24.04.2013 Views

DIGITAL VOLTMETER - F6FZK - Free

DIGITAL VOLTMETER - F6FZK - Free

DIGITAL VOLTMETER - F6FZK - Free

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

I<br />

OPERATING AND SERVICE MANUAL -<br />

<strong>DIGITAL</strong><br />

<strong>VOLTMETER</strong><br />

3455A<br />

7,- HEWLETT<br />

k PACKARD


OPERATING AND SERVICE MANUAL<br />

MODEL 3455A<br />

<strong>DIGITAL</strong> <strong>VOLTMETER</strong><br />

Serial Numben: 1622A00101 and Greater<br />

IMPORTANT NOTICE<br />

This loose leaf manual does not normally require a change sheet: All<br />

major change information has been integrated into the manual by<br />

page revision. In eases where only minor changes are muird. a<br />

change sheet may be supplied.<br />

If the Serial Number of your instrument is lower than the one on<br />

this title page, the manual contains revisions that do not applv to<br />

your instrument. Backdating information given in the manual adapts<br />

it to earlier instruments.<br />

Where practical, backdating information is integrated into the text,<br />

parts list and schematic diagrams. Backdating changes are denoted<br />

by a delta slgn. An open delta !A1 or lettared delta (AA) on a given<br />

page. refen to the cotreswndinp backdatrng note on that page,<br />

Backdating changes not integrated into the manual are denoted by<br />

a numlxred delta (Al 1 wh~ch refers to the corresponding change in<br />

the Backdating section (Sectron VSII.<br />

To help minimize the possibility of electricat fire or shock<br />

hazards, do not expose this instrument to rain of excesive<br />

moisture.<br />

Manad Part No. 03455-90003<br />

Microfiche Part No. 03455-90053<br />

@Copyright Hewlett-Packard Company I W6<br />

P.O. Box 301, Loveland, CoIorado, 80537 U.S.A.<br />

Printed: July 1979


MEWLET T<br />

PACKARD<br />

CERTIFICATION<br />

Hewlett-Packard Company certvies that this product met its published specifications at the rime of shipment from the<br />

factory. He wletr-Packard further cerrgies that its calibrcrtion measurements are rmceeble ro the United States Na-<br />

tional Bureau of Standards. lo the exrent allowed by the Bureau's colibrarion facility, ond to the calibration facilities<br />

of other international Standards Orgunirarion members.<br />

WARRANTY<br />

This Htwlat-Paekard product is warranted against defects in material and workmanship for a period of one year<br />

from date of shipment [,txcept that in the case of certain components listed in Section I of this manual, the warranty<br />

shall be for the specified period] . During the warranty period, Hewletz-Packard Company will, at its option, either<br />

repair w replace products which prove to be defective.<br />

For warranty service or repair, this product must be returned to a service facility designated by -hp-. Buyer shall<br />

prepay shipping charges to -hp- and -hp- shall pay shipping charges to raurn the product to Buyer. However, Buyer<br />

shall pay all shipping charges, duties, and taxes for products returned to -hp- from another country,<br />

Hewlctt-Packatd warrants that its software and firmware designated by -hp- for use with an instrument will execute its<br />

programming instructions when properly installed on that instrument. Mtwlett-Packard does not warrant that the<br />

operation of the instrument, or software, or firmware will be uninterrupted or error free.<br />

LIMITATION OF WARRANTY<br />

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer,<br />

Buytr-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental<br />

specificat ions for the product, or improper site preparation or maintenance.<br />

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFlCALLY<br />

DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR<br />

PURPOSE.<br />

EXCLUSIVE REMEDIES<br />

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-<br />

PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSE-<br />

QUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.<br />

ASSISTANCE<br />

Product maintenance ogreemenis and other customer assistance agreements are available<br />

for Hewlert-Packard products.<br />

For any assisrancc, conract your nearest He wlet t-Packard Sales and Service Office.<br />

add^^ are provided at the back of this manua!.


Pa HEWLETT<br />

PACKARD<br />

SAFETY SUMMkRY<br />

T h folluwhg ufrtl pmlltima murt k obwrwd during rll phwr of apsntien, dm, mild mpdr of tAh<br />

inltrumsnt Rilun ro comply with them prsclutions or with spsleific worninga elmwhen in thi8 manual violatus<br />

mfety mndmrda of hige, mmlnufmtturs, md intended uw of ths instrument Hswlstt-Pmekard Compeny assumen no<br />

linbility for the ewlnmm'r failure to comply with the88 rspuirsmsnt~. This is s Safety Class 1 imtrurnsat.<br />

GAOUlD THE IlltTRUMEllT<br />

To minimize shock hazard, the instrument chassis and cabinet must be connected to an elec-<br />

trical ground. The instrument is equipped with a three-conductor ac power cable. The power<br />

cable must either be plugged into an approved three-contact electrical outlet or used with a<br />

three-contact to two-contact adapter with the grounding wire {green) firmly connected to an<br />

electrical ground (safety ground) at the power outlet. The power jack and mating plug of the<br />

power cable meet International Electrotechnical Commission IIEC) safety standards.<br />

DO NOT OPERATE IR All EXPLOSIVE ATMOSPHERE<br />

Do not operate the instrument in the presence of ffamrnabl~ gases or fumes. Operation of any<br />

electrical instrument in such an environment constitutes a definite safety hazard.<br />

KEEP AWAY FROM LIVE CIRCUITS<br />

Operating personnel must not remove instrument covers. Component replacement and internal<br />

adjustments must be made by qualified maintenance personnel. Do not replace components<br />

with power cable connected. Under certain conditions, dangerous voltages may exist even with<br />

the power cable removed. To avoid injuries, always disconnect power and discharge circuits<br />

before touching them.<br />

DO NOT SERWCL OR ADJUST ALONE<br />

Do not attempt internal service or adjustment unless another person, capable of rendering first<br />

aid and resuscitation, is present.<br />

Because of the danger of introducing additional hazards, do not install substitute parts or per-<br />

form any unauthorized modification to the instrument, Return the instrument to a Hewlett-<br />

Packard Sales and Service Office for service and repair to ensure that safety features are main-<br />

tained.<br />

DANGEROUS PROCEDURE WARllllllGS<br />

Warnings, such as the example below, precede patentially dangerous procedures throughout<br />

this manual. Instructions contained in the warnings must be followed.<br />

I WARNING )<br />

Dm~rora<br />

voltmpw, mpnbls of causing death, Ire pmnt in thb inrtrumsnt Uw ex-<br />

tmma mutian whms hsndling, bslting, and adjusting


I<br />

I<br />

SAFETY SYMBOLS<br />

Genaral Definitions af Safety Symbols Used On Equipment or In Manuab.<br />

Instruction manual symbol: the product will be marked with this<br />

symbol when it is necessary for the user to refer ro the instruction<br />

manual En order to protect against damage to the instrument.<br />

Indicates dangerous voltage (terminals fed from the interior by<br />

voltage exceeding 1OOO volts must be so marked).<br />

Protective conductor terminal. For protcctisn against electrical<br />

shock in case of a fault. Used with field wiring terminals to in-<br />

- dicate the terminal which must be connected to ground before<br />

operating equipment.<br />

/f7 OR<br />

-<br />

Low-noise or noiseless, clean ground (earth) terminal. Used for a<br />

signal common, as well as providing prokction against electrical<br />

shock in case of a fault. A terminal marked with this symbol must<br />

be connected to ground in the manner described in the installation<br />

(operating) manual, and before operating the equipment.<br />

Frame or chassis terminal. A connection to the frame (chassis) of<br />

the equipment which normally includes all exposed metal structures.<br />

Alternating current (power line).<br />

--- Direct current (power line).<br />

Alternating or direct current (power line).<br />

The WARNING sign denotes a hazard. It calls attention to a pro-<br />

cedure, practice, condition or the like, which, if not correctly per-<br />

formed or adhered to, could result in injury or death to personnel.<br />

The CAUTION sign denotes a hazard. 11 calls attention to an<br />

CAVT'QN<br />

operating procedure, practice, condif ion or the like, which,if nor<br />

correctly performed or adhered to, could result in damage to or<br />

destruction of part or all of the product.<br />

' : The NOTE sign denotes important information. It calls attention<br />

to procedure, practice, condition oi the like, which is essential to<br />

highlight.


Model 3455A<br />

1-2, This Operating and &Senrice Manual contains informa-<br />

tion necessary to install, operate, test. adjust, and service<br />

the Hewlett-Paekard Model 3455A Digital Voltmeter.<br />

1-3. Included with this manual is an Operating information<br />

supplement. The supplement is a duplication of the first<br />

three sections of this manual and should be kept with the<br />

instrument for use by the operator.<br />

14. This section of the manual contains the performance<br />

specifications and general operating characteristics of the<br />

3455~, Also listed aw available options and accessories,<br />

and instrument and manual identification infonation.<br />

1.8. Instrument identification by serial number i s Iocated<br />

on the rear panel. Hewlett-Packard uses r two-section serial<br />

number consisting of a four-digit prefix and a fivedigit<br />

suffm separated by a letter designating the country in<br />

which the instrument was manufactured. (A = U.S.A.;<br />

G = West Germany; J = Japan; U = United Kingdom.) The<br />

prefuc is the same for all identical instruments and changes<br />

onIy when a major instrument change is made. The suffix,<br />

however, is assigned sequentidly and is unique to each<br />

instrument.<br />

1-9. This manual applies to instruments with serial num-<br />

bers indicated an the title page. If changes have been made<br />

in the instrument since this manual was printed, a yellow<br />

"Manual Changes" supplement supplied with the manual<br />

will define these changes and explain how to adapt the<br />

manual to the newer instruments. In addition, backdating<br />

information contained in Section V11 adapts the manual to<br />

instruments with serial numbers lower than those listed on<br />

the title page.<br />

1-10. hrt numbers for the manual and the microfiche<br />

copy of the manual arc also listed on the title page.<br />

1.1 1. D ESCR lPTlO l.<br />

1-12. The Model 3455A Digital Voltmeter makes ac volt-<br />

SECTION I<br />

Section I<br />

age measurements with five digit resolution and dc voltage<br />

and resistance measurements with 5 or 6 digit resolution as<br />

programmed by the user. The 3455A employs an automatic<br />

calibration (AUTO CALI feature which automatically cor-<br />

rects for possible gain and offset erron in the andog cir-<br />

cuitry to provide maximum accuracy. A remavable refer-<br />

ence module permits external calibration of the dc voltage<br />

and resistance functions. The reference module can be<br />

removed, calibrated and returned to the instrument, or the<br />

module can be replaced with another recently calibrated.<br />

reference. A MATH feature permits voItage or resistance<br />

measurements to be scaled into convenient units or to be<br />

read directly in percent enor from a selected recerence.<br />

The 3455A is HPdB proflmrnabIe for system applications.<br />

HP-=IB is Havlett-Pockoml 's implementation of<br />

1-5. SPE CI F I CATIO 'NS.<br />

IEEE std 488- 19 75, "'srond(~rd digitaI interface<br />

Id. Operating specifications for the 3455A are listed in for pmgrammobIe imfmmentation ':<br />

Tabk 1-1. These specifications are the performance standards<br />

or limits again. which the inarumcnt is tested. Table 1-13. O ~ ~ O N S<br />

1-2 lists general operating characteristics of the instrument.<br />

These characteristics are not specifications but are typical The options are available u+ with the<br />

operating characteristics included as additional information<br />

Model 3455A3<br />

for the user. Option 00 1: Average Responding AC Converter<br />

Option 907: Front Handle Kit<br />

1.7, IISTRUMENT AND MANUAL IDENTIFICATION. Option 908: Rack Mounting Kit<br />

Option 909: Front Handle and Rack Mounting Kit<br />

Option 9 10: Additional Set of Operating Information<br />

and Operating and Service Manuals<br />

1 - t 5. Accsasorias Supplied.<br />

1-16. A senice kit (-hp- Part No. 03455-8441 1) consisting<br />

of a PC extender board and a fuse is supplied with the<br />

Model J455A.<br />

1-17. ACCESSORIES AVAILABLE.<br />

1- 18. The following is a list of accessories available for use<br />

with the Model 3455A<br />

Accessory No. 1 Description<br />

-<br />

I1 177A<br />

3411tA<br />

I063 1 A<br />

106318<br />

I063IC<br />

03455-6 1609<br />

3455A Reference Module<br />

High Voltage Probe (40 kV dc)<br />

HP-IB Cable 1 meter 139.37 in.)<br />

IP-IB Cable 2 meter (78.74 in.)<br />

HP-IB Cable 4 meter (1 57.48 in.)<br />

Inguatd/Outguard Service Cable<br />

1-19. Recommended Test Equipmsmt.<br />

1-20. Equipment required to maintain the Model 345SA is<br />

listed in Table 1-3. Other equipment may be substituted if<br />

it meets the requirements listed in the table.


Section I Model 3455A<br />

Table 1-1. -if ieations.<br />

DC Voltage<br />

Specifications apply with Auto-Cal ON<br />

mmxtram<br />

&.a#mm: DImplav: km.cg: (I digir = JWI% of range)<br />

High High High High<br />

Resolution Resolution Resolution RexlluHon<br />

Off On Off On<br />

.TV - t.149999V -<br />

1V 1 Y 2 1.49994Y 5 1.49-V<br />

10V I0 V z 14.9999V z 14.99999V<br />

lmv IOOV ? 149.999V r 149 9999V<br />

lOOOV lOOOV 2 1000. OOV 2 1000. OOOV<br />

Rmw Srleetlon: Manual. Automatic, or Remote<br />

Performance (High Resolution Off)<br />

24 hours; 23°C % l°C<br />

10V mnge: % (0.002% of readng + 3 dl*)<br />

100 & lOOW mnge: -t1(0.004% of reading + 3 chits)<br />

1V range: * (0.003% of reading + 4 digits]<br />

90 days: 23°C ?SvC<br />

10V range: -. (0 005% of teading + 3 dglk)<br />

100 & lOOOV range.: +{0.007% of reading + 3 digits)<br />

1V range: *.(O.M)6% of reading + 4 digits)<br />

6 months: 23°C 25°C<br />

10V range: ?(0.008% of reading + 3 digits)<br />

100 & 10WV mnge: r (0.01 0% of reading + 3 drgts)<br />

1V mnge: 2 tO.M39% of reading +- 5 digts)<br />

tmrp8rmture CaafCicler#: [PC to 51PC)<br />

O.IV range: -t(O.lXK)3% of readlng + 0.15<br />

drgi&S/"C<br />

1 year. 23°C 2 5°C<br />

1QV range: ? (0.013% of reading + 3 digits)<br />

100 & lOOOV range: =(0.015% d reading + 3 digits)<br />

1V range: +(0.024% of reading + 6 dlgts)<br />

1V range: z [0.0003% of reading + 0.015<br />

digits)/"C<br />

1OV mnge: z (0.00015% of reading + 0.01 Input Characteristics<br />

digitslIoC<br />

100 & lOOOV range: = [O.MK)39& ot readfng + .01<br />

digits)/"C<br />

Accnrmw (1 digit = .001% of range):<br />

24 hours; 23°C 2 1°C<br />

1 QV range: * (0.002 W of readlng + 1 digit)<br />

1V range: 2 (0.003% ol reading + 1 digit)<br />

0.1Y range: =(0.004% of reading + 4 digits)<br />

100 & lMH3V range: = (0.004% d reading + 1 d~git)<br />

tmpu* haErt.nea:<br />

0.lV through 10V range: >lQm ohms<br />

lOOV and lOOOV range: 10 megohm %0.1%<br />

[with Auto-Cal OFF)<br />

Mufrnm Emput blt.ae:<br />

High to Low Input Terminals: *1000V peak<br />

Guard to Chassis: * 500V peak<br />

Guard to Low Terminal: +200V peak<br />

W days; 23'C 25°C<br />

10V range; ? (0.005% of readlng + 1 d@t)<br />

1V range: ?(0.006% of reading -i- 1 d~git)<br />

0.1V range: t (0.007% of reading + 4 digits)<br />

100 & 1WV range: * [O 007% of reading + 1 dig111<br />

1Yorr.E Mode ReJectioa (WIWR): NMR is the ratio of the<br />

peak normal-mode voltage to the peak error voltage in<br />

the reading.<br />

50 Hz optration: > 60 dB at 50 Hz * 0.1%<br />

60 Hz operalion: > 60 dB a1 M) Hz 2 0.1 WO<br />

6 months: 23°C t 5°C<br />

10V range: + (0.008% of reading + 1 diglt)<br />

Effectbat Com=on Mode RejecUon (ECMR): ECMR<br />

is the ratio of the peak common-mode voliage to the<br />

IV range: ? (0.009% of reading + 1 digit]<br />

resulrant peak error voltage in the reading with 1 kfl un-<br />

O.lY range: 2 (0.010% of reading + 5 digits)<br />

100 & FOOOV range: *(O 010% of read~ng + 1 dlgt)<br />

balancc in low lead.<br />

AC Inpui:<br />

I year, 23°C 15°C<br />

IOV mnge: =(0.013% of reading + 1 digit)<br />

IY range: 2 (0.014% of reading + 1 digit)<br />

O.1V range: =I0.015% of reading + 6 digits)<br />

100 & lOMlV range: (0.015% of read~ng + 1 digt )<br />

50 Hz opwation: > 160 dB at SO Hz k 0. I %<br />

60 Hz operation: > 160 dB at 60 Hz 0.1 %<br />

DC Input:<br />

> ladB<br />

~ ~ ~ ~ d ~ I d ~ l ~ ~ , ~ : =<br />

Performance (High Resolution On)<br />

64% 6ate h # b<br />

Ibolmtfmm B#olatlom<br />

toMl 5 readlngslsec. 3 readingslsec.<br />

Lto-oh !24 readlngsisec. 6 madingslsec.<br />

mlk mt. Im*<br />

Terpmmtmm Cwtticknb (WC to 50°C)<br />

1 V range: 2 (0.0003% of reading + 0.15<br />

digits)/"C<br />

IOV range: z (0.00015% of reading + 6.1<br />

Ruolwtlon Rmsolatllom<br />

digits)/"C<br />

100. & l w V range: 2 (0.0003% of reading + 0.1<br />

digitsI/"C<br />

5 readingslwc.


Model 3455A Section I<br />

Table 1-1. Specifications (Cont"d1.<br />

Ohms<br />

MaxImrm<br />

hn-: Dlmplmy: Accmep: 4 wlre k ohms* (1 digit = .00016'o of range)<br />

High High High mh 24 hours: 23°C t l'C<br />

Resolution Resolution Resolution Rexllution IkR range: =(0.0025% of reading -+ 4 digits)<br />

Off On Off On lOkIl range: 2 I0 M)45% of reading + 4 dig&)<br />

lOOkR rangem 1(0.0020% of reading +- 5 digits)<br />

.I kfl<br />

.14mkn -<br />

1000k12 range: -~(0.0120% of reading + 4 diqts)<br />

lkfl lkfl 1.49999kR 1.499999kfl<br />

10,aXlkfl range: (0. IOOQ% of reading + 4 digits)<br />

10 kR 10 kn 14.9Wkl1 14.99999kfl<br />

200kR lWkR 149 999kll 149.9999kR<br />

90 days; 23°C 25°C<br />

IOOOkR lOOOkR 1499 99k11 1499.999kR I kR range: * (0 0035% of reading + 5 digits)<br />

1OOMkR lM300kfl 14M 9k11 14999.99kil 1 OkR range: 2(0.0060'% of reading + 5 digits)<br />

100k12 range: +(0.0035% of reading + 6 digjts)<br />

Bmrsm 9.leemlol: Manual, Automatic, or Remote<br />

100akIl range: %(0.0135% of reading -t 5 d~glts)<br />

10,000kfl range: ?(0.1000% of reading + 5 d~gts)<br />

FmncCloa SIIdon: 2 wire k ohms w 4 wlre k ohms<br />

6 months; 23°C *5"C<br />

Performance (High Resolution Off)<br />

Tmrpnrtwe Codidark (0°C to 50°C)<br />

0.1 klk range. (0.0003% of reading + 0 2<br />

dlgiklloC<br />

1, 10 and lQQkR range: (0.0003% of reading + 002<br />

dlQitsl/"C<br />

la00kfl mnge: I0 TXX153h of reading * 0.02<br />

digits)/T<br />

10.000kR range: (0 004% of reading + 0.02<br />

dlgits)/C<br />

Acmm- 4 wire k ohms* t I digit = .MI4 of range]<br />

24 hours: 23'C f l'C<br />

O.lkfl range: *(O.M)3% of reading + 4 digits)<br />

~kfl range: ?(0.0040% of reading -t. 6 digits)<br />

IOkR range: ~(0.0065% of reading + 6 digits)<br />

lOOkR rangem ?{0.0040% of reading + 7 digits]<br />

lOOOkfl range. %{0.0140% of reading -I. 6 dlglts)<br />

10,000kIl range: e(0.1000X of reading + 6 dlgitsl<br />

l year. 23OC 25OC<br />

1 kR range: k(O.OW5sh of reading + 7 digits)<br />

l0kll lange: 2 10.0070% of reading + 7 digits)<br />

100kfl mnge: 2 (0.0045% of reading -I- 8 dqts)<br />

1000kIl range: + 10,0145% of reading + 3 dlglts)<br />

10,000kll range: 2 [0.100073 of readlng + 7 d~grts)<br />

*Atemncyr. 2 wire k ohms<br />

All accuracy specihcations are the same as 4 wire k ohms ex-<br />

,,pt 0 . ~ 4to k ~ readings,<br />

lkfl range: lr(0.0039 of reading + 1 digit)<br />

lOkR range: +.(0.005% of reading + 2 diyts) lnpllt characteristics<br />

wmhem #mmaf.td amom<br />

lOakfl range: ?(1).002% of reading + 2 dig~ts)<br />

lOOOki1 range: 2[0.012'% of readlng + 5 dlgrts)<br />

10.000kil range: ~(0.1% of reading + 5 digits)<br />

90 days; 23°C ?5T<br />

0.1 kfl range: *(0.005% of readlng + 5 digits)<br />

1 kR range: *(0.005% of rea$ing + I digit)<br />

IOkll range: + (0.007% of reading + 2 digits)<br />

100kfl range: ~(0.004% of reading + 2 digits)<br />

1000kIl range: k(0.0145 of reading + 5 dig~ts)<br />

1O.MXIkll range: =(0.100% oof readmg + 5 digits)<br />

6 months: 23T zS"C<br />

0.1 kil range: + (0.005% of reading + 6 digltsl<br />

1 kft range: z (0.0059; of reading + I digit)<br />

l0kll range: 2{0.007% d reading + 2 digrts)<br />

100kf1: range: ?(Q 004% of readtng + 3 dlglts)<br />

1000kIl range: %{Q.OI4'% of read~ng + 5 d~gts)<br />

10,000k11 range: ?(O. IOO% of reading + 5 dig~trl<br />

1 year; 23°C t5C<br />

0.1 kn range: c(Q.006% of reading + 7 digits)<br />

lkfl range: ~(0.006% of reading + 2 digits)<br />

loif1 range: =(0.008% of reading + 3 dtgits)<br />

100kfl range: 2(Q.005T9 of reading + 4 d~gits)<br />

1000kfl range: +(0.015% of reading + 6 dlgitsl<br />

10.000k11 range: *(0 100% of reading + 6 digits1<br />

Hm~ammm<br />

unknown:<br />

< 5 volts for oope circuit<br />

~4.7 volts for valid readlng<br />

-"I Dtl*q ~'omimm'):<br />

Olkfl. 1kO<br />

.d:D


Section I Model 3455A<br />

Ill.rlmrm<br />

hW-I D8oplay:<br />

High Rewlution High Resolution<br />

On or Off On or Off<br />

1V 1 . 4 ~ ~<br />

10V 14.9993V<br />

lOOV 149.999V<br />

IOOOV 1090 OOQ<br />

R.e#m SIIacUor: Manual. Automatic. or Remote<br />

Fumedon Saketiom: ACV or Fasf ACV<br />

Table 1-1. Specifications (Cont'dl.<br />

AC Voltage (RMS converter)<br />

Performance<br />

Jemptr.tum CorCficlest: (0°C to 50°C) for inputs 1W of full scale: 2(0.002% of reading + 2 dlglh)/T<br />

AC coupled. input < 156 of full scale: 002% of reading + b digits)/"C<br />

AC/DC coupled. ~(0.002% of teadlng * 6 dIgitsl/'C<br />

Aoeurmcy: % of reading + digits or (96 of range) I' IAC Coupling)'<br />

FASIT ACV. SblHr-2OkH+ tlkwx- Il@kHr IHkWr-2 SOkH.' 251kHz-SOOLHf SMkUm IMh'<br />

ACV' SOH.*Z,kHa 20kHs.100kHz I WkHr-250kHau 251kHz-5~OhHzo 500kH1-1 MH+'<br />

I4 bra: 2S"C z 1°C<br />

amp.; ZS°C * ST<br />

L ran: XS'C zS°C<br />

I ymmt: 03°C 15°C<br />

~rdmuub.~ommndlubu 'FmwAC IXrarWudlwd . d d r D * r . d h r Zn4nlm,borwrwur1* rrv<br />

%r#h.lm+ m mAr h :WE k.* imn I* ol r a p la*mnRCtKcnuCirdmmi.bor'diVlru*l '~;dha~.r.Wlm~n~~rbrrr~tur-~Wb*<br />

FwAl


Model 3455A Section I<br />

Mmxi~mm<br />

B.m#me: Wmplny:<br />

Table f -1. Specifications (Cont'dl.<br />

AC Voltage (Average Converter Opt. 001)<br />

High Redutlon High Resolution<br />

On or Off On or Off<br />

IV 1.49999V<br />

10V 14.9999V<br />

lOOV 149.999V<br />

1OOOV 1oOo.00v<br />

hrgr Slketlom: Manual, Automatic, or Remote<br />

FaactCor &l*cBor: ACV or Fast ACV<br />

Performance<br />

krmmtrm Corffidant: (WC to 5PC)<br />

-1 (0.WZx of reading + 2 digits)/'C<br />

Aeemey: 5 [% of reading + digits or (% of range) ] l<br />

FAST ACV' WIk5WtL 5WlhlhHr ILMx-lWkh l~H+-tSW<br />

ACV~ 30HpWH+ 56Hr~iOQll. 1a).lt-1WkH. 1Wklt*251kW<br />

24 h.: 53% ?1'C<br />

Wd.gm:XSOC=SOC<br />

6 mom: 2ST ?ST<br />

1 r.: 2ST 28°C<br />

Input Characteristics<br />

0.47% + 70 dlg.<br />

(.07%)<br />

0 32% + 50 Mg.<br />

t.mW<br />

0,35%+50drg,<br />

'G,."lmuab.dsrta.<br />

(kIk1Wrmp .dd001p~nluoll-kI+<br />

Sprrh.r-nh me lor nw kwh m b a * 1 IIW d rangr<br />

' T r m w v l pu,~ 1h.n ImMr~abda I ud 1W d y<br />

Acrurrr n nm .prllld d 7 h r mrk k r l l pmdwt 111'<br />

lmpmt 1-pmdmnca:<br />

Front Terminals-2Mll= 1% shunted by less than l@F<br />

Rear Terminals-PMflz 1% shunted by less than 75pS<br />

Marlmum Impml Uoltanr:<br />

High to Law Terminals: * 1414 volts peak (Subject to a<br />

voll - Hz limitation)<br />

Guard to Chassis: 2500Y peak<br />

Guard to Low Terminal: 2200V peak<br />

imam Remdlmg ate:<br />

mH. Oat. t.ytL IIH. ate W L<br />

RU~OIH TI-:<br />

ACV and FAST ACV<br />

First reading to 4.1% of step size when Mggered coincj-<br />

dent with step change when on correct range<br />

(for AC signals with no DC componenf)<br />

0 09% + 25 dl9<br />

{.M5%)<br />

0 70% + M1 dig<br />

OSQ%+70dig<br />

( 07%)<br />

(.05051<br />

0.1% +25d1g.<br />

f.M5%1<br />

106%)<br />

0.75% + 60 d~g<br />

tm%I<br />

0.50% + 70 dig. 0.40% + 60 dig 0.1% + 30 dig. 0.75% + 70 dlg.<br />

1.07~)<br />

0.50% + 70 dig.<br />

(.~%i (.Q3%1<br />

0.40% + 70 dig. 0.12% + 35 dig.<br />

(.a7t9)<br />

0.75% + 80 dlg.<br />

t.M%l / @%I<br />

1.1 read~ngslsec. 12 readw~gslwc.


Section I Model 34556<br />

1-6<br />

Table 1-1. Specifications (Cant'd ).<br />

Math<br />

% E m X-Y 100%<br />

(.><br />

X Is present reading. Y and Z are previously entered read- X Is present reading. Y is a previously entered reading, or<br />

ing. numbementered from the front panel armluesentered number entered from the front panel or by external program.<br />

by external program.<br />

Mm~lmrr Nrrh (Entered or Displayed)<br />

~mnlrrr Nrrbn: (Entered or Displayed) -c 199.999 9<br />

-. 199.999 9<br />

Accrrmqey:<br />

Accnncgi *(ACCURACY OF X READING t 1 DIGIf OF DIS.<br />

-(ACCURACY OF X READING r l DIGIT OF DIS- PLAYED ANSWER)'<br />

PLAYED ANSWER)'<br />

'This assumes no "Y' emr.<br />

'This assumes no "Y' or "F' emr.<br />

Raw %-Ion: Mnrsl. Automk, or Asme<br />

Function Clmlon:<br />

DC Vdts<br />

AC Voltr (ACV w FAST ACV)<br />

OHMS (2 wlr* kllohm or 4 wlrr kllohml<br />

TEST<br />

MDRMAL MODE RWECTION (50 Hz DPERATIOFIJ<br />

racoutlucriwrr<br />

fable 1-2. Typical Oprrtting Charwteristlcs.<br />

Effmiw Noh kndwldth<br />

T - 1 IBO mc for 5 &@it 6tF Hz Operation<br />

T - 2115 let for 6 digtt a] Hr Opsrntion<br />

T 1 EO rec for 5 digrt 60 Hz Owration<br />

T - 4/25 sec for 6 d8grt 50 Hz Operation<br />

COMMON MODE REJECTION 11 KILOHM IMBALANCE)<br />

,%3<br />

9-<br />

1m<br />

=<br />

Y 'W<br />

5<br />

2 $70<br />

NORHA EFFECTIVE C<br />

m urn<br />

M 14<br />

W !m<br />

rn<br />

1; " - 150<br />

2<br />

* m<br />

10<br />

I0<br />

0<br />

P REUurwY ,HI!<br />

Nwml Mode Rajmion a M log 1 - ::if T 1<br />

im<br />

PO<br />

w<br />

I<br />

2 rta<br />

+<br />

U w<br />

: 1 9<br />

110<br />

111<br />

I 10 I w<br />

r *r~UtkCr IM,I<br />

1<br />

i<br />

I


Model 3455A Section I<br />

EFFECTIVE COMMON MODE REJECTION (60 Mz OPERATIOW)<br />

urn<br />

Typicsl HP-I8 Handshake Tim:<br />

Ac~ept Data - (3455A addre- to lirten or ATN true)<br />

500 ~ sec per character typical (0 delay sourel<br />

Output Oeta - (3455R ddrwsed to tatkl<br />

250 pwc per chsracfar typld (0 delay acceptor1<br />

1-21, SAFETY COtrlSIOERATlQNS.<br />

1-22. The 3455A is a safety class 1 instrument (provided<br />

with a protecrive earth terminal j. The instrument and man-<br />

ua! should bc reviewed for safety symbols and instructions<br />

before operation.<br />

Table 1-2. Typical Operating Charactwristi~ {Cont'dl.<br />

General (Auto Cat must be on fw 75 seconds to meet 811<br />

specifiwtionsl<br />

Overload Indication: OL<br />

Operating Temperature: O'C to 50'~<br />

Warmup Time: One hour to meeiall spmifications<br />

Humidity Range: < 95% R6H., 0 C tg 40 C<br />

Storage Temperaturn: 40 C ta *75 C<br />

Power: 10011201240 V +5%. -10% 48 Hz to 4aE Hz Ilrm<br />

operation < 60 VA<br />

220 V + TO% 48 Hz 10 400 Hz line operation<br />

< 60 VA<br />

Dlmenslons: 88.9 mm hlgh x 425.5 mm wide x 527.1<br />

mm deep 13%" high x 16%" wide K 20%" deep)<br />

Weights: Net - 9 kg (21 Ibs.)<br />

Shipping - 12 kg (28 Ibs.)


Section 1 Model 3455A<br />

'<br />

Reference Divider<br />

DC Transfer Standard<br />

Electronic Counter<br />

Resistan~e Standard<br />

Bun System Anelyzm<br />

Celculator<br />

~eclllorcape<br />

Digital Voltmeter<br />

Reoistors<br />

Signature Analyzer<br />

Table 1-3. Recommended Test Equipment<br />

Division Ratio Accuracy + ,001 %<br />

Output Voltage Range - 1 Y to 1 kV<br />

Output Voltages: 1 Y. 1.018 V.<br />

1.01 9V. 10 V<br />

Accuracr: i 5 PPm<br />

Stabilitv: f -001 % (30 days)<br />

50 Hz to 60 Hz<br />

Resistance: 1 kf2<br />

Accuracy: + .MK)S%<br />

Resistance: 100 K<br />

Accuracy: i .002%<br />

HP.1 E Control Capebllilv<br />

HP-I 8 Control ambiritv must<br />

serve as printer for 3455A<br />

Output data.<br />

Bandwidth: DC to 10 MHz<br />

Sweep 5me: 0.1 w to 1 secldiv<br />

Sensif ivity: 1 Vldlv<br />

Voltage Range: 10 mV to 1 OOO V<br />

Resolution: l0 pV<br />

1 Resistances:<br />

1 kn+lO%<br />

TO kR t 0.7 %<br />

1 Ma 20.1%<br />

P - Performance Checks T = Troubleshooting<br />

A = Adjustments 0 = Operators Check<br />

Fluke Model 750A<br />

Reference Divider<br />

Fluke Model 731 A<br />

DC Transfer Standard<br />

+hp Mo~el5300Ai5302A<br />

Messuring Sysrern<br />

Guildlne Model<br />

833011 K or 9330Al1 K<br />

Guildline Model 9330F100 K<br />

-h~- Model 59401 A<br />

Bus System AnslyzW<br />

+hp Mode1 9825A<br />

hp Model l8OCJD<br />

Otcilloscoge with<br />

1801 A and 18211 A<br />

plug-in unin<br />

-hp Model 3490A<br />

+hp Part No.<br />

0684-1 021<br />

06984357<br />

0698-6369<br />

-hp- Model 5004A<br />

I<br />

PA<br />

PA<br />

P<br />

A<br />

T<br />

OT<br />

T<br />

PAT<br />

P


Model 3455A<br />

2-2. This section contains information and inst ructions<br />

necessary to install and interface the Model 3455A Digital<br />

Voltmeter. Also included are initial inspection procedures,<br />

power and grounding requirements, environmental inforrna-<br />

tion, and repackaging instructions.<br />

2.3. INITIAL INSPECTION.<br />

24. This instrument was carefully inspected both rnechan-<br />

icaliy and electrically before shipment. It should be free of<br />

mars and scratches and in perfect electrical order. The<br />

instrument should be inspected upon receipt for damage<br />

that might have occurred in transit. If the shipping con-<br />

tainer or cushioning material is damaged, it should be kept<br />

until the contents of the shipment have been checked for<br />

completeness and the instrument has been mechanicfly<br />

and etectricdly checked. Procedures for testing electrical<br />

performance of the 34S5A are given in Section IV. If the<br />

contents are incomplete, if there is mechanical damage or<br />

defect, or if the multimeter does not pass the Performance<br />

Tests, notify the nearest Hewlett-Packard Office. (A list of<br />

the -hp- Sales and Service Offices is presented at the back of<br />

the manual.) IF the shipping container is damaged, or the<br />

cushioning material shows signs of stress, notify the carrier<br />

as well as the Hewlett-Packard Office. Save the shipping<br />

materids for the carrier's inspection.<br />

2-5. PREPARATION FOR USE.<br />

2-6. Power Requirements.<br />

SECTION II<br />

2WW 4, Irn *"I<br />

rzo *IN* WvmI"<br />

TOO volts 90 to 105 volts<br />

120 volts 3 08 to 3 26 volts 0.5 A<br />

220 volts 198 to 231 volts 0.25 A<br />

240 vorrs 21 6 to 252 volts 0.25 A<br />

Figure 2-1. Lima Voltage Selection.<br />

Section 11<br />

used far -hp- power cables. The -hp- part numbcr directly<br />

below each drawing is rhe part number for a power cable<br />

equipped with a connector of that configuration. If the<br />

appropriate power cable is not included with the instru-<br />

ment, notify the nearest -hp- Safes and Service OFfice and<br />

the proper cable will be provided.<br />

2-12. Grounding Requirernsnrs.<br />

2-1 3. To protect operating personnel, the Nat ienal Electri-<br />

cal Manufacturer's Association (NEMA) recommends that<br />

the instrument panel and cabinet be grounded. The Model<br />

3455A is equipped with a three conductor power cable<br />

which, when plugged into an appropriate receptacle,<br />

grounds the instrument.<br />

2-7. The Model 3455A requires a power source of 100, 2-14. Bench Use.<br />

120.220, or 240 V ac (+ 56 - lo%), 48 Hz to 400 Hz single<br />

phase. Maximum power consumption js 60 Vd.<br />

2-1 5. The Model 3455A is shipped with plastic feet and tilt<br />

stands installed and is ready for use as a bench instrument.<br />

2-8. tine Voltage Selection.<br />

The plastic feet are shapcd to permit "stacking" with other<br />

2-9. Before connecting ac power to the 3455A, make sure<br />

the rear panel line selector switches are set to correspond to<br />

the voltage of the available power line as shown in Figure<br />

2-1. Also, be sure the proper Fuse Is installed. The multi-<br />

meter is shipped with the line voltage and fuse selected for<br />

120 V ac operation.<br />

Be sure the 50 - 60 Hz rear panel s~'tch is set<br />

for the proper line frequenq for your lecatiorr,<br />

2.1 0. Power Cable,<br />

2- 1 1. Figure 2-2 illustrates the standard configurations Figura 2-2. Power Cord Configurations.<br />

2- 1


Section I1 Model 3455A<br />

full-module Hewlett-Packard instruments. The tilt stands<br />

permit the operator to elevate the front pane[ far operating<br />

and viewing convenience.<br />

2-1 6. Rack Mounting.<br />

2-17. The Modd 3455A may be rack mounted by adding<br />

rack mounting kit Option 908 or Option 909. Option 908<br />

contains the basic hardware and instructions for rack<br />

mounting; Option 909 adds front handles to the basic rack<br />

mount kit. The rack mount kits are designed to permit<br />

the Multimeter to be installed in a standard 19 inch rack.<br />

When rack mounting, additional support must be provided<br />

at the rear of the instrument. Be sure that the air intake at<br />

the rear of the instrument is unobstructed.<br />

2-18. Ihterfgcs Connections.<br />

2-19. The Mode1 3455A is compatible with the Hewlett-<br />

Packard Interface Bus (HP-IIB).<br />

NOTE<br />

HP-lB is Havlert-Packad 3- implementation of<br />

lEEE std 488-19 75, 'Standard Digito I Interface<br />

for fiogrurn~nrrble Insrnimenrarion ".<br />

The Multirncttr is connected to the HP-IB by connecting an<br />

HP-IB interface cable to the 24-pin connector Iocated on<br />

the rear panel. Figure 2-3 illustrates typical HP-IB system<br />

interconnections and shows the 1063 1 AJBJC HP-IB Inter-<br />

face Cable connectors. Each end of the cable has both a<br />

male and female connector to simplily intcrconnection of<br />

instruments and cablcs. As many as 15 instruments can be<br />

connected by the same interface bus; however. the maxi-<br />

mum length of cable that can be used to connect a group of<br />

2-2<br />

instruments must not exceed 2 meters (4.5 ft.) times the<br />

number of instruments to be connected, or 20 meters<br />

(65.6 ft.), whichever is less.<br />

2-20. Address Selection. The HP-IB address switch,<br />

located on the rear panel, permits the user to set the "talk"<br />

and "listen" address of the instrument. The talk and listen<br />

address is a 7-bit code which is selected to provide a unique<br />

address for each bus instrument. The 3455A normally<br />

leaves the factory with the address switch set to a "Listen"<br />

address of 6 and a "talk'hddress of V. The address switch<br />

also allows selection of a "talk-only" mode. Refer to<br />

Paragraph 3-42 for address selection instructions.<br />

2-21. External Trigger. A BNC connector, located on the<br />

tear panel, is provided for an external trigger input. The<br />

trigger input is to be driven with TTL level signals.<br />

2-22. ENVIRONMENTAL REQUIREMENTS.<br />

piiq<br />

To prevent eiectricol shock or fire hazard, do<br />

not expose the instrurnent ro soin or moisture.<br />

2-23. Operating aad Storage Temperature.<br />

Figure 2-3. Typical HP-I5 Synem Intereonnectiona.<br />

2-24. In order to meet the specifications listed in Table<br />

1-1, the instrument should be operated within an ambient<br />

temperature range of 23°C * 5OC (73°F 2 9°F). Tht inslmmen<br />

t may be operated within an ambient temperature<br />

range of O"C to + 55"~ (+ 32°F to + 13 1 OF) with degraded<br />

accuracy.<br />

2-25. The instrument may be stored or shipped where the<br />

ambient temperature range is within 4 0 ' ~ to +75'~<br />

(40°F to + 1 6J°F). However, the instrument should not


e stored or shipped where temperature fluctuations cause<br />

condensation within the instrument.<br />

2-26. Humidity.<br />

2-27. The instrument may be operated in environments<br />

with relative humidity of up to 95%. However, the instru-<br />

ment must be protected from temperature extremes which<br />

cause condensation within the instrument.<br />

2-28. Attitude,<br />

2-29. The instrument may be operated at altitudes up to<br />

4572 meters ( 1 5,000 feet).<br />

2-30. REPACKAGING FOR SHIPMENT.<br />

Nrn<br />

If the insmment is ro be shipped to Hewleft-<br />

Packard for service or repair, attach a rag to the<br />

instrument Edenrifying rite owner and indicating<br />

the sewice or repair to be accompiished.<br />

Include rhe model number and full serial num-<br />

ber of rite instrument. In any correspondence,<br />

identrjy the instrument by model number and<br />

full serial number. If you have any questions,<br />

mntact your nearest -hp- Sales and Service<br />

Office.<br />

Section IE<br />

2-3 1. The following is a general guide for repackaging the<br />

instrument for shipment. If the original container is avail-<br />

able, place the instrument in the container with appropriate<br />

packing material and seal well with strong tape or metal<br />

bands. If the original container is not available. proceed as<br />

~olollows:<br />

a. Wrap instrument in heavy paper or plastic before<br />

placing in an inner con t ajner.<br />

6. Ptacc packing material around all sides of instrument<br />

and protect panel face with cardboard strips or plastic<br />

foam.<br />

c. Place instrument and inner container in a heavy<br />

carton and seal with strong tape or metal bands.<br />

d. Mark shipping container '"DELICATE IKSTRU-<br />

MENT", "'FRAGILE", etc.


Section III Model 3455A<br />

3-0<br />

HP-la* status indiceton: High Resolution switch - swttches display from 5.112<br />

located rn the center of the key indicates High ResoFu-<br />

tron on when lit.<br />

TALK - lights when the 3455A is addressed to "talk". Trigger Selection K~ys - permits setection of INTER.<br />

LOCAL switch - permits; the operator to return the<br />

Display - Indicates polarity and amplitude of the<br />

@ measurement. Measurement results are presented in either<br />

5-3 12 d~glto or 6-1 R digbts depend~ng upon whether the<br />

HIGH RESOLUTION feature 1s off or on. An LED rn the<br />

upper left corner of the display rndicates sample rate of<br />

the 3455.4 Five LEO'S. located to ihe right of the display.<br />

~nd~cate whether the display vs presenting DC Voltage,<br />

AC Voltage, Ohms, Scale or % error measurement<br />

results.<br />

Range Selection Keys - permit selection of ranges as<br />

DC vorts: .I V, 1 V, 10 V. IMI v. I kv. AUTO<br />

AC Volts. 7 V. 10 V. f OO V. 1 kV, AUTO<br />

Ohms: .I K, 1 K, 10 K, 100 K, 1.000 K, 10.000 K, AUTO<br />

LED'S located in the center of thp! keys indicate which<br />

range is selected.<br />

key has an LEO which lights to rndlcate the trrgqer source<br />

Sample Rere Centrots - permit selectcon of ma~imum<br />

@ sample rate ai the present sample rare diuidd by 2. The<br />

maximum sample rate may be dlvlded by 2 uo to 6 times<br />

for a minimum sample rate of: maximum sample rate<br />

1 @<br />

@<br />

Binary Program Indicator - indicates when the 3455A is<br />

operating in the Binary Program mode. Rafar ta<br />

Paragraph 3-66.<br />

Math Controls - Selen SCALE ( E l , % ERROR<br />

Y<br />

tw x 100). or MATH OFF. The Math feature selected<br />

Y<br />

is indicated by an LED located in the key (Paregraph<br />

3-1 91.<br />

Function Selection Keys - DC Volts. AC Volts, FAST<br />

@ AC Voltr.2WlREXn.4WlREkn.andTEST.LEO'r<br />

located rn the center of the keys ~ndlcate whlch funct~on<br />

IS selected.<br />

Auto Ca'l switch - allows the Auto-Cal feature to be turn-<br />

a ed on or off. LED in center of Key indicates Auto-CaI on.<br />

Refer to Paragraph 3-29.<br />

@<br />

@<br />

@<br />

ENTER controls - Recall the number stored in the Y or Z<br />

regis7.r 10 the display. also "shifts" the front .and<br />

keyboard to permit entry of new data to be stored in the<br />

Y or Z registers (Paragraph 3-23).<br />

STORE Controls - The Store controls transfar the<br />

number presently being displayed info the Y or Z register<br />

(Paragraph 3-23E.<br />

Rear Terminal Indicator - indicates when the rear input<br />

terminals have been selected.<br />

Figure 3-1. Front and Rear Panel Features.<br />

64<br />

1


Model 3455A Section III<br />

3-2. This section contains infomation and instructions<br />

necessary for operation of the Modtl 3455A Digital<br />

Voltmeter. Included is a description of operation<br />

characteristics, a description of the operating controls<br />

and indicators, and functional checks to be performed<br />

by the operator.<br />

3-3. OPEflATkllG CHARACTERISTICS.<br />

3-5. Befare connecting ac power to the 345519, make<br />

certain the rear panel lint selector switches are set to<br />

correspond to the voltage and frequency of the available<br />

power line and that the proper fuse is installed for the<br />

voltage selected. For rated measurement accuracy, the<br />

3455A should be aIlowed to warm up for at least one<br />

hour.<br />

SECTION Ill<br />

OPERATING INSTRUCTIONS<br />

logic of the instrument. When all these measurements<br />

and caSculations are compIeted. the 34S5A wilI display<br />

+ .8.8.8.8.8.8.8. and the self-test operation will start<br />

again. In order to bring the instrument out of this mode,<br />

any other function button must be pressed.<br />

3-8. En the event of a cal constant failure, the Self-Test<br />

operation will stop and the failing cal constant's number<br />

will be displayed (an integer number from 13 to 0). If<br />

the dummy calculation fails, a non integer number is<br />

displayed {e.g., 9.998 or 10.Mi2 etc.).<br />

3-9. The Self-Test function can be remotely programm-<br />

ed, as described in the programming portion of this sec-<br />

tion. The 3455A will output a 10 upon a succtssful com-<br />

pletion of the tat and if addressed to "talk." If the<br />

dummy calculation fails, the answer of the dummy<br />

calc~llation will be the output (9.998 or 10.002 etc.). If<br />

any auto-cal constants fail, the 3455A will not output<br />

any readings, (times out).<br />

3.6. s8R Tmt Opantlon. NOTE<br />

3-7. Thc internal test function of the 3455A verifies the The seCf test fmm does not test opemrion<br />

operation of the dc analog circuitry, inguard and of the ohms or ac sections nor the measure-<br />

outguard logic circuitry, and the front panel indicators ment amuracy of the 3455A.<br />

and display. The primary test of the dc analog circuitry<br />

is the measurement of various Auto-Cal constants. A 3-10, QC Yohqs Ma~rmtmt<br />

logic check is also performed, when all the cal constant<br />

measurements are taken. The logic check consists of a 3-1 1. The Model W55A measures dc voltagc from 1<br />

dummy cal constant calculation made in the outguard microvolt to 1OOO volts in five ranges extending from .1<br />

Ohms Slgnnl Terminals - supplims drhra signal fw<br />

4-WIRE Ohms measurements (Paragraph 3-1 21.<br />

Input Terminals<br />

GUAAO switch - Internally connects the Guard terminal<br />

to the LO Input terminal Ifor front panel opemtion only,<br />

Paragraph 3-41 1.<br />

GUARD Terminal<br />

Ohms Signal Terminals<br />

Input Terminals<br />

Guard Terminals<br />

REAR PANEL<br />

FrontlRear INPUT SELECT switch<br />

HP-IS" Connector - see Paragraph 2-1 8 and 3-48<br />

AC or AClOC Input Select~on sw~tch - refw to Paragraph<br />

5-14.<br />

Cine Frequency Selection Switch - must be set to cones<br />

pond to The power line frequency 450 Hz or 60 Hz).<br />

Reference Module<br />

EXTERNAL TRIGGER Input Connacror<br />

HP-IS" Address Sa!mtion Switch - mkr to Paragraph<br />

3-53.<br />

Cooling Fan<br />

Power Line Voltage Selection Switches - refer to Para-<br />

graph 2-8.<br />

Fuse - 90 W to 126 V - 0.5 amp. 198 V to 252 V -<br />

0.25 amp.<br />

AC Power Connector.<br />

Figure 3-1. Front and Rear Panel Features (Cont'd).<br />

"HP-1B IS Hewlett-Packard's implementation of IEEE Srd.<br />

488-1975. "Standard D~gital Interface for Programmable<br />

InstrumenTation".


Section I11 Model 34556<br />

4-WIRE MEASUREMENT 2-WIRE MEASUREMENT<br />

ilSIBNAL INWT GUARD nSlGNAt INPUT GUARD<br />

(4 WIRE) (2 W Ie)<br />

volt full-scale to 1OOO volts full-scale. Measurement<br />

results are presented in 5-I/2 digits during normal<br />

operation or in 6-1/2 digits when the 345% is set to the<br />

High Resolution mode. All ranges except the IOOO voIt<br />

range have 50% overrange capability and are overload<br />

gratected from input voltages up to ~tr 1 OOO volts. Input<br />

resistance in the dc function is greater than 101%ohms<br />

on the -1 V, 1 V, and 10 V ranges and equal to 10<br />

megohms on the 100 V and 1000 V ranges. Refer to<br />

Table 1-1 for DC Accuracy specifications.<br />

3-13. The Model 3455A measures resistance from 1<br />

milliohm to IS megohms in six ranges extending from .I<br />

kilohms ful scale to 10,000 kilohms full scale. Measure-<br />

ment results are presented in 5-1/2 digits during normal<br />

operation or in &1/2 digits when the 3455A is set to the<br />

High Resolution mode, The only exception is that the .I<br />

V range can only take a measurement in the 5-1/2 digit<br />

mode. Resistance may be measured in "CWIRE" con-<br />

figuration for optimum accuracy or "2-WIRE" eon-<br />

figuration may be selected for measurement conve-<br />

nience. Figure 3-2 shows proper connections for making<br />

resistance measurements, The nominal output signal<br />

current on the .1 kilohm, 1 kilohm and 100 kiIohrn<br />

ranges is .7 mA. The nominal output current on the<br />

1000 kilohm and 10,000 kilahm ranges is .7 microamp.<br />

Maximum output voltage is limited to less than 5 volts<br />

on all ranges. Refer to Table f -I for ohm accuracy<br />

specifications.<br />

Figure 3-2, Ohmmeter Meaw rement Connections.<br />

3455-8- 4667<br />

volts RMS. Readings taken in the ac function art<br />

display in the 5-1/2 digit mode only. Input impedance<br />

of both convertors is 2 rnegohms in parallel with<br />

< 75 pF for rear terminal input and < 90 pF for front<br />

terminal input. In addition to the normal ac voIts func-<br />

tion, the 3455A also has a fast ac volts function. The<br />

fast ac function has a faster ac reading rate than the nor-<br />

mal ac function.<br />

3-16. The frequency response of the true RMS conver-<br />

tor is from 30 Hz to 1 MHz in the normal ac volts func-<br />

tion and from 3QO Hz to 1 MHz in the fast ac volts func-<br />

tion. Both ac signals or ac plus dc signals (ac signals<br />

superimposed on a dc level) can bt measured by the true<br />

RMS convertor, Selection of the ac or ac + dc inputs<br />

are chosen by a switch Iccated behind the rear panels<br />

reference cover. Refer to Table 1-1 for accuracy<br />

specifications of each ac mode.<br />

3-17. The frequency response of the average converter<br />

is from 30 Hz to 250 Hz in the normal ac volts function<br />

and from 300 Hz to 250 kHz in the Fast ac voIts func-<br />

tion. Only ac signals (no dc component) can be<br />

measured by the average converter. Refer to Table 1-1<br />

for accuracy specification of each ac mode.<br />

3-18. In order to get accurate ac readings (especially<br />

with high voltage inputs at high frequencies), the low in-<br />

put terminaI (front and rear) should be connected to the<br />

guard terminal (front and rear). Refer to paragraph 3-39<br />

for guarding information.<br />

3-15. The -hp Model 3455A offers a choise of true<br />

RMS (standard unit) or average responding at: conver- NOTE<br />

tors (Option 001). Both methods measure ac voltages<br />

from 10 microvolts to 1000 volts in four ranges exten- The front pneI guard pushbutton appii~<br />

ding from I volt to 1000 volts ranges. AIE ranges, except only for front panel inputs. Be sure to wire<br />

the 1OOO volts range, have 50% overrange capability and rear panel guard connections yourself, V ifare<br />

protected from input voltage components up to 1000 ing the m r panel input terminals.


Model 3455A Section I11<br />

3-20. The math feature of th 3455A allows the measure-<br />

ment value to be offset and/or scaled by known values<br />

or to be expressed in percent of a reference value.<br />

3.21. Sale Mods. The scale mode of the math feature is<br />

described by the formula: result = X-Z where x is the<br />

Y<br />

measurement value, z is the offset value, and y is the<br />

scale factor. This mode allows the measurement value to<br />

be modified by the addition, subtraction, multiplication<br />

or division of a known value. Addition and subtraction<br />

are performed by entering the nurnber to be added or<br />

subtracted in "2" and entering 1 in "y". The scale for-<br />

muIa then becomes: result = x - (* d = x - ( f z).<br />

1<br />

Division is performed by entering 0 in "z'9ad the<br />

divisor value in "y." The scale formula then<br />

becomts: result = 5 -5 Multiplication is perform-<br />

Y Y<br />

performed by dividing the measurement value by the in-<br />

verse of the multipIier value; that is, multiplication is<br />

performed by dividing by a fraction. The scale formula<br />

becomes: result = . X - 0 = xy. As an example: to<br />

1 /Y<br />

multiply by 10, divide by the inverse of 10 which is 1/10<br />

or .I. Various examples using the scale mode are as<br />

follows:<br />

a. Current Measurement: Accurate current<br />

measurements can be made by using a low value resistor<br />

shunting the 3455A's input terminals. The value of the<br />

resistor is then entered in the '"y" register (see<br />

Paragraph 3-22), and zero is entered in the "z" register<br />

Wirh the resistor connected at the input terminal and the<br />

instrument set in the voltage mode, current<br />

measurements can now be made. You can do this by<br />

connecting the input across the resistor and measuring<br />

the voltage drop across the resistor. This voltage drop is<br />

proportional to the current through the resistor. By<br />

switching the 3455A to the scale mode, the reading<br />

becomes an accurate current reading in rnilliamps. Since<br />

the resistor value is in kiIo ohms (R) and stored in "y",<br />

and since zero is stored in "z". the scale equation<br />

becomes:<br />

v-0 v<br />

X'Y = - = -= current in rnilliamps<br />

Y R R<br />

where R = Resistor across the input terminaZs<br />

V = Voltage drop across the resistor<br />

b. Temperature Measurement: A temperature mea-<br />

surement can be made by using a line or resistive<br />

temperature sensor.<br />

Assume that the sensor has a resistance of 1 kiIohrn at<br />

25°C and changes 5900 ppm/"C. At 0'C the sensor<br />

would have a resistance of 852.5 ohm (1 kilohm - 15.9<br />

ohms) 25). This number is divided by 1000 since the<br />

3455A measurement results are expressed in kilohrn and<br />

is entered in the "2" register to remove the offset at<br />

0°C. The measurement result of the 3455A is scaled ?a<br />

read directly in degrees centigrade by solving the equa-<br />

tion for the value of "y". This is done where the results<br />

of the equation are equal to 25°C since the sensor<br />

resistance is specified at that temperature. The scale<br />

equation becomes:<br />

solving for y:y = = -12459 with this number<br />

25<br />

entered in the "y" register, the 3455A measurement<br />

result will be presented directly in "C.<br />

c. Accurate 2 Wire Ohm Memrement: When trying<br />

to make an accurate 2 wire ohm measurement, the input<br />

lead resistance and the internal resistance of the 3455A<br />

should be subtracted out from the reading. This is done<br />

by setting the instrument to the desired range and short<br />

the input leads at the measuring point. Store a 1 in "y"<br />

and store the input lead resistance reading in "z". Open<br />

the input Ieads and connect the unknown resistor to the<br />

leads. With the 3455A set in the Scale mode, the value<br />

of the unknown resistor is displayed without the input<br />

lead resistance. Since a 1 is stored in "y" and the lead<br />

resistance (RE is stared in "z", the scale equation<br />

becomes:<br />

x-y =<br />

Y 1<br />

= unknown resistance in ohms<br />

whwe x = total measured resistance incIuding R<br />

R = lead resistance<br />

3.22. % Error Mods. The % error mode of the math<br />

feature is described by the formula: result in % = z x<br />

Y<br />

100, where "x" is the present measurement value and<br />

"y" is the reference value. An application of this<br />

feature might be an inspection rest of resist rs. This<br />

nominal resistor value would be entered in the "y"<br />

register in kilohrn (3455A) resistance measurements are<br />

presented in kiIohm). As an example, assume the test is<br />

made on a group of 750 ohm resistors with a tolerance<br />

of 5Vo. The nominal resistor value (750 ohms) is entered<br />

in the "y" register as .750. The % error equation<br />

becomes: result in To = x--750 x 100, A resistor with<br />

.750<br />

an actual value of 790 ohms would give a measurement<br />

result of: % error = .7W-750 x 100 = 5.33333%,<br />

750<br />

indicating the resistor is out of tolerance by -33333%.<br />

d. Limit Tmting: The Scale mode of the 345SA can<br />

also be used to do Limit Testing. This can be ac-<br />

complished since the largest number which can be


Section tlI Model 34556<br />

displayed is +200,000 and the smallest number is<br />

-200.00. If the magnitude of the display exceeds<br />

200,000, either a " + LL"' or a "-LL" is displayed.<br />

Therefore, the 'Vy" and onstan st ants must be chosen<br />

so that when "x" (the reading) is equal to the upper<br />

Iimit, the display is + 200,000 and when "xv' is equal to<br />

the loww limit, the display is -200,000. This can be accomplished<br />

as follows:<br />

When x = the Lower Limit, the DISPLAY should =<br />

-200,m<br />

When x = the Upper Limit, the DISPLAY should =<br />

+ 200,000<br />

therefore, -200,000 = Lower Limit - z<br />

Y<br />

and + 200,000 = Upper Limit - x<br />

This leaves two equations to sotve for the unknown "y"<br />

and "z" constants. The two constants can be found the<br />

following way:<br />

-200,000 (y) = Lower Limit - z<br />

+ 200,000 (y) = Upper Limit - 2<br />

0 = Lower Limit + Upper Limit -22<br />

(add these two equations)<br />

therefore. z =<br />

Upper Limit + Lower Limit<br />

200,000 = Upper Limit - z<br />

Y<br />

200.000 (Y) =<br />

Upper Limit -<br />

and, y =<br />

Y<br />

Upper Limit + Lower Limit<br />

2<br />

= Upper Limit - Lower Limit<br />

2<br />

Upper Limit - Lower Limit<br />

rn,m<br />

The following is an example of how to use this math<br />

technique. In this example a DC voltage is measured<br />

and compared with a Sower Limit of 10 volts and an<br />

Upper Limit of 30 volts:<br />

'Upper Limit - Lower = 30 - 10 = .m5<br />

Y = -<br />

2 =<br />

400,~ 400,~<br />

Upper Limit + Lowet Limit = 30 + 10 = 20<br />

2 2<br />

By entering ,00005 into the "y" register and 20 into the<br />

register, and then pushing the SCALE and DCV<br />

buttons, the 3455A becomes a limit testing DYM. If the<br />

input exceeds 30 volts a *' + LL'Yis displayed, and if the<br />

input is Iess than 10 volts a "-LL" is displayed. IF the in-<br />

put is within the limits set, a number is dispIayed.<br />

3.23. Enter and Stom.<br />

3-24. The "Y" and "2" ENTER keys have two functions.<br />

When one of the enter keys is pressed, the number<br />

presently stored in the respective memory register is<br />

displayed on the front panel readout. This allows the<br />

operator to check the contents of the "Y'9r "Z*'<br />

memory registers. Pressing the enter key aPso "shifts'"<br />

the front panel keyboard, disabling all keys except those<br />

labeled in blue. These keys can now be used to enter the<br />

desired values to be stored in the 'Tv' or "2" memory<br />

registers. As the value is entered it is displayed on the<br />

front panel readout. Numerical values from .000000 to<br />

+ or - 199,999.9 may be entered in either the Y or Z<br />

registers.<br />

3-25. The STORE keys are used ta transfer the number<br />

presently being displayed in the "Y" or "2" memory<br />

registers and to return the voltmeter to normal opera-<br />

tion.<br />

3-26. The following describes how the ENTER and<br />

STORE features may be used:<br />

a. To view the value presently in memory, press the<br />

ENTER key of the appropriate register (ENTER Y or<br />

ENTER 2). To return this number to memory, press the<br />

STORE key of the appropriate register.<br />

b. To enter a new number, press the ENTER key of<br />

the register to receive the number. Enter the desired<br />

number into the display by pressing the keys labeled in<br />

blue. Store the number entered by pressing the STORE<br />

key of the appropriate register.<br />

c. To enter a measurement value presently being<br />

displayed, press the STORE key of the desired register<br />

(Y or 2).<br />

NOTE<br />

The operotion of the ENTER and STORE<br />

keys ore no! mutually exclusive. That k, the<br />

number being displayed may b stored in<br />

&her the Y or Z regis~er independently of<br />

the register seEected by the ENTER keys.<br />

3.27. High Rmolutlon Mode.<br />

3-28. When the 3455A is used in the HIGH RESOLU-<br />

TION mode, the instrument changes from a 5-1/2 digit<br />

measurement to a 6-1/2 digit measurement. This<br />

changes the measurement resolution from 10 parts/ 1.5<br />

million (5-1/2 digit mode) to 1 partJ1.5 million (6-1/2<br />

digit mode). The integration period will also change<br />

from 1/60 second (I /SO second for 50 Hz operation) to<br />

8/60 second (8/50 second for 50 Hz operation). The<br />

High Resolution mode cannot be used in the AC mode<br />

or the .I V DC and E K ohm ranges. The reading rate in<br />

the DC and Ohms mode will also increase when the<br />

High Resolwtion function is turned off. Table 3-1 gives<br />

the various reading rates of the DC and Ohms functions


Model 3455A Section 111<br />

with High Resolution turned on or off.<br />

3-30 The purpose of the AUTO-CAC feature is to<br />

eliminate offsets, gain non-linearity, and drift which<br />

maybe present in the analog measuring circuits of the<br />

345SA. This is accomplished by measuring the offset<br />

and gain errors and then mathematically correcting the<br />

measurement reading to exclude them. Each of the gain<br />

and error measurements, called Auto-CaI constants, are<br />

stored in the "memory" by the 3455A's main con-<br />

troller. These Auto-Cal constants are usually taken be-<br />

tween each sample of the instrument and are updated<br />

each time a new cal constant measurement is made.<br />

3-29. The reading rate of the 3455A increases when the<br />

Auto-Cal feature is turned off. Table 3-1 gives the<br />

reading rate of the various functions with Auto-Cal on<br />

or off,<br />

3-32. The last set of constants are used to correct<br />

measurements, when the Auto-CaI mode is turned off.<br />

As bng as the input amplifier offsets, gain linearity<br />

and drift do not vary the 3455A should remain within<br />

it's accuracy specifications. The time period over which<br />

these parameters will not change may vary from instru-<br />

ment to instrument. When the Auto-Cat function is<br />

disabled to obtain faster reading rates, it is recommend-<br />

ed to periodically return the 3455A to the Auto-Cal<br />

mode in order to update the cal constants. This can be<br />

done after a block of readings hare been taken or when<br />

the instrument is not in use. The instrument will then<br />

update the cal constants for accurate measurements.<br />

Allow about 6 seconds for updaring the cal constants, if<br />

the 3455k is in the Hold mode.<br />

3-34. The 3455A has three trigger modes. INTERNAL,<br />

EXTERNAL, and HOLD/MANUAL. The following is<br />

an explanation of each trigger mode.<br />

a. Inl~rnal Trigger: This trigger is generated inter-<br />

nally and triggers the 3455A to take a reading, after the<br />

previous operation is completed (a reading or Auto-Cal<br />

measurement). This trigger mode is entered when the in-<br />

strument is turned on, when the Internal Trigger button<br />

is pressed, or a Device Clear message is remotely sent.<br />

b. External Trigger: When the 3455A is the External<br />

Trigger mode, the user can triggw the instrument from<br />

an external trigger pulse. This trigger pulse has to be ap-<br />

plied to the rear External Trigger Connector and should<br />

have a negative TTL edge and must be at least 3 seconds<br />

wide. The instrument wilt take a measurement, when<br />

this trigger pulse is received. After the measurement is<br />

taken, the 34S5A can be triggered again for a new<br />

reading. IT the instrument is triggered while making a<br />

measurement, the new trigger is delayed. After the first<br />

measurement cycle is completed, the delayed trigger will<br />

iniate a second measurement cycle. Only one trigger will<br />

be delayed during any given measurement cycle. Any ex-<br />

tra triggers sent during this cycle will be ignored.<br />

c. Hold/Mc~nuc~I Trigger: This trigger is similar to<br />

the External Trigger, except it can be executed by the<br />

Hold/Manual button. The Hold/Manual button must<br />

be pressed once in order to place the 3455A in the Hold<br />

mode. After pressing the HoId/Manual button the second<br />

time, a measurement is taken. When the mtasurement<br />

c ycIe is completed, the Hold/Manual button can<br />

be pressed again for a new reading. Ir is important to<br />

remember that the Hold/Manual button should be<br />

pushed twice in order to take the first reading. If triggered<br />

while a measurement is taken, the trigger is<br />

delayed until the measurement cycle is complete. The<br />

delayed trigger will initiate a second measurement cycle,<br />

when the first one is completed. Only one trigger will be<br />

delayed during any given measurement cycle. Any extra<br />

triggers sent during this cycle will be ignored.<br />

3-35. Auto-CaE constants measurements also depmd on<br />

the Trigger mode used. An input reading and a cal cons-<br />

tant measurement will alternately be taken, when the<br />

3455A is in the Internal Trigger mode. A typica! se-<br />

quence would be an input reading, one cal constant<br />

measurement, another input reading, the next cal cons-<br />

tant measurement, and so on. An attempt of this se-<br />

quence (input reading/cal Constant measurement) is<br />

also made when the instrument is in the Hold/Manual<br />

or External Trigger modes. If, however, a trigger is<br />

received while a cal constant measurement is taken, this<br />

measurement is aborted and an input reading is taken.<br />

After this reading. the aborted cal constant measure-<br />

ment is then retaken. I I a new trigger is received before<br />

the cal constant measurement is finished, the measure-<br />

ment is again aborted and a new input reading is taken.<br />

The cal constant measurement can be aborted a number<br />

of times, depending on the function of the instrument.<br />

The table below lists the number of times the cal cons-<br />

tant measurements can be aborted. After this number<br />

has been reached, the trigger will be delayed and the<br />

Auto-Cal constant measurement is then completed.<br />

Functiun<br />

Maximum Number of CeI<br />

Constant Termination<br />

OC 128<br />

DC {High Resorutionl 32<br />

AC Fast 64<br />

AC Normsl 8<br />

Ohms 64<br />

Ohms (High Resolution) 16<br />

These numbers are aecumlative when Auto-Cal is on.<br />

3-36. Sanyls Rats {Displnyl.<br />

3-37. The SAMPLE RATE of the 345SA is set internal-<br />

ly and depends on the function selected, the power line


Section 111 Model 345519<br />

frequency, and use of the Auto-Cal and High Resolu-<br />

tion modes. When the Sample Rate buttons are pressed,<br />

the display rate of the reading are changed. By depress-<br />

ing the Decrease + 2 button on the front panel, the<br />

display rate can be decreased. Each time this button is<br />

pressed, the display rate is divided by two. The rate may<br />

be divided a maximum of six times for a display rate of<br />

1/64 of the maximum rate. The 3455A can be reset to<br />

the maximum rate by depressing the maximum button,<br />

after the display rate has been decreased. Table 3-1 gives<br />

the maximum number of readings the instrument can<br />

display on the front panel, in local operation.<br />

Func<br />

Function<br />

DC Volts<br />

Ohms<br />

AC Volts<br />

Fast<br />

AC Volts<br />

Table 3.1. Mahum Franr Panel Reading Rates.<br />

High<br />

Resolution<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Not<br />

Applicable<br />

Not<br />

Applicable<br />

Not<br />

Applicable<br />

Not<br />

Applicable<br />

Auto<br />

Calibration<br />

ON<br />

ON<br />

OFF<br />

OFF<br />

ON<br />

ON<br />

OFF<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Maximum Sample Rate<br />

Maximum Sample Rate<br />

3 read~ngslsec (60 Hz1<br />

2.5 readingslsec 150 Hzl<br />

5 readingstsee (80 Hz)<br />

3.5 readingslsec I50 Hz)<br />

6 readingslsec 160 Hzl<br />

5 readingslssc 150 Hzl<br />

24 readingslsec I60 Hzl<br />

22 readingstsee 150 Hz)<br />

2 readingslsec t 60 HzF<br />

1.8 readinglsec I50 Hzl<br />

45 readingslsec (60 Hzl<br />

4 raadingslsec 150 Hz)<br />

3 readingslsec 160 Hzl<br />

2.5 readingslsec 150 Hz)<br />

12 readlngslsec (60 Hz)<br />

11 readingslsec (50 Hz)<br />

1.3 raadingslsec I60 Hz)<br />

1 .1 readingslsec I50 Hz)<br />

1.3 readingslsec 160 Hz)<br />

1 .1 readtngslsec 150 Hz).<br />

4.5 readingslsec (60 Hz)<br />

3.5 readingslrec (50 Hz)<br />

13 readingslsec 160 Hz) I<br />

1 2 readingslsec 150 Hz)<br />

3-39. The AUTO RANGE feature of the 3455A can be<br />

used to automatically uprange and downrange the in-<br />

strument to the optimum range. This action takes place<br />

when an input measurement is taken. Upranging is d ~ne<br />

when the reading is 150Vo of Full scale and downranging<br />

at 14% of full scale, The Auto Range operation can be<br />

observed by applying 1.4 volts to the input of the<br />

3455A. The range selected by the instrument is the 1 V<br />

range. When the input voltage exceeds 1.5 volts, the<br />

3455A upranges to the I0 V range. When the input<br />

voltage is decreased below I .4 volts, the 1 V range is<br />

again selected. The uprange points, the downrange<br />

points, and the accuracy of the instrument should be<br />

kept in mind when making a measurement. Tirne-<br />

varient inputs may cause the 3455A to constantly<br />

uprange and downrange. If this happens, manually set<br />

the instrument to the higher range.<br />

3-40. Measurement time may also change, when the in-<br />

strument is in the Auto Range mode. If the instrument Is<br />

not on the optimum range, a reading is taken and the<br />

3455A will either uprange or downrange. Another<br />

reading is then taken and if the optimum range has been<br />

found the reading will be displayed. If not, the instru-<br />

ment continues to uprange or downrange. A reading is<br />

taken on at1 intermediate non-optimum ranges untiI the<br />

correct range is found. The measurement time on each<br />

range should be added to the total measurement time.<br />

3-41. GUARDIHG.<br />

3-42. Common-Mods Voltages,<br />

3-43. Common-mode voltages are those which are<br />

generated between the power line ground point of the<br />

source and the LO input and power line ground point of<br />

the 3455A. Currents caused by common-mode voltage<br />

can be included in the measurement circuit, causing<br />

measurement errors.<br />

3-44. Gunrd Connection.<br />

3-45. Figure 3-3 illustrates three methods of connecting<br />

the 3455A Guard terminal to reduce errors caused by<br />

common-mode voltages. In example A, Guard is at<br />

nearly the same potential as the LO measurement ter-<br />

minal so that currents caused by common-mode voltage<br />

flows through Guard and not the measurement circuit.<br />

In example B, the 3455A guard switch is closed connec-<br />

ting guard to the LO input termina1. This allows<br />

common-mode current to flow through lead resistance<br />

Rb causing some measurement error. This connection<br />

may be used if common-mode voltages are not expected<br />

to be a problem. Example C is similar to A with the ex-<br />

ception that connecting guard in this manner alIows any<br />

common-mode current generated between the source<br />

low and powerline ground to flow in the measurement<br />

circuit.<br />

NOTE<br />

The front pnel guard pushbutton applies<br />

only for frunl panel inputs. Be sure to wire<br />

rear punel guard connections youael/, if-<br />

using rhe rear pone/ input terminals.<br />

3-46. Guarding Infomation.<br />

3-47. More detailed information on purpose and<br />

methods of guarding may be found in -hp- Application<br />

~oie No. 123, "Floating Measurements and<br />

Guarding'" This apppcation note is available through<br />

your nearest -hp- Sales and Service Office.


a. nm LDC*~CTW*I-~ E ~ H E C m ~ uu*r ~ -.<br />

m,,,<br />

B W-0 CDI*CTtD fl) LW A1 WLIYLICI.<br />

s ---<br />

C WhRU CDIlFOm 10 E M H -0.<br />

rl(lLr1w<br />

m c m r a<br />

6WeW11<br />

W -7-<br />

W CWw*r W E IRW<br />

tws r-mww IIb<br />

QlYDIIQAI<br />

wt -7501<br />

(PwDDtflllCM<br />

LOU rmenrr r,.<br />

c*uqrm r m<br />

-<br />

axe RZrkm aun<br />

Figure 3-3. Connecting the Guard,<br />

Guard should olw~ys be connecfed. either to<br />

the inslrumen! LO rerminaf or lo a point in<br />

the source circuit as indicated in Figure 3-3.<br />

If the guard ~erminai is left open, commonmode<br />

voltages may exceed the LO-to-Guard<br />

breakdown rating ond damog~ the insirumen!.<br />

5-40. REMOTE OPERATION.<br />

3-50. The Model 3455A is remotely controlled by<br />

means of the Hewlett-Packard Interface Bus (HP-10).<br />

The HP-IB is a carefully defined instrumentation inter-<br />

face which simplifies the integration of instruments,<br />

calc~lators, and computers into systems.<br />

NOTE<br />

HP-IB is Hewlen-Pockord's implementution<br />

of IEEE Sfd. 488-1975, "Sundurd Digital<br />

Interface Jar Progranrmoble Insrrumenra-<br />

lion. "<br />

Section 111<br />

3-51. The capability of a device connected to the Bus is<br />

specified by the interface functions it has. Table 3-2 Iists<br />

the Interface Functions included in the Model 3455k.<br />

These functions are also listed above the rear panel MB-<br />

IB connector (see Figure 3- 1). The number following the<br />

interface function code indicates the particular capabili-<br />

ty of that function as listed in Appendix C of IEEE Std.<br />

488-1975.<br />

Code<br />

SHI<br />

AH?<br />

T5<br />

L4<br />

SR1<br />

R LI<br />

PPO<br />

DC1<br />

DT1<br />

C@<br />

El<br />

Table 3-2. AP-I0 Intarflee Capability.<br />

Interface Functron<br />

Source Handshake mpab1111y<br />

Acceptor Handshake Capabltity<br />

Talker {bas~c talker. serral poll. talk onfy mode.<br />

wnaddress to talk !f addressed to listen)<br />

Lrstener (bas~c Irstener. unaddress to l~sten ~f<br />

addressed to rslkl<br />

Servtce Request Capabilrty<br />

RemotelLocal Capab~l~ty<br />

No Parallcl Poll Capabrl~ty<br />

Device Clear Capab~lrty<br />

Qevlee Trlgger Capabrllty<br />

No Controller Capability<br />

Open Collector lBus Drivers<br />

Interface Functions provide the means for a dwice to<br />

receive, process and send messages over the bus.<br />

3-52. Messages are the means by which devices ex-<br />

change control and measurement information. These<br />

messages permit communication and/or control bet-<br />

ween:<br />

Controller and Device(s)<br />

Device and Device(s)<br />

Controller and Controller(s)<br />

Table 3-3 lists the Bus Messages and gives a brief<br />

description of each. The messages are categorized by<br />

Bus function.<br />

3.53. Address Sslection.<br />

3-54. The '"talk" and "listen" addresses of the 3455A<br />

are seIected by the INSTRUMENT ADDRESS switch.<br />

This switch is a seven section "Dip" switch located on<br />

the rear panel (see Figure 3- 1). The Five switches, labeled<br />

I through 5 are used to select a unique talk and listen ad-<br />

dress. Figure 3-4 lists the available address codes and the<br />

corresponding switch settings. The 3455A normally<br />

leaves the factory with the switch set to listen address 6<br />

and talk address V (decimal code 44).<br />

3-55, Talk Only IHo Cotrtrallsf). Tbe 3455A may be used to<br />

provide measurement data to another device, such as a<br />

printer, without having a controller on the Bus.<br />

However, the device must be HP-I8 compatible. The<br />

talk only switch must be set to the TALK ONLY posi-<br />

tion. In this mode the 3455A will output measurement<br />

1


I<br />

Section 111<br />

Ball<br />

out<br />

TibC 3-3. 011s Memaw.<br />

data each time a measurement sample is made. Section<br />

of FUNCTION, RANGE, TRIGGER, etc. is ac-<br />

complished manually using the front pane1 conttols.<br />

NOTE<br />

Bus supervisory role.<br />

Abort Uncondt!ronally terminates Bus<br />

cornmunicat~ons and returns con-<br />

trol ta the system controller.<br />

When the 3455A is connected lo a vstem<br />

with a controller, the TALK OM Y switch<br />

must be set to the off position.<br />

3-57. AT1 front panel controls, except the CINE switch,<br />

3-8<br />

I<br />

Model 3455A<br />

GUARD witch, and SAMPLE RATE switches, are<br />

programmable from the Bus. The program codes for<br />

each control ate listed in, Table 34. The program codes<br />

can also be determined from the front panel markings.<br />

For multi-control features such as FUNCTEON,<br />

WGE, TRIGGER, and MATH the program code<br />

consists of the combination of the underlined letter in<br />

the control group heading and the position number of<br />

the particutar control. See the following example:<br />

CONTROL GROUP CODE<br />

(UNDERLINED) \<br />

Y5sd-fiw.<br />

POSITION 1 2 3 4 5 6<br />

PROGRAM F1 F2 F3 F4 F5 F6<br />

CODE<br />

INSTRUMENT<br />

ADDRESS<br />

. . . .<br />

TALK -<br />

ONLY 5 1<br />

0 POSITION (DOWN1 1 POSITION lUPl<br />

ASCII Code<br />

Character<br />

Lasten Talk<br />

SP<br />

I<br />

#<br />

s<br />

%<br />

fi<br />

I<br />

I<br />

t<br />

-<br />

/<br />

Q<br />

1<br />

2<br />

3<br />

#<br />

5<br />

5<br />

7<br />

B<br />

9<br />

<<br />

><br />

c<br />

A<br />

0<br />

C<br />

O<br />

E<br />

F<br />

H<br />

I<br />

J<br />

K<br />

L<br />

M<br />

N<br />

0<br />

P<br />

Q<br />

R<br />

6<br />

T<br />

u<br />

V<br />

W<br />

X<br />

Y<br />

Z<br />

I<br />

\<br />

I<br />

NOT USED<br />

Addyers Swtcher<br />

A5 A4 A3 A2 At<br />

o a o o o<br />

o a a o l<br />

0 0 0 1 0<br />

0 0 0 1 1<br />

a o 1 o o<br />

0 0 1 0 1<br />

0 0 1 1 0<br />

G I O O 1 l l<br />

o r 0 0 0<br />

0 1 0 0 1<br />

0 1 0 1 0<br />

0 1 0 1 1<br />

0 1 1 a o<br />

O 1 1 O t<br />

O f 1 1 0<br />

0 1 1 1 1<br />

1 0 0 0 0<br />

1 O O O 1<br />

1<br />

1<br />

0<br />

D<br />

0<br />

O<br />

1<br />

I<br />

0<br />

l<br />

1 O l O O<br />

1 0 1 0 1<br />

1 0 1 1 0<br />

1 0 1 1 1<br />

1 1 0 0 0<br />

1 1 0 0 1<br />

1 1 0 1 0<br />

1 1 0 1 1<br />

1 1 1 0 0<br />

$ 1 1 0 1<br />

1 1 1 1 0<br />

Figure 3.4. Addretr Sslsetion.<br />

Sbir<br />

Dscrrnal Code<br />

M)<br />

07<br />

02<br />

03<br />

04<br />

05<br />

06<br />

07<br />

OR<br />

W<br />

10<br />

11<br />

IT<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

I I<br />

I


Model 3455A<br />

Table 3-4. HP-IB Program Codes.<br />

3-58. The program code for single control features<br />

which can only be programmed on or off (AUTO CAL<br />

and HIGH RESOLUTION) consist of the letter<br />

underlined in the control heading and the number "0"<br />

for off or the number " 1" for on. This also applies to<br />

the DATA READY Request feature which is Bus pro-<br />

grammable only.<br />

Example:<br />

control code<br />

Program Code<br />

(off) AO ng<br />

(on) A 1 D 1<br />

3-59. Program codes for the ENTER and STORE<br />

features consist of the letter underlined in the control<br />

Section I11<br />

heading and thc undtrlined letter of th~ particular control.<br />

Example:<br />

cantrol group code<br />

[un de dined)<br />

control coder/b 6<br />

[underlined)<br />

program code EY EZ SY SZ<br />

3-60. The program code of the BINARY PROGRAM<br />

feature consists of only the underlined character in the<br />

control heading (B).<br />

3-62. The major portion of communications transmit-<br />

ted over the Bus is accomplished by data messages. Data<br />

messages are used by the controller to program the<br />

Mode1 345519 and are used by the 3455A to transmit<br />

measurement data. These Functions are explained in the<br />

following paragraphs.<br />

3.83. Programming. The 3455A is programmed by means<br />

of data messages sent over the Bus from the controller.<br />

These messages are composed of two parts - the ad-<br />

dress command and the program information. The ad-<br />

dress command contains the "talk" and "listen" ad-<br />

dresses of the devices involved; in this case, the talk ad-<br />

dress of the controller and the listen address of the<br />

3455A. The program information contains the codes of<br />

the 3455A controls to be programmed. Syntax of the ad-<br />

dress command portion of the data message is depen-<br />

dent upon the controller being used. For the proper syn-<br />

tax refer to the controller manual. Syntax for the pro-<br />

gram information postian consists of the program codes<br />

listed in Table 3-4.<br />

Example program data messages:<br />

output t o4<br />

unlisten<br />

command<br />

controller<br />

"talk" address<br />

Address 345SA Program<br />

Command Information<br />

CMD "2 U r, "5 K3 A0 H1 M3 K<br />

3455A<br />

"listen" address 1<br />

-<br />

MATH off<br />

HIGH RESOLUTION<br />

1 10 V RANGE<br />

DC Volts FUNCTION<br />

Program data message using the 9830A Calculator.<br />

3-9


Section 111<br />

-<br />

Address<br />

,<br />

3455A Program<br />

Command<br />

,<br />

Information<br />

/<br />

wrt 722, "FI R3 AQ HI MI TI"<br />

3455A listen<br />

ad dress<br />

output to the (decimal equivalent)<br />

bus, includes<br />

the unlisten command<br />

and calculator talk<br />

address<br />

Program data message using the 9825A CaIculator.<br />

3.64, Entmring MRTW Conmntr IT and t) from ths Bar. The<br />

following data message illustrates the program in formation<br />

necessary to enter numbers into the Y and Z<br />

registers:<br />

Address Program<br />

Command Information<br />

v- n *<br />

(refer to Controller Ey 123.456 SY EZ 45.6789 52'"<br />

Manual] I<br />

Enters number<br />

in "2" Register<br />

L<br />

Programs the<br />

3455A to store<br />

the displayed<br />

number in the<br />

"Y" Register.<br />

Number to<br />

bc entered<br />

Prop rams the<br />

34554 to enter<br />

numerical data<br />

into the display<br />

addresses controller to<br />

"talk" and 3455 A to "listen"<br />

The number stored in the Y or Z register can be read<br />

from the Bus by programming the ENTER feature and<br />

the particular register. This transfers the number from<br />

the storage register specified to the display. The number<br />

displayed is output to the Bus by addressing the 3455A<br />

to "talk". The number is returned to the storage<br />

register by programming the STORE feature and the<br />

desired register. The following example illustrates how<br />

to read the numbers stored in the Y and Z register from<br />

the Bus:<br />

Address<br />

Command<br />

-<br />

wrt 722 ,&W<br />

Addresses the Transfers the number<br />

controller (9825A) stored in the Y register<br />

to "talk*' and the into the 3455A display<br />

3455A to "listen"<br />

j 1 Addresses<br />

Outputs the contents of<br />

the 3455A<br />

thc controller's "A" register<br />

to "talk" and<br />

to the display<br />

rhe controller<br />

L Specifies the<br />

(982SA) to con troller register<br />

"listen" to receive the<br />

number<br />

wrt 722 , "SY"<br />

I T<br />

J<br />

Addresses the<br />

Returns thc number in<br />

controller (982514) to<br />

the 3455A display to the Y<br />

"talk" and the 3455A<br />

to "listen"<br />

register<br />

3-85. Dmtr Rerdy Rsquwt. The DATA READY Request<br />

feature permits the 3455A to signal the controller upon<br />

the completion of a measurement. This feature would<br />

normally be used where the 3455A is triggered from an<br />

external source. In this mode of operation, the 345SA is<br />

programmed to the appropriate measurement<br />

parameters (FUNCTION, RANGE, etc.). The con-<br />

troller is then <strong>Free</strong> to control other instruments on the<br />

Bus. Upon being triggered, the 3455A makes a measure-<br />

ment and outputs a "Require Service" message to<br />

notify the controller that the measurement information<br />

information is ready. Upon receiving the service re-<br />

quest, the controller with serial poll the 34SSA to deter-<br />

mine the nature of the service request. Upon being poll-<br />

ed, the 345514 outputs a status byte, in this case the<br />

ASCII character "A"(decimal 65), indicating the<br />

measurement data is ready. The controller then disables<br />

the serial poll and reads the measurement data. The pro-<br />

gram codes for the DATA READY RQS feature are:<br />

I30 Data Ready Request off<br />

D 1 Data Ready Request on<br />

3-HI$. Binnq Program hrtrm. The BINARY PROGRAM<br />

feature permits the status of the FUNCTION, RANGE,<br />

TRIGGER, MATH, AUTO-CAL and HIGH RESO-<br />

LUTIO N controls to be determined or programmed<br />

from the bus in four 8-bit binary words. The BINARY<br />

PROGRAM feature allows faster programming of the<br />

3455A by reducing the number of program data bytes<br />

from a maximum of 12 for normal programming to 4<br />

data bytes for binary programming. The BINARY<br />

PROGRAM codes can also be read and stored by the<br />

controller to re-program the 3455A at a later time (see<br />

Appendix A). One important thing to remember is to<br />

send a '"B'" to the 3455A in order to put the instrument<br />

into the BINARY mode. Table 3-5 lists the allowable<br />

BINARY PROGRAM codes for each of the four data<br />

bytes and the front panel keys they control.


