31.05.2014 Views

Omron SX inverter manual

Omron SX inverter manual

Omron SX inverter manual

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Cat. No. I127-EN-00B<br />

<strong>SX</strong>-V<br />

High power Variable Frequency Inverters<br />

Model: <strong>SX</strong>-V<br />

400 V Class Three-Phase Input 90 kW to 800 kW<br />

690 V Class Three-Phase Input 90 kW to 1000 kW<br />

USER’S MANUAL


OMRON <strong>SX</strong>-V<br />

INSTRUCTION MANUAL - ENGLISH<br />

Software version 4.21<br />

Document number: I127-EN-00B<br />

Document name : <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong><br />

Edition : Preliminary V0.97<br />

Date of release: 03-11-2009<br />

© Copyright <strong>Omron</strong> Electronics 2009<br />

<strong>Omron</strong> retains the right to change specifications and illustrations in the<br />

text, without prior notification. The contents of this document may not<br />

be copied without the explicit permission of <strong>Omron</strong> Electronics.<br />

1


Safety Instructions<br />

Precautions severity<br />

Follow this advice for good practice. Not following can lead to<br />

malfunctioning or possibility of injury to the user.<br />

High risk of malfunction or damage to the <strong>inverter</strong> or installation,<br />

possibility of injury to the user.<br />

Earth and grounding. Potential risk of electric shock or damage to<br />

<strong>inverter</strong> or installation.<br />

High inmediate risk of serious injury to the user, <strong>inverter</strong> or<br />

installation.<br />

Risk if manipulated by unqualified personnel<br />

WARNINGS AND CAUTIONS<br />

Instruction <strong>manual</strong><br />

Read throuhfully this instruction <strong>manual</strong> before using the Variable Speed Drive, VSD<br />

Mains voltage selection<br />

The variable speed drive may be ordered for use with the mains voltage range listed below.<br />

<strong>SX</strong>-V-4: 230-480 V<br />

<strong>SX</strong>-V-6: 500-690 V<br />

IT Mains supply<br />

The variable speed drives can be modified for an IT mains supply, (non-earthed neutral),<br />

check <strong>manual</strong> and contract your supplier in case of doubt.<br />

EMC Regulations<br />

In order to comply with the EMC Directive, it is absolutely necessary to follow the installation<br />

instructions. All installation descriptions in this <strong>manual</strong> follow the EMC Directive.<br />

Transport<br />

To avoid damage, keep the variable speed drive in its original packaging during transport.<br />

This packaging is specially designed to absorb shocks during transport.<br />

Handling the <strong>inverter</strong><br />

Installation, commissioning, dismounting, taking measurements, etc, of or on the variable<br />

speed drive may only be carried out by personnel technically qualified for the task. The<br />

installation must be carried out in accordance with local standards.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 1


Condensation<br />

If the variable speed drive is moved from a cold (storage) room to a room where it will be<br />

installed, condensation can occur. This can result in sensitive components becoming damp.<br />

Do not connect the mains voltage until all visible dampness has evaporated.<br />

Grounding the <strong>inverter</strong><br />

Be sure to ground the unit. Not doing so may result in a serious injury due to an electric<br />

shock or fire.<br />

Power factor capacitors for improving cos<br />

Remove all capacitors from the motor and the motor outlet.<br />

Incorrect connection<br />

The variable speed drive is not protected against incorrect connection of the mains voltage,<br />

and in particular against connection of the mains voltage to the motor outlets U, V and W.<br />

The variable speed drive can be damaged in this way.<br />

Stop motion mechanical device to ensure safety<br />

The <strong>inverter</strong> controls the motor electrically, but has no means to stop it mechanically under<br />

some types of failures... In applications where mechanical stop is required to a degree of<br />

safety, a safety assurance study should be carried out to determine the need of additional<br />

mechanical braking devices.<br />

Braking resistor and regenerative braking units<br />

In case the application needs it, be sure to use a specified type of braking resistor/regenerative<br />

braking unit. In case of a braking resistor, install a thermal relay that monitors the temperature<br />

of the resistor. Not doing so might result in a burn due to the heat generated in the<br />

braking resistor/regenerative braking unit. Configure a sequence that enables the Inverter<br />

power to turn off when unusual overheating is detected in the braking resistor/regenerative<br />

braking unit.<br />

Electric protection of installation<br />

Take safety precautions such as setting up a molded-case circuit breaker (MCCB) or fuses<br />

that matches the Inverter capacity on the power supply side. Not doing so might result in<br />

damage to property due to the short circuit of the load.<br />

Wiring works and servicing the <strong>inverter</strong><br />

Wiring work must be carried out only by qualified personnel. Not doing so may result in a<br />

serious injury due to an electric shock. Do not dismantle, repair or modify this product if<br />

you’re not authorised and qualified for it. Doing so may result in an injury.<br />

DC-link residual voltage<br />

After switching off the mains supply, dangerous voltage can still be present in the VSD.<br />

When opening the VSD for installing and/or commissioning activities wait at least 10 minutes.<br />

In case of malfunction a qualified technician should check the DC-link or wait for one<br />

hour before dismantling the VSD for repair.<br />

Opening the variable speed drive cover<br />

Only qualified technician can open the <strong>inverter</strong>. Always take adequate precautions before<br />

opening the <strong>inverter</strong>. Although the connections for the control signals and the switches are<br />

isolated from the main voltage, do not touch the control board when the variable speed drive<br />

is switched on.<br />

Do not manipulate <strong>inverter</strong> under power<br />

Do not change wiring , put on or take off optional devices or replace cooling fans while the<br />

input power is being supplied. Doing so may result in a serious injury due to an electric<br />

shock. Inspection of the Inverter must be conducted after the power supply has been<br />

turned off. Not doing so may result in a serious injury due to an electric shock. The main<br />

power supply is not necessarily shut off even if the emergency shutoff function is activated.<br />

2 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Precautions to be taken with a connected motor<br />

If work must be carried out on a connected motor or on the driven machine, the mains voltage<br />

must always be disconnected from the variable speed drive first. Wait at least 5 minutes<br />

before starting work.<br />

Short-circuits<br />

The Inverter has high voltage parts inside which, if short-circuited, might cause damage to<br />

itself or other property. Place covers on the openings or take other precautions to make sure<br />

that no metal objects such as cutting bits or lead wire scraps go inside when installing and<br />

wiring.<br />

Earth leakage current<br />

This variable speed drive has an earth leakage current which does exceed 3.5 mA AC.<br />

Therefore the minimum size of the protective earth conductor must comply with the local<br />

safety regulations for high leakage current equipment which means that according the<br />

standard IEC61800-5-1 the protective earth connection must be assured by one of following<br />

conditions:<br />

1. Use a protective conductor with a cable cross-section of at least 10 mm 2 for copper (Cu)<br />

or 16 mm 2 for aluminium (Al).<br />

2. Use an additional PE wire, with the same cable cross-section as the used original PE and<br />

mains supply wiring.<br />

Residual current device (RCD) compatibility<br />

This product cause a DC current in the protective conductor. Where a residual current<br />

device (RCD) is used for protection in case of direct or indirect contact, only a Type B RCD is<br />

allowed on the supply side of this product. Use RCD of 300 mA minimum.<br />

Voltage tests (Megger)<br />

Do not carry out voltage tests (Megger) on the motor, before all the motor cables have been<br />

disconnected from the variable speed drive.<br />

Precautions during Autoreset<br />

When the automatic reset is active, the motor may restart automatically provided that the<br />

cause of the trip has been removed. If necessary take the appropriate precautions.<br />

Heat warning<br />

Be aware of specific parts on the VSD having high temperature. Do not touch the Inverter fins,<br />

braking resistors and the motor, which may become too hot during the power supply and for some<br />

time after the power shut-off. Doing so may result in a burn.<br />

Do not Operate the <strong>inverter</strong> with wet hands<br />

Do not operate the Digital Operator or switches with wet hands. Doing so may result in a<br />

serious injury due to an electric shock.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 3


4 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Contents<br />

1. Introduction ................................. 7<br />

1.1 Delivery and unpacking .......................................... 7<br />

1.2 Using of the instruction <strong>manual</strong>............................. 7<br />

1.3 Ordering codes ........................................................ 8<br />

1.4 Standards ................................................................ 8<br />

1.4.1 Product standard for EMC ...................................... 8<br />

1.5 Dismantling and scrapping.................................. 10<br />

1.5.1 Disposal of old electrical and electronic equipment<br />

10<br />

1.6 Glossary ................................................................ 10<br />

1.6.1 Abbreviations and symbols.................................. 10<br />

1.6.2 Definitions............................................................. 10<br />

2. Mounting ................................... 11<br />

2.1 Lifting instructions................................................ 11<br />

2.2 Stand-alone units................................................. 12<br />

2.2.1 Cooling .................................................................. 13<br />

2.2.2 Mounting schemes............................................... 13<br />

2.3 Cabinet mounting................................................. 14<br />

2.3.1 Cooling .................................................................. 14<br />

2.3.2 Mounting schemes............................................... 14<br />

3. Installation ................................ 17<br />

3.1 Before installation................................................ 17<br />

3.2 Cable connections................................................ 17<br />

3.2.1 Mains cables ........................................................ 17<br />

3.2.2 Motor cables......................................................... 17<br />

3.3 Connect motor and mains cables....................... 19<br />

3.4 Cable specifications............................................. 20<br />

3.5 Stripping lengths .................................................. 20<br />

3.5.1 Dimension of cables and fuses........................... 20<br />

3.5.2 Tightening torque for mains and motor cables.. 21<br />

3.6 Thermal protection on the motor ........................ 21<br />

3.7 Motors in parallel ................................................. 21<br />

4. Getting Started .......................... 23<br />

4.1 Connect the mains and motor cables................. 23<br />

4.1.1 Mains cables ........................................................ 23<br />

4.1.2 Motor cables......................................................... 23<br />

4.2 Using the function keys ....................................... 24<br />

4.3 Remote control..................................................... 24<br />

4.3.1 Connect control cables ........................................ 24<br />

4.3.2 Switch on the mains............................................. 24<br />

4.3.3 Set the Motor Data............................................... 24<br />

4.3.4 Run the VSD ......................................................... 25<br />

4.4 Local control ......................................................... 25<br />

4.4.1 Switch on the mains............................................. 25<br />

4.4.2 Select <strong>manual</strong> control.......................................... 25<br />

4.4.3 Set the Motor Data............................................... 25<br />

4.4.4 Enter a Reference Value...................................... 25<br />

4.4.5 Run the VSD ......................................................... 25<br />

5. Control Connections ................... 27<br />

5.1 Control board........................................................ 27<br />

5.2 Terminal connections ........................................... 28<br />

5.3 Inputs configuration<br />

with the switches........................................................ 28<br />

5.4 Connection example ............................................. 29<br />

5.5 Connecting the Control Signals............................ 30<br />

5.5.1 Cables .................................................................... 30<br />

5.5.2 Types of control signals ........................................ 30<br />

5.5.3 Screening............................................................... 30<br />

5.5.4 Single-ended or double-ended connection? ....... 31<br />

5.5.5 Current signals ((0)4-20 mA)................................ 32<br />

5.5.6 Twisted cables....................................................... 32<br />

5.6 Connecting options ............................................... 32<br />

6. Applications ............................... 33<br />

6.1 Application overview ............................................. 33<br />

6.1.1 Cranes.................................................................... 33<br />

6.1.2 Crushers................................................................. 33<br />

6.1.3 Mills........................................................................ 34<br />

6.1.4 Mixers .................................................................... 34<br />

7. Main Features ............................ 35<br />

7.1 Parameter sets...................................................... 35<br />

7.1.1 One motor and one parameter set ...................... 36<br />

7.1.2 One motor and two parameter sets..................... 36<br />

7.1.3 Two motors and two parameter sets................... 36<br />

7.1.4 Autoreset at trip .................................................... 37<br />

7.1.5 Reference priority.................................................. 37<br />

7.1.6 Preset references.................................................. 38<br />

7.2 Remote control functions ..................................... 38<br />

7.3 Performing an Identification Run......................... 40<br />

7.4 Using the Control Panel Memory.......................... 40<br />

7.5 Load Monitor and Process Protection [400]....... 40<br />

7.5.1 Load Monitor [410]............................................... 40<br />

8. EMC and Machine Directive ........ 45<br />

8.1 EMC standards...................................................... 45<br />

8.2 Stop categories and emergency stop .................. 45<br />

9. Operation via the Control Panel .. 47<br />

9.1 General .................................................................. 47<br />

9.2 The control panel .................................................. 47<br />

9.2.1 The display............................................................. 47<br />

9.2.2 Indications on the display..................................... 48<br />

9.2.3 LED indicators ....................................................... 48<br />

9.2.4 Control keys........................................................... 48<br />

9.2.5 The Toggle and Loc/Rem Key .............................. 48<br />

9.2.6 Function keys ........................................................ 50<br />

9.3 The menu structure .............................................. 50<br />

9.3.1 The main menu ..................................................... 50<br />

9.4 Programming during operation ............................ 51<br />

9.5 Editing values in a menu ...................................... 51<br />

9.6 Copy current parameter to all sets ...................... 51<br />

9.7 Programming example.......................................... 51<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 5


10. Serial communication ................. 53<br />

10.1 Modbus RTU ......................................................... 53<br />

10.2 Parameter sets..................................................... 53<br />

10.3 Motor data ............................................................ 53<br />

10.4 Start and stop commands................................... 54<br />

10.5 Reference signal .................................................. 54<br />

10.5.1 Process value ....................................................... 54<br />

10.6 Description of the EInt formats ........................... 54<br />

11. Functional Description ................ 59<br />

11.1 Preferred View [100]............................................ 59<br />

11.1.1 1st Line [110]....................................................... 59<br />

11.1.2 2nd Line [120] ..................................................... 60<br />

11.2 Main Setup [200]................................................. 60<br />

11.2.1 Operation [210].................................................... 60<br />

11.2.2 Remote Signal Level/Edge [21A]........................ 63<br />

11.2.3 Mains supply voltage [21B]................................. 64<br />

11.2.4 Motor Data [220] ................................................. 64<br />

11.2.5 Motor Protection [230] ........................................ 69<br />

11.2.6 Parameter Set Handling [240]............................ 72<br />

11.2.7 Trip Autoreset/Trip Conditions [250].................. 74<br />

11.2.8 Serial Communication [260] ............................... 81<br />

11.3 Process and Application Parameters [300] ....... 83<br />

11.3.1 Set/View Reference Value [310] ........................ 84<br />

11.3.2 Process Settings [320] ........................................ 84<br />

11.3.3 Start/Stop settings [330] .................................... 89<br />

11.3.4 Mechanical brake control.................................... 92<br />

11.3.5 Speed [340].......................................................... 95<br />

11.3.6 Torques [350]....................................................... 97<br />

11.3.7 Preset References [360] ..................................... 99<br />

11.3.8 PI Speed Control [370] ...................................... 100<br />

11.3.9 PID Process Control [380] ................................. 101<br />

11.3.10 Pump/Fan Control [390] ................................... 105<br />

11.3.11 Crane Option [3A0] ............................................ 111<br />

11.4 Load Monitor and Process Protection [400].... 114<br />

11.4.1 Load Monitor [410]............................................ 114<br />

11.4.2 Process Protection [420]................................... 118<br />

11.5 I/Os and Virtual Connections [500].................. 119<br />

11.5.1 Analogue Inputs [510] ....................................... 119<br />

11.5.2 Digital Inputs [520] ............................................ 126<br />

11.5.3 Analogue Outputs [530] .................................... 128<br />

11.5.4 Digital Outputs [540] ......................................... 132<br />

11.5.5 Relays [550] ....................................................... 134<br />

11.5.6 Virtual Connections [560].................................. 135<br />

11.6 Logical Functions and Timers [600] ................. 136<br />

11.6.1 Comparators [610] ............................................ 136<br />

11.6.2 Logic Output Y [620].......................................... 140<br />

11.6.3 Logic Output Z [630].......................................... 142<br />

11.6.4 Timer1 [640] ...................................................... 143<br />

11.6.5 Timer2 [650] ...................................................... 145<br />

11.7 View Operation/Status [700] ............................ 146<br />

11.7.1 Operation [710].................................................. 146<br />

11.7.2 Status [720] ....................................................... 148<br />

11.7.3 Stored values [730] ........................................... 151<br />

11.8 View Trip Log [800] ............................................ 152<br />

11.8.1 Trip Message log [810]...................................... 152<br />

11.8.2 Trip Messages [820] - [890] ............................. 153<br />

11.8.3 Reset Trip Log [8A0] .......................................... 153<br />

11.9 System Data [900]............................................. 154<br />

11.9.1 VSD Data [920] .................................................. 154<br />

12. Troubleshooting, Diagnoses and Maintenance<br />

157<br />

12.1 Trips, warnings and limits.................................. 157<br />

12.2 Trip conditions, causes and remedial action ... 158<br />

12.2.1 Technically qualified personnel......................... 158<br />

12.2.2 Opening the variable speed drive ..................... 158<br />

12.2.3 Precautions to take with a connected motor ... 158<br />

12.2.4 Autoreset Trip ..................................................... 158<br />

12.3 Maintenance ...................................................... 161<br />

13. Options ................................... 163<br />

13.1 Options for the control panel............................. 163<br />

13.2 PC Tool software ................................................ 163<br />

13.3 Brake chopper.................................................... 163<br />

13.4 I/O Board ............................................................ 164<br />

13.5 Output coils ........................................................ 164<br />

13.6 Serial communication and fieldbus.................. 164<br />

13.7 Standby supply board option............................. 164<br />

13.8 Safe Stop option................................................. 165<br />

13.9 Crane option board ............................................ 167<br />

13.10 Encoder............................................................... 167<br />

13.11 PTC/PT100 ......................................................... 167<br />

14. Technical Data ......................... 169<br />

14.1 Electrical specifications related to model ........ 169<br />

14.2 General electrical specifications....................... 171<br />

14.3 Operation at higher temperatures .................... 172<br />

14.4 Dimensions and Weights................................... 173<br />

14.5 Environmental conditions.................................. 174<br />

14.6 Fuses, cable cross-sections and glands........... 174<br />

14.6.1 According IEC ratings ......................................... 174<br />

14.6.2 Fuses and cable dimensions according NEMA ratings<br />

177<br />

14.7 Control signals.................................................... 179<br />

15. Menu List ................................ 181<br />

6 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


1. Introduction<br />

<strong>Omron</strong> <strong>SX</strong>-V is used most commonly to control and<br />

protect pump and fan applications that put high<br />

demands on flow control, process uptime and low<br />

maintenance costs. It can also be used for e.g. compressors<br />

and blowers. The used motor control<br />

method is V/Hz-control. Several options are available,<br />

listed in , that enable you to customize the variable<br />

speed drive for your specific needs.<br />

Users<br />

This instruction <strong>manual</strong> is intended for:<br />

• installation engineers<br />

• maintenance engineers<br />

• operators<br />

• service engineers<br />

Motors<br />

The variable speed drive is suitable for use with standard<br />

3-phase asynchronous motors. Under certain<br />

conditions it is possible to use other types of motors.<br />

Contact your supplier for details.<br />

1.1 Delivery and unpacking<br />

Check for any visible signs of damage. Inform your<br />

supplier immediately of any damage found. Do not<br />

install the variable speed drive if damage is found.<br />

The variable speed drives are delivered with a template<br />

for positioning the fixing holes on a flat surface. Check<br />

that all items are present and that the type number is<br />

correct.<br />

1.2 Using of the instruction<br />

<strong>manual</strong><br />

Within this instruction <strong>manual</strong> the abbreviation “VSD”<br />

is used to indicate the complete variable speed drive<br />

as a single unit.<br />

Check that the software version number on the first<br />

page of this <strong>manual</strong> matches the software version in<br />

the variable speed drive.<br />

With help of the index and the contents it is easy to<br />

track individual functions and to find out how to use<br />

and set them.<br />

The Quick Setup Card can be put in a cabinet door, so<br />

that it is always easy to access in case of an emergency.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Introduction 7


1.3 Ordering codes<br />

Fig. 1 and Fig. 2 give examples of the ordering code<br />

numbering used on <strong>SX</strong> variable speed drives. With this<br />

code number the exact type of the drive can be determined.<br />

This identification will be required for type specific<br />

information when mounting and installing. The<br />

code number is located on the product label, on the<br />

front of the unit.<br />

1 2 3 4 5 6 7<br />

<strong>SX</strong>- D 6 160- E VF -OPTIONS<br />

Fig. 1<br />

Fig. 2<br />

Type code number<br />

Position n.chars<br />

Option letters<br />

Configuration<br />

1 3 Inverter family name “<strong>SX</strong>-”<br />

2 1 Protection class<br />

3 1 Voltage Class<br />

4 4<br />

Power in kW<br />

(normal duty rating)<br />

“A”=IP20<br />

“B”=IP00<br />

“D”=IP54<br />

“4”=400V<br />

“6”=690V<br />

“090-”=90kW<br />

...<br />

“1K0-”=1000kW<br />

5 1 Market “E”=Europe<br />

6 6 Control type<br />

7 0 to 13<br />

Options<br />

Control panel<br />

Built-in EMC filter<br />

Built-in brake<br />

chopper<br />

Standby power<br />

supply<br />

Safe stop<br />

Control type<br />

All options with single<br />

letter (see table<br />

below)<br />

“V”=V/Hz<br />

“F”=Direct Torque<br />

Control<br />

“-”+letters A to X<br />

Letter (“?” means no character)<br />

“?” = Standard control panel (Std.PPU)<br />

“A”= Blank control panel (Blank PPU)<br />

“?” = Standard EMC inside (Category C3)<br />

“B” = IT-Net (filter disconnected from<br />

ground)<br />

“?” = No brake chopper or DC-connection<br />

included<br />

“C” = Brake chopper & DC-connection<br />

included<br />

“D” = Only DC-connection included<br />

“?” = Not included<br />

“E” = Standby power supply included<br />

“?” = Not included<br />

“F” = Safe stop included<br />

“V”=V/Hz<br />

“F”=Direct Torque Control<br />

Coated boards<br />

Option board<br />

position 1<br />

Option board<br />

position 2<br />

Option board<br />

position 3<br />

Option board<br />

Fieldbus<br />

position 4<br />

Liquid Cooling<br />

Standard<br />

Marine<br />

Options<br />

Cabinet input<br />

options<br />

Cabinet output<br />

options<br />

Letter (“?” means no character)<br />

“?” = No coating<br />

“G” = Coated boards<br />

“?” = No option<br />

“H” = Crane I/O<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“L” = DeviceNet<br />

“M” = Profibus-DP<br />

“N” = RS232/485<br />

“O” = EtherNet Modbus TCP<br />

“?” = No Liquid Cooling<br />

“P” = Liquid Cooling<br />

“?” = IEC<br />

“Q” = UL<br />

“?” = No marine option<br />

“R” = Marine option included<br />

“?” = No cabinet input options<br />

“S” = Main switch included<br />

“T” = Main contactor included<br />

“U” = Main switch + contactor included<br />

“?” = No cabinet output options included<br />

“V” = dU/dt filter included<br />

“W” = dU/dt filter + Overshoot clamp<br />

included<br />

“X” = Sinusfilter included<br />

1.4 Standards<br />

The variable speed drives described in this instruction<br />

<strong>manual</strong> comply with the standards listed in Table 1.<br />

For the declarations of conformity and manufacturer’s<br />

certificate, contact your supplier for more information.<br />

1.4.1 Product standard for EMC<br />

Product standard EN(IEC)61800-3, second edition of<br />

2004 defines the:<br />

First Environment (Extended EMC) as environment<br />

that includes domestic premises. It also includes<br />

establishments directly connected without intermediate<br />

transformers to a low voltage power supply network<br />

that supplies buildings used for domestic<br />

purposes.<br />

8 Introduction <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Category C2: Power Drive System (PDS) of rated voltage


1.5 Dismantling and scrapping<br />

The enclosures of the drives are made from recyclable<br />

material as aluminium, iron and plastic. Each drive<br />

contains a number of components demanding special<br />

treatment, for example electrolytic capacitors. The circuit<br />

boards contain small amounts of tin and lead. Any<br />

local or national regulations in force for the disposal<br />

and recycling of these materials must be complied<br />

with.<br />

1.5.1 Disposal of old electrical and<br />

electronic equipment<br />

This information is applicable in the European Union<br />

and other European countries with separate collection<br />

systems.<br />

1.6.2 Definitions<br />

In this <strong>manual</strong> the following definitions for current,<br />

torque and frequency are used:<br />

Table 3<br />

Definitions<br />

Name Description Quantity<br />

I IN Nominal input current of VSD A RMS<br />

I NOM Nominal output current of VSD A RMS<br />

I MOT Nominal motor current A RMS<br />

P NOM Nominal power of VSD kW<br />

P MOT Motor power kW<br />

T NOM Nominal torque of motor Nm<br />

T MOT Motor torque Nm<br />

f OUT Output frequency of VSD Hz<br />

f MOT Nominal frequency of motor Hz<br />

n MOT Nominal speed of motor rpm<br />

I CL Maximum output current A RMS<br />

This symbol on the product or on its packaging indicates<br />

that this product shall be treated according to<br />

the WEEE Directive. It must be taken to the applicable<br />

collection point for the recycling of electrical and electronic<br />

equipment. By ensuring this product is disposed<br />

of correctly, you will help prevent potentially negative<br />

consequences for the environment and human health,<br />

which could otherwise be caused by inappropriate<br />

waste handling of this product. The recycling of materials<br />

will help to conserve natural resources. For more<br />

detailed information about recycling this product,<br />

please contact the local distributor of the product.<br />

Speed Actual motor speed rpm<br />

Torque Actual motor torque Nm<br />

Sync<br />

speed<br />

Synchronous speed of the motor<br />

rpm<br />

1.6 Glossary<br />

1.6.1 Abbreviations and symbols<br />

In this <strong>manual</strong> the following abbreviations are used:<br />

Table 2<br />

Abbreviations<br />

Abbreviation/<br />

symbol<br />

DSP<br />

VSD<br />

CP<br />

EInt<br />

UInt<br />

Int<br />

Long<br />

<br />

Description<br />

Digital signals processor<br />

Variable speed drive<br />

Control panel, the programming and presentation<br />

unit on the VSD<br />

Communication format<br />

Communication format<br />

Communication format<br />

Communication format<br />

The function cannot be changed in run mode<br />

10 Introduction <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2. Mounting<br />

This chapter describes how to mount the VSD.<br />

Before mounting it is recommended that the installation<br />

is planned out first.<br />

• Be sure that the VSD suits the mounting location.<br />

• The mounting site must support the weight of the<br />

VSD.<br />

• Will the VSD continuously withstand vibrations<br />

and/or shocks?<br />

• Consider using a vibration damper.<br />

• Check ambient conditions, ratings, required cooling<br />

air flow, compatibility of the motor, etc.<br />

• Know how the VSD will be lifted and transported.<br />

Models 4090 to 4132 and 6090 to 6250<br />

Load: 56 to 74 kg<br />

2.1 Lifting instructions<br />

Note: To prevent personal risks and any damage to the<br />

unit during lifting, it is advised that the lifting methods<br />

described below are used.<br />

Fig. 3 Lifting model 4090-4132 and 6090-6250<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 11


Models 4160 to -4800 and 6315 to 61K0<br />

Lifting eye<br />

Fig. 4<br />

Remove the roof plate.<br />

Terminals for roof fan<br />

unit supply cables<br />

A<br />

Fig. 6 Lifting VSD model 4160-4800 and 6315-61K0<br />

DETAIL A<br />

2.2 Stand-alone units<br />

The VSD must be mounted in a vertical position<br />

against a flat surface. Use the template (delivered<br />

together with the VSD) to mark out the position of the<br />

fixing holes.<br />

Fig. 5<br />

Remove roof unit<br />

12 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2.2.2 Mounting schemes<br />

Membrane cable<br />

gland M60<br />

22,5<br />

240<br />

120<br />

Ø9(6x)<br />

284,5<br />

275<br />

Fig. 7 Mounting models 4090-4800 and 6090-61K0<br />

2.2.1 Cooling<br />

925<br />

952,50<br />

922,50<br />

Ø16(3)<br />

10<br />

30<br />

Fig. 7 shows the minimum free space required around<br />

the VSD for the models 4090-4800 and 6090-61K0 in<br />

order to guarantee adequate cooling. Because the<br />

fans blow the air from the bottom to the top it is advisable<br />

not to position an air inlet immediately above an<br />

air outlet.<br />

The following minimum separation between two variable<br />

speed drives, or a VSD and a non-dissipating wall<br />

must be maintained. Valid if free space on opposite<br />

side.<br />

Fig. 8<br />

314<br />

<strong>SX</strong>-V (400V): Model 4090 including cable interface<br />

for mains, motor and communication<br />

Table 4<br />

Mounting and cooling<br />

<strong>SX</strong>-V<br />

(mm)<br />

<strong>SX</strong>-V-wall, wall-one<br />

side<br />

(mm)<br />

4090-4132<br />

6090-6250<br />

4160-4800<br />

6315-61K0<br />

cabinet<br />

a 200 100<br />

b 200 0<br />

c 0 0<br />

d 0 0<br />

a 100 100<br />

b 100 0<br />

c 0 0<br />

d 0 0<br />

NOTE: When a 4160-4800 or 6315-61K0 model is placed<br />

between two walls, a minimum distance at each side of<br />

200 mm must be maintained.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 13


Table 5<br />

Flow rates cooling fans<br />

Cable dimensions 27-66 mm<br />

Frame <strong>SX</strong>-V Model Flow rate [m 3 /hour]<br />

K 4630 - 4800<br />

4800<br />

K69 6710 - 61K0<br />

10<br />

22.50<br />

Ø16(3x)<br />

300<br />

150<br />

Ø9(x6)<br />

30<br />

344,5<br />

335<br />

NOTE: For the models 4450-4500 and 6800-61K0 the<br />

mentioned amount of air flow should be divided equally<br />

over the two cabinets.<br />

2.3.2 Mounting schemes<br />

925<br />

952,50<br />

922,50<br />

2330<br />

314<br />

Fig. 9<br />

<strong>SX</strong>-V (400V): Model 4110 to 4132 (F)<br />

<strong>SX</strong>-V (690V): Model 6090 to 6160 (F69) including<br />

cable interface for mains, motor and communication<br />

2.3 Cabinet mounting<br />

2.3.1 Cooling<br />

If the variable speed drive is installed in a cabinet, the<br />

rate of airflow supplied by the cooling fans must be taken<br />

into consideration.<br />

Table 5<br />

Flow rates cooling fans<br />

600<br />

Fig. 10 <strong>SX</strong>-V (400V): Model 4160 to 4250 (G and H)<br />

<strong>SX</strong>-V (690V): Model 6200 to 6355 (H69)<br />

600<br />

Frame <strong>SX</strong>-V Model Flow rate [m 3 /hour]<br />

E 4090 510<br />

F 4110 - 4132<br />

800<br />

F69 6090 - 6160<br />

G 4160 - 4200 1020<br />

H 4220 - 4250<br />

1600<br />

H69 6200 - 6355<br />

I 4315 - 4400<br />

2400<br />

I69 6450 - 6500<br />

J 4450 - 4500<br />

3200<br />

J69 6600 - 6630<br />

14 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2330<br />

2330<br />

1000<br />

600<br />

1200<br />

600<br />

Fig. 11 <strong>SX</strong>-V (400V): Model 4315 to 4400 (I)<br />

<strong>SX</strong>-V (690V): Model 6450 to 6500 (I69)<br />

Fig. 12 <strong>SX</strong>-V (400V): Model 4450 to 4500 (J)<br />

<strong>SX</strong>-V (690V): Model 6600 to 6630 (J69)<br />

2330<br />

2000<br />

Fig. 13 <strong>SX</strong>-V (400V): Model 4630 to 4800 (K)<br />

<strong>SX</strong>-V (690V): Model 6710 to 61K0 (K69)<br />

600<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 15


16 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


3. Installation<br />

The description of installation in this chapter complies<br />

with the EMC standards and the Machine Directive.<br />

Select cable type and screening according to the EMC<br />

requirements valid for the environment where the VSD<br />

is installed.<br />

3.1 Before installation<br />

Read the following checklist and think through your<br />

application before installation.<br />

• External or internal control.<br />

• Long motor cables (>100m), refer to section Long<br />

motor cables.<br />

• Motors in parallel, refer to menu [213].<br />

• Functions.<br />

• Suitable VSD size in proportion to the motor/application.<br />

• Mount separately supplied option boards according<br />

to the instructions in the appropriate option<br />

<strong>manual</strong>.<br />

If the VSD is temporarily stored before being connected,<br />

please check the technical data for environmental<br />

conditions. If the VSD is moved from a cold<br />

storage room to the room where it is to be installed,<br />

condensation can form on it. Allow the VSD to<br />

become fully acclimatised and wait until any visible<br />

condensation has evaporated before connecting the<br />

mains voltage.<br />

3.2 Cable connections<br />

3.2.1 Mains cables<br />

Dimension the mains and motor cables according to<br />

local regulations. The cable must be able to carry the<br />

VSD load current.<br />

Recommendations for selecting mains<br />

cables<br />

• To fulfil EMC purposes it is not necessary to use<br />

screened mains cables.<br />

• Use heat-resistant cables, +60C or higher.<br />

• Dimension the cables and fuses in accordance<br />

with local regulations and the nominal current of<br />

the motor. See table 42, page 174.<br />

• The litz ground connection see fig. 15, is only necessary<br />

if the mounting plate is painted. All the variable<br />

speed drives have an unpainted back side and<br />

are therefore suitable for mounting on an unpainted<br />

mounting plate.<br />

Connect the mains cables according to the next figures.<br />

The VSD has as standard a built-in RFI mains filter<br />

that complies with category C3 which suits the<br />

Second Environment standard.<br />

Table 6<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

(DC-),DC+,R<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth (protected earth)<br />

Motor earth<br />

Motor output, 3-phase<br />

Brake resistor, DC-link<br />

connections (optional)<br />

NOTE: The Brake and DC-link Terminals are only fitted if<br />

the Brake Chopper Option is built-in.<br />

WARNING: The Brake Resistor must be<br />

connected between terminals DC+ and R.<br />

WARNING: In order to work safely, the mains<br />

earth must be connected to PE and the<br />

motor earth to .<br />

3.2.2 Motor cables<br />

To comply with the EMC emission standards the variable<br />

speed drive is provided with a RFI mains filter. The<br />

motor cables must also be screened and connected<br />

on both sides. In this way a so-called “Faraday cage”<br />

is created around the VSD, motor cables and motor.<br />

The RFI currents are now fed back to their source (the<br />

IGBTs) so the system stays within the emission levels.<br />

Recommendations for selecting motor<br />

cables<br />

• Use screened cables according to specification in<br />

table 7. Use symmetrical shielded cable; three<br />

phase conductors and a concentric or otherwise<br />

symmetrically constructed PE conductor, and a<br />

shield.<br />

• When the conductivity of the cable PE conductor is<br />


• The screening must be connected with a large<br />

contact surface of preferable 360 and always at<br />

both ends, to the motor housing and the VSD<br />

housing. When painted mounting plates are used,<br />

do not be afraid to scrape away the paint to obtain<br />

as large contact surface as possible at all mounting<br />

points for items such as saddles and the bare<br />

cable screening. Relying just on the connection<br />

made by the screw thread is not sufficient.<br />

NOTE: It is important that the motor housing has the<br />

same earth potential as the other parts of the machine.<br />

• The litz ground connection, see fig. 16, is only necessary<br />

if the mounting plate is painted. All the variable<br />

speed drives have an unpainted back side and<br />

are therefore suitable for mounting on an unpainted<br />

mounting plate.<br />

Connect the motor cables according to U - U, V - V<br />

and W - W.<br />

Pay special attention to the following points:<br />

• If paint must be removed, steps must be taken to<br />

prevent subsequent corrosion. Repaint after making<br />

connections!<br />

• The fastening of the whole variable speed drive<br />

housing must be electrically connected with the<br />

mounting plate over an area which is as large as<br />

possible. For this purpose the removal of paint is<br />

necessary. An alternative method is to connect the<br />

variable speed drive housing to the mounting plate<br />

with as short a length of litz wire as possible.<br />

• Try to avoid interruptions in the screening wherever<br />

possible.<br />

• If the variable speed drive is mounted in a standard<br />

cabinet, the internal wiring must comply with the<br />

EMC standard. Fig. 15 shows an example of a<br />

VSD built into a cabinet.<br />

VSD built into cabinet<br />

NOTE: The terminals DC-, DC+ and R are options.<br />

Switches between the motor and the<br />

VSD<br />

If the motor cables are to be interrupted by maintenance<br />

switches, output coils, etc., it is necessary that<br />

the screening is continued by using metal housing,<br />

metal mounting plates, etc. as shown in the Fig. 15.<br />

Fig. 16 shows an example when there is no metal<br />

mounting plate used (e.g. if IP54 variable speed drives<br />

are used). It is important to keep the “circuit” closed,<br />

by using metal housing and cable glands.<br />

Litz<br />

RFI-Filter<br />

(option)<br />

Mains<br />

VSD<br />

Motor<br />

Metal EMC cable glands<br />

Output coil (option)<br />

Screened cables<br />

Unpainted mounting plate<br />

Metal connector housing<br />

Screen connection<br />

of signal cables<br />

Mains<br />

(L1,L2,L3,PE)<br />

Metal coupling nut<br />

Motor<br />

Brake resistor<br />

(option)<br />

Fig. 15 Variable speed drive in a cabinet on a mounting plate<br />

Fig. 16 shows an example when there is no metal<br />

mounting plate used (e.g. if IP54 variable speed drives<br />

are used). It is important to keep the “circuit” closed,<br />

by using metal housing and cable glands.<br />

PE<br />

Motor cable<br />

shield connection<br />

Fig. 14 Screen connection of cables.<br />

18 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


RFI-Filter<br />

Mains<br />

VSD<br />

maintenance switches) only switch if the current is<br />

zero. If this is not done, the VSD can trip as a result of<br />

current peaks.<br />

3.3 Connect motor and mains<br />

cables<br />

Brake<br />

resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal EMC cable glands<br />

Screened cables<br />

Metal housing<br />

<strong>SX</strong>-D4090-EV (V) to <strong>SX</strong>-D4132-EV and <strong>SX</strong>-<br />

D6090-EV(690V) to <strong>SX</strong>-D4160-EV<br />

To simplify the connection of thick motor and mains<br />

cables to the VSD model <strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-<br />

EV and <strong>SX</strong>-D6090-EV to <strong>SX</strong>-D4160-EV the cable<br />

interface plate can be removed.<br />

Metal connector housing<br />

Metal cable gland<br />

Motor<br />

Mains<br />

Fig. 16 Variable speed drive as stand alone<br />

Connect motor cables<br />

1. Remove the cable interface plate from the VSD<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective<br />

motor terminal.<br />

5. Put the cable interface plate in place and secure<br />

with the fixing screws.<br />

6. Tighten the EMC gland with good electrical contact<br />

to the motor and brake chopper cable screens.<br />

Placing of motor cables<br />

Keep the motor cables as far away from other cables<br />

as possible, especially from control signals. The minimum<br />

distance between motor cables and control<br />

cables is 300 mm.<br />

Avoid placing the motor cables in parallel with other<br />

cables.<br />

The power cables should cross other cables at an<br />

angle of 90.<br />

Long motor cables<br />

If the connection to the motor is longer than 100 m (40<br />

m for models 003-018), it is possible that capacitive<br />

current peaks will cause tripping at overcurrent. Using<br />

output coils can prevent this. Contact the supplier for<br />

appropriate coils.<br />

Switching in motor cables<br />

Switching in the motor connections is not advisable. In<br />

the event that it cannot be avoided (e.g. emergency or<br />

Fig. 17 Connecting motor and mains cables<br />

Clamps for screening<br />

Cable interface<br />

1. Remove the cable interface plate from the VSD<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective<br />

mains/motor terminal.<br />

5. Fix the clamps on appropriate place and tighten<br />

the cable in the clamp with good electrical contact<br />

to the cable screen.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Installation 19


6. Put the cable interface plate in place and secure<br />

with the fixing screws.<br />

<strong>SX</strong>-D4160-EV (V) to <strong>SX</strong>-D4800-EV and <strong>SX</strong>-<br />

D6200-EV(690V) to <strong>SX</strong>-D61K0-EV<br />

3.4 Cable specifications<br />

Table 7 Cable specifications<br />

Cable<br />

Cable specification<br />

Mains<br />

Motor<br />

Control<br />

Power cable suitable for fixed installation for the<br />

voltage used.<br />

Symmetrical three conductor cable with concentric<br />

protection (PE) wire or a four conductor cable<br />

with compact low-impedance concentric shield<br />

for the voltage used.<br />

Control cable with low-impedance shield,<br />

screened.<br />

3.5 Stripping lengths<br />

Fig. 19 indicates the recommended stripping lengths<br />

for motor and mains cables.<br />

Table 8<br />

Stripping lengths for mains and motor cables<br />

Model<br />

Mains cable<br />

a<br />

(mm)<br />

b<br />

(mm)<br />

a<br />

(mm)<br />

Motor cable<br />

b<br />

(mm)<br />

c<br />

(mm)<br />

<strong>SX</strong>-D4090-EV 160 16 160 16 41<br />

<strong>SX</strong>-D4110-EV to<br />

<strong>SX</strong>-D4132-EV<br />

<strong>SX</strong>-D6090-EV to<br />

<strong>SX</strong>-D6160-EV<br />

170 24 170 24 46<br />

L1 L2 L3 PE PE U V W<br />

Mains<br />

Motor<br />

Fig. 19 Stripping lengths for cables<br />

(06-F45-cables only)<br />

Fig. 18 Connecting motor and mains cables<br />

VSD models <strong>SX</strong>-D4160-EV to <strong>SX</strong>-D4800-EV and <strong>SX</strong>-<br />

D6200-EV to <strong>SX</strong>-D61K0-EV are supplied with Klockner<br />

Moeller K3x240/4 power clamps.<br />

For all type of wires to be connected the stripping<br />

length should be 32 mm.<br />

3.5.1 Dimension of cables and<br />

fuses<br />

Please refer to the chapter Technical data, section<br />

14.6, page 174.<br />

20 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


3.5.2 Tightening torque for mains<br />

and motor cables<br />

Table 9<br />

Model <strong>SX</strong>-D4090-EV<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 95 150<br />

Cable diameter, mm 2 16-95 35-95 120-150<br />

Tightening torque, Nm 14 14 24<br />

Menu [224]<br />

Motor Current:<br />

Menu [225]<br />

Motor Speed:<br />

Menu [227]<br />

Motor Cos PHI:<br />

Add the current for the motors in parallel.<br />

Set the average speed for the motors in<br />

parallel.<br />

Set the average Cos PHI value for the<br />

motors in parallel.<br />

Table 10<br />

Model <strong>SX</strong>-D4110-EV to <strong>SX</strong>-D4132-EV and <strong>SX</strong>-<br />

D6090-EV to <strong>SX</strong>-D6160-EV<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 150 240<br />

Cable diameter, mm 2 35-95 120-150 35-70 95-240<br />

Tightening torque, Nm 14 24 14 24<br />

3.6 Thermal protection on the<br />

motor<br />

Standard motors are normally fitted with an internal<br />

fan. The cooling capacity of this built-in fan is dependent<br />

on the frequency of the motor. At low frequency,<br />

the cooling capacity will be insufficient for nominal<br />

loads. Please contact the motor supplier for the cooling<br />

characteristics of the motor at lower frequency.<br />

WARNING: Depending on the cooling<br />

characteristics of the motor, the application,<br />

the speed and the load, it may be necessary<br />

to use forced cooling on the motor.<br />

Motor thermistors offer better thermal protection for<br />

the motor. Depending on the type of motor thermistor<br />

fitted, the optional PTC input may be used. The motor<br />

thermistor gives a thermal protection independent of<br />

the speed of the motor, thus of the speed of the motor<br />

fan. See the functions, Motor I 2 t type [231] and Motor<br />

I 2 t current [232].<br />

3.7 Motors in parallel<br />

It is possible to have motors in parallel as long as the<br />

total current does not exceed the nominal value of the<br />

VSD. The following has to be taken into account when<br />

setting the motor data:<br />

Menu [221]<br />

Motor Voltage:<br />

Menu [222]<br />

Motor Frequency:<br />

Menu [223]<br />

Motor Power:<br />

The motors in parallel must have the<br />

same motor voltage.<br />

The motors in parallel must have the<br />

same motor frequency.<br />

Add the motor power values for the<br />

motors in parallel.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Installation 21


22 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


4. Getting Started<br />

This chapter is a step by step guide that will show you<br />

the quickest way to get the motor shaft turning. We<br />

will show you two examples, remote control and local<br />

control.<br />

We assume that the VSD is mounted on a wall or in a<br />

cabinet as in the chapter 2. page 11.<br />

First there is general information of how to connect<br />

mains, motor and control cables. The next section<br />

describes how to use the function keys on the control<br />

panel. The subsequent examples covering remote<br />

control and local control describe how to program/set<br />

the motor data and run the VSD and motor.<br />

4.1 Connect the mains and<br />

motor cables<br />

Dimension the mains and motor cables according to<br />

local regulations. The cable must be able to carry the<br />

VSD load current.<br />

RFI-Filter<br />

Mains<br />

Mains<br />

VSD<br />

Brake<br />

resistor<br />

(option)<br />

Metal cable gland<br />

Output<br />

coils<br />

(option)<br />

Metal EMC cable glands<br />

Screened cables<br />

Metal housing<br />

Metal connector housing<br />

Motor<br />

4.1.1 Mains cables<br />

7. Connect the mains cables as in Fig. 20. The VSD<br />

has, as standard, a built-in RFI mains filter that<br />

complies with category C3 which suits the Second<br />

Environment standard.<br />

Fig. 20 Connection of mains and motor cables<br />

4.1.2 Motor cables<br />

8. Connect the motor cables as in Fig. 20. To comply<br />

with the EMC Directive you have to use screened<br />

cables and the motor cable screen has to be connected<br />

on both sides: to the housing of the motor<br />

and the housing of the VSD.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Getting Started 23


Table 11<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth<br />

Motor earth<br />

Motor output, 3-phase<br />

WARNING: In order to work safely the mains<br />

earth must be connected to PE and the motor<br />

earth to .<br />

4.2 Using the function keys<br />

100 200 300<br />

210<br />

220<br />

To comply with the EMC standard, use screened control<br />

cables with plaited flexible wire up to 1.5 mm 2 or<br />

solid wire up to 2.5 mm 2 .<br />

9. Connect a reference value between terminals 7<br />

(Common) and 2 (AnIn 1) as in Fig. 22.<br />

10.Connect an external start button between terminal<br />

11 (+24 VDC) and 9 (DigIn2, RUNR) as in Fig. 22.<br />

Reference<br />

4-20 mA<br />

Start<br />

+<br />

0V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

221<br />

Fig. 21 Example of menu navigation when entering motor<br />

voltage<br />

step to lower menu level or confirm changed setting<br />

X3<br />

X2<br />

31<br />

32<br />

33<br />

51<br />

52<br />

41<br />

42<br />

43<br />

step to higher menu level or ignore changed setting<br />

step to next menu on the same level<br />

step to previous menu on the same level<br />

increase value or change selection<br />

decrease value or change selection<br />

4.3 Remote control<br />

In this example external signals are used to control the<br />

VSD/motor.<br />

A standard 4-pole motor for 400 V, an external start<br />

button and a reference value will also be used.<br />

4.3.1 Connect control cables<br />

Here you will make up the minimum wiring for starting.<br />

In this example the motor/VSD will run with right rotation.<br />

Fig. 22 Wiring<br />

4.3.2 Switch on the mains<br />

Close the door to the VSD. Once the mains is<br />

switched on, the internal fan in the VSD will run for 5<br />

seconds.<br />

4.3.3 Set the Motor Data<br />

Enter correct motor data for the connected motor. The<br />

motor data is used in the calculation of complete<br />

operational data in the VSD.<br />

Change settings using the keys on the control panel.<br />

For further information about the control panel and<br />

menu structure, see the chapter 9. page 47.<br />

Menu [100], Preferred View is displayed when started.<br />

1. Press to display menu [200], Main Setup.<br />

2. Press and then to display menu [220],<br />

Motor Data.<br />

3. Press to display menu [221] and set motor voltage.<br />

4. Change the value using the and keys. Confirm<br />

with .<br />

5. Set motor frequency [222].<br />

24 Getting Started <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


6. Set motor power [223].<br />

7. Set motor current [224].<br />

8. Set motor speed [225].<br />

9. Set power factor (cos ) [227].<br />

10.Select supply voltage level used [21B]<br />

11.[229] Motor ID run: Choose Short, confirm with<br />

and give start command .<br />

The VSD will now measure some motor parameters.<br />

The motor makes some beeping sounds but the shaft<br />

does not rotate. When the ID run is finished after<br />

about one minute ("Test Run OK!" is displayed),<br />

press to continue.<br />

12.Use AnIn1 as input for the reference value. The<br />

default range is 4-20 mA. If you need a 0-10 V reference<br />

value, change switch (S1) on control board<br />

and set [512] Anln 1 Set-up to 0-10V.<br />

13.Switch off power supply.<br />

14.Connect digital and analogue inputs/outputs as in<br />

Fig. 22.<br />

15.Ready!<br />

16.Switch on power supply.<br />

4.3.4 Run the VSD<br />

Now the installation is finished, and you can press the<br />

external start button to start the motor.<br />

When the motor is running the main connections are<br />

OK.<br />

4.4 Local control<br />

Manual control via the control panel can be used to<br />

carry out a test run.<br />

Use a 400 V motor and the control panel.<br />

7. Select Keyboard using the key and press to<br />

confirm.<br />

8. Press to get to previous menu level and then<br />

to display menu [220], Motor Data.<br />

4.4.3 Set the Motor Data<br />

Enter correct motor data for the connected motor.<br />

9. Press to display menu [221].<br />

10.Change the value using the and keys. Confirm<br />

with .<br />

11.Press to display menu [222].<br />

12.Repeat step 9 and 10 until all motor data is<br />

entered.<br />

13.Press twice and then to display menu [100],<br />

Preferred View.<br />

4.4.4 Enter a Reference Value<br />

Enter a reference value.<br />

14.Press until menu [300], Process is displayed.<br />

15.Press to display menu [310], Set/View reference<br />

value.<br />

16.Use the and keys to enter, for example,<br />

300 rpm. We select a low value to check the rotation<br />

direction without damaging the application.<br />

4.4.5 Run the VSD<br />

Press the key on the control panel to run the motor<br />

forward.<br />

If the motor is running the main connections are OK.<br />

4.4.1 Switch on the mains<br />

Close the door to the VSD. Once the mains is<br />

switched on, the VSD is started and the internal fan<br />

will run for 5 seconds.<br />

4.4.2 Select <strong>manual</strong> control<br />

Menu [100], Preferred View is displayed when started.<br />

1. Press to display menu [200], Main Setup.<br />

2. Press to display menu [210], Operation.<br />

3. Press to display menu [211], Language.<br />

4. Press to display menu [214], Reference Control.<br />

5. Select Keyboard using the key and press to<br />

confirm.<br />

6. Press to get to menu [215], Run/Stop Control.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Getting Started 25


26 Getting Started <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


5. Control Connections<br />

5.1 Control board<br />

Fig. 23 shows the layout of the control board which is<br />

where the parts most important to the user are<br />

located. Although the control board is galvanically isolated<br />

from the mains, for safety reasons do not make<br />

changes while the mains supply is on!<br />

WARNING: Always switch off the mains<br />

voltage and wait at least 5 minutes to allow<br />

the DC capacitors to discharge before<br />

connecting the control signals or changing<br />

position of any switches. If the option External supply is<br />

used, switch of the mains to the option. This is done to<br />

prevent damage on the control board.<br />

X5<br />

X6<br />

X7<br />

X4<br />

1<br />

Option<br />

2<br />

3<br />

C<br />

Communication<br />

X8<br />

Control<br />

Panel<br />

Switches<br />

S1 S2 S3 S4<br />

I U I U I U I U<br />

12 13 14 15 16 17 18 19 20 21 22<br />

X1<br />

1<br />

Control<br />

signals<br />

AO1 AO2 DI4 DI5 DI6 DI7 DO1 DO2 DI8<br />

2 3 4 5 6 7 8 9 10<br />

11<br />

R02<br />

41 42 43<br />

Relay outputs<br />

NC C NO<br />

X2 31 32 33 51 52<br />

+10V AI1<br />

AI2<br />

AI3<br />

AI4<br />

-10V<br />

DI1<br />

DI2<br />

DI3 +24V<br />

NC<br />

C<br />

R01<br />

NO<br />

X3<br />

NO<br />

C<br />

R03<br />

Fig. 23 Control board layout<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 27


