait until upload/download is complete.<br />

5026 Value is at or below<br />

minimum limit.<br />

Contact your local ABB representative.<br />

5027 Value is at or above<br />

maximum limit.<br />

Contact your local ABB representative.<br />

5028 Invalid value Contact your local ABB representative.


342 Fault tracing<br />

ALARM CODE CAUSE WHAT TO DO<br />

5029 Memory is not ready. Retry.<br />

5030 Invalid request Contact your local ABB representative.<br />

5031 Drive is not ready for<br />

operation, eg due to low<br />

DC voltage.<br />

Check input power supply.<br />

5032 Parameter error Contact your local ABB representative.<br />

5040 Parameter download error.<br />

Selected parameter set is<br />

not in current parameter<br />

backup file.<br />

Perform upload function before download.<br />

5041 Parameter backup file<br />

does not fit into memory.<br />

5042 Parameter download error.<br />

Selected parameter set is<br />

not in current parameter<br />

backup file.<br />

Contact your local ABB representative.<br />

Perform upload function before download.<br />

5043 No start inhibit<br />

5044 Parameter backup file<br />

restoring error<br />

Check that file is compatible with drive.<br />

5050 Parameter upload aborted Retry parameter upload.<br />

5051 File error Contact your local ABB representative.<br />

5052 Parameter upload has<br />

failed.<br />

Retry parameter upload.<br />

5060 Parameter download<br />

aborted<br />

Retry parameter download.<br />

5062 Parameter download has<br />

failed.<br />

Retry parameter download.<br />

5070 Panel backup memory<br />

write error<br />

Contact your local ABB representative.<br />

5071 Panel backup memory<br />

read error<br />

Contact your local ABB representative.<br />

5080 Operation is not allowed<br />

because drive is not in<br />

local control mode.<br />

Switch to local control mode.<br />

5081 Operation is not allowed<br />

because of active fault.<br />

5083 Operation is not allowed<br />

because parameter lock is<br />

on.<br />

5084 Operation is not allowed<br />

because drive is<br />

performing a task.<br />

5085 Parameter download from<br />

source to destination drive<br />

has failed.<br />

5086 Parameter download from<br />

source to destination drive<br />

has failed.<br />

Check cause of fault and reset fault.<br />

Check parameter 1602 PARAMETER LOCK<br />

setting.<br />

Wait until task is completed and retry.<br />

Check that source and destination drive types<br />

are same, ie <strong>ACS355</strong>. See type designation<br />

label of the drive.<br />

Check that source and destination drive type<br />

designations are the same. See type<br />

designation labels of the drives.


ALARM CODE CAUSE WHAT TO DO<br />

5087 Parameter download from<br />

source to destination drive<br />

has failed because<br />

parameter sets are<br />

incompatible.<br />

5088 Operation has failed<br />

because of drive memory<br />

error.<br />

5089 Download has failed<br />

because of CRC error.<br />

5090 Download has failed<br />

because of data<br />

processing error.<br />

5091 Operation has failed<br />

because of parameter<br />

error.<br />

5092 Parameter download from<br />

source to destination drive<br />

has failed because<br />

parameter sets are<br />

incompatible.<br />

Fault tracing 343<br />

Check that source and destination drive<br />

information are same. See parameters in group<br />

33 INFORMATION.<br />

Contact your local ABB representative.<br />

Contact your local ABB representative.<br />

Contact your local ABB representative.<br />

Contact your local ABB representative.<br />

Check that source and destination drive<br />

information are same. See parameters in group<br />

33 INFORMATION.


344 Fault tracing<br />

Fault messages generated by the drive<br />

CODE FAULT CAUSE WHAT TO DO<br />

0001 OVERCURRENT<br />

(2310)<br />

0305 bit 0<br />

0002 DC OVERVOLT<br />

(3210)<br />

0305 bit 1<br />

0003 DEV OVERTEMP<br />

(4210)<br />

0305 bit 2<br />

0004 SHORT CIRC<br />

(2340)<br />

0305 bit 3<br />

0006 DC UNDERVOLT<br />

(3220)<br />

0305 bit 5<br />

0007 AI1 LOSS<br />

(8110)<br />

0305 bit 6<br />

(programmable fault<br />

function 3001, 3021)<br />

0008 AI2 LOSS<br />

(8110)<br />

0305 bit 7<br />

(programmable fault<br />

function 3001, 3022)<br />

Output current has<br />

exceeded trip level.<br />

Excessive<br />

intermediate circuit DC<br />

voltage. DC<br />

overvoltage trip limit is<br />

420 V for 200 V drives<br />

and 840 V for 400 V<br />

drives.<br />

Drive IGBT<br />

temperature is<br />

excessive. Fault trip<br />

limit is 135 °C.<br />

Short circuit in motor<br />

cable(s) or motor<br />

Intermediate circuit DC<br />

voltage is not sufficient<br />

due to missing input<br />

power line phase,<br />

blown fuse, rectifier<br />

bridge internal fault or<br />

too low input power.<br />

Analog input AI1 signal<br />

has fallen below limit<br />

defined by parameter<br />

3021 AI1 FAULT<br />

LIMIT.<br />

Analog input AI2 signal<br />

has fallen below limit<br />

defined by parameter<br />

3022 AI2 FAULT<br />

LIMIT.<br />

Check motor load.<br />

Check acceleration time (2202 and<br />

2205).<br />

Check motor and motor cable<br />

(including phasing).<br />

Check ambient conditions. Load<br />

capacity decreases if installation site<br />

ambient temperature exceeds 40 °C.<br />

See section Derating on page 359.<br />

Check that overvoltage controller is on<br />

(parameter 2005 OVERVOLT CTRL).<br />

Check input power line for static or<br />

transient overvoltage.<br />

Check brake chopper and resistor (if<br />

used). DC overvoltage control must be<br />

deactivated when brake chopper and<br />

resistor is used.<br />

Check deceleration time (2203, 2206).<br />

Retrofit frequency converter with<br />

brake chopper and brake resistor.<br />

Check ambient conditions. See also<br />

section Derating on page 359.<br />

Check air flow and fan operation.<br />

Check motor power against drive<br />

power.<br />

Check motor and motor cable.<br />

Check that undervoltage controller is<br />

on (parameter 2006 UNDERVOLT<br />

CTRL).<br />

Check input power supply and fuses.<br />

Check fault function parameter<br />

settings.<br />

Check for proper analog control signal<br />

levels.<br />

Check connections.<br />

Check fault function parameter<br />

settings.<br />

Check for proper analog control signal<br />

levels.<br />

Check connections.


CODE FAULT CAUSE WHAT TO DO<br />

0009 MOT OVERTEMP<br />

(4310)<br />

0305 bit 8<br />

(programmable fault<br />

function<br />

3005…3009 / 3504)<br />

0010 PANEL LOSS<br />

(5300)<br />

0305 bit 9<br />

(programmable fault<br />

function 3002)<br />

0011 ID RUN FAIL<br />

(FF84)<br />

0305 bit 10<br />

0012 MOTOR STALL<br />

(7121)<br />

0305 bit 11<br />

(programmable fault<br />

function<br />

3010…3012)<br />

0014 EXT FAULT 1<br />

(9000)<br />

0305 bit 13<br />

(programmable fault<br />

function 3003)<br />

Motor temperature is<br />

too high (or appears to<br />

be too high) due to<br />

excessive load,<br />

insufficient motor<br />

power, inadequate<br />

cooling or incorrect<br />

start-up data.<br />

Measured motor<br />

temperature has<br />

exceeded fault limit set<br />

by parameter 3504<br />

FAULT LIMIT.<br />

Control panel selected<br />

as active control<br />

location for drive has<br />

ceased<br />

communicating.<br />

Motor ID run is not<br />

completed<br />

successfully.<br />

Motor is operating in<br />

stall region due to eg<br />

excessive load or<br />

insufficient motor<br />

power.<br />

Fault tracing 345<br />

Check motor ratings, load and cooling.<br />

Check start-up data.<br />

Check fault function parameters.<br />

Check value of fault limit.<br />

Check that actual number of sensors<br />

corresponds to value set by parameter<br />

3501 SENSOR TYPE.<br />

Let motor cool down. Ensure proper<br />

motor cooling: Check cooling fan,<br />

clean cooling surfaces, etc.<br />

Check panel connection.<br />

Check fault function parameters.<br />

Check control panel connector.<br />

Refit control panel in mounting<br />

platform.<br />

If drive is in external control mode<br />

(REM) and is set to accept start/stop,<br />

direction commands or references<br />

through control panel:<br />

Check group 10 START/STOP/DIR<br />

and 11 REFERENCE SELECT<br />

settings.<br />

Check motor connection.<br />

Check start-up data (group 99 START-<br />

UP DATA).<br />

Check maximum speed (parameter<br />

2002). It should be at least 80% of<br />

motor nominal speed (parameter<br />

9908).<br />

Ensure ID run has been performed<br />

according to instructions in section<br />

How to perform the ID run on page 69.<br />

Check motor load and drive ratings.<br />

Check fault function parameters.<br />

External fault 1 Check external devices for faults.<br />

Check parameter 3003 EXTERNAL<br />

FAULT 1 setting.


346 Fault tracing<br />

CODE FAULT CAUSE WHAT TO DO<br />

0015 EXT FAULT 2<br />

(9001)<br />

0305 bit 14<br />

(programmable fault<br />

function 3004)<br />

0016 EARTH FAULT<br />

(2330)<br />

0305 bit 15<br />

(programmable fault<br />

function 3017)<br />

0017 UNDERLOAD<br />

(FF6A)<br />

0306 bit 0<br />

(programmable fault<br />

function<br />

3013…3015)<br />

0018 THERM FAIL<br />

(5210)<br />

0306 bit 1<br />

0021 CURR MEAS<br />

(2211)<br />

0306 bit 4<br />

0022 SUPPLY PHASE<br />

(3130)<br />

0306 bit 5<br />

(programmable fault<br />

function 3016)<br />

0023 ENCODER ERR<br />

(7301)<br />

0306 bit 6<br />

(programmable fault<br />

function 5003)<br />

External fault 2 Check external devices for faults.<br />

Check parameter 3004 EXTERNAL<br />

FAULT 2 setting.<br />

Drive has detected<br />

earth (ground) fault in<br />

motor or motor cable.<br />

Motor load is too low<br />

due to eg release<br />

mechanism in driven<br />

equipment.<br />

Drive internal fault.<br />

Thermistor used for<br />

drive internal<br />

temperature<br />

measurement is open<br />

or short-circuited.<br />

Drive internal fault.<br />

Current measurement<br />

is out of range.<br />

Intermediate circuit DC<br />

voltage is oscillating<br />

due to missing input<br />

power line phase or<br />

blown fuse.<br />

Trip occurs when DC<br />

voltage ripple exceeds<br />

14% of nominal DC<br />

voltage.<br />

Communication fault<br />

between pulse<br />

encoder and pulse<br />

encoder interface<br />

module or between<br />

module and drive.<br />

Check motor.<br />

Check motor cable. Motor cable length<br />

must not exceed maximum<br />

specifications. See section Motor<br />

connection data on page 367.<br />

Note: Disabling earth fault (ground<br />

fault) may damage drive.<br />

Check for problem in driven<br />

equipment.<br />

Check fault function parameters.<br />

Check motor power against drive<br />

power.<br />

Contact your local ABB<br />

representative.<br />

Contact your local ABB<br />

representative.<br />

Check input power line fuses.<br />

Check for input power supply<br />

imbalance.<br />

Check fault function parameters.<br />

Check pulse encoder and its wiring,<br />

pulse encoder interface module and<br />

its wiring and parameter group 50<br />

ENCODER settings.


