31.05.2014 Views

Omron SX inverter manual

Omron SX inverter manual

Omron SX inverter manual

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cat. No. I127-EN-00B<br />

<strong>SX</strong>-V<br />

High power Variable Frequency Inverters<br />

Model: <strong>SX</strong>-V<br />

400 V Class Three-Phase Input 90 kW to 800 kW<br />

690 V Class Three-Phase Input 90 kW to 1000 kW<br />

USER’S MANUAL


OMRON <strong>SX</strong>-V<br />

INSTRUCTION MANUAL - ENGLISH<br />

Software version 4.21<br />

Document number: I127-EN-00B<br />

Document name : <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong><br />

Edition : Preliminary V0.97<br />

Date of release: 03-11-2009<br />

© Copyright <strong>Omron</strong> Electronics 2009<br />

<strong>Omron</strong> retains the right to change specifications and illustrations in the<br />

text, without prior notification. The contents of this document may not<br />

be copied without the explicit permission of <strong>Omron</strong> Electronics.<br />

1


Safety Instructions<br />

Precautions severity<br />

Follow this advice for good practice. Not following can lead to<br />

malfunctioning or possibility of injury to the user.<br />

High risk of malfunction or damage to the <strong>inverter</strong> or installation,<br />

possibility of injury to the user.<br />

Earth and grounding. Potential risk of electric shock or damage to<br />

<strong>inverter</strong> or installation.<br />

High inmediate risk of serious injury to the user, <strong>inverter</strong> or<br />

installation.<br />

Risk if manipulated by unqualified personnel<br />

WARNINGS AND CAUTIONS<br />

Instruction <strong>manual</strong><br />

Read throuhfully this instruction <strong>manual</strong> before using the Variable Speed Drive, VSD<br />

Mains voltage selection<br />

The variable speed drive may be ordered for use with the mains voltage range listed below.<br />

<strong>SX</strong>-V-4: 230-480 V<br />

<strong>SX</strong>-V-6: 500-690 V<br />

IT Mains supply<br />

The variable speed drives can be modified for an IT mains supply, (non-earthed neutral),<br />

check <strong>manual</strong> and contract your supplier in case of doubt.<br />

EMC Regulations<br />

In order to comply with the EMC Directive, it is absolutely necessary to follow the installation<br />

instructions. All installation descriptions in this <strong>manual</strong> follow the EMC Directive.<br />

Transport<br />

To avoid damage, keep the variable speed drive in its original packaging during transport.<br />

This packaging is specially designed to absorb shocks during transport.<br />

Handling the <strong>inverter</strong><br />

Installation, commissioning, dismounting, taking measurements, etc, of or on the variable<br />

speed drive may only be carried out by personnel technically qualified for the task. The<br />

installation must be carried out in accordance with local standards.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 1


Condensation<br />

If the variable speed drive is moved from a cold (storage) room to a room where it will be<br />

installed, condensation can occur. This can result in sensitive components becoming damp.<br />

Do not connect the mains voltage until all visible dampness has evaporated.<br />

Grounding the <strong>inverter</strong><br />

Be sure to ground the unit. Not doing so may result in a serious injury due to an electric<br />

shock or fire.<br />

Power factor capacitors for improving cos<br />

Remove all capacitors from the motor and the motor outlet.<br />

Incorrect connection<br />

The variable speed drive is not protected against incorrect connection of the mains voltage,<br />

and in particular against connection of the mains voltage to the motor outlets U, V and W.<br />

The variable speed drive can be damaged in this way.<br />

Stop motion mechanical device to ensure safety<br />

The <strong>inverter</strong> controls the motor electrically, but has no means to stop it mechanically under<br />

some types of failures... In applications where mechanical stop is required to a degree of<br />

safety, a safety assurance study should be carried out to determine the need of additional<br />

mechanical braking devices.<br />

Braking resistor and regenerative braking units<br />

In case the application needs it, be sure to use a specified type of braking resistor/regenerative<br />

braking unit. In case of a braking resistor, install a thermal relay that monitors the temperature<br />

of the resistor. Not doing so might result in a burn due to the heat generated in the<br />

braking resistor/regenerative braking unit. Configure a sequence that enables the Inverter<br />

power to turn off when unusual overheating is detected in the braking resistor/regenerative<br />

braking unit.<br />

Electric protection of installation<br />

Take safety precautions such as setting up a molded-case circuit breaker (MCCB) or fuses<br />

that matches the Inverter capacity on the power supply side. Not doing so might result in<br />

damage to property due to the short circuit of the load.<br />

Wiring works and servicing the <strong>inverter</strong><br />

Wiring work must be carried out only by qualified personnel. Not doing so may result in a<br />

serious injury due to an electric shock. Do not dismantle, repair or modify this product if<br />

you’re not authorised and qualified for it. Doing so may result in an injury.<br />

DC-link residual voltage<br />

After switching off the mains supply, dangerous voltage can still be present in the VSD.<br />

When opening the VSD for installing and/or commissioning activities wait at least 10 minutes.<br />

In case of malfunction a qualified technician should check the DC-link or wait for one<br />

hour before dismantling the VSD for repair.<br />

Opening the variable speed drive cover<br />

Only qualified technician can open the <strong>inverter</strong>. Always take adequate precautions before<br />

opening the <strong>inverter</strong>. Although the connections for the control signals and the switches are<br />

isolated from the main voltage, do not touch the control board when the variable speed drive<br />

is switched on.<br />

Do not manipulate <strong>inverter</strong> under power<br />

Do not change wiring , put on or take off optional devices or replace cooling fans while the<br />

input power is being supplied. Doing so may result in a serious injury due to an electric<br />

shock. Inspection of the Inverter must be conducted after the power supply has been<br />

turned off. Not doing so may result in a serious injury due to an electric shock. The main<br />

power supply is not necessarily shut off even if the emergency shutoff function is activated.<br />

2 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Precautions to be taken with a connected motor<br />

If work must be carried out on a connected motor or on the driven machine, the mains voltage<br />

must always be disconnected from the variable speed drive first. Wait at least 5 minutes<br />

before starting work.<br />

Short-circuits<br />

The Inverter has high voltage parts inside which, if short-circuited, might cause damage to<br />

itself or other property. Place covers on the openings or take other precautions to make sure<br />

that no metal objects such as cutting bits or lead wire scraps go inside when installing and<br />

wiring.<br />

Earth leakage current<br />

This variable speed drive has an earth leakage current which does exceed 3.5 mA AC.<br />

Therefore the minimum size of the protective earth conductor must comply with the local<br />

safety regulations for high leakage current equipment which means that according the<br />

standard IEC61800-5-1 the protective earth connection must be assured by one of following<br />

conditions:<br />

1. Use a protective conductor with a cable cross-section of at least 10 mm 2 for copper (Cu)<br />

or 16 mm 2 for aluminium (Al).<br />

2. Use an additional PE wire, with the same cable cross-section as the used original PE and<br />

mains supply wiring.<br />

Residual current device (RCD) compatibility<br />

This product cause a DC current in the protective conductor. Where a residual current<br />

device (RCD) is used for protection in case of direct or indirect contact, only a Type B RCD is<br />

allowed on the supply side of this product. Use RCD of 300 mA minimum.<br />

Voltage tests (Megger)<br />

Do not carry out voltage tests (Megger) on the motor, before all the motor cables have been<br />

disconnected from the variable speed drive.<br />

Precautions during Autoreset<br />

When the automatic reset is active, the motor may restart automatically provided that the<br />

cause of the trip has been removed. If necessary take the appropriate precautions.<br />

Heat warning<br />

Be aware of specific parts on the VSD having high temperature. Do not touch the Inverter fins,<br />

braking resistors and the motor, which may become too hot during the power supply and for some<br />

time after the power shut-off. Doing so may result in a burn.<br />

Do not Operate the <strong>inverter</strong> with wet hands<br />

Do not operate the Digital Operator or switches with wet hands. Doing so may result in a<br />

serious injury due to an electric shock.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 3


4 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Contents<br />

1. Introduction ................................. 7<br />

1.1 Delivery and unpacking .......................................... 7<br />

1.2 Using of the instruction <strong>manual</strong>............................. 7<br />

1.3 Ordering codes ........................................................ 8<br />

1.4 Standards ................................................................ 8<br />

1.4.1 Product standard for EMC ...................................... 8<br />

1.5 Dismantling and scrapping.................................. 10<br />

1.5.1 Disposal of old electrical and electronic equipment<br />

10<br />

1.6 Glossary ................................................................ 10<br />

1.6.1 Abbreviations and symbols.................................. 10<br />

1.6.2 Definitions............................................................. 10<br />

2. Mounting ................................... 11<br />

2.1 Lifting instructions................................................ 11<br />

2.2 Stand-alone units................................................. 12<br />

2.2.1 Cooling .................................................................. 13<br />

2.2.2 Mounting schemes............................................... 13<br />

2.3 Cabinet mounting................................................. 14<br />

2.3.1 Cooling .................................................................. 14<br />

2.3.2 Mounting schemes............................................... 14<br />

3. Installation ................................ 17<br />

3.1 Before installation................................................ 17<br />

3.2 Cable connections................................................ 17<br />

3.2.1 Mains cables ........................................................ 17<br />

3.2.2 Motor cables......................................................... 17<br />

3.3 Connect motor and mains cables....................... 19<br />

3.4 Cable specifications............................................. 20<br />

3.5 Stripping lengths .................................................. 20<br />

3.5.1 Dimension of cables and fuses........................... 20<br />

3.5.2 Tightening torque for mains and motor cables.. 21<br />

3.6 Thermal protection on the motor ........................ 21<br />

3.7 Motors in parallel ................................................. 21<br />

4. Getting Started .......................... 23<br />

4.1 Connect the mains and motor cables................. 23<br />

4.1.1 Mains cables ........................................................ 23<br />

4.1.2 Motor cables......................................................... 23<br />

4.2 Using the function keys ....................................... 24<br />

4.3 Remote control..................................................... 24<br />

4.3.1 Connect control cables ........................................ 24<br />

4.3.2 Switch on the mains............................................. 24<br />

4.3.3 Set the Motor Data............................................... 24<br />

4.3.4 Run the VSD ......................................................... 25<br />

4.4 Local control ......................................................... 25<br />

4.4.1 Switch on the mains............................................. 25<br />

4.4.2 Select <strong>manual</strong> control.......................................... 25<br />

4.4.3 Set the Motor Data............................................... 25<br />

4.4.4 Enter a Reference Value...................................... 25<br />

4.4.5 Run the VSD ......................................................... 25<br />

5. Control Connections ................... 27<br />

5.1 Control board........................................................ 27<br />

5.2 Terminal connections ........................................... 28<br />

5.3 Inputs configuration<br />

with the switches........................................................ 28<br />

5.4 Connection example ............................................. 29<br />

5.5 Connecting the Control Signals............................ 30<br />

5.5.1 Cables .................................................................... 30<br />

5.5.2 Types of control signals ........................................ 30<br />

5.5.3 Screening............................................................... 30<br />

5.5.4 Single-ended or double-ended connection? ....... 31<br />

5.5.5 Current signals ((0)4-20 mA)................................ 32<br />

5.5.6 Twisted cables....................................................... 32<br />

5.6 Connecting options ............................................... 32<br />

6. Applications ............................... 33<br />

6.1 Application overview ............................................. 33<br />

6.1.1 Cranes.................................................................... 33<br />

6.1.2 Crushers................................................................. 33<br />

6.1.3 Mills........................................................................ 34<br />

6.1.4 Mixers .................................................................... 34<br />

7. Main Features ............................ 35<br />

7.1 Parameter sets...................................................... 35<br />

7.1.1 One motor and one parameter set ...................... 36<br />

7.1.2 One motor and two parameter sets..................... 36<br />

7.1.3 Two motors and two parameter sets................... 36<br />

7.1.4 Autoreset at trip .................................................... 37<br />

7.1.5 Reference priority.................................................. 37<br />

7.1.6 Preset references.................................................. 38<br />

7.2 Remote control functions ..................................... 38<br />

7.3 Performing an Identification Run......................... 40<br />

7.4 Using the Control Panel Memory.......................... 40<br />

7.5 Load Monitor and Process Protection [400]....... 40<br />

7.5.1 Load Monitor [410]............................................... 40<br />

8. EMC and Machine Directive ........ 45<br />

8.1 EMC standards...................................................... 45<br />

8.2 Stop categories and emergency stop .................. 45<br />

9. Operation via the Control Panel .. 47<br />

9.1 General .................................................................. 47<br />

9.2 The control panel .................................................. 47<br />

9.2.1 The display............................................................. 47<br />

9.2.2 Indications on the display..................................... 48<br />

9.2.3 LED indicators ....................................................... 48<br />

9.2.4 Control keys........................................................... 48<br />

9.2.5 The Toggle and Loc/Rem Key .............................. 48<br />

9.2.6 Function keys ........................................................ 50<br />

9.3 The menu structure .............................................. 50<br />

9.3.1 The main menu ..................................................... 50<br />

9.4 Programming during operation ............................ 51<br />

9.5 Editing values in a menu ...................................... 51<br />

9.6 Copy current parameter to all sets ...................... 51<br />

9.7 Programming example.......................................... 51<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 5


10. Serial communication ................. 53<br />

10.1 Modbus RTU ......................................................... 53<br />

10.2 Parameter sets..................................................... 53<br />

10.3 Motor data ............................................................ 53<br />

10.4 Start and stop commands................................... 54<br />

10.5 Reference signal .................................................. 54<br />

10.5.1 Process value ....................................................... 54<br />

10.6 Description of the EInt formats ........................... 54<br />

11. Functional Description ................ 59<br />

11.1 Preferred View [100]............................................ 59<br />

11.1.1 1st Line [110]....................................................... 59<br />

11.1.2 2nd Line [120] ..................................................... 60<br />

11.2 Main Setup [200]................................................. 60<br />

11.2.1 Operation [210].................................................... 60<br />

11.2.2 Remote Signal Level/Edge [21A]........................ 63<br />

11.2.3 Mains supply voltage [21B]................................. 64<br />

11.2.4 Motor Data [220] ................................................. 64<br />

11.2.5 Motor Protection [230] ........................................ 69<br />

11.2.6 Parameter Set Handling [240]............................ 72<br />

11.2.7 Trip Autoreset/Trip Conditions [250].................. 74<br />

11.2.8 Serial Communication [260] ............................... 81<br />

11.3 Process and Application Parameters [300] ....... 83<br />

11.3.1 Set/View Reference Value [310] ........................ 84<br />

11.3.2 Process Settings [320] ........................................ 84<br />

11.3.3 Start/Stop settings [330] .................................... 89<br />

11.3.4 Mechanical brake control.................................... 92<br />

11.3.5 Speed [340].......................................................... 95<br />

11.3.6 Torques [350]....................................................... 97<br />

11.3.7 Preset References [360] ..................................... 99<br />

11.3.8 PI Speed Control [370] ...................................... 100<br />

11.3.9 PID Process Control [380] ................................. 101<br />

11.3.10 Pump/Fan Control [390] ................................... 105<br />

11.3.11 Crane Option [3A0] ............................................ 111<br />

11.4 Load Monitor and Process Protection [400].... 114<br />

11.4.1 Load Monitor [410]............................................ 114<br />

11.4.2 Process Protection [420]................................... 118<br />

11.5 I/Os and Virtual Connections [500].................. 119<br />

11.5.1 Analogue Inputs [510] ....................................... 119<br />

11.5.2 Digital Inputs [520] ............................................ 126<br />

11.5.3 Analogue Outputs [530] .................................... 128<br />

11.5.4 Digital Outputs [540] ......................................... 132<br />

11.5.5 Relays [550] ....................................................... 134<br />

11.5.6 Virtual Connections [560].................................. 135<br />

11.6 Logical Functions and Timers [600] ................. 136<br />

11.6.1 Comparators [610] ............................................ 136<br />

11.6.2 Logic Output Y [620].......................................... 140<br />

11.6.3 Logic Output Z [630].......................................... 142<br />

11.6.4 Timer1 [640] ...................................................... 143<br />

11.6.5 Timer2 [650] ...................................................... 145<br />

11.7 View Operation/Status [700] ............................ 146<br />

11.7.1 Operation [710].................................................. 146<br />

11.7.2 Status [720] ....................................................... 148<br />

11.7.3 Stored values [730] ........................................... 151<br />

11.8 View Trip Log [800] ............................................ 152<br />

11.8.1 Trip Message log [810]...................................... 152<br />

11.8.2 Trip Messages [820] - [890] ............................. 153<br />

11.8.3 Reset Trip Log [8A0] .......................................... 153<br />

11.9 System Data [900]............................................. 154<br />

11.9.1 VSD Data [920] .................................................. 154<br />

12. Troubleshooting, Diagnoses and Maintenance<br />

157<br />

12.1 Trips, warnings and limits.................................. 157<br />

12.2 Trip conditions, causes and remedial action ... 158<br />

12.2.1 Technically qualified personnel......................... 158<br />

12.2.2 Opening the variable speed drive ..................... 158<br />

12.2.3 Precautions to take with a connected motor ... 158<br />

12.2.4 Autoreset Trip ..................................................... 158<br />

12.3 Maintenance ...................................................... 161<br />

13. Options ................................... 163<br />

13.1 Options for the control panel............................. 163<br />

13.2 PC Tool software ................................................ 163<br />

13.3 Brake chopper.................................................... 163<br />

13.4 I/O Board ............................................................ 164<br />

13.5 Output coils ........................................................ 164<br />

13.6 Serial communication and fieldbus.................. 164<br />

13.7 Standby supply board option............................. 164<br />

13.8 Safe Stop option................................................. 165<br />

13.9 Crane option board ............................................ 167<br />

13.10 Encoder............................................................... 167<br />

13.11 PTC/PT100 ......................................................... 167<br />

14. Technical Data ......................... 169<br />

14.1 Electrical specifications related to model ........ 169<br />

14.2 General electrical specifications....................... 171<br />

14.3 Operation at higher temperatures .................... 172<br />

14.4 Dimensions and Weights................................... 173<br />

14.5 Environmental conditions.................................. 174<br />

14.6 Fuses, cable cross-sections and glands........... 174<br />

14.6.1 According IEC ratings ......................................... 174<br />

14.6.2 Fuses and cable dimensions according NEMA ratings<br />

177<br />

14.7 Control signals.................................................... 179<br />

15. Menu List ................................ 181<br />

6 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


1. Introduction<br />

<strong>Omron</strong> <strong>SX</strong>-V is used most commonly to control and<br />

protect pump and fan applications that put high<br />

demands on flow control, process uptime and low<br />

maintenance costs. It can also be used for e.g. compressors<br />

and blowers. The used motor control<br />

method is V/Hz-control. Several options are available,<br />

listed in , that enable you to customize the variable<br />

speed drive for your specific needs.<br />

Users<br />

This instruction <strong>manual</strong> is intended for:<br />

• installation engineers<br />

• maintenance engineers<br />

• operators<br />

• service engineers<br />

Motors<br />

The variable speed drive is suitable for use with standard<br />

3-phase asynchronous motors. Under certain<br />

conditions it is possible to use other types of motors.<br />

Contact your supplier for details.<br />

1.1 Delivery and unpacking<br />

Check for any visible signs of damage. Inform your<br />

supplier immediately of any damage found. Do not<br />

install the variable speed drive if damage is found.<br />

The variable speed drives are delivered with a template<br />

for positioning the fixing holes on a flat surface. Check<br />

that all items are present and that the type number is<br />

correct.<br />

1.2 Using of the instruction<br />

<strong>manual</strong><br />

Within this instruction <strong>manual</strong> the abbreviation “VSD”<br />

is used to indicate the complete variable speed drive<br />

as a single unit.<br />

Check that the software version number on the first<br />

page of this <strong>manual</strong> matches the software version in<br />

the variable speed drive.<br />

With help of the index and the contents it is easy to<br />

track individual functions and to find out how to use<br />

and set them.<br />

The Quick Setup Card can be put in a cabinet door, so<br />

that it is always easy to access in case of an emergency.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Introduction 7


1.3 Ordering codes<br />

Fig. 1 and Fig. 2 give examples of the ordering code<br />

numbering used on <strong>SX</strong> variable speed drives. With this<br />

code number the exact type of the drive can be determined.<br />

This identification will be required for type specific<br />

information when mounting and installing. The<br />

code number is located on the product label, on the<br />

front of the unit.<br />

1 2 3 4 5 6 7<br />

<strong>SX</strong>- D 6 160- E VF -OPTIONS<br />

Fig. 1<br />

Fig. 2<br />

Type code number<br />

Position n.chars<br />

Option letters<br />

Configuration<br />

1 3 Inverter family name “<strong>SX</strong>-”<br />

2 1 Protection class<br />

3 1 Voltage Class<br />

4 4<br />

Power in kW<br />

(normal duty rating)<br />

“A”=IP20<br />

“B”=IP00<br />

“D”=IP54<br />

“4”=400V<br />

“6”=690V<br />

“090-”=90kW<br />

...<br />

“1K0-”=1000kW<br />

5 1 Market “E”=Europe<br />

6 6 Control type<br />

7 0 to 13<br />

Options<br />

Control panel<br />

Built-in EMC filter<br />

Built-in brake<br />

chopper<br />

Standby power<br />

supply<br />

Safe stop<br />

Control type<br />

All options with single<br />

letter (see table<br />

below)<br />

“V”=V/Hz<br />

“F”=Direct Torque<br />

Control<br />

“-”+letters A to X<br />

Letter (“?” means no character)<br />

“?” = Standard control panel (Std.PPU)<br />

“A”= Blank control panel (Blank PPU)<br />

“?” = Standard EMC inside (Category C3)<br />

“B” = IT-Net (filter disconnected from<br />

ground)<br />

“?” = No brake chopper or DC-connection<br />

included<br />

“C” = Brake chopper & DC-connection<br />

included<br />

“D” = Only DC-connection included<br />

“?” = Not included<br />

“E” = Standby power supply included<br />

“?” = Not included<br />

“F” = Safe stop included<br />

“V”=V/Hz<br />

“F”=Direct Torque Control<br />

Coated boards<br />

Option board<br />

position 1<br />

Option board<br />

position 2<br />

Option board<br />

position 3<br />

Option board<br />

Fieldbus<br />

position 4<br />

Liquid Cooling<br />

Standard<br />

Marine<br />

Options<br />

Cabinet input<br />

options<br />

Cabinet output<br />

options<br />

Letter (“?” means no character)<br />

“?” = No coating<br />

“G” = Coated boards<br />

“?” = No option<br />

“H” = Crane I/O<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“I” = Encoder<br />

“J” = PTC/PT100<br />

“K” = Extended I/O“<br />

“?” = No option<br />

“L” = DeviceNet<br />

“M” = Profibus-DP<br />

“N” = RS232/485<br />

“O” = EtherNet Modbus TCP<br />

“?” = No Liquid Cooling<br />

“P” = Liquid Cooling<br />

“?” = IEC<br />

“Q” = UL<br />

“?” = No marine option<br />

“R” = Marine option included<br />

“?” = No cabinet input options<br />

“S” = Main switch included<br />

“T” = Main contactor included<br />

“U” = Main switch + contactor included<br />

“?” = No cabinet output options included<br />

“V” = dU/dt filter included<br />

“W” = dU/dt filter + Overshoot clamp<br />

included<br />

“X” = Sinusfilter included<br />

1.4 Standards<br />

The variable speed drives described in this instruction<br />

<strong>manual</strong> comply with the standards listed in Table 1.<br />

For the declarations of conformity and manufacturer’s<br />

certificate, contact your supplier for more information.<br />

1.4.1 Product standard for EMC<br />

Product standard EN(IEC)61800-3, second edition of<br />

2004 defines the:<br />

First Environment (Extended EMC) as environment<br />

that includes domestic premises. It also includes<br />

establishments directly connected without intermediate<br />

transformers to a low voltage power supply network<br />

that supplies buildings used for domestic<br />

purposes.<br />

8 Introduction <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Category C2: Power Drive System (PDS) of rated voltage


1.5 Dismantling and scrapping<br />

The enclosures of the drives are made from recyclable<br />

material as aluminium, iron and plastic. Each drive<br />

contains a number of components demanding special<br />

treatment, for example electrolytic capacitors. The circuit<br />

boards contain small amounts of tin and lead. Any<br />

local or national regulations in force for the disposal<br />

and recycling of these materials must be complied<br />

with.<br />

1.5.1 Disposal of old electrical and<br />

electronic equipment<br />

This information is applicable in the European Union<br />

and other European countries with separate collection<br />

systems.<br />

1.6.2 Definitions<br />

In this <strong>manual</strong> the following definitions for current,<br />

torque and frequency are used:<br />

Table 3<br />

Definitions<br />

Name Description Quantity<br />

I IN Nominal input current of VSD A RMS<br />

I NOM Nominal output current of VSD A RMS<br />

I MOT Nominal motor current A RMS<br />

P NOM Nominal power of VSD kW<br />

P MOT Motor power kW<br />

T NOM Nominal torque of motor Nm<br />

T MOT Motor torque Nm<br />

f OUT Output frequency of VSD Hz<br />

f MOT Nominal frequency of motor Hz<br />

n MOT Nominal speed of motor rpm<br />

I CL Maximum output current A RMS<br />

This symbol on the product or on its packaging indicates<br />

that this product shall be treated according to<br />

the WEEE Directive. It must be taken to the applicable<br />

collection point for the recycling of electrical and electronic<br />

equipment. By ensuring this product is disposed<br />

of correctly, you will help prevent potentially negative<br />

consequences for the environment and human health,<br />

which could otherwise be caused by inappropriate<br />

waste handling of this product. The recycling of materials<br />

will help to conserve natural resources. For more<br />

detailed information about recycling this product,<br />

please contact the local distributor of the product.<br />

Speed Actual motor speed rpm<br />

Torque Actual motor torque Nm<br />

Sync<br />

speed<br />

Synchronous speed of the motor<br />

rpm<br />

1.6 Glossary<br />

1.6.1 Abbreviations and symbols<br />

In this <strong>manual</strong> the following abbreviations are used:<br />

Table 2<br />

Abbreviations<br />

Abbreviation/<br />

symbol<br />

DSP<br />

VSD<br />

CP<br />

EInt<br />

UInt<br />

Int<br />

Long<br />

<br />

Description<br />

Digital signals processor<br />

Variable speed drive<br />

Control panel, the programming and presentation<br />

unit on the VSD<br />

Communication format<br />

Communication format<br />

Communication format<br />

Communication format<br />

The function cannot be changed in run mode<br />

10 Introduction <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2. Mounting<br />

This chapter describes how to mount the VSD.<br />

Before mounting it is recommended that the installation<br />

is planned out first.<br />

• Be sure that the VSD suits the mounting location.<br />

• The mounting site must support the weight of the<br />

VSD.<br />

• Will the VSD continuously withstand vibrations<br />

and/or shocks?<br />

• Consider using a vibration damper.<br />

• Check ambient conditions, ratings, required cooling<br />

air flow, compatibility of the motor, etc.<br />

• Know how the VSD will be lifted and transported.<br />

Models 4090 to 4132 and 6090 to 6250<br />

Load: 56 to 74 kg<br />

2.1 Lifting instructions<br />

Note: To prevent personal risks and any damage to the<br />

unit during lifting, it is advised that the lifting methods<br />

described below are used.<br />

Fig. 3 Lifting model 4090-4132 and 6090-6250<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 11


Models 4160 to -4800 and 6315 to 61K0<br />

Lifting eye<br />

Fig. 4<br />

Remove the roof plate.<br />

Terminals for roof fan<br />

unit supply cables<br />

A<br />

Fig. 6 Lifting VSD model 4160-4800 and 6315-61K0<br />

DETAIL A<br />

2.2 Stand-alone units<br />

The VSD must be mounted in a vertical position<br />

against a flat surface. Use the template (delivered<br />

together with the VSD) to mark out the position of the<br />

fixing holes.<br />

Fig. 5<br />

Remove roof unit<br />

12 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2.2.2 Mounting schemes<br />

Membrane cable<br />

gland M60<br />

22,5<br />

240<br />

120<br />

Ø9(6x)<br />

284,5<br />

275<br />

Fig. 7 Mounting models 4090-4800 and 6090-61K0<br />

2.2.1 Cooling<br />

925<br />

952,50<br />

922,50<br />

Ø16(3)<br />

10<br />

30<br />

Fig. 7 shows the minimum free space required around<br />

the VSD for the models 4090-4800 and 6090-61K0 in<br />

order to guarantee adequate cooling. Because the<br />

fans blow the air from the bottom to the top it is advisable<br />

not to position an air inlet immediately above an<br />

air outlet.<br />

The following minimum separation between two variable<br />

speed drives, or a VSD and a non-dissipating wall<br />

must be maintained. Valid if free space on opposite<br />

side.<br />

Fig. 8<br />

314<br />

<strong>SX</strong>-V (400V): Model 4090 including cable interface<br />

for mains, motor and communication<br />

Table 4<br />

Mounting and cooling<br />

<strong>SX</strong>-V<br />

(mm)<br />

<strong>SX</strong>-V-wall, wall-one<br />

side<br />

(mm)<br />

4090-4132<br />

6090-6250<br />

4160-4800<br />

6315-61K0<br />

cabinet<br />

a 200 100<br />

b 200 0<br />

c 0 0<br />

d 0 0<br />

a 100 100<br />

b 100 0<br />

c 0 0<br />

d 0 0<br />

NOTE: When a 4160-4800 or 6315-61K0 model is placed<br />

between two walls, a minimum distance at each side of<br />

200 mm must be maintained.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 13


Table 5<br />

Flow rates cooling fans<br />

Cable dimensions 27-66 mm<br />

Frame <strong>SX</strong>-V Model Flow rate [m 3 /hour]<br />

K 4630 - 4800<br />

4800<br />

K69 6710 - 61K0<br />

10<br />

22.50<br />

Ø16(3x)<br />

300<br />

150<br />

Ø9(x6)<br />

30<br />

344,5<br />

335<br />

NOTE: For the models 4450-4500 and 6800-61K0 the<br />

mentioned amount of air flow should be divided equally<br />

over the two cabinets.<br />

2.3.2 Mounting schemes<br />

925<br />

952,50<br />

922,50<br />

2330<br />

314<br />

Fig. 9<br />

<strong>SX</strong>-V (400V): Model 4110 to 4132 (F)<br />

<strong>SX</strong>-V (690V): Model 6090 to 6160 (F69) including<br />

cable interface for mains, motor and communication<br />

2.3 Cabinet mounting<br />

2.3.1 Cooling<br />

If the variable speed drive is installed in a cabinet, the<br />

rate of airflow supplied by the cooling fans must be taken<br />

into consideration.<br />

Table 5<br />

Flow rates cooling fans<br />

600<br />

Fig. 10 <strong>SX</strong>-V (400V): Model 4160 to 4250 (G and H)<br />

<strong>SX</strong>-V (690V): Model 6200 to 6355 (H69)<br />

600<br />

Frame <strong>SX</strong>-V Model Flow rate [m 3 /hour]<br />

E 4090 510<br />

F 4110 - 4132<br />

800<br />

F69 6090 - 6160<br />

G 4160 - 4200 1020<br />

H 4220 - 4250<br />

1600<br />

H69 6200 - 6355<br />

I 4315 - 4400<br />

2400<br />

I69 6450 - 6500<br />

J 4450 - 4500<br />

3200<br />

J69 6600 - 6630<br />

14 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


2330<br />

2330<br />

1000<br />

600<br />

1200<br />

600<br />

Fig. 11 <strong>SX</strong>-V (400V): Model 4315 to 4400 (I)<br />

<strong>SX</strong>-V (690V): Model 6450 to 6500 (I69)<br />

Fig. 12 <strong>SX</strong>-V (400V): Model 4450 to 4500 (J)<br />

<strong>SX</strong>-V (690V): Model 6600 to 6630 (J69)<br />

2330<br />

2000<br />

Fig. 13 <strong>SX</strong>-V (400V): Model 4630 to 4800 (K)<br />

<strong>SX</strong>-V (690V): Model 6710 to 61K0 (K69)<br />

600<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Mounting 15


16 Mounting <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


3. Installation<br />

The description of installation in this chapter complies<br />

with the EMC standards and the Machine Directive.<br />

Select cable type and screening according to the EMC<br />

requirements valid for the environment where the VSD<br />

is installed.<br />

3.1 Before installation<br />

Read the following checklist and think through your<br />

application before installation.<br />

• External or internal control.<br />

• Long motor cables (>100m), refer to section Long<br />

motor cables.<br />

• Motors in parallel, refer to menu [213].<br />

• Functions.<br />

• Suitable VSD size in proportion to the motor/application.<br />

• Mount separately supplied option boards according<br />

to the instructions in the appropriate option<br />

<strong>manual</strong>.<br />

If the VSD is temporarily stored before being connected,<br />

please check the technical data for environmental<br />

conditions. If the VSD is moved from a cold<br />

storage room to the room where it is to be installed,<br />

condensation can form on it. Allow the VSD to<br />

become fully acclimatised and wait until any visible<br />

condensation has evaporated before connecting the<br />

mains voltage.<br />

3.2 Cable connections<br />

3.2.1 Mains cables<br />

Dimension the mains and motor cables according to<br />

local regulations. The cable must be able to carry the<br />

VSD load current.<br />

Recommendations for selecting mains<br />

cables<br />

• To fulfil EMC purposes it is not necessary to use<br />

screened mains cables.<br />

• Use heat-resistant cables, +60C or higher.<br />

• Dimension the cables and fuses in accordance<br />

with local regulations and the nominal current of<br />

the motor. See table 42, page 174.<br />

• The litz ground connection see fig. 15, is only necessary<br />

if the mounting plate is painted. All the variable<br />

speed drives have an unpainted back side and<br />

are therefore suitable for mounting on an unpainted<br />

mounting plate.<br />

Connect the mains cables according to the next figures.<br />

The VSD has as standard a built-in RFI mains filter<br />

that complies with category C3 which suits the<br />

Second Environment standard.<br />

Table 6<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

(DC-),DC+,R<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth (protected earth)<br />

Motor earth<br />

Motor output, 3-phase<br />

Brake resistor, DC-link<br />

connections (optional)<br />

NOTE: The Brake and DC-link Terminals are only fitted if<br />

the Brake Chopper Option is built-in.<br />

WARNING: The Brake Resistor must be<br />

connected between terminals DC+ and R.<br />

WARNING: In order to work safely, the mains<br />

earth must be connected to PE and the<br />

motor earth to .<br />

3.2.2 Motor cables<br />

To comply with the EMC emission standards the variable<br />

speed drive is provided with a RFI mains filter. The<br />

motor cables must also be screened and connected<br />

on both sides. In this way a so-called “Faraday cage”<br />

is created around the VSD, motor cables and motor.<br />

The RFI currents are now fed back to their source (the<br />

IGBTs) so the system stays within the emission levels.<br />

Recommendations for selecting motor<br />

cables<br />

• Use screened cables according to specification in<br />

table 7. Use symmetrical shielded cable; three<br />

phase conductors and a concentric or otherwise<br />

symmetrically constructed PE conductor, and a<br />

shield.<br />

• When the conductivity of the cable PE conductor is<br />


• The screening must be connected with a large<br />

contact surface of preferable 360 and always at<br />

both ends, to the motor housing and the VSD<br />

housing. When painted mounting plates are used,<br />

do not be afraid to scrape away the paint to obtain<br />

as large contact surface as possible at all mounting<br />

points for items such as saddles and the bare<br />

cable screening. Relying just on the connection<br />

made by the screw thread is not sufficient.<br />

NOTE: It is important that the motor housing has the<br />

same earth potential as the other parts of the machine.<br />

• The litz ground connection, see fig. 16, is only necessary<br />

if the mounting plate is painted. All the variable<br />

speed drives have an unpainted back side and<br />

are therefore suitable for mounting on an unpainted<br />

mounting plate.<br />

Connect the motor cables according to U - U, V - V<br />

and W - W.<br />

Pay special attention to the following points:<br />

• If paint must be removed, steps must be taken to<br />

prevent subsequent corrosion. Repaint after making<br />

connections!<br />

• The fastening of the whole variable speed drive<br />

housing must be electrically connected with the<br />

mounting plate over an area which is as large as<br />

possible. For this purpose the removal of paint is<br />

necessary. An alternative method is to connect the<br />

variable speed drive housing to the mounting plate<br />

with as short a length of litz wire as possible.<br />

• Try to avoid interruptions in the screening wherever<br />

possible.<br />

• If the variable speed drive is mounted in a standard<br />

cabinet, the internal wiring must comply with the<br />

EMC standard. Fig. 15 shows an example of a<br />

VSD built into a cabinet.<br />

VSD built into cabinet<br />

NOTE: The terminals DC-, DC+ and R are options.<br />

Switches between the motor and the<br />

VSD<br />

If the motor cables are to be interrupted by maintenance<br />

switches, output coils, etc., it is necessary that<br />

the screening is continued by using metal housing,<br />

metal mounting plates, etc. as shown in the Fig. 15.<br />

Fig. 16 shows an example when there is no metal<br />

mounting plate used (e.g. if IP54 variable speed drives<br />

are used). It is important to keep the “circuit” closed,<br />

by using metal housing and cable glands.<br />

Litz<br />

RFI-Filter<br />

(option)<br />

Mains<br />

VSD<br />

Motor<br />

Metal EMC cable glands<br />

Output coil (option)<br />

Screened cables<br />

Unpainted mounting plate<br />

Metal connector housing<br />

Screen connection<br />

of signal cables<br />

Mains<br />

(L1,L2,L3,PE)<br />

Metal coupling nut<br />

Motor<br />

Brake resistor<br />

(option)<br />

Fig. 15 Variable speed drive in a cabinet on a mounting plate<br />

Fig. 16 shows an example when there is no metal<br />

mounting plate used (e.g. if IP54 variable speed drives<br />

are used). It is important to keep the “circuit” closed,<br />

by using metal housing and cable glands.<br />

PE<br />

Motor cable<br />

shield connection<br />

Fig. 14 Screen connection of cables.<br />

18 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


RFI-Filter<br />

Mains<br />

VSD<br />

maintenance switches) only switch if the current is<br />

zero. If this is not done, the VSD can trip as a result of<br />

current peaks.<br />

3.3 Connect motor and mains<br />

cables<br />

Brake<br />

resistor<br />

(option)<br />

Output<br />

coils<br />

(option)<br />

Metal EMC cable glands<br />

Screened cables<br />

Metal housing<br />

<strong>SX</strong>-D4090-EV (V) to <strong>SX</strong>-D4132-EV and <strong>SX</strong>-<br />

D6090-EV(690V) to <strong>SX</strong>-D4160-EV<br />

To simplify the connection of thick motor and mains<br />

cables to the VSD model <strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-<br />

EV and <strong>SX</strong>-D6090-EV to <strong>SX</strong>-D4160-EV the cable<br />

interface plate can be removed.<br />

Metal connector housing<br />

Metal cable gland<br />

Motor<br />

Mains<br />

Fig. 16 Variable speed drive as stand alone<br />

Connect motor cables<br />

1. Remove the cable interface plate from the VSD<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective<br />

motor terminal.<br />

5. Put the cable interface plate in place and secure<br />

with the fixing screws.<br />

6. Tighten the EMC gland with good electrical contact<br />

to the motor and brake chopper cable screens.<br />

Placing of motor cables<br />

Keep the motor cables as far away from other cables<br />

as possible, especially from control signals. The minimum<br />

distance between motor cables and control<br />

cables is 300 mm.<br />

Avoid placing the motor cables in parallel with other<br />

cables.<br />

The power cables should cross other cables at an<br />

angle of 90.<br />

Long motor cables<br />

If the connection to the motor is longer than 100 m (40<br />

m for models 003-018), it is possible that capacitive<br />

current peaks will cause tripping at overcurrent. Using<br />

output coils can prevent this. Contact the supplier for<br />

appropriate coils.<br />

Switching in motor cables<br />

Switching in the motor connections is not advisable. In<br />

the event that it cannot be avoided (e.g. emergency or<br />

Fig. 17 Connecting motor and mains cables<br />

Clamps for screening<br />

Cable interface<br />

1. Remove the cable interface plate from the VSD<br />

housing.<br />

2. Put the cables through the glands.<br />

3. Strip the cable according to Table 8.<br />

4. Connect the stripped cables to the respective<br />

mains/motor terminal.<br />

5. Fix the clamps on appropriate place and tighten<br />

the cable in the clamp with good electrical contact<br />

to the cable screen.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Installation 19


6. Put the cable interface plate in place and secure<br />

with the fixing screws.<br />

<strong>SX</strong>-D4160-EV (V) to <strong>SX</strong>-D4800-EV and <strong>SX</strong>-<br />

D6200-EV(690V) to <strong>SX</strong>-D61K0-EV<br />

3.4 Cable specifications<br />

Table 7 Cable specifications<br />

Cable<br />

Cable specification<br />

Mains<br />

Motor<br />

Control<br />

Power cable suitable for fixed installation for the<br />

voltage used.<br />

Symmetrical three conductor cable with concentric<br />

protection (PE) wire or a four conductor cable<br />

with compact low-impedance concentric shield<br />

for the voltage used.<br />

Control cable with low-impedance shield,<br />

screened.<br />

3.5 Stripping lengths<br />

Fig. 19 indicates the recommended stripping lengths<br />

for motor and mains cables.<br />

Table 8<br />

Stripping lengths for mains and motor cables<br />

Model<br />

Mains cable<br />

a<br />

(mm)<br />

b<br />

(mm)<br />

a<br />

(mm)<br />

Motor cable<br />

b<br />

(mm)<br />

c<br />

(mm)<br />

<strong>SX</strong>-D4090-EV 160 16 160 16 41<br />

<strong>SX</strong>-D4110-EV to<br />

<strong>SX</strong>-D4132-EV<br />

<strong>SX</strong>-D6090-EV to<br />

<strong>SX</strong>-D6160-EV<br />

170 24 170 24 46<br />

L1 L2 L3 PE PE U V W<br />

Mains<br />

Motor<br />

Fig. 19 Stripping lengths for cables<br />

(06-F45-cables only)<br />

Fig. 18 Connecting motor and mains cables<br />

VSD models <strong>SX</strong>-D4160-EV to <strong>SX</strong>-D4800-EV and <strong>SX</strong>-<br />

D6200-EV to <strong>SX</strong>-D61K0-EV are supplied with Klockner<br />

Moeller K3x240/4 power clamps.<br />

For all type of wires to be connected the stripping<br />

length should be 32 mm.<br />

3.5.1 Dimension of cables and<br />

fuses<br />

Please refer to the chapter Technical data, section<br />

14.6, page 174.<br />

20 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


3.5.2 Tightening torque for mains<br />

and motor cables<br />

Table 9<br />

Model <strong>SX</strong>-D4090-EV<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 95 150<br />

Cable diameter, mm 2 16-95 35-95 120-150<br />

Tightening torque, Nm 14 14 24<br />

Menu [224]<br />

Motor Current:<br />

Menu [225]<br />

Motor Speed:<br />

Menu [227]<br />

Motor Cos PHI:<br />

Add the current for the motors in parallel.<br />

Set the average speed for the motors in<br />

parallel.<br />

Set the average Cos PHI value for the<br />

motors in parallel.<br />

Table 10<br />

Model <strong>SX</strong>-D4110-EV to <strong>SX</strong>-D4132-EV and <strong>SX</strong>-<br />

D6090-EV to <strong>SX</strong>-D6160-EV<br />

Brake chopper<br />

Mains/motor<br />

Block, mm 2 150 240<br />

Cable diameter, mm 2 35-95 120-150 35-70 95-240<br />

Tightening torque, Nm 14 24 14 24<br />

3.6 Thermal protection on the<br />

motor<br />

Standard motors are normally fitted with an internal<br />

fan. The cooling capacity of this built-in fan is dependent<br />

on the frequency of the motor. At low frequency,<br />

the cooling capacity will be insufficient for nominal<br />

loads. Please contact the motor supplier for the cooling<br />

characteristics of the motor at lower frequency.<br />

WARNING: Depending on the cooling<br />

characteristics of the motor, the application,<br />

the speed and the load, it may be necessary<br />

to use forced cooling on the motor.<br />

Motor thermistors offer better thermal protection for<br />

the motor. Depending on the type of motor thermistor<br />

fitted, the optional PTC input may be used. The motor<br />

thermistor gives a thermal protection independent of<br />

the speed of the motor, thus of the speed of the motor<br />

fan. See the functions, Motor I 2 t type [231] and Motor<br />

I 2 t current [232].<br />

3.7 Motors in parallel<br />

It is possible to have motors in parallel as long as the<br />

total current does not exceed the nominal value of the<br />

VSD. The following has to be taken into account when<br />

setting the motor data:<br />

Menu [221]<br />

Motor Voltage:<br />

Menu [222]<br />

Motor Frequency:<br />

Menu [223]<br />

Motor Power:<br />

The motors in parallel must have the<br />

same motor voltage.<br />

The motors in parallel must have the<br />

same motor frequency.<br />

Add the motor power values for the<br />

motors in parallel.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Installation 21


22 Installation <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


4. Getting Started<br />

This chapter is a step by step guide that will show you<br />

the quickest way to get the motor shaft turning. We<br />

will show you two examples, remote control and local<br />

control.<br />

We assume that the VSD is mounted on a wall or in a<br />

cabinet as in the chapter 2. page 11.<br />

First there is general information of how to connect<br />

mains, motor and control cables. The next section<br />

describes how to use the function keys on the control<br />

panel. The subsequent examples covering remote<br />

control and local control describe how to program/set<br />

the motor data and run the VSD and motor.<br />

4.1 Connect the mains and<br />

motor cables<br />

Dimension the mains and motor cables according to<br />

local regulations. The cable must be able to carry the<br />

VSD load current.<br />

RFI-Filter<br />

Mains<br />

Mains<br />

VSD<br />

Brake<br />

resistor<br />

(option)<br />

Metal cable gland<br />

Output<br />

coils<br />

(option)<br />

Metal EMC cable glands<br />

Screened cables<br />

Metal housing<br />

Metal connector housing<br />

Motor<br />

4.1.1 Mains cables<br />

7. Connect the mains cables as in Fig. 20. The VSD<br />

has, as standard, a built-in RFI mains filter that<br />

complies with category C3 which suits the Second<br />

Environment standard.<br />

Fig. 20 Connection of mains and motor cables<br />

4.1.2 Motor cables<br />

8. Connect the motor cables as in Fig. 20. To comply<br />

with the EMC Directive you have to use screened<br />

cables and the motor cable screen has to be connected<br />

on both sides: to the housing of the motor<br />

and the housing of the VSD.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Getting Started 23


Table 11<br />

L1,L2,L3<br />

PE<br />

U, V, W<br />

Mains and motor connection<br />

Mains supply, 3 -phase<br />

Safety earth<br />

Motor earth<br />

Motor output, 3-phase<br />

WARNING: In order to work safely the mains<br />

earth must be connected to PE and the motor<br />

earth to .<br />

4.2 Using the function keys<br />

100 200 300<br />

210<br />

220<br />

To comply with the EMC standard, use screened control<br />

cables with plaited flexible wire up to 1.5 mm 2 or<br />

solid wire up to 2.5 mm 2 .<br />

9. Connect a reference value between terminals 7<br />

(Common) and 2 (AnIn 1) as in Fig. 22.<br />

10.Connect an external start button between terminal<br />

11 (+24 VDC) and 9 (DigIn2, RUNR) as in Fig. 22.<br />

Reference<br />

4-20 mA<br />

Start<br />

+<br />

0V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

221<br />

Fig. 21 Example of menu navigation when entering motor<br />

voltage<br />

step to lower menu level or confirm changed setting<br />

X3<br />

X2<br />

31<br />

32<br />

33<br />

51<br />

52<br />

41<br />

42<br />

43<br />

step to higher menu level or ignore changed setting<br />

step to next menu on the same level<br />

step to previous menu on the same level<br />

increase value or change selection<br />

decrease value or change selection<br />

4.3 Remote control<br />

In this example external signals are used to control the<br />

VSD/motor.<br />

A standard 4-pole motor for 400 V, an external start<br />

button and a reference value will also be used.<br />

4.3.1 Connect control cables<br />

Here you will make up the minimum wiring for starting.<br />

In this example the motor/VSD will run with right rotation.<br />

Fig. 22 Wiring<br />

4.3.2 Switch on the mains<br />

Close the door to the VSD. Once the mains is<br />

switched on, the internal fan in the VSD will run for 5<br />

seconds.<br />

4.3.3 Set the Motor Data<br />

Enter correct motor data for the connected motor. The<br />

motor data is used in the calculation of complete<br />

operational data in the VSD.<br />

Change settings using the keys on the control panel.<br />

For further information about the control panel and<br />

menu structure, see the chapter 9. page 47.<br />

Menu [100], Preferred View is displayed when started.<br />

1. Press to display menu [200], Main Setup.<br />

2. Press and then to display menu [220],<br />

Motor Data.<br />

3. Press to display menu [221] and set motor voltage.<br />

4. Change the value using the and keys. Confirm<br />

with .<br />

5. Set motor frequency [222].<br />

24 Getting Started <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


6. Set motor power [223].<br />

7. Set motor current [224].<br />

8. Set motor speed [225].<br />

9. Set power factor (cos ) [227].<br />

10.Select supply voltage level used [21B]<br />

11.[229] Motor ID run: Choose Short, confirm with<br />

and give start command .<br />

The VSD will now measure some motor parameters.<br />

The motor makes some beeping sounds but the shaft<br />

does not rotate. When the ID run is finished after<br />

about one minute ("Test Run OK!" is displayed),<br />

press to continue.<br />

12.Use AnIn1 as input for the reference value. The<br />

default range is 4-20 mA. If you need a 0-10 V reference<br />

value, change switch (S1) on control board<br />

and set [512] Anln 1 Set-up to 0-10V.<br />

13.Switch off power supply.<br />

14.Connect digital and analogue inputs/outputs as in<br />

Fig. 22.<br />

15.Ready!<br />

16.Switch on power supply.<br />

4.3.4 Run the VSD<br />

Now the installation is finished, and you can press the<br />

external start button to start the motor.<br />

When the motor is running the main connections are<br />

OK.<br />

4.4 Local control<br />

Manual control via the control panel can be used to<br />

carry out a test run.<br />

Use a 400 V motor and the control panel.<br />

7. Select Keyboard using the key and press to<br />

confirm.<br />

8. Press to get to previous menu level and then<br />

to display menu [220], Motor Data.<br />

4.4.3 Set the Motor Data<br />

Enter correct motor data for the connected motor.<br />

9. Press to display menu [221].<br />

10.Change the value using the and keys. Confirm<br />

with .<br />

11.Press to display menu [222].<br />

12.Repeat step 9 and 10 until all motor data is<br />

entered.<br />

13.Press twice and then to display menu [100],<br />

Preferred View.<br />

4.4.4 Enter a Reference Value<br />

Enter a reference value.<br />

14.Press until menu [300], Process is displayed.<br />

15.Press to display menu [310], Set/View reference<br />

value.<br />

16.Use the and keys to enter, for example,<br />

300 rpm. We select a low value to check the rotation<br />

direction without damaging the application.<br />

4.4.5 Run the VSD<br />

Press the key on the control panel to run the motor<br />

forward.<br />

If the motor is running the main connections are OK.<br />

4.4.1 Switch on the mains<br />

Close the door to the VSD. Once the mains is<br />

switched on, the VSD is started and the internal fan<br />

will run for 5 seconds.<br />

4.4.2 Select <strong>manual</strong> control<br />

Menu [100], Preferred View is displayed when started.<br />

1. Press to display menu [200], Main Setup.<br />

2. Press to display menu [210], Operation.<br />

3. Press to display menu [211], Language.<br />

4. Press to display menu [214], Reference Control.<br />

5. Select Keyboard using the key and press to<br />

confirm.<br />

6. Press to get to menu [215], Run/Stop Control.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Getting Started 25


26 Getting Started <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


5. Control Connections<br />

5.1 Control board<br />

Fig. 23 shows the layout of the control board which is<br />

where the parts most important to the user are<br />

located. Although the control board is galvanically isolated<br />

from the mains, for safety reasons do not make<br />

changes while the mains supply is on!<br />

WARNING: Always switch off the mains<br />

voltage and wait at least 5 minutes to allow<br />

the DC capacitors to discharge before<br />

connecting the control signals or changing<br />

position of any switches. If the option External supply is<br />

used, switch of the mains to the option. This is done to<br />

prevent damage on the control board.<br />

X5<br />

X6<br />

X7<br />

X4<br />

1<br />

Option<br />

2<br />

3<br />

C<br />

Communication<br />

X8<br />

Control<br />

Panel<br />

Switches<br />

S1 S2 S3 S4<br />

I U I U I U I U<br />

12 13 14 15 16 17 18 19 20 21 22<br />

X1<br />

1<br />

Control<br />

signals<br />

AO1 AO2 DI4 DI5 DI6 DI7 DO1 DO2 DI8<br />

2 3 4 5 6 7 8 9 10<br />

11<br />

R02<br />

41 42 43<br />

Relay outputs<br />

NC C NO<br />

X2 31 32 33 51 52<br />

+10V AI1<br />

AI2<br />

AI3<br />

AI4<br />

-10V<br />

DI1<br />

DI2<br />

DI3 +24V<br />

NC<br />

C<br />

R01<br />

NO<br />

X3<br />

NO<br />

C<br />

R03<br />

Fig. 23 Control board layout<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 27