5.2 Terminal connections<br />

The terminal strip for connecting the control signals is<br />

accessible after opening the front panel.<br />

The table describes the default functions for the signals.<br />

The inputs and outputs are programmable for<br />

other functions as described in chapter 11. page 59.<br />

For signal specifications refer to chapter 14. page 169.<br />

NOTE: The maximum total combined current for outputs<br />

11, 20 and 21 is 100mA.<br />

Table 12<br />

Control signals<br />

Terminal Name Function (Default)<br />

Outputs<br />

1 +10 V +10 VDC supply voltage<br />

6 -10 V -10 VDC supply voltage<br />

7 Common Signal ground<br />

11 +24 V +24 VDC supply voltage<br />

12 Common Signal ground<br />

15 Common Signal ground<br />

Digital inputs<br />

8 DigIn 1 RunL (reverse)<br />

9 DigIn 2 RunR (forward)<br />

10 DigIn 3 Off<br />

16 DigIn 4 Off<br />

17 DigIn 5 Off<br />

18 DigIn 6 Off<br />

19 DigIn 7 Off<br />

22 DigIn 8 RESET<br />

Digital outputs<br />

20 DigOut 1 Ready<br />

21 DigOut 2 Brake<br />

Analogue inputs<br />

2 AnIn 1 Process Ref<br />

3 AnIn 2 Off<br />

4 AnIn 3 Off<br />

5 AnIn 4 Off<br />

Analogue outputs<br />

13 AnOut1 Min speed to max speed<br />

14 AnOut2 0 to max torque<br />

Relay outputs<br />

31 N/C 1<br />

Relay 1 output<br />

32 COM 1 Trip, active when the VSD is in a<br />

33 N/O 1<br />

TRIP condition.<br />

Table 12<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 output<br />

Run, active when the VSD is<br />

started.<br />

51 COM 3 Relay 3 output<br />

52 N/O 3 Off<br />

NOTE: N/C is opened when the relay is active and N/O is<br />

closed when the relay is active.<br />

5.3 Inputs configuration<br />

with the switches<br />

The switches S1 to S4 are used to set the input configuration<br />

for the 4 analogue inputs AnIn1, AnIn2,<br />

AnIn3 and AnIn4 as described in table 13. See Fig. 23<br />

for the location of the switches.<br />

Table 13<br />

Switch settings<br />

Input Signal type Switch<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

Control signals<br />

Terminal Name Function (Default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

S1<br />

S1<br />

S2<br />

S2<br />

S3<br />

S3<br />

S4<br />

S4<br />

NOTE: Scaling and offset of AnIn1 - AnIn4 can be<br />

configured using the software. See menus [512], [515],<br />

[518] and [51B] in section 11.5, page 119.<br />

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can<br />

be configured using the software. See menu [530]<br />

section 11.5.3, page 128<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

28 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


5.4 Connection example<br />

Fig. 24 gives an overall view of a VSD connection<br />

example.<br />

L1<br />

L2<br />

L3<br />

PE<br />

RFIfilter<br />

U<br />

V<br />

W<br />

Motor<br />

Alternative for<br />

potentiometer control**<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

0 - 10 V<br />

4 - 20 mA<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

15<br />

16<br />

17<br />

18<br />

19<br />

22<br />

Optional<br />

+10 VDC<br />

AnIn 1: Reference<br />

AnIn 2<br />

AnIn 3<br />

Common<br />

AnIn 4<br />

AnOut 1<br />

-10 VDC AnOut 2<br />

Common DigOut 1<br />

DigIn 1:RunL* DigOut 2<br />

DigIn 2:RunR*<br />

DigIn3<br />

+24 VDC<br />

Relay 1<br />

Common<br />

DigIn 4<br />

DigIn 5<br />

DigIn 6<br />

Relay 2<br />

DigIn 7<br />

DigIn 8:Reset*<br />

DC+<br />

R<br />

DC -<br />

12<br />

13<br />

21 14<br />

20<br />

21<br />

31<br />

32<br />

33<br />

41<br />

42<br />

43<br />

Relay 3<br />

51<br />

52<br />

Other options<br />

Fieldbus option<br />

or PC<br />

Option board<br />

* Default setting<br />

** The switch S1 is set to U<br />

Fig. 24 Connection example<br />

NG_06-F27<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 29


5.5 Connecting the Control<br />

Signals<br />

5.5.1 Cables<br />

The standard control signal connections are suitable<br />

for stranded flexible wire up to 1.5 mm 2 and for solid<br />

wire up to 2.5 mm 2 .<br />

.<br />

5.5.2 Types of control signals<br />

Always make a distinction between the different types<br />

of signals. Because the different types of signals can<br />

adversely affect each other, use a separate cable for<br />

each type. This is often more practical because, for<br />

example, the cable from a pressure sensor may be<br />

connected directly to the variable speed drive.<br />

We can distinguish between the following types of<br />

control signals:<br />

Analogue inputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) normally<br />

used as control signals for speed, torque and<br />

PID feedback signals.<br />

Analogue outputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) which<br />

change slowly or only occasionally in value. In general,<br />

these are control or measurement signals.<br />

Digital<br />

Voltage or current signals (0-10 V, 0-24 V, 0/4-20 mA)<br />

which can have only two values (high or low) and only<br />

occasionally change in value.<br />

Data<br />

Usually voltage signals (0-5 V, 0-10 V) which change<br />

rapidly and at a high frequency, generally data signals<br />

such as RS232, RS485, Profibus, etc.<br />

Relay<br />

Relay contacts (0-250 VAC) can switch highly inductive<br />

loads (auxiliary relay, lamp, valve, brake, etc.).<br />

Signal<br />

type<br />

Maximum wire size Tightening<br />

torque<br />

Cable type<br />

Control signals<br />

0.5 Nm<br />

Analogue Rigid cable:<br />

Digital<br />

0.14-2.5 mm 2<br />

Flexible cable:<br />

Data 0.14-1.5 mm 2<br />

Relay 0.25-1.5 mm 2<br />

Cable with ferrule:<br />

Screened<br />

Screened<br />

Screened<br />

Not screened<br />

Fig. 25 Connecting the control signals <strong>SX</strong>-D4090<br />

NOTE: The screening of control signal cables is<br />

necessary to comply with the immunity levels given in<br />

the EMC Directive (it reduces the noise level).<br />

NOTE: Control cables must be separated from motor and<br />

mains cables.<br />

Example:<br />

The relay output from a variable speed drive which<br />

controls an auxiliary relay can, at the moment of<br />

switching, form a source of interference (emission) for<br />

a measurement signal from, for example, a pressure<br />

sensor. Therefore it is advised to separate wiring and<br />

screening to reduce disturbances.<br />

5.5.3 Screening<br />

For all signal cables the best results are obtained if the<br />

screening is connected to both ends: the VSD side<br />

and the at the source (e.g. PLC, or computer). See<br />

Fig. 26.<br />

It is strongly recommended that the signal cables be<br />

allowed to cross mains and motor cables at a 90<br />

30 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


angle. Do not let the signal cable go in parallel with the<br />

mains and motor cable.<br />

5.5.4 Single-ended or double-ended<br />

connection?<br />

In principle, the same measures applied to motor<br />

cables must be applied to all control signal cables, in<br />

accordance with the EMC-Directives.<br />

For all signal cables as mentioned in section 5.5.2 the<br />

best results are obtained if the screening is connected<br />

to both ends. See Fig. 26.<br />

NOTE: Each installation must be examined carefully<br />

before applying the proper EMC measurements.<br />

Control board<br />

Pressure<br />

sensor<br />

(example)<br />

External control<br />

(e.g. in metal housing)<br />

Control consol<br />

Fig. 26 Electro Magnetic (EM) screening of control signal<br />

cables.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 31


5.5.5 Current signals ((0)4-20 mA)<br />

A current signal like (0)4-20 mA is less sensitive to disturbances<br />

than a 0-10 V signal, because it is connected<br />

to an input which has a lower impedance (250<br />

) than a voltage signal (20 k). It is therefore strongly<br />

advised to use current control signals if the cables are<br />

longer than a few metres.<br />

5.5.6 Twisted cables<br />

Analogue and digital signals are less sensitive to interference<br />

if the cables carrying them are “twisted”. This<br />

is certainly to be recommended if screening cannot be<br />

used. By twisting the wires the exposed areas are<br />

minimised. This means that in the current circuit for<br />

any possible High Frequency (HF) interference fields,<br />

no voltage can be induced. For a PLC it is therefore<br />

important that the return wire remains in proximity to<br />

the signal wire. It is important that the pair of wires is<br />

fully twisted over 360°.<br />

5.6 Connecting options<br />

The option cards are connected by the optional connectors<br />

X4 or X5 on the control board see Fig. 23,<br />

page 27 and mounted above the control board. The<br />

inputs and outputs of the option cards are connected<br />

in the same way as other control signals.<br />

32 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


6. Applications<br />

This chapter contains tables giving an overview of<br />

many different applications/duties in which it is suitable<br />

to use variable speed drives from OMRON. Further<br />

on you will find application examples of the most common<br />

applications and solutions.<br />

s<br />

6.1 Application overview<br />

6.1.1 Pumps<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Dry-running, cavitation and overheating damage<br />

the pump and cause downtime.<br />

Sludge sticks to impeller when pump has been running<br />

at low speed or been stationary for a while.<br />

Reduces the pump’s efficiency.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked pipe, a<br />

valve not fully opened or a worn impeller.<br />

Water hammer damages the pump when stopped.<br />

Mechanical stress on pipes, valves, gaskets, seals.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Pump Curve Protection detects deviation. Sends<br />

warning or activates safety stop.<br />

Automatic pump rinsing function: pump is set to<br />

run at full speed at certain intervals, then return<br />

to normal speed.<br />

PID continuously adapts pressure/flow to the<br />

level required. Sleep function activated when<br />

none is needed.<br />

Pump Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

Smooth linear stops protect the equipment. Eliminates<br />

need for costly motorized valves.<br />

331–336, 351<br />

411–419, 41C1– 41C9<br />

362–368, 560, 640<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

331–336<br />

6.1.2 Fans<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Starting a fan rotating in the wrong direction can be<br />

critical, e.g. a tunnel fan in event of a fire.<br />

Draft causes turned off fan to rotate the wrong way.<br />

Starting causes high current peaks and mechanical<br />

stress.<br />

Regulating pressure/flow with dampers causes<br />

high energy consumption and equipment wear.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked filter, a<br />

damper not fully opened or a worn belt.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Fan is started at low speed to ensure correct<br />

direction and proper function.<br />

Motor is gradually slowed to complete stop before<br />

starting. Avoids blown fuses and breakdown.<br />

Automatic regulation of pressure/flow with motor<br />

speed gives more exact control.<br />

PID continuously adapts to the level required.<br />

Sleep function is activated when none is needed.<br />

Load Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

331–336, 351<br />

219, 341<br />

219, 33A, 335<br />

321, 354<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Applications 33


6.1.3 Compressors<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Compressor is damaged when cooling media<br />

enters the compressor screw.<br />

Pressure is higher than needed, causing leaks,<br />

stress on the equipment and excessive air use.<br />

Motor runs at same speed when no air is compressed.<br />

Energy is lost and equipment stressed.<br />

Process inefficiency and energy wasted due to e.g.<br />

the compressor idling.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Overload situation is quickly detected and safety<br />

stop can be activated to avoid breakdown.<br />

Load Curve Protection function detects deviation.<br />

Warning is sent or safety stop activated.<br />

PID continuously adapts to the level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

331– 336, 351<br />

411–41A<br />

411–419, 41C1–41C9<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

6.1.4 Blowers<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Difficult to compensate for pressure fluctuations.<br />

Wasted energy and risk of production stop.<br />

Motor runs at same speed despite varying<br />

demands. Energy is lost and equipment stressed.<br />

Process inefficiency due to e.g. a broken damper, a<br />

valve not fully opened or a worn belt.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

PID function continuously adapts pressure to the<br />

level required.<br />

PID continuously adapts air flow to level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

331–336, 351<br />

320, 380<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

34 Applications <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7. Main Features<br />

This chapter contains descriptions of the main features<br />

of the VSD.<br />

7.1 Parameter sets<br />

Parameter sets are used if an application requires different<br />

settings for different modes. For example, a<br />

machine can be used for producing different products<br />

and thus requires two or more maximum speeds and<br />

acceleration/deceleration times. With the four parameter<br />

sets different control options can be configured<br />

with respect to quickly changing the behaviour of the<br />

VSD. It is possible to adapt the VSD online to altered<br />

machine behaviour. This is based on the fact that at<br />

any desired moment any one of the four parameter<br />

sets can be activated during Run or Stop, via the digital<br />

inputs or the control panel and menu [241].<br />

Each parameter set can be selected externally via a<br />

digital input. Parameter sets can be changed during<br />

operation and stored in the control panel.<br />

NOTE: The only data not included in the parameter set is<br />

Motor data 1-4, (entered separately), language,<br />

communication settings, selected set, local remote, and<br />

keyboard locked.<br />

Define parameter sets<br />

When using parameter sets you first decide how to<br />

select different parameter sets. The parameter sets<br />

can be selected via the control panel, via digital inputs<br />

or via serial communication. All digital inputs and virtual<br />

inputs can be configured to select parameter set.<br />

The function of the digital inputs is defined in the menu<br />

[520].<br />

Fig. 27 shows the way the parameter sets are activated<br />

via any digital input configured to Set Ctrl 1 or<br />

Set Ctrl 2.<br />

11 +24 V<br />

10 Set Ctrl1<br />

16 Set Ctrl2<br />

Fig. 27 Selecting the parameter sets<br />

{<br />

Parameter Set A<br />

Run/Stop<br />

-<br />

-<br />

Torques<br />

-<br />

-<br />

Controllers<br />

-<br />

-<br />

Limits/Prot.<br />

-<br />

-Max Alarm<br />

Set B<br />

Set C<br />

Set D<br />

(NG06-F03_1)<br />

Select and copy parameter set<br />

The parameter set selection is done in menu [241],<br />

Select Set. First select the main set in menu [241],<br />

normally A. Adjust all settings for the application. Usually<br />

most parameters are common and therefore it<br />

saves a lot of work by copying set A>B in menu [242].<br />

When parameter set A is copied to set B you only<br />

change the parameters in the set that need to be<br />

changed. Repeat for C and D if used.<br />

With menu [242], Copy Set, it is easy to copy the<br />

complete contents of a single parameter set to<br />

another parameter set. If, for example, the parameter<br />

sets are selected via digital inputs, DigIn 3 is set to Set<br />

Ctrl 1 in menu [523] and DigIn 4 is set to Set Ctrl 2 in<br />

menu [524], they are activated as in Table 14.<br />

Activate the parameter changes via digital input by<br />

setting menu [241], Select Set to DigIn.<br />

Table 14<br />

Parameter set<br />

Parameter set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: The selection via the digital inputs is immediately<br />

activated. The new parameter settings will be activated<br />

on-line, also during Run.<br />

NOTE: The default parameter set is parameter set A.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 35


Examples<br />

Different parameter sets can be used to easily change<br />

the setup of a VSD to adapt quickly to different application<br />

requirements. For example when<br />

• a process needs optimized settings in different<br />

stages of the process, to<br />

- increase the process quality<br />

- increase control accuracy<br />

- lower maintenance costs<br />

- increase operator safety<br />

With these settings a large number of options are<br />

available. Some ideas are given here:<br />

Multi frequency selection<br />

Within a single parameter set the 7 preset references<br />

can be selected via the digital inputs. In combination<br />

with the parameter sets, 28 preset references can be<br />

selected using all 4 digital inputs: DigIn1, 2 and 3 for<br />

selecting preset reference within one parameter set<br />

and DigIn 4 and DigIn 5 for selecting the parameter<br />

sets.<br />

Bottling machine with 3 different products<br />

Use 3 parameter sets for 3 different Jog reference<br />

speeds when the machine needs to be set up. The 4th<br />

parameter set can be used for “normal” remote control<br />

when the machine is running at full production.<br />

Manual - automatic control<br />

If in an application something is filled up <strong>manual</strong>ly and<br />

then the level is automatically controlled using PID regulation,<br />

this is solved using one parameter set for the<br />

<strong>manual</strong> control and one for the automatic control.<br />

7.1.1 One motor and one parameter<br />

set<br />

This is the most common application for pumps and<br />

fans.<br />

Once default motor M1 and parameter set A have<br />

been selected:<br />

1. Enter the settings for motor data.<br />

2. Enter the settings for other parameters e.g. inputs<br />

and outputs<br />

7.1.2 One motor and two parameter<br />

sets<br />

This application is useful if you for example have a<br />

machine running at two different speeds for different<br />

products.<br />

Once default motor M1 is selected:<br />

1. Select parameter set A in menu [241].<br />

2. Enter motor data in menu [220].<br />

3. Enter the settings for other parameters e.g. inputs<br />

and outputs.<br />

4. If there are only minor differences between the settings<br />

in the parameter sets, you can copy parameter<br />

set A to parameter set B, menu [242].<br />

5. Enter the settings for parameters e.g. inputs and<br />

outputs.<br />

Note: Do not change motor data in parameter set B.<br />

7.1.3 Two motors and two<br />

parameter sets<br />

This is useful if you have a machine with two motors<br />

that can not run at the same time, such as a cable<br />

winding machine that lifts up the reel with one motor<br />

and then turns the wheel with the other motor.<br />

36 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


One motor must stop before changing to an other<br />

motor.<br />

1. Select parameter set A in menu [241].<br />

2. Select motor M1 in menu [212].<br />

3. Enter motor data and settings for other parameters<br />

e.g. inputs and outputs.<br />

4. Select parameter set B in menu [241].<br />

5. Select M2 in menu [212].<br />

6. Enter motor data and settings for other parameters<br />

e.g. inputs and outputs.<br />

7.1.4 Autoreset at trip<br />

For several non-critical application-related failure conditions,<br />

it is possible to automatically generate a reset<br />

command to overcome the fault condition. The selection<br />

can be made in menu [250]. In this menu the maximum<br />

number of automatically generated restarts<br />

allowed can be set, see menu [251], after this the VSD<br />

will stay in fault condition because external assistance<br />

is required.<br />

Example<br />

The motor is protected by an internal protection for<br />

thermal overload. When this protection is activated,<br />

the VSD should wait until the motor is cooled down<br />

enough before resuming normal operation. When this<br />

problem occurs three times in a short period of time,<br />

external assistance is required.<br />

The following settings should be applied:<br />

• Insert maximum number of restarts; set menu [251]<br />

to 3.<br />

• Activate Motor I 2 t to be automatically reset; set<br />

menu [25A] to 300 s.<br />

• Set relay 1, menu [551] to AutoRst Trip; a signal will<br />

be available when the maximum number of restarts<br />

is reached and the VSD stays in fault condition.<br />

• The reset input must be constantly activated.<br />

7.1.5 Reference priority<br />

The active speed reference signal can be programmed<br />

from several sources and functions. The table below<br />

shows the priority of the different functions with<br />

regards to the speed reference.<br />

Table 15<br />

Reference priority<br />

7.1.6 Preset references<br />

The VSD is able to select fixed speeds via the control<br />

of digital inputs. This can be used for situations where<br />

the required motor speed needs to be adapted to<br />

fixed values, according to certain process conditions.<br />

Up to 7 preset references can be set for each parameter<br />

set, which can be selected via all digital inputs that<br />

are set to Preset Ctrl1, Preset Ctrl2 or Preset Ctrl3.<br />

The amount digital inputs used that are set to Preset<br />

Ctrl determines the number of Preset References<br />

available; using 1 input gives 2 speeds, using 2 inputs<br />

gives 4 speeds and using 3 inputs gives 8 speeds.<br />

Example<br />

The use of four fixed speeds, at 50 / 100 / 300 / 800<br />

rpm, requires the following settings:<br />

• Set DigIn 5 as first selection input; set [525] to Preset<br />

Ctrl1.<br />

• Set DigIn 6 as second selection input; set [526] to<br />

Preset Ctrl2.<br />

• Set menu [341], Min Speed to 50 rpm.<br />

• Set menu [362], Preset Ref 1 to 100 rpm.<br />

• Set menu [363], Preset Ref 2 to 300 rpm.<br />

• Set menu [364], Preset Ref 3 to 800 rpm.<br />

With these settings, the VSD switched on and a RUN<br />

command given, the speed will be:<br />

• 50 rpm, when both DigIn 5 and DigIn 6 are low.<br />

• 100 rpm, when DigIn 5 is high and DigIn 6 is low.<br />

• 300 rpm, when DigIn 5 is low and DigIn 6 is high.<br />

• 800 rpm, when both DigIn 5 and DigIn 6 are high.<br />

7.2 Remote control functions<br />

Operation of the Run/Stop/Enable/Reset functions<br />

As default, all the run/stop/reset related commands<br />

are programmed for remote operation via the inputs<br />

on the terminal strip (terminals 1-22) on the control<br />

board. With the function Run/Stp Ctrl [215] and Reset<br />

Control [216], this can be selected for keyboard or<br />

serial communication control.<br />

NOTE: The examples in this paragraph do not cover all<br />

possibilities. Only the most relevant combinations are<br />

given. The starting point is always the default setting<br />

(factory) of the VSD.<br />

Jog<br />

Mode<br />

Preset<br />

Reference<br />

Motor Pot<br />

Ref. Signal<br />

On/Off On/Off On/Off Option cards<br />

On On/Off On/Off Jog Ref<br />

Off On On/Off Preset Ref<br />

Off Off On Motor pot commands<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 37


Default settings of the Run/Stop/<br />

Enable/Reset functions<br />

The default settings are shown in Fig. 28. In this example<br />

the VSD is started and stopped with DigIn 2 and a<br />

reset after trip can be given with DigIn 8.<br />

STOP<br />

(STOP=DECEL)<br />

OUTPUT<br />

SPEED<br />

t<br />

RunR<br />

Reset<br />

+24 V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

ENABLE<br />

OUTPUT<br />

SPEED<br />

t<br />

(06-F104_NG)<br />

(or if Spinstart is selected)<br />

Fig. 28 Default setting Run/Reset commands<br />

The inputs are default set for level-control. The rotation<br />

is determined by the setting of the digital inputs.<br />

Enable and Stop functions<br />

Both functions can be used separately or simultaneously.<br />

The choice of which function is to be used<br />

depends on the application and the control mode of<br />

the inputs (Level/Edge [21A]).<br />

NOTE: In Edge mode, at least one digital input must be<br />

programmed to “stop”, because the Run commands are<br />

otherwise only able to start the VSD.<br />

Enable<br />

Input must be active (HI) to allow any Run signal. If the<br />

input is made LOW, the output of the VSD is immediately<br />

disabled and the motor will coast.<br />

!<br />

CAUTION: If the Enable function is not<br />

programmed to a digital input, it is considered<br />

to be active internally.<br />

Stop<br />

If the input is low then the VSD will stop according to<br />

the selected stop mode set in menu [33B] Stop Mode.<br />

Fig. 29 shows the function of the Enable and the Stop<br />

input and the Stop Mode=Decel [33B].<br />

To run the input must be high.<br />

NOTE: Stop Mode=Coast [33B] will give the same<br />

behaviour as the Enable input.<br />

X<br />

Fig. 29 Functionality of the Stop and Enable input<br />

Reset and Autoreset operation<br />

If the VSD is in Stop Mode due to a trip condition, the<br />

VSD can be remotely reset by a pulse (“low” to “high”<br />

transition) on the Reset input, default on DigIn 8.<br />

Depending on the selected control method, a restart<br />

takes place as follows:<br />

Level-control<br />

If the Run inputs remain in their position the VSD will<br />

start immediately after the Reset command is given.<br />

Edge-control<br />

After the Reset command is given a new Run command<br />

must be applied to start the VSD again.<br />

Autoreset is enabled if the Reset input is continuously<br />

active. The Autoreset functions are programmed in<br />

menu Autoreset [250].<br />

NOTE: If the control commands are programmed for<br />

Keyboard control or Com, Autoreset is not possible.<br />

Run Inputs Level-controlled.<br />

The inputs are set as default for level-control. This<br />

means that an input is activated by making the input<br />

continuously “High”. This method is commonly used if,<br />

for example, PLCs are used to operate the VSD.<br />

!<br />

CAUTION: Level-controlled inputs DO NOT<br />

comply with the Machine Directive, if the inputs<br />

are directly used to start and stop the machine.<br />

The examples given in this and the following paragraphs<br />

follow the input selection shown in Fig. 30.<br />

38 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Stop<br />

RunL<br />

RunR<br />

Enable<br />

Reset<br />

+24 V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

See Fig. 30. The Enable and Stop input must be active<br />

continuously in order to accept any run-right or run-left<br />

command. The last edge (RunR or RunL) is valid. Fig.<br />

32 gives an example of a possible sequence.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

Fig. 30 Example of wiring for Run/Stop/Enable/Reset inputs<br />

The Enable input must be continuously active in order<br />

to accept any run-right or run-left command. If both<br />

RunR and RunL inputs are active, then the VSD stops<br />

according to the selected Stop Mode. Fig. 31 gives an<br />

example of a possible sequence.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 31 Input and output status for level-control<br />

(06-F103new_1)<br />

Run Inputs Edge-controlled<br />

Menu [21A] Start signal Level/Edge must be set to<br />

Edge to activate edge control. This means that an<br />

input is activated by a “low” to “high” transition or vice<br />

versa.<br />

NOTE: Edge-controlled inputs comply with the Machine<br />

Directive (see chapter EMC and Machine Directive), if<br />

the inputs are directly used for starting and stopping the<br />

machine.<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 32 Input and output status for edge-control<br />

(06-F94new_1)<br />

7.3 Performing an<br />

Identification Run<br />

To get the optimum performance out of your VSD/<br />

motor combination, the VSD must measure the electrical<br />

parameters (resistance of stator winding, etc.) of<br />

the connected motor. See menu [229], Motor ID-Run.<br />

7.4 Using the Control Panel<br />

Memory<br />

Data can be copied from the VSD to the memory in<br />

the control panel and vice versa. To copy all data<br />

(including parameter set A-D and motor data) from the<br />

VSD to the control panel, select Copy to CP[244],<br />

Copy to CP.<br />

To copy data from the control panel to the VSD, enter<br />

the menu [245], Load from CP and select what you<br />

want to copy.<br />

The memory in the control panel is useful in applications<br />

with VSDs without a control panel and in applications<br />

where several variable speed drives have the<br />

same setup. It can also be used for temporary storage<br />

of settings. Use a control panel to upload the settings<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 39


from one VSD and then move the control panel to<br />

another VSD and download the settings.<br />

NOTE: Load from and copy to the VSD is only possible<br />

when the VSD is in stop mode.<br />

VSD<br />

The max and min alarm can be set for a trip condition.<br />

The pre-alarms act as a warning condition. All the<br />

alarms can be monitored on the digital or relay outputs.<br />

The autoset function automatically sets the 4 alarm<br />

levels whilst running: maximum alarm, maximum prealarm,<br />

minimum alarm and minimum pre-alarm.<br />

Fig. 34 gives an example of the monitor functions for<br />

constant torque applications.<br />

Fig. 33 Copy and load parameters between VSD and control<br />

panel<br />

7.5 Load Monitor and Process<br />

Protection [400]<br />

7.5.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a<br />

load monitor. Load monitors are used to protect<br />

machines and processes against mechanical overload<br />

and underload, such as a conveyer belt or screw conveyer<br />

jamming, belt failure on a fan or a pump dry running.<br />

The load is measured in the VSD by the<br />

calculated motor shaft torque. There is an overload<br />

alarm (Max Alarm and Max Pre-Alarm) and an underload<br />

alarm (Min Alarm and Min Pre-Alarm).<br />

The Basic Monitor type uses fixed levels for overload<br />

and underload (pre-)alarms over the whole speed<br />

range. This function can be used in constant load<br />

applications where the torque is not dependent on the<br />

speed, e.g. conveyor belt, displacement pump, screw<br />

pump, etc.<br />

For applications with a torque that is dependent on the<br />

speed, the Load Curve monitor type is preferred. By<br />

measuring the actual load curve of the process, characteristically<br />

over the range of minimum speed to<br />

maximum speed, an accurate protection at any speed<br />

can be established.<br />

40 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Torque [%]<br />

[4161] MaxAlarmMar (15%)<br />

[4171] MaxPreAlMar (10%)<br />

[41B]<br />

100%<br />

Default: T NOM or<br />

Autoset: T MOMENTARY<br />

[4181] MinPreAlMar (10%)<br />

[4191] MinAlarmMar (15%)<br />

Max Alarm<br />

Max PreAlarm<br />

Min Alarm<br />

Min PreAlarm<br />

Ramp-up phase<br />

[413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

[4172] MaxPreAlDel (0.1s)<br />

[414] Start Delay (0.2s)<br />

Stationary phase<br />

Stationary phase<br />

Ramp-down phase<br />

[413] Ramp Alarm=On or Off<br />

[413] Ramp Alarm=On or Off [413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

t [s]<br />

[4172] MaxPreAlDel (0.1s)<br />

Must be


7.6 Pump sequencer function<br />

7.6.1 Introduction<br />

A maximum of 4 pumps can be controlled with the<br />

standard <strong>SX</strong>-V variable speed drive.<br />

If I/O Board options are installed, a maximum of 7<br />

pumps can be controlled. The I/O Board can also be<br />

used as a general extended I/O.<br />

The Pump Control function is used to control a<br />

number of drives (pumps, fans, etc., with a maximum<br />

of 3 additional drives per I/O-board connected) of<br />

which one is always driven by the <strong>SX</strong>-V. Other names<br />

for this kind of controllers are 'Cascade controller' or<br />

'Hydrophore controller'.<br />

Depending on the flow, pressure or temperature, additional<br />

pumps can be activated via the appropriate signals<br />

by the output relays of the <strong>SX</strong>-V and/or the I/O<br />

Board. The system is developed in such a way that<br />

one <strong>SX</strong>-V will be the master of the system.<br />

Select relay on the control board or on an option<br />

board. The relays are set to functions for controlling<br />

pumps. In the pictures in this section, the relays are<br />

named R:Function, e.g. R:SlavePump1, which means<br />

a relay on the control board or on an option board set<br />

to function SlavePump1.<br />

Set FLOW<br />

Feedback<br />

FLOW<br />

<strong>SX</strong>-V<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PI D<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

P1 P2 P3 P4 P5 P6<br />

All additional pumps can be activated via a VSD, soft<br />

starter, Y/ or D.O.L. switches.<br />

Set<br />

PRESSURE<br />

Feedback<br />

PRESSURE<br />

<strong>SX</strong>-V<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PI D<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

R:SlavePump5<br />

R:SlavePump6<br />

Pr essur e<br />

4<br />

3<br />

2<br />

1<br />

P1 P2 P3 P4 P5 P6<br />

Power<br />

Flow<br />

Fig. 36 Pressure control with pump control option<br />

(50-PC-2_1)<br />

Pumps in parallel will operate as a flow controller, See<br />

Fig. 35.<br />

Pumps in series will operate as a pressure controller<br />

see Fig. 36. The basic control principle is shown in Fig.<br />

37.<br />

NOTE: Read this instruction <strong>manual</strong> carefully before<br />

commencing installation, connecting or working with<br />

the variable speed drive with Pump Control.<br />

R:SlavePump5<br />

R:SlavePump6<br />

FREQUENCY (master pump P)<br />

Add pump<br />

Pr essur e<br />

Stop pump<br />

Power<br />

Flow<br />

1 2 3 4<br />

Fig. 35 Flow control with pump control option<br />

(50-PC-1_1)<br />

P=on<br />

FLOW /<br />

PRESSURE<br />

P1=on P2=on P3=on P4=on P5=on P6=on<br />

FLOW /<br />

PRESSURE<br />

TIM E<br />

(50-PC-3_1)<br />

Fig. 37 Basic Control principle<br />

42 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.2 Fixed MASTER<br />

This is the default setting of the Pump Control. The<br />

<strong>SX</strong>-V controls the Master pump which is always running.<br />

The relay outputs start and stop the other pumps<br />

P1 to P6, depending on flow/pressure. In this configuration<br />

a maximum of 7 pumps can be controlled, see<br />

Fig. 38. To equalize the lifetime of the additional<br />

pumps it is possible to select the pumps depending<br />

on the run time history of each pump.<br />

R: SlavePump6<br />

R: SlavePump5<br />

<strong>SX</strong>-V<br />

R: SlavePump4<br />

R: SlavePump3<br />

MASTER<br />

R: SlavePump2<br />

R: SlavePump1<br />

R: MasterPump6<br />

R: MasterPump5<br />

R: MasterPump4<br />

R: MasterPump3<br />

R: MasterPump2<br />

R: MasterPump1<br />

P1 P2 P3 P4 P5 P6<br />

R:SlavePump6<br />

<strong>SX</strong>-V R:SlavePump5<br />

R:SlavePump4<br />

MASTER R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

See menu:<br />

[393] to [396]<br />

[553] to [55C]<br />

Fig. 39 Alternating MASTER Control<br />

(NG_50-PC-4_1)<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

NOTE: The pumps MUST have all the same power.<br />

See menu:<br />

[393] Select Drive<br />

[39H] to [39N] Run Time 1 - 6, Pump<br />

[554] to [55C] Relays<br />

Fig. 38 Fixed MASTER control<br />

NOTE: The pumps MAY have different powers, however<br />

the MASTER pump MUST always be the largest.<br />

7.6.3 Alternating MASTER<br />

With this function the Master pump is not fixed to the<br />

<strong>SX</strong>-V all the time. After the VSD is powered up or<br />

started again after a stop or sleep mode the Master<br />

pump is selected via the relay set to function Master<br />

Pump. section 7.6.7 on page 49 shows a detailed wiring<br />

diagram with 3 pumps. The purpose of this function<br />

is that all pumps are used equally, so the lifetime<br />

of all pumps, including the Master pump, will be equalized.<br />

Maximum 6 pumps can be controlled with this<br />

function.<br />

7.6.4 Feedback 'Status' input<br />

In this example the additional pumps are controlled by<br />

an other kind of drive (e.g. soft starter, frequency<br />

<strong>inverter</strong>, etc.). The digital inputs on the I/O Board can<br />

be programmed as a "Error" input for each pump. If a<br />

drive fails the digital input will monitor this and the<br />

PUMP CONTROL option will not use that particular<br />

drive anymore and automatically switch to another<br />

drive. This means that the control continues without<br />

using this (faulty) drive. This function can also be used<br />

to <strong>manual</strong>ly stop a particular pump for maintenance<br />

purposes, without shutting down the whole pump system.<br />

Of course the maximum flow/pressure is then<br />

limited to the maximum pump power of the remaining<br />

pumps.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 43


See menu:<br />

[529] to [52H] Digital Input<br />

[554] to [55C] Relay<br />

<strong>SX</strong>-V<br />

MASTER<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

feedback<br />

inputs<br />

DI:Pump1Feedb<br />

DI:Pump2Feedb<br />

DI:Pump3Feedb<br />

other<br />

drive<br />

other<br />

drive<br />

other<br />

drive<br />

(NG_50-PC-6_1)<br />

Fig. 40 Feedback "Status" input<br />

PM<br />

P1 P2 P3<br />

7.6.5 Fail safe operation<br />

Some pump systems must always have a minimum<br />

flow or pressure level, even if the frequency <strong>inverter</strong> is<br />

tripped or damaged. So at least 1 or 2 (or maybe all)<br />

additional pumps must keep running after the <strong>inverter</strong><br />

is powered down or tripped. This kind of "safe" pump<br />

operation can be obtained by using the NC contacts<br />

of the pump control relays. These can be programmed<br />

for each individual additional pump. In this example<br />

pumps P5 and P6 will run at maximum power if the<br />

<strong>inverter</strong> fails or is powered down.<br />

See menu:<br />

[554] to [55C] Relays<br />

[55D4] to [55DC] Mode<br />

<strong>SX</strong>-V<br />

MASTER<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

(50-PC-7_1)<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Fig. 41 Example of "Fail safe" operation<br />

44 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.6 PID control<br />

When using the Pump Control it is mandatory to activate<br />

the PID controller function. Analogue inputs AnIn1<br />

to AnIn4 can be set as functions for PID set values<br />

and/or feedback values.<br />

See menu:<br />

[381] to [385]<br />

[553] to [55C]<br />

[411] to [41C]<br />

Set<br />

Value<br />

Feedback<br />

Value<br />

<strong>SX</strong>-V<br />

MASTER<br />

AnIn<br />

PID<br />

AnIn<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Flow/Pressure<br />

measurement<br />

(NG_50-PC-8_1)<br />

Fig. 42 PID control<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 45


7.6.7 Wiring Alternating Master<br />

Fig. 43 and Fig. 44 show the relay functions<br />

MasterPump1-6 and SlavePump1-6. The Master and<br />

Additional contactors also interlock with each other to<br />

prevent dual powering of the pump and damage to<br />

the <strong>inverter</strong>. (K1M/K1S, K2M/K2S, K3M/K3S). Before<br />

running, the <strong>SX</strong>-V will select a pump to be Master,<br />

depending on the pump run times.<br />

CAUTION: The wiring for the Alternating<br />

Master control needs special attention and<br />

! should be wired exactly as described here,<br />

to avoid destructive short circuit at the output of the<br />

<strong>inverter</strong>.<br />

PE<br />

L1<br />

L2<br />

L3<br />

PE L1 L2 L3<br />

<strong>SX</strong>-V<br />

U V W<br />

K1S<br />

K2S<br />

K3S<br />

K1M<br />

K2M<br />

K3M<br />

(NG_50-PC-10_1)<br />

P1<br />

3~<br />

P2<br />

3~<br />

P3<br />

3~<br />

Fig. 43 Power connections for Alternating MASTER circuit<br />

with 3 pumps<br />

~<br />

B1:R1<br />

Master<br />

Pump1<br />

B2:R1<br />

Slave<br />

Pump1<br />

B1:R2<br />

Master<br />

Pump2<br />

B2:R2<br />

Slave<br />

Pump2<br />

B1:R3<br />

Master<br />

Pump3<br />

B2:R3<br />

Slave<br />

Pump3<br />

K1S K1M K2S<br />

K2M<br />

K3S<br />

K3M<br />

K1M<br />

K1S<br />

K2M<br />

K2S<br />

K3M<br />

K3S<br />

N<br />

(NG_50-PC-11_3)<br />

Fig. 44 Control connections for Alternating MASTER circuit<br />

with 3 pumps<br />

46 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.8 Checklist And Tips<br />

1. Main Functions<br />

Start by choosing which of the two main functions to use:<br />

- "Alternating MASTER" function<br />

In this case the “Master” pump can be alternated, although this function needs slightly more complicated wiring than the<br />

“Fixed MASTER” function described below. The I/O Board option is necessary.<br />

- "Fixed MASTER" function:<br />

One pump is always the master, only the additional pumps alternate.<br />

Notice that there is a big difference in the wiring of the system between these main functions, so it not possible to switch<br />

between these 2 functions later on. For further information see section 7.6.2, page 46.<br />

2. Number of pumps/drives<br />

3. Pump size<br />

If the system consists of 2 or 3 pumps the I/O Board option is not needed. However, this does mean that the following<br />

functions are not then possible:<br />

- "Alternating MASTER" function<br />

- With isolated inputs<br />

With the I/O Board option installed, the maximum number of pumps is:<br />

- 6 pumps if "Alternating MASTER" function is selected. (see section 7.6.3 on page 46)<br />

- 7 pumps if "Fixed MASTER" function is selected. (see section 7.6.2, page 46)<br />

- "Alternating MASTER" function:<br />

The sizes of the pumps must be equal.<br />

- "Fixed MASTER" function:<br />

The pumps may have different power sizes, but the master pump (<strong>SX</strong>-V) must always have the greatest power.<br />

4. Programming the Digital inputs<br />

If the digital inputs are used, the digital input function must be set to Drive feedback.<br />

5. Programming the Relay outputs<br />

After the Pump controller is switched on in menu [391] the number of drives (pumps, fans, etc.) must be set in menu [392]<br />

(Number of Drives). The relays themselves must be set to the function SlavePump1-6 and if Alternate master is used,<br />

MasterPump1-6 as well.<br />

6. Equal Pumps<br />

If all pumps are equal in power size it is likely that the Upper band is much smaller than the Lower band, because the maximum<br />

pump discharge of the master pump is the same if the pump is connected to the mains (50Hz). This can give a very<br />

narrow hysteresis causing an unstable control area in the flow/pressure. By setting the maximum frequency of the <strong>inverter</strong><br />

only slightly above 50Hz it means that the master pump has a slightly bigger pump discharge than the pump on the mains.<br />

Of course caution is essential in order to prevent the master pump running at a higher frequency for a longer period of<br />

time, which in turn prevents the master pump from overloading.<br />

7. Minimum Speed<br />

With pumps and fans it is normal to use a minimum speed, because at lower speed the discharge of the pump or fan will<br />

be low until 30-50% of the nominal speed (depending on size, power, pump properties, etc.). When using a minimum<br />

speed, a much smoother and better control range of the whole system will be achieved.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 47


7.6.9 Functional Examples of Start/<br />

Stop Transitions<br />

Starting an additional pump<br />

This figure shows a possible sequence with all levels<br />

and functions involved when a additional pump is<br />

started by means of the pump control relays. The<br />

starting of the second pump is controlled by one of<br />

the relay outputs. The relay in this example starts the<br />

pump directly on line. Of course other start/stop<br />

equipment like a soft starter could be controlled by the<br />

relay output.<br />

Flow Set view ref. [310]<br />

Feedback Flow<br />

time<br />

Speed<br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition Speed Start<br />

[39E]<br />

Min speed<br />

[341]<br />

Lower band<br />

Start delay [399]<br />

Settle time start [39D]<br />

time<br />

2nd pump<br />

Speed<br />

Start ramp depends<br />

on start method<br />

Start command<br />

time<br />

Fig. 45 Time sequence starting an additional pump<br />

48 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Stopping an additional pump<br />

This figure shows a possible sequence with all levels<br />

and functions involved when an additional pump is<br />

stopped by means of the pump control relays. The<br />

stopping of the second pump is controlled by one of<br />

the relay outputs. The relay in this example stops the<br />

pump directly on line. Of course other start/stop<br />

equipment like a soft starter could be controlled by the<br />

relay output.<br />

Set view ref. [310]<br />

Feedback Flow<br />

time<br />

Speed<br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition Speed Stop<br />

[39G]<br />

Min speed<br />

[341]<br />

Lower band<br />

Stop delay [39A]<br />

Settle time stop [39F]<br />

time<br />

2nd pump<br />

Speed<br />

Stop ramp depends<br />

on start method<br />

Stop command<br />

time<br />

(NG_50-PC-20_1)<br />

Fig. 46 Time sequence stopping an additional pump<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 49


8. EMC and Machine Directive<br />

8.1 EMC standards<br />

The variable speed drive complies with the following<br />

standards:<br />

EN(IEC)61800-3:2004 Adjustable speed electronic<br />

power drive systems, part 3, EMC product standards:<br />

Standard: category C3, for systems of rated supply<br />

voltage< 1000 VAC, intended for use in the second<br />

environment.<br />

Optional: Category C2, for systems of rated supply<br />

voltage


46 EMC and Machine Directive <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


9. Operation via the Control Panel<br />

This chapter describes how to use the control panel.<br />

The VSD can be delivered with a control panel or a<br />

blank panel.<br />

9.1 General<br />

The control panel displays the status of the VSD and is<br />

used to set all the parameters. It is also possible to<br />

control the motor directly from the control panel. The<br />

control panel can be built-in or located externally via<br />

serial communication. The VSD can be ordered without<br />

the control panel. Instead of the control panel<br />

there will be a blank panel.<br />

NOTE: The VSD can run without the control panel being<br />

connected. However the settings must be such that all<br />

control signals are set for external use.<br />

9.2 The control panel<br />

Fig. 35 Control panel<br />

LC Display<br />

LEDs<br />

Control Keys<br />

Toggle Key<br />

Function Keys<br />

9.2.1 The display<br />

The display is back lit and consists of 2 rows, each<br />

with space for 16 characters. The display is divided<br />

into six areas.<br />

The different areas in the display are described below:<br />

Fig. 36 The display<br />

Area A: Shows the actual menu number (3 or 4<br />

digits).<br />

Area B Shows if the menu is in the toggle loop or<br />

the<br />

VSD is set for Local operation.<br />

Area C: Shows the heading of the active menu.<br />

Area D: Shows the status of the VSD (3 digits).<br />

The following status indications are possible:<br />

Acc : Acceleration<br />

Dec : Deceleration<br />

I 2 t : Active I 2 t protection<br />

Run : Motor runs<br />

Trp : Tripped<br />

Stp : Motor is stopped<br />

VL : Operating at Voltage limit<br />

SL : Operating at Speed limit<br />

CL : Operating at Current limit<br />

TL : Operating at Torque limit<br />

OT : Operating at Temperature Limit<br />

LV : Operating at Low Voltage<br />

Sby : Operating from Standby power supply<br />

SST : Operating Safe Stop, is blinking<br />

when<br />

level<br />

Area E:<br />

motor<br />

Area F:<br />

menu.<br />

level<br />

A<br />

221T<br />

Motor Volt<br />

StpA<br />

M1: 400V<br />

D<br />

B<br />

E<br />

C<br />

F<br />

activated<br />

LCL : Operating with low cooling liquid<br />

Shows active parameter set and if it is a<br />

parameter.<br />

Shows the setting or selection in the active<br />

This area is empty at the 1st level and 2nd<br />

menu. This area also shows warnings and<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 47


alarm<br />

messages.<br />

300 Process Appl<br />

StpA<br />

Fig. 37 Example 1st level menu<br />

220 Motor Data<br />

StpA<br />

Fig. 38 Example 2nd level menu<br />

221 Motor Volt<br />

Stp M1: 400V<br />

A<br />

Fig. 39 Example 3d level menu<br />

4161 Max Alarm<br />

Stp 0.1s<br />

A<br />

Table 16<br />

RUN<br />

(green)<br />

Motor shaft<br />

rotates<br />

Motor speed<br />

increase/<br />

decrease<br />

Motor<br />

stopped<br />

NOTE: If the control panel is built in, the back light of the<br />

display has the same function as the Power LED in Table<br />

16 (Blank panel LEDs).<br />

9.2.4 Control keys<br />

The control keys are used to give the Run, Stop or<br />

Reset commands directly. As default these keys are<br />

disabled, set for remote control. Activate the control<br />

keys by selecting Keyboard in the menus Ref Control<br />

[214] and Reset Ctrl [216].<br />

If the Enable function is programmed on one of the<br />

digital inputs, this input must be active to allow Run/<br />

Stop commands from the control panel.<br />

Table 17<br />

LED indication<br />

Control keys<br />

RUN L:<br />

gives a start with<br />

left rotation<br />

Fig. 40 Example 4th level menu<br />

9.2.2 Indications on the display<br />

The display can indicate +++ or - - - if a parameter is<br />

out of range. In the VSD there are parameters which<br />

are dependent on other parameters. For example, if<br />

the speed reference is 500 and the maximum speed<br />

value is set to a value below 500, this will be indicated<br />

with +++ on the display. If the minimum speed value is<br />

set over 500, - - - is displayed.<br />

9.2.3 LED indicators<br />

The symbols on the control panel have the following<br />

functions:<br />

Run<br />

Green<br />

Fig. 41 LED indications<br />

Table 16<br />

Symbol<br />

POWER<br />

(green)<br />

LED indication<br />

Trip<br />

Red<br />

Function<br />

Power<br />

Green<br />

ON BLINKING OFF<br />

Power on ---------------- Power off<br />

TRIP (red) VSD tripped Warning/Limit No trip<br />

STOP/RESET:<br />

RUN R:<br />

stops the motor or resets<br />

the VSD after a trip<br />

gives a start with<br />

right rotation<br />

NOTE: It is not possible to simultaneously activate the<br />

Run/Stop commands from the keyboard and remotely<br />

from the terminal strip (terminals 1-22).<br />

9.2.5 The Toggle and Loc/Rem Key<br />

This key has two functions: Toggle and<br />

switching between Loc/Rem function.<br />

Press one second to use the toggle<br />

function<br />

Press and hold the toggle key for more than five seconds<br />

to switch between Local and Remote function,<br />

depending on the settings in [2171] and [2172].<br />

When editing values, the toggle key can be used to<br />

change the sign of the value, see section 9.5, page<br />

51.<br />

Toggle function<br />

Using the toggle function makes it possible to easily<br />

step through selected menus in a loop. The toggle<br />

loop can contain a maximum of ten menus. As default<br />

the toggle loop contains the menus needed for Quick<br />

Setup. You can use the toggle loop to create a quick-<br />

48 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


menu for the parameters that are most importance to<br />

your specific application.<br />

NOTE: Do not keep the Toggle key pressed for more than<br />

five seconds without pressing either the +, - or Esc key,<br />

as this may activate the Loc/Rem function of this key<br />

instead. See menu [217].<br />

Add a menu to the toggle loop<br />

1. Go to the menu you want to add to the loop.<br />

2. Press the Toggle key and keep it pressed while<br />

pressing the + key.<br />

Delete a menu from the toggle loop<br />

1. Go to the menu you want to delete using the toggle<br />

key.<br />

2. Press the Toggle key and keep it pressed while<br />

pressing the - key.<br />

Delete all menus from the toggle loop<br />

1. Press the Toggle key and keep it pressed while<br />

pressing the Esc key.<br />

2. Confirm with Enter. The menu Preferred view [100]<br />

is displayed.<br />

Default toggle loop<br />

Fig. 42 shows the default toggle loop. This loop contains<br />

the necessary menus that need to be set before<br />

starting. Press Toggle to enter menu [211] then use<br />

the Next key to enter the sub menus [212] to [21A]<br />

and enter the parameters. When you press the Toggle<br />

key again, menu [221] is displayed.<br />

100<br />

511 Toggle loop 211<br />

341<br />

331<br />

Fig. 42 Default toggle loop<br />

Indication of menus in toggle loop<br />

Menus included in the toggle loop are indicated with a<br />

T in area B in the display.<br />

Loc/Rem function<br />

The Loc/Rem function of this key is disabled as<br />

default. Enable the function in menu [2171] and/or<br />

[2172].<br />

With the function Loc/Rem you can change between<br />

local and remote control of the VSD from the control<br />

panel. The function Loc/Rem can also be changed via<br />

the DigIn, see menu Digital inputs [520]<br />

Change control mode<br />

1. Press the Loc/Rem key for five seconds, until<br />

Local? or Remote? is displayed.<br />

2. Confirm with Enter.<br />

3. Cancel with Esc.<br />

213<br />

221<br />

212<br />

Sub menus<br />

222<br />

Sub menus<br />

228<br />

Local mode<br />

Local mode is used for temporary operation. When<br />

switched to LOCAL operation, the VSD is controlled<br />

via the defined Local operation mode, i.e. [2171] and<br />

[2172]. The actual status of the VSD will not change,<br />

e.g. Run/Stop conditions and the actual speed will<br />

remain exactly the same. When the VSD is set to Local<br />

operation, the display will show L in area B in the display.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 49