I<br />

Model 3455A<br />

3-67. The foIlewing data message examples illustrate 3455A. To read control status:<br />

how to read or program the front panel controI of the<br />

wrt 722, "F'<br />

Table 3-5. BlNARV PROGRAM Codes.<br />

F~rn BINARY PROGRAM Data 8vla<br />

Cantml$ Aflacnd SCALE. % ERROR. OFF IMkTHl<br />

Proqrsm W e<br />

% ERROR 61<br />

SCALE 62<br />

Ssmnd BlWARY PROGRAM Data Bym<br />

Conrmlr Affansd: AUTO CAL. AUTO RANGE. HIGH RESOLU-<br />

TION. HOLDMANUAL EXTERNAL, INTERNAL<br />

Thltd BINARY PROGRAM b ta @we<br />

mntrolr AflMsd: 10 K, 1 K. 100,10,1, .I (RANGE)<br />

Rogsm Code<br />

1 61<br />

62<br />

Faunh 8lNAAV PROGRAM Oara Bqta<br />

Conrroh Alfemad: T€ST. 4 WIRE Im. 2 WIRE 4n. FAST ACV.<br />

ACV. DCV IFUNCTION)<br />

Program Cods<br />

FAST ACV<br />

ACV 61<br />

DCV > 62<br />

Section Ill<br />

--I L Address the Set the 3455A to the<br />

3455A to BINARY PROGRAM<br />

"listen" mode<br />

Since normalIy four data bytes are used in Binary pro-<br />

gramming, the 3455A may indicate an SRQ condition<br />

when only a " B is sent.<br />

red 722<br />

Address the 3455A 1<br />

to "talk"<br />

The 3455A, after receiving the "talk" command, will out-<br />

put the front panel control status codes (4 bytes). As an<br />

example, if the front pane1 controls were in the "turn-on"<br />

state, the 3455A would output the following codes:<br />

I I MATH OFF 1 IOCVdt.<br />

AUTO CAL ON ' 1<br />

AUTO RANGE ON<br />

HIGH RESOLUTION OFF<br />

INTERNAL TRIGGER<br />

To program front panel controls:<br />

Address the 1<br />

34556 to<br />

""listen"<br />

wrt 722. "B ; K = "<br />

1 T I<br />

FUNCTION<br />

(depends on input appIied)<br />

Desired program<br />

codes (see Table 3-5)<br />

Set 3455A to<br />

BINARY PROGRAM<br />

mode<br />

3.68. M m u Dm. ~ Measurement data is output by<br />

the 34551% in the following general format:<br />

OUTPUT FORMAT: 2 D.DQDDDDE ? DD C&F<br />

Polarity of measurement<br />

(does not apply to ACV<br />

I Terminates<br />

or OHM measurements)<br />

message<br />

Measurement reading<br />

expressed in scientific<br />

notation<br />

This format is printed in the lower left comer of the<br />

3455A front panel for convenience, The following is an<br />

example of a data message output by the 3455A:


Model 3455A<br />

3-a?. Smtn8 IlyZ. M-. The status byte message is<br />

output by the 3435A in response to a serial poll and in-<br />

dicatcs, to the controller, the nature of a service request<br />

message (SRQ) from the 3455A. The following is a list<br />

of the basic status byte codes output by the 34554:<br />

Data Ready - Indicates to the con-<br />

mcasuremml data is being output<br />

to the bus. Watns of possible in-<br />

correct measurement information.<br />

It is possible for more than one of the basic status byte<br />

messages to be true. In this case the resulting status byte<br />

code would be the combintation of the basic starus byte<br />

codes being output. As an example, the resulting code<br />

for the combination of the syntax error and trigger too<br />

fast messages would be ASCII character J decimal code<br />

74. The following illustrates the status Byte rncssagt in-<br />

dicating the purpose of each relevant "bit".<br />

STATUS BYTE MESSAGE<br />

bits 5 and 6 sct lli~h A<br />

I I SYNTAXERROR<br />

L<br />

BINARY FUNCTION<br />

ERKOR<br />

TRIGGI!K TOO FAST<br />

NOTE<br />

All "bits" are low true: bit 8 is nor used,<br />

3-82. DATA OUTPUT CHARACT'ERIST ICS.<br />

3-83. The protocol used by the 345SA to output<br />

measurement data must be followed in order to preserve<br />

proper data transfer over the HP-IB, the following<br />

notes on data transfer over the HP-IB may be helpful:<br />

a. If a reading has bccn taken and thus resides in the<br />

output buffer, the buffer is not considered busy until<br />

the output handshaking begins. Thus, a new trigger will<br />

indicate a measurement and the new reading will replace<br />

the old reading. Thc old reading is lost and there is no<br />

SRQ condition.<br />

b. Onct the first character of measurement data has<br />

been handshakm out, the buffer is considered busy un-<br />

ti1 one of the following occurs:<br />

I. The balance of the reading is handshaken out.<br />

2. "Device" or "Selcctcd Device" clear is given.<br />

3. The 3455A power is interrupted, triggering<br />

while the buffer is busy wiIl lose the new<br />

reading and cause a "'Trigger too Fast" SRQ<br />

mndit ion.<br />

c. When triggering and taking measurements in a<br />

loop, sufficient time must be allowed for the 345SA to<br />

pcrfom the entire A-To-D measurement cycle and buf-<br />

fer data to btcome available after the first reading. The<br />

"'Wait" statements in many 9800 series calculators are<br />

canvenitnf methods to avoid outputting the previous<br />

buffer contents. This condition shows up as being "One<br />

reading behind" in your measurement sequence.<br />

d. If you know the output buffer is not busy, but<br />

don't know whether it is full or not, sending a '%wice'"<br />

or selected device" clear followed by reprogramming<br />

the desired conditions is a safe way to clear the output<br />

buffer.<br />

3-BE, Abort The Abort message unconditionally terminates<br />

all Bus cornrnuniations and mums control to<br />

the system controller. Only the system contsaIler can<br />

send the Abort message. Refer to the Operating Manual<br />

of the con~rolkr being used for instructions on sending<br />

the Aborr Message.<br />

3-87. In the Rmott Operating mode, the T455A takes a<br />

certain amount of time to respond to a trigger message.<br />

The overall time depends on the range, function, and<br />

particular controIler used. This rime may also vary from<br />

instrument to instrument. Table 3-6 gives the typical<br />

measurement times, using the HP-IB. These times are<br />

not part of the operating specifications OF the instru-


Model 345514,<br />

Figure 3-5. Operaton Chmk Flowchart.<br />

Section III


Model 3455A<br />

PERFORMANCE TESTS<br />

41. INI'RODUCTIOH. 4-1 1. PERFORMANCE TEST FAILURE.<br />

Section 1V<br />

4-2. his section contains perfomance and operationf<br />

verification test ~rmdures which can be used to verify<br />

that the 3455A meets its published swcifications (listed<br />

in Table 1-1). All tests be performed without access<br />

to the interior of the instrument. The performance tests<br />

in this section do not test the 34S5A Math Functions or<br />

HP-IB Interface. These functions can be rested using<br />

4-12. IF the 3455A fails any of the performance tests or<br />

operational verification test, perform the adjustments<br />

outlined in Section V. If the prt>biem cannot torrmted<br />

by the adjustment, refer to Section Vlll for<br />

troubleshooting information.<br />

the operators test procedures included in Section 111.<br />

4-1 3, SPEClFlCATION BREAKDOWI.<br />

414. The dc, nc and ohms accuracy specifications<br />

(Table 2-1) are grouped according to the selected inaru-<br />

44* tnt quipment rrquired Ihc ment function, i.e., High Resolution On or Off, ACV<br />

tests is listed at the beginning of tach procedure and in<br />

or Fast and 2-Wire or ohms. Within each<br />

the Recommended Test Equipment Table in Section I.<br />

If the recommended equipment is not available, use<br />

substitute equipment that meets the critical specifica-<br />

tions given in the table.<br />

4-5, PERFORMARCE T€ST CARD.<br />

410, Unless otherwise specified, the test signals for the<br />

performance tests can be applied to either the front or<br />

rear INPUT terminals. All tests must be performed in<br />

the INTERNAL Trigger Mode with AUTO CAL on and<br />

MATH off. For standard instruments (rms convener)<br />

the rear panel AC - AC/DC switch must be in the ac<br />

position. Other control settings are iacIudcd in the test<br />

procedures.<br />

group there are sets of<br />

a. 24 hour (23°C k 1°C)<br />

b. 90 day (23OC * 5°C)<br />

c. 6 months (23°C k 5°C)<br />

4-15, The time ptriod over which a set of specifications<br />

'-6. PerfOmance Tat Cards are provided at the end of<br />

is relative to the time the instrument is initially<br />

this smion for your in reording Ihe perat<br />

the factory or is prapcr[y<br />

formance of the 345514 during tither test. These cards<br />

ding to procedures outlined in Section V. Before<br />

can be removed and as a perma- proceeding with the dc, ae and ohms accuracy tests, it<br />

nent raord of the .incoming inspection or of a routine<br />

will be necessary determine which set of specifiesprfomance<br />

test' The Test Cards may rcprodrrced<br />

tions applies to your instrument. If the instrument has<br />

without written permission from Hewlett-Packard.<br />

just been received and is to be tested as part of the incoming<br />

inspection, test for the 90-day specifications. If<br />

4-7, CALIBRATION CYCLE.<br />

the instrument has been readjusted within a period of 24<br />

hours, test for the 24-hour specifications. ~ est limits for<br />

48. The 3455A aquires periodic verification of perforthe<br />

24-hour and %day specifications are included in the<br />

mance. The performance shoutd be tested as part of the<br />

tables for the accuracy tests. Test limits for the 6-month<br />

incoming inspection and at %day or imonth intervals,<br />

specifications must be derived from the specifications<br />

depending on the environmental conditions and your<br />

listed in Table 1-1. If the instrument is operated outside<br />

specific accuracy requirements. Two tests (performance for the temperature range for a given set of specificaand<br />

opertional verification) are provided in this section. tions, the appropriate temperature coefficients, listed in<br />

The operational verification test should be performed as Table 1-1, must bc added to those specifications. The<br />

an incoming inspection of the instrument. The complete<br />

test limits given in the tables for the dc, ac and ohms acperformance<br />

test can be used at the 90day or dmonth<br />

curacy tests do not include temperature coefficients.<br />

intervals, and following a complete calibration of ? he inst<br />

rument.<br />

416. Each set of specifications includes an accuracy<br />

specification for each voltage or ohms range. Accuracy<br />

is specified as a percentage of reading plus an add-on of<br />

one or more digits (counts). For example, the 24-hour<br />

DC Accuracy specification for the I-volt range (High<br />

Resolution Off) is:<br />

J: (0.003% of reading + 1 digits)<br />

At full salt (1 V) the least significant display digit,<br />

equal to 10 microvolt, is 0.001% of reading. The full-<br />

scale accuracy is therefore:


Section IV Model 3455 A<br />

4 (0.003% + 0.00 1%) = 0.004% of reading<br />

Similarly, at one tenth of fuB scale (0.1 V) the least signifi-<br />

cant digit (10 microvolt) is equal to 0.01% of reading so the<br />

accuracy specification is:<br />

k (0.003% + 0.01%) = * 0.013 k of reading<br />

These specifications do not include the temperature coeffi-<br />

cient that must be added jf the instrument is operated out-<br />

side of the 22OC to 24OC range.<br />

4-17. DC ACCURACY TEST CONSIDERATIONS.<br />

4-18. Because of the high dc accuracy of the 3455A, a<br />

precision dc calibration standard is required to verify that<br />

it meets its dc accuracy specifications. To thoroughly test<br />

the performance on aH ranges. the standard must be capable<br />

of deIivering outputs within the range of 0. I0000 V dc to<br />

1000.000 V dc. The accuracy of the standard must be such<br />

that its errors do not introduce significant uncertainties in<br />

the 3455A test readings. Ideally, the accuracy of the stand-<br />

ard should be ten times better than the 3455A specifics-<br />

tions being tested - a ten to one error reduction nearly<br />

eliminates measurement uncertainties caused by the stand-<br />

ard. To test accuracy specifications on the order of<br />

+ 0.005% of reading, however, a standard with a specified<br />

accuracy of f 0.0005% (5 ppm) would be required. Since<br />

this type of accuracy, over the range needed to completely<br />

test the accuracy of the 3455A, is generally not available<br />

outside of a standards laboratory, some compromises may<br />

be required. If you have access to primary in-house (NRS<br />

certified) standards or have calibrated transfer standards<br />

that are capable of deliverjag the required output voltages,<br />

we recommend that you use them. If you do not have<br />

access to such facilities you may. depending on your specif-<br />

ic accuracy requirements, choose to do one of the follow-<br />

ing:<br />

a. Use a dc calibration standard that is four or five<br />

times more accurate than the 3455A specifications to<br />

be tested. (A discussion of the potential uncertainties is<br />

given in following paragraphs.)<br />

b. Use a highly stable calibrated standard and add the<br />

correction factors (given on the calibration chart) to the<br />

345SA test readings.<br />

c. Send the 3455A to an -hp Service Center or some<br />

other NBS-certified standards facility for calibration.<br />

4-19. Several of today's commerciaIFy available dc calibra-<br />

tion standards provide the output vol rage range and resolu-<br />

tion needed to test the performance of the 345SA but they<br />

are not, in general, an order of magnitude more accurate<br />

than the 3455k. When using such standards it is important<br />

to be aware of the uncertainties or "ambiguities" that may<br />

be encountered. These poten rid ambiguities are described<br />

in the following paragraphs.<br />

4-20. First, consider the case where a digital voltmeter<br />

(DVM) is to be tested for a full-scale accuracy of * 0.01%<br />

of reading on its 1-volt range. The DVM is connected to a<br />

dc calibration standard whose specified accuracy is<br />

0.00 1% of setting and with the standard set to * 1.00000 V,<br />

the DVM reads *Q.99992 Y which is 0.008% low. The dc<br />

standard's speciffed accuracy is ten dimes better than the<br />

specification being tested and at 1 V its maximum error<br />

contribution to the DVM reading is 10 microvolt or<br />

0.001%. If the standard is 0.001% low the actual DVM<br />

error is - 0.003%; if it is 0,001% high, the actual DVM error<br />

is - 0.009%. In either case the D m is within its specifica-<br />

tion and, since this, measurement is not a calibration but is<br />

only intended to verify that the DVM meets its specifica-<br />

tion, the standard's error can be ignored.<br />

4-21. But what if the DVM reading is + 0.999908 V? Here,<br />

the DVM appean to be in tolerance (0.0092% low) but the<br />

margin is only 0.0008% which is less than the 0.001% maxi-<br />

mum allowable error contribution of the standard. If the<br />

standard's output is 0.00 1% low, the actual DVM error is<br />

- 0.0082% rather than - 0.0092% so the DVM is within its<br />

specification. If, on the other hand. the standard's output is<br />

0.001% high, the actual DVM enar is - 0.102% and the<br />

DVM is slightly out of tolerance. Chances are good that the<br />

DVM is within its specification but the only way to tell for<br />

sure is to use a more accurate standard. As the example<br />

points out, there are regions of ambiguity even when the<br />

standard is ten times more accurate than the instrument<br />

being tested. With a ten-to-one error reduction, however,<br />

these regions are relatively narrow. In this case, the DVM<br />

could be out of tolerance but if so, its maximum out-of-<br />

tolerance error is only - 0.0002%. As long as the DVM<br />

reading is within specified tolerances, the maximum DVM<br />

error that can exist is k 0.01 1% which is the sum of the<br />

maximum DVM error and the maximum allowable error<br />

of the standard. A potentid deviation of * 0.00 1% from the<br />

DVM specifications could, in many cases, be acceptable.<br />

Also, if the standard has been recendy calibrated and is<br />

known to be well within its specification, reading in the<br />

narrow ambiguous regions may reflect marginal DVM per-<br />

formance or indicate the need for adjustment.<br />

422. Now suppose the dc standard's specified accuracy is<br />

+- 0.0025% - only four times better than the ? 0.01% DVM<br />

accuracy specification. If the DVM reading is + 0,949890<br />

volt. it appears that the DVM is 0.01 1% low. Howewr. if<br />

the dc standard is 0.092% low (well within its specification)<br />

the DVM is only 0.009% low and is in tolerance. Conversely,<br />

if the DVM reading is + 1.00081 V the DVM<br />

appears to be 0.0081% high and we11 within its specification.<br />

But if the standard is 0.0023% low. the actual DVM<br />

emor is + 0.01 4% and the DVM is out of tolerance.<br />

4-23. Figure 4-1 shows how the error tolerances of the<br />

standard combine with those of the D W to produce the<br />

positive and negative ambiguous regions used in the preceding<br />

examples. From Figure 4-1, the following observations<br />

can be made:<br />

a. 'If the DVM reading is in tolerance by a percentage<br />

that is greater than the maximum allowabk error of the<br />

standard, the DVM is definitely within its specification.


Section IV Model 3455A<br />

Table 4-2, verifying its 10-volt full scale accuracy with<br />

High Resolution off,<br />

to 1000 V and center its course and fine adjustment controls.<br />

g. set the ~~~~~f~ standard far an output of v and<br />

set the 3455A RANGE to I Y. Set the 345511 GUARD<br />

Set the Reference Divider's Output Voltage switch to<br />

Im '-<br />

to OFF; connect the 3455A GUARD terminal to the<br />

High INPUT terminal.<br />

o. Set the 3455A controls as fo,lows:<br />

h. Reverse the 3455A INPUT connection to obtain a<br />

negative 1 V reading. Repeat steps c through f to verify<br />

the 1 Y and 10 Y full-scale accuracy for negative<br />

readings.<br />

i. Disconnect the Transfer Standard From the 3455A<br />

INPUT. Disconnect the GUARD terminal from the<br />

High INPUT terminal and set the GUARD to ON.<br />

j. Using short pieces of number 20 AWG (or thinner)<br />

insuiated solid copper wire, connect the Transfer Stan-<br />

dard and DC Null Voltmeter to the Reference Divider as<br />

shown in Figure 46.<br />

k. Turn off the DC Standard's output. Using 24" (or<br />

shorter) shielded cables equipped with banana-plug con-<br />

nectors, connect the DC Standard and the 3455A ra the<br />

Reference Divider as shown in Figure 4-2.<br />

FWNCTION ...................... DCV<br />

RANGE.. ....................... .I kV<br />

HIGH RESOLUTION. ............. .ON<br />

GUARD ......................... ON<br />

The dc standard" output should be turned<br />

on and the voltage adjusted by upranging or<br />

downranging the standard whenever the<br />

standard's output needs to be changed. If a<br />

345SA input voltage greater than 100 V is<br />

needed, the following procedure should<br />

always be fotlowed.<br />

p. Turn the dc standard's output on and by the<br />

following method adjust the standard for an output of<br />

+ 1000.00 v:<br />

I. Set the Standard Cell Voltage controls on the 1. Set the dc standard's First decade to "0".<br />

Reference Djvider to correspond to the calibrated<br />

standard-cell setting on the Transfer Standard. Set the 2. Uprange the dc standard to the 1OOO V range.<br />

Transfer Standard to output the calibrated srandardxell<br />

voltage. 3. Increase the standard's first decade so that tOOO<br />

V is reached by increasing the voltage in 100 V<br />

rn. Zero the DC Null Voltmeter on its 3 microvolt increments.<br />

range and then set it to the 300 microvolt range.<br />

q. Set the Reference Divider's Standard Cell switch<br />

n. Set the Reference Divider's Input Voltage switch to the Locked position. Adjust the dc standard's output


Model 3455A<br />

voltage and vmier controls for a zero reading on the<br />

null meter.<br />

r. Downrange the Null Meter and adjust the<br />

Reference Divider's course and fine controls for a null is<br />

obtained on the 3 rnicrovoIt range.<br />

s. Set the Reference Divider's Standard Cell switch to<br />

Open. Allow ten minutes for the Reference Divider to<br />

warm-up and stablize.<br />

t. Set the Reference Divider's Standard Cell switch to<br />

Momentary and, if necessary, readjust the fine control<br />

for a nu11 indication. Release the Standard Cell switch.<br />

u. The 3455A reading should be within the Test<br />

Limits given in Table 4-3. (1000 V, I kV range), verifying<br />

the full-scale accuracy at + 1 0 V with High<br />

Resolution on.<br />

AUTO-CAL may have to be turned off<br />

when making measurements on the 100 Y<br />

and 2000 V mges. This is only necessary<br />

when using o DC Standard sensirive lo a<br />

changing load impdunce.<br />

Table 4-2, DC Accuracy TW (High Wmalation OW.<br />

3455A 24 Hour 90 Day<br />

Test Limits Test Limits<br />

10 V a 9.9997 to 10.0003 9.9994 to 10.0QO6<br />

NOTE<br />

Each lime the Reference Divider Output<br />

Votrage setting is changed, check for null<br />

and, if necessary, readjust the Reference<br />

Divider's fine control to obtain a null indica-<br />

tion.<br />

Always downrange the Reference Divider<br />

befoe downranging the 3455A. When<br />

upranging, always upran;ge the 3455A before<br />

upranging the Reference Divider.<br />

24 Hour<br />

'For positive readings only. Do not apply negative voltages greater<br />

than - 500 V dc.<br />

Section IV<br />

v. Set the Reference Divider's Output Voltage and<br />

3455A RANGE to each setting (100 V and below) listed<br />

in Tables 4-2 and 4-3 with High Resolution on or off as<br />

indicated. Aa each setting, the 345SA reading should be<br />

within the Test Limits given in the table. (Be sure to<br />

maintain null when the Reference Divider" output is<br />

changed.)<br />

In the fdawing tests for negative readings,<br />

the inpur lo the 3455A mrrsf nor exceed -500<br />

V dc, due to the k 500 V guard f o chassis<br />

limitation,<br />

w. Downrange the dc standard to 1 Y output and<br />

turn off the dc standard's output. Reverse the polarity<br />

of the 3455A INPUT connection to obtain negative<br />

readings. Turn the dc standard's output back on. Verify<br />

the negative dc accuracy for all settings 100 V and<br />

lower. Again, do not apply more than -500 Y dc to he<br />

3455A INPUT.<br />

4-32. The 3455A ac voltmeter accuracy can be verified<br />

for frequencies up to 100 kHz on a11 voltage ranges us-<br />

ing an AC Calibrator such as the -hp- Model<br />

745A/746A. To minimize measurement uncertainties<br />

for frequencies below 50 Hz and above 20 kHz, the AC<br />

Calibrator should be calibrated and its error measure-<br />

ment control should be used to adjust out the errors in-<br />

dicated on the calibration chart. For example, if the<br />

calibration chan indicates that the 74% output is<br />

0.04% high at 1 V, 50 kHz, set the 745A error measure-<br />

ment control to + 0.04% to obtain a precise 1 V output.<br />

The 745A/746A can be calibrated during a routine pw-<br />

forrnance test using the procedures outlined in the<br />

745A/746A Operating and Service Manuals. Calibra-<br />

tion charts for these instruments are normally valid for<br />

at least 30 days.<br />

4-33. A Test Oscillator such as the -hp Model 652A can<br />

be used to verify the ac voltmeter accuracy of the 3455A<br />

for frequencies above 100 kHz (specified for 1 V and 10<br />

V ranges only). The required accuracy can be obtained<br />

by adjusting the Test Oscillator output so that the<br />

3455A reading at I0 kHz is the same as the reading ob-<br />

tained with the highly accurate AC Calibrator. This<br />

reference level can then be maintained to within 2<br />

0.25% over the 100 kHz to 1 MHz range using the<br />

expanded-scale meter on the Test Oscillator. If higher<br />

accuracy is desired, an ac-to-dc thermal triinsfer techni-<br />

que (Figure 4-3) can be used.<br />

4-34. Twt Proeedun.<br />

Equipment Required:<br />

AC Calibrator (-hp- Mode! 745A/746A)<br />

Test Oscillator (-hp Model 65ZA)


Section IV Model 3455A<br />

TEST OSMLATOR DIGIT& mTMETER<br />

hp 6524 hp 34554<br />

PROCEDURE:<br />

'hp KIWC I lO5lP. or<br />

I 13wn cvl 0.<br />

ssulvalel<br />

Apply accurate dc voltage (1 V or 3 VI from DC Standard to<br />

Thermal Converter and adjust DC Differential Voltmeter for<br />

nulr. Disconnect the DC Standard and apply the Tast Oscilletor<br />

ourput to both the Jherma! Converter and the 3455A. Adjust<br />

the Test Oscillator output level for a null indicat~on on the 06<br />

Differential Voltmeter. This makes the rms value of the ac input<br />

to the 3455A equal to the highly accurate output of the DC<br />

Standard. Repeat this procedure each time the Test Oscillator<br />

frequency is changed.<br />

000000<br />

Figure 4-3. AC/QC Thermal Transfer Measurement (Altsmate Frequency Response f est).<br />

a. Set the 3455A controls as follows:<br />

FUNCTION ..................... ACV<br />

RANGE .......................... 1 V<br />

GUARD .......................... ON<br />

INPUT SELECT ............... FRONT<br />

b. Stt the AC Calibrator for an output of 1 V, 30 Hz<br />

(745A 3 V range). Set the AC Calibrator's error<br />

measurement control to offset the 1 V, 30 Hz error in-<br />

dicated on the calibration chart (745A 0.1 error range).<br />

c. Connect the output of the AC Calibrator to the<br />

345511 front panel INPUT.<br />

Calibrator, verify the 3455A ac voltmeter ac-<br />

curacy for each Test Frequency, Input Level<br />

and 3455A Range listed in Table 4-4. The<br />

3455A display readings should be within the<br />

Test Limits given in the table.<br />

2, 3455A Option 001: Using the AC Calibrator,<br />

verify the 3455A ac voltmeter accuracy for each<br />

Test Frequency [ACV), Input Level and 3455A<br />

Range listed in Table 66. The 3455A display<br />

readings should be within the Test Limits given<br />

in the table.<br />

f. Set the 3455A FUNCTION to FAST ACV.<br />

d. 1. Standard Model 3455A: The 3455A I V, 30 Hz g. I. Standard Model 3455A: Using the AC<br />

reading should be within the Test Limits listed Calibrator, verify the 3455A ac voltmeter ac-<br />

in Table 4-4. curacy (Fast ACV) for each Test Frequency<br />

above 10 kHz, each Input Level and 3455A<br />

2. 345514 Option Oal: The 3445A 1 V, 30 Hz Range listdl in fable 4-4. The 345514 display<br />

(ACV) reading should be within the Test Limits readings should be within the Test Limits given<br />

listed in Table 4-6. in the table.<br />

e. 1. Standard Model 3455A: Using the AC 2. 3455A Option 001: Using the AC Calibrator,<br />

J


Section IV<br />

Tabt 4-6. AC Amncy Twt 310 Hz te IQII kHz (34SSA Option Bat only).<br />

90 Day*<br />

Test Limits<br />

0.99430 80 1.00570<br />

0.9sQO to 1 .QO400<br />

0.991 90 to 1.0081 0<br />

4.9680 to 5.0320<br />

4.9925 to 5.0075<br />

4.9565 to 5.0435<br />

9.9430 to 10.0570<br />

9.9875 to 10.01 25<br />

9.9875 to 10.01 25<br />

99.430to100.570<br />

99.875rotQO.125<br />

994.30 to F005.70<br />

998.65to1001.35<br />

*The$e test limits do not include the temperature coefficients that must be added if the instru-<br />

ment is operated outside of the temperarure range wer which the 24-hour or 9 Mav specifi-<br />

cations apply 14ee Table 1-31, Derive 6-rnonvh test limits from AC Accuracy specrfications<br />

listed in Table 2-1.<br />

the meter of the Test Oscillator and use control to main- fable 4-7. TwwWFw Ohm decursey 1 wt<br />

taio this reading whenever the frequency is varied.<br />

s. Repeat step q.<br />

Frequency<br />

(ACVl<br />

30 Hz<br />

50 Hz<br />

250 kHz<br />

30 Hz<br />

, TOO~HZ<br />

250 kHz<br />

30 Hz<br />

100 Hz<br />

100 kHz<br />

30 Hz<br />

' TOOkHz<br />

30 Hr<br />

10 kHz<br />

Frequency<br />

l FAST ACV)<br />

300 Hz<br />

500 Hz<br />

250 kHz<br />

300 Hz<br />

100 kHz<br />

250kHr<br />

300 Hz<br />

1 kHz<br />

100 kHz<br />

300 Hz<br />

100 kHz<br />

300 Hz<br />

10 kHz<br />

1 Y<br />

1 V<br />

1 V<br />

5 V<br />

5V<br />

' 5V<br />

10V<br />

10 V<br />

10 V<br />

100V<br />

1M3V<br />

1000 Y<br />

TOMEV<br />

t. Set the 3455A FUNCTION to ACV and RANGE<br />

to 10 V. Remove the 50-ohm termination from the Test<br />

OscilIator's output. Connect the 50-ohm output of the<br />

Test Oscillator (unterminated) to the 3455A front panel<br />

INPUT. Set the Test Oscil tafor frequency to 10 kHz and<br />

adjust its level controls for the 5 volt 34554 reading<br />

recorded in step 1. Adjust the meter reference controls<br />

far a zero reading on the meter of the Test Oscillator<br />

and use the level controls to maintain this reading<br />

whenever the frequency is varied.<br />

u. 1. Standard Model 3455A: Set the Test Oscitlator<br />

to each of the last two Test Frequencies listed in<br />

Table 4-5 (maintain reference level on meter of<br />

Test Oscillator). At each frequency setting, the<br />

345% reading should be within the Test Limits<br />

given in the table.<br />

34S5A<br />

Range<br />

1 V<br />

1 Y<br />

1 V<br />

10 V<br />

10V<br />

10Y<br />

10 V<br />

10 V<br />

10V<br />

l00V<br />

l00V<br />

1000 V<br />

100OV<br />

24 Hour'<br />

Test Limits<br />

0.94460 to 1 .mwo<br />

0.99630 to 1.00370<br />

0.99240 to 1.00760<br />

4.9695 to 5.0305<br />

4.9930 to 5.0070<br />

4.9590 to 5.04 10<br />

9.9460 to 10.0540<br />

9.9885 to 10.01 1 5<br />

9.8885 to 10.01 1 5<br />

99460to100.540<br />

99$851o100.t15<br />

994.60 to 1005.40<br />

998.75to1001.25<br />

Test LirnRs<br />

(High Ree. On1<br />

24 Hwr' 90 Day'<br />

*These last Limits do not incfude the tempsnture coefficiena<br />

that must be added if the instrument i s operated outside of the<br />

temperature range wer dtich the 24-hour or 90-clay spacifica-<br />

ttons apply (see Tabla 1-1 1. Derive 6-month test limits from<br />

Ohms Accuracy specifications listed in TaMe 1-1.<br />

x. 'Shis cornptetes the AC Voltmeter Accuracy Test.<br />

Disconnect the Test Oscillator from the 3455A.<br />

4-35. Ohmmmr Accuracy Twt.<br />

4-36. This test requires a calibmred decade resistor with<br />

settings that range from 100 ohms to 10 megohms. The<br />

correction factors indicated on the decade resistor's<br />

2. 3455A Option 061. Set the Test Oscillator Fre- calibration chart must be algebraically added to the<br />

quency to 250 kHz (maintain reference lever on<br />

3455A display readings to achieve the required test acmeter<br />

of Test Oscillator). The 3455A display curacy'<br />

reading should be between 4.9590 V and 5.0410 637. Tsrt Prowdun.<br />

Y (24-hour spec.) or between 4.9565 V and<br />

5.0435 V (Way spec.). Equipment Required:<br />

v. Set the 3455A FUNCTION to FAST ACV. Set the Decade Resistor (calibrated General Radio<br />

Test Oscillator frequency to 10 kHz and adjust its level Model 14332)<br />

controls for the 5 V 3455A reading recorded in step m.<br />

Adjust the meter reference controls for a zero reading a. Set the 3455A controls as follows:<br />

on the meter of the Test Oscillator and use the level controls<br />

to maintain this reading whenever the frequency is FUNCHON ........... 2 WIRE K OHM<br />

varied. RANGE .......................... 100<br />

HIGH RESOLUTION .............. ON<br />

w. Repeat step u. GUARD .......................... ON


Table 4.8. Four-Win Ohm Accuney Tnrt<br />

1 Al (Bl<br />

I Tist Limits Yalt Limits<br />

[High Res. Off)<br />

(High Re. On1<br />

Decade<br />

Resiltor<br />

rmn<br />

I ka<br />

10 kR<br />

100 kR<br />

3 MQ<br />

10 Mn<br />

3455A<br />

Range<br />

---<br />

0.1<br />

1<br />

10<br />

100<br />

1 K<br />

10 K<br />

24 Hour*<br />

0.099993 to 0.1 0~307<br />

'Th~hese test limits do not include the temperature wefficients that must be added if the instrument is opermed outside of<br />

the tempererum mna ovar which the 24-hour or 90-day specifications apply (see TaMe 1-1 I . Derive Grnonth ten limits<br />

frmOhmr Accurscy specificetions listed in Table 1-1.<br />

Section 1V<br />

b. Using a shielded cable equipped with banma-plug<br />

connectors, connect the Decade Resistor to the INPUT<br />

DC Standard Systron Donner Model M106A<br />

Resistor (1 M# ~t 0.01 k 1 J4 W -hp- part<br />

of the 345519. Set the Decade Resistor to 100 K ohms. number 08 1.1 -0202)<br />

c. Algtbraically add the Decade Resistor's correction<br />

factor to the 3455A reading. The algebraic sum should<br />

be within the test Limits given in Table 4-7, verifying the<br />

34SSA 2-wire ohms accuracy.<br />

d. Set the 3455A controls as follows:<br />

FUNCTION ........... 4 WIRE K OHM<br />

RANGE ................... . .. 0.1<br />

HIGH RESOLUTION ............. OFF<br />

90 Day'<br />

e. Set the Decade Resistor to 100 ohms. Connect a<br />

shielded cable, equipped with banana-plug connectors,<br />

between the 3455A OHM SIGNAL output and the input<br />

of the Decade Resistor. (Leave the other cable con-<br />

nected between the 3455A INPUT and the input of the<br />

Decade Resistor).<br />

f. Algebraidly add the Decade Resistor's mrrcetion<br />

factor to the 3455A reading. The algebraic sum should<br />

be within the Test Limits given in Table 4-8 (A), verify-<br />

ing the 3455A 4-wire ohms accuracy with High Resolu-<br />

tion off.<br />

g. Set the 3455A RANGE to 1 and HIGH RESOLU-<br />

TION to ON. Set the Decade Resistor to 1,000 ohms.<br />

h. Algebraicaliy add the Decade Resistor's correction<br />

factor to the 3455A reading. The algebraic sum should<br />

Ibe within the Test Limits given in Table 4-8(B), verify-<br />

ing the 3455A 4-wire ohms accuracy with High Resolu-<br />

tion on.<br />

i. Repeat Step h for each additional Decade Resistor<br />

setting and 3455A Range listed in Table 4-8 (B).<br />

0.- to 0.10001 o<br />

24 Hour'<br />

0.999971 to 1 .OW029<br />

9.99951 fa 10.OOiM9<br />

99.9975 to 100.0025<br />

999.876 to 100D.124<br />

9989.96 to 1001 0.04<br />

dW. DC VO17METER IHPW RESlSTAllCE TEST. 639 PERFORMANCE TEST.<br />

90 Day'<br />

0.999960 to 1.000040<br />

9.9993 5 to 10.0006 5<br />

99.9959 to 100.004 1<br />

999.860 to 1000.140<br />

9989 95 to 1001 0.05<br />

a. Connect the low output of the DC Standard to the<br />

Low Input terminal of the 3455A. Using short clip leads<br />

insert the 1 megohm resistor in series between the DC<br />

Standard's high output and the Nigh INPUT terminal<br />

of the 3455A. Connect a clip lead across the resistor.<br />

b. Set the 3455A controls as follows:<br />

FUNCTlON ..................... DCV<br />

RANGE ......................... 10 V<br />

HIGH RESOLUTION .............. ON<br />

GUARD .......................... ON<br />

c. Adjust the DC Standard for a 3455A reading of<br />

+ 10.00000 v.<br />

d. Remove the clip lead from across the 1 mtgohrn<br />

resistor.<br />

e. The 3455A reading should be between 9.99900 V<br />

and 10.00000 V, verifying that the input resistance is<br />

greater than laP%ohrns.<br />

f. Set the 3455A RANGE to 100 V; AWTO-CAL off.<br />

Reconnect the dip lead across the 1 megohm resistor.<br />

g. Adjust the DC: Standard for a 3455A reading of<br />

+ 10.00000 V.<br />

h. Remove the clip lead from across the 1 mcgohm<br />

rcsistor.<br />

i, The 3455A reading should be between + 9.0900 V<br />

and + 9.0917 V, verifying that the input resistance is I0<br />

megohrns * 0.1%.<br />

Equipment Required: 4-40. DC <strong>VOLTMETER</strong> ACCURACY 1 EST.


Section IV Model 3455A<br />

4-41. The DC Transfer Standard required for the e. Set the 3455A RANGE to 10 V. Sa the Transfer<br />

following test must be calibrated to a 1,017 V to 1.019 V Standard for an output of f 0 V. The 3455A reading<br />

standard cell that has been calibrated by the National should be within the test limits list4 in Table 4-10, veri-<br />

Bureau of Standards (NBS), If the 3455A is to be tested fying its 10-volt full scale accuracy with High Rcsolu-<br />

for its 24-hour accuracy specifications, the Transfer tEon on.<br />

Standard must be adjusted for optimum I-volt and<br />

10-volt output accuracy using NBS-calibrated stan- Tmhk 4-lt DC Ammq Tmt It V, 10 V Frll Swk; High<br />

dards. It is recommended that the Transfer Standard be Rwolution On).<br />

calibrated and adjusted just prior to use. After calibra-<br />

tion, it should be left on and, if possible, kept in a con-<br />

trolled environmtnc where the ambient temperature is<br />

within one or two degrees of the temperature in which it<br />

was calibrated. The following procedure should be per-<br />

formed in that same environment.<br />

4-42. If the recommended DC Transfer Standard or its<br />

equivdmt is nor available, an NBS-calibrated standard f. Set the 345% HIGH RESOLUTION to OFF. The<br />

cell (l.O1 7 v to .O1 V) cm be substituted. If this is 3455A reading should be within test limits listed in<br />

done, check the accuracy of the 3455~ 1 v and Table 49, verifying its l@volt full sca~e accuracy with<br />

10 V ranges usinn the Reference Divider recommended High<br />

in the pr~cedue. -<br />

g. Set thc Transfer Standard for an output of 1 V and<br />

4-43. Tmtt Pdem.<br />

set the 3455A RANGE to 1 V. Set the 3425A GUARD<br />

to OFF; connect the 3455A GUARD terminal to the<br />

Equipment Required:<br />

High INPUT terminal.<br />

Reference Divider (Fluke Mudel 750A)<br />

DC Transfer Standard (Fluke Model T31A)<br />

DC Standard (Systron Donner Model M1MA)<br />

DC Null Voltmeter (-hg Model 419A)<br />

a. Set the 3455A controls as Follows:<br />

FUNCTION ..................... DCV<br />

RANGE .......................... 1 V<br />

HIGH RESOLUTION ............. OFF<br />

AUTO CAL ....................... ON<br />

GUARD .......................... ON<br />

TRIGGER ................ INTERNAL<br />

b. Set the DC Transfer Standard for an output of 1<br />

V. Connect the output of the transfer standard to the<br />

34554 INPUT.<br />

c. The 3455A reading should be within the tat limits<br />

listed in Table 4-9, verifying its l -volt full-scale accuracy<br />

with High Resolution off.<br />

hbk 44. DC Acc~mer Kmt It V, 10 V Frft-Scale High<br />

Rt#olution Off).<br />

24 Hour 90 Day<br />

Test Limits Limits<br />

d. Set the 345SA HIGH RESOLUTION to ON, The<br />

3455A reading should be within the test limits listed in<br />

Table 4-10, verifying its 1-volt full scale accuracy with<br />

High Resolution on.<br />

h. Reverse the 3455A INPUT connection to obtain a<br />

negative 1 V reading. Repeat Steps c through F to verify<br />

the 1 V and 10 V full-scale accuracy for negative<br />

readings.<br />

i. Disconnect the Transfer Standard from the 3455A<br />

INPUT. Disconnect the GUARD terminal from the<br />

High INPUT terminal and set the GUARD to ON,<br />

j. Using short pieces of number 20 AWG (or thinner)<br />

insulated solid copper wire, connect the Transfer Stan-<br />

dard and DC Null Voltmeter to the Reference Divider as<br />

shown in Figure 44.<br />

k. Turn off the DC Standard" output. Using 24" (or<br />

shorter) shielded cables equipped with banana-plug con-<br />

nectors, connect the DC Standard and the 34556 to the<br />

Reference Divider as shown in Figure 4-4.<br />

1. Set the Standard Ceft Voltage controls on the<br />

Reference Divider to correspond to the calibrated<br />

standard-cell setting on the Transfer Standard. Set the<br />

Transfer Standard to output the calibrated standard-cell<br />

voltage.<br />

rn. Zero the DC Null Voltmeter on its 3 microvolt<br />

range and then set it to the 300 microvolt range.<br />

n. Set the Reference Divider's Input Voltage switch<br />

to 1OOO V and center its course and fine adjustmmt con-<br />

trols. Set the Reference Divider's Output Voltage switch<br />

to 1m V.<br />

o. Set the 3455A controls as follows:


Model 345419 Section IV<br />

FUNCTION ..................... DCV s. Set the Reference Divider's Standard Cell switch to<br />

RANGE ......................... 1 kV Open. Allow ten minutes for the Reference Divider to<br />

HIGH RESOLUTION ............. OFF warmup and stabilize.<br />

GUARD .......................... ON<br />

Tabla 4.11. OC Aeeuncy Tblt (High Rwolutlon Mfl.<br />

CA UTION<br />

24 Hour 90 Day<br />

The dc standard's output should be fumed<br />

on ond the voltage udjrrsled by upranging or<br />

downranging the standard whenever the<br />

standard's output needs to be changed. If a<br />

3455.4 inpuf voltage greater than 100 V is<br />

needed, I he folio wing procedure should 'For positive readings only. Do not spply negative voltages<br />

afwar~ be followed. greater than - 500 V dc.<br />

p. Turn the dc standard's output an and by the Tot Tabk 4-12. DC Aenrmq T at (High Rwofntiam On).<br />

lowing method adjust the standard for an output of<br />

4- 1000.00 v:<br />

1. Set the dc standard's first decade to 'V".<br />

2. Uprange the dc standard to the 1000 V range.<br />

3. Increase the standard's first decade so that 3000<br />

V is reached by increasing the voltage in 100 V<br />

increments.<br />

'For positlve readings only. Pa nor apply negative voltages<br />

q. Set the Reference Divider's Standard Cell switch than dc.<br />

lo the Locked ~osition. Adiust the DC Standard's out-<br />

Diu~der<br />

Our~ut<br />

imm V.<br />

500 V<br />

100 Y<br />

roo V<br />

50 V<br />

la v<br />

5 V<br />

1 V<br />

05V<br />

0.1 V<br />

put voltage and vernier controls for a zero reading on t. Set the Reference Divider's Standard Cell switch to<br />

the null meter. Momentary and, if necessary, readjust the fine control<br />

for a null indication. Release the Standard Cell switch.<br />

r. Downrange the Null Meter and adjust the<br />

Reference Divider's coarse and fine controIs for a null NOTE<br />

indication. Repeat until a nuIl is obtained on the 3<br />

microvolt range. A UTOCAL may have to be turned off<br />

345%<br />

Range<br />

I~OD v<br />

1W0 V<br />

lOOa V<br />

lW V<br />

100 Y<br />

iao v<br />

10 V<br />

1D V<br />

1 V<br />

1 V<br />

24 Hour<br />

Test Lim~rs<br />

ss9.951 ro 1000.043<br />

499.977 ra 500.023<br />

99 993 rn 1OO.DM<br />

99.9Y57 ro 100.OW3<br />

49.9977 ra 50.0023<br />

9.9993 to 10 om7<br />

4 99987 to 5.000 13<br />

0.99935 to 1 .Dm05<br />

P 499981 to 0 500019<br />

Q.[MW93 to 0.100007<br />

90Oay<br />

Test Limats<br />

999.927 to F000.073<br />

499862 to 500.038<br />

99.990 to 100.010<br />

99.9927 10 100.0073<br />

49 5362 to 50.0038<br />

9 9w0 to ~ODOIQ<br />

4.999 72 to 5.00028<br />

0 9W32 to 1 .OOWB<br />

0 499966 10 0 MW34<br />

Q 093390 ro 0.lOOOlO


Section IV Mdel3455A<br />

TEST OSMLLAXWI <strong>DIGITAL</strong> <strong>VOLTMETER</strong><br />

hb 652A hp 345SA<br />

, A J A J J A O a<br />

PROCEDURE:<br />

*hp WEL I 1o51a ~t<br />

1 IOMh C?VI Or<br />

equ "0 Ian<br />

IV or 3v rsonl<br />

Apply accurate dc voltage (1 V or 3 W) from DC Standard to<br />

Thermal Convener and adjust DC Differential Voltmeter for<br />

null. D~sconnect the DC Standard and apply the Test Oxillator<br />

output to bath the Thermal Convener and the 3455A. Adlust<br />

the Test Oxillator output level for a null indication on the DC<br />

D~fferential Voltmeter. This makes the rmr value of the ac input<br />

to the 3455A equal to the hlghlr accurate output of the DC<br />

Standard. Repeat this procedure each time the Te5t Oscillator<br />

frequency IS changed.<br />

m J J J A A J o<br />

FLUKE<br />

WEL 885AB M:<br />

a. Set the 34SSA controls as follows: e. 1. Standard Model 3455A: Using the AC<br />

Calibrator, vwify the 3455A ac voltmeter ac-<br />

FUNCTION ..................... ACV curacy for each Test Frequency, Input Level<br />

RANGE .......................... 1 V and 3455A Range listed in Table 4-13. The<br />

GUARD .......................... ON 345514 display readings should be within the<br />

lNPClT SELECT ............... FRONT Test Limits given in the table.<br />

b. Set the AC Calibrator for an output of 1 V, 30 Hz<br />

(745A 1 V range). Set the AC Calibrator's error<br />

measurement control to offset the 1 V, 30 Hz error in-<br />

dicated on the calibration chart (745A 0.1 error range).<br />

c. Connect the output of the AC Calibrator to the<br />

3455A front panel INPUT.<br />

d. 1. Standard Model 345SA: The 3455A 1 V, 30 Hz<br />

reading should be within the Test Limits listed<br />

in Table 4-13,<br />

2. 3455A Option 001: The 345SA 1 V, 30 Hz<br />

(ACV) reading should be within the Test Limits<br />

listed in Table 4-15.<br />

2. 3455A Option 001: Using the AC Calibrator,<br />

verify the 34S5A ac voltmeter accuracy for each<br />

Test Frequency (ACV), lnput Levd and 3455A<br />

Range listed in Table 4-15. The 345SA display<br />

readings should be within the Test Limits given<br />

in the table.<br />

f. Set the 3455A FUNCTION to FAST ACV.<br />

g. 1. Standard Model 3455A: Using the AC<br />

Calibrator, verify the 3455A ac voltmeter ac-<br />

curacy (Fast ACV) for each Test Frequency<br />

above 100 Hz, each Input Level and 3455A<br />

Range listed in TabIt 4-13. The 3455A display<br />

readings should be within the Tat Limits given<br />

I


Section IV Model 34S;SA<br />

Tsblu rE13. AC Accumy Tmt 30 Hz to 100 kHz (Standard Model 3455A onlv).<br />

1<br />

Test Input<br />

Frequenq Led ----<br />

30 Hz' 1 V<br />

300 Hz 1 V<br />

10 kHz 1 V<br />

20 kHz 1 Y<br />

50 kHz 1 V<br />

100 kHz 1 V<br />

30 Hx' 5 V<br />

300 Hz 5 V<br />

20 kHz 5 V<br />

100 kHz 5 V<br />

30 Hz* 10 V<br />

50 Hz" 10 V<br />

100 HzD 10 V<br />

500 Hz 10 V<br />

1 kHz 10 V<br />

5 kHz 10 V<br />

10 kHz 10 V<br />

I<br />

20 kHz<br />

50 kHz<br />

10 V<br />

10 V<br />

100 kHz<br />

30 Hz'<br />

10 V<br />

100 V<br />

300 Hz IOOW<br />

10 HZ IQO Y<br />

I 20 kHz<br />

100 kHz<br />

100 V<br />

f OO V<br />

30 Hz'<br />

300 Hz<br />

1000 V<br />

1000V<br />

10 kHz 1OOOV<br />

3455A<br />

Range<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

10 V<br />

10 V<br />

10V<br />

TO V<br />

10 Y<br />

10 V<br />

10 V<br />

10 V<br />

10 V<br />

TO V<br />

10 V<br />

10 V<br />

10 V<br />

10 V<br />

100 V<br />

loav<br />

ioav<br />

l00V<br />

100 V<br />

1000 V<br />

IOOOV<br />

1OOOV<br />

i. Record the 345514 reading; V. q. 1. Standard Model 3455A Set the Test Oscillator<br />

j. Set the 3455A FUNCTION to FAST ACV. Record<br />

the 3455A reading: V.<br />

to each of the first four Test Frequencies listed<br />

in Table 4- 14 (maintain reference level on meter<br />

of Test Oscillator). At tach frequency setting,<br />

the 3455A display reading should be within the<br />

k. Set the 3455A FUNCTION to ACV and RANGE Test Limits given in the table.<br />

to f 0 V. Set the AC Calibrator for an output of 6 Y, 10<br />

kHz.<br />

2. 345SA Option 001: Set the Test Oscillator frequency<br />

to 250 kHz (maintain reference level on<br />

l.Recordthe3455Areading: V, meter of Test Oscillator). The 3455A display<br />

reading should be between 0.99240 Y and<br />

m. Set the 3455A FUNCTION to FAST ACV.<br />

Record the 34556 reading: V.<br />

1.00760V (24-hour spec.) ar between 0.99190 V<br />

and 1.00810 V (90-day spec.).<br />

n. Disconnect the AC Calibrator from the 3455A. Set<br />

the 3455A FUNCTION so ACV and RANGE to 1 V.<br />

24 Hour*"<br />

"Frequencies below 300 Hz apply to ACV Function only.<br />

I<br />

99.920 to 100.080<br />

I 99.520 to 100.480<br />

I<br />

, 99.900 to 1MI.lMI<br />

I 99.400 to 100.600<br />

998.00 to 1002.00 997.50 to 1002.50<br />

*'These test limits do nor include the tamperature coefllcients that must be added<br />

if the instrument 1s operated outs~de af the temperature range- over which the<br />

24.hour or 9Odav specifications apPIy (see Table 1-1 1. Derive 6.month test<br />

limits from AC Accuracy specifications listed in Table I-?.<br />

in the table. o, Set the Test OscilIator for an output of 1 V, 10<br />

kHz. Connect the 50-ohm output of the Test Oscillator,<br />

2. 345514 Option 001 : Using the AC Calibrator, terminated in a 5&ohm load, to the 345519 front panel<br />

verify the 345514 ae voltmeter accuracy for each INPUT.<br />

Test Frequency (Fast ACV), Input Level and<br />

3455A Range listed in Table 4- 15. The 3455A p. Adjust the Test Oscillator level controls for a 3455A<br />

display readings should be within the Test reading as close as possible to the reading recorded in<br />

Limits given in the table. Step i. Set the Test OscilFator's meter switch to expanded<br />

scale and adjust the meter reference controls for a<br />

h. Set the AC Calibrator for an output OF 1 V, 10 zero reading an the Test OscilIator's meter. Use the Test<br />

khz. Set the 3455A FUNCTION to ACV and RANGE Oscillator's level controls to maintain this zero reading<br />

to 1 V. whenever the Test Oscillator frequency is varied.<br />

I<br />

I<br />

r. Set the 3455A FUNCTION to FAST ACV. Set the<br />

Test Oscillator frequency to 10 kHz and adjust its out-


Section IV<br />

r<br />

Test<br />

Frequency<br />

110 kHz<br />

250 kHz<br />

500 kHz<br />

1 MHz<br />

IlOkHr<br />

250 kHz<br />

500 kHz<br />

1 MHz<br />

Input<br />

Level<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

6V<br />

6 V<br />

6 V<br />

6 V<br />

3455A<br />

Range<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

10 V<br />

10 V<br />

10 V<br />

10 V<br />

24 Hour'<br />

Test Limits<br />

0.98000 to 1 .MOW<br />

I<br />

0.95600 ro 1 .W4W<br />

0.92400 to 1.076m<br />

5.8720 to 6.1280<br />

I<br />

5.7200 to 62800<br />

5.5500 to 6.4500<br />

90 Day'<br />

Test Limit5<br />

0.91750 to 1.02250<br />

I<br />

0.94500 to 1.05500<br />

0.92000 to 1.08000<br />

5.8550 to 6.1450<br />

I<br />

5.6500 to 6.3500<br />

5.4400 to 6.5600<br />

'These test limits do not inctude the temperature coefficients that must be<br />

added if the instrument is operated outside of the tempemure range owr<br />

which the 24-hour or 90-dav specifications apply (see fable 1-1 1. Derive<br />

Gmonth tcst limits from AC Accuracy specificatFons listed In Table<br />

3-1.<br />

putlwelforthe3455ArcadingrecordedinStepj.Ad- adjusritslcvtIcontrolsforthe6V3455Areading<br />

just meter reference controls for a zero reading on the recorded in Step 1. Adjust the mcttr reference controls<br />

mcter of the Test Oscillator and use the level control to for a zero reading on the meter of the Test Oscillator<br />

maintain this reading whenever the frequency is varied. and use the level controls to maintain this reading<br />

whenever the frequency is varied.<br />

3, Repeat Step q.<br />

u. 1. Standard Model 3455%: Set the Test Oscillator<br />

t. Set the 345SA FUNCTION to ACV and RANGE to each of the second four Test Frequencies<br />

to 10 V. Remove the 50-ohm termination from the Test listed in Table 4-6 (maintain reference level on<br />

Oscillator's output. Connect the 50-ohm output of the meter of Test Oscillator). At each. frequency<br />

Test Oscillator (unterminated) to the 3455A front panel setting, the 3455A reading should be within the<br />

INPUT. Set the Test Oscillator frequency to 10 kHz and Test Limits given in the table.<br />

T8bl0 4-15. AC Accuraer Tml 30 Hz to 100 kHz 13455A Option 001 anlyl.<br />

'These test llrnrts do not include the temperature coeff rcients that must be added 11 the instrument<br />

is operated outside of the temperature range over which the 24-hour or go-day specificat~ons<br />

apply (see 1 able 1-1 1. Dmrive 6-month test limits f rorn Accuracy Specifications listed In<br />

Table 1-1.


Section IV<br />

Decade 3455A<br />

Resistor Range<br />

100 R<br />

1 kfi<br />

10 kS2<br />

l00kn<br />

1 MR<br />

JOMn<br />

0.1<br />

1<br />

10<br />

IOO<br />

1 K<br />

1OK<br />

Table 4-1 0. Twa-Win Ohm Acewmy TmL<br />

la1<br />

Test Limits Test Limlts<br />

(High Res. Off) (High Res. On)<br />

'These test rimits do not include the temperature coefficients that must beadded if the tnstrument isoperated<br />

outslde of the temperature range over which the 24-hour or 9O.day s~clfi~atbons awlv b e Table 1-1 I. Derive<br />

6-month test limits from Ohms Accuracp specifications listed in Table 1-1.<br />

2. 3455A Option 001. Set the Test Osdllator fre-<br />

quency ta 250 kHz (maintain reference level on<br />

meter of Test Oscillator). The 3455A dispiay<br />

reading should be between 5.9520 V and 6.0480<br />

V (24-hour spec.) or between 5.9490 V and<br />

6.05 10 V (90-day spec.).<br />

v. Set the 3455A FUNCTION to FAST ACV. Set the<br />

Test Oscillator frequency to 10 kHz and adjust its level<br />

controls for the 6 V 3455A reading recorded in Step rn.<br />

Adjust the meter reference controls for a zero reading<br />

on the meter of the Test Oscillator and use the Ievel con-<br />

trols to maintain this reading whenever the frequency is<br />

varied.<br />

w. Repeat Step u.<br />

24 Hour-<br />

x. This completes the AC Voltmeter Accuracy test.<br />

Disconnect the Test OsciIlator from the 3455A.<br />

4-49. This test requires a ca3ibraCed decade resistor with<br />

settings that range from I00 ohms to 10 rnegohrns. The<br />

correction factors indicated on the decade resistor's<br />

calibration chart must be algebraicaYFy added to the<br />

3455A display readings to achieve the required test ac-<br />

curacy.<br />

4-50. Tart Proesdum.<br />

Equipment Requited:<br />

' 0.099593 to 0.1 00407<br />

0.99956 to 1.00044<br />

9.9989 to 10.001 1<br />

99.996to100.0[)4,<br />

999.83 to 1000.1 7<br />

99895to10010.5<br />

Decade Resistor (calibrated General Radio<br />

Model 14332)<br />

DC Voltmeter (-hp- Model 419A)<br />

90 Day' 24 Hour*<br />

Model 3455A<br />

0.099590 to 0.10041 0<br />

0.99954 to 1,00046 0.999571 to 1.000429 0.999560 to f .000440<br />

9.9987 to 10.001 3 9.9991 '1 to 1 0.00089 9 9989 5 ta 10.00 105<br />

99.994 to 1 00.006 999971 to 100.0029 99.9955 to 100.0045<br />

999.81 to 1000..19 999,876 to 1000.124 999.860 to 1000.1 40<br />

connectors, connect the Decade Resistor to the INPUT<br />

of the 345SA. Set the Decade Resistor to 160 ohms.<br />

c. Algebraically add the Decade Resistor's correction<br />

factor to the 3455A reading. The algebraic sum should<br />

be within the Test Limits given in Table 4-16(A), verify-<br />

ing the 3455A 2-wire ohms accuracy with High Resolu-<br />

tion off.<br />

d. Repeat Step c for each Decade Resistor setting and<br />

3455A Range listed in Table 4-16.<br />

e. Set the 3454A RANGE to 1 and HIGH RESOLU-<br />

TION to ON. Set the Decade Resistor to 1,000 ohms.<br />

f. Algebraically add the Decade Resistor's correction<br />

factor to the 3455A reading. The algebraic sum should<br />

be within the Test Limits given in Table 4-IqB), verify<br />

the 345514, 2-wire ohms accuracy with High Resolution<br />

on.<br />

g, Repeat Step f for each additional Decade Resistor<br />

setting and 3455A Range listed in Table 4-16(A).<br />

h. Set the 3455A controls as follows:<br />

...........<br />

FUNCTION 4 WIRE K OHM<br />

MNGE .......................... 0.1<br />

HIGH RESOLUTION ............. OW i. Set the Decade Resistor to 100 ohms. Connect a<br />

shielded cable, equipped with banana-plug connectors,<br />

between the 3455A OHM SIGNAL output and the input<br />

of the Decade Redstor. (Leave the other cable con-<br />

nected between the 3455A INPUT and the input of the<br />

Decade Resistor.)<br />

a. Set the 345SA controls as follows: j. Algebraically add the Decade Resistor's correction<br />

FUNCTION ........... 2 WIRE K OHM<br />

RANGE ...................... . 0.1<br />

HIGH RESOLUTION ............. OFF<br />

factor to the 345% reading. The algebraic sum should<br />

be within the Test Limits given in Table 4- 17(A), verifying<br />

the 345SA 4-wire ohms accuracy with High ResIution<br />

off.<br />

GUARD .......................... ON<br />

k. Repeat Step j for each 0ecade Resistor setting and<br />

b. Using a shielded cable equipped with banana-plug 3455A Range listed in Table 4-17(A).


Model 34SSA<br />

Decade<br />

Resistor<br />

1000<br />

1 kn<br />

10 kn 100 kn<br />

1Mil<br />

10MR<br />

345514<br />

Range<br />

0.1<br />

1<br />

10<br />

100<br />

1K<br />

10K<br />

24 Hour4<br />

0.099993 w 0.100007<br />

099996 to 1 .ODOW<br />

99993 to f 0.0007<br />

99 996 TO F 00.004<br />

999.83 to f 000.1 7<br />

9989.5to10010.5<br />

Tablm 4-1 7. fwr-Win Ohm Ammq Tost<br />

(A)<br />

Test Limits<br />

[High Re. Off)<br />

*These test limits do not include the temmtature coafficlents that must be added if the instrument is owrated<br />

outside of the temperature range over whcch the 24-hour or 90dav specifImtions apply (see Tabla 1.1 1. Derm<br />

6.manrh test limits from Ohms Accuracy specifications listed rn Table 1-1.<br />

I. Set the 345419 RANGE to 1 and HIGH RESOLU-<br />

TION to ON. Set the Decade Resistor ta 1,000 ohms.<br />

90 Day'<br />

0.099995 to 0.10001 0<br />

0.93394 to 1.00006<br />

9.999 1 m 108009<br />

99.994 to 100.006<br />

999.81 to 1000.19<br />

9989.5 to 1001 0.5<br />

24 Hourg<br />

0.939971 to t ,000029<br />

9.99951 to 10.00049<br />

99.9975 to 100.0025<br />

999.:76 to 1000.124<br />

9989.96 to 1001 9.04<br />

(8)<br />

Tea Limits<br />

(High Aes. On)<br />

90 Day'<br />

0.999960 to 1.000WO<br />

9.99935 to 10.00065<br />

99.9959 to 100.0a4 1<br />

999.860 to f000.140<br />

9989.95 to 10010.05<br />

Section IV<br />

NMR = 20 Iog Peak AC Superimposed Voltage<br />

Effect on Reading (Volts)<br />

m. Algebraically add the Made Resistor" correction<br />

faaor to the 3455A reading. The aIgebraic sum<br />

should be within the Test Limits given in Table 417(B),<br />

verifying the 3455A Gwire ohms accuracy with High<br />

4-54. Tmt Pdrm Equipment Required:<br />

Resolution on.<br />

n. Repeat Step 1 for each additional Decade Resistor<br />

setting and 3455A Range listed in Table 4-17(0).<br />

DC Standard (Systron Donner Model M106A)<br />

AC Calibrator (-hp- Model 745A)<br />

Frequency Counter (-hg Model 5300A)<br />

Resistor (1 kR 5 10% 1/4 W -h~- Part<br />

a. Set the 54556 RANGE to 10 K. Str the Decade<br />

Resistor to 14.99 K.<br />

Number 0684-102'1)<br />

Resistor (10 kfi & 10% 1 /4 W -hp- Part<br />

Number 0684-1031)<br />

p. Using the DC Voltmeter, measure the voltage a. Connect the 1 K resistor between the 345SA High<br />

across the Decade Resistor terminals. The voltage and Low l*puT terminals, connect *he GUARD tershould<br />

be less than 4.7 V dc, verifying the maximum<br />

minal: to the High INPUT<br />

output voltage specification for a valid ohms reading.<br />

b. Set the 345SA controls as foItows:<br />

q. Disconnect the Decade Resistor. (Leave the 3455A<br />

OHMS SIGNAL output connected to the INPUT). FUNCTION ..................... DCV<br />

RANGE .......................... 1 Y<br />

r. Measure the voltage across the 3455A INPUT ter- HIGH RESOLUTION .............. ON<br />

rninals. The voltage shouId be less than 5 V dc, verifying<br />

GUARD ......................... OFF<br />

the maximum output voltage specification for an opencircuit<br />

condition. c. Record the 3455A reading: - V.<br />

4-61. EOMMOll-MODE AND IORMAZ-MODE REJECTION TEST.<br />

4-52. Effective common-mode rejection is the ratio of<br />

the wak common-mode voltage to the resultant wak error<br />

in the reading, with a 1 kilohrn imbalance in ;he Low<br />

input lead. The formula for calculating effective<br />

common-mode rejection (ECM R) is:<br />

ECMR = 20 Ion Peak Common-Mode Voltage<br />

-<br />

Effective on Reading (Volts)<br />

d. Connect the ZH: Standard tout~ut . . offl between<br />

the High INPUT terminal and the chassis of ;he 3455A<br />

as shown in Figure 4-6,<br />

e. Set the DC Standard for an output of + 500 V dc.<br />

f. The 345SA reading should be within 0.000050 V of<br />

the reading recotded in Step c, verifying that the dc<br />

common-mode rejection is greater - than 140 dB.<br />

g. This completes the dc common-mode Rejection<br />

453. Normd-mode rejection is the ratio of the peak ac<br />

normal-mode voltage to the peak error it introduces in a<br />

dc voltmeter reading. The formula for calculating<br />

normal-mode rejection (NMR) is:<br />

test. Turn off the DC Standard output and disconnect<br />

the DC Standard from the 3455A. Disconnect the 1 K<br />

resistor and cannect the 10 K resistor across the 3455A<br />

INPUT terminals (leave GUARD connected to High).


Model 345SA Section IY<br />

1 f 3 <strong>DIGITAL</strong> <strong>VOLTMETER</strong><br />

DC ST~NO~RD PO 3455A<br />

SYSfROhl WNNER MOOEL MO6A<br />

COYVECTEC IT<br />

CH4SSIS GRCUNC I<br />

3( A A - r J A J J J A J J J A J<br />

1 MY-8-4111<br />

h. Set the AC Calibrator for an output of 1 V. Con-<br />

nect the Frequency Counter to the output of the AC<br />

Calibrator and adjust the AC Calibrator's frequency to<br />

50 Hz or 60 Hz * O.l%, corresponding to the power-<br />

line frequency being used.<br />

i. Record the 3455A reading: V .<br />

j. Disconntct the Frequency Counter and connect the<br />

AC Calibrator between the High INPUT terminal and<br />

chassis of the 3455A as shown in Figure 4-7.<br />

k. Without disturbing the frequency setting, set the<br />

AC Calibrator for an output of 70.7 V (100 V peak).<br />

1, The 3455A reading should be within 0.000010 V of<br />

the reading recorded in Step i, verifying that the 50 Hz<br />

or 60 Hz ac common-mode rejection is greater than 1dQ<br />

dB.<br />

m, Without disturbing the frequency setting set the<br />

AC Calibrator for an output of 7.07 V (10 V peak).<br />

Disconnect the AC Calibrator from the 3455A.<br />

n. Remove the 10 K resistor from the 3455A INPUT<br />

terminals. Connect a short jumper between the 3455A<br />

4- 18<br />

AC CALIBRATOR<br />

hp 7450,<br />

L<br />

-<br />

a n n [I [I O uno<br />

ELEC~KI<br />

@I@@@@@<br />

I'<br />

COUNTER<br />

High and Low INPUT terminals.<br />

o. kt the 3455A RANGE to 10 V and record the<br />

display reading: V.<br />

p. Rmovc the jumper from the 3455A INPUT ter-<br />

minals. Connect the AC Calibrator output to the 3455A<br />

INPUT.<br />

q. The 3455A reading should be within 00.0100 V of<br />

the reading recorded in Step o, verifying that the 50 Hz<br />

or 60 Hz normal-mode rejection is greater than 60 dB.<br />

r. This completes the Common-Mode and Normal-<br />

Mode Rejection Tests. Disconnect the AC Cdibrator<br />

from the 3455A and disconnect the GUARD from the<br />

High INPUT terminal.<br />

455, OC <strong>VOLTMETER</strong> INPUT RESISTANCE TEST.<br />

Equipment Required:<br />

0-@ COmECTED To<br />

Ern =El3 CWbSSIS GROUND<br />

0<br />

Fipm M. AC Commo~Modu Reluction Twt.<br />

DC Standard (Systron Donner Model M 106N<br />

Resistor (1 Mfl 5 0.01% I/4 W -hp Part<br />

Number 08 1 1-0202)


Model 3455A Section IV<br />

a. Connect the low output of the DC Standard to the<br />

Cow INPUT terminal: of the 3455A. Using short dip<br />

leads, insert the 1 megohrn resistor in series between the<br />

DC Standard's high output and the High ENPUT ter-<br />

minaI of the 3455A. Connect a clip Iead across the<br />

resistor.<br />

b. Set the 3455A controls as follows:<br />

FUNCTION ..................... DCV<br />

RANGE ......................... 10 V<br />

HIGH RESOLUTION .............. ON<br />

GUARD .......................... ON<br />

c. Adjust the DC Standard for a 3455A reading of<br />

+ 10.00000 V.<br />

d. Remove the clip lead from across the 1 megohm<br />

resistor.<br />

e. The 3455A reading should be between 9.99900 V<br />

and E0.OQMO V, verifying that the input resistance is<br />

greater than 1Olo ohms.<br />

f. Set the 3455A RANGE to 100 V; Auto-Cal OFF.<br />

Reconnect the clip lead across the I rnegohm resistor.<br />

g. Adjust the DC Standard for a 3455A reading of<br />

+ 1 0.m v.<br />

h. Remove the clip lead from across the 1 megohm<br />

resistor.<br />

i. The 345SA reading should be between + 9.Q900 V<br />

and + 9.091 J V, verifying that the input resistance is 10<br />

megohms f 0.1 % .<br />

4-58. AC YOLTMEfEfl INPUT IMPEDAlVCE TEST.<br />

Equipment Required:<br />

Test Oscillator (-hp- Model 652A)<br />

Resistor (I Mn i 0.1 % -hp- Part Number<br />

06984369)<br />

Resistor (100 ka 0.1 070 -tip- Part Number<br />

081 1-1997)<br />

a. Set the 3455A controls as follows:<br />

FUNCTION ..................... ACY<br />

RANGE .......................... 1 V<br />

GUARD .......................... ON<br />

INPUT SELECT (rear pane11 .... FRONT<br />

AUTO-CAL ...................... ON<br />

b. Connect the Test Oscillator 56-ohm output (tet-<br />

minated in 50-ohm load) to the 3455A front panel IN-<br />

PUT.<br />

c. Set the Test Oscillator frequency lo 50 Hz and ad-<br />

just its output level for a 3455A reading of 1.00000 Y.<br />

d. Using short clip leads, insert the 1 megohm<br />

resistor in series between the terminated Test Oscillator<br />

output and the High INPUT terminal of the 34554.<br />

e. The 3455A reading should be between 0.66443 V<br />

and 0.66887 V, verifying that the input resistance is 2<br />

rnegohms k 1%.<br />

f. Disconn~t the resistor and reconnect the Test<br />

OsciIlatot output to the 3455A INPUT.<br />

g. Set the Test Oscillator frequency to 20 kHz and<br />

adjust its output level for a 3455A reading of 1.00000 Y.<br />

h. Using short clip leads, insert the 100 kilohm<br />

resistor in series between the terminated Test Oscillator<br />

output and the High INPUT terminal of the 3455A.<br />

i. The 3455A reading should be greater than<br />

0.61017 V, verifying that the input shunt capacitance is<br />

less than 100 pF.<br />

j. Set the rear panel INPUT SELECT switch to<br />

REAR. Connect the Test Oscillator 50-ohm output (ter-<br />

minated in 50-ohm load} to the 3455A rear-panel IN-<br />

PUT.<br />

k. Repeat Steps c through i to test the input im-<br />

pedance at the rear INPUT terminals. In Step i, the<br />

3455A reading should be greater than 0.70822 V verify-<br />

ing that the rear termha1 input shunt capacitance is less<br />

than 75 pF.


Hswlett-Peekard Model 3d5SA IStandsrdt Test$ Psrfomed By:<br />

Digital Voltmeter Data<br />

Serid No.<br />

DC ACCURACY TEST<br />

Input<br />

bvnr<br />

OFF<br />

ON<br />

ON<br />

ON<br />

ON<br />

OFF<br />

ON<br />

ON<br />

' 3455A<br />

Posltlw<br />

Reading Tm Limits*<br />

'Record 24-hwr or 90day mst limits from tabla deslgn8ted In test pmeb<br />

dure, Derive Srnwrth test lirnlo from sp~lf~catl~ns listed In Teble 1-1.<br />

+*Fw writlvs mdlnp anly. 'Do not mlv negwive wl-w Blaster than<br />

-500Vdc.<br />

AC <strong>VOLTMETER</strong> ACCURACY f EST 30 HE 70 t MHz<br />

(Standard Model 3455A Only1<br />

Test<br />

Frequency<br />

30 Hzg<br />

1M)kHz<br />

350kHt<br />

30 Hz*<br />

100kHz<br />

1 MHz<br />

1 MHz<br />

30 Hz*<br />

20 kHz<br />

1Ml kHz<br />

30 Hz*<br />

100 kHz<br />

Input<br />

Lwd<br />

1 V<br />

1V<br />

SV<br />

SV<br />

5V<br />

1 V<br />

5V<br />

tO V<br />

10V<br />

10Y<br />

100Y<br />

lOOV<br />

3465A<br />

Renge<br />

1 V<br />

1 V<br />

10 V<br />

TO V<br />

10 V<br />

?V<br />

10 V<br />

1DV<br />

10V<br />

1DV<br />

100V<br />

1mV<br />

30 Hz' 1OOOV 1MK)V<br />

lokHz j1MIOV 11MKIV .-<br />

34654<br />

Reading<br />

(ACVF<br />

-<br />

-<br />

-<br />

-<br />

-<br />

3466A<br />

Readlng<br />

(FAST ACV)<br />

-*--<br />

-<br />

*- - --<br />

- -----<br />

-----<br />

- -<br />

- --- --<br />

I I I<br />

Test Limits**<br />

*'Record 24-hwr ar W a y test limits from the tables designWed in the<br />

test procedure. Oarive 6-month test Ifmlm from rpecificetion~ listed in<br />

fable 1-1.


