28.12.2013 Views

Download (26Mb) - OAR@ICRISAT

Download (26Mb) - OAR@ICRISAT

Download (26Mb) - OAR@ICRISAT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GENETIC TRANSFORMATION OF Cicer arietinum, L<br />

FOR INSECT RESISTANCE<br />

I&44Lhah!b<br />

SRI VENKATESWARA UNIVERSITY<br />

~~~<br />

G . t ~ ~ ~ 4 ~ + 4<br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

BOTANY<br />

GJ<br />

B. JAYANAND<br />

DEPARMTENT OF BOTANY<br />

SCHOOL OF BIOLOGICAL AND EARTH SCIENCES<br />

SRI VENKATESWARA UNIVERSITY<br />

TlRUPATl - 517 502<br />

INDIA<br />

JANUARY, 2003


CERTIFICATE<br />

Certified that the entire work embodied in this thesis entitled<br />

"Genetic Transformation of Cicer arietinum L. for Insect Resistance"<br />

has been carried out by B. Jayanand under my guidance in the Genetic<br />

Transformation Laboratory, International Crops Research Institute for the<br />

Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, India and that no<br />

part of it has been submitted elsewhere for any degree or diploma.<br />

I(\( ,L, ,%<br />

' 1 1 r 1<br />

Dr K. K SHARMA<br />

Research Supervisor<br />

Hyderabad, Inha<br />

January, 2003<br />

DR. KIK4RI '( St-14RM4<br />

Cen-'icT ' . .OlVtO v<br />

ICRIS"' . L<br />

Andhla FrdJ,sh 502323, INUIA.


Certificate<br />

Ger/$ed /La/ /Ae eldire morL emGoded ;I,<br />

/B>s /Aesis en/i//ed<br />

"Genetic Transformation of Cicer arietinum, L, for Insect<br />

Resistance" LUJ Gee21 curried ou/ 6j 8. Jayanand unr/er my<br />

yuidance ill /Le ~e,var/men/ of'~o/uny, 3'ri ve~~nh/erruuru Ulioesiiy, .<br />

1'<br />

Xrupu/i, 9ndLru %odes4 Yn;rJlu a11 J /La/ no par/ of i/ As 6ea1<br />

suln2i//edel;euLere/br a ~ deyree y or d+/otno.<br />

Tirupati<br />

January, 2003<br />

Dr, G. SUDARSANAM<br />

Sii,lleI'~~~O!'<br />

,>,,,* P - . ., /<br />

p, , ,, '<br />

5 I<br />

('<br />

7, , -;.:,..;, ., ;, \ , ,, I,,,. .,


DECLARATION<br />

9 hereby aeclare that the bis~eratiorr entitlob "GENETIC<br />

TRANSFORMATION OF Cicer arietinum, L. FOR INSECT<br />

RESISTANCE" is an oriuinal and inbepenbent recorb o$ research work<br />

unbertaken by #re during the periob 06 my study nt S ri Uenkateswarn<br />

Mniuer~ity, qirupati, unbar the superuisidn 06 Dr. G. SUDARSANAM,<br />

Departuient 06 Sotany, 5.3.2.5., 5.3. Mniuersity, Ti+upafi,<br />

and that it ha$ nof prooiourly been subwritfed $09 the awarb o$ any<br />

other begree or biplorna 06 any Mniuersity.<br />

Tirupati - 517 502<br />

Date : Jan. 2003


I deem il as a great pleastire to exprcss my IicartSelr grat~tutie and profouiid<br />

respect to lily Researcli Supervisor, Dr. G. Sudarsanam, Associali: Professor, Dep:, or<br />

Botany, SBES, Sri Ve~ikateswara University, l'irupati. His colistant, ilispiril~g guidaiice.<br />

dedicntio~i, patieiicc, iinliri~ig, incessant e~icouragenient, eve~.last~~ig smile and unfl~gg~ny<br />

interest shown tliroughout my rcscntch is really i~nme~iior;ible for tile complclion oTrhis<br />

~esearcli ~\orl


"I'm convinced biotecllr~ology is going to help us. There's fear,<br />

but biotecllnology has been going on since the beginning of' time. Mother<br />

Nature was crossing plant genes loug before scierltific man and<br />

agricultural lrlall began doing it. If you like to eat spaghetti, you are<br />

eating a GlIO that Mother Nature made."


CONTENTS<br />

ABBREVIAI'IONS<br />

SUMMARY<br />

LIST OF TABLES<br />

LIST 01; FIGURES<br />

I. INTIIODUCI'ION<br />

2. lIE\'IEW OF LII'EIIAI'URE<br />

2.1 Gclietic trnnslorrnation<br />

2.1 1 Varioi~s liictl~ods olgclielic tralislbrinatio~i in 1pi:iliia<br />

2.1.1.1 Gcneric tr;~nslbnii;l~io~i by the biol~slic psoccss<br />

2.1 1.2 .AIlern;~tlve ~iietliutls olgullcl~c I~alislbl-iiial~o~l 11110 pI,:nl cells 12<br />

2 1 hl~laclc riiic~oorg,~~i~s~ii: ,,!gi.ohiir,/r,i.i~iii 17<br />

2 1 2 1 TI i~lasmitl ;111d IS C / ~ ~ I ~ ~ C ~ C I . ~ ~ ~ I C S 1 j<br />

2.1 2.2 ioleculiir ~~icclia~iisiii olT-DNA ~r:i~isicr ~nto pllillls 15<br />

2 1.2.3 Tools ofycnct~c ilansi'or~~il;il~o~~ 15


2.2.2.1 Organogenesis<br />

2.2 2.2 Sonlatic enibryogellcsis<br />

2 2.2.3 Ollier ~iietliods<br />

2.2 2.4 tic~~ullc 11,111albril1~1l1w<br />

2.3 Insect rcsistaiice ~~~a~iageiiicnt<br />

2 3.1 Pvls~liotls of co~iirol olhci. 1l1,iii b~olccllriolog)<br />

2.3 1 . I Ecological control<br />

2.3.1.2 Pliysicnl colltrol<br />

2.3.1.3 Chemical control<br />

1.3.1.4 B~ological conirol<br />

2.3.2 Biotechnology for insect resistance<br />

7_,3,?.1 BI: An amazing concept<br />

2.3.2.2 Genes employed [or 1nscc1 reslstnncc 01I1er tli~li DL<br />

3, hlATEKlALS AND METHODS<br />

3.1 Pli~li~ ~iiilteri;ll and culture co~id~l~o~ls<br />

3.2 Rcgelieration<br />

3.2. I SOII~YL~C e~iibryogeliesis<br />

3.2 I I Prepar,itio~~ of various csplants<br />

3.2.1.2 [~ltlilction of solilatic e~iibryos<br />

3.2. I .3 Maturation of sumaric eiilbryos<br />

3.2.2 Discct d11i1 Indi~ect org;inoyznssis<br />

3.2.2.1 Prcparntiorl orexplalits<br />

3.2.2.2 Inducr~ol~ of mi~lliple sllools


3.2.2.3 Shoot elongat~on<br />

3.2.2.4 Rooting oi'slioo~s<br />

3.2.2.5 Hardening ,ind trCi~isplaniatio~i orrootcd planti<br />

3.3 liisioloy~cal studies on 111~1it1plc SIIOOI<br />

i~~~iiaiioii !'ro~li tZM4 ehplant:<br />

3 4 Cic~ietic ~IXI~~~~IIIJIIOII<br />

3.4.1 'Irn~~sibr~iint~oi~ by b~oiistics ~iielliod<br />

3.4 I. I L,I~~ii-prcl):~r,~l~u~i<br />

~I'~II;I~IIIIcI DNA (AII


4.1.2.2 Eloiig;itio~~ ofllie siloor buds<br />

4.1.2.3 Rooti~ig of the elo~iyatcd sliools<br />

4.1.2.4 H:~rde~l~ng and \ra~isplanla~~o~i of rooted pla~its<br />

4.2 Histological slud~es of multiple shoo! development from AM4 expla~it<br />

4.3 Gc~ie~ic transfoniiat~on<br />

3.3.1 Biolistics ri~clliod of gc~ietic tra1lsfo1.1linr1o11<br />

3.3.2 T~arisforniatio~l by il,qi~oh~~c~~ei~iiiirr ~ilerliod<br />

5. DISCUSSION<br />

4 3.2.1 GUS liistocllem~cal assay<br />

4.3.2.2 Molecular analysis of To gelieratio~l pi~tative transgenic<br />

5 1 l'issi~c culti~rc suidics<br />

platlts ~sarisSorriied wilh pHS723.Bl and pHS737:SBI'I<br />

b~nary vectors conlaining B/Cr~i/lh and SBTI genes respect~vcly<br />

5 1.1 So~natic siubr)ogenes~s<br />

5. I .2 Ol.ga~iogencsis<br />

5 1.3 Histological stud~es of iiiuliipli. slioo~ dc~elop~netli<br />

from AM4 explanl<br />

j,2 Genetic t~.ansSor~ii~tioil<br />

5.3 Co~icliisio~is<br />

6. REFERENCES<br />

AI'IiENI)IN


ABBREVIATIONS<br />

2-il'<br />

2-isopci~~cnpl ;tdc~iillc'<br />

2,4-0 - 2,4-Dicl~loroncclic acid<br />

2,4,5-'I' ~,~.~-TI-I~I~I~I~~:IC~I~C<br />

acid<br />

AD ..lsc,oc~/~~~/cc I311gl11<br />

AUA<br />

BAP<br />

~\bsc~ssic ac~d<br />

Bcnzql Alllilio PLII-III~<br />

BGM - UO/I:I /is Grey Molt1<br />

'<br />

Bt - ~trcrli~rs ililii-i~rgiel~srs<br />

Bti - L~~~ccli~r~<br />

/~IIII~III~~~~IIAI.S-;A~~IL~~LJII.~~S<br />

CaMV 35s - C'alillo\ver Mos;iic V~ri~s 35s proniolcr<br />

CAT - Chlora~npl~iliical ,\cciyl Trallsferasc<br />

DNA - Ueosqr~bonucleic ticid<br />

FA0 -- Food anti A ~~IcLII~II~~<br />

Orgnni~at~ol:<br />

GA - Gibbzl-cllic aciW<br />

IAA - Indolc-3-ncclic ac~il<br />

IBA - Illdole-3-bulyric iicid-.<br />

ICRISA'I' - Internaiio~l~ll Crop Rescnrcll I~~s~iti~tc. Tor Seini-Ar~d fropics<br />

ICAKDA - Illicl-ilatio~~:il C'cnlel- for Ay~.iculu~r,ll Kcse,lrch ill [lie Dry Arzai<br />

IPhl - Inrcprnled Pcsr Matlnscine~ll<br />

111111 - iiiill~iics '<br />

MS medillm - Murnsllige and Skoog ~nediiini/<br />

NAA - Naplitl~alene Acer~c Acid<br />

I - Nsonlyciil Pl~osplio Tsa~lsks~sc I1<br />

PCR - Polyllicrasc Clinill RsCic.tion<br />

Pls - Protz'isc Illhibilors<br />

QTL - Quo~itit~itive Tra~t Loci<br />

RNA - Iiibonucleic acid<br />

SB1'1 - Soybeall Trypsin lilliibilor<br />

SCRl<br />

Scottisll Crul) Rubi.;~rcl~ l~lblll~ilc<br />

sec - seconds<br />

1'-DNA Tr:ii:sSe~. DNA<br />

TDZ -- Thidinzuro~i '<br />

'Ti plasnlid - l'i~rnol. i~itiuci~lg pl,~slllid<br />

iirtiA - (3-Gluciiro~ii~l~isc


SUMMARY<br />

Agriculture con~ributes major part of world's food especially i i ~ the developing<br />

world. Over 200 plant species are cultrvable ou~ of whicli rlce, wheat and maize make<br />

70% ofthc total output. Legunles have very important attributes such as protein arid lipid<br />

rich seeds and symbiotic nltrogen fixat~on, which qualifies them as best alternatii'e food<br />

crops. Legumes lire broadly divided Into food and forage legumes out of wli~ch forage<br />

legumes for111 major part. Chickpea is one of the most important leguminous, cool season.<br />

alternative food crop cultivated prevalently in Asin I'acific region. Even though it lias<br />

co~ivincing nutritional importance, its area ot'cult~vatio~l has been low anti i~iipro\ement<br />

virtually stagnant. Conve~itional breeding lias not been an effective crop improvement<br />

strateyp Ibr i.iiickpea and recclit advances in biotech~~ology s~rcli ;is plant t~ssue culture<br />

and gc~lctic irailsl'ormatiun, paved tlie way for aliernntive crop Iniprovcment<br />

metllodologies. 1'111h work \\as carr~ed out with principal object~ves of optimr~ation of<br />

tissue culturc iariables n11d tra~ihfo~~lldt~or~ of selected explo~its by ujlilg genes fro111<br />

Bacillirs 11iio.irigietisi~ Ui('ryL,lb ;itid soybeall trypsi11 inliib~tor (SUTI) geilrs io co11ti.r<br />

resistance to ~l~licovctprr cu.~~go.(i or tile legli~iie pod borer. The work can be broadly<br />

divided into tllree parts, I. So~liatic rnibryoge~lcsis, 2. 0rg;inogenrsis and 3. Genetic<br />

transforniation.<br />

S~iri(~iic e~~ibr):oge~~esis: Differo~it explnnts like mature embryo axis, parrs of<br />

nlatilre embryo axls, leaflets, stell1 seg~~ie~its anti root segrnci~ts \\ere derived bum 111<br />

vitro growl1 seedlings of different ages. Soinntic e~ubryos were induced by ilslng ?.1,5-T<br />

and 2,4-D as principal growtli rcguiarors ill co~~lbinntioli wit11 Iiorn~oncs like hllletiil,<br />

zeatin, TDZ and BAP. Efficient induction of sonl:itic embryos \\as observed and best


frequency was observed wit11 2,4,5-1' in combiriatio~i w~tli kinetin. However, efforts for<br />

maturation and rege~icration of embryos induced were unsuccessl'ul though good number<br />

of media coinbi~iatio~is involving ABA, zeatin, BAP and TDZ were testcd. Hence fu~.tlier<br />

work on the somatic embryogenic pathway of regeneration war not carried fonvard.<br />

Oqtriioget~csi~: Vnr~ous cxl~l;inh such as nlature e~itbryo axis, shoot tip, Icalleta.<br />

leaf' base, sten] seyn~enta, l~ypocotyl, epicotyl, root segmclits, root tip, ;~xillary bud.<br />

cotyledo~iary node and axillary nleriste~n explants (AMI, AM2, AM3 and AM4) werc<br />

prepared l?om 111 vitro grown sectllings and their multiple slioot regencrati~~g eflicicncy<br />

was tested via direct and indirect orgaliogcnlc pathways. Multiple shoot inductioli<br />

frequencies \\ere tested with slloot ~nduction mediilm (SIM) that consisted of4 p.LI TDZ.<br />

10 pM 2-iP and 2 pM klnetin. Explallts that do not co~itai~i ally traccs of pre-esishg<br />

meristerlis, si~cl~ ns liypocotyl, epicotyl, leaflets were also uscd so as to achieve<br />

rege~irratioii via callui phase. It was observed that i~tdirect orgauogenesis via callus pllasc<br />

cannot he acliievcd fro111 tlie abo\e-mentioiicd esplants with any of the tcsted ~nedia<br />

comb~nnt~oiis It \\as also observed that asyncliro~ious iiiultiple shoot regenerdtion could<br />

be achieved II-OIII<br />

pre-ex~sti~ig il~eriste~ns of expla~ita likc sliuot tip, axillary bud. Verq<br />

low frequency oisl~oot iliductio~i was obwrved wit11 l~ypocolyl and ep~cotyl and it was<br />

found th;i: k\v slioots tIi;it originateti werc fro111 traces of nieriste~~is associated n,~th sonle<br />

of the expl;~nls. Diised on ll~rsc resul,rs it \vas apparent that :~dve~ititious regeneration is<br />

very difficult wit11 o no st of the explants and inod~licario~i of the tested esplants. Four<br />

axilla~y meristem expla~its iianirly Akll, AM2, AM3 and AM4 were prepared so as to<br />

achieve adventit~ous rcgclielxtion 2nd tlirce of ~IICIII AM], AM2 and 1\hl4 were found to<br />

be better candidates. Alno~ig tliesr expla~~ts ALl4 \we ~iiorc respoiislve and prov~ded


adventitious slioot buds. Tliese seemed more applicable to gcnetic transformation<br />

experiments where negation of thc aprcal dominance of axillary bud and shoot t ~p was the<br />

salient feature of this explant. Removal of axillary bud followed by regeneration of<br />

multiple shoot buds ga\e bctter adventitlous regcneratlon and multiple wounding sites.<br />

Multiple shoot induction was found to bc betrur on liled~uin containirlg TDZ, when<br />

compared ro the medium contaiiiing BAP. However, it \+as observed that prolonged<br />

cul~c~rc uf llic cl~l;inls o~i 'l'D%-co~l~:~~~iiiig liicd~~~~ii ~ieg:~livcly i~it~rfcrcd wit11 I11rtI1cr<br />

elongation. Ilc~ice, [lie inclus~on of TDZ was restricted to gerriiination and first pliasc of<br />

induction. Sevcl.al other factors played an iniportant role 111 shoot bud induction. For<br />

example, acidic pH sliowed efficient ~~iductiuii of niultiple shoots. Age of the seedling<br />

was optimzed for all axillary meristeni explants wliere AM4 preparation required 5 to 6<br />

days for the rcn~oval of axillary bud and another week for removal of multiplc shoot<br />

buds. Inclus~on of cotyledo~i with AM4 explant was found to enhance multiple shoot<br />

regeneration frequency. Two step elo~igation us~ng shoot elongat1011 medium (SEMI; MS<br />

with 5 pM 2-iP and 2 1M klnct~n) in the first step followcd by 2 to 3 passages of sub-<br />

cultures on SEM2 (MS wit11 2 pbl GA,) resulted a better elongation frequency. A novel<br />

rooting sysrem was developed by employing filter paper br~dge tccli~iique aid tile liquid<br />

root inductloll mediuni (RIM) consisted of MS will1 5 pM IDA. This ~rietliod resulted in<br />

high rooring as ~vsll as transplantation frequelic~es. .All clficient liardeniiig nild<br />

transplaiiration method was standardized by optimizing variables such as potting<br />

medium, temperature, humidity, irrigation and phoroperiod. ~onviron~" growth chamber<br />

was found to be better Fac~lity for Iiardening arid i~i~tial phase of tnnspla~itation while pod<br />

maturation and harvesting was done in specially designed P2 facility. Best hardening of


in vitro grown plants w;is ocli~eved with srntic liydropo~iics systc~l~ contai~ii~ig Ar~~on's<br />

nutrie~it solutio~l.<br />

heric,iic irn~i~joj~nriuiio~i. Genetic tri~~isSor~~~;~tion ol' cli~ckpcu ivas achicvcd by<br />

using Ah14 eupla~its as ll~u startlllg plo~~t ii~atrrial and butli biol~st~c illid Agr~~h~icii~riii~)~-<br />

~iied~ated ~iietliods wcrc employed. A vector, ~RTO(I:GUS-III~ nla~i~tn~~led 111 E, cull was<br />

used 111 b~olisric process. 'fh~s vector li:rd irpill pc~ic ;IS ~lic aclcct;~blc ininrkcr and r~itli\<br />

gem nb the rsporrcr. Prcpar;~t~on of thc cxpl,i~ils, niicrocarricr<br />

preparation and<br />

bombard~ncnr of tlie expl:i~~ts was ci~n-~cd out by al;~nd;lrd j~roccd~~rcs. Largc SIX 01' llic<br />

AM3 cxpla~~t was a li~liitatio~~ in 1111s process ns olily fi.w cxplu~ils could be grouped st tile<br />

center of the petri plate. l'ra~lsl'or~iiation by tliis ~lietliod d ~d ~iot result in creatio~~ of any<br />

transgenlcs as some of the selected slioots d~ed at tlie stri~~gerit seluction bkp.<br />

J~grobatie~.i~~~ri-~~lediated transfor~i~otion rcsuited in relatively higli IYeque~icy of<br />

transgenies as far as 111s TO results wcrc considered. Two binary veclors ~ia~iicly pl-IS<br />

723:Ut and pHS 737:SBTl based 111 stra~n C 58, wcrc used for co-cultivarions. Tl~c former<br />

has 81C'ryIAb as agrono~iiic;illy important gcne, ~lptll as thc seiectio~~ 111;lrker and iridA<br />

gclie as ~.cportcr \\l~ere i~s tllc later binary vcclor liad soybcc~~ t~-ypsin i~illib~to~ (.SljTi) as<br />

tlie gcne of agrono~n~c ~ntercst, ~ipill as tllc re1ect;iblc marker arid ilitlA gcnc as reporter.<br />

In both ~hc vectors ripill ;)lid iiidA genea ivc~c I't~hed ~nto ;I singlc unit tl~ougli their<br />

products exli~bit indepe~ident activities. AM4 ehpla~its ivc~c co-cult~vatcd with<br />

Agrobucicriirr~l stralli of lrltercst follow~rig tlie standard procedures. Ccfotaxiiiie was used<br />

to terminate tlie growl1 of Agrobucieriu~~i and kanamyein was used for select~un of the<br />

putative rransfornia~~ts. Starldtlrd~zed protocol of icgeneralio~l was used fu~ ~ege~ieration<br />

and recovely of the tralfsgenlc plants. Hardelled and transplanted rra~isgcnics wcre


initially maintained in ~onviron"" growth cllaniber 2nd li~ter in tlie P2 facility especially<br />

designed for growlng rra~isgi.nics. A total of I I plants w~lli UiC,?;lAb ,ind 9 pla~its w1t11<br />

SB77 genes were obta~iicd. Molec~~lar analysis of tlic>e pi~ti~t~ve tr,ins!'o~nia~its was done<br />

irlitinlly by GUS hisrocliemicnl assay followed by conlir~untion by PCR and Souther11<br />

blot analy~is. Soutlicrn blotting \\as done by 11o1i-rad~o~ict~vc ~iicthod by us~ng tile<br />

coniniercially available no~l-rnd~o;ict~ve AlklJlios clirect 1nbtl111g iir fro111 A~ncrsl~a~n<br />

(USA). PCll a~iiplificat~o~l of tlpill, uiiiA, B/Ci),lilD and SB1'1 gc~ics \r;;is carried out for<br />

preliminary screening of the putatlvc transformar~ts, About (10% of [lie Iputall\e<br />

transformants sho\ved positivc reaction for PCR for ~rpiil, 70% for ~iidi\ genes, 30% for<br />

BtCrylAb and 10% for SET1 gciic. Factors affecting restriction of geno~nic DNA such as<br />

enzyme conci'ntration, watcr and BSA were opt~~ilizcd. Southern blot analysis of<br />

B~CrylAb piarits sliowsd 70% ofpla~~ts ivill~ /lp/Il and BIC/yMb gene integrat~ons.<br />

In co~iclus~on tlic rcgencratio~i protocol developed during tlic course of this study,<br />

was tbi111d to be very eflic~cnt slncc culli~re coiid~r~ons for all tile stages of rcge~~cration<br />

and recovery of 111 vim grown plants tllat incl~ded seed geriiiirlatio~~, rnultiple shoot<br />

induction, elongatio~~, rooting hardening ;ind tra~isplantatio~i were optinlized, l'h~s<br />

protocol w:is effect~\,cly i~scd for succeasl'i~l geilctic trn~~ifor~~iatiu~~ of cllickpca w1t11<br />

insecticidal genes like BiCrjIAb and .SUTI genes. Follow~~ig tliis protocol, 40% of the<br />

sclccted putat~\c transgenic plants can be obtn111cd 111 per~ud of 90 to 100 days. In the<br />

present study, over 30tr;1nsgen1c plants carrqing U/C',),IAb wcrc obtained. Eight of these<br />

pl:iiits arc being 11in111taincd Sor cspcri~~ic~ir;~l iuorl< 011 illsect b~oassayi and field trials.


LIST OF TABLES<br />

Table 3.1<br />

Pr~~iier composlllons of all the Sour gellcs used Ibr penruc trdndirlwt~un. tlluir rr>pcr.t~vc<br />

annealing tempclatures. 2nd s~zc oSIhe rehpectlve liaglilellts umplliieti.<br />

Table 4.1<br />

Inductlu~l ol' aom;ltic clnblyuh oli MS ~UIII~IIIIII~ cu~lib~~i;lliulia ui 2.4.5- l (2.U aid 5 0<br />

IIM) with 'TDZ. Uhl', hlnelln or zearln, l lie results \\c~c recorded at tllc end 01 4 \vcch\ slid<br />

represent mcans of thee repllcalions.<br />

Table 4.2<br />

lnductlun of cmbryos on MS contnlnlng conlb~n:~t~ons oi' 2.4.5-'I' (10.0 o~id I5 0 phl)<br />

with 'I'DZ, BAP, klnetln or zealin. Tile results ac~c ~ecorded at l!ic elid or3 weks and rcproc~il<br />

means ofrhrev rcpl~cat~ons<br />

l~iduct~on of e1i1bryos 011 MS coninlnlng con~b~~lations of 2,4-11 (5.0 and 10.0 pM) wltll<br />

TDZ, BAP, klnetln or zearin. 'The result, were recorded at Ilir end of 4 wccks and rcprcaenl<br />

liicans oi'rluei. ~epl~cat~ona<br />

lnduct~uli oSenibryos on .CIS contalnlng cumb~narions 01 2,J-1) (15.0 and 20 0 phi) wllh<br />

TDZ, BAP, kllietln or zealin The resulls wc~c reco~dcd at thc c11d oi' 4 wceks and represent<br />

lneons ufthrec rc]~l~cal~uns.


I~iduct~o~; of e~nbryos from varlous ciplanis 'llic ehpla~its \\crc. culli~rcd 011 JEhl?!,<br />

~iied~um that conla~ned MS \b~tli 10 yM 2,J.S-'I' and 2 yM k11lru11. 'The reaulls are 111~. Ini.ali ul'<br />

thrcc rcililctlte5<br />

Table 4.6<br />

Table 4.7<br />

lnduct~on of ~liult~ple shoots from nialure embryo axla cxplatita on 111cd1a cuntalnllig HAP<br />

aa [he pr~ncipal giowlli rsgulalur. I\ total or36 exl)la~its pcr trealmclll acre cultured and lliere ivas<br />

100% response 111 terms of nu~iiber uCcxplants rcapond~np. I'hu rcsul~s wcrc rccordcd at tlie IIII;~<br />

of 2"" and 4"' weeks. All llie results are the niean of t1;rc.c. repl~catca.<br />

'Sable 4.8<br />

Effect oi"I'DL, 2-11' a11d k111cl11i 011 slloot rCgCl;erdllo~i ho11i the c~~IJI;~ der~\cd Iio111<br />

ax111ary rner~steli>i uf cI11ckpe3. 'I he results here recorded at the end US 2"\11id 4"' \\,eeks and tl;c<br />

\.olues ore nirans of 1l11ee ~~eplicales.<br />

Effect oi pi1 oC [he culture ~i;ed~urii on r~iultiple sl~ool rcgclicrJllon li)r~ll llic ax~llary<br />

mer~stcm cxplants ot'cli~clilxa. Rcaulra were recurdud at tllc elid of 3 \becks and tlic values are<br />

liltan from three repl~catcs.<br />

'Table 4.10<br />

Effect of ~nclus~o~i of cotyledon t~ssucs along w~th tlic rcgeneratlng ax~llary mer~stc~n on<br />

shoot form~ng capaclty of the ax~llary ~iier~itenl explal~ls Resulta were recorded from 1 lo 5<br />

weeks to show the plomotlun oi'rege~ierat~ny abil~t!' and rate oC rnult~plc aliout ~~lducllun by the<br />

~ncluded cotyledon


Table 4.1 1<br />

Effect ul'age uf lhe expI0111 donor srl'dl~~igs oil regerlrrdilull ciip~city ot'dlfire~it ehplanls<br />

der~ved from axlllary nierlstenis. Ilegeneratrrig multrple rhuuts i\'ele counted In ~hc tlirrd wrek<br />

and the \aIuer are ~iiea~is ~ftlirr~ repl1~a1c.s<br />

Tablc 4.12<br />

Inducriun of ~ilt~li~pli. blluul buds liulii \JIIULI~ se~dlllig i.\pla~i~r de~~vcd ii.oni ;lx~ll:~sy<br />

inerrs~cm 1'11~. 11t1n1bi.1 01 ~ii~~lti))/c r1ioo1~ \\:I> coi~~ili.iI 111 tlic 11i11cl \\cch ~)~I,II to tlic~r 1r.11i~lcr to<br />

tlic sliool clung~l~un 11leLi1~11il<br />

Tablc 4.13<br />

El'tec~ of mtd~a cornposltlons on elo~ig~t~on ol Ihe rugericrated slluols. Results scrc<br />

recordcd li-urn Ili~ei. ~epl~c~lc c\pcrrliicnla ~niol\~rlg shoots III~UCU~ UI~ JCI(13 rncd~llrn<br />

ch~ckpea.<br />

Eficct ui' iiiedln co1islllucnla on loullng ol' 111 i'ltro furmcd arid elong~trd allools ol'<br />

Table 4.15<br />

L'tlial du,c Icjllng ,rnd cl'fect of'l LIZ oil Ictll~l cficl of ka~larnyc~~i, Sumhcr ol'ddyb of<br />

expluiil suri~val w.13 couri~cd u1111l Ilie cxplun~ bleached 01 sliu\bcd nu rlgns of gro\i.111.


LIST OF FIGURES<br />

Figure 3.1<br />

Diagr:~mn~attc rcprcsct~t;~[to~i of ll~c cxplanls dorivcd li-0111 111ati1re ct~lbryo i~xls.<br />

plumule, radicle, s~de asins and m~ddle portio~~. (An.ows shows sites of surgery)<br />

Figure 3.2<br />

Preparation of ax~llary ~neristem explants AM), AM2, Ah13 and Ahl-l. t:i11;11<br />

stage is the stage of regelleratio~i of l~~lllltple SIIOOIS nlier otie \beck of c11I1ure 011 slioot<br />

~nduclion medium. Large arrows sho\b progressloll of prepamlion of expiants. Mcdiu~~~<br />

arrows show s~tes of surgcry and sniall ,isrows show sites of ~n~ultiple shoot rcgcncratior~.<br />

Figure 3.3 A - C<br />

Diagrammatic rcprescrllatioli Ibr preparallon oC nx~llary rnertsteni explant (AM2)<br />

showing the sites of surgery. A. 6-day old secdlitlg sl~owll~g pro~nincnt ;~xillary bud, B.<br />

Processing of the axilla1.y meristem explant (arrows shows tile sites of surgery), C.<br />

Axillary iilerls[cm sxpl,~nl (AM2) sl~owi~lg (lie ax~llary 111cris1e111 rsgioli w~th intacl<br />

cotyledoli.<br />

Figure 3.4<br />

Rcslrictiu~~ inlap of rhc plasmid pll'l'99:GUS-lnl used for biolistic-mediated ~CIIC<br />

transfer.<br />

Figure 3.5<br />

Figure 3.6<br />

Restriction map of the plas~u~d ptIS737:St31'1 used fo~ .4g1~obcic~eriiit11-1netI~od of<br />

transfomiatlon


Figure 4.1 A - D<br />

inducl~on of sonlatic enlbryos from mature embryo axis and leallei explants ;itler 6<br />

weeks of cullure on the 111edi1111l conla~ni~lg 2,4,j-T as pri~~c~pal growth regulator. A, B<br />

a ~ C. ~ d induction of enlbryos from Inlalure einbryo axis expla~il, D. Induction of soinatic<br />

embryos froin leaflet esplant (arrows iiidicotl: globular embryos).<br />

Figure 4.2 A, B<br />

lnductioil of sonlatic cmbryos SI-oin inlaiurc c111bryu asis CXPIOIII<br />

by uring 2.4-D as<br />

principal growth regi~lnlor. .A. Top \,icw of tlie einbryo axis sllowiiig inultiple globular<br />

embryos, B. Letefiil view of enibryo axis showing multiple globular embryos formed<br />

from plumiile region (arrows indicate globular embryos).<br />

Figure 4.3 A - E<br />

Effect of concentration of B.4P on ~nullrple shoot regeneration fro111 inalurc cinbryo<br />

axis explant after 15 d:iys of culture on slioot ~nduclion medi~lm. A. Multiplc slioot<br />

regeneration at 10 j~kl HAF concei~tralio~l, U. M~illipli: slloot rcgcncr~~ion will1 30 pM<br />

BAP, C. Miiltiple sliuot reguneration \$'it1140 pM BAP, D. Multiple sl~ool regeneralion<br />

with 50 pM BAP, E. Mult~plc slluot rcgenelntion w11Il I00 1tM BAP.<br />

Figure 4.4 A - F<br />

Multiple shoot regenel-ation fro111 dil'fcren~ cxplnnts al tile third week of culture 011<br />

sliooi iiiduclio~i ~iicdioni .A.<br />

Shoot lip sllowi~~g rn11111plc slioots cincrgitig fro111<br />

~neristeii~at~c region. B. Axillary bud showing nlultiple shools or~ginaling fro111 lip and<br />

basal regions, C. Mature enlbryo axis sliowing mulliple shoots cinerging rrom sllout tip<br />

as well as axillary bud regiu~is, D. AM1 explant showing ~liultiplc shoots from axillary<br />

region, E. AM2 explant showing swollen brisal region and multiple shoots emerging<br />

synchronously as cluster, F. AM4 explant show~ng synchroi~ous multiple shoots from<br />

different places oraxiIlai.y niel.istem region.


Figure 4.5 A - I;<br />

Stages of ~nultiple stloot regelleration from AM4 explant alter culture on the sl~oot<br />

induction medium A. Explant sl~owing the area of axillary bud re~noval (arrow sliows the<br />

sire of surgery), B. Muluple sl~oot buds oriyin;ltiiig fro111 the area loft by axillary bud<br />

removal (arrow sl~ows the s110ots buds e~ilcrging fru111 axillary ~nlcriste~l~ area). C. Esplii~~l<br />

showing swollen area after removal ofregcnc~at~~~g shoot buds (this stage of explant sas<br />

na~nsd 3s AM4 cxpla~it) akcr 7 days of culture OII shoot i~iduct~o~l rncdlulll, D.<br />

Regc~ierat~o~~ of ~il~iltiplc sl~oot biltls li.0111 tl~ cut ~po~tiul~s uftlic rcgclleratlng iiastiv after<br />

6 days ofci~lture on MS, E. Exubcra~lt nlultiplc sl~oot yrowtli Sron~ tile rcgcncrating tlssue<br />

after 10 to I? days of culture on MS, 1;. Mult~plc sl~oots originaiiny fro^^^ different p;~rts<br />

of the regellcrating area aCter 12 to 14 days of culture on MS.<br />

Figure 4.6 A - C<br />

Various stages of tlongatio~i of regenerating sl~oot buds on shoot elo~lgation 111edium;<br />

A. Elongut~on of young shoot 011 shoot clo~igatio~~ medic1111 1 (SEMI) ancr 1 week uf<br />

culture, B. Elol~gatio~i of sliool on shoot elollgation 111cdiu111 2 (SEM2) nlicr 2 wccks of<br />

culture, C. Elongallon of sl~oots 011 SEM2 after 3 wecks.<br />

Figure 4.7 A , B<br />

Rooting of eloiipaled slioots on root induction ~niedill~~~ co~~tailli~lg 5 pM IBA, A.<br />

Rooting 011 filter paper bridye i~lllrlcrsed ill liquid root ind~iclio~~ nicdium, 8. Rooting OII<br />

solid root induction ~nlcdii~n~ co~~iaininy 5 pM IBA.<br />

Figure 4.8<br />

Stage 1 Ilardening of tissue ci~lture gro\an cli~ckpea after transferring to 8 cnl pot<br />

containi~lg 2-4 mm sand.


Figure 4.9 A - C<br />

Alternative llletilods of hardening of rooted plantlets of chickpea prlor to<br />

transplantation; A. Hardening process by embedding !he root system ill the coarse sand<br />

wtth the cotton plug open. % Amon's solutlol~ \bas used for irrigation. B. Hardening<br />

process in static hydroponics system with root system immersed in tlie liquid mcdium.<br />

The Itquid med~i~ni co~llprlsed of % Arnotl's solution, C. A plant fron~ B showing prof~tsc<br />

groivth of root system 111 tile static hydropot~ics systel~~ after 15 days. Tllis plant is luady<br />

for transplantation illlo pols.<br />

Figure 4.10 A - C<br />

Hardened and transplallted chickpea planls growing in the glasshouse; A. Plant<br />

growing without any post-hardening treatment, U. Plant with multiple branches aftcr<br />

post-hardening treatment of terminal bud ampiltution and juvenile flower bud removing,<br />

C. Group of plants being ~nlaintained in 20 cm pots after Ilardening.<br />

Figure 4.1 1 A - I<br />

A con~plete sclleme of regeneration and recovery of wliole plailts tllrougl~ tissue<br />

culture lnetllod using axillary t~leristel~~ explant (AM2) obtained froln it! vi11.o grohn<br />

seedlings olchickpea. A. Axillary mcristem explitllt (AM2) on the first day of culture on<br />

shoot inductton rnedlum, U. Sl~oot buds regenerating froln the region left by thc rcnloval<br />

of axillary bud after 7 days, C. Cluster of 11i~lltip1~ slloot buds or~gli~ating fro111 region lcli<br />

by the removal of axillary bud after 12 days, D. A closer view of the liiiiltiple shoots<br />

regenerating from the axillary nleristem explant after 15 days of culture 011 shoot<br />

induction medium, E. Elongation of the slloot buds after 7 days of culture on slioot<br />

elongatiol~ medium, 1;.<br />

Rooting of the elorigated slloot bud on the filter paper bridge<br />

immersed In liquld rootlng medium after 8 days of cullure, G. Picture showing rx vlrro<br />

static hydroponics systenl for hardening of the rooted shoot after 15 days, H. An<br />

alternative method for hardening of the planllel oblaincd through tissue cullure ill which<br />

the root system was immersed in sand wltli the cutton plug of tlie crilture tube kept open,<br />

I. Hardened and transplanted plant sl~on,ing normal nlotphology.


Figure 4.1 2 A, B<br />

Histological sectio~lsliowing status of axlllary meristem A. Longitudinal sectloti of<br />

the growing axillary bud just before its re11iova1 froni 6-day-old seedling sliow~ng<br />

actively dividing merislenialic cells atid uti~for~i~ oon-ineristematic tissue in rlie basal<br />

region. B. LS of explant aner removal of ahillary bud ill thc process orprcparing axillary<br />

nieristem explant.<br />

Figure 4.13 A - H<br />

Hlslological studles ofdcvelopme~it of ~il~lltlple ~iicrisremolds from ax~ll:~ry mcristcm<br />

region of AM4 explailt alier tile renioval of ax~llary bud. A. Longitudi~ial scctioii of rlic<br />

axillary nieristcm area oli day-l aner axillary bud removal. U. Developmenr ol'<br />

rneristenioids at tliz basal poriion of axillary bud on day-2 (tlie stndll b:~d appearing is a<br />

shoot but1 emerging li-0111 tlie basal portion of the removed axillary bud), C. Appeara~~cc<br />

of rneristemo~ds 111 the axill;iry meristelii area on day-3, D. l~icrcnsed !lumber of<br />

nieristemoids 111 the ax~llary meristem area on day-4, E. Increase ln the nnnibcr and<br />

yrowtli of ~ncr~steino~ds 011 day-5, F. E~po~ic~it~;tl ilicre;~se ill thc ~nun~bcr and growl11 of<br />

merlsteniolds on day-6, C. Loligiludlnal section of the rnult~plc shoot butls as seen on<br />

day-6, H. Meristemalic activity of d~viding cclls at various places in tlie ax~lldry<br />

meristenr ;Ilea 111 d~l'fcren~ d~rccriun on day-7.<br />

Figure 4.14 A - F<br />

Closcr observation of dcveloptnc~it and growth of rncristenioids in tlic axlllary<br />

nieristem area of AM3 explant A. Closer view oftlie mer~stemo~ds on day-4 after the<br />

removal of ax~llary bud, U. Growth and divis~on oi'meristeniatic cells in the meristernoid<br />

region on day-5, C. Growtli and division of mcristem;~tic cells around merlstemoid region<br />

on day-6, D. Growth and division oi'mer~stematic cells ofnicr~stemoid reglon on day-7,<br />

E. Closer view (40X) of meristemoid region and ccll division activity, F. Hectic<br />

meristematlc activity oftlie dividing and growing ~ells.


Figure 4.15 A, B<br />

Restriction analysis of tlie plasniids used for tra~lsforniation. A. The plasmid<br />

pRTY9:GUS-lnt (6.9 kb) was tiscd In biolistic method ol'transfomiatio~~. Lane 1 sliows<br />

hDNA digested with UsrE I1 etlzynie as marker. Lanes 2 and 3 liave duplicate plasln~d<br />

un-restricted sample and lane 4 shows plas~iiid a!kr restr~ction with EcuRl showing Sour<br />

fragments. B. Two un-restr~cted plasmid constructs that were used in Agroboc.ierrii~,i-<br />

mzdtated transl'on~iation. Lane I shows hDNA d~gestcd w1i11 tiilid III ellzymc as 111arkcr.<br />

Lalies 2 and 3 llad pHS737:SBTI (14.3 kb) ~plasni~d wl~ile 1,111~s 4 and 5 llad pHS723:Bt<br />

(15 5 kb) plasm~d preparatluns.<br />

Figure 4.16 A - C<br />

GUS histochenlical assay of the leaflets Srum pl~tdtivcly transfornlcd plants 01'<br />

chickpea. A. 4 closer view ol'tlle leaflet sllowing GUS activity in [lie vclns, B, C. GUS<br />

activity as seen 111 tlie pcliole and veins of lallets.<br />

Figure 4.17 A, B<br />

PCK amplificat~on of 700 bp fragnlcnt of 1ipi11 gene fro111 \he gclio~~i~c DNA5 oSTu<br />

generation pla~its rratisSoni~ed w~th Brcr)>lAb and SBTl genes via Agrubricieriut~i-<br />

mediated transfonnalion. A. ~iplll-PCR of pli~nts lrallsforilled w~lli pMS723:Bt via<br />

Agroborieriu~~r-1n2dlatcd trallsfomiation. Lanes 1 to 10 lid transfomled samples and<br />

show the aniplification of ~tpfll gene. Lane I I negative co~ltrol and 12 lo 17 wcrc positive<br />

controls froni plasmid pHS723:Bt used for tralislbrniatio~~. Lane 18 IS - DNA and h<br />

DNA-BsiE I1 m:~rker was dddcd in the lane 19. Ll. ~rprll-PCR or plants lransfomicd \rill1<br />

pHS737:SBTI vector vln Agvobucieriu1?i-11ied1;itcd translorn~at~on. Lanes 1 to 9 had<br />

transformed samples CS5 to CS9. Lonc 10 L\,;IS negative coiitrol and l I<br />

to I5 were<br />

posltlve controls oSpHS737:SBTI vector tlial w;is iised In the transforni;ttion. ?, DNA-<br />

BsiE I1 marker was added in the lalie 16.


Figure 4.18 A, B<br />

PCR arnplificatio~l of 1.2 kb fragment of tridA gene from genomic DNA samples of<br />

To generation putative trat~sgenic plants tra~isfonl~ed with pHS723:Bt and pHS737:SBTI<br />

vectors via Agrobocferiir~~t-inediatcd transfor~~~at~o~~. A. GUS-PCR analysts of plants<br />

transfom~ed wit11 pHS723:Bt vector. Lanes I to I0 \\,ere added \vitIl putntivc tratisfor~ll;i~~t<br />

samples, while lane I I \\as positive control and lane 12 Ineg;ltlve control. Satllple addcd<br />

In lane 13 was -DNA, h DNA-UbfE II m;~rket was added in tlie lane 14. U. GUS-PC'K<br />

analysis or plants tra~~slbrlncd wttl~ pHS737:SB'l'l. Lanes I<br />

to 9 wcre putarivu<br />

transformant samples, wliile lane 10 and I1 were positive co~ltrols of plasmid<br />

pHS737:SBTI and lane 12 was negative conlrul. San111le added in lane 13 was -Dh'A. h<br />

DNA-UsfE II ninrket- was added ill llle lane 14.<br />

Figure 4.19 A, B<br />

PCR amplification of SBTI end BfCrj,I/IL gcncs fro111 ge110111ic DNhs of ptllative<br />

transforn~ants at To gene ratio^^ transformed vin Agrobacfn.ir~t~~-t~~cdi~~ted transforlnation.<br />

A. PCR analysis of plants rr:~nsfornied with pHS737:SBTI veclo~.. Ln~li: 1 tl~ruugh lane 9<br />

are putaive transfun~la~lt s;~tilples sliu~viiig an~pliiic;itio~~ ufJ97 bp fr:~gment. Ncgi~tive<br />

conrrol samples were added In llle lanies 10, 11 2nd 12 ptlS717,SBTI plasmid samples<br />

were positwe controls in the latles 13, 14, 15 atid 16. Lane 17 \+as -DNA and i, DNA-<br />

BslE I1 marker was added in lane 18. B. PCR allalys~s of pla~~ts trat~sformed wit11<br />

pHS723:Bt vector. Lane I<br />

rlirougli lane I I wcrc addcd with putative twnsforn~ants<br />

showing amplificat~on of 908 bp fragment. Lane 12, 13, 14 arid 15 had the negative<br />

control. Lanes 16, 17 and 18 were positlve controls of pHS723:Bt plasmid vector. Lane<br />

19 was -DNA and lane 20 was added wttll h DNA-U5tE I1 ~ilarker.


Figure 4.20 A, B<br />

DNA profile of genomic DNA isolated from putative transfonnants of chickpea. A.<br />

Purified DNA profile of genomic DNA of BlCrylAb plants. DNA was prepared in<br />

duplicate samples. Lanes 1 to 10 shows first set and lanes 11 to 20 shows the second set.<br />

B. Effect of amount of BSA, water and enzyme in the reaction mixture to digest the<br />

genomic DNA sample of chickpea. Unless otlienvise stated, the Lola1 volume of reactton<br />

mixture was maintained at 25 p1 with 10 p1 of genotnic DNA, 2 pI (I0 units) of clizpe,<br />

2.5 pl of reaction buffer and the rest being water. In case of volume variations arising due<br />

to tile changing enzyme and water collcenlratioils, tlie reaction buf'fcr volu~ile \\,as<br />

maintained accordingly with its working concentralion always kept at IX.<br />

Lane 1: Unrestricted genoliilc DNA (5 pg, was added to tile well)<br />

Lalie 2: 1 p g genomic DNA digested with I0 ltnils of enzyme<br />

Lane 3: 5 pg, gelionitc DNA digested willt I0 units of enzyme<br />

Lane 4: 5 pg. getlomic DNA digested with 15 units of etizynie and dot~blc llic<br />

quanlily of haler<br />

Lane 5: 5 pg, ge~iolilic DNA digested \z;~lIt 20 units of eti/.ylne with double llle<br />

quanttly ofwaler<br />

Lanc 6. 5 ~tg ~CIIOI~IC DNA digested will1 10 utllts of elizytiie and 0.1% BSA<br />

Lane 7: 5 pg, genornic DNA digested w~tll IO units ofcn~yme, 0.1% of BSA and<br />

double tlie quantity ofwnler<br />

Lane 8: 5 pg. getiomlc DNA digested \villi IO ~~iitls ofcnzynle, 0 356 of BSA<br />

Lane 0: 5 pg, getioniic DNA digested wit11 I0 ullils of enLytne, 0.3% of USA and<br />

double tlie cll~antity of water<br />

Lane 10. 5 pg. gellolnlc DNA digesicd will1 IO i~rlits of cnzyme, 0.5% of BSA<br />

Lane 11: 5 pg. genomic DNA digesled will1 10 units of enzyme, 0.5% of BSA<br />

atid double the quantity of water<br />

Lane 12: 5 pg, genonitc DNA digested with I0 unlts of enzyme, 1.0% of BSA<br />

Lane 13: 5 pg, genonltc DNA digested with 20 itnits of enzyme


Figure 4.21 A, B<br />

Southern blots of the To generation putatlvc lransfonna~~ts of chickpea transformed<br />

with i31CyIAb and SBTI genes via Agrobtrcleriior~-nlediated transfomiation. These blots<br />

show the signal accumulaled 011 tlie h~gher niolecular weiglit region due lo the li~liiled<br />

restrlctlon of genomlc DNA. Tll~s psoble~n was encountered wlie~i the factors affecting<br />

restriction of gelio~llic DNA, sucll as qu;~nl~ly of cnzyine, water and BSA were 1101<br />

standardized A. Southern blot will1 probe for BrCq~I/lb gene. Lanes I<br />

to 10 has<br />

puiat~~ely tl.i~~~stbr~lie~i s;~i~iples of CBI lo CBIO. U. So~~llier~i blot wit11 pl.obe for ~ip~ll<br />

gene. Lanes 1 to 10 were added with put,it~ve tl.a~isfosrn;il~ls transConucd wit11 biC~:i.iilh<br />

gene. Lanc I1 lias ~legativc co~ilrol, whilu Idlie 12 lias lllc pos~live control. Rcslricted<br />

genoltiic DNA samples from putative transgcnlc trs~lsfornled with SBTI gene wcre added<br />

in the lanes 13 to 2 1<br />

Figure 4.22<br />

Soutiicni analys~s of tlic To genelntio~i of BrC',ylAb p~~lalive transgclilc plants of<br />

cliickpea triinsibniied via Agruhtrcreri~~rrr-medlated lransfur~nat~on. Ge~iom~c DNA was<br />

restricted wit11 EcoRl enrynie. A~ialysis of copy nuntber w~lh respccl to the ~rplll gene.<br />

Lanes 1 to 11 were added ~v~tli transfonnant salliples CB I to CB I I. La~le 1: CBI, Lane 2:<br />

CB2, Lane 3: CB3, Lane4: CB4, Lanc 5: CB5, Lalie 6: CB6, Lane 7: CB7, Lane 8: CB8,<br />

Latie 9: CB9, L:tne 10: CBIO and Lalie I I. CBI I. Lane I2 11as the negotlve co~ltrol and<br />

lane 13 has the pos~tive con1101 (Rcslricled plasliiid pMS723,Bi that was used in gc~iel~c<br />

transformatio~i)<br />

Figure 4.23<br />

Southern a~ialysis of theTo generalion of br('ry1Ab pla~its. Genomic DNA was<br />

restricted with EcoRl eilzyllie that has two rcstricl~on sites within the RlCryiAh gciic.<br />

This double cut releases tile 3 lib fragnielit of UrCryIAb pc~lc. Analysis of the tra~lsgenics<br />

for the U~CrylAb gciic. Lanes I<br />

to I I were addcd w~lll Il-ansforman1 samples, Lane I:<br />

CBI, Lane 2: CB2, Lane 3: CB3, Lane 4: CB4, Lane 5: CB6, Lane 6: CB5, Lane 7: CB7,<br />

Lane 8: CB8, Lane 9: CB9, Lane 10: CBIO and Lane 11: CBI I. Lane 12 has the negative<br />

control and lane 13 has the posit~ve control Restricted plasmid pHS723:Bt with EcoRl<br />

enzyme).


1'1.0 INTRODUCTION<br />

L~fe is the ter~in uscd to explaiii the to-ordinate i~itegrity oi defitned nintter energy<br />

transacttons manifested in tlie living organisms. These tlansacho~ns hove been made<br />

possible with the ava~lnbility of fixed energy. Early life derived energy tiom anaerob~c<br />

environme~it and evolutio~i ofautotropliic orgoiiisms divcrsificd course of evolutio~i. Pla~its<br />

liavc bee11 thc I'irgcat source of lised energy, ,IS tiicy trd~isl'urm tile 1portio11 of solar ci~c~g!<br />

illto clietn~cal energy, ivliicli ~nakes theill cligiblc tbr tlic title of'thc Producers'. ' hs liked<br />

ericrgy is being used at vaiious levels of hod cliitin III v.iriuus Ibrrni. In platlts. lhis cncrgy<br />

has bccn uscd for various metiibolic oct~vit~cs 2nd stored in nialcrial fornis of tliocl-o<br />

molecules siicli as carboliydrates, protein itnd I~pids, collccrively struclured 111to orgalls like<br />

seeds, graltis, l'ri~~ts, vtgetobles ctc., to bc uscd at tlnc ti~iic of titcli, 'l'lic cot~ccpt ul<br />

agriculture was born \\lie11 11i:t11 rcltlizcd tlie ~il~tritio~iitl sig~nificii~itc 01' tlnesc plat11 parts.<br />

Agriculture brought about r~voli~tio~~iiry socii~l ~Iia~igcs by Ifiiiisfor~iiing no~iiad~c ir~bcb<br />

into inore adlanced static civiltzatiot~s, 2nd nictliods of:igricul~ur;il pr:~cticcs li,tvc been tliu<br />

principal inleasure to clsscss tlie ad\anceliiciit of'ctvilii;~t~o~is<br />

Abulid,nntly water supplyi~ig rcgioris and ailst,~ini~i'lc rainied areas l~ave becorrne tlic<br />

Inavens for settling and advancement of svutic civiliriittons. Agriculture gained sign~ticance<br />

priiicipally by ilourislii~lg llie Iiunian world dnd ll~ei~ dotncat~catcd aii~mals. Consistent<br />

discovery of plii~its with diversified ~outisliinp \:dues expanded tile span of :igriculture<br />

while one Faculty of agriculture concent~.ated oil d~scovery and cultivation of plants with<br />

added benefits siicll as niediciiial Iiiipottancc, titiiber, orn:imenlals etc., that have varted<br />

degrees of economic Ilnportance. Vi~ricty of' plutlt organs such as seeds, tiuits, leaves etc.<br />

were identitied io be nutr~ttonnlly very sign~:ica~it. A ~rritritious hod is identilied as a<br />

balanced diet illat prov~des optiii~al energy aiid :arious organic aiid itnorpzl~iic niolccules oi'


structurd and filnctiolial Impol.taiIcc. Carbol~ydr~tes and lipids are tllz prll~cipal sources oi'<br />

energy while llp~ds and some protelns are structurally s~gntficant. Another class of<br />

proteins, v~tamins, carbohydrates and various small organic and 1norg:lnic nlolecules arc<br />

function;~lly very important. Most of tllcsc org;lnlc n~acromoleculcs In conibinat~o~~ wttll<br />

several lnorganlc molecules must be supplied estcr~ially in the form of diet though tl~crc IS<br />

synthesizing machinery wlthin the body for sotlie of the molecules. Most of tlle countrlcs<br />

depend upon meat, poultry, eggs ctc, fo~ these d~ctary supplements. Ucvcloped world<br />

derives liiuch of its protein (46%) and cnrboliydrates (20%) from antnlal products llkc<br />

meat, poultry, eggs and fish and otlier seafoods, while developing coutitries der~ve thc<br />

protetli (64%) and energy source (65%) primarily iio~l~ agrl-based foods. Ilenceforth,<br />

economies of the later are directly deperide~>t on agriculture.<br />

Agricultural practices and crop selectiol~ dates back to ovcr ten tilousand ycura and<br />

ancient agriculture \+as mostly characterized by few crop v;lr~etics that nourislled relatively<br />

few peoplc and thcir domesticated anitnals. Tlic early moderate popul:~l~ona demanded<br />

equally tnodcrate agricultural outputs. Howcver, static civilizations stiniulnted wide array<br />

of social and cultural tratisfoiiiiat~ons tliat ste;ldlly increased the population as well, which<br />

in :urn nccc,s~tated better yield froni the selected crops. It was oi~ly stncc 19'~ century that<br />

dramatic advances took place in agriculture in terms a!' quality and quziotity i\,llicll was<br />

made posslble by well-concerted efforts of sc~cl~tists lion1 all ovcr tile world co~nmitted fbr<br />

a common czluse of food-for-all.<br />

Presently around 200 plant species with tliousnnds of cultivars address the issue of<br />

human diet. Alllong these only 15 species col~tribute 9OU/o of diet where rice, wheat and<br />

corn contribute up to 70%. Though these three crops arc kliown as staple food crops of thc<br />

world, some of the tllird world countries arc not in a position to cultivate and maintain


them. About 10% of the Earth's land surPacc ia arable that is f~st approaching saturatioil,<br />

with only 1% of water available for ci~lt~vat~o~i and wit11 inevitable population outburst<br />

there is an ii~creasiilg concern of how to feed people as cautioned by enliile~lt economist of<br />

yesteryears. Malthus. When domarid was n~orc than the supply, 1960a witnessed mqor<br />

cllailgss by revolutionary agricultural outpiils, nil put 1ogetll~'r under the iilsj)iring phrase<br />

'Greei~ Revolution' that was carefully crafcd by cini~le~~t brccdcr Nonnan Borlaug, who<br />

was riglltly awa~ded ll~e Noble Prize for pence. lilcepted \vilh wlleat and cxtendcd to<br />

almost all the crops, green rsvolution paved the way to light up smiles OII the faces of the<br />

hungry tl~ougll it shot down the world food prices. 'This led to a more sustainable<br />

agriculture, land use efficiency and opened tile doors to nlany hopeful avenues, wh~ch<br />

could address various other imminent problenls. These results came wllcn delllographic<br />

realities were seiiding ripplcs throiigh the scientific community about thc ways and means<br />

to manage {lie yioblcms of starvation and n~alnutr~tioii. With over 6 billion pcolllc on<br />

board, an est~inated increase of 1.7 bill~ons inore by 2020 and wit11 around 800 million<br />

people still statrving, tbcre are more questiuns t11ni1 answers. Nevenheless, all the efforrs<br />

put togetlier will record an est~mated increase in the oniu~al growl11 rate of 2.6% food grain<br />

productloti wllile popiilat~oii increase rate ii l:iUA. Uuto~.tunatcly evcii hit11 these results<br />

the iiunger atill rcmalns sii:ce the outputs are not reaching the nccdy because oi'tl~e low<br />

purchasing power and standard of living. Tllesc concerns led to cultivation of alternative<br />

food suppleincnts such as leguines other than the popular cereals.<br />

Pulses are dry seed legumes that h;i\e relatively lesser nutritional popularity.<br />

Nutritionally i~nportant pods bearing seeds and herbaceous naturc ci~aracterize these crops.<br />

More thaii 50% of the world pulse y~eld 1s being co~ltrlbuted by Asia-Pacific region. The<br />

proteii~ and oil rich seeds of these plants liave an ~nd~spcnsable coiisidcratiou in the human<br />

diet and aniil~al fezd as bod additives. Fcrmcntcd or processed seeds make preferred


dishes for people of the developing counlries as acccssoiy foods. Most i~~lportant feature of<br />

these plants is that they tix atmospl~eric nitrogen 111 symb~osis with Rhirobiunt, which<br />

qualifies them to be used in Inter cropping and rotation cropping practices in contblnation<br />

with the cereals to enhance the product~v~ty of tile later. However, despite their protein rich<br />

and n~troge~l fix~ng attr~butes, the production of pulses lids increased at nluch slower pace.<br />

This pace could have been the result of Pictors like rice-whcat rotation, illter croppirig w ~tl~<br />

few other cereals and lesser ava~lub~iity of ~~u~rition;~lly dcpcildable Icgumcs in hot xa,oll.<br />

Most of the Important legumcs are cool season crops where the cereals relatively domi~~;itc<br />

the cool season. These hcts pushed the areas ot'lsgu~ne cnltivat~o~~ to ~nargitlal regions that<br />

are mostly ramfed. Sigiiiiicai~i crop losscs are observed due to varlous b~otic 2nd ab~ot~c<br />

stresses, as farnmrs of the developing countries are not inclined to use expensive remedial<br />

inputs such a5 fertilizers and pesticides. This lias resulted in a wide gap betwceil thc yiuld<br />

ratios of pulses to cereals tit 1:32 111 I990 (l'aroda, 1995). Howevcr, various scie~ltific.<br />

social and nutrition concerns 111dicate that the legu~lies must be given duc impo~lance in the<br />

regular agricultural practices which would be Illore beneficial to thc third world countries.<br />

In accordance with this pointer, various govcr~i~nental and 11o1l-goveriin1e11~;~l researcl~<br />

institutes including ICRISAT, India; ICARDA, Syria; IATA, Nigeria etc., embarked onto<br />

understand~ng the metabolic and agrono~nic ~ntricacies of various food and pasture<br />

legumes and organize maneuvers for Improvelncnt and preiervatio~~ of the el~tc germplasn~<br />

of peas, beans, lentils, grain legumes and various other pulses.<br />

During early i~griculture, selectio~~ of ci~ltivable varieties was principally based<br />

upon natur:~l selection. Iluuvever, ~t was in I:~ter par1 of 19"' century that dcti~al plant<br />

breeding programmes started. Varieties with elite phenotyp~c troits wele aelected and<br />

ciossed for co~i~bi~i:jt~on ~f neccssaly cIiar.icici,, in lhu otl'spr~ng. blendel'a famous pca<br />

experiments and observations provided a Inore logical basc for the brzeding trlals and


observations GkI Shull's experiments in 1907 gave an ilnpstus for plant breeding that<br />

resulted III an exponential Increase in brcedlng programs, which w~s in turn expanded to<br />

countless nlembers of cultivable variet~es. Socio-eco~lomic Importance of these progranla<br />

gave birth to thousands of varieties initially In cereals and later in otl~rr dol~~esticated<br />