The VSD will be started and stopped using the keys<br />

on the control panel. The reference signal can be controlled<br />

using the + and - keys on the keyboard, when<br />

in the menu [310] according to the selection in Keyboard<br />

Reference menu [369].<br />

Remote mode<br />

When the VSD is switched to REMOTE operation, the<br />

VSD will be controlled according to selected control<br />

methods in the menu’s Reference Control [214], Run/<br />

Stop Control [215] and Reset Control [216]. The actual<br />

operation status of the VSD will reflect the status and<br />

settings of the programmed control selections, e.g.<br />

Start/Stop status and settings of the programmed<br />

control selections, acceleration or deceleration speed<br />

according to the selected reference value in the menu<br />

Acceleration Time [331] / Deceleration Time [332].<br />

To monitor the actual Local or Remote status of the<br />

VSD control, a “Loc/Rem” function is available on the<br />

Digital Outputs or Relays. When the VSD is set to<br />

Local, the signal on the DigOut or Relay will be active<br />

high, in Remote the signal will be inactive low. See<br />

menu Digital Outputs [540] and Relays [550].<br />

9.3 The menu structure<br />

The menu structure consists of 4 levels:<br />

Main Menu<br />

1st level<br />

2nd level<br />

3rd level<br />

4th level<br />

The first character in the menu number.<br />

The second character in the menu number.<br />

The third character in the menu number.<br />

The fourth character in the menu number.<br />

This structure is consequently independent of the<br />

number of menus per level.<br />

For instance, a menu can have one selectable menu<br />

(Set/View Reference Value [310]), or it can have 17<br />

selectable menus (menu Speeds [340]).<br />

NOTE: If there are more than 10 menus within one level,<br />

the numbering continues in alphabetic order.<br />

9.2.6 Function keys<br />

The function keys operate the menus and are also<br />

used for programming and read-outs of all the menu<br />

settings.<br />

Table 18<br />

Function keys<br />

ENTER key:<br />

ESCAPE key:<br />

PREVIOUS key:<br />

NEXT key:<br />

- key:<br />

+ key:<br />

Fig. 43 Menu structure<br />

- step to a lower menu<br />

level<br />

- confirm a changed<br />

setting<br />

- step to a higher<br />

menu level<br />

- ignore a changed<br />

setting, without<br />

confirming<br />

- step to a previous<br />

menu within the same<br />

level<br />

- go to more significant<br />

digit in edit mode<br />

- step to a next menu<br />

within the same level<br />

- go to less significant<br />

digit in edit mode<br />

- decrease a value<br />

- change a selection<br />

- increase a value<br />

- change a selection<br />

4161<br />

4162<br />

Fig. 44 Menu structure<br />

NG_06-F28<br />

9.3.1 The main menu<br />

This section gives you a short description of the functions<br />

in the Main Menu.<br />

100 Preferred View<br />

Displayed at power-up. It displays the actual process<br />

value as default. Programmable for many other readouts.<br />

200 Main Setup<br />

Main settings to get the VSD operable. The motor<br />

data settings are the most important. Also option utility<br />

and settings.<br />

50 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


300 Process and Application Parameters<br />

Settings more relevant to the application such as Reference<br />

Speed, torque limitations, PID control settings,<br />

etc.<br />

400 Shaft Power Monitor and Process<br />

Protection<br />

The monitor function enables the VSD to be used as a<br />

load monitor to protect machines and processes<br />

against mechanical overload and underload.<br />

500 Inputs/Outputs and Virtual<br />

Connections<br />

All settings for inputs and outputs are entered here.<br />

600 Logical Functions and Timers<br />

All settings for conditional signal are entered here.<br />

700 View Operation and Status<br />

Viewing all the operational data like frequency, load,<br />

power, current, etc.<br />

800 View Trip Log<br />

Viewing the last 10 trips in the trip memory.<br />

900 Service Information and VSD Data<br />

Electronic type label for viewing the software version<br />

and VSD type.<br />

9.4 Programming during<br />

operation<br />

Most of the parameters can be changed during operation<br />

without stopping the VSD. Parameters that can<br />

not be changed are marked with a lock symbol in the<br />

display.<br />

NOTE: If you try to change a function during operation<br />

that only can be changed when the motor is stopped, the<br />

message “Stop First” is displayed.<br />

9.5 Editing values in a menu<br />

Most values in the second row in a menu can be<br />

changed in two different ways. Enumerated values like<br />

the baud rate can only be changed with alternative 1.<br />

2621 Baudrate<br />

Stp 38400<br />

Alternative 1<br />

When you press the + or - keys to change a value, the<br />

cursor is blinking to the left in the display and the value<br />

is increased or decreased when you press the appropriate<br />

key. If you keep the + or - keys pressed, the<br />

value will increase or decrease continuously. When<br />

you keep the key pressed the change speed will<br />

increase. The Toggle key is used to change the sign of<br />

the entered value. The sign of the value will also<br />

change when zero is passed. Press Enter to confirm<br />

the value.<br />

331 Acc Time<br />

Stp A<br />

2.00s<br />

Blinking<br />

Alternative 2<br />

Press the + or - key to enter edit mode. Then press<br />

the Prev or Next key to move the cursor to the right<br />

most position of the value that should be changed.<br />

The cursor will make the selected character blink.<br />

Move the cursor using the Prev or Next keys. When<br />

you press the + or - keys, the character at the cursor<br />

position will increase or decrease. This alternative is<br />

suitable when you want to make large changes, i.e.<br />

from 2 s to 400 s.<br />

To change the sign of the value, press the toggle key.<br />

This makes it possible to enter negative values.<br />

Example: When you press Next the 4 will blink.<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Blinking<br />

Press Enter to save the setting and Esc to leave the<br />

edit mode.<br />

9.6 Copy current parameter to<br />

all sets<br />

When a parameter is displayed, press the Enter key<br />

for 5 seconds. Now the text To all sets? is displayed.<br />

Press Enter to copy the setting for current parameter<br />

to all sets.<br />

9.7 Programming example<br />

This example shows how to program a change of the<br />

Acc. Time set from 2.0 s to 4.0 s.<br />

The blinking cursor indicates that a change has taken<br />

place but is not saved yet. If at this moment, the<br />

power fails, the change will not be saved.<br />

Use the ESC, Prev, Next or the Toggle keys to proceed<br />

and to go to other menus.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 51


100 0rpm<br />

Stp A<br />

0.0A<br />

Menu 100 appears<br />

after power-up.<br />

200 MAIN SETUP<br />

StpA<br />

Press Next for menu<br />

[200].<br />

300 Process<br />

StpA<br />

Press Next for menu<br />

[300].<br />

310 Set/View Ref<br />

StpA<br />

Press Enter for menu<br />

[310].<br />

330 Run/Stop<br />

StpA<br />

Press Next two times<br />

for menu [330].<br />

331 Acc Time<br />

StpA<br />

2.00s<br />

Press Enter for menu<br />

[331].<br />

331 Acc Time<br />

Stp A<br />

2.00s<br />

Blinking<br />

Keep key pressed<br />

until desired value has<br />

been reached.<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Save the changed<br />

value by pressing<br />

Enter.<br />

Fig. 45 Programming example<br />

52 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


10. Serial communication<br />

The VSD provides possibility for different types of serial<br />

communication.<br />

• Modbus RTU via RS232/485<br />

• Fieldbuses as Profibus DP and DeviceNet<br />

• Industrial Ethernet type Modbus/TCP<br />

10.1 Modbus RTU<br />

The VSD has an asynchronous serial communication<br />

interface behind the control panel. The protocol used<br />

for data exchange is based in the Modbus RTU protocol,<br />

originally developed by Modicon. the physical<br />

connection is RS232. The VSD acts as a slave with<br />

address 1 in a master-slave configuration. The communication<br />

is half-duplex. It has a standard no return<br />

zero (NRZ) format.<br />

The baud rate is fixed to 9600.<br />

The character frame format (always 11 bits) has:<br />

• one start bit<br />

• eight data bits<br />

• two stop bits<br />

• no parity<br />

It is possible to temporarily connect a personal computer<br />

with for example the software EmoSoftCom<br />

(programming and monitoring software) to the RS232<br />

connector on the control panel. This can be useful<br />

when copying parameters between variable speed<br />

drives etc. For permanent connection of a personal<br />

computer you have to use one of the communication<br />

option boards.<br />

NOTE: This RS232 port is not isolated.<br />

Correct and safe use of a RS232 connection<br />

depends on the ground pins of both ports<br />

being the same potential. Problems can<br />

occur when connecting two ports of e.g.<br />

machinery and computers where both ground pins are<br />

not the same potential. This may cause hazardous<br />

ground loops that can destroy the RS232 ports.<br />

The control panel RS232 connection is not galvanic<br />

isolated.<br />

The optional RS232/485 card is galvanic isolated.<br />

Fig. 46 Mounting frame for the control panel<br />

10.2 Parameter sets<br />

Communication information for the different parameter<br />

sets.<br />

The different parameter sets in the VSD have the following<br />

DeviceNet instance numbers and Profibus slot/<br />

index numbers:<br />

Parameter<br />

set<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

A 43001–43556 168/160 to 170/205<br />

B 44001–44529 172/140 to 174/185<br />

C 45001–45529 176/120 to 178/165<br />

D 46001–46529 180/100 to 182/145<br />

Parameter set A contains parameters 43001 to<br />

43556. The parameter sets B, C and D contains the<br />

same type of information. For example parameter<br />

43123 in parameter set A contain the same type of<br />

information as 44123 in parameter set B.<br />

A DeviceNet instance number can easily be converted<br />

into a Profibus slot/index number according to<br />

description in section section 11.8.2, page 153.<br />

10.3 Motor data<br />

Communication information for the different motors.<br />

Note that the control panel RS232 connection can<br />

safely be used in combination with commercial available<br />

isolated USB to RS232 converters.<br />

Motor<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

M1 43041–43048 168/200 to 168/207<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 53


Motor<br />

M2 44041–44048 172/180 to 174/187<br />

M3 45041–45048 176/160 to 176/167<br />

M4 46041–46048 180/140 to 180/147<br />

M1 contains parameters 43041 to 43048. The M2,<br />

M3, and M4 contains the same type of information.<br />

For example parameter 43043 in motor M1 contain<br />

the same type of information as 44043 in M2.<br />

A DeviceNet instance number can easily be converted<br />

into a Profibus slot/index number according to<br />

description in section section 11.8.2, page 153.<br />

10.4 Start and stop commands<br />

Set start and stop commands via serial communication..<br />

Modbus/DeviceNet<br />

Instance number<br />

Modbus/DeviceNet<br />

Instance number<br />

Integer<br />

value<br />

42901 0 Reset<br />

42902 1<br />

42903 2 RunR<br />

42904 3 RunL<br />

Profibus<br />

Slot/Index<br />

Function<br />

Run, active together with<br />

either RunR or RunL to<br />

perform start.<br />

Note! Bipolar mode is activated if both RunR and RunL is<br />

active.<br />

10.5.1 Process value<br />

It is also possible to send the Process value over a bus<br />

(e.g. from a processor or temperature sensor).<br />

Set menu Process Source [321] to F(Bus). Use following<br />

parameter data for the process value:<br />

Default 0<br />

Range -32768 to 32767<br />

Corresponding to<br />

-100% to 100% ref<br />

Communication information<br />

Modbus /DeviceNet<br />

Instance number<br />

42906<br />

Profibus slot /Index 168/65<br />

Fieldbus format<br />

Modbus format<br />

Int<br />

Int<br />

Example:<br />

(See Fielbus option <strong>manual</strong> for detalied information)<br />

We would like to control the <strong>inverter</strong> over a bus system<br />

using the first two bytes of the Basic Control Message<br />

by setting menu [2661] FB Signal 1 to 49972. Further,<br />

we also want to transmit a 16 bit signed reference and<br />

process value. This is done by setting menu [2662] FB<br />

Signal 2 to 42905 and menu [2663] FB Signal 3 to<br />

42906.<br />

NOTE: It is possible to view the transmitted process<br />

value in control panel menu Operation [710]. The<br />

presented value is depending on settings in menus<br />

Process Min [324] and Process Max [325].<br />

10.5 Reference signal<br />

When menu Reference Control [214] is set to “Com”<br />

the following parameter data should be used:<br />

Default 0<br />

Range -32768 to 32767<br />

Corresponding to<br />

Communication information<br />

Modbus /DeviceNet<br />

Instance number<br />

42905<br />

Profibus slot /Index 168/64<br />

Fieldbus format<br />

Modbus format<br />

-100% to 100% ref<br />

Int<br />

Int<br />

The reference value is set in modbus number 42905.<br />

0-4000 h corresponds to 0-100% of actual reference<br />

value.<br />

10.6 Description of the EInt<br />

formats<br />

Modbus parameters can have different formats e.g. a<br />

standard unsigned/signed integer, or eint. EInt, which<br />

is described below. All parameters written to a register<br />

may be rounded to the number of significant digits<br />

used in the internal system.<br />

54 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


If a parameter is in Eint format, the 16 bit number<br />

should be interpreted like this:<br />

F EEEE MMMMMMMMMMM<br />

F<br />

Format bit:<br />

0=Unsinged integer<br />

mode,<br />

1=Eint mode<br />

EEEE<br />

2 complement signed<br />

exponent<br />

MMMMMMMMMMM 2 complement signed<br />

mantissa.<br />

If the format bit is 0, then can a positive number 0-<br />

32767 be represented by bit 0-14.<br />

If the format bit is 1, then is the number interpreted as<br />

this:<br />

Value = M * 10^E<br />

NOTE: Parameters with EInt format may return values in<br />

both formats (F=0 or F=1).<br />

Example<br />

If you write the value 1004 to a register and this register<br />

has 3 significant digits, it will be stored as 1000.<br />

In the floating point format (F=1), one 16-bit word is<br />

used to represent large (or very small numbers) with 3<br />

significant digits.<br />

If data is read or written as a fixed point (i.e. no decimals)<br />

number between 0-32767, the 15-bit fixed point<br />

format (F=0) may be used.<br />

F=Format. 1=floating point format, 0=15 bit as 15-bit<br />

fixed point format.<br />

The matrix below describes the contents of the 16-bit<br />

word for the two different EInt formats:<br />

Value Binary<br />

-8 1000<br />

-7 1001<br />

..<br />

-2 1110<br />

-1 1111<br />

0 0000<br />

1 0001<br />

2 0010<br />

..<br />

6 0110<br />

7 0111<br />

The value represented by the EInt floating point format<br />

is m·10 e .<br />

To convert a value from the EInt floating point format<br />

to a floating point value, use the formula above.<br />

To convert a floating point value to the EInt floating<br />

point format, see the code float_to_eint below.<br />

Example<br />

The number 1.23 would be represented by this in EInt<br />

F EEEE MMMMMMMMMMM<br />

1 1110 00001111011<br />

F=1 -> Eint<br />

E=-2<br />

M=123<br />

The value is then 123x10 -2 = 1.23<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

F=1 e3 e2 e1 e0 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0<br />

F=0 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

Example of floating point format<br />

e3-e0 4-bit signed exponent.<br />

-8..+7 (binary 1000 .. 0111)<br />

m10-m0 11-bit signed mantissa.<br />

-1024..+1023 (binary<br />

10000000000..01111111111)<br />

A signed number should be represented as a two<br />

complement binary number, like below:<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 55


Programming example:<br />

typedef struct<br />

{<br />

int m:11; // mantissa, -1024..1023<br />

int e: 4; // exponent -8..7<br />

unsigned int f: 1; // format, 1->special emoint format<br />

} eint16;<br />

//---------------------------------------------------------------------------<br />

unsigned short int float_to_eint16(float value)<br />

{<br />

eint16 etmp;<br />

int dec=0;<br />

while (floor(value) != value && dec=0 && value=-1000 && value=0)<br />

etmp.m=1; // Set sign<br />

else<br />

etmp.m=-1; // Set sign<br />

value=fabs(value);<br />

while (value>1000)<br />

{<br />

etmp.e++; // increase exponent<br />

value=value/10;<br />

}<br />

value+=0.5; // round<br />

etmp.m=etmp.m*value; // make signed<br />

}<br />

Rreturn (*(unsigned short int *)&etmp);<br />

}<br />

//---------------------------------------------------------------------------<br />

float eint16_to_float(unsigned short int value)<br />

{<br />

float f;<br />

eint16 evalue;<br />

evalue=*(eint16 *)&value;<br />

if (evalue.f)<br />

{<br />

if (evalue.e>=0)<br />

f=(int)evalue.m*pow10(evalue.e);<br />

else<br />

f=(int)evalue.m/pow10(abs(evalue.e));<br />

}<br />

else<br />

f=value;<br />

return f;<br />

}<br />

//---------------------------------------------------------------------------<br />

56 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Example of 15-bit fixed point format<br />

The value 72.0 can be represented as the fixed point<br />

number 72. It is within the range 0-32767, which<br />

means that the 15-bit fixed point format may be used.<br />

The value will then be represented as:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0<br />

Where bit 15 indicates that we are using the fixed<br />

point format (F=0).<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 57


58 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11. Functional Description<br />

This chapter describes the menus and parameters in<br />

the software. You will find a short description of each<br />

function and information about default values, ranges,<br />

etc. There are also tables containing communication<br />

information. You will find the Modbus, DeviceNet and<br />

Fieldbus address for each parameter as well as the<br />

enumeration for the data.<br />

NOTE: Functions marked with the sign<br />

changed during Run Mode.<br />

Description of table layout<br />

Default:<br />

Selection or<br />

range<br />

cannot be<br />

Resolution of settings<br />

The resolution for all range settings described in this<br />

chapter is 3 significant digits. Exceptions are speed<br />

values which are presented with 4 significant digits.<br />

Table 19 shows the resolutions for 3 significant digits.<br />

Table 19<br />

Integer value of<br />

selection<br />

Description<br />

3 Digit Resolution<br />

0.01-9.99 0.01<br />

10.0-99.9 0.1<br />

100-999 1<br />

1000-9990 10<br />

10000-99900 100<br />

Menu no.<br />

name<br />

<br />

Menu<br />

11.1 Preferred View [100]<br />

This menu is displayed at every power-up. During<br />

operation, the menu [100] will automatically be displayed<br />

when the keyboard is not operated for 5 minutes.<br />

The automatic return function will be switched off<br />

when the Toggle and Stop key is pressed simultaneously.<br />

As default it displays the actual current.<br />

100 (1st Line)<br />

Stp A (2nd Line)<br />

Fig. 47 Display functions<br />

11.1.1 1st Line [110]<br />

Sets the content of the upper row in the menu [100]<br />

Preferred View.<br />

Default:<br />

Dependent on menu<br />

Process Val<br />

Process Val 0 Process value<br />

Speed 1 Speed<br />

Torque 2 Torque<br />

Process Ref 3 Process reference<br />

Shaft Power 4 Shaft power<br />

El Power 5 Electrical power<br />

Current 6 Current<br />

Output volt 7 Output voltage<br />

Frequency 8 Frequency<br />

DC Voltage 9 DC voltage<br />

Heatsink Tmp 10 Heatsink temperature<br />

Motor Temp 11 Motor temperature<br />

VSD Status 12 VSD status<br />

Run Time 13 Run Time<br />

Energy 14 Energy<br />

Mains Time 15 Mains time<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43001<br />

Profibus slot/index 168/160<br />

Fieldbus format<br />

Modbus format<br />

110 1st Line<br />

StpA<br />

Process Val<br />

UInt<br />

UInt<br />

100 0rpm<br />

Stp A<br />

0.0A<br />

Menu [100], Preferred View displays the settings made<br />

in menu [110], 1st line, and [120], 2nd line. See Fig.<br />

47.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 59


11.1.2 2nd Line [120]<br />

Sets the content of the lower row in the menu [100]<br />

Preferred View. Same selection as in menu [110].<br />

Default:<br />

Current<br />

11.2 Main Setup [200]<br />

The Main Setup menu contains the most important<br />

settings to get the VSD operational and set up for the<br />

application. It includes different sub menus concerning<br />

the control of the unit, motor data and protection, utilities<br />

and automatic resetting of faults. This menu will<br />

instantaneously be adapted to build in options and<br />

show the required settings.<br />

11.2.1 Operation [210]<br />

Selections concerning the used motor, VSD mode,<br />

control signals and serial communication are<br />

described in this submenu and is used to set the VSD<br />

up for the application.<br />

Language [211]<br />

Select the language used on the LC Display. Once the<br />

language is set, this selection will not be affected by<br />

the Load Default command.<br />

Default:<br />

English<br />

English 0 English selected<br />

Svenska 1 Swedish selected<br />

Nederlands 2<br />

Dutch selected<br />

Deutsch 3 German selected<br />

Français 4 French selected<br />

Español 5 Spanish selected<br />

Руccкий 6 Russian selected<br />

Italiano 7 Italian selected<br />

Česky 8 Czech selected<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43011<br />

Profibus slot/index 168/170<br />

Fieldbus format<br />

Modbus format<br />

120 2nd Line<br />

StpA<br />

Current<br />

211 Language<br />

Stp A English<br />

UInt<br />

UInt<br />

Select Motor [212]<br />

This menu is used if you have more than one motor in<br />

your application. Select the motor to define. It is possible<br />

to define up to four different motors, M1 to M4, in<br />

the VSD.<br />

Default:<br />

M1 0<br />

M2 1<br />

M3 2<br />

M4 3<br />

M1<br />

Communication information<br />

Drive Mode [213]<br />

This menu is used to set the control mode for the<br />

motor. Settings for the reference signals and read-outs<br />

is made in menu Process source, [321].<br />

• V/Hz Mode, output speed [721] in rpm, is used<br />

when several motors in parallel of different type or<br />

size are connected or if parallel motors are not<br />

mechanically connected to the load.<br />

Communication information<br />

Motor Data is connected to selected<br />

motor.<br />

Modbus Instance no/DeviceNet no: 43012<br />

Profibus slot/index 168/171<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

V/Hz 2<br />

V/Hz<br />

UInt<br />

UInt<br />

All control loops are related to frequency<br />

control.<br />

NOTE: All the functions and menu readouts<br />

with regard to speed and rpm (e.g.<br />

Max Speed = 1500 rpm, Min Speed=0<br />

rpm, etc.) remain speed and rpm,<br />

although they represent the output<br />

frequency.<br />

Modbus Instance no/DeviceNet no: 43013<br />

Profibus slot/index 168/172<br />

Fieldbus format<br />

Modbus format<br />

212 Select Motor<br />

StpA<br />

M1<br />

213 Drive Mode<br />

StpA<br />

V/Hz<br />

UInt<br />

UInt<br />

60 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Reference control [214]<br />

To control the speed of the motor, the VSD needs a<br />

reference signal. This reference signal can be controlled<br />

by a remote source from the installation, the<br />

keyboard of the VSD, or by serial or fieldbus communication.<br />

Select the required reference control for the<br />

application in this menu.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Option 3<br />

Remote<br />

Communication information<br />

The reference signal comes from the analogue<br />

inputs of the terminal strip (terminals<br />

1-22).<br />

Reference is set with the + and - keys on<br />

the Control Panel. Can only be done in<br />

menu Set/View reference [310].<br />

The reference is set via the serial communication<br />

(RS 485, Fieldbus.) See section<br />

section 10.5 for further information.<br />

The reference is set via an option. Only<br />

available if the option can control the reference<br />

value.<br />

NOTE: If the reference is switched from Remote to<br />

Keyboard, the last remote reference value will be the<br />

default value for the control panel.<br />

Modbus Instance no/DeviceNet no: 43014<br />

Profibus slot/index 168/173<br />

Fieldbus format<br />

Modbus format<br />

214 Ref Control<br />

StpA<br />

Remote<br />

UInt<br />

UInt<br />

Run/Stop Control [215]<br />

This function is used to select the source for run and<br />

stop commands. Start/stop via analogue signals can<br />

be achieved by combining a few functions. This is<br />

described in the Chapter 7. page 35.<br />

215 Run/Stp Ctrl<br />

StpA<br />

Remote<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43015<br />

Profibus slot/index 168/174<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Reset Contmrol [216]<br />

When the VSD is stopped due to a failure, a reset<br />

command is required to make it possible to restart the<br />

VSD. Use this function to select the source of the reset<br />

signal.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Remote +<br />

Keyb<br />

Com +<br />

Keyb<br />

Rem+Keyb<br />

+Com<br />

3<br />

4<br />

5<br />

Option 6<br />

Remote<br />

Communication information<br />

216 Reset Ctrl<br />

StpA<br />

Remote<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22).<br />

The command comes from the command<br />

keys of the Control Panel.<br />

The command comes from the serial<br />

communication (RS 485, Fieldbus).<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22) or the<br />

keyboard.<br />

The command comes from the serial<br />

communication (RS485, Fieldbus) or the<br />

keyboard.<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22), the<br />

keyboard or the serial communication<br />

(RS485, Fieldbus).<br />

The command comes from an option.<br />

Only available if the option can control<br />

the reset command.<br />

Modbus Instance no/DeviceNet no: 43016<br />

Profibus slot/index 168/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Remote<br />

Remote 0<br />

The start/stop signal comes from the digital<br />

inputs of the terminal strip (terminals 1-22).<br />

Keyboard 1 Start and stop is set on the Control Panel.<br />

Com 2<br />

The start/stop is set via the serial communication<br />

(RS 485, Fieldbus.) See Fieldbus or<br />

RS232/485 option <strong>manual</strong> for details.<br />

Option 3 The start/stop is set via an option.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 61


Local/Remote key function [217]<br />

The Toggle key on the keyboard, see section 9.2.5,<br />

page 48, has two functions and is activated in this<br />

menu. As default the key is just set to operate as a<br />

Toggle key that moves you easily through the menus in<br />

the toggle loop. The second function of the key allows<br />

you to easily swap between Local and normal operation<br />

(set up via [214] and [215]) of the VSD. Local<br />

mode can also be activated via a digital input. If both<br />

[2171] and [2172] is set to Standard, the function is<br />

disabled.<br />

Default:<br />

Standard<br />

Standard 0 Local reference control set via [214]<br />

Remote 1 Local reference control via remote<br />

Keyboard 2 Local reference control via keyboard<br />

Com 3 Local reference control via communication<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43009<br />

Profibus slot/index 168/168<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

2171 LocRefCtrl<br />

StpA<br />

Standard<br />

UInt<br />

UInt<br />

2172 LocRunCtrl<br />

StpA<br />

Standard<br />

Standard<br />

Standard 0 Local Run/Stop control set via [215]<br />

Remote 1 Local Run/Stop control via remote<br />

Keyboard 2 Local Run/Stop control via keyboard<br />

Com 3 Local Run/Stop control via communication<br />

Lock Code [218]<br />

To prevent the keyboard being used or to change the<br />

setup of the VSD and/or process control, the keyboard<br />

can be locked with a password. This menu,<br />

Lock Code [218], is used to lock and unlock the keyboard.<br />

Enter the password “291” to lock/unlock the<br />

keyboard operation. If the keyboard is not locked<br />

(default) the selection “Lock Code?” will appear. If the<br />

keyboard is already locked, the selection “Unlock<br />

Code?” will appear.<br />

When the keyboard is locked, parameters can be<br />

viewed but not changed. The reference value can be<br />

changed and the VSD can be started, stopped and<br />

reversed if these functions are set to be controlled<br />

from the keyboard.<br />

Default: 0<br />

Range: 0–9999<br />

Rotation [219]<br />

218 Lock Code<br />

Stp 0<br />

A<br />

Overall limitation of motor rotation direction<br />

This function limits the overall rotation, either to left or<br />

right or both directions. This limit is prior to all other<br />

selections, e.g.: if the rotation is limited to right, a Run-<br />

Left command will be ignored. To define left and right<br />

rotation we assume that the motor is connected U-U,<br />

V-V and W-W.<br />

Speed Direction and Rotation<br />

The speed direction can be controlled by:<br />

• RunR/RunL commands on the control panel.<br />

• RunR/RunL commands on the terminal strip<br />

(terminals 1-22).<br />

• Via the serial interface options.<br />

• The parameter sets.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43010<br />

Profibus slot/index 168/169<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Right<br />

Left<br />

Fig. 48 Rotation<br />

62 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


In this menu you set the general rotation for the motor.<br />

Default:<br />

R 1<br />

L 2<br />

R + L<br />

Communication information<br />

11.2.2 Remote Signal Level/Edge<br />

[21A]<br />

In this menu you select the way to control the inputs<br />

for RunR, RunL, Stop and Reset that are operated via<br />

the digital inputs on the terminal strip. The inputs are<br />

default set for level-control, and will be active as long<br />

as the input is made and kept high. When edge-control<br />

is selected, the input will be activated by the low to<br />

high transition of the input.<br />

Communication information<br />

Speed direction is limited to right rotation.<br />

The input and key RunL are disabled.<br />

Speed direction is limited to left rotation.<br />

The input and key RunR are disabled.<br />

R+L 3 Both speed directions allowed.<br />

Modbus Instance no/DeviceNet no: 43019<br />

Profibus slot/index 168/178<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Level 0<br />

Edge 1<br />

Level<br />

UInt<br />

UInt<br />

The inputs are activated or deactivated<br />

by a continuous high or low signal. Is<br />

commonly used if, for example, a PLC is<br />

used to operate the VSD.<br />

The inputs are activated by a transition;<br />

for Run and Reset from “low” to “high”,<br />

for Stop from “high” to “low”.<br />

Modbus Instance no/DeviceNet no: 43020<br />

Profibus slot/index 168/179<br />

Fieldbus format<br />

Modbus format<br />

219 Rotation<br />

StpA<br />

UInt<br />

UInt<br />

R+L<br />

21A Level/Edge<br />

StpA<br />

Level<br />

NOTE: Edge controlled inputs can comply with the<br />

Machine Directive (see the Chapter 8. page 45) if the<br />

inputs are directly used to start and stop the machine.<br />

11.2.3 Mains supply voltage [21B]<br />

WARNING: This menu must be set according<br />

to the VSD product lable and the supply<br />

voltage used. Wrong setting might damage<br />

the VSD or brake resistor.<br />

In this menu the nominal mains supply voltage connected<br />

to the VSD can be selected. The setting will be<br />

valid for all parameter sets. The default setting, Not<br />

defined, is never selectable and is only visible until a<br />

new value is selected.<br />

Once the supply voltage is set, this selection will not<br />

be affected by the Load Default command [243].<br />

Brake chopper activation level is adjusted using the<br />

setting of [21B].<br />

NOTE: The setting is affected by the Load from CP<br />

command [245] and if loading parameter file via<br />

EmoSoftCom.<br />

Default:<br />

Not Defined 0<br />

Not defined<br />

Communication information<br />

Inverter default value used. Only valid if<br />

this parameter is never set.<br />

220-240 V 1 Only valid for <strong>SX</strong>-V-4 (400V)<br />

380-415 V 3<br />

Only valid for <strong>SX</strong>-V-4 (400V)<br />

440-480 V 4 Only valid for <strong>SX</strong>-V-4 (400V)<br />

500-525 V 5 Only valid for <strong>SX</strong>-V-6 (690V)<br />

550-600 V 6 Only valid for <strong>SX</strong>-V-6 (690V)<br />

660-690 V 7 Only valid for <strong>SX</strong>-V-6 (690V)<br />

Modbus Instance no/DeviceNet no: 43381<br />

Profibus slot/index 170/30<br />

Fieldbus format<br />

Modbus format<br />

21B Supply Volts<br />

StpA<br />

Not defined<br />

UInt<br />

UInt<br />

!<br />

CAUTION: Level controlled inputs DO NOT<br />

comply with the Machine Directive if the inputs<br />

are directly used to start and stop the machine.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 63


11.2.4 Motor Data [220]<br />

In this menu you enter the motor data to adapt the<br />

VSD to the connected motor. This will increase the<br />

control accuracy as well as different read-outs and<br />

analogue output signals.<br />

Motor M1 is selected as default and motor data<br />

entered will be valid for motor M1. If you have more<br />

than one motor you need to select the correct motor<br />

in menu [212] before entering motor data.<br />

NOTE: The parameters for motor data cannot be<br />

changed during run mode.<br />

NOTE: The default settings are for a standard 4-pole<br />

motor according to the nominal power of the VSD.<br />

NOTE: Parameter set cannot be changed during run if<br />

the sets is set for different motors.<br />

NOTE: Motor Data in the different sets M1 to M4 can be<br />

revert to default setting in menu [243], Default>Set.<br />

Motor Frequency[222]<br />

Set the nominal motor frequency<br />

Default:<br />

Range:<br />

Resolution<br />

<br />

50 Hz<br />

24-300 Hz<br />

1 Hz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43042<br />

Profibus slot/index 168/201<br />

Fieldbus format<br />

Modbus format<br />

222 Motor Freq<br />

Stp M1: 50Hz<br />

A<br />

Long, 1=1 Hz<br />

EInt<br />

Motor Power [223]<br />

Set the nominal motor power. If parallel motors, set<br />

the value as sum of motors power<br />

WARNING: Enter the correct motor data to<br />

prevent dangerous situations and assure<br />

correct control.<br />

<br />

223 Motor Power<br />

Stp M1: (P NOM )kW<br />

A<br />

Motor Voltage [221]<br />

Set the nominal motor voltage.<br />

Default:<br />

Range:<br />

Resolution<br />

P NOM VSD<br />

1W-120% x P NOM<br />

3 significant digits<br />

Default:<br />

Range:<br />

Resolution<br />

<br />

400 V for <strong>SX</strong>-V -4<br />

690 V for <strong>SX</strong>-V -6<br />

100-700 V<br />

1 V<br />

NOTE: The Motor Volts value will always be stored as a 3<br />

digit value with a resolution of 1 V.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43041<br />

Profibus slot/index 168/200<br />

Fieldbus format<br />

Modbus format<br />

221 Motor Volts<br />

Stp M1: 400V<br />

A<br />

Long,<br />

1=0.1 V<br />

EInt<br />

NOTE: The Motor Power value will always be stored as a<br />

3 digit value in W up to 999 W and in kW for all higher<br />

powers.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43043<br />

Profibus slot/index 168/202<br />

Fieldbus format<br />

Modbus format<br />

P NOM is the nominal VSD power.<br />

Long,<br />

1=1 W<br />

EInt<br />

Motor Current [224]<br />

Set the nominal motor current. If parallel motors set<br />

the sum of the motor currents.<br />

<br />

224 Motor Curr<br />

Stp M1: (I NOM )A<br />

A<br />

Default: I NOM (see note section 11.2.4, page 64)<br />

64 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Range:<br />

25 - 150% x I NOM<br />

Range: 2-144<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43044<br />

Profibus slot/index 168/203<br />

Fieldbus format<br />

Modbus format<br />

I NOM is the nominal VSD current<br />

Motor Speed [225]<br />

Set the nominal asynchronous motor speed.<br />

<br />

Communication information<br />

Long,<br />

1=0.1 A<br />

EInt<br />

Default: n MOT (see note section 11.2.4, page 64)<br />

Range: 50 - 18000 rpm<br />

Resolution 1 rpm, 4 sign digits<br />

WARNING: Do NOT enter a synchronous (noload)<br />

motor speed.<br />

NOTE: Maximum speed [343] is not automatically<br />

changed when the motor speed is changed.<br />

NOTE: Entering a wrong, too low value can cause a<br />

dangerous situation for the driven application due to<br />

high speeds.<br />

Modbus Instance no/DeviceNet no: 43045<br />

Profibus slot/index 168/204<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

1=1 rpm<br />

UInt<br />

Motor Poles [226]<br />

When the nominal speed of the motor is 500 rpm,<br />

the additional menu for entering the number of poles,<br />

[226], appears automatically. In this menu the actual<br />

pole number can be set which will increase the control<br />

accuracy of the VSD.<br />

<br />

Default: 4<br />

225 Motor Speed<br />

StpA<br />

M1: (n MOT )rpm<br />

226 Motor Poles<br />

Stp M1: 4<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43046<br />

Profibus slot/index 168/205<br />

Fieldbus format<br />

Modbus format<br />

Motor Cos [227]<br />

Set the nominal Motor cosphi (power factor).<br />

Default:<br />

Range: 0.50 - 1.00<br />

Communication information<br />

Motor ventilation [228]<br />

Parameter for setting the type of motor ventilation.<br />

Affects the characteristics of the I 2 t motor protection<br />

by lowering the actual overload current at lower<br />

speeds.<br />

Communication information<br />

Long, 1=1 pole<br />

EInt<br />

cos NOM (see note section 11.2.4, page<br />

64)<br />

Modbus Instance no/DeviceNet no: 43047<br />

Profibus slot/index 168/206<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Default:<br />

<br />

<br />

Self<br />

None 0 Limited I 2 t overload curve.<br />

EInt<br />

Self 1 Normal I2 t overload curve. Means that the<br />

motor stands lower current at low speed.<br />

Forced 2<br />

Expanded I 2 t overload curve. Means that the<br />

motor stands almost the whole current also<br />

at lower speed.<br />

Modbus Instance no/DeviceNet no: 43048<br />

Profibus slot/index 168/207<br />

Fieldbus format<br />

Modbus format<br />

227 Motor Cos<br />

Stp M1: A<br />

228 Motor Vent<br />

Stp M1: Self<br />

A<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 65


When the motor has no cooling fan, None is selected<br />

and the current level is limited to 55% of rated motor<br />

current.<br />

With a motor with a shaft mounted fan, Self is selected<br />

and the current for overload is limited to 87% from<br />

20% of synchronous speed. At lower speed, the overload<br />

current allowed will be smaller.<br />

When the motor has an external cooling fan, Forced is<br />

selected and the overload current allowed starts at<br />

90% from rated motor current at zero speed, up to<br />

nominal motor current at 70% of synchronous speed.<br />

Fig. 49 shows the characteristics with respect for<br />

Nominal Current and Speed in relation to the motor<br />

ventilation type selected.<br />

xI nom for I 2 t<br />

Default:<br />

<br />

Off, see Note<br />

Off 0 Not active<br />

Short 1<br />

Communication information<br />

Parameters are measured with injected DC<br />

current. No rotation of the shaft will occur.<br />

Modbus Instance no/DeviceNet no: 43049<br />

Profibus slot/index 168/208<br />

Fieldbus format<br />

Modbus format<br />

229 Motor ID-Run<br />

Stp M1: Off<br />

A<br />

UInt<br />

UInt<br />

1.00<br />

0.90<br />

0.87<br />

0.55<br />

Forced<br />

Self<br />

None<br />

NOTE: To run the VSD it is not mandatory for the ID RUN<br />

to be executed, but without it the performance will not<br />

be optimal.<br />

NOTE: If the ID Run is aborted or not completed the<br />

message “Interrupted!” will be displayed. The previous<br />

data do not need to be changed in this case. Check that<br />

the motor data are correct.<br />

0.20 0.70 2.00<br />

xSync Speed<br />

Fig. 49 I 2 t curves<br />

Motor Identification Run [229]<br />

This function is used when the VSD is put into operation<br />

for the first time. To achieve an optimal control<br />

performance, fine tuning of the motor parameters<br />

using a motor ID run is needed. During the test run the<br />

display shows “Test Run” blinking.<br />

To activate the Motor ID run, select “Short” and press<br />

Enter. Then press RunL or RunR on the control panel<br />

to start the ID run. If menu [219] Rotation is set to L<br />

the RunR key is inactive and vice versa. The ID run<br />

can be aborted by giving a Stop command via the<br />

control panel or Enable input. The parameter will automatically<br />

return to OFF when the test is completed.<br />

The message “Test Run OK!” is displayed. Before the<br />

VSD can be operated normally again, press the STOP/<br />

RESET key on the control panel.<br />

During the Short ID run the motor shaft does not<br />

rotate. The VSD measures the rotor and stator resistance.<br />

.<br />

Motor Sound [22A]<br />

Sets the sound characteristic of the VSD output stage<br />

by changing the switching frequency and/or pattern.<br />

Generally the motor noise will go down at higher<br />

switching frequencies.<br />

Default:<br />

Communication information<br />

F<br />

E 0 Switching frequency 1.5 kHz<br />

F 1 Switching frequency 3 kHz<br />

G 2 Switching frequency 6 kHz<br />

H 3<br />

Advanced 4<br />

Switching frequency 6 kHz, random frequency<br />

(+750 Hz)<br />

Switching frequency and PWM mode<br />

setup via [22E]<br />

Modbus Instance no/DeviceNet no: 43050<br />

Profibus slot/index 168/209<br />

Fieldbus format<br />

Modbus format<br />

<br />

22A Motor Sound<br />

Stp M1: F<br />

A<br />

UInt<br />

UInt<br />

66 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


NOTE: At switching frequencies >3 kHz derating may<br />

become necessary. If the heat sink temperature gets too<br />

high the switching frequency is decreased to avoid<br />

tripping. This is done automatically in the VSD. The<br />

default switching frequency is 3 kHz.<br />

Encoder Feedback [22B]<br />

Only visible if the Encoder option board is installed.<br />

This parameter enables or disables the encoder feedback<br />

from the motor to the VSD.<br />

Default: Off<br />

On 0 Encoder feedback enabled<br />

Off 1 Encoder feedback disabled<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43051<br />

Profibus slot/index 168/210<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Encoder Pulses [22C]<br />

Only visible if the Encoder option board is installed.<br />

This parameter describes the number of pulses per<br />

rotation for your encoder, i.e. it is encoder specific. For<br />

more information please see the encoder <strong>manual</strong>.<br />

<br />

<br />

Default: 1024<br />

Range: 5–16384<br />

Communication information<br />

22B Encoder<br />

Stp M1: Off<br />

A<br />

22C Enc Pulses<br />

Stp M1: 1024<br />

A<br />

Modbus Instance no/DeviceNet no: 43052<br />

Profibus slot/index 168/211<br />

Fieldbus format<br />

Long, 1=1 pulse<br />

Modbus format<br />

EInt<br />

speed [712]. If you get the wrong sign for the value,<br />

swap encoder input A and B.<br />

Unit:<br />

Resolution:<br />

rpm<br />

Communication information<br />

Motor PWM [22E]<br />

Menus for advanced setup of motor<br />

modulation properties PWM = Pulse Width<br />

Modulation).<br />

PWM Fswitch [22E1]<br />

Set the PWM switching frequency of the VSD<br />

Communication information<br />

speed measured via the encoder<br />

Modbus Instance no/DeviceNet no: 42911<br />

Profibus slot/index 168/70<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Range<br />

Resolution<br />

<br />

3.00 kHz<br />

1.50 - 6.00kHz<br />

0.01kHz<br />

Int<br />

Int<br />

Modbus Instance no/DeviceNet no: 43053<br />

Profibus slot/index 168/212<br />

Fieldbus format<br />

Modbus format<br />

22D Enc Speed<br />

Stp M1: XXrpm<br />

A<br />

22E1 PWM Fswitch<br />

Stp 3.00kHz<br />

A<br />

Long, 1=1Hz<br />

EInt<br />

Encoder Speed [22D]<br />

Only visible if the Encoder option board is installed.<br />

This parameter shows the measured motor speed. To<br />

check if the encoder is correctly installed, set Encoder<br />

feedback [22B] to Off, run the VSD at any speed and<br />

compare with the value in this menu. The value in this<br />

menu [22D] should be about the same as the motor<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 67


PWM Mode [22E2]<br />

Default:<br />

Standard<br />

Standard 0 Standard<br />

Sine Filt 1<br />

Communication information<br />

PWM Random [22E3]<br />

Communication information<br />

Sine Filter mode for use with output Sine<br />

Filters<br />

Modbus Instance no/DeviceNet no: 43054<br />

Profibus slot/index 168/213<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Off 0 Random modulation is Off.<br />

On 1<br />

UInt<br />

UInt<br />

Random modulation is active. Random frequency<br />

variation range is ± 1/8 of level set<br />

in [E22E1].<br />

Modbus Instance no/DeviceNet no: 43055<br />

Profibus slot/index 168/214<br />

Fieldbus format<br />

Modbus format<br />

22E2 PWM Mode<br />

Stp Standard<br />

A<br />

22E3 PWM Random<br />

Stp Off<br />

A<br />

UInt<br />

UInt<br />

11.2.5 Motor Protection [230]<br />

This function protects the motor against overload<br />

based on the standard IEC 60947-4-2.<br />

Motor I 2 t Type [231]<br />

The motor protection function makes it possible to<br />

protect the motor from overload as published in the<br />

standard IEC 60947-4-2. It does this using Motor I2t<br />

Current, [232] as a reference. The Motor I2t Time [233]<br />

is used to define the time behaviour of the function.<br />

The current set in [232] can be delivered infinite in<br />

time. If for instance in [233] a time of 1000 s is chosen<br />

the upper curve of Fig. 50 is valid. The value on the x-<br />

axis is the multiple of the current chosen in [232]. The<br />

time [233] is the time that an overloaded motor is<br />

switched off or is reduced in power at 1.2 times the<br />

current set in [232].<br />

Default: Trip<br />

Off 0 I 2 t motor protection is not active.<br />

Trip 1<br />

Limit 2<br />

Communication information<br />

Motor I 2 t Current [232]<br />

Sets the current limit for the motor I 2 t protection.<br />

Communication information<br />

When the I 2 t time is exceeded, the VSD will<br />

trip on “Motor I 2 t”.<br />

This mode helps to keep the <strong>inverter</strong> running<br />

when the Motor I2t function is just<br />

before tripping the VSD. The trip is<br />

replaced by current limiting with a maximum<br />

current level set by the value out of<br />

the menu [232]. In this way, if the reduced<br />

current can drive the load, the VSD continues<br />

running.<br />

Modbus Instance no/DeviceNet no: 43061<br />

Profibus slot/index 168/220<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: When Mot I2t Type=Limit, the VSD can control the<br />

speed < MinSpeed to reduce the motor current.<br />

Default:<br />

Range:<br />

100% of I MOT<br />

0–150% of I MOT<br />

Modbus Instance no/DeviceNet no: 43062<br />

Profibus slot/index 168/221<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

231 Mot I 2 t Type<br />

Stp M1: Trip<br />

A<br />

232 Mot I 2 t Curr<br />

Stp 100%<br />

A<br />

EInt<br />

NOTE: When the selection Limit is set in menu [231], the<br />

value must be above the no-load current of the motor.<br />

68 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Motor I 2 t Time [233]<br />

Sets the time of the I 2 t function. After this time the limit<br />

for the I 2 t is reached if operating with 120% of the I 2 t<br />

current value. Valid when start from 0 rpm.<br />

NOTE: Not the time constant of the motor.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43063<br />

Profibus slot/index 168/222<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

233 Mot I 2 t Time<br />

Stp M1: 60s<br />

A<br />

Default:<br />

Range:<br />

60 s<br />

60–1200 s<br />

100000<br />

10000<br />

t [s]<br />

1000<br />

1000 s (120%)<br />

100<br />

240 s (120%)<br />

480 s (120%)<br />

60 s (120%)<br />

120 s (120%)<br />

10<br />

Fig. 50 I 2 t function<br />

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

Actual output current/ I 2 t-current<br />

i / I2t-current<br />

Fig. 50 shows how the function integrates the square<br />

of the motor current according to the Mot I 2 t Curr<br />

[232] and the Mot I 2 t Time [233].<br />

When the selection Trip is set in menu [231] the VSD<br />

trips if this limit is exceeded.<br />

When the selection Limit is set in menu [231] the VSD<br />

reduces the torque if the integrated value is 95% or<br />

closer to the limit, so that the limit cannot be<br />

exceeded.<br />

NOTE: If it is not possible to reduce the current, the VSD<br />

will trip after exceeding 110% of the limit.<br />

Example<br />

In Fig. 50 the thick grey line shows the following example.<br />

• Menu [232] Mot I 2 t Curr is set to 100%.<br />

1.2 x 100% = 120%<br />

• Menu [233] Mot I 2 t Time is set to 1000 s.<br />

This means that the VSD will trip or reduce after 1000<br />

s if the current is 1.2 times of 100% nominal motor<br />

current.<br />

Thermal Protection [234]<br />

Only visible if the PTC/PT100 option board is installed.<br />

Set the PTC input for thermal protection of the motor.<br />

The motor thermistors (PTC) must comply with DIN<br />

44081/44082. Please refer to the <strong>manual</strong> for the PTC/<br />

PT100 option board.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 69


Menu [234] PTC contains functions to enable or disable<br />

the PTC input.<br />

Default:<br />

Off 0<br />

PTC 1<br />

PT100 2<br />

PTC+PT100 3<br />

Off<br />

Communication information<br />

Motor Class [235]<br />

Only visible if the PTC/PT100 option board is installed.<br />

Set the class of motor used. The trip levels for the<br />

PT100 sensor will automatically be set according to<br />

the setting in this menu.<br />

Communication information<br />

PTC and PT100 motor protection are disabled.<br />

Enables the PTC protection of the motor<br />

via the insulated option board.<br />

Enables the PT100 protection for the<br />

motor via the insulated option board.<br />

Enables the PTC protection as well as the<br />

PT100 protection for the motor via the<br />

insulated option board.<br />

Modbus Instance no/DeviceNet no: 43064<br />

Profibus slot/index 168/223<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: PTC option and PT100 selections can only be<br />

selected when the option board is mounted.<br />

Default:<br />

A 100C 0<br />

E 115C 1<br />

B 120C 2<br />

F 140C 3<br />

F Nema 145C 4<br />

H 165C 5<br />

F 140C<br />

Modbus Instance no/DeviceNet no: 43065<br />

Profibus slot/index 168/224<br />

Fieldbus format<br />

Modbus format<br />

234 Thermal Prot<br />

StpA<br />

Off<br />

235 Mot Class<br />

StpA<br />

F 140C<br />

UInt<br />

UInt<br />

NOTE: This menu is only valid for PT 100.<br />

PT100 Inputs [236]<br />

Sets which of PT100 inputs that should be used for<br />

thermal protection. Deselecting not used PT100<br />

inputs on the PTC/PT100 option board in order to<br />

ignore those inputs, i.e. extra external wiring is not<br />

needed if port is not used.<br />

Default: PT100 1+2+3<br />

Selection:<br />

Communication information<br />

PT100 1, PT100 2, PT100 1+2, PT100<br />

3, PT100 1+3, PT100 2+3, PT100<br />

1+2+3<br />

PT100 1 1 Channel 1 used for PT100 protection<br />

PT100 2 2 Channel 2 used for PT100 protection<br />

PT100 1+2 3 Channel 1+2 used for PT100 protection<br />

PT100 3 4 Channel 3 used for PT100 protection<br />

PT100 1+3 5 Channel 1+3 used for PT100 protection<br />

PT100 2+3 6 Channel 2+3 used for PT100 protection<br />

PT100 1+2+3 7<br />

Channel 1+2+3 used for PT100 protection<br />

Modbus Instance no/DeviceNet no: 43066<br />

Profibus slot/index 168/225<br />

Fieldbus format<br />

Modbus format<br />

236 PT100 Inputs<br />

Stp PT100 1+2+3<br />

A<br />

UInt<br />

UInt<br />

NOTE: This menu is only valid for PT 100 thermal<br />

protection.<br />

Motor PTC [237]<br />

In this menu the internal motor PTC hardware option is<br />

enabled. This PTC input complies with DIN 44081/<br />

44082. Please refer to the <strong>manual</strong> for the PTC/PT100<br />

option board for electrical specification.<br />

This menu is only visible if a PTC (or resistor


2. Enable input by setting menu [237] Motor<br />

PTC=On.<br />

If enabled and


The active set can be viewed with function [721] FI<br />

status.<br />

NOTE: Parameter set cannot be changed during run if<br />

this also would imply a change of the motor set (M2-<br />

M4).<br />

Copy Set [242]<br />

This function copies the content of a parameter set<br />

into another parameter set.<br />

Default: A>B<br />

A>B 0 Copy set A to set B<br />

A>C 1 Copy set A to set C<br />

A>D 2 Copy set A to set D<br />

B>A 3 Copy set B to set A<br />

B>C 4 Copy set B to set C<br />

B>D 5 Copy set B to set D<br />

C>A 6 Copy set C to set A<br />

C>B 7 Copy set C to set B<br />

C>D 8 Copy set C to set D<br />

D>A 9 Copy set D to set A<br />

D>B 10 Copy set D to set B<br />

D>C 11 Copy set D to set C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43021<br />