OPERATIONAL VERIFICATION TEST CARD (Cent'd).<br />

OHMS ACCURACY TEST<br />

Decede<br />

Resistor<br />

100R<br />

1 kn<br />

10 kn<br />

100 kn<br />

100 kO<br />

1 Mn<br />

10 Mn<br />

3455A<br />

Range<br />

Q. 1<br />

1<br />

10<br />

100<br />

100<br />

1 K<br />

lo K<br />

Ohmy<br />

Function<br />

4 wrre<br />

4 Wlre<br />

4 Wire<br />

4 Wire<br />

2 Wire<br />

4 Wire<br />

4 wre<br />

*Record 24-hour or =day teat llmlts from table designed in tea<br />

procedum. Darhrr Smcnth test limb fmm specificatione listed in<br />

TaMe 1-1.<br />

DC <strong>VOLTMETER</strong> INPUT RESISTANCE TEST<br />

345SA fm<br />

Renw Reading Ibn Limits


OPERAT1PNAL VERIFICATION TEST CARD<br />

Heden-Packad Model 3455A (Option 001) Test Performed By.<br />

Digital Voltmeter Dat~<br />

Ssrial No.<br />

DC ACCURACY f EST<br />

3455A 3455A<br />

Input 3455A Hlgh Positive Negative<br />

Level Renw Rwalutlon Reading Readinn TmtLimits*<br />

OFF - -<br />

O.TV 1 V I<br />

5 V<br />

1OY<br />

10 V<br />

100 V<br />

1000 V*'<br />

b V 1 ON<br />

10 V<br />

10 V<br />

10 V<br />

100 V<br />

IOOQ V<br />

1<br />

ON<br />

ON<br />

OFF<br />

ON<br />

OM<br />

- 1 1<br />

'Record 24-hour or Wday test limits from tabledesignated In test<br />

procedure. Derive 6-month tat limiff from specifications listed In<br />

Table 1-1.<br />

**Far positive readings only. Do not apply negative vdtags graazer<br />

than - 500 V dc.<br />

AC <strong>VOLTMETER</strong> ACCURACY TEST [OPT ION 001 ONLY)<br />

Frequency<br />

(ACV)<br />

30 Hz<br />

50 Hz<br />

250 kHz<br />

30 Hz<br />

100 HE<br />

25a kHz<br />

30 Hz<br />

1110 Hz<br />

100 kHz<br />

30 Hz<br />

t OO kHz<br />

30 Hz<br />

10 kHz<br />

Frequency<br />

(FAST ACVl<br />

300 Hz<br />

WQ Hz<br />

250 kHz<br />

300 Hz<br />

100 kHz<br />

250 kHz<br />

300 Hz<br />

1 kHz<br />

100 kHz<br />

300 Hz<br />

100 kHz<br />

300 Hz<br />

10 kHz<br />

Input<br />

Lwel<br />

I V<br />

1 V<br />

1 Y<br />

5V<br />

5V<br />

5V<br />

fOV<br />

10V<br />

10V<br />

200 V<br />

lOaV<br />

1 W V<br />

lO00V<br />

3455A<br />

Range<br />

1 V<br />

1 V<br />

1 V<br />

10 V<br />

10 V<br />

10 V<br />

70 V<br />

10V<br />

1DV<br />

100V<br />

10oV<br />

IMHIV<br />

lO00V<br />

'Record 24-hour or 90.day test limits from tables designated in the test prmedure. Derive Bmonth<br />

test limits from ~pecifications<br />

listed in Table 1-1.<br />

1<br />

-<br />

P<br />

3455A<br />

Reading<br />

fACW<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-"---<br />

-<br />

3456A<br />

Reading<br />

[FAST ACVI Test Limits'<br />

------<br />

-----<br />

--- - -<br />

-- -- --<br />

*-- - --<br />

1


OPERATIONAL VERIFICATlflU TEST CARD (Cont'd).<br />

OHMS ACCURACY TEST<br />

Decsds<br />

Resistor<br />

loon<br />

2 kR<br />

10 kSl<br />

100 kR<br />

IQO kn<br />

1 Mfl<br />

10 Mn<br />

Reeding<br />

'Record =hour ar W h y ts~t llmin from table dshgnated tn test<br />

procedure. Derlw &month rert IirnlU from specifications linted in<br />

Tabla 7-1.<br />

DC <strong>VOLTMETER</strong> INPUT RESISTANCE TEST<br />

3456A Tmt<br />

Ran pa<br />

10 V<br />

100v<br />

Reeding Ten Limits<br />

- V 9 . m v to 10.00m V<br />

I-V I 9.0900Vto9.0917 V


Hewlstt-Packard Model 345SA (Standard Mods1 Only!<br />

Digital Vultmtar<br />

Orial No.<br />

DC ACCURACY TEST {High Raoluth oft)<br />

355A<br />

Range<br />

Positive Negativu<br />

' 1: 1 2 1 TastLimits4<br />

PERFORMdNCE TEST CARD<br />

*Record 24-hour or 90-day tesf limits from table designated In test procedure,<br />

Oer~ve 6month test llrnlts from ~pecifrcations lrsted In Table 1-7.<br />

"*For positive readmgs only. Do not apply negative voltages greater than - 500 V dc.<br />

DC ACCURACY TEST [High Raolution on1<br />

lnput<br />

Level<br />

'Record 24-hour or 90day ten limits from table designated in ten<br />

procedure, Derive 6-month test limits from specifimtions listed in<br />

Table 1-1.<br />

**Fur wJtW readlnm only. Do not apply nqtiva wltaw great-<br />

than-smvec.<br />

Tests Performed By:<br />

Date


AC <strong>VOLTMETER</strong> ACCURACY TEST 30 Hz TO 1 MHz<br />

(Standard Mdel3455A only)<br />

-<br />

100 Hz' 10 V lOV - ----<br />

SW] Hz YO V IOV - !<br />

1 kHz 10 v 10 V I<br />

5 kHz 10 V 10 Y I<br />

10 kHz 10 V 10 V<br />

20 kHz 10 V 1OV -<br />

50 kHz 10 V 10Y -<br />

100 kHz 10 V ?OW<br />

30 Hz'<br />

300 Hz<br />

10 kHz<br />

20 kHz<br />

100 kHz<br />

lOOV<br />

100V<br />

FOOV<br />

100V<br />

100V<br />

*ACV Function Only<br />

lOQV<br />

1QOV<br />

100V<br />

tOOV<br />

100V<br />

'*Record 24hour or 90-day test limits from the tables designated in the<br />

test procedure. Derive Bmonth test lim~ts from specifications l~sted in<br />

Table 1-1.<br />

PERFORMANCE TEST CARD (Cont'd)<br />

- ----<br />

-<br />

.-<br />

-<br />

- ----<br />

30 Hz* 1WOV IOMIV<br />

300 Hz<br />

10 kHz<br />

loOaV lOOOV,<br />

IOOOV I 1000V 1 -<br />

I<br />

110 kHz 1 V 1 V<br />

250 kHz 1 V 1 V<br />

500 kHz 1 Y 1 V<br />

1 MHz<br />

110 kHz<br />

250 kHz<br />

500 kHz<br />

1 V<br />

6 V<br />

6 V<br />

6 V<br />

1 V<br />

tOV<br />

10V<br />

TOV<br />

I 1<br />

-<br />

1 MHz 6 V 10V<br />

- 1<br />

1


'MTO-W1RE OHMS ACCURACY TEST<br />

M e<br />

Rmistor<br />

im n<br />

1 kR<br />

10 kn<br />

1mkn<br />

rMn<br />

10 MR<br />

MSSA<br />

Range<br />

0.1<br />

t<br />

10<br />

100<br />

rK<br />

10 K<br />

Reeding<br />

-<br />

-<br />

-<br />

High Rm. Of1<br />

Test Urnia*<br />

'Reeord 24-hour or 90-day test limits from table designated in rm<br />

procedure. Derive 6-month tar limns from specifications lined in<br />

Table 1-1,<br />

FOUR-WIRE OHMS ACCURACY TEST<br />

High Rm. Off<br />

PERFORMANCE TE!T CARD (Codd)<br />

High Res, On<br />

1mm 100<br />

IMR 1K<br />

10Mn ?OK -<br />

'Record 24.hour or 90dsy test limits from table designstmi in test<br />

procedure, Derive &month tea limits from specFfications listed in<br />

Table 1-1.<br />

I<br />

hxlinp<br />

-<br />

Rmdtng<br />

-<br />

Tea bJmitsm<br />

High Am. On<br />

OHMS VOLTAGE TEST<br />

I<br />

Voltage for Valid Reding: V I< 4.7 V de)<br />

Own.Cireu+t<br />

;yfnm<br />

Yottaga: V (< 5 V dc]<br />

COMMOW-MODE AND NORMAL-MODE REJECTION TESTS<br />

Refmce Tat 3655A<br />

Tan Llmlr<br />

Amding Reading (Relathre to Reference)<br />

DC-CMR * O.M)[W)50V<br />

ACCMR i 0.000010 V<br />

a. WMR r 0.0100 V<br />

DC <strong>VOLTMETER</strong> INPUT RESISTANCE TEST<br />

Tat Limits<br />

AC VQDTMETER INPUT IMPEDANCE TEST<br />

TeM Umla'<br />

Front-Terminal Rmding (Stape): v (0.66443 V to 0.86887 Y1<br />

Front-Tmmlnal Reading (Step i): V t X.610171<br />

Rasr-Terrnlnal Reading (Step el:- v (0.66443 V to 0.66881 Y)<br />

bar- Termma\ Reading (Step k): V (> 0.70822)


Hewlett-Packard Model 3455A (Optlon 001 only)<br />

Digltsl Voltmeter<br />

Serial No.<br />

DC ACCURACY TEST (His Resolution off1<br />

I I<br />

Positive Nagatiw<br />

Reding Reading Tesl Llrnits*<br />

Y55A Y=5A<br />

PERFORMANCE TEST CARD<br />

"Record 24-hour or 90day test limits fram table designated in test procedure.<br />

Dmve 6-month test limits from specificat~ons listed In Table 1-1.<br />

**For positive readings only. 00 not wply negatiw volt- greater than - 500 Vdc.<br />

DC ACCURACY f EST [High Reaolutfon on)<br />

lnput 3455A<br />

Lml Range<br />

1 v 1 V<br />

10 V 10 V<br />

m v tmv<br />

1130 v<br />

TOO V loo v<br />

50V 1mv<br />

to V 1mv<br />

5V 10 v<br />

1 v 10 V<br />

0.5 V f V<br />

0.1 V 1 v<br />

*Record 24-hour or 90day test limits from table designated in test<br />

procedure, Derive &month test limits from specifications listed in<br />

Table 1-1.<br />

**For positiva readingr only. Do not apply negstiw voltages greater<br />

than - 500 V dc.<br />

Tarts Performed By :.<br />

Date


+WO-WIRE OHMS ACCURACY TEST<br />

M e<br />

Resistor<br />

imn<br />

1 kn<br />

10 kn<br />

7Mlm<br />

1Mhl.<br />

10MR<br />

3455A<br />

Range<br />

o,i<br />

1<br />

10<br />

100<br />

1K<br />

?OK<br />

High Urn. Off<br />

*Ramrd 24-hcur or 90dav tegt limits from table designated in test<br />

procedure. DeriveSmonth test limits from specifications listed in<br />

Table 1-1.<br />

FOUR-WIRE OHMS ACCURACY TEST<br />

[)ecsde<br />

Resistor<br />

1WR<br />

1 ksl<br />

10kR<br />

1Mkn<br />

1MR<br />

10Mn<br />

3455A<br />

Range<br />

0.1<br />

1<br />

10<br />

100<br />

1K<br />

10K<br />

PERFORMANCE TEST CARD (Com'dj<br />

High Res. On<br />

Rsading Tsst Lirnlts' Reading Test Limit#*<br />

-<br />

-<br />

-<br />

.-)<br />

RWLnq<br />

-<br />

High Res. Off<br />

Tmst Limits*<br />

-<br />

High Re. On<br />

*Record 24-hour or Wday test limits from table designated in test<br />

procedure. Derive &month test L~mits from speclflcat~ons listed In<br />

Table '#-I.<br />

OHMS VOLTAGE TEST<br />

Voltags for<br />

1 1 1<br />

Valid Reading: V (< 4.7 V dcl<br />

Own-Circuit Voltage: V (< 5 Y dcl<br />

COMMON-MODE AN0 NORMAL-MODE REJECTION TESTS<br />

Reference Reference 3455A Test Llmir<br />

Step R-ding<br />

Reading (Relative to Reference)<br />

* O.M)[HMO v<br />

AC-CMA i 0.OM)OlO V<br />

0, NMR * oaioo v<br />

DC <strong>VOLTMETER</strong> INPUT RESISTANCE =ST<br />

Tat Limits<br />

AC <strong>VOLTMETER</strong> INPUT FMPEDANCE TEST<br />

I<br />

Resding<br />

-<br />

I<br />

Test Limits'<br />

Front-Terminal Reding (Step el: V (0.66443 \1 w 0.68887 V)<br />

Front-Terminal Reading [Step i): V 1>0.610171<br />

Rear-Terminal Readrng (Step a): V 10.66443 V ta 0.66887 Vl<br />

Rear-Terminal Reading (Step kl: V 1 > 0.70822)


AC <strong>VOLTMETER</strong> ACCURACY TEST (OPTION 001 ONLY)<br />

Frsqueney<br />

(ACV)<br />

30 Hz<br />

50 Hz<br />

100 Hz<br />

10 kHz<br />

60 kHz<br />

1MlkHz<br />

30 Hz<br />

50 Hr<br />

100 Hz<br />

10 kHz<br />

50 kHz<br />

Fmqueney<br />

(FAST ACV)<br />

3M3 Hz<br />

500 Hz<br />

t kHz<br />

10 kHz<br />

50 kHz<br />

fM)kHz<br />

Input<br />

Lml<br />

1 Y<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

1 V<br />

---<br />

300 Hz<br />

500 Hz<br />

1 kHz<br />

10 kHz<br />

50 kHz<br />

100 ~HZ 100 kHz<br />

5 V<br />

5 V<br />

5 v<br />

5 v<br />

5 Y<br />

5 V<br />

'Record 24-hour or 90dsy test limits frnm tables designated in rhe<br />

test procedure. Oerive 6-monrh test limits from specificefions listed<br />

in Table 1 -1.<br />

PERFORMANCE TEST CARD (Cont'd)<br />

3455A<br />

Range<br />

1 Y<br />

1 V<br />

1 V<br />

1 V<br />

3455A<br />

Reading<br />

(ACV)<br />

-<br />

10V -<br />

10V<br />

yov 1<br />

10 V<br />

10 V<br />

10 V<br />

--<br />

'<br />

100 kHz 100 kHz 10 v 10 V<br />

----<br />

30 Hz 300 Hz 100V<br />

50 Hz<br />

100 HZ<br />

500 Hz<br />

1 HZ<br />

100V<br />

ioav ioov<br />

10 HZ 10 HZ iaov ioov<br />

50 kHz 50 kH2 100V l0OV<br />

100 kHz 100 kHz 100V 10OV<br />

39 Hz<br />

50 Hz<br />

300 Hz<br />

5WHr<br />

lOM1Y<br />

IOMIV<br />

1OOOV<br />

IOOOV<br />

100 Hz 1 kHz 100OV lOM1V<br />

10 kHz 10 kHz 10MIV 1OOOY<br />

250 kHz 150 kHz 1 V<br />

250 kHz 250 kHz 6V 10 V<br />

-<br />

~-><br />

10 v -<br />

10V ,-<br />

10 V -<br />

10 v<br />

10 v<br />

to V -<br />

3455A<br />

Reading<br />

(FAST ACV)<br />

!<br />

1<br />

Test Urnits'<br />

-<br />

TOO V - -<br />

l00V -, -<br />

-<br />

-,<br />

-<br />

-,


Maintenance described herein is performed<br />

with power supplied to the instrument, and pro-<br />

tective co vers remo ved. Such maintenance<br />

should be performed on/ y by service-trained<br />

persome/ who are aware of the hazards in-<br />

volved (fur example, fire and elecrrical shock).<br />

Where maintenance can be performed without<br />

power applied, the power should be removed.


5-1. INTRODUCTION.<br />

5-2. This section contains complete adjustment procedures<br />

far the Model 3455A Digital YoItmeler. After tlre instnr-<br />

ment is adjusted according to the procedures given in this<br />

section, it should meet the 24-hour accuracy specifications<br />

listed in Table 1-1.<br />

53. EQUIPMENT REQUIRED.<br />

54. The test equipment required for the adjustments is<br />

listed at the beginning of each adjustment procedure and<br />

in the Recommended Test Equipment table in Section I.<br />

If the recommended equipment is not available, use sub-<br />

stitute equipment that meets the critical specifications<br />

given in the table.<br />

6-5. ADJUSTMENT INTE RVAC.<br />

5-6. The 345514 adjustments should be performed at 90-<br />

day or 6-month intervals depending on the environmental<br />

conditions and your specific accuracy requirements. Adjust-<br />

ments should also be performed after the instrument has<br />

been repeaired.<br />

5-7, ADJUSTMENT SEQUENCE.<br />

5-8. The 3455A Adjustments must be performed in the<br />

sequence in which thcy are presented. If the dc and ohms<br />

accuracy of the instrument are satisfactory, the DC Zcro<br />

Adjustments and Reference Adjustments can be omitted<br />

and the RMS or Average Converter adjustments can be<br />

performed to optimize the ac voltmeter accuracy.<br />

5-9. TEST POINT AND ADJUSTMENT LOGATIOMS.<br />

5-10. Test points and adjustments are labeled on the top<br />

inner cover and rear panel (Reference Module) of the<br />

instrument or are shown, in figures designated in the adjust-<br />

ment procedurcs.<br />

5-11, DCZERO ADJUSTMENTS.<br />

Equipment Required:<br />

DC Digital Voltmeter C-hp- Model 3490A or 3455A)<br />

a. Remove the 3455A top outer cover and lop inner<br />

cover to gain access to the A1 0 (Mother) board.<br />

b. Set the 3455A controls as Ibllows:<br />

FUNCTION.. .................. DCV<br />

SECTIQN V<br />

ADJUSTMENTS<br />

ZERO<br />

ADJ<br />

R65<br />

Figure 5-1. 100 Volt Zero Adjustment.<br />

RANGE.. ..................... 10V<br />

HIGH RESOLUTION. .............. ON<br />

AUTOCAL .................... OFF<br />

GUARD ....................... ON<br />

TRIGGER. ..................... INT<br />

MATH. ....................... OFF<br />

c. Set the test DVM to measure dc volts (autorange).<br />

Connect the DVM's low input to the AE 0 board ground nest<br />

point and the high input to AIOTO I (Figure 5-1 3.<br />

d. Adjust A10R66 (Figure 5-1) for a DVM reading of<br />

0 V + 50 microvolt. Disconnect the test DVM.<br />

e. Set the 3455A RANGE to I00 V and AUTO CAL to<br />

ON. The 345SA Reading should bc 0.0000 V 4 1 count. If<br />

it is not, repeat Steps b through d. If this does not correct<br />

lthe problem, refer to Section ViII for ~roublcshooting<br />

information.<br />

f. ReinstaIl the top inner cover with two or three screws<br />

and reinszall the top outer cover (bottom covers must be<br />

installed).<br />

g. Set the 3455A RANGE to 1 V. Connect a copper<br />

shorting. strap across the 3455A INPUT terminals.<br />

h. Allow the 345SA to run at room temperature for<br />

at least 30 minutes.<br />

i. The 345SA reading should be 0.000000 V + 4 counts.<br />

If it is, proceed to the DC Reference Adjustments (Pan-<br />

graph 5-12). If it is not, it will be necessary to change the<br />

valuc of padding resistor AlORl I0 as outlined in the<br />

following stops.<br />

j. Record the 3455A reading: -.


Section V Model 3455A<br />

Figure 5-2, 1 Volt Zero Adjustment.<br />

k. Remove the top covets and note the value of<br />

AIOR106 - if there is an Rl10 installed (sec Figure 5-2).<br />

Refer to Table 5-1 and record the Offset Voltage that corresponds<br />

to the current value of AlORl10:. (If there<br />

is no A lORl 10, record 0.0000M3 V.) If RI I0 is connected<br />

to the terminal matked "+", the poIarity of the Offset<br />

Voltage is negative: if R110 is connected to the terminal<br />

marked "'-", the polarity of the offset is positive.<br />

1. Add the voltages recorded in Steps j and k to abtain<br />

the total offset:<br />

rn. Refer to Table 5-1 and locate the Offset Voltage<br />

that is closest to fhc total offset voltage recorded In Step 1.<br />

Obtain a rcsistot that corresponds to that offset voltage.<br />

n. Rcmovc the original AIORl Ill (Figure 5-2). If the<br />

total offset (Step I) is positive. connect the new RI 10<br />

between the unnlarkcd terminal and the terminal marked<br />

'"-"'; if the total offset is negative, connect it between the<br />

unmarked terminal and the terminal marked "+".<br />

o, Reinstall the top covers and again allow the instru-<br />

ment to run at room temperature fur 30 minutes. At the<br />

end of that period, the 3455A reading should Se<br />

0.000000 V + 4 counts. IF it is not. repeat Stcps j through<br />

n.<br />

Tabla 5-1. DC Zero Adjustment Cddfng List IA1OR1101.<br />

'All resiston are f: 5%. 114 W. carbon.<br />

5-12. DC AND OHMS REFERENCE ADJUSTMENTS.<br />

5-13. The De Transfer Standard required for the following<br />

adjustments must be adjusted for optimum 1-volt and<br />

10-volt output accuracy using NBS-calibtated voltage<br />

standards. The Transfer Standard should be adjusted just<br />

prior to use. After adjustment, it should be left on and, ii<br />

possible, kept in a controlled environment where the<br />

ambient temperature is witbin one or two degrees of thc<br />

temperature at which it was adjusted. The following pro-<br />

cedure should be performed in that same cnvironmcnt.<br />

5-14. Adjustment Procedure.<br />

Equipment Required:<br />

DC Transfer Standard (Fluke Model 73 1 A)<br />

Standard Resistor (1 kiIohm * 0,0005%; Guildline<br />

933011 KI<br />

Standard Resistor (1 00 kilohm + 0.002%; GuRdlinc<br />

93301100 K)<br />

NOTE<br />

AIl of the refererlce adjustments are screw<br />

driver adjustments and are accessible through<br />

holes in the rear panel of the Referettce Module<br />

(rear panel of insmmenr). Adjusmtenr<br />

Designators are marked on the panel. The<br />

arljusrmmrs should be perfmed after a 30-<br />

rninute warmup period witlr all covers irtstallcd.<br />

a. Sea the 3455A controls as follows:<br />

FUNCTION.. .................. DCV<br />

RANGE. ...................... 10 V<br />

HIGH RESOLUTIOK. .............. ON<br />

AUTO CAL ..................... ON<br />

GUARD ....................... ON<br />

TRIGGER. ..................... lNT<br />

MATH ........................ OFF<br />

b. Set the DC Transfer Standard for an output of I0 V.<br />

Using short pieces of number 20 AWG (or larger) insulated<br />

soIid copper wire, connect the output of the Transfer Stan-<br />

dard to the 3455A INPUT.<br />

c. Adjust the 10 V pot for a 3455A reading of<br />

+ 10.00000 v.<br />

d. Set the Transfer Standard for an output of 1 V. Set<br />

the 3455A RANGE to 1 V.<br />

e. Adjust the 10:l pot for a 3455A reading of<br />

1.000000 V (k 1 count).<br />

I. Set the 34S5A RANGE to 10 V and set thc Transfer<br />

Standard for an output of I0 V.<br />

g. Repeat Stcps c through f until optimum adjustmcnl<br />

is obtained.


Model 3455A Section V<br />

h. Disconnect the DC Transfer Standard. Set the 34S5k<br />

FUNCTION to $-WIRE K OHMS and RANGE to 1.<br />

i. Using short pieces of number 20 AWG insulated solid<br />

copper wire, connect the I kilohm Standard Resistor to the<br />

345SA INPUT and OHMS SIGNAL terminals in a 4-wire<br />

ohms measurement configuration.<br />

j. Adjust the 1 kilohrn pot for a 345SA reading of<br />

1.000000 kilohm.<br />

k. Disconnect the 1 kilohm Standard Resistor and<br />

connect the 100 K standard resistor using the same 4<br />

wire ohm measurement configuration.<br />

I. Set the 3455A RANGE to 100.<br />

m. Adjust the 1 megohm pot for a 3455A reading of<br />

160.0000 kilohrn (& I count).<br />

n. Set the 3455A RANGE to 1. Repeat Steps i through<br />

rn to obtain optimum adjustment.<br />

5-1 5. RMS CONVERTE'R ADSUSTMEMTS (A1 5 Am.,<br />

Standsrd Madel 3455A Only).<br />

NOTE<br />

For 3455A Option 001 inshuments. refer ro<br />

the Average Convener Adjustments (Param<br />

h 5-1 61.<br />

Equipment Required:<br />

ACDC Digital Voltmeter (-hp- Model 3490A or<br />

3455A)<br />

DC Standard (Systron Donner Model 106A)<br />

AC Calibrator (hp- Model T45A)<br />

a. Set the 3455A controls as follows:<br />

FUNCTION.. .................. ACV<br />

RANGE.. ..................... 10Y<br />

AUTO CAL ..................... ON<br />

GUARD ....................... ON<br />

TRIGGER. ..................... INT<br />

MATH.. ...................... OFF<br />

AC-AC/DC(Rear Panel). ............ AC<br />

b. Connect a short across thc 34556 INPUT terminals.<br />

c. Set the Digital Voltmeter (DVM) to measure dc volts<br />

(auto range). Connect the DVM low input teminal to TP6<br />

and the high input terminal to TP8.<br />

d. Adjust R65 (PREAMP OFFSET kDJ) for a DW<br />

reading of 0 V + 10 microvolt.<br />

e. Connect the DVM Low io TP6 and High to Tf5.<br />

Adjust R56 (ABS AMP OFFSET ADJ) for a DVM reading<br />

of 0 V k 10 microvolts.<br />

f. Disconnect the DVM. Connect a clip lead between<br />

TP3 and TPS. Adjust R16 (INT AMP OFFSET) for a<br />

3455A display reading of O V + 1 count.<br />

g. Remove the clip lead from TP3 and TP6. Adjust R29<br />

(LOGGER AMP OFFSET) for a 3455A display reading<br />

between 0.0998 Y and 0.1002 V with a 100 mV, 100 Hz<br />

signal applied to the input terminals.<br />

h. Set the rear panel AC - ACDC switch to ACIDC. Set<br />

the DC Standard for an output of 10 V dc. Connect the DC<br />

Slandard output (Negative Polarity) to the 345 SA INPUT.<br />

i. Note the 34S5A reading.<br />

j. Reverse the polarity of the DC Standard's output and<br />

note the 3455A reading.<br />

k. Adjust R51: (AC-DC TURNOVER ADJJ sa that the<br />

readings in Steps i and j are equal 2 0.0005 V.<br />

1. Disconnect the DC Standard from the 3455A INPUT.<br />

Set the rear panel AC-ACDC switch to AC.<br />

m. Set the 34556 RANGE to 1 V. Connect the DVM<br />

(AC function, autorange) Low to TP6 and High ro TPS.<br />

Set the AC Calibrator for an output of 1 V, 100 Hz. Con-<br />

nect the AC Calibrator output to the 3455A INPUT.<br />

n. Adjust R74 (1 V, 100 Hz ADJ) for a DVM reading<br />

of 1 .OW00 V ? 1 count. Disconnect the DVM.<br />

a. Adjust R17 (GAIN) for a 3455A reading of<br />

1.00000 Y + 5 counts.<br />

NOTE<br />

If. in the fu!lowing steps, there is insufficient<br />

adjiwtment range for the I V, 10 Yor 100 V<br />

high- frequency (40 kHz) adjustment, the<br />

adjustment range can be expanded by removing<br />

the appropnkte jumper wire on the A15<br />

bomd (see Table 3-21. Refer to the A15<br />

board compot~enf locator (Section VlIl) for<br />

jumper locations.<br />

p. Set the AC Calibrator frequency to 40 kHz. Adjust<br />

R7S [I V. 40 kHz ADJ) for a 34S5A reading of 1.00010 V<br />

(tolerance = + 20 counts).<br />

q, Set the 345SA RANGE lo I0 V. Set the AG Calibra-<br />

tor for an output of I0 V, 100 Hz. Adjust R73 (10 V,<br />

100 Hz ADJ) for a 3455A display reading of 10.0000 V<br />

f 5 counts.<br />

r, Set the AC Calibrator frequency to 40 kHz. Adjust<br />

R72 (10 V, 40 kHz ADJ) for a 345519 reading of<br />

IO.0010 V (tolerance = + 20 counts).<br />

s. Set the 3455A RANGE to 100 V. Set the AC Cali-<br />

brator for an output of 100 V, 100 Hz. Adjust R94 (100 V,<br />

100 Hz ADJ) for a 3455A reading of 100.000 V + 5 counts.


Section V Model 3455A<br />

t. Set the AC Calibrator frequency to 40 kHz. Adjust<br />

C34 (100 Y, 40 kHz ADJj for a 3455A reading of<br />

100.010 V (tolerance = + 20 counts).<br />

u. Set the AC Calibrator for an output of 1 V, 100 Hz.<br />

Set the 3455A RANGE to 1 Y. Repeat Steps o through u<br />

until optimum adjustment is obtained.<br />

Table 5-2. Jumper Removal (A15 hard).<br />

1 V.40 kHx Jumper 2<br />

10 Y. 40 kHz Jumper 3<br />

5-16. AVERAGE CONVERTER AQJUSTMENTS (A13<br />

Assy., 3455A Option 001 Only).<br />

5-1 7. The following adjustments require an AC Calibrator<br />

such as the -hp Model 745k For optimum adjustment ac-<br />

curacy, the AC Calibrator should be calibrated at 1 V, 10 V<br />

and I00 V at I00 kHz. The AC CaIibrator" error rneasure-<br />

ment control should then be used to adjust out the<br />

100 kH7 errors indicated on the calibration chart. For<br />

example, if the calibration chart indicates that the 745A<br />

output is 0,W% high at 1 V, 100 kHz, set the error mea-<br />

surement control to + 0.04% to obtain a precise l V<br />

output. The 74519 can be calibrated during a routine per-<br />

formance test using the procedures outlined in the 745A<br />

Operating and Service Manual.<br />

5-1 8. Adjustment Procedure.<br />

Equipment Required:<br />

AC Calibrator (-hp Model 745A)<br />

a. Set the 3455A controls as follows:<br />

FWCTION.. .................. ACV<br />

RANGE. ....................... 1 V<br />

AUTO CAL ..................... ON<br />

GUARD ....................... ON<br />

TRIGGER ...................... INT<br />

MATH.. ...................... OFF<br />

b. Set the AC Calibrator for an output of 10 mV,<br />

1 kHz. Connect the AC Calibrator output to the 3455A<br />

INPUT.<br />

c. Adjust R12 (DC OFFSET) for a 3455A reading of<br />

0.01000 V 2 3 counts.<br />

d. Set the AC Calibrator to 1 V, 100 kHz (use error<br />

measurement control). Adjust R13 (1 V HI FREQ) for a<br />

3455A reading of 1.00000 V + 5 counts,<br />

e. Set the AC Calibrator frequency to 1 kHz (turn off<br />

error measurement controt). Adjust R36 (1 V LOW FREQ)<br />

for a 3455A reading of 1.00000 V ? 5 counts.<br />

f. Set the 3455A RANGE to 10 V. Set the AC Calibra-<br />

tor to 10 V, I kHz. Adjust R23 (10 V LOW FREQ) Tor a<br />

345SA reading of 10.0000 V ? 5 counts.<br />

NOTE<br />

If, in the following steps, rhm is ksuffcient<br />

adjustment range for the I0 V or 100 V highfrequency<br />

(100 kHz) adjustnlent, the edjlrstment<br />

range can be expanded by removi~~ the<br />

appropn'are jumper wire on rhe A13 board<br />

(see Table 5-3). Refer to the A13 board component<br />

locator (Section VJII) for jumper<br />

Iocarions.<br />

g. Set the AC Calibrator frequency to 100 kHz Adjust<br />

C 15 (1 0 V HI FREQ) for a 3455A reading of 101.0000 V<br />

+ 10 counts.<br />

h. Set the 3455A RANGE to 100 V. Set the AC Cali-<br />

brator to 100 V, 1 kHz. Adjust R46 (100 V LOW FREQ)<br />

for a 3455A reading of 100.000 V + 5 counts.<br />

i. Set the AC Calibrator frequency to 100 kHz. Adjust<br />

C34 (100 V HI FREQ) for a 345SA reading of 100.000 V<br />

1: 10 counts.<br />

j. Repeat Steps d through i untiI optimum adjustment is<br />

obtained.<br />

Table 5-3. Jumper Removal (A13 board).<br />

10 V. 100 kHz Jumper 2


Model 3455A Section V1<br />

6-2. This section contains information for ordering nplace-<br />

ment parts. Table 6-3 lists parts in alphameric order of their<br />

reference designators and indicates the description, -hp<br />

Part Number of each part, together with any applicable<br />

notes, and provides the following:<br />

a. Total quantity used in the instrument (Qty column).<br />

The total quantity of a par? is given the first time the part<br />

number appears.<br />

b. Description of the part. (See abbreviations listed in<br />

Table 6-1.)<br />

c. Typical manufacturer of the part in a five-digit code,<br />

(See Table 6-2 for list of manufacturers.)<br />

d. Manufacturers part number.<br />

6-3. MisceIlaneous parts are Iisted at the end of Table 6-3,<br />

6-4. ORDERING INFORMATION.<br />

SECTION VI<br />

REPLACEABLE PARTS<br />

parts by their Hewlett-Packard part numbers. Include<br />

instrument model and serial numbers.<br />

6.6. NONbLISTED PARTS.<br />

6-7. To obtain a part that is not listed, include:<br />

a. Instrument model number.<br />

b. Instrument serial number.<br />

c. Description of the part.<br />

d. Function and location OF the part.<br />

164. PARTS CHANG ES.<br />

6-9. Components which have been changed are so marked<br />

by one of three symbols; i.e., A, A with a letter subscript,<br />

e.g., A,, or A with a number subscript, e.g., Al A A with<br />

no subscript indicates the component listed is the preferred<br />

replacement for an earlier cornponcnt. A A with a letter<br />

subscript indicates a change which is explained in a note at<br />

the bottom of the page. k A with a number subscript indi-<br />

cates the related change is discussed in backdating (Section<br />

VII). The number of the subscript indicates the number of<br />

the change in backdating which should be referred to.<br />

6-5. To obtain replacement parts, address order or inquiry 6-1Q. PROPRIETARY PARTS.<br />

to your local Hcwlett-Packard Field Office. (Field Office<br />

locations are listed at the back of the manual.) Identify 6-1 1. Items marked by a dagger (f) in the reference desig-<br />

-<br />

Table 6-1. Standard Abbreviations.<br />

f<br />

Am<br />

m"m<br />

Smrum<br />

-11 m<br />

W - m r me*la v -1 ~4)<br />

nu&- .*<br />

mu -.I<br />

. ng.orr-mu U<br />

I--mc-l m T - 10 9 -04. SpST<br />

ra -nh ~ * p l r ~ h<br />

*<br />

-*Nm<br />

-& upCtkm*<br />

mcO r ~ w d m ~ ~ ~ t 14 Wl*m<br />

C C m w on& nmulm18mnl#h II hW.1 TC -.M'e duml<br />

U* . c w m obd w bl abs?.~mm Tat tl- ~a.m<br />

d mlf~~nrnl 4 M l m ! -<br />

- - -<br />

lo.3mrmm Otr . -r 4- IoOpY<br />

corn r-mg. In* LIIDMU. 10.3hnl 1.1<br />

~ h m r ~ .<br />

CDmD mW11M 0 . # trnm urn-<br />

'- .cmnwilon C mbrrm @ -HmI TSTR *m*lm<br />

m W U L V PC rmnd r#c~l<br />

ds m I.pT v - M U 10 - 77 f r d m V vmlU<br />

llPDT m**. mum- W . .d * V W * o n W W U W<br />

-*. --v--mzz<br />

OP5T -&ln.l. worr Id<br />

10 3- LO PI, .I "m<br />

Ynz Ed: ::::=: ~rn"l.1 udr* dm Nmm d k p "0lU.p<br />

*.cT .*wmc MO . . .wan,-<br />

-w --d mlhc m n I,Lm ~ par m~8mmra W . umnlu<br />

-<br />

m?, lrawlrlvln OD VL 10 p.h 18 *I*<br />

F +MU mr mnaucana wm anawmllon rm . . +m--ug.<br />

m (wddlatamrr~* mla mwl,n~ m.c p.cl*on t~ carramnu WID<br />

*bttsn<br />

fnd . r..d mu -1- ro 3 en. mom I~W-.L I- . . -W*E<br />

.F 411wd111<br />

aa4a muwrBndl.1 R -*c :t -<br />

GM. m u - 10 6 ID1 M~CII<br />

- m* M*l., @ mu r o a ~ m ~ r . ' o D a r m W W r * c g d L L + r q .<br />

E "01 IOt.ll -*u.kamIpnmvhm"nMl<br />

I<br />

** rnswd*~1~.nundlrn~<br />

@ *rnMl.dl n* -Dl - 10- p mP13<br />

W -clod S. r*num -1.d OI * m U I-<br />

n -1ml M nnn rO ma4.l<br />

-<br />

w WCu.. Qm -em b wym @Ram--<br />

-ill<br />

A FL I,~W D r -nw<br />

0 mw M WR . nrmra u . . . .-<br />

IIT bnrr K rn- r.wr Alm munorIgu*l v . . ..rum Nbh r*pl A4 moc*I. .Ic<br />

C J w L Rl mrrm~a~or W 4<br />

CII boa- lhvlrw K '.h S .rach X . WL.7<br />

m a u v u n L b r m T wm,lwm XOB .<br />

. M*u<br />

0% uno U I.*.* Tll -1wM *I<br />

-m<br />

t mr-mn 114. mrme* 7M TC Ir*lmo4m 1 nrm~rl<br />

r IVY P ryl T* 7m.r mw 2 Mlorl


Section VI Model 3455A<br />

nator column are available only for repair and sentice of exchange basis, Use the following part numbers and descrip-<br />