CODE FAULT CAUSE WHAT TO DO<br />

0024 OVERSPEED<br />

(7310)<br />

0306 bit 7<br />

0027 CONFIG FILE<br />

(630F)<br />

0306 bit 10<br />

0028 SERIAL 1 ERR<br />

(7510)<br />

0306 bit 11<br />

(programmable fault<br />

function 3018, 3019)<br />

0029 EFB CON FILE<br />

(6306)<br />

0306 bit 12<br />

0030 FORCE TRIP<br />

(FF90)<br />

0306 bit 13<br />

0034 MOTOR PHASE<br />

(FF56)<br />

0306 bit 14<br />

Motor is turning faster<br />

than highest allowed<br />

speed due to<br />

incorrectly set<br />

minimum/maximum<br />

speed, insufficient<br />

braking torque or<br />

changes in load when<br />

using torque<br />

reference.<br />

Operating range limits<br />

are set by parameters<br />

2001 MINIMUM<br />

SPEED and 2002<br />

MAXIMUM SPEED (in<br />

vector control) or 2007<br />

MINIMUM FREQ and<br />

2008 MAXIMUM<br />

FREQ (in scalar<br />

control).<br />

Internal configuration<br />

file error<br />

Fieldbus<br />

communication break<br />

Configuration file<br />

reading error<br />

Trip command<br />

received from fieldbus<br />

Motor circuit fault due<br />

to missing motor<br />

phase or motor<br />

thermistor relay (used<br />

in motor temperature<br />

measurement) fault.<br />

Fault tracing 347<br />

Check minimum/maximum frequency<br />

settings.<br />

Check adequacy of motor braking<br />

torque.<br />

Check applicability of torque control.<br />

Check need for brake chopper and<br />

resistor(s).<br />

Contact your local ABB<br />

representative.<br />

Check status of fieldbus<br />

communication. See chapter Fieldbus<br />

control with embedded fieldbus on<br />

page 301, chapter Fieldbus control<br />

with fieldbus adapter on page 325 or<br />

appropriate fieldbus adapter <strong>manual</strong>.<br />

Check fault function parameter<br />

settings.<br />

Check connections.<br />

Check if master can communicate.<br />

Contact your local ABB<br />

representative.<br />

See appropriate communication<br />

module <strong>manual</strong>.<br />

Check motor and motor cable.<br />

Check motor thermistor relay (if used).


348 Fault tracing<br />

CODE FAULT CAUSE WHAT TO DO<br />

0035 OUTP WIRING<br />

(FF95)<br />

0306 bit 15<br />

(programmable fault<br />

function 3023)<br />

0036 INCOMPATIBLE<br />

SW<br />

(630F)<br />

0307 bit 3<br />

0037 CB OVERTEMP<br />

(4110)<br />

0305 bit 12<br />

0044 SAFE TORQUE<br />

OFF<br />

(FFA0)<br />

0307 bit 4<br />

0045 STO1 LOST<br />

(FFA1)<br />

0307 bit 5<br />

0046 STO2 LOST<br />

(FFA2)<br />

0307 bit 6<br />

Incorrect input power<br />

and motor cable<br />

connection (ie input<br />

power cable is<br />

connected to drive<br />

motor connection).<br />

Fault can be<br />

erroneously declared if<br />

drive is faulty or input<br />

power is delta<br />

grounded system and<br />

motor cable<br />

capacitance is large.<br />

Loaded software is not<br />

compatible.<br />

Drive control board<br />

overheated. Fault trip<br />

limit is 95 °C.<br />

STO (Safe torque off)<br />

requested and it<br />

functions correctly.<br />

Parameter 3025 STO<br />

OPERATION is set to<br />

react with fault.<br />

STO (Safe torque off)<br />

input channel 1 has<br />

not de-energized, but<br />

channel 2 has.<br />

Opening contacts on<br />

channel 1 might have<br />

been damaged or<br />

there is a short circuit.<br />

STO (Safe torque off)<br />

input channel 2 has<br />

not de-energized, but<br />

channel 1 has.<br />

Opening contacts on<br />

channel 2 might have<br />

been damaged or<br />

there is a short circuit.<br />

Check input power connections.<br />

Contact your local ABB<br />

representative.<br />

Check for excessive ambient<br />

temperature.<br />

Check for fan failure.<br />

Check for obstructions in air flow.<br />

Check the dimensioning and cooling<br />

of cabinet.<br />

If this was not expected reaction to<br />

safety circuit interruption, check<br />

cabling of safety circuit connected to<br />

STO terminals X1C.<br />

If different reaction is required, change<br />

value of parameter 3025 STO<br />

OPERATION.<br />

Reset fault before starting.<br />

Check STO circuit cabling and<br />

opening of contacts in STO circuit.<br />

Check STO circuit cabling and<br />

opening of contacts in STO circuit.


CODE FAULT CAUSE WHAT TO DO<br />

0101 SERF CORRUPT<br />

(FF55)<br />

0307 bit 14<br />

0103 SERF MACRO<br />

(FF55)<br />

0307 bit 14<br />

0201 DSP T1<br />

OVERLOAD<br />

(6100)<br />

0307 bit 13<br />

0202 DSP T2<br />

OVERLOAD<br />

(6100)<br />

0307 bit 13<br />

0203 DSP T3<br />

OVERLOAD<br />

(6100)<br />

0307 bit 13<br />

0204 DSP STACK<br />

ERROR<br />

(6100)<br />

0307 bit 12<br />

0206 CB ID ERROR<br />

(5000)<br />

0307 bit 11<br />

1000 PAR HZRPM<br />

(6320)<br />

0307 bit 15<br />

1003 PAR AI SCALE<br />

(6320)<br />

0307 bit 15<br />

Fault tracing 349<br />

Drive internal error Write down fault code and contact<br />

your local ABB representative.<br />

Incorrect<br />

speed/frequency limit<br />

parameter setting<br />

Incorrect analog input<br />

AI signal scaling<br />

Check parameter settings. Check that<br />

following applies:<br />

• 2001 MINIMUM SPEED <<br />

2002 MAXIMUM SPEED<br />

• 2007 MINIMUM FREQ <<br />

2008 MAXIMUM FREQ<br />

• 2001 MINIMUM SPEED /<br />

9908 MOTOR NOM SPEED,<br />

2002 MAXIMUM SPEED /<br />

9908 MOTOR NOM SPEED,<br />

2007 MINIMUM FREQ /<br />

9907 MOTOR NOM FREQ and<br />

2008 MAXIMUM FREQ /<br />

9907 MOTOR NOM FREQ are<br />

within range.<br />

Check parameter group 13 ANALOG<br />

INPUTS settings. Check that following<br />

applies:<br />

• 1301 MINIMUM AI1 <<br />

1302 MAXIMUM AI1<br />

• 1304 MINIMUM AI2 <<br />

1305 MAXIMUM AI2.


350 Fault tracing<br />

CODE FAULT CAUSE WHAT TO DO<br />

1004 PAR AO SCALE<br />

(6320)<br />

0307 bit 15<br />

1005 PAR PCU 2<br />

(6320)<br />

0307 bit 15<br />

1006 PAR EXT RO<br />

(6320)<br />

0307 bit 15<br />

1007 PAR FBUSMISS<br />

(6320)<br />

0307 bit 15<br />

1009 PAR PCU 1<br />

(6320)<br />

0307 bit 15<br />

1015 PAR CUSTOM U/F<br />

(6320)<br />

0307 bit 15<br />

Incorrect analog output<br />

AO signal scaling<br />

Incorrect motor<br />

nominal power setting<br />

Incorrect relay output<br />

extension parameters<br />

Fieldbus control has<br />

not been activated.<br />

Incorrect motor<br />

nominal<br />

speed/frequency<br />

setting<br />

Incorrect voltage to<br />

frequency (U/f) ratio<br />

voltage setting.<br />

Check parameter group 15 ANALOG<br />

OUTPUTS settings. Check that<br />

following applies:<br />

• 1504 MINIMUM AO1 <<br />

1505 MAXIMUM AO1.<br />

Check parameter 9909 MOTOR NOM<br />

POWER setting. Following must<br />

apply:<br />

• 1.1 < (9906 MOTOR NOM CURR ·<br />

9905 MOTOR NOM VOLT · 1.73 /<br />

P N) < 3.0<br />

Where P N = 1000 · 9909 MOTOR<br />

NOM POWER (if units are in kW)<br />

or P N = 746 · 9909 MOTOR NOM<br />

POWER (if units are in hp).<br />

Check parameter settings. Check that<br />

following applies:<br />

• Output relay extension module<br />

MREL-01 is connected to drive.<br />

• 1402 RELAY OUTPUT 2, 1403<br />

RELAY OUTPUT 3 and 1410<br />

RELAY OUTPUT 4 have non-zero<br />

values.<br />

See MREL-01 relay output extension<br />

module <strong>user's</strong> <strong>manual</strong><br />

(3AUA0000035974 [English]).<br />

Check fieldbus parameter settings.<br />

See chapter Fieldbus control with<br />

fieldbus adapter on page 325.<br />

Check parameter settings. Following<br />

must apply:<br />

• 1 < (60 · 9907 MOTOR NOM FREQ<br />

/ 9908 MOTOR NOM SPEED) < 16<br />

• 0.8 < 9908 MOTOR NOM SPEED /<br />

(120 · 9907 MOTOR NOM FREQ /<br />

Motor poles) < 0.992<br />

Check parameter 2610 USER<br />

DEFINED U1 … 2617 USER<br />

DEFINED F4 settings.


CODE FAULT CAUSE WHAT TO DO<br />

1017 PAR SETUP 1<br />

(6320)<br />

0307 bit 15<br />

Only two of the<br />

following can be used<br />

simultaneously:<br />

MTAC-01 encoder<br />

module, frequency<br />

input signal or<br />

frequency output<br />

signal.<br />

Fault tracing 351<br />

Disable frequency output, frequency<br />

input or encoder:<br />

• change transistor output to digital<br />

mode (value of parameter 1804 TO<br />

MODE = 0 [DIGITAL]), or<br />

• change frequency input selection to<br />

other value in parameter groups<br />

11 REFERENCE SELECT,<br />

40 PROCESS PID SET 1,<br />

41 PROCESS PID SET 2 and<br />

42 EXT / TRIM PID, or<br />

• disable (parameter 5002<br />

ENCODER ENABLE) and remove<br />

MTAC-01 encoder module.


352 Fault tracing<br />

Embedded fieldbus faults<br />

Embedded fieldbus faults can be traced by monitoring group 53 EFB PROTOCOL<br />

parameters. See also fault/alarm SERIAL 1 ERR (0028).<br />

� No master device<br />

If there is no master device on line, parameter 5306 EFB OK MESSAGES and 5307<br />

EFB CRC ERRORS values remain unchanged.<br />

What to do:<br />

• Check that the network master is connected and properly configured.<br />

• Check the cable connection.<br />

� Same device address<br />

If two or more devices have the same address, parameter 5307 EFB CRC ERRORS<br />

value increases with every read/write command.<br />

What to do:<br />

• Check the device addresses. No two devices on line may have the same address.<br />

� Incorrect wiring<br />

If the communication wires are swapped (terminal A on one device is connected to<br />

terminal B on another device), parameter 5306 EFB OK MESSAGESS value remains<br />

unchanged and parameter 5307 EFB CRC ERRORS increases.<br />

What to do:<br />

• Check the RS-232/EIA-485 interface connection.