Profibus slot/index 168/180<br />

Fieldbus format<br />

Modbus format<br />

242 Copy Set<br />

StpA<br />

A>B<br />

UInt<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into the other set.<br />

A>B means that the content of parameter set A is<br />

copied into parameter set B.<br />

Load Default Values Into Set [243]<br />

With this function three different levels (factory settings)<br />

can be selected for the four parameter sets.<br />

When loading the default settings, all changes made in<br />

the software are set to factory settings. This function<br />

also includes selections for loading default settings to<br />

the four different Motor Data Sets.<br />

Default:<br />

A 0<br />

B 1<br />

C 2<br />

D 3<br />

ABCD 4<br />

Factory 5<br />

M1 6<br />

M2 7<br />

M3 8<br />

M4 9<br />

M1234 10<br />

Communication information<br />

A<br />

Only the selected parameter set will revert<br />

to its default settings.<br />

All four parameter sets will revert to the<br />

default settings.<br />

All settings, except [211], [221]-[22D],<br />

[261], [3A1] and [923], will revert to the<br />

default settings.<br />

Only the selected motor set will revert to its<br />

default settings.<br />

All four motor sets will revert to default settnings.<br />

Modbus Instance no/DeviceNet no: 43023<br />

Profibus slot/index 168/182<br />

Fieldbus format<br />

Modbus format<br />

243 Default>Set<br />

StpA<br />

UInt<br />

UInt<br />

NOTE: Trip log hour counter and other VIEW ONLY menus<br />

are not regarded as settings and will be unaffected.<br />

NOTE: If “Factory” is selected, the message “Sure?” is<br />

displayed. Press the + key to display “Yes” and then<br />

Enter to confirm.<br />

A<br />

NOTE: The parameters in menu [220], Motor data, are<br />

not affected by loading defaults when restoring<br />

parameter sets A–D.<br />

72 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Copy All Settings to Control Panel [244]<br />

All the settings can be copied into the control panel<br />

including the motor data. Start commands will be<br />

ignored during copying.<br />

Default:<br />

No Copy<br />

No Copy 0 Nothing will be copied<br />

Copy 1 Copy all settings<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43024<br />

Profibus slot/index 168/183<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into control panel memory set.<br />

Load Settings from Control Panel [245]<br />

This function can load all four parameter sets from the<br />

control panel to the VSD. Parameter sets from the<br />

source VSD are copied to all parameter sets in the target<br />

VSD, i.e. A to A, B to B, C to C and D to D.<br />

Start commands will be ignored during loading.<br />

Default:<br />

No Copy<br />

No Copy 0 Nothing will be loaded.<br />

A 1 Data from parameter set A is loaded.<br />

B 2 Data from parameter set B is loaded.<br />

C 3 Data from parameter set C is loaded.<br />

D 4 Data from parameter set D is loaded.<br />

ABCD 5<br />

A+Mot 6<br />

B+Mot 7<br />

C+Mot 8<br />

D+Mot 9<br />

<br />

<br />

ABCD+Mot 10<br />

244 Copy to CP<br />

StpA<br />

No Copy<br />

245 Load from CP<br />

StpA<br />

No Copy<br />

Data from parameter sets A, B, C and D are<br />

loaded.<br />

Parameter set A and Motor data are<br />

loaded.<br />

Parameter set B and Motor data are<br />

loaded.<br />

Parameter set C and Motor data are<br />

loaded.<br />

Parameter set D and Motor data are<br />

loaded.<br />

Parameter sets A, B, C, D and Motor data<br />

are loaded.<br />

M1 11 Data from motor 1 is loaded.<br />

M2 12 Data from motor 2 is loaded.<br />

M3 13 Data from motor 3 is loaded.<br />

M4 14 Data from motor 4 is loaded.<br />

M1M2M3<br />

M4<br />

15 Data from motor 1, 2, 3 and 4 are loaded.<br />

All 16 All data is loaded from the control panel.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43025<br />

Profibus slot/index 168/184<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: Loading from the control panel will not affect the<br />

value in menu [310].<br />

11.2.7 Trip Autoreset/Trip Conditions<br />

[250]<br />

The benefit of this feature is that occasional trips that<br />

do not affect the process will be automatically reset.<br />

Only when the failure keeps on coming back, recurring<br />

at defined times and therefore cannot be solved by the<br />

VSD, will the unit give an alarm to inform the operator<br />

that attention is required.<br />

For all trip functions that can be activated by the user<br />

you can select to control the motor down to zero<br />

speed according to set deceleration ramp to avoid<br />

water hammer.<br />

Also see section 12.2, page 158.<br />

Autoreset example:<br />

In an application it is known that the main supply voltage<br />

sometimes disappears for a very short time, a socalled<br />

“dip”. That will cause the VSD to trip an “Undervoltage<br />

alarm”. Using the Autoreset function, this trip<br />

will be acknowledged automatically.<br />

• Enable the Autoreset function by making the reset<br />

input continuously high.<br />

• Activate the Autoreset function in the menu [251],<br />

Number of trips.<br />

• Select in menus [252] to [25N] the Trip condition<br />

that are allowed to be automatically reset by the<br />

Autoreset function after the set delay time has<br />

expired.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 73


Number of Trips [251]<br />

Any number set above 0 activates the Autoreset. This<br />

means that after a trip, the VSD will restart automatically<br />

according to the number of attempts selected.<br />

No restart attempts will take place unless all conditions<br />

are normal.<br />

If the Autoreset counter (not visible) contains more<br />

trips than the selected number of attempts, the<br />

Autoreset cycle will be interrupted. No Autoreset will<br />

then take place.<br />

If there are no trips for more than 10 minutes, the<br />

Autoreset counter decreases by one.<br />

If the maximum number of trips has been reached, the<br />

trip message hour counter is marked with an “A”.<br />

If the Autoreset is full then the VSD must be reset by a<br />

normal Reset.<br />

Example:<br />

• Autoreset = 5<br />

• Within 10 minutes 6 trips occur<br />

• At the 6th trip there is no Autoreset, because the<br />

Autoreset trip log contains 5 trips already.<br />

• To reset, apply a normal reset: set the reset input<br />

high to low and high again to maintain the Autoreset<br />

function. The counter is reset.<br />

Default:<br />

Range:<br />

0 (no Autoreset)<br />

0–10 attempts<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43071<br />

Profibus slot/index 168/230<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Over temperature [252]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

251 No of Trips<br />

Stp 0<br />

A<br />

252 Overtemp<br />

StpA<br />

Off<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43072<br />

Profibus slot/index 168/231<br />

Fieldbus format<br />

Modbus format<br />

Overvolt D [253]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Overvolt G [254]<br />

Delay time starts counting when the fault is gone<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Modbus Instance no/DeviceNet no: 43075<br />

Profibus slot/index 168/234<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

253 Overvolt D<br />

Stp A<br />

Off<br />

254 Overvolt G<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43076<br />

74 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Profibus slot/index 168/235<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Overvolt [255]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43077<br />

Profibus slot/index 168/236<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Motor Lost [256]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

NOTE: Only visible when Motor Lost is selected.<br />

Communication information<br />

255 Overvolt<br />

Stp A<br />

Off<br />

256 Motor Lost<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43083<br />

Profibus slot/index 168/242<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Locked Rotor [257]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43086<br />

Profibus slot/index 168/245<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Power Fault [258]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43087<br />

Profibus slot/index 168/246<br />

Fieldbus format<br />

Modbus format<br />

257 Locked Rotor<br />

Stp A<br />

Off<br />

258 Power Fault<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Undervoltage [259]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

259 Undervoltage<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 75


Communication information<br />

Modbus Instance no/DeviceNet no: 43088<br />

Profibus slot/index 168/247<br />

Fieldbus format<br />

Modbus format<br />

Motor I 2 t [25A]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43073<br />

Profibus slot/index 168/232<br />

Fieldbus format<br />

Modbus format<br />

25A Motor I 2 t<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

Off<br />

PT100 [25C]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43078<br />

Profibus slot/index 168/237<br />

Fieldbus format<br />

Modbus format<br />

25C PT100<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

PT100 Trip Type [25D]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25D PT100 TT<br />

Stp A Trip<br />

Off<br />

Motor I 2 t Trip Type [25B]<br />

Select the preferred way to react to a Motor I 2 t trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

25B Motor I 2 t TT<br />

Stp A Trip<br />

Default:<br />

Trip<br />

Trip 0 The motor will trip<br />

Deceleration 1 The motor will decelerate<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43074<br />

Profibus slot/index 168/233<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43079<br />

Profibus slot/index 168/238<br />

Fieldbus format<br />

Modbus format<br />

Uint<br />

UInt<br />

PTC [25E]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25E PTC<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

76 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Selection:<br />

Same as menu [25B]<br />

Modbus Instance no/DeviceNet no: 43084<br />

Profibus slot/index 168/243<br />

Fieldbus format<br />

Modbus format<br />

PTC Trip Type [25F]<br />

Select the preferred way to react to a PTC trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43085<br />

Profibus slot/index 168/244<br />

Fieldbus format<br />

Modbus format<br />

25F PTC TT<br />

Stp A<br />

Trip<br />

UInt<br />

UInt<br />

External Trip [25G]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43081<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication Error [25I]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43089<br />

Profibus slot/index 168/248<br />

Fieldbus format<br />

Modbus format<br />

25I Com Error<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25G Ext Trip<br />

Stp A<br />

Off<br />

Communication Error Trip Type [25J]<br />

Select the preferred way to react to a communication<br />

trip.<br />

25J Com Error TT<br />

Stp A Trip<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43080<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

External Trip Type [25H]<br />

Select the preferred way to react to an alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43090<br />

Profibus slot/index 168/249<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

25H Ext Trip TT<br />

Stp A Trip<br />

Trip<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 77


Min Alarm [25K]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25K Min Alarm<br />

Stp A<br />

Off<br />

Profibus slot/index 168/252<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Max Alarm Trip Type [25N]<br />

Select the preferred way to react to a max alarm trip.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Default:<br />

Selection:<br />

25N Max Alarm TT<br />

Stp A Trip<br />

Trip<br />

Same as menu [25B]<br />

Modbus Instance no/DeviceNet no: 43091<br />

Profibus slot/index 168/250<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Min Alarm Trip Type [25L]<br />

Select the preferred way to react to a min alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43092<br />

Profibus slot/index 168/251<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Max Alarm [25M]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

25L Min Alarm TT<br />

Stp A Trip<br />

25M Max Alarm<br />

StpA<br />

Off<br />

Modbus Instance no/DeviceNet no: 43093<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43094<br />

Profibus slot/index 168/253<br />

Fieldbus format<br />

Modbus format<br />

Over current F [25O]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43082<br />

Profibus slot/index 168/241<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Pump [25P]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

25O Over curr F<br />

Stp A<br />

Off<br />

25P Pump<br />

Stp A<br />

Off<br />

78 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43095<br />

Profibus slot/index 168/254<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Over Speed [25Q]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25Q Over speed<br />

Stp A<br />

Off<br />

External Motor Trip Type [25S]<br />

Select the preferred way to react to an alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43098<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

Modbus format<br />

25S Ext Mot TT<br />

Stp A Trip<br />

UInt<br />

UInt<br />

Liquid cooling low level [25T]<br />

Delay time starts counting when the fault disappears.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43096<br />

Profibus slot/index 169/0<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25T LC Level<br />

Stp A<br />

Off<br />

External Motor Temperature [25R]<br />

Delay time starts counting when the fault disappears.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43097<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Modbus format<br />

25R Ext Mot Temp<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43099<br />

Profibus slot/index 169/3<br />

Fieldbus format<br />

Modbus format<br />

Liquid Cooling Low level Trip Type [25U]<br />

Select the preferred way to react to an alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43100<br />

Profibus slot/index 169/4<br />

Fieldbus format<br />

25U LC Level TT<br />

Stp A Trip<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 79


Modbus format<br />

UInt<br />

Brake Fault [25V]<br />

Select the preferred way to react to an alarm trip, activate<br />

auto reset and specify delay time.<br />

Default Off<br />

25V Brk Fault<br />

Stp A<br />

Off<br />

Off 0 Autoreset not activated.<br />

1 - 3600s 1 - 3600s Brake fault auto reset delay time.<br />

11.2.8 Serial Communication [260]<br />

This function is to define the communication parameters<br />

for serial communication. There are two types of<br />

options available for serial communication, RS232/<br />

485 (Modbus/RTU) and fieldbus modules (Profibus,<br />

DeviceNet and Ethernet). For more information see<br />

chapter Serial communication and respective option<br />

<strong>manual</strong>.<br />

Comm Type [261]<br />

Select RS232/485 [262] or Fieldbus [263].<br />

<br />

261 Com Type<br />

Stp A RS232/485<br />

Default:<br />

RS232/485 0<br />

Fieldbus 1<br />

RS232/485<br />

RS232/485 selected<br />

Fieldbus selected (Profibus, DeviceNet or<br />

Modbus/TCP)<br />

NOTE: Toggling the setting in this menu will perform a<br />

soft reset (re-boot) of the Fieldbus module.<br />

RS232/485 [262]<br />

Press Enter to set up the parameters for RS232/485<br />

(Modbus/RTU) communication.<br />

262 RS232/485<br />

Stp<br />

Baud rate [2621]<br />

Set the baud rate for the communication.<br />

NOTE: This baud rate is only used for the isolated<br />

RS232/485 option.<br />

Default: 9600<br />

2400 0<br />

4800 1<br />

9600 2<br />

19200 3<br />

38400 4<br />

2621 Baudrate<br />

Stp 9600<br />

A<br />

Selected baud rate<br />

Address [2622]<br />

Enter the unit address for the VSD.<br />

NOTE: This address is only used for the isolated RS232/<br />

485 option.<br />

80 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Default: 1<br />

Selection: 1–247<br />

Fieldbus [263]<br />

Press Enter to set up the parameters for fieldbus communication.<br />

Address [2631]<br />

Enter the unit address of the VSD.<br />

Default: 62<br />

Range: Profibus 0–126, DeviceNet 0–63<br />

Node address valid for Profibus and DeviceNet<br />

Process Data Mode [2632]<br />

Enter the mode of process data (cyclic data). For further<br />

information, see the Fieldbus option <strong>manual</strong>.<br />

Default:<br />

Basic<br />

None 0 Control/status information is not used.<br />

Basic 4<br />

Extended 8<br />

4 byte process data control/status information<br />

is used.<br />

4 byte process data (same as Basic setting)<br />

+ additional proprietary protocol for<br />

advanced users is used.<br />

Read/Write [2633]<br />

Select read/write to control the <strong>inverter</strong> over a fieldbus<br />

network. For further information, see the Fieldbus<br />

option <strong>manual</strong>.<br />

Default:<br />

RW 0<br />

Read 1<br />

2622 Address<br />

Stp 1<br />

A<br />

263 Fieldbus<br />

Stp A<br />

2631 Address<br />

Stp A<br />

62<br />

2632 PrData Mode<br />

StpA<br />

Basic<br />

2633 Read/Write<br />

Stp A<br />

RW<br />

RW<br />

Valid for process data. Select R (read only) for logging process<br />

without writing process data. Select RW in normal cases<br />

to control <strong>inverter</strong>.<br />

Additional Process Values [2634]<br />

Define the number of additional process values sent in<br />

cyclic messages.<br />

Default: 0<br />

Range: 0-8<br />

Communication Fault [264]<br />

Main menu for communication fault/warning settings.<br />

For further details please see the Fieldbus option <strong>manual</strong>.<br />

Communication Fault Mode [2641]]<br />

Selects action if a communication fault is detected.<br />

Default:<br />

Off<br />

Off 0 No communication supervision.<br />

Trip 1<br />

Warning 2<br />

Communication information<br />

RS232/485 selected:<br />

The VSD will trip if there is no communication<br />

for time set in parameter [2642].<br />

Fieldbus selected:<br />

The VSD will trip if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

RS232/485 selected:<br />

The VSD will give a warning if there is no<br />

communication for time set in parameter<br />

[2642].<br />

Fieldbus selected:<br />

The VSD will give a warning if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

NOTE: Menu [214] and/or [215] must be set to COM to<br />

activate the communication fault function.<br />

Modbus Instance no/DeviceNet no: 43037<br />

Profibus slot/index 168/196<br />

Fieldbus format<br />

Modbus format<br />

2634 AddPrValues<br />

Stp 0<br />

A<br />

2641 ComFlt Mode<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 81


Communication Fault Time [2642]]<br />

Defines the delay time for the trip/warning.<br />

Default:<br />

Range:<br />

0.5 s<br />

Communication information<br />

Ethernet [265]<br />

Settings for Ethernet module (Modbus/TCP). For further<br />

information, see the Fieldbus option <strong>manual</strong>.<br />

IP Address [2651]<br />

MAC Address [2652]<br />

Subnet Mask [2653]<br />

Gateway [2654]<br />

0.1-15 s<br />

Modbus Instance no/DeviceNet no: 43038<br />

Profibus slot/index 168/197<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.1 s<br />

EInt<br />

NOTE: The Ethernet module must be re-booted to<br />

activate the below settings. For example by toggling<br />

parameter [261]. Non-initialized settings indicated by<br />

flashing display text.<br />

Default: 0.0.0.0<br />

Default:<br />

Default: 0.0.0.0<br />

Default: 0.0.0.0<br />

2642 ComFlt Time<br />

Stp 0.5s<br />

A<br />

2651 IP Address<br />

000.000.000.000<br />

2652 MAC Address<br />

Stp 000000000000<br />

A<br />

An unique number for the Ethernet module.<br />

2653 Subnet Mask<br />

0.000.000.000<br />

2654 Gateway<br />

0.000.000.000<br />

DHCP [2655]<br />

Default:<br />

Selection:<br />

Off<br />

On/Off<br />

Fieldbus Signals [266]<br />

Defines modbus mapping for additional process values.<br />

For further information, see the Fieldbus option<br />

<strong>manual</strong>.<br />

FB Signal 1 - 16 [2661]-[266G]<br />

Used to create a block of parameters which are read/<br />

written via communication. 1 to 8 read + 1 to 8 write<br />

parameters possible.<br />

Default: 0<br />

Range: 0-65535<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42801-42816<br />

Profibus slot/index 167/215-167/230<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

FB Status [269]<br />

Sub menus showing status of fieldbus parameters.<br />

Please see the Fieldbus <strong>manual</strong> for detailed information.<br />

11.3 Process and Application<br />

Parameters [300]<br />

These parameters are mainly adjusted to obtain optimum<br />

process or machine performance.<br />

The read-out, references and actual values depends<br />

on selected process source, [321}:<br />

Table 20<br />

Selected process<br />

source<br />

2655 DHCP<br />

Stp A<br />

Unit for reference and<br />

actual value<br />

Off<br />

2661 FB Signal 1<br />

Stp 0<br />

A<br />

269 FB Status<br />

Stp<br />

Speed rpm 4 digits<br />

Resolution<br />

82 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 20<br />

Selected process<br />

source<br />

Torque % 3 digits<br />

PT100 C 3 digits<br />

Frequency Hz 3 digits<br />

11.3.1 Set/View Reference Value<br />

[310]<br />

View reference value<br />

As default the menu [310] is in view operation. The<br />

value of the active reference signal is displayed. The<br />

value is displayed according to selected process<br />

source, [321] or the process unit selected in menu<br />

[322].<br />

Set reference value<br />

If the function Reference Control [214] is set to: Ref<br />

Control = Keyboard, the reference value can be set in<br />

menu Set/View Reference [310] as a normal parameter<br />

or as a motor potentiometer with the + and - keys<br />

on the control panel depending on the selection of<br />

Keyboard Reference Mode in menu [369]. The ramp<br />

times used for setting the reference value with the<br />

Normal function selected in menu [369] are according<br />

to the set Acc Time [331] and Dec Time [332]. The<br />

ramp times used for setting the reference value with<br />

the MotPot function selected in [369] are according to<br />

the set Acc MotPot [333] and Dec MotPot [334].<br />

Menu [310] displays on-line the actual reference value<br />

according to the Mode Settings in Table 20.<br />

Default:<br />

0 rpm<br />

Dependent on:<br />

Process Source [321] and Process Unit<br />

[322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 42991<br />

Profibus slot/index 168/150<br />

Fieldbus format<br />

Modbus format<br />

Unit for reference and<br />

actual value<br />

310 Set/View ref<br />

Stp<br />

0rpm<br />

Long<br />

EInt<br />

Resolution<br />

NOTE: The actual value in menu [310] is not copied, or<br />

loaded from the control panel memory when Copy Set<br />

[242], Copy to CP [244] or Load from CP [245] is<br />

performed.<br />

NOTE: If the MotPot function is used, the reference value<br />

ramp times are according to the Acc MotPot [333] and<br />

Dec MotPot [334] settings. Actual speed ramp will be<br />

limited according to Acc Time [331] and Dec Time [332].<br />

NOTE: Write access to this parameter is only allowed<br />

when menu“Ref Control [214] is set to Keyboard. When<br />

Reference control is used, see section 10.5 Reference<br />

signal.<br />

11.3.2 Process Settings [320]<br />

With these functions, the VSD can be set up to fit the<br />

application. The menus [110], [120], [310], [362]-[368]<br />

and [711] use the process unit selected in [321] and<br />

[322] for the application, e.g. rpm, bar or m3/h. This<br />

makes it possible to easily set up the VSD for the<br />

required process requirements, as well as for copying<br />

the range of a feedback sensor to set up the Process<br />

Value Minimum and Maximum in order to establish<br />

accurate actual process information.<br />

Process Source [321]<br />

Select the signal source for the process value that<br />

controls the motor. The Process Source can be set to<br />

act as a function of the process signal on AnIn F(AnIn),<br />

a function of the motor speed F(Speed), a function of<br />

the shaft torque F(Torque) or as a function of a process<br />

value from serial communication F(Bus). The right<br />

function to select depends on the characteristics and<br />

behaviour of the process. If the selection Speed,<br />

Torque or Frequency is set, the VSD will use speed,<br />

torque or frequency as reference value.<br />

Example<br />

An axial fan is speed-controlled and there is no feedback<br />

signal available. The process needs to be controlled<br />

within fixed process values in “m 3 /hr” and a<br />

process read-out of the air flow is needed. The characteristic<br />

of this fan is that the air flow is linearly related<br />

to the actual speed. So by selecting F(Speed) as the<br />

Process Source, the process can easily be controlled.<br />

The selection F(xx) indicates that a process unit and<br />

scaling is needed, set in menus [322]-[328]. This<br />

makes it possible to e.g. use pressure sensors to<br />

measure flow etc. If F(AnIn) is selected, the source is<br />

automatically connected to the AnIn which has Process<br />

Value as selected.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 83


Default:<br />

Speed<br />

F(AnIn) 0<br />

Function of analogue input. E.g. via PID<br />

control, [330].<br />

Speed 1 Speed as process reference 1 .<br />

PT100 3 Temperature as process reference.<br />

F(Speed) 4 Function of speed<br />

F(Bus) 6 Function of communication reference<br />

Frequency 7 Frequency as process reference 1 .<br />

1 . Only when Drive mode [213] is set to Speed or V/<br />

Hz.<br />

NOTE: When PT100 is selected, use PT100 channel 1 on<br />

the PTC/PT100 option board.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322] - [328] are hidden.<br />

NOTE: The motor control method depends on the<br />

selection of drive mode [213], regardless of selected<br />

process source, [321].<br />

NOTE: If F (Bus) is chosen in menu [321]see section<br />

10.5.1 Process value.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43302<br />

Profibus slot/index 169/206<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Process Unit [322]<br />

321 Proc Source<br />

StpA<br />

Speed<br />

322 Proc Unit<br />

Stp A<br />

rpm<br />

Default: rpm<br />

Off 0 No unit selection<br />

% 1 Percent<br />

°C 2 Degrees Centigrade<br />

°F 3 Degrees Fahrenheit<br />

bar 4 bar<br />

Pa 5 Pascal<br />

Nm 6 Torque<br />

Hz 7 Frequency<br />

rpm 8 Revolutions per minute<br />

m 3 /h 9 Cubic meters per hour<br />

gal/h 10 Gallons per hour<br />

ft 3 /h 11 Cubic feet per hour<br />

User 12 User defined unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43303<br />

Profibus slot/index 169/207<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

User-defined Unit [323]<br />

This menu is only displayed if User is selected in menu<br />

[322]. The function enables the user to define a unit<br />

with six symbols. Use the Prev and Next key to move<br />

the cursor to required position. Then use the + and -<br />

keys to scroll down the character list. Confirm the<br />

character by moving the cursor to the next position by<br />

pressing the Next key.<br />

Character<br />

No. for serial<br />

comm.<br />

Character<br />

UInt<br />

Space 0 m 58<br />

0–9 1–10 n 59<br />

A 11 ñ 60<br />

B 12 o 61<br />

C 13 ó 62<br />

D 14 ô 63<br />

E 15 p 64<br />

F 16 q 65<br />

G 17 r 66<br />

H 18 s 67<br />

I 19 t 68<br />

J 20 u 69<br />

K 21 ü 70<br />

L 22 v 71<br />

M 23 w 72<br />

N 24 x 73<br />

O 25 y 74<br />

P 26 z 75<br />

Q 27 å 76<br />

R 28 ä 77<br />

S 29 ö 78<br />

T 30 ! 79<br />

U 31 ¨ 80<br />

No. for serial<br />

comm.<br />

84 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Character<br />

Ü 32 # 81<br />

V 33 $ 82<br />

W 34 % 83<br />

X 35 & 84<br />

Y 36 · 85<br />

Z 37 ( 86<br />

Å 38 ) 87<br />

Ä 39 * 88<br />

Ö 40 + 89<br />

a 41 , 90<br />

á 42 - 91<br />

b 43 . 92<br />

c 44 / 93<br />

d 45 : 94<br />

e 46 ; 95<br />

é 47 < 96<br />

ê 48 = 97<br />

ë 49 > 98<br />

f 50 ? 99<br />

g 51 @ 100<br />

h 52 ^ 101<br />

i 53 _ 102<br />

í 54 103<br />

j 55<br />

k 56<br />

l 57<br />

No. for serial<br />

comm.<br />

Example:<br />

Create a user unit named kPa.<br />

1. When in the menu [323] press Next to move the<br />

cursor to the right most position.<br />

2. Press the + key until the character k is displayed.<br />

3. Press Next.<br />

4. Then press the + key until P is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered kPa.<br />

2<br />

3<br />

Character<br />

323 User Unit<br />

Stp A<br />

No. for serial<br />

comm.<br />

104<br />

105<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

When sending a unit name you send one character at<br />

a time starting at the right most position.<br />

Process Min [324]<br />

This function sets the minimum process value allowed.<br />

Default: 0<br />

Range:<br />

Communication information<br />

Process Max [325]<br />

This menu is not visible when speed, torque or frequency<br />

is selected. The function sets the value of the<br />

maximum process value allowed.<br />

Communication information<br />

43304<br />

43305<br />

43306<br />

43307<br />

43308<br />

43309<br />

169/208<br />

169/209<br />

169/210<br />

169/211<br />

169/212<br />

169/213<br />

UInt<br />

UInt<br />

0.000-10000 (Speed, Torque, F(Speed),<br />

F(Torque))<br />

-10000– +10000 (F(AnIn, PT100, F(Bus))<br />

Modbus Instance no/DeviceNet no: 43310<br />

Profibus slot/index 169/214<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Default: 0<br />

Range: 0.000-10000<br />

324 Process Min<br />

Stp 0<br />

A<br />

325 Process Max<br />

Stp 0<br />

A<br />

Default:<br />

No characters shown<br />

Modbus Instance no/DeviceNet no: 43311<br />

Profibus slot/index 169/215<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 85


Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Ratio [326]<br />

This menu is not visible when speed, frequency or<br />

torque is selected. The function sets the ratio between<br />

the actual process value and the motor speed so that<br />

it has an accurate process value when no feedback<br />

signal is used. See Fig. 51.<br />

Default: Linear<br />

Linear 0 Process is linear related to speed/torque<br />

Quadratic 1<br />

Communication information<br />

Fig. 51 Ratio<br />

326 Ratio<br />

Stp A<br />

Linear<br />

Process is quadratic related to speed/<br />

torque<br />

Modbus Instance no/DeviceNet no: 43312<br />

Profibus slot/index 169/216<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Process<br />

unit<br />

Process<br />

Max<br />

[325]<br />

Process<br />

Min<br />

[324] Min<br />

Speed<br />

[341]<br />

Ratio=Linear<br />

Ratio=Quadratic<br />

Speed<br />

Max<br />

Speed<br />

[343]<br />

F(Value), Process Min [327]<br />

This function is used for scaling if no sensor is used. It<br />

offers you the possibility of increasing the process<br />

accuracy by scaling the process values. The process<br />

values are scaled by linking them to known data in the<br />

VSD. With F(Value), Proc Min [327] the precise value at<br />

which the entered Process Min [324] is valid can be<br />

entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

Default:<br />

Min -1<br />

Min<br />

Communication information<br />

327 F(Val) PrMin<br />

StpA<br />

Min<br />

According to Min Speed setting in<br />

[341].<br />

According to Max Speed setting in<br />

Max -2<br />

[343].<br />

0.000-10000 0-10000 0.000-10000<br />

Modbus Instance no/DeviceNet no: 43313<br />

Profibus slot/index 169/217<br />

Fieldbus format<br />

Long, 1=1 rpm<br />

Modbus format<br />

EInt<br />

F(Value), Process Max [328]<br />

This function is used for scaling if no sensor is used. It<br />

offers you the possibility of increasing the process<br />

accuracy by scaling the process values. The process<br />

values are scaled by linking them to known data in the<br />

VSD. With F(Value), Proc Max the precise value at<br />

which the entered Process Max [525] is valid can be<br />

entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

328 F(Val) PrMax<br />

StpA<br />

Max<br />

Default:<br />

Max<br />

Min -1 Min<br />

Max -2 Max<br />

0.000-<br />

10000<br />

0-10000 0.000-10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43314<br />

86 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Profibus slot/index 169/218<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 rpm<br />

EInt<br />

Example<br />

A conveyor belt is used to transport bottles. The<br />

required bottle speed needs to be within 10 to 100<br />

bottles/s. Process characteristics:<br />

10 bottles/s = 150 rpm<br />

100 bottles/s = 1500 rpm<br />

The amount of bottles is linearly related to the speed<br />

of the conveyor belt.<br />

Set-up:<br />

Process Min [324] = 10<br />

Process Max [325] = 100<br />

Ratio [326] = linear<br />

F(Value), ProcMin [327] = 150<br />

F(Value), ProcMax [328] = 1500<br />

With this set-up, the process data is scaled and linked<br />

to known values which results in an accurate control.<br />

11.3.3 Start/Stop settings [330]<br />

Submenu with all the functions for acceleration, deceleration,<br />

starting, stopping, etc.<br />

Acceleration Time [331]<br />

The acceleration time is defined as the time it takes for<br />

the motor to accelerate from 0 rpm to nominal motor<br />

speed.<br />

NOTE: If the Acc Time is too short, the motor is<br />

accelerated according to the Torque Limit. The actual<br />

Acceleration Time may then be longer than the value<br />

set.<br />

Default:<br />

Range:<br />

Communication information<br />

331 Acc Time<br />

Stp 10.0s<br />

A<br />

10.0 s<br />

0.50–3600 s<br />

F(Value)<br />

PrMax 1500<br />

[328]<br />

Modbus Instance no/DeviceNet no: 43101<br />

Profibus slot/index 169/5<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

F(Value<br />

PrMin<br />

[327]<br />

150<br />

Linear<br />

Fig. 53 shows the relationship between nominal motor<br />

speed/max speed and the acceleration time. The<br />

same is valid for the deceleration time.<br />

rpm<br />

Bottles/s<br />

10<br />

Process Min [324]<br />

100<br />

Process Max [325]<br />

Nominal<br />

Speed<br />

100% n MOT<br />

Fig. 52<br />

Max Speed 80% n MOT<br />

(06-F12)<br />

8s<br />

10s<br />

t<br />

Fig. 53 Acceleration time and maximum speed<br />

Fig. 54 shows the settings of the acceleration and<br />

deceleration times with respect to the nominal motor<br />

speed.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 87


pm<br />

333 Acc MotPot<br />

Stp 16.0s<br />

A<br />

Nom. Speed<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

(NG_06-F11)<br />

Fig. 54 Acceleration and deceleration times<br />

Deceleration Time [332]<br />

The deceleration time is defined as the time it takes for<br />

the motor to decelerate from nominal motor speed to<br />

0 rpm.<br />

Default:<br />

Range:<br />

10.0 s<br />

0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43102<br />

Profibus slot/index 169/6<br />

Fieldbus format<br />

Modbus format<br />

Acc Time [331] Dec Time [332]<br />

332 Dec Time<br />

Stp 10.0s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: If the Dec Time is too short and the generator<br />

energy cannot be dissipated in a brake resistor, the<br />

motor is decelerated according to the overvoltage limit.<br />

The actual deceleration time may be longer than the<br />

value set.<br />

Acceleration Time Motor Potentiometer<br />

[333]<br />

It is possible to control the speed of the VSD using the<br />

motor potentiometer function. This function controls<br />

the speed with separate up and down commands,<br />

over remote signals. The MotPot function has separate<br />

ramps settings which can be set in Acc MotPot<br />

[333] and Dec MotPot [334].<br />

If the MotPot function is selected, this is the acceleration<br />

time for the MotPot up command. The acceleration<br />

time is defined as the time it takes for the motor<br />

potentiometer value to increase from 0 rpm to nominal<br />

speed.<br />

Modbus Instance no/DeviceNet no: 43103<br />

Profibus slot/index 169/7<br />

Fieldbus format<br />

Modbus format<br />

Deceleration Time Motor Potentiometer<br />

[334]<br />

If the MotPot function is selected, this is the deceleration<br />

time for the MotPot down command. The deceleration<br />

time is defined as the time it takes for the motor<br />

potentiometer value to decrease from nominal speed<br />

to 0 rpm.<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43104<br />

Profibus slot/index 169/8<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

334 Dec MotPot<br />

Stp 16.0s<br />

A<br />

EInt<br />

Acceleration Time to Minimum Speed<br />

[335]<br />

If minimum speed, [341]>0 rpm, is used in an application,<br />

the VSD uses separate ramp times below this<br />

level. With Acc>MinSpeed [335] and Dec


Default:<br />

Range:<br />

Communication information<br />

Fig. 55<br />

10.0 s<br />

0.50-3600 s<br />

Modbus Instance no/DeviceNet no: 43105<br />

Profibus slot/index 169/9<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

rpm<br />

Nom.Speed<br />

[225]<br />

Max speed<br />

[343]<br />

Min speed<br />

[341]<br />

EInt<br />

Deceleration Time from Minimum<br />

Speed [336]<br />

If a minimum speed is programmed, this parameter<br />

will be used to set the deceleration time from the minimum<br />

speed to 0 rpm at a stop command. The ramp<br />

time is defined as the time it takes for the motor to<br />

decelerate from the nominal motor speed to 0 rpm.<br />

Default:<br />

Range:<br />

[335]<br />

335 Acc>Min Spd<br />

Stp 10.0s<br />

A<br />

[331] [332]<br />

336 Dec


Deceleration Ramp Type [338]<br />

Sets the ramp type of all deceleration parameters in a<br />

parameter set Fig. 57.<br />

Default:<br />

Linear<br />

Selection: Same as menu [337]<br />

Communication information<br />

338 Dec Rmp<br />

StpA<br />

Linear<br />

Modbus Instance no/DeviceNet no: 43108<br />

Profibus slot/index 169/12<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

S-curve<br />

Spinstart [33A]<br />

The spinstart will smoothly start a motor which is<br />

already rotating by catching the motor at the actual<br />

speed and control it to the desired speed. If in an<br />

application, such as an exhausting fan, the motor<br />

shaft is already rotating due to external conditions, a<br />

smooth start of the application is required to prevent<br />

excessive wear. With the spinstart=on, the actual control<br />

of the motor is delayed due to detecting the actual<br />

speed and rotation direction, which depend on motor<br />

size, running conditions of the motor before the Spinstart,<br />

inertia of the application, etc. Depending on the<br />

motor electrical time constant and the size of the<br />

motor, it can take maximum a couple of minutes<br />

before the motor is caught.<br />

Default:<br />

Off 0<br />

On 1<br />

33A Spinstart<br />

Stp A<br />

Off<br />

Communication information<br />

Off<br />

No spinstart. If the motor is already running<br />

the VSD can trip or will start with high current.<br />

Spinstart will allow the start of a running<br />

motor without tripping or high inrush currents.<br />

Linear<br />

Fig. 57 Shape of deceleration ramp<br />

t<br />

Modbus Instance no/DeviceNet no: 43110<br />

Profibus slot/index 169/14<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Start Mode [339]<br />

Sets the way of starting the motor when a run command<br />

is given.<br />

Default:<br />

Fast 0<br />

Fast (fixed)<br />

Communication information<br />

339 Start Mode<br />

Stp A Fast<br />

The motor shaft flux increases gradually.<br />

The motor shaft starts rotating immediately<br />

once the Run command is given.<br />

Modbus Instance no/DeviceNet no: 43109<br />

Profibus slot/index 169/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Stop Mode [33B]<br />

When the VSD is stopped, different methods to come<br />

to a standstill can be selected in order to optimize the<br />

stop and prevent unnecessary wear, like water hammer.<br />

Stop Mode sets the way of stopping the motor<br />

when a Stop command is given.<br />

Default:<br />

Decel 0<br />

Decel<br />

Communication information<br />

The motor decelerates to 0 rpm according<br />

to the set deceleration time.<br />

Coast 1 The motor freewheels naturally to 0 rpm.<br />

Modbus Instance no/DeviceNet no: 43111<br />

Profibus slot/index 169/15<br />

Fieldbus format<br />

Modbus format<br />

33B Stop Mode<br />

StpA<br />

Decel<br />

UInt<br />

UInt<br />

90 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.3.4 Mechanical brake control<br />

The four brake-related menus [33C] to [33F] can be<br />

used to control mechanical brakes.<br />

Brake Release Time [33C]<br />

The Brake Release Time sets the time the VSD delays<br />

before ramping up to whatever final reference value is<br />

selected. During this time a predefined speed can be<br />

generated to hold the load where after the mechanical<br />

brake finally releases. This speed can be selected at<br />

Release Speed, [33D]. Immediate after the brake<br />

release time expiration the brake lift signal is set. The<br />

user can set a digital output or relay to the function<br />

Brake. This output or relay can control the mechanical<br />

brake.<br />

Default:<br />

Range:<br />

33C Brk Release<br />

Stp 0.00s<br />

A<br />

0.00 s<br />

0.00–3.00 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43112<br />

Profibus slot/index 169/16<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.01 s<br />

EInt<br />

Fig. 58 shows the relation between the Brake functions.<br />

• Brake Release Time [33C]<br />

• Start Speed [33D]<br />

• Brake Engage Time [33E]<br />

• Brake Wait Time [33F]<br />

The correct time setting depends on the maximum<br />

load and the properties of the mechanical brake. During<br />

the brake release time it is possible to apply extra<br />

holding torque by setting a start speed reference with<br />

the function start speed [33D].<br />

n<br />

Brake release<br />

time [33C]<br />

Brake wait<br />

time [33F]<br />

Brake engage<br />

time [33E]<br />

Start<br />

Release Speed [33D]<br />

t<br />

Mechanical<br />

Brake<br />

Open<br />

Closed<br />

Brake Relay<br />

Output<br />

On<br />

Off<br />

Fig. 58 Brake Output functions<br />

NOTE: This function is designed to operate a mechanical<br />

brake via the digital outputs or relays (set to brake<br />

function) controlling a mechanical brake.<br />

Action must take place within<br />

these time intervals<br />

G06 16<br />

Release Speed [33D]<br />

The release speed only operates with the brake function:<br />

brake release [33C]. The release speed is the initial<br />

speed reference during the brake release time.<br />

33D Release Spd<br />

StpA<br />

0rpm<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 91


Default:<br />

Range:<br />

Depend on:<br />

0 rpm<br />

- 4x Sync. Speed to 4x Sync.<br />

Communication information<br />

4xmotor sync speed, 1500 rpm for 1470<br />

rpm motor.<br />

Vector Brake [33G]<br />

Braking by increasing the internal electrical losses in<br />

the motor.<br />

33G Vector Brake<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43113<br />

Profibus slot/index 169/17<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Vector brake switched off. VSD brakes normal<br />

with voltage limit on the DC link.<br />

Maximum VSD current (I CL ) is available for<br />

braking.<br />

Brake Engage Time [33E]<br />

The brake engage time is the time the load is held to<br />

engage a mechanical brake.<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–3.00 s<br />

Communication information<br />

33E Brk Engage<br />

Stp 0.00s<br />

A<br />

Modbus Instance no/DeviceNet no: 43114<br />

Profibus slot/index 169/18<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43116<br />

Profibus slot/index 169/20<br />

Fieldbus format<br />

Modbus format<br />

Brake Fault trip time [33H]<br />

Default: 1.00s<br />

Range 0.00 - 5.00s<br />

UInt<br />

UInt<br />

33H Brk Fault<br />

Stp 1.00s<br />

A<br />

Wait Before Brake Time [33F]<br />

The brake wait time is the time to keep brake open<br />

and to hold the load, either in order to be able to<br />

speed up immediately, or to stop and engage the<br />

brake.<br />

33F Brk Wait<br />

Stp 0.00s<br />

A<br />

Note! The Brake Fault trip time should be set to longer<br />

time than the Brake release time[33C].<br />

The “Brake not engaged” warning is using the setting<br />

of parameter “Brake Engaged time [33E]”.<br />

Following Figure shows principle of brake operation for<br />

fault during run (left) and during stop (right)<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30.0 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43115<br />

Profibus slot/index 169/19<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.01 s<br />

EInt<br />

92 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Start<br />

release time<br />

33C<br />

release time<br />

33C<br />

Brake wait<br />

time<br />

33F<br />

Brake engage<br />

time<br />

33E<br />

Running<br />

Torque<br />

Speed>0<br />

Brake relay<br />

e acknowledge<br />

Brake Trip<br />

Brake warning<br />


Fieldbus format<br />

Modbus format<br />

PID ref<br />

PID out<br />

PID fb<br />

Long, 1=0.01 s<br />

EInt<br />

Maximum Speed [343]<br />

Sets the maximum speed at 10 V/20 mA, unless a<br />

user- defined characteristic of the analogue input is<br />

programmed. The synchronous speed (Sync-spd) is<br />

determined by the parameter motor speed [225]. The<br />

maximum speed will operate as an absolute maximum<br />

limit.<br />

This parameter is used to prevent damage due to high<br />

speed.<br />

Min<br />

speed<br />

Fig. 60<br />

[342]<br />

(NG_50-PC-9_1)<br />

Default:<br />

Sync Speed 0<br />

343 Max Speed<br />

StpA<br />

Sync speed<br />

Sync Speed<br />

Synchronous speed, i.e. no load<br />

speed, at nominal frequency.<br />

1-24000rpm 1- 24000 Min Speed - 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43123<br />

Profibus slot/index 169/27<br />

Fieldbus format<br />

Modbus format<br />

Int, 1=1 rpm<br />

UInt, 1=1 rpm<br />

NOTE: It is not possible to set the maximum speed lower<br />

than the minimum speed.<br />

Note: Maximum Speed [343] has priority over Min Speed<br />

[341], i.e. if [343] is set below [341] then the drive will<br />

run at [343] Max Speed with acceleration times given by<br />

[335] and [336] respectively.<br />

Skip Speed 1 Low [344]<br />

Within the Skip Speed range High to Low, the speed<br />

cannot be constant in order to avoid mechanical resonance<br />

in the VSD system.<br />

When Skip Speed Low Ref Speed Skip Speed<br />

High, then Output Speed=Skip Speed HI during<br />

deceleration and Output Speed=Skip Speed LO during<br />

acceleration. Fig. 61 shows the function of skip<br />

speed hi and low.<br />

Between Skip Speed HI and LO, the speed changes<br />

with the set acceleration and deceleration times.<br />

Skipspd1 LO sets the lower value for the 1st skip<br />

range.<br />

344 SkipSpd 1 Lo<br />

Stp A 0rpm<br />

Default:<br />

Range:<br />

0 rpm<br />

0 - 4 x Motor Sync Speed<br />

94 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43124<br />

Profibus slot/index 169/28<br />

Fieldbus format<br />

Int<br />

Modbus format<br />

Int<br />

n<br />

Default: 0 rpm<br />

Range: 0 – 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43126<br />

Profibus slot/index 169/30<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Skip Speed HI<br />

Skip Speed LO<br />

Skip Speed 2 High [347]<br />

The same function as menu [345] for the 2nd skip<br />

range.<br />

347 SkipSpd 2 Hi<br />

StpA<br />

0rpm<br />

Default:<br />

Range:<br />

0 rpm<br />

0 – 4 x Motor Sync Speed<br />

Fig. 61 Skip Speed<br />

NOTE: The two Skip Speed ranges may be overlapped.<br />

Skip Speed 1 High [345]<br />

Skipspd1 HI sets the higher value for the 1st skip<br />

range.<br />

Default:<br />

Range:<br />

(NG_06-F17)<br />

0 rpm<br />

0 – 4 x Sync Speed<br />

Communication information<br />

Speed Reference<br />

345 SkipSpd 1 Hi<br />

Stp A 0rpm<br />

Modbus Instance no/DeviceNet no: 43125<br />

Profibus slot/index 169/29<br />

Fieldbus format<br />

Int<br />

Modbus format<br />

Int<br />

Skip Speed 2 Low [346]<br />

The same function as menu [344] for the 2nd skip<br />

range.<br />

346 SkipSpd 2 Lo<br />

StpA<br />

0rpm<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43127<br />

Profibus slot/index 169/31<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Jog Speed [348]<br />

The Jog Speed function is activated by one of the digital<br />

inputs. The digital input must be set to the Jog<br />

function [520]. The Jog command/function will automatically<br />

generate a run command as long as the Jog<br />

command/function is active. The rotation is determined<br />

by the polarity of the set Jog Speed.<br />

Example<br />

If Jog Speed = -10, this will give a Run Left command<br />

at<br />

10 rpm regardless of RunL or RunR commands. Fig.<br />

62 shows the function of the Jog command/function.<br />

Default:<br />

Range:<br />

Dependent on:<br />

50 rpm<br />

Communication information<br />

348 Jog Speed<br />

StpA<br />

50rpm<br />

-4 x motor sync speed to +4 x motor sync<br />

speed<br />

Defined motor sync speed. Max = 400%, normally<br />

max=VSD I max /motor I nom x 100%.<br />

Modbus Instance no/DeviceNet no: 43128<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 95


Profibus slot/index 169/32<br />

Fieldbus format<br />

Modbus format<br />

Jog<br />

Freq<br />

Jog<br />

command<br />

f<br />

Int<br />

Int<br />

t<br />

IxR Compensation [352]<br />

This function compensates for the drop in voltage over<br />

different resistances such as (very) long motor cables,<br />

chokes and motor stator by increasing the output voltage<br />

at a constant frequency. IxR Compensation is<br />

most important at low frequencies and is used to<br />

obtain a higher starting torque. The maximum voltage<br />

increase is 25% of the nominal output voltage. See<br />

Fig. 63.<br />

Selecting “Automatic” will use the optimal value<br />

according to the internal model of motor. “User-<br />

Defined” can be selected when the start conditions of<br />

the application do not change and a high starting<br />

torque is always required. A fixed IxR Compensation<br />

value can be set in the menu [353].<br />

t<br />

Fig. 62 Jog command<br />

(NG_06-F18)<br />

352 IxR Comp<br />

Stp A<br />

Off<br />

11.3.6 Torques [350]<br />

Menu with all parameters for torque settings.<br />

Maximum Torque [351]<br />

Sets the maximum torque. This Maximum Torque<br />

operates as an upper torque limit. A Speed Reference<br />

is always necessary to run the motor.<br />

T MOT<br />

Nm<br />

Default:<br />

P MOT<br />

wx60<br />

= ----------------------------------------<br />

n MOT<br />

rpmx2<br />

Range: 0–400%<br />

Communication information<br />

351 Max Torque<br />

Stp 120%<br />

A<br />

120% calculated from the motor data<br />

Default:<br />

Off<br />

Off 0 Function disabled<br />

Automatic 1 Automatic compensation<br />

User Defined 2 User defined value in percent.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43142<br />

Profibus slot/index 169/46<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

U<br />

%<br />

100<br />

IxR Comp=25%<br />

Modbus Instance no/DeviceNet no: 43141<br />

Profibus slot/index 169/45<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

25<br />

IxR Com=0%<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

f<br />

10 20 30 40 50 Hz<br />

Fig. 63 IxR Comp at Linear V/Hz curve<br />

NOTE: The power loss in the motor will increase by the<br />

square of the torque when operating above 100%. 400%<br />

torque will result in 1600% power loss, which will<br />

increase the motor temperature very quickly.<br />

96 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


IxR Comp_user [353]<br />

Only visible if User-Defined is selected in previous<br />

menu.<br />

%<br />

100<br />

U<br />

Default: 0.0%<br />

Range:<br />

Communication information<br />

Flux Optimization [354]<br />

Flux Optimization reduces the energy consumption<br />

and the motor noise, at low or no load conditions.<br />

Flux Optimization automatically decreases the V/Hz<br />

ratio, depending on the actual load of the motor when<br />

the process is in a steady situation. Fig. 64 shows the<br />

area within which the Flux Optimization is active.<br />

Communication information<br />

0-25% x U NOM (0.1% of resolution)<br />

Modbus Instance no/DeviceNet no: 43143<br />

Profibus slot/index 169/47<br />

Fieldbus format<br />

Modbus format<br />

353 IxR CompUsr<br />

Stp 0.0%<br />

A<br />

Long<br />

EInt<br />

NOTE: A too high level of IxR Compensation could cause<br />

motor saturation. This can cause a “Power Fault” trip.<br />

The effect of IxR Compensation is stronger with higher<br />

power motors.<br />

NOTE: The motor may be overheated at low speed.<br />

Therefore it is important that the Motor I 2 t Current [232]<br />

is set correctly.<br />

354 Flux optim<br />

Stp A<br />

Off<br />

Default: Off<br />

Off 0 Function disabled<br />

On 1 Function enabled<br />

Fig. 64 Flux Optimizing<br />

NOTE: Flux optimization works best at stable situations<br />

in slow changing processes.<br />

11.3.7 Preset References [360]<br />

Motor Potentiometer [361]<br />

Sets the properties of the motor potentiometer function.<br />

See the parameter DigIn1 [521] for the selection<br />

of the motor potentiometer function.<br />

Default:<br />

Volatile 0<br />

Non volatile 1<br />

Non Volatile<br />

Communication information<br />

Flux optimizing<br />

area<br />

f<br />

50 Hz<br />

361 Motor Pot<br />

StpA<br />

Non Volatie<br />

After a stop, trip or power down, the VSD<br />

will start always from zero speed (or minimum<br />

speed, if selected).<br />

Non Volatile. After a stop, trip or power<br />

down of the VSD, the reference value at<br />

the moment of the stop will be memorized.<br />

After a new start command the output<br />

speed will resume to this saved value.<br />

Modbus Instance no/DeviceNet no: 43131<br />

Profibus slot/index 169/35<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43144<br />