5.2 Terminal connections<br />

The terminal strip for connecting the control signals is<br />

accessible after opening the front panel.<br />

The table describes the default functions for the signals.<br />

The inputs and outputs are programmable for<br />

other functions as described in chapter 11. page 59.<br />

For signal specifications refer to chapter 14. page 169.<br />

NOTE: The maximum total combined current for outputs<br />

11, 20 and 21 is 100mA.<br />

Table 12<br />

Control signals<br />

Terminal Name Function (Default)<br />

Outputs<br />

1 +10 V +10 VDC supply voltage<br />

6 -10 V -10 VDC supply voltage<br />

7 Common Signal ground<br />

11 +24 V +24 VDC supply voltage<br />

12 Common Signal ground<br />

15 Common Signal ground<br />

Digital inputs<br />

8 DigIn 1 RunL (reverse)<br />

9 DigIn 2 RunR (forward)<br />

10 DigIn 3 Off<br />

16 DigIn 4 Off<br />

17 DigIn 5 Off<br />

18 DigIn 6 Off<br />

19 DigIn 7 Off<br />

22 DigIn 8 RESET<br />

Digital outputs<br />

20 DigOut 1 Ready<br />

21 DigOut 2 Brake<br />

Analogue inputs<br />

2 AnIn 1 Process Ref<br />

3 AnIn 2 Off<br />

4 AnIn 3 Off<br />

5 AnIn 4 Off<br />

Analogue outputs<br />

13 AnOut1 Min speed to max speed<br />

14 AnOut2 0 to max torque<br />

Relay outputs<br />

31 N/C 1<br />

Relay 1 output<br />

32 COM 1 Trip, active when the VSD is in a<br />

33 N/O 1<br />

TRIP condition.<br />

Table 12<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 output<br />

Run, active when the VSD is<br />

started.<br />

51 COM 3 Relay 3 output<br />

52 N/O 3 Off<br />

NOTE: N/C is opened when the relay is active and N/O is<br />

closed when the relay is active.<br />

5.3 Inputs configuration<br />

with the switches<br />

The switches S1 to S4 are used to set the input configuration<br />

for the 4 analogue inputs AnIn1, AnIn2,<br />

AnIn3 and AnIn4 as described in table 13. See Fig. 23<br />

for the location of the switches.<br />

Table 13<br />

Switch settings<br />

Input Signal type Switch<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

Control signals<br />

Terminal Name Function (Default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

Voltage<br />

Current (default)<br />

S1<br />

S1<br />

S2<br />

S2<br />

S3<br />

S3<br />

S4<br />

S4<br />

NOTE: Scaling and offset of AnIn1 - AnIn4 can be<br />

configured using the software. See menus [512], [515],<br />

[518] and [51B] in section 11.5, page 119.<br />

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can<br />

be configured using the software. See menu [530]<br />

section 11.5.3, page 128<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

28 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


5.4 Connection example<br />

Fig. 24 gives an overall view of a VSD connection<br />

example.<br />

L1<br />

L2<br />

L3<br />

PE<br />

RFIfilter<br />

U<br />

V<br />

W<br />

Motor<br />

Alternative for<br />

potentiometer control**<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

0 - 10 V<br />

4 - 20 mA<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

15<br />

16<br />

17<br />

18<br />

19<br />

22<br />

Optional<br />

+10 VDC<br />

AnIn 1: Reference<br />

AnIn 2<br />

AnIn 3<br />

Common<br />

AnIn 4<br />

AnOut 1<br />

-10 VDC AnOut 2<br />

Common DigOut 1<br />

DigIn 1:RunL* DigOut 2<br />

DigIn 2:RunR*<br />

DigIn3<br />

+24 VDC<br />

Relay 1<br />

Common<br />

DigIn 4<br />

DigIn 5<br />

DigIn 6<br />

Relay 2<br />

DigIn 7<br />

DigIn 8:Reset*<br />

DC+<br />

R<br />

DC -<br />

12<br />

13<br />

21 14<br />

20<br />

21<br />

31<br />

32<br />

33<br />

41<br />

42<br />

43<br />

Relay 3<br />

51<br />

52<br />

Other options<br />

Fieldbus option<br />

or PC<br />

Option board<br />

* Default setting<br />

** The switch S1 is set to U<br />

Fig. 24 Connection example<br />

NG_06-F27<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 29


5.5 Connecting the Control<br />

Signals<br />

5.5.1 Cables<br />

The standard control signal connections are suitable<br />

for stranded flexible wire up to 1.5 mm 2 and for solid<br />

wire up to 2.5 mm 2 .<br />

.<br />

5.5.2 Types of control signals<br />

Always make a distinction between the different types<br />

of signals. Because the different types of signals can<br />

adversely affect each other, use a separate cable for<br />

each type. This is often more practical because, for<br />

example, the cable from a pressure sensor may be<br />

connected directly to the variable speed drive.<br />

We can distinguish between the following types of<br />

control signals:<br />

Analogue inputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) normally<br />

used as control signals for speed, torque and<br />

PID feedback signals.<br />

Analogue outputs<br />

Voltage or current signals, (0-10 V, 0/4-20 mA) which<br />

change slowly or only occasionally in value. In general,<br />

these are control or measurement signals.<br />

Digital<br />

Voltage or current signals (0-10 V, 0-24 V, 0/4-20 mA)<br />

which can have only two values (high or low) and only<br />

occasionally change in value.<br />

Data<br />

Usually voltage signals (0-5 V, 0-10 V) which change<br />

rapidly and at a high frequency, generally data signals<br />

such as RS232, RS485, Profibus, etc.<br />

Relay<br />

Relay contacts (0-250 VAC) can switch highly inductive<br />

loads (auxiliary relay, lamp, valve, brake, etc.).<br />

Signal<br />

type<br />

Maximum wire size Tightening<br />

torque<br />

Cable type<br />

Control signals<br />

0.5 Nm<br />

Analogue Rigid cable:<br />

Digital<br />

0.14-2.5 mm 2<br />

Flexible cable:<br />

Data 0.14-1.5 mm 2<br />

Relay 0.25-1.5 mm 2<br />

Cable with ferrule:<br />

Screened<br />

Screened<br />

Screened<br />

Not screened<br />

Fig. 25 Connecting the control signals <strong>SX</strong>-D4090<br />

NOTE: The screening of control signal cables is<br />

necessary to comply with the immunity levels given in<br />

the EMC Directive (it reduces the noise level).<br />

NOTE: Control cables must be separated from motor and<br />

mains cables.<br />

Example:<br />

The relay output from a variable speed drive which<br />

controls an auxiliary relay can, at the moment of<br />

switching, form a source of interference (emission) for<br />

a measurement signal from, for example, a pressure<br />

sensor. Therefore it is advised to separate wiring and<br />

screening to reduce disturbances.<br />

5.5.3 Screening<br />

For all signal cables the best results are obtained if the<br />

screening is connected to both ends: the VSD side<br />

and the at the source (e.g. PLC, or computer). See<br />

Fig. 26.<br />

It is strongly recommended that the signal cables be<br />

allowed to cross mains and motor cables at a 90<br />

30 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


angle. Do not let the signal cable go in parallel with the<br />

mains and motor cable.<br />

5.5.4 Single-ended or double-ended<br />

connection?<br />

In principle, the same measures applied to motor<br />

cables must be applied to all control signal cables, in<br />

accordance with the EMC-Directives.<br />

For all signal cables as mentioned in section 5.5.2 the<br />

best results are obtained if the screening is connected<br />

to both ends. See Fig. 26.<br />

NOTE: Each installation must be examined carefully<br />

before applying the proper EMC measurements.<br />

Control board<br />

Pressure<br />

sensor<br />

(example)<br />

External control<br />

(e.g. in metal housing)<br />

Control consol<br />

Fig. 26 Electro Magnetic (EM) screening of control signal<br />

cables.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Control Connections 31


5.5.5 Current signals ((0)4-20 mA)<br />

A current signal like (0)4-20 mA is less sensitive to disturbances<br />

than a 0-10 V signal, because it is connected<br />

to an input which has a lower impedance (250<br />

) than a voltage signal (20 k). It is therefore strongly<br />

advised to use current control signals if the cables are<br />

longer than a few metres.<br />

5.5.6 Twisted cables<br />

Analogue and digital signals are less sensitive to interference<br />

if the cables carrying them are “twisted”. This<br />

is certainly to be recommended if screening cannot be<br />

used. By twisting the wires the exposed areas are<br />

minimised. This means that in the current circuit for<br />

any possible High Frequency (HF) interference fields,<br />

no voltage can be induced. For a PLC it is therefore<br />

important that the return wire remains in proximity to<br />

the signal wire. It is important that the pair of wires is<br />

fully twisted over 360°.<br />

5.6 Connecting options<br />

The option cards are connected by the optional connectors<br />

X4 or X5 on the control board see Fig. 23,<br />

page 27 and mounted above the control board. The<br />

inputs and outputs of the option cards are connected<br />

in the same way as other control signals.<br />

32 Control Connections <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


6. Applications<br />

This chapter contains tables giving an overview of<br />

many different applications/duties in which it is suitable<br />

to use variable speed drives from OMRON. Further<br />

on you will find application examples of the most common<br />

applications and solutions.<br />

s<br />

6.1 Application overview<br />

6.1.1 Pumps<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Dry-running, cavitation and overheating damage<br />

the pump and cause downtime.<br />

Sludge sticks to impeller when pump has been running<br />

at low speed or been stationary for a while.<br />

Reduces the pump’s efficiency.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked pipe, a<br />

valve not fully opened or a worn impeller.<br />

Water hammer damages the pump when stopped.<br />

Mechanical stress on pipes, valves, gaskets, seals.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Pump Curve Protection detects deviation. Sends<br />

warning or activates safety stop.<br />

Automatic pump rinsing function: pump is set to<br />

run at full speed at certain intervals, then return<br />

to normal speed.<br />

PID continuously adapts pressure/flow to the<br />

level required. Sleep function activated when<br />

none is needed.<br />

Pump Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

Smooth linear stops protect the equipment. Eliminates<br />

need for costly motorized valves.<br />

331–336, 351<br />

411–419, 41C1– 41C9<br />

362–368, 560, 640<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

331–336<br />

6.1.2 Fans<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Starting a fan rotating in the wrong direction can be<br />

critical, e.g. a tunnel fan in event of a fire.<br />

Draft causes turned off fan to rotate the wrong way.<br />

Starting causes high current peaks and mechanical<br />

stress.<br />

Regulating pressure/flow with dampers causes<br />

high energy consumption and equipment wear.<br />

Motor runs at same speed despite varying<br />

demands in pressure/flow. Energy is lost and<br />

equipment stressed.<br />

Process inefficiency due to e.g. a blocked filter, a<br />

damper not fully opened or a worn belt.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Fan is started at low speed to ensure correct<br />

direction and proper function.<br />

Motor is gradually slowed to complete stop before<br />

starting. Avoids blown fuses and breakdown.<br />

Automatic regulation of pressure/flow with motor<br />

speed gives more exact control.<br />

PID continuously adapts to the level required.<br />

Sleep function is activated when none is needed.<br />

Load Curve Protection detects deviation. Warning<br />

is sent or safety stop activated.<br />

331–336, 351<br />

219, 341<br />

219, 33A, 335<br />

321, 354<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Applications 33


6.1.3 Compressors<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Compressor is damaged when cooling media<br />

enters the compressor screw.<br />

Pressure is higher than needed, causing leaks,<br />

stress on the equipment and excessive air use.<br />

Motor runs at same speed when no air is compressed.<br />

Energy is lost and equipment stressed.<br />

Process inefficiency and energy wasted due to e.g.<br />

the compressor idling.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

Overload situation is quickly detected and safety<br />

stop can be activated to avoid breakdown.<br />

Load Curve Protection function detects deviation.<br />

Warning is sent or safety stop activated.<br />

PID continuously adapts to the level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

331– 336, 351<br />

411–41A<br />

411–419, 41C1–41C9<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

6.1.4 Blowers<br />

Challenge OMRON <strong>SX</strong>-V solution Menu<br />

High start currents require larger fuses and cables.<br />

Cause stress on equipment and higher energy cost.<br />

Difficult to compensate for pressure fluctuations.<br />

Wasted energy and risk of production stop.<br />

Motor runs at same speed despite varying<br />

demands. Energy is lost and equipment stressed.<br />

Process inefficiency due to e.g. a broken damper, a<br />

valve not fully opened or a worn belt.<br />

Torque control reduces start current. Same fuses<br />

can be used as those required for the motor.<br />

PID function continuously adapts pressure to the<br />

level required.<br />

PID continuously adapts air flow to level required.<br />

Sleep function activated when none is needed.<br />

Load Curve Protection quickly detects deviation.<br />

Warning is sent or safety stop activated.<br />

331–336, 351<br />

320, 380<br />

320, 380, 342, 354<br />

411–419, 41C1–41C9<br />

34 Applications <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7. Main Features<br />

This chapter contains descriptions of the main features<br />

of the VSD.<br />

7.1 Parameter sets<br />

Parameter sets are used if an application requires different<br />

settings for different modes. For example, a<br />

machine can be used for producing different products<br />

and thus requires two or more maximum speeds and<br />

acceleration/deceleration times. With the four parameter<br />

sets different control options can be configured<br />

with respect to quickly changing the behaviour of the<br />

VSD. It is possible to adapt the VSD online to altered<br />

machine behaviour. This is based on the fact that at<br />

any desired moment any one of the four parameter<br />

sets can be activated during Run or Stop, via the digital<br />

inputs or the control panel and menu [241].<br />

Each parameter set can be selected externally via a<br />

digital input. Parameter sets can be changed during<br />

operation and stored in the control panel.<br />

NOTE: The only data not included in the parameter set is<br />

Motor data 1-4, (entered separately), language,<br />

communication settings, selected set, local remote, and<br />

keyboard locked.<br />

Define parameter sets<br />

When using parameter sets you first decide how to<br />

select different parameter sets. The parameter sets<br />

can be selected via the control panel, via digital inputs<br />

or via serial communication. All digital inputs and virtual<br />

inputs can be configured to select parameter set.<br />

The function of the digital inputs is defined in the menu<br />

[520].<br />

Fig. 27 shows the way the parameter sets are activated<br />

via any digital input configured to Set Ctrl 1 or<br />

Set Ctrl 2.<br />

11 +24 V<br />

10 Set Ctrl1<br />

16 Set Ctrl2<br />

Fig. 27 Selecting the parameter sets<br />

{<br />

Parameter Set A<br />

Run/Stop<br />

-<br />

-<br />

Torques<br />

-<br />

-<br />

Controllers<br />

-<br />

-<br />

Limits/Prot.<br />

-<br />

-Max Alarm<br />

Set B<br />

Set C<br />

Set D<br />

(NG06-F03_1)<br />

Select and copy parameter set<br />

The parameter set selection is done in menu [241],<br />

Select Set. First select the main set in menu [241],<br />

normally A. Adjust all settings for the application. Usually<br />

most parameters are common and therefore it<br />

saves a lot of work by copying set A>B in menu [242].<br />

When parameter set A is copied to set B you only<br />

change the parameters in the set that need to be<br />

changed. Repeat for C and D if used.<br />

With menu [242], Copy Set, it is easy to copy the<br />

complete contents of a single parameter set to<br />

another parameter set. If, for example, the parameter<br />

sets are selected via digital inputs, DigIn 3 is set to Set<br />

Ctrl 1 in menu [523] and DigIn 4 is set to Set Ctrl 2 in<br />

menu [524], they are activated as in Table 14.<br />

Activate the parameter changes via digital input by<br />

setting menu [241], Select Set to DigIn.<br />

Table 14<br />

Parameter set<br />

Parameter set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: The selection via the digital inputs is immediately<br />

activated. The new parameter settings will be activated<br />

on-line, also during Run.<br />

NOTE: The default parameter set is parameter set A.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 35


Examples<br />

Different parameter sets can be used to easily change<br />

the setup of a VSD to adapt quickly to different application<br />

requirements. For example when<br />

• a process needs optimized settings in different<br />

stages of the process, to<br />

- increase the process quality<br />

- increase control accuracy<br />

- lower maintenance costs<br />

- increase operator safety<br />

With these settings a large number of options are<br />

available. Some ideas are given here:<br />

Multi frequency selection<br />

Within a single parameter set the 7 preset references<br />

can be selected via the digital inputs. In combination<br />

with the parameter sets, 28 preset references can be<br />

selected using all 4 digital inputs: DigIn1, 2 and 3 for<br />

selecting preset reference within one parameter set<br />

and DigIn 4 and DigIn 5 for selecting the parameter<br />

sets.<br />

Bottling machine with 3 different products<br />

Use 3 parameter sets for 3 different Jog reference<br />

speeds when the machine needs to be set up. The 4th<br />

parameter set can be used for “normal” remote control<br />

when the machine is running at full production.<br />

Manual - automatic control<br />

If in an application something is filled up <strong>manual</strong>ly and<br />

then the level is automatically controlled using PID regulation,<br />

this is solved using one parameter set for the<br />

<strong>manual</strong> control and one for the automatic control.<br />

7.1.1 One motor and one parameter<br />

set<br />

This is the most common application for pumps and<br />

fans.<br />

Once default motor M1 and parameter set A have<br />

been selected:<br />

1. Enter the settings for motor data.<br />

2. Enter the settings for other parameters e.g. inputs<br />

and outputs<br />

7.1.2 One motor and two parameter<br />

sets<br />

This application is useful if you for example have a<br />

machine running at two different speeds for different<br />

products.<br />

Once default motor M1 is selected:<br />

1. Select parameter set A in menu [241].<br />

2. Enter motor data in menu [220].<br />

3. Enter the settings for other parameters e.g. inputs<br />

and outputs.<br />

4. If there are only minor differences between the settings<br />

in the parameter sets, you can copy parameter<br />

set A to parameter set B, menu [242].<br />

5. Enter the settings for parameters e.g. inputs and<br />

outputs.<br />

Note: Do not change motor data in parameter set B.<br />

7.1.3 Two motors and two<br />

parameter sets<br />

This is useful if you have a machine with two motors<br />

that can not run at the same time, such as a cable<br />

winding machine that lifts up the reel with one motor<br />

and then turns the wheel with the other motor.<br />

36 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


One motor must stop before changing to an other<br />

motor.<br />

1. Select parameter set A in menu [241].<br />

2. Select motor M1 in menu [212].<br />

3. Enter motor data and settings for other parameters<br />

e.g. inputs and outputs.<br />

4. Select parameter set B in menu [241].<br />

5. Select M2 in menu [212].<br />

6. Enter motor data and settings for other parameters<br />

e.g. inputs and outputs.<br />

7.1.4 Autoreset at trip<br />

For several non-critical application-related failure conditions,<br />

it is possible to automatically generate a reset<br />

command to overcome the fault condition. The selection<br />

can be made in menu [250]. In this menu the maximum<br />

number of automatically generated restarts<br />

allowed can be set, see menu [251], after this the VSD<br />

will stay in fault condition because external assistance<br />

is required.<br />

Example<br />

The motor is protected by an internal protection for<br />

thermal overload. When this protection is activated,<br />

the VSD should wait until the motor is cooled down<br />

enough before resuming normal operation. When this<br />

problem occurs three times in a short period of time,<br />

external assistance is required.<br />

The following settings should be applied:<br />

• Insert maximum number of restarts; set menu [251]<br />

to 3.<br />

• Activate Motor I 2 t to be automatically reset; set<br />

menu [25A] to 300 s.<br />

• Set relay 1, menu [551] to AutoRst Trip; a signal will<br />

be available when the maximum number of restarts<br />

is reached and the VSD stays in fault condition.<br />

• The reset input must be constantly activated.<br />

7.1.5 Reference priority<br />

The active speed reference signal can be programmed<br />

from several sources and functions. The table below<br />

shows the priority of the different functions with<br />

regards to the speed reference.<br />

Table 15<br />

Reference priority<br />

7.1.6 Preset references<br />

The VSD is able to select fixed speeds via the control<br />

of digital inputs. This can be used for situations where<br />

the required motor speed needs to be adapted to<br />

fixed values, according to certain process conditions.<br />

Up to 7 preset references can be set for each parameter<br />

set, which can be selected via all digital inputs that<br />

are set to Preset Ctrl1, Preset Ctrl2 or Preset Ctrl3.<br />

The amount digital inputs used that are set to Preset<br />

Ctrl determines the number of Preset References<br />

available; using 1 input gives 2 speeds, using 2 inputs<br />

gives 4 speeds and using 3 inputs gives 8 speeds.<br />

Example<br />

The use of four fixed speeds, at 50 / 100 / 300 / 800<br />

rpm, requires the following settings:<br />

• Set DigIn 5 as first selection input; set [525] to Preset<br />

Ctrl1.<br />

• Set DigIn 6 as second selection input; set [526] to<br />

Preset Ctrl2.<br />

• Set menu [341], Min Speed to 50 rpm.<br />

• Set menu [362], Preset Ref 1 to 100 rpm.<br />

• Set menu [363], Preset Ref 2 to 300 rpm.<br />

• Set menu [364], Preset Ref 3 to 800 rpm.<br />

With these settings, the VSD switched on and a RUN<br />

command given, the speed will be:<br />

• 50 rpm, when both DigIn 5 and DigIn 6 are low.<br />

• 100 rpm, when DigIn 5 is high and DigIn 6 is low.<br />

• 300 rpm, when DigIn 5 is low and DigIn 6 is high.<br />

• 800 rpm, when both DigIn 5 and DigIn 6 are high.<br />

7.2 Remote control functions<br />

Operation of the Run/Stop/Enable/Reset functions<br />

As default, all the run/stop/reset related commands<br />

are programmed for remote operation via the inputs<br />

on the terminal strip (terminals 1-22) on the control<br />

board. With the function Run/Stp Ctrl [215] and Reset<br />

Control [216], this can be selected for keyboard or<br />

serial communication control.<br />

NOTE: The examples in this paragraph do not cover all<br />

possibilities. Only the most relevant combinations are<br />

given. The starting point is always the default setting<br />

(factory) of the VSD.<br />

Jog<br />

Mode<br />

Preset<br />

Reference<br />

Motor Pot<br />

Ref. Signal<br />

On/Off On/Off On/Off Option cards<br />

On On/Off On/Off Jog Ref<br />

Off On On/Off Preset Ref<br />

Off Off On Motor pot commands<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 37


Default settings of the Run/Stop/<br />

Enable/Reset functions<br />

The default settings are shown in Fig. 28. In this example<br />

the VSD is started and stopped with DigIn 2 and a<br />

reset after trip can be given with DigIn 8.<br />

STOP<br />

(STOP=DECEL)<br />

OUTPUT<br />

SPEED<br />

t<br />

RunR<br />

Reset<br />

+24 V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

ENABLE<br />

OUTPUT<br />

SPEED<br />

t<br />

(06-F104_NG)<br />

(or if Spinstart is selected)<br />

Fig. 28 Default setting Run/Reset commands<br />

The inputs are default set for level-control. The rotation<br />

is determined by the setting of the digital inputs.<br />

Enable and Stop functions<br />

Both functions can be used separately or simultaneously.<br />

The choice of which function is to be used<br />

depends on the application and the control mode of<br />

the inputs (Level/Edge [21A]).<br />

NOTE: In Edge mode, at least one digital input must be<br />

programmed to “stop”, because the Run commands are<br />

otherwise only able to start the VSD.<br />

Enable<br />

Input must be active (HI) to allow any Run signal. If the<br />

input is made LOW, the output of the VSD is immediately<br />

disabled and the motor will coast.<br />

!<br />

CAUTION: If the Enable function is not<br />

programmed to a digital input, it is considered<br />

to be active internally.<br />

Stop<br />

If the input is low then the VSD will stop according to<br />

the selected stop mode set in menu [33B] Stop Mode.<br />

Fig. 29 shows the function of the Enable and the Stop<br />

input and the Stop Mode=Decel [33B].<br />

To run the input must be high.<br />

NOTE: Stop Mode=Coast [33B] will give the same<br />

behaviour as the Enable input.<br />

X<br />

Fig. 29 Functionality of the Stop and Enable input<br />

Reset and Autoreset operation<br />

If the VSD is in Stop Mode due to a trip condition, the<br />

VSD can be remotely reset by a pulse (“low” to “high”<br />

transition) on the Reset input, default on DigIn 8.<br />

Depending on the selected control method, a restart<br />

takes place as follows:<br />

Level-control<br />

If the Run inputs remain in their position the VSD will<br />

start immediately after the Reset command is given.<br />

Edge-control<br />

After the Reset command is given a new Run command<br />

must be applied to start the VSD again.<br />

Autoreset is enabled if the Reset input is continuously<br />

active. The Autoreset functions are programmed in<br />

menu Autoreset [250].<br />

NOTE: If the control commands are programmed for<br />

Keyboard control or Com, Autoreset is not possible.<br />

Run Inputs Level-controlled.<br />

The inputs are set as default for level-control. This<br />

means that an input is activated by making the input<br />

continuously “High”. This method is commonly used if,<br />

for example, PLCs are used to operate the VSD.<br />

!<br />

CAUTION: Level-controlled inputs DO NOT<br />

comply with the Machine Directive, if the inputs<br />

are directly used to start and stop the machine.<br />

The examples given in this and the following paragraphs<br />

follow the input selection shown in Fig. 30.<br />

38 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Stop<br />

RunL<br />

RunR<br />

Enable<br />

Reset<br />

+24 V<br />

X1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

See Fig. 30. The Enable and Stop input must be active<br />

continuously in order to accept any run-right or run-left<br />

command. The last edge (RunR or RunL) is valid. Fig.<br />

32 gives an example of a possible sequence.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

Fig. 30 Example of wiring for Run/Stop/Enable/Reset inputs<br />

The Enable input must be continuously active in order<br />

to accept any run-right or run-left command. If both<br />

RunR and RunL inputs are active, then the VSD stops<br />

according to the selected Stop Mode. Fig. 31 gives an<br />

example of a possible sequence.<br />

INPUTS<br />

ENABLE<br />

STOP<br />

RUN R<br />

RUN L<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 31 Input and output status for level-control<br />

(06-F103new_1)<br />

Run Inputs Edge-controlled<br />

Menu [21A] Start signal Level/Edge must be set to<br />

Edge to activate edge control. This means that an<br />

input is activated by a “low” to “high” transition or vice<br />

versa.<br />

NOTE: Edge-controlled inputs comply with the Machine<br />

Directive (see chapter EMC and Machine Directive), if<br />

the inputs are directly used for starting and stopping the<br />

machine.<br />

OUTPUT<br />

STATUS<br />

Right rotation<br />

Left rotation<br />

Standstill<br />

Fig. 32 Input and output status for edge-control<br />

(06-F94new_1)<br />

7.3 Performing an<br />

Identification Run<br />

To get the optimum performance out of your VSD/<br />

motor combination, the VSD must measure the electrical<br />

parameters (resistance of stator winding, etc.) of<br />

the connected motor. See menu [229], Motor ID-Run.<br />

7.4 Using the Control Panel<br />

Memory<br />

Data can be copied from the VSD to the memory in<br />

the control panel and vice versa. To copy all data<br />

(including parameter set A-D and motor data) from the<br />

VSD to the control panel, select Copy to CP[244],<br />

Copy to CP.<br />

To copy data from the control panel to the VSD, enter<br />

the menu [245], Load from CP and select what you<br />

want to copy.<br />

The memory in the control panel is useful in applications<br />

with VSDs without a control panel and in applications<br />

where several variable speed drives have the<br />

same setup. It can also be used for temporary storage<br />

of settings. Use a control panel to upload the settings<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 39


from one VSD and then move the control panel to<br />

another VSD and download the settings.<br />

NOTE: Load from and copy to the VSD is only possible<br />

when the VSD is in stop mode.<br />

VSD<br />

The max and min alarm can be set for a trip condition.<br />

The pre-alarms act as a warning condition. All the<br />

alarms can be monitored on the digital or relay outputs.<br />

The autoset function automatically sets the 4 alarm<br />

levels whilst running: maximum alarm, maximum prealarm,<br />

minimum alarm and minimum pre-alarm.<br />

Fig. 34 gives an example of the monitor functions for<br />

constant torque applications.<br />

Fig. 33 Copy and load parameters between VSD and control<br />

panel<br />

7.5 Load Monitor and Process<br />

Protection [400]<br />

7.5.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a<br />

load monitor. Load monitors are used to protect<br />

machines and processes against mechanical overload<br />

and underload, such as a conveyer belt or screw conveyer<br />

jamming, belt failure on a fan or a pump dry running.<br />

The load is measured in the VSD by the<br />

calculated motor shaft torque. There is an overload<br />

alarm (Max Alarm and Max Pre-Alarm) and an underload<br />

alarm (Min Alarm and Min Pre-Alarm).<br />

The Basic Monitor type uses fixed levels for overload<br />

and underload (pre-)alarms over the whole speed<br />

range. This function can be used in constant load<br />

applications where the torque is not dependent on the<br />

speed, e.g. conveyor belt, displacement pump, screw<br />

pump, etc.<br />

For applications with a torque that is dependent on the<br />

speed, the Load Curve monitor type is preferred. By<br />

measuring the actual load curve of the process, characteristically<br />

over the range of minimum speed to<br />

maximum speed, an accurate protection at any speed<br />

can be established.<br />

40 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Torque [%]<br />

[4161] MaxAlarmMar (15%)<br />

[4171] MaxPreAlMar (10%)<br />

[41B]<br />

100%<br />

Default: T NOM or<br />

Autoset: T MOMENTARY<br />

[4181] MinPreAlMar (10%)<br />

[4191] MinAlarmMar (15%)<br />

Max Alarm<br />

Max PreAlarm<br />

Min Alarm<br />

Min PreAlarm<br />

Ramp-up phase<br />

[413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

[4172] MaxPreAlDel (0.1s)<br />

[414] Start Delay (0.2s)<br />

Stationary phase<br />

Stationary phase<br />

Ramp-down phase<br />

[413] Ramp Alarm=On or Off<br />

[413] Ramp Alarm=On or Off [413] Ramp Alarm=On<br />

[411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min [411] Alarm Select=Max or Max0Min<br />

[4162] MaxAlarmDel (0.1s)<br />

t [s]<br />

[4172] MaxPreAlDel (0.1s)<br />

Must be


7.6 Pump sequencer function<br />

7.6.1 Introduction<br />

A maximum of 4 pumps can be controlled with the<br />

standard <strong>SX</strong>-V variable speed drive.<br />

If I/O Board options are installed, a maximum of 7<br />

pumps can be controlled. The I/O Board can also be<br />

used as a general extended I/O.<br />

The Pump Control function is used to control a<br />

number of drives (pumps, fans, etc., with a maximum<br />

of 3 additional drives per I/O-board connected) of<br />

which one is always driven by the <strong>SX</strong>-V. Other names<br />

for this kind of controllers are 'Cascade controller' or<br />

'Hydrophore controller'.<br />

Depending on the flow, pressure or temperature, additional<br />

pumps can be activated via the appropriate signals<br />

by the output relays of the <strong>SX</strong>-V and/or the I/O<br />

Board. The system is developed in such a way that<br />

one <strong>SX</strong>-V will be the master of the system.<br />

Select relay on the control board or on an option<br />

board. The relays are set to functions for controlling<br />

pumps. In the pictures in this section, the relays are<br />

named R:Function, e.g. R:SlavePump1, which means<br />

a relay on the control board or on an option board set<br />

to function SlavePump1.<br />

Set FLOW<br />

Feedback<br />

FLOW<br />

<strong>SX</strong>-V<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PI D<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

P1 P2 P3 P4 P5 P6<br />

All additional pumps can be activated via a VSD, soft<br />

starter, Y/ or D.O.L. switches.<br />

Set<br />

PRESSURE<br />

Feedback<br />

PRESSURE<br />

<strong>SX</strong>-V<br />

R:SlavePump1<br />

MASTER<br />

R:SlavePump2<br />

AnIn<br />

PI D<br />

AnIn<br />

PM<br />

R:SlavePump3<br />

R:SlavePump4<br />

R:SlavePump5<br />

R:SlavePump6<br />

Pr essur e<br />

4<br />

3<br />

2<br />

1<br />

P1 P2 P3 P4 P5 P6<br />

Power<br />

Flow<br />

Fig. 36 Pressure control with pump control option<br />

(50-PC-2_1)<br />

Pumps in parallel will operate as a flow controller, See<br />

Fig. 35.<br />

Pumps in series will operate as a pressure controller<br />

see Fig. 36. The basic control principle is shown in Fig.<br />

37.<br />

NOTE: Read this instruction <strong>manual</strong> carefully before<br />

commencing installation, connecting or working with<br />

the variable speed drive with Pump Control.<br />

R:SlavePump5<br />

R:SlavePump6<br />

FREQUENCY (master pump P)<br />

Add pump<br />

Pr essur e<br />

Stop pump<br />

Power<br />

Flow<br />

1 2 3 4<br />

Fig. 35 Flow control with pump control option<br />

(50-PC-1_1)<br />

P=on<br />

FLOW /<br />

PRESSURE<br />

P1=on P2=on P3=on P4=on P5=on P6=on<br />

FLOW /<br />

PRESSURE<br />

TIM E<br />

(50-PC-3_1)<br />

Fig. 37 Basic Control principle<br />

42 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.2 Fixed MASTER<br />

This is the default setting of the Pump Control. The<br />

<strong>SX</strong>-V controls the Master pump which is always running.<br />

The relay outputs start and stop the other pumps<br />

P1 to P6, depending on flow/pressure. In this configuration<br />

a maximum of 7 pumps can be controlled, see<br />

Fig. 38. To equalize the lifetime of the additional<br />

pumps it is possible to select the pumps depending<br />

on the run time history of each pump.<br />

R: SlavePump6<br />

R: SlavePump5<br />

<strong>SX</strong>-V<br />

R: SlavePump4<br />

R: SlavePump3<br />

MASTER<br />

R: SlavePump2<br />

R: SlavePump1<br />

R: MasterPump6<br />

R: MasterPump5<br />

R: MasterPump4<br />

R: MasterPump3<br />

R: MasterPump2<br />

R: MasterPump1<br />

P1 P2 P3 P4 P5 P6<br />

R:SlavePump6<br />

<strong>SX</strong>-V R:SlavePump5<br />

R:SlavePump4<br />

MASTER R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

See menu:<br />

[393] to [396]<br />

[553] to [55C]<br />

Fig. 39 Alternating MASTER Control<br />

(NG_50-PC-4_1)<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

NOTE: The pumps MUST have all the same power.<br />

See menu:<br />

[393] Select Drive<br />

[39H] to [39N] Run Time 1 - 6, Pump<br />

[554] to [55C] Relays<br />

Fig. 38 Fixed MASTER control<br />

NOTE: The pumps MAY have different powers, however<br />

the MASTER pump MUST always be the largest.<br />

7.6.3 Alternating MASTER<br />

With this function the Master pump is not fixed to the<br />

<strong>SX</strong>-V all the time. After the VSD is powered up or<br />

started again after a stop or sleep mode the Master<br />

pump is selected via the relay set to function Master<br />

Pump. section 7.6.7 on page 49 shows a detailed wiring<br />

diagram with 3 pumps. The purpose of this function<br />

is that all pumps are used equally, so the lifetime<br />

of all pumps, including the Master pump, will be equalized.<br />

Maximum 6 pumps can be controlled with this<br />

function.<br />

7.6.4 Feedback 'Status' input<br />

In this example the additional pumps are controlled by<br />

an other kind of drive (e.g. soft starter, frequency<br />

<strong>inverter</strong>, etc.). The digital inputs on the I/O Board can<br />

be programmed as a "Error" input for each pump. If a<br />

drive fails the digital input will monitor this and the<br />

PUMP CONTROL option will not use that particular<br />

drive anymore and automatically switch to another<br />

drive. This means that the control continues without<br />

using this (faulty) drive. This function can also be used<br />

to <strong>manual</strong>ly stop a particular pump for maintenance<br />

purposes, without shutting down the whole pump system.<br />

Of course the maximum flow/pressure is then<br />

limited to the maximum pump power of the remaining<br />

pumps.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 43


See menu:<br />

[529] to [52H] Digital Input<br />

[554] to [55C] Relay<br />

<strong>SX</strong>-V<br />

MASTER<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

feedback<br />

inputs<br />

DI:Pump1Feedb<br />

DI:Pump2Feedb<br />

DI:Pump3Feedb<br />

other<br />

drive<br />

other<br />

drive<br />

other<br />

drive<br />

(NG_50-PC-6_1)<br />

Fig. 40 Feedback "Status" input<br />

PM<br />

P1 P2 P3<br />

7.6.5 Fail safe operation<br />

Some pump systems must always have a minimum<br />

flow or pressure level, even if the frequency <strong>inverter</strong> is<br />

tripped or damaged. So at least 1 or 2 (or maybe all)<br />

additional pumps must keep running after the <strong>inverter</strong><br />

is powered down or tripped. This kind of "safe" pump<br />

operation can be obtained by using the NC contacts<br />

of the pump control relays. These can be programmed<br />

for each individual additional pump. In this example<br />

pumps P5 and P6 will run at maximum power if the<br />

<strong>inverter</strong> fails or is powered down.<br />

See menu:<br />

[554] to [55C] Relays<br />

[55D4] to [55DC] Mode<br />

<strong>SX</strong>-V<br />

MASTER<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

(50-PC-7_1)<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Fig. 41 Example of "Fail safe" operation<br />

44 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.6 PID control<br />

When using the Pump Control it is mandatory to activate<br />

the PID controller function. Analogue inputs AnIn1<br />

to AnIn4 can be set as functions for PID set values<br />

and/or feedback values.<br />

See menu:<br />

[381] to [385]<br />

[553] to [55C]<br />

[411] to [41C]<br />

Set<br />

Value<br />

Feedback<br />

Value<br />

<strong>SX</strong>-V<br />

MASTER<br />

AnIn<br />

PID<br />

AnIn<br />

R:SlavePump6<br />

R:SlavePump5<br />

R:SlavePump4<br />

R:SlavePump3<br />

R:SlavePump2<br />

R:SlavePump1<br />

PM<br />

P1 P2 P3 P4 P5 P6<br />

Flow/Pressure<br />

measurement<br />

(NG_50-PC-8_1)<br />

Fig. 42 PID control<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 45


7.6.7 Wiring Alternating Master<br />

Fig. 43 and Fig. 44 show the relay functions<br />

MasterPump1-6 and SlavePump1-6. The Master and<br />

Additional contactors also interlock with each other to<br />

prevent dual powering of the pump and damage to<br />

the <strong>inverter</strong>. (K1M/K1S, K2M/K2S, K3M/K3S). Before<br />

running, the <strong>SX</strong>-V will select a pump to be Master,<br />

depending on the pump run times.<br />

CAUTION: The wiring for the Alternating<br />

Master control needs special attention and<br />

! should be wired exactly as described here,<br />

to avoid destructive short circuit at the output of the<br />

<strong>inverter</strong>.<br />

PE<br />

L1<br />

L2<br />

L3<br />

PE L1 L2 L3<br />

<strong>SX</strong>-V<br />

U V W<br />

K1S<br />

K2S<br />

K3S<br />

K1M<br />

K2M<br />

K3M<br />

(NG_50-PC-10_1)<br />

P1<br />

3~<br />

P2<br />

3~<br />

P3<br />

3~<br />

Fig. 43 Power connections for Alternating MASTER circuit<br />

with 3 pumps<br />

~<br />

B1:R1<br />

Master<br />

Pump1<br />

B2:R1<br />

Slave<br />

Pump1<br />

B1:R2<br />

Master<br />

Pump2<br />

B2:R2<br />

Slave<br />

Pump2<br />

B1:R3<br />

Master<br />

Pump3<br />

B2:R3<br />

Slave<br />

Pump3<br />

K1S K1M K2S<br />

K2M<br />

K3S<br />

K3M<br />

K1M<br />

K1S<br />

K2M<br />

K2S<br />

K3M<br />

K3S<br />

N<br />

(NG_50-PC-11_3)<br />

Fig. 44 Control connections for Alternating MASTER circuit<br />

with 3 pumps<br />

46 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


7.6.8 Checklist And Tips<br />

1. Main Functions<br />

Start by choosing which of the two main functions to use:<br />

- "Alternating MASTER" function<br />

In this case the “Master” pump can be alternated, although this function needs slightly more complicated wiring than the<br />

“Fixed MASTER” function described below. The I/O Board option is necessary.<br />

- "Fixed MASTER" function:<br />

One pump is always the master, only the additional pumps alternate.<br />

Notice that there is a big difference in the wiring of the system between these main functions, so it not possible to switch<br />

between these 2 functions later on. For further information see section 7.6.2, page 46.<br />

2. Number of pumps/drives<br />

3. Pump size<br />

If the system consists of 2 or 3 pumps the I/O Board option is not needed. However, this does mean that the following<br />

functions are not then possible:<br />

- "Alternating MASTER" function<br />

- With isolated inputs<br />

With the I/O Board option installed, the maximum number of pumps is:<br />

- 6 pumps if "Alternating MASTER" function is selected. (see section 7.6.3 on page 46)<br />

- 7 pumps if "Fixed MASTER" function is selected. (see section 7.6.2, page 46)<br />

- "Alternating MASTER" function:<br />

The sizes of the pumps must be equal.<br />

- "Fixed MASTER" function:<br />

The pumps may have different power sizes, but the master pump (<strong>SX</strong>-V) must always have the greatest power.<br />

4. Programming the Digital inputs<br />

If the digital inputs are used, the digital input function must be set to Drive feedback.<br />

5. Programming the Relay outputs<br />

After the Pump controller is switched on in menu [391] the number of drives (pumps, fans, etc.) must be set in menu [392]<br />

(Number of Drives). The relays themselves must be set to the function SlavePump1-6 and if Alternate master is used,<br />

MasterPump1-6 as well.<br />

6. Equal Pumps<br />

If all pumps are equal in power size it is likely that the Upper band is much smaller than the Lower band, because the maximum<br />

pump discharge of the master pump is the same if the pump is connected to the mains (50Hz). This can give a very<br />

narrow hysteresis causing an unstable control area in the flow/pressure. By setting the maximum frequency of the <strong>inverter</strong><br />

only slightly above 50Hz it means that the master pump has a slightly bigger pump discharge than the pump on the mains.<br />

Of course caution is essential in order to prevent the master pump running at a higher frequency for a longer period of<br />

time, which in turn prevents the master pump from overloading.<br />

7. Minimum Speed<br />

With pumps and fans it is normal to use a minimum speed, because at lower speed the discharge of the pump or fan will<br />

be low until 30-50% of the nominal speed (depending on size, power, pump properties, etc.). When using a minimum<br />

speed, a much smoother and better control range of the whole system will be achieved.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 47


7.6.9 Functional Examples of Start/<br />

Stop Transitions<br />

Starting an additional pump<br />

This figure shows a possible sequence with all levels<br />

and functions involved when a additional pump is<br />

started by means of the pump control relays. The<br />

starting of the second pump is controlled by one of<br />

the relay outputs. The relay in this example starts the<br />

pump directly on line. Of course other start/stop<br />

equipment like a soft starter could be controlled by the<br />

relay output.<br />

Flow Set view ref. [310]<br />

Feedback Flow<br />

time<br />

Speed<br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition Speed Start<br />

[39E]<br />

Min speed<br />

[341]<br />

Lower band<br />

Start delay [399]<br />

Settle time start [39D]<br />

time<br />

2nd pump<br />

Speed<br />

Start ramp depends<br />

on start method<br />

Start command<br />

time<br />

Fig. 45 Time sequence starting an additional pump<br />

48 Main Features <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Stopping an additional pump<br />

This figure shows a possible sequence with all levels<br />

and functions involved when an additional pump is<br />

stopped by means of the pump control relays. The<br />

stopping of the second pump is controlled by one of<br />

the relay outputs. The relay in this example stops the<br />

pump directly on line. Of course other start/stop<br />

equipment like a soft starter could be controlled by the<br />

relay output.<br />

Set view ref. [310]<br />

Feedback Flow<br />

time<br />

Speed<br />

Master pump<br />

Max speed<br />

[343]<br />

Upper band<br />

Transition Speed Stop<br />

[39G]<br />

Min speed<br />

[341]<br />

Lower band<br />

Stop delay [39A]<br />

Settle time stop [39F]<br />

time<br />

2nd pump<br />

Speed<br />

Stop ramp depends<br />

on start method<br />

Stop command<br />

time<br />

(NG_50-PC-20_1)<br />

Fig. 46 Time sequence stopping an additional pump<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Main Features 49


8. EMC and Machine Directive<br />

8.1 EMC standards<br />

The variable speed drive complies with the following<br />

standards:<br />

EN(IEC)61800-3:2004 Adjustable speed electronic<br />

power drive systems, part 3, EMC product standards:<br />

Standard: category C3, for systems of rated supply<br />

voltage< 1000 VAC, intended for use in the second<br />

environment.<br />

Optional: Category C2, for systems of rated supply<br />

voltage


46 EMC and Machine Directive <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


9. Operation via the Control Panel<br />

This chapter describes how to use the control panel.<br />

The VSD can be delivered with a control panel or a<br />

blank panel.<br />

9.1 General<br />

The control panel displays the status of the VSD and is<br />

used to set all the parameters. It is also possible to<br />

control the motor directly from the control panel. The<br />

control panel can be built-in or located externally via<br />

serial communication. The VSD can be ordered without<br />

the control panel. Instead of the control panel<br />

there will be a blank panel.<br />

NOTE: The VSD can run without the control panel being<br />

connected. However the settings must be such that all<br />

control signals are set for external use.<br />

9.2 The control panel<br />

Fig. 35 Control panel<br />

LC Display<br />

LEDs<br />

Control Keys<br />

Toggle Key<br />

Function Keys<br />

9.2.1 The display<br />

The display is back lit and consists of 2 rows, each<br />

with space for 16 characters. The display is divided<br />

into six areas.<br />

The different areas in the display are described below:<br />

Fig. 36 The display<br />

Area A: Shows the actual menu number (3 or 4<br />

digits).<br />

Area B Shows if the menu is in the toggle loop or<br />

the<br />

VSD is set for Local operation.<br />

Area C: Shows the heading of the active menu.<br />

Area D: Shows the status of the VSD (3 digits).<br />

The following status indications are possible:<br />

Acc : Acceleration<br />

Dec : Deceleration<br />

I 2 t : Active I 2 t protection<br />

Run : Motor runs<br />

Trp : Tripped<br />

Stp : Motor is stopped<br />

VL : Operating at Voltage limit<br />

SL : Operating at Speed limit<br />

CL : Operating at Current limit<br />

TL : Operating at Torque limit<br />

OT : Operating at Temperature Limit<br />

LV : Operating at Low Voltage<br />

Sby : Operating from Standby power supply<br />

SST : Operating Safe Stop, is blinking<br />

when<br />

level<br />

Area E:<br />

motor<br />

Area F:<br />

menu.<br />

level<br />

A<br />

221T<br />

Motor Volt<br />

StpA<br />

M1: 400V<br />

D<br />

B<br />

E<br />

C<br />

F<br />

activated<br />

LCL : Operating with low cooling liquid<br />

Shows active parameter set and if it is a<br />

parameter.<br />

Shows the setting or selection in the active<br />

This area is empty at the 1st level and 2nd<br />

menu. This area also shows warnings and<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 47


alarm<br />

messages.<br />

300 Process Appl<br />

StpA<br />

Fig. 37 Example 1st level menu<br />

220 Motor Data<br />

StpA<br />

Fig. 38 Example 2nd level menu<br />

221 Motor Volt<br />

Stp M1: 400V<br />

A<br />

Fig. 39 Example 3d level menu<br />

4161 Max Alarm<br />

Stp 0.1s<br />

A<br />

Table 16<br />

RUN<br />

(green)<br />

Motor shaft<br />

rotates<br />

Motor speed<br />

increase/<br />

decrease<br />

Motor<br />

stopped<br />

NOTE: If the control panel is built in, the back light of the<br />

display has the same function as the Power LED in Table<br />

16 (Blank panel LEDs).<br />

9.2.4 Control keys<br />

The control keys are used to give the Run, Stop or<br />

Reset commands directly. As default these keys are<br />

disabled, set for remote control. Activate the control<br />

keys by selecting Keyboard in the menus Ref Control<br />

[214] and Reset Ctrl [216].<br />

If the Enable function is programmed on one of the<br />

digital inputs, this input must be active to allow Run/<br />

Stop commands from the control panel.<br />

Table 17<br />

LED indication<br />

Control keys<br />

RUN L:<br />

gives a start with<br />

left rotation<br />

Fig. 40 Example 4th level menu<br />

9.2.2 Indications on the display<br />

The display can indicate +++ or - - - if a parameter is<br />

out of range. In the VSD there are parameters which<br />

are dependent on other parameters. For example, if<br />

the speed reference is 500 and the maximum speed<br />

value is set to a value below 500, this will be indicated<br />

with +++ on the display. If the minimum speed value is<br />

set over 500, - - - is displayed.<br />

9.2.3 LED indicators<br />

The symbols on the control panel have the following<br />

functions:<br />

Run<br />

Green<br />

Fig. 41 LED indications<br />

Table 16<br />

Symbol<br />

POWER<br />

(green)<br />

LED indication<br />

Trip<br />

Red<br />

Function<br />

Power<br />

Green<br />

ON BLINKING OFF<br />

Power on ---------------- Power off<br />

TRIP (red) VSD tripped Warning/Limit No trip<br />

STOP/RESET:<br />

RUN R:<br />

stops the motor or resets<br />

the VSD after a trip<br />

gives a start with<br />

right rotation<br />

NOTE: It is not possible to simultaneously activate the<br />

Run/Stop commands from the keyboard and remotely<br />

from the terminal strip (terminals 1-22).<br />

9.2.5 The Toggle and Loc/Rem Key<br />

This key has two functions: Toggle and<br />

switching between Loc/Rem function.<br />

Press one second to use the toggle<br />

function<br />

Press and hold the toggle key for more than five seconds<br />

to switch between Local and Remote function,<br />

depending on the settings in [2171] and [2172].<br />

When editing values, the toggle key can be used to<br />

change the sign of the value, see section 9.5, page<br />

51.<br />

Toggle function<br />

Using the toggle function makes it possible to easily<br />

step through selected menus in a loop. The toggle<br />

loop can contain a maximum of ten menus. As default<br />

the toggle loop contains the menus needed for Quick<br />

Setup. You can use the toggle loop to create a quick-<br />

48 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


menu for the parameters that are most importance to<br />

your specific application.<br />

NOTE: Do not keep the Toggle key pressed for more than<br />

five seconds without pressing either the +, - or Esc key,<br />

as this may activate the Loc/Rem function of this key<br />

instead. See menu [217].<br />

Add a menu to the toggle loop<br />

1. Go to the menu you want to add to the loop.<br />

2. Press the Toggle key and keep it pressed while<br />

pressing the + key.<br />

Delete a menu from the toggle loop<br />

1. Go to the menu you want to delete using the toggle<br />

key.<br />

2. Press the Toggle key and keep it pressed while<br />

pressing the - key.<br />

Delete all menus from the toggle loop<br />

1. Press the Toggle key and keep it pressed while<br />

pressing the Esc key.<br />

2. Confirm with Enter. The menu Preferred view [100]<br />

is displayed.<br />

Default toggle loop<br />

Fig. 42 shows the default toggle loop. This loop contains<br />

the necessary menus that need to be set before<br />

starting. Press Toggle to enter menu [211] then use<br />

the Next key to enter the sub menus [212] to [21A]<br />

and enter the parameters. When you press the Toggle<br />

key again, menu [221] is displayed.<br />

100<br />

511 Toggle loop 211<br />

341<br />

331<br />

Fig. 42 Default toggle loop<br />

Indication of menus in toggle loop<br />

Menus included in the toggle loop are indicated with a<br />

T in area B in the display.<br />

Loc/Rem function<br />

The Loc/Rem function of this key is disabled as<br />

default. Enable the function in menu [2171] and/or<br />

[2172].<br />

With the function Loc/Rem you can change between<br />

local and remote control of the VSD from the control<br />

panel. The function Loc/Rem can also be changed via<br />

the DigIn, see menu Digital inputs [520]<br />

Change control mode<br />

1. Press the Loc/Rem key for five seconds, until<br />

Local? or Remote? is displayed.<br />

2. Confirm with Enter.<br />

3. Cancel with Esc.<br />

213<br />

221<br />

212<br />

Sub menus<br />

222<br />

Sub menus<br />

228<br />

Local mode<br />

Local mode is used for temporary operation. When<br />

switched to LOCAL operation, the VSD is controlled<br />

via the defined Local operation mode, i.e. [2171] and<br />

[2172]. The actual status of the VSD will not change,<br />

e.g. Run/Stop conditions and the actual speed will<br />

remain exactly the same. When the VSD is set to Local<br />

operation, the display will show L in area B in the display.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 49


