17.02.2015 Views

Emotron FDU 2.0 Variable Speed Drive

Emotron FDU 2.0 Variable Speed Drive

Emotron FDU 2.0 Variable Speed Drive

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Emotron</strong> <strong>FDU</strong> <strong>2.0</strong><br />

<strong>Variable</strong> <strong>Speed</strong> <strong>Drive</strong><br />

Instruction manual<br />

English<br />

Software version 4.2X


Addendum<br />

Addendum valid for<br />

<strong>Emotron</strong> VFX <strong>2.0</strong> and <strong>FDU</strong> <strong>2.0</strong> <strong>Variable</strong> <strong>Speed</strong> <strong>Drive</strong><br />

New Software version 4.21<br />

This addendum belongs to the instruction manuals with document number:<br />

01-4428-01r2 for <strong>Emotron</strong> <strong>FDU</strong> <strong>2.0</strong> software version 4.2X and<br />

01-4429-01r2 for <strong>Emotron</strong> VFX <strong>2.0</strong> software version 4.2X<br />

All Chapter and Menu numbers in this addendum refers to<br />

the Chapter and Menu numbers in the above listed Instruction manuals.<br />

1. Brake acknowledge functionality<br />

Support is added for a Brake Acknowledge signal via a<br />

digital input. It is monitored using a brake fault time parameter.<br />

Additional output and trip/warning signals are also<br />

included. The acknowledge signal is either connected from<br />

the brake contactor or from a proximity switch on the brake.<br />

The brake acknowledge signal can also be used to improve<br />

safety by preventing hoist falling load in case the brake is not<br />

engaged when stopping.<br />

Brake not released - Brake Fault trip<br />

During start and running the brake acknowledge signal is<br />

compared to the actual brake output signal and if no<br />

acknowledge, i.e. brake not released, while brake output is<br />

high for the Brake Fault time [33H], then a Brake trip is<br />

generated.<br />

Brake not engaged - Brake Warning<br />

and continued operation<br />

(keep torque)<br />

The brake acknowledge signal is compared to the actual<br />

brake output signal at stop. If acknowledge is still active, i.e.<br />

brake not engaged, while brake output is low for the Brake<br />

Engage time [33E] then a Brake warning is generated and<br />

the torque is kept, i.e. prolonging normal brake engage<br />

mode, until brake closes or an emergency action is needed<br />

by the operator, such as setting down the load.<br />

Following chapters have added<br />

parameters or selections<br />

11.5.2 Digital inputs<br />

The Brake acknowledge function is activated by using the<br />

new digital input selection- Brk Ackn in Menu [521]<br />

Digital Input 1 [521]<br />

Default: RunL<br />

Off 0 The input is not active.<br />

Brk Ackn 31<br />

521 DigIn 1<br />

Stp Brk Ackn<br />

A<br />

Brake acknowledge input for Brake Fault<br />

control. Function is activated via this<br />

selection<br />

<strong>Emotron</strong> AB 01-4934-01r1 Brake acknowledge functionality 1


Addendum<br />

11.3.4. Mechanical brake control<br />

The “Brake Fault trip time” for “Brake not released” function<br />

is specified by the new parameter “33H Brk Fault”.<br />

Brake Fault trip time [33H]’<br />

Default: 1.00s<br />

Range 0.00 - 5.00s<br />

33H Brk Fault<br />

Stp 1.00s<br />

A<br />

Note! The Brake Fault trip time should be set to longer<br />

time than the Brake release time[33C].<br />

The “Brake not engaged” warning is using the setting of<br />

parameter “Brake Engaged time [33E]”.<br />

Following Figure shows principle of brake operation for<br />

fault during run (left) and during stop (right).<br />

Start<br />

Brake<br />

release time<br />

33C<br />

Brake<br />

release time<br />

33C<br />

Brake wait<br />

time<br />

33F<br />

Brake engage<br />

time<br />

33E<br />

Running<br />

Torque<br />

<strong>Speed</strong>>0<br />

Brake relay<br />

Brake acknowledge<br />

Brake Trip<br />

Brake warning<br />


Addendum<br />

11.5.4 Digital Outputs [540]<br />

and 11.5.5 Relays [550]<br />

The brake trip/warning is signalled on digital/relay outputs<br />

via new selections in Menus Digital Out 1-2 [541] - [542]<br />

and Menu Relay 1 to 3 [551] - [55C]<br />

Digital Out 1 to 2 [541] - [542]<br />

Default<br />

Brk Fault<br />

BrkNotEngage<br />

11.7.2 Status [720]<br />

The brake trip/warning is signalled as “Brake” in Menu<br />

Warning[722] and Trip message log [810].<br />

Warning [722].<br />

Ready<br />

88 Tripped on brake fault (not released)<br />

89<br />

... ...<br />

Warning and continued operation (keep<br />

torque) due to Brake not engaged during<br />

stop.<br />

14 Brake<br />

... ...<br />

541 DigOut 1<br />

Stp Brk Fault<br />

A<br />

722 Warnings<br />

Stp Brake<br />

12.1 Trips, warnings and limits<br />

New trip/warning message, “Brake” added<br />

Trip/Warning<br />

messages<br />

Selections<br />

Trip<br />

(Normal/<br />

Soft)<br />

... ... ... ...<br />

Brake Via DigIn Normal<br />

... ... ... ...<br />

12.2 Trip conditions, causes and<br />

remedial action<br />

New trip/warning message “Brake” added.<br />

Trip<br />

condition<br />

Possible<br />

Cause<br />

.... ... ...<br />

Brake<br />

<strong>Drive</strong> tripped<br />

on brake fault<br />

(not released)<br />

or Brake not<br />

engaged<br />

warning<br />

during stop<br />

... ... ...<br />

Remedy<br />

Warning<br />

indicators<br />

(Area D)<br />

- Check Brake acknowledge<br />

signal wiring to selected digital<br />

input.<br />

- Check programming of digital<br />

input DigIn 1-8, [520].<br />

- Check circuit breaker feeding<br />

mechanical brake circuit.<br />

- Check mechanical brake if<br />

acknowledge signal is wired from<br />

brake limit switch.<br />

- Check brake contactor.<br />

11.2.7 Trip Auto reset/Trip conditions<br />

[250]<br />

The brake trip auto reset is activated and delay time is specified<br />

by the new parameter in Menu Brake Fault [25V].<br />

Brake Fault [25V]<br />

Select the preferred way to react to an alarm trip.<br />

Default Off<br />

25V Brk Fault<br />

Stp Off<br />

A<br />

Off 0 Autoreset not activated.<br />

1 - 3600s 1 - 3600s Brake fault auto reset delay time.<br />

<strong>Emotron</strong> AB 01-4934-01r1 Brake acknowledge functionality 3


Addendum<br />

2. Other changes<br />

In following chapters there are added functionality or<br />

revised selections or default value.<br />

10.4 Start and stop commands<br />

Added Note (this note is also valid for Fieldbus option<br />

manual) due to revised function. Earlier RunL + RunR via<br />

serial communication resulted in stop. This is now changed<br />

to activate Bipolar mode where the sign of the reference<br />

value (with Modbus No. 42905) will give the direction.<br />

Note! Bipolar mode is activated if both RunR and RunL is<br />

active.<br />

10.5 Reference signal<br />

Added Note for reference signal with Modbus number<br />

42905.<br />

Note! In Bipolar mode, then -4000... 4000h corresponds<br />

to -100%...100% of actual reference value range.<br />

11.2.4 Motor Data [220]<br />

Selection “Advanced” added to menu [22A] for activation of<br />

switching frequency functions (Only valid for <strong>Emotron</strong><br />

<strong>FDU</strong> <strong>2.0</strong>)<br />

Motor Sound [22A]<br />

Default:<br />

Advanced 4<br />

22A Motor Sound<br />

Stp Advanced<br />

A<br />

F<br />

Switching frequency and PWM mode setup<br />

via [22E]<br />

New menus for advanced setup of motor modulation properties<br />

(Only valid for <strong>Emotron</strong> <strong>FDU</strong> <strong>2.0</strong>):<br />

Motor PWM [22E]<br />

New menu (PWM = Pulse Width Modulation).<br />

PWM Fswitch [22E1]<br />

Set the PWM switching frequency of the VSD<br />

Default:<br />

Range<br />

Resolution<br />

3.00 kHz<br />

Communication information<br />

PWM Mode [22E2]<br />

1.50 - 6.00kHz<br />

0.01kHz<br />

Modbus Instance no/DeviceNet no: 43053<br />

Profibus slot/index 168/212<br />

Fieldbus format<br />

Modbus format<br />

Default: Standard<br />

Standard 0 Standard<br />

Sine Filt 1<br />

22E1 PWM Fswitch<br />

Stp 3.00kHz<br />

A<br />

22E2 PWM Mode<br />

Stp Standard<br />

A<br />

Long, 1=1Hz<br />

EInt<br />

Sine Filter mode for use with output Sine<br />

Filters<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43054<br />

Profibus slot/index 168/213<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

4 Other changes <strong>Emotron</strong> AB 01-4934-01r1


Addendum<br />

PWM Random [22E3]<br />

Default:<br />

Off<br />

Off 0 Random modulation is Off.<br />

On 1<br />

Communication information<br />

11.3.5 <strong>Speed</strong> [340]<br />

Revised selections for menu [343].<br />

Random modulation is active. Random frequency<br />

variation range is ± 1/8 of level set<br />

in [E22E1].<br />

Modbus Instance no/DeviceNet no: 43055<br />

Profibus slot/index 168/214<br />

Fieldbus format<br />

Modbus format<br />

22E3 PWM Random<br />

Stp Off<br />

A<br />

UInt<br />

UInt<br />

Maximum speed [343]<br />

Sets the maximum speed. The maximum speed will operate<br />

as an absolute maximum limit. This parameter is used to<br />

prevent damage due to high speed. The synchronous speed<br />

(Sync <strong>Speed</strong>) is determined by the motor speed [225].<br />

Keyboard reference Mode[369]<br />

Changed default value from Normal to MotPot<br />

Default:<br />

Normal 0 ....<br />

MotPot 1 ....<br />

Mot Pot<br />

11.5.3 Analogue Outputs [530]<br />

Added selections in Menu [531] and [534]<br />

AnOut1 Function [531] and AnOut 2 Function<br />

[534]<br />

Added selections <strong>Speed</strong> Ref and Torque Ref<br />

Default: <strong>Speed</strong><br />

<strong>Speed</strong> Ref 14<br />

Torque Ref 15<br />

369 Key Ref Mode<br />

StpA<br />

MotPot<br />

531 AnOut 1 FC<br />

StpA<br />

<strong>Speed</strong><br />

Actual internal speed reference Value<br />

after ramp and V/Hz.<br />

Actual torque reference value<br />

(=0 in V/Hz mode)<br />

Default:<br />

Sync <strong>Speed</strong> 0<br />

343 Max <strong>Speed</strong><br />

StpA<br />

Sync <strong>Speed</strong><br />

Sync <strong>Speed</strong><br />

Synchronous speed, i.e. no load<br />

speed, at nominal frequency.<br />

1-24000rpm 1- 24000 Min <strong>Speed</strong> - 4 x Motor Sync <strong>Speed</strong><br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43123<br />

Profibus slot/index 169/27<br />

Fieldbus format<br />

Modbus format<br />

Int, 1=1 rpm<br />

UInt<br />

Note: Maximum speed [343] has priority over Min <strong>Speed</strong><br />

[341], i.e. if [343] is set below [341] then the drive will<br />

run at [343] Max <strong>Speed</strong> with acceleration times given by<br />

[335] and [336] respectively.<br />

11.3.7 Preset References [360]<br />

New default value in Menu [369]<br />

<strong>Emotron</strong> AB 01-4934-01r1 Other changes 5


Addendum<br />

14. Technical Data<br />

14.1 Electrical specifications related<br />

to model<br />

New models for VFX<strong>2.0</strong> and <strong>FDU</strong><strong>2.0</strong> with 480V rated<br />

voltage. The 228 Amp unit is the largest unit in frame size F<br />

available with UL approval<br />

Model<br />

Max.<br />

output<br />

current<br />

[A] *<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power@<br />

400 V<br />

[kW]<br />

Power@<br />

460 V<br />

[hp]<br />

Rated<br />

current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power@<br />

400 V<br />

[kW]<br />

Power@<br />

460 V<br />

[hp]<br />

Rated<br />

current<br />

[A]<br />

Frame size<br />

<strong>FDU</strong>/VFX 48-228 300 110 200 228 90 150 182 F<br />

* Available during limited time and as long as allowed by<br />

drive temperature.<br />

<strong>Emotron</strong> AB 01-4934-01r1 2009-10-30<br />

<strong>Emotron</strong> AB, Mörsaregatan 12, SE-250 24 Helsingborg, Tel: +46 42 16 99 00, Fax: +46 42 16 99 49<br />

www.emotron.com


<strong>Emotron</strong> <strong>FDU</strong> <strong>2.0</strong><br />

INSTRUCTION MANUAL - ENGLISH<br />

Software version 4.2x<br />

Document number: 01-4428-01<br />

Edition: r2<br />

Date of release: 10-06-2009<br />

© Copyright <strong>Emotron</strong> AB 2005 - 2009<br />

<strong>Emotron</strong> retains the right to change specifications and illustrations in the<br />

text, without prior notification. The contents of this document may not<br />

be copied without the explicit permission of <strong>Emotron</strong> AB.


Safety Instructions<br />

Instruction manual<br />

Read this instruction manual before using the <strong>Variable</strong><br />

<strong>Speed</strong> <strong>Drive</strong>, VSD.<br />

Handling the variable speed drive<br />

Installation, commissioning, demounting, taking measurements,<br />

etc, of or on the variable speed drive may only be carried<br />

out by personnel technically qualified for the task. The<br />

installation must be carried out in accordance with local<br />

standards.<br />

Opening the variable speed drive<br />

WARNING: Always switch off the mains voltage<br />

before opening the variable speed drive and<br />

wait at least 5 minutes to allow the buffer<br />

capacitors to discharge.<br />

Always take adequate precautions before opening the variable<br />

speed drive. Although the connections for the control<br />

signals and the switches are isolated from the main voltage,<br />

do not touch the control board when the variable speed<br />

drive is switched on.<br />

Precautions to be taken with a<br />

connected motor<br />

If work must be carried out on a connected motor or on the<br />

driven machine, the mains voltage must always be disconnected<br />

from the variable speed drive first. Wait at least 5<br />

minutes before starting work.<br />

Earthing<br />

The variable speed drive must always be earthed via the<br />

mains safety earth connection.<br />

Earth leakage current<br />

This variable speed drive has an earth leakage current which<br />

does exceed 3.5 mA AC. Therefore the minimum size of the<br />

protective earth conductor must comply with the local safety<br />

regulations for high leakage current equipment which means<br />

that according the standard IEC61800-5-1 the protective<br />

earth connection must be assured by one of following conditions:<br />

1. Use a protective conductor with a cable cross-section of<br />

at least 10 mm 2 for copper (Cu) or 16 mm 2 for aluminium<br />

(Al).<br />

2. Use an additional PE wire, with the same cable cross-section<br />

as the used original PE and mains supply wiring.<br />

Residual current device (RCD)<br />

compatibility<br />

This product cause a DC current in the protective conductor.<br />

Where a residual current device (RCD) is used for protection<br />

in case of direct or indirect contact, only a Type B<br />

RCD is allowed on the supply side of this product. Use<br />

RCD of 300 mA minimum.<br />

EMC Regulations<br />

In order to comply with the EMC Directive, it is absolutely<br />

necessary to follow the installation instructions. All installation<br />

descriptions in this manual follow the EMC Directive.<br />

Mains voltage selection<br />

The variable speed drive may be ordered for use with the<br />

mains voltage range listed below.<br />

<strong>FDU</strong>40/48: 230-480 V<br />

<strong>FDU</strong>50/52: 440-525 V<br />

<strong>FDU</strong>69: 500-690 V<br />

Voltage tests (Megger)<br />

Do not carry out voltage tests (Megger) on the motor, before<br />

all the motor cables have been disconnected from the variable<br />

speed drive.<br />

Condensation<br />

If the variable speed drive is moved from a cold (storage)<br />

room to a room where it will be installed, condensation can<br />

occur. This can result in sensitive components becoming<br />

damp. Do not connect the mains voltage until all visible<br />

dampness has evaporated.<br />

Incorrect connection<br />

The variable speed drive is not protected against incorrect<br />

connection of the mains voltage, and in particular against<br />

connection of the mains voltage to the motor outlets U, V<br />

and W. The variable speed drive can be damaged in this way.<br />

Power factor capacitors for improving<br />

cosϕ<br />

Remove all capacitors from the motor and the motor outlet.<br />

Precautions during Autoreset<br />

When the automatic reset is active, the motor will restart<br />

automatically provided that the cause of the trip has been<br />

removed. If necessary take the appropriate precautions.<br />

<strong>Emotron</strong> AB 01-4428-01r2 1


Transport<br />

To avoid damage, keep the variable speed drive in its original<br />

packaging during transport. This packaging is specially<br />

designed to absorb shocks during transport.<br />

IT Mains supply<br />

The variable speed drives can be modified for an IT mains<br />

supply, (non-earthed neutral), please contact your supplier<br />

for details.<br />

Heat warning<br />

Be aware of specific parts on the VSD having<br />

high temperature.<br />

DC-link residual voltage<br />

WARNING: After switching off the mains<br />

supply, dangerous voltage can still be<br />

present in the VSD. When opening the VSD<br />

for installing and/or commissioning<br />

activities wait at least 5 minutes. In case of malfunction<br />

a qualified technician should check the DC-link or wait<br />

for one hour before dismantling the VSD for repair.<br />

2 <strong>Emotron</strong> AB 01-4428-01r2


Contents<br />

Safety Instructions ......................................... 1<br />

Contents.......................................................... 3<br />

1. Introduction..................................................... 5<br />

1.1 Delivery and unpacking ............................................ 5<br />

1.2 Using of the instruction manual............................... 5<br />

1.3 Type code number..................................................... 5<br />

1.4 Standards .................................................................. 6<br />

1.4.1 Product standard for EMC ........................................ 6<br />

1.5 Dismantling and scrapping....................................... 7<br />

1.5.1 Disposal of old electrical and electronic equipment ..<br />

7<br />

1.6 Glossary ..................................................................... 8<br />

1.6.1 Abbreviations and symbols....................................... 8<br />

1.6.2 Definitions.................................................................. 8<br />

2. Mounting ......................................................... 9<br />

2.1 Lifting instructions..................................................... 9<br />

2.2 Stand-alone units.................................................... 10<br />

2.2.1 Cooling ..................................................................... 10<br />

2.2.2 Mounting schemes.................................................. 11<br />

2.3 Cabinet mounting.................................................... 13<br />

2.3.1 Cooling ..................................................................... 13<br />

2.3.2 Mounting schemes.................................................. 13<br />

3. Installation ................................................... 15<br />

3.1 Before installation................................................... 15<br />

3.2 Cable connections for 003 to 073......................... 15<br />

3.2.1 Mains cables ........................................................... 15<br />

3.2.2 Motor cables............................................................ 16<br />

3.3 Connect motor and mains cables for 090 to 1500....<br />

18<br />

3.4 Cable specifications................................................ 19<br />

3.5 Stripping lengths ..................................................... 19<br />

3.5.1 Dimension of cables and fuses.............................. 19<br />

3.5.2 Tightening torque for mains and motor cables..... 19<br />

3.6 Thermal protection on the motor ........................... 20<br />

3.7 Motors in parallel .................................................... 20<br />

4. Control Connections.................................... 21<br />

4.1 Control board........................................................... 21<br />

4.2 Terminal connections ............................................. 22<br />

4.3 Inputs configuration<br />

with the switches..................................................... 22<br />

4.4 Connection example ............................................... 23<br />

4.5 Connecting the Control Signals.............................. 24<br />

4.5.1 Cables ...................................................................... 24<br />

4.5.2 Types of control signals .......................................... 25<br />

4.5.3 Screening................................................................. 25<br />

4.5.4 Single-ended or double-ended connection? ......... 25<br />

4.5.5 Current signals ((0)4-20 mA).................................. 26<br />

4.5.6 Twisted cables......................................................... 26<br />

4.6 Connecting options ................................................. 26<br />

5. Getting Started............................................. 27<br />

5.1 Connect the mains and motor cables ................... 27<br />

5.1.1 Mains cables ........................................................... 27<br />

5.1.2 Motor cables............................................................ 27<br />

5.2 Using the function keys .......................................... 27<br />

5.3 Remote control........................................................ 28<br />

5.3.1 Connect control cables ........................................... 28<br />

5.3.2 Switch on the mains ............................................... 28<br />

5.3.3 Set the Motor Data.................................................. 28<br />

5.3.4 Run the VSD ............................................................ 28<br />

5.4 Local control............................................................ 29<br />

5.4.1 Switch on the mains ............................................... 29<br />

5.4.2 Select manual control............................................. 29<br />

5.4.3 Set the Motor Data.................................................. 29<br />

5.4.4 Enter a Reference Value......................................... 29<br />

5.4.5 Run the VSD ............................................................ 29<br />

6. Applications.................................................. 31<br />

6.1 Application overview ............................................... 31<br />

6.1.1 Pumps...................................................................... 31<br />

6.1.2 Fans ......................................................................... 31<br />

6.1.3 Compressors ........................................................... 32<br />

6.1.4 Blowers .................................................................... 32<br />

7. Main Features .............................................. 33<br />

7.1 Parameter sets........................................................ 33<br />

7.1.1 One motor and one parameter set ........................ 34<br />

7.1.2 One motor and two parameter sets....................... 34<br />

7.1.3 Two motors and two parameter sets..................... 34<br />

7.1.4 Autoreset at trip ...................................................... 34<br />

7.1.5 Reference priority.................................................... 34<br />

7.1.6 Preset references.................................................... 35<br />

7.2 Remote control functions ....................................... 35<br />

7.3 Performing an Identification Run........................... 37<br />

7.4 Using the Control Panel Memory............................ 37<br />

7.5 Load Monitor and Process Protection [400]......... 38<br />

7.5.1 Load Monitor [410]................................................. 38<br />

7.6 Pump function ......................................................... 40<br />

7.6.1 Introduction ............................................................. 40<br />

7.6.2 Fixed MASTER ......................................................... 41<br />

7.6.3 Alternating MASTER ................................................ 41<br />

7.6.4 Feedback 'Status' input .......................................... 41<br />

7.6.5 Fail safe operation .................................................. 42<br />

7.6.6 PID control ............................................................... 43<br />

7.6.7 Wiring Alternating Master....................................... 44<br />

7.6.8 Checklist And Tips................................................... 45<br />

7.6.9 Functional Examples of Start/Stop Transitions .... 46<br />

8. EMC and Machine Directive........................ 49<br />

8.1 EMC standards........................................................ 49<br />

8.2 Stop categories and emergency stop .................... 49<br />

9. Operation via the Control Panel.................. 51<br />

<strong>Emotron</strong> AB 01-4428-01r2 3


9.1 General .................................................................... 51<br />

9.2 The control panel .................................................... 51<br />

9.2.1 The display............................................................... 51<br />

9.2.2 Indications on the display....................................... 52<br />

9.2.3 LED indicators ......................................................... 52<br />

9.2.4 Control keys............................................................. 52<br />

9.2.5 The Toggle and Loc/Rem Key ................................ 52<br />

9.2.6 Function keys .......................................................... 54<br />

9.3 The menu structure................................................. 54<br />

9.3.1 The main menu ....................................................... 54<br />

9.4 Programming during operation .............................. 55<br />

9.5 Editing values in a menu ........................................ 55<br />

9.6 Copy current parameter to all sets ........................ 55<br />

9.7 Programming example............................................ 56<br />

10. Serial communication ................................. 57<br />

10.1 Modbus RTU ............................................................ 57<br />

10.2 Parameter sets........................................................ 57<br />

10.3 Motor data ............................................................... 58<br />

10.4 Start and stop commands...................................... 58<br />

10.5 Reference signal ..................................................... 58<br />

10.6 Description of the EInt formats .............................. 58<br />

11. Functional Description................................ 63<br />

11.1 Preferred View [100]............................................... 63<br />

11.1.1 1st Line [110].......................................................... 63<br />

11.1.2 2nd Line [120] ........................................................ 64<br />

11.2 Main Setup [200].................................................... 64<br />

11.2.1 Operation [210]....................................................... 64<br />

11.2.2 Remote Signal Level/Edge [21A]........................... 67<br />

11.2.3 Mains supply voltage [21B].................................... 67<br />

11.2.4 Motor Data [220] .................................................... 67<br />

11.2.5 Motor Protection [230] ........................................... 71<br />

11.2.6 Parameter Set Handling [240]............................... 74<br />

11.2.7 Trip Autoreset/Trip Conditions [250]..................... 76<br />

11.2.8 Serial Communication [260] .................................. 82<br />

11.3 Process and Application Parameters [300] .......... 85<br />

11.3.1 Set/View Reference Value [310] ........................... 85<br />

11.3.2 Process Settings [320] ........................................... 86<br />

11.3.3 Start/Stop settings [330] ....................................... 90<br />

11.3.4 Mechanical brake control....................................... 93<br />

11.3.5 <strong>Speed</strong> [340]............................................................. 95<br />

11.3.6 Torques [350].......................................................... 98<br />

11.3.7 Preset References [360] ........................................ 99<br />

11.3.8 PID Process Control [380] .................................... 100<br />

11.3.9 Pump/Fan Control [390] ...................................... 104<br />

11.4 Load Monitor and Process Protection [400]....... 110<br />

11.4.1 Load Monitor [410]............................................... 110<br />

11.4.2 Process Protection [420]...................................... 114<br />

11.5 I/Os and Virtual Connections [500]..................... 115<br />

11.5.1 Analogue Inputs [510] .......................................... 115<br />

11.5.2 Digital Inputs [520] ............................................... 122<br />

11.5.3 Analogue Outputs [530] ....................................... 124<br />

11.5.4 Digital Outputs [540] ............................................ 127<br />

11.5.5 Relays [550] .......................................................... 129<br />

11.5.6 Virtual Connections [560]..................................... 130<br />

11.6 Logical Functions and Timers [600] .................... 131<br />

11.6.1 Comparators [610] ............................................... 131<br />

11.6.2 Logic Output Y [620]............................................. 135<br />

11.6.3 Logic Output Z [630]............................................. 137<br />

11.6.4 Timer1 [640] ......................................................... 138<br />

11.6.5 Timer2 [650] ......................................................... 140<br />

11.7 View Operation/Status [700] ............................... 141<br />

11.7.1 Operation [710]..................................................... 141<br />

11.7.2 Status [720] .......................................................... 143<br />

11.7.3 Stored values [730] .............................................. 146<br />

11.8 View Trip Log [800] ............................................... 147<br />

11.8.1 Trip Message log [810]......................................... 147<br />

11.8.2 Trip Messages [820] - [890] ................................ 148<br />

11.8.3 Reset Trip Log [8A0] ............................................. 149<br />

11.9 System Data [900]................................................ 149<br />

11.9.1 VSD Data [920] ..................................................... 149<br />

12. Troubleshooting, Diagnoses and Maintenance<br />

151<br />

12.1 Trips, warnings and limits..................................... 151<br />

12.2 Trip conditions, causes and remedial action ...... 152<br />

12.2.1 Technically qualified personnel............................ 152<br />

12.2.2 Opening the variable speed drive ........................ 152<br />

12.2.3 Precautions to take with a connected motor ...... 152<br />

12.2.4 Autoreset Trip ........................................................ 152<br />

12.3 Maintenance ......................................................... 155<br />

13. Options........................................................ 157<br />

13.1 Options for the control panel................................ 157<br />

13.2 EmoSoftCom.......................................................... 157<br />

13.3 Brake chopper....................................................... 157<br />

13.4 I/O Board ............................................................... 159<br />

13.5 Output coils ........................................................... 159<br />

13.6 Serial communication and fieldbus..................... 159<br />

13.7 Standby supply board option................................ 159<br />

13.8 Safe Stop option.................................................... 159<br />

13.9 Encoder.................................................................. 161<br />

13.10 PTC/PT100 ............................................................ 161<br />

14. Technical Data ........................................... 163<br />

14.1 Electrical specifications related to model ........... 163<br />

14.2 General electrical specifications.......................... 167<br />

14.3 Operation at higher temperatures ....................... 168<br />

14.4 Operation at higher switching frequency............. 168<br />

14.5 Dimensions and Weights...................................... 169<br />

14.6 Environmental conditions..................................... 170<br />

14.7 Fuses, cable cross-sections and glands.............. 171<br />

14.7.1 According IEC ratings ............................................ 171<br />

14.7.2 Fuses and cable dimensions according NEMA ratings<br />

173<br />

14.8 Control signals....................................................... 175<br />

15. Menu List .................................................... 177<br />

Index ........................................................... 185<br />

4 <strong>Emotron</strong> AB 01-4428-01r2


1. Introduction<br />

<strong>FDU</strong> is used most commonly to control and protect pump<br />

and fan applications that put high demands on flow control,<br />

process uptime and low maintenance costs. It can also be<br />

used for e.g. compressors and blowers. The used motor control<br />

method is V/Hz-control. Several options are available,<br />

listed in chapter 13. page 157, that enable you to customize<br />

the variable speed drive for your specific needs.<br />

NOTE: Read this instruction manual carefully before<br />

starting installation, connection or working with the<br />

variable speed drive.<br />

The following symbols can appear in this manual. Always<br />

read these first before continuing:<br />

NOTE: Additional information as an aid to avoid<br />

problems.<br />

!<br />

CAUTION: Failure to follow these instructions<br />

can result in malfunction or damage to the<br />

variable speed drive.<br />

WARNING: Failure to follow these instructions<br />

can result in serious injury to the user in addition<br />

to serious damage to the variable speed drive.<br />

HOT SURFACE: Failure to follow these<br />

instructions can result in injury to the user.<br />

Users<br />

This instruction manual is intended for:<br />

• installation engineers<br />

• maintenance engineers<br />

• operators<br />

• service engineers<br />

1.1 Delivery and unpacking<br />

Check for any visible signs of damage. Inform your supplier<br />

immediately of any damage found. Do not install the variable<br />

speed drive if damage is found.<br />

The variable speed drives are delivered with a template for<br />

positioning the fixing holes on a flat surface. Check that all<br />

items are present and that the type number is correct.<br />

1.2 Using of the instruction<br />

manual<br />

Within this instruction manual the abbreviation “VSD” is<br />

used to indicate the complete variable speed drive as a single<br />

unit.<br />

Check that the software version number on the first page of<br />

this manual matches the software version in the variable<br />

speed drive.<br />

With help of the index and the contents it is easy to track<br />

individual functions and to find out how to use and set<br />

them.<br />

The Quick Setup Card can be put in a cabinet door, so that<br />

it is always easy to access in case of an emergency.<br />

1.3 Type code number<br />

Fig. 1 gives an example of the type code numbering used on<br />

all variable speed drives. With this code number the exact<br />

type of the drive can be determined. This identification will<br />

be required for type specific information when mounting<br />

and installing. The code number is located on the product<br />

label, on the front of the unit.<br />

<strong>FDU</strong>48-175-54 C E – – – A – N N N N A N –<br />

Position number:<br />

1 2 3 4 5 6 7 8 9101112131415161718<br />

Fig. 1<br />

Type code number<br />

Motors<br />

The variable speed drive is suitable for use with standard 3-<br />

phase asynchronous motors. Under certain conditions it is<br />

possible to use other types of motors. Contact your supplier<br />

for details.<br />

Position<br />

for 003-<br />

046<br />

Position<br />

for 060-<br />

1500<br />

1 1 VSD type<br />

Configuration<br />

2 2 Supply voltage<br />

<strong>FDU</strong><br />

VFX<br />

40/48=400 V<br />

mains<br />

50/52=525 V<br />

mains<br />

69=690 V mains<br />

3 3<br />

Rated current (A)<br />

continuous<br />

-003=2.5 A<br />

-<br />

-1500=1500 A<br />

<strong>Emotron</strong> AB 01-4428-01r2 Introduction 5


Position<br />

for 003-<br />

046<br />

4 4 Protection class<br />

5 5 Control panel<br />

6 6 EMC option<br />

7 7<br />

8 8<br />

- 9<br />

Brake chopper<br />

option<br />

Stand-by power supply<br />

option<br />

Safe stop option<br />

(Not valid for<br />

003-046)<br />

20=IP20<br />

54=IP54<br />

–=Blank panel<br />

C=Standard panel<br />

E=Standard EMC<br />

(Category C3)<br />

F=Extended EMC<br />

(Category C2)<br />

I=IT-Net<br />

–=No chopper<br />

B=Chopper built in<br />

D=DC+/- interface<br />

–=No SBS<br />

S=SBS included<br />

–=No safe stop<br />

T=Safe stop incl.<br />

(Only 090-1500)<br />

9 10 Brand label A=<strong>Emotron</strong><br />

10 -<br />

11 11<br />

Painted VSD<br />

(Only valid for<br />

003-046)<br />

Coated boards,<br />

option<br />

A=Standard paint<br />

B=White paint<br />

RAL9010<br />

A=Standard<br />

boards<br />

V=Coated boards<br />

12 12 Option position 1 N=No option<br />

13 13 Option position 2<br />

C=Crane I/O<br />

E=Encoder<br />

14 14 Option position 3<br />

P=PTC/PT100<br />

I=Extended I/O<br />

S=Safe Stop (only<br />

003-046)<br />

15 15<br />

Option position, communication<br />

N=No option<br />

D=DeviceNet<br />

P=Profibus<br />

S=RS232/485<br />

M=Modbus/TCP<br />

16 16 Software type A=Standard<br />

17 17<br />

18 18<br />

Position<br />

for 060-<br />

1500<br />

Configuration<br />

Motor PTC. (Only<br />

valid for 003-046)<br />

Gland kit.<br />

(Only valid for 003-<br />

046)<br />

N=No option<br />

P=PTC<br />

–=Glands not<br />

included<br />

G=Gland kit<br />

included<br />

1.4 Standards<br />

The variable speed drives described in this instruction manual<br />

comply with the standards listed in Table 1. For the declarations<br />

of conformity and manufacturer’s certificate,<br />

contact your supplier for more information or visit<br />

www.emotron.com.<br />

1.4.1Product standard for EMC<br />

Product standard EN(IEC)61800-3, second edition of 2004<br />

defines the:<br />

First Environment (Extended EMC) as environment that<br />

includes domestic premises. It also includes establishments<br />

directly connected without intermediate transformers to a<br />

low voltage power supply network that supplies buildings<br />

used for domestic purposes.<br />

Category C2: Power <strong>Drive</strong> System (PDS) of rated voltage


Table 1<br />

Standards<br />

European<br />

All<br />

USA<br />

UL and UL<br />

Market Standard Description<br />

Machine Directive<br />

EMC Directive<br />

Low Voltage Directive<br />

WEEE Directive<br />

EN 60204-1<br />

EN(IEC)61800-3:2004<br />

EN(IEC)61800-5-1 Ed.<br />

<strong>2.0</strong><br />

IEC 60721-3-3<br />

UL508C<br />

≥90 A only<br />

UL 840<br />

98/37/EEC<br />

2004/108/EEC<br />

2006/95/EC<br />

2002/96/EC<br />

Russian GOST R For all sizes<br />

Safety of machinery - Electrical equipment of machines<br />

Part 1: General requirements.<br />

Machine Directive: Manufacturer’s certificate<br />

acc. to Appendix IIB<br />

Adjustable speed electrical power drive systems<br />

Part 3: EMC requirements and specific test methods.<br />

EMC Directive:<br />

Declaration of Conformity and<br />

CE marking<br />

Adjustable speed electrical power drive systems Part 5-1.<br />

Safety requirements - Electrical, thermal and energy.<br />

Low Voltage Directive: Declaration of Conformity and<br />

CE marking<br />

Classification of environmental conditions. Air quality chemical vapours, unit in<br />

operation. Chemical gases 3C1, Solid particles 3S2.<br />

Optional with coated boards<br />

Unit in operation. Chemical gases Class 3C2, Solid particles 3S2.<br />

UL Safety standard for Power Conversion Equipment<br />

UL Safety standard for Power Conversion Equipment power conversion equipment.<br />

Insulation coordination including clearances and creepage distances for electrical<br />

equipment.<br />

1.5 Dismantling and scrapping<br />

The enclosures of the drives are made from recyclable material<br />

as aluminium, iron and plastic. Each drive contains a<br />

number of components demanding special treatment, for<br />

example electrolytic capacitors. The circuit boards contain<br />

small amounts of tin and lead. Any local or national regulations<br />

in force for the disposal and recycling of these materials<br />

must be complied with.<br />

for the recycling of electrical and electronic equipment. By<br />

ensuring this product is disposed of correctly, you will help<br />

prevent potentially negative consequences for the environment<br />

and human health, which could otherwise be caused<br />

by inappropriate waste handling of this product. The recycling<br />

of materials will help to conserve natural resources. For<br />

more detailed information about recycling this product,<br />

please contact the local distributor of the product or visit our<br />

home page www.emotron.com.<br />

1.5.1Disposal of old electrical and<br />

electronic equipment<br />

This information is applicable in the European Union and<br />

other European countries with separate collection systems.<br />

This symbol on the product or on its packaging indicates<br />

that this product shall be treated according to the WEEE<br />

Directive. It must be taken to the applicable collection point<br />

<strong>Emotron</strong> AB 01-4428-01r2 Introduction 7


1.6 Glossary<br />

1.6.1Abbreviations and symbols<br />

In this manual the following abbreviations are used:<br />

1.6.2 Definitions<br />

In this manual the following definitions for current, torque<br />

and frequency are used:<br />

Table 3<br />

Definitions<br />

Table 2<br />

Abbreviations<br />

Name Description Quantity<br />

Abbreviation/<br />

symbol<br />

DSP<br />

VSD<br />

CP<br />

EInt<br />

UInt<br />

Int<br />

Long<br />

<br />

Description<br />

Digital signals processor<br />

<strong>Variable</strong> speed drive<br />

Control panel, the programming and presentation<br />

unit on the VSD<br />

Communication format<br />

Communication format<br />

Communication format<br />

Communication format<br />

The function cannot be changed in run mode<br />

I IN Nominal input current of VSD A RMS<br />

I NOM Nominal output current of VSD A RMS<br />

I MOT Nominal motor current A RMS<br />

P NOM Nominal power of VSD kW<br />

P MOT Motor power kW<br />

T NOM Nominal torque of motor Nm<br />

T MOT Motor torque Nm<br />

f OUT Output frequency of VSD Hz<br />

f MOT Nominal frequency of motor Hz<br />

n MOT Nominal speed of motor rpm<br />

I CL Maximum output current A RMS<br />

<strong>Speed</strong> Actual motor speed rpm<br />

Torque Actual motor torque Nm<br />

Sync<br />

speed<br />

Synchronous speed of the motor<br />

rpm<br />

8 Introduction <strong>Emotron</strong> AB 01-4428-01r2


2. Mounting<br />

This chapter describes how to mount the VSD.<br />

Before mounting it is recommended that the installation is<br />

planned out first.<br />

• Be sure that the VSD suits the mounting location.<br />

• The mounting site must support the weight of the VSD.<br />

• Will the VSD continuously withstand vibrations and/or<br />

shocks?<br />

• Consider using a vibration damper.<br />

• Check ambient conditions, ratings, required cooling air<br />

flow, compatibility of the motor, etc.<br />

• Know how the VSD will be lifted and transported.<br />

Recommended for VSD models -300 to -1500<br />

Lifting eye<br />

2.1 Lifting instructions<br />

Note: To prevent personal risks and any damage to the<br />

unit during lifting, it is advised that the lifting methods<br />

described below are used.<br />

Recommended for VSD models -090 to -250<br />

Load: 56 to 74 kg<br />

Fig. 3<br />

Remove the roof plate.<br />

Terminals for roof fan<br />

unit supply cables<br />

A<br />

DETAIL A<br />

Fig. 4<br />

Remove roof unit<br />

Fig. 2 Lifting VSD model -090 to -250<br />

<strong>Emotron</strong> AB 01-4428-01r2 Mounting 9


2.2 Stand-alone units<br />

The VSD must be mounted in a vertical position against a<br />

flat surface. Use the template (delivered together with the<br />

VSD) to mark out the position of the fixing holes.<br />

Fig. 6 <strong>Variable</strong> speed drive mounting models 003 to 1500<br />

2.2.1 Cooling<br />

Fig. 6 shows the minimum free space required around the<br />

VSD for the models 003 to 1500 in order to guarantee adequate<br />

cooling. Because the fans blow the air from the bottom<br />

to the top it is advisable not to position an air inlet<br />

immediately above an air outlet.<br />

The following minimum separation between two variable<br />

speed drives, or a VSD and a non-dissipating wall must be<br />

maintained. Valid if free space on opposite side.<br />

Table 4<br />

Mounting and cooling<br />

Fig. 5 Lifting VSD model -300 to -1500<br />

<strong>FDU</strong>-<strong>FDU</strong><br />

(mm)<br />

<strong>FDU</strong>-wall,<br />

wall-one<br />

side<br />

(mm)<br />

003-018 026-046 090-250 300-1500<br />

cabinet<br />

a 200 200 200 100<br />

b 200 200 200 0<br />

c 0 0 0 0<br />

d 0 0 0 0<br />

a 100 100 100 100<br />

b 100 100 100 0<br />

c 0 0 0 0<br />

d 0 0 0 0<br />

NOTE: When a 300 to 1500 model is placed between two<br />

walls, a minimum distance at each side of 200 mm must<br />

be maintained.<br />

10 Mounting <strong>Emotron</strong> AB 01-4428-01r2


2.2.2 Mounting schemes<br />

128,5<br />

24,8<br />

128.5 37<br />

10<br />

10<br />

Ø 13 (2x)<br />

Ø<br />

13 (2x)<br />

512<br />

492<br />

416<br />

396<br />

202.6<br />

Ø<br />

7 (4x)<br />

Fig. 7<br />

<strong>FDU</strong>48/52: Model 003 to 018 (B)<br />

Glands<br />

M20<br />

Gland<br />

M16<br />

Ø 7 (4x)<br />

Glands<br />

M32<br />

Gland<br />

M25<br />

Fig. 10 <strong>FDU</strong>48/52: Model 026 to 046 (C)<br />

178<br />

292,1<br />

Fig. 8<br />

<strong>FDU</strong>48/52: Model 003 to 018 (B)<br />

Gland<br />

M25 (026-031)<br />

M32 (037-046)<br />

Glands<br />

M20<br />

Glands<br />

M32 (026-031)<br />

M40 (037-046)<br />

Fig. 9<br />

<strong>FDU</strong>48/52: Model 003 to 018 (B), with optional<br />

gland plate<br />

NOTE: Glands for size B and C available as option kit.<br />

Fig. 11 Cable interface for mains, motor and communication,<br />

<strong>FDU</strong>48/52: Model 026 to 046 (C)<br />

<strong>Emotron</strong> AB 01-4428-01r2 Mounting 11


Ø 7 (4x)<br />

30 160<br />

10<br />

Ø 13 (2x)<br />

Membrane cable<br />

gland M60<br />

22,5<br />

240<br />

120<br />

Ø9(6x)<br />

284,5<br />

275<br />

925<br />

952,50<br />

922,50<br />

570<br />

590<br />

Ø16(3)<br />

10<br />

30<br />

314<br />

220<br />

Fig. 14 <strong>FDU</strong>48: Model 090 to 175 (E) including cable interface<br />

for mains, motor and communication<br />

Fig. 12 <strong>FDU</strong>40/50: Model 046 - 073 (X2)<br />

Glands<br />

M20<br />

External<br />

Interface<br />

Glands<br />

M40<br />

Fig. 13 Cable interface for mains, motor and communication,<br />

<strong>FDU</strong>40/50: Model 046 - 073 (X2).<br />

12 Mounting <strong>Emotron</strong> AB 01-4428-01r2


Table 5<br />

Flow rates cooling fans<br />

Cable dimensions 27-66 mm<br />

Frame <strong>FDU</strong> Model Flow rate [m 3 /hour]<br />

J 860 - 1000<br />

3200<br />

J69 600 - 650<br />

22.50<br />

300<br />

150<br />

Ø9(x6)<br />

344,5<br />

335<br />

K 1200 - 1500<br />

K69 750 - 1000<br />

4800<br />

Ø16(3x)<br />

30<br />

2.3.2 Mounting schemes<br />

925<br />

952,50<br />

922,50<br />

10<br />

NOTE: For the models 860 to 1500 the mentioned<br />

amount of air flow should be divided equally over the two<br />

cabinets.<br />

314<br />

Fig. 15 <strong>FDU</strong>48: Model 210 to 250 (F)<br />

<strong>FDU</strong>69: Model 90 to 175 (F69) including cable<br />

interface for mains, motor and communication<br />

2330<br />

2.3 Cabinet mounting<br />

2.3.1 Cooling<br />

If the variable speed drive is installed in a cabinet, the rate of<br />

airflow supplied by the cooling fans must be taken into consideration.<br />

Table 5<br />

Flow rates cooling fans<br />

Frame <strong>FDU</strong> Model Flow rate [m 3 /hour]<br />

600<br />

600<br />

Fig. 16 <strong>FDU</strong>48: Model 300 to 500 (G and H)<br />

<strong>FDU</strong>69: Model 210 to 375 (H69)<br />

B 003-018 75<br />

C 026 – 031 120<br />

C 037 - 046 170<br />

E 090 - 175 510<br />

F 210 - 250<br />

800<br />

F69 090 - 175<br />

G 300 - 375 1020<br />

H 430 - 500<br />

1600<br />

H69 210 - 375<br />

I 600 - 750<br />

2400<br />

I69 430 - 500<br />

<strong>Emotron</strong> AB 01-4428-01r2 Mounting 13


2330<br />

2330<br />

1000<br />

600<br />

1200<br />

600<br />

Fig. 17 <strong>FDU</strong>48: Model 600 to 750 (I)<br />

<strong>FDU</strong>69: Model 430 to 500 (I69)<br />

Fig. 18 <strong>FDU</strong>48: Model 860 to 1000 (J)<br />

<strong>FDU</strong>69: Model 600 to 650 (J69)<br />

2330<br />

2000<br />

Fig. 19 <strong>FDU</strong>48: Model 1200 to 1500 (K)<br />

<strong>FDU</strong>69: Model 750 to 1000 (K69)<br />

600<br />

14 Mounting <strong>Emotron</strong> AB 01-4428-01r2


3. Installation<br />

The description of installation in this chapter complies with<br />

the EMC standards and the Machine Directive.<br />

Select cable type and screening according to the EMC<br />

requirements valid for the environment where the VSD is<br />

installed.<br />

3.1 Before installation<br />

Read the following checklist and think through your application<br />

before installation.<br />

• External or internal control.<br />

• Long motor cables (>100m), refer to section Long motor<br />

cables.<br />

• Motors in parallel, refer to menu [213].<br />

• Functions.<br />

• Suitable VSD size in proportion to the motor/application.<br />

• Mount separately supplied option boards according to<br />

the instructions in the appropriate option manual.<br />

If the VSD is temporarily stored before being connected,<br />

please check the technical data for environmental conditions.<br />

If the VSD is moved from a cold storage room to the<br />

room where it is to be installed, condensation can form on<br />

it. Allow the VSD to become fully acclimatised and wait<br />

until any visible condensation has evaporated before connecting<br />

the mains voltage.<br />

3.2 Cable connections for 003<br />

to 073<br />

3.2.1 Mains cables<br />

Dimension the mains and motor cables according to local<br />

regulations. The cable must be able to carry the VSD load<br />

current.<br />

Recommendations for selecting mains<br />

cables<br />

• To fulfil EMC purposes it is not necessary to use<br />

screened mains cables.<br />

• Use heat-resistant cables, +60°C or higher.<br />

• Dimension the cables and fuses in accordance with local<br />

regulations and the nominal current of the motor. See<br />

table 50, page 171.<br />

• The litz ground connection see fig. 23, is only necessary<br />

if the mounting plate is painted. All the variable speed<br />

drives have an unpainted back side and are therefore<br />

suitable for mounting on an unpainted mounting plate.<br />

Connect the mains cables according to fig. 20 or 21. The<br />

VSD has as standard a built-in RFI mains filter that complies<br />

with category C3 which suits the Second Environment<br />

standard.<br />

PE<br />

Fig. 20 Mains and motor connections, 003-018<br />

PE<br />

Fig. 21 Mains and motor connections, 026-046<br />

Table 6<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

(DC-),DC+,R<br />

L1 L2 L3 DC- DC+ R<br />

L1 L2 L3 DC-DC+ R U V W<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth (protected earth)<br />

Motor earth<br />

Motor output, 3-phase<br />

Brake resistor, DC-link<br />

connections (optional)<br />

U V W<br />

Screen connection<br />

of motor cables<br />

Screen connection<br />

of motor cables<br />

<strong>Emotron</strong> AB 01-4428-01r2 Installation 15


NOTE: The Brake and DC-link Terminals are only fitted if<br />

the Brake Chopper Option is built-in.<br />

WARNING: The Brake Resistor must be<br />

connected between terminals DC+ and R.<br />

WARNING: In order to work safely, the mains<br />

earth must be connected to PE and the<br />

motor earth to .<br />

3.2.2 Motor cables<br />

To comply with the EMC emission standards the variable<br />

speed drive is provided with a RFI mains filter. The motor<br />

cables must also be screened and connected on both sides. In<br />

this way a so-called “Faraday cage” is created around the<br />

VSD, motor cables and motor. The RFI currents are now<br />

fed back to their source (the IGBTs) so the system stays<br />

within the emission levels.<br />

Recommendations for selecting motor<br />

cables<br />

• Use screened cables according to specification in table 7.<br />

Use symmetrical shielded cable; three phase conductors<br />

and a concentric or otherwise symmetrically constructed<br />

PE conductor, and a shield.<br />

• When the conductivity of the cable PE conductor is<br />


VSD built into cabinet<br />

Litz<br />

RFI-Filter<br />

(option)<br />

Mains<br />

Mains<br />

(L1,L2,L3,PE)<br />

VSD<br />

Motor<br />

Metal coupling<br />

nut<br />

Brake resistor<br />

(option)<br />

Metal EMC cable glands<br />

Output coil (option)<br />

Screened cables<br />

Unpainted mounting plate<br />

Metal connector housing<br />

Motor<br />

Fig. 23 <strong>Variable</strong> speed drive in a cabinet on a mounting plate<br />

Fig. 24 shows an example when there is no metal mounting<br />

plate used (e.g. if IP54 variable speed drives are used). It is<br />

important to keep the “circuit” closed, by using metal housing<br />

and cable glands.<br />

Connect motor cables<br />

1. Remove the cable interface plate from the VSD housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective motor terminal.<br />

5. Put the cable interface plate in place and secure with the<br />

fixing screws.<br />

6. Tighten the EMC gland with good electrical contact to<br />

the motor and brake chopper cable screens.<br />

Placing of motor cables<br />

Keep the motor cables as far away from other cables as possible,<br />

especially from control signals. The minimum distance<br />

between motor cables and control cables is 300 mm.<br />

Avoid placing the motor cables in parallel with other cables.<br />

The power cables should cross other cables at an angle of<br />

90°.<br />

Long motor cables<br />

If the connection to the motor is longer than 100 m (40 m<br />

for models 003-018), it is possible that capacitive current<br />

peaks will cause tripping at overcurrent. Using output coils<br />

can prevent this. Contact the supplier for appropriate coils.<br />

Switching in motor cables<br />

Switching in the motor connections is not advisable. In the<br />

event that it cannot be avoided (e.g. emergency or maintenance<br />

switches) only switch if the current is zero. If this is<br />

not done, the VSD can trip as a result of current peaks.<br />

RFI-Filter<br />

Mains<br />

VSD<br />

Metal EMC cable<br />

glands<br />

Screened cables<br />

Brake<br />

resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal housing<br />

Metal connector housing<br />

Metal cable gland<br />

Motor<br />

Mains<br />

Fig. 24 <strong>Variable</strong> speed drive as stand alone<br />

<strong>Emotron</strong> AB 01-4428-01r2 Installation 17


3.3 Connect motor and mains<br />

cables for 090 to 1500<br />

VSD model 300 to 1500<br />

VSD <strong>FDU</strong>48-090 to 250 and <strong>FDU</strong>69-090 to<br />

175<br />

To simplify the connection of thick motor and mains cables<br />

to the VSD model <strong>FDU</strong>48-090 to 250 and <strong>FDU</strong>69-090 to<br />

175 the cable interface plate can be removed.<br />

L1 L2 L3 PE PE U V W<br />

Clamps for screening<br />

Cable interface<br />

Fig. 25 Connecting motor and mains cables<br />

1. Remove the cable interface plate from the VSD housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective mains/<br />

motor terminal.<br />

5. Fix the clamps on appropriate place and tighten the<br />

cable in the clamp with good electrical contact to the<br />

cable screen.<br />

6. Put the cable interface plate in place and secure with the<br />

fixing screws.<br />

Fig. 26 Connecting motor and mains cables<br />

VSD models 300 to 1500 are supplied with Klockner Moeller<br />

K3x240/4 power clamps.<br />

For all type of wires to be connected the stripping length<br />

should be 32 mm.<br />

18 Installation <strong>Emotron</strong> AB 01-4428-01r2


3.4 Cable specifications<br />

Table 7<br />

Cable<br />

Mains<br />

Motor<br />

Control<br />

Cable specifications<br />

3.5 Stripping lengths<br />

Fig. 27 indicates the recommended stripping lengths for<br />

motor and mains cables.<br />

Table 8<br />

Model<br />

Cable specification<br />

Power cable suitable for fixed installation for the<br />

voltage used.<br />

Symmetrical three conductor cable with concentric<br />

protection (PE) wire or a four conductor cable<br />

with compact low-impedance concentric shield<br />

for the voltage used.<br />

Control cable with low-impedance shield,<br />

screened.<br />

Stripping lengths for mains and motor cables<br />

Mains cable<br />

a<br />

(mm)<br />

b<br />

(mm)<br />

a<br />

(mm)<br />

Motor cable<br />

b<br />

(mm)<br />

c<br />

(mm)<br />

003-018 90 10 90 10 20<br />

026–046 150 14 150 14 20<br />

060–073 130 11 130 11 34<br />

090-175 160 16 160 16 41<br />

<strong>FDU</strong>48-210–250<br />

<strong>FDU</strong>69-090-175<br />

170 24 170 24 46<br />

3.5.2 Tightening torque for mains<br />

and motor cables<br />

Table 9 Model <strong>FDU</strong>48/52 003 to 046<br />

Brake chopper<br />

Mains/motor<br />

Tightening torque, Nm 1.2-1.4 1.2-1.4<br />

Table 10 Model <strong>FDU</strong>40/50 060 to 073<br />

All cables 60 A<br />

All cables 73 A<br />

Tightening torque, Nm 1.5 3.2<br />

Table 11 Model <strong>FDU</strong>48 090 to 109<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 95 95<br />