Profibus slot/index 169/48<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 97


n<br />

[367] Preset Ref 6, with default 1250 rpm<br />

[368] Preset Ref 7, with default 1500 rpm<br />

The selection of the presets is as in Table 21.<br />

Table 21<br />

Preset<br />

Ctrl3<br />

Preset<br />

Ctrl2<br />

Preset<br />

Ctrl1<br />

Output Speed<br />

Motpot<br />

UP<br />

Motpot<br />

DOWN<br />

Fig. 65 MotPot function<br />

t<br />

t<br />

t<br />

0 0 0 Analogue reference<br />

0 0 1 1) Preset Ref 1<br />

0 1 1) 0 Preset Ref 2<br />

0 1 1 Preset Ref 3<br />

1 1) 0 0 Preset Ref 4<br />

1 0 1 Preset Ref 5<br />

1 1 0 Preset Ref 6<br />

1 1 1 Preset Ref 7<br />

Preset Ref 1 [362] to Preset Ref 7<br />

[368]<br />

Preset speeds have priority over the analogue inputs.<br />

Preset speeds are activated by the digital inputs. The<br />

digital inputs must be set to the function Pres. Ref 1,<br />

Pres. Ref 2 or Pres. Ref 4.<br />

Depending on the number of digital inputs used, up to<br />

7 preset speeds can be activated per parameter set.<br />

Using all the parameter sets, up to 28 preset speeds<br />

are possible.<br />

Default: Speed, 0 rpm<br />

Dependent on: Process Source [321] and Process Unit [322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

362 Preset Ref 1<br />

Stp A 0rpm<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 43132–43138<br />

Profibus slot/index 169/36–169/42<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

The same settings are valid for the menus:<br />

[363] Preset Ref 2, with default 250 rpm<br />

[364] Preset Ref 3, with default 500 rpm<br />

[365] Preset Ref 4, with default 750 rpm<br />

[366] Preset Ref 5, with default 1000 rpm<br />

1) = selected if only one preset reference is active<br />

1 = active input<br />

0 = non active input<br />

NOTE: If only Preset Ctrl3 is active, then the Preset Ref 4<br />

can be selected. If Presets Ctrl2 and 3 are active, then<br />

the Preset Ref 2, 4 and 6 can be selected.<br />

Keyboard reference mode [369]<br />

This parameter sets how the reference value [310] is<br />

edited.<br />

Default:<br />

Normal 0<br />

MotPot 1<br />

MotPot<br />

Communication information<br />

The reference value is edited as a normal<br />

parameter (the new reference value is<br />

activated when Enter is pressed after the<br />

value has been changed). The Acc Time<br />

[331] and Dec Time [332] are used.<br />

The reference value is edited using the<br />

motor potentiometer function (the new<br />

reference value is activated directly when<br />

the key + or - is pressed). The Acc MotPot<br />

[333] and Dec MotPot [334] are used.<br />

Modbus Instance no/DeviceNet no: 43139<br />

Profibus slot/index 169/43<br />

Fieldbus format<br />

Modbus format<br />

369 Key Ref Mode<br />

StpA<br />

MotPot<br />

UInt<br />

UInt<br />

98 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


+<br />

NOTE: When Key Ref Mode is set to MotPot, the<br />

reference value ramp times are according to the Acc<br />

MotPot [333] and Dec MotPot [334] settings. Actual<br />

speed ramp will be limited according to Acc Time [331]<br />

and Dec Time [332].<br />

11.3.8 PID Process Control [380]<br />

The PID controller is used to control an external process<br />

via a feedback signal. The reference value can be<br />

set via analogue input AnIn1, at the Control Panel<br />

[310] by using a Preset Reference, or via serial communication.<br />

The feedback signal (actual value) must<br />

be connected to an analogue input that is set to the<br />

function Process Value.<br />

Process PID Control [381]<br />

This function enables the PID controller and defines<br />

the response to a changed feedback signal.<br />

Default:<br />

Off<br />

Off 0 PID control deactivated.<br />

On 1<br />

Invert 2<br />

Communication information<br />

The speed increases when the feedback<br />

value decreases. PID settings according to<br />

menus [382] to [385].<br />

The speed decreases when the feedback<br />

value decreases. PID settings according to<br />

menus [382] to [385].<br />

Modbus Instance no/DeviceNet no: 43154<br />

Profibus slot/index 169/58<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

PID P Gain [383]<br />

Setting the P gain for the PID controller.<br />

Default: 1.0<br />

Range: 0.0–30.0<br />

381 PID Control<br />

Stp A<br />

Off<br />

383 PID P Gain<br />

Stp 1.0<br />

A<br />

Modbus format<br />

Process<br />

reference<br />

Process<br />

feedback<br />

Fig. 66 Closed loop PID control<br />

PID I Time [384]<br />

Setting the integration time for the PID controller.<br />

Default:<br />

Range:<br />

1.00 s<br />

0.01–300 s<br />

Communication information<br />

Process PID D Time [385]<br />

Setting the differentiation time for the PID controller.<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43157<br />

Profibus slot/index 169/61<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30 s<br />

Modbus Instance no/DeviceNet no: 43158<br />

Profibus slot/index 169/62<br />

Fieldbus format<br />

Modbus format<br />

-<br />

Process<br />

PID<br />

VSD<br />

384 PID I Time<br />

Stp 1.00s<br />

A<br />

385 PID D Time<br />

Stp 0.00s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

M<br />

Process<br />

06-F95<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43156<br />

Profibus slot/index 169/60<br />

Fieldbus format Long, 1=0.1<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 99


PID sleep functionality<br />

This function is controlled via a wait delay and a separate<br />

wake-up margin condition. With this function it is<br />

possible to put the VSD in “sleep mode” when the<br />

process value is at it’s set point and the motor is running<br />

at minimum speed for the length of the time set in<br />

[386]. By going into sleep mode, the by the application<br />

consumed energy is reduced to a minimum. When the<br />

process feedback value goes below the set margin on<br />

the process reference as set in [387], the VSD will<br />

wake up automatically and normal PID operation continues,<br />

see examples.<br />

PID sleep when less than minimum<br />

speed [386]<br />

If the PID output is equal to or less than minimum<br />

speed for given delay time, the VSD will go to sleep.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01 –3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43371<br />

Profibus slot/index 170/20<br />

Fieldbus format<br />

Modbus format<br />

PID Activation Margin [387]<br />

The PID activation (wake-up) margin is related to the<br />

process reference and sets the limit when the VSD<br />

should wake-up/start again.<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: Menu [386] has higher priority than menu [342].<br />

Default: 0<br />

Range:<br />

0 –10000 in Process unit<br />

Modbus Instance no/DeviceNet no: 43372<br />

Profibus slot/index 170/21<br />

Fieldbus format<br />

Modbus format<br />

386 PID


PID Steady State Test [388]<br />

In application situations where the feedback can<br />

become independent of the motor speed, this PID<br />

Steady Test function can be used to overrule the PID<br />

operation and force the VSD to go in sleep mode i.e.<br />

the VSD automatically reduces the output speed while<br />

at the same time ensures the process value.<br />

Example: pressure controlled pump systems with low/<br />

no flow operation and where the process pressure has<br />

become independent of the pump speed, e.g. due to<br />

slowly closed valves. By going into Sleep mode, heating<br />

of the pump and motor will be avoided and no<br />

energy is spilled.<br />

PID Steady state test delay.<br />

NOTE: It is important that the system has reached a<br />

stable situation before the Steady State Test is initiated.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43373<br />

Profibus slot/index 170/22<br />

Fieldbus format<br />

Modbus format<br />

388 PID Stdy Tst<br />

StpA<br />

Off<br />

Long, 1=0.01 s<br />

EInt<br />

During the steady state test the PID operation is overruled<br />

and the VSD is decreasing the speed as long as<br />

the PID error is within the steady state margin. If the<br />

PID error goes outside the steady state margin the test<br />

failed and normal PID operation continues, see example.<br />

Default: 0<br />

Range:<br />

0–10000 in process unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43374<br />

Profibus slot/index 170/23<br />

Fieldbus format<br />

Modbus format<br />

389 PID Stdy Mar<br />

Stp 0<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

Example: The PID Steady Test starts when the process<br />

value [711] is within the margin and Steady State<br />

Test Wait Delay has expired. The PID output will<br />

decrease speed with a step value which corresponds<br />

to the margin as long as the Process value [711] stays<br />

within steady state margin. When Min Speed [341] is<br />

reached the steady state test was successful and<br />

stop/sleep is commanded if PID sleep function [386]<br />

and [387] is activated. If the Process value [711] goes<br />

outside the set steady state margins then the test<br />

failed and normal PID operation will continue, see Fig.<br />

69.<br />

PID Steady State Margin [389]<br />

PID steady state margin defines a margin band around<br />

the reference that defines “steady state operation”.<br />

[711] Process Value<br />

[310] Process Ref<br />

[389]<br />

[389]<br />

[387]<br />

[388]<br />

time<br />

[712] Speed<br />

Start steady<br />

state test<br />

Stop steady<br />

state test<br />

Normal PID<br />

Normal PID<br />

Steady state<br />

test<br />

Stop/Sleep<br />

[341] Min Speed [386] PID


11.3.9 Pump/Fan Control [390]<br />

The Pump Control functions are in menu [390]. The<br />

function is used to control a number of drives (pumps,<br />

fans, etc.) of which one is always driven by the VSD.<br />

Pump enable [391]<br />

This function will enable the pump control to set all relevant<br />

pump control functions.<br />

Default: Off<br />

Off 0 Pump control is switched off.<br />

On 1<br />

Communication information<br />

391 Pump enable<br />

Stp A<br />

Off<br />

Pump control is on:<br />

- Pump control parameters [392] to [39G]<br />

appear and are activated according to<br />

default settings.<br />

- View functions [39H] to [39M] are added<br />

in the menu structure.<br />

Modbus Instance no/DeviceNet no: 43161<br />

Profibus slot/index 169/65<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Number of Drives [392]<br />

Sets the total number of drives which are used, including<br />

the Master VSD. The setting here depends on the<br />

parameter Select Drive [393]. After the number of<br />

drives is chosen it is important to set the relays for the<br />

pump control. If the digital inputs are also used for status<br />

feedback, these must be set for the pump control<br />

according to; Pump 1 OK– Pump6 OK in menu [520].<br />

Default: 1<br />

1-3 Number of drives if I/O Board is not used.<br />

1-6<br />

1-7<br />

Communication information<br />

Number of drives if 'Alternating MASTER' is<br />

used, see Select Drive [393]. (I/O Board is<br />

used.)<br />

Number of drives if 'Fixed MASTER' is used,<br />

see Select Drive [393].<br />

(I/O Board is used.)<br />

NOTE: Used relays must be defined as Slave Pump or<br />

Master Pump. Used digital inputs must be defined as<br />

Pump Feedback.<br />

Modbus Instance no/DeviceNet no: 43162<br />

Profibus slot/index 169/66<br />

Fieldbus format<br />

Modbus format<br />

392 No of Drives<br />

Stp A<br />

1<br />

UInt<br />

UInt<br />

Select Drive [393]<br />

Sets the main operation of the pump system.<br />

'Sequence' and 'Runtime' are Fixed MASTER operation.<br />

'All' means Alternating MASTER operation.<br />

393 Select Drive<br />

StpA<br />

Sequence<br />

Default:<br />

Sequence 0<br />

Sequence<br />

Fixed MASTER operation:<br />

- The additional drives will be selected in<br />

sequence, i.e. first pump 1 then pump 2<br />

etc.<br />

- A maximum of 7 drives can be used.<br />

102 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Run Time 1<br />

All 2<br />

Communication information<br />

Fixed MASTER operation:<br />

- The additional drives will be selected<br />

depending on the Run Time. So the drive<br />

with the lowest Run Time will be selected<br />

first. The Run Time is monitored in menus<br />

[39H] to [39M] in sequence. For each drive<br />

the Run Time can be reset.<br />

- When drives are stopped, the drive with<br />

the longest Run Time will be stopped first.<br />

- Maximum 7 drives can be used.<br />

Alternating MASTER operation:<br />

- When the drive is powered up, one drive is<br />

selected as the Master drive. The selection<br />

criteria depends on the Change Condition<br />

[394]. The drive will be selected according<br />

to the Run Time. So the drive with the lowest<br />

Run Time will be selected first. The Run<br />

Time is monitored in menus [39H] to [39M]<br />

in sequence. For each drive the Run Time<br />

can be reset.<br />

- A maximum of 6 drives can be used.<br />

Modbus Instance no/DeviceNet no: 43163<br />

Profibus slot/index 169/67<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: This menu will NOT be active if less than 3 drives<br />

are selected.<br />

Timer 1<br />

Both 2<br />

Communication information<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The change will take place immediately.<br />

So during operation the additional<br />

pumps will be stopped temporarily, the<br />

'new' master will be selected according to<br />

the Run Time and the additional pumps will<br />

be started again.<br />

It is possible to leave 2 pumps running during<br />

the change operation. This can be set<br />

with Drives on Change [396].<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The 'new' master will be selected<br />

according to the elapsed Run Time. The<br />

change will only take place after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition.<br />

- Trip condition.<br />

Modbus Instance no/DeviceNet no: 43164<br />

Profibus slot/index 169/68<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: If the Status feedback inputs (DigIn 9 to Digin 14)<br />

are used, the master drive will be changed immediately<br />

if the feedback generates an 'Error'.<br />

Change Condition [394]<br />

This parameter determines the criteria for changing<br />

the master. This menu only appears if Alternating<br />

MASTER operation is selected. The elapsed run time<br />

of each drive is monitored. The elapsed run time<br />

always determines which drive will be the 'new' master<br />

drive.<br />

This function is only active if the parameter Select<br />

Drive [393]=All.<br />

394 Change Cond<br />

Stp A Both<br />

Default:<br />

Stop 0<br />

Both<br />

The Runtime of the master drive determines<br />

when a master drive has to be<br />

changed. The change will only take place<br />

after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition<br />

- Trip condition.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 103


Change Timer [395]<br />

When the time set here is elapsed, the master drive<br />

will be changed. This function is only active if Select<br />

Drive [393]=All and Change Cond [394]= Timer/ Both.<br />

395 Change Timer<br />

StpA<br />

50h<br />

Upper Band [397]<br />

If the speed of the master drive comes into the upper<br />

band, an additional drive will be added after a delay<br />

time that is set in start delay [399].<br />

397 Upper Band<br />

Stp 10%<br />

A<br />

Default:<br />

Range:<br />

50 h<br />

1-3000 h<br />

Default: 10%<br />

Range:<br />

0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43165<br />

Profibus slot/index 169/69<br />

Fieldbus format<br />

Modbus format<br />

UInt, 1=1 h<br />

UInt, 1=1 h<br />

Drives on Change [396]<br />

If a master drive is changed according to the timer<br />

function (Change Condition=Timer/Both [394]), it is<br />

possible to leave additional pumps running during the<br />

change operation. With this function the change operation<br />

will be as smooth as possible. The maximum<br />

number to be programmed in this menu depends on<br />

the number of additional drives.<br />

Example:<br />

If the number of drives is set to 6, the maximum value<br />

will be 4. This function is only active if Select Drive<br />

[393]=All.<br />

396 Drives on Ch<br />

Stp A<br />

0<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43167<br />

Profibus slot/index 169/71<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Upper Band = 10%<br />

Start delay will be activated:<br />

Range = Max Speed to Min Speed = 1500–300 =<br />

1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 1500–120 = 1380 rpm<br />

Speed<br />

Max<br />

Upper band<br />

next pump starts<br />

Default: 0<br />

Range: 0 to (the number of drives - 2)<br />

Communication information<br />

Min<br />

Start Delay [399]<br />

Flow/Pressure<br />

(NG_50-PC-12_1)<br />

Modbus Instance no/DeviceNet no: 43166<br />

Fig. 70 Upper band<br />

Profibus slot/index 169/70<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Lower Band [398]<br />

If the speed of the master drive comes into the lower<br />

band an additional drive will be stopped after a delay<br />

time. This delay time is set in the parameter Stop<br />

Delay [39A].<br />

Default: 10%<br />

398 Lower Band<br />

Stp A<br />

10%<br />

104 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Range:<br />

Communication information<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Lower Band = 10%<br />

Stop delay will be activated:<br />

Range = Max Speed - Min Speed = 1500–300 = 1200<br />

rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 300 + 120 = 420 rpm<br />

Fig. 71 Lower band<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43168<br />

Profibus slot/index 169/72<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Speed<br />

Max<br />

Min<br />

“top” pump stops<br />

Stop Delay [39A]<br />

EInt<br />

Lower band<br />

Flow/Pressure<br />

(NG_50-PC-13_1)<br />

Start Delay [399]<br />

This delay time must have elapsed before the next<br />

pump is started. A delay time prevents the nervous<br />

switching of pumps.<br />

Stop Delay [39A]<br />

This delay time must have elapsed before the 'top'<br />

pump is stopped. A delay time prevents the nervous<br />

switching of pumps.<br />

Default:<br />

Range:<br />

0 s<br />

0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43170<br />

Profibus slot/index 169/74<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Upper Band Limit [39B]<br />

If the speed of the pump reaches the upper band limit,<br />

the next pump is started immediately without delay. If<br />

a start delay is used this delay will be ignored. Range<br />

is between 0%, equalling max speed, and the set percentage<br />

for the UpperBand [397].<br />

Default: 0%<br />

Range:<br />

0 to Upper Band level. 0% (=max speed) means<br />

that the Limit function is switched off.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43171<br />

Profibus slot/index 169/75<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39A Stop Delay<br />

Stp A<br />

0s<br />

39B Upp Band Lim<br />

Stp 0%<br />

A<br />

EInt<br />

399 Start Delay<br />

Stp A<br />

0s<br />

Default: 0 s<br />

Range: 0-999 s<br />

Communication information<br />

Speed<br />

Max<br />

Upper band<br />

next pump starts<br />

immediately<br />

Upper band<br />

limit [39B]<br />

Modbus Instance no/DeviceNet no: 43169<br />

Profibus slot/index 169/73<br />

Fieldbus format Long, 1=1s<br />

Modbus format<br />

EInt<br />

Min<br />

Fig. 72 Upper band limit<br />

Start Delay [399]<br />

Flow/Pressure<br />

(NG_50-PC-14_2)<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 105


Lower Band Limit [39C]<br />

If the speed of the pump reaches the lower band limit,<br />

the 'top' pump is stopped immediately without delay.<br />

If a stop delay is used this delay will be ignored. Range<br />

is from 0%, equalling min speed, to the set percentage<br />

for the Lower Band [398].<br />

Default: 0%<br />

Range:<br />

Communication information<br />

Fig. 73 Lower band limit<br />

0 to Lower Band level. 0% (=min speed) means<br />

that he Limit function is switched off.<br />

Modbus Instance no/DeviceNet no: 43172<br />

Profibus slot/index 169/76<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Speed<br />

Max<br />

Min<br />

39C Low Band Lim<br />

Stp A<br />

0%<br />

Lower band<br />

Settle Time Start [39D]<br />

The settle start allows the process to settle after a<br />

pump is switched on before the pump control continues.<br />

If an additional pump is started D.O.L. (Direct On<br />

Line) or Y/ , the flow or pressure can still fluctuate<br />

due to the 'rough' start/stop method. This could<br />

cause unnecessary starting and stopping of additional<br />

pumps.<br />

During the Settle start:<br />

• PID controller is off.<br />

“top” pump stops<br />

immediately<br />

Stop Delay [39A]<br />

EInt<br />

(NG_50-PC-15_2)<br />

• The speed is kept at a fixed level after adding a<br />

pump.<br />

39D Settle Start<br />

Stp A<br />

0s<br />

Lower band<br />

limit [39C]<br />

Flow/Pressure<br />

Default:<br />

Range:<br />

0 s<br />

0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43173<br />

Profibus slot/index 169/77<br />

Fieldbus format<br />

Modbus format<br />

Transition Speed Start [39E]<br />

The transition speed start is used to minimize a flow/<br />

pressure overshoot when adding another pump.<br />

When an additional pump needs to be switched on,<br />

the master pump will slow down to the set transition<br />

speed start value, before the additional pump is<br />

started. The setting depends on the dynamics of both<br />

the master drive and the additional drives.<br />

The transition speed is best set by trial and error.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43174<br />

Profibus slot/index 169/78<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39E TransS Start<br />

Stp 60%<br />

A<br />

EInt<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When an additional pump is needed, the speed will be<br />

controlled down to min speed + (60% x (1500 rpm -<br />

200 rpm)) = 200 rpm + 780 rpm = 980 rpm. When this<br />

speed is reached, the additional pump with the lowest<br />

run time hours will be switched on.<br />

106 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Speed<br />

Actual<br />

Trans<br />

Min<br />

Switch on<br />

procedure starts<br />

Fig. 74 Transition speed start<br />

Additional pump<br />

Master pump<br />

Actual start<br />

command of next<br />

pump (RELAY)<br />

Flow/Pressure<br />

(NG_50-PC-16_1)<br />

Transition Speed Stop [39G]<br />

The transition speed stop is used to minimize a flow/<br />

pressure overshoot when shutting down an additional<br />

pump. The setting depends on the dynamics of both<br />

the master drive and the additional drives.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

39G TransS Stop<br />

Stp 60%<br />

A<br />

0-100% of total min speed to max speed<br />

Flow/Pressure<br />

Transition speed<br />

decreases overshoot<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43176<br />

Profibus slot/index 169/80<br />

Fig. 75 Effect of transition speed<br />

Settle Time Stop [39F]<br />

The settle stop allows the process to settle after a<br />

pump is switched off before the pump control continues.<br />

If an additional pump is stopped D.O.L. (Direct<br />

On Line) or Y/ , the flow or pressure can still fluctuate<br />

due to the 'rough' start/stop method. This could<br />

cause unnecessary starting and stopping of additional<br />

pumps.<br />

During the Settle stop:<br />

• PID controller is off.<br />

• the speed is kept at a fixed level after stopping a<br />

pump<br />

Default:<br />

Range:<br />

39F Settle Stop<br />

Stp A<br />

0s<br />

0 s<br />

0–999 s<br />

Communication information<br />

Time<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When less additional pumps are needed, the speed<br />

will be controlled up to min speed + (60% x (1500 rpm<br />

- 200 rpm)) = 200 rpm + 780 rpm = 980 rpm. When<br />

this speed is reached, the additional pump with the<br />

highest run time hours will be switched off.<br />

Speed<br />

Max<br />

Trans<br />

Actual<br />

Min<br />

Fig. 76 Transition speed stop<br />

Actual shut down of pump<br />

Master pump<br />

EInt<br />

Additional pump<br />

Flow/Pressure<br />

Switch off procedure starts<br />

Modbus Instance no/DeviceNet no: 43175<br />

Profibus slot/index 169/79<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 107


Run Times 1-6 [39H] to [39M]<br />

Unit:<br />

Range:<br />

h:m (hours:minutes)<br />

0h:0m–65535h:59m.<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Reset Run Times 1-6 [39H1] to [39M1]<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Pump Status [39N]<br />

39N Pump 123456<br />

StpA<br />

OCD<br />

31051 hours, 31052 minutes,<br />

31054 hours, 31055 minutes,<br />

31057 hours, 31058 minutes,<br />

31060 hours, 31061 minutes,<br />

31063 hours, 31064 minutes,<br />

31066 hours, 31067 minutes<br />

121/195, 121/198, 121/201,<br />

121/204, 121/207, 121/210<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 38–43, pump 1 -6<br />

Profibus slot/index 0/37–0/42<br />

Fieldbus format<br />

Modbus format<br />

Indication<br />

C<br />

D<br />

O<br />

E<br />

39H Run Time 1<br />

Stp A h:mm<br />

UInt<br />

UInt<br />

Description<br />

Control, master pump, only when alternating<br />

master is used<br />

Direct control<br />

Pump is off<br />

Pump error<br />

39H1 Rst Run Tm1<br />

Stp A<br />

No<br />

11.4 Load Monitor and Process<br />

Protection [400]<br />

11.4.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a<br />

load monitor. Load monitors are used to protect<br />

machines and processes against mechanical overload<br />

and underload, e.g. a conveyer belt or screw conveyer<br />

jamming, belt failure on a fan and a pump dry running.<br />

See explanation in section 7.5, page 40.<br />

Alarm Select [411]<br />

Selects the types of alarms that are active.<br />

Default:<br />

Off<br />

Off 0 No alarm functions active.<br />

Min 1<br />

Max 2<br />

Max+Min 3<br />

Communication information<br />

Alarm Trip [412]<br />

Selects which alarm must cause a trip to the VSD.<br />

Communication information<br />

Min Alarm active. The alarm output functions<br />

as an underload alarm.<br />

Max Alarm active. The alarm output functions<br />

as an overload alarm.<br />

Both Max and Min alarm are active. The<br />

alarm outputs function as overload and<br />

underload alarms.<br />

Modbus Instance no/DeviceNet no: 43321<br />

Profibus slot/index 169/225<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Selection: Same as in menu [411]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43322<br />

Profibus slot/index 169/226<br />

Fieldbus format<br />

Modbus format<br />

411 Alarm Select<br />

Stp A<br />

Off<br />

412 Alarm trip<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

108 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Ramp Alarm [413]<br />

This function inhibits the (pre) alarm signals during<br />

acceleration/deceleration of the motor to avoid false<br />

alarms.<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Communication information<br />

(Pre) alarms are inhibited during acceleration/deceleration.<br />

(Pre) alarms active during acceleration/<br />

deceleration.<br />

Modbus Instance no/DeviceNet no: 43323<br />

Profibus slot/index 169/227<br />

Fieldbus format<br />

Modbus format<br />

413 Ramp Alarm<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

When the application has a constant load over the<br />

whole speed range, i.e. extruder or screw compressor,<br />

the load type can be set to basic. This type uses a single<br />

value as a reference for the nominal load. This<br />

value is used for the complete speed range of the<br />

VSD. The value can be set or automatically measured.<br />

See Autoset Alarm [41A] and Normal Load [41B]<br />

about setting the nominal load reference.<br />

The load curve mode uses an interpolated curve with<br />

9 load values at 8 equal speed intervals. This curve is<br />

populated by a test run with a real load. This can be<br />

used with any smooth load curve including constant<br />

load.<br />

Load<br />

Load curve<br />

Max Alarm<br />

Basic<br />

Min Alarm<br />

Alarm Start Delay [414]<br />

This parameter is used if, for example, you want to<br />

override an alarm during the start-up procedure.<br />

Sets the delay time after a run command, after which<br />

the alarm may be given.<br />

• If Ramp Alarm=On. The start delay begins after a<br />

RUN command.<br />

• If Ramp Alarm=Off. The start delay begins after the<br />

acceleration ramp.<br />

414 Start Delay<br />

Stp A<br />

2s<br />

Fig. 77<br />

Default:<br />

Basic 0<br />

Load<br />

Curve<br />

1<br />

415 Load Type<br />

Stp A Basic<br />

Basic<br />

Speed<br />

Uses a fixed maximum and minimum load<br />

level over the full speed range. Can be used<br />

in situations where the torque is independent<br />

of the speed.<br />

Uses the measured actual load characteristic<br />

of the process over the speed range.<br />

Default: 2 s<br />

Range: 0-3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43324<br />

Profibus slot/index 169/228<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43325<br />

Profibus slot/index 169/229<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Load Type [415]<br />

In this menu you select monitor type according to the<br />

load characteristic of your application. By selecting the<br />

required monitor type, the overload and underload<br />

alarm function can be optimized according to the load<br />

characteristic.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 109


Max Alarm [416]<br />

Max Alarm Margin [4161]<br />

With load type Basic, [415], used the Max Alarm Margin<br />

sets the band above the Normal Load, [41B],<br />

menu that does not generate an alarm. With load type<br />

Load Curve, [415], used the Max Alarm Margin sets<br />

the band above the Load Curve, [41C], that does not<br />

generate an alarm. The Max Alarm Margin is a percentage<br />

of nominal motor torque.<br />

Default: 15%<br />

Range: 0–400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43326<br />

Profibus slot/index 169/230<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Max Alarm delay [4162]<br />

Sets the delay time between the first occurrence of<br />

max alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Max Pre Alarm [417]<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43330<br />

Profibus slot/index 169/234<br />

Fieldbus format<br />

Modbus format<br />

4161 MaxAlarmMar<br />

Stp 15%<br />

A<br />

4162 MaxAlarmDel<br />

Stp 0.1s<br />

A<br />

Long, 1=0.1 s<br />

EInt<br />

Max Pre AlarmMargin [4171]<br />

With load type Basic, [415], used the Max Pre-Alarm<br />

Margin sets the band above the Normal Load, [41B],<br />

menu that does not generate a pre-alarm. With load<br />

type Load Curve, [415], used the Max Pre-Alarm Margin<br />

sets the band above the Load Curve, [41C], that<br />

does not generate a pre-alarm. The Max Pre-Alarm<br />

Margin is a percentage of nominal motor torque.<br />

Default: 10%<br />

Range: 0–400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43327<br />

Profibus slot/index 169/231<br />

Fieldbus format Long, 1=0.1%<br />

Modbus format<br />

Max Pre Alarm delay [4172]<br />

Sets the delay time between the first occurrence of<br />

max pre alarm condition and after when the alarm is<br />

given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0–90 s<br />

Communication information<br />

Min Pre Alarm [418]<br />

Min Pre Alarm Margin [4181]<br />

With load type Basic, [415], used the Min Pre-Alarm<br />

Margin sets the band under the Normal Load, [41B],<br />

menu that does not generate a pre-alarm. With load<br />

type Load Curve, [415], used the Min Pre-Alarm Margin<br />

sets the band under the Load Curve, [41C], that<br />

does not generate a pre-alarm. The Min Pre-Alarm<br />

Margin is a percentage of nominal motor torque.<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43331<br />

Profibus slot/index 169/235<br />

Fieldbus format<br />

Modbus format<br />

Default: 10%<br />

Range: 0-400%<br />

4171 MaxPreAlMar<br />

Stp 10%<br />

A<br />

4172 MaxPreAlDel<br />

Stp 0.1s<br />

A<br />

Long, 1=0.1 s<br />

EInt<br />

4181 MinPreAlMar<br />

Stp 10%<br />

A<br />

Modbus Instance no/DeviceNet no: 43328<br />

Profibus slot/index 169/232<br />

110 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Min Pre Alarm Response delay [4182]<br />

Sets the delay time between the first occurrence of<br />

min pre alarm condition and after when the alarm is<br />

given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43332<br />

Profibus slot/index 169/236<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Min Alarm [419]<br />

Min Alarm Margin [4191]<br />

With load type Basic, [415], used the Min Alarm Margin<br />

sets the band under the Normal Load, [41B], menu<br />

that does not generate an alarm. With load type Load<br />

Curve, [415], used the Min Alarm Margin sets the<br />

band under the Load Curve, [41C], that does not generate<br />

an alarm. The Max Alarm Margin is a percentage<br />

of nominal motor torque.<br />

Default: 15%<br />

Range: 0-400%<br />

Communication information<br />

4182 MinPreAlDel<br />

Stp 0.1s<br />

A<br />

4191 MinAlarmMar<br />

Stp 15%<br />

A<br />

Modbus Instance no/DeviceNet no: 43329<br />

Profibus slot/index 169/233<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Min Alarm Response delay [4192]<br />

Sets the delay time between the first occurrence of<br />

min alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43333<br />

Profibus slot/index 169/237<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Autoset Alarm [41A]<br />

The Autoset Alarm function can measure the nominal<br />

load that is used as reference for the alarm levels. If<br />

the selected Load Type [415] is Basic it copies the<br />

load the motor is running with to the menu Normal<br />

Load [41B]. The motor must run on the speed that<br />

generates the load that needs to be recorded. If the<br />

selected Load Type [415] is Load Curve it performs a<br />

test-run and populates the Load Curve [41C] with the<br />

found load values.<br />

WARNING: When autoset does a test run the<br />

motor and application/machine will ramp up<br />

to maximum speed.<br />

NOTE: The motor must be running for the Autoset Alarm<br />

function to succeed. A not running motor generates a<br />

“Failed!” message.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

4192 MinAlarmDel<br />

Stp 0.1s<br />

A<br />

41A AutoSet Alrm<br />

Stp A<br />

No<br />

Modbus Instance no/DeviceNet no: 43334<br />

Profibus slot/index 169/238<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 111


The default set levels for the (pre)alarms are:<br />

Range:<br />

0–400% of max torque<br />

Overload<br />

Underload<br />

Max Alarm<br />

Max Pre Alarm<br />

menu [4161] + [41B]<br />

These default set levels can be <strong>manual</strong>ly changed in<br />

menus [416] to [419]. After execution the message<br />

“Autoset OK!” is displayed for 1s and the selection<br />

reverts to “No”.<br />

Normal Load [41B]<br />

Set the level of the normal load. The alarm or pre<br />

alarm will be activated when the load is above/under<br />

normal load ± margin.<br />

Default: 100%<br />

Range:<br />

menu [4171] + [41B]<br />

Min Pre Alarm menu [41B] - [4181]<br />

Min Alarm menu [41B] - [4191]<br />

41B Normal Load<br />

Stp 100%<br />

A<br />

0-400% of max torque<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43336%, 43337 rpm,<br />

43338%, 43339 rpm,<br />

43340%, 43341 rpm,<br />

43342%, 43343 rpm,<br />

43344%, 43345 rpm,<br />

43346%, 43347 rpm,<br />

43348%, 43349 rpm,<br />

43350%, 43351 rpm,<br />

43352%, 43353 rpm<br />

169/240, 169/242,<br />

169/244, 169/246,<br />

169/248, 169/250,<br />

169/252, 169/254,<br />

170/1<br />

Long<br />

EInt<br />

NOTE: The speed values depend on the Min- and Max<br />

Speed values. they are read only and cannot be<br />

changed.<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

1<br />

Min Speed<br />

Min-Max alarm tolerance band graph<br />

Max Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43335<br />

Profibus slot/index 169/239<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Load Curve [41C]<br />

The load curve function can be used with any smooth<br />

load curve. The curve can be populated with a testrun<br />

or the values can be entered or changed <strong>manual</strong>ly.<br />

Load Curve 1-9 [41C1]-[41C9]<br />

The measured load curve is based on 9 stored samples.<br />

The curve starts at minimum speed and ends at<br />

maximum speed, the range in between is divided into<br />

8 equal steps. The measured values of each sample<br />

are displayed in [41C1] to [41C9] and can be adapted<br />

<strong>manual</strong>ly. The value of the 1st sampled value on the<br />

load curve is displayed.<br />

0.5<br />

Fig. 78<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Speed<br />

Measured load samples<br />

Min-max tolerance band<br />

Max alarm limit<br />

Min alarm limit<br />

Default: 100%<br />

41C1 Load Curve1<br />

Stp 0rpm 100%<br />

A<br />

112 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.4.2 Process Protection [420]<br />

Submenu with settings regarding protection functions<br />

for the VSD and the motor.<br />

Low Voltage Override [421]<br />

If a dip in the mains supply occurs and the low voltage<br />

override function is enabled, the VSD will automatically<br />

decrease the motor speed to keep control of the<br />

application and prevent an under voltage trip until the<br />

input voltage rises again. Therefore the rotating energy<br />

in the motor/load is used to keep the DC link voltage<br />

level at the override level, for as long as possible or<br />

until the motor comes to a standstill. This is dependent<br />

on the inertia of the motor/load combination and<br />

the load of the motor at the time the dip occurs, see<br />

Fig. 79.<br />

Default: On<br />

Off 0 At a voltage dip the low voltage trip will protect.<br />

On 1<br />

At mains dip, VSD ramps down until voltage<br />

rises.<br />

Communication information<br />

421 Low Volt OR<br />

Stp A<br />

On<br />

Modbus Instance no/DeviceNet no: 43361<br />

Profibus slot/index 170/10<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

DC link voltage<br />

Override<br />

level<br />

Low Volt.<br />

level<br />

Rotor locked [422]<br />

With the rotor locked function enabled, the VSD will<br />

protect the motor and application when this is stalled<br />

whilst increasing the motor speed from standstill. This<br />

protection will coast the motor to stop and indicate a<br />

fault when the Torque Limit has been active at very low<br />

speed for more than 5 seconds.<br />

Default: Off<br />

Off 0 No detection<br />

On 1<br />

Communication information<br />

Motor lost [423]<br />

With the motor lost function enabled, the VSD is able<br />

to detect a fault in the motor circuit: motor, motor<br />

cable, thermal relay or output filter. Motor lost will<br />

cause a trip, and the motor will coast to standstill,<br />

when a missing motor phase is detected during a<br />

period of 5 s.<br />

Communication information<br />

VSD will trip when locked rotor is detected.<br />

Trip message “Locked Rotor”.<br />

Modbus Instance no/DeviceNet no: 43362<br />

Profibus slot/index 170/11<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Off 0<br />

Trip 1<br />

422 Rotor locked<br />

Stp A<br />

Off<br />

423 Motor lost<br />

Stp A<br />

Off<br />

Off<br />

Function switched off to be used if no<br />

motor or very small motor connected.<br />

VSD will trip when the motor is disconnected.<br />

Trip message “Motor Lost”.<br />

Speed<br />

t<br />

Modbus Instance no/DeviceNet no: 43363<br />

Profibus slot/index 170/12<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

(06-F60new)<br />

Fig. 79 Low voltage override<br />

t<br />

NOTE: During the low voltage override the LED trip/limit<br />

blinks.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 113


Overvolt control [424]<br />

Used to switch off the overvoltage control function<br />

when only braking by brake chopper and resistor is<br />

required. The overvoltage control function, limits the<br />

braking torque so that the DC link voltage level is controlled<br />

at a high, but safe, level. This is achieved by<br />

limiting the actual deceleration rate during stopping. In<br />

case of a defect at the brake chopper or the brake<br />

resistor the VSD will trip for “Overvoltage” to avoid a<br />

fall of the load e.g. in crane applications.<br />

NOTE: Overvoltage control should not be activated if<br />

brake chopper is used.<br />

424 Over Volt Ctl<br />

Stp A<br />

On<br />

Default: On<br />

On 0 Overvoltage control activated<br />

Off 1 Overvoltage control off<br />

Process Val 3<br />

Process Ref 4<br />

Communication information<br />

The input value equals the actual process<br />

value (feedback) and is compared to the<br />

reference signal (set point) by the PID controller,<br />

or can be used to display and view<br />

the actual process value.<br />

Reference value is set for control in process<br />

units, see Process Source [321] and<br />

Process Unit [322].<br />

Modbus Instance no/DeviceNet no: 43201<br />

Profibus slot/index 169/105<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

NOTE: When AnInX Func=Off, the connected signal will<br />

still be available for Comparators [610].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43364<br />

Profibus slot/index 170/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5 I/Os and Virtual<br />

Connections [500]<br />

Main menu with all the settings of the standard inputs<br />

and outputs of the VSD.<br />

11.5.1 Analogue Inputs [510]<br />

Submenu with all settings for the analogue inputs.<br />

AnIn1 Function [511]<br />

Sets the function for Analogue input 1. Scale and<br />

range are defined by AnIn1 Advanced settings [513].<br />

511 AnIn1 Fc<br />

Stp A Process Ref<br />

Default: Process Ref<br />

Off 0 Input is not active<br />

Max Speed 1 The input acts as an upper speed limit.<br />

Max Torque 2 The input acts as an upper torque limit.<br />

114 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Adding analogue inputs<br />

If more then one analogue input is set to the same<br />

function, the values of the inputs can be added<br />

together. In the following examples we assume that<br />

Process Source [321] is set to Speed.<br />

Example 1: Add signals with different weight (fine tuning).<br />

Signal on AnIn1 = 10 mA<br />

Signal on AnIn2 = 5 mA<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 4-20 mA<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 4-20 mA<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = User defined<br />

[5167] AnIn2 Value Max = 300 rpm<br />

[5168] AnIn2 Operation = Add+<br />

Calculation:<br />

AnIn1 = (10-4) / (20-4) x (1500-0) + 0 = 562.5 rpm<br />

AnIn2 = (5-4) / (20-4) x (300-0) + 0 = 18.75 rpm<br />

The actual process reference will be:<br />

+562.5 + 18.75 = 581 rpm<br />

Analogue Input Selection via Digital Inputs:<br />

When two different external Reference signals are<br />

used, e.g. 4-20mA signal from control centre and a 0-<br />

10 V locally mounted potentiometer, it is possible to<br />

switch between these two different analogue input signals<br />

via a Digital Input set to “AnIn Select”.<br />

AnIn1 is 4-20 mA<br />

AnIn2 is 0-10 V<br />

DigIn3 is controlling the AnIn selection; HIGH is 4-20<br />

mA, LOW is 0-10 V<br />

[511] AnIn1 Fc = Process Ref;<br />

set AnIn1 as reference signal input<br />

[512] AnIn1 Setup = 4-20mA;<br />

set AnIn1 for a current reference signal<br />

[513A] AnIn1 Enable = DigIn;<br />

set AnIn1 to be active when DigIn3 is HIGH<br />

[514] AnIn2 Fc = Process Ref;<br />

set AnIn2 as reference signal input<br />

[515] AnIn2 Setup = 0-10V;<br />

set AnIn2 for a voltage reference signal<br />

[516A] AnIn2 Enabl = !DigIn;<br />

set AnIn2 to be active when DigIn3 is LOW<br />

[523] DigIn3=AnIn;<br />

set DIgIn3 as input fot selection of AI reference<br />

Subtracting analogue inputs<br />

Example 2: Subtract two signals<br />

Signal on AnIn1 = 8 V<br />

Signal on AnIn2 = 4 V<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 0-10 V<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 0-10 V<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = Max (1500 rpm)<br />

[5168] AnIn2 Operation = Sub-<br />

Calculation:<br />

AnIn1 = (8-0) / (10-0) x (1500-0) + 0 = 1200 rpm<br />

AnIn2 = (4-0) / (10-0) x (1500-0) + 0 = 600 rpm<br />

The actual process reference will be:<br />

+1200 - 600 = 600 rpm<br />

AnIn1 Setup [512]<br />

The analogue input setup is used to configure the analogue<br />

input in accordance with the signal used that will<br />

be connected to the analogue input. With this selection<br />

the input can be determined as current (4-20 mA)<br />

or voltage<br />

(0-10 V) controlled input. Other selections are available<br />

for using a threshold (live zero), a bipolar input function,<br />

or a user defined input range. With a bipolar input<br />

reference signal, it is possible to control the motor in<br />

two directions. See Fig. 80.<br />

NOTE: The selection of voltage or current input is done<br />

with S1. When the switch is in voltage mode only the<br />

voltage menu items are selectable. With the switch in<br />

current mode only the current menu items are<br />

selectable.<br />

Default:<br />

Dependent on<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

512 AnIn1 Setup<br />

Stp A 4-20mA<br />

4-20 mA<br />

Setting of switch S1<br />

The current input has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the input signal. See Fig. 82.<br />

Normal full current scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 81.<br />

The scale of the current controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 115


User Bipol<br />

mA<br />

3<br />

0–10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol<br />

V<br />

7<br />

Sets the input for a bipolar current input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

Normal full voltage scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 81.<br />

The voltage input has a fixed threshold<br />

(Live Zero) of 2 V and controls the full range<br />

for the input signal. See Fig. 82.<br />

The scale of the voltage controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

Sets the input for a bipolar voltage input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

100 %<br />

Fig. 81 Normal full-scale configuration<br />

100 %<br />

n<br />

Ref<br />

0 10 V<br />

20mA<br />

(NG_06-F21)<br />

n<br />

0–10 V<br />

0–20 mA<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

2–10 V<br />

4–20 mA<br />

NOTE: Always check the needed set up when the setting<br />

of S1 is changed; selection will not adapt automatically.<br />

0<br />

2 V<br />

4mA<br />

10 V<br />

2 0mA<br />

Ref<br />

Communication information<br />

Fig. 82 2–10 V/4–20 mA (Live Zero)<br />

Modbus Instance no/DeviceNet no: 43202<br />

Profibus slot/index 169/106<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn1 Advanced [513]<br />

NOTE: The different menus will automatically be set to<br />

either “mA” or “V”, based on the selection in AnIn 1<br />

Setup [512].<br />

Speed<br />

100 %<br />

n<br />

513 AnIn1 Advan<br />

Stp A<br />

AnIn1 Min [5131]<br />

Parameter to set the minimum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

-10 V<br />

0<br />

10 V<br />

20 mA<br />

5131 AnIn1 Min<br />

Stp A 0V/4.00mA<br />

100 %<br />

(NG_06-F21)<br />

Default:<br />

Range:<br />

0 V/4.00 mA<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Fig. 80<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43203<br />

Profibus slot/index 169/107<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

116 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


AnIn1 Max [5132]<br />

Parameter to set the maximum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

Default: 10.00 V/20.00 mA<br />

Range:<br />

Communication information<br />

Special function: Inverted reference signal<br />

If the AnIn minimum value is higher than the AnIn maximum<br />

value, the input will act as an inverted reference<br />

input, see Fig. 83.<br />

Fig. 83 Inverted reference<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Modbus Instance no/DeviceNet no: 43204<br />

Profibus slot/index 169/108<br />

Fieldbus format<br />

Modbus format<br />

100 %<br />

n<br />

Long<br />

EInt<br />

AnIn1 Bipol [5133]<br />

This menu is automatically displayed if AnIn1 Setup is<br />

set to User Bipol mA or User Bipol V. The window will<br />

automatically show mA or V range according to<br />

selected function. The range is set by changing the<br />

positive maximum value; the negative value is automatically<br />

adapted accordingly. Only visible if [512] =<br />

User Bipol mA/V. The inputs RunR and RunL input<br />

need to be active, and Rotation, [219], must be set to<br />

“R+L”, to operate the bipolar function on the analogue<br />

input.<br />

Default:<br />

Range:<br />

5132 AnIn1 Max<br />

Stp 10.0V/20.00mA<br />

0 1 0 V<br />

0.00–10.00 V<br />

0.0–20.0 mA, 0.00–10.00 V<br />

Invert<br />

AnIn Min ><br />

AnIn Max<br />

Ref<br />

5133 AnIn1 Bipol<br />

Stp 10.00V<br />

A<br />

(NG_06-F25)<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43205<br />

Profibus slot/index 169/109<br />

Fieldbus format<br />

Modbus format<br />

AnIn1 Function Min [5134]<br />

With AnIn1 Function Min the physical minimum value<br />

is scaled to selected process unit. The default scaling<br />

is dependent of the selected function of AnIn1 [511].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

Userdefined<br />

Table 22 shows corresponding values for the min and<br />

max selections depending on the function of the analogue<br />

input [511].<br />

Table 22<br />

Communication information<br />

Long<br />

EInt<br />

2 Define user value in menu [5135]<br />

AnIn Function Min Max<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Process Value Process Min [324] Process Max [325]<br />

Modbus Instance no/DeviceNet no: 43206<br />

Profibus slot/index 169/110<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn1 Function Value Min [5135]<br />

With AnIn1 Function ValMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5134].<br />

Default: 0.000<br />

5134 AnIn1 FcMin<br />

Stp A<br />

Min<br />

5135 AnIn1 VaMin<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 117


Communication information<br />

Modbus Instance no/DeviceNet no: 43541<br />

Profibus slot/index 170/190<br />

Fieldbus format<br />

Modbus format<br />

AnIn1 Function Max [5136]<br />

With AnIn1 Function Max the physical maximum value<br />

is scaled to selected process unit. The default scaling<br />

is dependent of the selected function of AnIn1 [511].<br />

See Table 22.<br />

Communication information<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

Default:<br />

Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5137]<br />

Modbus Instance no/<br />

DeviceNet no:<br />

43207<br />

Profibus slot/index 169/111<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed/Torque 1=1 rpm or %.<br />

Other 1= 0.001<br />

EInt<br />

AnIn1 Function Value Max [5137]<br />

With AnIn1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5136].<br />

Default: 0.000<br />

5136 AnIn1 FcMax<br />

Stp A<br />

Max<br />

5137 AnIn1 VaMax<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

NOTE: With AnIn Min, AnIn Max, AnIn Function Min and<br />

AnIn Function Max settings, loss of feedback signals<br />

(e.g. voltage drop due to long sensor wiring) can be<br />

compensated to ensure an accurate process control.<br />

Example:<br />

Process sensor is a sensor with the following specification:<br />

Range:0–3 bar<br />

Output:2–10 mA<br />

Analogue input should be set up according to:<br />

[512] AnIn1 Setup = User mA<br />

[5131] AnIn1 Min = 2 mA<br />

[5132] AnIn1 Max = 10 mA<br />

[5134] AnIn1 Function Min = User-defined<br />

[5135] AnIn1 VaMin = 0.000 bar<br />

[5136] AnIn 1 Function Max = User-defined<br />

[5137] AnIn1 VaMax = 3.000 bar<br />

AnIn1 Operation [5138]<br />

Default:<br />

Add+ 0<br />

Sub- 1<br />

Add+<br />

Communication information<br />

Analogue signal is added to selected function<br />

in menu [511].<br />

Analogue signal is subtracted from<br />

selected function in menu [511].<br />

Modbus Instance no/DeviceNet no: 43208<br />

Profibus slot/index 169/112<br />

Fieldbus format<br />

Modbus format<br />

5138 AnIn1 Oper<br />

Stp A Add+<br />

UInt<br />

UInt<br />

AnIn1 Filter [5139]<br />

If the input signal is unstable (e.g. fluctuation reference<br />

value), the filter can be used to stabilize the signal. A<br />

change of the input signal will reach 63% on AnIn1<br />

within the set AnIn1 Filter time. After 5 times the set<br />

time, AnIn1 will have reached 100% of the input<br />

change. See Fig. 84.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43551<br />

Profibus slot/index 170/200<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

Default:<br />

Range:<br />

5139 AnIn1 Filt<br />

Stp 0.1s<br />

A<br />

0.1 s<br />

0.001 – 10.0 s<br />

118 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43209<br />

Profibus slot/index 169/113<br />

Fieldbus format<br />

Long, 1=0.001 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43211<br />

Profibus slot/index 169/115<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn change<br />

100%<br />

63%<br />

Original input signal<br />

Filtered AnIn signal<br />

AnIn2 Setup [515]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same functions as AnIn1 Setup [512].<br />

515 AnIn2 Setup<br />

Stp A 4-20mA<br />

Default: 4 – 20 mA<br />

Dependent on Setting of switch S2<br />

Selection: Same as in menu [512].<br />

Fig. 84<br />

AnIn1 Enable [513A]<br />

Parameter for enable/disable analogue input selection<br />

via digital inputs (DigIn set to function AnIn Select).<br />

Default:<br />

On<br />

On 0 AnIn1 is always active<br />

!DigIn 1 AnIn1 is only active if the digital input is low.<br />

DigIn 2 AnIn1 is only active if the digital input is high.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: AnIn1 43210<br />

Profibus slot/index AnIn1 169/114<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Function [514]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same function as AnIn1 Func [511].<br />

T<br />

5 X T<br />

513A AnIn1 Enabl<br />

Stp A<br />

On<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43212<br />

Profibus slot/index 169/116<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Advanced [516]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

516 AnIn2 Advan<br />

Stp A<br />

AnIn3 Function [517]<br />

Parameter for setting the function of Analogue Input 3.<br />

Same function as AnIn1 Func [511].<br />

43213–43220<br />

43542<br />

43552<br />

169/117–124<br />

170/191<br />

170/201<br />

514 AnIn2 Fc<br />

Stp A<br />

Off<br />

517 AnIn3 Fc<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 119


Communication information<br />

Modbus Instance no/DeviceNet no: 43221<br />

Profibus slot/index 169/125<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn3 Setup [518]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

Dependent on<br />

4–20 mA<br />

Setting of switch S3<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43222<br />

Profibus slot/index 169/126<br />

Fieldbus format<br />

Modbus format<br />

AnIn3 Advanced [519]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

518 AnIn3 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

519 AnIn3 Advan<br />

Stp A<br />

43223–43230<br />

43543<br />

43553<br />

169/127–169/134<br />

170/192<br />

170/202<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43231<br />

Profibus slot/index 169/135<br />

Fieldbus format<br />

Modbus format<br />

AnIn4 Set-up [51B]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

Dependent on<br />

4-20 mA<br />

Setting of switch S4<br />

Communication information<br />

AnIn4 Advanced [51C]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

UInt<br />

UInt<br />

Selection: Same as in menu [512].<br />

Modbus Instance no/DeviceNet no: 43232<br />

Profibus slot/index 169/136<br />

Fieldbus format<br />

Modbus format<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

51B AnIn4 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

51C AnIn4 Advan<br />

Stp A<br />

43233–43240<br />

43544<br />

43554<br />

169/137–144<br />

170/193<br />

170/203<br />

AnIn4 Function [51A]<br />

Parameter for setting the function of Analogue Input 4.<br />

Same function as AnIn1 Func [511].<br />

51A AnIn4 Fc<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Selection: Same as in menu [511]<br />