crops. However, breeding is a highly t~~r~c consuming process and labor intensive as the<br />

crossing means polll~lat~ng every plant mailually. Crops wit11 lo~lg duration life cycles pose<br />

variety oT problcms in co~~ve~ltio~lal breeding. Another I~~liltat~o~l 01' the cunventio~i:~l<br />

breed~ng lies in the susu;~l ~ncompatib~lity of the cultivated varieties with their wild<br />

relatives, where the ancestral wild varieties were proven to tie the reservoirs of several<br />

agronomically important traits. Tools of modern biotechtlology have come to the rescue for<br />

some of the difficult constraints to crop improvelncnt by understand~ng their molecul;ir<br />

basis and providing ren~edles at the n~olec~~lar level itself. ldc~lt~ficalio~l of physical basis<br />

of life and niolzcul.ir cl~;iractcri~atlo~~ of i~ll~critn~~ce pattenls ~nads brecd~ng a more<br />

syste~llatic and mcani~~gfui science of crop improvement. Stat~stical appropriat~on ot<br />

polymorphisms ttlllcrlri'd with the help of techn~qucs l~lte Southern blott~ng and<br />

polymerase chn111 reaction (PCII) gavc birth to a new faculty of'rnode1i1 agriculture that is,<br />

marker assistcd selection (MAS). This was not only uscful ill identificat~on of quantitat~ve<br />

tra~t loc~ (QTLs) but also uscful III isolation of gencs for a specific trait. ldentificat~on and<br />

isolation of agronomically important gencs fro111 different prokejotes and eukaryotes<br />

ignited a desperate wisl~ ill sc~entists to ~ntroducr: Illem into plants and observe tiieir effect<br />

In the new env~ronnie~lt. Tile existing bacterial transformation systems (Mandel and Higa,<br />

1970) gave some logistic support to this idea ofplant transgenes~s by recombination events<br />

in the genetic material. Discovery of the ab~l~ly of a crown gall induc~ng soil bacterium,<br />

.4grobacfrriton f~rr~~ejiiciert~ to introduce the genetic material Into the plants (Drummond,<br />

1979), in late 70s revolutionized the genetic transfurn~ation research. Agrobacteriurn


tumefaciens, popularly kl~own as a 'natural genetic engineer' transfers genetic material<br />

with the help of the tumor inducing (Ti) plasmid (Chilton, 1983). The native genes of Ti<br />

plasmid perform the function of cancerous establishnient of the Agrobactrrium in the<br />

infected plant cells. Among various attributes of' this plasmid, the niost important one is<br />

that it transfers virtually any genetic sequence present between the left and right borders of<br />

the famous T-DNA. Tliougll this organihm's ilifectlvity 1s restricted to dicois, tcchnologlcal<br />

advancements made [his organism useful to tr,lnsfer genetic ~llatcrial to monocots (Slemcl~h<br />

and Schieder, 1996) atid even to animal and hun~an cell cultures as well according to rccclit<br />

reports (Kuriik et al., 2001). Various otlirr techniques evolved with the inspiration liol~l<br />

this organism, but tliey arc host and teclin~que spccilic monocots (Siemens and Scliiedrr,<br />

1996). Biolistics or part~cle bombardment teclinique is onc potential technique (Saliio~d,<br />

1993) that could solve tile problem ofliost incolnpnl~b~llty.<br />

\/Chickpea<br />

(211-16) is one of tile important food legumes prevalently cultivated in<br />

Asia-Pacific region \+liere large portiun oi' the yield is contr~butcd by the Indian sub-<br />

continent. Broadly [here are two vorletlcs of cl~lckpea, Desi arid Kabuli. It is a cool season<br />

pod bearing crop, seeds of wh~ch are excellent source of protclns rlch with nitrogenous<br />

amino acids espec~,llly lyaiiir and arglnlne 111;iklng the products of 1111s crop, very good<br />

food aildilivcs. Ue>ldrs, it 1s also ktlo\vn to Il111)rove soil fertility with the Iielp of'sy~i~biotic<br />

nitrogen fixation. It contributes 15% of the world's pulse Iialvest of about 58 rnill~on tons,<br />

anllually. Deap~te sign~iicant gains In world pulse production during the last two decades<br />

with an annual growtli rate of 1.9% cllickpeli production growtli has been slow. Ch~ckpca<br />

yields worldw~de have risen by 0.6% annually which :mounts to 800 kgha, and thc area of<br />

cult~vatioll has reniaiiled v~~iunlly stagn;lllt. Tll~slower p;lce has bee11 the result ol'vu~ lous<br />

refractory biotic aiid abiotic constrdlnts such as ,lrL~oc/iylu bl~gllt (AB), Liurrj'li~ Grey hloid<br />

(BGM), dry roo!jz,<br />

- - -<br />

coll,~r rot, Fi~~iri.iiirr~ wilt, pod borer, drouglit ;~nd low tempcratu!.c


(Nene and Haware, 1980). The legume pod borer has been the worst of ail accounting for<br />

over 20% of the total crop loss (Vyas et al, 1983). The enhancement of insect and disease<br />

resistance in chickpea could increase its yield potential by as much as three times. The<br />

available chickpea germplasm also lacks effective resistance sources for use in developing<br />

pest resistant genotypes. An attractive option is to introduce genes for insect resistance<br />

from other sources to chickpea by the iise of transgenic technology that has shown a great<br />

promise (Sharma and Ortiz, 2000).<br />

Attempts to create transgenic chickpea to combat tlie above constraints have been<br />

the short cut strategy adopted by various groups working for creation of el~te germplasm of<br />

chickpea. However, reliable regeneration and transfor~nntio~i protocols lmve been evaduig<br />

sucli efforts due to tlie perce~ved recalcitranl nature of chickpea towards tissue culture.<br />

Several regeneration protocols involving somatic ernb~yogenesis and orgallogenesis have<br />

been published during past one and half decade olily to show the difficulty in regelierati~ig<br />

chickpea in the in vltro cnvlroiiment. Micropropagation has inot been a serious problem and<br />

it can be ;ichieved using explant co~itai~iit~g prc-cxisting Illerlstema such as shoot tip and<br />

cotyledonary nodes (Rao and Chopra, 1987; Riazuddin et a]., 1988; Rao and Chopra,<br />

1989). Coiisiderable work has been done for regenerating wliole plants via sonlatic<br />

embryogenesis from mature leaflets (Rao and Chopra, 1989) and imn~ature leatlets (Barna<br />

and Wakiiulu, 19931, niaturc emrbryo axis (Sul~as~~ii ct ol., 1994) and initnature embryo<br />

axis (Sagare et a]., 1993) or cell suspension cultures (Prakasli et a]., 1994). Ilowever, the<br />

success rates on the niatiirat~on of indilced embryos into fully differentiated plants have<br />

been very low (


Wakhulu, 1994). However, regeneration of quiet a few shoots from traces of pre-existlng<br />

meristem with that of the explants such as hypocotyl and epicotyl were mistaken for<br />

indirect regeneration from callus phase. To date, effective chickpea regeneration has been<br />

possible only through the use of explants based on cotyledonary nodes or shoot apices<br />

derived from seedling explants. In most of the cases the shoot buds originated<br />

asyncbroiiously making these systems inefficient for genetic transformation studies.<br />

However, rooting and transplai~tation of (he in vitro recovered plants lias remained a major<br />

bottleneck in the meaningful application of this technology for serious crop improven~ent<br />

programmes. Such systems have been used to genetically transform chickpea and the<br />

transfostnation frequencies reportrd were very low (Fontana et a]., 1993; Kar et al., 1997;<br />

Krishnamurthy et al., 2000).<br />

J I ~ the ongoil~g efforts at ICRISAT to develop suitable tissue culture and<br />

trai~sfosn~;~tlo~~ protocols for cl~ickpea, the preseilr work was ain~cd at the improvenient of<br />

cxisting protocols for ;ill the atagcs or regenefi~tioii and transformation. The work was<br />

carried out with the ibllo\\ing object~ves.<br />

I. Development of efficient protocola for plant rcgcneration in tlssue cultures oi<br />

cliickpen.<br />

2. Optimization of varlous factors aficting legeneration via orgdnogenic<br />

pathway<br />

3. Optimization of factors i~ffecting liardenlog and transplantation of in vitro<br />

regenerated plantlets.<br />

4. Genetic transformation and successful recovery of chickpea transget~ic plants<br />

by using agronon~ically impoitant BlCryiAb and SLIT1 geiles.<br />

5. Molecular cl~aracterization of putative transgenic plants or ch~ckpea for future<br />

use.


jf.0 REVIEW OF LITERATURE<br />

Large part of the world's food is bring coi~tributrd by ogriculturc though nlost of<br />

the developed countries derive their food BOIII animal source. World food grain yruducl~o~l<br />

toucl~ed 2 billion ton mark at the turn of the last n~illet~niurn. The econoniic, con~niercial<br />

and social realities resulted in an uneven distribution of the food grains amply ava~lable<br />

that left 800 million people still undernourished (FAO, 2001). Tlie surpluses are used for<br />

exports and tl~e costs were dearer for the developiiig coul~tries that kept the number of<br />

undernourished people still alarming. Alter~iative food supple~i~e~~ts froin pulse crops<br />

gained all iiicreasii~g significance in tlic recent times that prompted developed cou~~try I~ke<br />

United States to include the lentils, broad beans atid cliickpeas in their 1:drnl bill 2002 so as<br />

to encourage the exports in this area (Food Outlook, FAO, 2002). Pulses are tile cd~ble dry<br />

seeds of legum~nous plants. They are of special liutr~tioi~al and economic i~nportance due<br />

to tlieir contribution to the diets of ~~~ill~ons ofpcople worldwide. Tlie nialn importnncc of<br />

pulses lies primar~ly 111 their liigli proteni content (two to three t~~iies higher than most<br />

cereals) as %ell as in being a valuable source ofenergy. In addlrion, pulses contai~i good<br />

anioulits of r~utritionally essential minerals sucli as calcium and iron. The use of pulses as<br />

-.<br />

hod is concetitrated in developing countries, accounting for about 90% of global l~uman<br />

pulsc consump~ioi~. In i~lost low-income countries, pulses contribute about 10% of the<br />

daily protein and about 5% of energy intakes 111 tllc diets of people (Paroda, 1995). Dur~ng<br />

the initial years of legume cult~vat~on brecd~ng was an important means of crop<br />

improvement. These efforts niet wit11 considcrablo succesa that resulted in iniproved yield<br />

of biomass in terms of wl~olc plant dry tnintter or thc secd. However, breeding Sor traits


agalnsr varlous biotic and ahiotic constraints met with low success rates where<br />

biotechnology may prove to be an effective altert~ative.<br />

Evolution is a process of natural creation of var~ations in the genetic ~~iake-up of<br />

organisms so that ~t firs into the variable conditions of the changing environnlent. This<br />

process takes ~iiillio~is of years :ind 11 goes 011. As the requ~rcmct~ts doubled and tripled.<br />

there is a ~necess~ty to induce val.iatiolls dellberatcly to lileet the 11ecd. This fart enierylnp<br />

licld oi' pl;i~ir sclc~~cc ~;IIIIS 1t5 s~pi~ilic;~ncc ;illd tidv;~~lt:igc o\cr tllc Ilnllt:~tio~~r oi' !tic<br />

genetlc recomb~nat~on by meatis of con\cntional breeditig. Thougll this tccliriiquc is bung<br />

applied to many urganisnis, ~ncluding ni~crobes atid animals, the scope of [his thcs~s 1s<br />

restricted to deal with plants only. Moreover, nlosl of tlie publislicd and on goilig \wrh IS<br />

on platits whcn compared to the animals. Microbe transfonnatio~l is rather a procedure Tor<br />

basic research and only a part of preparative tcchnique for the higher organibm<br />

tratlsforniation.<br />

/Genetic transformatio~i, 111 principle is ~ntegrntion of alien genes into the foreign<br />

organisn~. Stable ~ntcgratioll arid lriheritalicc of ubcl'ul gcocs ib the main object~ve of gene<br />

transfer enperlmentsy"&e<br />

concept of genetic transt'ornlat~oli started with Avery et al.<br />

(1944). In angiosperms, gene transfer, however, IS a regular process where paternal<br />

chromosomes iioin the explod~iig sperm arc tr:insfcrred to the egg cell of tlie fen~,~le<br />

gametopllyte (Frankel and Galun, 1977). So, the problem 1s to transfer tlie gencs<br />

deliberately. Advent of plant tissue culture espec~ally the protoplast sola at ion (Cocking,<br />

1960) and cybrid formation gave an encouragi~lg impetus to the concept of gene transfer.<br />

Protoplast isolat~on resulted in cell-wall-stripped cells and rcgeneratioo from the wholl:


plants from them enlhuscd scientists for adding new genetic elements and earliest reports<br />

were of Hess (1969; 1970) when no tools for transfer and characterization of transformed<br />

plants were available. Discovery of ability of the soil n~icroorgan~sm Agroboc!erhoii<br />

iu~iieJucie~ls to trensfer its T-DNA to the pinlit genollie revolutio~~ized tliis arca and crcated<br />

altogether a differcnt faculty of science.<br />

2.1.1 Various lnetl~ods of gel~etic tr:r~~sfo~.~~~atiol~ in plnnts<br />

Various neth hods of gene Iralisler ~nlo pl:ints have been designed w~tll<br />

Agrobacierii~nl-mediated transfer as the principal ~netliod. Its miraculous ability to transfer<br />

part of its ge~ietic material, T-DNA into the plan1 genonle for its own beliefit was one of<br />

the significa~lt discoveries of 20Ih century. V;ist literature accumulated in describing tl~e<br />

whole mcclianisnl and ~PP;II.:I~IIS used by ilic microbe Tor gene transfer. llence, this nietl~od<br />

will be dealt in detail in tile foilow~~~g sccrloll. Metliods oliier tl1a11 those relying 011 the<br />

Agrohiicie~~ii~~ii sucli ;IS b~olis~ics, n~icroi~ijcct~vii elc. ir~ll bc dsacribcd ill 1111s aection.<br />

"li~oiisuc" IS n short term for b~ological b;lIlistics; the proccss is one by whicli<br />

biological r~iolccule>, sucli as DNA and RNA, are accclcrated (usually on microcarriers,<br />

termed microprojcctiles) by gullpowder, con~prcsscd gas or other means. The biological<br />

molecules are driven nt liigh velocity inlo the torgct, i~i this contcxt, tile plant cells. A team<br />

of nanoiibr~car~on fac~lity of Col-11el1 Uii~vers~ty developed this tccl~nique, and Sanford<br />

(1988) gave early descriptio~~s. Tlils 1s b;~sically si~nplc device wllere the genetic lrlaterial<br />

is coated on to the tungstei~ or gold pal-ticlcs illid accelerated with 11igI1 pressures into the<br />

plant cells. Dur~ng subsciluent years, tliis device tcok serles of cha~~ges to fit cornmerc~al


equiren~ei~ts (Santbrd, 1993) The original dr~ving power - the real guripowder was<br />

replaced by safer cot~lpressed hel~uni system. A different acceleration system was also<br />

developed based on the spark di,cliarge cllaniber 111 wliicl~ a water droplet was placed<br />

between two electrodes and a h~gh voltage capacitor caused all instant vaporization of the<br />

water, creatlng a shock wave. This sl~ock wave ;~cceltrates DNA coated particles illto the<br />

target plant cells (Christou et al., 1990). Several labs tried their owti honlemade particle<br />

guns (Per1 el a]., 1992). Var~ous dev~ces illid ilitr~ci~cics of b1011stic I>I.OCCSSSS IVC~C<br />

reviewed by Potrykiis ;ind Spa~igenberg (1995). Tlic firat application uf tlic biolistic<br />

process was niadr: by its inventors uallig chlora~~~plienicol acetyl transferase (CAT), a<br />

riiarker gelie (Klein et al, 1987). Later ye;~rs saw [lie two i~~ipo~til~~t j)ublica~iolis ot'<br />

successful transforrriatio~~ of chloroplasts ill Cliln~tiydo~rio~~us and niitochondria in yeilsl<br />

(Jolinston et iil., 1988).<br />

Tills protocol becotiles significant w11eii tlic host cells are not complacent w~th t!lc<br />

methods llhe /Igrobuc~er~iorl-t~iediatcd and direct protoplast transfornialion. Especially<br />

Ayrobuc~o.i~i~i~-li~ediatcd transforniation is, to some cxtent restricted to dicots and it also<br />

requires wounding. Helice, several rzports appear~d using mctliod to obtain transforn~ed<br />

platits in rice (Dntta ct a]., 1990), soybcat~ (Cliristou el al., 1990), niai~c (Fronint el dl.,<br />

1990, Kozicl et al., 1993) 2nd barley (Wan ;ind I.ciiiuux, 1994).<br />

2.1.1.2 Alternative nletl~ods ofgci~etic tra~~sl'orm:itio~~ into plant cells:<br />

Alternative nictl~ods can be div~ded inlo two types: direct physical i~~troduction of<br />

DNA and tr;insnilssion of gellettc tnaterlal by nlodlfied pl;lnt viruses. Viral gene transfer<br />

can also involve physical transmissioli to tlic plant (e.g., nib inoculation). Most iniportant<br />

method of direct introduction of DNA is thc protoplast transformation, ln~t~ally dircct


introduction into protoplasts using ply-L-omithine (Davey et al., 1980) and this compound<br />

was later replaced with calcium phosphateipolyethylene glycol (PEG) (Krens et al., 1982).<br />

However, the success of protoplast transformation lies in tlie successful regeneration of the<br />

whole plants from them. Most of the direct DNA transfoni~ation involves usage of E.coli<br />

plasniids such as pBR 322 and pUC derivativea. Both plant DNA 2nd RNA viruses offer<br />

possibilities as plant transi'ormntio~ vectors.<br />

~'2.1.~ Miracle microorgaois~~l: Agrobacferirr,rr<br />

Early ~n tweiit~eth century, S~ilitlillid Townsend (1907) studled these crow11 gall<br />

tumors of cultivated Paris daisy and for the first tinie astablishcd that this "plant tumor" is<br />

of bacterial origin. The ineffective bdcterid isolated fro111 these samples produced tumors<br />

011 tlie stems of other crops. This bacteriuni clia~iged its lialiie nialiy times froni Batferi~int<br />

riiniefucien~ through Pliyioiiroilo~ rtiiiirfiiciri~s, Uucillir~ ir~i~iejiicieris and finally settled at<br />

Agrubocrrrii~iri riiiiieJ~icie~is. lllkcr (1923) and 1'111ck;ird (1035) st~ldted llially i~itrlcacies of<br />

-.-.<br />

the plant-niicrobe ~l~teractiolis that resulted in varlous cell stiniulations in plants. The<br />

-.<br />

opines were dctccted 111 the tumors (Pctit, 1970) and tlic vttnl role of these opines in the<br />

establishine~~t of "genetic colonization" was revealed by Shell (1979). lliitially it was<br />

perce~ved that the genes for opme sy~itliesis is pltlnt borne n~id only after rigorous studies<br />

the source of opines was confirmed to be fro111 the ~nfecti~ig bacteriuni (Montoya et al.,<br />

1977). Much earlier to that Kerr (1971) fouiid that the virulence could be transferred from<br />

Agrobncicriiriii to sapropliytic bacteria tlirougli DNA transforn~ation. Persistence of<br />

bacterial DNA in bacterial free tu~nor cells was observed by Johnson et al., (1974) and<br />

DrLica and Kado (1974) with the less efficient techniques of their ti~nes. A large plastnid<br />

with a size of around 200 kb, was fbund ro be iieccssdry for [lie virulence of the


Agrobactenu~ii (Zaenen et dl, 1974). Eventually, Chtltoli et al., (1977) found that the<br />

---<br />

genes of TI plasrn~d were responsible for the synthes~s of op~nes which were necessary for<br />

the progression of turiior w~tliout Ilie additton of growth liorniones They also found that<br />

only 5% of the plarniid DNA war responsible for virulelicc (Chilton, 1978). Since then<br />

many groups embarked upon exploring the lntr~cacies of the Agrobocieriuni and its abil~ty<br />

to transforni the host cells.<br />

2.1.2.1 Ti plnsltlid a ~ its ~ cllarncterislics<br />

d<br />

Many scientific groups in early 70s found that tlie TI plasmid, precisely part of it's<br />

DNA is responsible for tlie tumorigenic nature of the infecting bacterium. Tile process of<br />

identification of causal sequence for the tumorigenic activity was many folds expedited by<br />

the d~scovery of Southern blot (Southern, 1975) and DNA sequencing metllods (Maxam<br />

and Gilbert, 1977). Hooykaas, Schilperoot anti their associates found additional evidence<br />

for the role of Ti plasmid III<br />

tu~iior induction (Hooykaas et al., 1977). A detailed.<br />

d~scription of eah-events In crown gall researcl! was provided by Shell et al., (1979). It<br />

a? becatlie evident fiom Cliilton's experimelits thnt part of Ti DNA (termed as T-DNA)<br />

- -.<br />

was transferred t ~ l k !$I. Transcriptio~i of tlie T-DNA was confirnied by northern<br />

. ---<br />

blot experiments (Drunimond ct a]., 1977). All tile T-DNAs were found to be similar and<br />

has a length of 23 kb flanked by alniost idelltical borders (Zambryski et al., 1980).<br />

Spontaneous deletions studies rcvenled the gclietic componelits of tlie T-DNA and their<br />

oncogcliic tiatuse was confirnied (Gelvin et al., 1981). Schilperoot atid colleagues revealed<br />

many aspects of the T-DNA by inducing mutations and tracking tl~em down in the host<br />

plant cells by transfortiling tile tobacco protoplasts (Hockcnia et al., 1984). By this time it<br />

was also evident that a set of vir genes was involveti ill the transfer of T-DNA. It became<br />

...<br />

14


evident by 1983 that the Agrobacteriuni IS a sure candidate for genetic trallsformation<br />

(Chilton, 1983; Herrera-Estrella et al., 1983). Where T-DNA of the Ti plasm~d call be<br />

--. . .<br />

transferred to the plant cells and that can servr. as an cxcelle~lt tool for the genetic<br />

transformation of plants by dlsarnming the T-DNA and introducing the genes of interest into<br />

that area.<br />

2.1.2.2 Molecl~lnr ~nccl~a~~is~~~<br />

of T-DNA Ir:~~~sfcr illto pla~~ts<br />

Tlis dlrtails of tliesc ~nechanisms can be obta~ned from scveral ~revicws (Hooykans<br />

and Schilperoot, 1992; Zambryski, 1992; Grcene and Zambryski, 1993; Zupan and<br />

Zambtysk~, 1995). Wirlatls (1992) provided a critical review of chenlical signaling between<br />

Agrobacirriu~~i and plants cells. .<br />

2.1.2.3 Tools for ge~letic tl.ansformatio~~ /<br />

Understanding the plant gene structure and its essential components is n<br />

prerequisite for dcsig~~iny the tools for gellctic transformation. By the time the coilcept~~nl<br />

basis fbr the genctlc transfonnation was ready using Aprubaclei~iu~~i, the components of a<br />

complete plant gclie to be effcctivcly exl~resscd was also ready. The ainalgamation of<br />

various niolecular biology tech~iiques led to the dcs~gning of vectors for transforming the<br />

plant cells.<br />

i<br />

Tru~s/orrnuiio~~ vectors: Most widely used vectors are binary vectors (Bevan,<br />

1984) and cointegrate type vectors (Draper el al., 1988; Rogers ct al., 1987; Deblaere et al.,<br />

1987). The co~ntegrate type vectors have bccoiile less popular since they are more difficult<br />

to engineer than binary type ones and are less efticiel~t.


~ -<br />

/'-<br />

Binury vectors: A binary vector should contain essentially at least one of the<br />

borders, it should have the ability to replicate in E.coli and it should contain a selectable<br />

marker (Armitage et al., 1988; Hood et al., 1993). In principle, a binary vector consists of<br />

two plasmid; a plasmid that is transferred and a helper plasln~d. In the initial years it was<br />

pBI101, and later Inany verslot?s were constructed by Beckcr et a!., (1992). Additional<br />

information on binary vectors was provided by several authors (Jones et al., 1992; Futterer,<br />

1995). Rcccnlly it lias been suggehted to use binary vectors that conla~~l two acparale '1'-<br />

DNAs (Crameri el al., 1996). The log~c of tlie authors is that the antibiotic resistance<br />

marker will be lost during subsequent generations. A helper plasmid contains the vir gene<br />

complements that are essential for transfer of T-DNA.<br />

Protfioiers.. Futterer (1995) reviewed the subject of promoters for genetic<br />

. .<br />

transformation of plants. In the early years of gcnetic transformation of plants,<br />

~nvestigalors were merely interested ill showing thal integration and expression of<br />

transgenes is a rcality 111 plants. So, initially promoters endogenous to thc T-DNA were<br />

used. Soon 11 was observed that the promoters ibr opine synthesis were weak. Cliua and his<br />

--..<br />

collaborators (Odcll cl al., 1985) isola~ed tbc CaMV 35s promoter from turnip leaves<br />

~nfected w~rh the Caul~flower nlosaic virus (C;IMV). This promoter was found to be many<br />

folds stronger and resulted In constitutive expressior~ of tlie introduced genes. However.<br />

/<br />

sub-domalns of this promoter were found to be exelling tissue specific expression (Benfey<br />

and Chua, 1989). Since then this proliloter became an attractive candidate for plant<br />

molecular biology research. Its fusion wit11 part of mannopine synthase (MAS) promoter<br />

- -- .<br />

increased the potency of this promoter (Kay et al., 1987). Valuable information can be<br />

found in the reviews by Benfey and Chua (1989), Wang and Cutler (1995).


The above promoters were found to be Inure efficient In dlcots a?d there was a<br />

.- -<br />

distinguished interest for finding out the promoters for monocots. In the early studies with<br />

/-<br />

rice (Shimanloto et al., 1989) the CaMV 35s promoter was used to activate tile selective<br />

7<br />

and repotter genes. However, it was found that this promoter was more efficient in dicots.<br />

Conlbination of this promoter with other pro:lioter segments and introns were even tried.<br />

This concept was followed by the wage of ccieul alcol~ul dehydrogenw I (Adlil) gene<br />

- +...- .-<br />

(Callis et dl., 1987; Kyozuka ct al., 1990). A silliilar approacll to integrate the first intron of<br />

the 3hru1iki.11 I gene of maize was also followed in cereal tratlsformat~on (Mass et al.,<br />

1991), but I: becatue less popular in the subsequent years. Rice actin gene pro~l~oter (Acll)<br />

- .<br />

was found to be even nlo1.e potent than the above two (Zliang ct al., 1991). This pronioter<br />

showed more or less similar potency as that of Ettiu pron~otcr tllat is a recombii~allt<br />

promoter cotltaining a ti-ul~cated Adlil~n?_oter with other elements (Last et a]., 1991). The<br />

--<br />

curretlt most effective promoter is tile Ubiyuiiiii I (Ubii) of n~aize (Clrrislcnseit et al.,<br />

1992). Tii~a proilioter was used successfully to tlnnsfornl !\,\.heat (Weeds el al., 1993)<br />

barley (Wan and Lemaux, 1994) and rice (Toki et nl., 1992). Another pronloter of tile rice<br />

Aldviure P (Aidl') gene was ibund to be one of tile bctter alternat~ve (Kagaya et al., 1995).<br />

Tcnrii~zrrlars: Knowledge of the ele~lleiits for geilc expression 1s as important as the<br />

promoters. It is considered that fundamentally n1RN.A is stable unless destabilizing motifs<br />

are involved. Specific examplcs of the studles that handled the polyadenylation signals in<br />

plants are investigations of Mogen ct al. (1990). 1:otiinie et al. (1994) studied the essence<br />

of the terminator regions and impact of 3'-end ~.cgions on the level of gene expression of<br />

octopine syntliasc gene and otllcr gene constructs was studied by lngelbrecht et al. (1989).<br />

Hence, the usage of tern~inator region at [lie 3' end of tile transgene was found to be


essential. In practice, temllnator of ~iopali~ie synthase gelle or of the CaMV was fused into<br />

the respective chimeric gene.<br />

Selectablr O I I ~ rryorriilg nrarkers: These are essential comporlents of the total<br />

cassette that is to be tr:rrlsferrcd lo llle pla~ii cells, These genes select ihe transfor~lled cells<br />

from that of the untransibrnled. Sorlle of the popular selectable markers arc ant~b~ot~c<br />

markers such as kanamycin, hygromycin, strepto~nycin etc. Other groups of' selcctablc<br />

nlarkers are the ones that co~lfer resistu~lce to herbicides, such as phopbinohtrici~~.<br />

biolophos, glyphosate. dalapllon etc. As noted above this group of selectable nrarkers can<br />

serve a dual pull,ose: to select transfom~i~nts and to render crops resistant lo respective<br />

herbicides (D'Halluin et al., 1992). The third group is ti~verse, including gencs that cause<br />

resistance to high nitrate, 111gIl a~lli~~o ac~d levels (lys~ne or tl~rconine) or amino ac~d<br />

analogues (Schroit, 1995). Most commonly used selectable genc IS the kanamyc~n<br />

rcsista~~ce gcnc ineo~~lyci~l pl~ospl~otra~~sfcrase (~rpfll). This gene producl dctuxilics<br />

an~inoglycoside ;~~~ub~otics such as ka~~alnyci~~, neonlycin, gencticin and paromomyci~i<br />

(Vurdi et al., 1990). The gene Iipt was isoloied f'rom licoli. It codes for hygrornyc~n<br />

phosphotransfrrasc that deroxilies antibiotic hygronlyci~~.<br />

Kcporter ge~~cs are coding sequences that, upon expressloll in the transgenic plant,<br />

provide a clear 111dicat1011 tlliit gc~letic transfor~llat~o~l did take place. They are useful also<br />

for transient expressio~~ experimenis, in wlirch tl~c iransgene is not necessarily integrated<br />

into the lhost gcnolne. Scllrott (1995) rcvicwcd a review of genes used and tllcir assay<br />

methods. blost co~ll~no~lly used genes used, as ~cporters arc the ones that code for CAT,<br />

GUS, Luciferase and Glee11 1:luorescent I'rotein (GFP). Thc assay for the riidA that codcs<br />

for GUS was developed by Jefferson and his associates (Jefferson, 1987). This gene has


gained an illstant popi~larity owi~ig to 11s cfticic~icy and localiza~ion of the exprcssio~l<br />

without extrnctiiig llie tissue. The luoiferase reporter gelie bas developed by de Wet a1111<br />

associates (De Wet el al., 1985) and was reviewed by Luelirsrn el al. (1992). The<br />

gene<br />

that codes for green fluorescelit prote~~i (GFP) *as the recellt one isolated from jcllytish by<br />

Chalfie et al. (1994). Many reports apprarcd In support snd against tlie usage of GFP<br />

(Ilaseloffai~d Amos, 1995).<br />

f<br />

2.2 Legume tissue culture and tra~~sfor~iiatio~~<br />

Leguminosae is a very i~i~portant falllily of angiospcrnls comprising of ~nany<br />

species in relation to Iiuman nutr~tion, pasture and tbdder needs. Important protein rich<br />

seed bear~ng plants, n~ostly lierbaceous, such as pros, lentils, beans collectively known ss<br />

pulses are members of this filmily, They rank next to cereals in tenns of human nutrition.<br />

In qua~ititative significance they are far bchind the cereals, however, gaining some due<br />

inlportancc as food additives ill tlie recent yc,irs. Domi~~ot~ol~ of tlic cereals in tlie food<br />

sector allowed oi~ly miirpinal ~~icreascs in tile overall yield of pulses. I


2.2.1 Food legumes<br />

There are several apecles and subspec~es classified as food legumes. But, only few<br />

(15 to 20) genera are vely important, Hundreds of cultivnrs witl~i~i these genera ore<br />

included in the agricultural practices, each having sorue selected attributes. Most ilnportaut<br />

of tliese species are Glycitie irrar, Amchis /i)y~ugoeo, CI~CL'~<br />

(~ri~iiir~iiri. L~IIS (1111i11~rris.<br />

Pisurri ~crfivu~ri, Lor/r)v.irs saiivirs. C(ijnrrres ccijair, Yigiiri ruiiiirio, Vig~in rriu~rgo, Yi,qiitr<br />

ocoirirfo/icr, Viyrrci rtr~ibcllntc~, Vigiia rirrgrricril~i/ir, Plroseulir~ vrrlgriris, Mrrrro~~~lorrrri<br />

nuj7onrr11 etc. These species col~stitute over 80% of total food legume output. 1111t1;1lly<br />

many of these specles were thougl~t to be recalcitlant ill<br />

tissue culture and latcr<br />

advancements ol' biotcchnological tecliiiiqlles gr;rdunlly e;ised the technical difficult~cs.<br />

Micropropagation was relatively easier wl~cli colnpared to adve~~titious shoot ~~rgenerauon,<br />

where the shoots originate fro111 pre-existing nieristems. Advelitilious regeneration is a pre-<br />

requisite for a successful ge~iet~c transforniation. Each species responded differently In<br />

tissue culture and some of tlie protocols were successf't~lly used for gcnctic transforniation.<br />

Organogenesis is a widely used tissue culture strategy for rcge~icration of whole<br />

plants via direct and indirect illduction of varlous plant organs such as sl~oots atid roots.<br />

Generally shoots are induced ~~iitially fiom selcc~ed expla~its followed by roots. Mult~ple<br />

shoots are il~duced e~ther directly or through callus phase where the techniques are termed<br />

as direct and ind~rect ol.gal~ogenesis respectively.<br />

Direcr organogeriesis: Following are some selected repons where organogenesis<br />

without any intermediary callus phase lias been reported in various ecol~omically in~portal~t


legume crop species. Cotyledon explants for the indirect regeneration shoots was<br />

developed for soybean (Glycine niar) using 2,4,5-T for embryogenic callus induction.<br />

Somatic embryogenesis was best on SE (soyabeen embryo) medium supplemented with<br />

BAP and best regeneration of shoots was found on hormone free medium or on medium<br />

/<br />

with IBA (Cho et al., 1992). Multiple shoot regeneration was obtained from leaf and<br />

hypocotyls explants of Glycine wigtii. 3-4 day old seedlings cultured on NAA and IBA<br />

containing medium gave rise to multiple shoot buds (Pandey and Bansal, 1992). A wild<br />

relative of soybean, Glycine clandeslina, was induced with brown, compact and nodular<br />

callus and plants were regenerated from it (Sharma and Kothari, 1993). Culturing of<br />

zygotic embryos and nlultiple shoot regeneration was studied envisaging their use for<br />

micro projectile bombardment in Arachis l~ypogaea (Schnall and Weissinger, 1993).<br />

Effects of auxins (IAA, NAA, IBA and 2,4-D) and cytokinins (kinetin and BAP) were<br />

studied for multiple shoot regeneration from cotyledons and cotyledonary node explants of<br />

Arackis liypogaea (Venkatachalam and Jayabalan, 1997). Various concentrations of BAP,<br />

2-iP, chloropyridylphenylurea (4-PU), TDZ and zcatin in co~nb~nation with NAA were<br />

used to i~~lprovise the regeneration from cultured leaf segments in Aruchis hypugueu<br />

(Akasaka et al., 2000). Explants such aa petioMes, ep~cotyl sections and other seedling<br />

explants were used for regeneration of AI.uL.~~J liypoguea (Cheng et al., 1992).<br />

Regeneration via caulogenes~s (shoot organogenesis) was achieved in Arachis /~ypaguru,<br />

from plumular explants. Tile shoot buds rcgeilerated on medium containing brass~n, BAP<br />

and P-naphthoxy acetic acid (Ponsamuel et al., 1998). In vitro regeneration of Arachis<br />

hypogaea was achieved via organogenesis by employing BAP as the principal multiple<br />

shoot inducer. Optimal temperature for culturing of leaf explants was standardized, and


effect of silver nitrate was studied (Pestana et al., 1999). Wild species are generally less<br />

responsive in tissue culture. However, differentiation in tissue culture using mature leaf<br />

expiants was first reported i~i Aracltis vil/os~r/ic.orpu (Johnson atid Pittman, 1986). A<br />

protocol for tlssue culture based regeneration of Artichis pitrrui, a wtld perennial peanut.<br />

was developed. Day length and media effects were directly correlated with variations In<br />

regeneration (Ngo and Quesenberry, 2000). Effect of aluminium on the tissue cultures of<br />

Piiuseoliis t'iilgirvis was studlcd (Esp~tio et ol., 1994). Direct plant regeneration and<br />

multiplicat~on was obtatiicd ftom the embryo and cotyledons of cominon bean Pkusc.olus<br />

vlugaris that were inibrbed for 3 days atid cultured on a soil rnediun~ for 7 days (Mohamed.<br />

1990). A small portion of split embryonic axis sliowed a genotype dependent multiple<br />

shoot regeneratioti in Pliuseolirs vulgaris and P, cocci~~rus (Santalla ct al., 1998). Various<br />

factors sucli as l~ght intensity and duralion plant growtli regulators etc, were studied whilc<br />

regeneratitig multiple al~oots from mature en~bryonal axes of Cujanus Cajar~ (Franklin et<br />

al., 2000). Epicotyl, hypocotyl, leaf, and cotylcdo~iary nodal explants were shown to<br />

regenerate a h~gli frequency of multiple shoots with high BAP and kinetin of pigeon pea<br />

(Cajoirus caja~~) (Gretha et al., 1998). Multiple shoots %ere regenerated from distal ends of<br />

cotyiedo~~ary segments of. Caja~rirs cajan. This was achieved using conibinations of BAP.<br />

kinetin with adenine sulfate (Molian and Krislinarnurthy, 1998). Cotyledonary node culture<br />

using BAP and IAA was reported in pigeonpea, Cajirtlus cujut~. A mass of~nultiple shoot-<br />

initials formed at the axillary bud region of. tlrc cotyledonary node of the seedlings within<br />

two weeks. The cotyledotia~y node along witli the mass of shoot-init~als excised from the<br />

seedling, continued to form new shoot-initials on MS medium containing 6-<br />

benzylaminopurine and supplemented topically with indole-3-acetic ac~d. (Prakash et al.,


1994). Clonal propagation of FI inte~spccific hybrids of Vig~rci radiaia atid K ~rtungc, was<br />

done. Mult~ple sliuots were induced fro111 the cotyledoliary node explants of FI hybrids<br />

(Aven~do et al., 1991). Effect of culti~re ~iledi~i~n o~i plat11 rcge~~eratioii fron~ cotyledons of<br />

Yigrrcr radiaia was studled. Genotypc size, oriclitation 2nd age of thc explant showed very<br />

sign~ficant effects on plant regeneration (Gulati and Jaiwal, 1990). Diftkrsnccs 111 siioot<br />

regeneratio11 liolii coryledo~iaiy llodc expla~its 111 Asiatic Vigrtci apccies were used for<br />

gelioliiic group~~ig wtth~n subgei~us ('rro/oiro/~/rb(Avcnido and Ilattor~, 1099). Shoot lip<br />

cultures were establislied for plant regeneration of n~u~igboa~i, Vigtzucirliolci Complete<br />

plants njere regenerated d~rectly without an intervening callus phase from shoot tips on<br />

basal nlediuril (MS salts -. I35 vitamins). Regeneration frequeilcy var~ed with cultivara,<br />

explant slze and growth regulator conib~natioii; 111 [lie ~ncdiu~n. Additio~l of cytok~~lins<br />

induced a var~able atnount of callus at the base of tlie slioot tip, followed by multiple shoot<br />

formation. BAP, kiilrtili and zeatiii each ~nduccd i~~ulliplc slioors ill 100% of the cxplants<br />

but thc liigliest ~luiuber of regenerntits per explants (9) was produced with BAP. (Gulati<br />

and Jaiwal, 1992). Regeneration was achieved using cotylcdo~laiy nodes giving rise to<br />

axillary shoots of I'ignu<br />

i~tuttgo (black gram). Regz~ierntion lias been acli~eved through<br />

organogcnesis usiiig explilnts from axillary slioota or~ginatiilg froni the nodes of seedlirigs<br />

ger~n~~iated in cytoki~li~i co~i~ai~lillg rnedluni. Seeds gerulinated in tllidiazuron (TDZ)<br />

supplemeilted MS produced 11 axillary shoots/cotyledonary node. Stern and petiole<br />

explants derived froin these axillary-shoots produced callus along with shoot-buds after 2<br />

weeks of culture on half stl-engtll MS supple~nentcd with NAA. Shoot-buds were also<br />

produced from varlous sites of injury caused by ~ncisions on the stem explants. Full<br />

strength MS salts tnh~b~ted bud for~natio~i (Das et al., 1998). Cotyledo~l explant5 der~ved


from germinated seeds of a multipurpose legulnino~is tree. Srsboi~in graildifolia. showcd u<br />

high percentage (96%) of expli~nts prod~icilig .n least 30 slioot bud per expinlit (Iletre~ c~<br />

al., ~YY~J.<br />

Irii111~~c.l o~~flriogcvw~i~: Regcncri~tioli ~III(I ~IIJI~SIS ur c;~llus li.olii Ilu\v-sorted<br />

heterokaryolls of soybeall (Gli,c,~ric 1rici.1) mid 6' c.ciir~,sc,c.irs was donc (Haliiluatt ct a1 .<br />

I9S8). I'lcces<br />

of 1e:rvcs li-o~n sectll~ligs ot' ,liii~,/ii\ jirii/oi ivclc IC~L'IICI;IIC~ \I;I<br />

orgaliogelieals a~ld so~li;~tlc e~iibryogcncsis path\\.;lys. Plant rcgelleratioli was obtaillrd<br />

I;I<br />

two developmentnl path\vays o,-ganogenesls and soniatic eniblyogenesis. Orgaliogcnic<br />

callus cultures were i~illiatcd Sroni pleces of leaf oli MS niediunl suppleliirlitcd wltli NAA<br />

or 2,1-D ill culiiblliatiuli \villi BAP, kinetill or 2-IP. Tlie niust sui~able co~~ibi~iat~u~i for<br />

plant rege~ieratioii tliruugl~ orgn~iuge~icsis was a11 iliitial lliediuli~ cornposed ol' NAA and<br />

BAP fbliowed by transfer ot'the callus to a slioot inductioli medium (MS+ BAP) Routing<br />

of regenerated shoots was read~ly acli~cved by culture on MS w~tli NAA. Embryogenic<br />

callus cultures were inltialcd froni plcces of leaf on MS n~ediurn supplenlented with<br />

picloram ~n coliib~lietio~l w~ih kitletin, Aeatlil, BAP or 2-iP, alid the iiioat suitable<br />

comblnat~ons wcre picloram, BAP or 2-il'.<br />

(Iky ct al., 2000j. A comparative study of<br />

callus t"ormation and pl;~nt regelicratlon was dolie using d~fttrciit explants of Phuseolus<br />

vulgaris and P. coccitieus (Ruiz et al., 1986). A different sylithctic auxin 2,3,5-<br />

trilodobenzoic acid was sllowii to ~nduce callus atid roots on stem cuttings of niungbeali,<br />

Phaseul~is aureus (Ali and Jarvis, 1988). A novel liietliotl of culturing lcaf disc explnnts of<br />

pigeon pea (Cojrirruv ccijtrri) on ~~iulril)lc slioot ~liduction niediuni with IAA and BAP where<br />

the shoots originated via callus phase (Itathore ct al., 2000). Plants were regenerated fro111<br />

leaflet-derlved callus of Aescl~)~noir~oie setisiliva, A. urrie~icunu and A, villosu. Explants


were induced to for111 callus when asept~cally cultured on Murashige and Skoog medium<br />

solidified w1tl1 0.8% ag;ir ,lnd colitallnlig NAA 311d b~~i~ylilde~i~ne. Slloot regeneration was<br />

readily ach~eved and roots were induced when shoots were transferred to medium devoid<br />

of growth regulators or w~lh NAA. Callus from A. jnlcciicl failed to regenerate shoots.<br />

Explants froni leaflets of A. jluri~i~~ei~sis d~d not produce callus w11e11 cultured ill vltro. (Rey<br />

and Mroginskl, 1996). Pre-soaked sccds of Viglici rtrtliiiici showed variable callus growth<br />

wile11 exposed to varioua liite~lsit~es of light whcrc tho slloot regenciatlon was also vnr~ablc<br />

under dlferellt intens~tics of light. Hormonal supple~nents of tlii: culture rnediun~ liad<br />

some proniotive effect on regeneration under various light intensities (Narciso et al., 19L)7).<br />

Analysis of tissue culture borne genetic variations (somaclonal variations) was done in<br />

Pislo11 sotiviirii (Griga et al., 1995). One hundred and forty six son~aclo~ies were generated<br />

that were resistant to the puritied toxin of Cc.rcuipuru cciilesctvii (Kaush;~l et al., 1997).<br />

Somatic cnibryugcnesis is anuther el'ticient strategy where regenerating tissue<br />

Initially attalns some dctined globul'ir, ell~pt~ct~l etc, shapes and .tilose units gradually<br />

regenerate illto whole planls. Usually tile globular proenlbryos split into torpedo shaped<br />

ones and shoot primordium regenerate from tile axillary portion. Relatively regeneratloll<br />

via somatlc embryogeilesis pathway consumes more ti~ne than organogenic pathway. A<br />

fast and efficient regeneratloti system vla somatlc enibryogei~esis was developed uslng<br />

BAP and NAA on cotyledo~l explailts of Glycirie rliux. Plants were ready w~thin six weeks<br />

from explant stage (Fu et al., 1995). Ail efiic~cnt regeneratton system was developed for<br />

Glycirre io~r~ertrc.ito via sonlatic embryogenesis pathway. Effect of plant growth regulators<br />

and pi3 was studied ;ind condit~ons were standardi~ed (Lee, 1992). Proinotive role of


thidiazuron (TDZ) was studied to induce direct somatic embryogencsis and regeneration<br />

from seedl~ng explants of Arochis l~ypogaeii (Gill and Saxena, 1992). Direct somatic<br />

embryogenesls from zygot~c embryos derived from 40-day-old immature pods of Arachi~<br />

i~ypoguea using 2,4-D were studied where various factors like growth regulators, sucrose,<br />

genotypes and length of elnbryo~iic axis influenced frequency (Reddy and Reddy, 1993).<br />

2,4-D-induced somatic elilbryoge~iesis was obtained from embryogenic calluses derived<br />

from hypocotyls explants of Arucilis iiypoguea. High concentration of 2,4-D decreased the<br />

frequency of somatic embryogencsis (Venkataclialam et al., 1997). Synthetic seeds oS<br />

Arucl~is iijpogueu were obtained by encapsulatilig 5 to 30-day-old somitlc embryos and<br />

geminated by on medium with various concentrations of sucrose, maltose, BAP and NAA.<br />

25% of these embryos were filially converted into plantlets (Padmaja et al., 1995). A<br />

refinement of embryo rescue technique to improve plant recovery from early heart shaped<br />

embryos of interspecific hybrids of Pi~ascolur poiyutlrtlus and P. viilgaris was reported<br />

(Geerts et al., 1999). Rates of ethyle~ic production were determined in highly embryogenic<br />

and virtually non-embryogenic tissue cultures of Aledicago sarivu ssp. faicata during a 10-<br />

day induction period on medium containing 2,4-D and kinetin, and during the first 10 d of<br />

somatic embryo ibrmation on growth regulator-frcc medium. It was concluded from thesc<br />

experiments that the high rates of ethylene product~on during embryo iilduction are not<br />

essential for subsequent enibryo differentiation (Meijer, 1989). Efiicient plant regeneration<br />

via somatic enibryogenesis has been developed in pigeonpea (Cajanvs cajan). Cotyledon<br />

and leaf explants from 10-day-old seedlings produced embryogenic callus and somatic<br />

embryos when cultured on MS supplenlented with 10 pM thidiazuron (TDZ). Subsequent<br />

withdrawal of TDZ from the induction medium resulted in the maturation and growth of


'<br />

the ernblyos into plantlets on MS basal rnediun~. (Sreenivas et al , 1998). Distal ends of<br />

cotyledons were used to induce somatic embryogenesis in Cajanus cujan by applying<br />

BAP, kinetin and adeilitie sulfate atid whole plants were regenerated (Patel et al., 1994).<br />

f<br />

Direct somatic embryogerlesls was induced from excised seedling leaf segments of<br />

/<br />

vegetable legume, Psophocnrp~is reirngo~iolobiis by using NAA atid BAP and the<br />

coliversioll frequency of cotyledonary embryos was 53.3% upon culture on MS medium<br />

cor;taiili~lg ADA for 7 days followed by transfer to MS medlum supplemented with 1BA<br />

and BAP. (Dutta Gupta et al., 1997).<br />

2.2.1.3 Other methods<br />

Besides orgal~ogellesis and sotllatic enlbryogenesis the techlliqucs such as<br />

regeneration of platits from isolated protoplasts, microspore, anther and ovule cultures etc.<br />

are less frequetltly applied in the tissue culture studies. Excellent ylelds and quality were<br />

achieved for soyabean (Giyci~ie ~llax) protoplasts and l~latits regenerated from agitation-<br />

derived protoplast preparations had a higher cllance of being derived from intact cells.<br />

(Zaghnlout et al., 1990). I1rotopl;~st isolation in Araciiis iiypogu~a is relatively rare<br />

phenomenon and there is one repor1 for isolatioll and regeneration of plantlets through this<br />

method and tiis method was effectively used Ibr elcctroporatioll mediated tralisforniatioll<br />

(Li et al., 1995). A different method us111g 1hi11 cell layer tech~i~que and transverse thin cell<br />

layer (iTCL), where the ffCLs were cultured on TDZ for Piiaseolus vulguris was<br />

employed. Shoot multiplication was enhanced uslng BAP with silver nitrate (Cawallio et<br />

al., 2000). A reproducible protocol for plant regeneration from seedling hypocotyls<br />

protoplasts using varlous growth regulators such as zeatin riboside, GA, and 1Bh was<br />

reported in Vigr~a rubloba~a (Bhadra et al., 1994). Callus regeneration was achieved fro111


protoplasts isolated from mesophyll tissue of sweet pea Lofi~yrus odorolus (Razdan et al.,<br />

1980). Protoplasts were isolated from leaf tissue of Lens culinaris by using cellulase,<br />

macerozyme dissolved in 0.5 M mannitol witit pental salts. However, the callus cultures<br />

could not be regenerated into plantlets (Stiff et al., 1991). Genetically variable plants were<br />

obtained from anther derived callus cultures obtained from microspore cultures of Cuja~ius<br />

cajun (Kaur and Bhalla, 1998). Cryopreservation is an excellent method for germplasrn<br />

conservation provided an efficient method is abailable for regeneration. Methods for pollen<br />

embryo cryopreservation and conservation of germplasm of Arachis, Rrossica and<br />

Triticunl sp. were explicitly reviewed (Bajaj, 1983).<br />

2.2.1A Genetic transforniatio~i<br />

h/<br />

Aerobacierii~m-~nediated frat~sJ?~r~t~urio~i: Direct crown galls were induced by<br />

infecting stem explants of Lentil (Le11s a~lbiuris) with four strains of Agrobacieriuni<br />

lurne/iucie~is. Opines were detected in the crown gall and Southern analysis showed that T-<br />

DNA was transfersed (Warkentin and MctIughen, 1991), inclusion of potato suspension<br />

culture in the culturc niediuni cnilanced the trailsformation frequency of the callus obtained<br />

from In vitro grown seedlings ofthe Glyci~~e 1lia.r (Chang and Chan, 1991). An efficient<br />

protocol for Agrobacreriuiii-n~ed~ated transfornlatio~l of cotyledon explants from in vitro<br />

grown seedlings of Amchis 1typogoc.u that resulled in a very h~gh frequency of<br />

transforniation (55%) was reported. The expla~lt, were transformed with binary vectors<br />

pBI12I and pROK1I:IPCVcp that consisted oC1ipt11 as seleclable marker gene and lndlan<br />

Peanur Clump Vlrus coat protein gene as the agrono~llically important gene (Sharma and<br />

Anjiah, 2000). Co-cultivation of cotyledonary node explants of Ari~cir~s Iiypuguea was<br />

done with A. IUIII~~UC~L'IIS strain Ilarbor~ng binary vector containing uidA gene as reporter


and nprII for selection. PCR and Soutllern analyses confinned the integration of transgene<br />

(Venkatachalam et al., 1998). Transformation of A. hjyogaea was also done using the<br />

somatic embryogenesis pathway. The cotyledons were co-cultivated with A. rumefaciens<br />

strain LBA4404 containing uidA and 11pill genes. Somatic en~bryos were ~nduced with<br />

NAA and BAP and later regenerated into whole plants with a transformation frequency of<br />

47% (Vcnkatachalam et al., 2000). Embryo axis explants were uaed for thc<br />