Cable diameter, mm 2 16-95 16-95<br />

Tightening torque, Nm 14 14<br />

Table 12 Model <strong>FDU</strong>48 146 to 175<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 95 150<br />

Cable diameter, mm 2 16-95 35-95 120-150<br />

Tightening torque, Nm 14 14 24<br />

Table 13<br />

Model <strong>FDU</strong>48 210 to 250 and <strong>FDU</strong>69 090 to<br />

175<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 150 240<br />

Cable diameter, mm 2 35-95 120-150 35-70 95-240<br />

Tightening torque, Nm 14 24 14 24<br />

Mains<br />

Motor<br />

Fig. 27 Stripping lengths for cables<br />

(06-F45-cables only)<br />

3.5.1 Dimension of cables and fuses<br />

Please refer to the chapter Technical data, section 14.7, page<br />

171.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Installation 19


3.6 Thermal protection on the<br />

motor<br />

Standard motors are normally fitted with an internal fan.<br />

The cooling capacity of this built-in fan is dependent on the<br />

frequency of the motor. At low frequency, the cooling capacity<br />

will be insufficient for nominal loads. Please contact the<br />

motor supplier for the cooling characteristics of the motor at<br />

lower frequency.<br />

WARNING: Depending on the cooling<br />

characteristics of the motor, the application,<br />

the speed and the load, it may be necessary<br />

to use forced cooling on the motor.<br />

Motor thermistors offer better thermal protection for the<br />

motor. Depending on the type of motor thermistor fitted,<br />

the optional PTC input may be used. The motor thermistor<br />

gives a thermal protection independent of the speed of the<br />

motor, thus of the speed of the motor fan. See the functions,<br />

Motor I 2 t type [231] and Motor I 2 t current [232].<br />

3.7 Motors in parallel<br />

It is possible to have motors in parallel as long as the total<br />

current does not exceed the nominal value of the VSD. The<br />

following has to be taken into account when setting the<br />

motor data:<br />

Menu [221]<br />

Motor Voltage:<br />

Menu [222]<br />

Motor Frequency:<br />

Menu [223]<br />

Motor Power:<br />

Menu [224]<br />

Motor Current:<br />

Menu [225]<br />

Motor <strong>Speed</strong>:<br />

Menu [227]<br />

Motor Cos PHI:<br />

The motors in parallel must have the<br />

same motor voltage.<br />

The motors in parallel must have the<br />

same motor frequency.<br />

Add the motor power values for the<br />

motors in parallel.<br />

Add the current for the motors in parallel.<br />

Set the average speed for the motors in<br />

parallel.<br />

Set the average Cos PHI value for the<br />

motors in parallel.<br />

20 Installation <strong>Emotron</strong> AB 01-4428-01r2


4. Control Connections<br />

4.1 Control board<br />

Fig. 28 shows the layout of the control board which is where<br />

the parts most important to the user are located. Although<br />

the control board is galvanically isolated from the mains, for<br />

safety reasons do not make changes while the mains supply<br />

is on!<br />

WARNING: Always switch off the mains<br />

voltage and wait at least 5 minutes to allow<br />

the DC capacitors to discharge before<br />

connecting the control signals or changing<br />

position of any switches. If the option External supply is<br />

used, switch of the mains to the option. This is done to<br />

prevent damage on the control board.<br />

X5<br />

X6<br />

X7<br />

X4<br />

1<br />

Option<br />

2<br />

3<br />

C<br />

Communication<br />

X8<br />

Control<br />

Panel<br />

Switches<br />

S1 S2 S3 S4<br />

I U I U I U I U<br />

12 13 14 15 16 17 18 19 20 21 22<br />

X1<br />

1<br />

Control<br />

signals<br />

AO1 AO2 DI4 DI5 DI6 DI7 DO1 DO2 DI8<br />

2 3 4 5 6 7 8 9 10<br />

11<br />

R02<br />

41 42 43<br />

Relay outputs<br />

NC C NO<br />

X2 31 32 33 51 52<br />

+10V AI1<br />

AI2<br />

AI3<br />

AI4<br />

-10V<br />

DI1<br />

DI2<br />

DI3 +24V<br />

NC<br />

C<br />

R01<br />

NO<br />

X3<br />

NO<br />

C<br />

R03<br />

Fig. 28 Control board layout<br />

<strong>Emotron</strong> AB 01-4428-01r2 Control Connections 21


4.2 Terminal connections<br />

The terminal strip for connecting the control signals is<br />

accessible after opening the front panel.<br />

The table describes the default functions for the signals. The<br />

inputs and outputs are programmable for other functions as<br />

described in chapter 11. page 63. For signal specifications<br />

refer to chapter 14. page 163.<br />

NOTE: The maximum total combined current for outputs<br />

11, 20 and 21 is 100mA.<br />

Table 14<br />

Control signals<br />

Terminal Name Function (Default)<br />

Outputs<br />

1 +10 V +10 VDC supply voltage<br />

6 -10 V -10 VDC supply voltage<br />

7 Common Signal ground<br />

11 +24 V +24 VDC supply voltage<br />

12 Common Signal ground<br />

15 Common Signal ground<br />

Digital inputs<br />

8 DigIn 1 RunL (reverse)<br />

9 DigIn 2 RunR (forward)<br />

10 DigIn 3 Off<br />

16 DigIn 4 Off<br />

17 DigIn 5 Off<br />

18 DigIn 6 Off<br />

19 DigIn 7 Off<br />

22 DigIn 8 RESET<br />

Digital outputs<br />

20 DigOut 1 Ready<br />

21 DigOut 2 Brake<br />

Analogue inputs<br />

2 AnIn 1 Process Ref<br />

3 AnIn 2 Off<br />

4 AnIn 3 Off<br />

5 AnIn 4 Off<br />

Analogue outputs<br />

13 <strong>Speed</strong> Min speed to max speed<br />

14 Torque 0 to max torque<br />

Relay outputs<br />

31 N/C 1<br />

Relay 1 output<br />

32 COM 1 Trip, active when the VSD is in a<br />

33 N/O 1<br />

TRIP condition.<br />

Table 14<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 output<br />

Run, active when the VSD is<br />

started.<br />

51 COM 3 Relay 3 output<br />

52 N/O 3 Off<br />

NOTE: N/C is opened when the relay is active and N/O is<br />

closed when the relay is active.<br />

4.3 Inputs configuration<br />

with the switches<br />

The switches S1 to S4 are used to set the input configuration<br />

for the 4 analogue inputs AnIn1, AnIn2, AnIn3 and AnIn4<br />

as described in table 15. See Fig. 28 for the location of the<br />

switches.<br />

Table 15<br />

Switch settings<br />

Input Signal type Switch<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

Control signals<br />

Terminal Name Function (Default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

S1<br />

S1<br />

S2<br />

S2<br />

S3<br />

S3<br />

S4<br />

S4<br />

NOTE: Scaling and offset of AnIn1 - AnIn4 can be<br />

configured using the software. See menus [512], [515],<br />

[518] and [51B] in section 11.5, page 115.<br />

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can<br />

be configured using the software. See menu [530]<br />

section 11.5.3, page 124<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

22 Control Connections <strong>Emotron</strong> AB 01-4428-01r2


4.4 Connection example<br />

Fig. 29 gives an overall view of a VSD connection example.<br />

L1<br />

L2<br />

L3<br />

PE<br />

RFIfilter<br />

U<br />

V<br />

W<br />

Motor<br />

Alternative for<br />

potentiometer control**<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

0 - 10 V<br />

4 - 20 mA<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

15<br />

16<br />

17<br />

18<br />

19<br />

22<br />

Optional<br />

+10 VDC<br />

AnIn 1: Reference<br />

AnIn 2<br />

AnIn 3<br />

Common<br />

AnIn 4<br />

AnOut 1<br />

-10 VDC AnOut 2<br />

Common DigOut 1<br />

DigIn 1:RunL* DigOut 2<br />

DigIn 2:RunR*<br />

DigIn3<br />

+24 VDC<br />

Relay 1<br />

Common<br />

DigIn 4<br />

DigIn 5<br />

DigIn 6<br />

Relay 2<br />

DigIn 7<br />

DigIn 8:Reset*<br />

DC+<br />

R<br />

DC -<br />

12<br />

13<br />

21 14<br />

20<br />

21<br />

31<br />

32<br />

33<br />

41<br />

42<br />

43<br />

Relay 3<br />

51<br />

52<br />

RESET<br />

LOC/<br />

REM<br />

PREV NEXT ESC<br />

Other options<br />

ENTER<br />

Fieldbus option<br />

or PC<br />

Option board<br />

* Default setting<br />

** The switch S1 is set to U<br />

Fig. 29 Connection example<br />

NG_06-F27<br />

<strong>Emotron</strong> AB 01-4428-01r2 Control Connections 23


4.5 Connecting the Control<br />

Signals<br />

4.5.1 Cables<br />

The standard control signal connections are suitable for<br />

stranded flexible wire up to 1.5 mm 2 and for solid wire up to<br />

2.5 mm 2 .<br />

Control signals<br />

Control signals<br />

Fig. 30 Connecting the control signals 003 to 018<br />

Fig. 32 Connecting the control signals 060 to 175<br />

NOTE: The screening of control signal cables is<br />

necessary to comply with the immunity levels given in<br />

the EMC Directive (it reduces the noise level).<br />

NOTE: Control cables must be separated from motor and<br />

mains cables.<br />

Control signals<br />

Fig. 31 Connecting the control signals 026 to 046<br />

24 Control Connections <strong>Emotron</strong> AB 01-4428-01r2


4.5.2 Types of control signals<br />

Always make a distinction between the different types of signals.<br />

Because the different types of signals can adversely<br />

affect each other, use a separate cable for each type. This is<br />

often more practical because, for example, the cable from a<br />

pressure sensor may be connected directly to the variable<br />

speed drive.<br />

We can distinguish between the following types of control<br />

signals:<br />

Analogue inputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) normally<br />

used as control signals for speed, torque and PID feedback<br />

signals.<br />

Analogue outputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) which<br />

change slowly or only occasionally in value. In general, these<br />

are control or measurement signals.<br />

Digital<br />

Voltage or current signals (0-10 V, 0-24 V, 0/4-20 mA)<br />

which can have only two values (high or low) and only occasionally<br />

change in value.<br />

Data<br />

Usually voltage signals (0-5 V, 0-10 V) which change rapidly<br />

and at a high frequency, generally data signals such as<br />

RS232, RS485, Profibus, etc.<br />

Relay<br />

Relay contacts (0-250 VAC) can switch highly inductive<br />

loads (auxiliary relay, lamp, valve, brake, etc.).<br />

4.5.4 Single-ended or double-ended<br />

connection?<br />

In principle, the same measures applied to motor cables<br />

must be applied to all control signal cables, in accordance<br />

with the EMC-Directives.<br />

For all signal cables as mentioned in section 4.5.2 the best<br />

results are obtained if the screening is connected to both<br />

ends. See Fig. 33.<br />

NOTE: Each installation must be examined carefully<br />

before applying the proper EMC measurements.<br />

Control board<br />

Pressure<br />

sensor<br />

(example)<br />

Signal<br />

type<br />

Maximum wire size<br />

Tightening<br />

torque<br />

Cable type<br />

External control<br />

(e.g. in metal housing)<br />

0.5 Nm<br />

Analogue Rigid cable:<br />

Digital<br />

0.14-2.5 mm 2<br />

Flexible cable:<br />

Data 0.14-1.5 mm 2<br />

Relay 0.25-1.5 mm 2<br />

Cable with ferrule:<br />

Screened<br />

Screened<br />

Screened<br />

Not screened<br />

Control consol<br />

Example:<br />

The relay output from a variable speed drive which controls<br />

an auxiliary relay can, at the moment of switching, form a<br />

source of interference (emission) for a measurement signal<br />

from, for example, a pressure sensor. Therefore it is advised<br />

to separate wiring and screening to reduce disturbances.<br />

Fig. 33 Electro Magnetic (EM) screening of control signal<br />

cables.<br />

4.5.3 Screening<br />

For all signal cables the best results are obtained if the<br />

screening is connected to both ends: the VSD side and the at<br />

the source (e.g. PLC, or computer). See Fig. 33.<br />

It is strongly recommended that the signal cables be allowed<br />

to cross mains and motor cables at a 90° angle. Do not let<br />

the signal cable go in parallel with the mains and motor<br />

cable.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Control Connections 25


4.5.5 Current signals ((0)4-20 mA)<br />

A current signal like (0)4-20 mA is less sensitive to disturbances<br />

than a 0-10 V signal, because it is connected to an<br />

input which has a lower impedance (250 Ω) than a voltage<br />

signal (20 kΩ). It is therefore strongly advised to use current<br />

control signals if the cables are longer than a few metres.<br />

4.5.6 Twisted cables<br />

Analogue and digital signals are less sensitive to interference<br />

if the cables carrying them are “twisted”. This is certainly to<br />

be recommended if screening cannot be used. By twisting<br />

the wires the exposed areas are minimised. This means that<br />

in the current circuit for any possible High Frequency (HF)<br />

interference fields, no voltage can be induced. For a PLC it<br />

is therefore important that the return wire remains in proximity<br />

to the signal wire. It is important that the pair of wires<br />

is fully twisted over 360°.<br />

4.6 Connecting options<br />

The option cards are connected by the optional connectors<br />

X4 or X5 on the control board see Fig. 28, page 21 and<br />

mounted above the control board. The inputs and outputs<br />

of the option cards are connected in the same way as other<br />

control signals.<br />

26 Control Connections <strong>Emotron</strong> AB 01-4428-01r2


5. Getting Started<br />

This chapter is a step by step guide that will show you the<br />

quickest way to get the motor shaft turning. We will show<br />

you two examples, remote control and local control.<br />

We assume that the VSD is mounted on a wall or in a cabinet<br />

as in the chapter 2. page 9.<br />

First there is general information of how to connect mains,<br />

motor and control cables. The next section describes how to<br />

use the function keys on the control panel. The subsequent<br />

examples covering remote control and local control describe<br />

how to program/set the motor data and run the VSD and<br />

motor.<br />

5.1 Connect the mains and<br />

motor cables<br />

Dimension the mains and motor cables according to local<br />

regulations. The cable must be able to carry the VSD load<br />

current.<br />

5.1.1 Mains cables<br />

1. Connect the mains cables as in Fig. 34. The VSD has, as<br />

standard, a built-in RFI mains filter that complies with<br />

category C3 which suits the Second Environment standard.<br />

5.1.2 Motor cables<br />

2. Connect the motor cables as in Fig. 34. To comply with<br />

the EMC Directive you have to use screened cables and<br />

the motor cable screen has to be connected on both<br />

sides: to the housing of the motor and the housing of the<br />

VSD.<br />

Table 16<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth<br />

Motor earth<br />

Motor output, 3-phase<br />

WARNING: In order to work safely the mains<br />

earth must be connected to PE and the motor<br />

earth to .<br />

5.2 Using the function keys<br />

100 200 300<br />

Fig. 35 Example of menu navigation when entering motor<br />

voltage<br />

ENTER<br />

ESC<br />

NEXT<br />

ENTER<br />

210<br />

PREV<br />

NEXT<br />

ENTER<br />

220<br />

221<br />

ENTER<br />

step to lower menu level or confirm changed setting<br />

step to higher menu level or ignore changed setting<br />

ESC<br />

RFI-Filter<br />

Mains<br />

VSD<br />

NEXT<br />

PREV<br />

step to next menu on the same level<br />

step to previous menu on the same level<br />

Metal EMC cable<br />

glands<br />

Screened cables<br />

increase value or change selection<br />

decrease value or change selection<br />

Brake<br />

resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal housing<br />

Metal connector housing<br />

Metal cable gland<br />

Motor<br />

Mains<br />

Fig. 34 Connection of mains and motor cables<br />

<strong>Emotron</strong> AB 01-4428-01r2 Getting Started 27


5.3 Remote control<br />

In this example external signals are used to control the VSD/<br />

motor.<br />

A standard 4-pole motor for 400 V, an external start button<br />

and a reference value will also be used.<br />

5.3.1 Connect control cables<br />

Here you will make up the minimum wiring for starting. In<br />

this example the motor/VSD will run with right rotation.<br />

To comply with the EMC standard, use screened control<br />

cables with plaited flexible wire up to 1.5 mm 2 or solid wire<br />

up to 2.5 mm 2 .<br />

3. Connect a reference value between terminals 7 (Common)<br />

and 2 (AnIn 1) as in Fig. 36.<br />

4. Connect an external start button between terminal 11<br />

(+24 VDC) and 9 (DigIn2, RUNR) as in Fig. 36.<br />

Reference<br />

4-20 mA<br />

Start<br />

+<br />

0V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

1. Press to display menu [200], Main Setup.<br />

NEXT<br />

2. Press and then to display menu [220], Motor<br />

ENTER<br />

NEXT<br />

Data.<br />

3. Press to display menu [221] and set motor voltage.<br />

ENTER<br />

4. Change the value using the and keys. Confirm<br />

with . ENTER<br />

5. Set motor frequency [222].<br />

6. Set motor power [223].<br />

7. Set motor current [224].<br />

8. Set motor speed [225].<br />

9. Set power factor (cos ϕ) [227].<br />

10. Select supply voltage level used [21B]<br />

11. [229] Motor ID run: Choose Short, confirm with<br />

and give start command .<br />

The VSD will now measure some motor parameters.<br />

The motor makes some beeping sounds but the shaft<br />

does not rotate. When the ID run is finished after about<br />

one minute ("Test Run OK!" is displayed), press to<br />

RESET<br />

continue.<br />

12. Use AnIn1 as input for the reference value. The default<br />

range is 4-20 mA. If you need a 0-10 V reference value,<br />

change switch (S1) on control board and set [512] Anln<br />

1 Set-up to 0-10V.<br />

13. Switch off power supply.<br />

14. Connect digital and analogue inputs/outputs as in<br />

Fig. 36.<br />

15. Ready!<br />

16. Switch on power supply.<br />

ENTER<br />

X3<br />

X2<br />

31<br />

32<br />

33<br />

51<br />

52<br />

41<br />

42<br />

43<br />

5.3.4 Run the VSD<br />

Now the installation is finished, and you can press the external<br />

start button to start the motor.<br />

When the motor is running the main connections are OK.<br />

Fig. 36 Wiring<br />

5.3.2 Switch on the mains<br />

Close the door to the VSD. Once the mains is switched on,<br />

the internal fan in the VSD will run for 5 seconds.<br />

5.3.3 Set the Motor Data<br />

Enter correct motor data for the connected motor. The<br />

motor data is used in the calculation of complete operational<br />

data in the VSD.<br />

Change settings using the keys on the control panel. For further<br />

information about the control panel and menu structure,<br />

see the chapter 9. page 51.<br />

Menu [100], Preferred View is displayed when started.<br />

28 Getting Started <strong>Emotron</strong> AB 01-4428-01r2


5.4 Local control<br />

Manual control via the control panel can be used to carry<br />

out a test run.<br />

Use a 400 V motor and the control panel.<br />

5.4.1 Switch on the mains<br />

Close the door to the VSD. Once the mains is switched on,<br />

the VSD is started and the internal fan will run for 5 seconds.<br />

5.4.2 Select manual control<br />

Menu [100], Preferred View is displayed when started.<br />

1. Press to display menu [200], Main Setup.<br />

NEXT<br />

2. Press to display menu [210], Operation.<br />

ENTER<br />

3. Press to display menu [211], Language.<br />

ENTER<br />

4. Press to display menu [214], Reference Control.<br />

NEXT<br />

5. Select Keyboard using the key and press to confirm.<br />

ENTER<br />

6. Press to get to menu [215], Run/Stop Control.<br />

NEXT<br />

7. Select Keyboard using the key and press to confirm.<br />

ENTER<br />

8. Press to get to previous menu level and then to<br />

ESC<br />

NEXT<br />

display menu [220], Motor Data.<br />

5.4.3 Set the Motor Data<br />

Enter correct motor data for the connected motor.<br />

9. Press to display menu [221].<br />

ENTER<br />

10. Change the value using the and keys. Confirm<br />

with . ENTER<br />

11. Press to display menu [222].<br />

NEXT<br />

12. Repeat step 9 and 10 until all motor data is entered.<br />

13. Press twice and then to display menu [100], Preferred<br />

ESC<br />

PREV<br />

View.<br />

5.4.4 Enter a Reference Value<br />

Enter a reference value.<br />

14. Press until menu [300], Process is displayed.<br />

NEXT<br />

15. Press to display menu [310], Set/View reference<br />

ENTER<br />

value.<br />

16. Use the and keys to enter, for example, 300<br />

rpm. We select a low value to check the rotation direction<br />

without damaging the application.<br />

5.4.5 Run the VSD<br />

Press the key on the control panel to run the motor forward.<br />

If the motor is running the main connections are OK.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Getting Started 29


30 Getting Started <strong>Emotron</strong> AB 01-4428-01r2


6. Applications<br />

This chapter contains tables giving an overview of many different<br />

applications/duties in which it is suitable to use variable<br />

speed drives from <strong>Emotron</strong>. Further on you will find<br />

application examples of the most common applications and<br />

solutions.<br />

6.1 Application overview<br />

6.1.1Pumps<br />

Challenge <strong>Emotron</strong> <strong>FDU</strong> solution Menu<br />

Dry-running, cavitation and overheating damage<br />

the pump and cause downtime.<br />

Sludge sticks to impeller when pump has been running<br />

at low speed or been stationary for a while.<br />

Reduces the pump’s efficiency.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked pipe, a<br />

valve not fully opened or a worn impeller.<br />

Water hammer damages the pump when stopped.<br />

Mechanical stress on pipes, valves, gaskets, seals.<br />

Pump Curve Protection detects deviation. Sends<br />

warning or activates safety stop.<br />

Automatic pump rinsing function: pump is set to<br />

run at full speed at certain intervals, then return<br />

to normal speed.<br />

PID continuously adapts pressure/flow to the<br />

level required. Sleep function activated when<br />

none is needed.<br />

Pump Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

Smooth linear stops protect the equipment. Eliminates<br />

need for costly motorized valves.<br />

411–419, 41C1– 41C9<br />

362–368, 560, 640<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

331–336<br />

6.1.2Fans<br />

Challenge <strong>Emotron</strong> <strong>FDU</strong> solution Menu<br />

Starting a fan rotating in the wrong direction can be<br />

critical, e.g. a tunnel fan in event of a fire.<br />

Draft causes turned off fan to rotate the wrong way.<br />

Starting causes high current peaks and mechanical<br />

stress.<br />

Regulating pressure/flow with dampers causes<br />

high energy consumption and equipment wear.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked filter, a<br />

damper not fully opened or a worn belt.<br />

Fan is started at low speed to ensure correct<br />

direction and proper function.<br />

Motor is gradually slowed to complete stop before<br />

starting. Avoids blown fuses and breakdown.<br />

Automatic regulation of pressure/flow with motor<br />

speed gives more exact control.<br />

PID continuously adapts to the level required.<br />

Sleep function is activated when none is needed.<br />

Load Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

219, 341<br />

219, 33A, 335<br />

321, 354<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

<strong>Emotron</strong> AB 01-4428-01r2 Applications 31


6.1.3Compressors<br />

Challenge <strong>Emotron</strong> <strong>FDU</strong> solution Menu<br />

Compressor is damaged when cooling media<br />

enters the compressor screw.<br />

Pressure is higher than needed, causing leaks,<br />

stress on the equipment and excessive air use.<br />

Motor runs at same speed when no air is compressed.<br />

Energy is lost and equipment stressed.<br />

Process inefficiency and energy wasted due to e.g.<br />

the compressor idling.<br />

Overload situation is quickly detected and safety<br />

stop can be activated to avoid breakdown.<br />

Load Curve Protection function detects deviation.<br />

Warning is sent or safety stop activated.<br />

PID continuously adapts to the level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

411–41A<br />

411–419, 41C1–41C9<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

6.1.4Blowers<br />

Challenge <strong>Emotron</strong> <strong>FDU</strong> solution Menu<br />

Difficult to compensate for pressure fluctuations.<br />

Wasted energy and risk of production stop.<br />

Motor runs at same speed despite varying<br />

demands. Energy is lost and equipment stressed.<br />

Process inefficiency due to e.g. a broken damper, a<br />

valve not fully opened or a worn belt.<br />

PID function continuously adapts pressure to the<br />

level required.<br />

PID continuously adapts air flow to level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

320, 380<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

32 Applications <strong>Emotron</strong> AB 01-4428-01r2


7. Main Features<br />

This chapter contains descriptions of the main features of<br />

the VSD.<br />

7.1 Parameter sets<br />

Parameter sets are used if an application requires different<br />

settings for different modes. For example, a machine can be<br />

used for producing different products and thus requires two<br />

or more maximum speeds and acceleration/deceleration<br />

times. With the four parameter sets different control options<br />

can be configured with respect to quickly changing the<br />

behaviour of the VSD. It is possible to adapt the VSD<br />

online to altered machine behaviour. This is based on the<br />

fact that at any desired moment any one of the four parameter<br />

sets can be activated during Run or Stop, via the digital<br />

inputs or the control panel and menu [241].<br />

Each parameter set can be selected externally via a digital<br />

input. Parameter sets can be changed during operation and<br />

stored in the control panel.<br />

NOTE: The only data not included in the parameter set is<br />

Motor data 1-4, (entered separately), language,<br />

communication settings, selected set, local remote, and<br />

keyboard locked.<br />

Define parameter sets<br />

When using parameter sets you first decide how to select different<br />

parameter sets. The parameter sets can be selected via<br />

the control panel, via digital inputs or via serial communication.<br />

All digital inputs and virtual inputs can be configured<br />

to select parameter set. The function of the digital inputs is<br />

defined in the menu [520].<br />

Fig. 37 shows the way the parameter sets are activated via<br />

any digital input configured to Set Ctrl 1 or Set Ctrl 2.<br />

11 +24 V<br />

10 Set Ctrl1<br />

16 Set Ctrl2<br />

Fig. 37 Selecting the parameter sets<br />

{<br />

Parameter Set A<br />

Run/Stop<br />

-<br />

-<br />

Torques<br />

-<br />

-<br />

Controllers<br />

-<br />

-<br />

Limits/Prot.<br />

-<br />

-Max Alarm<br />

Set B<br />

Set C<br />

Set D<br />

(NG06-F03_1)<br />

Select and copy parameter set<br />

The parameter set selection is done in menu [241], Select<br />

Set. First select the main set in menu [241], normally A.<br />

Adjust all settings for the application. Usually most parameters<br />

are common and therefore it saves a lot of work by copying<br />

set A>B in menu [242]. When parameter set A is<br />

copied to set B you only change the parameters in the set<br />

that need to be changed. Repeat for C and D if used.<br />

With menu [242], Copy Set, it is easy to copy the complete<br />

contents of a single parameter set to another parameter set.<br />

If, for example, the parameter sets are selected via digital<br />

inputs, DigIn 3 is set to Set Ctrl 1 in menu [523] and DigIn<br />

4 is set to Set Ctrl 2 in menu [524], they are activated as in<br />

Table 17.<br />

Activate the parameter changes via digital input by setting<br />

menu [241], Select Set to DigIn.<br />

Table 17<br />

Parameter set<br />

Parameter set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: The selection via the digital inputs is immediately<br />

activated. The new parameter settings will be activated<br />

on-line, also during Run.<br />

NOTE: The default parameter set is parameter set A.<br />

Examples<br />

Different parameter sets can be used to easily change the<br />

setup of a VSD to adapt quickly to different application<br />

requirements. For example when<br />

• a process needs optimized settings in different stages of<br />

the process, to<br />

- increase the process quality<br />

- increase control accuracy<br />

- lower maintenance costs<br />

- increase operator safety<br />

With these settings a large number of options are available.<br />

Some ideas are given here:<br />

Multi frequency selection<br />

Within a single parameter set the 7 preset references can be<br />

selected via the digital inputs. In combination with the<br />

parameter sets, 28 preset references can be selected using all<br />

4 digital inputs: DigIn1, 2 and 3 for selecting preset reference<br />

within one parameter set and DigIn 4 and DigIn 5 for<br />

selecting the parameter sets.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 33


Bottling machine with 3 different products<br />

Use 3 parameter sets for 3 different Jog reference speeds<br />

when the machine needs to be set up. The 4th parameter set<br />

can be used for “normal” remote control when the machine<br />

is running at full production.<br />

Manual - automatic control<br />

If in an application something is filled up manually and then<br />

the level is automatically controlled using PID regulation,<br />

this is solved using one parameter set for the manual control<br />

and one for the automatic control.<br />

7.1.1 One motor and one parameter<br />

set<br />

This is the most common application for pumps and fans.<br />

Once default motor M1 and parameter set A have been<br />

selected:<br />

1. Enter the settings for motor data.<br />

2. Enter the settings for other parameters e.g. inputs and<br />

outputs<br />

7.1.2 One motor and two parameter<br />

sets<br />

This application is useful if you for example have a machine<br />

running at two different speeds for different products.<br />

Once default motor M1 is selected:<br />

1. Select parameter set A in menu [241].<br />

2. Enter motor data in menu [220].<br />

3. Enter the settings for other parameters e.g. inputs and<br />

outputs.<br />

4. If there are only minor differences between the settings<br />

in the parameter sets, you can copy parameter set A to<br />

parameter set B, menu [242].<br />

5. Enter the settings for parameters e.g. inputs and outputs.<br />

Note: Do not change motor data in parameter set B.<br />

7.1.3 Two motors and two parameter<br />

sets<br />

This is useful if you have a machine with two motors that<br />

can not run at the same time, such as a cable winding<br />

machine that lifts up the reel with one motor and then turns<br />

the wheel with the other motor.<br />

One motor must stop before changing to an other motor.<br />

1. Select parameter set A in menu [241].<br />

2. Select motor M1 in menu [212].<br />

3. Enter motor data and settings for other parameters e.g.<br />

inputs and outputs.<br />

4. Select parameter set B in menu [241].<br />

5. Select M2 in menu [212].<br />

6. Enter motor data and settings for other parameters e.g.<br />

inputs and outputs.<br />

7.1.4 Autoreset at trip<br />

For several non-critical application-related failure conditions,<br />

it is possible to automatically generate a reset command<br />

to overcome the fault condition. The selection can be<br />

made in menu [250]. In this menu the maximum number of<br />

automatically generated restarts allowed can be set, see menu<br />

[251], after this the VSD will stay in fault condition because<br />

external assistance is required.<br />

Example<br />

The motor is protected by an internal protection for thermal<br />

overload. When this protection is activated, the VSD should<br />

wait until the motor is cooled down enough before resuming<br />

normal operation. When this problem occurs three times in<br />

a short period of time, external assistance is required.<br />

The following settings should be applied:<br />

• Insert maximum number of restarts; set menu [251] to<br />

3.<br />

• Activate Motor I 2 t to be automatically reset; set menu<br />

[25A] to 300 s.<br />

• Set relay 1, menu [551] to AutoRst Trip; a signal will be<br />

available when the maximum number of restarts is<br />

reached and the VSD stays in fault condition.<br />

• The reset input must be constantly activated.<br />

7.1.5 Reference priority<br />

The active speed reference signal can be programmed from<br />

several sources and functions. The table below shows the<br />

priority of the different functions with regards to the speed<br />

reference.<br />

Table 18<br />

Jog<br />

Mode<br />

Reference priority<br />

Preset<br />

Reference<br />

Motor Pot<br />

Ref. Signal<br />

On/Off On/Off On/Off Option cards<br />

On On/Off On/Off Jog Ref<br />

Off On On/Off Preset Ref<br />

Off Off On Motor pot commands<br />

34 Main Features <strong>Emotron</strong> AB 01-4428-01r2


7.1.6 Preset references<br />

The VSD is able to select fixed speeds via the control of digital<br />

inputs. This can be used for situations where the<br />

required motor speed needs to be adapted to fixed values,<br />

according to certain process conditions. Up to 7 preset references<br />

can be set for each parameter set, which can be<br />

selected via all digital inputs that are set to Preset Ctrl1, Preset<br />

Ctrl2 or Preset Ctrl3. The amount digital inputs used<br />

that are set to Preset Ctrl determines the number of Preset<br />

References available; using 1 input gives 2 speeds, using 2<br />

inputs gives 4 speeds and using 3 inputs gives 8 speeds.<br />

Example<br />

The use of four fixed speeds, at 50 / 100 / 300 / 800 rpm,<br />

requires the following settings:<br />

• Set DigIn 5 as first selection input; set [525] to Preset<br />

Ctrl1.<br />

• Set DigIn 6 as second selection input; set [526] to Preset<br />

Ctrl2.<br />

• Set menu [341], Min <strong>Speed</strong> to 50 rpm.<br />

• Set menu [362], Preset Ref 1 to 100 rpm.<br />

• Set menu [363], Preset Ref 2 to 300 rpm.<br />

• Set menu [364], Preset Ref 3 to 800 rpm.<br />

With these settings, the VSD switched on and a RUN command<br />

given, the speed will be:<br />

• 50 rpm, when both DigIn 5 and DigIn 6 are low.<br />

• 100 rpm, when DigIn 5 is high and DigIn 6 is low.<br />

• 300 rpm, when DigIn 5 is low and DigIn 6 is high.<br />

• 800 rpm, when both DigIn 5 and DigIn 6 are high.<br />

7.2 Remote control functions<br />

Operation of the Run/Stop/Enable/Reset functions<br />

As default, all the run/stop/reset related commands are programmed<br />

for remote operation via the inputs on the terminal<br />

strip (terminals 1-22) on the control board. With the<br />

function Run/Stp Ctrl [215] and Reset Control [216], this<br />

can be selected for keyboard or serial communication control.<br />

NOTE: The examples in this paragraph do not cover all<br />

possibilities. Only the most relevant combinations are<br />

given. The starting point is always the default setting<br />

(factory) of the VSD.<br />

Default settings of the Run/Stop/<br />

Enable/Reset functions<br />

The default settings are shown in Fig. 38. In this example<br />

the VSD is started and stopped with DigIn 2 and a reset<br />

after trip can be given with DigIn 8.<br />

Fig. 38 Default setting Run/Reset commands<br />

The inputs are default set for level-control. The rotation is<br />

determined by the setting of the digital inputs.<br />

Enable and Stop functions<br />

Both functions can be used separately or simultaneously.<br />

The choice of which function is to be used depends on the<br />

application and the control mode of the inputs (Level/Edge<br />

[21A]).<br />

NOTE: In Edge mode, at least one digital input must be<br />

programmed to “stop”, because the Run commands are<br />

otherwise only able to start the VSD.<br />

Enable<br />

Input must be active (HI) to allow any Run signal. If the<br />

input is made LOW, the output of the VSD is immediately<br />

disabled and the motor will coast.<br />

!<br />

RunR<br />

Reset<br />

+24 V<br />

CAUTION: If the Enable function is not<br />

programmed to a digital input, it is considered<br />

to be active internally.<br />

Stop<br />

If the input is low then the VSD will stop according to the<br />

selected stop mode set in menu [33B] Stop Mode. Fig. 39<br />

shows the function of the Enable and the Stop input and the<br />

Stop Mode=Decel [33B].<br />

To run the input must be high.<br />

NOTE: Stop Mode=Coast [33B] will give the same<br />

behaviour as the Enable input.<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

X<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 35


STOP<br />

(STOP=DECEL)<br />

OUTPUT<br />

SPEED<br />

ENABLE<br />

OUTPUT<br />

SPEED<br />

(06-F104_NG)<br />

(or if Spinstart is selected)<br />

Fig. 39 Functionality of the Stop and Enable input<br />

t<br />

t<br />

Stop<br />

RunL<br />

RunR<br />

Enable<br />

Reset<br />

+24 V<br />

Fig. 40 Example of wiring for Run/Stop/Enable/Reset inputs<br />

The Enable input must be continuously active in order to<br />

accept any run-right or run-left command. If both RunR<br />

and RunL inputs are active, then the VSD stops according<br />

to the selected Stop Mode. Fig. 41 gives an example of a possible<br />

sequence.<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

Reset and Autoreset operation<br />

If the VSD is in Stop Mode due to a trip condition, the<br />

VSD can be remotely reset by a pulse (“low” to “high” transition)<br />

on the Reset input, default on DigIn 8. Depending<br />

on the selected control method, a restart takes place as follows:<br />

Level-control<br />

If the Run inputs remain in their position the VSD will start<br />

immediately after the Reset command is given.<br />

Edge-control<br />

After the Reset command is given a new Run command<br />

must be applied to start the VSD again.<br />

Autoreset is enabled if the Reset input is continuously active.<br />

The Autoreset functions are programmed in menu Autoreset<br />

[250].<br />

NOTE: If the control commands are programmed for<br />

Keyboard control or Com, Autoreset is not possible.<br />

Run Inputs Level-controlled.<br />

The inputs are set as default for level-control. This means<br />

that an input is activated by making the input continuously<br />

“High”. This method is commonly used if, for example,<br />

PLCs are used to operate the VSD.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 41 Input and output status for level-control<br />

(06-F103new_1)<br />

Run Inputs Edge-controlled<br />

Menu [21A] Start signal Level/Edge must be set to Edge to<br />

activate edge control. This means that an input is activated<br />

by a “low” to “high” transition or vice versa.<br />

!<br />

CAUTION: Level-controlled inputs DO NOT<br />

comply with the Machine Directive, if the inputs<br />

are directly used to start and stop the machine.<br />

NOTE: Edge-controlled inputs comply with the Machine<br />

Directive (see chapter EMC and Machine Directive), if<br />

the inputs are directly used for starting and stopping the<br />

machine.<br />

The examples given in this and the following paragraphs follow<br />

the input selection shown in Fig. 40.<br />

36 Main Features <strong>Emotron</strong> AB 01-4428-01r2


See Fig. 40. The Enable and Stop input must be active continuously<br />

in order to accept any run-right or run-left command.<br />

The last edge (RunR or RunL) is valid. Fig. 42 gives<br />

an example of a possible sequence.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

7.4 Using the Control Panel<br />

Memory<br />

Data can be copied from the VSD to the memory in the<br />

control panel and vice versa. To copy all data (including<br />

parameter set A-D and motor data) from the VSD to the<br />

control panel, select Copy to CP[244], Copy to CP.<br />

To copy data from the control panel to the VSD, enter the<br />

menu [245], Load from CP and select what you want to<br />

copy.<br />

The memory in the control panel is useful in applications<br />

with VSDs without a control panel and in applications<br />

where several variable speed drives have the same setup. It<br />

can also be used for temporary storage of settings. Use a control<br />

panel to upload the settings from one VSD and then<br />

move the control panel to another VSD and download the<br />

settings.<br />

NOTE: Load from and copy to the VSD is only possible<br />

when the VSD is in stop mode.<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

(06-F94new_1)<br />

VSD<br />

Fig. 42 Input and output status for edge-control<br />

7.3 Performing an<br />

Identification Run<br />

To get the optimum performance out of your VSD/motor<br />

combination, the VSD must measure the electrical parameters<br />

(resistance of stator winding, etc.) of the connected<br />

motor. See menu [229], Motor ID-Run.<br />

Fig. 43 Copy and load parameters between VSD and control<br />

panel<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 37


7.5 Load Monitor and Process<br />

Protection [400]<br />

7.5.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a load<br />

monitor. Load monitors are used to protect machines and<br />

processes against mechanical overload and underload, such<br />

as a conveyer belt or screw conveyer jamming, belt failure on<br />

a fan or a pump dry running. The load is measured in the<br />

VSD by the calculated motor shaft torque. There is an overload<br />

alarm (Max Alarm and Max Pre-Alarm) and an underload<br />

alarm (Min Alarm and Min Pre-Alarm).<br />

The Basic Monitor type uses fixed levels for overload and<br />

underload (pre-)alarms over the whole speed range. This<br />

function can be used in constant load applications where the<br />

torque is not dependent on the speed, e.g. conveyor belt,<br />

displacement pump, screw pump, etc.<br />

For applications with a torque that is dependent on the<br />

speed, the Load Curve monitor type is preferred. By measuring<br />

the actual load curve of the process, characteristically<br />

over the range of minimum speed to maximum speed, an<br />

accurate protection at any speed can be established.<br />

The max and min alarm can be set for a trip condition. The<br />

pre-alarms act as a warning condition. All the alarms can be<br />

monitored on the digital or relay outputs.<br />

The autoset function automatically sets the 4 alarm levels<br />

whilst running: maximum alarm, maximum pre-alarm, minimum<br />

alarm and minimum pre-alarm.<br />

Fig. 44 gives an example of the monitor functions for constant<br />

torque applications<br />

38 Main Features <strong>Emotron</strong> AB 01-4428-01r2


.<br />

Torque [%]<br />

[4161] MaxAlarmMar (15%)<br />

[4171] MaxPreAlMar (10%)<br />

[41B]<br />

100%<br />

Default: T NOM or<br />

Autoset: T MOMENTARY<br />

[4181] MinPreAlMar (10%)<br />

[4191] MinAlarmMar (15%)<br />

Max Alarm<br />

Max PreAlarm<br />

Min Alarm<br />

Min PreAlarm<br />

Ramp-up phase<br />

[413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

[4172] MaxPreAlDel (0.1s)<br />

[414] Start Delay (0.2s)<br />

Stationary phase<br />

Stationary phase<br />

Ramp-down phase<br />

[413] Ramp Alarm=On or Off<br />

[413] Ramp Alarm=On or Off [413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

t [s]<br />

[4172] MaxPreAlDel (0.1s)<br />

Must be


7.6 Pump function<br />

7.6.1 Introduction<br />

A maximum of 4 pumps can be controlled with the standard<br />

<strong>FDU</strong> variable speed drive.<br />

If I/O Board options are installed, a maximum of 7 pumps<br />

can be controlled. The I/O Board can also be used as a general<br />

extended I/O.<br />

The Pump Control function is used to control a number of<br />

drives (pumps, fans, etc., with a maximum of 3 additional<br />

drives per I/O-board connected) of which one is always<br />

driven by the <strong>FDU</strong>. Other names for this kind of controllers<br />

are 'Cascade controller' or 'Hydrophore controller'.<br />

Depending on the flow, pressure or temperature, additional<br />

pumps can be activated via the appropriate signals by the<br />

output relays of the <strong>FDU</strong> and/or the I/O Board. The system<br />

is developed in such a way that one <strong>FDU</strong> will be the master<br />

of the system.<br />

Select relay on the control board or on an option board. The<br />

relays are set to functions for controlling pumps. In the pictures<br />

in this section, the relays are named R:Function, e.g.<br />

R:SlavePump1, which means a relay on the control board or<br />

on a option board set to function SlavePump1.<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

All additional pumps can be activated via an VSD, soft<br />

starter, Y/ Δ or D.O.L. switches.<br />

Set<br />

PRESSURE<br />

Feedback<br />

PRESSURE<br />

<strong>FDU</strong><br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PID<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

R:SlavePump5<br />

R:SlavePump6<br />

Pressure<br />

Fig. 46 Pressure control with pump control<br />

4<br />

3<br />

2<br />

1<br />

P1 P2 P3 P4 P5 P6<br />

Power<br />

Flow<br />

(50-PC-2_1)<br />

Pumps in parallel will operate as a flow controller, See Fig.<br />

45.<br />

Pumps in series will operate as a pressure controller see Fig.<br />

46. The basic control principle is shown in Fig. 47.<br />

Set FLOW<br />

Feedback<br />

FLOW<br />

<strong>FDU</strong><br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PID<br />

AnIn<br />

R:SlavePump3<br />

R:SlavePump4<br />

R:SlavePump5<br />

R:SlavePump6<br />

NOTE: Read this instruction manual carefully before<br />

commencing installation, connecting or working with<br />

the variable speed drive.<br />

FREQUENCY (master pump P)<br />

Add pump<br />

Pressure<br />

Stop pump<br />

Power<br />

1 2 3 4<br />

Flow<br />

(50-PC-1_1)<br />

P=on<br />

P1=on P2=on P3=on P4=on P5=on P6=on<br />

FLOW /<br />

PRESSURE<br />

Fig. 45 Flow control with pump control<br />

FLOW /<br />

PRESSURE<br />

TIM E<br />

(50-PC-3_1)<br />

Fig. 47 Basic Control principle<br />

40 Main Features <strong>Emotron</strong> AB 01-4428-01r2


7.6.2 Fixed MASTER<br />

This is the default setting of the Pump Control. The <strong>FDU</strong><br />

controls the Master pump which is always running. The<br />

relay outputs start and stop the other pumps P1 to P6,<br />

depending on flow/pressure. In this configuration a maximum<br />

of 7 pumps can be controlled, see Fig. 48. To equalize<br />

the lifetime of the additional pumps it is possible to select<br />

the pumps depending on the run time history of each pump.<br />

R: SlavePump6<br />

R: SlavePump5<br />

<strong>FDU</strong><br />

R: SlavePump4<br />

R: SlavePump3<br />

MASTER<br />

R: SlavePump2<br />

R: SlavePump1<br />

R: MasterPump6<br />

R: MasterPump5<br />

R: MasterPump4<br />

R: MasterPump3<br />

R: MasterPump2<br />

R: MasterPump1<br />

(NG_50-PC-5_1)<br />

P1 P2 P3 P4 P5 P6<br />

R:SlavePump6<br />

R:SlavePump5<br />

<strong>FDU</strong> R:SlavePump4<br />

MASTER R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

See menu:<br />

[393] to [396]<br />

[553] to [55C]<br />

(NG_50-PC-4_1)<br />

PM<br />

See menu:<br />

[393] Select <strong>Drive</strong><br />

[39H] to [39N] Run Time 1 - 6, Pump<br />

[554] to [55C] Relays<br />

Fig. 48 Fixed MASTER control<br />

P1 P2 P3 P4 P5 P6<br />

NOTE: The pumps MAY have different powers, however<br />

the MASTER pump MUST always be the largest.<br />

7.6.3 Alternating MASTER<br />

With this function the Master pump is not fixed to the <strong>FDU</strong><br />

all the time. After the VSD is powered up or started again<br />

after a stop or sleep mode the Master pump is selected via<br />

the relay set to function Master Pump. section 7.6.7 on page<br />

44 shows a detailed wiring diagram with 3 pumps. The purpose<br />

of this function is that all pumps are used equally, so<br />

the lifetime of all pumps, including the Master pump, will<br />

be equalized. Maximum 6 pumps can be controlled with<br />

this function.<br />

Fig. 49 Alternating MASTER Control<br />

NOTE: The pumps MUST have all the same power.<br />

7.6.4 Feedback 'Status' input<br />

In this example the additional pumps are controlled by an<br />

other kind of drive (e.g. soft starter, frequency inverter, etc.).<br />

The digital inputs on the I/O Board can be programmed as a<br />

"Error" input for each pump. If a drive fails the digital input<br />

will monitor this and the PUMP CONTROL will not use<br />

that particular drive anymore and automatically switch to<br />

another drive. This means that the control continues without<br />

using this (faulty) drive. This function can also be used<br />

to manually stop a particular pump for maintenance purposes,<br />

without shutting down the whole pump system. Of<br />

course the maximum flow/pressure is then limited to the<br />

maximum pump power of the remaining pumps.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 41


See menu:<br />

[529] to [52H] Digital Input<br />

[554] to [55C] Relay<br />

<strong>FDU</strong><br />

MASTER<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

feedback<br />

inputs<br />

DI:Pump1Feedb<br />

DI:Pump2Feedb<br />

DI:Pump3Feedb<br />

other<br />

drive<br />

other<br />

drive<br />

other<br />

drive<br />

(NG_50-PC-6_1)<br />

Fig. 50 Feedback "Status" input<br />

PM<br />

P1 P2 P3<br />

7.6.5 Fail safe operation<br />

Some pump systems must always have a minimum flow or<br />

pressure level, even if the frequency inverter is tripped or<br />

damaged. So at least 1 or 2 (or maybe all) additional pumps<br />

must keep running after the inverter is powered down or<br />

tripped. This kind of "safe" pump operation can be<br />

obtained by using the NC contacts of the pump control<br />

relays. These can be programmed for each individual additional<br />

pump. In this example pumps P5 and P6 will run at<br />

maximum power if the inverter fails or is powered down.<br />

See menu:<br />

[554] to [55C] Relays<br />

[55D4] to [55DC] Mode<br />

<strong>FDU</strong><br />

MASTER<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

(50-PC-7_1)<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Fig. 51 Example of "Fail safe" operation<br />

42 Main Features <strong>Emotron</strong> AB 01-4428-01r2


7.6.6 PID control<br />

When using the Pump Control it is mandatory to activate<br />

the PID controller function. Analogue inputs AnIn1 to<br />

AnIn4 can be set as functions for PID set values and/or feedback<br />

values.<br />

See menu:<br />

[381] to [385]<br />

[553] to [55C]<br />

[411] to [41C]<br />

Set<br />

Value<br />

Feedback<br />

Value<br />

<strong>FDU</strong><br />

MASTER<br />

AnIn<br />

PID<br />

AnIn<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Flow/Pressure<br />

measurement<br />

(NG_50-PC-8_1)<br />

Fig. 52 PID control<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 43


7.6.7 Wiring Alternating Master<br />

Fig. 53 and Fig. 50 show the relay functions MasterPump1-<br />

6 and SlavePump1-6. The Master and Additional contactors<br />

also interlock with each other to prevent dual powering of<br />

the pump and damage to the inverter. (K1M/K1S, K2M/<br />

K2S, K3M/K3S). Before running, the <strong>FDU</strong> will select a<br />

pump to be Master, depending on the pump run times.<br />

CAUTION: The wiring for the Alternating<br />

Master control needs special attention and<br />

! should be wired exactly as described here,<br />

to avoid destructive short circuit at the output of the<br />

inverter.<br />

PE<br />

L1<br />

L2<br />

L3<br />

PE L1 L2 L3<br />

<strong>FDU</strong><br />

U V W<br />

K1S<br />

K2S<br />

K3S<br />

K1M<br />

K2M<br />

K3M<br />

(NG_50-PC-10_1)<br />

P1<br />

3~<br />

P2<br />

3~<br />

P3<br />

3~<br />

Fig. 53 Power connections for Alternating MASTER circuit<br />

with 3 pumps<br />

~<br />

B1:R1<br />

Master<br />

Pump1<br />

B2:R1<br />

Slave<br />

Pump1<br />

B1:R2<br />

Master<br />

Pump2<br />

B2:R2<br />

Slave<br />

Pump2<br />

B1:R3<br />

Master<br />

Pump3<br />

B2:R3<br />

Slave<br />

Pump3<br />

K1S K1M K2S<br />

K2M<br />

K3S<br />

K3M<br />

K1M<br />

K1S<br />

K2M<br />

K2S<br />

K3M<br />

K3S<br />

N<br />

(NG_50-PC-11_3)<br />

Fig. 54 Control connections for Alternating MASTER circuit<br />

with 3 pumps<br />

44 Main Features <strong>Emotron</strong> AB 01-4428-01r2


7.6.8 Checklist And Tips<br />

1. Main Functions<br />

Start by choosing which of the two main functions to use:<br />

- "Alternating MASTER" function<br />

In this case the “Master” pump can be alternated, although this function needs slightly more complicated wiring than the<br />

“Fixed MASTER” function described below. The I/O Board option is necessary.<br />

- "Fixed MASTER" function:<br />

One pump is always the master, only the additional pumps alternate.<br />

Notice that there is a big difference in the wiring of the system between these main functions, so it not possible to switch<br />

between these 2 functions later on. For further information see section 7.6.2, page 41.<br />

2. Number of pumps/drives<br />

3. Pump size<br />

If the system consists of 2 or 3 pumps the I/O Board option is not needed. However, this does mean that the following<br />

functions are not then possible:<br />

- "Alternating MASTER" function<br />

- With isolated inputs<br />

With the I/O Board option installed, the maximum number of pumps is:<br />

- 6 pumps if "Alternating MASTER" function is selected. (see section 7.6.3 on page 41)<br />

- 7 pumps if "Fixed MASTER" function is selected. (see section 7.6.2, page 41)<br />

- "Alternating MASTER" function:<br />

The sizes of the pumps must be equal.<br />

- "Fixed MASTER" function:<br />

The pumps may have different power sizes, but the master pump (<strong>FDU</strong>) must always have the greatest power.<br />

4. Programming the Digital inputs<br />

If the digital inputs are used, the digital input function must be set to <strong>Drive</strong> feedback.<br />

5. Programming the Relay outputs<br />

After the Pump controller is switched on in menu [391] the number of drives (pumps, fans, etc.) must be set in menu [392]<br />

(Number of <strong>Drive</strong>s). The relays themselves must be set to the function SlavePump1-6 and if Alternate master is used,<br />

MasterPump1-6 as well.<br />

6. Equal Pumps<br />

If all pumps are equal in power size it is likely that the Upper band is much smaller than the Lower band, because the maximum<br />

pump discharge of the master pump is the same if the pump is connected to the mains (50Hz). This can give a very<br />

narrow hysteresis causing an unstable control area in the flow/pressure. By setting the maximum frequency of the inverter<br />

only slightly above 50Hz it means that the master pump has a slightly bigger pump discharge than the pump on the mains.<br />

Of course caution is essential in order to prevent the master pump running at a higher frequency for a longer period of<br />

time, which in turn prevents the master pump from overloading.<br />

7. Minimum <strong>Speed</strong><br />

With pumps and fans it is normal to use a minimum speed, because at lower speed the discharge of the pump or fan will<br />

be low until 30-50% of the nominal speed (depending on size, power, pump properties, etc.). When using a minimum<br />

speed, a much smoother and better control range of the whole system will be achieved.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 45


7.6.9 Functional Examples of Start/<br />

Stop Transitions<br />

course other start/stop equipment like a soft starter could be<br />

controlled by the relay output.<br />

Starting an additional pump<br />

This figure shows a possible sequence with all levels and<br />

functions involved when a additional pump is started by<br />

means of the pump control relays. The starting of the second<br />

pump is controlled by one of the relay outputs. The<br />

relay in this example starts the pump directly on line. Of<br />

Flow Set view ref. [310]<br />

Feedback Flow<br />

time<br />

<strong>Speed</strong><br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition <strong>Speed</strong> Start<br />

