21.11.2013 Views

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

CEC Abstracts in PDF format (as of 7/3/07) - CEC-ICMC 2013

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

<strong>CEC</strong> Sessions<br />

Tuesday, <strong>07</strong>/17/<strong>07</strong> Poster<br />

9:00am - 10:30am<br />

C1-B JT, Magnetic and Non-Aerospace<br />

Coolers<br />

C1-B-01 Development <strong>of</strong> JT Coolers Operat<strong>in</strong>g at<br />

Cryogenic Temperatures with Non-Flammable Mixed<br />

Refrigerants<br />

A.N. Khatri, M. Boiarski, Advanced Research<br />

Systems. Inc..<br />

Throttle cycle coolers, operat<strong>in</strong>g with mixed refrigerants (MR) have<br />

been used <strong>in</strong> applications at temperatures down to 70 K. Industrial<br />

s<strong>in</strong>gle-stage, oil lubricated compressor can be used to provide both a<br />

relatively low cost and long operational time. Application <strong>of</strong><br />

nonflammable MR is important for safety, transportation, operation,<br />

service and ma<strong>in</strong>tenance. However, it is more difficult to provide a<br />

required refrigeration performance and long-term reliability due to<br />

properties <strong>of</strong> nonflammable MR.<br />

The paper presents experimental and model<strong>in</strong>g data for s<strong>in</strong>gle-stage<br />

coolers provid<strong>in</strong>g up to 10 W <strong>of</strong> refrigeration capacity. The selected<br />

nonflammable components to build the MR are commercially<br />

available.<br />

A comparative experimental and model<strong>in</strong>g performance data is<br />

presented for both flammable and nonflammable MR. A g<strong>as</strong><br />

refrigerant supply (GRS) technology is used for a s<strong>in</strong>gle-stage cooler<br />

design. A m<strong>in</strong>imal achievable temperature is restricted by the freez<strong>in</strong>g<br />

po<strong>in</strong>t <strong>of</strong> MR. The GRS technology restricts a maximal refrigeration<br />

capacity. However, it allows to compromise between stable, long-term<br />

reliable operation and simplicity <strong>of</strong> equipment design with required<br />

refrigeration capacity.<br />

Stability <strong>of</strong> operation <strong>of</strong> small-scale, highly reliable MR coolers h<strong>as</strong><br />

been proven by the data accumulated over long-term test<strong>in</strong>g.<br />

C1-B-02 Experimental Investigations on Mixed<br />

Refrigerant Joule-Thomson (MR J-T) Cryocooler<br />

N.S. Walimbe, M.D. Atrey, Indian Institute <strong>of</strong><br />

Technology Bombay, Mumbai,India; K.G.<br />

Narayankhedkar, Veermata Jijabai Technological<br />

Institute, Mumbai,India.<br />

Mixed Refrigerant Joule Thomson (MR J-T) cryoocoolers have<br />

obvious advantages, such <strong>as</strong> low cost, high reliability, higher cool<strong>in</strong>g<br />

effect at 80 K, low vibrations and simplicity <strong>in</strong> design layout. As a<br />

result <strong>of</strong> this, their use for different applications h<strong>as</strong> become a major<br />

threat to conventional cryocoolers.<br />

The performance <strong>of</strong> the MR J-T cryocooler, <strong>in</strong> terms <strong>of</strong> cool<strong>in</strong>g power<br />

at low temperatures, depends significantly on the components <strong>of</strong> the<br />

g<strong>as</strong> mixture and their concentration. An experimental set up h<strong>as</strong> been<br />

developed <strong>in</strong> our laboratory to analyse various g<strong>as</strong> mixtures. An<br />

efficient counter flow heat exchanger, Hampson type, h<strong>as</strong> been<br />

fabricated and tested <strong>in</strong> the set up. The present paper gives<br />

experimental results for various g<strong>as</strong> mixtures so <strong>as</strong> to get maximum<br />

cool<strong>in</strong>g effect for a given temperature. The paper also presents the<br />

effect <strong>of</strong> work<strong>in</strong>g pressure <strong>of</strong> the optimized g<strong>as</strong> mixture on the<br />

performance <strong>of</strong> the cooler.<br />

C1-B-03 Performance <strong>of</strong> a mixed refrigerant Nitrogen g<strong>as</strong><br />

cooler<br />

M. Siva Sankar, G. Venkatarathnam, Indian Institute<br />

<strong>of</strong> Technology Madr<strong>as</strong>.<br />

Mixed refrigerant processes are widely used for the liquefaction <strong>of</strong><br />

natural g<strong>as</strong>. J-T cryocoolers operat<strong>in</strong>g with refrigerant mixtures are<br />

also be<strong>in</strong>g developed worldwide. Mixed refrigerant processes can also<br />

be used for the liquefaction <strong>of</strong> air, nitrogen etc. A number <strong>of</strong> patents<br />

have been granted on the liquefaction <strong>of</strong> nitrogen us<strong>in</strong>g non<br />

flammable mixtures recently. Two large commercial mixed refrigerant<br />

precooled air separation plants have also been tested recently [1].<br />

Nitrogen g<strong>as</strong> coolers operat<strong>in</strong>g with mixtures <strong>of</strong> nitrogen, methane,<br />

ethane, propane etc. are under development <strong>in</strong> our laboratory.<br />

In this paper we describe the performance <strong>of</strong> our prototype nitrogen<br />

g<strong>as</strong> cooler. The system comprises <strong>of</strong> a pre-cool<strong>in</strong>g circuit and a mixed<br />

refrigerant circuit. Tests have been carried out with different nitrogen<br />

flow rates, different refrigerant mixtures and heat exchangers. In the<br />

current prototype, nitrogen can be cooled from room temperature to<br />

about 105 K at a flow rate <strong>of</strong> 0.1 g/s. The power <strong>in</strong>put to the system is<br />

about 1200 W. The performance <strong>of</strong> our system and comparison<br />

between experimental results and simulations are also presented.<br />

References<br />

1) Bonaquist, D..P., Prosser, N.M., and Arman, B. (2003). Advances<br />

<strong>in</strong> refrigeration for air separation --- us<strong>in</strong>g mixed refrigerant cycles<br />

toreduce cost and improve efficiency, Paper ICR0524, Proceed<strong>in</strong>gs <strong>of</strong><br />

the International Congress <strong>of</strong> Refrigeration 2003, W<strong>as</strong>h<strong>in</strong>gton D.C., p<br />

1-7.<br />

C1-B-04 Pressure drop and heat transfer characteristics<br />

<strong>in</strong> a helical tube <strong>of</strong> Joule Thomson refrigerator<br />

Y-J. Hong, S-J. Park, Korea Institute <strong>of</strong> Mach<strong>in</strong>ery &<br />

Materials; Y-D. Choi, Korea University.<br />

The thermodynamic performance <strong>of</strong> a m<strong>in</strong>iature Joule Thomson<br />

refrigerator is highly depends on the hydraulic and heat transfer<br />

characteristics <strong>of</strong> the recuperative heat exchanger. The typical<br />

recuperative heat exchanger h<strong>as</strong> the double helical tube and f<strong>in</strong><br />

configuration. The <strong>in</strong>com<strong>in</strong>g high-pressure g<strong>as</strong> enters a helical tube,<br />

and expands to the cold end <strong>of</strong> the refrigerator. After the Joule-<br />

Thomson expansion, the cold g<strong>as</strong> exhausts through a complex p<strong>as</strong>sage<br />

that is enveloped by the double helical tube and f<strong>in</strong>, mandrel and <strong>in</strong>ner<br />

surface <strong>of</strong> the Dewar. The present study focuses on the pressure drop<br />

and heat transfer characteristics <strong>in</strong> the helical tube. In general way, the<br />

curvature ratio <strong>of</strong> the helical tube h<strong>as</strong> substantial <strong>in</strong>fluences on the<br />

pressure drop and heat transfer characteristics. In this study, the heat<br />

and fluid flow is studied numerically on the high pressure g<strong>as</strong> <strong>in</strong> a<br />

helical tube. To account for the thermodynamic properties <strong>of</strong> the high<br />

pressure g<strong>as</strong>, the real g<strong>as</strong> model <strong>as</strong> a function <strong>of</strong> pressure and<br />

temperature w<strong>as</strong> used. The effects <strong>of</strong> the m<strong>as</strong>s flow rate, heat flux,<br />

pitch <strong>of</strong> the tubes and curvature ratio were studied by commercial<br />

CFD packages.<br />

C1-B-05 A Study <strong>of</strong> Active Magnetic Regeneration us<strong>in</strong>g<br />

Permanent Magnets<br />

S. Kito, K. Kamiya, H. Nakagome, S. Uchimoto, Chiba<br />

University; T. Kobay<strong>as</strong>hi, A. Takah<strong>as</strong>hi Saito, S. Kaji,<br />

Toshiba Corporation.<br />

In recent years, magnetic refrigeration techniques b<strong>as</strong>ed on the<br />

magnetocaloric effect attracts attention from a viewpo<strong>in</strong>t <strong>of</strong> earth<br />

environment protection, because the magnetic refrigeration is<br />

technology with little environmental load <strong>in</strong> order not to use<br />

chlor<strong>of</strong>luorocarbons. Especially, a new type <strong>of</strong> refrigeration cycle, the<br />

active magnetic regenerator (AMR) cycle, is suitable for a room<br />

temperature region, and the AMR cycle is expected to atta<strong>in</strong> high<br />

efficiency.<br />

We developed a room temperature magnetic refrigerator with<br />

permanent magnets, and operated the AMR cycle by us<strong>in</strong>g Gd and<br />

Gd-R alloys for the magnetic refrigerant. The AMR cycle with<br />

chang<strong>in</strong>g <strong>in</strong> the magnetic field and a movement <strong>of</strong> the heat transfer<br />

fluid w<strong>as</strong> operated for various parameters such <strong>as</strong> cycle frequency,<br />

amount <strong>of</strong> the heat transfer fluid movement, etc.<br />

Page 1 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

In this report, we will show the result <strong>of</strong> the observ<strong>in</strong>g temperatures<br />

span ( - Tmax) between hot end and cold end <strong>in</strong> the heat exchanger<br />

while the AMR cycle operation and the temperature gradient <strong>of</strong><br />

magnetic refrigerant <strong>in</strong> the heat exchanger, <strong>in</strong> which several<br />

thermocouples were <strong>in</strong>serted. - Tmax is depend<strong>in</strong>g on cycle<br />

frequency <strong>of</strong> the AMR. Moreover, a numerical analysis <strong>of</strong> the AMR<br />

cycle w<strong>as</strong> performed <strong>in</strong> order to <strong>in</strong>vestigate the correspondence to the<br />

experimental result. It w<strong>as</strong> revealed that - Tmax <strong>in</strong>cre<strong>as</strong>ed with the<br />

cycle frequency, and almost agreed to the calculation result.<br />

C1-B-06 Magnetocaloric Effect <strong>of</strong> S<strong>in</strong>tered GGG<br />

D.L. Kim, B.S. Lee, Y.S. Choi, H.S. Yang, Korea B<strong>as</strong>ic<br />

Science Institute; S.H. Yeom, Chungnam National<br />

University; J.H. Park, Korea Astronomy & Space<br />

Science Institute.<br />

Magnetic cool<strong>in</strong>g is one <strong>of</strong> the effective method to get low<br />

temperature without cryogen.<br />

GGG is a good candidate material to reach ~1K after precooled by<br />

cryocooler. GGG sample is made by s<strong>in</strong>ter<strong>in</strong>g the granular type <strong>of</strong><br />

GGG. The sample is tested the magneto-caloric effect <strong>in</strong> various<br />

magnetic field and temperature conditions with PPMS that h<strong>as</strong> a 9T<br />

superconduct<strong>in</strong>g magnet and m<strong>in</strong>imum temperature <strong>of</strong> 1.5K. The<br />

results <strong>of</strong> the magnetocaloric experiments are presented.<br />

C1-B-<strong>07</strong> Scal<strong>in</strong>g <strong>of</strong> thermoacoustic refrigerators<br />

Y. Li, J.C.H. Zeegers, H.J.M. ter Brake, E<strong>in</strong>dhoven<br />

University <strong>of</strong> Technology.<br />

Thermoacoustic refrigerators pump heat from a low-temperature<br />

source to a high-temperature s<strong>in</strong>k us<strong>in</strong>g acoustics. Their simplicity<br />

leads to high reliability and low cost, which is attractive for practical<br />

applications. However, very large dimensions are common for<br />

thermoacoustic mach<strong>in</strong>es <strong>of</strong> order 10 m. In the paper, the possibility<br />

<strong>of</strong> scal<strong>in</strong>g-down thermoacoustc refrigerators is <strong>in</strong>vestigated via<br />

theoretical analysis. Stand<strong>in</strong>g-wave systems are considered <strong>as</strong> well <strong>as</strong><br />

travell<strong>in</strong>g-wave. In the c<strong>as</strong>e <strong>of</strong> stand<strong>in</strong>g-wave refrigerators, a<br />

reference system is taken that consists <strong>of</strong> a resonator tube (25 cm)<br />

with a closed end and a PVC stack (length 5 cm). Helium is used at a<br />

mean pressure <strong>of</strong> 1 bar and an amplitude <strong>of</strong> 0.1 bar. The result<strong>in</strong>g<br />

operat<strong>in</strong>g frequency is 1 kHz. The variation <strong>of</strong> the performance <strong>of</strong> the<br />

refrigerator when scaled down is computed under the prerequisites<br />

that the temperature difference over the stack or energy flux or energy<br />

flux density are fixed. The analytical results show, <strong>as</strong> expected, that<br />

there is a limitation for scal<strong>in</strong>g-down <strong>of</strong> a stand<strong>in</strong>g-wave<br />

thermoacoustic refrigerator due to heat conduction. In the paper,<br />

trends are discussed <strong>as</strong> well <strong>as</strong> means to widen the scal<strong>in</strong>g range.<br />

Furthermore, similar scal<strong>in</strong>g trends are considered <strong>in</strong> travell<strong>in</strong>g-wave<br />

refrigerators, aga<strong>in</strong> with thermal conductance form<strong>in</strong>g a practical<br />

limitation.<br />

C1-B-08 Performance improvement <strong>of</strong> a s<strong>in</strong>gle stage GM<br />

cryocooler at 25 K<br />

C. Wang, P.E. Gifford, Cryomech, Inc..<br />

Some HTS applications, such <strong>as</strong> motor and generator, require large<br />

cool<strong>in</strong>g capacity at 25-27 K. Cryomech, Inc. h<strong>as</strong> redesigned and<br />

improved a s<strong>in</strong>gle stage GM cryocooler, model AL330, to have<br />

maximum capacity at 25K. The losses for the low temperature s<strong>in</strong>gle<br />

stage GM have been analyzed. In the new design, the losses<br />

<strong>as</strong>sociated with rotary valve, shuttle heat transfer, seals and<br />

regenerator, have been reduced. A 10 kW compressor, model<br />

CP1010, is employed for the new designed s<strong>in</strong>gle stage GM<br />

cryocooler, model AL325. The AL325 reaches the bottom<br />

temperature <strong>of</strong> 10 K and provides a cool<strong>in</strong>g capacity <strong>of</strong> >100W@25K.<br />

C1-B-09 Experimental study on the double-evaporator<br />

thermosiphon for cool<strong>in</strong>g HTS (High Temperature<br />

Superconductor) system<br />

J. Lee, Y. Kim, S. Jeong, KAIST.<br />

Cryogenic thermosiphons are highly efficient heat transfer elements<br />

between a cryocooler and the thermal load that is to be cooled. This<br />

paper presents an idea <strong>of</strong> thermosiphon that peculiarly utilizes two<br />

evaporators to satisfy spatial restriction. The s<strong>in</strong>gle condenser that is<br />

made <strong>of</strong> copper with the <strong>in</strong>ner diameter <strong>of</strong> 42 mm is cooled by a GM<br />

cryocooler and the fallen liquid film from the condenser stays at the<br />

evaporator 1 (the upper evaporator). As the liquid pool <strong>of</strong> the<br />

evaporator 1 is full to its brim, the liquid film goes down from the<br />

evaporator 1 to the evaporator 2 (the lower evaporator). In the<br />

experiment, these copper evaporators are electrically heated to<br />

simulate their realistic cool<strong>in</strong>g load conditions for the HTS (High<br />

Temperature Superconductor) system. The double-evaporator<br />

thermosiphon is to be used for cool<strong>in</strong>g two HTS bulk parts that are<br />

separated vertically. S<strong>in</strong>ce nitrogen is the proper work<strong>in</strong>g fluid <strong>of</strong> the<br />

thermosiphon <strong>in</strong> this application, we selected the operat<strong>in</strong>g<br />

temperature and pressure <strong>as</strong> 70 K and 38.5 kPa respectively. We<br />

report the experimental results <strong>of</strong> this sub-atmospherically operat<strong>in</strong>g<br />

thermosiphon by analyz<strong>in</strong>g its dynamic performance with exist<strong>in</strong>g<br />

theories. The <strong>in</strong>novation can probably provide a simple and compact<br />

cool<strong>in</strong>g solution to the HTS system.<br />

This work w<strong>as</strong> supported by ETEP (Electric Power Technology<br />

Evaluation and Plannig) and KOSEF (Korea<br />

Science and Eng<strong>in</strong>eer<strong>in</strong>g Foundation)<br />

C1-B-10 Stirl<strong>in</strong>g-Type Pulse Tube Cryocooler with 1kW<br />

<strong>of</strong> Refrigeration at 77K<br />

S.A. Potratz, T.D. Abbott, K.B. Albaugh, M.C.<br />

Johnson, Praxair, Inc.<br />

A large capacity Stirl<strong>in</strong>g-type pulse tube cryocooler h<strong>as</strong> been<br />

successfully developed by Praxair, Inc. Performance test<strong>in</strong>g <strong>of</strong><br />

prototype and <strong>in</strong>itial production models <strong>of</strong> the pulse tube coldhead h<strong>as</strong><br />

demonstrated a refrigeration capacity <strong>of</strong> 1kW at 77K when a 20kW,<br />

dual-opposed pressure wave generator from CFIC, Inc. is used to<br />

generate acoustic power for the cryocooler. These results were<br />

obta<strong>in</strong>ed through multiple experiments utiliz<strong>in</strong>g g<strong>as</strong> liquefaction and<br />

direct nitrogen subcool<strong>in</strong>g test methods. The coldhead design<br />

<strong>in</strong>corporates sophisticated geometry to successfully m<strong>in</strong>imize<br />

stream<strong>in</strong>g and other loss mechanisms that have reduced the<br />

performance <strong>of</strong> other large pulse tube cryocooler designs. These<br />

cryocoolers are <strong>in</strong>tended for application <strong>in</strong> the HTS (High<br />

Temperature Superconductivity) market. The <strong>in</strong>itial production<br />

models <strong>of</strong> this pulse tube refrigerator will be deployed for field test<strong>in</strong>g<br />

at an operat<strong>in</strong>g HTS cable <strong>in</strong>stallation <strong>in</strong> Columbus, Ohio where their<br />

reliability and performance will be me<strong>as</strong>ured.<br />

C1-C Fluid Mechanics - I<br />

C1-C-01 Gravitational Capillary Viscometer for<br />

Subcooled Liquid Para-Hydrogen*<br />

M. Gnos, Y.K. Kim, D.K. Hilton, S.W. Van Sciver,<br />

NHMFL/FSU.<br />

A pressurized gravitational capillary viscometer w<strong>as</strong> developed for<br />

subcooled low-temperature liquids, necessary for aerospace<br />

eng<strong>in</strong>eer<strong>in</strong>g. It acquires accurate absolute dynamic viscosity<br />

me<strong>as</strong>urements with an uncerta<strong>in</strong>ty <strong>of</strong> 1% at a 95.5% confidence level,<br />

<strong>in</strong> the pressure doma<strong>in</strong> from 0.15 MPa to 1.0 MPa, and <strong>in</strong> the<br />

temperature doma<strong>in</strong> from the normal boil<strong>in</strong>g po<strong>in</strong>t to near the freez<strong>in</strong>g<br />

po<strong>in</strong>t. It h<strong>as</strong> been modified by the addition <strong>of</strong> a two-stage ortho- to<br />

para-hydrogen converter. The converter uses a heat-treated, iron<br />

hydroxide powder catalyst, 25 g <strong>in</strong> the precool<strong>in</strong>g first stage, and 1350<br />

g <strong>in</strong> the second stage that is thermally connected with the viscometer<br />

cell. The conversion is monitored with a calibrated plat<strong>in</strong>um<br />

thermometer. Dynamic viscosity me<strong>as</strong>urements for subcooled liquid<br />

para-hydrogen are presented.<br />

*Research supported by NASA Grant NAG 3-2751.<br />

Page 2 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-C-02 PIV Me<strong>as</strong>urement <strong>of</strong> Slush Nitrogen Flow <strong>in</strong><br />

Pipe Part II<br />

M Maeda, M Murakami, T Takakoshi, University <strong>of</strong><br />

Tsukuba; M Ikeuchi, R Ono, K Matsuo, MAYEKAWA<br />

MFG. CO., LTD..<br />

The use <strong>of</strong> slush nitrogen <strong>as</strong> a refrigerant for high-temperature<br />

superconductive power cable is considered to lead to further<br />

improvement <strong>in</strong> refrigerant capability. As the realization <strong>of</strong> a stable<br />

flow <strong>of</strong> slush nitrogen is a key technology for the application, the<br />

detailed <strong>in</strong>vestigation <strong>of</strong> flow characteristics is very important. This<br />

study primarily focuses on the me<strong>as</strong>urement <strong>of</strong> the nitrogen particle<br />

velocity distribution <strong>in</strong> a circular test section. The application <strong>of</strong> PIV<br />

to the slush nitrogen flow <strong>in</strong> a pipe w<strong>as</strong> <strong>in</strong>itiated two years ago. In the<br />

previous study, the velocity <strong>in</strong> the boundary layer region could not be<br />

clearly resolved. In this experiment, some improvements were made<br />

with respect to the <strong>in</strong>ner diameter and the cross sectional form <strong>of</strong> the<br />

test section to avoid the optical refraction effect for imag<strong>in</strong>g. As a<br />

result, the velocity distribution even <strong>in</strong> the boundary layer <strong>of</strong> the test<br />

section could be fairly well resolved, and thus the whole solid particle<br />

velocity distribution throughout the cross section could be obta<strong>in</strong>ed.<br />

Furthermore, the application <strong>of</strong> m<strong>in</strong>ute particles <strong>of</strong> H2O <strong>in</strong>stead <strong>of</strong><br />

solid nitrogen is pursued for more systematic parametric study. The<br />

control <strong>of</strong> particle parameters <strong>of</strong> H2O is much more e<strong>as</strong>ily made, and<br />

the dynamic range <strong>of</strong> H2O particle parameters is wider than solid<br />

nitrogen particles.<br />

C1-C-03 Natural Circulation Loop <strong>of</strong> Subcooled Liquid<br />

Nitrogen<br />

M.J. Kim, H.M. Chang, Hong Ik University.<br />

An experimental study is performed to <strong>in</strong>vestigate the thermal and<br />

flow characteristics <strong>of</strong> subcooled liquid nitrogen <strong>in</strong> a natural<br />

circulation loop. This study is directed to a simple cryocool<strong>in</strong>g system<br />

for small load HTS power applications, where a cryocooler should be<br />

<strong>in</strong>stalled on a separate cryostat and liquid nitrogen is circulated<br />

between the ma<strong>in</strong> and auxiliary cryostats. An experimental apparatus<br />

is designed and constructed such that a test loop made <strong>of</strong> circular tube<br />

with a uniform diameter is cooled at the top by a cryocooler and<br />

heated nearly at the bottom by cartridge heaters . Steady state is<br />

obta<strong>in</strong>ed by controll<strong>in</strong>g the heat<strong>in</strong>g power to the cartridge heaters and<br />

a th<strong>in</strong>-film heater to reduce the cool<strong>in</strong>g power <strong>of</strong> the cryocooler.<br />

Temperature is me<strong>as</strong>ured at several locations <strong>of</strong> the loop and the m<strong>as</strong>s<br />

flow rate through the loop is estimated from the energy balance <strong>in</strong><br />

terms <strong>of</strong> the me<strong>as</strong>ured temperatures. Experiment is repeated for<br />

various values <strong>of</strong> vertical height between the cool<strong>in</strong>g and heat<strong>in</strong>g<br />

parts. The results show that the heat transfer capability <strong>of</strong> the loop h<strong>as</strong><br />

a maximum at a certa<strong>in</strong> value <strong>of</strong> height. The optimal height to<br />

maximize the heat transfer is <strong>in</strong> a good agreement with our analytical<br />

prediction to take <strong>in</strong>to account the buoyancy and viscous forces <strong>in</strong> the<br />

loop tube.<br />

This work is supported by the research funds from the Center for<br />

Applied Superconductivity Technology under the 21C Frontier R&D<br />

Program <strong>in</strong> Korea.<br />

C1-C-04 Pressure Drop Reduction <strong>of</strong> Slush Nitrogen <strong>in</strong><br />

Turbulent Pipe Flows<br />

K. Ohira, Institute <strong>of</strong> Fluid Science, Tohoku<br />

University ; N. Koizumi, Tohoku University; J.<br />

Ishimoto, Institute <strong>of</strong> Fluid Science, Tohoku<br />

University; T. Kamiya, Mitsubishi Heavy Industries,<br />

Ltd..<br />

Slush fluid such <strong>as</strong> slush hydrogen and slush nitrogen is a two-ph<strong>as</strong>e<br />

(solid-liquid) s<strong>in</strong>gle-component cryogenic fluid conta<strong>in</strong><strong>in</strong>g solid<br />

particles <strong>in</strong> liquid, so that its density and cool<strong>in</strong>g capacity <strong>in</strong>cre<strong>as</strong>e<br />

compared with liquid state fluid. In this study, the experimental tests<br />

were performed with slush nitrogen (63 K) to obta<strong>in</strong> the frictional<br />

pressure drop characteristics flow<strong>in</strong>g <strong>in</strong> a 15 mm <strong>in</strong>ternal diameter,<br />

625 mm long, horizontal, sta<strong>in</strong>less steel pipe. The primary objective<br />

<strong>of</strong> this study is to <strong>in</strong>vestigate the pressure drop reduction phenomenon<br />

with the changes <strong>of</strong> the velocity and the solid fraction. From the<br />

experimental results, the pressure drop correlation between the<br />

friction factor and Reynolds number w<strong>as</strong> obta<strong>in</strong>ed and an empirical<br />

equation w<strong>as</strong> derived. Flow patterns and behaviors <strong>of</strong> solid particles<br />

were also observed by a high speed camera.<br />

C1-C-05 Numerical analysis <strong>of</strong> LN2 flow and thermal<br />

transfer <strong>in</strong> <strong>in</strong>ner pipe <strong>of</strong> DC-SC power transmission l<strong>in</strong>e<br />

A. S<strong>as</strong>aki, M. Hamabe, T. Famak<strong>in</strong>wa, S. Yamaguchi,<br />

Chubu University; A. Radov<strong>in</strong>sky, M<strong>as</strong>sachusetts<br />

Institute <strong>of</strong> Technology; H. Okumura, Mie University;<br />

M. Emoto, T. Toyota, National Institute for Fusion<br />

Science.<br />

Computational fluid dynamics (CFD) and theoretical analysis are<br />

conducted for fundamental designs <strong>of</strong> the circulation <strong>of</strong> liquid<br />

nitrogen (LN2) <strong>as</strong> a coolant <strong>in</strong> SC power cables.<br />

The pressure drop <strong>of</strong> bellows and corrugate <strong>in</strong>ner pipes may be higher<br />

than that <strong>of</strong> straight pipes. S<strong>in</strong>ce surface are<strong>as</strong> <strong>of</strong> the bellows and<br />

corrugate pipes are wider than that <strong>of</strong> the straight pipes, the heat<br />

leakage <strong>of</strong> the straight pipes by radiation will be lower those <strong>of</strong> the<br />

bellows and corrugate pipes. Therefore, our design <strong>of</strong> DC-SC power<br />

transmission l<strong>in</strong>e uses the straight pipe for one HTS cable.<br />

CFD analysis is powerful to obta<strong>in</strong> the optimum design <strong>of</strong> the straight<br />

pipe, however this can’t be applied for long distance pipes because <strong>of</strong><br />

the limit <strong>of</strong> computer memories and CPU power. Hence, theoretical<br />

analysis is also important to fix the design <strong>of</strong> the longer pipes. In this<br />

paper, we describe the method <strong>of</strong> CFD and the analytical model to get<br />

the optimum designs <strong>of</strong> the longer pipe.<br />

This work is supported <strong>in</strong> part by “University-Industry Research<br />

Project for Private Universities match<strong>in</strong>g fund” by subsidy from<br />

MEXT, Japan, 2005-2009.<br />

C1-D Pulse Tube Cryocoolers (Non-<br />

Aerospace)<br />

C1-D-01 S<strong>in</strong>gle-stage Coaxial GM type Pulse Tube<br />

Refrigerators Below 20K<br />

B.Y. Du, L.W. Yang, J.H. Cai, J.T. Liang, Technical<br />

Institute <strong>of</strong> Physics and Chemistry, Ch<strong>in</strong>ese Academic<br />

<strong>of</strong> Sciences.<br />

Pulse tube refrigerators have demonstrated many advantages with<br />

respect to temperature stability, vibration, reliability and lifetime<br />

among cryocoolers. Double-<strong>in</strong>let type pulse tube refrigerators are<br />

popular <strong>in</strong> GM type pulse tube refrigerators.<br />

Experiments and numerical simulations are carried on to <strong>in</strong>vestigate<br />

the double-<strong>in</strong>let characters GM type pulse tube refrigerators. Two<br />

parallel-placed needle valves with opposite flow direction named<br />

double-valve configuration, <strong>in</strong>stead <strong>of</strong> s<strong>in</strong>gle double-<strong>in</strong>let valve, are<br />

used <strong>in</strong> our experiment to reduce the DC flow.The lowest cold end<br />

temperature <strong>of</strong> 18K h<strong>as</strong> been obta<strong>in</strong>ed while the refrigerator is driven<br />

by compressor <strong>of</strong> 6 kW power. Moreover, a numerical model is made<br />

to analyze the characters <strong>of</strong> double-<strong>in</strong>let refrigerators. The simulation<br />

results show the temperature field and velocity field <strong>of</strong> pulse tube with<br />

and without the double-<strong>in</strong>let.<br />

C1-D-02 Numerical simulation <strong>of</strong> Double-<strong>in</strong>let GM type<br />

Pulse Tube Refrigerators<br />

B.Y. Du, L.W. Yang, J.H. Cai, J.T. Liang, Technical<br />

Institute <strong>of</strong> Physics and Chemistry, Ch<strong>in</strong>ese Academic<br />

<strong>of</strong> Sciences.<br />

Pulse tube refrigerators have demonstrated many advantages with<br />

respect to temperature stability, vibration, reliability and lifetime<br />

among cryocoolers. Double-<strong>in</strong>let type pulse tube refrigerators are<br />

popular <strong>in</strong> GM type pulse tube refrigerators. The m<strong>as</strong>s flow rate<br />

through the double-<strong>in</strong>let is caused by the pressure drop through the<br />

regenerator, which improves the performance <strong>of</strong> pulse tube<br />

refrigerator. However, s<strong>in</strong>gle double-<strong>in</strong>let valve may <strong>in</strong>troduce DC<br />

flow <strong>in</strong> refrigerator, which deteriorates the performance <strong>of</strong> pulse tube<br />

refrigerator, so it is crucial to control the DC flow.<br />

Experiments and numerical simulations are carried on to <strong>in</strong>vestigate<br />

the double-<strong>in</strong>let characters GM type pulse tube refrigerators. Two<br />

parallel-placed needle valves with opposite flow direction named<br />

double-valve configuration, <strong>in</strong>stead <strong>of</strong> s<strong>in</strong>gle double-<strong>in</strong>let valve, are<br />

used <strong>in</strong> our experiment to reduce the DC flow.The lowest cold end<br />

temperature <strong>of</strong> 18K h<strong>as</strong> been obta<strong>in</strong>ed while the refrigerator is driven<br />

by compressor <strong>of</strong> 6 kW power. Moreover, a numerical model is made<br />

to analyze the characters <strong>of</strong> double-<strong>in</strong>let refrigerators. The simulation<br />

results show the temperature field and velocity field <strong>of</strong> pulse tube with<br />

and without the double-<strong>in</strong>let.<br />

Page 3 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

Double-<strong>in</strong>let is a key factor for a double-<strong>in</strong>let type pulse tube<br />

refrigerators. It is important to understand the characters <strong>of</strong> double<strong>in</strong>let.<br />

Deep research on characters <strong>of</strong> double-<strong>in</strong>let will be very helpful<br />

to reveal the mechanics <strong>of</strong> pulse tube refrigerator.<br />

This work is supported by Natural Sciences Foundation <strong>of</strong> Ch<strong>in</strong>a<br />

(50206025).<br />

C1-D-03 Experimental Studies on a Two-Stage Pulse<br />

Tube Cryocooler Reach<strong>in</strong>g 3.3 K<br />

S. K<strong>as</strong>thurirengan, G. Sr<strong>in</strong>iv<strong>as</strong>a, G.S. Karthik, Centre<br />

for Cryogenic Technology, Dept. <strong>of</strong> Physics, Indian<br />

Institute <strong>of</strong> Science; K.P. Ramesh, Dept. <strong>of</strong> Physics,<br />

Indian Institute <strong>of</strong> Science; K.A. Shafi, TKM College<br />

<strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Kollam, Kerala, India.<br />

A two stage Pulse Tube Cryocooler is designed and fabricated, which<br />

reaches no load temperatures <strong>of</strong> 3.3 K <strong>in</strong> the second stage and ~60 K<br />

<strong>in</strong> the first stage respectively. The system provides a refrigeration<br />

power <strong>of</strong> ~ 250mW at 5 K <strong>in</strong> the second stage. Sta<strong>in</strong>less steel meshes<br />

(size 200) and lead (Pb) granules are used <strong>as</strong> first stage regenerator<br />

materials and comb<strong>in</strong>ations <strong>of</strong> Pb with Er3Ni or Pb with HoCu2 are<br />

used <strong>as</strong> second stage regenerator materials. The system operates at 1.8<br />

Hz us<strong>in</strong>g an <strong>in</strong>digenous rotary valve along with a 6 kW water-cooled<br />

Helium compressor.<br />

Studies conducted by vary<strong>in</strong>g the dimensions <strong>of</strong> Pulse Tubes and<br />

regenerators for the first and second stages show that pulse tube<br />

dimensions are more critical to the performance <strong>of</strong> the Cryocooler<br />

than those <strong>of</strong> the regenerators. Experimental studies show that the<br />

optimum volume ratio <strong>of</strong> Pb to Er3Ni or HoCu2 (<strong>in</strong> the second stage)<br />

should be ~ 3:2 for the best performance <strong>of</strong> the Cryocooler. Further,<br />

systems with HoCu2 performed better than those with Er3Ni. Pulse<br />

Tube Cryocoolers performed better when operated with anti-parallel<br />

double <strong>in</strong>let valves than when operated with other DC flow<br />

arrangements.<br />

Theoretical analysis <strong>of</strong> the above two-stage Pulse Tube Cryocooler<br />

system h<strong>as</strong> been carried out us<strong>in</strong>g a simple isothermal model. The<br />

experimentally me<strong>as</strong>ured cool<strong>in</strong>g powers are <strong>in</strong> close agreement with<br />

the theoretical predictions.<br />

F<strong>in</strong>ancial support for the study h<strong>as</strong> come from the Council <strong>of</strong><br />

Scientific and Industrial Research, New Delhi, India.<br />

C1-D-04 A buffered rotary valve system <strong>of</strong> GM-type<br />

pulse tube refrigerator<br />

G. Hwang, J. Jung, S. Jeong, KAIST.<br />

In a GM or a GM-type PTR (Pulse Tube Refrigerator), considerable<br />

amount <strong>of</strong> helium flow is produced dur<strong>in</strong>g the pressure transition<br />

periods from high to low values or vice versa. In a conventional rotary<br />

valve system, however, this k<strong>in</strong>d <strong>of</strong> helium <strong>in</strong>- and out-flow which are<br />

supplied directly from the helium compressor does not contribute to<br />

the actual refrigeration power. We devised a buffered rotary valve<br />

system <strong>in</strong> order to reduce such an unnecessary helium flow from the<br />

compressor. In a buffered rotary valve system, pressuriz<strong>in</strong>g and<br />

depressuriz<strong>in</strong>g flow is not solely supplied by the compressor but also<br />

provided by a buffer volume. Theoretically, half <strong>of</strong> the transition flow<br />

can be alleviated <strong>in</strong> the compressor with a s<strong>in</strong>gle buffer. The aim <strong>of</strong><br />

the buffered rotary valve system is to use a compressor more<br />

effectively and make the expansion process <strong>in</strong> PTR more efficient. In<br />

this paper, the buffered rotary valve system is <strong>in</strong>troduced at the first<br />

time, fully described with simple thermodynamic analysis, and also<br />

<strong>in</strong>vestigated experimentally to show its performance <strong>in</strong>cre<strong>as</strong>e.<br />

This research w<strong>as</strong> supported by a grant from Center for Applied<br />

Superconductivity Technology <strong>of</strong> the 21st Century Frontier R&D<br />

Program funded by the M<strong>in</strong>istry <strong>of</strong> Science and Technology, Republic<br />

<strong>of</strong> Korea.<br />

C1-D-05 An experimental study <strong>of</strong> the G-M type two-<br />

Stage Pulse Tube Cryocooler for cryopump<br />

S.J. Park, Y.J. Hong, H.B. Kim, Korea Institute <strong>of</strong><br />

Mach<strong>in</strong>ery & Materials; S.J. Lee, Hyunm<strong>in</strong><br />

Laboratory.<br />

The pulse tube cryocooler, which h<strong>as</strong> no mov<strong>in</strong>g parts at its cold<br />

section, is attractive <strong>in</strong> obta<strong>in</strong><strong>in</strong>g higher reliability, simpler<br />

construction, and lower vibration than any other small cryocoolers.<br />

Korea Institute <strong>of</strong> Mach<strong>in</strong>ery & Materials(KIMM) h<strong>as</strong> developed G-<br />

M type and Stirl<strong>in</strong>g type pulse tube cryocooler s<strong>in</strong>ce 1992. The<br />

developments <strong>in</strong> KIMM on the pulse tube cryocooler systems have<br />

focused primarily on refrigeration capacity, efficiency and<br />

performance reliability <strong>as</strong> well <strong>as</strong> mechanical reliability. The purpose<br />

<strong>of</strong> this study is to provide reliable, efficient and long life cryocoolers<br />

for cool<strong>in</strong>g systems <strong>in</strong> cryopump and other applications. The G-M<br />

type two-stage pulse tube cryocooler consists <strong>of</strong> a helium compressor,<br />

a pulse tube, regenerator, orifice, double <strong>in</strong>let valve, a buffer<br />

(reservoir) volume and vacuum chamber. This paper describes the<br />

two-stage pulse tube cryocoolers designed for cool<strong>in</strong>g arrays <strong>of</strong> the<br />

cryopump and their performance characteristics.<br />

C1-D-06 Optimization <strong>of</strong> two stage pulse tube<br />

refrigerator for the <strong>in</strong>tegrated current lead system<br />

R. Maekawa, S. Takami, A. Okada, T. Mito, National<br />

Institute for Fusion Science; Y. Matsubara, KEK; M.<br />

Konno, Fuji Electric Systems Co.; A. Tomioka, Fuji<br />

Electric Advanced Technology Co.; T. Imayoshi, H.<br />

Hay<strong>as</strong>hi, Kyusyu Electric Power Co..<br />

The <strong>in</strong>tegrated current lead system, consists <strong>of</strong> a copper lead, a High<br />

Temperature Superconductor and two stage pulse tube refrigerator,<br />

h<strong>as</strong> been developed for Superconduct<strong>in</strong>g Magnetic Energy Storage<br />

(SMES) system. A two-stage pulse tube refrigerator, series connected<br />

arrangement, w<strong>as</strong> designed to satisfy the requirements for the<br />

<strong>in</strong>tegrated current lead system. Operation <strong>of</strong> the first stage<br />

refrigerator is four-valve method, while the second stage utilizes a<br />

double <strong>in</strong>let method. This arrangement ensures the compactness <strong>of</strong><br />

the current lead system. Refrigeration process <strong>of</strong> two-stage pulse tube<br />

refrigerator h<strong>as</strong> been <strong>in</strong>vestigated to validate the conceptual design<br />

and f<strong>in</strong>alize the current lead system development.<br />

This work is supported by the NEDO under the contract <strong>of</strong><br />

"Superconduct<strong>in</strong>g Power Network Control Technology Development"<br />

and by NIFS under ULAA114. The authors wish to acknowlege H.<br />

Ohkubo at Suzuki Shokan Co. for his support.<br />

C1-D-<strong>07</strong> Damp<strong>in</strong>g <strong>of</strong> Intr<strong>in</strong>sic Temperature Oscillations<br />

<strong>in</strong> a 4 K Pulse Tube Cooler<br />

by Means <strong>of</strong> Rare Earth Plates<br />

G. Thummes, L.M. Qiu, M. Dietrich, K. Allwe<strong>in</strong>s,<br />

University <strong>of</strong> Giessen.<br />

Regenerative cryocoolers, such <strong>as</strong> GM-coolers and pulse tube coolers,<br />

show oscillations <strong>of</strong> the refrigeration temperature that result from the<br />

periodic expansion <strong>of</strong> the work<strong>in</strong>g fluid (helium). In c<strong>as</strong>e <strong>of</strong> cryogenfree<br />

operation <strong>of</strong> sensitive superconduct<strong>in</strong>g devices the temperature<br />

oscillations can be rather disturb<strong>in</strong>g because <strong>of</strong> the <strong>as</strong>sociated<br />

variation <strong>of</strong> the critical current and gap voltage. The oscillations can<br />

be damped by <strong>in</strong>cre<strong>as</strong><strong>in</strong>g the thermal m<strong>as</strong>s attached to the cold end <strong>of</strong><br />

the cooler. For cool<strong>in</strong>g near 4 K it is impractical to employ normal<br />

metals for this purpose <strong>as</strong> <strong>in</strong> this c<strong>as</strong>e the specific heat <strong>of</strong> helium<br />

greatly exceeds that <strong>of</strong> normal metals. Here we report on the damp<strong>in</strong>g<br />

<strong>of</strong> temperature oscillations by mak<strong>in</strong>g use <strong>of</strong> the high specific heat <strong>of</strong><br />

rare-earth alloys, such <strong>as</strong> ErNi. Tests were performed on two types <strong>of</strong><br />

<strong>in</strong>-house made 4 K pulse tube coolers with <strong>in</strong>put powers <strong>of</strong> 6 kW and<br />

1.7 kW. The damp<strong>in</strong>g is accomplished by ErNi-plates <strong>of</strong> different<br />

thickness that were <strong>in</strong>stalled between the cold end <strong>of</strong> the 4 K stage<br />

and the device mount<strong>in</strong>g platform. E.g., with a 3.6 mm thick ErNiplate<br />

(m<strong>as</strong>s: 55 g) the temperature oscillation at 3.5 K w<strong>as</strong> reduced by<br />

a factor <strong>of</strong> 18 from 90 mK to 5 mK <strong>in</strong> the 1.7 kW-system. The thermal<br />

resistance <strong>of</strong> the plate w<strong>as</strong> 9 K/W, which w<strong>as</strong> sufficiently low to<br />

successfully operate an AC Josephson voltage standard near 4 K by<br />

this set-up.<br />

This work h<strong>as</strong> been supported <strong>in</strong> part by the German BMBF (FKZ<br />

13N8410). L.M. Qiu (permanent address: Zhejiang University,<br />

Hangzhou 310027, P.R. Ch<strong>in</strong>a) thanks the DAAD for a fellowship.<br />

Page 4 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-E Superconduct<strong>in</strong>g RF Cavities and<br />

Cryosystems - I<br />

C1-E-01 Superconduct<strong>in</strong>g Radi<strong>of</strong>requency Separator<br />

Cryogenic System<br />

A. Ageyev, S. Kozub, A. Orlov, S. Z<strong>in</strong>tchenko, Institute<br />

for High Energy Physics.<br />

Institute for High Energy Physics (Protv<strong>in</strong>o, Russia) develops new<br />

channel <strong>of</strong> U-70 accelerator. Important part <strong>of</strong> the channel is RF<br />

superconduct<strong>in</strong>g kaon separator which consists <strong>of</strong> two niobium<br />

cavities cooled by superfluid helium at 1.8 K. The cryogenic and<br />

vacuum system description, test results and planned improvements are<br />

presented.<br />

C1-E-02 Compact He II cool<strong>in</strong>g system for<br />

superconduct<strong>in</strong>g cavities<br />

T. Kuriyama, M. Takah<strong>as</strong>hi, N. Kakutani, T. Ota, K.<br />

Nakayama, Toshiba Corporation; E. Kako, S.<br />

Noguchi, M. Ono, K. Saito, S. Shishido, Y. Yamazaki,<br />

KEK, High Energy Accelerator Research<br />

Organization.<br />

The paper describes a compact He II cool<strong>in</strong>g system for<br />

superconduct<strong>in</strong>g cavities. The cool<strong>in</strong>g system is ma<strong>in</strong>ly comprised <strong>of</strong><br />

a vacuum vessel, 77K liquid nitrogen bath, a He I bath, a He II bath, a<br />

evacuation pump, a s<strong>in</strong>gle stage GM cryocooler for 77K bath and a 4<br />

K GM cryocooler. Superfluid helium is generated and refilled <strong>in</strong> the<br />

HeII bath via a heat exchanger and a JT valve by operat<strong>in</strong>g the<br />

evacuation pump. The refrigeration capacity atta<strong>in</strong>ed w<strong>as</strong> more than<br />

10 W @ 1.8 K. The cool<strong>in</strong>g system w<strong>as</strong> connected with a s<strong>in</strong>gle<br />

cavity vessel and a circulation loop. A superconduct<strong>in</strong>g cavity w<strong>as</strong><br />

immersed <strong>in</strong> the vessel. He II w<strong>as</strong> supplied to the cavity vessel from<br />

the cool<strong>in</strong>g system and evaporated helium g<strong>as</strong> w<strong>as</strong> returned to it. The<br />

high electric field w<strong>as</strong> successfully obta<strong>in</strong>ed by the superconduct<strong>in</strong>g<br />

cavity operation.<br />

C1-E-03 Superconduct<strong>in</strong>g Radio-Frequency Modules<br />

Test Facility Operat<strong>in</strong>g Experience<br />

A. Klebaner, R. Bossert, B. DeGraff, C. Darve, A.<br />

Mart<strong>in</strong>ez, L. Pei, W. Soyars, J.C. Theilacker,<br />

Fermilab.<br />

Fermilab is heavily engaged and mak<strong>in</strong>g strong technical<br />

contributions to the superconduct<strong>in</strong>g radio-frequency research and<br />

development program (SCRF R&D). Four major SCRF test are<strong>as</strong> are<br />

be<strong>in</strong>g constructed to enable vertical and horizontal cavity test<strong>in</strong>g, <strong>as</strong><br />

well <strong>as</strong> cryomodule test<strong>in</strong>g. The exist<strong>in</strong>g Fermilab cryogenic<br />

<strong>in</strong>fr<strong>as</strong>tructure h<strong>as</strong> been modified to service Fermilab SCRF R&D<br />

needs. The first stage <strong>of</strong> the project h<strong>as</strong> been successfully completed,<br />

which allows for distribution <strong>of</strong> cryogens for a s<strong>in</strong>gle cavity<br />

cryomodule us<strong>in</strong>g the exist<strong>in</strong>g Cryogenic Test Facility (CTF) that<br />

houses three Tevatron satellite refrigerators. The cool<strong>in</strong>g capacity<br />

available for cryomodule test<strong>in</strong>g at MDB results from the liquefaction<br />

capacity <strong>of</strong> CTF cryogenic system. The cryogenic system for a s<strong>in</strong>gle<br />

9-cell cryomodule is currently operational. The paper describes the<br />

status, challenges and operational experience <strong>of</strong> the <strong>in</strong>itial ph<strong>as</strong>e <strong>of</strong> the<br />

project.<br />

*Work supported by the U.S. Department <strong>of</strong> Energy under contract<br />

No. DE-AC02-76CHO3000.<br />

C1-E-04 Microwave response <strong>of</strong> a cyl<strong>in</strong>drical cavity made<br />

<strong>of</strong> bulk MgB2 superconductor<br />

A. Agliolo Gallitto, G. Bonsignore, M. Bonura, M. Li<br />

Vigni, University <strong>of</strong> Palermo, Dipartimento di Scienze<br />

Fisiche e Astronomiche; G. Giunchi, EDISON SpA R<br />

& D; Yu. A. Nefyodiv, Institute <strong>of</strong> Solid State Physics,<br />

RAS.<br />

We report on the microwave properties <strong>of</strong> a resonant cyl<strong>in</strong>drical<br />

cavity made <strong>of</strong> bulk MgB2 superconductor, produced by Reactive<br />

Liquid Mg Infiltration process [1]. The resonant cavity h<strong>as</strong> been<br />

characterized by me<strong>as</strong>ur<strong>in</strong>g its frequency response <strong>in</strong> the range 5 – 13<br />

GHz by an hp-8719D Network Analyzer. Among the various modes,<br />

two <strong>of</strong> them have shown the highest quality factors; they correspond<br />

to the TE_011 and TE_012 modes. At room temperature, and with the<br />

cavity filled by helium g<strong>as</strong>, the resonant frequencies <strong>of</strong> these modes<br />

are f_011 = 9.79 GHz and f_012 = 11.54 GHz. At T=4.2 K, without<br />

liquid helium <strong>in</strong>side the cavity, the unloaded quality factors are Q_011<br />

= 220000 and Q_012 = 190000; both ma<strong>in</strong>ta<strong>in</strong> values <strong>of</strong> the order <strong>of</strong><br />

100000 up to about 30 K and decre<strong>as</strong>e by a factor 20 when the<br />

superconductor goes to the normal state (at T=38.5 K) [2]. The values<br />

<strong>of</strong> the surface resistance at 9.79 GHz <strong>as</strong> a function <strong>of</strong> the temperature,<br />

deduced from the Q me<strong>as</strong>urements, agree quite well with those<br />

<strong>in</strong>dependently me<strong>as</strong>ured, by the hot-f<strong>in</strong>ger cavity perturbation at 9.4<br />

GHz, <strong>in</strong> a small sample <strong>of</strong> MgB2 extracted from the same specimen<br />

from which the cavity h<strong>as</strong> been obta<strong>in</strong>ed.<br />

[1] G. Giunchi, G. Ripamonti, T. Cavall<strong>in</strong>, E. B<strong>as</strong>sani, Cryogenics 46<br />

(2006) 237.<br />

[2] G. Giunchi, A. Agliolo Gallitto, G. Bonsignore, M. Bonura, M. Li<br />

Vigni, submitted to Supercond. Sci.Technol., cond-mat/0612159.<br />

C1-E-05 Simulation <strong>of</strong> the impact <strong>of</strong> the Kapitza<br />

resistance at gra<strong>in</strong>-gra<strong>in</strong> boundaries on Niobium<br />

superconduct<strong>in</strong>g cavities<br />

J. Amrit, Q. Li, LIMSI - CNRS.<br />

We exam<strong>in</strong>e the <strong>in</strong>fluence <strong>of</strong> the Kapitza resistance at gra<strong>in</strong>-gra<strong>in</strong><br />

boundaries on the thermal behaviour <strong>of</strong> superconduct<strong>in</strong>g cavities<br />

made <strong>of</strong> polycrystall<strong>in</strong>e Niobium. Calculations are performed for<br />

different gra<strong>in</strong> sizes. The results <strong>in</strong>dicate that a non-uniform size<br />

distribution <strong>of</strong> gra<strong>in</strong>s leads to an <strong>in</strong>homogeneous temperature<br />

repartition <strong>in</strong> the cavity walls. Also, the importance <strong>of</strong> the gra<strong>in</strong>-gra<strong>in</strong><br />

Kapitza resistance, compared to the Kapitza resistance at the<br />

niobium/helium <strong>in</strong>terface, is revealed for the first time.<br />

C1-F Thermal Insulation Systems - I<br />

C1-F-01 Design Tool for Cryogenic Thermal Insulation<br />

Systems<br />

J.A. Demko, Oak Ridge National Laboratory; J.E.<br />

Fesmire, NASA Kennedy Space Center; S.D.<br />

Augustynowicz, Sierra Lobo Inc..<br />

Thermal isolation <strong>of</strong> low temperature systems from ambient is a<br />

constant issue faced by practitioners <strong>of</strong> cryogenics. For energyefficient<br />

systems and processes to be realized, thermal <strong>in</strong>sulation must<br />

be considered <strong>as</strong> an <strong>in</strong>tegrated system, not merely an add-on element.<br />

A design tool to determ<strong>in</strong>e the performance <strong>of</strong> <strong>in</strong>sulation systems for<br />

comparative trade-<strong>of</strong>f studies <strong>of</strong> different available material options<br />

w<strong>as</strong> developed. The approach is to apply thermal analysis to standard<br />

shapes (plane walls, cyl<strong>in</strong>ders, spheres) that are relatively simple to<br />

characterize with a one dimensional analytical or numerical model.<br />

The user describes the system hot and cold boundary geometry and<br />

the operat<strong>in</strong>g environment. B<strong>as</strong>ic outputs such <strong>as</strong> heat load and<br />

temperature pr<strong>of</strong>iles are determ<strong>in</strong>ed. The user can select from a built<strong>in</strong><br />

<strong>in</strong>sulation material datab<strong>as</strong>e or <strong>in</strong>put user def<strong>in</strong>ed materials.<br />

Exist<strong>in</strong>g <strong>in</strong><strong>format</strong>ion comb<strong>in</strong>ed with the new experimental thermal<br />

conductivity data produced by the Cryogenics Test Laboratory for<br />

cryogenic and vacuum environments, <strong>in</strong>clud<strong>in</strong>g high vacuum, s<strong>of</strong>t<br />

vacuum, and no vacuum, is planned for <strong>in</strong>corporation. Materials<br />

<strong>in</strong>clude multilayer <strong>in</strong>sulation, aerogel blankets, aerogel bulk-fill,<br />

foams, powders, composites, and other constructions. Results <strong>of</strong> the<br />

design tool are provided for some sample applications.<br />

Fund<strong>in</strong>g w<strong>as</strong> provided by the NASA Space Operations Mission<br />

Directorate under the Internal Research and Development project<br />

Technologies to Incre<strong>as</strong>e Reliability <strong>of</strong> Thermal Insulation Systems.<br />

Page 5 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-F-02 Cryogenic Thermal Performance Test<strong>in</strong>g <strong>of</strong><br />

Bulk-Fill and Aerogel Insulation Materials<br />

B.E. Scholtens, J.E. Fesmire, J.P. S<strong>as</strong>s, NASA KSC;<br />

S.D. Augustynowicz, K.W. Heckle, Sierra Lobo, Inc.<br />

The research test<strong>in</strong>g and demonstration <strong>of</strong> new bulk-fill materials for<br />

cryogenic thermal <strong>in</strong>sulation systems w<strong>as</strong> performed by the<br />

Cryogenics Test Laboratory at NASA Kennedy Space Center.<br />

Thermal conductivity test<strong>in</strong>g under actual-use cryogenic conditions is<br />

a key to understand<strong>in</strong>g the total system performance encomp<strong>as</strong>s<strong>in</strong>g<br />

eng<strong>in</strong>eer<strong>in</strong>g, economics, and materials factors. A number <strong>of</strong> bulk fill<br />

<strong>in</strong>sulation materials, <strong>in</strong>clud<strong>in</strong>g aerogel beads, gl<strong>as</strong>s bubbles, and<br />

perlite powder, were tested us<strong>in</strong>g a new cyl<strong>in</strong>drical cryostat. Boundary<br />

temperatures for the liquid nitrogen boil-<strong>of</strong>f method were typically<br />

293 K and 77 K. Tests were performed <strong>as</strong> a function <strong>of</strong> vacuum<br />

pressure level from high vacuum to no vacuum conditions. Results<br />

are compared with other complementary test methods <strong>in</strong> the range <strong>of</strong><br />

300 K to 10 K. Various test<strong>in</strong>g techniques are shown to be required to<br />

obta<strong>in</strong> a complete understand<strong>in</strong>g <strong>of</strong> the operat<strong>in</strong>g performance <strong>of</strong> a<br />

material and to establish a b<strong>as</strong>is for answers to design eng<strong>in</strong>eer<strong>in</strong>g<br />

questions.<br />

C1-F-03 Multilauer Insulation for Atl<strong>as</strong><br />

S. Kozub, K. Polkovnikov, A. Hartchenko, Institute for<br />

High Energy Physics.<br />

Multilayer <strong>in</strong>sulation consists <strong>of</strong> alum<strong>in</strong>ized mylar and mylar cloth<br />

spacer for ATLAS (LHC) w<strong>as</strong> manufactured and tested at Institute for<br />

High Energy Physics (Protv<strong>in</strong>o, Russia). The paper presents<br />

description <strong>of</strong> facility for the multilayer <strong>in</strong>sulation test <strong>as</strong> well <strong>as</strong><br />

results <strong>of</strong> g<strong>as</strong>s<strong>in</strong>g <strong>in</strong> vacuum rate and heat leakage me<strong>as</strong>urements for<br />

the <strong>in</strong>sulation.<br />

C1-F-04 Test<strong>in</strong>g <strong>of</strong> a Vacuum Insulated Flexible L<strong>in</strong>e<br />

With Flow<strong>in</strong>g Liquid Nitrogen Dur<strong>in</strong>g the Loss <strong>of</strong><br />

Insulat<strong>in</strong>g Vacuum<br />

J.A. Demko, M.J. Gouge, R.C. Duckworth, Oak<br />

Ridge National Laboratory; M. Roden, Southwire<br />

Co..<br />

Long length vacuum <strong>in</strong>sulated l<strong>in</strong>es are used to carry flow<strong>in</strong>g liquid<br />

nitrogen <strong>in</strong> several high temperature superconduct<strong>in</strong>g cable projects.<br />

An important, but rare, failure scenario is the abrupt or cat<strong>as</strong>trophic<br />

loss <strong>of</strong> the thermal <strong>in</strong>sulat<strong>in</strong>g vacuum produc<strong>in</strong>g a rapid <strong>in</strong>cre<strong>as</strong>e <strong>in</strong><br />

heat transfer to the liquid nitrogen stream. In this <strong>in</strong>vestigation, a<br />

vacuum super<strong>in</strong>sulated 3 <strong>in</strong>ch by 5 <strong>in</strong>ch NPS is subjected to an abrupt<br />

loss <strong>of</strong> vacuum <strong>in</strong> order to me<strong>as</strong>ure the response <strong>of</strong> a flow<strong>in</strong>g liquid<br />

nitrogen stream and the temperature response <strong>of</strong> the cryostat. The<br />

me<strong>as</strong>ured outlet stream temperature h<strong>as</strong> a slight peak shortly after the<br />

loss <strong>of</strong> vacuum <strong>in</strong>cident and drops to a steady state value. The heat<br />

loads me<strong>as</strong>ured before and after the vacuum loss event are reported.<br />

Some me<strong>as</strong>urements <strong>of</strong> the temperatures <strong>in</strong> the multi-layer<br />

super<strong>in</strong>sulation are also discussed.<br />

Research sponsored by the U.S. Department <strong>of</strong> Energy - Office <strong>of</strong><br />

Electricity Delivery and Energy Reliability, Superconductivity<br />

Program for Electric Power Systems under contract DE-AC05-<br />

00OR22725 with Oak Ridge National Laboratory, managed and<br />

operated by UT-Battelle, LLC.<br />

C1-F-05 Radiation heat me<strong>as</strong>urement on thermally<br />

isolated double-pipe for DC superconduct<strong>in</strong>g power<br />

transmission<br />

M. Hamabe, S. Yamaguchi, Chubu University; A.<br />

N<strong>in</strong>omiya, Seikei University; Y. Ishiguro, S. Kusaka,<br />

JFE Steel Corporation.<br />

Multilayer <strong>in</strong>sulation (MLI) is a strong tool to reduce the radiation<br />

heat and is widely used for the cryogenic systems. However, the use<br />

<strong>of</strong> the MLI leads to a huge <strong>in</strong>cre<strong>as</strong>e <strong>of</strong> the surface area <strong>in</strong> vacuum; it<br />

takes extremely long time to reach a satisfactory vacuum for the<br />

thermal isolation, or the nitrogen g<strong>as</strong> flush<strong>in</strong>g is needed several times.<br />

We have started the experiment by us<strong>in</strong>g the test bench <strong>of</strong> the DC<br />

superconduct<strong>in</strong>g (DC-SC) power cable <strong>in</strong> Chubu University. S<strong>in</strong>ce the<br />

DC-SC power cable is free from the AC losses, the acceptable<br />

radiation heat can be higher for this cable than the AC-SC power<br />

cable. Therefore, we are study<strong>in</strong>g the possibility <strong>of</strong> the radiation shield<br />

without the MLI. The vacuum pump<strong>in</strong>g process and the radiation heat<br />

are me<strong>as</strong>ured for the thermally isolated double-pipes (<strong>of</strong> the same size<br />

<strong>as</strong> those for the DC-SC PT cable) with the various surfaces. While the<br />

radiation heat for the liquid-nitrogen-filled double-pipe with the MLI<br />

radiation shield w<strong>as</strong> 1/100 <strong>of</strong> that with the bare sta<strong>in</strong>less steel surface,<br />

the reachable vacuum pressure with the MLI w<strong>as</strong> 10 times poorer than<br />

that with the bare surface. We will also discuss a novel and<br />

convenient radiation shield<strong>in</strong>g method for the different surface<br />

processes <strong>in</strong> this work.<br />

C1-F-06 Low temperature heat transfer properties <strong>of</strong><br />

electrical <strong>in</strong>sulation for the Next European Dipole<br />

J. Pol<strong>in</strong>ski, B. Baudouy, CEA Saclay; S. Canfer, G.<br />

Ellwood, RAL.<br />

The heat transfer properties <strong>of</strong> the electrical multilayer <strong>in</strong>sulations <strong>of</strong><br />

the Next European dipole h<strong>as</strong> been tested under various conditions at<br />

low temperature. The electrical <strong>in</strong>sulation is made <strong>of</strong> E-gl<strong>as</strong>s fibre<br />

with a pla<strong>in</strong> weave and RAL epoxy system 227 (DGEBF epoxy res<strong>in</strong><br />

and DETD aromatic hardener). The samples have been tested <strong>in</strong><br />

superfluid helium where heat is applied perpendicularly to the fibres<br />

between 1.6 K to 2.1 K and their thermal conductivity, longitud<strong>in</strong>al to<br />

the fibres, had been also me<strong>as</strong>ured at low temperature below 77 K.<br />

This work w<strong>as</strong> supported <strong>in</strong> part by the European Community–<br />

Research Infr<strong>as</strong>tructure Activity under the FP6 “Structur<strong>in</strong>g the<br />

European Research Area” program (CARE, contract number RII3-<br />

CT-2003-506395).<br />

C1-F-<strong>07</strong> Flexible Aerogel Composites for Cryogenic<br />

Insulation<br />

R. Trifu, R. Begag, G. Gould, O. Evans, S. White,<br />

Aspen Aerogels, Inc..<br />

Low-density, flexible aerogel composites <strong>of</strong>fer a variety <strong>of</strong><br />

performance advantages over other <strong>in</strong>sulation materials for cryogenic<br />

<strong>in</strong>sulation applications, particularly Multi-Layer Insulation (MLI).<br />

These advantages <strong>in</strong>clude reduced weight, <strong>in</strong>cre<strong>as</strong>ed durability, lower<br />

total costs, and dramatic improvements <strong>in</strong> lead-times required for<br />

fabrication / <strong>in</strong>stallation <strong>of</strong> the <strong>in</strong>sulation with equal thermal<br />

performance. Additionally, large error bars <strong>of</strong>ten <strong>as</strong>sociated with the<br />

thermal model<strong>in</strong>g <strong>of</strong> MLI can be elim<strong>in</strong>ated with the use <strong>of</strong> aerogel<br />

composites. These low density aerogel composites have been found<br />

to be compatible with sensitive space sensors. Outg<strong>as</strong>s<strong>in</strong>g data along<br />

with encapsulation concepts for the aerogel composites will be<br />

discussed. A ‘higher’ density aerogel composite for <strong>in</strong>sulat<strong>in</strong>g liquid<br />

oxygen transfer l<strong>in</strong>es and storage conta<strong>in</strong>ers will also be presented.<br />

Page 6 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

Tuesday, <strong>07</strong>/17/<strong>07</strong> Oral<br />

10:30am - 12:00pm<br />

C1-G He II Transfer and Fluid Mechanics - I<br />

C1-G-01 PIV Me<strong>as</strong>urement Result <strong>of</strong> Superfluid He II<br />

Thermal Counterflow Jet<br />

M. Murakami, T. Takakoshi, University <strong>of</strong> Tsukuba.<br />

We have attempted the application <strong>of</strong> PIV (Particle Image<br />

Velocimetry) technique to the me<strong>as</strong>urement <strong>of</strong> superfluid helium<br />

thermo-fluid dynamic phenomena. Micro solid H-D particles were<br />

used <strong>as</strong> tracer particles that are nearly neutrally buoyant <strong>in</strong> superfluid<br />

helium. We have succeeded <strong>in</strong> the production <strong>of</strong> neutrally buoyant H-<br />

D particles with adequate particle size distribution and number density<br />

<strong>in</strong> He II for PIV me<strong>as</strong>urements <strong>in</strong> the temperature range between 1.80<br />

K and 2.17 K that is wider than that <strong>in</strong> our previous PIV experiment.<br />

The thermal counter flow jet that flows out from the straight jet nozzle<br />

<strong>in</strong>to an open quiescent He II space is me<strong>as</strong>ured by apply<strong>in</strong>g the PIV<br />

technique with the image data analysis b<strong>as</strong>ed on the cross-correlation<br />

method. Two-dimensional velocity field on a plane <strong>in</strong>clud<strong>in</strong>g the jet<br />

axis is obta<strong>in</strong>ed <strong>in</strong> the downstream jet region <strong>in</strong>clud<strong>in</strong>g the vic<strong>in</strong>ity <strong>of</strong><br />

the jet nozzle exit. The data are averaged to extract the mean velocity<br />

distribution. We obta<strong>in</strong>ed some systematic data on the spatial<br />

variation <strong>of</strong> the distribution <strong>of</strong> the average axial velocity component,<br />

and on the temperature dependence <strong>of</strong> the axial velocity near the jet<br />

exit <strong>in</strong> that temperature range. The dependency <strong>of</strong> the data on the<br />

temperature and the heat flux is compared with both the theoretical<br />

prediction and the previous LDV (L<strong>as</strong>er Doppler Velocimeter)<br />

me<strong>as</strong>urement data.<br />

C1-G-02 PIV me<strong>as</strong>urements <strong>of</strong> He II flow <strong>in</strong> a horizontal<br />

channel<br />

T. Xu, S.W. Van Sciver, National High Magnetic Field<br />

Laboratory, Florida State University.<br />

He II s<strong>in</strong>gle ph<strong>as</strong>e forced flow and thermal counterflow <strong>in</strong> a horizontal<br />

channel have been <strong>in</strong>vestigated us<strong>in</strong>g the Particle Image Velocimetry<br />

(PIV) technique. The experimental channel used <strong>in</strong> this research is 3.5<br />

meter long with a 20 mm X 20 mm square shape cross-section. We<br />

use solid H2, D2 and solid H2/D2 particles <strong>as</strong> tracers for the PIV<br />

me<strong>as</strong>urements. The tracer particles are generated dur<strong>in</strong>g the<br />

experiment by freez<strong>in</strong>g the <strong>in</strong>jected seed<strong>in</strong>g g<strong>as</strong> <strong>in</strong> the channel. We<br />

me<strong>as</strong>ure the velocity field <strong>of</strong> He II <strong>in</strong> both flows. The results are<br />

compared with theoretical calculations. The effect <strong>of</strong> the different type<br />

<strong>of</strong> particles on the PIV me<strong>as</strong>urements is also discussed <strong>in</strong> this paper.<br />

This work is supported by U.S. Department <strong>of</strong> Energy-Division <strong>of</strong><br />

High Energy Physics.<br />

C1-G-03 Visualization study <strong>of</strong> ph<strong>as</strong>e transition caused<br />

by heat<strong>in</strong>g <strong>of</strong> He II <strong>in</strong> two-dimensional narrow channel<br />

S. Takada, M. Murakami, Tsukuba University; N.<br />

Kimura, KEK; H. Kobay<strong>as</strong>hi, Institute <strong>of</strong> Quantum<br />

Science, Nihon University.<br />

A visualization study w<strong>as</strong> carried out by shadowgraph method for a<br />

number <strong>of</strong> ph<strong>as</strong>e transitions <strong>of</strong> He II <strong>in</strong> a two-dimensional narrow<br />

channel. The experiment w<strong>as</strong> focused on the visual observation <strong>of</strong><br />

ph<strong>as</strong>e transition <strong>in</strong>terface <strong>of</strong> three types. The first is the vapor-liquid<br />

(He II) <strong>in</strong>terface <strong>in</strong>dicat<strong>in</strong>g the onset <strong>of</strong> film boil<strong>in</strong>g, <strong>of</strong> which<br />

propagation could be observed. The second is the He I- He II<br />

<strong>in</strong>terface, which is very important to recognize the onset <strong>of</strong> film<br />

boil<strong>in</strong>g <strong>in</strong> subcooled He II. The third is the superheated He I- He II<br />

<strong>in</strong>terface that <strong>in</strong>dicate occurrence <strong>of</strong> superheated He I- He II <strong>in</strong>terface<br />