120 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.5.2 Digital Inputs [520]<br />

Submenu with all the settings for the digital inputs.<br />

NOTE: Additional inputs will become available when the<br />

I/O option boards are connected.<br />

Digital Input 1 [521]<br />

To select the function of the digital input.<br />

On the standard control board there are eight digital<br />

inputs.<br />

If the same function is programmed for more than one<br />

input that function will be activated according to “OR”<br />

logic if nothing else is stated.<br />

Default: RunL<br />

Off 0 The input is not active.<br />

Ext. Trip 3<br />

Stop 4<br />

Enable 5<br />

RunR 6<br />

RunL 7<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

trip” immediately.<br />

NOTE: The External Trip is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Stop command according to the selected<br />

Stop mode in menu [33B].<br />

NOTE: The Stop command is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Enable command. General start condition<br />

to run the VSD. If made low during running<br />

the output of the VSD is cut off immediately,<br />

causing the motor to coast to zero<br />

speed.<br />

NOTE: If none of the digital inputs are programmed<br />

to “Enable”, the internal enable<br />

signal is active.<br />

NOTE: Activated according to “AND” logic.<br />

Run Right command. The output of the<br />

VSD will be a clockwise rotary field.<br />

Run Left command. The output of the VSD<br />

will be a counter-clockwise rotary field.<br />

Reset command. To reset a Trip condition<br />

Reset 9<br />

and to enable the Autoreset function.<br />

Preset Ctrl1 10 To select the Preset Reference.<br />

Preset Ctrl2 11 To select the Preset Reference.<br />

Preset Ctrl3 12 To select the Preset Reference.<br />

MotPot Up 13<br />

MotPot<br />

Down<br />

14<br />

521 DigIn 1<br />

Stp A<br />

RunL<br />

Increases the internal reference value<br />

according to the set AccMotPot time [333].<br />

Has the same function as a “real” motor<br />

potentiometer, see Fig. 65.<br />

Decreases the internal reference value<br />

according to the set DecMotPot time [334].<br />

See MotPot Up.<br />

Pump1<br />

Feedb<br />

Pump2<br />

Feedb<br />

Pump3<br />

Feedb<br />

Pump4<br />

Feedb<br />

Pump5<br />

Feedb<br />

Pump6<br />

Feedb<br />

Timer 1<br />

Timer 2<br />

Set Ctrl 1<br />

Set Ctrl 2<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

Mot PreMag 25<br />

Jog 26<br />

Ext Mot<br />

Temp<br />

Loc/Rem<br />

27<br />

28<br />

AnIn select 29<br />

LC Level 30<br />

Brk Ackn 31<br />

Communication information<br />

Feedback input pump1 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 2 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump3 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 4 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump5 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 6 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Timer 1 Delay [643] will be activated on the<br />

rising edge of this signal.<br />

Timer 2 Delay [653] will be activated on the<br />

rising edge of this signal.<br />

Activates other parameter set. See Table<br />

23 for selection possibilities.<br />

Activates other parameter set. See Table<br />

23 for selection possibilities.<br />

Pre-magnetises the motor. Used for faster<br />

motor start.<br />

To activate the Jog function. Gives a Run<br />

command with the set Jog speed and<br />

Direction, page 97.<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

Motor Temp” immediately.<br />

NOTE: The External Motor Temp is active<br />

low.<br />

Activate local mode defined in [2171] and<br />

[2172].<br />

Activate/deactivate analogue inputs<br />

defined in [513A], [516A], [519A] and<br />

[51CA]<br />

Liquid cooling low level signal.<br />

NOTE: The Liquid Cooling Level is active<br />

low.<br />

Brake acknowledge input for Brake Fault<br />

control. Function is activated via this<br />

selection<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

Modbus Instance no/DeviceNet no: 43241<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 121


Profibus slot/index 169/145<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Table 23<br />

Parameter Set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: To activate the parameter set selection, menu<br />

241 must be set to DigIn.<br />

Digital Input 2 [522] to Digital Input 8<br />

[528]<br />

Same function as DigIn 1 [521]. Default function for<br />

DigIn 8 is Reset. For DigIn 3 to 7 the default function is<br />

Off.<br />

Default: RunR<br />

Selection: Same as in menu [521]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43241–43248<br />

Profibus slot/index 169/146–169/152<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Additional digital inputs [529] to [52H]<br />

Additional digital inputs with I/O option board installed,<br />

B1 DigIn 1 [529] - B3 DigIn 3 [52H]. B stands for board<br />

and 1 to 3 is the number of the board which is related<br />

to the position of the I/O option board on the option<br />

mounting plate. The functions and selections are the<br />

same as DigIn 1 [521].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43501–43509<br />

Profibus slot/index 170/150–170/158<br />

Fieldbus format<br />

Modbus format<br />

522 DigIn 2<br />

Stp A<br />

Int<br />

Int<br />

RunR<br />

11.5.3 Analogue Outputs [530]<br />

Submenu with all settings for the analogue outputs.<br />

Selections can be made from application and VSD values,<br />

in order to visualize actual status. Analogue outputs<br />

can also be used as a mirror of the analogue<br />

input. Such a signal can be used as:<br />

• a reference signal for the next VSD in a Master/<br />

Slave configuration (see Fig. 85).<br />

• a feedback acknowledgement of the received analogue<br />

reference value.<br />

AnOut1 Function [531]<br />

Sets the function for the Analogue Output 1. Scale<br />

and range are defined by AnOut1 Advanced settings<br />

[533].<br />

Default:<br />

Speed<br />

Process Val 0<br />

Actual process value according to Process<br />

feedback signal.<br />

Speed 1 Actual speed.<br />

Torque 2 Actual torque.<br />

Process Ref 3 Actual process reference value.<br />

Shaft Power 4 Actual shaft power.<br />

Frequency 5 Actual frequency.<br />

Current 6 Actual current.<br />

El power 7 Actual electrical power.<br />

Output volt 8 Actual output voltage.<br />

DC-voltage 9 Actual DC link voltage.<br />

AnIn1 10<br />

AnIn2 11<br />

AnIn3 12<br />

AnIn4 13<br />

Speed Ref 14<br />

Torque Ref 15<br />

531 AnOut1 Fc<br />

Stp A Speed<br />

Mirror of received signal value on<br />

AnIn1.<br />

Mirror of received signal value on<br />

AnIn2.<br />

Mirror of received signal value on<br />

AnIn3.<br />

Mirror of received signal value on<br />

AnIn4.<br />

Actual internal speed reference Value<br />

after ramp and V/Hz.<br />

Actual torque reference value<br />

(=0 in V/Hz mode)<br />

NOTE: When selections AnIn1, AnIn2 …. AnIn4 is<br />

selected, the setup of the AnOut (menu [532] or [535])<br />

has to be set to 0-10V or 0-20mA. When the AnOut Setup<br />

is set to e.g. 4-20mA, the mirroring is not working<br />

correct.<br />

122 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information AnOut 1 Setup [532]<br />

Modbus Instance no/DeviceNet no: 43251<br />

Profibus slot/index 169/155<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Preset scaling and offset of the output configuration.<br />

Default:<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

3<br />

0-10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol V 7<br />

4-20mA<br />

Communication information<br />

532 AnOut1 Setup<br />

Stp A 4-20mA<br />

The current output has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the output signal. See Fig. 82.<br />

Normal full current scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 81.<br />

The scale of the current controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar current output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Normal full voltage scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 81.<br />

The voltage output has a fixed threshold<br />

(Live Zero) of 2 V and controls the full<br />

range for the output signal. See Fig. 82.<br />

The scale of the voltage controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar voltage output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Modbus Instance no/DeviceNet no: 43252<br />

Profibus slot/index 169/156<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Ref.<br />

VSD 1<br />

Master<br />

Ref.<br />

VSD 2<br />

Slave<br />

AnOut<br />

Fig. 85<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 123


AnOut1 Advanced [533]<br />

With the functions in the AnOut1 Advanced menu, the<br />

output can be completely defined according to the<br />

application needs. The menus will automatically be<br />

adapted to “mA” or “V”, according to the selection in<br />

AnOut1 Setup [532].<br />

AnOut1 Min [5331]<br />

This parameter is automatically displayed if User mA<br />

or User V is selected in menu AnOut 1 Setup [532].<br />

The menu will automatically adapt to current or voltage<br />

setting according to the selected setup. Only visible<br />

if [532] = User mA/V.<br />

Default:<br />

Range:<br />

4 mA<br />

Communication information<br />

AnOut1 Max [5332]<br />

This parameter is automatically displayed if User mA<br />

or User V is selected in menu AnOut1 Setup [532].<br />

The menu will automatically adapt to current or voltage<br />

setting according to the selected setup. Only visible<br />

if [532] = User mA/V.<br />

Communication information<br />

0.00 – 20.00 mA, 0 – 10.00 V<br />

Modbus Instance no/DeviceNet no: 43253<br />

Profibus slot/index 169/157<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Default:<br />

Range:<br />

20.00 mA<br />

EInt<br />

0.00–20.00 mA, 0–10.00 V<br />

Modbus Instance no/DeviceNet no: 43254<br />

Profibus slot/index 169/158<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

533 AnOut 1 Adv<br />

Stp A<br />

5331 AnOut 1 Min<br />

Stp A<br />

4mA<br />

5332 AnOut 1 Max<br />

Stp 20.0mA<br />

EInt<br />

AnOut1 Bipol [5333]<br />

Automatically displayed if User Bipol mA or User Bipol<br />

V is selected in menu AnOut1 Setup. The menu will<br />

automatically show mA or V range according to the<br />

selected function. The range is set by changing the<br />

positive maximum value; the negative value is automatically<br />

adapted accordingly. Only visible if [512] =<br />

User Bipol mA/V.<br />

Default:<br />

Range:<br />

Communication information<br />

-10.00–10.00 V<br />

-10.00–10.00 V, -20.0–20.0 mA<br />

Modbus Instance no/DeviceNet no: 43255<br />

Profibus slot/index 169/159<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

EInt<br />

AnOut1 Function Min [5334]<br />

With AnOut1 Function Min the physical minimum value<br />

is scaled to selected presentation. The default scaling<br />

is dependent of the selected function of AnOut1 [531].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5335]<br />

Table 24 shows corresponding values for the min and<br />

max selections depending on the function of the analogue<br />

output [531].<br />

Table 24<br />

AnOut<br />

Function<br />

5333 AnOut1Bipol<br />

Stp -10.00-10.00V<br />

5334 AnOut1FCMin<br />

Stp A<br />

Min<br />

Min Value<br />

Max Value<br />

Process Value Process Min [324] Process Max [325]<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Shaft Power 0% Motor Power [223]<br />

Frequency 0 Hz Motor Frequency [222]<br />

Current 0 A Motor Current [224]<br />

El Power 0 W Motor Power [223]<br />

Output Voltage 0 V Motor Voltage [221]<br />

124 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 24<br />

AnOut<br />

Function<br />

DC voltage 0 V 1000 V<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

*) Fmin is dependent on the set value in menu Minimum<br />

Speed [341].<br />

Communication information<br />

Example<br />

Set the AnOut function for Motorfrequency to 0Hz, set<br />

AnOut functionMin [5334] to “User-defined” and<br />

AnOut1 VaMin[5335] = 0.0. This results in an anlogue<br />

output signal from 0/4 mA to 20mA. ......<br />

AnOut1 Function Value Min [5335]<br />

With AnOut1 Function VaMin you define a userdefined<br />

value for the signal. Only visible when userdefined<br />

is selected in menu [5334].<br />

Communication information<br />

AnIn1 Function Min AnIn1 Function Max<br />

AnIn2 Function Min AnIn2 Function Max<br />

AnIn3 Function Min AnIn3 Function Max<br />

AnIn4 Function Min AnIn4 Function Max<br />

Modbus Instance no/DeviceNet no: 43256<br />

Profibus slot/index 169/160<br />

Fieldbus format<br />

Modbus format<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43545<br />

Profibus slot/index 170/194<br />

Fieldbus format<br />

Modbus format<br />

Min Value<br />

5335 AnOut1VaMin<br />

Stp 0.000<br />

A<br />

Max Value<br />

Long,<br />

1=0.1 W, 0.1 Hz, 0.1 A,<br />

0.1 V or 0.001<br />

EInt<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnOut1 Function Max [5336]<br />

With AnOut1 Function Min the physical minimum value<br />

is scaled to selected presentation. The default scaling<br />

is dependent on the selected function of AnOut1<br />

[531]. See Table 24.<br />

Default: Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User defined 2 Define user value in menu [5337]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43257<br />

Profibus slot/index 169/161<br />

Fieldbus format Long, 0.001<br />

Modbus format<br />

AnOut1 Function Value Max [5337]<br />

With AnOut1 Function VaMax you define a userdefined<br />

value for the signal. Only visible when userdefined<br />

is selected in menu [5334].<br />

Communication information<br />

EInt<br />

NOTE: It is possible to set AnOut1 up as an inverted<br />

output signal by setting AnOut1 Min > AnOut1 Max. See<br />

Fig. 83.<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43555<br />

Profibus slot/index 170/204<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnOut2 Function [534]<br />

Sets the function for the Analogue Output 2.<br />

Default:<br />

Torque<br />

5336 AnOut1FCMax<br />

Stp A<br />

Max<br />

5337 AnOut1VaMax<br />

Stp 0.000<br />

A<br />

534 AnOut2 Fc<br />

Stp A Torque<br />

Selection: Same as in menu [531]<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 125


Communication information<br />

Modbus Instance no/DeviceNet no: 43261<br />

Profibus slot/index 169/165<br />

Fieldbus format<br />

Modbus format<br />

AnOut2 Setup [535]<br />

Preset scaling and offset of the output configuration<br />

for analogue output 2.<br />

Default:<br />

4-20mA<br />

Communication information<br />

AnOut2 Advanced [536]<br />

Same functions and submenus as under AnOut1<br />

Advanced [533].<br />

Communication information<br />

UInt<br />

UInt<br />

Selection: Same as in menu [532]<br />

Modbus Instance no/DeviceNet no: 43262<br />

Profibus slot/index 169/166<br />

Fieldbus format<br />

Modbus format<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

535 AnOut2 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

536 AnOut2 Advan<br />

Stp A<br />

43263–43267<br />

43546<br />

43556<br />

169/167–169/171<br />

170/195<br />

170/205<br />

11.5.4 Digital Outputs [540]<br />

Submenu with all the settings for the digital outputs.<br />

Digital Out 1 [541]<br />

Sets the function for the digital output 1.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Default:<br />

Off 0<br />

On 1<br />

Ready<br />

Output is not active and constantly<br />

low.<br />

Output is made constantly high, i.e.<br />

for checking circuits and trouble<br />

shooting.<br />

Run 2<br />

Running. The VSD output is active =<br />

produces current for the motor.<br />

Stop 3 The VSD output is not active.<br />

0Hz 4<br />

The output frequency=0±0.1Hz when<br />

in Run condition.<br />

Acc/Dec 5<br />

The speed is increasing or decreasing<br />

along the acc. ramp dec. ramp.<br />

At Process 6 The output = Reference.<br />

At Max spd 7<br />

The frequency is limited by the Maximum<br />

Speed.<br />

No Trip 8 No Trip condition active.<br />

Trip 9 A Trip condition is active.<br />

AutoRst Trip 10 Autoreset trip condition active.<br />

Limit 11 A Limit condition is active.<br />

Warning 12 A Warning condition is active.<br />

Ready 13<br />

T= T lim 14<br />

I>I nom 15<br />

Brake 16<br />

Sgnl


Max Alarm 20<br />

Max PreAlarm 21<br />

Min Alarm 22<br />

The max alarm level has been<br />

reached.<br />

The max pre alarm level has been<br />

reached.<br />

The min alarm level has been<br />

reached.<br />

Min PreAlarm 23<br />

The min pre alarm Level has been<br />

reached.<br />

LY 24 Logic output Y.<br />

!LY 25 Logic output Y inverted.<br />

LZ 26 Logic output Z.<br />

!LZ 27 Logic output Z inverted.<br />

CA 1 28 Analogue comparator 1 output.<br />

!A1 29 Analogue comp 1 inverted output.<br />

CA 2 30 Analogue comparator 2 output.<br />

!A2 31 Analogue comp 2 inverted output.<br />

CD 1 32 Digital comparator 1 output.<br />

!D1 33 Digital comp 1 inverted output.<br />

CD 2 34 Digital comparator 2 output.<br />

!D2 35 Digital comp 2 inverted output.<br />

Operation 36<br />

Run command is active or VSD running.<br />

The signal can be used to control<br />

the mains contactor if the VSD is<br />

equipped with Standby supply option.<br />

T1Q 37 Timer1 output<br />

!T1Q 38 Timer1 inverted output<br />

T2Q 39 Timer2 output<br />

!T2Q 40 Timer2 inverted output<br />

Sleeping 41 Sleeping function activated<br />

Crane Deviat 42 Tripped on deviation<br />

PumpSlave1 43 Activate pump slave 1<br />

PumpSlave2 44 Activate pump slave 2<br />

PumpSlave3 45 Activate pump slave 3<br />

PumpSlave4 46 Activate pump slave 4<br />

PumpSlave5 47 Activate pump slave 5<br />

PumpSlave6 48 Activate pump slave 6<br />

PumpMaster1 49 Activate pump master 1<br />

PumpMaster2 50 Activate pump master 2<br />

PumpMaster3 51 Activate pump master 3<br />

PumpMaster4 52 Activate pump master 4<br />

PumpMaster5 53 Activate pump master 5<br />

PumpMaster6 54 Activate pump master 6<br />

All Pumps 55 All pumps are running<br />

Only Master 56 Only the master is running<br />

Loc/Rem 57 Local/Rem function is active<br />

Standby 58 Standby supply option is active<br />

PTC Trip 59 Trip when function is active<br />

PT100 Trip 60 Trip when function is active<br />

Overvolt 61 Overvoltage due to high main voltage<br />

Overvolt G 62 Overvoltage due to generation mode<br />

Overvolt D 63 Overvoltage due to deceleration<br />

Acc 64 Acceleration along the acc. ramp<br />

Dec 65 Deceleration along the dec. ramp<br />

I 2 t 66 I 2 t limit protection active<br />

V-Limit 67 Overvoltage limit function active<br />

C-Limit 68 Overcurrent limit function active<br />

Overtemp 69 Over temperature warning<br />

Low voltage 70 Low voltage warning<br />

DigIn 1 71 Digital input 1<br />

DigIn 2 72 Digital input 2<br />

DigIn 3 73 Digital input 3<br />

DigIn 4 74 Digital input 4<br />

DigIn 5 75 Digital input 5<br />

DigIn 6 76 Digital input 6<br />

DigIn 7 77 Digital input 7<br />

DigIn 8 78 Digital input 8<br />

ManRst Trip 79<br />

Active trip that needs to be <strong>manual</strong>ly<br />

reset<br />

Com Error 80 Serial communication lost<br />

External Fan 81<br />

The VSD requires external cooling.<br />

Internal fans are active.<br />

LC Pump 82 Activate liquid cooling pump<br />

LC HE Fan 83<br />

Activate liquid cooling heat exchanger<br />

fan<br />

LC Level 84 Liquid cooling low level signal active<br />

Run Right 85<br />

Communication information<br />

Positive speed (>0.5%), i.e. forward/<br />

clockwise direction.<br />

Run Left 86<br />

Negative speed (0.5%), i.e. reverse<br />

counter clockwise direction.<br />

Com Active 87 Fieldbus communication active.<br />

Brk Fault 88 Tripped on brake fault (not released)<br />

BrkNotEngage 89<br />

Warning and continued operation<br />

(keep torque) due to Brake not<br />

engaged during stop.<br />

Modbus Instance no/DeviceNet no: 43271<br />

Profibus slot/index 169/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 127


Digital Out 2 [542]<br />

Relay 2 [552]<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Sets the function for the digital output 2.<br />

Sets the function for the relay output 2.<br />

542 DigOut2<br />

Stp A No Trip<br />

Default: No trip<br />

Selection: Same as in menu [541]<br />

552 Relay 2<br />

Stp A<br />

Default: Run<br />

Selection: Same as in menu [541]<br />

Run<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43272<br />

Profibus slot/index 169/176<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43274<br />

Profibus slot/index 169/178<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5.5 Relays [550]<br />

Submenu with all the settings for the relay outputs.<br />

The relay mode selection makes it possible to establish<br />

a “fail safe” relay operation by using the normal<br />

closed contact to function as the normal open contact.<br />

NOTE: Additional relays will become available when I/O<br />

option boards are connected. Maximum 3 boards with 3<br />

relays each.<br />

Relay 1 [551]<br />

Sets the function for the relay output 1. Same function<br />

as digital output 1 [541] can be selected.<br />

Default:<br />

Trip<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43273<br />

Profibus slot/index 169/177<br />

Fieldbus format<br />

Modbus format<br />

551 Relay 1<br />

Stp A<br />

UInt<br />

UInt<br />

Trip<br />

Relay 3 [553]<br />

Sets the function for the relay output 3.<br />

553 Relay 3<br />

Stp A<br />

Default: Off<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43275<br />

Profibus slot/index 169/179<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Board Relay [554] to [55C]<br />

These additional relays are only visible if an I/O option<br />

board is fitted in slot 1, 2, or 3. The outputs are named<br />

B1 Relay 1–3, B2 Relay 1–3 and B3 Relay 1–3. B<br />

stands for board and 1–3 is the number of the board<br />

which is related to the position of the I/O option board<br />

on the option mounting plate.<br />

NOTE: Visible only if optional board is detected or if any<br />

input/output is activated.<br />

Communication information<br />

Off<br />

Modbus Instance no/DeviceNet no: 43511–43519<br />

Profibus slot/index 170/160–170/168<br />

128 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Fieldbus format<br />

Modbus format<br />

Relay Advanced [55D]<br />

This function makes it possible to ensure that the relay<br />

will also be closed when the VSD is malfunctioning or<br />

powered down.<br />

Example<br />

A process always requires a certain minimum flow. To<br />

control the required number of pumps by the relay<br />

mode NC, the e.g. the pumps can be controlled normally<br />

by the pump control, but are also activated<br />

when the variable speed drive is tripped or powered<br />

down.<br />

Relay 1 Mode [55D1]<br />

Default:<br />

N.O 0<br />

N.C 1<br />

N.O<br />

Communication information<br />

Relay Modes [55D2] to [55DC]<br />

Same function as for relay 1 mode [55D1].<br />

Communication information<br />

UInt<br />

UInt<br />

The normal open contact of the relay will<br />

be activated when the function is active.<br />

The normally closed contact of the relay<br />

will act as a normal open contact. The<br />

contact will be opened when function is<br />

not active and closed when function is<br />

active.<br />

Modbus Instance no/DeviceNet no: 43276<br />

Profibus slot/index 169/180<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

55D Relay Adv<br />

Stp A<br />

55D1 Relay Mode<br />

Stp A<br />

N.O<br />

43277–43278,<br />

43521–43529<br />

169/181–169/182,<br />

170/170–170/178<br />

UInt<br />

UInt<br />

11.5.6 Virtual Connections [560]<br />

Functions to enable eight internal connections of comparator,<br />

timer and digital signals, without occupying<br />

physical digital in/outputs. Virtual connections are<br />

used to wireless connection of a digital output function<br />

to a digital input function. Available signals and control<br />

functions can be used to create your own specific<br />

functions.<br />

Example of start delay<br />

The motor will start in RunR 10 seconds after DigIn1<br />

gets high. DigIn1 has a time delay of 10 s.<br />

Menu Parameter Setting<br />

[521] DigIn1 Timer 1<br />

[561] VIO 1 Dest RunR<br />

[562] VIO 1 Source T1Q<br />

[641] Timer1 Trig DigIn 1<br />

[642] Timer1 Mode Delay<br />

[643] Timer1 Delay 0:00:10<br />

NOTE: When a digital input and a virtual destination are<br />

set to the same function, this function will act as an OR<br />

logic function.<br />

Virtual Connection 1 Destination [561]<br />

With this function the destination of the virtual connection<br />

is established. When a function can be controlled<br />

by several sources, e.g. VC destination or Digital Input,<br />

the function will be controlled in conformity with “OR<br />

logic”. See DigIn for descriptions of the different selections.<br />

Default:<br />

Selection:<br />

Off<br />

Communication information<br />

Same selections as for Digital Input 1,<br />

menu [521].<br />

Modbus Instance no/DeviceNet no: 43281<br />

Profibus slot/index 169/185<br />

Fieldbus format<br />

Modbus format<br />

561 VIO 1 Dest<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 129


Virtual Connection 1 Source [562]<br />

With this function the source of the virtual connection<br />

is defined. See DigOut 1 for description of the different<br />

selections.<br />

Default:<br />

Off<br />

Selection: Same as for menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43282<br />

Profibus slot/index 169/186<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Virtual Connections 2-8 [563] to [56G]<br />

Same function as virtual connection 1 [561] and [562].<br />

Communication information for virtual connections 2-8<br />

Destination.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43283, 43285, 43287,<br />

43289, 43291, 43293,<br />

43295<br />

169/ 187, 189, 191,<br />

193, 195, 197, 199<br />

UInt<br />

UInt<br />

Communication information for virtual connections 2-8<br />

Source.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

562 VIO 1 Source<br />

Stp A<br />

Off<br />

43284, 43286, 43288,<br />

43290, 43292, 43294,<br />

43296<br />

169/ 188, 190, 192,<br />

194, 196, 198, 200<br />

UInt<br />

UInt<br />

11.6 Logical Functions and<br />

Timers [600]<br />

With the Comparators, Logic Functions and Timers,<br />

conditional signals can be programmed for control or<br />

signalling features. This gives you the ability to compare<br />

different signals and values in order to generate<br />

monitoring/controlling features.<br />

11.6.1 Comparators [610]<br />

The comparators available make it possible to monitor<br />

different internal signals and values, and visualize via<br />

digital output or a contact, when a specific value or<br />

status is reached or established.<br />

There are 2 analogue comparators that compare any<br />

available analogue value (including the analogue reference<br />

inputs) with two adjustable constants.<br />

For the two analogue comparators two different constants<br />

are available, Level HI and Level LO. With these<br />

two levels, it is possible to create a clear hysteresis for<br />

the analogue comparator between setting and resetting<br />

the comparator output. This function gives a clear<br />

difference in switching levels, which lets the process<br />

adapt until a certain action is started. With such a hysteresis,<br />

even an instable analogue signal can be monitored<br />

without getting a nervous comparator signal.<br />

Another function is to get a clear indication that a certain<br />

situation has occurred; the comparator can latch<br />

by set Level LO to a higher value than Level HI.<br />

There are 2 digital comparators that compare any<br />

available digital signal.<br />

The output signals of these comparators can be logically<br />

tied together to yield a logical output signal.<br />

All the output signals can be programmed to the digital<br />

or relay outputs or used as a source for the virtual<br />

connections [560].<br />

Analogue Comparator 1 Value [611]<br />

Selection of the analogue value for Analogue Comparator<br />

1 (CA1).<br />

Analogue comparator 1 compares the selectable analogue<br />

value in menu [611] with the constant Level HI in<br />

menu [612] and constant Level LO in menu [613].<br />

When the value exceeds the upper limit level high, the<br />

output signal CA1 becomes high and !A1 low, see Fig.<br />

86. When the value then decreases below the lower<br />

limit, the output signal CA1 becomes low and !A1<br />

high.<br />

The output signal can be programmed as a virtual<br />

connection source and to the digital or relay outputs.<br />

Analogue value:<br />

Menu [611]<br />

Adjustable Level HI.<br />

Menu [612]<br />

Adjustable Level LO.<br />

Menu [613]<br />

Fig. 86 Analogue Comparator<br />

0<br />

1<br />

Signal:CA1<br />

611 CA1 Value<br />

Stp A Speed<br />

(NG_06-F125)<br />

130 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Default:<br />

Speed<br />

Process Val 0 Set by Unit [310]<br />

Speed 1 rpm<br />

Torque 2 %<br />

Shaft Power 3 kW<br />

El Power 4 kW<br />

Current 5 A<br />

Output Volt 6 V<br />

Frequency 7 Hz<br />

DC Voltage 8 V<br />

Heatsink Tmp 9 °C<br />

PT100_1 10 °C<br />

PT100_2 11 °C<br />

PT100_3 12 °C<br />

Energy 13 kWh<br />

Run Time 14 h<br />

Mains Time 15 h<br />

AnIn1 16 %<br />

AnIn2 17 %<br />

AnIn3 18 %<br />

AnIn4 19 %<br />

Example<br />

Create automatic RUN/STOP signal via the analogue<br />

reference signal. Analogue current reference signal, 4-<br />

20 mA, is connected to Analogue Input 1. AnIn1<br />

Setup, menu [512] = 4-20 mA and the threshold is 4<br />

mA. Full scale (100%) input signal on AnIn 1 = 20 mA.<br />

When the reference signal on AnIn1 increases 80% of<br />

the threshold (4 mA x 0.8 = 3.2 mA), the VSD will be<br />

set in RUN mode. When the signal on AnIn1 goes<br />

below 60% of the threshold (4 mA x 0.6 = 2.4 mA) the<br />

VSD is set to STOP mode. The output of CA1 is used<br />

as a virtual connection source that controls the virtual<br />

connection destination RUN.<br />

Menu Function Setting<br />

511 AnIn1 Function Process reference<br />

512 AnIn1 Set-up 4-20 mA, threshold is 4 mA<br />

341 Min Speed 0<br />

343 Max Speed 1500<br />

611 CA1 Value AnIn1<br />

612 CA1 Level HI 16% (3.2mA/20mA x 100%)<br />

613 CA1 Level LO 12% (2.4mA/20mA x 100%)<br />

561 VIO 1 Dest RunR<br />

562 VIO 1 Source CA1<br />

215 Run/Stp Ctrl Remote<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43401<br />

Profibus slot/index 170/50<br />

20 mA<br />

Reference signal AnIn1<br />

Max speed<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

4 mA<br />

3.2 mA<br />

2.4 mA<br />

CA1 Level HI = 16%<br />

CA1 Level LO = 12%<br />

t<br />

CA1<br />

Mode<br />

RUN<br />

STOP<br />

T<br />

1 2 3 4 5 6<br />

Fig. 87<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 131


Communication information<br />

No.<br />

1<br />

2<br />

3<br />

T<br />

4<br />

5<br />

6<br />

Analogue Comparator 1 Level High<br />

[612]<br />

Selects the analogue comparator constant high level<br />

according to the selected value in menu [611].<br />

The default value is 300.<br />

Default:<br />

Range:<br />

Description<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 output stays<br />

low, mode=RUN.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is set<br />

high, mode=RUN.<br />

The reference signal passes the threshold level of 4 mA,<br />

the motor speed will now follow the reference signal.<br />

During this period the motor speed will follow the reference<br />

signal.<br />

The reference signal reaches the threshold level, motor<br />

speed is 0 rpm, mode = RUN.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 output stays<br />

high, mode =RUN.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 output=STOP.<br />

612 CA1 Level HI<br />

Stp A 300rpm<br />

300 rpm<br />

Enter a value for the high level.<br />

Modbus Instance no/DeviceNet no: 43402<br />

Profibus slot/index 170/51<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Example<br />

This example describes the normal use of the constant<br />

level high and low.<br />

Menu Function Setting<br />

343 Max Speed 1500<br />

611 CA1 Value Speed<br />

612 CA1 Level HI 300 rpm<br />

613 CA1 Level LO 200 rpm<br />

561 VC1 Dest Timer 1<br />

562 VC1 Source CA1<br />

MAX<br />

speed<br />

[343]<br />

300<br />

200<br />

CA1 Level HI [612]<br />

Hysteresis<br />

CA1 Level LO [613]<br />

Mode Min Max Decimals<br />

Process 0 3<br />

Speed, rpm 0 Max speed 0<br />

Torque, % 0 Max torque 0<br />

Shaft Power, kW 0 Motor P n x4 0<br />

El Power, kW 0 Motor P n x4 0<br />

Current, A 0 Motor I n x4 1<br />

Output volt, V 0 1000 1<br />

Frequency, Hz 0 400 1<br />

DC voltage, V 0 1250 1<br />

Heatsink temp, C 0 100 1<br />

PT 100_1_2_3, C -100 300 1<br />

Energy, kWh 0 1000000 0<br />

Run time, h 0 65535 0<br />

Mains time, h 0 65535 0<br />

AnIn 1-4% 0 100 0<br />

Output<br />

CA1<br />

High<br />

Low<br />

Fig. 88<br />

No.<br />

1<br />

2<br />

1 2 3 4 5 6 7 8<br />

Description<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

t<br />

132 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


No.<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

Analogue Comparator 1 Level Low<br />

[613]<br />

Selects the analogue comparator constant low level<br />

according to the selected value in menu [611].<br />

For default value see selection table for menu [612].<br />

Default:<br />

Range:<br />

200 rpm<br />

Communication information<br />

Enter a value for the low level.<br />

Modbus Instance no/DeviceNet no: 43403<br />

Profibus slot/index 170/52<br />

Fieldbus format<br />

Modbus format<br />

Description<br />

613 CA1 Level LO<br />

Stp A 200rpm<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Analogue Comparator 2 Value [614]<br />

Function is identical to analogue comparator 1 value.<br />

Default:<br />

Torque<br />

Selections: Same as in menu [611]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43404<br />

Profibus slot/index 170/53<br />

Fieldbus format<br />

Modbus format<br />

Analogue Comparator 2 Level High<br />

[615]<br />

Function is identical to analogue comparator 1 level<br />

high.<br />

Default: 20%<br />

Range:<br />

Communication information<br />

UInt<br />

UInt<br />

Enter a value for the high level.<br />

Modbus Instance no/DeviceNet no: 43405<br />

Profibus slot/index 170/54<br />

Fieldbus format<br />

Modbus format<br />

614 CA2 Value<br />

Stp A Torque<br />

615 CA2 Level HI<br />

Stp 20%<br />

A<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Analogue Comparator 2 Level Low<br />

[616]<br />

Function is identical to analogue comparator 1 level<br />

low.<br />

Default: 10%<br />

616 CA2 Level LO<br />

Stp 10%<br />

A<br />

Range:<br />

Enter a value for the low level.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 133


Communication information<br />

Modbus Instance no/DeviceNet no: 43406<br />

Profibus slot/index 170/55<br />

Fieldbus format<br />

Modbus format<br />

Digital Comparator 1 [617]<br />

Selection of the input signal for digital comparator 1<br />

(CD1).<br />

The output signal CD1 becomes high if the selected<br />

input signal is active. See Fig. 89.<br />

The output signal can be programmed to the digital or<br />

relay outputs or used as a source for the virtual connections<br />

[560].<br />

Digital signal:<br />

Menu [617]<br />

Fig. 89 Digital comparator<br />

Default:<br />

Run<br />

Communication information<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Selection: Same selections as for DigOut 1 [541].<br />

Modbus Instance no/DeviceNet no: 43407<br />

Profibus slot/index 170/56<br />

Fieldbus format<br />

Modbus format<br />

Digital Comparator 2 [618]<br />

Function is identical to digital comparator 1.<br />

Default: DigIn 1<br />

+<br />

-<br />

DComp 1<br />

617 CD1<br />

Stp A<br />

UInt<br />

UInt<br />

Signal: CD1<br />

(NG_06-F126)<br />

Run<br />

618 CD 2<br />

Stp DigIn 1<br />

A<br />

Selection: Same selections as for DigOut 1 [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43408<br />

Profibus slot/index 170/57<br />

Fieldbus format<br />

Modbus format<br />

11.6.2 Logic Output Y [620]<br />

By means of an expression editor, the comparator signals<br />

can be logically combined into the Logic Y function.<br />

The expression editor has the following features:<br />

• The following signals can be used:<br />

CA1, CA2, CD1, CD2 or LZ (or LY)<br />

• The following signals can be inverted:<br />

!A1, !A2, !D1, !D2, or !LZ (or !LY)<br />

• The following logical operators are available:<br />

"+" : OR operator<br />

"&" : AND operator<br />

"^" : EXOR operator<br />

Expressions according to the following truth table can<br />

be made:<br />

Input<br />

The output signal can be programmed to the digital or<br />

relay outputs or used as a Virtual Connection Source<br />

[560].<br />

Communication information<br />

UInt<br />

UInt<br />

Result<br />

A B & (AND) + (OR) ^(EXOR)<br />

0 0 0 0 0<br />

0 1 0 1 1<br />

1 0 0 1 1<br />

1 1 1 1 0<br />

620 LOGIC Y<br />

Stp CA1&!A2&CD1<br />

Modbus Instance no/DeviceNet no: 31035<br />

Profibus slot/index 121/179<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

The expression must be programmed by means of the<br />

menus [621] to [625].<br />

134 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Example:<br />

Broken belt detection for Logic Y<br />

This example describes the programming for a socalled<br />

“broken belt detection” for fan applications.<br />

The comparator CA1 is set for frequency>10Hz.<br />

The comparator !A2 is set for load < 20%.<br />

The comparator CD1 is set for Run.<br />

The 3 comparators are all AND-ed, given the “broken<br />

belt detection”.<br />

In menus [621]-[625] expression entered for Logic Y is<br />

visible.<br />

Set menu [621] to CA1<br />

Set menu [622] to &<br />

Set menu [623] to !A2<br />

Set menu [624] to &<br />

Set menu [625] to CD1<br />

Menu [620] now holds the expression for Logic Y:<br />

CA1&!A2&CD1<br />

which is to be read as:<br />

(CA1&!A2)&CD1<br />

NOTE: Set menu [624] to "" to finish the expression<br />

when only two comparators are required for Logic Y.<br />

Y Comp 1 [621]<br />

Selects the first comparator for the logic Y function.<br />

Default:<br />

CA1 0<br />

!A1 1<br />

CA2 2<br />

!A2 3<br />

CD1 4<br />

!D1 5<br />

CD2 6<br />

!D2 7<br />

LZ/LY 8<br />

!LZ/!LY 9<br />

T1 10<br />

!T1 11<br />

T2 12<br />

!T2 13<br />

621 Y Comp 1<br />

Stp A<br />

CA1<br />

CA1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43411<br />

Profibus slot/index 170/60<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Y Operator 1 [622]<br />

Selects the first operator for the logic Y function.<br />

Default:<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43412<br />

Profibus slot/index 170/61<br />

Fieldbus format<br />

Modbus format<br />

Y Comp 2 [623]<br />

Selects the second comparator for the logic Y function.<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43413<br />

Profibus slot/index 170/62<br />

Fieldbus format<br />

Modbus format<br />

622 Y Operator 1<br />

Stp A<br />

&<br />

623 Y Comp 2<br />

Stp !A2<br />

A<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 135


Y Operator 2 [624]<br />

Selects the second operator for the logic Y function.<br />

Default:<br />

. 0<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Y Comp 3 [625]<br />

Selects the third comparator for the logic Y function.<br />

Communication information<br />

When · (dot) is selected, the Logic Y<br />

expression is finished (when only two<br />

expressions are tied together).<br />

Modbus Instance no/DeviceNet no: 43414<br />

Profibus slot/index 170/63<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

CD1<br />

Selection: Same as menu [621]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43415<br />

Profibus slot/index 170/64<br />

Fieldbus format<br />

Modbus format<br />

624 Y Operator 2<br />

Stp A<br />

&<br />

625 Y Comp 3<br />

Stp A<br />

UInt<br />

UInt<br />

CD1<br />

11.6.3 Logic Output Z [630]<br />

630 LOGIC Z<br />

StpA<br />

CA1&!A2&CD1<br />

The expression must be programmed by means of the<br />

menus [631] to [635].<br />

Z Comp 1 [631]<br />

Selects the first comparator for the logic Z function.<br />

Default:<br />

CA1<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43421<br />

Profibus slot/index 170/70<br />

Fieldbus format<br />

Modbus format<br />

Z Operator 1 [632]<br />

Selects the first operator for the logic Z function.<br />

Default:<br />

&<br />

Selection: Same as menu [622]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43422<br />

Profibus slot/index 170/71<br />

Fieldbus format<br />

Modbus format<br />

631 Z Comp 1<br />

Stp A<br />

UInt<br />

UInt<br />

CA1<br />

632 Z Operator 1<br />

Stp A<br />

&<br />

Z Comp 2 [633]<br />

Selects the second comparator for the logic Z function.<br />

Default: !A2<br />

633 Z Comp 2<br />

Stp !A2<br />

A<br />

Selection: Same as menu [621]<br />

136 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43423<br />

Profibus slot/index 170/72<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.6.4 Timer1 [640]<br />

The Timer functions can be used as a delay timer or<br />

as an interval with separate On and Off times (alternate<br />

mode). In delay mode, the output signal T1Q becomes<br />

high if the set delay time is expired. See Fig. 90.<br />

Z Operator 2 [634]<br />

Selects the second operator for the logic Z function.<br />

Default:<br />

&<br />

Selection: Same as menu [624]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43424<br />

Profibus slot/index 170/73<br />

Fieldbus format<br />

Modbus format<br />

634 Z Operator 2<br />

Stp A<br />

&<br />

UInt<br />

UInt<br />

Z Comp 3 [635]<br />

Selects the third comparator for the logic Z function.<br />

Timer1 Trig<br />

T1Q<br />

Fig. 90<br />

Timer1 delay<br />

In alternate mode, the output signal T1Q will switch<br />

automatically from high to low etc. according to the<br />

set interval times. See Fig. 91.<br />

The output signal can be programmed to the digital or<br />

relay outputs used in logic functions [620] and [630],<br />

or as a virtual connection source [560].<br />

NOTE: The actual timers are common for all parameter<br />

sets. If the actual set is changed, the timer functionality<br />

[641] to [645] will change according set settings but the<br />

timer value will stay unchanged. So initialization of the<br />

timer might differ for a set change compared to normal<br />

triggering of a timer.<br />

635 Z Comp 3<br />

StpA<br />

Default: CD1<br />

Selection: Same as menu [621]<br />

CD1<br />

Timer1 Trig<br />

T1Q<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43425<br />

Profibus slot/index 170/74<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Fig. 91<br />

T1 T2 T1 T2<br />

Timer 1 Trig [641]<br />

641 Timer1 Trig<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Selection: Same selections as Digital Output 1 menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43431<br />

Profibus slot/index 170/80<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 137


Timer 1 Mode [642]<br />

Default:<br />

Off 0<br />

Delay 1<br />

Alternate 2<br />

Off<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43432<br />

Profibus slot/index 170/81<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 Delay [643]<br />

This menu is only visible when timer mode is set to<br />

delay.<br />

This menu can only be edited as in alternative 2, see<br />

section 9.5, page 51.<br />

Timer 1 delay sets the time that will be used by the<br />

first timer after it is activated. Timer 1 can be activated<br />

by a high signal on a DigIn that is set to Timer 1 or via<br />

a virtual destination [560].<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

642 Timer1 Mode<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

643 Timer1Delay<br />

Stp 0:00:00<br />

A<br />

43433 hours<br />

43434 minutes<br />

43435 seconds<br />

170/82, 170/83,<br />

170/84<br />

UInt<br />

UInt<br />

Timer 1 T1 [644]<br />

When timer mode is set to Alternate and Timer 1 is<br />

enabled, this timer will automatically keep on switching<br />

according to the independently programmable up and<br />

down times. The Timer 1 in Alternate mode can be<br />

enabled by a digital input or via a virtual connection.<br />

See Fig. 91. Timer 1 T1 sets the up time in the alternate<br />

mode.<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 T2 [645]<br />

Timer 1 T2 sets the down time in the alternate mode.<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

644 Timer 1 T1<br />

Stp 0:00:00<br />

A<br />

43436 hours<br />

43437 minutes<br />

43438 seconds<br />

170/85, 170/86,<br />

170/87<br />

UInt<br />

UInt<br />

645 Timer1 T2<br />

Stp 0:00:00<br />

A<br />

43439 hours<br />

43440 minutes<br />

43441 seconds<br />

170/88, 170/89,<br />

170/90<br />

UInt<br />

UInt<br />

NOTE: Timer 1 T1 [644] and Timer 2 T1 [654] are only<br />

visible when Timer Mode is set to Alternate.<br />

138 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Timer 1 Value [649]<br />

Timer 1 Value shows actual value of the timer.<br />

649 Timer1 Value<br />

Stp 0:00:00<br />

A<br />

Fieldbus format<br />

Modbus format<br />

Timer 2 Delay [653]<br />

UInt<br />

UInt<br />

Default:<br />

Communication information<br />

11.6.5 Timer2 [650]<br />

Refer to the descriptions for Timer1.<br />

Timer 2 Trig [651]<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Selection:<br />

Off<br />

Communication information<br />

Timer 2 Mode [652]<br />

42921 hours<br />

42922 minutes<br />

42923 seconds<br />

168/80, 168/81,<br />

168/82<br />

UInt<br />

UInt<br />

Same selections as Digital Output 1 menu<br />

[541].<br />

Modbus Instance no/DeviceNet no: 43451<br />

Profibus slot/index 170/100<br />

Fieldbus format<br />

Modbus format<br />

651 Timer2 Trig<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

Default:<br />

Communication information<br />

Timer 2 T1 [654]<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

653 Timer2Delay<br />

Stp 0:00:00<br />

A<br />

43453 hours<br />

43454 minutes<br />

43455 seconds<br />

170/102, 170/103,<br />

170/104<br />

UInt<br />

UInt<br />

654 Timer 2 T1<br />

Stp 0:00:00<br />

A<br />

43456 hours<br />

43457 minutes<br />

43458 seconds<br />

170/105, 170/106,<br />

170/107<br />

UInt<br />

UInt<br />

652 Timer2 Mode<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same as in menu [642]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43452<br />

Profibus slot/index 170/101<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 139


Timer 2 T2 [655]<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 2 Value [659]<br />

Timer 2 Value shows actual value of the timer.<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

655 Timer 2 T2<br />

Stp 0:00:00<br />

A<br />

43459 hours<br />

43460 minutes<br />

43461 seconds<br />

170/108, 170/109,<br />

170/110<br />

UInt<br />

UInt<br />

659 Timer2 Value<br />

Stp 0:00:00<br />

A<br />

42924 hours<br />

42925 minutes<br />

42926 seconds<br />

168/83, 168/84,<br />

168/84<br />

UInt<br />

UInt<br />

11.7 View Operation/Status<br />

[700]<br />

Menu with parameters for viewing all actual operational<br />

data, such as speed, torque, power, etc.<br />

11.7.1 Operation [710]<br />

Process Value [711]<br />

The process value is a display function which can be<br />

programmed according to several quantities and units<br />

related to the reference value.<br />

Unit<br />

Resolution<br />

Communication information<br />

Speed [712]<br />

Displays the actual shaft speed.<br />

Communication information<br />

Depends on selected process source,<br />

[321].<br />

Speed: 1 rpm, 4 digits<br />

Other units: 3 digits<br />

Modbus Instance no/DeviceNet no: 31001<br />

Profibus slot/index 121/145<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Unit:<br />

Resolution:<br />

rpm<br />

1 rpm, 4 digits<br />

Modbus Instance no/DeviceNet no: 31002<br />

Profibus slot/index 121/146<br />

Fieldbus format<br />

Modbus format<br />

711 Process Val<br />

Stp<br />

712 Speed<br />

Stp<br />

rpm<br />

Int, 1=1 rpm<br />

Int, 1=1 rpm<br />

140 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Torque [713]<br />

Displays the actual shaft torque.<br />

713 Torque<br />

Stp 0% 0.0Nm<br />

Current [716]<br />

Displays the actual output current.<br />

716 Current<br />

Stp<br />

A<br />

Unit:<br />

Nm<br />

Unit:<br />

A<br />

Resolution:<br />

1 Nm<br />

Resolution:<br />

0.1 A<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Shaft power [714]<br />

Displays the actual shaft power.<br />

Communication information<br />

Electrical Power [715]<br />

Displays the actual electrical output power.<br />

Communication information<br />

31003 Nm<br />

31004%<br />

Profibus slot/index 121/147<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

W<br />

1W<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31005<br />

Profibus slot/index 121/149<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

kW<br />

1 W<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31006<br />

Profibus slot/index 121/150<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

714 Shaft Power<br />

Stp<br />

715 El Power<br />

Stp<br />

EInt<br />

W<br />

kW<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31007<br />

Profibus slot/index 121/151<br />

Fieldbus format<br />

Modbus format<br />

Output Voltage [717]<br />

Displays the actual output voltage.<br />

Unit:<br />

Resolution:<br />

Communication information<br />

Frequency [718]<br />

Displays the actual output frequency.<br />

Communication information<br />

V<br />

1 V<br />

Long, 1=0.1 A<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31008<br />

Profibus slot/index 121/152<br />

Fieldbus format<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

Hz<br />

0.1 Hz<br />

Long, 1=0.1 V<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31009<br />

Profibus slot/index 121/153<br />

Fieldbus format<br />

Modbus format<br />

717 Output Volt<br />

Stp<br />

718 Frequency<br />

Stp<br />

Long, 1=0.1 Hz<br />

EInt<br />

V<br />

Hz<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 141


DC Link Voltage [719]<br />

Displays the actual DC link voltage.<br />

Unit:<br />

Resolution:<br />

719 DC Voltage<br />

Stp<br />

V<br />

1 V<br />

V<br />

11.7.2 Status [720]<br />

VSD Status [721]<br />

Indicates the overall status of the variable speed drive.<br />

721 VSD Status<br />

Stp 1/222/333/44<br />

Communication information<br />

Fig. 92 VSD status<br />

Modbus Instance no/DeviceNet no: 31010<br />

Profibus slot/index 121/154<br />

Fieldbus format<br />

Modbus format<br />

Heatsink Temperature [71A]<br />

Displays the actual heatsink temperature.<br />

Unit: °C<br />

Resolution:<br />

0.1°C<br />

Communication information<br />

PT100_1_2_3 Temp [71B]<br />

Displays the actual PT100 temperature.<br />

Communication information<br />

Long, 1=0.1 V<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31011<br />

Profibus slot/index 121/155<br />

Fieldbus format<br />

Modbus format<br />

Unit: °C<br />

Resolution: 1°C<br />

Long, 1=0.1C<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31012, 31013, 31014<br />

Profibus slot/index 121/156<br />

Fieldbus format<br />

Modbus format<br />

71A Heatsink Tmp<br />

Stp ?C<br />

71B PT100 1,2,3<br />

Stp ?C<br />

Long<br />

EInt<br />

Display<br />

position<br />

Status<br />

1 Parameter Set A,B,C,D<br />

222<br />

333<br />

Source of reference<br />

value<br />

Source of Run/<br />

Stop/Reset command<br />

44 Limit functions<br />

Example: “A/Key/Rem/TL”<br />

This means:<br />

A:Parameter Set A is active.<br />

Value<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

Key:Reference value comes from the keyboard (CP).<br />

Rem:Run/Stop commands come from terminals 1-22.<br />

TL: Torque Limit active.<br />

Warning [722]<br />

Display the actual or last warning condition. A warning<br />

occurs if the VSD is close to a trip condition but still in<br />

operation. During a warning condition the red trip LED<br />

will start to blink as long as the warning is active.<br />

722 Warnings<br />

Stp warn.msg<br />

-TL (Torque Limit)<br />

-SL (Speed Limit)<br />

-CL (Current Limit)<br />

-VL (Voltage Limit)<br />

- - - -No limit active<br />

The active warning message is displayed in menu<br />

[722].<br />

If no warning is active the message “No Warning” is<br />

displayed.<br />

142 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


The following warnings are possible:<br />

Fieldbus<br />

integer<br />

value<br />

0 No Error<br />

1 Motor I²t<br />

2 PTC<br />

3 Motor lost<br />

4 Locked rotor<br />

5 Ext trip<br />

6 Mon MaxAlarm<br />

7 Mon MinAlarm<br />

8 Comm error<br />

9 PT100<br />

11 Pump<br />

12 Ext Mot Temp<br />

13 LC Level<br />

14 Brake<br />

15 Option<br />

16 Over temp<br />

17 Over curr F<br />

18 Over volt D<br />

19 Over volt G<br />

20 Over volt M<br />

21 Over speed<br />

22 Under voltage<br />

23 Power fault<br />

24 Desat<br />

25 DClink error<br />

26 Int error<br />

27 Ovolt m cut<br />

28 Over voltage<br />

29 Not used<br />

30 Not used<br />

31 Not used<br />

Communication information<br />

Warning message<br />

Modbus Instance no/DeviceNet no: 31016<br />

Profibus slot/index 121/160<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