Hewlett-Packard Instruments. tions when ordering the exchange assemblies.<br />

6-12. EXCHANGE ASSEMBLIES.<br />

6-13. Exchange asssernblies ere factory repaired and tested<br />

assemblies and are available only on a trade-in basis; there-<br />

fore, the defective assembly must be returned for credit.<br />

For this reason, assemblies required for spare parts stock<br />

must be ordered by the new assembly part number listed in<br />

Table 6-3,<br />

6- 14. For service convenience, the Processor Assembly<br />

(A3) and Reference kssembly (A1 1) may be replaced on an<br />

Manufacturer<br />

Number<br />

FROM<br />

GM077<br />

00000<br />

0011.l<br />

0022U<br />

01 121<br />

01 295<br />

02735<br />

03888<br />

04713<br />

07263<br />

11236<br />

11237<br />

11 502<br />

14140<br />

15818<br />

16365<br />

17856<br />

19701<br />

24226<br />

24355<br />

24546<br />

2493 1<br />

27014<br />

27264<br />

28480<br />

32997<br />

34335<br />

56289<br />

71 785<br />

72136<br />

73138<br />

74970<br />

7591 5<br />

79727<br />

BG464<br />

91637<br />

9 t 833<br />

99800<br />

Processor Eschange Assembly (A3), -hp part number<br />

03455-69503.<br />

Reference Exchange Assembly (A1 1), -hp- part num-<br />

ber 1 1 177.69501<br />

61 5. SERVICE KIT.<br />

Table 6-2. Code tisf of Manufacturers.<br />

Manufacturer Name<br />

EFCO Components<br />

Amp Dsutschland<br />

U.S.A. Common<br />

Jermyn lndusrries<br />

United Ckem~con Inc<br />

Allen-Bradley Co<br />

Texes Instr Inc SernFcand Cmpnt Div<br />

RCA Corp Soltd State Div<br />

KDI Pyrofllm Carp<br />

Motorola Semiconductor Produets<br />

Fairchild Semicanductor Diu<br />

CTS of Berne Inc<br />

CTS Keene Enc<br />

TRW Enc Boona Div<br />

Ediron Elek Div WcGraw-EdIson<br />

Teled~ne Semiconductor<br />

Dayton Rogen Mfg Co<br />

Seliconix inc<br />

MepcolElectra Corp<br />

Gowanda Electronics Corp<br />

Analog Devices Inc<br />

Corning Glass Works lBrsdfordf<br />

Specrelty Connector Co Inc<br />

National Semiconduetor Gorp<br />

Molex Products Ca<br />

Hewlett-Packard Co Corporete H(1<br />

Bourns Inc Trimpot Prod Div<br />

Advanced Micro Devices Inc<br />

Sprague Electric Co<br />

3RW Elek Components Cinch Div<br />

Elenro Motive Corp Sub IEC<br />

Beckman lnsrrumentr Inc Hell~t Div<br />

Johnson E F Co<br />

Littelfuse Inc<br />

C-W Industries<br />

Bergquist Co<br />

Dsle Electronics Inc<br />

Keystone Ele~trOnich Corp<br />

Amer Prcrr Ind Inc Delevan Div<br />

6-1 6. A service kit is available to aid in the repair of the<br />

3455A. This kit contains Processor and Reference Amm-<br />

blies (A3 and A1 I) and selected components necessary for<br />

efficient repair. The Service fit may be ordered through<br />

your nearest Hewlett-Packard Office. Order Service Kit<br />

Number 03455-69800.<br />

Address<br />

Saint-Melo France 35<br />

Germany<br />

Any Supplier of the U.S.<br />

Milweukee. WI 53212<br />

Dellas. TX 75231<br />

Sommewille, NJ 0887 6<br />

Whippany. NJ 07981<br />

Phoenix, AZ 85008<br />

Mountain View. CA 94040<br />

Berne. IN 4671 1<br />

Bwne. NC 2m7<br />

Menchester, NH 03330 I<br />

Mountain Vim. CA 94040<br />

M~nneawlis, MN 55407<br />

Santa Clara, CA 95050<br />

M~neral Wells, TX 76067<br />

Gowanda. NY 14070<br />

Norwood, MA 02062<br />

Bradford, PA 16701<br />

Indianapolis, IN 46227<br />

Santa Clare, CA 95051<br />

Downers Grow, l L 6051 5<br />

Palo Alto, CA 94304<br />

Riverside, CA 92507<br />

Sunnvvele, CA 94086<br />

North Adams. MA 01 247<br />

Elk Grove Village, I L m 7<br />

Wiltimentic. CT 06226<br />

Fullterton, CA 92634<br />

Wesecs. MN 56093<br />

Des Pfaines, I L 60016<br />

Warminster, PA 18974<br />

M~nneapolis, MN 55420<br />

Columbus, NE 68601<br />

New York, NY 10012<br />

Aurora. MY 14052<br />

I


Reference<br />

Designation<br />

I1<br />

ALL1<br />

AIL2<br />

A1L1<br />

*LC+<br />

AIL5<br />

A1Lb<br />

ALLT<br />

AlLB<br />

ALLP<br />

AIL11<br />

llC12<br />

*LC13<br />

hlCL4 1<br />

A1110<br />

A1117<br />

AILlU<br />

AIL19<br />

AILLI<br />

AlCZ2<br />

AALZ)<br />

AIL24<br />

1 AIL23<br />

h l ~ 2 b<br />

AlcdT<br />

~ILLB<br />

hILlt<br />

AIL11<br />

AIL& &A<br />

I l L 3 j<br />

AIL*<br />

h1I;JS<br />

AlL3b<br />

AIL37<br />

AlL3u<br />

AlLId<br />

A l U l<br />

AlM?<br />

AlC43 Ag<br />

AlC44 AC<br />

AlcHl<br />

XlLkZ<br />

AAcn2<br />

ALLY5<br />

AILa<br />

Altbtt<br />

AlCW<br />

hlGHY I<br />

ArLRll<br />

hILUIL<br />

ALLK~I<br />

AILALI<br />

A1W13<br />

AICHlo<br />

A141<br />

h1J4<br />

A M 1<br />

AlJ%<br />

AlJb<br />

A14 r<br />

AIJU<br />

A1L 1<br />

11U1<br />

AWL<br />

AM3<br />

AAU4<br />

A1117<br />

A1Jb<br />

AlYI<br />

AIJ~<br />

ALuY<br />

*lull<br />

Cls a<br />

HPPart<br />

Number<br />

034S5-W501<br />

01-03bZ<br />

01-0291<br />

Olltu-0'374<br />

0180-0197<br />

01 @O-1735<br />

0180-OLP7<br />

OLM-LX~~<br />

01 BO-U31+<br />

01ao-ot~r<br />

01 8C-1735<br />

01 -037*<br />

01 -0128<br />

0180-OJ74<br />

01-DL91<br />

Di 80-OcVL<br />

OLm-ObP3<br />

01 -0LZB<br />

do-OLYI<br />

0 1 8D-W4.P<br />

DII+UZtl<br />

01 BO-0291<br />

UI OD-DL91<br />

rll4WUIP8<br />

D l -0L'aI<br />

o~t4.+2.?0*<br />

0180-1335<br />

DlW-OLPL<br />

YIBV-1735<br />

0 A &+ZLrU5<br />

0160-0;roZ<br />

0 1 ~ O L P 1<br />

0150-OOP3<br />

01 w-~302<br />

U1 CO-OLY 1<br />

OIIIU-OLP1<br />

01W-O t 95<br />

0180-0~1<br />

OIBQ-026El<br />

OJW-1901<br />

IPUI-QLOO<br />

1YUi-WZOO<br />

I Y 01-uu5u<br />

19tl-OU>3<br />

1PCL*OY>D<br />

1PU-0631<br />

1POL-W28<br />

1901-UOZB<br />

LYOI-0050<br />

lVGZ-Ld34P<br />

IPW-0126<br />

LPDZ-Obll<br />

1901-UU53<br />

1902-3136<br />

1251-31'35<br />

1251-4313<br />

1251-3274<br />

12 51-3Z7b<br />

1.?51-2U3$<br />

1251-4315<br />

1L 51-*>A4<br />

91W-013?<br />

IVY-0010<br />

111%-0d10<br />

IS 54-0;10<br />

1851-UUIJ<br />

185+OLIU<br />

I&>+ DUIV<br />

I# 53-ObLU<br />

1~53-WLJ<br />

11 54-UULO<br />

1854-DCU7<br />

0180-3897<br />

Ad SEE NOTE ON SCHEMATIC B<br />

d0 SEE MOTE ON SCHEMATIC 10<br />

*C SEE NOTE ON SCHEMATIC ID<br />

*G SEE NOTE OM SCHEMATIC 10<br />

I<br />

1<br />

3<br />

H<br />

5<br />

7<br />

5;<br />

1<br />

3<br />

1<br />

1<br />

2<br />

5<br />

I<br />

4<br />

2<br />

1<br />

4<br />

45<br />

3<br />

LZ<br />

5<br />

3<br />

1<br />

1<br />

2<br />

4<br />

I<br />

1<br />

I<br />

5<br />

3<br />

15<br />

B<br />

Table 6-3. Rephcea bh Parts<br />

Description<br />

C.C ISSEIIIILIm WT60 111<br />

UPhLfTOll-FXD 51OPF t.5t 300YYDC MICA<br />

ChPhLlfOm-FED lUF+lDS 35VDC fA<br />

C4P4ClmR-FXD lQUF+lOt ZOVOC TA<br />

C&PIClTOR-FXa Z.ZW*-iOZ ZOVK 1h<br />

CAP4ClTUA-FKD.22UFt-1Of35Y~1A<br />

ShPACITUR-FXO 2.2UFrlOt 2SvDC TA<br />

CAPICI IOU-FIIO .IZVF+-10% ~WDC r~<br />

WPhCI TUR-FXO 1OUFu-101 ZQVOC tA<br />

CAP&LI~OR-FXD Z.LUF+AOI ZOVDC IA<br />

CAPACI TOLE-FXO .ZZUF+-10% 35VOC TA<br />

C~PALI~R-FXD LQUF~~OZ ZOYDC fh<br />

LAPhG3fDR-FXD 2mZUF +ZPX 5OdVW CEA<br />

CAP~C&~UK-FXD IOUF+IOI ZOVDG 7 1<br />

CAPILLFOR-$XU 1UFt-1OI 35VPC f A<br />

LAP4LITUK-FXD 1UFklOL I5VilL TA<br />

CAPIEITOR-FXD lOOOW+5+10S 2SVDC U<br />

CAPACSrUA-CYO ZZUFt-LO& IIYDC 3A<br />

C4PhC 1 IUH-FXP lllF+lOI 35YOC 1A<br />

CIPACSrOR-PXD ISOOUF+IQ0-1UL ZLYOC U<br />

CAP~CITOR-FXD lUF4-IOI 35VOC lh<br />

CAP4CITURFXO I W t l O Z 35YDt f A<br />

CAPAClfOA-FXO LWFlPAOL JSVOE TA<br />

t*PIClfOR-FXD ZODPF +-51 AODilVDC MICA<br />

CAPAC 1 TUN-FXO lUF+-108 35VOC 1A<br />

CAP*CITUR-FXU LOOP$ r-sa >OWVQC MIC~<br />

LAPIE I IDA-FXO .LZM+-1OI 35VOL Tl<br />

CAPIC IWR-FXU lUF+lOL 3SVDC fA<br />

t&PhCLfWR-FXD .22 UF+-lOX35VIJCTA<br />

LAPACITUII-FXD .ULW +BC-20t 25MYDC ZER<br />

LAPACZIOU-FXII 510PF +-51 JDOYVM: MICh<br />

GAPICI TOR-FXD ldF+LOX YSVOC f A<br />

CAPICIIWR-FXO<br />

LAPICIIOR-FXD<br />

-0IW +BWZOt EDOYYDC CER<br />

~LOPF *-sf ~OMIVQC M~U<br />

CAP4C I TOR-FXD IUFI-10s 35YOC LA<br />

Cap*: IIWA-FXU IUF-IOZ 35UdL 14<br />

CAPACITOR-FXD lOOOPF +-Z(rY 2WVAC CEA<br />

CAPACITORFXO IUF clG% 35VDC TA<br />

CAPACITOR-FXD IUF +-IN 3SYDC TA<br />

CAPACITOR-FXD 8 8UF +-2I).b BVWC TA<br />

DIUIE-PMR AECT 10OV I.$*<br />

DlU3E-RUN ArCT IOOV k.5h<br />

0100€-SUIfLHINE BOW 3OOMA 2NS -1<br />

OIOWE-5WlTCHlNG BUV 20UMA ZHS DO-?<br />

OI Udt-SY1TLUlHC BOY LUUMA 2NS OW1<br />

OIOPE-LHR 1853518 14Y 51 PPSY TC-*711<br />

VIUDE-WR ALCT 40OV 750Mh 30-29<br />

DIOOE-AR AkCI 400V 750WA 00-29<br />

[HJOE-SYITLHLNG 8 0 ZOORA ~ ZNS W-1<br />

DIODE-JNR 6.1W 5s OWI PD..CY ft-+-0221<br />

DIOOE-LHR 2.blY 5.t -7 PLa.4Y TC=-.013t<br />

0133E-LUU EN55518 14Y 5I PO*bh fC=+?5Z<br />

010DE-SwlfCHlNri BOY ZOOM1 ZMS MI-J<br />

UIOJE-UIR 8mLloV 51 O*? P0..4Y TC-hOSZL<br />

LOXNELTUUI--RlMMPOSIMPE<br />

CUYNECTOR If-P111 M POAT TYPE<br />

CO'dNECTOH &RIN Y POST TYPk<br />

CUUHELIDH b P l l l M Pdb7 7YPk<br />

CUNNCLIUR-PC €lGk 15-COMIFAOII 2-ROY5<br />

CUNNEZlUR 1'-PIN N PUSf TlPE<br />

CVNNECTUK lS-S'lI4 II PUS1 IYPL<br />

CUIC-NLD SRH 5% LI-LO .lJDX.+*LG SRF-31H2<br />

IHIYSIS7W PWP Sl TWL8 PO-3eONY<br />

rUhNSISrOR HPM LHZZZ2 51 13-tb PO-5OQW<br />

IUhHSlSIQI( NPN LNZ22Z 51 TJ-ld PI)190WY<br />

TBlYSI STDR PUP 51 TO-18 CO-3bUMY<br />

IK4HS I STOH NPH ZNJLL.7 51 IU-ld P0=5O[MY<br />

TUAMSISfPR PUP 51 1-18 PO-3oORY<br />

TYIISLSTORPW51PPJJOA~FT=l5UMHL<br />

ranus I s r ~ PW l SI PU~~OJMW FT+ISOMHL<br />

TKkYSISIUR PHP SE PU=3OUMm Ff-1SOHhP<br />

THbrUSLSTUR PPrP 51 UAdC TO-ZZOAB PO-6OY<br />

CAPACITOR-FXO .tUF+80-20% 1MIVDC CER<br />

See Sntductlon to this aectian lor orderlnp inrotmalion<br />

Mfr<br />

Cale<br />

21-0<br />

21480 I<br />

56214<br />

56ZlP<br />

%28P<br />

%ZIP<br />

%Z19<br />

5bzmg<br />

1 5htB9<br />

1628')<br />

Jb289<br />

%28g<br />

ZB4BQ<br />

5bZBP<br />

5b284<br />

5bZBP<br />

WZ2U<br />

SCLB9<br />

SLZBP<br />

ZB*BII<br />

5bZB9<br />

5btlJ<br />

5L281<br />

72136<br />

5b28P<br />

28~83<br />

%La9<br />

56ZIP<br />

58289<br />

28183<br />

28480<br />

56209<br />

28480<br />

t8IEO<br />

56249<br />

5o~a9<br />

W80<br />

56284<br />

042m<br />

042a0<br />

04913<br />

W713<br />

ZBC80<br />

28580<br />

2g4BO<br />

MT13<br />

Ztl+80<br />

20480<br />

Z0CBP<br />

28480<br />

h f 1 3<br />

04713<br />

211401)<br />

1<br />

272M<br />

ZTZbb<br />

272b4<br />

4<br />

flfl5<br />

ZfZM<br />

ZfZbC<br />

W&00<br />

ZB4BO<br />

04711<br />

WT13<br />

ZYIBD<br />

04f13<br />

28480<br />

ZUlUP<br />

ZBCE~<br />

28+80<br />

ZelHO<br />

28480<br />

Mfr Part Number<br />

03*55-66501<br />

DIhO-03W<br />

1500105XP(U512<br />

15001DbZPIYO6T<br />

15.00225X90211U<br />

150OZZtX9035AE<br />

15ODZZIX902DkZ<br />

~ ~ D O Z Z ~ ~ ~ O ~ ~ A Z<br />

15ODtWXPOZOB2<br />

L~OPLZ~XPOZO~Z<br />

150D224X9035AL<br />

1500l~X902032<br />

0160-0128<br />

15001ObXPRZOB2<br />

1500105X9035A2<br />

15ODlOSXV03SAZ<br />

ZSYBSLlOOO<br />

ISOOLZLX?O1112<br />

150DlO5XPO35~X<br />

(118~0bQ*<br />

1500105X9035U<br />

150010SX~035M2<br />

150DL05XP03512<br />

DM15F20 lJ030DdVlC1<br />

150D105X1035A2<br />

DILO-2204<br />

150032+%9035&Z<br />

1500105XPO35I2<br />

~ J O M ~ ~ X ~ S A ~<br />

01bKkZb05<br />

0160-0362<br />

15PD105X9D35&2<br />

0150-0093<br />

0160-0442<br />

llQP105X9055AZ<br />

1500105~9035~<br />

0160-0195<br />

lMD105Xm5A2<br />

1500105X9U35A2<br />

1 WD685XI1006AZ<br />

SRI04&9<br />

SR1146-9<br />

1901-0050<br />

1901-PO50<br />

LPW1-0050<br />

1NS351B<br />

1901-OOt8<br />

IPUl-OO.!B<br />

19U1-0350<br />

APOZ-0044<br />

5L 1033S-14<br />

1M53518<br />

1901-0050<br />

5L lOP39-155<br />

09-60-IMlt Z+OJ-O*Ij<br />

22-04-2Lkll<br />

09-60-1Wl<br />

I)+bWkOCI<br />

Z52-15-30-300<br />

22-0+2(1B1<br />

ZZ-04-Zl61<br />

2500-28<br />

1853-OOLO<br />

,?HZ222<br />

ZH2LZZ<br />

IB53-0010<br />

2HL222<br />

1853-0010<br />

1853-0020<br />

L ~ ~ ~ - O O Z O<br />

1853-OOtJ<br />

1853-MOP<br />

01603822<br />

63


Reference<br />

Designation<br />

htJO<br />

A1117<br />

A LU&<br />

Aid?<br />

AIJAO<br />

4tUll<br />

AIU~L<br />

1IJIj<br />

*lUIC<br />

AAd L5<br />

*LUIC<br />

AEU17<br />

AIrllU<br />

AldlP<br />

AIJIU<br />

AlULl<br />

* 1 JLc<br />

AIU13<br />

A 1 JL*<br />

hLJ.45<br />

AIUZ8<br />

Ald4f<br />

ALuL&<br />

AIUCY<br />

ALLIJU<br />

A3d31<br />

ALUM<br />

IlUM<br />

A I JA4<br />

4lr14B<br />

AAU>h<br />

hl.13f<br />

A hUjB<br />

AIU3Y<br />

#id40<br />

hill41<br />

A1 WL<br />

*Id41<br />

Aid44<br />

AAUP5<br />

AIJ4D<br />

AlrlsF<br />

*I JQU<br />

41J+'J<br />

AhI1SU<br />

hirl5l<br />

AIU%?<br />

h1J53<br />

4tJ-S<br />

AAJ>:,<br />

4AJ-<br />

AIrl>T &A<br />

~ l l l b m<br />

A10>3<br />

AIJW<br />

AIUbI<br />

AIU&L<br />

ALlrtrl<br />

*tub*<br />

A IU01<br />

Aid&<br />

* hU-1<br />

ALUM<br />

.IldbP<br />

ALUlrl<br />

I AIUli<br />

Al1L<br />

AA SEE NOTE ON SCHEMATIC 10<br />

f4PPan<br />

Number<br />

IBiWl558<br />

1B2Wl2.Ob<br />

i82WliYP<br />

iQl(tlS5U<br />

lB.?+1IV'I<br />

lEM-1IJb<br />

18 m-1ssu<br />

LU20-Id01<br />

182Pl197<br />

PaZ*ll9B<br />

IIIZ*IIP&<br />

1BM-114E<br />

l t I ~ l i P 8<br />

IIILO-ILPb<br />

1BZ~119b<br />

182It.lSbd<br />

IBzP.1568<br />

1Y20-1lPb<br />

182W119b<br />

L&?WllUb<br />

1820-1112<br />

LPMI)0?5<br />

Il2+1LBO<br />

1820-1196<br />

IrZdD-1280<br />

1BP1196<br />

IBdO-LZOB<br />

lUi+ldlb<br />

11320-1508<br />

lcl.?O-l3bd<br />

1820-1432<br />

11-S*32<br />

1120-1201<br />

18-11qP<br />

1820-lllZ<br />

182Q-1214<br />

48 dbkSbB<br />

11>1561<br />

181B-0199<br />

IP la-0199<br />

Id2+11P11<br />

lQI+1.2U1<br />

LaLC-1621<br />

18ZU-1199<br />

LSd+lL97<br />

1820-1196<br />

1820-1199<br />

IdZO-12Ob<br />

182+1X9b<br />

Id2+lIYF<br />

l S 20-1445<br />

1YZC-W37<br />

182C+llPb<br />

LY~+~IPB<br />

181~-IIPB<br />

1112W1197<br />

111291bO+<br />

ItlZrl-119b<br />

18 d0-Id45<br />

182Q-114b<br />

18-1196<br />

L820-119b<br />

IdLO-llVb<br />

Id2P.ll9b<br />

IdJO-iIqb<br />

ltlLPll40<br />

W*1+1WL<br />

12W-O*BS<br />

ILW-0+73<br />

UdtiJ-ObBb<br />

Q3tO-Dm87<br />

504W017U<br />

4<br />

2<br />

B<br />

24<br />

I<br />

9<br />

6<br />

1<br />

z<br />

1<br />

2<br />

Z<br />

X<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

L<br />

2<br />

2<br />

7<br />

z<br />

Table 6-3. Replaceable Parts<br />

Description<br />

IC-036ITU MUHlR TTL* WhD<br />

IC-PIGITLL SW~LSZTN TTL LS TPL 3 1*)&<br />

10-DItlThP SN74LSW ?tL LS HEE 1<br />

IC-DIGIIAL RC344tP TIL* OUAD<br />

IC-<strong>DIGITAL</strong> SN74LSMM TTL LS HEX 1<br />

IC-OlGIf~L SNFUSI1~M fTL LJ MEX<br />

IC-DIGIT*L YC~HIP T~L* WI~D<br />

IC-<strong>DIGITAL</strong> 5H14LSOBN TTL LS WAD 2 AMD<br />

IC-<strong>DIGITAL</strong> SNJUSOOH TfL L5 MJhD Z WAN0<br />

IC-DICllU 5N?+LS03M 11L LZ QUA0 2 NU40<br />

IC-<strong>DIGITAL</strong> S ~ ~ L S O T~I. ~ M is WAD z NAND<br />

JC-DIClTlL<br />

IC-DSblTAL<br />

SH72L503H ffl L5 OWAD Z NAND<br />

5k74L503M IJL L4 UUAD 2 NAHD<br />

IC-DICI~AL SNI*LSIl*II TIL LS HEY<br />

IC-<strong>DIGITAL</strong> SNJILStl4W fIL LS HEX<br />

Sf-01GllAC 5NfSLS125n ITL LS QUA0 l BUS<br />

1C-DLGIThL SN'tW5125H YlL CJ QUA0 1 BUS<br />

IC-OIGIIhL SM7US114N TlL LS HE*<br />

1C-DIGIIAL SMJ4tS174H TlL 1 5 HEX<br />

It-OlttlAL SMIYS114M TrL LS HEX<br />

It-DI6f'ThL SNfUS14N ffL LS DUAL<br />

OIDOE AARAV<br />

IC-~1611~~ SWUSLB~W ~11 LS<br />

IC-3lGlTAL SWU5114N 1tL LS HEX<br />

It-<strong>DIGITAL</strong> SHJ4LSlBlH I l L lS<br />

IC-l)lGlT*L SHTU.SIb3H TTL L4 BIM<br />

IC-DtG#TALSMfbLSlb3MTTLLJ BIN<br />

IL-JIGlfU SMl+LSOBH TlL LS WAD Z *I1P<br />

IL-DIGLlAL SHF4CSO4N 1TL 45 HE# 1<br />

IC-UI GllAL 5N14LS74N TIL 'LS UUAL<br />

IC-O~GITAL S U T ~ L S I TTL ~ ~ LS ~ 3<br />

It-OIGIfAL 517USlZSN T1L LS QUO 1 BUS<br />

IC-Dl GLrAL SNT4LSIZ5N fIC LS QUA0 1 BUS<br />

IC ARJIIZkPC IK RAW R#OS<br />

1G AMYLlfAPf 1K RhH HlUS<br />

IC-<strong>DIGITAL</strong> SU7US03M T TL LS QUAD 2 WAND<br />

LC-LIlClTAL SMIMSOBN fTL LS QUA0 2 AM0<br />

tL-3fGlfAL SNYU.SIZ3M IFC LS DUAL<br />

IC-OICltAL SHTSLSDIPI tTL LS HEX. 1<br />

IC-PfGLTAL 5M34LSOOH fTC CS QUAD 2 PUN0<br />

IC-DIGIIU SN74LSL74W T14 LS HEX<br />

IC-DEGlfAL SHI4LSWN TIL LS HEX 1<br />

It-DIEfTAL SHlOLS27N 1TL LS fPL 3 UUR<br />

It-<strong>DIGITAL</strong> SmUEl74W IFL LS HEX<br />

IE-DIGCTAL SM74LJWM tTC LS PUAO 2 WAN0<br />

JE-DI6ltAL SIY14lS155W fTL L5 OU41 2<br />

IC EHEM TTL L 8-INP<br />

IG-DlGIlAL SHfUStT4N 1fL CS HEX<br />

IC-DlCITI* SM14L503N 114 L5 PUAO 2 HA110<br />

~ ~ - r I.I~AL ~ a 5 ~ 4 ~ 5 TIL 0 1 LS ~ YWAO 2 HAND<br />

IC-DIGItY SN74LSOOM fSL LS QUAD 2 MANO<br />

IC-<strong>DIGITAL</strong> SM4LS4BM TIC CS 4<br />

1E-UIGITAL 5HIUSlT4R TrL LS ME1<br />

1C-3lGIfAL 5H7645155N YfL LS DUAL 2<br />

IC-PIClIAL SH14LSI74N 111 L5 HEY<br />

tt-DICI~AL SM~LSLTW~ rfL LS HEX<br />

IC-OIGIlhL SNJWLZI~IN flL LS HEX<br />

IC-OIGITAL SH74LSIT4M 1TL LS HEX<br />

IC-DltllAL SHI4LSIJ*H I l L LS HEX<br />

It-Df GlIaL SNIUSI7*N TtC LS HEX<br />

IC->lGSThL trS88b3R MOS* OSPL ORVA<br />

CIVSIhL. WAR12 1.3MHZ<br />

LEI€ I11C 14-PI)I PC MWNTING<br />

SUCKET-1 IZ Ib-LONT OIP-SLOR 1<br />

*lUS U111-11823<br />

*BUS BAR-Me23<br />

~ ~ ~ J E ~ P L U G - ~ W P C B L I A ~ O<br />

See Intrductlon to this section for ordering Information<br />

Mfr<br />

Code<br />

04713<br />

01295<br />

01295<br />

Wfll<br />

01295<br />

OIZ99<br />

01713<br />

01295<br />

01295<br />

CJ1295<br />

oizvs<br />

01295<br />

01291<br />

OlL'tl<br />

01295<br />

01295<br />

01295<br />

01295<br />

OIL95<br />

Oi 295<br />

01295<br />

Zl4EO<br />

01295<br />

0129%<br />

Ol295<br />

Mfr Part Numlwr<br />

It-<strong>DIGITAL</strong><br />

IC-OlGlflL<br />

SH7USl74H T1L LS HEX<br />

SHfUZ32H fTL Lf QUA0 2 OR<br />

OIL95<br />

OLZPS<br />

Stll*CSI 7*N<br />

5NT415IZU<br />

IC-OIGI7AC SKI4LSIIaII tTL LS 3<br />

IC-OIGlrAL 5HTUS125N FEL LS OWAD 1 BUS<br />

OlZPS<br />

01295<br />

5NJ4LS138M<br />

SN14t 51251<br />

I C - D ~ G ~ ~ A L S ~ ~ * C S I ~ ~ M ~ T L L S U U 01205 ~ O ~ B U S 5 ~ 7 4 4 ~ 1 2 ~ ~<br />

01295<br />

01295<br />

01295<br />

01295<br />

01295<br />

012PS<br />

OlZP5<br />

01295<br />

34335<br />

34335<br />

01195<br />

01295<br />

01295<br />

01245<br />

UIlPI<br />

01295<br />

01295<br />

01295<br />

1 01295<br />

01295<br />

01295<br />

02237<br />

01293<br />

OL295<br />

01245<br />

01295<br />

01295<br />

1 01295<br />

01295<br />

OlZYS<br />

' 28M0<br />

91295<br />

01Zq5<br />

01295<br />

01295<br />

01295<br />

2TOt4<br />

28480<br />

38180<br />

OOOOP<br />

OOJOO<br />

28480<br />

llC3+41P<br />

5117U527M<br />

SN74LSO4M<br />

MC34*lP<br />

SN14LSOW<br />

5117USlT4M<br />

~ 3 4 4 1 ~<br />

SMF4LSOBW<br />

SH74CfOW<br />

SN74LSD3Y<br />

SMXILSON<br />

SHT4LJOSH<br />

SHF*LS0311<br />

SN7MSi 14N<br />

SNf4LS174M<br />

SNT4LSIZSW<br />

SNT4LSIZSN<br />

SUT4LS174U<br />

SN74 Sh 76PI<br />

SN74LSllQN<br />

SHtSLSlW<br />

1POb-0075<br />

SN14LSlBlW<br />

5MJU 51 74ll<br />

SH~4CSlRLB<br />

SH74LSLb3M<br />

SH14LSL&3N<br />

4NJ2~50Bn<br />

SN74LSO4Y<br />

5YJ4LSlrM<br />

SNf4LSI3lM<br />

SHF4LS125M<br />

SHTILS125M<br />

AM4112APL<br />

A*QilZAPC<br />

SNf4LS03fl<br />

5N74LSDBH<br />

SN74LShL3W.<br />

SH74LSOW<br />

SN74LS00M<br />

5N74LSl7QM<br />

SHTSLSObN<br />

SH74PST IN<br />

SN74CSlI4II<br />

5M74LSOOM<br />

SH74LS155F1<br />

93L18PC<br />

5H74L Slf+W<br />

St4741 SOPI<br />

LM~~LSO~N<br />

SH7+LSOON<br />

SH74LSG8N<br />

SHJ4LSLI4W<br />

EHltLS155N<br />

SN74LSl?*N<br />

SHI*LStfbM<br />

5M74L S172H<br />

SNlIL511W<br />

SHI+LSl?bN<br />

SHT4LSlt4N<br />

DS&BbYI<br />

MLO-LPOL<br />

1200-MO5<br />

1200-0+71<br />

080<br />

080<br />

505U-D1?0<br />

6-5


, SEE NOTE OM SCHEMATIC 10<br />

64<br />

Designation Number<br />

Tabb 6-3. Replaceable Parts<br />

Description<br />

A2 03+55-WSOZ 1 PClSSE11~Y.DtZPlhY<br />

h2CR1 19-05SI 34 LEO-V IS1 ME LUlF l M-2RCD IF=ZOII*-HAM<br />

ALbRi! 3993-05SI LED-VISI WLE WH-INT-ZMCI) IF-ZORA-MAX<br />

*.?CKi lPPo-C154f LtJ-VI St BLE Luk-lflTrlMC0 IFIZOIIA-MU<br />

ALI-UC 19W-Olr+? LED-V I S I BLE Wn-INl=2MCP IF*20ltA-M**<br />

*LLA> L9Pd-Ofr*F LEO-Y 1Sl BtE WR- LNT-2MCO IF*ZOM*-MA*<br />

*LCI(L<br />

ALLIII<br />

19 * 0517<br />

IPPJ-O5I'1<br />

UD-Y ISIBLE LUWINI-ZMCO<br />

LED-Y lSIQCE LUM-EHf -2HCO<br />

IF-ZOM-MAX<br />

tF=ZOMA-#AU<br />

AZCAII<br />

4dkY9<br />

IPPO*U5*?<br />

LPPD-0bII<br />

LCD-VISIIBLE<br />

LkO-VISIBLE<br />

LUH-IHT-ZMO<br />

LUM-IHT-ZMCD<br />

IF-ZDR*MAX<br />

IF-ZONk-#AX,<br />

A2CYla 19 'lW-05*7 L t 0-V IS1 BCE LUM-INT-IRCO IF.IOM+L--lAX<br />

IJLAlf<br />

PL-UAL<br />

AZLAII<br />

AdL1114<br />

A~Lu45<br />

llCHlb<br />

ALLHI1<br />

AlLRlU<br />

I2*Y19<br />

ALLR~U<br />

ALLWl<br />

lLvHiL<br />

A2LUla<br />

hccULC<br />

A C ~ ~ L S<br />

AICr(;rL<br />

ALbttd 1<br />

*LLRLd<br />

ddcM.!3<br />

PLcMjU<br />

AICHsI<br />

ALLH3L<br />

AICY33<br />

4LcR>*<br />

44b.43 J<br />

A ~ U A ~ L<br />

ALJML<br />

a~rlau)<br />

&LdbIC<br />

*.u>n~<br />

A2 JA~u-DSMB<br />

A?PI<br />

CUP2<br />

&4?<br />

I PW-OSI7<br />

LP93-05SF<br />

I 9 %-O>O?<br />

IP W-U5+T<br />

L~PPO>~*<br />

195+054U<br />

t090-0540<br />

AYYv.0'140<br />

IY ~O-YS~U<br />

L9W0549<br />

125t-4340<br />

1751-3478<br />

rlbE3-ZU15<br />

008+-iLI5<br />

Jbd3- ILL^<br />

Ub B3-3~35<br />

PbU3-3305<br />

00 a3-3335<br />

Ilb83-3>0><br />

Yb.83-35U5<br />

Jbll3-3305<br />

008~-3305<br />

0683-3305<br />

La 10-0223<br />

1B 10-0229<br />

1CIO-UdL9<br />

1tll+OdZP<br />

l8lPOCZP<br />

L l l l r t . ~<br />

18 1+020&<br />

50-9436<br />

8 1 hl-225*<br />

U34>Fulb01<br />

12&047l<br />

I<br />

i<br />

7<br />

t<br />

4<br />

3<br />

I<br />

5<br />

2<br />

m<br />

i<br />

1<br />

8<br />

LEO-V1SI BCE LUltiHT*tMCO tF-10Rh-kAX<br />

LED-Y ISIBLE LUM-IM~-~~CO ~~=zo~r-arn<br />

LED-Y ISIBtE LUIC IHT-2MCU IF-ZOM*-M4X<br />

LkD-VISIBLE LUH-IHT.2UCD IF-ZUWA-MAX.<br />

LED-YI SI BLE LUH- IHT-ZHCO IF-ZOMA-MAX<br />

LEO-V I $1 BLf LUH-I Nt-ZMCO IF-ZORh-MIX<br />

LEO-Y I SIBLE LUM-INT-ZUCO IF-ZOW-MAX<br />

LED-V IS1 BLE LWIC IN-ZUCD LF*ZOMCM**<br />

LkD-YtSIBLE LUM-fHf*ZMCD IF=20Uh*MAX<br />

to-VISIBLC LYM-INT-ZULU IF-IOMA-MAX<br />

LCD-Y C SI BLE LWN-1 BT-WW IF-2OMh-ICAII<br />

LED-Y1SI OLE LUC-INIrZRCU IF-?OW-MAX<br />

LEO-VISIBLE CUI+IWT-ZFICO IF*20114-MAX<br />

LEO-Y IS1 BLE LUK-IHf-2MCU IF-ZOM4-MAX<br />

L~J-VISIBLE LVM-IHT-ZMCO IF-row*-n~x<br />

LEO-YI SIEILE LUH-1YI-2MCO IF-tOU&--YAX<br />

LkD-VI SI BLE LUW-l Nf-lMCD IFm2WlA-MAX<br />

LED-YlSI BLE LUM-IHf*LMCD lF.dOM*-ll*%<br />

LtQ-VISIMLE CUM-INf-ZMCD IFmZUMA-MAX<br />

LCD-Y IS1 BLE CUH-IHT-2MLD IF=ZOllA-MAX<br />

LED-Y 1 SI BLE LUH-INT=ZRCO IF=LOMh-MIX<br />

CtO-Y1SlILE LU+lll=2MCU IF%?OIIA-WU<br />

LED--Y ISIBLE LVWIHT*ZRCU 1F.2OMA-MAX<br />

LED-Y IS1 BI.6 LUM-IHF-ZMLD IF.LOHA-MAX<br />

LkJ-VISt BLE LUH-IHT-2MCD IF-LUnA-MAX<br />

OISVLIV-w<br />

SEG -5-CHIA .wa-H<br />

UlSPClY-WM<br />

DISPLAY-HUM<br />

SEE 1-CHM -43-H<br />

SEG 1-cn*~ -4rn<br />

03 SPLAY-HIM StG 1-CHAR m43-H<br />

DISPLAY-HUM SLG IH<br />

no PART NUMBER: SEE m i<br />

CONNECTOR 16-PIN F POST TYPE<br />

CONTACT-CONN UNd POST TWE FEM CRP (PK) F21<br />

RtSlSIOR 200 5% .25# FC TC=-4OOItbOO<br />

At51STORLLU51.15MFCTC=-WOItbOO<br />

RkSI STOR 2LD 32 .25Y FC TC*-tOO/*cOO<br />

AkS151UR 33 5I .Z5U PC TLm-4001t500<br />

RE51 51CH 33 51 .25Y FC TC--4OO/*500<br />

RES15lW 31 TI .Z5W FC TC--400/+5OQ<br />

RE5151[R 33 51 -25H FL TC*-400/*500<br />

RESISIOR 33 51 ,25U FC fC--4OOI*500<br />

RtSlSIW 33 5s .25* FC rE=-4~~/*500<br />

RtSlSIUR 33 51 -2% FC fC3-50014500<br />

RESlSlDA 33 5f .Z1Y FC TC*-400/*500<br />

HE IUORX-RE5 8-PIN-58P<br />

NFlUUMK-RE5 I-PIN-SIP<br />

NC~WO~K-:-RES &-PIU-SIP<br />

.I-PIN-SPCG<br />

.A-PIH-SPCG<br />

. L-PIN-SPLC<br />

NtIdOKK-RLS 8-PIN-SIP .I-Plft-SPCG<br />

NETWORK-GS E-PIPI-SIP .1-PIM-SPCG<br />

HtTMOR11-RE5 8-PIN-SEP .P-PIM-SPLG<br />

HCTUUH11-AES 8-PIN-SIP -1-PIWSPCC<br />

PUSHBUTTlm SUIlCH<br />

*L*BLE ASSEMRLlr DISPLhYllHCLUDES PI1<br />

CAlCE ASSEMBLY w KEra0&kDIlNCLUDES P2)<br />

SOCKET-IC L*-CaLf DIP-SLUR<br />

See introductiou t~ thls section ror ardertm Infonnstlon<br />

Mfr<br />

Code<br />

28410<br />

28480<br />

2BI8O<br />

ZBIUO<br />

28400<br />

~8413a<br />

20460<br />

ZB4BD<br />

2BIBO<br />

28185<br />

20480<br />

28+10<br />

28cno<br />

2BIQO<br />

I ZB9QS<br />

ZB480<br />

28480<br />

28480<br />

Zb4SO<br />

ZBCd3<br />

201~3<br />

ZBQBO<br />

Zd4BO<br />

28*80<br />

La480<br />

284~0<br />

28400<br />

Za4BO<br />

2ICBO<br />

20480<br />

2fl180<br />

28480<br />

Ze4BQ<br />

2B4aO<br />

28483<br />

28*83<br />

~8480<br />

28480<br />

28480<br />

ZBlbO<br />

284811<br />

ZB480<br />

27281<br />

284[#)<br />

01121<br />

OllZl<br />

OLLZI<br />

Oh121<br />

OilZi I<br />

01121<br />

01121<br />

OIL21<br />

OIL21<br />

OLlZl<br />

01121<br />

11234<br />

11236<br />

11234<br />

1L23b<br />

11231.<br />

Q2483<br />

02483<br />

2BI0O<br />

28*80<br />

2B48a<br />

28410<br />

Mfr Part Number<br />

P?*JS-b45ilOl<br />

1**054T<br />

t990-0547<br />

199+05+7<br />

1990-0541<br />

1*9n-05*1<br />

IPPIF.0547<br />

1P90-051t<br />

1990-05.1<br />

1 9 § ~ 0 5 4 1<br />

1990-0547<br />

I990-05+1<br />

LPPD-O~~~<br />

1990-0547<br />

1990-0547<br />

1970-05.7<br />

1PPWO4bt<br />

3990-054?<br />

IPPQ-0561<br />

1PVO-05&J<br />

iwa-0517<br />

1PPU-0547<br />

1WO-05U<br />

1990-OJ*1<br />

1990-0517<br />

1~90-05*r<br />

1We05bI<br />

1'1PW05+t<br />

19PO-0541<br />

SPPO--0547<br />

1990-05~<br />

LP90-05.1<br />

1WO-05*?<br />

1990-0541<br />

19911r0547<br />

1990-0541<br />

I'JPO-05-<br />

1P9U-OZW<br />

IPPD-0540<br />

1490-0510<br />

1490-0540<br />

lW0-OSM)<br />

22-Ot-2161<br />

1251--3176<br />

~12015<br />

C82215<br />

CB2215<br />

C83305<br />

Cf133G5<br />

LB3301<br />

CB3301<br />

C83305<br />

CB3305<br />

LB3305<br />

En3305<br />

750-01-R390<br />

75WBl-R430<br />

750-81-R330<br />

750-01-R14U<br />

750-81-U230<br />

7-1-RlOK<br />

750-01-R10K<br />

SObD-9E36<br />

8120-2Z51<br />

034511-61601<br />

1250-Mf* I<br />

&<br />

I<br />

I


Reference<br />

Designation<br />

4LrlL>1<br />

IIIUC5L<br />

ALUc>l<br />

hlucS4<br />

AAOLsh<br />

AldL5d<br />

A10Llt<br />

A1Jc5d<br />

&1dL99<br />

ALUCUA<br />

l1JLoL<br />

AIOtb3<br />

A1UL45<br />

AiI1Lea<br />

AICrLRL<br />

AIdLk2<br />

1ISLks<br />

AArlL*l.<br />

A1 JCK3<br />

A LOCR4<br />

A 1 3 ~ k l<br />

113Lko<br />

AluCltg<br />

AI~LXLI<br />

A tulA IL<br />

IIUCYIA<br />

ALULUlf<br />

*kdCU&%<br />

*lock I a<br />

A LUCY 17<br />

AAJWIB<br />

AIUCRIY<br />

AIOLULL<br />

A IIILKLL<br />

hIJCUL3<br />

AAJCRLI<br />

AlUCHL5<br />

~IJ~HLS<br />

AldlYL?<br />

IIUC*Ld<br />

IAJCUL9<br />

AAOU3I<br />

hlULHJ.4<br />

l I U ~ d a 3<br />

AlULt(3*<br />

&IOLY35<br />

XtUCK3I<br />

AIULMI<br />

a LUCKSd<br />

&LOLA39 1<br />

~LIJCY+~<br />

&LULL*.?<br />

AlaLk,~<br />

AlULkCC<br />

l lOLR45<br />

AIwLk48<br />

hIOLRI1<br />

AAJEU4tr<br />

AIJCH4Y<br />

AIOLRYI<br />

ALULRSI<br />

*~uCmar<br />

AlrlLl(5f<br />

AI~LWYY<br />

AAWUIab<br />

hIUCU'rF<br />

11UCY3II<br />

AIIICaIY<br />

ALJCkoA<br />

A LJLRuP<br />

AAdLrm><br />

AlOtKa*<br />

AldLAa><br />

IIULmbC<br />

HPPart<br />

Number<br />

I11 m3-2055<br />

U160.LW5<br />

dl&Zbd=<br />

& l dG-Vcarl<br />

U L &Ul1t OL~D-~L~O<br />

U 1 a(t20ZA<br />

UI LW~CLII<br />

0 1 WJ-dLAU<br />

UILI+UI'IJ<br />

JIW-MY3<br />

I 1 WULJU<br />

01dO-W95<br />

r)Ie!J-U23J<br />

L 9 01-QbBb<br />

LY U1-Dbdb<br />

IYC-jAJ*<br />

19 GI-UUSU<br />

19Ul-OU>U<br />

1901-OU5P<br />

1902-01114<br />

I JUI-ousu<br />

1 Y UL-U 1 I4<br />

IVU-oiar<br />

1901-W5U<br />

l Y 01-0070<br />

I 9 02-30UZ<br />

IYUI-OU49<br />

I 9 01-OU5J<br />

1901-0050<br />

1901-OSBC<br />

19~1-USBC<br />

1901-(r58a<br />

I~OI-O'~BC<br />

1901-0350<br />

LPtl-0u50<br />

19Cl-UJSU<br />

IPCI-OUSL)<br />

14 Ct-U31C<br />

4901-OJ?b<br />

19w-o~&+<br />

4902-Old4<br />

1901-VU5D<br />

IYCL-Ob>J<br />

19 01-OU50<br />

19aI-OUTU<br />

YPGL-OU50<br />

19 (rl-ausu<br />

1901-UU>U<br />

19CI-OU50<br />

19C1-OU5J<br />

1901-OU3U<br />

I 9CI-0050<br />

LPOl-UU>U<br />

1901-0050<br />

1901-OuhJ<br />

1 9 CL-ous a<br />

1901-0UZH<br />

I I9Oh-OUZH<br />

1901-0020<br />

19C1-UULB<br />

1961-OUZE<br />

1901-OULU<br />

LYOL-UULB<br />

I9oI-UOLB<br />

Lb3G1-0u2d<br />

I9C1-0r)LII<br />

lYCS-*U>J I<br />

19UZ-OU+Y<br />

1qPA-0200<br />

tPC1-ULDJ<br />

LPU-Ullb<br />

LY U2-UUOP<br />

170-OkIb<br />

Ohl<br />

L<br />

L<br />

L<br />

Z<br />

5<br />

L<br />

2<br />

I<br />

,<br />

Table 6-3. Replaceable Parts<br />

Description<br />

CAPACI TOR-FXO .OIWF +BO-2Ot I O ~ U V K CtR<br />

CMACITUR-FXU .O2W *SO-205 L5YVDL CEK<br />

LAP4Clir)U-FXO .U2UF *dWL3& Z>YVDL CfR<br />

L~P~GITLIY-FIU 1UFt-201 5WdC 1A<br />

CAPAC llUR-F110 IUF 4-ZJZ L53VOL CFR<br />

CMACl TUR-FXO IIIF+-201 5OYDC TA<br />

CAPAC I TUR-f XD 2ZOUF*50-101 SOY= AL<br />

LAP4C I IUR-FXD 220UF*5+101 5OYOf AL<br />

CPPALI 1UH-FXO lUF+-LOI 5OYDC I &<br />

CAPAC I OR-FXD 1000uc *S*IOI L~VDC AL<br />

CAPICI TOR-FXD IOOWF*5U-IOC LSVDt U<br />

t1P4C ITUP-FXU 1UF4-20% 5UVDC 11<br />

GAUAC I TUR-FKII 4ZUUUf +100-1UZ 12VOC *L<br />

LAPAClrUA-FA0 tUFrlDL 5OYDL FA<br />

UIU3E-bEH PIP 30V 25MA r0-TZ<br />

OLDJE-GkN PUP 3QV Z5M* tL+TZ<br />

UIDOE-LNR 5.6LV $I DU-7 PD*.+Y TC.+.U16S<br />

010OE-SdITCHlMb aOV LlJrlMA 2MS W)-7<br />

U1 UOE-SUiTClllNG BOW LbQIIk LHS W-1<br />

1 DIUPE-3UlTCHINC 80V LOHA 2N5 -1<br />

OI7DE-LHR IL.LY 51 OD-I W..bY rC-hO6bS<br />

UIJ~E-~UZIL~IIHE BOY ZOUMA ZMI m-a<br />

UIODt-1NR 1b.LY Sf OU-7 P0=.4Y FC-*.PIbI.<br />

U~JDE-LHR IL.LV 5s OU-7 PO-,+* tc-+.OWZ<br />

DID>€-SUITCUM BOY 2OOWh ZNS -7<br />

D100E-SUllCHING BOY ZOOMA ZNS W-7<br />

DIOUE-LNH 2.379 5* DU-7 PD=.4Y TW-.D74%<br />

DI~~JE-LNR b.1~~ 51 01.1-7 ~m.4~ TC'+.OZZZ<br />

UI1JE-SYITCHIHG 8OV LOOMA ZHS W-1<br />

IIl03t-SYItCHIHS llOY ZUOM ZHS MI-7<br />

DIODE-GEM PRP MY ZSMA no-72<br />

DIODE-G~H PRP 30'1 2 5 rw-72 ~ ~<br />

UIIJPE-CtN PHA JJV 25RA TU-72<br />

DIODE-GEM PUP NY ZSM r~-IL<br />

OlOD6-SUITCHlffi BOY 20Wl 2HS OU-f<br />

DILILXE-SWflCHINt BUY 2UOW1 ZHS m-1<br />

OIWUE-WlfCHING<br />

OIUIIE-SUITC~LNG<br />

80V ZOUUA 2NS 0-1<br />

BOY zouna 2 ~ DU-;I 5<br />

t)lUOE+M PKP 35V MRh DO-l<br />

0100E-GtH PRP 35W TOW DWF<br />

DIDUE-IMR IC.ZY 5t UO-7 PIT.+* I~-+.OLLE<br />

DrUUE-LNA 1C.ZV SI DU-I P0*.4Y Ftr+.DM%<br />

UIJJE-SUllGHLnG BUY ZOOM 2NS D[E-7<br />

vlUdE-SYlfCHIW IlOY 2dr)MA .?US W-T<br />

DInDE-SYITCHING BUY 200111 2NI OU-#<br />

DIODE-SYIICHING BOV LOOM1 ZNS DU-7<br />

UIJ>E-SM~ICHIN& BOY ~ O O R LHS ~ 0-3<br />

DIUDE-SUIVL~~UG BUV ~ u o ZNS n ~ nu-7<br />

UIOdE-SWIICMLW BUY 20OR* 1Hh LXI-7<br />

UIUDE-SYlTCMING BOV 2OURh 2MS M1-7<br />

UIODE-SY ITCHWE BJV ZOUR& LHS W 7<br />

Dl ODE-SY1 ILHlMb 80V 203WA ZHS DU-7<br />

UIUJE-SYlfCHING BOV LUOMA ZF1S Wff<br />

D!O>E-~WIlCHIHG BUV 3UJMA LNS W-J<br />

OIOOE-SYITCHM SOY ZUOMA 2HS 00-7<br />

DIUDE-SYEFCMlW BUV 30011h ZHS 0-7<br />

uIOJE-SWITCHING BUY 2U3M4 .?& 00-1<br />

W100E-PMR RtLf *OOY 750M1 DO-ZP<br />

OIODE-PMR MEKT 4OOV 750UA YWd9<br />

DIUOE-FWI RtLT WdV 75WA 0-29<br />

UIUDE-AIR<br />

UIDIE-PWR<br />

HEGl 4OW 75OHA DO-ZP<br />

ntct ~Oav YSDMA uU-ZP<br />

DZ UUE-RIR RECF 4OOV r>OHA 00-29<br />

WIUDE-PYR I(~.CI ~ O O V I>~H* UC-29<br />

1<br />

UIOOE-PYII<br />

DIODE-PwK<br />

RECI SOOV 750RA 9-29<br />

RtCT 400V 750114 JO-29<br />

UIUOt-PWR RLCT +[IOU 153MA OWdP<br />

DIJOE-SUI ICHIffi UUV ZOOMA lN5 W-7<br />

PIUJE-LMR a. IYV 58 Ow7 PO. .4Y fC-*.O22t<br />

DIODE-PMR RECf LOW 1-54<br />

DIDO€-PYR SltCF lOOU 1.54<br />

U13JE-ZNU 4T.>Y 5Z OV-LS PO-LY IC-+.O&lI<br />

UIOJE-ZMR b. IYY 5% OW7 PO-.4Y TE**.0222<br />

DIaIE-ZHR 47.5V 51 00-15 PO-Lw ?C-*.a811<br />

See kkltrod~ctlon ta thls section lot ordering lniormation<br />

Mfr<br />

Code<br />

28483<br />

29480<br />

28483<br />

56289<br />

2U480<br />

56289<br />

28480<br />

ZY+BJ<br />

56289<br />

OOZLU<br />

0022J<br />

5bZLI1<br />

211CBD<br />

582BJ<br />

284BO<br />

ZBIBO<br />

15810<br />

24&&0<br />

LB400<br />

Z8*BD<br />

WT13<br />

Z8I80<br />

04113<br />

o r<br />

ZBIlP<br />

28480<br />

15818<br />

28480<br />

t8+&P<br />

28480<br />

38480<br />

ZB+8P<br />

Lab80<br />

28480<br />

28180<br />

ZBIBD<br />

28480<br />

ZBl80<br />

2BlbD<br />

2l*BO<br />

or713<br />

04111<br />

214190<br />

tUlBO<br />

28480<br />

ZB4BU<br />

28+90<br />

28480<br />

28b10<br />

21~80<br />

28480<br />

28*BQ<br />

Zd480<br />

ZH+80<br />

Z8*80<br />

2B4hO<br />

ZU480<br />

29480<br />

Zkh+&U<br />

28t8O<br />

28480<br />

Z04Ba<br />

ZdClP<br />

18480<br />

tB4aO<br />

28480<br />

ZBIBO<br />

28460<br />

Zd480<br />

W7IJ<br />

wr~3<br />

O+Tt3<br />

IdOUO<br />

5*?11<br />

Mfr Part Number<br />

OibO-2055<br />

0160-2605<br />

(1160-2005<br />

lSO0105XOD53A2<br />

OlbO-OLLf<br />

15001P5X0050*2<br />

0160-2b28<br />

OLOO-21211<br />

150010~*0050AZ<br />

2SVB3LEOOO<br />

Z5VBSL1000<br />

1500105XOOIDA2<br />

0180-0695<br />

150010SXOO50h2<br />

1901-0586<br />

1901-OSPb<br />

CO J5b3C<br />

LYO1-0053<br />

LPO1-0050<br />

1901-0050<br />

SL 10939-212<br />

1901-0050<br />

SZ 10939-ZI2<br />

SL 1Dq>+ZIL<br />

1901-0050<br />

1901-0050 I<br />

LD 3552b<br />

1902-00b9<br />

1901-OJSO<br />

1301-0050<br />

1901-O5Bb<br />

1901-0586<br />

1901-O59b I<br />

1901-0581<br />

1901-0050<br />

1901-0050<br />

k901-OD50<br />

1901-00 50<br />

IPOI-03 Tb<br />

1901-03 76<br />

st 10939-242<br />

51 1093Q-ZC2<br />

1901-0050<br />

19oI-oo5a<br />

1901-DOSO<br />

19OldPU50<br />

IPUL-OJ5D<br />

IPOL-0050<br />

IPOl-0050<br />

1901-0010<br />

1901-OPM<br />

SPOL-0050<br />

IPUI-0050<br />

LPOl-0050<br />

1901-DO50<br />

1901-OD50<br />

1901-00 50<br />

I901-0020<br />

1901-OOZE<br />

1901-DOZB<br />

LPQ1-0028<br />

IPO~-OOZB<br />

1 IPO1-OOZB<br />

1901-ooze<br />

~qOl-oOL~<br />

1901-0024<br />

1931-032&<br />

1901-005V<br />

kP02-0049<br />

SRIZI46-9<br />

S R ~ B C ~ P<br />

Sl-11213-335<br />

1902-004P<br />

SZ-lLZ13-335<br />

I<br />

I


Table 6-3. Replacwble Parts<br />

Reference<br />

Description Mfr Part Number<br />

oesiqnation I KPCr I I<br />

*Ions<br />

4IrlHL<br />

lIUK4<br />

A 1 JKC<br />

Aid&*<br />

OI~JE-ZNR ins3s~d 14v 5x PQ-5u rc-*t5a<br />

DIODE-S~IFCHINL BW ZOOMA zns rm-3<br />

DIODE-SWITCHING BDV ZMIMA ZN5 -7<br />

CIMHECTOR-PC EWE 154UHIIRUU 2-AOUS<br />

CUYNELTOR-PC EU3E IS-CUNTliUU r-ROU.5<br />

cWHEL~OK-PC EDGE 15-CONTIROW2 ROWS<br />

CUYMECIUR 10-PIN H POST TYPf<br />

CU~MECIDR +PIN rmr rvpt<br />

Rtur:nEEo<br />

R~LAV-REED IA inon* looouuc ~oc-COIL<br />

RtLAY-HEEO 14 IOOCIA 1OOIIVO1: SYDC-COIL<br />

AZLAI-REEU 1A 10OMA 25QVOC SVOC-CUIL<br />

RELAY-REED 1 A IUOMA lOOUUDC SVOC-CUIL<br />

CUI L-MLO 240W 5X 9-65 .L550X.315LG<br />

CONNECTOR 0-PIN F WSY TYPE<br />

CONTACT-CONN VMI WST TYPE FFM CRP IPlOPIl<br />

CUNHECTOR 2-PtM F POST TYPE I<br />

IRAMSlSrOR. FE;<br />

fAhMS14lOR~ FE1<br />

IQANSISTIIR+ FET KOYIRLF 51005<br />

rr&nstsrm~~. FET Itov*asr 53005<br />

TRAH31SIUR-JFET DUAL M-CHhN @-MOO€ $1<br />

TRlWSISrOR-JhE? DWL H-CHAM &MODE ?WfE<br />

lRLNSl5TQR NPH $1 Pm30011Y FT*Z0011HZ<br />

~MANSISIOR PW TI ~-3~utlw FT-~OMHL<br />

IkLNSISl W PW St PO-KIDMY FT-LIUMIU<br />

fAANS1 SrUR HPN SI PU*30UMW Fl-TOUMHL<br />

IRlYSISt~ HWI 51 P0*3bQPI# FT-75HHL<br />

lHANS151(rR. FEl<br />

TRANS1 SIOR. FET I<br />

1<br />

TRINSISTDR J-F~T M-CHAM wnwr~ 10-72 st<br />

1RANSlSfUR J-FET N-CHAM -DOE 10-72 51<br />

*tH*MSISTURr JFET &CHANNEL LIWB5l<br />

*TRAHllSfORrn JFET H-CHANNEL LY4857<br />

TRhHSISrDK J-FLf 2~4391 + C W &MODE<br />

1RLNS I STOR JlFET 2N4391 H H * M LI-MON<br />

fH4MSlSfOR J-PET H-CHAN WOOF TO-72 51<br />

IRANSIZrOR Jf ET h-CHAM WH[10t 10-12 51<br />

Id4Y 5 I SlOR-Aft T DUAL N-CHAM WIWOE TO-71<br />

THANSISfURrn fET KWURSF 53005<br />

IRINSISTORrn FEI KOVARSF 53009<br />

1YAWSISIOR J-FCT M-CMN D-HUUE TO-72 51<br />

TMhH5tSII)A PllP $1 PD.JDORY FK-LSOIIHZ<br />

TH4HhISIa PMP 51 PU*3UO** FT-l5(*IHI.<br />

IRIYSI SIOK PNP S I PV=IVOMI F F=15I1CIHL<br />

1 AC SERIAL NUMBERS 18lZAOlBMI AND ABOVE: REPW<br />

I I I<br />

a Oiodcr CR7l and CR72 awlv only to rCrlel wmbmr 1622AWl awl 4 k .<br />

See l liroduction to this sectian tor ordtrim Information


A1UUPI<br />

ALdlt90<br />

*IUUY~<br />

AAo*Yd<br />

AIUUP9<br />

AlOA101. Rl02<br />

A10R103<br />

AIOAIW<br />

AiRfOS'<br />

4 LUKlOO<br />

fii~nlu?<br />

& LOR1 01<br />

4LUkll)Y<br />

AlORlll AA<br />

hlrlbl dB<br />

llUtl<br />

ALdYP<br />

AlOU1<br />

AIUUL<br />

*IOU3<br />

AIwU4<br />

AlUW<br />

AAOUb<br />

1~11ui<br />

AL~W<br />

&LdUY<br />

AIUUbL<br />

llUU12<br />

AIUUIA<br />

~arlulb<br />

AIUUI?<br />

AIUUIL<br />

*IOU11<br />

AIUUIC<br />

AIUUIV<br />

AlUUZI<br />

JLlUULd<br />

*LOULA<br />

A ArlUc4<br />

AIOULa<br />

AlOVrc<br />

1I11IU~I<br />

AiJULS<br />

AlJULP<br />

AIUIJA<br />

#IUUjr<br />

JlUUAI<br />

I 1UU3Q<br />

AIUUJII<br />

41UU3b<br />

lid438<br />

AlUW3d<br />

&LOU9<br />

AlJdl<br />

lIOY2<br />

A10h1<br />

AIJYi<br />

ALL bC<br />

0483-2015<br />

06 63-201 5<br />

uha3-~0zs<br />

00 83- 1025<br />

IIYS984SJf<br />

0683-ZM5<br />

m83-4125<br />

C16R3- 1335<br />

08994258<br />

0698-3697<br />

0757-0437<br />

0357435<br />

0157-WU<br />

13598-4436<br />

0698-31513<br />

07--027+<br />

04-2025<br />

DbU-17L5<br />

Olrt13-4125<br />

a8834725<br />

DOP+ObUL<br />

PlC+OLJB<br />

91 03-3b79<br />

111 *0141<br />

I~Z+OIOP<br />

1826-0904<br />

182bOdb7<br />

lbib-Oh+?<br />

182baA3+f<br />

tezm77<br />

IUd6-OJ41<br />

183bOj41<br />

IYII)-ILPh<br />

lI32O-lLPL<br />

1dZD-11Pb<br />

laru-l~lb<br />

LLlZ+lIPI<br />

IBLO-I19b<br />

A8d0-1191<br />

La&-0343<br />

llii0-0471<br />

L B Z ~ I I Y I<br />

lB.?+IIqP<br />

182+1420<br />

18LWM71<br />

l d lB-2210<br />

03455-82501<br />

I(IL*IIPO<br />

IBZI)-II'IP<br />

III Mr119i<br />

I E LU-~~LO<br />

161LC-A112<br />

Itll4+Il12<br />

19W-047 l<br />

1YW-05fl<br />

IUdb-0150<br />

1U 2b-UIYP<br />

lllcb-0338<br />

18Z*OL?t<br />

LZUF03UP<br />

03 445-bib07<br />

0345S-bl*UII<br />

IZ(l0-WU<br />

04lLbO4&3<br />

504+017J<br />

11 171-~8609<br />

1 l lV7A<br />

I<br />

t<br />

1<br />

I<br />

2<br />

3<br />

t<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

1<br />

5<br />

1 1<br />

Table 6-3. Repheable Ports<br />

RESISIOP. 200 St -2% FC 1t~-4001+sOO<br />

RESISIU1 ZOO 5s -2IY fE fC--+00t+C00<br />

RESLSIOR ZK H . Z~Y FC rcr-+oo/*tno<br />

RELISTm 2K 51 .25U FC ltr-WW4100<br />

RESISI[Lt FXD TOW OHM .&i<br />

RESISTOR 2M 6% .25W FC Tt5600Ie<br />

RESISTOR 4.7K 5% .26W FC TC--dOY+m<br />

RESISTOR 13K 6% 3 5W FC TCWftBMI<br />

PADDING LIST lPlO 015!?4250?~<br />

RESISTOR 1.87K 1% .125W f fCelOO(.l W]<br />

RESISTOR 6.WK I% .125W F TC'O*-TW(-25VI<br />

RESISTOR 4.75K 1% .125W F TC-O+rYW{-3.W)<br />

RESISTOR 3WK.t% .l2M F TC-W-1W13.6VE<br />

RESISTOR 3.32K 1% .17M F T0-WrrZM44.0V)<br />

RESISTOR 28K 1% .125V F TC+-101)146VI<br />

RESISTOR 2.37K 1% .1Z5W F .TC~(H-lOOI~5.OVI<br />

AESISTa 1-2EK 1Z A25Y F TE-O+LOO<br />

RkSlSTCR 2U 5I .25Y F t ~t--400/+100<br />

RESISTDR 4-711 51 .25Y FC TCm-400/+JW<br />

AESISrM 4.71 5Z .Z5Y Ft lt*-*00/+7MI<br />

RESISTOR 4.1K !i% .26W FC TMl*7W SUl1CH-IUt REED FUM A 3VA lZUOW CWf<br />

rR4IS.f ORER. PULSE<br />

TlthMSFDRMER. PULSE<br />

IC fit 1434C UP AHP<br />

IC HA zar5 OP UFP<br />

1E LF 355 01 AMP<br />

IC. J LBWUIU LM3P SEE.<br />

ILI J COMPUTLA CM33V SPEC.<br />

Itr J tPMPUIER lM33q SPEC.<br />

1~ OP AMP LGW.DRIFTTO~<br />

IL. J L~WUTCR P H ~ ~ SPEC. P<br />

ILI J CDWFUlER LR339 SPEC.<br />

It-OIOITAL SNF*LSI74N TTL LS HEX<br />

IC-DIGIT& SN7U5174N rlL Lf H a<br />

IC-OlGlfAL SN74LSITIN Ttt LS HEX<br />

IC-DLGITAL SHIMSA~~N TVL LS 3<br />

1C-DIG13AL 5U74LS174N ttL LS HEX<br />

IC-UltlIhL SHT4LSL7bH TTC LS HEX<br />

IC-DIGIZU SMlUS174H tTL LS HEX<br />

IL IK 1436C [P AfiP<br />

IC-<strong>DIGITAL</strong> SMWCW TfL HE* I<br />

IC-<strong>DIGITAL</strong> SNI4tSOON fZL LS QUAD 2 MUD<br />

It-<strong>DIGITAL</strong> 5HT4L5HN I'tL LS HEX 1<br />

IC-DIG11 AL SWI*LS92R STL LS 01-X-I2<br />

IC-<strong>DIGITAL</strong> SWWLIW ftL ME31 f<br />

IL. MIIS--R~<br />

FIANOPAOCESSOR ASSY INCtUDESA10R106'<br />

IC-JllrlTAL SPllUS03N TrL LS RUlD Z MA110<br />

d~ RESISTOR AlOR111 APPLIES ONLY M SERIAL NUMBERS lBnAOW11 AND ABOVE.<br />

AB REED WITCH AlOS1 APPLIES ONLY TO SERIAL NUMBERS 1622AM1410 AND BELMH.<br />

A6 REPLACE WITH AM ASSEMBLY PART NUMBER 1,11778 FOR REPLACEMENT OA EXCHANGE.<br />

1 I<br />

I<br />

4<br />

2<br />

1<br />

2<br />

1<br />

I<br />

1<br />

I<br />

4<br />

L<br />

1<br />

i<br />

1<br />

I<br />

1 1<br />

IL-<strong>DIGITAL</strong> TPRWSWN ZTL L5 HEX 1<br />

IC-OltiITAL SII74LIIWN ff4 L5 QUAD 2 MAMD<br />

IC-DI GITAL 511~1~~92~ r t 44 ~ DIY-X-12<br />

IC-DItl TAt SHTcCS74M T1L LS DUM<br />

IC-DtGffAL 5N3+LS7*N 1TL LS OWhL<br />

WTD- I SWTOlt LED-PDlOIXSfR IF-SMl-IF&#<br />

OP1I)-ISOLATOR LEbPDIUIXStR IF-5011-<br />

It Y RELIR<br />

IL V AGLTH<br />

IC JBIX- Y RGLTR<br />

It L R 320 V RGLTR<br />

HElT IIMK SGL TI)-ZZO-PKE<br />

CABLE &5S€MLYm C.~.(IHCLWES PI1<br />

CABLE.LWiOfYlOER<br />

SOCKET-It 4D


I Designation<br />

Tabla 6.1. Replaceabln Parts[Con~'d)<br />

HP Pan Numbsr Ofy hription I<br />

A12<br />

nl2~t<br />

~ 1 2 ~ 2<br />

At2C3 AH<br />

AI1CAl-CA*<br />

Al2CR5<br />

AlZCAG CAt<br />

A19CRR<br />

A17CR9<br />

Al?CAll CR15<br />

AIM1<br />

A 1702<br />

A1203<br />

~1104<br />

~17-2,<br />

A12R1<br />

AlZR?<br />

A12A3<br />

AlZR4<br />

A17R5<br />

A12A8<br />

AI7r1, R8 I<br />

A1?1+9<br />

ni?ari<br />

nl?Al?<br />

A12R13<br />

A1191<<br />

AI2Rlj 1<br />

At2RlfiRl?.lg.-IB<br />

Al?RlB<br />

A17R19<br />

&12R>I<br />

Al?R?2<br />

0355-66511<br />

0180-02m<br />

mm-air~<br />

Oll;[Y-0tCll<br />

1901 - W,O<br />

1902-11177<br />

lw-0050<br />

190t -WJS<br />

1902.-3139<br />

1901-IX60<br />

1B50T47<br />

IR~~-WZO<br />

185t-~m~<br />

1854-IKn3<br />

1835-0241<br />

I)683-1115<br />

0683-4315<br />

075V-lW5!<br />

Oh83-213i<br />

10698 - 441%<br />

063B -4702<br />

nr57-Md2<br />

Oi11i3- 1735<br />

06u3-1?15<br />

W,XJ - ZL.!a<br />

0 5A-Wa<br />

W98- 351 Q60683-,1735<br />

0157-Md7<br />

OW3-4335<br />

0684- 153s<br />

(SH3 1733<br />

01.43- 1125<br />

-\A SEE UO:F ON SCHEKATIC 4<br />

3 B SFE NOTt OV SCH:I4ATIC 4<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

3<br />

1<br />

d<br />

6<br />

3<br />

?<br />

1<br />

1<br />

1<br />

3<br />

1<br />

I<br />

I<br />

PC ASEMBLY. OHM CONVERTOA<br />

CAPACITOR FXO tUF *-2m SQVUC TA<br />

CAPACITORFXT) 039Uf. ln',mvw<br />

CAPACITUR FXD 47MIPF -10 .?MVDC<br />

UIOOF-SWtTCHIRC BOV XQMA 2YS Da-7<br />

DIO3E-LNR IN875 6 2V 5. DO 7 PO- 25W<br />

UlIIDE-SiYlTCHI\G 8 V 2mMA 3VS DO ?<br />

U~OOL-HV RFCT IKV G W W ~ w m<br />

DlOTE-LVR 8 23V 53 DO- I PO 4W TC-a 0534<br />

DIODE -SiVlTCHI%G HOV 700UA INS 00-1<br />

TRAICSISTOR-JFET DUAL N-CHAH D-UCOE 10-71<br />

THANFISTOR PNP 51 PO-~MW FT-I WMHZ<br />

TR*1N%IS?OR NPN SI P0=360MIV FT.75MHZ<br />

TRA\SISTOA NPW 7Y3431 51 to-5 PI>-1W<br />

TRIFISISTOH-JFET DUAL N-CHAN D MOOF TO-7%<br />

RESISTOR 110 W .25W FC TC--4K"BIIO<br />

RESISTOR 4 3K 5% 25W FC TCr-4001.<br />

RESISTOR 1K 14 5W F TCrO*-100<br />

100<br />

REFISTOR 11K 5% 75W FC TC- -4@3'*RIXI<br />

HFSIFTOR 1 13K I% 175tV F TC'O--1W<br />

RLSI


'<br />

Table 6-3. Replaceable Parts<br />

QV Description<br />

Mf r<br />

Code<br />

AIZTUS OT~POOO~ 1 RCSIST~ 1001 ~t iw M TC-or200 lLS02 IIM~?<br />

h12rl PLOD-0679 I TMWSFCRIIEIIa PULSE 21480 1100-0s79<br />

Al2Ul 16-0223 Z IE LM 301A OP AMP 27014 L113DlW<br />

ILLW 1820-0223 IC LM 301A OP AW 2fOLb LB301AM<br />

All 035b-513 1 P.C. LSSEIIICtr AC CWERTER 28460 QHJ5hl5lJ<br />

A13C1 01-2199 4 ChPIEIf(llt-FXD 301F *-51 IO0YVI)C UIC* 21WO 01-Zls4<br />

AksC2 01 -4404 1 CkPACIJWFXD -1SW +-I01 IOWYOC PI*YP Z21+80 OIID-MD*<br />

Al3L.3 01-4401 3 CAPhCtFOR-FYO .OlV +-lot lOWYOC POLYP 28480 0160-WO1<br />

4I4C4 0 1-4402 1 CAP&ClXORFXD -1UF +lOl IOOWYIX POLlP 28480 Olb+L-+IOZ<br />

a1j~5 QI@-31Y9 CAPACITOR-FXO JOPF 4-31 JOOYVUL MICA ZB4BO OLLU-ZIPP<br />

Mfr Part Numbr<br />

h1Sb 01Hb439I 3 CAPACIIVR-FXO -082W *-lo% 2OOYVOC POLWP 21480 Ol60-WPB<br />

AI1Ct Dl-4398 CAPAClXOR-FXLl -D82UF +10Z 200YVDC PDlVP tU4BO 01ba-4398<br />

AL4kl OLbO-*IOl I CAPACITOR-FXO .OIUF +lot IQOYYOC POLYP 28480 I 01hl)r~o1<br />

II3CY 0 1 W +49 1 CAPAC L JnR-FXD .01W C-10s L0OYYI)C WLTP 25400 016**01<br />

A1jL11 (It 80-02.29 CAPlCllUR-FWD 3JUFclOf lOVUC TA 54Z8P 15003~X9Q1082<br />

411~12<br />

413L13<br />

AkjLAI<br />

o~t~o-okvr<br />

01 80-1735<br />

0140-ZIPP<br />

UP~C I~DR-FXD 2.2wtiot roum ;A<br />

CAP4CITQRFIIII .22UFt101 35YOC IA<br />

C4P4CITOR-FXO 30PF *-5% l0OYVDC MICA<br />

-2a9<br />

-289<br />

la4BO<br />

~ ~ w z z ~ ~ w w . ~ ~<br />

L5DOZ24X903SU<br />

a160-ZlVP<br />

AlSLI5<br />

Ah1L10<br />

AlXtf<br />

At3C10<br />

A13C18<br />

A13C21<br />

A13C22<br />

~1~113<br />

01 i1-0432<br />

01&-07b3<br />

0180-0363<br />

OIW7-1746<br />

01EO-349<br />

01-3<br />

01~4187<br />

ow-3134<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

CAPhCITOR-Y TAM-AIR lm7/14.1PF 350V<br />

CAPACIYOR-FID 5PF +10S 50UUWPC M1C4<br />

CAPACITOR-FXD BZOPF 4% 3D3WDC MICA<br />

CAPACITOA-FXD 15WEcWMWDC T k<br />

CAPUITOR-FXD 346Ph +-I% WWVJX.PORC<br />

CAPACnOR-FXD DlUF *80-m 1WVDC.CPB<br />

CAPACLTOR-FXD 1 >UP+--10% 20VDO TA<br />

cwacrran-FX~ oruf +-lo% m m c CER<br />

tt910<br />

26bBO<br />

284M<br />

%?&a<br />

2B4m<br />

Z8W<br />

581#<br />

P W ~<br />

114-505-125<br />

0160-OF63<br />

01W-0363<br />

1500156X4M082<br />

0160-Bl8<br />

alW--BOB3<br />

L 9 D 1 2 W<br />

0160-3134<br />

AlX24<br />

At3C26'AA<br />

~ 1 3 ~ 1<br />

A13C2f<br />

01834197<br />

016&0318<br />

0160-2150<br />

0140-01911<br />

0160-3945<br />

at W-WS6<br />

CAPACETOR-FXD 2 2UFhlOX ZOVUC TA<br />

CAPACIT OR-FXD 21PF t-5% SOWDC MICA<br />

CAPACITOR-FXD 33PF +-6% 3WWVDC MICA<br />

CAPACl TOR-FXD XIPF +-5%3WWVDC MICA<br />

; CAPACITOR-FXD WPF +- 1% 5 0 0 ~ MICA " ~ ~<br />

1 CAPACITOR-FXD .OSUF *E!-2h lOOWVDC CER<br />

58189<br />

28480<br />

2BW<br />

2WW<br />

2 m<br />

28480<br />

1500225X9MZIAZ<br />

0160-01&t<br />

[Ilfio-21%<br />

014049U<br />

0150-w<br />

OJ%0(198<br />

~ 1 3 ~ 2 ~ DIM-El99 LAFALLTOR-FXD 30PF +-5f 30OYYDC RlCh 21*10 OlbWZlW<br />

A13Li3 01 -3Yf L 1 C4PhtIlDR-FXD IOPF +-Lt 1000YY4C PORC 28480 0~60-3~7h<br />

AA3L31 OIW-3‘JJF 1 CIIPIICITOR-E-FXO 970PF t k f lOOYWOC PORC 28480 0110-3P7l<br />

A13L3L 0140-0202 L CAPACIXUR-f XL) 15PF -52 SOOYYUC hICA 7213b OMIStl5WO3OOIYlCU<br />

ALALj3 0 1 W-3930 I LAPhCIIQR-FXW IOPF +-1% t500HYDE PURC Z&*BQ DlbD-3930<br />

h13C3+ 0131-0434 II CAPhClUIII-Y TWR-AIR 2-4/24.5PF 150V 7+970 189-509-123<br />

AA3L35 01*3581 Z CAP4ClTOR-FXD -1UF 4-201930YVM ME1 FROOZ OOTlDIbO<br />

A43LK1 1903237 3 OIOOE-LNR 20Y 5% M)-t PDr-CY It-**073% Wtl3 St lOPl+Xb9<br />

AlJLill L90A-W34 2 DIODE-EN PRR 180V ZOOM OD-7 ZMBO 1901-0033<br />

A13CY J 1901-OU40 24 VIODE-SUITCHING 30V SOHA 3NS OW34 Z8480 IPO1-W4U<br />

bI3cK4 1901-Dud3 DIOUE-UN PRR 1BOY 2DUHA W-7 ZBSBO lP01-0033<br />

A13CR3 1901-U5IJ 5 DEODE-StHDTI#I Z8JBO 1301-0518<br />

h11ClcE 1901-O5t& Di ODE -XMI 1KY 28480 1901-OSII<br />

&lltm/ 1PW-312& 1 DIDO€-LnR 7.32V 5s -7 PP.4Y TC-+.WBI M713 $2 1093-143<br />

AIILK& 19GI-Ou*W 0103.f-Sul~CHlF+6 30V 50111 ZNS 00-34 28C80 1901-0040<br />

A I3GU3 1JGI-0040 DIUDE-SYITCWlNG 301 SOHA ZNS V0-35 ZB+BO 1901-OD*<br />

413Llcl1 IY GI-UU40 DIODE-SYlllHIHL 30V SOMA 2HS BO-35 28+80 1901-0040<br />

AlICRlL 1901-0040 DIODE-SYIfEHlNG 30Y SOMA 2115 0-33 28+80 1401-0040<br />

AAILUA8 1POZ-JUQ b Z OlilOE-INR 4-7bV 2s MI-7 PD=.4Y TCw-.OlPl 0+Tl3 5.l 10939-90<br />

AA4LUl.r 1PW-30Bb D13DE-LHR 4.75V L% Dl+? PO*r4Y 8C---O19f M713 SL lOP3P-PO<br />

AlILNl5 1 POI-OU40 YIII3E-SHlfCHIHC 30V 50MA ZNS D*35 ZB*8D 1901-OO*O<br />

AL4LWlO LVOI-UU*U DIODE-5UlTCMlMC 30V 5onA 2Hi OW35 Zllb80 I90l-D0+0<br />

AlSCRLT 1901-Wh7 Z DIODE-6UlTCHtNG 201 75UA IONS 28400 LPOI~OOSF<br />

I43ClclB<br />

Al>C~13<br />

IA9LhLI<br />

AI3LMZL<br />

l901-0~&?<br />

1901-OU4U<br />

1 P 01-0040<br />

19 OI-0~40<br />

DIODE-SYEfSHYIC 2QV 7511* lUNS<br />

0103E-SY11LHlNG 30Y 5OMA 2N4 DD-35<br />

DIODE-SWITCHING 3I)V SUM4 2NS DQ-3s<br />

OIQOE-SYlTCHlNG 30Y 50UP. ZM5 D-35<br />

ZBIBO<br />

IS4BO<br />

2 ~ 4 ~<br />

28480<br />

lPOll-M4?<br />

1901-0D*o<br />

0 1901-0040<br />

1901-OOU1<br />

*Ark1 0*99-W RtLAV-REEO ll 100HA IOOOVM. SUM-COIL 28480 O+PG-W83<br />

IIML 04 'H)- a683 IECAY-REED lb LOOMA lDD0VDC SVOC-COIC 28460 WPU-0683<br />

~LAYJ o+w)-oL~~ RELAY-RE~D 1~ l oon* ~ooavoc ~VK-LOIL ZB~EO (HYO-0~63<br />

ALWI I a frc-ou71 TAANSISIDR l l 51 ~ W-IDOMY ~ F~=ZOMHL ieleo ~a~+oot~<br />

AA3UL 18+0U71 TR4 US 1 SI OR HPN 5 1 Pr)l30(lMY Ff -2ODllHZ 28480 1854-0011<br />

AI5U3 18:5-01&- + TRhYSI SrOg +FEl IN4392 H-CHAM D-MOO€ 0$313 ZHb19.2<br />

A130C 18 5PUdBb TUhftSISTUR J-FkT ZN4392 &-CHAM *MOUE 04713 3H43JZ<br />

413Wb ASS+OjUb IRANSISTOR J-f tF 2W3PL W-CH4H 0-MODE ~ 1 1 3 ZH4392<br />

n13uo 1855-0380 YA*NSISI~ J-GET zrn~9z N-~wti bnonE 01713 2~4392<br />

A15UI 185+0351 Z 1RhNSESIOR NRN SI TPAB PW360CY 284EO 1B54-0351<br />

A13Ud iB!+UO10 TnhYSISTOU PW' SI TD-18 P0=3oDMY ZB480 1853- 0010<br />

hlJG-4 1Y 55-0420 lHLMSI STOR J-FEI 2M391 H-CHAM MODE 04713 ZH4391<br />

AISULI ld%-0551 fK4HSISTOR LPN $1 l(E-18 UU-3bOWH 2&4BO L85C-0311<br />

AA SEE NOTE DN SCHEMATIC 2<br />

Scc Intraduction ta this 68ctIon tor ordering Information<br />

6.13


614<br />

AI3rllZ<br />

At1Ulj<br />

4i3U14<br />

* LIUC 5<br />

11d11<br />

ALJRZ<br />

A I >n3<br />

AISYC<br />

A13k5<br />

AIJRL<br />

I SlJRZ<br />

& L-lUU<br />

A I ~ P<br />

A IdBl I<br />

A1;IAlZ<br />

1 A1dAA3<br />

A131114<br />

ALSYIT<br />

*IjY1e<br />

hllML7<br />

A1JRAd<br />

hL3Kh9<br />

ALANLL<br />

4IAYdL<br />

1<br />

AISLU3<br />

nijuzs<br />

#1~1(1><br />

AlJUlb<br />

&I JYCF<br />

~ l j u z d<br />

AlSr(LY<br />

AIAHJL<br />

h 1SM3L<br />

*IAN> 3<br />

ltJR34<br />

*LAM35<br />

M138jo<br />

hldn3l<br />

&ldrr3U<br />

hljR39<br />

*I3L(*l<br />

4 LJH4c<br />

AIJRc~<br />

4 L1*14*<br />

lljY45<br />

A I ~ U ~ U<br />

AllUl<br />

alsuz<br />

1 *I>U1<br />

~1 3 ~ 4<br />

ALIU><br />

AlsUb<br />

A14<br />

11-1<br />

A14CZ<br />

A1*L3<br />

AI*LO<br />

*I'd5<br />

h1-b<br />

HCULI<br />

hI4UL *A<br />

A 1CLY.4<br />

4 t*~u+<br />

AlrCK3<br />

*k~Cdo AA<br />

A14bd7<br />

bl4LKd<br />

bl4CK.E<br />

AI*Lk 10<br />

18 53-9010<br />

LB!d-OUli<br />

1 i35+0420<br />

18 15-OLOZ<br />

0683-5145<br />

0683-2235<br />

Ob83-2L35<br />

OLYa-J+5%<br />

UCM-345B<br />

Of 37-DIO5<br />

0157-0270<br />

UL&f2235<br />

~083-1035<br />

ObU-5145<br />

21W33Ob<br />

12(Ip.33J9<br />

Y ~ 9 8 - ? ~ l<br />

0083-1034<br />

r) 751-0401<br />

DL-3122<br />

0683-24*5<br />

ObBt-ShUS<br />

01 57-0153<br />

069@-*188<br />

2 1W330m<br />

O~LU-ZOZS<br />

ObP*BZL5<br />

UbB3-ZOi5<br />

0663-1015<br />

DL 83-261 5<br />

Yh84-d445<br />

Ub0f lOJ5<br />

0683-51*5<br />

07 5I-[HSZ<br />

Oos3-1135<br />

0683-3025<br />

2 1 Gr)-3JOb<br />

O&B3-4715<br />

Ub98-U215<br />

Oh%-*ZQZ<br />

ObPB-4402<br />

ObM-4tDZ<br />

Oh 9&&L L 5<br />

OOVB-B1Lb<br />

069&8L16<br />

2 5-3911<br />

L B ~ ~ W > P<br />

tezeou59<br />

IB lOrY;50<br />

1826-0~59<br />

lB2blr109<br />

1820-WF1<br />

ILW-OII5<br />

+04+0748<br />

03455-LhSib<br />

OtX2-OW+<br />

O L w + j Y B<br />

014+0109<br />

LIlW-0084<br />

D l W-UUBS<br />

OlU-2204<br />

IPOT-~IIT<br />

1901-MfB<br />

1901-UU40<br />

IVGI-UJIL<br />

IYUL-DJF.6<br />

1901-ODs<br />

1902-3~3I<br />

IPGI-UU*Q<br />

1901-0040<br />

I Y CI-OU4J<br />

1<br />

1<br />

I<br />

2<br />

1<br />

3<br />

1<br />

1<br />

1<br />

2<br />

5<br />

1<br />

1<br />

3<br />

4<br />

1<br />

4<br />

z<br />

3<br />

A<br />

1<br />

2<br />

1<br />

3<br />

L<br />

Table 6-3. Repheable Push<br />

Description<br />

TRlMSISTm PW St 70-18 P013bOW<br />

TRANSfSIT*I llPPl 51 Pl)r3001AI FT-200MW<br />

IRAHSISTOR ~ 4 2 ~ ~ 7 9 1 WROW<br />

lR*H5tSTOK-J6€1 WAL NXHUI 0-#ODE 51 I<br />

RElfSTLIR 5101 SI -34W fC lE=-IOOI*~<br />

RESISTOR 22* 51 -25U FC TC-400/+800<br />

RESl S1DR Z2K 51 .25M Ft IC--400/+900<br />

RESISIW 348U LI .123Y F 1C*01-100<br />

RESISIJX 3488 1CIf -1ZSY F TL.O*-100<br />

RESIStW 1001 1X .125W F TK-O*-100<br />

RESlSrm 24W 1s .125W F fC.O*-lO(I<br />

RESlSIUl 3ZM 51 .25M FC JC=-400/*BUO<br />

RtStsrm IQX 51 .25Y FC TCW-+OOI*FOO<br />

RESISIOR 5LOR 5s ,25Y IFC 1C.-800/*900<br />

AA SERIAL NUMBERS 1612AOS231 AND ABOVE. NOTE Id81 ON SEUEMAfVC8.<br />

I<br />

I<br />

I<br />

RESI SIm-?MU 5011 1Df C IIOL-ADJ 17-TRll<br />

RESPSl01-7RRR 2K 10% C SlOf-APJ 17-TAM<br />

RkSISrW 1,0% if -125Y F fC*O+lOO<br />

RESISfOR 1OK 5I -2SY FE ?C*-4OOf*7M)<br />

RChISiOR 100 L -125Y F It-04-100<br />

RESISIat 412 II: .125Y F TC-Ot-100<br />

RESISIOR zoou 5s . 2 5 ~ FC ~C=-BOOI*POO<br />

HESISl[R 5 1 51 .ZZY FC It--400/+500<br />

RtSI51UR 30.1K If -1L5Y F TC*O+-lOO<br />

RtS1S1DR2b.7~11.115YffC-0t~00<br />

RE41 ST(R-TRMll 5K I01 1 SIPE-IDJ IT-TllU<br />

RESISIIIR 2n 51 .zw fc rc--roo/*roo<br />

RESI SIOR 61K .5% I?/O MATCHEO SET R?53,UE<br />

RkSISIW 2% 51 .t5Y FL fC=-400/+700<br />

YE5LSTCH kilD 51 .Z5Y FC TC*-+OOI+SOO<br />

RESI srm 240 51 .25~ FC rc=-*~o/t~oo<br />

RESISICM ZZK 5a .Z5Y FC 1Cf-40014600<br />

RtSJSf[R 1011 5X rZ5Y F& fL=-*OO/t700<br />

RESIS~W 51011 5s -25~ FC ~~*-8001*900<br />

Rt5tSr(R IOU 11 .IZ5Y F TC-Ot-LUP<br />

RESlSIm 82U 5I .2SY FC TCI-400/*800<br />

RESI SIm 3R 11 .25Y FC TC~-W014~00<br />

RESI S tm-TRMR 50U LOX C SlOE-ADJ 17-rRW<br />

RESISTUR +TI1 51 .ZW FC EC--4OOltbOO<br />

RESI STUR I07K "5% (PI0 MATCHED SET R25.3S.131<br />

RESISTOR 8.1171 1% .125Y F IC.O+LOO<br />

REIISILR 8.871 1% al25Y F TC.O+lOO<br />

RESISTCR B+B?K 1Z .123Y F It-Ot100<br />

RkSt STOR 2M .5%(PIO MATCHEDSET R25.38.43)<br />

RLSI SIDR 202K ,580 (PI0 uATCHEO SET A44. R46)<br />

RE55SlW 2~ -M IPM MATCHEBSET ~44, ~451<br />

RESISTOR-TRMR 500 10% c LISE-bm 17-FRM<br />

ItLM ZOILWAMP<br />

IC PM ZOLA oc *UP<br />

LC* F I E LINE CHIP<br />

cc LM 201~ w &np<br />

IC Ha 2625 UP IMP<br />

Id-DfClTAL 51174ULll tTL HEX 1<br />

STAIIPIntr BRS .0ZOm THK<br />

EXTR4ClOU-PC BW BLi PULTC .OLZ-8WTMMS<br />

P.C. ASSEMBLY* A0 CWVERTER<br />

L4PACITOR-FXO<br />

CAPACITOR-Fa0<br />

.LUF 4IO-20% lOOYYQC CER<br />

.UBLW +-101 1OdYVOC POLYP<br />

CAPACITOR-FXO 1 1 7 0 ~ +-5~ ~ ~DO~VDC MSCA<br />

LIP4C lTUR-FXD<br />

CAPACITUR-FXD<br />

IUF +SO-20%<br />

.IUF *8Q-ZOL<br />

LOPUVOC CEO<br />

100hYDC CER<br />

C4PACITOP;.FXO IOOPF -5L 330hYDC MICA<br />

OISDE-UIR ZOV 5'1 W-l ?D=-4M<br />

DlU3E-GEN PRP 35V WMA 0036<br />

tC~+-OY3Z<br />

DIUOE-SHIlCHIHG 30V 50M 2NS 00-35<br />

D~O~E-GEM PUP ~IY 50na m-r<br />

OI3Uk-C€N PwP 35V 50MA DO-?<br />

olr)~~-GEn PRP 38V W A IK) 39<br />

OIJJE-ZNA ZOV 51 Ow7 PD=-*Y T*+.DI3S<br />

013>t-5YI?CMlNG 3W 5 0 M ZUS Ow35<br />

IIIIUOE-SWYTCHlMG 30* TOHA 2HS Ow34<br />

UiilUE-SUITCHING 30Y >OM* INS 00-35<br />

See intrductioa to thla section for orderins Information<br />

Mfr<br />

Code<br />

2 ~ 1 0 ~ 11~S-001o<br />

38480<br />

04713<br />

185b0071<br />

2 ~ 4 ~ 1<br />

l7Ulib €421<br />

01121<br />

OLfZl<br />

01121<br />

OtbS?<br />

Qlb3?<br />

XIIIh<br />

2+54b<br />

OllLl<br />

01121<br />

Oh121<br />

32PP7<br />

JZPPt<br />

34541<br />

OLLll<br />

4<br />

03816<br />

01121<br />

01111<br />

2454b<br />

2+5lrb<br />

3ZPW<br />

01121<br />

284~0<br />

OLlZl<br />

OllZE<br />

oltza<br />

OZLLl<br />

01121<br />

Olllf<br />

2154%<br />

01121<br />

01121<br />

32497<br />

OLlZL<br />

28+80<br />

2454b<br />

2451b<br />

2+5*b<br />

Z~+BD<br />

ZB*BI)<br />

28180<br />

329.117<br />

Mfr Part Number<br />

C03WJ<br />

CElZ231<br />

CBZZE5<br />

C*F-55-Is 1-1<br />

CMF-55-1- T-1<br />

C&IIU-TD-1DOI-F<br />

CC.ll8-TO-24'13-F<br />

C02Z35<br />

CBI035<br />

t65115<br />

JOObP-1-503<br />

3OObP-1-201<br />

C+L/8-TD-L051-F<br />

CP1035<br />

C*-I/&-?&la-F<br />

PIIE5~lII-TD-+L2O-F<br />

t02045<br />

CBSIOS<br />

C+l/&.f0-3012-F<br />

C4- Lta-lPZ br2-f<br />

I<br />

2~014<br />

21011<br />

~ ~ 2 0<br />

LMZO~W<br />

1 ~<br />

ZB480 3810-0250<br />

2r01c LUZOII~<br />

20ffl0 1~26-01m<br />

01295<br />

LL3LS<br />

ZU4BO<br />

I<br />

28480<br />

244gO<br />

ZB+BO<br />

7213b<br />

28180<br />

2tl4blP<br />

Z84BO<br />

Dl713<br />

21480<br />

28*110<br />

28180<br />

ZB100<br />

Z8beO<br />

04713<br />

28400 1<br />

zabeo<br />

28480<br />

' OBO<br />

IOOIP-I-501<br />

GBZQZS<br />

~98-BZ&S<br />

CBZO25<br />

CB1015<br />

CBZ*IS<br />

C12235<br />

CUl035<br />

t85f45<br />

C4-118-10-IDOZ-F<br />

CB1Z33<br />

CB3W5<br />

300bt-L-JM<br />

C847t5<br />

Ob48-8215<br />

Ctlll-?P-EOT1-F<br />

C4-LIB-1*BBIl-F<br />

C4-1/8-TO-U&71-F<br />

0690-8215<br />

Ob9B-82 lb<br />

M9I-8216<br />

1006~-1-501<br />

SN74OW<br />

404@07+8<br />

034SS-bb516<br />

OI5a-DDM<br />

DlbD--434&<br />

On1 5F*7LJD30OUYlC1<br />

0150-DO04<br />

01 50-0081<br />

OlbWZZM<br />

SZ1093P.Ibl<br />

IPOL-0378<br />

I9Ol-OOW<br />

1401-03 74<br />

4901-O3IL<br />

3g01-0376<br />

SZ 109>9-2bP<br />

190~-0045<br />

1901-wco<br />

1901-ODW<br />

I<br />

I


I<br />

I<br />

I<br />

AIICAII 1901-0518<br />

*L*LHII I 1901-OD+*<br />

A1401 1853-0020<br />

A1402 1853-0034 1<br />

A1W3 I 18 55-0420<br />

A L ~ W l a 55-0034 I<br />

AIbUS 165EW46 I<br />

All* l%SEWZO<br />

41401 bB<br />

AICRZ<br />

06 Kb 1035<br />

0683-2W5<br />

1<br />

A1*R3<br />

OO'RI-3455<br />

AlfY*<br />

A I *A3<br />

08 11-2577<br />

0 T51-0436<br />

2<br />

1<br />

*I+Y~<br />

AI*RT<br />

otn-wao<br />

OC48-42Zh 1<br />

AIIYI<br />

AIIYP<br />

0757-0140<br />

0 7 57-0062<br />

1<br />

1<br />

Al+K13<br />

0757-WJO I<br />

ALl*Ll<br />

AA+RlI<br />

A14R13.<br />

Al*HL*<br />

*LCltLb<br />

414R1b<br />

&I+UI 1<br />

A44ULd A&<br />

AIfKlP<br />

Alflc~J dB<br />

AI4U1<br />

AI4YdL<br />

*~IULJ<br />

AIcRL* AS<br />

4I+rtlb AB<br />

AL4RZb<br />

*l*ltLI<br />

IA*STI(<br />

AI~KLP<br />

I ALlKlrl<br />

AI+lul<br />

*Irk32<br />

A14YJ3<br />

AItRJ*<br />

A44YJ%<br />

4L+R3b<br />

ALlX37<br />

1114438<br />

4 L +MAC<br />

liL+HlU<br />

*l*w*l<br />

AIbU+L<br />

aLCH13<br />

AL~UCI a*<br />

A11u44<br />

A14A4+<br />

AlCRIl<br />

A1PHQd<br />

AlSUi<br />

SllUL<br />

AlSU3<br />

Al+u*<br />

AI+U5<br />

A14vb<br />

OCW-351I<br />

0683-3025<br />

116 83-ZLL5<br />

Y 7 57-WCL<br />

08 1L-31117<br />

Of 9-0441<br />

0757-Q465<br />

0 7 5 ~ 0 2 7 ~<br />

OB984460<br />

0698-ZE<br />

08 lL-Z>Ft<br />

OLm-3155<br />

0~x113-8215<br />

0183- 1035<br />

Ob 82- 1035<br />

PD'SB-3260<br />

0&4&8C+P<br />

0683-1735<br />

OL~S-JYZ~<br />

06 $WUb*P<br />

ObW-3260<br />

Oh PB-,349 J<br />

0698-349P<br />

Ubbf I025<br />

UO9d-349P<br />

04 -243 5<br />

ObW-1WJS<br />

84-3UC5<br />

UaU3-3025<br />

01 ST-LKIZ<br />

07W-OH2<br />

~ l ~ a 3 r 4 ~ 3 5<br />

ObDZU35<br />

ob83-7055<br />

0883-Lob5<br />

0683" lob5<br />

0498-1415<br />

0751-0407<br />

i P ob-0070<br />

L9LbOO?D<br />

la>&-0471<br />

1 Slb-Oj09<br />

ll~U-0103<br />

!8i'+0118<br />

5a4+bd+l<br />

50-9013 I<br />

I I<br />

Table 6-3. Replaceable PaFts<br />

Description<br />

Oi00ESLHIl~~UV<br />

DIODE-SMITCHINC JOY SOW ZNS 0+35<br />

TRIIISISTOI PW SI Pm3OOM Ff=lSOl(Hi<br />

IRhMSISTOR W 51 TO-ll PP3bOMY<br />

fYlMSlStOR J-FET<br />

TA~NSIS~W J-FET<br />

ZM3'11 It-CHlH D--ME<br />

te~wn D-NODE TWF.72 51<br />

1RAHLISTOR-JBET DUAL M-CHIN 0-MOW TC-1,<br />

TRlMStSTa PW 61 PD.3WIY Fl-lSOllHl<br />

MSlSTOII 10K 51 .25Y FC TCNm/*7W<br />

RESISTOR 2K 5Z .25Y Ft tt-100E4?00<br />

RESITf[R 4.b4K I S .tZM F 1C-0+-LOO<br />

R~SI510R1M.tl.lZ5YPYYIC-0+2<br />

RGSIST~ 4 . 3 ~ 11. ~ .L25M F ~c=o+-~oo<br />

RESIST^ 1s IS .12su F TE-O+I~<br />

RESIZt(R L.4W It .H5Y F It-(la-100<br />

RESISl[II 7.511 11 .135Y F tC'O+-100<br />

RtSISTm 1411 11 .135M f tC=P*-LOO<br />

~t5151[11 LZU: 1. - 1 ~ F 5 ~ TC~O+LOO<br />

RES1Sta [ll5 1. .125W F TC-O+-100<br />

RESISTW 3U Jf -25W FC TC--100/*T00<br />

RESISTm 2.24 5t -25Y FC fC=-9001+12W<br />

Rt5ISTm lQK I f .lZSM F TC=O+-LOO<br />

RFSISIIIR I9.IX LX -125Y PYM TC-04-5<br />

RtSlSI(R 0.tW I t .125Y F TtrOtlOO<br />

RESISTOR 1001 11 -125Y F TC-0*-100<br />

RCAISIIR 3 0 ) ~ 11. .IZ~Y F TC-ot~oo<br />

~ t ~ l ~ w t u ( 11 .125U F ~C.O+-IOO<br />

RtSlSIW BA9Klt .125U F 1C-O+-I00<br />

RESISfOR 1011 .iZSY PYY TC-0.-Z<br />

RETISTW 4.brlll lt .lZ5M F FL-0,-I00<br />

RES1511R 820 51 -ZSY FC tC=-+OOI+bOO<br />

RESISlW 1DK 5% .25M FL TC--500/*700<br />

RtSl SICR !OK 52 .25Y FC TC--4OOl+fOO<br />

REflSt[ll 4L4I IS *lZSY F TC.O+-LOO<br />

RtSISIDR 1.2811 -11 -25Y F rCm0+23<br />

RESISI~ t 7 S* ~ .ZSY FL rc--+OO/+BOO<br />

RESISI~ 3.91 5z .zw rc rc--4ao/*rw<br />

RkSISCm 1.2811 .1X .ZSM r TC-O+ZS<br />

RESISI~ ~ 4l# l . l ~ 5 F ~ TC=P*-100<br />

RESCSIQiL 40.2K LS .125Y F TC-0+-100<br />

RESISTW 4O.ZK 1Z *lZSY 6 fL=OtlD(l<br />

RrSlSTlR I K 5s .ZSY FL TC--WO/*bOO<br />

RtSISTm 4O.tK If -125U f 1C-0t100<br />

RtStSt(R2~l(St.25YFClCr+OO/*BW<br />

RESllhOR 10R 51 .2SU FC ltr-Q00/*700<br />

AFSISTLR 3OOK 5f -25W FC ICm-B00/+900<br />

RtSIST[3R PK 51 .25Y FC TC~-51]0f*IOO<br />

RESlSFW4 30K 1Z .125Y F 1C-0*-100<br />

RESlS1(R IOR 12 .12SY F TC=O+-LOO<br />

RESI5T[I\ 47K 5% .Z5W FC ICM-MO/+BOO<br />

RtSIST[El 30K SL .25* FC ?C--40Ol+~OO<br />

RESISTCR 2M 5X .25u FC TCI-P00/+110(1<br />

RtSlSfCR LOR 5X .25Y FC TL--900/+1100<br />

~ t 5 1 $ m loll 5s -25~ FC TC*-PDO/+~X~~<br />

kESIST[R 0.7M 12 .lZSV F FC-Q+-100<br />

RkSISTIR 1B?K 1I .1Z5U F Tt'W-100<br />

D1ODE-UAAI<br />

DIOUE-ARMY<br />

I C OP AMP LOW-DRIFT TO-<br />

IL hO 51BJ OF AMP<br />

LC, *MR. OPERAIIUMAL<br />

IL LM 339 L(WP*RAIO*<br />

EKfRAtTOR. PA* BOARD<br />

P1N:P.C. IMRD EXTRACTOR<br />

AA SEE MOTE ON SCHEMATIC 8.<br />

dB SERIAL NUMB€ RS 1822AIK231 AND<br />

ABOVE. !ZE WTE OM SCHEMATIC 6<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

11<br />

2<br />

i<br />

3<br />

1<br />

1<br />

1<br />

1<br />

3<br />

I<br />

1<br />

t<br />

X<br />

I<br />

L<br />

Z<br />

2<br />

See intductlon to this section for ordedm Inlomation<br />

'<br />

Mfr<br />

Coda<br />

ZI4BD<br />

ZH+EO<br />

21410<br />

28580<br />

O+J13<br />

2~18a<br />

>a*aO<br />

Zl4UO<br />

0 1 ~<br />

OllZl<br />

%5Ch<br />

1414D<br />

2454b<br />

~ 4 5 4 6<br />

2454b<br />

Z15+b<br />

24515<br />

Z454b<br />

245*c'<br />

PllZl<br />

OllZt<br />

Z454b<br />

lllIP<br />

24541<br />

2+54b<br />

om2<br />

OX=<br />

03B2<br />

14140<br />

2454b<br />

OllZl<br />

OlWl<br />

01m7<br />

Olb3?<br />

l97Ol<br />

OILZI<br />

0112~<br />

19701<br />

91b3l<br />

ZbWb<br />

Z*54h<br />

OlllL<br />

2454s<br />

01121<br />

01121<br />

01111<br />

01121<br />

Zl5Ib<br />

245b1<br />

0112L<br />

Okl.?l<br />

DIW7<br />

01121<br />

01111<br />

P1BB8<br />

03592<br />

28480<br />

28480<br />

02180<br />

2C355<br />

15818<br />

27014<br />

2H80<br />

ZB4aO<br />

Mfr Part Numbr<br />

1WL-0511<br />

i*oa-o~+o<br />

LI33-OOZD<br />

1853-003+<br />

281391<br />

1a-x-OOM<br />

l85+0?45<br />

LISZ-0020<br />

C~IQS<br />

C82DZS<br />

Ctl/&TQ-4b4l-F<br />

IZ7*-klla-A-1002-8<br />

c~-~/~-IP-*PLI-F<br />

C~L/~-TD-LOOI-F<br />

Ctill-ID-6491-F<br />

L4-l/U-KWT5Ok-F<br />

L+l/B-fO-t5OZ-F<br />

C+LI8-IO-LZ 11-F<br />

C+k/O-rO-bb5R-F<br />

L83025<br />

CB2265<br />

Cf-lfa-T~1002-F<br />

1150-1PbC-1912-F<br />

C+l/&TD-BZ51-F<br />

C4-118-FD-1003-F<br />

c+i/n-ro-m~ i -F<br />

Ct118-10-649R-F<br />

C4-If E-lPB49f -F<br />

lZ7+1/tti~-tW2-1<br />

CC-1/&-TD-+b+t-F<br />

CUD215<br />

CHI035<br />

CB1035<br />

CMF-5+1* T-1<br />

MF 52C-1<br />

128.2~3~<br />

~ ~ 3 9 2 s<br />

KF52C-1<br />

EMF-5+L. Z-t<br />

tl-1/8-TD-402Z-F<br />

tCt/~-Y0-102Z-F<br />

CR1025<br />

CC~IB-T+~OZ~-~<br />

ED2135<br />

LB1035<br />

LBfObS<br />

LB30ZS 1<br />

L4-118-T&100t-F<br />

C+-~/B-TO-~OO~-~<br />

C84735<br />

tB2D35<br />

CBMS5<br />

CBlObS<br />

CBlOb5<br />

PME55-l/l-T*91b1-F<br />

c+~/E-70-1W3-F<br />

IPObWJO<br />

190tiM170<br />

OP-07W<br />

AD51IJ<br />

741CEWP<br />

LM33Pn<br />

5Ol(t-6042<br />

5000-PO*3<br />

613<br />

I


I<br />

A15C34<br />

A 15C35<br />

A15CX-3& AA<br />

A15CoP AJ<br />

AIKA1.1.3<br />

AlXA4.5<br />

AIXR6<br />

A15CA1<br />

AlXR8. CRO<br />

Al5CAl1-CR13<br />

A15K1, K3 &A<br />

A1 5C2. K4<br />

A1501<br />

b1502-a4<br />

A15m<br />

LA SEE NOTE ON SCtILMATtC 3<br />

AC SEE NOTE OM SCHEMATIC 3<br />

JJ SFE h0TE ON SCHtMATIC 3<br />

-\L. AN SEE NOTE ON SCHFMATIC 3<br />

IF- SEE NOTE ON SCHCHnrlC 3<br />

I HP Part Nvmbar I QW<br />

PC ASSEMBLY, AC RMB<br />

CAPACITOR-FXD .1UF 480-20% SOWVDC CER<br />

CAPACITOA-FXD ,027 UF MOV<br />

CAPACrTOR-FXD .22 UF 2MIV<br />

CAPACITOR-FXO .lUF A- 10'G 1MIWVDC CER<br />

CAPACITOR-FXD .01Wf +-lo% lIXlWVDC CER<br />

CAPACITOR-FXD 7WF +-5% W D C MlGA<br />

CAPACITOR-FXO lCWF +-5% 300WIIDC MlCA<br />

CAPACITDR-FXD 033 UP ZWV<br />

CAPAClTOR-FXD 37 UF *-lo% EUWVDC MET<br />

CAPACITOR-FXD lOPF r-5% 5M)WVOC CER<br />

CAPACITOR-FXO 2WF +-5% 3NWVUC MlCA<br />

CAPACITOR-FXD IOPF +-5% WOlVVOC CER<br />

CAPACITDR-FXO 1UF --lo% 35VDC TA<br />

CAPACITOR-FXD IOPF --5% Y001VWDC CER<br />

CAPACITOR-FXO .lUF M0-20* SQWVDC CEA<br />

PADDING LIST<br />

CAPACITOR-FXD 1WF +-5% W D C<br />

CAPACITOR-FXD 12PF +-5% WOWVOC<br />

CAPACITOR-FXO 15PF +-5% SIWWVDC<br />

CAPACITOR-FXO IUF t80-20'b SOWVDC CER<br />

EAPACITOA-FXD 346PF --I% 500WVDC PORC<br />

CAPACITOA-FXD .lUF ?BO-a% COWVDC CER<br />

CAPACITOR-FXD 39PF +-1% 5WWVK WRC<br />

CAPACITOR-FXD .lUF +8O-Mb XlWVDC CER<br />

CAPACITOR. FXD 1WF l[lOV<br />

CAPQCITOA-FXD BJWF +-I% SDOWVDC PORC<br />

CAPACITOR-FXD 43Pf +-5% 3WWVfX<br />

CAPACITOR-FXU 22UF +-l[pb 4MIVDC<br />

CAPACITOR-V TRMR-AIR 24'24 5PF 350V<br />

CAPACITOR-FXD RlPF +-59 ~WI'JVM: MICA<br />

CAPACITOA-FXO OlUF *80 -70 n lDOVDC CER<br />

CAPAClTOR-FXD 2 2UF +-26% SODVDC CER<br />

UIODE-SWITCHING XiV W A 2hS 00-35<br />

DIODE-SCHOTTKY<br />

DIODZ-SLVITCHING 3W KlMA ZNS DQ-35<br />

DIODE, GEN PRP 30V 25MA f 0-72<br />

DIODE-ZNR d 32V 5% 00-7 PD-4WTC--- 035%<br />

DICIDE-SWITCHING 3(W 50MA ZNS DO-35<br />

RECRY-REED 1A lWMA IOWVDC 6VDC-COIL<br />

RECAY-REED 1A 1WMA 10D3VUC 5YUC-COIL<br />

TRANSISTOR NPN SI FD-3WW FT-2M)MHZ<br />

TRANSISTOS J FET PNd331 N-CHAW U-MODE<br />

TRANSISTOR A-PET N CHAN D-MODE $1<br />

TRANS15TaR NPN 01 PD 300MW FT-7WMHz<br />

TRANSISTOR PNP SF PO-3WMW FT-IWMHF<br />

TRANSISTOR J FET 2H431 N-CHAM O MODE<br />

TRANSISTOR. ADBlB<br />

TRANSISTOR PNP SI PDm3WMW Ff.lWMHZ<br />

THANSISTOR NPN 51 PO-3WMW FT-2ODMHZ<br />

TRANSISTOR PNP 2t44917 51 PUmlM)MW<br />

TRANSISTOR NPN SI PD-35OMW FT-300MHZ<br />

TRANSI5TDR NPH SI PD mMW fT=?WHHZ<br />

TRANSISTOA PNP SI PD-300YW FT.lSUMHZ<br />

TRANSISTOR I-FET IM5765 N-CHAW D MODE St<br />

TIRAMSISTOR J- FET 2V1531 N-CHAM U MODE<br />

RESISTOR !OK 5% 25W FC TC- 400'.700<br />

AESl5TOR 22K 5 i .25W FC TC--4001'8ME<br />

AfqlSTOR S1OK 5% 35W fC TC--EVO'+m<br />

RESISTOR 22K 5% ,294 FC TC -400 *BIKI<br />

AfilSTOR 12 lK 1% .t25W F<br />

RESISTOR 169K 1% .175W F<br />

RESISTOR 20K i ~.imw F rc-a--iw<br />

RESISTOR 160K 1% 125W F TC-O+-25<br />

RESI5TORr102 1% ,125W F TC'OI-100<br />

RESISTOR 1B 1K 1% 1?BW F TC*+ 1W<br />

REFISTOR z 4~ IX .25w FC TC -PWI* 1 im<br />

RELilSTOA 2R7K 17 .125W F TCxW-lW<br />

RESISTOM 1OK 5% ?SVd FC Tt -4 -7W<br />

RESISTOR 22K W .ZSW FC TC--4001.8M)<br />

RESISTOR TRMR ?OK 10% C SIDE-ADJ 1 1-TUN<br />

RESISTOR 1ROK 6% 25W FC<br />

REFISTOR 27M 54 25W fC<br />

RESIFTOR ZDOK 5% 75W FC<br />

RE'II~TOR 300K 5%. 251Q FC<br />

AF515TOR YAK Sf 25W FC<br />

RESISTOR 5lOK 5'2 25iV FC<br />

RESISTOR 750K 5% 951V FC<br />

Mfr I Code<br />

I<br />

Mfr Part Number<br />

01CO-77MI<br />

0160-3976<br />

1W-Mq 125<br />

DM 15ER20JO3lXWVtCR<br />

0160 2055<br />

Ol6U 0118<br />

1801-m0<br />

1901-0518<br />

1901-WU<br />

1W1-09B6<br />

SZ 10939-77<br />

1901-WO<br />

a4W- 0583<br />

M9U-C683<br />

IB,4-M:Jl<br />

2k.1391<br />

1855 0082<br />

1x54 0071<br />

1853- W M<br />

2lu.1391<br />

leg-O~Y<br />

1853-mzo<br />

183-GO71<br />

2Nd9tl<br />

SPS 3611<br />

11154-a071<br />

lRi3-#XJ


I E;:zn I HP Part Numbsr I ON Description<br />

4040-0718<br />

1205-OW0<br />

1205-OW2<br />

A20 1 1 1 177-GWQ1<br />

SFt NOTF ON SCIIF1AAllC 3<br />

AB W E NOTE ON SCHEMATIC 3<br />

RfSlSTOR 1M)K5'4 .ZW FE ? C--m/+m<br />

RESISTOR 22K 58 .75W FC TC--P[W11+800<br />

RESISTOR 1WK 1% I?W F TCIO+-25<br />

RESISTOR 1 e7K 1% .1?5W F TC-O--100<br />

RESISTOR 4 99K 106 .125LV F TC-00 - 110<br />

RESISTOR-TRMR ?OK 16% C SIDE- ADJ 17 -TRN<br />

RESISTOR 732K 1% 125W F TC.0b- 103<br />

RESISTOR 7 15K 1% 125W F TC-00- 100<br />

RFSISTOR 267K 1% -125W F TC 0*-100<br />

ACSlSTOR 562 1% 175bV F TC-0*-IWI<br />

RESISTOR 1K 11 .fEW F TW+- 1CQ<br />

AESISTOR 649 1% .125W F TC=O+-IIXI<br />

RESISTOR 51 5% .25W FC TC-- 4IXl,+5MJ<br />

RFSlSTOR 51 5% .25W FC TC 400IaSW<br />

AtSlSTOR 392 7% tZW F TCW--IW<br />

RESISTOR 18fK 1% 125W F TC-0,-III[)<br />

RESISTOR 107K 1% l25W F TC-0t-700<br />

RESIXTOR 51 5% 25W FC TC- 4WI-SM]<br />

RSSISTOA 187K 7% 125W F TC-01-100<br />

RESIFTOA -a ts r~aw F TC o- loo<br />

RES15TOR 3.32K 1% .125W F TC-D*-100<br />

RE515TOR 5 1fK 7% .125W F TC.0*-100<br />

RESISTOR 499K 1% TZ5W F TC-0'-100<br />

MFSISTOR-TRUR lo-. C SIDE<br />

HESlSTOR 2OK 1% 1&W F TC 0--25<br />

RESISTOR tDK IS ,125W F TC-0.-25<br />

RESISTOR 23 7 1% .lXW F TCa+- I(W<br />

RESITTO'I SK .I*. ,1255~ F TC:O~-zs<br />

HFSISTOA-TAMR 20K IW C SIOE-AW f7-TRN<br />

RESISTOR 15 5% .?5W FC TC- IW'*S(]O<br />

HFSISTOH IWK 5% 25W FC TC<br />

RESISTOA IOK 5% .2W FC TC--.40(11+700<br />

RESISTOA %2 1% 175W F TC-O*-ICKI<br />

RESISTOR 825K 1% 125W F TCm0+- IM)<br />

HkSlSlOR 5K .I% .t25W F TC..O+-25<br />

HLSISTOR-TRUR MK 10% C SIDE-AOJ 17-TAM<br />

RESISTOR 1UK 5% .25W FC ~ ~--Wnt-m<br />

RESISTOR 13K5"6 .25W FC TC-4W -m<br />

RESISTOR 10K 5% .?5W FC TC--dm/o 100<br />

RFSlSTnR 10K 5'4 ZbW FC TC.-UW'+I00<br />

H~SISTDR 337<br />

RESISTOH- TRMR 100 10% C TOP<br />

RES1STOR-TRMA 5K 10% C SIDE-ADA 17-TAN<br />

RESISTOR-TRMR 5OK 10% C SIOE-AOJ IT-1 RN<br />

RESISTOR-TRMR 1K lW3 C SIDE -ADJ ll-IRh<br />

Rt51Sf0R 770K .5% IP/OMAfCHtOSFT 876.86.911<br />

llF515TOR S25K 1% law F TC 0.-lm<br />

RFSITOA 1K 1% 1EW F fC-0.-100<br />

RESISTOR 15 59. .15W FC TC--4Wm+XII)<br />

AFSISTOR 5491: 14 .1W F TC-04-ln<br />

RESISTOR 168K 1s .1W F TC-0+-10<br />

RESISTOR 1 EIK 1% .1W F TC-0t-10<br />

RESISTOR 3 37K 1% .12W F TC.01- IQO<br />

AFSISTQR .634 1% .aw .F TC 0'-10<br />

RESISTOR 1 98M .5% IPIQ MATCIIED SET R16.86.911<br />

RESISTOR 14 58 2W FC TC--400'-5W<br />

PADOIAG LIST<br />

RESISTOR 189K 19 I25W F TC-0--1w<br />

RCSISTYR 1?$K 13 125WF TC.0.-1W<br />

AESISTOR I&?K 1 .125W F TCzO*- 1W<br />

AFSfSTOR 18 7R 1% T25W F fC=O+-lOO<br />

HESISTOR 19 '$6 14 175W F TC-00 - IW<br />

AESISTOR 20K 1% 1151Y F TC-O-- 1CKl<br />

AESISTOR SLT, W,ATClftD 2M 5% IP'O MATCHED SET<br />

H76. R*. a911<br />

RESISTOR 2\1 5% {Pro MATCHED SET RW. R931<br />

RLSiTtOR 20 ?u 51 4P 0 MATCHEO SET RQ? R93l<br />

RESlST09-TRMRSW ?O%CSIOE-ADJ 17-TRh<br />

RESISTOR 808 1% 125W F TC-0. -FW<br />

RESISTOR 1 1M 5% 25W FC TO<br />

RESISTOR lMlK 5% .25W FC TC<br />

IC. <strong>DIGITAL</strong> SN7406hl TTL HEX1<br />

tC LFSBTH OP AMP<br />

EXTRACTOR-PC ED BLI: WLYC 062-00 THKXS<br />

HEAT SIN


PI<br />

P2<br />

P3<br />

Pd<br />

6<br />

PB<br />

S1<br />

$3. $1<br />

S4<br />

55<br />

S6<br />

57<br />

11<br />

U1<br />

W2<br />

U3<br />

W 1<br />

W<br />

W3<br />

W5<br />

XF1<br />

I<br />

1 o ble 63. Rsplacaa bla Partr(Cont'd]<br />

Description<br />

Mfr<br />

Code<br />

Mfr Part Number<br />

CHASSIS MOUNTEO PARTS<br />

B1 JfBO- t FAN-TBAX DCV 28480 3150-0288<br />

31s-0300 1 FILTER. AIR 284BD 319-0300<br />

Cl-a Ol@-oal CAPACITOR-FKO IUFI-IDX 35VDC TA 58289 1500105X9~2<br />

CR1 1PM-0547 LEO-VISIBLE LUM -IM-2MCD IF-ZOMA-MAX 28M 7990-0541<br />

F1 21 10-0201 1 FUSE .Z5A 25(1V SLO-8L0 220,?AOV OPERATION 7S915 313.1m<br />

21 10-0012 1 FUSE 5A 250V FAST-BC0103/tMV OPEA4TION W7M 312.W<br />

Jt SOB1-1131 *B 2 TERM ASSEMBLY. REAR INPUT 284m 5081-f131<br />

JS<br />

53<br />

t250-MIB3<br />

1251-3203<br />

0380-W3<br />

1<br />

1<br />

1<br />

CONNECTOR-RF BNC FEM SGL-HOLE-FA SO-OHM<br />

CWNNECfOR. 24-CONS. FEW, MICRORIBBON<br />

STaNWFF. LG STUDMOUNT (METRIC THREAOl<br />

24931<br />

28480<br />

OW6A<br />

28JR- 130-1<br />

1251-3i83<br />

080 r<br />

J4<br />

J5<br />

9300-39:Q<br />

5WO-fc54<br />

T FILTFR-LINE<br />

TERM ASSEMBLY. FRONT INPUT<br />

38480<br />

29680<br />

9100-3310<br />

W-7454<br />

1251-3201<br />

1251-W57<br />

1151-4312<br />

1291-3476<br />

1251-3277<br />

1251 -3276<br />

1251-3275<br />

zE:E<br />

3030-Do07<br />

3101461<br />

3 10 1-ZM?<br />

3101-2042<br />

3101-2216<br />

ma-1023<br />

3101-1299<br />

0370-rn6RS<br />

9100-0680<br />

182Q-WM<br />

0340-0580<br />

1700-0456<br />

1826-0181<br />

182641 1 f<br />

12W-M79<br />

03455-81603<br />

1334%-516M<br />

03456--6 16M<br />

03455-61W I<br />

21 10-0410<br />

5W1-0308 A<br />

9Wl-0139<br />

503-0318 I<br />

5041 - old0<br />

50.11 -0767 *A<br />

504 1 -M~O 5040-GH97<br />

5047 -0375 AA<br />

5040-6B98<br />

712Q-6dlll<br />

2<br />

A SERI4C NUMBERS 1622AOM11 AND ABOVE REPLACES PAR~5041-11139ANO 5347-0164<br />

LA SEHIAL NUUBERS 1F22AWd33 AVO ABOVE. IREPLACES0345S-MJ)3<br />

AB SERIAL NUklDE RS 1622AC5631 AND ALIOVE. REPLACES PART 5mQ-7458.<br />

1<br />

t<br />

17<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

2<br />

1<br />

1<br />

1<br />

I<br />

1<br />

1<br />

I<br />

1<br />

1<br />

1<br />

1<br />

1<br />

:<br />

1<br />

2<br />

:1<br />

I<br />

1<br />

2<br />

1<br />

3<br />

11<br />

I<br />

CONNECTOR 3-PIPT F POST TYPE<br />

CONNECTOR 10-PIN F POST TYPE<br />

CONNECTOR 18-PIN F POST TYPE<br />

CONTACT CORN U'S POST TYPE FEM CRP lPlO P31<br />

CONNECTOR 4 PIN F POST TYPE<br />

CONNECTOR &PIN F POST TYPE<br />

CONNECTOR &PIN F POST TYPE<br />

'SWITCH. ROTARY INPUT SELECT<br />

KNOB<br />

SCREW-SET 440 ,125-IN-LG<br />

SWITCH-SL SPOT-NS MlNTR .6A 125VACtOC PC<br />

SWITCH-SL OPDT-NS STD 2A 2SDVAC SLDR LUG<br />

SWITCH-SL IIPDT-h5 SID 2A 25OVAC SLDR LUG<br />

SWITCH-PB DPDT 44 250VAC<br />

PUSH ROO<br />

SWITCH-PB OPDf ALfNG 45A 115VAC PC<br />

PUSHBUTTON. OLIVE BLACK<br />

TRANSFORMER, POWER<br />

IC LM 3W V AGLTR<br />

IHSULATOR-XSTR RUBBER RE0<br />

SOCKET-XSTR 2-CONT TO-3-PKG<br />

IC LM 323 V RtLTR<br />

IC 7H12C V AGLTR<br />

MCXET-XSIR 2-CONT TO-3 SLUR-TUA<br />

CABLE ASEEMBtY. VOtTS<br />

CABLE ASSEMBLY. OHM<br />

CABLE ASSEMBLY. HP 18 IINCLUQES J3 AN0 P31<br />

CABLE ASSEMBLY. POWER<br />

FUSEWOLDER EXTR POST 2QA ZWV ULllEC<br />

KEY CAP .UNL PTYGRK<br />

KEY CAP WNL MG IOBSI<br />

KEY CAP--L PWGRY<br />

KEY CAP- L MOSGRY<br />

KEY-CAP YNL<br />

KEY CAP-L SE *a~u<br />

LENS. LED<br />

KEY CAP- UNL<br />

LlTE PIPE<br />

WARNING LABEL' 50-60 HZ SELECTION<br />

2726-3<br />

27264<br />

11164<br />

284HO<br />

? 1264<br />

27264<br />

17264<br />

28m<br />

28180<br />

25480<br />

18777<br />

2M40<br />

284BO<br />

3480<br />

zanm<br />

2BdAO<br />

2WRD<br />

2WBO<br />

27014<br />

RG46d<br />

28680<br />

27014<br />

07263<br />

91833<br />

28480<br />

~ U B O<br />

284RO<br />

2WHO<br />

759 U 5<br />

28480<br />

ZRPRLJ<br />

2PdW<br />

2~:eo<br />

?RCEO<br />

?HGSO<br />

28620<br />

28480<br />

28480<br />

2MBO<br />

I<br />

09-5&7031<br />

22-01-2101<br />

22-01 1181<br />

1151-3476<br />

D9-9-7041<br />

EW-W-7[lBl<br />

W- M 7061<br />

3100-3380<br />

0370- 1103<br />

30#I-M]al<br />

G-124 D013<br />

3701-3M?<br />

3101-ZWZ<br />

3101- 2116<br />

51~0- 7023<br />

3107-1799<br />

0370-0683<br />

BlMI-WX<br />

Lt1309K<br />

7403 10-02 1<br />

1200 .OP56<br />

LM323K<br />

78 t2KC<br />

4601<br />

03455- 816W<br />

03455-81604<br />

03455-616W<br />

03455- 61605<br />

3d-3-0 10<br />

504)-0m<br />

5041 -0139<br />

33041-0318<br />

5041 ,0144<br />

52341-0267<br />

W~I-W~O<br />

3340 6BPI<br />

5041-(1325<br />

W40 6898<br />

7120-6410


Model 3455A Section VII<br />

7-1. INTRODUCTION.<br />

7-2. This section of the manual normally contains informa-<br />

tion necessary to adapt this manual to instruments for<br />

which the content does not directly apply. Since, at this<br />

printing, the manual does apply directly to instruments<br />

having serial numbers listed on the title page, no change<br />

information is given here.<br />

MANUAL CHANGES


Model 3455A Section Vlll<br />

8-2. This section contains theory of operation, trouble-<br />

shooting procedures, safety considerations, and general<br />

service informarion for the Model 3455A Digital Volt-<br />

meter.<br />

8-3. SAFETY CONSlDERAflOWS.<br />

84. Although this instrument has been designed in accor-<br />

dance with international safety standards, this manual<br />

contains information, cautions, and warning which must<br />

be followed to ensure safc operation and to maintain the<br />

instrument in safe operating condition. Scrvicc and adjust-<br />

ments should be performed only by qualified service<br />

personnel.<br />

SECTION Vlll<br />

SERVICE<br />

is likely ro make the insmrnent danremus.<br />

Intentional in f cmprion of the prorective<br />

grouflditzg canductor is strictly profiibited.<br />

8-6. It is possibte for capacitors inside the inslrument to<br />

still be charged even if the instrument has been discon-<br />

conncctcd from its power sources.<br />

8-7. Be certain that only fuses with the required current<br />

rating and of the specified typed (normal blow, time delay,<br />

clc.) are used Tor rcplacemcnt. TRc use of repaired fuses<br />

and the short-circuiting of Fuse holders must be avoided.<br />

8-5. Any adjustment, maintenance, and repair of the The service infomfation presented in this<br />

opened instrument while any power or voItage is applied<br />

manuaI is norntally used wit11 the protective<br />

should be avoided as much as possible, and, when<br />

covers rcmovcd and power applied ro the<br />

inevitable,<br />

should be carried out only by a skilled person who is<br />

instrutnent. Etrem? awailublc or rnany points<br />

aware of the hazard involved.<br />

may, if contacted, rcsuEt in pmonai ir~jclry.<br />

8-8. RECOMMENDED TESf EQUIPMENT.<br />

8-9. Test equipment required to maintain the Digital Volt-<br />

ANY intemption of rlrc protective groundit~g nieter is listed in Table 1-3. Equipment other than that<br />

conductor (irrside or ours id^ rhc ir~strumenr) or listed may bc used if it mecrs the Iistcd critical specificsdisconnection<br />

u f rite protect iile earth terminal lions.<br />

Figure 8-1. Function Block Diagram.