<strong>in</strong> the superheated state. The detailed observation <strong>of</strong> this <strong>in</strong>terface<br />

would be <strong>of</strong> great help to reveal the dynamic behavior <strong>of</strong> it that w<strong>as</strong><br />

orig<strong>in</strong>ally discovered from the temperature me<strong>as</strong>urement by H.<br />

Kobay<strong>as</strong>hi et. al..[1]<br />

These visualization experiments were conducted us<strong>in</strong>g the Claudettype<br />

cryostat equipped with two optical w<strong>in</strong>dows. The visualization<br />

system w<strong>as</strong> set b<strong>as</strong>ed on the shadowgraph method. The behavior <strong>of</strong><br />

ph<strong>as</strong>e transition <strong>in</strong>terface w<strong>as</strong> observed us<strong>in</strong>g a high speed camera.<br />

We succeed <strong>in</strong> tak<strong>in</strong>g pictures to <strong>in</strong>dicate the appearance <strong>of</strong> these<br />

<strong>in</strong>terfaces with aid <strong>of</strong> image process<strong>in</strong>g technique to enhance S/N<br />

ratio.<br />

[1]: Kobay<strong>as</strong>hi H., Yagi K., Takeda K., Fukaya M., Takah<strong>as</strong>hi M.<br />

and Ashimori T., Proceed<strong>in</strong>gs <strong>of</strong> I<strong>CEC</strong> 21 (20<strong>07</strong>), <strong>in</strong> press<br />

The present study w<strong>as</strong> carried out partly by the support <strong>of</strong> the Grand<strong>in</strong><br />

Aid for Scientific Research from the Japan Society for the<br />

Promotion <strong>of</strong> Science.<br />

C1-G-04 Investigation <strong>of</strong> transient heat transfer <strong>in</strong> porous<br />

media <strong>in</strong> He II<br />

H. Alla<strong>in</strong>, B. Baudouy, CEA.<br />

An experimental set up w<strong>as</strong> designed and built <strong>in</strong> order to study the<br />

transient heat transfer regimes <strong>of</strong> superfluid helium through porous<br />

media. Tests have been performed on different porous media samples,<br />

which differ by their thickness, their porosity and their average pore<br />

size diameter. Temperature h<strong>as</strong> been me<strong>as</strong>ured across porous media<br />

from 1.4 K to 2.1 K <strong>in</strong> saturated superfluid helium. A step heat flux is<br />

applied for a given bath temperature and the evolution <strong>of</strong> temperature<br />

h<strong>as</strong> been me<strong>as</strong>ured across the porous media. Results, represent<strong>in</strong>g the<br />

evolution <strong>of</strong> the temperature <strong>in</strong> time for a given heat flux, are<br />

presented and analyzed by us<strong>in</strong>g the energy equation for He II <strong>in</strong> the<br />

Gorter-Mell<strong>in</strong>k regime. The effects <strong>of</strong> the properties <strong>of</strong> porous media<br />

are also discussed.<br />

C1-G-06 Experimental tests <strong>of</strong> the HVBK equations for<br />

He II<br />

H.A. SNYDER, University <strong>of</strong> Colorado at Boulder.<br />

We generally accept the HVBK equations <strong>as</strong> those govern<strong>in</strong>g the<br />

motion <strong>of</strong> He II. The simplest test <strong>of</strong> these equations, that <strong>in</strong>volves all<br />

the terms, is the calculation <strong>of</strong> the onset <strong>of</strong> <strong>in</strong>stability <strong>of</strong> rotat<strong>in</strong>g<br />

Couette flow. L<strong>in</strong>ear perturbation methods and difference methods<br />

us<strong>in</strong>g the full nonl<strong>in</strong>ear equations show that the critical Reynold`s<br />

number, and the wave number <strong>of</strong> the <strong>in</strong>stability rapidly approach zero<br />

<strong>as</strong> the temperature drops below the lambda po<strong>in</strong>t. For a narrow gap<br />

the wave length becomes longer than practical test <strong>in</strong>struments at<br />

about 2.<strong>07</strong> K. As the gap <strong>in</strong>cre<strong>as</strong>es, theory concludes that the<br />

approach to zero is more rapid. The experimental data agree well<br />

with the calculations near the lambda po<strong>in</strong>t when the test apparatus is<br />

sufficiently long. However, several <strong>in</strong>vestigators report unexpla<strong>in</strong>ed<br />

breaks <strong>in</strong> the slope <strong>of</strong> torque data and second sound attenuation data at<br />

much lower temperatures. Nonl<strong>in</strong>ear analysis predicts that the onset<br />

is not strongly affected by the <strong>as</strong>pect ratio for a narrow gap. I<br />

reanalyzed my second sound attenuation data for a wide gap at 1.63 K<br />

<strong>in</strong> detail <strong>in</strong> an attempt to understand the discrepancy. We resolve the<br />

identification <strong>of</strong> the various second sound modes by a direct acoustic<br />

approach. We report the slopes <strong>of</strong> each mode. We suggest several<br />

causes <strong>of</strong> the breaks <strong>in</strong> slope and test them aga<strong>in</strong>st the data.<br />

C1-H Regenerator Performance<br />

C1-H-01 Calculated Regenerator Performance at 4 K<br />

with Helium-4 and Helium-3<br />

R. Radebaugh, Y. Huang, A. O`Gallagher, J. Gary,<br />

National Institute <strong>of</strong> Standards and Technology.<br />

For regenerative cryocoolers operat<strong>in</strong>g with the cold end near 4 K the<br />

helium-4 work<strong>in</strong>g fluid no longer behaves <strong>as</strong> an ideal g<strong>as</strong>. As a result,<br />

the losses <strong>in</strong> the regenerator, given by the time-averaged enthalpy<br />

flux, are <strong>in</strong>cre<strong>as</strong>ed and are strong functions <strong>of</strong> the operat<strong>in</strong>g pressure<br />

and temperature. Helium-3, with its lower boil<strong>in</strong>g po<strong>in</strong>t, behaves<br />

somewhat closer to an ideal g<strong>as</strong> <strong>in</strong> this low temperature range and can<br />

reduce the losses <strong>in</strong> 4 K regenerators. An analytical model is used to<br />

f<strong>in</strong>d the fluid properties that strongly <strong>in</strong>fluence the regenerator losses<br />

<strong>as</strong> well <strong>as</strong> the gross refrigeration power. Numerical model<strong>in</strong>g <strong>of</strong><br />

regenerator performance at 4 K with helium-3 work<strong>in</strong>g fluid h<strong>as</strong> now<br />

been made possible by the <strong>in</strong>corporation <strong>of</strong> the thermodynamic and<br />

transport properties <strong>of</strong> helium-3 <strong>in</strong>to the latest NIST regenerator<br />

model, known <strong>as</strong> REGEN3.3. With this model we show how the use<br />

<strong>of</strong> helium-3 <strong>in</strong> place <strong>of</strong> helium-4 can improve the performance <strong>of</strong> 4 K<br />

regenerative cryocoolers. The effects <strong>of</strong> operat<strong>in</strong>g pressure, warmend<br />

temperature, and frequency on regenerators with helium-4 and<br />

helium-3 are <strong>in</strong>vestigated and compared. The results are used to f<strong>in</strong>d<br />

optimum operat<strong>in</strong>g conditions. The frequency range <strong>in</strong>vestigated<br />

varies from 1 Hz to 30 Hz, with particular emph<strong>as</strong>is on the higher<br />

frequencies. The majority <strong>of</strong> the studies are for a regenerator matrix<br />

<strong>of</strong> packed spheres. The effect <strong>of</strong> the matrix heat capacity is also<br />

<strong>in</strong>vestigated.<br />

Fund<strong>in</strong>g from the Office <strong>of</strong> Naval Research is acknowledged<br />

Page 7 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-H-02 Application <strong>of</strong> Novel Regenerator Material<br />

With<strong>in</strong> a Coaxial Two-Stage Pulse Tube Refrigerator<br />

T. Koettig, F. Richter, R. Nawrodt, M. Thuerk, P.<br />

Seidel, Friedrich-Schiller-University Jena.<br />

We have developed a lead-b<strong>as</strong>ed regenerator material which is<br />

suitable for work<strong>in</strong>g temperatures below 20 K. This material can be<br />

used <strong>as</strong> a substitute for the state <strong>of</strong> the art materials used today with<strong>in</strong><br />

very low-temperature regenerators. This high efficient regenerator<br />

matrix comb<strong>in</strong>es technological advantages with the possibility to vary<br />

the thermodynamic and flow characteristics over a wide range,<br />

cont<strong>in</strong>uously. Hence, our self-made electroplated screen material is<br />

compared with standard regenerator materials (commercially available<br />

woven screens and packed spheres). The gap between matrix<br />

porosities <strong>of</strong> standard screens around 0.65 and the porosity <strong>of</strong> packed<br />

spheres with 0.38 is stepwise <strong>in</strong>vestigated regard<strong>in</strong>g the pressure drop<br />

and heat transfer characteristic. The design parameters and the<br />

<strong>in</strong>fluenc<strong>in</strong>g variables to optimise the regenerator performance will be<br />

discussed. The utility <strong>of</strong> the shop-made lead coated regenerator<br />

material is demonstrated <strong>in</strong> a coaxial two-staged pulse tube<br />

refrigerator with work<strong>in</strong>g temperatures below 7 K.<br />

C1-H-03 The Impact <strong>of</strong> Uncerta<strong>in</strong>ties Associated with<br />

Regenerator Closure Parameters on the Predicted<br />

Performance <strong>of</strong> Pulse Tube and Stirl<strong>in</strong>g Cryocoolers<br />

J.S. Cha, W.M. Clearman, S.M. Ghia<strong>as</strong>iaan, P.V.<br />

Desai, G.W. Woodruff School <strong>of</strong> Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g Georgia Institute <strong>of</strong> Technology.<br />

Recent <strong>in</strong>vestigations have shown that computational fluid dynamics<br />

(CFD) techniques can be used for model<strong>in</strong>g the entire pulse tube<br />

(PTR) and Stirl<strong>in</strong>g cryocooler systems. However, the results <strong>of</strong> CFD<br />

simulations can be trusted only if they are b<strong>as</strong>ed on correct closure<br />

relations. The hydrodynamic and heat transfer parameters <strong>as</strong>sociated<br />

with regenerators are among the most important and poorlyunderstood<br />

closure relations for these cryocooler systems. In this<br />

<strong>in</strong>vestigation the impact <strong>of</strong> uncerta<strong>in</strong>ties <strong>as</strong>sociated with flow<br />

resistance parameters, <strong>as</strong> well <strong>as</strong> solid-fluid heat transfer coefficients,<br />

on the performance <strong>of</strong> PTR and Stirl<strong>in</strong>g cryocoolers is exam<strong>in</strong>ed us<strong>in</strong>g<br />

CFD simulations. This objective is achieved by perform<strong>in</strong>g<br />

simulations where reference PTR and Stirl<strong>in</strong>g cryocooler systems<br />

operat<strong>in</strong>g <strong>in</strong> steady-periodic conditions are modeled <strong>in</strong> their entirety.<br />

The effects <strong>of</strong> uncerta<strong>in</strong>ties <strong>in</strong> the regenerator closure parameters on<br />

the cryocoolers performance parameters, <strong>as</strong> well <strong>as</strong> their key local<br />

hydrodynamic and heat transport processes, are quantified by the<br />

parametric variation <strong>of</strong> the aforementioned regenerator closure<br />

parameters.<br />

C1-H-04 New Thermoacoustic Model, New Me<strong>as</strong>urement<br />

Pr<strong>in</strong>ciple and Experimental Results <strong>of</strong> Flow<strong>in</strong>g and Heat<br />

Transfer Characteristics <strong>of</strong> Regenerator<br />

Y.Y. Chen, Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy<br />

<strong>of</strong> Sciences; E.C. Luo, Technical Institute <strong>of</strong> Physics<br />

and Chemistry, CAS; W. Dai, Technical Institute <strong>of</strong><br />

Physics and Chemistry,CAS.<br />

Regenerators play key role <strong>in</strong> oscillat<strong>in</strong>g-flow cryocoolers or<br />

thermoacoustic heat eng<strong>in</strong>e systems. However, their flow<strong>in</strong>g and heat<br />

transfer mechanism is still not well understood. In this paper, the<br />

authors present a new methodology for study<strong>in</strong>g flow<strong>in</strong>g and heat<br />

transfer characteristics <strong>of</strong> the oscillat<strong>in</strong>g flow regenerator. First we<br />

will present a new thermoacoustic model for oscillat<strong>in</strong>g-flow<br />

regenerator. In the model, the local flow and heat transfer<br />

performance <strong>of</strong> the regenerator can be characterized by its equivalent<br />

thermoacoustic viscous and thermal functions, and a dimensionless<br />

local averaged temperature gradient. Then, we present a simple<br />

acoustical method and experimental system to get the functions. Here,<br />

pressure me<strong>as</strong>urements and velocity me<strong>as</strong>urements by hot wire<br />

anemometry were performed with different screen-packed<br />

regenerators to obta<strong>in</strong> the two functions. With the two me<strong>as</strong>ured<br />

functions, local flow<strong>in</strong>g friction factor and heat transfer coefficient<br />

with<strong>in</strong> the regenerators where mean temperature gradient exists can be<br />

predicted. F<strong>in</strong>ally, local flow<strong>in</strong>g and heat transfer coefficients are<br />

summarized with several dimensionless groups for general and<br />

convenient us<strong>in</strong>g.<br />

This work w<strong>as</strong> supported by the Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant No.50625620)<br />

C1-H-05 Longitud<strong>in</strong>al Hydraulic Resistance Parameters<br />

<strong>of</strong> Cryocooler and Stirl<strong>in</strong>g Regenerators <strong>in</strong> Periodic Flow<br />

J.S. Cha, S.M. Ghia<strong>as</strong>iaan, P.V. Desai, G.W.<br />

Woodruff School <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Georgia<br />

Institute <strong>of</strong> Technology.<br />

The results <strong>of</strong> an on go<strong>in</strong>g research program aimed at the<br />

me<strong>as</strong>urement and correlation <strong>of</strong> anisotropic hydrodynamic parameters<br />

<strong>of</strong> widely-used cryocooler regenerator fillers are presented. The<br />

hydrodynamic parameters <strong>as</strong>sociated with longitud<strong>in</strong>al steadyperiodic<br />

flow are addressed <strong>in</strong> this paper. An experimental apparatus<br />

consist<strong>in</strong>g <strong>of</strong> a cyl<strong>in</strong>drical test section packed with regenerator fillers<br />

is used for the me<strong>as</strong>urement <strong>of</strong> axial permeability and Forchheimer<br />

coefficients, with pure helium <strong>as</strong> the work<strong>in</strong>g fluid.The regenerator<br />

fillers that are tested <strong>in</strong>clude sta<strong>in</strong>less steel 400-mesh screens with<br />

69.2% and 62% porosity, sta<strong>in</strong>less steel 325-mesh screens with 69.2%<br />

and 62% porosity, sta<strong>in</strong>less steel 400-mesh s<strong>in</strong>tered filler with 62%<br />

porosity, and sta<strong>in</strong>less steel s<strong>in</strong>tered foam metal with 56% porosity.<br />

The test section is connected to a Stirl<strong>in</strong>g type compressor on one end<br />

and to a constant volume chamber on the other end. The<br />

<strong>in</strong>strumentation <strong>in</strong>cludes piezoelectric pressure transducers at both<br />

ends <strong>of</strong> the regenerator. For each filler material, time histories <strong>of</strong> local<br />

pressures at both ends <strong>of</strong> the regenerator are me<strong>as</strong>ured under steady<br />

periodic conditions over a wide range <strong>of</strong> oscillation frequencies. A<br />

CFD <strong>as</strong>sisted methodology is then used for the analysis and<br />

<strong>in</strong>terpretation <strong>of</strong> the me<strong>as</strong>ured data. The permeability and<br />

Forchheimer parameter values obta<strong>in</strong>ed <strong>in</strong> this way are correlated <strong>in</strong><br />

terms <strong>of</strong> the relevant dimensionless parameters.<br />

C1-H-06 A new correlation <strong>of</strong> friction factor for<br />

oscillat<strong>in</strong>g flow regenerator operat<strong>in</strong>g at high frequencies<br />

Y.L. Ju, Q.Q. Sheng, Shanghai Jiaotong University.<br />

Regenerator plays an important role on the performance <strong>of</strong> low-power<br />

cryocoolers, <strong>in</strong> particular at high operat<strong>in</strong>g frequencies. The ability to<br />

accurately predict the pressure drop and ph<strong>as</strong>e shift across the<br />

regenerator is directly related to the cool<strong>in</strong>g capacity and efficiency <strong>of</strong><br />

a cryocooler. Many works have revealed that the friction factors under<br />

unidirectional steady flow conditions are unsuccessful <strong>in</strong> predict<strong>in</strong>g<br />

the flow characteristics <strong>of</strong> regenerators typically operat<strong>in</strong>g at<br />

oscillat<strong>in</strong>g flow and pulsat<strong>in</strong>g pressure conditions. Recent researches<br />

have been conducted, us<strong>in</strong>g both theoretical analyses and<br />

experimental me<strong>as</strong>urements, either to correlate the conventional<br />

friction factor by <strong>in</strong>troduc<strong>in</strong>g additional parameters or to develop new<br />

flow models to overcome the shortcom<strong>in</strong>g <strong>of</strong> the steady-flow friction<br />

factor. However, validation and application <strong>of</strong> these results for<br />

cryocooler regenerators are still questionable because <strong>of</strong> the complex<br />

and randomly oriented matrix geometry <strong>of</strong> actual regenerators. In this<br />

paper, we will first summary typical experimental results and<br />

correlations on the friction factor <strong>of</strong> regenerators for different sizes <strong>of</strong><br />

packed woven screens, at different frequencies, at room and cryogenic<br />

temperatures. The comparison <strong>of</strong> those friction factor data will then be<br />

presented to clarify the re<strong>as</strong>on for their difference. F<strong>in</strong>ally, a new<br />

correlation <strong>of</strong> friction factor for oscillat<strong>in</strong>g flow regenerator, <strong>in</strong> terms<br />

<strong>of</strong> two non-dimensional parameters, will be presented.<br />

Page 8 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-I Cryogenic Cool<strong>in</strong>g <strong>of</strong> High Temperature<br />

Superconduct<strong>in</strong>g Devices<br />

C1-I-01 High Temperature Superconduct<strong>in</strong>g Degauss<strong>in</strong>g<br />

- Cool<strong>in</strong>g two HTS coils with one cryocooler for the<br />

Littoral Combat Ship<br />

B.K. Fitzpatrick, J.T. Kephart, E.M. Golda, NAVSEA<br />

NSWCCD Philadelphia.<br />

The concept <strong>of</strong> creat<strong>in</strong>g a high temperature superconduct<strong>in</strong>g<br />

degauss<strong>in</strong>g system h<strong>as</strong> previously been studied by the Navy and<br />

shown to provide significant weight sav<strong>in</strong>gs over conventional copper<br />

b<strong>as</strong>ed degauss<strong>in</strong>g systems. Model<strong>in</strong>g efforts have shown that <strong>in</strong> a<br />

HTS Degauss<strong>in</strong>g System for the Littoral Combat Ship the dom<strong>in</strong>ant<br />

costs are cryocoolers. In an effort to m<strong>in</strong>imize the number <strong>of</strong><br />

cryocoolers a two coil demonstrator cooled <strong>of</strong>f <strong>of</strong> one cryocooler h<strong>as</strong><br />

been constructed at NAVSEA Philadelphia. The demonstration<br />

consists <strong>of</strong> two 72 foot long sections <strong>of</strong> flexible cryostat that are<br />

electrically isolated but connected <strong>in</strong> series through two junction<br />

boxes for g<strong>as</strong> flow. With<strong>in</strong> each cryostat section, 12 turns <strong>of</strong> HTS<br />

represent a vertical and horizontal degauss<strong>in</strong>g coil. Use <strong>of</strong> Helium <strong>as</strong><br />

the work<strong>in</strong>g fluid reduces safety impacts and allows higher current<br />

density <strong>in</strong> the HTS conductor. Test<strong>in</strong>g <strong>of</strong> this two coil degauss<strong>in</strong>g<br />

system <strong>in</strong>cludes characteriz<strong>in</strong>g the helium flow for a matrix <strong>of</strong><br />

conditions <strong>in</strong>clud<strong>in</strong>g helium charge pressure and circulat<strong>in</strong>g fan speed.<br />

The results <strong>of</strong> helium flow characterization are presented <strong>in</strong> this paper.<br />

C1-I-02 Thermal Fatigue Test Apparatus for Large<br />

Superconduct<strong>in</strong>g Coils<br />

J.T. Kephart, B.K. Fitzpatrick, NAVSEA NSWCCD<br />

Philadelphia; J.C. Chen, Rowan University.<br />

The Navy h<strong>as</strong> a cont<strong>in</strong>ued <strong>in</strong>terest <strong>in</strong> the development <strong>of</strong> High<br />

Temperature Superconduct<strong>in</strong>g (HTS) to provide power dense,<br />

efficient propulsion and electrical power generation. These mach<strong>in</strong>es<br />

have large HTS rotor coils that will undergo many thermal cycles<br />

dur<strong>in</strong>g the life <strong>of</strong> the ship. Thermally fatigu<strong>in</strong>g tests for large coils is<br />

necessary to understand any degradation and life issues that could<br />

arise. NSWCCD h<strong>as</strong> sponsored Rowan University to design and build<br />

a device that will <strong>as</strong>sist <strong>in</strong> the thermal fatigue test<strong>in</strong>g <strong>of</strong><br />

superconduct<strong>in</strong>g coils. It w<strong>as</strong> designed to be autonomous with<br />

programmable cool down and warm-up rates and vary<strong>in</strong>g<br />

temperatures from ambient temperature down to 77K. A typical test<br />

would <strong>in</strong>clude thermally cycl<strong>in</strong>g a coil a specified number <strong>of</strong> times,<br />

then perform<strong>in</strong>g a critical current test on the coil and repeat<strong>in</strong>g the test<br />

cycle <strong>as</strong> many times <strong>as</strong> desired. This paper <strong>in</strong>troduces the thermal<br />

cycl<strong>in</strong>g test setup and presents prelim<strong>in</strong>ary calibration data.<br />

C1-I-03 Flow Cool<strong>in</strong>g <strong>of</strong> Superconduct<strong>in</strong>g Magnets for<br />

Spacecraft Applications<br />

A.J. Dietz, W.E. Audette, M.D. Barton, Creare Inc.;<br />

W.S. Marshall, C.M. Rey, Tai-Yang Research<br />

Corporation; D.S. W<strong>in</strong>ter, A.J. Petro, , NASA<br />

Johnson Space Center.<br />

The development and test<strong>in</strong>g <strong>of</strong> a flow cool<strong>in</strong>g system for hightemperature<br />

superconduct<strong>in</strong>g (HTS) magnets is described. The system<br />

<strong>in</strong>cludes a turbo-Brayton cryocooler, a magnet thermal <strong>in</strong>terface, and<br />

a magnet thermal isolation and support system. The target application<br />

is the Variable Specific Impulse Magnetopl<strong>as</strong>ma Rocket (VASIMR).<br />

Turbo-Brayton coolers are well suited to such spacecraft applications,<br />

<strong>as</strong> they are compact, modular, lightweight, and efficient, with long<br />

ma<strong>in</strong>tenance-free lifetimes. Furthermore, the technology scales well<br />

to high-cool<strong>in</strong>g capacities. The fe<strong>as</strong>ibility <strong>of</strong> us<strong>in</strong>g turbo-Brayton<br />

coolers <strong>in</strong> this application w<strong>as</strong> proven <strong>in</strong> a design exercise <strong>in</strong> which<br />

exist<strong>in</strong>g cooler designs were scaled to provide cool<strong>in</strong>g for the magnet<br />

sets required by 200 kW and 1 MW VASIMR eng<strong>in</strong>es. The<br />

performance <strong>of</strong> the concepts for the thermal <strong>in</strong>terface and the thermal<br />

isolation and support system were me<strong>as</strong>ured <strong>in</strong> separate laboratory<br />

tests with a demonstration system built about a representative HTS<br />

magnet. Cool<strong>in</strong>g for these tests w<strong>as</strong> provided by a flow cool<strong>in</strong>g loop<br />

compris<strong>in</strong>g a compressor, recuperator and GM cryocooler, with the<br />

flow pressure, temperature, and m<strong>as</strong>s flow rate selected to effectively<br />

simulate the turbo-Brayton operat<strong>in</strong>g condition. Dur<strong>in</strong>g system<br />

test<strong>in</strong>g, the magnet w<strong>as</strong> cooled below its design operat<strong>in</strong>g temperature<br />

<strong>of</strong> 35 K, and good thermal uniformity (


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-J Pumps and Compressors<br />

C1-J-01 Pressure Oscillator Losses at High Frequency<br />

and High Pressure<br />

P.E. Bradley, M.A. Lewis, R. Radebaugh, National<br />

Institute <strong>of</strong> Standards and Technology; A. Veprik,<br />

Ricor Ltd, Cryogenic Vacuum Systems.<br />

High frequencies show potential for reduc<strong>in</strong>g the size <strong>of</strong> both the<br />

pressure oscillator and cold head for a given cool<strong>in</strong>g power while<br />

lead<strong>in</strong>g to a f<strong>as</strong>ter cool-down. Previously, we made comparisons <strong>of</strong><br />

pressure oscillator efficiency employ<strong>in</strong>g a total loss method <strong>of</strong><br />

subtract<strong>in</strong>g <strong>in</strong>ternal thermodynamic losses from the PV power at the<br />

piston face for frequencies up to 70 Hz with mean pressures up to 2.5<br />

MPa for a load optimized for around 45 Hz. In this paper we present<br />

similar comparisons for high frequency operation up to 120 Hz and<br />

high mean pressure up to 3.5 MPa for an appropriately optimized<br />

load. Both small and large pressure oscillators from 4 cm3 to 25 cm3<br />

are evaluated for high frequency and high pressure operation. We<br />

discuss pressure and flow losses for the high frequency (120 Hz) and<br />

high pressure (3.5 MPa) operation compared with 30 to 60 Hz<br />

frequency and 2.0 to 2.5 MPa pressure operation. Pressure ratios<br />

ranged from 1.0 to 1.3. The overall compressor efficiency, the<br />

delivered PV power to a load divided by the electrical <strong>in</strong>put power to<br />

the compressor is determ<strong>in</strong>ed for the high frequency and high pressure<br />

operation <strong>as</strong> well.<br />

C1-J-02 Screw Compressor Characteristics for Helium<br />

Refrigeration Systems<br />

P.N. Knudsen, V. Ganni, Jefferson Lab.<br />

The oil <strong>in</strong>jected screw compressors have practically replaced all other<br />

types <strong>of</strong> compressors <strong>in</strong> modern helium refrigeration systems due to<br />

their large displacement capacity, m<strong>in</strong>imal vibration, reliability and<br />

capability <strong>of</strong> handl<strong>in</strong>g helium`s high heat <strong>of</strong> compression.<br />

At the present state <strong>of</strong> compressor system designs, half the <strong>in</strong>put<br />

energy is lost <strong>in</strong> the compression system. Therefore it is important to<br />

understand the isothermal and volumetric efficiencies <strong>of</strong> these<br />

mach<strong>in</strong>es to help properly design these compression systems. This<br />

presentation summarizes three separate tests that have been conducted<br />

on Sullair compressors at the Superconduct<strong>in</strong>g Super-Collider<br />

Laboratory (SSCL) <strong>in</strong> 1993, Howden compressors at Jefferson Lab<br />

(JLab) <strong>in</strong> 2006 and Howden compressors at the Spallation Neutron<br />

Source (SNS) <strong>in</strong> 2006. Although the compressor pressure ratio and<br />

built-<strong>in</strong> volume ratio are the primary parameters affect<strong>in</strong>g the<br />

efficiencies <strong>of</strong> the screw compressor proper, it is evident from these<br />

tests that the compressor skid design also strongly <strong>in</strong>fluences the<br />

overall efficiencies and performance <strong>of</strong> the compression system. This<br />

work is part <strong>of</strong> an ongo<strong>in</strong>g t<strong>as</strong>k at JLab to understand the theoretical<br />

b<strong>as</strong>is for these efficiencies and their loss mechanisms, <strong>as</strong> well <strong>as</strong> to<br />

implement practical solutions.<br />

C1-J-03 Design<strong>in</strong>g Liquid Cryogenic Systems for Use<br />

with Centrifugal Pumps<br />

J.E. Dillard, W.D. Batton P.E., J.A. Busby Ph.D., J.W.<br />

Shull, M.R. Anderson, Barber-Nichols Inc.<br />

A cryogenic system is a collection <strong>of</strong> <strong>in</strong>terdependent components<br />

work<strong>in</strong>g together; therefore, proper system performance is dependent<br />

upon an understand<strong>in</strong>g <strong>of</strong> each component’s relationship with other<br />

components <strong>in</strong> the system. This paper exam<strong>in</strong>es the relationship<br />

between centrifugal pumps and other components <strong>in</strong> liquid cryogenic<br />

systems dur<strong>in</strong>g cool down and steady state operation.<br />

Two common problems which affect liquid cryogenic systems are<br />

cavitation and cryogen vaporation; both can significantly decre<strong>as</strong>e<br />

m<strong>as</strong>s flow and adversely effect overall system performance. However,<br />

a system-b<strong>as</strong>ed, rather than a component-b<strong>as</strong>ed, design philosophy<br />

can help avoid these problems. Additionally, cool down and steady<br />

state operation are two equally important system modes. Excessively<br />

tight design marg<strong>in</strong>s b<strong>as</strong>ed exclusively on steady state operational<br />

requirements can compromise a system’s ability to cool itself to its<br />

operat<strong>in</strong>g temperature.<br />

C1-J-04 Experience with dry runn<strong>in</strong>g vacuum pumps <strong>in</strong><br />

helium service<br />

R. Arztmann, L<strong>in</strong>de Kryotechnik AG.<br />

A process vacuum system for helium us<strong>in</strong>g dry runn<strong>in</strong>g vacuum<br />

pumps only w<strong>as</strong> shop tested and <strong>in</strong>stalled <strong>in</strong> a refrigeration plant to<br />

serve cavities operat<strong>in</strong>g at 2K for a cryogenic storage r<strong>in</strong>g.<br />

The paper expla<strong>in</strong>s the jo<strong>in</strong>t development steps <strong>of</strong> Busch AG and<br />

L<strong>in</strong>de Kryotechnik AG to use dry runn<strong>in</strong>g vacuum pumps for helium<br />

service at ambient temperature. A roots type booster pump followed<br />

by a non lube rotary screw pump provides very good performance <strong>in</strong> a<br />

helium vacuum pump system. Variable frequency drives on both<br />

pumps allow to adjust the pump characteristics to a wide range <strong>of</strong><br />

operat<strong>in</strong>g parameters. Operation without friction <strong>of</strong> seal<strong>in</strong>g elements<br />

<strong>in</strong> the compression space also <strong>of</strong> the screw pump promises extended<br />

ma<strong>in</strong>tenance <strong>in</strong>tervals and virtually no wear on the rotors. The current<br />

plant operation at Max Plank Institute <strong>in</strong> Heidelberg, Germany<br />

Laboratory will provide additional experience for further applications.<br />

C1-J-05 Thermal Design <strong>of</strong> a Superconduct<strong>in</strong>g Bear<strong>in</strong>g<br />

with a Magnetic Journal at Room Temperature.<br />

X. Granados, Q Llober<strong>as</strong>, ICMAB-CSIC; J López, R<br />

Maynou, CEIB.<br />

Interaction between permanent magnets and superconduct<strong>in</strong>g pellets<br />

provides a stable and durable way for bear<strong>in</strong>g <strong>in</strong> both thrust and axial<br />

bear<strong>in</strong>g. The axial symmetry <strong>of</strong> the magnetic field, and that <strong>of</strong> the<br />

<strong>in</strong>ertia axis, allow achiev<strong>in</strong>g non-friction rotat<strong>in</strong>g coupl<strong>in</strong>g thus<br />

improv<strong>in</strong>g reliability and a simplification <strong>of</strong> the bear<strong>in</strong>g design. The<br />

cool<strong>in</strong>g requirement <strong>of</strong> the superconductors is a ma<strong>in</strong> concern because<br />

the life and the losses <strong>of</strong> the bear<strong>in</strong>g are essentially the life and<br />

efficiency <strong>of</strong> the cool<strong>in</strong>g system. In this work we present the thermal<br />

design <strong>of</strong> a p<strong>as</strong>sive thrust bear<strong>in</strong>g with a room temperature magnetic<br />

journal and a plane superconduct<strong>in</strong>g stator. In this paper, we discuss<br />

the ma<strong>in</strong> po<strong>in</strong>ts for optimization <strong>of</strong> the gap thermal isolation <strong>in</strong> order<br />

to achieve the m<strong>in</strong>imum losses-stiffness ratio.<br />

Tuesday, <strong>07</strong>/17/<strong>07</strong> Poster<br />

1:30pm - 3:00pm<br />

C1-K Low Temperature Superconduct<strong>in</strong>g<br />

Magnet Systems - I<br />

C1-K-01 Leak-tight weld<strong>in</strong>g experience from the<br />

Industrial <strong>as</strong>sembly <strong>of</strong> the LHC cryostats at CERN.<br />

V. Parma, N. Bourcey, P. Campos, A. Mongelluzzo, A.<br />

Poncet, CERN; P. Limon, FNAL; G. Musso, SERCO.<br />

The <strong>as</strong>sembly <strong>of</strong> the approximately 1700 LHC r<strong>in</strong>g cryostats at<br />

CERN <strong>in</strong>volved extensive weld<strong>in</strong>g <strong>of</strong> cryogenic l<strong>in</strong>es and vacuum<br />

vessels. More than 6 km <strong>of</strong> weld<strong>in</strong>g requir<strong>in</strong>g leak tightness to a rate<br />

better than 1.10-9 mbar.l.s-1 on sta<strong>in</strong>less steel and alum<strong>in</strong>ium pip<strong>in</strong>g<br />

and envelopes w<strong>as</strong> made, essentially by manual weld<strong>in</strong>g but also<br />

mak<strong>in</strong>g use <strong>of</strong> orbital weld<strong>in</strong>g mach<strong>in</strong>es. In order to ensure the<br />

fulfillment <strong>of</strong> safety regulations <strong>of</strong> pressure vessels and to comply<br />

with the leak-tightness requirements <strong>of</strong> the vacuum systems <strong>of</strong> the<br />

mach<strong>in</strong>e, welds were executed accord<strong>in</strong>g to high qualification<br />

standards and follow<strong>in</strong>g a severe quality <strong>as</strong>surance plan. Leak<br />

detection by He m<strong>as</strong>s spectrometry w<strong>as</strong> extensively used. Neon leak<br />

detection w<strong>as</strong> used successfully to locate leaks <strong>in</strong> the presence <strong>of</strong><br />

helium backgrounds. The use <strong>of</strong> SF6 <strong>as</strong> a tracer g<strong>as</strong> with a sniffer w<strong>as</strong><br />

also tried.<br />

This paper presents the quality <strong>as</strong>surance strategy adopted for welds<br />

and leak detection. It presents the statistics <strong>of</strong> non-conformities on<br />

welds and leaks detected throughout the entire production and the<br />

advances <strong>in</strong> the use <strong>of</strong> alternative leak detection methods <strong>in</strong> an<br />

<strong>in</strong>dustrial environment.<br />

Page 10 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-K-03 Heat Exchanger Design Studies for an LHC<br />

Inner Triplet Upgrade<br />

R. J. Rabehl, Y. Huang, Fermi National Accelerator<br />

Laboratory.<br />

A lum<strong>in</strong>osity upgrade <strong>of</strong> the CERN Large Hadron Collider (LHC) is<br />

planned to co<strong>in</strong>cide with the expected end <strong>of</strong> life <strong>of</strong> the exist<strong>in</strong>g <strong>in</strong>ner<br />

triplet quadrupole magnets. The upgraded <strong>in</strong>ner triplet will have<br />

much larger heat loads to be removed from the magnets by the<br />

cryogenics system. With<strong>in</strong> the framework <strong>of</strong> a design temperature<br />

pr<strong>of</strong>ile, a number <strong>of</strong> design studies have been completed to <strong>in</strong>vestigate<br />

the required characteristics <strong>of</strong> a heat exchanger to transfer this heat<br />

from the pressurized He II bath to the saturated He II system. This<br />

paper presents limitations <strong>of</strong> the exist<strong>in</strong>g bayonet heat exchanger,<br />

required attributes <strong>of</strong> a heat exchanger external to the magnet cold<br />

m<strong>as</strong>s, and required attributes <strong>of</strong> a heat exchanger <strong>in</strong>ternal to the<br />

magnet cold m<strong>as</strong>s.<br />

C1-K-04 High Intensity Neutr<strong>in</strong>o Source<br />

Superconduct<strong>in</strong>g Solenoid Cryostat Design<br />

T.M. Page, T.H. Nicol, S. Feher, I. Terechk<strong>in</strong>e, J.<br />

Tompk<strong>in</strong>s, Fermi National Accelerator Laboratory.<br />

Fermi National Accelerator Laboratory (FNAL) is <strong>in</strong>volved <strong>in</strong> the<br />

development <strong>of</strong> a 100 MeV superconduct<strong>in</strong>g l<strong>in</strong>ac. This l<strong>in</strong>ac is part<br />

<strong>of</strong> the High Intensity Neutr<strong>in</strong>o Source (HINS) R&D Program. The<br />

<strong>in</strong>itial beam acceleration <strong>in</strong> the front end section <strong>of</strong> the l<strong>in</strong>ac is<br />

achieved us<strong>in</strong>g room temperature spoke cavities, each <strong>of</strong> which is<br />

comb<strong>in</strong>ed with a superconduct<strong>in</strong>g focus<strong>in</strong>g solenoid. These solenoid<br />

magnets are cooled with liquid helium at 4.5K, operate at 250 A and<br />

have a maximum magnetic field strength <strong>of</strong> 7.5 T. The solenoid<br />

cryostat will house the helium vessel, suspension system, thermal<br />

shield, multilayer <strong>in</strong>sulation, power leads, <strong>in</strong>strumentation, a vacuum<br />

vessel and cryogenic distribution l<strong>in</strong>es. This paper discusses the<br />

requirements and detailed design <strong>of</strong> these superconduct<strong>in</strong>g solenoid<br />

cryostats.<br />

C1-K-06 Development <strong>of</strong> new cool<strong>in</strong>g system us<strong>in</strong>g<br />

GM/JT cryocoolers for the SKS magnet<br />

K. Aoki, T. Haruyama, Y. Makida, O. Araoka, K.<br />

K<strong>as</strong>ami, T. Takah<strong>as</strong>hi, T. Nagae, Y. Kakiguchi, KEK;<br />

T. Orik<strong>as</strong>a, T. Kuriyama, TOSHIBA.<br />

The SKS (Superconduct<strong>in</strong>g Kaon Spectrometer) worked <strong>in</strong> the K6<br />

beaml<strong>in</strong>e <strong>of</strong> the KEK 12-GeV PS for the study <strong>of</strong> nuclear physics<br />

from 1991 until 2006. After shutdown <strong>of</strong> the KEK 12-GeV PS, KEK<br />

and JAEA are construct<strong>in</strong>g new accelerator facility J-PARC (Japan<br />

Proton Accelerator Research Complex) <strong>as</strong> a jo<strong>in</strong>t project. The SKS<br />

magnet, which is a large sector type superconduct<strong>in</strong>g magnet, is<br />

<strong>in</strong>tended to be improved and used <strong>in</strong> the new Hadron Hall <strong>of</strong> the J-<br />

PARC. In our schedule, the magnet will be dis<strong>as</strong>sembled and<br />

improved from 20<strong>07</strong> to 2008, and re<strong>as</strong>sembled <strong>in</strong> early 2009. The new<br />

nuclear physics experiments at the J-PARC will start <strong>in</strong> the middle <strong>of</strong><br />

2009. The ma<strong>in</strong> change is to adopt a new cool<strong>in</strong>g method us<strong>in</strong>g<br />

several GM/JT cryocoolers <strong>in</strong>stead <strong>of</strong> an old 300W cold box. Recent<br />

improvement <strong>of</strong> the refrigeration power <strong>of</strong> the GM/JT cryocooler<br />

made this coolig method possible. Adopt<strong>in</strong>g this compact cool<strong>in</strong>g<br />

methods also br<strong>in</strong>gs new possibilities to the spectrometer. One<br />

example is an e<strong>as</strong>y ma<strong>in</strong>tenance. In this paper, we expla<strong>in</strong> our project<br />

and describe our first result <strong>of</strong> the heat leak me<strong>as</strong>urement test <strong>of</strong> a<br />

model port us<strong>in</strong>g a GM/JT cryocooler.<br />

C1-L Low Temperature Superconduct<strong>in</strong>g<br />

Magnet Systems - II<br />

C1-L-01 Characterization <strong>of</strong> the ENEA new concept jo<strong>in</strong>t<br />

for Cable-In-Conduit-Conductors<br />

Aldo Di Zenobio, Luigi Aff<strong>in</strong>ito, Ugo Besi Vetrella,<br />

Sandro Chiarelli, Antonio della Corte, Chiar<strong>as</strong>ole<br />

Fiamozzi Zignani, Ferruccio Maierna, Giuseppe<br />

Mess<strong>in</strong>a, Luigi Muzzi, Matteo Napolitano, Luigi<br />

Reccia, Stefano Rueca, Simonetta Turtù, Rosario<br />

Viola, ENEA.<br />

In large superconduct<strong>in</strong>g magnets, jo<strong>in</strong>ts connect<strong>in</strong>g different<br />

conductor unit lengths are unavoidable and represent one <strong>of</strong> the<br />

ma<strong>in</strong> causes <strong>of</strong> dissipation due to their resistive behavior, <strong>as</strong> well <strong>as</strong> a<br />

key element <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the distribution <strong>of</strong> transport current with<strong>in</strong><br />

the conductor section. A jo<strong>in</strong>t <strong>of</strong> new concept <strong>in</strong> shak<strong>in</strong>g-hands<br />

configuration h<strong>as</strong> been designed and patented by ENEA. It is b<strong>as</strong>ed on<br />

the idea <strong>of</strong> cutt<strong>in</strong>g the l<strong>as</strong>t-but-one cabl<strong>in</strong>g stages <strong>of</strong> the two<br />

conductors to be jo<strong>in</strong>ed at different lengths <strong>in</strong> a complementary way,<br />

match<strong>in</strong>g the two ends. As a result, the cable orig<strong>in</strong>al shape and size is<br />

ma<strong>in</strong>ta<strong>in</strong>ed over the jo<strong>in</strong>t length. A detailed description <strong>of</strong> the jo<strong>in</strong>t<br />

design h<strong>as</strong> been presented elsewhere. In this paper we describe the<br />

results <strong>of</strong> its experimental characterization, us<strong>in</strong>g both Nb3Sn and<br />

NbTi Cable-<strong>in</strong>-Conduit Conductors: some samples have been<br />

prepared us<strong>in</strong>g spare lengths <strong>of</strong> the new European Dipole conductor<br />

and some with an ITER sub-size NbTi cable. For all <strong>of</strong> them, we<br />

performed DC resistance me<strong>as</strong>urements at sufficiently high current<br />

and AC losses characterization, both <strong>in</strong> straight or bent configurations.<br />

Moreover an <strong>in</strong>terest<strong>in</strong>g trial h<strong>as</strong> been made, manufactur<strong>in</strong>g a jo<strong>in</strong>t<br />

sample without remov<strong>in</strong>g the Ni coat<strong>in</strong>g from NbTi strand<br />

surfaces, <strong>in</strong> order to <strong>in</strong>vestigate its impact on the jo<strong>in</strong>t resistance.<br />

C1-L-02 Freely Oriented Portable Superconduct<strong>in</strong>g<br />

Magnet<br />

E.N. Schmierer, C. Prenger, D. Hill, B. Charles, Los<br />

Alamos National Laboratory; G. Laughon, R.<br />

Efferson, American Magnetics Incorporated.<br />

A high-field LTS solenoidal magnet w<strong>as</strong> developed that can be<br />

operated <strong>in</strong> any orientation relative to gravity and is portable. The<br />

design consists <strong>of</strong> several features that make it unique; 1) bulk liquid<br />

cryogen storage occurs <strong>in</strong> a separate dewar rather than <strong>as</strong> part <strong>of</strong> the<br />

magnet <strong>as</strong>sembly, which allows for s<strong>in</strong>gle-person transport due to its<br />

low weight and size, 2) vapor generated pressure circulates liquid<br />

cryogen to and from the magnet with flexible transfer l<strong>in</strong>es allow<strong>in</strong>g<br />

operation <strong>in</strong> any orientation, and 3) composite, low-conduct<strong>in</strong>g<br />

structural members are used to suspend the magnet and shield layers<br />

with<strong>in</strong> the vacuum vessel that provide a robust low heat loss design.<br />

Cool<strong>in</strong>g is provided to the magnet through fluid channels that are <strong>in</strong><br />

thermal contact with the magnet. The overall design is presented and<br />

analysis for cooldown time and weight are discussed <strong>as</strong> well.<br />

C1-L-03 Helium-Liquefaction by a Cryocooler <strong>in</strong> Closed-<br />

Loop Cool<strong>in</strong>g System for 21 T FT-ICR Magnets<br />

Y.S. Choi, KBSI-NHMFL RCC; T.A. Pa<strong>in</strong>ter,<br />

NHMFL; D.L. Kim, B.S. Lee, H.S. Yang, KBSI.<br />

An experiment <strong>of</strong> helium liquefaction us<strong>in</strong>g a two-stage pulse tube<br />

cryocooler is performed. The ma<strong>in</strong> objective <strong>of</strong> this study is to<br />

confirm the fe<strong>as</strong>ibility <strong>of</strong> our recently proposed cryogenic design for a<br />

21 T FT-ICR superconduct<strong>in</strong>g magnet system by closed-loop cool<strong>in</strong>g<br />

concept without any replenishment <strong>of</strong> cryogen. S<strong>in</strong>ce the cold surface<br />

<strong>of</strong> a cryocooler is very limited, a cyl<strong>in</strong>drical copper f<strong>in</strong> is thermally<br />

anchored to the first and second stage coldheads <strong>in</strong> order to extend the<br />

available heat transfer surface. A heat exchanger tube is attached on<br />

the outer surface <strong>of</strong> each cyl<strong>in</strong>drical f<strong>in</strong> and heat exchange occurs<br />

between tube and helium g<strong>as</strong> which is p<strong>as</strong>s<strong>in</strong>g through the tube. The<br />

temperature distributions along the copper cyl<strong>in</strong>der and heat<br />

exchanger are me<strong>as</strong>ured <strong>in</strong> steady state and compared with the<br />

numerical analysis. The effect <strong>of</strong> m<strong>as</strong>s flow rate, <strong>in</strong>let pressure <strong>of</strong><br />

helium, and cool<strong>in</strong>g capacity <strong>of</strong> cryocooler on the liquefaction rate is<br />

also <strong>in</strong>vestigated.<br />

Page 11 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-L-04 Development <strong>of</strong> Cool<strong>in</strong>g System for Cryogenic<br />

Preamplifier <strong>in</strong> FT-ICR Ion Trap<br />

Y.S. Choi, KBSI-NHMFL RCC; D.L. Kim, M.C. Choi,<br />

H.S. Kim, J.S. Yoo, KBSI; T.A. Pa<strong>in</strong>ter, NHMFL.<br />

The cool<strong>in</strong>g system <strong>of</strong> cryogenic preamplifier is designed and<br />

fabricated for Fourier Transform Ion Cyclotron Resonance (FT-ICR)<br />

ion trap. A cryogenic preamplifier consisted <strong>of</strong> non-magnetic<br />

materials is thermally contact to the cool<strong>in</strong>g medium which is p<strong>as</strong>s<strong>in</strong>g<br />

through the flange ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high vacuum <strong>in</strong> the ion cell. At the<br />

other end, the cool<strong>in</strong>g medium is thermally anchored to the coldhead<br />

<strong>of</strong> cryocooler or liquid helium reservoir. This cryogenic preamplifier<br />

is <strong>in</strong>stalled <strong>in</strong> 7 Tesla FT-ICR system. The temperature distribution<br />

along the cool<strong>in</strong>g medium is me<strong>as</strong>ured for cool-down and steady state,<br />

and compared with the result <strong>of</strong> numerical analysis. The reduction <strong>of</strong><br />

thermal noise is discussed <strong>in</strong> term <strong>of</strong> the temperature. The detail <strong>of</strong><br />

flange for cool<strong>in</strong>g medium withstand<strong>in</strong>g severe thermal, mechanical<br />

and electrical operation is also described.<br />

C1-L-05 Developmnet and Production <strong>of</strong> a Low Noise<br />

LHe4 Cryostat for use <strong>in</strong> High Magnetic Pulsed Fields<br />

P.F. Rum<strong>in</strong>er, C.H. Mielke, J.B. Betts, National High<br />

Magnetic Field Lab, LANL.<br />

Pulsed Field Magnets, up to 100 Tesla, provide a valuable<br />

environment for materials studies.<br />

The Magnets at NHMFL-LANL operate at 77K, have a 15mm bore<br />

and are powered by a 1.6MJ cap bank with pulses at up to 10KV at<br />

16KA and a rise time <strong>of</strong> approximately 12mS. Sample data is taken <strong>in</strong><br />

the mVolt range, 10 orders <strong>of</strong> magnitude less than the power <strong>in</strong> the<br />

magnet. Our He3 Fridges provide a 300mK sample space diameter <strong>of</strong><br />

just over 6mm. Background noise produced by sample movement <strong>in</strong><br />

the field, eddy current heat<strong>in</strong>g, field perturbation and temperature<br />

fluctuations can make these me<strong>as</strong>urements very difficult. Conductive<br />

materials <strong>in</strong> close proximity to the magnet greatly add to this<br />

background noise. We have developed a new LHe4 cryostat that is<br />

quite robust and h<strong>as</strong> dr<strong>as</strong>tically reduced the m<strong>as</strong>s <strong>of</strong> material <strong>in</strong> this<br />

critical area, creat<strong>in</strong>g a much quieter and more stable data collection<br />

environment. In addition, we have made repair<strong>in</strong>g <strong>of</strong> the tail section,<br />

<strong>in</strong> the c<strong>as</strong>e <strong>of</strong> Magnet failure, less expensive, f<strong>as</strong>ter and requir<strong>in</strong>g less<br />

effort. The <strong>in</strong>tention w<strong>as</strong> also to <strong>in</strong>cre<strong>as</strong>e the hold time <strong>in</strong> order to<br />

reduce He4 costs and <strong>in</strong>cre<strong>as</strong>e the available data collection time each<br />

day. S<strong>in</strong>ce the NHMFL-LANL is a User Facility, this is all very<br />

important due to the <strong>of</strong>ten limited time our Users are able to spend at<br />

our Facility. In this poster I will present Cryostat design, noise data,<br />

temperature stability and LHe4 hold time data compared to previous<br />

designs.<br />

C1-L-06 Fiber Bragg Grat<strong>in</strong>g Sensors for Me<strong>as</strong>ur<strong>in</strong>g<br />

Temperature and Stra<strong>in</strong> Simultaneously at Cryogenic<br />

Temperature<br />

R. Raj<strong>in</strong>ikumar, Inst. <strong>of</strong> Technial Physics,<br />

Forschungszentrum Karlsruhe, Dept. <strong>of</strong> Mechanical<br />

Engg., Indian Inst. <strong>of</strong> Technology, Sensor System<br />

Technology, Univ. <strong>of</strong> Applied Sciences; M. Suesser,<br />

Institute <strong>of</strong> Technial Physics, Forschungszentrum<br />

Karlsruhe; K.G. Narayankhedkar, M.D. Atrey,<br />

Department <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Indian<br />

Institute <strong>of</strong> Technology; G. Krieg, Sensor System<br />

Technology, University <strong>of</strong> Applied Sciences.<br />

We study the fe<strong>as</strong>ibility <strong>of</strong> employ<strong>in</strong>g fiber Bragg grat<strong>in</strong>gs (FBG) for<br />

me<strong>as</strong>ur<strong>in</strong>g thermodynamics parameters <strong>of</strong> super conduct<strong>in</strong>g coils. The<br />

distributions <strong>of</strong> mechanical stress and temperature <strong>in</strong>side the coil are<br />

important for an optimized design. Standard sensors with electrical<br />

connections like resistance thermometer and stra<strong>in</strong> gauges cannot be<br />

placed <strong>in</strong>side the coil. So it is impossible to access local stress and<br />

temperature data. The superimposed dual wavelength metallic<br />

recoated Bragg grat<strong>in</strong>gs, fabricated <strong>in</strong> one fiber at same location are<br />

better suited for this purpose. Coil temperature and stress will vary the<br />

grat<strong>in</strong>gs periods which can be read out with a tunable l<strong>as</strong>er. The<br />

spectral position <strong>of</strong> the reflections may be correlated with the spatial<br />

position <strong>of</strong> the grat<strong>in</strong>gs, and the shift <strong>of</strong> the grat<strong>in</strong>gs’ maximum<br />

reflection <strong>in</strong>dicates the change <strong>of</strong> the grat<strong>in</strong>gs’ period. This, <strong>in</strong> turn<br />

me<strong>as</strong>ures temperature and stress. The Simultaneous temperature and<br />

stra<strong>in</strong> me<strong>as</strong>urement response <strong>of</strong> an Indium metal coated FBG sensor is<br />

reported <strong>in</strong> this paper.<br />

C1-M Aerospace Cryogenics<br />

C1-M-01 Development <strong>of</strong> Cryogenic Loop Heat Pipe<br />

R. Karunanithi, S. Jacob, D.S. Nadig, U. Behera, A.K.<br />

Sahoo, Centre for Cryogenic Technology, IISc.;<br />

G.S.V.L. Nar<strong>as</strong>imham, Department <strong>of</strong> Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, IISc; D. Kumar, Thermal Systems<br />

Group, ISAC, ISRO..<br />

The loop heat pipes (LHP) are different from conventional heat pipes,<br />

<strong>in</strong> that, the wick structure is required only <strong>in</strong> the evaporator section.<br />

Consequently, smooth wall tub<strong>in</strong>g can be employed <strong>in</strong> the<br />

construction <strong>of</strong> the vapour and liquid l<strong>in</strong>es, which avoid the<br />

significant liquid-flow losses. As it is conf<strong>in</strong>ed to such a small length,<br />

very small pore size wicks can be used <strong>in</strong> applications with high<br />

thermal transport requirements and/or where the heat must be<br />

transported over a long distance aga<strong>in</strong>st gravity. The diode nature <strong>of</strong><br />

LHP is <strong>in</strong>tr<strong>in</strong>sic. The design <strong>of</strong> a Cryogenic Loop Heat Pipes (CLHP)<br />

h<strong>as</strong> to take care <strong>of</strong> supercritical nature <strong>of</strong> the work<strong>in</strong>g fluid at room<br />

temperature and take care <strong>of</strong> the self-prim<strong>in</strong>g <strong>of</strong> the heat pipe action at<br />

start-up. The research and development <strong>of</strong> a CLHP is presented <strong>in</strong> the<br />

paper. A mathematical model<strong>in</strong>g and FORTRAN program to solve<br />

and determ<strong>in</strong>e the parameters for various boundary conditions h<strong>as</strong><br />

been developed. The CLHP is designed to transfer 5W heat at 70K<br />

us<strong>in</strong>g nitrogen <strong>as</strong> work<strong>in</strong>g fluid. It will be a self prim<strong>in</strong>g type device<br />

which can operate aga<strong>in</strong>st gravity with evaporator above the<br />

condenser <strong>as</strong> well <strong>as</strong> under microgravity condition. Its performance<br />

will be tested by coupl<strong>in</strong>g it with a home made pulse tube refrigerator.<br />

The design fabrication and performance <strong>of</strong> a cryogenic heat pipe with<br />

s.s. wick at the evaporator for a heat transfer <strong>of</strong> 5 W at 70 K will be<br />

described <strong>in</strong> the paper.<br />

C1-M-02 Thermal Management Options for Cryogenic<br />

Propellant Tanks and Other Large Structures<br />

J.R. Feller, L.J. Salerno, NASA-ARC; A. K<strong>as</strong>hani,<br />

B.P.M Helvensteijn, Atl<strong>as</strong> Scientific.<br />

Various thermal control options, both p<strong>as</strong>sive and active, enabl<strong>in</strong>g<br />

long-term storage <strong>of</strong> cryogenic propellants <strong>in</strong> zero boil-<strong>of</strong>f (ZBO) or<br />

reduced boil-<strong>of</strong>f (RBO) states, will be discussed. The primary focus<br />

will be on methods <strong>of</strong> active heat transfer from propellant tank walls<br />

or thermal shields, via enthalpy flow <strong>in</strong> large-scale distributed cool<strong>in</strong>g<br />

networks, to a remotely located cryocooler cold head. While<br />

ZBO/RBO propellant storage is the only application explicitly<br />

addressed, the methods described would allow efficient cryogenic<br />

temperature control <strong>of</strong> other large or remote structures (e.g., sensor<br />

arrays). In addition to <strong>in</strong>-space design concepts and model<strong>in</strong>g results,<br />

the capabilities and potential applications <strong>of</strong> an experimental<br />

apparatus, constructed specifically to <strong>in</strong>vestigate the behavior <strong>of</strong><br />

distributed cool<strong>in</strong>g networks, will be described.<br />

C1-M-03 Large-Scale Cryogenic Test<strong>in</strong>g <strong>of</strong> Launch<br />

Vehicle Ground Systems at Kennedy Space Center<br />

E.W. Ernst, D.E. Taylor, J.P. S<strong>as</strong>s, NASA KSC; D.A.<br />

Lobmeyer, S.J. Sojourner, ASRC Aerospace; W.H.<br />

Hatfield, D.A. Rew<strong>in</strong>kel, Sierra Lobo, Inc..<br />

The development <strong>of</strong> a new launch vehicle to support NASA’s future<br />

exploration plans requires significant redesign and upgrade <strong>of</strong><br />

Kennedy Space Center’s (KSC) launch pad and ground support<br />

equipment systems. In many c<strong>as</strong>es, specialized test equipment and<br />

systems will be required to certify the function <strong>of</strong> the new system<br />

designs under simulated operational conditions, <strong>in</strong>clud<strong>in</strong>g propellant<br />

load<strong>in</strong>g. This paper provides an overview <strong>of</strong> the cryogenic test<br />

<strong>in</strong>fr<strong>as</strong>tructure that is <strong>in</strong> place at KSC to conduct development and<br />

qualification test<strong>in</strong>g that ranges from the component level to the<br />

<strong>in</strong>tegrated-system level. An overview <strong>of</strong> the major cryogenic test<br />

facilities will be provided, along with a detailed explanation <strong>of</strong> the<br />

technology focus area for each facility.<br />

Page 12 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-M-04 Three Dimensional Transient Heat Transfer<br />

Model<strong>in</strong>g <strong>of</strong> Cryogenic Rocket Eng<strong>in</strong>e Thrust Chamber<br />

B.T. Kuzhiveli, National Institute <strong>of</strong> Technology<br />

Calicut; G.K. Kuruvilla, Liquid Propulsion Systems<br />

Centre ISRO.<br />

In a cryogenic eng<strong>in</strong>e thrust chamber mak<strong>in</strong>g use <strong>of</strong> LH2-LOX<br />

comb<strong>in</strong>ation, liquid hydrogen is p<strong>as</strong>sed through the regenerative<br />

channels to take care <strong>of</strong> the high energy combustion result<strong>in</strong>g out <strong>of</strong><br />

close to three by fourth stoichiometric mixture ratio combustion.<br />

However the cryogenic cool<strong>in</strong>g results <strong>in</strong> wide range <strong>of</strong> temperature<br />

distribution <strong>in</strong> the cross section and along the axis <strong>of</strong> the thrust<br />

chamber with respect to time and poses serious thermo-structural<br />

problems. In order to have an unnderstand<strong>in</strong>g <strong>of</strong> temperature<br />

distribution, an accurate prediction <strong>of</strong> heat transfer characteristics for<br />

the complete spectrum <strong>of</strong> the thrust chamber with respect to time is<br />

necessary. The objective <strong>of</strong> this paper is to present transient thermal<br />

analysis with three dimensional approach which can provide transient<br />

temperature distribution along the axis and across the cross section<br />

dur<strong>in</strong>g transient and steady state conditions for chill down and hot<br />

test. A computational model h<strong>as</strong> been developed for the prediction <strong>of</strong><br />

temperature distribution on the thrust chamber which could be suited<br />

for parametric studies and also for generat<strong>in</strong>g an optimum design for<br />

cryogenic rocket eng<strong>in</strong>es to recommend stable operation.<br />

C1-M-05 Lox Separation Studies Us<strong>in</strong>g Cryogenic Vortex<br />

Tubes<br />

S. Jacob, P.J. Paul, R. Karunanithi, U. Behera, Indian<br />

Institute <strong>of</strong> Science.<br />

In-flight collection <strong>of</strong> air, pre-cool<strong>in</strong>g, liquefaction and separation <strong>of</strong><br />

liquid oxygen (LOX) are key technologies for futuristic launch<br />

vehicles. Vortex tube technology is one <strong>of</strong> the few promis<strong>in</strong>g<br />

technologies for this application. Significant work h<strong>as</strong> been carried<br />

out at IISc Bangalore <strong>in</strong> develop<strong>in</strong>g cryogenic vortex tube technology<br />

for high purity LOX separation. Experimental studies have been<br />

conducted on temperature separation and LOX separation both for<br />

straight and conical vortex tubes by vary<strong>in</strong>g various parameters.<br />

Though straight vortex tubes are found to perform better for<br />

temperature separation, they are not suitable for LOX separation <strong>as</strong><br />

compared to conical vortex tubes. Experiments have been conducted<br />

to study the <strong>in</strong>fluence <strong>of</strong> supply pressure and <strong>in</strong>let temperature for<br />

conical vortex tubes <strong>of</strong> L/D <strong>of</strong> 10, 20, 25 and 30 to achieve high LOX<br />

purity and separation efficiency. Studies show that it is not possible to<br />

obta<strong>in</strong> both high LOX purity and high separation efficiency<br />

simultaneously <strong>in</strong> a s<strong>in</strong>gle vortex tube. However, experimental results<br />

show that it is possible to achieve both high LOX purity and<br />

separation efficiency by stag<strong>in</strong>g <strong>of</strong> vortex tubes. LOX purity <strong>of</strong> 96%<br />

and separation efficiency <strong>of</strong> 73.5% h<strong>as</strong> been achieved for second stage<br />

vortex tube supplied with pre-cooled air hav<strong>in</strong>g 60% oxygen purity.<br />

LOX purity h<strong>as</strong> been further <strong>in</strong>cre<strong>as</strong>ed to 97% by apply<strong>in</strong>g controlled<br />

heat<strong>in</strong>g power over liquid oxygen flow<strong>in</strong>g discharge surface <strong>of</strong> vortex<br />

tube.<br />

C1-M-06 Radiation Analysis <strong>of</strong> anti-Stokes fluorescent<br />

Cryocooler with Network-Matrix Method<br />

B.T. Kuzhiveli, National Institute <strong>of</strong> Technology<br />

Calicut ; S. Jacob, Indian Institute <strong>of</strong> Science<br />

Bangalore .<br />

Atta<strong>in</strong><strong>in</strong>g cool<strong>in</strong>g effect by us<strong>in</strong>g l<strong>as</strong>er <strong>in</strong>duced anti-Stokes<br />

florescence <strong>in</strong> solids appears to have several advantages over<br />

conventional mechanical systems and h<strong>as</strong> been the topic <strong>of</strong> recent<br />

analysis and experimental work. Us<strong>in</strong>g anti-Stokes fluorescence<br />

phenomenon to remove heat from a gl<strong>as</strong>s by pump<strong>in</strong>g it with l<strong>as</strong>er<br />

light, stands <strong>as</strong> a pronounc<strong>in</strong>g physical b<strong>as</strong>is for solid state cool<strong>in</strong>g.<br />

Cryocool<strong>in</strong>g by fluorescence is a fe<strong>as</strong>ible solution for obta<strong>in</strong><strong>in</strong>g<br />

compactness and reliability. It h<strong>as</strong> a dist<strong>in</strong>ct niche <strong>in</strong> the family <strong>of</strong><br />

small capacity cryocoolers and is undergo<strong>in</strong>g a revolutionary advance.<br />

In pursuit <strong>of</strong> develop<strong>in</strong>g l<strong>as</strong>er <strong>in</strong>duced anti-Stokes fluorescent<br />

cryocooler, it is required to develop numerical tools that support the<br />

thermal design and therefore a thorough analysis <strong>of</strong> radiation heat<br />

transfer mechanism with<strong>in</strong> the cryocooler is necessary. The paper<br />

presents the details <strong>of</strong> numerical model developed for the cryocooler<br />

and the subsequent development <strong>of</strong> a computer program. The program<br />

h<strong>as</strong> been used for the understand<strong>in</strong>g <strong>of</strong> various heat transfer<br />

mechanisms <strong>in</strong> particular the radiation heat transfer and is be<strong>in</strong>g used<br />

for thermal design <strong>of</strong> components for an anti-Stokes fluorescent<br />

cryocooler.<br />

The development <strong>of</strong> optical cryocooler is progress<strong>in</strong>g at the Indian<br />

Institute <strong>of</strong> Science (I.I.Sc), Bangalore under the auspices <strong>of</strong> the<br />

Defense Research Development Organization (DRDO). The author is<br />

a consultant for thermal design <strong>of</strong> the optical cryocooler.<br />

C1-M-<strong>07</strong> Thermal Model for a Mars Instrument with<br />

Thermo-Electric Cooled Focal Plane: CCD Subsystem<br />

with Heat Switch<br />

D.R. Ladner, J.P. Mart<strong>in</strong>, N-Science Corporation.<br />

The M<strong>in</strong>eral Identification and Composition Analyzer (MICA) is a<br />

m<strong>in</strong>iature <strong>in</strong>strument that employs X-ray scatter<strong>in</strong>g and visual<br />

imag<strong>in</strong>g to determ<strong>in</strong>e nondestructively the m<strong>in</strong>eralogy <strong>of</strong> a rock<br />

sample <strong>in</strong>-situ. The CCD subsystem comprises the CCD focal plane,<br />

the thermoelectric cooler (TEC), the TEC heat s<strong>in</strong>k, a p<strong>as</strong>sive heat<br />

switch, and the subsystem radiator. The TEC is used to hold the CCD<br />

focal plane at or below 208 K dur<strong>in</strong>g <strong>in</strong>strument operation. The<br />

<strong>in</strong>clusion <strong>of</strong> the heat switch and TEC are found to significantly extend<br />

<strong>in</strong>strument observation times and to enable schedule flexibility dur<strong>in</strong>g<br />

extreme Martian diurnal temperature excursions <strong>of</strong> atmosphere (175 -<br />

255 K) and sky (130 - 200 K). The CCD Subsystem Model <strong>in</strong>cludes<br />

all par<strong>as</strong>itic and dissipative heat sources. The model <strong>in</strong>corporates logic<br />

that simulates heat switch operation to provide heat s<strong>in</strong>k cool-down by<br />

night and isolation by day if a sufficient temperature difference exists<br />

between the radiator and the s<strong>in</strong>k; the s<strong>in</strong>k must not exceed 258 K.<br />

Model parameter variation allows the <strong>in</strong>strument designer to optimize<br />

the subsystem thermal parameters to m<strong>in</strong>imize <strong>in</strong>put power to the<br />

TEC and maximize <strong>in</strong>strument observation periods. This paper<br />

extends previous results to <strong>in</strong>clude all comb<strong>in</strong>ations <strong>of</strong> heat switch<br />

status, TEC status, and ambient environmental conditions. Recent<br />

imag<strong>in</strong>g and X-ray diffraction and fluorescence test results <strong>of</strong> the<br />

MICA prototype <strong>in</strong>strument are discussed.<br />

C1-M-08 Novel Optical Cooler with Thermoelectrically<br />

Cooled Radiation Shield<br />

S. Jacob, R. Karunanithi, K.S. Sangunni, K.T.<br />

Aruld<strong>as</strong>an, M. Venkateshan, Indian Institute <strong>of</strong><br />

Science; B.T. Kuzhiveli, VICET; R. Sr<strong>in</strong>iv<strong>as</strong>an, Raman<br />

Research Institute.<br />

Optical cool<strong>in</strong>g us<strong>in</strong>g l<strong>as</strong>er <strong>in</strong>duced anti-Stokes fluorescence <strong>in</strong><br />

appropriate solid materials is a potential candidate for future cooler<br />

applications. They are characterized by positive features such <strong>as</strong> no<br />

vibration, no mov<strong>in</strong>g part, low m<strong>as</strong>s, compact and ma<strong>in</strong>tenance free<br />

long life operation. The paper discusses the efforts made to develop<br />

an optical cooler by develop<strong>in</strong>g the appropriate materials technology<br />

<strong>of</strong> ZBLANP fluoride gl<strong>as</strong>s and also the development <strong>of</strong> the optical<br />

cooler cryostat. The novel feature <strong>of</strong> the design is the <strong>in</strong>corporation <strong>of</strong><br />

a radiation shield cooled by a thermoelectric cooler, which enables to<br />

shield the optical cooler element from ambient radiation and also to<br />

mitigate the heat<strong>in</strong>g effect <strong>of</strong> the leaked fluorescent emission from<br />

dielectric coated cooler element surfaces. A nodal network thermal<br />

analysis h<strong>as</strong> been carried out to optimize the thermal performance <strong>of</strong><br />

the cooler. The paper describes design <strong>of</strong> the cryostat and the<br />

experimental work carried out.<br />

C1-M-09 Development <strong>of</strong> a cryogen-free cont<strong>in</strong>uous ADR<br />

system for micro-gravity experiments.<br />

K. Takah<strong>as</strong>hi, H. Nakagome, Chiba University; K.<br />

Kamiya, T. Numazawa, National Institute for<br />

Materials Science; P. Shirron, D. Wegel,<br />

NASA/GSFC.<br />

It h<strong>as</strong> been widely recognized that ultra low-temperature environment<br />

is vital foundation to implement micro-gravity missions such <strong>as</strong> b<strong>as</strong>ic<br />

science and X-ray <strong>as</strong>tronomy. In particular, TES(Transition Edge<br />

