03.01.2015 Views

IntelR 80960 RN I/O Processor Datasheet

IntelR 80960 RN I/O Processor Datasheet

IntelR 80960 RN I/O Processor Datasheet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Data Sheet<br />

Product Features<br />

■ Complies with PCI Local Bus Specification, Revision 2.2<br />

■ Universal (5 V and 3.3 V) PCI Signalling Environment (C-stepping only)<br />

■<br />

■<br />

■<br />

■<br />

High Performance Intel ® <strong>80960</strong>JT Core<br />

—Sustained One Instruction/Clock Execution<br />

—16 Kbyte, Two-Way Set-Associative<br />

Instruction Cache<br />

—4 Kbyte, Direct-Mapped Data Cache<br />

—Sixteen 32-Bit Global Registers<br />

—Sixteen 32-Bit Local Registers<br />

—1 Kbyte, Internal Data RAM<br />

—Local Register Cache<br />

(Eight Available Stack Frames)<br />

—Two 32-Bit On-Chip Timer Units<br />

PCI-to-PCI Bridge Unit<br />

—Eight Delayed Read/Write Buffers<br />

HoldinguptoeightTransactions<br />

—Primary and Secondary 64-bit PCI<br />

Interfaces<br />

—TwoPostingBuffersHoldingupto12<br />

Transactions<br />

—Delayed and Posted Transaction Support<br />

—Forwards Memory, I/O, Configuration<br />

Commands from PCI Bus to PCI Bus<br />

I 2 O Messaging Unit<br />

—Four Message Registers<br />

— Two Doorbell Registers<br />

—Four Circular Queues<br />

—1004 Index Registers<br />

Memory Controller<br />

—128 Mbytes of 64-Bit SDRAM or<br />

64 Mbytes of 32-Bit SDRAM<br />

—ECC Single-Bit error correction,<br />

Double-Bit error detection<br />

—Two Independent Banks for SRAM /<br />

ROM/Flash(8Mbyte/Bank;8-Bit)<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Two Address Translation Units<br />

— Connects Internal Bus to 64-bit PCI Buses<br />

—Inbound/Outbound Address Translation<br />

Support<br />

—Direct Outbound Addressing Support<br />

DMA Controller<br />

—Three Independent Channels<br />

—PCI Memory Controller Interface<br />

—64-Bit Internal + PCI Bus Addressing<br />

—Independent Interface to 64-bit Primary<br />

and Secondary PCI Buses<br />

—264 Mbyte/sec Burst Transfers to PCI and<br />

SDRAM Memory<br />

—Direct Addressing to/from PCI Buses<br />

—Unaligned Transfers Supported in<br />

Hardware<br />

— Two Channels Dedicated to Primary PCI Bus<br />

—One Channel Dedicated to Secondary PCI Bus<br />

I 2 C Bus Interface Unit<br />

—Serial Bus<br />

—Master/Slave Capabilities<br />

—System Management Functions<br />

Secondary PCI Arbitration Unit<br />

—Supports Six Secondary PCI Devices<br />

—Multi-priority Arbitration Algorithm<br />

Private PCI Device Support<br />

Perimeter Land Grid Array Package<br />

—540-pin<br />

Application Accelerator<br />

—Built-in hardware XOR engine<br />

Performance Monitoring<br />

—Ninety-eight events monitored on-chip<br />

Order Number: 273157-010<br />

June, 2002


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual<br />

property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability<br />

whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to<br />

fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not<br />

intended for use in medical, life saving, or life sustaining applications.<br />

Intel may make changes to specifications and product descriptions at any time, without notice.<br />

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for<br />

future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.<br />

The Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong> may contain design defects or errors known as errata which may cause the product to deviate from published<br />

specifications. Current characterized errata are available on request.<br />

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.<br />

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling<br />

1-800-548-4725 or by visiting Intel's website at http://www.intel.com.<br />

Copyright © Intel Corporation, 2002<br />

Intel, Intel Solutions960 and Intel i960 are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.<br />

*Other names and brands may be claimed as the property of others.<br />

Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Contents<br />

1.0 About this Document................................................................................................7<br />

1.1 Intel ® Solutions960 ® Program ...............................................................................7<br />

1.2 Terminology...........................................................................................................7<br />

1.3 Additional Information Sources .............................................................................7<br />

2.0 Functional Overview .................................................................................................8<br />

2.1 Key Functional Units .............................................................................................9<br />

2.1.1 PCI-to-PCI Bridge Unit .............................................................................9<br />

2.1.2 Private PCI Device Support......................................................................9<br />

2.1.3 DMA Controller.........................................................................................9<br />

2.1.4 Address Translation Unit ..........................................................................9<br />

2.1.5 Messaging Unit.........................................................................................9<br />

2.1.6 Memory Controller Unit ..........................................................................10<br />

2.1.7 I2C Bus Interface Unit ............................................................................10<br />

2.1.8 Secondary PCI Arbitration Unit ..............................................................10<br />

2.1.9 Application Accelerator Unit ...................................................................10<br />

2.1.10 Performance Monitor Unit ......................................................................10<br />

2.1.11 Bus Interface Unit...................................................................................10<br />

2.2 Intel ® i960 ® Core Features (Intel ® <strong>80960</strong>JT).......................................................11<br />

2.2.1 Burst Bus................................................................................................12<br />

2.2.2 Timer Unit...............................................................................................12<br />

2.2.3 Priority Interrupt Controller .....................................................................12<br />

2.2.4 Faults and Debugging ............................................................................12<br />

2.2.5 On-Chip Cache and Data RAM ..............................................................12<br />

2.2.6 Local Register Cache .............................................................................13<br />

2.2.7 Test Features .........................................................................................13<br />

2.2.8 Memory-Mapped Control Registers .......................................................13<br />

2.2.9 Instructions, Data Types and Memory Addressing Modes.....................13<br />

3.0 Package Information...............................................................................................15<br />

3.1 Package Introduction...........................................................................................15<br />

3.1.1 Functional Signal Definitions ..................................................................15<br />

3.1.1.1 Signal Pin Descriptions .............................................................16<br />

3.1.2 540-Lead H-PBGA Package ..................................................................26<br />

3.2 Package Thermal Specifications .........................................................................38<br />

3.2.1 Thermal Specifications ...........................................................................38<br />

3.2.1.1 Ambient Temperature................................................................38<br />

3.2.1.2 Case Temperature ....................................................................38<br />

3.2.1.3 Thermal Resistance ..................................................................39<br />

3.2.2 Thermal Analysis....................................................................................39<br />

3.3 Heat Sink Information..........................................................................................40<br />

3.4 Vendor Information..............................................................................................40<br />

3.4.1 Socket-Header Vendor...........................................................................40<br />

3.4.2 Burn-in Socket Vendor ...........................................................................40<br />

3.4.3 Shipping Tray Vendor.............................................................................41<br />

3.4.4 Logic Analyzer Interposer Vendor ..........................................................41<br />

3.4.5 JTAG Emulator Vendor ..........................................................................41<br />

3.5 ............................................................................................................................41<br />

Data Sheet 3


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.0 Electrical Specifications........................................................................................42<br />

4.1 Absolute Maximum Ratings ................................................................................42<br />

4.2 V CC5REF Pin Requirements (V DIFF ).....................................................................43<br />

4.3 V CCPLL Pin Requirements ...................................................................................43<br />

4.4 Targeted DC Specifications ................................................................................44<br />

4.5 Targeted AC Specifications.................................................................................46<br />

4.5.1 Clock Signal Timings..............................................................................46<br />

4.5.2 PCI Interface Signal Timings..................................................................47<br />

4.5.3 Intel ® <strong>80960</strong>JN Core Interface Timings.................................................. 48<br />

4.5.4 SDRAM/Flash Interface Signal Timings .................................................48<br />

4.5.5 Boundary Scan Test Signal Timings ...................................................... 49<br />

4.5.6 I2C Interface Signal Timings .................................................................. 50<br />

4.6 AC Timing Waveforms ........................................................................................51<br />

4.7 AC Test Conditions ............................................................................................. 53<br />

5.0 Device Identification on Reset............................................................................54<br />

4 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Figures<br />

Tables<br />

1 Intel ® <strong>80960</strong><strong>RN</strong> Functional Block Diagram ..................................................... 8<br />

2 Intel ® <strong>80960</strong>JT Core Block Diagram ............................................................. 11<br />

3 540L H-PBGA Package Diagram (Top and Side View) ................................ 26<br />

4 540L H-PBGA Package Diagram (Bottom View) .......................................... 27<br />

5 Thermocouple Attachment - A) No Heatsink / B) With Heatsink ................... 38<br />

6 V CC5REF Current-Limiting Resistor................................................................ 43<br />

7 V CCPLL Lowpass Filter .................................................................................. 43<br />

8 P_CLK, TCK, DCLKIN, DCLKOUT Waveform............................................. 51<br />

9 T OV Output Delay Waveform......................................................................... 51<br />

10 T OF Output Float Waveform .......................................................................... 52<br />

11 T IS and T IH Input Setup and Hold Waveform ................................................ 52<br />

12 I 2 C Interface Signal Timings.......................................................................... 52<br />

13 AC Test Load (all signals except SDRAM and Flash signals)....................... 53<br />

1 Related Documentation................................................................................... 7<br />

2 Instruction Set .............................................................................................. 14<br />

3 Pin Description Nomenclature....................................................................... 16<br />

4 Memory Controller Signals ............................................................................ 17<br />

5 Primary PCI Bus Signals ............................................................................... 20<br />

6 Secondary PCI Arbiter Signals...................................................................... 21<br />

7 Secondary PCI Bus Signals .......................................................................... 22<br />

8 Intel ® <strong>80960</strong>Jx Core Signals and Configuration Straps................................. 24<br />

9 I 2 C, JTAG, Core Signals ............................................................................... 25<br />

10 540-Lead H-PBGA Package — Signal Name Order ..................................... 28<br />

11 540-Lead H-PBGA Pinout — Ballpad Number Order.................................... 33<br />

12 540-Lead H-PBGA Package Thermal Characteristics .................................. 39<br />

13 Heat Sink Vendors and Contacts .................................................................. 40<br />

14 Socket-Header Vendor.................................................................................. 40<br />

15 Burn-in Socket Vendor .................................................................................. 40<br />

16 Shipping Tray Vendor.................................................................................... 41<br />

17 Logic Analyzer Interposer Vendor ................................................................. 41<br />

18 JTAG Emulator Vendor ................................................................................. 41<br />

19 Operating Conditions..................................................................................... 42<br />

20 V DIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V)......... 43<br />

21 DC Characteristics ........................................................................................ 44<br />

22 I CC Characteristics ........................................................................................ 45<br />

23 Input Clock Timings....................................................................................... 46<br />

24 SDRAM Output Clock Timings ...................................................................... 46<br />

25 PCI Signal Timings....................................................................................... 47<br />

26 Intel ® <strong>80960</strong>JN Core Signal Timings............................................................. 48<br />

27 SDRAM / Flash Signal Timings..................................................................... 48<br />

28 Boundary Scan Test Signal Timings ............................................................. 49<br />

29 I2C Interface Signal Timings ......................................................................... 50<br />

30 Device ID Registers...................................................................................... 54<br />

Data Sheet 5


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

This Page Intentionally Left Blank<br />

6 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

1.0 About this Document<br />

This is the data sheet for the Intel ® <strong>80960</strong><strong>RN</strong> processor. This data sheet contains a functional<br />

overview, mechanical data (package signal locations and simulated thermal characteristics),<br />

targeted electrical specifications (simulated), and bus functional waveforms. Detailed functional<br />

descriptions other than parametric performance is published in the i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong><br />

Developer’s Manual.<br />

1.1 Intel ® Solutions960 ® Program<br />

The Intel ® Solutions960 ® program features a wide variety of development tools which support the<br />

i960 ® processor family. Many of these tools are developed by partner companies; some are<br />

developed by Intel, such as profile-driven optimizing compilers. For more information on these<br />

products, contact your local Intel representative.<br />

1.2 Terminology<br />

In this document, the following terms are used:<br />

• Primary and Secondary PCI buses are the <strong>80960</strong><strong>RN</strong> processor’s external PCI buses which<br />

conform to PCI SIG specifications.<br />

• Intel ® <strong>80960</strong> core refers to the Intel ® <strong>80960</strong>JT processor which is integrated into the <strong>80960</strong><strong>RN</strong><br />

processor.<br />

1.3 Additional Information Sources<br />

Intel documentation is available from your local Intel Sales Representative or Intel Literature Sales.<br />

Intel Corporation<br />

Literature Sales<br />

P.O. Box 5937<br />

Denver, CO 80217-9808<br />

1-800-548-4725<br />

Table 1.<br />

Related Documentation<br />

Document Title<br />

Order / Contact<br />

i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual Intel Order # 273158<br />

i960 ® Jx Microprocessor User’s Guide Intel Order # 272483<br />

i960 ® RM/<strong>RN</strong>/RS I/O <strong>Processor</strong> Specification Update Intel Order # 273164<br />

PCI Local Bus Specification, Revision 2.2 PCI Special Interest Group 1-800-433-5177<br />

PCI-to-PCI Bridge Architecture Specification, Revision 1.1 PCI Special Interest Group 1-800-433-5177<br />

I 2 C Peripherals for Microcontrollers<br />

Philips Semiconductor<br />

Data Sheet 7


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.0 Functional Overview<br />

As indicated in Figure 1, the <strong>80960</strong><strong>RN</strong> processor combines many features with the <strong>80960</strong>JT to create<br />

an intelligent I/O processor. Subsections following the figure briefly describe the main features; for<br />

detailed functional descriptions, refer to the i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual.<br />

The PCI bus is an industry standard, high performance, low latency system bus that operates up to<br />

264 Mbyte/s. The <strong>80960</strong><strong>RN</strong> processor, a multi-function PCI device, is fully compliant with the<br />

PCI Local Bus Specification, Revision 2.2. Function 0 is the PCI-to-PCI bridge unit; Function 1 is<br />

the address translation unit.<br />

The PCI-to-PCI bridge unit is the path between two independent 64-bit PCI buses and provides the<br />

ability to overcome PCI electrical load limits. The addition of the Intel ® i960 ® core processor<br />

brings intelligence to the bridge.<br />

The <strong>80960</strong><strong>RN</strong> processor, object code compatible with the i960 core processor, is capable of<br />

sustained execution at the rate of one instruction per clock.<br />

The internal bus, a 64-bit PCI-like bus, is a high-speed interface to local memory and I/O. Physical<br />

and logical memory attributes are programmed via memory-mapped control registers (MMRs); an<br />

extension not found on the Intel ® i960Kx,SxorCxprocessors.<br />

Figure 1.<br />

Intel ® <strong>80960</strong><strong>RN</strong> Functional Block Diagram<br />

Local Memory<br />

(SDRAM, Flash)<br />

I 2 C Serial Bus<br />

<strong>80960</strong><strong>RN</strong> <strong>Processor</strong><br />

<strong>80960</strong> Core<br />

Memory<br />

Controller<br />

Bus<br />

Interface<br />

I 2 CBus<br />

Interface<br />

Application<br />

Accelerator<br />

Internal<br />

Arbitration<br />

64-bit Internal Bus<br />

Messaging<br />

Unit<br />

Two DMA<br />

Channels<br />

Address<br />

Translation<br />

One DMA<br />

Channel<br />

Address<br />

Translation<br />

64-bit/32-bit Primary PCI Bus<br />

PCI to PCI<br />

Bridge<br />

64-bit/32-bit Secondary PCI Bus<br />

Performance<br />

Monitoring<br />

Unit<br />

Secondary<br />

PCI Arbitration<br />

Unit<br />

8 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.1 Key Functional Units<br />