[39E]<br />

Min speed<br />

[341]<br />

Lower band<br />

Start delay [399]<br />

Settle time start [39D]<br />

time<br />

2nd pump<br />

<strong>Speed</strong><br />

Start ramp depends<br />

on start method<br />

Start command<br />

time<br />

Fig. 55 Time sequence starting an additional pump<br />

46 Main Features <strong>Emotron</strong> AB 01-4428-01r2


Stopping an additional pump<br />

This figure shows a possible sequence with all levels and<br />

functions involved when an additional pump is stopped by<br />

means of the pump control relays. The stopping of the second<br />

pump is controlled by one of the relay outputs. The<br />

relay in this example stops the pump directly on line. Of<br />

course other start/stop equipment like a soft starter could be<br />

controlled by the relay output.<br />

Set view ref. [310]<br />

Feedback Flow<br />

time<br />

<strong>Speed</strong><br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition <strong>Speed</strong> Stop<br />

[39G]<br />

Min speed<br />

[341]<br />

Lower band<br />

Stop delay [39A]<br />

Settle time stop [39F]<br />

time<br />

2nd pump<br />

<strong>Speed</strong><br />

Stop ramp depends<br />

on start method<br />

Stop command<br />

time<br />

(NG_50-PC-20_1)<br />

Fig. 56 Time sequence stopping an additional pump<br />

<strong>Emotron</strong> AB 01-4428-01r2 Main Features 47


48 Main Features <strong>Emotron</strong> AB 01-4428-01r2


8. EMC and Machine Directive<br />

8.1 EMC standards<br />

The variable speed drive complies with the following standards:<br />

EN(IEC)61800-3:2004 Adjustable speed electronic power<br />

drive systems, part 3, EMC product standards:<br />

Standard: category C3, for systems of rated supply voltage<<br />

1000 VAC, intended for use in the second environment.<br />

Optional: Category C2, for systems of rated supply voltage<br />


50 EMC and Machine Directive <strong>Emotron</strong> AB 01-4428-01r2


9. Operation via the Control Panel<br />

This chapter describes how to use the control panel. The<br />

VSD can be delivered with a control panel or a blank panel.<br />

9.1 General<br />

The control panel displays the status of the VSD and is used<br />

to set all the parameters. It is also possible to control the<br />

motor directly from the control panel. The control panel<br />

can be built-in or located externally via serial communication.<br />

The VSD can be ordered without the control panel.<br />

Instead of the control panel there will be a blank panel.<br />

NOTE: The VSD can run without the control panel being<br />

connected. However the settings must be such that all<br />

control signals are set for external use.<br />

9.2 The control panel<br />

PREV NEXT ESC<br />

Fig. 57 Control panel<br />

9.2.1 The display<br />

The display is back lit and consists of 2 rows, each with<br />

space for 16 characters. The display is divided into six areas.<br />

The different areas in the display are described below:<br />

A<br />

LOC/<br />

REM<br />

B<br />

RESET<br />

ENTER<br />

C<br />

221T<br />

Motor Volt<br />

StpA<br />

M1: 400V<br />

LC Display<br />

LEDs<br />

Control Keys<br />

Toggle Key<br />

Function Keys<br />

Area A: Shows the actual menu number (3 or 4<br />

digits).<br />

Area B Shows if the menu is in the toggle loop or the<br />

VSD is set for Local operation.<br />

Area C: Shows the heading of the active menu.<br />

Area D: Shows the status of the VSD (3 digits).<br />

The following status indications are possible:<br />

Acc : Acceleration<br />

Dec : Deceleration<br />

I 2 t : Active I 2 t protection<br />

Run : Motor runs<br />

Trp : Tripped<br />

Stp : Motor is stopped<br />

VL : Operating at Voltage limit<br />

SL : Operating at <strong>Speed</strong> limit<br />

CL : Operating at Current limit<br />

TL : Operating at Torque limit<br />

OT : Operating at Temperature Limit<br />

LV : Operating at Low Voltage<br />

Sby : Operating from Standby power supply<br />

SST : Operating Safe Stop, is blinking when<br />

activated<br />

LCL : Operating with low cooling liquid level<br />

Area E: Shows active parameter set and if it is a motor<br />

parameter.<br />

Area F: Shows the setting or selection in the active menu.<br />

This area is empty at the 1st level and 2nd level<br />

menu. This area also shows warnings and alarm<br />

messages.<br />

300 Process Appl<br />

StpA<br />

Fig. 59 Example 1st level menu<br />

220 Motor Data<br />

StpA<br />

Fig. 60 Example 2nd level menu<br />

221 Motor Volt<br />

Stp M1: 400V<br />

A<br />

Fig. 61 Example 3d level menu<br />

D<br />

E<br />

Fig. 58 The display<br />

F<br />

4161 Max Alarm<br />

Stp 0.1s<br />

A<br />

Fig. 62 Example 4th level menu<br />

<strong>Emotron</strong> AB 01-4428-01r2 Operation via the Control Panel 51


9.2.2 Indications on the display<br />

The display can indicate +++ or - - - if a parameter is out of<br />

range. In the VSD there are parameters which are dependent<br />

on other parameters. For example, if the speed reference is<br />

500 and the maximum speed value is set to a value below<br />

500, this will be indicated with +++ on the display. If the<br />

minimum speed value is set over 500, - - - is displayed.<br />

Table 20<br />

RESET<br />

Control keys<br />

RUN L:<br />

STOP/RESET:<br />

gives a start with<br />

left rotation<br />

stops the motor or resets<br />

the VSD after a trip<br />

9.2.3 LED indicators<br />

The symbols on the control panel have the following functions:<br />

Run<br />

Green<br />

Fig. 63 LED indications<br />

Table 19<br />

Symbol<br />

POWER<br />

(green)<br />

LED indication<br />

Function<br />

ON BLINKING OFF<br />

Power on ---------------- Power off<br />

TRIP (red) VSD tripped Warning/Limit No trip<br />

RUN<br />

(green)<br />

Motor shaft<br />

rotates<br />

Trip<br />

Red<br />

Motor speed<br />

increase/<br />

decrease<br />

Power<br />

Green<br />

Motor<br />

stopped<br />

NOTE: If the control panel is built in, the back light of the<br />

display has the same function as the Power LED in Table<br />

19 (Blank panel LEDs).<br />

9.2.4 Control keys<br />

The control keys are used to give the Run, Stop or Reset<br />

commands directly. As default these keys are disabled, set for<br />

remote control. Activate the control keys by selecting Keyboard<br />

in the menus Ref Control [214] and Reset Ctrl [216].<br />

If the Enable function is programmed on one of the digital<br />

inputs, this input must be active to allow Run/Stop commands<br />

from the control panel.<br />

RUN R:<br />

gives a start with<br />

right rotation<br />

NOTE: It is not possible to simultaneously activate the<br />

Run/Stop commands from the keyboard and remotely<br />

from the terminal strip (terminals 1-22).<br />

9.2.5 The Toggle and Loc/Rem Key<br />

This key has two functions: Toggle and<br />

switching between Loc/Rem function.<br />

LOC/ Press one second to use the toggle function<br />

REM<br />

Press and hold the toggle key for more than<br />

five seconds to switch between Local and Remote function,<br />

depending on the settings in [2171] and [2172].<br />

When editing values, the toggle key can be used to change<br />

the sign of the value, see section 9.5, page 55.<br />

Toggle function<br />

Using the toggle function makes it possible to easily step<br />

through selected menus in a loop. The toggle loop can contain<br />

a maximum of ten menus. As default the toggle loop<br />

contains the menus needed for Quick Setup. You can use the<br />

toggle loop to create a quick-menu for the parameters that<br />

are most importance to your specific application.<br />

NOTE: Do not keep the Toggle key pressed for more than<br />

five seconds without pressing either the +, - or Esc key,<br />

as this may activate the Loc/Rem function of this key<br />

instead. See menu [217].<br />

Add a menu to the toggle loop<br />

1. Go to the menu you want to add to the loop.<br />

2. Press the Toggle key and keep it pressed while pressing<br />

the + key.<br />

Delete a menu from the toggle loop<br />

1. Go to the menu you want to delete using the toggle key.<br />

2. Press the Toggle key and keep it pressed while pressing<br />

the - key.<br />

Delete all menus from the toggle loop<br />

1. Press the Toggle key and keep it pressed while pressing<br />

the Esc key.<br />

2. Confirm with Enter. The menu Preferred view [100] is<br />

displayed.<br />

52 Operation via the Control Panel <strong>Emotron</strong> AB 01-4428-01r2


Default toggle loop<br />

Fig. 64 shows the default toggle loop. This loop contains the<br />

necessary menus that need to be set before starting. Press<br />

Toggle to enter menu [211] then use the Next key to enter<br />

the sub menus [212] to [21A] and enter the parameters.<br />

When you press the Toggle key again, menu [221] is displayed.<br />

100<br />

511 Toggle loop 211<br />

341<br />

LOC/<br />

REM<br />

331<br />

213<br />

221<br />

212<br />

Sub menus<br />

NEXT<br />

222<br />

Sub menus<br />

status of the VSD will not change, e.g. Run/Stop conditions<br />

and the actual speed will remain exactly the same. When the<br />

VSD is set to Local operation, the display will show L in<br />

area B in the display.<br />

The VSD will be started and stopped using the keys on the<br />

control panel. The reference signal can be controlled using<br />

the + and - keys on the keyboard, when in the menu [310]<br />

according to the selection in Keyboard Reference menu<br />

[369].<br />

Remote mode<br />

When the VSD is switched to REMOTE operation, the<br />

VSD will be controlled according to selected control methods<br />

in the menu’s Reference Control [214], Run/Stop Control<br />

[215] and Reset Control [216]. The actual operation<br />

status of the VSD will reflect the status and settings of the<br />

programmed control selections, e.g. Start/Stop status and<br />

settings of the programmed control selections, acceleration<br />

or deceleration speed according to the selected reference<br />

value in the menu Acceleration Time [331] / Deceleration<br />

Time [332].<br />

To monitor the actual Local or Remote status of the VSD<br />

control, a “Loc/Rem” function is available on the Digital<br />

Outputs or Relays. When the VSD is set to Local, the signal<br />

on the DigOut or Relay will be active high, in Remote the<br />

signal will be inactive low. See menu Digital Outputs [540]<br />

and Relays [550].<br />

NEXT<br />

228<br />

Fig. 64 Default toggle loop<br />

Indication of menus in toggle loop<br />

Menus included in the toggle loop are indicated with a<br />

in area B in the display.<br />

Loc/Rem function<br />

The Loc/Rem function of this key is disabled as default.<br />

Enable the function in menu [2171] and/or [2172].<br />

With the function Loc/Rem you can change between local<br />

and remote control of the VSD from the control panel. The<br />

function Loc/Rem can also be changed via the DigIn, see<br />

menu Digital inputs [520]<br />

Change control mode<br />

1. Press the Loc/Rem key for five seconds, until Local? or<br />

Remote? is displayed.<br />

2. Confirm with Enter.<br />

3. Cancel with Esc.<br />

Local mode<br />

Local mode is used for temporary operation. When switched<br />

to LOCAL operation, the VSD is controlled via the defined<br />

Local operation mode, i.e. [2171] and [2172]. The actual<br />

T<br />

<strong>Emotron</strong> AB 01-4428-01r2 Operation via the Control Panel 53


9.2.6 Function keys<br />

The function keys operate the menus and are also used for<br />

programming and read-outs of all the menu settings.<br />

Table 21<br />

ENTER<br />

ESC<br />

Function keys<br />

ENTER key:<br />

ESCAPE key:<br />

- step to a lower menu<br />

level<br />

- confirm a changed<br />

setting<br />

- step to a higher<br />

menu level<br />

- ignore a changed<br />

setting, without<br />

confirming<br />

PREV<br />

NEXT<br />

Fig. 65 Menu structure<br />

9.3 The menu structure<br />

The menu structure consists of 4 levels:<br />

Main Menu<br />

1st level<br />

2nd level<br />

3rd level<br />

4th level<br />

PREVIOUS key:<br />

NEXT key:<br />

- key:<br />

+ key:<br />

- step to a previous<br />

menu within the same<br />

level<br />

- go to more significant<br />

digit in edit mode<br />

- step to a next menu<br />

within the same level<br />

- go to less significant<br />

digit in edit mode<br />

- decrease a value<br />

- change a selection<br />

- increase a value<br />

- change a selection<br />

The first character in the menu number.<br />

The second character in the menu number.<br />

The third character in the menu number.<br />

The fourth character in the menu number.<br />

This structure is consequently independent of the number<br />

of menus per level.<br />

For instance, a menu can have one selectable menu (Set/<br />

View Reference Value [310]), or it can have 17 selectable<br />

menus (menu <strong>Speed</strong>s [340]).<br />

4161<br />

4162<br />

Fig. 66 Menu structure<br />

NG_06-F28<br />

9.3.1 The main menu<br />

This section gives you a short description of the functions in<br />

the Main Menu.<br />

100 Preferred View<br />

Displayed at power-up. It displays the actual process value as<br />

default. Programmable for many other read-outs.<br />

200 Main Setup<br />

Main settings to get the VSD operable. The motor data settings<br />

are the most important. Also option utility and settings.<br />

300 Process and Application Parameters<br />

Settings more relevant to the application such as Reference<br />

<strong>Speed</strong>, torque limitations, PID control settings, etc.<br />

400 Shaft Power Monitor and Process<br />

Protection<br />

The monitor function enables the VSD to be used as a load<br />

monitor to protect machines and processes against mechanical<br />

overload and underload.<br />

NOTE: If there are more than 10 menus within one level,<br />

the numbering continues in alphabetic order.<br />

54 Operation via the Control Panel <strong>Emotron</strong> AB 01-4428-01r2


500 Inputs/Outputs and Virtual<br />

Connections<br />

All settings for inputs and outputs are entered here.<br />

600 Logical Functions and Timers<br />

All settings for conditional signal are entered here.<br />

700 View Operation and Status<br />

Viewing all the operational data like frequency, load, power,<br />

current, etc.<br />

800 View Trip Log<br />

Viewing the last 10 trips in the trip memory.<br />

900 Service Information and VSD Data<br />

Electronic type label for viewing the software version and<br />

VSD type.<br />

9.4 Programming during<br />

operation<br />

Most of the parameters can be changed during operation<br />

without stopping the VSD. Parameters that can not be<br />

changed are marked with a lock symbol in the display.<br />

selected character blink. Move the cursor using the Prev or<br />

Next keys. When you press the + or - keys, the character at<br />

the cursor position will increase or decrease. This alternative<br />

is suitable when you want to make large changes, i.e. from 2<br />

s to 400 s.<br />

To change the sign of the value, press the toggle key. This<br />

makes it possible to enter negative values.<br />

Example: When you press Next the 4 will blink.<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Blinking<br />

Press Enter to save the setting and Esc to leave the edit<br />

mode.<br />

9.6 Copy current parameter to<br />

all sets<br />

When a parameter is displayed, press the Enter key for 5 seconds.<br />

Now the text To all sets? is displayed. Press Enter to<br />

copy the setting for current parameter to all sets.<br />

NOTE: If you try to change a function during operation<br />

that only can be changed when the motor is stopped, the<br />

message “Stop First” is displayed.<br />

9.5 Editing values in a menu<br />

Most values in the second row in a menu can be changed in<br />

two different ways. Enumerated values like the baud rate can<br />

only be changed with alternative 1.<br />

2621 Baudrate<br />

Stp 38400<br />

Alternative 1<br />

When you press the + or - keys to change a value, the cursor<br />

is blinking to the left in the display and the value is increased<br />

or decreased when you press the appropriate key. If you keep<br />

the + or - keys pressed, the value will increase or decrease<br />

continuously. When you keep the key pressed the change<br />

speed will increase. The Toggle key is used to change the<br />

sign of the entered value. The sign of the value will also<br />

change when zero is passed. Press Enter to confirm the value.<br />

331 Acc Time<br />

Stp A <strong>2.0</strong>0s<br />

Blinking<br />

Alternative 2<br />

Press the + or - key to enter edit mode. Then press the Prev<br />

or Next key to move the cursor to the right most position of<br />

the value that should be changed. The cursor will make the<br />

<strong>Emotron</strong> AB 01-4428-01r2 Operation via the Control Panel 55


9.7 Programming example<br />

This example shows how to program a change of the Acc.<br />

Time set from <strong>2.0</strong> s to 4.0 s.<br />

The blinking cursor indicates that a change has taken place<br />

but is not saved yet. If at this moment, the power fails, the<br />

change will not be saved.<br />

Use the ESC, Prev, Next or the Toggle keys to proceed and<br />

to go to other menus.<br />

100 0rpm<br />

Stp A 0.0A<br />

NEXT<br />

200 MAIN SETUP<br />

StpA<br />

Menu 100 appears<br />

after power-up.<br />

Press Next for menu<br />

[200].<br />

NEXT<br />

300 Process<br />

StpA<br />

Press Next for menu<br />

[300].<br />

ENTER<br />

310 Set/View Ref<br />

StpA<br />

Press Enter for menu<br />

[310].<br />

NEXT<br />

330 Run/Stop<br />

StpA<br />

Press Next two times<br />

for menu [330].<br />

ENTER<br />

331 Acc Time<br />

StpA<br />

<strong>2.0</strong>0s<br />

Press Enter for menu<br />

[331].<br />

331 Acc Time<br />

Stp A <strong>2.0</strong>0s<br />

Blinking<br />

Keep key pressed<br />

until desired value has<br />

been reached.<br />

ENTER<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Fig. 67 Programming example<br />

Save the changed<br />

value by pressing<br />

Enter.<br />

56 Operation via the Control Panel <strong>Emotron</strong> AB 01-4428-01r2


10. Serial communication<br />

The VSD provides possibility for different types of serial<br />

communication.<br />

• Modbus RTU via RS232/485<br />

• Fieldbuses as Profibus DP and DeviceNet<br />

• Industrial Ethernet type Modbus/TCP<br />

10.1 Modbus RTU<br />

The VSD has an asynchronous serial communication interface<br />

behind the control panel. The protocol used for data<br />

exchange is based in the Modbus RTU protocol, originally<br />

developed by Modicon. the physical connection is RS232.<br />

The VSD acts as a slave with address 1 in a master-slave configuration.<br />

The communication is half-duplex. It has a<br />

standard no return zero (NRZ) format.<br />

The baud rate is fixed to 9600.<br />

The character frame format (always 11 bits) has:<br />

• one start bit<br />

• eight data bits<br />

• two stop bits<br />

• no parity<br />

It is possible to temporarily connect a personal computer<br />

with for example the software EmoSoftCom (programming<br />

and monitoring software) to the RS232 connector on the<br />

control panel. This can be useful when copying parameters<br />

between variable speed drives etc. For permanent connection<br />

of a personal computer you have to use one of the communication<br />

option boards.<br />

NOTE: This RS232 port is not isolated.<br />

Fig. 68 Mounting frame for the control panel<br />

10.2 Parameter sets<br />

Communication information for the different parameter<br />

sets.<br />

The different parameter sets in the VSD have the following<br />

DeviceNet instance numbers and Profibus slot/index numbers:<br />

Parameter<br />

set<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

A 43001–43556 168/160 to 170/205<br />

B 44001–44529 172/140 to 174/185<br />

C 45001–45529 176/120 to 178/165<br />

D 46001–46529 180/100 to 182/145<br />

Correct and safe use of a RS232 connection<br />

depends on the ground pins of both ports<br />

being the same potential. Problems can<br />

occur when connecting two ports of e.g.<br />

machinery and computers where both ground pins are<br />

not the same potential. This may cause hazardous<br />

ground loops that can destroy the RS232 ports.<br />

The control panel RS232 connection is not galvanic<br />

isolated.<br />

Parameter set A contains parameters 43001 to 43556. The<br />

parameter sets B, C and D contains the same type of information.<br />

For example parameter 43123 in parameter set A<br />

contain the same type of information as 44123 in parameter<br />

set B.<br />

A DeviceNet instance number can easily be converted into a<br />

Profibus slot/index number according to description in section<br />

section 11.8.2, page 148.<br />

The optional RS232/485 card from <strong>Emotron</strong> is galvanic<br />

isolated.<br />

Note that the control panel RS232 connection can<br />

safely be used in combination with commercial available<br />

isolated USB to RS232 converters.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Serial communication 57


10.3 Motor data<br />

Communication information for the different motors.<br />

Motor<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

M1 43041–43048 168/200 to 168/207<br />

M2 44041–44048 172/180 to 174/187<br />

M3 45041–45048 176/160 to 176/167<br />

M4 46041–46048 180/140 to 180/147<br />

M1 contains parameters 43041 to 43048. The M2, M3, and<br />

M4 contains the same type of information. For example<br />

parameter 43043 in motor M1 contain the same type of<br />

information as 44043 in M2.<br />

A DeviceNet instance number can easily be converted into a<br />

Profibus slot/index number according to description in section<br />

section 11.8.2, page 148.<br />

10.4 Start and stop commands<br />

Set start and stop commands via serial communication.<br />

Modbus/DeviceNet<br />

Instance number<br />

Integer<br />

value<br />

42901 0 Reset<br />

42902 1<br />

42903 2 RunR<br />

42904 3 RunL<br />

Function<br />

Run, active together with<br />

either RunR or RunL to<br />

perform start.<br />

10.5 Reference signal<br />

The reference value is set in modbus number 42905. 0-4000<br />

h corresponds to 0-100% of actual reference value.<br />

10.6 Description of the EInt<br />

formats<br />

Modbus parameters can have different formats e.g. a standard<br />

unsigned/signed integer, or eint. EInt, which is described<br />

below. All parameters written to a register may be rounded<br />

to the number of significant digits used in the internal system.<br />

If a parameter is in Eint format, the 16 bit number should<br />

be interpreted like this:<br />

F EEEE MMMMMMMMMMM<br />

F<br />

Format bit:<br />

0=Unsinged integer mode,<br />

1=Eint mode<br />

EEEE<br />

2 complement signed<br />

exponent<br />

MMMMMMMMMMM 2 complement signed<br />

mantissa.<br />

If the format bit is 0, then can a positive number 0-32767 be<br />

represented by bit 0-14.<br />

If the format bit is 1, then is the number interpreted as this:<br />

Value = M * 10^E<br />

Example<br />

If you write the value 1004 to a register and this register has<br />

3 significant digits, it will be stored as 1000.<br />

In the <strong>Emotron</strong> floating point format (F=1), one 16-bit<br />

word is used to represent large (or very small numbers) with<br />

3 significant digits.<br />

If data is read or written as a fixed point (i.e. no decimals)<br />

number between 0-32767, the <strong>Emotron</strong> 15-bit fixed point<br />

format (F=0) may be used.<br />

F=Format. 1=<strong>Emotron</strong> floating point format, 0=15 bit<br />

<strong>Emotron</strong> 15-bit fixed point format.<br />

The matrix below describes the contents of the 16-bit word<br />

for the two different EInt formats:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

F=1 e3 e2 e1 e0 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0<br />

F=0 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

58 Serial communication <strong>Emotron</strong> AB 01-4428-01r2


Example of <strong>Emotron</strong> floating point format<br />

e3-e0 4-bit signed exponent.<br />

-8..+7 (binary 1000 .. 0111)<br />

m10-m0 11-bit signed mantissa.<br />

-1024..+1023 (binary<br />

10000000000..01111111111)<br />

A signed number should be represented as a two complement<br />

binary number, like below:<br />

Value Binary<br />

-8 1000<br />

-7 1001<br />

..<br />

-2 1110<br />

-1 1111<br />

0 0000<br />

1 0001<br />

2 0010<br />

..<br />

6 0110<br />

7 0111<br />

The value represented by the EInt floating point format is<br />

m·10 e .<br />

To convert a value from the EInt floating point format to a<br />

floating point value, use the formula above.<br />

To convert a floating point value to the EInt floating point<br />

format, see the code float_to_eint below.<br />

Example<br />

The number 1.23 would be represented by this in EInt<br />

F EEEE MMMMMMMMMMM<br />

1 1110 00001111011<br />

F=1 -> Eint<br />

E=-2<br />

M=123<br />

The value is then 123x10 -2 = 1.23<br />

<strong>Emotron</strong> AB 01-4428-01r2 Serial communication 59


Programming example:<br />

typedef struct<br />

{<br />

int m:11; // mantissa, -1024..1023<br />

int e: 4; // exponent -8..7<br />

unsigned int f: 1; // format, 1->special emoint format<br />

} eint16;<br />

//---------------------------------------------------------------------------<br />

unsigned short int float_to_eint16(float value)<br />

{<br />

eint16 etmp;<br />

int dec=0;<br />

while (floor(value) != value && dec=0 && value=-1000 && value=0)<br />

etmp.m=1; // Set sign<br />

else<br />

etmp.m=-1; // Set sign<br />

value=fabs(value);<br />

while (value>1000)<br />

{<br />

etmp.e++; // increase exponent<br />

value=value/10;<br />

}<br />

value+=0.5; // round<br />

etmp.m=etmp.m*value; // make signed<br />

}<br />

Rreturn (*(unsigned short int *)&etmp);<br />

}<br />

//---------------------------------------------------------------------------<br />

float eint16_to_float(unsigned short int value)<br />

{<br />

float f;<br />

eint16 evalue;<br />

evalue=*(eint16 *)&value;<br />

if (evalue.f)<br />

{<br />

if (evalue.e>=0)<br />

f=(int)evalue.m*pow10(evalue.e);<br />

else<br />

f=(int)evalue.m/pow10(abs(evalue.e));<br />

}<br />

else<br />

f=value;<br />

return f;<br />

}<br />

//---------------------------------------------------------------------------<br />

60 Serial communication <strong>Emotron</strong> AB 01-4428-01r2


Example <strong>Emotron</strong> 15-bit fixed point format<br />

The value 7<strong>2.0</strong> can be represented as the fixed point number<br />

72. It is within the range 0-32767, which means that the 15-<br />

bit fixed point format may be used.<br />

The value will then be represented as:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0<br />

Where bit 15 indicates that we are using the fixed point format<br />

(F=0).<br />

<strong>Emotron</strong> AB 01-4428-01r2 Serial communication 61


62 Serial communication <strong>Emotron</strong> AB 01-4428-01r2


11. Functional Description<br />

This chapter describes the menus and parameters in the software.<br />

You will find a short description of each function and<br />

information about default values, ranges, etc. There are also<br />

tables containing communication information. You will find<br />

the Modbus, DeviceNet and Fieldbus address for each<br />

parameter as well as the enumeration for the data.<br />

NOTE: Functions marked with the sign<br />

changed during Run Mode.<br />

Description of table layout<br />

Default:<br />

Selection or<br />

range<br />

cannot be<br />

Resolution of settings<br />

The resolution for all range settings described in this chapter<br />

is 3 significant digits. Exceptions are speed values which are<br />

presented with 4 significant digits. Table 22 shows the resolutions<br />

for 3 significant digits.<br />

Table 22<br />

Integer value of<br />

selection<br />

Description<br />

3 Digit Resolution<br />

0.01-9.99 0.01<br />

10.0-99.9 0.1<br />

100-999 1<br />

1000-9990 10<br />

10000-99900 100<br />

<br />

Menu no. Menu name<br />

Status Selected value<br />

11.1 Preferred View [100]<br />

This menu is displayed at every power-up. During operation,<br />

the menu [100] will automatically be displayed when<br />

the keyboard is not operated for 5 minutes. The automatic<br />

return function will be switched off when the Toggle and<br />

Stop key is pressed simultaneously. As default it displays the<br />

actual current.<br />

100 (1st Line)<br />

Stp A (2nd Line)<br />

Fig. 69 Display functions<br />

11.1.1 1st Line [110]<br />

Sets the content of the upper row in the menu [100] Preferred<br />

View.<br />

Default:<br />

Dependent on menu<br />

Process Val<br />

Process Val 0 Process value<br />

<strong>Speed</strong> 1 <strong>Speed</strong><br />

Torque 2 Torque<br />

Process Ref 3 Process reference<br />

Shaft Power 4 Shaft power<br />

El Power 5 Electrical power<br />

Current 6 Current<br />

Output volt 7 Output voltage<br />

Frequency 8 Frequency<br />

DC Voltage 9 DC voltage<br />

Heatsink Tmp 10 Heatsink temperature<br />

Motor Temp 11 Motor temperature<br />

VSD Status 12 VSD status<br />

Run Time 13 Run Time<br />

Energy 14 Energy<br />

Mains Time 15 Mains time<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43001<br />

Profibus slot/index 168/160<br />

Fieldbus format<br />

Modbus format<br />

110 1st Line<br />

StpA<br />

Process Val<br />

UInt<br />

UInt<br />

100 0rpm<br />

Stp A 0.0A<br />

Menu [100], Preferred View displays the settings made in<br />

menu [110], 1st line, and [120], 2nd line. See Fig. 69.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 63


11.1.2 2nd Line [120]<br />

Sets the content of the lower row in the menu [100] Preferred<br />

View. Same selection as in menu [110].<br />

Default:<br />

Current<br />

11.2 Main Setup [200]<br />

The Main Setup menu contains the most important settings<br />

to get the VSD operational and set up for the application. It<br />

includes different sub menus concerning the control of the<br />

unit, motor data and protection, utilities and automatic<br />

resetting of faults. This menu will instantaneously be<br />

adapted to build in options and show the required settings.<br />

11.2.1 Operation [210]<br />

Selections concerning the used motor, VSD mode, control<br />

signals and serial communication are described in this submenu<br />

and is used to set the VSD up for the application.<br />

Language [211]<br />

Select the language used on the LC Display. Once the language<br />

is set, this selection will not be affected by the Load<br />

Default command.<br />

Default:<br />

English<br />

English 0 English selected<br />

Svenska 1 Swedish selected<br />

Nederlands 2<br />

Dutch selected<br />

Deutsch 3 German selected<br />

Français 4 French selected<br />

Español 5 Spanish selected<br />

Руccкий 6 Russian selected<br />

Italiano 7 Italian selected<br />

Česky 8 Czech selected<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43011<br />

Profibus slot/index 168/170<br />

Fieldbus format<br />

Modbus format<br />

120 2nd Line<br />

StpA<br />

Current<br />

211 Language<br />

Stp A English<br />

UInt<br />

UInt<br />

Select Motor [212]<br />

This menu is used if you have more than one motor in your<br />

application. Select the motor to define. It is possible to<br />

define up to four different motors, M1 to M4, in the VSD.<br />

Default:<br />

M1 0<br />

M2 1<br />

M3 2<br />

M4 3<br />

M1<br />

Communication information<br />

<strong>Drive</strong> Mode [213]<br />

This menu is used to set the control mode for the motor.<br />

Settings for the reference signals and read-outs is made in<br />

menu Process source, [321].<br />

• V/Hz Mode (output speed [712] in rpm) .<br />

Communication information<br />

Motor Data is connected to selected<br />

motor.<br />

Modbus Instance no/DeviceNet no: 43012<br />

Profibus slot/index 168/171<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

V/Hz 2<br />

V/Hz<br />

UInt<br />

UInt<br />

All control loops are related to frequency<br />

control. In this mode multi-motor applications<br />

are possible.<br />

NOTE: All the functions and menu readouts<br />

with regard to speed and rpm (e.g.<br />

Max <strong>Speed</strong> = 1500 rpm, Min <strong>Speed</strong>=0<br />

rpm, etc.) remain speed and rpm,<br />

although they represent the output<br />

frequency.<br />

Modbus Instance no/DeviceNet no: 43013<br />

Profibus slot/index 168/172<br />

Fieldbus format<br />

Modbus format<br />

212 Select Motor<br />

StpA<br />

M1<br />

213 <strong>Drive</strong> Mode<br />

StpA<br />

V/Hz<br />

UInt<br />

UInt<br />

64 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Reference control [214]<br />

To control the speed of the motor, the VSD needs a reference<br />

signal. This reference signal can be controlled by a<br />

remote source from the installation, the keyboard of the<br />

VSD, or by serial or fieldbus communication. Select the<br />

required reference control for the application in this menu.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Option 3<br />

Remote<br />

Communication information<br />

The reference signal comes from the analogue<br />

inputs of the terminal strip (terminals<br />

1-22).<br />

Reference is set with the + and - keys on<br />

the Control Panel. Can only be done in<br />

menu Set/View reference [310].<br />

The reference is set via the serial communication<br />

(RS 485, Fieldbus.) See section<br />

section 10.5 for further information.<br />

The reference is set via an option. Only<br />

available if the option can control the reference<br />

value.<br />

NOTE: If the reference is switched from Remote to<br />

Keyboard, the last remote reference value will be the<br />

default value for the control panel.<br />

Modbus Instance no/DeviceNet no: 43014<br />

Profibus slot/index 168/173<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Run/Stop Control [215]<br />

This function is used to select the source for run and stop<br />

commands. Start/stop via analogue signals can be achieved<br />

by combining a few functions. This is described in the<br />

Chapter 7. page 33.<br />

Default:<br />

214 Ref Control<br />

StpA<br />

Remote<br />

215 Run/Stp Ctrl<br />

StpA<br />

Remote<br />

Remote<br />

Remote 0<br />

The start/stop signal comes from the digital<br />

inputs of the terminal strip (terminals 1-22).<br />

Keyboard 1 Start and stop is set on the Control Panel.<br />

Com 2<br />

The start/stop is set via the serial communication<br />

(RS 485, Fieldbus.) See Fieldbus or<br />

RS232/485 option manual for details.<br />

Option 3 The start/stop is set via an option.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43015<br />

Profibus slot/index 168/174<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Reset Control [216]<br />

When the VSD is stopped due to a failure, a reset command<br />

is required to make it possible to restart the VSD. Use this<br />

function to select the source of the reset signal.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Remote +<br />

Keyb<br />

Com +<br />

Keyb<br />

Rem+Keyb<br />

+Com<br />

3<br />

4<br />

5<br />

Option 6<br />

Remote<br />

Communication information<br />

216 Reset Ctrl<br />

StpA<br />

Remote<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22).<br />

The command comes from the command<br />

keys of the Control Panel.<br />

The command comes from the serial<br />

communication (RS 485, Fieldbus).<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22) or the<br />

keyboard.<br />

The command comes from the serial<br />

communication (RS485, Fieldbus) or the<br />

keyboard.<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22), the<br />

keyboard or the serial communication<br />

(RS485, Fieldbus).<br />

The command comes from an option.<br />

Only available if the option can control<br />

the reset command.<br />

Modbus Instance no/DeviceNet no: 43016<br />

Profibus slot/index 168/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Local/Remote key function [217]<br />

The Toggle key on the keyboard, see section 9.2.5, page 52,<br />

has two functions and is activated in this menu. As default<br />

the key is just set to operate as a Toggle key that moves you<br />

easily through the menus in the toggle loop. The second<br />

function of the key allows you to easily swap between Local<br />

and normal operation (set up via [214] and [215]) of the<br />

VSD. Local mode can also be activated via a digital input. If<br />

both [2171] and [2172] is set to Standard, the function is<br />

disabled.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 65


Default:<br />

Standard<br />

Standard 0 Local reference control set via [214]<br />

Remote 1 Local reference control via remote<br />

Keyboard 2 Local reference control via keyboard<br />

Com 3 Local reference control via communication<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43009<br />

Profibus slot/index 168/168<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Standard<br />

Communication information<br />

UInt<br />

UInt<br />

Standard 0 Local Run/Stop control set via [215]<br />

Remote 1 Local Run/Stop control via remote<br />

Keyboard 2 Local Run/Stop control via keyboard<br />

Com 3 Local Run/Stop control via communication<br />

Modbus Instance no/DeviceNet no: 43010<br />

Profibus slot/index 168/169<br />

Fieldbus format<br />

Modbus format<br />

2171 LocRefCtrl<br />

StpA<br />

Standard<br />

2172 LocRunCtrl<br />

StpA<br />

Standard<br />

UInt<br />

UInt<br />

Lock Code [218]<br />

To prevent the keyboard being used or to change the setup<br />

of the VSD and/or process control, the keyboard can be<br />

locked with a password. This menu, Lock Code [218], is<br />

used to lock and unlock the keyboard. Enter the password<br />

“291” to lock/unlock the keyboard operation. If the keyboard<br />

is not locked (default) the selection “Lock Code?” will<br />

appear. If the keyboard is already locked, the selection<br />

“Unlock Code?” will appear.<br />

When the keyboard is locked, parameters can be viewed but<br />

not changed. The reference value can be changed and the<br />

VSD can be started, stopped and reversed if these functions<br />

are set to be controlled from the keyboard.<br />

Default: 0<br />

Range: 0–9999<br />

Rotation [219]<br />

Overall limitation of motor rotation direction<br />

This function limits the overall rotation, either to left or<br />

right or both directions. This limit is prior to all other selections,<br />

e.g.: if the rotation is limited to right, a Run-Left command<br />

will be ignored. To define left and right rotation we<br />

assume that the motor is connected U-U, V-V and W-W.<br />

<strong>Speed</strong> Direction and Rotation<br />

The speed direction can be controlled by:<br />

• RunR/RunL commands on the control panel.<br />

• RunR/RunL commands on the terminal strip<br />

(terminals 1-22).<br />

• Via the serial interface options.<br />

• The parameter sets.<br />

Fig. 70 Rotation<br />

In this menu you set the general rotation for the motor.<br />

Default:<br />

R 1<br />

L 2<br />

218 Lock Code<br />

Stp 0<br />

A<br />

219 Rotation<br />

StpA<br />

R + L<br />

<strong>Speed</strong> direction is limited to right rotation.<br />

The input and key RunL are disabled.<br />

<strong>Speed</strong> direction is limited to left rotation.<br />

The input and key RunR are disabled.<br />

R+L 3 Both speed directions allowed.<br />

Right<br />

Left<br />

R+L<br />

66 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43019<br />

Profibus slot/index 168/178<br />

Fieldbus format<br />

Modbus format<br />

11.2.2 Remote Signal Level/Edge<br />

[21A]<br />

In this menu you select the way to control the inputs for<br />

RunR, RunL, Stop and Reset that are operated via the digital<br />

inputs on the terminal strip. The inputs are default set<br />

for level-control, and will be active as long as the input is<br />

made and kept high. When edge-control is selected, the<br />

input will be activated by the low to high transition of the<br />

input.<br />

Default:<br />

Level 0<br />

Edge 1<br />

Level<br />

Communication information<br />

UInt<br />

UInt<br />

The inputs are activated or deactivated<br />

by a continuous high or low signal. Is<br />

commonly used if, for example, a PLC is<br />

used to operate the VSD.<br />

The inputs are activated by a transition;<br />

for Run and Reset from “low” to “high”,<br />

for Stop from “high” to “low”.<br />

Modbus Instance no/DeviceNet no: 43020<br />

Profibus slot/index 168/179<br />

Fieldbus format<br />

Modbus format<br />

!<br />

21A Level/Edge<br />

StpA<br />

Level<br />

UInt<br />

UInt<br />

CAUTION: Level controlled inputs DO NOT<br />

comply with the Machine Directive if the inputs<br />

are directly used to start and stop the machine.<br />

NOTE: Edge controlled inputs can comply with the<br />

Machine Directive (see the Chapter 8. page 49) if the<br />

inputs are directly used to start and stop the machine.<br />

11.2.3 Mains supply voltage [21B]<br />

WARNING: This menu must be set according<br />

to the VSD product lable and the supply<br />

voltage used. Wrong setting might damage<br />

the VSD or brake resistor.<br />

In this menu the nominal mains supply voltage connected to<br />

the VSD can be selected. The setting will be valid for all<br />

parameter sets. The default setting, Not defined, is never<br />

selectable and is only visible until a new value is selected.<br />

Once the supply voltage is set, this selection will not be<br />

affected by the Load Default command [243].<br />

Brake chopper activation level is adjusted using the setting<br />

of [21B].<br />

NOTE: The setting is affected by the Load from CP<br />

command [245] and if loading parameter file via<br />

EmoSoftCom.<br />

Default:<br />

Not Defined 0<br />

Not defined<br />

Communication information<br />

Inverter default value used. Only valid if<br />

this parameter is never set.<br />

220-240 V 1 Only valid for <strong>FDU</strong>40/48<br />

380-415 V 3 Only valid for <strong>FDU</strong>40/48/50<br />

440-480 V 4 Only valid for <strong>FDU</strong>48/50/52<br />

500-525 V 5 Only valid for <strong>FDU</strong>50/52/69<br />

550-600 V 6 Only valid for <strong>FDU</strong>69<br />

660-690 V 7 Only valid for <strong>FDU</strong>69<br />

Modbus Instance no/DeviceNet no: 43381<br />

Profibus slot/index 170/30<br />

Fieldbus format<br />

Modbus format<br />

21B Supply Volts<br />

StpA<br />

Not defined<br />

UInt<br />

UInt<br />

11.2.4 Motor Data [220]<br />

In this menu you enter the motor data to adapt the VSD to<br />

the connected motor. This will increase the control accuracy<br />

as well as different read-outs and analogue output signals.<br />

Motor M1 is selected as default and motor data entered will<br />

be valid for motor M1. If you have more than one motor<br />

you need to select the correct motor in menu [212] before<br />

entering motor data.<br />

NOTE: The parameters for motor data cannot be<br />

changed during run mode.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 67


NOTE: The default settings are for a standard 4-pole<br />

motor according to the nominal power of the VSD.<br />

NOTE: Parameter set cannot be changed during run if<br />

the sets is set for different motors.<br />

NOTE: Motor Data in the different sets M1 to M4 can be<br />

revert to default setting in menu [243], Default>Set.<br />

Motor Voltage [221]<br />

Set the nominal motor voltage.<br />

Default:<br />

Range:<br />

Resolution<br />

WARNING: Enter the correct motor data to<br />

prevent dangerous situations and assure<br />

correct control.<br />

<br />

400 V for <strong>FDU</strong>40 and 48<br />

500 V for <strong>FDU</strong>50 and 52<br />

690 V for <strong>FDU</strong>69<br />

100-700 V<br />

1 V<br />

NOTE: The Motor Volts value will always be stored as a 3<br />

digit value with a resolution of 1 V.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43041<br />

Profibus slot/index 168/200<br />

Fieldbus format<br />

Modbus format<br />

Motor Frequency [222]<br />

Set the nominal motor frequency.<br />

<br />

221 Motor Volts<br />

Stp M1: 400V<br />

A<br />

Long,<br />

1=0.1 V<br />

EInt<br />

222 Motor Freq<br />

Stp M1: 50Hz<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43042<br />

Profibus slot/index 168/201<br />

Fieldbus format<br />

Modbus format<br />

Motor Power [223]<br />

Set the nominal motor power.<br />

Default:<br />

Range:<br />

Resolution<br />

P NOM VSD<br />

1W-120% x P NOM<br />

3 significant digits<br />

Communication information<br />

P NOM is the nominal VSD power.<br />

Motor Current [224]<br />

Set the nominal motor current.<br />

Communication information<br />

Long, 1=1 Hz<br />

EInt<br />

NOTE: The Motor Power value will always be stored as a<br />

3 digit value in W up to 999 W and in kW for all higher<br />

powers.<br />

Modbus Instance no/DeviceNet no: 43043<br />

Profibus slot/index 168/202<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

1=1 W<br />

EInt<br />

Default: I NOM (see note section 11.2.4, page 67)<br />

Range:<br />

<br />

<br />

223 Motor Power<br />

Stp M1: (P NOM )kW<br />

A<br />

224 Motor Curr<br />

Stp M1: (I NOM )A<br />

A<br />

25 - 150% x I NOM<br />

Default:<br />

Range:<br />

Resolution<br />

50 Hz<br />

24-300 Hz<br />

1 Hz<br />

Modbus Instance no/DeviceNet no: 43044<br />

Profibus slot/index 168/203<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

1=0.1 A<br />

EInt<br />

I NOM is the nominal VSD current<br />

68 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Motor <strong>Speed</strong> [225]<br />

Set the nominal asynchronous motor speed.<br />

Motor Cos ϕ [227]<br />

Set the nominal Motor cosphi (power factor).<br />

<br />

225 Motor <strong>Speed</strong><br />

StpA<br />

M1: (n MOT )rpm<br />

<br />

227 Motor Cosϕ<br />

Stp M1: A<br />

Default: n MOT (see note section 11.2.4, page 67)<br />

Range: 50 - 18000 rpm<br />

Resolution 1 rpm, 4 sign digits<br />

WARNING: Do NOT enter a synchronous (noload)<br />

motor speed.<br />

NOTE: Maximum speed [343] is not automatically<br />

changed when the motor speed is changed.<br />

NOTE: Entering a wrong, too low value can cause a<br />

dangerous situation for the driven application due to<br />

high speeds.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43045<br />

Profibus slot/index 168/204<br />

Fieldbus format<br />

Modbus format<br />

Motor Poles [226]<br />

When the nominal speed of the motor is ≤500 rpm, the<br />

additional menu for entering the number of poles, [226],<br />

appears automatically. In this menu the actual pole number<br />

can be set which will increase the control accuracy of the<br />

VSD.<br />

<br />

Default: 4<br />

Range: 2-144<br />

Communication information<br />

UInt<br />

1=1 rpm<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43046<br />

Profibus slot/index 168/205<br />

Fieldbus format<br />

Modbus format<br />

226 Motor Poles<br />

Stp M1: 4<br />

A<br />

Long, 1=1 pole<br />

EInt<br />

Default: P NOM (see note section 11.2.4, page 67)<br />

Range: 0.50 - 1.00<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43047<br />

Profibus slot/index 168/206<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Motor ventilation [228]<br />

Parameter for setting the type of motor ventilation. Affects<br />

the characteristics of the I 2 t motor protection by lowering<br />

the actual overload current at lower speeds.<br />

Default:<br />

<br />

Self<br />

None 0 Limited I 2 t overload curve.<br />

Communication information<br />

EInt<br />

Self 1 Normal I2 t overload curve. Means that the<br />

motor stands lower current at low speed.<br />

Forced 2<br />

Expanded I 2 t overload curve. Means that the<br />

motor stands almost the whole current also<br />

at lower speed.<br />

Modbus Instance no/DeviceNet no: 43048<br />

Profibus slot/index 168/207<br />

Fieldbus format<br />

Modbus format<br />

228 Motor Vent<br />

Stp M1: Self<br />

A<br />

UInt<br />

UInt<br />

When the motor has no cooling fan, None is selected and<br />

the current level is limited to 55% of rated motor current.<br />

With a motor with a shaft mounted fan, Self is selected and<br />

the current for overload is limited to 87% from 20% of synchronous<br />

speed. At lower speed, the overload current<br />

allowed will be smaller.<br />

When the motor has an external cooling fan, Forced is<br />

selected and the overload current allowed starts at 90% from<br />

rated motor current at zero speed, up to nominal motor current<br />

at 70% of synchronous speed.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 69


Fig. 71 shows the characteristics with respect for Nominal<br />

Current and <strong>Speed</strong> in relation to the motor ventilation type<br />

selected.<br />

NOTE: To run the VSD it is not mandatory for the ID RUN<br />

to be executed, but without it the performance will not<br />

be optimal.<br />

xI nom for I 2 t<br />

1.00<br />

0.90<br />

0.87<br />

0.55<br />

Fig. 71 I 2 t curves<br />

Motor Identification Run [229]<br />

This function is used when the VSD is put into operation<br />

for the first time. To achieve an optimal control performance,<br />

fine tuning of the motor parameters using a motor ID<br />

run is needed. During the test run the display shows “Test<br />

Run” blinking.<br />

To activate the Motor ID run, select “Short” and press<br />

Enter. Then press RunL or RunR on the control panel to<br />

start the ID run. If menu [219] Rotation is set to L the<br />

RunR key is inactive and vice versa. The ID run can be<br />

aborted by giving a Stop command via the control panel or<br />

Enable input. The parameter will automatically return to<br />

OFF when the test is completed. The message “Test Run<br />

OK!” is displayed. Before the VSD can be operated normally<br />

again, press the STOP/RESET key on the control panel.<br />

During the Short ID run the motor shaft does not rotate.<br />

The VSD measures the rotor and stator resistance.<br />

.<br />

Default:<br />

Forced<br />

Self<br />

None<br />

0.20 0.70 <strong>2.0</strong>0<br />

xSync <strong>Speed</strong><br />

<br />

Off, see Note<br />

Off 0 Not active<br />

Short 1<br />

Communication information<br />

Parameters are measured with injected DC<br />

current. No rotation of the shaft will occur.<br />

Modbus Instance no/DeviceNet no: 43049<br />

Profibus slot/index 168/208<br />

Fieldbus format<br />

Modbus format<br />

229 Motor ID-Run<br />

Stp M1: Off<br />

A<br />

UInt<br />

UInt<br />

NOTE: If the ID Run is aborted or not completed the<br />

message “Interrupted!” will be displayed. The previous<br />

data do not need to be changed in this case. Check that<br />

the motor data are correct.<br />

Motor Sound [22A]<br />

Sets the sound characteristic of the VSD output stage by<br />

changing the switching frequency and/or pattern. Generally<br />

the motor noise will go down at higher switching frequencies.<br />

Default:<br />

Communication information<br />

F<br />

E 0 Switching frequency 1.5 kHz<br />

F 1 Switching frequency 3 kHz<br />

G 2 Switching frequency 6 kHz<br />

H 3<br />

Switching frequency 6 kHz, random frequency<br />

(+750 Hz)<br />

Modbus Instance no/DeviceNet no: 43050<br />

Profibus slot/index 168/209<br />

Fieldbus format<br />

Modbus format<br />

<br />

UInt<br />

UInt<br />

NOTE: At switching frequencies >3 kHz derating may<br />

become necessary. If the heat sink temperature gets too<br />

high the switching frequency is decreased to avoid<br />

tripping. This is done automatically in the VSD. The<br />

default switching frequency is 3 kHz.<br />

Encoder Feedback [22B]<br />

Only visible if the Encoder option board is installed. This<br />

parameter enables or disables the encoder feedback from the<br />

motor to the VSD.<br />

<br />

22A Motor Sound<br />

Stp M1: F<br />

A<br />

22B Encoder<br />

Stp M1: Off<br />

A<br />

Default: Off<br />

On 0 Encoder feedback enabled<br />

Off 1 Encoder feedback disabled<br />

70 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43051<br />

Profibus slot/index 168/210<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Encoder Pulses [22C]<br />

Only visible if the Encoder option board is installed. This<br />

parameter describes the number of pulses per rotation for<br />

your encoder, i.e. it is encoder specific. For more information<br />

please see the encoder manual.<br />

<br />

Default: 1024<br />

Range: 5–16384<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43052<br />

Profibus slot/index 168/211<br />

Fieldbus format<br />

Long, 1=1 pulse<br />

Modbus format<br />

EInt<br />

Encoder <strong>Speed</strong> [22D]<br />

Only visible if the Encoder option board is installed. This<br />

parameter shows the measured motor speed. To check if the<br />

encoder is correctly installed, set Encoder [23B] to Off, run<br />

the VSD at any speed and compare with the value in this<br />

menu. The value in this menu [22D] should be about the<br />

same as the motor speed [712]. If you get the wrong sign for<br />

the value, swap encoder input A and B.<br />

<br />

22C Enc Pulses<br />

Stp M1: 1024<br />

A<br />

22D Enc <strong>Speed</strong><br />

Stp M1: XXrpm<br />

A<br />

11.2.5 Motor Protection [230]<br />

This function protects the motor against overload based on<br />

the standard IEC 60947-4-2.<br />

Motor I 2 t Type [231]<br />

The motor protection function makes it possible to protect<br />

the motor from overload as published in the standard IEC<br />

60947-4-2. It does this using Motor I2t Current, [232] as a<br />

reference. The Motor I2t Time [233] is used to define the<br />

time behaviour of the function. The current set in [232] can<br />

be delivered infinite in time. If for instance in [233] a time<br />

of 1000 s is chosen the upper curve of Fig. 72 is valid. The<br />

value on the x-axis is the multiple of the current chosen in<br />

[232]. The time [233] is the time that an overloaded motor<br />

is switched off or is reduced in power at 1.2 times the current<br />

set in [232].<br />

Default: Trip<br />

Off 0 I 2 t motor protection is not active.<br />

Trip 1<br />

Limit 2<br />

Communication information<br />

When the I 2 t time is exceeded, the VSD will<br />

trip on “Motor I 2 t”.<br />

This mode helps to keep the inverter running<br />

when the Motor I2t function is just<br />

before tripping the VSD. The trip is<br />

replaced by current limiting with a maximum<br />

current level set by the value out of<br />

the menu [232]. In this way, if the reduced<br />

current can drive the load, the VSD continues<br />

running.<br />

Modbus Instance no/DeviceNet no: 43061<br />

Profibus slot/index 168/220<br />

Fieldbus format<br />

Modbus format<br />

231 Mot I 2 t Type<br />

Stp M1: Trip<br />

A<br />

UInt<br />

UInt<br />

Unit:<br />

Resolution:<br />

rpm<br />

speed measured via the encoder<br />

NOTE: When Mot I2t Type=Limit, the VSD can control the<br />

speed < Min<strong>Speed</strong> to reduce the motor current.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42911<br />

Profibus slot/index 168/70<br />

Fieldbus format<br />

Modbus format<br />

Int<br />

Int<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 71


Motor I 2 t Current [232]<br />

Sets the current limit for the motor I 2 t protection.<br />

Default:<br />

Range:<br />

100% of I MOT<br />

0–150% of I MOT<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43062<br />

Profibus slot/index 168/221<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