Sensor) type X-ray microcalorimeters, be<strong>in</strong>g planned for future<br />

science satellite missions <strong>in</strong> JAXA, NASA and ESA, requires a<br />

temperature <strong>of</strong> 100mK or less. Added to these, study on <strong>format</strong>ion <strong>of</strong><br />

solid helium facet <strong>as</strong> an example <strong>of</strong> b<strong>as</strong>ic science under micro-gravity<br />

also needs 100mK environment. For ground-b<strong>as</strong>ed experiments,<br />

dilution refrigerators make use <strong>of</strong> the gravity, it is difficult for them to<br />

implement under micro-gravity environment. On this po<strong>in</strong>t, the ADR<br />

h<strong>as</strong> advantage s<strong>in</strong>ce it is <strong>in</strong>dependent <strong>of</strong> the gravity. In this study, we<br />

will report development <strong>of</strong> a cryogen-free cont<strong>in</strong>uous ADR orig<strong>in</strong>ally<br />

developed by NASA/GSFC and its cool<strong>in</strong>g application for airborne<br />

micro-gravity experiment planned by NIMS, GSFC and JAXA.<br />

Page 13 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-M-10 Development <strong>of</strong> a Cryogenic Gate Valve with<br />

Robust Seal<strong>in</strong>g<br />

W.H. Hatfield, Sierra Lobo, Inc.; J.P. S<strong>as</strong>s, NASA<br />

KSC.<br />

A s<strong>of</strong>t-seat cryogenic gate valve h<strong>as</strong> been designed, fabricated, and<br />

demonstrated by the Cryogenics Test Laboratory at the Kennedy<br />

Space Center (KSC), featur<strong>in</strong>g a robust seal<strong>in</strong>g technology and a high<br />

Cv flow characteristic. The robust seat design <strong>in</strong>corporates a novel<br />

retract<strong>in</strong>g seat-reta<strong>in</strong><strong>in</strong>g disk to prevent s<strong>of</strong>t-seat abr<strong>as</strong>ive wear and<br />

damage on the valve body hard seat. Advanced materials were<br />

<strong>in</strong>corporated <strong>in</strong>to the design, <strong>in</strong>clud<strong>in</strong>g porous sponge<br />

polytetrafluoroethylene (PTFE) for the seat material and titanium<br />

nitride coat<strong>in</strong>g for the 316 sta<strong>in</strong>less-steel surfaces that are subject to<br />

wear<strong>in</strong>g or gall<strong>in</strong>g. The valve is suitable for applications from<br />

ambient temperature down to liquid nitrogen temperature (77 K), with<br />

a seat leakage rate <strong>of</strong> less than 1 sccm per <strong>in</strong>ch <strong>of</strong> valve diameter. The<br />

very low seat leakage, throttl<strong>in</strong>g capability, and high Cv flow<br />

characteristic <strong>of</strong> the valve make it suitable for block valve applications<br />

on standard to very large cryogenic storage tanks.<br />

C1-M-11 Atmospheric Pressure Effects on Cryogenic<br />

Storage Tank Boil<strong>of</strong>f<br />

J.P. S<strong>as</strong>s, C.R. Fortier, NASA KSC.<br />

The Cryogenics Test Laboratory at the Kennedy Space Center<br />

rout<strong>in</strong>ely uses cryostat test hardware to evaluate comparative and<br />

absolute thermal conductivities <strong>of</strong> a wide array <strong>of</strong> <strong>in</strong>sulation systems.<br />

The test method is b<strong>as</strong>ed on me<strong>as</strong>urement <strong>of</strong> the flow rate <strong>of</strong> g<strong>as</strong><br />

evolved <strong>as</strong> a result <strong>of</strong> evaporative boil<strong>of</strong>f <strong>of</strong> a cryogenic liquid. The<br />

g<strong>as</strong> flow rate typically stabilizes after a couple <strong>of</strong> hours to a couple <strong>of</strong><br />

days, depend<strong>in</strong>g upon the test setup. The stable flow rate value is then<br />

used to calculate the thermal conductivity for the <strong>in</strong>sulation system<br />

be<strong>in</strong>g tested. The latest set <strong>of</strong> identical cryostats, 1000-L spherical<br />

tanks, exhibited different behavior. On a macro level, the flow rate<br />

did stabilize after a couple <strong>of</strong> days; however, the stable flow rate w<strong>as</strong><br />

oscillatory, with peak-to-peak amplitude <strong>of</strong> up to 25% <strong>of</strong> the nom<strong>in</strong>al<br />

value and a consistent period. The source <strong>of</strong> the oscillation h<strong>as</strong> been<br />

traced to variations <strong>in</strong> atmospheric pressure caused by atmospheric<br />

tides similar to oceanic tides. This paper will present analysis <strong>of</strong> this<br />

phenomenon, <strong>in</strong>clud<strong>in</strong>g a calculation that expla<strong>in</strong>s why other cryostats<br />

are not affected by it.<br />

C1-M-12 Cryocooler Prognostic Health Management<br />

System<br />

B. Penswick, Sest, Inc.; A. Shaw, Sest, Inc; C.<br />

Dodson, T. Roberts, Air Force Research Laboratory.<br />

High performance sensors are play<strong>in</strong>g an <strong>in</strong>cre<strong>as</strong><strong>in</strong>gly important role<br />

<strong>in</strong> all <strong>as</strong>pects <strong>of</strong> all critical DoD missions. There is a family <strong>of</strong> sensors<br />

that operate with improved sensitivities if cooled to very low<br />

(cryogenic) temperatures. For these sensors a healthy and reliable<br />

mechanical refrigeration system (cryocooler) is required. The ability<br />

to accurately predict the “health” or rema<strong>in</strong><strong>in</strong>g useful life <strong>of</strong> the<br />

cryocooler h<strong>as</strong> significant benefits from the viewpo<strong>in</strong>t <strong>of</strong> <strong>in</strong>sur<strong>in</strong>g that<br />

mission critical functions can be carried out with a high probability <strong>of</strong><br />

success. The proposed paper provides an overview and approaches<br />

used for the development <strong>of</strong> a Cryocooler Prognostic Health<br />

Management System capable <strong>of</strong> <strong>as</strong>sess<strong>in</strong>g the cryocooler “health”<br />

from the viewpo<strong>in</strong>t <strong>of</strong> the level <strong>of</strong> performance degradation and/or the<br />

potential for near term failure. Additionally, it quantifies the reliable<br />

rema<strong>in</strong><strong>in</strong>g useful life <strong>of</strong> the cryocooler. While the proposed system is<br />

focused on the specific application to l<strong>in</strong>ear drive cryocoolers,<br />

especially for DoD, many <strong>of</strong> the attributes <strong>of</strong> the system can be<br />

applied to other specialized system hardware <strong>in</strong> both commercial and<br />

U.S. Government agency for situations where it is critical that all<br />

<strong>as</strong>pects <strong>of</strong> the hardware “health” and “rema<strong>in</strong><strong>in</strong>g useful life” be fully<br />

understood. Several benefits <strong>of</strong> the health monitor<strong>in</strong>g system are also<br />

described <strong>in</strong> the paper.<br />

C1-N Large Scale Refrigerators and<br />

Liquefiers - I<br />

C1-N-01 The on-site status <strong>of</strong> the KSTAR helium<br />

refrigeration system<br />

H.-S. Chang, D.S. Park, J.J. Joo, K.W. Cho, Y.S.<br />

Kim, J.S. Bak, National Fusion Research Center;<br />

H.M. Kim, M.C. Cho, I.K. Kwon, Samsung<br />

Eng<strong>in</strong>eer<strong>in</strong>g and Construction Corporation; E. Fauve,<br />

J.-M. Bernhardt, P. Dauguet, J. Beauvisage, F.<br />

Andrieu, Air Liquide - Advanced Technologies<br />

Division; G.M. Gistau Baguer, Consultant - Biviers.<br />

S<strong>in</strong>ce the first “Cryogenic System Design Description” <strong>of</strong> the KSTAR<br />

helium refrigeration system (HRS) had been carried out <strong>in</strong> year 2000,<br />

many modifications and changes have been applied due to both<br />

system optimization and improved knowledge <strong>of</strong> the cold component<br />

<strong>of</strong> KSTAR. The present specification <strong>of</strong> the KSTAR HRS had been<br />

fixed dur<strong>in</strong>g the “Design Clarification Meet<strong>in</strong>g”, beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> year<br />

2005. Consequent manufactur<strong>in</strong>g <strong>of</strong> ma<strong>in</strong> equipments, such <strong>as</strong><br />

compressor station (C/S), cold box (C/B), and distribution box (D/B)<br />

w<strong>as</strong> completed by or under the supervision <strong>of</strong> Air Liquide (AL) DTA<br />

by the end <strong>of</strong> 2006. The major components <strong>of</strong> the C/S are 2 low and 2<br />

high pressure compressor units and an oil removal system. The<br />

cool<strong>in</strong>g power <strong>of</strong> the C/B at 4.5 K equivalent is 9 kW which is<br />

extracted by 6 AL turbo expanders. The D/B is a valve box hous<strong>in</strong>g<br />

49 cryogenic valves, 2 supercritical helium circulators, 1 cold<br />

compressor, and 7 heat exchangers immersed <strong>in</strong> a 4 m3 liquid helium<br />

storage. The <strong>in</strong>stallation and commission<strong>in</strong>g <strong>of</strong> the KSTAR HRS is<br />

planned to be executed <strong>in</strong> year 20<strong>07</strong>.<br />

In this proceed<strong>in</strong>g, we will <strong>in</strong>troduce the on-site <strong>in</strong>stallation and<br />

commission<strong>in</strong>g status <strong>of</strong> the KSTAR HRS. In addition, the f<strong>in</strong>al<br />

specification and design features <strong>of</strong> the HRS and the cool<strong>in</strong>g schemes<br />

<strong>of</strong> the KSTAR cold components, which consist <strong>of</strong> superconduct<strong>in</strong>g<br />

(SC) magnets and correspond<strong>in</strong>g structures, SC bus-l<strong>in</strong>es, current<br />

leads, and thermal shields, will be presented.<br />

C1-N-02 The JT60SA Cryoplant Current Design Status<br />

D. Henry, P. Reynaud, J.-Y. Journeaux, J.-L.<br />

Maréchal, D. Balaguer, Ch. Roux, Département de<br />

Recherche sur la Fusion Contrôlée, Association ; F.<br />

Michel, P. Rousset, Département de Recherche<br />

Fondamentale sur la Matière Condensée,<br />

CEA/Grenoble, F-38000 Grenoble France.<br />

In the framework on the ITER Broader Approach, CEA is carry<strong>in</strong>g<br />

out the procurement <strong>of</strong> the Cryogenic System to the JA-EU Satellite<br />

Tokamak JT60SA, which should be operated <strong>in</strong> Japan at JAEA, Naka<br />

s<strong>in</strong>ce 2014. Accord<strong>in</strong>g to the Conceptual Design Review Report,<br />

JT60SA is to operate for periods <strong>of</strong> at le<strong>as</strong>t 6 months per years, with<br />

major shutdown periods <strong>in</strong> between for ma<strong>in</strong>tenance and further<br />

upgrades <strong>in</strong>stallation. For this operation scenario, the cryoplant and<br />

the cryodistribution have to cope with different heat loads which<br />

depend on the different JT60SA operat<strong>in</strong>g states. The cryoplant<br />

consists <strong>of</strong> two 4.5 K refrigerators and one 80 K helium loop coupled<br />

with an LN2 Pre-Cooler. These cryogenic subsystems have to operate<br />

simultaneously <strong>in</strong> order to remove the heat loads from the magnet, 80<br />

K shields, divertor cryopumps and Pellet Injection System.<br />

The first part <strong>of</strong> this study b<strong>as</strong>ed on the Process Flow Diagram (PFD),<br />

presents the current design status <strong>of</strong> the JT60SA cryogenic system.<br />

The second part is dedicated to the analysis <strong>of</strong> the cryoplant normal<br />

operation modes <strong>in</strong>clud<strong>in</strong>g the regeneration mode <strong>of</strong> the divertor<br />

cryopumps.<br />

Thanks to this analysis, the architecture <strong>of</strong> the present PFD is<br />

proposed <strong>in</strong> order to meet the technical specifications <strong>of</strong> the cryoplant<br />

with the JT60SA operation requirements.<br />

Page 14 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-N-03 Performance Study for Cryogenic System at<br />

NSRRC<br />

H.H. Tsai, F.Z. Hsiao, H.C. Li, S.H. Chang, W.S.<br />

Chiou, NSRRC.<br />

A new cryogenic system w<strong>as</strong> <strong>in</strong>stalled on September <strong>of</strong> the year 2006<br />

at NSRRC. So far, two superconduct<strong>in</strong>g magnets and one<br />

superconduct<strong>in</strong>g cavity for RF are cooled by one 450W liquid Helium<br />

system which had already been <strong>in</strong>stalled on the year 2002. The new<br />

system is plann<strong>in</strong>g to supply the liquid helium to five superconduct<strong>in</strong>g<br />

magnets and be<strong>in</strong>g a backup <strong>of</strong> the first one by transfer valve box.<br />

This paper presents the variation <strong>of</strong> parameters which were precool<strong>in</strong>g<br />

temperature (from 87K to 105K), cold turb<strong>in</strong>e outlet temperature<br />

(from 10K to 11.5K) and heat<strong>in</strong>g power to the stability <strong>of</strong> operation<br />

and liquefaction rate.<br />

C1-N-04 Prelim<strong>in</strong>ary Commission<strong>in</strong>g <strong>of</strong> Cryogenic<br />

System <strong>of</strong> BES III<br />

Z.G Zong, L. Zhang, L.Q Liu, Technical Institute <strong>of</strong><br />

Physics and Chemistry, Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences;<br />

S.P. Li, K. He, Institute <strong>of</strong> High Energy Physics,<br />

Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences.<br />

A helium cryogenic system with cool<strong>in</strong>g capacity <strong>of</strong> 500 W at 4.5 K<br />

w<strong>as</strong> set up at Institute <strong>of</strong> High Energy Physics (IHEP), Ch<strong>in</strong>ese<br />

Academy <strong>of</strong> Sciences, Beij<strong>in</strong>g. This helium refrigerat<strong>in</strong>g system is<br />

dedicated for the cool<strong>in</strong>g <strong>of</strong> two <strong>in</strong>teraction region quadrupole<br />

magnets (SCQ) and one detector solenoid magnet (SSM), which are<br />

the key devices <strong>of</strong> the upgrade project <strong>of</strong> Beij<strong>in</strong>g Electron-Positron<br />

Collider (BEPC II). Commission<strong>in</strong>g <strong>of</strong> the cryogenic system with the<br />

detector magnet and SCQ magnets w<strong>as</strong> carried out. This paper will<br />

present the overall status and some test results <strong>of</strong> the superconduct<strong>in</strong>g<br />

devices and cryogenic system dur<strong>in</strong>g the commission<strong>in</strong>g. The fact that<br />

the cryogenic system stood the racket <strong>of</strong> the quench <strong>of</strong> SSM <strong>in</strong>dicates<br />

the system is very robust.<br />

C1-N-05 Performance <strong>of</strong> cold compressors <strong>in</strong> the subcool<strong>in</strong>g<br />

system for LHD.<br />

H. Wakisaka, S. Yosh<strong>in</strong>aga, T. Takah<strong>as</strong>hi, N. Saji,<br />

Ishikawajima-Harima Heavy Industries Co., Ltd.; T.<br />

Mito, S. Imagawa, S. Hamaguchi, , National Institute<br />

for Fusion Science.<br />

To attempt the improvement <strong>of</strong> the cryogenic stability <strong>of</strong> helical coils<br />

<strong>in</strong> the Large Helical Device (LHD) <strong>of</strong> National Institute for Fusion<br />

Science(NIFS), the cool<strong>in</strong>g system w<strong>as</strong> upgraded with an additional<br />

pre-cooler. Two-stage cold compressors were adopted for this system<br />

to decompress the heat exchanger tank to 24 kPa <strong>as</strong> 3K sub-cool<strong>in</strong>g<br />

system. The nom<strong>in</strong>al flow rate is 15.9 g/s at the outlet condition <strong>of</strong><br />

120 kPa. The rotor <strong>of</strong> the compressor is supported by dynamic g<strong>as</strong><br />

bear<strong>in</strong>gs and is driven by a variable-frequency motor that is located at<br />

the ambient temperature. These designs have the advantage <strong>of</strong> e<strong>as</strong>y to<br />

ma<strong>in</strong>tenance and high reliability <strong>as</strong> a complete oil-free mach<strong>in</strong>e. 80 K<br />

g<strong>as</strong> cooled thermal shield<strong>in</strong>g is adopted between the compressor<br />

impeller operat<strong>in</strong>g at 3.0 K and the ambient temperature part to<br />

decre<strong>as</strong>e heat leak through the c<strong>as</strong><strong>in</strong>g and shaft. This compressor is<br />

able to achieve high performance by adopt<strong>in</strong>g this structure and a high<br />

efficiency impeller. These cold compressors we re able to atta<strong>in</strong> the<br />

nom<strong>in</strong>al specification <strong>as</strong> the result <strong>of</strong> performance tests at NIFS.<br />

C1-N-06 A Theoretical and Practicle Approach on 20K<br />

Brayton Refrigerator: KHNP WTRF Helium<br />

Refrigerator<br />

P. Briend, E. Fauve, Advanced Technology Division -<br />

Air Liquide.<br />

The large 20K refrigerators designed for detritiation facilities or cold<br />

neutron source are commonly helium Brayton cycle mach<strong>in</strong>es.<br />

Beyond the apparently simple process, it is important to underl<strong>in</strong>e the<br />

weight <strong>of</strong> each component on the cycle efficiency. A thermodynamic<br />

and exergetic approach is <strong>of</strong> great help to design the system and<br />

analyse the deviations <strong>in</strong> operation. The WTRF/KHNP 30 kW@20K<br />

Helium Refrigerator that w<strong>as</strong> commissioned <strong>in</strong> late 2006 illustrates<br />

the pert<strong>in</strong>ence <strong>of</strong> this approach. The analysis <strong>of</strong> the deviation with<br />

expected results are expla<strong>in</strong>ed through theoretical thermodynamical<br />

and exergetic balance. The focus on the ma<strong>in</strong> heat exchanger led to<br />

the right decision <strong>of</strong> an upgrad<strong>in</strong>g modification. The practical on site<br />

repair <strong>of</strong> the defaulted HX is illustrated and the f<strong>in</strong>al and successful<br />

performance test <strong>of</strong> the refrigerator coupled with the deuterium/tritium<br />

distillation is presented.<br />

C1-N-<strong>07</strong> Numerical simulation <strong>of</strong> the cryogenic system <strong>of</strong><br />

BEPC II<br />

Z.G Zong, L.Q Liu, X.L Xiong, L. Zhang, Technical<br />

Institute <strong>of</strong> Physics and Chemistry, Ch<strong>in</strong>ese Academy<br />

<strong>of</strong> Sciences.<br />

Cryogenic system <strong>of</strong> BEPC II with a total capacity <strong>of</strong> 1.0 kW at 4.5 K<br />

for cool<strong>in</strong>g superconduct<strong>in</strong>g devices is be<strong>in</strong>g built at IHEP. Two sets<br />

<strong>of</strong> refrigerators with each capacity <strong>of</strong> 500 W at 4.5 K are adopted. In<br />

order to prepare for the commission<strong>in</strong>g <strong>of</strong> the cryogenic system, the<br />

refrigeration process w<strong>as</strong> simulated and analyzed numerically. The<br />

simulation w<strong>as</strong> conducted b<strong>as</strong>ed on the latest eng<strong>in</strong>eer<strong>in</strong>g progresses<br />

and focus<strong>in</strong>g on the steady state operation mode. The simulation<br />

results, such <strong>as</strong> the helium m<strong>as</strong>s flow rates and pressure drops over the<br />

control valves <strong>of</strong> different cool<strong>in</strong>g channels, thermodynamic<br />

parameters <strong>of</strong> each superconduct<strong>in</strong>g device, etc., are presented <strong>in</strong> this<br />

paper. Under consider<strong>in</strong>g the real heat loads, the powers <strong>of</strong> heaters <strong>of</strong><br />

each device were figured out to realize the nom<strong>in</strong>al operation modes.<br />

C1-N-08 Dynamic simulation <strong>of</strong> an helium refrigerator.<br />

P. Roussel, C. Deschildre, P. Bonnay, J.M. Poncet, F.<br />

Michel, A. Girard, CEA-Grenoble; A. Barraud, P.<br />

Briend, Laboratoire d`Automatisme de Grenoble; S.E.<br />

Sequeira, Air Liquide.<br />

A dynamic simulation <strong>of</strong> a large scale exist<strong>in</strong>g refrigerator h<strong>as</strong> been<br />

performed us<strong>in</strong>g the <strong>in</strong>dustrial s<strong>of</strong>tware HYSYS. This s<strong>of</strong>tware is<br />

ma<strong>in</strong>ly used <strong>in</strong> chemical and ref<strong>in</strong>ery <strong>in</strong>dustries but is also able to<br />

cope with cryogenic fluids, <strong>as</strong> most cryogenic companies already use<br />

it <strong>in</strong> steady state mode for design purposes.<br />

The first goal <strong>of</strong> our study h<strong>as</strong> been to qualify the dynamic module <strong>of</strong><br />

HYSYS and then to simulate our refrigerator. This refrigerator which<br />

is the 400W at 1.8K test facility at CEA-Grenoble, comprises all the<br />

typical equipments <strong>of</strong> large scale refrigerators: plate f<strong>in</strong>s counter flow<br />

heat exchangers, centrifugal cold compressors, warm screw<br />

compressors, helium ph<strong>as</strong>e separators and cold turb<strong>in</strong>e.<br />

This dynamic simulation h<strong>as</strong> helped for process control and regulation<br />

dur<strong>in</strong>g normal operation. Exist<strong>in</strong>g control loops were taken <strong>in</strong>to<br />

account <strong>in</strong> order to simulate the refrigerator behaviour with loads<br />

variations.<br />

This paper presents, the model obta<strong>in</strong>ed us<strong>in</strong>g the HYSYS s<strong>of</strong>tware<br />

and the results compared to experimental<br />

Page 15 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-N-09 Understand<strong>in</strong>g dynamic behavior <strong>of</strong> a large scale<br />

cryogenic plant<br />

R. Maekawa, K. Ooba, T. Mito, National Institute for<br />

Fusion Science; M. Nobutoki, Taiyo Nippon Sanso Co.<br />

Development <strong>of</strong> Cryogenic Process REal-time SimulaTor (C-PREST)<br />

h<strong>as</strong> been f<strong>in</strong>alized to provide a platform to study refrigeration process<br />

simulation for the entire cryogenic system for the Large Helical<br />

Device (LHD). To understand dynamic behavior <strong>of</strong> the LHD<br />

cryogenic plant, the simulations have been carried out dur<strong>in</strong>g the<br />

cooldown operation. Although LHD h<strong>as</strong> three different cool<strong>in</strong>g<br />

schemes, a pool boil<strong>in</strong>g, a forced-flow supercritical helium cool<strong>in</strong>g<br />

and a two-ph<strong>as</strong>e flow cool<strong>in</strong>g, C-PREST simulates comparable results<br />

<strong>of</strong> LHD cooldown process. To validate the versatility <strong>of</strong> C-PREST,<br />

the heat pulse(s) were applied to the 20000 liters liquid helium<br />

reservoir <strong>of</strong> a helium refrigerator/liquefier. This paper describes<br />

operations <strong>of</strong> large cryogenic plant and discusses dynamic behavior <strong>of</strong><br />

helium refrigerator/liquefier under various heat pulse <strong>in</strong>puts.<br />

Tuesday, <strong>07</strong>/17/<strong>07</strong> Oral<br />

3:00pm - 5:00pm<br />

C1-O Stirl<strong>in</strong>g and Pulse Tube Capabilities<br />

Overview (Aerospace)<br />

C1-O-01 Heritage Overview: 20 Years <strong>of</strong> Commercial<br />

Cryocooler Production for Space<br />

A.S. Gibson, J.S. Reed, EADS Astrium Limited.<br />

Space cryocooler production (formerly BAe and MMS) h<strong>as</strong> spanned<br />

more than 2 decades. Industrialisation h<strong>as</strong> taken the cryocooler from<br />

the laboratory to a proven space product. Over this period, Astrium<br />

have manufactured more than 50 Stirl<strong>in</strong>g coolers, 15 <strong>of</strong> which have<br />

flown. An historical review with lessons learned is presented.<br />

Follow<strong>in</strong>g transfer <strong>of</strong> the heritage design via Rutherford Appleton<br />

Laboratory (RAL), manufactur<strong>in</strong>g began at Astrium on the first 80K<br />

Stirl<strong>in</strong>g coolers <strong>in</strong> 1986, with production <strong>of</strong> 2 development models (1<br />

for ESA) and an EM unit. Follow<strong>in</strong>g successes <strong>of</strong> Oxford/RAL<br />

coolers on ISAMS, ATSR-1 and ATSR-2, Astrium built standard 80K<br />

units for IMG-ADEOS(1996) and HTSSE-II(1997). 23 coolers <strong>of</strong> this<br />

type were built <strong>in</strong> 4 batches. A higher heat lift version (1991) led to<br />

the standard 50-80K product. These cont<strong>in</strong>ue to fly <strong>in</strong> pairs on<br />

MOPITT(1999), MIPAS(2002), AATSR(2002), INTEGRAL(2002)<br />

and a military satellite (2004), with a s<strong>in</strong>gle unit on ODIN(2001).<br />

Another pair is to be launched <strong>in</strong> 20<strong>07</strong>.<br />

Industrialisation <strong>of</strong> a 2-stage RAL Stirl<strong>in</strong>g cooler design began <strong>in</strong><br />

1990 (ESA funded), to provide cool<strong>in</strong>g from 20-50K. An EM w<strong>as</strong><br />

produced, followed by 3 QM units. In 2000, an improved 10K design<br />

(collaboration with RAL) w<strong>as</strong> built for the US-Air Force Research<br />

Laboratory yielded a record temperature <strong>of</strong> 9.4K. Notably,<br />

development <strong>of</strong> this design h<strong>as</strong> recently been re-<strong>in</strong>itiated (ESA<br />

fund<strong>in</strong>g).<br />

Astrium would like to acknowledge fund<strong>in</strong>g from ESA for<br />

<strong>in</strong>dustrialisation <strong>of</strong> cryocoolers.<br />

C1-O-02 An Overview <strong>of</strong> the Performance and Maturity<br />

<strong>of</strong> Long Life Cryocoolers for Space Applications<br />

D.G. Curran, S.W. Yuan, The Aerospace Corporation.<br />

A 20<strong>07</strong> survey is made <strong>of</strong> long life cryocoolers <strong>in</strong>volv<strong>in</strong>g Stirl<strong>in</strong>g,<br />

Pulse Tube, reverse Brayton, and Hybrid variants for space<br />

applications. A number <strong>of</strong> unit configuration types <strong>in</strong>volv<strong>in</strong>g s<strong>in</strong>gle<br />

and multi-temperature stages is <strong>in</strong>cluded. The performance range<br />

varies from milliwatts <strong>of</strong> cool<strong>in</strong>g at 4K to 10`s <strong>of</strong> watts at 150K. The<br />

objectives for this survey are to provide a hardware summary <strong>of</strong><br />

available units from several U.S. manufacturers <strong>in</strong>clud<strong>in</strong>g the heritage<br />

and maturity level suitable for space use <strong>in</strong> payloads and <strong>in</strong>struments.<br />

Listed <strong>in</strong> the summary are life test and flight hours, environmental test<br />

levels, size, and electronics controller capabilities <strong>as</strong> well <strong>as</strong> load<br />

curves and specific power <strong>as</strong> a function <strong>of</strong> temperature.<br />

C1-O-03 Endurance Evaluation <strong>of</strong> Long-Life Space<br />

Cryocoolers at AFRL- An Update<br />

J. Sutliff, W. Scheirer, E. Pettyjohn, T. Roberts,<br />

AFRL/VSSS.<br />

The Air Force Research Lab (AFRL) <strong>in</strong> conjunction with various<br />

defense contractors h<strong>as</strong> developed several long-life cryocooler<br />

designs. These cooler <strong>in</strong>clude the NGST HEC, the Raytheon PSC, the<br />

Ball 6020, and the Ball 35-60K. They represent different technologies<br />

<strong>in</strong>clud<strong>in</strong>g pulse tube and Stirl<strong>in</strong>g cycle. The coolers operat<strong>in</strong>g times<br />

range from the NGST HEC which h<strong>as</strong> been runn<strong>in</strong>g 28,000 hours to<br />

the TRW 6020 which h<strong>as</strong> been operat<strong>in</strong>g for more that 69,000 hours.<br />

Endurance evaluation attempts to describe the long-life potential <strong>of</strong><br />

these mach<strong>in</strong>es with a complete demonstration <strong>of</strong> these mach<strong>in</strong>es<br />

be<strong>in</strong>g 5-10 years <strong>of</strong> constant operational life <strong>in</strong> an environment<br />

designed to simulate the conditions <strong>of</strong> space. The test<strong>in</strong>g hopes to<br />

show any wear out, fatigue, or electronic malfunction so that<br />

cryocoolers will cont<strong>in</strong>ue to improve their long-life potential.<br />

Endurance test<strong>in</strong>g also quantifies the performance degradation over<br />

time to help determ<strong>in</strong>e needs <strong>of</strong> future satellites. Data presented<br />

<strong>in</strong>dicates that certa<strong>in</strong> degradation patterns exist <strong>in</strong> these cryogenic<br />

refrigerators which will pose a challenge for their long term use <strong>in</strong><br />

multi-year missions.<br />

C1-O-04 Air Liquide Space Pulse Tube Cryocoolers<br />

T. Trollier, J. Tanchon, J. Buquet, A. Ravex, P.<br />

Crespi, Air Liquide Advanced Technology Division,<br />

AL/DTA, S<strong>as</strong>senage, France.<br />

Thanks to important development efforts completed and partial ESA<br />

fund<strong>in</strong>g, AL/DTA is now <strong>in</strong> position to propose two Pulse Tube<br />

cooler systems <strong>in</strong> the 40-80K temperature range for com<strong>in</strong>g Earth<br />

Observation missions such <strong>as</strong> MTG, Sent<strong>in</strong>el 3, etc… The two pulse<br />

tube coolers thermo-mechanical units are yet qualified aga<strong>in</strong>st<br />

environmental constra<strong>in</strong>ts.<br />

In addition to these two Pulse Tube cooler systems, a 20-50K multistage<br />

low temperature Pulse Tube cooler is currently under<br />

development for future Scientist Missions such <strong>as</strong> Xeus, Darw<strong>in</strong>, etc..<br />

The paper presents the current status <strong>of</strong> each <strong>of</strong> the three thermomechanical<br />

units and <strong>as</strong>sociated cooler drive electronics.<br />

C1-O-05 High Performance Pulse Tube Cryocoolers<br />

J.R. Olson, P. Champagne, E. Roth, B. Evtimov, T.C.<br />

N<strong>as</strong>t, Lockheed Mart<strong>in</strong> ATC.<br />

Lockheed Mart<strong>in</strong>’s Advanced Technology Center (LM-ATC) h<strong>as</strong><br />

been develop<strong>in</strong>g pulse tube cryocoolers for more than ten years.<br />

Recent <strong>in</strong>novations <strong>in</strong>clude successful test<strong>in</strong>g <strong>of</strong> four-stage coldheads,<br />

no-load temperatures below 4 K, and the recent development <strong>of</strong> a<br />

high-efficiency compressor.<br />

This paper discusses the predicted performance <strong>of</strong> s<strong>in</strong>gle and multiple<br />

stage pulse tube coldheads driven by our new 5 kg “M5Midi”<br />

compressor, which is capable <strong>of</strong> 90% efficiency with 200W <strong>in</strong>put<br />

power, and a maximum <strong>in</strong>put power <strong>of</strong> 1000W. This compressor<br />

reta<strong>in</strong>s the simplicity <strong>of</strong> earlier LM-ATC compressors: it h<strong>as</strong> a<br />

mov<strong>in</strong>g magnet and an external electrical coil, m<strong>in</strong>imiz<strong>in</strong>g organics <strong>in</strong><br />

the work<strong>in</strong>g g<strong>as</strong> and requir<strong>in</strong>g no electrical penetrations through the<br />

pressure wall. Motor losses were m<strong>in</strong>imized dur<strong>in</strong>g design, result<strong>in</strong>g<br />

<strong>in</strong> a simple, e<strong>as</strong>ily-manufactured compressor with state-<strong>of</strong>-the-art<br />

motor efficiency.<br />

The predicted cryocooler performance is presented <strong>as</strong> simple<br />

formulae, allow<strong>in</strong>g an eng<strong>in</strong>eer to <strong>in</strong>clude the impact <strong>of</strong> a highlyoptimized<br />

cryocooler <strong>in</strong>to a full system analysis. Performance is<br />

given <strong>as</strong> a function <strong>of</strong> the heat rejection temperature and the cold tip<br />

temperature and cool<strong>in</strong>g load. A discussion <strong>of</strong> the optimum number<br />

<strong>of</strong> coldhead stages will be given. We will also discuss a novel<br />

configuration where the compressor operates with no heat rejection,<br />

allow<strong>in</strong>g very flimsy attachment to the satellite so <strong>as</strong> to m<strong>in</strong>imize<br />

exported vibration.<br />

Page 16 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-O-06 Ball Aerospace Hybrid Space Cryocoolers<br />

W. Gully, D.S. Glaister, P. Hendershott, V. Kotsubo,<br />

E.D. Marquardt, Ball Aerospace & Technologies<br />

Corp..<br />

This paper describes the design, development, test<strong>in</strong>g and<br />

performance at Ball Aerospace <strong>of</strong> a long life, hybrid (comb<strong>in</strong>ation <strong>of</strong><br />

Stirl<strong>in</strong>g and Joule-Thomson thermodynamic cycles) space<br />

cryocoolers. Hybrid coolers are synergistic comb<strong>in</strong>ation <strong>of</strong> two<br />

thermodynamic cycles which comb<strong>in</strong>es advantages <strong>of</strong> each cycle to<br />

yield overall improved performance. Hybrid cooler performance<br />

advantages <strong>in</strong>clude: 1) load level<strong>in</strong>g <strong>of</strong> large heat loads, 2) remote<br />

cryogenic cool<strong>in</strong>g with very low to negligible <strong>in</strong>duced vibration and<br />

jitter, 3) very low redundant (<strong>of</strong>f state) cooler penalties, 4) high power<br />

efficiency, especially at low temperatures, and 5) simplified system<br />

<strong>in</strong>tegration with capability to cross gimbals and no need for thermal<br />

straps or switches. Ball is currently develop<strong>in</strong>g hybrid coolers on<br />

several programs. The 35 K hybrid cooler provides 2.0 W at 35 K and<br />

8.5 W at 85 K with an emph<strong>as</strong>is on load level<strong>in</strong>g <strong>of</strong> high transient heat<br />

loads and remote, low vibration cool<strong>in</strong>g. The 10 K hybrid cooler<br />

provides 200 mW at 10 K, 700mW at 15 K, and 10.7 W at 85 K with<br />

an emph<strong>as</strong>is on power efficiency. In addition, Ball built and tested a<br />

complete hybrid cooler that met the requirements <strong>of</strong> the JWST Mid-<br />

Infrared Instrument (MIRI) cooler <strong>in</strong>clud<strong>in</strong>g provid<strong>in</strong>g 80 mW at 6 K<br />

and 100 mW at 18 K.<br />

C1-O-<strong>07</strong> Flight Qualified High Capacity Pulse Tube<br />

Cooler<br />

C. Jacob, T. Nguyen, J. Raab, Northrop Grumman<br />

Space Technology.<br />

The High Capacity Cryocooler Flight Qualified Cryocooler (HCC<br />

Qual) is designed to provide large capacity cool<strong>in</strong>g at 35K (2.3 Watts)<br />

and 85 K (14.3 Watts) for space applications which require cold focal<br />

planes and optics cool<strong>in</strong>g. The HCC Qual is built upon the heritage <strong>of</strong><br />

the High Capacity Cryocooler (HCC) with a coaxial cold head<br />

configuration. The coaxial configuration m<strong>in</strong>imizes the cooler<br />

par<strong>as</strong>itic and <strong>of</strong>fers superior cooler <strong>in</strong>tegration. Flight qualification <strong>of</strong><br />

this cryocooler <strong>in</strong>cludes thermal performance mapp<strong>in</strong>g over a range <strong>of</strong><br />

reject temperatures, launch vibration test<strong>in</strong>g and thermal cycl<strong>in</strong>g<br />

test<strong>in</strong>g. Acceptance test data will be presented.<br />

C1-O-08 Raytheon Dual-Use Cryocooler Progress<br />

R.C. Hon, C.S. Kirkconnell, Raytheon Space and<br />

Airborne Systems.<br />

Raytheon <strong>in</strong>itiated development <strong>of</strong> the Dual-Use Cryocooler (DUC) <strong>as</strong><br />

a way <strong>of</strong> bridg<strong>in</strong>g the gap between tactical and space cryocooler<br />

systems. The goal <strong>of</strong> the program is to produce a cryocooler system<br />

with 80% <strong>of</strong> the typical space system functionality at less than 20% <strong>of</strong><br />

the typical cost. A s<strong>in</strong>gle-stage pulse tube configuration w<strong>as</strong> selected<br />

due to its <strong>in</strong>herently low complexity. The compressor module is a<br />

dual-opposed, self balanced design, mak<strong>in</strong>g use <strong>of</strong> a flexure<br />

suspension and clearance gap scheme for long operational life. The<br />

drive electronics is b<strong>as</strong>ed on a robust tactical design, modified for<br />

additional functionality and hardened aga<strong>in</strong>st radiation typical <strong>of</strong> the<br />

space environment.<br />

Development <strong>of</strong> the DUC system h<strong>as</strong> progressed substantially over<br />

the p<strong>as</strong>t two years, <strong>in</strong>clud<strong>in</strong>g the design, build and test<strong>in</strong>g <strong>of</strong> a<br />

br<strong>as</strong>sboard thermo-mechanical unit (TMU). Demonstrated design<br />

simplification features and <strong>in</strong>itial test results are presented.<br />

Significant progress w<strong>as</strong> also made <strong>in</strong> terms <strong>of</strong> electronics<br />

development. Exist<strong>in</strong>g tactical <strong>as</strong>sets were modified for use with the<br />

DUC, <strong>in</strong>clud<strong>in</strong>g the addition <strong>of</strong> separate drive circuits for each<br />

compressor motor. The s<strong>of</strong>tware w<strong>as</strong> modified to enable features not<br />

found <strong>in</strong> typical tactical systems such <strong>as</strong> first-order active vibration<br />

cancellation. The br<strong>as</strong>sboard electronics test results are also<br />

presented.<br />

C1-P Large Scale Refrigerators and<br />

Liquefiers - II<br />

C1-P-01 Large scale helium liquefaction and<br />

considerations for site services for a plant located <strong>in</strong><br />

Algeria<br />

P. Froehlich, J.J. Clausen, L<strong>in</strong>de Kryotechnik AG.<br />

The large scale liquefaction <strong>of</strong> helium extracted from natural g<strong>as</strong> is<br />

depicted. B<strong>as</strong>ed on a block diagram the cha<strong>in</strong>, start<strong>in</strong>g with the<br />

pipel<strong>in</strong>e downstream <strong>of</strong> the natural g<strong>as</strong> plant to the f<strong>in</strong>al storage <strong>of</strong><br />

liquid helium is expla<strong>in</strong>ed. In<strong>format</strong>ion will be provided about the<br />

recent experiences dur<strong>in</strong>g <strong>in</strong>stallation and start-up <strong>of</strong> a bulk helium<br />

liquefaction plant located <strong>in</strong> Skikda, Algeria, <strong>in</strong>clud<strong>in</strong>g part load<br />

operation b<strong>as</strong>ed on a reduced feed g<strong>as</strong> supply.<br />

The local work<strong>in</strong>g and ambient conditions are described <strong>in</strong>clud<strong>in</strong>g<br />

challeng<strong>in</strong>g logistic problems like shipp<strong>in</strong>g and receiv<strong>in</strong>g <strong>of</strong> parts,<br />

qualified and semi-qualified subcontractors, b<strong>as</strong>ic provisions and tools<br />

at site, and precautions to sea water and ambient conditions.<br />

F<strong>in</strong>ally the differences <strong>in</strong> commission<strong>in</strong>g (technically and evaluation<br />

<strong>of</strong> time and work packages) to a European location and standards will<br />

be discussed.<br />

C1-P-02 Status <strong>of</strong> the refrigeration plant for the<br />

Electrostatic<br />

Cryogenic Storage R<strong>in</strong>g (CSR) at MPI-K <strong>in</strong> Heidelberg<br />

R. von Hahn, J. R. Crespo Lopez-Urrutia, H. Fadil,<br />

M. Grieser, K.-U. Kühnel, M. Lange, D. A. Orlov, R.<br />

Repnow, T. Sieber, D. Schwalm, J. Ullrich, A. Wolf,<br />

Max-Planck-Institute for Nuclear Physics; H. Quack,<br />

Ch. Haberstroh, Technische Universität Dresden; D.<br />

Zajfman, Weizmann Institute <strong>of</strong> Science.<br />

At the Max-Planck-Institute for Nuclear Physics <strong>in</strong> Heidelberg a nextgeneration<br />

electrostatic storage r<strong>in</strong>g for atomic and molecular ion<br />

beams is under construction. In contr<strong>as</strong>t to exist<strong>in</strong>g electrostatic<br />

storage r<strong>in</strong>gs our Cryogenic Storage R<strong>in</strong>g CSR will be cooled down to<br />

temperatures below 2 K. The low-temperature <strong>of</strong> the vacuum<br />

enclosure and all ion optical components decisively reduces the<br />

<strong>in</strong>fluence <strong>of</strong> the black-body radiation <strong>in</strong>cident onto the stored particles<br />

such that only the lowest rotational levels <strong>of</strong> radiatively active<br />

molecular ions will be occupied. Moreover, due to the excellent<br />

vacuum <strong>of</strong> up to 10E-15 mbar highly charged (radioactive) ions or<br />

antiprotons can be stored with sufficient life times. A concept for the<br />

cool<strong>in</strong>g <strong>of</strong> the storage r<strong>in</strong>g h<strong>as</strong> been developed and will soon be tested<br />

at a prototype with a length <strong>of</strong> 1/10 <strong>of</strong> the r<strong>in</strong>g. A commercial<br />

refrigerator h<strong>as</strong> been largely set up and is now <strong>in</strong> the commission<strong>in</strong>g<br />

ph<strong>as</strong>e. In this paper the refrigeration plant and first results <strong>of</strong> the testoperation<br />

will be presented.<br />

C1-P-03 The CERN LHC Refrigeration System<br />

P. Dauguet, G.M. Gistau-Baguer, P. Briend, B.<br />

Hilbert, E. Monneret, J.C. Villard, G. Marot, F.<br />

Delcayre, C. Mantileri, F. Hamber, J.C. Courty, P.<br />

Hirel, A. Cohu, H. Moussavi, Air Liquide.<br />

The LHC is the largest particle accelerator <strong>in</strong> the world. It is a<br />

superconduct<strong>in</strong>g mach<strong>in</strong>e over 27 kilometers. Its magnets and cavities<br />

require helium refrigeration and liquefaction <strong>in</strong> the temperature range<br />

1.8 K to 300 K. This is the largest cryogenic system <strong>in</strong> the world<br />

regard<strong>in</strong>g the needed cryogenic power : 144 kW equivalent power at<br />

4.5 K.<br />

The LHC cryogenic system is composed <strong>of</strong> 8 x 18 kW at 4.5 K<br />

refrigerators, 8 x 2.4 kW at 1.8 K refrigerators, 5 ma<strong>in</strong> valve boxes,<br />

more than 27 km <strong>of</strong> helium tranfer l<strong>in</strong>es and around 300 service<br />

modules connect<strong>in</strong>g the tranfer l<strong>in</strong>e to the magnet and cavity str<strong>in</strong>gs.<br />

Most <strong>of</strong> these components have been designed, manufactured,<br />

<strong>in</strong>stalled and started up by Air Liquide. Du to the huge size <strong>of</strong> the<br />

project, the eng<strong>in</strong>eer<strong>in</strong>g, construction and commissionn<strong>in</strong>g <strong>of</strong> the<br />

equipments have l<strong>as</strong>ted for 8 years, from first order <strong>of</strong> equipments <strong>in</strong><br />

1998 to l<strong>as</strong>t commissionn<strong>in</strong>g <strong>in</strong> 2006. Specifications, architecture and<br />

design <strong>of</strong> the major components <strong>of</strong> the LHC Refrigeration System will<br />

be presented <strong>in</strong> the present paper.<br />

Page 17 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-P-04 1.8 K refrigeration units for the LHC: conclusion<br />

<strong>of</strong> procurement ph<strong>as</strong>e and first operational experience<br />

G. Ferl<strong>in</strong>, CERN.<br />

The cool<strong>in</strong>g capacity below 2 K for the superconduct<strong>in</strong>g magnets <strong>of</strong><br />

the Large Hadron Collider (LHC) is provided by eight refrigeration<br />

units <strong>of</strong> 2400 W at 1.8 K, each <strong>of</strong> them coupled to a 4.5 K refrigerator.<br />

After successful test<strong>in</strong>g and acceptance <strong>of</strong> the pre-series units<br />

delivered by the two selected vendors, the 2 pre-series units and the 6<br />

series units were <strong>in</strong>stalled <strong>in</strong> underground cavern at their f<strong>in</strong>al<br />

location. Dur<strong>in</strong>g the l<strong>as</strong>t two years, these 8 units were successfully<br />

tested at their <strong>in</strong>stalled capacity <strong>in</strong> a so-called “capacity check mode”.<br />

After a brief rem<strong>in</strong>der <strong>of</strong> the pre-series commission<strong>in</strong>g tests results, a<br />

statement <strong>of</strong> the tests done at <strong>in</strong>stalled capacity for the eight units will<br />

be reported, with emph<strong>as</strong>is on the reproducibility <strong>of</strong> the results among<br />

the four units supplied by each vendor. Conclusion <strong>of</strong> the procurement<br />

ph<strong>as</strong>e will be drawn with the review <strong>of</strong> the critical po<strong>in</strong>ts that have<br />

been solved. F<strong>in</strong>ally this paper will report on the first operational<br />

experience <strong>of</strong> the units dur<strong>in</strong>g the commission<strong>in</strong>g <strong>of</strong> the LHC sectors<br />

from January 20<strong>07</strong> onwards.<br />

C1-P-05 Design and Manufactur<strong>in</strong>g <strong>of</strong> the KSTAR<br />

Tokamak Helium Refrigeration System<br />

P. Dauguet, P. Briend, I. Abe, E. Fauve, J.M.<br />

Bernhardt, F. Andrieu, J. Beauvisage, Air Liquide.<br />

The KSTAR (Korean Superconduct<strong>in</strong>g Tokamak Advanced Research)<br />

project makes <strong>in</strong>tensive use <strong>of</strong> superconduct<strong>in</strong>g magnets operated at<br />

4.4 K. The cold components <strong>of</strong> KSTAR require forced flow <strong>of</strong><br />

supercritical helium for magnets and structure, boil<strong>in</strong>g liquid helium<br />

for current leads, and g<strong>as</strong>eous helium for thermal shields. A helium<br />

refrigeration system h<strong>as</strong> been customed design for this project. The<br />

purpose <strong>of</strong> this paper is to give a brief overview <strong>of</strong> the proposed<br />

cryogenic system. The thermal loads specified to the refrigerator <strong>in</strong><br />

the different operat<strong>in</strong>g modes <strong>of</strong> the KSTAR tokamak will be<br />

presented. This specification results <strong>in</strong> the def<strong>in</strong>ition <strong>of</strong> a design mode<br />

for the refrigerator. The design and construction <strong>of</strong> the result<strong>in</strong>g 9 kW<br />

at 4.5 K Helium Refrigeration System will be presented.<br />

C1-P-06 Adopted methodology for cool-down <strong>of</strong> SST-1<br />

superconduct<strong>in</strong>g magnet system: Operational experience<br />

with the helium refrigerator<br />

A.K. Sahu, B. Sarkar, P. Panchal, J. Tank, R.<br />

Bhattacharya, R. Panchal, V.L. Tanna, R. Patel, P.<br />

Shukla, J.C. Patel, M. S<strong>in</strong>gh, D. Sonara, R. Sharma, R.<br />

Duggar, Y.C. Saxena, Institute for pl<strong>as</strong>ma research.<br />

The 1.3 kW @ 4.5 K helium refrigerator/liquefier (HRL) h<strong>as</strong> been<br />

commissioned dur<strong>in</strong>g year 2003 and s<strong>in</strong>ce then the HRL is <strong>in</strong><br />

operation for different experiments. The HRL h<strong>as</strong> been operated with<br />

its different modes <strong>as</strong> per the functional requirements <strong>of</strong> the<br />

experiments. The recent experience <strong>of</strong> cool<strong>in</strong>g down the magnet<br />

system (SCMS) <strong>of</strong> SST-1 with 16 nos. <strong>of</strong> toroidal field magnets and 9<br />

nos. <strong>of</strong> poloidal field magnets h<strong>as</strong> been unique. The cool-down<br />

experiment <strong>of</strong> the SCMS h<strong>as</strong> been carried out under physical<br />

parameter constra<strong>in</strong>ts with not so appreciable vacuum <strong>in</strong>side the<br />

cryostat <strong>as</strong> well <strong>as</strong> uneven temperature distribution on the thermal<br />

shield at 80 K. Successful attempt h<strong>as</strong> been made to cool the SCMS<br />

down to 4.5 K. The experience h<strong>as</strong> been unique <strong>as</strong> new<br />

thermodynamic balance <strong>of</strong> the refrigerator had to be adjusted with the<br />

orig<strong>in</strong>al boundary condition <strong>of</strong> the HRL. The enhanced capacity w<strong>as</strong><br />

achieved without any additional hardware. The control system <strong>of</strong> the<br />

HRL w<strong>as</strong> tuned manually to achieve the stable thermodynamic<br />

balance, while keep<strong>in</strong>g the turb<strong>in</strong>e operat<strong>in</strong>g parameters at optimized<br />

condition. Extra m<strong>as</strong>s flow rate requirement h<strong>as</strong> been met by<br />

exploit<strong>in</strong>g the marg<strong>in</strong> available with the compressor station. The paper<br />

will describe the methodology adopted to modify the capacity <strong>of</strong> HRL<br />

with safety precaution and experience <strong>of</strong> SCMS cool down to 4.5 K.<br />

The operational experience along with control system <strong>of</strong> the HRL will<br />

be discussed.<br />

C1-P-<strong>07</strong> The Relativistic Heavy Ion Collider (RHIC)<br />

Cryogenic System at Brookhaven National Laboratory:<br />

Review <strong>of</strong> the Modifications and Upgrades s<strong>in</strong>ce 2002 and<br />

Planned Improvements<br />

Y.R. Than, J. Tuozzolo , Brookhaven National<br />

Laboratory; A. Sidi-Yekhlef, V. Ganni, P. Knudsen, D.<br />

Arenius, Thom<strong>as</strong> Jefferson National Accelerator<br />

Facility.<br />

An ongo<strong>in</strong>g program at Brookhaven National Laboratory consists <strong>of</strong><br />

improv<strong>in</strong>g the operational efficiency, reliability and stability <strong>of</strong> the<br />

cryogenic system which also resulted <strong>in</strong> improved beam quality <strong>of</strong> the<br />

Relativistic Heavy Ion Collider.<br />

This paper presents a summary <strong>of</strong> the changes made over the four<br />

years and the proposed improvements for the future. The work w<strong>as</strong><br />

carried out <strong>in</strong> several ph<strong>as</strong>es by balanc<strong>in</strong>g the accelerator’s schedule<br />

<strong>of</strong> operation, time required for the modifications and budget<br />

constra<strong>in</strong>ts. The ma<strong>in</strong> changes <strong>in</strong>clude process control, oil removal,<br />

pip<strong>in</strong>g, elim<strong>in</strong>ation <strong>of</strong> the use <strong>of</strong> cold compressors, reduction <strong>in</strong> liquid<br />

storage, provid<strong>in</strong>g additional multi layer <strong>in</strong>sulation on the <strong>in</strong>-use<br />

liquid helium reservoirs, and the addition <strong>of</strong> a load “wet” turb<strong>in</strong>e and<br />

its <strong>as</strong>sociated heat exchangers at the low temperature end <strong>of</strong> the plant.<br />

Changes were also made to the cryogenic flow configuration to<br />

elim<strong>in</strong>ate the use <strong>of</strong> the liquid helium circulators used to circulate the<br />

sub-cooled helium through the magnet loops. Future upgrades <strong>in</strong>clude<br />

the resiz<strong>in</strong>g <strong>of</strong> turb<strong>in</strong>es 5 and 6 to <strong>in</strong>cre<strong>as</strong>e their efficiencies.<br />

The paper summarizes the work done to date and the progression <strong>of</strong><br />

improvements after each upgrade ph<strong>as</strong>e, start<strong>in</strong>g from the <strong>in</strong>itial 9.3<br />

MW power usage level to the present 6 MW and the expected level<br />

below 5 MW after the completion <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g improvements.<br />

C1-P-08 An Overview <strong>of</strong> the Planned Jefferson Lab<br />

12GeV 2.1 K Helium Refrigerator<br />

D. Arenius, J. Creel, K. Dixon, V. Ganni, P. Knudsen,<br />

A. Sidi-Yekhlef, M. Wright, , Jefferson Laboratory.<br />

The US Department <strong>of</strong> Energy (DOE) h<strong>as</strong> placed Jefferson Lab <strong>in</strong><br />

Newport News, Virg<strong>in</strong>ia, on a path towards a major upgrade <strong>of</strong> the<br />

Cont<strong>in</strong>uous Electron Beam Accelerator Facility (CEBAF). In April<br />

2005, the DOE announced "critical decision zero" (CD-0) for the<br />

laboratory`s proposal to double the superconduct<strong>in</strong>g accelerator`s<br />

energy from 6 to 12 GeV, add a fourth experimental hall and upgrade<br />

equipment <strong>in</strong> the three exist<strong>in</strong>g halls. This step established the<br />

"mission need" and moves the upgrade <strong>in</strong>to a formal project-def<strong>in</strong>ition<br />

ph<strong>as</strong>e. In February 2006, the DOE Office <strong>of</strong> Science approved<br />

“critical decision 1” (CD-1) status for the project.<br />

Operat<strong>in</strong>g cont<strong>in</strong>uously s<strong>in</strong>ce 1993, the Jefferson Lab’s current 2.1 K<br />

4600W Central Helium Liquefier (CHL) capacity will be doubled to<br />

support the upgrade. An overview <strong>of</strong> the <strong>in</strong>tegration <strong>of</strong> the new<br />

proposed refrigeration system <strong>in</strong>to CEBAF will be presented <strong>in</strong>clusive<br />

<strong>of</strong> planned work scope, current schedule plans and project status.<br />

This work is supported under DOE Contract Number DE-AC05-<br />

06OR-23177<br />

Page 18 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-Q MEMS Coolers<br />

C1-Q-01 MicroM<strong>in</strong>iature Refrigeration<br />

W.A. Little, MMR Technologies, Inc. and Stanford<br />

University, CA.<br />

The dramatic growth <strong>of</strong> <strong>in</strong>dustrial cryogenics <strong>in</strong> the p<strong>as</strong>t century h<strong>as</strong><br />

overshadowed the need for cryogenics on a smaller scale. Today,<br />

small scale, MEMS or microm<strong>in</strong>iature refrigerators constitute a small<br />

part <strong>of</strong> the field, but one with a unique role to play, <strong>of</strong>ten <strong>in</strong><br />

<strong>in</strong>strumentation. Key attributes <strong>of</strong> these coolers have proved to be<br />

their small size <strong>of</strong> course, very low noise, f<strong>as</strong>t response, and low cost.<br />

The small size h<strong>as</strong> made possible the <strong>in</strong>tegration <strong>of</strong> the <strong>in</strong>strument and<br />

the cooler, thus provid<strong>in</strong>g convenience to the end user. The f<strong>as</strong>t<br />

response and low noise have made possible <strong>in</strong>struments <strong>of</strong> unique<br />

capabilities. We discuss some <strong>of</strong> these. Opportunities exist for the<br />

seamless <strong>in</strong>tegration <strong>of</strong> cryogenics <strong>in</strong> many other products. In order to<br />

succeed here though, a company needs to be more than a simple<br />

manufacturer <strong>of</strong> cryocoolers. Strength is needed <strong>in</strong> a broad range <strong>of</strong><br />

discipl<strong>in</strong>es, <strong>in</strong> materials science, electronics, s<strong>of</strong>tware and<br />

documentation to name a few. In addition, to <strong>of</strong>fset economies <strong>of</strong><br />

scale, different fabrication technologies have had to be created, and<br />

others are needed. Some key elements rema<strong>in</strong> to be developed before<br />

more widespread use <strong>of</strong> this technology will be seen. Better, low cost,<br />

manufacturable, m<strong>in</strong>iature heat exchangers and regenerators are<br />

needed. Development <strong>of</strong> m<strong>in</strong>iature or sub-m<strong>in</strong>iature compressors to<br />

power the coolers could herald a new world <strong>of</strong> cooled devices<br />

analogous to the revolution created by fractional horsepower electric<br />

motors <strong>in</strong> the p<strong>as</strong>t fifty years. Opportunities abound!<br />

C1-Q-02 Heat Transfer Efficiency <strong>of</strong> Kleemenko Cycle<br />

heat exchangers.<br />

W. A. Little, MMR Technologies, Inc.<br />

Dur<strong>in</strong>g the p<strong>as</strong>t decade Kleemenko Cycle coolers have been<br />

developed to operate at temperatures between 180K and 70K us<strong>in</strong>g<br />

throttle expansion <strong>of</strong> multi-component refrigerants. They have<br />

demonstrated remarkable reliability – cont<strong>in</strong>uous, ma<strong>in</strong>tenance-free<br />

operation now approach<strong>in</strong>g 100,000hrs, and the simplicity <strong>of</strong> their<br />

design and use <strong>of</strong> low cost components h<strong>as</strong> kept their cost at a small<br />

fraction <strong>of</strong> that <strong>of</strong> any other cryocoolers. They have found markets <strong>in</strong><br />

<strong>in</strong>strumentation, cool<strong>in</strong>g <strong>of</strong> X-Ray detectors, <strong>in</strong> Office liquefiers,<br />

Automated Test Equipment, and other devices. However, little<br />

attention h<strong>as</strong> been focused on optimiz<strong>in</strong>g the efficiency <strong>of</strong> these<br />

coolers. The problem h<strong>as</strong> been the lack <strong>of</strong> an adequate understand<strong>in</strong>g<br />

<strong>of</strong> the heat transfer <strong>of</strong> such multi-component mixtures to the walls <strong>of</strong><br />

the heat exchanger, and to a lesser degree an understand<strong>in</strong>g <strong>of</strong> the<br />

pressure drop along the exchangers. These factors have limited the<br />

ability to design more efficient, low cost exchangers needed for<br />

improved cryocooler performance. Recently we have made progress<br />

<strong>in</strong> this area allow<strong>in</strong>g calculation <strong>of</strong> the heat transfer factors under the<br />

conditions <strong>of</strong> use <strong>of</strong> these exchangers, <strong>in</strong> re<strong>as</strong>onable agreement with<br />

experiment. We describe this work, discuss the potential<br />

improvements to be expected, and identify rema<strong>in</strong><strong>in</strong>g issues.<br />

I am <strong>in</strong>debted to my colleagues at MMR for comments and<br />

suggestions.<br />

C1-Q-03 Micromach<strong>in</strong>ed Joule-Thomson coolers<br />

P.P.P.M. Lerou, H.J.M. ter Brake, H.V. Jansen, J.F.<br />

Burger, H.J. Holland, H. Rogalla, University <strong>of</strong><br />

Twente.<br />

A MEMS-b<strong>as</strong>ed Joule-Thomson cold stage w<strong>as</strong> designed and<br />

prototypes were realized and tested. The cold stage consists <strong>of</strong> a stack<br />

<strong>of</strong> three gl<strong>as</strong>s wafers. In the top wafer, a high-pressure channel is<br />

etched that ends <strong>in</strong> a flow restriction with a height <strong>of</strong> typically 300<br />

nm. An evaporator volume crosses the center wafer <strong>in</strong>to the bottom<br />

wafer. This bottom wafer conta<strong>in</strong>s the low-pressure channel thus<br />

form<strong>in</strong>g a counter-flow heat exchanger. A design aim<strong>in</strong>g at a net<br />

cool<strong>in</strong>g power <strong>of</strong> 10 mW at 96 K and operat<strong>in</strong>g with nitrogen <strong>as</strong> the<br />

work<strong>in</strong>g fluid w<strong>as</strong> optimized b<strong>as</strong>ed on the m<strong>in</strong>imization <strong>of</strong> entropy<br />

production. The optimum cold f<strong>in</strong>ger me<strong>as</strong>ures 28 mm x 2.2 mm x 0.8<br />

mm operat<strong>in</strong>g with a nitrogen flow <strong>of</strong> 1 mg/s at a high pressure <strong>of</strong> 80<br />

bar and a low pressure <strong>of</strong> 6 bar. A batch <strong>of</strong> 14 prototype coolers w<strong>as</strong><br />

made <strong>in</strong> 8 different designs. Liquid nitrogen is collected <strong>in</strong> the<br />

evaporator, and s<strong>in</strong>ce the low pressure is 6 bar, the temperature should<br />

be 96 K. However, because <strong>of</strong> thermal resistance between the bath<br />

and the thermocouple a temperature w<strong>as</strong> me<strong>as</strong>ured <strong>of</strong> 105 K with a net<br />

cool<strong>in</strong>g power <strong>of</strong> 5 mW. In the paper, the design and fabrication <strong>of</strong> the<br />

coolers will be discussed along with experimental results. A specific<br />

issue that will be addressed is the clogg<strong>in</strong>g <strong>of</strong> the restriction due to the<br />

deposition <strong>of</strong> ice crystals.<br />

C1-Q-04 Performance <strong>of</strong> a MEMS Heat Exchanger for a<br />

Cryosurgical Probe<br />

M.J. White, G.F. Nellis, S.A. Kle<strong>in</strong>, Dept. <strong>of</strong><br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Univ. <strong>of</strong> Wiscons<strong>in</strong>-<br />

Madison; W. Zhu, Y.B. Gianchandani, Dept. <strong>of</strong><br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Univ. <strong>of</strong> Michigan-Ann<br />

Arbor; D.W. Hoch, Dept. <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Univ. <strong>of</strong> North Carol<strong>in</strong>a-Chapel Hill.<br />

This paper presents the experimental results <strong>of</strong> a 2nd generation<br />

Micro-Electro-Mechanical Systems (MEMS) heat exchanger that is a<br />

composite <strong>of</strong> silicon plates with micromach<strong>in</strong>ed flow p<strong>as</strong>sages<br />

<strong>in</strong>terleaved with gl<strong>as</strong>s spacers. The MEMS heat exchanger w<strong>as</strong><br />

designed for use <strong>as</strong> the recuperative heat exchanger with<strong>in</strong> the Joule-<br />

Thomson cycle used to energize a cryosurgical probe.<br />

The experimental me<strong>as</strong>urements are compared with the numerical<br />

predictions from a design model and also with experimental results<br />

obta<strong>in</strong>ed from a 1st generation MEMS heat exchanger. The 1st<br />

generation heat exchanger w<strong>as</strong> unable to withstand the high pressure<br />

differences (1400 kPa) required by a J-T cryosurgical probe. The 2nd<br />

generation heat exchanger addresses these design deficiencies and<br />

exhibits superior thermal performance. Several prototypes <strong>of</strong> the 2nd<br />

generation heat exchanger have been manufactured and tested over a<br />

range <strong>of</strong> conditions.<br />

This work w<strong>as</strong> funded by the University <strong>of</strong> Michigan through a grant<br />

from the US National Institute <strong>of</strong> Health, NIH/NINBS R21 EB003349-<br />

01.<br />

C1-Q-05 High Frequency Pressure Oscillator for<br />

Microcryocoolers<br />

S. Vanapalli, Y. Zhao, R. Sanders, H.J.M. terBrake,<br />

M.C. Elwenspoek, MESA+ Institute <strong>of</strong><br />

Nanotechnology, University <strong>of</strong> Twente.<br />

Regenerative type <strong>of</strong> microcryocoolers h<strong>as</strong> to operate at higher<br />

frequencies compared to the typical operat<strong>in</strong>g frequency <strong>of</strong> Stirl<strong>in</strong>g or<br />

Pulse tube coolers ow<strong>in</strong>g to higher par<strong>as</strong>itic losses. Conventional<br />

l<strong>in</strong>ear motors used <strong>in</strong> pulse tube cryocoolers cannot be scaled down to<br />

frequencies <strong>of</strong> about 1 KHz due to <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> various losses. Piezo<br />

electric motor driven membrane type pressure oscillator provide an<br />

alternative choice <strong>in</strong> go<strong>in</strong>g to higher frequencies. In this paper we aim<br />

to present the design and operation <strong>of</strong> a piezo driven oscillator at<br />

frequencies <strong>of</strong> about 1 KHz and a fill<strong>in</strong>g pressure <strong>of</strong> 2.5 MPa. A<br />

pressure ratio <strong>of</strong> about 1.1 is achieved. Modell<strong>in</strong>g <strong>of</strong> the pressure<br />

oscillator and comparison with experiments will also be presented.<br />

STW-Dutch Technology Foundation for f<strong>in</strong>ancial support<br />

Page 19 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C1-Q-06 Piezo-Hydraulic Actuation for Driv<strong>in</strong>g High<br />

Frequency M<strong>in</strong>iature Split-Stirl<strong>in</strong>g Pulse Tube<br />

Cryocoolers<br />

I. Garaway, G. Grossman, Technion - Israel Institute<br />

<strong>of</strong> Technology.<br />

In recent years piezoelectric actuation h<strong>as</strong> been identified <strong>as</strong> a<br />

promis<strong>in</strong>g means <strong>of</strong> driv<strong>in</strong>g m<strong>in</strong>iature Stirl<strong>in</strong>g devices. It supports<br />

m<strong>in</strong>iaturization, h<strong>as</strong> a high power to volume ratio, can operate at<br />

almost any frequency, good electrical to mechanical efficiencies, and<br />

potentially h<strong>as</strong> a very long operat<strong>in</strong>g life. The major drawback <strong>of</strong><br />

piezoelectric actuation, however, is the very small displacements that<br />

this physical phenomenon produces. This study shows that by<br />

employ<strong>in</strong>g valve-less hydraulic amplification, an oscillat<strong>in</strong>g pressure<br />

wave can be created that is sufficiently large to drive a high frequency<br />

m<strong>in</strong>iature pulse tube cryocooler (<strong>as</strong> high <strong>as</strong> 350 Hz <strong>in</strong> our<br />

experiments, and perhaps higher). Beyond the direct benefits<br />

derived from us<strong>in</strong>g piezoelectric actuation there are further benefits<br />

derived from us<strong>in</strong>g the piezo-hydraulic arrangement with membranes.<br />

Due to the <strong>in</strong>compressibility <strong>of</strong> the hydraulic fluid the actuator may be<br />

separated from the ma<strong>in</strong> body <strong>of</strong> the cryocooler by relatively large<br />

distances with almost no detrimental effects, and the complete lack <strong>of</strong><br />

rubb<strong>in</strong>g parts <strong>in</strong> the power conversion processes makes this type <strong>of</strong><br />

cryocooler extremely robust. The design and experimental device<br />

along with some test results will be presented.<br />

C1-Q-<strong>07</strong> Demonstration <strong>of</strong> a superconduct<strong>in</strong>g detector<br />

cooled by electron-tunnel<strong>in</strong>g refrigerators<br />

J.N. Ullom, J.A. Beall, W.D. Duncan, F. F<strong>in</strong>kbe<strong>in</strong>er,<br />

G.C. Hilton, K.D. Irw<strong>in</strong>, D.R. Schmidt, L.R. Vale,<br />

NIST; N.A. Miller, G.C. O`Neil, NIST/University <strong>of</strong><br />

Colorado Boulder; D.J. Benford, J.A. Chervenak,<br />

S.H. Moseley, R.F. Silverberg, NASA GSFC; T.C.<br />

Chen, Global Science and Technology.<br />

We have successfully cooled a Transition-Edge Sensor (TES) us<strong>in</strong>g<br />

th<strong>in</strong>-film, solid-state refrigerators b<strong>as</strong>ed on Normal metal/<br />

Insulator/Superconductor (NIS) tunnel junctions. The cool<strong>in</strong>g<br />

mechanism is the preferential tunnel<strong>in</strong>g <strong>of</strong> the highest energy (hottest)<br />

electrons through the bi<strong>as</strong>ed NIS junctions. We describe the cool<strong>in</strong>g<br />

performance, temperature noise, and energy resolution <strong>of</strong> the NIScooled<br />

TES. In particular, we show that the NIS refrigerators<br />

<strong>in</strong>troduce no detectable noise <strong>in</strong> the TES operation. We also describe<br />

ongo<strong>in</strong>g efforts to improve the cool<strong>in</strong>g performance <strong>of</strong> NIS<br />

refrigerators and the e<strong>as</strong>e with which they can be coupled to usersupplied<br />

payloads. NIS refrigerators can cool from temperatures near<br />

0.3 K to below 0.1 K. The calculated power dissipation to cool 1,000<br />

th<strong>in</strong>-film sensors is 1-10 microWatts. Comb<strong>in</strong><strong>in</strong>g a pumped He-3<br />

system with NIS refrigerators provides a compact, lightweight<br />

alternative to adiabatic demagnetization refrigerators and dilution<br />

refrigerators.<br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Plenary<br />