Section YIIl Model 3455A<br />

8-10. IMTRODUCTION.<br />

8- 1 1. The following paragraphs contain both a genera! and<br />

detailed description of tlie methods and circuits uscd in thc<br />

Model 3455A Multimetcr. The general description explains<br />

thc basic purpose nf each block of the functional block<br />

diagram shown In Figure 8-1. The detailed description<br />

describes the methods and pertinent circuitry used to<br />

accomplish the function of each block of the derailed block<br />

diagram.<br />

8-12. INPUT $WIT CHlNG AND DC AT7ENUATOR.<br />

8-13. General.<br />

8-14. The rront or rear input terminals oi the 3455A are<br />

sclccted by a two-section rotary switch located on the<br />

rear panel of the instrumart. Reed rclays are used ro perform<br />

all internal input switdiing wl~erc voltapes greater<br />

than 17 volts may be encountered. input switc],ing<br />

is done with FFT switches.<br />

8-1 5. Detailed De~ription.<br />

THEORY OF OPERATION<br />

The "Input" terminals are connected to the dc preamplifier<br />

input on tke .1 V dc through 10 V dc and all ~'Olinis"<br />

ranges by relay R 1 and FET switch Q11. Relay K5 connects<br />

tlre input to the operational attenuator on the 100 and<br />

1000 Y dc ranges. Output of the Atlenuator is connected<br />

to the input of tl~e dc prcarnplifier by BET switch 015 on<br />

the 100 Y dc rangc and by FET switch Q16 on the 1000 V<br />

dc range. The AC Converter output is connected to the dc<br />

preamp input by FET switch U3.<br />

8-17, Operational Attenuator.<br />

8-1 8. The Operational Arknuator prnvidcs a fixed attcnuation<br />

of 10-to-l on the 100 V dc range or 100-10-1 an the<br />

I000 V dc rang. Figure 8-3 slrows a simplified diagram of<br />

thc at tenuator. The circuit operates as a conventional opcr.<br />

ational amplifier with fractional gains of . I and .0 1. A gain<br />

of 1 is selected by FET switch Q38 when the attenuatar is<br />

"01 Use. The amplifier input IS protected from overload<br />

by diodes CR27 and CR28. Oulput of the amplifier is<br />

limited 10 approximately plus or minus 17 V dr by protection<br />

diodes CR.29 through CR3 1.<br />

8-16. Refer to Figurc 8-2, Simplifted Input Switching Dia- 8-1 9. AUTO CALIBRATION-DC VOLTAGE,<br />

gram. The front or rear inputs for "Volts", "Ohms" and<br />

"Guard" are selected by rear panel switclr SI. Relays K3 8-20. General.<br />

and K9 connect thc Ohms Converter to the ''Ohms Signal"<br />

term~nals. Relays K2 and K4 are uscd 10 convert the Multi- 8-21, The purpose of the Auto Catibration sequence is LO<br />

meter from 4-wire to 2-wire ohms measurement capability. eliminate offset and gain errors which may he present in the<br />

8-2<br />

Figure 8-2. Simplified Input Switching Diagram.


Model 34556 THEORY OF OPERATIOM Section VIII<br />

Figure 8-3. Operational Attenuator Diagram.<br />

analog circuitry of the Voltmeter. This is accomplished by<br />

measuring the offset and gain errors and mathematicaliy<br />

correcting for them. Each error measurement is stored in<br />

'knemory" by thc main controller as a constant. These<br />

constants are sequentially updated. The output reading of<br />

the Voltmeter is computed by the Main Controller and is<br />

equal to the ratio of the external input to the internal refer-<br />

ence, times a range factor. Figure 8-4 shows a very basic<br />

dizratn of the Voltmeter.<br />

Figure 8-4. Basic Voltmeter Diagram.<br />

A basic equation describing a measurement of one of the<br />

three inputs is: V( ) = (E( ) + E0)G; where Y( ) is the par-<br />

ticular output, E( ) is one of the three inputs, Eo is the<br />

internal offset error, and G is the circuit gain. Closing<br />

switch S1 applies the internal reference vol tagc. The circuit<br />

output would be: Yref = (E,,f + Eo) G. The offset error is<br />

measured by closing S2, grounding the input. The rcsul tan t<br />

output would be V, = E,G. Measurement of the external<br />

input would yield Vjn = (Ein + Eo)G. The equation dcscrib-<br />

ing the Auto-Calibration is:<br />

Output Reading = 'in * '0 x Kr<br />

Yref- Vo<br />

Substituting the basic equations into the Autc~CaI<br />

equation would yield:<br />

Output Reading = {Ein + E,) C - E,G x Kr<br />

(Eref+ €01 G - EoG<br />

This equation reduces to:<br />

Figure 8-5. Simplified Auto-Cal Switching Schematie.<br />

Output Reading = i" x Kr<br />

Eref<br />

or: the output reading is equal to the ratio of the<br />

8-3


Section Ylll THEORY OF OPERATION Model 3455A<br />

external input voltage to the internal reference volt- cat switching circuitry. The following paragraphs describe<br />

age times the range factor (K,). circuit operation for the various auto-cal measurements.<br />

8-22. Circuit Description.<br />

8-24, 10 V dc rnput Offset Error Measurement. Figure 8-6<br />

8-23. Figure 8-5 shows a simplified schematic of the auto- iIlustrates the circuit configuration for making the 10 V dc<br />

Figurtl8-6. 10 Y dc Input Offset Error Measurement.<br />

I 1<br />

I I<br />

Figure 8-7. 1 V dc Input Offset Error Measurement.


Model 3455A THEORY OF OPERATIOM Section VE I1<br />

OFTset Error Measurement. The DC Preamp input is<br />

grounded through a 100 kilohm resistor by FET swirch<br />

A10Q2. A DC Preamp gain of XI is selected by FET switch<br />

A 10Q 19. The resultant measurement is the offset voltage<br />

present on the 10 V dc range. This number is stored by the<br />

main controller [br use in correcting measurements made<br />

an the I O V dc range.<br />

8-25. 1 V dc and .1 V dc Input Offset Error Measurarnent.<br />

Offset error measurements on the 1 V dc and .1 V dc ranges<br />

arc made in the same manner as the 10 V dc range except<br />

for DC Preamp gains of XI0 for the I Y dc range and XI00<br />

for the .1 V dc range. The circuit configuration for the 1 V<br />

dc Offset Error Measurement is shown in Figure 8-7. A DC<br />

Preamp gain of XI 0 is selected by FET switch A IOQ:! 1.<br />

Figure 8-8 shows the circuit configuration For making the<br />

. E V dc Offset Error Measurement. In this case, the feed-<br />

back path for the DC Preamp is through Amplifier A1 0U3,<br />

which has unity gain, FET switch Q27, the precision I O-to-<br />

1 divider(AllR7 and AllR8)snd FET switch A10018 for<br />

a gain of 100. The resultant measurements arc storcd by t hc<br />

main conlroller to correct measurements made on the .I Y<br />

dc and t V dc ranges.<br />

8-26. 100 V dc and 1OOO Y dc lnput Offset Error Measure-<br />

ment, On the 100 V dc and 1000 V dc ranges the input of<br />

the operational attenuator is grounded through a 1100 kil-<br />

ohm resist or by relay AOOK6 and FET switch A10Q34 (see<br />

Figure 8.9). On the 100 Y dc range, the feedback of the<br />

operational attcnuator is seIccted by FET switch kt OQ35<br />

(attenuation of 10-10-1). The output of the operational<br />

attenuator is applied ro the input of the DC Preamp<br />

through FFT switch A30Q15. Attenuamr feedback on the<br />

IOOQ V dc range is selected by FET switch AIOQ39 (atten-<br />

uation of 100 ro 1) and is applied to the DC Prcamp input<br />

through FET switch A10Q16. DC Preamp gain is XI for<br />

both crror measuremenls.<br />

8-27. 10 V dc Gain Error Measurement. On the 10 V dc<br />

range the gain error measurement is made by applying the<br />

internal reference voltage (+ 10 V dc), through a 100 kil-<br />

ohm resistor and FET switch klOQ4, to the input of the<br />

DC Preamp {see Figure 8-10). A DC Preamp gain of X 1 is<br />

selected by FET switch AI OQ 19. The measurement result<br />

is stored by the main controller as the 10 V dc full scale<br />

conslant.<br />

8-28. .f V dc and 1 V dc Gain Error Measurement. On the<br />

1 Y dc range, thc reference voltage is applied to the DC Pre-<br />

amp input through the precision ten-to-one divider (A1 I R7<br />

and R8) by FET switches A1 OQ3 1 and A3 OQ 1 6 (see Figure<br />

8-1 1). phc lower end oS the ten-tmone divider is held at<br />

virtual ground by closing FET switch A10Q38. Output of<br />

the ten-to-one divider is 1 V dc. A DC Preamp gain of XI0<br />

is selected by FET switch A1 OQ2 1. The measurement result<br />

is stored by the main controller as the 1 V dc full scale<br />

constant.<br />

8-29. A separate gain error measurement is not made for<br />

the .1 V dc range. Since the only difference between the<br />

I V dc and .I V dc circuit configlrration is a precise gain of<br />

ten, the .I V dc gain crror constant is computcd by thc<br />

main controller.<br />

1<br />

1 I<br />

Figure 88. .f V dc: Input Offlet Error Measurement.


Section Vlll THEORY OF OPERATION Model 3455A<br />

8a. 1 V dc Reference Mfset Error Measurement Since separate offset Error measurement is made to include any<br />

the 1 V dc full scale rcferencc was derived by dividing the offsets present in the ten-to-one divider and associated<br />

internal reference by the precision ten-to-one divider, a circuitry. Figure 8-1 2 illustrates the circuit configuration<br />

8-6<br />

Figure 8-9. 100 V dc and 1000 V dc Input Offset Error<br />

Measurement.<br />

ATTWTW<br />

Figure 8-10. 10 V dc Gain Error Measurement,


Model 3455A THEORY OF OPERATION Section VIII<br />

for the 1 V dc Refcrcncc ~cfset Error Measurement. The<br />

input of the DC Preamp is grounded through the ten-to-one<br />

8-31. 100 V de and 1000 V dc Gain Error Measumment.<br />

Figure X- 13 shows the circuit arrangement ror making tlw<br />

divider by FET switch A10Q16. Prcamp gain is X10. 100 V dc gain error measurement. Thc reference voltagc is<br />

I<br />

I<br />

I<br />

W T<br />

HI<br />

LO<br />

VIRTUAL GROUND<br />

V1 ATZIAL GROUND<br />

Figum 8-1 1. .1 V dc and 1 V dc Gain Error Measurement.<br />

Figure 8-12. 1 V dc Reference Offset Error Measurement.<br />

8-7


Section VllI THEORY OF OPERAT~QN Model 3455A<br />

connected to the input of the operational attenuator is connected to the DC Prcamp input by FET switch<br />

throughFETswitchA30Q33andrelayAIOK6.Theattcnu- A10Q15.ADCprearnpgainolXlOisselectedbyFET<br />

ator is set to a gain oh 0.1 (10 to I attenuation) by FET swizch A1 OQ2 I. The measurement result is stored by the<br />

switch A10Q35. The output of the operational attenuator main controller as the 100 V dc gain error constant.<br />

Figure 8-13. f 00 Y dc and 1000 Y dc Gain Error Measurement.


Model 3455A f HEORX OF OPERATION Sect ion YIlE<br />

8-22. A separate gain error measurement is not made for<br />

the EOOO V dc range. Since the only difference between<br />

the 100 Y dc and 1000 V dc circuit configuration is a<br />

precise attenuation difference of 10, the 1000 Y dc gain<br />

error constant is computed by the main controller.<br />

8-33. 100 V dc Reference Offset Error Measurement.<br />

Since the reference voltage for the 100 Y dc range is<br />

divided by the operational attenuator; a separate offset<br />

error measurement is made to include any offsets which<br />

might be associated with the attenuator and FET switches<br />

used. Figure 8- 14 illustrates the circuit configuration for<br />

this measurement.<br />

8-34. AUTO-CALIBRATIO N - OHMS.<br />

8-35. General,<br />

836. During the ohms function the ohms converter sup-<br />

plies a current through both the unknown resistance and<br />

the reference resistance (see Figure 8-15). Since the same<br />

current flows through both resistors, their respective volt-<br />

age drops are proportional. As with the DC Auto-Cal<br />

sequence, the affset errors are measured and subtracted<br />

from the unknown and reference resistance measurements.<br />

The voltage developed across the unknown resistor is mea-<br />

sured by closing S1 while the reference voltage, developed<br />

across the reference resistor, is measured by closing S2. The<br />

value of the unknown resistance is computed by the main<br />

coot roller. An equation describing this computation is:<br />

VIRTUAL GROUND<br />

figure 8-1 5. Basic Ohms Measurement Diagram.<br />

where Rx is the unknown resistance value, V& is the volt-<br />

age drop across the unknown resistance, VR ref. is the volt-<br />

age drop across the reference resistance, Eo is the input<br />

offset enor, C 1 and G2 are the circuit gains of the particu-<br />

lar measurements, and Rr is the range factor. This equation<br />

simplifies to:<br />

037. Circuit Desription,<br />

8-38. .1 kS1, 1 kn. 1 MR Offset Error Measurements. The<br />

offset error constants dcrived for the .I V dc and 1 V dc<br />

ranges are also used for the .1 kKt, 1 kf2, and 1 MR offset<br />

error constants, since the circuit configurations are the<br />

same. Refer to Paragraph 8-25 for a description of these<br />

offset error measurements.<br />

8-39. 10 kR, 100 kS2, 10 MKl Offmr Error Measurements.<br />

Two additional offset measurements arc made to compen-<br />

sate for errors which might he present when making mea-<br />

surements on the 10 k!2, 100 k52, or 10 MR ranges. Figure<br />

111144531<br />

Figurs 8-76. 10 kfl, 100 kR, '10 Msl m et Ermr Measurement.<br />

8-9


Section VlII f HEORY OF OPERATION Model 3455A<br />

Note 1: VOLTAGE LlMlfEDTO5V.<br />

8-1 6 illustrates the circuit conQuration for these measure-<br />

ments. The DC Preamp input is grounded through a 100 ki2<br />

resistor by FET switch A10Q2. The feedback path for the<br />

X2 gain is through FET switches A10Q22 and A10Q21.<br />

Feedback for X20 gain is through A10Q22. isolation amp-<br />

lifier A 10U3, switch A10Q27, the precision 10-to- l divider<br />

and switch A10Q18. A separatc measurement is made for<br />

both gains and the results are stored by the main controller.<br />

8-40, .1 kS2, 1 kLl, 10 kf2 Referenea Measurements. The<br />

ohms reference voltage is developed across the reference<br />

resistance. On the .I kn through 10 kn ranges the refer-<br />

ence resistance is 1 kS2 (see Figure 8-17). The .7 mA<br />

current source is connected to the 1 kLl reference through<br />

relay A10K7. The 999 kS2 reference resistor is shorted<br />

by the cornbinat ion of relay A1 OK7 and A 1 0K8. The refcr-<br />

encc voltsge is applied to the DC Preamp input through<br />

8-10<br />

IMWY FRCmt<br />

M: PREMP<br />

Ym-B-.,7,<br />

Figure 8-17. Ohms Referenw hrtsssuremant.<br />

Figure 8-1 B. Simplified A/D Converter Diagram.<br />

FET switch AIOQ13. The reference is measured prior to<br />

each measurement or the unknown resistance.<br />

8-41. 100 kD, 1 MR. 10 Mil Referanee Measurements. On<br />

the 100 PrSl rangc, A1 OK7 is opened and the .7 mA current<br />

source is applied to the combination of R1 and R5 (I M51).<br />

The reference voltage developed across RI and R5 is ap-<br />

plied to the DC Preamp input through FET switch<br />

A10Q14. On the 1 Ma and lOMR ranges, relay AIOK8 is<br />

opened and the .7 CIA current source is applied to the 1 MR<br />

reference resistance. The reference voltage is applied to<br />

the DC Preamp input through A 10Q 14.<br />

842. AUTO CALIBRATION-A/D COMVERTER.<br />

8-43. Two Auto-Cal measurements are made to correct<br />

errors which might be generated in the AID Converter. One<br />

m s<br />

T[! ' WaRO rnTROLLER


Model 3455A THEORY OF OPERATION Section VEIl<br />

measurement is made to correct for offsets. The second<br />

measurement is made to correct for any difference between<br />

the plus and minus "run-down" current references.<br />

8-44. Circuit Description.<br />

8-45. Offset Error Measurement. Figure 8-18 shows a<br />

simplified schematic of the AID Converter. During the<br />

offset error measurement all input switches to the inte-<br />

grator are opened. During the integration period, thc inte-<br />

grator is permitted to charge to a voltage equal to any off-<br />

set current present in the integrator circuit. At the end of<br />

the integration period the integrator is "tun-down" and<br />

the offset digitized and stored as the AID Convener offset<br />

error by the main controller.<br />

exprcssion describin the measurement of an m s level is<br />

V output = 4~' which states that the output voltage<br />

(Vo) is equal to the square root of the average of the absolute<br />

value of the input voltage (Vin) squared. ?'he circuitry<br />

used in the rrns converter solves for the expression<br />

which is identical to J v r<br />

8-50. Circuit Description.<br />

8-51. AC Input Attenuator. The input attenuator of the<br />

rrns converter is an RC circuit which provides a fked<br />

attenuation of 100-to-I on the 100 V ac and 1000 Y ac<br />

ranges. Attenuator switching is performed by reed relays<br />

which are controlled by the inguard controller.<br />

8-46, Currant Ratio Meamremam During the current<br />

ratlo measurement the plus and minus references are<br />

8-52. Input Amplifier. An operational amplifier with fyred<br />

gains of xl and x0.1 is used as the input amplifier. The<br />

combination of amplifier gain and input attenuation are<br />

applied to the input of the integrator through diode switch used to maintain a fulbscale output of 1 V rrns from the<br />

iJ 1 d and U2d. The references ate switched at a 1 millisecond<br />

rate during tlrc integration period ( 1 33 milliinput<br />

amplifier. Table 8- 1 shows the input attenuation and<br />

amplifier gain combinations used on each range.<br />

secondsl. At the end of the inte~ration period. the accumulated<br />

ciarge on the integrator i; "run-&wn" digitized and<br />

stored as the current ratio constant. The purpose of this<br />

measurement is to correct for any imbalance hetween the<br />

posimive and negative current references.<br />

847. TRUE RMS AC CONVERTER.<br />

Voltage<br />

Range<br />

Figure 8-19. Simplified True RMS &nvener.<br />

Table 8-7. AC Converter Ranging.<br />

Input<br />

Attenuation<br />

Factor<br />

Amplifier<br />

Gain<br />

1 V<br />

1<br />

1 1<br />

8-48. General.<br />

10 V<br />

100 V<br />

1<br />

.01<br />

0-1<br />

1<br />

0.1<br />

0.01<br />

8-49. The rms converter uses operational circuitry, rather<br />

loO0Y .01 0.1 0.001<br />

than a thermal element. to convert the ac signal to a dc<br />

IeveI equivalent to the rms value of the input signal. Use of<br />

the operational rms converter perrnits faster ac measure.<br />

ment rates. The frequency range of the true rrns converter<br />

is 30 Hz to 1 MHz during normal operation and 300 Hz to<br />

1 MHz during fast ACY operation. Full scale output of the<br />

rms converter is 6.6667 V dc. Figure 8-19 is a simplified<br />

schematic of the true rrns converter. The mathemaiical<br />

8-53. Abwluze Value Amplifier. The absolute value arnplb<br />

fier, as the name implies, solves for the absolute value of<br />

the signal input to it. The operation of this circuit is similar<br />

to a full wave rectifier. Tha! is the negative portion of the<br />

signal is inverted and combined with the positive portion.<br />

The resultant positive signal is applied to the input of the<br />

squaring amplifier.<br />

Total<br />

Gain<br />

8-1 1<br />

I


Section YIIJ THEORY OF OPERATION Model 3455.4<br />

8-54. Squaring Amplifier. The squaring amplifier is a log<br />

ampIifier circuit which takes the log of the input voltage. or<br />

in this case since there are two transistors (Q9A and Ql IA)<br />

in the feedback loop, takes twice the log of the input<br />

voltage. Therefore, the out ut of the squaring amplifier is<br />

equal to 2 log, IV in I or log 7 V in 1'.<br />

8-55, Square Root and Averaging Amplifier. The square<br />

root amplifier reverses the action of squaring amplifier.<br />

The input to the amplikr is through logging transistors<br />

Q11B and Q9B. Output ofthe quare root am lifier js<br />

equivalent to 1 /2 log I v in I ' or log dd. The<br />

operations of the square root arnpIifier and the averaging<br />

amplifier are simultaneous and inter-dependent. The com-<br />

bined output of the two circuits is a dc level proportional<br />

to the rms value of the input signal.<br />

8-56. AVERAGE RESPONDING AC CONVERTER<br />

(Option 001).<br />

8-57. Genenl.<br />

8-58. The werage ac converter is an average responding cir-<br />

cuit calibrated to the ms value of a sinusoidal input. Full<br />

scale output of the converter is 6.6667 V dc for all ranges.<br />

Figure 8-20 shows a simplified schematic of the converter.<br />

8-59. Circuit Description.<br />

8-60. kC Input Attenuator. The ac input attenuator is an<br />

RC circuit which provides a Fmed attenuation of 100.to-1<br />

on the 100 V ac and 1000 V ac ranges. Attenuator switch-<br />

ing is done by reed relays which are controlled by the<br />

inguard controller. Input resistance of the AC Converter is<br />

approximately 2 megohms.<br />

8-12<br />

lWt<br />

4lTNUAtQT<br />

K1<br />

FlLlER<br />

AWLIFIEU<br />

05<br />

Figure 8-20. Simplified Average Responding AC Converter.<br />

8-61. Converter Amplifier. The converter amplifier uses a<br />

dual FET input stage to maintain a high input impedance.<br />

An operational amplifier provides the necessary gain to<br />

drive the output stage of the converter amplifier. The out-<br />

put stage of the amplifier is a current driver circuit. Two ac<br />

fcedback paths provide fmed gains of 1 or 0.1. An integrat-<br />

ing amplifier (U43 is used to maintain a dc level of 0 V dc at<br />

the output of the Converter Amplifier. The integrating<br />

amplifier also determines the low frequency cutaff point<br />

of the Converter Amplifier. (The cut-off frequency is ap-<br />

proximately 300 112 on the FAST ACV mode and 30 Hz on<br />

the ACV mode.) A diode protection circuit is used to limit<br />

the output of the Converter Amplifier to approximately<br />

f 6 V peak to prevent saturation of the amplifier.<br />

8-62. AC Ranging. AC ranging is accomplished by attenu-<br />

ating the input signal and changing the gain of the converter<br />

amplifier. The input attenuator provides a fixed attenuation<br />

of 100 to 1. The Converter Amplifier has fixed gains of 1<br />

or 0.1. Table 8-1 shows the various combinations of amp-<br />

lifier gain and input attenuation necessary for the input<br />

vottage ranging. Full scale output of the Converter Amp-<br />

lifier is approximately J volt rms for d ranges.<br />

863. Rectifier and Filter Amplifier. The output of the<br />

Converter Amplifier is applied to a rectifier circuit which<br />

produces both a positive going and a negative going halfwave<br />

rectified signal output (see Figure 8-20). The rectified<br />

signals are summed to provide ac feedback for the Converter<br />

Amplifier. The Filter Amplifier has a f~ed gain of<br />

approximately 6.6. The feedback circuitry of the Filter<br />

Amplifier provides one pole of fdtering. The output of the<br />

Filter Amplifier is applied to a one pole RC filter network<br />

for FAST ACV operation and a two pole RC filter network<br />

for ACV operat ion.<br />

moc<br />

PREAMP


Model 3455A THEORY OF OPERATION Section VIII<br />

8-64. Output Buffer Amplifier. An OperationaI Amplifier 8-68. Circuit Description.<br />

with unity gain is used to isolate the output of the AC Con-<br />

verter. Full scale output of the AC Converter is + 6.6667 V 849. Ohms Converter Power Supply. An inverter circuit<br />

dc for all ranges. is used to derive power for the ohms converter. The inverter<br />

operates at a frequency of 30.72 kHz on 60 Hz operation<br />

8-65. OHMS CONVERTER. or 25.6 kHz on 50 Hz operation. Transformers A1 OT 1 and<br />

A1 2T1 provide complete isolation of the ohms converter.<br />

8-66. General.<br />

8-67. The Ohms Converter is a voltage limited current<br />

source which supplies a constant current through the<br />

unknown and reference resistors unti1 the output voltage<br />

reaches approximately 4.75 volts dc. At this point the con-<br />

verter becomes a constant voltage source. During the cur-<br />

rent mode of operation the converter supplies a constant<br />

current of .7 mA on the 100 ohm through 100 kiloh<br />

ranges or .7 microamps on the t and 10 rnegohm ranges.<br />

The converter becomes a constant voltage source wlren<br />

measurhg resistance greater than 5.8 kilohm on the 10 and<br />

100 kilohm ranges and greater than 5.8 megohm on the 10<br />

megohm range. Since the same current flows through both<br />

the unknown resistance and the reference resistance, the<br />

voltage drops across them are directly proportional. The<br />

unknown resistance vakue is the ratio of the voltage drop<br />

across the unknown resistance times circuit gain to the<br />

voltage drop across the reference resistance times circuit<br />

gain multiplied by the range constant; or<br />

8-70. Current Source. Figure 8-2 1 shows a simplified sche-<br />

matic of the current source used in the ohms converter. The<br />

circuit is designed to provide an output current of .7 mA or<br />

.7 PA. Output current is determined by resistors R3, R5,<br />

and R6. During the -7 mA mode of operation, (100 ohm<br />

through 100 kilohm ranges) relay K8 shorts resistor R3.<br />

The output current is then determined by R6 and is equal<br />

to the reference voltage (+ 6.7, V) divided by the resistance<br />

of R6. or I. = 6.218.87 K = -7 mA, During the .7 pA mode<br />

of operation, (I rnegol~rn and 10 megohm ranges) hoth K7<br />

and K8 are open. Resistors RS and Rtl form a divider which<br />

divides the + 6.2 V reference to + .7 V. The output current<br />

is now determined by the .7 V across R3 or lo = .7 V/1 M<br />

= .7 pA. Operational Amplifier UI drives output transistor<br />

Q4 and provides the gain necessary to maintain the proper<br />

output current. Rclay K7 is used to select a reference<br />

resistance of 1 kilohm for the .I kilohm through 10 kilohm<br />

ranges or 1 megohm for the 100 kilohm through 10<br />

megohm ranges. Both the reference resistance and the<br />

unknown resistance are in the Feedback circuit of the<br />

operat ionaI amplifier.


Section YIIl f HEORY OF OPERATION Model 3455A<br />

8-71. Voltage Limit. Figure 8-22 shows a simplified schematic<br />

of the voltage limit circuit used in the ohms converter.<br />

During the current mode of operation the noninverting<br />

input of U2 is positive, as referenced to ohms<br />

ground. In this mode the positive output of U2 is blocked<br />

by CR14, making the voltage limit circuit inoperative. As<br />

the resistance of Rx is increased the collector voltage of Q4<br />

becomes more negative. This change is coupled to [he noninverting<br />

input of U2 through the voltage divider composed<br />

of R14 and R23. AS the input of U2 approaches 0 V the<br />

output reverses polarity and forward biases CR14. At this<br />

point U2 takes control of output transistor 44 and maintains<br />

a constant voltage of approximately - 4.7 V dc at the<br />

collector. During the time the ohms converter is in the voltage<br />

limit mode, transistor Q3 supplies the feedback neces<br />

sary lo balance the current source circuit (see Figure 8-2 I).<br />

The converter operates as a voltage wurce when measuring<br />

resistances greater than 5.8 kilohn~ on the 100 ohm through<br />

100 kilohrn ranges and greater than 5.8 megohm on the Y<br />

megohrn and 10 megohm ranges.<br />

8-72. Overload Protection. The ohms converter is pro-<br />

tected from the accidential application of high valtagc to<br />

the nhms terminals by diodes CR1, CR2,CRI I and CK12.<br />

These diodes provide a current path tllrough R23 and the<br />

ohms reference resistance to dissipate the applied voltage.:<br />

High voltage diode CR8 prevents current flow t hmugh Q4<br />

when a ncgative voltage is applied to the "High" ohms<br />

terminal. High voltage transistor Q4 is biased off to pre-<br />

vent current tlow when a positive voltage is applied.<br />

8-73, DC PREAMPLIFIER.<br />

8-75. The DC Preamplifier provides the necessary isolation<br />

and amplificiation of signals from the dc input, ac or ohms<br />

converter, and Auto Cal circuits for use in the A-to-D Con-<br />

verter. The DC Preamplifier is designed to provide high<br />

input impedance and lincar gain characteristics.<br />

Figufe 8-22. Ohms Con lverfer Voltage Limit.<br />

8-76. Circuit Description.<br />

8-77. Input Circuit. A dual FET (Q17) is used as the input<br />

to the DC PreampIifier to provide high input impedance.<br />

The sources of Q23 are driven by a currcnt source (Q24) to<br />

maintain Iinear circuit operation. Operational amplifier 1112<br />

provides thc gain necessary to drive the output circuit of<br />

the preamplifier.<br />

8-78. Output Circuit. The output circuit of the DC Prc-<br />

amplifier consists of an amplifier (Q7 and Q8) and a current<br />

source (Q 12). Operation of the output amplifier is similar<br />

to that of an inverting operational amplifier with a gain of<br />

approximately 30 (see Figure 8-23). The amplifier controls<br />

thc output by shunting current from thc current source.<br />

The out put circuit drives the DC Preamplifier feedback cir-<br />

cuitry and the AID Converter.<br />

8-79. Feedback Circuit. The feedback circuitry for the DC<br />

Preamplifier consists of two 1 O-to- 1 resistive dividers, a<br />

buffer amplifier, and FET switches. Figure 8-24 shows a<br />

simplified schematic of the feedback circuitry and lists the<br />

various switch closures necessary for the particular pre-<br />

amplifier gains, Buffer Amplifier U3 is a precision XI Amp.<br />

lifier used to isolate the output divider from the precision<br />

10-to-1 divider.<br />

8-80. Overload Protection. The preamplifier circuit is pro-<br />

tected from saturation by diodes CR4 and CRS. These<br />

diodes limit the voltagc difference between the drains of<br />

Q17. The output of the preamplifier is limited to approxi-<br />

mately 2 17 V by Zener diode CR7 and diode CR6 clamp-<br />

ing thc output stage of U2.<br />

8-87. Switch Bias Amplifier. The switch hias amplifier sup-<br />

plies a gate bias voltage for the FET switches to make the<br />

gate-to-source voltage equal to zero during the time the<br />

FET switches are ON. The bias amplifier has a unity gain<br />

and uses an FET input to prevent loading of the input<br />

signaI. Output of the bias amplifier is coupled through 100<br />

ki [ohm reistors to the gates of the input switching FETk.


Model 3455A THEORY OF OPERATION Section VlII<br />

Figure 8-23. Equivalent OC Preamplifier Output Circuit.<br />

Figure 8-24. DC Preamp, Simplified Feedback Circuitw.


Section VIll THEORY OF OPERATION Model 3455A<br />

Figure 8-25. Simpfifid Voltage Referenca Diagram.<br />

8-82. REFERENCE ASSEMBLY.<br />

3-84. The reference awrnbly Tor the 3455A contains the<br />

components and adjustments for the ohms converter refer-<br />

ence resistance, the precision ten-to-one divider, and the<br />

+ 10 V dc reference voltage. The reference assembly is<br />

designed to be removed from the Multimeter for calibration<br />

and contains all adjustments for the DCV and OHMS func-<br />

tions.<br />

8-85. Circuit Description.<br />

8-86. The ohms reference circuit is an adjustable resistive<br />

network which supplies a precise 1 kilohm or 1 rnegohrn<br />

reference. The precision ten-toone divider is an adjustable<br />

resistance divider used to produce the 1 volt reference volt-<br />

a g and a prccise tcn-to-one division for use in the opera-<br />

tional attenuator and DC preamp feedback circuitry. Figure<br />

8-25 shows a simplified diagram of the reference voltage cir-<br />

cuit. The reference for this circuit is a package which con-<br />

tains a rcferencc diodc and hcater plus associated circuilry.<br />

An operational amplifier (U2) provides the necessary gain<br />

to supply a stable + 10 V dc output. Resistors Ra and Rb<br />

fom a voltage divider to provide thc proper feedback for<br />

Figure 8-26. Integrator Output Waveform.<br />

the operational amplifier. These resistors are a Fine-line cir-<br />

cuit contained in an IC package and are composed of the<br />

basic resistances plus padding resistors to match the divider<br />

to the particular reference diode. Resistance R, also<br />

includes a potentiometer which is used as the "fine" adjust-<br />

ment for calibrating the + 10 V dc output. The circuit is<br />

returned to the - 15 volt supply to reduce ground currents.<br />

8-87. ANAL0 G-TO-D IG ITAL CONVERTER (AIDE.<br />

8-89. The 34556 Multimeter uses a multi-dope integration<br />

technique to convert analog input signals to digital information.<br />

This method permits relatively high speed, high accuracy<br />

measurements. The following explanation of the AJD<br />

Converter operation uses t hc inlegrator output waveform<br />

pictured in Figure 8-26. The waveform shown is for a negative<br />

input voltage. For positive inputs the integrator output<br />

would range between 0 and - I0 volts. This waveform can<br />

be divided into three major portions: the integration period<br />

(time Ti), the rundown period (time T23 and the auto-zero<br />

period (time 13). During time TI, the input voltage is integrated<br />

and the most signifjcant digits of the output reading<br />

are determined. During time T2 the input voltage is rcmoved<br />

and [he charge remaining on the integrator capacitor<br />

is used to determine the least significant digits of the<br />

output reading. During time T3, the integrator is revt to<br />

approximately 0 voZts and readied for the next reading. A1<br />

time TI$, thc input voltage frnm the DC Preamp is appIied<br />

to the AID converter and causes the integrator capacitor to<br />

charge (period tcl ). The rate at which the integrator capacitor<br />

chargcs depends upon the amplitude of the input voltage<br />

applied (see Figure 8-27). If thc voltage at the output of<br />

r he integrator reaches plus or minus 10 vul ts the 10 V cornparator<br />

is enabled and intcrrupts the inguard controller.<br />

The controller switches in a reference current opposite in<br />

polarity amount of time (period td) and causes the integrator<br />

to discharge. At the end of period td, the reference<br />

voltage is removed aliowing the integrator to again charge<br />

(period tc). This charge, discharge sequence may he<br />

repeated throughout integration period T 1.<br />

8-90. The period duting which the digital counters are<br />

"counting" occurs during the td cycles. The total number<br />

of *'counts" is therefore dependent upon the number of td


Model 3455A THEORY OF OPERATION Section VlII<br />

I HIGH LEVEL W<br />

I I<br />

Figure 8-27. Integrator Output Waveforms for Different lnput Voltage Levels.<br />

cycles. The number of chargedischarge cycles depends<br />

upon the input voltage applied (as shown in Figure 8-27)<br />

and whether the voltmeter is in the 5 or 6 digit readout<br />

mode, For the 5 digit mode, time Ti, is 1/60 second (1 150<br />

second for 50 Hz operation) and approximately 16 charge-<br />

discharge cycles occur for a full scale input. During 6 digit<br />

operation, time TI is increased to 8/60 second (8150<br />

second for 50 Hz operation), atlowing approximately 127<br />

chargeldischarge cycles to occur for a full scale Input.<br />

8-91. At the end of time TI. the input voltage is removed<br />

and the reference voltage applied. The integrator is quickly<br />

discharged at a fured rate to approximately 0.2 volts<br />

(period tf). During period ts the discharge rate is slowed to<br />

allow accurate zero detection (paint of complete discharge).<br />

This type of run-down permits both speed and accuracy.<br />

The "counts" accumulared during the run-down<br />

per~od (T2) are scaled and added to those made during time<br />

TI for the final measurement.<br />

INPUT FROM<br />

DC PREAMP<br />

SINPUT W T C H W<br />

1 I<br />

-w -IW<br />

8-92. Circuit Description,<br />

883. lnput and Reference Switching. The AD input and<br />

reference switching is cont rolled by the inguard controller.<br />

The input from the DC Preamp is appIicd to the integrator<br />

input through a 19.8 kilohm resistor IRIS) and FET switch<br />

Q3. The integrator charge current due to the input voltage<br />

is established by R15 and Is equal to the input voltage<br />

divided by 19.8 kilohrns. FET switch Q3 is closed thmugti-<br />

out the integration pcriod (time TI, Figure 8-26) and is<br />

open during periods T2 and T3.<br />

8-94. There are four separate current references in the AJD<br />

Converter. Two of these are positive references and are used<br />

when the AID input voItagc is negative. The other two<br />

references are negative references and are used for positive<br />

inputs. In Figure 8-28 the positivc references are shown<br />

above the integrator input line and the negative references<br />

ww-m+aZ-<br />

Figure 8-28. Simplified AID lnput and Reference Switching Diagram.


Section VlIl THEORY OF OPERATION Model 3455A<br />

are below. Both thc positive and negative rcrerences have a<br />

"fast"' discharge rcrerence and,a "slow'" discharge rcfcrcnce.<br />

The fast discharge refcrenccs arc u ~ during d [tie td cycles<br />

of thc integralion period to discharge the intcgrator and are<br />

alw used Ibr the "fast rundown" period (timc tf). The<br />

"Pow" ddlschar~e rcrerences arc used during the "slow rundown"<br />

period (timc ts) only. Diodes arc used 10 switch the<br />

rclerences hrcau~ of their high speed switching ability.<br />

Thc fnllowing description uses the posilivc " faslt -d acharpe"<br />

referencc, consistine, of Ul a. R4, C R2 and U t d, to cxplvln<br />

thc refcrencc switching operation. Except Tor diffcrcnt<br />

input levels tu the nc~ative refercnce swilohcs, uperation of<br />

all reference switching is Idcnr ical,<br />

8-95. During the time thc switch is turned "off', diode<br />

CR2 is forward biascd by approximatdy - 2 V dc on the<br />

cathode. Current flows from the + 211 volt supply through<br />

R4 and CRZ. Under thiscondtlion the voltage at thc anode<br />

of 'U l d is negat iwe (approximately - 1 .S V dc) which revere<br />

biases Uld, holding it off. (The cathodc of Uld is held al<br />

virtual ground by the integrator.) During the "'on" condition,<br />

CFE is revcrse biased by applying approximately<br />

+ 3 V dc to tlie cathode. Diode U Id becomes furward.<br />

biased and allows the current to flow throuph R4 to the<br />

integrator input. The purpse nf diode Ula ts to cornpensate<br />

for the voltagc drop across switching d~odc Uld by<br />

ra~sing the referencc voltage by one diode drop. The reference<br />

currenl is dttermincd hy thc voltage across R4 (1 0 V<br />

dc/lO kilohrns= 1 mA).<br />

886. Integrator. The voltmeter uses a convenlional in te-<br />

grator circuit with 3 dual EET input stage for isolation.<br />

Operational amplifier U3 provides thc gain necessary to<br />

kccp rhc input voltage at 0 V (set Fipurc 8-29).<br />

8-97. Slope Amplifier. Tl~e purposc of thc slopc amplifier<br />

is to increase the spccd of the "auto-zero" functiun and<br />

8-18<br />

-10v -rw<br />

Figure 8-29. Simplified AJD Convener Diagram.<br />

rcduce sensitivity to oflsccs in the zero detect comparator.<br />

Tlte slope amplifier is a convcntiunal non-inverting operattional<br />

amplifier with a gain of 100 and is used todrive lhc<br />

auto-zero c~rcuitry and zero delect comparator. Seniiitiviry<br />

at the output of the intcgratclr is approximately .S millivolts<br />

per count ob output reading.<br />

8-98. Auto-Zem. The purpose of autwr.cro is to reset the<br />

integrator to a known levcl. During this modc of operation<br />

FET switch Q4 is closed. co~nplc!inp thc auto-zero imp<br />

through slopc amplifier U4. Thc tnrepralor capacitor IC7)<br />

is used 3s the auto-zero capacitor and stores a charprc<br />

equal in ampliludc and opposite in polarity to any offsets<br />

in tlie integrator and slope amplifier circuits. This chargc<br />

effectively cancels thc offset errors generated by these<br />

circuits.<br />

8-99. Sam Detect Comparator. The output sipnal of the<br />

zerodctcct cnmparatnr is uscd to determine the polarity of<br />

the output read jne. and which integrator discliargc rcfer-<br />

enccs to apply. The output of this circuit is approximately<br />

+ 5 volts for negative inputs and near 0 volts Tor positive<br />

inputs to the AID Convcrtct.<br />

8-700. Absolute Value Amplifier. As the namc implies. the<br />

absolute value arnplificr is a unity pain circuit which p60duccs<br />

a pt~sirive output for cither a positivc or negative<br />

input. Durlng pos~t ive inputs, the negative output of U5<br />

forward biases transistor 06 allowing it to conduct. For<br />

ncpativc inputs transistor Q6 is biascd off and amptif er U5<br />

conducts throeph diode CRI 2.<br />

8101. 10 walt Detect Amplifier. The purpose of the 10<br />

volt Detect Ampllficr is to detect when the charge on the<br />

integrator has reached plus or minus 10 voIts. This infoma-<br />

tion is used hy tlic inguard controller in determining when<br />

to apply tlie discharge refcrcnces during thc integration pcr-


Mode1 3455A THEORY OF OPERATION Section V111<br />

iod (time TI, Figure 8-26). For inputs less than 10 volts<br />

the output af the 10 volt Detect Amplifier is near 0 volts.<br />

As the input reaches 10 volts the output switches to<br />

approximately + 5 volts.<br />

8-102. 02 volt Detect Amplifier. The purpose of the .2<br />

volt Detect Amplifier is to detect when the integrator has<br />

discharged to approximately .2 volts during period T2<br />

(Figure 8-26). This information is used by the inguard<br />

controller in determining the point to removc the "fast-<br />

discharge" reference and apply the "slow-discharge"<br />

reference.<br />

8-103. INGUARD CONTROLLER.<br />

8- 105. Figure 8-30 shows the basic steps performed by the<br />

inguard controller. The inguard controller receives data con-<br />

taining range, function, and resolution information from<br />

the main controller. This data, containing 36 bits of infor-<br />

mation and a parity bit, is transferred serially at a rate<br />

determined by the main controller. The inguard controller<br />

decodes the information, sets the input and auto-cal<br />

switches to their required states, and selects the appropriate<br />

rangc, function, and sample time for the resolution indi-<br />

cated. During the measurement process, the inguard con-<br />

troller manages the analog-to-digital conversion sequence<br />

and stores the digital equivalent of the AJD input voltage.<br />

8.106. Upon completion of the measurement, the digital<br />

information is transferred from the inguard controller to<br />

Figure 8-30. Simplified lnguard Controller Flowchart.<br />

thc main controller. This information contains the measure-<br />

ment value and polarity plus a parity bit and is transferred<br />

serially at a rate dctcrmincd by the main controller. The<br />

inguard controller is reset to receive more information by a<br />

reset pulse from the main controller,<br />

0-1 07. Circuit Description,<br />

8-108. Transfer Circuit. Figure 8-31 shows a simplified<br />

diagram of the data transfer circuitry betwccn the inguard<br />

and main controllers. The direct control lines, DCQ through<br />

DC3, of the processors are used for communication. The<br />

inguard and main processors are electrically isolated by<br />

optical isolators. Control lines DCq and DC1 are driven by<br />

the main controller. During the inguard to main transfer<br />

mode, Line DCQ is used to indicate when the main control-<br />

ler is ready to receive data. Control Line DCl is used for<br />

the transfer-clock signal during both transfer modes. Con-<br />

trol Lines DC2 and DC3 are driven by the inguard control-<br />

ler. Control Line DC2 is used hy the inguard controller to<br />

indicate whether it is in a "send" or "receive" state. Transi-<br />

Lion from the receive to the send status indicates to the<br />

main controller when the inguard controller is ready to<br />

send data. Control Line DC3 is used by the inguard con-<br />

troller to indicate when it is ready to receive data during<br />

the main-to-inguard t ransfcr mode and to send data during<br />

the inguard to main transfer mode.<br />

8-109. Transfer signals for both data transfer modes are<br />

illustrated in Figure 8-32. During the main controller to<br />

Figure 8-31. Controller Data Transfar Circuit.<br />

8- 19


Section VllE THEO~Y OF OPERATION Model 34S5A<br />

tion, composed of 6 bits of trigger jnformation, 30 bits of<br />

range and function information and a parity bit, to the<br />

inguard controller. The inguard controller transfers 25 bits<br />

of information, composed of E bit of polarity infomat ion,<br />

23 bits af measurement data, and a parity bit, to the main<br />

controller.<br />

8-110. Reset Circuit. The reset line is driven by thc main<br />

controller to reset the inguard controller to the beginning<br />

of its program routine. Figure 8-33 shows n simplified<br />

schematic of the reset circuit. A pulse transformer is used<br />

to clecttically isolate the rcset line between the inguard and<br />

outguard sections of thc voltmeter. The rcset pulse applied<br />

to the preset input of flip-flop U32A sets the "Q" output<br />

high. The high ourput of U32A causes the output of U27B<br />

to go low, The output of U27B sets the "interrupt request"<br />

input of the inguard processor. Upon recciving interrupt<br />

request, the processor stops driving its data Lines (m<br />

through D7f, allowing them to go high and sets the inter-<br />

rupt acknowledge line high. This signal allows the output<br />

of U27C to go low wbkh puts the "start" address on that<br />

processor's data bus. The processor (after reaching its<br />

"start'" address) sets the interrupt acknowledge line low to<br />

remove the output of U27C from the data bus and to reset<br />

the interrupt circuit to its normal state.<br />

Figurtt 8-32. Data Transfer Signals.<br />

8-111. A/D Converter Control Cimim. Figure 8-34<br />

shows thc control circuitry between the inguard processor<br />

inguard controller transfer mode, data is valid during the and the analog-to-digital converter. There are six output<br />

positivc portions of the clock signal and changed during the<br />

negative portions. During the inguard controller to main<br />

controller transfer mode, data is valid during tlie negative<br />

lines from the inguard cantrolIer which control the input,<br />

reference, and auto-xcro switches in the AID Converter.<br />

Each output line controls one of the six switches in the<br />

portions of the clock signal and changed during the positivc<br />

portions. The main controller transfen 37 bits of in formaconverter.<br />

Switching information for thc AID Converter is<br />

set on the processor's data bus (outputs Dfl through D5)<br />

8-20<br />

Figure 8-33. lngusrd Cornroller Reset Circuit.


Model 345SA THEORY OF OPERATION Section VIII<br />

and transferred to the converter through output latch U15. Table 8.2. klD Convemr Switch Control Signal<br />

Table 8-2 describes the purpose of each of the A/D Con- Deseriptimr.<br />

verter switch signals and the "true" state of each. The three<br />

"detect" outputs of the A/D Converter are returned to<br />

"direct control" lines DC4 through DC6 of the processor.<br />

8-112. The "polarity detect" output of the converter is<br />

also applied to the input of the "zero detect'kircuit. The<br />

zero detect circuit is used to detect the end of lthe "siow"<br />

rundown period. At the beginning of the slow run-down<br />

period, the "Q" output of W32B is set to the same state as<br />

the polarity detect signal by a pulse from U14. The inter-<br />

rupt enable signal from the processor is set high to enable<br />

the zero detect circuit. As the charge on the AID Integrator<br />

passes through 0 volts, the polarity detect signal changes<br />

state and causes the output of the zero detect circuit to go cess. Upon completion of the AID Conversion process, the<br />

low. The low output from the zero detect circuit sets the processor sets r he interrupt enable signal low to disable the<br />

processor's interrupt input to stop the AID Conversion pro- zero detect circuit.<br />

1<br />

U28E<br />

S E E<br />

DE-<br />

, Signal<br />

LVlN<br />

LNRS<br />

HPRS<br />

HA2<br />

HPRF<br />

LNRF<br />

Figure! 834. Simplified A/D Converter Control Cirarit.<br />

Description<br />

AID Cenvatter input switch signal<br />

(A14031<br />

Negatlve ~lwdischarge referenea switch signal<br />

(At4bne)<br />

Ponirive slowdischarge referem switch signal<br />

Auto-tern switch signal (A114Q41<br />

Positiva fastdisehsrgs reference switch signal<br />

IA14CR21<br />

Nsgetiw fastdischarge reference witch signal<br />

IA14CR6)<br />

True<br />

Stare<br />

Low<br />

Low<br />

High<br />

High<br />

High<br />

Low


Model 34S5A THEORY OF OPERATION Section VIlI<br />

e. The main controller next checks to see if one of the into them. Ef the buffers are active the controller bypasses<br />

math functions have been selected. The math functions pr* this step.<br />

X-2<br />

vide either a scaled answer (y),<br />

where x is the rneasureg.<br />

The main controller loads the fmal answer in the dip<br />

answer and and ' are values by the Opera*<br />

X -<br />

play buffers and returns to the start of the program.<br />

tor, or a percent error answer I- x loo), where x is<br />

Y<br />

the measurement answer and y is a reference value entered<br />

by the operator. If the math function has been selected, the<br />

main controller computes the math answer.<br />

0.1 18. Circuit Omription.<br />

8-119. ROM Circuit, The main controller uses three<br />

ROM's to store the prbgrarns necessary to control the var-<br />

I. The main controller next checks to see if the HF-IB ious functions and operations of the volt meter. Each ROM<br />

buffers are active (outputting data to the bus). If the HP-EB<br />

buffers are not active, the main cadroller loads the answer<br />

is capable of storing 2048, eight bit "words" of program<br />

information and is divided into two "pages" of 1024 words<br />

Figure 8-36. Simplified Output Circuit.<br />

- HI02<br />

I


Section VIII THEORY OF OPERATION Model 3455A<br />

COMPUTE A<br />

RETURN TO START<br />

3455-&-4580<br />

Figure 8-37. Simplified Main Controller Flowchah<br />

each. Five of the six pages contain the programs necessary<br />

for the normal operation of the voltmeter while the sixth<br />

page contains a rest program to aid in troubleshooting and<br />

to verify proper operation. This test feature is not program-<br />

mable from the front panel. The ROM's are addressed by<br />

the main processor through the program address bus (pro-<br />

cessor outputs PAfl through PA9). The program infoma-<br />

tbn is sent to the processor through the processor data bus<br />

(lines DO through D7). All ROM's receive the address in-<br />

formation. The particular program Information received by<br />

the processor is determined by the program address code,<br />

the page select signal, and which ROM is enabled.<br />

8-120. Figure 8-38 is a schematic of the ROM circuitry.<br />

During normal operation. the test connector $1 is con-<br />

nected as shown. This connection disables the upper page<br />

(test program) or ROM Uf3 and allows ROWS U6 and U7 to<br />

be enabled. Removing the jumper permits only the upper<br />

page (test program) of U8 to be enabled. Connecting the<br />

jumper between ground and the "disable" connection dis-<br />

ables all ROM outputs to aid in testing the main processor.<br />

8-1 2 1 . During normal operation, the ROM*s are enabled in<br />

the Following manner. At turn on, only the lower page of<br />

U8 may be enabled. This is because the normal turn on<br />

state of address line PA10 is low which allows US to be<br />

enabled and "hoIds off' the enable circuitry for ROM's<br />

U6 and U7. To enable ROM's U6 or U7, the following<br />

sequence is used.<br />

a. The code to select the desired ROM and page is set<br />

on data Iines D0 and Dl. Line D0 is used to select the page<br />

and is set high for upper pages and low for lower pages.<br />

Cine DI is used to select the particular ROM and is set high<br />

to select RQM U6 or low to select U7.<br />

b. The device select code to select output YS of U31 is<br />

set on device select lines DSO through DS3.<br />

c. Address line PA1 0 is set high to disable ROM U8 and<br />

allow ROM's W6 and U7 to be addresmd.<br />

d. The REAUIWRITE h e is set high (write).<br />

The above outputs are synchronized by the clock signal.<br />

The combination of the output from the device select<br />

decoder U33 and the WRITE output from the processor<br />

causes a pdse at the clock input of US and sets the Q 1 and<br />

42 outputs to the levels of data lines DQ and Dl (page and<br />

ROM select data). Once U5 is set the processor data lines<br />

(DQ through D7) and REkDlWRITE line are released for<br />

other operations. Address Iine PA10 remains high as long as<br />

ROM U6 or U7 are to be addressed. The output of the<br />

ROM and page selected is then enabled when the Program<br />

Source Gate is set high. To return to the lower page of U8<br />

it is only necessary to set address line PAl@ low.<br />

8-122. At the beginning of an "interrupt sequence" the<br />

processor enables gates U3A and U3B by activating output<br />

Y5 of the device select decoder and setting the READ1


Section VIII THEORY OF OPERATION Model 3455A<br />

b. The Readprite signal enables buffers U34 and U42<br />

to apply the data to the RAM'S I10 lines and is also applicd<br />

to the R/W input of the RAM'S to cnable the write ampli-<br />

fiers. The negative-going pulse from output Y 1 of U41 is<br />

applied to the CE inputs of the RAM'S to enable them to<br />

store the data. Output Y1 of U41 is alse applied to the<br />

"cluck" inputs of U36 and U37 (thmugh U38) to incre-<br />

ment the address code by one upon completion of the<br />

"store"' operat ion.<br />

8-126. The processor "reads" data from the RAM's as<br />

follows.<br />

a. The processor sets 1 hc code necessary lo activate out-<br />

put Y 1 of U4 1 on device select lines DS@ through DS3, and<br />

sets the Readwrite line Fow (read).<br />

b. The Readmrite signal is invertcd by U4F and applied<br />

to the RAM's RJW input to enable ~ hc output buffers. The<br />

ncgativc-going pulse from output Y 1 of U41 is applied to<br />

the CE input of the RAM's to enable their outputs. The<br />

RAM output data is applied to the inputs of buffers U35<br />

and U43 which are enabled by the low output of gate<br />

U46.4.<br />

c. The data is read by the processor on data lincs DQ)<br />

thraugh D7.<br />

d. As with the "stere" sequence. the negative pulse<br />

from output Y 1 of the device select decoder is applied,<br />

through gate U38D, to the "clock" input of counters P136<br />

and U37 to Increment them to thc next address.<br />

Figure 8-38. Main Controlfar RAM Circuit.<br />

8-127. ALU Circuit. The Arithmetic Logic Unit (ALU)<br />

provides added computational capability to the main controller<br />

for computing Auto-Cal constants, measurement<br />

data corrections, and "scale" and VO error'" math functions.<br />

The ALU also provides logic Functions which are used<br />

for certain control operations. rile ALU performs Arithmetic<br />

or Logic operations on two. 22 bit binary numbers in<br />

eight bit segments starting with the eight Icast significant<br />

bits.<br />

8- 128. Figure 8-40 shows a schematic diagram of the ALU<br />

circuit used. The numbers to be entered into the ALU's are<br />

8 bit binary codes and are entered as fotlows:<br />

a. The processor sets the numerical data on data lines<br />

D0 through D7, sets the READ/WRITE line high (write),<br />

and sets the device select lincs DSQ through DS3 to the<br />

code necessary to activate the prclpcr output of device<br />

select decoder U33 (output YI for number "A", Y2 for<br />

number "B").<br />

b. The outputs of the processor and device select<br />

decoder are synchronized by the clock signal.<br />

c. The READPRITE signal enables buffers U34 and<br />

V42 to apply the binary information from the processors<br />

data output lo thc ALU input latches. The information is<br />

set in latches U29 and U3 1 (number "A") or U24 and U25<br />

(number "B") by the signal from device select decoder<br />

u33.<br />

d. The ALU operation instruction is a dbit binary code


Model 3455A THEORY OF OPERATION Section VlIl<br />

Figure 8-40. Main Controller ALU Circuit.<br />

composed of a 4bit instruction code, I bit of mode infor- used to strobe the front panel display. The Interrupt Cirmation<br />

to determine whether the operation is to bc an cuit has been designed so that the lnterrupt Signals arc<br />

arithmetic or logic function, and 1 bit of "carry" informa- assigned priorities. In the event of two or morc SimuItanetion.<br />

e. The operation instruction is entered into the ALU's<br />

in the same manner as the numerical data except, only processor<br />

data lines DQ through D5 are used to output the<br />

data.<br />

ous Interrupt Signals, the one with the highest priority will<br />

be handled lirst. The lip-IB Interrupt is assigned the highcst<br />

priority and will be serviced before Il~e external trigger or<br />

front panel interrupts. The external trigger interrupt is<br />

assigned the second highest prior it y and will be serviced<br />

before the front panel interrupt. All thrcc intcrrupt signals<br />

have priority over the display strobe signal. The turn-on<br />

8*129' The Output the ALU's is read<br />

the Following manner:<br />

the processor in<br />

interrupt occurs only at initial turn-on of the voltmeler.<br />

Figure 84 I is a sehemafs [he Main Controller<br />

Intcrrupt Circuit.<br />

a. The processor sets the READlWRITE line low<br />

(READ) to disable buffers U34 and U42 and sets [he<br />

proper code on device select lines DSQ through DS3 to<br />

activate output Y4 of U33.<br />

b. Output Y4 of U33 enables thc ALU output buffers<br />

U2 1 and U22 and the data is read by the processor on data<br />

lines DO through D7. In the event that a "carry" occurred<br />

during the ALU operation, the carry output (CN + 4) of<br />

U28 is output through gate U l6B lo set F4 of the proces-<br />

for.<br />

8-130. lnterrupt Circuit. The Interrupt Circuit is used to<br />

signal the main processor when the front panel switch data<br />

has been changed, when an external trigger has been<br />

applied, when t l~e HP-IB (Hewlett-Packard Interface Bus)<br />

needs service, or at "turn-on". The lnterrupt Circuit is also<br />

8.137. HP-IB Interrupt. When the HP-IB requires scrvice,<br />

it sets the HI'-IB Interrupt signal high. This signal is applied<br />

to the input of U53B. The output of U53B is applicd to<br />

U47B to disable the front panel interrupt circuit and<br />

through US2A to the interrupt gates which set the procek<br />

sors interrupt input. The HP-IB interrupt input Is also<br />

applied to U46D to set the interrupt address. Upon recog-<br />

nizing the interrupt input, the processor sets the interrupi<br />

enable low, ro remove the interrupt input, and scts the<br />

intcrrupt acknowledge high, to enable address gatcs U47D<br />

and U46D. The address gates set the intcrrupt address on<br />

thc processors data bus. It is possible for both the external<br />

trigger interrupt and the HP-IB intcrrupt to occur simultan-<br />

eously and sel their respective interrupt address code on the<br />

processor data bus. When this occurs, the processor is pro-<br />

grammed to vector to thc HP-IB Intcrrupt address 20 main-


Section VIII THEORY OF OPERATlOfU Model 34554<br />

I I<br />

Figure 8-41. Main Controller Interrupt Circuit.<br />

tain priorities. After accepting the interrupt address, the b. The positivegoing *a1 is applied to the "clock"<br />

processor sets the interrupt acknowledge line low to disable input of U40A to set the Q output low. This signal, applied<br />

address gates W46B and U46D. The processor then services through W47B and U39C, disables the input of U48A to<br />

the HP-I& to clear the interrupt input. prevent premature retriggering.<br />

8-1 32. External Trigger Interrupt. Operation of the Exler-<br />

naI Trigger Interrupt is the same as the HP-IB Interrupt<br />

with the exception of the interrupt address gate activated.<br />

During External Tdgger Interrupt. address gate U44B is<br />

used to set the interrupt address on the processor's data<br />

bus.<br />

4-t 33. Front Panel Interrupt. When the status of the front<br />

panel switches is changed, the switch status interrupt signal<br />

is set high. This removes the "clear" signals from U40 A and<br />

U40B and triggers the monostable mult ivibrator U48A. The<br />

output of the multivibrator is a negative pulse approximately<br />

6 miiliseconds in duration. This ne~ative signal is<br />

applied to intempt gates U55B and U55C to disable the<br />

interrupt input to the main processor. This insures that the<br />

processor is not interrupted by the other interrupt signals<br />

while rhe front pane1 is being serviced. The negative output<br />

of U48A ivlso applied to_the "preset" input of U40B to<br />

set output Q low. Output Q of U40B is applied to U47D to<br />

disable the interrupt address gates and through U39B to set<br />

the inputs of U4TA and U55C high.<br />

8-1 34. As the output of multivibrator U46A returns 'high,<br />

the following occurs:<br />

a. The front panel output latch is set to the new switch<br />

status code.<br />

c. t nterrupt gate USSC is enabicd to set the main pro-<br />

ccssor interrupt input.<br />

8-1 35. Upon recognizing the interrupt signal, fhc main processor<br />

sets the interrupt enable output low to removc the<br />

interrupt signal and sets the interrupt acknowledge signal<br />

high. Thc interrupt acknowledge signal ena'bies gate U47A<br />

which enables thc front panel outpul buffers allowing them<br />

to set the new switch slatus cedc on the processor's data<br />

bus (m through D7).<br />

8- 136. Upon accepting the switch status information, the<br />

processor sets the interrupt acknowledge signal low. This<br />

signal is applied to U47A to disable the rront panel output<br />

buffers and through U39A to the clock input of U40B to<br />

set the Q output high. This rernovcs the disable from PE47D<br />

and applies a disable signal to U55C wd U47A.<br />

8-137. When the lront panel switch is released, the front<br />

pane1 interrupt signal is set low. This resets the trigger<br />

cnable input of U48A and sets the "clear" inputs of U40A<br />

and U40B to return the circuit to its "ready" state.<br />

8-138, Display Strobe Circuit. When no interrupts are pre-<br />

sent, the interrupt circuii is used in the display function of<br />

the voltmeter. Monostahle rnultivibrater U48B Is triggered


Model 345SA THEORY 0 F OPERATIOM Section VIII<br />

I I<br />

Figure 8-42. Simplified Turn-on Interrupt Circuit.<br />

by output Y2 of dwice select decoder U41. The output of<br />

U48B is a negative pulse approximately I millisecond in<br />

duration and is applied to the strobe inputs of the display<br />

driver decoder to enable it. As the output of U4RB returns<br />

high, gate US33 is enabled. The low output of U53B is<br />

applied through U52A to the interrupt gates ra set the pro-<br />

cessor's interrupt input of the procesmr. Upon noting the<br />

interrupt, the processor sets the interrupt enable signal low<br />

to remove the interrupt input and sets the interrupt<br />

acknowledge high to enablc the interrupt gates. Thc pro-<br />

cessor then checks the data bus (DO through D7) for the<br />

interrupt address. In this case all data inputs are high which<br />

the processor recognizes as the display function interrupt<br />

address.<br />

0.139. Turn-On Interrupt. The purpose of the "turn-on"<br />

interrupt is to start the main processor at a known program<br />

address when power is initially applied to the voltmeter.<br />

Figure 8-42 shows a simplified schematic of the turn-on<br />

interrupt circuit. At turn-on. a negative-going pulse is<br />

applied ta thc "preset" input of latch U26B from the RC<br />

network composed-of R3 1 and C19. This sets the *Q" out-<br />

put high and the "Q" output low. The output is applied<br />

to U47C which scrs the interrupt input lo the processor.<br />

The Q output is applied through inverter US to the pro-<br />

cessor data bus (D2 through D7) to set the starting address.<br />

8-140. Upon recognizing the inlempt signal, the processor<br />

reads the start address from the data bus and sets the inter-<br />

rupt acknowledge output low. Thc interrupt acknowledge<br />

signal is applied through inverter U39A to the "clock:<br />

input of U26B. This sets the Q output low and the Q<br />

output high, disabling the turn-on interrupt circuit.<br />

3-14?. HP-18 CIRCUIT.<br />

the integration of instruments, calculators, and computers<br />

into systems. The HP-IB employs a 16-line Bus to inter-<br />

connect up to 15 instruments. Normally, this Bus is a he sole<br />

communication link between the interconnected units.<br />

Each instrument on the Bus is connected in parallel to the<br />

16 Bus lines. Eight of the lines are used to transmit data<br />

while the rernainrng eight lines are used for communicazion<br />

timing (Handshake) and control. Data is transmitted on<br />

the eight data lines as a series of eight-bit characters<br />

("bytes"), Normally, a seven-bit ASCII code is used with<br />

the eighth bit available for a parity check. Data is trans-<br />

ferred by means of an interlocked "handshake" technique<br />

which permits asynchronous communication over a wide<br />

range of data rates. Figure 8-43 illustrates thc HP-IB inter-<br />

Face connections and overall Bus structure. Bus communica-<br />

tion is controlled by thc five genera! interface management<br />

(control) Iines. These lines determine how infomar ion will<br />

be intcrpretzd by devices on the Bus. The data bus (lines<br />

1310 1 through DIO8) is used to transfer information be-<br />

tween devices on the Bus. The three data byte transfer<br />

control (handshake) lines permit synchronization of the<br />

data transfer on the data bus.<br />

8-144, Cireuit Description.<br />

8-f 45. Initial Turn-On, (Refer to the HP-IB Schematic for<br />

the following descriptions.) The interface circuit is initial-<br />

ized by the main controller at "turn-on". After completion<br />

of the turn-on sequence and before the Bus is active the<br />

following conditions exist:<br />

a. The outputs of latches UI t , U19, U20, and U26A are<br />

low.<br />

b. Signal inputs to buffers U15, U16, U17 and U18 are<br />

low.<br />

c. Inputs to interrupt gates W7A and U7C are low caus-<br />

ing the interrupt output (U2A pin 3) to be low (false).<br />

8-143. Thc Hewlett-Packard Interface Bus IMP-IB) is a d. All driver inputs and receiver outputs of Bus Transcarefully<br />

defined instrumentation interface which simplifies ceivers U6, U9 and U 12 are low.


Section VIII THEORY OF OPERATION<br />

I<br />

NOTE<br />

IF is possible for the interface circuit to momen-<br />

tarilv drive the Bus lines bw (true) before the<br />

turn-on sequence has been completed.<br />

8-346. Circuit Response to Bus Commands. The following<br />

descrlpt ion cxplains the Voltmeter interface circuit re-<br />

sponse to command statements received from the HP-IB<br />

(I-lewlett-Packard Interface Bus}. This description is divided<br />

into five parts as follows:<br />

a. Acceptance of the command data.<br />

b. Voltmeter execution of the command.<br />

c. Completion of the "'handshake" sequence.<br />

d. Receive Data.<br />

WIANDSHAKEJ Lina<br />

Monrgmnnt (CONTROL) Llm<br />

Figure 8-43. Interface- Connections and Bus Structure.<br />

The ATN signal is input to the Voltmeter interface circuit<br />

through inverter U3E and is applied to the input of buffer<br />

UI SA and inverter U3B, The low output of U3B disahlcs<br />

qualifier pates U2D, U14B, U14D and U13D and is applied<br />

to U?C to set its output high. The high output of U2C sets<br />

tile enabIe inputs of U13A and W13R. The high output of<br />

U13B is applied to ~hc driver B input of transceiver U9 to<br />

set the NDAC output low (true). This indicates to the<br />

HP-IB controller that the Voltmeter is ready to accept data.<br />

8- 149. After allowing time for the data on the Dl0 lines to<br />

"settle", the HP-IS controller sets the DAV (dala valid) line<br />

law (true). The DAY signal L input to the interface circuit<br />

through transceiver U9 and is applied ro the signal input of<br />

qualifier gate U 1 3A. The high output of U 13A is coupled<br />

through gate U2B and invcrler UlOD to the inputs of<br />

'buffer U15D and interrupt gate U7C. The low (true) outpul<br />

of U3C is appIied to thc input of U2A to set the interrupt<br />

signal to the main processor.<br />

e. Output Data.<br />

8- 150. Upon recognizing the interrupt signal, [he main processor<br />

enables buffers W15 and U16 to read the staius<br />

8-147. Acceptance of the Command Data. The follow- word. In chis case, bit 3 is set, indicating valid data is on the<br />

ing describes the sequence performed by the Voltmeter bus, bit 5 must be set to enable the voltmeter to go to<br />

interface circuit to accept command data. This sequence<br />

remole operation, and bit 6 is set to indicate the message is<br />

applies to all command statements rcceivcd from the a command statement. Thc main processor enables buffers<br />

HP-IB. U17 and U18 to read the data byte.<br />

8- 148. Thc contmIler in chargc of the IU'-IB set.$ the code<br />

of the command data to be transferred on data lines Dl0 l<br />

through Dl08 and sets the ATN (Attention) line low (truc).<br />

8- I5 1. After reading the data byte, the processor sets the<br />

"nrfd" output (1 Ql of latch U 1 1 high (true). The nsfd


Model 34SSA THEORY OF OPERATION Section VIII<br />

signal is applied to the enable input of qualifier gate U 13C<br />

and the drivet A input of bus transceiver U9. Transceiver<br />

U9 drives the NRFD bus tine low (true), indicating the<br />

Voltmeter has accepted the data, The processor next sets<br />

the "ndac" output (60) of latch U11 high (false). The ndac<br />

signal is applied through inverter U lOA no the enable jnput<br />

of U2B and the signal input of Ul3B. The low output of<br />

U13B is applied to the driver B input of transceiver U9 to<br />

disable it and allow the NDAC Bus Iine to go high (false).<br />

8-152. Execution of Command Instructions, After the<br />

command data has been accepted, as previously described,<br />

the main processor deciphers the data to determine the<br />

nature oft he command. This sect ion describes the interface<br />

circuit response to the following Bus commands:<br />

a. "Listen" Command<br />

b. "Unlisten" Cnmmand<br />

c. 'Talk" Command<br />

d. "Untalk" Command<br />

8-1 53. Listen Command. When the processor receives a<br />

listen address from the HP-tB it enables inverter U1 and<br />

reads the address code thc Voltmeter has been set to. This<br />

code is determined by the settings of switch S 1. The pro-<br />

cessor compares this code with the one received to deter-<br />

mine if it has received its listen address. Upon recognizing<br />

the listen address of the Voltmeter, the processor sets the<br />

output (pin 10) of U70 law to turn A2CR2 (listen enunci-<br />

ator) on (see Front Panel Assembly Schematic). The pro-<br />

cessor next sets the "mla" output (4Q) of U11 high (true).<br />

The mla signal is applied, through inverter U8D, to the<br />

input of qualifier gate U2C to maintain its output high. At<br />

this mint the Voltmeter has been addressed to listen and<br />

enabied to receive data messages.<br />

8-754. Unlisten Command. Upon recognizing the "un-<br />

listen" command, the processor sets the output (pin 10) of<br />

latch U70 high to turn A2CR2 (listen enunciator) off (see<br />

Front Panel Assembly Schematic). The processor next sets<br />

the "mla" output (4Q) of latch UI 1 low (false) to return<br />

the interface circuit to the "turn-on" state,<br />

8-155. Talk Command. When the processor receives a<br />

"'talk" address from the HP-IB it enables inverter U1 and<br />

reads the address code the Voltmeter has bccn set to. This<br />

code is determined by the ~ttings of address switch SI.<br />

l%e processor compares this code with the one received<br />

from the HP-IB to determine if it has received its talk<br />

address. Upon recognizing the talk address of the Voltmeter.<br />

the processor sets the output (pin 7) of latch U70<br />

low to turn A2CR3 (taEk enuncaitor) on (see Front Panel<br />

Assembly Schematic). The processor next sets the "dav<br />

req" output (5Q) of latch Ul t high (true). This signal is<br />

applied to the enable input of qualifies gate U14C. At this<br />

point the Voltmeter has been addressed to "talk" and is<br />

awaiting the removal of the ATN signal by the HP-IB<br />

controller before outputting measurement data.<br />

8-158. Untalk Command. Upon recognizing the 'bunk"<br />

command, the processor sets the output (pin 7) of latch<br />

U70 high to turn the "'talk" enunciator (A2CR3) off (see<br />

Front Panel Assembly Schematic). The precessor next sets<br />

the '*dav req"output (50) of latch U11 low (false) to return<br />

the interface circuit to the "turn-on" state.<br />

8-157. Handshake Completion. After all instruments on<br />

the HP-IB have accepted the command data (the NDAC Bus<br />

line has gone high) the HP-113 controller seks DAV high<br />

(data is no longer valid). This sets the receiver D output of<br />

transceiver U9 low. The low output of U4 is applied to the<br />

input of U13A and through inverter Ul OC to the input of<br />

qualifier gate U13C causing its output to go high. The out-<br />

put of UF3C is applied to the signal input of buffer U15C<br />

and to the input of interrupt gate U7A. Tfie low output of<br />

U7A is applied to the input of gale W2A to set the interrupt<br />

slgnal to the processor.<br />

8-158. Upon recognizing the interrupt signal, the processor<br />

enables buffers U 15 and U16 and reads the interrupt code.<br />

In this case bit 4 is set. indicatinn the cornoletion of a data<br />

byte. The processor deternrines tie nature'of the interrupt<br />

and sets the "ndac" output (40) of latch UI I low (true).<br />

The low output of U I I is applied through inverter U I OA to<br />

the inputs of U2B andU13R. If the ATN signal or the mla<br />

signal is true the output of U13B will be set high. The high<br />

output of U13B is applied to the driver B input of tsansceiver<br />

U9 to set the NDAC line low (true). The processor<br />

next sets the "nrfd" output (1 Q) of U I 1 low (false). The<br />

low output of UI 1 is applied 20 the driver A input of U9<br />

to set the NRFD output high (false) and to the input of<br />

U13C to disable it and remove the interrupt signal. This<br />

completes the sequence for accepting and executing command<br />

statements.<br />

&-159. Reeaive Data. Data received from the HP-IB is used<br />

to remotely program the Voltmeter's front panel controls<br />

(range, function, math, etc.). The Voltmeter must havc pre-<br />

viously been addressed te "listen" and set to remote con-<br />

trol before it will respond to program data messages.<br />

8-160. The following paragraphs describe the interface cir-<br />

cuit response to program data messages. The HP-IB control-<br />

ler sets the program information on Bus lines DIO 1 through<br />

DI08. After allowing time for the information to "settle",<br />

the controller sets DAV (data valid) low (true). The DAV<br />

signal sets the receiver D output of transceiver U9 high<br />

(true). The high output of U9 is applied through inverter<br />

U IOC to the input of qualifier gate U 13C to disable it and<br />

to the input of U13A. The output of W 13A is caupled<br />

through gate U2B and inverter UlOD and applied to the<br />

input of buffer UISD and interrupt gate U7C. The low out-<br />

put of U7C is applied to thc input of gate U2A to set the<br />

interrupt output to the main processor.<br />

8- 16 1. Upon recognizing the interrupt signal, the processor<br />

enables buffen U15 and U16 and reads the status word.<br />

After determining the nature of the interrupt, the processor<br />

enables buffers U17 and U18 and reads the program data.<br />

If the processor has read the first byte of program data<br />

(two bytes are required for each program step) it sets a flag


Section VIII THEORY OF OPERATION Model 3455A<br />

and retains the first data byte information. If the processor<br />

has read the second byte of information it stores the com-<br />

posite of the Fint and second bytes and sets the appropriate<br />

output of enunciator latches U65 through U70 low (true)<br />

to light the enunciator pertaining to the program infoma-<br />

tion. The processor next sets the nrfd output (1Q of latch<br />

hll 1 high (true). The output of U 1 1 is applied to the enable<br />

input of qualifier gate UI3C and to the driver A input of<br />

transceiver U9 which sets the NRFD bus line low (true).<br />

The processor next sets the ndac output (6Q) of latch U 1 1<br />

high (false). This signal is applied through inverter UlOA<br />

to the input of qualifier gate U2B to disable it and remove<br />

the interrupt Jgnal to the processor. The ndac signal is also<br />

applied lo thc input of gate U130. The low output of IS133<br />

is applied to the driver B input of transceiver U9 which<br />

stops driving the NDAC bus Iine (allows it to go high). This<br />

indicates to the HP-IB controlter that the Voltmeter has<br />

accepted the data and is ready for more data.<br />

8-162. Sensing that the Voltmeter has accepted the data,<br />

the HP-IB controller sets the DAV line high (data on the<br />

DIO lines is no longer vaIid) and prepares to output the<br />

next data byte. The DAY high signal sets the receiver D<br />

output of transceiver U9 low. The low output of US is<br />

applied to the input of gate U 13A to disable it and through<br />

inverter U1OC to the input of gate U13C. The high output<br />

of U 13C is applied to the signal input of buffer U 1 5C and<br />

to the input of interrupt gate U7A. The low output of U3A<br />

is applied to the input of gate U2A to set the interrupt out-<br />

put to the processor. The processor recognizes the interrupt<br />

signal and enables buffers U15 and U 16 to read the bus<br />

status word.<br />

8-163. Upon determining the nature of the interrupt, the<br />

processor sets the ndac output (6Q) of latch U11 low<br />

(true). The output of U 1 1 is applied through inverter U I QA<br />

to the input of qualifier gate U2B and to the input of gate<br />

U13B. The high output of U13B is applied to the Driver B<br />

input of transceiver U9 which sets the NDAC Bus line low<br />

[true). The processor then sets the nrfd output (la) of<br />

U 1 I low (false). This signal is applied to the driver A input<br />

of U9, which sets the NRFD bus tine high (false), and to<br />

the input of qualifier gate U13C to remove the interrupt<br />

signal. This completes the sequence for accepting one byte<br />

of program data,<br />

8-164. Output DMa. The following paragraphs describe<br />

the sequence Followed by the interface circuit to outpvt<br />

measurement data to the HP-IB. The volmeter must have<br />

previously been addressed to "talk" and the HP-I0 must<br />

NOT be in the command mode before the voltmeter can<br />

output measurement data.<br />

8- 165. When the Voltmeter is addres~d to talk the 'Vav<br />

req" output (5Q) of latch U1 I is set high (true). As the<br />

HPlB exits the command mode (the ATN signal is removed)<br />

and all bus instruments are ready to accept data<br />

(NRFD is high) the output of qualifier gate U14C is set<br />

low. The output of U 14C is applied to the input of buffer<br />

U 16C and the input of interrupt gate U7C. The low output<br />

of U7C is applied to the input of U2A which sets the inter-<br />

rupt output to the processor.<br />

8- 166. Upon recognizing the interrupt signal, the processor<br />

enables buffers U 15 and U 16 to read the status word. After<br />

determining the nature of the interrupt the processor sets<br />

latches U20 and U19 to the code of the first byte of mea-<br />

surement data. The outputs of U19 and U20 are applied to<br />

the driver inputs of transceivers U6 and U 12. The processor<br />

next enables transceivers W6 and U12 to output the mea-<br />

surement data to the EIP-I3 data bus (DIO 1 through D107).<br />

After the measurement data has had time to "settle", the<br />

processor sets the "dav" output (2Q) of latch Ut 1 hiph<br />

(true). The dav signal is applied to the input of qualifier<br />

gate U14A and gate U13D. The high output of U13D is<br />

applied to the driver D input of transceiver U9 which sets<br />

the DAV Bus line low (true). The processor then sets the<br />

dav req output (SQ) of latch Ul I low (false). This signal is<br />

applied to the input of qualifier gate U 14C to disable it and<br />

remove the interrupt signal. When the measurement data<br />

byte has been accepted by the receiving instmment(s) the<br />

NRFD line is set low and the NDAC line is high. The NDAC<br />

signal sets the Receiver B output of transceiver U9 low.<br />

This output is applied to the input of qualifier gate U14B.<br />

The high output of U14B is applied to the input of gate<br />

U14A to enable it. The low output of U14A is applied to<br />

the signal input of U 16D and to the input of interrupt gate<br />

U7C. The Iow output of U7C is applied to the input of<br />

U2A to set the interrupt output to the processor.<br />

8-167. Upon recognizing the interrupt, the processor<br />

enables buffers U16 and U15 and reads the status word.<br />

After determining the nature of the interrupt, the processor<br />

sets the dav req output (5Q) of latch U11 high. The ptoces<br />

sor then sets the dav output (2Q) of U10 low (false). This<br />

signal is applied to the input of gate U13D to remove the<br />

DAV signal from the Bus and to the input of qualifier gate<br />

U14A to remove the interrupt signal. This completes the<br />

output of one data byte. The sequence is repeated until<br />

each byte of measurement data has been output.<br />

8-168. FRONT PANEL OPE RAT1QN.<br />

8-169. Circuit Dsoeription.<br />

8-370. Control Switch= and Ennunciston. Refer to the<br />

Front Panel Assembly Schematic for the following deserip-<br />

tion. Pressing a front panel key sets one of the input lines<br />

to priority encoder U57 low. The output of the encoder is<br />

the octal equivalent of the input line selected that is, the<br />

output when line "17" is set low is 1 1 I, when line "12" is<br />

low the output is 0 10, etc. The encoder aho sets the gate<br />

output (pin 14) low to initiate the processor interrupt cir-<br />

cuit. The outputs of U57 combined with the outputs of<br />

gate U50A and inverter U49A are applied to the inputs of<br />

latch U58. The inputs to U58 make up a code which repre-<br />

sents the key pressed. The interrupt circuit, after a time<br />

delay of approximately 6 ms, sets the clock input (pin 9)


Model 3455A THEORY OF OPERATION Section VIIl<br />

of US8 high to latch the switch code and also sets the ioter-<br />

rupt input to the main processor.<br />

8-1 71. Upon recognizing the interrupt input, the processor<br />

sets the interrupt enable output high to enable buffers US9<br />

and U60 and reads the switch code. This code represents a<br />

vector addresr to the processor. The processor performs the<br />

program routine contained at the address indicated which<br />

includes transferring the new switch data to the inguard<br />

controller and outputting data to the front panel to change<br />

the necessary enunciators.<br />

8.172. The new enunciator data is output to the data bus<br />

(lines DQI through D7) by the main processor and applicd to<br />

the inputs of latches U6S through U70. The new enunciator<br />

code is contained on lines D@ through D5. Lines D6 and D7<br />

are applied to the select inputs of decoder U64 and are used<br />

to determine which output of U& will be set low. Outputs<br />

1Y0 through 1Y3 are enabled by the signal from device<br />

select decoder U41. Outputs 2YQ and 2Y 1 are enabled by<br />

8-173. Display, Measurement data is transferred to the<br />

display one number at a time. The polarity or numerical<br />

data is applicd to the input of latch US4 and the digit (or<br />

position in the display) and decimal in forma tion is applied<br />

to the input of latch U63. The output of device select<br />

decoder U41 is applied to the clock input af US4 and U63<br />

to larch the information. The position infomation is ap-<br />

device seIect decoder U33. The outputs of U64 are activated<br />

by the delayed clock signal from U52F and applied<br />

to the clock inputs of latches U65 through U70. AIL<br />

or~tputs of U64 are high except the one driving the latch<br />

which is to accept the data. The enunciators are lit when<br />

the autput of the latch driving them is set low.<br />

plied to the select and data inputs of US6 to determine the<br />

proper display driver to be activated. The outputs of US6<br />

are applied to the display drivers (Q11 through Q18) and<br />

are enabled by- the signal from U48B (interrupt circuitry).<br />

The display is scanned from left to right one number at a<br />

time.