Maintenance and hardware diagnostics 353<br />

Maintenance and hardware<br />

diagnostics<br />

What this chapter contains<br />

The chapter contains preventive maintenance instructions and LED indicator<br />

descriptions.<br />

Maintenance intervals<br />

If installed in an appropriate environment, the drive requires very little maintenance.<br />

The table lists the routine maintenance intervals recommended by ABB.<br />

Maintenance Interval Instruction<br />

Reforming of capacitors Every year when<br />

stored<br />

See Capacitors on page 355.<br />

Check of dustiness, corrosion<br />

and temperature<br />

Every year<br />

Replacement of the cooling fan<br />

(frame sizes R1…R4)<br />

Every three years See Cooling fan on page 354.<br />

Check and tightening of the<br />

power terminals<br />

Every six years See Power connections on page 355.<br />

Replacement of the battery in<br />

the assistant control panel<br />

Testing of Safe torque off (STO)<br />

operation and reaction<br />

Every ten years See Changing the battery in the<br />

assistant control panel on page 356.<br />

Every year See Appendix: Safe torque off (STO)<br />

on page 399.<br />

Consult your local ABB Service representative for more details on the maintenance.<br />

On the Internet, go to http://www.abb.com/drives and select Drive Services –<br />

Maintenance and Field Services.


354 Maintenance and hardware diagnostics<br />

Cooling fan<br />

The drive’s cooling fan has a life span of minimum 25 000 operating hours. The<br />

actual life span depends on the drive usage and ambient temperature. Automatic fan<br />

on/off control increases the life span (see parameter 1612 FAN CONTROL).<br />

When the assistant control panel is in use, the Notice handler assistant informs when<br />

the definable value of the operating hour counter is reached (see parameter 2901<br />

COOLING FAN TRIG). This information can also be passed to the relay output (see<br />

group 14 RELAY OUTPUTS) regardless of the used panel type.<br />

Fan failure can be predicted by the increasing noise from the fan bearings. If the drive<br />

is operated in a critical part of a process, fan replacement is recommended once<br />

these symptoms start appearing. Replacement fans are available from ABB. Do not<br />

use other than ABB specified spare parts.<br />

� Replacing the cooling fan (frame sizes R1…R4)<br />

Only frame sizes R1…R4 include a fan; frame size R0 has natural cooling.<br />

WARNING! Read and follow the instructions in chapter Safety on page<br />

17. Ignoring the instructions can cause physical injury or death, or<br />

damage to the equipment.<br />

1. Stop the drive and disconnect it from the AC power source.<br />

2. Remove the hood if the drive has the NEMA 1 option.<br />

3. Lever the fan holder off the drive frame with eg a screwdriver and lift the hinged<br />

fan holder slightly upward from its front edge.<br />

4. Free the fan cable from the clip.<br />

5. Disconnect the fan cable.<br />

6. Remove the fan holder from the hinges.<br />

3<br />

6<br />

4<br />

5


Maintenance and hardware diagnostics 355<br />

7. Install the new fan holder including the fan in reverse order.<br />

8. Restore power.<br />

Capacitors<br />

7<br />

� Reforming the capacitors<br />

The capacitors must be reformed if the drive has been stored for a year. See section<br />

Type designation label on page 28 for how to find out the manufacturing time from the<br />

serial number. For information on reforming the capacitors, refer to Guide for<br />

capacitor reforming in ACS50, ACS55, ACS150, ACS310, ACS350, <strong>ACS355</strong>,<br />

ACS550 and ACH550 (3AFE68735190 [English]), available on the Internet (go to<br />

http://www.abb.com and enter the code in the Search field).<br />

Power connections<br />

WARNING! Read and follow the instructions in chapter Safety on page<br />

17. Ignoring the instructions can cause physical injury or death, or<br />

damage to the equipment.<br />

1. Stop the drive and disconnect it from the power line. Wait for five minutes to let the<br />

drive DC capacitors discharge. Ensure by measuring with a multimeter<br />

(impedance at least 1 Mohm) that there is no voltage present.<br />

2. Check the tightness of the power cable connections. Use the tightening torques<br />

given in section Terminal and lead-through data for the power cables on page<br />

366.<br />

3. Restore power.


356 Maintenance and hardware diagnostics<br />

Control panel<br />

� Cleaning the control panel<br />

Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could<br />

scratch the display window.<br />

� Changing the battery in the assistant control panel<br />

A battery is only used in assistant control panels that have the clock function<br />

available and enabled. The battery keeps the clock operating in memory during<br />

power interruptions.<br />

The expected life for the battery is greater than ten years. To remove the battery, use<br />

a coin to rotate the battery holder on the back of the control panel. Replace the<br />

battery with type CR2032.<br />

Note: The battery is NOT required for any control panel or drive functions, except the<br />

clock.<br />

LEDs<br />

There is a green and a red LED on the front of the drive. They are visible through the<br />

panel cover but invisible if a control panel is attached to the drive. The assistant<br />

control panel has one LED. The table below describes the LED indications.<br />

Where LED off LED lit and steady LED blinking<br />

On the front of<br />

the drive.<br />

If a control panel<br />

is attached to the<br />

drive, switch to<br />

remote control<br />

(otherwise a fault<br />

will be<br />

generated), and<br />

then remove the<br />

panel to be able<br />

to see the LEDs.<br />

At the top left<br />

corner of the<br />

assistant control<br />

panel<br />

No power Green Power supply on<br />

the board OK<br />

Red Drive in a fault<br />

state. To reset<br />

the fault, press<br />

RESET from the<br />

control panel or<br />

switch off the<br />

drive power.<br />

Panel has no<br />

power or no<br />

drive<br />

connection.<br />

Green Drive in a normal<br />

state<br />

Red Drive in a fault<br />

state. To reset<br />

the fault, press<br />

RESET from the<br />

control panel or<br />

switch off the<br />

drive power.<br />

Green Drive in an alarm<br />

state<br />

Red Drive in a fault state.<br />

To reset the fault,<br />

switch off the drive<br />

power.<br />

Green Drive in an alarm<br />

state<br />

Red -


Technical data<br />

What this chapter contains<br />

Technical data 357<br />

The chapter contains the technical specifications of the drive, eg ratings, sizes and<br />

technical requirements as well as provisions for fulfilling the requirements for CE and<br />

other marks.


358 Technical data<br />

Ratings<br />

Type Input Output Frame<br />

size<br />

<strong>ACS355</strong>- I 1N I 1N (480 V) I 2N I 2,1 min/10 min 2) I 2max P N<br />

x = E/U 1) A A A A A kW hp<br />

1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

01x-02A4-2 6.1 - 2.4 3.6 4.2 0.37 0.5 R0<br />

01x-04A7-2 11.4 - 4.7 7.1 8.2 0.75 1 R1<br />

01x-06A7-2 16.1 - 6.7 10.1 11.7 1.1 1.5 R1<br />

01x-07A5-2 16.8 - 7.5 11.3 13.1 1.5 2 R2<br />

01x-09A8-2 21.0 - 9.8 14.7 17.2 2.2 3 R2<br />

3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

03x-02A4-2 4.3 - 2.4 3.6 4.2 0.37 0.5 R0<br />

03x-03A5-2 6.1 - 3.5 5.3 6.1 0.55 0.75 R0<br />

03x-04A7-2 7.6 - 4.7 7.1 8.2 0.75 1 R1<br />

03x-06A7-2 11.8 - 6.7 10.1 11.7 1.1 1.5 R1<br />

03x-07A5-2 12.0 - 7.5 11.3 13.1 1.5 2 R1<br />

03x-09A8-2 14.3 - 9.8 14.7 17.2 2.2 3 R2<br />

03x-13A3-2 21.7 - 13.3 20.0 23.3 3 4 R2<br />

03x-17A6-2 24.8 - 17.6 26.4 30.8 4 5 R2<br />

03x-24A4- 2 41 - 24.4 36.6 42.7 5.5 7.5 R3<br />

03x-31A0-2 50 - 31 46.5 54.3 7.5 10 R4<br />

03x-46A2-2 69 - 46.2 69.3 80.9 11.0 15 R4<br />

3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)<br />

03x-01A2-4 2.2 1.8 1.2 1.8 2.1 0.37 0.5 R0<br />

03x-01A9-4 3.6 3.0 1.9 2.9 3.3 0.55 0.75 R0<br />

03x-02A4-4 4.1 3.4 2.4 3.6 4.2 0.75 1 R1<br />

03x-03A3-4 6.0 5.0 3.3 5.0 5.8 1.1 1.5 R1<br />

03x-04A1-4 6.9 5.8 4.1 6.2 7.2 1.5 2 R1<br />

03x-05A6-4 9.6 8.1 5.6 8.4 9.8 2.2 3 R1<br />

03x-07A3-4 11.6 9.7 7.3 11.0 12.8 3 4 R1<br />

03x-08A8-4 13.6 11.4 8.8 13.2 15.4 4 5 R1<br />

03x-12A5-4 18.8 15.8 12.5 18.8 21.9 5.5 7.5 R3<br />

03x-15A6-4 22.1 18.6 15.6 23.4 27.3 7.5 10 R3<br />

03x-23A1-4 30.9 26.0 23.1 34.7 40.4 11 15 R3<br />

03x-31A0-4 52 43.7 31 46.5 54.3 15 20 R4<br />

03x-38A0-4 61 51.2 38 57 66.5 18.5 25 R4<br />

03x-44A0-4 67 56.3 44 66 77.0 22.0 30 R4<br />

1)<br />

E = EMC filter connected (metal EMC filter screw installed),<br />

U = EMC filter disconnected (plastic EMC filter screw installed), US parametrization.<br />

2)<br />

Overloading not allowed through Common DC connection.<br />

00353783.xls J


� Definitions<br />

� Sizing<br />

Technical data 359<br />

Input<br />

I1N continuous rms input current (for dimensioning cables and fuses)<br />

I1N (480 V) continuous rms input current (for dimensioning cables and fuses) for drives<br />

with 480 V input voltage<br />

Output<br />

I2N continuous rms current. 50% overload is allowed for one minute every ten<br />

minutes.<br />

I2,1 min/10 min maximum (50% overload) current allowed for one minute every ten minutes<br />

I2max maximum output current. Available for two seconds at start, otherwise as long<br />

as allowed by the drive temperature.<br />

PN typical motor power. The kilowatt ratings apply to most IEC 4-pole motors. The<br />

horsepower ratings apply to most NEMA 4-pole motors. This is also the<br />

maximum load through the Common DC connection and must not be<br />

exceeded.<br />

R0…R4 <strong>ACS355</strong> is manufactured in frame sizes R0…R4. Some instructions and other<br />

information that only concern certain frame sizes are marked with the symbol<br />

of the frame size (R0…R4).<br />

Drive sizing is based on the rated motor current and power. To achieve the rated<br />

motor power given in the table, the rated current of the drive must be higher than or<br />

equal to the rated motor current. Also the rated power of the drive must be higher<br />

than or equal to compared to the rated motor power. The power ratings are the same<br />

regardless of the supply voltage within one voltage range.<br />

Note 1: The maximum allowed motor shaft power is limited to 1.5 · P N. If the limit is<br />

exceeded, motor torque and current are automatically restricted. The function<br />

protects the input bridge of the drive against overload.<br />

Note 2: The ratings apply at ambient temperature of 40 °C (104 °F) for I 2N .<br />

Note 3: It is important to check that in Common DC systems the power flowing<br />

through the common DC connection does not exceed P N .<br />

� Derating<br />

I 2N : The load capacity decreases if the installation site ambient temperature exceeds<br />

40 °C (104 °F), the altitude exceeds 1000 meters (3300 ft) or the switching frequency<br />

is changed from 4 kHz to 8, 12 or 16 kHz.<br />

Temperature derating, I 2N<br />

In the temperature range +40 °C…+50 °C (+104 °F…+122 °F), the rated output<br />

current (I 2N ) is decreased by 1% for every additional 1 °C (1.8 °F). The output current<br />

is calculated by multiplying the current given in the rating table by the derating factor.<br />

Example: If the ambient temperature is 50 °C (+122 °F), the derating factor is<br />

100% - 1<br />

%<br />

· 10 °C = 90% or 0.90. The output current is then 0.90 · I2N .<br />

°C


360 Technical data<br />

Altitude derating, I 2N<br />

In altitudes 1000…2000 m (3300…6600 ft) above sea level, the derating is 1% for<br />

every 100 m (330 ft).<br />

For 3-phase 200 V drives, the maximum altitude is 3000 m (9800 ft) above sea level.<br />

In altitudes 2000…3000 m (6600…9800 ft), the derating is 2% for every 100 m<br />

(330 ft).<br />

Switching frequency derating, I 2N<br />

The drive derates itself automatically when parameter 2607 SWITCH FREQ CTRL =<br />

1(ON).<br />

Switching<br />

Drive voltage rating<br />

frequency<br />

UN = 200…240 V UN = 380…480 V<br />

4 kHz No derating No derating<br />

8kHz I2N derated to 90%. I2N derated to 75% for R0 or to 80% for R1…R4.<br />

12 kHz I2N derated to 80%. I2N derated to 50% for R0 or to 65% for R1…R4<br />

and maximum ambient temperature derated to<br />

30 °C (86 °F).<br />

16 kHz I2N derated to 75%. I2N derated to 50% and maximum ambient<br />

temperature derated to 30 °C (86 °F).<br />

When parameter 2607 SWITCH FREQ CTRL = 2 (ON (LOAD)), the drive controls the<br />

switching frequency towards the selected switching frequency 2606 SWITCHING<br />

FREQ if the drive’s internal temperature allows.