8:00am - 9:00am<br />

C2-A Wednesday Plenary Session<br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Oral<br />

9:00am - 10:30am<br />

C2-B He II Heat Transfer and Fluid<br />

Mechanics - II<br />

C2-B-01 An experimental study <strong>of</strong> He II two-ph<strong>as</strong>e flow<br />

<strong>in</strong> a long horizontal pipe<br />

M. Takah<strong>as</strong>hi, T. Kuriyama, T. Yazawa, I. Watanabe,<br />

K. Nakayama, Toshiba Corp.; Y. Ota, T. Okamura,<br />

Tokyo Tech.<br />

Superconductor cavities used <strong>in</strong> l<strong>in</strong>ear collider are cooled below 2K <strong>in</strong><br />

superfluid helium to enhance the generated electric field. In some<br />

l<strong>in</strong>ear collider such <strong>as</strong> planned <strong>in</strong> the International L<strong>in</strong>ear Collider<br />

project (ILC), the cryogenic system will have a considerably long<br />

horizontal pipe, more than hundred meters, <strong>in</strong> which two-ph<strong>as</strong>e<br />

superfluid helium flows. One <strong>of</strong> the key issue for the cryogenic design<br />

is the gradient <strong>of</strong> the liquid level <strong>in</strong> the pipe. It should be designed <strong>as</strong><br />

small <strong>as</strong> possible to cause the dry-out at somewhere <strong>of</strong> the pipe. We<br />

have developed a test apparatus <strong>of</strong> He II two-ph<strong>as</strong>e flow <strong>in</strong> a long<br />

pipe. The apparatus is comprised ma<strong>in</strong>ly <strong>of</strong> a He II vessel, a twoph<strong>as</strong>e<br />

flow pipe with 4 m <strong>in</strong> length and 32 mm <strong>in</strong> diameter, and some<br />

cavity vessels. Instead <strong>of</strong> cavities, electric heaters gave the thermal<br />

load. The gradient <strong>of</strong> the liquid level <strong>as</strong> a function <strong>of</strong> the load w<strong>as</strong><br />

me<strong>as</strong>ured by us<strong>in</strong>g two level meters. The experimental results were<br />

compared to numerical results.<br />

C2-B-02 Experimental facility for comparison <strong>of</strong> high<br />

Reynolds number turbulence <strong>in</strong> both HeI and HeII : first<br />

results<br />

B. Rousset, M. Bon Mardion, D. Communal, F.<br />

Daviaud, P. Diribarne, B. Durbrulle, A. Forge<strong>as</strong>, A.<br />

Girard, P. Roussel, CEA; C. Baudet, Y. Gagne, P;<br />

Thibault, UJF; B. C<strong>as</strong>ta<strong>in</strong>g, ENS; B. Hebral, P.<br />

Roche, CNRS.<br />

Turbulence SuperFluid (TSF) project will use cryogenic liquid helium<br />

for the fundamental study <strong>of</strong> turbulent phenomena. For this purpose<br />

we have carried out an experiment <strong>of</strong> p<strong>as</strong>sive grid turbulence which is<br />

able to work <strong>in</strong> HeI <strong>as</strong> well <strong>as</strong> <strong>in</strong> HeII. The flow <strong>of</strong> liquid helium will<br />

be generated by a cold Barber and Nichols circulat<strong>in</strong>g pump, where<strong>as</strong><br />

helium flow temperature is kept constant by means <strong>of</strong> a heat<br />

exchanger immersed <strong>in</strong> a saturated bath, which ma<strong>in</strong>ly evacuates the<br />

heat due to friction.<br />

This experiment will use the CEA Grenoble refrigerator (nom<strong>in</strong>al<br />

capacity <strong>of</strong> 400 Watt at 1.8 K) to remove the heat due to pressures<br />

losses <strong>in</strong> this high Reynolds number experiment. In order to solve the<br />

Kolmogorov scale <strong>as</strong>sociated with such high flow local<br />

<strong>in</strong>strumentation (e.g. sub-micrometer anemometer) w<strong>as</strong> developed.<br />

Use <strong>of</strong> this local and fragile <strong>in</strong>strumentation <strong>in</strong> a qu<strong>as</strong>i <strong>in</strong>dustrial<br />

environment arises some difficulties we discussed here while the<br />

solutions adopted are also described.<br />

F<strong>in</strong>ally, first results obta<strong>in</strong>ed both <strong>in</strong> superfluid and <strong>in</strong> normal helium<br />

are presented. For this l<strong>as</strong>t c<strong>as</strong>e, a permanent m<strong>as</strong>s flow rate <strong>of</strong> few<br />

hundreds <strong>of</strong> g/s w<strong>as</strong> achieved.<br />

C2-A-01 The COBE Mission: How Cryogenics is<br />

Revolutioniz<strong>in</strong>g Astronomy and Astrophysics<br />

J. Mather, NASA/Goddard Space Flight Center.<br />

The development <strong>of</strong> deep cool<strong>in</strong>g for space science applications h<strong>as</strong><br />

enabled an extraord<strong>in</strong>ary series <strong>of</strong> discoveries <strong>in</strong> <strong>as</strong>trophysics, rang<strong>in</strong>g<br />

from <strong>in</strong>frared <strong>as</strong>tronomy to X-ray <strong>as</strong>tronomy and tests <strong>of</strong> general<br />

relativity to observations <strong>of</strong> the Big Bang itself. I will describe the<br />

<strong>in</strong>strument package and the cool<strong>in</strong>g concepts used on the Cosmic<br />

Background Explorer satellite, and the scientific results that led to the<br />

Nobel Prize <strong>in</strong> Physics for 2006. The James Webb Space Telescope,<br />

now <strong>in</strong> preparation for launch <strong>in</strong> <strong>2013</strong>, will use both radiative and<br />

active cool<strong>in</strong>g to extend the science <strong>of</strong> the Hubble Space Telescope<br />

and the Spitzer Space Telescope. I will discuss the cool<strong>in</strong>g concepts<br />

for these missions and others, and speculate on the future <strong>of</strong><br />

cryogenics <strong>in</strong> space science.<br />

Page 20 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-B-03 Pressure drop and heat transfer <strong>in</strong> He II forced<br />

flow through orifice plates<br />

H.J. Kim, S.W. Van Sciver, FAMU-FSU College <strong>of</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g / National High Magnetic Field<br />

Laboratory; S. Fuzier, National High Magnetic Field<br />

Laboratory.<br />

Forced flow superfluid helium (He II) through orifice plates at the<br />

high Reynolds number h<strong>as</strong> been experimentally <strong>in</strong>vestigated. The<br />

flow <strong>of</strong> He II is generated with a bellows pump through a 1 m long, 73<br />

mm <strong>in</strong>ner diameter tubular channel conta<strong>in</strong><strong>in</strong>g three sizes <strong>of</strong> orifice<br />

plates: the ratios <strong>of</strong> orifice diameter to tube diameter are 10 %, 25 %<br />

and 50 %. The experimental channel is <strong>in</strong>strumented with eight<br />

thermometers, a film heater and two differential pressure transducers.<br />

Pressure drops <strong>in</strong> He II for adiabatic forced flow were me<strong>as</strong>ured<br />

across the orifice plates and compared with correlations for cl<strong>as</strong>sical<br />

fluids at high Reynolds number. The temperature drops <strong>in</strong> He II<br />

forced flow <strong>in</strong> orifice plates were me<strong>as</strong>ured, and found to agree with<br />

the isenthalpic expansion. The heat generated by a film heater located<br />

three diameters upstream <strong>of</strong> the orifice plate generates counterflow <strong>in</strong><br />

the He II result<strong>in</strong>g <strong>in</strong> local temperature <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> the orifice<br />

plates. These results are compared to predictions b<strong>as</strong>ed on the two<br />

fluid model.<br />

This work is supported by the Department <strong>of</strong> Energy, Division <strong>of</strong> High<br />

Energy Physics. Thanks to Scott Maier for technical <strong>as</strong>sistance.<br />

C2--B-04 Extraction <strong>of</strong> micron-sized particles from a He<br />

II bath<br />

M. Gnos, S. Fuzier, S.W. Van Sciver, NHMFL,<br />

Florida State University.<br />

Our laboratory is develop<strong>in</strong>g a new technique to separate micron and<br />

possibly submicron size particles by size us<strong>in</strong>g superfluid helium (He<br />

II). A heat current <strong>in</strong> the He II generates normal fluid flow which <strong>in</strong><br />

turn drags particles <strong>of</strong> different sizes <strong>in</strong>to different sections <strong>of</strong> an<br />

experimental channel immersed <strong>in</strong> a He II bath. In the present paper,<br />

we describe a technique developed to extract the particles from the<br />

separation channel while it is immersed <strong>in</strong> the helium bath. In situ<br />

extraction allows for a cont<strong>in</strong>uous process <strong>of</strong> separation without<br />

hav<strong>in</strong>g to warm up the cryostat and dis<strong>as</strong>semble the channel. A tube is<br />

<strong>in</strong>serted from the room temperature environment to the area <strong>in</strong> the<br />

channel collect<strong>in</strong>g the particles to be extracted. This tube is closed at<br />

the bottom by a multibore tube cyl<strong>in</strong>der and is pumped to a lower<br />

pressure that the helium bath. The pressure gradient through the<br />

multibore tubes creates a temperature gradient which drives the<br />

normal component <strong>of</strong> the He II and the particles <strong>in</strong>to the tube. The<br />

particles can then be collected and extracted by pull<strong>in</strong>g the tube out <strong>of</strong><br />

the bath. We compare the performance <strong>of</strong> this device for extraction <strong>of</strong><br />

polymer and hollow gl<strong>as</strong>s sphere particles <strong>of</strong> sizes vary<strong>in</strong>g between<br />

1.7 and 12 micrometers.<br />

Work supported by Oxford Instruments<br />

C2-B-05 3-D Numerical Analysis for Heat Transfer from<br />

a Fat Plate <strong>in</strong> a Duct with Contractions Filled with<br />

Pressurized He II<br />

D. Doi, Y. Shirai, M. Shiotsu, Kyoto University.<br />

A computer code <strong>of</strong> three-dimensional heat transfer <strong>in</strong> superfluid<br />

helium named SUPER-3D w<strong>as</strong> developed b<strong>as</strong>ed on the two-fluid<br />

model. Critical heat fluxes (CHFs) on a flat plate located at one end <strong>of</strong><br />

rectangular ducts hav<strong>in</strong>g contractions with different rectangular open<br />

area were calculated by us<strong>in</strong>g the SUPER-3D for the liquid<br />

temperatures from 1.8 K to 2.1 K <strong>in</strong> pressurized He II. The analyses<br />

were made for the ducts with one contraction (C<strong>as</strong>e A) and with two<br />

contractions (C<strong>as</strong>e B). In c<strong>as</strong>e A, effects <strong>of</strong> the open mouth area,<br />

distance <strong>of</strong> the contraction from the flat plate and <strong>of</strong> the open mouth<br />

figure with the same area were clarified. The solutions <strong>of</strong> CHF for the<br />

various open mouth are<strong>as</strong> agreed well with the experimental data. In<br />

C<strong>as</strong>e B, the solutions <strong>of</strong> CHF for the two contractions with the same<br />

open are<strong>as</strong> were affected by the comb<strong>in</strong>ation <strong>of</strong> open mouth figures.<br />

It w<strong>as</strong> found from the analysis that several vortices were generated<br />

around the contractions and played an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the CHF. Three dimensional analyses are necessary to evaluate the<br />

CHF accurately.<br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Poster<br />

9:00am - 10:30am<br />

C2-C Stirl<strong>in</strong>g and Pulse Tube Components<br />

and Model<strong>in</strong>g (Aerospace)<br />

C2-C-01 10K EM Pulse Tube Cooler<br />

C. Jacob, T. Nguyen, R. Colbert, J. Raab, Northrop<br />

Grumman Space Technology.<br />

A 3 stage Eng<strong>in</strong>eer<strong>in</strong>g Model pulse tube cooler w<strong>as</strong> built and tested<br />

for low temperature operations. The staged cooler uses the same<br />

compressor and parallel stag<strong>in</strong>g configuration for the 1st and 2nd<br />

stages previously employed <strong>in</strong> the Flight Qualified High Capacity<br />

Cryocooler (HCC Qual). Addition <strong>of</strong> the third stage extends the<br />

performance <strong>of</strong> this cooler to operat<strong>in</strong>g temperatures below 10K.<br />

The cooler performance at 10K h<strong>as</strong> been characterized and test data<br />

will be presented.<br />

C2-C-02 Numerical Study <strong>of</strong> Thermoacoustically-driven<br />

Pulse Tube Cooler<br />

With Spr<strong>in</strong>g-M<strong>as</strong>s Resonators<br />

W. Dai, Z. Wu, S. Zhu, E. Luo, Technical Institute <strong>of</strong><br />

Physics and Chemistry.<br />

Thermoacoustically-driven pulse tube cooler could be heat-driven and<br />

<strong>of</strong>fer the advantages <strong>of</strong> be<strong>in</strong>g simple and highly reliable. Normal<br />

thermoacoustic eng<strong>in</strong>es with a long resonance tube to control the<br />

frequency face the problems <strong>of</strong> large thermoviscous dissipation,<br />

oversize and structural vibrations, etc, which is not good for practical<br />

small-scale applications. One solution is to use dual-opposed spr<strong>in</strong>gm<strong>as</strong>s<br />

resonator to replace the resonance tube, which could ensure the<br />

compact size, low vibration and rema<strong>in</strong>s to be simple on structure.<br />

This article uses the l<strong>in</strong>ear thermoacoustic theory to simulate such a<br />

configuration work<strong>in</strong>g at frequencies between 100~500Hz, which<br />

aims at small-scale cryogenic applications. The <strong>in</strong>fluence <strong>of</strong> spr<strong>in</strong>gm<strong>as</strong>s<br />

resonator parameters, operat<strong>in</strong>g conditions, coupl<strong>in</strong>g positions<br />

and other factors are studied.<br />

This work is f<strong>in</strong>ancially supported by National Natural Science<br />

Foundation with project number 50506031.<br />

C2-C-03 L<strong>in</strong>ear resonant mov<strong>in</strong>g magnet type motor for<br />

m<strong>in</strong>iature pulse tube cryocooler<br />

B.T Kuzhiveli, National Institute <strong>of</strong> Technology<br />

Calicut.<br />

More than p<strong>as</strong>t two decades, voice coil type mov<strong>in</strong>g coil l<strong>in</strong>ear motors<br />

have been <strong>in</strong> wide use for the<br />

construction <strong>of</strong> various m<strong>in</strong>iature cryocoolers. However they are<br />

haunted by its <strong>in</strong>herent life limit<strong>in</strong>g problems such <strong>as</strong> rupture <strong>of</strong> lead<br />

wires, out g<strong>as</strong>s<strong>in</strong>g by the coil lam<strong>in</strong>ation etc. A recent tendency is to<br />

replace the mov<strong>in</strong>g coil type motor with mov<strong>in</strong>g magnet type motor<br />

for the compressor. Recent advances <strong>in</strong> m<strong>in</strong>iature pulse tube<br />

cryocooler technology have made them surp<strong>as</strong>s most <strong>of</strong> the m<strong>in</strong>iature<br />

cryocoolers operat<strong>in</strong>g on other cool<strong>in</strong>g cycles. The re<strong>as</strong>ons attributed<br />

for this change are due to the advantages such <strong>as</strong> improved overall<br />

efficiencies, reduced number <strong>of</strong> mov<strong>in</strong>g parts, no vibration <strong>in</strong> cold<br />

head and suitability to use with mov<strong>in</strong>g magnet type motor etc. In<br />

this context splendid <strong>of</strong> scope exists for understand<strong>in</strong>g new trade <strong>of</strong>fs<br />

<strong>in</strong> technology <strong>of</strong> mov<strong>in</strong>g magnet type motor, design and evaluation <strong>of</strong><br />

performance parameters and its comparison with mov<strong>in</strong>g coil type<br />

motor. A design methodology h<strong>as</strong> been developed for the<br />

development <strong>of</strong> mov<strong>in</strong>g magnet and mov<strong>in</strong>g coil type l<strong>in</strong>ear motors.<br />

Computer code h<strong>as</strong> been written down for motor optimisation and h<strong>as</strong><br />

been used for the design <strong>of</strong> motors.<br />

Page 21 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-C-04 An aerospace m<strong>in</strong>iature pulse tube cryocooler at<br />

80K<br />

H.L. Chen, L.W. Yang, J.H. Cai, J.T. Liang, Y. Zhou,<br />

Technical Institute <strong>of</strong> Physics and Chemistry, CAS.<br />

An eng<strong>in</strong>eer<strong>in</strong>g model <strong>of</strong> a m<strong>in</strong>iature pulse tube cryocooler is<br />

designed for space application. Coaxial configuration <strong>of</strong> the cold<br />

f<strong>in</strong>ger is convenient to connect with the aim element and improves<br />

<strong>in</strong>tegration. A series <strong>of</strong> jo<strong>in</strong>t<strong>in</strong>g cooler products are manufactured and<br />

tested. The overall m<strong>as</strong>s <strong>of</strong> the whole cooler system is around 3.5kg.<br />

The product coolers can provide 0.7W cool<strong>in</strong>g capacity at 80K with<strong>in</strong><br />

40W <strong>in</strong>put electric power, while the experimental ones can proveide<br />

more than 0.8W cool<strong>in</strong>g capacity. To make a product for space<br />

application, <strong>in</strong>tense structure, light weight and small size are needed,<br />

so different materials and structures et al. decre<strong>as</strong>e the cool<strong>in</strong>g<br />

performance more or less. Reliability <strong>of</strong> the cooler work<strong>in</strong>g<br />

cont<strong>in</strong>ously is tested. Also, the magnetic field <strong>of</strong> the compressor and<br />

anti-shake ability <strong>of</strong> the system h<strong>as</strong> been exam<strong>in</strong>ed.<br />

C2-C-05 Investigation <strong>of</strong> a 500Hz heat-driven pulse tube<br />

cooler by us<strong>in</strong>g etched foil regenerator<br />

S.L. Zhu, Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy <strong>of</strong><br />

Sciences; E.C. Luo, Technical Institute <strong>of</strong> Physics and<br />

Chemistry, CAS; W. Dai, Technical Institute <strong>of</strong><br />

Physics and Chemistry,CAS.<br />

A thermoacoustically-driven high frequency pulse tube cooler h<strong>as</strong> the<br />

advantage <strong>of</strong> be<strong>in</strong>g compact, which h<strong>as</strong> good potential <strong>of</strong> us<strong>in</strong>g for<br />

aerospace cool<strong>in</strong>g. This article presents a pulse tube cooler driven by a<br />

travel<strong>in</strong>g-wave thermoacoustic eng<strong>in</strong>e with a work<strong>in</strong>g frequency<br />

around 500 Hz. As operat<strong>in</strong>g frequency <strong>in</strong>cre<strong>as</strong>es, a traditional screenpacked<br />

regenerator is limited by the requirement <strong>of</strong> smaller wire<br />

diameter and higher mesh number <strong>of</strong> the screens. In this pulse tube<br />

cooler, however, we have used the etched foil regenerator <strong>in</strong>stead <strong>of</strong><br />

the screen-packed regenerator to decre<strong>as</strong>e flow<strong>in</strong>g loss, which shows<br />

more important impact on the global performance <strong>of</strong> the whole system<br />

when the operat<strong>in</strong>g frequency goes up to 500Hz. Experiments h<strong>as</strong><br />

been conducted to <strong>in</strong>vestigate the characteristics <strong>of</strong> the pulse tube,<br />

which <strong>in</strong>cludes the structure parameters <strong>of</strong> the novel regenerator and<br />

the operat<strong>in</strong>g parameters <strong>in</strong>clud<strong>in</strong>g mean pressure, <strong>in</strong>let pressure ratio,<br />

<strong>in</strong>ertance tube ph<strong>as</strong>e shifter. Numerical simulation results are also<br />

made and compared with the experiment results <strong>in</strong> the same condition.<br />

This work w<strong>as</strong> supported by the Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant No.50625620)<br />

C2-C-06 Performance <strong>of</strong> a two stage Stirl<strong>in</strong>g cryocooler<br />

for space applications<br />

V.K. Bhojwani, M.D. Atrey, S.L. Bapat, Indian<br />

Institute <strong>of</strong> Technology Bombay, Mumbai, India; K.G.<br />

Narayankhedkar, Veermata Jijabai Technological<br />

Institute, Mumbai, India.<br />

A two-stage, split type Stirl<strong>in</strong>g cryocooler with capacity <strong>of</strong> 2 W at 100<br />

K and 0.5 W at 50 K is designed. Second order cyclic analysis is used<br />

to decide the f<strong>in</strong>al geometry <strong>of</strong> the unit. The compressor with opposed<br />

pistons configuration is developed. Flexure stacks suspended piston<br />

and displacer are used. Mov<strong>in</strong>g coil l<strong>in</strong>ear motor is developed.<br />

Sensors are <strong>in</strong>stalled for me<strong>as</strong>ur<strong>in</strong>g strokes <strong>of</strong> pistons and displacer;<br />

and pressure at the outlet <strong>of</strong> the compressor. 10 channel oscilloscope<br />

provides the variations <strong>of</strong> parameters. The load tests <strong>in</strong>dicated that the<br />

cool<strong>in</strong>g capacities are close to the design values. The power <strong>in</strong>put for<br />

the compressor is 110 W <strong>as</strong> aga<strong>in</strong>st 69 W predicted by the analysis.<br />

The experimental no load temperature for the stage I is observed to be<br />

close to the predicted temperature. Two identical expanders are<br />

developed to check the repeatability. For expander I, the temperatures<br />

atta<strong>in</strong>ed for a load <strong>of</strong> 2 W on stage I and 0.5 W on stage II are 106 K<br />

and 74 K respectively with a power <strong>in</strong>put <strong>of</strong> around 110 W. The<br />

correspond<strong>in</strong>g values for expander II are 128 K, 66.7 K with a power<br />

<strong>in</strong>put <strong>of</strong> 105.6 W.<br />

The authors thank Indian Space Research Organisation for f<strong>in</strong>ancial<br />

support.<br />

C2-C-<strong>07</strong> A model for the parametric analysis and<br />

optimization <strong>of</strong> <strong>in</strong>ertance tube pulse tube refrigerators<br />

C Dodson, A Razani, AFRL/VSSS-UNM; A Lopez,<br />

UNM/Sandia National labs; T Roberts, AFRL/VSSS.<br />

A first order model developed for the design analysis and optimization<br />

<strong>of</strong> Inertance Tube Pulse Tube Refrigerators (ITPTRs) is <strong>in</strong>tegrated<br />

with the code NIST REGEN 3.2 capable <strong>of</strong> model<strong>in</strong>g the regenerative<br />

heat exchangers used <strong>in</strong> ITPTRs. The model is b<strong>as</strong>ed on the solution<br />

<strong>of</strong> simultaneous non-l<strong>in</strong>ear differential equations represent<strong>in</strong>g the<br />

<strong>in</strong>ertance tube, an irreversibility parameter model for the pulse tube,<br />

and REGEN 3.2 to simulate the regenerator. The <strong>in</strong>tegration <strong>of</strong><br />

REGEN 3.2 is accomplished by <strong>as</strong>sum<strong>in</strong>g a s<strong>in</strong>usoidal pressure wave<br />

at the cold side <strong>of</strong> regenerator. In this manner the computational<br />

power <strong>of</strong> REGEN 3.2 is conveniently used to reduce computational<br />

time required for parametric analysis and optimization <strong>of</strong> ITPTRs.<br />

The exergy flow and exergy destruction (irreversibility) <strong>of</strong> each<br />

component <strong>of</strong> ITPTRs is calculated and the effect <strong>of</strong> important system<br />

parameters on the second law efficiency <strong>of</strong> the refrigerators is<br />

presented.<br />

C2-C-08 Reliability Growth <strong>of</strong> Stirl<strong>in</strong>g-Cycle Coolers at<br />

L-3 CE<br />

D.T. Kuo, A.S. Loc, Q.K. Phan, L-3 Communications -<br />

C<strong>in</strong>c<strong>in</strong>nati Electronics.<br />

L-3 Communication is conduct<strong>in</strong>g a reliability growth program to<br />

extend the life <strong>of</strong> tactical Stirl<strong>in</strong>g-cycle cryocoolers. The cont<strong>in</strong>uous<br />

product improvement processes consist <strong>of</strong> test<strong>in</strong>g production coolers<br />

to failure, determ<strong>in</strong><strong>in</strong>g the root cause, <strong>in</strong>corporat<strong>in</strong>g improvements<br />

and verification. The most recent life test data for the 0.6-Watt Cooler<br />

(Model B600C), The 1.5-Watt Cooler (Model B1500E), and the G<strong>as</strong><br />

Bear<strong>in</strong>g 1.0-Watt Cooler (Model GB1000E) are presented. From the<br />

life test data, sets <strong>of</strong> empirical constants are derived for life prediction,<br />

for any operat<strong>in</strong>g condition us<strong>in</strong>g the Watt-Hour approach. The data<br />

presented here extends the boundary <strong>of</strong> life data <strong>in</strong> previous papers<br />

from the authors.<br />

C2-C-09 Performance Optimization <strong>of</strong> L-3 CE 0.6-Watt<br />

L<strong>in</strong>ear Cooler<br />

D.T. Kuo, A.S. Loc, L-3 Communication - C<strong>in</strong>c<strong>in</strong>nati<br />

Electronics.<br />

Tactical FLIR are plac<strong>in</strong>g <strong>in</strong>cre<strong>as</strong><strong>in</strong>g demand for cryocoolers to<br />

deliver more performance without commensurate size and weight<br />

allowances. L-3 CE h<strong>as</strong> re-optimized the design <strong>of</strong> its 0.6-Watt cooler<br />

to provide twice the refrigeration lift without significant changes to<br />

weight and size. This paper presents the performance characteristics<br />

<strong>of</strong> the re-optimized cooler model B610.<br />

C2-D Large Scale Aerospace Test Facilities<br />

C2-D-01 Large-Scale Test Facility for Advanced<br />

Cryogenic and Energy Technology Development<br />

W.H. Hatfield, Sierra Lobo, Inc.; D.E. Taylor, J.P.<br />

S<strong>as</strong>s, NASA KSC.<br />

NASA h<strong>as</strong> completed <strong>in</strong>itial construction and verification test<strong>in</strong>g <strong>of</strong><br />

the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The<br />

ISTF is located at Complex 20 at Cape Canaveral Air Force Station,<br />

Florida. The remote and secure location is ideally suited for the<br />

follow<strong>in</strong>g functions: (1) development test<strong>in</strong>g <strong>of</strong> advanced cryogenic<br />

component technologies, (2) development test<strong>in</strong>g <strong>of</strong> concepts and<br />

processes for entire ground support systems designed for servic<strong>in</strong>g<br />

large launch vehicles, and (3) commercial-sector test<strong>in</strong>g <strong>of</strong> cryogenicand<br />

energy-related products and systems. The Cryogenic Testbed<br />

consists <strong>of</strong> modular fluid distribution pip<strong>in</strong>g and storage tanks for<br />

liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal).<br />

Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1<br />

(37,000 gal) are also specified for the facility. A state-<strong>of</strong>-the-art<br />

bl<strong>as</strong>tpro<strong>of</strong> test command and control center provides capability for<br />

remote operation, video surveillance, and data record<strong>in</strong>g for all test<br />

are<strong>as</strong>.<br />

Page 22 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-D-02 Cryogenic Propellant Tank Facility (K-SITE) at<br />

NASA`s Plum Brook Station<br />

J.A. Chambers, D.E. Taylor, J.M. Woytach, NASA<br />

GRC.<br />

The Cryogenic Propellant Tank Facility is multipurpose cryogenic and<br />

space simulation test facility. The 25 foot diameter test chamber h<strong>as</strong> a<br />

20 foot diameter door, removable LH2/LN2 cryogenic cold wall<br />

capable <strong>of</strong> simulat<strong>in</strong>g deep space temperatures down to 37deg R (-<br />

423deg F) and a unique hydraulic shaker system. The facility can<br />

provide vacuum to 10-6 torr without the cold wall and 10-8 torr with<br />

the cold wall <strong>in</strong> operation. An 800-gallon slush hydrogen batch<br />

production plant is also available. The facility’s design and<br />

construction provides a safe environment for test<strong>in</strong>g with high energy<br />

fluids. K-Site is ideally suited for perform<strong>in</strong>g a broad range <strong>of</strong><br />

cryogenic experiments <strong>in</strong>clud<strong>in</strong>g performance test<strong>in</strong>g <strong>of</strong> sensors and<br />

<strong>in</strong>sulation systems, cryogenic storage tank boil-<strong>of</strong>f and slosh tests,<br />

turbopump chill-down and start-up tests, Lunar surface simulation,<br />

and fuel cell development tests. The versatility <strong>of</strong> K-Site makes the<br />

possibilities almost endless. Build-up is supported by an on-site<br />

mach<strong>in</strong>e shop, rough build area and 40-foot high-bay immediately<br />

adjacent to the test chamber. A highly tra<strong>in</strong>ed and competent<br />

technical staff is on-site to provide design, fabrication, <strong>in</strong>stallation and<br />

operations support. A large exclusion zone surround<strong>in</strong>g K-Site makes<br />

it ideal for high-risk propellant related programs.<br />

C2-D-03 The Cryogenic Components Laboratory (CCL)<br />

at NASA`s Plum Brook Station<br />

J.A. Chambers, D.E. Taylor, J.M. Woytach, NASA<br />

GRC.<br />

The Cryogenic Components Laboratory is a new, state-<strong>of</strong>-the-art<br />

facility for research, development and qualification <strong>of</strong> cryogenic<br />

materials, components and systems. This facility provides systems<br />

and capabilities for cryogenic test<strong>in</strong>g with liquid hydrogen, oxygen<br />

and nitrogen. These systems are highly re-configurable to meet a<br />

broad range <strong>of</strong> test requirements and parameters. A highly tra<strong>in</strong>ed and<br />

competent technical staff is on-site to provide design, fabrication,<br />

<strong>in</strong>stallation and operations support. Run tank capacities and high<br />

g<strong>as</strong>eous nitrogen flow rates make the facilities well suited for<br />

cryogenic high-speed turbomach<strong>in</strong>ery, bear<strong>in</strong>g and seal test<strong>in</strong>g. Large<br />

on-site storage capacities provide capability for extended run times.<br />

The facility’s electrical design cl<strong>as</strong>sification provides a safe<br />

environment for test<strong>in</strong>g with high energy fluids. Liquid hydrogen and<br />

liquid oxygen densification skids capable <strong>of</strong> densify<strong>in</strong>g propellants at<br />

rates up to 8 pounds-per-second are available. The state-<strong>of</strong>-the-art<br />

control room provides remote data acquisition and programmable<br />

logic control (PLC) for personnel and systems safety. The dual<br />

configuration design <strong>of</strong> the facility allows for build-up and operation<br />

<strong>of</strong> multiple simultaneous users. A large exclusion zone surround<strong>in</strong>g<br />

the CCL makes it ideal for high-risk propellant related programs.<br />

C2-D-05 Large Cryogenic System for Space Environment<br />

Simulation<br />

H. Cho, G.-W. Moon, H.-J. Seo, S.-H. Lee, S.-W.<br />

Choi, Korea Aerospace Research Institute.<br />

KARI (Korea Aerospace Research Institute)’s thermal vacuum<br />

chamber with 9 meters diameter and 10 meters depth w<strong>as</strong> completed<br />

at the end <strong>of</strong> November 2006 be<strong>in</strong>g equipped with large cryogenic<br />

system for space environment. Cryogenic system enables a thermal<br />

shroud <strong>in</strong>side the vacuum chamber to be cooled down to 77 K with<br />

liquid nitrogen, which provides surround<strong>in</strong>g deep space environment<br />

for a satellite. This cryogenic system b<strong>as</strong>ically utiliz<strong>in</strong>g gravitational<br />

potential energy <strong>of</strong> stored liquid nitrogen <strong>in</strong> 10 meters height, is<br />

composed <strong>of</strong> ph<strong>as</strong>e separator, liquid nitrogen pump, cryogenic valve,<br />

vacuum jacketed pipes, liquid nitrogen exhaust system, and heated<br />

g<strong>as</strong>eous nitrogen purge system. Through several acceptance tests for<br />

the cryogenic system, it w<strong>as</strong> verified that thermal shroud can be<br />

cooled from 295 K to 77 K with<strong>in</strong> 30 m<strong>in</strong>utes, temperature drift when<br />

the shroud is <strong>in</strong> steady condition is less than 2 K. Liquid nitrogen<br />

exhaust system and heated g<strong>as</strong>eous nitrogen purge system made an<br />

improvement for reduc<strong>in</strong>g <strong>of</strong> the time to <strong>in</strong>cre<strong>as</strong>e the chilled shroud<br />

temperature up to ambient temperature, which could shorten the total<br />

satellite test duration. Test results and detail specifications <strong>of</strong> the<br />

cryogenic system <strong>in</strong>clud<strong>in</strong>g liquid nitrogen boil-<strong>of</strong>f and consumption<br />

were described.<br />

C2-D-06 The Development <strong>of</strong> the Cool<strong>in</strong>g and Heat<strong>in</strong>g<br />

Device <strong>in</strong> the Test Facility for Space Tribological<br />

Simulation Experiment<br />

L.H. Gong, X.D. Xu, R.J. Huang, L.F. Li, Technical<br />

Institute <strong>of</strong> Physics and Chemistry, Ch<strong>in</strong>ese Academy<br />

<strong>of</strong> Sciences; X.J. Sun, W.M. Liu, Space Tribology<br />

Center, Lanzhou Institute <strong>of</strong> Chemical<br />

Physics,Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences.<br />

The cool<strong>in</strong>g and heat<strong>in</strong>g device <strong>in</strong> the test facility for space<br />

tribological experiment h<strong>as</strong> been developed and tested. The device<br />

consists <strong>of</strong> a sample holder, a heater and an annular liquid nitrogen<br />

heat s<strong>in</strong>k. The sample holder surrounded by a heater is located <strong>in</strong> the<br />

core <strong>of</strong> the heat s<strong>in</strong>k. The holder, heater and heat s<strong>in</strong>k, which almost<br />

have no any heat conduction among them, are closed <strong>in</strong> the high<br />

vacuum vessel (10E-7Pa). Therefor, the pr<strong>in</strong>ciple <strong>of</strong> the radiation heat<br />

transfer h<strong>as</strong> been adopted for cool<strong>in</strong>g and heat<strong>in</strong>g <strong>of</strong> the tribological<br />

sample because <strong>of</strong> the rotation <strong>of</strong> the sample holder which is<br />

connected to a long axes driven by the magnetic force. Some<br />

techniques have been <strong>in</strong>troduced <strong>in</strong>to the design <strong>in</strong> order to speed up<br />

the cool down rate <strong>of</strong> the sample, such <strong>as</strong>, the surface <strong>of</strong> the heater and<br />

the <strong>in</strong>side surface <strong>of</strong> the annular heat s<strong>in</strong>k have been blacked and the<br />

special material and unique structure have been used for the axes <strong>of</strong><br />

the sample holder.<br />

Test results show that the highest heat<strong>in</strong>g temperature can be about<br />

600K, and the lowest cool<strong>in</strong>g temperature can reach around 130K.<br />

The cool<strong>in</strong>g time is roughly two days. The sample temperature can be<br />

stabilized at any po<strong>in</strong>t with accuracy <strong>of</strong> 0.2K <strong>in</strong> the range <strong>of</strong><br />

130~600K. The heat transfer analysis, temperature control & display<br />

and test results <strong>of</strong> the cool<strong>in</strong>g and heat<strong>in</strong>g device have been presented.<br />

And some considerations have been discussed to improve the slow<br />

cool down rate <strong>in</strong> the future.<br />

C2-E Regenerators<br />

C2-E-01 A Low-Temperature Regenerator Test Facility<br />

A. K<strong>as</strong>hani, B.P.M. Helvensteijn, Atl<strong>as</strong> Scientific; J.R.<br />

Feller, L.J. Salerno, NASA-Ames Research Center; P.<br />

Kittel, Consultant.<br />

Test<strong>in</strong>g regenerators presents an <strong>in</strong>terest<strong>in</strong>g challenge. When<br />

<strong>in</strong>corporated <strong>in</strong>to a cryocooler, a regenerator is <strong>in</strong>timately coupled to<br />

the other components. It is difficult to isolate the performance <strong>of</strong> any<br />

s<strong>in</strong>gle component. We have developed a low temperature test facility<br />

that separates the performance <strong>of</strong> the regenerator from the rest <strong>of</strong> the<br />

cryocooler. The purpose <strong>of</strong> the facility is the characterization <strong>of</strong> test<br />

regenerators us<strong>in</strong>g novel materials and/or geometries <strong>in</strong> temperature<br />

ranges down to 15 K. The test column consists <strong>of</strong> two regenerators<br />

stacked <strong>in</strong> series. The coldest stage regenerator is the device under<br />

test. The warmer stage regenerator consists <strong>of</strong> a stack <strong>of</strong> wellcharacterized<br />

material such <strong>as</strong> sta<strong>in</strong>less-steel screen. A commercial<br />

cryocooler is used to cool the heat exchangers <strong>in</strong> the regenerator stack.<br />

The cryocooler is used to fix the temperatures at both ends <strong>of</strong> the test<br />

regenerator. Heaters on each cryocooler stage add the capability to<br />

vary the temperatures and allow me<strong>as</strong>urement <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g<br />

cool<strong>in</strong>g power, and thus, regenerator effectiveness. A l<strong>in</strong>ear<br />

compressor delivers an oscillat<strong>in</strong>g pressure to the the regenerator<br />

<strong>as</strong>sembly. An <strong>in</strong>ertance tube and reservoir provide the proper ph<strong>as</strong>e<br />

difference between m<strong>as</strong>s flow and pressure. This ph<strong>as</strong>e shift, along<br />

with the imposed temperature differential, simulates the conditions the<br />

test regenerator might see when used <strong>in</strong> an actual cryocooler. This<br />

paper presents development details <strong>of</strong> the regenerator test facility.<br />

Page 23 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-E-02 Hybrid Regenerator for Compact Stirl<strong>in</strong>g<br />

Cryocooler Design <strong>as</strong>pectes <strong>of</strong> a compact hybrid<br />

regenerator for pulse tube cryocooler application<br />

B.T. Kuzhiveli, National Inst. <strong>of</strong> Technology Calicut.<br />

A study h<strong>as</strong> been conducted to f<strong>in</strong>d out the optimum configuration <strong>of</strong><br />

regenerators to be used for m<strong>in</strong>iature cryocoolers. Mesh sizes start<strong>in</strong>g<br />

with 200 up to 400 with an <strong>in</strong>terval <strong>of</strong> 50 have been sampled and<br />

performance estimation h<strong>as</strong> been made. The study h<strong>as</strong> been extended<br />

to determ<strong>in</strong>e the performance <strong>of</strong> a hybrid regenerator and its<br />

suitability to use <strong>in</strong> a cryocooler which can produce 5W at 80 K. A<br />

methodology h<strong>as</strong> been developed to arrive at the appropriate mesh<br />

size and number <strong>of</strong> mesh to be used <strong>in</strong> the hybrid regenerator to go<br />

hand <strong>in</strong> hand with the available m<strong>as</strong>s. Results are presented <strong>in</strong> the<br />

form <strong>of</strong> design charts for quick reference which could be helpful <strong>in</strong><br />

the design <strong>of</strong> m<strong>in</strong>iature regenerators.<br />

C2-E-03 Dynamic characteristics <strong>of</strong> oscillat<strong>in</strong>g flow<br />

regenerators<br />

H.L. Chen, L.W. Yang, J.H. Cai, J.T. Liang, Y. Zhou,<br />

Technical Institute <strong>of</strong> Physics and Chemistry, CAS.<br />

Regenerator is the most important component <strong>in</strong> a pulse-tube<br />

cryocooler. Because <strong>of</strong> oscillat<strong>in</strong>g flow, heat transfer and flow<br />

resistance <strong>in</strong> the regenerator are complex, and ph<strong>as</strong>e shifts between<br />

parameters affect the cool<strong>in</strong>g performance evidently. Regenerator<br />

research is a fundamental work for cryocoolers. Experiments are<br />

performed to test regenerators <strong>of</strong> different size filled with different<br />

mesh number screens. Two f<strong>in</strong>e hot-wire anemometers are used to<br />

me<strong>as</strong>ure the <strong>in</strong>stantaneous velocities at the <strong>in</strong>let and outlet <strong>of</strong> the<br />

regenerators, and the pressure waves are me<strong>as</strong>ured by piezoelectric<br />

pressure transducers at the same positions. The respond<strong>in</strong>g frequency<br />

<strong>of</strong> the me<strong>as</strong>ur<strong>in</strong>g system is high enough.<br />

In the p<strong>as</strong>t, we have performed experiments to study the oscillat<strong>in</strong>g<br />

flow at around 50Hz.In this paper, the system is driven by a<br />

thermoacoustic eng<strong>in</strong>e which generates a pressure wave at 300Hz.<br />

The two k<strong>in</strong>ds <strong>of</strong> results are compared and analyzed.<br />

C2-E-04 Analysis <strong>of</strong> Cryogenic Regenerator for Magnetic<br />

Refrigerator Applications<br />

B.T. Kuzhiveli, National Institute <strong>of</strong> Technology<br />

Calicut; R. Chah<strong>in</strong>e, T.K Bose, Institut de recherche<br />

sur l’hydrogène, Université du Québec; C.B. Zimm,<br />

Astronautics Corporation <strong>of</strong> America.<br />

Magnetic refrigeration uses the temperature and field dependence <strong>of</strong><br />

the entropy <strong>of</strong> specific magnetic materials to accomplish cool<strong>in</strong>g.<br />

Because <strong>of</strong> the high efficiency <strong>of</strong> the magnetization and<br />

demagnetization processes and also because <strong>of</strong> the potential for<br />

excellent heat transfer between solid magnetic material and fluids,<br />

magnetic refrigerators may promise to have higher efficiency than<br />

exist<strong>in</strong>g g<strong>as</strong> cycle refrigerators. Many ground b<strong>as</strong>ed and space borne<br />

applications could benefit significantly from the cost sav<strong>in</strong>gs implied<br />

by efficiency. This paper deals with a b<strong>as</strong>ic computational model<br />

which could predict the temperature drop caused by the regenerator<br />

effect. It solves partial differential equations that describe fluid flow<br />

comb<strong>in</strong>ed with heat transfer between fluid and solid regenerator<br />

particles. Temperature changes are calculated for discrete material<br />

segments at a number <strong>of</strong> time <strong>in</strong>tervals over a complete operation<br />

cycle. A numerical step-by-step procedure to solve the differential<br />

equations describ<strong>in</strong>g the regenerative heat exchanger is set out and a<br />

computer program h<strong>as</strong> been made to predict performance <strong>of</strong> the<br />

regenerator.<br />

C2-E-05 Second-Law Analysis and Optimization <strong>of</strong><br />

Regenerators Us<strong>in</strong>g REGEN 3.2<br />

A.J. Lopez, The Univ. <strong>of</strong> Nex Mexcio; Sandia Nat`l<br />

Laboratories; C. Dodson, A. Razani, The Univ. <strong>of</strong> New<br />

Mexico; Air Force Research Lab..<br />

In most Stirl<strong>in</strong>g and pulse tube refrigerators the regenerative heat<br />

exchanger is the major contributor to the irreversibility <strong>of</strong> the<br />

refrigerators. Exergy analysis is a convenient method to quantify the<br />

losses <strong>in</strong> regenerators. NIST Code REGEN 3.2 provides a powerful<br />

tool to quantify exergy flow <strong>in</strong> the regenerators to evaluate the exergy<br />

destruction (irreversibility) due to heat transfer and fluid friction. The<br />

effect <strong>of</strong> important parameters, with emph<strong>as</strong>is on the ph<strong>as</strong>e shift<br />

between the pressure and the m<strong>as</strong>s flow rate at the cold side <strong>of</strong><br />

regenerator, on the exergetic efficiency and the important components<br />

<strong>of</strong> exergy destruction <strong>in</strong> the regenerator is presented. The efficiency<br />

<strong>of</strong> the regenerator b<strong>as</strong>ed on exergy analysis is compared to other<br />

methods <strong>of</strong> evaluat<strong>in</strong>g regenerator performance. The ability <strong>of</strong> the<br />

code to quantify the exergy flow and destruction at low temperatures<br />

where the ideal g<strong>as</strong> <strong>as</strong>sumption is not applicable is discussed.<br />

C2-E-06 Longitud<strong>in</strong>al Hydraulic Resistance Parameters<br />

<strong>of</strong> Cryocooler and Stirl<strong>in</strong>g Regenerators <strong>in</strong> Steady Flow<br />

W.M. Clearman, S.M. Ghia<strong>as</strong>iaan, P.V. Desai, G.W.<br />

Woodruff School <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Georgia<br />

Institute <strong>of</strong> Technology.<br />

The results <strong>of</strong> an ongo<strong>in</strong>g research program aimed at the me<strong>as</strong>urement<br />

and correlation <strong>of</strong> anisotropic hydrodynamic parameters <strong>of</strong> widelyused<br />

cryocooler regenerator fillers are presented. The hydrodynamic<br />

parameters <strong>as</strong>sociated with steady, longitud<strong>in</strong>al flow are addressed <strong>in</strong><br />

this paper. An experimental apparatus consist<strong>in</strong>g <strong>of</strong> a cyl<strong>in</strong>drical test<br />

section packed with regenerator fillers is used for the me<strong>as</strong>urement <strong>of</strong><br />

axial permeability and Forchheimer coefficients, with pure helium <strong>as</strong><br />

the work<strong>in</strong>g fluid. The regenerator fillers that are tested <strong>in</strong>clude<br />

sta<strong>in</strong>less steel 400-mesh screens with 69.2% and 62% porosity,<br />

sta<strong>in</strong>less steel 325-mesh screens with 69.2% and 62% porosity,<br />

sta<strong>in</strong>less steel 400-mesh s<strong>in</strong>tered filler with 62% porosity, and<br />

sta<strong>in</strong>less steel s<strong>in</strong>tered foam metal with 56% porosity. The test section<br />

is subjected to a steady flow <strong>of</strong> helium at one end, and is open to the<br />

atmosphere at the other end. The <strong>in</strong>strumentation <strong>in</strong>cludes pressure<br />

transducers and a high-precision flow meter. For each filler material,<br />

time histories <strong>of</strong> local pressures at <strong>in</strong>let to the regenerator are<br />

me<strong>as</strong>ured under steady flow conditions over a wide range <strong>of</strong> flow<br />

rates. A CFD <strong>as</strong>sisted methodology is then used for the analysis and<br />

<strong>in</strong>terpretation <strong>of</strong> the me<strong>as</strong>ured data. The permeability and<br />

Forchheimer parameter values obta<strong>in</strong>ed <strong>in</strong> this way are then correlated<br />

<strong>in</strong> terms <strong>of</strong> the relevant dimensionless parameters.<br />

Page 24 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Oral<br />

10:30am - 11:45am<br />

C2-G Low Temperature Superconduct<strong>in</strong>g<br />

Magnet Systems III<br />

C2-G-01 ATLAS Superconduct<strong>in</strong>g Magnet System Status<br />

<strong>of</strong> Completion<br />

H.H.J. Ten Kate, CERN.<br />

The superconduct<strong>in</strong>g magnet system <strong>of</strong> the ATLAS Detector at CERN<br />

comprises a Barrel Toroid, two End-Cap Toroids and a Central<br />

Solenoid and it provides the magnetic field for the muon- and <strong>in</strong>ner<br />

detectors, respectively. The huge Barrel Toroid with outer dimensions<br />

<strong>of</strong> 25m length and 20m diameter is built up from 8 identical racetrack<br />

coils, each <strong>of</strong> them already unique <strong>in</strong> size. The coils are wound with<br />

an alum<strong>in</strong>ium stabilised NbTi conductor and operate at 20.5kA at<br />

3.9T peak magnetic field <strong>in</strong> the w<strong>in</strong>d<strong>in</strong>gs. The coils, <strong>in</strong> total 370 tons<br />

<strong>of</strong> cold m<strong>as</strong>s, are conduction cooled at 4.8K by circulat<strong>in</strong>g forced flow<br />

helium <strong>in</strong> cool<strong>in</strong>g tubes attached to the cold m<strong>as</strong>s. The two End Cap<br />

Toroids are smaller sized, still 11m <strong>in</strong> diameter and 5m <strong>in</strong> height,<br />

essentially made with the same superconductor and operates also at<br />

20.5kA. The Central Solenoid h<strong>as</strong> dimensions <strong>of</strong> 2.4m diameter and<br />

5.7m length. The stored energy <strong>of</strong> the magnet system is 1.5GJ at<br />

nom<strong>in</strong>al current. After the successful on-surface acceptance tests, the<br />

8 coils <strong>of</strong> the Barrel Toroid and the Solenoid were <strong>in</strong>stalled <strong>in</strong> the<br />

ATLAS cavern 100m underground. The magnets were successfully<br />

charged to full field <strong>in</strong> autumn 2006. The two End Cap Toroids were<br />

completed <strong>in</strong> spr<strong>in</strong>g 20<strong>07</strong> and are taken <strong>in</strong>to operation <strong>as</strong> well thereby<br />

complet<strong>in</strong>g this very challeng<strong>in</strong>g magnet system. The status <strong>of</strong> project<br />

<strong>in</strong> its nearly completed state <strong>as</strong> well <strong>as</strong> the first experience with test<strong>in</strong>g<br />

and operation <strong>of</strong> the system <strong>in</strong> the underground cavern is reported.<br />

This research is f<strong>in</strong>anced by the fund<strong>in</strong>g agencies and laboratories<br />

work<strong>in</strong>g together <strong>in</strong> the ATLAS Collaboration.<br />

C2-G-02 Series-Produced Helium II Cryostats for the<br />

LHC Magnets: Technical Choices, Industrialization,<br />

Costs<br />

A. Poncet, V. Parma, CERN AT-MCS.<br />

Assembled <strong>in</strong> 8 cont<strong>in</strong>uous segments <strong>of</strong> approximately 2.7 kms length<br />

each, the He II cryostats for the 1232 cryodipoles and 474 Short<br />

Straight Sections (SSS hous<strong>in</strong>g the quadrupoles) must fulfill tight<br />

technical requirements .They have been produced by <strong>in</strong>dustry <strong>in</strong> large<br />

series accord<strong>in</strong>g to cost-effective <strong>in</strong>dustrial production methods to<br />

keep expenditure with<strong>in</strong> the f<strong>in</strong>ancial constra<strong>in</strong>ts <strong>of</strong> the project, and<br />

<strong>as</strong>sembled under contract at CERN.<br />

The specific technical requirements <strong>of</strong> the generic systems <strong>of</strong> the<br />

cryostat (vacuum, cryogenic, electrical distribution, magnet<br />

alignment) are briefly recalled, <strong>as</strong> well <strong>as</strong> the b<strong>as</strong>ic design choices<br />

lead<strong>in</strong>g to the def<strong>in</strong>ition <strong>of</strong> their components (vacuum vessels, thermal<br />

shield<strong>in</strong>g, support<strong>in</strong>g systems, <strong>in</strong>terconnection elements). Early <strong>in</strong> the<br />

design process emph<strong>as</strong>is w<strong>as</strong> placed on the fe<strong>as</strong>ibility <strong>of</strong><br />

manufactur<strong>in</strong>g techniques adequate for large series production <strong>of</strong><br />

components, optimal tool<strong>in</strong>g for time-effective <strong>as</strong>sembly methods,<br />

and reliable quality <strong>as</strong>surance systems.<br />

An analytical review <strong>of</strong> the costs <strong>of</strong> the cryostats from component<br />

procurement to f<strong>in</strong>al <strong>as</strong>sembly and tests is presented and compared<br />

with <strong>in</strong>itial estimates, together with an appraisal <strong>of</strong> the results and<br />

lessons learned.<br />

C2-G-04 Design, production and first commission<strong>in</strong>g<br />

results <strong>of</strong> the electrical feedboxes for the LHC<br />

A. Per<strong>in</strong>, A. Ballar<strong>in</strong>o, V. Benda, A. Bouillot, S.<br />

Claudet, R. Folch, M. Genet, S. Koczorowski, L.<br />

Metral, J. Miles, L. Serio, Ph. Trilhe, R. van<br />

Weelderen, CERN; K. Polkovnikov, V. Zhabitskiy,<br />

IHEP, Russia.<br />

A total <strong>of</strong> 44 CERN-designed cryogenic electrical feedboxes are<br />

needed to power the LHC superconduct<strong>in</strong>g magnets. The feedboxes<br />

<strong>in</strong>clude more than 1000 superconduct<strong>in</strong>g circuits fed by hightemperature<br />

superconductor and conventional current leads with<br />

currents rang<strong>in</strong>g from 120 A to 13 000 A. In addition to supply<strong>in</strong>g the<br />

electrical current to the magnet circuits, they also ensure specific<br />

mechanical and cryogenic functions for the LHC. The paper focuses<br />

on the ma<strong>in</strong> design <strong>as</strong>pects and related production operations, and<br />

gives an overview <strong>of</strong> specific technologies employed. Results <strong>of</strong> the<br />

commission<strong>in</strong>g <strong>of</strong> the feedboxes <strong>in</strong> the first LHC sectors are<br />

presented.<br />

C2-G-05 Quench Performance <strong>of</strong> Nb3Sn cos-theta coils<br />

made <strong>of</strong> 108/127 RRP Strands*<br />

R. Bossert, G. Ambrosio, N. Andreev, E. Barzi, R.<br />

Carcagno, V.S. K<strong>as</strong>hikh<strong>in</strong>, V.V. K<strong>as</strong>hikh<strong>in</strong>, M. Lamm,<br />

F. Nobrega, I. Novitski, Yu. Pischalnikov, M.<br />

Tartaglia, D. Turrioni, R. Yamada, A.V. Zlob<strong>in</strong>,<br />

Fermilab.<br />

Fermilab is develop<strong>in</strong>g a new generation <strong>of</strong> high field accelerator<br />

magnets b<strong>as</strong>ed on Nb3Sn shell-type coils and the w<strong>in</strong>d-and-react<br />

technology. The high performance Nb3Sn strand produced by Oxford<br />

Superconduct<strong>in</strong>g Technology (OST) us<strong>in</strong>g the Restack Rod Process<br />

(RRP) is considered at present time <strong>as</strong> a b<strong>as</strong>el<strong>in</strong>e conductor for the<br />

model magnet R&D program. To improve the strand stability <strong>in</strong> the<br />

current and field range expected <strong>in</strong> magnet models, the number <strong>of</strong><br />

sub-elements <strong>in</strong> the strand w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed by a factor <strong>of</strong> two (from 54<br />

to 108), which resulted <strong>in</strong> a smaller effective filament size. The<br />

performance <strong>of</strong> the 1.0 mm strands <strong>of</strong> this design w<strong>as</strong> extensively<br />

studied us<strong>in</strong>g virg<strong>in</strong> and deformed strand samples. Rutherford-type<br />

cables made <strong>of</strong> this strand were also tested us<strong>in</strong>g a superconduct<strong>in</strong>g<br />

transformer and small racetrack coils. B<strong>as</strong>ed on the positive results <strong>of</strong><br />

strand and cable tests, two shell-type dipole coils were fabricated and<br />

tested us<strong>in</strong>g a magnetic mirror configuration. This paper describes the<br />

parameters <strong>of</strong> the 108/127 RRP strand and cables, and reports the<br />

results <strong>of</strong> strand, cable and coil test<strong>in</strong>g.<br />

*This work w<strong>as</strong> supported by the U.S. Department <strong>of</strong> Energy<br />

C2-H Heat Transfer - I<br />

C2-H-02 Thermal conductivity <strong>of</strong> subcooled liquid<br />

hydrogen<br />

T.M.F Charignon, D. Celik, NHMFL-Cryolab; A.<br />

Hemmati, S.W. Van Sciver, NHMFL-Cryolab .<br />

Here we present thermal conductivity me<strong>as</strong>urements <strong>of</strong> subcooled<br />

equilibrium liquid hydrogen <strong>in</strong> the temperature range from 15 to 23 K<br />

and under pressures up to 1 MPa. The me<strong>as</strong>urements have been done<br />

<strong>in</strong> a horizontal, guarded, flat-plates calorimeter. One dimensional heat<br />

transfer between the hot and the cold plates <strong>of</strong> the calorimeter is<br />

achieved by surround<strong>in</strong>g the calorimeter plates with two thermal<br />

guards. Capacitance me<strong>as</strong>ured between the calorimeter plates gives a<br />

precise and accurate gap value for the test cell. A two-stage Gifford-<br />

McMahon cryocooler provides the cool<strong>in</strong>g power to the calorimeter.<br />

The absolute temperatures are monitored us<strong>in</strong>g plat<strong>in</strong>um resistance<br />

thermometers calibrated aga<strong>in</strong>st the saturated vapor-pressure l<strong>in</strong>e <strong>of</strong><br />

equilibrium hydrogen. Results reported <strong>in</strong> this paper are compared to<br />

data published earlier. The density dependence <strong>of</strong> thermal<br />

conductivity is expected to be especially useful for subcooled<br />

hydrogen transport properties.<br />

This research h<strong>as</strong> been supported by NASA through the Research<br />

Initiative for Florida Universities under the grant NAG3-2751. We<br />

acknowledge technical support from Scott Maier.<br />

Page 25 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-H-03 Viscous Energy Dissipation <strong>in</strong> Frozen Cryogens<br />

S.J. Meitner, J.M. Pfotenhauer, M.R. Andr<strong>as</strong>chko,<br />

University <strong>of</strong> Wiscons<strong>in</strong>-Madison.<br />

ITER is an <strong>in</strong>ternational research and development project with the<br />

goal <strong>of</strong> demonstrat<strong>in</strong>g the fe<strong>as</strong>ibility <strong>of</strong> fusion power. The fuel for the<br />

ITER pl<strong>as</strong>ma is <strong>in</strong>jected <strong>in</strong> the form <strong>of</strong> frozen deuterium pellets; the<br />

current <strong>in</strong>jector design <strong>in</strong>cludes a batch extruder, cooled by liquid<br />

helium. A more advanced fuel system will produce deuterium pellets<br />

cont<strong>in</strong>uously us<strong>in</strong>g a tw<strong>in</strong>-screw extruder, cooled by a cryocooler.<br />

One <strong>of</strong> the critical design parameters for the advanced system is the<br />

friction <strong>as</strong>sociated with the shear<strong>in</strong>g planes <strong>of</strong> the frozen deuterium <strong>in</strong><br />

the extruder; the friction determ<strong>in</strong>es the required screw torque <strong>as</strong> well<br />

<strong>as</strong> the cryocooler heat load.<br />

An experiment h<strong>as</strong> been designed to me<strong>as</strong>ure the energy dissipation<br />

<strong>as</strong>sociated with shear<strong>in</strong>g frozen deuterium. Deuterium g<strong>as</strong> is cooled<br />

to its freez<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> the gap between a stationary outer cyl<strong>in</strong>der and<br />

a rotat<strong>in</strong>g <strong>in</strong>ner cyl<strong>in</strong>der. The dissipation is me<strong>as</strong>ured mechanically<br />

and through calorimetric means. The experiment h<strong>as</strong> also been used<br />

to me<strong>as</strong>ure dissipation <strong>in</strong> other cryogens (e.g., hydrogen and nitrogen)<br />

<strong>as</strong> a function <strong>of</strong> rotational velocity and temperature. This paper<br />

describes the design and construction <strong>of</strong> the experiment and presents<br />

me<strong>as</strong>urements over a range <strong>of</strong> cryogens and test conditions.<br />

This work is supported by the U.S. Department <strong>of</strong> Energy.<br />

C2-H-04 Study on thermal diffusion <strong>in</strong> artificial air near<br />

the critical po<strong>in</strong>t<br />

A Nakano, T Maeda, AIST.<br />

AIR is absolutely essential for our everyday life and also very<br />

important <strong>in</strong> the field <strong>of</strong> <strong>in</strong>dustry. The major part <strong>of</strong> it is composed <strong>of</strong><br />

nitrogen and oxygen. We <strong>in</strong>vestigated the soret effect <strong>in</strong> artificial air,<br />

which w<strong>as</strong> nitrogen-oxygen b<strong>in</strong>ary mixture with the composition <strong>of</strong><br />

0.791 mole fraction <strong>of</strong> nitrogen and 0.209 mole fraction <strong>of</strong> oxygen<br />

near the critical po<strong>in</strong>t. In the c<strong>as</strong>e <strong>of</strong> the artificial air, the Max.-<br />

Condentherm (MC) temperature and the MC pressure are 131.532 K<br />

and 3.65187 MPa, respectively. The critical temperature and the<br />

critical pressure are slightly lower than the MC temperature and the<br />

MC pressure. We carried out the experiments by us<strong>in</strong>g a s<strong>in</strong>gle stage<br />

two-chamber cell, which w<strong>as</strong> divided by a porous diaphragm. We<br />

made a temperature difference between the two chambers. After an<br />

experiment had run for sufficient time to reach steady state, the<br />

concentration <strong>of</strong> oxygen <strong>in</strong> each chamber w<strong>as</strong> me<strong>as</strong>ured by us<strong>in</strong>g a<br />

g<strong>as</strong> chromatograph. From the experiments, we observed that the<br />

thermal diffusion factor showed a strong drop near the critical po<strong>in</strong>t.<br />

The thermal diffusion ratio <strong>in</strong>dicated negative and behaved <strong>as</strong> 3He-<br />

4He mixture. There h<strong>as</strong> been no report that the thermal diffusion ratio<br />

<strong>of</strong> the nitrogen-oxygen system behaves just like the mixture <strong>of</strong> such<br />

substances. We discuss the thermal diffusion <strong>in</strong> the nitrogen-oxygen<br />

b<strong>in</strong>ary mixture near the critical po<strong>in</strong>t.<br />

C2-H-05 Thermal Conductivity <strong>of</strong> Powder Insulations<br />

Below 80 K<br />

M.N. Barrios, Y.S. Choi, S.W. Van Sciver, National<br />

High Magnetic Field Laboratory.<br />

The thermal conductivity <strong>of</strong> powder <strong>in</strong>sulat<strong>in</strong>g materials w<strong>as</strong><br />

me<strong>as</strong>ured at average temperatures rang<strong>in</strong>g from 30 K to 80 K. The<br />

me<strong>as</strong>ur<strong>in</strong>g device consists <strong>of</strong> two closed, concentric cyl<strong>in</strong>ders which<br />

are suspended <strong>in</strong>side <strong>of</strong> a cryostat. The <strong>in</strong>sulation be<strong>in</strong>g tested is filled<br />

<strong>in</strong>to the annular space between the cyl<strong>in</strong>ders. A s<strong>in</strong>gle stage Gifford-<br />

McMahon cryocooler is thermally anchored to the outer cyl<strong>in</strong>der and<br />

used to cool the apparatus to a desired temperature range. A heater<br />

mounted on the <strong>in</strong>ner cyl<strong>in</strong>der generates uniform heat flux through the<br />

<strong>in</strong>sulat<strong>in</strong>g material between the two cyl<strong>in</strong>ders. Fourier’s law <strong>of</strong> heat<br />

conduction is used to relate the temperature difference between the<br />

two cyl<strong>in</strong>ders and heat<strong>in</strong>g power to a bulk effective thermal<br />

conductivity <strong>of</strong> the powder <strong>in</strong>sulation. Data is collected for aerogel<br />

beads and gl<strong>as</strong>s bubbles at temperatures between 30 K and 80 K.<br />

Us<strong>in</strong>g the me<strong>as</strong>ured thermal conductivity, we obta<strong>in</strong> the temperature<br />

distribution <strong>in</strong> the powder <strong>in</strong>sulation by solv<strong>in</strong>g the one-dimensional<br />

heat diffusion equation.<br />

This research is supported by NASA-Kennedy Space Center under<br />

contract NAS1003006.<br />

C2-H-06 Thermal Conductivity <strong>as</strong> a Function <strong>of</strong><br />

Contact Pressure, Temperature, and Interface Material<br />

B.C. Jackson Sr., Everson Tesla Inc..<br />

The purpose <strong>of</strong> this study is to determ<strong>in</strong>e the thermal conductivity<br />

between two copper surfaces <strong>as</strong> a function <strong>of</strong> contact pressure and<br />

<strong>in</strong>terface material at a range <strong>of</strong> cryogenic temperatures between 4K<br />

and 100K. The study differs from previous work <strong>in</strong> that it utilizes<br />

extended contact pressures and temperatures. This study is needed to<br />

enable researchers and members <strong>of</strong> <strong>in</strong>dustry to reach improved levels<br />

<strong>of</strong> jo<strong>in</strong>t performance required for the operation <strong>of</strong> novel and exist<strong>in</strong>g<br />

devices <strong>in</strong>clud<strong>in</strong>g superconduct<strong>in</strong>g magnet cryostats. The test<br />

apparatus utilizes a 2-Stage 4.2K GM cryocooler system <strong>in</strong><br />

conjunction with load adjust<strong>in</strong>g devices to accurately adjust the<br />

contact force between the cryocooler stages and the <strong>in</strong>terface plates.<br />

Various types <strong>of</strong> material will be used between the two contact<br />

surfaces to make up for surface imperfections <strong>in</strong>clud<strong>in</strong>g Apezion-N<br />

gre<strong>as</strong>e and <strong>in</strong>dium foil. A series <strong>of</strong> tests will be conducted at specified<br />

values <strong>of</strong> contact force and <strong>in</strong>terface material type. Heat applied to the<br />

<strong>in</strong>terface is cont<strong>in</strong>uously varied and the temperature me<strong>as</strong>ured. A<br />

family <strong>of</strong> curves will be constructed <strong>in</strong> order to determ<strong>in</strong>e the thermal<br />

conductivity <strong>as</strong> a function <strong>of</strong> contact pressure, temperature and<br />

<strong>in</strong>terface material. The beneficial result <strong>of</strong> this study will be the<br />

economical construction <strong>of</strong> high performance low temperature<br />

<strong>in</strong>terfaces.<br />

David M. Rakos Co-Author<br />

C2-I Aerospace Mission Cool<strong>in</strong>g Systems<br />

C2-I-01 The NICMOS Cool<strong>in</strong>g System – 5 Years <strong>of</strong><br />

Successful On-Orbit Operation<br />

F.X. Dolan, M.V. Zagarola, Creare Inc.; W.L. Swift,<br />

Consultant.<br />

The NICMOS Cool<strong>in</strong>g System consists <strong>of</strong> a closed loop turbo-<br />

Brayton cryocooler coupled with a cryogenic circulator that provides<br />

refrigeration to the Near InfraRed Camera and Multi Object<br />

Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The<br />

cryocooler rejects heat to space through a capillary pumped loop<br />

connected to radiators mounted on the side <strong>of</strong> the telescope. The<br />

system w<strong>as</strong> deployed and <strong>in</strong>tegrated with NICMOS by <strong>as</strong>tronauts<br />

dur<strong>in</strong>g STS – 109 (Space Shuttle Columbia) <strong>in</strong> April 2002. It h<strong>as</strong><br />

operated cont<strong>in</strong>uously without performance degradation s<strong>in</strong>ce that<br />

time, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g NICMOS detectors at a constant temperature <strong>of</strong> 77<br />

K. M<strong>in</strong>iature, high-speed turbomach<strong>in</strong>es are used <strong>in</strong> the cryocooler<br />

and the circulator loop to provide vibration-free, long-life operation.<br />

A small centrifugal compressor and m<strong>in</strong>iature turboalternator are key<br />

elements <strong>of</strong> the closed loop cryocooler. A m<strong>in</strong>iature cryogenic<br />

centrifugal circulator <strong>in</strong> a separate pressurized neon loop transports<br />

heat from the NICMOS <strong>in</strong>strument to the cryocooler <strong>in</strong>terface heat<br />

exchanger. This paper describes the development <strong>of</strong> the system,<br />

<strong>in</strong>clud<strong>in</strong>g key operational features, ground and orbital tests prior to its<br />

on-orbit <strong>in</strong>tegration with NICMOS, and operational results dur<strong>in</strong>g its<br />

five-year operational history on orbit.<br />

C2-I-02 The first European turbo-Brayton cooler <strong>in</strong>orbit:<br />

experience ga<strong>in</strong>ed after one year <strong>in</strong> flight and<br />

future applications for space<br />

P. Crespi, J. Guichard, Air Liquide; M.N. de Parolis,<br />

ESA; J. Cheganc<strong>as</strong>, Astrium.<br />

In the frame <strong>of</strong> a contract granted by the European Space Agency and<br />

ASTRIUM, AIR LIQUIDE h<strong>as</strong> developed the first European turbo-<br />

Brayton cooler for a space application. This cooler w<strong>as</strong> successfully<br />

powered on <strong>in</strong> the International Space Station <strong>in</strong> July 2006 and h<strong>as</strong><br />

been runn<strong>in</strong>g s<strong>in</strong>ce then. This paper presents the design <strong>of</strong> the cooler<br />

and recalls the ma<strong>in</strong> milestones <strong>of</strong> the development/qualification<br />

process. The experience ga<strong>in</strong>ed on the behaviour <strong>of</strong> the cooler dur<strong>in</strong>g<br />

this one year <strong>of</strong> operation is presented. We also discuss the possibility<br />

to extend the on-orbit lifetime <strong>of</strong> the cooler from two years up to<br />

seven years. F<strong>in</strong>ally, a survey <strong>of</strong> potential applications <strong>of</strong> turbo-<br />

Brayton coolers for space are presented, rang<strong>in</strong>g from zero boil-<strong>of</strong>f<br />

systems for future launchers to In-Situ Resource Utilization (ISRU)<br />

systems and focal plane unit cool<strong>in</strong>g for <strong>as</strong>tronomical satellites.<br />

Page 26 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-I-03 Planck P<strong>as</strong>sive Cooler Design, Test and<br />