Model 345514 Section VIII<br />

8-175. The following portions of this manuat contain<br />

information to aid in troubleshooting and repair of the<br />

3455A. This information consists of a General Block<br />

Diagram Theory of Operation, a Preliminary Trouble-<br />

shooting Chcck, and eight Service Groups. An instru-<br />

ment block diagram and schematics are also included in<br />

this section of the manual.<br />

8-177. R d this submion if you wish to become<br />

familiar with the internal operation of the 3455A. Refer<br />

to the simplified block diagram (Figure 8-44) for the<br />

following discussion.<br />

8-178. To understand the basic operation of the 3455A,<br />

the instrument can be divided into two sections. These<br />

sections of the Outguard Section and the Inguard Sec-<br />

tion.<br />

8-180. The Outguard Section consists of most logic cir-<br />

cuits and their power supplies. These circuits function as<br />

the internal main controller, HP-IB interfacing, and<br />

front panel interface of rhe instrument.<br />

8-181, The main controller circuits are used to control<br />

communication between the front panel. HP-IB inter-<br />

face, and the Inguard Section. The controller aIso per-<br />

forms mathematical calculations to correct measurc-<br />

ment data, and to provide instrument scaling or percent<br />

error readings.<br />

8-182. Thc hcart of the main controller circuits is a pro-<br />

cessor (referred to as the nanoprmessor) used in can-<br />

junction with the main controlIer ROMs. The processor<br />

and ROMs are located on the A3 board. The ALUs are<br />

used for calculations and are located on the A1 mother-<br />

board.<br />

8-183. The front panel is used for the manual optration<br />

of the instrument and to display readings. By pressing a<br />

pushbutton on the front panel, the controller receives a<br />

message to do the operation requested by the operator<br />

(DC, AC, etc.). The main controller then sends a<br />

message to the inguard controller to do the operation.<br />

After the operation is completed, the inguard controller<br />

then sends information back to the main controller. The<br />

infomation is then conrertcd and displayed on the<br />

front panel.<br />

8-1 84. The HP-IB circuits are used to communicate bet-<br />

wttn the HP-IB and the instruments main controller.<br />

Information can pass either from the HP-IB to the main


Smion VIIl TROUBLESHOOTIMG Model 3455A<br />

controller ox from the main controller to the HP-IB. Ex-<br />

ample: the main controller receives a message from the<br />

Bus EO read DC. After a reading is taken. the main con-<br />

troller sends the reading to the Bus. It should be noted,<br />

as with the front panel, the bus circuitry can interrupt<br />

the main controller whenever necessary (to clear inter-<br />

face, etc.).<br />

8-1 05. Inguard Section.<br />

8-186. 'The lnguard Smion consists of the measuring<br />

circuitry, a controIler, and power supplies. The main<br />

function of these circuits is to perform Auto-Cal, DC,<br />

AC, and Ohms measurements. These circuits are con-<br />

trdled by an inguard controller, which in turn are par-<br />

tially controlled by t he outguard controIler.<br />

8-187. The circuits used for Auto-Cal and DC<br />

measurements are basically the same. The Auto-Cal<br />

measurements consists mostly of gain and offset<br />

measurements of various op-amps and FETs. The Auto-<br />

Cal function can be turned on or off, as desired by the<br />

operator.<br />

8-188. The following procedure outIines a typical DC<br />

measurement.<br />

a. A DC signal is applied to the input of the 345SA.<br />

This signal may or may not be attenuated by the input<br />

attenuator circuits.<br />

b. The signal is next applied to the Main Amplifier<br />

through the Auto-Cal and Measurement Switching cir-<br />

cuits. After pre-amplifications by the Main Amplifier,<br />

the signal is applied to the A/D convertor (10 V DC far<br />

full scale).<br />

c. The M D convertor changes the analog signal to a<br />

digital signal and sends the digital signal to the inguard<br />

controller. The inguard controller then transfers this in-<br />

formation to the outguard controlIer.<br />

d. The outguard controller processes the information<br />

and displays the reading on the front panel.<br />

8-189. Auto-Cal measurements are taken in the form of<br />

Auto-Car constants and are used to compensate for in-<br />

ternal measurement errors. To help generate the cal con-<br />

stants (gain and offset), stable reference voltages (&<br />

10 V) and stable resistive divider (1 kfl, 100 kn, 900 kn,<br />

and 1 Ma) are used. These circuits are located on the<br />

reference module. The reference voltages are also used<br />

for the operation of the A/D convertor,<br />

8-190. The ohms convertor is used to supply the current<br />

for an ohms measurement and in turn causes a voltage<br />

drop across the unknown resistor. The voltage drop<br />

depends on the value of the unknown resistor and the<br />

range of the instrument. This voltage is measured along<br />

with a voltage drop across a reference resistor, by the<br />

DC circuits of the 345SA. The DC readings are then<br />

converted to digital readings and passed on to the main<br />

controller. The reading is then calculated by the main<br />

controller to an ohms reading to be displayed on the<br />

front panel.<br />

8-191. f he 3455A offers a choice of either a True RMS<br />

or an Average Responding AC Convertor. Both conver-<br />

tors changes an AC voltage to a DC voltage with an -<br />

amplitude of approximately + 6.7 V for a full scale in-<br />

put. This resultant DC voltage is then processed by the<br />

DC circuits, as explained in paragraph 8-188, with the<br />

exception of the DC attentuator circuits. The attenua-<br />

tion is done on the AC convertor board. The main con-<br />

troller receives the digital information from the inguard<br />

controller and is then processed to be displayed as an<br />

AG reading on the front panel. The following is an ex-<br />

planation of the differences between the convertors.<br />

a. True RMS Convertor: The True RMS Convertor<br />

can either be AC or DC coupled. 'Using operational cir-<br />

cuitry, the input voltage to the convertor is changed to a<br />

DC Pwel proportional to the RMS value of the input<br />

voltage.<br />

b. Average Responding Convertor: The Average<br />

Responding Convertor is only AC coupIed. An average<br />

responding circuit calibrated to the RMS value of a<br />

sinasoidal input voltage, is used in this convertor. The<br />

resultant DC outpur of the convertor is a voltage pro-<br />

portiona1 to the average value of the input voltages ab-<br />

solute value.<br />

8-192. The inguard controller controls the operation of<br />

the iaguard section after receiving instructions from the<br />

outguard controller. The inguard circuits being control-<br />

led are used to perform the various measurements.<br />

8-193. For a more detailed explanation of the 34554's<br />

circuitry, refer to the Theory of Operation Section in<br />

this manual (paragraph 8- 10).<br />

8.7 94. PAEL1MtNARY TROUBLESHOOTING CHECK.<br />

8- 1 95. 1RSf RUMERT RALF.SPLITTIHG TECHIYIPUES.<br />

8-1%. Before proceeding to a panicular service group<br />

for troubleshooting the 3455A should be half-spIit . This<br />

is done to determine if the failure is in the inguard or<br />

outguard section of the instrument. The following pro-<br />

cedure can be used.<br />

a. Half-splitting can easily be aceomp!ished with an<br />

InguardJOutguard Service CabIe (part number<br />

03455-61609) and a working 3455A (a second in-<br />

strument) as follows:<br />

1. With each 345519 turned off, disconnect the<br />

AlOW 1 InguardJOutguard cable assembly from<br />

the outguard connector (A 1 J7) on each 3455A.


Model 345SA TROUBLESHOOTING Section VIII<br />

2. Plug the Inguard/Outguard Service Cable<br />

from one instrument's outguard connector (A 157)<br />

to the other instrument's InguardJOutguard cable<br />

assembly (W 1). The instruments are now effec-<br />

tively half-split with one unit's inguatd section<br />

connected to the other unit" sutguard section (see<br />

(Figure 8-45)<br />

3. Turn on the instrument with the active in-<br />

guard section and then turn on the instrument<br />

with the active ounguard section. The display from<br />

the unit with the active outguard should become<br />

energized. If the instrument malfunction has<br />

disappeared, then the portion of the defective in-<br />

strument used (inguard or outguard) is working.<br />

Consequently, if the rnaIFunction remains, the sec-<br />

tion of the defective instrument used is in-<br />

operative.<br />

4. The defective section can be verified by<br />

reversing the Inguard/Outguard Service Cable<br />

and repeating steps I and 3. Make sure the<br />

3455A's are lurned off, when switching connec-<br />

tions. Reversing t he service cable should verify the<br />

defective section of the inoperative 3455A and<br />

also the working section.<br />

NOTE<br />

Moke sure rhe power suppEEes of the in-<br />

operafive 345SA are good.<br />

b. Once is has been determined in what section the<br />

defective is located (Inguard or Outguard), the correct<br />

Service Group can be used for component isolation (see<br />

Paragraph 8-198 60r a summary of the Service Groups).<br />

8-197. If an extra 3455A or an Inguard/Outguard Service<br />

Cable is not available, use the method described in<br />

Service Group H, Figure 8-H-2. This method is not as<br />

complete as the half-split technique.<br />

1 1<br />

Figure 8-45. Inguard-Outguard Cannmtions.<br />

8-1 98, Service Group Summary.<br />

8-199. The following is a summary of the various service<br />

groupsand should be used in conjunction with<br />

Table 8-3.<br />

failures show up as an inoperative front panet "and" a<br />

blank display, at turn on. Use this service group if both<br />

of these symptoms are observed. The turn-on circuitry is<br />

working properly, if there is any indication on the<br />

display and the front panel is operative.<br />

a. Turn-On Circuitry (Service Group A): Turn-on b. Auto-Car and DC Troubleshooting (Service


Section VIII TROUBLESHOOTIUG<br />

.. Ser-<br />

vice<br />

Group B): Use this service group if an OL (overload)<br />

condition is observed at turn-on, or the instrument fails<br />

its self-test (see paragraph 3-6), or the dc mode is in-<br />

operative. A self-test failure is indicated if an integer<br />

number or non integer number is displayed, when the<br />

345SA is in the self-test mode. A display of an integer<br />

number indicates an Auto-Cal failure and if only a non<br />

integer number is displayed, the failure is in the logic<br />

circuits. Use the half-split technique to isolate the in-<br />

guard and outguatd logic sections and go to Service<br />

Group E for the inguard logic troubleshooting and Ser-<br />

rice Group F for the outguard logic troubleshooting.<br />

Tabla 8-3. Semi= Gmp Liting<br />

Model 345SA<br />

Service Group Description Assembly Schematic<br />

A Turn-On Failure5 (Inguard, Outguard) Paragraph 8-A- 1 Al, A10<br />

8<br />

InguardlOutguard Isolation<br />

Outguard Troubleshooting<br />

lnguard Troubleshooting<br />

A 1 0 Board Troubleshooting<br />

A/iD Board Troubleshooting<br />

InguardlOutguard Transfer Tmwbleshooting<br />

Auto-Cal and DC Troubleshooting (Inguard)<br />

Auto-Cal Constants<br />

DC Inoperative<br />

General Noise Paragraph 8-8-30 A 10<br />

DC Noise Paragraph 8-8-32 A1 0 1<br />

C AC Convertor Troubleshooting Paragraph 8-C- 1<br />

True RMS Convertor Servicing Paragraph 84-3 A1 5 3<br />

AC Noise Paragraph 8-C-12 ' A1 5 3<br />

Miscellaneous Troubleshwting Paragraph 8-C-16 A1 5 3<br />

Average Responding AC Convertor Paragraph 8-C-17 A1 3 2<br />

D Ohms Troubleshooting Paragraph 8-0-1 A10, A12 1,4<br />

Ohms Noise Paragraph 8-D-11 AID. A1 2 1,4<br />

E AID Convertor and Inguard Logic Troubleshooting Paragraph 8-E-1 A1Q. A14<br />

AID Convertor Servicing Paragraph 8-E-2 Al0. A14 6, 7<br />

AID Noise Paragraph 8-E-8 A? 4 6<br />

lnguard Logic Troubleshooting Paragraph 84-1 0 A1 O 7<br />

F Outguard Logic Troubleshooting Paragraph 8-F-1<br />

Main Controller Troubleshooting Paragraph 8-F-3<br />

Front Panel Troubleshooting Paragraph 8-F-4<br />

Paragraph 8-F-8<br />

Power Supplies Paragraph 8-G-2 A10 11<br />

Reference Assembly Paragraph 8-G-3 All,A20 5<br />

Turn-Over Errors Paragraph 84-4 A10, A14 f, 5,6<br />

Other Troubleshooting Paragraph 8-6-6 Al.A3,AtO 8,11<br />

H Troubleshooting Diagrams<br />

General Troublashooting Diagrem<br />

Inguard Troubleshooting Diagrams<br />

Outguard Troubleshooting Diagrams<br />

Paragraph 8-H-1<br />

Paragraph 8-H-3<br />

Para~raph 8-H-4<br />

Paragraph 8-H-6<br />

Al, A10<br />

A10<br />

Al<br />

Schematics Figure 8-H-28 All 1 toll c. AC Convertor Tr~ubleshwting (Service Group<br />

C): Use this service group if the ac function is defective.<br />

Before using this service group, however, the instrument<br />

Paragraph 8-A-3<br />

Paragraph 8-A-5<br />

Paragraph 8-A-6<br />

Paragraph 84-8<br />

Paragraph 8-A1 0<br />

Paragraph 8-A-t 2<br />

, Paragraph 8-8-1<br />

Paragraph 8-&3<br />

Paragraph 8-8-1 7<br />

A1 A10<br />

Al, A3<br />

A10, A14<br />

A1 0<br />

A1 0, A14<br />

Al, A10<br />

A10<br />

A10<br />

A1 0 1<br />

8<br />

6.7<br />

5, 8, 7<br />

5. 6<br />

7,8<br />

should operate correctly in the dc function and Auto-<br />

Cal mode.<br />

d. Ohms Troubleshooting (Service Group D): Use<br />

this service group if the ohms function is defective.<br />

Before using this service group, the dc function and the<br />

Auto-Cal mode of thc 34S5A should operate correctly.<br />

e. A/D Convertor and Inguard Logic Trouble<br />

shooting (Service Group E): This sentice group can be<br />

used when it has been determined by the half-split<br />

technique that the inguard section of the instrument is<br />

defective. A faulty AJD Convertor or a faulty inguard<br />

can also be determined by an indication of strange<br />

readings on all functions and ranges. This strvice graup<br />

can also be used if a defective A/D board has been


Model 3455A T ROUBLESHOOTlNG Section VIII<br />

isolated by substituting it with a good A/D board.<br />

I. Outguard Logic Troubleshooting (Service Group<br />

F): This service group should be used if a defective<br />

autguard section has been isolated by the half-split<br />

technique. Helpful hints for the Signature Analysis (SA)<br />

method are mainly given in this group,<br />

g. Miscellaneous Troubleshootifig {Service Group<br />

G): This service group can be used for troubleshooting<br />

power supplies, reference assembly, turn-over errors,<br />

and others. The troubleshooting information in this<br />

group does not fit in the other groups.<br />

h. Troubleshooting Diagrams (Service Group<br />

H): Troubleshooting Diagrams may be used to service<br />

the 345SA in place of the other service groups. This<br />

group also contains a detailed block diagram and all the<br />

schematics of the circuits us4 in the instrument.


Section VIII Model 3455A<br />

0-A-1. TURN-ON CIRCUITRY (IIGUARD AID OUTGUIIRQ).<br />

8-A-2. Turn-On failures will show up as an inoperative front panel and a blank display. Because of<br />

the RAM'S timing, the LED'S which first light up will vary with instruments and also on the same<br />

3455A each time it is powered up. Therefore the front panel wiII usually give no clues to the reason<br />

for any turn-on failures.<br />

8-A-3. Inguard~Outgoard Isolation.<br />

8-A-4. Assuming that the power supplies of the 3455A are good, the Instrument Half Splitting<br />

Technique (paragraph 8-1 76) should be the first step in isolating turn-on Failures. Either the inguard<br />

or the outguard section could hang up the 3455A's turnian sequence. The front panel indication does<br />

not rell where the fault is Iocated . Therefore, the Hal f-Splitt ing Technique should be used to isolate<br />

the fault between inguard or outguard section of the 3455A. If an extra 3455A and an ln-<br />

guard/Outguard Service Cable is not available, the method described in Figure 8-45 may be used.<br />

When it is determined which section of the 3455A is at fault, go no the appropriate troubIeshooting<br />

section in this service group (see paragraph 8-198 and Table 8-31,<br />

0.A-5. Outguard Traubleshaoting (Schematic 81,<br />

a. Check for a clock signal at A3TP5. If no signal exists or the signal level is below 4 V(peak to<br />

peak), then troubleshoat the outguard clock circuit.<br />

b. Add A1C46 (part number 0160-3622) if the 3455A does not have one (schematic 8).<br />

c. Troubleshoot the outguard turn-on circuit (AIUS, U26, and associated components). Check for<br />

a pulse at turn-on, as shown below, which can be seen at U26 pin 9. This pulse connects to inverter<br />

US which holds data lines D2 through D7 low for the duration of the pulse. The processor should<br />

turn on at the trailing edge of that pulse,<br />

p- ISO-~~Q~SEC*<br />

d. Cheek the Nanoprocessor interrupt circuit for correct operation. The IN ENA line should be<br />

held high and the IN REQ line should either toggle from high to low to high, or remain high. If these<br />

conditions do not exist, then troubleshoot the interrupt circuit (AlU46, U47, U53, and US). The<br />

t urn-on circuit (A1 U26) must be working before troubleshooting the interrupt circuit.<br />

e. Using the Signature AnaIysis routines in Figure 8-H-20 to 8-H-27, troubleshoot the outguard<br />

logic. If any difficulty is observed using the signature analysis routines, go to Service Group F,<br />

paragraph 8-F-I for troubleshooting hints.<br />

f. Using the information in Service Group F paragraph 8-F-1, troubleshoot the outguard logic.<br />

8-A-7, The Inguard Mother Board (AIO) and or the AJD Convertor Board (A14) may cause turn-on<br />

failures. To isolate one from another swap a good AID convertor board (A141 with the one in the in-<br />

operative 3455.4. If a known good A14 board is not available, use the one from the 3455A which was<br />

used in half-splitting the instrument.<br />

B-A.B. A1 0 Motherboard 'froebleshaoting FSchsmatic 5, 6, 7t<br />

8-A-9. Use r he following steps in the order they are presented to treubleshoot the Jnguard Mother-<br />

board (A1 0).


Section VIII SERVICE GROUP A Model 3455A<br />

A10U34 and U35, plus associated circuits. Lines F'@ and El transfer data from outguard to Enguard<br />

Ffl is the data transfer line and Fl is the data transfer rate line), while F2 and F3 send data from in-<br />

guard to outguard (F2 is the handshake line and F3 is the data transfer line).<br />

b. HA2 line must bc high, if not, check TPlO.<br />

c. Use the Inguard/Outguard transfer circuit troubleshooting diagram (Figure 8-H-17) for further<br />

troubleshooting.<br />

d. The inguard pow- supply regulators (IOU36 to U39) can also cause transfer problems. The<br />

outguard should power up after the inguard. Check far a slow (more than 260 rnsec) inguard power<br />

supply.


Model 3455A<br />

SERVICE GROUP B<br />

0-0.1. AUTO-CAL AND OC TROUBLESHOOTIMG (INGUARD].<br />

8-B2. All 345SA input signals travel through the main dc amplifier and Auto-Cal circuits. In order<br />

to troubleshoot D.C. and Auto-Cal malfunctions, n good fundamental knowledge of the 3455A's<br />

Auto-Cal and self-rest routines are required.<br />

8-B-3. Auto-Cal Constants.<br />

8-B-4. There are 14 ca1 constants used in the 3455A, which are usually zero and full scale voltage<br />

'"readings". These account for most offsets, gain, and drift of the input op-amps. The "readings"<br />

are taken periodically when the 34554 is in the Auto-Cal mode. A condensed description of all the cal<br />

constants are in Table 8-B-I . If n more detailed description of the cal constants is desired, refer to the<br />

appropriate paragraph in the Theory of Operation section of this manual.<br />

I<br />

----.<br />

0<br />

Tabla 8-8-1. AutwCal Constants<br />

1 V olfaet #2 -XI 0 gain with empllfier Input<br />

t~ed to 10:l div~der. Top of divider<br />

shorted to ground. Input atrenuator at X 1<br />

gain.<br />

1 V gain -XI 0 gain with amplifier tied to<br />

10: 1 divider with 10 V ar the top of the<br />

div~dsr. Input attenuator at X qaln.<br />

Figure 8-0-1 1<br />

Figure 8-0-1 2<br />

Paragraph 8-30<br />

Paragraph 8-28<br />

Section VIII


Section VIII SERVICE GROUP B Model 3455A<br />

8-44<br />

8-E5. When pressing the TEST button of the 3455A, each caF constant is measured. The first cons-<br />

tant measured is constant number 13. If constant 13 is within certain limits (which are internally set)<br />

the 34SSA will automatically measure the next constant. Ef cdnstant 13 is out 06 its limits the self test<br />

operation will stop. A number 13 will be displayed on the front panel of the 3455A. In order to<br />

measure the next cd constant, the TEST button needs to be pressed again. If all the cal constants are<br />

good, a logic check will be performed. The 3455A will then display + .8.8.8.8.8.8.8 when the self-test<br />

operation is completed. After the self-test operation is finished it will automatically start again. To<br />

bring the 3455A out of this loop, any function key other than TEST needs to be pressed.<br />

843-6. When the 3455A is in the self-test mode, and it fails this test, it will stop and display an integer<br />

number. This number is the number of the cal constant that faits. To continue the self-test operation,<br />

press the TEST button again. After all the cal constant measurements are taken, and the 3455A is still<br />

in the self-test mode, another measurement is taken. A dummy cal constant calculation is performed<br />

in the outguard sect ion of the 3455A. If this calculation is correct (answer should be lo), nothing will<br />

be displayed. The instrument will then finish the self-test operation. If the dummy calculation is in-<br />

correct, a non-integer number (e-g., 9.998 or 10.002) will be displayed on the front panel. Again, to<br />

continue the self-test operation the TEST button needs to be pressed.<br />

8-B-7 When the 3455A is used with the HP-IB system and if any of the cal constants; fail, the 3455A<br />

will not output any readings. If only the dummy calculation fails then the dummy calculation answer<br />

will be output on the bus. Ef the 3455A passes its self-test then a 10 will be output on the bus.<br />

8-B-8. The 34558 should not be troubleshoot for Auto-Cal malfunctions in the self-test mode. If any<br />

cal constants fails, including the dummy constant, use the cal constant service procedure (paragraph<br />

8-B-10) for troubleshooting. If only the dummy constant fails try replacing the ALU's (A1 U28,30),<br />

and their associated circuits, in the outguard section (schematic 8). IF the dummy constant still fai Is,<br />

go to the Outguard Troubleshooting Service Group (Service Group F).<br />

Figure B-R-1. Auto-Cal Con~nt #11 (10 V Ofid.<br />

Figurn 8-0-2. ArtmPl Constant # 10 (10 V Gainl.


Model 345SA SERVICE GROUP B Section VTII


Section VIII SERVICE GROUP B Model 3455A<br />

ATTEWTOR<br />

Fi~um 8-0-6. Ruto-CaI Constant #6 (1 000 V O M .<br />

3455-8-*5St


Model 3455A SERVICE GROUP B Section VIII<br />

Figure 8-8-7. Auto-Cal Constant #5 HOO V Gain).<br />

Figure 0-8-8. AutwCal Constant #4 (100 V Offset # lb


Section VIII SERVICE GROUP 0 Model 3455A<br />

Fiqun 0-B.10. Auto-Csl Conmnt #2 11 V Offia # 1).


Model 3455A SERVICE GROUP 0 Section VflI<br />

Figura 8-8.1 1. Auto.Cal Constant #I I1 V Ofht #2).<br />

Figurn 8-8-12. RdwCal Constant #[I If V Gain).


Section VIII SERVICE GROUP B Model 345514<br />

04.9. Auto-Cal Switch Closures. (Schanlatic 1, 5, 8, 7).<br />

843-10. Various tables are included in this service group which can be used as troubleshooting aids<br />

for Auto-Cal failures. Table 8-3-2 shows the closed switches far the measurement of Auto-Cal constant<br />

1 1 to 0. The function of several gates used in the Auto-Cal mode of the instrument are shown in<br />

Table 84-3. To find the switch drive voltage levels for Auto-Cal constants 13 to 0, Table 8-I34<br />

should be used.<br />

0-8-1 1. Cal Constants Sewiea Promdure,<br />

8-B-12. When the 3455A is in the Auto-Cal hode, the instrument measures one or more cal constant<br />

between each sample. The number of cal constants measured depends on the sample rate. In order to<br />

reach a certain cal constant measurement, use the following procedure.<br />

a. Press the DCV and HOLD/MANUAL buttons and then the AUTO CAL button of the 345SA.<br />

The instrument should now be stopped at a certain cal constant.<br />

b. Make sure the 3455A is out of the Auto-CaI made. Press the AUTO CAI, button again, if<br />

necessary (the light in the AUTO CAL button should be off).<br />

c. To Iocate the desired cal constant or to go through the cal constants completely, briefly press the<br />

AUTO CAL button twice to turn Auto-Cal on and off. Each time Auto Cal is turned on and off, the<br />

Auto-Cal circuitry will attempt to decrement through the cal constants from 13 to 0, and the return to<br />

constant 13.<br />

NOTE<br />

The A UrO CA L button should not be pmed on and off too fast or too<br />

slow, because the 3455A may remain in the same cul consrant or advance<br />

past more than one cal constant. A few tries may be necessary to decre-<br />

ment one cal constant step each time.<br />

Table 8-B-2. Auto-Cal Switch Closures.<br />

X - Closed (ON 1


Model 345SA SERVICE GROUP l<br />

Derignator<br />

W<br />

U5<br />

U6<br />

U8<br />

u9<br />

Tnbla 8-B-3, Gsta Function in Auto-td.<br />

Cmtw I<br />

Function<br />

Usrd<br />

Q19 XI Gain<br />

02 1 X10 Gsin<br />

022<br />

X2 Gain<br />

C128.028<br />

Q29,Q3 1, (132<br />

X 1 Buffer<br />

TV Reference<br />

Q36<br />

Q1&<br />

038<br />

034<br />

a35<br />

10: 1 Input to Ground<br />

+ 100 Gain<br />

10: 1 V~ctual Ground<br />

1 00: 1 Attenuator<br />

10: 1 Anenustor<br />

015<br />

10: 1 Attenuaror to Input<br />

Q16<br />

033<br />

100: 1 Attenuator to Input<br />

+ V Reference to Anenumror<br />

034<br />

02<br />

04<br />

bttenuator Input to Ground<br />

Low Voltage Input to Ground<br />

+ Y Raferenca ta Input<br />

Table 1-84. Swhch DMr V~ltags Lsvsla<br />

Pin Test Pin<br />

No. 0 1 2 3 4 5 6 7 8 9 70 fl 72 13 No.<br />

1 (1 a 0 Q -24 -24 -24 -24 0 @ Q Q a Q 1<br />

T ~24 -24 -24 -24 -24 -24 -24 -24 Q -24 .24 -24 -24 2<br />

S L L L L L L L L H H L L L L 5<br />

~ H H H H L L L L H H H H H H 7<br />

Q C C C L H L H H L L L L L L 9<br />

I Q L L L L H C H H L L L L L L 10<br />

13<br />

14<br />

9.5 e.5 4.5 t9.5<br />

-24 -24 -24 -24<br />

-24<br />

Q<br />

+9.5<br />

-24<br />

-24<br />

Q<br />

-24<br />

Q<br />

+9,5 e.5 +9,5<br />

-24 -24 -24<br />

+g,5 +g,5<br />

.24 -24<br />

e.5<br />

-24<br />

13<br />

la<br />

1 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 1<br />

2 24 +24 -24 0 -24 -24 -24 -24 -24 0 -24 -24 -24 -24 2<br />

S L L L H L L L L L H L L L L 5<br />

7 L t L L L C L L L L L L L L 7<br />

S H H H L H H L L H L L L H H 9<br />

1 1 L L L L L L H H L L H H L L fl<br />

13 -24 -24 -24 - 4 -24 -24 Q 0 -24 -24 49.9 01 -24 -24 13<br />

14 +I @ -24 0 +I -24 -24 Q -24 -24 -24 +1 +1 14<br />

1 +I 0 -24 -24 -24 -24 0 -24 -24 -24 -24 -24 +1 +I 1<br />

2 -24 -24 .20 Q -24 -24 -24 -24 -24 0 -24 -24 -24 -24 2<br />

S L L L H L L L L L H L L L L 5<br />

The svmbots Land H refer to fTL lo& I&s where L is < B V dc and H is > 23 V dc.<br />

Section VIII<br />

~ H H L L ~ L H L L L L L H7 H<br />

9 L L L L L L H L L L L L L L 9<br />

1 1 L L L L L L L L L L H L L L 11<br />

13 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 e.9 -24 -24 -24 13<br />

14 -24 -24 -24 .24 -24 .I4 0 '24 -24 -24 -24 -24 -24 -24 14<br />

1 -24<br />

2 -24<br />

-24<br />

D<br />

-24<br />

-24<br />

-24<br />

-24<br />

-24<br />

-24<br />

-24<br />

-24<br />

-24<br />

0<br />

-24 -24 -24 -24 -24 -24 -24<br />

-24 -24 -24 -24 -24 -24 -24<br />

1<br />

2<br />

4 H L H H H H L H H H H H H H 4<br />

7 L L L L L L L L L L L L l - I - 7<br />

S L L L L L L L L L L L L l - I " 9<br />

l<br />

13<br />

14<br />

l & B H H B B &<br />

-24 -24 0 0 .24 -24 -24<br />

24 -24 -24 -24 -24 -24 -24<br />

g<br />

-24<br />

.24<br />

H<br />

Q<br />

-24<br />

H R<br />

-24<br />

-24 -24<br />

H L L<br />

a -24 -24<br />

~24 -24 -24<br />

11<br />

13<br />

14<br />

f -24 -24 -24 -24 Q -1 -24 (1 -24 -24 -24 -24 -24 -24 2<br />

2 -24 -24 +24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24 2<br />

S L L L L L L L L L L L L L L 5<br />

~ L L L L H H L H L L L L L L 7<br />

S H L L L L L L L L L L L H H 9<br />

I t H H H H H H H H H ~ H H H H 11<br />

14 +9.5 -24 -24 -14 -24 -24 -24 -24 -24 -24 -24 -24 ~ . +9.5 5 14<br />

1


Section VlII SERVICE GROUP B Model 3455A<br />

d. To determine which cal constant is measured, connect a high input impedance DVM (10 V<br />

range input impedance > 1010 ohms) to one of the points shewn in Table 8-B-5.<br />

e. By stepping through the cal constants from constant 93 to O and monitoring one of the<br />

points in Table 8-B-5, every cal constant step can be located.<br />

NOTE<br />

The vollegw listed in Table 8-84 are approximate and should only<br />

be used to locote A ulo-Cal constants and for troubleshooting.<br />

8-B-13. By using the cal constants stepping procedure in conjunction with Table 8-B-5, any<br />

one constant step can be located. When using this method and the 3455A is malfunctioning,<br />

or possibly two conditions in Table 8-B4 mag be inoperative. (Example: Readings at<br />

AlOTP4 and TP2 are bad). It is very unlikely, however, that all four conditions are in-<br />

aperat ive. If this should occur, then check the + 10 V reference and/or the inguard logics.<br />

Approximate A 1 OTP4<br />

Voltage<br />

VoltageattheMultiplexer<br />

Mode (Source of A1 0111 I<br />

Voltage at the Junction of<br />

A1 OK6 and A1 OR47<br />

A 1 OTP2 Voltage<br />

8-0-1 4, Switch Closwra Tabla.<br />

Tabls 0-B.5. CaI Constant Monitoring Points.<br />

8-B-15. Most of the switch closures used in the 3455A are listed in Table 8-B-6. This table Iists the<br />

previous closuses dependent on the range, function, and Auto-Cal mode of the 3455A. For<br />

troubleshooting malfunctions of the various aperations of the instrument, this table may be very<br />

helpful.<br />

84-1 6. Auto.Cal Troublashooting [Schsmntie 1, 73.<br />

13 12 11 10 9 8 7 6 5 4 3 2 1 0<br />

@@ 0 10 0 0 0 6 -10 0 0 0 0 1 0<br />

-- -- -- 10 -- -- -- -- -- -- -- *- -- --<br />

-- -- -- -- -- -- -- - 9.9009 - -- -- -- --<br />

-- -- -- -- -- -- -- *- -- -- -- 1 0<br />

8-B-17. Most Auto-CaI failures also show up as de failures and should be repaired first. These<br />

malfunctions usually show up as a failure in the self-test mode of the 3455A. The following arc a cou-<br />

ple of hints to troubleshoot these malfunctions.<br />

a. Set the 345514 to the self-ten mode and find out which cal constants are failing. 'fake the 3455A<br />

out of the self-test mode (press any other function button). Using the cal consltanrs service procedure,<br />

go to the bad cal constant. While refering to the various tables and Figures in this service group,<br />