Power cable sizes and fuses<br />

Technical data 361<br />

Cable dimensioning for rated currents (I 1N ) is shown in the table below together with<br />

the corresponding fuse types for short-circuit protection of the input power cable. The<br />

rated fuse currents given in the table are the maximums for the mentioned fuse<br />

types. If smaller fuse ratings are used, check that the fuse rms current rating is larger<br />

than the rated I 1N current given in section Ratings on page 358. If 150% output power<br />

is needed, multiply current I 1N by 1.5. See also section Selecting the power cables on<br />

page 38.<br />

Check that the operating time of the fuse is below 0.5 seconds. The operating<br />

time depends on the fuse type, the supply network impedance as well as the crosssectional<br />

area, material and length of the supply cable. In case the 0.5 seconds<br />

operating time is exceeded with the gG or T fuses, ultra rapid (aR) fuses will in most<br />

cases reduce the operating time to an acceptable level.<br />

Note: Larger fuses must not be used when the input power cable is selected<br />

according to this table.<br />

Type Fuses Size of copper conductor in cablings<br />

<strong>ACS355</strong>- gG UL Class Supply Motor PE Brake<br />

T (600 V) (U1, V1, W1) (U2, V2, W2)<br />

(BRK+, BRK-)<br />

x = E/U A A mm2 AWG mm2 AWG mm2 AWG mm2 AWG<br />

1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

01x-02A4-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

01x-04A7-2 16 20 2.5 14 0.75 18 2.5 14 2.5 14<br />

01x-06A7-2 16/20 1) 25 2.5 10 1.5 14 2.5 10 2.5 12<br />

01x-07A5-2 20/25 1) 30 2.5 10 1.5 14 2.5 10 2.5 12<br />

01x-09A8-2 25/35 1) 35 6 10 2.5 12 6 10 6 12<br />

3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

03x-02A4-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-03A5-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-04A7-2 10 15 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-06A7-2 16 15 2.5 12 1.5 14 2.5 12 2.5 12<br />

03x-07A5-2 16 15 2.5 12 1.5 14 2.5 12 2.5 12<br />

03x-09A8-2 16 20 2.5 12 2.5 12 2.5 12 2.5 12<br />

03x-13A3-2 25 30 6 10 6 10 6 10 2.5 12<br />

03x-17A6-2 25 35 6 10 6 10 6 10 2.5 12<br />

03x-24A4- 2 63 60 10 8 10 8 10 8 6 10<br />

03x-31A0-2 80 80 16 6 16 6 16 6 10 8<br />

03x-46A2-2 100 100 25 2 25 2 16 4 10 8


362 Technical data<br />

Type Fuses Size of copper conductor in cablings<br />

<strong>ACS355</strong>- gG UL Class Supply Motor PE Brake<br />

T (600 V) (U1, V1, W1) (U2, V2, W2)<br />

(BRK+, BRK-)<br />

x = E/U A A mm<br />

3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)<br />

03x-01A2-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-01A9-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-02A4-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14<br />

03x-03A3-4 10 10 2.5 12 0.75 18 2.5 12 2.5 12<br />

03x-04A1-4 16 15 2.5 12 0.75 18 2.5 12 2.5 12<br />

03x-05A6-4 16 15 2.5 12 1.5 14 2.5 12 2.5 12<br />

03x-07A3-4 16 20 2.5 12 1.5 14 2.5 12 2.5 12<br />

03x-08A8-4 20 25 2.5 12 2.5 12 2.5 12 2.5 12<br />

03x-12A5-4 25 30 6 10 6 10 6 10 2.5 12<br />

03x-15A6-4 35 35 6 8 6 8 6 8 2.5 12<br />

03x-23A1-4 50 50 10 8 10 8 10 8 6 10<br />

03x-31A0-4 80 80 16 6 16 6 16 6 10 8<br />

03x-38A0-4 100 100 16 4 16 4 16 4 10 8<br />

03x-44A0-4 100 100 25 4 25 4 16 4 10 8<br />

1)<br />

If 50% overload capacity is needed, use the larger fuse alternative. 00353783.xls J<br />

2 AWG mm2 AWG mm2 AWG mm2 AWG


Dimensions, weights and free space requirements<br />

� Dimensions and weights<br />

� Free space requirements<br />

Technical data 363<br />

Frame<br />

Dimensions and weights<br />

size<br />

IP20 (cabinet) / UL open<br />

H1 H2 H3 W D Weight<br />

mm in mm in mm in mm in mm in kg lb<br />

R0 169 6.65 202 7.95 239 9.41 70 2.76 161 6.34 1.2 2.6<br />

R1 169 6.65 202 7.95 239 9.41 70 2.76 161 6.34 1.2 2.6<br />

R2 169 6.65 202 7.95 239 9.41 105 4.13 165 6.50 1.7 3.7<br />

R3 169 6.65 202 7.95 236 9.29 169 6.65 169 6.65 2.9 6.4<br />

R4 181 7.13 202 7.95 244 9.61 260 10.24 169 6.65 5.1 11.2<br />

00353783.xls J<br />

Frame<br />

Dimensions and weights<br />

size<br />

IP20 / NEMA 1<br />

H4 H5 W D Weight<br />

mm in mm in mm in mm in kg lb<br />

R0 257 10.12 280 11.02 70 2.76 169 6.65 1.6 3.5<br />

R1 257 10.12 280 11.02 70 2.76 169 6.65 1.6 3.5<br />

R2 257 10.12 282 11.10 105 4.13 169 6.65 2.1 4.6<br />

R3 260 10.24 299 11.77 169 6.65 177 6.97 3.5 7.7<br />

R4 270 10.63 320 12.60 260 10.24 177 6.97 5.7 12.6<br />

00353783.xls J<br />

Symbols<br />

IP20 (cabinet) / UL open<br />

H1 height without fastenings and clamping plate<br />

H2 height with fastenings, without clamping plate<br />

H3 height with fastenings and clamping plate<br />

IP20 / NEMA 1<br />

H4 height with fastenings and connection box<br />

H5 height with fastenings, connection box and hood<br />

Frame<br />

Free space required<br />

size Above Below On the sides<br />

mm in mm in mm in<br />

R0…R4 75 3 75 3 0 0<br />

00353783.xls J


364 Technical data<br />

Losses, cooling data and noise<br />

� Losses and cooling data<br />

Frame size R0 has natural convection cooling. Frame sizes R1…R4 are provided<br />

with an internal fan. The air flow direction is from bottom to top.<br />

The table below specifies the heat dissipation in the main circuit at nominal load and<br />

in the control circuit with minimum load (I/O and panel not in use) and maximum load<br />

(all digital inputs in the on state and the panel, fieldbus and fan in use). The total heat<br />

dissipation is the sum of the heat dissipation in the main and control circuits.<br />

Type Heat dissipation Air flow<br />

<strong>ACS355</strong>- Main circuit Control circuit<br />

x = E/U Rated / 1N and / 2N Min Max<br />

W W W m 3 /h ft 3 /min<br />

1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

01x-02A4-2 25 6.1 22.7 - -<br />

01x-04A7-2 46 9.5 26.4 24 14<br />

01x-06A7-2 71 9.5 26.4 24 14<br />

01x-07A5-2 73 10.5 27.5 21 12<br />

01x-09A8-2 96 10.5 27.5 21 12<br />

3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

03x-02A4-2 19 6.1 22.7 - -<br />

03x-03A5-2 31 6.1 22.7 - -<br />

03x-04A7-2 38 9.5 26.4 24 14<br />

03x-06A7-2 60 9.5 26.4 24 14<br />

03x-07A5-2 62 9.5 26.4 21 12<br />

03x-09A8-2 83 10.5 27.5 21 12<br />

03x-13A3-2 112 10.5 27.5 52 31<br />

03x-17A6-2 152 10.5 27.5 52 31<br />

03x-24A4- 2 250 16.6 35.4 71 42<br />

03x-31A0-2 270 33.4 57.8 96 57<br />

03x-46A2-2 430 33.4 57.8 96 57


� Noise<br />

Technical data 365<br />

Type Heat dissipation Air flow<br />

<strong>ACS355</strong>- Main circuit Control circuit<br />

x = E/U Rated / 1N and / 2N Min Max<br />

W W W m3 /h ft3 /min<br />

3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)<br />

03x-01A2-4 11 6.6 24.4 - -<br />

03x-01A9-4 16 6.6 24.4 - -<br />

03x-02A4-4 21 9.8 28.7 13 8<br />

03x-03A3-4 31 9.8 28.7 13 8<br />

03x-04A1-4 40 9.8 28.7 13 8<br />

03x-05A6-4 61 9.8 28.7 19 11<br />

03x-07A3-4 74 14.1 32.7 24 14<br />

03x-08A8-4 94 14.1 32.7 24 14<br />

03x-12A5-4 130 12.0 31.2 52 31<br />

03x-15A6-4 173 12.0 31.2 52 31<br />

03x-23A1-4 266 16.6 35.4 71 42<br />

03x-31A0-4 350 33.4 57.8 96 57<br />

03x-38A0-4 440 33.4 57.8 96 57<br />

03x-44A0-4 530 33.4 57.8 96 57<br />

00353783.xls J<br />

Frame Noise level<br />

size dBA<br />

R0


366 Technical data<br />

Terminal and lead-through data for the power cables<br />

Frame<br />

size<br />

Max. cable<br />

diameter for NEMA 1<br />

U1, V1, W1,<br />

U2, V2, W2<br />

BRK+ and<br />

BRK-<br />

U1, V1, W1, U2, V2, W2,<br />

BRK+ and BRK-<br />

Terminal size Tightening<br />

torque<br />

Terminal and lead-through data for the control cables<br />

PE<br />

Clamp size Tightening<br />

torque<br />

mm in mm in mm2 AWG N·m lbf·in mm2 AWG N·m lbf·in<br />

R0 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11<br />

R1 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11<br />

R2 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11<br />

R3 29 1.14 16 0.63 10.0/16.0 6 1.7 15 25 3 1.2 11<br />

R4 35 1.38 29 1.14 25.0/35.0 2 2.5 22 25 3 1.2 11<br />

00353783.xls J<br />

Conductor size Tightening torque<br />

Min/Max Min/Max<br />

mm2 AWG N·m lbf·in<br />

0.25/1.5 24/16 0.5 4.4


Electric power network specification<br />

Technical data 367<br />

Voltage (U1 ) 200/208/220/230/240 V AC 1-phase for 200 V AC drives<br />

200/208/220/230/240 V AC 3-phase for 200 V AC drives<br />

380/400/415/440/460/480 V AC 3-phase for 400 V AC drives<br />

±10% variation from converter nominal voltage is allowed as default.<br />

Short-circuit capacity Maximum allowed prospective short-circuit current at the input power<br />

connection as defined in IEC 60439-1 and UL 508C is 100 kA. The<br />

drive is suitable for use in a circuit capable of delivering not more<br />

than 100 kA rms symmetrical amperes at the drive maximum rated<br />

voltage.<br />

Frequency 50/60 Hz ± 5%, maximum rate of change 17%/s<br />

Imbalance Max. ±3% of nominal phase to phase input voltage<br />

Motor connection data<br />

Motor type Asynchronous induction motor or synchronous permanent<br />

magnet motor<br />

Voltage (U2) 0 to U1, 3-phase symmetrical, Umax at the field weakening point<br />