Performance<br />

E. Gavila, J.B. Riti, D. Valent<strong>in</strong>i, Alcatel Alenia<br />

Space; C. Dam<strong>as</strong>io, ESA.<br />

Planck Spacecraft, <strong>as</strong> part <strong>of</strong> the 4th cornerstone Herschel Planck ESA<br />

mission, is dedicated to the Cosmic Microwave Background mapp<strong>in</strong>g.<br />

Planck and Herschel satellites will be launched early 2008 on a s<strong>in</strong>gle<br />

ARIANEV launcher and <strong>in</strong>serted <strong>in</strong>to the Lagrange2 po<strong>in</strong>t <strong>of</strong> the<br />

Earth-Sun system. One <strong>of</strong> the ma<strong>in</strong> features <strong>of</strong> Planck lies <strong>in</strong> its<br />

cryogenic cha<strong>in</strong>, made <strong>of</strong> a 60K p<strong>as</strong>sive cooler, a 20K H2 sorption<br />

cooler, a Joule Thomson 4K He4 cooler and f<strong>in</strong>ally a 0.1K He3He4<br />

dilution cooler. Thermal <strong>as</strong>pects, and <strong>in</strong> particular those related to the<br />

P<strong>as</strong>sive Cooler, drive <strong>in</strong> a large part the S/C architecture <strong>as</strong> well <strong>as</strong> its<br />

verification approach. The P<strong>as</strong>sive Cooler is given contradictory t<strong>as</strong>ks<br />

to cool large Telescope items and to locally heat s<strong>in</strong>k active Coolers at<br />

60K. The architecture achiev<strong>in</strong>g thermal requirements is a black<br />

pa<strong>in</strong>ted open honeycomb surface <strong>in</strong>sulated from the warm spacecraft<br />

by a set <strong>of</strong> angled shields opened to cold space. Detailed modell<strong>in</strong>g<br />

w<strong>as</strong> needed to support conception ph<strong>as</strong>e and to predict flight and test<br />

thermal behaviours. Mathematical model had furthermore to be<br />

populated by material properties data over the 300K-50K temperature<br />

range.<br />

All analytical and design efforts, carried on the specimen and on a<br />

dedicated test facility, converged eventually to a satisfactory match<br />

between predictions and me<strong>as</strong>urements, confirm<strong>in</strong>g both<br />

mathematical model reliability and P<strong>as</strong>sive Cooler high performance.<br />

C2-I-04 Mid InfraRed Instrument (MIRI) Cooler<br />

Subsystem Prototype Demonstration<br />

D. Durand, R. Colbert, C. Jaco, M. Michaelian, T.<br />

Nguyen, M. Petach, J. Raab, , Northrop Grumman.<br />

The Cooler Subsystem for the Mid InfRared Instrument (MIRI) <strong>of</strong> the<br />

James Webb Space Telescope (JWST) features a 6 Kelv<strong>in</strong> Joule-<br />

Thomson (JT) cooler pre-cooled by a three-stage Pulse Tube (PT)<br />

cryocooler to provide 65 mW <strong>of</strong> cool<strong>in</strong>g at the <strong>in</strong>strument. MIRI’s 6<br />

Kelv<strong>in</strong> cool<strong>in</strong>g load, directly beh<strong>in</strong>d the primary mirror <strong>of</strong> JWST, is<br />

remote from the location <strong>of</strong> the compressors and pre-cooler. This<br />

distance, and the par<strong>as</strong>itic heat load on the refrigerant l<strong>in</strong>es spann<strong>in</strong>g<br />

it, is accommodated by the design. The effort dur<strong>in</strong>g 2006 h<strong>as</strong><br />

focused on the demonstration <strong>of</strong> a MIRI Cooler prototype <strong>in</strong> the<br />

relevant environment, required to achieve Technology Read<strong>in</strong>ess<br />

Level 6 (TRL 6) <strong>as</strong> def<strong>in</strong>ed by NASA. Performance when exposed to<br />

key <strong>as</strong>pects <strong>of</strong> the relevant environment, launch vibration and<br />

simulated thermal-vacuum dur<strong>in</strong>g operation, will be discussed.<br />

This work is funded by NASA and managed by the California Institute<br />

<strong>of</strong> Technology, Jet Propulsion Laboratory.<br />

C2-I-05 ABI Active Cooler Subsystem<br />

S.W. Clark, A.L. Hensley, S.R. Farr<strong>in</strong>ger, C.L.<br />

Bornkamp, P.G. Ramsey, ITT Space Systems.<br />

The Active Cooler Subsystem is responsible for provid<strong>in</strong>g cryogenic<br />

cool<strong>in</strong>g <strong>of</strong> the focal planes <strong>of</strong> the Advanced B<strong>as</strong>el<strong>in</strong>e Imager (ABI)<br />

<strong>in</strong>strument. Ma<strong>in</strong> components <strong>in</strong>clude primary/redundant two-stage<br />

pulse tube cryocoolers, flexible thermal straps, vacuum hous<strong>in</strong>g<br />

components and a flexible bellows.<br />

This paper presents design, analysis, performance and test details <strong>of</strong><br />

the ABI Active Cooler Subsystem. Each cryocooler <strong>in</strong>corporates an<br />

<strong>in</strong>tegral HEC pulse tube cooler and a remote coaxial cold head that are<br />

required to provide 2.27W <strong>of</strong> cool<strong>in</strong>g at 53K and 5.14W <strong>of</strong> cool<strong>in</strong>g at<br />

183K. The structural performance <strong>of</strong> the four unique flexible<br />

alum<strong>in</strong>um foil thermal straps range from 0.15 to 5.0 N/mm <strong>of</strong><br />

mechanical flexibility. The thermal conductance requirements <strong>of</strong> the<br />

thermal straps are 0.71 W/K @ 53K and 0.37 W/K at 183K. The<br />

vacuum hous<strong>in</strong>g, pseudo-k<strong>in</strong>ematic mounts and related components<br />

provide structural support for on-orbit environments, survival <strong>of</strong><br />

launch loads, CTE compliance, contam<strong>in</strong>ation control and ground<br />

bench test<strong>in</strong>g. Test data will be <strong>in</strong>cluded for several components<br />

<strong>in</strong>clud<strong>in</strong>g cryocooler vibration, cryocooler <strong>of</strong>f-state thermal loads and<br />

thermal strap conductivity, vibration transmissibility and load<br />

deflection.<br />

ITT leads the Advanced B<strong>as</strong>el<strong>in</strong>e Imager (ABI) team <strong>as</strong> the prime<br />

contractor and h<strong>as</strong> overall responsibility for the program<br />

development effort. ABI is a NASA adm<strong>in</strong>istered contract.<br />

C2-I-06 WISE Solid Hydrogen Cryostat Design Overview<br />

and Build Status<br />

L. Naes, Lockheed Mart<strong>in</strong> Advanced Technology<br />

Center; B. Lloyd, Space Dynamics Laboratory; S.<br />

Schick, Practical Technology Solutions.<br />

The Wide-Field Infrared Survey Explorer (WISE) is a MIDEX<br />

mission that is be<strong>in</strong>g developed by the Jet Propulsion Laboratory<br />

(JPL) to address several <strong>of</strong> NASA’s Astronomical Search <strong>of</strong> Orig<strong>in</strong>s<br />

(ASO) objectives. The WISE <strong>in</strong>strument, developed by the Space<br />

Dynamics Laboratory (SDL), <strong>in</strong>cludes a cryogenically-cooled<br />

telescope operat<strong>in</strong>g at < 13K, and four focal plane <strong>as</strong>semblies, two <strong>of</strong><br />

which operate at 7.8K. Cool<strong>in</strong>g <strong>of</strong> the <strong>in</strong>strument is accomplished by<br />

a dual-stage solid hydrogen cryostat that is developed by the<br />

Lockheed Mart<strong>in</strong> Advanced Technology Center (LM-ATC).<br />

This paper provides an overview <strong>of</strong> the WISE cryostat design and<br />

thermal support system along with a status <strong>of</strong> the flight system build.<br />

C2-K Large Scale Refrigerators and<br />

Liquefiers - III<br />

C2-K-01 Mal-distribution <strong>in</strong> a 20K Helium Refrigeration<br />

System Heat Exchanger<br />

J.A Crabtree, Oak Ridge National Laboratory; G.N.<br />

Gottier, Cryo Technologies.<br />

The Hydrogen Moderator System at the Spallation Neutron Source<br />

utilizes a 7.5kW Helium Refrigerator to cool three circulat<strong>in</strong>g loops <strong>of</strong><br />

supercritical hydrogen at a nom<strong>in</strong>al temperature <strong>of</strong> 20K. When this<br />

system w<strong>as</strong> orig<strong>in</strong>ally commissioned, it w<strong>as</strong> discovered that the<br />

refrigerator’s capacity w<strong>as</strong> not stable at design operat<strong>in</strong>g conditions.<br />

Contrary to conventional wisdom, the system appeared to operate<br />

more stably and susta<strong>in</strong>ed a higher capacity at a lower compressor<br />

suction pressure. When the suction pressure w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed to design<br />

conditions, the turb<strong>in</strong>e outlet temperature would <strong>in</strong>itially drop but the<br />

warm and cold end delta T’s would substantially <strong>in</strong>cre<strong>as</strong>e. The<br />

refrigeration capacity, <strong>as</strong> me<strong>as</strong>ured by the commission<strong>in</strong>g heater,<br />

would rise with <strong>in</strong>cre<strong>as</strong>ed suction pressure to a peak and then quickly<br />

dissipate. A number <strong>of</strong> common problems were <strong>in</strong>vestigated to no<br />

avail. At the outset, it w<strong>as</strong> <strong>as</strong>sumed that the stable conditions<br />

observed at the lower suction pressure would allow cont<strong>in</strong>uous<br />

operation at a reduced capacity. When the system w<strong>as</strong> operated for a<br />

period <strong>of</strong> three weeks, however, it w<strong>as</strong> discovered that the capacity<br />

actually slowly degrades with time. This degradation w<strong>as</strong> e<strong>as</strong>ily<br />

documented by track<strong>in</strong>g the heater power <strong>as</strong> well <strong>as</strong> the heat<br />

exchanger’s ever <strong>in</strong>cre<strong>as</strong><strong>in</strong>g delta T’s. A number <strong>of</strong> diagnostic tests<br />

were performed that ultimately led to a modification <strong>of</strong> all <strong>of</strong> the heat<br />

exchanger’s headers. A summary <strong>of</strong> the analyses, diagnosis, repair,<br />

and results are provided.<br />

C2-K-02 Improvements <strong>of</strong> helium<br />

liquefaction/refrigeration plants and applications<br />

HP. Wilhelm, K-H. Berdais, Th. Ungricht, L<strong>in</strong>de<br />

Kryotechnik AG.<br />

Design features <strong>of</strong> a new generation <strong>of</strong> helium liquefiers and<br />

refrigerators with liquefaction capacities rang<strong>in</strong>g from 30 to 280 l/h<br />

LHe (respectively refrigeration capacities from 100 to 900 Watt @<br />

4.5K) are presented. The new generation shows an <strong>in</strong>cre<strong>as</strong>ed<br />

efficiency due to improved turb<strong>in</strong>e and heat exchanger designs. Other<br />

benefits <strong>of</strong> the new design are shortened cool-down times, a very<br />

compact design and better flexibility and process control. The<br />

modular setup us<strong>in</strong>g standardized components covers a wide range <strong>of</strong><br />

applications <strong>in</strong>clud<strong>in</strong>g refrigeration at different temperature levels or<br />

simultaneous liquefaction and refrigeration. The presentation will<br />

highlight the <strong>in</strong>dividual improvements <strong>in</strong> the design.<br />

Dur<strong>in</strong>g the presentation the <strong>in</strong>fluence <strong>of</strong> certa<strong>in</strong> parameters like power<br />

requirement and cold box <strong>in</strong>let pressure <strong>in</strong> relation to the liquefaction<br />

and refrigeration capacities shall be shown and discussed.<br />

Page 27 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-K-03 Evolution <strong>of</strong> the standard helium liquefier and<br />

refrigerator range designed by Air Liquide Advanced<br />

Technology Division, France<br />

A. Caillaud, S. Crispel, V. Grabié, F. Delcayre, G.<br />

Aigouy, Air Liquide DTA.<br />

The standard helium liquefier and refrigerator range, called HELIAL<br />

and designed by Air Liquide DTA, h<strong>as</strong> recently been upgraded <strong>in</strong><br />

order to improve the efficiency <strong>of</strong> these mach<strong>in</strong>es. Indeed <strong>in</strong> the multirange<br />

<strong>of</strong> markets requir<strong>in</strong>g these cryogenic systems, (<strong>in</strong>ternational<br />

laboratories, aerospace applications, synchrotrons, HTS<br />

applications...), the technological solution h<strong>as</strong> to provide <strong>in</strong>cre<strong>as</strong><strong>in</strong>gly<br />

high performances. The new HELIAL Evolution range, equipped with<br />

very reliable DTA turbo-expanders, will constitute a highly efficient<br />

product for this wide application field. The optimizations, adaptations<br />

and results <strong>of</strong> the HELIAL Evolution series, doubl<strong>in</strong>g the performance<br />

for the same electrical consumption, will be presented.<br />

C2-K-04 Cryocooler for Air Liquefaction Onboard Large<br />

Aircraft<br />

J.J. Breedlove, P.J. Magari, Creare Inc.; G.W. Miller,<br />

Air Force Research Laboratory.<br />

Creare h<strong>as</strong> developed a turbo-Brayton cryocooler designed to produce<br />

approximately 1 kW <strong>of</strong> refrigeration at 95 K. The cryocooler is<br />

<strong>in</strong>tended to provide cryogenic cool<strong>in</strong>g to an air separation system<br />

be<strong>in</strong>g developed for the Air Force to produce and store liquid oxygen<br />

and liquid nitrogen onboard large aircraft. The oxygen will be used<br />

for high-altitude breath<strong>in</strong>g and medical evacuation operations, while<br />

the nitrogen will be used to <strong>in</strong>ert the ullage space <strong>in</strong>side the fuel tanks.<br />

The cryocooler utilizes g<strong>as</strong> bear<strong>in</strong>gs <strong>in</strong> the turbomach<strong>in</strong>es for long life<br />

without ma<strong>in</strong>tenance, which is a critical requirement for this<br />

application. The m<strong>as</strong>s <strong>of</strong> a flight version <strong>of</strong> this cryocooler is<br />

expected to be around 270 kg, while the <strong>in</strong>put power is expected to be<br />

approximately 25 kW. This paper describes the design and test<strong>in</strong>g <strong>of</strong><br />

the laboratory demonstration cryocooler that w<strong>as</strong> constructed to<br />

demonstrate the fe<strong>as</strong>ibility <strong>of</strong> the approach. In the future, the<br />

cryocooler will be <strong>in</strong>tegrated and tested with a distillation column<br />

subsystem. Subsequent test<strong>in</strong>g may also be performed <strong>in</strong>-flight on an<br />

Air Force transport aircraft.<br />

C2-K-05 Process Study <strong>of</strong> Nom<strong>in</strong>al 2 K Refrigeration<br />

Recovery<br />

P.N. Knudsen, V. Ganni, Jefferson Lab.<br />

There is an <strong>in</strong>cre<strong>as</strong>ed <strong>in</strong>terest <strong>in</strong> the nom<strong>in</strong>al 2K helium refrigeration<br />

systems (below lambda) for test stands at the present time. This paper<br />

presents the process parameter choices and their <strong>in</strong>fluence on the<br />

system performance <strong>of</strong> various non-cold compressor configurations.<br />

This study is <strong>in</strong>tended to facilitate the adoption <strong>of</strong> this process <strong>in</strong><br />

conjunction with commercially available small 4.5K helium<br />

refrigerator systems. By way <strong>of</strong> an <strong>in</strong>troduction, the efficiency <strong>of</strong><br />

some commonly employed (but <strong>in</strong>efficient) 2 K process<br />

configurations are analyzed. Then the analyses <strong>of</strong> three nom<strong>in</strong>al 2K<br />

refrigeration recovery process configurations utiliz<strong>in</strong>g a refrigeration<br />

recovery heat exchanger are presented. The effect <strong>of</strong> the process<br />

parameters, such <strong>as</strong> flow imbalance, heat exchanger size, supply<br />

pressure and 4.5K plant <strong>in</strong>jection location are <strong>in</strong>vestigated so that the<br />

conditions yield<strong>in</strong>g the maximum coefficient <strong>of</strong> performance can be<br />

determ<strong>in</strong>ed.<br />

C2-K-06 Recent progress <strong>in</strong> dynamic process simulations<br />

<strong>of</strong> cryogenic refrigerators<br />

A. Kuendig, L<strong>in</strong>de Kryotechnik AG.<br />

At the <strong>CEC</strong> 2005 a paper with the title “Helium refrigerator design for<br />

pulsed heat load <strong>in</strong> Tokamaks“ w<strong>as</strong> presented. That paper highlighted<br />

the control requirements for cryogenic refrigerators to cope with the<br />

expected load variations <strong>of</strong> future nuclear fusion reactors. First<br />

dynamic computer simulations have been presented.<br />

In the mean time, the computer program is enhanced and new series<br />

<strong>of</strong> process simulations are available. The new program considers not<br />

only the heat flows and the temperature variations with<strong>in</strong> the heat<br />

exchangers, but also the variation <strong>of</strong> m<strong>as</strong>s flow and pressure drops.<br />

The heat transfer numbers now are calculated <strong>in</strong> dependence <strong>of</strong> the<br />

flow speed and the g<strong>as</strong> properties. PI-controllers calculate the<br />

necessary position <strong>of</strong> specific valves for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g pressures,<br />

temperatures and the rotation speed <strong>of</strong> turb<strong>in</strong>es.<br />

The value <strong>of</strong> such a program is the trac<strong>in</strong>g <strong>of</strong> difficult transient<br />

operat<strong>in</strong>g modes <strong>in</strong> the design ph<strong>as</strong>e <strong>of</strong> a refrigerator. The simulation<br />

further is helpful for test<strong>in</strong>g control programs <strong>in</strong> absence <strong>of</strong> the real<br />

refrigerator and it enables to f<strong>in</strong>d optimal control parameters. Worth<br />

mention<strong>in</strong>g that such a program is applicable for the education <strong>of</strong><br />

eng<strong>in</strong>eers and operators.<br />

C2-K-<strong>07</strong> Design <strong>of</strong> Subcooled Pressurized Cryogenic<br />

Systems<br />

G.E. McIntosh, Cryogenic Technical Services, Inc..<br />

High temperature superconduct<strong>in</strong>g power l<strong>in</strong>es and various beaml<strong>in</strong>e<br />

targets require cool<strong>in</strong>g with subcooled, non-boil<strong>in</strong>g cryogens <strong>in</strong> the<br />

pressure range from 5 to 15 Bar. In conventional closed-loop<br />

refrigerated systems this is accomplished by us<strong>in</strong>g a pressurized<br />

ball<strong>as</strong>t cryogen dewar to ma<strong>in</strong>ta<strong>in</strong> the desired pressure. Although<br />

consumption is modest, cryogen flows cont<strong>in</strong>uously from the ball<strong>as</strong>t<br />

dewar and periodic replenishment is necessary. This paper describes<br />

an <strong>in</strong>novative refrigerated system which elim<strong>in</strong>ates the ball<strong>as</strong>t dewar<br />

and operates cont<strong>in</strong>uously without cryogen or g<strong>as</strong>eous make-up after<br />

the <strong>in</strong>itial fill.<br />

C2-K-08 The Cost <strong>of</strong> Helium Refrigerators and Coolers<br />

for Superconduct<strong>in</strong>g Devices <strong>as</strong> a Function <strong>of</strong> Cool<strong>in</strong>g<br />

Power at 4.5 K<br />

M. A, Green, Lawrence Berkeley National<br />

Laboratory.<br />

This paper is written <strong>in</strong> memory <strong>of</strong> Rod Byrns <strong>of</strong> the Lawrence<br />

Berkeley National Laboratory who died two years ago.<br />

This paper is an update <strong>of</strong> papers written <strong>in</strong> 1991, 1997 by Rod Byrns<br />

and this author concern<strong>in</strong>g estimat<strong>in</strong>g the cost <strong>of</strong> refrigeration for<br />

superconduct<strong>in</strong>g magnets and cavities. The actual costs <strong>of</strong> helium<br />

refrigerators and coolers (escalated to 20<strong>07</strong> dollars) are plotted and<br />

compared to a correlation function. A correlation function between<br />

cost and refrigeration at 4.5 K and 1.8 K is given. The capital cost <strong>of</strong><br />

larger refrigerators (greater than 50 W at 4.5 K) 1s plotted <strong>as</strong> a<br />

function <strong>of</strong> 4.5 K cool<strong>in</strong>g. The cost <strong>of</strong> small coolers is also plotted <strong>as</strong><br />

a function <strong>of</strong> refrigeration available at 4.5 K. An annual cost for<br />

refrigeration can also be estimated b<strong>as</strong>ed on the refrigeration at 4.5 K<br />

or 1.8 K and the cost <strong>of</strong> electrical energy. A correlation function for<br />

estimat<strong>in</strong>g <strong>in</strong>put power to the compressors to the refrigeration<br />

produced at 4.5 K and 1.8 K is also given.<br />

This work w<strong>as</strong> supported by the Office <strong>of</strong> Science, United States<br />

Department <strong>of</strong> Energy, under DOE contract DE-AC02-<br />

05CH11231.<br />

C2-L Stirl<strong>in</strong>g and Pulse Tube Coolers,<br />

Development and Test<strong>in</strong>g (Aerospace)<br />

C2-L-01 Development Of A 4.5 K Pulse Tube Cryocooler<br />

For Superconduct<strong>in</strong>g Electronics<br />

Ted N<strong>as</strong>t , Jeff Olson , Patrick Champagne , Jack<br />

Mix, Bobby Evtimov, Eric Roth , Andre Collaco , ,<br />

Lockheed Mart<strong>in</strong> Space Co.<br />

Lockheed Mart<strong>in</strong>`s Advanced Technology Center is develop<strong>in</strong>g a four<br />

stage pulse tube to provide temperatures <strong>of</strong> 4.5 K for superconduct<strong>in</strong>g<br />

electronics to be used <strong>in</strong> a ground b<strong>as</strong>ed communications system. We<br />

have developed prior 4 stage units which have operated down to 3.8K.<br />

The relatively high cool<strong>in</strong>g loads for this program led us to a design<br />

which reduces the <strong>in</strong>put power over prior systems. The design <strong>of</strong> the<br />

system <strong>in</strong>cludes a unique pulse tube approach us<strong>in</strong>g both Helium-3<br />

and Helium 4 work<strong>in</strong>g g<strong>as</strong> <strong>in</strong> two separate compression spaces, which<br />

leads to enhanced power efficiency. The compressor is our standard<br />

mov<strong>in</strong>g magnet, clearance seal, flexure bear<strong>in</strong>g system. This paper<br />

will present the experimental data and compare it with our prediction<br />

methods.<br />

The system is compact, lightweight and reliable and utilizes our<br />

aerospace cooler technology to provide unlimited lifetime. The unit is<br />

an eng<strong>in</strong>eer<strong>in</strong>g model to demonstrate pro<strong>of</strong> <strong>of</strong> concept. Follow on<br />

production for ground b<strong>as</strong>ed communication systems is anticipated.<br />

This work is subcontracted from HYPRES and is funded by the Army<br />

and the Navy<br />

Page 28 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-L-02 Development and Space Flight Qualification <strong>of</strong> a<br />

Dual Stage 20K Stirl<strong>in</strong>g Cryocooler<br />

M.G. Houston, M. Brownhill, J.S. Reed, A.S. Gibson,<br />

EADS Astrium Limited.<br />

A two-stage Stirl<strong>in</strong>g cycle cooler h<strong>as</strong> been developed for space<br />

applications to provide cool<strong>in</strong>g below 20K. It w<strong>as</strong> <strong>in</strong>itially developed<br />

for the ESA Far Infrared Space Telescope (FIRST). The FIRST 20K<br />

cooler is the first dual-stage Stirl<strong>in</strong>g cryocooler to be developed under<br />

fund<strong>in</strong>g by ESA and h<strong>as</strong> successfully p<strong>as</strong>sed a qualification read<strong>in</strong>ess<br />

review <strong>in</strong> 2006.<br />

The qualification model cooler h<strong>as</strong> a 2-stage displacer with a helium<br />

work<strong>in</strong>g g<strong>as</strong>, compressed by dual-opposed pistons, and implements a<br />

momentum balancer unit attached to the displacer, to achieve low<br />

vibration characteristics for the system. This cooler builds on the<br />

success and heritage <strong>of</strong> the Astrium 50-80K Stirl<strong>in</strong>g cryocooler<br />

mechanisms. The cooler benefits from unparalleled space heritage,<br />

with a capability for high efficiency at low temperatures and ability to<br />

lift heat at 2 different temperatures. It is capable <strong>of</strong> provid<strong>in</strong>g <strong>in</strong><br />

excess <strong>of</strong> 120mW heat lift at 20K at the cold stage, while provid<strong>in</strong>g<br />

500mW heat lift at the mid-stage for an <strong>in</strong>put power <strong>of</strong>


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-M Instrumentation<br />

C2-M-01 Operation <strong>of</strong> Superconduct<strong>in</strong>g Digital Receiver<br />

Circuits on 2-Stage Gifford-McMahon Cryocooler<br />

R.J. Webber, V. Dotsenko, A. Talalaevskii, R. Miller,<br />

J. Tang, D. Kirichenko, I. Vernik, P. Schevchenko, D.<br />

Gupta, O.A. Mukhanov, Hypres, Inc.<br />

We have demonstrated the full operation <strong>of</strong> digital RF receivers on a<br />

Hypres-designed cryostat, which couples a Nb-b<strong>as</strong>ed superconduct<strong>in</strong>g<br />

Rapid S<strong>in</strong>gle Flux Quantum (RSFQ) chip to a commercially available<br />

100 mW 4 Kelv<strong>in</strong> Gifford-McMahon cryocooler. The electrical<br />

performance at clock speeds <strong>in</strong> excess <strong>of</strong> 24 GHz is described <strong>as</strong> well<br />

<strong>as</strong> the design <strong>of</strong> the electrical <strong>in</strong>terfaces with room temperature<br />

support electronics. The digital receiver chip is a 1cm x 1 cm chip<br />

compris<strong>in</strong>g ~ 11,000 Josephson junctions. With<strong>in</strong> the cryostat there is<br />

the <strong>in</strong>evitable conflict between the need to m<strong>in</strong>imize heat-leaks and<br />

the need to m<strong>in</strong>imize dissipation <strong>in</strong> <strong>in</strong>put-output leads. The me<strong>as</strong>ured<br />

cryogenic thermal and magnetic environments <strong>of</strong> the chip are<br />

discussed and their impact on performance. Reception and direct<br />

digital conversion <strong>of</strong> real signals <strong>in</strong> the HF-, VHF-, and X-bands<br />

<strong>in</strong>clud<strong>in</strong>g signals from military satellite antennae shows the potential<br />

<strong>of</strong> this system to replace large and power-hungry multiple analogue<br />

receivers.<br />

This work w<strong>as</strong> supported <strong>in</strong> part by the Office <strong>of</strong> Naval Research, the<br />

Army Small Bus<strong>in</strong>ess Innovation and Research Program and by the<br />

US Air Force<br />

C2-M-02 Level-detected characteristics <strong>of</strong> MgB2 sensor<br />

for liquid hydrogen<br />

M. Takeda, T. Akazawa, Y. Iwamoto, Kobe<br />

University; H. Kumakura, A. Matsumoto, H. Uematsu,<br />

C. Kazama, National Institute for Materials Science;<br />

H. Iw<strong>as</strong>hita, I. Kodama, Y. Matsuno, Iwatani<br />

Industrial G<strong>as</strong>es Corporation.<br />

In order to establish the storage and transportation system for liquid<br />

hydrogen, it is important to develop a high sensitive liquid level<br />

meter. A superconductive MgB2 level meter is expected to be a new<br />

one. However, a research on the level-detected characteristics <strong>of</strong> the<br />

MgB2 sensor h<strong>as</strong> not been sufficiently carried out. Thus the<br />

characteristics <strong>of</strong> the level sensor, which consists <strong>of</strong> a MgB2 wire (0.5<br />

mm <strong>in</strong> diameter, 200 mm long) made by means <strong>of</strong> powder-<strong>in</strong>-tube<br />

method, an electrical heater, and voltage/current taps, were<br />

<strong>in</strong>vestigated by us<strong>in</strong>g the liquid hydrogen optical cryostat. The<br />

l<strong>in</strong>earity, resolution, repeatability, and heater current dependence <strong>of</strong><br />

the sensor read<strong>in</strong>g with vary<strong>in</strong>g liquid levels are discussed.<br />

This work w<strong>as</strong> supported <strong>in</strong> part by Hyogo Prefecture (COE<br />

Program), Japan.<br />

C2-M-03 Cryogenic Fiber Optic Sensors B<strong>as</strong>ed on Fiber<br />

Bragg Grat<strong>in</strong>gs<br />

P.R. Sw<strong>in</strong>ehart, M. Maklad, S.S. Courts, Lake Shore<br />

Cryotronics, Inc.<br />

Fiber optic sens<strong>in</strong>g h<strong>as</strong> many favorable characteristics - a s<strong>in</strong>gle fiber<br />

can be used to <strong>in</strong>terrogate multiple sensors along the length <strong>of</strong> the<br />

fiber, fiber optic sens<strong>in</strong>g is immune to electromagnetic noise and is<br />

<strong>in</strong>herently safe for combustible liquids and atmospheres. Previously,<br />

fiber optic sensors b<strong>as</strong>ed on fiber Bragg grat<strong>in</strong>gs (FBGs) have been<br />

demonstrated for cryogenic use for both temperature and stra<strong>in</strong><br />

sens<strong>in</strong>g, but <strong>of</strong>ten little data is supplied <strong>as</strong> to the reproducibility or<br />

unit-to-unit uniformity <strong>of</strong> these sensors. Lake Shore Cryotronics h<strong>as</strong><br />

manufactured fiber optic cryogenic temperature and stra<strong>in</strong> sensors<br />

b<strong>as</strong>ed on Bragg grat<strong>in</strong>gs us<strong>in</strong>g novel packag<strong>in</strong>g techniques. The<br />

reproducibility and uniformity characteristics <strong>of</strong> the cryogenic stra<strong>in</strong><br />

sensor is reported for 295 K and 77K. The temperature response,<br />

reproducibility, and uniformity <strong>of</strong> wide range temperature sensors is<br />

reported from 20K to 480K.<br />

C2-M-04 A Commercial Ruthenium Oxide Thermometer<br />

For Use to 10 mK<br />

S.S. Courts, J.K. Krause, Lake Shore Cryotronics, Inc.<br />

The adoption <strong>of</strong> the PLTS-2000 h<strong>as</strong> given the ultra low temperature<br />

community a recognized temperature scale with which to work.<br />

However, the def<strong>in</strong><strong>in</strong>g <strong>in</strong>strument, the He-3 melt<strong>in</strong>g curve<br />

thermometer, is not well suited for transferr<strong>in</strong>g this scale. Primary<br />

thermometers are available for ultra low temperatures, namely nuclear<br />

orientation and noise thermometry, but they are statistical <strong>in</strong> nature<br />

and require long averag<strong>in</strong>g times for a s<strong>in</strong>gle me<strong>as</strong>urement limit<strong>in</strong>g<br />

their practical use. Resistance thermometers are e<strong>as</strong>y to use, provide<br />

f<strong>as</strong>t me<strong>as</strong>urements allow<strong>in</strong>g active feedback temperature control, and<br />

have extremely high sensitivities at ultra low temperatures allow<strong>in</strong>g<br />

for microkelv<strong>in</strong> level control. However, resistance thermometry for<br />

use below 50 mK requires reth<strong>in</strong>k<strong>in</strong>g the standard packag<strong>in</strong>g. Many<br />

common materials used <strong>in</strong> packag<strong>in</strong>g cryogenic sensors limit the<br />

thermal connection to the sensor thus limit<strong>in</strong>g the allowable excitation<br />

used for me<strong>as</strong>urement. This research exam<strong>in</strong>es the use <strong>of</strong> a<br />

commercially available ruthenium oxide thick film chip resistor for<br />

thermometry to 10 mK. Data w<strong>as</strong> acquired for sample sensors<br />

fabricated us<strong>in</strong>g two package styles. The temperature w<strong>as</strong> me<strong>as</strong>ured<br />

us<strong>in</strong>g a Co-60 nuclear orientation thermometer <strong>in</strong> conjunction with<br />

PTB-calibrated germanium thermometers. Resistance <strong>as</strong> a function <strong>of</strong><br />

temperature, self-heat<strong>in</strong>g and time response data are presented.<br />

C2-M-05 The Effect <strong>of</strong> Small Helium Leaks <strong>in</strong>to Low<br />

Temperature Systems<br />

J. Panek, E. Canavan, M. DiPirro, J. Francis, S.<br />

Riall, P. Shirron, NASA.<br />

Recent experience with small helium leaks (


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Poster<br />

3:30pm - 5:00pm<br />

C2-O Instrumentation - Large Scale Systems<br />

C2-O-01 First Experience with the LHC Cryogenic<br />

Instrumentation<br />

N. Vauthier, Ch. Balle, J. C<strong>as</strong><strong>as</strong>-Cubillos, G.<br />

Fernandez-Penacoba, E. Fortescue-Beck, P. Gomes,<br />

N. Jeanmonod, A. Lopez Lorente, A. Suraci, CERN.<br />

The LHC under construction at CERN will be the world’s largest<br />

super-conduct<strong>in</strong>g accelerator and therefore makes m<strong>as</strong>sive use <strong>of</strong><br />

cryogenic <strong>in</strong>struments. The cryogenic <strong>in</strong>strumentation ma<strong>in</strong>ly<br />

comprises sensors for temperature, pressure and level, <strong>as</strong> well <strong>as</strong><br />

heaters and valve actuators. These <strong>in</strong>struments are <strong>in</strong>stalled <strong>in</strong> the<br />

tunnel and therefore have to withstand the LHC environment that<br />

imposes radiation-tolerant design and construction. Most <strong>of</strong> the<br />

<strong>in</strong>struments require <strong>in</strong>dividual calibration; some <strong>of</strong> them exhibit<br />

several variants <strong>as</strong> concerns me<strong>as</strong>ur<strong>in</strong>g span; all relevant data are<br />

therefore stored <strong>in</strong> an Oracle® datab<strong>as</strong>e. Those data are used for the<br />

various quality <strong>as</strong>surance procedures def<strong>in</strong>ed for <strong>in</strong>stallation and<br />

commission<strong>in</strong>g, <strong>as</strong> well <strong>as</strong> for generat<strong>in</strong>g tables used by the control<br />

system to configure automatically the <strong>in</strong>put/output channels. This<br />

paper describes the commission<strong>in</strong>g <strong>of</strong> the sensors and the<br />

correspond<strong>in</strong>g electronics, the first me<strong>as</strong>urement results dur<strong>in</strong>g the<br />

cool-down <strong>of</strong> one mach<strong>in</strong>e sector; it discusses topics that caused<br />

problems and the solutions found. Furthermore it also gives an<br />

overview <strong>of</strong> the different procedures cover<strong>in</strong>g f<strong>in</strong>al <strong>in</strong>stallation stages,<br />

test<strong>in</strong>g and cool-down operations.<br />

C2-O-02 Calibration <strong>of</strong> Cryogenic Thermometers for the<br />

LHC<br />

Chr. Balle, J. C<strong>as</strong><strong>as</strong>-Cubillos, N. Vauthier, CERN;<br />

J.P. Thermeau, IPN, Orsay.<br />

7000 cryogenic temperature sensors <strong>of</strong> semi-conductor type cover<strong>in</strong>g<br />

the range from room temperature down to 1.6 K are <strong>in</strong>stalled on the<br />

LHC mach<strong>in</strong>e under construction. In order to meet the str<strong>in</strong>gent<br />

requirements on temperature control <strong>of</strong> the super-conduct<strong>in</strong>g magnets,<br />

each s<strong>in</strong>gle sensor needs to be calibrated <strong>in</strong>dividually. In the<br />

framework <strong>of</strong> a special contribution, IPN (Institut de Physique<br />

Nucléaire) <strong>in</strong> Orsay, France built up and operated a calibration facility<br />

with a throughput <strong>of</strong> 80 thermometers per week.<br />

After reception from the manufacturer, the thermometer is <strong>as</strong>sembled<br />

onto a support specific to the me<strong>as</strong>urement environment, thermally<br />

cycled ten times and calibrated at le<strong>as</strong>t once from 1.6 to 300 K. The<br />

procedure for each <strong>of</strong> these <strong>in</strong>terventions <strong>in</strong>cludes various<br />

me<strong>as</strong>urements and the acquired data is recorded <strong>in</strong> an ORACLE®datab<strong>as</strong>e.<br />

Furthermore random calibrations on some samples are<br />

executed at CERN to crosscheck the coherence between the<br />

approximation data obta<strong>in</strong>ed by both IPN and CERN. In the range <strong>of</strong><br />

1.5 K to 30 K, the calibration apparatuses at IPN and CERN are<br />

traceable to standards ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> a national metrological laboratory<br />

by us<strong>in</strong>g a set <strong>of</strong> rhodium-iron temperature sensors <strong>of</strong> metrological<br />

quality.<br />

This paper presents the calibration procedure, the quality <strong>as</strong>surance<br />

applied, the results <strong>of</strong> the calibration campaigns and the return <strong>of</strong><br />

experience ga<strong>in</strong>ed.<br />

C2-O-03 Radiation Requirements and Test<strong>in</strong>g <strong>of</strong><br />

Cryogenic Thermometers for the ILC<br />

J. Trenikh<strong>in</strong>a, Saratov State University; T. Barnett,<br />

University <strong>of</strong> Ill<strong>in</strong>ois; Yu.P. Filippov, Jo<strong>in</strong>t Institute<br />

for Nuclear Research; N. Mokhov, N. Nakao, A.<br />

Klebaner, K. Vaziri, Fermi National Accelerator<br />

Laboratory*; S. Korenev, J.C. Theilacker, Beams &<br />

Pl<strong>as</strong>ma Technologies.<br />

Large quantity <strong>of</strong> cryogenic temperature sensors will be used for<br />

operation <strong>of</strong> the International L<strong>in</strong>ear Collider (ILC). Most <strong>of</strong> them<br />

will be subject to high radiation doses dur<strong>in</strong>g the accelerator lifetime.<br />

Understand<strong>in</strong>g <strong>of</strong> particle energy spectra, accumulated radiation dose<br />

<strong>in</strong> thermometers and its impact on performance are vital <strong>in</strong><br />

establish<strong>in</strong>g technical specification <strong>of</strong> cryogenic thermometry for the<br />

ILC. Realistic MARS15 computer simulations were performed to<br />

understand the ILC radiation environment. Simulation results were<br />

used to establish radiation dose requirements for commercially<br />

available cryogenic thermometers. Two types <strong>of</strong> thermometers,<br />

Cernox® and TVO, were calibrated prior to irradiation us<strong>in</strong>g different<br />

technique. The sensors were subjected then to up to 200 kGy electron<br />

beam irradiation with k<strong>in</strong>etic energy <strong>of</strong> 5 MeV, a representative <strong>of</strong> the<br />

situation at the ILC operation. A post-irradiation behavior <strong>of</strong> the<br />

sensors w<strong>as</strong> studied. The paper describes the MARS15 model,<br />

simulation results, cryogenic test set-up, irradiation tests, and<br />

cryogenic test results.<br />

*Work supported by the U.S. Department <strong>of</strong> Energy under contract<br />

No. DE-AC02-76CHO3000.<br />

C2-O-04 Instrumentation, data acquisition and controls<br />

for temperature me<strong>as</strong>urement <strong>of</strong> cold surfaces at 4.5 K<br />

and 80 K <strong>of</strong> SST-1 mach<strong>in</strong>e<br />

P. Panchal, D. Sonara, B. Sarkar, R. Bhattacharya, R.<br />

Panchal, R. Patel, J. Tank, M S<strong>in</strong>gh, A.K. Sahu, Y.C.<br />

Saxena, Institute for Pl<strong>as</strong>ma Research.<br />

Two-temperature regimes have been envisaged for the SST-1<br />

mach<strong>in</strong>e, 80 K on the thermal shield and 4.5 K <strong>of</strong> the superconduct<strong>in</strong>g<br />

magnet system. The aim <strong>of</strong> temperature me<strong>as</strong>urement is two folds (i)<br />

to monitor the temperature distribution <strong>as</strong> well <strong>as</strong> process parameters<br />

(ii) to achieve controlled cool down from 300 K to 4.5 K and 80 K.<br />

Temperature sensors have been mounted on cold surfaces at strategic<br />

locations to e<strong>as</strong>e the operation dur<strong>in</strong>g cool down and steady state.<br />

Several techniques are employed for temperature me<strong>as</strong>urement and<br />

control. Cernox sensors (Lakeshore make) and PT -102 have been<br />

used for the temperature me<strong>as</strong>urement at 4.5 K and 80 K surfaces<br />

respectively. A data acquisition system (DAS) h<strong>as</strong> been <strong>in</strong>digenously<br />

developed us<strong>in</strong>g 4-20 mA current loop transmitter, which provided<br />

better function<strong>in</strong>g than the commercially available one. The reliability<br />

<strong>of</strong> the transmitter card h<strong>as</strong> been tested on-l<strong>in</strong>e for cont<strong>in</strong>uous<br />

operation for 3 months. The control function<strong>in</strong>g h<strong>as</strong> been designed<br />

and developed us<strong>in</strong>g programmable logic controller with built-<strong>in</strong><br />

support for calibration curve handl<strong>in</strong>g, failure alarm and 3-port<br />

isolation with direct <strong>in</strong>terfac<strong>in</strong>g <strong>of</strong> the transmitter card. The<br />

temperature data is obta<strong>in</strong>ed at the supervisory control and data<br />

acquisition <strong>of</strong> dedicated node. The developed DAS h<strong>as</strong> been found to<br />

be very reliable and satisfactory. The paper will describe the details <strong>of</strong><br />

the philosophy <strong>of</strong> the DAS and experience along with <strong>in</strong>digenously<br />

developed transmitter card.<br />

Page 31 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-O-05 Thermal and electrical anchorage <strong>of</strong><br />

superconduct<strong>in</strong>g devices <strong>in</strong>to large facility<br />

superconduct<strong>in</strong>g magnets.<br />

B. M<strong>in</strong>etti, R. Gerbaldo, G. Ghigo, L. Gozzel<strong>in</strong>o, F.<br />

Laviano, G. Lopardo, E. Mezzetti, R. Cherub<strong>in</strong>i, Dept<br />

<strong>of</strong> Physics - Politecnico Tor<strong>in</strong>o; A. Rovelli, INFN-<br />

LNS.<br />

In this paper the issue <strong>of</strong> exploit<strong>in</strong>g the use <strong>of</strong> superconduct<strong>in</strong>g<br />

sensors with their extremely favourable radiation hardness and low<br />

noise properties at low temperatures is addressed with reference to<br />

other currently used sensor solutions. The major problem for an<br />

extensive use <strong>of</strong> superconductors <strong>as</strong> field and photon sensors w<strong>as</strong><br />

(until now) referred to the need <strong>of</strong> the sensors anchorage to cold<br />

f<strong>in</strong>gers <strong>in</strong> cryocoolers. In large facilities such <strong>as</strong> e.g. LHC (CERN)<br />

environment, runn<strong>in</strong>g at temperature lower then 4K, the problem is<br />

reduced to achiev<strong>in</strong>g technical solutions for thermal anchorage,<br />

shielded read-outs and space constra<strong>in</strong>ts. In the paper several solution<br />

are proposed on the b<strong>as</strong>is <strong>of</strong> me<strong>as</strong>urements and suitable tests <strong>in</strong><br />

controlled ambient at the large I.N.F.N. irradiation facilities <strong>in</strong> LNL,<br />

(Legnaro- Padova, Italy) and LNS (Catania, Italy).<br />

C2-O-06 Cryogenic Controls System for Fermilab’s SRF<br />

Cavities Test Facility<br />

B. Norris, R. Bossert, A. Klebaner, S. Lackey, A.<br />

Mart<strong>in</strong>ez, L. Pei, W. Soyars, V. Sirotenko, Fermi<br />

National Accelerator Laboratory.<br />

A new superconduct<strong>in</strong>g radio frequency (SRF) cavities test facility is<br />

now operational at Fermilab’s Meson Detector Build<strong>in</strong>g (MDB). The<br />

facility is supplied cryogens from the Cryogenic Test Facility (CTF)<br />

located <strong>in</strong> a separate build<strong>in</strong>g 500 m away. The design <strong>in</strong>corporates<br />

ambient temperature pump<strong>in</strong>g for super-fluid helium production, <strong>as</strong><br />

well <strong>as</strong> three 0.6kW at 4.5K refrigerators, five screw compressors, a<br />

helium purifier, helium and nitrogen <strong>in</strong>ventory, cryogenic distribution<br />

system, and a variety <strong>of</strong> test cryostats. To control and monitor the<br />

v<strong>as</strong>tly distributed cryogenic system, a flexible scheme h<strong>as</strong> been<br />

developed. Both commercial and experimental physics tools are used.<br />

APACS+, a process automation control system from Siemens-Moore,<br />

is at the heart <strong>of</strong> the design. APACS+ allows eng<strong>in</strong>eers to configure<br />

an ever evolv<strong>in</strong>g test facility while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g control over the plant<br />

and distribution system. APACS+ nodes at CTF and MDB are<br />

coupled by a fiber optic network. DirectLogic205 PLC’s by KOYO<br />

are used <strong>as</strong> the field level <strong>in</strong>terface to most I/O. The top layer <strong>of</strong> this<br />

system uses EPICS (Experimental Physics and Industrial Control<br />

System) <strong>as</strong> a SCADA/HMI. Utilities for graphical display, control<br />

loop sett<strong>in</strong>g, real time/historical plott<strong>in</strong>g and alarm<strong>in</strong>g have been<br />

implemented by us<strong>in</strong>g the world-wide library <strong>of</strong> applications for<br />

EPICS. OPC client/server technology is used to bridge across each<br />

different platform.<br />

This paper presents this design and its successful implementation.<br />

C2-O-<strong>07</strong> The <strong>as</strong>sembly <strong>of</strong> the LHC Short Straight<br />

Sections cryostats at CERN: work organization, Quality<br />

Assurance and lessons learned.<br />

V. Parma, N. Bourcey, P. Campos, R. Lopez, A.<br />

Poncet, CERN.<br />

After 4 years <strong>of</strong> activity, the <strong>as</strong>sembly <strong>of</strong> the approximately 500 Short<br />

Straight Sections (SSS) for the LHC h<strong>as</strong> come to an end at the<br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 20<strong>07</strong>. This activity, which w<strong>as</strong> <strong>in</strong>itially foreseen <strong>in</strong><br />

European <strong>in</strong>dustry, w<strong>as</strong> <strong>in</strong>-sourced at CERN because <strong>of</strong> the<br />

<strong>in</strong>solvency <strong>of</strong> the prime contractor. While the quadrupole cold m<strong>as</strong>ses<br />

were produced <strong>in</strong> <strong>in</strong>dustry, the <strong>as</strong>sembly with<strong>in</strong> their cryostats w<strong>as</strong><br />

transferred to CERN and executed by an external company under a<br />

result-oriented contract. CERN procured cryostat components, set up<br />

a dedicated 2000 m2 <strong>as</strong>sembly hall with all the specific <strong>as</strong>sembly<br />

equipment and tool<strong>in</strong>g and def<strong>in</strong>ed the <strong>as</strong>sembly and test<strong>in</strong>g<br />

procedures. The contractor took up responsibility for the timely<br />

execution with<strong>in</strong> the required quality. A dedicated CERN production<br />

and quality <strong>as</strong>surance team w<strong>as</strong> constituted. A specific quality<br />

<strong>as</strong>surance plan w<strong>as</strong> set up <strong>in</strong>volv<strong>in</strong>g 2 additional contractors<br />

responsible for weld <strong>in</strong>spections (more than 5 km <strong>of</strong> critical <strong>as</strong>sembly<br />

welds) and the execution <strong>of</strong> about 2500 leak detection tests.<br />

This paper presents the organizational <strong>as</strong>pects <strong>of</strong> the activity and the<br />

experience ga<strong>in</strong>ed throughout the production. The learn<strong>in</strong>g curves and<br />

statistics by type <strong>of</strong> non-conformities detected and general quality<br />

<strong>as</strong>surance <strong>as</strong>pects are presented and discussed. The ma<strong>in</strong> lessons<br />

learnt are summarized, <strong>in</strong> an attempt to draw some conclusions and<br />

guidel<strong>in</strong>es which could be useful <strong>in</strong> mak<strong>in</strong>g strategic choices for the<br />

cryostat <strong>as</strong>sembly <strong>in</strong> future large-scale accelerators.<br />

C2-P High Temperature Superconduct<strong>in</strong>g<br />

Devices<br />

C2-P-01 Numerical Simulation <strong>of</strong> Pulsed Field<br />

Magnetization <strong>of</strong> Cryocooler-Cooled Bulk<br />

Superconductor<br />

Hiroyuki Ohsaki, Sousuke Matsumura, Satoshi<br />

Kawamoto, Ryosuke Shiraishi, The University <strong>of</strong><br />

Tokyo.<br />

RE-Ba-Cu-O bulk superconductors have strong flux p<strong>in</strong>n<strong>in</strong>g force and<br />

are expected to be used <strong>as</strong> a strong magnetic flux source.<br />

Magnetization is a very important technique to be studied for such<br />

application <strong>of</strong> bulk superconductors. In particular, pulsed field<br />

magnetization (PFM) is considered a useful method for magnetiz<strong>in</strong>g<br />

bulk superconductor because this method needs a more compact fieldexcitation<br />

system than the field cool<strong>in</strong>g magnetization (FCM). Multipulse<br />

techniques have been also <strong>in</strong>vestigated experimentally for PFM<br />

to reach <strong>as</strong> high a trapped magnetic field <strong>as</strong> that obta<strong>in</strong>ed by FCM.<br />

Numerical analysis techniques are also quite important to perform<br />

such research subjects more effectively and clarify the physical<br />

phenomena.<br />

We have studied the pulsed field magnetization <strong>of</strong> cryocooler-cooled<br />

bulk superconductor. A simulation tool b<strong>as</strong>ed on the f<strong>in</strong>ite element<br />

method h<strong>as</strong> been developed, and transient phenomena <strong>in</strong><br />

electromagnetic and thermal conduction fields dur<strong>in</strong>g pulsed field<br />

magnetization were analyzed. Bulk superconductor w<strong>as</strong> modeled<br />

us<strong>in</strong>g an E-J relation b<strong>as</strong>ed on a power law. Dependence <strong>of</strong> critical<br />

current density on flux density and temperature w<strong>as</strong> taken <strong>in</strong>to<br />

account. Approximate model<strong>in</strong>g <strong>of</strong> thermal conductivities and electric<br />

properties <strong>of</strong> the system components w<strong>as</strong> carried out. The relation<br />

between PFM conditions and trapped magnetic field is discussed.<br />

C2-P-02 Persistent magnetization <strong>of</strong> MgB2 cyl<strong>in</strong>ders<br />

<strong>in</strong>duced by a pulsed field<br />

G. Giunchi, E. Per<strong>in</strong>i, EDISON SpA; T. Cavall<strong>in</strong>,<br />

CNR-IENI; R. Quarantiello, V. Cavaliere, A. Matrone,<br />

ANSALDO CRIS.<br />

High stable trapped fields <strong>in</strong> bulk superconductors can be useful<br />

applied <strong>in</strong> many electrotechnical applications. The HTS bulk materials<br />

can be magnetized apply<strong>in</strong>g constant magnetic fields or pulsed<br />

magnetization methods. Even if the pulse magnetization is far less<br />

effective than the DC magnetization <strong>in</strong> the trapp<strong>in</strong>g ability, it appears<br />

<strong>as</strong> the most friendly technique <strong>in</strong> practical devices. So we have studied<br />

the effects <strong>of</strong> the pulsed technique, applied to bulk MgB2 cyl<strong>in</strong>ders<br />

that are very promis<strong>in</strong>g devices <strong>in</strong> view <strong>of</strong> their e<strong>as</strong>y manufactur<strong>in</strong>g <strong>in</strong><br />

large dimensions [1]. To this purpose we have used a copper solenoid<br />

to magnetize the MgB2 cyl<strong>in</strong>der, both cyl<strong>in</strong>der and solenoid<br />

conductively cooled between 10 and 25 K. This simple cryogenic<br />

arrangement can be representative <strong>of</strong> many more elaborate practical<br />

devices. Tailor<strong>in</strong>g the applied pulsed field and the sequence repetition,<br />

we successfully magnetize cyl<strong>in</strong>ders <strong>of</strong> diameter <strong>of</strong> the order <strong>of</strong> 50<br />

mm, to more that 0.5 T, <strong>in</strong> their centre, and the persistent<br />

magnetization is not affected by external perturbations. The<br />

parameters which regulate the trapp<strong>in</strong>g field performances are ma<strong>in</strong>ly<br />

related to the heat management <strong>of</strong> the MgB2 cyl<strong>in</strong>der. This <strong>as</strong>pects is<br />

discussed and modelled with numerical computations and several<br />

<strong>as</strong>sembl<strong>in</strong>g solutions <strong>of</strong> the magnetized cyl<strong>in</strong>ders are presented.<br />

[1] G.Giunchi et al., Cryogenics 46, 237-242 (2006)<br />

Page 32 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-P-04 Cryogenic design <strong>of</strong> the ALUHEAT project<br />

I. Hiltunen, A. Korpela, R. Mikkonen, J. Lehtonen,<br />

Tampere University <strong>of</strong> Technology; M. Runde,<br />

SINTEF Energy Research; N. Magnusson, SINTEF<br />

Energy Research ; G. Kalkowski, Fraunh<strong>of</strong>er IOF.<br />

In this paper, the cryostat design <strong>of</strong> the ALUHEAT project that aims<br />

to build a cryogen-free superconduct<strong>in</strong>g <strong>in</strong>duction heater is presented<br />

<strong>in</strong> detail. Design<strong>in</strong>g <strong>of</strong> the cryostat <strong>in</strong>volves heat loss calculations,<br />

mechanical analysis and the optimization <strong>of</strong> current leads and cool<strong>in</strong>g<br />

conditions. The system consists <strong>of</strong> two separate cryostats between <strong>of</strong><br />

which the billet to be heated is located. Exceptionally short distance<br />

between the magnet and the cryostat wall, the large forces between the<br />

magnets <strong>in</strong> separate cryostats, and the rotation <strong>of</strong> the billet create<br />

application specific requirements that must be taken <strong>in</strong>to account.<br />

F<strong>in</strong>ite element analysis is used to design the cryostat to withstand both<br />

the vacuum and magnetic forces.<br />

F<strong>in</strong>ally, the thermal <strong>in</strong>terface, the radiation shield and the magnet<br />

support are designed and all components <strong>as</strong>sembled <strong>in</strong>to the complete<br />

system.<br />

C2-P-05 Introduction <strong>of</strong> the 35kV/90MVA Saturated Iron<br />

Core Type Superconduct<strong>in</strong>g Fault Current Limiter<br />

Y. X<strong>in</strong>, W.Z. Gong, X.Y. Niu, B. Tian, Z.J. Cao, H.X.<br />

Xi, Y. Yang, J.Y. Zhang, X,M. Hu, H. Hong, A.L. Ren,<br />

Z.L. Chen, H.H. Li, B. Hou, X.C. Yang, Innopower<br />

Superconductor Cable Co..<br />

A 35kV/90MVA prototype saturated iron core type superconduct<strong>in</strong>g<br />

fault current limiter w<strong>as</strong> developed and <strong>in</strong>stalled <strong>in</strong> a transmission<br />

network for test<strong>in</strong>g and trial operation. This prototype is <strong>of</strong> many<br />

unique features, such <strong>as</strong> actively de-magnetiz<strong>in</strong>g the iron core when a<br />

fault takes place to enhance the limit<strong>in</strong>g capacity, additional circuit for<br />

protect<strong>in</strong>g the dc current supply and other components <strong>in</strong> the dc bi<strong>as</strong><br />

side, and a new concept <strong>in</strong> iron core design. These <strong>in</strong>novations<br />

overcome the shortcom<strong>in</strong>gs that the long-established design <strong>of</strong> a<br />

saturated iron core type superconduct<strong>in</strong>g fault current limit<strong>in</strong>g device<br />

h<strong>as</strong>, mak<strong>in</strong>g this type <strong>of</strong> current limiter more reliable and efficient.<br />

For the 35kV/90MVA system, we plan to carry out a live-grid trial<br />

operation at Puji Substation <strong>of</strong> Ch<strong>in</strong>a Southern Power Grid for a long<br />

period <strong>of</strong> time. In this presentation, we will report the technical<br />

details <strong>of</strong> the system and the test<strong>in</strong>g results we have got up to date.<br />

C2-P-06 Modular concept for the cryopackag<strong>in</strong>g design.<br />

V.V. Borzenets, SLAC; I.V. Borzenets, Duke Univ.<br />

Cryocooled devices and <strong>as</strong>semblies always <strong>in</strong>volve two <strong>in</strong>terfaces: the<br />

cryogenic <strong>in</strong>terface which provides the required low temperatures, and<br />

the electronic <strong>in</strong>terface which essentially provides the function <strong>of</strong> your<br />

device. A problem with all current systems is that these two <strong>in</strong>terfaces<br />

are l<strong>in</strong>ked together. That means that <strong>in</strong> order to do any component<br />

replacement or electronics ma<strong>in</strong>tenance, the entire system h<strong>as</strong> to be<br />

shut down and taken apart. This <strong>in</strong>troduces extensive delays dur<strong>in</strong>g<br />

system <strong>as</strong>sembly and usage. More over, this rules out a system with<br />

e<strong>as</strong>ily <strong>in</strong>terchangeable electronic components.<br />

We propose a concept <strong>of</strong> modular packag<strong>in</strong>g that will completely<br />

decouple the cryogenic/temperature control <strong>in</strong>terface with the<br />

electronic <strong>in</strong>terface. This will result <strong>in</strong> the ability to quickly remove<br />

and replace one <strong>in</strong>terface without the need to shut down or<br />

dis<strong>as</strong>semble the other. This means that the system will not only have<br />

reduced servic<strong>in</strong>g time, but that the system will have the capability to<br />

do “cold swaps”. Conceptually, this would be achieved by hav<strong>in</strong>g a<br />

separate vacuum space for the cryogenic <strong>in</strong>terface <strong>as</strong> well <strong>as</strong> for each<br />

detachable electronic <strong>in</strong>terface block. The thermal contact for all low<br />

temperature stages <strong>of</strong> the cryocooler with the electronics package will<br />

be achieved via properly matched thermal metal to metal contacts.<br />

Wednesday, <strong>07</strong>/18/<strong>07</strong> Oral<br />

5:00pm - 6:00pm<br />

C2-R JT Coolers (Non-Aerospace)<br />

C2-R-01 F<strong>as</strong>t Cool-Down J-T Cryocooler to 88K<br />

N. Tzabar, I. Lifshits, A. Kaplansky, Rafael Ltd..<br />

F<strong>as</strong>t cool-down is usually implemented with J-T cryocoolers which<br />

also enable low-cost and small-scale systems. In this paper, we<br />

describe an analysis for achiev<strong>in</strong>g cool-down time <strong>of</strong> a few seconds to<br />

88K, us<strong>in</strong>g Argon <strong>as</strong> the ma<strong>in</strong> coolant, and at le<strong>as</strong>t 3 m<strong>in</strong>utes <strong>of</strong> steady<br />

state cool<strong>in</strong>g. It appears that accord<strong>in</strong>g to system demands, cost<br />

reduction, reliability, and manufactur<strong>in</strong>g considerations the use <strong>of</strong><br />

Argon <strong>as</strong> a s<strong>in</strong>gle coolant is more beneficial than precool<strong>in</strong>g with<br />

another coolant, such <strong>as</strong> Krypton. The results were successfully<br />

verified aga<strong>in</strong>st experimental data.<br />

C2-R-02 Vibration Characterization and Reduction <strong>of</strong> a<br />

Joule-Thomson Cryocooler for a SQUID-B<strong>as</strong>ed Metal<br />

Detection System<br />

G.J. De Groot, CSIRO Industrial Physics, M.A.<br />

SANTIN, CSIRO Industrial Physics & Federal<br />

University <strong>of</strong> Santa Catar<strong>in</strong>a, T. THIJSSEN, CSIRO<br />

Industrial Physics & University <strong>of</strong> Twente.<br />

Very sensitive high-temperature SQUID (Superconduct<strong>in</strong>g Quantum<br />

Interference Device) magnetometers are used for the detection <strong>of</strong> very<br />

small metal contam<strong>in</strong>ants <strong>in</strong> food and other products. When the<br />

SQUIDs are cooled with liquid nitrogen, a detection sensitivity <strong>of</strong> 500<br />

nAm2 <strong>in</strong> a 150 × 150 mm2 orifice is obta<strong>in</strong>ed [1]. However, when a<br />

commercial Joule-Thompson cryocooler w<strong>as</strong> used, the sensitivity w<strong>as</strong><br />

reduced by a factor <strong>of</strong> 5 due to spurious magnetic signals [2].<br />

In this study the emph<strong>as</strong>is is on understand<strong>in</strong>g noise that may be<br />

created due to mechanical vibrations <strong>in</strong> the cryocooler cold head. The<br />

natural frequencies <strong>of</strong> the cryocooler cold head are modelled and two<br />

mechanisms <strong>of</strong> noise generation are considered and analysed.<br />

Calculations show that the noise created by vibrat<strong>in</strong>g dipoles <strong>in</strong> the<br />

cold head may create noise <strong>of</strong> 1 pT up to 20 pT <strong>in</strong> the frequency range<br />

<strong>of</strong> 10 to 50 Hz. The vibration characteristics <strong>of</strong> several parts <strong>of</strong> the<br />

cryocooler cold head <strong>as</strong>sembly were determ<strong>in</strong>ed with a l<strong>as</strong>er<br />

vibrometer, a fluxgate magnetometer and through f<strong>in</strong>ite element<br />

simulations. Two natural frequencies <strong>of</strong> approximately 21 and 49 Hz<br />

are particularly noticeable and are also observed <strong>in</strong> the SQUID noise.<br />

Anti-vibration me<strong>as</strong>ures are <strong>in</strong>troduced to reduce external vibrations.<br />

Many thanks go out to Marcel Bick, David Tilbrook, Keith Leslie,<br />

Barry Mart<strong>in</strong>, Lawrence Dick<strong>in</strong>son, Prem Narang and Emma Mitchell<br />

for their support and <strong>in</strong>sights.<br />

C2-R-03 Performance <strong>of</strong> a precooled J-T refrigerator<br />

operat<strong>in</strong>g with refrigerant mixtures<br />

C.T. Sairam, G. Venkatarathnam, Indian Institute <strong>of</strong><br />

Technology Madr<strong>as</strong>.<br />

S<strong>in</strong>gle stage J-T refrigerators operat<strong>in</strong>g with refrigerant mixtures are<br />

under development worldwide. Precooled J-T refrigerators operat<strong>in</strong>g<br />

with refrigerant mixtures were studies by Alexeev et.al for operation<br />

<strong>in</strong> 90-100 K temperature range [1-2].<br />

In this paper we present the results obta<strong>in</strong>ed by us <strong>in</strong> a two stage J-T<br />

refrigerator. Mixtures <strong>of</strong> propane and ethane are used <strong>in</strong> the first stage,<br />

and mixtures <strong>of</strong> neon,nitrogen,methane, ethane and propane <strong>in</strong> the<br />

second stage. The refrigerator w<strong>as</strong> tested <strong>in</strong> the temperature range 69-<br />

85 K. A heat load <strong>of</strong> 9W w<strong>as</strong> met at a temperature <strong>of</strong> 77K with a<br />

power <strong>in</strong>put <strong>of</strong> 1.4 kW. A heat load <strong>of</strong> 50W w<strong>as</strong> met at a temperature<br />

<strong>of</strong> 100K with a power <strong>in</strong>put <strong>of</strong> 1.1-1.3 kW. The performance <strong>of</strong> the<br />

refrigerator with different mixtures <strong>in</strong> the precool<strong>in</strong>g stage and the<br />

ma<strong>in</strong> stage are described <strong>in</strong> this paper.<br />

References<br />

1.Alexeev, A., Ch. Haberstroh and H. Quack (1998) Further<br />

development <strong>of</strong> a mixed g<strong>as</strong> Joule-Thomson refrigerator. Advances <strong>in</strong><br />

Cryogenic Eng<strong>in</strong>eer<strong>in</strong>g, 43B, 1667-1675.<br />

2.Alexeev, A., Ch. Haberstroh and H. Quack (1999) Mixed G<strong>as</strong> J-T<br />

Cryocooler with Precool<strong>in</strong>g stage. Cryocoolers 10, 475-479.<br />

Page 33 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-R-04 Open cycle Joule-Thomson cryocool<strong>in</strong>g with<br />

prior sequential isentropic expansion<br />

B-Z. Maytal, Rafael.<br />

The high pressure stream outlets a g<strong>as</strong> reservoir and expands through<br />

a loaded turb<strong>in</strong>e prior to be<strong>in</strong>g fed <strong>in</strong>to a Joule-Thomson (J-T)<br />

cryocooler. Due to the load and accord<strong>in</strong>g to its extent, the g<strong>as</strong> drops<br />

its pressure through the turb<strong>in</strong>e at a constant entropy process. On the<br />

one hand, the g<strong>as</strong> that <strong>in</strong>lets the J-T cryocooler is <strong>of</strong> lower pressure<br />

than without a turb<strong>in</strong>e. This effect suppresses the <strong>in</strong>tegral isothermal<br />

J-T effect which is the specific cool<strong>in</strong>g capacity <strong>of</strong> the stream. On the<br />

other hand, the isentropic expansion is accompanied by temperature<br />

reduction which elevates the specific cool<strong>in</strong>g capacity. This effect<br />

dom<strong>in</strong>ates the former one thus consequently; the specific cool<strong>in</strong>g<br />

capacity is enhanced even when the high pressure g<strong>as</strong> reservoir stays<br />

isothermal. The isentropic expansion is always accompanied by a<br />

temperature drop which is quite substantial. Therefore, the expanded<br />

very first cooled stream <strong>in</strong>lett<strong>in</strong>g the J-T cryocooler may significantly<br />

accelerates the cooldown process.. This beneficial performance <strong>of</strong> the<br />

serial arrangement <strong>of</strong> a turb<strong>in</strong>e and a J-T cryocooler is analyzed and<br />

formulated for argon and nitrogen accord<strong>in</strong>g to any load<strong>in</strong>g policy <strong>as</strong><br />

for <strong>in</strong>stance, dropp<strong>in</strong>g the pressure at the turb<strong>in</strong>e by a predeterm<strong>in</strong>ed<br />

constant factor.<br />

C2-S Superconduct<strong>in</strong>g Cables<br />

C2-S_01 The Latest Status <strong>of</strong> A Long Term In-grid<br />

Operation <strong>in</strong> Albany HTS Cable Project<br />

H. Yumura, T. M<strong>as</strong>uda, M. Watanabe, H. Takigawa,<br />

Y. Ashibe, H. Ito, M. Hirose, K. Sato, Sumitomo<br />

Electric, Industries, Ltd.<br />

The HTS cable system is expected to be a solution for improvement <strong>of</strong><br />

the power grid, and three demonstration projects <strong>in</strong> the real grid have<br />

been carry<strong>in</strong>g out <strong>in</strong> the United States. The Albany Cable Project, one<br />

<strong>of</strong> them, is to develop the 350 meters long HTS cable system with<br />

capacity <strong>of</strong> 34.5kV, 800A, connect<strong>in</strong>g between two substations <strong>in</strong><br />

National Grid Power Company`s grid.<br />

A 320-meter and a 30-meter cable are <strong>in</strong>stalled <strong>in</strong>to underground<br />

conduit and jo<strong>in</strong>ted each other at a vault. The cable w<strong>as</strong> fabricated<br />

with Di-BSCCO wire total amount <strong>of</strong> 70km and h<strong>as</strong> the structure <strong>of</strong> 3<br />

cores-<strong>in</strong>-one cryostat. The cable <strong>in</strong>stallation <strong>of</strong> a 320-meter and a 30-<br />

meter section w<strong>as</strong> completed successfully with us<strong>in</strong>g the same pull<strong>in</strong>g<br />

method <strong>of</strong> a conventional cable. After cable <strong>in</strong>stallation, the jo<strong>in</strong>t and<br />

two term<strong>in</strong>ations were <strong>as</strong>sembled at the test site. After the <strong>in</strong>itial<br />

cool<strong>in</strong>g <strong>of</strong> the system, the completion tests such <strong>as</strong> the critical current,<br />

heat loss me<strong>as</strong>urement and DC withstand voltage test were conducted<br />

successfully.<br />

The <strong>in</strong>-grid operation w<strong>as</strong> begun on 20th <strong>of</strong> July, 2006. And a long<br />

term <strong>in</strong>-gird operation h<strong>as</strong> been progressed satisfactorily at unattended<br />

condition. In the Albany project, the 30-meter section is planed to be<br />

replaced to YBCO cable <strong>in</strong> this spr<strong>in</strong>g. The development <strong>of</strong> YBCO<br />

cable h<strong>as</strong> been carried out by us<strong>in</strong>g SuperPower’s YBCO coated<br />

conductors. This paper describes the latest status <strong>of</strong> the Albany cable<br />

project.<br />

C2-S-02 Deveopment <strong>of</strong> YBCO Cable for Albany HTS<br />

Cable Project<br />

H. Yumura, M. Ohya, Y. Ashibe, H. Ito, T. M<strong>as</strong>uda, K.<br />

Sato, Sumitomo Electric Industries, Ltd.<br />

The Albany Cable Project is to develop the 350 meters long HTS<br />

cable system with capacity <strong>of</strong> 34.5kV, 800A, connect<strong>in</strong>g between two<br />

substations <strong>in</strong> National Grid Power Company`s grid.<br />

In-grid operation with BSCCO HTS cable w<strong>as</strong> begun on 20th <strong>of</strong> July,<br />