232 Mot I 2 t Curr<br />

Stp 100%<br />

A<br />

EInt<br />

NOTE: When the selection Limit is set in menu [231], the<br />

value must be above the no-load current of the motor.<br />

Motor I 2 t Time [233]<br />

Sets the time of the I 2 t function. After this time the limit for<br />

the I 2 t is reached if operating with 120% of the I 2 t current<br />

value. Valid when start from 0 rpm.<br />

NOTE: Not the time constant of the motor.<br />

Default:<br />

Range:<br />

60 s<br />

60–1200 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43063<br />

Profibus slot/index 168/222<br />

Fieldbus format<br />

Modbus format<br />

233 Mot I 2 t Time<br />

Stp M1: 60s<br />

A<br />

Long, 1=1 s<br />

EInt<br />

100000<br />

10000<br />

t [s]<br />

1000<br />

1000 s (120%)<br />

100<br />

240 s (120%)<br />

480 s (120%)<br />

60 s (120%)<br />

120 s (120%)<br />

10<br />

Fig. 72 I 2 t function<br />

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

Actual output current/ I 2 t-current<br />

i / I2t-current<br />

72 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Fig. 72 shows how the function integrates the square of the<br />

motor current according to the Mot I 2 t Curr [232] and the<br />

Mot I 2 t Time [233].<br />

When the selection Trip is set in menu [231] the VSD trips<br />

if this limit is exceeded.<br />

When the selection Limit is set in menu [231] the VSD<br />

reduces the torque if the integrated value is 95% or closer to<br />

the limit, so that the limit cannot be exceeded.<br />

NOTE: If it is not possible to reduce the current, the VSD<br />

will trip after exceeding 110% of the limit.<br />

Example<br />

In Fig. 72 the thick grey line shows the following example.<br />

• Menu [232] Mot I 2 t Curr is set to 100%.<br />

1.2 x 100% = 120%<br />

• Menu [233] Mot I 2 t Time is set to 1000 s.<br />

This means that the VSD will trip or reduce after 1000 s if<br />

the current is 1.2 times of 100% nominal motor current.<br />

Thermal Protection [234]<br />

Only visible if the PTC/PT100 option board is installed. Set<br />

the PTC input for thermal protection of the motor. The<br />

motor thermistors (PTC) must comply with DIN 44081/<br />

44082. Please refer to the manual for the PTC/PT100<br />

option board.<br />

Menu [234] PTC contains functions to enable or disable the<br />

PTC input.<br />

Default:<br />

Off 0<br />

PTC 1<br />

PT100 2<br />

PTC+PT100 3<br />

Off<br />

Communication information<br />

PTC and PT100 motor protection are disabled.<br />

Enables the PTC protection of the motor<br />

via the insulated option board.<br />

Enables the PT100 protection for the<br />

motor via the insulated option board.<br />

Enables the PTC protection as well as the<br />

PT100 protection for the motor via the<br />

insulated option board.<br />

Modbus Instance no/DeviceNet no: 43064<br />

Profibus slot/index 168/223<br />

Fieldbus format<br />

Modbus format<br />

234 Thermal Prot<br />

StpA<br />

Off<br />

UInt<br />

UInt<br />

NOTE: PTC option and PT100 selections can only be<br />

selected when the option board is mounted.<br />

Motor Class [235]<br />

Only visible if the PTC/PT100 option board is installed. Set<br />

the class of motor used. The trip levels for the PT100 sensor<br />

will automatically be set according to the setting in this<br />

menu.<br />

Default: F 140°C<br />

A 100°C 0<br />

E 115°C 1<br />

B 120°C 2<br />

F 140°C 3<br />

F Nema 145°C 4<br />

H 165°C 5<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43065<br />

Profibus slot/index 168/224<br />

Fieldbus format<br />

Modbus format<br />

NOTE: This menu is only valid for PT 100.<br />

UInt<br />

UInt<br />

PT100 Inputs [236]<br />

Sets which of PT100 inputs that should be used for thermal<br />

protection. Deselecting not used PT100 inputs on the PTC/<br />

PT100 option board in order to ignore those inputs, i.e.<br />

extra external wiring is not needed if port is not used.<br />

Default: PT100 1+2+3<br />

Selection:<br />

PT100 1, PT100 2, PT100 1+2, PT100<br />

3, PT100 1+3, PT100 2+3, PT100<br />

1+2+3<br />

PT100 1 1 Channel 1 used for PT100 protection<br />

PT100 2 2 Channel 2 used for PT100 protection<br />

PT100 1+2 3 Channel 1+2 used for PT100 protection<br />

PT100 3 4 Channel 3 used for PT100 protection<br />

PT100 1+3 5 Channel 1+3 used for PT100 protection<br />

PT100 2+3 6 Channel 2+3 used for PT100 protection<br />

PT100 1+2+3 7<br />

235 Mot Class<br />

Stp F 140°C<br />

A<br />

236 PT100 Inputs<br />

Stp PT100 1+2+3<br />

A<br />

Channel 1+2+3 used for PT100 protection<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 73


Communication information<br />

Modbus Instance no/DeviceNet no: 43066<br />

Profibus slot/index 168/225<br />

Fieldbus format<br />

Modbus format<br />

Motor PTC [237]<br />

In this menu the internal motor PTC hardware option is<br />

enabled. This PTC input complies with DIN 44081/44082.<br />

Please refer to the manual for the PTC/PT100 option board<br />

for electrical specification.<br />

This menu is only visible if a PTC (or resistor


The active set can be viewed with function [721] FI status.<br />

NOTE: Parameter set cannot be changed during run if<br />

this also would imply a change of the motor set (M2-<br />

M4).<br />

Copy Set [242]<br />

This function copies the content of a parameter set into<br />

another parameter set.<br />

Default: A>B<br />

A>B 0 Copy set A to set B<br />

A>C 1 Copy set A to set C<br />

A>D 2 Copy set A to set D<br />

B>A 3 Copy set B to set A<br />

B>C 4 Copy set B to set C<br />

B>D 5 Copy set B to set D<br />

C>A 6 Copy set C to set A<br />

C>B 7 Copy set C to set B<br />

C>D 8 Copy set C to set D<br />

D>A 9 Copy set D to set A<br />

D>B 10 Copy set D to set B<br />

D>C 11 Copy set D to set C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43021<br />

Profibus slot/index 168/180<br />

Fieldbus format<br />

Modbus format<br />

242 Copy Set<br />

StpA<br />

A>B<br />

UInt<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into the other set.<br />

Default:<br />

A 0<br />

B 1<br />

C 2<br />

D 3<br />

ABCD 4<br />

Factory 5<br />

M1 6<br />

M2 7<br />

M3 8<br />

M4 9<br />

M1234 10<br />

Communication information<br />

A<br />

Only the selected parameter set will revert<br />

to its default settings.<br />

All four parameter sets will revert to the<br />

default settings.<br />

All settings, except [211], [221]-[22D],<br />

[261], [3A1] and [923], will revert to the<br />

default settings.<br />

Only the selected motor set will revert to its<br />

default settings.<br />

All four motor sets will revert to default settnings.<br />

Modbus Instance no/DeviceNet no: 43023<br />

Profibus slot/index 168/182<br />

Fieldbus format<br />

Modbus format<br />

243 Default>Set<br />

StpA<br />

A<br />

UInt<br />

UInt<br />

NOTE: Trip log hour counter and other VIEW ONLY menus<br />

are not regarded as settings and will be unaffected.<br />

NOTE: If “Factory” is selected, the message “Sure?” is<br />

displayed. Press the + key to display “Yes” and then<br />

Enter to confirm.<br />

NOTE: The parameters in menu [220], Motor data, are<br />

not affected by loading defaults when restoring<br />

parameter sets A–D.<br />

A>B means that the content of parameter set A is copied<br />

into parameter set B.<br />

Load Default Values Into Set [243]<br />

With this function three different levels (factory settings)<br />

can be selected for the four parameter sets. When loading<br />

the default settings, all changes made in the software are set<br />

to factory settings. This function also includes selections for<br />

loading default settings to the four different Motor Data<br />

Sets.<br />

Copy All Settings to Control Panel [244]<br />

All the settings can be copied into the control panel including<br />

the motor data. Start commands will be ignored during<br />

copying.<br />

Default:<br />

<br />

No Copy<br />

No Copy 0 Nothing will be copied<br />

Copy 1 Copy all settings<br />

244 Copy to CP<br />

StpA<br />

No Copy<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 75


Communication information<br />

Modbus Instance no/DeviceNet no: 43024<br />

Profibus slot/index 168/183<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43025<br />

Profibus slot/index 168/184<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into control panel memory set.<br />

NOTE: Loading from the control panel will not affect the<br />

value in menu [310].<br />

Load Settings from Control Panel [245]<br />

This function can load all four parameter sets from the control<br />

panel to the VSD. Parameter sets from the source VSD<br />

are copied to all parameter sets in the target VSD, i.e. A to<br />

A, B to B, C to C and D to D.<br />

Start commands will be ignored during loading.<br />

Default:<br />

No Copy<br />

No Copy 0 Nothing will be loaded.<br />

A 1 Data from parameter set A is loaded.<br />

B 2 Data from parameter set B is loaded.<br />

C 3 Data from parameter set C is loaded.<br />

D 4 Data from parameter set D is loaded.<br />

ABCD 5<br />

A+Mot 6<br />

B+Mot 7<br />

C+Mot 8<br />

D+Mot 9<br />

<br />

ABCD+Mot 10<br />

245 Load from CP<br />

StpA<br />

No Copy<br />

Data from parameter sets A, B, C and D are<br />

loaded.<br />

Parameter set A and Motor data are<br />

loaded.<br />

Parameter set B and Motor data are<br />

loaded.<br />

Parameter set C and Motor data are<br />

loaded.<br />

Parameter set D and Motor data are<br />

loaded.<br />

Parameter sets A, B, C, D and Motor data<br />

are loaded.<br />

M1 11 Data from motor 1 is loaded.<br />

M2 12 Data from motor 2 is loaded.<br />

M3 13 Data from motor 3 is loaded.<br />

M4 14 Data from motor 4 is loaded.<br />

M1M2M3<br />

M4<br />

15 Data from motor 1, 2, 3 and 4 are loaded.<br />

All 16 All data is loaded from the control panel.<br />

11.2.7 Trip Autoreset/Trip Conditions<br />

[250]<br />

The benefit of this feature is that occasional trips that do not<br />

affect the process will be automatically reset. Only when the<br />

failure keeps on coming back, recurring at defined times and<br />

therefore cannot be solved by the VSD, will the unit give an<br />

alarm to inform the operator that attention is required.<br />

For all trip functions that can be activated by the user you<br />

can select to control the motor down to zero speed according<br />

to set deceleration ramp to avoid water hammer.<br />

Also see section 12.2, page 152.<br />

Autoreset example:<br />

In an application it is known that the main supply voltage<br />

sometimes disappears for a very short time, a so-called “dip”.<br />

That will cause the VSD to trip an “Undervoltage alarm”.<br />

Using the Autoreset function, this trip will be acknowledged<br />

automatically.<br />

• Enable the Autoreset function by making the reset input<br />

continuously high.<br />

• Activate the Autoreset function in the menu [251],<br />

Number of trips.<br />

• Select in menus [252] to [25N] the Trip condition that<br />

are allowed to be automatically reset by the Autoreset<br />

function after the set delay time has expired.<br />

Number of Trips [251]<br />

Any number set above 0 activates the Autoreset. This means<br />

that after a trip, the VSD will restart automatically according<br />

to the number of attempts selected. No restart attempts will<br />

take place unless all conditions are normal.<br />

If the Autoreset counter (not visible) contains more trips<br />

than the selected number of attempts, the Autoreset cycle<br />

will be interrupted. No Autoreset will then take place.<br />

If there are no trips for more than 10 minutes, the Autoreset<br />

counter decreases by one.<br />

If the maximum number of trips has been reached, the trip<br />

message hour counter is marked with an “A”.<br />

If the Autoreset is full then the VSD must be reset by a normal<br />

Reset.<br />

76 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Example:<br />

• Autoreset = 5<br />

• Within 10 minutes 6 trips occur<br />

• At the 6th trip there is no Autoreset, because the Autoreset<br />

trip log contains 5 trips already.<br />

• To reset, apply a normal reset: set the reset input high to<br />

low and high again to maintain the Autoreset function.<br />

The counter is reset.<br />

Default:<br />

Range:<br />

0 (no Autoreset)<br />

0–10 attempts<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43071<br />

Profibus slot/index 168/230<br />

Fieldbus format<br />

Modbus format<br />

Over temperature [252]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Communication information<br />

UInt<br />

UInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Modbus Instance no/DeviceNet no: 43072<br />

Profibus slot/index 168/231<br />

Fieldbus format<br />

Modbus format<br />

251 No of Trips<br />

Stp 0<br />

A<br />

252 Overtemp<br />

StpA<br />

Long, 1=1 s<br />

EInt<br />

Off<br />

Overvolt D [253]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43075<br />

Profibus slot/index 168/234<br />

Fieldbus format<br />

Modbus format<br />

Overvolt G [254]<br />

Delay time starts counting when the fault is gone When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

253 Overvolt D<br />

Stp A<br />

Off<br />

254 Overvolt G<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43076<br />

Profibus slot/index 168/235<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 77


Overvolt [255]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43077<br />

Profibus slot/index 168/236<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Motor Lost [256]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

NOTE: Only visible when Motor Lost is selected.<br />

Communication information<br />

255 Overvolt<br />

Stp A<br />

Off<br />

256 Motor Lost<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43083<br />

Profibus slot/index 168/242<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Locked Rotor [257]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

257 Locked Rotor<br />

Stp A<br />

Off<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43086<br />

Profibus slot/index 168/245<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Power Fault [258]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43087<br />

Profibus slot/index 168/246<br />

Fieldbus format<br />

Modbus format<br />

Undervoltage [259]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43088<br />

Profibus slot/index 168/247<br />

Fieldbus format<br />

Modbus format<br />

258 Power Fault<br />

Stp A<br />

Off<br />

259 Undervoltage<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

78 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Motor I 2 t [25A]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43073<br />

Profibus slot/index 168/232<br />

Fieldbus format<br />

Modbus format<br />

Motor I 2 t Trip Type [25B]<br />

Select the preferred way to react to a Motor I 2 t trip.<br />

Default:<br />

Trip<br />

Trip 0 The motor will trip<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Deceleration 1 The motor will decelerate<br />

Modbus Instance no/DeviceNet no: 43074<br />

Profibus slot/index 168/233<br />

Fieldbus format<br />

Modbus format<br />

25A Motor I 2 t<br />

Stp A<br />

Off<br />

25B Motor I 2 t TT<br />

Stp A Trip<br />

UInt<br />

UInt<br />

PT100 [25C]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

25C PT100<br />

Stp A<br />

Off<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43078<br />

Profibus slot/index 168/237<br />

Fieldbus format<br />

Modbus format<br />

PT100 Trip Type [25D]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

PTC [25E]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43079<br />

Profibus slot/index 168/238<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Uint<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43084<br />

Profibus slot/index 168/243<br />

Fieldbus format<br />

Modbus format<br />

25D PT100 TT<br />

Stp A Trip<br />

25E PTC<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

Off<br />

Default: Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 79


PTC Trip Type [25F]<br />

Select the preferred way to react to a PTC trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43085<br />

Profibus slot/index 168/244<br />

Fieldbus format<br />

Modbus format<br />

External Trip [25G]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

External Trip Type [25H]<br />

Select the preferred way to react to an alarm trip.<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43080<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Default:<br />

Selection:<br />

25F PTC TT<br />

Stp A<br />

Trip<br />

Same as menu [25B]<br />

Trip<br />

25G Ext Trip<br />

Stp A<br />

25H Ext Trip TT<br />

Stp A Trip<br />

Off<br />

Modbus Instance no/DeviceNet no: 43081<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication Error [25I]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43089<br />

Profibus slot/index 168/248<br />

Fieldbus format<br />

Modbus format<br />

Communication Error Trip Type [25J]<br />

Select the preferred way to react to a communication trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43090<br />

Profibus slot/index 168/249<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Min Alarm [25K]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25I Com Error<br />

StpA<br />

Off<br />

25J Com Error TT<br />

Stp A Trip<br />

25K Min Alarm<br />

Stp A<br />

Off<br />

80 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43091<br />

Profibus slot/index 168/250<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Min Alarm Trip Type [25L]<br />

Select the preferred way to react to a min alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43092<br />

Profibus slot/index 168/251<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Max Alarm [25M]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43093<br />

Profibus slot/index 168/252<br />

Fieldbus format<br />

Modbus format<br />

25L Min Alarm TT<br />

Stp A Trip<br />

25M Max Alarm<br />

StpA<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Max Alarm Trip Type [25N]<br />

Select the preferred way to react to a max alarm trip.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43094<br />

Profibus slot/index 168/253<br />

Fieldbus format<br />

Modbus format<br />

Over current F [25O]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Pump [25P]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43082<br />

Profibus slot/index 168/241<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43095<br />

Profibus slot/index 168/254<br />

Fieldbus format<br />

Modbus format<br />

25O Over curr F<br />

Stp A<br />

Off<br />

25P Pump<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

Off<br />

25N Max Alarm TT<br />

Stp A Trip<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 81


Over <strong>Speed</strong> [25Q]<br />

Delay time starts counting when the fault is gone. When the<br />

time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43096<br />

Profibus slot/index 169/0<br />

Fieldbus format<br />

Modbus format<br />

External Motor Temperature [25R]<br />

Delay time starts counting when the fault disappears. When<br />

the time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43097<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

External Motor Trip Type [25S]<br />

Select the preferred way to react to an alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

25Q Over speed<br />

Stp A<br />

Off<br />

25R Ext Mot Temp<br />

Stp A<br />

Off<br />

25S Ext Mot TT<br />

Stp A Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43098<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

Modbus format<br />

Liquid cooling low level [25T]<br />

Delay time starts counting when the fault disappears. When<br />

the time delay has elapsed, the alarm will be reset if the function<br />

is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Liquid Cooling Low level Trip Type [25U]<br />

Select the preferred way to react to an alarm trip.<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43099<br />

Profibus slot/index 169/3<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43100<br />

Profibus slot/index 169/4<br />

Fieldbus format<br />

Modbus format<br />

25T LC Level<br />

Stp A<br />

25U LC Level TT<br />

Stp A Trip<br />

UInt<br />

UInt<br />

Off<br />

11.2.8 Serial Communication [260]<br />

This function is to define the communication parameters for<br />

serial communication. There are two types of options available<br />

for serial communication, RS232/485 (Modbus/RTU)<br />

and fieldbus modules (Profibus, DeviceNet and Ethernet).<br />

For more information see chapter Serial communication and<br />

respective option manual.<br />

82 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Comm Type [261]<br />

Select RS232/485 [262] or Fieldbus [263].<br />

Default:<br />

RS232/485 0<br />

Fieldbus 1<br />

RS232/485<br />

RS232/485 selected<br />

RS232/485 [262]<br />

Press Enter to set up the parameters for RS232/485 (Modbus/RTU)<br />

communication.<br />

Baud rate [2621]<br />

Set the baud rate for the communication.<br />

Address [2622]<br />

Enter the unit address for the VSD.<br />

Fieldbus selected (Profibus, DeviceNet or<br />

Modbus/TCP)<br />

NOTE: Toggling the setting in this menu will perform a<br />

soft reset (re-boot) of the Fieldbus module.<br />

NOTE: This baud rate is only used for the isolated<br />

RS232/485 option.<br />

Default: 9600<br />

2400 0<br />

4800 1<br />

9600 2<br />

19200 3<br />

38400 4<br />

<br />

Selected baud rate<br />

NOTE: This address is only used for the isolated RS232/<br />

485 option.<br />

Default: 1<br />

Selection: 1–247<br />

261 Com Type<br />

Stp A RS232/485<br />

262 RS232/485<br />

Stp<br />

2621 Baudrate<br />

Stp 9600<br />

A<br />

2622 Address<br />

Stp 1<br />

A<br />

Fieldbus [263]<br />

Press Enter to set up the parameters for fieldbus communication.<br />

Address [2631]<br />

Enter the unit address of the VSD.<br />

Default: 62<br />

Range: Profibus 0–126, DeviceNet 0–63<br />

Node address valid for Profibus and DeviceNet<br />

Process Data Mode [2632]<br />

Enter the mode of process data (cyclic data). For further<br />

information, see the Fieldbus option manual.<br />

Default:<br />

Basic<br />

None 0 Control/status information is not used.<br />

Basic 4<br />

Extended 8<br />

4 byte process data control/status information<br />

is used.<br />

4 byte process data (same as Basic setting)<br />

+ additional proprietary protocol for<br />

advanced users is used.<br />

Read/Write [2633]<br />

Select read/write to control the inverter over a fieldbus network.<br />

For further information, see the Fieldbus option manual.<br />

Default:<br />

RW 0<br />

Read 1<br />

263 Fieldbus<br />

Stp A<br />

2631 Address<br />

Stp A<br />

62<br />

2632 PrData Mode<br />

StpA<br />

Basic<br />

2633 Read/Write<br />

Stp A<br />

RW<br />

RW<br />

Valid for process data. Select R (read only) for logging process<br />

without writing process data. Select RW in normal cases<br />

to control inverter.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 83


Additional Process Values [2634]<br />

Define the number of additional process values sent in cyclic<br />

messages.<br />

Default: 0<br />

Range: 0-8<br />

Communication Fault [264]<br />

Main menu for communication fault/warning settings. For<br />

further details please see the Fieldbus option manual.<br />

Communication Fault Mode [2641]]<br />

Selects action if a communication fault is detected.<br />

Default:<br />

Off<br />

Off 0 No communication supervision.<br />

Trip 1<br />

Warning 2<br />

Communication information<br />

RS232/485 selected:<br />

The VSD will trip if there is no communication<br />

for time set in parameter [2642].<br />

Fieldbus selected:<br />

The VSD will trip if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

RS232/485 selected:<br />

The VSD will give a warning if there is no<br />

communication for time set in parameter<br />

[2642].<br />

Fieldbus selected:<br />

The VSD will give a warning if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

NOTE: Menu [214] and/or [215] must be set to COM to<br />

activate the communication fault function.<br />

Modbus Instance no/DeviceNet no: 43037<br />

Profibus slot/index 168/196<br />

Fieldbus format<br />

Modbus format<br />

2634 AddPrValues<br />

Stp 0<br />

A<br />

2641 ComFlt Mode<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

Communication Fault Time [2642]]<br />

Defines the delay time for the trip/warning.<br />

Default:<br />

Range:<br />

0.5 s<br />

Communication information<br />

Ethernet [265]<br />

Settings for Ethernet module (Modbus/TCP). For further<br />

information, see the Fieldbus option manual.<br />

IP Address [2651]<br />

MAC Address [2652]<br />

Subnet Mask [2653]<br />

Gateway [2654]<br />

0.1-15 s<br />

Modbus Instance no/DeviceNet no: 43038<br />

Profibus slot/index 168/197<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.1 s<br />

EInt<br />

NOTE: The Ethernet module must be re-booted to<br />

activate the below settings. For example by toggling<br />

parameter [261]. Non-initialized settings indicated by<br />

flashing display text.<br />

Default: 0.0.0.0<br />

Default:<br />

Default: 0.0.0.0<br />

2642 ComFlt Time<br />

Stp 0.5s<br />

A<br />

2651 IP Address<br />

000.000.000.000<br />

2652 MAC Address<br />

Stp 000000000000<br />

A<br />

An unique number for the Ethernet module.<br />

2653 Subnet Mask<br />

0.000.000.000<br />

2654 Gateway<br />

0.000.000.000<br />

Default: 0.0.0.0<br />

84 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


DHCP [2655]<br />

Default:<br />

Selection:<br />

Off<br />

On/Off<br />

Fieldbus Signals [266]<br />

Defines modbus mapping for additional process values. For<br />

further information, see the Fieldbus option manual.<br />

FB Signal 1 - 16 [2661]-[266G]<br />

Used to create a block of parameters which are read/written<br />

via communication. 1 to 8 read + 1 to 8 write parameters<br />

possible.<br />

Default: 0<br />

Range: 0-65535<br />

2655 DHCP<br />

Stp A<br />

Communication information<br />

Off<br />

2661 FB Signal 1<br />

Stp 0<br />

A<br />

Modbus Instance no/DeviceNet no: 42801-42816<br />

Profibus slot/index 167/215-167/230<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

FB Status [269]<br />

Sub menus showing status of fieldbus parameters. Please see<br />

the Fieldbus manual for detailed information.<br />

269 FB Status<br />

Stp<br />

11.3 Process and Application<br />

Parameters [300]<br />

These parameters are mainly adjusted to obtain optimum<br />

process or machine performance.<br />

The read-out, references and actual values depends on<br />

selected process source, [321}:<br />

Table 23<br />

Selected process<br />

source<br />

11.3.1 Set/View Reference Value<br />

[310]<br />

View reference value<br />

As default the menu [310] is in view operation. The value of<br />

the active reference signal is displayed. The value is displayed<br />

according to selected process source, [321] or the process<br />

unit selected in menu [322].<br />

Set reference value<br />

If the function Reference Control [214] is set to: Ref Control<br />

= Keyboard, the reference value can be set in menu Set/<br />

View Reference [310] as a normal parameter or as a motor<br />

potentiometer with the + and - keys on the control panel<br />

depending on the selection of Keyboard Reference Mode in<br />

menu [369]. The ramp times used for setting the reference<br />

value with the Normal function selected in menu [369] are<br />

according to the set Acc Time [331] and Dec Time [332].<br />

The ramp times used for setting the reference value with the<br />

MotPot function selected in [369] are according to the set<br />

Acc MotPot [333] and Dec MotPot [334]. Menu [310] displays<br />

on-line the actual reference value according to the<br />

Mode Settings in Table 23.<br />

Communication information<br />

Unit for reference and<br />

actual value<br />

<strong>Speed</strong> rpm 4 digits<br />

Torque % 3 digits<br />

PT100 °C 3 digits<br />

Frequency Hz 3 digits<br />

Default:<br />

0 rpm<br />

Resolution<br />

Dependent on:<br />

Process Source [321] and Process Unit<br />

[322]<br />

<strong>Speed</strong> mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 42991<br />

Profibus slot/index 168/150<br />

Fieldbus format<br />

Modbus format<br />

310 Set/View ref<br />

Stp<br />

0rpm<br />

Long<br />

EInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 85


NOTE: The actual value in menu [310] is not copied, or<br />

loaded from the control panel memory when Copy Set<br />

[242], Copy to CP [244] or Load from CP [245] is<br />

performed.<br />

NOTE: If the MotPot function is used, the reference value<br />

ramp times are according to the Acc MotPot [333] and<br />

Dec MotPot [334] settings. Actual speed ramp will be<br />

limited according to Acc Time [331] and Dec Time [332].<br />

11.3.2 Process Settings [320]<br />

With these functions, the VSD can be set up to fit the application.<br />

The menus [110], [120], [310], [362]-[368] and<br />

[711] use the process unit selected in [321] and [322] for the<br />

application, e.g. rpm, bar or m3/h. This makes it possible to<br />

easily set up the VSD for the required process requirements,<br />

as well as for copying the range of a feedback sensor to set up<br />

the Process Value Minimum and Maximum in order to<br />

establish accurate actual process information.<br />

Process Source [321]<br />

Select the signal source for the process value that controls<br />

the motor. The Process Source can be set to act as a function<br />

of the process signal on AnIn F(AnIn), a function of the<br />

motor speed F(<strong>Speed</strong>), a function of the shaft torque<br />

F(Torque) or as a function of a process value from serial<br />

communication F(Bus). The right function to select<br />

depends on the characteristics and behaviour of the process.<br />

If the selection <strong>Speed</strong>, Torque or Frequency is set, the VSD<br />

will use speed, torque or frequency as reference value.<br />

Example<br />

An axial fan is speed-controlled and there is no feedback signal<br />

available. The process needs to be controlled within fixed<br />

process values in “m 3 /hr” and a process read-out of the air<br />

flow is needed. The characteristic of this fan is that the air<br />

flow is linearly related to the actual speed. So by selecting<br />

F(<strong>Speed</strong>) as the Process Source, the process can easily be<br />

controlled.<br />

The selection F(xx) indicates that a process unit and scaling<br />

is needed, set in menus [322]-[328]. This makes it possible<br />

to e.g. use pressure sensors to measure flow etc. If F(AnIn) is<br />

selected, the source is automatically connected to the AnIn<br />

which has Process Value as selected.<br />

Default:<br />

<strong>Speed</strong><br />

F(AnIn) 0<br />

Function of analogue input. E.g. via PID<br />

control, [330].<br />

<strong>Speed</strong> 1 <strong>Speed</strong> as process reference 1 .<br />

PT100 3 Temperature as process reference.<br />

F(<strong>Speed</strong>) 4 Function of speed<br />

F(Bus) 6 Function of communication reference<br />

Frequency 7 Frequency as process reference 1 .<br />

1 . Only when <strong>Drive</strong> mode [213] is set to <strong>Speed</strong> or V/Hz.<br />

NOTE: When PT100 is selected, use PT100 channel 1 on<br />

the PTC/PT100 option board.<br />

NOTE: If <strong>Speed</strong>, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322] - [328] are hidden.<br />

NOTE: The motor control method depends on the<br />

selection of drive mode [213], regardless of selected<br />

process source, [321].<br />

Communication information<br />

321 Proc Source<br />

StpA<br />

<strong>Speed</strong><br />

Modbus Instance no/DeviceNet no: 43302<br />

Profibus slot/index 169/206<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

86 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Process Unit [322]<br />

Default: rpm<br />

Off 0 No unit selection<br />

% 1 Percent<br />

°C 2 Degrees Centigrade<br />

°F 3 Degrees Fahrenheit<br />

bar 4 bar<br />

Pa 5 Pascal<br />

Nm 6 Torque<br />

Hz 7 Frequency<br />

rpm 8 Revolutions per minute<br />

m 3 /h 9 Cubic meters per hour<br />

gal/h 10 Gallons per hour<br />

ft 3 /h 11 Cubic feet per hour<br />

User 12 User defined unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43303<br />

Profibus slot/index 169/207<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

User-defined Unit [323]<br />

This menu is only displayed if User is selected in menu<br />

[322]. The function enables the user to define a unit with six<br />

symbols. Use the Prev and Next key to move the cursor to<br />

required position. Then use the + and - keys to scroll down<br />

the character list. Confirm the character by moving the cursor<br />

to the next position by pressing the Next key.<br />

Character<br />

322 Proc Unit<br />

Stp A<br />

rpm<br />

No. for serial<br />

comm.<br />

Character<br />

Space 0 m 58<br />

0–9 1–10 n 59<br />

A 11 ñ 60<br />

B 12 o 61<br />

C 13 ó 62<br />

D 14 ô 63<br />

E 15 p 64<br />

F 16 q 65<br />

G 17 r 66<br />

H 18 s 67<br />

I 19 t 68<br />

J 20 u 69<br />

No. for serial<br />

comm.<br />

Character<br />

No. for serial<br />

comm.<br />

Character<br />

K 21 ü 70<br />

L 22 v 71<br />

M 23 w 72<br />

N 24 x 73<br />

O 25 y 74<br />

P 26 z 75<br />

Q 27 å 76<br />

R 28 ä 77<br />

S 29 ö 78<br />

T 30 ! 79<br />

U 31 ¨ 80<br />

Ü 32 # 81<br />

V 33 $ 82<br />

W 34 % 83<br />

X 35 & 84<br />

Y 36 · 85<br />

Z 37 ( 86<br />

Å 38 ) 87<br />

Ä 39 * 88<br />

Ö 40 + 89<br />

a 41 , 90<br />

á 42 - 91<br />

b 43 . 92<br />

c 44 / 93<br />

d 45 : 94<br />

e 46 ; 95<br />

é 47 < 96<br />

ê 48 = 97<br />

ë 49 > 98<br />

f 50 ? 99<br />

g 51 @ 100<br />

h 52 ^ 101<br />

i 53 _ 102<br />

í 54 ° 103<br />

j 55<br />

2<br />

104<br />

k 56<br />

3<br />

105<br />

l 57<br />

No. for serial<br />

comm.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 87


Example:<br />

Create a user unit named kPa.<br />

1. When in the menu [323] press Next to move the cursor<br />

to the right most position.<br />

2. Press the + key until the character k is displayed.<br />

3. Press Next.<br />

4. Then press the + key until P is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered kPa.<br />

Default:<br />

No characters shown<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

323 User Unit<br />

Stp A<br />

43304<br />

43305<br />

43306<br />

43307<br />

43308<br />

43309<br />

169/208<br />

169/209<br />

169/210<br />

169/211<br />

169/212<br />

169/213<br />

UInt<br />

UInt<br />

When sending a unit name you send one character at a time<br />

starting at the right most position.<br />

Process Min [324]<br />

This function sets the minimum process value allowed.<br />

324 Process Min<br />

Stp 0<br />

A<br />

Process Max [325]<br />

This menu is not visible when speed, torque or frequency is<br />

selected. The function sets the value of the maximum process<br />

value allowed.<br />

Default: 0<br />

Range: 0.000-10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43311<br />

Profibus slot/index 169/215<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Ratio [326]<br />

This menu is not visible when speed, frequency or torque is<br />

selected. The function sets the ratio between the actual process<br />

value and the motor speed so that it has an accurate process<br />

value when no feedback signal is used. See Fig. 73.<br />

Default: Linear<br />

Linear 0 Process is linear related to speed/torque<br />

Quadratic 1<br />

Communication information<br />

325 Process Max<br />

Stp 0<br />

A<br />

326 Ratio<br />

Stp A<br />

Linear<br />

Process is quadratic related to speed/<br />

torque<br />

Modbus Instance no/DeviceNet no: 43312<br />

Profibus slot/index 169/216<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default: 0<br />

Range:<br />

Communication information<br />

0.000-10000 (<strong>Speed</strong>, Torque, F(<strong>Speed</strong>),<br />

F(Torque))<br />

-10000– +10000 (F(AnIn, PT100, F(Bus))<br />

Modbus Instance no/DeviceNet no: 43310<br />

Profibus slot/index 169/214<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

88 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Process<br />

unit<br />

Process<br />

Max<br />

[325]<br />

F(Value), Process Max [328]<br />

This function is used for scaling if no sensor is used. It offers<br />

you the possibility of increasing the process accuracy by scaling<br />

the process values. The process values are scaled by linking<br />

them to known data in the VSD. With F(Value), Proc<br />

Max the precise value at which the entered Process Max<br />

[525] is valid can be entered.<br />

Ratio=Linear<br />

NOTE: If <strong>Speed</strong>, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

Process<br />

Min<br />

[324] Min<br />

<strong>Speed</strong><br />

[341]<br />

Fig. 73 Ratio<br />

F(Value), Process Min [327]<br />

This function is used for scaling if no sensor is used. It offers<br />

you the possibility of increasing the process accuracy by scaling<br />

the process values. The process values are scaled by linking<br />

them to known data in the VSD. With F(Value), Proc<br />

Min [327] the precise value at which the entered Process<br />

Min [324] is valid can be entered.<br />

NOTE: If <strong>Speed</strong>, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

Default:<br />

Min -1<br />

Min<br />

Communication information<br />

Ratio=Quadratic<br />

<strong>Speed</strong><br />

Max<br />

<strong>Speed</strong><br />

[343]<br />

327 F(Val) PrMin<br />

StpA<br />

Min<br />

According to Min <strong>Speed</strong> setting in<br />

[341].<br />

According to Max <strong>Speed</strong> setting in<br />

Max -2<br />

[343].<br />

0.000-10000 0-10000 0.000-10000<br />

Modbus Instance no/DeviceNet no: 43313<br />

Profibus slot/index 169/217<br />

Fieldbus format<br />

Long, 1=1 rpm<br />

Modbus format<br />

EInt<br />

Default:<br />

Max<br />

Min -1 Min<br />

Max -2 Max<br />

0.000-<br />

10000<br />

0-10000 0.000-10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43314<br />

Profibus slot/index 169/218<br />

Fieldbus format<br />

Modbus format<br />

328 F(Val) PrMax<br />

StpA<br />

Max<br />

Long, 1=1 rpm<br />

EInt<br />

Example<br />

A conveyor belt is used to transport bottles. The required<br />

bottle speed needs to be within 10 to 100 bottles/s. Process<br />

characteristics:<br />

10 bottles/s = 150 rpm<br />

100 bottles/s = 1500 rpm<br />

The amount of bottles is linearly related to the speed of the<br />

conveyor belt.<br />

Set-up:<br />

Process Min [324] = 10<br />

Process Max [325] = 100<br />

Ratio [326] = linear<br />

F(Value), ProcMin [327] = 150<br />

F(Value), ProcMax [328] = 1500<br />

With this set-up, the process data is scaled and linked to<br />

known values which results in an accurate control.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 89


F(Value)<br />

PrMax 1500<br />

[328]<br />

Nominal<br />

<strong>Speed</strong><br />

100% n MOT<br />

rpm<br />

Max <strong>Speed</strong> 80% n MOT<br />

Linear<br />

F(Value<br />

PrMin<br />

[327]<br />

150<br />

Bottles/s<br />

(06-F12)<br />

8s<br />

10s<br />

t<br />

10<br />

Process Min [324]<br />

100<br />

Process Max [325]<br />

Fig. 75 Acceleration time and maximum speed<br />

Fig. 74<br />

11.3.3 Start/Stop settings [330]<br />

Submenu with all the functions for acceleration, deceleration,<br />

starting, stopping, etc.<br />

Acceleration Time [331]<br />

The acceleration time is defined as the time it takes for the<br />

motor to accelerate from 0 rpm to nominal motor speed.<br />

NOTE: If the Acc Time is too short, the motor is<br />

accelerated according to the Torque Limit. The actual<br />

Acceleration Time may then be longer than the value<br />

set.<br />

Default:<br />

Range:<br />

10.0 s<br />

0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43101<br />

Profibus slot/index 169/5<br />

Fieldbus format<br />

Modbus format<br />

331 Acc Time<br />

Stp 10.0s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

Fig. 75 shows the relationship between nominal motor<br />

speed/max speed and the acceleration time. The same is<br />

valid for the deceleration time.<br />

Fig. 76 shows the settings of the acceleration and deceleration<br />

times with respect to the nominal motor speed.<br />

rpm<br />

(NG_06-F11)<br />

Fig. 76 Acceleration and deceleration times<br />

Deceleration Time [332]<br />

The deceleration time is defined as the time it takes for the<br />

motor to decelerate from nominal motor speed to 0 rpm.<br />

Default:<br />

Range:<br />

Nom. <strong>Speed</strong><br />

10.0 s<br />

0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43102<br />

Profibus slot/index 169/6<br />

Fieldbus format<br />

Modbus format<br />

Acc Time [331] Dec Time [332]<br />

332 Dec Time<br />

Stp 10.0s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: If the Dec Time is too short and the generator<br />

energy cannot be dissipated in a brake resistor, the<br />

motor is decelerated according to the overvoltage limit.<br />

The actual deceleration time may be longer than the<br />

value set.<br />

90 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Acceleration Time Motor Potentiometer<br />

[333]<br />

It is possible to control the speed of the VSD using the<br />

motor potentiometer function. This function controls the<br />

speed with separate up and down commands, over remote<br />

signals. The MotPot function has separate ramps settings<br />

which can be set in Acc MotPot [333] and Dec MotPot<br />

[334].<br />

If the MotPot function is selected, this is the acceleration<br />

time for the MotPot up command. The acceleration time is<br />

defined as the time it takes for the motor potentiometer<br />

value to increase from 0 rpm to nominal speed.<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43103<br />

Profibus slot/index 169/7<br />

Fieldbus format<br />

Modbus format<br />

Deceleration Time Motor Potentiometer<br />

[334]<br />

If the MotPot function is selected, this is the deceleration<br />

time for the MotPot down command. The deceleration time<br />

is defined as the time it takes for the motor potentiometer<br />

value to decrease from nominal speed to 0 rpm.<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43104<br />

Profibus slot/index 169/8<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

333 Acc MotPot<br />

Stp 16.0s<br />

A<br />

334 Dec MotPot<br />

Stp 16.0s<br />

A<br />

EInt<br />

Acceleration Time to Minimum <strong>Speed</strong><br />

[335]<br />

If minimum speed, [341]>0 rpm, is used in an application,<br />

the VSD uses separate ramp times below this level. With<br />

Acc>Min<strong>Speed</strong> [335] and DecMin Spd<br />

Stp 10.0s<br />

A<br />

EInt<br />

[331] [332]<br />

[336]<br />

time<br />

Deceleration Time from Minimum<br />

<strong>Speed</strong> [336]<br />

If a minimum speed is programmed, this parameter will be<br />

used to set the deceleration time from the minimum speed<br />

to 0 rpm at a stop command. The ramp time is defined as<br />

the time it takes for the motor to decelerate from the nominal<br />

motor speed to 0 rpm.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 91


336 Dec


Start Mode [339]<br />

Sets the way of starting the motor when a run command is<br />

given.<br />

Default:<br />

Fast 0<br />

Fast (fixed)<br />

Communication information<br />

339 Start Mode<br />

Stp A Fast<br />

The motor flux increases gradually. The<br />

motor shaft starts rotating immediately<br />

once the Run command is given.<br />

Modbus Instance no/DeviceNet no: 43109<br />

Profibus slot/index 169/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

sets the way of stopping the motor when a Stop command is<br />

given.<br />

Default:<br />

Decel 0<br />

Decel<br />

Communication information<br />

The motor decelerates to 0 rpm according<br />

to the set deceleration time.<br />

Coast 1 The motor freewheels naturally to 0 rpm.<br />

Modbus Instance no/DeviceNet no: 43111<br />

Profibus slot/index 169/15<br />

Fieldbus format<br />

Modbus format<br />

33B Stop Mode<br />

StpA<br />

Decel<br />

UInt<br />

UInt<br />

Spinstart [33A]<br />

The spinstart will smoothly start a motor which is already<br />

rotating by catching the motor at the actual speed and control<br />

it to the desired speed. If in an application, such as an<br />

exhausting fan, the motor shaft is already rotating due to<br />

external conditions, a smooth start of the application is<br />

required to prevent excessive wear. With the spinstart=on,<br />

the actual control of the motor is delayed due to detecting<br />

the actual speed and rotation direction, which depend on<br />

motor size, running conditions of the motor before the<br />

Spinstart, inertia of the application, etc. Depending on the<br />

motor electrical time constant and the size of the motor, it<br />

can take maximum a couple of minutes before the motor is<br />

caught.<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Communication information<br />

33A Spinstart<br />

Stp A<br />

Off<br />

No spinstart. If the motor is already running<br />

the VSD can trip or will start with high current.<br />

Spinstart will allow the start of a running<br />

motor without tripping or high inrush currents.<br />

Modbus Instance no/DeviceNet no: 43110<br />

Profibus slot/index 169/14<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.3.4 Mechanical brake control<br />

The four brake-related menus [33C] to [33F] can be used to<br />

control mechanical brakes.<br />

Brake Release Time [33C]<br />

The Brake Release Time sets the time the VSD delays before<br />

ramping up to whatever final reference value is selected.<br />

During this time a predefined speed can be generated to<br />

hold the load where after the mechanical brake finally<br />

releases. This speed can be selected at Release <strong>Speed</strong>, [33D].<br />

Immediate after the brake release time expiration the brake<br />

lift signal is set. The user can set a digital output or relay to<br />

the function Brake. This output or relay can control the<br />

mechanical brake.<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–3.00 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43112<br />

Profibus slot/index 169/16<br />

Fieldbus format<br />

Modbus format<br />

33C Brk Release<br />

Stp 0.00s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

Stop Mode [33B]<br />

When the VSD is stopped, different methods to come to a<br />

standstill can be selected in order to optimize the stop and<br />

prevent unnecessary wear, like water hammer. Stop Mode<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 93


Fig. 80 shows the relation between the four Brake functions.<br />

• Brake Release Time [33C]<br />

• Start <strong>Speed</strong> [33D]<br />

• Brake Engage Time [33E]<br />

• Brake Wait Time [33F]<br />

The correct time setting depends on the maximum load and<br />

the properties of the mechanical brake. During the brake<br />

release time it is possible to apply extra holding torque by<br />

setting a start speed reference with the function start speed<br />

[33D].<br />

n<br />

Brake release<br />

time [33C]<br />

Brake wait<br />

time [33F]<br />

Brake engage<br />

time [33E]<br />

Start<br />

Release <strong>Speed</strong> [33D]<br />

t<br />

Mechanical<br />

Brake<br />

Open<br />

Closed<br />

Brake Relay<br />

Output<br />

On<br />

Off<br />

Fig. 80 Brake Output functions<br />

Action must take place within<br />

these time intervals<br />

G06 16<br />

NOTE: This function is designed to operate a mechanical<br />

brake via the digital outputs or relays (set to brake<br />

function) controlling a mechanical brake.<br />

94 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Release <strong>Speed</strong> [33D]<br />

The release speed only operates with the brake function:<br />

brake release [33C]. The release speed is the initial speed reference<br />

during the brake release time.<br />

Default:<br />

Range:<br />

Depend on:<br />

Communication information<br />

Brake Engage Time [33E]<br />

The brake engage time is the time the load is held to engage<br />

a mechanical brake.<br />

Communication information<br />

0 rpm<br />

- 4x Sync. <strong>Speed</strong> to 4x Sync.<br />

4xmotor sync speed, 1500 rpm for 1470<br />

rpm motor.<br />

Modbus Instance no/DeviceNet no: 43113<br />

Profibus slot/index 169/17<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Default:<br />

Range:<br />

33D Release Spd<br />

StpA<br />

0rpm<br />

33E Brk Engage<br />

Stp 0.00s<br />

A<br />

0.00 s<br />

0.00–3.00 s<br />

Modbus Instance no/DeviceNet no: 43114<br />

Profibus slot/index 169/18<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Wait Before Brake Time [33F]<br />

The brake wait time is the time to keep brake open and to<br />

hold the load, either in order to be able to speed up immediately,<br />

or to stop and engage the brake.<br />

33F Brk Wait<br />

Stp 0.00s<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43115<br />

Profibus slot/index 169/19<br />

Fieldbus format<br />

Modbus format<br />

Vector Brake [33G]<br />

Braking by increasing the internal electrical losses in the<br />

motor.<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

Vector brake switched off. VSD brakes normal<br />

with voltage limit on the DC link.<br />

Maximum VSD current (I CL ) is available for<br />

braking.<br />

Modbus Instance no/DeviceNet no: 43116<br />

Profibus slot/index 169/20<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

11.3.5 <strong>Speed</strong> [340]<br />

Menu with all parameters for settings regarding to speeds,<br />

such as Min/Max speeds, Jog speeds, Skip speeds.<br />

Minimum <strong>Speed</strong> [341]<br />

Sets the minimum speed. The minimum speed will operate<br />

as an absolute lower limit. Used to ensure the motor does<br />

not run below a certain speed and to maintain a certain performance.<br />

Default:<br />

Range:<br />

33G Vector Brake<br />

Stp A<br />

Off<br />

341 Min <strong>Speed</strong><br />

Stp A 0rpm<br />

0 rpm<br />

0 - Max <strong>Speed</strong><br />

Dependent on: Set/View ref [310]<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30.0 s<br />

NOTE: A lower speed value than the set minimum speed<br />

can be shown in the display due to motor slip.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 95


Communication information<br />

Modbus Instance no/DeviceNet no: 43121<br />

Profibus slot/index 169/25<br />

Fieldbus format<br />

Modbus format<br />

Stop/Sleep when less than Minimum<br />

<strong>Speed</strong> [342]<br />

With this function it is possible to put the VSD in “sleep<br />

mode” when it is running at minimum speed for the length<br />

of time set, due to process value feedback or a reference<br />

value that corresponds to a speed lower than the min speed<br />

set. The VSD will go into sleep mode after programmed<br />

time. When the reference signal or process value feedback<br />

raises the required speed value above the min speed value,<br />

the VSD will automatically wake up and ramp up to the<br />

required speed.<br />

Communication information<br />

Int, 1=1 rpm<br />

Int, 1=1 rpm<br />

NOTE: Menu [386] has higher priority than menu [342].<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Modbus Instance no/DeviceNet no: 43122<br />

Profibus slot/index 169/26<br />

Fieldbus format<br />

Modbus format<br />

342 Stp


n<br />

Skip <strong>Speed</strong> 2 High [347]<br />

The same function as menu [345] for the 2nd skip range.<br />

Skip <strong>Speed</strong> HI<br />

Skip <strong>Speed</strong> LO<br />

Default:<br />

Range:<br />

347 SkipSpd 2 Hi<br />

StpA<br />

0rpm<br />

0 rpm<br />

0 – 4 x Motor Sync <strong>Speed</strong><br />

Communication information<br />

Fig. 82 Skip <strong>Speed</strong><br />

NOTE: The two Skip <strong>Speed</strong> ranges may be overlapped.<br />

Skip <strong>Speed</strong> 1 High [345]<br />

Skipspd1 HI sets the higher value for the 1st skip range.<br />

Default:<br />

Range:<br />

0 rpm<br />

0 – 4 x Sync <strong>Speed</strong><br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43125<br />

Profibus slot/index 169/29<br />

Fieldbus format<br />

Int<br />

Modbus format<br />

Int<br />

Skip <strong>Speed</strong> 2 Low [346]<br />

The same function as menu [344] for the 2nd skip range.<br />

Default:<br />

Range:<br />

(NG_06-F17)<br />

<strong>Speed</strong> Reference<br />

345 SkipSpd 1 Hi<br />

Stp A 0rpm<br />

346 SkipSpd 2 Lo<br />

StpA<br />

0rpm<br />

0 rpm<br />

0 – 4 x Motor Sync <strong>Speed</strong><br />

Modbus Instance no/DeviceNet no: 43127<br />

Profibus slot/index 169/31<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Jog <strong>Speed</strong> [348]<br />

The Jog <strong>Speed</strong> function is activated by one of the digital<br />

inputs. The digital input must be set to the Jog function<br />

[520]. The Jog command/function will automatically generate<br />

a run command as long as the Jog command/function is<br />

active. The rotation is determined by the polarity of the set<br />

Jog <strong>Speed</strong>.<br />

Example<br />

If Jog <strong>Speed</strong> = -10, this will give a Run Left command at<br />

10 rpm regardless of RunL or RunR commands. Fig. 83<br />

shows the function of the Jog command/function.<br />

Default:<br />

Range:<br />

Dependent on:<br />

50 rpm<br />

Communication information<br />

-4 x motor sync speed to +4 x motor sync<br />

speed<br />

Defined motor sync speed. Max = 400%, normally<br />

max=VSD I max /motor I nom x 100%.<br />

Modbus Instance no/DeviceNet no: 43128<br />

Profibus slot/index 169/32<br />

Fieldbus format<br />

Modbus format<br />

348 Jog <strong>Speed</strong><br />

StpA<br />

50rpm<br />

Int<br />

Int<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43126<br />

Profibus slot/index 169/30<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 97


Jog<br />

Freq<br />

Jog<br />

command<br />

f<br />

Fig. 83 Jog command<br />

11.3.6 Torques [350]<br />

Menu with all parameters for torque settings.<br />

t<br />

t<br />

(NG_06-F18)<br />

frequencies and is used to obtain a higher starting torque.<br />

The maximum voltage increase is 25% of the nominal output<br />

voltage. See Fig. 84.<br />

Selecting “Automatic” will use the optimal value according<br />

to the internal model of motor. “User-Defined” can be<br />

selected when the start conditions of the application do not<br />

change and a high starting torque is always required. A fixed<br />

IxR Compensation value can be set in the menu [353].<br />

Default:<br />

352 IxR Comp<br />

Stp A<br />

Off<br />

Off 0 Function disabled<br />

Automatic 1 Automatic compensation<br />

Off<br />

User Defined 2 User defined value in percent.<br />

Maximum Torque [351]<br />

Sets the maximum torque. This Maximum Torque operates<br />

as an upper torque limit. A <strong>Speed</strong> Reference is always necessary<br />

to run the motor.<br />

T MOT<br />

( Nm)<br />

P MOT<br />

( w)x60<br />

= ----------------------------------------<br />

n MOT<br />

( rpm)x2Π<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43142<br />

Profibus slot/index 169/46<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Range: 0–400%<br />

351 Max Torque<br />

Stp 120%<br />

A<br />

120% calculated from the motor data<br />

%<br />

100<br />

U<br />

IxR Comp=25%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43141<br />

Profibus slot/index 169/45<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

NOTE: The power loss in the motor will increase by the<br />

square of the torque when operating above 100%. 400%<br />

torque will result in 1600% power loss, which will<br />

increase the motor temperature very quickly.<br />

IxR Compensation [352]<br />

This function compensates for the drop in voltage over different<br />

resistances such as (very) long motor cables, chokes<br />

and motor stator by increasing the output voltage at a constant<br />

frequency. IxR Compensation is most important at low<br />

Fig. 84 IxR Comp at Linear V/Hz curve<br />

IxR Comp_user [353]<br />

Only visible if User-Defined is selected in previous menu.<br />

Default: 0.0%<br />

Range:<br />

25<br />

IxR Com=0%<br />

f<br />

10 20 30 40 50 Hz<br />

353 IxR CompUsr<br />

Stp 0.0%<br />

A<br />

0-25% x U NOM (0.1% of resolution)<br />

98 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43143<br />

Profibus slot/index 169/47<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

EInt<br />

NOTE: A too high level of IxR Compensation could cause<br />

motor saturation. This can cause a “Power Fault” trip.<br />

The effect of IxR Compensation is stronger with higher<br />

power motors.<br />

NOTE: The motor may be overheated at low speed.<br />

Therefore it is important that the Motor I 2 t Current [232]<br />

is set correctly.<br />

NOTE: Flux optimization works best at stable situations<br />

in slow changing processes.<br />

11.3.7 Preset References [360]<br />

Motor Potentiometer [361]<br />

Sets the properties of the motor potentiometer function. See<br />

the parameter DigIn1 [521] for the selection of the motor<br />

potentiometer function.<br />

361 Motor Pot<br />

StpA<br />

Non Volatie<br />

Flux Optimization [354]<br />

Flux Optimization reduces the energy consumption and the<br />

motor noise, at low or no load conditions.<br />

Flux Optimization automatically decreases the V/Hz ratio,<br />

depending on the actual load of the motor when the process<br />

is in a steady situation. Fig. 85 shows the area within which<br />

the Flux Optimization is active.<br />

Default:<br />

Volatile 0<br />

Non volatile 1<br />

Non Volatile<br />

After a stop, trip or power down, the VSD<br />

will start always from zero speed (or minimum<br />

speed, if selected).<br />

Non Volatile. After a stop, trip or power<br />

down of the VSD, the reference value at<br />

the moment of the stop will be memorized.<br />

After a new start command the output<br />

speed will resume to this saved value.<br />

354 Flux optim<br />

Stp A<br />

Off<br />

Default: Off<br />

Off 0 Function disabled<br />

On 1 Function enabled<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43131<br />

Profibus slot/index 169/35<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

n<br />

Modbus Instance no/DeviceNet no: 43144<br />

Profibus slot/index 169/48<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

t<br />

%<br />

100<br />

U<br />

Motpot<br />

UP<br />

t<br />

Flux optimizing<br />

area<br />

f<br />

50 Hz<br />

Motpot<br />

DOWN<br />

Fig. 86 MotPot function<br />

t<br />

Fig. 85 Flux Optimizing<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 99


Preset Ref 1 [362] to Preset Ref 7<br />

[368]<br />

Preset speeds have priority over the analogue inputs. Preset<br />

speeds are activated by the digital inputs. The digital inputs<br />

must be set to the function Pres. Ref 1, Pres. Ref 2 or Pres.<br />

Ref 4.<br />

Depending on the number of digital inputs used, up to 7<br />

preset speeds can be activated per parameter set. Using all<br />

the parameter sets, up to 28 preset speeds are possible.<br />

Default: <strong>Speed</strong>, 0 rpm<br />

Dependent on: Process Source [321] and Process Unit [322]<br />

<strong>Speed</strong> mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 43132–43138<br />

Profibus slot/index 169/36–169/42<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