Short-circuit protection<br />

(IEC 61800-5-1,<br />

UL 508C)<br />

The motor output is short-circuit proof by IEC 61800-5-1 and<br />

UL 508C.<br />

Frequency 0…600 Hz<br />

Frequency resolution 0.01 Hz<br />

Current See section Ratings on page 358.<br />

Power limit 1.5 · PN Field weakening point 10…600 Hz<br />

Switching frequency 4, 8, 12 or 16 kHz (in scalar control)<br />

Speed control See section Speed control performance figures on page 143.<br />

Torque control See section Torque control performance figures on page 143.<br />

Maximum<br />

Operational functionality and motor cable length<br />

recommended<br />

motor cable length<br />

The drive is designed to operate with optimum performance with the<br />

following maximum motor cable lengths. The motor cable lengths may<br />

be extended with output chokes as shown in the table.<br />

Frame<br />

Maximum motor cable length<br />

size<br />

m ft<br />

Standard drive, without external options<br />

R0 30 100<br />

R1…R4<br />

With external output chokes<br />

50 165<br />

R0 60 195<br />

R1…R4 100 330<br />

Note: In multimotor systems, the calculated sum of all motor cable<br />

lengths must not exceed the maximum motor cable length given in<br />

the table.


368 Technical data<br />

EMC compatibility and motor cable length<br />

To comply with the European EMC Directive (standard<br />

IEC/EN 61800-3), use the following maximum motor cable lengths<br />

for 4 kHz switching frequency.<br />

All frame<br />

sizes<br />

With internal EMC filter<br />

Second environment<br />

(category C3 1) )<br />

Maximum motor cable length, 4 kHz<br />

m ft<br />

30 100<br />

With optional external EMC filter<br />

Second environment<br />

(category C3 1) 30 (at least)<br />

)<br />

2)<br />

100 (at least) 2)<br />

First environment<br />

(category C2 1) 30 (at least)<br />

)<br />

2)<br />

100 (at least) 2)<br />

First environment<br />

(category C1 1) 10 (at least)<br />

)<br />

2)<br />

30 (at least) 2)<br />

1)<br />

See the terms in section Definitions on page 373.<br />

2)<br />

Maximum motor cable length is determined by the drive’s<br />

operational factors. Contact your local ABB representative for the<br />

exact maximum lengths when using external EMC filters.<br />

Note 1: The internal EMC filter must be disconnected by removing<br />

the EMC screw (see the figure on page 48) while using the low<br />

leakage current EMC filter (LRFI-XX).<br />

Note 2: Radiated emissions are according to C2 with and without an<br />

external EMC filter.<br />

Note 3: Category C1 with conducted emissions only. Radiated<br />

emissions are not compatible when measured with standard<br />

emission measurement setup and should be checked or measured<br />

on cabinet and machine installations case by case.


Control connection data<br />

Analog inputs<br />

X1A: 2 and 5<br />

(AI1 and AI2)<br />

Analog output<br />

X1A: 7<br />

(AO)<br />

Auxiliary voltage<br />

X1A: 9<br />

Digital inputs<br />

X1A: 12…16<br />

(DI1…DI5)<br />

Frequency input<br />

X1A: 16<br />

(DI5)<br />

Relay output<br />

X1B: 17…19<br />

(RO 1)<br />

Digital output<br />

X1B: 20…21<br />

(DO)<br />

Frequency output<br />

X1B: 20…21<br />

(FO)<br />

STO interface<br />

X1C: 23…26<br />

Technical data 369<br />

Voltage signal, unipolar 0 (2)…10 V, R in = 675 kohm<br />

bipolar -10…10 V, R in = 675 kohm<br />

Current signal, unipolar 0 (4)…20 mA, R in = 100 ohm<br />

bipolar -20…20 mA, R in = 100 ohm<br />

Potentiometer reference<br />

value (X1A: 4) 10 V ± 1%, max. 10 mA, R


370 Technical data<br />

Brake resistor connection<br />

Short-circuit protection<br />

(IEC 61800-5-1,<br />

IEC 60439-1, UL 508C)<br />

Common DC connection<br />

Efficiency<br />

Degrees of protection<br />

The brake resistor output is conditionally short-circuit proof by<br />

IEC/EN 61800-5-1 and UL 508C. For correct fuse selection, contact<br />

your local ABB representative. Rated conditional short-circuit current<br />

as defined in IEC 60439-1 and the Short-circuit test current by<br />

UL 508C is 100 kA.<br />

Maximum power through common DC connection is equal to the<br />

drive nominal power. See <strong>ACS355</strong> Common DC application guide<br />

(3AUA0000070130 [English]).<br />

Approximately 95 to 98% at nominal power level, depending on the<br />

drive size and options<br />

IP20 (cabinet installation) / UL open: Standard enclosure. The drive<br />

must be installed in a cabinet to fulfil the requirements for shielding<br />

from contact.<br />

IP20 / NEMA 1: Achieved with an option kit (MUL1-R1, MUL1-R3 or<br />

MUL1-R4) including a hood and a connection box.


Ambient conditions<br />

Technical data 371<br />

Environmental limits for the drive are given below. The drive is to be used in a heated indoor<br />

controlled environment.<br />

Operation<br />

installed for<br />

stationary use<br />

Installation site altitude 0…2000 m (6600 ft)<br />

above sea level<br />

(above 1000 m<br />

[3300 ft], see section<br />

Derating on page<br />

359)<br />

Air temperature -10 … +50 °C<br />

(14 … 122 °F).<br />

No frost allowed. See<br />

section Derating on<br />

page 359.<br />

Storage<br />

in the protective<br />

package<br />

- -<br />

-40 … +70 °C ±2%<br />

(-40 … +158 °F ±2%)<br />

Transportation<br />

in the protective<br />

package<br />

-40 … +70 °C ±2%<br />

(-40 … +158 °F ±2%)<br />

Relative humidity 0 … 95% Max. 95% Max. 95%<br />

No condensation allowed. Maximum allowed relative humidity is<br />

60% in the presence of corrosive gases.<br />

Contamination levels<br />

(IEC 60721-3-3,<br />

IEC 60721-3-2,<br />

IEC 60721-3-1)<br />

Sinusoidal vibration<br />

(IEC 60721-3-3)<br />

Shock<br />

(IEC 60068-2-27,<br />

ISTA 1A)<br />

No conductive dust allowed.<br />

According to<br />

IEC 60721-3-3,<br />

chemical gases:<br />

Class 3C2<br />

solid particles:<br />

Class 3S2.<br />

Note: The drive must<br />

be installed in clean<br />

air according to<br />

enclosure<br />

classification.<br />

Note: Cooling air<br />

must be clean, free<br />

from corrosive<br />

materials and<br />

electrically conductive<br />

dust.<br />

Tested according to<br />

IEC 60721-3-3,<br />

mechanical<br />

conditions: Class 3M4<br />

2…9Hz, 3.0mm<br />

(0.12 in)<br />

9…200 Hz, 10 m/s 2<br />

(33 ft/s 2 )<br />

According to<br />

IEC 60721-3-1,<br />

chemical gases:<br />

Class 1C2<br />

solid particles:<br />

Class 1S2<br />

- -<br />

Not allowed According to ISTA 1A.<br />

Max. 100 m/s 2<br />

(330 ft/s 2 ), 11 ms<br />

According to<br />

IEC 60721-3-2,<br />

chemical gases:<br />

Class 2C2<br />

solid particles:<br />

Class 2S2<br />

According to ISTA 1A.<br />

Max. 100 m/s 2<br />

(330 ft/s 2 ), 11 ms<br />

Free fall Not allowed 76 cm (30 in) 76 cm (30 in)


372 Technical data<br />

Materials<br />

Drive enclosure • PC/ABS 2 mm, PC+10%GF 2.5…3 mm and PA66+25%GF<br />

1.5 mm, all in color NCS 1502-Y (RAL 9002 / PMS 420 C)<br />

• hot-dip zinc coated steel sheet 1.5 mm, thickness of coating<br />

20 micrometers<br />

• extruded aluminium AlSi.<br />

Package Corrugated cardboard.<br />

Disposal The drive contains raw materials that should be recycled to preserve<br />

energy and natural resources. The package materials are<br />

environmentally compatible and recyclable. All metal parts can be<br />

recycled. The plastic parts can either be recycled or burned under<br />

controlled circumstances, according to local regulations. Most<br />

recyclable parts are marked with recycling marks.<br />

If recycling is not feasible, all parts excluding electrolytic capacitors<br />

and printed circuit boards can be landfilled. The DC capacitors<br />

contain electrolyte, which is classified as hazardous waste within the<br />

EU. They must be removed and handled according to local<br />

regulations.<br />

For further information on environmental aspects and more detailed<br />

recycling instructions, please contact your local ABB distributor.<br />

Applicable standards<br />

• EN ISO 13849-1:<br />

2008<br />

• IEC/EN 60204-1:<br />

2006<br />

• IEC/EN 62061:<br />

2005<br />

• IEC/EN 61800-3:<br />

2004<br />

• IEC/EN 61800-5-1:<br />

2007<br />

• IEC/EN 61800-5-2:<br />

2007<br />

The drive complies with the following standards:<br />

Safety of machinery - Safety related parts of control systems - Part 1:<br />

general principles for design<br />

Safety of machinery. Electrical equipment of machines. Part 1:<br />

General requirements. Provisions for compliance: The final<br />

assembler of the machine is responsible for installing<br />

- an emergency-stop device<br />

- a supply disconnecting device.<br />

Safety of machinery – Functional safety of safety-related electrical,<br />

electronic and programmable electronic control systems<br />

Adjustable speed electrical power drive systems. Part 3: EMC<br />

requirements and specific test methods<br />

Adjustable speed electrical power drive systems – Part 5-1: Safety<br />

requirements – Electrical, thermal and energy<br />

Adjustable speed electrical power drive systems – Part 5-2: Safety<br />

requirements. Functional.<br />

• UL 508C UL Standard for Safety, Power Conversion Equipment, third edition


CE marking<br />

Technical data 373<br />

The CE mark is attached to the drive to verify that the drive follows the provisions of<br />

the European Low Voltage and EMC Directives.<br />

� Compliance with the European EMC Directive<br />

The EMC Directive defines the requirements for immunity and emissions of electrical<br />

equipment used within the European Union. The EMC product standard<br />

(EN 61800-3:2004) covers requirements stated for drives. See section Compliance<br />

with EN 61800-3:2004 on page 373.<br />

Compliance with EN 61800-3:2004<br />

� Definitions<br />

EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic<br />

equipment to operate without problems within an electromagnetic environment.<br />