The VSD will be started and stopped using the keys<br />

on the control panel. The reference signal can be controlled<br />

using the + and - keys on the keyboard, when<br />

in the menu [310] according to the selection in Keyboard<br />

Reference menu [369].<br />

Remote mode<br />

When the VSD is switched to REMOTE operation, the<br />

VSD will be controlled according to selected control<br />

methods in the menu’s Reference Control [214], Run/<br />

Stop Control [215] and Reset Control [216]. The actual<br />

operation status of the VSD will reflect the status and<br />

settings of the programmed control selections, e.g.<br />

Start/Stop status and settings of the programmed<br />

control selections, acceleration or deceleration speed<br />

according to the selected reference value in the menu<br />

Acceleration Time [331] / Deceleration Time [332].<br />

To monitor the actual Local or Remote status of the<br />

VSD control, a “Loc/Rem” function is available on the<br />

Digital Outputs or Relays. When the VSD is set to<br />

Local, the signal on the DigOut or Relay will be active<br />

high, in Remote the signal will be inactive low. See<br />

menu Digital Outputs [540] and Relays [550].<br />

9.3 The menu structure<br />

The menu structure consists of 4 levels:<br />

Main Menu<br />

1st level<br />

2nd level<br />

3rd level<br />

4th level<br />

The first character in the menu number.<br />

The second character in the menu number.<br />

The third character in the menu number.<br />

The fourth character in the menu number.<br />

This structure is consequently independent of the<br />

number of menus per level.<br />

For instance, a menu can have one selectable menu<br />

(Set/View Reference Value [310]), or it can have 17<br />

selectable menus (menu Speeds [340]).<br />

NOTE: If there are more than 10 menus within one level,<br />

the numbering continues in alphabetic order.<br />

9.2.6 Function keys<br />

The function keys operate the menus and are also<br />

used for programming and read-outs of all the menu<br />

settings.<br />

Table 18<br />

Function keys<br />

ENTER key:<br />

ESCAPE key:<br />

PREVIOUS key:<br />

NEXT key:<br />

- key:<br />

+ key:<br />

Fig. 43 Menu structure<br />

- step to a lower menu<br />

level<br />

- confirm a changed<br />

setting<br />

- step to a higher<br />

menu level<br />

- ignore a changed<br />

setting, without<br />

confirming<br />

- step to a previous<br />

menu within the same<br />

level<br />

- go to more significant<br />

digit in edit mode<br />

- step to a next menu<br />

within the same level<br />

- go to less significant<br />

digit in edit mode<br />

- decrease a value<br />

- change a selection<br />

- increase a value<br />

- change a selection<br />

4161<br />

4162<br />

Fig. 44 Menu structure<br />

NG_06-F28<br />

9.3.1 The main menu<br />

This section gives you a short description of the functions<br />

in the Main Menu.<br />

100 Preferred View<br />

Displayed at power-up. It displays the actual process<br />

value as default. Programmable for many other readouts.<br />

200 Main Setup<br />

Main settings to get the VSD operable. The motor<br />

data settings are the most important. Also option utility<br />

and settings.<br />

50 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


300 Process and Application Parameters<br />

Settings more relevant to the application such as Reference<br />

Speed, torque limitations, PID control settings,<br />

etc.<br />

400 Shaft Power Monitor and Process<br />

Protection<br />

The monitor function enables the VSD to be used as a<br />

load monitor to protect machines and processes<br />

against mechanical overload and underload.<br />

500 Inputs/Outputs and Virtual<br />

Connections<br />

All settings for inputs and outputs are entered here.<br />

600 Logical Functions and Timers<br />

All settings for conditional signal are entered here.<br />

700 View Operation and Status<br />

Viewing all the operational data like frequency, load,<br />

power, current, etc.<br />

800 View Trip Log<br />

Viewing the last 10 trips in the trip memory.<br />

900 Service Information and VSD Data<br />

Electronic type label for viewing the software version<br />

and VSD type.<br />

9.4 Programming during<br />

operation<br />

Most of the parameters can be changed during operation<br />

without stopping the VSD. Parameters that can<br />

not be changed are marked with a lock symbol in the<br />

display.<br />

NOTE: If you try to change a function during operation<br />

that only can be changed when the motor is stopped, the<br />

message “Stop First” is displayed.<br />

9.5 Editing values in a menu<br />

Most values in the second row in a menu can be<br />

changed in two different ways. Enumerated values like<br />

the baud rate can only be changed with alternative 1.<br />

2621 Baudrate<br />

Stp 38400<br />

Alternative 1<br />

When you press the + or - keys to change a value, the<br />

cursor is blinking to the left in the display and the value<br />

is increased or decreased when you press the appropriate<br />

key. If you keep the + or - keys pressed, the<br />

value will increase or decrease continuously. When<br />

you keep the key pressed the change speed will<br />

increase. The Toggle key is used to change the sign of<br />

the entered value. The sign of the value will also<br />

change when zero is passed. Press Enter to confirm<br />

the value.<br />

331 Acc Time<br />

Stp A<br />

2.00s<br />

Blinking<br />

Alternative 2<br />

Press the + or - key to enter edit mode. Then press<br />

the Prev or Next key to move the cursor to the right<br />

most position of the value that should be changed.<br />

The cursor will make the selected character blink.<br />

Move the cursor using the Prev or Next keys. When<br />

you press the + or - keys, the character at the cursor<br />

position will increase or decrease. This alternative is<br />

suitable when you want to make large changes, i.e.<br />

from 2 s to 400 s.<br />

To change the sign of the value, press the toggle key.<br />

This makes it possible to enter negative values.<br />

Example: When you press Next the 4 will blink.<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Blinking<br />

Press Enter to save the setting and Esc to leave the<br />

edit mode.<br />

9.6 Copy current parameter to<br />

all sets<br />

When a parameter is displayed, press the Enter key<br />

for 5 seconds. Now the text To all sets? is displayed.<br />

Press Enter to copy the setting for current parameter<br />

to all sets.<br />

9.7 Programming example<br />

This example shows how to program a change of the<br />

Acc. Time set from 2.0 s to 4.0 s.<br />

The blinking cursor indicates that a change has taken<br />

place but is not saved yet. If at this moment, the<br />

power fails, the change will not be saved.<br />

Use the ESC, Prev, Next or the Toggle keys to proceed<br />

and to go to other menus.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Operation via the Control Panel 51


100 0rpm<br />

Stp A<br />

0.0A<br />

Menu 100 appears<br />

after power-up.<br />

200 MAIN SETUP<br />

StpA<br />

Press Next for menu<br />

[200].<br />

300 Process<br />

StpA<br />

Press Next for menu<br />

[300].<br />

310 Set/View Ref<br />

StpA<br />

Press Enter for menu<br />

[310].<br />

330 Run/Stop<br />

StpA<br />

Press Next two times<br />

for menu [330].<br />

331 Acc Time<br />

StpA<br />

2.00s<br />

Press Enter for menu<br />

[331].<br />

331 Acc Time<br />

Stp A<br />

2.00s<br />

Blinking<br />

Keep key pressed<br />

until desired value has<br />

been reached.<br />

331 Acc Time<br />

StpA<br />

4.00s<br />

Save the changed<br />

value by pressing<br />

Enter.<br />

Fig. 45 Programming example<br />

52 Operation via the Control Panel <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


10. Serial communication<br />

The VSD provides possibility for different types of serial<br />

communication.<br />

• Modbus RTU via RS232/485<br />

• Fieldbuses as Profibus DP and DeviceNet<br />

• Industrial Ethernet type Modbus/TCP<br />

10.1 Modbus RTU<br />

The VSD has an asynchronous serial communication<br />

interface behind the control panel. The protocol used<br />

for data exchange is based in the Modbus RTU protocol,<br />

originally developed by Modicon. the physical<br />

connection is RS232. The VSD acts as a slave with<br />

address 1 in a master-slave configuration. The communication<br />

is half-duplex. It has a standard no return<br />

zero (NRZ) format.<br />

The baud rate is fixed to 9600.<br />

The character frame format (always 11 bits) has:<br />

• one start bit<br />

• eight data bits<br />

• two stop bits<br />

• no parity<br />

It is possible to temporarily connect a personal computer<br />

with for example the software EmoSoftCom<br />

(programming and monitoring software) to the RS232<br />

connector on the control panel. This can be useful<br />

when copying parameters between variable speed<br />

drives etc. For permanent connection of a personal<br />

computer you have to use one of the communication<br />

option boards.<br />

NOTE: This RS232 port is not isolated.<br />

Correct and safe use of a RS232 connection<br />

depends on the ground pins of both ports<br />

being the same potential. Problems can<br />

occur when connecting two ports of e.g.<br />

machinery and computers where both ground pins are<br />

not the same potential. This may cause hazardous<br />

ground loops that can destroy the RS232 ports.<br />

The control panel RS232 connection is not galvanic<br />

isolated.<br />

The optional RS232/485 card is galvanic isolated.<br />

Fig. 46 Mounting frame for the control panel<br />

10.2 Parameter sets<br />

Communication information for the different parameter<br />

sets.<br />

The different parameter sets in the VSD have the following<br />

DeviceNet instance numbers and Profibus slot/<br />

index numbers:<br />

Parameter<br />

set<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

A 43001–43556 168/160 to 170/205<br />

B 44001–44529 172/140 to 174/185<br />

C 45001–45529 176/120 to 178/165<br />

D 46001–46529 180/100 to 182/145<br />

Parameter set A contains parameters 43001 to<br />

43556. The parameter sets B, C and D contains the<br />

same type of information. For example parameter<br />

43123 in parameter set A contain the same type of<br />

information as 44123 in parameter set B.<br />

A DeviceNet instance number can easily be converted<br />

into a Profibus slot/index number according to<br />

description in section section 11.8.2, page 153.<br />

10.3 Motor data<br />

Communication information for the different motors.<br />

Note that the control panel RS232 connection can<br />

safely be used in combination with commercial available<br />

isolated USB to RS232 converters.<br />

Motor<br />

Modbus/DeviceNet<br />

Instance number<br />

Profibus<br />

Slot/Index<br />

M1 43041–43048 168/200 to 168/207<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 53


Motor<br />

M2 44041–44048 172/180 to 174/187<br />

M3 45041–45048 176/160 to 176/167<br />

M4 46041–46048 180/140 to 180/147<br />

M1 contains parameters 43041 to 43048. The M2,<br />

M3, and M4 contains the same type of information.<br />

For example parameter 43043 in motor M1 contain<br />

the same type of information as 44043 in M2.<br />

A DeviceNet instance number can easily be converted<br />

into a Profibus slot/index number according to<br />

description in section section 11.8.2, page 153.<br />

10.4 Start and stop commands<br />

Set start and stop commands via serial communication..<br />

Modbus/DeviceNet<br />

Instance number<br />

Modbus/DeviceNet<br />

Instance number<br />

Integer<br />

value<br />

42901 0 Reset<br />

42902 1<br />

42903 2 RunR<br />

42904 3 RunL<br />

Profibus<br />

Slot/Index<br />

Function<br />

Run, active together with<br />

either RunR or RunL to<br />

perform start.<br />

Note! Bipolar mode is activated if both RunR and RunL is<br />

active.<br />

10.5.1 Process value<br />

It is also possible to send the Process value over a bus<br />

(e.g. from a processor or temperature sensor).<br />

Set menu Process Source [321] to F(Bus). Use following<br />

parameter data for the process value:<br />

Default 0<br />

Range -32768 to 32767<br />

Corresponding to<br />

-100% to 100% ref<br />

Communication information<br />

Modbus /DeviceNet<br />

Instance number<br />

42906<br />

Profibus slot /Index 168/65<br />

Fieldbus format<br />

Modbus format<br />

Int<br />

Int<br />

Example:<br />

(See Fielbus option <strong>manual</strong> for detalied information)<br />

We would like to control the <strong>inverter</strong> over a bus system<br />

using the first two bytes of the Basic Control Message<br />

by setting menu [2661] FB Signal 1 to 49972. Further,<br />

we also want to transmit a 16 bit signed reference and<br />

process value. This is done by setting menu [2662] FB<br />

Signal 2 to 42905 and menu [2663] FB Signal 3 to<br />

42906.<br />

NOTE: It is possible to view the transmitted process<br />

value in control panel menu Operation [710]. The<br />

presented value is depending on settings in menus<br />

Process Min [324] and Process Max [325].<br />

10.5 Reference signal<br />

When menu Reference Control [214] is set to “Com”<br />

the following parameter data should be used:<br />

Default 0<br />

Range -32768 to 32767<br />

Corresponding to<br />

Communication information<br />

Modbus /DeviceNet<br />

Instance number<br />

42905<br />

Profibus slot /Index 168/64<br />

Fieldbus format<br />

Modbus format<br />

-100% to 100% ref<br />

Int<br />

Int<br />

The reference value is set in modbus number 42905.<br />

0-4000 h corresponds to 0-100% of actual reference<br />

value.<br />

10.6 Description of the EInt<br />

formats<br />

Modbus parameters can have different formats e.g. a<br />

standard unsigned/signed integer, or eint. EInt, which<br />

is described below. All parameters written to a register<br />

may be rounded to the number of significant digits<br />

used in the internal system.<br />

54 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


If a parameter is in Eint format, the 16 bit number<br />

should be interpreted like this:<br />

F EEEE MMMMMMMMMMM<br />

F<br />

Format bit:<br />

0=Unsinged integer<br />

mode,<br />

1=Eint mode<br />

EEEE<br />

2 complement signed<br />

exponent<br />

MMMMMMMMMMM 2 complement signed<br />

mantissa.<br />

If the format bit is 0, then can a positive number 0-<br />

32767 be represented by bit 0-14.<br />

If the format bit is 1, then is the number interpreted as<br />

this:<br />

Value = M * 10^E<br />

NOTE: Parameters with EInt format may return values in<br />

both formats (F=0 or F=1).<br />

Example<br />

If you write the value 1004 to a register and this register<br />

has 3 significant digits, it will be stored as 1000.<br />

In the floating point format (F=1), one 16-bit word is<br />

used to represent large (or very small numbers) with 3<br />

significant digits.<br />

If data is read or written as a fixed point (i.e. no decimals)<br />

number between 0-32767, the 15-bit fixed point<br />

format (F=0) may be used.<br />

F=Format. 1=floating point format, 0=15 bit as 15-bit<br />

fixed point format.<br />

The matrix below describes the contents of the 16-bit<br />

word for the two different EInt formats:<br />

Value Binary<br />

-8 1000<br />

-7 1001<br />

..<br />

-2 1110<br />

-1 1111<br />

0 0000<br />

1 0001<br />

2 0010<br />

..<br />

6 0110<br />

7 0111<br />

The value represented by the EInt floating point format<br />

is m·10 e .<br />

To convert a value from the EInt floating point format<br />

to a floating point value, use the formula above.<br />

To convert a floating point value to the EInt floating<br />

point format, see the code float_to_eint below.<br />

Example<br />

The number 1.23 would be represented by this in EInt<br />

F EEEE MMMMMMMMMMM<br />

1 1110 00001111011<br />

F=1 -> Eint<br />

E=-2<br />

M=123<br />

The value is then 123x10 -2 = 1.23<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

F=1 e3 e2 e1 e0 m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 m0<br />

F=0 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

Example of floating point format<br />

e3-e0 4-bit signed exponent.<br />

-8..+7 (binary 1000 .. 0111)<br />

m10-m0 11-bit signed mantissa.<br />

-1024..+1023 (binary<br />

10000000000..01111111111)<br />

A signed number should be represented as a two<br />

complement binary number, like below:<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 55


Programming example:<br />

typedef struct<br />

{<br />

int m:11; // mantissa, -1024..1023<br />

int e: 4; // exponent -8..7<br />

unsigned int f: 1; // format, 1->special emoint format<br />

} eint16;<br />

//---------------------------------------------------------------------------<br />

unsigned short int float_to_eint16(float value)<br />

{<br />

eint16 etmp;<br />

int dec=0;<br />

while (floor(value) != value && dec=0 && value=-1000 && value=0)<br />

etmp.m=1; // Set sign<br />

else<br />

etmp.m=-1; // Set sign<br />

value=fabs(value);<br />

while (value>1000)<br />

{<br />

etmp.e++; // increase exponent<br />

value=value/10;<br />

}<br />

value+=0.5; // round<br />

etmp.m=etmp.m*value; // make signed<br />

}<br />

Rreturn (*(unsigned short int *)&etmp);<br />

}<br />

//---------------------------------------------------------------------------<br />

float eint16_to_float(unsigned short int value)<br />

{<br />

float f;<br />

eint16 evalue;<br />

evalue=*(eint16 *)&value;<br />

if (evalue.f)<br />

{<br />

if (evalue.e>=0)<br />

f=(int)evalue.m*pow10(evalue.e);<br />

else<br />

f=(int)evalue.m/pow10(abs(evalue.e));<br />

}<br />

else<br />

f=value;<br />

return f;<br />

}<br />

//---------------------------------------------------------------------------<br />

56 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Example of 15-bit fixed point format<br />

The value 72.0 can be represented as the fixed point<br />

number 72. It is within the range 0-32767, which<br />

means that the 15-bit fixed point format may be used.<br />

The value will then be represented as:<br />

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0<br />

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0<br />

Where bit 15 indicates that we are using the fixed<br />

point format (F=0).<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Serial communication 57


58 Serial communication <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11. Functional Description<br />

This chapter describes the menus and parameters in<br />

the software. You will find a short description of each<br />

function and information about default values, ranges,<br />

etc. There are also tables containing communication<br />

information. You will find the Modbus, DeviceNet and<br />

Fieldbus address for each parameter as well as the<br />

enumeration for the data.<br />

NOTE: Functions marked with the sign<br />

changed during Run Mode.<br />

Description of table layout<br />

Default:<br />

Selection or<br />

range<br />

cannot be<br />

Resolution of settings<br />

The resolution for all range settings described in this<br />

chapter is 3 significant digits. Exceptions are speed<br />

values which are presented with 4 significant digits.<br />

Table 19 shows the resolutions for 3 significant digits.<br />

Table 19<br />

Integer value of<br />

selection<br />

Description<br />

3 Digit Resolution<br />

0.01-9.99 0.01<br />

10.0-99.9 0.1<br />

100-999 1<br />

1000-9990 10<br />

10000-99900 100<br />

Menu no.<br />

name<br />

<br />

Menu<br />

11.1 Preferred View [100]<br />

This menu is displayed at every power-up. During<br />

operation, the menu [100] will automatically be displayed<br />

when the keyboard is not operated for 5 minutes.<br />

The automatic return function will be switched off<br />

when the Toggle and Stop key is pressed simultaneously.<br />

As default it displays the actual current.<br />

100 (1st Line)<br />

Stp A (2nd Line)<br />

Fig. 47 Display functions<br />

11.1.1 1st Line [110]<br />

Sets the content of the upper row in the menu [100]<br />

Preferred View.<br />

Default:<br />

Dependent on menu<br />

Process Val<br />

Process Val 0 Process value<br />

Speed 1 Speed<br />

Torque 2 Torque<br />

Process Ref 3 Process reference<br />

Shaft Power 4 Shaft power<br />

El Power 5 Electrical power<br />

Current 6 Current<br />

Output volt 7 Output voltage<br />

Frequency 8 Frequency<br />

DC Voltage 9 DC voltage<br />

Heatsink Tmp 10 Heatsink temperature<br />

Motor Temp 11 Motor temperature<br />

VSD Status 12 VSD status<br />

Run Time 13 Run Time<br />

Energy 14 Energy<br />

Mains Time 15 Mains time<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43001<br />

Profibus slot/index 168/160<br />

Fieldbus format<br />

Modbus format<br />

110 1st Line<br />

StpA<br />

Process Val<br />

UInt<br />

UInt<br />

100 0rpm<br />

Stp A<br />

0.0A<br />

Menu [100], Preferred View displays the settings made<br />

in menu [110], 1st line, and [120], 2nd line. See Fig.<br />

47.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 59


11.1.2 2nd Line [120]<br />

Sets the content of the lower row in the menu [100]<br />

Preferred View. Same selection as in menu [110].<br />

Default:<br />

Current<br />

11.2 Main Setup [200]<br />

The Main Setup menu contains the most important<br />

settings to get the VSD operational and set up for the<br />

application. It includes different sub menus concerning<br />

the control of the unit, motor data and protection, utilities<br />

and automatic resetting of faults. This menu will<br />

instantaneously be adapted to build in options and<br />

show the required settings.<br />

11.2.1 Operation [210]<br />

Selections concerning the used motor, VSD mode,<br />

control signals and serial communication are<br />

described in this submenu and is used to set the VSD<br />

up for the application.<br />

Language [211]<br />

Select the language used on the LC Display. Once the<br />

language is set, this selection will not be affected by<br />

the Load Default command.<br />

Default:<br />

English<br />

English 0 English selected<br />

Svenska 1 Swedish selected<br />

Nederlands 2<br />

Dutch selected<br />

Deutsch 3 German selected<br />

Français 4 French selected<br />

Español 5 Spanish selected<br />

Руccкий 6 Russian selected<br />

Italiano 7 Italian selected<br />

Česky 8 Czech selected<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43011<br />

Profibus slot/index 168/170<br />

Fieldbus format<br />

Modbus format<br />

120 2nd Line<br />

StpA<br />

Current<br />

211 Language<br />

Stp A English<br />

UInt<br />

UInt<br />

Select Motor [212]<br />

This menu is used if you have more than one motor in<br />

your application. Select the motor to define. It is possible<br />

to define up to four different motors, M1 to M4, in<br />

the VSD.<br />

Default:<br />

M1 0<br />

M2 1<br />

M3 2<br />

M4 3<br />

M1<br />

Communication information<br />

Drive Mode [213]<br />

This menu is used to set the control mode for the<br />

motor. Settings for the reference signals and read-outs<br />

is made in menu Process source, [321].<br />

• V/Hz Mode, output speed [721] in rpm, is used<br />

when several motors in parallel of different type or<br />

size are connected or if parallel motors are not<br />

mechanically connected to the load.<br />

Communication information<br />

Motor Data is connected to selected<br />

motor.<br />

Modbus Instance no/DeviceNet no: 43012<br />

Profibus slot/index 168/171<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

V/Hz 2<br />

V/Hz<br />

UInt<br />

UInt<br />

All control loops are related to frequency<br />

control.<br />

NOTE: All the functions and menu readouts<br />

with regard to speed and rpm (e.g.<br />

Max Speed = 1500 rpm, Min Speed=0<br />

rpm, etc.) remain speed and rpm,<br />

although they represent the output<br />

frequency.<br />

Modbus Instance no/DeviceNet no: 43013<br />

Profibus slot/index 168/172<br />

Fieldbus format<br />

Modbus format<br />

212 Select Motor<br />

StpA<br />

M1<br />

213 Drive Mode<br />

StpA<br />

V/Hz<br />

UInt<br />

UInt<br />

60 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Reference control [214]<br />

To control the speed of the motor, the VSD needs a<br />

reference signal. This reference signal can be controlled<br />

by a remote source from the installation, the<br />

keyboard of the VSD, or by serial or fieldbus communication.<br />

Select the required reference control for the<br />

application in this menu.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Option 3<br />

Remote<br />

Communication information<br />

The reference signal comes from the analogue<br />

inputs of the terminal strip (terminals<br />

1-22).<br />

Reference is set with the + and - keys on<br />

the Control Panel. Can only be done in<br />

menu Set/View reference [310].<br />

The reference is set via the serial communication<br />

(RS 485, Fieldbus.) See section<br />

section 10.5 for further information.<br />

The reference is set via an option. Only<br />

available if the option can control the reference<br />

value.<br />

NOTE: If the reference is switched from Remote to<br />

Keyboard, the last remote reference value will be the<br />

default value for the control panel.<br />

Modbus Instance no/DeviceNet no: 43014<br />

Profibus slot/index 168/173<br />

Fieldbus format<br />

Modbus format<br />

214 Ref Control<br />

StpA<br />

Remote<br />

UInt<br />

UInt<br />

Run/Stop Control [215]<br />

This function is used to select the source for run and<br />

stop commands. Start/stop via analogue signals can<br />

be achieved by combining a few functions. This is<br />

described in the Chapter 7. page 35.<br />

215 Run/Stp Ctrl<br />

StpA<br />

Remote<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43015<br />

Profibus slot/index 168/174<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Reset Contmrol [216]<br />

When the VSD is stopped due to a failure, a reset<br />

command is required to make it possible to restart the<br />

VSD. Use this function to select the source of the reset<br />

signal.<br />

Default:<br />

Remote 0<br />

Keyboard 1<br />

Com 2<br />

Remote +<br />

Keyb<br />

Com +<br />

Keyb<br />

Rem+Keyb<br />

+Com<br />

3<br />

4<br />

5<br />

Option 6<br />

Remote<br />

Communication information<br />

216 Reset Ctrl<br />

StpA<br />

Remote<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22).<br />

The command comes from the command<br />

keys of the Control Panel.<br />

The command comes from the serial<br />

communication (RS 485, Fieldbus).<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22) or the<br />

keyboard.<br />

The command comes from the serial<br />

communication (RS485, Fieldbus) or the<br />

keyboard.<br />

The command comes from the inputs of<br />

the terminal strip (terminals 1-22), the<br />

keyboard or the serial communication<br />

(RS485, Fieldbus).<br />

The command comes from an option.<br />

Only available if the option can control<br />

the reset command.<br />

Modbus Instance no/DeviceNet no: 43016<br />

Profibus slot/index 168/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Remote<br />

Remote 0<br />

The start/stop signal comes from the digital<br />

inputs of the terminal strip (terminals 1-22).<br />

Keyboard 1 Start and stop is set on the Control Panel.<br />

Com 2<br />

The start/stop is set via the serial communication<br />

(RS 485, Fieldbus.) See Fieldbus or<br />

RS232/485 option <strong>manual</strong> for details.<br />

Option 3 The start/stop is set via an option.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 61


Local/Remote key function [217]<br />

The Toggle key on the keyboard, see section 9.2.5,<br />

page 48, has two functions and is activated in this<br />

menu. As default the key is just set to operate as a<br />

Toggle key that moves you easily through the menus in<br />

the toggle loop. The second function of the key allows<br />

you to easily swap between Local and normal operation<br />

(set up via [214] and [215]) of the VSD. Local<br />

mode can also be activated via a digital input. If both<br />

[2171] and [2172] is set to Standard, the function is<br />

disabled.<br />

Default:<br />

Standard<br />

Standard 0 Local reference control set via [214]<br />

Remote 1 Local reference control via remote<br />

Keyboard 2 Local reference control via keyboard<br />

Com 3 Local reference control via communication<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43009<br />

Profibus slot/index 168/168<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

2171 LocRefCtrl<br />

StpA<br />

Standard<br />

UInt<br />

UInt<br />

2172 LocRunCtrl<br />

StpA<br />

Standard<br />

Standard<br />

Standard 0 Local Run/Stop control set via [215]<br />

Remote 1 Local Run/Stop control via remote<br />

Keyboard 2 Local Run/Stop control via keyboard<br />

Com 3 Local Run/Stop control via communication<br />

Lock Code [218]<br />

To prevent the keyboard being used or to change the<br />

setup of the VSD and/or process control, the keyboard<br />

can be locked with a password. This menu,<br />

Lock Code [218], is used to lock and unlock the keyboard.<br />

Enter the password “291” to lock/unlock the<br />

keyboard operation. If the keyboard is not locked<br />

(default) the selection “Lock Code?” will appear. If the<br />

keyboard is already locked, the selection “Unlock<br />

Code?” will appear.<br />

When the keyboard is locked, parameters can be<br />

viewed but not changed. The reference value can be<br />

changed and the VSD can be started, stopped and<br />

reversed if these functions are set to be controlled<br />

from the keyboard.<br />

Default: 0<br />

Range: 0–9999<br />

Rotation [219]<br />

218 Lock Code<br />

Stp 0<br />

A<br />

Overall limitation of motor rotation direction<br />

This function limits the overall rotation, either to left or<br />

right or both directions. This limit is prior to all other<br />

selections, e.g.: if the rotation is limited to right, a Run-<br />

Left command will be ignored. To define left and right<br />

rotation we assume that the motor is connected U-U,<br />

V-V and W-W.<br />

Speed Direction and Rotation<br />

The speed direction can be controlled by:<br />

• RunR/RunL commands on the control panel.<br />

• RunR/RunL commands on the terminal strip<br />

(terminals 1-22).<br />

• Via the serial interface options.<br />

• The parameter sets.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43010<br />

Profibus slot/index 168/169<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Right<br />

Left<br />

Fig. 48 Rotation<br />

62 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


In this menu you set the general rotation for the motor.<br />

Default:<br />

R 1<br />

L 2<br />

R + L<br />

Communication information<br />

11.2.2 Remote Signal Level/Edge<br />

[21A]<br />

In this menu you select the way to control the inputs<br />

for RunR, RunL, Stop and Reset that are operated via<br />

the digital inputs on the terminal strip. The inputs are<br />

default set for level-control, and will be active as long<br />

as the input is made and kept high. When edge-control<br />

is selected, the input will be activated by the low to<br />

high transition of the input.<br />

Communication information<br />

Speed direction is limited to right rotation.<br />

The input and key RunL are disabled.<br />

Speed direction is limited to left rotation.<br />

The input and key RunR are disabled.<br />

R+L 3 Both speed directions allowed.<br />

Modbus Instance no/DeviceNet no: 43019<br />

Profibus slot/index 168/178<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Level 0<br />

Edge 1<br />

Level<br />

UInt<br />

UInt<br />

The inputs are activated or deactivated<br />

by a continuous high or low signal. Is<br />

commonly used if, for example, a PLC is<br />

used to operate the VSD.<br />

The inputs are activated by a transition;<br />

for Run and Reset from “low” to “high”,<br />

for Stop from “high” to “low”.<br />

Modbus Instance no/DeviceNet no: 43020<br />

Profibus slot/index 168/179<br />

Fieldbus format<br />

Modbus format<br />

219 Rotation<br />

StpA<br />

UInt<br />

UInt<br />

R+L<br />

21A Level/Edge<br />

StpA<br />

Level<br />

NOTE: Edge controlled inputs can comply with the<br />

Machine Directive (see the Chapter 8. page 45) if the<br />

inputs are directly used to start and stop the machine.<br />

11.2.3 Mains supply voltage [21B]<br />

WARNING: This menu must be set according<br />

to the VSD product lable and the supply<br />

voltage used. Wrong setting might damage<br />

the VSD or brake resistor.<br />

In this menu the nominal mains supply voltage connected<br />

to the VSD can be selected. The setting will be<br />

valid for all parameter sets. The default setting, Not<br />

defined, is never selectable and is only visible until a<br />

new value is selected.<br />

Once the supply voltage is set, this selection will not<br />

be affected by the Load Default command [243].<br />

Brake chopper activation level is adjusted using the<br />

setting of [21B].<br />

NOTE: The setting is affected by the Load from CP<br />

command [245] and if loading parameter file via<br />

EmoSoftCom.<br />

Default:<br />

Not Defined 0<br />

Not defined<br />

Communication information<br />

Inverter default value used. Only valid if<br />

this parameter is never set.<br />

220-240 V 1 Only valid for <strong>SX</strong>-V-4 (400V)<br />

380-415 V 3<br />

Only valid for <strong>SX</strong>-V-4 (400V)<br />

440-480 V 4 Only valid for <strong>SX</strong>-V-4 (400V)<br />

500-525 V 5 Only valid for <strong>SX</strong>-V-6 (690V)<br />

550-600 V 6 Only valid for <strong>SX</strong>-V-6 (690V)<br />

660-690 V 7 Only valid for <strong>SX</strong>-V-6 (690V)<br />

Modbus Instance no/DeviceNet no: 43381<br />

Profibus slot/index 170/30<br />

Fieldbus format<br />

Modbus format<br />

21B Supply Volts<br />

StpA<br />

Not defined<br />

UInt<br />

UInt<br />

!<br />

CAUTION: Level controlled inputs DO NOT<br />

comply with the Machine Directive if the inputs<br />

are directly used to start and stop the machine.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 63


11.2.4 Motor Data [220]<br />

In this menu you enter the motor data to adapt the<br />

VSD to the connected motor. This will increase the<br />

control accuracy as well as different read-outs and<br />

analogue output signals.<br />

Motor M1 is selected as default and motor data<br />

entered will be valid for motor M1. If you have more<br />

than one motor you need to select the correct motor<br />

in menu [212] before entering motor data.<br />

NOTE: The parameters for motor data cannot be<br />

changed during run mode.<br />

NOTE: The default settings are for a standard 4-pole<br />

motor according to the nominal power of the VSD.<br />

NOTE: Parameter set cannot be changed during run if<br />

the sets is set for different motors.<br />

NOTE: Motor Data in the different sets M1 to M4 can be<br />

revert to default setting in menu [243], Default>Set.<br />

Motor Frequency[222]<br />

Set the nominal motor frequency<br />

Default:<br />

Range:<br />

Resolution<br />

<br />

50 Hz<br />

24-300 Hz<br />

1 Hz<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43042<br />

Profibus slot/index 168/201<br />

Fieldbus format<br />

Modbus format<br />

222 Motor Freq<br />

Stp M1: 50Hz<br />

A<br />

Long, 1=1 Hz<br />

EInt<br />

Motor Power [223]<br />

Set the nominal motor power. If parallel motors, set<br />

the value as sum of motors power<br />

WARNING: Enter the correct motor data to<br />

prevent dangerous situations and assure<br />

correct control.<br />

<br />

223 Motor Power<br />

Stp M1: (P NOM )kW<br />

A<br />

Motor Voltage [221]<br />

Set the nominal motor voltage.<br />

Default:<br />

Range:<br />

Resolution<br />

P NOM VSD<br />

1W-120% x P NOM<br />

3 significant digits<br />

Default:<br />

Range:<br />

Resolution<br />

<br />

400 V for <strong>SX</strong>-V -4<br />

690 V for <strong>SX</strong>-V -6<br />

100-700 V<br />

1 V<br />

NOTE: The Motor Volts value will always be stored as a 3<br />

digit value with a resolution of 1 V.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43041<br />

Profibus slot/index 168/200<br />

Fieldbus format<br />

Modbus format<br />

221 Motor Volts<br />

Stp M1: 400V<br />

A<br />

Long,<br />

1=0.1 V<br />

EInt<br />

NOTE: The Motor Power value will always be stored as a<br />

3 digit value in W up to 999 W and in kW for all higher<br />

powers.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43043<br />

Profibus slot/index 168/202<br />

Fieldbus format<br />

Modbus format<br />

P NOM is the nominal VSD power.<br />

Long,<br />

1=1 W<br />

EInt<br />

Motor Current [224]<br />

Set the nominal motor current. If parallel motors set<br />

the sum of the motor currents.<br />

<br />

224 Motor Curr<br />

Stp M1: (I NOM )A<br />

A<br />

Default: I NOM (see note section 11.2.4, page 64)<br />

64 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Range:<br />

25 - 150% x I NOM<br />

Range: 2-144<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43044<br />

Profibus slot/index 168/203<br />

Fieldbus format<br />

Modbus format<br />

I NOM is the nominal VSD current<br />

Motor Speed [225]<br />

Set the nominal asynchronous motor speed.<br />

<br />

Communication information<br />

Long,<br />

1=0.1 A<br />

EInt<br />

Default: n MOT (see note section 11.2.4, page 64)<br />

Range: 50 - 18000 rpm<br />

Resolution 1 rpm, 4 sign digits<br />

WARNING: Do NOT enter a synchronous (noload)<br />

motor speed.<br />

NOTE: Maximum speed [343] is not automatically<br />

changed when the motor speed is changed.<br />

NOTE: Entering a wrong, too low value can cause a<br />

dangerous situation for the driven application due to<br />

high speeds.<br />

Modbus Instance no/DeviceNet no: 43045<br />

Profibus slot/index 168/204<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

1=1 rpm<br />

UInt<br />

Motor Poles [226]<br />

When the nominal speed of the motor is 500 rpm,<br />

the additional menu for entering the number of poles,<br />

[226], appears automatically. In this menu the actual<br />

pole number can be set which will increase the control<br />

accuracy of the VSD.<br />

<br />

Default: 4<br />

225 Motor Speed<br />

StpA<br />

M1: (n MOT )rpm<br />

226 Motor Poles<br />

Stp M1: 4<br />

A<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43046<br />

Profibus slot/index 168/205<br />

Fieldbus format<br />

Modbus format<br />

Motor Cos [227]<br />

Set the nominal Motor cosphi (power factor).<br />

Default:<br />

Range: 0.50 - 1.00<br />

Communication information<br />

Motor ventilation [228]<br />

Parameter for setting the type of motor ventilation.<br />

Affects the characteristics of the I 2 t motor protection<br />

by lowering the actual overload current at lower<br />

speeds.<br />

Communication information<br />

Long, 1=1 pole<br />

EInt<br />

cos NOM (see note section 11.2.4, page<br />

64)<br />

Modbus Instance no/DeviceNet no: 43047<br />

Profibus slot/index 168/206<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Default:<br />

<br />

<br />

Self<br />

None 0 Limited I 2 t overload curve.<br />

EInt<br />

Self 1 Normal I2 t overload curve. Means that the<br />

motor stands lower current at low speed.<br />

Forced 2<br />

Expanded I 2 t overload curve. Means that the<br />

motor stands almost the whole current also<br />

at lower speed.<br />

Modbus Instance no/DeviceNet no: 43048<br />

Profibus slot/index 168/207<br />

Fieldbus format<br />

Modbus format<br />

227 Motor Cos<br />

Stp M1: A<br />

228 Motor Vent<br />

Stp M1: Self<br />

A<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 65


When the motor has no cooling fan, None is selected<br />

and the current level is limited to 55% of rated motor<br />

current.<br />

With a motor with a shaft mounted fan, Self is selected<br />

and the current for overload is limited to 87% from<br />

20% of synchronous speed. At lower speed, the overload<br />

current allowed will be smaller.<br />

When the motor has an external cooling fan, Forced is<br />

selected and the overload current allowed starts at<br />

90% from rated motor current at zero speed, up to<br />

nominal motor current at 70% of synchronous speed.<br />

Fig. 49 shows the characteristics with respect for<br />

Nominal Current and Speed in relation to the motor<br />

ventilation type selected.<br />

xI nom for I 2 t<br />

Default:<br />

<br />

Off, see Note<br />

Off 0 Not active<br />

Short 1<br />

Communication information<br />

Parameters are measured with injected DC<br />

current. No rotation of the shaft will occur.<br />

Modbus Instance no/DeviceNet no: 43049<br />

Profibus slot/index 168/208<br />

Fieldbus format<br />

Modbus format<br />

229 Motor ID-Run<br />

Stp M1: Off<br />

A<br />

UInt<br />

UInt<br />

1.00<br />

0.90<br />

0.87<br />

0.55<br />

Forced<br />

Self<br />

None<br />

NOTE: To run the VSD it is not mandatory for the ID RUN<br />

to be executed, but without it the performance will not<br />

be optimal.<br />

NOTE: If the ID Run is aborted or not completed the<br />

message “Interrupted!” will be displayed. The previous<br />

data do not need to be changed in this case. Check that<br />

the motor data are correct.<br />

0.20 0.70 2.00<br />

xSync Speed<br />

Fig. 49 I 2 t curves<br />

Motor Identification Run [229]<br />

This function is used when the VSD is put into operation<br />

for the first time. To achieve an optimal control<br />

performance, fine tuning of the motor parameters<br />

using a motor ID run is needed. During the test run the<br />

display shows “Test Run” blinking.<br />

To activate the Motor ID run, select “Short” and press<br />

Enter. Then press RunL or RunR on the control panel<br />

to start the ID run. If menu [219] Rotation is set to L<br />

the RunR key is inactive and vice versa. The ID run<br />

can be aborted by giving a Stop command via the<br />

control panel or Enable input. The parameter will automatically<br />

return to OFF when the test is completed.<br />

The message “Test Run OK!” is displayed. Before the<br />

VSD can be operated normally again, press the STOP/<br />

RESET key on the control panel.<br />

During the Short ID run the motor shaft does not<br />

rotate. The VSD measures the rotor and stator resistance.<br />

.<br />

Motor Sound [22A]<br />

Sets the sound characteristic of the VSD output stage<br />

by changing the switching frequency and/or pattern.<br />

Generally the motor noise will go down at higher<br />

switching frequencies.<br />

Default:<br />

Communication information<br />

F<br />

E 0 Switching frequency 1.5 kHz<br />

F 1 Switching frequency 3 kHz<br />

G 2 Switching frequency 6 kHz<br />

H 3<br />

Advanced 4<br />

Switching frequency 6 kHz, random frequency<br />

(+750 Hz)<br />

Switching frequency and PWM mode<br />

setup via [22E]<br />

Modbus Instance no/DeviceNet no: 43050<br />

Profibus slot/index 168/209<br />

Fieldbus format<br />

Modbus format<br />

<br />

22A Motor Sound<br />

Stp M1: F<br />

A<br />

UInt<br />

UInt<br />

66 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


NOTE: At switching frequencies >3 kHz derating may<br />

become necessary. If the heat sink temperature gets too<br />

high the switching frequency is decreased to avoid<br />

tripping. This is done automatically in the VSD. The<br />

default switching frequency is 3 kHz.<br />

Encoder Feedback [22B]<br />

Only visible if the Encoder option board is installed.<br />

This parameter enables or disables the encoder feedback<br />

from the motor to the VSD.<br />

Default: Off<br />

On 0 Encoder feedback enabled<br />

Off 1 Encoder feedback disabled<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43051<br />

Profibus slot/index 168/210<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Encoder Pulses [22C]<br />

Only visible if the Encoder option board is installed.<br />

This parameter describes the number of pulses per<br />

rotation for your encoder, i.e. it is encoder specific. For<br />

more information please see the encoder <strong>manual</strong>.<br />

<br />

<br />

Default: 1024<br />

Range: 5–16384<br />

Communication information<br />

22B Encoder<br />

Stp M1: Off<br />

A<br />

22C Enc Pulses<br />

Stp M1: 1024<br />

A<br />

Modbus Instance no/DeviceNet no: 43052<br />

Profibus slot/index 168/211<br />

Fieldbus format<br />

Long, 1=1 pulse<br />

Modbus format<br />

EInt<br />

speed [712]. If you get the wrong sign for the value,<br />

swap encoder input A and B.<br />

Unit:<br />

Resolution:<br />

rpm<br />

Communication information<br />

Motor PWM [22E]<br />

Menus for advanced setup of motor<br />

modulation properties PWM = Pulse Width<br />

Modulation).<br />

PWM Fswitch [22E1]<br />

Set the PWM switching frequency of the VSD<br />

Communication information<br />

speed measured via the encoder<br />

Modbus Instance no/DeviceNet no: 42911<br />

Profibus slot/index 168/70<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Range<br />

Resolution<br />

<br />

3.00 kHz<br />

1.50 - 6.00kHz<br />

0.01kHz<br />

Int<br />

Int<br />

Modbus Instance no/DeviceNet no: 43053<br />

Profibus slot/index 168/212<br />

Fieldbus format<br />

Modbus format<br />

22D Enc Speed<br />

Stp M1: XXrpm<br />

A<br />

22E1 PWM Fswitch<br />

Stp 3.00kHz<br />

A<br />

Long, 1=1Hz<br />

EInt<br />

Encoder Speed [22D]<br />

Only visible if the Encoder option board is installed.<br />

This parameter shows the measured motor speed. To<br />

check if the encoder is correctly installed, set Encoder<br />

feedback [22B] to Off, run the VSD at any speed and<br />

compare with the value in this menu. The value in this<br />

menu [22D] should be about the same as the motor<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 67


PWM Mode [22E2]<br />

Default:<br />

Standard<br />

Standard 0 Standard<br />

Sine Filt 1<br />

Communication information<br />

PWM Random [22E3]<br />

Communication information<br />

Sine Filter mode for use with output Sine<br />

Filters<br />

Modbus Instance no/DeviceNet no: 43054<br />

Profibus slot/index 168/213<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Off 0 Random modulation is Off.<br />

On 1<br />

UInt<br />

UInt<br />

Random modulation is active. Random frequency<br />

variation range is ± 1/8 of level set<br />

in [E22E1].<br />

Modbus Instance no/DeviceNet no: 43055<br />

Profibus slot/index 168/214<br />

Fieldbus format<br />

Modbus format<br />

22E2 PWM Mode<br />

Stp Standard<br />

A<br />

22E3 PWM Random<br />

Stp Off<br />

A<br />

UInt<br />

UInt<br />

11.2.5 Motor Protection [230]<br />

This function protects the motor against overload<br />

based on the standard IEC 60947-4-2.<br />

Motor I 2 t Type [231]<br />

The motor protection function makes it possible to<br />

protect the motor from overload as published in the<br />

standard IEC 60947-4-2. It does this using Motor I2t<br />

Current, [232] as a reference. The Motor I2t Time [233]<br />

is used to define the time behaviour of the function.<br />

The current set in [232] can be delivered infinite in<br />

time. If for instance in [233] a time of 1000 s is chosen<br />

the upper curve of Fig. 50 is valid. The value on the x-<br />

axis is the multiple of the current chosen in [232]. The<br />

time [233] is the time that an overloaded motor is<br />

switched off or is reduced in power at 1.2 times the<br />

current set in [232].<br />

Default: Trip<br />

Off 0 I 2 t motor protection is not active.<br />

Trip 1<br />

Limit 2<br />

Communication information<br />

Motor I 2 t Current [232]<br />

Sets the current limit for the motor I 2 t protection.<br />

Communication information<br />

When the I 2 t time is exceeded, the VSD will<br />

trip on “Motor I 2 t”.<br />

This mode helps to keep the <strong>inverter</strong> running<br />

when the Motor I2t function is just<br />

before tripping the VSD. The trip is<br />

replaced by current limiting with a maximum<br />

current level set by the value out of<br />

the menu [232]. In this way, if the reduced<br />

current can drive the load, the VSD continues<br />

running.<br />

Modbus Instance no/DeviceNet no: 43061<br />

Profibus slot/index 168/220<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: When Mot I2t Type=Limit, the VSD can control the<br />

speed < MinSpeed to reduce the motor current.<br />

Default:<br />

Range:<br />

100% of I MOT<br />

0–150% of I MOT<br />

Modbus Instance no/DeviceNet no: 43062<br />

Profibus slot/index 168/221<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

231 Mot I 2 t Type<br />

Stp M1: Trip<br />

A<br />

232 Mot I 2 t Curr<br />

Stp 100%<br />

A<br />

EInt<br />

NOTE: When the selection Limit is set in menu [231], the<br />

value must be above the no-load current of the motor.<br />

68 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Motor I 2 t Time [233]<br />

Sets the time of the I 2 t function. After this time the limit<br />

for the I 2 t is reached if operating with 120% of the I 2 t<br />

current value. Valid when start from 0 rpm.<br />

NOTE: Not the time constant of the motor.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43063<br />

Profibus slot/index 168/222<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

233 Mot I 2 t Time<br />

Stp M1: 60s<br />

A<br />

Default:<br />

Range:<br />

60 s<br />

60–1200 s<br />

100000<br />

10000<br />

t [s]<br />

1000<br />

1000 s (120%)<br />

100<br />

240 s (120%)<br />

480 s (120%)<br />

60 s (120%)<br />

120 s (120%)<br />

10<br />

Fig. 50 I 2 t function<br />

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

Actual output current/ I 2 t-current<br />

i / I2t-current<br />

Fig. 50 shows how the function integrates the square<br />

of the motor current according to the Mot I 2 t Curr<br />

[232] and the Mot I 2 t Time [233].<br />

When the selection Trip is set in menu [231] the VSD<br />

trips if this limit is exceeded.<br />

When the selection Limit is set in menu [231] the VSD<br />

reduces the torque if the integrated value is 95% or<br />

closer to the limit, so that the limit cannot be<br />

exceeded.<br />

NOTE: If it is not possible to reduce the current, the VSD<br />

will trip after exceeding 110% of the limit.<br />

Example<br />

In Fig. 50 the thick grey line shows the following example.<br />

• Menu [232] Mot I 2 t Curr is set to 100%.<br />

1.2 x 100% = 120%<br />

• Menu [233] Mot I 2 t Time is set to 1000 s.<br />

This means that the VSD will trip or reduce after 1000<br />

s if the current is 1.2 times of 100% nominal motor<br />

current.<br />

Thermal Protection [234]<br />

Only visible if the PTC/PT100 option board is installed.<br />

Set the PTC input for thermal protection of the motor.<br />

The motor thermistors (PTC) must comply with DIN<br />

44081/44082. Please refer to the <strong>manual</strong> for the PTC/<br />

PT100 option board.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 69


Menu [234] PTC contains functions to enable or disable<br />

the PTC input.<br />

Default:<br />

Off 0<br />

PTC 1<br />

PT100 2<br />

PTC+PT100 3<br />

Off<br />

Communication information<br />

Motor Class [235]<br />

Only visible if the PTC/PT100 option board is installed.<br />

Set the class of motor used. The trip levels for the<br />

PT100 sensor will automatically be set according to<br />

the setting in this menu.<br />

Communication information<br />

PTC and PT100 motor protection are disabled.<br />

Enables the PTC protection of the motor<br />

via the insulated option board.<br />

Enables the PT100 protection for the<br />

motor via the insulated option board.<br />

Enables the PTC protection as well as the<br />

PT100 protection for the motor via the<br />

insulated option board.<br />

Modbus Instance no/DeviceNet no: 43064<br />

Profibus slot/index 168/223<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: PTC option and PT100 selections can only be<br />

selected when the option board is mounted.<br />

Default:<br />

A 100C 0<br />

E 115C 1<br />

B 120C 2<br />

F 140C 3<br />

F Nema 145C 4<br />

H 165C 5<br />

F 140C<br />

Modbus Instance no/DeviceNet no: 43065<br />

Profibus slot/index 168/224<br />

Fieldbus format<br />

Modbus format<br />

234 Thermal Prot<br />

StpA<br />

Off<br />

235 Mot Class<br />

StpA<br />

F 140C<br />

UInt<br />

UInt<br />

NOTE: This menu is only valid for PT 100.<br />

PT100 Inputs [236]<br />

Sets which of PT100 inputs that should be used for<br />

thermal protection. Deselecting not used PT100<br />

inputs on the PTC/PT100 option board in order to<br />

ignore those inputs, i.e. extra external wiring is not<br />

needed if port is not used.<br />

Default: PT100 1+2+3<br />

Selection:<br />

Communication information<br />

PT100 1, PT100 2, PT100 1+2, PT100<br />

3, PT100 1+3, PT100 2+3, PT100<br />

1+2+3<br />

PT100 1 1 Channel 1 used for PT100 protection<br />

PT100 2 2 Channel 2 used for PT100 protection<br />

PT100 1+2 3 Channel 1+2 used for PT100 protection<br />

PT100 3 4 Channel 3 used for PT100 protection<br />

PT100 1+3 5 Channel 1+3 used for PT100 protection<br />

PT100 2+3 6 Channel 2+3 used for PT100 protection<br />

PT100 1+2+3 7<br />

Channel 1+2+3 used for PT100 protection<br />

Modbus Instance no/DeviceNet no: 43066<br />

Profibus slot/index 168/225<br />

Fieldbus format<br />

Modbus format<br />

236 PT100 Inputs<br />

Stp PT100 1+2+3<br />

A<br />

UInt<br />

UInt<br />

NOTE: This menu is only valid for PT 100 thermal<br />

protection.<br />

Motor PTC [237]<br />

In this menu the internal motor PTC hardware option is<br />

enabled. This PTC input complies with DIN 44081/<br />

44082. Please refer to the <strong>manual</strong> for the PTC/PT100<br />

option board for electrical specification.<br />

This menu is only visible if a PTC (or resistor


2. Enable input by setting menu [237] Motor<br />

PTC=On.<br />

If enabled and


The active set can be viewed with function [721] FI<br />

status.<br />

NOTE: Parameter set cannot be changed during run if<br />

this also would imply a change of the motor set (M2-<br />

M4).<br />

Copy Set [242]<br />

This function copies the content of a parameter set<br />

into another parameter set.<br />

Default: A>B<br />

A>B 0 Copy set A to set B<br />

A>C 1 Copy set A to set C<br />

A>D 2 Copy set A to set D<br />

B>A 3 Copy set B to set A<br />

B>C 4 Copy set B to set C<br />

B>D 5 Copy set B to set D<br />

C>A 6 Copy set C to set A<br />

C>B 7 Copy set C to set B<br />

C>D 8 Copy set C to set D<br />

D>A 9 Copy set D to set A<br />

D>B 10 Copy set D to set B<br />

D>C 11 Copy set D to set C<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43021<br />

Profibus slot/index 168/180<br />

Fieldbus format<br />

Modbus format<br />

242 Copy Set<br />

StpA<br />

A>B<br />

UInt<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into the other set.<br />

A>B means that the content of parameter set A is<br />

copied into parameter set B.<br />

Load Default Values Into Set [243]<br />

With this function three different levels (factory settings)<br />

can be selected for the four parameter sets.<br />

When loading the default settings, all changes made in<br />

the software are set to factory settings. This function<br />

also includes selections for loading default settings to<br />

the four different Motor Data Sets.<br />

Default:<br />

A 0<br />

B 1<br />

C 2<br />

D 3<br />

ABCD 4<br />

Factory 5<br />

M1 6<br />

M2 7<br />

M3 8<br />

M4 9<br />

M1234 10<br />

Communication information<br />

A<br />

Only the selected parameter set will revert<br />

to its default settings.<br />

All four parameter sets will revert to the<br />

default settings.<br />

All settings, except [211], [221]-[22D],<br />

[261], [3A1] and [923], will revert to the<br />

default settings.<br />

Only the selected motor set will revert to its<br />

default settings.<br />

All four motor sets will revert to default settnings.<br />

Modbus Instance no/DeviceNet no: 43023<br />

Profibus slot/index 168/182<br />

Fieldbus format<br />

Modbus format<br />

243 Default>Set<br />

StpA<br />

UInt<br />

UInt<br />

NOTE: Trip log hour counter and other VIEW ONLY menus<br />

are not regarded as settings and will be unaffected.<br />

NOTE: If “Factory” is selected, the message “Sure?” is<br />

displayed. Press the + key to display “Yes” and then<br />

Enter to confirm.<br />

A<br />

NOTE: The parameters in menu [220], Motor data, are<br />

not affected by loading defaults when restoring<br />

parameter sets A–D.<br />

72 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Copy All Settings to Control Panel [244]<br />

All the settings can be copied into the control panel<br />

including the motor data. Start commands will be<br />

ignored during copying.<br />

Default:<br />

No Copy<br />

No Copy 0 Nothing will be copied<br />

Copy 1 Copy all settings<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43024<br />

Profibus slot/index 168/183<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: The actual value of menu [310] will not be copied<br />

into control panel memory set.<br />

Load Settings from Control Panel [245]<br />

This function can load all four parameter sets from the<br />

control panel to the VSD. Parameter sets from the<br />

source VSD are copied to all parameter sets in the target<br />

VSD, i.e. A to A, B to B, C to C and D to D.<br />

Start commands will be ignored during loading.<br />

Default:<br />

No Copy<br />

No Copy 0 Nothing will be loaded.<br />

A 1 Data from parameter set A is loaded.<br />

B 2 Data from parameter set B is loaded.<br />

C 3 Data from parameter set C is loaded.<br />

D 4 Data from parameter set D is loaded.<br />

ABCD 5<br />

A+Mot 6<br />

B+Mot 7<br />

C+Mot 8<br />

D+Mot 9<br />

<br />

<br />

ABCD+Mot 10<br />

244 Copy to CP<br />

StpA<br />

No Copy<br />

245 Load from CP<br />

StpA<br />

No Copy<br />

Data from parameter sets A, B, C and D are<br />

loaded.<br />

Parameter set A and Motor data are<br />

loaded.<br />

Parameter set B and Motor data are<br />

loaded.<br />

Parameter set C and Motor data are<br />

loaded.<br />

Parameter set D and Motor data are<br />

loaded.<br />

Parameter sets A, B, C, D and Motor data<br />

are loaded.<br />

M1 11 Data from motor 1 is loaded.<br />

M2 12 Data from motor 2 is loaded.<br />

M3 13 Data from motor 3 is loaded.<br />

M4 14 Data from motor 4 is loaded.<br />

M1M2M3<br />

M4<br />

15 Data from motor 1, 2, 3 and 4 are loaded.<br />

All 16 All data is loaded from the control panel.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43025<br />