UInt<br />

Digital Input Status [723]<br />

Indicates the status of the digital inputs. See Fig. 93.<br />

1DigIn 1<br />

2DigIn 2<br />

3DigIn 3<br />

4DigIn 4<br />

5DigIn 5<br />

6DigIn 6<br />

7DigIn 7<br />

8DigIn 8<br />

The positions one to eight (read from left to right) indicate<br />

the status of the associated input:<br />

1High<br />

0Low<br />

The example in Fig. 93 indicates that DigIn 1,<br />

DigIn 3 and DigIn 6 are active at this moment.<br />

723 DigIn Status<br />

Stp 1010 0100<br />

Fig. 93 Digital input status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31017<br />

Profibus slot/index 121/161<br />

Fieldbus format<br />

Modbus format<br />

UInt, bit 0=DigIn1, bit<br />

8=DigIn8<br />

Digital Output Status [724]<br />

Indicates the status of the digital outputs and relays.<br />

See Fig. 94.<br />

RE indicate the status of the relays on position:<br />

1Relay1<br />

2Relay2<br />

3Relay3<br />

DO indicate the status of the digital outputs on position:<br />

1DigOut1<br />

2DigOut2<br />

The status of the associated output is shown.<br />

1High<br />

0Low<br />

See also the Chapter 12. page 157.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 143


The example in Fig. 94 indicates that DigOut1 is active<br />

and Digital Out 2 is not active. Relay 1 is active, relay 2<br />

and 3 are not active.<br />

724 DigOutStatus<br />

Stp RE 100 DO 10<br />

Fig. 94 Digital output status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31018<br />

Profibus slot/index 121/162<br />

Fieldbus format<br />

Modbus format<br />

Analogue Input Status [725]<br />

Indicates the status of the analogue inputs 1 and 2.<br />

725 AnIn 1 2<br />

Stp -100% 65%<br />

Fig. 95 Analogue input status<br />

Communication information<br />

UInt, bit 0=DigOut1,<br />

bit 1=DigOut2<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

Modbus Instance no/DeviceNet no: 31019, 31020<br />

Profibus slot/index 121/163, 121/164<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the analogue inputs.<br />

1AnIn 1<br />

2AnIn 2<br />

Reading downwards from the first row to the second<br />

row the status of the belonging input is shown in %:<br />

-100%AnIn1 has a negative 100% input value<br />

65%AnIn2 has a 65% input value<br />

So the example in Fig. 95 indicates that both the Analogue<br />

inputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

Analogue Input Status [726]<br />

Indicates the status of the analogue inputs 3 and 4.<br />

726 AnIn 3 4<br />

Stp -100% 65%<br />

Fig. 96 Analogue input status<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31021, 31022<br />

Profibus slot/index 121/165, 121/166<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Analogue Output Status [727]<br />

Indicates the status of the analogue outputs. Fig. 97.<br />

E.g. if 4-20 mA output is used, the value 20% equals<br />

to 4 mA.<br />

727 AnOut 1 2<br />

Stp -100% 65%<br />

Fig. 97 Analogue output status<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31023, 31024<br />

Profibus slot/index 121/167, 121/168<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the Analogue outputs.<br />

1AnOut 1<br />

2AnOut 2<br />

Reading downwards from the first row to the second<br />

row the status of the belonging output is shown in %:<br />

-100%AnOut1 has a negative 100% output value<br />

65%AnOut1 has a 65% output value<br />

The example in Fig. 97 indicates that both the Analogue<br />

outputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

144 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


I/O board Status [728] - [72A]<br />

Indicates the status for the additional I/O on option<br />

boards 1 (B1), 2 (B2) and 3 (B3).<br />

728 IO B1<br />

Stp RE000 DI10<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31025 - 31027<br />

Profibus slot/index 121/170 - 172<br />

Fieldbus format<br />

Modbus format<br />

UInt, bit 0=DigIn1<br />

bit 1=DigIn2<br />

bit 2=DigIn3<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

11.7.3 Stored values [730]<br />

The shown values are the actual values built up over<br />

time. Values are stored at power down and updated<br />

again at power up.<br />

Run Time [731]<br />

Displays the total time that the VSD has been in the<br />

Run Mode.<br />

Reset Run Time [7311]<br />

Reset the run time counter. The stored information will<br />

be erased and a new registration period will start.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 7<br />

Profibus slot/index 0/6<br />

Fieldbus format<br />

Modbus format<br />

7311 Reset RunTm<br />

Stp<br />

No<br />

UInt<br />

UInt<br />

NOTE: After reset the setting automatically reverts to<br />

“No”.<br />

Mains time [732]<br />

Displays the total time that the VSD has been connected<br />

to the mains supply. This timer cannot be<br />

reset.<br />

731 Run Time<br />

Stp<br />

h:m:s<br />

732 Mains Time<br />

Stp<br />

h:m:s<br />

Unit:<br />

Range:<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Unit:<br />

Range:<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31028 hours<br />

31029 minutes<br />

31030 seconds<br />

121/172<br />

121/173<br />

121/174<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31031 hours<br />

31032 minutes<br />

31033 seconds<br />

121/175<br />

121/176<br />

121/177<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

NOTE: At 65535 h: 59 m the counter stops. It will not<br />

revert to 0h: 0m.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 145


Energy [733]<br />

Displays the total energy consumption since the last<br />

energy reset [7331] took place.<br />

Unit:<br />

Range:<br />

kWh<br />

0.0–999999kWh<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31034<br />

Profibus slot/index 121/178<br />

Fieldbus format<br />

Modbus format<br />

Reset Energy [7331]<br />

Resets the kWh counter. The stored information will be<br />

erased and a new registration period will start.<br />

Default:<br />

Selection:<br />

No<br />

No, Yes<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 6<br />

Long, 1=1 W<br />

EInt<br />

Profibus slot/index 0/5<br />

Fieldbus format<br />

Modbus format<br />

733 Energy<br />

Stp<br />

UInt<br />

UInt<br />

kWh<br />

7331 Rst Energy<br />

Stp<br />

No<br />

NOTE: After reset the setting automatically goes back to<br />

“No”.<br />

11.8 View Trip Log [800]<br />

Main menu with parameters for viewing all the logged<br />

trip data. In total the VSD saves the last 10 trips in the<br />

trip memory. The trip memory refreshes on the FIFO<br />

principle (First In, First Out). Every trip in the memory is<br />

logged on the time of the Run Time [731] counter. At<br />

every trip, the actual values of several parameter are<br />

stored and available for troubleshooting.<br />

11.8.1 Trip Message log [810]<br />

Display the cause of the trip and what time that it<br />

occurred. When a trip occurs the status menus are<br />

copied to the trip message log. There are nine trip<br />

message logs [810]–[890]. When the tenth trip occurs<br />

the oldest trip will disappear.<br />

Unit:<br />

Range:<br />

h: m (hours: minutes)<br />

0h: 0m–65355h: 59m<br />

For fieldbus integer value of trip message, see message<br />

table for warnings, [722].<br />

NOTE: Bits 0–5 used for trip message value. Bits 6–15<br />

for internal use.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31101<br />

Profibus slot/index 121/245<br />

Fieldbus format<br />

Modbus format<br />

8x0 Trip message<br />

Stp h:mm:ss<br />

810 Ext Trip<br />

Stp 132:12:14<br />

UInt<br />

UInt<br />

Trip message [811]-[81N]<br />

The information from the status menus are copied to<br />

the trip message log when a trip occurs.<br />

Trip menu Copied from Description<br />

811 711 Process Value<br />

812 712 Speed<br />

813 712 Torque<br />

814 714 Shaft Power<br />

815 715 Electrical Power<br />

816 716 Current<br />

817 717 Output voltage<br />

818 718 Frequency<br />

819 719 DC Link voltage<br />

81A 71A Heatsink Temperature<br />

81B 71B PT100_1, 2, 3<br />

81C 721 VSD Status<br />

81D 723 Digital input status<br />

81E 724 Digital output status<br />

81F 725 Analogue input status 1-2<br />

81G 726 Analogue input status 3-4<br />

81H 727 Analogue output status 1-2<br />

146 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Trip menu Copied from Description<br />

81I 728 I/O status option board 1<br />

81J 729 I/O status option board 2<br />

81K 72A I/O status option board 3<br />

81L 731 Run Time<br />

81M 732 Mains Time<br />

81N 733 Energy<br />

81O 310 Process reference<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31102 - 31135<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Example:<br />

Fig. 98 shows the third trip memory menu [830]: Over<br />

temperature trip occurred after 1396 hours and 13<br />

minutes in Run time.<br />

Fig. 98 Trip 3<br />

121/246 - 254,<br />

122/0 - 24<br />

Depends on parameter,<br />

see respective parameter.<br />

Depends on parameter,<br />

see respective parameter.<br />

830 Over temp<br />

Stp 1396h:13m<br />

11.8.2 Trip Messages [820] - [890]<br />

Same information as for menu [810].<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31151–31185<br />

31201–31235<br />

31251–31285<br />

31301–31335<br />

31351–31385<br />

31401–31435<br />

31451–31485<br />

31501–31535<br />

122/40–122/74<br />

122/90–122/124<br />

122/140–122/174<br />

122/190–122/224<br />

122/240–123/18<br />

123/35 - 123/68<br />

123/85–123/118<br />

123/135–123/168<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Depends on parameter, see respective<br />

parameter.<br />

Depends on parameter, see respective<br />

parameter.<br />

All nine alarm lists contain the same type of data. For<br />

example DeviceNet parameter 31101 in alarm list 1<br />

contains the same data information as 31151 in alarm<br />

list 2. It is possible to read all parameters in alarm lists<br />

2–9 by recalculating the DeviceNet instance number<br />

into a Profibus slot/index number. This is done in the<br />

following way:<br />

slot no = abs((dev instance no-1)/255)<br />

index no = (dev instance no-1) modulo 255<br />

dev instance no = slot nox255+index no+1<br />

Example: We want to read out the process value out<br />

from alarm list 9. In alarm list 1 process value has the<br />

DeviceNet instance number 31102. In alarm list 9 it<br />

has DeviceNet instance no 31502 (see table 2 above).<br />

The corresponding slot/index no is then:<br />

slot no = abs((31502-1)/255)=123<br />

index no (modulo)= the remainder of the division<br />

above = 136, calculated as: (31502-1)-123x255=136<br />

11.8.3 Reset Trip Log [8A0]<br />

Resets the content of the 10 trip memories.<br />

8A0 Reset Trip<br />

Stp<br />

No<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 147


Communication information<br />

Modbus Instance no/DeviceNet no: 8<br />

Profibus slot/index 0/7<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

31038 software version<br />

31039 option version<br />

Profibus slot/index 121/182-183<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: After the reset the setting goes automatically<br />

back to “NO”. The message “OK” is displayed for 2 sec.<br />

Table 25<br />

Information for Modbus and Profibus number,<br />

software version<br />

11.9 System Data [900]<br />

Main menu for viewing all the VSD system data.<br />

11.9.1 VSD Data [920]<br />

VSD Type [921]<br />

Shows the VSD type according to the type number.<br />

The options are indicated on the type plate of the<br />

VSD.<br />

Bit<br />

7–0 minor<br />

13–8 major<br />

15–14<br />

Table 26<br />

Description<br />

release<br />

00: V, release version<br />

01: P, pre-release version<br />

10: , Beta version<br />

11: , Alpha version<br />

Information for Modbus and Profibus number,<br />

option version<br />

NOTE: If the control board is not configured, then type<br />

type shown is <strong>SX</strong>-D6160-EV<br />

Bit<br />

7–0 minor<br />

15–8 major<br />

Description<br />

921 <strong>SX</strong>-V 2.0<br />

Stp <strong>SX</strong>-D6160-EV<br />

Example of type<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31037<br />

Profibus slot/index 121/181<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

V 4.20 = Version of the Software<br />

NOTE: It is important that the software version displayed<br />

in menu [920] is the same software version number as<br />

the software version number written on the title page of<br />

this instruction <strong>manual</strong>. If not, the functionality as<br />

described in this <strong>manual</strong> may differ from the<br />

functionality of the VSD.<br />

Examples:<br />

<strong>SX</strong>-D6160-EVVSD-series suited for 690 volt mains<br />

supply, and a rated output current in normal duty of<br />

175A.<br />

Software [922]<br />

Shows the software version number of the VSD.<br />

Fig. 99 gives an example of the version number.<br />

922 Software<br />

Stp V 4.20<br />

Fig. 99 Example of software version<br />

148 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Unit name [923]<br />

Option to enter a name of the unit for service use or<br />

customer identity. The function enables the user to<br />

define a name with 12 symbols. Use the Prev and<br />

Next key to move the cursor to the required position.<br />

Then use the + and - keys to scroll in the character list.<br />

Confirm the character by moving the cursor to the<br />

next position by pressing the Next key. See section<br />

User-defined Unit [323].<br />

Example<br />

Create user name USER 15.<br />

1. When in the menu [923] press Next to move the<br />

cursor to the right most position.<br />

2. Press the + key until the character U is displayed.<br />

3. Press Next.<br />

4. Then press the + key until S is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered USER15.<br />

923 Unit Name<br />

Stp<br />

Default:<br />

No characters shown<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42301–42312<br />

Profibus slot/index 165/225–236<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

When sending a unit name you send one character at<br />

a time starting at the right most position.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 149


150 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 151


152 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 153


154 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 155


156 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


12. Troubleshooting, Diagnoses and Maintenance<br />

12.1 Trips, warnings and limits<br />

In order to protect the variable speed drive the principal<br />

operating variables are continuously monitored by<br />

the system. If one of these variables exceeds the<br />

safety limit an error/warning message is displayed. In<br />

order to avoid any possibly dangerous situations, the<br />

<strong>inverter</strong> sets itself into a stop Mode called Trip and the<br />

cause of the trip is shown in the display.<br />

Trips will always stop the VSD. Trips can be divided<br />

into normal and soft trips, depending on the setup Trip<br />

Type, see menu [250] Autoreset. Normal trips are<br />

default. For normal trips the VSD stops immediately,<br />

i.e. the motor coasts naturally to a standstill. For soft<br />

trips the VSD stops by ramping down the speed, i.e.<br />

the motor decelerates to a standstill.<br />

“Normal Trip”<br />

• The VSD stops immediately, the motor coasts to<br />

naturally to a standstill.<br />

• The Trip relay or output is active (if selected).<br />

• The Trip LED is on.<br />

• The accompanying trip message is displayed.<br />

• The “TRP” status indication is displayed (area D of<br />

the display).<br />

“Soft Trip”<br />

• the VSD stops by decelerating to a standstill.<br />

During the deceleration.<br />

• The accompanying trip message is displayed,<br />

including an additional soft trip indicator “S” before<br />

the trip time.<br />

• The Trip LED is blinking.<br />

• The Warning relay or output is active (if selected).<br />

After standstill is reached.<br />

• The Trip LED is on.<br />

• The Trip relay or output is active (if selected).<br />

• The “TRP” status indication is displayed (area D of<br />

the display).<br />

Apart from the TRIP indicators there are two more<br />

indicators to show that the <strong>inverter</strong> is in an “abnormal”<br />

situation.<br />

“Warning”<br />

• The <strong>inverter</strong> is close to a trip limit.<br />

• The Warning relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• The accompanying warning message is displayed<br />

in window [722] Warning.<br />

• One of the warning indications is displayed (area F<br />

of the display).<br />

“Limits”<br />

• The <strong>inverter</strong> is limiting torque and/or frequency to<br />

avoid a trip.<br />

• The Limit relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• One of the Limit status indications is displayed<br />

(area D of the display).<br />

Table 27<br />

Trip/Warning<br />

messages<br />

List of trips and warnings<br />

Selections<br />

Trip<br />

(Normal/<br />

Soft)<br />

Motor I 2 t Trip/Off/Limit Normal/Soft I 2 t<br />

PTC Trip/Off Normal/Soft<br />

Motor lost Trip/Off Normal<br />

Locked rotor Trip/Off Normal<br />

Ext trip Via DigIn Normal/Soft<br />

Ext Mot Temp Via DigIn Normal/Soft<br />

Mon MaxAlarm Trip/Off/Warn Normal/Soft<br />

Mon MinAlarm Trip/Off/Warn Normal/Soft<br />

Comm error Trip/Off/Warn Normal/Soft<br />

PT100 Trip/Off Normal/Soft<br />

Deviation Via Option Normal<br />

Pump Via Option Normal<br />

Over temp On Normal OT<br />

Over curr F On Normal<br />

Over volt D On Normal<br />

Over volt G On Normal<br />

Over volt On Normal<br />

Over speed On Normal<br />

Under voltage On Normal LV<br />

Power Fault On Normal<br />

Desat On Normal<br />

DClink error On Normal<br />

Ovolt m cut On Normal<br />

Over voltage Warning VL<br />

Safe stop Warning SST<br />

Motor PTC On Normal<br />

LC Level<br />

Trip/Off/Warn<br />

Via DigIn<br />

Normal/Soft<br />

Brake On Normal<br />

Warning<br />

indicators<br />

(Area D)<br />

LCL<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 157


12.2 Trip conditions, causes and<br />

remedial action<br />

The table later on in this section must be seen as a<br />

basic aid to find the cause of a system failure and to<br />

how to solve any problems that arise. A variable speed<br />

drive is mostly just a small part of a complete VSD system.<br />

Sometimes it is difficult to determine the cause of<br />

the failure, although the variable speed drive gives a<br />

certain trip message it is not always easy to find the<br />

right cause of the failure. Good knowledge of the complete<br />

drive system is therefore necessary. Contact<br />

your supplier if you have any questions.<br />

The VSD is designed in such a way that it tries to avoid<br />

trips by limiting torque, overvolt etc.<br />

Failures occurring during commissioning or shortly<br />

after commissioning are most likely to be caused by<br />

incorrect settings or even bad connections.<br />

Failures or problems occurring after a reasonable<br />

period of failure-free operation can be caused by<br />

changes in the system or in its environment (e.g.<br />

wear).<br />

Failures that occur regularly for no obvious reasons are<br />

generally caused by Electro Magnetic Interference. Be<br />

sure that the installation fulfils the demands for installation<br />

stipulated in the EMC directives. See chapter 8.<br />

page 45.<br />

Sometimes the so-called “Trial and error” method is a<br />

quicker way to determine the cause of the failure. This<br />

can be done at any level, from changing settings and<br />

functions to disconnecting single control cables or<br />

replacing entire drives.<br />

The Trip Log can be useful for determining whether<br />

certain trips occur at certain moments. The Trip Log<br />

also records the time of the trip in relation to the run<br />

time counter.<br />

WARNING: If it is necessary to open the VSD<br />

or any part of the system (motor cable<br />

housing, conduits, electrical panels,<br />

cabinets, etc.) to inspect or take measurements<br />

as suggested in this instruction <strong>manual</strong>, it is<br />

absolutely necessary to read and follow the safety<br />

instructions in the <strong>manual</strong>.<br />

12.2.1 Technically qualified<br />

personnel<br />

Installation, commissioning, demounting, making<br />

measurements, etc., of or at the variable speed drive<br />

may only be carried out by personnel technically qualified<br />

for the task.<br />

12.2.2 Opening the variable speed<br />

drive<br />

The connections for the control signals and the<br />

switches are isolated from the mains voltage. Always<br />

take adequate precautions before opening the variable<br />

speed drive.<br />

12.2.3 Precautions to take with a<br />

connected motor<br />

If work must be carried out on a connected motor or<br />

on the driven machine, the mains voltage must always<br />

first be disconnected from the variable speed drive.<br />

Wait at least 5 minutes before continuing.<br />

12.2.4 Autoreset Trip<br />

If the maximum number of Trips during Autoreset has<br />

been reached, the trip message hour counter is<br />

marked with an “A”.<br />

Fig. 100 Autoreset trip<br />

WARNING: Always switch the mains voltage<br />

off if it is necessary to open the VSD and wait<br />

at least 5 minutes to allow the capacitors to<br />

discharge.<br />

WARNING: In case of malfunctioning always<br />

check the DC-link voltage, or wait one hour<br />

after the mains voltage has been switched<br />

off, before dismantling the VSD for repair.<br />

830 OVERVOLT G<br />

Trp A 345:45:12<br />

Fig. 100 shows the 3rd trip memory menu [830]: Overvoltage<br />

G trip after the maximum Autoreset attempts<br />

took place after 345 hours, 45 minutes and 12 seconds<br />

of run time.<br />

158 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Motor I 2 t<br />

“I 2 t”<br />

PTC<br />

Motor PTC<br />

Motor lost<br />

Locked rotor<br />

Ext trip<br />

Ext Mot Temp<br />

Mon MaxAlarm<br />

Mon MinAlarm<br />

Comm error<br />

PT100<br />

I 2 t value is exceeded.<br />

- Overload on the motor according to the<br />

programmed I 2 t settings.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if [237] is enabled.<br />

Phase loss or too great imbalance on the<br />

motor phases<br />

Torque limit at motor standstill:<br />

- Mechanical blocking of the rotor.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

Max alarm level (overload) has been<br />

reached.<br />

Min alarm level (underload) has been<br />

reached.<br />

Error on serial communication (option)<br />

Motor PT100 elements exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Change the Motor I 2 t Current setting<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [234] to OFF<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [237] to OFF<br />

- Check the motor voltage on all phases.<br />

- Check for loose or poor motor cable<br />

connections<br />

- If all connections are OK, contact your<br />

supplier<br />

- Set motor lost alarm to OFF.<br />

- Check for mechanical problems at the<br />

motor or the machinery connected to the<br />

motor<br />

- Set locked rotor alarm to OFF.<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 136.<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 136.<br />

- Check cables and connection of the<br />

serial communication.<br />

- Check all settings with regard to the<br />

serial communication<br />

- Restart the equipment including the<br />

VSD<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PT100 to OFF<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 159


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Deviation<br />

Pump<br />

Over temp<br />

Over curr F<br />

Over volt D(eceleration)<br />

Over volt G(enerator)<br />

Over volt (Mains)<br />

O(ver) volt M(ains) cut<br />

Over speed<br />

Under voltage<br />

Power Fault<br />

Desat<br />

CRANE board detecting deviation in motor<br />

operation.<br />

NOTE: Only used in Crane Control.<br />

No master pump can be selected due to error<br />

in feedback signalling.<br />

NOTE: Only used in Pump Control.<br />

Heatsink temperature too high:<br />

- Too high ambient temperature of the<br />

VSD<br />

- Insufficient cooling<br />

- Too high current<br />

- Blocked or stuffed fans<br />

Motor current exceeds the peak VSD current:<br />

- Too short acceleration time.<br />

- Too high motor load<br />

- Excessive load change<br />

- Soft short-circuit between phases or<br />

phase to earth<br />

- Poor or loose motor cable connections<br />

- Too high IxR Compensation level<br />

Too high DC Link voltage:<br />

- Too short deceleration time with<br />

respect to motor/machine inertia.<br />

- Too small brake resistor malfunctioning<br />

Brake chopper<br />

Too high DC Link voltage, due to too high<br />

mains voltage<br />

Motor speed measurement exceeds maximum<br />

level.<br />

Too low DC Link voltage:<br />

- Too low or no supply voltage<br />

- Mains voltage dip due to starting other<br />

major power consuming machines on<br />

the same line.<br />

Overload condition in the DC-link:<br />

- Hard short-circuit between phases or<br />

phase to earth<br />

- Saturation of current measurement<br />

circuiting<br />

- Earth fault<br />

- Desaturation of IGBTs<br />

- Peak voltage on DC link<br />

- Check encoder signals<br />

- Check Deviation jumper on Crane option board.<br />

- Check cables and wiring for Pump feedback signals<br />

- Check settings with regard to the pump feedback<br />

digital inputs<br />

- Check the cooling of the VSD cabinet.<br />

- Check the functionality of the built-in fans. The fans<br />

must switch on automatically if the heatsink temperature<br />

gets too high. At power up the fans are briefly<br />

switched on.<br />

- Check VSD and motor rating<br />

- Clean fans<br />

- Check the acceleration time settings and<br />

make them longer if necessary.<br />

- Check the motor load.<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections.<br />

- Lower the level of IxR Compensation [352]<br />

- Check the deceleration time settings and make them<br />

longer if necessary.<br />

- Check the dimensions of the brake resistor and the<br />

functionality of the Brake chopper (if used)<br />

- Check the main supply voltage<br />

- Try to take away the interference cause or use other<br />

main supply lines.<br />

Check encoder cables, wiring and setup<br />

Check motor data setup [22x]<br />

Perform short ID-run<br />

- Make sure all three phases are properly connected<br />

and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery<br />

- Use the function low voltage override [421]<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections<br />

- Check that rating plate data of the motor is correctly<br />

entered<br />

- See overvoltage trips<br />

Power Fault Error on power board. - Check mains supply voltage<br />

Fan Error<br />

Error in fan module<br />

- Check for clogged air inlet filters in panel door and<br />

blocking material in fan module.<br />

HCB Error * Error in controlled rectifier module (HCB) - Check mains supply voltage<br />

160 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Desat<br />

Desat U+ *<br />

Desat U- *<br />

Desat V+ *<br />

Desat V- *<br />

Desat W+ *<br />

Desat W- *<br />

Desat BCC *<br />

DC link error<br />

PF Curr Err *<br />

PF Overvolt *<br />

Failure in output stage,<br />

desaturation of IGBTs<br />

DC link voltage ripple exceeds maximum<br />

level<br />

Error in current balancing<br />

Error in voltage balancing<br />

PF Comm Err * Internal communication error Contact service<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connections<br />

- Check on water and moisture in the<br />

motor housing and cable connections<br />

- Make sure all three phases are properly<br />

connected and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery.<br />

- Check motor.<br />

- Check fuses and line connections<br />

- Check motor.<br />

- Check fuses and line connections.<br />

PF Int Temp * Internal temperature too high Check internal fans<br />

PF Temp Err * Malfunction in temperature sensor Contact service<br />

PF DC Err *<br />

PF HCB Err *<br />

PF Sup Err *<br />

LC Level<br />

Brake<br />

DC-link error and mains supply fault<br />

Error in controlled rectifier module (HCB)<br />

Mains supply fault<br />

Low liquid cooling level in external reservoir.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

NOTE: Only valid for VSD types with Liquid<br />

Cooling option.<br />

Brake tripped on brake fault (not released )or<br />

Brake not engaged during stop.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check liquid cooling<br />

- Check the equipment and wiring that initiates the<br />

external input<br />

- Check the programming of the digital inputs DigIn 1-8<br />

- Check Brake acknowledge<br />

signal wiring to selected digital input.<br />

- Check programming of digital input DigIn 1-8, [520].<br />

- Check circuit breaker feeding mechanical brake circuit.<br />

- Check mechanical brake if acknowledge signal is wired<br />

from brake limit switch.<br />

- Check brake contactor.<br />

* = 2...6 Module number if parallel power units (size<br />

300–1500 A)<br />

12.3 Maintenance<br />

The variable speed drive is designed not to require any<br />

servicing or maintenance. There are however some<br />

things which must be checked regularly.<br />

All variable speed drives have built-in fan which is<br />

speed controlled using heatsink temperature feedback.<br />

This means that the fans are only running if the<br />

VSD is running and loaded. The design of the heatsinks<br />

is such that the fan does not blow the cooling air<br />

through the interior of the VSD, but only across the<br />

outer surface of the heatsink. However, running fans<br />

will always attract dust. Depending on the environment<br />

the fan and the heatsink will collect dust. Check<br />

this and clean the heatsink and the fans when necessary.<br />

If variable speed drives are built into cabinets, also<br />

check and clean the dust filters of the cabinets regularly.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 161


Check external wiring, connections and control signals.<br />

Tighten terminal screws if necessary.<br />

162 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


13. Options<br />

The standard options available are described here<br />

briefly. Some of the options have their own instruction<br />

or installation <strong>manual</strong>. For more information please<br />

contact your supplier.<br />

13.1 Options for the control<br />

panel<br />

Order number<br />

Description<br />

01-3957-00 Panel kit complete including panel<br />

01-3957-01 Panel kit complete including blank panel<br />

Mounting cassette, blank panel and straight RS232-<br />

cable are available as options for the control panel.<br />

These options may be useful, for example after<br />

mounting a control panel in a cabinet door.<br />

on the application switch-on duration and duty-cycle.<br />

This option can not be after mounted.<br />

The following formula can be used to define the power<br />

of the connected brake resistor:<br />

Presistor =<br />

Where:<br />

P resistor<br />

Brake level V DC<br />

29)<br />

Rmin<br />

ED%<br />

WARNING: The table gives the minimum<br />

values of the brake resistors. Do not use<br />

resistors lower than this value. The VSD can<br />

trip or even be damaged due to high braking<br />

currents.<br />

(Brake level VDC)2<br />

Rmin<br />

x ED%<br />

required power of brake<br />

resistor<br />

DC brake voltage level (see Table<br />

minimum allowable brake resistor<br />

(see Table 30 and Table 31)<br />

effective braking period. Defined as:<br />

ED% =<br />

Active brake time at<br />

nominal braking<br />

power [s]<br />

120 [s]<br />

Maximum value of<br />

1= continuous braking<br />

Table 29<br />

Brake Voltage levels<br />

Supply voltage (V AC )<br />

(set in menu [21B]<br />

Brake level (V DC )<br />

220–240 380<br />

380–415 660<br />

Fig. 101 Control panel in mounting cassette<br />

13.2 PC Tool software<br />

The optional software that runs on a personal computer<br />

can be used to load parameter settings from the<br />

VSD to the PC for backup and printing. Recording can<br />

be made in oscilloscope mode. Please contact<br />

OMRON sales for further information.<br />

440–480 780<br />

500–525 860<br />

550–600 1000<br />

660–690 1150<br />

13.3 Brake chopper<br />

All VSD sizes can be fitted with an optional built-in<br />

brake chopper. The brake resistor must be mounted<br />

outside the VSD. The choice of the resistor depends<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 163


Table 30<br />

Brake resistor <strong>SX</strong>-V 400V type<br />

Table 31<br />

Type<br />

Rmin [ohm] if supply<br />

380–415 V AC<br />

Rmin [ohm] if supply<br />

440–480 V AC<br />

<strong>SX</strong>-D4090-EV 3.8 4.4<br />

<strong>SX</strong>-D4110-EV 2.7 3.1<br />

<strong>SX</strong>-D4132-EV 2.7 3.1<br />

<strong>SX</strong>-*4160-EV 2 x 3.8 2 x 4.4<br />

<strong>SX</strong>-*4200-EV 2 x 3.8 2 x 4.4<br />

<strong>SX</strong>-*4220-EV 2 x 2.7 2 x 3.1<br />

<strong>SX</strong>-*4250-EV 2 x 2.7 2 x 3.1<br />

<strong>SX</strong>-*4315-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4355-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4400-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4450-EV 4 x 2.7 4 x 3.1<br />

<strong>SX</strong>-*4500-EV 4 x 2.7 4 x 3.1<br />

<strong>SX</strong>-*4630-EV 6 x 2.7 6 x 3.1<br />

<strong>SX</strong>-*4800-EV 6 x 2.7 6 x 3.1<br />

Type<br />

Brake resistors <strong>SX</strong>-V 690V types<br />

Rmin [ohm] Rmin [ohm] Rmin [ohm]<br />

500–525 V AC 550–600 V AC 660–690 V AC<br />

if supply if supply if supply<br />

<strong>SX</strong>-D6090-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6110EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6132-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6160-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-*6200-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6250-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6315-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6355-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6450-EV 3 x 4.9 3 x 5.7 3 x 6.5<br />

<strong>SX</strong>-*6500-EV 3 x 4.9 3 x 5.7 3 x 6.5<br />

<strong>SX</strong>-*6600-EV 4 x 4.9 4 x 5.7 4 x 6.5<br />

<strong>SX</strong>-*6630-EV 4 x 4.9 4 x 5.7 4 x 6.5<br />

<strong>SX</strong>-*6710-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*6800-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*6900-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*61K0-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

NOTE: Although the VSD will detect a failure in the brake<br />

electronics, the use of resistors with a thermal overload<br />

which will cut off the power at overload is strongly<br />

recommended.<br />

The brake chopper option is built-in by the manufacturer<br />

and must be specified when the VSD is ordered.<br />

13.4 I/O Board<br />

Order number<br />

01-3876-01 I/O option board 2.0<br />

The I/O option board 2.0 provides three extra relay<br />

outputs and three extra digital inputs. The I/O Board<br />

works in combination with the Pump/Fan Control, but<br />

can also be used as a separate option. This option is<br />

described in a separate <strong>manual</strong>.<br />

13.5 Output coils<br />

Output coils, which are supplied separately, are recommended<br />

for lengths of screened motor cable<br />

longer than 100 m. Because of the fast switching of<br />

the motor voltage and the capacitance of the motor<br />

cable both line to line and line to earth screen, large<br />

switching currents can be generated with long lengths<br />

of motor cable. Output coils prevent the VSD from tripping<br />

and should be installed as closely as possible to<br />

the VSD.<br />

13.6 Serial communication and<br />

fieldbus<br />

Order number<br />

01-3876-04 RS232/485<br />

01-3876-05 Profibus DP<br />

01-3876-06 DeviceNet<br />

Description<br />

Description<br />

01-3876-09 Modbus/TCP, Ethernet<br />

For communication with the VSD there are several<br />

option boards for communication. There are different<br />

options for Fieldbus communication and one serial<br />

communication option with RS232 or RS485 interface<br />

which has galvanic isolation.<br />

13.7 Standby supply board<br />

164 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Order number<br />

option<br />

Description<br />

01-3954-00 Standby power supply kit for after mounting<br />

The standby supply board option provides the possibility<br />

of keeping the communication system up and<br />

running without having the 3-phase mains connected.<br />

One advantage is that the system can be set up without<br />

mains power. The option will also give backup for<br />

communication failure if main power is lost.<br />

The standby supply board option is supplied with<br />

external<br />

±10% 24 V DC or 24 V AC, protected by a 2 A slow acting<br />

fuse, from a double isolated transformer. The terminals<br />

X1:1 and X1:2 are voltage polarity independent.<br />

connecting 24 V DC to secure the supply voltage for<br />

the driver circuits of the power conductors via<br />

safety relay K1. See also Fig. 105.<br />

• High signal on the digital input, e.g. terminal 9 in<br />

Fig. 105, which is set to "Enable". For setting the<br />

digital input please refer to section 11.5.2, page<br />

126.<br />

These two signals need to be combined and used to<br />

enable the output of the VSD and make it possible to<br />

activate a Safe Stop condition.<br />

NOTE: The "Safe Stop" condition according to EN 954-1<br />

Category 3 can only be realized by de-activating both the<br />

"Inhibit" and "Enable" inputs.<br />

X1<br />

Must be<br />

double<br />

isolated<br />

~<br />

X1:1 Left terminal<br />

X1:2 Right terminal<br />

Fig. 102 Connection of standby supply option<br />

Table 32<br />

X1<br />

terminal<br />

Name Function Specification<br />

1 Ext. supply 1<br />

2 Ext. supply 2<br />

External, VSD main<br />

24 V<br />

power independent,<br />

supply voltage AC ±10%<br />

DC or 24<br />

V<br />

Double isolated<br />

for control and communication<br />

circuits<br />

13.8 Safe Stop option<br />

To realize a Safe Stop configuration in accordance<br />

with EN954-1 Category 3, the following three parts<br />

need to be attended to:<br />

1. Inhibit trigger signals with safety relay K1 (via Safe<br />

Stop option board).<br />

2. Enable input and control of VSD (via normal I/O<br />

control signals of VSD).<br />

3. Power conductor stage (checking status and feedback<br />

of driver circuits and IGBT’s).<br />

To enable the VSD to operate and run the motor, the<br />

following signals should be active:<br />

• "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the<br />

Safe Stop option board should be made active by<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 165


When the "Safe Stop" condition is achieved by using<br />

these two different methods, which are independently<br />

controlled, this safety circuit ensures that the motor<br />

will not start running because:<br />

• The 24V DC signal is taken away from the "Inhibit"<br />

input, terminals 1 and 2, the safety relay K1 is<br />

switched off.<br />

The supply voltage to the driver circuits of the power conductors<br />

is switched off. This will inhibit the trigger pulses to<br />

the power conductors.<br />

• The trigger pulses from the control board are shut<br />

down.<br />

The Enable signal is monitored by the controller circuit<br />

which will forward the information to the PWM part on the<br />

Control board.<br />

To make sure that the safety relay K1 has been<br />

switched off, this should be guarded externally to<br />

ensure that this relay did not refuse to act. The Safe<br />

Stop option board offers a feedback signal for this via<br />

a second forced switched safety relay K2 which is<br />

switched on when a detection circuit has confirmed<br />

that the supply voltage to the driver circuits is shut<br />

down. See Table 33 for the contacts connections.<br />

To monitor the "Enable" function, the selection "RUN"<br />

on a digital output can be used. For setting a digital<br />

output, e.g. terminal 20 in the example Fig. 105,<br />

please refer to section 11.5.4, page 132 [540].<br />

When the "Inhibit" input is de-activated, the VSD display<br />

will show a blinking "SST" indication in section D<br />

(bottom left corner) and the red Trip LED on the Control<br />

panel will blink.<br />

To resume normal operation, the following steps have<br />

to be taken:<br />

• Release "Inhibit" input; 24V DC (High) to terminal 1<br />

and 2.<br />

• Give a STOP signal to the VSD, according to the<br />

set Run/Stop Control in menu [215].<br />

• Give a new Run command, according to the set<br />

Run/Stop Control in menu [215].<br />

NOTE: The method of generating a STOP command is<br />

dependent on the selections made in Start Signal Level/<br />

Edge [21A] and the use of a separate Stop input via<br />

digital input.<br />

WARNING: The safe stop function can never<br />

be used for electrical maintenance. For<br />

electrical maintenance the VSD should<br />

always be disconnected from the supply<br />

voltage.<br />

Fig. 103 Connection of safe stop option in size B and C.<br />

Fig. 104 Connection of safe stop option in size E and up.<br />

Table 33<br />

X1<br />

pin<br />

Specification of Safe Stop option board<br />

Name Function Specification<br />

1 Inhibit + Inhibit driver circuits of<br />

2 Inhibit - power conductors<br />

3<br />

4<br />

NO contact<br />

relay K2<br />

P contact<br />

relay K2<br />

Feedback; confirmation<br />

of activated inhibit<br />

5 GND Supply ground<br />

6 +24 VDC<br />

Supply Voltage for operating<br />

Inhibit input only.<br />

1<br />

2 3 4 5<br />

6<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

DC 24 V<br />

(20–30 V)<br />

48 V DC /<br />

30 V AC /2 A<br />

+24 V DC ,<br />

50 mA<br />

166 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Safe Stop<br />

+5V<br />

Power board<br />

=<br />

X1<br />

1<br />

2<br />

K1<br />

3<br />

4<br />

K2<br />

=<br />

U<br />

5<br />

6<br />

+24 V DC<br />

~<br />

V<br />

W<br />

X1<br />

Enable<br />

10<br />

DigIn<br />

Controller<br />

PWM<br />

Stop<br />

20<br />

DigOut<br />

Fig. 105<br />

13.9 Encoder<br />

Order number<br />

Description<br />

01-3876-03 Encoder 2.0 option board<br />

The Encoder 2.0 option board, used for connection of<br />

feedback signal of the actual motor speed via an<br />

incremental encoder is described in a separate <strong>manual</strong>.<br />

13.10PTC/PT100<br />

Order number<br />

Description<br />

01-3876-08 PTC/PT100 2.0 option board<br />

The PTC/PT100 2.0 option board for connecting<br />

motor thermistors to the VSD is described in a separate<br />

<strong>manual</strong>.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 167


168 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14. Technical Data<br />

14.1 Electrical specifications<br />

related to model<br />

Table 34<br />

Typical motor power at mains voltage 400 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Frame size<br />

<strong>SX</strong>-D4090-EV 210 90 175 75 140 E<br />

<strong>SX</strong>-D4110-EV 252 110 210 90 168<br />

<strong>SX</strong>-D4132-EV 300 132 250 110 200<br />

<strong>SX</strong>-*4160-EV 360 160 300 132 240<br />

<strong>SX</strong>-*4200-EV 450 200 375 160 300<br />

<strong>SX</strong>-*4220EV 516 220 430 200 344<br />

<strong>SX</strong>-*4250-EV 600 250 500 220 400<br />

<strong>SX</strong>-*4315-EV 720 315 600 250<br />

<strong>SX</strong>-*4355-EV 780 355 650 315 520<br />

<strong>SX</strong>-*4400-EV 900 400 750 355 600<br />

<strong>SX</strong>-*4450-EV 1032 450 860 400 688<br />

<strong>SX</strong>-*4500-EV 1200 500 1000 450 800<br />

<strong>SX</strong>-*4630-EV 1440 630 1200 500 960<br />

<strong>SX</strong>-*4800-EV 1800 800 1500 630 1200<br />

F<br />

G<br />

H<br />

I<br />

J<br />

K<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Table 35<br />

Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V [kW] Rated current [A] Power @690V [kW] Rated current [A]<br />

Frame size<br />

<strong>SX</strong>-D6090-EV 108 90 90 75 72<br />

<strong>SX</strong>-D6110-EV 131 110 109 90 87<br />

<strong>SX</strong>-D6132-EV 175 132 146 110 117<br />

<strong>SX</strong>-D6160EV 210 160 175 132 140<br />

<strong>SX</strong>-*6200-EV 252 200 210 160 168<br />

<strong>SX</strong>-*6250-EV 300 250 250 200 200<br />

<strong>SX</strong>-*6315-EV 360 315 300 250 240<br />

<strong>SX</strong>-*6355-EV 450 355 375 315 300<br />

<strong>SX</strong>-*6450-EV 516 450 430 315 344<br />

<strong>SX</strong>-*6500-EV 600 500 500 355 400<br />

F69<br />

H69<br />

I69<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 169


Table 35<br />

Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V [kW] Rated current [A] Power @690V [kW] Rated current [A]<br />

Frame size<br />

<strong>SX</strong>-*6600-EV 720 600 600 450<br />

<strong>SX</strong>-*6630EV 780 630 650 500 520<br />

<strong>SX</strong>-*6710-EV 900 710 750 600 600<br />

<strong>SX</strong>-*6800-EV 1032 800 860 650 688<br />

<strong>SX</strong>-*6900-EV 1080 900 900 710 720<br />

<strong>SX</strong>-*61K0-EV 1200 1000 1000 800 800<br />

J69<br />

K69<br />

* Available during limited time and as long as allowed by drive temperature.<br />

170 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.2 General electrical specifications<br />

Table 36<br />

General electrical specifications<br />

General<br />

Mains voltage:<br />

<strong>SX</strong>-4xxx-EV<br />

<strong>SX</strong>-6xxx-EV<br />

Mains frequency:<br />

Input power factor:<br />

Output voltage:<br />

Output frequency:<br />

Output switching frequency:<br />

Efficiency at nominal load:<br />

230-480V +10%/-10%<br />

500-690V +10%/-15%<br />

45 to 65 Hz<br />

0.95<br />

0–Mains supply voltage:<br />

0–400 Hz<br />

3 kHz (adjustable 1,5-6 kHz)<br />

98%<br />

Control signal inputs:<br />

Analogue (differential)<br />

Analogue Voltage/current:<br />

Max. input voltage:<br />

Input impedance:<br />

Resolution:<br />

Hardware accuracy:<br />

Non-linearity<br />

Digital:<br />

Input voltage:<br />

Max. input voltage:<br />

Input impedance:<br />

Signal delay:<br />

Control signal outputs<br />

Analogue<br />

Output voltage/current:<br />

Max. output voltage:<br />

Short-circuit current ():<br />

Output impedance:<br />

Resolution:<br />

Maximum load impedance for current<br />

Hardware accuracy:<br />

Offset:<br />

Non-linearity:<br />

Digital<br />

Output voltage:<br />

Shortcircuit current():<br />

Relays<br />

Contacts<br />

References<br />

+10VDC<br />

-10VDC<br />

+24VDC<br />

0-±10 V/0-20 mA via switch<br />

+30 V/30 mA<br />

20 k(voltage)<br />

250 (current)<br />

11 bits + sign<br />

1% type + 1 ½ LSB fsd<br />

1½ LSB<br />

High: >9 VDC, Low: 23 VDC open<br />

Low:


14.3 Operation at higher<br />

temperatures<br />

OMRON variable speed drives are made for operation<br />

at maximum of 40°C ambient temperature. However,<br />

for most models, it is possible to use the VSD at<br />

higher temperatures with little loss in performance.<br />

Table 37 shows ambient temperatures as well as derating<br />

for higher temperatures.<br />

Table 37<br />

Ambient temperature and derating 400–690 V types<br />

Model <strong>SX</strong>-V<br />

<strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-EV<br />

<strong>SX</strong>-D6090-EV to <strong>SX</strong>-D6160-EV<br />

<strong>SX</strong>-*4160-EV to <strong>SX</strong>-*4800-EV<br />

<strong>SX</strong>-*6200-EV to <strong>SX</strong>-*61K0-EV<br />

IP20<br />

IP54<br />

Max temp. Derating: possible Max temp. Derating: possible<br />

– – 40°C Yes,-2.5%/°C to max +5°C<br />

40°C -2.5%/°C to max +5°C 40°C -2.5%/°C to max +5°C<br />

Example<br />

In this example we have a motor with the following<br />

data that we want to run at the ambient temperature<br />

of 45°C:<br />

Voltage 400 V<br />

Current 165 A<br />

Power 90 kW<br />

Select variable speed drive<br />

The ambient temperature is 5 °C higher than the maximum<br />

ambient temperature. The following calculation<br />

is made to select the correct VSD model.<br />

Derating is possible with loss in performance of 2.5%/<br />

°C.<br />

Derating will be: 5 X 2.5% = 12.5%<br />

Calculation for model <strong>SX</strong>-D4090-EV<br />

175 A - (12.5% X 175) = 154A; this is not enough.<br />

Calculation for model <strong>SX</strong>-D4110-EV<br />

210 A - (12.5% X 210) = 184 A<br />

In this example we select the <strong>SX</strong>-D4110-EV.<br />

page 72. At switching frequencies >3 kHz derating<br />

might be needed.<br />

Table 38<br />

Switching frequency<br />

Models<br />

Standard<br />

Switching<br />

frequency<br />

Range<br />

<strong>SX</strong>-*4xxx-EV 3 kHz 1.5–6 kHz<br />

<strong>SX</strong>-*6xxx-EV 3 kHz 1.5–6 kHz<br />

14.4 Operation at higher<br />

switching frequency<br />

Table 38 shows the switching frequency for the different<br />

VSD models. With the possibility of running at<br />

higher switching frequency you can reduce the noise<br />

level from the motor. The switching frequency is set in<br />

menu [22A], Motor sound, see section section 11.2.3,<br />

172 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.5 Dimensions and Weights<br />

The table below gives an overview of the dimensions<br />

and weights. The models <strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-EV<br />

in 400V and <strong>SX</strong>-D6090-EV to <strong>SX</strong>-D6250-EV in 690V are<br />

available in IP54 as wall mounted modules. The models<br />

<strong>SX</strong>-*4160-EV to <strong>SX</strong>-*4800-EV in 400V and <strong>SX</strong>-*6315-<br />

EV to <strong>SX</strong>-*61K0-EV in 690V consist of 2, 3, 4 or 6 paralleled<br />

power electonic building block (PEBB) available<br />

in IP20 as wall mounted modules and in IP54<br />

mounted standard cabinet<br />

Protection class IP54 is according to the EN 60529<br />

standard.<br />

Table 39<br />

Mechanical specifications, <strong>SX</strong>-V 400V<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20 (-A4xxx)<br />

Dim. H x W x D [mm]<br />

IP54 (-D4xxx)<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

4090 E – 950 x 285 x 314 – 60<br />

4110 to 4132 F – 950 x 345 x 314 – 74<br />

4160 to 4200 G 1036 x 500 x 390 2330 x 600 x 500 140 270<br />

4220 to 4250 H 1036 x 500 x 450 2330 x 600 x 600 170 305<br />

4315 to 4400 I 1036 x 730 x 450 2330 x 1000 x 600 248 440<br />

4450 to 4500 J 1036 x 1100 x 450 2330 x 1200 x 600 340 580<br />

4630 to 4800 K 1036 x 1560 x 450 2330 x 2000 x 600 496 860<br />

Table 40<br />

Mechanical specifications, <strong>SX</strong>-V 690V<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20 (-A6xxx)<br />

Dim. H x W x D [mm]<br />

IP54 (-A6xxx)<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

6090 to 6160 F69 – 1090 x 345 x 314 – 77<br />

6200 to 6355 H69 1176 x 500 x 450 2330 x 600 x 600 176 311<br />

6450 to 6500 I69 1176 x 730 x 450 2330 x 1000 x 600 257 449<br />

6600 to 6630 J69 1176 x 1100 x 450 2330 x 1200 x 600 352 592<br />

6710 to 61K0 K69 1176 x 1560 x 450 2330 x 2000 x 600 514 878<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 173


14.6 Environmental conditions<br />

Table 41<br />

Operation<br />

Parameter<br />

Normal operation<br />

Nominal ambient temperature<br />

Atmospheric pressure<br />

0C–40C See table, see Table 37 for different conditions<br />

86–106 kPa<br />

Relative humidity, non-condensing 0–90%<br />

Contamination,<br />

according to IEC 60721-3-3<br />

Vibrations<br />

No electrically conductive dust allowed. Cooling air must be clean and free from corrosive<br />

materials. Chemical gases, class 3C2. Solid particles, class 3S2.<br />

According to IEC 600068-2-6, Sinusodial vibrations:<br />

•10


Table 43<br />

Fuses, cable cross-sections and glands for 400V<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>SX</strong>-*4315-EV 520 630<br />

<strong>SX</strong>-*4355-EV 562 630<br />

(3x)35-240 frame -- --<br />

<strong>SX</strong>-*4400-EV 648 710 (3x)35-240 frame -- --<br />

<strong>SX</strong>-*4450-EV 744 800<br />

<strong>SX</strong>-*4500-EV 864 1000<br />

(4x)35-240 frame -- --<br />

<strong>SX</strong>-*4630-EV 1037 1250<br />

<strong>SX</strong>-*4800-EV 1296 1500<br />

(6x)35-240 frame -- --<br />

1. Values are valid when brake chopper electronics are built in.<br />

Table 44<br />

Fuses, cable cross-sections and glands for 690V<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>SX</strong>-D6090-EV 78 100<br />