Likewise, the equipment must not disturb or interfere with any other product or<br />

system within its locality.<br />

First environment includes establishments connected to a low-voltage network which<br />

supplies buildings used for domestic purposes.<br />

Second environment includes establishments connected to a network not directly<br />

supplying domestic premises.<br />

Drive of category C1: drive of rated voltage less than 1000 V, intended for use in the<br />

first environment.<br />

Drive of category C2: drive of rated voltage less than 1000 V and intended to be<br />

installed and commissioned only by a professional when used in the first<br />

environment.<br />

Note: A professional is a person or organization having necessary skills in installing<br />

and/or commissioning power drive systems, including their EMC aspects.<br />

Category C2 has the same EMC emission limits as the earlier class first environment<br />

restricted distribution. EMC standard IEC/EN 61800-3 does not any more restrict the<br />

distribution of the drive, but the using, installation and commissioning are defined.<br />

Drive of category C3: drive of rated voltage less than 1000 V, intended for use in the<br />

second environment and not intended for use in the first environment.<br />

Category C3 has the same EMC emission limits as the earlier class second<br />

environment unrestricted distribution.<br />

� Category C1<br />

The emission limits are complied with the following provisions:


374 Technical data<br />

1. The optional EMC filter is selected according to the ABB documentation and<br />

installed as specified in the EMC filter <strong>manual</strong>.<br />

2. The motor and control cables are selected as specified in this <strong>manual</strong>.<br />

3. The drive is installed according to the instructions given in this <strong>manual</strong>.<br />

4. For the maximum motor cable length with 4 kHz switching frequency, see page<br />

368.<br />

WARNING! In a domestic environment, this product may cause radio inference, in<br />

which case supplementary mitigation measures may be required.<br />

� Category C2<br />

The emission limits are complied with the following provisions:<br />

1. The optional EMC filter is selected according to the ABB documentation and<br />

installed as specified in the EMC filter <strong>manual</strong>.<br />

2. The motor and control cables are selected as specified in this <strong>manual</strong>.<br />

3. The drive is installed according to the instructions given in this <strong>manual</strong>.<br />

4. For the maximum motor cable length with 4 kHz switching frequency, see page<br />

368.<br />

WARNING! In a domestic environment, this product may cause radio inference, in<br />

which case supplementary mitigation measures may be required.<br />

� Category C3<br />

The immunity performance of the drive complies with the demands of<br />

IEC/EN 61800-3, second environment (see page 373 for IEC/EN 61800-3<br />

definitions).<br />

The emission limits are complied with the following provisions:<br />

1. The internal EMC filter is connected (the metal screw at EMC is in place) or the<br />

optional EMC filter is installed.<br />

2. The motor and control cables are selected as specified in this <strong>manual</strong>.<br />

3. The drive is installed according to the instructions given in this <strong>manual</strong>.<br />

4. With the internal EMC filter: motor cable length 30 m (100 ft) with 4 kHz switching<br />

frequency. For the maximum motor cable length with an optional external EMC<br />

filter, see page 368.<br />

WARNING! A drive of category C3 is not intended to be used on a low-voltage public<br />

network which supplies domestic premises. Radio frequency interference is expected<br />

if the drive is used on such a network.


Technical data 375<br />

Note: It is not allowed to install a drive with the internal EMC filter connected on IT<br />

(ungrounded) systems. The supply network becomes connected to ground potential<br />

through the EMC filter capacitors which may cause danger or damage the drive.<br />

Note: It is not allowed to install a drive with the internal EMC filter connected on a<br />

corner-grounded TN system as this would damage the drive.<br />

UL marking<br />

See the type designation label for the valid markings of your drive.<br />

The UL mark is attached to the drive to verify that it meets UL requirements.<br />

� UL checklist<br />

Input power connection – See section Electric power network specification on page<br />

367.<br />

Disconnecting device (disconnecting means) – See Selecting the supply<br />

disconnecting device (disconnecting means) on page 37.<br />

Ambient conditions – The drives are to be used in a heated indoor controlled<br />

environment. See section Ambient conditions on page 371 for specific limits.<br />

Input cable fuses – For installation in the United States, branch circuit protection<br />

must be provided in accordance with the National Electrical Code (NEC) and any<br />

applicable local codes. To fulfil this requirement, use the UL classified fuses given in<br />

section Power cable sizes and fuses on page 361.<br />

For installation in Canada, branch circuit protection must be provided in accordance<br />

with Canadian Electrical Code and any applicable provincial codes. To fulfil this<br />

requirement, use the UL classified fuses given in section Power cable sizes and<br />

fuses on page 361.<br />

Power cable selection – See section Selecting the power cables on page 38.<br />

Power cable connections – For the connection diagram and tightening torques, see<br />

section Connecting the power cables on page 49.<br />

Overload protection – The drive provides overload protection in accordance with<br />

the National Electrical Code (US).<br />

Braking – The drive has an internal brake chopper. When applied with appropriately<br />

sized brake resistors, the brake chopper will allow the drive to dissipate regenerative<br />

energy (normally associated with quickly decelerating a motor). Brake resistor<br />

selection is discussed in Appendix: Resistor braking on page 389.


376 Technical data<br />

C-Tick marking<br />

See the type designation label for the valid markings of your drive.<br />

C-Tick marking is required in Australia and New Zealand. A C-Tick mark is attached<br />

to the drive to verify compliance with the relevant standard (IEC 61800-3:2004 –<br />

Adjustable speed electrical power drive systems – Part 3: EMC product standard<br />

including specific test methods), mandated by the Trans-Tasman Electromagnetic<br />

Compatibility Scheme.<br />

The Trans-Tasman Electromagnetic Compatibility Scheme (EMCS) was introduced<br />

by the Australian Communication Authority (ACA) and the Radio Spectrum<br />

Management Group (RSM) of the New Zealand Ministry of Economic Development<br />

(NZMED) in November 2001. The aim of the scheme is to protect the radio frequency<br />

spectrum by introducing technical limits for emission from electrical/electronic<br />

products.<br />

For fulfilling the requirements of the standard, see section Compliance with<br />

EN 61800-3:2004 on page 373.<br />

TÜV NORD Safety Approved mark<br />

The presence of the TÜV NORD Safety Approved mark verifies that the drive has<br />

been evaluated and certified by TÜV NORD according to the following standards for<br />

the realization of the Safe torque off function (STO): IEC 61508-1:1998,<br />

IEC 61508-2:2000; SIL3, IEC 62061:2005 and ISO 13849-1:2006. See Appendix:<br />

Safe torque off (STO).<br />

RoHS marking<br />

The RoHS mark is attached to the drive to verify that the drive follows the provisions<br />

of the European RoHS Directive. RoHS = the restriction of the use of certain<br />

hazardous substances in electrical and electronic equipment.<br />

Compliance with the Machinery Directive<br />

The drive is intended to be incorporated into machinery to constitute machinery<br />

covered by Machinery Directive (2006/42/EC) and does therefore not in every<br />

respect comply with the provisions of the directive. For more information, see the<br />

Declaration of Incorporation by ABB Drives.


Patent protection in the USA<br />

This product is protected by one or more of the following US patents:<br />

Technical data 377<br />

4,920,306 5,301,085 5,463,302 5,521,483 5,532,568 5,589,754 5,612,604<br />

5,654,624 5,799,805 5,940,286 5,942,874 5,952,613 6,094,364 6,147,887<br />

6,175,256 6,184,740 6,195,274 6,229,356 6,252,436 6,265,724 6,305,464<br />

6,313,599 6,316,896 6,335,607 6,370,049 6,396,236 6,448,735 6,498,452<br />

6,552,510 6,597,148 6,600,290 6,741,059 6,774,758 6,844,794 6,856,502<br />

6,859,374 6,922,883 6,940,253 6,934,169 6,956,352 6,958,923 6,967,453<br />

6,972,976 6,977,449 6,984,958 6,985,371 6,992,908 6,999,329 7,023,160<br />

7,034,510 7,036,223 7,045,987 7,057,908 7,059,390 7,067,997 7,082,374<br />

7,084,604 7,098,623 7,102,325 7,109,780 7,164,562 7,176,779 7,190,599<br />

7,215,099 7,221,152 7,227,325 7,245,197 7,250,739 7,262,577 7,271,505<br />

7,274,573 7,279,802 7,280,938 7,330,095 7,349,814 7,352,220 7,365,622<br />

7,372,696 7,388,765 7,408,791 7,417,408 7,446,268 7,456,615 7,508,688<br />

7,515,447 7,560,894 D503,931 D510,319 D510,320 D511,137 D511,150<br />

D512,026 D512,696 D521,466 D541,743S D541,744S D541,745S D548,182S<br />

D548,183S D573,090S<br />

Other patents pending.


378 Technical data


Dimension drawings<br />

Dimension drawings 379<br />

Dimension drawings of the <strong>ACS355</strong> are shown below. The dimensions are given in<br />

millimeters and [inches].


380 Dimension drawings<br />

Frame sizes R0 and R1, IP20 (cabinet installation) / UL open<br />

R1 and R0 are identical except for the fan at the top of R1.<br />

1)<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067784-A Frame sizes R0 and R1, IP20 (cabinet installation) / UL open


Frame sizes R0 and R1, IP20 / NEMA 1<br />

R1 and R0 are identical except for the fan at the top of R1.<br />

1)<br />

Dimension drawings 381<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067785-A<br />

Frame sizes R0 and R1, IP20 / NEMA 1


382 Dimension drawings<br />

Frame size R2, IP20 (cabinet installation) / UL open<br />

1)<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067782-A<br />

Frame size R2, IP20 (cabinet installation) / UL open


Frame size R2, IP20 / NEMA 1<br />

1)<br />

Dimension drawings 383<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

Frame size R2, IP20 / NEMA 1<br />

3AUA0000067783-A


384 Dimension drawings<br />

Frame size R3, IP20 (cabinet installation) / UL open<br />

1)<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

Frame size R3, IP20 (cabinet installation) / UL open<br />

3AUA0000067786-A


Frame size R3, IP20 / NEMA 1<br />

1)<br />

Dimension drawings 385<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067787-A<br />

Frame size R3, IP20 / NEMA 1


386 Dimension drawings<br />

Frame size R4, IP20 (cabinet installation) / UL open<br />

1)<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067836-A<br />

Frame size R4, IP20 (cabinet installation) / UL open


Frame size R4, IP20 / NEMA 1<br />

1)<br />

Dimension drawings 387<br />

1) Extension modules add 26 mm (1.02 in) to the depth measure.<br />

3AUA0000067883-A<br />

Frame size R4, IP20 / NEMA 1


388 Dimension drawings


Appendix: Resistor braking 389<br />

Appendix: Resistor braking<br />

What this chapter contains<br />

The chapter tells how to select the brake resistor and cables, protect the system,<br />

connect the brake resistor and enable resistor braking.<br />

Planning the braking system<br />

� Selecting the brake resistor<br />

<strong>ACS355</strong> drives have an internal brake chopper as standard equipment. The brake<br />

resistor is selected using the table and equations presented in this section.<br />

1. Determine the required maximum braking power PRmax for the application. PRmax must be smaller than PBRmax given in the table on page 390 for the used drive<br />

type.<br />

2. Calculate resistance R with Equation 1.<br />

3. Calculate energy ERpulse with Equation 2.<br />

4. Select the resistor so that the following conditions are met:<br />

• The rated power of the resistor must be greater than or equal to PRmax .<br />

• Resistance R must be between Rmin and Rmax given in the table for the used<br />

drive type.<br />

• The resistor must be able to dissipate energy ERpulse during the braking<br />

cycle T.