Profibus slot/index 168/184<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: Loading from the control panel will not affect the<br />

value in menu [310].<br />

11.2.7 Trip Autoreset/Trip Conditions<br />

[250]<br />

The benefit of this feature is that occasional trips that<br />

do not affect the process will be automatically reset.<br />

Only when the failure keeps on coming back, recurring<br />

at defined times and therefore cannot be solved by the<br />

VSD, will the unit give an alarm to inform the operator<br />

that attention is required.<br />

For all trip functions that can be activated by the user<br />

you can select to control the motor down to zero<br />

speed according to set deceleration ramp to avoid<br />

water hammer.<br />

Also see section 12.2, page 158.<br />

Autoreset example:<br />

In an application it is known that the main supply voltage<br />

sometimes disappears for a very short time, a socalled<br />

“dip”. That will cause the VSD to trip an “Undervoltage<br />

alarm”. Using the Autoreset function, this trip<br />

will be acknowledged automatically.<br />

• Enable the Autoreset function by making the reset<br />

input continuously high.<br />

• Activate the Autoreset function in the menu [251],<br />

Number of trips.<br />

• Select in menus [252] to [25N] the Trip condition<br />

that are allowed to be automatically reset by the<br />

Autoreset function after the set delay time has<br />

expired.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 73


Number of Trips [251]<br />

Any number set above 0 activates the Autoreset. This<br />

means that after a trip, the VSD will restart automatically<br />

according to the number of attempts selected.<br />

No restart attempts will take place unless all conditions<br />

are normal.<br />

If the Autoreset counter (not visible) contains more<br />

trips than the selected number of attempts, the<br />

Autoreset cycle will be interrupted. No Autoreset will<br />

then take place.<br />

If there are no trips for more than 10 minutes, the<br />

Autoreset counter decreases by one.<br />

If the maximum number of trips has been reached, the<br />

trip message hour counter is marked with an “A”.<br />

If the Autoreset is full then the VSD must be reset by a<br />

normal Reset.<br />

Example:<br />

• Autoreset = 5<br />

• Within 10 minutes 6 trips occur<br />

• At the 6th trip there is no Autoreset, because the<br />

Autoreset trip log contains 5 trips already.<br />

• To reset, apply a normal reset: set the reset input<br />

high to low and high again to maintain the Autoreset<br />

function. The counter is reset.<br />

Default:<br />

Range:<br />

0 (no Autoreset)<br />

0–10 attempts<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43071<br />

Profibus slot/index 168/230<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Over temperature [252]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

251 No of Trips<br />

Stp 0<br />

A<br />

252 Overtemp<br />

StpA<br />

Off<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43072<br />

Profibus slot/index 168/231<br />

Fieldbus format<br />

Modbus format<br />

Overvolt D [253]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Overvolt G [254]<br />

Delay time starts counting when the fault is gone<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Modbus Instance no/DeviceNet no: 43075<br />

Profibus slot/index 168/234<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

NOTE: An auto reset is delayed by the remaining ramp<br />

time.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

253 Overvolt D<br />

Stp A<br />

Off<br />

254 Overvolt G<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43076<br />

74 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Profibus slot/index 168/235<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Overvolt [255]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43077<br />

Profibus slot/index 168/236<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Motor Lost [256]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

NOTE: Only visible when Motor Lost is selected.<br />

Communication information<br />

255 Overvolt<br />

Stp A<br />

Off<br />

256 Motor Lost<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43083<br />

Profibus slot/index 168/242<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Locked Rotor [257]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43086<br />

Profibus slot/index 168/245<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Power Fault [258]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43087<br />

Profibus slot/index 168/246<br />

Fieldbus format<br />

Modbus format<br />

257 Locked Rotor<br />

Stp A<br />

Off<br />

258 Power Fault<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Undervoltage [259]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

259 Undervoltage<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 75


Communication information<br />

Modbus Instance no/DeviceNet no: 43088<br />

Profibus slot/index 168/247<br />

Fieldbus format<br />

Modbus format<br />

Motor I 2 t [25A]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43073<br />

Profibus slot/index 168/232<br />

Fieldbus format<br />

Modbus format<br />

25A Motor I 2 t<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

Off<br />

PT100 [25C]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43078<br />

Profibus slot/index 168/237<br />

Fieldbus format<br />

Modbus format<br />

25C PT100<br />

Stp A<br />

Long, 1=1 s<br />

EInt<br />

PT100 Trip Type [25D]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25D PT100 TT<br />

Stp A Trip<br />

Off<br />

Motor I 2 t Trip Type [25B]<br />

Select the preferred way to react to a Motor I 2 t trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

25B Motor I 2 t TT<br />

Stp A Trip<br />

Default:<br />

Trip<br />

Trip 0 The motor will trip<br />

Deceleration 1 The motor will decelerate<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43074<br />

Profibus slot/index 168/233<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43079<br />

Profibus slot/index 168/238<br />

Fieldbus format<br />

Modbus format<br />

Uint<br />

UInt<br />

PTC [25E]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25E PTC<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

76 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Selection:<br />

Same as menu [25B]<br />

Modbus Instance no/DeviceNet no: 43084<br />

Profibus slot/index 168/243<br />

Fieldbus format<br />

Modbus format<br />

PTC Trip Type [25F]<br />

Select the preferred way to react to a PTC trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43085<br />

Profibus slot/index 168/244<br />

Fieldbus format<br />

Modbus format<br />

25F PTC TT<br />

Stp A<br />

Trip<br />

UInt<br />

UInt<br />

External Trip [25G]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43081<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication Error [25I]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43089<br />

Profibus slot/index 168/248<br />

Fieldbus format<br />

Modbus format<br />

25I Com Error<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25G Ext Trip<br />

Stp A<br />

Off<br />

Communication Error Trip Type [25J]<br />

Select the preferred way to react to a communication<br />

trip.<br />

25J Com Error TT<br />

Stp A Trip<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43080<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

External Trip Type [25H]<br />

Select the preferred way to react to an alarm trip.<br />

Default: Trip<br />

Selection: Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43090<br />

Profibus slot/index 168/249<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

25H Ext Trip TT<br />

Stp A Trip<br />

Trip<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 77


Min Alarm [25K]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

25K Min Alarm<br />

Stp A<br />

Off<br />

Profibus slot/index 168/252<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Max Alarm Trip Type [25N]<br />

Select the preferred way to react to a max alarm trip.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Default:<br />

Selection:<br />

25N Max Alarm TT<br />

Stp A Trip<br />

Trip<br />

Same as menu [25B]<br />

Modbus Instance no/DeviceNet no: 43091<br />

Profibus slot/index 168/250<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Min Alarm Trip Type [25L]<br />

Select the preferred way to react to a min alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43092<br />

Profibus slot/index 168/251<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Max Alarm [25M]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

25L Min Alarm TT<br />

Stp A Trip<br />

25M Max Alarm<br />

StpA<br />

Off<br />

Modbus Instance no/DeviceNet no: 43093<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43094<br />

Profibus slot/index 168/253<br />

Fieldbus format<br />

Modbus format<br />

Over current F [25O]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43082<br />

Profibus slot/index 168/241<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Pump [25P]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

25O Over curr F<br />

Stp A<br />

Off<br />

25P Pump<br />

Stp A<br />

Off<br />

78 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43095<br />

Profibus slot/index 168/254<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

Over Speed [25Q]<br />

Delay time starts counting when the fault is gone.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25Q Over speed<br />

Stp A<br />

Off<br />

External Motor Trip Type [25S]<br />

Select the preferred way to react to an alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43098<br />

Profibus slot/index 168/240<br />

Fieldbus format<br />

Modbus format<br />

25S Ext Mot TT<br />

Stp A Trip<br />

UInt<br />

UInt<br />

Liquid cooling low level [25T]<br />

Delay time starts counting when the fault disappears.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43096<br />

Profibus slot/index 169/0<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

25T LC Level<br />

Stp A<br />

Off<br />

External Motor Temperature [25R]<br />

Delay time starts counting when the fault disappears.<br />

When the time delay has elapsed, the alarm will be<br />

reset if the function is active.<br />

Default:<br />

Off<br />

Off 0 Off<br />

1–3600 1–3600 1–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43097<br />

Profibus slot/index 168/239<br />

Fieldbus format<br />

Modbus format<br />

25R Ext Mot Temp<br />

Stp A<br />

Off<br />

Long, 1=1 s<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43099<br />

Profibus slot/index 169/3<br />

Fieldbus format<br />

Modbus format<br />

Liquid Cooling Low level Trip Type [25U]<br />

Select the preferred way to react to an alarm trip.<br />

Default:<br />

Selection:<br />

Trip<br />

Same as menu [25B]<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43100<br />

Profibus slot/index 169/4<br />

Fieldbus format<br />

25U LC Level TT<br />

Stp A Trip<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 79


Modbus format<br />

UInt<br />

Brake Fault [25V]<br />

Select the preferred way to react to an alarm trip, activate<br />

auto reset and specify delay time.<br />

Default Off<br />

25V Brk Fault<br />

Stp A<br />

Off<br />

Off 0 Autoreset not activated.<br />

1 - 3600s 1 - 3600s Brake fault auto reset delay time.<br />

11.2.8 Serial Communication [260]<br />

This function is to define the communication parameters<br />

for serial communication. There are two types of<br />

options available for serial communication, RS232/<br />

485 (Modbus/RTU) and fieldbus modules (Profibus,<br />

DeviceNet and Ethernet). For more information see<br />

chapter Serial communication and respective option<br />

<strong>manual</strong>.<br />

Comm Type [261]<br />

Select RS232/485 [262] or Fieldbus [263].<br />

<br />

261 Com Type<br />

Stp A RS232/485<br />

Default:<br />

RS232/485 0<br />

Fieldbus 1<br />

RS232/485<br />

RS232/485 selected<br />

Fieldbus selected (Profibus, DeviceNet or<br />

Modbus/TCP)<br />

NOTE: Toggling the setting in this menu will perform a<br />

soft reset (re-boot) of the Fieldbus module.<br />

RS232/485 [262]<br />

Press Enter to set up the parameters for RS232/485<br />

(Modbus/RTU) communication.<br />

262 RS232/485<br />

Stp<br />

Baud rate [2621]<br />

Set the baud rate for the communication.<br />

NOTE: This baud rate is only used for the isolated<br />

RS232/485 option.<br />

Default: 9600<br />

2400 0<br />

4800 1<br />

9600 2<br />

19200 3<br />

38400 4<br />

2621 Baudrate<br />

Stp 9600<br />

A<br />

Selected baud rate<br />

Address [2622]<br />

Enter the unit address for the VSD.<br />

NOTE: This address is only used for the isolated RS232/<br />

485 option.<br />

80 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Default: 1<br />

Selection: 1–247<br />

Fieldbus [263]<br />

Press Enter to set up the parameters for fieldbus communication.<br />

Address [2631]<br />

Enter the unit address of the VSD.<br />

Default: 62<br />

Range: Profibus 0–126, DeviceNet 0–63<br />

Node address valid for Profibus and DeviceNet<br />

Process Data Mode [2632]<br />

Enter the mode of process data (cyclic data). For further<br />

information, see the Fieldbus option <strong>manual</strong>.<br />

Default:<br />

Basic<br />

None 0 Control/status information is not used.<br />

Basic 4<br />

Extended 8<br />

4 byte process data control/status information<br />

is used.<br />

4 byte process data (same as Basic setting)<br />

+ additional proprietary protocol for<br />

advanced users is used.<br />

Read/Write [2633]<br />

Select read/write to control the <strong>inverter</strong> over a fieldbus<br />

network. For further information, see the Fieldbus<br />

option <strong>manual</strong>.<br />

Default:<br />

RW 0<br />

Read 1<br />

2622 Address<br />

Stp 1<br />

A<br />

263 Fieldbus<br />

Stp A<br />

2631 Address<br />

Stp A<br />

62<br />

2632 PrData Mode<br />

StpA<br />

Basic<br />

2633 Read/Write<br />

Stp A<br />

RW<br />

RW<br />

Valid for process data. Select R (read only) for logging process<br />

without writing process data. Select RW in normal cases<br />

to control <strong>inverter</strong>.<br />

Additional Process Values [2634]<br />

Define the number of additional process values sent in<br />

cyclic messages.<br />

Default: 0<br />

Range: 0-8<br />

Communication Fault [264]<br />

Main menu for communication fault/warning settings.<br />

For further details please see the Fieldbus option <strong>manual</strong>.<br />

Communication Fault Mode [2641]]<br />

Selects action if a communication fault is detected.<br />

Default:<br />

Off<br />

Off 0 No communication supervision.<br />

Trip 1<br />

Warning 2<br />

Communication information<br />

RS232/485 selected:<br />

The VSD will trip if there is no communication<br />

for time set in parameter [2642].<br />

Fieldbus selected:<br />

The VSD will trip if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

RS232/485 selected:<br />

The VSD will give a warning if there is no<br />

communication for time set in parameter<br />

[2642].<br />

Fieldbus selected:<br />

The VSD will give a warning if:<br />

1. The internal communication between<br />

the control board and fieldbus option is<br />

lost for time set in parameter [2642].<br />

2. If a serious network error has occurred.<br />

NOTE: Menu [214] and/or [215] must be set to COM to<br />

activate the communication fault function.<br />

Modbus Instance no/DeviceNet no: 43037<br />

Profibus slot/index 168/196<br />

Fieldbus format<br />

Modbus format<br />

2634 AddPrValues<br />

Stp 0<br />

A<br />

2641 ComFlt Mode<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 81


Communication Fault Time [2642]]<br />

Defines the delay time for the trip/warning.<br />

Default:<br />

Range:<br />

0.5 s<br />

Communication information<br />

Ethernet [265]<br />

Settings for Ethernet module (Modbus/TCP). For further<br />

information, see the Fieldbus option <strong>manual</strong>.<br />

IP Address [2651]<br />

MAC Address [2652]<br />

Subnet Mask [2653]<br />

Gateway [2654]<br />

0.1-15 s<br />

Modbus Instance no/DeviceNet no: 43038<br />

Profibus slot/index 168/197<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.1 s<br />

EInt<br />

NOTE: The Ethernet module must be re-booted to<br />

activate the below settings. For example by toggling<br />

parameter [261]. Non-initialized settings indicated by<br />

flashing display text.<br />

Default: 0.0.0.0<br />

Default:<br />

Default: 0.0.0.0<br />

Default: 0.0.0.0<br />

2642 ComFlt Time<br />

Stp 0.5s<br />

A<br />

2651 IP Address<br />

000.000.000.000<br />

2652 MAC Address<br />

Stp 000000000000<br />

A<br />

An unique number for the Ethernet module.<br />

2653 Subnet Mask<br />

0.000.000.000<br />

2654 Gateway<br />

0.000.000.000<br />

DHCP [2655]<br />

Default:<br />

Selection:<br />

Off<br />

On/Off<br />

Fieldbus Signals [266]<br />

Defines modbus mapping for additional process values.<br />

For further information, see the Fieldbus option<br />

<strong>manual</strong>.<br />

FB Signal 1 - 16 [2661]-[266G]<br />

Used to create a block of parameters which are read/<br />

written via communication. 1 to 8 read + 1 to 8 write<br />

parameters possible.<br />

Default: 0<br />

Range: 0-65535<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42801-42816<br />

Profibus slot/index 167/215-167/230<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

FB Status [269]<br />

Sub menus showing status of fieldbus parameters.<br />

Please see the Fieldbus <strong>manual</strong> for detailed information.<br />

11.3 Process and Application<br />

Parameters [300]<br />

These parameters are mainly adjusted to obtain optimum<br />

process or machine performance.<br />

The read-out, references and actual values depends<br />

on selected process source, [321}:<br />

Table 20<br />

Selected process<br />

source<br />

2655 DHCP<br />

Stp A<br />

Unit for reference and<br />

actual value<br />

Off<br />

2661 FB Signal 1<br />

Stp 0<br />

A<br />

269 FB Status<br />

Stp<br />

Speed rpm 4 digits<br />

Resolution<br />

82 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 20<br />

Selected process<br />

source<br />

Torque % 3 digits<br />

PT100 C 3 digits<br />

Frequency Hz 3 digits<br />

11.3.1 Set/View Reference Value<br />

[310]<br />

View reference value<br />

As default the menu [310] is in view operation. The<br />

value of the active reference signal is displayed. The<br />

value is displayed according to selected process<br />

source, [321] or the process unit selected in menu<br />

[322].<br />

Set reference value<br />

If the function Reference Control [214] is set to: Ref<br />

Control = Keyboard, the reference value can be set in<br />

menu Set/View Reference [310] as a normal parameter<br />

or as a motor potentiometer with the + and - keys<br />

on the control panel depending on the selection of<br />

Keyboard Reference Mode in menu [369]. The ramp<br />

times used for setting the reference value with the<br />

Normal function selected in menu [369] are according<br />

to the set Acc Time [331] and Dec Time [332]. The<br />

ramp times used for setting the reference value with<br />

the MotPot function selected in [369] are according to<br />

the set Acc MotPot [333] and Dec MotPot [334].<br />

Menu [310] displays on-line the actual reference value<br />

according to the Mode Settings in Table 20.<br />

Default:<br />

0 rpm<br />

Dependent on:<br />

Process Source [321] and Process Unit<br />

[322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 42991<br />

Profibus slot/index 168/150<br />

Fieldbus format<br />

Modbus format<br />

Unit for reference and<br />

actual value<br />

310 Set/View ref<br />

Stp<br />

0rpm<br />

Long<br />

EInt<br />

Resolution<br />

NOTE: The actual value in menu [310] is not copied, or<br />

loaded from the control panel memory when Copy Set<br />

[242], Copy to CP [244] or Load from CP [245] is<br />

performed.<br />

NOTE: If the MotPot function is used, the reference value<br />

ramp times are according to the Acc MotPot [333] and<br />

Dec MotPot [334] settings. Actual speed ramp will be<br />

limited according to Acc Time [331] and Dec Time [332].<br />

NOTE: Write access to this parameter is only allowed<br />

when menu“Ref Control [214] is set to Keyboard. When<br />

Reference control is used, see section 10.5 Reference<br />

signal.<br />

11.3.2 Process Settings [320]<br />

With these functions, the VSD can be set up to fit the<br />

application. The menus [110], [120], [310], [362]-[368]<br />

and [711] use the process unit selected in [321] and<br />

[322] for the application, e.g. rpm, bar or m3/h. This<br />

makes it possible to easily set up the VSD for the<br />

required process requirements, as well as for copying<br />

the range of a feedback sensor to set up the Process<br />

Value Minimum and Maximum in order to establish<br />

accurate actual process information.<br />

Process Source [321]<br />

Select the signal source for the process value that<br />

controls the motor. The Process Source can be set to<br />

act as a function of the process signal on AnIn F(AnIn),<br />

a function of the motor speed F(Speed), a function of<br />

the shaft torque F(Torque) or as a function of a process<br />

value from serial communication F(Bus). The right<br />

function to select depends on the characteristics and<br />

behaviour of the process. If the selection Speed,<br />

Torque or Frequency is set, the VSD will use speed,<br />

torque or frequency as reference value.<br />

Example<br />

An axial fan is speed-controlled and there is no feedback<br />

signal available. The process needs to be controlled<br />

within fixed process values in “m 3 /hr” and a<br />

process read-out of the air flow is needed. The characteristic<br />

of this fan is that the air flow is linearly related<br />

to the actual speed. So by selecting F(Speed) as the<br />

Process Source, the process can easily be controlled.<br />

The selection F(xx) indicates that a process unit and<br />

scaling is needed, set in menus [322]-[328]. This<br />

makes it possible to e.g. use pressure sensors to<br />

measure flow etc. If F(AnIn) is selected, the source is<br />

automatically connected to the AnIn which has Process<br />

Value as selected.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 83


Default:<br />

Speed<br />

F(AnIn) 0<br />

Function of analogue input. E.g. via PID<br />

control, [330].<br />

Speed 1 Speed as process reference 1 .<br />

PT100 3 Temperature as process reference.<br />

F(Speed) 4 Function of speed<br />

F(Bus) 6 Function of communication reference<br />

Frequency 7 Frequency as process reference 1 .<br />

1 . Only when Drive mode [213] is set to Speed or V/<br />

Hz.<br />

NOTE: When PT100 is selected, use PT100 channel 1 on<br />

the PTC/PT100 option board.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322] - [328] are hidden.<br />

NOTE: The motor control method depends on the<br />

selection of drive mode [213], regardless of selected<br />

process source, [321].<br />

NOTE: If F (Bus) is chosen in menu [321]see section<br />

10.5.1 Process value.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43302<br />

Profibus slot/index 169/206<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Process Unit [322]<br />

321 Proc Source<br />

StpA<br />

Speed<br />

322 Proc Unit<br />

Stp A<br />

rpm<br />

Default: rpm<br />

Off 0 No unit selection<br />

% 1 Percent<br />

°C 2 Degrees Centigrade<br />

°F 3 Degrees Fahrenheit<br />

bar 4 bar<br />

Pa 5 Pascal<br />

Nm 6 Torque<br />

Hz 7 Frequency<br />

rpm 8 Revolutions per minute<br />

m 3 /h 9 Cubic meters per hour<br />

gal/h 10 Gallons per hour<br />

ft 3 /h 11 Cubic feet per hour<br />

User 12 User defined unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43303<br />

Profibus slot/index 169/207<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

User-defined Unit [323]<br />

This menu is only displayed if User is selected in menu<br />

[322]. The function enables the user to define a unit<br />

with six symbols. Use the Prev and Next key to move<br />

the cursor to required position. Then use the + and -<br />

keys to scroll down the character list. Confirm the<br />

character by moving the cursor to the next position by<br />

pressing the Next key.<br />

Character<br />

No. for serial<br />

comm.<br />

Character<br />

UInt<br />

Space 0 m 58<br />

0–9 1–10 n 59<br />

A 11 ñ 60<br />

B 12 o 61<br />

C 13 ó 62<br />

D 14 ô 63<br />

E 15 p 64<br />

F 16 q 65<br />

G 17 r 66<br />

H 18 s 67<br />

I 19 t 68<br />

J 20 u 69<br />

K 21 ü 70<br />

L 22 v 71<br />

M 23 w 72<br />

N 24 x 73<br />

O 25 y 74<br />

P 26 z 75<br />

Q 27 å 76<br />

R 28 ä 77<br />

S 29 ö 78<br />

T 30 ! 79<br />

U 31 ¨ 80<br />

No. for serial<br />

comm.<br />

84 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Character<br />

Ü 32 # 81<br />

V 33 $ 82<br />

W 34 % 83<br />

X 35 & 84<br />

Y 36 · 85<br />

Z 37 ( 86<br />

Å 38 ) 87<br />

Ä 39 * 88<br />

Ö 40 + 89<br />

a 41 , 90<br />

á 42 - 91<br />

b 43 . 92<br />

c 44 / 93<br />

d 45 : 94<br />

e 46 ; 95<br />

é 47 < 96<br />

ê 48 = 97<br />

ë 49 > 98<br />

f 50 ? 99<br />

g 51 @ 100<br />

h 52 ^ 101<br />

i 53 _ 102<br />

í 54 103<br />

j 55<br />

k 56<br />

l 57<br />

No. for serial<br />

comm.<br />

Example:<br />

Create a user unit named kPa.<br />

1. When in the menu [323] press Next to move the<br />

cursor to the right most position.<br />

2. Press the + key until the character k is displayed.<br />

3. Press Next.<br />

4. Then press the + key until P is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered kPa.<br />

2<br />

3<br />

Character<br />

323 User Unit<br />

Stp A<br />

No. for serial<br />

comm.<br />

104<br />

105<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

When sending a unit name you send one character at<br />

a time starting at the right most position.<br />

Process Min [324]<br />

This function sets the minimum process value allowed.<br />

Default: 0<br />

Range:<br />

Communication information<br />

Process Max [325]<br />

This menu is not visible when speed, torque or frequency<br />

is selected. The function sets the value of the<br />

maximum process value allowed.<br />

Communication information<br />

43304<br />

43305<br />

43306<br />

43307<br />

43308<br />

43309<br />

169/208<br />

169/209<br />

169/210<br />

169/211<br />

169/212<br />

169/213<br />

UInt<br />

UInt<br />

0.000-10000 (Speed, Torque, F(Speed),<br />

F(Torque))<br />

-10000– +10000 (F(AnIn, PT100, F(Bus))<br />

Modbus Instance no/DeviceNet no: 43310<br />

Profibus slot/index 169/214<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Default: 0<br />

Range: 0.000-10000<br />

324 Process Min<br />

Stp 0<br />

A<br />

325 Process Max<br />

Stp 0<br />

A<br />

Default:<br />

No characters shown<br />

Modbus Instance no/DeviceNet no: 43311<br />

Profibus slot/index 169/215<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 85


Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Ratio [326]<br />

This menu is not visible when speed, frequency or<br />

torque is selected. The function sets the ratio between<br />

the actual process value and the motor speed so that<br />

it has an accurate process value when no feedback<br />

signal is used. See Fig. 51.<br />

Default: Linear<br />

Linear 0 Process is linear related to speed/torque<br />

Quadratic 1<br />

Communication information<br />

Fig. 51 Ratio<br />

326 Ratio<br />

Stp A<br />

Linear<br />

Process is quadratic related to speed/<br />

torque<br />

Modbus Instance no/DeviceNet no: 43312<br />

Profibus slot/index 169/216<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Process<br />

unit<br />

Process<br />

Max<br />

[325]<br />

Process<br />

Min<br />

[324] Min<br />

Speed<br />

[341]<br />

Ratio=Linear<br />

Ratio=Quadratic<br />

Speed<br />

Max<br />

Speed<br />

[343]<br />

F(Value), Process Min [327]<br />

This function is used for scaling if no sensor is used. It<br />

offers you the possibility of increasing the process<br />

accuracy by scaling the process values. The process<br />

values are scaled by linking them to known data in the<br />

VSD. With F(Value), Proc Min [327] the precise value at<br />

which the entered Process Min [324] is valid can be<br />

entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

Default:<br />

Min -1<br />

Min<br />

Communication information<br />

327 F(Val) PrMin<br />

StpA<br />

Min<br />

According to Min Speed setting in<br />

[341].<br />

According to Max Speed setting in<br />

Max -2<br />

[343].<br />

0.000-10000 0-10000 0.000-10000<br />

Modbus Instance no/DeviceNet no: 43313<br />

Profibus slot/index 169/217<br />

Fieldbus format<br />

Long, 1=1 rpm<br />

Modbus format<br />

EInt<br />

F(Value), Process Max [328]<br />

This function is used for scaling if no sensor is used. It<br />

offers you the possibility of increasing the process<br />

accuracy by scaling the process values. The process<br />

values are scaled by linking them to known data in the<br />

VSD. With F(Value), Proc Max the precise value at<br />

which the entered Process Max [525] is valid can be<br />

entered.<br />

NOTE: If Speed, Torque or Frequency is chosen in menu<br />

[321] Proc Source, menus [322]- [328] are hidden.<br />

328 F(Val) PrMax<br />

StpA<br />

Max<br />

Default:<br />

Max<br />

Min -1 Min<br />

Max -2 Max<br />

0.000-<br />

10000<br />

0-10000 0.000-10000<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43314<br />

86 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Profibus slot/index 169/218<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 rpm<br />

EInt<br />

Example<br />

A conveyor belt is used to transport bottles. The<br />

required bottle speed needs to be within 10 to 100<br />

bottles/s. Process characteristics:<br />

10 bottles/s = 150 rpm<br />

100 bottles/s = 1500 rpm<br />

The amount of bottles is linearly related to the speed<br />

of the conveyor belt.<br />

Set-up:<br />

Process Min [324] = 10<br />

Process Max [325] = 100<br />

Ratio [326] = linear<br />

F(Value), ProcMin [327] = 150<br />

F(Value), ProcMax [328] = 1500<br />

With this set-up, the process data is scaled and linked<br />

to known values which results in an accurate control.<br />

11.3.3 Start/Stop settings [330]<br />

Submenu with all the functions for acceleration, deceleration,<br />

starting, stopping, etc.<br />

Acceleration Time [331]<br />

The acceleration time is defined as the time it takes for<br />

the motor to accelerate from 0 rpm to nominal motor<br />

speed.<br />

NOTE: If the Acc Time is too short, the motor is<br />

accelerated according to the Torque Limit. The actual<br />

Acceleration Time may then be longer than the value<br />

set.<br />

Default:<br />

Range:<br />

Communication information<br />

331 Acc Time<br />

Stp 10.0s<br />

A<br />

10.0 s<br />

0.50–3600 s<br />

F(Value)<br />

PrMax 1500<br />

[328]<br />

Modbus Instance no/DeviceNet no: 43101<br />

Profibus slot/index 169/5<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

F(Value<br />

PrMin<br />

[327]<br />

150<br />

Linear<br />

Fig. 53 shows the relationship between nominal motor<br />

speed/max speed and the acceleration time. The<br />

same is valid for the deceleration time.<br />

rpm<br />

Bottles/s<br />

10<br />

Process Min [324]<br />

100<br />

Process Max [325]<br />

Nominal<br />

Speed<br />

100% n MOT<br />

Fig. 52<br />

Max Speed 80% n MOT<br />

(06-F12)<br />

8s<br />

10s<br />

t<br />

Fig. 53 Acceleration time and maximum speed<br />

Fig. 54 shows the settings of the acceleration and<br />

deceleration times with respect to the nominal motor<br />

speed.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 87


pm<br />

333 Acc MotPot<br />

Stp 16.0s<br />

A<br />

Nom. Speed<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

(NG_06-F11)<br />

Fig. 54 Acceleration and deceleration times<br />

Deceleration Time [332]<br />

The deceleration time is defined as the time it takes for<br />

the motor to decelerate from nominal motor speed to<br />

0 rpm.<br />

Default:<br />

Range:<br />

10.0 s<br />

0.50–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43102<br />

Profibus slot/index 169/6<br />

Fieldbus format<br />

Modbus format<br />

Acc Time [331] Dec Time [332]<br />

332 Dec Time<br />

Stp 10.0s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: If the Dec Time is too short and the generator<br />

energy cannot be dissipated in a brake resistor, the<br />

motor is decelerated according to the overvoltage limit.<br />

The actual deceleration time may be longer than the<br />

value set.<br />

Acceleration Time Motor Potentiometer<br />

[333]<br />

It is possible to control the speed of the VSD using the<br />

motor potentiometer function. This function controls<br />

the speed with separate up and down commands,<br />

over remote signals. The MotPot function has separate<br />

ramps settings which can be set in Acc MotPot<br />

[333] and Dec MotPot [334].<br />

If the MotPot function is selected, this is the acceleration<br />

time for the MotPot up command. The acceleration<br />

time is defined as the time it takes for the motor<br />

potentiometer value to increase from 0 rpm to nominal<br />

speed.<br />

Modbus Instance no/DeviceNet no: 43103<br />

Profibus slot/index 169/7<br />

Fieldbus format<br />

Modbus format<br />

Deceleration Time Motor Potentiometer<br />

[334]<br />

If the MotPot function is selected, this is the deceleration<br />

time for the MotPot down command. The deceleration<br />

time is defined as the time it takes for the motor<br />

potentiometer value to decrease from nominal speed<br />

to 0 rpm.<br />

Default:<br />

Range:<br />

16.0 s<br />

0.50–3600 s<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43104<br />

Profibus slot/index 169/8<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

334 Dec MotPot<br />

Stp 16.0s<br />

A<br />

EInt<br />

Acceleration Time to Minimum Speed<br />

[335]<br />

If minimum speed, [341]>0 rpm, is used in an application,<br />

the VSD uses separate ramp times below this<br />

level. With Acc>MinSpeed [335] and Dec


Default:<br />

Range:<br />

Communication information<br />

Fig. 55<br />

10.0 s<br />

0.50-3600 s<br />

Modbus Instance no/DeviceNet no: 43105<br />

Profibus slot/index 169/9<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

rpm<br />

Nom.Speed<br />

[225]<br />

Max speed<br />

[343]<br />

Min speed<br />

[341]<br />

EInt<br />

Deceleration Time from Minimum<br />

Speed [336]<br />

If a minimum speed is programmed, this parameter<br />

will be used to set the deceleration time from the minimum<br />

speed to 0 rpm at a stop command. The ramp<br />

time is defined as the time it takes for the motor to<br />

decelerate from the nominal motor speed to 0 rpm.<br />

Default:<br />

Range:<br />

[335]<br />

335 Acc>Min Spd<br />

Stp 10.0s<br />

A<br />

[331] [332]<br />

336 Dec


Deceleration Ramp Type [338]<br />

Sets the ramp type of all deceleration parameters in a<br />

parameter set Fig. 57.<br />

Default:<br />

Linear<br />

Selection: Same as menu [337]<br />

Communication information<br />

338 Dec Rmp<br />

StpA<br />

Linear<br />

Modbus Instance no/DeviceNet no: 43108<br />

Profibus slot/index 169/12<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

S-curve<br />

Spinstart [33A]<br />

The spinstart will smoothly start a motor which is<br />

already rotating by catching the motor at the actual<br />

speed and control it to the desired speed. If in an<br />

application, such as an exhausting fan, the motor<br />

shaft is already rotating due to external conditions, a<br />

smooth start of the application is required to prevent<br />

excessive wear. With the spinstart=on, the actual control<br />

of the motor is delayed due to detecting the actual<br />

speed and rotation direction, which depend on motor<br />

size, running conditions of the motor before the Spinstart,<br />

inertia of the application, etc. Depending on the<br />

motor electrical time constant and the size of the<br />

motor, it can take maximum a couple of minutes<br />

before the motor is caught.<br />

Default:<br />

Off 0<br />

On 1<br />

33A Spinstart<br />

Stp A<br />

Off<br />

Communication information<br />

Off<br />

No spinstart. If the motor is already running<br />

the VSD can trip or will start with high current.<br />

Spinstart will allow the start of a running<br />

motor without tripping or high inrush currents.<br />

Linear<br />

Fig. 57 Shape of deceleration ramp<br />

t<br />

Modbus Instance no/DeviceNet no: 43110<br />

Profibus slot/index 169/14<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Start Mode [339]<br />

Sets the way of starting the motor when a run command<br />

is given.<br />

Default:<br />

Fast 0<br />

Fast (fixed)<br />

Communication information<br />

339 Start Mode<br />

Stp A Fast<br />

The motor shaft flux increases gradually.<br />

The motor shaft starts rotating immediately<br />

once the Run command is given.<br />

Modbus Instance no/DeviceNet no: 43109<br />

Profibus slot/index 169/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Stop Mode [33B]<br />

When the VSD is stopped, different methods to come<br />

to a standstill can be selected in order to optimize the<br />

stop and prevent unnecessary wear, like water hammer.<br />

Stop Mode sets the way of stopping the motor<br />

when a Stop command is given.<br />

Default:<br />

Decel 0<br />

Decel<br />

Communication information<br />

The motor decelerates to 0 rpm according<br />

to the set deceleration time.<br />

Coast 1 The motor freewheels naturally to 0 rpm.<br />

Modbus Instance no/DeviceNet no: 43111<br />

Profibus slot/index 169/15<br />

Fieldbus format<br />

Modbus format<br />

33B Stop Mode<br />

StpA<br />

Decel<br />

UInt<br />

UInt<br />

90 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.3.4 Mechanical brake control<br />

The four brake-related menus [33C] to [33F] can be<br />

used to control mechanical brakes.<br />

Brake Release Time [33C]<br />

The Brake Release Time sets the time the VSD delays<br />

before ramping up to whatever final reference value is<br />

selected. During this time a predefined speed can be<br />

generated to hold the load where after the mechanical<br />

brake finally releases. This speed can be selected at<br />

Release Speed, [33D]. Immediate after the brake<br />

release time expiration the brake lift signal is set. The<br />

user can set a digital output or relay to the function<br />

Brake. This output or relay can control the mechanical<br />

brake.<br />

Default:<br />

Range:<br />

33C Brk Release<br />

Stp 0.00s<br />

A<br />

0.00 s<br />

0.00–3.00 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43112<br />

Profibus slot/index 169/16<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.01 s<br />

EInt<br />

Fig. 58 shows the relation between the Brake functions.<br />

• Brake Release Time [33C]<br />

• Start Speed [33D]<br />

• Brake Engage Time [33E]<br />

• Brake Wait Time [33F]<br />

The correct time setting depends on the maximum<br />

load and the properties of the mechanical brake. During<br />

the brake release time it is possible to apply extra<br />

holding torque by setting a start speed reference with<br />

the function start speed [33D].<br />

n<br />

Brake release<br />

time [33C]<br />

Brake wait<br />

time [33F]<br />

Brake engage<br />

time [33E]<br />

Start<br />

Release Speed [33D]<br />

t<br />

Mechanical<br />

Brake<br />

Open<br />

Closed<br />

Brake Relay<br />

Output<br />

On<br />

Off<br />

Fig. 58 Brake Output functions<br />

NOTE: This function is designed to operate a mechanical<br />

brake via the digital outputs or relays (set to brake<br />

function) controlling a mechanical brake.<br />

Action must take place within<br />

these time intervals<br />

G06 16<br />

Release Speed [33D]<br />

The release speed only operates with the brake function:<br />

brake release [33C]. The release speed is the initial<br />

speed reference during the brake release time.<br />

33D Release Spd<br />

StpA<br />

0rpm<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 91


Default:<br />

Range:<br />

Depend on:<br />

0 rpm<br />

- 4x Sync. Speed to 4x Sync.<br />

Communication information<br />

4xmotor sync speed, 1500 rpm for 1470<br />

rpm motor.<br />

Vector Brake [33G]<br />

Braking by increasing the internal electrical losses in<br />

the motor.<br />

33G Vector Brake<br />

Stp A<br />

Off<br />

Modbus Instance no/DeviceNet no: 43113<br />

Profibus slot/index 169/17<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Vector brake switched off. VSD brakes normal<br />

with voltage limit on the DC link.<br />

Maximum VSD current (I CL ) is available for<br />

braking.<br />

Brake Engage Time [33E]<br />

The brake engage time is the time the load is held to<br />

engage a mechanical brake.<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–3.00 s<br />

Communication information<br />

33E Brk Engage<br />

Stp 0.00s<br />

A<br />

Modbus Instance no/DeviceNet no: 43114<br />

Profibus slot/index 169/18<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43116<br />

Profibus slot/index 169/20<br />

Fieldbus format<br />

Modbus format<br />

Brake Fault trip time [33H]<br />

Default: 1.00s<br />

Range 0.00 - 5.00s<br />

UInt<br />

UInt<br />

33H Brk Fault<br />

Stp 1.00s<br />

A<br />

Wait Before Brake Time [33F]<br />

The brake wait time is the time to keep brake open<br />

and to hold the load, either in order to be able to<br />

speed up immediately, or to stop and engage the<br />

brake.<br />

33F Brk Wait<br />

Stp 0.00s<br />

A<br />

Note! The Brake Fault trip time should be set to longer<br />

time than the Brake release time[33C].<br />

The “Brake not engaged” warning is using the setting<br />

of parameter “Brake Engaged time [33E]”.<br />

Following Figure shows principle of brake operation for<br />

fault during run (left) and during stop (right)<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30.0 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43115<br />

Profibus slot/index 169/19<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=0.01 s<br />

EInt<br />

92 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Start<br />

release time<br />

33C<br />

release time<br />

33C<br />

Brake wait<br />

time<br />

33F<br />

Brake engage<br />

time<br />

33E<br />

Running<br />

Torque<br />

Speed>0<br />

Brake relay<br />

e acknowledge<br />

Brake Trip<br />

Brake warning<br />


Fieldbus format<br />

Modbus format<br />

PID ref<br />

PID out<br />

PID fb<br />

Long, 1=0.01 s<br />

EInt<br />

Maximum Speed [343]<br />

Sets the maximum speed at 10 V/20 mA, unless a<br />

user- defined characteristic of the analogue input is<br />

programmed. The synchronous speed (Sync-spd) is<br />

determined by the parameter motor speed [225]. The<br />

maximum speed will operate as an absolute maximum<br />

limit.<br />

This parameter is used to prevent damage due to high<br />

speed.<br />

Min<br />

speed<br />

Fig. 60<br />

[342]<br />

(NG_50-PC-9_1)<br />

Default:<br />

Sync Speed 0<br />

343 Max Speed<br />

StpA<br />

Sync speed<br />

Sync Speed<br />

Synchronous speed, i.e. no load<br />

speed, at nominal frequency.<br />

1-24000rpm 1- 24000 Min Speed - 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43123<br />

Profibus slot/index 169/27<br />

Fieldbus format<br />

Modbus format<br />

Int, 1=1 rpm<br />

UInt, 1=1 rpm<br />

NOTE: It is not possible to set the maximum speed lower<br />

than the minimum speed.<br />

Note: Maximum Speed [343] has priority over Min Speed<br />

[341], i.e. if [343] is set below [341] then the drive will<br />

run at [343] Max Speed with acceleration times given by<br />

[335] and [336] respectively.<br />

Skip Speed 1 Low [344]<br />

Within the Skip Speed range High to Low, the speed<br />

cannot be constant in order to avoid mechanical resonance<br />

in the VSD system.<br />

When Skip Speed Low Ref Speed Skip Speed<br />

High, then Output Speed=Skip Speed HI during<br />

deceleration and Output Speed=Skip Speed LO during<br />

acceleration. Fig. 61 shows the function of skip<br />

speed hi and low.<br />

Between Skip Speed HI and LO, the speed changes<br />

with the set acceleration and deceleration times.<br />

Skipspd1 LO sets the lower value for the 1st skip<br />

range.<br />

344 SkipSpd 1 Lo<br />

Stp A 0rpm<br />

Default:<br />

Range:<br />

0 rpm<br />

0 - 4 x Motor Sync Speed<br />

94 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43124<br />

Profibus slot/index 169/28<br />

Fieldbus format<br />

Int<br />

Modbus format<br />

Int<br />

n<br />

Default: 0 rpm<br />

Range: 0 – 4 x Motor Sync Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43126<br />

Profibus slot/index 169/30<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Skip Speed HI<br />

Skip Speed LO<br />

Skip Speed 2 High [347]<br />

The same function as menu [345] for the 2nd skip<br />

range.<br />

347 SkipSpd 2 Hi<br />

StpA<br />

0rpm<br />

Default:<br />

Range:<br />

0 rpm<br />

0 – 4 x Motor Sync Speed<br />

Fig. 61 Skip Speed<br />

NOTE: The two Skip Speed ranges may be overlapped.<br />

Skip Speed 1 High [345]<br />

Skipspd1 HI sets the higher value for the 1st skip<br />

range.<br />

Default:<br />

Range:<br />

(NG_06-F17)<br />

0 rpm<br />

0 – 4 x Sync Speed<br />

Communication information<br />

Speed Reference<br />

345 SkipSpd 1 Hi<br />

Stp A 0rpm<br />

Modbus Instance no/DeviceNet no: 43125<br />

Profibus slot/index 169/29<br />

Fieldbus format<br />

Int<br />

Modbus format<br />

Int<br />

Skip Speed 2 Low [346]<br />

The same function as menu [344] for the 2nd skip<br />

range.<br />

346 SkipSpd 2 Lo<br />

StpA<br />

0rpm<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43127<br />

Profibus slot/index 169/31<br />

Fieldbus format<br />

Int, 1=1 rpm<br />

Modbus format<br />

Int, 1=1 rpm<br />

Jog Speed [348]<br />

The Jog Speed function is activated by one of the digital<br />

inputs. The digital input must be set to the Jog<br />

function [520]. The Jog command/function will automatically<br />

generate a run command as long as the Jog<br />

command/function is active. The rotation is determined<br />

by the polarity of the set Jog Speed.<br />

Example<br />

If Jog Speed = -10, this will give a Run Left command<br />

at<br />

10 rpm regardless of RunL or RunR commands. Fig.<br />

62 shows the function of the Jog command/function.<br />

Default:<br />

Range:<br />

Dependent on:<br />

50 rpm<br />

Communication information<br />

348 Jog Speed<br />

StpA<br />

50rpm<br />

-4 x motor sync speed to +4 x motor sync<br />

speed<br />

Defined motor sync speed. Max = 400%, normally<br />

max=VSD I max /motor I nom x 100%.<br />

Modbus Instance no/DeviceNet no: 43128<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 95


Profibus slot/index 169/32<br />

Fieldbus format<br />

Modbus format<br />

Jog<br />

Freq<br />

Jog<br />

command<br />

f<br />

Int<br />

Int<br />

t<br />

IxR Compensation [352]<br />

This function compensates for the drop in voltage over<br />

different resistances such as (very) long motor cables,<br />

chokes and motor stator by increasing the output voltage<br />

at a constant frequency. IxR Compensation is<br />

most important at low frequencies and is used to<br />

obtain a higher starting torque. The maximum voltage<br />

increase is 25% of the nominal output voltage. See<br />

Fig. 63.<br />

Selecting “Automatic” will use the optimal value<br />

according to the internal model of motor. “User-<br />

Defined” can be selected when the start conditions of<br />

the application do not change and a high starting<br />

torque is always required. A fixed IxR Compensation<br />

value can be set in the menu [353].<br />

t<br />

Fig. 62 Jog command<br />

(NG_06-F18)<br />

352 IxR Comp<br />

Stp A<br />

Off<br />

11.3.6 Torques [350]<br />

Menu with all parameters for torque settings.<br />

Maximum Torque [351]<br />

Sets the maximum torque. This Maximum Torque<br />

operates as an upper torque limit. A Speed Reference<br />

is always necessary to run the motor.<br />

T MOT<br />

Nm<br />

Default:<br />

P MOT<br />

wx60<br />

= ----------------------------------------<br />

n MOT<br />

rpmx2<br />

Range: 0–400%<br />

Communication information<br />

351 Max Torque<br />

Stp 120%<br />

A<br />

120% calculated from the motor data<br />

Default:<br />

Off<br />

Off 0 Function disabled<br />

Automatic 1 Automatic compensation<br />

User Defined 2 User defined value in percent.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43142<br />

Profibus slot/index 169/46<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

U<br />

%<br />

100<br />

IxR Comp=25%<br />

Modbus Instance no/DeviceNet no: 43141<br />

Profibus slot/index 169/45<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

25<br />

IxR Com=0%<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

f<br />

10 20 30 40 50 Hz<br />

Fig. 63 IxR Comp at Linear V/Hz curve<br />

NOTE: The power loss in the motor will increase by the<br />

square of the torque when operating above 100%. 400%<br />

torque will result in 1600% power loss, which will<br />

increase the motor temperature very quickly.<br />

96 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


IxR Comp_user [353]<br />

Only visible if User-Defined is selected in previous<br />

menu.<br />

%<br />

100<br />

U<br />

Default: 0.0%<br />

Range:<br />

Communication information<br />

Flux Optimization [354]<br />

Flux Optimization reduces the energy consumption<br />

and the motor noise, at low or no load conditions.<br />

Flux Optimization automatically decreases the V/Hz<br />

ratio, depending on the actual load of the motor when<br />

the process is in a steady situation. Fig. 64 shows the<br />

area within which the Flux Optimization is active.<br />

Communication information<br />

0-25% x U NOM (0.1% of resolution)<br />

Modbus Instance no/DeviceNet no: 43143<br />

Profibus slot/index 169/47<br />

Fieldbus format<br />

Modbus format<br />

353 IxR CompUsr<br />

Stp 0.0%<br />

A<br />

Long<br />

EInt<br />

NOTE: A too high level of IxR Compensation could cause<br />

motor saturation. This can cause a “Power Fault” trip.<br />

The effect of IxR Compensation is stronger with higher<br />

power motors.<br />

NOTE: The motor may be overheated at low speed.<br />

Therefore it is important that the Motor I 2 t Current [232]<br />

is set correctly.<br />

354 Flux optim<br />

Stp A<br />

Off<br />

Default: Off<br />

Off 0 Function disabled<br />

On 1 Function enabled<br />

Fig. 64 Flux Optimizing<br />

NOTE: Flux optimization works best at stable situations<br />

in slow changing processes.<br />

11.3.7 Preset References [360]<br />

Motor Potentiometer [361]<br />

Sets the properties of the motor potentiometer function.<br />

See the parameter DigIn1 [521] for the selection<br />

of the motor potentiometer function.<br />

Default:<br />

Volatile 0<br />

Non volatile 1<br />

Non Volatile<br />

Communication information<br />

Flux optimizing<br />

area<br />

f<br />

50 Hz<br />

361 Motor Pot<br />

StpA<br />

Non Volatie<br />

After a stop, trip or power down, the VSD<br />

will start always from zero speed (or minimum<br />

speed, if selected).<br />

Non Volatile. After a stop, trip or power<br />

down of the VSD, the reference value at<br />

the moment of the stop will be memorized.<br />

After a new start command the output<br />

speed will resume to this saved value.<br />

Modbus Instance no/DeviceNet no: 43131<br />

Profibus slot/index 169/35<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43144<br />

Profibus slot/index 169/48<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 97


n<br />

[367] Preset Ref 6, with default 1250 rpm<br />

[368] Preset Ref 7, with default 1500 rpm<br />

The selection of the presets is as in Table 21.<br />

Table 21<br />

Preset<br />

Ctrl3<br />

Preset<br />

Ctrl2<br />

Preset<br />

Ctrl1<br />

Output Speed<br />

Motpot<br />

UP<br />

Motpot<br />

DOWN<br />

Fig. 65 MotPot function<br />

t<br />

t<br />

t<br />

0 0 0 Analogue reference<br />

0 0 1 1) Preset Ref 1<br />

0 1 1) 0 Preset Ref 2<br />

0 1 1 Preset Ref 3<br />

1 1) 0 0 Preset Ref 4<br />

1 0 1 Preset Ref 5<br />

1 1 0 Preset Ref 6<br />

1 1 1 Preset Ref 7<br />

Preset Ref 1 [362] to Preset Ref 7<br />

[368]<br />

Preset speeds have priority over the analogue inputs.<br />

Preset speeds are activated by the digital inputs. The<br />

digital inputs must be set to the function Pres. Ref 1,<br />

Pres. Ref 2 or Pres. Ref 4.<br />

Depending on the number of digital inputs used, up to<br />

7 preset speeds can be activated per parameter set.<br />

Using all the parameter sets, up to 28 preset speeds<br />

are possible.<br />

Default: Speed, 0 rpm<br />

Dependent on: Process Source [321] and Process Unit [322]<br />

Speed mode 0 - max speed [343]<br />

Torque mode 0 - max torque [351]<br />

Other modes<br />

Communication information<br />

362 Preset Ref 1<br />

Stp A 0rpm<br />

Min according to menu [324] - max according<br />

to menu [325]<br />

Modbus Instance no/DeviceNet no: 43132–43138<br />

Profibus slot/index 169/36–169/42<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

The same settings are valid for the menus:<br />

[363] Preset Ref 2, with default 250 rpm<br />

[364] Preset Ref 3, with default 500 rpm<br />

[365] Preset Ref 4, with default 750 rpm<br />

[366] Preset Ref 5, with default 1000 rpm<br />

1) = selected if only one preset reference is active<br />

1 = active input<br />

0 = non active input<br />

NOTE: If only Preset Ctrl3 is active, then the Preset Ref 4<br />

can be selected. If Presets Ctrl2 and 3 are active, then<br />

the Preset Ref 2, 4 and 6 can be selected.<br />

Keyboard reference mode [369]<br />

This parameter sets how the reference value [310] is<br />

edited.<br />

Default:<br />

Normal 0<br />

MotPot 1<br />

MotPot<br />

Communication information<br />

The reference value is edited as a normal<br />

parameter (the new reference value is<br />

activated when Enter is pressed after the<br />

value has been changed). The Acc Time<br />

[331] and Dec Time [332] are used.<br />

The reference value is edited using the<br />

motor potentiometer function (the new<br />

reference value is activated directly when<br />

the key + or - is pressed). The Acc MotPot<br />

[333] and Dec MotPot [334] are used.<br />

Modbus Instance no/DeviceNet no: 43139<br />

Profibus slot/index 169/43<br />

Fieldbus format<br />

Modbus format<br />

369 Key Ref Mode<br />

StpA<br />

MotPot<br />

UInt<br />

UInt<br />

98 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


+<br />

NOTE: When Key Ref Mode is set to MotPot, the<br />

reference value ramp times are according to the Acc<br />

MotPot [333] and Dec MotPot [334] settings. Actual<br />

speed ramp will be limited according to Acc Time [331]<br />

and Dec Time [332].<br />

11.3.8 PID Process Control [380]<br />

The PID controller is used to control an external process<br />

via a feedback signal. The reference value can be<br />

set via analogue input AnIn1, at the Control Panel<br />

[310] by using a Preset Reference, or via serial communication.<br />

The feedback signal (actual value) must<br />

be connected to an analogue input that is set to the<br />

function Process Value.<br />

Process PID Control [381]<br />

This function enables the PID controller and defines<br />

the response to a changed feedback signal.<br />

Default:<br />

Off<br />

Off 0 PID control deactivated.<br />

On 1<br />

Invert 2<br />

Communication information<br />

The speed increases when the feedback<br />

value decreases. PID settings according to<br />

menus [382] to [385].<br />

The speed decreases when the feedback<br />

value decreases. PID settings according to<br />

menus [382] to [385].<br />

Modbus Instance no/DeviceNet no: 43154<br />

Profibus slot/index 169/58<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

PID P Gain [383]<br />

Setting the P gain for the PID controller.<br />

Default: 1.0<br />

Range: 0.0–30.0<br />

381 PID Control<br />

Stp A<br />

Off<br />

383 PID P Gain<br />

Stp 1.0<br />

A<br />

Modbus format<br />

Process<br />

reference<br />

Process<br />

feedback<br />

Fig. 66 Closed loop PID control<br />

PID I Time [384]<br />

Setting the integration time for the PID controller.<br />

Default:<br />

Range:<br />

1.00 s<br />

0.01–300 s<br />

Communication information<br />

Process PID D Time [385]<br />

Setting the differentiation time for the PID controller.<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43157<br />