2.1.1 PCI-to-PCI Bridge Unit<br />

The PCI-to-PCI bridge unit (referred to as “bridge”) connects two independent PCI buses. Each<br />

PCI bus may be 32 or 64 bits wide. The bridge is fully compliant with the PCI-to-PCI Bridge<br />

Architecture Specification, Revision 1.1 published by the PCI Special Interest Group. The bridge<br />

forwards bus transactions on one PCI bus to the other PCI bus. Dedicated data queues support high<br />

performance bandwidth on the PCI buses. The <strong>80960</strong><strong>RN</strong> supports PCI 64-bit Dual Address Cycle<br />

(DAC) addressing.<br />

The bridge has dedicated PCI configuration space accessible through the primary PCI bus.<br />

2.1.2 Private PCI Device Support<br />

The <strong>80960</strong><strong>RN</strong> processor explicitly supports private PCI devices on the secondary PCI bus. The<br />

bridge and Address Translation Unit work together to hide private PCI devices from PCI<br />

configuration cycles and allow these hidden devices to use a private PCI address space. The<br />

Address Translation Unit issues PCI configuration cycles to configure hidden devices.<br />

2.1.3 DMA Controller<br />

The DMA Controller supports low-latency, high-throughput data transfers between PCI bus agents<br />

and local memory. Three separate DMA channels accommodate data transfers: two for primary<br />

PCI bus, one for the secondary PCI bus. The DMA Controller supports chaining and unaligned<br />

data transfers. The DMA Controller is programmable only through the i960 core processor.<br />

2.1.4 Address Translation Unit<br />

The Address Translation Unit (ATU) allows PCI transactions direct access to local memory. The<br />

<strong>80960</strong><strong>RN</strong> processor has direct access to both PCI buses. The ATU supports transactions between<br />

PCI address space and <strong>80960</strong><strong>RN</strong> processor address space.<br />

Address translation is controlled through programmable registers accessible from both the primary<br />

PCI interface and the <strong>80960</strong> core. Dual access to registers allows flexibility in mapping the two<br />

address spaces.<br />

2.1.5 Messaging Unit<br />

The Messaging Unit (MU) provides data transfer between the PCI system and the <strong>80960</strong><strong>RN</strong><br />

processor. The Messaging Unit uses interrupts to notify the PCI system or the <strong>80960</strong><strong>RN</strong> processor<br />

when new data arrives. The MU has four messaging mechanisms: Message Registers, Doorbell<br />

Registers, Circular Queues, and Index Registers. Each mechanism allows a host processor or<br />

external PCI device and the <strong>80960</strong><strong>RN</strong> processor to communicate through message passing and<br />

interrupt generation.<br />

Data Sheet 9


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.1.6 Memory Controller Unit<br />

The Memory Controller Unit (MCU) allows direct control of a local SDRAM and Flash subsystem.<br />

The MCU features programmable chip selects, a wait state generator and Error Correction and<br />

Detection. With the ATU configuration registers, local memory can be configured as PCI<br />

addressable memory or private processor memory.<br />

2.1.7 I 2 C Bus Interface Unit<br />

The I 2 C (Inter-Integrated Circuit) Bus Interface Unit allows the <strong>80960</strong> core to serve as a master and<br />

slave device residing on the I 2 C bus. The I 2 C bus is a serial bus developed by Philips<br />

Semiconductor comprising a two pin interface. The bus allows the <strong>80960</strong><strong>RN</strong> processor to interface<br />

to other I 2 C peripherals and microcontrollers for system management functions. It requires a<br />

minimum of hardware for an economical system to relay status and reliability information on the<br />

I/O subsystem to an external device. For more information, see I 2 C Peripherals for<br />

Microcontrollers (Philips Semiconductor).<br />

2.1.8 Secondary PCI Arbitration Unit<br />

The Secondary PCI Arbitration Unit provides PCI arbitration for the secondary PCI bus. The<br />

arbitration includes a fairness algorithm with programmable priorities and six external PCI Request<br />

and Grant signal pairs.<br />

2.1.9 Application Accelerator Unit<br />

The Application Accelerator Unit (AAU) provides hardware acceleration of XOR functions<br />

commonly used in RAID algorithms. Additionally, the AAU provides block moves within local<br />

memory. The Application Accelerator interfaces the internal bus and operates on data within local<br />

memory. The AAU is programmable through the i960 core processor and supports chaining and<br />

unaligned data transfers.<br />

2.1.10 Performance Monitor Unit<br />

The Performance Monitor Unit (PMU) allows software to monitor the performance of the different<br />

buses: Primary PCI, Secondary PCI, and Internal. Multiple performance characteristics are<br />

captured with 14 mode registers and a global time stamp register.<br />

2.1.11 Bus Interface Unit<br />

The Bus Interface Unit (BIU) provides an interface between the 100 MHz <strong>80960</strong>JT core and the<br />

66 MHz internal bus. To optimize performance, the BIU implements prefetching and write merging.<br />

10 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.2 Intel ® i960 ® Core Features (Intel ® <strong>80960</strong>JT)<br />

The processing power of the <strong>80960</strong><strong>RN</strong> processor comes from the 100 MHz <strong>80960</strong>JT processor<br />

core. The <strong>80960</strong>JT is a scalar implementation of the <strong>80960</strong> Core Architecture. Figure 2 shows a<br />

block diagram of the <strong>80960</strong>JT Core processor.<br />

Factors that contribute to the <strong>80960</strong>JT core’s performance include:<br />

• 100 MHz Single-clock execution of most instructions<br />

• Independent Multiply/Divide Unit<br />

• Efficient instruction pipeline minimizes pipeline break latency<br />

• Register and resource scoreboarding allow overlapped instruction execution<br />

• 128-bit register bus speeds local register caching<br />

• 16 Kbyte two-way set-associative, integrated instruction cache<br />

• 4 Kbyte direct-mapped, integrated data cache<br />

• 1 Kbyte integrated data RAM delivers zero wait state program data<br />

Figure 2.<br />

The <strong>80960</strong> core operates out of its own 32-bit address space, which is independent of the PCI<br />

address space. Local memory can be:<br />

• Made visible to the PCI address space<br />

• Kept private to the <strong>80960</strong>JT core<br />

• Allocated as a combination of the two<br />

Intel ® <strong>80960</strong>JT Core Block Diagram<br />

P_CLK<br />

TAP<br />

5<br />

PLL, Clocks,<br />

Power Mgmt<br />

Boundary Scan<br />

Controller<br />

8-Set<br />

Local Register<br />

Cache<br />

128<br />

Global / Local<br />

Register File<br />

SRC1 SRC2 DST<br />

Multiply<br />

Divide<br />

Unit<br />

SRC1<br />

SRC2<br />

DST<br />

Instruction Cache<br />

16 Kbyte Two-Way Set<br />

Associative<br />

Instruction Sequencer<br />

Constants<br />

Execution<br />

and<br />

Address<br />

Generation<br />

Unit<br />

Effective<br />

Address<br />

SRC1<br />

SRC2<br />

DST<br />

Control<br />

3 Independent 32-Bit SRC1, SRC2, and DST Buses<br />

Memory<br />

Interface<br />

Unit<br />

32-bit Addr<br />

32-bit Data<br />

SRC1<br />

DST<br />

32-bit buses<br />

address / data<br />

Physical Region<br />

Configuration<br />

Bus<br />

Control Unit<br />

Bus Request<br />

Queues<br />

Two 32-Bit<br />

Timers<br />

Control<br />

Address/<br />

Data Bus<br />

Interrupt<br />

Programmable<br />

Port<br />

Interrupt Controller 9<br />

Memory-Mapped<br />

Register Interface<br />

1Kbyte<br />

Data RAM<br />

4Kbyte<br />

Direct Mapped<br />

Data Cache<br />

32<br />

Data Sheet 11


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.2.1 Burst Bus<br />

2.2.2 Timer Unit<br />

A 32-bit high-performance bus controller interfaces the <strong>80960</strong><strong>RN</strong> processor to the Bus Interface<br />

Unit. The Bus Control Unit fetches instructions and transfers data on the internal bus at the rate of<br />

up to four 32-bit words per six clock cycles. The external address/data bus is multiplexed.<br />

Data caching is programmed through a group of logical memory templates and a defaults register.<br />

The Bus Control Unit’s features include:<br />

• Multiplexed external bus minimizes pin count<br />

• External ready control for address-to-data, data-to-data and data-to-next-address wait state types<br />

• Little endian byte ordering<br />

• Unaligned bus accesses performed transparently<br />

• Three-deep load/store queue decouples the bus from the <strong>80960</strong> core<br />

Upon reset, the <strong>80960</strong>JT conducts an internal self test. Before executing its first instruction, it<br />

performs an external bus confidence test by performing a checksum on the first words of the<br />

Initialization Boot Record.<br />

The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several<br />

clock rates and generating interrupts. Each is programmed through the Timer Unit registers. These<br />

memory-mapped registers are addressable on 32-bit boundaries. Timers have a single-shot mode<br />

and auto-reload capabilities for continuous operation. Each timer has an independent interrupt<br />

request to the <strong>80960</strong>JT’s interrupt controller. The TU can generate a fault when unauthorized writes<br />

from user mode are detected.<br />

2.2.3 Priority Interrupt Controller<br />

Low interrupt latency is critical to many embedded applications. As part of its highly flexible<br />

interrupt mechanism, the <strong>80960</strong>JT exploits several techniques to minimize latency:<br />

• Interrupt vectors and interrupt handler routines can be reserved on-chip<br />

• Register frames for high-priority interrupt handlers can be cached on-chip<br />

• The interrupt stack can be placed in cacheable memory space<br />

2.2.4 Faults and Debugging<br />

The <strong>80960</strong>JT employs a comprehensive fault model. The processor responds to faults by making<br />

implicit calls to a fault handling routine. Specific information collected for each fault allows the<br />

fault handler to diagnose exceptions and recover appropriately.<br />

The processor also has built-in debug capabilities. With software, the <strong>80960</strong>JT may be configured<br />

to detect as many as seven different trace event types. Alternatively, mark and fmark instructions<br />

can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are<br />

also available to trap on execution and data addresses.<br />

2.2.5 On-Chip Cache and Data RAM<br />

Memory subsystems often impose substantial wait state penalties. The <strong>80960</strong>JT integrates<br />

considerable storage resources on-chip to decouple CPU execution from the external bus. The<br />

<strong>80960</strong>JT includes a 16 Kbyte instruction cache, a 4 Kbyte data cache and 1 Kbyte data RAM.<br />

12 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

2.2.6 Local Register Cache<br />

The <strong>80960</strong>JT rapidly allocates and deallocates local register sets during context switches. The processor<br />

needs to flush a register set to the stack only when it saves more than seven sets to its local register cache.<br />

2.2.7 Test Features<br />

The <strong>80960</strong><strong>RN</strong> processor incorporates numerous features that enhance the user’s ability to test both<br />

the processor and the system to which it is attached. These features include ONCE (On-Circuit<br />

Emulation) mode and Boundary Scan (JTAG).<br />

The <strong>80960</strong>JT provides testability features compatible with IEEE Standard Test Access Port and<br />

Boundary Scan Architecture (IEEE Std. 1149.1).<br />

One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE<br />

mode). ONCE mode can also be initiated at reset without using the boundary scan mechanism.<br />

ONCE mode is useful for board-level testing. This feature allows a mounted <strong>80960</strong><strong>RN</strong> processor to<br />

electrically “remove” itself from a circuit board allowing system-level testing where a remote<br />

tester can exercise the processor system.<br />

The test logic does not interfere with component or system behavior and ensures that components<br />

function correctly and the connections between various components are correct.<br />

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing.<br />

Boundary Scan can examine connections that might otherwise be inaccessible to a test system.<br />

2.2.8 Memory-Mapped Control Registers<br />

The <strong>80960</strong>JT is compliant with <strong>80960</strong> family architecture. Each memory-mapped, 32-bit register is<br />

accessed via memory-format instructions. The processor ensures that these accesses do not<br />

generate external bus cycles.<br />

2.2.9 Instructions, Data Types and Memory Addressing Modes<br />

As with all <strong>80960</strong> family processors, the instruction set supports several different data types and formats:<br />

• Bit<br />

• Bit fields<br />

• Integer (8-, 16-, 32-, 64-bit)<br />

• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)<br />

• Triple word (96 bits)<br />

• Quad word (128 bits)<br />

The <strong>80960</strong>JT provides a full set of addressing modes for C and assembly:<br />

• Two Absolute modes<br />

• Five Register Indirect modes<br />

• Index with displacement mode<br />

• IP with displacement mode<br />

Data Sheet 13


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 2 shows the available <strong>80960</strong>JT instructions.<br />

Table 2.<br />

Instruction Set<br />

Data Movement Arithmetic Logical Bit, Bit Field and Byte<br />

Add<br />

Subtract<br />

Load<br />

Store<br />

Move<br />

Conditional Select<br />

Load Address<br />

Multiply<br />

Divide<br />

Remainder<br />

Modulo<br />

Shift<br />

Extended Shift<br />

Extended Multiply<br />

Extended Divide<br />

Add with Carry<br />

Subtract with Carry<br />

Conditional Add<br />

Conditional Subtract<br />

Rotate<br />

And<br />

Not And<br />

And Not<br />

Or<br />

Exclusive Or<br />

Not Or<br />

Or Not<br />

Nor<br />

Exclusive Nor<br />

Not<br />

Nand<br />

Set Bit<br />

Clear Bit<br />

Not Bit<br />

Alter Bit<br />

Scan For Bit<br />

Span Over Bit<br />

Extract<br />

Modify<br />

Scan Byte for Equal<br />

Byte Swap<br />

Comparison Branch Call/Return Fault<br />

Compare<br />

Conditional Compare<br />

Compare and Increment<br />

Compare and<br />

Decrement<br />

Test Condition Code<br />

Check Bit<br />

Unconditional Branch<br />

Conditional Branch<br />

Compare and Branch<br />

Call<br />

Call Extended<br />

Call System<br />

Return<br />

Branch and Link<br />

Conditional Fault<br />

Synchronize Faults<br />

Debug<br />

<strong>Processor</strong><br />

Management<br />

Atomic<br />

Flush Local Registers<br />

Modify Trace Controls<br />

Mark<br />

Force Mark<br />

Modify Arithmetic<br />

Controls<br />

Modify Process Controls<br />

Halt<br />

System Control<br />

Cache Control<br />

Interrupt Control<br />

Atomic Add<br />

Atomic Modify<br />

14 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.0 Package Information<br />

3.1 Package Introduction<br />

The <strong>80960</strong><strong>RN</strong> processor is offered in a Perimeter Land Grid Array (PBGA) package. This is a<br />

perimeter array package with five rows of ball connections in the outer area of the package. See<br />