Agro6ucie1~iiii1i-ri1ed1ated transform;~tion in /lriiciri;, I~ypogcieu (McKenlly et al., 1995). In<br />

vitro grown seedlings of Crijoirrrs crijait were inoculated with three types of wild strains of<br />

Agrobncirriu~ir A281, A6 and T37 and cultivar-Agrobacleriiiir~ strarn specilic induct~on<br />

tumors was found (Rathore and Chaod, 1997). Lcaf disks of pigeon pea cv. ICPI5164 were<br />

transfor~iied by il iur~iejiciens strain LBA4404 plasniid pBAL2 carrying kanumycin<br />

resistance and GUS reporter genes under tile control of tile 35s promoter. The optimul~i<br />

period of coc~ilt~v;i[ion was 4 days, giving 47.8% tronsfor~ned calluscs (Arundhati, 1999).<br />

Tr;~nslbrn~alion of pigconpea wila acli~evcd LISII~~<br />

A. r~i~rlefu!/a(.if~t~ strain GV2260,<br />

containing the construct of isolated cowpea proteinase inhib~tor gene, pCPI. The gene was<br />

dr~ven by CaMV 35s promoter containing kanamycin resistance as plant selection marker.<br />

hlolecular analysis of tile putative transibrniatits was done by Northern blotting technique<br />

(Lawrence and Kuundal, 2001). /Igrobocleriiii11-n1ed1ated transformation of Vigi~u<br />

sesquipeiiuiis was achieved using cotyledonary node explant, where 2% of the shoots<br />

showed integration of riprII, phosphinothr~cin acetyl transferase bur) and uidA genes.<br />

Integration was confirmed using GUS histo-chemical assay and Southern blot analys~s<br />

(Ignasimuthu, 2000). Hypocotyl and primary Icaves excised from 2-day-old in vltro grown<br />

mungbean (Vigrla rudiata) were used for tlle transfomiation studies. This particular gram


legume was considered to be liighly recalcitrant. A convincing transforniation frequency<br />

was obtained and tlie frequency was confir~ned using GUS li!stochelliical assay and<br />

Southem blot analysis (Jaiwal et al., 2001). Culture and co-cultivation of priinary leaves<br />

of Vig~a mungo resulted In transfor~~ied calluaes tllat dld not regenerate into whole plants<br />

althougli the selected calluses exhibited positivr NPTll assay (Karthikeyan et al., 1996). A<br />

genomtc fragment e~lcodiny Plraseolrrs vulgaris arcelin-5a protein that confers resistance to<br />

an insect pest Zalrrores sirbjisciatus, along with 11pil1 and ~ridA genes were constructed<br />

into binary vector which was used to tmnsfon~i Pliasrolur ucrtri/o!ius<br />

where bud explants<br />

were used froiii genotypes (Dillen et al., 1997a). Callus of Phasrolus acutifolius var.<br />

acut~alius, the Lepary bean, was co-cultivated with Agrobacterium tumefaciens strain<br />

C58ClRif. Due to the high regeneration co~llpetence of P, ~curijolius, transfonned plants<br />

could be raised and transformed seed was obtn~ned. It is suggested that by interspecific<br />

hybridization of rransfbrnied I-', acurijoliirs witli tlie regeneratioil recalcitrant P, vulgclris,<br />

inrrogress~oii of desirable genes into P. virlycrris could be achieved. The relevance of thia<br />

approach with reference to alternative techniques aimed at reducing or omitting the ~ieed<br />

for in vitro regeneration (e.g. pollen transforniation, mcristem transfoniiation) is assesscd<br />

(Dillen et al., 3997b). Epicotyli and iiodal explants of' Pisii~~r surivlrm were transformed<br />

using binary and co-integrate vectors. The transformntion frequency was found to be the<br />

funct~on of explant source, A, tu~~~rfaciens straio, pea gellotype and duration of co-<br />

cultivatiori (Katlien et al. 1990). Sonx co~nniercial breeding lines of Medicago sutiva (alfa<br />

alfa) were transfornied by Agrohacteriuni method. Stable transgenic material was screened<br />

with nptII speclfic PCIl amplification and Soulliern hybridization (Desgagnes et al., 1995).<br />

Shoot and leaf expla~its of non-regenerable Mrdicago sp, were infected w~th


Agrobacleriuiii and ill otlier experiment transgenic platits were obtained by eloctroporating<br />

protoplasts (Kuchuk et a]., 1990). A. lui?teJ'ucieils med~ated transformation was performed<br />

with some members of a population of Medicogo sii/ivu into wli~ch a trait of somatic<br />

elnbtyogenes~s was ~ncotporated vla breeding and the transge~iic pla~its were analyzed by<br />

PCR (Du el al., 1994). A. i~oiie/i:cieilr mrdia~ed tra~isformetian of Liipiiitrs riiuiubilis was<br />

done using shoot apical explants. A first report in tliis liarticular platit, tratisforman~s werc<br />

contirlned with 11oi1-'idionctive Soutlicri~ iiybi.~dtfiition (U;iboogln et al., 2000) AII clllc<br />

accession, ClAT 184, of an important paslure legume, Sly/osutilh~'~ guiuiie~is, was<br />

transformed by Agrubac./eriiiiii-111ediated oictl~od with binary vector harboring itpill and<br />

11idA genes (Sarria et al., 1994). A rapid and reproducible protocol for l'orfoliirr~i<br />

subterrar~eiiin, a subterranean clover, was standardized uslng itpill, uidA and an alplia-<br />

amylase i~iliibitor gene. Tlie protocol shows that glucose and acctosyringo~~e was required<br />

in thc co-cult~vation medium. Four cointiiercial cultivars were successfully traiisfomed<br />

(Khan et al., 1994). Genetic tral~sfortnation of tllc broad bean, Vicici jhbu, was done using<br />

.4, tu~?iejircie~is and A, rhizogencs. Ttiree cultivars and mutants wcre used for the<br />

transforniai~on stud~es (Jelenic et a]., 2000).<br />

,,&lisiics:<br />

Biolistic trnnsibrniation of Gl),ciiie iiiclx was done using a bovine milk<br />

protein, p-casein cloned under seed specitic lectin promoter (hlaughan et al., 1999). The<br />

method of electroporatlon was used to transform the protoplasts of Glycbie urgvreu.<br />

Protoplast colonies developed into callus and 78% develop into transformed shoots that<br />

showed nplII activity (Jones and Davey, 1991). Elnbtyogenic callus tissue from various<br />

cultivars of Aracliis liypogaeu was used for bioiistic-mediated transformation. Callus from<br />

mature seeds, escape free selection on liygron~ycln, brief osmotic desiccation followed by


sequentlal subculture on cytokinin medium are the salle~lt features of this protocol<br />

(Livingstone and Birch, 1999). A novel method for transfor~natiol~ of Cajo~lus cajatt via<br />

biolistic bombardment was developed uslng a vector contailling heterologous oat arginine<br />

decarboxylase cDNA that is an Important gene ill polyami~ie metabolisni. An increase of<br />

putrescine levels was found in the transgeliic lines (Sivarnant et a]., 2001). Genetic<br />

transforn~ation of Pi~aseoius corcineris and P. v~ilgiiris was done using novel nylon micro<br />

projectiles. Ethanol co-prec~piration niethod for DNNpartlcle preparatio~l was superlor to<br />

that of ~a'*/s~ermidine (Genga ct al., 1992). A ~iovel method of electric discharge partlcle<br />

acceleration was used to transform seed l~ieristenl explants of Phusrolus vlgaris. 0.03% of<br />

confirmed transformed plants were recovered (Russell et al., 1993).<br />

Orher ntetho[ls. Electroporation, microinjection etc. are sonic methods of genetic<br />

transforn~ation of plants that were used less oftcn. Mesophyll protoplests of Cajutius cuju~i<br />

were elctroporated wit11 pias111id construct conta~ning 11p1ll gene as selectable ~narker and<br />

the transgenic callus was produced. Tlie transforn~ation freql~e~~cy was observed to be 30%<br />

(S;ira~lg~ ct :I\ , 1991),<br />

2.2.2 Forage atid pasture legumes<br />

Legunlinoceae is famlly of over 18,000 species, which has a distinct economic<br />

importance by virtue of processing protein rich seeds and ability to fix atmospheric<br />

nitrogen through symbiotic nitrogen fixation. Over 70% of the legumes are forage and<br />

pasture legumes (NAS, 1979). Many domesticated and wild animals feed on these forage<br />

legumes deriving most of their nitrogen require~nents from this class of pasture legumes.<br />

Owing to the magn~tude of their importa~lce several groups carried out studies on


ioteclinologicsl i~iiprovemel~t of the same so as to prov~de better food for the<br />

donlesticated anltnals.<br />

2.2.2.1 Orga~~ogencsis<br />

Llirecr orgai~age~iesis: A complete in vitro plant regeneration syste111 was<br />

developed for nzuki bean, Vigils migiiiuris wllerc advent~tious regeneration was observed<br />

from hypocotyls segments of cotyledonary node explants by using BAP (Avenido and<br />

Hattori, 2000). Elhylciie inl~ibnurs such :IS sliver nitate. 2,5-i1orbun1ad1ene 2nd cobitlt<br />

chloride were shown to enllailce the orgallogenic frcqucncy from the cotyledon explants of<br />

cowpea, Vigila ur~yuicuiulo (Brar et al, 1999). Regeneration wus achieved uslng<br />

hypocotyls and co:ylcdonary explants exc~ssd from green ~nln~ature pods of cowpea<br />

(Vigi~rc uiiytiicuiuru). A primary polyani~ne putrescine was also used and some son~aclonal<br />

variation was also observed (Pellegrineschi, 1997). Morphogencc potentials of shoot<br />

regeneration from root explants of Loius coriricuiurus were exploited to regenerate whole<br />

plants. Explants were ~soli~ted fro111 3 different parts of the root from 4, 8 and 16-day-old<br />

seedlings and buds were ibr~ned on the proxinlal end of explants, and roots on the distal<br />

end. Explaiits located proximally regenerated mow shoots than those orig~nat~r~g from the<br />

distal end. In the presence of BAP the ~nu~llbcr of rcgcneratcd plants was higher because<br />

numerous meristi'matic zones formed in the secondary cortcx. In contrast to the explant<br />

response oil horoione-fret: medium, disturbance of explant polarity wcre observed in the<br />

presence of BAP. (Rybczynsk~ et al., 1995). The pie-lrealrne~lt of immature inflorescence<br />

with phytohornlones, especially BAP, and culturing on horrnor~e free medium, resulted in<br />

shoot bud induction and shoot dlfferentiat~on, of an inlportant pasture legume Medicago<br />

lupulina (Li and Demarly, 1995). Preconditioned multiple shoots were obtained by


germinating the seeds of pasture legumes, Lutlt,~~us ticrra, L, oclr~~ris and L, sativus. Best<br />

nlultiple shoot frequency was obtained on ~ilrdiuili contain~ng 50 pM BAll (Malik et al.,<br />

1992). Mulliple shoots were induced born slioot tip explan~s of iii vitro grown seedlings of<br />

iWacror)~io~~~ii ii~iijluriri~i. Effects of ;tdclllne sulfatc. BAP and IBA were studied<br />

(Varisaimoliamcd ct al., 1999). High frequency regeneratio11 of adventitious shoot buds<br />

was observed in Pi~~ilit suti~~ir~ii. Silver nitrate did not sllow :my promotive effect on<br />

nlultiple slioots but resulted in slloots \vttli ucll-dcvelopsd tetldrtls and large stipulcs<br />

(Ozcan et al., 1992). Young i~lflorzscenccs of Cerutu~iic~ silic/uu were cultured 011 MS<br />

mediuni supplenlerited with BAP with various concentrations of casein liydrolysate fbr<br />

obtaining multiple shoots (Bl~alerao and Chinchanikar, 1992). Luthyrlis sj~lvestris (flatpea)<br />

is an important forage legume especially in acid~c soils. Hypocotyl derived multiple shoot<br />

systeni was developed for the clonal propagation of this species (Foster et al., 1991). All<br />

efficient micropropagation metllod was developed for Scsbo~licr rostru~u by opt~~li~z~ng<br />

parameters 11ke variations in the basal mcdiulli and pilotoperiod changes (Pellegrtneschi<br />

and Tepfer, 1993). Mult~ple shoot rcgenvrurion was observed fro111 Immature seedl~ng<br />

explants of Lupiriu~ ~riu~ubilis by using TDZ with modified Schenk and Hildebrandt<br />

lnediulrl (Rah~m et a]., 1999). Complete plants of Lupi~rus iutetrs were regenerated from<br />

hypocotyls segments and were eficielitly ~nodulated by Brudyrliizobiu~n sp. (Dam and<br />

Chamber, 1993). A~~tityilis cytisoides, a legulne shrub used for aforestation and reclamatiori<br />

was successfully regenerated fro111 both juvenlle (cotyledonary nodes and apical buds) and<br />

mature (axillary buds) explants (Gavidia et al., 1997).<br />

Indirect orgunoge~~esis: Plant regeneration was achieved via callus phase using<br />

hypocotyls explants of an irnporta~it forage legume Astruguius udsurzens. The


combinat~ons and concentrdtions of different growth regulators such as 2,4-D, BAP and<br />

NAA were sl~own to br crit~cal factors for both the frequency and \he type of callus<br />

format~on as well as for the potential of callus differentiati011 (Luo and Jia, 1998). Petiole,<br />

stem, lzaf and cotylcdonaty explants of Medicoyo saliva werc used to induce callus by<br />

ustng 2,4-D and whole plants were regenerated (Moursy et al.. 1995).<br />

NAA in<br />

combi~iation w~th BAP was used to regenerate plants via callus phase by using stem, rach~s<br />

and leaf explants of beach pea, Lurliyr~rs jcipuriicrrs (Debnath et al., 2001). Callus,<br />

organogenesis and plantlet fornution was observed from seeds of Clltoriu renlutru in the<br />

presence of high kinetin and IAA levels (Lakshmanan and Dllanalakshmi, 1990).<br />

Canavanine and canaline were detected in the callus cultures induced with BAP and IAA<br />

in Cariavuliu lirieum (Hwang et al., 1996). Shoot buds were regenerated either directly or<br />

through callus phase from leaf explants of fodder legume Vignu ocorti~i$olin and various<br />

factors affecting regeneration were also studied (Bhargava and Chandra, 1989). Four<br />

species of Srsburiiu, S brspirrosa, S, caniiubiria, S. l;'oniiosu and S, se~buii were<br />

regenerated in vitru by using root, hypocotyls and cotyledon explants. Callus was induced<br />

with 2,4-D and shoots regenerated with BAP (Zhao et al., 1993). Callus was obtained from<br />

mature leaves, stems, petioles and roots of young seedl~ngs of Psoruleu corylifolia and<br />

regenerated to whole plants on BAP contai~ling n~edium (Saxena et al., 1997). Hairy rools<br />

that were induced by infection wltll A.rl~izoger~es were used for the regeneration of<br />

rnulr~plc slloots In Crotolureu juilcea followed by colrlplete plant regeneration and<br />

confirmation of their transgenic nature through Soutllcrn blot analysis (Ohara et al., 2000).<br />

Seventeen accessions of Medicagopolyr~iorplicl were screened for their capacity to produce<br />

callus. Hypocotyls proved to be the best for the regeneration of whole plants via callus


phase (Scarpa et a]., 1992). Direct and indirect nlultlple shoot regeneration was reported in<br />

the winged bean, Psophocorprrs tetrugo~~olohris. Shoot tip, epicotyl, hypocotyl and<br />

internode explants were cultured on Ms rnedia supplelnented wit11 different concentrations<br />

and combinations of BAP, NAA and IAA. Plant regeneratton was acllleved from internode<br />

and hypocotyl explants via direct orga~iogenesis and fronl internode and ep~cotyl explants<br />

via indirect orgallogenesis drpend~ng on tllc gsuwti~ regulators (A~~julll;iilara et sl., IYc)X).<br />

Callus derived shoot regeneration was achieved from root explall~s of Lutilyr~a sor~vus by<br />

using various concentrations of kinetin and rootillg was done on IBA (Roy et al., 1992).<br />

Macrufiiiurn uirupurpureuni is a ~uodei plant wit11 broad synlbiont range fbr ~lodulatlon.<br />

First report of in vitro plant regeneration 111 th~species by using hypocotyls expiants was<br />

reported by Ezura et al. (2000). A novel rnethod of ind~rect organogenic regeneration was<br />

developed for Pisuni soiivirn~ using thin cell layer segments of nodal explants I'roni which<br />

leaflets and axillary buds were removed (h'aue1.b~ et al., 1991). Indirect regeneration of<br />

shoots via callus phase was obtained In paature legu~lles Lolo~~urlls Darrie~ii (Bovo et al.,<br />

1986), Cer~iruse~rla brusilionurr~ (Angclo~u et al., 1YY2), Desr~totliur~i uJJine and D.<br />

unciirofu~r~ (Iley and Mroginski, 1997). Various explants like hypocotyls, root and leaves<br />

of pasture legume Slyloso~rfhrs g~lyane~~~is were used to regenerate shoots via callus pha~e<br />

(Meijer and Broughton, 198 1).<br />

2.2.2.2 So~natic enlbryogr~~esis<br />

Five species of Metiicagu, M. ciliuris, M. ~r~erc.~, M. orbicuiaris, M. polyniorpha<br />

and M, truncuiulo were assessed for somatic en~bryo induction with 2,4-D. Incorporation<br />

of PEG resulted in better maturation of the embryos (lantcheva et al., 2001). Callus was<br />

induced from stloot-tip cult~ires of eight species of Tri/diurn and whole plants were


egenerated via somatic eliibryogenesis of T. rubens (Parrot and Collins, 1983). Direct<br />

somatic embryogenesis and plant regeneration was obtained from protoplasts of red clover,<br />

Trifoliitm pruretrse (Radionenko et al., 1994). Plants were regenerated by the direct sonlatic<br />

embryogenesis from the cultured embryos of genus Trijoliu~i~ (Repkova, 1991). High<br />

kequency somalic enibryogenes~s and plant regeneration was achieved from the callus<br />

cultures of Asrrugulus udsurge~ls (Luo el al.. 1999). A protocol for regeneration vla<br />

somatic erlibryogenesis pathway in the pasture legume Cliloria iertiuieri was developed.<br />

Manipulation of kinerill in combi11at~o11 with IAA was found to be usethl (Dhanalaskhnl~<br />

and Lakslimanan, 1992). Methyl jasmonate and Abscisic acid were used generally for the<br />

maturation of induced soniatic embryos. However, their application in the soniatic embryo<br />

induction medium was tested and they were found to be inllibitoly to tlie embryo<br />

induction. Somat~c enibryo induction in Metliccigo sarrvu was also fol111d to be Inhibited by<br />

ami~ioetlioxyvi~iylglycine, amino-oxyacetic<br />

acid, 2,4-dintrophenoi and salicylic acid<br />

(Meijer and Brown, 1988). With a view of obtaining plailts free lion1 neuroloxin, a qulck<br />

and efricielit system was developed for r.egeticrating plants by using explents from wide<br />

range of tissues of Lailyrur sciiiviis. An embryo rcscue method was also described to<br />

fiicil;tate inter-spec~tic hybridizations (Misra et al., 1994). Immature cotyledons of Vignu<br />

sinensir gave rise to somatic embryos on 2,4-D and BAP-containing medium, which<br />

eventually developed into whole plants (Li et al., 1995). Treatment with 2,4-D followed by<br />

BAP treat~llclil reger~ct;itcd whule plants vla ;III exuberant sonlatic embryogenesis from<br />

leaf sections of h.letliccigo ~ujjrrtricosn (LI and Denlarly, 1996).


~$2.3 Other metltods<br />

Protoplasts were isolated from immature co~yledons of G/yciile soja. These<br />

protoplasts started to divide after 3 days of culture and the division freqtle~lcy of<br />

protoplasi-der~ved cells counted at 12 days was 36.8%. Slioot buds were regencrated on tl~e<br />

surface of the nodular celluses with a frequency of25% \\hen tlic cnlluses werc placed OII<br />

MSB medium with IAA and BAP. Wliole plants were regencrated uiio~i transfcr of 3-4 cm<br />

shoots to 50% MS mediu~ni witli IDA (\\lei n11d Xu, 1990). A brcnhtl~rougli In the pl,lnt<br />

regencratlon from tile protoplasts isolated from Vicia jrrba and V. tror6oire1r~i.s. I'rotupl;i,i~<br />

of 10 cult~vars were isolated l'rom etiolated slloot lips and tested for their regcnc~~lt~o~~<br />

capacity. After purification, protoplasts were embedded in sodiun~ algitiatc and cultured 111<br />

the medium contait~ing 2,4-D, NAA and BAP. Division frequencies of up to 40% werc<br />

obtained. Six weeks afier cmbcdding, protoplast-dcrivcd calluscs were transfcrrcd to<br />

Gelrite-aoiidified mcdin wit11 different colnbinationa of groivtli rcgulalors (Tegeder et al..<br />

1995). Low voltage treatment and nurse cells from Medicngo ~crriva were used to<br />

regenerate callus from protoplasts isolated from seedling aiid suspcnsio~n cultures of<br />

7i.i/olirii11 slrb~errri~~eii~ir (Li et al., 1990). A protocol Tor the isolatiorl of root proloplasts<br />

from Vigi~ri rridiara and leaf nlesopl~yll protoplasts of ~niotlibean, V cico~ritijolia gave a<br />

plating efficiency of 1.3% and 2.81% respectively. Shoot mcristemoida devcloped o~lly<br />

from mothbean, into shoots and later lrlto ivholc piants (Avenidu et al., 1993). Genotype<br />

dependent protoplast ~regencration into wlloli: plants was observed in red clover (Trfiliioli<br />

pruiense).<br />

Protoplasts were derived from leaf and suspelision cultures of the culi~var<br />

(Myers et al., 1989). Cull suspension cultures were grown and plantlets were regenerated In<br />

Indigofera<br />

eni~eapl~ylla (Bharal and Rashid, 1984). In vitro conditions for plant


egenerat~on from protoplasts and callus cultures of Hedysarirnr coro~~ariur~i were<br />

optimized (.4rcioni et a., 1985). Protoplasts were ~soiated tkoni ~~icsopi~ylls of Mcdicago<br />

sari\,a and various phytohormoncs tested for a better frequency of regeneratloll (KIIII and<br />

Cho~, 1989). Frotoplasts of Lolus coniiculurus were ~solated us~t~g pre-plasn~olysaiio~i of<br />

green cotyledo~i, in CI'W salts containing 13% iliann~tol. Plantleta were also regeiicrated<br />

w~tll two lines being somaclo~ial varlanta (Vessabulr atld Grant, 1905). Callus and<br />

protoplast CUI~LI~SS were used to Iregenerote ~)ln~lilcts ol"Wedinigu and leaves of hleilicagu<br />

Iirroralb, an anlllial legunic reslstat~t to li~llgl~s l's~'i~i/op~'~i~n ~tii'di~~giiris. I'lalltlets wcrc<br />

regeiicrated 011 niedium co~ltai~ii~ig 2-IP cornbi~icd wit11 IAA, andlor DAP w~th NAA (ZaSar<br />

et al., 1995). Pla~lt regoleration fium cotyledo~l p~oloplasls was achlcvcd in Meiiicagu<br />

saiiva cv. Krnsnovodopadskaya 8 by culturing cell aggregates on agar tiiedium aftcr tlic<br />

immobilizat~on of protoplasts in agarose. Regeneration was also achieved from tissue<br />

cultures of tile wild species M. prosrrara, hi, urbiculuris, M. rruurverleri, M. borealis, M.<br />

cueriilea, M. rigiduila and M fulcnrn (Svanbaev, 199 1) Cotyledon protoplasts served as<br />

useful tools for regeneration of Sesbatiia bispi~losa. 111 a liquid-over-agar culture systetn<br />

with MS ~nediutii supplemented with 2,4-D, BAI', glutanline and mannitol, 84% of these<br />

protoplasts divided and formed callus. Callus fosn~ed from the protoplasts differet~tiated<br />

shoots on MS medium supplemented wit11 IBA arid BAP. These slioots developed into<br />

complete platitlets when excised and cultured on MS containing IBA (Zhao et al., 1995).<br />

Protoplasts der~vcd froin 3 species of Siylosarrrl~es were cultured in K81' medium at<br />

densities of 5 X 1041t1iI and I X 1051tiil I'rotoplast-derived colonies tratisferred to MS<br />

tiiediu~n suppleme~ited wit11 cot~ibitiatiot~s of NAA and BAP formed compact, green<br />

microcalluses. Shoot regeneration, which occurred after 28-56 days of culture, was by


organogenesis rather than somatic embryogenesis, with leaves and stems developing<br />

directly on the callus surface (Vie~ra et al., 1990). Protoplasts were isolated from epicotyls<br />

and shoot tips of Vicin ~tiirboriersis etiolated seedl~ngs. They developed into plantlets vla<br />

somatic e~nbryogenic pathway when cultured on less auxin medium, arid via organogenic<br />

pathway when cultured on TDZ contai1111ig medium (Tegeder et al., 1996).<br />

Cotylcdotlary explants of Sesba~~~o grci~itlifilicr were irrad~ated with ganlnia rays for<br />

callus growth and regeneralion. Cytoge~iet~c studies showed dist~ilct cliro~~iosomal<br />

aberrations (Sinlia and Mall~ck, 1993). Enhanced shoot regeneration was observed us~ng<br />

homogenized callus oELoius cort~iculaius (Orsbinsky et al., 1983).<br />

2.2.2.4 Genetic translormatioo<br />

4'<br />

Agrobocieriir~n-mrdiated traiistbrniation: A rapid and reproduc~ble protocol for<br />

transformat~on of Lorirs cornicirlaius by using cinilamyl-alcolid dehydroge~iase (CAD)<br />

was developed for the purpose of Iignin reduct~on. The transgenics were confirnled by llie<br />

polymerase chain reaction (PCR) and CAD activity. The gene was derived fro111 Amliu<br />

cordura (Akashi et al., 1998). Tllrec cultivars of Medicc~go surivu and one cultivar of<br />

Onobtycl~is viciijoliu were evaluated for their response to inoculation witli A, rliizoget~es<br />

strain A4T (containing pRiA4b). A cultivar-dependent response was observed in M. suiivu<br />

with 94%, 25%, and 4% of infected stem explants producirlg transfornled roots in the<br />

cultivars Vertus, Rcgen-S, and Rangelander, respect~vely. In 0, vrciqoliu cv. Hampshire<br />

Giant, an cxplant-dependent respolise was observed with 78% and 50% of seedling<br />

cotyledon and hypocotyl explants responding, respectively (Golds et al., 1991). An<br />

accession-dependent genetic transfornlation was observed when Glycine cunescens and<br />

Glycine clarrdes~it~u were transformed with A, rllizogenes (Rech et al., 1988).<br />

The


transformants were identified by sylitllesis of opines in the shoots. An important fodder<br />

legume, Astrogalus sinicus was transformed by A rhizogrr~es atid the uidA gene activity<br />

was confimied (Cho et al., 1998). The regenerants exhibited Ri-plasln~d syndron~e (sn~all<br />

thin lcaves and short internodes) arid 55% of tlle seedlit~gs diowed GUS activity and<br />

positlve gene integrations. Genetic transforniation of tile pasture legurne and the model<br />

plant for study~ng Rllizobilrn~ legume symbiosis, Medicugo truncorulu was reliably<br />

transforti~ed wtth b~nary vector harboring ~iptll and rriclA and NOS atid CaMV 35s<br />

pronioters respectively. The TZ geileration of the platits showed Mendelian inheritance of<br />

the integrated transgenes (Wang et al., 1996). A rapid regeneration system from<br />

cotyledotiary node explants was used for stabbing and injection co-cultivation of<br />

Agroboclcri~r~rr, In Pisu~ir sutivunr (Jordan and Hobbs, 1993). Genetic transibnnatron via<br />

somatic embryogenesis pathway with immature leaflets and l~odal explants of pasture<br />

legume Lutlryr~rs sarivus was reported by Barlia and Mehta (1995). Mature de-<br />

enibryonated cotyledons with intact proximal end of Yigrto rorgrritulutu were used for<br />

Agrobacreriu~?~ transfortnation. Over 15% of the shoots were selected on selecttoti<br />

medium.<br />

Iritegration of Itpt gene was detected by usi~ig Southerti blot analysis<br />

(Muthukumar el a]., 1996). Ri plasmid atid dlszir~iied 1 i plasmids were used to transfonn<br />

Mediccigo trnnccrttrlo. Genes of Ri plas~iild negatively ~nterf'ercd with<br />

soinatlc<br />

embryogenesis. Only Ri plasmid with an inactivated rol A gene regenerated transgenic<br />

plants (Thomas et a]., 1992). Loitis jupoilicris is a ~iiodel plant for Rhirobium host<br />

interactions. A. rhizogenes mediated transformation was perfomied and hairy root<br />

formation was observed. Most virulenl strains A, rliizogenes for this species were also<br />

found (Stiller et al., 1997). Lorrrs cor~riculatus and L. lenuis were transforn~ed wtth A.


l~izogeites for the integration of 11pt gene (Daniiani et ai., 1993). An efficient protocol for<br />

A. rhizogerres transformation was developed for Lorus attguslissimus. This was receded by<br />

an efficient regeneration systerli of indlrect organogenesls using hypocotyl, leal; stem,<br />

cotyledon and root explants (Nenz et al., 1996). Bean yellow rnosalc virus rcsistenr<br />

transgenics were obtalned by tr;~~lsforiiia~~oi~ of 7i.ijoiiiiiri subterru~rerirrt with vorlous<br />

segmellts of virus coar protein (Chu et al., 1999). Rapid and efficient trdnsfomlation of<br />

.I4etl1~.cigo ii.ri~rctririh~ i~nd ,M. ~ci/i~,n w;i> tlo~lc \\,ill1 twu ciiily iiodulin and latc nodul~n<br />

genes where pl;ilit rcgrncratlon occ~irred tlirougl1 somatic e~nbryogelies~s (Trinli et al..<br />

1998). Two different regeneratioll systems were used to obtain transibr~iled plants of<br />

~Medicagu fulcaia. Tlie A. turnefacierrs ilioculated plants were regellcrated via direct and<br />

indirect somatic embryogeliesis pathways (Sllao et al., 2000). Mrdicago trtiricatulu was<br />

tralisfoniled with A, iiirr~cjhciens using put selection marker. Trailsforn~ants could be<br />

obtained In just 2.5 months (Trieu atid Harrisoii, 1996).<br />

Biolisfics. Plasmids containing 11ptI1 gclie under CaivlV35S promoter were used for<br />

particle bombardment experiments into Lucerne calluses derivcd from petiole and stem<br />

sectiolis of Med~ccigu srrlivn. Analysis of Irailsge~~ic plallts showed ~ntegrntion while<br />

progeny showed I: I Mendelian segregatioli ratio (Pereira and Ericksoli, 1995)<br />

LM111sect resistance nlallagement<br />

World-wide crop losses without the use of pesticides and otl~er non-chemical<br />

control strategies is estlniated to be about 70% of crop pruduction, amountillg to US S 400<br />

billion. The world-wide pre-harvest losses due to insect pests, despite, the use of<br />

insecticides is 15% of total production representing over US $ 100 b~llion (Krattiger,<br />

1997). The annual cost of insect control itself amounts to US $ 8 billion, thus warranting


urgent econoniical control measures. Many of tlie crop varieties developed in the past 30<br />

years were high yielders, but had poor storage characteristics (Kerin, 1994), Insect pests<br />

are capable of evolving to biotypes that can adapt to new situations; for instance, they<br />

overcome the effect of toxic materials or bypass iiatural or artific~al plant reslstance, w111ch<br />

fu~ther confounds the problem (Rousli and McKennc. 1987). An iiltegrated pest<br />

nianagenient (IPM) prograni, con~pris~ng a combination of practices including tlie<br />

judicious use of pcstic~des, crop rot~t~on, lield sanitation :ind abovc all ex]>loitation oi'<br />

~nherently resistaiit plant varletles would prov~de the best option (Meiners arid Eldcn,<br />

1978). The last option includes the use of transgenic crops, expressing foreign insecticidal<br />

genes, which could ~iiake a significant contribi~tion to sustailinble agriculture and tllus<br />

could be an impo~tant coniponent of IPM.<br />

Insect reslstance nlanagelilent is iiot a concept evolved from a single method of<br />

operation, but a11 integrated approach, as opined by niany others. Classification of<br />

methodologies has taken a different turn with advcnt of bioteclinology. Biotechnological<br />

control conceptually is a part of biological control nietliod, however, separated itself from<br />

other methods owing to vast literature and logical base it has acquired. Hence this sectlon<br />

describes all the tliethods other than biotechnology, which have been an integral part of<br />

Integrated Pest Manage~nent<br />

2.3.lJEcological<br />

control:<br />

This is a strategy in which various methods are employed. It is somewhat similar to<br />

the "biointensive" control described by Frisbie and Smith (1991) that rely mostly on


natural biological controls with prescriptive chemical input as last reson. The strategy is<br />

primarily based on ultderstandilig the interaction of pest with i(s environment, in the<br />

present context, agro-ecosystem, defined as the effective environment at the crop level<br />

(Altieri, 1994), or at thc level of local lalidscape (Duelli, 1997; Collins and Qualset, 1999).<br />

It is defined that an insect become5 a pest when general equlllbrium populatioll exceeds<br />

econonlic lnjury level (EIL) (Higley and Pedigo, 1996). Exploitat~on of species divers~ty to<br />

decrease Ihe herbivore population was done et'li.ctively (Altier~, 1994). Biodiiersily<br />

increase in agroaosystems results ill di.\~cloplirent of tilore inter~ial links with111 the food<br />

webs resulting in fewer pest oulbreaks (Altieri and Niclrolls, 1999). These understandings<br />

led to some practical approaches such as poly harvesting (Pral~cis, 1990) and interplanting<br />

(Alticri and Whitcoinb, 1980) are potent~al eco-control mcnsurss.<br />

2.3.1.2 Pliysicnl control:<br />

J<br />

Tile methods in lliis strategy are relatively ancicnt, but stood for ayes, as they are<br />

farmer and eco-friendly while bcing easy-to-use. They requ~re leaser scientific kriowledge<br />

and are based on physical destructioli of inscct populations. These havc attracted<br />

considerable attention In the recent past because of the development of effective food and<br />

visual attractants (Lindgren and Fraser, 1994). Understanding the insect behavior is a<br />

crucial prerequisite for making traps (Alm et al, 1994). Usage of baits such as pheromones<br />

and novel trap designs made insect trapping devices attractive tools in the industrial point<br />

of view (Dowdy and Mullen, 1998). Usage of some sort of banding material especially<br />

arourid the trunks of the trees had some degree of antagonist effect on insects (Raupp et al,<br />

1992). Live stock insect traps (Tozer and Sutherst, 1996), colored traps (Vernon and<br />

Broatch, 1996), arid fermentation traps (Norris, 1933) are some of the effecttve


applications of traps. Technically more advanced lllethods such as light traps (Pickens and<br />

Thimijan, 1986), electrocuting traps (Gilben, 1984) micro ii~adiatiolls (Biron ct al., 1996),<br />

gamma irradiation (Metcalf atid Metcalf, 1993) and otlier irradiations, temperature,<br />

coiltrolled atmospheres with COi ~n combination w~th other gasses and varlous othcr<br />

physical methods designed at the coliverilelice of the user and (ype of insect pest are being<br />

widely used In various industr~ol and domestic envll.onmcnts.<br />

2.3.1.3 Cl~e~~~icill colitrol:<br />

., '<br />

Use of chemicals to fight Insects, dates back to 1200 BC. This is thc most popular<br />

but cco-unfr~tndly strategy. Global market for insect~cides was estilnated to be over 20<br />

billion in 1989 (Environnlent Protection Agency, 1989). Wide varietics of i~isecticidcs<br />

were discovered due to the~r instant resul~s despite their adverse effects on thc ~ntegrity of<br />

the ellviron~iient. To name a few, orga~ioclilorilles (DDT, BHC), orgaliopliosphatcs<br />

(Carbophenothion), Carbarnates (aldicarb, carburyl), pyretliroids (nllethrin, cyalotllrill),<br />

averniectins are some of the widely used insecticldes. Many plant based insecticides have<br />

been used for ages, such as pyrethrin, rotenone, azadirachtin etc. Keeping as~de their<br />

popularity, ~nsect~c~des usage is highly alarnling as they negat~vely affect many of the<br />

living things living in their respective ecosystems. These concerns have bccn published by<br />

many authors, emphasizing the adverse eficts of the insecticide use (Rand, 1995; Edwards<br />

et al., 1996). Their effect on soil microorganisms (Domsch, 1983) microorganisms of the<br />

aquatic environments (Parr, 1974; Curlley and Robinson,<br />

1989), soil inhabiting<br />

invertebrates (Edwards acid Thompson, 1973), liematodes (Yardim and Edwards, 1998),<br />

alukatic invertebrates (Brown, 1978), fish, amphibians, birds (Hardy, 1990) and many<br />

other loving components has been a point of serious concern. Despite many precautions


ased on these reports, an estimate of over 1 rllill~on people worldwide is poisoned, and<br />

over 15,000 eventually die.<br />

2.3.1.4 Biological co~:trol:<br />

Various pest control strategies llavc bceu developed where each one provldlng<br />

partial answer to the singular or a sct of pest problems. 1540s witnessed d~scovery and<br />

application of wide array of chemical pesticides and people thought a "panacea" lias<br />

evolved for all pest problems. Th~seemed true till it was ioglcally d~sproved firstly by<br />

Cars011 (1562) and was repeatedly e~npllasized by various authors In the follow~~~g years.<br />

For example, an estimated 7% of crops were destroyed by inscct pests pr~or to 1940s, and<br />

by late 1980s crop destructio~i has risen to 13% despite a 12-fold increase in the pesticide<br />

use (Environmental Protection Agcncy, 1985). These alarming statistics divertcd tile peat<br />

management strategies to opt Ibr age-old control practices such as phys~cal and biolog~cal<br />

meiliods.<br />

Definit~ons of biolog~cal control var~ed through ages, and one of the latest itlcluded<br />

the use of predators, parasitoids, pathogens, pheromones, and natural plant producta.<br />

According to this defi~litiorl biotechnological approacli becot~les an integral part of<br />

biological con~rol. Oldest known method was colonizaiio~~ of ants in china and Yemcn<br />

(Coul$on et al., 1982). There are three bn51c types of biological control, na~nely,<br />

conservation, i~ltroduction and augmentation (Waage and Mills, 1992). introduction of<br />

natural enemies beco~lles a necessity when tllere 1s a sudden outburst of foreign insect<br />

pests, which are tnot native to ;I particular region. In such cases their natural enemies are<br />

imported, multiplied and introduced (Waage, 1996). Augmentation is increasing the<br />

natural enemy numbers from the existilig populat~ons, by producing and multiplying them


in the laboratory and releasing tl~en~ (HoiTniann et al., 1998). Pathogells used for biological<br />

control include bacteria, fungi, viruses, protozoaus and nematodes. Mass production ant1<br />

marketing of these agents tire relatively easy co~npared to tlie otller two (Cook et al., 1996).<br />

Over 700 species of fungi were bel~eved to infect Illsects (Jaronski, 1997); for exan~ple.<br />

Beauveria bussianu is a potentla1 biological cotitrol ~igcnt of many arthropod insects<br />

(Maddos. 1987; Georg~s, 1992). The mctliod of lis~~~g bacteria for b~ological co~itrol I><br />

relat~vely donlin;~ted by Uncillii~ //iir~.i~igie~isis speclcs and tlie S-endotoxins twlenacd by<br />

them, molecular genetlcs of the resistance ~n~eclla~iis~n lias bee11 the order of the day 111 tile<br />

recent bioteclinoiogicai approaches.<br />

2.3.2 Biotechnology for illsect resistance<br />

1<br />

One ofthe methods of b~otechnology, m;~rker assisted selectio~l could not cater to<br />

the inirnincnt needs of the IPM specialists, as resistance phenotypes and their QTLs could<br />

not be conclusively ide~ltitied. Hence there was a need of short cut methods to combat the<br />

worst biotic constraint, lnsecl pests. Discovery of 6-endotoxins produced by the famous<br />

Bucillus liiuringiettsis gained considerable sig~nficance in the recent past. Along with U<br />

thuringiensis tnany other genes conferring resistoncc partially have bccn discovered out of<br />

which protease inhibitors are of significant importance.<br />

>:3.2.1 Ut: All A~nazi~ig Concept: Pcrhaps n~ost widcly used entomopathogen is the<br />

bacterium BuciU~~s thiirinyiensi~ Berliner. Many sub-species of th~s bacter~u~n release w~de<br />

array of larvicidal S-endotoxins that confer resistance to various insects. Other species of<br />

Bacillus, l~ke B, spliaericus (Porter et al., 1993) and some anaerobic bacter~a such as


Closrridi~r~n (Barloy et al., 1998) were identified to pocess potential mosquito larvicidal<br />

properties.<br />

Bacillrrs ihuringiel~sis subsp. isrocliet~sis (Bti) was the first subspec~es of Bt that was<br />

found to be toxic to Dcptcra larvae (Margalith, 1990). It was also foulid to be effcctive<br />

against many species of mosquitocs and black fly larvae. Extensive srud~es wcre crimed<br />

out to demonstrate the toxicity of these orga~iisnis towards nianinials and it was not foulid<br />

to be highly host specific thus ensuritig its s;~fcty (Murtliy, 1997). 1r was also Iprovcli to<br />

have an expanded host range sucii as snails, sonie liunia~l ;~nd avian parasites and few othcr<br />

insect pests (Saraswati and Ranganathan, 1996).<br />

Tlie toxin pruteins rind ilreir ge~~e.s: Thc fanlily of irlsccticldal crysral proteins (ICPs) is<br />

iiomally associated with larger plasnllds of various sizes rangllig Ilct\ceeil 5 to 210<br />

kilobase pairs that liave been broadly class~fied as Cry atid Cyt 6-c~idotox~ns(Lereclus et<br />

al., 1993). Though these toxins are liot related structurally, tliey arc fi~nctlonally related in<br />

their membrane permeating activities. All<br />

insccticidol 6-cndotoxiiis are initially<br />

syntliesized as a larger protoxin that is eventually cleaved at specific s~tcs to form the<br />

actual toxin. In total there are seven classes of Bt insi.:ticidal proteins, but four proteins<br />

and few accessory proteins and their molecular genetics associatcd hitb Bti are well<br />

characterized. Tlic major four proteins arc locallzcd in pnrasporal crystlillinc cndotox~iis<br />

sy~itlies~zed during sporul;itio~i and tliey arc sylltllesized by rcspcctivc genes: B~Ct~l,lo,<br />

BfC~jllA, BiCry4B ant1 HtCry4A (Fcder~ci et al., 1990). Much of the ~nosquitocidal<br />

properties is attributed to the synergistic i~iteract~oils of these four proteins, but the wh0k<br />

crystal was found to be niucl~ niore 10x1~ (Crickmore et al., 1995). Vi'ealtil of Information<br />

was accumulated regarding the molecular biology, biocliemistry and ~truclural biology


have been exhaustively reviewd (Dai and Gill, 1993; Douek ct al, 1992; Wirth et al, 1997;<br />

Guerchicoff et al, 1997; Purcell and Ellar, 1997). Two accessory proteins ~iarncly PI9 and<br />

P20 that arc requ~red ill tile usse~nbly ol'a~i i~~clus~o~i body linvc also been cliaracter~zsd<br />

(Wu and Federici, 1993; Tlliery et nl, 1997; M;~~i;isiierob et al. 1997).<br />

Mode oJuctio~~: Early studlcs showed that the prunary target of Bti toxicity is tlie<br />

niidgut epithelium, where e~izynialic systems tra~isfornis the protoxin tiito an active toxin<br />

under alkaline coi~ditions [Al-yahyaee 2nd ElI;ir, 1995) Tliese toxins act coordinately and<br />

synergistically to distupt tlie epithelial cells of tlie larval gut where niidgut cells vacuolisc<br />

and lyse (Lahkim-Tsror et al., 1983). Tliese sym)~tonis are more or less snnie for toxins of'<br />

all Bt strallis other than Bti. Though Cry and Cyt toxi~is are structurally dissi~n~lar, tiley<br />

have the similal. ti~embrane-pem~eatirlg ab~lity, where Cry toxi~is bind to nicmbranal<br />

protcilis and B~Cvtiilu binds to ulisatt~ralcd pliospholip~ds acting as "bind~ng sites"<br />

(Feldriiann et ai., 1995; Gill ct al., 1992).<br />

Mode of action takes place in two steps; binding to a cell reccplor and subseque~it<br />

pore formation (Knowlcs and Ellar, 1987). Soon after conversio~i of proto-toxin into active<br />

toxin by gul proteases, the toxin is distiliguished illto two doiliains (Donlain I and Donio~n<br />

11) wherc Doiiia~~i I1 bt~tds to a brusli border membrane receptor, acts as an anchor, while<br />

Domain I inserts ~tsclf illto the ~iiembra~ie for~ning ;I pore (Deal1 et al., 1996; Flores et al.,<br />

1997). Binding of the toxin beco~iies irreversible alier llie i~isertion of Donlain 1 illto<br />

mernbra~ie (Che~i et al., 1995). ~4 and =5 liel~ces 1nscl.t into the membrane and a7 serves<br />

as sensor to initiate tlie structural rearrangelllent of the inserting dornaln (Gut and Shai,<br />

1998). Many otlier fi~~ictio~is of seglnents of the toxin have been elucidated. It was found<br />

tliat substitutio~i of glutamine at 149 by prohne in the center of helix 4 results in co~ilplcte


loss of toxin activity (Uaw~thya et al., 1998). W~tll reference to cytosolic (Cyt) toxins Cyt<br />

1Aa was studied ill detail. It was found tllnt plasma membrane liposonles contain~ng<br />

phospholipids arc the target of this loxi11 (Tl~onlas ilnd Ellnr, 1983). Tox~n binding leads to<br />

a deterge~~t-l~ke rsarraligenieilr of the bound I~pids, re,ult~ng in hypcrtroplly disruptio~t of<br />

the membrane ~ntegrity and eventually cytolys~s. I'ore ibrmatio~l was observed prior to<br />

cytolys~s (Gill st al., 1992). The 24 kDA active toxi11 \+as lbund to be three times actlve<br />

tlla~l the protoxin (Butko ct al., 1996). Anotllcr ~nlcrest~ilg aspect of the ~ilode of:~c[~o~~ 1s<br />

that thc tux111 monolllrrs display a synel-gist~c aclio11 towards spec~fic i~isecls. D~ffcrc~~t<br />

synerg~st~cally exert~ng some host specific action (Crickmore et al.. 1995) and tllis ,was<br />

dcmonatl.;lted by cloning a conlbinatlon of cry 4A and cry I IA of Bti into E.coli (Ben-Uov<br />

CI :I\., 1995).<br />

2.3.2.2 Genes employed l'or illsect resislancc otller t11a11 Bt:<br />

Protease Inllibitors:<br />

The p~.oduction of transgenic crops has seen rapid c~dvnnces during the last decade w11h the<br />

commerc~al ~ntroductio~i of Br tra~isgenics However, the n~ajor concern with tllese crops<br />

has been the developmellt of resistance by pest and public acceptabil~ty, Hence, there has<br />

been a need to discover new effective plant genes, which would offer resistance and<br />

protectio~l against these pests. Protease i~ihibitora (Pls) are one of the pritne candidates<br />

with highly proven inllibitory acrivity against insect pests.<br />

Pla111 proteitse bshibilors: Tlle possible role of protease inh~bitors (Pls) In plaill<br />

protection was investigated as early as 1947 when, Mlckel and Stand~sll observed that the


larvae of certaln Insects were unable to develop l~orli~ally on soybean products.<br />

Subsequently the trypslti inhibitors present 111 soybean uere shown to be toxic to the larv;ie<br />

of tlour beetle, Tri6oiilr111 co~rfirslr~~~ (Llpke et al.. 1954). Following tliese early studies.<br />

there I~JYC been riiany exa~i~ples of protcase ~~~l~ibrrors active against certalli inscct species.<br />

both in ~n vltro assays agalnst insect gut proteases (Panneticr et al. 1907: Koiwa et al.<br />

1998) and in in vivo artificial diet bioassays (Urwi~i ct al. 1997; Vain ct al. 1998). The tcrrn<br />

"protcase" includes both "endopeptidases" and "exopcptidases" wlierc:is, thc tcrlii<br />

"prote~nabe" 1s used to describc only "endopeptidases" (Ryan, 1900). Several lion-<br />

lloniologoi~s farnilres of proteinase<br />

inhibitors arc recognized anlong tlie animal,<br />

microorgaliisriis and plant kingdom. Maijority of protei11;ise rnhibitors studicd in plarlt<br />

kingdom originates fro111 three main fiimllies liarnely Ieguminosae, solanoceae and<br />

graniineae (Ricliardsoli, 199 I).<br />

A Iiirgr 11u111ber of protease rnliib~tor gc11i.s wit11 distilict niodes ofactioli liavc beeti<br />

isolated from a wide range of crop species. Drvelop~ne~it of tra~isgenic crops lia\,e coriic ;I<br />

long way from tlie tirst transgeliic developed by H~ldcr et al. (1987). Considering tlic I11gl1<br />

cornplex~ty of proteaselinhibitor interactions ill host pest systems and the d~versity of<br />

proteolytic elizyliies used by pests and palllogens ro liydrolyre dietary protelns or to cleave<br />

peptide bonds in more specific processes (Graham et al. 1997), the choice of an appropilate<br />

proreinane inhtb~tor (1'1) or set of PIS represents a primary determ~rl;int In the succcsa or<br />

failure of any pest control strategy relying 011 protease inliibition. Firstly, tlle choice of<br />

su~table PIS should be based oil a detailed understanding of the biological system assessed.<br />

Resistant biotypes of insects may evolve aAer prolonged exposure to selection pressure<br />

that is medlated by an insect~cidal proteln or plant resistance gene (Sparber, 1985). Seco~ld


point to consider would be the targeted expesslon of Pls ill response to pest attack. Tills<br />

will be controlled by using inducible plolnoiers, sucl~ as !liosu of PI-1185 al~d TobRB7, tllat<br />

are act~vated at tlle site of lnvaslon by pests, pa!lioge~l atid nematodes, respectively<br />

(Oppemian et a1.1904). An ideal promoter should be highly responsive to ~nv;~sion of tlic<br />

lios! plallt by ;I pest, or rcglilated by i11ducel.s just prlor to pest attack. Tlic promoter should<br />

be sufficiently active to mediate 8 sub~tal~t~al defenbc, spscinlly loculiiecl to tile site of],cat<br />

usefulness of reconlbinont Pls in plant protection still re~l~ains to be dcmonstriltcd<br />

111sect resista~~ce genes other tllnn Cry cl:tss of genes transferred to crop species<br />

Bean<br />

I ----- 4<br />

Snowdrop lect~n-GNA<br />

I<br />

Cereal<br />

I<br />

Pea leclin<br />

I<br />

1 1<br />

I<br />

I<br />

Protra~e ii~/ribi/ors<br />

Wllrat germ ;lgglutinin-WGA<br />

Soybean (serine protease) Jacalill 1<br />

I<br />

I<br />

F<br />

Barley (tryps~n)<br />

- --. - --<br />

lllcc Iectin<br />

1 _<br />

1<br />

. . '<br />

I<br />

Cowpca (trypsin) Bcan cliit~r~nse !<br />

I<br />

I i .-I<br />

I Mustard (ser~nc protease)<br />

Tobacco peroxitlase<br />

~<br />

I<br />

i Rice (cystelnc proteuse)<br />

Tomato chitinase<br />

I<br />

I<br />

Potato (protease inl~ibitoss 1 2nd ,I) Tlyptophan decarboxylase i<br />

I<br />

Soybean (Kunitz trypsin inhibitor)<br />

Atibi~ul gcties<br />

'I I<br />

Torneto (protease ~nllibltors I and 11)<br />

Various enzyme inh~b~tors


3.1 Pl:~nt 111nteri:il sllrl culture col~ditiul~a:<br />

hfatorc hccdh ut'cliiclq~c~~ (('I~~,I,~IIC,/IIIIIIII 1.) CLI~II\,I~ C.235, ,I !\~cIcly gro\\~i ~LIIIIV;IS<br />

111 Il~di;~, ncrc s~~rl';~cc s~cril~~cd NIIII ~(I'?U (1 '\) c111,11iol (or 1 1i1i11 , U loo I~~CI~II~IC ~l~lor~(lc for<br />

10 11111i . ii~i~l r111seci 5 l1111es 111 h~ct.11~ d~>tillcd \v,~ti.r ~IILIS 10 ~U,II\III~ u~erl11g111. The dc-~ii~ted<br />

5ecda \rere Lcpt iir~ gcniii~l,~~~oii 011 hli~~;lzll~gi' ,111d SI\OU;'> (IOO?) I~IC~ILIIII (\IS: we<br />

;~ppe~i(i~\ I), cir 011 ;I II~~L~ILII~: q)ec~licci tiir tllc cyil,~~il \>I~~>\IKIIIOII ('LIIILIIC ~i~ccl~;~ nc~c ohcd ;I,<br />

liqul(I or ;IS<br />

scln~-,olld Iho\111g 0.8'io (\v \) I)ilku-lj;~cto :I:I<br />

:I rcq~~~r~d<br />

dilcl 1pII \\;I\ ;iiljusted<br />

to 5.8 i~lilcss o~licr\\~sc ~iie~itio~ictl. All llic ~~hsui. cultuscb \\cl.c I~I;IIII~~III~C~ ;II 20ilYi' u~idsr<br />

contlnuou:, cool irl111c l~glit ~proi~dcd by lluo~~c~cci~t I;iinp\ (30 11Lln 'S I)


!Chrirlre e~!ib~~,o rr.ri~: Tl11s call be cunsidercd :IS<br />

\verc soaked uicril~glit ;iiid tile sscd co;it \\,is ic~ilo\cd IC<br />

tile O-do)-oltl accdlilig. Thc seeds<br />

i'illo\\ III~ I~IU~I~III~. Tlic eo~yledo~~~<br />

\+ere bplit ope11 JII~ IC CIII~I:)~ ;I\I~\!i~\<br />

ici~~o\c~l c:~~cliill~ ,111cl CLIIILII:~~ 011 11ic ciiibryo<br />