The same settings are valid for the menus:<br />

[363] Preset Ref 2, with default 250 rpm<br />

[364] Preset Ref 3, with default 500 rpm<br />

[365] Preset Ref 4, with default 750 rpm<br />

[366] Preset Ref 5, with default 1000 rpm<br />

[367] Preset Ref 6, with default 1250 rpm<br />

[368] Preset Ref 7, with default 1500 rpm<br />

The selection of the presets is as in Table 24.<br />

Table 24<br />

Preset<br />

Ctrl3<br />

Preset<br />

Ctrl2<br />

362 Preset Ref 1<br />

Stp A 0rpm<br />

Preset<br />

Ctrl1<br />

Output <strong>Speed</strong><br />

0 0 0 Analogue reference<br />

0 0 1 1) Preset Ref 1<br />

0 1 1) 0 Preset Ref 2<br />

0 1 1 Preset Ref 3<br />

1 1) 0 0 Preset Ref 4<br />

1 0 1 Preset Ref 5<br />

1 1 0 Preset Ref 6<br />

1 1 1 Preset Ref 7<br />

1) = selected if only one preset reference is active<br />

1 = active input<br />

0 = non active input<br />

NOTE: If only Preset Ctrl3 is active, then the Preset Ref 4<br />

can be selected. If Presets Ctrl2 and 3 are active, then<br />

the Preset Ref 2, 4 and 6 can be selected.<br />

Keyboard reference mode [369]<br />

This parameter sets how the reference value [310] is edited.<br />

Default:<br />

Normal 0<br />

MotPot 1<br />

Normal<br />

Communication information<br />

The reference value is edited as a normal<br />

parameter (the new reference value is<br />

activated when Enter is pressed after the<br />

value has been changed). The Acc Time<br />

[331] and Dec Time [332] are used.<br />

The reference value is edited using the<br />

motor potentiometer function (the new<br />

reference value is activated directly when<br />

the key + or - is pressed). The Acc MotPot<br />

[333] and Dec MotPot [334] are used.<br />

Modbus Instance no/DeviceNet no: 43139<br />

Profibus slot/index 169/43<br />

Fieldbus format<br />

Modbus format<br />

369 Key Ref Mode<br />

StpA<br />

Normal<br />

UInt<br />

UInt<br />

NOTE: When Key Ref Mode is set to MotPot, the<br />

reference value ramp times are according to the Acc<br />

MotPot [333] and Dec MotPot [334] settings. Actual<br />

speed ramp will be limited according to Acc Time [331]<br />

and Dec Time [332].<br />

11.3.8 PID Process Control [380]<br />

The PID controller is used to control an external process via<br />

a feedback signal. The reference value can be set via analogue<br />

input AnIn1, at the Control Panel [310] by using a Preset<br />

Reference, or via serial communication. The feedback signal<br />

(actual value) must be connected to an analogue input that<br />

is set to the function Process Value.<br />

100 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


+<br />

Process PID Control [381]<br />

This function enables the PID controller and defines the<br />

response to a changed feedback signal.<br />

Default:<br />

Off<br />

Off 0 PID control deactivated.<br />

On 1<br />

Invert 2<br />

Communication information<br />

PID P Gain [383]<br />

Setting the P gain for the PID controller.<br />

Communication information<br />

The speed increases when the feedback<br />

value decreases. PID settings according to<br />

menus [381] to [385].<br />

The speed decreases when the feedback<br />

value decreases. PID settings according to<br />

menus [383] to [385].<br />

Modbus Instance no/DeviceNet no: 43154<br />

Profibus slot/index 169/58<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default: 1.0<br />

Range: 0.0–30.0<br />

381 PID Control<br />

Stp A<br />

Off<br />

383 PID P Gain<br />

Stp 1.0<br />

A<br />

Modbus Instance no/DeviceNet no: 43156<br />

Profibus slot/index 169/60<br />

Fieldbus format Long, 1=0.1<br />

Modbus format<br />

EInt<br />

Process<br />

reference<br />

Process<br />

feedback<br />

-<br />

Process<br />

PID<br />

VSD<br />

M<br />

PID I Time [384]<br />

Setting the integration time for the PID controller.<br />

Default:<br />

Range:<br />

1.00 s<br />

0.01–300 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43157<br />

Profibus slot/index 169/61<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Process PID D Time [385]<br />

Setting the differentiation time for the PID controller.<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43158<br />

Profibus slot/index 169/62<br />

Fieldbus format<br />

Modbus format<br />

384 PID I Time<br />

Stp 1.00s<br />

A<br />

385 PID D Time<br />

Stp 0.00s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

PID sleep functionality<br />

This function is controlled via a wait delay and a separate<br />

wake-up margin condition. With this function it is possible<br />

to put the VSD in “sleep mode” when the process value is at<br />

it’s set point and the motor is running at minimum speed for<br />

the length of the time set in [386]. By going into sleep<br />

mode, the by the application consumed energy is reduced to<br />

a minimum. When the process feedback value goes below<br />

the set margin on the process reference as set in [387], the<br />

VSD will wake up automatically and normal PID operation<br />

continues, see examples.<br />

Process<br />

06-F95<br />

Fig. 87 Closed loop PID control<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 101


PID sleep when less than minimum<br />

speed [386]<br />

If the PID output is equal to or less than minimum speed<br />

for given delay time, the VSD will go to sleep.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01 –3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43371<br />

Profibus slot/index 170/20<br />

Fieldbus format<br />

Modbus format<br />

PID Activation Margin [387]<br />

The PID activation (wake-up) margin is related to the process<br />

reference and sets the limit when the VSD should wakeup/start<br />

again.<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: Menu [386] has higher priority than menu [342].<br />

Default: 0<br />

Range:<br />

0 –10000 in Process unit<br />

Modbus Instance no/DeviceNet no: 43372<br />

Profibus slot/index 170/21<br />

Fieldbus format<br />

Modbus format<br />

386 PID


PID Steady state test delay.<br />

NOTE: It is important that the system has reached a<br />

stable situation before the Steady State Test is initiated.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43373<br />

Profibus slot/index 170/22<br />

Fieldbus format<br />

Modbus format<br />

388 PID Stdy Tst<br />

StpA<br />

Off<br />

Long, 1=0.01 s<br />

EInt<br />

PID Steady State Margin [389]<br />

PID steady state margin defines a margin band around the<br />

reference that defines “steady state operation”. During the<br />

steady state test the PID operation is overruled and the VSD<br />

is decreasing the speed as long as the PID error is within the<br />

steady state margin. If the PID error goes outside the steady<br />

state margin the test failed and normal PID operation continues,<br />

see example.<br />

Default: 0<br />

Range:<br />

0–10000 in process unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43374<br />

Profibus slot/index 170/23<br />

Fieldbus format<br />

Modbus format<br />

389 PID Stdy Mar<br />

Stp 0<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

Example: The PID Steady Test starts when the process value<br />

[711] is within the margin and Steady State Test Wait Delay<br />

has expired. The PID output will decrease speed with a step<br />

value which corresponds to the margin as long as the Process<br />

value [711] stays within steady state margin. When Min<br />

<strong>Speed</strong> [341] is reached the steady state test was successful<br />

and stop/sleep is commanded if PID sleep function<br />

[386]and [387] is activated. If the Process value [711] goes<br />

outside the set steady state margins then the test<br />

failed and normal PID operation will continue, see Fig. 90<br />

.<br />

[711] Process Value<br />

[310] Process Ref<br />

[389]<br />

[389]<br />

[387]<br />

[388]<br />

time<br />

[712] <strong>Speed</strong><br />

Start steady<br />

state test<br />

Stop steady<br />

state test<br />

Normal PID<br />

Normal PID<br />

Steady state<br />

test<br />

Stop/Sleep<br />

[341] Min <strong>Speed</strong> [386] PID


11.3.9 Pump/Fan Control [390]<br />

The Pump Control functions are in menu [390]. The function<br />

is used to control a number of drives (pumps, fans, etc.)<br />

of which one is always driven by the VSD.<br />

Pump enable [391]<br />

This function will enable the pump control to set all relevant<br />

pump control functions.<br />

Default: Off<br />

Off 0 Pump control is switched off.<br />

On 1<br />

Communication information<br />

Pump control is on:<br />

- Pump control parameters [392] to [39G]<br />

appear and are activated according to<br />

default settings.<br />

- View functions [39H] to [39M] are added<br />

in the menu structure.<br />

Modbus Instance no/DeviceNet no: 43161<br />

Profibus slot/index 169/65<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Number of <strong>Drive</strong>s [392]<br />

Sets the total number of drives which are used, including the<br />

Master VSD. The setting here depends on the parameter<br />

Select <strong>Drive</strong> [393]. After the number of drives is chosen it is<br />

important to set the relays for the pump control. If the digital<br />

inputs are also used for status feedback, these must be set<br />

for the pump control according to; Pump 1 OK– Pump6<br />

OK in menu [520].<br />

Default: 1<br />

1-3 Number of drives if I/O Board is not used.<br />

1-6<br />

1-7<br />

391 Pump enable<br />

StpA<br />

Off<br />

392 No of <strong>Drive</strong>s<br />

Stp A<br />

1<br />

Number of drives if 'Alternating MASTER' is<br />

used, see Select <strong>Drive</strong> [393]. (I/O Board is<br />

used.)<br />

Number of drives if 'Fixed MASTER' is used,<br />

see Select <strong>Drive</strong> [393].<br />

(I/O Board is used.)<br />

NOTE: Used relays must be defined as Slave Pump or<br />

Master Pump. Used digital inputs must be defined as<br />

Pump Feedback.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43162<br />

Profibus slot/index 169/66<br />

Fieldbus format<br />

Modbus format<br />

Select <strong>Drive</strong> [393]<br />

Sets the main operation of the pump system. 'Sequence' and<br />

'Runtime' are Fixed MASTER operation. 'All' means Alternating<br />

MASTER operation.<br />

Default:<br />

Sequence 0<br />

Run Time 1<br />

All 2<br />

Sequence<br />

Communication information<br />

UInt<br />

UInt<br />

Fixed MASTER operation:<br />

- The additional drives will be selected in<br />

sequence, i.e. first pump 1 then pump 2<br />

etc.<br />

- A maximum of 7 drives can be used.<br />

Fixed MASTER operation:<br />

- The additional drives will be selected<br />

depending on the Run Time. So the drive<br />

with the lowest Run Time will be selected<br />

first. The Run Time is monitored in menus<br />

[39H] to [39M] in sequence. For each drive<br />

the Run Time can be reset.<br />

- When drives are stopped, the drive with<br />

the longest Run Time will be stopped first.<br />

- Maximum 7 drives can be used.<br />

Alternating MASTER operation:<br />

- When the drive is powered up, one drive is<br />

selected as the Master drive. The selection<br />

criteria depends on the Change Condition<br />

[394]. The drive will be selected according<br />

to the Run Time. So the drive with the lowest<br />

Run Time will be selected first. The Run<br />

Time is monitored in menus [39H] to [39M]<br />

in sequence. For each drive the Run Time<br />

can be reset.<br />

- A maximum of 6 drives can be used.<br />

Modbus Instance no/DeviceNet no: 43163<br />

Profibus slot/index 169/67<br />

Fieldbus format<br />

Modbus format<br />

393 Select <strong>Drive</strong><br />

StpA<br />

Sequence<br />

UInt<br />

UInt<br />

NOTE: This menu will NOT be active if less than 3 drives<br />

are selected.<br />

104 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Change Condition [394]<br />

This parameter determines the criteria for changing the master.<br />

This menu only appears if Alternating MASTER operation<br />

is selected. The elapsed run time of each drive is<br />

monitored. The elapsed run time always determines which<br />

drive will be the 'new' master drive.<br />

This function is only active if the parameter Select <strong>Drive</strong><br />

[393]=All.<br />

Default:<br />

Stop 0<br />

Timer 1<br />

Both 2<br />

Both<br />

Communication information<br />

The Runtime of the master drive determines<br />

when a master drive has to be<br />

changed. The change will only take place<br />

after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition<br />

- Trip condition.<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The change will take place immediately.<br />

So during operation the additional<br />

pumps will be stopped temporarily, the<br />

'new' master will be selected according to<br />

the Run Time and the additional pumps will<br />

be started again.<br />

It is possible to leave 2 pumps running during<br />

the change operation. This can be set<br />

with <strong>Drive</strong>s on Change [396].<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The 'new' master will be selected<br />

according to the elapsed Run Time. The<br />

change will only take place after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition.<br />

- Trip condition.<br />

Modbus Instance no/DeviceNet no: 43164<br />

Profibus slot/index 169/68<br />

Fieldbus format<br />

Modbus format<br />

394 Change Cond<br />

Stp A Both<br />

UInt<br />

UInt<br />

Change Timer [395]<br />

When the time set here is elapsed, the master drive will be<br />

changed. This function is only active if Select <strong>Drive</strong><br />

[393]=All and Change Cond [394]= Timer/ Both.<br />

Default:<br />

Range:<br />

50 h<br />

1-3000 h<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43165<br />

Profibus slot/index 169/69<br />

Fieldbus format<br />

Modbus format<br />

<strong>Drive</strong>s on Change [396]<br />

If a master drive is changed according to the timer function<br />

(Change Condition=Timer/Both [394]), it is possible to<br />

leave additional pumps running during the change operation.<br />

With this function the change operation will be as<br />

smooth as possible. The maximum number to be programmed<br />

in this menu depends on the number of additional<br />

drives.<br />

Example:<br />

If the number of drives is set to 6, the maximum value will<br />

be 4. This function is only active if Select <strong>Drive</strong> [393]=All.<br />

Default: 0<br />

Range: 0 to (the number of drives - 2)<br />

Communication information<br />

UInt, 1=1 h<br />

UInt, 1=1 h<br />

Modbus Instance no/DeviceNet no: 43166<br />

Profibus slot/index 169/70<br />

Fieldbus format<br />

Modbus format<br />

395 Change Timer<br />

StpA<br />

50h<br />

396 <strong>Drive</strong>s on Ch<br />

StpA<br />

0<br />

UInt<br />

UInt<br />

NOTE: If the Status feedback inputs (DigIn 9 to Digin 14)<br />

are used, the master drive will be changed immediately<br />

if the feedback generates an 'Error'.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 105


Upper Band [397]<br />

If the speed of the master drive comes into the upper band,<br />

an additional drive will be added after a delay time that is set<br />

in start delay [399].<br />

Default: 10%<br />

Range:<br />

Communication information<br />

Example:<br />

Max <strong>Speed</strong> = 1500 rpm<br />

Min <strong>Speed</strong> = 300 rpm<br />

Upper Band = 10%<br />

Start delay will be activated:<br />

Range = Max <strong>Speed</strong> to Min <strong>Speed</strong> = 1500–300 = 1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 1500–120 = 1380 rpm<br />

Fig. 91 Upper band<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43167<br />

Profibus slot/index 169/71<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

<strong>Speed</strong><br />

Max<br />

Min<br />

Lower Band [398]<br />

If the speed of the master drive comes into the lower band<br />

an additional drive will be stopped after a delay time. This<br />

delay time is set in the parameter Stop Delay [39A].<br />

Default: 10%<br />

Range:<br />

397 Upper Band<br />

Stp 10%<br />

A<br />

Upper band<br />

Start Delay [399]<br />

398 Lower Band<br />

StpA<br />

10%<br />

next pump starts<br />

Flow/Pressure<br />

(NG_50-PC-12_1)<br />

0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43168<br />

Profibus slot/index 169/72<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Example:<br />

Max <strong>Speed</strong> = 1500 rpm<br />

Min <strong>Speed</strong> = 300 rpm<br />

Lower Band = 10%<br />

Stop delay will be activated:<br />

Range = Max <strong>Speed</strong> - Min <strong>Speed</strong> = 1500–300 = 1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 300 + 120 = 420 rpm<br />

<strong>Speed</strong><br />

Max<br />

Min<br />

Fig. 92 Lower band<br />

Start Delay [399]<br />

This delay time must have elapsed before the next pump is<br />

started. A delay time prevents the nervous switching of<br />

pumps.<br />

Default:<br />

Range:<br />

0 s<br />

0-999 s<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43169<br />

Profibus slot/index 169/73<br />

Fieldbus format Long, 1=1s<br />

Modbus format<br />

“top” pump stops<br />

Stop Delay [39A]<br />

Lower band<br />

399 Start Delay<br />

Stp A<br />

0s<br />

EInt<br />

Flow/Pressure<br />

(NG_50-PC-13_1)<br />

106 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Stop Delay [39A]<br />

This delay time must have elapsed before the 'top' pump is<br />

stopped. A delay time prevents the nervous switching of<br />

pumps.<br />

Default:<br />

Range:<br />

39A Stop Delay<br />

Stp A<br />

0s<br />

0 s<br />

0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43170<br />

Profibus slot/index 169/74<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Upper Band Limit [39B]<br />

If the speed of the pump reaches the upper band limit, the<br />

next pump is started immediately without delay. If a start<br />

delay is used this delay will be ignored. Range is between<br />

0%, equalling max speed, and the set percentage for the<br />

UpperBand [397].<br />

39B Upp Band Lim<br />

Stp 0%<br />

A<br />

Lower Band Limit [39C]<br />

If the speed of the pump reaches the lower band limit, the<br />

'top' pump is stopped immediately without delay. If a stop<br />

delay is used this delay will be ignored. Range is from 0%,<br />

equalling min speed, to the set percentage for the Lower<br />

Band [398].<br />

Default: 0%<br />

Range:<br />

0 to Lower Band level. 0% (=min speed) means<br />

that he Limit function is switched off.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43172<br />

Profibus slot/index 169/76<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

<strong>Speed</strong><br />

Max<br />

39C Low Band Lim<br />

StpA<br />

0%<br />

“top” pump stops<br />

immediately<br />

EInt<br />

Default: 0%<br />

Range:<br />

0 to Upper Band level. 0% (=max speed) means<br />

that the Limit function is switched off.<br />

Communication information<br />

Min<br />

Lower band<br />

Stop Delay [39A]<br />

Lower band<br />

limit [39C]<br />

Flow/Pressure<br />

(NG_50-PC-15_2)<br />

Modbus Instance no/DeviceNet no: 43171<br />

Profibus slot/index 169/75<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

<strong>Speed</strong><br />

Max<br />

Upper band<br />

EInt<br />

next pump starts<br />

immediately<br />

Upper band<br />

limit [39B]<br />

Fig. 94 Lower band limit<br />

Settle Time Start [39D]<br />

The settle start allows the process to settle after a pump is<br />

switched on before the pump control continues. If an additional<br />

pump is started D.O.L. (Direct On Line) or Y/ Δ, the<br />

flow or pressure can still fluctuate due to the 'rough' start/<br />

stop method. This could cause unnecessary starting and<br />

stopping of additional pumps.<br />

During the Settle start:<br />

• PID controller is off.<br />

• The speed is kept at a fixed level after adding a pump.<br />

Min<br />

Fig. 93 Upper band limit<br />

Start Delay [399]<br />

Flow/Pressure<br />

(NG_50-PC-14_2)<br />

Default:<br />

Range:<br />

39D Settle Start<br />

StpA<br />

0s<br />

0 s<br />

0-999 s<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 107


Communication information<br />

Modbus Instance no/DeviceNet no: 43173<br />

Profibus slot/index 169/77<br />

Fieldbus format<br />

Modbus format<br />

Transition <strong>Speed</strong> Start [39E]<br />

The transition speed start is used to minimize a flow/pressure<br />

overshoot when adding another pump. When an additional<br />

pump needs to be switched on, the master pump will<br />

slow down to the set transition speed start value, before the<br />

additional pump is started. The setting depends on the<br />

dynamics of both the master drive and the additional drives.<br />

The transition speed is best set by trial and error.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43174<br />

Profibus slot/index 169/78<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39E TransS Start<br />

Stp 60%<br />

A<br />

EInt<br />

Example<br />

Max <strong>Speed</strong> = 1500 rpm<br />

Min <strong>Speed</strong> = 200 rpm<br />

TransS Start = 60%<br />

When an additional pump is needed, the speed will be controlled<br />

down to min speed + (60% x (1500 rpm - 200 rpm))<br />

= 200 rpm + 780 rpm = 980 rpm. When this speed is<br />

reached, the additional pump with the lowest run time<br />

hours will be switched on.<br />

<strong>Speed</strong><br />

Actual<br />

Trans<br />

Min<br />

Fig. 95 Transition speed start<br />

Flow/Pressure<br />

Fig. 96 Effect of transition speed<br />

Settle Time Stop [39F]<br />

The settle stop allows the process to settle after a pump is<br />

switched off before the pump control continues. If an additional<br />

pump is stopped D.O.L. (Direct On Line) or Y/ Δ,<br />

the flow or pressure can still fluctuate due to the 'rough'<br />

start/stop method. This could cause unnecessary starting<br />

and stopping of additional pumps.<br />

During the Settle stop:<br />

• PID controller is off.<br />

• the speed is kept at a fixed level after stopping a pump<br />

Default:<br />

Range:<br />

0 s<br />

Switch on<br />

procedure starts<br />

0–999 s<br />

Communication information<br />

Additional pump<br />

Master pump<br />

Actual start<br />

command of next<br />

pump (RELAY)<br />

Transition speed<br />

decreases overshoot<br />

39F Settle Stop<br />

StpA<br />

0s<br />

Flow/Pressure<br />

(NG_50-PC-16_1)<br />

Time<br />

Modbus Instance no/DeviceNet no: 43175<br />

Profibus slot/index 169/79<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

108 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Transition <strong>Speed</strong> Stop [39G]<br />

The transition speed stop is used to minimize a flow/pressure<br />

overshoot when shutting down an additional pump.<br />

The setting depends on the dynamics of both the master<br />

drive and the additional drives.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43176<br />

Profibus slot/index 169/80<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39G TransS Stop<br />

Stp 60%<br />

A<br />

EInt<br />

Example<br />

Max <strong>Speed</strong> = 1500 rpm<br />

Min <strong>Speed</strong> = 200 rpm<br />

TransS Start = 60%<br />

When less additional pumps are needed, the speed will be<br />

controlled up to min speed + (60% x (1500 rpm - 200<br />

rpm)) = 200 rpm + 780 rpm = 980 rpm. When this speed is<br />

reached, the additional pump with the highest run time<br />

hours will be switched off.<br />

<strong>Speed</strong><br />

Max<br />

Actual shut down of pump<br />

Master pump<br />

Run Times 1-6 [39H] to [39M]<br />

Unit:<br />

Range:<br />

h:m (hours:minutes)<br />

0h:0m–65535h:59m.<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Reset Run Times 1-6 [39H1] to [39M1]<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

31051 hours, 31052 minutes,<br />

31054 hours, 31055 minutes,<br />

31057 hours, 31058 minutes,<br />

31060 hours, 31061 minutes,<br />

31063 hours, 31064 minutes,<br />

31066 hours, 31067 minutes<br />

121/195, 121/198, 121/201,<br />

121/204, 121/207, 121/210<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 38–43, pump 1 -6<br />

Profibus slot/index 0/37–0/42<br />

Fieldbus format<br />

Modbus format<br />

39H Run Time 1<br />

StpA<br />

h:mm<br />

39H1 Rst Run Tm1<br />

StpA<br />

No<br />

UInt<br />

UInt<br />

Trans<br />

Actual<br />

Min<br />

Additional pump<br />

Flow/Pressure<br />

Switch off procedure starts<br />

Fig. 97 Transition speed stop<br />

Pump Status [39N]<br />

39N Pump 123456<br />

StpA<br />

OCD<br />

Indication<br />

C<br />

D<br />

O<br />

E<br />

Description<br />

Control, master pump, only when alternating<br />

master is used<br />

Direct control<br />

Pump is off<br />

Pump error<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 109


11.4 Load Monitor and Process<br />

Protection [400]<br />

11.4.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a load<br />

monitor. Load monitors are used to protect machines and<br />

processes against mechanical overload and underload, e.g. a<br />

conveyer belt or screw conveyer jamming, belt failure on a<br />

fan and a pump dry running. See explanation in section 7.5,<br />

page 38.<br />

Alarm Select [411]<br />

Selects the types of alarms that are active.<br />

Default:<br />

Off<br />

Off 0 No alarm functions active.<br />

Min 1<br />

Max 2<br />

Max+Min 3<br />

Communication information<br />

Alarm Trip [412]<br />

Selects which alarm must cause a trip to the VSD.<br />

Communication information<br />

Min Alarm active. The alarm output functions<br />

as an underload alarm.<br />

Max Alarm active. The alarm output functions<br />

as an overload alarm.<br />

Both Max and Min alarm are active. The<br />

alarm outputs function as overload and<br />

underload alarms.<br />

Modbus Instance no/DeviceNet no: 43321<br />

Profibus slot/index 169/225<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Selection: Same as in menu [411]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43322<br />

Profibus slot/index 169/226<br />

Fieldbus format<br />

Modbus format<br />

411 Alarm Select<br />

Stp A<br />

Off<br />

412 Alarm trip<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

Ramp Alarm [413]<br />

This function inhibits the (pre) alarm signals during acceleration/deceleration<br />

of the motor to avoid false alarms.<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Communication information<br />

Alarm Start Delay [414]<br />

This parameter is used if, for example, you want to override<br />

an alarm during the start-up procedure.<br />

Sets the delay time after a run command, after which the<br />

alarm may be given.<br />

• If Ramp Alarm=On. The start delay begins after a RUN<br />

command.<br />

• If Ramp Alarm=Off. The start delay begins after the<br />

acceleration ramp.<br />

Communication information<br />

(Pre) alarms are inhibited during acceleration/deceleration.<br />

(Pre) alarms active during acceleration/<br />

deceleration.<br />

Modbus Instance no/DeviceNet no: 43323<br />

Profibus slot/index 169/227<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Range:<br />

2 s<br />

0-3600 s<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43324<br />

Profibus slot/index 169/228<br />

Fieldbus format<br />

Modbus format<br />

413 Ramp Alarm<br />

Stp A<br />

Off<br />

414 Start Delay<br />

Stp A<br />

2s<br />

Long, 1=1 s<br />

EInt<br />

Load Type [415]<br />

In this menu you select monitor type according to the load<br />

characteristic of your application. By selecting the required<br />

monitor type, the overload and underload alarm function<br />

can be optimized according to the load characteristic.<br />

When the application has a constant load over the whole<br />

speed range, i.e. extruder or screw compressor, the load type<br />

110 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


can be set to basic. This type uses a single value as a reference<br />

for the nominal load. This value is used for the complete<br />

speed range of the VSD. The value can be set or automatically<br />

measured. See Autoset Alarm [41A] and Normal Load<br />

[41B] about setting the nominal load reference.<br />

The load curve mode uses an interpolated curve with 9 load<br />

values at 8 equal speed intervals. This curve is populated by<br />

a test run with a real load. This can be used with any smooth<br />

load curve including constant load.<br />

Max Alarm Margin is a percentage of nominal motor<br />

torque.<br />

Default: 15%<br />

Range: 0–400%<br />

4161 MaxAlarmMar<br />

Stp 15%<br />

A<br />

Load<br />

Max Alarm<br />

Basic<br />

Min Alarm<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43326<br />

Profibus slot/index 169/230<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Fig. 98<br />

Default:<br />

Basic 0<br />

Load<br />

Curve<br />

1<br />

Basic<br />

Communication information<br />

Max Alarm [416]<br />

Uses a fixed maximum and minimum load<br />

level over the full speed range. Can be used<br />

in situations where the torque is independent<br />

of the speed.<br />

Uses the measured actual load characteristic<br />

of the process over the speed range.<br />

Modbus Instance no/DeviceNet no: 43325<br />

Profibus slot/index 169/229<br />

Fieldbus format<br />

Modbus format<br />

Load curve<br />

415 Load Type<br />

Stp A Basic<br />

UInt<br />

UInt<br />

<strong>Speed</strong><br />

Max Alarm Margin [4161]<br />

With load type Basic, [415], used the Max Alarm Margin<br />

sets the band above the Normal Load, [41B], menu that<br />

does not generate an alarm. With load type Load Curve,<br />

[415], used the Max Alarm Margin sets the band above the<br />

Load Curve, [41C], that does not generate an alarm. The<br />

Max Alarm delay [4162]<br />

Sets the delay time between the first occurrence of max<br />

alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43330<br />

Profibus slot/index 169/234<br />

Fieldbus format<br />

Modbus format<br />

Max Pre Alarm [417]<br />

Long, 1=0.1 s<br />

EInt<br />

Max Pre AlarmMargin [4171]<br />

With load type Basic, [415], used the Max Pre-Alarm Margin<br />

sets the band above the Normal Load, [41B], menu that<br />

does not generate a pre-alarm. With load type Load Curve,<br />

[415], used the Max Pre-Alarm Margin sets the band above<br />

the Load Curve, [41C], that does not generate a pre-alarm.<br />

The Max Pre-Alarm Margin is a percentage of nominal<br />

motor torque.<br />

Default: 10%<br />

Range: 0–400%<br />

4162 MaxAlarmDel<br />

Stp 0.1s<br />

A<br />

4171 MaxPreAlMar<br />

Stp 10%<br />

A<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 111


Communication information<br />

Modbus Instance no/DeviceNet no: 43327<br />

Profibus slot/index 169/231<br />

Fieldbus format Long, 1=0.1%<br />

Modbus format<br />

EInt<br />

Max Pre Alarm delay [4172]<br />

Sets the delay time between the first occurrence of max pre<br />

alarm condition and after when the alarm is given.<br />

Min Pre Alarm Response delay [4182]<br />

Sets the delay time between the first occurrence of min pre<br />

alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

Communication information<br />

4182 MinPreAlDel<br />

Stp 0.1s<br />

A<br />

0.1 s<br />

0-90 s<br />

Default:<br />

Range:<br />

4172 MaxPreAlDel<br />

Stp 0.1s<br />

A<br />

0.1 s<br />

0–90 s<br />

Modbus Instance no/DeviceNet no: 43332<br />

Profibus slot/index 169/236<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43331<br />

Profibus slot/index 169/235<br />

Fieldbus format<br />

Modbus format<br />

Min Pre Alarm [418]<br />

Long, 1=0.1 s<br />

EInt<br />

Min Pre Alarm Margin [4181]<br />

With load type Basic, [415], used the Min Pre-Alarm Margin<br />

sets the band under the Normal Load, [41B], menu that<br />

does not generate a pre-alarm. With load type Load Curve,<br />

[415], used the Min Pre-Alarm Margin sets the band under<br />

the Load Curve, [41C], that does not generate a pre-alarm.<br />

The Min Pre-Alarm Margin is a percentage of nominal<br />

motor torque.<br />

Default: 10%<br />

Range: 0-400%<br />

4181 MinPreAlMar<br />

Stp 10%<br />

A<br />

Min Alarm [419]<br />

Min Alarm Margin [4191]<br />

With load type Basic, [415], used the Min Alarm Margin<br />

sets the band under the Normal Load, [41B], menu that<br />

does not generate an alarm. With load type Load Curve,<br />

[415], used the Min Alarm Margin sets the band under the<br />

Load Curve, [41C], that does not generate an alarm. The<br />

Max Alarm Margin is a percentage of nominal motor<br />

torque.<br />

Default: 15%<br />

Range: 0-400%<br />

Communication information<br />

4191 MinAlarmMar<br />

Stp 15%<br />

A<br />

Modbus Instance no/DeviceNet no: 43329<br />

Profibus slot/index 169/233<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43328<br />

Profibus slot/index 169/232<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

112 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Min Alarm Response delay [4192]<br />

Sets the delay time between the first occurrence of min<br />

alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

4192 MinAlarmDel<br />

Stp 0.1s<br />

A<br />

Modbus Instance no/DeviceNet no: 43333<br />

Profibus slot/index 169/237<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Autoset Alarm [41A]<br />

The Autoset Alarm function can measure the nominal load<br />

that is used as reference for the alarm levels. If the selected<br />

Load Type [415] is Basic it copies the load the motor is running<br />

with to the menu Normal Load [41B]. The motor<br />

must run on the speed that generates the load that needs to<br />

be recorded. If the selected Load Type [415] is Load Curve it<br />

performs a test-run and populates the Load Curve [41C]<br />

with the found load values.<br />

WARNING: When autoset does a test run the<br />

motor and application/machine will ramp up<br />

to maximum speed.<br />

NOTE: The motor must be running for the Autoset Alarm<br />

function to succeed. A not running motor generates a<br />

“Failed!” message.<br />

The default set levels for the (pre)alarms are:<br />

Overload<br />

Underload<br />

Max Alarm<br />

Max Pre Alarm<br />

These default set levels can be manually changed in menus<br />

[416] to [419]. After execution the message “Autoset OK!” is<br />

displayed for 1s and the selection reverts to “No”.<br />

Normal Load [41B]<br />

Set the level of the normal load. The alarm or pre alarm will<br />

be activated when the load is above/under normal load ±<br />

margin.<br />

Default: 100%<br />

Range:<br />

Communication information<br />

menu [4161] + [41B]<br />

menu [4171] + [41B]<br />

Min Pre Alarm menu [41B] - [4181]<br />

Min Alarm menu [41B] - [4191]<br />

0-400% of max torque<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

Modbus Instance no/DeviceNet no: 43335<br />

Profibus slot/index 169/239<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

41B Normal Load<br />

Stp 100%<br />

A<br />

EInt<br />

41A AutoSet Alrm<br />

Stp A<br />

No<br />

Default: No<br />

No 0<br />

Yes 1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43334<br />

Profibus slot/index 169/238<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Load Curve [41C]<br />

The load curve function can be used with any smooth load<br />

curve. The curve can be populated with a test-run or the values<br />

can be entered or changed manually.<br />

Load Curve 1-9 [41C1]-[41C9]<br />

The measured load curve is based on 9 stored samples. The<br />

curve starts at minimum speed and ends at maximum speed,<br />

the range in between is divided into 8 equal steps. The measured<br />

values of each sample are displayed in [41C1] to<br />

[41C9] and can be adapted manually. The value of the 1st<br />

sampled value on the load curve is displayed.<br />

41C1 Load Curve1<br />

Stp 0rpm 100%<br />

A<br />

Default: 100%<br />

Range:<br />

0–400% of max torque<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 113


Communication information<br />

Min-Max alarm tolerance band graph<br />

combination and the load of the motor at the time the dip<br />

occurs, see Fig. 100.<br />

1<br />

Min <strong>Speed</strong><br />

Max <strong>Speed</strong><br />

421 Low Volt OR<br />

Stp A<br />

On<br />

Default:<br />

On<br />

0.5<br />

Off 0 At a voltage dip the low voltage trip will protect.<br />

On 1<br />

At mains dip, VSD ramps down until voltage<br />

rises.<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

<strong>Speed</strong><br />

Measured load samples<br />

Min-max tolerance band<br />

Max alarm limit<br />

Min alarm limit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43361<br />

Profibus slot/index 170/10<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no:<br />

43336%, 43337 rpm,<br />

43338%, 43339 rpm,<br />

43340%, 43341 rpm,<br />

43342%, 43343 rpm,<br />

43344%, 43345 rpm,<br />

43346%, 43347 rpm,<br />

43348%, 43349 rpm,<br />

43350%, 43351 rpm,<br />

43352%, 43353 rpm<br />

DC link voltage<br />

Override<br />

level<br />

Low Volt.<br />

level<br />

Profibus slot/index<br />

169/240, 169/242,<br />

169/244, 169/246,<br />

169/248, 169/250,<br />

169/252, 169/254,<br />

170/1<br />

<strong>Speed</strong><br />

t<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

(06-F60new)<br />

t<br />

NOTE: The speed values depend on the Min- and Max<br />

<strong>Speed</strong> values. they are read only and cannot be<br />

changed.<br />

Fig. 99<br />

11.4.2 Process Protection [420]<br />

Submenu with settings regarding protection functions for<br />

the VSD and the motor.<br />

Low Voltage Override [421]<br />

If a dip in the mains supply occurs and the low voltage override<br />

function is enabled, the VSD will automatically<br />

decrease the motor speed to keep control of the application<br />

and prevent an under voltage trip until the input voltage<br />

rises again. Therefore the rotating energy in the motor/load<br />

is used to keep the DC link voltage level at the override level,<br />

for as long as possible or until the motor comes to a standstill.<br />

This is dependent on the inertia of the motor/load<br />

Fig. 100 Low voltage override<br />

NOTE: During the low voltage override the LED trip/limit<br />

blinks.<br />

Rotor locked [422]<br />

With the rotor locked function enabled, the VSD will protect<br />

the motor and application when this is stalled whilst<br />

increasing the motor speed from standstill. This protection<br />

will coast the motor to stop and indicate a fault when the<br />

Torque Limit has been active at very low speed for more<br />

than 5 seconds.<br />

114 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Default: Off<br />

Off 0 No detection<br />

On 1<br />

Communication information<br />

Motor lost [423]<br />

With the motor lost function enabled, the VSD is able to<br />

detect a fault in the motor circuit: motor, motor cable, thermal<br />

relay or output filter. Motor lost will cause a trip, and<br />

the motor will coast to standstill, when a missing motor<br />

phase is detected during a period of 5 s.<br />

Communication information<br />

VSD will trip when locked rotor is detected.<br />

Trip message “Locked Rotor”.<br />

Modbus Instance no/DeviceNet no: 43362<br />

Profibus slot/index 170/11<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Off 0<br />

Trip 1<br />

422 Rotor locked<br />

Stp A<br />

Off<br />

423 Motor lost<br />

Stp A<br />

Off<br />

Off<br />

Function switched off to be used if no<br />

motor or very small motor connected.<br />

VSD will trip when the motor is disconnected.<br />

Trip message “Motor Lost”.<br />

Modbus Instance no/DeviceNet no: 43363<br />

Profibus slot/index 170/12<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Overvolt control [424]<br />

Used to switch off the overvoltage control function when<br />

only braking by brake chopper and resistor is required. The<br />

overvoltage control function, limits the braking torque so<br />

that the DC link voltage level is controlled at a high, but<br />

safe, level. This is achieved by limiting the actual deceleration<br />

rate during stopping. In case of a defect at the brake<br />

chopper or the brake resistor the VSD will trip for “Overvoltage”<br />

to avoid a fall of the load e.g. in crane applications.<br />

NOTE: Overvoltage control should not be activated if<br />

brake chopper is used.<br />

Default: On<br />

On 0 Overvoltage control activated<br />

Off 1 Overvoltage control off<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43364<br />

Profibus slot/index 170/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5 I/Os and Virtual<br />

Connections [500]<br />

Main menu with all the settings of the standard inputs and<br />

outputs of the VSD.<br />

11.5.1 Analogue Inputs [510]<br />

Submenu with all settings for the analogue inputs.<br />

AnIn1 Function [511]<br />

Sets the function for Analogue input 1. Scale and range are<br />

defined by AnIn1 Advanced settings [513].<br />

Default: Process Ref<br />

Off 0 Input is not active<br />

Max <strong>Speed</strong> 1 The input acts as an upper speed limit.<br />

Max Torque 2 The input acts as an upper torque limit.<br />

Process Val 3<br />

Process Ref 4<br />

Communication information<br />

424 Over Volt Ctl<br />

Stp A<br />

On<br />

511 AnIn1 Fc<br />

Stp A Process Ref<br />

The input value equals the actual process<br />

value (feedback) and is compared to the<br />

reference signal (set point) by the PID controller,<br />

or can be used to display and view<br />

the actual process value.<br />

Reference value is set for control in process<br />

units, see Process Source [321] and<br />

Process Unit [322].<br />

Modbus Instance no/DeviceNet no: 43201<br />

Profibus slot/index 169/105<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 115


NOTE: When AnInX Func=Off, the connected signal will<br />

still be available for Comparators [610].<br />

Adding analogue inputs<br />

If more then one analogue input is set to the same function,<br />

the values of the inputs can be added together. In the following<br />

examples we assume that Process Source [321] is set to<br />

<strong>Speed</strong>.<br />

Example 1: Add signals with different weight (fine tuning).<br />

Signal on AnIn1 = 10 mA<br />

Signal on AnIn2 = 5 mA<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 4-20 mA<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 4-20 mA<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = User defined<br />

[5167] AnIn2 Value Max = 300 rpm<br />

[5168] AnIn2 Operation = Add+<br />

Calculation:<br />

AnIn1 = (10-4) / (20-4) x (1500-0) + 0 = 562.5 rpm<br />

AnIn2 = (5-4) / (20-4) x (300-0) + 0 = 18.75 rpm<br />

The actual process reference will be:<br />

+562.5 + 18.75 = 581 rpm<br />

Analogue Input Selection via Digital Inputs:<br />

When two different external Reference signals are used, e.g.<br />

4-20mA signal from control centre and a 0-10 V locally<br />

mounted potentiometer, it is possible to switch between<br />

these two different analogue input signals via a Digital Input<br />

set to “AnIn Select”.<br />

AnIn1 is 4-20 mA<br />

AnIn2 is 0-10 V<br />

DigIn3 is controlling the AnIn selection; HIGH is 4-20 mA,<br />

LOW is 0-10 V<br />

[511] AnIn1 Fc = Process Ref;<br />

set AnIn1 as reference signal input<br />

[512] AnIn1 Setup = 4-20mA;<br />

set AnIn1 for a current reference signal<br />

[513A] AnIn1 Enable = DigIn;<br />

set AnIn1 to be active when DigIn3 is HIGH<br />

[514] AnIn2 Fc = Process Ref;<br />

set AnIn2 as reference signal input<br />

[515] AnIn2 Setup = 0-10V;<br />

set AnIn2 for a voltage reference signal<br />

[516A] AnIn2 Enabl = !DigIn;<br />

set AnIn2 to be active when DigIn3 is LOW<br />

[523] DigIn3=AnIn;<br />

set DIgIn3 as input fot selection of AI reference<br />

Subtracting analogue inputs<br />

Example 2: Subtract two signals<br />

Signal on AnIn1 = 8 V<br />

Signal on AnIn2 = 4 V<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 0-10 V<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 0-10 V<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = Max (1500 rpm)<br />

[5168] AnIn2 Operation = Sub-<br />

Calculation:<br />

AnIn1 = (8-0) / (10-0) x (1500-0) + 0 = 1200 rpm<br />

AnIn2 = (4-0) / (10-0) x (1500-0) + 0 = 600 rpm<br />

The actual process reference will be:<br />

+1200 - 600 = 600 rpm<br />

AnIn1 Setup [512]<br />

The analogue input setup is used to configure the analogue<br />

input in accordance with the signal used that will be connected<br />

to the analogue input. With this selection the input<br />

can be determined as current (4-20 mA) or voltage<br />

(0-10 V) controlled input. Other selections are available for<br />

using a threshold (live zero), a bipolar input function, or a<br />

user defined input range. With a bipolar input reference signal,<br />

it is possible to control the motor in two directions. See<br />

Fig. 101.<br />

NOTE: The selection of voltage or current input is done<br />

with S1. When the switch is in voltage mode only the<br />

voltage menu items are selectable. With the switch in<br />

current mode only the current menu items are<br />

selectable.<br />

116 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Default:<br />

Dependent on<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

3<br />

0–10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol<br />

V<br />

7<br />

512 AnIn1 Setup<br />

Stp A 4-20mA<br />

4-20 mA<br />

Setting of switch S1<br />

The current input has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the input signal. See Fig. 103.<br />

Normal full current scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 102.<br />

The scale of the current controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

Sets the input for a bipolar current input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

Normal full voltage scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 102.<br />

The voltage input has a fixed threshold<br />

(Live Zero) of 2 V and controls the full range<br />

for the input signal. See Fig. 103.<br />

The scale of the voltage controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

Sets the input for a bipolar voltage input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

-10 V<br />

Fig. 101<br />

100 %<br />

Fig. 102 Normal full-scale configuration<br />

100 %<br />

n<br />

<strong>Speed</strong><br />

100 %<br />

n<br />

0<br />

100 %<br />

10 V<br />

20 mA<br />

(NG_06-F21)<br />

Ref<br />

0 10 V<br />

20mA<br />

(NG_06-F21)<br />

n<br />

0–10 V<br />

0–20 mA<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

2–10 V<br />

4–20 mA<br />

NOTE: Always check the needed set up when the setting<br />

of S1 is changed; selection will not adapt automatically.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43202<br />

0 2 V<br />

4mA<br />

Fig. 103 2–10 V/4–20 mA (Live Zero)<br />

10 V<br />

2 0mA<br />

Ref<br />

Profibus slot/index 169/106<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 117


AnIn1 Advanced [513]<br />

NOTE: The different menus will automatically be set to<br />

either “mA” or “V”, based on the selection in AnIn 1<br />

Setup [512].<br />

AnIn1 Min [5131]<br />

Parameter to set the minimum value of the external reference<br />

signal. Only visible if [512] = User mA/V.<br />

Default:<br />

Range:<br />

0 V/4.00 mA<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43203<br />

Profibus slot/index 169/107<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

AnIn1 Max [5132]<br />

Parameter to set the maximum value of the external reference<br />

signal. Only visible if [512] = User mA/V.<br />

Default: 10.00 V/20.00 mA<br />

Range:<br />

Communication information<br />

513 AnIn1 Advan<br />

Stp A<br />

5131 AnIn1 Min<br />

Stp A 0V/4.00mA<br />

5132 AnIn1 Max<br />

Stp 10.0V/20.00mA<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Special function: Inverted reference signal<br />

If the AnIn minimum value is higher than the AnIn maximum<br />

value, the input will act as an inverted reference input,<br />

see Fig. 104.<br />

100 %<br />

n<br />

Fig. 104 Inverted reference<br />

AnIn1 Bipol [5133]<br />

This menu is automatically displayed if AnIn1 Setup is set to<br />

User Bipol mA or User Bipol V. The window will automatically<br />

show mA or V range according to selected function.<br />

The range is set by changing the positive maximum value;<br />

the negative value is automatically adapted accordingly.<br />

Only visible if [512] = User Bipol mA/V. The inputs RunR<br />

and RunL input need to be active, and Rotation, [219],<br />

must be set to “R+L”, to operate the bipolar function on the<br />

analogue input.<br />

Default:<br />

Range:<br />

0 1 0 V<br />

0.00–10.00 V<br />

Communication information<br />

0.0–20.0 mA, 0.00–10.00 V<br />

Modbus Instance no/DeviceNet no: 43205<br />

Profibus slot/index 169/109<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

EInt<br />

Invert<br />

AnIn Min ><br />

AnIn Max<br />

Ref<br />

5133 AnIn1 Bipol<br />

Stp 10.00V<br />

A<br />

(NG_06-F25)<br />

Modbus Instance no/DeviceNet no: 43204<br />

Profibus slot/index 169/108<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

EInt<br />

118 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


AnIn1 Function Min [5134]<br />

With AnIn1 Function Min the physical minimum value is<br />

scaled to selected process unit. The default scaling is<br />

dependent of the selected function of AnIn1 [511].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

Userdefined<br />

2 Define user value in menu [5135]<br />

Table 25 shows corresponding values for the min and max<br />

selections depending on the function of the analogue input<br />

[511].<br />

Table 25<br />

AnIn Function Min Max<br />

<strong>Speed</strong> Min <strong>Speed</strong> [341] Max <strong>Speed</strong> [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Process Value Process Min [324] Process Max [325]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43206<br />

Profibus slot/index 169/110<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn1 Function Value Min [5135]<br />

With AnIn1 Function ValMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5134].<br />

Default: 0.000<br />

Range: -10000.000 – 10000.000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43541<br />

Profibus slot/index 170/190<br />

Fieldbus format<br />

Modbus format<br />

5134 AnIn1 FcMin<br />

Stp A<br />

Min<br />

5135 AnIn1 VaMin<br />

Stp 0.000<br />

A<br />

Long,<br />

<strong>Speed</strong> 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnIn1 Function Max [5136]<br />

With AnIn1 Function Max the physical maximum value is<br />

scaled to selected process unit. The default scaling is<br />

dependent of the selected function of AnIn1 [511]. See<br />

Table 25.<br />

Default:<br />

Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5137]<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

43207<br />

Profibus slot/index 169/111<br />

Fieldbus format<br />

Modbus format<br />

AnIn1 Function Value Max [5137]<br />

With AnIn1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5136].<br />

Default: 0.000<br />

Range: -10000.000 – 10000.000<br />

Communication information<br />

Long,<br />

<strong>Speed</strong>/Torque 1=1 rpm or %.<br />

Other 1= 0.001<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43551<br />

Profibus slot/index 170/200<br />

Fieldbus format<br />

Modbus format<br />

5136 AnIn1 FcMax<br />

Stp A<br />

Max<br />

5137 AnIn1 VaMax<br />

Stp 0.000<br />

A<br />

Long,<br />

<strong>Speed</strong> 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

NOTE: With AnIn Min, AnIn Max, AnIn Function Min and<br />

AnIn Function Max settings, loss of feedback signals<br />

(e.g. voltage drop due to long sensor wiring) can be<br />

compensated to ensure an accurate process control.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 119


Example:<br />

Process sensor is a sensor with the following specification:<br />

Range: 0–3 bar<br />

Output: 2–10 mA<br />

Analogue input should be set up according to:<br />

[512] AnIn1 Setup = User mA<br />

[5131] AnIn1 Min = 2 mA<br />

[5132] AnIn1 Max = 10 mA<br />

[5134] AnIn1 Function Min = User-defined<br />

[5135] AnIn1 VaMin = 0.000 bar<br />

[5136] AnIn 1 Function Max = User-defined<br />

[5137] AnIn1 VaMax = 3.000 bar<br />

AnIn1 Operation [5138]<br />

Default:<br />

Add+ 0<br />

Sub- 1<br />

Add+<br />

Communication information<br />

AnIn1 Filter [5139]<br />

If the input signal is unstable (e.g. fluctuation reference<br />

value), the filter can be used to stabilize the signal. A change<br />

of the input signal will reach 63% on AnIn1 within the set<br />

AnIn1 Filter time. After 5 times the set time, AnIn1 will<br />

have reached 100% of the input change. See Fig. 105.<br />

Communication information<br />

Analogue signal is added to selected function<br />

in menu [511].<br />

Analogue signal is subtracted from<br />

selected function in menu [511].<br />

Modbus Instance no/DeviceNet no: 43208<br />

Profibus slot/index 169/112<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Range:<br />

0.1 s<br />

0.001 – 10.0 s<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43209<br />

Profibus slot/index 169/113<br />

Fieldbus format<br />

Modbus format<br />

5138 AnIn1 Oper<br />

Stp A Add+<br />

5139 AnIn1 Filt<br />

Stp 0.1s<br />

A<br />

Long, 1=0.001 s<br />

EInt<br />

AnIn change<br />

100%<br />

63%<br />

Fig. 105<br />

AnIn1 Enable [513A]<br />

Parameter for enable/disable analogue input selection via<br />

digital inputs (DigIn set to function AnIn Select).<br />

Default:<br />

On<br />

Original input signal<br />

On 0 AnIn1 is always active<br />

!DigIn 1 AnIn1 is only active if the digital input is low.<br />

DigIn 2 AnIn1 is only active if the digital input is high.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: AnIn1 43210<br />

Profibus slot/index AnIn1 169/114<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Function [514]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same function as AnIn1 Func [511].<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Communication information<br />

T<br />

Filtered AnIn signal<br />

5 X T<br />

513A AnIn1 Enabl<br />

Stp A<br />

On<br />

514 AnIn2 Fc<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43211<br />

Profibus slot/index 169/115<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

120 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


AnIn2 Setup [515]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same functions as AnIn1 Setup [512].<br />

Default: 4 – 20 mA<br />

Dependent on Setting of switch S2<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43212<br />

Profibus slot/index 169/116<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Advanced [516]<br />

Same functions and submenus as under AnIn1 Advanced<br />

[513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

515 AnIn2 Setup<br />

Stp A 4-20mA<br />

516 AnIn2 Advan<br />

Stp A<br />

AnIn3 Function [517]<br />

Parameter for setting the function of Analogue Input 3.<br />

Same function as AnIn1 Func [511].<br />

43213–43220<br />

43542<br />

43552<br />

169/117–124<br />

170/191<br />

170/201<br />

AnIn3 Setup [518]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

4–20 mA<br />

Dependent on Setting of switch S3<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43222<br />

Profibus slot/index 169/126<br />

Fieldbus format<br />

Modbus format<br />

AnIn3 Advanced [519]<br />

Same functions and submenus as under AnIn1 Advanced<br />

[513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

518 AnIn3 Setup<br />

Stp A 4-20mA<br />

AnIn4 Function [51A]<br />

Parameter for setting the function of Analogue Input 4.<br />

Same function as AnIn1 Func [511].<br />

UInt<br />

UInt<br />

519 AnIn3 Advan<br />

Stp A<br />

43223–43230<br />

43543<br />

43553<br />

169/127–169/134<br />

170/192<br />

170/202<br />

517 AnIn3 Fc<br />

Stp A<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Off<br />

51A AnIn4 Fc<br />

Stp A<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Off<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43221<br />

Profibus slot/index 169/125<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43231<br />

Profibus slot/index 169/135<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 121


AnIn4 Set-up [51B]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

4-20 mA<br />

Dependent on Setting of switch S4<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43232<br />

Profibus slot/index 169/136<br />

Fieldbus format<br />

Modbus format<br />

AnIn4 Advanced [51C]<br />

Same functions and submenus as under AnIn1 Advanced<br />

[513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

51B AnIn4 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

51C AnIn4 Advan<br />

Stp A<br />

43233–43240<br />

43544<br />

43554<br />

169/137–144<br />

170/193<br />

170/203<br />

11.5.2 Digital Inputs [520]<br />

Submenu with all the settings for the digital inputs.<br />

NOTE: Additional inputs will become available when the<br />

I/O option boards are connected.<br />

Digital Input 1 [521]<br />

To select the function of the digital input.<br />

On the standard control board there are eight digital inputs.<br />

If the same function is programmed for more than one input<br />

that function will be activated according to “OR” logic if<br />

nothing else is stated.<br />

Default: RunL<br />

Off 0 The input is not active.<br />

Ext. Trip 3<br />

Stop 4<br />

Enable 5<br />

RunR 6<br />

RunL 7<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

trip” immediately.<br />

NOTE: The External Trip is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Stop command according to the selected<br />