2006, successfully. And a long term <strong>in</strong>-gird operation h<strong>as</strong> been<br />

progressed satisfactorily at unattended condition. The BSCCO cable<br />

l<strong>in</strong>e consists <strong>of</strong> a 320-meter, a 30-meter cable, cable-to-cable splice <strong>in</strong><br />

vault and two term<strong>in</strong>ations. In the Albany project, the 30-meter<br />

section is planed to be replaced to YBCO cable <strong>in</strong> this spr<strong>in</strong>g. The<br />

development <strong>of</strong> YBCO cable h<strong>as</strong> been carried out by us<strong>in</strong>g<br />

SuperPower’s YBCO coated conductors. The YBCO sample core w<strong>as</strong><br />

fabricated and evaluated its electrical and mechanical properties <strong>in</strong><br />

order to confirm the cable design. The critical current <strong>of</strong> conductor<br />

and shield were approx. 1.4 kA and 2.0 kA, respectively. They are<br />

almost same <strong>as</strong> design value consider<strong>in</strong>g with tape’s Ic and the effect<br />

<strong>of</strong> magnetic field. The ac loss <strong>of</strong> the sample w<strong>as</strong> 0.4 W/m/ph at 800<br />

Arms <strong>of</strong> 60Hz. The fault current test, 23kA and38cycles, w<strong>as</strong><br />

conducted under open bath condition. The temperature rises at<br />

conductor and shield were almost same <strong>as</strong> the ones <strong>of</strong> BSCCO core,<br />

and no Ic degradation w<strong>as</strong> found after the fault current test. This paper<br />

describes the detail <strong>of</strong> test results for YBCO sample core and design<br />

<strong>of</strong> YBCO cable for Albany Project.<br />

C2-S-03 A Cool<strong>in</strong>g System for Navy Degauss<strong>in</strong>g Cables<br />

J. Yuan, J. Maguire, D. Aized, A. Covel, American<br />

Superconductor Co.<br />

Degauss<strong>in</strong>g cables are a vital part <strong>of</strong> today’s military ships.<br />

Degauss<strong>in</strong>g cables are utilized <strong>in</strong> most navy ships to reduce their<br />

magnetic signature, thereby mak<strong>in</strong>g them much more difficult to be<br />

“seen” by magnetic sensors and by magnetically activated m<strong>in</strong>es.<br />

Current degauss<strong>in</strong>g systems consist <strong>of</strong> a series <strong>of</strong> field-generat<strong>in</strong>g<br />

loops and their <strong>in</strong>stallation <strong>in</strong>volves runn<strong>in</strong>g heavy copper cables<br />

around the perimeter <strong>of</strong> the ship’s hull. High Temperature<br />

superconductor-b<strong>as</strong>ed degauss<strong>in</strong>g cables provide many benefits <strong>as</strong> a<br />

replacement for conventional, copper-b<strong>as</strong>ed degauss<strong>in</strong>g systems,<br />

<strong>in</strong>clud<strong>in</strong>g lighter weight, lower operat<strong>in</strong>g voltage, lower <strong>in</strong>stallation<br />

costs, higher energy efficiency and smaller size. In March 2006,<br />

AMSC announced that it had demonstrated the successful operation <strong>of</strong><br />

the world’s first full-scale HTS degauss<strong>in</strong>g cable for military ships.<br />

The 40 meter long HTS degauss<strong>in</strong>g cable produced 4100 Amp-turns<br />

with a significant decre<strong>as</strong>e <strong>in</strong> operat<strong>in</strong>g voltage to less than 0.5 volts,<br />

or 1000 times lower than a comparable Amp-turn copper-b<strong>as</strong>ed<br />

system. The system h<strong>as</strong> been cont<strong>in</strong>u<strong>in</strong>g runn<strong>in</strong>g s<strong>in</strong>ce March, 2006.<br />

This paper reviews the test<strong>in</strong>g <strong>of</strong> the degauss<strong>in</strong>g cable, along with a<br />

comparison between the simulation and experiments.<br />

C2-S-04 Performance Test <strong>of</strong> Cool<strong>in</strong>g System for KEPCO<br />

HTS Power Cable<br />

H.S. Yang, D.L. Kim, B.S. Lee, Y.S. Choi, Korea B<strong>as</strong>ic<br />

Science Institute; S.H. Sohn, J.H. Lim, Korea Electric<br />

Power Research Institute; H.S. Ryoo, S.D. Hwang,<br />

Korea Electrotechnology Research Institute.<br />

A cool<strong>in</strong>g system for a 3-ph<strong>as</strong>e 100m HTS power cable with<br />

22.9kV/1.25kA w<strong>as</strong> <strong>in</strong>stalled and tested at KEPCO’s Gochang power<br />

test<strong>in</strong>g center <strong>in</strong> Korea. The system consists <strong>of</strong> a liquid nitrogen<br />

decompression cool<strong>in</strong>g system with a cool<strong>in</strong>g capacity <strong>of</strong> 3kW at 66K<br />

and a closed circulation system <strong>of</strong> subcooled liquid nitrogen. Several<br />

performance tests <strong>of</strong> the cable system with respect to the cool<strong>in</strong>g such<br />

<strong>as</strong> heat load, AC loss and temperature stability, were performed at<br />

operat<strong>in</strong>g temperature <strong>of</strong> 66.4K. Thermal cycle test, cool-down to<br />

liquid nitrogen temperature and warm-up to room temperature, w<strong>as</strong><br />

also performed to <strong>in</strong>vestigate thermal cycle <strong>in</strong>fluences. The outl<strong>in</strong>e <strong>of</strong><br />

the <strong>in</strong>stalled cool<strong>in</strong>g system and performance test results are presented<br />

<strong>in</strong> this paper.<br />

This research w<strong>as</strong> supported <strong>in</strong> part by the Electric Power Industry<br />

Technology Evaluation & Plann<strong>in</strong>g <strong>of</strong>fice, Republic <strong>of</strong> Korea.<br />

Page 34 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C2-T Thermoacoustics<br />

C2-T-01 A thermoacoustically-driven two-stage pulse<br />

tube cryocooler operat<strong>in</strong>g below 20K by us<strong>in</strong>g a novel<br />

coupler<br />

J.Y. Hu, Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy <strong>of</strong><br />

Sciences; E.C. Luo, Technical Institute <strong>of</strong> Physics and<br />

Chemistry, CAS; W. Dai, Technical Institute <strong>of</strong><br />

Physics and Chemistry,CAS.<br />

In a heat-driven thermoacoustic cryocooler, the optimum work<strong>in</strong>g<br />

frequency <strong>of</strong> the pulse tube cooler is <strong>of</strong>ten below 50Hz and the<br />

pressure ratio is higher than 1.2. Meanwhile a typical thermoacoustic<br />

heat eng<strong>in</strong>e with moderate dimensions <strong>of</strong>ten can not meet the need <strong>of</strong><br />

the cooler. So <strong>in</strong> our new heat-driven thermoacoustic cryocooler, a<br />

new coupl<strong>in</strong>g method w<strong>as</strong> employed to decre<strong>as</strong>e the frequency and<br />

improve the pressure ratio. First, a tube with a reservoir w<strong>as</strong> used <strong>as</strong><br />

an acoustic amplifier to connect the eng<strong>in</strong>e and the cooler. The<br />

acoustic amplifier can amplify the amplitude <strong>of</strong> pressure wave<br />

through it, and this allows the cooler to obta<strong>in</strong> higher pressure ratio<br />

than that <strong>in</strong> the eng<strong>in</strong>e itself. Secondly, an acoustic transparent but g<strong>as</strong><br />

block<strong>in</strong>g membrane w<strong>as</strong> <strong>in</strong>stalled between the eng<strong>in</strong>e and the cooler.<br />

Thus, the eng<strong>in</strong>e can use nitrogen <strong>as</strong> the work<strong>in</strong>g g<strong>as</strong> to work at low<br />

frequency; meanwhile, the cooler can still use helium to ma<strong>in</strong>ta<strong>in</strong> its<br />

high refrigeration performance <strong>in</strong> cryogenic temperature range.<br />

Because <strong>of</strong> the new coupl<strong>in</strong>g method, the thermoacoustic eng<strong>in</strong>e<br />

worked at about 23.5Hz and the pressure ratio <strong>in</strong> the pulse tube cooler<br />

reached 1.27. Consequently, a lowest cool<strong>in</strong>g temperature <strong>of</strong> the heatdriven<br />

thermoacoustic cryocooler reached 18.1K. This new heatdriven<br />

thermoacoustic cryocooler promises good application potential<br />

for thermoacoustic technology <strong>in</strong> the temperature <strong>of</strong> liquid hydrogen.<br />

This work w<strong>as</strong> supported by the Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant No.50506031 and No.50625620)<br />

C2-T-02 Universal scal<strong>in</strong>g law <strong>of</strong> <strong>in</strong>ertance tube ph<strong>as</strong>e<br />

shifters<br />

S.L. Zhu, Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy <strong>of</strong><br />

Sciences; E.C. Luo, Technical Institute <strong>of</strong> Physics and<br />

Chemistry, CAS; Z.H. Wu, W. Dai, Technical Institute<br />

<strong>of</strong> Physics and Chemistry,CAS.<br />

The <strong>in</strong>ertance tube is a long th<strong>in</strong> tube that is now frequently used <strong>as</strong><br />

ph<strong>as</strong>e shifters <strong>of</strong> pulse tube cryocoolers. However, previous works<br />

usually focused on specific operat<strong>in</strong>g c<strong>as</strong>e <strong>of</strong> an <strong>in</strong>ertance tube, which<br />

make their conclusion lack <strong>of</strong> universal guidance for other peoples.<br />

Thus, develop<strong>in</strong>g a universal scal<strong>in</strong>g law <strong>of</strong> the <strong>in</strong>ertance tube shifter<br />

becomes the objective <strong>of</strong> this work. Because different pulse tube<br />

coolers need different <strong>in</strong>ertance tube ph<strong>as</strong>e shifter which can be<br />

characterized by its acoustical power transmission and ph<strong>as</strong>e shift<strong>in</strong>g<br />

capability. In other word, the acoustical power at the <strong>in</strong>let <strong>of</strong> the<br />

<strong>in</strong>ertance tube simply reflects the gross cool<strong>in</strong>g capacity <strong>of</strong> the pulse<br />

tube cryocooler, and the ph<strong>as</strong>e angle at its <strong>in</strong>let is required by the<br />

pulse tube cryocooler for efficient operation. To obta<strong>in</strong> the universal<br />

operat<strong>in</strong>g behavior <strong>of</strong> the <strong>in</strong>ertance ph<strong>as</strong>e shifter, a series <strong>of</strong><br />

dimensionless groups are needed, <strong>in</strong>clud<strong>in</strong>g dimensionless diameter,<br />

dimensionless length <strong>of</strong> the <strong>in</strong>ertance tube, and dimensionless<br />

acoustical power. Two most typical c<strong>as</strong>es <strong>of</strong> the <strong>in</strong>ertance tube ph<strong>as</strong>e<br />

shifter configurations, <strong>in</strong>f<strong>in</strong>ite reservoir volume and zero reservoir<br />

volume are highlighted <strong>in</strong> model<strong>in</strong>g. Another unique feature <strong>of</strong> the<br />

work is that oscillat<strong>in</strong>g turbulent flow effect is <strong>in</strong>corporated to make<br />

the universal scal<strong>in</strong>g law well describe practical operat<strong>in</strong>g behavior <strong>of</strong><br />

the <strong>in</strong>ertance tube shifter. Lots <strong>of</strong> figures are provided to quickly<br />

choose an optimal <strong>in</strong>ertance tube ph<strong>as</strong>e shifter.<br />

This work w<strong>as</strong> supported by the Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant. No.50625620)<br />

C2-T-03 Impedance Me<strong>as</strong>urements <strong>of</strong> Inertance Tubes at<br />

High Frequency and Pressure<br />

M.A. Lewis, NIST.<br />

Previous comparisons between me<strong>as</strong>ured and calculated <strong>in</strong>ertance<br />

tube impedance were made at frequencies below 70 Hz and average<br />

pressures below 3 MPa. In this paper we present results on similar<br />

comparisons for frequencies up to 120 Hz and average pressures up to<br />

3.5 MPa. Me<strong>as</strong>urements were made on <strong>in</strong>ertance tubes from 1.0 mm<br />

to about 3.0 mm, <strong>as</strong> well <strong>as</strong> a double <strong>in</strong>let arrangement. Pressure<br />

ratios were varied from 1.1 to 1.4, and acoustic powers up to about<br />

100 W were used <strong>in</strong> these me<strong>as</strong>urements. The higher frequencies<br />

have the potential <strong>of</strong> reduc<strong>in</strong>g the size <strong>of</strong> both the pressure oscillator<br />

and the cold f<strong>in</strong>ger for a given refrigeration power. The smaller cold<br />

f<strong>in</strong>ger also leads to f<strong>as</strong>ter cooldown. In these experiments flow at the<br />

entrance to the <strong>in</strong>ertance tube w<strong>as</strong> determ<strong>in</strong>ed from me<strong>as</strong>urements <strong>of</strong><br />

the calibrated pressure drop across a stack <strong>of</strong> screens. The wide<br />

range <strong>of</strong> frequencies and acoustic powers covered <strong>in</strong> these<br />

me<strong>as</strong>urements enable us to separate the effects <strong>of</strong> compliance and<br />

<strong>in</strong>ertance <strong>in</strong> the comparisons with transmission l<strong>in</strong>e and<br />

thermoacoustic models.<br />

Thursday, <strong>07</strong>/19/<strong>07</strong> Poster<br />

9:00am - 10:30am<br />

C3-B High Frequency Pulse Tube Pressure<br />

Wave Generators<br />

C3-B-01 Investigation on the dynamic behavior <strong>of</strong> l<strong>in</strong>ear<br />

compressor <strong>in</strong> Stirl<strong>in</strong>g-type pulse tube refrigerator<br />

J. Ko, S. Jeong, KAIST.<br />

This paper describes the experimental study <strong>of</strong> the dynamic behavior<br />

<strong>of</strong> l<strong>in</strong>ear compressor <strong>in</strong> Stirl<strong>in</strong>g-type pulse tube refrigerator (PTR).<br />

The dynamic behavior <strong>of</strong> the piston is closely coupled with the<br />

hydraulic force <strong>of</strong> the g<strong>as</strong> and, therefore, directly <strong>in</strong>fluenced by the<br />

specific load condition <strong>of</strong> the pulse tube refrigerator. In the<br />

experiment, the frequency response <strong>of</strong> the pressure at each<br />

component, the cool<strong>in</strong>g performance and the piston displacement are<br />

me<strong>as</strong>ured while the alternative current with the fixed magnitude is<br />

supplied to the cryocooler. The l<strong>in</strong>ear compressor <strong>in</strong> this study is<br />

orig<strong>in</strong>ally designed for the Stirl<strong>in</strong>g cryocooler and its maximum <strong>in</strong>put<br />

power is approximately 200 W. The pulse tube refrigerator is<br />

configured <strong>as</strong> <strong>in</strong>-l<strong>in</strong>e type and an <strong>in</strong>ertance tube is <strong>in</strong>corporated <strong>as</strong> the<br />

ph<strong>as</strong>e control device <strong>in</strong> the pulse tube refrigerator near the resonant<br />

frequency. The pressure difference between both ends <strong>of</strong> the piston<br />

imposes the additional stiffness and the PV power at the compression<br />

space can be considered <strong>as</strong> the damp<strong>in</strong>g effect <strong>in</strong> the vibration system<br />

<strong>of</strong> the piston. From the experimental results, the effect <strong>of</strong> the g<strong>as</strong> force<br />

on the dynamic behavior <strong>of</strong> the piston is discussed. The dynamic<br />

relation among the <strong>in</strong>put current, the displacement <strong>of</strong> the piston, the<br />

pulsat<strong>in</strong>g pressure and the cool<strong>in</strong>g performance is also studied.<br />

This work w<strong>as</strong> supported by ETEP (Electric Power Industry<br />

Technology Evaluation and Plann<strong>in</strong>g) and KOSEF (Korea Science<br />

and Eng<strong>in</strong>eer<strong>in</strong>g Foundation).<br />

Page 35 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-B-02 Development <strong>of</strong> a Compressor for a M<strong>in</strong>iature<br />

Pulse Tube Cryocooler <strong>of</strong> 2.5 W at 65 K for<br />

Telecommunication Applications<br />

N Matsumoto, Y Y<strong>as</strong>ukawa, K Ohshima, T Takeuchi,<br />

T Matsushita, Y Mizoguchi, Fuji Electric Systems Co.,<br />

Ltd.<br />

Fuji Electric group h<strong>as</strong> established ma<strong>in</strong> technologies for high<br />

reliability <strong>in</strong> some stirl<strong>in</strong>g cryocoolers for space satellite systems. We<br />

also have developed and started sell<strong>in</strong>g a m<strong>in</strong>iature pulse tube<br />

cryocooler from 2 W to 3 W at 70 K with 100 W electric power <strong>in</strong>put<br />

for any commercial applications. In development <strong>of</strong> a new<br />

compressor, we <strong>in</strong>troduce a mov<strong>in</strong>g magnet to a driv<strong>in</strong>g system <strong>in</strong><br />

order to achieve moreover compactness and higher efficiency, not a<br />

mov<strong>in</strong>g coil that is a conventional system with about 70% efficiency.<br />

And an Expander is adopted a coaxial pulse tube for compactness.<br />

This development is for cool<strong>in</strong>g a high temperature superconductive<br />

device <strong>in</strong> a wireless telecommunication system. The compressor<br />

requires total compression work <strong>of</strong> 75 W with 90% efficiency and<br />

longer than 50,000 hour.<br />

So far, the primary tests that a part <strong>of</strong> a mov<strong>in</strong>g magnet l<strong>in</strong>er motor<br />

and a coaxial pulse tube have f<strong>in</strong>ished. As next ph<strong>as</strong>e, we have made a<br />

first stage prototype compressor used by the new l<strong>in</strong>er motor, and then<br />

we have tested the new mach<strong>in</strong>e. This paper ma<strong>in</strong>ly describes the test<br />

results <strong>of</strong> the compressor.<br />

A Japanese government <strong>in</strong>stitution, the M<strong>in</strong>istry <strong>of</strong> Public<br />

Management, Home affairs, Posts and Telecommunications<br />

C3-B-03 High Frequency Nonmagnetic and Nonmetallic<br />

Pulse Tube Cryocooler for 80K<br />

Y.Q. Xun, L.W. Yang, J.H. Cai, J.T. Liang, Y. Zhou,<br />

Technical Institute <strong>of</strong> Physics and Chemistry <strong>of</strong> CAS.<br />

Many cryogenic apparatus, such <strong>as</strong> Superconduct<strong>in</strong>g Quantum<br />

Interference Devices (SQUIDs), are quite strict with the cold source<br />

for their sensitivity to the mechanical and magnetic vibrations. The<br />

high frequency pulse tube cryocooler (PTC) h<strong>as</strong> considerable system<br />

advantages due to the reduction <strong>of</strong> <strong>in</strong>duced electromagnetic<br />

disturbance and simple mechanism for hav<strong>in</strong>g no mov<strong>in</strong>g part <strong>in</strong> the<br />

cold head. By us<strong>in</strong>g nonmagnetic and nonmetallic materials for ma<strong>in</strong><br />

components, we are develop<strong>in</strong>g a high Frequency coaxial nonmetallic<br />

and non-magnetic PTC system with lower vibrations and<br />

electromagnetic <strong>in</strong>terferences to supply the low-noise cool<strong>in</strong>g for<br />

highly magnetic flux sensitive high-Tc superconductor<strong>in</strong>g electronics<br />

<strong>in</strong>clud<strong>in</strong>g high-Tc SQUIDs. A l<strong>in</strong>er compressor is used to drive this<br />

version <strong>of</strong> PTC. With an <strong>in</strong>put electric power <strong>of</strong> 35W and 42Hz<br />

operation frequency, this PTC h<strong>as</strong> achieved a no-load temperature <strong>of</strong><br />

76.9K and provides a cool<strong>in</strong>g power <strong>of</strong> 0.1W at 82K.<br />

Research supported by National Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a. (Grant No.50476086)<br />

C3-B-04 Experimental Investigation on Multi-byp<strong>as</strong>s and<br />

Fixed Ph<strong>as</strong>e-shifter Comparison <strong>in</strong> S<strong>in</strong>gle-stage High<br />

Frequency Pulse Tube Cryocooler<br />

X.F. Hou, L.W. Yang, J.T. Liang, Y. Zhou, Technical<br />

Institute <strong>of</strong> Physics and Chemistry <strong>of</strong> CAS.<br />

A below 40K s<strong>in</strong>gle-stage high-frequency pulse tube cryocooler(PTC)<br />

is <strong>in</strong>troduced <strong>in</strong> this paper. At present, the lowest temperature <strong>of</strong><br />

34.22K with <strong>in</strong>put power <strong>of</strong> 222W is reached. Four fixed ph<strong>as</strong>e shifter<br />

<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>ertance tube, <strong>in</strong>ertance tube plus double <strong>in</strong>let, <strong>in</strong>ertance<br />

tube plus multi-byp<strong>as</strong>s and <strong>in</strong>ertance tube plus double <strong>in</strong>let plus multibyp<strong>as</strong>s<br />

are compared by experiments. Experiments show that<br />

<strong>in</strong>ertance tube plus double <strong>in</strong>let plus multi-byp<strong>as</strong>s is a best choice to<br />

apply very low temperature and <strong>in</strong>ertance tube is a good choice to<br />

apply high temperature and large cool<strong>in</strong>g power <strong>in</strong> s<strong>in</strong>gle-stage high<br />

frequency PTC. And the experiments also show that multi-byp<strong>as</strong>s plus<br />

nozzle can decre<strong>as</strong>e the DC flow <strong>in</strong> PTC and <strong>in</strong>cre<strong>as</strong>e the performance<br />

<strong>of</strong> PTC.<br />

C3-B-05 Experimental demonstration <strong>of</strong> a Novel Heat<br />

Exchange Loop Used for Oscillat<strong>in</strong>g Flow Systems<br />

B. Gao, Technical Inst. <strong>of</strong> Physics and Chemistry,<br />

CAS; Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy <strong>of</strong><br />

Sciences; Z.H. Wu, Technical Institute <strong>of</strong> Physics and<br />

Chemistry, CAS; W. Dai, E.C. Luo, Technical Institute<br />

<strong>of</strong> Physics and Chemistry,CAS.<br />

This paper proposed a non-resonant self-circulat<strong>in</strong>g heat exchanger<br />

which uses a pair <strong>of</strong> s<strong>in</strong>gle-direction valves to transform oscillat<strong>in</strong>g<br />

flow <strong>in</strong>to steady flow that allows the oscillat<strong>in</strong>g flow system’s own<br />

work<strong>in</strong>g g<strong>as</strong> to go through a physically remote high-temperature or<br />

cold-temperature heat source. Unlike traditional oscillat<strong>in</strong>g flow heat<br />

exchangers, the length <strong>of</strong> non-resonant self-circulat<strong>in</strong>g heat exchanger<br />

is not limited by the peak-to-peak displacement. In addition, it is also<br />

different from the resonant self-circulat<strong>in</strong>g heat exchanger that needs<br />

a specific resonant length [G.Swift and S. Backhaus, A resonant, selfpumped,<br />

circulat<strong>in</strong>g thermoacoustic heat exchanger," Journal <strong>of</strong> the<br />

Acoustical Society <strong>of</strong> America 116, 2923-2938 (2004)]. This<br />

<strong>in</strong>vention may lead to e<strong>as</strong>y design and fabrication <strong>of</strong> heat exchangers<br />

for oscillat<strong>in</strong>g-flow refrigeration system with large capacity. To verify<br />

this idea, we have built an experimental system by <strong>in</strong>corporat<strong>in</strong>g such<br />

a heat exchanger <strong>in</strong>to a pulse-tube type <strong>of</strong> Stirl<strong>in</strong>g refrigerator.<br />

Me<strong>as</strong>urements <strong>of</strong> heat transfer <strong>of</strong> the heat exchanger under different<br />

operat<strong>in</strong>g conditions <strong>in</strong>clud<strong>in</strong>g pressure ratio, mean pressure, and<br />

operat<strong>in</strong>g frequency, etc. have been made. Our experiments have<br />

demonstrated its fe<strong>as</strong>ibility and great flexibility for practical<br />

applications.<br />

This work w<strong>as</strong> supported by the Natural Sciences Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant. No.50625620).<br />

C3-B-06 A low cost pressure wave generator us<strong>in</strong>g<br />

diaphragms<br />

A.J. Caughley, Industrial Research Ltd; D. Haywood,<br />

Industrial Reserach Ltd; C. Wang, Cryomech.<br />

The high cost <strong>of</strong> Pressure Wave Generators (PWGs) is a major barrier<br />

to the more widespread use <strong>of</strong> high-efficiency pulse tube and Stirl<strong>in</strong>g<br />

cryocoolers. This paper describes the development and test<strong>in</strong>g <strong>of</strong> a<br />

low-cost <strong>in</strong>dustrial-style PWG which employs metal diaphragms. The<br />

use <strong>of</strong> diaphragms removes the need for rubb<strong>in</strong>g or clearance seals,<br />

and elim<strong>in</strong>ates contam<strong>in</strong>ation problems by hermetically separat<strong>in</strong>g the<br />

g<strong>as</strong> circuit and the lubricated driv<strong>in</strong>g mechanism. The diaphragms<br />

also allow a conventional low-cost electric motor to be used <strong>as</strong> the<br />

power <strong>in</strong>put device for the PWG, via a novel high-efficiency<br />

k<strong>in</strong>ematic l<strong>in</strong>kage. A first prototype <strong>of</strong> the diaphragm PWG produced<br />

approximately 3.3 kW <strong>of</strong> PV power with a me<strong>as</strong>ured electro-acoustic<br />

efficiency <strong>of</strong> 69%. Accelerated test<strong>in</strong>g predicts a diaphragm life time<br />

<strong>in</strong> excess <strong>of</strong> 40,000 hours. An additional advantage <strong>of</strong> the use <strong>of</strong><br />

diaphragms is the ability to directly cool the g<strong>as</strong> <strong>in</strong> the compression<br />

space. This elim<strong>in</strong>ates or significantly reduces the requirement for an<br />

aftercooler, and further decre<strong>as</strong>es the cost <strong>of</strong> the whole cryocooler<br />

system. A pulse tube cryocooler h<strong>as</strong> been successfully run at<br />

Industrial Research Ltd to 59K with the diaphragm PWG and no<br />

aftercooler. Another pulse tube cryocooler with the diaphragm PWG<br />

is undergo<strong>in</strong>g development at Cryomech, the results <strong>of</strong> which will be<br />

given <strong>in</strong> another presentation.<br />

This programme w<strong>as</strong> supported by the Foundation for Research,<br />

Science and Techology, New Zealand.<br />

Page 36 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-C Heat Transfer - II<br />

C3-C-01 Effect <strong>of</strong> Heated Perimeter on Forced<br />

Convection Heat Transfer <strong>of</strong> He I at a Supercritical<br />

Pressure<br />

D. Doi, M. Shiotsu, Y. Shirai, Kyoto University; K.<br />

Hama, Kyoto Unniversity.<br />

In design<strong>in</strong>g a superconduct<strong>in</strong>g coil wound with CICC cooled by<br />

supercritical helium, accurate knowledge <strong>of</strong> heat transfer <strong>in</strong> forced<br />

flow <strong>of</strong> He I under supercritical pressure is necessary. However,<br />

there have been very small number <strong>of</strong> experimental data and little is<br />

known on the forced convection heat transfer under supercritical<br />

pressures. The authors experimentally studied the forced convection<br />

heat transfer from a flat plate located at a wall <strong>of</strong> a rectangular duct<br />

under a supercritical pressure, 2.8 atm and presented the heat transfer<br />

correlation <strong>in</strong>clud<strong>in</strong>g a parameter <strong>of</strong> (L/De) where L is the heater<br />

length and De is the equivalent diameter. As the perimeter <strong>of</strong> the duct<br />

w<strong>as</strong> partially (about 1/4) heated <strong>in</strong> the experiment, to clarify the effect<br />

<strong>of</strong> heated ratio <strong>in</strong> the perimeter is necessary. In this work, a<br />

rectangular duct which had the same dimension <strong>as</strong> used <strong>in</strong> the<br />

previous work, 420 mm <strong>in</strong> length and 5 mm x 6 mm <strong>in</strong> <strong>in</strong>ner cross<br />

section, w<strong>as</strong> used. Two pairs <strong>of</strong> test plates all 5.5 mm <strong>in</strong> width were<br />

located face to face on opposite sides <strong>of</strong> the duct. Each pair hav<strong>in</strong>g the<br />

same length <strong>of</strong> 20 mm and 80 mm, respectively, w<strong>as</strong> connected <strong>in</strong><br />

series electrically. Inlet temperature and flow velocity were varied<br />

from 2.2 to 6.5 K and 0.1 to 5.2 m/s. Comparison <strong>of</strong> the obta<strong>in</strong>ed<br />

Nusselt numbers with the former results with a s<strong>in</strong>gle test pate showed<br />

clear effect <strong>of</strong> heated perimeter. Non-dimensional heat transfer<br />

equation <strong>in</strong>clud<strong>in</strong>g the effect w<strong>as</strong> presented.<br />

C3-C-02 Forced convection heat transfer <strong>of</strong> subcooled<br />

liquid nitrogen <strong>in</strong> horizontal tube<br />

H. Tatsumoto, T. Kato, Japan Atomic Energy Agency;<br />

Y. Shirai, K. Hata, M. Shiotsu, Kyoto University.<br />

The knowledge <strong>of</strong> heat transfer <strong>in</strong> forced flow cryogenic hydrogen is<br />

important for the cool<strong>in</strong>g design <strong>of</strong> hydrogen moderator systems for<br />

spallation neutron sources. However, there is few experimental data <strong>of</strong><br />

the forced convection heat transfer <strong>of</strong> cryogenic hydrogen. In order to<br />

improve prediction <strong>of</strong> the heat transfer <strong>of</strong> the hydrogen, experimental<br />

research <strong>of</strong> forced convection heat transfer <strong>of</strong> subcooled nitrogen<br />

rang<strong>in</strong>g from the pressures <strong>of</strong> 0.3 to 2.5 MPa w<strong>as</strong> carried out <strong>as</strong> b<strong>as</strong>ic<br />

research. In this study, an experimental apparatus that could obta<strong>in</strong><br />

forced flow without a pump w<strong>as</strong> developed. The <strong>in</strong>let temperatures<br />

were varied from 77 K to its saturated temperature. The flow<br />

velocities were varied from 0.1 to 5 m/s. A sta<strong>in</strong>less steel tube with a<br />

diameter <strong>of</strong> 5.4 mm and the length <strong>of</strong> 100 mm w<strong>as</strong> used <strong>as</strong> a heater.<br />

The heat transfer coefficients <strong>in</strong> non-boil<strong>in</strong>g regime and the critical<br />

heat fluxes <strong>of</strong> nucleate boil<strong>in</strong>g are higher for higher flow velocity and<br />

higher subcool<strong>in</strong>g. Obta<strong>in</strong>ed Nusselt number (Nu) <strong>in</strong> non-boil<strong>in</strong>g<br />

region is proportional to Reynolds number (Re) to the power <strong>of</strong> 0.7.<br />

With decre<strong>as</strong>es <strong>in</strong> Re, Nu approached a constant value that<br />

corresponds to that <strong>in</strong> a pool <strong>of</strong> liquid nitrogen.<br />

C3-C-03 Heat Transfer Characteristics <strong>of</strong> Slush Nitrogen<br />

<strong>in</strong> Turbulent Pipe Flows<br />

K. Ohira, J. Ishimoto, Institute <strong>of</strong> Fluid Science,<br />

Tohoku University; T. Kura, Tohoku University.<br />

Slush fluid such <strong>as</strong> slush hydrogen and slush nitrogen is a two-ph<strong>as</strong>e<br />

(solid-liquid) s<strong>in</strong>gle-component cryogenic fluid conta<strong>in</strong><strong>in</strong>g solid<br />

particles <strong>in</strong> liquid, so that its density and cool<strong>in</strong>g capacity <strong>in</strong>cre<strong>as</strong>e<br />

compared with liquid state fluid. This paper reports the experimental<br />

results <strong>of</strong> the forced convection heat transfer characteristics <strong>of</strong> slush<br />

nitrogen (63 K) flow<strong>in</strong>g <strong>in</strong> a 15 mm <strong>in</strong>ternal diameter, 625 mm long,<br />

horizontal, copper pipe. Heat w<strong>as</strong> supplied to the slush nitrogen by the<br />

heater wound around the pipe wall. The heat transfer coefficient w<strong>as</strong><br />

me<strong>as</strong>ured with the changes <strong>of</strong> the velocity and the solid fraction. The<br />

heat transfer correlation between the Nusselt number and Reynolds<br />

number w<strong>as</strong> obta<strong>in</strong>ed and the differences between two-ph<strong>as</strong>e slush<br />

and one-ph<strong>as</strong>e liquid <strong>in</strong> heat transfer characteristics were clarified.<br />

C3-C-04 Thermal conductivity me<strong>as</strong>urement <strong>of</strong> th<strong>in</strong> film<br />

(Kapton and PPLP) <strong>in</strong> low temperature<br />

S. Yamaguchi, M. Hamabe, H. Takah<strong>as</strong>hi, Chubu<br />

University.<br />

One <strong>of</strong> power applications <strong>of</strong> high temperature superconductor (HTS)<br />

is AC power cable, and the design value <strong>of</strong> the <strong>in</strong>sulation voltage is 30<br />

to 160 kV <strong>in</strong> the present time. Th<strong>in</strong> film is used for electrical<br />

<strong>in</strong>sulation <strong>of</strong> the cables, and the thermal resistance <strong>of</strong> the th<strong>in</strong> film<br />

should be low <strong>in</strong> order to keep low temperature <strong>of</strong> the HTS tape<br />

conductor. However, s<strong>in</strong>ce the me<strong>as</strong>urement <strong>of</strong> th<strong>in</strong> film thermal<br />

conductivity is not e<strong>as</strong>y <strong>in</strong> low temperature, because the thermal<br />

resistance <strong>of</strong> the surface between the different materials must be<br />

considered, we proposed a new method to me<strong>as</strong>ure the thermal<br />

conductivity <strong>of</strong> th<strong>in</strong> film. We me<strong>as</strong>ured the thermal conductivity <strong>of</strong><br />

Kapton sheet from the room temperature to 50 K, and get the good<br />

agreement <strong>of</strong> the previous data <strong>in</strong> the room temperature. Therefore,<br />

this method will be useful to me<strong>as</strong>ure the other different th<strong>in</strong> film<br />

materials. We also show the thermal conductivity <strong>of</strong> the PPLP<br />

(Polypropylene Lam<strong>in</strong>ated Paper) from the room temperature to 50 K.<br />

This work is supported <strong>in</strong> part by “University-Industry Research<br />

Project for Private Universities match<strong>in</strong>g fund” by subsidy from<br />

MEXT, Japan, 2005-2009.<br />

C3-D Cry<strong>of</strong>uel Systems<br />

C3-D-01 A method for low methane sources <strong>in</strong> MRC<br />

small scale CBM liquefaction plant<br />

H. Li, L. Jia, Q. Y<strong>in</strong>, Q. Fan, G. Yang, X. Liu, W. Bai,<br />

F. Xu, Z. Ji, J. Cui, Institute <strong>of</strong> Cryogenics and<br />

Superconductivity Technology,Harb<strong>in</strong> Institute <strong>of</strong><br />

Technology.<br />

Coalbed methane liquefiers <strong>in</strong> small scale, 5000 to 20000Nm3/d, play<br />

more and more important roles <strong>in</strong> Ch<strong>in</strong>ese LNG application plan.<br />

Most CBM sources conta<strong>in</strong> 50% more methane and 50% less air. In<br />

order to make use <strong>of</strong> these low methane energy sources, a new fullscale<br />

separation system w<strong>as</strong> designed and tested us<strong>in</strong>g mixed<br />

refrigerant cycle. A method <strong>of</strong> air discard<strong>in</strong>g <strong>of</strong> low CBM sources <strong>in</strong><br />

liquefy<strong>in</strong>g process is discussed <strong>in</strong> this paper.<br />

C3-D-02 Economic Analysis <strong>of</strong> Mixed-refrigerant Cycle<br />

and Nitrogen Expander Cycle <strong>in</strong> Small Scale Natural G<strong>as</strong><br />

Liquefier<br />

Q.S. Y<strong>in</strong>, H.Y. Li, Q.H. Fan, L.X. Jia, Institute <strong>of</strong><br />

Cryogenics and Superconductivity Technology,<br />

Harb<strong>in</strong> Institute <strong>of</strong> Technology.<br />

Two types <strong>of</strong> natural g<strong>as</strong> liquefaction processes, mixed-refrigerant<br />

cycle and nitrogen expander cycle were simulated accord<strong>in</strong>g to the<br />

applications <strong>in</strong> small scale LNG plants <strong>in</strong> Ch<strong>in</strong>a. Their processes<br />

parameters were optimized and compared. Their economic<br />

characteristics were analyzed. Although the mixed-refrigerant<br />

liquefaction process is more complicated than nitrogen expander<br />

cycle, its energy consumption is only 46% <strong>of</strong> the nitrogen expander<br />

cycle. The operation costs <strong>of</strong> mixed-refrigerant process are lower than<br />

those <strong>of</strong> nitrogen expander cycle, so the process is more competitive.<br />

Referenced the articles published, the energy consumption <strong>of</strong> the<br />

optimized mixed-refrigerant cycle reaches the level <strong>of</strong> propane<br />

precooled mixed-refrigerant process, which is usually used <strong>in</strong> the b<strong>as</strong>e<br />

load natural g<strong>as</strong> liquefaction factory and is the lowest <strong>in</strong> the mixedrefrigerant<br />

process. The process is comparatively simple, consumes<br />

less energy and h<strong>as</strong> economic features. So the mixed-refrigerant<br />

process is the first choice when one develops small-scale natural g<strong>as</strong><br />

liquefaction device.<br />

Page 37 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-D-03 Scheme Design and Analysis on the Small-scale<br />

Biog<strong>as</strong> Liquefaction Cycle<br />

Q.H. Fan, H.Y. Li, Q.S. Y<strong>in</strong>, L.X. Jia, Institute <strong>of</strong><br />

Cryogenics and Superconductivity<br />

TechnologyCHarb<strong>in</strong> Institute <strong>of</strong> Technology,<br />

Harb<strong>in</strong>.<br />

The biog<strong>as</strong> h<strong>as</strong> important practical significance <strong>in</strong> solv<strong>in</strong>g the energy<br />

crisis <strong>as</strong> a k<strong>in</strong>d <strong>of</strong> clean, renewable biological energy <strong>of</strong> ground. As<br />

the large-scale concentratedness <strong>of</strong> the biog<strong>as</strong> is produced, the<br />

liquefaction <strong>of</strong> the biog<strong>as</strong> is extremely urgent <strong>in</strong> technical research <strong>in</strong><br />

Ch<strong>in</strong>a. Accord<strong>in</strong>g to the characteristic <strong>of</strong> the biog<strong>as</strong>, on the b<strong>as</strong>is <strong>of</strong><br />

mature natural g<strong>as</strong> purification and liquefaction technology, this paper<br />

discussed the small-scale biog<strong>as</strong> liquefaction system <strong>of</strong> the double<br />

purposes to purification, liquefaction and recovery <strong>of</strong> liquefied CO2.<br />

This paper provides the liquefaction biog<strong>as</strong> plant process chart, and<br />

system analysis, and the effects on the key parameters. F<strong>in</strong>ally, the<br />

thermal parameters <strong>of</strong> the liquefaction cycle are presented. The result<br />

provides guidel<strong>in</strong>es for the design <strong>of</strong> the small-scale biog<strong>as</strong><br />

liquefaction device.<br />

C3-D-04 Membrane and Joule-Thomson cooler b<strong>as</strong>ed<br />

natural g<strong>as</strong> liquefy<strong>in</strong>g system<br />

A. Piotrowska, M. Chorowski, Wroclaw University <strong>of</strong><br />

Technology.<br />

The significance <strong>of</strong> liquid natural g<strong>as</strong> (LNG) <strong>as</strong> a fuel <strong>in</strong> transport and<br />

power eng<strong>in</strong>eer<strong>in</strong>g h<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed significantly. The composition <strong>of</strong><br />

natural g<strong>as</strong> is not stable and varies depend<strong>in</strong>g on the source. Prior to<br />

its use the g<strong>as</strong> should be purified, dehydrated, excess nitrogen should<br />

be removed and eventually helium recovered. The comb<strong>in</strong>ation <strong>of</strong> the<br />

polymer membrane g<strong>as</strong> separation technology with Joule –Thomson<br />

closed cycle can be used <strong>as</strong> a comb<strong>in</strong>ed purify<strong>in</strong>g and liquefaction<br />

system <strong>of</strong> natural g<strong>as</strong>. The impurities can be separated on hollow fiber<br />

membrane and the purified g<strong>as</strong> can be liquefied with use <strong>of</strong> Joule-<br />

Thomson cooler supplied with g<strong>as</strong> mixture. This system is especially<br />

suitable for low capacity natural g<strong>as</strong> sources. A proper choice <strong>of</strong> g<strong>as</strong><br />

mixture limits temperature difference <strong>in</strong> the heat exchanger. The paper<br />

presents thermodynamic analysis and optimization <strong>of</strong> the system.<br />

C3-D-05 Development <strong>of</strong> a magnetic refrigerator for<br />

hydrogen liquefaction.<br />

S. Yoshioka, H. Nakagome, Chiba University; K.<br />

Kamiya, T. Numazawa, National Institute for<br />

Materials Science; K. Matsumoto, Kanazawa<br />

University.<br />

To prepare for the arrival <strong>of</strong> the hydrogen society, great effort h<strong>as</strong><br />

been made on hydrogen liquefaction methods. Compared to<br />

conventional liquefaction systems us<strong>in</strong>g a Joule-Thomson valve,<br />

magnetic refrigeration for hydrogen liquefaction h<strong>as</strong> great potential<br />

and its development is an urgent necessity. Magnetic refrigeration<br />

makes use <strong>of</strong> magnetocaloric effect, and is well known <strong>as</strong> an efficent<br />

method <strong>in</strong> pr<strong>in</strong>cipal because its cool<strong>in</strong>g cycle can most closely follow<br />

the Carnot cycle with appropriate heat switches. A liquefaction<br />

pr<strong>in</strong>cipal <strong>of</strong> our magnetic refrigerator is b<strong>as</strong>ed on thermo-siphon<br />

method, <strong>in</strong> which liquid hydrogen is condensed directly on the surface<br />

<strong>of</strong> magnetic refrigerants and drops downward. This paper reports<br />

recent progress on development <strong>of</strong> our magnetic refrigerator and ways<br />

to make it more efficient by exam<strong>in</strong>g design <strong>of</strong> magnetic refrigerants.<br />

C3-E Large Scale Systems<br />

C3-E-01 Performance <strong>of</strong> liquid xenon calorimeter cryogenic<br />

system for the MEG experiment<br />

T. Haruyama, K. K<strong>as</strong>ami, KEK; H. Nishiguchi, S. Mihara,<br />

T. Mori, W. Otani, R. Sawada, T. Nishitani, The University<br />

<strong>of</strong> Tokyo.<br />

The rare muon decay physics experiment, so called mu-e-gamma (MEG)<br />

experiment, is almost ready at the Paul Scherer Institute <strong>in</strong> Zurich. To meet<br />

with extremely high sensitivity to catch gamma-ray, 800L <strong>of</strong> cryogenic<br />

liquid xenon is used <strong>as</strong> a ma<strong>in</strong> media <strong>in</strong> the calorimeter. 800 photo<br />

multipliers (PMT) are all immersed <strong>in</strong> liquid xenon for captur<strong>in</strong>g sc<strong>in</strong>tilaton<br />

light <strong>in</strong> liqud. The total dissipation power <strong>of</strong> these PMTs is expected to be<br />

about 60 W at 165 K. The sc<strong>in</strong>tilation light with a wavelength <strong>of</strong> 174 nm is<br />

e<strong>as</strong>ily absorbed by residual water <strong>in</strong> the carolimeter, liquid xenon must be<br />

purified to the lebel <strong>of</strong> ppb water contents. This is achieved by us<strong>in</strong>g the<br />

cryogenic centrifugal pump and cold molecular shieves. The total heat load<br />

<strong>of</strong> the calorimeter is about 120 W, and the s<strong>in</strong>gle pulse tube cryocooler<br />

compensates this heat load. It h<strong>as</strong> a cool<strong>in</strong>g power <strong>of</strong> 180 W at 165 K,<br />

developed at KEK and s<strong>of</strong>isticatedly manufactured at Iwatani Industrial G<strong>as</strong><br />

corp. The cryogenic system ma<strong>in</strong>ly consists <strong>of</strong> a cryocooler, a liquid pump<br />

and a 1000L dewar. In addition to the liquid purification, a pump and a<br />

dewar will be used for an emergency evacuation <strong>of</strong> large amount <strong>of</strong> liquid<br />

xenon. The paper describes successful <strong>in</strong>itial performance test <strong>of</strong> each<br />

cryogenic components and total commission<strong>in</strong>g.<br />

C3-E-02 Cryogenic Supply for the GERDA Experiment (70m3<br />

LAr Dewar Tank)<br />

Ch. Haberstroh, TU Dresden, Lehrstuhl fuer Kaelte- und<br />

Kryotech.<br />

In the GERDA experiment (GERmanium Detector Array for the search <strong>of</strong><br />

neutr<strong>in</strong>oless double beta decay <strong>of</strong> 76Ge) germanium diodes are suspended <strong>in</strong><br />

a super<strong>in</strong>sulated copper cryostat filled with liquid argon. The cold medium is<br />

required s<strong>in</strong>ce the diodes have to be operated at low temperatures,<br />

furthermore for shield<strong>in</strong>g aga<strong>in</strong>st background radiation. In order to achieve<br />

acceptable radiation levels, a quantity <strong>of</strong> 70 m³ LAr is needed, placed <strong>in</strong> a<br />

surround<strong>in</strong>g water tank. For the same re<strong>as</strong>on the whole experiment will be<br />

placed <strong>in</strong> the underground laboratories <strong>in</strong> the Gran S<strong>as</strong>so mounta<strong>in</strong>s, Italy.<br />

Project leader is the Max-Planck-Institute for Nuclear Physics, Heidelberg.<br />

In order to avoid any detrimental perturbation <strong>in</strong>side the dewar vessel, the<br />

LAr <strong>in</strong>ventory <strong>in</strong> the ma<strong>in</strong> tank should be kept <strong>in</strong> subcooled state, at a<br />

work<strong>in</strong>g pressure <strong>of</strong> 1.2 bar absolute at the surface. At the TU Dresden an<br />

appropriate cryogenic arrangement w<strong>as</strong> designed to match with all these<br />

requirements. Liquid nitrogen is used <strong>as</strong> on-hand cool<strong>in</strong>g medium for a zeroboil-<strong>of</strong>f<br />

system. Special care w<strong>as</strong> taken to cope with the narrow temperature<br />

span between LAr boil<strong>in</strong>g temperature and triple po<strong>in</strong>t. In the proposed<br />

solution a subcooler located close to the neck provides a stable LAr<br />

convection <strong>in</strong>side the ma<strong>in</strong> tank. The work<strong>in</strong>g pressure is adjusted by a<br />

controlled, slightly elevated temperature level at the liquid – vapor <strong>in</strong>terface.<br />

C3-E-03 The results <strong>of</strong> cool<strong>in</strong>g test on HTS power cable <strong>of</strong><br />

KEPCO<br />

J.H. Lim, S.H. Sohn, S.D. Hwang, Korea Electric Power<br />

Research Institute; H.S. Yang, D.L. Kim, Korea B<strong>as</strong>ic<br />

Science Institute; H.S. Ryoo, Korea Electrotechnology<br />

Research Institute.<br />

Due to the <strong>in</strong>herent characteristics <strong>of</strong> the superconductivity allow<strong>in</strong>g large<br />

power transmission capability, many researches on the high temperature<br />

superconductivity (HTS) power cables have been carried out world widely.<br />

KEPCO (Korea Electric Power Corporation) had <strong>in</strong>stalled three ph<strong>as</strong>es, 22.9<br />

kV, 1250 A, 50 MVA, and 100 m cl<strong>as</strong>s HTS cable system at Gochang power<br />

test center <strong>of</strong> KEPCO. The HTS cable system <strong>of</strong> KEPCO consists <strong>of</strong> two<br />

term<strong>in</strong>ations, HTS power cable, and cool<strong>in</strong>g system. Decompression cool<strong>in</strong>g<br />

system is chosen for operation characteristics <strong>of</strong> the HTS cable system<br />

because it h<strong>as</strong> simple structure and is e<strong>as</strong>ier to ma<strong>in</strong>ta<strong>in</strong>. Sub-cooled liquid<br />

nitrogen is used for coolant <strong>of</strong> the HTS power cable and operation<br />

temperature <strong>of</strong> the HTS cable at <strong>in</strong>let position is from 66 K to 77 K.<br />

Circulation cool<strong>in</strong>g tests at different temperatures w<strong>as</strong> performed to<br />

<strong>in</strong>vestigate operat<strong>in</strong>g condition and heat loss at load<strong>in</strong>g AC current w<strong>as</strong><br />

me<strong>as</strong>ured. The results <strong>of</strong> performance correlated with cool<strong>in</strong>g test will be<br />

presented <strong>in</strong> this paper.<br />

This work w<strong>as</strong> supported <strong>in</strong> part by the Electric Power Industry Technology<br />

Evaluation & Plann<strong>in</strong>g <strong>of</strong>fice, Republic <strong>of</strong> Korea.<br />

Page 38 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-E-04 Experimental studies on cryogenic system for<br />

22.9 kV HTS cable system<br />

S. H. Sohn, J. H. Lim, S. D Hwang, Korea Electric<br />

Power Research Institute; H. S. Yang, D. L. Kim,<br />

Korea B<strong>as</strong>ic Science Institute; H. S. Ryoo, Korea<br />

Electrotechnology Research Institute; C. D. Kim, LS<br />

Cable Ltd. ; D. H. Kim, S. K. Lee, LS Cable Ltd..<br />

In terms <strong>of</strong> high transmission capacity with lower voltage, a high<br />

temperature superconduct<strong>in</strong>g (HTS) cable system is very attractive<br />

challenge for power utilities. On the other hand, concomitant<br />

cryogenic system for the HTS cable system is one <strong>of</strong> the tantaliz<strong>in</strong>g<br />

problems <strong>in</strong> the operation. The reliability and ma<strong>in</strong>ta<strong>in</strong>ability <strong>of</strong><br />

cryogenic system are the key issues to apply it to the real electric<br />

power grid. Korea Electric Power Corporation (KEPCO) is mak<strong>in</strong>g an<br />

attempt to verify the applicability <strong>of</strong> the HTS cable system to promote<br />

the efficiency <strong>of</strong> electric power <strong>in</strong>dustry. S<strong>in</strong>ce May 2006, 22.9 kV,<br />

50 MVA, 3-ph<strong>as</strong>e, 100 m cl<strong>as</strong>s HTS cable system with an open<br />

refrigeration cool<strong>in</strong>g system h<strong>as</strong> been operated at Gochang test yard <strong>of</strong><br />

KEPCO. Concurrently, another HTS cable verification test with the<br />

same electrical specification and hybrid cool<strong>in</strong>g system h<strong>as</strong> been<br />

carried out by LS cable Ltd <strong>in</strong> close proximity with KEPCO’s HTS<br />

cable system with<strong>in</strong> Gochang test yard. Two GM crycooler, a Stirl<strong>in</strong>g<br />

cryocooler and a pulse tube cryocooler were <strong>in</strong>cluded <strong>in</strong> LS HTS<br />

cable cryogenic system. KEPCO is conduct<strong>in</strong>g the operation <strong>of</strong> the<br />

open refrigeration system by itself and the evaluation <strong>of</strong> the hybrid<br />

system <strong>of</strong> LS cable with the <strong>as</strong>pect <strong>of</strong> facility performance and<br />

usability. Various tests have been done to confirm the performance <strong>of</strong><br />

HTS cable systems. This paper will compare the cryogenic<br />

performance <strong>of</strong> both HTS cable systems and discuss results related<br />

with cool<strong>in</strong>g tests such <strong>as</strong> step response.<br />

This work w<strong>as</strong> supported <strong>in</strong> part by the Electric Power Industry<br />

Technology Evaluation & Plann<strong>in</strong>g <strong>of</strong>fice, Republic <strong>of</strong> Korea.<br />

C3-E-05 Design <strong>of</strong> a Long-Distance Liquid Helium<br />

Transfer L<strong>in</strong>e<br />

Ch. Wang, M.C. L<strong>in</strong>, L.H. Chang, M.S. Yeh, M.H.<br />

Tsai, H.H. Tsai, National Synchrotron Radiation<br />

Research Center.<br />

Design <strong>of</strong> a 200-m multi-channel l<strong>in</strong>e is to be presented. Currently<br />

there are two 400-W liquid helium systems <strong>in</strong> Taiwan Light Source.<br />

One <strong>of</strong> them will serve only for SRF application soon, which requests<br />

only 120-W cool<strong>in</strong>g capacity <strong>in</strong> normal operation. The spared<br />

capacity is considered to serve for the SRF test stand <strong>in</strong> another<br />

build<strong>in</strong>g 200-m away from the cold box and the 2000-L dewar. Thus<br />

a long transfer l<strong>in</strong>e must be constructed to transfer liquid helium from<br />

the 2000-L dewar to a 500-L dewar <strong>in</strong> SRF test area. One <strong>of</strong> the<br />

major concerns is to reduce the heat loss <strong>of</strong> this transfer l<strong>in</strong>e, while an<br />

effective cool-down <strong>of</strong> this transfer l<strong>in</strong>e is also considered. The<br />

challenges come from not only the limited cool<strong>in</strong>g capacity <strong>of</strong> the<br />

exist<strong>in</strong>g refrigeration system, but also the pressure drop <strong>of</strong> the long<br />

distance transfer. A two-ph<strong>as</strong>e mathematical model is developed<br />

<strong>in</strong>itially to estimate the liquid helium transfer fe<strong>as</strong>ibility. Major<br />

design considerations and solutions are presented and discussed<br />

here<strong>in</strong>.<br />

C3-E-06 Thermal stress analysis for a transfer l<strong>in</strong>e <strong>of</strong><br />

hydrogen moderator <strong>in</strong> J-PARC<br />

H. Tatsumoto, M. Teshigawara, T. Aso, K. Ohtsu, F.<br />

Maekawa, T. Kato, Japan Atomic Energy Agency.<br />

The JAEA and KEK proceed with the construction <strong>of</strong> the Japan<br />

Proton Accelerator Research Complex (J-PARC). As one <strong>of</strong> the ma<strong>in</strong><br />

experimental facilities <strong>in</strong> J-PARC, a spallation neutron source (JSNS)<br />

driven by proton beam power <strong>of</strong> 1 MW is constructed. In JSNS,<br />

cryogenic hydrogen at supercritical pressure is selected <strong>as</strong> a<br />

moderator. Three k<strong>in</strong>ds <strong>of</strong> moderator, whose vessel is made <strong>of</strong><br />

alum<strong>in</strong>um alloy, are <strong>in</strong>stalled to provide higher neutronic<br />

performance. The hydrogen transfer l<strong>in</strong>e with the length <strong>of</strong> about 4 m<br />

is adopted to supply cryogenic hydrogen to the moderator vessel. It<br />

consists <strong>of</strong> multiplex pipes such <strong>as</strong> cryogenic hydrogen supply<strong>in</strong>g<br />

pipe, vacuum pipe, cryogenic hydrogen return pipe, vacuum pipe,<br />

helium blanket pipe, and pipe for cool<strong>in</strong>g water. It is necessary to<br />

m<strong>in</strong>imum the pip<strong>in</strong>g size <strong>in</strong> order to decre<strong>as</strong>e the effect <strong>of</strong> radiation<br />

stream<strong>in</strong>g. The pip<strong>in</strong>g should have some bend parts to reduce<br />

radiation stream<strong>in</strong>g and have friction weld jo<strong>in</strong>ts (alum<strong>in</strong>um alloy to<br />

sta<strong>in</strong>less steal).<br />

Therefore, the pip<strong>in</strong>g design should have strict conditions and then we<br />

considered mechanical stress concentration, de<strong>format</strong>ion, and,<br />

touch<strong>in</strong>g between the pipes due to the thermal shr<strong>in</strong>kage at the<br />

cryogenic hydrogen temperature. Then, the thermal stress and the<br />

thermal shr<strong>in</strong>kage <strong>of</strong> the transfer l<strong>in</strong>es were analyzed by us<strong>in</strong>g<br />

computer code such <strong>as</strong> ABAQUS. The analysis results determ<strong>in</strong>ed<br />

support locations to keep the thermal stress below allowable stress and<br />

also show no <strong>in</strong>terference between each pipes.<br />

C3-E-<strong>07</strong> Cryogenic and vacuum technological <strong>as</strong>pects <strong>of</strong><br />

the low-energy electrostatic Cryogenic Storage R<strong>in</strong>g<br />

D.A. Orlov, M. Lange, H. Fadil, M. Froese, M.<br />

Grieser, R. von Hahn, V. Mall<strong>in</strong>ger, T. Weber, A.<br />

Wolf, MPI-K; M. Rappaport, T. Sieber, Weizmann<br />

Institute <strong>of</strong> Science.<br />

A next generation, cryogenic electrostatic ion storage r<strong>in</strong>g will be<br />

built at the MPI-K <strong>in</strong> Heidelberg. The mach<strong>in</strong>e will store beams with<br />

k<strong>in</strong>etic energies between 20 and 300 keV with a ma<strong>in</strong> focus on the<br />

study <strong>of</strong> molecular ion physics. Wall temperature <strong>of</strong> about 10 K is<br />

required to reduce black body radiation <strong>in</strong> order to obta<strong>in</strong> and to store<br />

molecular ions <strong>in</strong> their rotational ground states. The temperature <strong>of</strong><br />

about 2 K will help to provide extremely low vacuum that will make it<br />

possible to reach the long beam storage times needed for the<br />

molecules to complete rotational cool<strong>in</strong>g by the emission <strong>of</strong> <strong>in</strong>frared<br />

radiation. The cryostat w<strong>as</strong> be<strong>in</strong>g designed to be bakeable up to 600 K<br />

to reach 10^{-12} mbar vacuum range at room temperature and to<br />

obta<strong>in</strong> extremely low vacuum (less than 1000 molecules per cubic<br />

centimeter) at a wall temperature <strong>of</strong> 2 K.<br />

Despite a strong l<strong>in</strong>k <strong>of</strong> cryogenic and vacuum techniques, <strong>in</strong> the most<br />

c<strong>as</strong>es cryogenic materials and <strong>in</strong>strumentation can not survive a hightemperature<br />

bakeout which is typically required for UHV systems. To<br />

test cryogenic and vacuum technological <strong>as</strong>pects <strong>of</strong> the CSR we are<br />

build<strong>in</strong>g a prototype. The first results and status <strong>of</strong> the current work<br />

with the prototype will be presented.<br />

C3-F High Temperature Superconduct<strong>in</strong>g<br />

Current Leads<br />

C3-F-01 Vapor cooled current leads <strong>in</strong> BEPCII<br />

Q.J. Xu, Institute <strong>of</strong> High Energy Physics(IHEP),<br />

Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences(CAS); C.L. Yi, H.S.<br />

Chen, H. Yang, J.G. Hu, Z.A. Zhu, W.G. Li, S.P. Li, C.<br />

Zhang, K. He, R. Ge, M.J. Sang, J. Gao, IHEP,CAS;<br />

L.Q. Liu, Technical Institute <strong>of</strong> Physics and<br />

Chemistry(TIPC),CAS; L. Zhang, TIPC, CAS.<br />

In the upgrade project <strong>of</strong> Beij<strong>in</strong>g Electron and Positron<br />

Collider(BEPCII), Two k<strong>in</strong>ds <strong>of</strong> superconduct<strong>in</strong>g magnets were<br />

adopted. One is the Beij<strong>in</strong>g Spectrometer III (BESIII) detector<br />

magnet, the other is the quadrupole(SCQ) magnet. The operat<strong>in</strong>g<br />

currents <strong>of</strong> them are 3400A, 1100A,600A,130A and 60A respectively.<br />

Thirteen pairs <strong>of</strong> Vapor cooled current leads(VCCL) were designed<br />

and fabricated for these magnets. The paper presents the detail <strong>of</strong> the<br />

design, fabrication and the test results <strong>of</strong> these VCCL.<br />

Page 39 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-F-02 Performance <strong>of</strong> Heat Exchanger Models <strong>in</strong><br />

Upside-Down Orientation for the Use <strong>in</strong> HTS Current<br />

Leads for W7-X<br />

R. Lietzow, R. Heller , H. Neumann ,<br />

Forschungszentrum Karlsruhe.<br />

The sc magnet system <strong>of</strong> the W7-X stellarator requires 7 pairs <strong>of</strong><br />

current leads designed for a maximum current <strong>of</strong> 18.2 kA. The<br />

Forschungszentrum Karlsruhe is responsible for the construction,<br />

manufactur<strong>in</strong>g and performance test <strong>of</strong> the current leads. Special<br />

design feature is the <strong>in</strong>stallation <strong>of</strong> the current leads <strong>in</strong> upside-down<br />

orientation, i.e., the low temperature end <strong>of</strong> the current lead is at the<br />

top and the room temperature end at the bottom side lead<strong>in</strong>g to the<br />

problem <strong>of</strong> free convection <strong>in</strong>side the heat exchanger (HEX) due to<br />

density gradients <strong>of</strong> the helium between 4.5 K and 300 K (factor 500,<br />

p = 0.15 MPa). The occurrence <strong>of</strong> free convection leads to a reduced<br />

performance <strong>of</strong> the HEX and results <strong>in</strong> a higher m<strong>as</strong>s flow rate<br />

required for the operation <strong>of</strong> the current leads. To overcome the<br />

problem it w<strong>as</strong> decided to use HTS material <strong>in</strong> the temperature range<br />

between 4.5 K and 60 K. The current lead can then be cooled with 50<br />

K helium. The ma<strong>in</strong> re<strong>as</strong>ons for choos<strong>in</strong>g 50 K are: 50 K helium is<br />

available at a higher pressure level from the refrigerator and the<br />

density gradient between 50 K and 300 K is dr<strong>as</strong>tically reduced<br />

(factor 6, p = 0.6 MPa). This will reduce the problem <strong>of</strong> free<br />

convection.<br />

In the paper the performance <strong>of</strong> HEX mock-ups built <strong>of</strong> different<br />

HEX types will be described. The tests were performed with helium<br />

cool<strong>in</strong>g <strong>of</strong> various temperatures <strong>in</strong> normal and upside-down<br />

orientation. These results were used to select the HEX type for the<br />

W7-X current leads.<br />

C3-F-03 Us<strong>in</strong>g High Temperature Superconduct<strong>in</strong>g<br />

Leads <strong>in</strong> a Magnetic Field<br />

M. A, Green, Lawrence Berkeley National<br />

Laboratory; H. Witte, Oxford University.<br />

HTS leads are <strong>in</strong>cre<strong>as</strong><strong>in</strong>gly used on superconduct<strong>in</strong>g magnets. In most<br />

c<strong>as</strong>es either the magnet is iron shielded or the magnet is actively<br />

shielded so that the stray field at HTS leads is low. There are magnets<br />

where the HTS leads must be located <strong>in</strong> a magnetic field. The two<br />

general types <strong>of</strong> HTS leads that are commercially available are either<br />

leads fabricated from bulk HTS materials or leads fabricated from<br />

oriented HTS materials that have one or two planes <strong>of</strong> favorable<br />

current density. HTS leads have been fabricated from a variety <strong>of</strong><br />

HTS materials. This paper will discuss how two or three types <strong>of</strong><br />

leads are affected by magnetic field. The performance <strong>of</strong> a HTS leads<br />

is determ<strong>in</strong>ed by the high temperature end <strong>of</strong> the lead. The protection<br />

<strong>of</strong> HTS leads from quench<strong>in</strong>g becomes an important consideration.<br />

Examples <strong>of</strong> HTS leads <strong>in</strong> a magnetic field are shown muon<br />

ionization experiment (MICE) magnets.<br />

This work w<strong>as</strong> supported by the Office <strong>of</strong> Science, United States<br />

Department <strong>of</strong> Energy, under DOE contract DE-AC02-<br />

05CH11231<br />

C3-F-04 Implementation <strong>of</strong> HTSC leads for research<br />

cryostats<br />

Y. Shiroyanagi, G. Gopalakrishnan, S. An, D. Ko, T.<br />

J. Gramila, Ohio State University.<br />

Although the advantage <strong>of</strong> HTSC wires have been proven both <strong>in</strong> high<br />

current applications and <strong>in</strong> the presence <strong>of</strong> active cryocoolers, their<br />

implementation <strong>in</strong> liquid Helium research cryostats h<strong>as</strong> not been <strong>as</strong><br />

successful. A central difficulty <strong>in</strong>volves the need to establish a<br />

specific temperature at the warm end <strong>of</strong> the HTSC wire, which is<br />

<strong>in</strong>side the neck <strong>of</strong> the dewar where temperatures are generally not<br />

well known. A novel approach to heat s<strong>in</strong>k<strong>in</strong>g <strong>of</strong> magnet leads[1] h<strong>as</strong><br />

enabled detailed numerical model<strong>in</strong>g <strong>of</strong> the magnet lead system,<br />

<strong>in</strong>clud<strong>in</strong>g the cool<strong>in</strong>g capability <strong>of</strong> the exit<strong>in</strong>g Helium g<strong>as</strong>. This<br />

approach h<strong>as</strong> permitted the <strong>in</strong>corporation <strong>of</strong> HTSC leads <strong>in</strong>to He<br />

research cryostats, while ensur<strong>in</strong>g they rema<strong>in</strong> cold enough to<br />

superconduct. The overall structure <strong>of</strong> magnet lead system <strong>in</strong>clud<strong>in</strong>g<br />

the HTSC wires, its relevant design features, and our characterization<br />

<strong>of</strong> the system will be presented.<br />

[1] A Novel Approach for Magnet Leads: submitted to JLTP.<br />

Thursday, <strong>07</strong>/19/<strong>07</strong> Oral<br />

10:30am - 11:45am<br />

C3-G Low Temperature Superconduct<strong>in</strong>g<br />

Magnet Systems - IV<br />

C3-G-01 CFD Model<strong>in</strong>g <strong>of</strong> ITER Cable-<strong>in</strong>-Conduit<br />

Superconductors. PART V: Comb<strong>in</strong>ed Momentum and<br />

Heat Transfer <strong>in</strong> a Spiral Rib-Roughened Pipe<br />

R. Zan<strong>in</strong>o, Politecnico di Tor<strong>in</strong>o; S. Giors, Varian<br />

s.p.a.<br />

Dual-channel cable-<strong>in</strong>-conduit conductors (CICC) are used <strong>in</strong> the<br />

present design <strong>of</strong> superconduct<strong>in</strong>g magnets for the International<br />

Thermonuclear Experimental Reactor (ITER). Supercritical helium<br />

coolant flows both <strong>in</strong> the annular cable region, and <strong>in</strong> the central<br />

channel, delimited by a (perforated) spiral. As the CICC<br />

axial/transverse size ratio is typically ~ 100, 1D (axial) models are<br />

customarily used for the CICC, but they require constitutive relations<br />

for the transverse fluxes. A novel approach, b<strong>as</strong>ed on Computational<br />

Fluid Dynamics (CFD), w<strong>as</strong> recently proposed [1], [2] to understand<br />

the complex transverse thermal-hydraulic processes <strong>in</strong> an ITER CICC.<br />

A 3D CFD tool, the commercial FLUENT code, w<strong>as</strong> used to compute<br />

the friction factor F <strong>in</strong> spiral rib-roughened pipes, mimick<strong>in</strong>g the<br />

central channel <strong>of</strong> an ITER CICC. The results where validated aga<strong>in</strong>st<br />

compact heat exchanger and ITER-relevant experiments. That<br />

analysis is extended here to the problem <strong>of</strong> comb<strong>in</strong>ed heat/momentum<br />

transfer. The model is first validated aga<strong>in</strong>st 2D and 3D data from<br />

compact heat exchangers and then applied to the analysis <strong>of</strong> central<br />

channel-like geometries relevant for ITER CICC, contribut<strong>in</strong>g to a<br />

better understand<strong>in</strong>g <strong>of</strong> the role <strong>of</strong> geometric parameters to optimize<br />

both F and the Nusselt number (Nu). The question <strong>of</strong> the applicability<br />

<strong>of</strong> the Colburn analogy between F and Nu is also analyzed.<br />

[1]R. Zan<strong>in</strong>o, et al., Adv. Cryo. Eng. 51 (2006) 1009.<br />

[2]R. Zan<strong>in</strong>o, et al., Fus. Eng. Des. 81 (2006) 2605.<br />

C3-G-02 Stability analysis <strong>of</strong> the ITER TF coil conductor<br />

L. Savoldi Richard, R. Zan<strong>in</strong>o, Dipartimento di<br />

Energetica, Politecnico.<br />

The stability analysis <strong>of</strong> the International Thermonuclear<br />

Experimental Reactor (ITER). Toroidal Field (TF) coil Nb3Sn<br />

conductor is performed us<strong>in</strong>g the Mithrandir code [1]. The most<br />

critical conductor <strong>in</strong> the w<strong>in</strong>d<strong>in</strong>g pack, <strong>as</strong> well <strong>as</strong> the most critical<br />

location along it, is identified by the V<strong>in</strong>centa code analysis, which<br />

also provides the <strong>in</strong>itial and boundary conditions for the stability<br />

analysis. Two different disturbances are considered: one short <strong>in</strong> space<br />

and time (1 cm, 1 ms), simulat<strong>in</strong>g a disturbance <strong>of</strong> mechanical nature,<br />

the other longer (3 m, 100 ms) correspond<strong>in</strong>g to AC losses (pl<strong>as</strong>ma<br />

disruption). Both disturbances are applied to the superconduct<strong>in</strong>g (SC)<br />

cable at end-<strong>of</strong>-burn (EOB) <strong>in</strong> the reference ITER <strong>in</strong>ductive operation<br />

scenario. Us<strong>in</strong>g this approach, the Mithrandir analysis can be<br />

restricted to the most critical conductor, us<strong>in</strong>g a much f<strong>in</strong>er grid than<br />