Figure 4 “540L H-PBGA Package Diagram (Bottom View)” on page 27.<br />

3.1.1 Functional Signal Definitions<br />

This section defines the pins and signals in the following tables:<br />

• Table 3 “Pin Description Nomenclature” on page 16<br />

• Table 4 “Memory Controller Signals” on page 17<br />

• Table 5 “Primary PCI Bus Signals” on page 20<br />

• Table 6 “Secondary PCI Arbiter Signals” on page 21<br />

• Table 8 “Intel ® <strong>80960</strong>Jx Core Signals and Configuration Straps” on page 24<br />

• Table 9 “I 2 C, JTAG, Core Signals” on page 25<br />

Data Sheet 15


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.1.1.1 Signal Pin Descriptions<br />

Table 3.<br />

Pin Description Nomenclature<br />

Symbol<br />

Description<br />

I<br />

O<br />

I/O<br />

Input pin only<br />

Output pin only<br />

Pin can be either an input or output<br />

OD Open Drain pin<br />

- Pin must be connected as described<br />

N/C<br />

5V<br />

Sync(...)<br />

Async<br />

Prst(...)<br />

Srst(...)<br />

Irst(...)<br />

P32(...)<br />

S32(...)<br />

NO CONNECT. Do not make electrical connections to these balls.<br />

Input pin is 5 volt tolerant<br />

Synchronous. Inputs meet setup and hold times relative to an input clock.<br />

Sync(P) Synchronous to P_CLK<br />

Sync(D) Synchronous to DCLKIN<br />

Sync(T) Synchronous to TCK<br />

Asynchronous. Inputs may be asynchronous relative to P_CLK, DCLKIN, orTCK. All<br />

asynchronous signals are level-sensitive.<br />

While the P_RST# pin is asserted, the pin:<br />

Prst(1) Is driven to Vcc<br />

Prst(0) Is driven to Vss<br />

Prst(X) Is driven to unknown state<br />

Prst(H)IspulleduptoVcc<br />

Prst(L)IspulleddowntoVss<br />

Prst(Z) Floats<br />

Prst(Q) Is a valid output<br />

Since P_RST# is asynchronous, these are asynchronous events.<br />

While the S_RST# pin is asserted, the pin:<br />

Srst(1) Is driven to Vcc<br />

Srst(0) Is driven to Vss<br />

Srst(X) Is driven to unknown state<br />

Srst(H)IspulleduptoVcc<br />

Srst(L)IspulleddowntoVss<br />

Srst(Z) Floats<br />

Srst(Q) Is a valid output<br />

Note that S_RST# is asserted when P_RST# is asserted or BCR[6] is set with software.<br />

While the I_RST# pin is asserted, the pin:<br />

Irst(1) Is driven to Vcc<br />

Irst(0) Is driven to Vss<br />

Irst(X) Is driven to unknown state<br />

Irst(H)IspulleduptoVcc<br />

Irst(L)IspulleddowntoVss<br />

Irst(Z) Floats<br />

Irst(Q) Is a valid output<br />

Note that I_RST# is asserted when P_RST# is asserted or EBCR[5] is set with software.<br />

While the Primary PCI Bus is configured as a 32-bit PCI bus by the Primary central resource:<br />

P32(H) is pulled up internally to Vcc<br />

P32(L) is pulled down internally to Vss<br />

While the Secondary PCI Bus is configured as a 32-bit PCI bus with 32BITPCI_EN#:<br />

S32(H) is pulled up internally to Vcc<br />

S32(L) is pulled down internally to Vss<br />

16 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 4. Memory Controller Signals (Sheet 1 of 3)<br />

Name Count Type Description<br />

DCLKOUT<br />

1 O<br />

Irst(Q)<br />

SDRAM OUTPUT CLOCK dedicated for SDRAM memory<br />

subsystem.<br />

DCLKIN<br />

1 I SDRAM INPUT CLOCK dedicated for SDRAM memory<br />

subsystem. Used to skew DCLKOUT appropriately to<br />

accommodate flight time and clock buffer delays.<br />

SA[11:0]<br />

SBA[1:0]<br />

SRAS#<br />

SCAS#<br />

SDQM[7:0]<br />

SWE#<br />

SCE[1:0]#<br />

SCKE[1:0]<br />

DQ[63:0]<br />

SCB[7:0]<br />

ROE#<br />

RWE#<br />

RCE[1:0]#<br />

RALE<br />

12 O<br />

Irst(Q)<br />

2 O<br />

Irst(Q)<br />

1 O<br />

Irst(1)<br />

1 O<br />

Irst(1)<br />

8 O<br />

Irst(1)<br />

1 O<br />

Irst(1)<br />

2 O<br />

Irst(1)<br />

2 O<br />

Irst(Q)<br />

64 I/O<br />

Irst(1)<br />

Sync(D)<br />

8 I/O<br />

Irst(1)<br />

Sync(D)<br />

1 O<br />

Irst(1)<br />

1 O<br />

Irst(1)<br />

2 O<br />

Irst(1)<br />

1 O<br />

Irst(0)<br />

SDRAM MULTIPLEXED ADDRESS BUS carries the multiplexed<br />

row and column addresses to the SDRAM memory banks. For<br />

SA[10], see note 1.<br />

SDRAM INTE<strong>RN</strong>AL BANK SELECT indicates which of the SDRAM<br />

internal banks are read or written during the current transaction.<br />

SDRAM ROW ADDRESS STROBE indicates the presence of a valid<br />

row address on the Multiplexed Address Bus SA[11:0]. See note 1.<br />

SDRAM COLUMN ADDRESS STROBE indicates the presence of<br />

a valid column address on the Multiplexed Address Bus SA[11:0].<br />

Seenote1.<br />

SDRAM DATA MASK controls which of the eight bytes on the data<br />

bus should be written or read. When SDQM[7:0] asserted, the<br />

SDRAM devices do not accept/drive valid data from/to the byte<br />

lanes. When SDQM[7:0] deasserted, the SDRAM devices<br />

accept/drivevaliddatafrom/tothebytelanes.<br />

By convention, SDQM[1] masks two x8 SDRAM devices.<br />

Functionally, all SDQM[7:0] signals are equivalent.<br />

SDRAM WRITE ENABLE indicates that the current memory<br />

transaction is a write operation. See note 1.<br />

SDRAM CHIP ENABLE enables the SDRAM devices for a<br />

memory access (1 per bank supported). See note 1.<br />

SCKE[1:0] are the clock enables for the SDRAM memory.<br />

Deasserting will place the SDRAM in self-refresh mode. See note 1.<br />

DATA BUS carries 64-bit data to and from memory. During a data<br />

(T d ) cycle, read or write data is present on one or more contiguous<br />

bytes, comprising DQ[63:56], DQ[55:48], DQ[47:40], DQ[39:32],<br />

DQ[31:24], DQ[23:16], DQ[15:8] and DQ[7:0]. During write<br />

operations, unused pins are driven to determinate values.<br />

ERROR CORRECTION CODE carries the 8-bit ECC code to and<br />

from memory during data cycles.<br />

ROM OUTPUT ENABLE specifies, during a T a cycle, whether the<br />

operation is a write (1) or read (0) to the ROM interface. It remains<br />

valid during T d cycles. When ROE# is asserted, the data is<br />

transferred from the memory on RAD[16:9].<br />

ROM WRITE ENABLE indicates the direction data is to be<br />

transferred to/from ROM and controls the WE input on the ROM<br />

device. When RWE# is asserted, the data is transferred to the<br />

memory on DQ[7:0].<br />

FLASH CHIP ENABLE enables Flash devices for a memory access.<br />

ROM ADDRESS LATCH ENABLE indicates the cycle in which the<br />

address on RAD[16:3] should be externally latched for the Flash<br />

subsystem.<br />

Data Sheet 17


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 4. Memory Controller Signals (Sheet 2 of 3)<br />

Name Count Type Description<br />

RAD[16:9]<br />

RAD[8]<br />

RAD[7]<br />

RAD[6]/<br />

RST_MODE#<br />

(Config. Pin)<br />

RAD[5]<br />

RAD[4]/<br />

STEST<br />

(Config. Pin)<br />

RAD[3]/<br />

RETRY<br />

(Config. Pin)<br />

8 I/O<br />

5V<br />

Irst(X)<br />

Sync(D)<br />

1 O<br />

Prst(H)<br />

1 O<br />

Prst(H)<br />

1 I/O<br />

5V<br />

Prst(H)<br />

1 O<br />

Prst(H)<br />

1 I/O<br />

5V<br />

Prst(H)<br />

1 I/O<br />

5V<br />

Prst(H)<br />

FLASH ADDRESS/DATA BUS: Duringanaddress(T a ) cycle, bits<br />

16:9 contain a physical word address. During a data cycle (Td), bits<br />

16:9 carry data bits 16:9 of the Flash data byte.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 8 contain<br />

a physical word address. RAD[8]. multiplexes physical address bits<br />

[22] with [8]. Refer to the MCU chapter of the i960 ® RM/<strong>RN</strong> I/O<br />

<strong>Processor</strong> Developer’s Manual for details.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 7 contain<br />

a physical word address. RAD[7]. multiplexes physical address bits<br />

[21] with [7]. Refer to the MCU chapter of the i960 ® RM/<strong>RN</strong> I/O<br />

<strong>Processor</strong> Developer’s Manual for details.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 6 contain<br />

a physical word address. RAD[6]. multiplexes physical address bits<br />

[20] with [6]. Within four clocks after the deassertion of P_RST#,<br />

this pin is an output only. Refer to the MCU chapter of the i960 ®<br />

RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for details.<br />

RESET MODE is sampled at Primary PCI bus reset to determine if<br />

the <strong>80960</strong><strong>RN</strong> processor is to be held in reset. If asserted, the<br />

<strong>80960</strong><strong>RN</strong> processor will be held in reset until the <strong>80960</strong> <strong>Processor</strong><br />

Reset bit is cleared in the Extended Bridge Control Register.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 5 contain<br />

a physical word address. RAD[5]. multiplexes physical address bits<br />

[19] with [5]. Within four clocks after the deassertion of P_RST#,<br />

this pin is an output only. Refer to the MCU chapter of the i960 ®<br />

RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for details.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 4 contain<br />

a physical word address. RAD[4]. multiplexes physical address bits<br />

[18] with [4]. Within four clocks after the deassertion of P_RST#,<br />

this pin is an output only. Refer to the MCU chapter of the i960 ®<br />

RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for details.<br />

SELF TEST enables or disables the processor’s internal self-test<br />

feature at initialization. STEST is examined at the end of P_RST#.<br />

When STEST is asserted, the processor performs its internal<br />

self-test and the external bus confidence test. When STEST is<br />

deasserted, the processor performs only the external bus<br />

confidence test.<br />

0 = Self Test Disabled<br />

1 = Self Test Enabled<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 3 contain<br />

a physical word address. RAD[3]. multiplexes physical address bits<br />

[17] with [3]. Within four clocks after the deassertion of P_RST#,<br />

this pin is an output only. Refer to the MCU chapter of the i960 ®<br />

RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for details.<br />

RETRY is sampled at Primary PCI bus reset to determine if the<br />

Primary PCI interface will be disabled. If high, the Primary PCI<br />

interface will disable PCI configuration cycles by signaling a Retry<br />

until the Configuration Cycle Retry bit is cleared in the Extended<br />

Bridge Control Register. If low, the Primary PCI interface allow<br />

configuration cycles to occur.<br />

18 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 4. Memory Controller Signals (Sheet 3 of 3)<br />

Name Count Type Description<br />

RAD[2]/<br />

32BITMEM_EN#<br />

(Config. Pin)<br />

RAD[1]/<br />

32BITPCI_EN#<br />

(Config. Pin)<br />

RAD[0]<br />

1 I/O<br />

5V<br />

Prst(H)<br />

1 I/O<br />

5V<br />

Prst(H)<br />

1 O<br />

Prst(H)<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 2<br />

contains a physical word address. Within four clocks after the<br />

deassertion of P_RST#, this pin is an output only. Refer to the MCU<br />

chapter of the i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for<br />

details.<br />

32-BIT Memory Enable The 32BITMEM_EN# signal is sampled at<br />

Primary PCI Reset to notify the memory controller if 32-bit wide<br />

SDRAM memories are connected to the memory controller.<br />

If 32BITMEM_EN# is high, the memory controller supports the<br />

64-bit SDRAM protocol for accesses to SDRAM memories.<br />

If 32BITMEM_EN# is low, the memory controller supports the<br />

32-bit SDRAM protocol for accesses to SDRAM memories.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 1<br />

contains a physical word address. Within four clocks after the<br />

deassertion of P_RST#, this pin is an output only. Refer to the MCU<br />

chapter of the i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for<br />

details.<br />

32-BIT Secondary PCI Enable The 32BITPCI_EN# signal is<br />

sampled at Primary PCI Reset to notify the secondary PCI arbiter<br />

NOT to generate the 64-bit protocol of the rising edge of the<br />

secondary reset for the secondary PCI bus.<br />

If 32BITPCI_EN# is high, the secondary PCI arbiter asserts<br />

S_REQ64# during S_RST#, indicating the secondary PCI bus is a<br />

64-bit bus.<br />

If 32BITPCI_EN# is low, the secondary PCI arbiter does not assert<br />

S_REQ64# during S_RST#, indicating the secondary PCI bus is<br />

NOT a 64-bit bus.<br />

FLASH ADDRESS BUS: During an address (T a ) cycle, bit 0<br />

contains a physical word address. Refer to the MCU chapter of the<br />

i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual for details.<br />

NOTE:<br />

1. These pins remain functional for 20 DCLKIN periods after I_RST# is asserted for a warm boot. The<br />

designated Irst() state applies after 20 DCLKIN periods after I_RST# is asserted. For more details, refer to<br />

the MCU Chapter of the i960 ® RM/<strong>RN</strong> I/O <strong>Processor</strong> Developer’s Manual.<br />

Data Sheet 19


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 5. Primary PCI Bus Signals (Sheet 1 of 2)<br />

Name Count Type Description<br />

P_AD[31:0] 32<br />

P_AD[63:32] 32<br />

P_PAR 1<br />

P_PAR64 1<br />

P_C/BE[3:0]# 4<br />

P_C/BE[7:4]# 4<br />

P_REQ# 1<br />

P_REQ64# 1<br />

P_GNT# 1<br />

P_ACK64# 1<br />

P_FRAME# 1<br />

P_IRDY# 1<br />

P_TRDY# 1<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

P32(H)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

P32(H)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

P32(H)<br />

O<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

P32(Z)<br />

I<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

P32(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

PRIMARY PCI ADDRESS/DATA is the multiplexed PCI address<br />

and bottom 32 bits of the data bus.<br />

PRIMARY PCI DATA is the upper 32 bits of the primary PCI data<br />

bus driven during the data phase.<br />

PRIMARY PCI BUS PARITY is even parity across P_AD[31:0] and<br />

P_C/BE[3:0]#.<br />

PRIMARY PCI BUS UPPER DWORD PARITY is even parity<br />

across P_AD[63:32] and P_C/BE[7:4]#.<br />

PRIMARY PCI BUS COMMAND and BYTE ENABLES are<br />

multiplexed on the same PCI pins. During the address phase, they<br />

define the bus command. During the data phase, they are used as<br />

byte enables for P_AD[31:0].<br />

PRIMARY PCI BUS BYTE ENABLES are as byte enables for<br />

P_AD[63:32] during the data phase.<br />

PRIMARY PCI BUS REQUEST indicates to the primary PCI bus<br />

arbiter that the <strong>80960</strong><strong>RN</strong> processor desires use of the PCI bus.<br />