Stop mode in menu [33B].<br />

NOTE: The Stop command is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Enable command. General start condition<br />

to run the VSD. If made low during running<br />

the output of the VSD is cut off immediately,<br />

causing the motor to coast to zero<br />

speed.<br />

NOTE: If none of the digital inputs are programmed<br />

to “Enable”, the internal enable<br />

signal is active.<br />

NOTE: Activated according to “AND” logic.<br />

Run Right command. The output of the<br />

VSD will be a clockwise rotary field.<br />

Run Left command. The output of the VSD<br />

will be a counter-clockwise rotary field.<br />

Reset command. To reset a Trip condition<br />

Reset 9<br />

and to enable the Autoreset function.<br />

Preset Ctrl1 10 To select the Preset Reference.<br />

Preset Ctrl2 11 To select the Preset Reference.<br />

Preset Ctrl3 12 To select the Preset Reference.<br />

MotPot Up 13<br />

MotPot<br />

Down<br />

14<br />

521 DigIn 1<br />

Stp A<br />

RunL<br />

Increases the internal reference value<br />

according to the set AccMotPot time [333].<br />

Has the same function as a “real” motor<br />

potentiometer, see Fig. 86.<br />

Decreases the internal reference value<br />

according to the set DecMotPot time [334].<br />

See MotPot Up.<br />

122 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Pump1<br />

Feedb<br />

Pump2<br />

Feedb<br />

Pump3<br />

Feedb<br />

Pump4<br />

Feedb<br />

Pump5<br />

Feedb<br />

Pump6<br />

Feedb<br />

Timer 1<br />

Timer 2<br />

Set Ctrl 1<br />

Set Ctrl 2<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

Mot PreMag 25<br />

Jog 26<br />

Ext Mot<br />

Temp<br />

Loc/Rem<br />

27<br />

28<br />

AnIn select 29<br />

LC Level 30<br />

Feedback input pump1 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 2 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump3 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 4 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump5 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 6 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Timer 1 Delay [643] will be activated on the<br />

rising edge of this signal.<br />

Timer 2 Delay [653] will be activated on the<br />

rising edge of this signal.<br />

Activates other parameter set. See Table<br />

26 for selection possibilities.<br />

Activates other parameter set. See Table<br />

26 for selection possibilities.<br />

Pre-magnetises the motor. Used for faster<br />

motor start.<br />

To activate the Jog function. Gives a Run<br />

command with the set Jog speed and<br />

Direction, page 97.<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

Motor Temp” immediately.<br />

NOTE: The External Motor Temp is active<br />

low.<br />

Activate local mode defined in [2171] and<br />

[2172].<br />

Activate/deactivate analogue inputs<br />

defined in [513A], [516A], [519A] and<br />

[51CA]<br />

Liquid cooling low level signal.<br />

NOTE: The Liquid Cooling Level is active<br />

low.<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

Table 26<br />

Parameter Set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: To activate the parameter set selection, menu<br />

241 must be set to DigIn.<br />

Digital Input 2 [522] to Digital Input 8<br />

[528]<br />

Same function as DigIn 1 [521]. Default function for DigIn<br />

8 is Reset. For DigIn 3 to 7 the default function is Off.<br />

Default: RunR<br />

Selection: Same as in menu [521]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43241–43248<br />

Profibus slot/index 169/146–169/152<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Additional digital inputs [529] to [52H]<br />

Additional digital inputs with I/O option board installed,<br />

B1 DigIn 1 [529] - B3 DigIn 3 [52H]. B stands for board<br />

and 1 to 3 is the number of the board which is related to the<br />

position of the I/O option board on the option mounting<br />

plate. The functions and selections are the same as DigIn 1<br />

[521].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43501–43509<br />

Profibus slot/index 170/150–170/158<br />

Fieldbus format<br />

Modbus format<br />

522 DigIn 2<br />

Stp A<br />

Int<br />

Int<br />

RunR<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43241<br />

Profibus slot/index 169/145<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 123


11.5.3 Analogue Outputs [530]<br />

Submenu with all settings for the analogue outputs. Selections<br />

can be made from application and VSD values, in<br />

order to visualize actual status. Analogue outputs can also be<br />

used as a mirror of the analogue input. Such a signal can be<br />

used as:<br />

• a reference signal for the next VSD in a Master/Slave<br />

configuration (see Fig. 106).<br />

• a feedback acknowledgement of the received analogue<br />

reference value.<br />

AnOut1 Function [531]<br />

Sets the function for the Analogue Output 1. Scale and<br />

range are defined by AnOut1 Advanced settings [533].<br />

Default:<br />

<strong>Speed</strong><br />

Process Val 0<br />

Actual process value according to Process<br />

feedback signal.<br />

<strong>Speed</strong> 1 Actual speed.<br />

Torque 2 Actual torque.<br />

Process Ref 3 Actual process reference value.<br />

Shaft Power 4 Actual shaft power.<br />

Frequency 5 Actual frequency.<br />

Current 6 Actual current.<br />

El power 7 Actual electrical power.<br />

Output volt 8 Actual output voltage.<br />

DC-voltage 9 Actual DC link voltage.<br />

AnIn1 10<br />

AnIn2 11<br />

AnIn3 12<br />

AnIn4 13<br />

531 AnOut1 Fc<br />

StpA<br />

<strong>Speed</strong><br />

Mirror of received signal value on<br />

AnIn1.<br />

Mirror of received signal value on<br />

AnIn2.<br />

Mirror of received signal value on<br />

AnIn3.<br />

Mirror of received signal value on<br />

AnIn4.<br />

AnOut 1 Setup [532]<br />

Preset scaling and offset of the output configuration.<br />

Default:<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

3<br />

0-10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol V 7<br />

4-20mA<br />

Communication information<br />

The current output has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the output signal. See Fig. 103.<br />

Normal full current scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 102.<br />

The scale of the current controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar current output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Normal full voltage scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 102.<br />

The voltage output has a fixed threshold<br />

(Live Zero) of 2 V and controls the full<br />

range for the output signal. See Fig. 103.<br />

The scale of the voltage controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar voltage output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Modbus Instance no/DeviceNet no: 43252<br />

Profibus slot/index 169/156<br />

Fieldbus format<br />

Modbus format<br />

532 AnOut1 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

NOTE: When selections AnIn1, AnIn2 …. AnIn4 is<br />

selected, the setup of the AnOut (menu [532] or [535])<br />

has to be set to 0-10V or 0-20mA. When the AnOut Setup<br />

is set to e.g. 4-20mA, the mirroring is not working<br />

correct.<br />

Ref.<br />

VSD 1<br />

Master<br />

Ref.<br />

VSD 2<br />

Slave<br />

Communication information<br />

AnOut<br />

Modbus Instance no/DeviceNet no: 43251<br />

Profibus slot/index 169/155<br />

Fieldbus format<br />

UInt<br />

Fig. 106<br />

Modbus format<br />

UInt<br />

124 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


AnOut1 Advanced [533]<br />

With the functions in the AnOut1 Advanced menu, the output<br />

can be completely defined according to the application<br />

needs. The menus will automatically be adapted to “mA” or<br />

“V”, according to the selection in AnOut1 Setup [532].<br />

AnOut1 Min [5331]<br />

This parameter is automatically displayed if User mA or<br />

User V is selected in menu AnOut 1 Setup [532]. The menu<br />

will automatically adapt to current or voltage setting according<br />

to the selected setup. Only visible if [532] = User mA/V.<br />

Default:<br />

Range:<br />

4 mA<br />

Communication information<br />

AnOut1 Max [5332]<br />

This parameter is automatically displayed if User mA or<br />

User V is selected in menu AnOut1 Setup [532]. The menu<br />

will automatically adapt to current or voltage setting according<br />

to the selected setup. Only visible if [532] = User mA/V.<br />

Communication information<br />

0.00 – 20.00 mA, 0 – 10.00 V<br />

Modbus Instance no/DeviceNet no: 43253<br />

Profibus slot/index 169/157<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Default:<br />

Range:<br />

20.00 mA<br />

EInt<br />

0.00–20.00 mA, 0–10.00 V<br />

Modbus Instance no/DeviceNet no: 43254<br />

Profibus slot/index 169/158<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

533 AnOut 1 Adv<br />

Stp A<br />

5331 AnOut 1 Min<br />

Stp A<br />

4mA<br />

5332 AnOut 1 Max<br />

Stp 20.0mA<br />

EInt<br />

AnOut1 Bipol [5333]<br />

Automatically displayed if User Bipol mA or User Bipol V is<br />

selected in menu AnOut1 Setup. The menu will automatically<br />

show mA or V range according to the selected function.<br />

The range is set by changing the positive maximum value;<br />

the negative value is automatically adapted accordingly.<br />

Only visible if [512] = User Bipol mA/V.<br />

Default:<br />

Range:<br />

Communication information<br />

-10.00–10.00 V<br />

-10.00–10.00 V, -20.0–20.0 mA<br />

Modbus Instance no/DeviceNet no: 43255<br />

Profibus slot/index 169/159<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

EInt<br />

AnOut1 Function Min [5334]<br />

With AnOut1 Function Min the physical minimum value is<br />

scaled to selected presentation. The default scaling is<br />

dependent of the selected function of AnOut1 [531].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5335]<br />

Table 27 shows corresponding values for the min and max<br />

selections depending on the function of the analogue output<br />

[531].<br />

Table 27<br />

AnOut<br />

Function<br />

5333 AnOut1Bipol<br />

Stp -10.00-10.00V<br />

5334 AnOut1FCMin<br />

Stp A<br />

Min<br />

Min Value<br />

Max Value<br />

Process Value Process Min [324] Process Max [325]<br />

<strong>Speed</strong> Min <strong>Speed</strong> [341] Max <strong>Speed</strong> [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Shaft Power 0% Motor Power [223]<br />

Frequency 0 Hz Motor Frequency [222]<br />

Current 0 A Motor Current [224]<br />

El Power 0 W Motor Power [223]<br />

Output Voltage 0 V Motor Voltage [221]<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 125


Table 27<br />

AnOut<br />

Function<br />

DC voltage 0 V 1000 V<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

Communication information<br />

AnIn1 Function Value Min [5335]<br />

With AnOut1 Function VaMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5334].<br />

Communication information<br />

AnIn1 Function Min AnIn1 Function Max<br />

AnIn2 Function Min AnIn2 Function Max<br />

AnIn3 Function Min AnIn3 Function Max<br />

AnIn4 Function Min AnIn4 Function Max<br />

Modbus Instance no/DeviceNet no: 43256<br />

Profibus slot/index 169/160<br />

Fieldbus format<br />

Modbus format<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43545<br />

Profibus slot/index 170/194<br />

Fieldbus format<br />

Modbus format<br />

Min Value<br />

5335 AnOut1VaMin<br />

Stp 0.000<br />

A<br />

Max Value<br />

Long,<br />

1=0.1 W, 0.1 Hz, 0.1 A,<br />

0.1 V or 0.001<br />

EInt<br />

Long,<br />

<strong>Speed</strong> 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnOut1 Function Max [5336]<br />

With AnOut1 Function Min the physical minimum value is<br />

scaled to selected presentation. The default scaling is<br />

dependent on the selected function of AnOut1 [531]. See<br />

Table 27.<br />

5336 AnOut1FCMax<br />

Stp A<br />

Max<br />

Default: Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User defined 2 Define user value in menu [5337]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43257<br />

Profibus slot/index 169/161<br />

Fieldbus format Long, 0.001<br />

Modbus format<br />

AnOut1 Function Value Max [5337]<br />

With AnOut1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5334].<br />

Communication information<br />

AnOut2 Function [534]<br />

Sets the function for the Analogue Output 2.<br />

Communication information<br />

EInt<br />

NOTE: It is possible to set AnOut1 up as an inverted<br />

output signal by setting AnOut1 Min > AnOut1 Max. See<br />

Fig. 104.<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43555<br />

Profibus slot/index 170/204<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

<strong>Speed</strong> 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

Default: Torque<br />

Selection: Same as in menu [531]<br />

Modbus Instance no/DeviceNet no: 43261<br />

Profibus slot/index 169/165<br />

Fieldbus format<br />

Modbus format<br />

5337 AnOut1VaMax<br />

Stp 0.000<br />

A<br />

534 AnOut2 Fc<br />

Stp A Torque<br />

UInt<br />

UInt<br />

126 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


AnOut2 Setup [535]<br />

Preset scaling and offset of the output configuration for analogue<br />

output 2.<br />

Default: 4-20mA<br />

Selection: Same as in menu [532]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43262<br />

Profibus slot/index 169/166<br />

Fieldbus format<br />

Modbus format<br />

AnOut2 Advanced [536]<br />

Same functions and submenus as under AnOut1 Advanced<br />

[533].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

535 AnOut2 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

536 AnOut2 Advan<br />

Stp A<br />

43263–43267<br />

43546<br />

43556<br />

169/167–169/171<br />

170/195<br />

170/205<br />

11.5.4 Digital Outputs [540]<br />

Submenu with all the settings for the digital outputs.<br />

Digital Out 1 [541]<br />

Sets the function for the digital output 1.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Default:<br />

Off 0<br />

On 1<br />

Ready<br />

Output is not active and constantly<br />

low.<br />

Output is made constantly high, i.e.<br />

for checking circuits and trouble<br />

shooting.<br />

Run 2<br />

Running. The VSD output is active =<br />

produces current for the motor.<br />

Stop 3 The VSD output is not active.<br />

0Hz 4<br />

The output frequency=0±0.1Hz when<br />

in Run condition.<br />

Acc/Dec 5<br />

The speed is increasing or decreasing<br />

along the acc. ramp dec. ramp.<br />

At Process 6 The output = Reference.<br />

At Max spd 7<br />

The frequency is limited by the Maximum<br />

<strong>Speed</strong>.<br />

No Trip 8 No Trip condition active.<br />

Trip 9 A Trip condition is active.<br />

AutoRst Trip 10 Autoreset trip condition active.<br />

Limit 11 A Limit condition is active.<br />

Warning 12 A Warning condition is active.<br />

Ready 13<br />

T= T lim 14<br />

I>I nom 15<br />

Brake 16<br />

Sgnl


Max Alarm 20<br />

Max PreAlarm 21<br />

Min Alarm 22<br />

The max alarm level has been<br />

reached.<br />

The max pre alarm level has been<br />

reached.<br />

The min alarm level has been<br />

reached.<br />

Min PreAlarm 23<br />

The min pre alarm Level has been<br />

reached.<br />

LY 24 Logic output Y.<br />

!LY 25 Logic output Y inverted.<br />

LZ 26 Logic output Z.<br />

!LZ 27 Logic output Z inverted.<br />

CA 1 28 Analogue comparator 1 output.<br />

!A1 29 Analogue comp 1 inverted output.<br />

CA 2 30 Analogue comparator 2 output.<br />

!A2 31 Analogue comp 2 inverted output.<br />

CD 1 32 Digital comparator 1 output.<br />

!D1 33 Digital comp 1 inverted output.<br />

CD 2 34 Digital comparator 2 output.<br />

!D2 35 Digital comp 2 inverted output.<br />

Operation 36<br />

Run command is active or VSD running.<br />

The signal can be used to control<br />

the mains contactor if the VSD is<br />

equipped with Standby supply option.<br />

T1Q 37 Timer1 output<br />

!T1Q 38 Timer1 inverted output<br />

T2Q 39 Timer2 output<br />

!T2Q 40 Timer2 inverted output<br />

Sleeping 41 Sleeping function activated<br />

Crane Deviat 42 Tripped on deviation<br />

PumpSlave1 43 Activate pump slave 1<br />

PumpSlave2 44 Activate pump slave 2<br />

PumpSlave3 45 Activate pump slave 3<br />

PumpSlave4 46 Activate pump slave 4<br />

PumpSlave5 47 Activate pump slave 5<br />

PumpSlave6 48 Activate pump slave 6<br />

PumpMaster1 49 Activate pump master 1<br />

PumpMaster2 50 Activate pump master 2<br />

PumpMaster3 51 Activate pump master 3<br />

PumpMaster4 52 Activate pump master 4<br />

PumpMaster5 53 Activate pump master 5<br />

PumpMaster6 54 Activate pump master 6<br />

All Pumps 55 All pumps are running<br />

Only Master 56 Only the master is running<br />

Loc/Rem 57 Local/Rem function is active<br />

Standby 58 Standby supply option is active<br />

PTC Trip 59 Trip when function is active<br />

PT100 Trip 60 Trip when function is active<br />

Overvolt 61 Overvoltage due to high main voltage<br />

Overvolt G 62 Overvoltage due to generation mode<br />

Overvolt D 63 Overvoltage due to deceleration<br />

Acc 64 Acceleration along the acc. ramp<br />

Dec 65 Deceleration along the dec. ramp<br />

I 2 t 66 I 2 t limit protection active<br />

V-Limit 67 Overvoltage limit function active<br />

C-Limit 68 Overcurrent limit function active<br />

Overtemp 69 Over temperature warning<br />

Low voltage 70 Low voltage warning<br />

DigIn 1 71 Digital input 1<br />

DigIn 2 72 Digital input 2<br />

DigIn 3 73 Digital input 3<br />

DigIn 4 74 Digital input 4<br />

DigIn 5 75 Digital input 5<br />

DigIn 6 76 Digital input 6<br />

DigIn 7 77 Digital input 7<br />

DigIn 8 78 Digital input 8<br />

ManRst Trip 79<br />

Active trip that needs to be manually<br />

reset<br />

Com Error 80 Serial communication lost<br />

External Fan 81<br />

The VSD requires external cooling.<br />

Internal fans are active.<br />

LC Pump 82 Activate liquid cooling pump<br />

LC HE Fan 83<br />

Activate liquid cooling heat exchanger<br />

fan<br />

LC Level 84 Liquid cooling low level signal active<br />

Run Right 85<br />

Communication information<br />

Positive speed (>0.5%), i.e. forward/<br />

clockwise direction.<br />

Run Left 86<br />

Negative speed (≤0.5%), i.e. reverse<br />

counter clockwise direction.<br />

Com Active 87 Fieldbus communication active.<br />

Modbus Instance no/DeviceNet no: 43271<br />

Profibus slot/index 169/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

128 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Digital Out 2 [542]<br />

Relay 2 [552]<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Sets the function for the digital output 2.<br />

Sets the function for the relay output 2.<br />

542 DigOut2<br />

Stp A No Trip<br />

Default: No trip<br />

Selection: Same as in menu [541]<br />

552 Relay 2<br />

Stp A<br />

Default: Run<br />

Selection: Same as in menu [541]<br />

Run<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43272<br />

Profibus slot/index 169/176<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43274<br />

Profibus slot/index 169/178<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5.5 Relays [550]<br />

Submenu with all the settings for the relay outputs. The<br />

relay mode selection makes it possible to establish a “fail<br />

safe” relay operation by using the normal closed contact to<br />

function as the normal open contact.<br />

NOTE: Additional relays will become available when I/O<br />

option boards are connected. Maximum 3 boards with 3<br />

relays each.<br />

Relay 3 [553]<br />

Sets the function for the relay output 3.<br />

553 Relay 3<br />

Stp A<br />

Default: Off<br />

Selection: Same as in menu [541]<br />

Off<br />

Relay 1 [551]<br />

Sets the function for the relay output 1. Same function as<br />

digital output 1 [541] can be selected.<br />

Default: Trip<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43273<br />

Profibus slot/index 169/177<br />

Fieldbus format<br />

Modbus format<br />

551 Relay 1<br />

Stp A<br />

UInt<br />

UInt<br />

Trip<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43275<br />

Profibus slot/index 169/179<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Board Relay [554] to [55C]<br />

These additional relays are only visible if an I/O option<br />

board is fitted in slot 1, 2, or 3. The outputs are named B1<br />

Relay 1–3, B2 Relay 1–3 and B3 Relay 1–3. B stands for<br />

board and 1–3 is the number of the board which is related to<br />

the position of the I/O option board on the option mounting<br />

plate.<br />

NOTE: Visible only if optional board is detected or if any<br />

input/output is activated.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 129


Communication information<br />

Modbus Instance no/DeviceNet no: 43511–43519<br />

Profibus slot/index 170/160–170/168<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Relay Advanced [55D]<br />

This function makes it possible to ensure that the relay will<br />

also be closed when the VSD is malfunctioning or powered<br />

down.<br />

Example<br />

A process always requires a certain minimum flow. To control<br />

the required number of pumps by the relay mode NC,<br />

the e.g. the pumps can be controlled normally by the pump<br />

control, but are also activated when the variable speed drive<br />

is tripped or powered down.<br />

Relay 1 Mode [55D1]<br />

Default:<br />

N.O 0<br />

N.C 1<br />

N.O<br />

Communication information<br />

Relay Modes [55D2] to [55DC]<br />

Same function as for relay 1 mode [55D1].<br />

Communication information<br />

55D Relay Adv<br />

Stp A<br />

55D1 Relay Mode<br />

Stp A<br />

N.O<br />

The normal open contact of the relay will<br />

be activated when the function is active.<br />

The normally closed contact of the relay<br />

will act as a normal open contact. The<br />

contact will be opened when function is<br />

not active and closed when function is<br />

active.<br />

Modbus Instance no/DeviceNet no: 43276<br />

Profibus slot/index 169/180<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5.6 Virtual Connections [560]<br />

Functions to enable eight internal connections of comparator,<br />

timer and digital signals, without occupying physical<br />

digital in/outputs. Virtual connections are used to wireless<br />

connection of a digital output function to a digital input<br />

function. Available signals and control functions can be used<br />

to create your own specific functions.<br />

Example of start delay<br />

The motor will start in RunR 10 seconds after DigIn1 gets<br />

high. DigIn1 has a time delay of 10 s.<br />

Menu Parameter Setting<br />

[521] DigIn1 Timer 1<br />

[561] VIO 1 Dest RunR<br />

[562] VIO 1 Source T1Q<br />

[641] Timer1 Trig DigIn 1<br />

[642] Timer1 Mode Delay<br />

[643] Timer1 Delay 0:00:10<br />

NOTE: When a digital input and a virtual destination are<br />

set to the same function, this function will act as an OR<br />

logic function.<br />

Virtual Connection 1 Destination [561]<br />

With this function the destination of the virtual connection<br />

is established. When a function can be controlled by several<br />

sources, e.g. VC destination or Digital Input, the function<br />

will be controlled in conformity with “OR logic”. See DigIn<br />

for descriptions of the different selections.<br />

Default:<br />

Selection:<br />

Off<br />

Communication information<br />

Same selections as for Digital Input 1,<br />

menu [521].<br />

Modbus Instance no/DeviceNet no: 43281<br />

Profibus slot/index 169/185<br />

Fieldbus format<br />

Modbus format<br />

561 VIO 1 Dest<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43277–43278,<br />

43521–43529<br />

169/181–169/182,<br />

170/170–170/178<br />

UInt<br />

UInt<br />

130 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Virtual Connection 1 Source [562]<br />

With this function the source of the virtual connection is<br />

defined. See DigOut 1 for description of the different selections.<br />

Default:<br />

Off<br />

Selection: Same as for menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43282<br />

Profibus slot/index 169/186<br />

Fieldbus format<br />

Modbus format<br />

Virtual Connections 2-8 [563] to [56G]<br />

Same function as virtual connection 1 [561] and [562].<br />

Communication information for virtual connections 2-8<br />

Destination.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

43283, 43285, 43287,<br />

43289, 43291, 43293,<br />

43295<br />

169/ 187, 189, 191,<br />

193, 195, 197, 199<br />

UInt<br />

UInt<br />

Communication information for virtual connections 2-8<br />

Source.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

562 VIO 1 Source<br />

Stp A<br />

Off<br />

43284, 43286, 43288,<br />

43290, 43292, 43294,<br />

43296<br />

169/ 188, 190, 192,<br />

194, 196, 198, 200<br />

UInt<br />

UInt<br />

11.6.1 Comparators [610]<br />

The comparators available make it possible to monitor different<br />

internal signals and values, and visualize via digital<br />

output or a contact, when a specific value or status is reached<br />

or established.<br />

There are 2 analogue comparators that compare any available<br />

analogue value (including the analogue reference inputs)<br />

with two adjustable constants.<br />

For the two analogue comparators two different constants<br />

are available, Level HI and Level LO. With these two levels,<br />

it is possible to create a clear hysteresis for the analogue comparator<br />

between setting and resetting the comparator output.<br />

This function gives a clear difference in switching levels,<br />

which lets the process adapt until a certain action is started.<br />

With such a hysteresis, even an instable analogue signal can<br />

be monitored without getting a nervous comparator signal.<br />

Another function is to get a clear indication that a certain<br />

situation has occurred; the comparator can latch by set Level<br />

LO to a higher value than Level HI.<br />

There are 2 digital comparators that compare any available<br />

digital signal.<br />

The output signals of these comparators can be logically tied<br />

together to yield a logical output signal.<br />

All the output signals can be programmed to the digital or<br />

relay outputs or used as a source for the virtual connections<br />

[560].<br />

Analogue Comparator 1 Value [611]<br />

Selection of the analogue value for Analogue Comparator 1<br />

(CA1).<br />

Analogue comparator 1 compares the selectable analogue<br />

value in menu [611] with the constant Level HI in menu<br />

[612] and constant Level LO in menu [613]. When the<br />

value exceeds the upper limit level high, the output signal<br />

CA1 becomes high and !A1 low, see Fig. 107. When the<br />

value then decreases below the lower limit, the output signal<br />

CA1 becomes low and !A1 high.<br />

The output signal can be programmed as a virtual connection<br />

source and to the digital or relay outputs.<br />

Analogue value:<br />

Menu [611]<br />

Adjustable Level HI.<br />

Menu [612]<br />

0<br />

Signal:CA1<br />

11.6 Logical Functions and<br />

Timers [600]<br />

With the Comparators, Logic Functions and Timers, conditional<br />

signals can be programmed for control or signalling<br />

features. This gives you the ability to compare different signals<br />

and values in order to generate monitoring/controlling<br />

features.<br />

Adjustable Level LO.<br />

Menu [613]<br />

Fig. 107 Analogue Comparator<br />

1<br />

(NG_06-F125)<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 131


611 CA1 Value<br />

Stp A <strong>Speed</strong><br />

Default:<br />

<strong>Speed</strong><br />

Process Val 0 Set by Unit [310]<br />

<strong>Speed</strong> 1 rpm<br />

Torque 2 %<br />

Shaft Power 3 kW<br />

El Power 4 kW<br />

Current 5 A<br />

Output Volt 6 V<br />

Frequency 7 Hz<br />

DC Voltage 8 V<br />

Heatsink Tmp 9 °C<br />

PT100_1 10 °C<br />

PT100_2 11 °C<br />

PT100_3 12 °C<br />

Energy 13 kWh<br />

Run Time 14 h<br />

Mains Time 15 h<br />

AnIn1 16 %<br />

AnIn2 17 %<br />

AnIn3 18 %<br />

AnIn4 19 %<br />

Communication information<br />

Menu Function Setting<br />

511 AnIn1 Function Process reference<br />

512 AnIn1 Set-up 4-20 mA, threshold is 4 mA<br />

341 Min <strong>Speed</strong> 0<br />

343 Max <strong>Speed</strong> 1500<br />

611 CA1 Value AnIn1<br />

612 CA1 Level HI 16% (3.2mA/20mA x 100%)<br />

613 CA1 Level LO 12% (2.4mA/20mA x 100%)<br />

561 VIO 1 Dest RunR<br />

562 VIO 1 Source CA1<br />

215 Run/Stp Ctrl Remote<br />

Reference signal AnIn1<br />

Max speed<br />

20 mA<br />

4 mA<br />

CA1 Level HI = 16%<br />

3.2 mA<br />

CA1 Level LO = 12%<br />

2.4 mA<br />

t<br />

CA1<br />

Modbus Instance no/DeviceNet no: 43401<br />

Profibus slot/index 170/50<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Example<br />

Create automatic RUN/STOP signal via the analogue reference<br />

signal. Analogue current reference signal, 4-20 mA, is<br />

connected to Analogue Input 1. AnIn1 Setup, menu [512] =<br />

4-20 mA and the threshold is 4 mA. Full scale (100%) input<br />

signal on AnIn 1 = 20 mA. When the reference signal on<br />

AnIn1 increases 80% of the threshold (4 mA x 0.8 = 3.2<br />

mA), the VSD will be set in RUN mode. When the signal<br />

on AnIn1 goes below 60% of the threshold (4 mA x 0.6 =<br />

2.4 mA) the VSD is set to STOP mode. The output of CA1<br />

is used as a virtual connection source that controls the virtual<br />

connection destination RUN.<br />

Mode<br />

RUN<br />

STOP<br />

Fig. 108<br />

T<br />

1 2 3 4 5 6<br />

132 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


No.<br />

Description<br />

Communication information<br />

1<br />

2<br />

3<br />

T<br />

4<br />

5<br />

6<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 output stays<br />

low, mode=RUN.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is set<br />

high, mode=RUN.<br />

The reference signal passes the threshold level of 4 mA,<br />

the motor speed will now follow the reference signal.<br />

During this period the motor speed will follow the reference<br />

signal.<br />

The reference signal reaches the threshold level, motor<br />

speed is 0 rpm, mode = RUN.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 output stays<br />

high, mode =RUN.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 output=STOP.<br />

Analogue Comparator 1 Level High<br />

[612]<br />

Selects the analogue comparator constant high level according<br />

to the selected value in menu [611].<br />

The default value is 300.<br />

Modbus Instance no/DeviceNet no: 43402<br />

Profibus slot/index 170/51<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1°C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Example<br />

This example describes the normal use of the constant level<br />

high and low.<br />

Menu Function Setting<br />

343 Max <strong>Speed</strong> 1500<br />

611 CA1 Value <strong>Speed</strong><br />

612 CA1 Level HI 300 rpm<br />

613 CA1 Level LO 200 rpm<br />

561 VC1 Dest Timer 1<br />

562 VC1 Source CA1<br />

Default:<br />

Range:<br />

612 CA1 Level HI<br />

Stp A 300rpm<br />

300 rpm<br />

Enter a value for the high level.<br />

MAX<br />

speed<br />

[343]<br />

300<br />

200<br />

CA1 Level HI [612]<br />

Hysteresis<br />

CA1 Level LO [613]<br />

Mode Min Max Decimals<br />

Process 0 3<br />

<strong>Speed</strong>, rpm 0 Max speed 0<br />

t<br />

Torque, % 0 Max torque 0<br />

Shaft Power, kW 0 Motor P n x4 0<br />

Output<br />

CA1<br />

High<br />

El Power, kW 0 Motor P n x4 0<br />

Current, A 0 Motor I n x4 1<br />

Low<br />

Output volt, V 0 1000 1<br />

Frequency, Hz 0 400 1<br />

DC voltage, V 0 1250 1<br />

Fig. 109<br />

1 2 3 4 5 6 7 8<br />

Heatsink temp, °C 0 100 1<br />

PT 100_1_2_3, °C -100 300 1<br />

Energy, kWh 0 1000000 0<br />

Run time, h 0 65535 0<br />

Mains time, h 0 65535 0<br />

AnIn 1-4% 0 100 0<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 133


No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Description<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

Analogue Comparator 2 Value [614]<br />

Function is identical to analogue comparator 1 value.<br />

Default:<br />

Torque<br />

Selections: Same as in menu [611]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43404<br />

Profibus slot/index 170/53<br />

Fieldbus format<br />

Modbus format<br />

614 CA2 Value<br />

Stp A Torque<br />

UInt<br />

UInt<br />

Analogue Comparator 2 Level High<br />

[615]<br />

Function is identical to analogue comparator 1 level high.<br />

615 CA2 Level HI<br />

Stp 20%<br />

A<br />

Analogue Comparator 1 Level Low<br />

[613]<br />

Selects the analogue comparator constant low level according<br />

to the selected value in menu [611].<br />

For default value see selection table for menu [612].<br />

Default:<br />

Range:<br />

200 rpm<br />

Communication information<br />

Enter a value for the low level.<br />

Modbus Instance no/DeviceNet no: 43403<br />

Profibus slot/index 170/52<br />

Fieldbus format<br />

Modbus format<br />

613 CA1 Level LO<br />

Stp A 200rpm<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1°C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Default: 20%<br />

Range:<br />

Communication information<br />

Enter a value for the high level.<br />

Modbus Instance no/DeviceNet no: 43405<br />

Profibus slot/index 170/54<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1°C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Analogue Comparator 2 Level Low<br />

[616]<br />

Function is identical to analogue comparator 1 level low.<br />

Default: 10%<br />

Range:<br />

616 CA2 Level LO<br />

Stp 10%<br />

A<br />

Enter a value for the low level.<br />

134 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43406<br />

Profibus slot/index 170/55<br />

Fieldbus format<br />

Modbus format<br />

Digital Comparator 1 [617]<br />

Selection of the input signal for digital comparator 1 (CD1).<br />

The output signal CD1 becomes high if the selected input<br />

signal is active. See Fig. 110.<br />

The output signal can be programmed to the digital or relay<br />

outputs or used as a source for the virtual connections [560].<br />

Digital signal:<br />

Menu [617]<br />

+<br />

-<br />

DComp 1<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1°C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Signal: CD1<br />

(NG_06-F126)<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43408<br />

Profibus slot/index 170/57<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

11.6.2 Logic Output Y [620]<br />

By means of an expression editor, the comparator signals can<br />

be logically combined into the Logic Y function.<br />

The expression editor has the following features:<br />

• The following signals can be used:<br />

CA1, CA2, CD1, CD2 or LZ (or LY)<br />

• The following signals can be inverted:<br />

!A1, !A2, !D1, !D2, or !LZ (or !LY)<br />

• The following logical operators are available:<br />

"+" : OR operator<br />

"&" : AND operator<br />

"^" : EXOR operator<br />

Expressions according to the following truth table can be<br />

made:<br />

Fig. 110 Digital comparator<br />

Input<br />

Result<br />

Default:<br />

Run<br />

Selection: Same selections as for DigOut 1 [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43407<br />

Profibus slot/index 170/56<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Digital Comparator 2 [618]<br />

Function is identical to digital comparator 1.<br />

Default: DigIn 1<br />

617 CD1<br />

Stp A<br />

Run<br />

618 CD 2<br />

Stp DigIn 1<br />

A<br />

Selection: Same selections as for DigOut 1 [541].<br />

A B & (AND) + (OR) ^(EXOR)<br />

0 0 0 0 0<br />

0 1 0 1 1<br />

1 0 0 1 1<br />

1 1 1 1 0<br />

The output signal can be programmed to the digital or relay<br />

outputs or used as a Virtual Connection Source [560].<br />

620 LOGIC Y<br />

Stp CA1&!A2&CD1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31035<br />

Profibus slot/index 121/179<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

The expression must be programmed by means of the<br />

menus [621] to [625].<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 135


Example:<br />

Broken belt detection for Logic Y<br />

This example describes the programming for a so-called<br />

“broken belt detection” for fan applications.<br />

The comparator CA1 is set for frequency>10Hz.<br />

The comparator !A2 is set for load < 20%.<br />

The comparator CD1 is set for Run.<br />

The 3 comparators are all AND-ed, given the “broken belt<br />

detection”.<br />

In menus [621]-[625] expression entered for Logic Y is visible.<br />

Set menu [621] to CA1<br />

Set menu [622] to &<br />

Set menu [623] to !A2<br />

Set menu [624] to &<br />

Set menu [625] to CD1<br />

Menu [620] now holds the expression for Logic Y:<br />

CA1&!A2&CD1<br />

which is to be read as:<br />

(CA1&!A2)&CD1<br />

NOTE: Set menu [624] to "." to finish the expression<br />

when only two comparators are required for Logic Y.<br />

Y Comp 1 [621]<br />

Selects the first comparator for the logic Y function.<br />

Default:<br />

CA1 0<br />

!A1 1<br />

CA2 2<br />

!A2 3<br />

CD1 4<br />

!D1 5<br />

CD2 6<br />

!D2 7<br />

LZ/LY 8<br />

!LZ/!LY 9<br />

T1 10<br />

!T1 11<br />

T2 12<br />

!T2 13<br />

621 Y Comp 1<br />

Stp A<br />

CA1<br />

CA1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43411<br />

Profibus slot/index 170/60<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Y Operator 1 [622]<br />

Selects the first operator for the logic Y function.<br />

Default:<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43412<br />

Profibus slot/index 170/61<br />

Fieldbus format<br />

Modbus format<br />

Y Comp 2 [623]<br />

Selects the second comparator for the logic Y function.<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43413<br />

Profibus slot/index 170/62<br />

Fieldbus format<br />

Modbus format<br />

622 Y Operator 1<br />

Stp A<br />

&<br />

623 Y Comp 2<br />

Stp !A2<br />

A<br />

UInt<br />

UInt<br />

136 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Y Operator 2 [624]<br />

Selects the second operator for the logic Y function.<br />

Z Comp 1 [631]<br />

Selects the first comparator for the logic Z function.<br />

624 Y Operator 2<br />

Stp A<br />

&<br />

631 Z Comp 1<br />

Stp A<br />

CA1<br />

Default:<br />

. 0<br />

Communication information<br />

Y Comp 3 [625]<br />

Selects the third comparator for the logic Y function.<br />

Communication information<br />

11.6.3 Logic Output Z [630]<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

When · (dot) is selected, the Logic Y<br />

expression is finished (when only two<br />

expressions are tied together).<br />

Modbus Instance no/DeviceNet no: 43414<br />

Profibus slot/index 170/63<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

CD1<br />

Selection: Same as menu [621]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43415<br />

Profibus slot/index 170/64<br />

Fieldbus format<br />

Modbus format<br />

625 Y Comp 3<br />

Stp A<br />

630 LOGIC Z<br />

StpA<br />

CA1&!A2&CD1<br />

UInt<br />

UInt<br />

CD1<br />

The expression must be programmed by means of the<br />

menus [631] to [635].<br />

Default:<br />

CA1<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43421<br />

Profibus slot/index 170/70<br />

Fieldbus format<br />

Modbus format<br />

Z Operator 1 [632]<br />

Selects the first operator for the logic Z function.<br />

Default:<br />

&<br />

Selection: Same as menu [622]<br />

Communication information<br />

Z Comp 2 [633]<br />

Selects the second comparator for the logic Z function.<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43422<br />

Profibus slot/index 170/71<br />

Fieldbus format<br />

Modbus format<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43423<br />

Profibus slot/index 170/72<br />

Fieldbus format<br />

Modbus format<br />

632 Z Operator 1<br />

Stp A<br />

&<br />

633 Z Comp 2<br />

Stp !A2<br />

A<br />

UInt<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 137


Z Operator 2 [634]<br />

Selects the second operator for the logic Z function.<br />

Default:<br />

634 Z Operator 2<br />

Stp A<br />

&<br />

&<br />

Selection: Same as menu [624]<br />

The output signal can be programmed to the digital or relay<br />

outputs used in logic functions [620] and [630], or as a virtual<br />

connection source [560].<br />

NOTE: The actual timers are common for all parameter<br />

sets. If the actual set is changed, the timer functionality<br />

[641] to [645] will change according set settings but the<br />

timer value will stay unchanged. So initialization of the<br />

timer might differ for a set change compared to normal<br />

triggering of a timer.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43424<br />

Profibus slot/index 170/73<br />

Fieldbus format<br />

Modbus format<br />

Z Comp 3 [635]<br />

Selects the third comparator for the logic Z function.<br />

Default:<br />

CD1<br />

Selection: Same as menu [621]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43425<br />

Profibus slot/index 170/74<br />

Fieldbus format<br />

Modbus format<br />

635 Z Comp 3<br />

StpA<br />

UInt<br />

UInt<br />

CD1<br />

11.6.4 Timer1 [640]<br />

The Timer functions can be used as a delay timer or as an<br />

interval with separate On and Off times (alternate mode). In<br />

delay mode, the output signal T1Q becomes high if the set<br />

delay time is expired. See Fig. 111.<br />

Timer1 Trig<br />

T1Q<br />

T1 T2 T1 T2<br />

Fig. 112<br />

Timer 1 Trig [641]<br />

641 Timer1 Trig<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same selections as Digital Output 1 menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43431<br />

Profibus slot/index 170/80<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Timer 1 Mode [642]<br />

642 Timer1 Mode<br />

Stp A<br />

Off<br />

Timer1 Trig<br />

T1Q<br />

Default:<br />

Off 0<br />

Delay 1<br />

Alternate 2<br />

Off<br />

Timer1 delay<br />

Fig. 111<br />

In alternate mode, the output signal T1Q will switch automatically<br />

from high to low etc. according to the set interval<br />

times. See Fig. 112.<br />

138 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Communication information<br />

Modbus Instance no/DeviceNet no: 43432<br />

Profibus slot/index 170/81<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 Delay [643]<br />

This menu is only visible when timer mode is set to delay.<br />

This menu can only be edited as in alternative 2, see section<br />

9.5, page 55.<br />

Timer 1 delay sets the time that will be used by the first<br />

timer after it is activated. Timer 1 can be activated by a high<br />

signal on a DigIn that is set to Timer 1 or via a virtual destination<br />

[560].<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

643 Timer1Delay<br />

Stp 0:00:00<br />

A<br />

43433 hours<br />

43434 minutes<br />

43435 seconds<br />

170/82, 170/83,<br />

170/84<br />

UInt<br />

UInt<br />

Timer 1 T1 [644]<br />

When timer mode is set to Alternate and Timer 1 is enabled,<br />

this timer will automatically keep on switching according to<br />

the independently programmable up and down times. The<br />

Timer 1 in Alternate mode can be enabled by a digital input<br />

or via a virtual connection. See Fig. 112. Timer 1 T1 sets the<br />

up time in the alternate mode.<br />

644 Timer 1 T1<br />

Stp 0:00:00<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 T2 [645]<br />

Timer 1 T2 sets the down time in the alternate mode.<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 Value [649]<br />

Timer 1 Value shows actual value of the timer.<br />

Communication information<br />

43436 hours<br />

43437 minutes<br />

43438 seconds<br />

170/85, 170/86,<br />

170/87<br />

UInt<br />

UInt<br />

43439 hours<br />

43440 minutes<br />

43441 seconds<br />

170/88, 170/89,<br />

170/90<br />

UInt<br />

UInt<br />

NOTE: Timer 1 T1 [644] and Timer 2 T1 [654] are only<br />

visible when Timer Mode is set to Alternate.<br />

Default:<br />

645 Timer1 T2<br />

Stp 0:00:00<br />

A<br />

649 Timer1 Value<br />

Stp 0:00:00<br />

A<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

42921 hours<br />

42922 minutes<br />

42923 seconds<br />

168/80, 168/81,<br />

168/82<br />

UInt<br />

UInt<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 139


11.6.5 Timer2 [650]<br />

Refer to the descriptions for Timer1.<br />

Timer 2 Trig [651]<br />

Default:<br />

Selection:<br />

651 Timer2 Trig<br />

Stp A<br />

Off<br />

Off<br />

Same selections as Digital Output 1 menu<br />

[541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 2 T1 [654]<br />

43453 hours<br />

43454 minutes<br />

43455 seconds<br />

170/102, 170/103,<br />

170/104<br />

UInt<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43451<br />

Profibus slot/index 170/100<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Communication information<br />

654 Timer 2 T1<br />

Stp 0:00:00<br />

A<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Timer 2 Mode [652]<br />

652 Timer2 Mode<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same as in menu [642]<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43456 hours<br />

43457 minutes<br />

43458 seconds<br />

170/105, 170/106,<br />

170/107<br />

UInt<br />

UInt<br />

Communication information<br />

Timer 2 T2 [655]<br />

Modbus Instance no/DeviceNet no: 43452<br />

Profibus slot/index 170/101<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Timer 2 Delay [653]<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

655 Timer 2 T2<br />

Stp 0:00:00<br />

A<br />

Default:<br />

653 Timer2Delay<br />

Stp 0:00:00<br />

A<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43459 hours<br />

43460 minutes<br />

43461 seconds<br />

170/108, 170/109,<br />

170/110<br />

UInt<br />

UInt<br />

140 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Timer 2 Value [659]<br />

Timer 2 Value shows actual value of the timer.<br />

659 Timer2 Value<br />

Stp 0:00:00<br />

A<br />

<strong>Speed</strong> [712]<br />

Displays the actual shaft speed.<br />

712 <strong>Speed</strong><br />

Stp<br />

rpm<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Unit:<br />

Resolution:<br />

rpm<br />

1 rpm, 4 digits<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

11.7 View Operation/Status<br />

[700]<br />

Menu with parameters for viewing all actual operational<br />

data, such as speed, torque, power, etc.<br />

11.7.1 Operation [710]<br />

Process Value [711]<br />

The process value is a display function which can be programmed<br />

according to several quantities and units related to<br />

the reference value.<br />

Unit<br />

Resolution<br />

Communication information<br />

42924 hours<br />

42925 minutes<br />

42926 seconds<br />

168/83, 168/84,<br />

168/84<br />

UInt<br />

UInt<br />

711 Process Val<br />

Stp<br />

Depends on selected process source,<br />

[321].<br />

<strong>Speed</strong>: 1 rpm, 4 digits<br />

Other units: 3 digits<br />

Modbus Instance no/DeviceNet no: 31001<br />

Profibus slot/index 121/145<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31002<br />

Profibus slot/index 121/146<br />

Fieldbus format<br />

Modbus format<br />

Torque [713]<br />

Displays the actual shaft torque.<br />

Unit:<br />

Resolution:<br />

Nm<br />

1 Nm<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Shaft power [714]<br />

Displays the actual shaft power.<br />

Communication information<br />

Int, 1=1 rpm<br />

Int, 1=1 rpm<br />

31003 Nm<br />

31004%<br />

Profibus slot/index 121/147<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

W<br />

1W<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31005<br />

Profibus slot/index 121/149<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

713 Torque<br />

Stp 0% 0.0Nm<br />

714 Shaft Power<br />

Stp<br />

EInt<br />

W<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 141


Electrical Power [715]<br />

Displays the actual electrical output power.<br />

Frequency [718]<br />

Displays the actual output frequency.<br />

715 El Power<br />

Stp<br />

kW<br />

718 Frequency<br />

Stp<br />

Hz<br />

Unit:<br />

kW<br />

Unit:<br />

Hz<br />

Resolution:<br />

1 W<br />

Resolution:<br />

0.1 Hz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31006<br />

Profibus slot/index 121/150<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31009<br />

Profibus slot/index 121/153<br />

Fieldbus format<br />

Long, 1=0.1 Hz<br />

Modbus format<br />

EInt<br />

Current [716]<br />

Displays the actual output current.<br />

DC Link Voltage [719]<br />

Displays the actual DC link voltage.<br />

716 Current<br />

Stp<br />

A<br />

719 DC Voltage<br />

Stp<br />

V<br />

Unit:<br />

A<br />

Unit:<br />

V<br />

Resolution:<br />

0.1 A<br />

Resolution:<br />

1 V<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31007<br />

Profibus slot/index 121/151<br />

Fieldbus format<br />

Long, 1=0.1 A<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31010<br />

Profibus slot/index 121/154<br />

Fieldbus format<br />

Long, 1=0.1 V<br />

Modbus format<br />

EInt<br />

Output Voltage [717]<br />

Displays the actual output voltage.<br />

717 Output Volt<br />

Stp<br />

V<br />

Heatsink Temperature [71A]<br />

Displays the actual heatsink temperature.<br />

71A Heatsink Tmp<br />

Stp °C<br />

Unit:<br />

Resolution:<br />

V<br />

1 V<br />

Unit: °C<br />

Resolution:<br />

0.1°C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31008<br />

Profibus slot/index 121/152<br />

Fieldbus format<br />

Long, 1=0.1 V<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31011<br />

Profibus slot/index 121/155<br />

Fieldbus format<br />

Long, 1=0.1°C<br />

Modbus format<br />

EInt<br />

142 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


PT100_1_2_3 Temp [71B]<br />

Displays the actual PT100 temperature.<br />

Unit: °C<br />

Resolution: 1°C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31012, 31013, 31014<br />

Profibus slot/index 121/156<br />

Fieldbus format<br />

Modbus format<br />

71B PT100 1,2,3<br />

Stp °C<br />

Long<br />

EInt<br />

Warning [722]<br />

Display the actual or last warning condition. A warning<br />

occurs if the VSD is close to a trip condition but still in<br />

operation. During a warning condition the red trip LED<br />

will start to blink as long as the warning is active.<br />

722 Warnings<br />

Stp warn.msg<br />

The active warning message is displayed in menu [722].<br />

If no warning is active the message “No Warning” is displayed.<br />

11.7.2 Status [720]<br />

VSD Status [721]<br />

Indicates the overall status of the variable speed drive.<br />

721 VSD Status<br />

Stp 1/222/333/44<br />

Fig. 113 VSD status<br />

Display<br />

position<br />

Status<br />

Value<br />

1 Parameter Set A,B,C,D<br />

222<br />

333<br />

Source of reference<br />

value<br />

Source of Run/<br />

Stop/Reset command<br />

44 Limit functions<br />

Example: “A/Key/Rem/TL”<br />

This means:<br />

A: Parameter Set A is active.<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

-TL (Torque Limit)<br />

-SL (<strong>Speed</strong> Limit)<br />

-CL (Current Limit)<br />

-VL (Voltage Limit)<br />

- - - -No limit active<br />

Key: Reference value comes from the keyboard (CP).<br />

Rem: Run/Stop commands come from terminals 1-22.<br />

TL: Torque Limit active.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 143


The following warnings are possible:<br />

Fieldbus<br />

integer<br />

value<br />

0 No Error<br />

1 Motor I²t<br />

2 PTC<br />

3 Motor lost<br />

4 Locked rotor<br />

5 Ext trip<br />

6 Mon MaxAlarm<br />

7 Mon MinAlarm<br />

8 Comm error<br />

9 PT100<br />

11 Pump<br />

12 Ext Mot Temp<br />

13 LC Level<br />

14 Not used<br />

15 Option<br />

16 Over temp<br />

17 Over curr F<br />

18 Over volt D<br />

19 Over volt G<br />

20 Over volt M<br />

21 Over speed<br />

22 Under voltage<br />

23 Power fault<br />

24 Desat<br />

25 DClink error<br />

26 Int error<br />

27 Ovolt m cut<br />

28 Over voltage<br />

29 Not used<br />

30 Not used<br />

31 Not used<br />

Communication information<br />

Warning message<br />

Modbus Instance no/DeviceNet no: 31016<br />

Profibus slot/index 121/160<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

UInt<br />

Digital Input Status [723]<br />

Indicates the status of the digital inputs. See Fig. 114.<br />

1 DigIn 1<br />

2 DigIn 2<br />

3 DigIn 3<br />

4 DigIn 4<br />

5 DigIn 5<br />

6 DigIn 6<br />

7 DigIn 7<br />

8 DigIn 8<br />

The positions one to eight (read from left to right) indicate<br />

the status of the associated input:<br />

1 High<br />

0 Low<br />

The example in Fig. 114 indicates that DigIn 1,<br />

DigIn 3 and DigIn 6 are active at this moment.<br />

723 DigIn Status<br />

Stp 1010 0100<br />

Fig. 114 Digital input status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31017<br />

Profibus slot/index 121/161<br />

Fieldbus format<br />

Modbus format<br />

UInt, bit 0=DigIn1, bit<br />

8=DigIn8<br />

Digital Output Status [724]<br />

Indicates the status of the digital outputs and relays. See Fig.<br />

115.<br />

RE indicate the status of the relays on position:<br />

1 Relay1<br />

2 Relay2<br />

3 Relay3<br />

DO indicate the status of the digital outputs on position:<br />

1 DigOut1<br />

2 DigOut2<br />

The status of the associated output is shown.<br />

1 High<br />

0 Low<br />

See also the Chapter 12. page 151.<br />

144 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


The example in Fig. 115 indicates that DigOut1 is active<br />

and Digital Out 2 is not active. Relay 1 is active, relay 2 and<br />

3 are not active.<br />

724 DigOutStatus<br />

Stp RE 100 DO 10<br />

Fig. 115 Digital output status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31018<br />

Profibus slot/index 121/162<br />

Fieldbus format<br />

Modbus format<br />

Analogue Input Status [725]<br />

Indicates the status of the analogue inputs 1 and 2.<br />

725 AnIn 1 2<br />

Stp -100% 65%<br />

Fig. 116 Analogue input status<br />

Communication information<br />

UInt, bit 0=DigOut1,<br />

bit 1=DigOut2<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

Modbus Instance no/DeviceNet no: 31019, 31020<br />

Profibus slot/index 121/163, 121/164<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the analogue inputs.<br />

1 AnIn 1<br />

2 AnIn 2<br />

Reading downwards from the first row to the second row the<br />

status of the belonging input is shown in %:<br />

-100% AnIn1 has a negative 100% input value<br />

65% AnIn2 has a 65% input value<br />

So the example in Fig. 116 indicates that both the Analogue<br />

inputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

Analogue Input Status [726]<br />

Indicates the status of the analogue inputs 3 and 4.<br />

726 AnIn 3 4<br />

Stp -100% 65%<br />

Fig. 117 Analogue input status<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31021, 31022<br />

Profibus slot/index 121/165, 121/166<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Analogue Output Status [727]<br />

Indicates the status of the analogue outputs. Fig. 118. E.g. if<br />

4-20 mA output is used, the value 20% equals to 4 mA.<br />

727 AnOut 1 2<br />

Stp -100% 65%<br />

Fig. 118 Analogue output status<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31023, 31024<br />

Profibus slot/index 121/167, 121/168<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the Analogue outputs.<br />

1 AnOut 1<br />

2 AnOut 2<br />

Reading downwards from the first row to the second row the<br />

status of the belonging output is shown in %:<br />

-100%AnOut1 has a negative 100% output value<br />

65%AnOut2 has a 65% output value<br />

The example in Fig. 118 indicates that both the Analogue<br />

outputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 145


I/O board Status [728] - [72A]<br />

Indicates the status for the additional I/O on option boards<br />

1 (B1), 2 (B2) and 3 (B3).<br />

728 IO B1<br />

Stp RE000 DI10<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31025 - 31027<br />

Profibus slot/index 121/170 - 172<br />

Fieldbus format<br />

Modbus format<br />

11.7.3 Stored values [730]<br />

The shown values are the actual values built up over time.<br />

Values are stored at power down and updated again at power<br />

up.<br />

Run Time [731]<br />

Displays the total time that the VSD has been in the Run<br />

Mode.<br />

Unit:<br />

Range:<br />

Communication information<br />

UInt, bit 0=DigIn1<br />

bit 1=DigIn2<br />

bit 2=DigIn3<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

731 Run Time<br />

Stp<br />

h:m:s<br />

31028 hours<br />

31029 minutes<br />

31030 seconds<br />

121/172<br />

121/173<br />

121/174<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

Reset Run Time [7311]<br />

Reset the run time counter. The stored information will be<br />

erased and a new registration period will start.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 7<br />