Profibus slot/index 169/61<br />

Fieldbus format<br />

Long, 1=0.01 s<br />

Modbus format<br />

EInt<br />

Default:<br />

Range:<br />

0.00 s<br />

0.00–30 s<br />

Modbus Instance no/DeviceNet no: 43158<br />

Profibus slot/index 169/62<br />

Fieldbus format<br />

Modbus format<br />

-<br />

Process<br />

PID<br />

VSD<br />

384 PID I Time<br />

Stp 1.00s<br />

A<br />

385 PID D Time<br />

Stp 0.00s<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

M<br />

Process<br />

06-F95<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43156<br />

Profibus slot/index 169/60<br />

Fieldbus format Long, 1=0.1<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 99


PID sleep functionality<br />

This function is controlled via a wait delay and a separate<br />

wake-up margin condition. With this function it is<br />

possible to put the VSD in “sleep mode” when the<br />

process value is at it’s set point and the motor is running<br />

at minimum speed for the length of the time set in<br />

[386]. By going into sleep mode, the by the application<br />

consumed energy is reduced to a minimum. When the<br />

process feedback value goes below the set margin on<br />

the process reference as set in [387], the VSD will<br />

wake up automatically and normal PID operation continues,<br />

see examples.<br />

PID sleep when less than minimum<br />

speed [386]<br />

If the PID output is equal to or less than minimum<br />

speed for given delay time, the VSD will go to sleep.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01 –3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43371<br />

Profibus slot/index 170/20<br />

Fieldbus format<br />

Modbus format<br />

PID Activation Margin [387]<br />

The PID activation (wake-up) margin is related to the<br />

process reference and sets the limit when the VSD<br />

should wake-up/start again.<br />

Communication information<br />

Long, 1=0.01 s<br />

EInt<br />

NOTE: Menu [386] has higher priority than menu [342].<br />

Default: 0<br />

Range:<br />

0 –10000 in Process unit<br />

Modbus Instance no/DeviceNet no: 43372<br />

Profibus slot/index 170/21<br />

Fieldbus format<br />

Modbus format<br />

386 PID


PID Steady State Test [388]<br />

In application situations where the feedback can<br />

become independent of the motor speed, this PID<br />

Steady Test function can be used to overrule the PID<br />

operation and force the VSD to go in sleep mode i.e.<br />

the VSD automatically reduces the output speed while<br />

at the same time ensures the process value.<br />

Example: pressure controlled pump systems with low/<br />

no flow operation and where the process pressure has<br />

become independent of the pump speed, e.g. due to<br />

slowly closed valves. By going into Sleep mode, heating<br />

of the pump and motor will be avoided and no<br />

energy is spilled.<br />

PID Steady state test delay.<br />

NOTE: It is important that the system has reached a<br />

stable situation before the Steady State Test is initiated.<br />

Default:<br />

Range:<br />

Off<br />

Off, 0.01–3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43373<br />

Profibus slot/index 170/22<br />

Fieldbus format<br />

Modbus format<br />

388 PID Stdy Tst<br />

StpA<br />

Off<br />

Long, 1=0.01 s<br />

EInt<br />

During the steady state test the PID operation is overruled<br />

and the VSD is decreasing the speed as long as<br />

the PID error is within the steady state margin. If the<br />

PID error goes outside the steady state margin the test<br />

failed and normal PID operation continues, see example.<br />

Default: 0<br />

Range:<br />

0–10000 in process unit<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43374<br />

Profibus slot/index 170/23<br />

Fieldbus format<br />

Modbus format<br />

389 PID Stdy Mar<br />

Stp 0<br />

A<br />

Long, 1=0.01 s<br />

EInt<br />

Example: The PID Steady Test starts when the process<br />

value [711] is within the margin and Steady State<br />

Test Wait Delay has expired. The PID output will<br />

decrease speed with a step value which corresponds<br />

to the margin as long as the Process value [711] stays<br />

within steady state margin. When Min Speed [341] is<br />

reached the steady state test was successful and<br />

stop/sleep is commanded if PID sleep function [386]<br />

and [387] is activated. If the Process value [711] goes<br />

outside the set steady state margins then the test<br />

failed and normal PID operation will continue, see Fig.<br />

69.<br />

PID Steady State Margin [389]<br />

PID steady state margin defines a margin band around<br />

the reference that defines “steady state operation”.<br />

[711] Process Value<br />

[310] Process Ref<br />

[389]<br />

[389]<br />

[387]<br />

[388]<br />

time<br />

[712] Speed<br />

Start steady<br />

state test<br />

Stop steady<br />

state test<br />

Normal PID<br />

Normal PID<br />

Steady state<br />

test<br />

Stop/Sleep<br />

[341] Min Speed [386] PID


11.3.9 Pump/Fan Control [390]<br />

The Pump Control functions are in menu [390]. The<br />

function is used to control a number of drives (pumps,<br />

fans, etc.) of which one is always driven by the VSD.<br />

Pump enable [391]<br />

This function will enable the pump control to set all relevant<br />

pump control functions.<br />

Default: Off<br />

Off 0 Pump control is switched off.<br />

On 1<br />

Communication information<br />

391 Pump enable<br />

Stp A<br />

Off<br />

Pump control is on:<br />

- Pump control parameters [392] to [39G]<br />

appear and are activated according to<br />

default settings.<br />

- View functions [39H] to [39M] are added<br />

in the menu structure.<br />

Modbus Instance no/DeviceNet no: 43161<br />

Profibus slot/index 169/65<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Number of Drives [392]<br />

Sets the total number of drives which are used, including<br />

the Master VSD. The setting here depends on the<br />

parameter Select Drive [393]. After the number of<br />

drives is chosen it is important to set the relays for the<br />

pump control. If the digital inputs are also used for status<br />

feedback, these must be set for the pump control<br />

according to; Pump 1 OK– Pump6 OK in menu [520].<br />

Default: 1<br />

1-3 Number of drives if I/O Board is not used.<br />

1-6<br />

1-7<br />

Communication information<br />

Number of drives if 'Alternating MASTER' is<br />

used, see Select Drive [393]. (I/O Board is<br />

used.)<br />

Number of drives if 'Fixed MASTER' is used,<br />

see Select Drive [393].<br />

(I/O Board is used.)<br />

NOTE: Used relays must be defined as Slave Pump or<br />

Master Pump. Used digital inputs must be defined as<br />

Pump Feedback.<br />

Modbus Instance no/DeviceNet no: 43162<br />

Profibus slot/index 169/66<br />

Fieldbus format<br />

Modbus format<br />

392 No of Drives<br />

Stp A<br />

1<br />

UInt<br />

UInt<br />

Select Drive [393]<br />

Sets the main operation of the pump system.<br />

'Sequence' and 'Runtime' are Fixed MASTER operation.<br />

'All' means Alternating MASTER operation.<br />

393 Select Drive<br />

StpA<br />

Sequence<br />

Default:<br />

Sequence 0<br />

Sequence<br />

Fixed MASTER operation:<br />

- The additional drives will be selected in<br />

sequence, i.e. first pump 1 then pump 2<br />

etc.<br />

- A maximum of 7 drives can be used.<br />

102 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Run Time 1<br />

All 2<br />

Communication information<br />

Fixed MASTER operation:<br />

- The additional drives will be selected<br />

depending on the Run Time. So the drive<br />

with the lowest Run Time will be selected<br />

first. The Run Time is monitored in menus<br />

[39H] to [39M] in sequence. For each drive<br />

the Run Time can be reset.<br />

- When drives are stopped, the drive with<br />

the longest Run Time will be stopped first.<br />

- Maximum 7 drives can be used.<br />

Alternating MASTER operation:<br />

- When the drive is powered up, one drive is<br />

selected as the Master drive. The selection<br />

criteria depends on the Change Condition<br />

[394]. The drive will be selected according<br />

to the Run Time. So the drive with the lowest<br />

Run Time will be selected first. The Run<br />

Time is monitored in menus [39H] to [39M]<br />

in sequence. For each drive the Run Time<br />

can be reset.<br />

- A maximum of 6 drives can be used.<br />

Modbus Instance no/DeviceNet no: 43163<br />

Profibus slot/index 169/67<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: This menu will NOT be active if less than 3 drives<br />

are selected.<br />

Timer 1<br />

Both 2<br />

Communication information<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The change will take place immediately.<br />

So during operation the additional<br />

pumps will be stopped temporarily, the<br />

'new' master will be selected according to<br />

the Run Time and the additional pumps will<br />

be started again.<br />

It is possible to leave 2 pumps running during<br />

the change operation. This can be set<br />

with Drives on Change [396].<br />

The master drive will be changed if the<br />

timer setting in Change Timer [395] has<br />

elapsed. The 'new' master will be selected<br />

according to the elapsed Run Time. The<br />

change will only take place after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition.<br />

- Trip condition.<br />

Modbus Instance no/DeviceNet no: 43164<br />

Profibus slot/index 169/68<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: If the Status feedback inputs (DigIn 9 to Digin 14)<br />

are used, the master drive will be changed immediately<br />

if the feedback generates an 'Error'.<br />

Change Condition [394]<br />

This parameter determines the criteria for changing<br />

the master. This menu only appears if Alternating<br />

MASTER operation is selected. The elapsed run time<br />

of each drive is monitored. The elapsed run time<br />

always determines which drive will be the 'new' master<br />

drive.<br />

This function is only active if the parameter Select<br />

Drive [393]=All.<br />

394 Change Cond<br />

Stp A Both<br />

Default:<br />

Stop 0<br />

Both<br />

The Runtime of the master drive determines<br />

when a master drive has to be<br />

changed. The change will only take place<br />

after a:<br />

- Power Up<br />

- Stop<br />

- Standby condition<br />

- Trip condition.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 103


Change Timer [395]<br />

When the time set here is elapsed, the master drive<br />

will be changed. This function is only active if Select<br />

Drive [393]=All and Change Cond [394]= Timer/ Both.<br />

395 Change Timer<br />

StpA<br />

50h<br />

Upper Band [397]<br />

If the speed of the master drive comes into the upper<br />

band, an additional drive will be added after a delay<br />

time that is set in start delay [399].<br />

397 Upper Band<br />

Stp 10%<br />

A<br />

Default:<br />

Range:<br />

50 h<br />

1-3000 h<br />

Default: 10%<br />

Range:<br />

0-100% of total min speed to max speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43165<br />

Profibus slot/index 169/69<br />

Fieldbus format<br />

Modbus format<br />

UInt, 1=1 h<br />

UInt, 1=1 h<br />

Drives on Change [396]<br />

If a master drive is changed according to the timer<br />

function (Change Condition=Timer/Both [394]), it is<br />

possible to leave additional pumps running during the<br />

change operation. With this function the change operation<br />

will be as smooth as possible. The maximum<br />

number to be programmed in this menu depends on<br />

the number of additional drives.<br />

Example:<br />

If the number of drives is set to 6, the maximum value<br />

will be 4. This function is only active if Select Drive<br />

[393]=All.<br />

396 Drives on Ch<br />

Stp A<br />

0<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43167<br />

Profibus slot/index 169/71<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Upper Band = 10%<br />

Start delay will be activated:<br />

Range = Max Speed to Min Speed = 1500–300 =<br />

1200 rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 1500–120 = 1380 rpm<br />

Speed<br />

Max<br />

Upper band<br />

next pump starts<br />

Default: 0<br />

Range: 0 to (the number of drives - 2)<br />

Communication information<br />

Min<br />

Start Delay [399]<br />

Flow/Pressure<br />

(NG_50-PC-12_1)<br />

Modbus Instance no/DeviceNet no: 43166<br />

Fig. 70 Upper band<br />

Profibus slot/index 169/70<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Lower Band [398]<br />

If the speed of the master drive comes into the lower<br />

band an additional drive will be stopped after a delay<br />

time. This delay time is set in the parameter Stop<br />

Delay [39A].<br />

Default: 10%<br />

398 Lower Band<br />

Stp A<br />

10%<br />

104 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Range:<br />

Communication information<br />

Example:<br />

Max Speed = 1500 rpm<br />

Min Speed = 300 rpm<br />

Lower Band = 10%<br />

Stop delay will be activated:<br />

Range = Max Speed - Min Speed = 1500–300 = 1200<br />

rpm<br />

10% of 1200 rpm = 120 rpm<br />

Start level = 300 + 120 = 420 rpm<br />

Fig. 71 Lower band<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43168<br />

Profibus slot/index 169/72<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Speed<br />

Max<br />

Min<br />

“top” pump stops<br />

Stop Delay [39A]<br />

EInt<br />

Lower band<br />

Flow/Pressure<br />

(NG_50-PC-13_1)<br />

Start Delay [399]<br />

This delay time must have elapsed before the next<br />

pump is started. A delay time prevents the nervous<br />

switching of pumps.<br />

Stop Delay [39A]<br />

This delay time must have elapsed before the 'top'<br />

pump is stopped. A delay time prevents the nervous<br />

switching of pumps.<br />

Default:<br />

Range:<br />

0 s<br />

0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43170<br />

Profibus slot/index 169/74<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Upper Band Limit [39B]<br />

If the speed of the pump reaches the upper band limit,<br />

the next pump is started immediately without delay. If<br />

a start delay is used this delay will be ignored. Range<br />

is between 0%, equalling max speed, and the set percentage<br />

for the UpperBand [397].<br />

Default: 0%<br />

Range:<br />

0 to Upper Band level. 0% (=max speed) means<br />

that the Limit function is switched off.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43171<br />

Profibus slot/index 169/75<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39A Stop Delay<br />

Stp A<br />

0s<br />

39B Upp Band Lim<br />

Stp 0%<br />

A<br />

EInt<br />

399 Start Delay<br />

Stp A<br />

0s<br />

Default: 0 s<br />

Range: 0-999 s<br />

Communication information<br />

Speed<br />

Max<br />

Upper band<br />

next pump starts<br />

immediately<br />

Upper band<br />

limit [39B]<br />

Modbus Instance no/DeviceNet no: 43169<br />

Profibus slot/index 169/73<br />

Fieldbus format Long, 1=1s<br />

Modbus format<br />

EInt<br />

Min<br />

Fig. 72 Upper band limit<br />

Start Delay [399]<br />

Flow/Pressure<br />

(NG_50-PC-14_2)<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 105


Lower Band Limit [39C]<br />

If the speed of the pump reaches the lower band limit,<br />

the 'top' pump is stopped immediately without delay.<br />

If a stop delay is used this delay will be ignored. Range<br />

is from 0%, equalling min speed, to the set percentage<br />

for the Lower Band [398].<br />

Default: 0%<br />

Range:<br />

Communication information<br />

Fig. 73 Lower band limit<br />

0 to Lower Band level. 0% (=min speed) means<br />

that he Limit function is switched off.<br />

Modbus Instance no/DeviceNet no: 43172<br />

Profibus slot/index 169/76<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Speed<br />

Max<br />

Min<br />

39C Low Band Lim<br />

Stp A<br />

0%<br />

Lower band<br />

Settle Time Start [39D]<br />

The settle start allows the process to settle after a<br />

pump is switched on before the pump control continues.<br />

If an additional pump is started D.O.L. (Direct On<br />

Line) or Y/ , the flow or pressure can still fluctuate<br />

due to the 'rough' start/stop method. This could<br />

cause unnecessary starting and stopping of additional<br />

pumps.<br />

During the Settle start:<br />

• PID controller is off.<br />

“top” pump stops<br />

immediately<br />

Stop Delay [39A]<br />

EInt<br />

(NG_50-PC-15_2)<br />

• The speed is kept at a fixed level after adding a<br />

pump.<br />

39D Settle Start<br />

Stp A<br />

0s<br />

Lower band<br />

limit [39C]<br />

Flow/Pressure<br />

Default:<br />

Range:<br />

0 s<br />

0-999 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43173<br />

Profibus slot/index 169/77<br />

Fieldbus format<br />

Modbus format<br />

Transition Speed Start [39E]<br />

The transition speed start is used to minimize a flow/<br />

pressure overshoot when adding another pump.<br />

When an additional pump needs to be switched on,<br />

the master pump will slow down to the set transition<br />

speed start value, before the additional pump is<br />

started. The setting depends on the dynamics of both<br />

the master drive and the additional drives.<br />

The transition speed is best set by trial and error.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

Communication information<br />

Long, 1=1 s<br />

EInt<br />

0-100% of total min speed to max speed<br />

Modbus Instance no/DeviceNet no: 43174<br />

Profibus slot/index 169/78<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

39E TransS Start<br />

Stp 60%<br />

A<br />

EInt<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When an additional pump is needed, the speed will be<br />

controlled down to min speed + (60% x (1500 rpm -<br />

200 rpm)) = 200 rpm + 780 rpm = 980 rpm. When this<br />

speed is reached, the additional pump with the lowest<br />

run time hours will be switched on.<br />

106 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Speed<br />

Actual<br />

Trans<br />

Min<br />

Switch on<br />

procedure starts<br />

Fig. 74 Transition speed start<br />

Additional pump<br />

Master pump<br />

Actual start<br />

command of next<br />

pump (RELAY)<br />

Flow/Pressure<br />

(NG_50-PC-16_1)<br />

Transition Speed Stop [39G]<br />

The transition speed stop is used to minimize a flow/<br />

pressure overshoot when shutting down an additional<br />

pump. The setting depends on the dynamics of both<br />

the master drive and the additional drives.<br />

In general:<br />

• If the additional pump has 'slow' start/stop dynamics,<br />

then a higher transition speed should be used.<br />

• If the additional pump has 'fast' start/stop dynamics,<br />

then a lower transition speed should be used.<br />

Default: 60%<br />

Range:<br />

39G TransS Stop<br />

Stp 60%<br />

A<br />

0-100% of total min speed to max speed<br />

Flow/Pressure<br />

Transition speed<br />

decreases overshoot<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43176<br />

Profibus slot/index 169/80<br />

Fig. 75 Effect of transition speed<br />

Settle Time Stop [39F]<br />

The settle stop allows the process to settle after a<br />

pump is switched off before the pump control continues.<br />

If an additional pump is stopped D.O.L. (Direct<br />

On Line) or Y/ , the flow or pressure can still fluctuate<br />

due to the 'rough' start/stop method. This could<br />

cause unnecessary starting and stopping of additional<br />

pumps.<br />

During the Settle stop:<br />

• PID controller is off.<br />

• the speed is kept at a fixed level after stopping a<br />

pump<br />

Default:<br />

Range:<br />

39F Settle Stop<br />

Stp A<br />

0s<br />

0 s<br />

0–999 s<br />

Communication information<br />

Time<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Example<br />

Max Speed = 1500 rpm<br />

Min Speed = 200 rpm<br />

TransS Start = 60%<br />

When less additional pumps are needed, the speed<br />

will be controlled up to min speed + (60% x (1500 rpm<br />

- 200 rpm)) = 200 rpm + 780 rpm = 980 rpm. When<br />

this speed is reached, the additional pump with the<br />

highest run time hours will be switched off.<br />

Speed<br />

Max<br />

Trans<br />

Actual<br />

Min<br />

Fig. 76 Transition speed stop<br />

Actual shut down of pump<br />

Master pump<br />

EInt<br />

Additional pump<br />

Flow/Pressure<br />

Switch off procedure starts<br />

Modbus Instance no/DeviceNet no: 43175<br />

Profibus slot/index 169/79<br />

Fieldbus format<br />

Modbus format<br />

Long, 1=1 s<br />

EInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 107


Run Times 1-6 [39H] to [39M]<br />

Unit:<br />

Range:<br />

h:m (hours:minutes)<br />

0h:0m–65535h:59m.<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Reset Run Times 1-6 [39H1] to [39M1]<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Pump Status [39N]<br />

39N Pump 123456<br />

StpA<br />

OCD<br />

31051 hours, 31052 minutes,<br />

31054 hours, 31055 minutes,<br />

31057 hours, 31058 minutes,<br />

31060 hours, 31061 minutes,<br />

31063 hours, 31064 minutes,<br />

31066 hours, 31067 minutes<br />

121/195, 121/198, 121/201,<br />

121/204, 121/207, 121/210<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 38–43, pump 1 -6<br />

Profibus slot/index 0/37–0/42<br />

Fieldbus format<br />

Modbus format<br />

Indication<br />

C<br />

D<br />

O<br />

E<br />

39H Run Time 1<br />

Stp A h:mm<br />

UInt<br />

UInt<br />

Description<br />

Control, master pump, only when alternating<br />

master is used<br />

Direct control<br />

Pump is off<br />

Pump error<br />

39H1 Rst Run Tm1<br />

Stp A<br />

No<br />

11.4 Load Monitor and Process<br />

Protection [400]<br />

11.4.1 Load Monitor [410]<br />

The monitor functions enable the VSD to be used as a<br />

load monitor. Load monitors are used to protect<br />

machines and processes against mechanical overload<br />

and underload, e.g. a conveyer belt or screw conveyer<br />

jamming, belt failure on a fan and a pump dry running.<br />

See explanation in section 7.5, page 40.<br />

Alarm Select [411]<br />

Selects the types of alarms that are active.<br />

Default:<br />

Off<br />

Off 0 No alarm functions active.<br />

Min 1<br />

Max 2<br />

Max+Min 3<br />

Communication information<br />

Alarm Trip [412]<br />

Selects which alarm must cause a trip to the VSD.<br />

Communication information<br />

Min Alarm active. The alarm output functions<br />

as an underload alarm.<br />

Max Alarm active. The alarm output functions<br />

as an overload alarm.<br />

Both Max and Min alarm are active. The<br />

alarm outputs function as overload and<br />

underload alarms.<br />

Modbus Instance no/DeviceNet no: 43321<br />

Profibus slot/index 169/225<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Off<br />

Selection: Same as in menu [411]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43322<br />

Profibus slot/index 169/226<br />

Fieldbus format<br />

Modbus format<br />

411 Alarm Select<br />

Stp A<br />

Off<br />

412 Alarm trip<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

108 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Ramp Alarm [413]<br />

This function inhibits the (pre) alarm signals during<br />

acceleration/deceleration of the motor to avoid false<br />

alarms.<br />

Default:<br />

Off 0<br />

On 1<br />

Off<br />

Communication information<br />

(Pre) alarms are inhibited during acceleration/deceleration.<br />

(Pre) alarms active during acceleration/<br />

deceleration.<br />

Modbus Instance no/DeviceNet no: 43323<br />

Profibus slot/index 169/227<br />

Fieldbus format<br />

Modbus format<br />

413 Ramp Alarm<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

When the application has a constant load over the<br />

whole speed range, i.e. extruder or screw compressor,<br />

the load type can be set to basic. This type uses a single<br />

value as a reference for the nominal load. This<br />

value is used for the complete speed range of the<br />

VSD. The value can be set or automatically measured.<br />

See Autoset Alarm [41A] and Normal Load [41B]<br />

about setting the nominal load reference.<br />

The load curve mode uses an interpolated curve with<br />

9 load values at 8 equal speed intervals. This curve is<br />

populated by a test run with a real load. This can be<br />

used with any smooth load curve including constant<br />

load.<br />

Load<br />

Load curve<br />

Max Alarm<br />

Basic<br />

Min Alarm<br />

Alarm Start Delay [414]<br />

This parameter is used if, for example, you want to<br />

override an alarm during the start-up procedure.<br />

Sets the delay time after a run command, after which<br />

the alarm may be given.<br />

• If Ramp Alarm=On. The start delay begins after a<br />

RUN command.<br />

• If Ramp Alarm=Off. The start delay begins after the<br />

acceleration ramp.<br />

414 Start Delay<br />

Stp A<br />

2s<br />

Fig. 77<br />

Default:<br />

Basic 0<br />

Load<br />

Curve<br />

1<br />

415 Load Type<br />

Stp A Basic<br />

Basic<br />

Speed<br />

Uses a fixed maximum and minimum load<br />

level over the full speed range. Can be used<br />

in situations where the torque is independent<br />

of the speed.<br />

Uses the measured actual load characteristic<br />

of the process over the speed range.<br />

Default: 2 s<br />

Range: 0-3600 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43324<br />

Profibus slot/index 169/228<br />

Fieldbus format<br />

Long, 1=1 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43325<br />

Profibus slot/index 169/229<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Load Type [415]<br />

In this menu you select monitor type according to the<br />

load characteristic of your application. By selecting the<br />

required monitor type, the overload and underload<br />

alarm function can be optimized according to the load<br />

characteristic.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 109


Max Alarm [416]<br />

Max Alarm Margin [4161]<br />

With load type Basic, [415], used the Max Alarm Margin<br />

sets the band above the Normal Load, [41B],<br />

menu that does not generate an alarm. With load type<br />

Load Curve, [415], used the Max Alarm Margin sets<br />

the band above the Load Curve, [41C], that does not<br />

generate an alarm. The Max Alarm Margin is a percentage<br />

of nominal motor torque.<br />

Default: 15%<br />

Range: 0–400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43326<br />

Profibus slot/index 169/230<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Max Alarm delay [4162]<br />

Sets the delay time between the first occurrence of<br />

max alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Max Pre Alarm [417]<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43330<br />

Profibus slot/index 169/234<br />

Fieldbus format<br />

Modbus format<br />

4161 MaxAlarmMar<br />

Stp 15%<br />

A<br />

4162 MaxAlarmDel<br />

Stp 0.1s<br />

A<br />

Long, 1=0.1 s<br />

EInt<br />

Max Pre AlarmMargin [4171]<br />

With load type Basic, [415], used the Max Pre-Alarm<br />

Margin sets the band above the Normal Load, [41B],<br />

menu that does not generate a pre-alarm. With load<br />

type Load Curve, [415], used the Max Pre-Alarm Margin<br />

sets the band above the Load Curve, [41C], that<br />

does not generate a pre-alarm. The Max Pre-Alarm<br />

Margin is a percentage of nominal motor torque.<br />

Default: 10%<br />

Range: 0–400%<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43327<br />

Profibus slot/index 169/231<br />

Fieldbus format Long, 1=0.1%<br />

Modbus format<br />

Max Pre Alarm delay [4172]<br />

Sets the delay time between the first occurrence of<br />

max pre alarm condition and after when the alarm is<br />

given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0–90 s<br />

Communication information<br />

Min Pre Alarm [418]<br />

Min Pre Alarm Margin [4181]<br />

With load type Basic, [415], used the Min Pre-Alarm<br />

Margin sets the band under the Normal Load, [41B],<br />

menu that does not generate a pre-alarm. With load<br />

type Load Curve, [415], used the Min Pre-Alarm Margin<br />

sets the band under the Load Curve, [41C], that<br />

does not generate a pre-alarm. The Min Pre-Alarm<br />

Margin is a percentage of nominal motor torque.<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 43331<br />

Profibus slot/index 169/235<br />

Fieldbus format<br />

Modbus format<br />

Default: 10%<br />

Range: 0-400%<br />

4171 MaxPreAlMar<br />

Stp 10%<br />

A<br />

4172 MaxPreAlDel<br />

Stp 0.1s<br />

A<br />

Long, 1=0.1 s<br />

EInt<br />

4181 MinPreAlMar<br />

Stp 10%<br />

A<br />

Modbus Instance no/DeviceNet no: 43328<br />

Profibus slot/index 169/232<br />

110 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Min Pre Alarm Response delay [4182]<br />

Sets the delay time between the first occurrence of<br />

min pre alarm condition and after when the alarm is<br />

given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43332<br />

Profibus slot/index 169/236<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Min Alarm [419]<br />

Min Alarm Margin [4191]<br />

With load type Basic, [415], used the Min Alarm Margin<br />

sets the band under the Normal Load, [41B], menu<br />

that does not generate an alarm. With load type Load<br />

Curve, [415], used the Min Alarm Margin sets the<br />

band under the Load Curve, [41C], that does not generate<br />

an alarm. The Max Alarm Margin is a percentage<br />

of nominal motor torque.<br />

Default: 15%<br />

Range: 0-400%<br />

Communication information<br />

4182 MinPreAlDel<br />

Stp 0.1s<br />

A<br />

4191 MinAlarmMar<br />

Stp 15%<br />

A<br />

Modbus Instance no/DeviceNet no: 43329<br />

Profibus slot/index 169/233<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Min Alarm Response delay [4192]<br />

Sets the delay time between the first occurrence of<br />

min alarm condition and after when the alarm is given.<br />

Default:<br />

Range:<br />

0.1 s<br />

0-90 s<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43333<br />

Profibus slot/index 169/237<br />

Fieldbus format<br />

Long, 1=0.1 s<br />

Modbus format<br />

EInt<br />

Autoset Alarm [41A]<br />

The Autoset Alarm function can measure the nominal<br />

load that is used as reference for the alarm levels. If<br />

the selected Load Type [415] is Basic it copies the<br />

load the motor is running with to the menu Normal<br />

Load [41B]. The motor must run on the speed that<br />

generates the load that needs to be recorded. If the<br />

selected Load Type [415] is Load Curve it performs a<br />

test-run and populates the Load Curve [41C] with the<br />

found load values.<br />

WARNING: When autoset does a test run the<br />

motor and application/machine will ramp up<br />

to maximum speed.<br />

NOTE: The motor must be running for the Autoset Alarm<br />

function to succeed. A not running motor generates a<br />

“Failed!” message.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

4192 MinAlarmDel<br />

Stp 0.1s<br />

A<br />

41A AutoSet Alrm<br />

Stp A<br />

No<br />

Modbus Instance no/DeviceNet no: 43334<br />

Profibus slot/index 169/238<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 111


The default set levels for the (pre)alarms are:<br />

Range:<br />

0–400% of max torque<br />

Overload<br />

Underload<br />

Max Alarm<br />

Max Pre Alarm<br />

menu [4161] + [41B]<br />

These default set levels can be <strong>manual</strong>ly changed in<br />

menus [416] to [419]. After execution the message<br />

“Autoset OK!” is displayed for 1s and the selection<br />

reverts to “No”.<br />

Normal Load [41B]<br />

Set the level of the normal load. The alarm or pre<br />

alarm will be activated when the load is above/under<br />

normal load ± margin.<br />

Default: 100%<br />

Range:<br />

menu [4171] + [41B]<br />

Min Pre Alarm menu [41B] - [4181]<br />

Min Alarm menu [41B] - [4191]<br />

41B Normal Load<br />

Stp 100%<br />

A<br />

0-400% of max torque<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43336%, 43337 rpm,<br />

43338%, 43339 rpm,<br />

43340%, 43341 rpm,<br />

43342%, 43343 rpm,<br />

43344%, 43345 rpm,<br />

43346%, 43347 rpm,<br />

43348%, 43349 rpm,<br />

43350%, 43351 rpm,<br />

43352%, 43353 rpm<br />

169/240, 169/242,<br />

169/244, 169/246,<br />

169/248, 169/250,<br />

169/252, 169/254,<br />

170/1<br />

Long<br />

EInt<br />

NOTE: The speed values depend on the Min- and Max<br />

Speed values. they are read only and cannot be<br />

changed.<br />

NOTE: 100% Torque means: I NOM = I MOT . The maximum<br />

depends on the motor current and VSD max current<br />

settings, but the absolute maximum adjustment is<br />

400%.<br />

1<br />

Min Speed<br />

Min-Max alarm tolerance band graph<br />

Max Speed<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43335<br />

Profibus slot/index 169/239<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

Load Curve [41C]<br />

The load curve function can be used with any smooth<br />

load curve. The curve can be populated with a testrun<br />

or the values can be entered or changed <strong>manual</strong>ly.<br />

Load Curve 1-9 [41C1]-[41C9]<br />

The measured load curve is based on 9 stored samples.<br />

The curve starts at minimum speed and ends at<br />

maximum speed, the range in between is divided into<br />

8 equal steps. The measured values of each sample<br />

are displayed in [41C1] to [41C9] and can be adapted<br />

<strong>manual</strong>ly. The value of the 1st sampled value on the<br />

load curve is displayed.<br />

0.5<br />

Fig. 78<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Speed<br />

Measured load samples<br />

Min-max tolerance band<br />

Max alarm limit<br />

Min alarm limit<br />

Default: 100%<br />

41C1 Load Curve1<br />

Stp 0rpm 100%<br />

A<br />

112 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.4.2 Process Protection [420]<br />

Submenu with settings regarding protection functions<br />

for the VSD and the motor.<br />

Low Voltage Override [421]<br />

If a dip in the mains supply occurs and the low voltage<br />

override function is enabled, the VSD will automatically<br />

decrease the motor speed to keep control of the<br />

application and prevent an under voltage trip until the<br />

input voltage rises again. Therefore the rotating energy<br />

in the motor/load is used to keep the DC link voltage<br />

level at the override level, for as long as possible or<br />

until the motor comes to a standstill. This is dependent<br />

on the inertia of the motor/load combination and<br />

the load of the motor at the time the dip occurs, see<br />

Fig. 79.<br />

Default: On<br />

Off 0 At a voltage dip the low voltage trip will protect.<br />

On 1<br />

At mains dip, VSD ramps down until voltage<br />

rises.<br />

Communication information<br />

421 Low Volt OR<br />

Stp A<br />

On<br />

Modbus Instance no/DeviceNet no: 43361<br />

Profibus slot/index 170/10<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

DC link voltage<br />

Override<br />

level<br />

Low Volt.<br />

level<br />

Rotor locked [422]<br />

With the rotor locked function enabled, the VSD will<br />

protect the motor and application when this is stalled<br />

whilst increasing the motor speed from standstill. This<br />

protection will coast the motor to stop and indicate a<br />

fault when the Torque Limit has been active at very low<br />

speed for more than 5 seconds.<br />

Default: Off<br />

Off 0 No detection<br />

On 1<br />

Communication information<br />

Motor lost [423]<br />

With the motor lost function enabled, the VSD is able<br />

to detect a fault in the motor circuit: motor, motor<br />

cable, thermal relay or output filter. Motor lost will<br />

cause a trip, and the motor will coast to standstill,<br />

when a missing motor phase is detected during a<br />

period of 5 s.<br />

Communication information<br />

VSD will trip when locked rotor is detected.<br />

Trip message “Locked Rotor”.<br />

Modbus Instance no/DeviceNet no: 43362<br />

Profibus slot/index 170/11<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Default:<br />

Off 0<br />

Trip 1<br />

422 Rotor locked<br />

Stp A<br />

Off<br />

423 Motor lost<br />

Stp A<br />

Off<br />

Off<br />

Function switched off to be used if no<br />

motor or very small motor connected.<br />

VSD will trip when the motor is disconnected.<br />

Trip message “Motor Lost”.<br />

Speed<br />

t<br />

Modbus Instance no/DeviceNet no: 43363<br />

Profibus slot/index 170/12<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

(06-F60new)<br />

Fig. 79 Low voltage override<br />

t<br />

NOTE: During the low voltage override the LED trip/limit<br />

blinks.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 113


Overvolt control [424]<br />

Used to switch off the overvoltage control function<br />

when only braking by brake chopper and resistor is<br />

required. The overvoltage control function, limits the<br />

braking torque so that the DC link voltage level is controlled<br />

at a high, but safe, level. This is achieved by<br />

limiting the actual deceleration rate during stopping. In<br />

case of a defect at the brake chopper or the brake<br />

resistor the VSD will trip for “Overvoltage” to avoid a<br />

fall of the load e.g. in crane applications.<br />

NOTE: Overvoltage control should not be activated if<br />

brake chopper is used.<br />

424 Over Volt Ctl<br />

Stp A<br />

On<br />

Default: On<br />

On 0 Overvoltage control activated<br />

Off 1 Overvoltage control off<br />

Process Val 3<br />

Process Ref 4<br />

Communication information<br />

The input value equals the actual process<br />

value (feedback) and is compared to the<br />

reference signal (set point) by the PID controller,<br />

or can be used to display and view<br />

the actual process value.<br />

Reference value is set for control in process<br />

units, see Process Source [321] and<br />

Process Unit [322].<br />

Modbus Instance no/DeviceNet no: 43201<br />

Profibus slot/index 169/105<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

NOTE: When AnInX Func=Off, the connected signal will<br />

still be available for Comparators [610].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43364<br />

Profibus slot/index 170/13<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5 I/Os and Virtual<br />

Connections [500]<br />

Main menu with all the settings of the standard inputs<br />

and outputs of the VSD.<br />

11.5.1 Analogue Inputs [510]<br />

Submenu with all settings for the analogue inputs.<br />

AnIn1 Function [511]<br />

Sets the function for Analogue input 1. Scale and<br />

range are defined by AnIn1 Advanced settings [513].<br />

511 AnIn1 Fc<br />

Stp A Process Ref<br />

Default: Process Ref<br />

Off 0 Input is not active<br />

Max Speed 1 The input acts as an upper speed limit.<br />

Max Torque 2 The input acts as an upper torque limit.<br />

114 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Adding analogue inputs<br />

If more then one analogue input is set to the same<br />

function, the values of the inputs can be added<br />

together. In the following examples we assume that<br />

Process Source [321] is set to Speed.<br />

Example 1: Add signals with different weight (fine tuning).<br />

Signal on AnIn1 = 10 mA<br />

Signal on AnIn2 = 5 mA<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 4-20 mA<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 4-20 mA<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = User defined<br />

[5167] AnIn2 Value Max = 300 rpm<br />

[5168] AnIn2 Operation = Add+<br />

Calculation:<br />

AnIn1 = (10-4) / (20-4) x (1500-0) + 0 = 562.5 rpm<br />

AnIn2 = (5-4) / (20-4) x (300-0) + 0 = 18.75 rpm<br />

The actual process reference will be:<br />

+562.5 + 18.75 = 581 rpm<br />

Analogue Input Selection via Digital Inputs:<br />

When two different external Reference signals are<br />

used, e.g. 4-20mA signal from control centre and a 0-<br />

10 V locally mounted potentiometer, it is possible to<br />

switch between these two different analogue input signals<br />

via a Digital Input set to “AnIn Select”.<br />

AnIn1 is 4-20 mA<br />

AnIn2 is 0-10 V<br />

DigIn3 is controlling the AnIn selection; HIGH is 4-20<br />

mA, LOW is 0-10 V<br />

[511] AnIn1 Fc = Process Ref;<br />

set AnIn1 as reference signal input<br />

[512] AnIn1 Setup = 4-20mA;<br />

set AnIn1 for a current reference signal<br />

[513A] AnIn1 Enable = DigIn;<br />

set AnIn1 to be active when DigIn3 is HIGH<br />

[514] AnIn2 Fc = Process Ref;<br />

set AnIn2 as reference signal input<br />

[515] AnIn2 Setup = 0-10V;<br />

set AnIn2 for a voltage reference signal<br />

[516A] AnIn2 Enabl = !DigIn;<br />

set AnIn2 to be active when DigIn3 is LOW<br />

[523] DigIn3=AnIn;<br />

set DIgIn3 as input fot selection of AI reference<br />

Subtracting analogue inputs<br />

Example 2: Subtract two signals<br />

Signal on AnIn1 = 8 V<br />

Signal on AnIn2 = 4 V<br />

[511] AnIn1 Function = Process Ref.<br />

[512] AnIn1 Setup = 0-10 V<br />

[5134] AnIn1 Function Min = Min (0 rpm)<br />

[5136] AnIn1 Function Max = Max (1500 rpm)<br />

[5138] AnIn1 Operation = Add+<br />

[514] AnIn2 Function = Process Ref.<br />

[515] AnIn2 Setup = 0-10 V<br />

[5164] AnIn2 Function Min = Min (0 rpm)<br />

[5166] AnIn2 Function Max = Max (1500 rpm)<br />

[5168] AnIn2 Operation = Sub-<br />

Calculation:<br />

AnIn1 = (8-0) / (10-0) x (1500-0) + 0 = 1200 rpm<br />

AnIn2 = (4-0) / (10-0) x (1500-0) + 0 = 600 rpm<br />

The actual process reference will be:<br />

+1200 - 600 = 600 rpm<br />

AnIn1 Setup [512]<br />

The analogue input setup is used to configure the analogue<br />

input in accordance with the signal used that will<br />

be connected to the analogue input. With this selection<br />

the input can be determined as current (4-20 mA)<br />

or voltage<br />

(0-10 V) controlled input. Other selections are available<br />

for using a threshold (live zero), a bipolar input function,<br />

or a user defined input range. With a bipolar input<br />

reference signal, it is possible to control the motor in<br />

two directions. See Fig. 80.<br />

NOTE: The selection of voltage or current input is done<br />

with S1. When the switch is in voltage mode only the<br />

voltage menu items are selectable. With the switch in<br />

current mode only the current menu items are<br />

selectable.<br />

Default:<br />

Dependent on<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

512 AnIn1 Setup<br />

Stp A 4-20mA<br />

4-20 mA<br />

Setting of switch S1<br />

The current input has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the input signal. See Fig. 82.<br />

Normal full current scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 81.<br />

The scale of the current controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 115


User Bipol<br />

mA<br />

3<br />

0–10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol<br />

V<br />

7<br />

Sets the input for a bipolar current input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

Normal full voltage scale configuration of<br />

the input that controls the full range for the<br />

input signal. See Fig. 81.<br />

The voltage input has a fixed threshold<br />

(Live Zero) of 2 V and controls the full range<br />

for the input signal. See Fig. 82.<br />

The scale of the voltage controlled input,<br />

that controls the full range for the input signal.<br />

Can be defined by the advanced AnIn<br />

Min and AnIn Max menus.<br />

Sets the input for a bipolar voltage input,<br />

where the scale controls the range for the<br />

input signal. Scale can be defined in<br />

advanced menu AnIn Bipol.<br />

100 %<br />

Fig. 81 Normal full-scale configuration<br />

100 %<br />

n<br />

Ref<br />

0 10 V<br />

20mA<br />

(NG_06-F21)<br />

n<br />

0–10 V<br />

0–20 mA<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

2–10 V<br />

4–20 mA<br />

NOTE: Always check the needed set up when the setting<br />

of S1 is changed; selection will not adapt automatically.<br />

0<br />

2 V<br />

4mA<br />

10 V<br />

2 0mA<br />

Ref<br />

Communication information<br />

Fig. 82 2–10 V/4–20 mA (Live Zero)<br />

Modbus Instance no/DeviceNet no: 43202<br />

Profibus slot/index 169/106<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn1 Advanced [513]<br />

NOTE: The different menus will automatically be set to<br />

either “mA” or “V”, based on the selection in AnIn 1<br />

Setup [512].<br />

Speed<br />

100 %<br />

n<br />

513 AnIn1 Advan<br />

Stp A<br />

AnIn1 Min [5131]<br />

Parameter to set the minimum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

-10 V<br />

0<br />

10 V<br />

20 mA<br />

5131 AnIn1 Min<br />

Stp A 0V/4.00mA<br />

100 %<br />

(NG_06-F21)<br />

Default:<br />

Range:<br />

0 V/4.00 mA<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Fig. 80<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43203<br />

Profibus slot/index 169/107<br />

Fieldbus format<br />

Long<br />

Modbus format<br />

EInt<br />

116 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


AnIn1 Max [5132]<br />

Parameter to set the maximum value of the external<br />

reference signal. Only visible if [512] = User mA/V.<br />

Default: 10.00 V/20.00 mA<br />

Range:<br />

Communication information<br />

Special function: Inverted reference signal<br />

If the AnIn minimum value is higher than the AnIn maximum<br />

value, the input will act as an inverted reference<br />

input, see Fig. 83.<br />

Fig. 83 Inverted reference<br />

0.00–20.00 mA<br />

0–10.00 V<br />

Modbus Instance no/DeviceNet no: 43204<br />

Profibus slot/index 169/108<br />

Fieldbus format<br />

Modbus format<br />

100 %<br />

n<br />

Long<br />

EInt<br />

AnIn1 Bipol [5133]<br />

This menu is automatically displayed if AnIn1 Setup is<br />

set to User Bipol mA or User Bipol V. The window will<br />

automatically show mA or V range according to<br />

selected function. The range is set by changing the<br />

positive maximum value; the negative value is automatically<br />

adapted accordingly. Only visible if [512] =<br />

User Bipol mA/V. The inputs RunR and RunL input<br />

need to be active, and Rotation, [219], must be set to<br />

“R+L”, to operate the bipolar function on the analogue<br />

input.<br />

Default:<br />

Range:<br />

5132 AnIn1 Max<br />

Stp 10.0V/20.00mA<br />

0 1 0 V<br />

0.00–10.00 V<br />

0.0–20.0 mA, 0.00–10.00 V<br />

Invert<br />

AnIn Min ><br />

AnIn Max<br />

Ref<br />

5133 AnIn1 Bipol<br />

Stp 10.00V<br />

A<br />

(NG_06-F25)<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43205<br />

Profibus slot/index 169/109<br />

Fieldbus format<br />

Modbus format<br />

AnIn1 Function Min [5134]<br />

With AnIn1 Function Min the physical minimum value<br />

is scaled to selected process unit. The default scaling<br />

is dependent of the selected function of AnIn1 [511].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

Userdefined<br />

Table 22 shows corresponding values for the min and<br />

max selections depending on the function of the analogue<br />

input [511].<br />

Table 22<br />

Communication information<br />

Long<br />

EInt<br />

2 Define user value in menu [5135]<br />

AnIn Function Min Max<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Process Value Process Min [324] Process Max [325]<br />

Modbus Instance no/DeviceNet no: 43206<br />

Profibus slot/index 169/110<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn1 Function Value Min [5135]<br />

With AnIn1 Function ValMin you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5134].<br />

Default: 0.000<br />

5134 AnIn1 FcMin<br />

Stp A<br />

Min<br />

5135 AnIn1 VaMin<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 117


Communication information<br />

Modbus Instance no/DeviceNet no: 43541<br />

Profibus slot/index 170/190<br />

Fieldbus format<br />

Modbus format<br />

AnIn1 Function Max [5136]<br />

With AnIn1 Function Max the physical maximum value<br />

is scaled to selected process unit. The default scaling<br />

is dependent of the selected function of AnIn1 [511].<br />

See Table 22.<br />

Communication information<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

Default:<br />

Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5137]<br />

Modbus Instance no/<br />

DeviceNet no:<br />

43207<br />

Profibus slot/index 169/111<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed/Torque 1=1 rpm or %.<br />

Other 1= 0.001<br />

EInt<br />

AnIn1 Function Value Max [5137]<br />

With AnIn1 Function VaMax you define a user-defined<br />

value for the signal. Only visible when user-defined is<br />

selected in menu [5136].<br />

Default: 0.000<br />

5136 AnIn1 FcMax<br />

Stp A<br />

Max<br />

5137 AnIn1 VaMax<br />

Stp 0.000<br />

A<br />

Range: -10000.000 – 10000.000<br />

NOTE: With AnIn Min, AnIn Max, AnIn Function Min and<br />

AnIn Function Max settings, loss of feedback signals<br />

(e.g. voltage drop due to long sensor wiring) can be<br />

compensated to ensure an accurate process control.<br />

Example:<br />

Process sensor is a sensor with the following specification:<br />

Range:0–3 bar<br />

Output:2–10 mA<br />

Analogue input should be set up according to:<br />

[512] AnIn1 Setup = User mA<br />

[5131] AnIn1 Min = 2 mA<br />

[5132] AnIn1 Max = 10 mA<br />

[5134] AnIn1 Function Min = User-defined<br />

[5135] AnIn1 VaMin = 0.000 bar<br />

[5136] AnIn 1 Function Max = User-defined<br />

[5137] AnIn1 VaMax = 3.000 bar<br />

AnIn1 Operation [5138]<br />

Default:<br />

Add+ 0<br />

Sub- 1<br />

Add+<br />

Communication information<br />

Analogue signal is added to selected function<br />

in menu [511].<br />

Analogue signal is subtracted from<br />

selected function in menu [511].<br />

Modbus Instance no/DeviceNet no: 43208<br />

Profibus slot/index 169/112<br />

Fieldbus format<br />

Modbus format<br />

5138 AnIn1 Oper<br />

Stp A Add+<br />

UInt<br />

UInt<br />

AnIn1 Filter [5139]<br />

If the input signal is unstable (e.g. fluctuation reference<br />

value), the filter can be used to stabilize the signal. A<br />

change of the input signal will reach 63% on AnIn1<br />

within the set AnIn1 Filter time. After 5 times the set<br />

time, AnIn1 will have reached 100% of the input<br />

change. See Fig. 84.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43551<br />

Profibus slot/index 170/200<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

Default:<br />

Range:<br />

5139 AnIn1 Filt<br />

Stp 0.1s<br />

A<br />

0.1 s<br />

0.001 – 10.0 s<br />

118 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43209<br />

Profibus slot/index 169/113<br />

Fieldbus format<br />

Long, 1=0.001 s<br />

Modbus format<br />

EInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43211<br />

Profibus slot/index 169/115<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn change<br />

100%<br />

63%<br />

Original input signal<br />

Filtered AnIn signal<br />

AnIn2 Setup [515]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same functions as AnIn1 Setup [512].<br />

515 AnIn2 Setup<br />

Stp A 4-20mA<br />

Default: 4 – 20 mA<br />

Dependent on Setting of switch S2<br />

Selection: Same as in menu [512].<br />

Fig. 84<br />

AnIn1 Enable [513A]<br />

Parameter for enable/disable analogue input selection<br />

via digital inputs (DigIn set to function AnIn Select).<br />

Default:<br />

On<br />

On 0 AnIn1 is always active<br />

!DigIn 1 AnIn1 is only active if the digital input is low.<br />

DigIn 2 AnIn1 is only active if the digital input is high.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: AnIn1 43210<br />

Profibus slot/index AnIn1 169/114<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Function [514]<br />

Parameter for setting the function of Analogue Input 2.<br />

Same function as AnIn1 Func [511].<br />

T<br />

5 X T<br />

513A AnIn1 Enabl<br />

Stp A<br />

On<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43212<br />

Profibus slot/index 169/116<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn2 Advanced [516]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

516 AnIn2 Advan<br />

Stp A<br />

AnIn3 Function [517]<br />

Parameter for setting the function of Analogue Input 3.<br />

Same function as AnIn1 Func [511].<br />

43213–43220<br />

43542<br />

43552<br />

169/117–124<br />

170/191<br />

170/201<br />

514 AnIn2 Fc<br />

Stp A<br />

Off<br />

517 AnIn3 Fc<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

Default: Off<br />

Selection: Same as in menu [511]<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 119


Communication information<br />

Modbus Instance no/DeviceNet no: 43221<br />

Profibus slot/index 169/125<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

AnIn3 Setup [518]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

Dependent on<br />

4–20 mA<br />

Setting of switch S3<br />

Selection: Same as in menu [512].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43222<br />

Profibus slot/index 169/126<br />

Fieldbus format<br />

Modbus format<br />

AnIn3 Advanced [519]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

518 AnIn3 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

519 AnIn3 Advan<br />

Stp A<br />

43223–43230<br />

43543<br />

43553<br />

169/127–169/134<br />

170/192<br />

170/202<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43231<br />

Profibus slot/index 169/135<br />

Fieldbus format<br />

Modbus format<br />

AnIn4 Set-up [51B]<br />

Same functions as AnIn1 Setup [512].<br />

Default:<br />

Dependent on<br />

4-20 mA<br />

Setting of switch S4<br />

Communication information<br />

AnIn4 Advanced [51C]<br />

Same functions and submenus as under AnIn1<br />

Advanced [513].<br />

Communication information<br />

UInt<br />

UInt<br />

Selection: Same as in menu [512].<br />

Modbus Instance no/DeviceNet no: 43232<br />

Profibus slot/index 169/136<br />

Fieldbus format<br />

Modbus format<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

51B AnIn4 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

51C AnIn4 Advan<br />

Stp A<br />

43233–43240<br />

43544<br />

43554<br />

169/137–144<br />

170/193<br />

170/203<br />

AnIn4 Function [51A]<br />

Parameter for setting the function of Analogue Input 4.<br />

Same function as AnIn1 Func [511].<br />

51A AnIn4 Fc<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Selection: Same as in menu [511]<br />

120 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


11.5.2 Digital Inputs [520]<br />

Submenu with all the settings for the digital inputs.<br />

NOTE: Additional inputs will become available when the<br />

I/O option boards are connected.<br />

Digital Input 1 [521]<br />

To select the function of the digital input.<br />

On the standard control board there are eight digital<br />

inputs.<br />

If the same function is programmed for more than one<br />

input that function will be activated according to “OR”<br />

logic if nothing else is stated.<br />

Default: RunL<br />

Off 0 The input is not active.<br />

Ext. Trip 3<br />

Stop 4<br />

Enable 5<br />

RunR 6<br />

RunL 7<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

trip” immediately.<br />

NOTE: The External Trip is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Stop command according to the selected<br />