PRIMARY PCI BUS REQUEST 64-BIT TRANSFER indicates the<br />

attempt of a 64-bit transaction on the primary PCI bus. If the target<br />

is 64-bit capable, the target acknowledges the attempt with the<br />

assertion of P_ACK64#.<br />

PRIMARY PCI BUS GRANT indicates that access to the primary<br />

PCI bus has been granted.<br />

PRIMARY PCI BUS ACKNOWLEDGE 64-BIT TRANSFER<br />

indicates that the device has positively decoded its address as the<br />

target of the current access and the target is willing to transfer data<br />

using the full 64-bit data bus.<br />

PRIMARY PCI BUS CYCLE FRAME is asserted to indicate the<br />

beginning and duration of an access.<br />

PRIMARY PCI BUS INITIATOR READY indicates the initiating<br />

agent’s ability to complete the current data phase of the<br />

transaction. During a write, it indicates that valid data is present on<br />

the Address/Data bus. During a read, it indicates the processor is<br />

ready to accept the data.<br />

PRIMARY PCI BUS TARGET READY indicates the target agent’s<br />

ability to complete the current data phase of the transaction. During a<br />

read, it indicates that valid data is present on the Address/Data bus.<br />

During a write, it indicates the target is ready to accept the data.<br />

20 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 5. Primary PCI Bus Signals (Sheet 2 of 2)<br />

Name Count Type Description<br />

P_STOP# 1<br />

P_DEVSEL# 1<br />

P_SERR# 1<br />

P_CLK 1<br />

P_RST# 1<br />

P_PERR# 1<br />

P_LOCK# 1<br />

P_IDSEL 1<br />

P_INT[A:D]# 4<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I/O<br />

5V<br />

OD<br />

Sync(P)<br />

Prst(Z)<br />

I<br />

5V<br />

I<br />

5V<br />

Async<br />

I/O<br />

5V<br />

Sync(P)<br />

Prst(Z)<br />

I<br />

5V<br />

Sync(P)<br />

I<br />

5V<br />

Sync(P)<br />

O<br />

OD<br />

Prst(Z)<br />

PRIMARY PCI BUS STOP indicates a request to stop the current<br />

transaction on the primary PCI bus.<br />

PRIMARY PCI BUS DEVICE SELECT is driven by a target agent<br />

that has successfully decoded the address. As an input, it indicates<br />

whether or not an agent has been selected.<br />

PRIMARY PCI BUS SYSTEM ERROR is driven for address parity<br />

errors on the primary PCI bus.<br />

PRIMARY PCI BUS INPUT CLOCK provides the timing for all<br />

primary PCI transactions and is the clock source for all internal<br />

<strong>80960</strong><strong>RN</strong> units.<br />

PRIMARY RESET brings PCI-specific registers, sequencers, and<br />

signals to a consistent state. When P_RST# is asserted:<br />

PCI output signals are driven to a known consistent state.<br />

PCI bus interface output signals are three-stated.<br />

open drain signals such as P_SERR# are floated.<br />

P_RST# may be asynchronous to P_CLK when asserted or<br />

deasserted. Although asynchronous, deassertion must be<br />

guaranteed to be a clean, bounce-free edge.<br />

PRIMARY PCI BUS PARITY ERROR is asserted when a data<br />

parity error occurs during a primary PCI bus transaction.<br />

PRIMARY PCI BUS LOCK indicates the need to perform an atomic<br />

operation on the primary PCI bus.<br />

PRIMARY PCI BUS INITIALIZATION DEVICE SELECT is used to<br />

select the <strong>80960</strong><strong>RN</strong> during a Configuration Read or Write<br />

command on the primary PCI bus.<br />

PRIMARY PCI BUS INTERRUPT requests an interrupt. The<br />

assertion and deassertion of P_INT[A:D]# is asynchronous to<br />

P_CLK. A device asserts its P_INT[A:D]# line when requesting<br />

attention from its device driver. Once the P_INT[A:D]# signal is<br />

asserted, it remains asserted until the device driver clears the<br />

pending request. P_INT[A:D]# Interrupts are level sensitive.<br />

Table6.<br />

SecondaryPCIArbiterSignals<br />

Name Count Type Description<br />

S_REQ[5:0]#<br />

S_GNT[5:0]#<br />

6 I<br />

5V<br />

Sync(P)<br />

6 O<br />

Srst(Z)<br />

SECONDARY PCI BUS REQUESTS are the request signals from<br />

devices 0 through 5 on the secondary PCI bus.<br />

SECONDARY PCI BUS GRANT are grant signals sent to devices<br />

5-0 on the secondary PCI bus<br />

Data Sheet 21


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 7. Secondary PCI Bus Signals (Sheet 1 of 2)<br />

Name Count Type Description<br />

S_AD[31:0] 32<br />

S_AD[63:32] 32<br />

S_PAR 1<br />

S_PAR64 1<br />

S_C/BE[3:0]# 4<br />

S_C/BE[7:4]# 4<br />

S_REQ64# 1<br />

S_ACK64# 1<br />

S_FRAME# 1<br />

S_IRDY# 1<br />

S_TRDY# 1<br />

S_STOP# 1<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(0)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

S32(H)<br />

I/O<br />

Sync(P)<br />

Srst(0)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

S32(H)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(0)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

S32(H)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Q)<br />

S32(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

S32(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

SECONDARY PCI ADDRESS/DATA is the multiplexed secondary<br />

PCI address and lower 32 bits of the data bus.<br />

SECONDARY PCI DATA is the upper 32 bits of the secondary PCI<br />

data bus.<br />

SECONDARY PCI BUS PARITY is even parity across S_AD[31:0]<br />

and S_C/BE[3:0]#.<br />

SECONDARY PCI BUS UPPER DWORD PARITY is even parity<br />

across S_AD[63:32] and S_C/BE[7:4]#.<br />

SECONDARY PCI BUS COMMAND and BYTE ENABLES are<br />

multiplexed on the same PCI pins. During the address phase, they<br />

define the bus command. During the data phase, they are used as<br />

the byte enables for S_AD[31:0].<br />

SECONDARY PCI BYTE ENABLES are used as byte enables for<br />

S_AD[63:32] during secondary PCI data phases.<br />

SECONDARY PCI BUS REQUEST 64-BIT TRANSFER indicates<br />

the attempt of a 64-bit transaction on the secondary PCI bus. If the<br />

target is 64-bit capable, the target acknowledges the attempt with<br />

the assertion of S_ACK64#.<br />

SECONDARY PCI BUS ACKNOWLEDGE 64-BIT TRANSFER<br />

indicates that the device has positively decoded its address as the<br />

target of the current access, indicates the target is willing to transfer<br />

data using 64 bits.<br />

SECONDARY PCI BUS CYCLE FRAME is asserted to indicate the<br />

beginning and duration of an access.<br />

SECONDARY PCI BUS INITIATOR READY indicates the initiating<br />

agent’s ability to complete the current data phase of the<br />

transaction. During a write, it indicates that valid data is present on<br />

the secondary Address/Data bus. During a read, it indicates the<br />

processor is ready to accept the data.<br />

SECONDARY PCI BUS TARGET READY indicates the target<br />

agent’s ability to complete the current data phase of the<br />

transaction. During a read, it indicates that valid data is present on<br />

the secondary Address/Data bus. During a write, it indicates the<br />

target is ready to accept the data.<br />

SECONDARY PCI BUS STOP indicates a request to stop the<br />

current transaction on the secondary PCI bus.<br />

22 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 7. Secondary PCI Bus Signals (Sheet 2 of 2)<br />

Name Count Type Description<br />

S_DEVSEL# 1<br />

S_SERR# 1<br />

S_RST# 1<br />

S_PERR# 1<br />

S_LOCK# 1<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

I/O<br />

5V<br />

OD<br />

Sync(P)<br />

Srst(Z)<br />

O<br />

Async<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

I/O<br />

5V<br />

Sync(P)<br />

Srst(Z)<br />

SECONDARY PCI BUS DEVICE SELECT is driven by a target<br />

agent that has successfully decoded the address. As an input, it<br />

indicates whether or not an agent has been selected.<br />

SECONDARY PCI BUS SYSTEM ERROR is driven for address<br />

parity errors on the secondary PCI bus.<br />

SECONDARY PCI BUS RESET is an output based on P_RST#. It<br />

brings PCI-specific registers, sequencers, and signals to a<br />

consistent state. When P_RST# is asserted or BCR[6] is set, it<br />

causes S_RST# to assert and:<br />

• PCI output signals are driven to a known consistent state.<br />

• PCI bus interface output signals are three-stated.<br />

• open drain signals such as S_SERR# are floated<br />

S_RST# may be asynchronous to S_CLKIN when asserted or<br />

deasserted. Although asynchronous, deassertion must be<br />

guaranteed to be a clean, bounce-free edge.<br />

SECONDARY PCI BUS PARITY ERROR is asserted when a data<br />

parity error during a secondary PCI bus transaction.<br />

SECONDARY PCI BUS LOCK indicates the need to perform an<br />

atomic operation on the secondary PCI bus.<br />

Data Sheet 23


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 8.<br />

Intel ® <strong>80960</strong>Jx Core Signals and Configuration Straps<br />

Name Count Type Description<br />

SECONDARY PCI BUS INTERRUPT REQUESTS. S_INT[D:A]#<br />

assertion and deassertion is asynchronous to P_CLK. Asdevice<br />

asserts S_INT[D:A]# when requesting attention from it device<br />

driver. When S_INT[D:A]# is asserted, it remains asserted until the<br />

device driver clears the pending request. S_INT[D:A]# interrupts<br />

are level low sensitive.<br />

XINT[3:0]#/<br />

S_INT[D:A]#<br />

4<br />

I<br />

5V<br />

Async<br />

EXTE<strong>RN</strong>AL INTERRUPT. External devices use this signal to<br />

request an interrupt service. These signals operate in dedicated<br />

mode, where each signal is assigned a dedicated interrupt level.<br />

The S_INT[D:A]#/XINT[3:0]# signals can be directed as follows:<br />

Sec. PCIPrimary PCIi960 core processor<br />

S_INTA#⇒P_INTA# or XINT0#<br />

S_INTB#⇒P_INTB# or XINT1#<br />

S_INTC#⇒P_INTC# or XINT2#<br />

S_INTD#⇒P_INTD# or XINT3#<br />

XINT[5:4]# 2<br />

NMI# 1<br />

I<br />

5V<br />

Async<br />

I<br />

5V<br />

Async<br />

EXTE<strong>RN</strong>AL INTERRUPT pins are used to request <strong>80960</strong><strong>RN</strong><br />

interrupt service.<br />

NON-MASKABLE INTERRUPT causes an i960 core processor<br />

non-maskable interrupt event to occur. NMI# is the highest priority<br />

interrupt source.<br />

V CC5REF 1 -<br />

V CCPLL 3 -<br />

INPUT REFERENCE VOLTAGE is strapped to 5 V. This reference<br />

voltage allows the <strong>80960</strong><strong>RN</strong> input pins to be 5 V tolerant.<br />

PLL POWER is a separate V CC supply pin for the phase lock loop<br />

clock generator. It is intended for external connection to the V CC<br />

board plane. In noisy environments, add a simple bypass filter<br />

circuit to reduce noise-induced clock jitter and its effects on timing<br />

relationships.<br />

FAIL# 1<br />

O<br />

Irst(0)<br />

FAIL indicates a failure of the processor’s built-in self-test<br />

performed during initialization. FAIL# is asserted immediately upon<br />

reset and toggles during self-test to indicate the status of individual<br />

tests:<br />

When self-test passes, the processor deasserts FAIL# and<br />

commences operation from user code.<br />

When self-test fails, the processor asserts FAIL# and then stops<br />

executing. Self-test failing does not cause the bridge to stop<br />

execution.<br />

0 = Self Test Failed<br />

1 = Self Test Passed<br />

24 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 9.<br />

I 2 C, JTAG, Core Signals<br />

Name Count Type Description<br />

TCK 1<br />

I<br />

5V<br />

TEST CLOCK is an input which provides the clocking function for<br />

the IEEE 1149.1 Boundary Scan Testing (JTAG). State information<br />

and data are clocked into the component on the rising edge and<br />

data is clocked out of the component on the falling edge.<br />

TDI 1<br />

I<br />

5V<br />

Sync(T)<br />

TDO 1 O<br />

TEST DATA INPUT is the serial input pin for the JTAG feature. TDI<br />

is sampled on the rising edge of TCK, during the SHIFT-IR and<br />

SHIFT-DR states of the Test Access Port. This signal has a weak<br />

internal pull-up to ensure proper operation when this signal is<br />

unconnected.<br />

TEST DATA OUTPUT is the serial output pin for the JTAG feature.<br />

TDO is driven on the falling edge of TCK during the SHIFT-IR and<br />

SHIFT-DR states of the Test Access Port. At other times, TDO floats.<br />

TRST# 1<br />

TMS 1<br />

SDA 1<br />

SCL 1<br />

LCDINIT# 1<br />

I_RST# 1<br />

ONCE#<br />

(Config. Pin)<br />

1<br />

I<br />

5V<br />

Async<br />

I<br />

5V<br />

Sync(T)<br />

I/O<br />

5V<br />

OD<br />

Irst(Z)<br />

I/O<br />

5V<br />

OD<br />

Irst(Z)<br />

I<br />

Sync(I)<br />

O<br />

Async<br />

I<br />

5V<br />

TEST RESET asynchronously resets the Test Access Port (TAP)<br />

controller function of IEEE 1149.1 Boundary Scan Testing (JTAG).<br />

This signal has a weak internal pull-up to ensure proper operation<br />

when this signal is unconnected.<br />

TEST MODE SELECT is sampled at the rising edge of TCK to<br />

select the operation of the test logic for IEEE 1149.1 Boundary<br />

Scan testing. This signal has a weak internal pull-up to ensure<br />

proper operation when this signal is unconnected.<br />

I 2 CDATAis used for data transfer and arbitration on the I 2 Cbus.<br />

I 2 CCLOCKprovides synchronous operation of the I 2 Cbus.<br />

LCD INITIALIZATION is a static signal used to initialize the internal<br />

logic for the LCD960 debugger. This signal has an internal pull-up<br />

for normal operation.<br />

INTE<strong>RN</strong>AL BUS RESET indicates when the internal bus has been<br />

reset with P_RST# or a software reset.<br />

ONCE MODE: The processor samples this pin during reset. If it is<br />

asserted LOW at the end of reset, the processor enters ONCE<br />

Mode. In ONCE Mode, the processor stops all clocks and floats all<br />

output pins except the TDO and RAD[8:0] pins. The pin has a weak<br />

internal pull-up which is active during reset to ensure normal<br />

operation if the pin is left unconnected.<br />

Data Sheet 25


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.1.2 540-Lead H-PBGA Package<br />