troubleshoot the bad constant.<br />

1


Func<br />

AC<br />

AC<br />

AC<br />

AC<br />

4C<br />

Range<br />

1<br />

10<br />

1W<br />

lo[)<br />

i<br />

czt<br />

At 10 AC Norm<br />

bC 100 A C . h<br />

DC<br />

M<br />

DC<br />

11. ?<br />

11-3<br />

$1.2<br />

11.2<br />

11.2<br />

L1-2<br />

61 2<br />

11 9<br />

11.2<br />

n-2<br />

11-2<br />

11-2<br />

11.1<br />

11.4<br />

11 4<br />

11 4<br />

11.4<br />

1 11.4<br />

L1.2<br />

11.1<br />

11-4<br />

11.4<br />

11-4<br />

11.4<br />

GAL<br />

CAL<br />

CAL<br />

EAL<br />

CAl<br />

CAC<br />

CAL<br />

CAL<br />

CAL<br />

CAL<br />

CAL<br />

CAL<br />

CAL<br />

CAL<br />

10<br />

1MI<br />

10M)<br />

~<br />

1 K<br />

1 K<br />

t K<br />

1 K<br />

O K<br />

10K<br />

IM)K<br />

1 K<br />

t M<br />

1 M<br />

10M<br />

10M<br />

1K<br />

1 K<br />

1 K<br />

1 I(<br />

]OK<br />

10 K<br />

1 0 K<br />

100 K<br />

1M<br />

1 M<br />

!OM<br />

IOM<br />

Smtchunt,<br />

~ n n ~<br />

krat~m<br />

AC. Fml<br />

AC-Fast<br />

AC-Fare<br />

AC.Fari<br />

AC-No-<br />

DC<br />

DC<br />

OC<br />

Unk<br />

Rsl<br />

Umk<br />

Ref.<br />

Unk<br />

RmI<br />

un~<br />

RPI<br />

Unk.<br />

RCI<br />

Unk<br />

Rat.<br />

Unk<br />

Ref<br />

unh<br />

nei<br />

Unk<br />

Rel<br />

Unk<br />

Rd<br />

Unk<br />

Re7<br />

Unk<br />

RF~<br />

SERVICE GROUP B<br />

Tabb B-B.B. 3455k DYM Switch Clorum.<br />

Nore X lndcnin "Don'? Cart "'<br />

Ocum Cel*ct 3<br />

I<br />

AIUU13<br />

%<br />

? * m i<br />

P:<br />

0 h-<br />

6rne,rr<br />

; ~ a u m o * = a ~ 6 o ~ 5 8Za6i: B g I ~ $<br />

0 1 0 l o o<br />

0 1 1 1 0 0<br />

0 0 0 1 1 0<br />

0 0 1 1 1 0<br />

0 1 0 1 0 1<br />

0 1 1 1 0 1<br />

x k rl8-8- 3<br />

O O K l o o<br />

0 0 % 1 0 0<br />

O O K l o o<br />

O O X 1 0 0<br />

O O x 1 0 0<br />

O O K 1 0 0<br />

1 O I O 1 O O O X l O O<br />

O O t 0 1 0 0 0 0 1 0 0<br />

O O t 0 1 0 0 0 1 1 1 0<br />

T O 1 0 1 . 0<br />

L o 1 0 1 0<br />

1 0 1 0 1 0<br />

1 0 2 0 1 0<br />

a o i o t a<br />

1 0 1 0 1 0<br />

1 0 1 0 1 0<br />

1 0 1 0 1 0<br />

I 0 1 0 1 0<br />

1 0 1 0 1 0<br />

1 0 1 0 1 0<br />

l o t a 1 0<br />

lo<br />

N ~ I ~ P U ~<br />

f t<br />

I Ratlo<br />

iov Ofnor<br />

10V Gun<br />

6V Ofb111 @@@@(X)@<br />

9 V<br />

~ W V<br />

amv<br />

OtReiL1<br />

o f f w * ~ x ~ @@@a@@<br />

ofai @@@@a@<br />

~OOV *n<br />

lWV Qffsm*lXiO<br />

1 v<br />

1 ~<br />

OII*I<br />

ofhsrm @@@a@@<br />

1Y Oflrelm<br />

1 V Gwn<br />

@<br />

~~~~g~<br />

e r . $ & z<br />

r<br />

1<br />

1 1 x 1 0 0 0<br />

1 1 x 1 0 0 0<br />

1 1 x 1 0 0 0<br />

1 , I X l O O O<br />

1 x 1 o e e<br />

t x 1 0 0 0<br />

1 1 X O O O O<br />

1 O X 0 1 0 0<br />

O P X O O O O<br />

0 O K O O 1 1 1 x 0 0 0 0<br />

~ O X O Q O I I X O O Q O<br />

1 0 ~ 0 0 0 1 1 x 0 0 0 0<br />

1 a x o o o a<br />

7 o x o o o 1 r x o o i o<br />

o o x a o 1 1 1 x o o 1 o<br />

O O X 0 0 1 1 t X O O 1 O<br />

1 0 X 0 0 0 1 1 x 0 0 1 0<br />

1 0 x 0 0 0 t 1 X O O D O<br />

I O X O O O 1 1 X O O D O<br />

t O X O O O 1 t X P O t 0<br />

o o x o o t t<br />

@ Indlca~s% tner Ins control Inn. mll bl-1 mr m e n Ihr pr10r mesurcmant Iram<br />

I<br />

Section VlII<br />

bare Scluf 4 WICC Wmct 5<br />

Al@W1T AlDUll<br />

(7 P<br />

8 6 6 5 P P.<br />

'"'<br />

X z 8<br />

o ~ o o x o<br />

O O O O X 0<br />

O O O O X 0<br />

Q O O O X 0<br />

O O O O X 0<br />

O O O O X 0<br />

0 0 1 O X 1!<br />

O O O l X 1<br />

~ x o o o~ o o i o x r<br />

I<br />

1<br />

r.<br />

2 r r ~ = z 5 x z<br />

~ 5 ;<br />

o x x o o o<br />

O X X O O O<br />

O X X O O o<br />

O X X O O O<br />

O X X O O O<br />

O X X o o o<br />

1 0 1 0 1 0 0 0 x 5 0 ~ 1 1 x 0 0 0 0 0 0 0 I X 1 0 1 1 0 1 0<br />

1 0 1 D l 0 t O X O O 0 1 1 X O O O O O l O O X 1 0 1 1 1 1 0<br />

l o t 0 1 0 ~ O X O O O 1 r x o o o o o o o i x 1 o i r 0 1 0<br />

1 0 1 0 1 0 I O ' X O O O 1 1 I I D O O O 0 1 D O X 1 0 1 1 1 7 0<br />

1 0 1 0 1 0 i o x o o o 1 r x o o i o o o o t x 1 0 1 1 n i o<br />

I 0 1 0 1 0 O D X O O 1 1 1 X O O 1 0 0 1 0 0 X 1 0 1 1 t 1 0<br />

l a 1 0 1 0 o o x o o i 1 1 x 0 0 1 0 o o o t x 1 0 1 0 0 i a<br />

1 0 1 0 1 0 ~ o x o o o t 1 x 0 0 1 0 0 0 1 o x 1 o r o t i o<br />

1 0 1 0 1 0 1 O X O O O 1 1 X O O O O 0 0 0 1 X 1 0 0 0 0 1 ~<br />

1 0 1 D I D I O K O O O ~ I X O O O O O ~ D X 1 O O O I I O<br />

1 0 1 0 1 0 1 O X O O O 1 1 X O O 1 0 0 0 0 1 X 1 0 0 0 0 1 0<br />

1 0 1 0 1 0 0 0 x 0 0 1 1 1 ~ 0 0 1 0 0 9 O X 1 0 5 0 1 1 0<br />

@@@@@@<br />

BBm@a@ o a K 1 o o<br />

@aama(2,<br />

a@a(P)@a<br />

@L%@@@@<br />

@@@@@a@@@@@@<br />

(FJ@ama@<br />

@&)@@@@<br />

m@J@a@@<br />

0 1 x t 0 0<br />

0 0 0 0 0 1<br />

1 0 X 0 0 0<br />

0 o 0 1 o o<br />

o o 1 1 1 . 0<br />

1 0 o o o o<br />

1 0 0 0 0 0<br />

o o n o o 1<br />

1 o o o o o<br />

1 0 @)@@&I@@ O 0 1 0<br />

0 0 0 1 0<br />

~ x o o o o ~ o o a 1<br />

@ i @ @ @ @ @ @<br />

0 0 0 1 X 0 O X X O O O<br />

0 0 0 0 0 0 . 1 K X O O O<br />

0 0 0 0 0 0 1 X X O O O<br />

@@@@@ @<br />

@i@@@@@a<br />

I<br />

1<br />

1<br />

1<br />

1<br />

o<br />

1<br />

1<br />

1<br />

1<br />

0<br />

I x o o o o<br />

1 x 0 0 0 0<br />

1 X 0 0 1 0<br />

1 X 0 U 1 0<br />

o 1 o 1 o o<br />

o 1 0 o o o<br />

o Q o 1 0 o<br />

O 1 0 1 0 O<br />

1 K o o o o<br />

1 x a o o o<br />

t<br />

*<br />

X<br />

X<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

t<br />

0 0 0 1 X 1 0 1 1 0 0 1<br />

I S ~ O O X I o ~ 1 r 0 1<br />

n o 0 1 1 1 1 0 1 1 P O I<br />

a t 1 1 0 1<br />

o<br />

o<br />

n<br />

1 o<br />

n<br />

o<br />

i<br />

x<br />

~ 1<br />

1<br />

0<br />

o<br />

1<br />

r<br />

1<br />

1<br />

0 0 1 - 5<br />

5 5<br />

1 0 1 -<br />

D<br />

0<br />

O<br />

O<br />

0<br />

O<br />

0<br />

1<br />

O<br />

1<br />

O<br />

l<br />

H<br />

K<br />

H<br />

1<br />

1<br />

1<br />

O l O O P l i ;<br />

( a I ' 00 0vO1 0 0 1<br />

2<br />

0 0 0 1 0 1 ,<br />

O O O O O t<br />

o o o i n 1<br />

@@@a@@<br />

13<br />

@@@aJ@ @a@@@@ 12<br />

i o o o o<br />

@<br />

@<br />

0 0 0 0 0<br />

1 0 5 0 0 @<br />

1 0 0 0 0 @<br />

o<br />

o<br />

0<br />

o<br />

o<br />

o<br />

o<br />

n<br />

1<br />

t CD<br />

o o 0 o I @<br />

0 0 0 0 1 @<br />

1 o o o o @<br />

1 o o o o I&)<br />

0 O 0 0 0 (X)<br />

0 0 0 0 0 @<br />

@@@@a@<br />

@@@@@@<br />

@@@@@a<br />

a@(8)a@@ B<br />

0<br />

t<br />

@a@@@@ 6<br />

@Q1Qr@@Q, 5<br />

@@@@@a 4<br />

@@@C38CQ 3<br />

@@@(X)@@<br />

@@@@am<br />

IgrIgr@@@@<br />

11<br />

10<br />

g<br />

3<br />

1<br />

0


Section VIII SERVICE GROUP & Model 3455A<br />

b. If unable to repair the Auto-Cal failure, Table 8-B-6 may be helpful if applicable. The dc in-<br />

operative section paragraph 8-B-18 in this service group may also be helpful.<br />

84-1 8. DC Inoperative (Sebmatic 1).<br />

8-8-19. When the de function of the 3455A is inoperative, it can also show up as an Auto-Cal:<br />

failure. These failures should be serviced using the information in paragraph 8-B-3 to 8-&I5 in this<br />

service group. Some of dc and Auto-CaI failures may be serviced by using the following procedures.<br />

8.8.20. Lsaksgs and Other Various Maifunctiona<br />

Table 8.8-7. Possible Auto-Gal Failure Causes.<br />

Cal Constants Failed 34556 Msplay<br />

1 3 1 2<br />

12<br />

1 1 1<br />

10<br />

0 9 8 7 6 5 4 3<br />

5 4 3<br />

2 1<br />

0<br />

12 9 5 4 3<br />

11 10 9 8 7 6 5 4 3 2 1 0<br />

11 10 9 8 7 6 5 4 3 2 1 0<br />

11 10 9 8 7 6 5 4 3 2 1 0<br />

11 9 8 7 6 5 4 3 2 1 0<br />

11 10<br />

11 9 8<br />

7 6<br />

3 2<br />

I0 9 5 3<br />

10<br />

10 9<br />

5<br />

3<br />

0<br />

0<br />

10 6 5 1 0<br />

10 9<br />

10<br />

10<br />

5 0<br />

9 8 3 2<br />

9 7 6 5 4 3 1 0<br />

9<br />

9<br />

9<br />

7<br />

7<br />

6<br />

6<br />

5<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

3<br />

2<br />

1<br />

1<br />

0<br />

0<br />

0<br />

9 3<br />

9<br />

9<br />

9<br />

3 0<br />

8<br />

7<br />

5 4<br />

5 4<br />

2 1 0<br />

0<br />

7 5 4<br />

7 4<br />

6 1 0<br />

5 4 0<br />

5<br />

5<br />

5<br />

0<br />

8-B-21. The fol1owing quick leakage test may be used to isolate most leakage failures.<br />

a. Set the 3455A to the DCV function 10 V range, with Auto-Cal off.<br />

b. Short and then open the input terminals of the instrument and note the change in readings on<br />

the display.<br />

I<br />

, .0757<br />

.0007<br />

,0000<br />

.0074<br />

9.8438<br />

.0000<br />

9.7650<br />

.OOOO<br />

9.5703<br />

2.5026<br />

6.7542<br />

X.XXXX<br />

Possible Cause<br />

Shorted A1 4U ld<br />

Open A1 4C2<br />

A I OQ36 Shorted<br />

Gate Bias<br />

DC Pre-amp<br />

DG Pre-amp<br />

A 1004 Shorted<br />

A10019 Open<br />

A10U3<br />

A 1 0Q 1 6 Shorted<br />

A14Q3 Open<br />

A 1 OQ 1 5 Shorted<br />

A1 OQ18 Shorted<br />

A 1 002 Shorted<br />

A1 OQ4 Open<br />

A 1 002 1 Shorted<br />

A10Q2 Open<br />

A10U18 or A10Q37<br />

Reference Supply<br />

A 1 OQ2 9 andlor A 1 0Q3 1 Shorted<br />

A1 0039 Shorted<br />

A10U3 or Open A1OQAl8<br />

A 1003 5 Shorted<br />

A1 OQ27 Open<br />

A1 OQ27 Open<br />

A1 0Q2 1 Open<br />

A1 OQ27 Shorted<br />

A1001 5 Open<br />

A1 0Q3 Shorted or A1 OK5 Open<br />

A10Q16 Open<br />

A1 0Q28 Shorted<br />

A 10022 or A 10Q 1 9 Shorted<br />

A10035 or A10K6 Open<br />

A1 0033 Open or A1 0Q38 Shorted<br />

At 4 Board or A1 0Q34 Shorted<br />

Where X is any number go to Service<br />

Group 6


Model 3455A SERVICE GROUP B Section VIII<br />

c. If the reading changes faster than .25 V per second, there is leakage on the multiplex node. If<br />

the reading on the display changes positively, either A1 0Q5 or 417 may be leaky. If the change is<br />

negative, A10Q2, 43, 44, 413, Q15, or 416 may be leaky.<br />

8-B-22. The test in the above paragraph, paragraph 8-B-21, is a quick leakage test and should find<br />

most Ieakage failures. A more thorough test involves checking zero and full scale voltages on a11 dc<br />

ranges. Start with the 10 V range and t hc other ranges in the following order: 1 V, 100 mV, 100 V,<br />

and 1000 V ranges. The following paragraphs contain the procedures which should be used for<br />

leakage failures.<br />

0-8-23. 1 D V Range or Canstant 10 and 11 Fail.<br />

a. Set the 3455A to the 10 V range, Auto-Cal on and short the input terminals. If the reading on<br />

the display is positive (more than 5 counts), AlOQl may be leaky. If the reading is negative (more<br />

than 5 counts), 42 may be leaky. To doublecheck for a defective Q t and 42, note the reading on the<br />

1 V and 100 mV ranges. The bad reading should also be present on those ranges.<br />

b. Apply + 10 V or - 10 V to the input terminals of the 3455A. Make sure the readings are within<br />

specification. Check the reference voltages and adjust them, if necessary. AlOTP8 should be + 10 Y<br />

5 100 pV and TP7 should be - 10 Y * 20 mY. If the reference voltages are good and the instruments<br />

readings is Iow, A10Q4 may be leaky.<br />

8-8-23. 1 V Rangs or Constant O, 1, and 2 fails.<br />

a. For the 1 V range check, da the procedure as explained in paragraph 8-8-23a.<br />

b. For the 1 V range Full scale check, do the FolIowing:<br />

1. With the 345SA set the 1 V range and Auto-Cal off, apply f I V to the input terminals. A<br />

voltage of + 1 Y should appear on the rnultipIex mode and + 10 V should be at AlOTP4. Ilf the<br />

multiplex mode reading is bad; troubleshoot the input circuit. If the reading at TP4 is bad,<br />

make sure AIOQ21 is turned on. Check for leaky 422, CRI2, CR 13, or a defective U3. If TP4<br />

reads good, set up the 345% for the self-test made by pressing the TEST button. Check for ca1<br />

constant 0 failing and if it does, troubleshoot the failure by using the procedure of paragraph<br />

8-B-10. Continue with the next step if constant 0 does not fail.<br />

2. By using the procedure of paragraph 8-E3-10, step to cal constant 0. Adjust the active attenuator<br />

for a zero reading, as read at AIOTP 1 (adjust R66). Measure the volt age at 13 pin 9 for<br />

exactly + 1 V. If the reading is low, 439 or 418 may be leaky. If the reading is good, check the<br />

operation of 436. This can be done by changing the high voltage amp offset. The 1 V reading at<br />

53 pin 9 should change, because the gain of the 1 V range is changed.<br />

8-8-25, 100 mV Range or Canstant 3 Fails,<br />

a, For the 100 mV range zero check, do the procedure of paragraph 8-B-22a.<br />

b. For the 100 mV range full scale check do the following:<br />

1. Apply + 100 mV to the input of the 34SSA, The instrument should be set to the 100 mY<br />

range with Auto-Cal. Measure for approximately + I0 V at A IQTP4 and 1/10 of this voltage at<br />

TP5. TP2 and TP6 should read approximately the same as TP5. If the reading at TPS and TP6<br />

are incorrect, check the power supplies of U3 (pins 4 and 7). The supplies should have approx-<br />

imately the voltage at TP6 zk 5 V. Troubleshoot U3 and associated circuitry if necessary.<br />

2. Adjust the high voltage amp (A10U 18) to zero, as read at TPI (adjust R66). Measure the<br />

voltage at the 10: 1 divider (53 pin 9) for exactIy 1 / 10 the voltage at TP2. If this voltage is incor-<br />

rect, 416 or Q21 may be leakly.<br />

8-8.28. 100 V Rangs or Constants 5, 4, and 7 Fail.<br />

a. The active attenuator can be checked by applying + 10 V to the input of the 3455A. With the in-


Model 3455A SERVICE GROUP B Sectian VIII<br />

c. Shorted FET's and W1 may show up as on "OL" indication on the display of the 3455A. This<br />

condition can be checked by measuring the voltages at TP4. If the voltage reads approximately -I- 16<br />

Y or - 16 V, then measure TP3. If TP3 appears to be floating or is at a -24 V level, short the multiplex<br />

node to ground. If the "OL'kndition disappears, a FET on the multiplex node is shorted. Use the<br />

procedure of paragraph 8-B-29a, b to firid the shorted FET. Some possibIe-FET failures may be 43,<br />

Q4, 415, Q19, or 421.<br />

8-B.30. Other Troubleshooting Hints.<br />

a. If either AIOKS or K6 sticks closed, it may damage the other relay. Both should be replaced.<br />

b. A sticking K5 could also damage R47, when K6 closes.<br />

c. If 9.9009 V is displayed on the 100 V and 1OOO V ranges of the 3435A with the input open,<br />

AIOK6 is probably shorted.<br />

d. AlOLf should not be too cIose to R63. Arcing couid occur for IOOO V inputs.<br />

e. With Auto-Cd on and AIORa adjusted, the instrument should temporarily indicate an offset<br />

on either the 1 V, 100 V, or 1000 V ranges. If the offset remains, 436 may be open.<br />

f. If all tests pass and the 100 mV range is out of tolerance, then A10Q28 may be open.<br />

g. If all tests pass the 345SA reads zero volts on the 1OOO V range with an input voltage, 439 may<br />

be open.<br />

h. If all tests pass and then 100 mV, 1 V, 100 V, and 1000 V ranges are out of tolerance, then<br />

AEOQ29 or 431 may be open.<br />

i. If a11 tests pass and the 100 V and 1000 V ranges are out of tolerance, then A1 0Q4 may be open<br />

or K6 may be shorted.<br />

j. If Auto-Cal constant 5 fails and the la) V and 1OOO Y ranges are way out of tolerance, then<br />

A10R46 or R63 could have changed value.<br />

k. If 17 Y appears on the multiplex node, check for a defective AlOQlS, Q18, CR12, or U12.<br />

843-32. Noise in the 3455A may show up in one or more functions. If more than one function is<br />

noisy it usually indicates dc noise. The dc noise source should be found first, before troubleshooting<br />

any ac or ohms noise. Go to Table 8-3, to find the correct service group for ac and ohm noise.<br />

04-33. DC Hoiw [Schematic I, 5, and 6).<br />

a. Equal amount of noise on all ranges: Noise of this nature is usually caused by the output of the<br />

dc amplifier (AIOUZ), the reference assembly (A I 1 or NO), or the A/D convertor (A 14). The following<br />

two methods can be used to find noise causing circuits.<br />

1. Try replacing the A/D convertor board (A14) with a known good one. If the noise disap-<br />

pears, go to Service Group E paragraph 8-E-14 for further troubleshooting. If the noise is still<br />

present or a good A/D board is not available, use the next procedure.<br />

2. Set the 3455A to the 10 V with Auto-Cal off. Using a high impedance DVM (10 V input<br />

impedance > lO1Q ohms), measure the 10 V reference at AIOTPS. If the reference voltage is<br />

noisy, replace the reference assembly (A1 I or A20). If TPR is good, unsolder R38 at the<br />

multiplex node. With a clip lead, connect TP8 to the unsoldered end of R38, Measure lthe<br />

voltage at TP4. Ef TP4 is noisy. U2 and its output circuit may be noisy. If the voltage at TP4 is<br />

quit, the A/D convertor is most likely noisy. Go to Service Group E paragraph 8-E-14 For fur-<br />

ther troubleshooting.


Section VTII SERVICE GROUP B Model 3455A<br />

b. Noisy on all ranges.<br />

1. Check the + 10 V reference voltage at AlmPS.<br />

2. Check all inguard power supplies for oscillations. Clock ringing on the supplies are nor-<br />

mal and should be ignored. A defective A10U36 may be noisy.<br />

c. Noise on positive input voltages only: Check the - 10 Y reference voltage at A1 OTP7 for noise.<br />

The 3455A should be in HOLWMANUAL and with Auto-Ca1 off. The noise should not be greater<br />

than the + I0 V reference noise measured at TP8. If the -10 V reference is too noisy, replace U7.<br />

d. Readings at 1/10 scale noisy and several counts low on any range: A14C2 may be defective.<br />

e. Noise on the 100 mV range: Short the input of the 3455A with Auto-Cal off. Measure the<br />

voltage level at AIOTPI . It the voltage is noisy, try replacing R69, R7 I, U 18, or 437. If TPI is not<br />

noisy, measure with a DVM across TP5 and TP6. The low input of the DVM should be connected to<br />

TP6 and the high input to TP5. If excessive noise is measured, replace U3.<br />

f. Noise and 5 counts to 10 counts turnover on the 1 V range: Replace A10R41 to R43.<br />

g. SOOQ V dc noisy: A10K5, K6, or R63 may be arcing inside. If K5 or K6 are replaced, replace<br />

both of the relays.<br />

h. Various other possible noise repairs.<br />

1. A10Q7 or Q8 may occasionally oscillate. Care should be taken when measuring with an<br />

oscilloscope. A probe connected to the output of W2 or the emitter of 47 may cause oscilIation.<br />

2. AIOU2 or Q6 may also cause noise.<br />

3. Clean the front/rear input switch (SI).


Model 3455A<br />

0-C-l . AC CONVERTOR TROUBtESHOOT1RG.<br />

8-C.2. True RMS Convsrter Sewicing (Schematic 3).<br />

8-C-3. Before troubleshooting the 345SA's True RMS Convertor, the instrument should operate<br />

properly in the dc mode. Verify for the correct operation of the dc section, before servicing the ac<br />

convertor. The following procedure should be followed before troubleshooting or repairing the ac<br />

convertor.<br />

a. Check the dc operation of the 3455A. Verify for correct full scale md zero scale readings on all<br />

ranges.<br />

b. Set the 34SSA to the 10 V range, ac function, and short the input,<br />

c. Check for approximate zero levels at A? 5TP8 and TPS, with the low input of the meter con-<br />

nected te TP6 (go to paragraph 8-C-4 or 8-C-6 if bad].<br />

d. Short TP3 to TP6 and measure the voltage at TP1. TPI should read apptoximateIy zero.<br />

Remove the short (go to paragraph 8-C-8 if bad).<br />

e. Check for proper biasing of AISU2. The voltage at U2 pin 2 should be between -2 mY and -3<br />

mV. Repad R21 if necessary (R21 padding list is in the parts list).<br />

f. Remove the short form the input of the 345SA. Apply a I0 Y, 100 Hz sinewave at the input ter-<br />

minals. Check for the following voltages.<br />

1. With an oscilloscope, check for a sinewave at A15TP8. The amplitude of the sinewave<br />

should be approximately 2.8 V peak to peak with no shift in the dc level (go to paragraph 8-C-4<br />

if bad).<br />

2. A halfwave rectified sinewave sheuId be observed at TP5. The amplitude of the<br />

waveshape should be approximately 1.4 V peak to peak, with no shift in the dc level (go to<br />

paragraph 8-Cd if bad).<br />

3. The waveshape shown below with an approximate + .75 V dc level, should be observed at<br />

TP4 (go to paragraph 8-C-8 if bad),<br />

4. The waveshape shown below with an approximate -I V dc level, should be observed at<br />

TP3 (go to paragraph 3-C-8 if bad).<br />

5. Check for approximately + -5 Y dc at TPZ (go to paragraph 8-C-8 if bad).<br />

6. Check for approximately + 6.67 V dc at TPI (go to paragraph 8-C-8 if bad).<br />

7. Check for approximately zero volts at TP7 with the 3455A in the 10 V or 1000 V ranges.<br />

This voltage level should change to approximately - I5 V when the instrument is switched to the<br />

1 V or 100 V ranges (troubleshoot gain switching circuit, if bad).<br />

Section VIII


Section VIII SERVICE GROUP C Model 3455A<br />

g. IF all the above checks are good and the 3455A displays approximately JO V ac (with 10 V, I00<br />

Hz input), the RMS convertor should be ready for calibration. If the reading is incorrect, A10Q3 may<br />

not be turned on or may be defective.<br />

84.4. Preamplifier and bput Attenuatar Cimitry.<br />

8-C-5. The waveshape at TP8 appears to be incorrect, try the folIowing checks (except where noted,<br />

the input signal. should be a 10 V, 100 Hz sinewave).<br />

a. Check for the correct power supply voltages at U6 pins 4 and 7. Pin 4 shodd have approximate-<br />

ly -15 Y and pin 7 should have approximately + 15 Y.<br />

b. Set the 3455A on the 10 Y range and short the input terminals. Make sure TP8 can reach zero<br />

volts, when adjusting R65. If unable to reach zero, try changing R77 to 41 2 kR (part number: 0698-<br />

4540). If R77 is a 412 K resistor already, replace U6.<br />

c. If the signal at TP8 is riding on a high dc level, make sure CR7 and 420 are not touching any<br />

shielding. Also make sure Q19 is not touching the heat sink of U6. Check CR7 and 420 for shorts.<br />

d. If the zero reading at TP8 is good on the 10 V and 11000 V ranges and bad on the 1 V and 100 V<br />

ranges, try the following checks.<br />

I. Check the gain switching circuitry of Q16 to Q19, and US. Make sure TP7 reads approx-<br />

imately zero volts on the 10 V and 1000 Y ranges. On the 1 V and 100 V ranges TPT should read<br />

approximately - 15 V.<br />

2. If the gain switching is correct, lift the drain or source of Q19. Check for a zero reading at<br />

TP8 with the 3455A in the 1 V range. If the reading is good, replace Q19.<br />

3. If the reading at TP8 is still bad, short the drain to the source of 418. If the reading is then<br />

good, replace 418.<br />

4. If the reading at TP8 is still bad, short TP8 to the junction of R86 and R87. If the reading<br />

is corrected, troubleshoot the feedback network.<br />

e. If the 3455A has a history of bad Q19's replace K1, K3, and 41 8. Q18 may be damaged if QE9<br />

has been damaged. The timing of K1 and K3 couId be incorrect, causing Q19 to be destroyed by a<br />

1000 V input. Check ac calibrator output for any spikes and make sure the 107 V Hz limit has not<br />

been violated,<br />

f. If it becomes necessary to rtpIace the matched set of resistors R76, RS6, and R91, the new set<br />

should be properly aged. Do the following procedure.<br />

1. Set the 3454k to the EO V range and apply a 10 V, 100 Hz signal to the input. Note the<br />

reading on the display.<br />

2. Apply a 1OOO Y at 100 Hz signal to the input. Leave the I000 V connected for about two<br />

minutes.<br />

3. Remove the 1000 V signal and reapply the 10 V at 100 Hz signal to the input. After a cool-<br />

ing down period (less than 2 minutes), the reading on the display should have not changed mare<br />

than 25 counts from the reading in 1 above. Replace R76, R86, and R91 if necessary.<br />

g. If it becomes necessary to replace the matched set of resistor R91 and R93, they also need to be<br />

aged. Use the procedure in f above. The only exception to the procedure is to have the aging done on<br />

the 100 Y range rather than the 10 V range. A 100 V at I00 Hz signal should also be applied in place<br />

of the 10 V signaI.<br />

h. Other circuits on the A15 board may cause preamplifier ma!funbions. The preamplifier can be<br />

isolated from the other circuits by lifting R52 and R64. If the preamplifier is working correclIy, after


Model: 3455A SERVICE GROUP C %ion YE11<br />

lifting R52 and R64, the other circuits are causing the malfunction (absolute m p, squaring amp,<br />

ctc.).<br />

8-C-7. If the waveshape at TP5 appears to be incorrect, try the following checks (except where<br />

noted, the input signal should be a 10 V, 100 Hz sinwave).<br />

a. To check if other circuits on the A14 board causes failures in the absolute amplifier, the ab-<br />

solute amplifier can be isolated. This can k accomplished by lifting R52 and R53. The amplifier<br />

should now be operating correctly. Troubleshoot the amplifier circuit, if defective.<br />

b. Check the power supply rottages at pins 4 and 7 of U7. Pin 4 should be approximately -15 V<br />

and pin 7 approximately + I5 V.<br />

c. Check for an approximately 2.8 V peak to peak sinewave at tJ4 pin 6. Troubleshoot U6 and<br />

associated circuitry, if necessary.<br />

d. If the sinewave at U+ pin 6 has oscillations, reduce C22 to 10 pF (part number in parts list). Do<br />

not reduce C22 below 10 pF, 9s the frequency response of the ac convertor may be affected.<br />

e. The cathode/anude junction of CR5 md CR4 shotdd have a sinewave with siight distortion at<br />

the zero crossover point. Replace CR4 or CRS, if necessary.<br />

f; If the signal at TP5 is distorted, CR4 may have leakage. CR4 and CRS can be interchanged.<br />

g. If 414 or Q15 appear defective, check with an ohmmeter and replam , I 'f necessary.<br />

0-G8. Squaring Amplifier, Imtmgrater, and Antilo1 Cimuitq.<br />

8-C-9. Tht squaring amplifier, integrator, and antilog circuits are connected by feedback paths.<br />

Isolation of these circuits may be difficult. There are, however, some checks used to help<br />

troubleshoot these circuits [except where noted, the input signal should be a 10 Y, 100 Hz sinewave).<br />

a. In some cases it is possible to isolate the integrator from the other circuits on the A15 board.<br />

This can be accomplished by shorting TP6 to the cathode of CR3. The reading at TP1 should be ap-<br />

proximately zero. If there are great offsets at TPI , troubleshoot the integrator.<br />

b. Apply a 100 mV, 100 Hz sinewave to the input terminals of the 345519. The instrument should<br />

be in the 10 V range and display approximately .1000 V. Check for dc readings of + .82 V at TP4, -9<br />

Y at TP3, -.48 V at TP2, and + ,067 V at TP I. These readings may be helpful in isolating the sqaar-<br />

ing amp, integrator, and antilog circuits.<br />

c. Reapply a 10 V, EOO Hz sinewave to the input of the 3455k. Tht instrument should be on the 10<br />

V range. Check for dc readings of approximately + .(56 V at TP4, - 1. I5 V at TP3, -.6 V at TP2, and<br />

+ 6.7 V at TPI. Again, these readings may be helpful in isolating the squaring amp, integrator, and<br />

antilog circuits.<br />

d. Check the power supply voltages of U1, U2, and U3. Pins 7 of the op-amps should be approx-<br />

imately + 15 V and pins 4 should be approximately - 15 V.<br />

e. Check far a voltage drop of approximately + 3.3 V across R36. If this voltage drop is incorrect,<br />

412 or Q13 and their associated circuitry may be defective.<br />

f. For parasitic osciltations at TP3 change R36 to 649 R (part number: 069844601.<br />

g. If the display of the 3455A indicates an overload condition with a good waveshape at TP5,


Model 3455A SERVIN GROUP C Section VIII<br />

Agoinn the inptt? of the 3455A should be shorted and very little deviation<br />

should be noted.<br />

d. Short the input of the 3455A and measure the dc voltage at TP3. If the voltage is very jumpy,<br />

troubleshoot the squaring amplifier circuits.<br />

e. Short the cathode of CR3 to TP6 and measure the voltage at TP1. This voltage may jump<br />

around n little more than at the other test points. If the voltage is extremely jumpy, troubleshoot the<br />

integrator circuit. If the voltage is reiatively steady, the antilog or square root circuit may be noisy.<br />

8-C-15. The above procedure (paragraph 8-C-14) should isalate most areas on the ac convertor<br />

board that may cause noise. A few other hints and checks, given betow, may be helpful for specific<br />

noise.<br />

a. Noise on at! ranges with the input shorted: Check for -2 mV to -3 mV at U2 pin 2. IF the voltage<br />

is out of the correct range, it may cause a noisy zero indication. The padding resistor (R21) may have<br />

little or no effect in padding U2. This condition is usually caused by a leaky Q9B or CR2. Replace Q9<br />

or CR2, if necessary.<br />

b. Noisy when low frequency signal is applied to the 345SA: The fast ac switching circuitry may<br />

be defective. The following checks can be made to troubleshoot this circuit.<br />

1. Apply a 1 Y, 100 Hz signal to the input of the 345SA, with the instrument set to the 1 V<br />

range and to the normal ac function.<br />

2. With an oscilloscope, check the signal at TPl . The signal should be approximately + 6.7<br />

V dc, with no ripple. If the signal has ripple on it and the dc level is incorrect, perform the next<br />

step.<br />

3. Set the 3455A to the fast ac function. Measure the voltage at the junction of R4 and RS<br />

and the gate levels of 42 and QB. The voltage should be approximately - 15 V dc. Next, set the<br />

3455A to the normal ac function. The gate levels of Q2 and Q8 should be: approximately zero,<br />

and the junction of R4 and R5 should be approximately + 15 V dc. The gate levels of 43 and<br />

44 should be complimentary to the gate levels of Q2 and QB.<br />

c. Noisy in the fast ac mode: Check for a defective R9.<br />

d. Other noise: If the 30 V regulator (AIOU36) is defective, it may cause bursts of RF with hear.<br />

This may show up as noise on all functions and ranges of the 3455A. It would be, however, more<br />

noticeable in the ac function.<br />

8-C- 1 6. Mi-seellsneous Troubleshooting (Schematic 31.<br />

a. 10 kHz reading high: Check for the correct high frequency padding of R89. In order to obtain<br />

optimum accuracy over the entire frequency range of the 3455A, RS9 should be padded approximate-<br />

ly 4000 counts high with a I V, 1 MHz input. Use the Following procedure.<br />

I. The 3455A should be turned on and warmed up for at least 1/2 hour. All shields and<br />

covers should be in place.<br />

2. Perform the RMS convertor adjustment in Section V of this manual.<br />

3. Apply a 1 V, 1 MHz sinewave to the input of the 345SA. Fad R89 for a reading apptox-<br />

imately 4000 counts high. Check the accuracy of the ac convertor.<br />

b. General hints: Give the ac convertor board a good mechanical inspection. Make sure all relays,<br />

op-amps, capacitors, and FETs are not touching the ground plane, shields, or each other.<br />

c. Reading above 100 V erratic: Check for relay cases touching the ground plane.<br />

d. Arcing at 1000 V ac: Check for capacitors touching the shield or ground plane.


Section VIII. SERVICE GROUP C Model 345SA<br />

e. Unable to adjust 100 V at 40 kHz, within limits: Moving the wire connecting the R92, C29, and<br />

C32, C34 modes away from the shield, may raise the reading.<br />

f. The I00 V and 1000 Y ranges inaccurate: The R92 and R93 resistor divider may have changed<br />

value. K1 - K3 contacts may be resistive.<br />

g. Overload indication with a 1000 V at I kHz to 10 kHz sinewave applied to the input: AIOK1,<br />

K2, or K5 may have developed leakage. The leakage can be isolated by removing the orange jumper<br />

from the fronthear switch connected to K1 and K5. If the overload condition disappears, K 1 or K5<br />

may be defective. If the ovwload condition remains, remove the jumper from K2 and connect the<br />

jumper directly to the input of the A1 5 board. If the overload condition disappears, K2 may be defec-<br />

tive.<br />

h. 1 V and 10 V ranges inaccurate and out of calibration: A1 5K3 may be shorted.<br />

i. Full scale readings go high with an increase in temperature: A1 5Q9 or 411 may be defective.<br />

j. ISM counts error on the higher ac ranges: Connect guard to Iow.<br />

k. Differences in high frequency readings between the front and rear input terminals: Short the<br />

rear terminalshuard to low.<br />

1. The ac convertor should be calibrated with the guard cover in place.<br />

0-C-17. Avenglt Responding AC Convertor (Schematit 21.<br />

8-C-18. Due to the simplicity of the average responding ac convertors, only a few pertinent<br />

troubleshooting hints are given.<br />

a. Component location and Iayout may be critical to the convertor's freqency response.<br />

Capacitors, especially in the input circuit, should not be too close or too fat from the PC board.<br />

Make sure the relays are not touching the ground plane.<br />

b. The ac convertor should be calibrated with the inguard corer in place.<br />

c. A13Q15, U4, U5, and associated circuitry may occasionally fail.<br />

d. To help flatten the frequency response of the convertor, especially at 10 kHz, C25 is usually<br />

padded with a 33 pF capacitor (pad Iist in the parts list). If unable to bring the level down at 10 kHz, a<br />

28 pF capacitor may be used.<br />

e. To help in troubleshooting the ac convertor, the following checks can be made.<br />

1. Apply a 1 V, 100 Hz sinewave to the input of the 3455A, with the instrument set to the 1 V<br />

range.<br />

2. US pin 6 should have a 1 V peak to peak sinewave and TP1 should have a 5 V peak to peak<br />

sinewave.<br />

3. A 6.67 V dc voltage should be read at TP2. If this voltage is good and there is an incorrect<br />

reading on the display, A10Q3 may not be turned on or may be defective.


SERVICE GROUP D<br />

8-D-1. OHM TROUBLESHOOTl#G (SCHEMATIC 1, 41.<br />

8.0.2. Ohms Circuit Itolation.<br />

8-D-3. Before troubleshooting the ohms convertor, the 345SA should be operating correctly in the dc<br />

mode. Because some of the dc and Auto-Cal circuits are used in ohms, there circuits should be check-<br />

ed before working on any ohms circuit. The procedure below may be helpful in isolating the ohms<br />

section of the instrument.<br />

a. With the instrument set to the dc function, check the zero and full scale reading on the display.<br />

These checks should be made on a11 ranges / 100 mV, 1 V, 10 V, 100 V, and 1 OOO V ranges). If any<br />

malfunctions occur, go to Service Group B for further troubleshooting.<br />

b. Using the self-test mode of the instrument (see paragraph 8-B-3 for an explanation of the self-<br />

test), check for any Auto-CaI constant FaiIure. Go to Service Group B if any constants fail.<br />

c. If the dc readings on the instrument are good and the self-test passes, continue with this service<br />

group for ohms ttou bleshooting.<br />

8-0-4. Ohms Sewicing.<br />

8-D-5. The following checks may be useful if the ohms function is completely inoperative.<br />

a. Set the 3455A to the 2 wire ohms function, 1 K ohms range, and Auto-Cal off.<br />

b. With no load applied to the terminals of the 3455A, check the voltage across the input ter-<br />

minals. The voltage shouId be approximately -4.7 V dc (typically -4.5 V to 4.8 V). If the voltage is in-<br />

correct, the ohms convertor board (A1 2) or the input relays may be defective. Go to paragraph 8-D-6<br />

for further troubleshooting.<br />

c. When approximately -4.7 V is observed at the input terminals, the ohms convertor is in voltage<br />

limit. This is a correct indication with an open circuit input. Connect a 1 K ohm resistor across the input<br />

terrninais of the 3455A. Measure the voltage drop across the resistor. The voltage should be approximately<br />

- .7 V dc and indicates correct constant current operation of the ohms convertor. Go to<br />

paragraph 8-D-6 if the voltage is incorrect.<br />

d. The above steps should isolate malfunctions in the current source circuitry of the ohms conver-<br />

tor. If all the steps indicate correct ohms operations, the miscellaneous troubleshooting section of<br />

this service group may be helpful (paragraph 8-D-8).<br />

8-D-0, Ohma Convsrror Troubleshooting (Schematic t, 41.<br />

8-D-7. Ohms convertor malfunctions may be caused by the ohms convertor board itsetf, or by the<br />

A10 mother board. It is important to remember that the mother board and ohms convertor have interconnect<br />

ing ohms circuitry, Try the following procedure to trou bItshoot ohms malfunctions.<br />

a. With a dc voltmeter, measure the voltage across A1 2Cl. The tow side of the meter should be<br />

connected to TP - V and the high side connected to the plus side of C1. The meter should read + 19 V<br />

dc. If the reading is low by -5 V or more, A12T1 or AlOTl may be at fault.<br />

b. With an ascilloscope, measure the ripple across A12C1. The ripple should not be more than .I<br />

V peak to peak. If the ripple is too high, check AIOTI, A12T1, C3, CR4, or C1.<br />

c. If the voltage across A12C1 is very low or zero, look for an approximateiy 30 V peak to peak<br />

square wave at the anodes of CR3 and CR4. This signal should be around 31 MHz with the 345514 set


Section VIII SERVICE GROUP D Model 3455A<br />

far 60 Hz line frequency. If the signal is nonexistant, check far an approximately 3 V peak to peak<br />

signal at A10U33 pins 9 and 12. If ahere is a signaI at these pins, troubleshoot the circuit between the<br />

outputs of A10U33 and the secondary of A12T1.<br />

d. If there is no signal at A10U33 pins 9 and 12, make sure the divider ~ 13 i and U33 are operating<br />

correctly. Also make sure U33 is enabled by line H106, The inguard logic (Latch U 12) may be defective,<br />

iT the HI06 line is low.<br />

e. If all the above checks are good and the power supply voltages at A12TP - V and TP + V are<br />

good, the other ohms circuits may be defective. Troubleshoot the ohms circuits on I he A 10 mother<br />

board first. Make sure the correct relays and FETs are t wrned on. Troubleshoot the current nrnpli fies<br />

circuit and the voltage clamp amplifier circuit or the ohms convertor board.<br />

0-D-0, M~scellanwut Ohms Troubleshooting 'Hints.<br />

a. Table 8-D-1 may be helpful in troubleshooting various ohms malfunctions. The table gives<br />

various gain and reference resistor connections for all the ohms ranges.<br />

b. I K range to 10 K range inoperative: Check for the correct operation of A10Q13.<br />

c. 100 R range to 10 M range inoperative: Check for the correct operation A10Q14.<br />

d. 2 wire ohms and 4 wire ohms no? zeroing properly and the reading changes 100 counts when the<br />

3455A is tapped: Check for a dirty fronthear switch.<br />

e. 10 K and 10 M ranges read low: Check AIOQZ7, Q22, or U3.<br />

8-D-10. The following information may be helpful in isolating ohms offsets. Again, make sure the<br />

3455A works correctly in dc.<br />

a. Ef there is a 150 counts to ZOO counts offset on the 1 K ohm range, check A10K9. This relay<br />

should only be closed when the reference resistor is measured. If the 1 K ohm reading is low K9 may<br />

always be open. If the reading is high, K9 may be shorted.<br />

I<br />

Range Ref Ref<br />

In K Ohms Res Gain<br />

0.1<br />

1<br />

10<br />

100<br />

1 K<br />

I 10K<br />

1 K<br />

1 K<br />

1 K<br />

3 M<br />

1M<br />

1 M<br />

Table 0-D.1. Ohms Gain and Switch Catlfigrmtion.<br />

XI0<br />

X10<br />

X20<br />

X2<br />

XI0<br />

X20<br />

Wnk Rw<br />

I V V Unk<br />

Gain Ifsf Ref (fs) -----<br />

1 Xl00<br />

XI0<br />

X2<br />

X20<br />

XI0<br />

.7 mA<br />

.7 mA<br />

.5 mA<br />

5pA<br />

.7 ,uA<br />

X2 ( 5 pA<br />

0.7<br />

0.7<br />

0.5<br />

0.5<br />

0.7<br />

0.5<br />

0.07<br />

0.7<br />

5<br />

K8<br />

0.7<br />

fs: denotes full-scale 2 Wire Ohm: K2, K4 Closed<br />

V1: denotes Vottage Limited 4 Wirs Ohm: K3 Closed<br />

Relays<br />

Closed<br />

K7, 8<br />

K7, 8<br />

K7, 8<br />

0<br />

Unk Res<br />

for V L<br />

I> K)<br />

(> K)<br />

(> K)<br />

(> 0)<br />

(> MI<br />

5 I I (> MI<br />

b. A quick offset check: Short either A10R59 or R61 and observe the reading of the 3455A. If the<br />

offset disappears with R59 shorted, A10Q13 and its associated circuitry may be leaky or defective. If<br />

the offset disappears with R61 shorted, A1 OQI4 and its associated circuitry may be leaky or defec-<br />

tive.<br />

c. If there is an offset on the 100 K ohm range, remove the bIue wire connected to AlOR59. If the<br />

offset disappears, 413 may be leaky.


Model 3455A<br />

B.Q.11. Ohms hiss (Schsmstic 1, 4).<br />

8-D-12. To prevent possible damage to sensitive components being measured, the ohms current<br />

source of the 3455A is limited to 5 V. Lower currents are used ro keep this voltage low. Because of the<br />

small currents, the ohms section of the instrument may be susceptible to noise.<br />

843-13. Before troubleshooting for any ohms noise, make sure the dc noise level is good. Check for<br />

noise on all dc ranges of the 3455A. If the dc operation is good, troubleshoot for ohms noise. A few<br />

troubleshooting hints for servicing ohms noise are given below:<br />

a. Excessive noise on all ranges: Check for a 19 Y dc voltages across A 12C 1. If the voltage is low<br />

by .5 V, A12T1 or AlW1 may be at fault.<br />

b. Readings decrease an each successive sample and then suddenly jump back, with the procedure<br />

repeating. The case of A10R63 may be touching the case of 437.<br />

c. Noise on the .I, 1, and I0 ranges: A10K9 may be defective,<br />

d. Possible noise on the 100, 1 K, and 10 K ranges with very high readings at 1/10 scale: AlZCR7<br />

may be defective.<br />

e. I/ 10 scale reading on the I00 K range is noisy and low: Check for oscillation at AIOTP4. This<br />

can be accomplished by setting the 3455A to the ohms function. The instrument should be an the 100<br />

K range, with Auto-Cal OFF, and placed in Hold/Manual. TP4 should be monitored with an<br />

oscilloscope. Press the HOLD/MANUAL button and observe for any oscillation at TP4. If any<br />

oscillation is noted, try changing A10C4 to .MI68 pF (pan number 6160-0159) and AIORI I to 1.3 K<br />

(part number 07574426).<br />

f. Noisy at I M and/or 10 M ranges: Push all wiring away from the ohms board and all input<br />

wiring away from the top guard cover. place the red wire, connected between the fronthear switch<br />

and the A10 board, next to the guard sheet metal. All wires should be kept away from transformers<br />

and transistors.<br />

g. 10 M range vety noisy: Make sure the 50/60 Hz switch is in the correct position.<br />

h. Noise on the 1 K range: If noise shows up on older instruments, make sure on 18 guage tenon<br />

coated wire is installed in the instrument. The wire should be connected between pin E of A1053 and<br />

the cardinal ground terminal located between K7 and K9. The wire may reduce noise on the 1 K ohms<br />

range as well as the I Y ac and dc ranges.<br />

i. Noise in ohms function: To reduce external noise in ohms function, shielded cables are very<br />

useful. When measuring resistance in the 2 wire and 4 wire ohms function, connect the resistor to the<br />

3455A with one or more shielded cables. The shields should t>e connected to each low terminal. Most<br />

noise, associated with external body capacitance, should be shunted to ground rat her than through<br />

the measuring instrumentation. The cables should not be reversed (the shields connected to the high<br />

terminals and the center conductor connected to the low terminals), or no shielded cables should be<br />

used. No shielded cables or reversed cables may cause excessive noise in ohms.<br />

Section VIII


Section VIII<br />

8-E-2. AID Convertor Sanicing (Schematic 6, 71.<br />

SERVICE GROUP E<br />

8-E-3. Before troubleshooting the A/D circuits make sure the outguard section of the 3455A is<br />

operating correctly. Use the half-splitting method of paragraph 8-195. The following procedures may<br />

be used to check the correct operation of lthe A/D circuits.<br />

a. Turn the 3455A off, and disconnect the AlOW 1 Inguard/Outguard Cable assembly from the<br />

outguard connector (A1 J7).<br />

b. Remove the analog tmt jumper (from A10U27 pin lo), and connect test point AlOTP9 to<br />

ground.<br />

c. Apply -10 V dc to the input terminals of the 345SA and turn the instrument on.<br />

d. With an oscilloscope measure the waveform at AIOTP1. The waveform should look like<br />

tog waveform in Figure 8-5 1.<br />

e. The correct waveform at TP1 generally indicates correct A/D operation. If, however, the A/D<br />

waveform is good and the A/D circuit is still inoperative, go to paragraph 8-E-7 for troubleshooting.<br />

IQV<br />

OV-<br />

- l<br />

I] v-<br />

0 "- v-<br />

5 V.<br />

0 v-<br />

Slgnal at A1 4 TP1 lAl0 Wavslorml.<br />

i<br />

Sim1 a1 A 1 * pin 6 Izuo detect slg~lf<br />

Slgnsl al A14 prn 14 1.2 Vdersci sagnsll<br />

Slgnal at A 14 uin t 5 I TO V detwt sngnnll.<br />

Nma Tho Signal# are a Nagarnvs 10 Y lnwt w~th 3455A set ro 80 Hz Opsrarnan. 1<br />

Model 3455A


Model 3455A SERVICE GROUP E Section YIII<br />

f. For no N D waveform at TPI, go to paragraph 8-E4 for troubleshooting. For an incorrect<br />

waveform go to paragraph 8-E-6.<br />

8-E-5. Since the A/D waveform is dependent on various circuits in the 3455A {input, main amplifier,<br />

etc.), isolation of these circuits is necessary. The method used is simply a signal tracing method with<br />

limited operational checks.<br />

a. Set up the 3455A using the procedure of paragraph 8-E-3a, b, and c.<br />

b. Measure the voltage at the multiplex node (sources of AlOQ1.42.43, and 44). If thevoltageis<br />

not -10 Y dc, the input circuit may be inoperative. The multiplex node may also be Ioaded down by<br />

one or more FETs.<br />

c. Measure for a - 10 Y dc voltage at AIDTP4. If the voltage is incorrect, troubleshoot the main<br />

amplifier circuit. Make sure A10Q19 is turned on.<br />

d. Measure the instrument's reference voltages. AlOTP8 should be + 10 V * 100 pV and TP7<br />

should be - 10 Y * 20 mV. If the reference voltages are incorrect, troubleshoot the reference assembly<br />

(A1 1 or AZO) and/or U7. The reference voltages are used on the A/D board and should be correct for<br />

proper A/ D operat ion.<br />

e. Short across capacitor A14C2 and measure the voltage at A14TPI. The voltage should be ap-<br />

proximately zero. If there are any great offsets, troubleshoot A 14U3 and associated circuits. If the<br />

voltage at TPI is good, remove the short from C2 and continue with this procedure.<br />

f. Short Al4TP1 to ground and measure the 0 detect, 10 V detect, and -2 V detect levels. The table<br />

below gives the correct detect levels. Remove the short from TPI and apply - 10 Y to TP 1. Measure<br />

the levels of the 0 detect, 10 V detect. and -2 V detect. See the table below for the correct levels.<br />

IA14TP1 Shorted A14TP1 at-1OV<br />

0 Detect Level z 5V z OV 10 V Detect Level z OV 2 5V<br />

.2 V Detect Level = OV s OV If the levels in the table are incorrect, troubleshoot A14LJ4, 5, 6 and their associated circuits.<br />

g. Other eirruits on the A/D board may affect A/D operation. These circuits are the input circuits<br />

and diode array #I and 62 and their associated circuits. Also make sure A14Q3, 44, and their<br />

associated circuits are operating correctly. If these circuits appear to be working correctly, the in-<br />

guard logic may be at fault. Go to paragraph 8-E-10 for further troubleshooting.<br />

a. Check for a leaky A14C2, Q5, U3, or US and associated circuits. Circuits past 214 may<br />

also be defective.<br />

b. Circuitry preceding the integrator may also cause an incorrect AID waveform. Make sure<br />

A14Q2, Q4, and their associated circuits are operating correctly.<br />

c. Check for correct operation of the detect circuitry. Paragraph 8-E-Sf may be helpful in<br />

troubleshooting these circuits.<br />

8-E-7. Corruct AID Wuveform.<br />

a. If the A/D waveform is correct and the A/D board is still inoperative, check the zero detect cir-<br />

cuit. Make sure the zero detect signal is stable with the correct voltage levels (approximately 0 Y or 5<br />

V).


Section VIII SERVICE GROUP E Model 3455A<br />

b. IF the 0 detect signal of older instruments is unstable, modify the instrument in the following<br />

way:<br />

I. Change A14R44 from a t 0 M ohm resistor to a 2 M ohm resistor (part number 0683-2655).<br />

2. Change A12R7, R8, R16, and R 17 from 4.99 K to 10 K ohm (part number 07574442).<br />

c. Check for the cormt operation of A14U5 and its associated circuitry. Since USaand its<br />

associated circuitry is an absolute amplitifer, the output of the amplifier (emitter of U6) should be the<br />

same as the signal at TPI . Therefore, pins 14 and 15 of the A14 board should also show the absolute<br />

value af the signal at TP 1. The correct signals for a - 10 V input to the 3455A ate shown in Figure<br />

8-€-I. If the signals at A14P1 pins 14, 15, and S are incorrect, troubleshoot the detect circuits.<br />

d. Make sure any oxidation layers have not formed on the pins of the A14 board. The pins can be<br />

cleaned with a soft lead eraser.<br />

8-IE-8, AID Woi~ (Schematic 8).<br />

84-9. AID noise will usually show up in all ranges and a11 functions of the 3455A. Two circuits to<br />

check for noise on the AID board are the integrator and the input circuits.<br />

a. Check for a noisy A14Q5 or U3. Make sure there are not oscillations present at TPI.<br />

b. Check For a stable zero detect signal at A14U6 pin 1. If the signal is unstable, U4 or eU6 may be<br />

noisy.<br />

c. Check for a noisy A14Q3.<br />

8-Em1 0, lnguard Logic Troubleshooting (Schematic 7).<br />

8-E-11. Before troubleshooting the inguard logic make sure the outguard logic is operating correctly.<br />

Use thc half-splitting technique of paragraph 8-195.<br />

a. Check the back gate bias voltage (B.G.) of the processor (A10U26 pin 387). The voltage should<br />

be within * .25 V of the voltage marked an the processor. If the voItage is incorrect, check for the<br />

correct value of pad resistor A 1 OR 105 (pad list in pans list). If the pad resistor is the correct value and<br />

the bias voltage is incorrect, replace the processor.<br />

8-E-12. Inguard Logic Troubleshaoting with no AID Waveform.<br />

a. The signals at A10U25 pins 34 to 37 should be the same as those on A3TP4 to TP 1. The only ex-<br />

ception is the signal at A1 OU28 pin 9. If the signals do not agree, check for malFunctions in the in-<br />

guard light isolators, A IOU34 and U35, plus their associated circuits. Line F0 and F1 transfer data<br />

from outguard 10 inguard (F0 is the data transfer line and F1 is the data transfer rate Iine).<br />

b. Tf pin 9 of A IOU28 is different than pin 37 of U26 and the HAZ line (pin I of U2T) is low, the<br />

pulse transformer and/or associated circuits may be defective. This interrupt circuit can be checked<br />

by rnanvaIly clocking AlOTP 10, and can be achieved by pulling TPlO low and then releasing it. If no<br />

toggling is taking place, troubleshoot the interrupt circuit consisting of AlOU32A and U2T. If there is<br />

toggling, check T2 or the outguard section {Al).<br />

c. The interrupt request lines at pin 29 of A10U26 must be high. Troubleshoot the interrupt cir-<br />

cuitry if necessary.<br />

d. Data lines DB to D7 (pin 18 to 35 of U26) and program address lines (PAB to PA7 pins 1 to 8 of<br />

U26) should have voltage levels from approximately zero to approximate1y + 4.5 V. Check for any<br />

circuits causing these tines to be loaded down. It is possible and normal to observe sharp peaks of 3 V<br />

to 3.5 V on some lines of W26. These peaks ate present when the Iine is in a tri-state mode. This is a<br />

possible and norma1 operation.


Model 3455A SERVICE GROUP E<br />

Mneumonic<br />

HAC<br />

HACl<br />

HAC2<br />

HAD1<br />

HAD2<br />

HAD3<br />

HA2<br />

HI01<br />

HI02<br />

HIP3<br />

HI04<br />

HI05<br />

HI06<br />

HMAl<br />

HMCl<br />

HMC2<br />

HMC3<br />

HMC4<br />

HMDl<br />

HMD2<br />

HMO1<br />

HMO2<br />

HPQ?<br />

HPD2<br />

HPD3<br />

H PO I<br />

HPRF<br />

HPRS<br />

HR12<br />

HR24<br />

HR34<br />

LACF<br />

LAC3<br />

LAC 5<br />

LNRF<br />

LNRS<br />

LVlN<br />

7 Polisrity<br />

lndicator<br />

[H = High True<br />

L = Low True}<br />

Table 0-E-l . Mnemonic Definitions.<br />

specific<br />

Function<br />

Indicator<br />

Definitions<br />

Line<br />

lndicator<br />

High True AC /AC Enable)<br />

High True Auto Cal 141 00 V, 1 kV Auto-Cal Constant lCal Constant 4, 5,6,71)<br />

High True Auto Cal 2<br />

High True Analog DC 1 (.? V, 1 V, f O V Range and Ohrnsl<br />

High True Analog DC 2 (100 V, 1 kV Rangel<br />

High True Analog DC 3 (1 k V Range)<br />

High True AID Zero (Enables or Resets AID)<br />

High True Input Ohms 1 (2 Wire Ohms Enable)<br />

High True Input Ohms 2 (Connects 4 Wire and Current Source)<br />

High True lnpvr Ohms 3 (Ohms Ref Low Measurement}<br />

High True Input Ohms 4 (1 K Reference Resistor Select [with HIOSII<br />

High True Input Ohms 5 (.7 WA Current Source Select)<br />

High True Input Ohms 6 (Ohms Current Source Enable)<br />

High Measure AC 1 (Output from AC Converter Measured)<br />

High True Measure Constant 3 (Measures Ohms, .l V and 1 V Offsets [Cal<br />

Constant 2, 3, 8, 9, 1 111)<br />

High True Measure Constant 2 (Measures 10 V Gain ICal Constant 101)<br />

High True Measure Constant 3 (1 kV Range Enable [Cal Constant 0, 1, 611<br />

High True Measure Constant 4 (Measures 1 V Gain ICal Constant 01)<br />

High True Measure DC 1 (100 V 'Range)<br />

High True Measure DC 2 (-1 V 1 V, 10 V Range and Measure & Unk)<br />

High True Measure Ohms 1 [Measure Ohms Ref, Range 100 K, 1 M, 10 MI<br />

High True Measure Ohms 2 (Measure Ohms Ref, Range .1 K, 1 K 10 K1<br />

High True Pre-Amp DC 1 Ix 20 and x 100 Gain)<br />

High True Pre-Amp DC 2 (x 1 Gainl<br />

High True Pre-Amp DC 3 (x 10 Gain)<br />

High True Pre-Amp Output {x 2 and x 20 Gain)<br />

High True Positive Rundown Fast (For Negative Input Voltage)<br />

High True Positive Rundown Slow {For Negative Input Valtage)<br />

High True Range 12 (Sets AC Converter Range 1, 10)<br />

High True Range 24 (Sets AC Contertor Range 10, 100)<br />

High True Range 34 (Sets AC Converter Range 100, 1000)<br />

Low True AC Fast IAC Fast Enable)<br />

Low True Auto Cal 3 (1 00 V, 1 kY Auto-Cal Constants LCal Constant 4, 5, 6,<br />

71)<br />

Low True Auto-Cal {I kV Range and 1 kp, 1 V Offset [Cal Constant 1, 61)<br />

Low True Negative Rundown Fast (For AID Positive Input Voltage)<br />

Low True Negative Rundown Slow (For AID Positive Input Voltage)<br />

Low True Voltage Input (Enables AID Input)<br />

e. The clear line of AFOUf S pin 1 should have an approximateIy + 5 V level. Troubleshoot U9,<br />

U 19, and their associated circuits.<br />

Section VIII<br />

I


Section VIII SERVICE GROUP E Model 3455A<br />

E. Check for a clock signal at AlOU I5 pin 9. If the signd appears to be good, the processor (U26)<br />

and/or the ROM (U25) may be defective. IT the clock signal is missing, check for 500 nano second<br />

pulses at the device select lines of U26 (pins 12 to 15). If the pulses are good, U 14 may be at fault.<br />

8-E.13. Ingward logic Trouiblashooting with am AID Wsveferrn.<br />

a. Check the light isolators and associated circuits as explained in paragraph 8-E-12a.<br />

b. Check for a defective AIOU26. .<br />

c. Check for an open AIOCR4I and CR42. These diodes may cause glitches on U26 pin 29, causing<br />

the processor to be interrupted cantinuously.


Model 3455A<br />

SERVICE GROUP F<br />

8-F-1. OUTGUARD LOGIC TROUBLESHOOT lMG lSCHEMATlC 8, 9, f 01.<br />

8-F-2. Outguard logic troubIeshooting should be done using the Signature Analysis Routines (SA) in<br />

Figures 8-H-20 to 8-H-27. If any incorrect signatures are observed, the following checks may be<br />

helpful.<br />

a. IF any incorrect signatures are observed check for a 1 pF capacitor across A1U49. Install one Ef<br />

missing (part number 0100-0291). The capacitor should be instalIed to the underside of the A1<br />

motherboard, with the + terminal to pin 14 of U49 and the - terminat to pin 7 of U49.<br />

b. If no stable signature can be located and the A3 board has been replaced, check the 1C signals.<br />

Make sure they are toggling with good Iogic highs and lows (approximately 4 V peak to peak).<br />

c. Check for the waveform shown below at the junction of AlC29 and R42. if this signal is rniss-<br />

ing, C29 may be defective. U48 may aEso cause the missing signal.<br />

1.4 msec-9<br />

0 v-<br />

0-F-3. Main Cantrollar Troubleshooting 1Schmstic 8L<br />

a. Data lines DB to D7 (pins 18 to 25 of U3U9) and program address lines PA0 to PA9 (pins; 1 to 8<br />

of U9) should have voltage levels approximately + 4.5 V peak to peak. Check For any circuits that<br />

may cause loading.<br />

b, Sharp peaks of 3 V to 3.5 Y may be obscrvtd on some lines of the processor (A3U9). This is<br />

normal. The peaks are present when the processor is in a tri state mode.<br />

e. Check the back gate bias voltage (G.B.) of the outguard processor (A3U9). If the voltage is different<br />

from the voltage marked on the processor (by & .35 V) check for the correct value of the padding<br />

resistor A3R3. ! f R3 is the correct value and the bias is incorrect, replace the A3 board. The correct<br />

value of R3 is listed in the following table.<br />

0-F-4. Front Pans1 TrouClsthooting,<br />

I-'F-5. Front Panel Opsmtian Ghack.<br />

G.R. -hp- Part No.<br />

a. Turn the 3455A off. Place the instrument in the SA mode by disconnecting the test jumper on<br />

the A3 board and disconnect the plug from AlJ7.<br />

b. Turn the 3445A on. Half of the instruments from panel LEDs should alternately turn on and<br />

off with the other half.<br />

c. At the time the instrument is turned on and half the front panel LEDs turn on, a 0 should be in-<br />

dicated on the left side of the display. The 0 should move one position to the right each time the LEDs<br />

change. When the 0 reaches the far right of the display, a .O will start at the left and move to the right.<br />

Section VIII


Section VIII SERVICE GROUP F Model 3455A<br />

d. The same operation takes place for 1, .I, 2, .2, 3, .3, after the .O has moved to the far right of<br />

the display. If any of the LEDs do not Iight, replace them or troubleshoot their drive circuits. If some<br />

numbers of the display are bad, troubleshoot the display and associated drive circuits.<br />

B.F.8. Fmnt Asnal Ssnicing (Schematic 1QL<br />

a. If the display blanks out any zeroes, try replacing AlU62.<br />

b. The proper operation of the front panel buttons can be checked by monitoring AE U5f pin 14.<br />

The level at pin 14 should go low (TTL) low, any time a front panel button is pressed. If this is not<br />

observed, try replacing U57.<br />

c. Pf the front pane! buttons do not operate, chtck for a high level (?TL high) at A1 J8 pins 2 and<br />

3. A high level ac any of these pins will disable some of the front panel buttons. Check for the correct<br />

operation of AlU51, U50, or U53.<br />

d. If the front panel has a sticky switch, try the following: With a low temperature soldering iron,<br />

heat the soIder connection of the LED within the switch. While the solder is warm, push the button in<br />

and out several times. This should straighten out the LED and relieve any pressure on the switch.<br />

e. If the procedure in the prmndent paragraph does not relieve sticky switches, change LED5<br />

A2CR5 to CRI 1, CR13 to CR22, and CR24 to CR35 from -hp- part number 0990-0547 to -hp- part<br />

number 1990-0665. These changes should bc made for instruments with serial number 1622A01336<br />

and below. A procedure for changing or replacing LED" are in paragraph 8-F-7.<br />

f. A modification to reduce key bounce is as fallows: Change kl US7 from a 93 18 to 98LI 8 (part<br />

number: 1820-09871, A2R17 and R18 from a 2.2 K ohm resistor pak to a f 0 K ohm resistor pak (part<br />

number: 1810-0206). This change should be made for instruments with serial number 1622A00906<br />

and below.<br />

NOTE<br />

Switch baunm can be observed by pressing the ENTER Z button and<br />

then pressing the MA TH OFF bur fan only once. iC/ r wo 2*s ore disphyed,<br />

rhe 3455A hw key bounce.<br />

g. For all other front panel maIfunctions use Troubleshooting Diagram 8-H-26.<br />

8.F.7, Front Panel LED'n Switch, and Key Cap Replacament Prmedure.<br />

a. Removal Procedure.<br />

1. Remove front frame which is held by 8 screws.<br />

2. Disconnect two connectors between front panel and left side of instrument.<br />

3. Remove front panel and ON/OFF switch.<br />

4. Remove 11 screws holding Display/Switch board to front pane1 and remove Display/-<br />

Switch (D/S) board,<br />

5. Pull key cap off switch body.<br />

6. With knife or punch, cut off or punch through the red switch body mounting studs (clean<br />

excess plastic off to prepare holes for new switch).<br />

7. Hold display board upside down with key facing down and heat LED terminals to let bad<br />

LED fall out.<br />

8. Suck out soIder holes to prepare for new LED.


Model 3455A SERVICE GROUP F Section VIII<br />

b. Replacement Procedure.<br />

1. Mount the switch body on the D/S board and be sure the body is aligned with the other<br />

switches (NOTE: very important as the switch may bind if it is not straight).<br />

2. Using a medium temperature, broad, tip sotdering iron or woodburning tool, carefully<br />

melt the plastic studs down into a little dome to secure the switch body.<br />

3. Insert LED with shorter leg toward top of board. Make sure LED is flush with the board.<br />

4. Replace key cap.<br />

5. Depress key all the way to seat LED in place, and then solder LED using a minimum of<br />

solder.<br />

6. Hold D/S board so keys point up and reheat LED terminals to allow solder to flow away<br />

from switch.<br />

7. Depress key several times to make sure key does not stick. if it sticks, repeat (6).<br />

8. Remount D/S board on front panel frame.<br />

9. Plug both connectors back into main board.<br />

10. Remount front panel to chassis.<br />

11. Replace ON/OFF switch.<br />

Remember to try steps (6) and (7) of "'Replace" before replacing switch;<br />

it could save lime. It is important to use a low or medium rempesature tip<br />

soldering iron, as exposure to SOO0FJor over 3 seconds could damage the<br />

LED'S.<br />

0-F.8. HP-IB Tmublsahootlng ISchsrnetic 91.<br />

843-9. Before troubleshooting the ZIP-IB section of the 3455A, verily that the 3455A is malfunction-<br />

ing and make sure the "problemq* is not due to external programming (see Section III of this<br />

manual).<br />

a. If incorrect data is sent over the HP-!B lines, make sure the data is different than what is<br />

displayed on the front panel. If the data is the same, the instrument's HP-IB Section is not at fault.<br />

b. Check For a bad connection between the instrument's HP-IB connector (53) and the connector<br />

of the HP-IB cable. Clean both connectors, if necessary. Use a good freon based contact cleaner.<br />

AIso, make sure the HP-IB cable externaI to the instrument is good.<br />

c. Use the HP-IB SA Troubleshooting Diagram (Figure 8-H-27) for most of the HP-IB Section of<br />

the 3455A. SA can check most of this section, except for the HP-IB Iines themselves. Use the 59401A<br />

Bus System Analyzer for these lines.<br />

d. Check decoders AlU19, 020, or U1 I.


8-76<br />

0.G-2 Powar Swgplius (Sthemstie 11).<br />

SERVICE GROUP G<br />

a. In many of the 3455A's power supplies, the voltage reference of one supply is the output of<br />

another. This arrangement Lies the voltages of the two supplies together. A shift in one supply is<br />

reff ected in the other supply.<br />

b. To isolate dependent supply circuits, the reference supplies should be separate from each other<br />

and from the circuits they supply. The following steps may be used.<br />

1. Use external supplies to provide st reference to dependent supplies.<br />

2. Use external supplies to drive circuits in place of internal supplies.<br />

c. Following are some voltages of the inguard power supplies.<br />

1. Main power supply voltages.<br />

AEOTPI1: +9Vto +11 V<br />

A10TP12: e 19.5 V to + 23.5 V<br />

AIOTPI3: -19.5 V to -23.5 V<br />

AIOTP14: + 38 V to + 44 V<br />

AlOTP15: -38 V to -44 V<br />

AlOTP + 9: + 8.1 V to + 9.9 V (Inguard processor must be installed).<br />

2. Ohms supply voltages<br />

AlOTl pins 1; and 3: 10 V rms (20 V peak to peak) square wave.<br />

A1 OTl and A12T1 connection: .2 V rms (25 V open circuit) square wave.<br />

A12T1 pins 1 and 3: 40 V rms (80 V peak to peak) square wave.<br />

3. Allowable noise on the ohms suppIy as measured with a true rms voltmeter.<br />

+ 6.2 V supply: 30 pV noise<br />

-6.2 V supply: 60 pY noise<br />

d. If the fuse of the 3455A keeps opening, check the A10 board power supply breakdown diodes<br />

(A10CR64, 66, etc.). Also, make sure the 3455A has been switched to the correct line voltage.<br />

e. Table 8-G-E lists tbe various components and ztssembiies which uses the individual power sup-<br />

plies. This table may be useful if a power supply is loaded down by a defective component or<br />

assembly.<br />

0-6.3. Rsfsrenm Aswmbly (Schsmatie 51.<br />

Tabk 8.6-1. Power Supplies Lacstions.<br />

a. The reference assembly of the 345SA is on the exchange program and should be returned to the<br />

Model 34554


Model 3455A SERVICE GROUP G Section VIII<br />

nearest -hp- Service Office, if inoperative. The only checks that can be made are the following.<br />

1. If the reading on the display jumps 10 or 100 counts when adjusting any adjustments on<br />

the reference assembly, the wiper of the pot may be dirty. Work the adjustment screw of pot<br />

back and forth to clean the wiper.<br />

2. Make sure an oxidation layer has not formed on any pins of the assembly printed circuit<br />

board. The pins can be cleaned with a soft lead eraser.<br />

3. Typically, the maximum noise altowed on the reference voltages (use a DYM with input Z<br />

> 1010) are 20 pV for the -t- 10 V reference and 30 pV for the - 10 V reference. Replace<br />

the assembly if excessive noise is present.<br />

4. The -t 10 V reference voltage at AlOTP8 should be adjustable to + 10 V A<br />

100 pV and the -10 V to -10 V I- 20 mV. Replace the assembly if both the + 10 V and<br />

- 10 V are not adjustable. Replace Al OU7 if only the - 10 V reference is incorrect.<br />

8-6-4. Turn-Oror Errors 1Schematic 1, 5, rad 8).<br />

8-(3-5. Turn-over errors are present when, for example, a positive input reading is good and the<br />

negative input reading is our of tolerance. This can be checked by taking a positive reading and then<br />

reversing the input leads. The following are a few turn-over checks and hints.<br />

a. When chwking for turn-over errors, the 10 V range and zero offsets should be the first things to<br />

check.<br />

b. Check the A/D converter (A14) if turn-over differences are observed. Replace, if necessary.<br />

c. Turn-over errors on all ranges: Unsolder CRI and CR2. from the A10 board. If<br />

the error disappears, CRI and/or CR2 may be leaky. Make sure the + 10 V and - 10 V<br />

references are good (A1 OTP8 should be + E 0 V & 100 pV and A1 0 TP7 should be - 10 V<br />

.+ 20 mV).<br />

d. Turn-over differences on the 10 V range: Check AlOU1, U2, 47, or 418. Other<br />

possible causes may be K 1, Al, Q2, 44, Q19, and their associated circuits.<br />

e. Turn-over errors on the top three ranges: Check Al OK6 and Q15.<br />

f. Turn-over differences on the 100 V and 1000 V ranges: Lift AIOQ9 and CR29. If the error<br />

disappears, CR3 1 and/or CR29 may be leaky. Do the same with CR16 and CR17. 48 may also be<br />

defective,<br />

g. The FETs connected to AIOTP2 may cause turn-over errors, if teaky. 440 may also be leaky.<br />

h. If the negative readings are good and all positive readings above 20 V are unstabIc on the 100 V<br />

range, check AlOQ36.<br />

04-6. Othar Troublsshootinu [Schemstie 0 and 1 11.<br />

a, If the instrument fails to sample in the dc volt, high resolution mode and the ac volt normal<br />

resolution mode. check AIC29 or U48,<br />

b. If the HP-IB operation is intermittent with the instrument's LED'S dim, make sure the 50/60<br />

Hz switch is in the correct position.<br />

c. If the fan refuses to spin after repeated turn-ons, change A1 R 15, 19, aad'24 from 1 1.8 kfl lo<br />

13.3 kn (0757-02893. This change should not be made on operating fan circuits.<br />

d. A good fan measures approximately 30 0 between the brown and yellow wires of the fan. A<br />

defective fan will usually measure between 10 R and 15 fl.


Section VIII Model 3455A<br />

8-H-1. f ROURLESHOOTING DIAGRAMS.<br />

SERVICE GROUP H<br />

84-2. The following diagrams in this service group may be used to troubleshoot the 345514 in place<br />

of the other service groups. These diagrams are separated into three groups. The first group is a<br />

General Troubleshaoting Diagram which can be used to isolate the two main sections of the instru-<br />

ment (Inguard and Outguard). The second group deals with the Inguard section and the third group<br />

can be used for Outguard Troubleshooting.<br />

8-H-4. The General Troubleshooting Diagram (Figure 8-H-2) may be used in place of the Half-<br />

Splitting Technique of paragraph 8-196. Since this method is not as complete as the Half-Splitting<br />

Technique, use it only if an extra 3455A or if an Tnguard/Outguard Service Cable is not available.


34W -8-25<br />

PLUG-IN THRU<br />

REAR OF INSTRUMENT<br />

TOP VIEW<br />

Figure 8-M-1. Assembly and Test Point Locations.<br />

~13-<br />

(OPT 001)


Start<br />

Turn ln~trumenr ON. Press<br />

The Front Penel TEST<br />

Button.<br />

Propar ~perstloi Of The TEST<br />

Function Is Indicated By The<br />

Front Rnel Going Blank For A<br />

Few Seconds And Then All Front<br />

Panel Enunciators (Except REAR<br />

TERMINAL) Being Lit And A<br />

Display of -1- 8888888 With All<br />

Decimals tit Or If A Failure Is<br />

Detected By The TEST Routine.<br />

A Number, From @To 13 Will Be<br />

Displayed.<br />

I<br />

Turn Ths Instrument OFF.<br />

Disconnect The Test<br />

Thm Proper Operation Of The<br />

JEST Function Indicates That<br />

The Majority Of The lnguard And<br />

Outguard Logic Is Functioning<br />

Properly. The TEST Function<br />

Does Not Check The Following<br />

Ciculrs: AC Converter, Ohms<br />

YES<br />

(A Number From<br />

I<br />

A Failure Code Indicates That One Or<br />

More Of The Auto-Cal Constants Is Out<br />

Of Test Limits.<br />

Record Number Displayed<br />

Jumwr On the A3 Assembly<br />

And The Connector<br />

From A1J7. Turn The<br />

Instrument ON.<br />

I<br />

Proper Operation Of The Outguard<br />

Test Routine Is Indicated<br />

By A Number or Character Being<br />

Strobed Across The Displey And<br />

The Enunciators Being Alter-<br />

Convener. Front Panel Switching.<br />

HP-IS Interface, And Some Of<br />

The Input Switching Circuits On<br />

The A10 Assembly. Refer To The<br />

HP-IB Section Of The Outguard<br />

Troubleshooting Procedure For Press The TEST Button<br />

HP-I8 Problems. Refer To The<br />

Schematics And Theory wf Opera-<br />

tron For Troubleshooting The<br />

Other C~reuitry.<br />

Read + 8888888<br />

The Numbers Recorded Indicate<br />

Which Tests Have Failed. Use The<br />

Front Panel TEST Troubl8rho01ing<br />

Information Portion 01 Tha<br />

lnguard Troubleshooting Section,<br />

Along With The Schematics To<br />

Troubleshoot The lnguard<br />

Switching.<br />

3455 -8-1 1<br />

Figure 8-H-2. General Troubleshooting Procedure nagram.<br />

8-79


1 1 1 - -<br />

TP8: TP7:<br />

+10 V -10 v<br />

0345566510 (Refer To Figure 8-1 0) 8-80<br />

Rev. C


SET Sl SwrTcnEs<br />

TO "0"<br />

7<br />

-> .*. .--- --- : .>nb..++.- , t :PYJ:d...<br />

-.I*- -n- -M-<br />

. *r.<br />

A1<br />

03455-66501<br />

Rev. D<br />

%< -<br />

L<br />

-*m<br />

--l*C -L7F -w-<br />

* 5V 4F53 (STARTlSTDP AT A3TPl)<br />

CH29 (START#STDP AT A3TPZI f(c ~ho<br />

02C2 ISTARTISTOP AT A3TP31<br />

73FU (START STOP A7 A3TP41<br />

A10. Campormt Locrtar Tablo.<br />

ul I~CII*.PT* I*nm106 b)<br />

DISCONNECT PLUG<br />

FADM J7 FOR TEST.<br />

4 - q +TI coq<br />

"I.. ..I<br />

*


Model 3455A SERVICE GROUP H Section VIII<br />

8-H-5, The follolking diagrams in this group can be u d to troubleshoot tho Inguard section of.the<br />

3455A. A EroubIeshooting procedure for the Inguard/Outguard Transfer Cicuitry is also included.


Turn The Instrument Off.<br />

Remve The A14 Aswm.<br />

bly. Disconnect The Brown<br />

Test Jumper On The A3<br />

Assembly. Disconnect. The<br />

Brown Tesr Jumper Lo-<br />

mted Batween A10V27<br />

And U28. Use A Clip Lead<br />

Ta Short A10J2 Pin 74 To<br />

Inguard Ground. Turn The<br />

Instrument ON.<br />

Measuw The Switch Drive<br />

Slgnals On 41OUT5, Pins<br />

Select Circuit LA7 OU14.<br />

U26 And Associated Com-<br />

Replace Or ~roubt&oot<br />

The AID Converter IAl4<br />

Assemblyj. The Problem I$<br />

Mosr Likely In The S41tch-<br />

ing Cjrcults IA14PJ1. U2.<br />

Q3, Q4 And Aswclatsd<br />

Comonnents.<br />

Troublashmt The lngusrd<br />

YES Logic Circuit (A10U15.<br />

U22. U26 And Associated<br />

Components.)<br />

re 8-H-3. Enguard Troubleshooting Procedure Magtam.<br />

Auto-Cal Circuitry TEST 13.<br />

8-83/8-84


- Turn The Insrrument OFF.<br />

Rernon The A14 Assem-<br />

bly. Disconned The Brown<br />

Test Jumper On The A3<br />

Assembly. Disconnect The<br />

Brown Test Jumper Lo-<br />

cated Between A10U27<br />

And U28. Use A Clip Lead<br />

To Short AlOJZ Pin 14 To<br />

lnguard Ground. Turn The<br />

Instrument ON,<br />

.<br />

-<br />

Use An Osc~lloscope To<br />

Measure the Switch Driw<br />

Signals On P~ns 2. 5. 7.<br />

10. 12 and 15 Of A10U15.<br />

Use A DVM To Measure Troubleshoot The l nguard<br />

The + 10 V Reference At Logic Circuit 4AlOUlS.<br />

AlOTPS And The - 10 Y U22. U26 And Associated<br />

Reference At A10TP7. Components).<br />

I<br />

Replace Or Troubleshoot<br />

The AID Converter (A14<br />

Assembly). The Pfoblern Is<br />

Most L~kely In The Sw~tching<br />

Circuits (A14U1, U2.<br />

03. 04 And Assoc~atad<br />

Components).<br />

Trouble3hoot The Device<br />

Select Cmrcuit (A10U14.<br />

A10U15 Pin 9 U26 And Associated Com-<br />

ponents).<br />

Troubl~shoor The Reference<br />

C~rcuitr (A1 1 Assembly,<br />

A10U7 And Assoti.<br />

ated Components).<br />

3455-8-2<br />

Figure 8-H4. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 12.<br />

8-85/8-86


Associated Corn-<br />

Figure 8-H-5. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 1 1.<br />

8-87/8-88<br />

The Switch Drlw Check Switching FET's<br />

Voltage At Pin 13 AlOQ2. 019 And krsocl-<br />

f A1OU5 AiPPrO at& Cornpone<br />

Select Circult (A1 0U16,<br />

Bias Amplifier Ckcuit<br />

(AIOU?, a5 And AasocFa-


With A Display Reading Of<br />

"30" (Test 10 Failure),<br />

Measure The Switch Drive<br />

Voltage On Pin 13 Of<br />

A10U6.<br />

Check AlOUG And Associ-<br />

Pin 11 Of A10U6 AlOTP3 Approx. ated Components.<br />

Bias Amplifier Circuit<br />

(AIOU1, Q5 And Associ-<br />

Vortage At Pin l3<br />

YES Check Switching FET's<br />

Of Approx. 4 A10Q4, 019 And Associ-<br />

+ 10 V dc? ated Components.<br />

The Gate Bias<br />

Bias Amplifier Circuit<br />

Troubleshoot The Logic CAlOWI, Q5 And Asseci-<br />

ated Components.<br />

U26 And Associated Corn+<br />

NO<br />

Check A1 OW5 And Aswci-<br />

ated Components.<br />

Troubleshoot the Devmce<br />

Select Circuit {A10U16.<br />

U14, U26 And Assoc~ated 3455-8-4<br />

Components).<br />

Figure 8-H-6. Inguard Troubleshmting Procedure Diagram,<br />

Auto-Cd Circuitry TEST 10.<br />

8-89/8-90


-22<br />

Start<br />

Wirh A Diaplsy Reading Of<br />

'9" (Test 9 Failure) Measure<br />

The Switch Drive<br />

Voltage<br />

A10U8.<br />

On Pin 13 Of<br />

Wgure 8-H-7. Inguard TrouMeshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 9.<br />

8-91 18-92


"8" ((Test 8 Failure), Mea-<br />

sure The Switch Drive<br />

Voltage On Pm 13 Of<br />

Voktage Approx.<br />

YES<br />

Voltage At Pin 11 Voltege A? AlOTP3<br />

Select Circuir CAIOUIZ,<br />

U14. U26 And Associ-<br />

ared Components)<br />

Troubleshoot The Gate<br />

Bias ArnvFrfier Circv~t<br />

(AIOU?. Q5 And Associ-<br />

ated Cornponenrsl.<br />

Troubleshoot The Logic<br />

Circuit (AlOUIZ. U22,<br />

U26 And Associated Com-<br />

ponentsl.<br />

Check A10U8 And Associ-<br />

ared Components.<br />

The Switch Orlve<br />

Check Switching FET's<br />

Voltage At Pin 14 AlOQ2, 021. 022 And<br />

Of A1 OU4 Approx. Of Af OU5 Approx. Associated Components.<br />

Of A1 OU4 > 4 V dc<br />

The Voltage At<br />

AlOTPG A~prox.<br />

Troubleshoot The Feed.<br />

back Rrnpllfier (A10U3,<br />

09. 011, 025. 026 And<br />

Associated Components).<br />

Troubleshoot The Logic<br />

Circu~t (A'10U13, U22,<br />

A10U13>4V U26 And Assoc~ated Corn-<br />

voncnts).<br />

Troubleshoot The Devlce<br />

Select Circuit (A1 0U13.<br />

U14, U26 Arrd Associ-<br />

ared Components)<br />

Check A10U4 And Assaci-<br />

ated Camponsnrs.<br />

The Gate Bias<br />

Voltage At A1 OTP3<br />

Bias Amplifier Circuit<br />

(AIOU1. Q5 And Associ-<br />

ated Components).<br />

Troubleshoot The Logic<br />

A10U16 > 4 V U26 And Associated Com-<br />

Peak-To-Pea k panentsl.<br />

Troubleshoor The Device<br />

Select Circuit (A1 OU16,<br />

U14, U26 And Associ-<br />

3455 -8-6<br />

Figure 8-H-8. lnguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 8.<br />

8-93/8-94<br />

Check A10U5 And Assocl-<br />

ated Components.


Wtth A Display Reading<br />

Of "7" (Test 7 Failure).<br />

Measure The Switch Drive<br />

Voltage On Pin 14 Of<br />

A1OU4.<br />

Voltage At Pin 10 Voltage At Pin 13<br />

A10U9 Approx.<br />

Troubleshoot The Logic<br />

Clrcuit tAlOU13. U22.<br />

U26 And A~sociated Com- U26 And Associated Com-<br />

3455 -0-5<br />

Figure 8-H-9. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 7.<br />

8-95/8-96


7<br />

Start<br />

"6" {Test 6 Failure), Mea-<br />

sure The Switch Drive<br />

Voltage On Pin 14 Of<br />

Voltage At Pin 10 Of<br />

Check A10U6 And Associ-<br />

ated Components.<br />

Check A10U6 And As~oci-<br />

A10U6>4 Vdc<br />

Voltage At AlOTP3<br />

ated Components.<br />

Figure 8-H- 10. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 6.<br />