Stop mode in menu [33B].<br />

NOTE: The Stop command is active low.<br />

NOTE: Activated according to “AND” logic.<br />

Enable command. General start condition<br />

to run the VSD. If made low during running<br />

the output of the VSD is cut off immediately,<br />

causing the motor to coast to zero<br />

speed.<br />

NOTE: If none of the digital inputs are programmed<br />

to “Enable”, the internal enable<br />

signal is active.<br />

NOTE: Activated according to “AND” logic.<br />

Run Right command. The output of the<br />

VSD will be a clockwise rotary field.<br />

Run Left command. The output of the VSD<br />

will be a counter-clockwise rotary field.<br />

Reset command. To reset a Trip condition<br />

Reset 9<br />

and to enable the Autoreset function.<br />

Preset Ctrl1 10 To select the Preset Reference.<br />

Preset Ctrl2 11 To select the Preset Reference.<br />

Preset Ctrl3 12 To select the Preset Reference.<br />

MotPot Up 13<br />

MotPot<br />

Down<br />

14<br />

521 DigIn 1<br />

Stp A<br />

RunL<br />

Increases the internal reference value<br />

according to the set AccMotPot time [333].<br />

Has the same function as a “real” motor<br />

potentiometer, see Fig. 65.<br />

Decreases the internal reference value<br />

according to the set DecMotPot time [334].<br />

See MotPot Up.<br />

Pump1<br />

Feedb<br />

Pump2<br />

Feedb<br />

Pump3<br />

Feedb<br />

Pump4<br />

Feedb<br />

Pump5<br />

Feedb<br />

Pump6<br />

Feedb<br />

Timer 1<br />

Timer 2<br />

Set Ctrl 1<br />

Set Ctrl 2<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

Mot PreMag 25<br />

Jog 26<br />

Ext Mot<br />

Temp<br />

Loc/Rem<br />

27<br />

28<br />

AnIn select 29<br />

LC Level 30<br />

Brk Ackn 31<br />

Communication information<br />

Feedback input pump1 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 2 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump3 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 4 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump5 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Feedback input pump 6 for Pump/Fan control<br />

and informs about the status of the<br />

auxiliary connected pump/fan.<br />

Timer 1 Delay [643] will be activated on the<br />

rising edge of this signal.<br />

Timer 2 Delay [653] will be activated on the<br />

rising edge of this signal.<br />

Activates other parameter set. See Table<br />

23 for selection possibilities.<br />

Activates other parameter set. See Table<br />

23 for selection possibilities.<br />

Pre-magnetises the motor. Used for faster<br />

motor start.<br />

To activate the Jog function. Gives a Run<br />

command with the set Jog speed and<br />

Direction, page 97.<br />

Be aware that if there is nothing connected<br />

to the input, the VSD will trip at “External<br />

Motor Temp” immediately.<br />

NOTE: The External Motor Temp is active<br />

low.<br />

Activate local mode defined in [2171] and<br />

[2172].<br />

Activate/deactivate analogue inputs<br />

defined in [513A], [516A], [519A] and<br />

[51CA]<br />

Liquid cooling low level signal.<br />

NOTE: The Liquid Cooling Level is active<br />

low.<br />

Brake acknowledge input for Brake Fault<br />

control. Function is activated via this<br />

selection<br />

NOTE: For bipol function, input RunR and RunL needs to<br />

be active and Rotation, [219] must be set to “R+L”.<br />

Modbus Instance no/DeviceNet no: 43241<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 121


Profibus slot/index 169/145<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Table 23<br />

Parameter Set Set Ctrl 1 Set Ctrl 2<br />

A 0 0<br />

B 1 0<br />

C 0 1<br />

D 1 1<br />

NOTE: To activate the parameter set selection, menu<br />

241 must be set to DigIn.<br />

Digital Input 2 [522] to Digital Input 8<br />

[528]<br />

Same function as DigIn 1 [521]. Default function for<br />

DigIn 8 is Reset. For DigIn 3 to 7 the default function is<br />

Off.<br />

Default: RunR<br />

Selection: Same as in menu [521]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43241–43248<br />

Profibus slot/index 169/146–169/152<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Additional digital inputs [529] to [52H]<br />

Additional digital inputs with I/O option board installed,<br />

B1 DigIn 1 [529] - B3 DigIn 3 [52H]. B stands for board<br />

and 1 to 3 is the number of the board which is related<br />

to the position of the I/O option board on the option<br />

mounting plate. The functions and selections are the<br />

same as DigIn 1 [521].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43501–43509<br />

Profibus slot/index 170/150–170/158<br />

Fieldbus format<br />

Modbus format<br />

522 DigIn 2<br />

Stp A<br />

Int<br />

Int<br />

RunR<br />

11.5.3 Analogue Outputs [530]<br />

Submenu with all settings for the analogue outputs.<br />

Selections can be made from application and VSD values,<br />

in order to visualize actual status. Analogue outputs<br />

can also be used as a mirror of the analogue<br />

input. Such a signal can be used as:<br />

• a reference signal for the next VSD in a Master/<br />

Slave configuration (see Fig. 85).<br />

• a feedback acknowledgement of the received analogue<br />

reference value.<br />

AnOut1 Function [531]<br />

Sets the function for the Analogue Output 1. Scale<br />

and range are defined by AnOut1 Advanced settings<br />

[533].<br />

Default:<br />

Speed<br />

Process Val 0<br />

Actual process value according to Process<br />

feedback signal.<br />

Speed 1 Actual speed.<br />

Torque 2 Actual torque.<br />

Process Ref 3 Actual process reference value.<br />

Shaft Power 4 Actual shaft power.<br />

Frequency 5 Actual frequency.<br />

Current 6 Actual current.<br />

El power 7 Actual electrical power.<br />

Output volt 8 Actual output voltage.<br />

DC-voltage 9 Actual DC link voltage.<br />

AnIn1 10<br />

AnIn2 11<br />

AnIn3 12<br />

AnIn4 13<br />

Speed Ref 14<br />

Torque Ref 15<br />

531 AnOut1 Fc<br />

Stp A Speed<br />

Mirror of received signal value on<br />

AnIn1.<br />

Mirror of received signal value on<br />

AnIn2.<br />

Mirror of received signal value on<br />

AnIn3.<br />

Mirror of received signal value on<br />

AnIn4.<br />

Actual internal speed reference Value<br />

after ramp and V/Hz.<br />

Actual torque reference value<br />

(=0 in V/Hz mode)<br />

NOTE: When selections AnIn1, AnIn2 …. AnIn4 is<br />

selected, the setup of the AnOut (menu [532] or [535])<br />

has to be set to 0-10V or 0-20mA. When the AnOut Setup<br />

is set to e.g. 4-20mA, the mirroring is not working<br />

correct.<br />

122 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information AnOut 1 Setup [532]<br />

Modbus Instance no/DeviceNet no: 43251<br />

Profibus slot/index 169/155<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Preset scaling and offset of the output configuration.<br />

Default:<br />

4–20mA 0<br />

0–20mA 1<br />

User mA 2<br />

User Bipol<br />

mA<br />

3<br />

0-10V 4<br />

2–10V 5<br />

User V 6<br />

User Bipol V 7<br />

4-20mA<br />

Communication information<br />

532 AnOut1 Setup<br />

Stp A 4-20mA<br />

The current output has a fixed threshold<br />

(Live Zero) of 4 mA and controls the full<br />

range for the output signal. See Fig. 82.<br />

Normal full current scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 81.<br />

The scale of the current controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar current output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Normal full voltage scale configuration of<br />

the output that controls the full range for<br />

the output signal. See Fig. 81.<br />

The voltage output has a fixed threshold<br />

(Live Zero) of 2 V and controls the full<br />

range for the output signal. See Fig. 82.<br />

The scale of the voltage controlled output<br />

that controls the full range for the output<br />

signal. Can be defined by the advanced<br />

AnOut Min and AnOut Max menus.<br />

Sets the output for a bipolar voltage output,<br />

where the scale controls the range<br />

for the output signal. Scale can be<br />

defined in advanced menu AnOut Bipol.<br />

Modbus Instance no/DeviceNet no: 43252<br />

Profibus slot/index 169/156<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Ref.<br />

VSD 1<br />

Master<br />

Ref.<br />

VSD 2<br />

Slave<br />

AnOut<br />

Fig. 85<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 123


AnOut1 Advanced [533]<br />

With the functions in the AnOut1 Advanced menu, the<br />

output can be completely defined according to the<br />

application needs. The menus will automatically be<br />

adapted to “mA” or “V”, according to the selection in<br />

AnOut1 Setup [532].<br />

AnOut1 Min [5331]<br />

This parameter is automatically displayed if User mA<br />

or User V is selected in menu AnOut 1 Setup [532].<br />

The menu will automatically adapt to current or voltage<br />

setting according to the selected setup. Only visible<br />

if [532] = User mA/V.<br />

Default:<br />

Range:<br />

4 mA<br />

Communication information<br />

AnOut1 Max [5332]<br />

This parameter is automatically displayed if User mA<br />

or User V is selected in menu AnOut1 Setup [532].<br />

The menu will automatically adapt to current or voltage<br />

setting according to the selected setup. Only visible<br />

if [532] = User mA/V.<br />

Communication information<br />

0.00 – 20.00 mA, 0 – 10.00 V<br />

Modbus Instance no/DeviceNet no: 43253<br />

Profibus slot/index 169/157<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

Default:<br />

Range:<br />

20.00 mA<br />

EInt<br />

0.00–20.00 mA, 0–10.00 V<br />

Modbus Instance no/DeviceNet no: 43254<br />

Profibus slot/index 169/158<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

533 AnOut 1 Adv<br />

Stp A<br />

5331 AnOut 1 Min<br />

Stp A<br />

4mA<br />

5332 AnOut 1 Max<br />

Stp 20.0mA<br />

EInt<br />

AnOut1 Bipol [5333]<br />

Automatically displayed if User Bipol mA or User Bipol<br />

V is selected in menu AnOut1 Setup. The menu will<br />

automatically show mA or V range according to the<br />

selected function. The range is set by changing the<br />

positive maximum value; the negative value is automatically<br />

adapted accordingly. Only visible if [512] =<br />

User Bipol mA/V.<br />

Default:<br />

Range:<br />

Communication information<br />

-10.00–10.00 V<br />

-10.00–10.00 V, -20.0–20.0 mA<br />

Modbus Instance no/DeviceNet no: 43255<br />

Profibus slot/index 169/159<br />

Fieldbus format Long, 1=0.01<br />

Modbus format<br />

EInt<br />

AnOut1 Function Min [5334]<br />

With AnOut1 Function Min the physical minimum value<br />

is scaled to selected presentation. The default scaling<br />

is dependent of the selected function of AnOut1 [531].<br />

Default:<br />

Min<br />

Min 0 Min value<br />

Max 1 Max value<br />

User-defined 2 Define user value in menu [5335]<br />

Table 24 shows corresponding values for the min and<br />

max selections depending on the function of the analogue<br />

output [531].<br />

Table 24<br />

AnOut<br />

Function<br />

5333 AnOut1Bipol<br />

Stp -10.00-10.00V<br />

5334 AnOut1FCMin<br />

Stp A<br />

Min<br />

Min Value<br />

Max Value<br />

Process Value Process Min [324] Process Max [325]<br />

Speed Min Speed [341] Max Speed [343]<br />

Torque 0% Max Torque [351]<br />

Process Ref Process Min [324] Process Max [325]<br />

Shaft Power 0% Motor Power [223]<br />

Frequency 0 Hz Motor Frequency [222]<br />

Current 0 A Motor Current [224]<br />

El Power 0 W Motor Power [223]<br />

Output Voltage 0 V Motor Voltage [221]<br />

124 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 24<br />

AnOut<br />

Function<br />

DC voltage 0 V 1000 V<br />

AnIn1<br />

AnIn2<br />

AnIn3<br />

AnIn4<br />

*) Fmin is dependent on the set value in menu Minimum<br />

Speed [341].<br />

Communication information<br />

Example<br />

Set the AnOut function for Motorfrequency to 0Hz, set<br />

AnOut functionMin [5334] to “User-defined” and<br />

AnOut1 VaMin[5335] = 0.0. This results in an anlogue<br />

output signal from 0/4 mA to 20mA. ......<br />

AnOut1 Function Value Min [5335]<br />

With AnOut1 Function VaMin you define a userdefined<br />

value for the signal. Only visible when userdefined<br />

is selected in menu [5334].<br />

Communication information<br />

AnIn1 Function Min AnIn1 Function Max<br />

AnIn2 Function Min AnIn2 Function Max<br />

AnIn3 Function Min AnIn3 Function Max<br />

AnIn4 Function Min AnIn4 Function Max<br />

Modbus Instance no/DeviceNet no: 43256<br />

Profibus slot/index 169/160<br />

Fieldbus format<br />

Modbus format<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43545<br />

Profibus slot/index 170/194<br />

Fieldbus format<br />

Modbus format<br />

Min Value<br />

5335 AnOut1VaMin<br />

Stp 0.000<br />

A<br />

Max Value<br />

Long,<br />

1=0.1 W, 0.1 Hz, 0.1 A,<br />

0.1 V or 0.001<br />

EInt<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnOut1 Function Max [5336]<br />

With AnOut1 Function Min the physical minimum value<br />

is scaled to selected presentation. The default scaling<br />

is dependent on the selected function of AnOut1<br />

[531]. See Table 24.<br />

Default: Max<br />

Min 0 Min value<br />

Max 1 Max value<br />

User defined 2 Define user value in menu [5337]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43257<br />

Profibus slot/index 169/161<br />

Fieldbus format Long, 0.001<br />

Modbus format<br />

AnOut1 Function Value Max [5337]<br />

With AnOut1 Function VaMax you define a userdefined<br />

value for the signal. Only visible when userdefined<br />

is selected in menu [5334].<br />

Communication information<br />

EInt<br />

NOTE: It is possible to set AnOut1 up as an inverted<br />

output signal by setting AnOut1 Min > AnOut1 Max. See<br />

Fig. 83.<br />

Default: 0.000<br />

Range: -10000.000–10000.000<br />

Modbus Instance no/DeviceNet no: 43555<br />

Profibus slot/index 170/204<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

Speed 1=1 rpm<br />

Torque 1=1%<br />

Process val 1=0.001<br />

EInt<br />

AnOut2 Function [534]<br />

Sets the function for the Analogue Output 2.<br />

Default:<br />

Torque<br />

5336 AnOut1FCMax<br />

Stp A<br />

Max<br />

5337 AnOut1VaMax<br />

Stp 0.000<br />

A<br />

534 AnOut2 Fc<br />

Stp A Torque<br />

Selection: Same as in menu [531]<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 125


Communication information<br />

Modbus Instance no/DeviceNet no: 43261<br />

Profibus slot/index 169/165<br />

Fieldbus format<br />

Modbus format<br />

AnOut2 Setup [535]<br />

Preset scaling and offset of the output configuration<br />

for analogue output 2.<br />

Default:<br />

4-20mA<br />

Communication information<br />

AnOut2 Advanced [536]<br />

Same functions and submenus as under AnOut1<br />

Advanced [533].<br />

Communication information<br />

UInt<br />

UInt<br />

Selection: Same as in menu [532]<br />

Modbus Instance no/DeviceNet no: 43262<br />

Profibus slot/index 169/166<br />

Fieldbus format<br />

Modbus format<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

535 AnOut2 Setup<br />

Stp A 4-20mA<br />

UInt<br />

UInt<br />

536 AnOut2 Advan<br />

Stp A<br />

43263–43267<br />

43546<br />

43556<br />

169/167–169/171<br />

170/195<br />

170/205<br />

11.5.4 Digital Outputs [540]<br />

Submenu with all the settings for the digital outputs.<br />

Digital Out 1 [541]<br />

Sets the function for the digital output 1.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Default:<br />

Off 0<br />

On 1<br />

Ready<br />

Output is not active and constantly<br />

low.<br />

Output is made constantly high, i.e.<br />

for checking circuits and trouble<br />

shooting.<br />

Run 2<br />

Running. The VSD output is active =<br />

produces current for the motor.<br />

Stop 3 The VSD output is not active.<br />

0Hz 4<br />

The output frequency=0±0.1Hz when<br />

in Run condition.<br />

Acc/Dec 5<br />

The speed is increasing or decreasing<br />

along the acc. ramp dec. ramp.<br />

At Process 6 The output = Reference.<br />

At Max spd 7<br />

The frequency is limited by the Maximum<br />

Speed.<br />

No Trip 8 No Trip condition active.<br />

Trip 9 A Trip condition is active.<br />

AutoRst Trip 10 Autoreset trip condition active.<br />

Limit 11 A Limit condition is active.<br />

Warning 12 A Warning condition is active.<br />

Ready 13<br />

T= T lim 14<br />

I>I nom 15<br />

Brake 16<br />

Sgnl


Max Alarm 20<br />

Max PreAlarm 21<br />

Min Alarm 22<br />

The max alarm level has been<br />

reached.<br />

The max pre alarm level has been<br />

reached.<br />

The min alarm level has been<br />

reached.<br />

Min PreAlarm 23<br />

The min pre alarm Level has been<br />

reached.<br />

LY 24 Logic output Y.<br />

!LY 25 Logic output Y inverted.<br />

LZ 26 Logic output Z.<br />

!LZ 27 Logic output Z inverted.<br />

CA 1 28 Analogue comparator 1 output.<br />

!A1 29 Analogue comp 1 inverted output.<br />

CA 2 30 Analogue comparator 2 output.<br />

!A2 31 Analogue comp 2 inverted output.<br />

CD 1 32 Digital comparator 1 output.<br />

!D1 33 Digital comp 1 inverted output.<br />

CD 2 34 Digital comparator 2 output.<br />

!D2 35 Digital comp 2 inverted output.<br />

Operation 36<br />

Run command is active or VSD running.<br />

The signal can be used to control<br />

the mains contactor if the VSD is<br />

equipped with Standby supply option.<br />

T1Q 37 Timer1 output<br />

!T1Q 38 Timer1 inverted output<br />

T2Q 39 Timer2 output<br />

!T2Q 40 Timer2 inverted output<br />

Sleeping 41 Sleeping function activated<br />

Crane Deviat 42 Tripped on deviation<br />

PumpSlave1 43 Activate pump slave 1<br />

PumpSlave2 44 Activate pump slave 2<br />

PumpSlave3 45 Activate pump slave 3<br />

PumpSlave4 46 Activate pump slave 4<br />

PumpSlave5 47 Activate pump slave 5<br />

PumpSlave6 48 Activate pump slave 6<br />

PumpMaster1 49 Activate pump master 1<br />

PumpMaster2 50 Activate pump master 2<br />

PumpMaster3 51 Activate pump master 3<br />

PumpMaster4 52 Activate pump master 4<br />

PumpMaster5 53 Activate pump master 5<br />

PumpMaster6 54 Activate pump master 6<br />

All Pumps 55 All pumps are running<br />

Only Master 56 Only the master is running<br />

Loc/Rem 57 Local/Rem function is active<br />

Standby 58 Standby supply option is active<br />

PTC Trip 59 Trip when function is active<br />

PT100 Trip 60 Trip when function is active<br />

Overvolt 61 Overvoltage due to high main voltage<br />

Overvolt G 62 Overvoltage due to generation mode<br />

Overvolt D 63 Overvoltage due to deceleration<br />

Acc 64 Acceleration along the acc. ramp<br />

Dec 65 Deceleration along the dec. ramp<br />

I 2 t 66 I 2 t limit protection active<br />

V-Limit 67 Overvoltage limit function active<br />

C-Limit 68 Overcurrent limit function active<br />

Overtemp 69 Over temperature warning<br />

Low voltage 70 Low voltage warning<br />

DigIn 1 71 Digital input 1<br />

DigIn 2 72 Digital input 2<br />

DigIn 3 73 Digital input 3<br />

DigIn 4 74 Digital input 4<br />

DigIn 5 75 Digital input 5<br />

DigIn 6 76 Digital input 6<br />

DigIn 7 77 Digital input 7<br />

DigIn 8 78 Digital input 8<br />

ManRst Trip 79<br />

Active trip that needs to be <strong>manual</strong>ly<br />

reset<br />

Com Error 80 Serial communication lost<br />

External Fan 81<br />

The VSD requires external cooling.<br />

Internal fans are active.<br />

LC Pump 82 Activate liquid cooling pump<br />

LC HE Fan 83<br />

Activate liquid cooling heat exchanger<br />

fan<br />

LC Level 84 Liquid cooling low level signal active<br />

Run Right 85<br />

Communication information<br />

Positive speed (>0.5%), i.e. forward/<br />

clockwise direction.<br />

Run Left 86<br />

Negative speed (0.5%), i.e. reverse<br />

counter clockwise direction.<br />

Com Active 87 Fieldbus communication active.<br />

Brk Fault 88 Tripped on brake fault (not released)<br />

BrkNotEngage 89<br />

Warning and continued operation<br />

(keep torque) due to Brake not<br />

engaged during stop.<br />

Modbus Instance no/DeviceNet no: 43271<br />

Profibus slot/index 169/175<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 127


Digital Out 2 [542]<br />

Relay 2 [552]<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

NOTE: The definitions described here are valid for the<br />

active output condition.<br />

Sets the function for the digital output 2.<br />

Sets the function for the relay output 2.<br />

542 DigOut2<br />

Stp A No Trip<br />

Default: No trip<br />

Selection: Same as in menu [541]<br />

552 Relay 2<br />

Stp A<br />

Default: Run<br />

Selection: Same as in menu [541]<br />

Run<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43272<br />

Profibus slot/index 169/176<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43274<br />

Profibus slot/index 169/178<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.5.5 Relays [550]<br />

Submenu with all the settings for the relay outputs.<br />

The relay mode selection makes it possible to establish<br />

a “fail safe” relay operation by using the normal<br />

closed contact to function as the normal open contact.<br />

NOTE: Additional relays will become available when I/O<br />

option boards are connected. Maximum 3 boards with 3<br />

relays each.<br />

Relay 1 [551]<br />

Sets the function for the relay output 1. Same function<br />

as digital output 1 [541] can be selected.<br />

Default:<br />

Trip<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43273<br />

Profibus slot/index 169/177<br />

Fieldbus format<br />

Modbus format<br />

551 Relay 1<br />

Stp A<br />

UInt<br />

UInt<br />

Trip<br />

Relay 3 [553]<br />

Sets the function for the relay output 3.<br />

553 Relay 3<br />

Stp A<br />

Default: Off<br />

Selection: Same as in menu [541]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43275<br />

Profibus slot/index 169/179<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Board Relay [554] to [55C]<br />

These additional relays are only visible if an I/O option<br />

board is fitted in slot 1, 2, or 3. The outputs are named<br />

B1 Relay 1–3, B2 Relay 1–3 and B3 Relay 1–3. B<br />

stands for board and 1–3 is the number of the board<br />

which is related to the position of the I/O option board<br />

on the option mounting plate.<br />

NOTE: Visible only if optional board is detected or if any<br />

input/output is activated.<br />

Communication information<br />

Off<br />

Modbus Instance no/DeviceNet no: 43511–43519<br />

Profibus slot/index 170/160–170/168<br />

128 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Fieldbus format<br />

Modbus format<br />

Relay Advanced [55D]<br />

This function makes it possible to ensure that the relay<br />

will also be closed when the VSD is malfunctioning or<br />

powered down.<br />

Example<br />

A process always requires a certain minimum flow. To<br />

control the required number of pumps by the relay<br />

mode NC, the e.g. the pumps can be controlled normally<br />

by the pump control, but are also activated<br />

when the variable speed drive is tripped or powered<br />

down.<br />

Relay 1 Mode [55D1]<br />

Default:<br />

N.O 0<br />

N.C 1<br />

N.O<br />

Communication information<br />

Relay Modes [55D2] to [55DC]<br />

Same function as for relay 1 mode [55D1].<br />

Communication information<br />

UInt<br />

UInt<br />

The normal open contact of the relay will<br />

be activated when the function is active.<br />

The normally closed contact of the relay<br />

will act as a normal open contact. The<br />

contact will be opened when function is<br />

not active and closed when function is<br />

active.<br />

Modbus Instance no/DeviceNet no: 43276<br />

Profibus slot/index 169/180<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

55D Relay Adv<br />

Stp A<br />

55D1 Relay Mode<br />

Stp A<br />

N.O<br />

43277–43278,<br />

43521–43529<br />

169/181–169/182,<br />

170/170–170/178<br />

UInt<br />

UInt<br />

11.5.6 Virtual Connections [560]<br />

Functions to enable eight internal connections of comparator,<br />

timer and digital signals, without occupying<br />

physical digital in/outputs. Virtual connections are<br />

used to wireless connection of a digital output function<br />

to a digital input function. Available signals and control<br />

functions can be used to create your own specific<br />

functions.<br />

Example of start delay<br />

The motor will start in RunR 10 seconds after DigIn1<br />

gets high. DigIn1 has a time delay of 10 s.<br />

Menu Parameter Setting<br />

[521] DigIn1 Timer 1<br />

[561] VIO 1 Dest RunR<br />

[562] VIO 1 Source T1Q<br />

[641] Timer1 Trig DigIn 1<br />

[642] Timer1 Mode Delay<br />

[643] Timer1 Delay 0:00:10<br />

NOTE: When a digital input and a virtual destination are<br />

set to the same function, this function will act as an OR<br />

logic function.<br />

Virtual Connection 1 Destination [561]<br />

With this function the destination of the virtual connection<br />

is established. When a function can be controlled<br />

by several sources, e.g. VC destination or Digital Input,<br />

the function will be controlled in conformity with “OR<br />

logic”. See DigIn for descriptions of the different selections.<br />

Default:<br />

Selection:<br />

Off<br />

Communication information<br />

Same selections as for Digital Input 1,<br />

menu [521].<br />

Modbus Instance no/DeviceNet no: 43281<br />

Profibus slot/index 169/185<br />

Fieldbus format<br />

Modbus format<br />

561 VIO 1 Dest<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 129


Virtual Connection 1 Source [562]<br />

With this function the source of the virtual connection<br />

is defined. See DigOut 1 for description of the different<br />

selections.<br />

Default:<br />

Off<br />

Selection: Same as for menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43282<br />

Profibus slot/index 169/186<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

Virtual Connections 2-8 [563] to [56G]<br />

Same function as virtual connection 1 [561] and [562].<br />

Communication information for virtual connections 2-8<br />

Destination.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

43283, 43285, 43287,<br />

43289, 43291, 43293,<br />

43295<br />

169/ 187, 189, 191,<br />

193, 195, 197, 199<br />

UInt<br />

UInt<br />

Communication information for virtual connections 2-8<br />

Source.<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

562 VIO 1 Source<br />

Stp A<br />

Off<br />

43284, 43286, 43288,<br />

43290, 43292, 43294,<br />

43296<br />

169/ 188, 190, 192,<br />

194, 196, 198, 200<br />

UInt<br />

UInt<br />

11.6 Logical Functions and<br />

Timers [600]<br />

With the Comparators, Logic Functions and Timers,<br />

conditional signals can be programmed for control or<br />

signalling features. This gives you the ability to compare<br />

different signals and values in order to generate<br />

monitoring/controlling features.<br />

11.6.1 Comparators [610]<br />

The comparators available make it possible to monitor<br />

different internal signals and values, and visualize via<br />

digital output or a contact, when a specific value or<br />

status is reached or established.<br />

There are 2 analogue comparators that compare any<br />

available analogue value (including the analogue reference<br />

inputs) with two adjustable constants.<br />

For the two analogue comparators two different constants<br />

are available, Level HI and Level LO. With these<br />

two levels, it is possible to create a clear hysteresis for<br />

the analogue comparator between setting and resetting<br />

the comparator output. This function gives a clear<br />

difference in switching levels, which lets the process<br />

adapt until a certain action is started. With such a hysteresis,<br />

even an instable analogue signal can be monitored<br />

without getting a nervous comparator signal.<br />

Another function is to get a clear indication that a certain<br />

situation has occurred; the comparator can latch<br />

by set Level LO to a higher value than Level HI.<br />

There are 2 digital comparators that compare any<br />

available digital signal.<br />

The output signals of these comparators can be logically<br />

tied together to yield a logical output signal.<br />

All the output signals can be programmed to the digital<br />

or relay outputs or used as a source for the virtual<br />

connections [560].<br />

Analogue Comparator 1 Value [611]<br />

Selection of the analogue value for Analogue Comparator<br />

1 (CA1).<br />

Analogue comparator 1 compares the selectable analogue<br />

value in menu [611] with the constant Level HI in<br />

menu [612] and constant Level LO in menu [613].<br />

When the value exceeds the upper limit level high, the<br />

output signal CA1 becomes high and !A1 low, see Fig.<br />

86. When the value then decreases below the lower<br />

limit, the output signal CA1 becomes low and !A1<br />

high.<br />

The output signal can be programmed as a virtual<br />

connection source and to the digital or relay outputs.<br />

Analogue value:<br />

Menu [611]<br />

Adjustable Level HI.<br />

Menu [612]<br />

Adjustable Level LO.<br />

Menu [613]<br />

Fig. 86 Analogue Comparator<br />

0<br />

1<br />

Signal:CA1<br />

611 CA1 Value<br />

Stp A Speed<br />

(NG_06-F125)<br />

130 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Default:<br />

Speed<br />

Process Val 0 Set by Unit [310]<br />

Speed 1 rpm<br />

Torque 2 %<br />

Shaft Power 3 kW<br />

El Power 4 kW<br />

Current 5 A<br />

Output Volt 6 V<br />

Frequency 7 Hz<br />

DC Voltage 8 V<br />

Heatsink Tmp 9 °C<br />

PT100_1 10 °C<br />

PT100_2 11 °C<br />

PT100_3 12 °C<br />

Energy 13 kWh<br />

Run Time 14 h<br />

Mains Time 15 h<br />

AnIn1 16 %<br />

AnIn2 17 %<br />

AnIn3 18 %<br />

AnIn4 19 %<br />

Example<br />

Create automatic RUN/STOP signal via the analogue<br />

reference signal. Analogue current reference signal, 4-<br />

20 mA, is connected to Analogue Input 1. AnIn1<br />

Setup, menu [512] = 4-20 mA and the threshold is 4<br />

mA. Full scale (100%) input signal on AnIn 1 = 20 mA.<br />

When the reference signal on AnIn1 increases 80% of<br />

the threshold (4 mA x 0.8 = 3.2 mA), the VSD will be<br />

set in RUN mode. When the signal on AnIn1 goes<br />

below 60% of the threshold (4 mA x 0.6 = 2.4 mA) the<br />

VSD is set to STOP mode. The output of CA1 is used<br />

as a virtual connection source that controls the virtual<br />

connection destination RUN.<br />

Menu Function Setting<br />

511 AnIn1 Function Process reference<br />

512 AnIn1 Set-up 4-20 mA, threshold is 4 mA<br />

341 Min Speed 0<br />

343 Max Speed 1500<br />

611 CA1 Value AnIn1<br />

612 CA1 Level HI 16% (3.2mA/20mA x 100%)<br />

613 CA1 Level LO 12% (2.4mA/20mA x 100%)<br />

561 VIO 1 Dest RunR<br />

562 VIO 1 Source CA1<br />

215 Run/Stp Ctrl Remote<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43401<br />

Profibus slot/index 170/50<br />

20 mA<br />

Reference signal AnIn1<br />

Max speed<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

4 mA<br />

3.2 mA<br />

2.4 mA<br />

CA1 Level HI = 16%<br />

CA1 Level LO = 12%<br />

t<br />

CA1<br />

Mode<br />

RUN<br />

STOP<br />

T<br />

1 2 3 4 5 6<br />

Fig. 87<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 131


Communication information<br />

No.<br />

1<br />

2<br />

3<br />

T<br />

4<br />

5<br />

6<br />

Analogue Comparator 1 Level High<br />

[612]<br />

Selects the analogue comparator constant high level<br />

according to the selected value in menu [611].<br />

The default value is 300.<br />

Default:<br />

Range:<br />

Description<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 output stays<br />

low, mode=RUN.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is set<br />

high, mode=RUN.<br />

The reference signal passes the threshold level of 4 mA,<br />

the motor speed will now follow the reference signal.<br />

During this period the motor speed will follow the reference<br />

signal.<br />

The reference signal reaches the threshold level, motor<br />

speed is 0 rpm, mode = RUN.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 output stays<br />

high, mode =RUN.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 output=STOP.<br />

612 CA1 Level HI<br />

Stp A 300rpm<br />

300 rpm<br />

Enter a value for the high level.<br />

Modbus Instance no/DeviceNet no: 43402<br />

Profibus slot/index 170/51<br />

Fieldbus format<br />

Modbus format<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Example<br />

This example describes the normal use of the constant<br />

level high and low.<br />

Menu Function Setting<br />

343 Max Speed 1500<br />

611 CA1 Value Speed<br />

612 CA1 Level HI 300 rpm<br />

613 CA1 Level LO 200 rpm<br />

561 VC1 Dest Timer 1<br />

562 VC1 Source CA1<br />

MAX<br />

speed<br />

[343]<br />

300<br />

200<br />

CA1 Level HI [612]<br />

Hysteresis<br />

CA1 Level LO [613]<br />

Mode Min Max Decimals<br />

Process 0 3<br />

Speed, rpm 0 Max speed 0<br />

Torque, % 0 Max torque 0<br />

Shaft Power, kW 0 Motor P n x4 0<br />

El Power, kW 0 Motor P n x4 0<br />

Current, A 0 Motor I n x4 1<br />

Output volt, V 0 1000 1<br />

Frequency, Hz 0 400 1<br />

DC voltage, V 0 1250 1<br />

Heatsink temp, C 0 100 1<br />

PT 100_1_2_3, C -100 300 1<br />

Energy, kWh 0 1000000 0<br />

Run time, h 0 65535 0<br />

Mains time, h 0 65535 0<br />

AnIn 1-4% 0 100 0<br />

Output<br />

CA1<br />

High<br />

Low<br />

Fig. 88<br />

No.<br />

1<br />

2<br />

1 2 3 4 5 6 7 8<br />

Description<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

t<br />

132 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


No.<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

The reference signal passes the Level LO value from<br />

below (positive edge), the comparator CA1 does not<br />

change, output stays low.<br />

The reference signal passes the Level HI value from<br />

below (positive edge), the comparator CA1 output is<br />

set high.<br />

The reference signal passes the Level HI value from<br />

above (negative edge), the comparator CA1 does not<br />

change, output stays high.<br />

The reference signal passes the Level LO value from<br />

above (negative edge), the comparator CA1 is reset,<br />

output is set low.<br />

Analogue Comparator 1 Level Low<br />

[613]<br />

Selects the analogue comparator constant low level<br />

according to the selected value in menu [611].<br />

For default value see selection table for menu [612].<br />

Default:<br />

Range:<br />

200 rpm<br />

Communication information<br />

Enter a value for the low level.<br />

Modbus Instance no/DeviceNet no: 43403<br />

Profibus slot/index 170/52<br />

Fieldbus format<br />

Modbus format<br />

Description<br />

613 CA1 Level LO<br />

Stp A 200rpm<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Analogue Comparator 2 Value [614]<br />

Function is identical to analogue comparator 1 value.<br />

Default:<br />

Torque<br />

Selections: Same as in menu [611]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43404<br />

Profibus slot/index 170/53<br />

Fieldbus format<br />

Modbus format<br />

Analogue Comparator 2 Level High<br />

[615]<br />

Function is identical to analogue comparator 1 level<br />

high.<br />

Default: 20%<br />

Range:<br />

Communication information<br />

UInt<br />

UInt<br />

Enter a value for the high level.<br />

Modbus Instance no/DeviceNet no: 43405<br />

Profibus slot/index 170/54<br />

Fieldbus format<br />

Modbus format<br />

614 CA2 Value<br />

Stp A Torque<br />

615 CA2 Level HI<br />

Stp 20%<br />

A<br />

Long<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Analogue Comparator 2 Level Low<br />

[616]<br />

Function is identical to analogue comparator 1 level<br />

low.<br />

Default: 10%<br />

616 CA2 Level LO<br />

Stp 10%<br />

A<br />

Range:<br />

Enter a value for the low level.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 133


Communication information<br />

Modbus Instance no/DeviceNet no: 43406<br />

Profibus slot/index 170/55<br />

Fieldbus format<br />

Modbus format<br />

Digital Comparator 1 [617]<br />

Selection of the input signal for digital comparator 1<br />

(CD1).<br />

The output signal CD1 becomes high if the selected<br />

input signal is active. See Fig. 89.<br />

The output signal can be programmed to the digital or<br />

relay outputs or used as a source for the virtual connections<br />

[560].<br />

Digital signal:<br />

Menu [617]<br />

Fig. 89 Digital comparator<br />

Default:<br />

Run<br />

Communication information<br />

Long,<br />

1=1 W, 0.1 A, 0.1 V,<br />

0.1 Hz, 0.1C, 1 kWh,<br />

1H, 1%, 1 rpm or 0.001<br />

via process value<br />

EInt<br />

Selection: Same selections as for DigOut 1 [541].<br />

Modbus Instance no/DeviceNet no: 43407<br />

Profibus slot/index 170/56<br />

Fieldbus format<br />

Modbus format<br />

Digital Comparator 2 [618]<br />

Function is identical to digital comparator 1.<br />

Default: DigIn 1<br />

+<br />

-<br />

DComp 1<br />

617 CD1<br />

Stp A<br />

UInt<br />

UInt<br />

Signal: CD1<br />

(NG_06-F126)<br />

Run<br />

618 CD 2<br />

Stp DigIn 1<br />

A<br />

Selection: Same selections as for DigOut 1 [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43408<br />

Profibus slot/index 170/57<br />

Fieldbus format<br />

Modbus format<br />

11.6.2 Logic Output Y [620]<br />

By means of an expression editor, the comparator signals<br />

can be logically combined into the Logic Y function.<br />

The expression editor has the following features:<br />

• The following signals can be used:<br />

CA1, CA2, CD1, CD2 or LZ (or LY)<br />

• The following signals can be inverted:<br />

!A1, !A2, !D1, !D2, or !LZ (or !LY)<br />

• The following logical operators are available:<br />

"+" : OR operator<br />

"&" : AND operator<br />

"^" : EXOR operator<br />

Expressions according to the following truth table can<br />

be made:<br />

Input<br />

The output signal can be programmed to the digital or<br />

relay outputs or used as a Virtual Connection Source<br />

[560].<br />

Communication information<br />

UInt<br />

UInt<br />

Result<br />

A B & (AND) + (OR) ^(EXOR)<br />

0 0 0 0 0<br />

0 1 0 1 1<br />

1 0 0 1 1<br />

1 1 1 1 0<br />

620 LOGIC Y<br />

Stp CA1&!A2&CD1<br />

Modbus Instance no/DeviceNet no: 31035<br />

Profibus slot/index 121/179<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

The expression must be programmed by means of the<br />

menus [621] to [625].<br />

134 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Example:<br />

Broken belt detection for Logic Y<br />

This example describes the programming for a socalled<br />

“broken belt detection” for fan applications.<br />

The comparator CA1 is set for frequency>10Hz.<br />

The comparator !A2 is set for load < 20%.<br />

The comparator CD1 is set for Run.<br />

The 3 comparators are all AND-ed, given the “broken<br />

belt detection”.<br />

In menus [621]-[625] expression entered for Logic Y is<br />

visible.<br />

Set menu [621] to CA1<br />

Set menu [622] to &<br />

Set menu [623] to !A2<br />

Set menu [624] to &<br />

Set menu [625] to CD1<br />

Menu [620] now holds the expression for Logic Y:<br />

CA1&!A2&CD1<br />

which is to be read as:<br />

(CA1&!A2)&CD1<br />

NOTE: Set menu [624] to "" to finish the expression<br />

when only two comparators are required for Logic Y.<br />

Y Comp 1 [621]<br />

Selects the first comparator for the logic Y function.<br />

Default:<br />

CA1 0<br />

!A1 1<br />

CA2 2<br />

!A2 3<br />

CD1 4<br />

!D1 5<br />

CD2 6<br />

!D2 7<br />

LZ/LY 8<br />

!LZ/!LY 9<br />

T1 10<br />

!T1 11<br />

T2 12<br />

!T2 13<br />

621 Y Comp 1<br />

Stp A<br />

CA1<br />

CA1<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43411<br />

Profibus slot/index 170/60<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Y Operator 1 [622]<br />

Selects the first operator for the logic Y function.<br />

Default:<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43412<br />

Profibus slot/index 170/61<br />

Fieldbus format<br />

Modbus format<br />

Y Comp 2 [623]<br />

Selects the second comparator for the logic Y function.<br />

Default: !A2<br />

Selection: Same as menu [621]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43413<br />

Profibus slot/index 170/62<br />

Fieldbus format<br />

Modbus format<br />

622 Y Operator 1<br />

Stp A<br />

&<br />

623 Y Comp 2<br />

Stp !A2<br />

A<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 135


Y Operator 2 [624]<br />

Selects the second operator for the logic Y function.<br />

Default:<br />

. 0<br />

&<br />

& 1 &=AND<br />

+ 2 +=OR<br />

^ 3 ^=EXOR<br />

Communication information<br />

Y Comp 3 [625]<br />

Selects the third comparator for the logic Y function.<br />

Communication information<br />

When · (dot) is selected, the Logic Y<br />

expression is finished (when only two<br />

expressions are tied together).<br />

Modbus Instance no/DeviceNet no: 43414<br />

Profibus slot/index 170/63<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

CD1<br />

Selection: Same as menu [621]<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43415<br />

Profibus slot/index 170/64<br />

Fieldbus format<br />

Modbus format<br />

624 Y Operator 2<br />

Stp A<br />

&<br />

625 Y Comp 3<br />

Stp A<br />

UInt<br />

UInt<br />

CD1<br />

11.6.3 Logic Output Z [630]<br />

630 LOGIC Z<br />

StpA<br />

CA1&!A2&CD1<br />

The expression must be programmed by means of the<br />

menus [631] to [635].<br />

Z Comp 1 [631]<br />

Selects the first comparator for the logic Z function.<br />

Default:<br />

CA1<br />

Selection: Same as menu [621]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43421<br />

Profibus slot/index 170/70<br />

Fieldbus format<br />

Modbus format<br />

Z Operator 1 [632]<br />

Selects the first operator for the logic Z function.<br />

Default:<br />

&<br />

Selection: Same as menu [622]<br />

Communication information<br />

UInt<br />

UInt<br />

Modbus Instance no/DeviceNet no: 43422<br />

Profibus slot/index 170/71<br />

Fieldbus format<br />

Modbus format<br />

631 Z Comp 1<br />

Stp A<br />

UInt<br />

UInt<br />

CA1<br />

632 Z Operator 1<br />

Stp A<br />

&<br />

Z Comp 2 [633]<br />

Selects the second comparator for the logic Z function.<br />

Default: !A2<br />

633 Z Comp 2<br />

Stp !A2<br />

A<br />

Selection: Same as menu [621]<br />

136 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Communication information<br />

Modbus Instance no/DeviceNet no: 43423<br />

Profibus slot/index 170/72<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

11.6.4 Timer1 [640]<br />

The Timer functions can be used as a delay timer or<br />

as an interval with separate On and Off times (alternate<br />

mode). In delay mode, the output signal T1Q becomes<br />

high if the set delay time is expired. See Fig. 90.<br />

Z Operator 2 [634]<br />

Selects the second operator for the logic Z function.<br />

Default:<br />

&<br />

Selection: Same as menu [624]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43424<br />

Profibus slot/index 170/73<br />

Fieldbus format<br />

Modbus format<br />

634 Z Operator 2<br />

Stp A<br />

&<br />

UInt<br />

UInt<br />

Z Comp 3 [635]<br />

Selects the third comparator for the logic Z function.<br />

Timer1 Trig<br />

T1Q<br />

Fig. 90<br />

Timer1 delay<br />

In alternate mode, the output signal T1Q will switch<br />

automatically from high to low etc. according to the<br />

set interval times. See Fig. 91.<br />

The output signal can be programmed to the digital or<br />

relay outputs used in logic functions [620] and [630],<br />

or as a virtual connection source [560].<br />

NOTE: The actual timers are common for all parameter<br />

sets. If the actual set is changed, the timer functionality<br />

[641] to [645] will change according set settings but the<br />

timer value will stay unchanged. So initialization of the<br />

timer might differ for a set change compared to normal<br />

triggering of a timer.<br />

635 Z Comp 3<br />

StpA<br />

Default: CD1<br />

Selection: Same as menu [621]<br />

CD1<br />

Timer1 Trig<br />

T1Q<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43425<br />

Profibus slot/index 170/74<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Fig. 91<br />

T1 T2 T1 T2<br />

Timer 1 Trig [641]<br />

641 Timer1 Trig<br />

Stp A<br />

Off<br />

Default:<br />

Off<br />

Selection: Same selections as Digital Output 1 menu [541].<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43431<br />

Profibus slot/index 170/80<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 137


Timer 1 Mode [642]<br />

Default:<br />

Off 0<br />

Delay 1<br />

Alternate 2<br />

Off<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43432<br />

Profibus slot/index 170/81<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 Delay [643]<br />

This menu is only visible when timer mode is set to<br />

delay.<br />

This menu can only be edited as in alternative 2, see<br />

section 9.5, page 51.<br />

Timer 1 delay sets the time that will be used by the<br />

first timer after it is activated. Timer 1 can be activated<br />

by a high signal on a DigIn that is set to Timer 1 or via<br />

a virtual destination [560].<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

642 Timer1 Mode<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

643 Timer1Delay<br />

Stp 0:00:00<br />

A<br />

43433 hours<br />

43434 minutes<br />

43435 seconds<br />

170/82, 170/83,<br />

170/84<br />

UInt<br />

UInt<br />

Timer 1 T1 [644]<br />

When timer mode is set to Alternate and Timer 1 is<br />

enabled, this timer will automatically keep on switching<br />

according to the independently programmable up and<br />

down times. The Timer 1 in Alternate mode can be<br />

enabled by a digital input or via a virtual connection.<br />

See Fig. 91. Timer 1 T1 sets the up time in the alternate<br />

mode.<br />

Default:<br />

0:00:00 (hr:min:sec)<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 1 T2 [645]<br />

Timer 1 T2 sets the down time in the alternate mode.<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

644 Timer 1 T1<br />

Stp 0:00:00<br />

A<br />

43436 hours<br />

43437 minutes<br />

43438 seconds<br />

170/85, 170/86,<br />

170/87<br />

UInt<br />

UInt<br />

645 Timer1 T2<br />

Stp 0:00:00<br />

A<br />

43439 hours<br />

43440 minutes<br />

43441 seconds<br />

170/88, 170/89,<br />

170/90<br />

UInt<br />

UInt<br />

NOTE: Timer 1 T1 [644] and Timer 2 T1 [654] are only<br />

visible when Timer Mode is set to Alternate.<br />

138 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Timer 1 Value [649]<br />

Timer 1 Value shows actual value of the timer.<br />

649 Timer1 Value<br />

Stp 0:00:00<br />

A<br />

Fieldbus format<br />

Modbus format<br />

Timer 2 Delay [653]<br />

UInt<br />

UInt<br />

Default:<br />

Communication information<br />

11.6.5 Timer2 [650]<br />

Refer to the descriptions for Timer1.<br />

Timer 2 Trig [651]<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

Selection:<br />

Off<br />

Communication information<br />

Timer 2 Mode [652]<br />

42921 hours<br />

42922 minutes<br />

42923 seconds<br />

168/80, 168/81,<br />

168/82<br />

UInt<br />

UInt<br />

Same selections as Digital Output 1 menu<br />

[541].<br />

Modbus Instance no/DeviceNet no: 43451<br />

Profibus slot/index 170/100<br />

Fieldbus format<br />

Modbus format<br />

651 Timer2 Trig<br />

Stp A<br />

Off<br />

UInt<br />

UInt<br />

Default:<br />

Communication information<br />

Timer 2 T1 [654]<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

653 Timer2Delay<br />

Stp 0:00:00<br />

A<br />

43453 hours<br />

43454 minutes<br />

43455 seconds<br />

170/102, 170/103,<br />

170/104<br />

UInt<br />

UInt<br />

654 Timer 2 T1<br />

Stp 0:00:00<br />

A<br />

43456 hours<br />

43457 minutes<br />

43458 seconds<br />

170/105, 170/106,<br />

170/107<br />

UInt<br />

UInt<br />

652 Timer2 Mode<br />

Stp A<br />

Off<br />

Default: Off<br />

Selection: Same as in menu [642]<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 43452<br />

Profibus slot/index 170/101<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 139


Timer 2 T2 [655]<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Timer 2 Value [659]<br />

Timer 2 Value shows actual value of the timer.<br />

Default:<br />

0:00:00, hr:min:sec<br />

Range: 0:00:00–9:59:59<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

655 Timer 2 T2<br />

Stp 0:00:00<br />

A<br />

43459 hours<br />

43460 minutes<br />

43461 seconds<br />

170/108, 170/109,<br />

170/110<br />

UInt<br />

UInt<br />

659 Timer2 Value<br />

Stp 0:00:00<br />

A<br />

42924 hours<br />

42925 minutes<br />

42926 seconds<br />

168/83, 168/84,<br />

168/84<br />

UInt<br />

UInt<br />

11.7 View Operation/Status<br />

[700]<br />

Menu with parameters for viewing all actual operational<br />

data, such as speed, torque, power, etc.<br />

11.7.1 Operation [710]<br />

Process Value [711]<br />

The process value is a display function which can be<br />

programmed according to several quantities and units<br />

related to the reference value.<br />

Unit<br />

Resolution<br />

Communication information<br />

Speed [712]<br />

Displays the actual shaft speed.<br />

Communication information<br />

Depends on selected process source,<br />

[321].<br />

Speed: 1 rpm, 4 digits<br />

Other units: 3 digits<br />

Modbus Instance no/DeviceNet no: 31001<br />

Profibus slot/index 121/145<br />

Fieldbus format Long, 1=0.001<br />

Modbus format<br />

EInt<br />

Unit:<br />

Resolution:<br />

rpm<br />

1 rpm, 4 digits<br />

Modbus Instance no/DeviceNet no: 31002<br />

Profibus slot/index 121/146<br />

Fieldbus format<br />

Modbus format<br />

711 Process Val<br />

Stp<br />

712 Speed<br />

Stp<br />

rpm<br />

Int, 1=1 rpm<br />

Int, 1=1 rpm<br />

140 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Torque [713]<br />

Displays the actual shaft torque.<br />

713 Torque<br />

Stp 0% 0.0Nm<br />

Current [716]<br />

Displays the actual output current.<br />

716 Current<br />

Stp<br />

A<br />

Unit:<br />

Nm<br />

Unit:<br />

A<br />

Resolution:<br />

1 Nm<br />

Resolution:<br />

0.1 A<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Shaft power [714]<br />

Displays the actual shaft power.<br />

Communication information<br />

Electrical Power [715]<br />

Displays the actual electrical output power.<br />

Communication information<br />

31003 Nm<br />

31004%<br />

Profibus slot/index 121/147<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

W<br />

1W<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31005<br />

Profibus slot/index 121/149<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

kW<br />

1 W<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31006<br />

Profibus slot/index 121/150<br />

Fieldbus format Long, 1=1W<br />

Modbus format<br />

714 Shaft Power<br />

Stp<br />

715 El Power<br />

Stp<br />

EInt<br />

W<br />

kW<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31007<br />

Profibus slot/index 121/151<br />

Fieldbus format<br />

Modbus format<br />

Output Voltage [717]<br />

Displays the actual output voltage.<br />

Unit:<br />

Resolution:<br />

Communication information<br />

Frequency [718]<br />

Displays the actual output frequency.<br />

Communication information<br />

V<br />

1 V<br />

Long, 1=0.1 A<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31008<br />

Profibus slot/index 121/152<br />

Fieldbus format<br />

Modbus format<br />

Unit:<br />

Resolution:<br />

Hz<br />

0.1 Hz<br />

Long, 1=0.1 V<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31009<br />

Profibus slot/index 121/153<br />

Fieldbus format<br />

Modbus format<br />

717 Output Volt<br />

Stp<br />

718 Frequency<br />

Stp<br />

Long, 1=0.1 Hz<br />

EInt<br />

V<br />

Hz<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 141


DC Link Voltage [719]<br />

Displays the actual DC link voltage.<br />

Unit:<br />

Resolution:<br />

719 DC Voltage<br />

Stp<br />

V<br />

1 V<br />

V<br />

11.7.2 Status [720]<br />

VSD Status [721]<br />

Indicates the overall status of the variable speed drive.<br />

721 VSD Status<br />

Stp 1/222/333/44<br />

Communication information<br />

Fig. 92 VSD status<br />

Modbus Instance no/DeviceNet no: 31010<br />

Profibus slot/index 121/154<br />

Fieldbus format<br />

Modbus format<br />

Heatsink Temperature [71A]<br />

Displays the actual heatsink temperature.<br />

Unit: °C<br />

Resolution:<br />

0.1°C<br />

Communication information<br />

PT100_1_2_3 Temp [71B]<br />

Displays the actual PT100 temperature.<br />

Communication information<br />

Long, 1=0.1 V<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31011<br />

Profibus slot/index 121/155<br />

Fieldbus format<br />

Modbus format<br />

Unit: °C<br />

Resolution: 1°C<br />

Long, 1=0.1C<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31012, 31013, 31014<br />

Profibus slot/index 121/156<br />

Fieldbus format<br />

Modbus format<br />

71A Heatsink Tmp<br />

Stp ?C<br />

71B PT100 1,2,3<br />

Stp ?C<br />

Long<br />

EInt<br />

Display<br />

position<br />

Status<br />

1 Parameter Set A,B,C,D<br />

222<br />

333<br />

Source of reference<br />

value<br />

Source of Run/<br />

Stop/Reset command<br />

44 Limit functions<br />

Example: “A/Key/Rem/TL”<br />

This means:<br />

A:Parameter Set A is active.<br />

Value<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

-Key (keyboard)<br />

-Rem (remote)<br />

-Com (Serial comm.)<br />

-Opt (option)<br />

Key:Reference value comes from the keyboard (CP).<br />

Rem:Run/Stop commands come from terminals 1-22.<br />

TL: Torque Limit active.<br />

Warning [722]<br />

Display the actual or last warning condition. A warning<br />

occurs if the VSD is close to a trip condition but still in<br />

operation. During a warning condition the red trip LED<br />

will start to blink as long as the warning is active.<br />

722 Warnings<br />

Stp warn.msg<br />

-TL (Torque Limit)<br />

-SL (Speed Limit)<br />

-CL (Current Limit)<br />

-VL (Voltage Limit)<br />

- - - -No limit active<br />

The active warning message is displayed in menu<br />

[722].<br />

If no warning is active the message “No Warning” is<br />

displayed.<br />

142 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


The following warnings are possible:<br />

Fieldbus<br />

integer<br />

value<br />

0 No Error<br />

1 Motor I²t<br />

2 PTC<br />

3 Motor lost<br />

4 Locked rotor<br />

5 Ext trip<br />

6 Mon MaxAlarm<br />

7 Mon MinAlarm<br />

8 Comm error<br />

9 PT100<br />

11 Pump<br />

12 Ext Mot Temp<br />

13 LC Level<br />

14 Brake<br />

15 Option<br />

16 Over temp<br />

17 Over curr F<br />

18 Over volt D<br />

19 Over volt G<br />

20 Over volt M<br />

21 Over speed<br />

22 Under voltage<br />

23 Power fault<br />

24 Desat<br />

25 DClink error<br />

26 Int error<br />

27 Ovolt m cut<br />

28 Over voltage<br />

29 Not used<br />

30 Not used<br />

31 Not used<br />

Communication information<br />

Warning message<br />

Modbus Instance no/DeviceNet no: 31016<br />

Profibus slot/index 121/160<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