Figure 3.<br />

540L H-PBGA Package Diagram (Top and Side View)<br />

Pin#1Corner<br />

42.500 ± 0.200<br />

GC<strong>80960</strong><strong>RN</strong>100<br />

SSSSSS<br />

MALAY<br />

FFFFFFFF-[{SN}]<br />

M<br />

INTEL © ‘98<br />

27.700<br />

27.700<br />

42.500 ± 0.200<br />

0.55 ± 0.15<br />

Slug<br />

1.56 REF<br />

Seating Plane<br />

1.025 ± 0.075<br />

3.845 ± 0.255<br />

Ball spacing is 1.270<br />

Ball width is 0.750 ± 0.150<br />

2.150 ± 0.150<br />

NOTES:<br />

1. All dimensions and tolerances conform to ANSI Y14.5M 1982.<br />

2. Dimensions are measured at the maximum solder ball diameter parallel to primary datum.<br />

3. Primary datum and seating plane are defined by the spherical crowns of the solder balls.<br />

4. All dimensions are in millimeters.<br />

5. S spec numbers are only printed on the C-X steppings.<br />

26 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Figure 4.<br />

540L H-PBGA Package Diagram (Bottom View)<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32<br />

AM<br />

AL<br />

AK<br />

AJ<br />

AH<br />

AG<br />

AF<br />

AE<br />

AD<br />

AC<br />

AB<br />

AA<br />

Y<br />

W<br />

V<br />

U<br />

T<br />

R<br />

P<br />

N<br />

M<br />

L<br />

K<br />

J<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A<br />

AM<br />

AL<br />

AK<br />

AJ<br />

AH<br />

AG<br />

AF<br />

AE<br />

AD<br />

AC<br />

AB<br />

AA<br />

Y<br />

W<br />

V<br />

U<br />

T<br />

R<br />

P<br />

N<br />

M<br />

L<br />

K<br />

J<br />

H<br />

G<br />

F<br />

E<br />

D<br />

C<br />

B<br />

A<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32<br />

Data Sheet 27


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 10. 540-Lead H-PBGA Package — Signal Name Order (Sheet 1 of 5)<br />

Signal Ball # Signal Ball # Signal Ball #<br />

DCLKIN E21 DQ35 C24 N/C AG1<br />

DCLKOUT A22 DQ36 E24 N/C AL16<br />

DQ00 D22 DQ37 B25 P_ACK64# V5<br />

DQ01 A23 DQ38 E25 P_AD00 U1<br />

DQ02 C23 DQ39 C26 P_AD01 U2<br />

DQ03 A24 DQ40 A27 P_AD02 U3<br />

DQ04 D24 DQ41 C27 P_AD03 T1<br />

DQ05 A25 DQ42 A28 P_AD04 T3<br />

DQ06 C25 DQ43 G32 P_AD05 T4<br />

DQ07 A26 DQ44 H31 P_AD06 T5<br />

DQ08 E26 DQ45 H28 P_AD07 R1<br />

DQ09 B27 DQ46 J30 P_AD08 R3<br />

DQ10 E27 DQ47 J28 P_AD09 R5<br />

DQ11 C28 DQ48 W28 P_AD10 P1<br />

DQ12 H32 DQ49 Y31 P_AD11 P3<br />

DQ13 H30 DQ50 Y28 P_AD12 P4<br />

DQ14 J32 DQ51 AA30 P_AD13 P5<br />

DQ15 J29 DQ52 AA28 P_AD14 N1<br />

DQ16 W29 DQ53 AB31 P_AD15 N2<br />

DQ17 Y32 DQ54 AB28 P_AD16 K3<br />

DQ18 Y30 DQ55 AC30 P_AD17 K4<br />

DQ19 AA32 DQ56 AC28 P_AD18 K5<br />

DQ20 AA29 DQ57 AD31 P_AD19 J1<br />

DQ21 AB32 DQ58 AD28 P_AD20 J2<br />

DQ22 AB30 DQ59 AE30 P_AD21 J3<br />

DQ23 AC32 DQ60 AE28 P_AD22 J5<br />

DQ24 AC29 DQ61 AF31 P_AD23 H1<br />

DQ25 AD32 DQ62 AF28 P_AD24 H5<br />

DQ26 AD30 DQ63 AH32 P_AD25 G1<br />

DQ27 AE32 FAIL# E12 P_AD26 G2<br />

DQ28 AE29 LCDINIT# A21 P_AD27 G3<br />

DQ29 AF32 I_RST# A11 P_AD28 E5<br />

DQ30 AF30 ONCE# C21 P_AD29 A6<br />

DQ31 AG32 NMI# A9 P_AD30 C6<br />

DQ32 E22 N/C A16 P_AD31 D6<br />

DQ33 B23 N/C G5 P_AD32 AG2<br />

DQ34 E23 N/C V28 P_AD33 AG3<br />

28 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 10. 540-Lead H-PBGA Package — Signal Name Order (Sheet 2 of 5)<br />

Signal Ball # Signal Ball # Signal Ball #<br />

P_AD34 AF1 P_C/BE6# V3 RALE B19<br />

P_AD35 AF3 P_C/BE7# V4 RCE0# C19<br />

P_AD36 AF4 P_FRAME# L5 RCE1# E19<br />

P_AD37 AF5 P_DEVSEL# L1 P_IDSEL H3<br />

P_AD38 AE1 P_GNT# A7 ROE# D20<br />

P_AD39 AE2 P_INTA# E8 RWE# A20<br />

P_AD40 AE3 P_INTB# D8 SA00 N30<br />

P_AD41 AE5 P_INTC# E7 SA01 N29<br />

P_AD42 AD1 P_INTD# C7 SA02 N28<br />

P_AD43 AD3 P_IRDY# L3 SA03 P32<br />

P_AD44 AD4 P_LOCK# M4 SA04 P31<br />

P_AD45 AD5 P_PAR N3 SA05 P30<br />

P_AD46 AC1 P_PAR64 W3 SA06 P28<br />

P_AD47 AC2 P_PERR# M3 SA07 R32<br />

P_AD48 AC3 P_SERR# M1 SA08 R30<br />

P_AD49 AC5 P_STOP# M5 SA09 R29<br />

P_AD50 AB1 P_REQ# E6 SA10 R28<br />

P_AD51 AB3 P_REQ64# U5 SA11 T32<br />

P_AD52 AB4 P_RST# B7 SBA0 T31<br />

P_AD53 AB5 P_TRDY# L2 SBA1 T30<br />

P_AD54 AA1 RAD00 A13 SCAS# L30<br />

P_AD55 AA2 RAD01 B13 SCB0 K32<br />

P_AD56 AA3 RAD02 C13 SCB1 K30<br />

P_AD57 AA5 RAD03 E13 SCB2 V31<br />

P_AD58 Y1 RAD04 A14 SCB3 W32<br />

P_AD59 Y3 RAD05 C14 SCB4 K31<br />

P_AD60 Y4 RAD06 D14 SCB5 K28<br />

P_AD61 Y5 RAD07 E14 SCB6 V30<br />

P_AD62 W1 RAD08 A15 SCB7 W30<br />

P_AD63 W2 RAD09 C15 SCE0# M30<br />

P_CLK C20 RAD10 E15 SCE1# M28<br />

P_C/BE0# R2 RAD11 E17 SCKE0 T28<br />

P_C/BE1# N5 RAD12 A18 SCKE1 U32<br />

P_C/BE2# K1 RAD13 C18 SCL A8<br />

P_C/BE3# H4 RAD14 D18 SDA C8<br />

P_C/BE4# W5 RAD15 E18 SDQM0 L29<br />

P_C/BE5# V1 RAD16 A19 SDQM1 M32<br />

Data Sheet 29


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 10. 540-Lead H-PBGA Package — Signal Name Order (Sheet 3 of 5)<br />

Signal Ball # Signal Ball # Signal Ball #<br />

SDQM2 U30 S_AD28 AJ25 S_C/BE1# AJ19<br />

SDQM3 U28 S_AD29 AK25 S_C/BE2# AM21<br />

SDQM4 L28 S_AD30 AM25 S_C/BE3# AH24<br />

SDQM5 M31 S_AD31 AH26 S_C/BE4# AL12<br />

SDQM6 U29 S_AD32 AH1 S_C/BE5# AM12<br />

SDQM7 V32 S_AD33 AH3 S_C/BE6# AH13<br />

SRAS# N32 S_AD34 AH4 S_C/BE7# AJ13<br />

SWE# L32 S_AD35 AJ2 S_DEVSEL# AM20<br />

S_ACK64# AM13 S_AD36 AJ5 S_FRAME# AK21<br />

S_AD00 AH14 S_AD37 AK5 S_GNT0# AM26<br />

S_AD01 AK14 S_AD38 AM5 S_GNT1# AJ27<br />

S_AD02 AL14 S_AD39 AH6 S_GNT2# AM27<br />

S_AD03 AM14 S_AD40 AK6 S_GNT3# AK28<br />

S_AD04 AH15 S_AD41 AL6 S_GNT4# AM28<br />

S_AD05 AJ15 S_AD42 AM6 S_GNT5# AK29<br />

S_AD06 AK15 S_AD43 AH7 S_IRDY# AJ21<br />

S_AD07 AM15 S_AD44 AJ7 S_LOCK# AK20<br />

S_AD08 AJ17 S_AD45 AK7 S_PAR AK19<br />

S_AD09 AK17 S_AD46 AM7 S_PAR64 AK12<br />

S_AD10 AM17 S_AD47 AH8 S_PERR# AH20<br />

S_AD11 AH18 S_AD48 AK8 S_REQ0# AL26<br />

S_AD12 AK18 S_AD49 AL8 S_REQ1# AH27<br />

S_AD13 AL18 S_AD50 AM8 S_REQ2# AK27<br />

S_AD14 AM18 S_AD51 AH9 S_REQ3# AH28<br />

S_AD15 AH19 S_AD52 AJ9 S_REQ4# AL28<br />

S_AD16 AH22 S_AD53 AK9 S_REQ5# AJ29<br />

S_AD17 AK22 S_AD54 AM9 S_REQ64# AK13<br />

S_AD18 AL22 S_AD55 AH10 S_RST# AK26<br />

S_AD19 AM22 S_AD56 AK10 S_SERR# AM19<br />

S_AD20 AH23 S_AD57 AL10 S_STOP# AL20<br />

S_AD21 AJ23 S_AD58 AM10 S_TRDY# AH21<br />

S_AD22 AK23 S_AD59 AH11 TCK C12<br />

S_AD23 AM23 S_AD60 AJ11 TDI A12<br />

S_AD24 AK24 S_AD61 AK11 TDO E11<br />

S_AD25 AL24 S_AD62 AM11 TMS B11<br />

S_AD26 AM24 S_AD63 AH12 TRST# C11<br />

S_AD27 AH25 S_C/BE0# AH17 V CC A17<br />

30 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 10. 540-Lead H-PBGA Package — Signal Name Order (Sheet 4 of 5)<br />

Signal Ball # Signal Ball # Signal Ball #<br />

V CC A29 V CC F2 V CC AL3<br />

V CC B2 V CC F3 V CC AL4<br />

V CC B3 V CC F4 V CC AL5<br />

V CC B4 V CC G30 V CC AL7<br />

V CC B5 V CC G31 V CC AL9<br />

V CC B6 V CC H2 V CC AL11<br />

V CC B8 V CC J31 V CC AL13<br />

V CC B10 V CC K2 V CC AL15<br />

V CC B12 V CC L31 V CC AL17<br />

V CC B14 V CC M2 V CC AL19<br />

V CC B16 V CC N31 V CC AL21<br />

V CC B17 V CC P2 V CC AL23<br />

V CC B18 V CC R31 V CC AL25<br />

V CC B20 V CC T2 V CC AL27<br />

V CC B22 V CC U31 V CC AL29<br />

V CC B24 V CC V2 V CC AL30<br />

V CC B26 V CC W31 V CC AL31<br />

V CC B28 V CC Y2 V CC AM4<br />

V CC B29 V CC AA31 V CC AM16<br />

V CC B30 V CC AB2 V CC5REF E20<br />

V CC B31 V CC AC31 V CCPLL1 C22<br />

V CC C2 V CC AD2 V CCPLL2 B15<br />

V CC C3 V CC AE31 V CCPLL3 D26<br />

V CC C5 V CC AF2 V SS A1<br />

V CC C16 V CC AG30 V SS A2<br />

V CC C29 V CC AG31 V SS A3<br />

V CC C30 V CC AH2 V SS A4<br />

V CC C31 V CC AH30 V SS A5<br />

V CC D2 V CC AH31 V SS A30<br />

V CC D12 V CC AJ1 V SS A31<br />

V CC D30 V CC AJ30 V SS A32<br />

V CC D31 V CC AJ31 V SS B1<br />

V CC D32 V CC AK2 V SS B21<br />

V CC E2 V CC AK3 V SS B32<br />

V CC E3 V CC AK30 V SS C1<br />

V CC E10 V CC AK31 V SS C4<br />

V CC E31 V CC AL2 V SS C17<br />

Data Sheet 31


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 10. 540-Lead H-PBGA Package — Signal Name Order (Sheet 5 of 5)<br />

Signal Ball # Signal Ball # Signal Ball #<br />

V SS C32 V SS F32 V SS AJ6<br />

V SS D1 V SS G4 V SS AJ8<br />

V SS D3 V SS G28 V SS AJ10<br />

V SS D4 V SS G29 V SS AJ12<br />

V SS D5 V SS H29 V SS AJ14<br />

V SS D7 V SS J4 V SS AJ16<br />

V SS D9 V SS K29 V SS AJ18<br />

V SS D11 V SS L4 V SS AJ20<br />

V SS D13 V SS M29 V SS AJ22<br />

V SS D15 V SS N4 V SS AJ24<br />

V SS D16 V SS P29 V SS AJ26<br />

V SS D17 V SS R4 V SS AJ28<br />

V SS D19 V SS T29 V SS AJ32<br />

V SS D21 V SS U4 V SS AK1<br />

V SS D23 V SS V29 V SS AK4<br />

V SS D25 V SS W4 V SS AK16<br />

V SS D27 V SS Y29 V SS AK32<br />

V SS D28 V SS AA4 V SS AL1<br />

V SS D29 V SS AB29 V SS AL32<br />

V SS E1 V SS AC4 V SS AM1<br />

V SS E4 V SS AD29 V SS AM2<br />

V SS E16 V SS AE4 V SS AM3<br />

V SS E28 V SS AF29 V SS AM29<br />

V SS E29 V SS AG4 V SS AM30<br />

V SS E30 V SS AG5 V SS AM31<br />

V SS E32 V SS AG28 V SS AM32<br />

V SS F1 V SS AG29 XINT0# B9<br />

V SS F5 V SS AH5 XINT1# C9<br />

V SS F28 V SS AH16 XINT2# E9<br />

V SS F29 V SS AH29 XINT3# A10<br />

V SS F30 V SS AJ3 XINT4# C10<br />

V SS F31 V SS AJ4 XINT5# D10<br />

32 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 11. 540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 1 of 5)<br />