~~~cilictiu~i 1iicd1i1111 (Elhli 111:11 cunsiatcd of I0 11hl 2.4.T-1 :ind 2 1111 killc1111<br />

Synthetic ourci~is. 2.4.5-T and 2,4-0 iirc lllc ba\ic co~iipoi~cii~~ ui' il~e enlbryoge~lic<br />

indiiur~uii media. All tile 111cdi:i were re,ted<br />

un ~lintilrc cniblyo akis eul>lalil li~r opli~i~izatio~~.<br />

The ~~iducrio~i ilicdi;~ were tiiu type!, 01ic 2.4.5-l' based cilitl llie olhcr 2.4-U based. Tllc<br />

lornicr was iiariied ;is JEJI scrics niid llic lalcs \\a> ilamcd na JIIM serlcs. 111 JLIhl series tlic<br />

2,4.5-T \+\.as :idded ;it 2. 5, IO ;ind 15 phl :~nd in cach tscntniclil ~ar~able COIICCII~~B~IOI~S or<br />

TDZ at 0.5 and 1.0 phi. BAP ;it 0.5 ;!lid 1.0 j1J1, Lcnrlii ;II 0.5. 2 O ,ind 5.0 phl nlld kinetin at


0.5. 2.0 and 5.0 pM were added. 111 JDM series. 2.4.1) was added ;it 5. 10. 15 and 20 pM and<br />

III C~CII trcatmcnt \:irl.lble collceliil.nrloii> ol'TDL ;it 0.5 ;III~ l .O libl. BAl' ;n 0.5 a11d 1.0 pM.<br />

zcat11i ;it 0.5, 2,0 ;iiid 5,O pM iii~d LIIICIIII<br />

;it 0 5, 2,0 ;IIILI 5.0 pbl ucsc ;iddcd,<br />

Bsst iiied111r11 tior III~LIC~IOII of I~I;IYIII~LIII~ 11ii11lbcr 01' C\PI;IIIIS \V:IS JtS \\irIi I0 hihl<br />

2.4.5-'r :iilil ? lib1 hiticti11 (J1:Jl 20: T~blc 42) !\I1 tllc c\~)~,II~Iz ~ C Z C ~ I ~ ;IIJO\C<br />

C I ~ \$CI.C<br />

CII~ILI~C~ 011 JllXl 20 II~~~~ILIII~ I~I tcd 111cir el'lici~~y lus II~~LICIIOII ~I'e~~ibr\o\ '~IIc IIIC~I~II~I \\;IS<br />

~~rc~).~ri'ii eill~c~ 111 ,I jolid 01 II~LIICI ii)r111 SUII(I IIIC~IOI~I \\:I\ ~~OLII.C(\ III tlie ~~DIII pl;llc\. ;III~ tile<br />

induction w~th liquid n~ctl~i~ni \r.:~s dolie 111 cullilrc ~iibc\ I:or<br />

tlie Iincr ;I \lcr~lc lilter p;lpcr<br />

bridgc was 1111l11cr\cd III tile Iiq~lid illcdi~~il~ :iiid 1\11' CYI;I<br />

\\ere pI:~ced 011 1111' brlilgc.<br />

Sitice moat of~l~r cl'fons lor inaturatloli and coil\crsloii of tile iirduccd cl~ib~yus were<br />

iinsucccssful soille dddl~iun;~l ~nccIion~c;il ~iictliods \\ere ;ilbo rcstcd.<br />

55


Cold shock: Tlir explants benr~ng the eli~bryos \\.ere pl;iceci on MS containing 5 pM<br />

ABA and 10 1iM GA: and the pl:itcs were pl,icctl nt 4 OC tbr 1. 3. 5. 7 2nd 9 hours on frcsh<br />

~iicdiu~ii \\ it11 5d11ie coiilpo~~c~i~s.<br />

Heo! .\/rock. The expl;~l~tbcar111g c11lbr)oz \vcrc pl;iccd o~i 1111. II~~~I~III~<br />

;12 I~ICIII~OIIC~<br />

iibove ;111d \\SI.C IIICLI~;IIC~ :I\ scl);~s:~te O,IICI~CI ,II 40 'C' :ICI 5U 'C' li)r 30. (10. 9U ;111d 120<br />

IIIIIILI~CI<br />

fiill~\\i'~i by 111~1s II.;III~~;.I 10 fi.esI1 II~C~ILIIII iil~d IIICII~~IIIOI~ 111 IC<br />

CLI~III~~ 1.00111.<br />

Type ut' cu[)l:1111 i, cl.i~cl;rl Il~clor lcir tile :icl~ic\c~lic~lt ol au~t,~blc ~rcgcllcl.;ilio~i ibr<br />

gc11e11e ir~~~isl~r~~i,~t~u~i<br />

~Y]>c~II~~~III><br />

and proccsslllg cond~t~ons were P~CI);ISC~<br />

\',I~I~LI~<br />

~XIII;II~I~ IYo~ii >cc(ll~~ig~<br />

01 il111k1e111 ,igc, c~~lturt<br />

;iltriiir.c o~rbl.i o ir.uii Thc scctls \vc~c ~oahed ui.cr~ugl~[ ‘inti llic sccil cui~t iraa rclnovcd<br />

rile follo\+,~lig nior11111p 'Tile cutylcdo~ir \vcsc j)I11 opeli :111d the cll~bryo :IAI\ W;IS silrgically<br />

exc~sed ;ind ci~l~urcd OII 111~1li1pli: IUOI<br />

II~~LIC~IUII lilcd~~~~ii tlii11 Ilrid hlS iv~lli BAP wltlliti il<br />

mnge of 5 lu IOU pM III co111b11!;111ufl \vllh ? ul 5 jlL1 klllcl~ii.<br />

Sirool tip Tile dc-coaletl seed> \rere pcsl~i~~i;~lcd un L1S fur 2 dtiys, [he slloot tip (2<br />

mm) \\as tiie~i cxclscd susgicolly 2nd culti~rcd on 111c shoot III~U~IIOII<br />

~ni~diulii (SIM) that<br />

co~lslsted of hlS UIIII 4 pV TDZ, IU KM 2-IP and ? ubl kinellli<br />

56


Lec!/i?is: Young anci juve~iile leallers, semi-iiiaturi. leatlets ti.oni thc ni~ddle portion of<br />

the seedli~ig and ~ii;~tiire leallcts ti.otn tlie bilsal p;itls of7-day-old scedli~ig were sep;lr;~ted and<br />

cultured oil SIM.<br />

Lrq Dii~e.<br />

Tlie dr-co:itcd scuds wcrc pcr~ii~~i,~tcd u~i hlS lbr 7 d.~yb 11r1or to obt;111111ig<br />

tile leal'cxplti~it. Lcal'b;~sc (pct~olc base) II~;I ~iic~~stircd ;~but~t 3 111i1i W;I~ C\CI~C~ ;111il c~~lttircd<br />

on tiit SIM.<br />

//ip~~~o(~/: The orcr~i~giit so;iked ;il~ dc-co;rlcd jccds \vcrc eriii~~i;i!cd oil MS and 4<br />

to 5-day-old seedlings were bclcclcd for dcr~v~iig tlic ~~I~;IIII 'Tlic stelii 11;11t that was just<br />

abo\e tile cotylcdon,iry liotlc jt~~iclio~i iv~~h csc~vtl a~~tl 111s sliout 111) rugion was rcniovcd. Tlic<br />

explant tha ~iieasurcd :iboui 4 iiim \v\.;ls cululred on SIM.<br />

Epicu~l: Tile ove~.nigIit soohctl and dc-co;~tcd scccis \+ere pcr~iii~i:ilctI on MS and 4 to<br />

5-day-old sccds \\ere stlccted ib~. obl;ri~iil~g tlic c\pl;~~it Tlic ~~ly)er niost Iparr ol'lhc tap root,<br />

just below the cotyledoii:rry iiodc jt~~ictiu~i \+;I\ exc14 and tlie cxpl;i~it ~iicasuring 4 mm<br />

devoid ol'roor 1111 rcglon was cult~~rcd on the ~~iductioti ~ncdiu~ii.<br />

Roo, A?~I?I~,II/.Y "1111 I.UIJI /I/). Root \egliielilb ;111tl root lip MCSC ehcibcd fro111 7-day-old<br />

sccdlingr and cultiired ~epa~.ately on tlie i~itlt~ctio~i iiicd~ii~ii.<br />

A.~rIlory bi11i. T\io types axillary bud uxpla~ila wcrc prcparcd. Tlie ~iia~jor v:iriatioii for<br />

preparat~on of these cxpla~its wt~s their gsl-~iii~lation paltcrli. Tlic first onu, dcsignatud aa ABI,<br />

was prepared by excisi~ig tlie avillary bud from a 7-day-old secdli~ip hat was gerniiliated on<br />

hlS medium. Tlils nx~llary bud ~iieoaured around I to 1.5 mm In leiigtll. Tile second one.<br />

57


des~gnated as AB2, !\.as prepared by excising the ax~lla~y bud ti0111 a 6 to 'i-J;~y-old seedlings<br />

tliat were ger~~linated on MS conr;~ining 5 pM tliid~i~/~~ron (TDZ), This nxllla~y bud nieasured<br />

approx~niatcly ? to 3 nil11<br />

('r~iilc~~li~~ilr~~i~<br />

liori, Tlle oicr111g11t ~ooLed ,~nd tic-co,itcd 5ci.d.<br />

\\ere gcr~i~~~i;~tcd on<br />

11s. 3-dnyold scedl~~ig was t:1ke11 ;\lid tlie slioul t~p, root tip u~ltl cotylsdo~~s ucrc re~uovcd.<br />

Tlie cotylcdonasy node ju~ic~iu~i th,it ine;~surcd 3 lo 4 lii~ii \\';IS CIIIIII~C(I<br />

011 Slhl<br />

A.v~//oI~I~ 1111~1~1~1~~111 L'Y/J/~III/\' ~\~>~;llll ~~~CpLIRlll~ll ;llld tl~l~lll~lllOll 011 111~ ~Lll~~lr~<br />

mediuni Is cr11cl:l~ tbr o~~lIl11lllll U1'g,lIIoQeI11~ I.L!S])OllhC. O\\lll@ I0 I~IC d~lksc~~~cs ill t l l ~<br />

gesmlllatloli lp:~ttcrli, age ol'tlic hcetll~ng ;inti proccasllip. four typch of lllc ;~xlll:~ry l~~cr~slclii<br />

cuplal~ts were prcparcd anti they \+ere n;~mctl ;IS 11M I. Ahl?, AM3 ;111d Ah14 (see 171g 3.2 for<br />

diagr;i~i~lii;~~~c 1relxe%nt:1t1011 oi'e~l)l;~~n ~)scl~:~~tiuli). 'rliclr I~~L!~;II';IIIUH ii ;I\ li~llow\.<br />

AM1 explant: Seed coiit ol' the sust~ce stcsili~cti a~itl oicr~iiglit su;lhed seeds W;IS<br />

re~iioved nlid tlic dc-coatcil aced\ \+ere gcrni111;ltctl 0111pl;iiii MS. 2-d;iy-old scedli~ig~ were<br />

selected slid roo! portloli \baa 1c111ovcd by 1cav111g suliie oi'tlie Ih~~)ucu~~l rcyiol~ 'l'l~cn two<br />

cuts here 111:ide tl~roi~gh tlic ax~ll~sy ~ncr~stc~i~, 'I'his rcaultcd 111 1l1ri.e cxl,1;111ts 111;1I 111cludcd<br />

two axlllilry nier~steni, one hiloot tip witli cpicotyl. 'lliu iix~lli~ry ~~icr~hle~ii cxpli~~ils ~vllli<br />

cotylcdo~intact was na~lied as AM1 i~nd itas cilltllred on thc lnduct~oli ~iiediuni.<br />

AM2 explant: Tlic dc-coated secds were gsriiu~~;~ted 011 SIM al~tl ;ifIcr pruniine~~l<br />

appe;il.ancc ul'axlllary bi~d, in ,iboul 4 ro 5 tl,~ys. tlley were c;~reli~lly runloved and two cuts<br />

were given through rhe ;~x~ll;isy Iiieslstem, dlhcasd~ng rlic root ponlon, rlic rcsulta~it axillary<br />

mcristem explants w~th co~yledons i~itacl (A.112) wcse cult~~rcd 011 tile above-mcnt~oncd SIM<br />

again.


AM3 explant: This was a by-product during the preparation of AM2 explant as<br />

indicated above. Removal of AM2 explants resulted in shoot tip with eplcotyl region. Further<br />

removal of shoot tip provided [lie AM3 explont that contalned au~llnry nieristeni on either side<br />

of the eplcotyl and was cultured on SIM.<br />

AM4 explant: The de-coated seeds were gerlti~n;itcd OII SIM at ;I dclisity of 10 to 15<br />

per plate. They were grown for about a week ~tlit~l :inlllaiy bud was prollilnent. Then the<br />

axiilary bud \\as rcltioved up to tlic base two cuts \\,ere give11 as 111 the casc oTprt.pol.;~tioll of<br />

AM2 explont. The resultant axillary nieristeiti explant, were sub cillturcd on tlic same<br />

niediuni for another 6-7 days. Tile b,lsc ofaxillary bud enlarged and sotiic ~ii~~ltiplc shoot buds<br />

cnierged. Tlie emerglng shoot buds were reniovcd apolil by canli~lly acr,lpping the shoot buds<br />

irith ;I sharp blade Tlir res~ilt;inr cxplnlit corit:i~li~tig cotyledoli uitli ;I bulge on \he<br />

cotyiedu~iaty ~iode rcg~oli \\CIS cultttrcd 011 IIU~IIIUII~ lice MS.<br />

The ~iirdia tbr itiductiott ul'~iiult~ple ~Iiou!) liutil tlie givc~i cx~luttt~ ciili be d~v~ded in<br />

rive m;~jur cl;isscs. I. TDZ-ba~cd ;tiiil 2. DAl'-bt~scd. Thc\c conslats oScltllcl- 'TDZ or UAI' as<br />

pril~cipnl niultlplc slioot iliti~~ctilig cytuk~n~ii ;III~ a111c acc~s\ory C ~ ~ O ~ I I ;ilid ~ I I ~UXIIIS ~ S werc<br />

i~icludcd ~n tile tnedi;] ;is per tlis rcquircn~ciit. Tl~c orhcr cyt~kilillls illid d~~xillj ilddcd were 2-<br />

iP (5 and I0 ~IM ill TDZ-b;ised mctli;~), k~llelili (2 ;iild 5 liZ1 I 'rU%-b:~scd:ti?d 2 2nd 4 pM in<br />

BAP-bnscd illsd~;~ conib~n.itio~is). Optinliutlon of'tllc i~~tiuct~oli nicdi~~m was dolie initially<br />

w~tlt tnaturt. elnbtyu 3x1, and I;iter w~tli ,~xillnr) meristem explant, Ah12. Unless otherwise<br />

mentioncd. the explants were cultiiled 011 tlic 111duc1iori iiiedium Sor abuut IX to 20 days alicr<br />

wliicli they werc tri~nsverred to the clongat~on ~nediulti. An average of 6 to X expl;l~lts werc<br />

c~llt~lrcd per plate and the re,puliies werc atudlcd.


EJJkcr<br />

ofpH on 1~111l11ple slloor rtlditcrio~r: The shoot induction nlediuni (SIM) was<br />

prepared with pH mriations of 4.0, 4.5, 5.5, 6.0, 6.5, 7.0, 7.5 ailti 8.0 prior to autoclavi~lg,<br />

Solidificatio~~ of the ~iiedii~~~i \\as corufully ~ilon~torrd and the prepared AM2 cxpla~lts were<br />

culturud on [lie SIM with abo~e-nlcntio~ied pi4 v;iriatio~is.<br />

Role of<br />

co(vletlui~ni~' iis~~~r: Co~iiplete or parti;il inclusioil of co~yledon w~tll the<br />

regenerating expla~lt. 011 mult~ple slioot i~ldiictiun ficcjilcncy wiis slud~ed. Tlie AM2 explallts<br />

were prepared accord~~ig tu tlie proci.durc nisntiuncd abovc and illc cotyledon portion was<br />

surgically exc~sed ci~lier co~iiplstcly or pa~.ti;~lly (I~~ilt) and one set ol'c~pI,iilts were cultured<br />

witli inclusion of co~nple~u cotyledo~l. 'The rcsulti~ig cxpl;inta ivcrc ci~ltured on SIM witli a<br />

tlclis~ty of6 to 8 sxpl;~~its per 1)1;1tc.<br />

CUIII~)OI.II~I~~L,<br />

IIII~/~I/I/~, ,/iooi iiiilirti~o~~ liviii i/~/]e~.r~~ii ci.i~/coio M:il;irc c111Oryo axis.<br />

sliool lip, i~x~llary butl. i\hl I, AM?. AM3 011~1 Ah14 CAI)~;III~> \\ere P:c~~~I:c~ d~c(~rcliilg to tllc<br />

procedul-es rncntlo~icd III tllc 5ccti{1113.2 2.1 ii~ld cu1111:cd UII Slhl. Nu111bi.r uf rcslio~iding<br />

exl~la~lts and inunlbcr oi' I~ILIIUIIIC<br />

before their trunslir to tlic ~lioul clu~lp:~iiun mctliii~ii<br />

$110uts ]per C.X~~;IIII bere rcc~r~lud 111 lllc third ivcck just<br />

Age o/ [lie \cctl/iiiy: I3as11ig UII tllc ~[>li111t I>~UI):I~;I~IUI~ sIr:~Iegy, d~lli'rc~il ehplillits<br />

\sere derived boll1 hecdllngs of iarluu ;I~A. Ahll. Ahl!,<br />

AM3 a~id Ah14 cnplanls were<br />

prepared accord~~lg to tl~eirc,pectivc proccdi~rca ~ncn~ioncd abow konr 2.1. 6. X, 10, 12, 14<br />

and I6 day-old seedlings. Tlic rcsuli~iig cxpl;ints werc culiiired o11 SlM.<br />

3.2.2.3 Shoot elongatioll:<br />

The hiloot elo~igatio~i 11iedi11m (SEM) bnslcully coiis~stcd ol'lo\rcrcd co~~cc~~tration of<br />

plant growth regulators, %lie11 compared to tlie r~tdi~ction rncd~~~ln Various plant growth<br />

regulators ~ ~sed for this pnrposc werc 2-il' (2 and 5 pM), BAP (2 i111d 5 pM), kiiiet~n (2 and 5<br />

60


PM) 2nd GAJ (2<br />

5 PM), eltller singly or ill conibilinlion with c;sh otlier. Tlie induced<br />

nlultiple shoot buds Here caretiilly excised ti.0111 llic e\pl:in~a ;IS<br />

;I bu11211, rhoill ill ;11ly extn<br />

gro\rtlis of c;lllus or elobulnr structl~rcs ;IIILI CLIIILIIC~ 011 I~IC C/OII~:IIIOII<br />

111ciliii111111tl:illy ti)r<br />

about 10 days. They \\ere sub-culttired Ibr 2 lo 3 p;lss;iges of IU ti;iys c.icli 011 li.csh ~ncdiu~ii.<br />

During each passazc k\v alioo~a clo~~g,rtctI ;)lid ~lic u~~-clu~~g;itctI butis \\cw sub culu~rcd OII<br />

tlic lroh 1ncdit1111. Tlie bu~lch ol'~ili~l~iplc \11uo1 but15 gl.c\\ rl1i11 \\ 1111 ~cspccl 111 1111. I~IIIII~C~ OS<br />

\Iiuut btlds thruugll c:lcii p,iss:lgc I1rckr,1iil). tilt sli~llg;llillg sliutllr ,111il a/lt)ol l~~idr li'~lll1 lllc<br />

,ecuiid pass;igs \\ere cul~urcd 011 b1S \\i\li tiA; (2 1111) I.lo~~g;~lctl rliuols tu :ihuul 5 c111 In<br />

Tile I~~C~~IIIIII<br />

used \\;I CIIIIS~ III sei~i~-r(~l~il lb1111 01. li(l~~i(l li~rl~i, l'lis clo~igilcil s11oots<br />

\lerc ~~sctl to optinli~c lie rouliny 1lcdi;i \;I~I;IIIVII~<br />

\verc IIIC~III tlic litll~id ~i~ed~tilli iib lie<br />

selliisolid iiicd~u~ii rcsulied 111 ;I \try low li.cquc~icy ol'root~l~g. IC I i111d 1)/1;1sc 2. DUI tllc j~lliiscs M~CI.C ~ii;li~i~,ii~~ed 111 the culture<br />

roo111 ~~iidi'r ;I~CI)IIC CIII I~OIIIIICI~I. I lic sht)ut\ tliill dill 1101 IOUI III bo111 pl~,~\e\ WC~C ci~lried to<br />

ilic phase 3 Dark grceil<br />

lic:~ltlly \llooir ol'oroilnd 5 ciii lcilylli \\c~.s 1dc;il lor ruotlnp, TIC<br />

rootable slioots wcrc ci~ltiircd ii~ cult~irc ti~bcs (!Sx!OO<br />

IIIII?) ~~I~~~IIIIIII~<br />

lil~cr 1);1j)er bndges<br />

immerscd I liquid roo( ~nductlon mcditlm (Itlhl) lliat consi\tcd of MS MI<br />

~nod~licd lcvcls<br />

of KNOl (9.4 ~IM: 11,lll'of the CUIIC~I~II.~IIIOII<br />

111 \IS) Il3A \v;I~ lillcr ~~c~III/c~ a11d added at 5<br />

pM. Wliilc 60 to 805; ~1'111s cloi~garcd >tloo15 roo~ctl In thc pli;iac I tllc slioc~i, (>8 clii) devoid<br />

of roots were canied on to phase 2. ljiicli shoots were briclly dippsd ill filter stcrili~cd<br />

solution of 100 pM IBA and placeti 011 lilter paper bridge in cuhure lubes contain~ng<br />

hormone-free liquid MS. Effect of half MS and MS devold of ;~ny growth regulalors and<br />

61


effect of varlous co~iccntriirio~is of NAA (5 31iJ 10 ~IM) a11d IBA (5 and 10 yM). Effect of<br />

sucrose on rootiilg \vns stlldled by add~ng s~icrosc at 0.0. 1.0. 1 5.2.0. 2.5 and 3.0% v,Ilile all<br />

llic other co~lstit~~c~its ol'RIM<br />

groivlli rrguliitor 111 lllehe ~IL'~I;I \\;IS<br />

~ii;ii~~tii~~~cd S:III~L' :IS II~CIIIIOII~~ ;~bo\,c. Tlic root lliducing<br />

IBA illitled ;it 5 li\l cullcellrrntlon.<br />

tllis sl~p<br />

IS :I<br />

Rootirig 111 ilii, lii~(liu/~oiiii.\ .\I \/ciii Tll~s aptciil 15 Icl~llcti ;I> pliiihc 3 oi' ruut111g ; i~~d<br />

O~IIUII;II o~lc .\boil1 10 lu 2O"o ui'tlic rooi;~blc al~oota. \\l~icl~ tlid ~iot root cveli<br />

ii1ii.r ! lo 3 aub-ci~ltliri.\ un IKILI ncrs C,I~~ICL~ to 111~ II~~IO~)UIIIC \)\ICIII tll,it \\;IS ge11e1.11lIy<br />

~ised fir 11ardv1111ig i111ri11g tile I~,III~~II,IIII~III~I~ lproce\a. 75 strc~~gtli I~~IIOII's \u11111oii \V;IS<br />

it1 8 CI~I Miigeiit,~ 1,it<br />

lillcci<br />

;III(I tlic 511001 \\;is s~is~)c~icIcd \v1111 ji~pliort h11cli !list I el11 or 1I1e sl~out<br />

basc \$ah imnlcrscd III tlic bulutiu~i 111;1t coiltn~~lctl 3 ~IM ILL\, Tlic IIIC(~IIIII~<br />

\&;I> c11;111gcd every<br />

H:~lilci~iiig ;ind ~I~I~\~~,IIII;I~IUII proccja \+,is blu;~dli dib~dcd illlo tlllcc atagcs: akge I:<br />

i~iltlnl tr,inskr into X c~ii (~I~I) )pol\ \\it11 coicr (i lo IU d,~).,): \t;~gc?: ~ICCIIII~.I~I~I~IOII phase in<br />

wliicl~ the plniils ucrc gi;iduoIly cul)oacd to tlic a~~lb~cncc by ~plticli~ng l~ulcs and rcniovel of<br />

the corncrs oi'the cover (I5 to 20 days): stage 3: tl.ill~\ti.r oI'l11c ~pliilita 10 tllc 20 CI<br />

(d~a) puts<br />

and mainteliance in glnsahousc lbr fi~lllier growlli.<br />

I-lnrdeliinp a1:111cd u 1111<br />

tlic rcmurnl ofconu~~ 11lug.i ol'tllc culturc lubo for I lo 2 days.<br />

Tlie plants wcre careliilly t;iken ULIT ofthe liibe and rhe roo15 ivcrc tlioroiiglily washed, dipped<br />

ill diluted tliiram"'<br />

(fi~nglclde) solutiun nild tr:in\ferred to 8 cni (dia) cunr;ilnlng co;irse rand<br />

(2 to 4 nlm dia) as the potting 1iicdi11111. Tllcy wcre completely covcrcd will1 1r;insparent<br />

polypropylene bags and allo\ced to grow fur 7 to IU days. Coi~densarioi~ on tlie inner surface<br />

62


of the plastic bag was removed rwlce di111y. 'The plallts were cxposcd to ~lic anibiclit<br />

conditions gnduall) by pi~i~liilig lhules aid cu~ti~~g the cor~icss of tlic polyprol~ylelie bags.<br />

F~lially after 10 &)a tlic cater \\ns upelled on lop slid nllo\\ed to SI;I~ lilr ;ihout a \beck<br />

Ibllo\\i~ig \\llicli Ilii. plallt \\as c:irci'~~lI) lr;~~ral;.rrctlo 20 CII~ (dlii) 1put II,I\III~ tlic 1p11111119 ~riix.<br />

'Tile potl~rig 1111x ~UI~I~SISC~ 01'il IIIIS~LI~C 01' a~iioiitli :III~ c


3.3 Histological studies oa multiple sltoot ii~itiatio~~ I'I.OIII Ah14 e\pli~~tt:<br />

Preparation of Ahl4 cuplant 1s described 111 tile srctio~~ 3.2.2.1. The liistulogical<br />

studlea \\ere carried out ti.oni llic z~;~gc ~~llcil the ax~ll,ll.y bud \\;15<br />

~ciiloved. Tlic clay of<br />

a\illai) bud rctiiu\;il \\:\a<br />

co~is~dercd ;IS d~y- I The dilielopii~e~i~ ~1'hl\ll4 c\l)I;ltit \.,IS<br />

st~idied<br />

111)to Y days ;ilier the rc~~lo\.~l oS;ixill;~s) b~lcl i.c . 111) IU d,i!-X<br />

Pre/~iii'~~iou. linrriotr iiiid ileln~~irociu~~ ul ii,\\i~r, .\,i~rrp/c.s'Tile c\pIa~llr \vcrc ~prcp.lrud<br />

,111d buli)re !i\3tio11 CUI~IC~OII<br />

\\JS re~lioied D:I\J/ IIS~IIC of IC r~gc~icl.;~ti~ig arc.1 \\,la ,iIau<br />

rc~nuicd ni'ikl~ig 1l1c 5;11nple Into ;I bluck of1 to 5 II~III bide. TIIC 'i~ilpli' \.,IS<br />

~~i~t~~cd~;itely<br />

plilccd In 1ix;hiie so1~1tlo11 (see ilppc~iiii~ Ibi. co~ilpus~t~ul~) i111d ~~osccl OVCIIII~I~I ill 4 'C', l'he<br />

IisaIiic u;I:, d~sc;lrded ,111d IC s;~lllpIcb \\e~.e del~ydr'ilcd \$llli IO"',i, 30U'~i. 4006, 50%. ;1111170%<br />

alcohol scq~lentl:~lly for % Iiui~r c;icli and 1iii;illy 111~) wcle storeil 11170% ;~lcul~ul.<br />

Tlir S~CCIIII~II<br />

\r;l m;lrkctl \villi ;III ~clc~nil)i~ig nllilibcr 1'111s ~iuiiibcs W~IS kept wit11<br />

1Iie t~ssire block tlirouglioul procv\lng. Tlic li,we bloclc i\ilb co~ivcycd IIIIOLI~II<br />

a acrio of<br />

Ibllo\r ing aolients :I, pcs tlic sclicdulc Ibs ileliytl~,~~iu~i, clu,lrlng ;III~I p;~s;ll'li~~ ~i~liltr;~tioii.


- . --<br />

laopropyl alcoliol ; Absolulc. I hour<br />

During ttic process 01'<br />

e~i~bctltl~~ig, tt~e II~SLIC block~ here or~c~ilctl so tli;~l sectiolia<br />

\+ere cut in the dcsiscd pl;i~ie ul' llic II,~IIC.<br />

'Tiru L-~liapcd nletal nluultis wcrc laid on nlctol<br />

plate so as lo cnclohc 3 rectangular or squ;lre yyacu. l'li~s IS<br />

paraftfill (58 lo 60 'C ~iieltrd p,~~.iiSti~i \\;I)<br />

tlicl~ parlly lilled with ~iiellcd<br />

LIJCL~) iind tlie tls>lle w;is plt~ccti i~i the deslrcd<br />

posltio~i. Tlir colitalncr xas rlicri tilled w~th nieltud p;iraffin and allowed to cool untll<br />

rcaso~iably tinil so that tlie set block of paraffin wilh 111e tissue car1 be rcli~ovcd f'rotn tlie<br />

moulds. The block was tlic tr~nirned to a ,u~tabte size atid fixed on a ~liclal ubjrct liolder. Thc<br />

65


lock was fiirtlier trimmed so that paraftill o~erlyrng the piece ol'tissue was excluded and an<br />

adequete area of the tlssile thc111g the knlfe was exposcd. Tl~e block \\:la the11 kept I'or coo1111g<br />

at 0 "C.<br />

"C'. Tllc bectiolls \\ere cut u\ilip Lclc,~ 11h1 !155'",<br />

111illi1 I~I~C~OIUIIIC (ICVICC. 'I.11~ ~UCIIUIIS<br />

ii.om the water \\err niou~ircd 011 clc,111 513s~ AIIIIC~, \\IlicI~ II;I\C<br />

bcc11 ari~e~~rcd \~IIII a droll 01'<br />

Strii~ii~~g u/ tlrt, sii111ple~ 011 r/iili\. S~~ii~iilig ol'tl~e slide5 \+:19<br />

~OIIC ~15illg tic~~idtoxyliri-<br />

Losin btairi (see Al)li~'l~iii~ lbr COII~IIOSII~OI~) 'I.11~ sl~dc COII~;IIIIII~~ IC ~CCIIOII \$;I\ s~.r~aIIy<br />

processed as ibllo~rs.<br />

x}lul I 3 111111<br />

Xylol I1 3 111111<br />

Ruliriing \$;lter 3 111111<br />

tlclll~llo~yllll \l~llll I? 111111.<br />

Wash 111 I~UI~I~III~ t;lp u:itcr I? 111111.<br />

Los111 working solut~un<br />

I niili.<br />

95% alcoliol 2 to 3 dip5<br />

9SU/" ;ilcol~ol - 2 cI1~111ges<br />

Acetone - 2 clia~iges<br />

Xylol - 2 changes<br />

3 m111 each<br />

I to 2 min cecli<br />

3 rnln each


The sl~des were Illell muiaited and b'icued ulldcr ~ni~croacclpc. The nuclei stained<br />

bluish violet and cytoplasm in ranous sh;ides of piilk.<br />

Ge~ietlc transfiir~~i;ii~o~i of rllc AM4 c\p1;1111> \v,i:,<br />

dtil~c \in b~ul~a~ic :I> \i'cll :IS<br />

.~~~O~~IC/~I~~~IJII-III~~I;II~~<br />

111et11otls. BI~II~IIC IKII~\~U~III;ILIOII \\;I> LIOIIC liy LI\III~ 111c ~>l~~s~ii~d<br />

pllTL)Y:(;US-ll~t (6.7 ib) (i:lp 3 3) (\'cclor \\,IS Lllltlly jpiu\idcd b) Dr I 111!tll gellc .is aclccr:ible ~~~orker, IIII/I\ gc11c \\ 1111 ;it1 ~lllcr~~lcrsild 1111ro11 (GUS-llll)<br />

;is the reporter allel ;IIII~)~CI~~II~ IC~I~~CIIICC pe11e I~II. OIi~tcr~~~I >CICCIIOII. 11~11111/1/11 i111e1 iiidA<br />

genes \\ere under lllc rcgiilat~o~~ ul'C;1I\1V-355 proiliotcr. I\ \;illel) (11'<br />

\111glc ;lntI n~t~lt~plc<br />

cluiiil~g altes wcrc prcaclit ;it diili.relit luc;~~ioiis 011 tlic pl,i>lnid 'Tlic ; ~,~Iu~~I~I~~~IIIII<br />

nletllod ir,ls ~>crhri~ied by 11ai11g t\io iiii~,ir) \~CIOII,<br />

ii;i~i~cIj, pI1S 723:131 (I,ig 3.4) and pIIS<br />

737:SUTl (Flp 3.5) (bull1 the \cc~ora\vcl.c kl~itily ~)rov~clcil hy 111.<br />

(; Scli;lr;~j, I'I;IIII<br />

131otecl111ology li~~l~~utc.<br />

Siiaka~uon. C'ii~~id,iJ \~'IIICII II;II~OIC~ U/('~:~l:ll) ;tiid SU77 ;la<br />

;~grono~~~~c;illy inlpurtal~t genes real~e~tivcly. Uutl~ rlic vscton 1i;lic 111iiA r ~ 11/1/11 ~ ~ gc11es d<br />

ll~sed Intu ailigle UIIII<br />

tlrlveli by C'aMV 35s prolilotcr. Ui0.1.l:lh gcnc \v;li ilr~vei~ by doublc<br />

35s proniotcr where ;la SUl7 gciic ir;ia dr~vcii by \~iiglc 35s Iproilll~c;~lio~~ t11;il C~II<br />

operate both III E. (oii as i\cill aa ilgrubot/ei.~ii~i~ ;III~ otl1e1. at111b~1tcs aucI1 ;IS ~~i~~ltiple C~OII~II~<br />

SllCS.<br />

In borl~ biolistic ;is \$ell as dyrohot /eri~i~ii-~?lciIinlcd procesw procedi~res tl~e putolive<br />

transforn~iints iverz obt;i~~~cil b) ~elccling llle t~-;iiirliir~i~n~n, using 111~111 as tile sclcctlng gcnc<br />

and kananiycin as tlie ant~b~otic I'or iclcctioli. Control uxplanb wurc used lo test the lethal


dose (LD-50). This cxperimel~t \bas done by ciiltilri~~g AM? expl:~nts on MS wit11 kanaolycin<br />

(5, 10, 15, 20,25 and 30 111glL) iiiid with viiryillg COIIC~IIIMI~OIIY ofTDZ (0. 2. 4. 10 pM) 6 to<br />

8 explants xerc cultured per plat<br />

3.4.1 Tra~~sfornintio~~ by biolistics nlvtl~otl:<br />

C:I~I~FIC<br />

111:1s111id ~sol;it~t>~~ i111d I~LI~I~~C~III~II 13 IIIC Ii13t '11~1) LI I>IO~I~II~'I<br />

111vt11od of<br />

tt.ansforil1a1io11 iblloi\etl b) CU;IIIII~ oi' IC pl:~s~ii~d IJI~IU tllc I~I~C~UC;II.~ICI.'; ;III~ ~III~I~,I~~IIICIII<br />

uf tile c.xpIo111s wit11 tl~c n~icruc~~s~icrs. DOIII~;I~~II~CIII C\CI~I\<br />

\\c~c I)CI~~IIIIIC~<br />

by I~IuI(:I~<br />

1000/llc PIIS systcln (IjioI~~s~)il~~dcd III IUO 111. (; 1'1:<br />

EITrA) bi~l'lkr ;111d\\ah I,cpl VII lee l'or 5 111i1i<br />

(Cjlucow-Tris-<br />

3 200 ILL lyals b~11'ii.r \i.,ls iitldctl: ii~bc \v;~s illvcrtcd .;c\cr,~l IIIIIC> to IIIIX IC CUI~ICII~S<br />

lcli for 5 nlin on Ice.<br />

3. 150 ~ IL 5 31 polu,s1~1111 ~cciolc u;~i otl~lcd, \crrlc\ccI ant1 lcli UII I ~ lilr C 5 111111.<br />

5. The seaelion m ~xt~~re cenrrifilped Ibr ilhuut 5 111111 at 14000 rpnl ~III~ the supernata~ll<br />

wo, traiisli.~red to n ft.csli tube (care \$as 1;1kc11 nut to c;lsry okcr tlic prccipilate or lloatl~lg<br />

ll~,llcrlal).


6. The bupcniatant \\,I,, t,ikcli illid [IIC IINA \\;IS prcc~pit~~~cd \\1t110.8 iol. (400 IIL) of<br />

isopropanol. The I ~!I~~LII~ \$:I$ l~ll~\~tld to slatid ;it roo111 tcnip. Ibr ? Inln and ce~itrili~ged :~t<br />

12.000 1q>t11 for 10 illill :I! routii te~t~j>cs,~t~~rc<br />

7. The pellet \\:11 u.i,lied \ill11 icc-cold 70"'. ctll:~nol. LtIi,~~iul \\;IS<br />

rc111o\cc1 (by cIc~;~~lt~ltio~i<br />

or ~S~IKI~IOII) ;111cl 111~ pcllct \\,I,<br />

:III-~~I~L~,<br />

8. Tllu pcllel N;I~ dls~olicd 111 3U-50 ~IL \\,IIc~ ur Sl: S h~1111.1 (11 \Iniulil ~111110111<br />

approsi~li,ttely I 11g;10 ~tl-), fliis I)Nr\ C~II b~ t~\cil lur rcstrict~u~l ;III~I~!\I~ or Ii)r l


4, ~IICI~L)I)LII~~IC~C'~<br />

\\ere J~I'IIL'IICLI by SI)IIIIIII~S 1;1r 5 \C~OII~\ III ,i ~lilcr~li~ge<br />

5, The IIC]LIIC~ \\:I> rc1110icd ~11111 ~Ih\c;i~dc(l.<br />

6. The l'ulloi\~l~g slcph \\~rc<br />

re~)c,~led 3 111111's:<br />

;\, i ml ofs~crllc iv,llcr \\,IS<br />

b. Vor~cscil Ibr 1 111111.<br />

.~ddctl<br />

c. The p;lrllclch i\cvi' :lll~liictI 111 hclllc hr I lllll1lllC<br />

ti.<br />

Mic~opnrrlclcs iicri. pcllcltcd by spln~li~~g lor 2 ,ccu~id~ III ;I 1111cr~)111gc<br />

e. Llijiiid waz rcmovc~l and dl\i.:inicd<br />

7. 1 1111 sterile 50"iu ~I~CCIOI ivi~s ,iddcd lo bs111g llle 1111ero IS:ICIC CUICL' I.,IOI 10 00 111gl1.<br />

8 Tllc ~n~sropa~l~clcs v,el.c aiorcd ,II roclnl tcl!lpcr'ul~lre li)r 1111 lo ? wccRs.<br />

3.4.3.2 C'o:~ti~lg I)S.\ u~lttr ~i~icror;~rricl"is<br />

Cuat111g uf UNII onto Inlcrocarrlcrh \\a\ dune by u~111g tl~c pt.o~ucoi ticicloped by<br />

5:111ford ( 1993).<br />

I The ~lllcrucarlieliic~c \u~lc\ctl li~<br />

d~\rupr ;~gylo~iicr,~~ctl P~IIIICIC~.<br />

5 IIIII~LIIL'~ (111 'I I)/;IIIUII~~<br />

IUIICYC~<br />

2 50 p1. (3 nlg) ul IIIIC~II~LI~~ICI? iicrc 1;1j\e11 11110 ;I I 5 1111 IIIIC~O~~I~L: lube<br />

3 lVl11lc vol~ex~ng \~goruusly, lkc IbIloi:i~~g \+c~c ;iddcd III oidc~<br />

I. 5 1iL DNA (I LI~}II.)<br />

11. 50 111. C;ICI 2 (2.5 Mj<br />

I~I. 20 111. apunliidlne (0.1 Mj<br />

4, Vo~tcx~~~g<br />

wa> cunl~nuctl for 2-3 ~ilirlulsz<br />

111 rcs~~\[)elld il~ld


5. Microcal~lers were allowed to settle for 1 111111.<br />

6. Microcarriers \\ere pellcttcd by sp~iili~iig hr 2 sccuiids ill ii IIIIC~UI'U~I' 111be.<br />

7. Liquid was relllo\ed and dihc;lrded.<br />

S I-IU 111. 01 70'; ctI~;r~~ol \ins ;iddcd \\II~ULII dl\t~irht~lg tll~ pellcl<br />

9. Llquid \\;ij renloicil ;III~ di\cilrticd<br />

lU. l4U 1iL of IOU";<br />

etIl,lilol \\;is ,idilcd \r~tliuut d15turb111g 11111 ~pcllci<br />

1 I, L~ilu~d \+;15 re111oi cci ;111d tl~s~;~rclc~l.<br />

12, 48 } ll~ 01 IOU0" c1l1.111c1l \\$IS ~lllll~~ll.<br />

13. Tile pcllcl \v.i, gellily r11~~1~j)cticIcd b) i;ij)/)i~~g tlie .\liIe 11I'tlic iubc \c\,cr;11 li~llcs, illid tllell<br />

by vorlcxlilg ;it low apecd lbr!-3<br />

\CCOIIL~~.<br />

Si\ allquuta 01.6 pi. c,lcli ul' ~n~croc;irricrs \\ere collcclcd a~rd triln\li.rrcd<br />

to tile center ol'a<br />

~ii;icroc:~rrlcr. Equ,il ;III~O~II~I~(500 big) ol' ~nicriic;irr~crs c;icli IIIII~ ;iiiiI 10 rpl.cad cicllly over<br />

tlic cc1itr~11 I el11 ctr~ 11li11c :I\ ;I g10i11) \\ IIIIIII ;I di;i~i~c~cr 01' I ,5 111~11 Thc la11iiii;ir<br />

hood consislillg ol'll~e biollsl~cs gene g(111 ibil\ 1l1i110~1gIlly CIC~IIIC~I \~ilIr IOUUh ethnnol. The<br />

petri plate colltaii~ing tile cxpla111\ w;is placed ;II ;In ciplxupri;lte d~at:~nce li.oln tl~e device<br />

consistllig of rbe macrocarricr,<br />

The explat)ls iwrc bo~ilbardcd with the lnicrocarriers by<br />

applyllig appropriate pressure ill tlie r,ingc of000 lo I 100 psi. Sprcadilig oftlie iniicrocarriers<br />

was ensured and tlic eupl;l~its \\ere sepa~ited atid \\ere culrurcd 011 shoot induction nlediuin<br />

(SIM) containing h.1S with 4 pM TIIZ, 10 pM 2-IP and 2 pM kinctili. They were incub;lted


for about 3 to J Jaya alid \\ere sub-ci~lturcd un the SIM consisti~~p 01'25 nl&'L kanaiiiyc~n for<br />

about two weeks. The rcgcncratlllg ahuot buda \$ere clilti~ird on tIu slioot clo~igst~on iiiedium<br />

(StMI j. I~t;~tetl cells \bere s~~apc~~dccl 111 25 1111. 01'~1crilc 12 MS. 1'111s CIIIIUI.~ was<br />

dcbcribed ill tiit prcviuii~ \ectlun (ace 3.2 1.1) Tllc cxl)la~ita 14c1.c bl~elly dipped llito tlic<br />

dprobiic~rc~riioli culture poured 111 rlie petri pl;~lc Ibr 1 to 2 xc. 'fhcy wcrc cultured in MS<br />

niedlunl co~it~llii~lg 4 /IM TDZ. I0 phl 2-11' ,ind 2 pM kitletin (SIM). The crpl;~lits wcre co-<br />

cultl\ated iiitli llie bacrcrl;~ lor 18 IU~I,<br />

;III~I Mcle CLII~LI~C~ VI MS ~ncd~uni cunt;~~ni~ig 250<br />

mg'L ceibtaxlme<br />

Tlic ontib~ouu celbti~n~~ilc bras uacd to tcrlnlniitc Ihe growth of tlie<br />

agrobscterial cells, ll~clusio~~ of cctbtax~nic in thc culturc nicdla co~it~nued fbr I lo 2 passages<br />

72


till the growtli of bacterial cells \Val complet~ly tcrn~in~ted. Tlic cultl~red explaits were<br />

maintamed in the inon-select~on induction nlrdli~nl tllal d~d 1101 co~lsibt of kanil~nycin, for<br />

clbout 3 to 4 diiys. TIIC l'\jild~~ts \\ere tlle~l trG~nsl;.rrcd lo tile MS IIIC~IIIII~<br />

co~lti~i~ling 25 III~IL<br />

k;~noniyc~n i111d III~II~~~IIIIL'~~ tbr OIIC \\eck. TIICII the c\l>l;i~~t> \\ere CLIIIII~C~ 1111hlS III~~~~IIII<br />

COIII;IIIIIII~<br />

50 1113 L /\~II~~III~!C~II ;III~\\ere I~I;IIIII;IIIIC~ liir ;10o11t 7 10 lU d,iy\. 'rile slloot buds<br />

~III~VIII~ CIS bi111c11ca \\ere ~;~rc(i~ll! ~C/I;II.:IIC~ liulil tl~e CUI~IC~OII~;III \\ 1111 >OIC bi15;ll ci~lliia<br />