390 Appendix: Resistor braking<br />

Equations for selecting the resistor:<br />

150000<br />

Eq. 1. UN = 200…240 V: R =<br />

PRmax ton 450000<br />

UN = 380…415 V: R =<br />

PRmax 615000<br />

UN = 415…480 V: R =<br />

PRmax Eq. 2. ERpulse = PRmax · ton T<br />

PRave Eq. 3. PRave ton = PRmax ·<br />

T<br />

For conversion, use 1 hp = 746 W.<br />

where<br />

R = selected brake resistor value (ohm)<br />

PRmax = maximum power during the braking cycle (W)<br />

PRave = average power during the braking cycle (W)<br />

ERpulse = energy conducted into the resistor during a single braking pulse (J)<br />

ton = length of the braking pulse (s)<br />

T = length of the braking cycle (s).<br />

Resistor types shown in the table are pre-dimensioned resistors using the maximum<br />

braking power with cyclic braking shown in the table. Resistors are available from<br />

ABB. Information is subject to change without further notice.<br />

Type R min R max P BRmax Selection table by resistor type<br />

<strong>ACS355</strong>- CBR-V / CBT-H Braking time 2)<br />

x = E/U 1)<br />

ohm ohm kW hp 160 210 260 460 660 560 s<br />

1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

01x-02A4-2 70 390 0.37 0.5 90<br />

01x-04A7-2 40 200 0.75 1 45<br />

01x-06A7-2 40 130 1.1 1.5 28<br />

01x-07A5-2 30 100 1.5 2 19<br />

01x-09A8-2 30 70 2.2 3 14<br />

3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)<br />

03x-02A4-2 70 390 0.37 0.5 90<br />

03x-03A5-2 70 260 0.55 0.75 60<br />

03x-04A7-2 40 200 0.75 1 42<br />

03x-06A7-2 40 130 1.1 1.5 29<br />

03x-07A5-2 30 100 1.5 2 19<br />

03x-09A8-2 30 70 2.2 3 14<br />

03x-13A3-2 30 50 3.0 4 16<br />

03x-17A6-2 30 40 4.0 5 12<br />

03x-24A4- 2 18 25 5.5 7.5 45<br />

03x-31A0-2 7 19 7.5 10 35<br />

03x-46A2-2 7 13 11.0 15 23<br />

P Rmax


Appendix: Resistor braking 391<br />

Type R min R max P BRmax Selection table by resistor type<br />

<strong>ACS355</strong>- CBR-V / CBT-H Braking time 2)<br />

x = E/U 1) ohm ohm kW hp 160 210 260 460 660 560 s<br />

3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)<br />

03x-01A2-4 200 1180 0.37 0.5 90<br />

03x-01A9-4 175 800 0.55 0.75 90<br />

03x-02A4-4 165 590 0.75 1 60<br />

03x-03A3-4 150 400 1.1 1.5 37<br />

03x-04A1-4 130 300 1.5 2 27<br />

03x-05A6-4 100 200 2.2 3 17<br />

03x-07A3-4 70 150 3.0 4 29<br />

03x-08A8-4 70 110 4.0 5 20<br />

03x-12A5-4 40 80 5.5 7.5 15<br />

03x-15A6-4 40 60 7.5 10 10<br />

03x-23A1-4 30 40 11 15 10<br />

03x-31A0-4 16 29 15 20 16<br />

03x-38A0-4 13 23 18.5 25 13<br />

03x-44A0-4 13 19 22.0 30 10<br />

1) E = EMC filter connected (metal EMC filter screw installed),<br />

U = EMC filter disconnected (plastic EMC filter screw installed), US<br />

parametrization.<br />

2) Braking time = maximum allowed braking time in seconds at PBRmax every<br />

120 seconds, at 40 °C ambient temperature.<br />

WARNING! Never use a brake resistor with a resistance below the minimum<br />

value specified for the particular drive. The drive and the internal chopper are<br />

not able to handle the overcurrent caused by the low resistance.<br />

� Selecting the brake resistor cables<br />

00353783.xls J<br />

Symbols<br />

Rmin = minimum allowed brake resistor that can be connected to the brake chopper<br />

Rmax = maximum allowed brake resistor that allows PBRmax PBRmax = maximum braking capacity of the drive, must exceed the desired braking power.<br />

Ratings by resistor type CBR-V CBR-V CBR-V CBR-V CBR-V CBT-H<br />

160 210 260 460 660 560<br />

Nominal power (W) 280 360 450 790 1130 2200<br />

Resistance (ohm) 70 200 40 80 33 18<br />

Use a shielded cable with the conductor size specified in section Power cable sizes<br />

and fuses on page 361. The maximum length of the resistor cable(s) is 5 m (16 ft).


392 Appendix: Resistor braking<br />

� Placing the brake resistor<br />

Install all resistors in a place where they will cool.<br />

WARNING! The materials near the brake resistor must be non-flammable. The<br />

surface temperature of the resistor is high. Air flowing from the resistor is of<br />

hundreds of degrees Celsius. Protect the resistor against contact.<br />

� Protecting the system in brake circuit fault situations<br />

Protecting the system in cable and brake resistor short-circuit situations<br />

For short-circuit protection of the brake resistor connection, see Brake resistor<br />

connection on page 370. Alternatively, a two-conductor shielded cable with the same<br />

cross-sectional area can be used.<br />

Protecting the system in brake resistor overheating situations<br />

The following setup is essential for safety – it interrupts the main supply in fault<br />

situations involving chopper shorts:<br />

• Equip the drive with a main contactor.<br />

• Wire the contactor so that it opens if the resistor thermal switch opens (an<br />

overheated resistor opens the contactor).<br />

Below is a simple wiring diagram example.<br />

Electrical installation<br />

For the brake resistor connections, see the power connection diagram of the drive on<br />

page 49.<br />

Start-up<br />

Fuses<br />

<strong>ACS355</strong><br />

1<br />

2<br />

L1 L2 L3<br />

3<br />

4<br />

5<br />

6<br />

U1 V1 W1<br />

K1<br />

Q Thermal switch of the resistor<br />

To enable resistor braking, switch off the drive’s overvoltage control by setting<br />

parameter 2005 OVERVOLT CTRL to 0 (DISABLE).


Appendix: Extension<br />

modules<br />

What this chapter contains<br />

Appendix: Extension modules 393<br />

The appendix describes common features and mechanical installation of the optional<br />

extension modules for the <strong>ACS355</strong>: MPOW-01 auxiliary power module, MTAC-01<br />

pulse encoder interface module and MREL-01 output relay module.<br />

The appendix also describes specific features and electrical installation for the<br />

MPOW-01; for information on the MTAC-01 and MREL-01, refer to the corresponding<br />

user’s <strong>manual</strong>.<br />

Extension modules<br />

� Description<br />

Extension modules have similar enclosures and they are mounted between the<br />

control panel and the drive. Therefore only one extension module can be used for a<br />

drive. <strong>ACS355</strong> IP66/67 / UL Type 4X drives are not compatible with extension<br />

modules due to space restrictions.<br />

The following optional extension modules are available for the <strong>ACS355</strong>. The drive<br />

automatically identifies the module, which is ready for use after the installation and<br />

power-up.<br />

• MTAC-01 pulse encoder interface module<br />

• MREL-01 output relay module<br />

• MPOW-01 auxiliary power module.


394 Appendix: Extension modules<br />

Generic extension module layout<br />

� Installation<br />

Checking the delivery<br />

Grounding stand-off<br />

Panel port adapter<br />

The option package contains:<br />

• extension module<br />

• grounding stand-off with an M3 × 12 screw<br />

• panel port adapter (fixed to the MPOW-01 module at the factory).<br />

Installing the extension module<br />

WARNING! Follow the safety instructions given in chapter Safety on page 17.<br />

To install the extension module:<br />

1. If not already off, remove input power from the drive.<br />

2. Remove the control panel or panel cover. See how to remove the panel cover in<br />

step 1. on page 56.<br />

3. Remove the grounding screw in the top left corner of the drive’s control panel slot<br />

and install the grounding stand-off in its place.<br />

4. For the MREL-01 and MTAC-01, ensure that the panel port adapter is attached to<br />

either the panel port of the drive or the mate part of the extension module. The<br />

adapter of the MPOW-01 is already fixed to the extension module at the factory.<br />

5. Gently and firmly install the extension module to the drive’s panel slot directly from<br />

the front.<br />

Note: Signal and power connections to the drive are automatically made through a<br />

6-pin connector.


Appendix: Extension modules 395<br />

6. Ground the extension module by inserting the screw removed from the drive in<br />

the top left corner of the extension module. Tighten the screw using a torque of<br />

0.8 N·m (7 lbf·in).<br />

Note: Correct insertion and tightening of the screw is essential for fulfilling the EMC<br />

requirements and proper operation of the extension module.<br />

7. Install the control panel or panel cover on the extension module.<br />

8. Electrical installation is module-specific. For MPOW-01, see section Electrical<br />

installation on page 397. For MTAC-01, see MTAC-01 pulse encoder interface<br />

module user’s <strong>manual</strong> (3AFE68591091 [English]), and for MREL-01, see<br />

MREL-01 relay output extension module user’s <strong>manual</strong> (3AUA0000035957<br />

[English]).<br />

5<br />

6<br />

3<br />

4


396 Appendix: Extension modules<br />

� Technical data<br />

Dimensions<br />

Extension module dimensions are shown in the figure below.<br />

118 [4.63]<br />

70 [2.77]<br />

64 [2.52]<br />

45 [1.79]<br />

Generic extension module specifications<br />

• Enclosure degree of protection: IP20<br />

• All materials are UL/CSA-approved.<br />

• When used with <strong>ACS355</strong> drives, the extension modules comply with EMC<br />

standard EN/IEC 61800-3:2004 for electromagnetic compatibility and<br />

EN/IEC 61800-5-1:2005 for electrical safety requirements.<br />

MTAC-01 pulse encoder interface module<br />

See MTAC-01 pulse encoder interface module user’s <strong>manual</strong> (3AFE68591091<br />

[English]) delivered with this option.<br />

MREL-01 output relay module<br />

See MREL-01 relay output extension module user’s <strong>manual</strong> (3AUA0000035957<br />

[English]) delivered with this option.


MPOW-01 auxiliary power module<br />

� Description<br />

Appendix: Extension modules 397<br />

The MPOW-01 auxiliary power module is used in installations where the drive's<br />

control part is required to be powered during network failures and maintenance<br />

interruptions. The MPOW-01 provides auxiliary voltages to the control panel, fieldbus<br />

and I/O.<br />

Note: If you change any of the drive parameters when the drive is powered<br />

through the MPOW-01, you have to force parameter saving with parameter 1607<br />

PARAM SAVE by setting the value to (1) SAVE…; otherwise all changed data<br />

will be lost.<br />

� Electrical installation<br />

Wiring<br />

• Use 0.5…1.5 mm 2 (20…16 AWG) shielded cable.<br />

• Connect the control wires according to the diagram in section Terminal<br />

designations below. Use a tightening torque of 0.8 N·m (7 lbf·in).<br />

Terminal designations<br />

The diagram below shows the MPOW-01 terminals and how the MPOW-01 module is<br />

connected to the external power supply and how the modules are daisy chained.<br />

External<br />

power supply<br />

+<br />

GND<br />

SCR<br />

Next<br />

MPOW-01<br />

SCR MPOW-01<br />

SCR<br />

+ +24 V DC or 24 V AC ± 10%<br />

- Terminal SCR is internally connected<br />

to the analog ground (AGND) of the<br />

drive.<br />

+<br />

-<br />

SCR<br />

SCR<br />

All terminals are connected together<br />

inside the module allowing daisy<br />

chaining of the signals.


398 Appendix: Extension modules<br />

� Technical data<br />

Specifications<br />

• Input voltage: +24 V DC or 24 V AC ± 10%<br />

• Maximum load 1200 mA rms<br />

• Power losses with maximum load 6 W<br />

• Designed lifetime of the MPOW-01 module is 50 000 hours in the specified<br />

ambient conditions of the drive (see section Ambient conditions on page 371).