Ball # Signal Ball # Signal Ball # Signal<br />

A1 V SS B6 V CC C11 TRST#<br />

A2 V SS B7 P_RST# C12 TCK<br />

A3 V SS B8 V CC C13 RAD02<br />

A4 V SS B9 XINT0# C14 RAD05<br />

A5 V SS B10 V CC C15 RAD09<br />

A6 P_AD29 B11 TMS C16 V CC<br />

A7 P_GNT# B12 V CC C17 V SS<br />

A8 SCL B13 RAD01 C18 RAD13<br />

A9 NMI# B14 V CC C19 RCE0#<br />

A10 XINT3# B15 V CCPLL2 C20 P_CLK<br />

A11 I_RST# B16 V CC C21 ONCE#<br />

A12 TDI B17 V CC C22 V CCPLL1<br />

A13 RAD00 B18 V CC C23 DQ02<br />

A14 RAD04 B19 RALE C24 DQ35<br />

A15 RAD08 B20 V CC C25 DQ06<br />

A16 N/C B21 V SS C26 DQ39<br />

A17 V CC B22 V CC C27 DQ41<br />

A18 RAD12 B23 DQ33 C28 DQ11<br />

A19 RAD16 B24 V CC C29 V CC<br />

A20 RWE# B25 DQ37 C30 V CC<br />

A21 LCDINIT# B26 V CC C31 V CC<br />

A22 DCLKOUT B27 DQ09 C32 V SS<br />

A23 DQ01 B28 V CC D1 V SS<br />

A24 DQ03 B29 V CC D2 V CC<br />

A25 DQ05 B30 V CC D3 V SS<br />

A26 DQ07 B31 V CC D4 V SS<br />

A27 DQ40 B32 V SS D5 V SS<br />

A28 DQ42 C1 V SS D6 P_AD31<br />

A29 V CC C2 V CC D7 V SS<br />

A30 V SS C3 V CC D8 P_INTB#<br />

A31 V SS C4 V SS D9 V SS<br />

A32 V SS C5 V CC D10 XINT5#<br />

B1 V SS C6 P_AD30 D11 V SS<br />

B2 V CC C7 P_INTD# D12 V CC<br />

B3 V CC C8 SDA D13 V SS<br />

B4 V CC C9 XINT1# D14 RAD06<br />

B5 V CC C10 XINT4# D15 V SS<br />

Data Sheet 33


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 11. 540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 2 of 5)<br />

Ball # Signal Ball # Signal Ball # Signal<br />

D16 V SS E21 DCLKIN H28 DQ45<br />

D17 V SS E22 DQ32 H29 V SS<br />

D18 RAD14 E23 DQ34 H30 DQ13<br />

D19 V SS E24 DQ36 H31 DQ44<br />

D20 ROE# E25 DQ38 H32 DQ12<br />

D21 V SS E26 DQ08 J1 P_AD19<br />

D22 DQ00 E27 DQ10 J2 P_AD20<br />

D23 V SS E28 V SS J3 P_AD21<br />

D24 DQ04 E29 V SS J4 V SS<br />

D25 V SS E30 V SS J5 P_AD22<br />

D26 V CCPLL3 E31 V CC J28 DQ47<br />

D27 V SS E32 V SS J29 DQ15<br />

D28 V SS F1 V SS J30 DQ46<br />

D29 V SS F2 V CC J31 V CC<br />

D30 V CC F3 V CC J32 DQ14<br />

D31 V CC F4 V CC K1 P_C/BE2#<br />

D32 V CC F5 V SS K2 V CC<br />

E1 V SS F28 V SS K3 P_AD16<br />

E2 V CC F29 V SS K4 P_AD17<br />

E3 V CC F30 V SS K5 P_AD18<br />

E4 V SS F31 V SS K28 SCB5<br />

E5 P_AD28 F32 V SS K29 V SS<br />

E6 P_REQ# G1 P_AD25 K30 SCB1<br />

E7 P_INTC# G2 P_AD26 K31 SCB4<br />

E8 P_INTA# G3 P_AD27 K32 SCB0<br />

E9 XINT2# G4 V SS L1 P_DEVSEL#<br />

E10 V CC G5 N/C L2 P_TRDY#<br />

E11 TDO G28 V SS L3 P_IRDY#<br />

E12 FAIL# G29 V SS L4 V SS<br />

E13 RAD03 G30 V CC L5 P_FRAME#<br />

E14 RAD07 G31 V CC L28 SDQM4<br />

E15 RAD10 G32 DQ43 L29 SDQM0<br />

E16 V SS H1 P_AD23 L30 SCAS#<br />

E17 RAD11 H2 V CC L31 V CC<br />

E18 RAD15 H3 P_IDSEL L32 SWE#<br />

E19 RCE1# H4 P_C/BE3# M1 P_SERR#<br />

E20 V CC5REF H5 P_AD24 M2 V CC<br />

34 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 11. 540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 3 of 5)<br />

Ball # Signal Ball # Signal Ball # Signal<br />

M3 P_PERR# R32 SA07 W29 DQ16<br />

M4 P_LOCK# T1 P_AD03 W30 SCB7<br />

M5 P_STOP# T2 V CC W31 V CC<br />

M28 SCE1# T3 P_AD04 W32 SCB3<br />

M29 V SS T4 P_AD05 Y1 P_AD58<br />

M30 SCE0# T5 P_AD06 Y2 V CC<br />

M31 SDQM5 T28 SCKE0 Y3 P_AD59<br />

M32 SDQM1 T29 V SS Y4 P_AD60<br />

N1 P_AD14 T30 SBA1 Y5 P_AD61<br />

N2 P_AD15 T31 SBA0 Y28 DQ50<br />

N3 P_PAR T32 SA11 Y29 V SS<br />

N4 V SS U1 P_AD00 Y30 DQ18<br />

N5 P_C/BE1# U2 P_AD01 Y31 DQ49<br />

N28 SA02 U3 P_AD02 Y32 DQ17<br />

N29 SA01 U4 V SS AA1 P_AD54<br />

N30 SA00 U5 P_REQ64# AA2 P_AD55<br />

N31 V CC U28 SDQM3 AA3 P_AD56<br />

N32 SRAS# U29 SDQM6 AA4 V SS<br />

P1 P_AD10 U30 SDQM2 AA5 P_AD57<br />

P2 V CC U31 V CC AA28 DQ52<br />

P3 P_AD11 U32 SCKE1 AA29 DQ20<br />

P4 P_AD12 V1 P_C/BE5# AA30 DQ51<br />

P5 P_AD13 V2 V CC AA31 V CC<br />

P28 SA06 V3 P_C/BE6# AA32 DQ19<br />

P29 V SS V4 P_C/BE7# AB1 P_AD50<br />

P30 SA05 V5 P_ACK64# AB2 V CC<br />

P31 SA04 V28 N/C AB3 P_AD51<br />

P32 SA03 V29 V SS AB4 P_AD52<br />

R1 P_AD07 V30 SCB6 AB5 P_AD53<br />

R2 P_C/BE0# V31 SCB2 AB28 DQ54<br />

R3 P_AD08 V32 SDQM7 AB29 V SS<br />

R4 V SS W1 P_AD62 AB30 DQ22<br />

R5 P_AD09 W2 P_AD63 AB31 DQ53<br />

R28 SA10 W3 P_PAR64 AB32 DQ21<br />

R29 SA09 W4 V SS AC1 P_AD46<br />

R30 SA08 W5 P_C/BE4# AC2 P_AD47<br />

R31 V CC W28 DQ48 AC3 P_AD48<br />

Data Sheet 35


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 11. 540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 4 of 5)<br />

Ball # Signal Ball # Signal Ball # Signal<br />

AC4 V SS AG1 N/C AH28 S_REQ3#<br />

AC5 P_AD49 AG2 P_AD32 AH29 V SS<br />

AC28 DQ56 AG3 P_AD33 AH30 V CC<br />

AC29 DQ24 AG4 V SS AH31 V CC<br />

AC30 DQ55 AG5 V SS AH32 DQ63<br />

AC31 V CC AG28 V SS AJ1 V CC<br />

AC32 DQ23 AG29 V SS AJ2 S_AD35<br />

AD1 P_AD42 AG30 V CC AJ3 V SS<br />

AD2 V CC AG31 V CC AJ4 V SS<br />

AD3 P_AD43 AG32 DQ31 AJ5 S_AD36<br />

AD4 P_AD44 AH1 S_AD32 AJ6 V SS<br />

AD5 P_AD45 AH2 V CC AJ7 S_AD44<br />

AD28 DQ58 AH3 S_AD33 AJ8 V SS<br />

AD29 V SS AH4 S_AD34 AJ9 S_AD52<br />

AD30 DQ26 AH5 V SS AJ10 V SS<br />

AD31 DQ57 AH6 S_AD39 AJ11 S_AD60<br />

AD32 DQ25 AH7 S_AD43 AJ12 V SS<br />

AE1 P_AD38 AH8 S_AD47 AJ13 S_C/BE7#<br />

AE2 P_AD39 AH9 S_AD51 AJ14 V SS<br />

AE3 P_AD40 AH10 S_AD55 AJ15 S_AD05<br />

AE4 V SS AH11 S_AD59 AJ16 V SS<br />

AE5 P_AD41 AH12 S_AD63 AJ17 S_AD08<br />

AE28 DQ60 AH13 S_C/BE6# AJ18 V SS<br />

AE29 DQ28 AH14 S_AD00 AJ19 S_C/BE1#<br />

AE30 DQ59 AH15 S_AD04 AJ20 V SS<br />

AE31 V CC AH16 V SS AJ21 S_IRDY#<br />

AE32 DQ27 AH17 S_C/BE0# AJ22 V SS<br />

AF1 P_AD34 AH18 S_AD11 AJ23 S_AD21<br />

AF2 V CC AH19 S_AD15 AJ24 V SS<br />

AF3 P_AD35 AH20 S_PERR# AJ25 S_AD28<br />

AF4 P_AD36 AH21 S_TRDY# AJ26 V SS<br />

AF5 P_AD37 AH22 S_AD16 AJ27 S_GNT1#<br />

AF28 DQ62 AH23 S_AD20 AJ28 V SS<br />

AF29 V SS AH24 S_C/BE3# AJ29 S_REQ5#<br />

AF30 DQ30 AH25 S_AD27 AJ30 V CC<br />

AF31 DQ61 AH26 S_AD31 AJ31 V CC<br />

AF32 DQ29 AH27 S_REQ1# AJ32 V SS<br />

36 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 11. 540-Lead H-PBGA Pinout — Ballpad Number Order (Sheet 5 of 5)<br />

Ball # Signal Ball # Signal Ball # Signal<br />

AK1 V SS AL1 V SS AM1 V SS<br />

AK2 V CC AL2 V CC AM2 V SS<br />

AK3 V CC AL3 V CC AM3 V SS<br />

AK4 V SS AL4 V CC AM4 V CC<br />

AK5 S_AD37 AL5 V CC AM5 S_AD38<br />

AK6 S_AD40 AL6 S_AD41 AM6 S_AD42<br />

AK7 S_AD45 AL7 V CC AM7 S_AD46<br />

AK8 S_AD48 AL8 S_AD49 AM8 S_AD50<br />

AK9 S_AD53 AL9 V CC AM9 S_AD54<br />

AK10 S_AD56 AL10 S_AD57 AM10 S_AD58<br />

AK11 S_AD61 AL11 V CC AM11 S_AD62<br />

AK12 S_PAR64 AL12 S_C/BE4# AM12 S_C/BE5#<br />

AK13 S_REQ64# AL13 V CC AM13 S_ACK64#<br />

AK14 S_AD01 AL14 S_AD02 AM14 S_AD03<br />

AK15 S_AD06 AL15 V CC AM15 S_AD07<br />

AK16 V SS AL16 N/C AM16 V CC<br />

AK17 S_AD09 AL17 V CC AM17 S_AD10<br />

AK18 S_AD12 AL18 S_AD13 AM18 S_AD14<br />

AK19 S_PAR AL19 V CC AM19 S_SERR#<br />

AK20 S_LOCK# AL20 S_STOP# AM20 S_DEVSEL#<br />

AK21 S_FRAME# AL21 V CC AM21 S_C/BE2#<br />

AK22 S_AD17 AL22 S_AD18 AM22 S_AD19<br />

AK23 S_AD22 AL23 V CC AM23 S_AD23<br />

AK24 S_AD24 AL24 S_AD25 AM24 S_AD26<br />

AK25 S_AD29 AL25 V CC AM25 S_AD30<br />

AK26 S_RST# AL26 S_REQ0# AM26 S_GNT0#<br />

AK27 S_REQ2# AL27 V CC AM27 S_GNT2#<br />

AK28 S_GNT3# AL28 S_REQ4# AM28 S_GNT4#<br />

AK29 S_GNT5# AL29 V CC AM29 V SS<br />

AK30 V CC AL30 V CC AM30 V SS<br />

AK31 V CC AL31 V CC AM31 V SS<br />

AK32 V SS AL32 V SS AM32 V SS<br />

Data Sheet 37


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.2 Package Thermal Specifications<br />

The device is specified for operation when T C (case temperature) is within the range of 0°C to<br />

85°C, depending on operating conditions. Refer to the “Thermal Data for the 540-lead PBGA<br />

package” application note for more information regarding maximum case temperatures on the<br />

540-lead PBGA package. Case temperature may be measured in any environment to determine<br />

whether the processor is within specified operating range. Measure the case temperature at the<br />

center of the top surface, opposite the ballpad.<br />

3.2.1 Thermal Specifications<br />

This section defines the terms used for thermal analysis.<br />

3.2.1.1 Ambient Temperature<br />

Ambient temperature, T A , is the temperature of the ambient air surrounding the package. In a<br />

system environment, ambient temperature is the temperature of the air upstream from the package.<br />

3.2.1.2 Case Temperature<br />

To ensure functionality and reliability, the device is specified for proper operation when the case<br />

temperature, T C , is within the specified range as indicated in Table 12 “540-Lead H-PBGA<br />

Package Thermal Characteristics” on page 39.<br />

When measuring case temperature, attention to detail is required to ensure accuracy. If a<br />

thermocouple is used, calibrate it before taking measurements. Errors may result when the<br />

measured surface temperature is affected by the surrounding ambient air temperature. Such errors<br />

may be due to a poor thermal contact between thermocouple junction and the surface, heat loss by<br />

radiation, or conduction through thermocouple leads.<br />

To minimize measurement errors:<br />

• Use a 35 gauge K-type thermocouple or equivalent.<br />

• Attach the thermocouple bead or junction to the package top surface at a location<br />

corresponding to the center of the die (Figure 5A). The center of the die gives a more accurate<br />

measurement and less variation as the boundary condition changes.<br />

• Attach the thermocouple bead at a 0° angle with respect to the package as shown in Figure 5A,<br />

when no heatsink is attached.<br />

• When a passive heat sink is attached, a groove is made on the bottom surface of the heatsink<br />

and the thermocouple is attached at a 0° angle, as shown in Figure 5B.<br />

Figure 5.<br />

Thermocouple Attachment - A) No Heatsink / B) With Heatsink<br />

<strong>80960</strong><strong>RN</strong><br />

Bottom of<br />

<strong>Processor</strong><br />

Thermocouple<br />

Heatsink<br />

Groove for<br />

thermocouple<br />

A) No Heatsink B) With Heatsink<br />

38 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.2.1.3 Thermal Resistance<br />