IIII~IC~ i~~lJ IIIc! !\CIS ~ri~~~>li'rrciI 10 111c 51111111 ~I~II~~III(III IIIC~~I~IIII C~IIII~IIIIIII~ 5 11hI 2-11) :III~ 2<br />

pb1 ~III~IIII (SEhll) i111ti 75 1n1g'L Lc~~~,~~li!<br />

CII~ Ali~~r LILI{I IU ~I,I)\ 111~ICIII~;IIC~ :IS \$,ell 21s 111c<br />

~~~i-clo~l@,~tcd sllootb iicre tr;~~~sli.rretI to tile slioot clongatioll iniedii~n~ 111.it ~olltaincd MS \vilh<br />

2 pM GA, (SFhl2) ,~nd IUU m$L L;~I~;~III~~III. 'She ~~n-lr;~~~slurn~cd >11oo1~ICLICIIC~ i11 every<br />

sli~gc oi'tllc III~IIC~I[III<br />

,III~ ~ICIII~~II~UII Tile ~CICCIC~ \IIUUI)<br />

III~II \\CIC g111\1111g II~;II~IIII~ \vcrc<br />

carci'i~lly separntcd liom lllc elotipotii~g slioot builcll :lilti irere cuhl~rcd ill the root inducrlon<br />

II~~~~IIIIII \\IIIc~~\\;I,<br />

~~re~i,~red \VII~IOLII<br />

;I~~III~ tl~c \CICCIIUII ;IIII~~~~IIC ~~III~IIII~CII~ i~\<br />

kil~~ili~iycin<br />

\ 11u


sectior~ :uid c\l~bl~blird pln111s \\crc t~.i\libfcrreJ IU 1111' !U C I (d~a) POIS fur lilslll~r growtli 2nd<br />

malntenalice, l'heac pl;llits ,Ire lr.rii!ed ;IS<br />

p~~t,~ti\cly tr,i~~sibr~~~ed pl;i~irs.<br />

200 ILL (or autliclcllt to d~p 111s iia>iic) of assay Iiilxtlirc w;ih acldcd to tlbcuc aaniple<br />

(sections or dlscs 01. strips) and vaciluni ~nlilttated for 3-5 ~iii~iurcs. Tlic {anilile was iricubated<br />

74


;I! 37 'C for 3-24 Iiours 111 d;irL. Tlie iias,iy 1111~t111.c \\.;I\<br />

rc~ii~\ed ;i~id tlie ~ I~SUC \\;IS<br />

cleared<br />

otT chloropli)Il by accji~c~lt~:il cli;~~~ge~ III 70-Ili(i"~ ctl1;111ol LII~II~ llsallz Iiod 110 cliloropliyll.<br />

Allcnioli\eIy, for ditticillt tu clear tissuc ;~tid 75"" I;ictic i~cld \vnr iltidcd .ind ,111tocl;i\cd tbr 15<br />

mlllutcs. This gl\c> ;I \cry good 111idge Cur ~)IiuIugr~~~Iiy Tlie tia5~1~ \\'I> IIIULIII~C~ III gIyce1.01<br />

illid ob\er\ed ~lnJer a illlcroacope<br />

~rail.dcrreti Ilno 30 1111 ILI~S<br />

2 I5 1111 ot'e\~rac!~o~i t~i~l'lbr :~iicI I ,0 1111 oS20!o SUS \vcrz ;i~l~Ic~l, hli,~kc~i n~cll for IU scc<br />

;i11d lilt lubes werc i~icub~tcil a1 05 degreca Ibr I0 111111<br />

3 5.0 1111 5hl I'OI~I\~ILII~~ ~~CCIJI~ \L;I~ ;~ddcd. ~ ur~c~etl :III~ IIICLI~~I~C~ :I( U degrees Ibr 2U<br />

llllll<br />

1. hlo\t Iprutclllh il~i~l lpolyiic~Ili~ride> ~CIIIU\C~ iiltli llie IIIIOI~IIJIC li-tluilecyl ,ultiitc ppl.<br />

5 Tlic snnlplc \\:15 ce~lt~~~i'~~gctl ;it 25000g ibr 20 111111 ;III~ lilte~cd lllru Miril cIol11 illlo 30<br />

nll tube contalllilig 10 ~ nl ~supropn~iol, ~ll~xcd aiid IIICII~~IICLI ill -20Y(' for 30 111111.<br />

0. U\A \\;la precip~t;~led '11 2OUUiJy Sur I5 111111 illid ~IIVCI.III~@ tlie lubes 011 piipcr towels<br />

tbr 10 111111 dried pellct.<br />

7 Tllr pcllct was rcauspended ill 5UU ~IL 'I'L 8 111id IU ILL of' IKU;lse A solution was<br />

added (5 mdnil).<br />

8. The samplc w;ls i~icubated n\ 37'C for 3U 111111. I vu1 (500 jiL) PI~uIIoI: ~hlorohr~n<br />

nllxture \\as added, lii~xcd \~goruuhl) ;III~ cc~ilr~S~~gcd ;it 12,000 I~II~I /br 2 mill. Tliu<br />

7s


SII~)~I~XI~VI~~ \\,la t;~hen (;I~~UCOIIS plldst) alij I 101 (COO 111.) ~I'cIIIo~~I~~)sII~ \\as added, mixed<br />

and cc~itnf~~gcd ;11 I!.OUU Il1m lor! nili1. 0.1 yo1 (50 111.) of3hl soclil~iii :lccl;itc (pll 5.2) \,;IS<br />

nddsd to tlic rllpeni;ltelir ;111d lllc DhA \\,I> prcc~p~tnrcci \r111i U.S ~ o(400 l 111.) ~soplops~iol.<br />

Tlie s;~~ilple \\:IS<br />

nllo\\d lo slalid ;II roo111 te1111) 1;)s ! IIIIII<br />

;111d cc~i~r~li~gcd $11 12.000 ~11111 hr<br />

10.15 111111. Tlie supcr~~.~lc~ir \\;IS rc~lio\tti ,111cl IC<br />

I~CIICI \\,ir \\;~\l~cd b11cl1) \\ill> ice-cold<br />

XlUu CIII,II~UI. 'I Ilc lpcllc~ \\,I\ :~~s-elr~cci 11rio1 to cli\~ol\ ills IIIC l)h 1 III ?i!l!-.~OO 111, 1'1;.<br />

Gc~ion~lc [IN/\ of piir,ilivc ~r,~~islbrni;in~\ ol'cllicLpc:~ \


PCN for 111cl.4 ge!iiJ: I'C'I< tbr ir111.A 3c11e \ins dolie \rith Iractloll colld~tions of initial<br />

denaturation of 94 'C for 3 111111 (one cycle) ;111d c:icIl cycle o1';111iplili~;1t1011 \villi steps of<br />

dsli,ltl~l.;~t~on (04 'C for 1 liiilil. :IIIIIC;I~II~~ (57 'C1 (01. I 111111). ,111d C\ICII>IOI~ (72 'C li)~. 1.5<br />

~~IIII), i111d CA~~IISIUI~ ('2 'C lilr I , IIIII~) lur 30 C!CIC~ ;III~I .I 1i11.1l C\IL'II'~IUII ;II 72 'C li)r 5 111111<br />

ions c!i'lc).<br />

/'('I? lo!. ijf( !.I,/.I/I gi2iii' I'CII lor Ui('r.\!.l/i CIIC<br />

\\ah tlul~c \\1l11 rc.~ctioi~ cu~iil~t~o~i\ ol'111111;1l<br />

ilci~.ilur.~~~o~i oI'04 -i' lur 3 111111 ((IIIL'<br />

C)CISI $111il i':~~li cycle or ~~~i~lililic~t~o~l<br />

\v~tIi >ISI)S 01'<br />

~~II,I~LI~.;I~IUII (94 'C'<br />

lii~ I III~II), ;IIIII~~I~II~~ ((13.1 'C' I'CX I 111ilij. ~IIICI C\~CI~\IUII (72 "C' livr 1.5<br />

IIIIII),<br />

;III~ C\ICIISIOI~<br />

(72'i' lbr I 5 111111) hr 30 C)LIC~ ;III~:I li~i:~l L'X~~II~IUII :I[ 72 'C' k)r 5 111111<br />

(Olli. c)clC).<br />

P('N /vr SUT! gc~rc. I'CI< Ibr .S'/~iI gule ":I\ d011s \\IIII<br />

rc;iitlon ianiI~lioli\ ol' in1ti:ll<br />

dc~l.~tur;ltlon oS04 "C' lur 3 111111 (one C~CIC) ;III~ C:ICI~ L')CIC 01' l~~~ll~l~li~;~t~u~i<br />

\LIIII steps OS<br />

de~i,~tu~.,~t~oii (04 T C'UI I 111ill). I ~ ~ ~ ~ (5Y.U ~ e C i ~ li~r l 1 ~ IIIIII), ~ ~ 1 g ~ ~ ~ ( 1<br />

C\~~II\~UII<br />

(72 'C' lur 1.5<br />

III~I~). ;III~ CX~CIISIOI~ (72'C 101. I 5 111111) li)r 30 CYCIC~ i111d ;I li~li~l CXICIISIOII<br />

;II 72 "C' Ibr 5 mln<br />

(ulie c)clv).<br />

3.4.4.4 Soutller~l blot 11ybritlir;ltion:<br />

Thc ertractcd ;~nd pu~~licil I)NA ~111ckl)ea I~III;III\C<br />

II-:III\SU~II~~III~S used ior Suuthcrn<br />

blot lhybr~diz;ltiol~s \\IIII<br />

a specilic p~obc lulloir~rip tllc 111c11lod glieli by Soutllcrn ct al.,<br />

(15175).<br />

Th~s tcclln~que w;i, i~scd to ldcntitj rlic ililcgratlon of ~iprll dnd UtC'rviAb gencs<br />

from plants translbr~~isd \v111i agronon?icaIly Important UiCi;ililh 81ld YU7'1 ~CIICS.<br />

11piII


gclle was probed uirh rlie PCll ti.ng~iic~lt 01'700 bp ,111ii Bi('r~,l:lb gclii' \\,;is probed with<br />

908 bp fiagmenr I'CK '1fnii.111. Tlic prube \\;IS lnbclcd w~rh tlie co~~i~ncrci;~lIy available<br />

:\I~PII~~s' i11rcc 1'1bel111g AII pro\ ~ddd b! :\~i~c~\li~i~ii (L!Sj\i<br />

Hc,\ii.ir~iioi~ o/ go~uitlil /),\',I<br />

ciiiil c~ii~c~o~ripIir~i~!~\i\<br />

I<br />

Tlie ge1iu1111c DNA \\;I> ~ II~c~Ic~<br />

\\IIII LIII,IL)IC<br />

I~!,I~~CII~II c11/y1iic<br />

;I, rollo\\b:<br />

!U 111. cliru~iiosu~ii.~l L)NA (15-20 11g1<br />

5 IL IOX rcalncnon bul'l'cr<br />

5 111. rcblr1c11011 cll/~lllc (50 \lllll>i<br />

1'11~ lirl~il vo!~i~ilt 111;1dc ilp to 50 ~IL \vi\l> htcr~le \\~ttr ;IIKI\\;I> i~ic~~bt~tcd l'or<br />

211 nr 37 C.<br />

2. 2 ILL oi' gel loud~ng but'li.r \.,IS ddcd lo eocii rotriciet! DNA belbre<br />

clccrropliorc~~s Tlic rc~tricictl DNA \\;I> ~i/c-li;~ct~u~i.ircci ill O Xu" ;~g.~rusc gcl prcparcd III<br />

IX TDE buffer nlollg \\111i<br />

5 111, pl.~s~iiitl DNA rc>rr~crcd ~1111 I:colll ;IS \I;i~ld;ird 11i:irkcr<br />

;III~ IS clcc~~opliu~c~ed o\e~-n~gIi~ ;I( 30 volt\ III IN TDI: bufir<br />

3. Tlie gels wcrc i1;1111cd tiur 20 iil~ll UIIII<br />

~lli~iiii~~~i br~ili~ilc ;it 1 11g;riiI bull;.r<br />

and tlie<br />

rcbtr~crcd DNA ii.ngmcnt b:inds wcre v~suali/cd on ;I UV I~o~is~ll~~i~ii~i~lur<br />

:illd plio~oglaphcd.<br />

Prui r,\.siiig titi!/ i rii~~~iltrri hloiiiiiq o/ ihc g1.i<br />

1 Tlic sue fi.ecrioriatcd gcrio~il~c DNA In !lie gel bvi15 covered LII~~I 25U n~bl 11CI and<br />

nglrated ~lii~il lie b~~oiiiupl~c~i~~l blue lurlib lo ycllo~v color (5-15 n~inutcs) tu depurintilc<br />

DNA.<br />

2. The gel was asslicd three ~inici w~rli dcnll~iefi~lized ukircr.<br />

3. Tlic gel was ~ncubated w~th dcnzirurarion solur~o~i (l0X gel volumc. I .5M NaCl + 0.5 M<br />

NaOH) for 15 miiiiltes twlcc, c;ich at room ~ciiipcraturc on a sliaker


4. Tliu pel \\as \r;~alicd 3 ti~iirs \VIIII<br />

dc1ii11icrali7cd \\:lter ;111d co\urud \vltli ~ieut~-dlizi~i,g<br />

aolutio~l for ? tinlcs 30 Iniilutes c;1?11 ( I 5 L1 NoCI + 0 5 hl l'r~s-HCI. pli 7 5 ,i


2. The nie~iib~;~~ir n;ir c.~~eli~ily ~nscrtctl 111 tlic Ii~hridi/;~lio~i tube ;III~ llic pre-llyb bufkr<br />

carefully ;~ddsd Tlic ~ ~~~-I~!~~I~IL~I~IUII<br />

\\,15 tIo11c ~LII ,111t1111 I IICILI~ t~t 0UL'C,<br />

3. Whlli. rlic prc-hybr~iil/;~t~w is 111 prugrcss. ~lic ~irobs \\*I\ builcd ~ br tibout IO ~iii~i. :It<br />

100°C [or dc~~;irurnt~oii It \\as Lcp~ 111 lee ~~i~~ncd~;ircly. I'ollo\\ III~ re.~ctio~i C~II~S~IILIL'II~S<br />

\\ere ;idded to t11c probe.<br />

rcp:~rctl I~cslily L~IIII 2 111 c,ruhh.li~ikcr \VIIII 8 111<br />

i\atcr suppl~sd b) tiis colilp;~~~! 1.<br />

4 Tlic ~C:ICIIOII II~I\III~C i\:lr IIICIII?.I~~~I ,it 3jllC iur 3U 111111. ,111d 11 M:I~ ;l(I(led 10 ~IIC<br />

liyl)r~di/;~t~o~i Ix~ttlc,<br />

5 Tile liybrldl/;~t~(i~~ \\;I> dolic o~cr~iiglit<br />

6 The ~nc~nbl.;ilic \\;I> lal,e11 o~it o~i tlic Ibllosring niornllig ,111tl\rab \v:~slicd w~tli ~)rilil;~i.y<br />

iv;~sli b11t'ii.r (1;~ biii'f'cr colilpo>itio~i. rcc Appcndlu) twlcc krr I0 111i1l. C;ICI<br />

;III~ \villi<br />

sccu~itl,lry ua4i bull21 (fur bullbr cunipo,iliu~i, see ;'\~>~~IIL~IAJ luicc li~r 5 nii~i. c:lcll.<br />

7 Tllc blol \v;ih trcatsd \LIIII CII)IJ-SI;I~I'I for ;ibo~t llircc I~~IIIII~C\ ;i~id\\;I\ [~rlcketl ill llie<br />

d,:\ e1o1111ic1it C;I>SCII'.<br />

8. AII X-ray fill11 wni kepi oil tile blot :III~ CXIIUSII~C ivi~, ~UIIC ;IS I~CI. ~IIC SI~II~I~ recorded.<br />

9. The X-ra) film \vas \v;~sIistl ill tile folluw~~ig o~tler.<br />

;I. Developer for ? 1ri111<br />

b. V4;lti.r ior 30 scc.<br />

c. Fixer for 2 tii~n.<br />

d. Wiltcr for 2- 3 mln.<br />

10. The developed X-r;ly filni \\'as dricd and v~cwed on the sl~de-viewer


4.0 RESULTS<br />

$loaf of tllc c\l~cr~~llc~lls UII ~UIII;I~IC snlbryogc~ic>~s ncre cio~~c II~III~ llic c111bryo<br />

;I\)> cupl;l~it S~o~~ti;irtI~/;~riul~ oI' .11111ro1)11:1ti. IIIC~I~III~ 1i.r IIIC~IICIIUII 01' CIII~I.YOS \c:I~ ~UIIC<br />

LI~III~ 2,4,5-T ;III~ 2.4-1) ;I\ lpr111ci1>;1I 1pl,111l gru\\ll~ IC~III;II~I~. I:I$ 4.1 ~IIU\VS Ille i~id~~ctii~~i<br />

oI'c11111r)us I'ru111 III~IIIII~ c111h1)u ,1ii5 c~p1~11il rill 11511ig 2.4.5-T '15 I~IIIII;II~ $~o\\lli regulator<br />

and 1:1g 3.2 clio\vr llic ~ndi~ct~tr~i ol' enibr)u* 11s11ig 2.-1-1). Add~l~il~i~~l ~~OLCIII reg~~li~tors<br />

s~lch ;is TDZ. DAI'. /t.,~titi.:III~ ki1icI111 \I.CI.C 01>0 119cd 111 co~iibi~i;it~i~~i UII~ llie 2,4.5-T illid<br />

2,4-D. ?,4,5-T co~~la~~i~ig ~iiudi;~ (JEM ssrics) T:~ble 4.1 sliowa Ihc cfict of 2 and 5 pM<br />

?,4,5-'1' in co~iibrii,~t~on wltli TDZ, MI', ~III~IIII ur /c,~ti~l uli su~ii;it~c~iibryu ~nductioii.<br />

Comb~~l;n~una colitainllig TDL ,111d UAI' sllowc~l \cr) luw liciji~c~icy ul'c~iibryoye~icais 111<br />

terms of the nu~iibcr oI'rxpl;inrs respo~ldl~ig ;111d average ~ii~nlbcr oi'c~iibryoa per explant.<br />

- -\C__-<br />

The expltinta on tliese ~iied~a<br />

--<br />

con~binat~olis prodi~ccd awdl yrcc~i niass of callus on which<br />

two to four embryo$ ;ippt,lrcd Tlic cnibryos ;~ppc:ircd ;IS I;lrge ylubular entiricb and lliey<br />

-.<br />

did not look l~ke well-dcli~lcd c~~~bryu, III;II ;~pl~e;lrcd ill ci~li~lre ~iicd~a co~l~a~~ii~ig 2,4.5-T


w~tli kltlctin. More iii~niber ol'capl,i~lts responded \\lie11/cat111\\:IS ;iddctI \vitIi 2.4.5-T, but<br />

the number oienibryos per espl.~nt \\as verb lo\\. Eliibryo axis gre\\ 11i1o a sa.ollell Inass<br />

on wli~cli embryos appc;ircd I~nlc I;lrgsr \\1tI1\\sll-delilied globul;~r ali.~lie. Irilcdio with<br />

kl~ietiii 111 coiiibili;ltio~l iinh 2.4.5-'I' i\ci.c I;)IIII~ to he bvst ,IIIICIII~S~ ;ill ~IIC CUII~~II~~IIIOIIS<br />

used. ,411 ;lveragc of 7 6 eliibryoa \\'crs i~lditccd \per c\l>l~~lt flo~ll tile bcat rcal)utidl~lg<br />

COI~~~IIIJIICII~<br />

I e., 2 lib1 2.4.5-1' ;1101ig\VIIII 2 pkl h111cri11, 'l';~blc 4.2 ~lio\vs i~icrs,ise 111 tllc<br />

concelitrJtioti ot'2.4.5-'I' to IO ;~nd 15 [~hl \\IIIIP :IPI)J~III~<br />

tlic otlicr Ii~r~iii~i~ss ;I\ 111 tile c;ise<br />

ui'luble 3.1 \\,liere tilers \\,la gr;~cili:il ~IICIC;I~C 111 tlic I~CL~IICIIC~ ol'c~iibiy~ i~iducli~~i~ \+it11<br />

incre;lae In ?.4,5-'l'. ;~nd 10 11R1 2.4.5-I' was I'oui~d to be bc\t. I';II~S~II ui' 111iluct1011 i~tld<br />

tilorpliolo~y ofcali11~ ;i~id cti~hryos \\;IS<br />

li1111li1 to be s ~~il~li~r ill ill1 111s ~LII. XIS<br />

~~'I~CLIII~~CIIIS<br />

I.c., lo\% Ireq11c11~) III~UCIIOI~<br />

;111d grcc~i callus \vitIi 'I'D/. ~III~ lj/1IJ c~~iit;~iiii~ig<br />

co~~ib~nat~un~, al~glitly iiicrcaaed t'rcilr~ency ,ind irlliie c;illu~ \v~tIi rc;~rii ;III~ besl 111ductio11<br />

iicqucnc! iritl~ broivii c;illu in tllc c;~hc oi' h~~ist~ii CUIII;IIIIII~~ 111c(/ii1, Aiiiu~~gst ill1 tlie<br />

conib~~i;tt~ui~~ LI~CII. CUIII~III;IIIUII<br />

01' IU lib1 2,J.S-'1 \villi 2 lihl ~IIIC~III iilduced all ;Ivcrage<br />

ut' 19.0 cillbryol per cspl;int. Tllcre W;I\<br />

cnl;lrgc~licnt of tlic e~nbryu ;]xi\ ~n 2.4.5-T and<br />

kinct111 c~~nib~~i;iiro~is \\llcrc (lie cliibryos or~g~~iiitcd di~cctly li.0111 tlic ,II)IC;II<br />

;itid ax~llary<br />

reglolls Tli~ set of embryos :lppcarcd crcaliiy ~Iiltc w~th well-delinuti globular littad and a<br />

stt~lk. All the otlici. co~iib~ii;~tions co~it;ii~iing 2.4,5-T \villi 'I'D%. UAI' ;ind zcatlli showed<br />

embryos wltli no st;ilks aiid looked litrls Imrgcr tiinn rile fornlcr. I'rolongcd c~ilturr of~he<br />

etiibryogcnlc explants fol. 6 to X wceka slio%ed indtiction of sccoiidary embryos. Tlie<br />

secondary en~bryos or~ginnted from the surlilce of tlie globular licad ol'priliiary eiiibryoa.<br />

Tablcs 4 3 ;~nd 4.4 sho\\s tlle inductio~i li~eq~iencics on tllc liledia cuntaitiing 2,4-D<br />

as principal grourh regt~lator ;~ppl~cd at 10. 15, 20 and 25 pM concc~i~ratio~is (JDM series).


These combi~iatiori sl~owed liiorc cnllua cu~iipored to tlir ?.4.S-l'-co1itai1ii1iy media where<br />

the embryos originated liul~i tl~ callus III~IS~CII~. TIic iii~~iibcr ~I'expla~~ts respo~idi~~p was<br />

s~m~lar but tllc aicrage I~LIIII~C~ ut'e~~ibryu~ per exl>Ialit \\.;IS<br />

cu~iil);~~.;~~i\eI! Io\ver tl1i111 the<br />

abo\e-nient1u11cd JELl aeiies ol'~~icd~;~. Tlic c~iib~qus :~l>l>c;~rcd I~~rgcr tliii~~ tlic UII~S III JEM<br />

scrle,<br />

;III~ tiley l;~cbctl ;illy atalhs. Fig. 4.2 sllu\rs 111~luction ol' e~~~bryos fro111 111;lturc<br />

e111bri.o ;ial:, cul)l;~~ir. Ucs~ rcsl)o~idlng COII~~III~I~IUII \\,IS<br />

?O 11hl 2,411 w~tli 2 1lM kkieti~i<br />

tli;ir ilidi~ced 9.3 c~iibryos per c\pl;iiit No sccontl;~ry enlbryos ~ c ubscrvetl ~ e e\en VII<br />

prolonged CLIIILISC ul' tlic c\pl;i~it\ 111 11ic b~~~lie 1iiec11111ii \\li~Ic tl~c 111d11ccd c~iibryos<br />

gfiidunlly entered c;~lli~s pli;isc<br />

V;il.~oua otllcr ~ hpl~~iti s~lcli :la 1);1r1:,<br />

o1'111:1lurc e~iibryu ~1x15 (~>lu~iii~l~, radicle. side<br />

;irlns ;lntl ~ii~tltllc purrion). Icaflcl>, stelii aeglnclits ;uid root acg~ilcl~t\ wcrc ci~ll~~rctl on bcst<br />

CII~~S)O~~IIIC COIII~II~~IIIUII ui'JLhl20 rIi;~t CUIIL;I~I~C~ I0 piVl ?.1,5-T ;III~ 2 11M ~IIIC~III, I'hc<br />

results ;ire allo\\li 111 rlic 1;lblc 3.5. I'lu~nc~le iiolil 1ii;iture c~iibryo ;IXIS<br />

;111tlcaflel:, g;~vc bcst<br />

c~iibryi~ ~iiJui.t~o~i li.cij~lcllc) ol'70 ;IIILI JO'% I~II~SCII\CI~. All IC UI~ICI CSPI;II~~~ CKCCP~<br />

r.id~clc ti.uni c~iibryu ,isls sliu\rccl luglicr iiccltlc~icy of II~~LICII~II \+liere ;I t~~iic tlepc~idc~~t<br />

~nducuo~i \ids obhcric~l. 111 ge~icl.;il, clilbryu ~~~~luctioli \V,I~ observed u~tliin 4 to 5 weeks<br />

and s~icli phcnornc~lui~ \\;I, obser\cd ii~tli iiinlllre enibryu ;ix~s dc~.~vcd cxpla~its and<br />

le:111c1h IIo\+cYcI.. at~111 ii~icl 1.001 \egIIiCliti sllu\\i'd III~IICIIUI~ 011 ;I 1)ruIu11gcd CUI~LI~C on tlic<br />

:,;i~iic 1nedi~1111 Iur ;~buut X lo 9 \\ccks. Tlic cnibryo\ ;~ppcared a~ni~l:ir tu tllc ones on cliibryo<br />

nsls and leaflet explnl~ls. Tile epldernial I;iyer ol' SI~III<br />

and root scgmcnts broke opcn into<br />

crevasses and embryos apl)c:~rcd orig~~ii~ti~ig fro111 tlic ililicr tissue.


'I'lle c.;pesllilclith<br />

011 slluol osg;llloycnc>lb wusc Il~u;~tlly d~\~dcd illlo two types<br />

namely dlrvct ;111ti ~nillrcct ~nle~liods B;ISIII~ on lliis co~iccpt tllc expl;ll~ts used were<br />

6<br />

c;lt;lgo~i~etillto two groups. I, lixl)l;i~i~s tli;~~ g:l\e tl~rec~ slloot org;~nogenes~s und 2.<br />

Euplants that gave liltllrect slioo~ org;inopenesls. E.\pla~ll\ 1i;iving prc-cx~stllig ~nicsistenis or<br />

any traces ol'mes~s~cms come u~lticr lis,~ gloul) i111i1 llic olhcri like Ic;~ilc~~, Ic;ll'basc, stel11<br />

segments, ep~cotyl, liypocutyl, root segnients n11d root tip tllel were 11o1 ;lssociated w~tll any<br />

mrl.istemat~c tissue conles ulidcr tllc seco~id clabi. Tile ubscrvnt~o~is slioued that ~ndirect


egeneratloll \!;IS<br />

dli'licull ;~nti could 1101 be ocl~icvctl n.itl~ 111s tcsted 111cdiu. M;lture elnbryo<br />

axli, shout tip. ;lxlIl;iry bud, cot)li'llo~i.~ry node .ind d\~li;lr) III~~I\~~III (AM) explnllts<br />

sl~u~vcd sl~uut rcge~~cr;~l~u~~<br />

;IIIIUII~~I \\ IIICII ;1\111;1ry II~~~I\I~III c\p1;111ts ,AM2 :III(I<br />

AM4 were<br />

~CICCICJ ,IS [lie best UIICL OL'C F I J ~ 4).<br />

Sla~~d:~rdi~:~tio~~<br />

ol' il~~ll~cliu~~ ni~di11111: SI,III~~:I~~I/;IIIUII oi';111 ;I~I)~UPII,IIC I~I~L~I~IIII<br />

ii~r III(~LIC~I~~II LII'II~LII~I~)~~ hl~out\lio\\h II~IIIIII)/C hliuut II~~UCIIUII I~UIII III~IIIIIC<br />

CIII~~)O iixih by<br />

11511ig DAl> ;IS 111c 1pri11~1p;iI grot\ tli regt~l:i~ur ivlt~lt~~~lc slioul~ urigi~i:itcd o11c al'tcr tllc otl~cr<br />

~~iy~~cliru~ioti~l~<br />

;it IIIC \IIUUI 111) ;IIICI iixlll;ir) bud rcg1011~ 01' I~I,IIIIIC eillbryo :IXCS. Thc<br />

~spli~~it gre~i I~CC<br />

IU ~ULII t1111es III sl/e ;illil Iiicri~tcIii;iLIc IC~IUIIS br,~~~cli~d IU 111uIt1ple<br />

\tiout\ 'rllc otllul cullib~~~;~l~u~l~<br />

~ulll;llllitly 2-11' ;III~~\I\;'+<br />

\4llll Di\l' 111 ~CIICI.;II sI10i~ed<br />

ciicuuraylilg results, h1;11iy ~I:IIII gru~,th rcgl~l;i~or\ lilw LC~IIII~, ~ICIU~~IIII, lAA iilld IDA<br />

ucse<br />

citlicl- i~liIividu,illy or 111 combtnolion \LIIII UAI' sliowcd soinc ~rcdundiint rcsults<br />

of lo\+ li.eqiic~~cy 111ul:iplc illout ~~iduct~oil and llrcy were IUI<br />

tzibulalcd due to ltlclr<br />

~iiiig~iiticant rcsponic I'ur ilioot i~lduct~o~i<br />

Separate crperime~us for ~ hc sla~~d;~rdi~,itiut~ oi'sliout illduct~o~~ mcdlum were done<br />

uslng TDZ as pr~~icipal niillt~plc slioot ~nduclng grow111 regulator 111 cun?b~nnt~o~i w~th 2-if'


and klnet111 by using AM! ,mil A>,l4 c\l1l.i11tr Hoth 111c c\;l,l;~~~t\ hliu\\cd lllorc or less<br />

s11i11lar ~iuiiibcr ot' ~nilliiplc rIiou~\ per e\l)l.ii~r (l',~blc 4 X i rI)L \\;IS 11act1 ;II various<br />

conccntr,itioii, ralig111g liutu 2 lo IOU phi. Tile 111rdln C~III~III:UI~IIS \\ere 11;1111cd 11s JCR<br />

acrles \\liicli tilso cu~is~atcd ot'?'i)Z \\nil 2-11' ,111d LIII~IIII. SI;III(I;~ILI~/:~~I~II ot' he I~~C~IIIIII<br />

\\;la done hccpll~g tile I,IIU st,i~cs ui ~IUII~:IIIOII ;IIIJ suo1111g 111to ~,o~is~tIcl.;i~~ol~ :is<br />

cu~~ci'~itl.;~l~ui~ ,IIIL~ IIIIIC vl cllIl!lrc 01' c\lll;1111\ 011 I'~)/-COIII:IIIIIII$ III~.~I;I r110\v \1g11ilic;1111<br />

ctf'cc~ UII<br />

a!~bsci]t~c~~t diuul cIo~ig:it~o~~. IIIC~\ISIUI~ 01' !.il' i111tI L~IICIII~ \\;I< :IISO t'o~111ci<br />

easc1111~11 ;IS 111c) \\ere ;IISO IIIcI~I~I~~I 111 ~IIC SIOUI cIoi~g,itio~~ 111c~li~11i1 [SEM) ;I(<br />

Iu~~cr<br />

~UII~~III~~~IIUIIS. 11 Iun le\cl IJI'I'DZ (41141, J['l


decreased a[ cllkalinc pH \+li~le 11ic shoot buds iliduccd oli nlcdia \\it11 pll of 5.0 to 5.5<br />

clollg:~ted \+ell 011 ~lic ~II~IUI ~I~I~~;IIIUII 1i1c111111ii<br />

Effect of cot!Icdollary<br />

liswe 011 rlluot ilnluctiul~: l'hc et'tet,t uf ~liclusion of the<br />

Intact co~yledun or .I pur11011 of it :~lolig\villi 111c rcgclicr.nllig II~~IIC IS alio\\~i 111 tlio Toble<br />

1 10. Iliclusio~i ol' c~I)Icdo~i Ibis :I co~lr~~l~r:~liIc ;I~\;II~I,I~~ l'or ~~~CIIC'IIIOII<br />

of ~ii~~l~iplc<br />

alluulr ti.oiii :l\~lI~r! 11ltc111 ~ C ~ I ~IIICC U I ~ COIPICIS C\C~II\IOI~ of IIIC co~).Icdc)~i ?~Iio\ved<br />

dcl;~ycd rel)u~isc ;III~ ,I \~gli~lic;i~it ~Iccrc.~~~ 111 IC 11l111iher 01' SI~UUIZ 1)cr rcsl>o~id~~ig<br />

explant. E\cIi~sio~l of col~lctlo~i 1111>:11.1\<br />

I c . CII~III~III~ oI';I'LIII;I~~ IIICI.I\ICIII IISSLIC \VIIII h;lIl'<br />

arid LC~O cu~yledo~i aIio\+ctI 111iic ~ICI)CI~L~L'III cI1;111yca 111 Ill? 111111lbcr of\Iiut~tb per ehpl;lnt.<br />

cu~nl~;~~cil ru tllc e\~il;llir a11l7 11.11l' cu~ylctlo~~ Ibllv\~ecl by /cru i.otylctio11. Iluwever,<br />

\\lrIi rcjpect to tile nll~iihcl. of siioo~s per expl;lnt in c.cl~l:lli!\ WIIII<br />

fill1 ;III(I lin1fcutyIcdo11.<br />

Sub-culturiiig oftlic rcgciicratllig hoot butis In clu\lera, Iio\rcver, rho\\'cd a11 cxpolientlal<br />

II~C~C,I~C 111111111ibcr<br />

01'11111111~11~ \11001\ 1pcs UY~I;IIII\ Tl11\ ~ I~CIC:I~ W~IS li11111d 10 be two to<br />

tlirer 111i>o5 al~licr~ur 111 !lie cspl:1111i \+IIII III!;ICI<br />

cot~lcdu~i.<br />

Effect ol'expl;~~it dul~ur scctlling .nge: i\gc oftlie accdllllg lj.0111 ivl11cIi the CXPIBII~S<br />

ucre derived, playa 'III 11iil)ortn111 role 111 rcgclicl-;itiun oI'1ii~1l11plc slioota (Table 4.1 1). All<br />

i~x~llnry Illerlatelii rliItint\ slluuetl ;lgc tlcpel~tlc~it rcspoiirc>. A.11 cxp1:11it difircd ti.oln<br />

other tllrre b,is~c;~ll) tlur tu 115 ~II~I~,IIIUII lp.lr~cln. 2-


Sl~uot regeaeruliu~~ ill dil'fercl~t espla~lls: 1111vari;~t~uns ot'tllc csplalits colisisted<br />

of rnerirlei~~;ltlc /olics 11irougl1 \rliicl~ dircct rcgencr;ltioil \\,IS<br />

;~cliicvcd. Fig 4.4 shows<br />

r~g~'11cr~111011 pillter11 i~'ulll dltli'rclll c\pl;llili l~llil 1';lble 4 I! aIiu\ir, llic rc$eIIer;tlltig obililies<br />

of \;iriuils cspI;i~its, .All tile c\pI;inis e\pccl ,4113 al1uni.d IOO",, li.c~luc11i.y of IC\~,UI~~III~<br />

eupl;ints,<br />

\\it11 vdried 1i~111lbcr 01' SII~UIS 1pcr c\plil~~t, E111bry0 ;IXIS<br />

c\~)~;II~I ~II;II \\:IS<br />

liciliicllily iiscd 111 rcge~~er.~liu~i CXI)C~IIII~'I~IS \l~uiii'cl :I\)IIC/I~~~IIOII\ II~LIIII~~IC s11u1)ts<br />

origiii,it~i~g ~ZCILICIIII~III) li.u~il ~ UUI 111) ;iliil l~\~/I,~r) bud I~UIIILIII~ 'foi;il 11111nhcr of zlioo~s<br />

origin.~llng li.u~il 5hou1 111) ,111d t\$o ;~\ilI:ir) bilil I)U~~I~UII~ NCIC<br />

C~ILIIII~~ ,111d ~~OIIIIC(/<br />

luge[lier 111 recordil~g !he ~caults A ~icor \)~icliruny ot'~cgc~ici:~~~~~p<br />

II~~IIII~)/C I~OOIS ti.0111<br />

sliuot t~p \us obscrvcd. I'rolongctl cului~c 01' 111c cujil,~~~~.; 1.11 SIM ici~~l~cil 111 de~rciiscd<br />

I'rcil~lc~~c) oi'tllc \llool clu11&1t1u11, i\x~ll:iry bull \\,IS<br />

I,llic11 a\ a bl-limdi~ct ol' AM1 311d<br />

,'tL12 r\p1;111ts Yc~r<br />

~~IIC~IIUII~I~I\ 111~111iplc \l~uuti \vcrc l)rucl~~~ccl by IIII~ e\/~Iii~~t. N~i~ilhcr<br />

u1' 11i11ltil1lc \/IUUI~ jpcr ~A~~;IIII \i.'ia<br />

1)cltcr tl1:111 cllibryo :Ihla ;III~ \Iioot III) IIolvcvct~. llle<br />

;~x~ll;lry bud cxpl,~~it ubi,~incil ;I:, ;I byp~utl~lct ul' AZll c\pl;1111 hilowed IIIIIC~I<br />

Ivivrr<br />

li-cilucllc) uf' III~IIIII)IC ~IIuI~I~. 1 IC 11i1111ber o!' 1li11111l)lc >IIou~~ \lit19 Iu\\cI. tIl;~li cll~bryo :IXI~<br />

allti aliuoi 111). Abuw OOYI ol'ilic ;i\~lli~r! Ih\;ds aIiu\vcd III~IIII~IC \11uuta OSI~II~~~III~ Ii-0111 llie<br />

bar :if the ;lslllar) lilld. 'i'li~i type US i'cgc~~c~;lt~oii wai aiail~iictl to bc u.icfi~l for guiict~c<br />

tr:~~isl'ur~i~;~tiu~i, Tllc axill;~~,y bud 1purtiu11 c~~l;irgccl ;IINI tlic ii1111111)lc sI1ou15 origi11;itcd fi.o~~i<br />

siiollcn portion oi'AL1 I cuplatli. AM2 cxl11,iili tI1,1i g:~i,c riic lo ~nii~ltiplc ,Iioots lio~ii olie<br />

oi boll1 sldcs ot'illr ;ire;! ol tllc ;IIII~)LI~;II~~ ;~rlll;iry IILI~. 111 ~uo\t ol'tlic caho ~iii~ll~plc sllools<br />

\+ere produced Crolli ollc sldc oi' illc ;ixlllar) bud ;irc;i wlicrc syiichronoua mtrltlplc slic~ots<br />

were observed from ll~is espl;liit. 111 AM3 expl;lni llie rcgcncr;llioli I'retjuc~~cy \+as vcry low<br />

when compared to oilier tested explnnis. A vcry low nulilbcr of nlul~iple sliools, ci1111c from


either side of'bws;tl portiol~ oillle espl;~~~t bur d ~d nur elongste well. AM4 cnplant that can<br />

bc cons~dcred as itic:ll tbr gene IV,III~(~.I CK~~~IIIICIIIS yve risc to lllultiplc s11oots 3s<br />

nllllt~ple cl~iatcra \rl~cre tllc hiloot.; ;II.C<br />

lbr~~~sd 1rci111 TIII<br />

1p0r11011~ 011 tl~c si+ollc~~ 1p;ltt of'<br />

,~k~llilr! 11icr1>lt111. I:IC 1.5 ~IIu\\~ regi'~icr,~l~~~g IIIIIIII~>IC ~IIUI)I\ litllli 4\11 ~\~)I,IIII \+l~cre<br />

III:III~<br />

~Iloutb U~I~IIIJIC~ li.0111 tllc ~;Is;II I~U~~IUII:, ui 1I1c ~CIIII)\C~<br />

SI~~I~II h~ld\ I'r~lu~~gcd<br />

CLIIILIIC ul' ill1 1llc ;~bu~c-~~~c~~tiu~~ccl<br />

L'\~~:IIII> 011 sl~oul ~t~d~~eliti!> III~~IIIIN 1~h111tetl ill<br />

L'\~~ 11er C\JI~~IIII \\~lli C:ICI<br />

sl~uut but1 ll~\ 1118 tlic ab1111) tu tlc\clul) 111tu CUIII~~~CIS ~)I:IIII<br />

4.1.2.2 Elol~g;~tiul~ ul'tlle slloot buds:<br />

I'lilllt gro\\tll r~g~ll~ltorh \bere elll~lloyccl :It IU\V cullcclltr,ltloll:, 10 lllcrc~lhe tI1c<br />

~nunlbcr ut'sllooti elo~~giling ~ C cul,l;1111 I ('l:~blc 4 13) Ijhl'. 2-11], ~IIICIIII<br />

;III~ GAi kcre<br />

IC<br />

key COIII~)~~I~CII~> 1;ir b11iiot C~OII~;IIICIII,<br />

Tllc rlluul cl~~lg~ltio~l 111eil1,1 H~I.C I; IC~ iis C'I:L<br />

scrio koln \\111cli Cl:l.? iuln;lllrlllg 5 11hl 2-11' ,111d 2 lib1 ktiieull ;111tl CI:L? collrallllng 2<br />

11hl GAI sl~u\ved beat I.~LLI~I~ by C~OII~:I~III~ 7 3 :III~ X 7 SIIOUI I.CI;I)~CIIVCI~ (1.1~ 4.6 C).<br />

EIollg;~tion 011 ~~IIC~III \+,IS<br />

iu1111d IU be I~~IIIIIII;I~, E~UII~,I~IUII W:I\<br />

ill50 tcated 011 basal MS,<br />

bur ll~c rcsillts were 11ot s~~coui.ng~~~g irlic~i cu~lil);~rcd tu tlic ullicr II.U;I~IIICIIIS. IIowcv~~,<br />

prolo~lgcd cul~ure UII MS ioultcd III ille ruuul~g 01.5 lu 10% ul'tlic clo~igallilg shoola. All<br />

lilt tested conib111,111o11 sliu\rcd elollg;~t~un uS0.1 to 3 sl~uuls per uxpl,lnl 111 the illirlul step<br />

(elong;ll~on I), k111cli al~u\vcd ;I lei~gtl~ ul' 5 tu X c111 111 anutller I\+O wceks. I(ca1 of the<br />

explat11 bas placed 011 fl-csli clo~ig;itiun II~C~ILIII~. Ucat results IVC~C ubralncd ~vl1e11 tile<br />

elollgatlon \+us done \\~rli CkL? 111 the clulig,it~o~~ I ;III~ CLL7 111 tlic I;ltcr stilgca. The<br />

sllool buds gro\~ing 111 cluster'; \+ere cultrlrcd 111 CEL7 fur two to tlirec pas\:~gcs ;11 IO to 12


day inlervals. CAI naa fourid lo be ploy~l~g cruc~al role ill tile clur~p;~t~on 1 phi~sc where its<br />

application showed lncre;~sed internodal Ic~~ptli illid bctlc~ Icat' ~~~orliliulupy. Tile slioots<br />

cluriil;ited In cocI1 p;ias,l$e \vcrc tr~~~ist>rrctl lu tile louti~~p III~~IILIIII.<br />

I cupu\ud to tllc ~uutlng incd~;~ dr;~b~lcally di'crc;~actl the rootilig<br />

Srequency. Late roots rnent~oncd abobe, sliowcd \low growth illid they ~uritil~r~ed several<br />

root hairs. Sliools, wll~ch did 11o1 lout, ~ crc;~rrlcd lo the P!I;I~C 2 III HIIICII they were pulsc<br />

trc;~tetl \v~lli 100 lihl IUA li~r 2 to 3 scc. I


IBA sl~owed bro\\~~i~~g i~lld de:~ll~. A~u\c IC<br />

de~d llllll. roots \\we t'urll~ed 111 buncl~cs.<br />

Shoot growth slo\\ed do\\il u1111l ll~c 11c!\ r~.ou~s r~;~rlcII,I>~ I ~lc~cril~c~l III ll~c II~,I~L,II,I~> ,111cl III~IIIO~I\<br />

S~CIIUII), Sucrose<br />

I 5':" ~III~ ?",, ~110i\ctl Oc\l rc.;t1115 III ICIIII\ 01 Iicq~~c~icy ,IC~ r ~ t<br />

~~~orpliolog) L~trlc or ~io rc\po~~\c !\;I\ obscr!c~l III cull~lrc?, ilc\uid crl'\ucru\c<br />

Effect of ~lletliul~~ on rooting: Ll'lkcl ut'v;~riuu\ cu~~cc~~lr;~t~u~rs ol' IDA ,111tl NAA.<br />

\IS 1111\ ;IIY >IIU\VII III 111c I',~t?lc 4 18 lI3tl ;I\ 5 pM<br />

\\;I> 1ii~111cl ICI 112 L)e\l IUI IUOLIII~ !\ l)r~el' C\I>U.;IIIC 01 1I1c \II


co~llbinatio~i \villi rncli otl1c1- ncre tested ill llle sr;lge I ufil~s II~I~~CIIIII~ II~OCCSS (tig 3.8).<br />

Coniblnationa of procesbed org;llilc m:iltcr SICI<br />

Cell l


humidity uf 50% 111 the dayrinie a11d uier 80Uh 111 the 111gh1 'rllc pl:1111s ivrre inltlally<br />

exposed to humidity as lilgli as over 90% b) ~I~ILIC 01. cuver~~ig 1lic111 w~tll PI'ISIIC<br />

b;igs.<br />

Tliry were sloicly i~cclltilnti~cd to tllc i~~iib~clil IIIIII~I~II~ b) grililu;illy c~l~cliilig [lie cover.<br />

Prolonged coierlng. 1.c.. oicr c\liohi~rv 111 li~gl~ I~III~II~II) c:ii~~cd \\IIIIII~ ;111d dccrc;~sed<br />

exposure caused preinillllrc dl.).lllg, b011i ~.~il~ll~iig III dciilli of Illc ~llii~il. IICIIC~ llic iili~11~<br />

hu~nidlty accliniat~?at~ol~ procesh rcqi~~retl ;1bou1:I ~iiunlli ;III~ i11111c1\1 C;IK<br />

bc1i)rc c~itcril~g<br />

illto the stage 3.<br />

lhc pl:ilil. Iicl;ce, tllc e1illl.e II;I~~CI;III~ I)IOCC~\ \v;I\<br />

duli~ ;II ,I II~III IIIICII>II~ OS 10.000 lo<br />

12,000 lux ill ll~e C~II\ II.~II'" gron Ill cli;~~iibcr. I)lrccr CS/)U~LI~U 10 llic SIIIIII~III 111 llie grcc11<br />

house caused dry111g 01' 111 ~I:IIII. lY1111 ~C~~ICCI IU IIIC I~IIOIO~)CI IU~. \I;I~U<br />

I W:I> lii;~~~itillll~d<br />

at I0 Iioilr l~glit ;IIILI4 Ihot~r dark, \t~igc 2 ,II 12 liu~ir l~gl;~ ,ilc cultllrc growl; cl;~


addition to tile tubes collt:lllllllg llcli~itl 11ltdii1111. 111 th~s 111st11od IC<br />

1011 1101.11011 01'11111 plilllt<br />

was exposed to tllc ULII side COI~~I~IUI~~<br />

,111d hlo\\ly c ~ e e l ~ \\IIIIS ~ l gro\\illg ~ ~ ~ ~ I:igure ~ ~ 4.10 ~ d<br />

H, C sliows onulilcl mc~hud ol'sl;~l~c l~)drol~o~!~i.a s)sIcl!i ill i\lilcl~ 1I1c rouiillg ayslclil \+as<br />

completely 111111i~'racd<br />

[lie 4 a11e11g111 A~'IIOII'\<br />

~O~~IIIOII. 111 1111, 111crI10~\. IC<br />

I~~,IIII \\I18<br />

direclly cxpoaed 10 1I1e ;III!~ICIII ~UII~IIIUII$ IYVIII ~IIC lir>r cI,I\ ll~c\er, (1ry111g\\;I><br />

pl.evented bccauac ol' Ihc Il(l111d 11;11i1rc 01' 111c IIULISII~IIII~ IIIC~IIIIII. 'Illla ~i~e~li~d<br />

CZIII<br />

supple~ne~ll rile atagc 1 ;111d 2 ~Isacr~be~l ,~bi)\c;111d<br />

ll!~ plil~il\ CJII<br />

dlrc CIIIPII))C~I ~~I~CCIIIII~ \\ I~CII IIICIC \\:la 110 g~u!\lli ol'lli~ 10ti1 \)\~cI~I. \\IIICII<br />

dirsctlj i11111blti11g lllc g10\\111 of I11e ~I;IIII. ' ~III~ IIICI~IU~ \\;la<br />

IIII~~UI~,III\ III ~II~IJIICIII~ tllc<br />

survi\;il ticq~~u~lcy by irouble>llout~ng In 1Iic IIJI~CIIII!~ I)IUCCI\ IIICII~IOIIC~ 111 llie III;I~C~~~I~S<br />

:~nd methods section. C;ro\vlh of llic i'uor jysli.~!!, wliicl! 1s .I Ley I:lctor Ibr Ills II;I~~CIIIII~<br />

appeared III nbou~ 15 ti;lys alicr IC I~.III~~)~:IIII,I~I~~II i1!10 ?O CIII 1po1.;. lllc Ilu\~ei':, kcre<br />

renloved aa sooll tiley ;ippcorcil ior ;lboi~t 3 \vi.cL\ >u ;I$<br />

10 II~CI~.I\~<br />

llic icgelanvc grow111<br />

and lliiis ilici'ease the ~ii~mbci' ol' accda per ~I,IIII I~CIIIU\,II<br />

ul' Il~i\\'cr\ :II\u rcs~111cd III IIIU<br />

111creabe of br:111cl1111g ;III~ IC<br />

~I;IIII~ ;i5$11111e~l


4.2 Histological studies ~II nlultlple slloot de\tloplllel~t I'I.~III Ahl.1 espl~l~~t:<br />

As described 111 secliull 4.1.2,l. Ah14 elplants alio\\.cd ;~dvcn~~t~uus niul~iple shoot<br />

induction ir~lll alloul bud> OII~II~;I~III~ (i.0111 dilji'reiit 11;1r1\ uI' IC ~C~CIICI.,IIIII~ ;I~c;I.<br />

Histological slut11i.a ol' ~iitlltiplc slloo~ III~IICIIUII 1j.oi11 ~llebe c\lll;ii~ts \\ere co~iductctl 10<br />

colitirm tile for~ii;lt~oli oT~iit~ltiple ~~dvc~~ti~iou~<br />

~ilet~iate~ili~~ila ,ilicr the i.s~iiuv:~l ol',~\~llo~~y<br />

bud. 'I'hc dey \+Iicii ;ixill,~ry but1 \+';is rc~iiuvcd \\;IS<br />

eu~isiilercd as d.ly-I ;\lid tile slud~cs<br />

were coiiduclcd 1111 7 diiyb. Fig 4. I3 A tu H ~ll~\\'b 11c\cIu~i111~1it ol' I~~C~I~ICIIIUI~~ ;II<br />

dlff~~~lll ~ 1 ~ ~~;l.\l~~;l~)<br />

~ 1 ~ ~ 5<br />

lll~~l\l~lll<br />

;lrC;l \\ 11~1C 15 10 ?(I lll~Vl\lClll~llt~~ ~~L'\c~u~JL'~~<br />

~1~1\~~!~11<br />

4 to 6 days oi'culrurc on tlic slioot IIIC~UCIIOI? I~IC(/IIII~~ 1.1s 4.1) I5 sIio\v\ ;I \11iiilI ~p~rlio~i 01<br />

axillary bud rc~iiaii~iiig cvcci alicr ~lic cvcislu~l of tile gruw~lig ,~\~llary but1 and<br />

dcvelopmeii~ of rnerlstelllo~d\ ;I[ the base of 11. .fliis rcsiilt alluiv\ l~islolt~g~c;~l c\ldcncc lor<br />

llie cnicrgc!ise of I~ILIIIIIIIC ;1tl\c1it111011\ 4 1 1 ~ 1 bt~d~ I'ro111 llic b;is;~l 11;1itll' IIIC ,~\~ll:iry bud<br />

:is sho\+~i 111 lllc 1'1g 4 -I U MCI.I\ICIII;I~IC :1et1\11y 01 IIIC ;ICII\CI! IIIVI~IIII~ ;III~ grt)iviiip cell:,<br />

could be ubscr\,cil 1i.ol11 tllc e\pl;~~~ts obt,~iiicti I~.OIII d;i)-5 tl~ii\,ii.db (1.1~ 4.13 I), 1'. F lllld<br />

I{).<br />

Tliese tIi\isio~ib rcullcd 111 [lie Ibr~ii,~r~o~i ol' II~C~I~ICII~~IIII. /OIICI<br />

IIl;it ~C\LIIIC~ ill llic<br />

f'urniatlon of 11lul1il)ie ili(10t bud> oh >liu\vll 111 ilic l:ig 4 13 (;, lb~g 4 1.1 A to I sliuws<br />

nicrlstcniatic ;icti\wl! ol'd~i i~l~~ig ecI1 iIi;~t C\CIIIII;III~ ~c~cIuI~c~I ill10 ~ ~iiilt~lll~ sliouts.<br />

Ccnetic tl~;insfuriii;it~on iraa carr~cd uiir by LI,III~ b ~ul~\ti~ ;IS IVCI 3s Afirohoi!i,~.ili~~~-<br />

lncdiilted lllelhoda In boll) llie proccd\ire> llic p~~l,~l~\c rr:iii~l'orniaiira \vcrc obtalllcd by<br />

selccti~lg the trallhl'urlllallt,<br />

liilllg il/illI ii\ lll~<br />

s~~c~l~lble lll~.l.k~~. gCI1S iilld k:~naillycill 2s llle<br />

antjblouc br selcc[lon Conlrul cxplanls \r.crc ubcd lu tesl thc Ictl1,il tluse (LD 50) by<br />

culturing AM4 explants oil MS \rltI~ ~~III~IIII~CII~ (5, 10, 15, 20. 25 mid 30 11iuL) with


varying concenlr;~lions ol'TD% (0. 2. 4. 10 jlhl). 6 lo 8 cspl.~~it\ \rcrc ci~lluled per pl;~tc<br />

(Table 4.15). TDZ \\;is eniployed so .IS<br />

lo Itst tile clli.c~ ol' TI)% ti11 c~lli;~~~ci~ig survibal of<br />

thecultured explants 011 k;~~ianiyc~ii COI~I:IIIIIII~<br />

III~LIIIIII~ hi~r\l\:~I \\.I, IC IIIC;I\II~L' tlf ;III~<br />

collcel~~lble gro\\lll 01' tI1c ~\l~I~llll ~1lcI~lLllllg llllllll~llc \lltlcrhl>lellcc of<br />

chlorophyll plgliicnt In llic eul~l,1111. Tl~oi~yl~ llic c\l~lLl~~r p~o\\~l~ \\;I.; 111li11111cd c\cn ;it 20<br />

11i9'1 ka~ia~n)ci~~ COI~C~IIII~II~~II. cliloro~~l~yll 1pig111c11t 11crh1\1etI (or re\\ ti~~irc cI;iy,<br />

,~ttcr<br />

wli~cli expl;l~~ta blcuclictl. F.\~>I~IIII sro~111 ;111d aI1tlo1 b11tI II~~~~ICI~OII \\;I\ COII~PICICI~<br />

lnliibitcd :11it1 CX~I~IIII ~OI~II~ICICI) blisc~cl~cil 111c C~JI~~CIIII.;IIIIJII<br />

LII' 30 111s I. I\;III;IIII)ICIII .A<br />

gradu;il dccrc;~sc In si~rvi\;~l I.;I~C US tlie ~YIII;IIII\ \\,I\ li1i111\1 \\II/I illcre;~hc ill L;III,IIIIYCIII<br />

co~ice~~tr;~t~o~i. Grti\vtl~ lctli,~l tloac \\$la fi\c


sliowetl no liirtlie~ yrowlli Tllc ~clccicd slluut~ yru\il~ig I~c.iltl~~ly ~cic tlal~ilkrrcd to<br />

rooting medium 1Iii11 dltl II~I 1i;iic ;my I\:III;II~I~L,III >IIICC II ivi15 IOLIII~ to d ~cr~i~sc IC ro0l111g<br />

Ii~cil~~c~icy, l'bc ruute~l I~III,III\C II,III~~UI~III~IIII ucrc I~ii~clc~~~d ;illel t~:~~~,pl;iiilcd tl~,~l sI~u\~'cd<br />

11onnal gro\\,tli ;lnd ~iior~iliull;~gy cu~lll>,ircJ tu tile coinrul\ they \bcsc I~I;III~I;IIIIC~ 111 tlic<br />

spsc~nlly dcs~giictl 1'2 iiic~l~t) for trclnagslili.i. I lie ~)I;III~~ lloirc~cd III ;I~OLI~ 15 l;li~ys illlor<br />

the tra11splentatioli illto tlic 20 el11 put,<br />

The 1)1d111r MCS~ pr~1)~18;11cl;I ~cgctilt~vcly Sor ill1<br />

extended limo b) alill,ut.itllig<br />

llle IC~I~~III,II bud> ol' ,oiiie<br />

bl-alichc ;III~ rc~liuvi~ig llle<br />

enlerglng flo\vera. Thii nrc~liutl could plu\ itlc rLiSlic~cnl IcaS tlrs~ic ~\II. ~ln)lccul;~r ,~iialys~s.<br />

Emergence ;~nd matur.~tioii ul'liotl\ \r ;I\ Iuuild tu be nurillal, liu\\,cvcr, tllc ~lun~bcs illid b i ~ ~


oftlie seeds was tiound 10 be lo\~t.r coi~~p,il.cci lo cu!ilrula The 111;iturcd IILILI\ \\,ere dr~ed and<br />

s101-ed ;it 4 'C Svr I'LII.I~IC~ use '1.11~ ~III;III\~ IKIIIS~~I~III,II~I~ III~II iicru I~;IIIS~LIVI~~C~ \\it11<br />

BICI:~.,I/J<br />

9c11e \\c~e i1;1111eel ;IS CB (CB I, ClQ, .,, 111 series ,111~1111c O I I ~ IV,II~\VO~IIICL~ ~<br />

\vitl~<br />

T I I c I:III S ' I 2 . . 11) \er~c\ .I 1u1;1101 1 I ('13 llh1111\ :IIIL~ 0 C(S<br />

~)lants \\.ere obt;i~~ictI ;111,I llicy \\CI.C L ~LI~~C~~IICI~I~! ;111;1ly/i,t1,II IC<br />

III~IICZLII;II le\cl<br />

IIIIII,I/ >el 01' II~IIIS~UIIII;IIIUII CX~ICIIIIICIII~<br />

1\41 i1011e \\1111 111iS723 131 2nd pIIS<br />

737,SBTI bln;ll-y vcclurs CUII~;I~IIIII~ Ull'i~./,lh ;III~I .S'li/7 ~CIICS ~csl)ecl~iely. I'u~;~livcly<br />

rranslbrmed ~planlr w1t11 Ui(',~l,.lh<br />

\rere ,i~~al!/ctI by 11it11g IICI< ;III~ Suulller~i blulli~ig<br />

tccll~l~que\ and p~~t:iti~eiy ~~a~isiur~~~cil pl,1111i c;lrrylIlg .5'1$77 gcnc wurc it~~i~ly~cd with PCIL<br />

Molscul;ir ;in;~lya~s irnh dune 11l1t1~11ly by do111g 1'('1<<br />

lollowcd by Soulhcr~~ blorl~ngs.