<strong>SX</strong>-D6110-EV 94 100<br />

<strong>SX</strong>-D6132-EV 126 160<br />

<strong>SX</strong>-D6160-EV 152 160<br />

<strong>SX</strong>-*6200-EV 182 200<br />

<strong>SX</strong>-*6250-EV 216 250<br />

<strong>SX</strong>-*6315-EV 260 300<br />

<strong>SX</strong>-*6355-EV 324 355<br />

<strong>SX</strong>-*6450-EV 372 400<br />

<strong>SX</strong>-*6500-EV 432 500<br />

<strong>SX</strong>-*6600-EV 520 630<br />

<strong>SX</strong>-*6630-EV 562 630<br />

16 - 95 16 - 95<br />

35 - 150 16 - 95<br />

35-150<br />

1. Values are valid when brake chopper electronics are built in.<br />

35-150<br />

(16-95)<br />

16-95<br />

(16-70)¹<br />

35-150<br />

(16-70)¹<br />

35-240<br />

(95-185)¹<br />

35-150<br />

(16-70)¹<br />

Ø27-66 cable entry<br />

(2x)35-150 frame --- --<br />

(3x)35-150 frame -- --<br />

(4x)35-150 frame -- --<br />

<strong>SX</strong>-*6710-EV 648 710 (6x)35-150 frame -- --<br />

<strong>SX</strong>-*6800-EV 744 800<br />

<strong>SX</strong>-*6900-EV 795 900<br />

<strong>SX</strong>-*61K0-EV 864 1000<br />

(6x)35-150 frame -- --<br />

---<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 175


176 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.7.2 Fuses and cable dimensions<br />

according NEMA ratings<br />

Table 45<br />

Types and fuses<br />

Model<br />

Input<br />

current<br />

[Arms]<br />

UL<br />

Class J TD (A)<br />

Mains input fuses<br />

Ferraz-Shawmut<br />

type<br />

<strong>SX</strong>-D4090-EV 152 175 AJT175<br />

<strong>SX</strong>-D4110-EV 182 200 AJT200<br />

<strong>SX</strong>-D4132-EV 216 250 AJT250<br />

<strong>SX</strong>-*4160-EV 260 300 AJT300<br />

<strong>SX</strong>-*4200-EV 324 350 AJT350<br />

<strong>SX</strong>-*4220-EV 372 400 AJT400<br />

<strong>SX</strong>-*4250-EV 432 500 AJT500<br />

<strong>SX</strong>-*4315-EV 520 600 AJT600<br />

<strong>SX</strong>-*4355-EV 562 600 AJT600<br />

<strong>SX</strong>-*4400-EV 648 700 A4BQ700<br />

<strong>SX</strong>-*4450-EV 744 800 A4BQ800<br />

<strong>SX</strong>-*4500-EV 864 1000 A4BQ1000<br />

<strong>SX</strong>-*4630-EV 1037 1200 A4BQ1200<br />

<strong>SX</strong>-*4800-EV 1296 1500 A4BQ1500<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 177


Table 46<br />

Type cables cross-sections and glands<br />

Cable cross section connector<br />

Model<br />

Mains and motor Brake PE<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Cable type<br />

<strong>SX</strong>-D4090-EV<br />

AWG 1 - AWG 3/0<br />

AWG 4/0 - 300 kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 4 - AWG 3/0<br />

14 / 10.5<br />

AWG 1 - AWG 3/0<br />

(AWG 4 - AWG 2/0)¹<br />

14 / 10.5<br />

(10 / 7.5)¹<br />

<strong>SX</strong>-D4110-EV<br />

<strong>SX</strong>-D4132-EV<br />

AWG 3/0 -<br />

400 kcmil<br />

24 / 18<br />

AWG 1 - AWG 3/0<br />

AWG 4/0 - 300<br />

kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 3/0 - 400 kcmil<br />

(AWG 4/0 - 400<br />

kcmil)¹<br />

24 / 18<br />

(10 / 7.5)¹<br />

<strong>SX</strong>-*4160-EV 2 x AWG 4/0 -<br />

<strong>SX</strong>-*4200-EV 2 x 300 kcmil<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>SX</strong>-*4220-EV 2 x AWG 3/0 -<br />

<strong>SX</strong>-*4250-EV 2 x 400 kcmil<br />

<strong>SX</strong>-*4315-EV<br />

<strong>SX</strong>-*4355-EV<br />

<strong>SX</strong>-*4400-EV<br />

3 x AWG 4/0 -<br />

3 x 300 kcmil<br />

24 / 18<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

24 / 18 frame -<br />

Copper (Cu)<br />

75°C<br />

<strong>SX</strong>-*4450-EV 4 x AWG 4/0 -<br />

<strong>SX</strong>-*4500-EV 4 x 300 kcmil<br />

24 / 18<br />

3 x AWG 3/0 -<br />

3 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>SX</strong>-*4630-EV 6 x AWG 4/0 -<br />

<strong>SX</strong>-*4800-EV 6 x 300 kcmil<br />

24 / 18<br />

6 x AWG 3/0 -<br />

6 x 400 kcmil<br />

24 / 18 frame -<br />

178 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.8 Control signals<br />

Table 47<br />

Terminal Name: Function (Default): Signal: Type:<br />

1 +10 V +10 VDC Supply voltage +10 VDC, max 10 mA output<br />

2 AnIn1 Process reference<br />

3 AnIn2 Off<br />

4 AnIn3 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

5 AnIn4 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

6 -10 V -10VDC Supply voltage -10 VDC, max 10 mA output<br />

7 Common Signal ground 0V output<br />

8 DigIn 1 RunL 0-8/24 VDC digital input<br />

9 DigIn 2 RunR 0-8/24 VDC digital input<br />

10 DigIn 3 Off 0-8/24 VDC digital input<br />

11 +24 V +24VDC Supply voltage +24 VDC, 100 mA output<br />

12 Common Signal ground 0 V output<br />

13 AnOut 1 Min speed to max speed 0 ±10 VDC or 0/4– +20 mA analogue output<br />

14 AnOut 2 0 to max torque 0 ±10 VDC or 0/4– +20 mA analogue output<br />

15 Common Signal ground 0 V output<br />

16 DigIn 4 Off 0-8/24 VDC digital input<br />

17 DigIn 5 Off 0-8/24 VDC digital input<br />

18 DigIn 6 Off 0-8/24 VDC digital input<br />

19 DigIn 7 Off 0-8/24 VDC digital input<br />

20 DigOut 1 Ready 24 VDC, 100 mA digital output<br />

21 DigOut 2 Brake 24 VDC, 100 mA digital output<br />

22 DigIn 8 RESET 0-8/24 VDC digital input<br />

Terminal X2<br />

31 N/C 1 Relay 1 output<br />

32 COM 1<br />

33 N/O 1<br />

Trip, active when the<br />

VSD is in a TRIP condition<br />

N/C is opened when the relay is active<br />

(valid for all relays)<br />

N/O is closed when the relay is active<br />

(valid for all relays)<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

Terminal X3<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 Output<br />

Run, active when the<br />

VSD is started<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

51 COM 3 Relay 3 Output<br />

52 N/O 3 Off<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 179


180 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


15. Menu List<br />

DEFAULT<br />

244 Copy to CP No Copy<br />

CUSTOM<br />

100 Preferred View<br />

DEFAULT<br />

110 1st Line Process Val<br />

120 2nd Line Current<br />

200 Main Setup<br />

210 Operation<br />

211 Language English<br />

212 Select Motor M1<br />

213 Drive Mode V/Hz<br />

214 Ref Control Remote<br />

215 Run/Stp Ctrl Remote<br />

216 Reset Ctrl Remote<br />

217 Local/Rem Off<br />

2171 LocRefCtrl Standard<br />

2172 LocRunCtrl Standard<br />

218 Lock Code? 0<br />

219 Rotation R+L<br />

21A Level/Edge Level<br />

21B Supply Volts Not Defined<br />

220 Motor Data<br />

221 Motor Volts U NOM V<br />

222 Motor Freq 50Hz<br />

223 Motor Power (P NOM ) W<br />

224 Motor Curr (I NOM ) A<br />

225 Motor Speed (n MOT ) rpm<br />

226 Motor Poles -<br />

227 Motor Cos<br />

Depends on<br />

P nom<br />

228 Motor Vent Self<br />

229 Motor ID-Run Off<br />

22A Motor Sound F<br />

22B Encoder Off<br />

22C Enc Pulses 1024<br />

22D Enc Speed 0rpm<br />

230 Mot Protect<br />

231 Mot I 2 t Type Trip<br />

232 Mot I 2 t Curr 100%<br />

233 Mot I 2 t Time 60s<br />

234 Thermal Prot Off<br />

235 Motor Class F 140C<br />

236 PT100 Inputs<br />

237 Motor PTC Off<br />

240 Set Handling<br />

241 Select Set A<br />

242 Copy Set A>B<br />

243 Default>Set A<br />

CUSTOM<br />

245 Load from CP No Copy<br />

250 Autoreset<br />

251 No of Trips 0<br />

252 Overtemp Off<br />

253 Overvolt D Off<br />

254 Overvolt G Off<br />

255 Overvolt Off<br />

256 Motor Lost Off<br />

257 Locked Rotor Off<br />

258 Power Fault Off<br />

259 Undervoltage Off<br />

25A Motor I 2 t Off<br />

25B Motor I 2 t TT Trip<br />

25C PT100 Off<br />

25D PT100 TT Trip<br />

25E PTC Off<br />

25F PTC TT Trip<br />

25G Ext Trip Off<br />

25H Ext Trip TT Trip<br />

25I Com Error Off<br />

25J Com Error TT Trip<br />

25K Min Alarm Off<br />

25L Min Alarm TT Trip<br />

25M Max Alarm Off<br />

25N Max Alarm TT Trip<br />

25O Over curr F Off<br />

25P Pump Off<br />

25Q Over speed Off<br />

25R Ext Mot Temp Off<br />

25S Ext Mot TT Trip<br />

25T LC Level Off<br />

25U LC Level TT Trip<br />

260 Serial Com<br />

261 Com Type RS232/485<br />

262 RS232/485<br />

2621 Baudrate 9600<br />

2622 Address 1<br />

263 Fieldbus<br />

2631 Address 62<br />

2632 PrData Mode Basic<br />

2633 Read/Write RW<br />

2634 AddPrValue 0<br />

264 Comm Fault<br />

2641 ComFlt Mode Off<br />

2642 ComFlt Time 0.5 s<br />

265 Ethernet<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 181


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

2651 IP Address 0.0.0.0<br />

33C Brk Release 0.00s<br />

2652 MAC Address<br />

000000000<br />

000<br />

2653 Subnet Mask 0.0.0.0<br />

2654 Gateway 0.0.0.0<br />

2655 DHCP Off<br />

266 FB Signal<br />

2661 FB Signal 1<br />

2662 FB Signal 2<br />

2663 FB Signal 3<br />

2664 FB Signal 4<br />

2665 FB Signal 5<br />

2666 FB Signal 6<br />

2667 FB Signal 7<br />

2668 FB Signal 8<br />

2669 FB Signal 9<br />

266A FB Signal 10<br />

266B FB Signal 11<br />

266C FB Signal 12<br />

266D FB Signal 13<br />

266E FB Signal 14<br />

266F FB Signal 15<br />

266G FB Signal 16<br />

269 FB Status<br />

300 Process<br />

310 Set/View ref<br />

320 Proc Setting<br />

321 Proc Source Speed<br />

322 Proc Unit Off<br />

323 User Unit 0<br />

324 Process Min 0<br />

325 Process Max 0<br />

326 Ratio Linear<br />

327 F(Val) PrMin Min<br />

328 F(Val) PrMax Max<br />

330 Start/Stop<br />

331 Acc Time 10.00s<br />

332 Dec Time 10.00s<br />

333 Acc MotPot 16.00s<br />

334 Dec MotPot 16.00s<br />

335 Acc>Min Spd 10.00s<br />

336 Dec


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

399 Start Delay 0s<br />

41C5 Load Curve 5 100%<br />

39A Stop Delay 0s<br />

41C6 Load Curve 6 100%<br />

39B Upp Band Lim 0%<br />

41C7 Load Curve 7 100%<br />

39C Low Band Lim 0%<br />

41C8 Load Curve 8 100%<br />

39D Settle Start 0s<br />

41C9 Load Curve 9 100%<br />

39E TransS Start 60%<br />

420 Process Prot<br />

39F Settle Stop 0s<br />

421 Low Volt OR On<br />

39G TransS Stop 60%<br />

422 Rotor Locked Off<br />

39H Run Time 1 00:00:00<br />

423 Motor lost Off<br />

39H1 Rst Run Tm1 No<br />

424 Overvolt Ctrl On<br />

39I Run Time 2 00:00:00<br />

500 I/Os<br />

39I1 Rst Run Tm2 No<br />

510 An Inputs<br />

39J Run Time 3 00:00:00<br />

511 AnIn1 Fc Process Ref<br />

39J1 Rst Run Tm3 No<br />

512 AnIn1 Setup 4-20mA<br />

39K Run Time 4 00:00:00<br />

513 AnIn1 Advn<br />

39K1 Rst Run Tm4 No<br />

5131 AnIn1 Min 4mA<br />

39L Run Time05 00:00:00<br />

5132 AnIn1 Max 20.00mA<br />

39L1 Rst Run Tm5 No<br />

5133 AnIn1 Bipol 20.00mA<br />

39M Run Time 6 00:00:00<br />

5134 AnIn1 FcMin Min<br />

39M1 Rst Run Tm6<br />

No<br />

5135 AnIn1 ValMin 0<br />

39N Pump 123456<br />

5136 AnIn1 FcMax Max<br />

400 Monitor/Prot<br />

5137 AnIn1 ValMax 0<br />

410 Load Monitor<br />

5138 AnIn1 Oper Add+<br />

411 Alarm Select Off<br />

5139 AnIn1 Filt 0.1s<br />

412 Alarm trip Off<br />

513A AnIn1 Enabl On<br />

413 Ramp Alarm Off<br />

514 AnIn2 Fc Off<br />

414 Start Delay 2s<br />

515 AnIn2 Setup 4-20mA<br />

415 Load Type Basic<br />

516 AnIn2 Advan<br />

416 Max Alarm<br />

5161 AnIn2 Min 4mA<br />

4161 MaxAlarmMar 15%<br />

5162 AnIn2 Max 20.00mA<br />

4162 MaxAlarmDel 0.1s<br />

5163 AnIn2 Bipol 20.00mA<br />

417 Max Pre alarm<br />

5164 AnIn2 FcMin Min<br />

4171 MaxPreAlMar 10%<br />

5165 AnIn2 ValMin 0<br />

4172 MaxPreAlDel 0.1s<br />

5166 AnIn2 FcMax Max<br />

418 Min Pre Alarm<br />

5167 AnIn2 ValMax 0<br />

4181 MinPreAlMar 10%<br />

5168 AnIn2 Oper Add+<br />

4182 MinPreAlDel 0.1s<br />

5169 AnIn2 Filt 0.1s<br />

419 Min Alarm<br />

516A AnIn2 Enabl On<br />

4191 MinAlarmMar 15%<br />

517 AnIn3 Fc Off<br />

4192 MinAlarmDel 0.1s<br />

518 AnIn3 Setup 4-20mA<br />

41A Autoset Alrm No<br />

519 AnIn3 Advan<br />

41B Normal Load 100%<br />

5191 AnIn3 Min 4mA<br />

41C<br />

Load Curve<br />

5192 AnIn3 Max 20.00mA<br />

41C1 Load Curve 1 100%<br />

5193 AnIn3 Bipol 20.00mA<br />

41C2 Load Curve 2 100%<br />

5194 AnIn3 FcMin Min<br />

41C3 Load Curve 3 100%<br />

5195 AnIn3 ValMin 0<br />

41C4 Load Curve 4 100%<br />

5196 AnIn3 FcMax Max<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 183


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

5197 AnIn3 ValMax 0<br />

535 AnOut2 Setup 4-20mA<br />

5198 AnIn3 Oper Add+<br />

536 AnOut2 Advan<br />

5199 AnIn3 Filt 0.1s<br />

5361 AnOut 2 Min 4mA<br />

519A AnIn3 Enabl On<br />

5362 AnOut 2 Max 20.0mA<br />

51A AnIn4 Fc Off<br />

5363 AnOut2Bipol 20.0mA<br />

51B AnIn4 Setup 4-20mA<br />

5364 AnOut2 FcMin Min<br />

51C<br />

AnIn4 Advan<br />

5365 AnOut2 VlMin 0<br />

51C1 AnIn4 Min 4mA<br />

5366 AnOut2 FcMax Max<br />

51C2 AnIn4 Max 20.00mA<br />

5367 AnOut2 VlMax 0<br />

51C3 AnIn4 Bipol 20.00mA<br />

540 Dig Outputs<br />

51C4 AnIn4 FcMin Min<br />

541 DigOut 1 Ready<br />

51C5 AnIn4 ValMin 0<br />

542 DigOut 2 No Trip<br />

51C6 AnIn4 FcMax Max<br />

550 Relays<br />

51C7 AnIn4 ValMax 0<br />

551 Relay 1 Trip<br />

51C8 AnIn4 Oper Add+<br />

552 Relay 2 Run<br />

51C9 AnIn4 Filt 0.1s<br />

553 Relay 3 Off<br />

51CA AnIn4 Enabl On<br />

554 B(oard)1 Relay 1 Off<br />

520 Dig Inputs<br />

555 B(oard)1 Relay 2 Off<br />

521 DigIn 1 RunL<br />

556 B(oard)1 Relay 3 Off<br />

522 DigIn 2 RunR<br />

557 B(oard)2 Relay 1 Off<br />

523 DigIn 3 Off<br />

558 B(oard)2 Relay 2 Off<br />

524 DigIn 4 Off<br />

559 B(oard)2 Relay 3 Off<br />

525 DigIn 5 Off<br />

55A<br />

B(oard)3 Relay 1 Off<br />

526 DigIn 6 Off<br />

55B<br />

B(oard)3 Relay 2 Off<br />

527 DigIn 7 Off<br />

55C<br />

B(oard)3 Relay 3 Off<br />

528 DigIn 8 Reset<br />

55D<br />

Relay Adv<br />

529 B(oard)1 DigIn 1 Off<br />

55D1 Relay 1 Mode N.O<br />

52A<br />

B(oard)1 DigIn 2 Off<br />

55D2 Relay 2 Mode N.O<br />

52B<br />

B(oard)1 DigIn 3 Off<br />

55D3 Relay 3 Mode N.O<br />

52C<br />

B(oard)2 DigIn 1 Off<br />

55D4 B1R1 Mode N.O<br />

52D<br />

B(oard)2 DigIn 2 Off<br />

55D5 B1R2 Mode N.O<br />

52E<br />

B(oard)2 DigIn 3 Off<br />

55D6 B1R3 Mode N.O<br />

52F<br />

B(oard)3 DigIn 1 Off<br />

55D7 B2R1 Mode N.O<br />

52G<br />

B(oard)3 DigIn 2 Off<br />

55D8 B2R2 Mode N.O<br />

52H<br />

B(oard)3 DigIn 3 Off<br />

55D9 B2R3 Mode N.O<br />

530 An Outputs<br />

55DA B3R1 Mode N.O<br />

531 AnOut1 Fc Speed<br />

55DB B3R2 Mode N.O<br />

532 AnOut1 Setup 4-20mA<br />

55DC B3R3 Mode N.O<br />

533 AnOut1 Adv<br />

560 Virtual I/Os<br />

5331 AnOut 1 Min 4mA<br />

561 VIO 1 Dest Off<br />

5332 AnOut 1 Max 20.0mA<br />

562 VIO 1 Source Off<br />

5333 AnOut1Bipol 20.0mA<br />

563 VIO 2 Dest Off<br />

5334 AnOut1 FcMin Min<br />

564 VIO 2 Source Off<br />

5335 AnOut1 VlMin 0<br />

565 VIO 3 Dest Off<br />

5336 AnOut1 FcMax Max<br />

566 VIO 3 Source Off<br />

5337 AnOut1 VlMax 0<br />

567 VIO 4 Dest Off<br />

534 AnOut2 FC Torque<br />

568 VIO 4 Source Off<br />

184 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

569 VIO 5 Dest Off<br />

712 Speed<br />

56A VIO 5 Source Off<br />

713 Torque<br />

56B VIO 6 Dest Off<br />

714 Shaft Power<br />

56C VIO 6 Source Off<br />

715 Electrical Power<br />

56D VIO 7 Dest Off<br />

716 Current<br />

56E VIO 7 Source Off<br />

717 Output volt<br />

56F VIO 8 Dest Off<br />

718 Frequency<br />

56G VIO 8 Source Off<br />

719 DC Voltage<br />

600 Logical&Timers<br />

71A<br />

Heatsink Tmp<br />

610 Comparators<br />

71B<br />

PT100_1_2_3<br />

611 CA1 Value Speed<br />

720 Status<br />

612 CA1 Level HI 300rpm<br />

721 VSD Status<br />

613 CA1 Level LO 200rpm<br />

722 Warning<br />

614 CA2 Value Torque<br />

723 DigIn Status<br />

615 CA2 Level HI 20%<br />

724 DigOut Status<br />

616 CA2 Level LO 10%<br />

725 AnIn Status 1-2<br />

617 CD1 Run<br />

726 AnIn Status 3-4<br />

618 CD2 DigIn 1<br />

620 Logic Output Y<br />

621 Y Comp 1 CA1<br />

622 Y Operator 1 &<br />

623 Y Comp 2 !A2<br />

624 Y Operator 2 &<br />

625 Y Comp 3 CD1<br />

630 Logic Z<br />

631 Z Comp 1 CA1<br />

632 Z Operator 1 &<br />

633 Z Comp2 !A2<br />

634 Z Operator 2 &<br />

635 Z Comp 3 CD1<br />

640 Timer1<br />

641 Timer1 Trig Off<br />

642 Timer1 Mode Off<br />

643 Timer1 Delay 0:00:00<br />

644 Timer 1 T1 0:00:00<br />

645 Timer1 T2 0:00:00<br />

649 Timer1 Value 0:00:00<br />

650 Timer2<br />

651 Timer2 Trig Off<br />

652 Timer2 Mode Off<br />

653 Timer2 Delay 0:00:00<br />

654 Timer 2 T1 0:00:00<br />

655 Timer2 T2 0:00:00<br />

659 Tmer2 Value 0:00:00<br />

700 Oper/Status<br />

710 Operation<br />

711 Process Val<br />

727<br />

AnOut Status 1-<br />

2<br />

728 IO Status B1<br />

729 IO Status B2<br />

72A IO Status B3<br />

730 Stored Val<br />

731 Run Time 00:00:00<br />

7311 Reset RunTm No<br />

732 Mains Time 00:00:00<br />

733 Energy kWh<br />

7331 Rst Energy No<br />

800 View TripLog<br />

810 Trip Message<br />

811 Process Value<br />

812 Speed<br />

813 Torque<br />

814 Shaft Power<br />

815 Electrical Power<br />

816 Current<br />

817 Output voltage<br />

818 Frequency<br />

819 DC Link voltage<br />

81A Heatsink Tmp<br />

81B PT100_1, 2, 3<br />

81C FI Status<br />

81D DigIn status<br />

81E DigOut status<br />

81F AnIn status 1 2<br />

81G AnIn status 3 4<br />

81H AnOut status 1 2<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 185


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

81I<br />

IO Status B1<br />

83H AnOut status 1 2<br />

81J<br />

IO Status B2<br />

83I<br />

IO Status B1<br />

81K<br />

IO Status B3<br />

83J<br />

IO Status B2<br />

81L<br />

Run Time<br />

83K<br />

IO Status B3<br />

81M<br />

Mains Time<br />

83L<br />

Run Time<br />

81N<br />

Energy<br />

83M<br />

Mains Time<br />

820 Trip Message<br />

83N<br />

Energy<br />

821 Process Value<br />

840<br />

822 Speed<br />

841 Process Value<br />

823 Torque<br />

842 Speed<br />

824 Shaft Power<br />

843 Torque<br />

825 Electrical Power<br />

844 Shaft Power<br />

826 Current<br />

845 Electrical Power<br />

827 Output voltage<br />

846 Current<br />

828 Frequency<br />

847 Output voltage<br />

829 DC Link voltage<br />

848 Frequency<br />

82A<br />

Heatsink Tmp<br />

849 DC Link voltage<br />

82B PT100_1, 2, 3<br />

84A<br />

Heatsink Tmp<br />

82C<br />

FI Status<br />

84B PT100_1, 2, 3<br />

82D<br />

DigIn status<br />

84C<br />

FI Status<br />

82E<br />

DigOut status<br />

84D<br />

DigIn status<br />

82F AnIn status 1 2<br />

84E<br />

DigOut status<br />

82G AnIn status 3 4<br />

84F AnIn status 1 2<br />

82H AnOut status 1 2<br />

84G AnIn status 3 4<br />

82I<br />

IO Status B1<br />

84H AnOut status 1 2<br />

82J<br />

IO Status B2<br />

84I<br />

IO Status B1<br />

82K<br />

IO Status B3<br />

84J<br />

IO Status B2<br />

82L<br />

Run Time<br />

84K<br />

IO Status B3<br />

82M<br />

Mains Time<br />

84L<br />

Run Time<br />

82N<br />

Energy<br />

84M<br />

Mains Time<br />

830<br />

84N<br />

Energy<br />

831 Process Value<br />

850<br />

832 Speed<br />

851 Process Value<br />

833 Torque<br />

852 Speed<br />

834 Shaft Power<br />

853 Torque<br />

835 Electrical Power<br />

854 Shaft Power<br />

836 Current<br />

855 Electrical Power<br />

837 Output voltage<br />

856 Current<br />

838 Frequency<br />

857 Output voltage<br />

839 DC Link voltage<br />

858 Frequency<br />

83A<br />

Heatsink Temperature<br />

859 DC Link voltage<br />

83B PT100_1, 2, 3<br />

85A<br />

Heatsink Tmp<br />

83C<br />

FI Status<br />

85B PT100_1, 2, 3<br />

83D<br />

DigIn status<br />

85C<br />

FI Status<br />

83E<br />

DigOut status<br />

85D<br />

DigIn status<br />

83F AnIn status 1 2<br />

85E<br />

DigOut status<br />

83G AIn status 3 4<br />

85F AnIn 1 2<br />

186 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

85G AnIn 3 4<br />

87F AnIn status 1 2<br />

85H AnIOut 1 2<br />

87G AnIn status 3 4<br />

85I<br />

IO Status B1<br />

87H AnOut status 1 2<br />

85J<br />

IO Status B2<br />

87I<br />

IO Status B1<br />

85K<br />

IO Status B3<br />

87J<br />

IO Status B2<br />

85L<br />

Run Time<br />

87K<br />

IO Status B3<br />

85M<br />

Mains Time<br />

87L<br />

Run Time<br />

85N<br />

Energy<br />

87M<br />

Mains Time<br />

860<br />

87N<br />

Energy<br />

861 Process Value<br />

880<br />

862 Speed<br />

881 Process Value<br />

863 Torque<br />

882 Speed<br />

864 Shaft Power<br />

818 Torque<br />

865 Electrical Power<br />

884 Shaft Power<br />

866 Current<br />

885 Electrical Power<br />

867 Output voltage<br />

886 Current<br />

868 Frequency<br />

887 Output voltage<br />

869 DC Link voltage<br />

888 Frequency<br />

86A<br />

Heatsink Tmp<br />

889 DC Link voltage<br />

86B PT100_1, 2, 3<br />

88A<br />

Heatsink Tmp<br />

86C<br />

FI Status<br />

88B PT100_1, 2, 3<br />

86D<br />

DigIn status<br />

88C<br />

FI Status<br />

86E<br />

DigOut status<br />

88D<br />

DigIn status<br />

86F AnIn 1 2<br />

88E<br />

DigOut status<br />

86G AnIn 3 4<br />

88F AnIn status 1 2<br />

86H AnOut 1 2<br />

88G AnIn status 3 4<br />

86I<br />

IO Status B1<br />

88H AnOut status 1 2<br />

86J IO Status B 2<br />

88I<br />

IO Status B1<br />

86K<br />

IO Status B3<br />

88J<br />

IO Status B2<br />

86L<br />

Run Time<br />

88K<br />

IO Status B3<br />

86M<br />

Mains Time<br />

88L<br />

Run Time<br />

86N<br />

Energy<br />

88M<br />

Mains Time<br />

870<br />

88N<br />

Energy<br />

871 Process Value<br />

890<br />

872 Speed<br />

891 Process Value<br />

873 Torque<br />

892 Speed<br />

874 Shaft Power<br />

893 Torque<br />

875 Electrical Power<br />

894 Shaft Power<br />

876 Current<br />

895 Electrical Power<br />

877 Output voltage<br />

896 Current<br />

878 Frequency<br />

897 Output voltage<br />

879 DC Link voltage<br />

898 Frequency<br />

87A<br />

Heatsink Tmpe<br />

899 DC Link voltage<br />

87B PT100_1, 2, 3<br />

89A<br />

Heatsink Tmp<br />

87C<br />

FI Status<br />

89B PT100_1, 2, 3<br />

87D<br />

DigIn status<br />

89C<br />

FI Status<br />

87E<br />

DigOut status<br />

89D<br />

DigIn status<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 187


89E<br />

DEFAULT<br />

DigOut status<br />

89F AnIn status 1 2<br />

89G AnIn status 3 4<br />

89H AnOut status 1 2<br />

89I<br />

89J<br />

89K<br />

89L<br />

89M<br />

89N<br />

IO Status B1<br />

IO Status B2<br />

IO Status B3<br />

Run Time<br />

Mains Time<br />

Energy<br />

8A0 Reset Trip No<br />

900 System Data<br />

920 VSD Data<br />

921 VSD Type<br />

922 Software<br />

923 Unit name 0<br />

CUSTOM<br />

188 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Index<br />

Symbols<br />

+10VDC Supply voltage .............................................179<br />

+24VDC Supply voltage .............................................179<br />

Numerics<br />

-10VDC Supply voltage ..............................................179<br />

4-20mA ......................................................................122<br />

A<br />

Abbreviations ................................................................10<br />

Acceleration ............................................................89, 91<br />

Acceleration ramp ..................................................91<br />

Acceleration time ...................................................89<br />

Ramp type .............................................................91<br />

Alarm trip ...................................................................114<br />

Alternating MASTER .................................................106<br />

Ambient temperature and derating .............................172<br />

Analogue comparators ................................................136<br />

Analogue input ...........................................................119<br />

AnIn1 ..................................................................119<br />

AnIn2 ..........................................................124, 125<br />

Offset ..........................................................121, 129<br />

Analogue Output ........................................128, 131, 179<br />

AnOut 1 ......................................................128, 131<br />

Output configuration ..................................129, 132<br />

AND operator ............................................................140<br />

AnIn2 .........................................................................125<br />

AnIn3 .........................................................................125<br />

AnIn4 .........................................................................126<br />

Autoreset ....................................................3, 39, 74, 158<br />

Autotune ....................................................................100<br />

B<br />

Baudrate ...........................................................51, 81, 82<br />

Brake chopper .............................................................163<br />

Brake function ........................................................92, 93<br />

Bake release time ...................................................92<br />

Brake .....................................................................93<br />

Brake Engage Time ...............................................93<br />

Brake wait time .....................................................93<br />

Release speed .........................................................93<br />

Vector Brake ..........................................................94<br />

Brake functions<br />

Frequency ............................................................119<br />

Brake resistors .............................................................163<br />

C<br />

Cable cross-section ......................................................174<br />

Cable specifications .......................................................20<br />

CE-marking ....................................................................9<br />

Change Condition ......................................................106<br />

Change Timer ....................................................106, 107<br />

Clockwise rotary field .................................................126<br />

Comparators ...............................................................136<br />

Connecting control signals ............................................30<br />

Connections<br />

Brake chopper connections .................................... 17<br />

Control signal connections .................................... 30<br />

Mains supply ................................................... 17, 24<br />

Motor earth ..................................................... 17, 24<br />

Motor output .................................................. 17, 24<br />

Safety earth ..................................................... 17, 24<br />

Control panel ............................................................... 47<br />

Control Panel memory ................................................. 40<br />

Copy all settings to Control Panel ......................... 74<br />

Frequency ........................................................... 119<br />

Control signal connections ........................................... 30<br />

Control signals ....................................................... 28, 30<br />

Edge-controlled ............................................... 39, 63<br />

Level-controlled .............................................. 39, 63<br />

Counter-clockwise rotary field .................................... 126<br />

Current ........................................................................ 28<br />

Current control (0-20mA) ............................................ 32<br />

D<br />

DC-link residual voltage ................................................. 1<br />

Deceleration ................................................................. 89<br />

Deceleration time .................................................. 89<br />

Ramp type ............................................................. 91<br />

Declaration of Conformity ............................................. 9<br />

Default ......................................................................... 73<br />

Definitions ................................................................... 10<br />

Derating ..................................................................... 172<br />

Digital comparators .................................................... 136<br />

Digital inputs<br />

Board Relay ......................................................... 134<br />

DigIn 1 ............................................................... 126<br />

DigIn 2 ............................................................... 127<br />

DigIn 3 ............................................................... 127<br />

Dismantling and scrapping ........................................... 10<br />

Display ......................................................................... 47<br />

Double-ended connection ............................................ 31<br />

Drive mode .................................................................. 60<br />

Frequency ........................................................... 119<br />

Drives on Change ............................................... 106, 107<br />

E<br />

ECP ........................................................................... 163<br />

Edge control ..................................................... 39, 63, 64<br />

Electrical specification ................................................ 171<br />

EMC ............................................................................ 17<br />

Current control (0-20mA) .................................... 32<br />

Double-ended connection ..................................... 31<br />

RFI mains filter ..................................................... 17<br />

Single-ended connection ....................................... 31<br />

Twisted cables ....................................................... 32<br />

Emergency stop ............................................................ 45<br />

EN60204-1 .................................................................... 9<br />

EN61800-3 .................................................................... 9<br />

EN61800-5-1 ................................................................. 9<br />

Enable ............................................................ 38, 48, 126<br />

EXOR operator .......................................................... 140<br />

Expression .................................................................. 140<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 189


External Control Panel ...............................................163<br />

F<br />

Factory settings .............................................................73<br />

Fans ............................................................................105<br />

Fieldbus ................................................................82, 164<br />

Fixed MASTER ..................................................105, 106<br />

Flux optimization .........................................................98<br />

Frequency ...................................................................146<br />

Frequency priority .................................................37<br />

Jog Frequency ........................................................97<br />

Maximum Frequency ......................................95, 96<br />

Minimum Frequency .............................................95<br />

Preset Frequency ....................................................99<br />

Skip Frequency ......................................................96<br />

Frequency priority ........................................................37<br />

Fuses, cable cross-sections and glands ..........................174<br />

G<br />

General electrical specifications ...................................171<br />

I<br />

I/O Board ...................................................................164<br />

I2t protection<br />

Motor I2t Current .....................................69, 70, 71<br />

Motor I2t Type .....................................................69<br />

ID run ....................................................................40, 66<br />

Identification Run ..................................................40, 66<br />

IEC269 .......................................................................174<br />

Internal speed control .................................................100<br />

Internal speed controller .............................................100<br />

Speed I Time .......................................................101<br />

Speed P Gain .......................................................100<br />

Interrupt .................................................................82, 83<br />

IT Mains supply .............................................................1<br />

IxR Compensation ........................................................98<br />

J<br />

Jog Frequency ...............................................................97<br />

K<br />

Keyboard reference .....................................................100<br />

Keys ..............................................................................48<br />

- Key ......................................................................50<br />

+ Key .....................................................................50<br />

Control keys ..........................................................48<br />

ENTER key ...........................................................50<br />

ESCAPE key ..........................................................50<br />

Function keys ........................................................50<br />

NEXT key .............................................................50<br />

PREVIOUS key ....................................................50<br />

RUN L ..................................................................48<br />

RUN R ..................................................................48<br />

STOP/RESET .......................................................48<br />

Toggle Key ............................................................48<br />

L<br />

LCD display .................................................................47<br />

Level control ...........................................................39, 63<br />

Load default ................................................................. 73<br />

Load monitor ....................................................... 40, 114<br />

Local/Remote ............................................................... 62<br />

Lock code ..................................................................... 63<br />

Long motor cables ........................................................ 19<br />

Low Voltage Directive .................................................... 9<br />

Lower Band ................................................................ 107<br />

Lower Band Limit ...................................................... 109<br />

M<br />

Machine Directive .......................................................... 9<br />

Main menu .................................................................. 50<br />

Mains supply .................................................... 17, 24, 27<br />

Maintenance ............................................................... 161<br />

Manis cables ................................................................. 17<br />

Manufacturer’s certificate ............................................... 9<br />

Max Frequency ................................................. 89, 95, 96<br />

Memory ....................................................................... 40<br />

Menu<br />

(110) ..................................................................... 59<br />

(120) ..................................................................... 60<br />

(210) ..................................................................... 60<br />

(211) ..................................................................... 60<br />

(212) ..................................................................... 60<br />

(213) ..................................................................... 60<br />

(214) ..................................................................... 61<br />

(215) ..................................................................... 61<br />

(216) ..................................................................... 61<br />

(217) ..................................................................... 62<br />

(218) ..................................................................... 63<br />

(219) ..................................................................... 63<br />

(21A) .................................................................... 63<br />

(220) ..................................................................... 64<br />

(221) ..................................................................... 64<br />

(222) ..................................................................... 65<br />

(223) ..................................................................... 65<br />

(224) ..................................................................... 65<br />

(225) ..................................................................... 65<br />

(226) ..................................................................... 65<br />

(227) ..................................................................... 66<br />

(228) ..................................................................... 66<br />

(229) ..................................................................... 66<br />

(22A) .................................................................... 67<br />

(22B) ..................................................................... 68<br />

(22C) .................................................................... 68<br />

(22D) .................................................................... 68<br />

(230) ..................................................................... 69<br />

(231) ..................................................................... 69<br />

(232) ..................................................................... 69<br />

(233) ..................................................................... 70<br />

(234) ..................................................................... 70<br />

(235) ..................................................................... 71<br />

(236) ..................................................................... 71<br />

(237) ..................................................................... 71<br />

(240) ..................................................................... 72<br />

(241) ..................................................................... 72<br />

(242) ..................................................................... 73<br />

(243) ..................................................................... 73<br />

(244) ..................................................................... 74<br />

(245) ..................................................................... 74<br />

190 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


(250) .....................................................................74<br />

(251) .....................................................................75<br />

(252) .....................................................................75<br />

(253) .....................................................................75<br />

(254) .....................................................................75<br />

(255) .....................................................................76<br />

(256) .....................................................................76<br />

(257) .....................................................................76<br />

(258) .....................................................................76<br />

(259) .....................................................................76<br />

(25A) .....................................................................77<br />

(25B) .....................................................................77<br />

(25C) .....................................................................77<br />

(25D) ....................................................................77<br />

(25E) .....................................................................77<br />

(25F) .....................................................................78<br />

(25G) ....................................................................78<br />

(25H) ....................................................................78<br />

(25I) ......................................................................78<br />

(25J) ......................................................................78<br />

(25K) .....................................................................79<br />

(25L) .....................................................................79<br />

(25M) ....................................................................79<br />

(25N) ..............................................................74, 79<br />

(25O) ....................................................................79<br />

(25P) .....................................................................79<br />

(25Q) ....................................................................80<br />

(25R) .....................................................................80<br />

(25S) .....................................................................80<br />

(25T) .....................................................................80<br />

(25U) ....................................................................80<br />

(260) .....................................................................81<br />

(261) .....................................................................81<br />

(262) .....................................................................81<br />

(2621) ...................................................................81<br />

(2622) ...................................................................82<br />

(263) .....................................................................82<br />

(2631) ...................................................................82<br />

(2632) ...................................................................82<br />

(2633) ...................................................................82<br />

(2634) ...................................................................82<br />

(264) .....................................................................82<br />

(265) .....................................................................83<br />

(269) .....................................................................83<br />

(310) .....................................................................84<br />

(320) .....................................................................84<br />

(321) .....................................................................84<br />

(322) .....................................................................85<br />

(323) .....................................................................85<br />

(324) .....................................................................86<br />

(325) .....................................................................87<br />

(326) .....................................................................87<br />

(327) .....................................................................88<br />

(328) .....................................................................88<br />

(331) .....................................................................89<br />

(332) .....................................................................89<br />

(333) .....................................................................89<br />

(334) .....................................................................90<br />

(335) .....................................................................90<br />

(336) .....................................................................90<br />

(337) ..................................................................... 91<br />

(338) ..................................................................... 91<br />

(339) ..................................................................... 91<br />

(33A) .................................................................... 92<br />

(33B) ..................................................................... 92<br />

(33C) .................................................................... 92<br />

(33D) .................................................................... 93<br />

(33E) ..................................................................... 93<br />

(33F) ..................................................................... 93<br />

(33G) .................................................................... 94<br />

(341) ..................................................................... 95<br />

(342) ..................................................................... 95<br />

(343) ..................................................................... 96<br />

(344) ..................................................................... 96<br />

(345) ..................................................................... 96<br />

(346) ..................................................................... 96<br />

(347) ..................................................................... 97<br />

(348) ..................................................................... 97<br />

(351) ..................................................................... 97<br />

(354) ..................................................................... 98<br />

(361) ..................................................................... 99<br />

(362) ..................................................................... 99<br />

(363) ..................................................................... 99<br />

(364) ..................................................................... 99<br />

(365) ..................................................................... 99<br />

(366) ..................................................................... 99<br />

(367) ................................................................... 100<br />

(368) ..................................................................... 99<br />

(369) ................................................................... 100<br />

(371) ................................................................... 100<br />

(372) ................................................................... 100<br />

(373) ................................................................... 101<br />

(380) ................................................................... 101<br />

(381) ................................................................... 101<br />

(383) ................................................................... 102<br />

(384) ................................................................... 102<br />

(385) ................................................................... 102<br />

(386) ................................................................... 103<br />

(387) ................................................................... 103<br />

(388) ................................................................... 104<br />

(389) ................................................................... 104<br />

(391) ................................................................... 105<br />

(392) ................................................................... 105<br />

(393) ................................................................... 105<br />

(394) ................................................................... 106<br />

(395) ................................................................... 107<br />

(396) ................................................................... 107<br />

(398) ................................................................... 107<br />

(399) ................................................................... 108<br />

(39A) .................................................................. 108<br />

(39B) ................................................................... 108<br />

(39C) .................................................................. 109<br />

(39D) .................................................................. 109<br />

(39E) ................................................................... 109<br />

(39F) ................................................................... 110<br />

(39G) .................................................................. 110<br />

(39H-39M) ......................................................... 111<br />

(410) ................................................................... 114<br />

(411) ................................................................... 114<br />

(412) ................................................................... 114<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 191


(413) ...................................................................114<br />

(414) ...................................................................114<br />

(415) ...................................................................115<br />

(416) ...................................................................115<br />

(4162) .................................................................115<br />

(417) ...................................................................115<br />

(4171) .................................................................115<br />

(4172) .................................................................116<br />

(418) ...................................................................116<br />

(4181) .................................................................116<br />

(4182) .................................................................116<br />

(419) ...................................................................116<br />

(4191) .................................................................116<br />

(4192) .................................................................117<br />

(41A) ...................................................................117<br />

(41B) ...................................................................117<br />

(41C) ...................................................................117<br />

(421) ...................................................................118<br />

(422) ...................................................................119<br />

(423) ...................................................................119<br />

(424) ...................................................................119<br />

(511) ...................................................................119<br />

(512) ...................................................................121<br />

(513) ...................................................................122<br />

(514) ...................................................................124<br />

(515) ...................................................................125<br />

(516) ...................................................................125<br />

(517) ...................................................................125<br />

(518) ...................................................................125<br />

(519) ...................................................................125<br />

(51A) ...................................................................125<br />

(51B) ...................................................................126<br />

(51C) ...................................................................126<br />

(521) .............................................................94, 126<br />

(522) ...................................................................127<br />

(529-52H) ...........................................................127<br />

(531) ...................................................................128<br />

(532) ...................................................................129<br />

(533) ...................................................................130<br />

(534) ...................................................................131<br />

(535) ...................................................................132<br />

(536) ...................................................................132<br />

(541) ...................................................................132<br />

(542) ...................................................................134<br />

(551) ...................................................................134<br />

(552) ...................................................................134<br />

(553) ...................................................................134<br />

(55D) ..................................................................135<br />

(561) ...................................................................135<br />

(562) ...................................................................136<br />

(563-56G) ...........................................................136<br />

(610) ...................................................................136<br />

(611) ...................................................................136<br />

(612) ...................................................................138<br />

(613) ...................................................................139<br />

(614) ...................................................................139<br />

(615) ...................................................................139<br />

(616) ...................................................................139<br />

(617) ...................................................................140<br />

(618) ...................................................................140<br />

(620) ................................................................... 140<br />

(621) ........................................................... 140, 141<br />

(622) ................................................................... 141<br />

(623) ................................................................... 141<br />

(624) ................................................................... 141<br />

(625) ................................................................... 141<br />

(630) ................................................................... 142<br />

(631) ................................................................... 142<br />

(632) ................................................................... 142<br />

(633) ................................................................... 142<br />

(634) ................................................................... 143<br />

(635) ................................................................... 143<br />

(640) ................................................................... 143<br />

(641) ................................................................... 143<br />

(642) ................................................................... 144<br />

(643) ................................................................... 144<br />

(644) ................................................................... 144<br />

(645) ................................................................... 144<br />

(649) ................................................................... 145<br />

(650) ................................................................... 145<br />

(651) ................................................................... 145<br />

(652) ................................................................... 145<br />

(653) ................................................................... 145<br />

(654) ................................................................... 145<br />

(655) ................................................................... 146<br />

(659) ................................................................... 146<br />

(711) ................................................................... 146<br />

(712) ................................................................... 146<br />

(713) ................................................................... 147<br />

(714) ................................................................... 147<br />

(715) ................................................................... 147<br />

(716) ................................................................... 147<br />

(717) ................................................................... 147<br />

(718) ................................................................... 147<br />

(719) ................................................................... 148<br />

(71A) .................................................................. 148<br />

(71B) ................................................................... 148<br />

(720) ................................................................... 148<br />

(721) ................................................................... 148<br />

(722) ................................................................... 148<br />

(723) ................................................................... 149<br />

(724) ................................................................... 149<br />

(725) ................................................................... 150<br />

(726) ................................................................... 150<br />

(727) ................................................................... 150<br />

(728-72A) ........................................................... 151<br />

(730) ................................................................... 151<br />

(731) ................................................................... 151<br />

(7311) ................................................................. 151<br />

(732) ................................................................... 151<br />

(733) ................................................................... 152<br />

(7331) ................................................................. 152<br />

(800) ................................................................... 152<br />

(810) ................................................................... 152<br />

(811) ................................................................... 152<br />

(811-81N) ................................................... 152, 153<br />

(820) ................................................................... 153<br />

(8A0) .................................................................. 153<br />

(900) ................................................................... 154<br />

(920) ................................................................... 154<br />

192 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


(922) ...................................................................154<br />

Minimum Frequency ....................................................90<br />

Monitor function<br />

Alarm Select ........................................................117<br />

Delay time ...........................................................114<br />

Max Alarm ..........................................................114<br />

Overload .......................................................40, 114<br />

Response delay ............................................115, 117<br />

Start delay ............................................................114<br />

Motor cables .................................................................17<br />

Motor cos phi (power factor) ........................................66<br />

Motor data ...................................................................64<br />

Motor Frequency ..........................................................65<br />

Motor frequency ...........................................................65<br />

Motor I2t Current ......................................................159<br />

Motor identification run ...............................................66<br />

Motor Potentiometer ............................................99, 127<br />

Motor potentiometer ..................................................127<br />

Motor ventilation .........................................................66<br />

Motors ............................................................................7<br />

Motors in parallel .........................................................21<br />

MotPot .........................................................................90<br />

N<br />

Nominal motor frequency ............................................96<br />

Number of drives ........................................................105<br />

O<br />

Operation .....................................................................60<br />

Options ........................................................................32<br />

Brake chopper .....................................................163<br />

External Control Panel (ECP) .............................163<br />

I/O Board ............................................................164<br />

Output coils ........................................................164<br />

Protection class IP23 and IP54 ............................163<br />

Serial communication, fieldbus ............................164<br />

OR operator ...............................................................140<br />

Output coils ...............................................................164<br />

Overload ...............................................................40, 114<br />

Overload alarm .............................................................40<br />

P<br />

Parameter sets<br />

Load default values ................................................73<br />

Load parameter sets from Control Panel ................74<br />

Parameter Set Selection .........................................35<br />

Select a Parameter set .............................................72<br />

PI Autotune ................................................................100<br />

PID Controller ...........................................................101<br />

Closed loop PID control ......................................102<br />

Feedback signal ....................................................101<br />

PID D Time ........................................................102<br />

PID I Time .........................................................102<br />

PID P Gain .........................................................102<br />

Power LED ...................................................................48<br />

Priority .........................................................................37<br />

Process Value ..............................................................146<br />

Product standard, EMC ..................................................8<br />

Programming ................................................................51<br />

Protection class IP23 and IP54 ...................................163<br />

PT100 Inputs ............................................................... 71<br />

PTC input .................................................................... 71<br />

Pump/Fan Control ..................................................... 105<br />

Q<br />

Quick Setup Card .......................................................... 7<br />

R<br />

Reference<br />

Frequency ........................................................... 118<br />

Motor potentiometer .......................................... 127<br />

Reference signal ............................................... 60, 84<br />

Set reference value ................................................. 84<br />

Torque ................................................................ 119<br />

View reference value .............................................. 84<br />

Reference control ......................................................... 61<br />

Reference signal ............................................................ 61<br />

Relay output ............................................................... 134<br />

Relay 1 ................................................................ 134<br />

Relay 2 ................................................................ 134<br />

Relay 3 ................................................................ 134<br />

Release speed ................................................................ 93<br />

Remote control ............................................................. 38<br />

Reset command .......................................................... 126<br />

Reset control ................................................................ 61<br />

Resolution .................................................................... 59<br />

RFI mains filter ............................................................ 17<br />

Rotation ....................................................................... 63<br />

RS232/485 ................................................................... 81<br />

RUN ............................................................................ 48<br />

Run command ............................................................. 48<br />

Run Left command .................................................... 126<br />

Run Right command .................................................. 126<br />

Running motor ............................................................ 92<br />

S<br />

Select Drive ................................................................ 105<br />

Settle Time ................................................................. 109<br />

Setup menu .................................................................. 50<br />

Menu structure ..................................................... 50<br />

Signal ground ............................................................. 179<br />

Single-ended connection .............................................. 31<br />

Software ..................................................................... 154<br />

Sound characteristic ..................................................... 67<br />

Speed .......................................................................... 146<br />

Speed Mode ................................................................. 60<br />

Spinstart ....................................................................... 92<br />

Standards ....................................................................... 8<br />

Start Delay ................................................................. 108<br />

Start/Stop settings ........................................................ 89<br />

Status indications ......................................................... 47<br />

Stop categories .............................................................. 45<br />

Stop command ........................................................... 126<br />

Stop Delay ................................................................. 108<br />

Stripping lengths .......................................................... 20<br />

Switches ....................................................................... 28<br />

Switching frequency ..................................................... 67<br />

Switching in motor cables ............................................ 19<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 193


T<br />

Terminal connections ...................................................28<br />

Test Run .......................................................................66<br />

Timer .........................................................................106<br />

Torque ....................................................................59, 97<br />

Transition Frequency ..................................................109<br />

Trip ..............................................................................48<br />

Trip causes and remidial action ...................................158<br />

Trips, warnings and limits ..........................................157<br />

Twisted cables ...............................................................32<br />

Type ...........................................................................154<br />

Type code number ..........................................................8<br />

U<br />

Underload ....................................................................40<br />

Underload alarm .........................................................114<br />

Unlock Code ................................................................63<br />

Upper Band ................................................................107<br />

Menu<br />

(397) 107<br />

Upper Band Limit ......................................................108<br />

V<br />

V/Hz Mode ..................................................................60<br />

Vector Brake .................................................................94<br />

Ventilation ....................................................................66<br />

View reference value .....................................................84<br />

Voltage .........................................................................28<br />

W<br />

Warning .....................................................................152<br />

194 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!