The thermal resistance value for the case-to-ambient, θ CA , is used as a measure of the cooling<br />

solution’s thermal performance.<br />

3.2.2 Thermal Analysis<br />

Table 12 lists the case-to-ambient thermal resistances of the <strong>80960</strong><strong>RN</strong> for different air flow rates<br />

with and without a heat sink.<br />

To calculate T A , the maximum ambient temperature to conform to a particular case temperature:<br />

T A =T C -P(θ CA )<br />

Compute P by multiplying I CC and V CC .Valuesforθ JC and θ CA are given in Table 12.<br />

Junction temperature (T J ) is commonly used in reliability calculations. T J can be calculated from<br />

θ JC (thermal resistance from junction to case) using the following equation:<br />

T J =T C +P(θ JC )<br />

Similarly, when T A is known, the corresponding case temperature (T C ) can be calculated as<br />

follows:<br />

T C =T A +P(θ CA )<br />

The θ JA (Junction to Ambient) for this package is currently estimated at 13.10° C/Watt with no<br />

airflow and no heatsink. The θ JA (Junction to Ambient) for this package is currently estimated at<br />

8.30° C/Watt with no airflow and a passive heatsink:<br />

θ JA = θ JC + θ CA<br />

Table 12.<br />

540-Lead H-PBGA Package Thermal Characteristics<br />

Thermal Resistance — °C/Watt<br />

Airflow — ft./min (m/sec)<br />

Parameter<br />

0<br />

(0)<br />

50<br />

(0.25)<br />

100<br />

(0.50)<br />

200<br />

(1.01)<br />

300<br />

(1.52)<br />

400<br />

(2.03)<br />

600<br />

(3.04)<br />

800<br />

(4.06)<br />

θ JC (Junction-to-Case) 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44<br />

θ CA (Case-to-Ambient)<br />

Without Heatsink<br />

12.66 11.61 10.66 9.26 8.26 7.61 6.57 5.78<br />

θ CA (Case-to-Ambient)<br />

With Passive 0.25 in. 9.0 8.2 7.5 6.1 5.1 4.7 3.8 3.2<br />

Heatsink 2,3<br />

θ CA (Case-to-Ambient)<br />

With Passive 0.35 in. 7.86 6.96 6.06 4.56 3.66 3.16 2.56 2.16<br />

Heatsink 2<br />

θ JA<br />

θ JC<br />

θ CA<br />

Data Sheet 39


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.3 Heat Sink Information<br />

Under normal circumstances, a heat sink is not required for the <strong>80960</strong><strong>RN</strong>.<br />

Table 13 provides a list of suggested sources for heat sinks. This is neither an endorsement nor a<br />

warranty of the performance of any of the listed products and/or companies.<br />

Table 13.<br />

Heat Sink Vendors and Contacts<br />

Company<br />

Factory<br />

Representative<br />

Phone # Fax #<br />

Heatsink Part #<br />

Passive<br />

AAVID Thermalloy, Inc<br />

80 Commercial Street<br />

Concord, NH 03301 USA<br />

info@aavid.com<br />

http://www.aavidthermalloy.com/atp/atp.html<br />

Attention: Sales (603) 224-9988 (603) 223-1790 21933B withoou thermal<br />

grease (uses pins)<br />

21935B withoou thermal<br />

grease (uses pins)<br />

3.4 Vendor Information<br />

Table 14 through Table 18 provide vendor details for socket-headers, burn-in sockets, shipping<br />

trays, logic analyzer interposers and JTAG emulators for the Intel ® <strong>80960</strong><strong>RN</strong>. This is neither an<br />

endorsement nor a warranty of the performance of any of the listed products and/or companies.<br />

3.4.1 Socket-Header Vendor<br />

Table 14.<br />

Socket-Header Vendor<br />

Company<br />

Adapter Technologies, Inc.<br />

214-218 South 4th St.<br />

Perkasie, PA 18944<br />

Factory<br />

Representative<br />

Phone/Fax #<br />

John Miller 215-258-5750/<br />

215-258-5760<br />

Part #<br />

BGA 540 Pin Header BGA 540 Pin Socket Carrier<br />

BGAH-540-0-01-3201-0277-1 BGA-540-0-02-3201-0275P-130<br />

3.4.2 Burn-in Socket Vendor<br />

Table 15.<br />

Burn-in Socket Vendor<br />

Company Factory Representative Phone # Burn-in Socket Part #<br />

Texas Instruments<br />

111 Forbes Blvd.<br />

Mansfield, MA 02048<br />

W. Ray Johnson 508-236-5375 ULGA540-005<br />

40 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

3.4.3 Shipping Tray Vendor<br />

Table 16.<br />

Shipping Tray Vendor<br />

Company Factory Representative Phone # Shipping Tray Part #<br />

3M Ron Goth 602-465-5381 7-0000-21001-184-167<br />

3.4.4 Logic Analyzer Interposer Vendor<br />

Table 17.<br />

Logic Analyzer Interposer Vendor<br />

Company Factory Representative Phone/Fax # Part #<br />

Packard-Hughes Interconnect<br />

17150 Von Karman Ave<br />

Irvine, CA 92614-0968<br />

Karen May 949-660-5773<br />

949-660-5825<br />

1126898<br />

3.4.5 JTAG Emulator Vendor<br />

3.5<br />

Table 18.<br />

JTAG Emulator Vendor<br />

Company<br />

Factory Representative<br />

Phone/<br />

Fax #<br />

Part #<br />

Spectrum Digital, Inc.<br />

Jeff Bond<br />

281-494-4500/<br />

281-494-5310<br />

701500<br />

Data Sheet 41


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.0 Electrical Specifications<br />

4.1 Absolute Maximum Ratings<br />

Parameter<br />

Storage Temperature<br />

Case Temperature Under Bias<br />

Supply Voltage wrt. V SS<br />

Supply Voltage wrt. V SS on V CC5<br />

VoltageonAnyBallwrt.V SS<br />

Maximum Rating<br />

–55°C to+125°C<br />

0°C to+85°C<br />

–0.5 V to + 4.6 V<br />

–0.5 V to + 6.5 V<br />

–0.5 V to V CC +0.5V<br />

NOTICE: This data sheet contains information on<br />

products in the design phase of development. Do<br />

not finalize a design with this information. Revised<br />

information will be published when the product<br />

becomes available. The specifications are subject<br />

to change without notice. Contact your local Intel<br />

representative before finalizing a design.<br />

†WA<strong>RN</strong>ING: Stressing the device beyond the<br />

“Absolute Maximum Ratings” may cause<br />

permanent damage. These are stress ratings only.<br />

Operation beyond the “Operating Conditions” is<br />

not recommended and extended exposure beyond<br />

the “Operating Conditions” may affect device<br />

reliability.<br />

Table 19.<br />

Operating Conditions<br />

Symbol Parameter Min Max Units Notes<br />

V CC Supply Voltage 3.0 3.6 V<br />

V CC5 Input Protection Bias V CC V CC +2.5 V<br />

F P_CLK Input Clock Frequency 16 33.33 MHz<br />

T C<br />

Case Temperature Under Bias<br />

GC (540L PBGA) 0 85 °C<br />

42 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.2 V CC5REF Pin Requirements (V DIFF )<br />

In mixed voltage systems that drive <strong>80960</strong><strong>RN</strong> processor inputs in excess of 3.3 V, the V CC5REF pin<br />

must be connected to the system’s 5 V supply. To limit current flow into the V CC5REF pin, there is<br />

a limit to the voltage differential between the V CC5REF pin and the other V CC pins. The voltage<br />

differential between the V CC5REF pin and its 3.3 V V CC pins should never exceed 2.25 V. This<br />

limit applies to power-up, power-down, and steady-state operation. Table 20 outlines this<br />

requirement.<br />

If the voltage difference requirements cannot be met due to system design limitations, an alternate<br />

solution may be employed. As shown in Figure 6, a minimum of 100 Ω series resistor may be used<br />

to limit the current into the V CC5REF pin. This resistor ensures that current drawn by the V CC5REF<br />

pin does not exceed the maximum rating for this pin.<br />

Figure 6.<br />

V CC5REF Current-Limiting Resistor<br />

+5 V (±0.25 V) VCC5REF Pin<br />

100 Ω<br />

(±5%, 0.5 W)<br />

This resistor is not necessary in systems that can guarantee the V DIFF specification.<br />

In 3.3 V-only systems (only applies to <strong>80960</strong><strong>RN</strong> C-x steppings) and systems that drive pins from<br />

3.3 V logic, connect the V CC5REF pindirectlytothe3.3VV CC plane.<br />

Table 20. V DIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V)<br />

Symbol Parameter Min Max Units Notes<br />

V DIFF V CC5 -V CC Difference 2.25 V (1)<br />

NOTE:<br />

1. V CC5REF input should not exceed V CC by more than 2.25 V during power-up and power-down, or during<br />

steady-state operation.<br />

4.3 V CCPLL Pin Requirements<br />

To reduce clock skew on the i960 Jx processor, the V CCPLL pin for the Phase Lock Loop (PLL)<br />

circuit is isolated on the pinout. The lowpass filter, as shown in Figure 7, reduces noise induced<br />

clock jitter and its effects on timing relationships in system designs. The trace lengths between the<br />

4.7 µF capacitor, the 0.01 µF capacitor, and V CCPLL must be as short as possible.<br />

Figure 7.<br />

V CCPLL Lowpass Filter<br />

10Ω, 5%, 1/8W<br />

V CC<br />

(Board Plane)<br />

+<br />

4.7µF<br />

0.01µF<br />

V CCPLL<br />

(On i960 ® Jx processors)<br />

Data Sheet 43


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.4 Targeted DC Specifications<br />

Table 21.<br />

DC Characteristics<br />

Symbol Parameter Min Max Units Notes<br />

V IL5 Input Low Voltage 5 Volt PCI -0.5 0.8 V (1,4)<br />

V IH5 Input High Voltage 5 Volt PCI 2 V CC +0.5 V (1,4)<br />

V IL3.3 Input Low Voltage 3.3 Volt PCI -0.5 0.3V CC V (1,4,5)<br />

V IH3.3 Input High Voltage 3.3 Volt PCI 0.5V CC V CC + 0.5 V (1,4,5)<br />

V OL1 Output Low Voltage <strong>Processor</strong> signals 0.4 V I OL =6mA(3)<br />

V OH1<br />

Output High Voltage <strong>Processor</strong> signals<br />

2.4<br />

V CC -0.5<br />

V<br />

I OH =-2mA(3)<br />

I OH =-200µA (3, 6)<br />

V OL2<br />

Output Low Voltage 5 V PCI / Flash<br />

signals<br />

0.4 V I OL =6mA(1)<br />

V OH2<br />

Output High Voltage 5 V PCI / Flash<br />

signals<br />

2.4 V I OH =-2mA(1)<br />

V OL3 Output Low Voltage SDRAM signals -2.0 0.4 V I OL =3mA(4)<br />

V OH3 Output High Voltage SDRAM signals 2.4 V CC +2.0 V I OH =-2mA(4)<br />

V OL4 Output Low Voltage 3.3 V PCI signals 0.1V CC V I OL =1500µA (1,5)<br />

V OH4 Output Low Voltage 3.3 V PCI signals 0.9V CC V I OH =-500µA (1,5)<br />

C IN Input Capacitance - PBGA 10 pF F S_CLK =T F Min (1, 2)<br />

C OUT I/O or Output Capacitance - PBGA 10 pF F S_CLK =T F Min (1, 2)<br />

C CLK S_CLK Capacitance - PBGA 5 10 pF F S_CLK =T F Min (1, 2)<br />

C IDSEL IDSEL Ball Capacitance 8 pF (1,2)<br />

L PIN Ball Inductance 25 nH (1,2)<br />

NOTES:<br />

1. As required by the PCI Local Bus Specification, Revision 2.2.<br />

2. Not tested.<br />

3. <strong>Processor</strong> signals include RALE, RCE[1:0]#, ROE#, RWE#, XINT[5:4]#, NMI#, FAIL#, TDI, TDO, TMS,<br />

TRST#, SDA, andSCL.<br />

4. SDRAM signals include SA[11:0], SBA[1:0], SCAS#, SCE[1:0]#, SCKE[1:0], SDQM[7:0], SRAS#,<br />

SWE#, DCLKIN, DCLKOUT, DQ[63:0], andSCB[7:0].<br />

5. 3.3 V PCI signalling only supported on C-x steppings on the <strong>80960</strong><strong>RN</strong> processor<br />

6. Guaranteed by characterization<br />

44 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Table 22.<br />

I CC Characteristics<br />

Symbol Parameter Typ Max Units Notes<br />

I LI1<br />

I LI2<br />

Input Leakage Current for each signal except<br />

TMS, TRST#, TDI, ONCE#, RAD[8:0] and<br />

LCDINIT#.<br />

Input Leakage Current for TMS, TRST#, TDI,<br />

ONCE#, RAD[8:0] and LCDINIT#.<br />

±5 µA 0 ≤ V IN ≤ V CC<br />

-140 -250 µA V IN =0.45V(1)<br />

I LO Output Leakage Current ± 5 µA 0.4 ≤ V OUT ≤ V CC<br />

I CC Active<br />

(Power<br />

Supply)<br />

I CC Active<br />

(Thermal)<br />

Power Supply Current 1.65 A (1,2)<br />

Thermal Current 1.2 A (1,3)<br />

I CC Active<br />

(Power<br />

Modes)<br />

Reset Mode<br />

ONCE Mode<br />

0.95<br />

0.02<br />

A<br />

(4)<br />

(4)<br />

NOTES:<br />

1. Measured with device operating and outputs loaded to the test condition in Figure 13.<br />

2. I CC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using<br />

one of the worst case instruction mixes with V CC = 3.6 V and ambient temperature = 55°C.<br />

3. I CC Active (Thermal) value is provided for your system’s thermal management. Typical I CC is measured<br />

with V CC = 3.3 V and ambient temperature = 55°C.<br />

4. I CC Test (Power modes) refers to the I CC values that are tested when the device is in Reset mode or ONCE<br />

mode with V CC = 3.6 V and ambient temperature = 55°C.<br />

Data Sheet 45


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.5 Targeted AC Specifications<br />

4.5.1 Clock Signal Timings<br />

Table 23.<br />

Input Clock Timings<br />

Symbol Parameter Min Max Units Notes<br />

T F P_CLK Frequency 16 33.33 MHz<br />

T C P_CLK Period 30 62.5 ns (1)<br />

T CS P_CLK Period Stability ±250 ps Adjacent Clocks (2)<br />

TCH P_CLK High Time 12 ns Measured at 1.5 V (2)<br />

T CL P_CLK Low Time 12 ns Measured at 1.5 V (2)<br />

T CR P_CLK Rise Time 1 4 V/ns 0.4 V to 2.4 V (2)<br />

T CF P_CLK Fall Time 1 4 V/ns 2.4 V to 0.4 V (2)<br />

T DICS DCLKIN Period Stability ±250 ps Adjacent Clocks (2)<br />

T DICH DCLKIN High Time 5 ns Measured at 1.5 V (2)<br />

T DICL DCLKIN Low Time 5 ns Measured at 1.5 V (2)<br />

NOTES:<br />

1. See Figure 8 “P_CLK, TCK, DCLKIN, DCLKOUT Waveform” on page 51.<br />

2. Not tested.<br />

Table 24.<br />

SDRAM Output Clock Timings<br />

Symbol Parameter Min Max Units Notes<br />

T DOF DCLKOUT Frequency 2T F MHz<br />

T DOC DCLKOUT Period T C /2 ns (1)<br />

T DOCS DCLKOUT Period Stability ±250 ps Adjacent Clocks<br />

TDOCH DCLKOUT High Time 5 ns Measured at 1.5 V<br />

T DOCL DCLKOUT Low Time 5 ns Measured at 1.5 V<br />

NOTE:<br />

1. See Figure 8 “P_CLK, TCK, DCLKIN, DCLKOUT Waveform” on page 51.<br />

46 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.5.2 PCI Interface Signal Timings<br />