Conlirmntioll of plllati!e<br />

t~.~ll~afor~~~a~lts II~~II~ ~)ulyll~crasr rl~ai~~ re;~ctioa<br />

(PCK): PCR wi15 fbu~~d to be 011s ol'111c II~\ISI<br />

e1'1;.ct1\c ;III~ ~ULIIIIICI~ IISCJ tecll111q~1~1 hr<br />

Initial co~~lirfiii~l~u~i ui' rrI,IIIII \\'~tIl rcqlcc~ ICI L'lj (/11('r1,/..1/1) ~I;IIIIS.<br />

amphtic;iliu~l ol'lhc c\pi.ctcd 7011 bp I'I~III~I~I apcc~lic to i~/)ill gcllc \\;I> ub>c~\cti 1115 uul<br />

oi' 10 ICSI~CI pl;ll~la. (~CIIOII~I~.<br />

I)\ \ \,1111lili.\ 111 ('111. C'I12, C131. C111 i~~ld ('117 >II(I\vc~<br />

proliilncllt t ~ ~ ~ ~ ~ ~ I .2 l LO ~ :1111pI11ictl<br />

l i c ~ ~ l ~ K ~ o g spcc~l.~~,<br />

~ ~ b ~ 1i)s c ~ iii,/,\ ~ ~ gc11e \\,I> ob~crvctl<br />

111 X out ol' I0 L~~l~lllcb \VIIII ~i~rllccl lo C'S ~)l.~n!\ \\ 1111 \Hi/ gcllc. 5 our ot") pl;1111> (C'SI.<br />

CS2, CS4, < S5 :111d('50) ~IICI\$~CI ,IIIII)III~~~IIIL~II vl'c\~~cc~c~l 700 bl1 I'I,I~IIICIII ul II/JIII gc11e<br />

;IC~<br />

5 li't1111 0 ]I~.II~!\(L h2, C'S?, C S5, C Sf1 ~11tl L'S')) jI~t)\\cd 1c\pcc11\e I 2 Mi I~;I~III~III 01<br />

iiii/A pclic i~~iipl~licd ,\ 1111111 b,tlliI ,llhu :~l)lic:~secI III ('SX II~~ uI'I3r ,111il 5131'1 I)~~IIII\ ;IIC<br />

I~~I\\II 111 IIIC 1.1014. I4 ,111d<br />

re>~~ltb vl't11c l'Cl< ;III~]IIII~IC,III~II~ vl 1.2 kb ~I~I~I~ICIII \pcc~lic tu III~/I~ ge11c ;~rc SIIU~VII III 111c<br />

1,'1g 4 15. \YI~II sty~ccl 10 /~I('I.I/,~~/I gc11e ,II~I~III~~.,IIIUII~ livv \ct\ ~I~~II~~IIILIcI~~I~cI~<br />

1pri111crs<br />

\b3iiI~(hi. tiil~cr he1 ol' I)I.IIIIC~~ I~c~IIII~ ul' IIIC I'CI< :III~~~III~C;I~I~III\ 01' I~,I~I~IUIII rl)cclIic to<br />

I~I('I:I/~~!J gc11e CI~C 5Iiu\\11 111 ~IIC 1'1g 4 I6 (L3) 4.10 (I\) \II{I\\\ ~C\LIII\ oI',S/1/Y gc11c<br />

~IIII~I~I~C~IIIUII :I 497 b11 I~;I~IIICIII \\;I> IULIII~III L S2 lh.111 0 til'tl~c Ic~lccl >c~~~~plcj<br />

F(rr/ur,\ trjjei,/iitg rrt~ric~ioit ~~Jgi~riun~ic 1)V:l: UIII li~rll~ i111d CI'I~CICIII re~tr~ct~u~~<br />

01'<br />

genomlc DNA 15 ;I prcrcqu~\~tc lus CI<br />

cl'lkcuv~ Suurllcrn II~~I.I~I/~IIIUII :III~ IIIC COIIS~~~UCII~S<br />

ui' 111c ~C~I~ICIIUII<br />

~C'ICIIUI~ II~II~LII~ 111,iy CI ~11rcct role III 111c lprucc~~. llo~cvcr, dur111g tile<br />

cuur\c of rl115 atlid). II \$


~~IIOII~IC<br />

DYA ror SOLIIII~SII L~~~:~ly,~> ~CIIOI~IIC 1)'4,\\ uf IIIC p111;111\cly II;III~U~III~~<br />

ch~ckpea pl;1111s \\ere dlgeali.~l enl~cs \\ 1111 I.'< oIIIu\\~~ III;II USA IS ri.q~~~rc(I III IC<br />

I~;~CIIOII<br />

1111xture. ~\tId~riol~.il ~IICIIIIII~ or l\lllllr \ill11 I.tbll~CCII~C 111obc 01' 1i011-rildiuil~l1~~


5.0 DISCUSSION<br />

During tile la31 dccadc, btu~cci;~;ulug~ I1i1, 111~1(lc i~ill)~.e\hivc ;I~V;II~CCIIIL.II~S.<br />

Genetic ~ranstbrrn~r~o~; oi'crop l)la~il\ I\ 11, \:ilil,~blc ,I~J)cc~. Ie;1d111g tu~~irdb \lie h~ildt~ig<br />

of an organized and hcallliy ,ig~~culti~re \).>IL.III<br />

ficc li.ulii 111c u>c ol'pullr~l~ng i~~acc~icidca<br />

and funglcidea. Explor~tig 111~' poa\~btl~rlc\ (11 I~anilcrr~ng pch rci~cla~~cc pcllcs In pea


(Shade et al. 1991: blorru~i ct ol. 20011) II;I~ opcncii 11cr\ \15t;is lor tra~~sli.rrl~lg<br />

agronoln~cally 1lnport:lnt tr;l~ts lilto othcr crup pl.iilr\ tu dcvclup cllte c~ilt~\ars (Hirch.<br />

19971. Thc trcliliology c~llpll.~t~c~illy aupport\ lllc ir,l~~sl;.l, III~~.~~.III~II ;III~ c\l)rcsaloll ol'<br />

foreign gsries 111 l~etcrologou> orga~iisiiis. I~~IUIIUIIIIC;I~~~ IIII~)O~I,IIII ~CIIC:, 10 1111l1ru\c tll~<br />

crop ylrld qualirativcly ;IS<br />

\\,ell as qu:~i~tiiat~\~cIy II:I\~ beell ~;ul.~tcd ;III~I TIOIIVLI 1'1.0111<br />

vartous sourccs. TI~csc 111clu~lc gclics Ibr li~l~giil r~h~st;i~lcc- C~II~III:I~C~ :ICI<br />

~IUC~III;I~CS:<br />

blral I.es1st:llii.e- cu;it prutc~l~. rcplic.~>c ;lnd r~bu\~i~lc III~II[)IIIII~ I)~U~CIII\: lpc:,i ~CII~I~III~C-<br />

a~iiylasc ~~il~ib~torr, ~irutci~~.i\e i~ili~b~tvir ;IIIJ 111 ~O\III gcilca ,111c1 ~CIIL,~ hr IIII!II~ILIII;I~<br />

improvenicnl- ?S iilbi1111111 ~CIIC<br />

B~ulceI~~iuIog) c~~~o~iip,~~~lllg<br />

gc11e11c<br />

CII~IIICC~III~ 011;'r:,<br />

ave~it~es to o ~crco~~~c tlle b;lrr~cr> 111 ~c111e\ III~ I~IJ\IIIILIIII<br />

cl~~chl~c;~ ~~I~ILILICIIUII<br />

5.1 'l'issuc r~lllure atlldirs<br />

p~.otocol.; aplx,iscd 111 il~ickl)c;i rutlr,lllc cnlbr)o~c~lcs~\ 111:it (lid IIO~ \;I~I>I) Ihc<br />

~ ~ l ~ L l l ~ C 1 ll ~ b l l ~CIICIIL ~ S ll,lll~~~~llll~lll~~ll k,,ll~) lCllUll\ ~11' l(


leatlets (Dilieshkuniar er al.. 1094). %earill ;ind I&\ \\;re<br />

ii>cii IU iildiice soiii;nic ciilbryos<br />

from inimature uotyletlo~~s \'cry liigli ti.cql~elicy ofpI;i~itlc~~ \\ere regcner;~lcd tio111 tllcse<br />

embryos (Hila el al. 1997) Hunc\e~. .ill l / l ~ 6 I)~I~IOL,U~\ ~ re~t~r,~l~~d<br />

111' II~~I~CIIIIY 01<br />

rnaturat~on and regcliclniioli ol' nliole p1~11tb ii.1 \olii,nic c~i~br~o~ei~c~~~<br />

~p;iili\\i~~, rliis<br />

was rc-co11firmt.d 111 our c\perlliitIi1\ A tcr! good ~~.CLIIICIIC! ul' ~II~~~ICIIOII \\;IS obhcr\ed<br />

tion1 m;iturc eiiibryo ;I\IS :iiit! Ic;itl~.i c\l)l;iii!s I:~iibryopi'l~li II~\IIC<br />

\\.,IS ~hsci\ed to<br />

iiiducc bcticr e~iibryugcnc.;ia 1Llc~c1l~l1)ll liarlle ol')utliig lc.~Ile~\ \\.;I\<br />

;II\ 1'11~ p~ihli~llcd prolocolh<br />

were repeatedly ~ricd \rill1 Iirilc ur 110 ~LICCC\A. I'ICIC<br />

r~i1111> s~~ggesI 111~11 ~C~CII~~:IIIO<br />

protocol vla soiiinlic ei~ibryugciics~h calilior be ;I rcll.ibls t11ic lirr gci~cl~c ~~~iislbrin;lt~oli<br />

exper~iiicnts<br />

5.1.2 Ori~g~~~~ogc~~csis:<br />

~!IC~O~)~U~);I~~IIIOII ,iiitI ~~~~I~V'IIIUII \),I tlirtc~ or t11~11rcc1<br />

organogclie>ls 1i;ive beell e\le~~\~\cli ~itlti~cd :III~\CVCI:II 01<br />

ICI~UIIZ \\ere ~p~lbl~~~l~rd.<br />

liiclus~o~i of I~~L'~I~ICI~I:IIIC IUIICI<br />

ii~lli IC c\I)I,II~I\ \L,I\ liltl~id ti OC cruci;iI for<br />

regcncr;ltiuil of slluoi butla .ind i\liulc 1)1;111t\ 111 CIIIC~~)C:I. I.;II.I) rcj)ort\ ~III cli~ckpca<br />

sho~ed callu> III~II;II~UI~ ,111tl ~IU\\III \\JIII 11u regciici,~t~


selection arid prepordtloii ul' c\llliilita. 'Tlie I~C~IIII~ILI~ I)IU\~S LI~C~LII \\IISII<br />

I;irgc-sc,~le<br />

multipl~catio~i of a speclea is leqilircd 111 oilier \\orti> IIIIS c\pI;ili~:, IS USC~III tbr<br />

ni1croprupng;itloli :1101ic ;ilid i)gutic cliibr)o b;lsctl c11Ilu1i.a \\ere IIOI coliaitlcrcd :IS 1dc;ll<br />

for l~~~isfur~ii~~t~o~i<br />

stiid~eb, Ullicr e\pl,1111h II~S<br />

IIIII~I;IIIII~ co~~lclluiis (Sli11,111~1 L)


used with an add111ou;ll care :u~d obscrvat~on. Shoot buds i~~ii~~ccd UI I~AI)-CUII~:I~~I~~I~<br />

medlum sho\ved n better elongi~tio~~ cu~~~p:~red to 111c ones nn\li 011 '1'1)L<br />

Ilu\\c\er.<br />

~iu~iiber ofsl~oors per e\p1,11l1 UII TIIZ II~C~I~IIII<br />

\\.I\ I i 10 ? IIIII~\ bct~cr III:III<br />

l3:ll' IIIC~I;I.<br />

As IS III~IIIIOI~CL~<br />

,~bo\c.:I~~IIIOII;II C;ISC<br />

~IIOLII~ be c\crc~,ct but<br />

efftctivc TLIZ concenrratiotl ,~nd kept on TD% ~~ic(li~~~ii 1'~r lllc 1cdhl ~U~:~II


appropriate conce~itralio~i of TDZ 111 gerllill1,irlun and III~LICIIUII 111edi.i 15 SI~III~~C~IIII<br />

nlodifical~on over euls~lng protocols<br />

cotylcdo~inry node ere. ilu\ri.\cl., sclcct~u~i ,11111 ~irocc\\ll~g ul' ~p~ol)cl s\l~l:lnl I:,<br />

other. Rcnioval ol' a\ill,iry<br />

b~~il. CLII<br />

111ro~1gl1 tl~c ;i\iIl,~~j IIICII\ICIII ,iiid ~IIC~U\IIIII 111'<br />

-- -<br />

cotyledon .- -~ were tile s ~y~i~lic:~~~l v:~ry!ms~:l!~~j:~ 111 llic prcsc111 brudy. '\ I~OIIIP~C~ICII\~\.C<br />

----<br />

~irolocol for rcyci1cr;iiluii ontl ~sccuvcry ol' \\llulc ~IJIII\ oI'cli~cl\l~c;i Ii) II\III~ :i\~ll:iry<br />

tlinr tlir All? ;III~ A\l4 c\pl:~l~l\ bliu\v\ :~IIII~I\I \111111:tr \11oot I.C~CIICI;IIIOII CI'I~CICIICIC~ ;III~<br />

\%,Iiicli the A~~O/IOL/L,I~IIIIII C,III IC,ICI~ IIIC ~~~CIICI',I~III~ II\\LIV l


tissue to regenerate illto lesser i i u ~ i ~ ~ ~ ~ 111 utl~e<br />

oC;IS~ t 01' s ;l\ill;lry .<br />

-- .--<br />

meristen~, removal of axillas) bud liiilllliea tile .~pic;il ~OIIIIII~IIIC~<br />

111 :idtlilit111 to tllis. IC<br />

medlun~. The tissue a~lj;~cci~~ tu llie ahlll:~ry bud ;IIL';I t11.1r II,I> III~II\ICIII;IIIC IIISLIC I.CTCI\C~<br />

shoots. Et'rcct of age ur tllc >CCLIIIII~ I~UIII \\IIICII llic ckl11~1111\ \\ere dcri\cd sIIu\\\ 111,it<br />

expl:~nts \\.ill be derived. Uoci;ll .II~L~;i\lll.iiy mcrlhicilla II.I\~ bee11 I~~LIIIII\II~~ II~\IIC~ lili<br />

regeneraling eapacily \+IIII cul~\i~~ci~~gly ;IC~~~.IIIIIIULI> 11:ilurc ul'lhc rcgci~ctill~~ig IIILIIIII~IC<br />

rrgellerarloil protocol, ol' v.il.lou> 111,1111\. I\\I/~;II) IIICII>IL'III<br />

\\.I\ ~LIIIIIIC~I IIII~C~ \:IIIOLI\<br />

IISSU~ has a direct correlation \\IIII<br />

il~uu~ ui ruul ~II~'~~~-CIIII.III~II I~(I~CIIII;II in N~,(i>\i(.ii


cotyledoli incl~ided. Aalllary ~iii.~~atc~li e\pl;in~s ilc\oid oi cot)ledoli ,llo\vcd lesser<br />

- -<br />

it afkctr upt:ikc of~:~r~uuh I~LI~WICI~I 11111>. 1'111.1Lc 111' 111li~i1~<br />

;III~,1111111~111~1111<br />

%ire I~~IIII:III~~<br />

affected by the mediiilii 111-1 (Ilclirc~itl ;illti \l:!ti.l~\. lCi:5. l(,i\sn. ICjSi)i 11 \\;is ubscl~\cd<br />

that nltr;lte 11pr.ike la 1:1\uurrd :!I lo\\ 1111 :1nd ~1111111011111111 .II III~IICI 1111 .\\lll,~r! 011d<br />

111ult1pli~a11011 III shoot CII~~~IIC:, UI' C'i~il~~llc:~ \\:I\ II~UII<br />

\i~~~\l';~~~~r~<br />

\\IIcI~ 111~' 1111 (11' hlS<br />

\\,as red~~ccti to 4 (Cllsvrc el :I]., IOh'3). lC~\C~ \\IIII cIiich11c:1 tll~t \I~.C~C~I\C ill 111~<br />

C~IIICCIII~,IIIOII ~i IIIIKIIC\<br />

in the ibrm ol'KY01 \\':IS t;~~or.~blc Ibr luul~iig Ths III~~~I~C<br />

LIIII;II\C<br />

I\ I;I\II~CCI :I( IL)IYCI pII<br />

and iininio~iiulii at IllgIle~ plI. it c.111 bc li)putl~c\i/ud LII:II l ~ ~ loll\ ~ IIII~III ~ I~c ~ ~<br />

lil\orlng routing at li~glicr pli ;111d III~~,I~~S 111v~~r111g SIOI<br />

III(~UCIIOII<br />

S~;i~~d;irtiiiat~u~i ul' IIII~UCIIUII IIICL~IIIIII \V;I~ LI~JIIC L.(III\I~CIIII~ iill \I,I~c\ 01' 111.111t<br />

rcg~1ier;ilIoli \i~cIi ;IS<br />

clo1ig:111011 'III~ ~OOIII!~ 1 IS\II~, lo\\s\l 11111 sli2ct1\ c COIIL~II~~;I~IOII ul'<br />

TL)z \KIS i0Lll1li IU bt !3~1\~~~11 4 I0 11) ~ \ 1 Ill \I?\\ 11~'~~lL' i':l~l ld1;lI ~ 1 1 ~~J11CC11~~1~1011<br />

~ ~ 1 ~ ~<br />

ol'TDZ negati\cI) ~llrcrli.~c\ \r 1111 tl~c IILIIII~CI 01 >IIUUI bull\ ,111~1 IIICI~ ~IOII~;I~IUI!, 4 ILM<br />

was conaidered 45 u1111111:11 iiorh~llg COIICCIII~~IIIOII<br />

\LII~I~CI ui'\I~uut hi~ds ;~lro(ICC~C;I\C~<br />

~vitli illcrease 111 TL)% CUIICCII~I,III~II<br />

L'cI~ 111gIi CUII~CIIII~III~JII<br />

III'IIIC TI)% M:I\ ~bher~cd lo<br />

gibe stunted slio~~t biiil, \\IIII l~ttlc or no ~IUII~~IIIUI~ In atldlt~on to tills exlcndcti I111ic of<br />

culturc on TUL ,ilsu 11;1a ,umc ncg;ltl\r cllka on lllc I;llcr at;lgo 'l'llougl! 4 pM 'I'D% was<br />

optlmnl work~ng cunceilrratloli. CLII~LI~III~ ills C\PI~IIL~ UI<br />

Lllc s~ille IIIC~IUIII Sur 5 tu 6<br />

necks dccrcabed tlic clu~ig~t~uti l'ic~~ucrlc~ !\~II~IL,IIILJII<br />

uI';i~iy gru~tli rvg~11;11urs :iI'tcr lllc


prololigcd culture on TUL sho\\~d 110 pru~llot~\c cii~ct UI<br />

~IUII~;III~II. Iicr~cc, illc<br />

lnductloii tlnir \\as re:,trlcted tu ! to 3 uccLa \\'nil ~~SI>L.CI to :\hl4 ~\~)I,IIII, tlie \VIIUIC<br />

preparation \\as dollr OII<br />

TDZ collt;1lliing III~~I~I ~CCIC,I\CLI I'rv111 :\A14 c\li1:1111 ~LIIIII~CLI oli J1'l ~ ~ g . 01' ~ IILIIIIOC~ \ c ;III~ IIIICIIIU~I,II ICII~III<br />

----..<br />

i'otllalrlitig 5 lib1 2-11' ;iliil! 11Cl LII~C~III IIIC~~IIIIII<br />

('I:[.!<br />

CIUII~~IIC~I lilil I),IIC/I 111 ~11oot~ 111 iibut~i ?<br />

shoo15 \\ere CIUII~~III'II.<br />

I Io!\c\cI. ~LI~-CLI~ILI~III~ l11c il~oota UII C L1.7 CLIIII.IIIIIII~<br />

2 IIM (i,41<br />

alier tliey neru cullt~rvd UII CI.I.2 C~I~IIIII~II~~ 5 ~IM 2-11' ;III~: 2 lit1 ~IIIC~III tin :II)OLII 2<br />

\veeks cunsldcrably ~iicrc:~icd ~IOII~;IIIUII<br />

~'~CCIIICIIC~. (;,Ii ~~ICICII~ III ~IIC 1'1.1.7 IIIC~IUIII<br />

is<br />

5l1o&1i to pi;]) :III~ 1111purla111 rule 111 CII~I~IIICIII~ IIIC ~IOII~;IIIUII ~ IC~ILICIIC~ I or UII~IIU\VII<br />

reasons, frequency of >houla clu~lgattd 011 CIA, cullt.llnllly II~C~ILIII~ rrglll lro111 llic lirst<br />

pliaac was 1101 ;IS goud tllc li.cilui.~icy U~I,IIIICL! III \lcp\v~>c m;iliiier 1\11 ~hc Ialcl 5ub-<br />

cultures oil CEL7 rc5ul1cd III nur.~blc IIICSC,I\C 111 ilic 11uinber of alloola clongalcd. Sub-<br />

culture of CEL2 elu~lgatsd >llool> uli CLL7 ag,illi rc~illcd In a bcller ~~~orphulugy 111


terms of leaflel ~norpholugy atid ilitcr~lud~il Ie11gll1 I'rt~lo~~ged CIIIILI~I' ~t'sliuu~s 011 CEL2<br />

medlu~n drled earl~er ilia11 tile o11cs culli~red UII ('EL7<br />

Hs~icc, clonyst~uii \\;is dolie<br />

~n~tially tbr about 2 \veeka o ~i C'EL? fullu\red b) CELi 111 ,111 I.lrc~. p;ih\;lcca.<br />

p,<br />

(13t<br />

.<br />

1ccort1<br />

.<br />

or rc10111ig ol' clu11g~11ctl \I~~UI,<br />

cIl~cLpe:~ \\ 1111 ;II,~(11'<br />

llic ~>CI~>III;I~<br />

11ied1ci for root111g dicl 11ot slio\\ i.u~~siJcr,~hlc li.cqi~cilc) I'~I~I\~II! L,I ;il . ( lL)0o) rcl,urtc~l<br />

\el-) lllgh freq~iu~lcy ul'rootii~g. ;I 111c1l1od \\ l11cIi \\;I\ 11o1 rc1~ru~l1ic1blc. !\ IIII\C~ ~~~IIIIIL~IIC<br />

of ruotlllg on filter p;~pcr b~~tlgus III;II<br />

\rc~c 1111111craud III l~tli~iil ruuflnp nictli~~~n \v.I~<br />

developed. Root~ng n:lr .~lau tlo~~c UII \cll~~-wlltl I~IC~~IIIII~ i111t1 ;I e111111).11;111\~ b~utly \\:is<br />

dolie. Rooling li~cq~~c~~c~ III IILIIII~ ii1cd1i1111 \\%I\ 5 10 S III~IC~ ~CIICS 111~111111e ru0t111g<br />

frequency 111 se~ii~-sulid 11icd1t11ii. I~~C~~LICIIC~<br />

\\;IS \cry li~gh III I~q~iiil IIIC~ILIII~ ;I[ 70 IU<br />

90% cu~npared lo 5 to Ill?',, 011 ac~l~~-aul~tl 1iiet11111il IIIC ~ic\\Iy CIC~CIUI)C~ ~~~clliud 1101<br />

only clisurcd better li.cql~cncy but ;ilsu sIio\vcd bc~ter iiiur~>I~olc~g ;111tl IIICI.C;I\V~<br />

I;LI~\I\'~I~<br />

tili~c ol' tlie pl;1111s. 111 u11ie1 \+t~rcl\. e:irI) ~I~\I~~;IIICIII uf ~IIUC)I\ ei111111cd (111 ~~I~II.\~II~<br />

med~uiii \+as prc\.cmcd In IIC~III~ I~IC~I~II~I 11~11,111~ lllcili :IIIICII,I~~C tot \LI~-CII~ILI~III~.<br />

Hu\+e\,cr, tlicrc \yere t\\o I~I:III~ tl1\:1tl\:1111;1gca uI'111c 11c~ 1) [levcl~~~~ctl 111clllt~~l l;~rilly~ llie<br />

shout, acqu~rcd liypcrliydric~ty u11 \crl;ll ~LI~-CII/III~III~ ,ICI<br />

\CCOIICII~, IIIC 1111ots blio~cd<br />

;In ~ncrc;~scd grow~li ralc '1'11~ Iiy~~crli~tlr~c~~y 1problc111 \\.I, i.eairlc~~~I 10 111c aI1001\ OIII~ 111<br />

the sub-culruring slags, .III~ 1per51a1111g /)robIc111 CULII~ be III~III'I~C~ by pl.1c111g 1l1c I.LIUIIII~<br />

CUIILI~~ tubes 111 the srcr~le clivilonlliclir (I~III~II~I llu\v) hill1 CUIIOII plugs O~CII Ibr bout<br />

kw hours. The second problcln cuuld bc 111:111dgcd by usltig lu~~gcr culrurc tiibcs (25x200<br />

mm) and reltluvlng llic C~CC>>I\C Iuv,cr lll~lt US tll~ \lci11 diir~tlg thc >II~-CLII~LI~CS.<br />

Addltlona[ care was exercised to ;i~htc\c the high li.cq~lclicy of routing. I:irstly, dark<br />

greeii, healrhy ,hoots ir.1111 \r.cll-de\clupcd Ici~ilcta \bere iclcclcd ILr routlllp 1I1;it tiid no1


exceed 5 cni Icngtl~. Loiigcr shoots posed tlic sbo\c-ii~r~it~o~ied I>~UOICIII I I I C ~ ~ ~ I lcilgtl~ ~ C ~<br />

in the culture tubes. Shoots III;II<br />

d~d IIUI<br />

rout aliould 1101 st.i) ior lollger riil~c 111111s aanie<br />

culture rnediiiill and be tKlnsli.rrcd tu 111c licrl~ IIIC~IIII~~ ,ilicr II~C tirht 0;11cl1 II;I~ IULIC~.<br />

Care should be riikrii iiut lo ;illon tlic aliouta 10 II~L~~III~<br />

IIYIIL'I./I!~~II~II!<br />

bi'c;iii~c SLICII<br />

shoots do no1 rout \\ell a~lci Ii.i\c tu be c,iriicd IU IC ~)II~IZS ! ul'r~ot~~~g.<br />

tli~rdcn~iig iiiiil trC~~is~>li~~it~it~o~i<br />

(11' cliick~~c:~ li:i\ I)cc11 ,I ,L~~IL!LIS IJILIIIICIII 1 ~C IVI<br />

10 ~~~cl'licic~it<br />

111 \ 11ro $ri~(iiiig<br />

by utilizing tlic roo1 sysle111 I'rolii tile prc-gcr~i~in;~~e~l sccd1111gs (Ki~~liii;i~~~~~rll~y<br />

CI ill.<br />

~iiiiiiber ~t'Iic~~~~le~ic~l<br />

I>~;IIII\. 'l'lic co~ii~ircIie~~\~\ c I)IOIO~OIi)i l~;i~.clc~i~~ig ,IIII,IIIIS ivctc l;ick or<br />

gro\+~h of roo ti^^^ ~~,ICIII<br />

t~r~cl 1i~1111icli1y ;I~~~III~,III/;III~~II (~IIIE 10 111c cllic~c~~cy ~~f\I;itic<br />

hydlopo~n~cs s)ste~ii III,II CII~LI~C\ IC ~IO~III 111' roo^ \y\Ic111 C;III lhc coi~\~dvrv~I ;IS llic best<br />

nicthod for hardcn~np. I'lii. ollicr 111c1Iiud ui II;I~L~SIIIII~ ,111d II;III\~)~~I~~I;I~IOII III~OLI~II tlircc<br />

different stages \baa al,u<br />

cific~~~it ~ n rc11;lblc. d Ihu\rci'cr, \ ii~~pl~c~lj, ~i~ti. ;III~ III 1ot;iI tllc<br />

efficiency of Ilydropoilic\ a)slenii\ si~pcr~(~t In ;I~~I~IUII. Ilic 3-bI;igc n~ctliod cil>plu~s<br />

hunlldily eblabll\]inlcll[ bj uu\crlily ,ICI III~I~ gr;~dii:~l O/>CI~III~ 111 lllc I~IIC'T \I;I~cs, which I\<br />

vey case sensiri\e E~cn iiliiiur \;~r~:il~u~i\ ul' Il~~iii~dily III:I~;I~~I~CIII<br />

re\~lltcd 111 clllicr


wilting or drylng of tl~e pliints. This prublci~i \L;I\<br />

11eg;itct1 III tile I~>drul>oi~~cs syslcn~.<br />

However, a carckil cua~irinatioi~ US gro\\tli u1'1Iic \tc111,illti loor ~!~I~III. Ic;iS ~l~ospl~olugy<br />

should be dul~r ~hllc hordei~ing IIIC sooleil ~~I.IIII\ III at.itic II!~I.UPUIIIC~ I'uttii~g IIIC~IIIIII<br />

was one ot' tlic Inlportellll l;ictt11.\ 111;il<br />

,~l'Scct ?IIIc~\~~c;I II;I~~~CIIIII~ ,II:J<br />

~\I.~~~I\~IIIICIII.<br />

Chlckpca ge~lurdll) prckrs bl,ick soil liu\tc\cr. gio\\lli 01' S~ILII r!\Iclll \\.I, g~c,i~ly<br />

111hib1ttd by tll~s pou~~lg IIIC~ILIIII 111 :111 ilic tli~cc SI;I~CS tIc\crlbcd 111 IIIC I~l>u\~ WCIIOII\<br />

Sand \\as used :it Ihiglic~ ps~~~~itiui~s IU<br />

I)SU\ iilc ~CIICI JCI;I~IOII<br />

ii~~d ~~I;III\cI) lcs. llllitlllll~<br />

of bi;~ck soil \\as ;~ddctl lu I~~,IIIII;III~ ~IIC \\.I~cI 11ultli1ig C,II);ICI~~ 01I1cr I;ICIOS~ l~kc<br />

temperature, liglit 111te11bity. pIioto/)1'11t1tl, IIII~;I~IUII :illil \\CIC<br />

cilw \t,~i~tI~i~tli/~d OI)~IIII;I/<br />

green huusc or LIY<br />

~tl~er li;iraI~ ~IIYI~UIIIII~III C,III OC ~CIIIII~CIII;I~ tu IIIC ILI~C~CIIIII~ 01'<br />

chlcl\lx". OII~ li~iliti~t~un ~1'111~ CIIICI\I)C;I L~\I;I~~I\~III~CIII btucIl~\ 111 I/I;II IIIC IC~IIIICIIICIII (11'<br />

walk-ln type gro\vtli cIi;~i~~bsr, ~VIIICII 111;1l,c\ II,I~~~CIIIII~ III~ICC\<br />

\OIIIC~~.~I,I~ I.CSIIICIC(/ 10<br />

Seiv lnstitiiteb t11:lt c;111 iit'ii~~~l tile iiiciIil> Sliit~c II~~~OI)OIIIC\ \)\IC.III 15 LIII cfIi~,ie111 \y\t~111<br />

that can \harden 111 LIIIO<br />

prod~i~td ~IIIc~~)c;I ~~I,IIII\ 111 illc inori~~,iI CIIIILI~C 1.00111 CUI~~I~I~II\<br />

without conil)sol~~i/iiig tile 111tqr11y ,iil~l v~l,~li~j. 01' IIIC pl:iill. 111 ~ilro ~ICIILC~ cl~ickl~ei~<br />

pla~~ts sl>o!\ed :ill cii~ly tlt~\~crii~g ;iiltl II~:IIIISII~ 111 \OI~IC III\~;IIIC,C\<br />

IIIC ~I;IIII> Ilo~vcrcd 111<br />

culture tubes while they \rere rootliig. 1111s siiggc\l\ III,II il~iltl cu~~tl~tioii~ of lcnlpclalurc,<br />

light intensity iind l~~iil~icl~ty ~>r~vidctl 11) tlic CIIIILII~ roo111 111ig11t ci~tii.it~ ~C~II~CLIVL:<br />

ge11c11clemc~~ts Sur Ilo\+cr~~lg ;ind III,I~LI~II) 'I III\ r,ltc ul'i~~~~t~irit~ \\a\ I~IUII~ 10 be bluib'cr<br />

In case of tjeld-so\\il sci'~ll111g~. I


stem and lravca Secol~d;lrq ~'IIICII~~ \\err .~lso ~pru~~~otcd b! 1111s IIC;IIIIICIII 1'111s sort 01'<br />

pron~otion of veget~~t~vc gru\vtl ~:IIIIS<br />

~I~IIII~C~III~C<br />

\\IIIIc I~~~IIIII;I~IIIII~ :IIILI 1proccss111g of<br />

l~ivaluable transgenic pli~~lts.<br />

5.1.3 Histological slutlica ol'i~~ultiplc slioul tlr\rlol)i~iel~t I'I.UIII .\A14 c\pl:~l~t:<br />

L)c\cluj>~i~c~~t of ~n~~lt~plc ~Iluurh i1t1111 :\\I4 C\~I~,IIII \\:I,<br />

iti111~1 I,I I~c ;IC~\CIIIIIILI~I\<br />

[~Ilcllulyl~~;~ll! I-~o\\c\cs. IIICII.<br />

:I~\CIIII~IU~I> 11~11111.~ !\.I\ LOII~~III~C~ .II'ICI IIIC I1i~tolt1~1c;il<br />

obscr\;~t~u~li c;~rr~ctI utit .II d1ll2~11t sliigc\ 01' gr~\\tIi uI' 111c C\~~~.IIII 11r~i.1tllv IC ,\hl-l<br />

ehplal~t LIC\CIUJ)III~III oc~,~irj 111 t\\u ~I;I~L', I. 111) 10 .I\III;II! but1 ICIIILIV,~~ ,111~12. 1111 ti) 111c<br />

Stiipe ufrt1110\~1l 111'111~1lll~1lc JIIUOI buli UII~III~I~III~ fio111 ~C~CIICI.;I~III~ .I~C:I<br />

I'~C\CIICC<br />

01'<br />

ax11l;lry bud c\crlh I)IC\\LI~C<br />

01' ,II)IC;I~ ~UII~III~IIICC OII IC II~\LIC 01' CIII)ICLI~III;I~~ IIO~C<br />

regloll. Ile~icc. ;IS<br />

c\l~cctcd I~CIII~IV;I~ 01';1\1ll;iry hut1 IIC~.IIC\ t11c ;I~)IC;I~ ~~IIIIIII,IIICC :IC/<br />

d~i'l'trc~~~ regiulib III rlrc LIIII~I 111 IIOII-III~I.I\ICIII;~IIC C ~ ~ IC\LII~\ ~ i 11 C~III l)c<br />

suggested that re~lloval ot'rnt~lt~plc >Iiuur bud, 011 t1.1)-5 UI d,~y-c~ ;III~ C~-LLIIIII;I~I~III lilr 72<br />

~OLIS~ COLII~ giic bcttcr 1icqt1c11cy ~~'~CIICIIL, ~I;III~~~IIII;I~I~II~<br />

5.2 Genetic tra~~sl'urnlatioa:<br />

TransSirni~ng ~IC ALll c\l)lallt\<br />

1t11 111c b111;iry co~i\lri~ct\ contalnlllg Ili('~:ylAb<br />

and SBTI genes, p~uduced cll~ckpca Irdll>gvlllcs. 111 ;lccurdancc IVIIII<br />

lllc convci~l~onal


molecul~ir analysis of tlic I'III~~~I~IC<br />

~I,!III~, 111c lpIa111s \vcrc 111111;illy scrcc~icd for GUS<br />

histochemical assay and tiboul 6U"u<br />

oi tlie ~pl~i~ilr LIIO\ICJ<br />

PU~III\C ~e;iitii)ii tlii/i\ gelit<br />

act~vity has clearly demo~~sti.atetl it! v;iactil~r tishlic, l'llc 1cr1111n;11 !o!111g lc;~~lcts hiit,\vcd<br />

a clear blue color ;lctl\ ity oi'tlic i~icurpol.;i~ed III,/:\<br />

gcilc Ilu\\c\cr. tile 1.11cr >lager ol'llie<br />

n~olccul~ir ~II~:II)SIS hlio\!cd ~OI~IC \a!r~,~blc ~cholt\ III ICYIII\<br />

co~itir~ii;il~on iiiid Soulliein ;~il,ilyaih.<br />

,)I'IIIII~~I)L~V<br />

OI'~~),III\~~ 111 Itc'l<<br />

111col.pol.nied gcllc 111\;ir1;1bly cu~ilir~llb tli~ I~YCICIICC 01'ilie IC\I)C~II\C gelic III IC ge11v111e<br />

ui llie lraiisgeilic plalil. Ho\vc\s~, tluc lo suliic \,irl;niulia<br />

1111l\iio\\11 tllc l)i'l< rc\~~Its<br />

showed home variable results 111 llic J~III~IIILL' I~,III\I~III~~,IIII~ ' 1 1 1 ~ j~l,i~it\ \VIIII Ui('rl,ll/h<br />

gene sllowcd n 50% ~l.;in~lbr~~i;iriw ilctlucncy \\1111 ~c\l,cct lo llic ~ipill kclie In lllc I'CI<<br />

conlir~ii:il~o~i ;ili;ilyals<br />

I:lic )11;1111\ 0111 01' 10 >IIO\VC~ ;IIII~I~I~~C;III~III UI'IIIC 700 bl) Ii~;ig11ic111<br />

tlinl \vu\ y~cc~lic to illc ~i/i/lI gclic 511111;11.1) tiic ~I~II til'0 tc\lc~I lpl;~iili \\ 1111 \/)I/ \IIII\VUII<br />

amplllicaiiu~l ot'llle Ical)ccII\c li,ig~iic~it, \/l~lIi IC\I)CCI lo I.! L11 II;I~I~ICII~ :~~i~pl~lic;~l~~ii<br />

IY01ii tile 111i1.k S~II~, 111erc \\.IS<br />

\l~gliIly IIICYC;I~~(I lrct~~~c~~cy<br />

X 0111 01 I0 /~il'r~'lA/~ lpl:1111s<br />

slio\ved a~npl~lii.;ii~v~~ iind 5 11111 ul' 0 .S/j77 I~I~IIII\ >ll~i+ctl ~IIC ~CII)~III\U lil~~l~l~li~d<br />

Srag~~icnt It c;i11 be 5~1ggcslctI lic~c lI1,il ioiiic 111111111 IIICI II~CLII~I~CII~ 111 II~c rc,!cIIoII liilxlurc<br />

ni~ght be<br />

inlerfcr~ii~ \VI~II 11ic ii~i~~)l~Iic;~t~tl~~,<br />

llc~)cc, tieqt~ci~c! ul co~ilirr~ied<br />

transfor~nat~o~~ trltli respccl IJ ilic 11ii11 kcr ge~lcb e;111 Ibc fixed III 1111. ra~lgc 01'50 10 70% 01'<br />

the piitatlve tra~isfor~n;~n~.r. ~~tuc11 lo~er lictluclicy ui tr;~~isiirrii~;~l~u~i was ol)servud w~tli<br />

respect lo llle sgronumicall!,<br />

II~I~IO~~~III~ ;III~ i113ec1 ~~>I~I;II~CC gc11l.i U/( rj,lilb and SBTI.<br />

Only four oul of 10 tcs~ed 5;1111pich iroln llic pla~its 1~111ilbl.111cd w~rl~ Iir('i1IA0 showed


arnplitication of the sopccIi\i. 905 bp lkigincni. Co~iil):ir,i~~\sly lligli OC COIIISI~I<br />

01'1hc<br />

primer and rhc gciie could be tlic sc;~son for 1111s luircr li.eijucnc) cuinp;ised to 1l1c 111;isker<br />

genes. 01ily oiir snii~ple isoin the plaiila tl-oiislorii~c~l \i 1111 SHI'I pcili, uut 01'9 ~ca[cd pl;iiiir<br />

showed the a~iiplitic~~r~o~~<br />

01' rcil)cc~~~c 497 bl) ti..iy~iclit >iiggc>~i~ig SOIIIC<br />

II~CIIII~~CIII<br />

problcml \\ 1111 tlic I)~IIIICS<br />

c~i111110\1t1011<br />

Suuthesii an;lly~ls li;i\ bcc~~ IIIC 111ust ;i~ilI~c~nii. I~L~~IIIIL~IIS IU c0iili1111 1111' I)~II;III\C<br />

Iranslbrni;liit~ cvcr riiicc llic gc11i.11~I~:II~S~~)IIII.I~I~II ~~c\c,ircli I)cg,iii '1'111 IC~IIIIIIIIIC I\<br />

\\iidcly uaed to ii~i.~l>/e ill? IIICU~I)I)I,III~~II ,iiiti cop) II~IIII~CI<br />

ul' tllc IIIIC~I~IIC~I gctii' 111 tlic<br />

genomc of tlic ~r.iii~~c~~ic ~1~1111. I1C'I( ~i~i~l)Iilic~l I~.I~IIIu~~I~ 01' ill ,lnil Hit '1.1 i:lh gllc<br />

\vcrc iiscd to probe tlic iiitcgs~i~c~l gc11c III llic ISCIII~~~III~ 1pl,111t\ C'111cklic;i \\:I> IL~LIIICI 111 hi.<br />

Iiiglily sccalc~~r;iiit 111 lhc t~h\~ic CLIIILISC syh1c111 due 10 ~!IIICII ll~c lr;il~~Ii)r~i~,il~w II.CIILICIIC~<br />

rcporlcd to d;itc II;I~ bcci~<br />

lo\\ ;I\ ;iiuu~itl?'$,I (K,Is ct ,II . 1007: KSI~~III,III~~ISI~I~ ci ill..<br />

2000). Uiol~a~ic-iiiciIi.~~c~I IS,II~~~'~IIII,I~ILIII \\;I\ LIU~IC III~U /Y~OIIC CIIII~S)~LI$ ,111tl IIIC II~II~~ICI~<br />

negnting tl~e ap1c;il tluniiii;iiicc ul' 5u111c \I~CILII OLI~. regciicl;i~ii~g ii~ni;illy, g;ivc IIIIIC~I<br />

bct~cr rcs~il~h 111 tcs~iih 01' I~;II~~S~SIII;I~IUII l'rct~~~c~~cy. I,, gc11c1;1110ii 111 111c IILII:II~VC<br />

~s~nrl'or~iiaiita~ \\a> tc~~cd ii~ ~~~euipor;~teil ~CIIC,<br />

:III~:IIO!III~ 7iJ''0 01'<br />

slio\rcd iiicorporarioii of 1111. IS;II~,~~II~ III iliclr gimiio~~ic~ IIIIII,II<br />

11ic ~c>tc~l pIzi111h<br />

CY~)CIIIIICII~~ i\lic~i the<br />

cotid~t~oiis for upt~n~al re,trictiuii of111c ycriuiriic [IN,\ ivcic 11o1 \t;~~idurd~~utl, shuwcd tlic<br />

sign" Ifor [he trallagencs ;n a no~i-apccilic icg~u~):, ul'llic blots and >l;~litia~d~/nt~oli of Ihc<br />

condi~io~is ,~icli ;IS<br />

qu;iiilirles of cn/y~ilc, i3S.4 .iiitl \r;i(cr \$,I\ tloi~<br />

oild 111c ;iclual sc.;ulls<br />

were obtained. A lolal of 7 ~)ln~iI$ oil1 ul' Ill tr.$rcd pl;iills \llo\$cd inlcgs,illuii ol llic iii~ill


with a variable copy 11~11nber CBI slio\\ed bur cop~cs oi'intcgrated ~ipill gc~ics. S:imples<br />

CB2, CB3, CB7 and CBI I slio~ed tao copies each and sa~nples CB4 ,ind CB5 showed<br />

single copy Irisertiolis W~th respect to Ut('r~,lAh gene i~itegr;ition tile ge~~o~ii~c DNA of<br />

putatice transfor~ilants \\;is d~gcsted \r.itli E


Explant Preparation<br />

-Geminate seeds on SILI [MSG p? TDZt? pM kinet~n] for I wk<br />

-Prepare AME explant by removlng ax~ll:iry bud from Ihc cotyledonary notlc<br />

Shoot bud'intluction<br />

Step I: Culture AME explant on Slkl medium for 2 wk<br />

Step 2: Sub-culture explants with shoots buds to MS basal medium for 5 d<br />

Shoot elongation<br />

Step I: Transfer shoots to SEMl [MS+S pM 2-iP+2 pM kinetin] for 10 d<br />

Step 2: Transfer unelongated shoots to SEM2 [MS+2 VM GA,] for 2 to 3 wk<br />

Rooting of shoots<br />

Phase I: Transfer shoots toliquid RIM [ MS+9.4 mM KN0,+2% sucrose+5<br />

@I IBA] on filter paper bridge for 2 wk [60-70% shoots rooted]<br />

Phase 2: Pulse treatment of shoots with 100 @I IBA and culture on filter<br />

paper bridge in liquid MS for 2 wk [lo-20% shoots rooted]<br />

Phase 3: Transfer unrooted shoots to static hydroponic system containing 114<br />

Arnon's nutrient solution+3 ,&I 1BA for 2-3 wk [lo-15% shoots rooted]<br />

Transplantation<br />

Step 1:Transfer rooted shoots to 8 cm (dia) pots containing 2-4 mm sand. Cover<br />

the plants with polypropylene bags and gridually open the covers over 7-10 d<br />

period.<br />

OR<br />

Suspend the rooted shoots in Magenta jars containing 114 Amon's nutrient<br />

solution.<br />

Step 2: Transfer the hardened plants to 20 cm (dia) pots containing sand:black soil<br />

(3:2)+Cell Rich (5%) +rice straw compost (5%).<br />

Schematic representation of the protocol for in vitro regeneration of whole<br />

plants from axillary meristem explant (AME) of chickpea [Jayanand &<br />

Sham, 20031


Explant Preparation<br />

-Germmate seeds on S141 [MS& llh.1 TI)Z+2 pM kinetin] ~OI- I wk<br />

-Prepare AME explant by removing nxill;~ry bud from thc cotylcdo~i;~~.y ~iode<br />

Shoot bud intluction<br />

Step I: Culture AME e\plant on Slbl nictl~uni for 2 wk<br />

Step 2: Sub-culture explants with shoots huds to MS basal ~ncdiuni for 5 d<br />

Shoot elongation<br />

Step I: Transfer shoots to SEMI [MS+5 pM 2-iP+2 pM kinetin] for 10 d<br />

Step 2: Transfer unelongated shoots to SEM2 [MS+2 pM GA,] for 2 to 3 wk<br />

Rooting of shoots<br />

Phase 1: Transfer shoots toliquid RIM [ MS+9.4 mM KN0,+2% sucrose+S<br />

pM IBA] on filter paper bridge for 2 wk 160-70% shoots rooted]<br />

Phase 2: Pulse treatment of shoots with 100 pM IBA and culture on filter<br />

paper bridge in liquid MS for 2 wk [lo-20% shoots rooted]<br />

Phase 3: Transfer unrooted shoots to static hydroponic system containing 114<br />

Arnon's nutrient solutiont3 pM IBA for 2-3 wk [lo-15% shoots rooted]<br />

Transplantation<br />

Step 1:Transfer rooted shoots to 8 cm (din) pots containing 2-4 mm sand. Cover<br />

the plants with polypropylene bags and gradually open the covers over 7-10 d<br />

period.<br />

OR<br />

Suspend the rooted shoots in Magenta jars containing 114 Amon's nutrient<br />

solution.<br />

Step 2: Tmnsfer the hardened plants to 20 cm (dia) pots containing sand:black so11<br />

(3:2)+Cell Rich (5%) +rice straw conipost (5%).<br />

Schematic representation of the protocol for in vitro regeneration of whole<br />

plants from axillary meristem explant (AME) of chickpea [Jayanand &<br />

Sham, 20031


6.0 REFERENCES<br />

Adkins, A.L.. Godwin, I.D., Adkins, S.W., (1995) All efictent regeneration system for<br />

Australian grown chickpea. (Cicer arielirrr~~~i) cultivars. A~islr(rlia~r Jo~irnal 01<br />

Boiany, 43:49 1 - 497.<br />

Akasaka, Y., Daimon, H., Mii, M., (2000) l~iiproved plant regeneration fioni culturcd<br />

leaf segments in peanut (Arocl~is irypogcirci L.) by limited exposure to tlltdinzuron.<br />

Plunl Sciellcr. 156: 169- 175.<br />

Akashi, R.. Kawamuro, O., Hoffi~iall~l, F., (1998) Tlic advance of transfur~i~alloii ill<br />

Lotus conliculalus: to\vards low-lig~liti pns1Lii.e tllrougli ailtiscnsr I1NA. Utilization<br />

of transgenic plant aiid getlonie analysis in forage crops. Proceedi~lgs of<br />

ci~i<br />

b~ierriulio~~al u~orksliop Arid 01 lire "Vuliu~~crl C;r.ussltri~d Keseu~.ck I~rsriru~e,<br />

Nisiibrus~i~~o, Tocl~igi, Jripulr, 57-65.<br />

Ali, A.H.N., Jarvis, U.C.. (1988) Eff'ects of 2,3,5-triiodube~~zuic acid on tllc<br />

regeneration of callus and adve~ltttious roots on sten1 cuttitlgs of iiiu~ig bean,<br />

Phaseoilis alrreris Roxb. Biuche~~r Plrysiol PfIatiz 183:509-5 13.<br />

Alm, S.R., Yeh, T., Canipo, M.L., Dawson, C.G., Jenkins, E.B., Simeoni, A.E., (1994)<br />

Modified Trap Designs and He~ghts for lncreascd Capture of Japanese Beetlc<br />

Adults (Coleoptera: Scarabacidae), Jourriui oj"Ecor~o~~iic E~iiorrluloyv, 87: 775-780<br />

Altieri, M.A., (1994) Biodiversi~y aad Pe~t Ma~~rrge~neni in Ayroecosyste~ris. hod<br />

Products Press, Newyork, pp. 185<br />

Altieri, M.A., Nicholls, C.I., (1999) Uiodiverslty, Ecosystem function, and pest<br />

management in agricultural systems. In: Biodiversity in Agroecosy.sle~trs. CKC<br />

Press, Boca Haran, 69-84.