V<strong>in</strong>centa, <strong>in</strong> order to capture the details <strong>of</strong> normal zone <strong>in</strong>itiation and<br />

possible recovery to SC state. The computed results, <strong>in</strong> terms <strong>of</strong><br />

m<strong>in</strong>imum quench energy, are compared to the design values. S<strong>in</strong>ce the<br />

results are strongly <strong>in</strong>fluenced by the choice <strong>of</strong> the heat transfer<br />

coefficient between strands and helium <strong>as</strong> expected, this effect h<strong>as</strong><br />

been also parametrically <strong>in</strong>vestigated.<br />

[1] R.Zan<strong>in</strong>o, S.DePalo and L.Bottura,<br />

Page 40 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-G-03 Design <strong>of</strong> the KATRIN source cryostat<br />

S. Grohmann, H. Neumann, Forschungszentrum<br />

Karlsruhe.<br />

The KATRIN experiment will me<strong>as</strong>ure the m<strong>as</strong>s <strong>of</strong> electron<br />

ant<strong>in</strong>eutr<strong>in</strong>os with a sensitivity <strong>of</strong> 0.2 eV/c^2, b<strong>as</strong>ed on the precise<br />

me<strong>as</strong>urement <strong>of</strong> the tritium beta spectrum. A key component is the<br />

W<strong>in</strong>dowless G<strong>as</strong>eous Tritium Source – WGTS, which will deliver<br />

10^11 beta decay electrons per second. The WGTS consists <strong>in</strong> its<br />

centre <strong>of</strong> a 10 m long beam tube (BT) that is operated at 30 K, and<br />

that is surrounded by a series <strong>of</strong> sc solenoids. Molecular T2 is <strong>in</strong>jected<br />

<strong>in</strong> the BT through a central <strong>in</strong>jection chamber and pumped at either<br />

end. The T2 density pr<strong>of</strong>ile must have a stability <strong>of</strong> 0.001 <strong>in</strong> order to<br />

limit the systematic errors, yield<strong>in</strong>g str<strong>in</strong>gent requirements on the BT<br />

temperature homogeneity and stability <strong>of</strong> ±30 mK and ±30 mK/h,<br />

respectively. This shall be achieved with a design, where the radiation<br />

heat load is almost entirely absorbed by LN2 and He coolers on the<br />

pump<strong>in</strong>g chambers connected to the BT ends. The BT itself will be<br />

cooled with saturated Ne that is evaporat<strong>in</strong>g from a qu<strong>as</strong>i-stationary<br />

liquid level <strong>in</strong> evaporator tubes, which are attached to either side <strong>of</strong><br />

the BT and which are part <strong>of</strong> a thermosiphon. Start<strong>in</strong>g from a<br />

functional description, we shall expla<strong>in</strong> the cryogenic design <strong>of</strong> the sc<br />

magnet cryostat that features 12 fluid circuits with 6 cryogenic fluids.<br />

Beside the magnet cool<strong>in</strong>g, we shall focus on the layout <strong>of</strong> the BT<br />

cool<strong>in</strong>g system, <strong>as</strong> well <strong>as</strong> on the preparations for a full-scale<br />

demonstrator test.<br />

C3-G-05 Superconductive Undulators, a new source for<br />

brilliant synchrotron radiation<br />

R. Rossmanith, S. C<strong>as</strong>albuoni, B. Kostka, Research<br />

Center Karlsruhe, Germany; A. Bernhard, University<br />

<strong>of</strong> Karlsruhe, Germany.<br />

After years <strong>of</strong> development, superconduct<strong>in</strong>g undulators slowly<br />

become a better alternative to conventional permanent magnet<br />

undulators. Superconduct<strong>in</strong>g undulators have higher fields and are<br />

more flexible than permanent magnet undulators. The Research<br />

Center Karlsruhe is a pioneer <strong>in</strong> this development and built and tested<br />

the first superconductive undulator <strong>in</strong> a storage r<strong>in</strong>g (ANKA). The<br />

tests were so successful that a program to further developments w<strong>as</strong><br />

<strong>in</strong>itiated. The results <strong>of</strong> the tests and the next steps <strong>in</strong> the development<br />

are presented <strong>in</strong> this paper.<br />

C3-H Non-Aerospace Coolers<br />

C3-H-01 Dry Dilution Refrigerator with High Cool<strong>in</strong>g<br />

Capacity<br />

K. Uhlig, WMI.<br />

We present the construction concept and cool<strong>in</strong>g capacity<br />

me<strong>as</strong>urements <strong>of</strong> a 3,4He dilution refrigerator which w<strong>as</strong> precooled by<br />

a commercial pulse tube refrigerator. No cryogens are needed for the<br />

operation <strong>of</strong> this type <strong>of</strong> cryostat. The condensation <strong>of</strong> the helium<br />

m<strong>as</strong>h w<strong>as</strong> done <strong>in</strong> an <strong>in</strong>tegrated Joule-Thomson circuit which w<strong>as</strong> part<br />

<strong>of</strong> the dilution unit. The composition <strong>of</strong> the dilution unit w<strong>as</strong> standard,<br />

but its components (still, heat exchangers, mix<strong>in</strong>g chamber) were<br />

designed for high 3He flow. For thermometry, calibrated RuO chip<br />

resistance thermometers were available.<br />

In order to condense the mixture before an experiment, the fridge w<strong>as</strong><br />

operated like a Joule-Thomson liquefier with a relatively high <strong>in</strong>let<br />

pressure (4 bar), where the liquid fraction <strong>of</strong> the circulat<strong>in</strong>g 3,4He<br />

mixture w<strong>as</strong> accumulated <strong>in</strong> the dilution unit. The condensation took<br />

about 2 hours, and after 2 more hours <strong>of</strong> runn<strong>in</strong>g the temperature <strong>of</strong><br />

the mix<strong>in</strong>g chamber approached its m<strong>in</strong>imum temperature <strong>of</strong> 10 mK.<br />

The maximum flow rate <strong>of</strong> the fridge w<strong>as</strong> 650 µmol/s, and the<br />

refrigeration capacity <strong>of</strong> the mix<strong>in</strong>g chamber w<strong>as</strong> 450 µW @ 100mK.<br />

High cool<strong>in</strong>g capacity, e<strong>as</strong>e <strong>of</strong> operation and reliability dist<strong>in</strong>guish<br />

this type <strong>of</strong> millikelvibn cooler.<br />

C3-H-02 Research <strong>of</strong> Application <strong>of</strong> a New-type <strong>of</strong><br />

Magnetic Refrigerant to Active Magnetic Regenerative<br />

Refrigeration<br />

A.T. Saito, S. Kaji, T. Kobay<strong>as</strong>hi, Toshiba<br />

Corporation; S. Kito, S. Uchimoto, K. Kamiya, H.<br />

Nakagome, , Chiba University.<br />

Magnetic refrigeration technique b<strong>as</strong>ed on the magnetocaloric effect<br />

(MCE) h<strong>as</strong> received much attention <strong>as</strong> a potential alternative to<br />

conventional g<strong>as</strong>-expansion cool<strong>in</strong>g techniques. The new concept <strong>of</strong><br />

the active magnetic regeneration (AMR) cycle <strong>of</strong> refrigeration, the<br />

development <strong>of</strong> high-performance permanent magnet, and the<br />

proposal <strong>of</strong> a new type <strong>of</strong> high-performance magnetic refrigerants<br />

have all been accomplished <strong>in</strong> recent years. These technical<br />

<strong>in</strong>novations make it possible to realize magnetic refrigeration over an<br />

extensive temperature range from cryogenic temperature to room<br />

temperature us<strong>in</strong>g permanent magnets. We succeeded <strong>in</strong> prepar<strong>in</strong>g<br />

spherical particles <strong>of</strong> high-performance magnetic refrigerants. This<br />

paper will present a guide <strong>of</strong> the application <strong>of</strong> a new type <strong>of</strong> highperformance<br />

magnetic refrigerants which exhibit large MCEs<br />

especially <strong>in</strong> low magnetic field to the AMR refrigeration us<strong>in</strong>g<br />

permanent magnets, <strong>in</strong> terms <strong>of</strong> MCE, heat regeneration and heat<br />

exchange between refrigerants and heat transfer fluid. It will be shown<br />

the physical properties <strong>of</strong> a new type <strong>of</strong> magnetic refrigerants, and<br />

shown a result <strong>of</strong> simulation <strong>of</strong> the AMR cycle operation <strong>as</strong> well <strong>as</strong><br />

experimental results <strong>of</strong> an AMR cycle operation.<br />

C3-H-03 Cryogenic Test<strong>in</strong>g <strong>of</strong> an Active Magnetic<br />

Regenerative Refrigerator<br />

A. Rowe, A Tura, B. MacDonald, P. Francescutti,<br />

University <strong>of</strong> Victoria.<br />

Active magnetic regenerative (AMR) refrigeration cycles have been<br />

proposed <strong>as</strong> a means <strong>of</strong> creat<strong>in</strong>g compact and efficient devices for<br />

refrigeration. An <strong>in</strong>terest<strong>in</strong>g application is the development <strong>of</strong> a<br />

cool<strong>in</strong>g stage for a hydrogen liquefier operat<strong>in</strong>g <strong>in</strong> the range <strong>of</strong> 80-20<br />

K. An AMR test apparatus h<strong>as</strong> been developed for test<strong>in</strong>g magnetic<br />

regenerators at temperatures rang<strong>in</strong>g from room-temperature to 20 K.<br />

Near 300 K, no-load temperature spans over 80 K have been produced<br />

us<strong>in</strong>g regenerators composed <strong>of</strong> two different magnetocaloric<br />

materials. Modifications to the apparatus have been performed to<br />

allow test<strong>in</strong>g at cryogenic temperatures. Initial tests near 80 K us<strong>in</strong>g<br />

magnetic fields <strong>of</strong> 5 T are presented us<strong>in</strong>g an AMR composed <strong>of</strong><br />

Gd5Si0.33Ge3.67. In addition, design characteristics <strong>of</strong> the test<br />

apparatus, problems encountered, and suggestions for improv<strong>in</strong>g<br />

experimental results are discussed.<br />

The f<strong>in</strong>ancial support <strong>of</strong> Natural Resources Canada, CFI, BCKDF,<br />

and the Natural Sciences and Eng<strong>in</strong>eer<strong>in</strong>g Research Council <strong>of</strong><br />

Canada is greatly appreciated.<br />

C3-H-04 The Use <strong>of</strong> Small Coolers <strong>in</strong> a Magnetic Field<br />

M. A, Green, Lawrence Berkeley National<br />

Laboratory; H. Witte, Oxford University.<br />

Small 4 K coolers are <strong>in</strong>cre<strong>as</strong><strong>in</strong>gly used to cool superconduct<strong>in</strong>g<br />

magnets. These coolers are usually used with HTS leads. In most<br />

c<strong>as</strong>es, either the magnet h<strong>as</strong> an iron shield or the magnet is actively<br />

shielded so that the stray field where the cooler is located is low.<br />

There are <strong>in</strong>stances when the cooler must be <strong>in</strong> a magnetic field.<br />

There are two types <strong>of</strong> coolers that are commercially available to cool<br />

superconduct<strong>in</strong>g magnets. These coolers are either GM coolers or<br />

pulse tube coolers. S<strong>in</strong>ce these coolers are different, their sensitivity<br />

to magnetic fields is also different. This paper will discuss how the<br />

two types <strong>of</strong><br />

coolers are affected by the stray magnetic field. Strategies for us<strong>in</strong>g<br />

coolers on magnets which generate stray magnetic fields are<br />

discussed. Examples <strong>of</strong> coolers <strong>in</strong> a magnetic field are shown <strong>in</strong> the<br />

magnets for the muon ionization experiment (MICE).<br />

This work w<strong>as</strong> supported by the Office <strong>of</strong> Science, United States<br />

Department <strong>of</strong> Energy, under DOE contract DE-AC02-<br />

05CH11231.<br />

Page 41 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-H-05 Performance <strong>of</strong> Helium Circulation System 1<br />

(HCS1)<br />

T. Takeda, M. Okamoto, K. Atsuda, A. Kobay<strong>as</strong>hi, K.<br />

Katagiri, Univ. <strong>of</strong> Tokyo.<br />

We have developed a system to collect evaporated helium g<strong>as</strong>, to cool it<br />

down to liquid and to return it <strong>in</strong>to a FRP dewar for MEG<br />

(Magnetoencephalography) us<strong>in</strong>g two GM cryocoolers without<br />

deliver<strong>in</strong>g any disturb<strong>in</strong>g noises to the MEG. The key idea is to utilize<br />

relatively high temperature helium g<strong>as</strong> (about 40K) cooled by the first<br />

stage <strong>of</strong> the GM cryocoolers to get rid <strong>of</strong> <strong>in</strong>vad<strong>in</strong>g heat to the dewar,<br />

but not to use liquid helium directly to keep the dewar cooled down.<br />

The g<strong>as</strong> is fed at the neck tube <strong>of</strong> the dewar. The evaporated helium g<strong>as</strong><br />

<strong>in</strong> the dewar is collected swiftly while it is <strong>in</strong> the low temperature<br />

(about 8K) and is returned to liquid without us<strong>in</strong>g much energy.<br />

A transfer tube that p<strong>as</strong>ses the liquid helium, the low temperature<br />

helium g<strong>as</strong> (about 8K) and the relatively high temperature helium g<strong>as</strong><br />

h<strong>as</strong> been developed to accomplish the above idea. A ref<strong>in</strong>er to collect<br />

the contam<strong>in</strong>at<strong>in</strong>g g<strong>as</strong>es such <strong>as</strong> oxygen and nitrogen effectively by<br />

freez<strong>in</strong>g the g<strong>as</strong>es is developed. It h<strong>as</strong> an electric heater to remove the<br />

frozen contam<strong>in</strong>ation <strong>in</strong> the form <strong>of</strong> g<strong>as</strong>es <strong>in</strong>to the air. A g<strong>as</strong> flow<br />

controller is also developed, which automatically control the heater to<br />

cleanup the contam<strong>in</strong>ation. The magnetic, vibrational and acoustic<br />

noises are attenuated to be low enough for MEG me<strong>as</strong>urements. The<br />

system can circulate at le<strong>as</strong>t 35.5 litters <strong>of</strong> evaporated liquid helium per<br />

day and usable at le<strong>as</strong>t for one year without any ma<strong>in</strong>tenance.<br />

C3-H-06 Design Parameters for Cryogenic<br />

Thermosyphons<br />

H. Tim<strong>in</strong>ger, B. David, R. Eckart, J. Overweg, Philips<br />

Research Europe-Hamburg.<br />

Cryogenic thermosyphons are the thermal conductors <strong>of</strong> choice for a<br />

variety <strong>of</strong> applications like e.g. conduction-cooled superconduct<strong>in</strong>g<br />

devices. They exhibit a small effective thermal resistance at small<br />

cross-sections. A careful design, however, is crucial to ensure<br />

sufficient heat transport for all possible heat loads. The aim <strong>of</strong> this<br />

work is to obta<strong>in</strong> experimental results on the effective thermal<br />

resistance dependent on the length, the cross-sectional area, and the<br />

work<strong>in</strong>g fluid fill level <strong>of</strong> a thermosyphon for different heat loads.<br />

For the experiments, a modular thermosyphon w<strong>as</strong> designed with 4<br />

different adiabatic tubes <strong>of</strong> length [cm]/cross-sectional area [sqcm]<br />

10/0.8, 10/3.14, 30/0.8, and 30/3.14, which can be mounted between<br />

condenser and evaporator. The thermosyphon w<strong>as</strong> operated with<br />

different fill-levels <strong>of</strong> either nitrogen or neon and different heat loads.<br />

The thermal resistance between condenser and evaporator w<strong>as</strong><br />

determ<strong>in</strong>ed, dependent on the design parameters mentioned above.<br />

Additionally, the useful temperature range <strong>of</strong> operation w<strong>as</strong><br />

determ<strong>in</strong>ed for nitrogen and neon. The results <strong>of</strong> the experiments are<br />

summarized <strong>in</strong> diagrams and provide useful reference data for the<br />

design <strong>of</strong> cryogenic thermosyphons.<br />

C3-I Fluid Mechanics - II<br />

C3-I-01 Surface oscillation <strong>of</strong> liquid nitrogen <strong>in</strong>duced by<br />

step reduction <strong>of</strong> gravity acceleration<br />

M. Stief, M.E. Dreyer, ZARM – Univ. <strong>of</strong> Bremen -<br />

Germany.<br />

For space application, which <strong>in</strong>volve the handl<strong>in</strong>g <strong>of</strong> cryogenic liquids<br />

e.g. liquid hydrogen or oxygen, the concern <strong>of</strong> free surface behavior<br />

upon change <strong>of</strong> acceleration level arises. With reduction <strong>of</strong> gravity<br />

acceleration hydrostatic loose there dom<strong>in</strong>ance and the free surface<br />

and therefore the motion <strong>of</strong> liquids is dom<strong>in</strong>ated by capillary forces.<br />

So far the characteristics <strong>of</strong> the fluid motion subjected to a sudden<br />

reduction <strong>of</strong> gravity acceleration h<strong>as</strong> been mostly <strong>in</strong>vestigated with<br />

conventional storable liquids. Because cryogenic liquids have<br />

different characteristics, these results provide only limited estimations<br />

for considered space applications. To overcome this knowledge gap<br />

experiments with liquid nitrogen <strong>in</strong>side partly filled right circular<br />

cyl<strong>in</strong>der have been performed at the droptower <strong>in</strong> Bremen, which<br />

provides 4.7s <strong>of</strong> very low gravity acceleration level and a steep<br />

transition from 1g to 0g. The oscillation <strong>of</strong> the free surface where<br />

optically observed by video system dur<strong>in</strong>g microgravity and processed<br />

for detection <strong>of</strong> the motion <strong>of</strong> the center location <strong>of</strong> the free surface<br />

and contact l<strong>in</strong>e <strong>of</strong> the liquid at the cyl<strong>in</strong>der wall.<br />

The fund<strong>in</strong>g <strong>of</strong> the research project by the German Aerospace Center<br />

(DLR) under grant numbers 50JR0011 and 50WM0241 is gratefully<br />

acknowledged.<br />

C3-I-02 Pressure drop <strong>of</strong> cable-<strong>in</strong>-conduit conductors<br />

with different void fraction<br />

C. Mar<strong>in</strong>ucci, P. Bruzzone, F. Staehli, EPFL, CRPP<br />

Fusion Technology; L. Bottura, CERN, AT Dept..<br />

Pressure drop cable-<strong>in</strong>-conduit conductors (CICC) w<strong>as</strong> me<strong>as</strong>ured at<br />

CRPP. The conductors are s<strong>in</strong>gle channel CICC’s with different void<br />

fraction <strong>in</strong> the range 38 to 28 %. Several conductor samples are<br />

<strong>in</strong>vestigated and tested <strong>in</strong> SULTAN by supercritical helium and <strong>in</strong> a<br />

room temperature facility by pressurized water. In particular,<br />

experiments are performed on samples at different degree <strong>of</strong><br />

compaction, me<strong>as</strong>ur<strong>in</strong>g the void fraction after each compression step.<br />

In this way it is possible to <strong>as</strong>sess the friction factor <strong>of</strong> the cable<br />

bundle <strong>as</strong> a function <strong>of</strong> the void fraction. The reduction <strong>of</strong> the<br />

experimental data to obta<strong>in</strong> the friction factor <strong>as</strong> a function <strong>of</strong><br />

Reynolds number is performed by (a) established methods us<strong>in</strong>g the<br />

correlation proposed by Katheder and (b) a new porous media analogy<br />

model. We discuss the results and <strong>in</strong> particular the comparison <strong>of</strong><br />

these two methods <strong>of</strong> correlation.<br />

C3-I-03 Flow <strong>of</strong> Saturated Liquid Nitrogen through<br />

Micro-Scale Orifices<br />

T.A. Jankowski, E.N. Schmierer, F.C. Prenger, S.P.<br />

Ashworth, Los Alamos National Laboratory.<br />

The flow <strong>of</strong> saturated liquid nitrogen through micro-scale orifices h<strong>as</strong><br />

been characterized experimentally. Me<strong>as</strong>urements <strong>of</strong> pressure drop<br />

and flow rate were made with liquid nitrogen flow<strong>in</strong>g through orifices<br />

rang<strong>in</strong>g <strong>in</strong> diameter from 35 micron to 250 micron, with orifice length<br />

to diameter ratios rang<strong>in</strong>g from 2 to 15. The design <strong>of</strong> the<br />

experimental apparatus, the <strong>in</strong>strumentation used, and the<br />

experimental uncerta<strong>in</strong>ties are presented. Difficulties with clogg<strong>in</strong>g<br />

<strong>of</strong> the micro-scale orifices and with obta<strong>in</strong><strong>in</strong>g repeatable and reliable<br />

results at cryogenic temperatures are discussed. F<strong>in</strong>ally, experimental<br />

results are shown to agree with previous <strong>in</strong>vestigations <strong>of</strong> flow<br />

through micro-scale orifices us<strong>in</strong>g room temperature refrigerants.<br />

C3-I-04 A Rotat<strong>in</strong>g Heat Pipe for Cool<strong>in</strong>g <strong>of</strong><br />

Superconduct<strong>in</strong>g Mach<strong>in</strong>es<br />

T.A. Jankowski, F.C. Prenger, E.N. Schmierer, Los<br />

Alamos National Laboratory; A. Razani, The<br />

University <strong>of</strong> New Mexico.<br />

A curved rotat<strong>in</strong>g heat pipe for use <strong>in</strong> superconduct<strong>in</strong>g motor and<br />

generator applications is <strong>in</strong>troduced here. A numerical model <strong>of</strong> the<br />

curved rotat<strong>in</strong>g heat pipe [1], which h<strong>as</strong> been validated with room<br />

temperature experiments, is used to predict the performance <strong>of</strong><br />

rotat<strong>in</strong>g heat pipes us<strong>in</strong>g cryogenic work<strong>in</strong>g fluids. Heat pipe model<br />

results are compared to results for a s<strong>in</strong>gle-ph<strong>as</strong>e g<strong>as</strong>-cooled<br />

refrigeration system <strong>in</strong> typical superconduct<strong>in</strong>g generators and motors.<br />

The nearly isothermal operation <strong>of</strong> the heat pipe is shown to reduce<br />

the temperature gradients seen by the superconduct<strong>in</strong>g coil compared<br />

to the forced flow g<strong>as</strong> system. Furthermore, because <strong>of</strong> the p<strong>as</strong>sive<br />

nature <strong>of</strong> the heat pipe operation, the heat pipe concept may be<br />

advantageous when consider<strong>in</strong>g the overall refrigeration system.<br />

F<strong>in</strong>ally, because <strong>of</strong> their modular nature, the use <strong>of</strong> multiple heat pipes<br />

provides redundancy <strong>in</strong> the cool<strong>in</strong>g system.<br />

[1] T. A. Jankowski, “Numerical and Experimental Investigations <strong>of</strong> a<br />

Rotat<strong>in</strong>g Heat Pipe,” Ph.D. Dissertation, The University <strong>of</strong> New<br />

Mexico, 20<strong>07</strong>.<br />

Page 42 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-K Thermal Insulation Systems - II<br />

C3-K-01 Vacuum-Insulated, Flexible Cryostats for Long<br />

HTS Cables: Requirements, Status and Prospects<br />

M.J. Gouge, J.A. Demko, ORNL; J.F. Maguire,<br />

AMSC; M.L. Roden, Southwire Company; C.S. Weber,<br />

SuperPower, Inc..<br />

Several high temperature superconduct<strong>in</strong>g (HTS) cable demonstration<br />

projects have begun operation on the electric grid <strong>in</strong> the l<strong>as</strong>t year with<br />

the liquid nitrogen-cooled cable conta<strong>in</strong>ed <strong>in</strong> one or more vacuum<strong>in</strong>sulated,<br />

flexible cryostats with lengths up to 600 meters. These grid<br />

demonstration projects are prototypes <strong>of</strong> the anticipated commercial<br />

market which will require superconduct<strong>in</strong>g cable lengths <strong>in</strong> the<br />

multiple kilometer range with the vacuum-jacketed cryostats <strong>in</strong><br />

underground ducts provid<strong>in</strong>g acceptable thermal <strong>in</strong>sulation for<br />

decades. The current state-<strong>of</strong>-the art for flexible cryostats (<strong>in</strong>stallation<br />

constra<strong>in</strong>ts, heat loads with a good and degraded vacuum, impact <strong>of</strong><br />

cable bends, getter lifetime and reliability) is discussed. Further<br />

development needed to meet the challeng<strong>in</strong>g commercial HTS cable<br />

application is outl<strong>in</strong>ed.<br />

Research sponsored by the U.S. Department <strong>of</strong> Energy - Office <strong>of</strong><br />

Electricity Delivery and Energy Reliability, Superconductivity<br />

Program for Electric Power Systems under contract DE-AC05-<br />

00OR22725 with Oak Ridge National Laboratory, managed and<br />

operated by UT-Battelle, LLC.<br />

C3-K-02 Heat Flow Me<strong>as</strong>urement and Analysis <strong>of</strong><br />

Thermal Vacuum Insulation<br />

C. Laa, C. Hirschl, J. Stipsitz, Austrian Aerospace<br />

GmbH.<br />

A new k<strong>in</strong>d <strong>of</strong> calorimeter h<strong>as</strong> been developed to obta<strong>in</strong> specific<br />

material parameters needed for the analysis <strong>of</strong> thermal vacuum<br />

<strong>in</strong>sulation. A detailed description <strong>of</strong> the me<strong>as</strong>ur<strong>in</strong>g device and the<br />

me<strong>as</strong>urement results will be given <strong>in</strong> this paper.<br />

This calorimeter facility allows to me<strong>as</strong>ure the heat flow through the<br />

<strong>in</strong>sulation under vacuum conditions <strong>in</strong> a wide temperature range from<br />

liquid nitrogen to ambient. Both boundary temperatures can be chosen<br />

with<strong>in</strong> this range. The <strong>in</strong>sulation can be characterized at high vacuum<br />

or under degraded vacuum, the latter us<strong>in</strong>g helium or nitrogen g<strong>as</strong>.<br />

The mechanisms <strong>of</strong> heat transfer have been <strong>in</strong>vestigated, namely<br />

<strong>in</strong>frared radiation between the reflective layers <strong>of</strong> the <strong>in</strong>sulation and<br />

conduction through the <strong>in</strong>terleav<strong>in</strong>g spacer material. A mathematical<br />

description <strong>of</strong> the heat flow through the <strong>in</strong>sulation h<strong>as</strong> been derived.<br />

B<strong>as</strong>ed on this the heat flow for a typical <strong>in</strong>sulation material h<strong>as</strong> been<br />

calculated by f<strong>in</strong>ite element analysis by use <strong>of</strong> the s<strong>of</strong>tware tool<br />

ANSYS. Such a transient calculation is needed to determ<strong>in</strong>e the time<br />

to reach thermal equilibrium, which is mandatory for a proper<br />

<strong>in</strong>terpretation and evaluation <strong>of</strong> the me<strong>as</strong>urement.<br />

The new <strong>in</strong>sulation me<strong>as</strong>urement results comb<strong>in</strong>ed with the proposed<br />

type <strong>of</strong> analysis can be applied to better understand the thermal<br />

behavior <strong>of</strong> any k<strong>in</strong>d <strong>of</strong> cryogenic system.<br />

C3-K-03 Robust Multilayer Insulation for Cryogenic<br />

Systems<br />

J.E. Fesmire, B.E. Scholtens, NASA KSC; S.D.<br />

Augustynowicz, Sierra Lobo, Inc..<br />

New requirements for thermal <strong>in</strong>sulation <strong>in</strong>clude robust multilayer<br />

<strong>in</strong>sulation (MLI) systems that work for a range <strong>of</strong> environments from<br />

high vacuum to no vacuum. Improved MLI systems must be simple<br />

to <strong>in</strong>stall and ma<strong>in</strong>ta<strong>in</strong> while meet<strong>in</strong>g the life-cycle cost and thermal<br />

performance objectives. Performance <strong>of</strong> MLI systems <strong>in</strong> actual use<br />

h<strong>as</strong> been shown to be much worse than the ideal c<strong>as</strong>e. Industry<br />

products us<strong>in</strong>g robust MLI can benefit from improved cost-efficiency<br />

and system safety. Spacecraft that must store cryogens dur<strong>in</strong>g all<br />

mission ph<strong>as</strong>es, <strong>in</strong>clud<strong>in</strong>g orbital/lunar service (high vacuum) and<br />

ground launch operations (no vacuum) are planned. Future cryogenic<br />

spacecraft for the s<strong>of</strong>t vacuum environment <strong>of</strong> Mars are also<br />

envisioned. Novel materials have been developed to operate <strong>as</strong><br />

excellent thermal <strong>in</strong>sulators at vacuum levels that are much less<br />

str<strong>in</strong>gent than the absolute high vacuum requirement <strong>of</strong> current MLI<br />

systems.<br />

One such robust system, Layered Composite Insulation (LCI), h<strong>as</strong><br />

been developed at the Cryogenics Test Laboratory <strong>of</strong> NASA Kennedy<br />

Space Center. The experimental test<strong>in</strong>g and development <strong>of</strong> LCI is<br />

the focus <strong>of</strong> this paper. Compared to MLI under cryogenic<br />

conditions, LCI thermal performance is shown to be six times better at<br />

s<strong>of</strong>t vacuum and similar at high vacuum. The apparent thermal<br />

conductivity (k-value) and heat flux data for LCI systems are<br />

compared with other MLI systems.<br />

C3-K-04 Synthesis on the multilayer cryogenic vacuum<br />

<strong>in</strong>sulation modell<strong>in</strong>g and me<strong>as</strong>urements<br />

M. Chorowski, J. Pol<strong>in</strong>ski, Wroclaw University <strong>of</strong><br />

Technology.<br />

A thermodynamic approach towards <strong>in</strong>sulation systems <strong>in</strong> cryogenic<br />

eng<strong>in</strong>eer<strong>in</strong>g is proposed. A mathematical model <strong>of</strong> the heat transfer<br />

through multilayer <strong>in</strong>sulation (MLI) h<strong>as</strong> been developed and<br />

experimentally verified. The model comprises both physical and<br />

eng<strong>in</strong>eer<strong>in</strong>g parameters determ<strong>in</strong><strong>in</strong>g the MLI performance and enables<br />

a complex optimisation <strong>of</strong> the <strong>in</strong>sulation system <strong>in</strong>clud<strong>in</strong>g the choice<br />

<strong>of</strong> the <strong>in</strong>sulation location <strong>in</strong> a vacuum space. The model takes <strong>in</strong>to<br />

account an <strong>in</strong>terstitial (<strong>in</strong>terlayer) g<strong>as</strong> pressure and a shield – spacer<br />

thermal contact resistance variation with the MLI layer density. The<br />

paper presents the discussion <strong>of</strong> MLI performance <strong>in</strong> different<br />

conditions and provides comparison <strong>of</strong> computation results with<br />

experimental reference data. The optimisation <strong>of</strong> the <strong>in</strong>sulation for<br />

different boundary conditions is analysed and concluded.<br />

C3-K-05 Thermal Performance Comparison <strong>of</strong> Gl<strong>as</strong>s<br />

Microsphere and Perlite Insulation Systems for Liquid<br />

Hydrogen Storage Tanks<br />

J.P. S<strong>as</strong>s, J.E. Fesmire, D.L. Morris, NASA KSC; Z.F.<br />

Nagy, S.D. Augustynowicz, Sierra Lobo, Inc.; S.J.<br />

Sojourner, ASRC Aerospace.<br />

A technology demonstration test project w<strong>as</strong> conducted by the<br />

Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to<br />

provide comparative thermal performance data for gl<strong>as</strong>s microsphere<br />

and perlite <strong>in</strong>sulation for liquid hydrogen tank applications. Two<br />

identical 1/15th scale versions <strong>of</strong> the 850,000 gallon spherical liquid<br />

hydrogen tanks at Launch Complex 39 at KSC were custom designed<br />

and built to serve <strong>as</strong> test articles for this test project. Evaporative<br />

(boil-<strong>of</strong>f) calorimeter test protocols, <strong>in</strong>clud<strong>in</strong>g liquid hydrogen and<br />

liquid nitrogen, were established to provide tank test conditions<br />

characteristic <strong>of</strong> the large storage tanks that support the Space Shuttle<br />

launch operations. This paper provides comparative thermal<br />

performance test results for gl<strong>as</strong>s microspheres and perlite for a wide<br />

range <strong>of</strong> conditions. Limited results for aerogel <strong>in</strong>sulation material<br />

are also <strong>in</strong>cluded. Aerogel-b<strong>as</strong>ed <strong>in</strong>sulation systems are targeted for<br />

non-evacuated liquid oxygen tank applications due to cost and<br />

performance parameters. Thermal performance <strong>as</strong> a function <strong>of</strong><br />

cryogenic commodity (hydrogen and nitrogen), vacuum pressure,<br />

<strong>in</strong>sulation fill level, tank liquid level, and thermal cycles will be<br />

presented.<br />

Fund<strong>in</strong>g w<strong>as</strong> provided by the NASA Space Operations Mission<br />

Directorate under the Internal Research and Development project<br />

New Materials and Technologies for Cost-Efficient Storage and<br />

Transfer <strong>of</strong> Cryogens.<br />

Page 43 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-K-06 Cost-Efficient Storage <strong>of</strong> Cryogens<br />

J.E. Fesmire, J.P. S<strong>as</strong>s, D.L. Morris, NASA KSC; Z.F.<br />

Nagy, S.D. Augustynowicz, Sierra Lobo, Inc.; S.J.<br />

Sojourner, ASRC Aerospace.<br />

NASA’s critical cryogenic <strong>in</strong>fr<strong>as</strong>tructure that supports launch vehicle<br />

operations and propulsion test<strong>in</strong>g is reach<strong>in</strong>g an age where major<br />

refurbishment will soon be required. A key element <strong>of</strong> this<br />

<strong>in</strong>fr<strong>as</strong>tructure is the <strong>in</strong>sulation <strong>in</strong> large double-walled cryogenic<br />

storage tanks, for which perlite h<strong>as</strong> been the <strong>in</strong>sulation material <strong>of</strong><br />

choice for decades. New materials are now available that can provide<br />

improved thermal and mechanical performance. An <strong>in</strong>ternal research<br />

and development project <strong>in</strong>vestigated the application <strong>of</strong> new bulk-fill<br />

<strong>in</strong>sulation materials and <strong>as</strong>sociated technology upgrades to advance<br />

the overall efficiency <strong>of</strong> cryogenic storage tanks. Technical, safety<br />

and affordability data were produced to support NASA program<br />

decisions on the benefits and risks <strong>of</strong> us<strong>in</strong>g the alternative <strong>in</strong>sulation<br />

materials, <strong>in</strong>clud<strong>in</strong>g gl<strong>as</strong>s microspheres and aerogel beads. Work w<strong>as</strong><br />

divided <strong>in</strong>to three are<strong>as</strong>: material test<strong>in</strong>g (thermal conductivity and<br />

physical characterization), tank demonstration test<strong>in</strong>g (liquid nitrogen<br />

and liquid hydrogen), and system studies (thermal model<strong>in</strong>g,<br />

economic analysis, and <strong>in</strong>sulation changeout). The research work<br />

presents a more cost-effective solution for large-scale cryogenic<br />

storage worldwide, new cryogenic test equipment and methods, and a<br />

pathway for m<strong>as</strong>s-efficient storage and transfer <strong>of</strong> cryogens on the<br />

Moon and Mars.<br />

Fund<strong>in</strong>g w<strong>as</strong> provided by the NASA Space Operations Mission<br />

Directorate under the Internal Research and Development project<br />

New Materials and Technologies for Cost-Efficient Storage and<br />

Transfer <strong>of</strong> Cryogens.<br />

C3-L Accelerator Cryogenics<br />

C3-L-01 Cooldown <strong>of</strong> the first sector <strong>of</strong> the Large Hadron<br />

Collider: comparison between mathematical model and<br />

me<strong>as</strong>urements<br />

L. Liu, Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences; G. Riddone, L.<br />

Tavian, CERN.<br />

The first LHC sector (3.3-km long) will be cooled down for the first<br />

time from room temperature to 1.8 K at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the year<br />

20<strong>07</strong>. For this cool-down, the m<strong>as</strong>s-flow distribution <strong>of</strong> each cell h<strong>as</strong><br />

been optimized us<strong>in</strong>g a mathematical model developed to establish<br />

reference set-po<strong>in</strong>ts. In this paper, the me<strong>as</strong>ured evolution <strong>of</strong><br />

temperatures, pressures, m<strong>as</strong>s-flow rates <strong>of</strong> helium <strong>in</strong> each cell <strong>of</strong> the<br />

mach<strong>in</strong>e <strong>as</strong> well <strong>as</strong> <strong>in</strong> the cryogenic distribution l<strong>in</strong>e will be presented<br />

and compared with the simulation results obta<strong>in</strong>ed from the previous<br />

mathematical model. Possible discrepancies between me<strong>as</strong>urements<br />

and calculation will be also analyzed for improv<strong>in</strong>g the mathematical<br />

model.<br />

C3-L-02 Commission<strong>in</strong>g the cryogenic system <strong>of</strong> the first<br />

LHC sectors<br />

F. Millet, S. Claudet, G. Ferl<strong>in</strong>, P. Gomes, S. Junker,<br />

G. Riddone, M. Soubiran, L. Tavian, B. Vullierme, U.<br />

Wagner, CERN; L. Ronayette, L. Serio, CNRS.<br />

The LHC mach<strong>in</strong>e, composed <strong>of</strong> eight sectors with superconduct<strong>in</strong>g<br />

magnets and cavities requires a complex cryogenic system provid<strong>in</strong>g<br />

high cool<strong>in</strong>g capacities (equivalent to 18 kW at 4.5 K and 2.4 kW at<br />

1.8 K per sector produced <strong>in</strong> large cold boxes and distributed via 3.3-<br />

km cryogenic transfer l<strong>in</strong>es). After <strong>in</strong>dividual reception tests <strong>of</strong> the<br />

cryogenic subsystems (cryogen storages, refrigerators, cryogenic<br />

transfer l<strong>in</strong>es and distribution boxes) performed s<strong>in</strong>ce 2000, the<br />

commission<strong>in</strong>g <strong>of</strong> the cryogenic system <strong>of</strong> the first LHC sectors is<br />

under way s<strong>in</strong>ce November 2006.<br />

After a brief description <strong>of</strong> the LHC cryogenic system and its<br />

specificities, the commission<strong>in</strong>g will be reported detail<strong>in</strong>g the<br />

preparation ph<strong>as</strong>e (pressure and leak tests, condition<strong>in</strong>g and flush<strong>in</strong>g),<br />

the cool-down or warm-up sequences <strong>in</strong>clud<strong>in</strong>g the handl<strong>in</strong>g <strong>of</strong><br />

cryogenic fluids and f<strong>in</strong>ally the power<strong>in</strong>g ph<strong>as</strong>e <strong>of</strong> magnets and<br />

cavities. Prelim<strong>in</strong>ary conclusions <strong>of</strong> the commission<strong>in</strong>g <strong>of</strong> the first<br />

LHC sectors will be drawn with the review <strong>of</strong> the critical po<strong>in</strong>ts<br />

solved or still pend<strong>in</strong>g. F<strong>in</strong>ally this paper will report on the first<br />

operation experience <strong>of</strong> the LHC cryogenic system <strong>in</strong> perspective <strong>of</strong><br />

the commission<strong>in</strong>g <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g LHC sectors and the beam<br />

<strong>in</strong>jection test.<br />

C3-L-03 Validation and Performance <strong>of</strong> the LHC<br />

Cryogenic System Through Commission<strong>in</strong>g <strong>of</strong> the First<br />

Sectors<br />

L. Serio, CERN.<br />

The cryogenic system for the Large Hadron Collider accelerator is<br />

presently <strong>in</strong> its f<strong>in</strong>al ph<strong>as</strong>e <strong>of</strong> commission<strong>in</strong>g at nom<strong>in</strong>al operat<strong>in</strong>g<br />

conditions. The refrigeration capacity for the LHC is produced us<strong>in</strong>g<br />

eight large cryogenic plants and eight 1.8 K refrigeration units<br />

<strong>in</strong>stalled on five technical sites. Mach<strong>in</strong>e cryogenic equipments are<br />

<strong>in</strong>stalled <strong>in</strong> a 26.7 km circumference r<strong>in</strong>g deep underground tunnel<br />

and are ma<strong>in</strong>ta<strong>in</strong>ed at their nom<strong>in</strong>al operat<strong>in</strong>g conditions via a<br />

distribution system consist<strong>in</strong>g <strong>of</strong> transfer l<strong>in</strong>es, cold <strong>in</strong>terconnection<br />

boxes at each technical site and a cryogenic distribution l<strong>in</strong>e.<br />

The functional analysis <strong>of</strong> the whole system dur<strong>in</strong>g all operat<strong>in</strong>g<br />

conditions w<strong>as</strong> established and validated dur<strong>in</strong>g the first sectors tests<br />

<strong>in</strong> order to maximize the system availability and m<strong>in</strong>imize the<br />

operation cost. The analysis, operat<strong>in</strong>g modes, ma<strong>in</strong> failure scenarios,<br />

results and performances <strong>of</strong> the cryogenic system are presented.<br />

C3-L-04 Thermal test <strong>of</strong> the cryogenic distribution l<strong>in</strong>e <strong>of</strong><br />

the first complete sector <strong>of</strong> the Large Hadron Collider<br />

K. Brodz<strong>in</strong>ski, S. Claudet, J. Fydrych, F. Millet, G.<br />

Riddone, L. Serio, M. Strychalski, L. Tavian, CERN;<br />

M. Chorowski, Wroclaw University <strong>of</strong> Technology.<br />

The first <strong>of</strong> the eight sectors <strong>of</strong> the Large Hadron Collider (LHC) h<strong>as</strong><br />

been completely <strong>in</strong>stalled <strong>in</strong> the underground tunnel and connected to<br />

its cryogenic distribution l<strong>in</strong>e (QRL). The QRL will distribute the<br />

g<strong>as</strong>eous and supercritical helium along the 3.3-km long sector. In the<br />

so-called service modules the supercritical helium is sub-cooled and<br />

then expanded to produce saturated 1.8 K superfluid helium This<br />

helium is used <strong>as</strong> cryogenic refrigerant for the accelerator<br />

superconduct<strong>in</strong>g magnets already immersed <strong>in</strong> a superfluid helium<br />

bath at 1.9 K.<br />

One <strong>of</strong> the next milestones, after the successful thermo-mechanical<br />

validation <strong>of</strong> the QRL alone, carried out <strong>in</strong> 2005, is the hardware<br />

commission<strong>in</strong>g <strong>of</strong> first complete sector <strong>of</strong> the LHC. One <strong>of</strong> the ma<strong>in</strong><br />

issues <strong>of</strong> this commission<strong>in</strong>g is the heat <strong>in</strong>leak me<strong>as</strong>urements to the<br />

different circuits located <strong>in</strong> the QRL <strong>as</strong> well <strong>as</strong> <strong>in</strong> the LHC mach<strong>in</strong>e.<br />

The paper describes the applied heat <strong>in</strong>leak me<strong>as</strong>urement<br />

methodology, its accuracy and error estimation, <strong>as</strong> well <strong>as</strong> presents the<br />

ma<strong>in</strong> results <strong>of</strong> the me<strong>as</strong>ured heat <strong>in</strong>leaks at the different temperature<br />

levels. The me<strong>as</strong>ured heat <strong>in</strong>leaks will be also compared to the results<br />

obta<strong>in</strong>ed from the test <strong>of</strong> the QRL alone.<br />

C3-M Pulse Tube Theory and Models<br />

C3-M-01 Performance Limits <strong>of</strong> 3He <strong>in</strong> Pulse Tube<br />

Cryocoolers<br />

P. Kittel, Consultant.<br />

The enthalpy, entropy, and exergy flows <strong>of</strong> the real g<strong>as</strong> effects <strong>of</strong> 4He<br />

<strong>in</strong> ideal pulse tube cryocoolers have been described previously.<br />

Huang, et. al, have recently developed a computer program for the<br />

thermophysical properties <strong>of</strong> 3He. This paper uses this model to<br />

describe how the thermodynamic flows are affected by real g<strong>as</strong><br />

phenomena <strong>of</strong> 3He <strong>in</strong> ideal pulse tube cryocoolers.<br />

Frequently such descriptions take an energy-centric view,<br />

concentrat<strong>in</strong>g on the first law <strong>of</strong> thermodynamics, the conservation <strong>of</strong><br />

energy. This approach can result <strong>in</strong> a complex description <strong>of</strong> the<br />

cooler <strong>in</strong> terms <strong>of</strong> energy and enthalpy flows.<br />

An alternative is to take an entropy-centric approach. Closely related<br />

to this is the exergy-centric approach. These descriptions concentrate<br />

on the second law <strong>of</strong> thermodynamics, the generation <strong>of</strong> entropy or<br />

the destruction <strong>of</strong> exergy.<br />

Both the energy-centric and exergy/entropy-centric approaches make<br />

use <strong>of</strong> both the laws <strong>of</strong> thermodynamics and both approaches give<br />

equivalent descriptions <strong>of</strong> a cryocooler. However, the latter approach<br />

can be more useful <strong>as</strong> it can yield a simpler description, one that<br />

emph<strong>as</strong>izes loss mechanisms.<br />

This paper applies the second law approach to pulse tube cryocoolers.<br />

The non-ideal g<strong>as</strong> effects <strong>of</strong> 3He <strong>in</strong> Pulse Tube cryocoolers are<br />

discussed and compared to similar effects from 4He.<br />

This work w<strong>as</strong> funded through University Affiliated Research Center<br />

(UARC) Subcontract P0228861. The UARC is managed by the<br />

University <strong>of</strong> California, Santa Cruz under NASA Ames Research<br />

Center Contract NAS2-03144.<br />

Page 44 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-M-02 Design for a M<strong>in</strong>iature Pulse Tube Cryocooler<br />

Operat<strong>in</strong>g at 150Hz<br />

Z. Gan, NIST; Cryogenics Lab., Zheijiang Univ.; R.<br />

Radebaugh, M.A. Lewis, P.E. Bradley, NIST; A.<br />

Veprik, NIST; Ricor, Cryogenic and Vacuum Systems.<br />

Recent research shows that a pulse tube cryocooler successfully<br />

operat<strong>in</strong>g at 120Hz achieved 50K with high efficiency at 80K. That<br />

shows cryocoolers can operate at very high frequency and not be<br />

limited to about 60Hz. There are many benefits <strong>of</strong> high frequency<br />

operation, such <strong>as</strong> f<strong>as</strong>t cooldown, less temperature oscillation at the<br />

cold head and small size. But, simply <strong>in</strong>cre<strong>as</strong><strong>in</strong>g the operat<strong>in</strong>g<br />

frequency leads to large losses <strong>in</strong> the regenerator. B<strong>as</strong>ed on the<br />

numerical calculations with REGEN 3.2 developed by NIST, it shows<br />

efficient regenerator operation at high frequencies is possible only<br />

with high charg<strong>in</strong>g pressure above 2.5MPa and with very small<br />

hydraulic diameters and lengths. For commercially available<br />

compressors, we have designed a pulse tube cryocooler <strong>as</strong> small <strong>as</strong><br />

possible while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g adiabatic conditions <strong>in</strong> the pulse tube. The<br />

length¡ä<strong>in</strong>ner diameter <strong>of</strong> pulse tube and regenerator are<br />

27mm¡ä1.96mm and 27mm¡ä4.39mm respectively. This paper<br />

presents a design for pulse tube cryocooler operat<strong>in</strong>g at 80K with a<br />

charg<strong>in</strong>g pressure <strong>of</strong> 5MPa at 150 Hz with the pressure ratio at the<br />

cold end <strong>of</strong> 1.30.<br />

C3-M-03 Model<strong>in</strong>g and Experiments on F<strong>as</strong>t Cooldown<br />

<strong>of</strong> a 120 Hz Pulse Tube Cryocooler<br />

S. Vanapalli, H.J.M. terBrake, MESA+ Institute <strong>of</strong><br />

Nanotechnology, Univeristy <strong>of</strong> Twente; M. Lewis, R.<br />

Radebaugh, NIST, Boulder, CO, 80305; G. Zhihua,<br />

3Cryogenics Lab, Zheijiang University, Hangzhou &<br />

NIST, Boulder, CO 80305.<br />

The high frequency operation <strong>of</strong> a pulse tube cryocooler leads to<br />

reduced regenerator volume, which results <strong>in</strong> a reduced heat capacity<br />

and a f<strong>as</strong>ter cooldown time. A pulse tube cryocooler operat<strong>in</strong>g at a<br />

frequency <strong>of</strong> 120 Hz and a fill<strong>in</strong>g pressure <strong>of</strong> 3.5 MPa achieved a noload<br />

temperature <strong>of</strong> 50 K and a cooldown time <strong>of</strong> 11 m<strong>in</strong>utes. The<br />

cool<strong>in</strong>g power at 80 K is about 3.35 W with a cooldown time <strong>of</strong> about<br />

5.5 m<strong>in</strong>utes. The back ground losses were about 0.9 W. This very f<strong>as</strong>t<br />

cooldown is very attractive to many applications. In this study we<br />

present an analytical model relat<strong>in</strong>g various parameters such <strong>as</strong><br />

regenerator volume, frequency <strong>of</strong> operation, thermal load and<br />

cooldown time. A comparison is also done between the analytical<br />

model, REGEN3.2 numerical calculations and experiments.<br />

STW-Dutch Technology Foundation for the f<strong>in</strong>ancial support<br />

C3-M-04 Approximate Design Method for S<strong>in</strong>gle Stage<br />

Pulse Tube Refrigerators<br />

John Pfotenhauer, University <strong>of</strong> Wiscons<strong>in</strong> -<br />

Madison.<br />

An approximate method is presented for the design <strong>of</strong> a s<strong>in</strong>gle stage,<br />

Stirl<strong>in</strong>g-type pulse tube refrigerator. The design method beg<strong>in</strong>s from<br />

a def<strong>in</strong>ed cool<strong>in</strong>g power, operat<strong>in</strong>g temperature, average and dynamic<br />

pressure, and frequency. Us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> ph<strong>as</strong>or analysis,<br />

approximate correlations derived from extensive use <strong>of</strong> REGEN3.2, a<br />

few ‘rules <strong>of</strong> thumb,’ and available models for <strong>in</strong>ertance tubes, a<br />

process is presented to def<strong>in</strong>e appropriate geometries for the<br />

regenerator, pulse tube and <strong>in</strong>ertance tube components. In addition,<br />

specifications for the acoustic power and ph<strong>as</strong>e between the pressure<br />

and flow required from the compressor are def<strong>in</strong>ed. The process<br />

enables an appreciation <strong>of</strong> the primary physical parameters operat<strong>in</strong>g<br />

with<strong>in</strong> the pulse tube refrigerator, but relies on approximate values for<br />

the comb<strong>in</strong>ed loss mechanisms. The def<strong>in</strong>ed geometries can provide<br />

both a useful start<strong>in</strong>g po<strong>in</strong>t, and a sanity check, for more sophisticated<br />

design methodologies. A comparison <strong>of</strong> the model results with the<br />

performance <strong>of</strong> exist<strong>in</strong>g pulse tube refrigerators is <strong>in</strong>cluded.<br />

C3-M-05 Two-dimensional model analysis for the pulse<br />

tube <strong>of</strong> rotat<strong>in</strong>g pulse tube refrigerator<br />

J. Choi, S. Jung, KAIST.<br />

The objective <strong>of</strong> this paper is to <strong>in</strong>vestigate the rotational effect on the<br />

Stirl<strong>in</strong>g type pulse tube refrigerator which is to be used <strong>as</strong> an on-board<br />

cool<strong>in</strong>g system for superconduct<strong>in</strong>g rotor. The two-dimensional<br />

analysis model is applied to study thermohydraulic behavior <strong>of</strong><br />

oscillat<strong>in</strong>g flow <strong>in</strong> the rotat<strong>in</strong>g pulse tube.<br />

Two dimensional differential equations for the viscous compressible<br />

flow <strong>in</strong> a pulse tube are solved for limited c<strong>as</strong>e <strong>of</strong> very small<br />

expansion parameter. In the first order analysis, the enthalpy flow<br />

which is directly related to the refrigeration power is calculated. The<br />

result <strong>of</strong> the first order analysis shows that the net enthalpy flow <strong>in</strong> the<br />

pulse tube slightly decre<strong>as</strong>es with the rotation. In the second order<br />

analysis, the steady components <strong>of</strong> the second order variables are<br />

calculated on the b<strong>as</strong>es <strong>of</strong> the first order solutions and the effects <strong>of</strong><br />

the rotation on the enthalpy flow loss due to the m<strong>as</strong>s stream<strong>in</strong>g are<br />

evaluated. The slow rotation <strong>of</strong> the pulse tube reduces the secondary<br />

steady flow, which decre<strong>as</strong>es the stream<strong>in</strong>g-driven enthalpy flow loss.<br />

As the rotat<strong>in</strong>g speed however, surp<strong>as</strong>ses a certa<strong>in</strong> value, the<br />

secondary steady flow is generated <strong>in</strong> the opposite direction, which<br />

results <strong>in</strong> the <strong>in</strong>cre<strong>as</strong>e <strong>of</strong> the steady enthalpy flow loss aga<strong>in</strong>. In this<br />

paper, we also performed numerical simulation us<strong>in</strong>g a f<strong>in</strong>ite-volume<br />

method and compared the numerical results with the approximate<br />

solution <strong>of</strong> the differential equations.<br />

This work w<strong>as</strong> supported by a grant from Center for Applied<br />

Superconductivity Technology <strong>of</strong> the 21th Century Frontier R&D<br />

Program funded by the M<strong>in</strong>istry <strong>of</strong> Science and Technology, Republic<br />

<strong>of</strong> Korea.<br />

C3-M-<strong>07</strong> Optimal Pulse-Tube Design Us<strong>in</strong>g<br />

Computational Fluid Dynamics<br />

R.P. Taylor, G.F. Nellis, S.A. Kle<strong>in</strong>, University <strong>of</strong><br />

Wiscons<strong>in</strong>.<br />

Over the p<strong>as</strong>t few decades, the pulse-tube cryocooler h<strong>as</strong> been<br />

transformed from a curiosity to one <strong>of</strong> the most attractive systems for<br />

provid<strong>in</strong>g reliable cryogenic cool<strong>in</strong>g; it is now used <strong>in</strong> aerospace,<br />

medical and superconductor applications. This technology<br />

development h<strong>as</strong> been enabled by advances <strong>in</strong> the simulation tools<br />

that are available for regenerator, compressor, and <strong>in</strong>ertance tube<br />

design. However, a dedicated design tool for the pulse-tube<br />

component <strong>in</strong> a pulse-tube cryocooler and the <strong>as</strong>sociated flow<br />

transitions between the pulse tube and the regenerator and the pulse<br />

tube and the <strong>in</strong>ertance network h<strong>as</strong> yet to be developed.<br />

This paper describes the development <strong>of</strong> a two-dimensional,<br />

axisymmetric CFD model <strong>of</strong> the pulse-tube and its <strong>as</strong>sociated flow<br />

transitions operat<strong>in</strong>g under conditions that are consistent with a pulsetube<br />

refrigerator. The model is implemented <strong>in</strong> the commercial CFD<br />

package FLUENT. The CFD simulations calculate and del<strong>in</strong>eate the<br />

various loss mechanisms; these are reported <strong>as</strong> a percentage <strong>of</strong> the<br />

acoustic power at the cold end. A gross figure <strong>of</strong> merit (the pulse tube<br />

efficiency) is def<strong>in</strong>ed <strong>as</strong> the ratio <strong>of</strong> the useful cool<strong>in</strong>g provided to the<br />

available acoustic power. The practical uses (e.g., determ<strong>in</strong><strong>in</strong>g an<br />

optimal geometric design) and limitations (e.g., the accuracy) <strong>of</strong> the<br />

model are discussed and <strong>in</strong>itial optimization results <strong>of</strong> the CFD<br />

simulations are presented.<br />

This work w<strong>as</strong> supported by the Office <strong>of</strong> Naval Research under<br />

contract N00014-06-1-00<strong>07</strong>.<br />

Page 45 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-N Aerospace Cryogen Storage<br />

C3-N-01 Cryogenic Propellant Storage Analyses and<br />

Design Tool Evolved from In-Space Cryogenic Propellant<br />

Depot Project<br />

D.W. Plachta, NASA GRC; J. Feller, NASA ARC; R.<br />

Christie, E. Carlberg, ASRC Aerospace.<br />

Lunar missions under consideration would benefit with <strong>in</strong>corporation<br />

<strong>of</strong> high specific impulse propellants, such <strong>as</strong> LH2 and LO2, <strong>in</strong> the<br />

propulsion systems provided <strong>as</strong>sociated cryogenic propellant storage<br />

boil-<strong>of</strong>f m<strong>as</strong>s were m<strong>in</strong>imized. Concepts to do so were considered<br />

under the In-Space Cryogenic Propellant Depot Project. Specific to<br />

that w<strong>as</strong> an <strong>in</strong>vestigation <strong>of</strong> cryocooler <strong>in</strong>tegration concepts for<br />

relatively large depot sized propellant tanks. One concept proved<br />

most promis<strong>in</strong>g—it moves heat efficiently to the cryocooler over long<br />

distances via a compressed helium loop. The analyses and designs for<br />

this were <strong>in</strong>corporated <strong>in</strong>to a Cryogenic Analysis Tool. That design<br />

approach is expla<strong>in</strong>ed and shown here<strong>in</strong>, <strong>as</strong> are the analytical trends<br />

that make it so promis<strong>in</strong>g.<br />

C3-N-02 Optimized heat <strong>in</strong>terception for cryogen tank<br />

support structure<br />

E.R. Canavan, F.K. Miller, NASA – Goddard Space<br />

Flight Center.<br />

We consider means for us<strong>in</strong>g the cool<strong>in</strong>g available <strong>in</strong> boil-<strong>of</strong>f g<strong>as</strong> to<br />

<strong>in</strong>tercept heat conducted through the support structure <strong>of</strong> a cryogen<br />

tank. A one-dimensional model <strong>of</strong> the structure coupled to a g<strong>as</strong><br />

stream gives an analytical expression for heat leak <strong>in</strong> terms <strong>of</strong> flow<br />

rate for temperature <strong>in</strong>dependent properties and lam<strong>in</strong>ar flow. A<br />

numerical model h<strong>as</strong> been developed for heat transfer on a th<strong>in</strong><br />

cyl<strong>in</strong>drical tube with an attached vent l<strong>in</strong>e. The model is used to<br />

determ<strong>in</strong>e the vent path layout that will m<strong>in</strong>imize heat flow <strong>in</strong>to the<br />

cryogen tank. The results are useful for a number <strong>of</strong> applications, but<br />

the one <strong>of</strong> <strong>in</strong>terest <strong>in</strong> this study is the m<strong>in</strong>imization <strong>of</strong> the boil-<strong>of</strong>f <strong>in</strong><br />

large cryopropellant tanks <strong>in</strong> low Earth and low lunar orbit.<br />

C3-N-03 The Performance <strong>of</strong> G<strong>as</strong> Filled Multilayer<br />

Insulation<br />

G. L. Mills, V. Y. Kotsubo, Ball Aerospace and<br />

Technologies Corp..<br />

The NASA Exploration Program is currently plann<strong>in</strong>g to use<br />

comb<strong>in</strong>ations <strong>of</strong> liquid oxygen, methane and hydrogen for propulsion<br />

<strong>in</strong> future spacecraft for the human exploration <strong>of</strong> the Moon and Mars.<br />

This will require the efficient long term, on-orbit storage these<br />

cryogens. Multilayer <strong>in</strong>sulation (MLI) will be critical to achiev<strong>in</strong>g the<br />

required thermal performance s<strong>in</strong>ce it h<strong>as</strong> much lower heat transfer<br />

than any other <strong>in</strong>sulation when used <strong>in</strong> a vacuum. However, the size<br />

and m<strong>as</strong>s constra<strong>in</strong>ts <strong>of</strong> these propulsion systems will not allow a<br />

vacuum shell to be used to provide the vacuum dur<strong>in</strong>g ground hold<br />

and launch. An effective solution is to purge the MLI dur<strong>in</strong>g ground<br />

hold with an <strong>in</strong>ert g<strong>as</strong> which is then vented dur<strong>in</strong>g <strong>as</strong>cent and on-orbit.<br />

In this paper, we report on experimental tests and model<strong>in</strong>g that we<br />

have done on MLI used to <strong>in</strong>sulate a cryogenic tank. These <strong>in</strong>clude<br />

me<strong>as</strong>urements <strong>of</strong> the heat transfer <strong>of</strong> g<strong>as</strong> filled <strong>in</strong>sulation, evacuated<br />

<strong>in</strong>sulation and dur<strong>in</strong>g the transition <strong>in</strong> between. The water vapor<br />

pressure <strong>of</strong> the MLI and its effect on the thermal performance w<strong>as</strong><br />

also me<strong>as</strong>ured.<br />

C3-N-04 Development <strong>of</strong> Cryogenic Composite Over-<br />

Wrapped Pressure Vessels<br />

T. DeLay, NASA/MSFC; J. Patterson, HyPerComp<br />

Eng<strong>in</strong>eer<strong>in</strong>g; J. Schneider, Mississippi State<br />

University.<br />

There have been recent changes <strong>in</strong> the needs <strong>of</strong> helium pressurant<br />

tanks and <strong>in</strong> propellant tanks for new launch vehicles that have the<br />

requirement to function at cryogenic temperatures. Cryogenic<br />

propellants are needed for the upper-stage for NASA’s new ARES-1<br />

vehicle concept, which also h<strong>as</strong> the requirement for 5,000 psi<br />

pressurant tanks to be located <strong>in</strong> the liquid hydrogen tank <strong>of</strong> a<br />

LOX/LH2 common bulkhead tank. There is a similar need for<br />

cryogenic propellant tanks for the develop<strong>in</strong>g commercial launch<br />

bus<strong>in</strong>ess and for alternate fuel ventures to transport liquefied natural<br />

g<strong>as</strong> and hydrogen.<br />

In all <strong>of</strong> these c<strong>as</strong>es it is important to know how the materials perform<br />

at cryogenic temperatures <strong>in</strong> order to m<strong>in</strong>imize weight and to ensure<br />

safety and reliability. A multi-year collaborative effort h<strong>as</strong> made<br />

considerable progress <strong>in</strong> this venture. This effort <strong>in</strong>volved the<br />

simultaneous development <strong>of</strong> tank designs, test methods and material<br />

formulations. Many COPV’s have been tested at cryogenic conditions<br />

and are supported by cryogenic material tests <strong>of</strong> candidate fiber and<br />

res<strong>in</strong> systems formulated specifically for cryogenic applications. This<br />

comprehensive approach is also be<strong>in</strong>g expanded to address<strong>in</strong>g issues<br />

with impact damage tolerance and material degradation due to<br />

environmental factors.<br />

C3-N-05 Test<strong>in</strong>g the Effects <strong>of</strong> Helium Pressurant on<br />

Thermodynamic Vent System Performance with Liquid<br />

Hydrogen<br />

R. H. Flachbart, A. Hedayat, S. Nelson, S. P. Tucker,<br />

NASA - Marshall Space Flight Center; L. J. H<strong>as</strong>t<strong>in</strong>gs,<br />

Alpha Technology Inc..<br />

In support <strong>of</strong> the development <strong>of</strong> a micro-gravity pressure control<br />

capability for liquid hydrogen, test<strong>in</strong>g w<strong>as</strong> conducted at the Marshall<br />

Space Flight Center us<strong>in</strong>g the Multipurpose Hydrogen Test Bed<br />

(MHTB) to evaluate the effects <strong>of</strong> helium pressurant on the<br />

performance <strong>of</strong> a spray bar thermodynamic vent system (TVS).<br />

Fourteen days <strong>of</strong> test<strong>in</strong>g were performed <strong>in</strong> August – September 2005,<br />

with an ambient heat leak <strong>of</strong> about 70-80 watts and tank fill levels <strong>of</strong><br />

90%, 50%, and 25%. The TVS successfully controlled the tank<br />

pressure with<strong>in</strong> a +/- 3.45 kPa (+/- 0.5 psi) band with various helium<br />

concentration levels <strong>in</strong> the ullage. Relative to pressure control with an<br />

“all hydrogen” ullage, the helium presence resulted <strong>in</strong> 10 to 30 per<br />

cent longer pressure reduction durations, depend<strong>in</strong>g on the fill level,<br />

dur<strong>in</strong>g the mix<strong>in</strong>g/vent<strong>in</strong>g ph<strong>as</strong>e <strong>of</strong> the control cycle. Test<strong>in</strong>g w<strong>as</strong><br />

also conducted to evaluate thermodynamic vent<strong>in</strong>g without the mixer<br />

operat<strong>in</strong>g, first with liquid then with vapor at the recirculation l<strong>in</strong>e<br />

<strong>in</strong>let. Although ullage stratification w<strong>as</strong> present, the ullage pressure<br />

w<strong>as</strong> successfully controlled without the mixer operat<strong>in</strong>g. Thus, if<br />

vapor surrounded the pump <strong>in</strong>let <strong>in</strong> reduced gravity, the ullage<br />

pressure can still be controlled by vent<strong>in</strong>g through the TVS Joule<br />

Thomson valve and heat exchanger. It w<strong>as</strong> evident that the spray bar<br />

configuration, which extended almost the entire length <strong>of</strong> the tank,<br />

enabled significant thermal energy removal from the ullage even<br />

without the mixer operat<strong>in</strong>g.<br />

C3-N-06 Analyz<strong>in</strong>g the Use <strong>of</strong> G<strong>as</strong>eous Helium <strong>as</strong> a<br />

Pressurant with Cryogenic Propellants with<br />

Thermodynamic Vent<strong>in</strong>g System Modell<strong>in</strong>g and Test<br />

Data<br />

A. Hedayat, S.L. Nelson, R.H. Flachbart, D.J.<br />

Vermilion, S.P. Tucker, NASA-MSFC; L.J. H<strong>as</strong>t<strong>in</strong>gs,<br />

Alpha Technology, Inc..<br />

Cryogenic propellants are candidate propellants for NASA’s Lunar<br />

and Mars exploration programs. To provide adequate m<strong>as</strong>s flow to the<br />

system’s eng<strong>in</strong>es and/or to prevent feed system cavitation, g<strong>as</strong>eous<br />

helium (GHe) is frequently considered <strong>as</strong> a pressurant. Also dur<strong>in</strong>g<br />

low gravity operations, a Thermodynamic Vent<strong>in</strong>g System (TVS)<br />

concept is expected to ma<strong>in</strong>ta<strong>in</strong> tank pressure without propellant<br />

resettl<strong>in</strong>g. Therefore, a series <strong>of</strong> tests were conducted at the Marshall<br />

Space Flight Center to evaluate the effects <strong>of</strong> GHe pressurant on<br />

pressure control performance <strong>of</strong> a TVS with liquid nitrogen,<br />

hydrogen, and methane. The TVS utilized <strong>in</strong> this effort consists <strong>of</strong> a<br />

recirculation pump, Joule-Thomson (J-T) expansion valve, and a<br />

parallel flow concentric tube heat exchanger comb<strong>in</strong>ed with a<br />

longitud<strong>in</strong>al spray bar. Us<strong>in</strong>g a small amount <strong>of</strong> liquid extracted by<br />

the pump and p<strong>as</strong>s<strong>in</strong>g it though the J-T valve, then through the heat<br />

exchanger, thermal energy is periodically extracted from the bulk<br />

liquid and ullage thereby enabl<strong>in</strong>g pressure control. The test bed set<br />

up provided thermal condition<strong>in</strong>g under both vacuum and ambient<br />

environments. Transient one-dimensional analytical models <strong>of</strong> the<br />

TVS are used to predict the ullage and bulk liquid pressures and<br />

temperatures. Details <strong>of</strong> predictions and comparisons with test data<br />

will be presented <strong>in</strong> the f<strong>in</strong>al paper.<br />

Page 46 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-N-<strong>07</strong> Screen Channel Liquid Acquisition Device<br />

Test<strong>in</strong>g us<strong>in</strong>g Liquid Methane<br />

J.M. Jurns, J.D. Gaby, ASRC Aerospace Inc.; S.A.<br />

S<strong>in</strong>acore, J.B. McQuillen, NASA Glenn Research<br />

Center.<br />

Liquid acquisition devices (LADs) can be utilized with<strong>in</strong> a propellant<br />

tank <strong>in</strong> space to deliver s<strong>in</strong>gle-ph<strong>as</strong>e liquid to the eng<strong>in</strong>e <strong>in</strong> low<br />

gravity. One type <strong>of</strong> liquid acquisition device is a screened gallery<br />

whereby a f<strong>in</strong>e mesh screen acts <strong>as</strong> a "bubble filter" and prevents the<br />

g<strong>as</strong> bubbles from p<strong>as</strong>s<strong>in</strong>g through until a crucial pressure differential<br />

condition across the screen, called the bubble po<strong>in</strong>t, is reached. This<br />

paper presents data for LAD bubble po<strong>in</strong>t data <strong>in</strong> liquid methane<br />