UInt<br />

Digital Input Status [723]<br />

Indicates the status of the digital inputs. See Fig. 93.<br />

1DigIn 1<br />

2DigIn 2<br />

3DigIn 3<br />

4DigIn 4<br />

5DigIn 5<br />

6DigIn 6<br />

7DigIn 7<br />

8DigIn 8<br />

The positions one to eight (read from left to right) indicate<br />

the status of the associated input:<br />

1High<br />

0Low<br />

The example in Fig. 93 indicates that DigIn 1,<br />

DigIn 3 and DigIn 6 are active at this moment.<br />

723 DigIn Status<br />

Stp 1010 0100<br />

Fig. 93 Digital input status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31017<br />

Profibus slot/index 121/161<br />

Fieldbus format<br />

Modbus format<br />

UInt, bit 0=DigIn1, bit<br />

8=DigIn8<br />

Digital Output Status [724]<br />

Indicates the status of the digital outputs and relays.<br />

See Fig. 94.<br />

RE indicate the status of the relays on position:<br />

1Relay1<br />

2Relay2<br />

3Relay3<br />

DO indicate the status of the digital outputs on position:<br />

1DigOut1<br />

2DigOut2<br />

The status of the associated output is shown.<br />

1High<br />

0Low<br />

See also the Chapter 12. page 157.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 143


The example in Fig. 94 indicates that DigOut1 is active<br />

and Digital Out 2 is not active. Relay 1 is active, relay 2<br />

and 3 are not active.<br />

724 DigOutStatus<br />

Stp RE 100 DO 10<br />

Fig. 94 Digital output status example<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31018<br />

Profibus slot/index 121/162<br />

Fieldbus format<br />

Modbus format<br />

Analogue Input Status [725]<br />

Indicates the status of the analogue inputs 1 and 2.<br />

725 AnIn 1 2<br />

Stp -100% 65%<br />

Fig. 95 Analogue input status<br />

Communication information<br />

UInt, bit 0=DigOut1,<br />

bit 1=DigOut2<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

Modbus Instance no/DeviceNet no: 31019, 31020<br />

Profibus slot/index 121/163, 121/164<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the analogue inputs.<br />

1AnIn 1<br />

2AnIn 2<br />

Reading downwards from the first row to the second<br />

row the status of the belonging input is shown in %:<br />

-100%AnIn1 has a negative 100% input value<br />

65%AnIn2 has a 65% input value<br />

So the example in Fig. 95 indicates that both the Analogue<br />

inputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

Analogue Input Status [726]<br />

Indicates the status of the analogue inputs 3 and 4.<br />

726 AnIn 3 4<br />

Stp -100% 65%<br />

Fig. 96 Analogue input status<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31021, 31022<br />

Profibus slot/index 121/165, 121/166<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

Analogue Output Status [727]<br />

Indicates the status of the analogue outputs. Fig. 97.<br />

E.g. if 4-20 mA output is used, the value 20% equals<br />

to 4 mA.<br />

727 AnOut 1 2<br />

Stp -100% 65%<br />

Fig. 97 Analogue output status<br />

Communication information<br />

EInt<br />

Modbus Instance no/DeviceNet no: 31023, 31024<br />

Profibus slot/index 121/167, 121/168<br />

Fieldbus format Long, 1=1%<br />

Modbus format<br />

EInt<br />

The first row indicates the Analogue outputs.<br />

1AnOut 1<br />

2AnOut 2<br />

Reading downwards from the first row to the second<br />

row the status of the belonging output is shown in %:<br />

-100%AnOut1 has a negative 100% output value<br />

65%AnOut1 has a 65% output value<br />

The example in Fig. 97 indicates that both the Analogue<br />

outputs are active.<br />

NOTE: The shown percentages are absolute values<br />

based on the full range/scale of the in- our output; so<br />

related to either 0–10 V or 0–20 mA.<br />

144 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


I/O board Status [728] - [72A]<br />

Indicates the status for the additional I/O on option<br />

boards 1 (B1), 2 (B2) and 3 (B3).<br />

728 IO B1<br />

Stp RE000 DI10<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31025 - 31027<br />

Profibus slot/index 121/170 - 172<br />

Fieldbus format<br />

Modbus format<br />

UInt, bit 0=DigIn1<br />

bit 1=DigIn2<br />

bit 2=DigIn3<br />

bit 8=Relay1<br />

bit 9=Relay2<br />

bit 10=Relay3<br />

11.7.3 Stored values [730]<br />

The shown values are the actual values built up over<br />

time. Values are stored at power down and updated<br />

again at power up.<br />

Run Time [731]<br />

Displays the total time that the VSD has been in the<br />

Run Mode.<br />

Reset Run Time [7311]<br />

Reset the run time counter. The stored information will<br />

be erased and a new registration period will start.<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 7<br />

Profibus slot/index 0/6<br />

Fieldbus format<br />

Modbus format<br />

7311 Reset RunTm<br />

Stp<br />

No<br />

UInt<br />

UInt<br />

NOTE: After reset the setting automatically reverts to<br />

“No”.<br />

Mains time [732]<br />

Displays the total time that the VSD has been connected<br />

to the mains supply. This timer cannot be<br />

reset.<br />

731 Run Time<br />

Stp<br />

h:m:s<br />

732 Mains Time<br />

Stp<br />

h:m:s<br />

Unit:<br />

Range:<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Unit:<br />

Range:<br />

h: m: s (hours: minutes: seconds)<br />

0h: 0m: 0s–65535h: 59m: 59s<br />

Communication information<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31028 hours<br />

31029 minutes<br />

31030 seconds<br />

121/172<br />

121/173<br />

121/174<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

Modbus Instance no/DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31031 hours<br />

31032 minutes<br />

31033 seconds<br />

121/175<br />

121/176<br />

121/177<br />

UInt, 1=1h/m/s<br />

UInt, 1=1h/m/s<br />

NOTE: At 65535 h: 59 m the counter stops. It will not<br />

revert to 0h: 0m.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 145


Energy [733]<br />

Displays the total energy consumption since the last<br />

energy reset [7331] took place.<br />

Unit:<br />

Range:<br />

kWh<br />

0.0–999999kWh<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31034<br />

Profibus slot/index 121/178<br />

Fieldbus format<br />

Modbus format<br />

Reset Energy [7331]<br />

Resets the kWh counter. The stored information will be<br />

erased and a new registration period will start.<br />

Default:<br />

Selection:<br />

No<br />

No, Yes<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 6<br />

Long, 1=1 W<br />

EInt<br />

Profibus slot/index 0/5<br />

Fieldbus format<br />

Modbus format<br />

733 Energy<br />

Stp<br />

UInt<br />

UInt<br />

kWh<br />

7331 Rst Energy<br />

Stp<br />

No<br />

NOTE: After reset the setting automatically goes back to<br />

“No”.<br />

11.8 View Trip Log [800]<br />

Main menu with parameters for viewing all the logged<br />

trip data. In total the VSD saves the last 10 trips in the<br />

trip memory. The trip memory refreshes on the FIFO<br />

principle (First In, First Out). Every trip in the memory is<br />

logged on the time of the Run Time [731] counter. At<br />

every trip, the actual values of several parameter are<br />

stored and available for troubleshooting.<br />

11.8.1 Trip Message log [810]<br />

Display the cause of the trip and what time that it<br />

occurred. When a trip occurs the status menus are<br />

copied to the trip message log. There are nine trip<br />

message logs [810]–[890]. When the tenth trip occurs<br />

the oldest trip will disappear.<br />

Unit:<br />

Range:<br />

h: m (hours: minutes)<br />

0h: 0m–65355h: 59m<br />

For fieldbus integer value of trip message, see message<br />

table for warnings, [722].<br />

NOTE: Bits 0–5 used for trip message value. Bits 6–15<br />

for internal use.<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31101<br />

Profibus slot/index 121/245<br />

Fieldbus format<br />

Modbus format<br />

8x0 Trip message<br />

Stp h:mm:ss<br />

810 Ext Trip<br />

Stp 132:12:14<br />

UInt<br />

UInt<br />

Trip message [811]-[81N]<br />

The information from the status menus are copied to<br />

the trip message log when a trip occurs.<br />

Trip menu Copied from Description<br />

811 711 Process Value<br />

812 712 Speed<br />

813 712 Torque<br />

814 714 Shaft Power<br />

815 715 Electrical Power<br />

816 716 Current<br />

817 717 Output voltage<br />

818 718 Frequency<br />

819 719 DC Link voltage<br />

81A 71A Heatsink Temperature<br />

81B 71B PT100_1, 2, 3<br />

81C 721 VSD Status<br />

81D 723 Digital input status<br />

81E 724 Digital output status<br />

81F 725 Analogue input status 1-2<br />

81G 726 Analogue input status 3-4<br />

81H 727 Analogue output status 1-2<br />

146 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Trip menu Copied from Description<br />

81I 728 I/O status option board 1<br />

81J 729 I/O status option board 2<br />

81K 72A I/O status option board 3<br />

81L 731 Run Time<br />

81M 732 Mains Time<br />

81N 733 Energy<br />

81O 310 Process reference<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31102 - 31135<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

Example:<br />

Fig. 98 shows the third trip memory menu [830]: Over<br />

temperature trip occurred after 1396 hours and 13<br />

minutes in Run time.<br />

Fig. 98 Trip 3<br />

121/246 - 254,<br />

122/0 - 24<br />

Depends on parameter,<br />

see respective parameter.<br />

Depends on parameter,<br />

see respective parameter.<br />

830 Over temp<br />

Stp 1396h:13m<br />

11.8.2 Trip Messages [820] - [890]<br />

Same information as for menu [810].<br />

Communication information<br />

Modbus Instance no/<br />

DeviceNet no:<br />

Profibus slot/index<br />

Fieldbus format<br />

Modbus format<br />

31151–31185<br />

31201–31235<br />

31251–31285<br />

31301–31335<br />

31351–31385<br />

31401–31435<br />

31451–31485<br />

31501–31535<br />

122/40–122/74<br />

122/90–122/124<br />

122/140–122/174<br />

122/190–122/224<br />

122/240–123/18<br />

123/35 - 123/68<br />

123/85–123/118<br />

123/135–123/168<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Trip log list<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Depends on parameter, see respective<br />

parameter.<br />

Depends on parameter, see respective<br />

parameter.<br />

All nine alarm lists contain the same type of data. For<br />

example DeviceNet parameter 31101 in alarm list 1<br />

contains the same data information as 31151 in alarm<br />

list 2. It is possible to read all parameters in alarm lists<br />

2–9 by recalculating the DeviceNet instance number<br />

into a Profibus slot/index number. This is done in the<br />

following way:<br />

slot no = abs((dev instance no-1)/255)<br />

index no = (dev instance no-1) modulo 255<br />

dev instance no = slot nox255+index no+1<br />

Example: We want to read out the process value out<br />

from alarm list 9. In alarm list 1 process value has the<br />

DeviceNet instance number 31102. In alarm list 9 it<br />

has DeviceNet instance no 31502 (see table 2 above).<br />

The corresponding slot/index no is then:<br />

slot no = abs((31502-1)/255)=123<br />

index no (modulo)= the remainder of the division<br />

above = 136, calculated as: (31502-1)-123x255=136<br />

11.8.3 Reset Trip Log [8A0]<br />

Resets the content of the 10 trip memories.<br />

8A0 Reset Trip<br />

Stp<br />

No<br />

Default:<br />

No 0<br />

Yes 1<br />

No<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 147


Communication information<br />

Modbus Instance no/DeviceNet no: 8<br />

Profibus slot/index 0/7<br />

Fieldbus format<br />

UInt<br />

Modbus format<br />

UInt<br />

Communication information<br />

Modbus Instance no/DeviceNet no:<br />

31038 software version<br />

31039 option version<br />

Profibus slot/index 121/182-183<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

NOTE: After the reset the setting goes automatically<br />

back to “NO”. The message “OK” is displayed for 2 sec.<br />

Table 25<br />

Information for Modbus and Profibus number,<br />

software version<br />

11.9 System Data [900]<br />

Main menu for viewing all the VSD system data.<br />

11.9.1 VSD Data [920]<br />

VSD Type [921]<br />

Shows the VSD type according to the type number.<br />

The options are indicated on the type plate of the<br />

VSD.<br />

Bit<br />

7–0 minor<br />

13–8 major<br />

15–14<br />

Table 26<br />

Description<br />

release<br />

00: V, release version<br />

01: P, pre-release version<br />

10: , Beta version<br />

11: , Alpha version<br />

Information for Modbus and Profibus number,<br />

option version<br />

NOTE: If the control board is not configured, then type<br />

type shown is <strong>SX</strong>-D6160-EV<br />

Bit<br />

7–0 minor<br />

15–8 major<br />

Description<br />

921 <strong>SX</strong>-V 2.0<br />

Stp <strong>SX</strong>-D6160-EV<br />

Example of type<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 31037<br />

Profibus slot/index 121/181<br />

Fieldbus format<br />

Modbus format<br />

Long<br />

Text<br />

V 4.20 = Version of the Software<br />

NOTE: It is important that the software version displayed<br />

in menu [920] is the same software version number as<br />

the software version number written on the title page of<br />

this instruction <strong>manual</strong>. If not, the functionality as<br />

described in this <strong>manual</strong> may differ from the<br />

functionality of the VSD.<br />

Examples:<br />

<strong>SX</strong>-D6160-EVVSD-series suited for 690 volt mains<br />

supply, and a rated output current in normal duty of<br />

175A.<br />

Software [922]<br />

Shows the software version number of the VSD.<br />

Fig. 99 gives an example of the version number.<br />

922 Software<br />

Stp V 4.20<br />

Fig. 99 Example of software version<br />

148 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Unit name [923]<br />

Option to enter a name of the unit for service use or<br />

customer identity. The function enables the user to<br />

define a name with 12 symbols. Use the Prev and<br />

Next key to move the cursor to the required position.<br />

Then use the + and - keys to scroll in the character list.<br />

Confirm the character by moving the cursor to the<br />

next position by pressing the Next key. See section<br />

User-defined Unit [323].<br />

Example<br />

Create user name USER 15.<br />

1. When in the menu [923] press Next to move the<br />

cursor to the right most position.<br />

2. Press the + key until the character U is displayed.<br />

3. Press Next.<br />

4. Then press the + key until S is displayed and confirm<br />

with Next.<br />

5. Repeat until you have entered USER15.<br />

923 Unit Name<br />

Stp<br />

Default:<br />

No characters shown<br />

Communication information<br />

Modbus Instance no/DeviceNet no: 42301–42312<br />

Profibus slot/index 165/225–236<br />

Fieldbus format<br />

Modbus format<br />

UInt<br />

UInt<br />

When sending a unit name you send one character at<br />

a time starting at the right most position.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 149


150 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 151


152 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 153


154 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Functional Description 155


156 Functional Description <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


12. Troubleshooting, Diagnoses and Maintenance<br />

12.1 Trips, warnings and limits<br />

In order to protect the variable speed drive the principal<br />

operating variables are continuously monitored by<br />

the system. If one of these variables exceeds the<br />

safety limit an error/warning message is displayed. In<br />

order to avoid any possibly dangerous situations, the<br />

<strong>inverter</strong> sets itself into a stop Mode called Trip and the<br />

cause of the trip is shown in the display.<br />

Trips will always stop the VSD. Trips can be divided<br />

into normal and soft trips, depending on the setup Trip<br />

Type, see menu [250] Autoreset. Normal trips are<br />

default. For normal trips the VSD stops immediately,<br />

i.e. the motor coasts naturally to a standstill. For soft<br />

trips the VSD stops by ramping down the speed, i.e.<br />

the motor decelerates to a standstill.<br />

“Normal Trip”<br />

• The VSD stops immediately, the motor coasts to<br />

naturally to a standstill.<br />

• The Trip relay or output is active (if selected).<br />

• The Trip LED is on.<br />

• The accompanying trip message is displayed.<br />

• The “TRP” status indication is displayed (area D of<br />

the display).<br />

“Soft Trip”<br />

• the VSD stops by decelerating to a standstill.<br />

During the deceleration.<br />

• The accompanying trip message is displayed,<br />

including an additional soft trip indicator “S” before<br />

the trip time.<br />

• The Trip LED is blinking.<br />

• The Warning relay or output is active (if selected).<br />

After standstill is reached.<br />

• The Trip LED is on.<br />

• The Trip relay or output is active (if selected).<br />

• The “TRP” status indication is displayed (area D of<br />

the display).<br />

Apart from the TRIP indicators there are two more<br />

indicators to show that the <strong>inverter</strong> is in an “abnormal”<br />

situation.<br />

“Warning”<br />

• The <strong>inverter</strong> is close to a trip limit.<br />

• The Warning relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• The accompanying warning message is displayed<br />

in window [722] Warning.<br />

• One of the warning indications is displayed (area F<br />

of the display).<br />

“Limits”<br />

• The <strong>inverter</strong> is limiting torque and/or frequency to<br />

avoid a trip.<br />

• The Limit relay or output is active (if selected).<br />

• The Trip LED is blinking.<br />

• One of the Limit status indications is displayed<br />

(area D of the display).<br />

Table 27<br />

Trip/Warning<br />

messages<br />

List of trips and warnings<br />

Selections<br />

Trip<br />

(Normal/<br />

Soft)<br />

Motor I 2 t Trip/Off/Limit Normal/Soft I 2 t<br />

PTC Trip/Off Normal/Soft<br />

Motor lost Trip/Off Normal<br />

Locked rotor Trip/Off Normal<br />

Ext trip Via DigIn Normal/Soft<br />

Ext Mot Temp Via DigIn Normal/Soft<br />

Mon MaxAlarm Trip/Off/Warn Normal/Soft<br />

Mon MinAlarm Trip/Off/Warn Normal/Soft<br />

Comm error Trip/Off/Warn Normal/Soft<br />

PT100 Trip/Off Normal/Soft<br />

Deviation Via Option Normal<br />

Pump Via Option Normal<br />

Over temp On Normal OT<br />

Over curr F On Normal<br />

Over volt D On Normal<br />

Over volt G On Normal<br />

Over volt On Normal<br />

Over speed On Normal<br />

Under voltage On Normal LV<br />

Power Fault On Normal<br />

Desat On Normal<br />

DClink error On Normal<br />

Ovolt m cut On Normal<br />

Over voltage Warning VL<br />

Safe stop Warning SST<br />

Motor PTC On Normal<br />

LC Level<br />

Trip/Off/Warn<br />

Via DigIn<br />

Normal/Soft<br />

Brake On Normal<br />

Warning<br />

indicators<br />

(Area D)<br />

LCL<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 157


12.2 Trip conditions, causes and<br />

remedial action<br />

The table later on in this section must be seen as a<br />

basic aid to find the cause of a system failure and to<br />

how to solve any problems that arise. A variable speed<br />

drive is mostly just a small part of a complete VSD system.<br />

Sometimes it is difficult to determine the cause of<br />

the failure, although the variable speed drive gives a<br />

certain trip message it is not always easy to find the<br />

right cause of the failure. Good knowledge of the complete<br />

drive system is therefore necessary. Contact<br />

your supplier if you have any questions.<br />

The VSD is designed in such a way that it tries to avoid<br />

trips by limiting torque, overvolt etc.<br />

Failures occurring during commissioning or shortly<br />

after commissioning are most likely to be caused by<br />

incorrect settings or even bad connections.<br />

Failures or problems occurring after a reasonable<br />

period of failure-free operation can be caused by<br />

changes in the system or in its environment (e.g.<br />

wear).<br />

Failures that occur regularly for no obvious reasons are<br />

generally caused by Electro Magnetic Interference. Be<br />

sure that the installation fulfils the demands for installation<br />

stipulated in the EMC directives. See chapter 8.<br />

page 45.<br />

Sometimes the so-called “Trial and error” method is a<br />

quicker way to determine the cause of the failure. This<br />

can be done at any level, from changing settings and<br />

functions to disconnecting single control cables or<br />

replacing entire drives.<br />

The Trip Log can be useful for determining whether<br />

certain trips occur at certain moments. The Trip Log<br />

also records the time of the trip in relation to the run<br />

time counter.<br />

WARNING: If it is necessary to open the VSD<br />

or any part of the system (motor cable<br />

housing, conduits, electrical panels,<br />

cabinets, etc.) to inspect or take measurements<br />

as suggested in this instruction <strong>manual</strong>, it is<br />

absolutely necessary to read and follow the safety<br />

instructions in the <strong>manual</strong>.<br />

12.2.1 Technically qualified<br />

personnel<br />

Installation, commissioning, demounting, making<br />

measurements, etc., of or at the variable speed drive<br />

may only be carried out by personnel technically qualified<br />

for the task.<br />

12.2.2 Opening the variable speed<br />

drive<br />

The connections for the control signals and the<br />

switches are isolated from the mains voltage. Always<br />

take adequate precautions before opening the variable<br />

speed drive.<br />

12.2.3 Precautions to take with a<br />

connected motor<br />

If work must be carried out on a connected motor or<br />

on the driven machine, the mains voltage must always<br />

first be disconnected from the variable speed drive.<br />

Wait at least 5 minutes before continuing.<br />

12.2.4 Autoreset Trip<br />

If the maximum number of Trips during Autoreset has<br />

been reached, the trip message hour counter is<br />

marked with an “A”.<br />

Fig. 100 Autoreset trip<br />

WARNING: Always switch the mains voltage<br />

off if it is necessary to open the VSD and wait<br />

at least 5 minutes to allow the capacitors to<br />

discharge.<br />

WARNING: In case of malfunctioning always<br />

check the DC-link voltage, or wait one hour<br />

after the mains voltage has been switched<br />

off, before dismantling the VSD for repair.<br />

830 OVERVOLT G<br />

Trp A 345:45:12<br />

Fig. 100 shows the 3rd trip memory menu [830]: Overvoltage<br />

G trip after the maximum Autoreset attempts<br />

took place after 345 hours, 45 minutes and 12 seconds<br />

of run time.<br />

158 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Motor I 2 t<br />

“I 2 t”<br />

PTC<br />

Motor PTC<br />

Motor lost<br />

Locked rotor<br />

Ext trip<br />

Ext Mot Temp<br />

Mon MaxAlarm<br />

Mon MinAlarm<br />

Comm error<br />

PT100<br />

I 2 t value is exceeded.<br />

- Overload on the motor according to the<br />

programmed I 2 t settings.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

Motor thermistor (PTC) exceeds maximum<br />

level.<br />

NOTE: Only valid if [237] is enabled.<br />

Phase loss or too great imbalance on the<br />

motor phases<br />

Torque limit at motor standstill:<br />

- Mechanical blocking of the rotor.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

Max alarm level (overload) has been<br />

reached.<br />

Min alarm level (underload) has been<br />

reached.<br />

Error on serial communication (option)<br />

Motor PT100 elements exceeds maximum<br />

level.<br />

NOTE: Only valid if option board PTC/PT100<br />

is used.<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Change the Motor I 2 t Current setting<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [234] to OFF<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PTC, menu [237] to OFF<br />

- Check the motor voltage on all phases.<br />

- Check for loose or poor motor cable<br />

connections<br />

- If all connections are OK, contact your<br />

supplier<br />

- Set motor lost alarm to OFF.<br />

- Check for mechanical problems at the<br />

motor or the machinery connected to the<br />

motor<br />

- Set locked rotor alarm to OFF.<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the equipment that initiates the<br />

external input<br />

- Check the programming of the digital<br />

inputs DigIn 1-8<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 136.<br />

- Check the load condition of the machine<br />

- Check the monitor setting in section 11.6, page 136.<br />

- Check cables and connection of the<br />

serial communication.<br />

- Check all settings with regard to the<br />

serial communication<br />

- Restart the equipment including the<br />

VSD<br />

- Check on mechanical overload on the<br />

motor or the machinery (bearings,<br />

gearboxes, chains, belts, etc.)<br />

- Check the motor cooling system.<br />

- Self-cooled motor at low speed, too high<br />

load.<br />

- Set PT100 to OFF<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 159


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Deviation<br />

Pump<br />

Over temp<br />

Over curr F<br />

Over volt D(eceleration)<br />

Over volt G(enerator)<br />

Over volt (Mains)<br />

O(ver) volt M(ains) cut<br />

Over speed<br />

Under voltage<br />

Power Fault<br />

Desat<br />

CRANE board detecting deviation in motor<br />

operation.<br />

NOTE: Only used in Crane Control.<br />

No master pump can be selected due to error<br />

in feedback signalling.<br />

NOTE: Only used in Pump Control.<br />

Heatsink temperature too high:<br />

- Too high ambient temperature of the<br />

VSD<br />

- Insufficient cooling<br />

- Too high current<br />

- Blocked or stuffed fans<br />

Motor current exceeds the peak VSD current:<br />

- Too short acceleration time.<br />

- Too high motor load<br />

- Excessive load change<br />

- Soft short-circuit between phases or<br />

phase to earth<br />

- Poor or loose motor cable connections<br />

- Too high IxR Compensation level<br />

Too high DC Link voltage:<br />

- Too short deceleration time with<br />

respect to motor/machine inertia.<br />

- Too small brake resistor malfunctioning<br />

Brake chopper<br />

Too high DC Link voltage, due to too high<br />

mains voltage<br />

Motor speed measurement exceeds maximum<br />

level.<br />

Too low DC Link voltage:<br />

- Too low or no supply voltage<br />

- Mains voltage dip due to starting other<br />

major power consuming machines on<br />

the same line.<br />

Overload condition in the DC-link:<br />

- Hard short-circuit between phases or<br />

phase to earth<br />

- Saturation of current measurement<br />

circuiting<br />

- Earth fault<br />

- Desaturation of IGBTs<br />

- Peak voltage on DC link<br />

- Check encoder signals<br />

- Check Deviation jumper on Crane option board.<br />

- Check cables and wiring for Pump feedback signals<br />

- Check settings with regard to the pump feedback<br />

digital inputs<br />

- Check the cooling of the VSD cabinet.<br />

- Check the functionality of the built-in fans. The fans<br />

must switch on automatically if the heatsink temperature<br />

gets too high. At power up the fans are briefly<br />

switched on.<br />

- Check VSD and motor rating<br />

- Clean fans<br />

- Check the acceleration time settings and<br />

make them longer if necessary.<br />

- Check the motor load.<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections.<br />

- Lower the level of IxR Compensation [352]<br />

- Check the deceleration time settings and make them<br />

longer if necessary.<br />

- Check the dimensions of the brake resistor and the<br />

functionality of the Brake chopper (if used)<br />

- Check the main supply voltage<br />

- Try to take away the interference cause or use other<br />

main supply lines.<br />

Check encoder cables, wiring and setup<br />

Check motor data setup [22x]<br />

Perform short ID-run<br />

- Make sure all three phases are properly connected<br />

and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery<br />

- Use the function low voltage override [421]<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connection<br />

- Check on water or moisture in the motor housing and<br />

cable connections<br />

- Check that rating plate data of the motor is correctly<br />

entered<br />

- See overvoltage trips<br />

Power Fault Error on power board. - Check mains supply voltage<br />

Fan Error<br />

Error in fan module<br />

- Check for clogged air inlet filters in panel door and<br />

blocking material in fan module.<br />

HCB Error * Error in controlled rectifier module (HCB) - Check mains supply voltage<br />

160 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Table 28<br />

Trip condition, their possible causes and remedial action<br />

Trip condition Possible Cause Remedy<br />

Desat<br />

Desat U+ *<br />

Desat U- *<br />

Desat V+ *<br />

Desat V- *<br />

Desat W+ *<br />

Desat W- *<br />

Desat BCC *<br />

DC link error<br />

PF Curr Err *<br />

PF Overvolt *<br />

Failure in output stage,<br />

desaturation of IGBTs<br />

DC link voltage ripple exceeds maximum<br />

level<br />

Error in current balancing<br />

Error in voltage balancing<br />

PF Comm Err * Internal communication error Contact service<br />

- Check on bad motor cable connections<br />

- Check on bad earth cable connections<br />

- Check on water and moisture in the<br />

motor housing and cable connections<br />

- Make sure all three phases are properly<br />

connected and that the terminal screws are tightened.<br />

- Check that the mains supply voltage is within the limits<br />

of the VSD.<br />

- Try to use other mains supply lines if dip is caused by<br />

other machinery.<br />

- Check motor.<br />

- Check fuses and line connections<br />

- Check motor.<br />

- Check fuses and line connections.<br />

PF Int Temp * Internal temperature too high Check internal fans<br />

PF Temp Err * Malfunction in temperature sensor Contact service<br />

PF DC Err *<br />

PF HCB Err *<br />

PF Sup Err *<br />

LC Level<br />

Brake<br />

DC-link error and mains supply fault<br />

Error in controlled rectifier module (HCB)<br />

Mains supply fault<br />

Low liquid cooling level in external reservoir.<br />

External input (DigIn 1-8) active:<br />

- active low function on the input.<br />

NOTE: Only valid for VSD types with Liquid<br />

Cooling option.<br />

Brake tripped on brake fault (not released )or<br />

Brake not engaged during stop.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check mains supply voltage<br />

- Check fuses and line connections.<br />

- Check liquid cooling<br />

- Check the equipment and wiring that initiates the<br />

external input<br />

- Check the programming of the digital inputs DigIn 1-8<br />

- Check Brake acknowledge<br />

signal wiring to selected digital input.<br />

- Check programming of digital input DigIn 1-8, [520].<br />

- Check circuit breaker feeding mechanical brake circuit.<br />

- Check mechanical brake if acknowledge signal is wired<br />

from brake limit switch.<br />

- Check brake contactor.<br />

* = 2...6 Module number if parallel power units (size<br />

300–1500 A)<br />

12.3 Maintenance<br />

The variable speed drive is designed not to require any<br />

servicing or maintenance. There are however some<br />

things which must be checked regularly.<br />

All variable speed drives have built-in fan which is<br />

speed controlled using heatsink temperature feedback.<br />

This means that the fans are only running if the<br />

VSD is running and loaded. The design of the heatsinks<br />

is such that the fan does not blow the cooling air<br />

through the interior of the VSD, but only across the<br />

outer surface of the heatsink. However, running fans<br />

will always attract dust. Depending on the environment<br />

the fan and the heatsink will collect dust. Check<br />

this and clean the heatsink and the fans when necessary.<br />

If variable speed drives are built into cabinets, also<br />

check and clean the dust filters of the cabinets regularly.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Troubleshooting, Diagnoses and Maintenance 161


Check external wiring, connections and control signals.<br />

Tighten terminal screws if necessary.<br />

162 Troubleshooting, Diagnoses and Maintenance <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


13. Options<br />

The standard options available are described here<br />

briefly. Some of the options have their own instruction<br />

or installation <strong>manual</strong>. For more information please<br />

contact your supplier.<br />

13.1 Options for the control<br />

panel<br />

Order number<br />

Description<br />

01-3957-00 Panel kit complete including panel<br />

01-3957-01 Panel kit complete including blank panel<br />

Mounting cassette, blank panel and straight RS232-<br />

cable are available as options for the control panel.<br />

These options may be useful, for example after<br />

mounting a control panel in a cabinet door.<br />

on the application switch-on duration and duty-cycle.<br />

This option can not be after mounted.<br />

The following formula can be used to define the power<br />

of the connected brake resistor:<br />

Presistor =<br />

Where:<br />

P resistor<br />

Brake level V DC<br />

29)<br />

Rmin<br />

ED%<br />

WARNING: The table gives the minimum<br />

values of the brake resistors. Do not use<br />

resistors lower than this value. The VSD can<br />

trip or even be damaged due to high braking<br />

currents.<br />

(Brake level VDC)2<br />

Rmin<br />

x ED%<br />

required power of brake<br />

resistor<br />

DC brake voltage level (see Table<br />

minimum allowable brake resistor<br />

(see Table 30 and Table 31)<br />

effective braking period. Defined as:<br />

ED% =<br />

Active brake time at<br />

nominal braking<br />

power [s]<br />

120 [s]<br />

Maximum value of<br />

1= continuous braking<br />

Table 29<br />

Brake Voltage levels<br />

Supply voltage (V AC )<br />

(set in menu [21B]<br />

Brake level (V DC )<br />

220–240 380<br />

380–415 660<br />

Fig. 101 Control panel in mounting cassette<br />

13.2 PC Tool software<br />

The optional software that runs on a personal computer<br />

can be used to load parameter settings from the<br />

VSD to the PC for backup and printing. Recording can<br />

be made in oscilloscope mode. Please contact<br />

OMRON sales for further information.<br />

440–480 780<br />

500–525 860<br />

550–600 1000<br />

660–690 1150<br />

13.3 Brake chopper<br />

All VSD sizes can be fitted with an optional built-in<br />

brake chopper. The brake resistor must be mounted<br />

outside the VSD. The choice of the resistor depends<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 163


Table 30<br />

Brake resistor <strong>SX</strong>-V 400V type<br />

Table 31<br />

Type<br />

Rmin [ohm] if supply<br />

380–415 V AC<br />

Rmin [ohm] if supply<br />

440–480 V AC<br />

<strong>SX</strong>-D4090-EV 3.8 4.4<br />

<strong>SX</strong>-D4110-EV 2.7 3.1<br />

<strong>SX</strong>-D4132-EV 2.7 3.1<br />

<strong>SX</strong>-*4160-EV 2 x 3.8 2 x 4.4<br />

<strong>SX</strong>-*4200-EV 2 x 3.8 2 x 4.4<br />

<strong>SX</strong>-*4220-EV 2 x 2.7 2 x 3.1<br />

<strong>SX</strong>-*4250-EV 2 x 2.7 2 x 3.1<br />

<strong>SX</strong>-*4315-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4355-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4400-EV 3 x 2.7 3 x 3.1<br />

<strong>SX</strong>-*4450-EV 4 x 2.7 4 x 3.1<br />

<strong>SX</strong>-*4500-EV 4 x 2.7 4 x 3.1<br />

<strong>SX</strong>-*4630-EV 6 x 2.7 6 x 3.1<br />

<strong>SX</strong>-*4800-EV 6 x 2.7 6 x 3.1<br />

Type<br />

Brake resistors <strong>SX</strong>-V 690V types<br />

Rmin [ohm] Rmin [ohm] Rmin [ohm]<br />

500–525 V AC 550–600 V AC 660–690 V AC<br />

if supply if supply if supply<br />

<strong>SX</strong>-D6090-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6110EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6132-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-D6160-EV 4.9 5.7 6.5<br />

<strong>SX</strong>-*6200-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6250-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6315-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6355-EV 2 x 4.9 2 x 5.7 2 x 6.5<br />

<strong>SX</strong>-*6450-EV 3 x 4.9 3 x 5.7 3 x 6.5<br />

<strong>SX</strong>-*6500-EV 3 x 4.9 3 x 5.7 3 x 6.5<br />

<strong>SX</strong>-*6600-EV 4 x 4.9 4 x 5.7 4 x 6.5<br />

<strong>SX</strong>-*6630-EV 4 x 4.9 4 x 5.7 4 x 6.5<br />

<strong>SX</strong>-*6710-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*6800-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*6900-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

<strong>SX</strong>-*61K0-EV 6 x 4.9 6 x 5.7 6 x 6.5<br />

NOTE: Although the VSD will detect a failure in the brake<br />

electronics, the use of resistors with a thermal overload<br />

which will cut off the power at overload is strongly<br />

recommended.<br />

The brake chopper option is built-in by the manufacturer<br />

and must be specified when the VSD is ordered.<br />

13.4 I/O Board<br />

Order number<br />

01-3876-01 I/O option board 2.0<br />

The I/O option board 2.0 provides three extra relay<br />

outputs and three extra digital inputs. The I/O Board<br />

works in combination with the Pump/Fan Control, but<br />

can also be used as a separate option. This option is<br />

described in a separate <strong>manual</strong>.<br />

13.5 Output coils<br />

Output coils, which are supplied separately, are recommended<br />

for lengths of screened motor cable<br />

longer than 100 m. Because of the fast switching of<br />

the motor voltage and the capacitance of the motor<br />

cable both line to line and line to earth screen, large<br />

switching currents can be generated with long lengths<br />

of motor cable. Output coils prevent the VSD from tripping<br />

and should be installed as closely as possible to<br />

the VSD.<br />

13.6 Serial communication and<br />

fieldbus<br />

Order number<br />

01-3876-04 RS232/485<br />

01-3876-05 Profibus DP<br />

01-3876-06 DeviceNet<br />

Description<br />

Description<br />

01-3876-09 Modbus/TCP, Ethernet<br />

For communication with the VSD there are several<br />

option boards for communication. There are different<br />

options for Fieldbus communication and one serial<br />

communication option with RS232 or RS485 interface<br />

which has galvanic isolation.<br />

13.7 Standby supply board<br />

164 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Order number<br />

option<br />

Description<br />

01-3954-00 Standby power supply kit for after mounting<br />

The standby supply board option provides the possibility<br />

of keeping the communication system up and<br />

running without having the 3-phase mains connected.<br />

One advantage is that the system can be set up without<br />

mains power. The option will also give backup for<br />

communication failure if main power is lost.<br />

The standby supply board option is supplied with<br />

external<br />

±10% 24 V DC or 24 V AC, protected by a 2 A slow acting<br />

fuse, from a double isolated transformer. The terminals<br />

X1:1 and X1:2 are voltage polarity independent.<br />

connecting 24 V DC to secure the supply voltage for<br />

the driver circuits of the power conductors via<br />

safety relay K1. See also Fig. 105.<br />

• High signal on the digital input, e.g. terminal 9 in<br />

Fig. 105, which is set to "Enable". For setting the<br />

digital input please refer to section 11.5.2, page<br />

126.<br />

These two signals need to be combined and used to<br />

enable the output of the VSD and make it possible to<br />

activate a Safe Stop condition.<br />

NOTE: The "Safe Stop" condition according to EN 954-1<br />

Category 3 can only be realized by de-activating both the<br />

"Inhibit" and "Enable" inputs.<br />

X1<br />

Must be<br />

double<br />

isolated<br />

~<br />

X1:1 Left terminal<br />

X1:2 Right terminal<br />

Fig. 102 Connection of standby supply option<br />

Table 32<br />

X1<br />

terminal<br />

Name Function Specification<br />

1 Ext. supply 1<br />

2 Ext. supply 2<br />

External, VSD main<br />

24 V<br />

power independent,<br />

supply voltage AC ±10%<br />

DC or 24<br />

V<br />

Double isolated<br />

for control and communication<br />

circuits<br />

13.8 Safe Stop option<br />

To realize a Safe Stop configuration in accordance<br />

with EN954-1 Category 3, the following three parts<br />

need to be attended to:<br />

1. Inhibit trigger signals with safety relay K1 (via Safe<br />

Stop option board).<br />

2. Enable input and control of VSD (via normal I/O<br />

control signals of VSD).<br />

3. Power conductor stage (checking status and feedback<br />

of driver circuits and IGBT’s).<br />

To enable the VSD to operate and run the motor, the<br />

following signals should be active:<br />

• "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the<br />

Safe Stop option board should be made active by<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 165


When the "Safe Stop" condition is achieved by using<br />

these two different methods, which are independently<br />

controlled, this safety circuit ensures that the motor<br />

will not start running because:<br />

• The 24V DC signal is taken away from the "Inhibit"<br />

input, terminals 1 and 2, the safety relay K1 is<br />

switched off.<br />

The supply voltage to the driver circuits of the power conductors<br />

is switched off. This will inhibit the trigger pulses to<br />

the power conductors.<br />

• The trigger pulses from the control board are shut<br />

down.<br />

The Enable signal is monitored by the controller circuit<br />

which will forward the information to the PWM part on the<br />

Control board.<br />

To make sure that the safety relay K1 has been<br />

switched off, this should be guarded externally to<br />

ensure that this relay did not refuse to act. The Safe<br />

Stop option board offers a feedback signal for this via<br />

a second forced switched safety relay K2 which is<br />

switched on when a detection circuit has confirmed<br />

that the supply voltage to the driver circuits is shut<br />

down. See Table 33 for the contacts connections.<br />

To monitor the "Enable" function, the selection "RUN"<br />

on a digital output can be used. For setting a digital<br />

output, e.g. terminal 20 in the example Fig. 105,<br />

please refer to section 11.5.4, page 132 [540].<br />

When the "Inhibit" input is de-activated, the VSD display<br />

will show a blinking "SST" indication in section D<br />

(bottom left corner) and the red Trip LED on the Control<br />

panel will blink.<br />

To resume normal operation, the following steps have<br />

to be taken:<br />

• Release "Inhibit" input; 24V DC (High) to terminal 1<br />

and 2.<br />

• Give a STOP signal to the VSD, according to the<br />

set Run/Stop Control in menu [215].<br />

• Give a new Run command, according to the set<br />

Run/Stop Control in menu [215].<br />

NOTE: The method of generating a STOP command is<br />

dependent on the selections made in Start Signal Level/<br />

Edge [21A] and the use of a separate Stop input via<br />

digital input.<br />

WARNING: The safe stop function can never<br />

be used for electrical maintenance. For<br />

electrical maintenance the VSD should<br />

always be disconnected from the supply<br />

voltage.<br />

Fig. 103 Connection of safe stop option in size B and C.<br />

Fig. 104 Connection of safe stop option in size E and up.<br />

Table 33<br />

X1<br />

pin<br />

Specification of Safe Stop option board<br />

Name Function Specification<br />

1 Inhibit + Inhibit driver circuits of<br />

2 Inhibit - power conductors<br />

3<br />

4<br />

NO contact<br />

relay K2<br />

P contact<br />

relay K2<br />

Feedback; confirmation<br />

of activated inhibit<br />

5 GND Supply ground<br />

6 +24 VDC<br />

Supply Voltage for operating<br />

Inhibit input only.<br />

1<br />

2 3 4 5<br />

6<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

DC 24 V<br />

(20–30 V)<br />

48 V DC /<br />

30 V AC /2 A<br />

+24 V DC ,<br />

50 mA<br />

166 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Safe Stop<br />

+5V<br />

Power board<br />

=<br />

X1<br />

1<br />

2<br />

K1<br />

3<br />

4<br />

K2<br />

=<br />

U<br />

5<br />

6<br />

+24 V DC<br />

~<br />

V<br />

W<br />

X1<br />

Enable<br />

10<br />

DigIn<br />

Controller<br />

PWM<br />

Stop<br />

20<br />

DigOut<br />

Fig. 105<br />

13.9 Encoder<br />

Order number<br />

Description<br />

01-3876-03 Encoder 2.0 option board<br />

The Encoder 2.0 option board, used for connection of<br />

feedback signal of the actual motor speed via an<br />

incremental encoder is described in a separate <strong>manual</strong>.<br />

13.10PTC/PT100<br />

Order number<br />

Description<br />

01-3876-08 PTC/PT100 2.0 option board<br />

The PTC/PT100 2.0 option board for connecting<br />

motor thermistors to the VSD is described in a separate<br />

<strong>manual</strong>.<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Options 167


168 Options <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14. Technical Data<br />

14.1 Electrical specifications<br />

related to model<br />

Table 34<br />

Typical motor power at mains voltage 400 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @400V<br />

[kW]<br />

Rated current<br />

[A]<br />

Frame size<br />

<strong>SX</strong>-D4090-EV 210 90 175 75 140 E<br />

<strong>SX</strong>-D4110-EV 252 110 210 90 168<br />

<strong>SX</strong>-D4132-EV 300 132 250 110 200<br />

<strong>SX</strong>-*4160-EV 360 160 300 132 240<br />

<strong>SX</strong>-*4200-EV 450 200 375 160 300<br />

<strong>SX</strong>-*4220EV 516 220 430 200 344<br />

<strong>SX</strong>-*4250-EV 600 250 500 220 400<br />

<strong>SX</strong>-*4315-EV 720 315 600 250<br />

<strong>SX</strong>-*4355-EV 780 355 650 315 520<br />

<strong>SX</strong>-*4400-EV 900 400 750 355 600<br />

<strong>SX</strong>-*4450-EV 1032 450 860 400 688<br />

<strong>SX</strong>-*4500-EV 1200 500 1000 450 800<br />

<strong>SX</strong>-*4630-EV 1440 630 1200 500 960<br />

<strong>SX</strong>-*4800-EV 1800 800 1500 630 1200<br />

F<br />

G<br />

H<br />

I<br />

J<br />

K<br />

* Available during limited time and as long as allowed by drive temperature.<br />

Table 35<br />

Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V [kW] Rated current [A] Power @690V [kW] Rated current [A]<br />

Frame size<br />

<strong>SX</strong>-D6090-EV 108 90 90 75 72<br />

<strong>SX</strong>-D6110-EV 131 110 109 90 87<br />

<strong>SX</strong>-D6132-EV 175 132 146 110 117<br />

<strong>SX</strong>-D6160EV 210 160 175 132 140<br />

<strong>SX</strong>-*6200-EV 252 200 210 160 168<br />

<strong>SX</strong>-*6250-EV 300 250 250 200 200<br />

<strong>SX</strong>-*6315-EV 360 315 300 250 240<br />

<strong>SX</strong>-*6355-EV 450 355 375 315 300<br />

<strong>SX</strong>-*6450-EV 516 450 430 315 344<br />

<strong>SX</strong>-*6500-EV 600 500 500 355 400<br />

F69<br />

H69<br />

I69<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 169


Table 35<br />

Typical motor power at mains voltage 690 V<br />

Model<br />

Max. output<br />

current [A]*<br />

Normal duty<br />

(120%, 1 min every 10 min)<br />

Heavy duty<br />

(150%, 1 min every 10 min)<br />

Power @690V [kW] Rated current [A] Power @690V [kW] Rated current [A]<br />

Frame size<br />

<strong>SX</strong>-*6600-EV 720 600 600 450<br />

<strong>SX</strong>-*6630EV 780 630 650 500 520<br />

<strong>SX</strong>-*6710-EV 900 710 750 600 600<br />

<strong>SX</strong>-*6800-EV 1032 800 860 650 688<br />

<strong>SX</strong>-*6900-EV 1080 900 900 710 720<br />

<strong>SX</strong>-*61K0-EV 1200 1000 1000 800 800<br />

J69<br />

K69<br />

* Available during limited time and as long as allowed by drive temperature.<br />

170 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.2 General electrical specifications<br />

Table 36<br />

General electrical specifications<br />

General<br />

Mains voltage:<br />

<strong>SX</strong>-4xxx-EV<br />

<strong>SX</strong>-6xxx-EV<br />

Mains frequency:<br />

Input power factor:<br />

Output voltage:<br />

Output frequency:<br />

Output switching frequency:<br />

Efficiency at nominal load:<br />

230-480V +10%/-10%<br />

500-690V +10%/-15%<br />

45 to 65 Hz<br />

0.95<br />

0–Mains supply voltage:<br />

0–400 Hz<br />

3 kHz (adjustable 1,5-6 kHz)<br />

98%<br />

Control signal inputs:<br />

Analogue (differential)<br />

Analogue Voltage/current:<br />

Max. input voltage:<br />

Input impedance:<br />

Resolution:<br />

Hardware accuracy:<br />

Non-linearity<br />

Digital:<br />

Input voltage:<br />

Max. input voltage:<br />

Input impedance:<br />

Signal delay:<br />

Control signal outputs<br />

Analogue<br />

Output voltage/current:<br />

Max. output voltage:<br />

Short-circuit current ():<br />

Output impedance:<br />

Resolution:<br />

Maximum load impedance for current<br />

Hardware accuracy:<br />

Offset:<br />

Non-linearity:<br />

Digital<br />

Output voltage:<br />

Shortcircuit current():<br />

Relays<br />

Contacts<br />

References<br />

+10VDC<br />

-10VDC<br />

+24VDC<br />

0-±10 V/0-20 mA via switch<br />

+30 V/30 mA<br />

20 k(voltage)<br />

250 (current)<br />

11 bits + sign<br />

1% type + 1 ½ LSB fsd<br />

1½ LSB<br />

High: >9 VDC, Low: 23 VDC open<br />

Low:


14.3 Operation at higher<br />

temperatures<br />

OMRON variable speed drives are made for operation<br />

at maximum of 40°C ambient temperature. However,<br />

for most models, it is possible to use the VSD at<br />

higher temperatures with little loss in performance.<br />

Table 37 shows ambient temperatures as well as derating<br />

for higher temperatures.<br />

Table 37<br />

Ambient temperature and derating 400–690 V types<br />

Model <strong>SX</strong>-V<br />

<strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-EV<br />

<strong>SX</strong>-D6090-EV to <strong>SX</strong>-D6160-EV<br />

<strong>SX</strong>-*4160-EV to <strong>SX</strong>-*4800-EV<br />

<strong>SX</strong>-*6200-EV to <strong>SX</strong>-*61K0-EV<br />

IP20<br />

IP54<br />

Max temp. Derating: possible Max temp. Derating: possible<br />

– – 40°C Yes,-2.5%/°C to max +5°C<br />

40°C -2.5%/°C to max +5°C 40°C -2.5%/°C to max +5°C<br />

Example<br />

In this example we have a motor with the following<br />

data that we want to run at the ambient temperature<br />

of 45°C:<br />

Voltage 400 V<br />

Current 165 A<br />

Power 90 kW<br />

Select variable speed drive<br />

The ambient temperature is 5 °C higher than the maximum<br />

ambient temperature. The following calculation<br />

is made to select the correct VSD model.<br />

Derating is possible with loss in performance of 2.5%/<br />

°C.<br />

Derating will be: 5 X 2.5% = 12.5%<br />

Calculation for model <strong>SX</strong>-D4090-EV<br />

175 A - (12.5% X 175) = 154A; this is not enough.<br />

Calculation for model <strong>SX</strong>-D4110-EV<br />

210 A - (12.5% X 210) = 184 A<br />

In this example we select the <strong>SX</strong>-D4110-EV.<br />

page 72. At switching frequencies >3 kHz derating<br />

might be needed.<br />

Table 38<br />

Switching frequency<br />

Models<br />

Standard<br />

Switching<br />

frequency<br />

Range<br />

<strong>SX</strong>-*4xxx-EV 3 kHz 1.5–6 kHz<br />

<strong>SX</strong>-*6xxx-EV 3 kHz 1.5–6 kHz<br />

14.4 Operation at higher<br />

switching frequency<br />

Table 38 shows the switching frequency for the different<br />

VSD models. With the possibility of running at<br />

higher switching frequency you can reduce the noise<br />

level from the motor. The switching frequency is set in<br />

menu [22A], Motor sound, see section section 11.2.3,<br />

172 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.5 Dimensions and Weights<br />

The table below gives an overview of the dimensions<br />

and weights. The models <strong>SX</strong>-D4090-EV to <strong>SX</strong>-D4132-EV<br />

in 400V and <strong>SX</strong>-D6090-EV to <strong>SX</strong>-D6250-EV in 690V are<br />

available in IP54 as wall mounted modules. The models<br />

<strong>SX</strong>-*4160-EV to <strong>SX</strong>-*4800-EV in 400V and <strong>SX</strong>-*6315-<br />

EV to <strong>SX</strong>-*61K0-EV in 690V consist of 2, 3, 4 or 6 paralleled<br />

power electonic building block (PEBB) available<br />

in IP20 as wall mounted modules and in IP54<br />

mounted standard cabinet<br />

Protection class IP54 is according to the EN 60529<br />

standard.<br />

Table 39<br />

Mechanical specifications, <strong>SX</strong>-V 400V<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20 (-A4xxx)<br />

Dim. H x W x D [mm]<br />

IP54 (-D4xxx)<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

4090 E – 950 x 285 x 314 – 60<br />

4110 to 4132 F – 950 x 345 x 314 – 74<br />

4160 to 4200 G 1036 x 500 x 390 2330 x 600 x 500 140 270<br />

4220 to 4250 H 1036 x 500 x 450 2330 x 600 x 600 170 305<br />

4315 to 4400 I 1036 x 730 x 450 2330 x 1000 x 600 248 440<br />

4450 to 4500 J 1036 x 1100 x 450 2330 x 1200 x 600 340 580<br />

4630 to 4800 K 1036 x 1560 x 450 2330 x 2000 x 600 496 860<br />

Table 40<br />

Mechanical specifications, <strong>SX</strong>-V 690V<br />

Models<br />

Frame<br />

size<br />

Dim. H x W x D [mm]<br />

IP20 (-A6xxx)<br />

Dim. H x W x D [mm]<br />

IP54 (-A6xxx)<br />

Weight IP20<br />

[kg]<br />

Weight IP54<br />

[kg]<br />

6090 to 6160 F69 – 1090 x 345 x 314 – 77<br />

6200 to 6355 H69 1176 x 500 x 450 2330 x 600 x 600 176 311<br />

6450 to 6500 I69 1176 x 730 x 450 2330 x 1000 x 600 257 449<br />

6600 to 6630 J69 1176 x 1100 x 450 2330 x 1200 x 600 352 592<br />

6710 to 61K0 K69 1176 x 1560 x 450 2330 x 2000 x 600 514 878<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 173


14.6 Environmental conditions<br />

Table 41<br />

Operation<br />

Parameter<br />

Normal operation<br />

Nominal ambient temperature<br />

Atmospheric pressure<br />

0C–40C See table, see Table 37 for different conditions<br />

86–106 kPa<br />

Relative humidity, non-condensing 0–90%<br />

Contamination,<br />

according to IEC 60721-3-3<br />

Vibrations<br />

No electrically conductive dust allowed. Cooling air must be clean and free from corrosive<br />

materials. Chemical gases, class 3C2. Solid particles, class 3S2.<br />

According to IEC 600068-2-6, Sinusodial vibrations:<br />

•10


Table 43<br />

Fuses, cable cross-sections and glands for 400V<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>SX</strong>-*4315-EV 520 630<br />