Profibus slot/index 0/6<br />

Fieldbus format<br />

Modbus format<br />

Mains time [732]<br />

Displays the total time that the VSD has been connected to<br />

the mains supply. This timer cannot be reset.<br />

Communication information<br />

UInt<br />

UInt<br />

NOTE: After reset the setting automatically reverts to<br />

“No”.<br />

Unit:<br />

Range:<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

7311 Reset RunTm<br />

Stp<br />

No<br />

732 Mains Time<br />

Stp<br />

h:m:s<br />

31031 hours<br />

31032 minutes<br />

31033 seconds<br />

121/175<br />

121/176<br />

121/177<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

NOTE: At 65535 h: 59 m the counter stops. It will not<br />

revert to 0h: 0m.<br />

146 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


Energy [733]<br />

Displays the total energy consumption since the last energy<br />

reset [7331] took place.<br />

Unit:<br />

Range:<br />

kWh<br />

0.0–999999kWh<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31034<br />

Profibus slot/index 121/178<br />

Fieldbus format<br />

Modbus format<br />

Reset Energy [7331]<br />

Resets the kWh counter. The stored information will be<br />

erased and a new registration period will start.<br />

Default:<br />

Selection:<br />

No<br />

No, Yes<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 6<br />

Long, 1=1 W<br />

EInt<br />

Profibus slot/index 0/5<br />

Fieldbus format<br />

Modbus format<br />

733 Energy<br />

Stp<br />

UInt<br />

UInt<br />

kWh<br />

7331 Rst Energy<br />

Stp<br />

No<br />

NOTE: After reset the setting automatically goes back to<br />

“No”.<br />

11.8 View Trip Log [800]<br />

Main menu with parameters for viewing all the logged trip<br />

data. In total the VSD saves the last 10 trips in the trip<br />

memory. The trip memory refreshes on the FIFO principle<br />

(First In, First Out). Every trip in the memory is logged on<br />

the time of the Run Time [731] counter. At every trip, the<br />

actual values of several parameter are stored and available for<br />

troubleshooting.<br />

11.8.1 Trip Message log [810]<br />

Display the cause of the trip and what time that it occurred.<br />

When a trip occurs the status menus are copied to the trip<br />

message log. There are nine trip message logs [810]–[890].<br />

When the tenth trip occurs the oldest trip will disappear.<br />

Unit:<br />

Range:<br />

h: m (hours: minutes)<br />

0h: 0m–65355h: 59m<br />

For fieldbus integer value of trip message, see message table<br />

for warnings, [722].<br />

NOTE: Bits 0–5 used for trip message value. Bits 6–15<br />

for internal use.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31101<br />

Profibus slot/index 121/245<br />

Fieldbus format<br />

Modbus format<br />

8x0 Trip message<br />

Stp h:mm:ss<br />

810 Ext Trip<br />

Stp 132:12:14<br />

UInt<br />

UInt<br />

Trip message [811]-[81N]<br />

The information from the status menus are copied to the<br />

trip message log when a trip occurs.<br />

Trip menu Copied from Description<br />

811 711 Process Value<br />

812 712 <strong>Speed</strong><br />

813 712 Torque<br />

814 714 Shaft Power<br />

815 715 Electrical Power<br />

816 716 Current<br />

817 717 Output voltage<br />

818 718 Frequency<br />

819 719 DC Link voltage<br />

81A 71A Heatsink Temperature<br />

81B 71B PT100_1, 2, 3<br />

81C 721 VSD Status<br />

81D 723 Digital input status<br />

81E 724 Digital output status<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 147


Trip menu Copied from Description<br />

81F 725 Analogue input status 1-2<br />

81G 726 Analogue input status 3-4<br />

81H 727 Analogue output status 1-2<br />

81I 728 I/O status option board 1<br />

81J 729 I/O status option board 2<br />

81K 72A I/O status option board 3<br />

81L 731 Run Time<br />

81M 732 Mains Time<br />

81N 733 Energy<br />

81O 310 Process reference<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31102 - 31135<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Example:<br />

Fig. 119 shows the third trip memory menu [830]: Over<br />

temperature trip occurred after 1396 hours and 13 minutes<br />

in Run time.<br />

Fig. 119 Trip 3<br />

121/246 - 254,<br />

122/0 - 24<br />

Depends on parameter,<br />

see respective parameter.<br />

Depends on parameter,<br />

see respective parameter.<br />

830 Over temp<br />

Stp 1396h:13m<br />

11.8.2 Trip Messages [820] - [890]<br />

Same information as for menu [810].<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31151–31185<br />

31201–31235<br />

31251–31285<br />

31301–31335<br />

31351–31385<br />

31401–31435<br />

31451–31485<br />

31501–31535<br />

122/40–122/74<br />

122/90–122/124<br />

122/140–122/174<br />

122/190–122/224<br />

122/240–123/18<br />

123/35 - 123/68<br />

123/85–123/118<br />

123/135–123/168<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Depends on parameter, see respective<br />

parameter.<br />

Depends on parameter, see respective<br />

parameter.<br />

All nine alarm lists contain the same type of data. For example<br />

DeviceNet parameter 31101 in alarm list 1 contains the<br />

same data information as 31151 in alarm list 2. It is possible<br />

to read all parameters in alarm lists 2–9 by recalculating the<br />

DeviceNet instance number into a Profibus slot/index<br />

number. This is done in the following way:<br />

slot no = abs((dev instance no-1)/255)<br />

index no = (dev instance no-1) modulo 255<br />

dev instance no = slot nox255+index no+1<br />

Example: We want to read out the process value out from<br />

alarm list 9. In alarm list 1 process value has the DeviceNet<br />

instance number 31102. In alarm list 9 it has DeviceNet<br />

instance no 31502 (see table 2 above). The corresponding<br />

slot/index no is then:<br />

slot no = abs((31502-1)/255)=123<br />

index no (modulo)= the remainder of the division above =<br />

136, calculated as: (31502-1)-123x255=136<br />

148 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


11.8.3 Reset Trip Log [8A0]<br />

Resets the content of the 10 trip memories.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 8<br />

Profibus slot/index 0/7<br />

Fieldbus format<br />

Modbus format<br />

8A0 Reset Trip<br />

Stp<br />

11.9 System Data [900]<br />

Main menu for viewing all the VSD system data.<br />

11.9.1 VSD Data [920]<br />

UInt<br />

UInt<br />

VSD Type [921]<br />

Shows the VSD type according to the type number.<br />

No<br />

NOTE: After the reset the setting goes automatically<br />

back to “NO”. The message “OK” is displayed for 2 sec.<br />

The options are indicated on the type plate of the VSD.<br />

NOTE: If the control board is not configured, then type<br />

type shown is <strong>FDU</strong>40-XXX.<br />

Software [922]<br />

Shows the software version number of the VSD.<br />

Fig. 120 gives an example of the version number.<br />

922 Software<br />

Stp V 4.20<br />

Fig. 120 Example of software version<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

31038 software version<br />

31039 option version<br />

Profibus slot/index 121/182-183<br />

Fieldbus format<br />

Modbus format<br />

Table 28<br />

Bit<br />

UInt<br />

UInt<br />

Information for Modbus and Profibus number,<br />

software version<br />

7–0 minor<br />

13–8 major<br />

15–14<br />

Table 29<br />

Bit<br />

Description<br />

release<br />

00: V, release version<br />

01: P, pre-release version<br />

10: β, Beta version<br />

11: α, Alpha version<br />

Information for Modbus and Profibus number,<br />

option version<br />

7–0 minor<br />

15–8 major<br />

Description<br />

921 <strong>FDU</strong><strong>2.0</strong><br />

Stp <strong>FDU</strong>48-046<br />

Example of type<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31037<br />

Profibus slot/index 121/181<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

V 4.20 = Version of the Software<br />

NOTE: It is important that the software version displayed<br />

in menu [920] is the same software version number as<br />

the software version number written on the title page of<br />

this instruction manual. If not, the functionality as<br />

described in this manual may differ from the<br />

functionality of the VSD.<br />

Examples:<br />

<strong>FDU</strong>48-046VSD-series suited for 380-480 volt mains supply,<br />

and a rated output current of 46 A.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Functional Description 149


Unit name [923]<br />

Option to enter a name of the unit for service use or customer<br />

identity. The function enables the user to define a<br />

name with 12 symbols. Use the Prev and Next key to move<br />

the cursor to the required position. Then use the + and -<br />

keys to scroll in the character list. Confirm the character by<br />

moving the cursor to the next position by pressing the Next<br />

key. See section User-defined Unit [323].<br />

Example<br />

Create user name USER 15.<br />

1. When in the menu [923] press Next to move the cursor<br />

to the right most position.<br />

2. Press the + key until the character U is displayed.<br />

3. Press Next.<br />

4. Then press the + key until S is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered USER15.<br />

923 Unit Name<br />

Stp<br />

Default:<br />

No characters shown<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42301–42312<br />

Profibus slot/index 165/225–236<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

When sending a unit name you send one character at a time<br />

starting at the right most position.<br />

150 Functional Description <strong>Emotron</strong> AB 01-4428-01r2


12. Troubleshooting, Diagnoses and Maintenance<br />

12.1 Trips, warnings and limits<br />

In order to protect the variable speed drive the principal<br />

operating variables are continuously monitored by the system.<br />

If one of these variables exceeds the safety limit an<br />

error/warning message is displayed. In order to avoid any<br />

possibly dangerous situations, the inverter sets itself into a<br />

stop Mode called Trip and the cause of the trip is shown in<br />

the display.<br />

Trips will always stop the VSD. Trips can be divided into<br />

normal and soft trips, depending on the setup Trip Type, see<br />

menu [250] Autoreset. Normal trips are default. For normal<br />

trips the VSD stops immediately, i.e. the motor coasts naturally<br />

to a standstill. For soft trips the VSD stops by ramping<br />

down the speed, i.e. the motor decelerates to a standstill.<br />

“Normal Trip”<br />

• The VSD stops immediately, the motor coasts to naturally<br />

to a standstill.<br />

• The Trip relay or output is active (if selected).<br />

• The Trip LED is on.<br />

• The accompanying trip message is displayed.<br />

• The “TRP” status indication is displayed (area D of the<br />

display).<br />

“Soft Trip”<br />

• the VSD stops by decelerating to a standstill.<br />

During the deceleration.<br />

• The accompanying trip message is displayed, including<br />

an additional soft trip indicator “S” before the trip time.<br />

• The Trip LED is blinking.<br />

• The Warning relay or output is active (if selected).<br />

After standstill is reached.<br />

• The Trip LED is on.<br />

• The Trip relay or output is active (if selected).<br />

• The “TRP” status indication is displayed (area D of the<br />

display).<br />

Apart from the TRIP indicators there are two more indicators<br />

to show that the inverter is in an “abnormal” situation.<br />

“Warning”<br />

• The inverter is close to a trip limit.<br />

• The Warning relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• The accompanying warning message is displayed in window<br />

[722] Warning.<br />

• One of the warning indications is displayed (area F of<br />

the display).<br />

“Limits”<br />

• The inverter is limiting torque and/or frequency to avoid<br />

a trip.<br />

• The Limit relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• One of the Limit status indications is displayed (area D<br />

of the display).<br />

Table 30<br />

Trip/Warning<br />

messages<br />

List of trips and warnings<br />

Selections<br />

Trip<br />

(Normal/<br />

Soft)<br />

Motor I 2 t Trip/Off/Limit Normal/Soft I 2 t<br />

PTC Trip/Off Normal/Soft<br />

Motor lost Trip/Off Normal<br />

Locked rotor Trip/Off Normal<br />

Ext trip Via DigIn Normal/Soft<br />

Ext Mot Temp Via DigIn Normal/Soft<br />

Mon MaxAlarm Trip/Off/Warn Normal/Soft<br />

Mon MinAlarm Trip/Off/Warn Normal/Soft<br />

Comm error Trip/Off/Warn Normal/Soft<br />

PT100 Trip/Off Normal/Soft<br />

Deviation Via Option Normal<br />

Pump Via Option Normal<br />

Over temp On Normal OT<br />

Over curr F On Normal<br />

Over volt D On Normal<br />

Over volt G On Normal<br />

Over volt On Normal<br />

Over speed On Normal<br />

Under voltage On Normal LV<br />

Power Fault On Normal<br />

Desat On Normal<br />

DClink error On Normal<br />

Ovolt m cut On Normal<br />

Over voltage Warning VL<br />

Safe stop Warning SST<br />

Motor PTC On Normal<br />

LC Level<br />

Trip/Off/Warn<br />

Via DigIn<br />

Normal/Soft<br />

Warning<br />

indicators<br />

(Area D)<br />

LCL<br />

<strong>Emotron</strong> AB 01-4428-01r2 Troubleshooting, Diagnoses and Maintenance 151


12.2 Trip conditions, causes and<br />

remedial action<br />

The table later on in this section must be seen as a basic aid<br />

to find the cause of a system failure and to how to solve any<br />

problems that arise. A variable speed drive is mostly just a<br />

small part of a complete VSD system. Sometimes it is difficult<br />

to determine the cause of the failure, although the variable<br />

speed drive gives a certain trip message it is not always<br />

easy to find the right cause of the failure. Good knowledge<br />

of the complete drive system is therefore necessary. Contact<br />

your supplier if you have any questions.<br />

The VSD is designed in such a way that it tries to avoid trips<br />

by limiting torque, overvolt etc.<br />

Failures occurring during commissioning or shortly after<br />

commissioning are most likely to be caused by incorrect settings<br />

or even bad connections.<br />

Failures or problems occurring after a reasonable period of<br />

failure-free operation can be caused by changes in the system<br />

or in its environment (e.g. wear).<br />

Failures that occur regularly for no obvious reasons are generally<br />

caused by Electro Magnetic Interference. Be sure that<br />

the installation fulfils the demands for installation stipulated<br />

in the EMC directives. See chapter 8. page 49.<br />

Sometimes the so-called “Trial and error” method is a<br />

quicker way to determine the cause of the failure. This can<br />

be done at any level, from changing settings and functions to<br />

disconnecting single control cables or replacing entire drives.<br />

The Trip Log can be useful for determining whether certain<br />

trips occur at certain moments. The Trip Log also records<br />

the time of the trip in relation to the run time counter.<br />

WARNING: If it is necessary to open the VSD<br />

or any part of the system (motor cable<br />

housing, conduits, electrical panels,<br />

cabinets, etc.) to inspect or take measurements<br />

as suggested in this instruction manual, it is<br />

absolutely necessary to read and follow the safety<br />

instructions in the manual.<br />

12.2.1 Technically qualified personnel<br />

Installation, commissioning, demounting, making measurements,<br />

etc., of or at the variable speed drive may only be carried<br />

out by personnel technically qualified for the task.<br />

12.2.2 Opening the variable speed<br />

drive<br />

WARNING: Always switch the mains voltage<br />

off if it is necessary to open the VSD and wait<br />

at least 5 minutes to allow the capacitors to<br />

discharge.<br />

WARNING: In case of malfunctioning always<br />

check the DC-link voltage, or wait one hour<br />

after the mains voltage has been switched<br />

off, before dismantling the VSD for repair.<br />

The connections for the control signals and the switches are<br />

isolated from the mains voltage. Always take adequate precautions<br />

before opening the variable speed drive.<br />

12.2.3 Precautions to take with a<br />

connected motor<br />

If work must be carried out on a connected motor or on the<br />

driven machine, the mains voltage must always first be disconnected<br />

from the variable speed drive. Wait at least 5 minutes<br />

before continuing.<br />

12.2.4 Autoreset Trip<br />

If the maximum number of Trips during Autoreset has been<br />

reached, the trip message hour counter is marked with an<br />

“A”.<br />

830 OVERVOLT G<br />

Trp A 345:45:12<br />

Fig. 121 Autoreset trip<br />

Fig. 121 shows the 3rd trip memory menu [830]: Overvoltage<br />

G trip after the maximum Autoreset attempts took place<br />

after 345 hours, 45 minutes and 12 seconds of run time.<br />

152 Troubleshooting, Diagnoses and Maintenance <strong>Emotron</strong> AB 01-4428-01r2


Table 31<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Motor I 2 t<br />

“I 2 t”<br />

PTC<br />

Motor PTC<br />

Motor lost<br />

Locked rotor<br />

Ext trip<br />

Ext Mot Temp<br />

Mon MaxAlarm<br />

Mon MinAlarm<br />

Comm error<br />

PT100<br />

I 2 t value is exceeded.<br />

- Overload on the motor according to the<br />

programmed I 2 t settings.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if [237] is enabled.<br />

Phase loss or too great imbalance on the<br />

motor phases<br />

Torque limit at motor standstill:<br />

- Mechanical blocking of the rotor.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

Max alarm level (overload) has been<br />

reached.<br />

Min alarm level (underload) has been<br />

reached.<br />

Error on serial communication (option)<br />

Motor PT100 elements exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Change the Motor I 2 t Current setting<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [234] to OFF<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [237] to OFF<br />

- Check the motor voltage on all phases.<br />

- Check for loose or poor motor cable<br />

connections<br />

- If all connections are OK, contact your<br />

supplier<br />

- Set motor lost alarm to OFF.<br />

- Check for mechanical problems at the<br />

motor or the machinery connected to the<br />

motor<br />

- Set locked rotor alarm to OFF.<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 131.<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 131.<br />

- Check cables and connection of the<br />

serial communication.<br />

- Check all settings with regard to the<br />

serial communication<br />

- Restart the equipment including the<br />

VSD<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PT100 to OFF<br />

<strong>Emotron</strong> AB 01-4428-01r2 Troubleshooting, Diagnoses and Maintenance 153


Table 31<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Pump<br />

Over temp<br />

Over curr F<br />

Over volt D(eceleration)<br />

Over volt G(enerator)<br />

Over volt (Mains)<br />

O(ver) volt M(ains) cut<br />

Over speed<br />

Under voltage<br />

Power Fault<br />

Desat<br />

No master pump can be selected due to error<br />

in feedback signalling.<br />

NOTE: Only used in Pump Control.<br />

Heatsink temperature too high:<br />

- Too high ambient temperature of the<br />

VSD<br />

- Insufficient cooling<br />

- Too high current<br />

- Blocked or stuffed fans<br />

Motor current exceeds the peak VSD current:<br />

- Too short acceleration time.<br />

- Too high motor load<br />

- Excessive load change<br />

- Soft short-circuit between phases or<br />

phase to earth<br />

- Poor or loose motor cable connections<br />

- Too high IxR Compensation level<br />

Too high DC Link voltage:<br />

- Too short deceleration time with<br />

respect to motor/machine inertia.<br />

- Too small brake resistor malfunctioning<br />

Brake chopper<br />

Too high DC Link voltage, due to too high<br />

mains voltage<br />

Motor speed measurement exceeds maximum<br />

level.<br />

Too low DC Link voltage:<br />

- Too low or no supply voltage<br />

- Mains voltage dip due to starting other<br />

major power consuming machines on<br />

the same line.<br />

Overload condition in the DC-link:<br />

- Hard short-circuit between phases or<br />

phase to earth<br />

- Saturation of current measurement<br />

circuiting<br />

- Earth fault<br />

- Desaturation of IGBTs<br />

- Peak voltage on DC link<br />

- Check cables and wiring for Pump feedback signals<br />

- Check settings with regard to the pump feedback<br />

digital inputs<br />

- Check the cooling of the VSD cabinet.<br />

- Check the functionality of the built-in fans. The fans<br />

must switch on automatically if the heatsink temperature<br />

gets too high. At power up the fans are briefly<br />

switched on.<br />

- Check VSD and motor rating<br />

- Clean fans<br />

- Check the acceleration time settings and<br />

make them longer if necessary.<br />

- Check the motor load.<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections.<br />

- Lower the level of IxR Compensation [352]<br />

- Check the deceleration time settings and make them<br />

longer if necessary.<br />

- Check the dimensions of the brake resistor and the<br />

functionality of the Brake chopper (if used)<br />

- Check the main supply voltage<br />

- Try to take away the interference cause or use other<br />

main supply lines.<br />

Check encoder cables, wiring and setup<br />

Check motor data setup [22x]<br />

Perform short ID-run<br />

- Make sure all three phases are properly connected<br />

and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery<br />

- Use the function low voltage override [421]<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections<br />

- Check that rating plate data of the motor is correctly<br />

entered<br />

- See overvoltage trips<br />

Power Fault Error on power board. - Check mains supply voltage<br />

Fan Error<br />

Error in fan module<br />

- Check for clogged air inlet filters in panel door and<br />

blocking material in fan module.<br />

HCB Error * Error in controlled rectifier module (HCB) - Check mains supply voltage<br />

154 Troubleshooting, Diagnoses and Maintenance <strong>Emotron</strong> AB 01-4428-01r2


Table 31<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Desat<br />

Desat U+ *<br />

Desat U- *<br />

Desat V+ *<br />

Desat V- *<br />

Desat W+ *<br />

Desat W- *<br />

Desat BCC *<br />

DC link error<br />

PF Curr Err *<br />

PF Overvolt *<br />

Failure in output stage,<br />

desaturation of IGBTs<br />

DC link voltage ripple exceeds maximum<br />

level<br />

Error in current balancing<br />

Error in voltage balancing<br />

PF Comm Err * Internal communication error Contact service<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connections<br />

- Check on water and moisture in the<br />

motor housing and cable connections<br />

- Make sure all three phases are properly<br />

connected and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery.<br />

- Check motor.<br />

- Check fuses and line connections<br />

- Check motor.<br />

- Check fuses and line connections.<br />

PF Int Temp * Internal temperature too high Check internal fans<br />

PF Temp Err * Malfunction in temperature sensor Contact service<br />

PF DC Err *<br />

PF HCB Err *<br />

PF Sup Err *<br />

LC Level<br />

DC-link error and mains supply fault<br />

Error in controlled rectifier module (HCB)<br />

Mains supply fault<br />

Low liquid cooling level in external reservoir.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

NOTE: Only valid for VSD types with Liquid<br />

Cooling option.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check liquid cooling<br />

- Check the equipment and wiring that initiates the<br />

external input<br />

- Check the programming of the digital inputs DigIn 1-8<br />

* = 2...6 Module number if parallel power units (size 300–<br />

1500 A)<br />

12.3 Maintenance<br />

The variable speed drive is designed not to require any servicing<br />

or maintenance. There are however some things which<br />

must be checked regularly.<br />

All variable speed drives have built-in fan which is speed<br />

controlled using heatsink temperature feedback. This means<br />

that the fans are only running if the VSD is running and<br />

loaded. The design of the heatsinks is such that the fan does<br />

not blow the cooling air through the interior of the VSD,<br />

but only across the outer surface of the heatsink. However,<br />

running fans will always attract dust. Depending on the<br />

environment the fan and the heatsink will collect dust.<br />

Check this and clean the heatsink and the fans when necessary.<br />

If variable speed drives are built into cabinets, also check and<br />

clean the dust filters of the cabinets regularly.<br />

Check external wiring, connections and control signals.<br />

Tighten terminal screws if necessary.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Troubleshooting, Diagnoses and Maintenance 155


156 Troubleshooting, Diagnoses and Maintenance <strong>Emotron</strong> AB 01-4428-01r2


13. Options<br />

The standard options available are described here briefly.<br />

Some of the options have their own instruction or installation<br />

manual. For more information please contact your supplier.<br />

13.1 Options for the control<br />

panel<br />

Order number<br />

Description<br />

01-3957-00 Panel kit complete including panel<br />

01-3957-01 Panel kit complete including blank panel<br />

Mounting cassette, blank panel and straight RS232-cable are<br />

available as options for the control panel. These options may<br />

be useful, for example after mounting a control panel in a<br />

cabinet door.<br />

13.3 Brake chopper<br />

All VSD sizes can be fitted with an optional built-in brake<br />

chopper. The brake resistor must be mounted outside the<br />

VSD. The choice of the resistor depends on the application<br />

switch-on duration and duty-cycle. This option can not be<br />

after mounted.<br />

The following formula can be used to define the power of<br />

the connected brake resistor:<br />

P resistor =<br />

WARNING: The table gives the minimum<br />

values of the brake resistors. Do not use<br />

resistors lower than this value. The VSD can<br />

trip or even be damaged due to high braking<br />

currents.<br />

(Brake level V DC ) 2<br />

R min<br />

x ED%<br />

Where:<br />

P resistor<br />

required power of brake<br />

resistor<br />

Brake level V DC DC brake voltage level (see Table 33<br />

and Table 34)<br />

Rmin<br />

minimum allowable brake resistor<br />

(see Table 33 and Table 34+1<br />

ED%<br />

effective braking period. Defined as:<br />

ED% =<br />

Active brake time at<br />

nominal braking<br />

power [s]<br />

120 [s]<br />

Maximum value of<br />

1= continuous braking<br />

Table 32<br />

Fig. 122 Control panel in mounting cassette<br />

13.2 EmoSoftCom<br />

EmoSoftCom is an optional software that runs on a personal<br />

computer. It can also be used to load parameter settings<br />

from the VSD to the PC for backup and printing. Recording<br />

can be made in oscilloscope mode. Please contact <strong>Emotron</strong><br />

sales for further information.<br />

Supply voltage (V AC )<br />

(set in menu [21B]<br />

220–240 380<br />

380–415 660<br />

440–480 780<br />

500–525 860<br />

550–600 1000<br />

660–690 1150<br />

Brake level (V DC )<br />

<strong>Emotron</strong> AB 01-4428-01r2 Options 157


Table 33<br />

Brake resistor <strong>FDU</strong>40/48 type<br />

Table 34<br />

Brake resistors <strong>FDU</strong>50/52 V types<br />

Type<br />

Rmin [ohm] if supply<br />

380–415 V AC<br />

Rmin [ohm] if supply<br />

440–480 V AC<br />

Type<br />

Rmin [ohm] if supply<br />

440–480 V AC<br />

Rmin [ohm] if supply<br />

500–525 V AC<br />

<strong>FDU</strong>48-003 43 50<br />

-004 43 50<br />

-006 43 50<br />

-008 43 50<br />

-010 43 50<br />

-013 43 50<br />

-018 43 50<br />

-026 26 30<br />

-031 26 30<br />

-037 17 20<br />

-046 17 20<br />

<strong>FDU</strong>40-060 9.7 N.A.<br />

-073 9.7 N.A<br />

<strong>FDU</strong>48-090 3.8 4.4<br />

Table 34<br />

Type<br />

-109 3.8 4.4<br />

-146 3.8 4.4<br />

-175 3.8 4.4<br />

-210 2.7 3.1<br />

-250 2.7 3.1<br />

-300 2 x 3.8 2 x 4.4<br />

-375 2 x 3.8 2 x 4.4<br />

-430 2 x 2.7 2 x 3.1<br />

-500 2 x 2.7 2 x 3.1<br />

-600 3 x 2.7 3 x 3.1<br />

-650 3 x 2.7 3 x 3.1<br />

-750 3 x 2.7 3 x 3.1<br />

-860 4 x 2.7 4 x 3.1<br />

-1000 4 x 2.7 4 x 3.1<br />

-1200 6 x 2.7 6 x 3.1<br />

-1500 6 x 2.7 6 x 3.1<br />

Brake resistors <strong>FDU</strong>50/52 V types<br />

Rmin [ohm] if supply<br />

440–480 V AC<br />

Rmin [ohm] if supply<br />

500–525 V AC<br />

<strong>FDU</strong>52-003 50 55<br />

-004 50 55<br />

-006 50 55<br />

-008 50 55<br />

-010 50 55<br />

-013 50 55<br />

-018 50 55<br />

-026 30 32<br />

-031 30 32<br />

-037 20 22<br />

-046 20 22<br />

<strong>FDU</strong>50-060 12 13<br />

Table 35<br />

Type<br />

Brake resistors <strong>FDU</strong>69 V types<br />

Rmin [ohm] Rmin [ohm] Rmin [ohm]<br />

500–525 V AC 550–600 V AC 660–690 V AC<br />

if supply if supply if supply<br />

<strong>FDU</strong>69-090 4.9 5.7 6.5<br />

-109 4.9 5.7 6.5<br />

-146 4.9 5.7 6.5<br />

-175 4.9 5.7 6.5<br />

-210 2 x 4.9 2 x 5.7 2 x 6.5<br />

-250 2 x 4.9 2 x 5.7 2 x 6.5<br />

-300 2 x 4.9 2 x 5.7 2 x 6.5<br />

-375 2 x 4.9 2 x 5.7 2 x 6.5<br />

-430 3 x 4.9 3 x 5.7 3 x 6.5<br />

-500 3 x 4.9 3 x 5.7 3 x 6.5<br />

-600 4 x 4.9 4 x 5.7 4 x 6.5<br />

-650 4 x 4.9 4 x 5.7 4 x 6.5<br />

-750 6 x 4.9 6 x 5.7 6 x 6.5<br />

-860 6 x 4.9 6 x 5.7 6 x 6.5<br />

-900 6 x 4.9 6 x 5.7 6 x 6.5<br />

-1000 6 x 4.9 6 x 5.7 6 x 6.5<br />

NOTE: Although the VSD will detect a failure in the brake<br />

electronics, the use of resistors with a thermal overload<br />

which will cut off the power at overload is strongly<br />

recommended.<br />

The brake chopper option is built-in by the manufacturer<br />

and must be specified when the VSD is ordered.<br />

158 Options <strong>Emotron</strong> AB 01-4428-01r2


13.4 I/O Board<br />

Order number<br />

Description<br />

01-3876-01 I/O option board <strong>2.0</strong><br />

The I/O option board <strong>2.0</strong> provides three extra relay outputs<br />

and three extra digital inputs. The I/O Board works in combination<br />

with the Pump/Fan Control, but can also be used<br />

as a separate option. This option is described in a separate<br />

manual.<br />

Must be<br />

double<br />

isolated<br />

X1<br />

~<br />

X1:1 Left terminal<br />

X1:2 Right terminal<br />

13.5 Output coils<br />

Output coils, which are supplied separately, are recommended<br />

for lengths of screened motor cable longer than 100<br />

m. Because of the fast switching of the motor voltage and<br />

the capacitance of the motor cable both line to line and line<br />

to earth screen, large switching currents can be generated<br />

with long lengths of motor cable. Output coils prevent the<br />

VSD from tripping and should be installed as closely as possible<br />

to the VSD.<br />

13.6 Serial communication<br />

and fieldbus<br />

Order number<br />

01-3876-04 RS232/485<br />

01-3876-05 Profibus DP<br />

01-3876-06 DeviceNet<br />

Description<br />

01-3876-09 Modbus/TCP, Ethernet<br />

For communication with the VSD there are several option<br />

boards for communication. There are different options for<br />

Fieldbus communication and one serial communication<br />

option with RS232 or RS485 interface which has galvanic<br />

isolation.<br />

13.7 Standby supply board<br />

option<br />

Order number<br />

Description<br />

01-3954-00 Standby power supply kit for after mounting<br />

The standby supply board option provides the possibility of<br />

keeping the communication system up and running without<br />

having the 3-phase mains connected. One advantage is that<br />

the system can be set up without mains power. The option<br />

will also give backup for communication failure if main<br />

power is lost.<br />

The standby supply board option is supplied with external<br />

±10% 24 V DC or 24 V AC, protected by a 2 A slow acting<br />

fuse, from a double isolated transformer. The terminals X1:1<br />

and X1:2 are voltage polarity independent.<br />

Fig. 123 Connection of standby supply option<br />

Table 36<br />

X1<br />

terminal<br />

1 Ext. supply 1<br />

2 Ext. supply 2<br />

Name Function Specification<br />

External, VSD main<br />

power independent,<br />

supply voltage<br />

for control and communication<br />

circuits<br />

24 V DC or 24<br />

V AC ±10%<br />

Double isolated<br />

13.8 Safe Stop option<br />

To realize a Safe Stop configuration in accordance with<br />

EN-IEC 62061:2005 SIL 2 & EN-ISO 13849-1:2006, the<br />

following three parts need to be attended to:<br />

1. Inhibit trigger signals with safety relay K1 (via Safe Stop<br />

option board).<br />

2. Enable input and control of VSD (via normal I/O control<br />

signals of VSD).<br />

3. Power conductor stage (checking status and feedback of<br />

driver circuits and IGBT’s).<br />

To enable the VSD to operate and run the motor, the following<br />

signals should be active:<br />

• "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the<br />

Safe Stop option board should be made active by connecting<br />

24 V DC to secure the supply voltage for the<br />

driver circuits of the power conductors via safety relay<br />

K1. See also Fig. 126.<br />

• High signal on the digital input, e.g. terminal 10 in Fig.<br />

126, which is set to "Enable". For setting the digital<br />

input please refer to section 11.5.2, page 122.<br />

These two signals need to be combined and used to enable<br />

the output of the VSD and make it possible to activate a<br />

Safe Stop condition.<br />

NOTE: The "Safe Stop" condition according to EN-IEC<br />

62061:2005 SIL 2 & EN-ISO 13849-1:2006, can only be<br />

realized by de-activating both the "Inhibit" and "Enable"<br />

inputs.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Options 159


When the "Safe Stop" condition is achieved by using these<br />

two different methods, which are independently controlled,<br />

this safety circuit ensures that the motor will not start running<br />

because:<br />

• The 24V DC signal is taken away from the "Inhibit"<br />

input, terminals 1 and 2, the safety relay K1 is switched<br />

off.<br />

The supply voltage to the driver circuits of the power<br />

conductors is switched off. This will inhibit the trigger<br />

pulses to the power conductors.<br />

• The trigger pulses from the control board are shut down.<br />

The Enable signal is monitored by the controller circuit<br />

which will forward the information to the PWM part on<br />

the Control board.<br />

To make sure that the safety relay K1 has been switched off,<br />

this should be guarded externally to ensure that this relay did<br />

not refuse to act. The Safe Stop option board offers a feedback<br />

signal for this via a second forced switched safety relay<br />

K2 which is switched on when a detection circuit has confirmed<br />

that the supply voltage to the driver circuits is shut<br />

down. See Table 37 for the contacts connections.<br />

To monitor the "Enable" function, the selection "RUN" on<br />

a digital output can be used. For setting a digital output, e.g.<br />

terminal 20 in the example Fig. 126, please refer to section<br />

11.5.4, page 127 [540].<br />

When the "Inhibit" input is de-activated, the VSD display<br />

will show a blinking "SST" indication in section D (bottom<br />

left corner) and the red Trip LED on the Control panel will<br />

blink.<br />

To resume normal operation, the following steps have to be<br />

taken:<br />

• Release "Inhibit" input; 24V DC (High) to terminal 1<br />

and 2.<br />

• Give a STOP signal to the VSD, according to the set<br />

Run/Stop Control in menu [215].<br />

• Give a new Run command, according to the set Run/<br />

Stop Control in menu [215].<br />

Fig. 124 Connection of safe stop option in size B and C.<br />

Fig. 125 Connection of safe stop option in size E and up.<br />

1<br />

2 3 4 5<br />

6<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

NOTE: The method of generating a STOP command is<br />

dependent on the selections made in Start Signal Level/<br />

Edge [21A] and the use of a separate Stop input via<br />

digital input.<br />

Table 37<br />

X1<br />

pin<br />

Specification of Safe Stop option board<br />

Name Function Specification<br />

WARNING: The safe stop function can never<br />

be used for electrical maintenance. For<br />

electrical maintenance the VSD should<br />

always be disconnected from the supply<br />

voltage.<br />

1 Inhibit + Inhibit driver circuits of<br />

2 Inhibit - power conductors<br />

3<br />

4<br />

NO contact<br />

relay K2<br />

P contact<br />

relay K2<br />

Feedback; confirmation<br />

of activated inhibit<br />

5 GND Supply ground<br />

6 +24 VDC<br />

Supply Voltage for operating<br />

Inhibit input only.<br />

DC 24 V<br />

(20–30 V)<br />

48 V DC /<br />

30 V AC /2 A<br />

+24 V DC ,<br />

50 mA<br />

160 Options <strong>Emotron</strong> AB 01-4428-01r2


Safe Stop<br />

+5V<br />

Power board<br />

=<br />

X1<br />

1<br />

2<br />

K1<br />

3<br />

4<br />

K2<br />

=<br />

U<br />

5<br />

6<br />

+24 V DC<br />

~<br />

V<br />

W<br />

X1<br />

Enable<br />

10<br />

DigIn<br />

Controller<br />

PWM<br />

Stop<br />

20<br />

DigOut<br />

Fig. 126<br />

13.9 Encoder<br />

Order number<br />

Description<br />

01-3876-03 Encoder <strong>2.0</strong> option board<br />

The Encoder <strong>2.0</strong> option board, used for connection of feedback<br />

signal of the actual motor speed via an incremental<br />

encoder is described in a separate manual.<br />

13.10 PTC/PT100<br />

Order number<br />

Description<br />

01-3876-08 PTC/PT100 <strong>2.0</strong> option board<br />

The PTC/PT100 <strong>2.0</strong> option board for connecting motor<br />

thermistors to the VSD is described in a separate manual.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Options 161


162 Options <strong>Emotron</strong> AB 01-4428-01r2


14. Technical Data<br />

14.1 Electrical specifications<br />

related to model<br />

Table 38<br />

Typical motor power at mains voltage 400 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Frame size<br />

<strong>FDU</strong>48-003 3.0 0.75 2.5 0.55 <strong>2.0</strong><br />

<strong>FDU</strong>48-004 4.8 1.5 4.0 1.1 3.2<br />

<strong>FDU</strong>48-006 7.2 2.2 6.0 1.5 4.8<br />

<strong>FDU</strong>48-008 9.0 3 7.5 2.2 6.0<br />

<strong>FDU</strong>48-010 11.4 4 9.5 3 7.6<br />

<strong>FDU</strong>48-013 15.6 5.5 13.0 4 10.4<br />

<strong>FDU</strong>48-018 21.6 7.5 18.0 5.5 14.4<br />

<strong>FDU</strong>48-026 31 11 26 7.5 21<br />

<strong>FDU</strong>48-031 37 15 31 11 25<br />

<strong>FDU</strong>48-037 44 18.5 37 15 29.6<br />

<strong>FDU</strong>48-046 55 22 46 18.5 37<br />

<strong>FDU</strong>40-060 73 30 61 22 49<br />

<strong>FDU</strong>40-073 89 37 74 30 59<br />

<strong>FDU</strong>48-090 108 45 90 37 72<br />

<strong>FDU</strong>48-109 131 55 109 45 87<br />

<strong>FDU</strong>48-146 175 75 146 55 117<br />

<strong>FDU</strong>48-175 210 90 175 75 140<br />

<strong>FDU</strong>48-210 252 110 210 90 168<br />

<strong>FDU</strong>48-250 300 132 250 110 200<br />

<strong>FDU</strong>48-300 360 160 300 132 240<br />

<strong>FDU</strong>48-375 450 200 375 160 300<br />

<strong>FDU</strong>48-430 516 220 430 200 344<br />

<strong>FDU</strong>48-500 600 250 500 220 400<br />

<strong>FDU</strong>48-600 720 315 600 250 480<br />

<strong>FDU</strong>48-650 780 355 650 315 520<br />

<strong>FDU</strong>48-750 900 400 750 355 600<br />

<strong>FDU</strong>48-860 1032 450 860 400 688<br />

<strong>FDU</strong>48-1000 1200 500 1000 450 800<br />

<strong>FDU</strong>48-1200 1440 630 1200 500 960<br />

<strong>FDU</strong>48-1500 1800 800 1500 630 1200<br />

B<br />

C<br />

X2<br />

E<br />

F<br />

G<br />

H<br />

I<br />

J<br />

K<br />

* Available during limited time and as long as allowed by drive temperature.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 163


Table 39<br />

Typical motor power at mains voltage 460 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @460V<br />

[hp]<br />

Rated current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @460V<br />

[hp]<br />

Rated current<br />

[A]<br />

Frame size<br />

<strong>FDU</strong>48-003 3.0 1 2.5 1 <strong>2.0</strong><br />

<strong>FDU</strong>48-004 4.8 2 4.0 1.5 3.2<br />

<strong>FDU</strong>48-006 7.2 3 6.0 2 4.8<br />

<strong>FDU</strong>48-008 9.0 3 7.5 3 6.0<br />

B<br />

<strong>FDU</strong>48-010 11.4 5 9.5 3 7.6<br />

<strong>FDU</strong>48-013 15.6 7.5 13.0 5 10.4<br />

<strong>FDU</strong>48-018 21.6 10 18.0 7.5 14.4<br />

<strong>FDU</strong>48-026 31 15 26 10 21<br />

<strong>FDU</strong>48-031 37 20 31 15 25<br />

<strong>FDU</strong>48-037 46 25 37 20 29.6<br />

C<br />

<strong>FDU</strong>48-046 55 30 46 25 37<br />

<strong>FDU</strong>50-060 73 40 61 30 49 X2<br />

<strong>FDU</strong>48-090 108 60 90 50 72<br />

<strong>FDU</strong>48-109 131 75 109 60 87<br />

<strong>FDU</strong>48-146 175 100 146 75 117<br />

E<br />

<strong>FDU</strong>48-175 210 125 175 100 140<br />

<strong>FDU</strong>48-210 252 150 210 125 168<br />

<strong>FDU</strong>48-250 300 200 250 150 200<br />

F<br />

<strong>FDU</strong>48-300 360 250 300 200 240<br />

<strong>FDU</strong>48-375 450 300 375 250 300<br />

G<br />

<strong>FDU</strong>48-430 516 350 430 250 344<br />

<strong>FDU</strong>48-500 600 400 500 350 400<br />

H<br />

<strong>FDU</strong>48-600 720 500 600 400 480<br />

<strong>FDU</strong>48-650 780 550 650 400 520<br />

I<br />

<strong>FDU</strong>48-750 900 600 750 500 600<br />

<strong>FDU</strong>48-860 1032 700 860 550 688<br />

<strong>FDU</strong>48-1000 1200 800 1000 600 800<br />

J<br />

<strong>FDU</strong>48-1200 1440 1000 1200 700 960<br />

<strong>FDU</strong>48-1500 1800 1250 1500 750 1200<br />

K<br />

* Available during limited time and as long as allowed by drive temperature.<br />

164 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


Table 40<br />

Typical motor power at mains voltage 525 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @525V<br />

[kW]<br />

Rated current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @525V<br />

[kW]<br />

Rated current<br />

[A]<br />

Frame size<br />

<strong>FDU</strong>52-003 3.0 1.1 2.5 1.1 <strong>2.0</strong><br />

<strong>FDU</strong>52-004 4.8 2.2 4.0 1.5 3.2<br />

<strong>FDU</strong>52-006 7.2 3 6.0 2.2 4.8<br />

<strong>FDU</strong>52-008 9.0 4 7.5 3 6.0<br />

B<br />

<strong>FDU</strong>52-010 11.4 5.5 9.5 4 7.6<br />

<strong>FDU</strong>52-013 15.6 7.5 13.0 5.5 10.4<br />

<strong>FDU</strong>52-018 21.6 11 18.0 7.5 14.4<br />

<strong>FDU</strong>52-026 31 15 26 11 21<br />

<strong>FDU</strong>52-031 37 18.5 31 15 25<br />

<strong>FDU</strong>52-037 44 22 37 18.5 29.6<br />

C<br />

<strong>FDU</strong>52-046 55 30 46 22 37<br />

<strong>FDU</strong>50-060 73 37 61 30 49 X2<br />

<strong>FDU</strong>69-090 108 55 90 45 72<br />

<strong>FDU</strong>69-109 131 75 109 55 87<br />

<strong>FDU</strong>69-146 175 90 146 75 117<br />

F69<br />

<strong>FDU</strong>69-175 210 110 175 90 140<br />

<strong>FDU</strong>69-210 252 132 210 110 168<br />

<strong>FDU</strong>69-250 300 160 250 132 200<br />

<strong>FDU</strong>69-300 360 200 300 160 240<br />

H69<br />

<strong>FDU</strong>69-375 450 250 375 200 300<br />

<strong>FDU</strong>69-430 516 300 430 250 344<br />

<strong>FDU</strong>69-500 600 315 500 300 400<br />

I69<br />

<strong>FDU</strong>69-600 720 400 600 315 480<br />

<strong>FDU</strong>69-650 780 450 650 355 520<br />

J69<br />

<strong>FDU</strong>69-750 900 500 750 400 600<br />

<strong>FDU</strong>69-860 1032 560 860 450 688<br />

K69<br />

<strong>FDU</strong>69-1000 1200 630 1000 500 800<br />

* Available during limited time and as long as allowed by drive temperature.<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 165


Table 41<br />

Typical motor power at mains voltage 575 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @575V [hp] Rated current [A] Power @575V [hp] Rated current [A]<br />

Frame size<br />

<strong>FDU</strong>69-090 108 75 90 60 72<br />

<strong>FDU</strong>69-109 131 100 109 75 87<br />

<strong>FDU</strong>69-146 175 125 146 100 117<br />

<strong>FDU</strong>69-175 210 150 175 125 140<br />

<strong>FDU</strong>69-210 252 200 210 150 168<br />

<strong>FDU</strong>69-250 300 250 250 200 200<br />

<strong>FDU</strong>69-300 360 300 300 250 240<br />

<strong>FDU</strong>69-375 450 350 375 300 300<br />

<strong>FDU</strong>69-430 516 400 430 350 344<br />

<strong>FDU</strong>69-500 600 500 500 400 400<br />

<strong>FDU</strong>69-600 720 600 600 500 480<br />

<strong>FDU</strong>69-650 780 650 650 550 520<br />

<strong>FDU</strong>69-750 900 750 750 600 600<br />

<strong>FDU</strong>69-860 1032 850 860 700 688<br />

<strong>FDU</strong>69-1000 1200 1000 1000 850 800<br />

F69<br />

H69<br />

I69<br />

J69<br />

K69<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Table 42<br />

Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V [kW] Rated current [A] Power @690V [kW] Rated current [A]<br />

Frame size<br />

<strong>FDU</strong>69-090 108 90 90 75 72<br />

<strong>FDU</strong>69-109 131 110 109 90 87<br />

<strong>FDU</strong>69-146 175 132 146 110 117<br />

<strong>FDU</strong>69-175 210 160 175 132 140<br />

<strong>FDU</strong>69-210 252 200 210 160 168<br />

<strong>FDU</strong>69-250 300 250 250 200 200<br />

<strong>FDU</strong>69-300 360 315 300 250 240<br />

<strong>FDU</strong>69-375 450 355 375 315 300<br />

<strong>FDU</strong>69-430 516 450 430 315 344<br />

<strong>FDU</strong>69-500 600 500 500 355 400<br />

<strong>FDU</strong>69-600 720 600 600 450 480<br />

<strong>FDU</strong>69-650 780 630 650 500 520<br />

<strong>FDU</strong>69-750 900 710 750 600 600<br />

<strong>FDU</strong>69-860 1032 800 860 650 688<br />

<strong>FDU</strong>69-900 1080 900 900 710 720<br />

<strong>FDU</strong>69-1000 1200 1000 1000 800 800<br />

F69<br />

H69<br />

I69<br />

J69<br />

K69<br />

* Available during limited time and as long as allowed by drive temperature.<br />

166 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


14.2 General electrical specifications<br />

Table 43<br />

General electrical specifications<br />

General<br />

Mains voltage: <strong>FDU</strong>40<br />

<strong>FDU</strong>48<br />

<strong>FDU</strong>50/52<br />

<strong>FDU</strong>69<br />

Mains frequency:<br />

Input power factor:<br />

Output voltage:<br />

Output frequency:<br />

Output switching frequency:<br />

Efficiency at nominal load:<br />

Control signal inputs:<br />

Analogue (differential)<br />

Analogue Voltage/current:<br />

Max. input voltage:<br />

Input impedance:<br />

Resolution:<br />

Hardware accuracy:<br />

Non-linearity<br />

Digital:<br />

Input voltage:<br />

Max. input voltage:<br />

Input impedance:<br />

Signal delay:<br />

Control signal outputs<br />

Analogue<br />

Output voltage/current:<br />

Max. output voltage:<br />

Short-circuit current (∞):<br />

Output impedance:<br />

Resolution:<br />

Maximum load impedance for current<br />

Hardware accuracy:<br />

Offset:<br />

Non-linearity:<br />

Digital<br />

Output voltage:<br />

Shortcircuit current(∞):<br />

Relays<br />

Contacts<br />

References<br />

+10VDC<br />

-10VDC<br />

+24VDC<br />

230-415V +10%/-15% (-10% at 230 V)<br />

230-480V +10%/-15% (-10% at 230 V)<br />

440-525V +10%/-15%<br />

500-690V +10%/-15%<br />

45 to 65 Hz<br />

0.95<br />

0–Mains supply voltage:<br />

0–400 Hz<br />

3 kHz (adjustable 1,5-6 kHz)<br />

97% for models 003 to 018<br />

98% for models 026 to 046<br />

97.5% for models 060 to 073<br />

98% for models 090 to 1500<br />

0-±10 V/0-20 mA via switch<br />

+30 V/30 mA<br />

20 kΩ (voltage)<br />

250 Ω (current)<br />

11 bits + sign<br />

1% type + 1 ½ LSB fsd<br />

1½ LSB<br />

High: >9 VDC, Low: 23 VDC open<br />

Low:


14.3 Operation at higher<br />

temperatures<br />

Most <strong>Emotron</strong> variable speed drives are made for operation<br />

at maximum of 40°C ambient temperature. However, for<br />

most models, it is possible to use the VSD at higher temperatures<br />

with little loss in performance. Table 44 shows ambient<br />

temperatures as well as derating for higher temperatures.<br />

Table 44<br />

Ambient temperature and derating 400–690 V types<br />

Model<br />

IP20<br />

IP54<br />

Max temp. Derating: possible Max temp. Derating: possible<br />

<strong>FDU</strong>**-003 to <strong>FDU</strong>**-046 – – 40°C -2.5%/°C to max +10°C<br />

<strong>FDU</strong>**-060 to <strong>FDU</strong>40-073 40°C -2.5%/°C to max +10°C 35°C -2.5%/°C to max +10°C<br />

<strong>FDU</strong>48-090 to <strong>FDU</strong>48-250<br />

<strong>FDU</strong>69-090 to <strong>FDU</strong>48-175<br />

<strong>FDU</strong>48-300 to <strong>FDU</strong>48-1500<br />

<strong>FDU</strong>69-210 to <strong>FDU</strong>69-1000<br />

– – 40°C -2.5%/°C to max +5°C<br />

40°C -2.5%/°C to max +5°C 40°C -2.5%/°C to max +5°C<br />

Example<br />

In this example we have a motor with the following data that<br />

we want to run at the ambient temperature of 45°C:<br />

Voltage 400 V<br />

Current 68 A<br />

Power 37 kW<br />

Select variable speed drive<br />

The ambient temperature is 5 °C higher than the maximum<br />

ambient temperature. The following calculation is made to<br />

select the correct VSD model.<br />

Derating is possible with loss in performance of 2.5%/°C.<br />

Derating will be: 5 X 2.5% = 12.5%<br />

Calculation for model <strong>FDU</strong>40-073<br />

73 A - (12.5% X 73) = 63.875A; this is not enough.<br />

Calculation for model <strong>FDU</strong>48-090<br />

90 A - (12.5% X 90) = 78.75 A<br />

In this example we select the <strong>FDU</strong>48-090.<br />

14.4 Operation at higher<br />

switching frequency<br />

Table 45 shows the switching frequency for the different<br />

VSD models. With the possibility of running at higher<br />

switching frequency you can reduce the noise level from the<br />

motor. The switching frequency is set in menu [22A],<br />

Motor sound, see section section 11.2.3, page 67. At switching<br />

frequencies >3 kHz derating might be needed.<br />

Table 45<br />

Switching frequency<br />

Models<br />

Standard<br />

Switching<br />

frequency<br />

Range<br />

<strong>FDU</strong>**-003 to <strong>FDU</strong>**-073 3 kHz 1.5–6 kHz<br />

<strong>FDU</strong>**-090 to <strong>FDU</strong>**-1500 3 kHz 1.5–6 kHz<br />

168 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


14.5 Dimensions and Weights<br />

The table below gives an overview of the dimensions and<br />

weights. The models 003 to 250 is available in IP54 as wall<br />

mounted modules. The models 300 to 1500 consist of 2, 3,<br />

4 or 6 paralleled power electonic building block (PEBB)<br />

available in IP20 as wall mounted modules and in IP54<br />

mounted standard cabinet<br />

Protection class IP54 is according to the EN 60529 standard.<br />

Table 46<br />

Mechanical specifications, <strong>FDU</strong>40, <strong>FDU</strong>48, <strong>FDU</strong>50, <strong>FDU</strong>52<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20<br />

Dim. H x W x D [mm]<br />

IP54<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

003 to 018 B – 350(416)x 203 x 200 – 12.5<br />

026 to 046 C – 440(512) x 178 x 292 – 24<br />

060 to 073 X2 530(590) x 220 x 270 530(590) x 220 x 270 26 26<br />

90 to 109 E – 950 x 285 x 314 – 56<br />

146 to 175 E – 950 x 285 x 314 – 60<br />

210 to 250 F – 950 x 345 x 314 – 74<br />

300 to 375 G 1036 x 500 x 390 2330 x 600 x 500 140 270<br />

430 to 500 H 1036 x 500 x 450 2330 x 600 x 600 170 305<br />

600 to 750 I 1036 x 730 x 450 2330 x 1000 x 600 248 440<br />

860 to 1000 J 1036 x 1100 x 450 2330 x 1200 x 600 340 580<br />

1200 to 1500 K 1036 x 1560 x 450 2330 x 2000 x 600 496 860<br />

Table 47<br />

Mechanical specifications, <strong>FDU</strong>69<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20<br />

Dim. H x W x D [mm]<br />

IP54<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

90 to 175 F69 – 1090 x 345 x 314 – 77<br />

210 to 375 H69 1176 x 500 x 450 2330 x 600 x 600 176 311<br />

430 to 500 I69 1176 x 730 x 450 2330 x 1000 x 600 257 449<br />

600 to 650 J69 1176 x 1100 x 450 2330 x 1200 x 600 352 592<br />

750 to 1000 K69 1176 x 1560 x 450 2330 x 2000 x 600 514 878<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 169


14.6 Environmental conditions<br />

Table 48<br />

Operation<br />

Parameter<br />

Normal operation<br />

Nominal ambient temperature<br />

Atmospheric pressure<br />

0°C–40°C See table, see Table 44 for different conditions<br />

86–106 kPa<br />

Relative humidity, non-condensing 0–90%<br />

Contamination,<br />

according to IEC 60721-3-3<br />

Vibrations<br />

No electrically conductive dust allowed. Cooling air must be clean and free from corrosive<br />

materials. Chemical gases, class 3C2. Solid particles, class 3S2.<br />

According to IEC 600068-2-6, Sinusodial vibrations:<br />

•10


14.7 Fuses, cable crosssections<br />

and glands<br />

14.7.1 According IEC ratings<br />

Use mains fuses of the type gL/gG conforming to IEC 269<br />

or installation cut-outs with similar characteristics. Check<br />

the equipment first before installing the glands.<br />

Max. Fuse = maximum fuse value that still protects the VSD<br />

and upholds warranty.<br />

NOTE: The dimensions of fuse and cable cross-section<br />

are dependent on the application and must be<br />

determined in accordance with local regulations.<br />

NOTE: The dimensions of the power terminals used in the<br />

models 300 to 1500 can differ depending on customer<br />

specification.<br />

Table 50<br />

Fuses, cable cross-sections and glands<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>FDU</strong>**-003<br />