Altieri, M.A., Whitcomb., (1980) Weed n~anipulation for insect pest n~nnagen~cnt III<br />

corn, Environt~~et~mi Mrinnget~iett/ 4: 483-489.<br />

Al-yahyaee, S.A.S., Ellar, D.J.. (1995) Maximal tonicity of clo~ied CytA S-endotoxill<br />

froill Uricillirs rlirrri~iyioiesi~ subsp. i.srricle~isis requires proteulytic processi~~g lioll~<br />

both thc N- and C- tcrnllnl. ,Vficrobiologl~, 14 1 : 3 14 1-3 148.<br />

Angeloni, P.N., Rey. H.Y., Mroginsk~, L.A., (1992) Regenernti011 of plants fron~ callus<br />

t~sauc ul'll~c p;~st~~sc ICSLIIII~<br />

521.<br />

('i~~il~~o.~orirr 61rr.~ilitr1i11r1i, l'l~r~i~ C'i,il I{t,/)ilo~./.>, I 1. 5 1')-<br />

Al~jun~an:il.a, K., Il:~dillzz:~lnan, S., Jallat~, hl.A.tZ., Hossnin, M.T., Khatull, A,,<br />

Hadiuzzaman, S., (1998) In vitro direct and indirect ~ui~ltiple shoot regeneration ill<br />

PsopIioccr,piir t~.irngo~ioloDrrs (L). DC, wil~ged bean. Bri~~gla(lesli Joirrnul uj<br />

Scietlrijic (inti Itld~isrriai Research, 33: 449-453.<br />

Arcioni, S., Mariotti, D., Pezzotti. M., (1985) Hedy~rir~r~~~ corotiuriuni L. in vitro<br />

conditions for plant scgcr~eration fr0111 pro~oplasts :III~ callus of vi~rious explnnts.<br />

Joirrnol oj'Platii Pii~rioiog~, 12 1: 141 - 148.<br />

Armitage, P., {L'i~lden, R., Draper, J., (1988) Vcctors for transformation ot' plant cclls<br />

using dgrob~irirriirt~r. In: Plutri Gelicric Triinsjbrt~rn!iott (ittd Gore Erpresvioti<br />

(Orupel., J., Scoii, II , An~riirige, P. Eds.) Bliick~vell Sci. PirD., O?rJurd, pp. 1-67.<br />

Arnon, D.I., (1938) Microelements in culture sulutioli experiment with higher plants.<br />

A~iiericat~ Jourtiul ofBotniiy, 25:322 - 325.<br />

Arundhati, A,, Agrobocreriirnl-mediated trunsfurnlation of pigeo~lpea (Ciljrmus ccljun L.<br />

-.<br />

Millsp.) by using luaf d~sks. Inierticitio~~ai Ciiickpcu rind Pigeo~~pcu New.slcller.<br />

(1999) 6: 62-64


Avenido, R.A., Hattori, I


Proceedings of rhr Natiorlul Acaderrry oj'Scieilces Urliled S/n/es of' America, 94:<br />

12722-12727.<br />

Bajaj, Y.P.S., (1983) Regclieratioli of plallts from pollen-embryos of Arachis. Brassica<br />

and Trilicoiu sp. cryoprcscrved for one year, Ci~rrorr Scie~ice. 52: 184-386.<br />

Barloy, F., Lccader, M.M., Delecluse, A., (1998) Distribution of clostr~dlal cry-l~ke<br />

genes among Bucillus liiuri~igietrrsis and C'losrridiiitr~ strains, Currrrrr<br />

Microbioiogj~, 36: 232.237.<br />

Banla, K.S., Mehta, S.L., (1995) Gcnctic tra~lsibrn~ation and somatic cmbryogcncsis in<br />

,,$&a,<br />

K. S, W~klil~, A. I., (1993) Somatic en~bryogencsis and plant regeneratio11<br />

. -.<br />

-<br />

froni callus cultusci ~!'chickpea (Cice~, cir~clirirrir~ L.) Plntlr Cell Reporls, 12: 521 -<br />

. - . .-.<br />

krna, K. S., Wakhlu, A. K., (1994) Wl~ole plant regeneration from Cicer orie~~tiiur~<br />

-<br />

from callus cultures via organogenesis, Pluiir Cell Reporis, 13: 5 13 - 5 13.<br />

_r.-~<br />

- -.<br />

Becker, D.. Kaniper, E., Schell, J., Masterson, I


Benfey, P.N., Chua, N.1-I., Ilcgiiiiltcd gcllcs 111 trn~isgcnic pl;lllts. (1989) Scie~ice, 244:<br />

174-181.<br />

Bevan. M., (1984) B~liary Agroborreriir~~r vectors tbr plallt t~l~lslbr~ii;ltio~is. ,Vii(~/~,i~<br />

Acids Reseuxh 12: 871 1-8721.<br />

Bhadra, S.K., Hammatt, N., Powcr, J.B., Davey, M.R., (1994) A rcproduciblc<br />

procedure for plant regcilrration from sredi~ng llypocotyl protopl;~sts of Vig~rri<br />

subiubaio L. Pitriir Cell l


Biron, D., Vincent, C., Giroux, M.. Maire, A.. (1996) Let1i;il effects of mlcrowavu<br />

exposure on cggs and pupae of the cabbage nieggot atid cabbage plants, Jo~iriitrl o/<br />

Microit five POII'E~ (ii~d Eleclro iriagrrrrrc Eirergy. 31 : 228-237.<br />

Bovo, O.A.. Mroginski. L.A., Rey, H.Y., (1986) Rcgencration ut' plants iron1 callus<br />

tissue of llie pasture legunle Loloiior~is bairiesii, Plorrr Cell Repro, 5: 295-297.<br />

Brar. M.S., Moore, M.J.. Al Klinyri, J.M., Morelock, T.E.. Alidcrson, E.J., (1999)<br />

Ethylene ~nhtbltors protnote in vttro regeneratio11 of cowpea (Vig~zo trr~giricrrloiu L.).<br />

In Vilro Ccllirlar atrcl Urvelopirlrri!nl Biology -Plor~r, 35: 222-225.<br />

Briggs, B.A.. McCulloch, S.M., Edick. L.A., (1988) Micropropngation ofa~alc.as using<br />

thidiazurot~, Acrcr Horriculrzrrae 226: 205 - 208.<br />

Brown, A.W.A., (1978) Ecolog~ oj'Pcslicities IVile)~ uiitl SUIIS. Neiv York, Ci~ichestrr,<br />

Bris6011e. Torcinro, pp. 525.<br />

Butko, P..<br />

Haung, I:., Pusztai-Carey, M.. Surewicz, W.K., (1996) Merilbralle<br />

portncab~lizat~w 111duccd by cylolylic 6-cndotoxt~i CytA fi'otli I~'tit~i1l11.s<br />

rhtiringic.irsis var, isi'aeloisis. Uiocheiriisrry, 35: 11355-1 1360.<br />

Callis, I., Fro~iim, M., Wnlbut, V., (1987) Itltron increase gene expresston In culturcd<br />

maize cells. Ge~res aiitl Developrtieilr, I: 1 183- 1200.<br />

Cambecedes, J., Duron, J., Decouriye, L., (1991) Adve~ltittoi~s bud regeneration fioni<br />

leaf explatlrs of the sllrubby ornamental hoticysuckle, Lolricerc~ azirdi~ Wtls. Cv<br />

Maigrun: elTect of th~dlazuron and 2,4,5-tr~~odobenzoic acid, Pltrnr Cell IIeporls,<br />

10: 471-474.<br />

(hrson, R., (1962) Silriii Spri~ig, Hamish Hamilton, London, pp. 304.


Cnrvalho. IC1.H C dc , Uui Vat1 LC . Zully I:odil, Y., 'flii, A.T.I'.. Klstn Tran TIi;1111i<br />

Van., dr Carvallio, M.H.C., (2000) ESfic~rnt wliolr pl;lnt rcgenrr.~tiotl of co~iiilioti<br />

be;~n (Pl~nsroiirs viiigiiri~ L.) us111g t1i111-cell-l;iyer cultu~~c and silbcr iiitr,itc, /'/~III/<br />

Scieiitr. 159. 223.232.<br />

Chalfic, M.. Tu. Y.. Euskircheii, (2.. Wood, W.1\'.,<br />

l'raslicr. DC.. (1094) (irceii<br />

tluoresceilt protc111 ;is :I nixkcr I'or ~SIIC c~~)rcs.\ioll. .SL.IL,II(.C~, 203. XU?-SUS<br />

Clia11dri1, I


Chilton, M.D.. Drummon, M.H., Merlo. D.J., Scic~ky, D. Montoyn. A.L.. Gordoli, kl.P.,<br />

Nester, E.W., (1977) Stable 1licorpor;ltloli of plas~iild DNA lnto Iiigllcr plnlit cells:<br />

tlie ~nolecular basts ofcrua,li g:111 tl~~iior~gc~icsis. C'L,//. I 1. 263-271.<br />

Cliilton, M.D. Molltoyo. A.L.. Mc~lu. D J.. Dru~il~iiond, hl.tl.. Nuttcr. I


Chu, P.W.G., Andersoli. B.J., Khan. M.R.I.. Sliukla, D., Higglils. T.J.V., (1999)<br />

Produclio~i ol' bra11 yellow mosn~c virus resistuot subtcrr~lieali clover (7i.,joliur1i<br />

slrb/err(rrtrlori) plaiits by tr;1nst'ormatlon will1 tllc virus co;~t protell1 gclic, ,l~i~rtils o/<br />

App11etI Broluy)', 135: -169-480,<br />

Cuckllig. E.C.. (1060) A iiietllod for tlic ~solatlon ui' pl;llit ~)rutupli~sts ;iiid Y;ISLIUIUS.<br />

:VNIIO~L,. 187: 962-763.<br />

Culllns, W M'.. Qu;~lsct, C.0.. (1999) Urodiir'~:\rr, 111 .4grr)c~~u.~y.sr.r~1r1.s, C'I(('p,u.\,\, Hl~(,ti<br />

I(cirori, pp. 334.<br />

Cook, K.J., Ur~~ckliiirt. \V.L.. COIIISOII,<br />

J.l/ii~igiorr,<br />

D. C.<br />

Crameri. C L.. Weisseiiborii. D L., 01sli1, K K.. tirab,lu, E A., Hennet, S., I'once, E..<br />

Grabowski, G.A., Radin, D.N., (1996) B~oproductiu~l of hunlan enzymcs ill<br />

transgenic tobacco. Anrrals of h'ew Yurk Acudertiy oJ .Tcie~rcr, 792: 62-71.<br />

Cr~ckmore, N., Bone, E.J., Williams, J.A., Ellat., D.J., (1995) Contributioii ol' the<br />

individual cornpolicntr of the 6 - endolox~n crystal to the inosqu~toc~dal act~vity of


Bucrllirs rhrrrmgre~iesis subsp. Isrcrelouis. FEMS Alicrobiology Lerrers, 131 : 249-<br />

254.<br />

Dur, S.M., Gill, S.S., (1993) In wro arid in vivo pro~culysis of 111s Hucillrrs<br />

tirirri~rgruirsis subsp. rsioelr~rs~s CrylVD protcirl by Crrler q~ri~rclrrejas~~~uritr la1-v;rl<br />

midgut prute;lscs. 11r~eci Uiucl~e~~ris/~:~~<br />

cr~itl hlolecrrirrr Hiologv. 23: 273-283.<br />

Dam~a~l~, F.. yen^. E., Pnolocci, F., Arc~olli, S., (1993) I~ltroduct~ori of Ihyproniyc~n<br />

reslstallce In Lor~rs spp. tlirougli /Igrohric/enir~rr ~II~~O~L'IIPA tra~~b~i)rn~:~tiw.<br />

li.rr~rsgt~~iic l~escrrrc~lr, 2: 330-335.<br />

Das, D.K , I'rnk:~sli, N.S , Blinlla S;~rin, N., (1998) An eflicrent ~cgcneratio~i systcill ol<br />

black graiii (YI~IIU II!UII~U L.) througli orga~iugcncsis, I'l~r~rr Sr.ie~rc?, 133: 109206.<br />

Datra, S.K., Petrrlians, A,, D;ltlu, K., I'otrykus, I., (1990) Gcnetic;~lly cng~~lccrcd lirt~lc<br />

~nd~ca-rice recovered lio111 protoplasts. Uiu~/i~cl~~ioiu~~~<br />

8: 010-029<br />

L);~\ey, bl,l


Deblaere, R., Reyneerts, A., Hotte, H., Hernaistce~~s. J.I'., Leerii;lns, J., Van Montagu,<br />

M., (1987) Vectors for cloni~ig in pla~il cells, Me/hu~is ill EII:~'IIIO/O~),. 153: 277-<br />

293.<br />

Dcbnatb, S.C.. McKenzie. D.B., McKac, K.B.. (2001) Callus itlductio~i slid sl~oo[<br />

rcgenrr;irioti li.0111 stem, rncliis and leaf expla~its ill beach pc;~ (Liirii\8riis jiri,o~iic.ri,s<br />

W~lld). Juiii.11111 oj Pla~ir Lliociie~~ii.sr~:i. iriiii I~ioit~cir~rulug~~, 10: 57-60.<br />

Dcll;i~)orl~i. S L , L$'vod, J , Il~cks, 1.13 , (1083) A ~?I:IIII IINA I I I I I ~ I ~ ~ ~ c \Jc~h~oti<br />

~ ? ; I ~ ~ ~ ~ I ~ I ~<br />

11, Plniit hlolec,iilrir Biuiug)' /(t,poi./er. 1.19-2 I<br />

Dcsgagnes, R , Laberge, S.,<br />

Allard, G., Klioudi, II., C:istonguay, T., Lapointc, J.,<br />

M~chaud, R., Vezin;~, L.P., (1995) Genetic tra~ist'or~llation ofcom~nerciel brccd~~ig<br />

li~ics of ;IILII?,I(~hlc~iiictigu<br />

~iiiii'ii), 1'Iii11/ C't,ii, I?.\.YI~LJ ii11i1 0rgii11 C'i~iiii~~c,, 42: 120-<br />

140.<br />

Dctrez, C.. Ndiaye, S., Dreyfus, B., (1994) In vilro rcgc~icr;itio~i of tlic Irop~col<br />

niultipurposc Icgu~iiit~ous trec Se.sbo~~ici ti~~ci~itii/lurir li.u~il cotylcdun cxlllatits. PIOIII<br />

Cell Re/~ur/r. 14: 87-93,<br />

Ue Wet, J.l


Dillen, W., Clercq, J. de., Goossens, A.. Montagu, M, van.. Allgenoli. G., (1997a)<br />

Agrobucrerirr~~~-nlediated trallstbt.nlarlon<br />

of Plitrx~~ulus r~crrtijolirrr A. Gray.<br />

Tl~eorrrrc~~l Ap/111eii Ge~reiics, 94: 15 1-158<br />

Dillen. W.. Clcrcq, J dc., Goossens. A., Za~llbrc. M., Molltngu, M v;~n.. Angclloll. G..<br />

De Clercq, J., (1907b) Exploiting lllc presence of' ~cgcncr~llioll copaclty 111 tllc<br />

Pltiiseol~rs gene pool for ;IgruDtrc/r~~~i~r~~~-llled~;~~ed<br />

gcllc tr.~~istkr tu 111c ~0111111011<br />

bc;tll<br />

~~


Drun~mond, M.H., Gordoil. M.P., Nester, E.W.. Clliltou, M.D., (1977) Foreign DNA ol.<br />

bacterial plasnlid orlgln is traliscribed in crow11 gdl tunluurs, Narui,r, 269: 535-536.<br />

Drummond, M.H., (1979) Crown gall discasc, Noriirc. 281: 343.347,<br />

Du, S., Er~ckson, L., Bowlzy, S., (1994) Effect of plant gellotype oil tllr tlnnslbl.n~;~tluli<br />

of cultlvared alt'~lSa (j41eilicugo srrrrvo) by ,lgrobiicrciiiri~i riiriic~ocic~ii.~. I1liiirr ('e~ll<br />

Hepora, 13:330-333.<br />

Duell~, P., (1997) U~ud~versity ev;ilu;~llo~i ill Apr~cultulnl L;~~idac.~pcs: ,111 ;~p])~o,~i.li ;I[<br />

two d~ffercnt scales, Agricul~iirul Ecus)~s/c~i~i.> nrlei Eii~ iroi~iii~~~if, 62. 163- 167.<br />

Dutta Gupta, S., Ahnied, R., Dc, D.N., (1997) Direct su~i~;~tic cri~bryogcnca~a and<br />

plantlet regeneration<br />

fium seedling lcovcs of wlngcd bean, Psup/iucii,pi~s<br />

re/royoiiulubii~ (L.) Plo~lr Cell Reporo, 16: 628-63 1<br />

pien, S., George, L., (1994) So~ilat~c embryo~e~icsia in ('icei. (~rierriirriir L: I~~lii~c~~cc<br />

of gel~otypes L I I auxins, ~ Uiologiil l'liiirrcirioii, 36: 343 -. 349.<br />

Edwards, C.A., K~l;~cl\er, T.T., I'oknrzl~zvski~, A.A., Subler, S., I';~rli~clcc, I


Cella, R., Falavigna, A., (eds.) Clrrrc~~rr P1ir11r Scinlcc cr~rli Biotech~rolugy ill<br />

Agriculrure. Klu~r'u Acode~~ric Publrsliers; Durilrrchr; Nrrherlu~itls, pp. 22.<br />

Ezura, H., Nukul, N., Yuhashi, K.I.. Mili;lmisawa, K., (2000) In vitro pln~it rcgci1er;lrion<br />

ir~ htucruprili~r~ri cr~ru~~irrpureiii~r. a leguilli. 1vit11 ;I broad sy~i~bioi~t ~111gc fir<br />

nodularlon, Plorii Scie~ice, 159: 21-27.<br />

Fnsolo, F.. Ziil~mcrm:~~~. R.lI., Fordli:ii~~. I.. (19SC)) Ad\ci~t~l~our hlioot ~~I~I~I~IIIUII 1111<br />

escissd Icnves of 111 villi gio\\ii sliooth o i ,~pple culti\;~ia, 1'1ii111 ('cll. Ii\\ric ri11i1<br />

Orguri Cirlritre, 16, 75-87.<br />

Federici, B.A., Luthy, P., Ibcrra, J.E., (1990) I'.il.aspornl body of lloc.illir.\ /liirrr~i,yit'~ii~.\r\<br />

isrnrlaisis. structure, proleln coinposition ;~iid loxicity, 111: U~rcl~'ri(~I ('01io.01 0/<br />

U~iiversity Press, New Bruilswick, NJ, pp. 16-44.<br />

Feldmanil, F.. Dullemaiis, A., Wanlwijk, C., (1905) Bi~~diilg of tlic CrylVD toxi11 of<br />

Applretl o~ici B~viro~~~~ie~ircrl Micruhrologv, 0 I. 260 I -2605.<br />

Flores. H., Soberori, X , S;lncliez, J., Bravo, A,, (1997) Isul;~tctl doliia~ii ll and I11 fioni<br />

Uocilllts rIluri~ryie~~e.sis CrylAb dclt;~-cndotoxiii brllda to Icpldoptcran midgut<br />

membranes, FEBS Latcrs, 4 14: 3 13-3 18.<br />

Food and Agr~cnlturc Organieat~on, (FAO), (200 I ) ~ l~~ir~~ol Nc,porr<br />

Food atid Agriculture Org;lnlzation, (FAO), (2002) Fuud Oirrlook, No 1<br />

Foiltena, G.S., Santlnl, L., Caretto, S, Frugis, G., Muriotti, D., (1995) Gcne~ic<br />

... - --<br />

/--<br />

legunle Cicer urieriiiu~n L. Plurir Scieni.6, 109: 207 -


Foster, J.G., Coulombe, B.A., Van Scoyoc, S.W., Veilleux, R.E., (1991) Intercrossing<br />

methods, mutagenesis treatments, and tissue culture techlliilues for expa~~dirig tlle<br />

gcnettc dlverslty of tlatpca (Luiir).riis syh,t,srrrs L.), I)L~I,L,/~/~III'III~I/ P~~IIII Soil<br />

Sciorce, 45: 1047- 1055.<br />

Francis, C.A., (1990) Sristcii~iable cigriciiltirri' i~i rrniperiirs :u~res Jol~li \Vtlcy& Solla,<br />

Nc\v York, pp. 187.<br />

Frat~kel, I


Gavidia, I., Zaragoza, C., Segura, I., Bernludez, P., (1997) Plant regenerat1011 from<br />

juvenile and adult A~irl~yllis cyrrsoidrs, a niultipurpose lcgu~~~i~ious shrub, Jouriiirl oj'<br />

Plont Pl~ysiolo$~. 150: 7 14-7 18.<br />

Gaz~t, E., Shai, Y., (1995) The asseiiibly and org,lnl/.;itiun of tllc u5 and u7 licliccs<br />

from the forfor~nilig domoin of Bociiirrs ririor~iyi~~isis 8-c1idotox111. Jo~iri~ol "1<br />

Bioiogi~oi C~IL~II~IAII:~, 270: 2571 -2578<br />

Geerts. P., Mergsn~. G . Buudoin. J.P., (IYi)O)<br />

llcscue of c;~rly 11c;irl-sli;~l>ed c~iibryoz<br />

and plant regciieratiun of IJii~.\coi~i> po!~a~rriitr.s Grccnin. :ind I'i~i~seol~r.~ \'~rlgiri.i,s L<br />

BASE. -B~urecl~~rologir, A~~UIIUIIIIL,, Suciece ($1 LIIVI~~IIII~I~L.,~~,<br />

3, I4 I - I48<br />

Geetha, N., Venkatacllalani, I)., Prdkasli, V., S~la, 6.L.. (1008) ll~gli li.cil~lelicy<br />

duction ion of ~ilultiplc slioots ;~nd 11l;lnt rege~lur;~tio~i iio~ii sccdlillg cnpl.~~its of'<br />

p~gcu~ipca (C'oj~iitir~ ccijir~i L.), C'ri~~rciir .St i~~~ict*, 75' 1036- IO4 l<br />

Gelvl~i, S.U.. Gordon. M I)., Nester, E.\\'. A~UII~OII, rZ. !I.. (1081) '1'1.:11ibcrij)t1011 01'<br />

.,~~I~U/JIIccl Mu~iugeilirr~lJor Food Sloruge<br />

& Processr~tg. American Assoclallon ofCcre;il Chemists, St. Paul, MN, pp. 89-108.


Gill, R., Saxstla, I'.K., (1992) Direct somatic rlltbryogencsis and regcileratloll of' plants<br />

from seedling expiants of peanut<br />

(Arr~cllL Il~pogtrcc~): Iprulllotlve rule ol'<br />

th~dla~uro~i, C'o~~utiicirr Jo1rr11~1 oj'tlo~ory., 70: 1 186- 1 192.<br />

GIII, S.S., Cowels, E.A., I1letrantotlio. P.V.. (1902) Tile mode of out~o~l ul' Briiiliir~<br />

tl~rrririgieriesis elldotoxnls, A~rrl~rcil i(r~~ie,i' of L~~currruIog~~. 37: 615-6.16.<br />

Golds, T.J , Lee, J,Y., Glluse, T,K., D;~\,cy, Ll.ltcl;~<br />

CLI~CU~IOIII~:I~), .,l~i~rtri~ oJ'il~~l~/~e~l fliulo~', 13 1 : 133- 139.<br />

Grce~li., LA., Z;l~nbry,k~, I'.C., (1993) Agrob;~ctcrln Illatu 111 up111c tlc~is, ('rrrrc~ri<br />

Biulog~ 33. 507-509.<br />

Ciriga, >I., SIq,L;il, J.. Bcbcl-, K , C,~baclla, rl.C., (1Y1J5) Analybla of t~ssuc cultu~c-<br />

dcrivcd vi1rl;it101111 pe;~ (P~JLOII ~u/1111111 l..) - ~~~~~~~~~~~~~~y rcsul~s, Lrq~/ry/ic(i, 85:<br />

335-339,<br />

Gucrclllcoi't', A,, Ug;~ldc, I


Gulati, A., Jaiwal, P K., (1990) Culture col~ditio~ls effccling pl;iilt regeneralion liolll<br />

cotyledons of Vigiiu rudiaru (L.) W~lczei, Plaiir Cell, 7issti~, oir~i Orgai~ C'rilrirre.<br />

23: 1-7.<br />

Gulati. A., J;llwal, P.K., (1992) In vitro induction ot' ~~l~~ltil~lc \11uots a~id pl;iiit<br />

reycneratioil tiom slloot tips of llluilg btail (l'igiicl riltli[ir[l (L ) \4'ilczeI\), lJ/(l~ir (;,I/.<br />

Ti.ssirc (11iil 01pri11 Culrrr~.e, 29: 199-205.<br />

Gurney, S.E, and Robinsoti, G.G.C.. (1080) Tlic ~nfluc~icc of two Ilcrb~cidcs UII tllc<br />

productivity, bion1;iss and cu~nnluility coillpositiorl of li.cslr \\;lter 11iars11 IICIIP~YIOII.<br />

Aqutlric Boru~iy. 36: 1-22.<br />

Ilnnlmatl, N., Davey, M.II., (1988) Apl)licnt~on of flow cytonielry to S~I~I;IIIC<br />

hybridization ol'soybenii wit11 Gi).ci~ir c,tiire~ce~is, Soybeci~i G'oiaiis Ne~+~slc~r~n. 15<br />

48-51.<br />

ll;irdy, A.R., (1990) Eslin1;iIing CX~OSU~C 1111: ~de~llificat~u~i o1'~~)t~i~s ;I[ risk atid ~OIIICI<br />

of exposure. In: Ex/~osrirc. oJ'lJc~ric~cics UI<br />

C.1-1 Wakes (Eds) Taylor ;~nd I:~ancia, Lu~iilui~. ~pp 81 -97<br />

7>rrc,slricil I.V1li/li/2. L. So~ilcrville ;ind<br />

Henry. K.J., l;oosllee, \V.C., (19Y0) Tllid~iiz~~ro~~<br />

S~IIIILI~~~CS bi~bal bud :~nd sllool<br />

formation in Alocusia X Chanrrier~ Aildrc, /iorririilr~~rci/ .Scie~~c,e, 25: 124.<br />

Herrera-Estrclla, L., Depicker, A,, Van Monti~gu, M., Scllell, J.. (1083) Express~o~i of'<br />

ch~emcric genes transferred into plant cells usiilg a Ti plasmid derived vcctur,<br />

Nrirure, 287: 654-656.<br />

Hess, D., (1969) Versueche zur tra~lsfornial~oil an Iiohcrc~l pfla~ize~l: Indukl~un u~id<br />

konstante we~tergabe der antllocyansynlhcse bci Perunicr hybridu. Zei/.~cl~riJ//iicr<br />

Pjla~tzeitp/~ysruluy~~~, 60. 348-358.


Hess, D., (1970) Versueche zur transforlnrition an I~olierell pl1;lnzen: Mogliche<br />

transplantation ei~les gens fur blatlt'orln bet Per~rrrici I~britlu. ZeirscilrVr jrr~,r<br />

Pflorr~orpi~ysiu/uyie, 63: 461-407.<br />

tligley, L.G., Pcdigo, L.P., (1996) Ecorru~rrii~ ~i~~~cshol~is /or Irrr~~griiir~cl 1'1,si<br />

ittirrragerrrr~rr. Univ. Nbreska I'ress, LIIICOIII. KE, pl). 327.<br />

Hildcr. V.A., Gatellouse. A.M.R., Shcernlall. S.E., I3;irhi.r, I< I:.. Buultcr. D.. (I%7) 11<br />

IIOVCI III~CII;IIIISIII 01' IIISCC~ ~S~~L~IIICC c~~gi~iccrsd IIIIV IO~~ICCO. ~'~IIIIIC,. 300 100-<br />

163.<br />

Ilit;~, O., Lafaiga. C., tiuerra, 11.. (1'107) So1n;ltrc c~l~bryogcl~uals fru111 clllukpsa (('1c1.r<br />

arietiriurri L.) lmmaturc co~yledolis: ll~effect of~cai~ll, g~bberell~c ac~d and 111dulc-<br />

3-butyr~c ncld, Acio Pl~~~siulogiti plti~~~iit~ro~r. 19: 333 - 338.<br />

llockenl;~, A,. Iiooyka;~~, PI., Sch~lperoort. I


Hooykaas, P.J.J., Klapwijk, P.M., Nuti, M.P.. Schilperool-1, R.A., Ilorbch. A,, (1977)<br />

Transfer of Agrobacreriu~n rii~~ieji~cie~is 'TI plasmid to Agrobaclerin and lo<br />

Hooykaas, P.J.J., Scllilperoorl, R.A., (1992) .Ayrobtrcr~~riir,,r ;ill11 pl;ttlt ~CIICIIC<br />

,'<br />

HU~&II, T.. Malik, T., Riazuddtn, S., tiu~dotl, hl.I1.. (1097) Stittltcs oti t11c C S ~ ~ C ~ ~ I O I I<br />

w - \-..-<br />

of marker genes ill tile clitckpea. Plo~rr Celi. 77,~ire t11ri1 01:y~iti ('~rltrr~r,. 40, i lo.<br />

tlwang, I.D., Kiln, S.G., Kwoti, Y.M., (1996) C;~~I;I\';\I~IIIC ~iiclilbolistll 111 ltssue c~~Ittrre\<br />

of Cur~uvuliu ii~ieara, i.'/a~~r Cell. Tissrre u11r1 01gu1i ('rilriir~., 45: 17-23<br />

lantcheva, A,, Vlahova, M., Trinh, 'I'.H., Bruwtl, S.C., Sl;itcr, A,, Elltutt, M.C..<br />

Atunassov, A,, (2001) Assessilie~l~ of pulysonlaly, ct~ibryu ~\)I.I~I~IIOII at~d<br />

regenet-atloll in Itquid nledia for vurlous spcc~cs ufdlplu~d ;t1111~;11 h/~,(/~i.ufio, l'li111r<br />

Scier~ce. I 60: 621-627.<br />

Ignactmulhu, S., (2000) Ay~~obuoeriir~~i 111edi;i~cti irdtl~Surt1i;t~iu11 of lli,q~iir ~c~y~ri~~c.tluii.\<br />

Koem (asparagus bean). 111dia11 Jo~rr~itii oj Erperr~ne~ilul fjiulu~, 38:493-498<br />

Ingelbrecht, I..<br />

8l-eync, I>., Vancomprrtlollc, K., K., Jacobs, A,, V;tn Monl;tgu, M.,<br />

Depicker, A.G., (1989) Dtll'crc~it 3' cnd regtotla slrugly inllucncc llic level ul'gclle<br />

expresston in plant cells, Pla~ir Cell. 1: 671-80.<br />

Jaiwal, P.K., Kumart, R., Ignac~muthu, S., Polrykus, I., Sautler, C., (2001)<br />

Agrobocreriti~~t rtintejriciens-nled~ated genetic ttansfornlat~o~l of ~ilungbean (Vig~iu<br />

ru~irarc~ L. Wilczek) -- a recalctlratll gratn Icgulnc, P/flrrl Science, 161: 239-247.<br />

Jaronski, S.T., (1997) Nerv l'uradig~~i.~ iir i;or~~r~rlul~ttg Mycuiri~ecticidrs, I'estitrd~,<br />

I;ormulorior~s utid Appijcatia~~ .SJSIPI?IX 17"' VUIUI~IC, ASTM STIi 1328, Guaa, Ci.l{.,


Hopkinson, M.J. ;md Collins, I1.M., Ed,<br />

An~er~cn~~ Society for Testing and<br />

Materials, pp. 99-1 12.<br />

/'<br />

Jayanand, B., Sudnrsa~lan~, G.. SIIO~IIIJ,<br />

-<br />

regeneratloll of bllole p13111s by LISIII~<br />

K.K., (2003) i\~~ eflic~el~t pro~ocol for tilt<br />

;~\lllary ~nler~alc~~l explnllrs der~ved ti.0111 111<br />

vitro ger~~~inated seedl~llgs of cIllcl\pc;~. Crct~r iirir~ri~~ri~rr L. 111 Llrw ('ell c i ~ i i l<br />

Ur,\,elol~i~ir~~iu/ Bio1ogi.-Plorrc (111 I'ress)<br />

I'<br />

Jcfkraol~. R.A., Ka\,a~lngl~, T.A., Dcvan, h1.W.. (10X7) (;(IS tilaion,, bc~;~-<br />

glucuron~duse as a scnsltlvu and vcrs;~t~le gelre fusion ~lli~rkcr III higl~cr ~I~IIIIS.<br />

EiLlBO Julrrtial6: 3901 - 3907.<br />

Jelenic, S , kl~tr~keskl, P.T., I'npes, D., Jcl~~ska, S., (2000) ,tgrobe~i~~eriio~r-~~~cdiatcd<br />

Ir~ll~i'~~lllall0ll of broad ~CLIII<br />

38 167.172.<br />

V~C~U jiib(1 L , /"uo~/ 7i'(./1~10/0,~ L.l1)1/ ~~~JIc~'/II~u/u,~).,<br />

Jolinholl, R., (iuderial~, I< H., II.H., f


~<br />

.-<br />

Jones, B., Davey, MR., (1991) Direct gent uptake atid rege~ieration of tralisgeliic<br />

shoots from protoplasts of Glycirre oryyrua Tilid, Sojbec~rl Gerreiics Nrwslerlrr, 18:<br />

183-186.<br />

Jones, J.D.G., Shlumukov. L., Carland. F.. English, J., Scolield, S.I


Karthikeyan, A.S., Sarina, K.S., Velutlianibr, K., (1996) Agrubucrerrrri~i rrr~iicyucinrs-<br />

mediated transfoni~ation of Vigna ~iiuiigo (L.) Hepper, Plo~ir Cell R~~ports, 15: 328-<br />

331.<br />

Kathen, A d., Jacobscl~. II.J., De Katlicri, A.. (1990) ,.Igrubrtc~rcrrtrni ru~ii~;/oci~~~rs-<br />

mediated transforn~atioii of Pisri~ii scicti,lr~ii L using b111;ll.y ;rrld coIntcgt.:Itc vc~tors.<br />

f/Ull/ CE// /?~!purIA, 9: 276-279.<br />

Kaur, P., Bh;illa, J.K., (1998) Rege~~cr:ltiori of Ii:ililoid pla~ils li-0111 ~i~icrospor-c cull~~rc<br />

of pigconpen (Cirju~rirs ccijci~i L.). I~iilirr~i .iorri.~rcil q/ L.~~-l,~~i~ii~rorrrrl Uioli~~)'. 30. 736-<br />

738.<br />

Kaushal, R.P., Katrshal, B., Rashmi, N., V;l~d, A,, S~ngl~, U.M., (1907) Induclio~i ol'<br />

callus cultures arid regenemtion of so~i~i~cloiies Srorri diffcrcnl cxpl;~rils VS urdbcari<br />

[Viyriu i~iir~rgo (L.) klcpper] and their cv;ilu;rtrori tbr rcslslaricc iu (i~r~~u.sporii<br />

cu~ie~ct.ri.s. P~~utcetli~rgs qf' lirr /~~rlirrrr ~Vrtr~oi~irl S~,ieiic,rJ ilc,uilciity<br />

/'cII~I-/~,<br />

Biologicril Scre~ice~, 63: 359-367.<br />

Kay, R., Cllari, A,, DJI~, M., Mcl'hcraori, J., (1987) Uuplicatiori US CaMV 35s<br />

pr01110ter ~C~IU~IIC~S CIC;IICS<br />

n slrong enh;iilccr for pl:ii~t ger~cb, Scie~rc~, 236: 1290-<br />

1302.<br />

Ker~n, J., (1994) Opcniiig address. In iJrutceti~rig,s of fiie Iiirerriurio~rul IVorkiir~<br />

Coii/ereiicc oil Srured-prodrrcr Prorecrtoti, Canberra, Australia Volunie I, p. xix-xx<br />

Kerr, A,, (1971) T~xnafcr of viiulcnce betwccn rsolalcs ul'Agrobucrcr~rrn~, ~Vuirire, 223:<br />

4117~:)7~110rh,<br />

I'D, (1984) Plantlet rcgclieriltiml Lo~n cutylnlunxy r~odis uf<br />

__.-- - -<br />

chickpea, i~~rer~iucio~~ul Cliickpeu iVeiewhIrrrer, I 1: 22 - 24.


Khan, M,R.l., L.M., Heath, L.C., Speiicer, D.. H~ggiils. T.J.v.. (1994)<br />

Agrobac~rriu~~i-mrdiated transfonixttlon of subtcrrjneall clo\er (yrgo/ililli<br />

subrenu~lelcl~i L.). Pln~irPliy~ioluy~~, 105: 8 1-88,<br />

Kim, D.M., Clioi, K.S., (1989) I~ldlictloii of ~ii~llti s11oots :IIIJ pl;111t ~C~CIIL'I.;IIIOII ti.0111<br />

protoplasts of allhliii (hledictigu siiiivci L.). 7711, Kurciii~ Jr~irririi! 01 1joi011\, 32. .I l3~<br />

322.<br />

Klcili. T.M.. Woll; E. D., LVu, 11.. S.111lurd. LC'. (1087) ll~gli \clucity ~i~~ciu~~~ojcct~lc<br />

for deli\eri~ig ~ii~clelc ;icids into li\ ing cells, Niiriii.~., 327: 70-73.<br />

Knowles, B., Ellar, D.J., (1987) Coilold-os~ilotlc lysis 1s a gcncr;ll k:ltilrc of the<br />

nlechanisni ofac~ioli ot'Uiicilliu t1r1,riiigioie~i.i 8-clidotoxins w1t11 drfl;.rent inaect<br />

specilicities, Bioclii~irict~ ei Biup11)~sicu Acrri, 924: 509-5 18.<br />

Koiwa, K , Sllade, R.E., Zliu-Snlz~nan, K., Si~b~.;~~iii~~iii~n, L., M~irdock, L.L.. N~clscli.<br />

S.S., Breasan, lI.A., llnsegnwa, I' M., (1998) I'hagc display sclecr~o~i villi<br />

differelltiate ~nsccuc~d:il ;ic[iv~ty of soybean cystall~is, ijicit~r Joio.1iii1, 1.1. 37 1-37'),<br />

Koziel, M.G.. beland, G,L , Bowmon, C., Cilrrorz~, N B., Crcnshnw, 11.. C'russlnl~d, L ,<br />

Dawson. I.. Uesai. N., Ilill, hl., Kudwell, S., Launis, K., Lcwis, K., Maddox, I).,<br />

McPl~er~un, K., tvlcgliji, M.II.. Merli~i, I:., I


Krens, F.A., Molendijk, L., L., Wullems, G.J., Schilperoort, K.A., (1982) In vitro<br />

transfosmatio~~ of pla~lt protoplasts w~th Ti-plasniid DNA, Ntiir~.~, 296. 72-71.<br />

.dhnaniurthy, K.V.. Sul@C.K.,<br />

/ - - . -- . -<br />

$;igare, A.P., Me~xnes. M., Katlie~~. A-de, P~ckardt.<br />

T.. Sclirider, 0 . (2000) Agrobucc~~riri~rr-~ned~;~Ird transfor~i~at~o~~ of chickpe;~ (('ice.<br />

urini~ru~rr L ) r~iibry axes, Plo~rr Cell I(e/~orts, 19: 235 - 2JU. ,.<br />

Kuchuk. N., Ko~narnitski, I., Sliakhovak~~. A., 6leb;l. Y., (1090) tic~~ct~c tr;~~~slbr~~~,n~o~<br />

of Mreircc~gu species by Ayrobircferi~o~i fii~~irfrici~,~~~ JIIJ clcctropo~it~o~~ ol<br />

/k+.<br />

PA. S~i~iini Uvrna, I'ii, 11.11,. Slii~r~i~i~, /


Last, D.I., Brettel, R.I.S., Chanibrrlalli. D.A., Cllaudhury, A.M., Larkill, P.J., Marsh,<br />

E.L., Peacock, W.J.. Dermis, E.S.. (1991) pEniu: Ail il~lorovcd proilioter for gcne<br />

expressron In cereal cells, Tlreorrticol c~irdrlpplictl C'eiieric~. 81: 581-588.<br />

Lawrence. P.K., Koundal, K.R., (2001) ..lyrobucrt~rtir,,i I~IIIC:/~IL~I~~~IS-I~IS~I;IIS~<br />

transibrliiatlon of plgeoli pea (Cii~u~ilis ccijli~i L. I\.lrllsp.) ;lrid 1iioIc~111;1r cil~;llys~s 01'<br />

regellcrated plants, ('irrwiri Sc,ie~rcc. 80: 142s-1432.<br />

Lcc. W.U., (1902) ltiip.~ct ofplant gro\r.tli rcgltl.~lors otid pl l on ,ollialic c~iibr)ugc~~cs~~<br />

and efticlelit plaiit regeneratloll In Glyciire iorrre~~rcllir (Hi~yata) origlnatcd li-olii<br />

Soutli Clilna, Suyberr~i Gt.rrerii,s :Veil.sIricn., 19: 46-5 1<br />

Lereclus, D., Uelecluse, A,, Leccidet, M.M., (1993) Dlvcrslty ufUuciliu.s llr~rri~~gi~~~~t~<br />

toxrns atid genes, in Bocillus rlll~ri~rgre~resrs, all knv~ronnieli(;~l U~opcsl~c~dc: 'I'licury<br />

and Practice, Enrwlstle, P.F., J.S.Cury, M.J. Uailcy, arid S.l


Li, Z.Y., Tanner, G.J., Larkin. P.J., (1990) Callus regenenrlon from Tr~$liut~r<br />

subrerrat~errtii protoplasts and rnli;lliced pl.otoplnst div~sion by low-voltage<br />

treatment and nurse cells, Pl(i~ir Ccli, 7iss1ie irtrtl Urgiilr C'iilrrr~.'~, 2 I : 67-73.<br />

Li X.U., Xu Z.H., Wei Z.M., (1995) Pli111l rcgc~~t's;~tion li.0111 protopl:~sls uf lnlrilnture<br />

Vig~~a sitietlsrs cotyledoils vla sonlatic cnibryogc~rcs~s, I'lirrrr ('ell H~,por.is. 15: 282-<br />

286<br />

Li, X.Q., Denial-ly. Y., (1995) Char;~ctcr~~;lrlu~~ ul' lilctura ;~l'rcct~lig 1pl;lnt rcgc~icr~~t~o~~<br />

frequency ofiliedinrgo iiil~itli~io L., Eri/~~'/ir,it. 86. 143-148.<br />

Li X.Q., Deniarly, Y., (1996) Sonlatic e~iibryoge~~csis and plant ~.cgcllclntion ill<br />

Medicago sujji~iricosu, Plu~ic Cell, Tissrre crrid Orgoti C'rilrrrrc, 44: 79-8 1.<br />

LI Z. J., Jarret, K.L., C'lie~ig, M., Dcmski, J.W.. (1905) l111p1.ovcd clcc~ropol.;ltioli buflbr<br />

enlia~lces translent gene exprcsslon in A~NCIIIS i~yj~ug(icii ~~rotol~lnla, (;e~rott~c, 38:<br />

858-863.<br />

Luehrsen, C.R., DO Wel. J.K., Walbot. V., (1992) 'I'rasle~it cxprcssion analys~h 111 pl;~nts<br />

usl~ig lirelly luciksase 1,cporter gcnc, ~Molioh 111 Gizy~~ioiogy, 2 I6 307-414.<br />

Luo, J.P., JI;I. J.F., (19")) Callus induct~u~i and pla~it legcncralio~i I'run~ hypucolyl<br />

explants of !lie Ibrage legunit' Aslrogciiu~ cicirirrgens. 1'1(1t11 ('ell Nepurls. 17: 567-<br />

570.<br />

Luo, J.P., JKI, J.F., till, Y.H., Liu, I., (IY9Y) Ii~gl~ licqucncy sonl;~lic cnibryogenesis<br />

and plant regeilcratlon In c;lllua cirlti~~ca ol' A.slrirgiilir.~ ud.~ii~:q~ir~ I'all. 1'1~111<br />

Scirrrcc, 143: 93-99.<br />

Maddox, J.V., (1987) Protozoan D~seases, in Epi~ootiology of lriscct Diseases, I'uxa.<br />

J.K and Tanada, Y., Eds. John Wlley & Sons, New York.


Malik, K.A., Khan, S.T.A., Saxella, P.K., (1992) Direct organoyttiesis atid plant<br />

regeneratloll tn precondittoned tlssuc cultures of Lu111yrirs cicl'ru L.. L uclirir.~ (L.)<br />

DC. atid L sarivus L., A~r~iols Botor!, , pp. 70.<br />

K. A., Saxeoa. P. K., (1992) TlitJ~;l~urotit1dui.i.s ltigli li.ciluency sltoot<br />

regeneration In Intact scedl~tigs of pea (Pisirir~ ~orrt,ii~~r), clilci\psa (C'i1,~'r ~~~,,IIIIIIIII),<br />

and Ientll [Lr~rb cirlr~iar~s). Arr~lrtr/ru~~ Jo~rr~ttrl (u 1'1ci11r Pltrsiu10~1~. 19: 73 1 740.<br />

Lli~nasliel.ob, R., Bell-Dov, E., LIU. Z.. Zttr~taky, A,, jlC)L)7) Tlie I9 kl).~ prutc~~i ol<br />

Bacillris rli~rro~yirr~esis subsp, i.srcre1~~11~i~ did 11ot protect Cc/ic.ricIiiu c,ulr cells li.0111<br />

lethal efl'ect of CytA, 111: Absrr(icrs o/ 29"' /I~t~trrtr/ hleerrr~g oj'rlrc Sucivry jur<br />

thurinnie~i'sis, Corciobu. Spoilt, pp. 5 1.<br />

Mandel, M., H~ga, A,, (1970) Colc~urn.depcndcnt bi~i:tcriul)l~,ige DNA ~~tl'ect~u~i.<br />

Joiir11t11 oj hlolecirlor Uiolug~l, 53: 159.<br />

Margaltth, Y . (199U) Discovery of Htr~~illiiv ~/rrrrirtgiorc',sr~ isrtir1cnii.v. It1<br />

Htrtreritrl<br />

Rutgers Uliivrrs~ty l'rcss, New Bru~iswtck, NJ, pp. 3-0.<br />

Mass, C., Laufs, I., C;r,i~it, S., Korfliage, C.J., Werr, W., [I'iYI) The conibitlaltoti of;^<br />

follow111g introri I<br />

enhancer-reporter gene expressloll up io 1OUO Sold, 1'1u111<br />

Maughnn, I]., Sagliat-Marool; M., Buss. G, Iluc~tis, Ci., (1996) Amplified fragment<br />

length polyniorpliism (AI'LP) tn soyabeon: specles dtvcrs~ty, inhcrit;ince, and tiear-


Maxan~, A.M., Gilbert, W., (1977) A new metliod of sequenci~ig DNA. Pruc,eerii~~gs qf'<br />

Nario~tal Acadenly oj'Scie~tce. US.4.. 71: 560.561.<br />

McKently, A.H., Moore, G.A., Doostdar. H., Neidr. 11.1'. (1095) ~lgroDe~r~c~~~~irr,,i-<br />

mediated transformation of peanut (.-li.ochi., li~pugrrerr L.) eilibryo ,~xcs ;111d lllc<br />

developl~isnr of 1ransgcnic pl~iils, Plci~ii ('rll Hc,por/r, 14: 690-703,<br />

Mcijer. E.G.M., Broughtoli, W.J., (1981) Ilegelier,ltlon ol'uholc plalics ti-0111 Ihyl>oco~yl.<br />

root, and IeaLdcrived tissuc cirltures ot'tlic pastLlre IC~LIIIIC S~/UAOII~/IL,A SIII,IIIIC,II.SI.\<br />

[phytohornione, platit rcgeneralloll], PI~)wiolug~ir ~~I~III~~I~IIIII,<br />

52: 280-284.<br />

Mcijer, E.G.M., Brown, D.C.W., (1968) l~lli~bitio~l of sullliit~c CI~I~~YU~CIICSIS ill IISSUS<br />

cultures of illrrlicrrgo ~u/ii,ci b) ,~~i~ii~ocliiosyv~~~ylgIyc~~ic,<br />

:illiilllr-oky;ic~~~~ dc111.<br />

2,J-dinitropheliol alid sal~cylic acid ;n conceiitl.:ltions wllicll do !lot ~lill~hil etliylclie<br />

biosy~itlicsls and growlli, Jorrrr~crl uj Ev~~c~~~~niei~roI<br />

Uoin~r).: 39: 263.270.<br />

Mcijer, E.G.M., (1989) Developlnentill oq1ccts ot'etliylc~ic btos)~itlics~a durilig .;oni;ll~c<br />

cnibryogel~e\~~ In t~ssue cultliwa of !\lcr/ir~iigo rriiiirr, Ju~rrr~iil i,j /:'~/~c~rri~~c~ito/<br />

Boiurry, 10:47'1-484<br />

Meiiiers, J.P., Elden, T.C., (1978) Rcaistallcc to Insccls illid dlscasca iii /'/lllAco/ll.~. 111:<br />

Advunces III 1cgio11c ~cie~lce. I~~lor~~c~lio~t(il Lrgrr~~le L'u~iji.i~errcc. Kuw Surrey. L'K.<br />

Summerfield, 1t.S and Bunting, A.H. eds., pp. 359-364.<br />

Mctcalf, R.L., hletcalf, ](.A,, (1993) Darrricrivc. rr~ltl U~eJiil 111secu: 7l1ei1, 1lobrr.s t111c1<br />

Control. 5"' Ed., McCir;~w-hlll, Inc., New Yolk.<br />

Meyer, H.J., van Stadell, J.,<br />

(1988) In vltro niult~plicat~on of 1x1~ jlcxuoscr,<br />

Horriculruriil Screirte, 23: 1070-107 l


Mickel, C.E , Standish, J.. (1947) Suscept~bility of processed soy tlour a ~ soy ~ d grits in<br />

storage to attack by Tribolruiii ciiArorieir, ti~iii,tr~irj of dhrirr~~,u[ii .~gi~rt~rrlirrrcii<br />

Ex/~c,ri~~irii~cil Sluliori Tecli~iicrrl Bitlle~iii. 178: 1-20,<br />

Misra, M., Adds, G.. Nari~yai~, K.K.J, (1994) Metl~ods tiur callus ~nduct~ull :111d<br />

differentiation of Loily,riir srirrvirs 2nd cil~bryo rescue 111 iii~ers~~cci~ic cruaaea by<br />

tishut c~~lt~ire, Juit~~~~111 (I/ [lit, ~Igrr[~~rl/r~i~~~l ,Sui,i~~i' tiiii~,c,i.si[,~ 01 II'III~~,~ (LIrii/~~d<br />

Kirigtlurir), 74: 129- 144.<br />

Mogen, B.D, MacDonald, M.H., Gray Uouch, I(.,<br />

Iiu~it, A.G., (1990) Upstrc;i~~i<br />

sequences other than AAUAAA are required for eflicicnt Ilicssenger llNA3' end<br />

fol.liiatioli $11 plants, IJluiri Cell, 2: 1261-1272.<br />

Muhamed, M.F., Rend. P.E.. Coyne, D.P., (1990) 111 vitro rcsI)oIisc 01. bean (lJlro.scolrr.~<br />

viilgaris L.) cotyledonary expla~its to be~izyl;lde~~~nc 111 tllC ~ii~di~~iil, I'ruc~~dii~gs 1!/<br />

lire Picirri Gruivllr I~c~gi~lcilu~~ Sucir(v ol'/li~iri.ictr. 17111 AIIII~I~I~ Meet~~ig, St I'il~il.<br />

Minne>ot,i. USA, pi) 134.<br />

Moha~~, M.L., Kri~ii~~;~~iiurth). K.V , (1098) I'ln~it rcgc~~cr;liiu~i in p~gcolipc;~ I('trjn~iir.\<br />

ciijirri (L.) M1llsp.1 by orgaliogeneais, 1'1c1ri1 (.'ell Rei,url.\, 17' 705-710<br />

Llontoya, A.L., Cli~llo~i, M.U, Gordoli. M.I', Scii~ky, I)., Ncjtc~, I:'&., (1077)<br />

Ocropiilu ,111d 1101)a111ie 1iietabol1~111 ill ~\grob;~c~erii~il~ ILIIIIC~CICIIS :iiid crow11 gall<br />

tuillor cells rule ol'l~lo>iiiid pelles, Jurtr~iul u/Uac/r~ rulogy, 129: 101 - 107.<br />

Morton, R.L., Scliroeder, H.E., Uatelii;~n, K S., Ch~ispccls, M.J., Ail~~strollg, I:.,<br />

Higg~iis, T.J.V., (2000) Bcaii a-;~mylnrc lnliibitor 1<br />

111 l~a~ihgcnic peas (l'rsur~i<br />

rurivur~r) provides cuinplett protection from pca wccvil (8rircltu.r /~i.soru~~i) under


field conditions. Procc.rdbigs o/Naiurionrrl Aarrlenry uj'Scic~ic~,s, USA., 97: 3x20 -<br />

3825.<br />

Moursy, H..4 , Haggag. M.E.A.. G~I~II~III, S.A., l


egeneration in excised cotyledon cultures of ~ilungbeaii (Yig111i rcidiucri (L.)<br />

Wilczek), Jupuiiest. Jour~iui oJ'Crup Soe~rct.. 66: 67-75.<br />

NAS (1979) Tropicui ieyiotte rtsoiircrs Jur //I') jiiriri.~, iVti1101rii1 ..lc.ii~i~,~ii~, P~CJA.Y.<br />

~t'u~iii~igroii UC, pp. 33 1<br />

Nauerby, B., Madssn, M., Clirisliansc~i, J.; 1Vynd;iele, I( , (199 I) A ~pld :iiid CSIICIL'II~<br />

rcgc~icratio~i systeni for peii (I1i.\i~ili ~11111 IOII), s111tabIc for tr~~i~~furi~~;itioi~, i'iiiii~ ('dl<br />

RL,/I I.\ 0: 676-070<br />

A,, Keddy, C.S., I


Ohara, A., Akasako, Y., Daimon, H., Mii. M.. (2000) lll;itit reyetierotion ti0111 hairy<br />

roots triduced by infectloll wttli Ayrohoc~tei~it~r~t r./ti:ugoit~~.~ it1 ('roralitric~ jtl~tc,cu L..<br />

Plattr Cell Kepurrs, 19. 563-56s.<br />

Oppertiiati, C.ll., Taylor, C G.. Co~ihling. MA.. (1994) Iloorltiot ncni;trode directed<br />

expression of a plat11 root spec~tic getic, Sct(~~tco. 203. 221-223<br />

Orshillsky. B.R., Swansoli, E.B., Totiies. I).l'.. (19s)) I:ttIi.~~icctI 511001 IC~CIICI;IIIOII<br />

froli) Iiotl~oge~itzed callus culf~tres of btrdsfoo~ trclbil (l.oiir.\ r~v~~rt~c~~t/r~/ti,<br />

L ) . I'liti~i<br />

C~.ll, 7i'sstrc oilti Olpari C'ttlrure, 2: 341-347.<br />

O~can, S., Burgliclii, M , Firek, S , Drd1)et, I .(1092) lltglt I'reil~~ettcy itd~~e~itt~to~~s ~ltuut<br />

regettrr;ition from t~nmaturs cotylcdo~ts of pea (Pist~i~~ sorii8ri~ir L.). Plriiti C'oll<br />

Hr/)or~rs, l l : 41-47.<br />

P;~dmatja, (2 . I


Parr, J.F., (1974) Effects of pesticides UI<br />

~il~croorga~iis~iis in soil ;~nd water. In:<br />

Pesricides iti Soil tl~ld 1Voler, W.D. GUCIIL~ (Ed.). Soil Sclellce So~eity ofAmrrlca,<br />

Madison. WI, 315.<br />

Parrot, W.A., Collins. G.B., (1983) Callus 2nd slioot-t~p CLIIILISC<br />

01' eight i;~ifol~ii~~i<br />

species 111 vitro will^ rcge~leratio~~ vi;! soin;ltlc c~iibl-yogc~lcsis of' li.ijuIirii~i r~tI~~~,rs<br />

[Clover], Pla~~r Sciorcc Lerre~lv. 28: 189- 191.<br />

I'atel. D.13 , Uarvc, U.hl.. Nilpr, N., Mclil;~. A.l(.. (1991) I~C~~II~I.,IIIUII uI' I)I~CIIIII)C;I.<br />

C~~UIIIIS ciqilri. througli so~iiot~c c~iibryopc~~cs~s, 111iiiii11 Joiii~~rcil oJ ~;Y/~L,I.I~II~II~~I~<br />

Bioloy)~, 32: 740-744.<br />

Pellegrinesclii, A,, (1997) 111 vitro plant rcgc~~clnt~u~i via org;1liogcllesla of' cowpca<br />

[Vig~tu ir~~yurciilc~~ci (L.) Walp.], Pliirrr ('ell l(cpuro, 17: 89-95.<br />

Pellegr~nescll~, A , 'fepfel.. D.. (1993) M~croprol):~garion ;III~ 1pI;11it ~C~CII~I.;I!IOII<br />

III<br />

S~,~Siitiiti n~srroio., Plor~r .%ICILL, 88. I 13-119.<br />

Pere~r;~. L.I:., I:r1cli5oii, L., (1995) Stable trunslbrnl;~l~on ul';lll'ulll~ (rlteilictigo .virlrvu I-.)<br />

by part~cle bonibard~iient. I'lii~rr Cell i(eljor15, 14:290-293.<br />

Pcrl, A,, Klcaa, [I., Ulumciilliul, A,, G;llill, (j., (ialun, E., (1992) I~iip~orc~~~cnt of~)l;~~rt<br />

regeneralloll and gus expressloll 111 scutell;~r \vileat calli by UI)IIIIIIIII~IUII culture<br />

conditions and DNA niicro projuct~le delivery p~.ocedurcs, Mt~lccrrlur tiencrrii<br />

Gerrerics. 235: 279-284.<br />

Pestana, M.C., Lacorte, C., Fre~tas, V.G. de., Oliveira, D.E. dc., Mansur, E., de Fre~las,<br />

V.G., de Olive~ra. D.E., (1999) 111 vitro regeneration of peanut (Arucitib irypogci~ci<br />

L.) through organogenesis: effect of culture tempcraturc and sliver nlllale, 111 Vilru<br />

Crlluiur ur~d Deveiopr~te~~lul Bioioy);-Plut11, 35: 2 14-216.


llechrnlics sur les prnidilies des<br />

relariu~i biocl~l~iiiqui. spec~tique<br />

et les ciliileurs qu'elles ~~lduiscnt.<br />

11ysioI. Veg 8: 205-2 13<br />

Plckel~s, L,G.. T~~III~IJ~III, l


' Potrykus, I., Spangenberg, G., (1995) C.c,/ir r,zi/r?f~,/, ro plii~rrs, Sprli~gcl- Vcrlny. Bcl.l~n,<br />

pp. 361<br />

,,kFh,<br />

S~,,~~l~~d~lury, I.B., hill, R,K., CI~o\\dliury, V.K., (1992) I.';IC~"~S ;ll'f'cctl11g<br />

plant rcgc~leratiori 111 cllickpca. C'ICL,~ LI~~C~~I~IIIIII<br />

L., 1110it11r JUII~IIIII<br />

uj J:.~/./)i~ri/~ir~/~i(Ij<br />

Jb;ak;iiil, S. Clu\rdliury, J. U.,<br />

-/<br />

Vadav, N. R. J~III, R. K. (.l~o\\dholy. \' K.<br />

Somalli' ei~lbryogenc,~~ ill suspcl~riol~ cul~urcs ol' cliichl~c;~, :~IIII~I/.\ r,j<br />

(I'II)J)<br />

Ilrr~/r~,qi,<br />

Prakasli, S.K., I'eiit;rl, D., Ullnlla S;irin, N., (1904) I


Rand, G.M. (Ed.) (1995) Ftordir~~rc~~r~ls q/'Aiitr'i/tc~ Tocivolog~: Wrcrs, E~rviro~r~~roltrri<br />

Fare o11d Risk Assess~rie~~r, pp. 1 125<br />

Rao, B.G., (1989) Effects of constiturtils 2nd tlieir coticc~i~r,~~iuiis ill Iiulrlclit 1iledi:l 011<br />

callustng lion1 chickpe;~ hypocotyls, Lc~gr111rc' Hnriiri11. I!: 186 18s.<br />

Rae, B.G., Cl~opra, V.L., (1987) Genotypic atid e\pl;itit diffcrrticea 111 c;illus 1111t1;1[ioti<br />

2nd ~niil~literla~~cr 111 chickpe;~, I~~rrr~~i~~~ro~iirl<br />

('iiic hprii ,Yr~~.\/~~rci~~.. 17 10- I?<br />

Icao, B G.. Choprtr, V.L , (1989) Rege~ieralioll ill cli~ckpe;~ (('i1.r~ irririi~i~r~~i L ) 111rougli<br />

somatic enibryogenesis, Jorrr~tul oJ Plir~tr PIri,~iolog,, 134: 637-638.<br />

11atliore, R.S., Sillgll, N.K., Garg, G.K., Clund, L., (2000) llegcr~eratiuti ol'~>l;lnts from<br />

callus tissue of AL'SCII~IIUIII~II~ spp. (Leg~~tiirtios;~~), JUII~IIII~ (I/ PI NruIo,~:y, 27.<br />

81-84.<br />

Rathore. R.S., Ch;lnd, L., (1997) In vitro tr;l~lsfbr~iiolio~i ol' piyco~ipc:~ gcnulypes by<br />

wild stralris of AgroDocrerirr~~i rrr~~icfiicie~rs, I~~/er~rcirto~rtrl Cl~ic'k/~cci o~ril /jrgro~rl)ro<br />

Neir~ic//el., 4:38-39.<br />

I?aupl), M.J., Koehler, C.S., Uacidsoli. J.A., (1992) Adv;rllccb 111 ~l~iplcn~cnt~ng<br />

integrated pest rnalingenient Ibr woody laiidacapc pl;~llls. A111rrtu1 /(ci'rci~' 1!/<br />

E~iro~~rulugy, 37: 56 1-585.<br />

Ila~en, J.A., (1986) B~ucllem~cal dispo\;ll ul' chccss Ilt 111 glowllig pl;ililb'!, New<br />

Ph)~roIogiii, 104. 175 - !U(I<br />

Kazdan, M.K., Cocking, E.C., Po~er, J.B., (IYXU) Callua rcgcrleratlurl li-otil nirsopliyll<br />

p~.otoplaita of sweet pca (Lor/r~~ru\ odorirru.~ L.), Zur.scltriji jiter<br />

PJla~~zr~~/i/~vsioiogir, 96: 18 1 - 183.