Appendix: Safe torque off (STO) 399<br />

Appendix: Safe torque off<br />

(STO)<br />

What this appendix contains<br />

The appendix describes the basics of the Safe torque off function (STO) for the<br />

<strong>ACS355</strong>. In addition, application features and technical data for the safety system<br />

calculation are presented.<br />

Basics<br />

The drive supports the Safe torque off (STO) function according to standards<br />

EN 61800-5-2; EN/ISO 13849-1:2006, IEC/EN 60204-1:1997; EN 61508:2002,<br />

EN 1037:1996, and IEC 62061:2005 (SILCL 3). The function also corresponds to an<br />

uncontrolled stop in accordance with category 0 of IEC 60204-1.<br />

The STO may be used where power removal is required to prevent an unexpected<br />

start. The function disables the control voltage of the power semiconductors of the<br />

drive output stage, thus preventing the inverter from generating the voltage required<br />

to rotate the motor (see the diagram below). With this function, short-time operations<br />

(like cleaning) and/or maintenance work on non-electrical parts of the machinery can<br />

be performed without switching off the power supply to the drive.


400 Appendix: Safe torque off (STO)<br />

Control<br />

circuit<br />

+24 V<br />

Output stage<br />

(1 phase<br />

shown)<br />

<strong>ACS355</strong><br />

X1C:1 OUT1<br />

X1C:2 OUT2<br />

X1C:3 IN1<br />

X1C:4 IN2<br />

UDC+<br />

UDC-<br />

U2/V2/W2<br />

WARNING! The STO function does not disconnect the voltage of the main and<br />

auxiliary circuits from the drive. Therefore maintenance work on electrical parts<br />

of the drive or the motor can only be carried out after isolating the drive system from<br />

the main supply.<br />

Note: It is not recommended to stop the drive using the STO. If a running drive is<br />

stopped with this function, the drive will trip and stop by coasting. If this is not<br />

acceptable eg, it causes danger, the drive and machinery must be stopped using the<br />

appropriate stopping mode before using this function.<br />

Note: Permanent magnet motor drives in case of a multiple IGBT power<br />

semiconductor failure: In spite of the activation of the STO function, the drive system<br />

can produce an alignment torque which maximally rotates the motor shaft by 180/p<br />

degrees, where p denotes the pole pair number.<br />

Program features, settings and diagnostics<br />

� Operation of the STO function and its diagnostics function<br />

Safety circuit<br />

(switch,<br />

relays, etc.)<br />

Notes:<br />

• The contacts of the safety circuit<br />

must open/close within 200 ms of<br />

each other.<br />

• The maximum cable length<br />

between the drive and the safety<br />

switch is 25 m (82 ft).<br />

When both STO inputs are energized, the STO function is in the standby state and<br />

the drive operates normally. If either of the STO inputs is de-energized, the STO<br />

function awakes, stops the drive and disables start. Start is possible only after the


Appendix: Safe torque off (STO) 401<br />

STO inputs have been energized, and any of the drive reactions have been reset.<br />

Drive event can be parametrized according to the table below.<br />

Parameter Selection values Explanation<br />

3025 STO<br />

OPERATION<br />

If the operation delay between the inputs is excessive or only one STO input is deenergized,<br />

an event is always considered a fault (STO1 LOST or STO2 LOST). This<br />

event cannot be changed. De-energizing of only one STO input is not considered<br />

normal operation since the safety integrity level would decrease if only one channel is<br />

used.<br />

STO status indications<br />

(1) ONLY FAULT Drive event on successful STO operation is fault<br />

SAFE TORQUE OFF. The fault bit is updated.<br />

(2) ALARM&FAULT Drive event on successful STO operation is alarm<br />

SAFE TORQUE OFF when stopped and fault SAFE<br />

TORQUE OFF when running. Fault and alarm bits<br />

are updated.<br />

(3) NO & FAULT Drive event on successful STO operation is no alarm<br />

when stopped and fault SAFE TORQUE OFF when<br />

running. The fault bit is updated.<br />

Default:<br />

(4) ONLY ALARM<br />

Drive event on successful STO operation is alarm<br />

SAFE TORQUE OFF. The alarm bit is updated. Start<br />

command must be toggled to continue running the<br />

drive.<br />

When both STO inputs are energized, the STO function is in the standby state and<br />

the drive operates normally. If either of the STO inputs or both are de-energized, the<br />

STO function is executed in a safe manner and corresponding reaction is updated<br />

according to the table below.<br />

STO event Fault name Description Status<br />

Fault 0044 SAFE TORQUE<br />

OFF<br />

STO functions correctly and the<br />

fault must be reset before starting.<br />

Fault 0045 STO1 LOST STO input channel 1 has not deenergized,<br />

but channel 2 has.<br />

Opening contacts on channel 1<br />

might have been damaged or there<br />

is a short circuit.<br />

Fault 0046 STO2 LOST STO input channel 2 has not deenergized,<br />

but channel 1 has.<br />

Opening contacts on channel 2<br />

might have been damaged or there<br />

is a short circuit.<br />

Alarm 2035 SAFE TORQUE<br />

OFF<br />

0307 FAULT WORD 3<br />

bit 4<br />

0307 FAULT WORD 3<br />

bit 5<br />

0307 FAULT WORD 3<br />

bit 6<br />

STO functions correctly. 0309 ALARM WORD 2<br />

bit 13


402 Appendix: Safe torque off (STO)<br />

� STO function activation and indication delays<br />

STO activation delay is below 1 ms. STO indication delay (time from the deenergization<br />

of any STO input to the updating of the status bit) is 200 ms.<br />

Note: If any STO channel is toggled very fast, it is possible that the drive trips to<br />

overcurrent or short circuit.<br />

Installation<br />

Connect the cables as shown in the diagram below.<br />

<strong>ACS355</strong><br />

X1C: OUT1<br />

X1C: OUT2<br />

X1C:3 IN1<br />

X1C:4 IN2<br />

13 23 31<br />

Y1 Y2<br />

14<br />

24<br />

32<br />

Safety relay<br />

STO input channels can be also supplied with an external power supply. The required<br />

supply current is maximum 15 mA for each STO channel, and the voltage<br />

requirement is 24 V DC +/-10%. The negative terminal of the power supply must be<br />

connected to the analog ground (AGND) of the drive.<br />

<strong>ACS355</strong><br />

AGND<br />

X1C:1 OUT1<br />

X1C:2 OUT2<br />

X1C:3 IN1<br />

X1C:4 IN2<br />

+24 V DC external<br />

power supply<br />

- +<br />

14<br />

24<br />

STO can also be daisy-chained from drive to drive, so that several drives are behind<br />

one safety switch. If STO outputs (OUT1 and OUT2) are used to supply the STO<br />

circuit, maximum five drives can be supplied. The number of drives depends on the<br />

A1<br />

A2<br />

13 23 31<br />

Y1 Y2<br />

32<br />

Safety relay<br />

A1<br />

A2<br />

Safe PLC<br />

OUT<br />

GND<br />

Safe PLC<br />

OUT<br />

GND


Appendix: Safe torque off (STO) 403<br />

24 V auxiliary voltage load (I/O, panel load, used fieldbus or STO circuits; max.<br />

200 mA) of the drive supplying the STO circuit (see section Control connection data<br />

on page 369). When using external supply, all analog grounds (AGND) of the drives<br />

must be chained together.<br />

Note: Daisy chaining lowers the total system safety integrity level, which needs to be<br />

calculated case by case for each system.<br />

Start-up and commissioning<br />

Always test the operation and reaction of the STO function before commissioning.<br />

Technical data<br />

� STO components<br />

STO safety relay type<br />

General requirements<br />

Output requirements<br />

IEC 61508 and/or EN/ISO 13849-1<br />

No. of current paths 2 independent paths (one for each STO path)<br />

Switching voltage capability 30 V DC per contact<br />

Switching current capability 100 mA per contact<br />

Maximum switching delay<br />

between contacts<br />

200 ms<br />

Example 1 Simple SIL3 approved safety relay<br />

Type and manufacturer PSR-SCP- 24UC/ESP4/2X1/1X2 by Phoenix Contacts<br />

Approvals EN 954-1, cat 4; IEC 61508, SIL3<br />

Example 2 Programmable safety logic<br />

Type and manufacturer PNOZ Multi M1p by Pilz<br />

Approvals EN 954-1, cat 4; IEC 61508, SIL3; and ISO 13849-1, PL e<br />

STO connection<br />

Input for external STO<br />

supply<br />

24 V DC ± 10%, load 25 mA<br />

Input impedance Rin = 2 kohm<br />

Load 12 mA / channel<br />

Output Maximum load 200 mA depending on I/O load<br />

STO cable<br />

Type 2×2 cables, low voltage, single shielded, twisted pair cable<br />

Conductor size 1.5…0.25 mm 2 (16…24 AWG)<br />

Maximum length Max. 25 m between STO inputs and the operating contact<br />

Tightening torque 0.5 N·m (4.4 lbf·in)


404 Appendix: Safe torque off (STO)<br />

� Data related to safety standards<br />

IEC 61508 EN/ISO 13849-1 IEC 62061<br />

SIL 3 PL e SILCL 3<br />

PFH 6.48E-09<br />

(6.48 FIT)<br />

Category 3<br />

HFT 1 MTTFd 470 years<br />

SFF 91% DCavg 18%<br />

� Abbreviations<br />

Abbreviation Reference Description<br />

CCF EN/ISO 13849-1 Common Cause Failure (%)<br />

DCavg EN/ISO 13849-1 Diagnostic Coverage Average<br />

FIT Failure In Time: 1E-9 hours<br />

HFT IEC 61508 Hardware Fault Tolerance<br />

MTTFd EN/ISO 13849-1 Mean Time To dangerous Failure: (The total number of<br />

life units) / (the number of dangerous, undetected<br />

failures) during a particular measurement interval under<br />

stated conditions<br />

PFHd IEC 61508 Probability of Dangerous Failures per Hour<br />

PL EN/ISO 13849-1 Performance Level: Corresponds SIL, Levels a-e<br />

SFF IEC 61508 Safe Failure Fraction (%)<br />

SIL IEC 61508 Safety Integrity Level<br />

STO EN 61800-5-2 Safe Torque Off<br />

Maintenance<br />

Test the operation and reaction of the STO function every year.


Further information<br />

Product and service inquiries<br />

Address any inquiries about the product to your local ABB representative, quoting<br />

the type designation and serial number of the unit in question. A listing of ABB sales,<br />

support and service contacts can be found by navigating to www.abb.com/drives and<br />

selecting Sales, Support and Service network.<br />

Product training<br />

For information on ABB product training, navigate to www.abb.com/drives and select<br />

Training courses.<br />

Providing feedback on ABB Drives <strong>manual</strong>s<br />

Your comments on our <strong>manual</strong>s are welcome. Go to www.abb.com/drives and select<br />

Document Library – Manuals feedback form (LV AC drives).<br />

Document library on the Internet<br />

You can find <strong>manual</strong>s and other product documents in PDF format on the Internet.<br />

Go to www.abb.com/drives and select Document Library. You can browse the library<br />

or enter selection criteria, for example a document code, in the search field.


Contact us<br />

ABB Oy<br />

Drives<br />

P.O. Box 184<br />

FI-00381 HELSINKI<br />

FINLAND<br />

Telephone +358 10 22 11<br />

Fax +358 10 22 22681<br />

www.abb.com/drives<br />

ABB Inc.<br />

Automation Technologies<br />

Drives & Motors<br />

16250 West Glendale Drive<br />

New Berlin, WI 53151<br />

USA<br />

Telephone 262 785-3200<br />

800-HELP-365<br />

Fax 262 780-5135<br />

www.abb.com/drives<br />

ABB Beijing Drive Systems Co. Ltd.<br />

No. 1, Block D, A-10 Jiuxianqiao Beilu<br />

Chaoyang District<br />

Beijing, P.R. China, 100015<br />

Telephone +86 10 5821 7788<br />

Fax +86 10 5821 7618<br />

www.abb.com/drives<br />

3AUA0000066143 <strong>Rev</strong> A (EN) EFFECTIVE: 2010-01-01

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!