<strong>SX</strong>-*4355-EV 562 630<br />

(3x)35-240 frame -- --<br />

<strong>SX</strong>-*4400-EV 648 710 (3x)35-240 frame -- --<br />

<strong>SX</strong>-*4450-EV 744 800<br />

<strong>SX</strong>-*4500-EV 864 1000<br />

(4x)35-240 frame -- --<br />

<strong>SX</strong>-*4630-EV 1037 1250<br />

<strong>SX</strong>-*4800-EV 1296 1500<br />

(6x)35-240 frame -- --<br />

1. Values are valid when brake chopper electronics are built in.<br />

Table 44<br />

Fuses, cable cross-sections and glands for 690V<br />

Model<br />

Nominal<br />

input<br />

current<br />

[A]<br />

Maximum<br />

value fuse<br />

[A]<br />

Cable cross section connector range [mm 2 ] for<br />

Cable glands (clamping range<br />

[mm])<br />

mains/ motor Brake PE mains / motor Brake<br />

<strong>SX</strong>-D6090-EV 78 100<br />

<strong>SX</strong>-D6110-EV 94 100<br />

<strong>SX</strong>-D6132-EV 126 160<br />

<strong>SX</strong>-D6160-EV 152 160<br />

<strong>SX</strong>-*6200-EV 182 200<br />

<strong>SX</strong>-*6250-EV 216 250<br />

<strong>SX</strong>-*6315-EV 260 300<br />

<strong>SX</strong>-*6355-EV 324 355<br />

<strong>SX</strong>-*6450-EV 372 400<br />

<strong>SX</strong>-*6500-EV 432 500<br />

<strong>SX</strong>-*6600-EV 520 630<br />

<strong>SX</strong>-*6630-EV 562 630<br />

16 - 95 16 - 95<br />

35 - 150 16 - 95<br />

35-150<br />

1. Values are valid when brake chopper electronics are built in.<br />

35-150<br />

(16-95)<br />

16-95<br />

(16-70)¹<br />

35-150<br />

(16-70)¹<br />

35-240<br />

(95-185)¹<br />

35-150<br />

(16-70)¹<br />

Ø27-66 cable entry<br />

(2x)35-150 frame --- --<br />

(3x)35-150 frame -- --<br />

(4x)35-150 frame -- --<br />

<strong>SX</strong>-*6710-EV 648 710 (6x)35-150 frame -- --<br />

<strong>SX</strong>-*6800-EV 744 800<br />

<strong>SX</strong>-*6900-EV 795 900<br />

<strong>SX</strong>-*61K0-EV 864 1000<br />

(6x)35-150 frame -- --<br />

---<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 175


176 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.7.2 Fuses and cable dimensions<br />

according NEMA ratings<br />

Table 45<br />

Types and fuses<br />

Model<br />

Input<br />

current<br />

[Arms]<br />

UL<br />

Class J TD (A)<br />

Mains input fuses<br />

Ferraz-Shawmut<br />

type<br />

<strong>SX</strong>-D4090-EV 152 175 AJT175<br />

<strong>SX</strong>-D4110-EV 182 200 AJT200<br />

<strong>SX</strong>-D4132-EV 216 250 AJT250<br />

<strong>SX</strong>-*4160-EV 260 300 AJT300<br />

<strong>SX</strong>-*4200-EV 324 350 AJT350<br />

<strong>SX</strong>-*4220-EV 372 400 AJT400<br />

<strong>SX</strong>-*4250-EV 432 500 AJT500<br />

<strong>SX</strong>-*4315-EV 520 600 AJT600<br />

<strong>SX</strong>-*4355-EV 562 600 AJT600<br />

<strong>SX</strong>-*4400-EV 648 700 A4BQ700<br />

<strong>SX</strong>-*4450-EV 744 800 A4BQ800<br />

<strong>SX</strong>-*4500-EV 864 1000 A4BQ1000<br />

<strong>SX</strong>-*4630-EV 1037 1200 A4BQ1200<br />

<strong>SX</strong>-*4800-EV 1296 1500 A4BQ1500<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 177


Table 46<br />

Type cables cross-sections and glands<br />

Cable cross section connector<br />

Model<br />

Mains and motor Brake PE<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Range<br />

Tightening<br />

torque<br />

Nm/ft lbf<br />

Cable type<br />

<strong>SX</strong>-D4090-EV<br />

AWG 1 - AWG 3/0<br />

AWG 4/0 - 300 kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 4 - AWG 3/0<br />

14 / 10.5<br />

AWG 1 - AWG 3/0<br />

(AWG 4 - AWG 2/0)¹<br />

14 / 10.5<br />

(10 / 7.5)¹<br />

<strong>SX</strong>-D4110-EV<br />

<strong>SX</strong>-D4132-EV<br />

AWG 3/0 -<br />

400 kcmil<br />

24 / 18<br />

AWG 1 - AWG 3/0<br />

AWG 4/0 - 300<br />

kcmil<br />

14 / 10.5<br />

24 / 18<br />

AWG 3/0 - 400 kcmil<br />

(AWG 4/0 - 400<br />

kcmil)¹<br />

24 / 18<br />

(10 / 7.5)¹<br />

<strong>SX</strong>-*4160-EV 2 x AWG 4/0 -<br />

<strong>SX</strong>-*4200-EV 2 x 300 kcmil<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>SX</strong>-*4220-EV 2 x AWG 3/0 -<br />

<strong>SX</strong>-*4250-EV 2 x 400 kcmil<br />

<strong>SX</strong>-*4315-EV<br />

<strong>SX</strong>-*4355-EV<br />

<strong>SX</strong>-*4400-EV<br />

3 x AWG 4/0 -<br />

3 x 300 kcmil<br />

24 / 18<br />

24 / 18<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

2 x AWG 3/0 -<br />

2 x 400 kcmil<br />

24 / 18 frame -<br />

24 / 18 frame -<br />

Copper (Cu)<br />

75°C<br />

<strong>SX</strong>-*4450-EV 4 x AWG 4/0 -<br />

<strong>SX</strong>-*4500-EV 4 x 300 kcmil<br />

24 / 18<br />

3 x AWG 3/0 -<br />

3 x 400 kcmil<br />

24 / 18 frame -<br />

<strong>SX</strong>-*4630-EV 6 x AWG 4/0 -<br />

<strong>SX</strong>-*4800-EV 6 x 300 kcmil<br />

24 / 18<br />

6 x AWG 3/0 -<br />

6 x 400 kcmil<br />

24 / 18 frame -<br />

178 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


14.8 Control signals<br />

Table 47<br />

Terminal Name: Function (Default): Signal: Type:<br />

1 +10 V +10 VDC Supply voltage +10 VDC, max 10 mA output<br />

2 AnIn1 Process reference<br />

3 AnIn2 Off<br />

4 AnIn3 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

5 AnIn4 Off<br />

0 -10 VDC or 0/4–20 mA<br />

analogue input<br />

bipolar: -10 - +10 VDC or -20 - +20 mA<br />

6 -10 V -10VDC Supply voltage -10 VDC, max 10 mA output<br />

7 Common Signal ground 0V output<br />

8 DigIn 1 RunL 0-8/24 VDC digital input<br />

9 DigIn 2 RunR 0-8/24 VDC digital input<br />

10 DigIn 3 Off 0-8/24 VDC digital input<br />

11 +24 V +24VDC Supply voltage +24 VDC, 100 mA output<br />

12 Common Signal ground 0 V output<br />

13 AnOut 1 Min speed to max speed 0 ±10 VDC or 0/4– +20 mA analogue output<br />

14 AnOut 2 0 to max torque 0 ±10 VDC or 0/4– +20 mA analogue output<br />

15 Common Signal ground 0 V output<br />

16 DigIn 4 Off 0-8/24 VDC digital input<br />

17 DigIn 5 Off 0-8/24 VDC digital input<br />

18 DigIn 6 Off 0-8/24 VDC digital input<br />

19 DigIn 7 Off 0-8/24 VDC digital input<br />

20 DigOut 1 Ready 24 VDC, 100 mA digital output<br />

21 DigOut 2 Brake 24 VDC, 100 mA digital output<br />

22 DigIn 8 RESET 0-8/24 VDC digital input<br />

Terminal X2<br />

31 N/C 1 Relay 1 output<br />

32 COM 1<br />

33 N/O 1<br />

Trip, active when the<br />

VSD is in a TRIP condition<br />

N/C is opened when the relay is active<br />

(valid for all relays)<br />

N/O is closed when the relay is active<br />

(valid for all relays)<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

Terminal X3<br />

41 N/C 2<br />

42 COM 2<br />

43 N/O 2<br />

Relay 2 Output<br />

Run, active when the<br />

VSD is started<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

51 COM 3 Relay 3 Output<br />

52 N/O 3 Off<br />

potential free change over<br />

0.1 – 2 A/U max 250 VAC or 42 VDC<br />

relay output<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Technical Data 179


180 Technical Data <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


15. Menu List<br />

DEFAULT<br />

244 Copy to CP No Copy<br />

CUSTOM<br />

100 Preferred View<br />

DEFAULT<br />

110 1st Line Process Val<br />

120 2nd Line Current<br />

200 Main Setup<br />

210 Operation<br />

211 Language English<br />

212 Select Motor M1<br />

213 Drive Mode V/Hz<br />

214 Ref Control Remote<br />

215 Run/Stp Ctrl Remote<br />

216 Reset Ctrl Remote<br />

217 Local/Rem Off<br />

2171 LocRefCtrl Standard<br />

2172 LocRunCtrl Standard<br />

218 Lock Code? 0<br />

219 Rotation R+L<br />

21A Level/Edge Level<br />

21B Supply Volts Not Defined<br />

220 Motor Data<br />

221 Motor Volts U NOM V<br />

222 Motor Freq 50Hz<br />

223 Motor Power (P NOM ) W<br />

224 Motor Curr (I NOM ) A<br />

225 Motor Speed (n MOT ) rpm<br />

226 Motor Poles -<br />

227 Motor Cos<br />

Depends on<br />

P nom<br />

228 Motor Vent Self<br />

229 Motor ID-Run Off<br />

22A Motor Sound F<br />

22B Encoder Off<br />

22C Enc Pulses 1024<br />

22D Enc Speed 0rpm<br />

230 Mot Protect<br />

231 Mot I 2 t Type Trip<br />

232 Mot I 2 t Curr 100%<br />

233 Mot I 2 t Time 60s<br />

234 Thermal Prot Off<br />

235 Motor Class F 140C<br />

236 PT100 Inputs<br />

237 Motor PTC Off<br />

240 Set Handling<br />

241 Select Set A<br />

242 Copy Set A>B<br />

243 Default>Set A<br />

CUSTOM<br />

245 Load from CP No Copy<br />

250 Autoreset<br />

251 No of Trips 0<br />

252 Overtemp Off<br />

253 Overvolt D Off<br />

254 Overvolt G Off<br />

255 Overvolt Off<br />

256 Motor Lost Off<br />

257 Locked Rotor Off<br />

258 Power Fault Off<br />

259 Undervoltage Off<br />

25A Motor I 2 t Off<br />

25B Motor I 2 t TT Trip<br />

25C PT100 Off<br />

25D PT100 TT Trip<br />

25E PTC Off<br />

25F PTC TT Trip<br />

25G Ext Trip Off<br />

25H Ext Trip TT Trip<br />

25I Com Error Off<br />

25J Com Error TT Trip<br />

25K Min Alarm Off<br />

25L Min Alarm TT Trip<br />

25M Max Alarm Off<br />

25N Max Alarm TT Trip<br />

25O Over curr F Off<br />

25P Pump Off<br />

25Q Over speed Off<br />

25R Ext Mot Temp Off<br />

25S Ext Mot TT Trip<br />

25T LC Level Off<br />

25U LC Level TT Trip<br />

260 Serial Com<br />

261 Com Type RS232/485<br />

262 RS232/485<br />

2621 Baudrate 9600<br />

2622 Address 1<br />

263 Fieldbus<br />

2631 Address 62<br />

2632 PrData Mode Basic<br />

2633 Read/Write RW<br />

2634 AddPrValue 0<br />

264 Comm Fault<br />

2641 ComFlt Mode Off<br />

2642 ComFlt Time 0.5 s<br />

265 Ethernet<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 181


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

2651 IP Address 0.0.0.0<br />

33C Brk Release 0.00s<br />

2652 MAC Address<br />

000000000<br />

000<br />

2653 Subnet Mask 0.0.0.0<br />

2654 Gateway 0.0.0.0<br />

2655 DHCP Off<br />

266 FB Signal<br />

2661 FB Signal 1<br />

2662 FB Signal 2<br />

2663 FB Signal 3<br />

2664 FB Signal 4<br />

2665 FB Signal 5<br />

2666 FB Signal 6<br />

2667 FB Signal 7<br />

2668 FB Signal 8<br />

2669 FB Signal 9<br />

266A FB Signal 10<br />

266B FB Signal 11<br />

266C FB Signal 12<br />

266D FB Signal 13<br />

266E FB Signal 14<br />

266F FB Signal 15<br />

266G FB Signal 16<br />

269 FB Status<br />

300 Process<br />

310 Set/View ref<br />

320 Proc Setting<br />

321 Proc Source Speed<br />

322 Proc Unit Off<br />

323 User Unit 0<br />

324 Process Min 0<br />

325 Process Max 0<br />

326 Ratio Linear<br />

327 F(Val) PrMin Min<br />

328 F(Val) PrMax Max<br />

330 Start/Stop<br />

331 Acc Time 10.00s<br />

332 Dec Time 10.00s<br />

333 Acc MotPot 16.00s<br />

334 Dec MotPot 16.00s<br />

335 Acc>Min Spd 10.00s<br />

336 Dec


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

399 Start Delay 0s<br />

41C5 Load Curve 5 100%<br />

39A Stop Delay 0s<br />

41C6 Load Curve 6 100%<br />

39B Upp Band Lim 0%<br />

41C7 Load Curve 7 100%<br />

39C Low Band Lim 0%<br />

41C8 Load Curve 8 100%<br />

39D Settle Start 0s<br />

41C9 Load Curve 9 100%<br />

39E TransS Start 60%<br />

420 Process Prot<br />

39F Settle Stop 0s<br />

421 Low Volt OR On<br />

39G TransS Stop 60%<br />

422 Rotor Locked Off<br />

39H Run Time 1 00:00:00<br />

423 Motor lost Off<br />

39H1 Rst Run Tm1 No<br />

424 Overvolt Ctrl On<br />

39I Run Time 2 00:00:00<br />

500 I/Os<br />

39I1 Rst Run Tm2 No<br />

510 An Inputs<br />

39J Run Time 3 00:00:00<br />

511 AnIn1 Fc Process Ref<br />

39J1 Rst Run Tm3 No<br />

512 AnIn1 Setup 4-20mA<br />

39K Run Time 4 00:00:00<br />

513 AnIn1 Advn<br />

39K1 Rst Run Tm4 No<br />

5131 AnIn1 Min 4mA<br />

39L Run Time05 00:00:00<br />

5132 AnIn1 Max 20.00mA<br />

39L1 Rst Run Tm5 No<br />

5133 AnIn1 Bipol 20.00mA<br />

39M Run Time 6 00:00:00<br />

5134 AnIn1 FcMin Min<br />

39M1 Rst Run Tm6<br />

No<br />

5135 AnIn1 ValMin 0<br />

39N Pump 123456<br />

5136 AnIn1 FcMax Max<br />

400 Monitor/Prot<br />

5137 AnIn1 ValMax 0<br />

410 Load Monitor<br />

5138 AnIn1 Oper Add+<br />

411 Alarm Select Off<br />

5139 AnIn1 Filt 0.1s<br />

412 Alarm trip Off<br />

513A AnIn1 Enabl On<br />

413 Ramp Alarm Off<br />

514 AnIn2 Fc Off<br />

414 Start Delay 2s<br />

515 AnIn2 Setup 4-20mA<br />

415 Load Type Basic<br />

516 AnIn2 Advan<br />

416 Max Alarm<br />

5161 AnIn2 Min 4mA<br />

4161 MaxAlarmMar 15%<br />

5162 AnIn2 Max 20.00mA<br />

4162 MaxAlarmDel 0.1s<br />

5163 AnIn2 Bipol 20.00mA<br />

417 Max Pre alarm<br />

5164 AnIn2 FcMin Min<br />

4171 MaxPreAlMar 10%<br />

5165 AnIn2 ValMin 0<br />

4172 MaxPreAlDel 0.1s<br />

5166 AnIn2 FcMax Max<br />

418 Min Pre Alarm<br />

5167 AnIn2 ValMax 0<br />

4181 MinPreAlMar 10%<br />

5168 AnIn2 Oper Add+<br />

4182 MinPreAlDel 0.1s<br />

5169 AnIn2 Filt 0.1s<br />

419 Min Alarm<br />

516A AnIn2 Enabl On<br />

4191 MinAlarmMar 15%<br />

517 AnIn3 Fc Off<br />

4192 MinAlarmDel 0.1s<br />

518 AnIn3 Setup 4-20mA<br />

41A Autoset Alrm No<br />

519 AnIn3 Advan<br />

41B Normal Load 100%<br />

5191 AnIn3 Min 4mA<br />

41C<br />

Load Curve<br />

5192 AnIn3 Max 20.00mA<br />

41C1 Load Curve 1 100%<br />

5193 AnIn3 Bipol 20.00mA<br />

41C2 Load Curve 2 100%<br />

5194 AnIn3 FcMin Min<br />

41C3 Load Curve 3 100%<br />

5195 AnIn3 ValMin 0<br />

41C4 Load Curve 4 100%<br />

5196 AnIn3 FcMax Max<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 183


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

5197 AnIn3 ValMax 0<br />

535 AnOut2 Setup 4-20mA<br />

5198 AnIn3 Oper Add+<br />

536 AnOut2 Advan<br />

5199 AnIn3 Filt 0.1s<br />

5361 AnOut 2 Min 4mA<br />

519A AnIn3 Enabl On<br />

5362 AnOut 2 Max 20.0mA<br />

51A AnIn4 Fc Off<br />

5363 AnOut2Bipol 20.0mA<br />

51B AnIn4 Setup 4-20mA<br />

5364 AnOut2 FcMin Min<br />

51C<br />

AnIn4 Advan<br />

5365 AnOut2 VlMin 0<br />

51C1 AnIn4 Min 4mA<br />

5366 AnOut2 FcMax Max<br />

51C2 AnIn4 Max 20.00mA<br />

5367 AnOut2 VlMax 0<br />

51C3 AnIn4 Bipol 20.00mA<br />

540 Dig Outputs<br />

51C4 AnIn4 FcMin Min<br />

541 DigOut 1 Ready<br />

51C5 AnIn4 ValMin 0<br />

542 DigOut 2 No Trip<br />

51C6 AnIn4 FcMax Max<br />

550 Relays<br />

51C7 AnIn4 ValMax 0<br />

551 Relay 1 Trip<br />

51C8 AnIn4 Oper Add+<br />

552 Relay 2 Run<br />

51C9 AnIn4 Filt 0.1s<br />

553 Relay 3 Off<br />

51CA AnIn4 Enabl On<br />

554 B(oard)1 Relay 1 Off<br />

520 Dig Inputs<br />

555 B(oard)1 Relay 2 Off<br />

521 DigIn 1 RunL<br />

556 B(oard)1 Relay 3 Off<br />

522 DigIn 2 RunR<br />

557 B(oard)2 Relay 1 Off<br />

523 DigIn 3 Off<br />

558 B(oard)2 Relay 2 Off<br />

524 DigIn 4 Off<br />

559 B(oard)2 Relay 3 Off<br />

525 DigIn 5 Off<br />

55A<br />

B(oard)3 Relay 1 Off<br />

526 DigIn 6 Off<br />

55B<br />

B(oard)3 Relay 2 Off<br />

527 DigIn 7 Off<br />

55C<br />

B(oard)3 Relay 3 Off<br />

528 DigIn 8 Reset<br />

55D<br />

Relay Adv<br />

529 B(oard)1 DigIn 1 Off<br />

55D1 Relay 1 Mode N.O<br />

52A<br />

B(oard)1 DigIn 2 Off<br />

55D2 Relay 2 Mode N.O<br />

52B<br />

B(oard)1 DigIn 3 Off<br />

55D3 Relay 3 Mode N.O<br />

52C<br />

B(oard)2 DigIn 1 Off<br />

55D4 B1R1 Mode N.O<br />

52D<br />

B(oard)2 DigIn 2 Off<br />

55D5 B1R2 Mode N.O<br />

52E<br />

B(oard)2 DigIn 3 Off<br />

55D6 B1R3 Mode N.O<br />

52F<br />

B(oard)3 DigIn 1 Off<br />

55D7 B2R1 Mode N.O<br />

52G<br />

B(oard)3 DigIn 2 Off<br />

55D8 B2R2 Mode N.O<br />

52H<br />

B(oard)3 DigIn 3 Off<br />

55D9 B2R3 Mode N.O<br />

530 An Outputs<br />

55DA B3R1 Mode N.O<br />

531 AnOut1 Fc Speed<br />

55DB B3R2 Mode N.O<br />

532 AnOut1 Setup 4-20mA<br />

55DC B3R3 Mode N.O<br />

533 AnOut1 Adv<br />

560 Virtual I/Os<br />

5331 AnOut 1 Min 4mA<br />

561 VIO 1 Dest Off<br />

5332 AnOut 1 Max 20.0mA<br />

562 VIO 1 Source Off<br />

5333 AnOut1Bipol 20.0mA<br />

563 VIO 2 Dest Off<br />

5334 AnOut1 FcMin Min<br />

564 VIO 2 Source Off<br />

5335 AnOut1 VlMin 0<br />

565 VIO 3 Dest Off<br />

5336 AnOut1 FcMax Max<br />

566 VIO 3 Source Off<br />

5337 AnOut1 VlMax 0<br />

567 VIO 4 Dest Off<br />

534 AnOut2 FC Torque<br />

568 VIO 4 Source Off<br />

184 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

569 VIO 5 Dest Off<br />

712 Speed<br />

56A VIO 5 Source Off<br />

713 Torque<br />

56B VIO 6 Dest Off<br />

714 Shaft Power<br />

56C VIO 6 Source Off<br />

715 Electrical Power<br />

56D VIO 7 Dest Off<br />

716 Current<br />

56E VIO 7 Source Off<br />

717 Output volt<br />

56F VIO 8 Dest Off<br />

718 Frequency<br />

56G VIO 8 Source Off<br />

719 DC Voltage<br />

600 Logical&Timers<br />

71A<br />

Heatsink Tmp<br />

610 Comparators<br />

71B<br />

PT100_1_2_3<br />

611 CA1 Value Speed<br />

720 Status<br />

612 CA1 Level HI 300rpm<br />

721 VSD Status<br />

613 CA1 Level LO 200rpm<br />

722 Warning<br />

614 CA2 Value Torque<br />

723 DigIn Status<br />

615 CA2 Level HI 20%<br />

724 DigOut Status<br />

616 CA2 Level LO 10%<br />

725 AnIn Status 1-2<br />

617 CD1 Run<br />

726 AnIn Status 3-4<br />

618 CD2 DigIn 1<br />

620 Logic Output Y<br />

621 Y Comp 1 CA1<br />

622 Y Operator 1 &<br />

623 Y Comp 2 !A2<br />

624 Y Operator 2 &<br />

625 Y Comp 3 CD1<br />

630 Logic Z<br />

631 Z Comp 1 CA1<br />

632 Z Operator 1 &<br />

633 Z Comp2 !A2<br />

634 Z Operator 2 &<br />

635 Z Comp 3 CD1<br />

640 Timer1<br />

641 Timer1 Trig Off<br />

642 Timer1 Mode Off<br />

643 Timer1 Delay 0:00:00<br />

644 Timer 1 T1 0:00:00<br />

645 Timer1 T2 0:00:00<br />

649 Timer1 Value 0:00:00<br />

650 Timer2<br />

651 Timer2 Trig Off<br />

652 Timer2 Mode Off<br />

653 Timer2 Delay 0:00:00<br />

654 Timer 2 T1 0:00:00<br />

655 Timer2 T2 0:00:00<br />

659 Tmer2 Value 0:00:00<br />

700 Oper/Status<br />

710 Operation<br />

711 Process Val<br />

727<br />

AnOut Status 1-<br />

2<br />

728 IO Status B1<br />

729 IO Status B2<br />

72A IO Status B3<br />

730 Stored Val<br />

731 Run Time 00:00:00<br />

7311 Reset RunTm No<br />

732 Mains Time 00:00:00<br />

733 Energy kWh<br />

7331 Rst Energy No<br />

800 View TripLog<br />

810 Trip Message<br />

811 Process Value<br />

812 Speed<br />

813 Torque<br />

814 Shaft Power<br />

815 Electrical Power<br />

816 Current<br />

817 Output voltage<br />

818 Frequency<br />

819 DC Link voltage<br />

81A Heatsink Tmp<br />

81B PT100_1, 2, 3<br />

81C FI Status<br />

81D DigIn status<br />

81E DigOut status<br />

81F AnIn status 1 2<br />

81G AnIn status 3 4<br />

81H AnOut status 1 2<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 185


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

81I<br />

IO Status B1<br />

83H AnOut status 1 2<br />

81J<br />

IO Status B2<br />

83I<br />

IO Status B1<br />

81K<br />

IO Status B3<br />

83J<br />

IO Status B2<br />

81L<br />

Run Time<br />

83K<br />

IO Status B3<br />

81M<br />

Mains Time<br />

83L<br />

Run Time<br />

81N<br />

Energy<br />

83M<br />

Mains Time<br />

820 Trip Message<br />

83N<br />

Energy<br />

821 Process Value<br />

840<br />

822 Speed<br />

841 Process Value<br />

823 Torque<br />

842 Speed<br />

824 Shaft Power<br />

843 Torque<br />

825 Electrical Power<br />

844 Shaft Power<br />

826 Current<br />

845 Electrical Power<br />

827 Output voltage<br />

846 Current<br />

828 Frequency<br />

847 Output voltage<br />

829 DC Link voltage<br />

848 Frequency<br />

82A<br />

Heatsink Tmp<br />

849 DC Link voltage<br />

82B PT100_1, 2, 3<br />

84A<br />

Heatsink Tmp<br />

82C<br />

FI Status<br />

84B PT100_1, 2, 3<br />

82D<br />

DigIn status<br />

84C<br />

FI Status<br />

82E<br />

DigOut status<br />

84D<br />

DigIn status<br />

82F AnIn status 1 2<br />

84E<br />

DigOut status<br />

82G AnIn status 3 4<br />

84F AnIn status 1 2<br />

82H AnOut status 1 2<br />

84G AnIn status 3 4<br />

82I<br />

IO Status B1<br />

84H AnOut status 1 2<br />

82J<br />

IO Status B2<br />

84I<br />

IO Status B1<br />

82K<br />

IO Status B3<br />

84J<br />

IO Status B2<br />

82L<br />

Run Time<br />

84K<br />

IO Status B3<br />

82M<br />

Mains Time<br />

84L<br />

Run Time<br />

82N<br />

Energy<br />

84M<br />

Mains Time<br />

830<br />

84N<br />

Energy<br />

831 Process Value<br />

850<br />

832 Speed<br />

851 Process Value<br />

833 Torque<br />

852 Speed<br />

834 Shaft Power<br />

853 Torque<br />

835 Electrical Power<br />

854 Shaft Power<br />

836 Current<br />

855 Electrical Power<br />

837 Output voltage<br />

856 Current<br />

838 Frequency<br />

857 Output voltage<br />

839 DC Link voltage<br />

858 Frequency<br />

83A<br />

Heatsink Temperature<br />

859 DC Link voltage<br />

83B PT100_1, 2, 3<br />

85A<br />

Heatsink Tmp<br />

83C<br />

FI Status<br />

85B PT100_1, 2, 3<br />

83D<br />

DigIn status<br />

85C<br />

FI Status<br />

83E<br />

DigOut status<br />

85D<br />

DigIn status<br />

83F AnIn status 1 2<br />

85E<br />

DigOut status<br />

83G AIn status 3 4<br />

85F AnIn 1 2<br />

186 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


DEFAULT<br />

CUSTOM<br />

DEFAULT<br />

CUSTOM<br />

85G AnIn 3 4<br />

87F AnIn status 1 2<br />

85H AnIOut 1 2<br />

87G AnIn status 3 4<br />

85I<br />

IO Status B1<br />

87H AnOut status 1 2<br />

85J<br />

IO Status B2<br />

87I<br />

IO Status B1<br />

85K<br />

IO Status B3<br />

87J<br />

IO Status B2<br />

85L<br />

Run Time<br />

87K<br />

IO Status B3<br />

85M<br />

Mains Time<br />

87L<br />

Run Time<br />

85N<br />

Energy<br />

87M<br />

Mains Time<br />

860<br />

87N<br />

Energy<br />

861 Process Value<br />

880<br />

862 Speed<br />

881 Process Value<br />

863 Torque<br />

882 Speed<br />

864 Shaft Power<br />

818 Torque<br />

865 Electrical Power<br />

884 Shaft Power<br />

866 Current<br />

885 Electrical Power<br />

867 Output voltage<br />

886 Current<br />

868 Frequency<br />

887 Output voltage<br />

869 DC Link voltage<br />

888 Frequency<br />

86A<br />

Heatsink Tmp<br />

889 DC Link voltage<br />

86B PT100_1, 2, 3<br />

88A<br />

Heatsink Tmp<br />

86C<br />

FI Status<br />

88B PT100_1, 2, 3<br />

86D<br />

DigIn status<br />

88C<br />

FI Status<br />

86E<br />

DigOut status<br />

88D<br />

DigIn status<br />

86F AnIn 1 2<br />

88E<br />

DigOut status<br />

86G AnIn 3 4<br />

88F AnIn status 1 2<br />

86H AnOut 1 2<br />

88G AnIn status 3 4<br />

86I<br />

IO Status B1<br />

88H AnOut status 1 2<br />

86J IO Status B 2<br />

88I<br />

IO Status B1<br />

86K<br />

IO Status B3<br />

88J<br />

IO Status B2<br />

86L<br />

Run Time<br />

88K<br />

IO Status B3<br />

86M<br />

Mains Time<br />

88L<br />

Run Time<br />

86N<br />

Energy<br />

88M<br />

Mains Time<br />

870<br />

88N<br />

Energy<br />

871 Process Value<br />

890<br />

872 Speed<br />

891 Process Value<br />

873 Torque<br />

892 Speed<br />

874 Shaft Power<br />

893 Torque<br />

875 Electrical Power<br />

894 Shaft Power<br />

876 Current<br />

895 Electrical Power<br />

877 Output voltage<br />

896 Current<br />

878 Frequency<br />

897 Output voltage<br />

879 DC Link voltage<br />

898 Frequency<br />

87A<br />

Heatsink Tmpe<br />

899 DC Link voltage<br />

87B PT100_1, 2, 3<br />

89A<br />

Heatsink Tmp<br />

87C<br />

FI Status<br />

89B PT100_1, 2, 3<br />

87D<br />

DigIn status<br />

89C<br />

FI Status<br />

87E<br />

DigOut status<br />

89D<br />

DigIn status<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> Menu List 187


89E<br />

DEFAULT<br />

DigOut status<br />

89F AnIn status 1 2<br />

89G AnIn status 3 4<br />

89H AnOut status 1 2<br />

89I<br />

89J<br />

89K<br />

89L<br />

89M<br />

89N<br />

IO Status B1<br />

IO Status B2<br />

IO Status B3<br />

Run Time<br />

Mains Time<br />

Energy<br />

8A0 Reset Trip No<br />

900 System Data<br />

920 VSD Data<br />

921 VSD Type<br />

922 Software<br />

923 Unit name 0<br />

CUSTOM<br />

188 Menu List <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


Index<br />

Symbols<br />

+10VDC Supply voltage .............................................179<br />

+24VDC Supply voltage .............................................179<br />

Numerics<br />

-10VDC Supply voltage ..............................................179<br />

4-20mA ......................................................................122<br />

A<br />

Abbreviations ................................................................10<br />

Acceleration ............................................................89, 91<br />

Acceleration ramp ..................................................91<br />

Acceleration time ...................................................89<br />

Ramp type .............................................................91<br />

Alarm trip ...................................................................114<br />

Alternating MASTER .................................................106<br />

Ambient temperature and derating .............................172<br />

Analogue comparators ................................................136<br />

Analogue input ...........................................................119<br />

AnIn1 ..................................................................119<br />

AnIn2 ..........................................................124, 125<br />

Offset ..........................................................121, 129<br />

Analogue Output ........................................128, 131, 179<br />

AnOut 1 ......................................................128, 131<br />

Output configuration ..................................129, 132<br />

AND operator ............................................................140<br />

AnIn2 .........................................................................125<br />

AnIn3 .........................................................................125<br />

AnIn4 .........................................................................126<br />

Autoreset ....................................................3, 39, 74, 158<br />

Autotune ....................................................................100<br />

B<br />

Baudrate ...........................................................51, 81, 82<br />

Brake chopper .............................................................163<br />

Brake function ........................................................92, 93<br />

Bake release time ...................................................92<br />

Brake .....................................................................93<br />

Brake Engage Time ...............................................93<br />

Brake wait time .....................................................93<br />

Release speed .........................................................93<br />

Vector Brake ..........................................................94<br />

Brake functions<br />

Frequency ............................................................119<br />

Brake resistors .............................................................163<br />

C<br />

Cable cross-section ......................................................174<br />

Cable specifications .......................................................20<br />

CE-marking ....................................................................9<br />

Change Condition ......................................................106<br />

Change Timer ....................................................106, 107<br />

Clockwise rotary field .................................................126<br />

Comparators ...............................................................136<br />

Connecting control signals ............................................30<br />

Connections<br />

Brake chopper connections .................................... 17<br />

Control signal connections .................................... 30<br />

Mains supply ................................................... 17, 24<br />

Motor earth ..................................................... 17, 24<br />

Motor output .................................................. 17, 24<br />

Safety earth ..................................................... 17, 24<br />

Control panel ............................................................... 47<br />

Control Panel memory ................................................. 40<br />

Copy all settings to Control Panel ......................... 74<br />

Frequency ........................................................... 119<br />

Control signal connections ........................................... 30<br />

Control signals ....................................................... 28, 30<br />

Edge-controlled ............................................... 39, 63<br />

Level-controlled .............................................. 39, 63<br />

Counter-clockwise rotary field .................................... 126<br />

Current ........................................................................ 28<br />

Current control (0-20mA) ............................................ 32<br />

D<br />

DC-link residual voltage ................................................. 1<br />

Deceleration ................................................................. 89<br />

Deceleration time .................................................. 89<br />

Ramp type ............................................................. 91<br />

Declaration of Conformity ............................................. 9<br />

Default ......................................................................... 73<br />

Definitions ................................................................... 10<br />

Derating ..................................................................... 172<br />

Digital comparators .................................................... 136<br />

Digital inputs<br />

Board Relay ......................................................... 134<br />

DigIn 1 ............................................................... 126<br />

DigIn 2 ............................................................... 127<br />

DigIn 3 ............................................................... 127<br />

Dismantling and scrapping ........................................... 10<br />

Display ......................................................................... 47<br />

Double-ended connection ............................................ 31<br />

Drive mode .................................................................. 60<br />

Frequency ........................................................... 119<br />

Drives on Change ............................................... 106, 107<br />

E<br />

ECP ........................................................................... 163<br />

Edge control ..................................................... 39, 63, 64<br />

Electrical specification ................................................ 171<br />

EMC ............................................................................ 17<br />

Current control (0-20mA) .................................... 32<br />

Double-ended connection ..................................... 31<br />

RFI mains filter ..................................................... 17<br />

Single-ended connection ....................................... 31<br />

Twisted cables ....................................................... 32<br />

Emergency stop ............................................................ 45<br />

EN60204-1 .................................................................... 9<br />

EN61800-3 .................................................................... 9<br />

EN61800-5-1 ................................................................. 9<br />

Enable ............................................................ 38, 48, 126<br />

EXOR operator .......................................................... 140<br />

Expression .................................................................. 140<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 189


External Control Panel ...............................................163<br />

F<br />

Factory settings .............................................................73<br />

Fans ............................................................................105<br />

Fieldbus ................................................................82, 164<br />

Fixed MASTER ..................................................105, 106<br />

Flux optimization .........................................................98<br />

Frequency ...................................................................146<br />

Frequency priority .................................................37<br />

Jog Frequency ........................................................97<br />

Maximum Frequency ......................................95, 96<br />

Minimum Frequency .............................................95<br />

Preset Frequency ....................................................99<br />

Skip Frequency ......................................................96<br />

Frequency priority ........................................................37<br />

Fuses, cable cross-sections and glands ..........................174<br />

G<br />

General electrical specifications ...................................171<br />

I<br />

I/O Board ...................................................................164<br />

I2t protection<br />

Motor I2t Current .....................................69, 70, 71<br />

Motor I2t Type .....................................................69<br />

ID run ....................................................................40, 66<br />

Identification Run ..................................................40, 66<br />

IEC269 .......................................................................174<br />

Internal speed control .................................................100<br />

Internal speed controller .............................................100<br />

Speed I Time .......................................................101<br />

Speed P Gain .......................................................100<br />

Interrupt .................................................................82, 83<br />

IT Mains supply .............................................................1<br />

IxR Compensation ........................................................98<br />

J<br />

Jog Frequency ...............................................................97<br />

K<br />

Keyboard reference .....................................................100<br />

Keys ..............................................................................48<br />

- Key ......................................................................50<br />

+ Key .....................................................................50<br />

Control keys ..........................................................48<br />

ENTER key ...........................................................50<br />

ESCAPE key ..........................................................50<br />

Function keys ........................................................50<br />

NEXT key .............................................................50<br />

PREVIOUS key ....................................................50<br />

RUN L ..................................................................48<br />

RUN R ..................................................................48<br />

STOP/RESET .......................................................48<br />

Toggle Key ............................................................48<br />

L<br />

LCD display .................................................................47<br />

Level control ...........................................................39, 63<br />

Load default ................................................................. 73<br />

Load monitor ....................................................... 40, 114<br />

Local/Remote ............................................................... 62<br />

Lock code ..................................................................... 63<br />

Long motor cables ........................................................ 19<br />

Low Voltage Directive .................................................... 9<br />

Lower Band ................................................................ 107<br />

Lower Band Limit ...................................................... 109<br />

M<br />

Machine Directive .......................................................... 9<br />

Main menu .................................................................. 50<br />

Mains supply .................................................... 17, 24, 27<br />

Maintenance ............................................................... 161<br />

Manis cables ................................................................. 17<br />

Manufacturer’s certificate ............................................... 9<br />

Max Frequency ................................................. 89, 95, 96<br />

Memory ....................................................................... 40<br />

Menu<br />

(110) ..................................................................... 59<br />

(120) ..................................................................... 60<br />

(210) ..................................................................... 60<br />

(211) ..................................................................... 60<br />

(212) ..................................................................... 60<br />

(213) ..................................................................... 60<br />

(214) ..................................................................... 61<br />

(215) ..................................................................... 61<br />

(216) ..................................................................... 61<br />

(217) ..................................................................... 62<br />

(218) ..................................................................... 63<br />

(219) ..................................................................... 63<br />

(21A) .................................................................... 63<br />

(220) ..................................................................... 64<br />

(221) ..................................................................... 64<br />

(222) ..................................................................... 65<br />

(223) ..................................................................... 65<br />

(224) ..................................................................... 65<br />

(225) ..................................................................... 65<br />

(226) ..................................................................... 65<br />

(227) ..................................................................... 66<br />

(228) ..................................................................... 66<br />

(229) ..................................................................... 66<br />

(22A) .................................................................... 67<br />

(22B) ..................................................................... 68<br />

(22C) .................................................................... 68<br />

(22D) .................................................................... 68<br />

(230) ..................................................................... 69<br />

(231) ..................................................................... 69<br />

(232) ..................................................................... 69<br />

(233) ..................................................................... 70<br />

(234) ..................................................................... 70<br />

(235) ..................................................................... 71<br />

(236) ..................................................................... 71<br />

(237) ..................................................................... 71<br />

(240) ..................................................................... 72<br />

(241) ..................................................................... 72<br />

(242) ..................................................................... 73<br />

(243) ..................................................................... 73<br />

(244) ..................................................................... 74<br />

(245) ..................................................................... 74<br />

190 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


(250) .....................................................................74<br />

(251) .....................................................................75<br />

(252) .....................................................................75<br />

(253) .....................................................................75<br />

(254) .....................................................................75<br />

(255) .....................................................................76<br />

(256) .....................................................................76<br />

(257) .....................................................................76<br />

(258) .....................................................................76<br />

(259) .....................................................................76<br />

(25A) .....................................................................77<br />

(25B) .....................................................................77<br />

(25C) .....................................................................77<br />

(25D) ....................................................................77<br />

(25E) .....................................................................77<br />

(25F) .....................................................................78<br />

(25G) ....................................................................78<br />

(25H) ....................................................................78<br />

(25I) ......................................................................78<br />

(25J) ......................................................................78<br />

(25K) .....................................................................79<br />

(25L) .....................................................................79<br />

(25M) ....................................................................79<br />

(25N) ..............................................................74, 79<br />

(25O) ....................................................................79<br />

(25P) .....................................................................79<br />

(25Q) ....................................................................80<br />

(25R) .....................................................................80<br />

(25S) .....................................................................80<br />

(25T) .....................................................................80<br />

(25U) ....................................................................80<br />

(260) .....................................................................81<br />

(261) .....................................................................81<br />

(262) .....................................................................81<br />

(2621) ...................................................................81<br />

(2622) ...................................................................82<br />

(263) .....................................................................82<br />

(2631) ...................................................................82<br />

(2632) ...................................................................82<br />

(2633) ...................................................................82<br />

(2634) ...................................................................82<br />

(264) .....................................................................82<br />

(265) .....................................................................83<br />

(269) .....................................................................83<br />

(310) .....................................................................84<br />

(320) .....................................................................84<br />

(321) .....................................................................84<br />

(322) .....................................................................85<br />

(323) .....................................................................85<br />

(324) .....................................................................86<br />

(325) .....................................................................87<br />

(326) .....................................................................87<br />

(327) .....................................................................88<br />

(328) .....................................................................88<br />

(331) .....................................................................89<br />

(332) .....................................................................89<br />

(333) .....................................................................89<br />

(334) .....................................................................90<br />

(335) .....................................................................90<br />

(336) .....................................................................90<br />

(337) ..................................................................... 91<br />

(338) ..................................................................... 91<br />

(339) ..................................................................... 91<br />

(33A) .................................................................... 92<br />

(33B) ..................................................................... 92<br />

(33C) .................................................................... 92<br />

(33D) .................................................................... 93<br />

(33E) ..................................................................... 93<br />

(33F) ..................................................................... 93<br />

(33G) .................................................................... 94<br />

(341) ..................................................................... 95<br />

(342) ..................................................................... 95<br />

(343) ..................................................................... 96<br />

(344) ..................................................................... 96<br />

(345) ..................................................................... 96<br />

(346) ..................................................................... 96<br />

(347) ..................................................................... 97<br />

(348) ..................................................................... 97<br />

(351) ..................................................................... 97<br />

(354) ..................................................................... 98<br />

(361) ..................................................................... 99<br />

(362) ..................................................................... 99<br />

(363) ..................................................................... 99<br />

(364) ..................................................................... 99<br />

(365) ..................................................................... 99<br />

(366) ..................................................................... 99<br />

(367) ................................................................... 100<br />

(368) ..................................................................... 99<br />

(369) ................................................................... 100<br />

(371) ................................................................... 100<br />

(372) ................................................................... 100<br />

(373) ................................................................... 101<br />

(380) ................................................................... 101<br />

(381) ................................................................... 101<br />

(383) ................................................................... 102<br />

(384) ................................................................... 102<br />

(385) ................................................................... 102<br />

(386) ................................................................... 103<br />

(387) ................................................................... 103<br />

(388) ................................................................... 104<br />

(389) ................................................................... 104<br />

(391) ................................................................... 105<br />

(392) ................................................................... 105<br />

(393) ................................................................... 105<br />

(394) ................................................................... 106<br />

(395) ................................................................... 107<br />

(396) ................................................................... 107<br />

(398) ................................................................... 107<br />

(399) ................................................................... 108<br />

(39A) .................................................................. 108<br />

(39B) ................................................................... 108<br />

(39C) .................................................................. 109<br />

(39D) .................................................................. 109<br />

(39E) ................................................................... 109<br />

(39F) ................................................................... 110<br />

(39G) .................................................................. 110<br />

(39H-39M) ......................................................... 111<br />

(410) ................................................................... 114<br />

(411) ................................................................... 114<br />

(412) ................................................................... 114<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 191


(413) ...................................................................114<br />

(414) ...................................................................114<br />

(415) ...................................................................115<br />

(416) ...................................................................115<br />

(4162) .................................................................115<br />

(417) ...................................................................115<br />

(4171) .................................................................115<br />

(4172) .................................................................116<br />

(418) ...................................................................116<br />

(4181) .................................................................116<br />

(4182) .................................................................116<br />

(419) ...................................................................116<br />

(4191) .................................................................116<br />

(4192) .................................................................117<br />

(41A) ...................................................................117<br />

(41B) ...................................................................117<br />

(41C) ...................................................................117<br />

(421) ...................................................................118<br />

(422) ...................................................................119<br />

(423) ...................................................................119<br />

(424) ...................................................................119<br />

(511) ...................................................................119<br />

(512) ...................................................................121<br />

(513) ...................................................................122<br />

(514) ...................................................................124<br />

(515) ...................................................................125<br />

(516) ...................................................................125<br />

(517) ...................................................................125<br />

(518) ...................................................................125<br />

(519) ...................................................................125<br />

(51A) ...................................................................125<br />

(51B) ...................................................................126<br />

(51C) ...................................................................126<br />

(521) .............................................................94, 126<br />

(522) ...................................................................127<br />

(529-52H) ...........................................................127<br />

(531) ...................................................................128<br />

(532) ...................................................................129<br />

(533) ...................................................................130<br />

(534) ...................................................................131<br />

(535) ...................................................................132<br />

(536) ...................................................................132<br />

(541) ...................................................................132<br />

(542) ...................................................................134<br />

(551) ...................................................................134<br />

(552) ...................................................................134<br />

(553) ...................................................................134<br />

(55D) ..................................................................135<br />

(561) ...................................................................135<br />

(562) ...................................................................136<br />

(563-56G) ...........................................................136<br />

(610) ...................................................................136<br />

(611) ...................................................................136<br />

(612) ...................................................................138<br />

(613) ...................................................................139<br />

(614) ...................................................................139<br />

(615) ...................................................................139<br />

(616) ...................................................................139<br />

(617) ...................................................................140<br />

(618) ...................................................................140<br />

(620) ................................................................... 140<br />

(621) ........................................................... 140, 141<br />

(622) ................................................................... 141<br />

(623) ................................................................... 141<br />

(624) ................................................................... 141<br />

(625) ................................................................... 141<br />

(630) ................................................................... 142<br />

(631) ................................................................... 142<br />

(632) ................................................................... 142<br />

(633) ................................................................... 142<br />

(634) ................................................................... 143<br />

(635) ................................................................... 143<br />

(640) ................................................................... 143<br />

(641) ................................................................... 143<br />

(642) ................................................................... 144<br />

(643) ................................................................... 144<br />

(644) ................................................................... 144<br />

(645) ................................................................... 144<br />

(649) ................................................................... 145<br />

(650) ................................................................... 145<br />

(651) ................................................................... 145<br />

(652) ................................................................... 145<br />

(653) ................................................................... 145<br />

(654) ................................................................... 145<br />

(655) ................................................................... 146<br />

(659) ................................................................... 146<br />

(711) ................................................................... 146<br />

(712) ................................................................... 146<br />

(713) ................................................................... 147<br />

(714) ................................................................... 147<br />

(715) ................................................................... 147<br />

(716) ................................................................... 147<br />

(717) ................................................................... 147<br />

(718) ................................................................... 147<br />

(719) ................................................................... 148<br />

(71A) .................................................................. 148<br />

(71B) ................................................................... 148<br />

(720) ................................................................... 148<br />

(721) ................................................................... 148<br />

(722) ................................................................... 148<br />

(723) ................................................................... 149<br />

(724) ................................................................... 149<br />

(725) ................................................................... 150<br />

(726) ................................................................... 150<br />

(727) ................................................................... 150<br />

(728-72A) ........................................................... 151<br />

(730) ................................................................... 151<br />

(731) ................................................................... 151<br />

(7311) ................................................................. 151<br />

(732) ................................................................... 151<br />

(733) ................................................................... 152<br />

(7331) ................................................................. 152<br />

(800) ................................................................... 152<br />

(810) ................................................................... 152<br />

(811) ................................................................... 152<br />

(811-81N) ................................................... 152, 153<br />

(820) ................................................................... 153<br />

(8A0) .................................................................. 153<br />

(900) ................................................................... 154<br />

(920) ................................................................... 154<br />

192 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>


(922) ...................................................................154<br />

Minimum Frequency ....................................................90<br />

Monitor function<br />

Alarm Select ........................................................117<br />

Delay time ...........................................................114<br />

Max Alarm ..........................................................114<br />

Overload .......................................................40, 114<br />

Response delay ............................................115, 117<br />

Start delay ............................................................114<br />

Motor cables .................................................................17<br />

Motor cos phi (power factor) ........................................66<br />

Motor data ...................................................................64<br />

Motor Frequency ..........................................................65<br />

Motor frequency ...........................................................65<br />

Motor I2t Current ......................................................159<br />

Motor identification run ...............................................66<br />

Motor Potentiometer ............................................99, 127<br />

Motor potentiometer ..................................................127<br />

Motor ventilation .........................................................66<br />

Motors ............................................................................7<br />

Motors in parallel .........................................................21<br />

MotPot .........................................................................90<br />

N<br />

Nominal motor frequency ............................................96<br />

Number of drives ........................................................105<br />

O<br />

Operation .....................................................................60<br />

Options ........................................................................32<br />

Brake chopper .....................................................163<br />

External Control Panel (ECP) .............................163<br />

I/O Board ............................................................164<br />

Output coils ........................................................164<br />

Protection class IP23 and IP54 ............................163<br />

Serial communication, fieldbus ............................164<br />

OR operator ...............................................................140<br />

Output coils ...............................................................164<br />

Overload ...............................................................40, 114<br />

Overload alarm .............................................................40<br />

P<br />

Parameter sets<br />

Load default values ................................................73<br />

Load parameter sets from Control Panel ................74<br />

Parameter Set Selection .........................................35<br />

Select a Parameter set .............................................72<br />

PI Autotune ................................................................100<br />

PID Controller ...........................................................101<br />

Closed loop PID control ......................................102<br />

Feedback signal ....................................................101<br />

PID D Time ........................................................102<br />

PID I Time .........................................................102<br />

PID P Gain .........................................................102<br />

Power LED ...................................................................48<br />

Priority .........................................................................37<br />

Process Value ..............................................................146<br />

Product standard, EMC ..................................................8<br />

Programming ................................................................51<br />

Protection class IP23 and IP54 ...................................163<br />

PT100 Inputs ............................................................... 71<br />

PTC input .................................................................... 71<br />

Pump/Fan Control ..................................................... 105<br />

Q<br />

Quick Setup Card .......................................................... 7<br />

R<br />

Reference<br />

Frequency ........................................................... 118<br />

Motor potentiometer .......................................... 127<br />

Reference signal ............................................... 60, 84<br />

Set reference value ................................................. 84<br />

Torque ................................................................ 119<br />

View reference value .............................................. 84<br />

Reference control ......................................................... 61<br />

Reference signal ............................................................ 61<br />

Relay output ............................................................... 134<br />

Relay 1 ................................................................ 134<br />

Relay 2 ................................................................ 134<br />

Relay 3 ................................................................ 134<br />

Release speed ................................................................ 93<br />

Remote control ............................................................. 38<br />

Reset command .......................................................... 126<br />

Reset control ................................................................ 61<br />

Resolution .................................................................... 59<br />

RFI mains filter ............................................................ 17<br />

Rotation ....................................................................... 63<br />

RS232/485 ................................................................... 81<br />

RUN ............................................................................ 48<br />

Run command ............................................................. 48<br />

Run Left command .................................................... 126<br />

Run Right command .................................................. 126<br />

Running motor ............................................................ 92<br />

S<br />

Select Drive ................................................................ 105<br />

Settle Time ................................................................. 109<br />

Setup menu .................................................................. 50<br />

Menu structure ..................................................... 50<br />

Signal ground ............................................................. 179<br />

Single-ended connection .............................................. 31<br />

Software ..................................................................... 154<br />

Sound characteristic ..................................................... 67<br />

Speed .......................................................................... 146<br />

Speed Mode ................................................................. 60<br />

Spinstart ....................................................................... 92<br />

Standards ....................................................................... 8<br />

Start Delay ................................................................. 108<br />

Start/Stop settings ........................................................ 89<br />

Status indications ......................................................... 47<br />

Stop categories .............................................................. 45<br />

Stop command ........................................................... 126<br />

Stop Delay ................................................................. 108<br />

Stripping lengths .......................................................... 20<br />

Switches ....................................................................... 28<br />

Switching frequency ..................................................... 67<br />

Switching in motor cables ............................................ 19<br />

<strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong> 193


T<br />

Terminal connections ...................................................28<br />

Test Run .......................................................................66<br />

Timer .........................................................................106<br />

Torque ....................................................................59, 97<br />

Transition Frequency ..................................................109<br />

Trip ..............................................................................48<br />

Trip causes and remidial action ...................................158<br />

Trips, warnings and limits ..........................................157<br />

Twisted cables ...............................................................32<br />

Type ...........................................................................154<br />

Type code number ..........................................................8<br />

U<br />

Underload ....................................................................40<br />

Underload alarm .........................................................114<br />

Unlock Code ................................................................63<br />

Upper Band ................................................................107<br />

Menu<br />

(397) 107<br />

Upper Band Limit ......................................................108<br />

V<br />

V/Hz Mode ..................................................................60<br />

Vector Brake .................................................................94<br />

Ventilation ....................................................................66<br />

View reference value .....................................................84<br />

Voltage .........................................................................28<br />

W<br />

Warning .....................................................................152<br />

194 <strong>Omron</strong> <strong>SX</strong> <strong>inverter</strong> <strong>manual</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!