Rech, E.L., Golds. T.J., Hammatt. N.. Mulliga~i, B.J., Dave), h.1.R.. (1988)<br />

Agrobocreriu~~l rhrroge~les lnediated trn~isfori~~atioii of the \\,~ld soybeans (;11,~,iri~~<br />

ca~iescens and G. cic~~iciesritio: producl~on of tmllsgenlc pluilts of (; c.o~resct~rts..<br />

Jocrrnni o/'E.rprri/~ti.~lrtrl Ilulo~t,,, 39: 1275- 12x5<br />

Reddy, L.R.. Reddy, G.M., (1993) Faclors :~ll;.ct~ng dlrccr soill;itlc cii~bryogeiles~s :111d<br />

p1a11t regc~~e~ilioii 111 grou11d11~11, .4r11ci1i.s Ii)pug~i~,c~ L, /III/~UII JOIII.IIII/ I,\<br />

EA/I~I.IIII~II/~I/ Uioiog): 3 1: 57-60<br />

Kepkov:~, J., Nedbalkova, B , I-iolrib, J . (1991) Ilegunel-;it~uil of pl,~nLa li.o~il /ygo~lc<br />

embryos after lnterspecilic<br />

Ihybr~dizalloll willli~~ tllc ~CIIUS I).!/uli~r~~i ;111d<br />

electrophoretic evaluario~i of hybrids. Scir~rlijic. S/iirii~,r OS6111 Koi,iirc.h I~i.\~iiiirc<br />

jbr Fu(1cier Pla~r/s, 12: 7-14,<br />

Iley, H.Y., Mroginski, L.A., (1996) Regc~lc'itio~l ol' ~pl:liils lioln c;~llur t~hrut~c ol<br />

IIJIIIIIIL spp. (Legurilillosne), i'lii~~t ('i,il, %~AIIL. IIIII~ 0rgo11 ('rtl/rir


Richardson, M.J., (199 I ) Seed storage proteins: The cnzynie inliibifors. 111: Mt~hods iir<br />

Plan/ Biochrrtrisrr),, R~chnrdson. M.J. ed Nc\v York. Ac;~dtm~c l'ress, pp. 259.305.<br />

Riker, A.J., (1923) Sollie relinlol~s of rlic croivli y


Ryan, Clarence A., (1990) Proteasr inhibitors ill plants: genes for i~~ipro~i~lg dcfc~ises<br />

Rybczynski, J.J., Dabrowski, L., Bndzlan, T., (1995) Cll;lngcs III ~lloiylioge~~~i. pote~~ti;il<br />

of shoot rcgc~lerat~on Sroln root explant of Lo~ur iur~~rc~r/u~us L, seedling. ..licii<br />

Physialogiue Pltr~rltrrior~, 17: 2 1 1-2 18.<br />

.A.-l!,<br />

'--<br />

St~l~:lhi~i~, K., KI~~SI~II~IIII~I~~II~,<br />

K Lf , (1093) I1l,tnt S~~~IICI-,I~IOII<br />

~,I;I<br />

S~II~;I!IC L'III~~~~~cI~c~I><br />

~IIIL'~.[Ic~I (C'ICC,I. ~III~~IIIIIIIII),<br />

655.<br />

/'It1111 ( ',/I I


Sarria, R., Calderon, A., Thro, A.M., Torres, E., Mayer, J.E., Roca, W.M., (1994)<br />

Agrobocierirr~~r-mediated tra~isfosmal~on ot'S~dostr~rilies gllici~ie~isis iiiid pr~ductio~l<br />

of transyenlc plants, Plti~rr Sciorce. 96: 119-127.<br />

Saxena, C.. pa la^, S.K., S;lili,lntaray, S., Rout, G.R., Das, IJ.. (1007) Pla~lt rcgc~ier,itioii<br />

from callus cuitures of Psoro1'i.r co,7'lijblio Linn.. Plri~ii Gro~i11 I~cgrilciiio~~. 22: 13-<br />

17<br />

Scarpa, G.M., I'upilli, I:., Darnliln~, I:., Arcio111, S, Vcro~lcsi, I:.. (ell.); Bulli[rn, S.. (cd.):<br />

Carcdda, S., ( 1992) 111 vitso culture and plnrlt scgslicratloii iii ~letlic.ogopolyrr1oip1~~1<br />

L. Ploidy and cliro~nosonie ma~l~pulation 111 tbragc brccdi~lg. 1'roceetling.s uj rile<br />

17111 irrcrtitrg oj llrc Fotltlcr Crops Scclioi~ oj L:LICilRI'Itl. Alphero. Italy, 177- 170.<br />

Schcli, J., Van Montagu. M., De Bcuckelecs, M., De Block. M., llc~~~ckcr. I\.. Dc<br />

Wiide, M., Engler, G., Genetello, C.. Ilcr~i~lstecns, J.I'., llolstcrs, M., SCUSIIIC~. J..<br />

Silva, U., Viin Vl~cl, I;., Villasscocl, I/i,r iu /)ltr~ii.s.<br />

" "-<br />

----<br />

Potrykus, I., Spangenbert, 1'., Eds., Springer Verlag. Berlin. 325-336.<br />

Scllnall, J.A., Weissinger, A.K., (1993) Culti~rrllg pcailut (Arlicliis Iry/)ogtieci L.) ~ygot~c<br />

embryos for tra~islbrn~atiun via ii~icsoprojcc~ilc bo~iibasd~llcnt, I'ltirir Cell Niq)urls.<br />

12: 316-319.<br />

Shade, R.E., Schrocder, H.E., Pueya, J.J., Tnbe, L.M., Murdock, L.L., Higgins, T.J.V..<br />

Chrispeels, M.J., (1994) Transgenic pea seeds expressing tlie u-amylasc inlilbitor of<br />

the cummon beall are resistant to brucli~d beetles, B~o/Tecl~~~olugy, 12: 793 - 796.


.'/'<br />

' Sh<br />

kar, S., Ram, H. Y. M., (1993) Induction of soinatis e~l~bryogc~lesis in tllr tissue<br />

cultures of chickpea (Cicer aririi~iurri L.), Procerdi~igs oj /lie III~IUJI Na/io~r~/<br />

Science Acudo~~)~. Part 8, Biologiccii Scte~ic~,~. 59: 629 - 632.<br />

Shao, C.Y., Russlnova, E., lantcheva, A., Ata~l:issoi, A.. klcCor~ilac, A,. Clicn. L).I,..<br />

Elliott, M.C., Slakr, A., (2000) Rap~d Irailsforil~at~on and regeIIcratiuI1 01. alli~lli~<br />

Sharma, L., Amla. D.V., (1998) D~rcct sliuut organuycncsla III ch~clipe;~ (('ice<br />

Shnrnla. K K., Ullojwulli, S.S., l'liorpc, ']'.A , (1901) llole oi'llic co~yIedu~~.~ry ~IS~LIC III<br />

thc in vltru d~t't'crc~~riat~un of shouts and roots from culyiedo~l explains ol'Drass~ca<br />

juncea (L.) Czern., i'lo~ii C'rll, ITsis,irt, cr~rd Orgtrti Qrllirrc, 24: 55 - 59<br />

Sliarnla, V.K., Kotl~or~, S.L., (1993) Iligh Srequc~icy ])la111 rcgencratlun 111 t~bsuc<br />

Shurma, K K., Orl~z, K., (2UU0) Yrogln~ll lor tile applicoilu~~ of ycnctlc t~a~isibrmal~o~~<br />

for crop ~rnprovemz~~t III thc sc~ll~-;lr~d tropics, IJI Virru Cell ~irill Ucvelup~~~eri/~~l<br />

Sheila, V.K., Mosa, J.P., Ciowda, C.L.L., I


Shri, P.V., Davls, T.M., (1992) Zentrii rnducod shoot regeneration from inilristurc<br />

e--<br />

chlckpea (Cicer arieiiiiiii~i L.) cotylrdoirs, i'1~11tr Cell, Tissue OII~ Oryon C~rlrure.<br />

28:45-51.<br />

Sierneiis, J., Scliirder, 0.. (1996) Tratrsgelilc plsl~ts: ticnetlc tr;rilforir~;~tioii.rccc~it<br />

developments and the stare oi' the art. PI;IIII T~SSLIC Cu1tu1.e and Diotrc1~11ology.<br />

IAPTC'~$'e~~~slrrrrr. 2' 66-75.<br />

Slnha, K.K., Malllck, I


Stiff, C.M., Leuba, V.. Sun. 9.. Le TOU~IIL':III, D., (1991) Isola1io1i. CLIIILIS~, and callus<br />

regeneratioti of ientll protoplasts from Is;if tissue [Lrrts ctilirrriris]. LEA'S-<br />

News/i.rrrr. 18: 30-33.<br />

St~ller, J., Mast~mn~. L., Tuppile, S.. Chian, It.1.. Chiusarzt, M.. Grcaslioll: P.M..<br />

(1997) Higll frequency traiisfor~nat~o~i and rsgcneratioti ot' trailagenlc planla in tlic<br />

model legutlie Lu/tis~ii~~or~icri.\., Jotintc11 u/'/:'\po.ir~i~~~i!(i/ Llorlrrrj: 48: 1357-1365.<br />

/<br />

Subliadra. Vasliisl~tli, IKK.. Clioi\dllury. J.U.. Si~igli, M., Silrcc~i. I'.K . (IOL)X) h1ulttl)lc<br />

shools from coly1ctIon:iry ]lode explt~tlrs of 1iu11-~iodulnt~~ig gelioiype (ICC4ISM) of<br />

cliickpe;~. Cicrr arieriirri~rr L.. Iridru~r Jui~r~ro/ i~/ L:x/~a.irire~r/ol Uiv/og\~. 36 1276<br />

-<br />

v- ..<br />

i K S I<br />

,<br />

1. Y,, Ks~~li~~;iiia~~l~~<br />

I(, V,, (1994) D~rcc! ~UIII;I!IC<br />

embryogrtieiia fro111 inlalure embryo xis 111 cIi~ckl~c;t (C'ic.1~ iirieiiriii~~r I..), i'lori!<br />

/Suliasini, K., Sag;~re, A.P., Sa~nkar, S.R, Krisli~iai~iurtlly, I(.\'.. (1997) Cumpar.~li~c<br />

/ .--. -=i.<br />

study of the dcvelopniellt of zygot~c and autli;iltc enibryub of cl~ickpc;~ (('i~er<br />

Svanbaev, E., (19")) IJlaiit regcticrat~o~i l'roti~ ~p~.oloplasts ~nd liasue cul[~iscs of' SUI~IC<br />

Tegeder, M., Gebliardr, D., Schieder, O., Picka~.dt. T., (1995) Thidiit~uron-induccd


Tegeder, M. Koli~i, I-I., Nibbbe, M., Scliiedcr. O., Pick;irdt, T., (1996) Plant<br />

regeneration from protoplasts of Viciu ~rurbut~e~isis via soulatlc e~~ibryoge~lesis and<br />

slioot orgliliogenesls. P~UIII Cell Repo~./~, 16: 22-25,<br />

Th~ery, I., Delecl~isc, A., T~~iiayo, M.C., Ordiu, S., (1997) lde~~t~li~iit~o~l ufi~ gi'lic liir<br />

CytA like lieniolysi~i fro111 Butiilus ihurOiyi~,~ie~~~ subap. nicdclii~~ i~nd expscs,loli 111<br />

a crystal ncgativc 8. Tl~uri~igie~~esis SI~,III~, ,4pj)/ie~l U I I ~ E~rvi~~o~i~~~oiirrl<br />

M~crobiolug\~, 63: 468-473.<br />

Thomas, W.E., Ellar, D.J., (1983) Mecli;i~i~s~li of actio~~ of Elr~cr/irrs ~Irrir~rig~r~~~rs \'at.<br />

isruele~r~rs i~isccticidal 6-endotoxi~i, FEBS L~,//e~lv. 154: 367-368.<br />

'Tilomas, M.K., Ilose, I


.-A.<br />

Uawithya, P , Tuntitippawan. T., Katzcnmeier. G.. Patiyitil, S.. A~~gs~~thil~i;~so~iibi~t, C.,<br />

(1998) Effects on larvicidal act~vity of single proli~ie substitutlotis In a3 or a4 of<br />

the Bacillrts rhttri~ryie~tsis Cry4B toxln, Biociie~~iisl~:~, trii~! Mol~.cri/ar Biolug~,<br />

In~en~iirio~rol, 14: 825-832,<br />

Urwin, P.E., Lilley, C J . Mcplierson, M.J., Arkillsoil, H.J , (1997) Rrsist;lnce to boll)<br />

cyst and rootnot iiematodes conferred by ~'IIIS~CIIIC .4robit!opris cxl,ressitlg ;I<br />

modified plati it cyst;ili~i, Plciiir Jurri~~riil, I?: 4.55-46 I.<br />

Va~n, l'., Worland, B., Clarke, M.C., Ilicli;~rd, (j., l3e;1vis, Rl., Liu, H., Kohli, A,, Lcccl~,<br />

M., Snape, J., Clir~sto~~. P.. (1998) Exprrssto~i of;lri c~ig~ncercd cyslclnc prutett1;rse<br />

inhibitor (Oryzacystatin-I delta DX6) for nenlatode resistal~cc i i ~ tm~isgcl~ic rice<br />

plallts, Tlreoreiicctl o11d Applied Ge~trtics, 96: 266-27 1<br />

Xani, A. K. S., Rcddy, V. D., (1996) Morpllogencsis fi.01~1 callus culturcs ofcli~ckpca.<br />

I .<br />

. ~<br />

Cicer ~irieii~~tl~ii L.. l~rdiaii Jurrr~rcil oj Er[~eri~riorrit/ Biolu,g,, 34: 285 - 2x7.<br />

Vardi, A,, Ble~ciiman. S., Avlv, D., (1900) Genet~c tratlslur~i~atioti uf Cttrrt, lprolul>l;~at\<br />

and regtrleration of~rat~sge~iic plants, Plitri Sr.ii,itce, 60: 199-206<br />

Var~sainioh;~~iied, S , Jayabal;in, N., Kislior, P.U.K., (1999) Plantlet regeticratluri fioli~<br />

cotyledo~i derived c;~ll~ of Ilorsegram (Mttc~rriry!ui~~u~rijlorir~i~ (Lam.) Verdc)].<br />

Venkatachala~n, P., Jayabalan, N.. (1997) Selectiol~ of groundnut plants wrtl~ c~iliar~crd<br />

reststancc to late leaf spot through In vlrro ~nut;~tion technique, I~~cur~rutiotirtl


Venkatachalam, P., Klshor, P.B.K., Jayabala~i. N., (1997) I11gh frequency sonlatic<br />

enibryoge~iesis and effic~e~it pla~~t regelisration<br />

tiom liypocotyl oxpla~~ts 01'<br />

groundiiut (Arucliis liy/)ogcirt~ L.), Cirrre~ir Sc,ie~icr, 72: 171.275.<br />

Venkatachalaiii. P.. Geetlia. N., J~yabalnii S;~~.ava~labobu. N., Sic;\. L.. (1')')X)<br />

Agrobac/eriii~~i-iiied~i~ted gelletic tnnsfur~il;~t~o~i of g~ou~idill~t (,Iror.l~i~ 1uy10gti~ci<br />

L.): All assessmelit of tl~ctors :~fli.cting regenc~.;ltioii ot't~.;~~isgc~lic ~I:III~s. Joiir~i~rl i!/<br />

Plri~rr I(aec1i~c11. I I I. 565.572.<br />

Venkatacliala~n, I'.,<br />

Geetlia, N., Ablia Kii;i~idelw;~l., Sliilila. MS., S~ta. G.L..<br />

Khandclwal, A., (2000) Agrobucieriui1i-111edii11cd genctlc ~ransl'or~iiniioi~ ;lnd<br />

regeneration of trolisgelilc ]pl;i~~ts from co~yledoii c~pl:1111s 01' grou~idii~~l (Ar~r~lii~<br />

11ypoyuc.u L.) vla so~iiatic e~iibrqogsncs~a, ('iirrC~ri Scie~rce, 78: 1 130-1 136<br />

Verno~i, R.S., Broalcli, J.S., (1996) I


__--<br />

Wa_a_s5JL(l1)96) "Yes. But Does It Work in tile Field'!" The cliallengc of tecll~lology<br />

-<br />

transfer In biologtcal conlrol, E~iiu~riuphiiy~i, 4 1 . 315.332.<br />

Waage, J.K.. Mills, D.J., (1992) B~oIog~c:~l CUIIISUI. 111 N;I~UTJ~ Eti~tllics: TIIC<br />

Popuiattoll Blology ol' Prrd:itors. I'nl-;rs~les, ittld Diseaacs. Cr;~\vley. M.J.. 1.d.<br />

Bl;lck\\ell Sctcnl~lic l'ubl~c~t~ons. Oxlbrd.<br />

W;III, Y.. Lc~naux. P.G.. (1904) tii.11cri111~11 of 1.11gc II~II~I~CI\<br />

oI' i~l~i~~iutldut~tly<br />

t'inst'ormed fcrt~lc. b;rrlcy p1;111ts. IJloiir IJi!)s~ulug~~, I04 37-4s<br />

Wang, 1-1.. Ciltler. A.J.. (1995) Proillulcrs ti0111 kin1 and cor6.6, I\\u ,.l~.iil~iili~~)sis<br />

ilicilic~~rci low tui~~pcrnturs 2nd ABA it~ductblc genca, d~rccl s[ro~~g ~-glt~ci~rot~itl;~a~<br />

exl)rcssloti in gt~iird CCIIS, pollen and youtig dcvelupitig scuds, I'ier~~i ,Ctolec,iricir<br />

Uioiug)! 2s: 6 19-634,<br />

Wol~g, J I1 , Rose, I< J.. Donaldso~~. U I .. (1'196) ,ly~.ob~ri,rc~.iii,,r-~~~ud~;~lctl<br />

cransfortn:~tiot~ 2nd cxprcsstotl ut' tbrcign gcncs ill Maliuigu rrir~~~oriilo, Au.srrciiir~rr<br />

Joiirricii it/ i'iri~rc Pig~siulug,: 23. 265-270.<br />

Warkctititl. T.D., McHugIlen, A,, (1091) Cro%n gall t~itlslurrnat~o~~ ul le11l11 (/.L,II.\<br />

L.N/IIINI.~A Med~k ) \bit11 v~rulent srrai~ls of Ayrubuc~eriii~~~ lu~ricjucie~r\, l'iuirl ('el/<br />

REPOI.IJ, 10: 489-493.<br />

Wet, ZM, Xu, Z.H., (1990) I'lanl<br />

regcncrauuil li'om prutoplusta US Itnnlalure<br />

cotyledons oi'L-'i)ci~ie ~ojo Sieb. et Succ., Plii~~tSi ir~ite, 70. 101-104.<br />

Weeds, J T., Anderson, O.D., Blcchl, A.E., (1993) Kapid Productton ol' niulttple<br />

independent Itnes offertile transgcnlc wheat (PIII~IIII ue\iivrrm), lJlunc l'iiy.sioluyv,<br />

102: 1077-1083.


Winans, S.C., (1992) Tiyo way chemical signaling in Ayrobncierilriir plant iliteractions.<br />

Microbioiogicrii Rrive~rs, 56. 12-3 l<br />

Wirth, M.C., Georgliiou. G.P., Federici, B.A.. (1997) CqtA cnablcs Cryl\' eiidotux~l~s<br />

of Bucillus iiiirri~igieiitsi.~ to overcome lhigli levels 01' CrylV resisf;~licc 111 thc<br />

Inosquitu, Cii1e.v cjiri~i~~ii~/irsc~rti/~i~, Procrct111iy.s oJ' Niirioirrrl<br />

riti~.ii~i~. (?/ .F~ic~iic~c~,<br />

b!SA, 94: 10536-10510.<br />

U'U, D.. Feder~ci, B.A., (1993) A 20-kiIod~11tu11 p~oteil~ prcs~'rves cell vinbtlity ;III~<br />

proriiotcs CytA ci-ystal forliiatlon durilig sl)uri~l;itio~i 111 I~'iic~~lliis ii~rrriiigicir,~is.<br />

Joiirircii oj'Boc.rerroioy)~, 175: 5276-5280.<br />

Yardim, EN.. Edw;irds, C.A., (1998) El'ticta ol' cheliiicul pcst d~seasc niid weed<br />

~~laiiilge~nciii 011 tlie tr~pliic sIri~cturc US tici~iiitod ~O~~U~;IIIOI~~ ill to~li;itu<br />

agroecosystci~is, r1pj)iirtlSoii Ecolog),, 7: 137- 147.<br />

Zaeneil, I., Van Larebckc, N., Teucl~y. H.. Vaii Muntagu, M., Sclicll, J., (1074)<br />

Superco~led circul;ir DNA 111 crown gall ~~itllic~~ig Agrvb(~cieri~iiir atrittiis, Juir~~itil oj<br />

:Llo/ecir/rir b'i~/og)~. 86: I U9- 127.<br />

Zaliir, Y., Ncn~, I!.,<br />

Doni~atli. I;., Pupilli. I:., Arctur~i, S., (11j05) I'lnnt rcgc~icr;~tloii<br />

iioni cxplnnt, and prutupiast derlved calli~scs of Medicugo Irr~oruii~, IJiuirl ('ell.<br />

l'issiic ciiici Orgciir C'~ilrr~rr. 4 1 : 4 1-48<br />

Zaglimout, 0.M.17., llollaiid, M A,, Torello, W.A., Polilcco, J.C., (1990) ,2 gclicral<br />

procedure for protoplast recovery, callus and plant regcncratiun in plants, 111 Virru<br />

Cellulur ri~id Devciopi~reiiierl Uio/ug~-i~iun/, 26:) 15-317.


Zambryski. P., Holsters, bl., Kruger, K.. DepicLer, A,. Scllrll, J., V.ln blontagu. M..<br />

Goodman, kI.M., (1980) Tti~iior DNA blrucrllrc in plant culls c~,~nsl'or~iicd by ,.I.<br />

lirn~clfacie~~s. Stie~icr, 209: 1385- 130 1<br />

Znnibryski, P.C., (1992) C'hrol~~cles from tllu .Agrobi~creriroir plat11 crll DNA rl.;insli.r<br />

Story. .~111ill~l/ fi('l'l~'\l


1<br />

APPENDIX<br />

1. hIURASRICE AND SI(SO)<br />

--.-<br />

I<br />

0.025<br />

~- ~<br />

OR<br />

Orgn~iics (X100)<br />

27 8 2.78 giL<br />

Glycine 200 mdL ~<br />

10 1111<br />

h'icotir~ic acid ) 10 1111<br />

Thiamine HCI<br />

Pyridoxine HCI i 0.5<br />

100 myL<br />

111-lnositol ! 100 5.0 g5UU rill I I0 1i1i


2. Fixative used for fisntio~~ of tissue culture sun~l~lcs:<br />

Acetic acid and 95% Etllallol were ~ilixed at 1:3 proportions<br />

added. The co~ripo~ie~its wcrc sliakeri tint11 ill1 oftllelir ;~rc ill sol~~tlo~l. 'l'llu color oitl~c<br />

stain was redd~sll violct. Fol. Eosin stock sulutioli, I y of liosili (w:iIci. solilblc) \\as<br />

dissolved in 20 1111 ofdistilled water and 111;ldc lip to IUU rill \\it11<br />

05'i." ctl~;~~lol<br />

3. DNA exlrilctio~~ buffer (DELLAPOR'SA 111et11od)<br />

100 nlM Tris pH8<br />

4. Pri~nilry IV:I~~I buffer (I litre) (for Soutl~er~~ i~n:llysis)<br />

1 SDS 0.5% 1<br />

5. Secondary a'asl~ buffer (ZOS stock)(for Suutl~err~ c~~l:tlysis)<br />

Tris base I21 g. IM<br />

I'laCI 1 12 g. ?M<br />

Adjust pH to 10.0. M3ix i~pto 1 Iilrc wit11 water, l'h~s call be kept for up to 4<br />

months. 1 :20 I.e., 2 mlIL of lbi MsCl>


Table 4.1<br />

Induction of sorrlalic erllbryos OII hlS cor~t:~i~~i~tp eo~ttbi~~iltio~ts of 2,4,5-'1' (2.0 alld<br />

5.0 pM) wit11 TDZ, BAP, liilletir~ or zeatitr. Tile results rvere recorded at the elld of 4 r\eeks<br />

and represent meails of tlrrce replicn~iol~s.


Table 4.2<br />

Induction of elnbryos 011 hlS cont:lining con~binatio~~s of 2,4,5-'1' (10.0 and 15.0 phl)<br />

~ith TDZ, BAP, kinetin or zealin. l'l~e results were recorded at tile end of 4 \verks and<br />

represe~~t means of tllree replications.


Table 4.3<br />

111ducti011 of en~bryos OII hlS containing conibiaations of 2,4-D (5.0 and 10.0 pkl)<br />

with TDZ, BAP, kinetin or zealin. The results were recorded at the end of 4 weeks and<br />

represent means of tllree replicntions.


Table 4.4<br />

Induction of embryos 011 hlS co~~taini~lg colllbinstio~~s of 2,J-D (15.0 :III~ 20.0 pkl)<br />

with TDZ, BAP, ki~lrti~l or zealill. The res~~lts were recorded nt tllc c11d of 4 \kceks and<br />

represent ~~leans of t11rce replications.


'Table 4.6<br />

Dificrent combinations of plant growth regulators used to acl~ievc maturation of induced somatic cmbr?.nids and responses observed


~<br />

Table 4.7<br />

lnductio~~ of multiple slloots from mature embryo axis esplu~~ts on lllediu<br />

containing BAP as the principal grotvtl~ regulator. A total of36 espls~~ts per<br />

treatment were cultured and there was 100% respo~lse in terms of ou~nber of<br />

expla~~ts responding. Tl~e results were recorded at the time of2"\nad 4"' weeks.<br />

All the results :Ire the nleall of three replic;~tes.<br />

NO. o1'shoo1s<br />

pcr c\l~l:~nt<br />

(nlicr 2 wcck)<br />

No, of shoots pcr<br />

cxpla111<br />

(;Ilk 4 wcck)<br />

~-<br />

.- -- --- - . .<br />

JBC' I 7 2 + 0.6 11.3+0.6 !<br />

-<br />

JBC ? T-7- 20.3 + 1.2 .<br />

-____-_t-<br />

- -----. .<br />

JBC 3 20 1 2 9.7 + 1.3 17.7 + 1.2<br />

-- -- . .-<br />

JBC 4 30 2 10.7 + 1.5 13.0 + 1.0<br />

-- -.<br />

. -.- -- .<br />

JBC 5 40 2 8 3i 1.4 11.3? IS<br />

-- -. . . .<br />

..-.-. --.<br />

JBC u 50 2 0 0 + 2.0 9.3 ? U.0<br />

-<br />

JBC 7 I00 2 37+ 3.5 5.1 i 2.0<br />

JBC S<br />

-.<br />

5 5 8021.0<br />

9.7 + 1.2<br />

JBC9 1 10<br />

5<br />

11.3 i 1.6<br />

17.0f 1.0<br />

1 1 .0 + 2.0<br />

JBC 12 40<br />

-.<br />

83i1.5 10.3 + 1.6


Table 4.8<br />

Effect oI'TDZ, 2-iP :~nd ki~~eti~~ 011 sllouf regcnel'atiu~~ fron~ tl~ esplar~ls<br />

derived fro111 asillary nieriste~~ls ofcl~ickpe:~. 'l'lle ~.esults were recorded :it the e ~ ~ d<br />

ol2"%nd 4"' \veeks and tl~c values :ire III~:IIIS oI't111.ee replicates.<br />

Media<br />

JCII ?<br />

I<br />

- I -<br />

JCR6 ( 20<br />

.<br />

JCR (I<br />

-- . -<br />

/<br />

3.3 f 0.6 4.7 i 0.6<br />

JCR l I 2 1 32 13.0 i 2.0 23 0 i 2.0<br />

1 ;; ~23,3?5";.6j<br />

JCR 12 4 5 1 4 1 32 1 15.3 i 1.5 20.3 $06 /<br />

1 JCRl3<br />

-- .<br />

JCR 14 14.7 12.5 25.3 i 2.5 1


Table 4.9<br />

Effect of pH of tile cllltare 111cdiu111 OII ~llultiple slluot rege~~craliu~~ Ibrn~ Hie<br />

anillory ~lleristem expl;ll~ts of ellickpen. Results !+ere ~.eror


Table 4.10<br />

Effect of i~lclusio~~ or cotyledo~l tissues along wit11 ll~e regeaeratisg axillar!<br />

1nerister11 on sl~oot for~l~i~~g cuplcity of tile ;~sill;lry ~neriste~n expli~~~ls. Results nerc<br />

recorded fro111 1 to 5 weeks to sl~on the pro~~~otio~~<br />

of rege~lerati~~g nbilit) and rate<br />

of multiple sllool illductioll b) the i~lcludcd cotyledoo.<br />

No of slloo~s per rcspondinp esplil~~ls (weclis)'


Table 4.11<br />

Effect of age of tllc espla~~t donor seedlings on rcgencration capacity of<br />

different espla~~ts derived fronl axillnry nleristenls. Regenerating multiple slloots<br />

were counted in the third \~ecli n ~ llle ~ d values arc mealis of three replic:~tes.<br />

Seedling<br />

age (4<br />

AM I<br />

No, of slioots per explants'<br />

AM2<br />

AM3<br />

AM4<br />

2<br />

17.0 i 2.0<br />

17.3 i2.1<br />

4.0 i 1.0<br />

17.3 i 1.5<br />

4<br />

15.7i 1.5<br />

18.3i 1.5<br />

6.7 i 1.5<br />

22.3 i 2.5<br />

1<br />

6 4,<br />

8<br />

10<br />

12<br />

10.7 i 1.5<br />

10.3 i2.1<br />

7.7 i 3.1<br />

10.0 i 1.0<br />

23.3 i 2.1<br />

24.0 i 2.6<br />

17.7 i 1.5<br />

12.7 i 2.1<br />

3.7 4 0.6<br />

7.3 i 1.5<br />

3.7 i 0.6<br />

2.7 i 0.6<br />

27.7 4 3.8<br />

22.0 t 3.0<br />

19.7 ?: 3.1<br />

~<br />

15.7?1.5<br />

I<br />

I<br />

14<br />

I I<br />

6.7 2 2.5<br />

6.3 f 1.5<br />

13.3 t 1.5 1.3 t0.6 11.7i 1.2<br />

10.3 t 1.5 1.0i 1.0 1 07il.5 1<br />

Mean f Standard error of tlirce replications


Table 4.12<br />

Induction of multiple shoot buds from various seedling explarlts derived<br />

from axillary meristems. 'The nun~bcr of multil)le sl~oots were counted in the tl~ird<br />

week prior to their transfer to the sl~oot elongatio~l medium.<br />

Embryo axis<br />

13.7 i 1.5<br />

I<br />

Shoot tip 40 36 (90.0) 10.3 i 2,lJ<br />

I<br />

Axillary bod<br />

40<br />

40 (100)<br />

17.3 i.2.5<br />

AM I<br />

AM? i.<br />

40<br />

40<br />

33 (82.5)<br />

37 (92.5)<br />

23.7 k 0.6<br />

30.3 i 2.9 ,*<br />

1<br />

AM3<br />

40<br />

23 (57.5)<br />

7.7 t 2.3<br />

AM4<br />

40<br />

40 (100)<br />

31.0i 1.7<br />

I<br />

Meal, i Standard error oC tllrec ~.eplicntioils


Table 4.13<br />

Effect of media compositions OII elo~igation of the regenerated sboots. Results<br />

were recorded from three replicate experiments involvillg sl~oots induced 011 JCR13<br />

medium (see Table 4.8)'<br />

CEL l<br />

2<br />

Plant yrowth regulators (yM)<br />

2<br />

1.2 1 2.3 1<br />

I<br />

I<br />

CEL3 1 -<br />

2<br />

2 1 -<br />

I.!<br />

CEL4 1 -<br />

4<br />

5 2<br />

1.7 3.1<br />

2,5<br />

CEL 5 2 0.3<br />

I<br />

1 I<br />

CEL 8 1 5 ill 4.8 I<br />

%ach replicate experimeih consisted ol'a total of 40 explar~ts with induced slioot<br />

buds at 18 to 23 per expla~~t and the ~~uniber ol'sl~oots elo~igati~rg per cxplant was<br />

the average of all the 40 esplants. Datr compiled from tliree replicated experiments.<br />

klongatio~i I: number of sl~oots elonfgated per esplant by the end ofsecorid weck;<br />

Elongntiorl 11: ilunlber of sl~outs elolignted on the next two or three subcultures.


Table 4.14<br />

Effect of media constituents on rooting of ill vitro formed aud elo~~gated<br />

shoots of cbickpea.<br />

CPR 2 (MS) 3.0<br />

CPR 3<br />

CPR? 1,,2.5 1<br />

i:: 1 ; 119.9<br />

1 5 , 7 164.00<br />

CPR 8 3.0 16.8 7.0 59 50<br />

-<br />

CPR 9 2.0 5.0 27.2 12.4 99 00<br />

CPR 10 j 2.0 1 10.0 I - 17.1 / 3.5 51.50<br />

CPR I1 2.0 I - 1 5.0 3,9 9.75<br />

- -<br />

'All the media aere used as liquid rontsi~~i~lg filter paper bridge. CPR3 to CPR8<br />

contained sucrose at various co~~ce~ltratior~s wit11 IBA as the rooting hormone added<br />

at 5 phf concentration. CPR1, CPR2, CPRII n ~ CPRl2 ~ d did not contain Phase 2 as<br />

there was no pulse treatment with IDA.<br />

b~esults were recorded at the end of 3 weeks for Pl~ase 1 and 5 weeks for Phase 2.<br />

Each combination tested uader three replication. Total umber of sl~oots per<br />

replicate was 40.


'Table 4.15<br />

1.etl1nl dose testing :III~ effect ol"SU% on Iclll:ll el'kct of I;:ll~:~myci~~. Nu~l~bcr<br />

of days of espla~~t survi\al was cou~~ccd ul~til tile chplal~t ble:~cl~ed or sllo~red II~<br />

signs of growtl~.<br />

No, ofdi~ys of expin111 surviv;~l<br />

25<br />

10<br />

-. . .-- -


Figure 3.1<br />

Dii~gralll~l~i~tic rcpresc~~tatioo of the cxplullts derived from llilture embryo<br />

;Iris, ~~lu~llulc, r:~tlirle, sitlc ;I~IIIS 811d ~llitltlle portion. (Arrows sllows sites of<br />

surgery)


I'relii~rutior~ ofi~xillary ~lleristen~ exl~lants AMI, AM2, Ah13 and AR.14.<br />

Final sti~ge is tllc stilge of regeneration of niultiple stloots after one week of<br />

culture 011 slloot i~~duclion 111ediu111. Large arrows sl~ow progression of<br />

prep~':~tion ol' cxl11;111ts. klediu~n arrows sl~ow sites of surgery and snlall<br />

arrows sllow silo ol'1n111tiple sl~oot regeneri~tiol~.


Figure 3.3 A - C<br />

Diagrn~nn~atic represc~~tatiu~~ ror preparation ul'axillary n~eristem erplant<br />

(AM2) showing the sites of surgery. A, 6-day old seedling sbo\ving prorl~iner~t<br />

i~xilli~ry butl, B. I'ruccssing of the i~xillary ~neristem explant (arrows shons<br />

the sitcs ol'surgery), C. Axillary n~eristc~n explant (AM2) sl~owi~~g the axillark<br />

~neristeln r~giun \vitl~ il~tilct cotyletlo~~.


Figure 3.4<br />

llestrictio~~ Innp of tl~e pl;ls~~~id pICI'99:GUS-Iet used for biolistic-<br />

nletlintcd gelle tr;il~sfer.


I<br />

. Nhu 1 51 ?C,%-<br />

.pal5125 &pa15125 1.-<br />

Iito 1 51 2 7<br />

-.T.i I,IPT I1<br />

ti710 by<br />

cu K\! 1640<br />

Ilcm, 1457:<br />

Act 12938<br />

___-/------<br />

Syh 12941


Itestrictiol~ III;I~) 01' the plasn~id pHS723:Bt used for ~igrobac~erirrin-<br />

llletllod of tr:r~~sforl~ri~lioll.


I


Induclio~~ of son~atic cn~bryos from mature embryo axis and leaflet explants<br />

after 6 weeks of culture on Il~c medium containing 2,4,5-T as principal growth<br />

rcgslntor. A, B and C. lntluctioi~ of embryos from illature embryo axis explant,<br />

I)) Induction of somatic cn~bryos from lcallct explal~t.


Induction of somatic embryos from mature embryo axis explant by using<br />

2,4-D as principal growth regulator. A. Top view of the embryo axis showing<br />

multiple globular embryos, B. Lateral view of embryo axis slioning multiple<br />

globulnr embryos formed from plumule region.


Effect uf co~~centrr~tio~t of BAP on mllltiple sltoot regeneration from mature<br />

embryo nxis erplal~t 8ftcr 15 days of culture on sl~oot inductiol~ medium. A.<br />

Multiple sl~oot regeneration at 10 pM BAP concentration, B, hlultiple sl~oot<br />

rcgeneri~tiot~ wit11 30 phl BAP, C. Multiple shoot regeneratio11 with 40 pM BAP, D.<br />

Multiile sl~oot reget~eratio~t wit11 50 pM BAP, D. Multiple shoot regeneration with<br />

100 pM DAP.


I.iy111. J.5<br />

SI:i;i.\ iil ~ ~ l ~ ~ l i i\II(II)I j ~ l c , I(.~~.IICI:I~IIIII 11.0111 .\>I1 cq)1:111l :11lc1 ci~lllit.il UII Ill?<br />

\II~~III !II(~II~~~IIII IIICI~~III~I. \. IK\~I:IIII \IIII\!III~ il~il :II.C:I 111 ill:^!! l ~ ~ ~


.A cu~irj~lr~t~ scl~clrie 01' rcgelrerirliol~ 3!1d I-eco\'cry ol ~vliolc 11Ia11li Il~~uufil~<br />

tiabuc<br />

t~r~llurc IIICIILI~LI<br />

r~bilrg :i\ill.~r) III~~~$I~III<br />

~AIJI:IIII (.AiIi?) ohI;~i~icLI fro111 ill t,i!?o Krn!\]]<br />

seedii~~gs of cl~icl,i~~:~. 4. .\\ili;rr! riier.iste~r~ cq~l;r~~t (.L%I2) UII llic lint (lily 01<br />

CIII~III.C oil \l~ii~t ir~ciuetiulr ir~edii~~~~, ii. S11oot buds r?g~r~er:i:ii~p ~'~OIII<br />

I)! Ill? r?i1111\.:1l 01 :1\il1;11.) b:111 :il'ler 7 d;r!s.<br />

ori:ii~:iriir~ II.~IIII<br />

\it.\!<br />

d:i!b<br />

:he 1.cgio11 icf't<br />

C. Cl~ibtcr 111' 111uI1i~~lc s11oot 1111db<br />

IC~~UII lei1 11) IIIL, I-CIJ\ :I! oi;r\iiI:tr? !iricl ;~ilcr 12 tla)s, I). .A clo\e~-<br />

ut llic 111ul1ipIr \I~oi)ta I~KC.IICI.~~~II::<br />

I'ru111 1I1c :i~ill:il!~ IIIE~~S~CIII<br />

e~pI:~~rt :rller 15<br />

01 crill~!rc 1111 ~IIIJU~ iri~l~rctiai~ ~r~ccli~~~rr, 1;. i:i~jr~g:rli~~~~ 01' III? ~lrout i)ud> :11t?1- 7<br />

113)s yS CIII~UI<br />

L' OII b1101it elo~rg:~liu~i ii~ediri!ir, I:.<br />

Rooliirg ci1'llie eloi~g;rlccl slroot bnd<br />

UI<br />

the liilcr p:ilicr Ill-iilge ir~irnci~sc~i ill liquitl roolil~g lnediunr :~flrr X [I:r!s<br />

II~<br />

c~riturc~, (;. I'icli~rc blio!\il~g 0.r i';lro slxtic II~~I~U~IOII~C~<br />

hjhle~ii for- II:II-~?II~II~<br />

r(jtjte11 \IICII~I<br />

of tiiv<br />

;rlter I5 il,~j$, [I. ,411 :rlrcr~~:>li\c 111et1rod l'or li:tr(ierri~ig uf I11e ~II:~IIIIcI<br />

uhtai11~11irroug11 tissire ciiltrirc ir~ rvlricli ll~c IWJI ,!sten1<br />

tlrc cultu~r f~ikrg ol tire cr~ltirr.~~ 111be I,cpt UII~II,<br />

?IIO!V~II: IIU~III;~~ 1111~r1il1oiog~.<br />

>\,:I\ irir~nt~~-re(i ill air1111 rtilll<br />

1. H:i~.~lei~etl :rriil t~-;inbpli~~~lcti plai~l


IIistologic:~l stutlic\ of dcveioprllcl~t of<br />

~rluiiiplc tneribtcri~oitl, f'ronr<br />

;raill;rt.y 111eriatet11 rcgiou of hhI1 capla111 al'tci. ll~e re~~iov:tl of ;cxilI;t~-)' bud.<br />

.I. l.~~i~;ii~~(liir;~l stctio~i 01' the :niIlary I I I ~ ~ ~ S 8re;1 ~ C ~ 011 I I tl:~y-1 ;tft?t. :txilIi~r)<br />

bud rcl~lov;il, 8. I)cl,eloprt~e~~i of i~rcriate~~roid, :I[ tlie I):rs;~l portiolt ol';~~ill;~r!<br />

botl or1 tl;ry-.? (il~' III:I~~ b ~ ;~pl~e:tri~~g<br />

~ d<br />

ih ;I sliuol hut1 ct~~el-gir~g l'rutn [Ire<br />

I);Is:II<br />

poriiot~ of the rc~~>n~e(l ;~xilI:~ry IIII~), C'. A~~IC~I~:IIICC of 111cris1~11roitis<br />

irr tht n\ili:~r! 11leri\Le111 arc;\ 011 d:~)-3, D. I~~cre:~scd 1111mber of IIIC~~'~ICIIIOI(IS<br />

iir L I I ~ :i\ill;lrj ~rlcri>ttrrl are;] oil tl;ry-4, I. 1ucl.c;rse ill rlrt 11ulnlie1. :LIIII<br />

yrul~t11 of rucristernoitlb oil d:l)-t;, 1'. l


C!osrr ol)sei~v:~~iuri<br />

tlc\~clo~)i~lei~l ai~d gru\vtli ol ~~~eristeii~oicls ill ille<br />

:~\iil:it.y rlicri\~i.ili ;irc:i US :\.\ll<br />

or1 tl:ij-4<br />

CY~I:III~. A. C105e1. \ ~c\Y of the ir~cri\teunoids<br />

:~I'lrr. tlic rc~t~oval of ;rrillar) blld, 8. C~.o\\tl~ :III~ di~isiol~ uf'<br />

i~ierislelli:~ticells iir<br />

tl~e i11cri5reri1oitl regiu~i ult day-5, C. (J1.urcil1 :rlrtl<br />

divi\ir~i: ui' iiie~.iste~l~;~!ic cells :rt.c~ur~tl ~iieristeiiloid region oil tl:~!..O,<br />

(21.ojr LIi ai~ti tii~itiol: US ~nerictc~~~:rtic cclls oS il~criste~l~uid region oil tl:iy-7, I


Rc\[ricfiot~ ;111;1l)si\ ur ill? ~ I : I ~ I I I 11$c(1<br />

~ ~ s for ~I-:I~I\~U~III;I~~OII.<br />

.i. 'I'll? 11i;is111i(I<br />

[IIU"N:(;L'~-~II~ (0.l) 1\11) )\;IS LI~C(! ~ I I I~ioliilic 111tt11ocI of ~I-~IIIS~~I-II~:I~~OII. L;IIIC> 1<br />

\l~u\r\ h1)Y.i tiigchictl willl hiC II ctl/yilr :I\ in:~rl


CliS I~i~locl~cl~tic;~l ;I,s;I) of the Ic:~flets I'ron~ putatively Lr:~~tsl'or~netl<br />

[~l:t111s ol'i.11icl~pca. ;\. :I cloher. vien of'thc 1c:tllei sllo~vil~g GUS acliviiy ill<br />

the I cirl~. 8, ('. GLiS ;~~tivity ;IS sccll it1 the pcliolc ;111d veilis ot'Ic:~Llzts.


I'C'R :~llipLiiir:iriuil 01'700 bl) S~;I~IIIPIII ul'iipi Ii FCII(. fro111 1111' g~ilolllic DN,\s 01'<br />

'Ic, p~l~ci~iiliuii 1)1:11ilb ~~:III~~'UFIIIC~ will^ lit cry1:U~ :III~ SU'I'i zeilc\ sia<br />

~~,~~o/~~I~~~~~~IIIJI-III~L~~:I~c~~<br />

lr:i~i~lor~~~:iliu~~. \. II~J/II-I'C~< of 111:111ts tv;i115lor111cd ~ v k i ~ I ~<br />

[)llS723:iit<br />

~~LIII~~~I~III~~I~ ~:IIII[IIC\<br />

si.1 .~I~~~~b~i~~r~i.i~r~~~-rl~ctli~~tecL<br />

~I~;IIIS~'~I~III:I~~UII. 1,:tnes 1 cu 1U liad<br />

eoi~u.ui i111i1 I ? Iu I7 r\cl.c pu,ili!c<br />

;IIIII 5111ii\ IIIC ;~i~~])Iilici~cioi~ of i1~1tll XCIIC. ~.:IIIP I I ~icg:~~is'<br />

cu~ilvolb I'rolll pl:lsnlid<br />

1111SiZD:Iil 115cd I'or<br />

~I;I~I\~'UI-III:I~~OII, 1 :III(, I3 i\ -DNA;III(I<br />

h. L)\.-i-lJ.\tE 11 III:I~~;~I' \Y;I\ ;idiic


l:iyuris 4.18<br />

IY'lt ;~ri~l~Ijl'ic;lriu~~ oc 1.2 l


Fixi1r.c 17 \r:15 -l)K,.\ ;!lid J" l)>.-i-/J.s~li 11 111i1r1xr ir.15 :~~f(lril in I;IIIV 18. I


1:igitt.e 4.?O<br />

1)S.t 111.uIile 01' gc~t(~tt~ic 1)Y.i i\ol:~le(l ~'KOIII 1)111:11i\e tr:ti1si'o1-111;1111\ u1' c11icL~)c;t.<br />

\, 1'11rili?~l I)\ \ j)l.o!ik ui :ettol~iir l>h':i (11' I~I~~J:I~/~I~<br />

[)l:tt~l~, 1)a.A \!;I\ III'C~);II~~~~ i ~ t<br />

tlttplic;~tc~ r;itt11jlcs, 1 :III~% I ((I I0 ~IIUIJ~ firs1 set :~tid l:tt~cs I I lu 2U slieins tl~c hecot111<br />

set. 13. I


1:igurr 4.22<br />

Sui~lllcrn :III:II!s~$ US tllc 16 ~ C I I C I ~ ~ ol'li/Oj~1/10<br />

~ ~ O I I 1)111:1ti\~' lri~i~sgei~ic ]I~;III(S 01<br />

GCIIUIII~C IjX,\<br />

ci~icl,~~c:~ ir>i~slur~~~cd \i:i .~l,~~~~~/I~~cte~i~~~~~-~~~cili~~~il<br />

~~~IIIS~U~III;III~I~.<br />

\)a\ rcslricrctl r.iii11 licoltl ruzyilie. :\r~:~ly$ia ol cop! i~u~~il~c~. \\it11 respect ro Illc<br />

riprll ge11c. L;III?S I<br />

to I I \\ere ;icIcle(I \\it11 ~ ~:IIIS~O~II~;III~<br />

\;111111le>( XI 10 Ci311. L.;IIIC<br />

I: C:I%I~ I.;I[IC 2: ('II:. I.:IIIC 3: (~13. L:IIIC 4: ('IN, Lme 5: CB5, L.~IIC 0: CB~.<br />

~.;IIIC<br />

7: CE7. I.:IIIC 8: L'US, I,;IIIC 0: CUY, I.:IIIC IU: Cl$lU : III~ L:III~ I I: Cl31 I. 1.a11c IZ IILIS<br />

Ill? ~~q;:~ti\c C U I I ~ I U :if10 ~ I;IIIC> 13 II:I\ t11c 11ubi[i\e cu1111~uI (l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!