(LCH4) for sta<strong>in</strong>less steel Dutch Twill Screens with mesh sizes <strong>of</strong><br />

325x2300 and 200x1400. Data is presented for both saturated and<br />

sub-cooled LCH4, and is compared with predicted values. These tests<br />

represent the first known non-proprietary effort to collect LAD data <strong>in</strong><br />

LCH4.<br />

C3-N-08 Numerical Model<strong>in</strong>g <strong>of</strong> Propellant Boil-Off <strong>in</strong> a<br />

Cryogenic Storage Tank<br />

A.K. Majumdar, NASA MSFC; T.E. Steadman, J.L.<br />

Maroney, Sverdrup; J.P. S<strong>as</strong>s, J.E. Fesmire, NASA<br />

KSC.<br />

A numerical model to predict boil-<strong>of</strong>f <strong>of</strong> stored propellant <strong>in</strong> large<br />

spherical cryogenic tanks h<strong>as</strong> been developed. Accurate prediction <strong>of</strong><br />

tank boil-<strong>of</strong>f rates for different thermal <strong>in</strong>sulation systems w<strong>as</strong> the<br />

goal <strong>of</strong> this collaboration effort. The Generalized Fluid System<br />

Simulation Program, <strong>in</strong>tegrat<strong>in</strong>g flow analysis and conjugate heat<br />

transfer for solv<strong>in</strong>g complex fluid system problems, w<strong>as</strong> used to<br />

create the model. Calculation <strong>of</strong> tank boil-<strong>of</strong>f rate requires<br />

simultaneous simulation <strong>of</strong> heat transfer processes among liquid<br />

propellant, vapor ullage space, and tank structure. The reference tank<br />

for the boil-<strong>of</strong>f model w<strong>as</strong> the 850,000 gallon liquid hydrogen tank at<br />

Launch Complex 39B (LC-39B) at Kennedy Space Center, which is<br />

under study for future <strong>in</strong>fr<strong>as</strong>tructure improvements to support the<br />

Constellation program. The methodology employed <strong>in</strong> the numerical<br />

model w<strong>as</strong> validated us<strong>in</strong>g a sub-scale model and tank. Experimental<br />

test data from a 1/15th scale version <strong>of</strong> the LC-39B tank us<strong>in</strong>g both<br />

liquid hydrogen and liquid nitrogen were used to anchor the analytical<br />

predictions <strong>of</strong> the sub-scale model. Favorable correlations between<br />

sub-scale model and experimental test data have provided confidence<br />

<strong>in</strong> full-scale tank boil-<strong>of</strong>f predictions. These methods are now be<strong>in</strong>g<br />

used <strong>in</strong> the prelim<strong>in</strong>ary design for other c<strong>as</strong>es <strong>in</strong>clud<strong>in</strong>g future launch<br />

vehicles.<br />

Fund<strong>in</strong>g w<strong>as</strong> provided by the NASA Space Operations Mission<br />

Directorate under the Internal Research and Development project<br />

New Materials and Technologies for Cost-Efficient Storage and<br />

Transfer <strong>of</strong> Cryogens.<br />

C3-O Aerospace Mission Concepts<br />

C3-O-01 ST9 Large Space Telescope: A Proposed Mission<br />

to Validate the New Paradigm <strong>in</strong> Low Temperature<br />

Cool<strong>in</strong>g<br />

M. DiPirro, D. Muheim, J. Tuttle, K. Walyus,<br />

NASA/GSFC; P. Cleveland, Energy Solutions<br />

International; D. Durand, NGST; A. Klav<strong>in</strong>s, D.<br />

Tennerelli, J. Tolomeo, LMMSC; C. Pa<strong>in</strong>e,<br />

NASA/JPL.<br />

NASA’s New Millennium Program h<strong>as</strong> sponsored 5 studies for space<br />

missions to advance space science related technologies. One <strong>of</strong> these<br />

studies, the ST9-Large Space Telescope (LST) will demonstrate<br />

cool<strong>in</strong>g to 4 to 6 K by p<strong>as</strong>sive radiation and an active cooler rather<br />

than the previous method <strong>of</strong> stored cryogens. Stored cryogen systems<br />

are not practical for the larger and longer duration missions <strong>of</strong> the<br />

future. P<strong>as</strong>sive radiation is accomplished through the use <strong>of</strong> a<br />

deployable, multilayer sunshield which h<strong>as</strong> the property <strong>of</strong> reflect<strong>in</strong>g<br />

radiation perpendicular to it while emitt<strong>in</strong>g radiation parallel to the<br />

layers.<br />

Such a shield is already under development for the James Webb Space<br />

Telescope (JWST). The JWST shield effectively attenuates solar and<br />

Earth radiation and thermal radiation and conduction from the<br />

spacecraft by three orders <strong>of</strong> magnitude, produc<strong>in</strong>g an <strong>in</strong>ner layer<br />

temperature <strong>of</strong> 90 K. LST will take this technology several steps<br />

further. By <strong>in</strong>corporat<strong>in</strong>g two stages <strong>of</strong> active cool<strong>in</strong>g the LST shield<br />

will attenuate the warm surround<strong>in</strong>gs by 6 orders <strong>of</strong> magnitude<br />

produc<strong>in</strong>g a shield with an <strong>in</strong>ner layer at 20 K and a cold b<strong>as</strong>e plate<br />

for a future telescope to below 6 K. This talk will summarize the<br />

material properties tests, thermal and structural analyses, component<br />

level test beds, plans for ground verification through the use <strong>of</strong><br />

subscale thermal tests, and mission operations planned for ST9 LST.<br />

C3-O-02 An Analysis <strong>of</strong> the Cryogenic Environments for<br />

the Xeus Mission<br />

J.S. Reed, P. D’Arrigo , M-C. Perk<strong>in</strong>son , K. Geelen ,<br />

EADS Astrium Ltd.; I. Hepburn , C. Brockley-Blatt ,<br />

Mullard Space Science Laboratory; T. Bradshaw , L.<br />

Duband , Rutherford Appleton Laboratory.<br />

The X-ray Evolv<strong>in</strong>g Universe Spectroscopy (XEUS), mission is a<br />

candidate for the ESA Cosmic Vision 2015-2025 plan, follow<strong>in</strong>g<br />

XMM-Newton and Chandra. The presently proposed system consists<br />

<strong>of</strong> two Mirror and Detector spacecraft, fly<strong>in</strong>g 35m apart at L2. The<br />

Detector Spacecraft model payload consists <strong>of</strong> a p<strong>as</strong>sively cooled<br />

wide-field camera at 200K, and one <strong>of</strong> two narrow-field <strong>in</strong>struments<br />

at 300mK and 50mK. As the mission lifetime is 5 years, with a 10<br />

year goal, long-life closed cycle cool<strong>in</strong>g systems will be required.<br />

Hence, XEUS will be one <strong>of</strong> the most complex observatories ever<br />

flown, with state-<strong>of</strong>-the-art cryogenic systems. Under contract to<br />

ESA, Astrium h<strong>as</strong> worked with MSSL, RAL, and CEA-SBT, to<br />

propose a payload design capable <strong>of</strong> meet<strong>in</strong>g the demand<strong>in</strong>g<br />

requirements. Our b<strong>as</strong>el<strong>in</strong>e consists <strong>of</strong> a double stage ADR at 50mK,<br />

and a helium sorption cooler at 300mK. Each system will be precooled<br />

by a closed cycle J-T system, similar to Planck, at 2.5K or 4K,<br />

which itself will be pre-cooled by a two-stage Stirl<strong>in</strong>g cycle cooler, at<br />

15K or 18K. This paper describes the mission, and discusses the<br />

cryogenic architecture.<br />

C3-O-03 USAF Cryogenic Thermal Management System<br />

Needs<br />

T. Roberts, F. Roush, Air Force Research<br />

Laboratory.<br />

The Air Force Research Laboratory (AFRL) Space Vehicles<br />

Directorate actively pursues cryogenic refrigeration system and<br />

system <strong>in</strong>tegration technology research to support the research needs<br />

<strong>of</strong> the Air Force, Missile Defense Agency, and Department <strong>of</strong><br />

Defense. This effort not only takes <strong>in</strong>to consideration the specific<br />

cryogenic support requirements <strong>of</strong> payload components such <strong>as</strong><br />

<strong>in</strong>frared sensors, but also seeks to m<strong>in</strong>imize the system impact on<br />

payload and spacecraft operations <strong>in</strong> terms <strong>of</strong> power and m<strong>as</strong>s budgets<br />

or jitter produc<strong>in</strong>g vibration. These general thermal management<br />

needs <strong>of</strong> missions support<strong>in</strong>g Air Force space operations are discussed<br />

with respect to the technology portfolio funded by AFRL <strong>in</strong> order to<br />

meet these future requirements. Specific strengths and weaknesses <strong>of</strong><br />

the current state <strong>of</strong> technology are also compared to these needs.<br />

Page 47 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-O-04 Cryogenic System Challenges for Lightweight<br />

Superconduct<strong>in</strong>g Magnet and Power Systems<br />

C.E. Oberly, G.L. Rhoads, Air Force Research<br />

Laboratory.<br />

Significant sav<strong>in</strong>gs <strong>in</strong> weight and volume for operational military<br />

systems can be ga<strong>in</strong>ed by employ<strong>in</strong>g high temperature<br />

superconduct<strong>in</strong>g (HTS) magnets for electrical power equipment<br />

operat<strong>in</strong>g at both very high and power frequency. The demands on a<br />

cryogenic system are significantly reduced <strong>as</strong> temperature rises from<br />

4.2K to 77K, but military operational challenges rema<strong>in</strong>. While the<br />

weight, volume and electrical power requirements for HTS systems<br />

can be reduced by orders <strong>of</strong> magnitude at 77K, the cryogenic system<br />

rema<strong>in</strong>s <strong>as</strong> a deterrent to quick implementation <strong>of</strong> HTS technology.<br />

Military read<strong>in</strong>ess and field operations do not permit optimal,<br />

cont<strong>in</strong>uously cooled, cryogenic systems. Extreme ambient<br />

temperatures drive commercial refrigerators out <strong>of</strong> their performance<br />

envelope. Rapid cooldown requirements <strong>in</strong> the range <strong>of</strong> 1 to 4 hours<br />

are difficult to meet with a lightweight refrigerator coupled to a<br />

sizeable HTS cold m<strong>as</strong>s. Liquid heat transport systems are penalized<br />

by makeup g<strong>as</strong> <strong>in</strong> remote field operations where many cooldowns<br />

from ambient are required. Multiple rapid cooldowns creat<br />

thermomechanical stresses on the new HTS magnet and power<br />

systems that have not yet been fully explored. Several examples <strong>of</strong><br />

HTS military magnet and power systems are explored and compared<br />

to provide <strong>in</strong>sight <strong>in</strong>to the need for future cryogenic systems for<br />

challeng<strong>in</strong>g military systems. New refrigeration approaches are<br />

discussed to meet the future demands <strong>of</strong> military systems.<br />

This work h<strong>as</strong> been supported by the Air Force Research Laboratory<br />

and the Air Force Office <strong>of</strong> Aerospace Research.<br />

C3-P Novel Cryostats<br />

C3-P-01 Subcooled Liquid Oxygen Cryostat for<br />

Magneto-Archimedes Particle Separation by Density*<br />

D.K. Hilton, D. Celik, S.W. Van Sciver, NHMFL/FSU.<br />

An <strong>in</strong>strument for the separation <strong>of</strong> particles by density (sort<strong>in</strong>g) is<br />

be<strong>in</strong>g developed that uses the magneto-archimedes effect <strong>in</strong> liquid<br />

oxygen. With liquid oxygen strongly paramagnetic, the magnetoarchimedes<br />

effect is an extension <strong>of</strong> diamagnetic levitation. The<br />

<strong>in</strong>strument will be able to separate ensembles <strong>of</strong> particles from 100<br />

µm to 100 nm <strong>in</strong> size, and vertically map or mechanically deliver the<br />

separated particles. The <strong>in</strong>strument requires a column <strong>of</strong> liquid<br />

oxygen that is nearly isothermal, free <strong>of</strong> thermal convection,<br />

subcooled to prevent nucleate boil<strong>in</strong>g, and supported aga<strong>in</strong>st the<br />

strong magnetic field used. Thus, the unique cryostat design that<br />

meets these requirements is described. It consists <strong>in</strong> part <strong>of</strong> a column<br />

<strong>of</strong> liquid nitrogen below for cool<strong>in</strong>g the liquid oxygen, with the liquid<br />

oxygen pressurized with helium g<strong>as</strong> to prevent nucleate boil<strong>in</strong>g.<br />

*Research supported by IHRP Grant No. 5057.<br />

C3-P-02 Novel Integration <strong>of</strong> a 6T Cryogen-Free<br />

Magneto-Optical System with a Variable Temperature<br />

Sample Us<strong>in</strong>g a S<strong>in</strong>gle Cryocooler<br />

A.B. Berryhill, D.M. C<strong>of</strong>fey, Cryomagnetics, Inc..<br />

Cryomagnetics` new “C-Mag Optical” Magneto-Optic Property<br />

Me<strong>as</strong>urement System is a versatile materials and device<br />

characterization system that allows the researcher to simultaneously<br />

control the applied magnetic field and temperature <strong>of</strong> a sample while<br />

study<strong>in</strong>g its electrical and optic properties. The system <strong>in</strong>tegrates a<br />

totally liquid cryogen-free 6T superconduct<strong>in</strong>g split-pair magnet with<br />

a variable temperature sample space, both cooled us<strong>in</strong>g a s<strong>in</strong>gle 4.2K<br />

pulse tube refrigerator. To avoid warm<strong>in</strong>g the magnet when operat<strong>in</strong>g<br />

a sample at elevated temperatures, a novel heat switch w<strong>as</strong> developed.<br />

The heat switch allows the sample temperature to be varied from<br />


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C3-Q High Frequency Pulse Tube Coolers<br />

C3-Q-01 Numerical simulation <strong>of</strong> a three-stage highfrequency<br />

Stirl<strong>in</strong>g-type pulse tube cryocooler for 4K<br />

operation<br />

J.Y. Hu, Graduate University <strong>of</strong> Ch<strong>in</strong>ese Academy <strong>of</strong><br />

Sciences; Z.W. Wu, E.C. Luo, W. Dai, Technical<br />

Institute <strong>of</strong> Physics and Chemistry, CAS.<br />

The thermoacoustically driven two-stage pulse tube cooler recently<br />

h<strong>as</strong> already reached a lowest temperature <strong>of</strong> about 18K <strong>in</strong> our lab. In<br />

order to further decre<strong>as</strong>e the cool<strong>in</strong>g temperature to 4K, we are<br />

develop<strong>in</strong>g a three-stage Stirl<strong>in</strong>g-type pulse tube cooler work<strong>in</strong>g at<br />

about 25Hz. Thermoacoustic theory is a powerful tool for<br />

understand<strong>in</strong>g the work<strong>in</strong>g mechanism <strong>of</strong> many regenerative<br />

cryocoolers. Thus, this theory will be employed to simulate the threestage<br />

pulse tube cryocooler <strong>in</strong> this paper. As we know, <strong>in</strong> high<br />

frequency pulse tube cryocoolers, the ma<strong>in</strong> losses come from their<br />

regenerators. So the structure parameters and thermal properties <strong>of</strong> the<br />

regenerators must be carefully designed and considered. Some special<br />

materials and flow structures for the regenerators with lower<br />

resistance and high heat capacity were tested <strong>in</strong> this cooler<br />

numerically. Besides this, the dimensions <strong>of</strong> the regenerators and the<br />

pulse tubes were also optimized to get proper ph<strong>as</strong>e relationship<br />

between the velocity and pressure waves. Accord<strong>in</strong>g to our simulation<br />

result, when the <strong>in</strong>put pressure ratio is about 1.25, the first and second<br />

stage cold tips can respectively work at about 65K and 20K, and a<br />

lowest cool<strong>in</strong>g temperature <strong>of</strong> the third stage may reach about 4K.<br />

This work w<strong>as</strong> supported by the Natural Sciences Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant No.50625620)<br />

C3-Q-02 Development and research <strong>of</strong> pulse tube<br />

refrigerators at CAS <strong>in</strong> Ch<strong>in</strong>a<br />

L. Yang, J. Liang, Z. Yuan, Technical Institute <strong>of</strong><br />

Physical and Chemistry <strong>of</strong> CAS.<br />

This paper gives the review <strong>of</strong> pulse tube research <strong>in</strong> the p<strong>as</strong>t several<br />

years at Technical Institute <strong>of</strong> Physical and Chemistry, former<br />

Cryogenic Lab.<br />

One ma<strong>in</strong> work is to develop high frequency high efficiency PTC to<br />

satisfy the application at 80K temperature scope. Four different sizes<br />

coaxial PTCs have been developed: One is m<strong>in</strong>iature version PTC to<br />

provide cool<strong>in</strong>g <strong>of</strong> 0.1-1W/80K, <strong>in</strong> this work, we have the PTC <strong>of</strong><br />

outside diameter <strong>of</strong> 6mm prototype. Another m<strong>in</strong>iature version PTC is<br />

to provide 0.3-1.5W/80K cool<strong>in</strong>g power. The small version PTC is to<br />

provide 0.5W-3W/80K cool<strong>in</strong>g power, while the large version PTC is<br />

to provide 2W-10W/80K cool<strong>in</strong>g power. These works covers most <strong>of</strong><br />

the requirements at 80K temperature scope <strong>in</strong> Ch<strong>in</strong>a.<br />

Another work is to develop high frequency high efficiency PTC to<br />

satisfy the application at below 50K temperature scope. One is to<br />

develop s<strong>in</strong>gle stage PTC that could reach below 30K. Multi-stage<br />

high frequency pulse tube refrigerator w<strong>as</strong> also our <strong>in</strong>terest for<br />

potential application and a 16K two-stage PTC is available.<br />

We are develop<strong>in</strong>g non-mental high frequency PTCs also. Our target<br />

is to acquire low temperature at low <strong>in</strong>put power, for example<br />

0.1W/80K with 20W <strong>in</strong>put.<br />

We are also develop<strong>in</strong>g s<strong>in</strong>gle stage low frequency pulse tube for 20-<br />

40K application.<br />

Besides the PTCs aims for practical application, we are also do<br />

research on numerical simulation and oscillat<strong>in</strong>g flow research<br />

experiment. This will also be reported.<br />

This work is supported by Natural Sciences Foundation <strong>of</strong> Ch<strong>in</strong>a<br />

(50206025, 50476086 ).<br />

C3-Q-03 High Frequency M<strong>in</strong>iature Reservoir-less Pulse<br />

Tube Cryocooler<br />

I Garaway, G Grossman, Technion - Israel Institute <strong>of</strong><br />

Technology.<br />

A m<strong>in</strong>iature high frequency reservoir-less pulse tube cryocooler h<strong>as</strong><br />

been designed and tested <strong>in</strong> our laboratory. The cryocooler hav<strong>in</strong>g a<br />

regenerator length <strong>of</strong> 12.0 mm and an overall volume <strong>of</strong> 2.3cc<br />

(exclud<strong>in</strong>g the compressor) reached a low temperature <strong>of</strong> 151K. This<br />

study shows that it is possible to m<strong>in</strong>iaturize a pulse tube cryocooler<br />

to very short regenerator length by implement<strong>in</strong>g a few b<strong>as</strong>ic<br />

pr<strong>in</strong>ciples: Most importantly, higher operat<strong>in</strong>g frequencies at small<br />

tidal displacements with <strong>in</strong>cre<strong>as</strong>ed helium fill pressures. This study<br />

also shows that <strong>as</strong> the operat<strong>in</strong>g frequency <strong>of</strong> a m<strong>in</strong>iature cryocooler<br />

<strong>in</strong>cre<strong>as</strong>es, the reservoir becomes less necessary <strong>as</strong> a ph<strong>as</strong>e shift<strong>in</strong>g<br />

device. At higher frequencies and smaller <strong>in</strong>ertance tube geometries<br />

the impedance and capacitance <strong>of</strong> the <strong>in</strong>ertance tube itself takes over<br />

the ph<strong>as</strong>e shift<strong>in</strong>g t<strong>as</strong>k. This study shows that <strong>in</strong> a high frequency<br />

(greater than 250Hz) system the volume <strong>of</strong> such an <strong>in</strong>ertance tube can<br />

be decre<strong>as</strong>ed to values <strong>of</strong> less than 1cc. An outl<strong>in</strong>e <strong>of</strong> the design and<br />

model<strong>in</strong>g pr<strong>in</strong>ciples will be presented along with some details <strong>of</strong> the<br />

experimental apparatus and test<strong>in</strong>g procedures.<br />

C3-Q-04 Development <strong>of</strong> a low cost high frequency pulse<br />

tube cryocooler<br />

C. Wang, Cryomech, Inc.; A. Caughley, D. Haywood,<br />

Industrial Research Ltd.<br />

In cooperation with Industrial Research Ltd (IRL), Cryomech, Inc. is<br />

develop<strong>in</strong>g a low cost high frequency pulse tube cryocooler. The<br />

valveless compressor, developed by IRL, employs two S.S.<br />

diaphragms and novel k<strong>in</strong>ematics driven mechanism. The pulse tube<br />

cold head h<strong>as</strong> co-axial configuration and is separated from the<br />

compressor by 1.5m. The diaphragm compressor and co-axial pulse<br />

tube cold head ensure low cost on the manufactur<strong>in</strong>g. The design is<br />

also user friendly for <strong>in</strong>tegration. The prelim<strong>in</strong>ary tests demonstrate<br />

encourag<strong>in</strong>g results <strong>of</strong> the system. It h<strong>as</strong> a bottom temperature <strong>of</strong> 40<br />

K and over 100W at 80K for 3.6kW power <strong>in</strong>put. The design goal is<br />

to have a cool<strong>in</strong>g capacity <strong>of</strong> 200W at 80K. The improvement <strong>of</strong> the<br />

pulse tube cryocooler is undergo<strong>in</strong>g. The details <strong>of</strong> the design,<br />

development and performance will be presented <strong>in</strong> the conference.<br />

Friday, <strong>07</strong>/20/<strong>07</strong> Plenary<br />

8:00am - 9:00am<br />

C4-A Friday Plenary Session<br />

C4-A-01 Overview <strong>of</strong> the Liquefied Natural G<strong>as</strong> (LNG)<br />

Industry<br />

R.T. Rogers, AGL Resources.<br />

The presentation will <strong>in</strong>clude an overview <strong>of</strong> the different types <strong>of</strong><br />

LNG Plants, from the small Satellite LNG Plants to the large Import<br />

or B<strong>as</strong>e Load LNG Term<strong>in</strong>als. The talk will also present <strong>in</strong><strong>format</strong>ion<br />

about AGL Resources` LNG Operations, <strong>as</strong> AGL Resources is the<br />

largest LNG Peak Shav<strong>in</strong>g Operator <strong>in</strong> the Southe<strong>as</strong>t United States.<br />

The presentation will also <strong>in</strong>clude a demonstration <strong>of</strong> the<br />

characteristics <strong>of</strong> LNG <strong>as</strong> well <strong>as</strong> address the phenomenon <strong>of</strong> LNG<br />

Tank Rollover.<br />

Page 49 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

Friday, <strong>07</strong>/20/<strong>07</strong> Oral 9:15am -<br />

10:45am<br />

C4-B Superconduct<strong>in</strong>g RF Cavities and<br />

Cryosystems - II<br />

C4-B-01 ILC Cryogenic Systems Reference Design<br />

T. Peterson, M. Geynisman, A. Klebaner, J.<br />

Theilacker, Fermilab; V. Parma, L. Tavian, CERN.<br />

A Global Design Effort began <strong>in</strong> 2005 to study a TeV scale electronpositron<br />

l<strong>in</strong>ear accelerator b<strong>as</strong>ed on superconduct<strong>in</strong>g radio-frequency<br />

(RF) technology, called the International L<strong>in</strong>ear Collider (ILC). In<br />

early 20<strong>07</strong>, the design effort culm<strong>in</strong>ated <strong>in</strong> a reference design for the<br />

ILC, closely b<strong>as</strong>ed on the earlier TESLA design. The ILC will consist<br />

<strong>of</strong> two 250 GeV l<strong>in</strong>acs, which provide positron-electron collisions for<br />

high energy physics research. The particle beams will be accelerated<br />

to their f<strong>in</strong>al energy <strong>in</strong> superconduct<strong>in</strong>g niobium RF cavities operat<strong>in</strong>g<br />

at 2 Kelv<strong>in</strong>. At a length <strong>of</strong> about 12 km each, the ma<strong>in</strong> l<strong>in</strong>acs will be<br />

the largest cryogenic systems <strong>in</strong> the ILC. Positron and electron<br />

sources, damp<strong>in</strong>g r<strong>in</strong>gs, and beam delivery systems will also have a<br />

large number and variety <strong>of</strong> other superconduct<strong>in</strong>g RF cavities and<br />

magnets, which require cool<strong>in</strong>g at liquid helium temperatures. Ten<br />

large cryogenic plants with 2 Kelv<strong>in</strong> refrigeration are envisioned to<br />

cool the ma<strong>in</strong> l<strong>in</strong>ac and the electron and positron sources. Three<br />

smaller cryogenic plants will cool the damp<strong>in</strong>g r<strong>in</strong>gs and beam<br />

delivery system components predom<strong>in</strong>ately at 4.5 K. This paper<br />

describes the cryogenic systems concepts for the ILC.<br />

C4-B-02 Installation and Commission<strong>in</strong>g <strong>of</strong> the<br />

Superconduct<strong>in</strong>g RF L<strong>in</strong>ac Cryomodules for the ERLP<br />

A.R. Goulden, R. Bate, CCLRC Daresbury<br />

Laboratory UK; R.K. Buckley, S.M. Pattalwar,<br />

CCLRC Daresbury Labpratory UK.<br />

An Energy Recovery L<strong>in</strong>ac Prototype (ERLP) is currently be<strong>in</strong>g<br />

constructed at Daresbury Laboratory (UK), to promote the necessary<br />

skills <strong>in</strong> science & technology, particularly <strong>in</strong> photocathode electron<br />

gun and Super Conduct<strong>in</strong>g RF, to enable the construction <strong>of</strong> a fourth<br />

generation light source, b<strong>as</strong>ed on energy recovery l<strong>in</strong>acs-4GLS [1].<br />

The ERLP uses two identical cryomodules, one <strong>as</strong> a booster cavity<br />

accelerat<strong>in</strong>g the beam to 8.5 MeV, the other <strong>as</strong> a l<strong>in</strong>ac module <strong>in</strong> the<br />

re-circulat<strong>in</strong>g loop with an energy ga<strong>in</strong> <strong>of</strong> 24.5 MeV. Each module<br />

consists <strong>of</strong> two n<strong>in</strong>e cell cavities operat<strong>in</strong>g at a frequency <strong>of</strong> 1.3GHz<br />

and a temperature <strong>of</strong> 2K. As there is no energy recovery <strong>in</strong> the booster<br />

it requires a peak power <strong>of</strong> 53kW; where<strong>as</strong> the l<strong>in</strong>ac module only<br />

requires 8kW. The RF power is supplied by 4 IOTs. The maximum<br />

heat load or the cool<strong>in</strong>g power required <strong>in</strong> the Super Conduct<strong>in</strong>g RF<br />

system is 180W at 2K and is achieved <strong>in</strong> two stages: a LN2 precooled<br />

L<strong>in</strong>de TCF050 liquefier produces liquid helium at 4.5K,<br />

followed by a 2K cold box consist<strong>in</strong>g <strong>of</strong> a JT valve, recuperator and<br />

an external room temperature vacuum pump<strong>in</strong>g system.<br />

This presentation reports the experience ga<strong>in</strong>ed dur<strong>in</strong>g, <strong>in</strong>stallation,<br />

commission<strong>in</strong>g and the <strong>in</strong>itial operation <strong>of</strong> the cryomodules.<br />

C4-B-03 Initial Operat<strong>in</strong>g Experience for the ISAC-II<br />

SC-L<strong>in</strong>ac at TRIUMF<br />

I. Sekachev, W. Andersson, R. Laxdal, G. Stanford,<br />

TRIUMF.<br />

A first stage <strong>of</strong> the heavy ion superconduct<strong>in</strong>g l<strong>in</strong>ac cryogenic system<br />

compris<strong>in</strong>g a 500W LHe refrigerator and distribution system h<strong>as</strong> been<br />

<strong>in</strong>stalled and started operation at TRIUMF. The early experience with<br />

the cryogenic systems <strong>in</strong>clud<strong>in</strong>g data <strong>of</strong> the thermal loads and<br />

refrigerator performance will be presented.<br />

C4-B-04 Operation <strong>of</strong> the Superconduct<strong>in</strong>g L<strong>in</strong>ac at the<br />

Spallation Neutron Source.*<br />

I. E. Campisi, F. C<strong>as</strong>agrande, M. Cr<strong>of</strong>ford, M.<br />

Howell, Y. Kang, S. H. Kim, Z. Kursun, P. Ladd, D.<br />

Stout, W. Strong, ORNL/SNS; M.S. Champion, FNAL.<br />

At the Spallation Neutron Source, the first fully operational pulsed<br />

superconduct<strong>in</strong>g l<strong>in</strong>ac h<strong>as</strong> been active for about two years. Dur<strong>in</strong>g this<br />

period, stable beam operation at 4.4 K h<strong>as</strong> been achieved with beam<br />

for repetition rates up to 15 Hz. Lower temperatures have been<br />

occ<strong>as</strong>ionally atta<strong>in</strong>ed to study conditions required to support full beam<br />

power delivery, which requires 60 Hz RF and beam pulses <strong>of</strong> 1<br />

millisecond. A large amount <strong>of</strong> data h<strong>as</strong> been collected on the pulsed<br />

behavior <strong>of</strong> cavities and cryomodules at various repetition rates and at<br />

various temperatures. This experience will be <strong>of</strong> great value <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g future optimizations <strong>of</strong> SNS <strong>as</strong> well <strong>in</strong> guid<strong>in</strong>g <strong>in</strong> the<br />

design and operation <strong>of</strong> future pulsed superconduct<strong>in</strong>g l<strong>in</strong>acs.<br />

This paper describes the details <strong>of</strong> the cryogenic system and RF<br />

properties <strong>of</strong> the SNS superconduct<strong>in</strong>g l<strong>in</strong>ac.<br />

*SNS is managed by UT-Battelle, LLC, under contract DE-AC05-<br />

00OR22725 for the U.S. Department <strong>of</strong> Energy<br />

C4-B-05 Cryogenic Infr<strong>as</strong>tructure for Fermilab’s ILC<br />

Vertical Cavity Test Facility<br />

R. Carcagno, C. G<strong>in</strong>sburg, Y. Huang, B. Norris, J.<br />

Ozelis, T. Peterson, R. Rabehl, C. Sylvester, M. Wong,<br />

Fermi National Accelerator Laboratory.<br />

Fermilab is build<strong>in</strong>g a Vertical Cavity Test Facility (VCTF) to provide<br />

for R&D and pre-production test<strong>in</strong>g <strong>of</strong> bare 9-cell, 1.3 GHz<br />

superconduct<strong>in</strong>g RF (SRF) cavities for the International L<strong>in</strong>ear<br />

Collider (ILC) program. This facility is located <strong>in</strong> the exist<strong>in</strong>g<br />

Industrial Build<strong>in</strong>g 1 (IB1) where the Magnet Test Facility (MTF)<br />

also resides. Helium and nitrogen cryogenics are shared between the<br />

VCTF and MTF <strong>in</strong>clud<strong>in</strong>g the exist<strong>in</strong>g 1500W @ 4.5K helium<br />

refrigerator with vacuum pump<strong>in</strong>g for super-fluid operation (125 W<br />

capacity at 2K).<br />

The VCTF is be<strong>in</strong>g constructed <strong>in</strong> multiple ph<strong>as</strong>es. The first ph<strong>as</strong>e is<br />

scheduled for completion <strong>in</strong> mid 20<strong>07</strong>, and <strong>in</strong>cludes modifications to<br />

the IB1 cryogenic <strong>in</strong>fr<strong>as</strong>tructure to allow helium cool<strong>in</strong>g to be directed<br />

to either the VCTF or MTF <strong>as</strong> schedul<strong>in</strong>g demands require. At this<br />

stage, the VCTF consists <strong>of</strong> one Vertical Test Stand (VTS) cryostat<br />

for the test<strong>in</strong>g <strong>of</strong> one cavity <strong>in</strong> a 2 K helium bath.<br />

Plann<strong>in</strong>g is underway to provide a total <strong>of</strong> three Vertical Test Stands<br />

at VCTF, each capable <strong>of</strong> accommodat<strong>in</strong>g two cavities. Cryogenic<br />

<strong>in</strong>fr<strong>as</strong>tructure improvements necessary to support these additional<br />

VCTF test stands <strong>in</strong>clude a dedicated ambient temperature vacuum<br />

pump, a new helium purification skid, and the addition <strong>of</strong> helium g<strong>as</strong><br />

storage.<br />

This paper describes the system design and <strong>in</strong>itial cryogenic operation<br />

results for the first VCTF ph<strong>as</strong>e, and outl<strong>in</strong>es future cryogenic<br />

<strong>in</strong>fr<strong>as</strong>tructure upgrade plans for expand<strong>in</strong>g to three Vertical Test<br />

Stands.<br />

C4-B-06 European XFEL-L<strong>in</strong>ac Two-Ph<strong>as</strong>e Helium II<br />

Flow Simulations<br />

V. Gubarev, B. Petersen, D. Sellmann, DESY; Y.<br />

Xiang, GSI.<br />

The superconduct<strong>in</strong>g 1.3-GHz niobium cavities <strong>of</strong> the XFEL l<strong>in</strong>ear<br />

accelerator will be cooled <strong>in</strong> a bath <strong>of</strong> liquid helium II at a<br />

temperature <strong>of</strong> 2K. The liquid helium II supply <strong>of</strong> the 1.7-km long<br />

l<strong>in</strong>ac is subdivided <strong>in</strong> sections <strong>of</strong> 150m length. In these sections a two<br />

ph<strong>as</strong>e flow <strong>of</strong> helium II liquid and correspond<strong>in</strong>g vapor occurs. A<br />

stable stratified smooth helium flow h<strong>as</strong> to be ma<strong>in</strong>ta<strong>in</strong>ed for the RF<br />

operation <strong>of</strong> the cavities, to avoid any microphonic effects. A<br />

computer code h<strong>as</strong> been developed to simulate the two ph<strong>as</strong>e flow <strong>in</strong><br />

the XFEL-l<strong>in</strong>ac. The flow characteristics at different cryogenic loads<br />

and tube dimensions have been calculated. The results are shown and<br />

the consequences for the design <strong>of</strong> the XFEL-cryomodules are<br />

discussed.<br />

Page 50 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C4-C Aerospace Components<br />

C4-C-01 Developments on Vibration Free Sorption<br />

Cool<strong>in</strong>g<br />

J.F. Burger, R.J. Meijer, H.J. Holland, H.J.M. ter<br />

Brake, University <strong>of</strong> Twente; A. Sirbi, ESA-ESTEC.<br />

At the University <strong>of</strong> Twente, a breadboard 4.5 K sorption cooler w<strong>as</strong><br />

developed under an ESA-TRP contract. It h<strong>as</strong> no mov<strong>in</strong>g parts and,<br />

therefore, is essentially vibration-free. Moreover, it h<strong>as</strong> the potential<br />

<strong>of</strong> a very long life. This cooler is a favorite option for missions such<br />

<strong>as</strong> ESA’s Darw<strong>in</strong> mission, which is a future space <strong>in</strong>terferometer<br />

consist<strong>in</strong>g <strong>of</strong> a few free fly<strong>in</strong>g telescopes and a central beam<br />

comb<strong>in</strong>er. Because <strong>of</strong> the optics <strong>in</strong>volved, hardly any vibration can be<br />

tolerated.<br />

The cooler consists <strong>of</strong> a hydrogen stage cool<strong>in</strong>g from 80K to 14.5K<br />

and a helium stage establish<strong>in</strong>g 10mW at 4.5K. Both stages use<br />

micro-porous activated carbon <strong>as</strong> the adsorption material. The two<br />

cooler stages need 8W <strong>of</strong> <strong>in</strong>put power and are heat sunk at two<br />

p<strong>as</strong>sive radiators at temperatures <strong>of</strong> about 50 and 80K. We developed<br />

and built a demonstrator <strong>of</strong> the helium stage. In the paper, the design,<br />

realization and tests <strong>of</strong> this demonstrator cooler will be reviewed.<br />

Follow<strong>in</strong>g this review, we will describe further developments on<br />

improved carbon cells and sub-components such <strong>as</strong> p<strong>as</strong>sive check<br />

valves. Furthermore, trends will be presented that consider the use <strong>of</strong><br />

other work<strong>in</strong>g fluids at different temperature ranges.<br />

C4-C-03 Cryogenic Quad-redundant Thermal Switch<br />

B. C. Thompson, B. Lloyd, Space Dynamics<br />

Laboratory; S. H. Schick, Practical Technology<br />

Solutions Inc.; L. Li, Utah State University.<br />

A Quad-Redundant Thermal Switch (QRTS) for the James Webb<br />

Space Telescope h<strong>as</strong> been successfully designed, fabricated, and<br />

tested at the Space Dynamics Laboratory (SDL). A flight-like<br />

prototype successfully p<strong>as</strong>sed thermal and structural qualification tests<br />

<strong>in</strong> a representative space environment and achieved Technology<br />

Read<strong>in</strong>ess Level 6. The QRTS serves <strong>as</strong> a high thermal conductance,<br />

high reliability thermal connect / disconnect between heat sources and<br />

s<strong>in</strong>ks. The switch consists <strong>of</strong> an all metallic core switch construction<br />

packaged <strong>in</strong> a cross-strapped quad-redundant configuration.<br />

Actuation <strong>of</strong> the switch is b<strong>as</strong>ed on differential thermal expansion.<br />

The four <strong>in</strong>dividual switches are p<strong>as</strong>sively closed over the entire<br />

operational range and actuated open by apply<strong>in</strong>g heat to the actuation<br />

rods. Key qualification tests <strong>in</strong>cluded: robust characterization <strong>of</strong><br />

thermal closed and open performance from 32 to 313K; and a full<br />

suite <strong>of</strong> vibration test<strong>in</strong>g (s<strong>in</strong>e, random, and s<strong>in</strong>e burst). This paper<br />

presents an overview <strong>of</strong> the QRTS functionality, thermal and<br />

structural qualification tests, and result<strong>in</strong>g switch performance.<br />

Thanks to D. S. Hansen and K. N. Johnson from Space Dynamics<br />

Laboratory and S. Glazer from GSFC. Fund<strong>in</strong>g for this project w<strong>as</strong><br />

provided by GSFC.<br />

C4-C-04 High Specific Power Motors <strong>in</strong> LN2 and LH2<br />

G.V. Brown, J.J. Trudell, NASA Glenn Research<br />

Center; R.H. Jansen, University <strong>of</strong> Toledo.<br />

Low w<strong>in</strong>d<strong>in</strong>g resistance and high thermal conductivity <strong>in</strong> LN2 and<br />

LH2 allow electric mach<strong>in</strong>e w<strong>in</strong>d<strong>in</strong>gs to be cooled only at end turns to<br />

preserve slot space for conductor and <strong>in</strong>sulation. End turn layers,<br />

shaped <strong>in</strong>to heat exchangers, provide large heat transfer area and flow<br />

channels for nucleate boil<strong>in</strong>g and excellent cool<strong>in</strong>g. Joule heat is<br />

rejected outside the magnetically active region with low temperature<br />

rise. The result is very high specific power. “Self-f<strong>in</strong>ned” coils <strong>in</strong><br />

LN2 show rms current density 10 times that typical at room<br />

temperature. A 12/8 switched-reluctance motor <strong>of</strong> 18 lb<br />

electromagnetic (EM) weight, with such coils, produced 7.9 kW/lb-<br />

EM <strong>in</strong> one second tests at 20 krpm, at an rms current susta<strong>in</strong>able at<br />

steady state <strong>in</strong> un<strong>in</strong>stalled coils. If the motor can be supplied with<br />

LN2 and cleared <strong>of</strong> GN2 bubbles at steady state, the specific power<br />

will exceed that <strong>of</strong> any other motor or generator, <strong>in</strong>clud<strong>in</strong>g<br />

superconduct<strong>in</strong>g mach<strong>in</strong>es. On future LH2-fueled aircraft this type<br />

motor would use fuel for cool<strong>in</strong>g before the fuel is burned. Endcooled<br />

coils would perform even better <strong>in</strong> LH2 than <strong>in</strong> LN2 because<br />

<strong>of</strong> further <strong>in</strong>cre<strong>as</strong>es <strong>in</strong> electrical and thermal conductivity. Coils could<br />

be longer, carry more current without thermal runaway and make less<br />

boil-<strong>of</strong>f g<strong>as</strong>. Me<strong>as</strong>urements, analysis and motor performance will be<br />

presented.<br />

C4-D Stirl<strong>in</strong>g and Pulse Tube Performance<br />

Enhancement and Model<strong>in</strong>g<br />

C4-D-01 A new M<strong>in</strong>i Pulse Tube Cryocooler with a heat<br />

<strong>in</strong>terceptor<br />

Ph. Gully, I. Charles, CEA-Grenoble/SBT; R. Briet,<br />

CNES-Toulouse.<br />

An experimental study <strong>of</strong> a coaxial m<strong>in</strong>i Pulse Tube Cryocooler is<br />

presented. First various rejection temperatures for the pulse tube warm<br />

end and the compressor foot have been <strong>in</strong>vestigated. It is shown that<br />

the rejection temperature at the warm side <strong>of</strong> the Pulse Tube is a key<br />

parameter and that the heat s<strong>in</strong>k <strong>of</strong> the cooler can be located only at<br />

this po<strong>in</strong>t. Heat repartition between the pulse tube and the compressor<br />

<strong>as</strong> a function <strong>of</strong> the rejection temperatures is discussed.<br />

The coaxial m<strong>in</strong>i pulse tube cooler h<strong>as</strong> been equipped with a heat<br />

<strong>in</strong>terceptor <strong>in</strong> order to take advantage <strong>of</strong> p<strong>as</strong>sive <strong>in</strong>termediate free<br />

cool<strong>in</strong>g available for some space missions. The heat <strong>in</strong>terceptor is a<br />

simple copper collar mounted on the half warm side <strong>of</strong> the regenerator<br />

tube. It is shown that this concept allows boost<strong>in</strong>g the cryocooler<br />

performances with a small <strong>as</strong>sociated p<strong>as</strong>sive radiator thermally<br />

l<strong>in</strong>ked to the <strong>in</strong>terceptor. As an example, a 0.05m2 radiator allows to<br />

<strong>in</strong>cre<strong>as</strong>e the cool<strong>in</strong>g power at 80K from 1.5 to 2 W. Performances<br />

obta<strong>in</strong>ed for different heat <strong>in</strong>terceptor positions are presented and<br />

discussed.<br />

Thanks to SBT experimental team for its help and CNES for its<br />

f<strong>in</strong>ancial support<br />

C4-D-02 A thermoacoustically-driven micro-m<strong>in</strong>iature<br />

pulse tube cooler operat<strong>in</strong>g with high frequency <strong>of</strong> 300 to<br />

500Hz<br />

G.Y. Yu, S.L. Zhu, Graduate University <strong>of</strong> Ch<strong>in</strong>ese<br />

Academy <strong>of</strong> Sciences; E.C. Luo, Technical Institute <strong>of</strong><br />

Physics and Chemistry, CAS; W. Dai, Technical<br />

Institute <strong>of</strong> Physics and Chemistry,CAS.<br />

High frequency thermoacoustic cryocooler system is quite attractive<br />

to small-capacity cryogenic applications such <strong>as</strong> for aerospace<br />

cool<strong>in</strong>g. Recently, a no-load temperature <strong>of</strong> 95K and 79.6K have been<br />

obta<strong>in</strong>ed on a 300Hz pulse tube cooler driven by a stand<strong>in</strong>g-wave<br />

thermoacoustic eng<strong>in</strong>e with 750W and 1750W heat<strong>in</strong>g powers <strong>in</strong> our<br />

lab, respectively. However, the stand<strong>in</strong>g-wave thermoacoustic eng<strong>in</strong>e<br />

is <strong>in</strong>tr<strong>in</strong>sically irreversible, which limits the global thermal efficiency<br />

<strong>of</strong> the system. Aimed for a cool<strong>in</strong>g power <strong>of</strong> about half Watts at 80K<br />

with a higher thermal efficiency, a high frequency thermoacoustic-<br />

Stirl<strong>in</strong>g heat eng<strong>in</strong>e w<strong>as</strong> designed to drive a pulse tube cooler <strong>in</strong> the<br />

work to be presented here. Ide<strong>as</strong> such <strong>as</strong> tapered resonator, acoustic<br />

amplifier tube and half wavelength <strong>in</strong>ertance tube ph<strong>as</strong>e shifter<br />

(without reservoir) are used to effectively suppress the harmonic<br />

modes, amplify the acoustic pressure wave available to the pulse tube<br />

cooler and provide desired acoustic impedance for the pulse tube<br />

cooler, respectively. Influence <strong>of</strong> average pressure, heat<strong>in</strong>g power,<br />

mesh size and coupl<strong>in</strong>g mechanism are given <strong>in</strong> detail. Up to now, a<br />

lowest temperature <strong>of</strong> 129K h<strong>as</strong> been obta<strong>in</strong>ed on the system with<br />

3.93MPa helium g<strong>as</strong>, 309Hz work<strong>in</strong>g frequency and 400W heat <strong>in</strong>put.<br />

Numerical simulations b<strong>as</strong>ed on the l<strong>in</strong>ear thermoacoustic theory have<br />

also been done for comparison with experimental results, which<br />

shows re<strong>as</strong>onable agreement. Further optimization work is be<strong>in</strong>g<br />

under way.<br />

This work w<strong>as</strong> supported by the Natural Sciences Foundation <strong>of</strong><br />

Ch<strong>in</strong>a(Grant No.50625620)<br />

C4-D-03 An Innovative Inertance Device for Pulse Tube<br />

Cryocoolers<br />

Sidney Yuan, David Curran, Aerospace Corp.<br />

The theory beh<strong>in</strong>d a Pulse Tube Cryocooler is very similar to that <strong>of</strong> a<br />

Stirl<strong>in</strong>g cooler with the motion <strong>of</strong> the displacer replaced by that <strong>of</strong> the<br />

g<strong>as</strong> piston. Some <strong>of</strong> the best performance <strong>of</strong> the Pulse Tube coolers<br />

matches that <strong>of</strong> the Stirl<strong>in</strong>g refrigerator. Obviously, the importance <strong>of</strong><br />

the ph<strong>as</strong>e shift mechanism <strong>in</strong> a Pulse Tube cannot be overemph<strong>as</strong>ized.<br />

In this paper, an <strong>in</strong>novative <strong>in</strong>ertance ph<strong>as</strong>e-shift device is described.<br />

The performance <strong>of</strong> this <strong>in</strong>vention h<strong>as</strong> been validated by analysis<br />

us<strong>in</strong>g the SAGE s<strong>of</strong>tware. This <strong>in</strong>vention <strong>of</strong>fer tremendous benefit<br />

over the traditional ph<strong>as</strong>e shift devices used <strong>in</strong> Pulse Tubes.<br />

Page 51 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C4-D-04 Multistage Pulse Tube Refrigeration<br />

Performance Mapp<strong>in</strong>g <strong>of</strong> the Lockheed Mart<strong>in</strong> RAMOS<br />

Eng<strong>in</strong>eer<strong>in</strong>g Model Cryocooler<br />

W.D. Scheirer, T.P. Roberts, Air Force Research<br />

Laboratory.<br />

The performance mapp<strong>in</strong>g <strong>of</strong> a multistage pulse tube refrigeration<br />

system h<strong>as</strong> been performed on the Lockheed Mart<strong>in</strong> Russian-<br />

American Observational Satellite (RAMOS) eng<strong>in</strong>eer<strong>in</strong>g model<br />

cryocooler by the Air Force Research Laboratory. The cryocooler<br />

consists <strong>of</strong> a two-stage pulse tube coldhead driven by a l<strong>in</strong>ear flexurebear<strong>in</strong>g<br />

compressor. The coldhead and compressor are separated by a<br />

transfer l<strong>in</strong>e <strong>of</strong> up to one meter. The RAMOS cryocooler is designed<br />

to deliver 0.75 W <strong>of</strong> cool<strong>in</strong>g at 75K and 6 W <strong>of</strong> cool<strong>in</strong>g at 130K.<br />

Characterization test results <strong>in</strong>clude performance mapp<strong>in</strong>g at rejection<br />

temperatures from 275K to 325K, drive frequency variation effects<br />

from 39 Hz – 65 Hz, <strong>as</strong> well <strong>as</strong> results for both steady state and<br />

transient performance envelopes. The effects <strong>of</strong> vary<strong>in</strong>g operational<br />

conditions on the transfer l<strong>in</strong>e’s non-isothermal behavior will also be<br />

presented.<br />

C4-D-05 Design and Performance Optimisation <strong>of</strong> a<br />

Coaxial Pulse Tube Cooler<br />

W. van de Groep, J. Mullie, T. Benschop, F. van<br />

Wordragen, THALES Cryogenics B.V..<br />

S<strong>in</strong>ce 2005 Thales Cryogenics h<strong>as</strong> been produc<strong>in</strong>g coaxial pulse tube<br />

coolers under CEA license for applications that are very sensitive for<br />

mechanical vibrations and require a long lifetime.<br />

In order to optimise the exist<strong>in</strong>g b<strong>as</strong>el<strong>in</strong>e design <strong>of</strong> the coaxial pulse<br />

tube Thales Cryogenics h<strong>as</strong> been work<strong>in</strong>g on several <strong>of</strong> the critical<br />

elements <strong>in</strong>side the pulse tube. This optimisation should lead to a<br />

wider application <strong>of</strong> these pulse tube coolers <strong>in</strong>to high-end civil<br />

applications.<br />

This paper describes the work carried out on the optimisation <strong>of</strong> the<br />

heat exchangers at the cold tip, the warm-end and the buffer <strong>in</strong>clud<strong>in</strong>g<br />

irreversible heat losses caused by disruptions <strong>of</strong> the g<strong>as</strong> flow.<br />

Moreover, the heat exchange <strong>of</strong> warm end g<strong>as</strong> to the surround<strong>in</strong>gs h<strong>as</strong><br />

been <strong>in</strong>vestigated. Also, the impact on cool downtime and the<br />

sensitivity to <strong>in</strong>ternal contam<strong>in</strong>ation h<strong>as</strong> been tested.<br />

Results will enable a design optimisation <strong>of</strong> the whole range <strong>of</strong><br />

coaxial pulse tube coolers, vary<strong>in</strong>g from 1 and 4W at 80K to pulse<br />

tube coolers <strong>of</strong> more than 12W cool<strong>in</strong>g power at 80K.<br />

In this paper, test result, trade-<strong>of</strong>f’s and benefits <strong>of</strong> the new design<br />

will be discussed and evaluated.<br />

C4-D-06 F<strong>as</strong>t Response Temperature Me<strong>as</strong>urements <strong>in</strong><br />

Stirl<strong>in</strong>g Cycle Cryocooler Components<br />

K, Kar, University <strong>of</strong> Auckland; M.W. Dadd, P.<br />

Bailey, C.R. Stone, University <strong>of</strong> Oxford.<br />

One re<strong>as</strong>on that heat transfer processes are not well understood is the<br />

difficulty <strong>of</strong> obta<strong>in</strong><strong>in</strong>g reliable temperature me<strong>as</strong>urements when g<strong>as</strong><br />

temperatures vary rapidly. In the work described here g<strong>as</strong><br />

temperatures have been me<strong>as</strong>ured us<strong>in</strong>g a f<strong>in</strong>e wire resistance<br />

thermometer with a 3.8 micron active sensor. The equipment<br />

represented the b<strong>as</strong>ic elements <strong>of</strong> a cryocooler: a clearance seal l<strong>in</strong>ear<br />

compressor and a wire mesh regenerator. Both were operated close to<br />

ambient temperature, with g<strong>as</strong> temperatures be<strong>in</strong>g me<strong>as</strong>ured close to<br />

the regenerator.<br />

The test rig w<strong>as</strong> run at different volume ratios, frequencies (8–50 Hz),<br />

g<strong>as</strong>es and fill<strong>in</strong>g pressures (1–26 bar). The waveforms <strong>of</strong> the g<strong>as</strong><br />

temperature were found to vary dramatically for differ<strong>in</strong>g flow<br />

regimes.<br />

The results suggested that the thermometer w<strong>as</strong> me<strong>as</strong>ur<strong>in</strong>g the<br />

temperatures <strong>of</strong> two dist<strong>in</strong>ct volumes <strong>of</strong> g<strong>as</strong>, and that the g<strong>as</strong> must<br />

rema<strong>in</strong> stratified <strong>in</strong> the compression space. A flow transition w<strong>as</strong><br />

identified from the cycle-by-cycle variations <strong>in</strong> temperature. The<br />

critical Reynolds number w<strong>as</strong> determ<strong>in</strong>ed to be 9.6–11. At the critical<br />

condition, the temperature w<strong>as</strong> so unstable that fluctuations up to 250<br />

Hz were observed. A series <strong>of</strong> validation tests have confirmed that the<br />

observed temperatures were not artifacts.<br />

This work w<strong>as</strong> sponsored by the Air Force Office <strong>of</strong> Scientific<br />

Research, Air Force Material Command, USAF, under grant number<br />

FA8655-06-1-3<strong>07</strong>1.<br />

The U.S. Government is authorized to reproduce and distribute<br />

repr<strong>in</strong>ts for Government purpose notwithstand<strong>in</strong>g any copyright<br />

notation thereon.<br />

C4-D-<strong>07</strong> Optimal Control Strategies for a Rectified<br />

Cont<strong>in</strong>uous<br />

Flow Loop Interfaced with a Distributed Load<br />

H.M. Skye, G.F. Nellis, S.A. Kle<strong>in</strong>, University <strong>of</strong><br />

Wiscons<strong>in</strong> - Madison.<br />

Distributed loads are frequently encountered <strong>in</strong> large deployable<br />

structures used <strong>in</strong> space applications such <strong>as</strong> optical mirrors and focal<br />

plane electronics. An <strong>in</strong>novative mechanism for provid<strong>in</strong>g distributed<br />

cool<strong>in</strong>g is an oscillatory pulse-tube cryocooler that is <strong>in</strong>tegrated with a<br />

fluid rectification system consist<strong>in</strong>g <strong>of</strong> check-valves and buffer<br />

volumes <strong>in</strong> order to extract a small amount <strong>of</strong> cont<strong>in</strong>uous flow. This<br />

cont<strong>in</strong>uous flow allows relatively large loads to be accepted over a<br />

long distance. An additional advantage <strong>of</strong> the rectified system is that<br />

ability to provide rapid and precise temperature control via<br />

modulation <strong>of</strong> the flow rate <strong>in</strong> the flow loop. This paper <strong>in</strong>vestigates<br />

this latter capability <strong>of</strong> the rectify<strong>in</strong>g <strong>in</strong>terface, the ability to control<br />

the temperature <strong>of</strong> a distributed load under the <strong>in</strong>fluence <strong>of</strong> various<br />

thermal disturbances. Temperature regulation is enabled us<strong>in</strong>g a<br />

temperature feedback control <strong>of</strong> a throttle valve placed <strong>in</strong> the loop.<br />

The control parameters are selected to meet temperature regulation<br />

specifications, <strong>in</strong>clud<strong>in</strong>g maximum temperature deviation and settl<strong>in</strong>g<br />

time <strong>in</strong> response to a step change <strong>in</strong> distributed load. The predicted<br />

and me<strong>as</strong>ured controlled transient behaviors are compared <strong>in</strong> order to<br />

demonstrate the temperature control capability.<br />

This work w<strong>as</strong> supported by the Missile Defense Agency through the<br />

Air Force Research Laboratory, and by the National Space Grant<br />

College and Fellowship Program and the Wiscons<strong>in</strong> Space Grant<br />

Consortium. The technical <strong>as</strong>sistance <strong>of</strong> Atl<strong>as</strong> Scientific is gratefully<br />

acknowledged.<br />

C4-D-08 Performance Prediction <strong>of</strong> PTR for Different<br />

Pressure Waveforms<br />

S. Desai, C.K. Pithawala College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Surat, Gujarat, India; K.P. Desai, H.B. Naik, S.V.<br />

National Institute <strong>of</strong> Technology, Surat, Gujarat,<br />

India; M.D. Atrey, Indian Institute <strong>of</strong> Technology<br />

Bombay, Mumbai, India.<br />

Many researchers have shown that the performance <strong>of</strong> the PTR<br />

depends significantly on the pressure waveforms generated by the<br />

rotary valve <strong>in</strong> a G-M type PTR. Some literature h<strong>as</strong> shown this effect<br />

experimentally for various waveforms. The design <strong>of</strong> the rotary valve<br />

therefore is very critical <strong>in</strong> order to generate an optimum pressure<br />

waveform. However, if the optimum waveform for obta<strong>in</strong><strong>in</strong>g<br />

maximum cool<strong>in</strong>g power is known, it will help the valve design<br />

significantly. In view <strong>of</strong> this, the valve design would be improved<br />

significantly if the performance <strong>of</strong> the PTR could be predicted with<br />

re<strong>as</strong>onable accuracy for any pressure waveform. The present paper<br />

aims at develop<strong>in</strong>g a procedure to generate such predictions <strong>of</strong> the<br />

PTR performance for different pressure waveforms. This will help to<br />

determ<strong>in</strong>e an optimum pressure waveform for a given PTR<br />

configuration and will be useful <strong>in</strong> a significant way for the design <strong>of</strong><br />

the rotary valve.<br />

An isothermal model <strong>of</strong> the PTR h<strong>as</strong> been developed for various<br />

operational modes viz, B<strong>as</strong>ic, OPTR, DIPTR, and h<strong>as</strong> been validated<br />

with experimental results. The model is then extended to predict the<br />

PTR performance for various pressure waveforms. The experimental<br />

data, available <strong>in</strong> literature <strong>in</strong> the form <strong>of</strong> different pressure waves for<br />

a given PTR configuration, h<strong>as</strong> then been analyzed. A comparison<br />

between the experimental results and the model predictions h<strong>as</strong> been<br />

presented.<br />

Page 52 <strong>of</strong> 53


<strong>CEC</strong> 20<strong>07</strong> - <strong>Abstracts</strong><br />

C4-E Cryosystems for Fusion<br />

C4-E-01 Cryogenics for Fusion<br />

P. Dauguet, G.M. Gistau-Baguer, M. Bonneton, J.C.<br />

Boiss<strong>in</strong>, E. Fauve, J.M. Bernhardt, J. Beauvisage, F.<br />

Andrieu, Air Liquide.<br />

Fusion <strong>of</strong> Hydrogen to produce energy is one <strong>of</strong> the technology under<br />

study to meet the mank<strong>in</strong>d rais<strong>in</strong>g need <strong>in</strong> energy and <strong>as</strong> a substitute<br />

to fossile fuels for the future. This technology is under <strong>in</strong>vestigation<br />

for more than 20 years already, with, for example, the former<br />

construction <strong>of</strong> experimental reactors Tore Supra, DIII-D and JET.<br />

With the construction <strong>of</strong> ITER to start, the next step to "fusion for<br />

energy" will be done. In these projects, an extensive use <strong>of</strong> cryogenic<br />

systems are requested. Air Liquide h<strong>as</strong> been <strong>in</strong>volved <strong>as</strong> cryogenic<br />

partner <strong>in</strong> most <strong>of</strong> former and presently constructed fusion reactors. In<br />

the present paper, a review <strong>of</strong> the cryogenic systems we delivered to<br />

Tore Supra, JET, IPR and KSTAR will be presented.<br />

C4-E-02 Investigation <strong>of</strong> a test loop for the cool<strong>in</strong>g system<br />

<strong>of</strong> the ITER TF coil under pulsed heat load<br />

B. Rousset, A. Girard, J.M. Poncet, P. Roussel, M.<br />

Sanmarti, CEA; V. Kal<strong>in</strong><strong>in</strong>, ITER; S. Maze, AREVA;<br />

D. Murdoch, EFDA.<br />

The CEA is <strong>in</strong>volved <strong>in</strong> the design <strong>of</strong> the cool<strong>in</strong>g scheme <strong>of</strong> the future<br />

ITER tokomak. Pulsed operation <strong>of</strong> ITER will result <strong>in</strong> heat load<br />

variations which refrigerators have difficulty to deal with. A load<br />

smooth<strong>in</strong>g device h<strong>as</strong> been proposed by the ITER team which needs<br />

to be validated. To do this, a scaled-down experiment (similitude) w<strong>as</strong><br />

proposed and studied <strong>in</strong> the framework <strong>of</strong> an EFDA sub-t<strong>as</strong>k. This<br />

paper presents the test loop dimension<strong>in</strong>g and then prelim<strong>in</strong>ary design<br />

for construct<strong>in</strong>g the mock-up.<br />

The choice <strong>of</strong> the relevant design criteria had to be def<strong>in</strong>ed so <strong>as</strong> to<br />

obta<strong>in</strong> <strong>in</strong> f<strong>in</strong>e a geometric ratio for similitude. We chose to conserve<br />

the fluid properties (pressure and temperature) <strong>as</strong> well <strong>as</strong> the time<br />

allocated for the different scenarios. The similitude ratio then relates<br />

to the heat loads <strong>in</strong>volved for the model and ITER. It is shown that<br />

this ratio is then applicable for the m<strong>as</strong>s flowrates and also the<br />

different volumes (heat exchanger, pipes, …) exist<strong>in</strong>g on ITER and on<br />

the future mock-up.<br />

Once the similitude ratio had been established, the circuit w<strong>as</strong><br />

simplified (<strong>in</strong>fluence <strong>of</strong> gravity w<strong>as</strong> ignored and several parallel pipes<br />

were replaced by an equivalent pipe) while keep<strong>in</strong>g the objective <strong>of</strong><br />

the study, i.e. validat<strong>in</strong>g smooth<strong>in</strong>g <strong>of</strong> the pulsed load. Some 3D<br />

views correspond<strong>in</strong>g to this prelim<strong>in</strong>ary study are presented <strong>in</strong> this<br />

paper.<br />

C4-E-03 Design, analysis and test concept for prototype<br />

cryo-l<strong>in</strong>e <strong>of</strong> ITER<br />

B. Sarkar, H. Vaghela, N. Shah, S. Badgujar, R.<br />

Bhattacharya, Ch. Chakrapani, Institute for Pl<strong>as</strong>ma<br />

Research.<br />

The ITER cryo-distribution and cryo-l<strong>in</strong>e is a part <strong>of</strong> the <strong>in</strong>-k<strong>in</strong>d<br />

supply for India. The design <strong>of</strong> the systems is <strong>in</strong> progress. The<br />

topology <strong>of</strong> torus and neutral beam cryo-l<strong>in</strong>e is def<strong>in</strong>ed <strong>as</strong> six process<br />

pipes along with thermal shield at 80 K and outer vacuum jacket. In<br />

order to develop confidence <strong>in</strong> the concept <strong>as</strong> well <strong>as</strong> to establish the<br />

high level <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g and manufactur<strong>in</strong>g technology, a prototype<br />

test<strong>in</strong>g h<strong>as</strong> been proposed. The prototype test will be carried out on<br />

1:1 model <strong>in</strong> terms <strong>of</strong> dimension. However, the m<strong>as</strong>s flow rate <strong>of</strong> the<br />

supercritical helium at 4.5 K and g<strong>as</strong>eous helium at 80 K, will be on a<br />

1:10 scale. The prototype cryo-l<strong>in</strong>e h<strong>as</strong> been designed and analyzed<br />

for thermal, structural and hydraulic parameters. The prototype will<br />

simulate the major <strong>in</strong>tegrities and technical issues <strong>of</strong> the cryo-l<strong>in</strong>e.<br />

The objective <strong>of</strong> this prototype test is to verify mechanical behavior<br />

due to thermal stress & pressure force, thermal and hydraulic<br />

performances. The concept <strong>of</strong> test facility h<strong>as</strong> been realized along<br />

with the P& I diagram, <strong>in</strong>strumentation, controls, data acquisition and<br />

80 K helium generation with warm compressors, primary and<br />

secondary heat exchangers. The test set up consists <strong>of</strong> supply and<br />

receiver valve boxes and <strong>in</strong>terfac<strong>in</strong>g hardware. The test will also<br />

qualify the analysis tools be<strong>in</strong>g used and the deviations. The paper<br />

will discuss the design concept, methodology for analysis and<br />

approximations, <strong>as</strong> well <strong>as</strong> the test facility.<br />

S<strong>in</strong>cere acknowledgement to E. Tada, V. Kal<strong>in</strong><strong>in</strong><br />

C4-E-04 Design <strong>of</strong> the NIF Cryogenic Target System<br />

C.R. Gibson, General Atomics; B.J. Haid, T.N.<br />

Malsbury, M.D. Verg<strong>in</strong>o, Lawrence Livermore<br />

National Laboratory.<br />

The National Ignition Facility (NIF), with its 192 beaml<strong>in</strong>es focused<br />

on a t<strong>in</strong>y target, is the world’s largest l<strong>as</strong>er project. The mission <strong>of</strong> the<br />

NIF is to produce high-energy-density conditions and, ultimately, to<br />

demonstrate fusion ignition through a process called Inertial<br />

Conf<strong>in</strong>ement Fusion. Although many different target designs have<br />

been proposed, they all <strong>in</strong>clude a spherical capsule ~3 mm <strong>in</strong> diameter<br />

filled with a mixture <strong>of</strong> deuterium and tritium (DT). All target designs<br />

require that the DT is <strong>in</strong> the form <strong>of</strong> a solid layer, and hence the target<br />

temperature must be ~18 K at shot time.<br />

The purpose <strong>of</strong> the NIF Cryogenic Target System (CTS) is to field<br />

cryogenic targets on the NIF. It is designed to cool the targets to<br />

solidify the DT fuel. Once the DT h<strong>as</strong> formed a smooth layer, the<br />

target is transported to the center <strong>of</strong> the NIF Target Chamber and shot.<br />

The cool<strong>in</strong>g for the CTS is provided by a Gifford-McMahon twostage<br />

cryocooler. The use <strong>of</strong> a mechanical cryocooler <strong>in</strong>stead <strong>of</strong> liquid<br />

helium does impose design challenges <strong>in</strong> the area <strong>of</strong> target<br />

temperature stability (+/- 2 mK) and target mechanical stability (+/-<br />

6.8 micron).<br />

The NIF Cryogenic Target System h<strong>as</strong> completed the F<strong>in</strong>al Design<br />

ph<strong>as</strong>e and a prototype <strong>of</strong> the cryogenic subsystem h<strong>as</strong> been tested. The<br />

first CTS production unit is now be<strong>in</strong>g fabricated and <strong>as</strong>sembled. This<br />

paper will present the system design and test results with an emph<strong>as</strong>is<br />

on cryogenic design challenges and solutions proposed to meet those<br />

challenges.<br />

Work supported by U.S. Department <strong>of</strong> Energy under Contract No.<br />

DE-AC0301SF22260<br />

C4-E-05 Performance <strong>of</strong> upgraded cool<strong>in</strong>g system for<br />

LHD helical coils<br />

S. Hamaguchi, S. Imagawa, T. Obana, N. Yanagi, S.<br />

Moriuchi, H. Sekiguchi, K. Oba, T. Mito, O.<br />

Motojima, National Institute for Fusion Science; T.<br />

Okamura, Tokyo Institute <strong>of</strong> Technology; T. Senba,<br />

Hitachi, Ltd.; S. Yosh<strong>in</strong>aga, H. Wakisaka,<br />

Ishikawajima-Harima Heavy Industries Co., Ltd..<br />

Helical coils <strong>of</strong> the Large Helical Device (LHD) are large scale<br />

superconduct<strong>in</strong>g magnets for heliotron pl<strong>as</strong>ma experiments. The<br />

helical coils had been cooled by saturated helium at 4.4 K, 120 kPa<br />

until 2005. An upgrade <strong>of</strong> the cool<strong>in</strong>g system w<strong>as</strong> carried out <strong>in</strong> 2006<br />

<strong>in</strong> order to improve the cryogenic stability <strong>of</strong> the helical coils and then<br />

it h<strong>as</strong> been possible to supply the coils with subcooled helium at 3.2<br />

K, 120 kPa. A designed m<strong>as</strong>s flow <strong>of</strong> the supplied subcooled helium<br />

is 50 g/s. The subcooled helium is generated at a heat exchanger <strong>in</strong> a<br />

saturated helium bath. A series <strong>of</strong> two centrifugal cold compressors<br />

with g<strong>as</strong> foil bear<strong>in</strong>g is utilized to lower the helium pressure <strong>in</strong> the<br />

bath. The supplied helium temperature is regulated by rotation speed<br />

<strong>of</strong> the cold compressors and power <strong>of</strong> a heater <strong>in</strong> the bath. The m<strong>as</strong>s<br />

flow <strong>of</strong> the supplied helium is also controlled by ten heaters at the<br />

outlet above the coils. In the present study, the performance <strong>of</strong> the<br />

cool<strong>in</strong>g system h<strong>as</strong> been <strong>in</strong>vestigated. Although the designed m<strong>as</strong>s<br />

flow <strong>of</strong> the subcooled helium at 3.2 K could be supplied to the coils<br />

stably, the estimated temperature <strong>of</strong> the coils w<strong>as</strong> higher than<br />

expected one. The maximum m<strong>as</strong>s flow <strong>of</strong> the subcooled helium at<br />

3.2 K w<strong>as</strong> 60 g/s due to the cool<strong>in</strong>g capacity <strong>of</strong> the cold compressors.<br />

In this c<strong>as</strong>e, the average temperature <strong>of</strong> the coils is expected to be<br />

lowered to 3.5 K, which is the designed temperature <strong>of</strong> the coils after<br />

the upgrade.<br />

Page 53 <strong>of</strong> 53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!