Table 25.<br />

PCI Signal Timings<br />

Symbol Parameter Min Max Units Notes<br />

T OV1<br />

Output Valid Delay from P_CLK - PCI Signals Except 2 11 ns<br />

P_REQ#, P_INT[A:D]#, andS_GNT[5:0]#<br />

(1,2)<br />

T OV2 Output Valid Delay from P_CLK - P_INT[A:D]# 0 25 ns (1,2,6)<br />

T OV3 Output Valid Delay from P_CLK - S_REQ64# 0 ns (1,2,8)<br />

T OV4<br />

Output Valid Delay from P_CLK - P_REQ# and<br />

2 12 ns<br />

S_GNT[5:0]#<br />

(1,2)<br />

T OF Output Float Delay from P_CLK 28 ns (1,4,5,6)<br />

T IS1<br />

Input Setup to P_CLK - PCI Signals Except P_GNT# and 7 ns<br />

S_REQ[5:0]#<br />

(1,3)<br />

T IS2 Input Setup to P_CLK - P_GNT# 10 ns (1,3)<br />

T IS3 Input Setup to P_CLK - S_REQ[5:0]# 12 ns (1,3)<br />

T IH1 Input Hold from P_CLK - PCI Signals 0 ns (1,3)<br />

T IS4 Input Setup to P_CLK - S_INT[A:D]# 25 ns (1,3,7,9)<br />

T IH2 Input Hold to P_CLK - S_INT[A:D]# 2 ns (1,3,7,9)<br />

T IS5 Input Setup to P_CLK - P_RST# 6 ns (1,3,7)<br />

T IH3 Input Hold to P_CLK - P_RST# 2 ns (1,3,7)<br />

T IS6 Input Setup to P_RST# - P_REQ64# 10T c ns (1,3)<br />

T IH4 Input Hold to P_RST# - P_REQ64# 0 50 ns (1,3)<br />

NOTES:<br />

1. The PCI Local Bus Specification, Revision 2.2 requires that all of the PCI signal AC timings use 0 pF for<br />

minimum timings and 50 pF for maximum timings.<br />

2. See Figure 9 “T OV Output Delay Waveform” on page 51.<br />

3. See Figure 11 “T IS and T IH Input Setup and Hold Waveform” on page 52.<br />

4. A float condition occurs when the output current becomes less than I LO . Float delay is not tested. See<br />

Figure 10 “T OF Output Float Waveform” on page 52.<br />

5. See Figure 10 “T OF Output Float Waveform” on page 52.<br />

6. Outputs precharged to V CC5 .<br />

7. P_RST#, S_INT[A:D]# may be synchronous or asynchronous. Meeting setup and hold time guarantees<br />

recognition at a particular clock edge.<br />

8. S_REQ64# is asserted asynchronously with respect to P_RST#. S_REQ64# is deasserted one P_CLK<br />

after the deassertion of S_RST#.<br />

9. S_INT[A:D]# must be asserted for a minimum of two P_CLK periods to guarantee recognition.<br />

Data Sheet 47


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.5.3 Intel ® <strong>80960</strong>JN Core Interface Timings<br />

Table 26.<br />

Intel ® <strong>80960</strong>JN Core Signal Timings<br />

Symbol Parameter Min Max Units Notes<br />

T OV5 Output Valid Delay from P_CLK - FAIL# 2 TBD ns (1,5)<br />

T IS7 Input Setup to P_CLK - NMI#, XINT[5:4]# 25 ns (2,3)<br />

T IH5 Input Hold from P_CLK - NMI#, XINT[5:4]# 2 ns (2,3)<br />

NOTES:<br />

1. See Figure 9 “T OV Output Delay Waveform” on page 51.<br />

2. See Figure 11 “T IS and T IH Input Setup and Hold Waveform” on page 52.<br />

3. Setup and hold times must be met for proper processor operation. NMI# and XINT[5:4]# may be<br />

synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock<br />

edge. For asynchronous operation, NMI# and XINT[5:4]# must be asserted for a minimum of two P_CLK<br />

periods to guarantee recognition.<br />

4. Core signals include: XINT[5:4]#, NMI#, FAIL# .<br />

5. The processor asserts FAIL# during built-in self-test. If self-test passes, FAIL# is deasserted. The<br />

processor asserts FAIL# during the bus confidence test. If the test passes, FAIL# is deasserted and user<br />

program execution begins.<br />

4.5.4 SDRAM/Flash Interface Signal Timings<br />

Table 27.<br />

SDRAM / Flash Signal Timings<br />

Sym Parameter Min Max Units Notes<br />

T OV6<br />

Output Valid Delay from DCLKIN - SA[11:0], SBA[1:0], SCAS#, 1.62 6.60 ns<br />

SRAS#, and SWE#.<br />

(1,5)<br />

T OV7 Output Valid Delay from DCLKIN - DQ[63:0], andSCB[7:0]. 2.03 7.14 ns (1,5)<br />

T OV8 Output Valid Delay from DCLKIN - SDQM[7:0] 2.57 6.85 ns (1,5)<br />

T OV9 Output Valid Delay from DCLKIN - SCKE[1:0] 1.74 5.50 ns (1,5)<br />

T OV10 Output Valid Delay from DCLKIN - SCE[1:0]# 1.65 5.25 ns (1,5)<br />

T IS8 Input Setup to DCLKIN - DQ[63:0], andSCB[7:0] 3.00 ns (2)<br />

T IH6 Input Hold from DCLKIN - DQ[63:0], and SCB[7:0] 1.5 ns (2)<br />

T OV11<br />

Output Valid Delay from DCLKIN - RAD[16:0], RALE, RCE[1:0]#, 1.4 11.0 ns<br />

ROE#, andRWE#.<br />

(1,5)<br />

T IS9 Input Setup to DCLKIN -RAD[16:0] 5 ns (2)<br />

T IH7 Input Hold from DCLKIN - RAD[16:0] 1.4 ns (2)<br />

NOTES:<br />

1. See Figure 9 “T OV Output Delay Waveform” on page 51.<br />

2. See Figure 11 “T IS and T IH Input Setup and Hold Waveform” on page 52.<br />

3. SDRAM signals include SA[11:0], SBA[1:0], SCAS#, SCE[1:0]#, SCKE[1:0], SDQM[7:0], SRAS#,<br />

SWE#, DQ[63:0], andSCB[7:0]. Timings are for 3.3 V signalling environment.<br />

4. Flash signals include RAD[16:0], RALE, RCE[1:0]#, ROE#, andRWE#. Timings are for 5V signalling<br />

environment.<br />

5.Theseoutputvalidtimesarespecifiedwitha0pFloading.<br />

48 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.5.5 Boundary Scan Test Signal Timings<br />

Table 28.<br />

Boundary Scan Test Signal Timings<br />

Symbol Parameter Min Max Units Notes<br />

T BSF TCK Frequency 0 0.5T F MHz<br />

T BSCH TCK High Time 15 ns Measured at 1.5 V (1)<br />

T BSCL TCK Low Time 15 ns Measured at 1.5 V (1)<br />

T BSCR TCK Rise Time 5 ns 0.8 V to 2.0 V (1)<br />

T BSCF TCK Fall Time 5 ns 2.0 V to 0.8 V (1)<br />

T BSIS1 Input Setup to TCK — TDI, TMS 4 ns (4)<br />

T BSIH1<br />

Input Hold from TCK — TDI,<br />

TMS<br />

6 ns (4)<br />

T BSIS2 Input Setup to TCK — TRST# 25 ns (4)<br />

T BSIH2 Input Hold from TCK — TRST# 3 ns (4)<br />

T BSOV1 TDO Valid Delay 3 30 ns Relative to falling edge of TCK (2,3)<br />

T OF1 TDO Float Delay 3 30 ns Relative to falling edge of TCK (2,5)<br />

T OV12<br />

All Outputs (Non-Test) Valid<br />

Delay<br />

3 30 ns Relative to falling edge of TCK (2,3)<br />

T OF2<br />

T IS10<br />

T IH8<br />

All Outputs (Non-Test) Float<br />

Delay<br />

Input Setup to TCK — All Inputs<br />

(Non-Test)<br />

Input Hold from TCK — All Inputs<br />

(Non-Test)<br />

3 30 ns Relative to falling edge of TCK (2,5)<br />

4 ns (4)<br />

6 ns (4)<br />

NOTES:<br />

1. Not tested.<br />

2. Outputs precharged to V CC5 .<br />

3. See Figure9“T OV Output Delay Waveform” on page 51.<br />

4. See Figure 11 “T IS and T IH Input Setup and Hold Waveform” on page 52.<br />

5. A float condition occurs when the output current becomes less than I LO . Float delay is not tested. See<br />

Figure 10 “T OF Output Float Waveform” on page 52.<br />

Data Sheet 49


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.5.6 I 2 C Interface Signal Timings<br />

Table 29.<br />

I 2 C Interface Signal Timings<br />

Symbol<br />

Parameter<br />

Std. Mode<br />

Fast Mode<br />

Min Max Min Max<br />

Units<br />

Notes<br />

F SCL SCL Clock Frequency 0 100 0 400 KHz<br />

T BUF<br />

BusFreeTimeBetweenSTOPandSTART<br />

Condition<br />

4.7 1.3 µs (1)<br />

T HDSTA Hold Time (repeated) START Condition 4 0.6 µs (1,3)<br />

T LOW SCL Clock Low Time 4.7 1.3 µs (1,2)<br />

T HIGH SCL Clock High Time 4 0.6 µs (1,2)<br />

T SUSTA SetupTimeforaRepeatedSTARTCondition 4.7 0.6 µs (1)<br />

T HDDAT Data Hold Time 0 0 0.9 µs (1)<br />

T SUDAT Data Setup Time 250 100 ns (1)<br />

T SR SCL and SDA Rise Time 1000 20+0.1C b 300 ns (1,4)<br />

T SF SCL and SDA Fall Time 300 20+0.1C b 300 ns (1,4)<br />

T SUSTO Setup Time for STOP Condition 4 0.6 µs (1)<br />

NOTES:<br />

1. See Figure 12 “I 2 C Interface Signal Timings” on page 52.<br />

2. Not tested.<br />

3. After this period, the first clock pulse is generated.<br />

4. C b = the total capacitance of one bus line, in pF.<br />

50 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.6 AC Timing Waveforms<br />

Figure 8.<br />

P_CLK, TCK, DCLKIN, DCLKOUT Waveform<br />

T CR<br />

T CF<br />

2.0V<br />

1.5V<br />

0.8V<br />

T CH<br />

T CL<br />

T C<br />

Figure 9.<br />

T OV Output Delay Waveform<br />

P_CLK / DCLKIN 1.5V<br />

1.5V<br />

T OVX Max<br />

T OVX Min<br />

1.5V Valid<br />

1.5V<br />

Data Sheet 51


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

Figure 10.<br />

T OF Output Float Waveform<br />

P_CLK / DCLKIN<br />

1.5V<br />

1.5V<br />

T OF<br />

Figure 11.<br />

T IS and T IH Input Setup and Hold Waveform<br />

P_CLK / DCLKIN<br />

1.5V<br />

1.5V<br />

1.5V<br />

T IHX<br />

T ISX<br />

1.5V<br />

Valid<br />

Figure 12.<br />

I 2 C Interface Signal Timings<br />

SDA<br />

T BUF<br />

T LOW<br />

T SR<br />

T SF<br />

T HDSTA<br />

T SUSTO<br />

T HDSTA T SP<br />

Stop<br />

T HDDAT<br />

T HIGH<br />

T SUDAT T SUSTA<br />

Repeated<br />

Stop<br />

Start<br />

Start<br />

SCL<br />

52 Data Sheet


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

4.7 AC Test Conditions<br />

The AC specifications in Section 4.5, “Targeted AC Specifications” on page 46 are tested with a<br />

50 pF load indicated in Figure 13.<br />

Figure 13.<br />

AC Test Load (all signals except SDRAM and Flash signals)<br />

Output Ball<br />

C L<br />

C L =50pF<br />

The PCI maximum AC specifications are tested with the 50 pF load indicated in Figure 13. The<br />

PCI minimum AC specifications are tested with a 0 pF load. All of the SDRAM and Flash timings<br />

are specified for a 0 pF load.<br />

Data Sheet 53


Intel ® <strong>80960</strong><strong>RN</strong> I/O <strong>Processor</strong><br />

5.0 Device Identification on Reset<br />

During the manufacturing process, values characterizing the i960 RM/<strong>RN</strong> I/O processor type and<br />

stepping are programmed into memory-mapped registers. The i960 RM/<strong>RN</strong> I/O processor contains<br />

two, read-only device ID MMRs. One holds the <strong>Processor</strong> Device ID (PDIDR MMR Location -<br />

0000 1710H) and the other holds the i960 Core <strong>Processor</strong> Device ID (DEVICEID MMR Location -<br />

FF00 8710H). During initialization, the DEVICEID is placed in g0.<br />

The device identification values are compliant with the IEEE 1149.1 specification and Intel<br />

standards. Table 30 describes the fields of the two Device IDs.<br />

Table 30.<br />

Note:<br />

The value programmed into these registers varies with stepping. Refer to the Specification Update<br />

for the correct value.<br />

Device ID Registers<br />

IB<br />

ro<br />

31<br />

ro<br />

ro<br />

28 24 20 16 12 8 4 0<br />

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro<br />

PCI<br />

na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na<br />

IB:<br />

PCI:<br />

0000 1710H<br />

FF00 8710H<br />

NA<br />

Legend:NA = Not AccessibleRO = Read Only<br />

RV = ReservedPR = PreservedRW = Read/Write<br />

RS = Read/SetRC = Read Clear<br />

IB = Internal Bus AddressPCI = PCI Configuration Address Offset<br />

Bit Default Description<br />

31:28 X Version - Indicates stepping changes.<br />

27 X<br />

V CC - Indicates device voltage type.<br />

0=5.0V<br />

1=3.3V<br />

26:21 X Product Type - Indicates the generation or “family member”.<br />

20:17 X Generation Type - Indicates the generation of the device.<br />

16:12 X Model Type - Indicates member within a series and specific model information.<br />

11:01 X<br />

Manufacturer ID - Indicates manufacturer ID assigned by IEEE.<br />

0000 0001 001 = Intel Corporation<br />

0 1 Constant<br />

54 Data Sheet

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!