<strong>FDU</strong>**-004<br />

<strong>FDU</strong>**-006<br />

<strong>FDU</strong>**-008<br />

<strong>FDU</strong>**-010<br />

<strong>FDU</strong>**-013<br />

<strong>FDU</strong>**-018<br />

2.2<br />

3.5<br />

5.2<br />

6.9<br />

8.7<br />

11.3<br />

15.6<br />

4<br />

4<br />

6<br />

8<br />

10<br />

12<br />

20<br />

<strong>FDU</strong>**-026 22 25<br />

<strong>FDU</strong>**-031 26 35<br />

<strong>FDU</strong>**-037 31 35<br />

<strong>FDU</strong>**-046 38 50<br />

0.5–10 0.5–10 1.5–16<br />

2.5 - 16 2.5 - 16 6 - 35<br />

<strong>FDU</strong>**-060 51 63 4–16<br />

4–16<br />

4–16<br />

<strong>FDU</strong>**-073 64 80 4–35 4–35<br />

<strong>FDU</strong>**-090 78 100<br />

<strong>FDU</strong>**-109 94 100<br />

<strong>FDU</strong>**-146 126 160<br />

<strong>FDU</strong>**-175 152 160<br />

<strong>FDU</strong>**-210 182 200<br />

<strong>FDU</strong>**-250 216 250<br />

16 - 95 16 - 95<br />

35 - 150 16 - 95<br />

<strong>FDU</strong>48: 35-240<br />

<strong>FDU</strong>69: 35-150<br />

<strong>FDU</strong>48: 35-150<br />

<strong>FDU</strong>69: 16-95<br />

M32 opening<br />

M20 + reducer<br />

(6–12)<br />

M25 opening<br />

M20 + reducer<br />

(6–12)<br />

M32 (12–20)/<br />

M32 opening<br />

M25+reducer<br />

(10-14) M25 (10–14)<br />

M32 (16–25)/<br />

M32 (13–18)<br />

M32 (15–21)<br />

M40 (19–28)<br />

M25<br />

M32<br />

M40 (19–28) M40 (27–34)<br />

16-95<br />

(16-70)¹ <strong>FDU</strong>48: Ø30-45 cable entry or<br />

35-150<br />

(16-70)¹<br />

<strong>FDU</strong>48: 35-240<br />

(95-185)¹<br />

<strong>FDU</strong>69: 35-150<br />

(16-70)¹<br />

M63<br />

<strong>FDU</strong>69: Ø27-66 cable entry<br />

<strong>FDU</strong>48: Ø27-66 cable entry<br />

<strong>FDU</strong>**-300 260 300 <strong>FDU</strong>48: (2x)35-240<br />

<strong>FDU</strong>**-375 324 355<br />

<strong>FDU</strong>69: (2x)35-150<br />

<strong>FDU</strong>**-430 372 400 <strong>FDU</strong>48: (2x)35-240<br />

<strong>FDU</strong>**-500 432 500<br />

<strong>FDU</strong>69: (3x)35-150<br />

<strong>FDU</strong>**-600 520 630 <strong>FDU</strong>48: (3x)35-240<br />

<strong>FDU</strong>**-650 562 630<br />

<strong>FDU</strong>69: (4x)35-150<br />

<strong>FDU</strong>**-750 648 710<br />

<strong>FDU</strong>48: (3x)35-240<br />

<strong>FDU</strong>69: (6x)35-150<br />

frame --- --<br />

frame -- --<br />

frame -- --<br />

frame -- --<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 171


Table 50<br />

Fuses, cable cross-sections and glands<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>FDU</strong>**-860 744 800<br />

<strong>FDU</strong>**-900 795 900<br />

<strong>FDU</strong>**-1000 864 1000<br />

<strong>FDU</strong>**-1200 1037 1250<br />

<strong>FDU</strong>**-1500 1296 1500<br />

<strong>FDU</strong>48: (4x)35-240<br />

<strong>FDU</strong>69: (6x)35-150<br />

frame -- --<br />

<strong>FDU</strong>48: (6x)35-240 frame -- --<br />

Note: For models 003 to 046 cable glands are optional.<br />

1. Values are valid when brake chopper electronics are built in.<br />

172 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


14.7.2 Fuses and cable dimensions<br />

according NEMA ratings<br />

Table 51<br />

Types and fuses<br />

Model<br />

Input<br />

current<br />

[Arms]<br />

UL<br />

Class J TD (A)<br />

Mains input fuses<br />

Ferraz-Shawmut<br />

type<br />

<strong>FDU</strong>48-003 2,2 6 AJT6<br />

<strong>FDU</strong>48-004 3,5 6 AJT6<br />

<strong>FDU</strong>48-006 5,2 6 AJT6<br />

<strong>FDU</strong>48-008 6,9 10 AJT10<br />

<strong>FDU</strong>48-010 8,7 10 AJT10<br />

<strong>FDU</strong>48-013 11,3 15 AJT15<br />

<strong>FDU</strong>48-018 15,6 20 AJT20<br />

<strong>FDU</strong>48-026 22 25 AJT25<br />

<strong>FDU</strong>48-031 26 30 AJT30<br />

<strong>FDU</strong>48-037 31 35 AJT35<br />

<strong>FDU</strong>48-046 38 45 AJT45<br />

<strong>FDU</strong>48-090 78 100 AJT100<br />

<strong>FDU</strong>48-109 94 110 AJT110<br />

<strong>FDU</strong>48-146 126 150 AJT150<br />

<strong>FDU</strong>48-175 152 175 AJT175<br />

<strong>FDU</strong>48-210 182 200 AJT200<br />

<strong>FDU</strong>48-250 216 250 AJT250<br />

<strong>FDU</strong>48-300 260 300 AJT300<br />

<strong>FDU</strong>48-375 324 350 AJT350<br />

<strong>FDU</strong>48-430 372 400 AJT400<br />

<strong>FDU</strong>48-500 432 500 AJT500<br />

<strong>FDU</strong>48-600 520 600 AJT600<br />

<strong>FDU</strong>48-650 562 600 AJT600<br />

<strong>FDU</strong>48-750 648 700 A4BQ700<br />

<strong>FDU</strong>48-860 744 800 A4BQ800<br />

<strong>FDU</strong>48-1000 864 1000 A4BQ1000<br />

<strong>FDU</strong>48-1200 1037 1200 A4BQ1200<br />

<strong>FDU</strong>48-1500 1296 1500 A4BQ1500<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 173


Table 52<br />

Type cables cross-sections and glands<br />

Cable cross section connector<br />

Model<br />

Mains and motor Brake PE<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Cable type<br />

<strong>FDU</strong>48-003<br />

<strong>FDU</strong>48-004<br />

<strong>FDU</strong>48-006<br />

<strong>FDU</strong>48-008<br />

<strong>FDU</strong>48-010<br />

AWG 20 - AWG 6 1.3 / 1 AWG 20 - AWG 6 1.3 / 1 AWG 14 - AWG 6 2.6/2<br />

<strong>FDU</strong>48-013<br />

<strong>FDU</strong>48-018<br />

<strong>FDU</strong>48-019<br />

<strong>FDU</strong>48-026<br />

<strong>FDU</strong>48-031<br />

<strong>FDU</strong>48-037<br />

AWG 12 - AWG 4 1.3 / 1 AWG 12 - AWG 4 1.3 / 1 AWG 8 - AWG 2 2.6 / 2<br />

<strong>FDU</strong>48-046<br />

<strong>FDU</strong>50-060 AWG 12–AWG 4 1.6/1.2 AWG 12–AWG 4 1.6/1.2 AWG 12–AWG 4 1.6/1.2<br />

Copper (Cu)<br />

60°C<br />

output current<br />

44A: Copper<br />

(Cu) 75°C<br />

<strong>FDU</strong>48-090<br />

AWG 4 - AWG 3/0 14 / 10.5<br />

AWG 4 - AWG 3/0 14 / 10.5<br />

<strong>FDU</strong>48-109<br />

AWG 4 - AWG 3/0<br />

(AWG 4 - AWG 2/0)¹<br />

14 / 10.5<br />

(10 / 7.5)¹<br />

<strong>FDU</strong>48-146 AWG 1 - AWG 3/0<br />

<strong>FDU</strong>48-175 AWG 4/0 - 300 kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 1 - AWG 3/0<br />

(AWG 4 - AWG 2/0)¹<br />

14 / 10.5<br />

(10 / 7.5)¹<br />

<strong>FDU</strong>48-210 AWG 3/0 -<br />

<strong>FDU</strong>48-250 400 kcmil<br />

24 / 18<br />

AWG 1 - AWG 3/0<br />

AWG 4/0 - 300<br />

kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 3/0 - 400 kcmil<br />

(AWG 4/0 - 400<br />

kcmil)¹<br />

24 / 18<br />

(10 / 7.5)¹<br />

<strong>FDU</strong>48-300 2 x AWG 4/0 -<br />

<strong>FDU</strong>48-375 2 x 300 kcmil<br />

<strong>FDU</strong>48-430 2 x AWG 3/0 -<br />

<strong>FDU</strong>48-500 2 x 400 kcmil<br />

24 / 18<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

24 / 18 frame -<br />

Copper (Cu)<br />

75°C<br />

<strong>FDU</strong>48-600<br />

<strong>FDU</strong>48-650<br />

<strong>FDU</strong>48-750<br />

3 x AWG 4/0 -<br />

3 x 300 kcmil<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>FDU</strong>48-860 4 x AWG 4/0 -<br />

<strong>FDU</strong>48-1000 4 x 300 kcmil<br />

24 / 18<br />

3 x AWG 3/0 -<br />

3 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>FDU</strong>48-1200 6 x AWG 4/0 -<br />

<strong>FDU</strong>48-1500 6 x 300 kcmil<br />

24 / 18<br />

6 x AWG 3/0 -<br />

6 x 400 kcmil<br />

24 / 18 frame -<br />

174 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


14.8 Control signals<br />

Table 53<br />

Terminal Name: Function (Default): Signal: Type:<br />

1 +10 V +10 VDC Supply voltage +10 VDC, max 10 mA output<br />

2 AnIn1 Process reference<br />

3 AnIn2 Off<br />

4 AnIn3 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

5 AnIn4 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

6 -10 V -10VDC Supply voltage -10 VDC, max 10 mA output<br />

7 Common Signal ground 0V output<br />

8 DigIn 1 RunL 0-8/24 VDC digital input<br />

9 DigIn 2 RunR 0-8/24 VDC digital input<br />

10 DigIn 3 Off 0-8/24 VDC digital input<br />

11 +24 V +24VDC Supply voltage +24 VDC, 100 mA output<br />

12 Common Signal ground 0 V output<br />

13 AnOut 1 Min speed to max speed 0 ±10 VDC or 0/4– +20 mA analogue output<br />

14 AnOut 2 0 to max torque 0 ±10 VDC or 0/4– +20 mA analogue output<br />

15 Common Signal ground 0 V output<br />

16 DigIn 4 Off 0-8/24 VDC digital input<br />

17 DigIn 5 Off 0-8/24 VDC digital input<br />

18 DigIn 6 Off 0-8/24 VDC digital input<br />

19 DigIn 7 Off 0-8/24 VDC digital input<br />

20 DigOut 1 Ready 24 VDC, 100 mA digital output<br />

21 DigOut 2 No trip 24 VDC, 100 mA digital output<br />

22 DigIn 8 RESET 0-8/24 VDC digital input<br />

Terminal X2<br />

31 N/C 1 Relay 1 output<br />

32 COM 1<br />

33 N/O 1<br />

Trip, active when the<br />

VSD is in a TRIP condition<br />

N/C is opened when the relay is active<br />

(valid for all relays)<br />

N/O is closed when the relay is active<br />

(valid for all relays)<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

Terminal X3<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 Output<br />

Run, active when the<br />

VSD is started<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

51 COM 3 Relay 3 Output<br />

52 N/O 3 Off<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

<strong>Emotron</strong> AB 01-4428-01r2 Technical Data 175


176 Technical Data <strong>Emotron</strong> AB 01-4428-01r2


15. Menu List<br />

DEFAULT<br />

100 Preferred View<br />

110 1st Line Process Val<br />

120 2nd Line Current<br />

200 Main Setup<br />

210 Operation<br />

211 Language English<br />

212 Select Motor M1<br />

213 <strong>Drive</strong> Mode V/Hz<br />

214 Ref Control Remote<br />

215 Run/Stp Ctrl Remote<br />

216 Reset Ctrl Remote<br />

217 Local/Rem Off<br />

2171 LocRefCtrl Standard<br />

2172 LocRunCtrl Standard<br />

218 Lock Code? 0<br />

219 Rotation R+L<br />

21A Level/Edge Level<br />

21B Supply Volts Not Defined<br />

220 Motor Data<br />

221 Motor Volts U NOM V<br />

222 Motor Freq 50Hz<br />

223 Motor Power (P NOM ) W<br />

224 Motor Curr (I NOM ) A<br />

225 Motor <strong>Speed</strong> (n MOT ) rpm<br />

226 Motor Poles -<br />

227 Motor Cosϕ Depends on P nom<br />

228 Motor Vent Self<br />

229 Motor ID-Run Off<br />

22A Motor Sound F<br />

22B Encoder Off<br />

22C Enc Pulses 1024<br />

22D Enc <strong>Speed</strong> 0rpm<br />

230 Mot Protect<br />

231 Mot I 2 t Type Trip<br />

232 Mot I 2 t Curr 100%<br />

233 Mot I 2 t Time 60s<br />

234 Thermal Prot Off<br />

235 Motor Class F 140°C<br />

236 PT100 Inputs<br />

237 Motor PTC Off<br />

240 Set Handling<br />

241 Select Set A<br />

242 Copy Set A>B<br />

243 Default>Set A<br />

244 Copy to CP No Copy<br />

245 Load from CP No Copy<br />

250 Autoreset<br />

251 No of Trips 0<br />

252 Overtemp Off<br />

253 Overvolt D Off<br />

254 Overvolt G Off<br />

CUSTOM<br />

DEFAULT<br />

255 Overvolt Off<br />

256 Motor Lost Off<br />

257 Locked Rotor Off<br />

258 Power Fault Off<br />

259 Undervoltage Off<br />

25A Motor I 2 t Off<br />

25B Motor I 2 t TT Trip<br />

25C PT100 Off<br />

25D PT100 TT Trip<br />

25E PTC Off<br />

25F PTC TT Trip<br />

25G Ext Trip Off<br />

25H Ext Trip TT Trip<br />

25I Com Error Off<br />

25J Com Error TT Trip<br />

25K Min Alarm Off<br />

25L Min Alarm TT Trip<br />

25M Max Alarm Off<br />

25N Max Alarm TT Trip<br />

25O Over curr F Off<br />

25P Pump Off<br />

25Q Over speed Off<br />

25R Ext Mot Temp Off<br />

25S Ext Mot TT Trip<br />

25T LC Level Off<br />

25U LC Level TT Trip<br />

260 Serial Com<br />

261 Com Type RS232/485<br />

262 RS232/485<br />

2621 Baudrate 9600<br />

2622 Address 1<br />

263 Fieldbus<br />

2631 Address 62<br />

2632 PrData Mode Basic<br />

2633 Read/Write RW<br />

2634 AddPrValue 0<br />

264 Comm Fault<br />

2641 ComFlt Mode Off<br />

2642 ComFlt Time 0.5 s<br />

265 Ethernet<br />

2651 IP Address 0.0.0.0<br />

2652 MAC Address 000000000000<br />

2653 Subnet Mask 0.0.0.0<br />

2654 Gateway 0.0.0.0<br />

2655 DHCP Off<br />

266 FB Signal<br />

2661 FB Signal 1<br />

2662 FB Signal 2<br />

2663 FB Signal 3<br />

2664 FB Signal 4<br />

2665 FB Signal 5<br />

2666 FB Signal 6<br />

2667 FB Signal 7<br />

2668 FB Signal 8<br />

CUSTOM<br />

<strong>Emotron</strong> AB 01-4428-01r2 Menu List 177


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

2669 FB Signal 9<br />

363 Preset Ref 2 250 rpm<br />

266A FB Signal 10<br />

364 Preset Ref 3 500 rpm<br />

266B FB Signal 11<br />

365 Preset Ref 4 750 rpm<br />

266C FB Signal 12<br />

366 Preset Ref 5 1000 rpm<br />

266D FB Signal 13<br />

367 Preset Ref 6 1250 rpm<br />

266E FB Signal 14<br />

368 Preset Ref 7 1500 rpm<br />

266F FB Signal 15<br />

369 Keyb Ref Normal<br />

266G FB Signal 16<br />

380 ProcCtrlPID<br />

269 FB Status<br />

381 PID Control Off<br />

300 Process<br />

383 PID P Gain 1.0<br />

310 Set/View ref<br />

384 PID I Time 1.00s<br />

320 Proc Setting<br />

385 PID D Time 0.00s<br />

321 Proc Source <strong>Speed</strong><br />

386 PIDMin Spd 10.00s<br />

399 Start Delay 0s<br />

336 Dec


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

4161 MaxAlarmMar 15%<br />

5169 AnIn2 Filt 0.1s<br />

4162 MaxAlarmDel 0.1s<br />

516A AnIn2 Enabl On<br />

417 Max Pre alarm<br />

517 AnIn3 Fc Off<br />

4171 MaxPreAlMar 10%<br />

518 AnIn3 Setup 4-20mA<br />

4172 MaxPreAlDel 0.1s<br />

519 AnIn3 Advan<br />

418 Min Pre Alarm<br />

5191 AnIn3 Min 4mA<br />

4181 MinPreAlMar 10%<br />

5192 AnIn3 Max 20.00mA<br />

4182 MinPreAlDel 0.1s<br />

5193 AnIn3 Bipol 20.00mA<br />

419 Min Alarm<br />

5194 AnIn3 FcMin Min<br />

4191 MinAlarmMar 15%<br />

5195 AnIn3 ValMin 0<br />

4192 MinAlarmDel 0.1s<br />

5196 AnIn3 FcMax Max<br />

41A Autoset Alrm No<br />

5197 AnIn3 ValMax 0<br />

41B Normal Load 100%<br />

5198 AnIn3 Oper Add+<br />

41C<br />

Load Curve<br />

5199 AnIn3 Filt 0.1s<br />

41C1 Load Curve 1 100%<br />

519A AnIn3 Enabl On<br />

41C2 Load Curve 2 100%<br />

51A AnIn4 Fc Off<br />

41C3 Load Curve 3 100%<br />

51B AnIn4 Setup 4-20mA<br />

41C4 Load Curve 4 100%<br />

51C<br />

AnIn4 Advan<br />

41C5 Load Curve 5 100%<br />

51C1 AnIn4 Min 4mA<br />

41C6 Load Curve 6 100%<br />

51C2 AnIn4 Max 20.00mA<br />

41C7 Load Curve 7 100%<br />

51C3 AnIn4 Bipol 20.00mA<br />

41C8 Load Curve 8 100%<br />

51C4 AnIn4 FcMin Min<br />

41C9 Load Curve 9 100%<br />

51C5 AnIn4 ValMin 0<br />

420 Process Prot<br />

51C6 AnIn4 FcMax Max<br />

421 Low Volt OR On<br />

51C7 AnIn4 ValMax 0<br />

422 Rotor Locked Off<br />

51C8 AnIn4 Oper Add+<br />

423 Motor lost Off<br />

51C9 AnIn4 Filt 0.1s<br />

424 Overvolt Ctrl On<br />

51CA AnIn4 Enabl On<br />

500 I/Os<br />

520 Dig Inputs<br />

510 An Inputs<br />

521 DigIn 1 RunL<br />

511 AnIn1 Fc Process Ref<br />

522 DigIn 2 RunR<br />

512 AnIn1 Setup 4-20mA<br />

523 DigIn 3 Off<br />

513 AnIn1 Advn<br />

524 DigIn 4 Off<br />

5131 AnIn1 Min 4mA<br />

525 DigIn 5 Off<br />

5132 AnIn1 Max 20.00mA<br />

526 DigIn 6 Off<br />

5133 AnIn1 Bipol 20.00mA<br />

527 DigIn 7 Off<br />

5134 AnIn1 FcMin Min<br />

528 DigIn 8 Reset<br />

5135 AnIn1 ValMin 0<br />

529 B(oard)1 DigIn 1 Off<br />

5136 AnIn1 FcMax Max<br />

52A B(oard)1 DigIn 2 Off<br />

5137 AnIn1 ValMax 0<br />

52B B(oard)1 DigIn 3 Off<br />

5138 AnIn1 Oper Add+<br />

52C B(oard)2 DigIn 1 Off<br />

5139 AnIn1 Filt 0.1s<br />

52D B(oard)2 DigIn 2 Off<br />

513A AnIn1 Enabl On<br />

52E B(oard)2 DigIn 3 Off<br />

514 AnIn2 Fc Off<br />

52F B(oard)3 DigIn 1 Off<br />

515 AnIn2 Setup 4-20mA<br />

52G B(oard)3 DigIn 2 Off<br />

516 AnIn2 Advan<br />

52H B(oard)3 DigIn 3 Off<br />

5161 AnIn2 Min 4mA<br />

530 An Outputs<br />

5162 AnIn2 Max 20.00mA<br />

531 AnOut1 Fc <strong>Speed</strong><br />

5163 AnIn2 Bipol 20.00mA<br />

532 AnOut1 Setup 4-20mA<br />

5164 AnIn2 FcMin Min<br />

533 AnOut1 Adv<br />

5165 AnIn2 ValMin 0<br />

5331 AnOut 1 Min 4mA<br />

5166 AnIn2 FcMax Max<br />

5332 AnOut 1 Max 20.0mA<br />

5167 AnIn2 ValMax 0<br />

5333 AnOut1Bipol -10.00-10.00 V<br />

5168 AnIn2 Oper Add+<br />

5334 AnOut1 FcMin Min<br />

<strong>Emotron</strong> AB 01-4428-01r2 Menu List 179


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

5335 AnOut1 VlMin 0<br />

56C VIO 6 Source Off<br />

5336 AnOut1 FcMax Max<br />

56D VIO 7 Dest Off<br />

5337 AnOut1 VlMax 0<br />

56E VIO 7 Source Off<br />

534 AnOut2 FC Torque<br />

56F VIO 8 Dest Off<br />

535 AnOut2 Setup 4-20mA<br />

56G VIO 8 Source Off<br />

536 AnOut2 Advan<br />

600 Logical&Timers<br />

5361 AnOut 2 Min 4mA<br />

610 Comparators<br />

5362 AnOut 2 Max 20.0mA<br />

611 CA1 Value <strong>Speed</strong><br />

5363 AnOut2Bipol -10.00-10.00 V<br />

612 CA1 Level HI 300rpm<br />

5364 AnOut2 FcMin Min<br />

613 CA1 Level LO 200rpm<br />

5365 AnOut2 VlMin 0<br />

614 CA2 Value Torque<br />

5366 AnOut2 FcMax Max<br />

615 CA2 Level HI 20%<br />

5367 AnOut2 VlMax 0<br />

616 CA2 Level LO 10%<br />

540 Dig Outputs<br />

617 CD1 Run<br />

541 DigOut 1 Ready<br />

618 CD2 DigIn 1<br />

542 DigOut 2 No Trip<br />

620 Logic Output Y<br />

550 Relays<br />

621 Y Comp 1 CA1<br />

551 Relay 1 Trip<br />

622 Y Operator 1 &<br />

552 Relay 2 Run<br />

623 Y Comp 2 !A2<br />

553 Relay 3 Off<br />

624 Y Operator 2 &<br />

554 B(oard)1 Relay 1 Off<br />

625 Y Comp 3 CD1<br />

555 B(oard)1 Relay 2 Off<br />

630 Logic Z<br />

556 B(oard)1 Relay 3 Off<br />

631 Z Comp 1 CA1<br />

557 B(oard)2 Relay 1 Off<br />

632 Z Operator 1 &<br />

558 B(oard)2 Relay 2 Off<br />

633 Z Comp2 !A2<br />

559 B(oard)2 Relay 3 Off<br />

634 Z Operator 2 &<br />

55A B(oard)3 Relay 1 Off<br />

635 Z Comp 3 CD1<br />

55B B(oard)3 Relay 2 Off<br />

640 Timer1<br />

55C B(oard)3 Relay 3 Off<br />

641 Timer1 Trig Off<br />

55D<br />

Relay Adv<br />

642 Timer1 Mode Off<br />

55D1 Relay 1 Mode N.O<br />

643 Timer1 Delay 0:00:00<br />

55D2 Relay 2 Mode N.O<br />

644 Timer 1 T1 0:00:00<br />

55D3 Relay 3 Mode N.O<br />

645 Timer1 T2 0:00:00<br />

55D4 B1R1 Mode N.O<br />

649 Timer1 Value 0:00:00<br />

55D5 B1R2 Mode N.O<br />

650 Timer2<br />

55D6 B1R3 Mode N.O<br />

651 Timer2 Trig Off<br />

55D7 B2R1 Mode N.O<br />

652 Timer2 Mode Off<br />

55D8 B2R2 Mode N.O<br />

653 Timer2 Delay 0:00:00<br />

55D9 B2R3 Mode N.O<br />

654 Timer 2 T1 0:00:00<br />

55DA B3R1 Mode N.O<br />

655 Timer2 T2 0:00:00<br />

55DB B3R2 Mode N.O<br />

659 Tmer2 Value 0:00:00<br />

55DC B3R3 Mode N.O<br />

700 Oper/Status<br />

560 Virtual I/Os<br />

710 Operation<br />

561 VIO 1 Dest Off<br />

711 Process Val<br />

562 VIO 1 Source Off<br />

712 <strong>Speed</strong><br />

563 VIO 2 Dest Off<br />

713 Torque<br />

564 VIO 2 Source Off<br />

714 Shaft Power<br />

565 VIO 3 Dest Off<br />

715 Electrical Power<br />

566 VIO 3 Source Off<br />

716 Current<br />

567 VIO 4 Dest Off<br />

717 Output volt<br />

568 VIO 4 Source Off<br />

718 Frequency<br />

569 VIO 5 Dest Off<br />

719 DC Voltage<br />

56A VIO 5 Source Off<br />

71A<br />

Heatsink Tmp<br />

56B VIO 6 Dest Off<br />

71B<br />

PT100_1_2_3<br />

180 Menu List <strong>Emotron</strong> AB 01-4428-01r2


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

720 Status<br />

721 VSD Status<br />

722 Warning<br />

723 DigIn Status<br />

724 DigOut Status<br />

725 AnIn Status 1-2<br />

726 AnIn Status 3-4<br />

727 AnOut Status 1-2<br />

728 IO Status B1<br />

729 IO Status B2<br />

72A IO Status B3<br />

730 Stored Val<br />

731 Run Time 00:00:00<br />

7311 Reset RunTm No<br />

732 Mains Time 00:00:00<br />

733 Energy kWh<br />

7331 Rst Energy No<br />

800 View TripLog<br />

810 Trip Message<br />

811 Process Value<br />

812 <strong>Speed</strong><br />

813 Torque<br />

814 Shaft Power<br />

815 Electrical Power<br />

816 Current<br />

817 Output voltage<br />

818 Frequency<br />

819 DC Link voltage<br />

81A Heatsink Tmp<br />

81B PT100_1, 2, 3<br />

81C FI Status<br />

81D DigIn status<br />

81E DigOut status<br />

81F AnIn status 1 2<br />

81G AnIn status 3 4<br />

81H AnOut status 1 2<br />

81I IO Status B1<br />

81J IO Status B2<br />

81K IO Status B3<br />

81L Run Time<br />

81M Mains Time<br />

81N Energy<br />

820 Trip Message<br />

821 Process Value<br />

822 <strong>Speed</strong><br />

823 Torque<br />

824 Shaft Power<br />

825 Electrical Power<br />

826 Current<br />

827 Output voltage<br />

828 Frequency<br />

829 DC Link voltage<br />

82A Heatsink Tmp<br />

82B PT100_1, 2, 3<br />

830<br />

840<br />

82C FI Status<br />

82D DigIn status<br />

82E DigOut status<br />

82F AnIn status 1 2<br />

82G AnIn status 3 4<br />

82H AnOut status 1 2<br />

82I IO Status B1<br />

82J IO Status B2<br />

82K IO Status B3<br />

82L Run Time<br />

82M Mains Time<br />

82N Energy<br />

831 Process Value<br />

832 <strong>Speed</strong><br />

833 Torque<br />

834 Shaft Power<br />

835 Electrical Power<br />

836 Current<br />

837 Output voltage<br />

838 Frequency<br />

839 DC Link voltage<br />

83A Heatsink Temperature<br />

83B PT100_1, 2, 3<br />

83C FI Status<br />

83D DigIn status<br />

83E DigOut status<br />

83F AnIn status 1 2<br />

83G AIn status 3 4<br />

83H AnOut status 1 2<br />

83I IO Status B1<br />

83J IO Status B2<br />

83K IO Status B3<br />

83L Run Time<br />

83M Mains Time<br />

83N Energy<br />

841 Process Value<br />

842 <strong>Speed</strong><br />

843 Torque<br />

844 Shaft Power<br />

845 Electrical Power<br />

846 Current<br />

847 Output voltage<br />

848 Frequency<br />

849 DC Link voltage<br />

84A Heatsink Tmp<br />

84B PT100_1, 2, 3<br />

84C FI Status<br />

84D DigIn status<br />

84E DigOut status<br />

84F AnIn status 1 2<br />

84G AnIn status 3 4<br />

84H AnOut status 1 2<br />

<strong>Emotron</strong> AB 01-4428-01r2 Menu List 181


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

84I<br />

IO Status B1<br />

870<br />

84J<br />

IO Status B2<br />

871 Process Value<br />

84K<br />

IO Status B3<br />

872 <strong>Speed</strong><br />

84L<br />

Run Time<br />

873 Torque<br />

84M<br />

Mains Time<br />

874 Shaft Power<br />

84N<br />

Energy<br />

875 Electrical Power<br />

850<br />

876 Current<br />

851 Process Value<br />

877 Output voltage<br />

852 <strong>Speed</strong><br />

878 Frequency<br />

853 Torque<br />

879 DC Link voltage<br />

854 Shaft Power<br />

87A<br />

Heatsink Tmpe<br />

855 Electrical Power<br />

87B PT100_1, 2, 3<br />

856 Current<br />

87C<br />

FI Status<br />

857 Output voltage<br />

87D<br />

DigIn status<br />

858 Frequency<br />

87E<br />

DigOut status<br />

859 DC Link voltage<br />

87F AnIn status 1 2<br />

85A<br />

Heatsink Tmp<br />

87G AnIn status 3 4<br />

85B PT100_1, 2, 3<br />

87H AnOut status 1 2<br />

85C<br />

FI Status<br />

87I<br />

IO Status B1<br />

85D<br />

DigIn status<br />

87J<br />

IO Status B2<br />

85E<br />

DigOut status<br />

87K<br />

IO Status B3<br />

85F AnIn 1 2<br />

87L<br />

Run Time<br />

85G AnIn 3 4<br />

87M<br />

Mains Time<br />

85H AnIOut 1 2<br />

87N<br />

Energy<br />

85I<br />

IO Status B1<br />

880<br />

85J<br />

IO Status B2<br />

881 Process Value<br />

85K<br />

IO Status B3<br />

882 <strong>Speed</strong><br />

85L<br />

Run Time<br />

818 Torque<br />

85M<br />

Mains Time<br />

884 Shaft Power<br />

85N<br />

Energy<br />

885 Electrical Power<br />

860<br />

886 Current<br />

861 Process Value<br />

887 Output voltage<br />

862 <strong>Speed</strong><br />

888 Frequency<br />

863 Torque<br />

889 DC Link voltage<br />

864 Shaft Power<br />

88A<br />

Heatsink Tmp<br />

865 Electrical Power<br />

88B PT100_1, 2, 3<br />

866 Current<br />

88C<br />

FI Status<br />

867 Output voltage<br />

88D<br />

DigIn status<br />

868 Frequency<br />

88E<br />

DigOut status<br />

869 DC Link voltage<br />

88F AnIn status 1 2<br />

86A<br />

Heatsink Tmp<br />

88G AnIn status 3 4<br />

86B PT100_1, 2, 3<br />

88H AnOut status 1 2<br />

86C<br />

FI Status<br />

88I<br />

IO Status B1<br />

86D<br />

DigIn status<br />

88J<br />

IO Status B2<br />

86E<br />

DigOut status<br />

88K<br />

IO Status B3<br />

86F AnIn 1 2<br />

88L<br />

Run Time<br />

86G AnIn 3 4<br />

88M<br />

Mains Time<br />

86H AnOut 1 2<br />

88N<br />

Energy<br />

86I<br />

IO Status B1<br />

890<br />

86J IO Status B 2<br />

891 Process Value<br />

86K<br />

IO Status B3<br />

892 <strong>Speed</strong><br />

86L<br />

Run Time<br />

893 Torque<br />

86M<br />

Mains Time<br />

894 Shaft Power<br />

86N<br />

Energy<br />

895 Electrical Power<br />

182 Menu List <strong>Emotron</strong> AB 01-4428-01r2


DEFAULT<br />

CUSTOM<br />

896 Current<br />

897 Output voltage<br />

898 Frequency<br />

899 DC Link voltage<br />

89A Heatsink Tmp<br />

89B PT100_1, 2, 3<br />

89C FI Status<br />

89D DigIn status<br />

89E DigOut status<br />

89F AnIn status 1 2<br />

89G AnIn status 3 4<br />

89H AnOut status 1 2<br />

89I IO Status B1<br />

89J IO Status B2<br />

89K IO Status B3<br />

89L Run Time<br />

89M Mains Time<br />

89N Energy<br />

8A0 Reset Trip No<br />

900 System Data<br />

920 VSD Data<br />

921 VSD Type<br />

922 Software<br />

923 Unit name 0<br />

<strong>Emotron</strong> AB 01-4428-01r2 Menu List 183


184 Menu List <strong>Emotron</strong> AB 01-4428-01r2


Index<br />

Symbols<br />

+10VDC Supply voltage ................175<br />

+24VDC Supply voltage ................175<br />

Numerics<br />

-10VDC Supply voltage .................175<br />

4-20mA .........................................117<br />

A<br />

Abbreviations .....................................8<br />

Acceleration ...............................90, 92<br />

Acceleration ramp .....................92<br />

Acceleration time ......................90<br />

Ramp type ................................92<br />

Alarm trip ......................................110<br />

Alternating MASTER ..41, 44, 45, 104<br />

Ambient temperature and derating 168<br />

Analogue comparators ...................131<br />

Analogue input ..............................115<br />

AnIn1 .....................................115<br />

AnIn2 .............................120, 121<br />

Offset .............................117, 124<br />

Analogue Output ...........124, 126, 175<br />

AnOut 1 .........................124, 126<br />

Output configuration .....124, 127<br />

AND operator ...............................135<br />

AnIn2 ............................................121<br />

AnIn3 ............................................121<br />

AnIn4 ............................................122<br />

Autoreset .......................1, 36, 76, 152<br />

B<br />

Baudrate ..............................55, 83, 84<br />

Brake chopper ................................157<br />

Brake function ...........................93, 94<br />

Bake release time ......................93<br />

Brake ........................................95<br />

Brake Engage Time ..................95<br />

Brake wait time ........................95<br />

Release speed ............................95<br />

Vector Brake .............................95<br />

Brake functions<br />

Frequency ...............................115<br />

Brake resistors ................................157<br />

C<br />

Cable cross-section .........................171<br />

Cable specifications ..........................19<br />

Cascade controller ............................40<br />

CE-marking .......................................7<br />

Change Condition .........................105<br />

Change Timer ...............................105<br />

Checklist ..........................................45<br />

Clockwise rotary field ....................122<br />

Comparators ..................................131<br />

Connecting control signals ...............24<br />

Connections<br />

Brake chopper connections .......15<br />

Control signal connections ........24<br />

Mains supply ......................15, 27<br />

Motor earth ........................15, 27<br />

Motor output ......................15, 27<br />

Safety earth .........................15, 27<br />

Control panel ...................................51<br />

Control Panel memory .....................37<br />

Copy all settings to Control Panel .<br />

75<br />

Frequency ...............................115<br />

Control signal connections ...............24<br />

Control signals ...........................22, 25<br />

Edge-controlled ..................36, 67<br />

Level-controlled ..................36, 67<br />

Counter-clockwise rotary field .......122<br />

Current ............................................22<br />

Current control (0-20mA) ...............26<br />

D<br />

DC-link residual voltage ....................2<br />

Deceleration .....................................90<br />

Deceleration time .....................90<br />

Ramp type ................................92<br />

Declaration of Conformity .................7<br />

Default .............................................75<br />

Definitions .........................................8<br />

Derating .........................................168<br />

Digital comparators ........................131<br />

Digital inputs<br />

Board Relay ............................129<br />

DigIn 1 ...................................122<br />

DigIn 2 ...................................123<br />

DigIn 3 ...................................123<br />

Dismantling and scrapping ................7<br />

Display .............................................51<br />

Double-ended connection ................25<br />

<strong>Drive</strong> mode ......................................64<br />

Frequency ...............................115<br />

<strong>Drive</strong>s on Change ..........................105<br />

E<br />

ECP ...............................................157<br />

Edge control ...............................36, 67<br />

Electrical specification ....................167<br />

EMC ................................................16<br />

Current control (0-20mA) ........26<br />

Double-ended connection .........25<br />

RFI mains filter .........................16<br />

Single-ended connection ...........25<br />

Twisted cables ...........................26<br />

Emergency stop ................................49<br />

EN60204-1 ........................................7<br />

EN61800-3 ........................................7<br />

EN61800-5-1 ....................................7<br />

Enable ................................35, 52, 122<br />

EXOR operator ............................. 135<br />

Expression ..................................... 135<br />

External Control Panel .................. 157<br />

F<br />

Factory settings ................................ 75<br />

Fail safe ........................................... 42<br />

Fans ............................................... 104<br />

Feedback 'Status' input .................... 41<br />

Fieldbus ................................... 83, 159<br />

Fixed MASTER ....................... 45, 104<br />

Flux optimization ............................ 99<br />

Frequency ...................................... 141<br />

Frequency priority .................... 34<br />

Jog Frequency .......................... 97<br />

Maximum Frequency ............... 96<br />

Minimum Frequency ............... 95<br />

Preset Frequency .................... 100<br />

Skip Frequency .................. 96, 97<br />

Frequency priority ........................... 34<br />

Fuses, cable cross-sections and glands ..<br />

171<br />

G<br />

General electrical specifications ..... 167<br />

H<br />

Hydrophore controller .................... 40<br />

I<br />

I/O Board ...................................... 159<br />

I/O board option ............................. 40<br />

I2t protection<br />

Motor I2t Current ............. 72, 73<br />

Motor I2t Type ........................ 71<br />

ID run ............................................. 70<br />

Identification Run ..................... 37, 70<br />

IEC269 ......................................... 171<br />

Interrupt ................................... 84, 85<br />

IT Mains supply ................................ 2<br />

IxR Compensation .......................... 98<br />

J<br />

Jog Frequency ................................. 97<br />

K<br />

Keyboard reference ........................ 100<br />

Keys ................................................ 52<br />

- Key ........................................ 54<br />

+ Key ....................................... 54<br />

Control keys ............................. 52<br />

ENTER key ............................. 54<br />

ESCAPE key ............................ 54<br />

Function keys ........................... 54<br />

NEXT key ................................ 54<br />

PREVIOUS key ....................... 54<br />

<strong>Emotron</strong> AB 01-4428-01r2 185


RUN L .....................................52<br />

RUN R .....................................52<br />

STOP/RESET ..........................52<br />

Toggle Key ...............................52<br />

L<br />

LCD display ....................................51<br />

Level control ..............................36, 67<br />

Load default .....................................75<br />

Load monitor ...........................38, 110<br />

Local/Remote ..................................65<br />

Lock code ........................................66<br />

Long motor cables ...........................17<br />

Low Voltage Directive .......................7<br />

Lower Band ...................................106<br />

Lower Band Limit ..........................107<br />

M<br />

Machine Directive .............................7<br />

Main menu ......................................54<br />

Mains supply .......................15, 21, 27<br />

Maintenance ..................................155<br />

Manis cables ....................................15<br />

Manufacturer’s certificate ...................7<br />

Max Frequency ..........................90, 96<br />

Memory ...........................................37<br />

Menu<br />

(110) ........................................63<br />

(120) ........................................64<br />

(210) ........................................64<br />

(211) ........................................64<br />

(212) ........................................64<br />

(213) ........................................64<br />

(214) ........................................65<br />

(215) ........................................65<br />

(216) ........................................65<br />

(217) ........................................65<br />

(218) ........................................66<br />

(219) ........................................66<br />

(21A) ........................................67<br />

(21B) ........................................67<br />

(220) ........................................67<br />

(221) ........................................68<br />

(222) ........................................68<br />

(223) ........................................68<br />

(224) ........................................68<br />

(225) ........................................69<br />

(226) ........................................69<br />

(227) ........................................69<br />

(228) ........................................69<br />

(229) ........................................70<br />

(22A) ........................................70<br />

(22B) ........................................70<br />

(22C) ........................................71<br />

(22D) .......................................71<br />

(230) ........................................71<br />

(231) ........................................71<br />

(232) ........................................72<br />

(233) ........................................72<br />

(234) ........................................73<br />

(235) .........................................73<br />

(236) .........................................73<br />

(237) .........................................74<br />

(240) .........................................74<br />

(241) .........................................74<br />

(242) .........................................75<br />

(243) .........................................75<br />

(244) .........................................75<br />

(245) .........................................76<br />

(250) .........................................76<br />

(251) .........................................76<br />

(252) .........................................77<br />

(253) .........................................77<br />

(254) .........................................77<br />

(255) .........................................78<br />

(256) .........................................78<br />

(257) .........................................78<br />

(258) .........................................78<br />

(259) .........................................78<br />

(25A) ........................................79<br />

(25B) ........................................79<br />

(25C) ........................................79<br />

(25D) ........................................79<br />

(25E) ........................................79<br />

(25F) ........................................80<br />

(25G) ........................................80<br />

(25H) .......................................80<br />

(25I) .........................................80<br />

(25J) .........................................80<br />

(25K) ........................................80<br />

(25L) ........................................81<br />

(25M) .......................................81<br />

(25N) .................................76, 81<br />

(25O) .......................................81<br />

(25P) ........................................81<br />

(25Q) .......................................82<br />

(25R) ........................................82<br />

(25S) .........................................82<br />

(25T) ........................................82<br />

(25U) ........................................82<br />

(260) .........................................82<br />

(261) .........................................83<br />

(262) .........................................83<br />

(2621) .......................................83<br />

(2622) .......................................83<br />

(263) .........................................83<br />

(2631) .......................................83<br />

(2632) .......................................83<br />

(2633) .......................................83<br />

(2634) .......................................84<br />

(264) .........................................84<br />

(265) .........................................84<br />

(269) .........................................85<br />

(310) .........................................85<br />

(320) .........................................86<br />

(321) .........................................86<br />

(322) .........................................87<br />

(323) .........................................87<br />

(324) .........................................88<br />

(325) .........................................88<br />

(326) ........................................ 88<br />

(327) ........................................ 89<br />

(328) ........................................ 89<br />

(331) ........................................ 90<br />

(332) ........................................ 90<br />

(333) ........................................ 91<br />

(334) ........................................ 91<br />

(335) ........................................ 91<br />

(336) ........................................ 91<br />

(337) ........................................ 92<br />

(338) ........................................ 92<br />

(339) ........................................ 93<br />

(33A) ....................................... 93<br />

(33B) ........................................ 93<br />

(33C) ....................................... 93<br />

(33D) ....................................... 95<br />

(33E) ........................................ 95<br />

(33F) ........................................ 95<br />

(33G) ....................................... 95<br />

(341) ........................................ 95<br />

(342) ........................................ 96<br />

(343) ........................................ 96<br />

(344) ........................................ 96<br />

(345) ........................................ 97<br />

(346) ........................................ 97<br />

(347) ........................................ 97<br />

(348) ........................................ 97<br />

(351) ........................................ 98<br />

(354) ........................................ 99<br />

(361) ........................................ 99<br />

(362) ...................................... 100<br />

(363) ...................................... 100<br />

(364) ...................................... 100<br />

(365) ...................................... 100<br />

(366) ...................................... 100<br />

(367) ...................................... 100<br />

(368) ...................................... 100<br />

(369) ...................................... 100<br />

(380) ...................................... 100<br />

(381) ...................................... 101<br />

(383) ...................................... 101<br />

(384) ...................................... 101<br />

(385) ...................................... 101<br />

(386) ...................................... 102<br />

(387) ...................................... 102<br />

(388) ...................................... 102<br />

(389) ...................................... 103<br />

(391) ...................................... 104<br />

(392) ...................................... 104<br />

(393) ...................................... 104<br />

(394) ...................................... 105<br />

(395) ...................................... 105<br />

(396) ...................................... 105<br />

(398) ...................................... 106<br />

(399) ...................................... 106<br />

(39A) ..................................... 107<br />

(39B) ...................................... 107<br />

(39C) ..................................... 107<br />

(39D) ..................................... 107<br />

(39E) ...................................... 108<br />

186 <strong>Emotron</strong> AB 01-4428-01r2


(39F) ......................................108<br />

(39G) .....................................109<br />

(39H-39M) ............................109<br />

(410) ......................................110<br />

(411) ......................................110<br />

(412) ......................................110<br />

(413) ......................................110<br />

(414) ......................................110<br />

(415) ......................................110<br />

(416) ......................................111<br />

(4162) ....................................111<br />

(417) ......................................111<br />

(4171) ....................................111<br />

(4172) ....................................112<br />

(418) ......................................112<br />

(4181) ....................................112<br />

(4182) ....................................112<br />

(419) ......................................112<br />

(4191) ....................................112<br />

(4192) ....................................113<br />

(41A) ......................................113<br />

(41B) ......................................113<br />

(41C) ......................................113<br />

(421) ......................................114<br />

(422) ......................................114<br />

(423) ......................................115<br />

(424) ......................................115<br />

(511) ......................................115<br />

(512) ......................................116<br />

(513) ......................................118<br />

(514) ......................................120<br />

(515) ......................................121<br />

(516) ......................................121<br />

(517) ......................................121<br />

(518) ......................................121<br />

(519) ......................................121<br />

(51A) ......................................121<br />

(51B) ......................................122<br />

(51C) ......................................122<br />

(521) ......................................122<br />

(522) ......................................123<br />

(529-52H) ..............................123<br />

(531) ......................................124<br />

(532) ......................................124<br />

(533) ......................................125<br />

(534) ......................................126<br />

(535) ......................................127<br />

(536) ......................................127<br />

(541) ......................................127<br />

(542) ......................................129<br />

(551) ......................................129<br />

(552) ......................................129<br />

(553) ......................................129<br />

(55D) .....................................130<br />

(561) ......................................130<br />

(562) ......................................131<br />

(563-56G) ..............................131<br />

(610) ......................................131<br />

(611) ......................................131<br />

(612) ......................................133<br />

(613) .......................................134<br />

(614) .......................................134<br />

(615) .......................................134<br />

(616) .......................................134<br />

(617) .......................................135<br />

(618) .......................................135<br />

(620) .......................................135<br />

(621) ...............................135, 136<br />

(622) .......................................136<br />

(623) .......................................136<br />

(624) .......................................136<br />

(625) .......................................136<br />

(630) .......................................137<br />

(631) .......................................137<br />

(632) .......................................137<br />

(633) .......................................137<br />

(634) .......................................138<br />

(635) .......................................138<br />

(640) .......................................138<br />

(641) .......................................138<br />

(642) .......................................138<br />

(643) .......................................139<br />

(644) .......................................139<br />

(645) .......................................139<br />

(649) .......................................139<br />

(650) .......................................140<br />

(651) .......................................140<br />

(652) .......................................140<br />

(653) .......................................140<br />

(654) .......................................140<br />

(655) .......................................140<br />

(659) .......................................141<br />

(711) .......................................141<br />

(712) .......................................141<br />

(713) .......................................141<br />

(714) .......................................141<br />

(715) .......................................142<br />

(716) .......................................142<br />

(717) .......................................142<br />

(718) .......................................142<br />

(719) .......................................142<br />

(71A) ......................................142<br />

(71B) ......................................143<br />

(720) .......................................143<br />

(721) .......................................143<br />

(722) .......................................143<br />

(723) .......................................144<br />

(724) .......................................144<br />

(725) .......................................145<br />

(726) .......................................145<br />

(727) .......................................145<br />

(728-72A) ...............................146<br />

(730) .......................................146<br />

(731) .......................................146<br />

(7311) .....................................146<br />

(732) .......................................146<br />

(733) .......................................147<br />

(7331) .....................................147<br />

(800) .......................................147<br />

(810) .......................................147<br />

(811) ...................................... 147<br />

(811-81N) ...................... 147, 148<br />

(820) ...................................... 148<br />

(8A0) ..................................... 149<br />

(900) ...................................... 149<br />

(920) ...................................... 149<br />

(922) ...................................... 149<br />

Minimum Frequency ................ 91, 96<br />

Monitor function<br />

Alarm Select ........................... 113<br />

Delay time ............................. 110<br />

Max Alarm ............................. 110<br />

Overload .......................... 38, 110<br />

Response delay ............... 111, 113<br />

Start delay .............................. 110<br />

Motor cables .................................... 16<br />

Motor cos phi (power factor) ........... 69<br />

Motor data ...................................... 67<br />

Motor frequency ............................. 69<br />

Motor I2t Current ......................... 153<br />

Motor identification run ................. 70<br />

Motor Potentiometer .............. 99, 122<br />

Motor potentiometer ..................... 122<br />

Motor ventilation ............................ 69<br />

Motors .............................................. 5<br />

Motors in parallel ............................ 20<br />

MotPot ............................................ 91<br />

Multi-motor application .................. 64<br />

N<br />

Nominal motor frequency ............... 96<br />

Number of drives .......................... 104<br />

O<br />

Operation ........................................ 64<br />

Options ................................... 26, 157<br />

Brake chopper ........................ 157<br />

External Control Panel (ECP) 157<br />

I/O Board .............................. 159<br />

Output coils ........................... 159<br />

Protection class IP23 and IP54 .....<br />

157<br />

Serial communication, fieldbus ....<br />

159<br />

OR operator .................................. 135<br />

Output coils .................................. 159<br />

Overload ................................. 38, 110<br />

Overload alarm ................................ 38<br />

P<br />

Parameter sets<br />

Load default values ................... 75<br />

Load parameter sets from Control<br />

Panel ........................................ 76<br />

Parameter Set Selection ............ 33<br />

Select a Parameter set ............... 74<br />

PID control ..................................... 43<br />

PID Controller .............................. 100<br />

Closed loop PID control ........ 101<br />

Feedback signal ...................... 100<br />

<strong>Emotron</strong> AB 01-4428-01r2 187


PID D Time ...........................101<br />

PID I Time ............................101<br />

PID P Gain ............................101<br />

Power LED ......................................52<br />

Priority ............................................34<br />

Process Value .................................141<br />

Product standard, EMC .....................6<br />

Programming ...................................55<br />

Protection class IP23 and IP54 ......157<br />

PT100 Inputs ............................73, 74<br />

PTC input .......................................73<br />

Pump size ........................................45<br />

Pump/Fan Control ........................104<br />

Q<br />

Quick Setup Card ..............................5<br />

R<br />

Reference<br />

Frequency ...............................114<br />

Motor potentiometer ..............122<br />

Reference signal ..................64, 85<br />

Set reference value ....................85<br />

Torque ...................................114<br />

View reference value .................85<br />

Reference control .............................65<br />

Reference signal ...............................65<br />

Relay output ..................................129<br />

Relay 1 ...................................129<br />

Relay 2 ...................................129<br />

Relay 3 ...................................129<br />

Release speed ...................................95<br />

Remote control ................................35<br />

Reset command .............................122<br />

Reset control ....................................65<br />

Resolution .......................................63<br />

RFI mains filter ...............................16<br />

Rotation ..........................................66<br />

RS232/485 ......................................83<br />

RUN ...............................................52<br />

Run command .................................52<br />

Run Left command ........................122<br />

Run Right command .....................122<br />

Running motor ................................93<br />

Stop categories .................................49<br />

Stop command ...............................122<br />

Stop Delay .....................................107<br />

Stripping lengths ..............................19<br />

Switches ...........................................22<br />

Switching frequency .........................70<br />

Switching in motor cables ................17<br />

T<br />

Technical Data ...............................163<br />

Terminal connections ......................22<br />

Test Run ..........................................70<br />

Timer .............................................105<br />

Torque .............................................98<br />

Transition Frequency .....................108<br />

Trip .................................................52<br />

Trip causes and remidial action ......152<br />

Trips, warnings and limits ..............151<br />

Twisted cables ..................................26<br />

Type ..............................................149<br />

Type code number .............................5<br />

U<br />

Underload ........................................38<br />

Underload alarm ............................110<br />

Unlock Code ...................................66<br />

Upper Band ...................................106<br />

Menu<br />

(397) 106<br />

Upper Band Limit ..........................107<br />

V<br />

V/Hz Mode .....................................64<br />

Vector Brake ....................................95<br />

Ventilation .......................................69<br />

View reference value .........................85<br />

Voltage .............................................22<br />

W<br />

Warning .........................................147<br />

Wiring .............................................44<br />

S<br />

Select <strong>Drive</strong> ...................................104<br />

Settle Time ....................................107<br />

Setup menu .....................................54<br />

Menu structure .........................54<br />

Signal ground ................................175<br />

Single-ended connection ..................25<br />

Software .........................................149<br />

Sound characteristic .........................70<br />

<strong>Speed</strong> .............................................141<br />

Spinstart ..........................................93<br />

Standards ...........................................6<br />

Start Delay .....................................106<br />

Start/Stop settings ............................90<br />

Status indications .............................51<br />

188 <strong>Emotron</strong> AB 01-4428-01r2


<strong>Emotron</strong> AB, Mörsaregatan 12, SE-250 24 Helsingborg, Sweden<br />

Tel: +46 42 16 99 00, Fax: +46 42 16 99 49<br />

E-mail: info@emotron.se<br />

Internet: www.emotron.com<br />

<strong>Emotron</strong> AB 01-4428-01r2 2009-05-15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!