8-97/8-98<br />

Check Switching FET's<br />

A10016. 019, 034. 039,<br />

Relay A10K6 And Assoclated<br />

Components.<br />

Troubleshoot The Attenu- Troubleshoot The Gate Troublcshoo~ The Gate<br />

afor Clrcuir (AIOVlE, Bias Arnplif ier Clrcuit B~as Ampllf ~ er Circuit<br />

Q37, Q35, 038. 039 And IAlOU1. 05 And Assocl- 1AIDU1. Q5. And Associ-<br />

Associated Components). axed Components). ared Components).<br />

The Device Select Troubleshout The Logic Troubleshoor The Logic<br />

S~gnal At P I 9 ~ Of<br />

A10U16 > 4 V U26 And Assoc~ared Corn-<br />

Peak -Yo-Peak ponent5l.<br />

A10U16 $ 4 V U26 And Associatted Com-<br />

Troublcshoor The Devrce<br />

Select Circuit (AlOU16.<br />

U14, U26 And Associated<br />

Comwnents).<br />

Troubleshoot The Device<br />

Select Circuit IA'IOUTG,<br />

U14, U26 And Associated<br />

Components).<br />

Troubleshoot The Device<br />

Select C~rculr (A1 0U16.<br />

U14, U26 And Assocl-<br />

ated Componen~sl.<br />

Check A10U5 And Assocb-<br />

ated Componenrs;


With A Display Reading<br />

Ot "5" (Test 5 Failure],<br />

Measure The Switch Driw<br />

Voltage On Pin 13 Of<br />

A10U4.<br />

nput Voltage At<br />

oltage At Pin '10 0<br />

A10U24 Approx. A10U9 Approx.<br />

Signal At Pin 9 Of<br />

Bias Ampl~fier Circuit las Amplifier Circuit<br />

(~70~1. a5 And ~ssoctted<br />

Cnmwnenrs).<br />

Troubleshoot The Device<br />

Select Circuit (A10U13, Select Circuit (A1 OU16,<br />

3455- D-7 U14. U26 And Associated Uf4. U26 And &$oci-<br />

ated Components).<br />

Figure 8-H-l I. Inguard Troubleshooting Procedure Diagram,<br />

Auto-C4 Circuitry TEST 5.<br />

8-99/8-100


7<br />

Start<br />

With A Displav Reading Of<br />

"4" (Test 4 Failure), Mea-<br />

sure The Switch Orrve<br />

Voltalp On Ptn 14 Of<br />

A10U4.<br />

he Switch Qri he Switch Dri he Sw~tch Dri<br />

Voltage At Pin 10 Of Voltage Ar Ptn I Of Voltage At Pin 14 Of<br />

A1 0U24 Appror A1 0U9 APPTOX.<br />

he Devrce Selec Troubleshoot The Logic Bias Amplif~er C~rcu~t Bias Amplifier Ctrcurt<br />

Circuht (A10U13. V22, (AlOU1. 05 And Associ- IAlOU7, Q5 And Assocl-<br />

U26 And Associated Com-<br />

3455- D-8 Selecr Circuit lA10U13. Select C~rcu~t {AtOUl 6,<br />

U14- U26 And Associ- U14. U26 And Assocn-<br />

ted Components).<br />

Figure 8-H-12. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Ca1 Circuitry TEST 4.<br />

Signal At Pin 9 Of Circuit (A10U16,


'3'' (Test 3 Failure) Mea-<br />

sure The Switch Drive<br />

Vottage On Pin 13 Of<br />

AIOUB.<br />

Voltage Ar Pin 1 Of<br />

Voltage At Pln 2 Of<br />

The Gate Bias<br />

Voltage At A1 OTP3<br />

Appmx. 01 V dc<br />

Blas Amplifier Clrcult 813s Amplifier Circuit<br />

(ATOUI, 05 And Associ-<br />

lJ26 And Associated Corn-<br />

Signal At Pin 9 Of Signal At Pin 9 Of<br />

Troubleshoot 1 he Device f roubl~shoot The Device<br />

Select Circuit (A10U13. Select Circult (A10U16, Select Circuit (A1 0U16.<br />

U14. U26 And Associated U14, U26 And Associ- U14. U26 And Associated<br />

Figure 844-1 3. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 3.<br />

8-103/8-304<br />

U26 And Associated Com-


I<br />

"2" (Test 2 Failure) Mea-<br />

I<br />

sure The Switch Drive<br />

Voltage On Pin 13 Of<br />

A1 OUR.<br />

Check Swltehing FET's<br />

Voltage Approx.<br />

Voltage At Pin 14 M<br />

A10Q2, 021 And Assodated<br />

Components.<br />

Pin 11 Of A10U8<br />

Chsc~ ~10U8 And Assocf-<br />

Voltage At A1 OTP3 eted Components.<br />

Bias Amplifier Circuit<br />

(AIOUI, Q5 And Associ-<br />

The Oevxe Selen Troubleshoot The Logic<br />

R10W12 > 4 V U26 And Associated Com-<br />

Pea k-To-Pea k ponentsl.<br />

+<br />

I Troubleshmt The Device !<br />

Selecf Circuit (A1 0U12.<br />

U14, U26 And Associated<br />

The Driver Input The Gate Btas<br />

Voltage At Pin 9 Of Voltage At A1 OTP3<br />

A10U5 >4Vdc Approx. 0 V dc<br />

Troubfeshoot The Gate<br />

818s Amplifier Circuit<br />

(AIOU1. 05 And Associ-<br />

atad Components).<br />

Troubleshoot The Logic<br />

SlgnaI At Pln 9 Of<br />

&10U16>4 Y<br />

Circuif (AlOUJ 6, U22,<br />

U26 And Associated Com-<br />

Pea k-To-Peak<br />

ponents).<br />

Troubleshoot The Device<br />

Select Circuit (A1 0U16,<br />

U14, U26 And Associ-<br />

ated Components).<br />

Figure 844-14. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 2.<br />

8-105/8-106<br />

Check AtOU5 And Associated<br />

Components. I


7<br />

Start<br />

Of "I" (Test S Failure)<br />

Measure The Switch Drive<br />

Voltage On Pin 1 Of<br />

The Driver Input<br />

Voltage At Pin 7<br />

of A10U4 >4 Y ~ C Approx. Q v dc<br />

Check A10U4 And Asmciated<br />

Components.<br />

Check Switching FEf's<br />

Voltage At Pln 1 Of Voltage Ar Pin 2 Of AlOQI6, Q21. 036, Q38<br />

A10U8 Approx. And Associared Com-<br />

ponents.<br />

Volta* At Pin 7 Of<br />

The Gate Bias<br />

- -<br />

Check ATOUG And Associhated<br />

Components.<br />

I<br />

oubleshoot The Logic<br />

rcuit (A10U16, U22,<br />

25 And Associated Com-<br />

Troubleshoor The Device<br />

~nenrsl.<br />

Select Circuit (A1 0 U21.<br />

U14, U26 And Assoeiated<br />

Components).<br />

Check A1 0U8 And Associated<br />

Components.<br />

AIOUS >4 V dc<br />

The Gate Bias<br />

Voltage At AlOTP3<br />

~pprox. Q v dc<br />

Troubleshoot The Attenuator<br />

Circu~t lA10U18, Troubleshoot The Gate<br />

Q37, 035, 038. 039, 040<br />

Bias Amplifier CircuEt<br />

Troubreshoot The Logic<br />

and Associated Com-<br />

(AlObll. Q5 And Assocl-<br />

Circuit (A10U21. U22,<br />

ponents}.<br />

ated Camwnents).<br />

AJOU21 > 4 V<br />

U26 And Associated Components]<br />

.<br />

Slgnal At Pin 9 Of<br />

U26 And Associated Com- A10U16 > 4 V<br />

Peak-To -Peak<br />

Troubleshoot The Oev~ce Troubleshoot The Device Troubieshoot The Device<br />

Select Circuit iA10U13. Select Circuit (A1 0U16. Select Circuit (AlQUI2,<br />

Ut4, t326 And Associated U14, U26 And Associated U14, U26 And Associated<br />

Components). Cornponentsl. Cornponentsl.<br />

A10U16>4 V<br />

U26 And Asxlciated Corn-<br />

Figure 8-H- 15. Inguard Troubleshooting Procedure Diagram,<br />

Auto-Cal Circuitry TEST 1.<br />

8- 107/H-108<br />

Check A1 OW5 And Associat&<br />

Components.


9<br />

Start<br />

r-l<br />

Troubleshoot FO Transfer<br />

Circu~t (Ala9. AlOU35.<br />

A1OU27. AtOU28 And<br />

Assoelated Components).


Test Points On The<br />

A1 0 Assembly).<br />

Are The Voltages<br />

Within 1 5% Of The<br />

Marked Values<br />

3455-8- 13<br />

ov<br />

8 .<br />

"-<br />

. .<br />

T irnelDiv<br />

.5 psPE<br />

- f -,<br />

Figure 8-H- 18. Inguard Troubleshooting Procedure Diagram,<br />

Power Supply and Controller Circuitry.<br />

8-1 13/8-114


Turn The Instrument OFF.<br />

Reconnect The Plug To<br />

A1 37. Be Certain That Ths<br />

Test Jumper On Thw A3<br />

Assembly Is Disconnectd.<br />

Turn The Inctrument ON.<br />

The Device Select<br />

Signal Present At<br />

Pin 9 Of A1 0U157 Troubleshoot The Device<br />

(This Signel 1s A Select Circuit tA1OUl4,<br />

Negatiw-Going Pulse W26 And Associated Com-<br />

Approximately 1 pS0c p0n0flts).<br />

In Duration And<br />

" <<br />

A10t123 And A1 0R79.<br />

Troublwhoot The AID<br />

Circuit<br />

;:;0":;5', *, 4U1 , U2, 01<br />

Through 04 And Asswci-<br />

ated Components).<br />

Troubleshoo; The DC<br />

Preamp And lnput Switch-<br />

ing Circuitry [Schematic<br />

No. 11. Be Certain That<br />

- 10 V dc Is Applied TO<br />

The M55A Input Terrni-<br />

nals.<br />

A f Troubleshoot The Reference<br />

Supplies (At 1 Assembly,<br />

AtOU7. A14tll. U2<br />

And Associated Compo-<br />

Troubleshoot The Inte-<br />

orator Circuit (A1 4U3. W,<br />

Q5, Q4 And Associated<br />

Cwmwnentsl.<br />

Traublenhoot The .2 V De-<br />

tect And Abs~lute Value<br />

Pln 14Of The114 Circuits (A14U5. U6, (16<br />

And Amciated Compo-<br />

nents).<br />

Troubleshoot The 10 V<br />

Detect And Absolute<br />

Value Circuits (A14U5,<br />

Assemblv > + 4 V dc US, 06 And Associated<br />

Com~onentsl.<br />

Force The Integrator To<br />

Auto-Zero Bv Conneaing<br />

A Cllp Lead Between The<br />

Cathode Of A14CR8 And<br />

l nguard Ground.<br />

Troubleshoot The Q Detect<br />

Circuit (A14U6 And<br />

Aswciated Components).<br />

Troubleshoot The Infe-<br />

The Voltage At gratwr Circuit IA14U3, U4,<br />

A14TP1 Q Vdc * .2 Vdc 04, Q5 And Associated<br />

Components).<br />

Remove The Cllp Lead<br />

lnguard Ground And Con-<br />

nect It Across A? 4C2.<br />

Troubleshoat The .2 V<br />

Detect And Absolute<br />

Value Circuirs (A14lJ5,<br />

Aewmbly 0 Volts U6, M And Associared<br />

Components).<br />

Troubleshoot The 10 W<br />

The Voltage At meet And Absolute<br />

Value Circuits tA14U5.<br />

U6, 06 And Associated<br />

Components).<br />

The Voltage At Troubleshoot The 0 Detect<br />

Circuit (Al4U6 And<br />

Assembly 0 Volts Associated Components).<br />

-<br />

Remove The Clip Lead<br />

If. At This Palnt. he Problem Has Nor<br />

Bean Isolated To A Circuit. Recheck The<br />

Symptoms To Be Certain The Problem<br />

Is In The lnguard Section Of The Instru-<br />

r ment. Refer To The Theory Of Opera-<br />

tion And Schematics To Locate Prob-<br />

lems Not Covered By This Procedure.<br />

I<br />

Figure 8-H-19. Inguard Troubleshooting Procedure Diagram,<br />

A-to-D Convertor Circuitry.<br />

8-1 15/8-116


Model 3455A SERVICE GROUP H Section VIII<br />

8-H-a, OUTGUARD TROUBLESHOOTlC16.<br />

8-H-7. This section contains information and procedures to aid in troubleshooting the digital<br />

(outguard) portion of the 3455A.<br />

8-H-8. A Signature Analyzer (-hp Model SOMA) is required to perform the Outguard<br />

Troubleshooting procedures. If one is not available, it is suggested that the 3455A be returned to an<br />

-hp- Sales and Service Office for repair.


NOTE l<br />

7?te Siqnatum Analyzer Controls<br />

Should Be Set As FoIIo ws For This<br />

Test.<br />

.........<br />

.......<br />

......<br />

LINE. ON (/h')<br />

START. \ (/Nl<br />

STOP.. / (OUT)<br />

CLOCK. ...... (OUT)<br />

HOLD ...... .OFF (OUT)<br />

SELF TEST. .OFF (OUT)<br />

..<br />

NOTE: Or Check The + 5 V<br />

Signature For 4F53 (An<br />

Alternative Quick-Check)<br />

Start<br />

Cr)<br />

f urn The Instrument OFF.<br />

Disconnem The Test<br />

Jumper On The A3 Assem-<br />

bly. Disconnect The Plug<br />

From AlJ7. Set All HF-IB<br />

Address Switches To The<br />

"0" position (down). Turn<br />

The Instrument ON.<br />

Proper Dperatron 01 The Outguard Test<br />

Routine 15 Indicated By A Number Or<br />

Character Being Strobed Across The<br />

Display And The Fronr Panel Enunci-<br />

ators Being Alternately tit.<br />

Does The<br />

Instrument .MA I GO To The Main Conzroller I<br />

I Enter The :roubleshooting Proce-<br />

Outguard Test dure.<br />

Raut~ne?<br />

A<br />

Connect The Signature<br />

Analyzer As Follows:<br />

1. START input to<br />

A3TP 1.<br />

2. STOP lnput To A3TP1.<br />

3.CLOCK lnput To<br />

A3TP5.<br />

4. GND Input To Chassis<br />

{See NOTE 1 For Signa-<br />

ture Analyzer Control<br />

Settings.)<br />

---<br />

Use The Signature Analy-<br />

zer To Check The Signa-<br />

tures At The Follawing<br />

Points:<br />

Location Signature<br />

A1 U34<br />

Pin 2 184P<br />

Pan 5 7FPH<br />

Pin 9 AFOP<br />

Pin 12 UHUC<br />

AT U42<br />

Pin 2<br />

Pin 5<br />

Pin 12 8CPA<br />

-The RAM Circuitty Is Working Correctly.<br />

Analyzer, START And<br />

STOP Inputs To A3TP2<br />

And Check The Following<br />

Signatures:<br />

Location Signature<br />

A1 U34<br />

Pin 2 6A09<br />

Pin 5 5042<br />

Pin 9 U330<br />

Pin 12 9954<br />

A1 U42<br />

pin 2 PW5<br />

Pin 5 AH54<br />

Pin 9 530U<br />

Pin 12 2A69<br />

v<br />

'The ALU Circuitry Is Working Correctly.<br />

I<br />

Go To The Device Select<br />

Troubleshootlng Procedure.<br />

- - - -7<br />

'I<br />

I<br />

I<br />

1<br />

NOTE: Or Check The + 5 Y<br />

Signature For CH29. (An<br />

ASternative Quick-Check)<br />

I<br />

I<br />

I<br />

t<br />

I<br />

I<br />

Go To The ALU Trouble-<br />

shooting Procedure.<br />

Figure 8-H-20. Preliminary Outguard Troubleshooting Procedure Diagram.<br />

8-1 19/8-120


NOTE 1<br />

............<br />

.........<br />

I.INL O,V (1%')<br />

SlslKI'. .I (IN)<br />

STtOP. ......... J (OCU}<br />

or ocii. ........ J (o it I )<br />

IfCILI> .OI'I (OIIP)<br />

........<br />

SLLC- 7-FST. .... .OF!- (OUT)<br />

NOTE 2<br />

WAVEFORM 1<br />

;*** t ' -<br />

J~meJDiv.<br />

.5 rsec<br />

0<br />

Star,:<br />

A<br />

Be Certa~rr That: She Test<br />

Jumper 011 The A3 Assemhiy<br />

Is Dlsconrtected, The<br />

Plug Is Disconnected From<br />

At JJ And The HP-15<br />

Address Switches Are All<br />

Set Ja The '0" positron.<br />

Turn The Instrument ON.<br />

Check The Fullowing Plns<br />

On R1J6 For The Volt-<br />

ages Listed (A3 Assembly<br />

Plugged In):<br />

Fln Vnltaqe<br />

A<br />

M<br />

+5V .3V<br />

+ 9 r ~ .5v<br />

L Equal To The<br />

Voltage Stamped<br />

On A3U9 k .3 V.<br />

Troul~leshoot The Power<br />

Supr3lles If The Voltage<br />

At A1J6 Pin 1 Is Incorrect,<br />

Be Certain That<br />

A3R3 Is The Proper Value<br />

For The Voltage Stamped<br />

On A3U9.<br />

I<br />

*<br />

The Clock<br />

1 1 Presen~ AT<br />

3TP57<br />

A<br />

Turn The Instrument OFF.<br />

Warning: Make Sum The<br />

3455A Is Turned Off Or<br />

lncarrect Signatures May<br />

Be Present When The A3<br />

Board Is Reconnected.<br />

Remove The A3 Assern-<br />

bly And Connect It To An<br />

Extender Board. Place<br />

Tape Accross Pins B<br />

Through K (8 P~nsl Of The<br />

Extender Board (To Break<br />

The Data Bus Connec-<br />

tions) And Insert It In<br />

AT J6. Connect The Sig-<br />

nature Analyzer START<br />

And STOP Inputs To<br />

A3TP3. Connect The<br />

CLOCK Input To A3TP5<br />

And The GND To The<br />

Chassis. (See NOTE 1 For<br />

Signature A~alyZer Con-<br />

trol Settings. Turn In-<br />

' struments ON.<br />

E<br />

Voltage Aesrstance<br />

5.0 v<br />

- 4.5 V<br />

4.64~1<br />

2.87 kll<br />

-4.OV 1.96kR<br />

-3.5V<br />

- 3 .O V<br />

-2.5 v<br />

1.37kS1<br />

1 .OO kS2<br />

715n<br />

.2.O V 511 fZ<br />

Troubleshoot The Clock<br />

Circuit (Schematic 8).<br />

Pan Srgnat ure<br />

+5V: 4F53<br />

+5V: 79FU<br />

Analyzer START And Optrat~ng Properly.<br />

Stop Inputs To A3TP4<br />

And Check The Following<br />

Refer To Schematic 8 To<br />

Determine<br />

Lrne 100 Which Through Data D71 Bus Is<br />

Bang HeEd. Troubleshoot<br />

The Conrponents Whrch<br />

Are Connected To This<br />

Line. (See Note 2.1<br />

In Most Cases, A H~gh<br />

Resolution Voltmeter<br />

(1 pV Resolutiun) May Be<br />

Used To Determine The<br />

Bad Component. If The<br />

Data Line Is Being Held<br />

Low, The Component W ~th<br />

Analy~er START And The Lowest Voltage<br />

STOP Inputs To A3TP2 Reading Will Generally Be<br />

And Check The Followrng The Faulty %rt. If The<br />

ttne Is Being Held High,<br />

The Bad Part Will Normal-<br />

ly Have The Highest<br />

Voltage Reading.<br />

+ 5 V: 02C2 When Troubleshooting The<br />

Processor Data Bus, The<br />

A3 Assembly Should Be<br />

Remod From The I tlstru-<br />

ment . I8c Sure f o Remove<br />

The Processor<br />

Turn The lnsrrurnent OFF.<br />

Remove The A3 Assembly<br />

From The Extender Beard<br />

And Replace It In The<br />

Instrument. (Be Sure To<br />

Remove The Tape From<br />

The Extender Board.1 Turn<br />

The Instrument ON.<br />

Pbn S~gnature GO To The RAM Trouble-<br />

shooting Procedure.<br />

D 7AAU<br />

E OC52<br />

F 6UAO<br />

H H8CH<br />

3455-C -18<br />

Figure 8-H-21. Outguard Troubleshooting Procedure Diagram,<br />

Main Controller Circuitry.<br />

8-121/8-122


Pin<br />

V34 1<br />

2<br />

3<br />

4<br />

5<br />

8<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

U35 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

m 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

1 I<br />

13<br />

14<br />

15<br />

16<br />

Signature<br />

7622<br />

1B4P<br />

184P<br />

7622<br />

"IPH<br />

7FPH<br />

MHK,<br />

AFOP<br />

AFOP<br />

7622<br />

UH UC<br />

UHUC<br />

7622<br />

4F53<br />

3A71<br />

184P<br />

T84P<br />

3A71<br />

7FPH<br />

7FPW<br />

0000<br />

AFOP<br />

AFOP<br />

3A7 1<br />

UHUC<br />

VHUC<br />

3A7 1<br />

4F53<br />

4F53<br />

F281<br />

AFOP'707Bm.*'<br />

UHUCvF757',**<br />

7FPH"15FUm,"<br />

184P*97C6'.'*<br />

183F<br />

o m<br />

t PPS<br />

183c<br />

671 F<br />

FFll<br />

l UFP<br />

143A<br />

68PO<br />

4F53<br />

The foflowhg stgnaturn are for the outguard RAM clreufts. Tha<br />

signatures am -ken with the stmnfstop inputs of the signaturn<br />

analvmr connected M A3TPI.<br />

NOTE<br />

*-These signurures apply when U44 and U45 are<br />

removed from their S OC~PC~.<br />

*To obmln Chis slgnotum, u 10 K resfstor must be<br />

connected between the 5 volt TP and rhe probe tlp<br />

of the slgnuture unaly.?er.<br />

To check for proper I~gfc tmcer connecr~ons vcslfy<br />

slgnatun of +5 rest point Is 4F5X The rignnturts In<br />

is sectlon rake one or twu readlngs to smblllze,<br />

W2 f<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

W3 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

Signature<br />

4F53<br />

F281<br />

F%PH'3AQC*,**<br />

W6l0H3FH',**<br />

8CPAmP2 F8*,*'<br />

PH1$'62PP*,'*<br />

4F53<br />

0000<br />

lPP5<br />

4F53<br />

93A F<br />

CIGFF<br />

OHAH<br />

4AC4<br />

183F<br />

4F53<br />

7622<br />

P6PM<br />

PGPH<br />

7622<br />

P961<br />

P961<br />

moo<br />

pH16<br />

pH16<br />

7622<br />

BCPA<br />

8CPA<br />

7622<br />

4F53<br />

3A71<br />

PGPH<br />

P6PH<br />

3A71<br />

PSI<br />

P981<br />

OM30<br />

IPH16<br />

PHI6<br />

3A71<br />

BCPA<br />

SCPA<br />

3A71<br />

4F53<br />

Pin I Signature<br />

93A F<br />

U6FF<br />

OH AH<br />

4AC4<br />

IUFP<br />

FFl l<br />

671F<br />

o m<br />

AFOP'707g',"<br />

184P"97C6',"<br />

UHUC'FJSJ'."<br />

7FPH*15FUg.'"<br />

94337<br />

5622<br />

143A<br />

4F53<br />

93AF<br />

UGFF<br />

OH AH<br />

4AC4<br />

IUFP<br />

FFIT<br />

67tF<br />

om0<br />

PHI 6'62PPa."<br />

&CPA*PZF8',**<br />

P961 'H3FH'.**<br />

PGPH'3A9C',"<br />

9037<br />

7622<br />

143A<br />

4F53


NOTE 1<br />

The Signature Analyzer Cantrols<br />

Should Be Set As Folfowr for This<br />

Test:<br />

LINE. +ON (IN)<br />

..........<br />

.........<br />

START. \ (IN)<br />

STOP, ........ /(OUT)<br />

CLOCK. ....... /(OUT)<br />

HOLD ........ .OFF (OUT)<br />

NOTE 2<br />

irAc Fol/owing Is A List Of Components<br />

Which Are Connected Ta The Oufpuf<br />

Doh Bus.<br />

Schematic 8 Schematic 9 Schemoric I0<br />

The<br />

rectl<br />

To A3TP5 And The<br />

To The Ch-is. (See<br />

Output Signatura At The<br />

Following Points:<br />

Location Signature<br />

Pin 12 8CPA<br />

Loartion Signature<br />

RAM, A1 Cb44 Or U45.<br />

A4 U36 FZ817<br />

Is The Signature<br />

NOTE 3<br />

Be Sure To Remow The 10 I ksa<br />

Resister Connected Between The<br />

Signature Analyzer Probe Sip And<br />

The +5 V Tesr Point.<br />

Figure 843-22. Outguard Troubleshooting Procedure Diagram, RAM Circuitry.<br />

8-123/8-124


Pin Signature<br />

CPP3<br />

CPP3<br />

03FA<br />

M57<br />

8CPU<br />

9954<br />

6457<br />

UPUH<br />

5042<br />

0000<br />

6A09<br />

2131<br />

6457<br />

U330<br />

HAF7<br />

6457<br />

CH29<br />

6457<br />

9445<br />

PP05<br />

6457<br />

CPOH<br />

AH54<br />

0000<br />

The following signatures am for the outguatd ALU &irc~itk Tha<br />

signatures 8rs taken with the gtartlmp inpuzs of the signature<br />

analyzer connected to A3TP2,<br />

NOTE<br />

*To obtuln thls signature, o 10 K resistor must be<br />

connected between the 5 volt TP and the probe tlp of<br />

the slgnoture onolyzer.<br />

To check for proper slgnature onalyrer connections<br />

wrlfy slgnature of 45 V test palnt Is CH29.<br />

Pin Signature<br />

CH29<br />

A81P<br />

UHOI*<br />

17A6+<br />

37FH<br />

FH98<br />

9P30<br />

0000<br />

3UFF<br />

94AU<br />

32UF1<br />

CH29<br />

CH29*<br />

CH29"<br />

CH29<br />

CH29<br />

6406<br />

UCH6<br />

9U2A<br />

3U52<br />

2762<br />

08U7<br />

OP6P<br />

5673<br />

HAF7<br />

8CPU<br />

UPUH<br />

moo<br />

21 31<br />

32AC'<br />

F693<br />

CPP3<br />

5C84<br />

3P95<br />

HHFS<br />

MOUF<br />

H074<br />

9COF<br />

87C2<br />

CH29<br />

Pin<br />

U29 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

'1 5<br />

16<br />

Signature<br />

CH29<br />

UCH6<br />

FAA3*<br />

3543'<br />

87C2<br />

150U<br />

~a74<br />

0000<br />

25H1<br />

HHFS<br />

21H1'<br />

CH29<br />

CH29'<br />

CH29*<br />

CH29<br />

CH29<br />

A81P<br />

SHSC<br />

9U2A<br />

3U52<br />

2762<br />

mu7<br />

5C08<br />

5673<br />

9445<br />

CPOH<br />

POF9<br />

OM30<br />

f84 U<br />

1456<br />

01 29<br />

OP6P<br />

HAP6<br />

94AU<br />

3H92<br />

9P30<br />

59H 2<br />

37FH<br />

IHHA<br />

CH29


NOTE 1<br />

The Signature Analyzer ConrmEs<br />

Should Be Set As Fo/lows For Thls<br />

Test:<br />

LINE. .......... .ON (JN)<br />

STAR J. ......... .I (IN)<br />

STOP.. ........ /(OUT)<br />

CLOCK. ........ /(OUT)<br />

HOLD ........ .OFF (OUT)<br />

SELF TEST. .... .OFF(OUT)<br />

Be Certain That: The Test<br />

Jumper On The A3 Assemblv<br />

Is Disconnected, The<br />

Plug Is Disconnected From<br />

AtJ7 And The HP-IB Address<br />

Switches Are All Set<br />

To The 'r)'Toosition. Turn<br />

At A1 V46 Pin 3<br />

A1 U36, U37 Or U38. At AlU39 Pin 10<br />

The Instrument ON.<br />

1 The Signature A3 Assembly AlL132, U34.<br />

At A1 U46 Pin 2 U39 W2, U44. U45 Or<br />

At A1 U39 Pin 1 1<br />

2FPA?<br />

A1 U18, U17 Or U39<br />

Connect The Signature<br />

Analyzer ST ART And<br />

Sf OP Inputs To A3TP3.<br />

Connect The CLQCK<br />

lnput To A3TP5 And The<br />

GND lnput To Chassis.<br />

(See Note 1 For Signature<br />

Analyzer Control Settings.)<br />

zer To Check The Dwice<br />

Select lnput Signatures At<br />

The Following Points:<br />

1 Location Signature I<br />

A1 U33<br />

Pin 1<br />

Pin 2<br />

Pin 3<br />

Pin 4<br />

-1 A3 Assembly Or AlU33,<br />

QNv7<br />

At A1 U46 Pin 1 AfU35. W3 Or U46.<br />

And Carefully Remove<br />

RAM'S At U44 And U45.<br />

Turn The Instrument ON.<br />

RAM A1 W4 Or W5.<br />

At A1 U38 Fin 8<br />

P737?<br />

The Signature<br />

7731 7<br />

The Signature<br />

At A1 U33 Pin 13<br />

H4CH?<br />

A1 U36, U37, Or U38.<br />

A1 U24, U25 Or U33.<br />

~1 U29, U31 Or U33.<br />

At A1 U8 Pin 2 At A1 U32 Pin 7 1 AZUtl, U26Or 2132<br />

At A1 U32 Ptn TO A1 U32 Or U41 At A1 U7 Pln 5 A1 U7 Or A1 1541 At A1 U4f Pin 15<br />

4924? H9H37 02077<br />

YES YES<br />

~t ~1 U33 Pin 14<br />

A1 U23 Or U33<br />

5A8F? At A1 U33 Pin 15<br />

F54t 7<br />

A 1 U33 Or US1<br />

At A1 U33 Pin 9 A1 U33 Or A1 07<br />

At A11133 Pin 10<br />

A3 Assembly Or Al U33<br />

-<br />

The Device Select C~rcuits Are Operating<br />

Correctly.<br />

Figure 8-H-24. Outguard Troubleshooting Procedure Diagram,<br />

Device Select Circuitry.


The Signature Analyzer Conrmls<br />

Should Be Set As fo//ows For This<br />

Test:<br />

LINE. .......... .ON (IN)<br />

START. ......... .I (IN)<br />

STQP.. ........ /(OUT)<br />

CLOCK.. ....... /(OUT)<br />

HOLD ........ .OFF (OUT)<br />

SELF TEST. .... .O.FF(OUT)<br />

A<br />

Be Certa~n That: The Test<br />

Jumper On The A3 Assem-<br />

bly Is Disconnected, The<br />

Plug Is Disconnect& From<br />

A1J7 And The HP-I8<br />

Address Switches Are All<br />

Set To The "01 " Pos~tion.<br />

Turn The Instrument ON.<br />

I<br />

A<br />

Connect The Signature<br />

Analyzer START And<br />

STOP knputs To A3TP4.<br />

Connect The CLOCK<br />

lnput To A3TP5 And The<br />

GNO lnput To Chassis.<br />

{See Note 1 For Signature<br />

Anslvzer Control Settings.)<br />

The HP-IB<br />

Interrupt Go To The HP-IB Trouble-<br />

Signature At shooting Procedure.<br />

A1 US3 Pin 5<br />

A9F17<br />

Use An Oac~lloscope To<br />

Measure The Display Interrupt<br />

Signal At A1 U53, Pin<br />

3. Th~s Signal Should Be A<br />

Negative-Going Pulse<br />

Appraximstely 1 rnsec In<br />

Duration Followed By A<br />

Negative-Going Pulse<br />

Approximately 28 msec In<br />

Duration. Amplitude<br />

Should Be About 4 V<br />

Peak-To-Peak.<br />

I<br />

The D~splay<br />

Interrupt Analyzer START AND<br />

+ Connect The Oscilloscope<br />

The<br />

To A1 U55 Pin 4. Press<br />

And Hold One Of The<br />

Front Panel Keys (Except<br />

LINE. LOCAL And<br />

GUARD). The Front Panel<br />

Interrupt Signal Should Be I<br />

STOP lnput To A3TP3.<br />

A Negative-Going Pulaf<br />

Approximately 15 mwc<br />

In Duration And 4 V Peak- Decoder A1 U41, One-Shot<br />

Mwlr~vibrator A1 U48, Or<br />

2 ~ ~ instruments o r with serial number<br />

1622AO1505 and below the pulse is 5<br />

msec wide.<br />

B~or instruments with serial number<br />

1622AOt506 and above and with a<br />

Rev. D of tha A1 board. Ths pulse is<br />

positive when keys are pushed and<br />

negative when keys are released.<br />

C~or instruments with serial number<br />

1622A03538 and above or where Service<br />

Note 3455A-13 has been implemented,<br />

the negative pulse is 1.5<br />

msec wide.<br />

Device One-Shot Multivibrator<br />

Select S~gnature<br />

At A1 U48 Pin 10<br />

Gate A1U53, Or Decoder<br />

AC4A? A1 U56-<br />

1 -<br />

TRACER START And<br />

Panel Interrup~<br />

STOP lnputr T; A3TP3.<br />

Press And Hold One Of<br />

Srgnat Correct The Front Panel RANGE<br />

Keys.<br />

And Hc<br />

able Signal Should Be A<br />

Negative-Going Pulw ,AP.<br />

proximately '1 5 msec In<br />

Duration And 4 V Peak-<br />

To-Peak<br />

Connect A Clip Lead To<br />

The EXTERNAL TRIG-<br />

GER lnput {Rear Panel<br />

BNC). Cannect The Signa-<br />

ture Analyzer Probe To<br />

A1 U53 Pin 4. This Point<br />

Should Be Low (Signature<br />

Of 0080. and Probe Light<br />

OFF .) Momentarily Touch<br />

The Clip Lead To The<br />

t5 V Test Point And Then<br />

To Chassis Ground.<br />

I One-Shot Multivjbrator I<br />

AlU48, AlC32. A1R41,<br />

AlU40, Latch AlU58.<br />

And Gates AlU47, Or<br />

A1 U55.<br />

The Probe Go To The Displey Trou-<br />

Light Bl~nk<br />

+<br />

YES<br />

Use The Signature Anely-<br />

zer To Read The Signature<br />

At A1 U53 Pin 6. Be Sure<br />

The START And STOP<br />

Inputs To The Signature<br />

Analyzer Are Connected<br />

To A3T P4.<br />

y<br />

nt r, r "4- r rrr u<br />

uu I u I r~u w~sviuy I rou-<br />

N ,.:, Procdure.<br />

The Same As<br />

With The Signature Analy-<br />

zer Prabe Connected To<br />

AFt155 Pin 3, Press And<br />

Hold One Of The Front<br />

Panel Keys.<br />

4<br />

To<br />

Use An Oscil~oscope To<br />

Measure The Voltage Level<br />

Gate At U55.<br />

Gate A1 U55.<br />

At A1 U47 Pin 8 A3 Assembly Or A1 U47.<br />

>4 Vdcl<br />

I""<br />

The Interrupt Circuits Appear To Be<br />

Working Correctly, However, The Dyna-<br />

mic Operation Of The Following Com-<br />

ponents Has Not Been Checked:<br />

A1 U39 U46 Pin Pins 2 6 And 11<br />

A1 W47 Pins 3,8 And f 1<br />

AlLJ55 Pin 11<br />

A1 U63.<br />

Go To The Display Trou-<br />

1 6 psec if A1 C32 is a .58 pF capacitor. I bleshooting Procedure. I<br />

Turnan Circuit AT US,<br />

U26 And Associated Cam-<br />

panents.<br />

Figure 8-H-25. Outguard Troubleshooting Procedure Diagram,<br />

Interrupt Circuitry.<br />

8- 129 /a- 130


4<br />

S<br />

6<br />

W? 2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Probe Tp Blinks<br />

3AAA<br />

3818<br />

42AP<br />

CF2t0<br />

U65Am<br />

31CU<br />

JAAU'<br />

BAAA<br />

The foll&ng dgnatum am for ths wtguard Dlsp'l@v drmlm. The<br />

tlgnstum an taken with the ntsrllno~ hpum of the dgnaum<br />

analyzer connected ta A3TP3.<br />

T o obtaln thls s/gnaturc, o TO K resistor must be<br />

connecfed between the 5 vdl TP nnd the probe tlp of<br />

the signururt onolyrer.<br />

**To obtain thin sCgnmm, p m and hold the<br />

front panel MATH OFF key.<br />

fTa obtain thls Jlqnuhrrc, pms dnd hold the front<br />

pone1 LOW L key.<br />

tf To obtuln thfr slgmrttmc, press und hold the frmt<br />

pone! DC V key.<br />

fb check for proper Ioglc tmcer conncctlons veflfy<br />

slgnetum of +5 V test polnt h O2CZ.<br />

Pin 1 Signeture Pin Signsturn PFn<br />

US 1 1 3 ~ 5 ~ UW 1 1OZC2 VfiB<br />

Probe Tip Blinks 2<br />

6144 3<br />

Probe Tip Blinks 4<br />

A874 5<br />

F45A 6<br />

RACP 7<br />

330HW'<br />

401 Ftt<br />

64Wt<br />

64Mt<br />

64647<br />

64647<br />

401 F tt<br />

F U84<br />

CUM<br />

4F88<br />

5HAF<br />

80-<br />

1 AHF<br />

OC52'<br />

MP75<br />

6LJAOa<br />

H8CHg<br />

53A2<br />

0x2<br />

3 HE?<br />

CF21"<br />

UGSAo<br />

AAHH<br />

7AAU'<br />

709A


NOTE l<br />

The SIgnoture Analyzer Controls<br />

Should Be Set As Follows For Thls<br />

Test:<br />

LINE . . . . . . . . . . . . ON (IN)<br />

START.. . . . . . . . . . \(IN)<br />

STOP.. . . . . . . . . J(0UT)<br />

CLOCK. . . . . . . . . /(OUT)<br />

HOLD . . . . . . . . .OFF(OUT)<br />

SELF TEST. . . . . ,OFF(OUT)<br />

Be Certain That: The Ten<br />

Jumper On The A3 Assem-<br />

bly Is Disconnected, The<br />

Plug Is Disconnected From<br />

A7J7 And Alf HP-IB<br />

Switches Are Set To The<br />

"0 " position. Turn The<br />

A The Signature<br />

Inverter<br />

NOTE 2<br />

Instrument ON.<br />

Inverter A1 U50. Switches<br />

A Cboracfer, Stortlng At The Most Significont<br />

Dlgit, I-r Strobed Across The<br />

Displny. The Characters Displayed Are<br />

1,2,3,4,5,6, 7,819,/,/l';L, L, Blank And<br />

Period. Each Character Is Strobed Across<br />

She DIsplay Twice. She Decimal Point<br />

Accompanies The Charucrsr On The<br />

Second Strobing Sequence. Also, In The<br />

Lest Significant Digit, The Decimol<br />

Polnt Is Llf On Each Strobe. The Only<br />

Meaningful Dlsploylng Of The + And -<br />

Signs 1s Before The Number 19 And 1<br />

Start Their Di'spluy Sequence. The Time<br />

Requlred To Run The Complete Test<br />

Is 3 Minutes.<br />

~on"ect The Signature<br />

Analyzer START And<br />

STOP Inputs To A3TP3.<br />

Connact The CLOCK<br />

Input to A5TP5 And The<br />

GND lnput To The<br />

Chassis. (See Note 1 For<br />

Signsturn Analyzer Control<br />

Settings.)<br />

1<br />

Panel LOCAL Key.<br />

+5 V: 02C2<br />

$2, $7 -S9.S13, S15-S22,<br />

Cable A2W2 Or A1 U5f.<br />

While Obwvlng AlU57<br />

Pin 14 With The Signature<br />

Analyzer, Pr- Each Of<br />

The Math Entry Keys<br />

IThos? Marked In Blue<br />

And The STORE Keys).<br />

Pin 14 With The Signstun<br />

Analyzer. Press Each Of<br />

GUARD Keys!.<br />

I<br />

Go To The Device Select<br />

Troublehooting Produre.<br />

Inverter A1 U53, Switches<br />

Sl-SE, S10413. S23-<br />

528, Cable A2W2 Or<br />

Input Latch A1 U51<br />

I IY<br />

Gate At U50, Inverter<br />

Al U49 Or A1 U58<br />

Gates A1 U50 lnverter<br />

@ ~1 ~ 49<br />

or ~1 ~ 5 8<br />

Remove The Clip Lead.<br />

All Front<br />

Panel Enunciators<br />

(except REAR<br />

TERMINAL) Light?<br />

{Half Of The<br />

Lit Alternately I With The Other<br />

ES I I Enunciators Are<br />

Connect A Clrp Lead Be- Buffer A1 U60 Or lnverter<br />

tween The Junctian Of Al U49,<br />

A1 C41 And A1 R43 (Pin 1<br />

Of AlU611 And Chassis<br />

Ground.<br />

NO '<br />

A1 U52 Or Gates<br />

At A1 U52 Pin 5 A1 U46 Or A1U53.<br />

Gate A1U61 Or lnverter<br />

At U52.<br />

Input Latch A1 U51 Gate<br />

Use Schematic Ho. 11 And<br />

The Display Signatures<br />

Table Te Troubleshoot<br />

The Enunciator Crrcuitry.<br />

-<br />

Decimals Light?<br />

{See Note 2 For<br />

A Description<br />

Of The Display<br />

The Display Circuitry Appears To Be<br />

Work~ng Correctly, However, The Dper-<br />

atlon Of Latch A1 U58 And Output Buf-<br />

fers A1V59 And U60 Have Nat Been<br />

Checked .<br />

Go To The HP-IB Jrou.<br />

bleshooting Procedure.<br />

f ha Display Signatures<br />

Table The Display To Circuitry. Troublehmt<br />

Figure 8-H-26. Outguard TroubIeshwting Procedure Diagram,<br />

Display Circuitry.<br />

8-131/8-132


Pin<br />

U1 1<br />

2<br />

9<br />

6<br />

8<br />

10<br />

12<br />

14<br />

U2 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

I Signature<br />

3504<br />

4FF5<br />

A9ff<br />

1682<br />

FF71<br />

09 52<br />

A8A9<br />

H166<br />

79FU<br />

CC7 5<br />

79FU<br />

FZCA<br />

The fotlowlng signatures are for the wtguad HP-tB circuits. The<br />

dgnatures sre tabn wlth the startlstop inputs af the signature<br />

analyzer connected to A3TP4.<br />

NOTE<br />

*To obtaln this slgnahrre, a 10 K resSsor must be<br />

connected between the 5 volt TP ond the probe tlp of<br />

the signature analyzer.<br />

To check for proper Fogk tracer connections verlfy<br />

rignature of +5 V test pofnt Is 79FU.<br />

Pin 1 Signature Pin ( Signature Pin 1 Signature<br />

79 FU<br />

CFF6<br />

6P52<br />

6725<br />

PC93<br />

OAlA<br />

9668<br />

1 Po3<br />

7 F46<br />

40CF<br />

HC7A<br />

7 F46<br />

77H9<br />

2A3P<br />

10'18<br />

7 F46<br />

A725<br />

390 F<br />

7F46<br />

CH2H<br />

7 F45<br />

6P52<br />

CFFB<br />

0000<br />

6P03<br />

6725<br />

91PF<br />

OAl A<br />

2952<br />

CHPH<br />

CHC4'<br />

6CQP<br />

2952<br />

A43PS<br />

91PF<br />

88H7<br />

390F<br />

129C.<br />

lot8<br />

OC93*<br />

CP65'<br />

HC7A<br />

F517'<br />

1 PO3<br />

883-17<br />

28PH<br />

GPO3<br />

Pin I Signatura


NOSE I<br />

rite Signature Analyzer controls<br />

should be set ar follows for this test:<br />

LINE ............ ON (IN)<br />

START. ......... .I {IN)<br />

STOP.. ........ f(0UTj<br />

CLOCK.. ....... /(OUT)<br />

HOLD. ........ OFF@UT)<br />

SELF TEST, .... .0FF(OUT)<br />

And U12 Or Output Buf- These<br />

Signatures Bus Transceiver A1 U12<br />

Correct?<br />

The IFC lnput (J3 Pin 9)<br />

Output Buffer A1 Ul6.<br />

At A1 U42 Pin 2 Latch A1 U4, Inverter<br />

AlW3. Or Gate A1 U7.<br />

Short The ATN lnput (53<br />

P I 17 ~ To Chassis Ground.<br />

79~17/<br />

Short The REN lnput (J2<br />

Pin 18) To Chassis<br />

Ground.<br />

Connect The Signature<br />

Analyzer Probe To A1 U1B<br />

Pin 5.<br />

Inverter A1U3 Or Output<br />

Buffer A1 U15.<br />

Tip Bl~nk Output Bufter A1 U11,<br />

ktch A1 U4, Inverters<br />

A1U3 And A1 U8 Or A1C1<br />

And A1 A ll.<br />

From The<br />

The HP-IB Circuitry Appears To Be<br />

Working Correctly. If The Problem Strll<br />

Exists: Check To Be Certain That The<br />

Proper Procedures flnguard Or Out-<br />

guard) Have Been Performed, Trouble-<br />

shw The ROM And Page Select Cir-<br />

cuitry On The A3 Assembly And The<br />

Circurts Listed In The Troubleshooting<br />

Procedures Which Have Not Been<br />

Thoroughly Checked.<br />

Figure 8-H-27 Outguard Troubleshooting Procedure Diagram,<br />

HP-IB Circuitry. 8-133/8-134


Figure 8-H-28. Detailed Block Diagram.


G'm VI +<br />

3 2<br />

ELEPC CCCCL CLGGC CLCLE C C C C C CCCCC CGLCC CCCCC L C C L L C<br />

111 rrrnr rrrrr rrrrr rrrrr rrrrr rrrrr m r r r r rrrrr rrrrrcr<br />

$:;: =t:f~ ~zg:: :=:>: :;=: bz:;: =t=t~ r=w-c u-un-<br />

0<br />

?<br />

n<br />

ag O<br />

3<br />

2<br />

c %<br />

E<br />

E U) - ar h*<br />

ClCLLC CCLLC CGLGC C . L C . C L CIGCCL CCGCC LLGLD LCCCvC GCCPe<br />

3%<br />

CCTI C. d C C C 5 CCCC* L-LLlr rcelrt P s t b F l C C f r r.t l CC c - f f A *<br />

uwwt.C rvruu UmwwC a b w L - Y ~ c C C C L C ~ P C hYb*- bwemw K<br />

V.GC+ U G Y " L uuvvc W C V * ~ r - ~ a a ~ I C C I SCCP- UCL-+ COW- u<br />

+<br />

C<br />

-<br />

B<br />

'n<br />

0<br />

r 5<br />

rn<br />

rn<br />

c r e e h c Y r, +ko+r c<br />

"<br />

F<br />

w<br />

xsrxx x r ~ z r ~ Z Y F X r l r m ~ r ~ r r~ r r r x rrrrr xzsmr azmap<br />

Ll$A& A;$&A ;$&I&<br />

A.&&$A &k4,44 kk&&& &.4&4& 644,&.n g<br />

m*ux, % > X > h *>%=* b%=*Y ShkX* *YX*h Y % > * X bXXh> *xn*x 7<br />

cccsz T.CT.C L LC-EC CGCCE CI.LCE u t r c ~ UCGCG rcaec eumcU r<br />

I. LC. -4 m * a + . -* rn e r . ~h rc-r- *.c crr C - ~ P E hrnc-8 1 P<br />

C C C L C ccccc CLP=C S C C ~ L C ~ C C C ~ Y G O wcccc ~ h ~ c n<br />

rrccn Frrrr ccrrl rnrrc c r y 7 0 PL-~C -toe cnrce O O C ~ B<br />

3<br />

7<br />

CCL-+ PCCCC $CLL+ L-CLT S=$,T% nz:vz -*z;* n,+"w% -CCV-- P<br />

T T ~ I + n n n ~ --*I ~ 7 1 T T C<br />

I h<br />

*+*rC **+*+<br />

U L E T ~ lrtere<br />

Ot L" C C L L L<br />

1 1 1 v C t n I 1 CC VIPhk I-rC<br />

J<br />

r ccm<br />

LhkrF e h C h h NhhhG ICAk* I I ba VmOC W Y * e h COC PC C<br />

L S c C * F F C L O C C C C C C L C C L C C C r LhrC) OL V La


l<br />

Model 3455A<br />

Reference<br />

Designation<br />

~ A U C A L<br />

A l J c l ~<br />

Aiu~Yr<br />

aiu~>*<br />

4 IJcs,<br />

*I*L~u<br />

ALU&>I<br />

PllJcbo<br />

*A JLbI<br />

AIdLur<br />

AIJLOL<br />

4IJLOJ<br />

AIULcS<br />

IIULov<br />

AIJWI<br />

~I~~LNL<br />

AIJIYI<br />

AluLn4<br />

A1 JLda<br />

4IUbhe<br />

A l u ~ k l<br />

A14~ru<br />

AIULk*<br />

IkULrCli<br />

AhIUclZ<br />

A IUln 1 J<br />

AAUL*AW<br />

~~JLMLJ<br />

~IUC~I.<br />

3JLKl7<br />

IIJLdLM<br />

ALuCHIb<br />

* L JCdLl<br />

AlJLNiL<br />

h 1JLIIL><br />

AAJc*c+<br />

4IdLNCS<br />

AlJLhc)<br />

A LdLfid 1<br />

A I ~ ~ U<br />

AAJLdL*<br />

A~Ju*A<br />

AlJL*IL<br />

Alucdrr<br />

AAuIHSC<br />

ALULUJ><br />

A1uCrjr<br />

AWLI(S~<br />

AIVLl(4d<br />

&IrlLU>'#<br />

AlUCkhl<br />

A LWCLCL<br />

IIJLh*I<br />

A i dLU+t<br />

AIOLRSS<br />

AldLlt*<br />

Ai&LR*I<br />

AIJ~.MQU<br />

A IdCusY<br />

AlrlLUSI<br />

AAULU3L<br />

AlJLkz?r<br />

*IUU~+<br />

A4dLn~5<br />

AIYCMlb<br />

AlMR*l<br />

IhILN5U<br />

AlUU>Y<br />

h1JCkol<br />

AIDCAUI<br />

IArlC.hb3<br />

btocae4<br />

I1 JLdO><br />

41ULnbL<br />

HPPan<br />

Number<br />

41 td-id>?<br />

G I LPCLJS<br />

Jluu-ibJ2<br />

~1 C~-U,JS<br />

dl&uLL/<br />

Jkd-u-JJ<br />

UL bU-CbCJ<br />

01 d-LuLd<br />

Old-JclU<br />

JIb+Ucll<br />

JItU-UL13<br />

JLUU-UiJJ<br />

dl d-W/><br />

UiM-dc,d<br />

19 bl-YrUu<br />

~ ' E ~ ~ - U ~ J U<br />

LY U:->bJ*<br />

l'#C1-Udrrl<br />

IYLI-UuW<br />

1C4-rlU~U<br />

LY OL-Y A44<br />

L9Gl-OU?d<br />

lwcl-uld4<br />

A'#iL-UrJ*<br />

1YCI-Uc>J<br />

LVCI-OOSU<br />

LV GL-dUU2<br />

I~~L-OU+Y<br />

IY UI-U*>J<br />

19G1-01)50<br />

I ~ C L - N ~ ~ D<br />

LY Cl-05lb<br />

I Y UL-ubrl~<br />

19 OI-O>JC<br />

IPUL-Ud>O<br />

1PCl-OulJ<br />

&%La-UdSd<br />

I9 I)l*OJSJ<br />

1Ycl-U>Iu<br />

I LOCI-USID<br />

lqU-U4U+<br />

lPU2-UIY<br />

19 dl-U073<br />

IYCI-O~JJ<br />

AV C 1-0~5d<br />

L ~ ~ L - Y U ~ U<br />

19Cl-Od>S<br />

L 9L1-OU50<br />

I Y LIL-~u>U<br />

19 Cl-0054<br />

19El-OubJ<br />

lY01-OUYO<br />

19 Cl- rlrlll)<br />

IPUI-UJJU<br />

IY cl-uu*~<br />

19CI-O~FJ<br />

I PCI-OUIU<br />

A qat-ouiu I Y 01-OULI<br />

19Cl-OULI<br />

i9Cl-UvLd<br />

17U-Oc25<br />

1Y CI-UUlrl<br />

IYU1-UU28<br />

APU4-UULU<br />

1'4C1-OuLO<br />

1Y F1-ad28<br />

LY CI-UUIJ<br />

1QUZ-Ud+Y<br />

AqCI-ULUJ<br />

AVCl-ULdJ<br />

1 PU-UI TO<br />

1Y 62-UU*P<br />

1YU-Olfo<br />

I<br />

1<br />

L<br />

1<br />

o<br />

Z<br />

5<br />

5<br />

*<br />

i<br />

~ I~IOUE-GLM<br />

Repluc~eable Pasts<br />

bription<br />

LAP~ZIFLIH-+%II .rllWF +bO-Lu& IUOCVUC CtR<br />

CAPAClTUR-kI(U .rlZUf +dU-Lut LSmVJL LEH<br />

14PACtIUk-FxO .ULUt *.srridt ~Y*YIIC Lrm<br />

~-PACtlu+t~u IU+*-LO: %UYUL IA<br />

CIPACI TUk-FXU tUf *-LA I s s Y h CCK<br />

LAPIC 1 Idk-~AU LJFc-ZJ-: lrUYJt IA<br />

L&?AC I rUR-FAD L;OUF+5u-13t >UUUC AL<br />

LhPAL I IUH-FAd rLOuP45lrlU. >ilVlri A1<br />

CA?AL I1Ufi-FRII IUb-*-LU I 'rrlV3C 1 A<br />

LAP~C LTUU-F)IJ l l r l l ~ ~ ~ t b ~ - lL~VUC r l . AL<br />

CIYALlTJR-**D AUOUJFt54-LUb L>YUt AA<br />

~~?&CtIll~-tll~ SclF*-lul ~IIVUC 14<br />

L*SACIIU!A-6x0 %LJUJF*lWJ-134 13VOL 4L<br />

LAYACIIUH-*A& AJF+-40; >OYJL 1&<br />

UII.Jt-kkNPRPlu~L5R4IU-fL<br />

uiu~t-l;th PRY JUY ~5na rlrr~<br />

UIJuE-LsA hbcV 5: uIJ-7 00-.4d ll-*.JIbh<br />

UI UJE-SdlTLHlsb SOU LddrlP ,?HI 011- T<br />

rrl .ld€-bYlTL~~lNb 83Y d~*lUd cha uJ-l<br />

Ul~SE-~~l?~tlIhu BJV ZWOMA ZHS &I-l<br />

W113E-lNM IC.ZV<br />

51 110-1 PIl=.4Y IC-+.Oobl<br />

b1 JJL-~II~ ~rll.ulr ~ Q V ZU~RA LN> 011-7<br />

I)lJ>t-LNR lu.2V 5l aI1-1 Y**.Ch TC=*.O(rD;<br />

UlJdt-1NK 1Q.ZU S i l]II-7 P.F+*m rLt+.Oobl<br />

UI111E-SYlrlHlVG EIOV 130RA Zh* lid-?<br />

UIGtlE-SUlTChlNli dOU LU3** LHh Hi-1<br />

UIU3E-LHAL-ATY hXDUllPU*.+d SC=-.d741<br />

U~O>E-ZNI O. IYV 5t DGT PIJ= . 4~ ILS*. JLL;<br />

UI J~E-S~ ITLHI~~~ aou c ~ ~ nLIY:. a UJ- r<br />

(IIUdL-SYITCH1NG *OV 2UOMA LRS QRf<br />

DlDDt-GtH PUP SUV 25-4 lu-I.?<br />

0li)UL-GtN PGP >JV 25111* 1U-72<br />

UIJ3E-GtN PAP JJV L5*4 Id-72<br />

UIOUt-lrtH Y8C 4GV LSMv TO-?.!<br />

UtUOE-5Y ITCHIYG IVY 2UUHA 2N5 U+l<br />

U1U>t-~CITCHI.Yu 8UV LuUM4 ICHh hl-7<br />

DIOPE-SYITLHlffi IDV L0dM4 LNS DU-7<br />

OIJJE-SNllCHWG d3V LdJMA Lki UU-1<br />

DIUOE-LkN PUP 35V aIlrl4 UU-7<br />

PHY 35v son* nu-r<br />

UIOOE-LHR Iu.LV 5& dd-7 PIP.4.d TC.*.Obbf<br />

DIUJE-INK lb.ZV 54 OC-1 PO=.*. lL.+.Obb4<br />

III J3E-SrlILHING &UV LOUMA 2Pli W-?<br />

d1Vdt-5nlTLHtHb dJV LJUnU ZMr UJ-7<br />

USUJ~-S*~~CHING b 4 ~ ~WOMA ZNS u0-I<br />

O~~UE-SUIZC~~H~ dou ZUOM~ ZN* D*?<br />

UIJJE-SrnLI~ntu~. BOY duun* zni u-7<br />

~IJJE-S~lI~nlfdG dOV Luonh ,?US Dlr-1<br />

UIUJC-5ulICHLHlr 8UV ZOJM* LH'r UI-7<br />

UIUDE-SYIILHIYG BOY 20UkA 2k5 W-7<br />

UIUDE-SYllCMLMG 8rlV LJUR* >HE UU-7<br />

DISJk-SWIILHIN~ SbV LJ1Hh LNS W-1<br />

UIU>E-SdJTCHING BOY iurlh4 LN4 UO-I<br />

OlOdE-SWIICHlhG BOY 2U3YA LMS W-J<br />

UIODE-S~I~LHW BUY ZUOUA 2Ni bu-t<br />

UIUUE-SYI~C+~I~+IA ltUY 23dM ZHS DU-7<br />

UIUJE-5Ulf~llING BUV L03AI LH> 00-7<br />

OIUDC-P*R RCLI IOOY I>DMA OU-19<br />

UIOJE-PYk UtCI 4UOY J50UA JkcY<br />

OIIUDE-PYR<br />

QIUDE-FUR<br />

HkLl rOJV 75Mb 00-19<br />

KtCf 4DOV 75URA 00-19<br />

DIDPE-PYR<br />

UIUOt-PYR<br />

UIUAE-PWH<br />

H~LK ~OUV 151)** U+LO<br />

RtCf 40UV ?>a** JD-Zq<br />

RtLT 4OOU ?>dRA UU-LY<br />

UIOOE-WR KtGT *OOV 73UMb JO-29<br />

DIODE-RIU RtCt *OW 75UR4 JU-29<br />

UIUPt-PYR KLCT 4JUV 75ARA JU-Lq<br />

Y113DE-SalfCHIUG LldV IUOUA LHS W-7<br />

UIOJE-LUX o.IYV 5% DL+$ Prl=.%M lC*+.322<<br />

OIOI1E-hrR RCCT IOOV 1.5A<br />

OCLIrlE-RIM RtCl LOOV 1.54<br />

UI>J~-LN* h t . ~ 5 i OU-1% plr~u<br />

UIOJE-LNR Om IYV 5% dVr l PI#* .4* TC.+.OZZ%<br />

OI33t-LNH 47.5U 5S Ocl-15 PD.Id IL*+.U€ll~<br />

KC-+.oat*<br />

I<br />

Mfr<br />

Code<br />

Zd*83<br />

Zd*13<br />

2d*83<br />

>ad81<br />

ld4lO<br />

SoZUJ<br />

ZB4UO<br />

Lb+8J<br />

3~283<br />

OUZL'J<br />

OJL.?J<br />

50283<br />

2d4&O<br />

5<br />

Zdf a0<br />

2<br />

15813<br />

3U+b0<br />

2H+B3<br />

26460<br />

35713<br />

28433<br />

(14113<br />

OI?L3<br />

28*U0<br />

ZBIBO<br />

15829<br />

J~SBO<br />

LdbB3<br />

31480<br />

ZBWG<br />

1&*80<br />

idle0<br />

Ld*80<br />

28480<br />

21480<br />

2drU0<br />

28480<br />

2d+bU<br />

28680<br />

04ll3<br />

04114<br />

28487<br />

2oSdO<br />

28480<br />

Zal8O<br />

28080<br />

zahao<br />

28LMD<br />

3tllllII<br />

281110<br />

2UlbO<br />

ZdbdQ<br />

2 ~ 6 ~ 0<br />

28180<br />

28CBO<br />

Ld4dO<br />

28480<br />

2a183<br />

ZBC8D<br />

21*&0<br />

28480<br />

284b0<br />

28480<br />

28510<br />

LB4UO<br />

2Ib8D<br />

ZB4UO<br />

2d480<br />

WFlY<br />

OlJl3<br />

04113<br />

Id480<br />

34113<br />

1POl-O>IC<br />

1901-058a<br />

t D 35634<br />

IYOL-0013<br />

1901-0050<br />

1901-0050<br />

St 10339-2C2<br />

1901-0050<br />

SL lO939-2*2<br />

SL tP93+Z6Z<br />

1901-0050<br />

1901-0050<br />

LO35526<br />

~902-(1069<br />

LPOL-OP5U<br />

1901-0353<br />

1901-P58b<br />

1901-05Bs<br />

lPU1-058b<br />

IPUI-OSIb<br />

1901-0355<br />

19U1-0050<br />

1901-0050<br />

1901-0050<br />

I9Ot-03 Jb<br />

POI-OJ IC<br />

$2 1093J-Z*i<br />

SL L(rPJ~Xl2<br />

hJO1-OD5D<br />

IJ01-0050<br />

1901-00M<br />

190t-OD50<br />

L9uL-OJ SD<br />

1901-0050<br />

1901-0050<br />

1901-00%<br />

1901-0059<br />

1301-0050<br />

1901-0050<br />

IPOL-0053<br />

19Uk-0050<br />

1901-0050<br />

1901-0050<br />

IPUI-ooze<br />

IJOL-OOZ&<br />

k9Ol-OOZB<br />

1901-0028<br />

1401-0325<br />

1901-O323<br />

1101-0028<br />

1901-0038<br />

IPO1-0028<br />

IPJP-0326<br />

lqOt-0050<br />

1902-004P<br />

5RIBlk-9<br />

SRl846P<br />

SL-~LZL~-M~<br />

1902-OD W<br />

52-11213-335<br />

Saaion VIII<br />

Mfr Part Number<br />

Y~bO-ZOS~<br />

OlbO-2405<br />

UlbWtb(l5<br />

1503L05%110>1.&?<br />

UtbU-O1CI<br />

I9LIDI.O5$JUSdlZ<br />

0180-2bLd<br />

OldO-Zb>d<br />

15931 J>%30SQAE<br />

ZSVIhLIUUO<br />

.?SUBSClOOO<br />

1500 L05XO05JA2<br />

0180-OeV5<br />

1 ~ 0 0 1 O ~ ~ O O b O l ~<br />

8- 137


Referenee<br />

Designation<br />

HPPart<br />

Number<br />

DlD3E-fnY >.UV 5C 00-7 PW*.+3 TC-+.01bX<br />

DlLlSC-LNA 1N5351d 14Y 51 PO-5H rC-*fSX<br />

DIODE-SYIrCHlNb BUY ZOORA LNS UD-7<br />

DIDRE-SwlTCHlHG BW lDOMA 2HS -7<br />

*suntt w PICTR<br />

Wldt-NES 2.cYWMIFI -01-Ull<br />

CUIMEC JUR-PC LUGE L5-CLYITIIIUY >-Rots<br />

GUNNELTOR-PC EuSE 15-LUhtlAUY 2-ROUS<br />

c ~ ~ t b f O h - PEDGE C I5-KINTtROW2 ROW<br />

EUYUECTUR 1 W I N I Pa51 IYPE<br />

CUYNELlUH I-PIH M PUS1 lYPt<br />

tkLlVrRECD<br />

R~cAY-REEU 1h 100- IOOOVuC 5YDC-tUI1<br />

RCS~Y-AEkP 1A 100111 1UOOVM. SVOC-LOIL<br />

RcLAY-KEkO 14 1UOMh ZSUVDC 5Wl)C-COIL<br />

RELAY-REEU 11 1UOMb AOOUYX. 5VOC-COIL<br />

ItELhI-WED 1A IDOIF* lO00Yh: 5VIX-t01C<br />

RtLAV-REEU 14 IOOMA 250WK 5VUC-CDlL<br />

RtLhY-EEU 11 100*A ZSOVlrC 5WOC-COIL<br />

RtLAV-RtED 111 LOOM4 Z>UVbC 5YUL-CUIL<br />

CUIL-MLD Z40lm 5r -65 -L5'rO%.3Y51b<br />

CONNECTOR &PIN F POST TYPE<br />

CONTACT-CONN urn m r TYPE FEM CRP wrn~11<br />

CUHNECTOR 3-PlM F POST TYPE<br />

~KAMS~STORI FtI<br />

TUlNSISTWA. FET<br />

TYhNSl STOR* Fk1 KWARIC 53005<br />

frtlMSI STOR. FET II0VAU.F 51003<br />

TUA*SI SIUR-JFET DUAL H-CH4N WMDE SI<br />

tR4MSlSlW-JFE? DUAL eCH&H FIYIUE Tb7L<br />

THIIISISTOR HPrl 51 Pl)r30OIIY Fl-ZJOMHt<br />

IltANS15rOR PW 51 PMAhUM3 FT-+dMHL<br />

TH&M5ISfUG PHP S1 P0=>30** PT-IYOMHL<br />

IRhH4 1 STOR HPN &I PY-3UUW Ft-ZOUMWZ<br />

TRI.YSIST1R NEW SI PO-3bUIIa FI=7>MUZ<br />

WB1-7M7 IH&HS1 STUR. FEf XMAAS 53005<br />

18 55-U~Ib Z fklMSISToR--JFtl DyU *-CHAR WIYIDE 10-71<br />

b081-7047 IHhf44LSTWg FET KllVAUSf 5300~<br />

5081-To(? fH4NSLSlOR. Ftl KOVARSF 53005<br />

5381-7W7 Tt(AvSl hlrll(. Fir KUVARSf 5,003<br />

LC S%u+.?o 11 TaAwSIStOH J-ktlZN*3Yl h-CMAHQ-MWE<br />

18 jCYOB7 TlrlNSl STOY Am 51 PO=360Mn FT-15MHZ<br />

LuH-Owl1<br />

~a+oort<br />

IrllUSISFW NPN Sl PU-300113 Fl.ZJOUHL<br />

T~M~ISFDR HPH SI PO-3oo~w fr-zoun~~<br />

L(I :+OULLI<br />

Ie?*U>b8 b<br />

TuhNSfirM PHP b2 PU*)UUII* fT*I3WMZ<br />

trtilHhlSfOR J+kT &CHIh WNWE KU-IL SI<br />

LU55-03bU TrllNSlSfUR 4-kt1 M-CHhW &*JDb 19-12 51<br />

la:+ OlbB lR*HSISTWR J-FEY N-LHAN U-IIUI)€ ?Q-72 $1<br />

Ibl'l-OLlr 2 *TdAH.SISTUI. JET kCHANHEL 2 W ~ r<br />

I;r 55.UC44 *IRANbfSTUK~ JFET kCUbNNEL LY4857<br />

18 :5-d+23 TuhNSlSTuR J 4 k I Ztu4391 N-CMAN L1-HUDE<br />

L855-W23 Th1H51SlUR J-FS1 LNCJPl M-EHLIY 0-MOUE<br />

Id S'rU3wrl Tn&NSISTOR J-+ET IY-CHAN WODk f0-72 St<br />

lYfrSu~ar( THINSISTLM J3El K-CHAW QHODt TWYL Sf<br />

ili>rU~*u TA~YSISTOR-JF~I auu. R-LHAY wnrlot T+71<br />

W81-?w? T~ANSIST~AU~ ftf K&AR$+ 53305<br />

-1-7W7 TR~WS~SIURI FtT RUYAUCF 53005<br />

It! :I-O>OP TkAH41 STUR J--FEI +CHAW D-MU BE TO-72<br />

LB3+(IWLU TdANSI STOR PW SI PUmj00Md FT- 153MHf<br />

I d53-OULO TllbH>l5TUR PUP 51 P;)=3UOHM FT=l>OIICU.<br />

lo!>-u~t~ ~uhlublsrulc PW &I m=>rla*u. TI-ISOM~L<br />

ld-ori~~ ~I.~YSILTUR KPM SI PU.SUOW* FT-~OSMUL<br />

Ed%-OUT1 InlMalSTOH hPN 51 PO=303Mm Ft-2PUHHL<br />

LllS*UUrU TP.AN$IST~R YNP 51 PW=JJOMY FT=lbDMHZ<br />

JalJ-Our2<br />

dU IPUlrjL<br />

1109d-8147<br />

L<br />

hi<br />

~ t ~ l l5 r~ l 51 1 ~ 5~ P* ~C-W-ZO<br />

UES1S11*c >UI frr 5Y PU fC-JI-LO<br />

AtilSt[R. IUUL 5P .LSW tL r&=-+OO/*BW)<br />

OuP8-BI3F RthlSrW 1004 51 .ZhU CC IC--400/*8OU<br />

Uav3-ra3> 4 HLa15fW 196 5% .2SY FL ~L=-+DO/*~WU<br />

Vbe24PS<br />

UI.d+d++I<br />

VF!u?-O~tb<br />

J I >?-us40<br />

2<br />

z<br />

MrSl SLUR 3+0% 51 -1% fC TCm-dOO/+PJD<br />

H?SlSTM LhUX 5L .25d FC fC--dOO/+'IOD<br />

R L S ~ S I5h I ~ it *~LLVL F ~C=D+-IJO<br />

Mtilb#m Lb* 11 . &Zh F TL=U*-~O~<br />

Outlf 1355 Y ~i~lSllutlJK>Z.25dFtIL~-400/*700<br />

1 W l B O B AM0 ABQVE: REWCESa#131(12S<br />

I I<br />

(only to urhl rmrmen 1622A[r)411 and .bovk<br />

Description<br />

Mfr<br />

Code<br />

Model 3455A<br />

Mfr Part Numh


I<br />

Refemnee<br />

Designation<br />

AIUUIL<br />

IIJKL3<br />

AIddL*<br />

AIr)Yk><br />

&AULtlm<br />

41UR11<br />

*IUI(Io<br />

ALdAlY<br />

4IU*,?l<br />

AIdMZC<br />

AIJRZ~<br />

4AJlcr*<br />

&lUHL><br />

AIUUD<br />

~ ~ d r t ~ f<br />

A bus<br />

4 1 5 ~ ~ 3<br />

h ~ d n r l<br />

IIJKjC<br />

nidmad<br />

ALdRd*<br />

hIUL3><br />

AlLlK3o<br />

A1ult3E<br />

AlJY)&<br />

41Ulr3t<br />

AAdm*A<br />

*IJ!~PL<br />

4lrlk*l<br />

~ l u ~ + t<br />

AhJKC7<br />

A 1 JWiO<br />

AlUu+I<br />

AIdr4a<br />

IlJK*U<br />

AlJdS1<br />

*IJK>d<br />

a ld*>s<br />

41dUb*<br />

A1 J*>><br />

ALllH5b<br />

AlrlrrSt<br />

*1JUSII<br />

JIU*~~<br />

Ildnbl<br />

IlJotbL<br />

4AUllCJ<br />

* IUHO*<br />

AIJ-1<br />

*1Ul(bo<br />

AlJlcol<br />

hA~&od<br />

Aldb*<br />

AlJH71<br />

aAJk7t<br />

AIJR74<br />

AlllKl*<br />

rlJx71<br />

ALJH7u<br />

Alud77<br />

AlvjR7u<br />

AlOr(79<br />

AIUHdl<br />

Abunns<br />

XIUNmI<br />

AIJ*I+<br />

AlJko,<br />

AAUU~U<br />

bLrl~aI<br />

AlUrt8u<br />

ALUKOY<br />

I &Id-91<br />

&AdwVd<br />

mIJIIY><br />

hhl~d*<br />

HPPart<br />

Number<br />

ObU-3aL~<br />

ubYrLiIs?<br />

JbU3-131a<br />

uat3-a.r s<br />

JoU-1535<br />

Jo83-203 S<br />

UbW-WtV<br />

ObW-313b<br />

Ubr13-%25<br />

duR3-5mdb<br />

nar13-1535<br />

JbW-8777<br />

rlc'HI-++I9<br />

obuf-i423<br />

U L ~ + ~ L L ~<br />

JDLE>I~~<br />

(109d-tiljl<br />

obru-8~3s:<br />

JL83-50Llr<br />

aoa9-~ti><br />

Wb%+B?>7<br />

Utlll-3415<br />

YON-BIID<br />

O(1113rZrl35<br />

009&877F<br />

00W-87 37<br />

UbS&Bu9J<br />

Uh'M-SOY2<br />

Uo9d-WY3<br />

OOW-B~~T<br />

Ob~I3->llj<br />

JoW-8777<br />

ua 11-3461<br />

Idl+Ucs2<br />

I1 1+0~3L<br />

UoYB-a131<br />

Obtl+ZuZ5<br />

UC~J-LCL~<br />

UIOYrrlJJL<br />

Obq(l-TJ32<br />

ULS1-5145<br />

UbW-(IJLJ<br />

Jo4llcb31J<br />

OSV~-LO*I<br />

UDt3-1Uvl<br />

0658-1737<br />

da 11-dtor<br />

obw-dr~ I<br />

UoUE- I5J5<br />

.i IOU-Ad13<br />

r16 63-ZllL 7<br />

OcLa-BlJ?<br />

JrSPOub:,<br />

0l:I-hu5<br />

rlulJ-LUI ><br />

11151-UsSJ<br />

JO&-*I,><br />

~083- 1Y9><br />

O(r(L+Lul><br />

1 Q o d ~ * / L 7<br />

d(rBA-4?~7<br />

m-8177<br />

0683-)015<br />

r)thJ-Ylr><br />

uuV8-old7<br />

Due)-ib=><br />

dm%-dF3f<br />

~6%-8117<br />

P ~ ~ M - U I ~ I<br />

uDd3->Ah><br />

Oud3-btl5<br />

~udl-Lu~><br />

OLJj-dLib<br />

JCI)I-AJLP<br />

Omtr)-l~LS<br />

ran,<br />

r<br />

L<br />

t<br />

d<br />

r 1<br />

3<br />

B<br />

I<br />

1<br />

15<br />

I<br />

1<br />

I<br />

2<br />

1<br />

1<br />

L<br />

2<br />

I<br />

2<br />

5<br />

2<br />

1<br />

1<br />

1<br />

6<br />

1<br />

c<br />

4<br />

Repikeable Parts<br />

Description<br />

~LLISIW IS* 5; ..?in* FE r~--+oo/+boo<br />

*51,JWI. FXO 1000 UHII .*a<br />

Yt&iSIlN 14k 11 .tit53 f 3C.W-IJO<br />

m,.it srm L.LK TP .ZW FC rt.-4ao/+roo<br />

RtllSSlU LZU 5r .l5r FC tC=-*UU/+*00<br />

Mf r<br />

Code<br />

RrSlSfOR 1alK 5I r25Y FC IC.-QU(If+7OU<br />

OllZt cS33Ts<br />

HcSlSlW 100K 5C -35U LL IC--+OUf+adO<br />

OlLLl CBIOI~<br />

RtSlslrLR 100 58 .LW Ft IL.-*00/*500<br />

0112l<br />

I ~ Z ~ ~ S ~ ~ B . L K ~ L . L ~ * F C . T L - - * O U ~ + 01121 ~ O ~<br />

CBlDL$<br />

CBB.425<br />

HISlhTM lSK >i .2># FL 1L'-*OJ/+tlOd<br />

YllLl LBIS35<br />

I<br />

RtStSfl*L PUlt li .ZIW FL JC'-*00/+UUO<br />

REhLSIUR 14I1 11 .1Z5w F TL=S+-100<br />

AFSI511W 17.8s I* .Id'lH F IL.O+-I00<br />

Oil21<br />

24545<br />

2454b<br />

CWdO3S<br />

C4-118-f0-1 lW-F<br />

C+1/B-T3-17BL-F<br />

U C ~ ~ S ~ ~ ~ ~ . ~ ~ > ~ ~ ~ ~ U F C T L - - OLlZl ~ U D / + CBSW5 J O O<br />

AvllSIW 5.611 SL .ZSY FC ~C~-tUU/+JOO dLlZk C85b25<br />

atstsrm 3 ~ o n si .r>* kc rr--aoo/+qoo<br />

RCSIbTW IOU* 5X .25d LC ICm-4OOI+bUP<br />

RL~ISIW Iun 5g .25w FL fC.-4~0/+700<br />

H ~ S I S ~ 5.d W 511 .25n FL IC~-403/+700<br />

A~SISIIS q10 >I .ZS. FC ~C=-*IUI+LOP<br />

Rc~lSf[lt LOOK 5t .25h CL fL--400/+800<br />

RtllSTUA 70.0 iI 1Y PY 11*0*-111<br />

*r(ESI STI11. f W 10 M R -05<br />

HtSlSlOR ZUK 51 .25W FC JC.-SOO/+hOP<br />

rt&SISIORm FX0 13OY UHll rU5<br />

RF515TW lOOK 52 ~2511 EL IC--4rlOf+1100<br />

HkslSrM 201 1% -125M F fCm0+2><br />

RtSI5IClil IbUK 1: .LS.bd F rf*i)+-Lb<br />

RL.SI5IW .?OK 1z .lL5Y F fL.34-25<br />

RESLSTW toon 5% .~5m CL rC.-4UO/aBOO<br />

REIISIM 511 !at .25d FL r~~-IJO/+800<br />

RbSISTm. FYO 1000 UHH .US<br />

Rt5l b I tVE 5ET lUU/lOU KOHM (FNCLUOES RB31<br />

NttwDR6-US 8-PI EI-SI P .I-PIN-SPLG 7XlIXIK<br />

NklWOuK-Rt?r @-PI H-SIP . I-PI N-SPCG 7X100K<br />

ktS1STOR LOOK 51 .29M CC It--4OP/+B00<br />

Hi>tSIW JK 5s .25* FC IC=-4OU/+?PO<br />

RCSIITW b.211 51 .C~Y 8-L 1~=-400/+ 100<br />

KL5ISIW Itl 1% .I254 F IL=J+-1OU<br />

R ~ S I S ~ W IR 1.s .IL~W F 1~=3-103<br />

RtSLSTUR 510R 3L -25Y FC l**-404/*900<br />

I~ESISTU~~ 51 -12 ,115~ F IL*J*-25<br />

HLaISiDR 5K .It .I25* F IC=U*-L%<br />

HI SISIW iuon 101 ic tt ic=~*#at<br />

R:*IST[A 1001 LUX ZY LC IL*O+oBi<br />

RcStilUR LOOK 51 .Z5r CL 1i.-100/*100<br />

RESL SKIVE SFI. LOM~ICYO KOHM {lMCLUDES Rt7)<br />

UFSISTURI FAO IJUO unn .IJ><br />

HLLlSlORf51151 .ZSWFCIC*-QOOI+UUO<br />

HLSI 5 TIM-rHMR 50 LO& L 1 UP-A01 1-TRN<br />

RtblSTITI 2K 5t .2>M FC fE--4OP/+?O0<br />

AtSISIUR IrlUK 54 .Z>d LC TLr-*OU/*BUJ<br />

K~slblU( IUuX IS .lL5- F IC-Or-LOO<br />

HtilSIW IUUK 12 .lL5r F IL'OO-~OU<br />

UcS.ISI[Y1 2IIU >4 .25k FL I;=-*JOl+bUU<br />

Rt51511X b1.W 1s .Idad f l&*O+lOU<br />

~LSL~IW *.?Y >t .25* hE li=-WO/+IIXI<br />

ALSISILY. LOK I X -25, iL ILI-*UO/+1UU<br />

RcllS1UR ZuK 5s .dSh fc IC--iJO/*dVU<br />

ULIISIW r.ll 54 .2ra PC li--4uOl+7Lld<br />

NLSlSlUR L7K Y& .15r tC ILr-sOO/tfOD<br />

At 51 STUR FKO lMlO OHM .05<br />

RtllLlW SIC 5% 25W FC TCmIs8W<br />

wcS1hrM YLOU 5Z ,211m tC lt*-dOOltPJ3<br />

HLSISIIJA IOuK >L .Lb# LL I,l-4Oll/*d~O<br />

R L ~ STL& I XLUh 54 .2>w FC Ttl-SJU/+700<br />

ISI IS^^ IUUK 5l .25m CL I.*-*rlO/+a00<br />

K~SISIUR. f * LOOU ~ uHn .Oi<br />

RL~ISIUII b * ~ ~UOO UH* -0-r<br />

RtblSTUR >LU 56 .2hW b i IL=-*UOI*CGO<br />

RrSiSllll 51U 52 .L51 +L fC'-*OU/+hUO<br />

HtIlSILP. ZUU !PI .L5d FL Ic~-QJOladOl)<br />

rtcSlblUl ZJK bL .,?>A I-C !l.=-&vll/+lrlrl<br />

kt51 SfLR 1K 56 .25* FL TL'-*OJ/+~~I)<br />

H:SISIUI LK 5. .Z>Y FL ILa-n)J/+?UO<br />

OLLZI<br />

2&483<br />

2*5&5<br />

01121<br />

ULlll<br />

01121<br />

OLLJL<br />

O ~ ~ L L<br />

01121<br />

011.!1<br />

OllZI<br />

91131<br />

28480<br />

01121<br />

28483<br />

01121<br />

93888<br />

03888<br />

03eU8<br />

OLIZI<br />

Ollil<br />

26+83<br />

ZBCBO<br />

SlrZBP<br />

58289<br />

011ZL<br />

OklLL<br />

DLIZL<br />

19701<br />

lJTOL<br />

0li2i<br />

03888<br />

U3UBB<br />

01121<br />

51131<br />

OllZl<br />

38183<br />

LYCBO<br />

01121<br />

731 JB<br />

01121<br />

OlldL<br />

2OSCb<br />

Z+T+b<br />

OLLL~<br />

Z454b<br />

01121<br />

01II1<br />

OllCl<br />

0112k<br />

DLILL<br />

28480<br />

OF121<br />

Oh121<br />

UlllL<br />

UllLl<br />

Ollll<br />

10463<br />

L8483 1<br />

1 Olldl<br />

OlL21<br />

01ItL<br />

01121<br />

OLLLI<br />

OIlLL<br />

~~15145<br />

LBlOls<br />

L11035<br />

L85bZS<br />

CBP~LS<br />

CBLD14<br />

R5-LA<br />

0498-8776<br />

Chi035<br />

0698-8117<br />

- .-<br />

Mfr Part Number<br />

tai535<br />

0698-8711<br />

C4-1/O-T@-lb52-F<br />

CBIBZ~<br />

LBZZhS<br />

CBlO45<br />

PHE55S<br />

*WE555<br />

PME555<br />

~ ~ 1 0 4 5<br />

CB5135<br />

0698-B77?<br />

0811-3+61<br />

2 16CHIO+KP?fi<br />

2IbLHlO4*9PM<br />

CElOI5<br />

LBZ025<br />

tab225<br />

MF5L1/8-~0-10W-F<br />

HF5CIl0-IW1004-F<br />

~~15143<br />

PRE~5-1/~-~P-5POl-U<br />

PVE 55-118-10-5001-8<br />

neta+1<br />

Ha1041<br />

K81W5<br />

0811-3*b1<br />

0698-d177<br />

CBJ535<br />

72- LO1-0<br />

CUZOZS<br />

C810S><br />

C*- 1/8-TO-1 OU3-F<br />

C*-118-TO-1003-F<br />

CB2015<br />

C+L/B-TO-bLPL-F<br />

CB*F25<br />

Cb1DJS<br />

LbLU35<br />

LbCTZS<br />

CB4725<br />

Mi=-8777<br />

CB2025<br />

Cdll45<br />

CB1045<br />

CB1035<br />

CUl045<br />

0698-8777<br />

O~JB-BY??<br />

C85115<br />

tB51f5<br />

LdZUj5<br />

LILO33<br />

LUML~<br />

CUZ035<br />

I<br />

I


I<br />

Model 3455A<br />

A12<br />

A12C1<br />

A12C2<br />

A12C3 AB<br />

A12CR1-CAI<br />

A12CR5<br />

AIZCRfi. CR7<br />

A12CR8<br />

AlZCAQ<br />

AIPCRII-CR15<br />

Al?Ol<br />

AIZQZ<br />

At20.3<br />

A1204<br />

A1705<br />

A12R1<br />

Al?RZ<br />

AllR3<br />

AtZR4<br />

AtZA5<br />

ATZR6<br />

A12RI. R0 bg<br />

At2RO<br />

A12Rll<br />

A17R12<br />

A17A13<br />

Al2Rll<br />

A12R15<br />

A12R16. R17 AL, A0<br />

A12A18<br />

A12R19<br />

A11A21<br />

0345M12<br />

018bm33.<br />

0160-0164<br />

0 1-0157<br />

1931 -M15U<br />

19024717<br />

1901-W5.0<br />

1901-0036<br />

1902-3 139<br />

1901-W50<br />

1815-0217<br />

1~53-wm<br />

18M-W87<br />

1854-0079<br />

1855- 0347<br />

0685-1115<br />

0883-4325<br />

OF57-WD<br />

0685-2735<br />

0698-4465<br />

06984ZOT<br />

0751-W42<br />

0683-1235<br />

a683--4115<br />

OGA3-I425<br />

0683 -3035<br />

0698-345 1<br />

ma-2135<br />

0157-(#42<br />

08834335<br />

WK4-1535<br />

0683-1135<br />

0683-1 125<br />

AA SEE NOTE ON SCHEMATtC 4.<br />

A B SEE NOTE ON SCHEMATIC 4,<br />

1<br />

1<br />

1<br />

?<br />

1<br />

1<br />

t<br />

1<br />

1<br />

1<br />

3<br />

1<br />

4<br />

6<br />

3<br />

2<br />

1<br />

1<br />

1<br />

3<br />

1<br />

PC ASSEMBLY. OHM CONVERTOR<br />

CAPACITOR FXD 1UF+-20% SWDC TA<br />

CAPACITOR FXD .039UF - 10% ZM) Y DC<br />

CAPACITOR FXO 47~~+-104, ~WVOC<br />

DIODE-SWITCHrNG 80V ZWMA 7NS 00-7<br />

DIODE-ZNA IN025 6 2V 5% DO 7 P0-.2W<br />

DIODE-SWITCHINGBOV 2WMA 2hlS W-7<br />

DIODE-WV RECT 1KV BOOMA W-29<br />

D103E-ZPdR 825V 5% 00-1 PP.46U TC-+.Orn<br />

DIODE-SWITCHIVG BOV lOOMA 2NS Mt7<br />

TRANSISTOA-JFET OVAL N-CHAN D-MODE Te71<br />

TRANSISTOR PNP $I PO-WMW FT-IMMHZ<br />

TRANSISTOR MPN SI PD=36aUW FT-75MHZ<br />

TRANSISTOR NPH 2N3439 SI TQ-5 PD-IW<br />

TRAUSISTDR-JFEf OVAL N-CHAN D MODE -71<br />

RESISTOR 110 5% .?5W FC TC--400t+800<br />

RESISTOA 4.N 5% .25W FC TC-4OOP7W<br />

RESISTOR 1M 1% 5W F TM+-100<br />

RESISTOR 27K 5% .25W FC tC--4IXI/+8W<br />

RESlFTOA 1.13K 1% T25W F TtQ*-1W<br />

RESISTOR 8.87K 1% 125W F TC.0+-100<br />

RESISTOR IOK 1% ,125W F TC.O*-1MI<br />

RESISTOR 12K 5% .ZW FC TC---/em<br />

RESISTOR 410 5% 35W FC YC--4001+E00<br />

RESISTOR 24K 5% .25W FC TC4Wh700<br />

RESISTOR XIK 5% .25W FC TC--dIX1!+800<br />

REStSTOR 133K 1% .tSW F TCW-1W<br />

RESISTOR 21K 5% .XW FC fC.-W/*8MI<br />

RESISTOR 10K 1% .125W FTCIO+-1W<br />

RESISTOR 13K 5% .?5W FC TC.-40DI+B00<br />

RESISTOR 15K 5% .25W FC TCdM)l+&00<br />

RESISTOR 12K 5% .25W FC TC---bM]I*BW<br />

RESISTOR 1 1% 5% .75W fC TC=-UW1*7a0<br />

2-<br />

56289<br />

78480<br />

28183<br />

284ED<br />

04713<br />

1848a<br />

284m<br />

04713<br />

28.180<br />

28460<br />

=dm<br />

28480<br />

57735<br />

78480<br />

01 121<br />

01 121<br />

18701<br />

01 121<br />

2P546<br />

24566<br />

03292<br />

01121<br />

01:21<br />

01121<br />

01121<br />

245-49<br />

I 01121<br />

03292<br />

I 01121<br />

01 191<br />

01 121<br />

01 121<br />

Mf r 'Part Number<br />

WE166512<br />

1!iD0105X01)50AZ<br />

OlMI-OlM<br />

01W-0157<br />

1901 a(K0<br />

1 N RE<br />

1901-W<br />

1901-0033<br />

SZ 10839 158<br />

1901-WO<br />

1855-EM7<br />

1853-0020<br />

1856 0087<br />

2N3439<br />

1855-0247<br />

CB1115<br />

CM?a5<br />

MFlC112-TO-1034-F<br />

C82135<br />

C4- 1,3-m-1131 -F<br />

C4-118-TO-BB71- F<br />

CP -118-TQ-lW(I-F<br />

CBl235<br />

CBd715<br />

C82425<br />

033035<br />

C4-llg-TQ 1313-F<br />

C02735<br />

C4- 1~-TO-1002-F<br />

C84335<br />

C81535<br />

CO 1235<br />

tB1125<br />

I<br />

I


Section VIII<br />

Refemce<br />

Designation<br />

ALILIA<br />

bICLULL<br />

AI*YI<br />

AI*u<<br />

414U3<br />

Al*lk<br />

*I cu5<br />

A14w<br />

A14111<br />

lACRL<br />

AIW~<br />

&h+u*<br />

AL*Y><br />

41+k(r<br />

ALSMI<br />

A1IHU<br />

SAM9<br />

AI*MLJ<br />

AhWAL<br />

AIhAhi<br />

Al4Ull*<br />

~ 1 4 ~ ~ 4<br />

AlrHll<br />

A141tAb<br />

*ir*at<br />

*I4*kd *B<br />

hl+rllY AB<br />

414McJ A8<br />

Al**LA<br />

AL4UdZ<br />

ALlrYJ<br />

AIPULI bB<br />

A14WZSI AB<br />

ll4YLb<br />

A14KLI<br />

A441126<br />

AlbI(L3<br />

A14k3w<br />

ALIWL<br />

Al-bYdL<br />

ALCMjA<br />

AICM35<br />

AICUSl<br />

kl*Yjb<br />

*l*kl7<br />

4Itllja<br />

A 14haly<br />

AI ~ R P U<br />

A141111<br />

AICU~Z<br />

*I***><br />

Al+m*+ b*<br />

kL4s45<br />

AL4d4-<br />

A1bYb7<br />

~ l h u s d<br />

AI4U1<br />

114UL<br />

*1*Uj<br />

AL4US<br />

h1su5<br />

*I*-<br />

Replocea ble Parts<br />

I HP Part<br />

Mfr<br />

Number QW Description Code<br />

lg(ll-U~38<br />

IVOI-OU*J<br />

II U-O(ELU<br />

1n~r0u3+<br />

LB 5+Ddrl<br />

1055-0033<br />

405+Ma<br />

kBSr0u~U<br />

ObllS- 101 Ob83-2025<br />

YOPB-3155<br />

uu 11-25 II<br />

a r 57-&3o<br />

~TW-OL~D<br />

U D W - ~ I Z ~<br />

U1 St-W40<br />

07 57-MbJ<br />

U7:J-MiU<br />

0098-3511<br />

06 83-3UL 5<br />

DOB+LLb><br />

U7 ST-WCL<br />

UB ll-3UlT<br />

O~~T-OHL<br />

075~-WCB<br />

07 51-(n73<br />

06984460<br />

OIBB-3726<br />

Ud 11-2- I l<br />

0696-3152<br />

U(rB+BL15<br />

UbBP 1035<br />

Ub 4%- 1035<br />

UbW3ibO<br />

OLW-8u4P<br />

tl0O+d73s<br />

ObU>->SIL!z<br />

U0 9d-tlO4Y<br />

Oh 98- 3LbU<br />

3bPB-3*99<br />

UbYJ-1*Y9<br />

JCD>-IIIIY<br />

YbYO-JIV9<br />

Oh 313-2415<br />

u0~luJS<br />

08 8A->u%7<br />

Ub U3- 3uZ ><br />

01 St-**.?<br />

U'IS'I-NIL<br />

00b+4rh<br />

Bb 83-2b35<br />

Ub 83- 2055<br />

3ob3-lUb'J<br />

UL U3- IUb5<br />

dCYt+(-t415<br />

o 8 $?-Om7<br />

ISCo-OO?U<br />

~YLbtuIu<br />

18~bWJl<br />

l.llrbOaJ9<br />

A U ~ + Y L U ~<br />

18cb-Ol3(1<br />

IUQJ-OUCI<br />

34~ GJ-PUG I<br />

AA SEE NOTE ON SCHEMATICS.<br />

A 0 SERIAL NUMBERS 1672A05231 AM0 ABOVE. SEE NOTE ON SCHEMAT1C 8.<br />

1<br />

I<br />

A<br />

1<br />

1<br />

1<br />

I<br />

I<br />

I I<br />

OlDDE-SM)TT#V<br />

DIDDE-SUttCUlfiG 3PV 50W 2NS 0-35<br />

THNSI staR PW st Po-3wnw ~r-150mz<br />

IMhNSISTOR PW SI T+l8 PI).3bOMU<br />

tn4HSl SIOR J-FET 2NC3Pt M U l H WHOM<br />

7*1111S1 STOR J-FET M-LH&U 0-MWE TO-72 51<br />

TRAWSISTUR-JFEI DUAL H-fnhn D-nw m7?<br />

f u ~ ~ S t l f DPPlP R SI Pllr3001LI ft-ISOWL<br />

I IILS~ST~A 10K 51: .25m FC tt-+0~/*700<br />

RE511Tl% JII 5i .25W FC TC--WO/+TOO<br />

A~SISTW h . 1% ~ .ILSM F rc=o+too<br />

2 R~SISTOR IDK .I* .LLTW PYU rc-a+-z<br />

L HLSIST~R 4.32~ LX .125Y F tc=urtoa<br />

R~SXSROR LK IS .rzsm F re-o+~oo<br />

1 m AsbISl[R b.49K 12 .IZSU F ICBOt-I00<br />

1 *tSlSIIR 7.SK 1X .1ZSd f tL*O+-LOO<br />

3 R L ~ ~ S T1W 5 ir ~ -12511 F ~L=o+-100<br />

1 RtSIST[R Z.L1U 1% .125U F fLlO+-100<br />

1<br />

2<br />

1<br />

1<br />

3<br />

1<br />

1<br />

I<br />

I<br />

J<br />

1<br />

1<br />

1<br />

1<br />

1<br />

L<br />

c<br />

RtSlStLR -5 If .L25Y F TL-04-100<br />

REStSlLIR 3K 5: .25W FC lC=-*OUI*TOO<br />

RLSIhTM 2LM 5% .LbW FC fL=-YUO/+LLOO<br />

RtSISl(R loll Li .125Y F fC*O+-IOU<br />

RtbISIaR 1P.BK If .lZSd Pdd TL-O+-5<br />

AkSISt(R B.ZW If -125.Y F FC*0*-100<br />

RZSISJ~ iow la .125m F rc=o+-LOO<br />

RSblSIIR 301K 11 -125d F T&*O4-100<br />

RtS1SlW 6~1Z.lZ>rlFI.C=0+-100<br />

H~SIZIUR 8.44K14 -125~ F IL*O+-IOO<br />

RESlStIR 10K .If .125* PYd lC-O*-2<br />

RtSITlW 4.64K 1X .1LYd F lCmU*-100<br />

RESIS?U BZll 51 -ZSY FL TL.-+OU/t*CQ<br />

UiSlSIUI 10K 54 m25C *C 12~-hUUI+?DU<br />

Rc5111a 1OK 5% .ZbY FL TC'-WU/+7OP<br />

RESlSTOI bb4K la .125.1 C TL*O*-100<br />

KcSISIW 1.LdM .lX .Z>M F SL*Ucll<br />

RELISTUI 21K 54 .25Y FL fC=-4OOl*daO<br />

K6aISI&l 3*Y* >I .Z5M FL Ti--+UU1*7UO<br />

RcSlSlW 1.LM .kS .L5Y F TC-U+-25<br />

RCSISIW 4b+K 12 -125~ F fC=Ot-LOO<br />

RESI SIUI W,ZK 1Z -12'rd F 1Cmrl*-100<br />

L(CS IU( ~ 0 . 2 LX ~ .115d F f~mO+-l00<br />

RfSlSllA 1K 51 .25d FL fL*-fOo/*bUO<br />

RtjlSrIYI 4rl.>K 12 .l.?Su F fL*Ut-IOU<br />

RLSISTOR 24< 51 .&5U FC TCa-b001*bOd<br />

RtSl JllR 106 5; FL IG=-fOJ/+IQO<br />

tit STSIW JOJI: 41 .L>Y FL I~=-d00/+9UO<br />

Rchl 5rM 311 111 -25s FC TC=-4UU/*tOO<br />

AtSISIw 10K 1X .IL5Y F IcBU*-100<br />

--<br />

2UIUO<br />

ZB18D<br />

38+10<br />

28I80<br />

04713<br />

128480<br />

ra+so<br />

za+ao<br />

OfW7<br />

01121<br />

Zh545<br />

14149<br />

24546<br />

24546<br />

ZCSfl<br />

Z454s<br />

2255%<br />

24546<br />

24543<br />

Olt2l<br />

01121<br />

2*5*h<br />

1bL43<br />

2454b<br />

2*44b<br />

om2<br />

On57<br />

0337<br />

LY701<br />

WllZl<br />

Ollfl<br />

I9701<br />

Jlblt<br />

2f54b<br />

L45CI<br />

OllLl<br />

2P56S<br />

OlI21<br />

Oll2L<br />

DILL1<br />

01121<br />

25555<br />

RtSISTIR t01( 1Z .lZ5Y F fL*U*-EOJ<br />

n:~lir[lt ctn 51 .~5u FI. ~~*-4rl0/+80a<br />

ZCSII<br />

011~1<br />

RkbtStDR 10K 51 .L5Y PC 1C'-4OO/*dOrl<br />

HCSISIUI m 5. .25* kc l ~ = - ~ d r l / * l l ~ ~<br />

RtalSILR IUR S i mZ5d FC 3c~-YJI11*llQO<br />

DLLL1<br />

01607<br />

OllLl<br />

RkSlStrR L3M >'l .L>k FC IL*-9OU/+llrlO<br />

Uc5141W 9.76K I & .kl5.l F rC=U+-iUO<br />

~~stsrm I&IK LI .IZW F ~t*o*-iilo<br />

IEIJDE-*RM**<br />

bI u.rlt-ARI(*Y<br />

t~ OP AMP LOW-DRIFT fO-69<br />

1, hU )1dJ nP ARP<br />

14. &MR. UYtltAf IUNU<br />

IL LM $39 LWPA&AT~~*<br />

LXTRILIUR. 0.1.. itb~au<br />

YINtP.C.nkI~MdL*LKLLIJ4<br />

Modd 345519<br />

Mfr Part Number<br />

1301-0511<br />

1901-03W<br />

1153-0020<br />

1853- 0031<br />

ZN*391<br />

1855-0033<br />

1855-md~<br />

~asa-OOZD<br />

CEtO3S<br />

C12025<br />

C*-11&-10-4**I-F<br />

I214-IE Lb-S-kDD2-d<br />

CS-118- rO-IILL-'F<br />

C4-I/#-TO-IOOL-F<br />

t+l/U-fO-6491-F<br />

CI-L/8-TG-75DI-f<br />

E4- I/B-t0-7502-F<br />

CS-LIB-la-2211-F<br />

C+-Ill-TO-bhSA-F<br />

CB3DZ5<br />

C&L2bI<br />

L*-118- 10-1 002-F<br />

&3SO-l/S-C-19BZ-f<br />

C4-L/B-IJ-B251-F<br />

C4-LIB-TO-4OJ3-F<br />

I<br />

~bl/~-~~-~ll<br />

-F<br />

ctlld-rrl-8a9U -F<br />

C4-1/8-1+8"91 -f<br />

14143 I iZ?+L/l&-b-1002-~<br />

.?+S*b C4-LIB- TU-*b+I-F<br />

01121 C08215<br />

QlBOl CR1035<br />

01607 CR1035<br />

r11637 tMF-55-1+<br />

MF5LL-1<br />

La2735<br />

CB3Y25<br />

WS 52L-1<br />

1-1<br />

Dl12k<br />

ulada<br />

aasz<br />

ZB4BO<br />

2atr0<br />

02180<br />

3355<br />

L>*IU<br />

~ 1 0 1 *<br />

~ a 4 m<br />

L.4b;D<br />

CW-35-1. 1-1<br />

C4- tl$;-T+b32Z-F<br />

C4- LIB-IU-COZZ-F<br />

LBLDZfr<br />

C6- LIB-TO-IOdZ-F<br />

C82435<br />

LO1035<br />

t$30*5<br />

C%3025<br />

Lb-lld-TO-1022-F<br />

C4-I/U-13-IOOZ-F<br />

~a*?35<br />

CB2035<br />

CBm55<br />

CBlUbS<br />

CBt065<br />

P*E5S-Lld-lO-JYal-F<br />

~*-1j&-13-1823-F<br />

19~t-OP ra<br />

IqW-WlJ<br />

DP-07W<br />

hOblbJ<br />

Ic1Ct319<br />

CM~JJN<br />

J O ~ S - * ~<br />

>OOO-YUIA


.<br />

bignation<br />

A1S<br />

AlXl<br />

A 1 m<br />

A15(;3<br />

AlSC*<br />

AlXS<br />

A1XB<br />

A1X7<br />

A l W<br />

At-<br />

A15C11<br />

A15Cll<br />

AlX13<br />

A15C14.C16<br />

AlEC18<br />

AlXl t-l#,C21<br />

A15C22'<br />

A l K 2 3 . ~<br />

A1W5<br />

A16C38<br />

At5CSf<br />

A 1 W<br />

A15G'B,WO<br />

A1531<br />

dl532<br />

A1533 dP<br />

A1534<br />

A1535<br />

~ 1 5 ~ 6 - dh<br />

h1€€40 h.l<br />

AlxR1.?,3<br />

A15C R4.6<br />

Al5CRB<br />

A15CTtr<br />

A 1 XRB, cm<br />

AlSCRf l-CR13<br />

AT3Kl.KS AA<br />

A16K2. K4<br />

A1501<br />

A 1502-01<br />

A f5O5<br />

A15M<br />

~1501<br />

6?5@<br />

nr6moit<br />

A15012<br />

~15013<br />

AlbOl*<br />

A15011<br />

A15016<br />

AlS(Lt7<br />

A15018<br />

A750lqm<br />

A15R1<br />

A15A2<br />

A15R3<br />

A't5R4<br />

A15R6<br />

A15RBa<br />

AfSR'I<br />

AWAB<br />

A75K3<br />

A15R11<br />

A15Rll<br />

A15A13<br />

A15R14<br />

A15A1S<br />

A15R16<br />

A15R17 At<br />

Al5Rl8 AL AM<br />

A15R10<br />

AlbR?1*<br />

All-<br />

A& SEE MOTE ON SCHEMATIC 3.<br />

AC SEE MOTE ON SCHEMATIC 3.<br />

8J SEE MOTE ON SCHEMATIC 3.<br />

'HP P at Numbsr<br />

031S4515<br />

nlW151<br />

0170-MJBB<br />

01m-ms3<br />

0180-3WP<br />

OtW-3134<br />

0180--203<br />

0160-22M<br />

0180-0163<br />

0160-3686<br />

0160-3264<br />

01404198<br />

0160-2757<br />

01804291<br />

0160-7351<br />

01504121<br />

0160--2257<br />

0180-5250<br />

0180-2261<br />

01511-0'21<br />

01RO-334919<br />

0150-0121<br />

Ot60-3945<br />

0150-0121<br />

016a-d4SO<br />

OI6b394g<br />

016b7m<br />

016-86<br />

01714438<br />

0140-11193<br />

oiwm55<br />

016@-0128<br />

1901 -OW0<br />

1801~0518<br />

1401-MWO<br />

1801-0586<br />

1802-3073<br />

tBOt-[1010<br />

WBO-WB3<br />

D d M W<br />

IRM-0071<br />

1855dXI<br />

1855-3<br />

tB54iW11<br />

1853-WZD<br />

1055-Olm<br />

185.44753<br />

18Ki420<br />

18%--WI 1<br />

1853-<br />

18W-0215<br />

1854-Wll<br />

1853iwm<br />

1 1855-0081<br />

7855420<br />

M3-1036<br />

0683-2235<br />

0683-5145<br />

0683-2135<br />

0583-5145<br />

OB38447U<br />

0157-WM<br />

08984308<br />

0157-W49<br />

069&8692<br />

m98-3262<br />

W8-3158<br />

0683-2455<br />

069&3456<br />

m3- 1035<br />

D683-2235<br />

9103-3161<br />

21&30%<br />

0698-83M<br />

0757-0417<br />

ma% 1815<br />

0683-2245<br />

0683-2445<br />

W82-XM5<br />

(K83-X45<br />

0683-5145<br />

0693-7545<br />

1)68X-1555<br />

01k.?-WO1<br />

AL.IH SEE NOTE Oti XHEMATIC 3.<br />

b ., ,., ., ....rr.,r..-s.r.<br />

Oty<br />

1<br />

B<br />

1<br />

1<br />

1<br />

1.<br />

1<br />

PC ASSEMBLY. AC RlnS M Wt€4-&&15<br />

C#PACltOR-FXCJ .lUF *B&im m D C CER<br />

CAPACITOR-FXO ,027 UF<br />

CAPACITOR-FX0 22 UF lOoV<br />

CAPACITOS-FXD .1UF *-10% 1 m D E CER<br />

Z4m<br />

28480<br />

01~0121<br />

01-<br />

01-SDSP<br />

CAPACITOR-FXD .01Uf L l O I 1 W D C CER 2MaO OlRD-31M<br />

WPACITOTOR-FXD 750PF 65% m C € MtCA<br />

CAPACITOR-FXD l W F +-5- XMWVM: MICA<br />

2BPBO<br />

28480<br />

01SM35<br />

018b12W<br />

CAPACITOA-FX0 .033 YF SWV 2MRO (H-163<br />

CAPACITOR-FX0 "27 UF +-to% W D C MET 784RO 01-3688<br />

CAPAClTOA-FXO ZOPF 65% m<br />

CAPACITOR-FXD m F +-5% m<br />

D C CER<br />

D C MlCA<br />

78W<br />

72138<br />

016a-7X4<br />

DM 15FZDl m I C R<br />

CAPACITOR-FKD IOPF 4 4 % W V V C CER<br />

38480 01m-2257<br />

CAPACITOR-FXD IUF LID% 35VOt T4<br />

CAP&CITOR-FXO 10DF +-5% W W V K CER<br />

CAPACITOR-FXO .lUF 40-20% WVDC CER<br />

PADDING LIST<br />

CAPACITOR-FXD 1WF +-5U 5 W D C<br />

CAPACITOR-FXD 12PF +-5% SWWVDC<br />

CAPACITOR-FXD 15PF +-5% SWWVDC<br />

CAPACITOR-FXO<br />

CAPACITOR-FXD<br />

CAPACITOR-FXD<br />

.IUF +BO-?(pr WVOC CER<br />

MPF &-I% MWVDC WRG<br />

.lUF *80-23% MWVDC CEA<br />

CAPACITQS-FXU 3 9 +-I% ~ ~ WVQC PORC<br />

CAPACITOR-FXU .IUF +BO-21]% W V D C CFA<br />

Z CAPACITOR. FXOl lOPF lOOV<br />

1 CAPACITOR-FXD<br />

CAPACITOR-FXD<br />

01WF *-I% SII(1WVOC WAC<br />

43PF +-5% 3M)WVDC<br />

?<br />

3<br />

1<br />

CAPACITOR-FXD 22UF +-1[IX 4OOVDC<br />

CAPACITOR-V TRKU-AIR 2 4/24 5PF 3WV<br />

CAPACITOR-FXD 82PF *-5% 30WNDC MICA<br />

CAPACITOR-FXD aru~ +m -m IWVDC CER<br />

CAPACITOR-FXD 2 IUF +-20* 500VOC CER<br />

OIOOE-SWITCHING 30V W4A 7hlS 00-36<br />

DIODE-5CWOTTCY<br />

1 DIODE-SWITCHING 9W W A 2HS 00-35<br />

1 DIODE. GEY PRP S[EY &MA TO-72<br />

DIODE-ZNR 4 32V 5% 00-1 P+4WTCI-.WB*<br />

DIODE-SW1TCHIVG 30V WAA 2NS -3E<br />

RELAY-REED 1A IWMA t000VOCIVDC-#IL<br />

RELAY-REED 1A IOOMA 101X)VDC I VDC-COIL<br />

TAANSISTOR NPN 51 .501300MW F'I-2WMHZ<br />

TRAkSISTOS J-FET IMP391 Y-CHAh D-MODE<br />

1 TRANSISTO? J-FET N-CHAU 0-MODE SI<br />

TRANSIZTDS NPY Dl PO-XXIWW F'.I(HIMHz<br />

JPANSISTOR PNP SI PD-JWKW FT-15DMHt<br />

TRANSISTOR J-FET 2'44391 h-CHAN 0-MODE<br />

2 TRANSISTOR. AOBI~<br />

TRANSISTOR PNP SI PDLmW FT-ImHZ<br />

TRA%SISTOR NPN SL PD-300MW FT-MOMHZ<br />

I TRAN5,STOR PNP 2N481f 31 PO-W<br />

1 TRA~SISTOR FIPV $I PD-3SOHW FT-3OOMHX<br />

TRANSISTOR KPY 51 PD'XWMW FTllWMHZ<br />

TRA4SlSTOS PhP 51 PD-3WUW FT-'MUHZ<br />

1 TRANSISTOR J-PET 2N5245 N-CHAh D-MODE SI<br />

TRANSISTOR J-FET 3h14391 N-CHAK 0-MODE<br />

RESISTDR IOK 5% 25W =C fC.-Wl*fOO<br />

RESISTOR ??K 5% 25W FC TC--403/CB[XJ<br />

AESISTOR 610K 5% 25W FC TC--8M)/*9W<br />

RESlSTOA 25K 5% 3SW FC TC-AW .OM)<br />

RESISTOR 5tDK 5% 25W FC TC--rn<br />

PADDING LIST<br />

RES'STOR 638K 1% .125W f<br />

RESiSTOR 19 1K 1% .1ZW F<br />

RESISTOR 1A.9K 1% .125W F<br />

-9W<br />

I RESISTOR XIK 1% 125W F 16-0+-100<br />

1 RtSlSTOR 16OK 1 % 125W F TC-O+-25<br />

I<br />

1<br />

t<br />

RESISTOR 40 2 1X.125W F TC.O*-10IE<br />

RFSISTOA 26 1K 7% 12SW F TCW+-1MI<br />

RkSlSTOR 24M 5% 25W FC TC.-OW/+flW<br />

1 REhISTOR 2R7K 1% .l?SW F TC*-100<br />

RCSISTOR 1 0 6% ~ .~SW FC TC -a/-7m<br />

RCSlSrOR 22% 53 .25W FC TCY1103/+6W<br />

RESISTOR TRMR MU 10$ C SIDE-hDJ 17-TAM<br />

RESISTOW-TRMR 5K 10% C SIDE-AD,<br />

RESISTOR 73ZK 15 115W F fC-01-tM)<br />

RESIST04 562 1% 125W F TC-1M)<br />

PADOIYG LIST<br />

RESlSTOA 180K 5% .25W FC<br />

RFSISTOR 22DK 5% 25W FC<br />

RESISTOR 34DK 5% .25W FC<br />

RESISTOR 3WK 5% .25W FC<br />

RESISTOR 36DK 5% .25W FC<br />

RESISTOR 510K 5% .15W FC<br />

RESISTOR 7WK 5% .25W FC<br />

RESISTOA t 5M 6% 35W FC<br />

17-TRH<br />

1 RCSISTOR 100 1% .125W F TC-0.-100<br />

567-<br />

2E480<br />

?am<br />

1BdBO<br />

1 zwm<br />

ZWBO<br />

20480<br />

28480<br />

ZM Wl<br />

28480<br />

2 8.1 80<br />

28lW<br />

384W<br />

?RUN<br />

3RMO<br />

71970<br />

72136<br />

?A~R[)<br />

284811<br />

28480<br />

2B4BO<br />

38480<br />

2MBO<br />

04113<br />

28480<br />

28480<br />

28480<br />

28480<br />

M713<br />

28480<br />

28480<br />

18480<br />

04713<br />

1840<br />

2e.W<br />

38eBI1<br />

07163<br />

M713<br />

28400<br />

28480<br />

01785<br />

04113<br />

O'hZI<br />

Qt 121<br />

01 121<br />

01131<br />

011?1<br />

24w<br />

14W8<br />

24546<br />

03291<br />

01718<br />

24-<br />

24546<br />

01'21<br />

24W<br />

01 121<br />

01 121<br />

329s7<br />

a744<br />

03292<br />

2<br />

01 121<br />

01 121<br />

01 151<br />

01121<br />

01 121<br />

01121<br />

01121<br />

01121<br />

74W<br />

1 5 D U 1 0 5 X ~<br />

0 160-2157<br />

01 9-0 i 2 1<br />

0160-2257<br />

nim-27w<br />

0160-1261<br />

01W4121<br />

01W-3949<br />

0~50-0131<br />

0163-3445<br />

0153-0121<br />

0160-4480<br />

016D-3948<br />

016LF-73W<br />

0183-59R6<br />

184-EC-125<br />

Q~l5k.9MImlCR<br />

0160-2055<br />

01fiGD128<br />

1Wl-ow0<br />

1401-0518<br />

140110060<br />

lBO1-OSBB<br />

SZ 10Q39-77<br />

1801 -0040<br />

WQb0883<br />

0490-0683<br />

1854-007 1<br />

9N4JBf<br />

1055-W<br />

1854-W71<br />

1853-KG'O<br />

2\439'<br />

1854-0763<br />

1853-0020<br />

1854-a07 1<br />

P.4917<br />

SPS 361 1<br />

1854-Mll1<br />

1 BSJ-OM0<br />

2N5245<br />

1N4391<br />

Cnl035<br />

CB2235<br />

CA5145<br />

C82235<br />

C851P5<br />

c4-1m-fo-bBBl-F<br />

C4-l~-IO-1212-F<br />

C4-1W-TD-1B2-F<br />

iCll&TO-849R-F<br />

CEh-983-H3PO<br />

C4-118-TO-4022-F<br />

C4-lm-TO-2612-F<br />

CBWSS<br />

484- L%-fa-2673-F<br />

CB1035<br />

CB2235<br />

mX-1-103<br />

3006P-1-rn<br />

MCSC IlsTO 73ZJF<br />

C4 lr&TO-WR-F<br />

CB1845<br />

~022~5<br />

CR2W<br />

CB3045<br />

CR36P5<br />

C85146<br />

C87545<br />

C01555<br />

C4-13-fe1WR-F<br />

I


1 A 1 B 1 C I D I E 1 F I<br />

SER. NO. lg2LOOOK)<br />

/AND<br />

NOTE 1<br />

NOTE 2<br />

3455-C -45%<br />

Port SI is a reed switch which is used as a voltage breakdown device. The Offset Adjustment is mode by connecting a resistor between<br />

This port is used on 03455-66510 Rev. B assemblies only (serial the unlabeled lead and either the "+" or "-" lead. Refer to Section<br />

numbers 1622A004 10 and below). V for the Offset Adjustment Procedure.<br />

C~mp~l~nl CoI<br />

C1<br />

2.3<br />

4<br />

56<br />

7.9. 11<br />

12<br />

13.15<br />

16<br />

17<br />

18.19<br />

21.22<br />

23.25<br />

26.27<br />

28.29.31<br />

32.34<br />

3536<br />

37.39.4149<br />

45<br />

46<br />

47<br />

48<br />

49<br />

51<br />

52.53<br />

54.57<br />

5859.61<br />

62.63.65<br />

66<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

A<br />

E<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

C<br />

D<br />

B<br />

C-D<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Cornwnent<br />

CR1.2<br />

3.5<br />

6<br />

7.6<br />

9. 11<br />

12.13<br />

14<br />

15<br />

16-17<br />

1819. 21.22<br />

n<br />

24<br />

2526<br />

27.28<br />

29.31<br />

37.39<br />

4142<br />

4344<br />

4547<br />

4849. 51-56<br />

57 58<br />

59<br />

6160<br />

6568<br />

69<br />

71.72<br />

El<br />

E2 IWow Kg)<br />

Col<br />

B<br />

D<br />

E<br />

F<br />

B<br />

D<br />

E<br />

F<br />

B<br />

C<br />

F<br />

B<br />

C<br />

A<br />

C<br />

D<br />

0<br />

A<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

F<br />

D<br />

A<br />

A-B<br />

bmpgMn1<br />

Jl<br />

2<br />

3<br />

4<br />

5<br />

JMl-2<br />

3<br />

K1.2<br />

3<br />

4.5<br />

6<br />

7<br />

8<br />

9<br />

L1<br />

AlO. Component Loutor Table.<br />

Col<br />

CD<br />

E-F<br />

A<br />

8.C<br />

E<br />

F<br />

D<br />

A<br />

B<br />

A<br />

B<br />

A-B<br />

B<br />

A-B<br />

A<br />

Comwnent<br />

01.5<br />

6<br />

7.9. 11<br />

12<br />

13.16<br />

17.18<br />

19, 21.22<br />

23.29<br />

31.32<br />

33.36<br />

37.39<br />

4041<br />

4243<br />

4445<br />

46<br />

A Serial numbers 1622A01806 and above replaces C4: 0160-01 54 (.22 pF)<br />

RN:0683-2025 (2 K)<br />

The new values improve stability in the X2 6AN configuration.<br />

Col<br />

C<br />

D<br />

E<br />

F<br />

C<br />

C-D<br />

D<br />

E<br />

F<br />

B<br />

A<br />

B<br />

E<br />

A<br />

B<br />

Component<br />

R1<br />

2<br />

34<br />

7.9. 11<br />

12.19<br />

21.27<br />

28.29.31.37<br />

38<br />

39.4144<br />

45<br />

46<br />

47<br />

48<br />

49<br />

61.58<br />

59,6142<br />

63<br />

€465<br />

66.69. 71-72<br />

73<br />

74.78<br />

79.61<br />

82.63<br />

84<br />

85<br />

86.89.91-92<br />

93.96<br />

97.99<br />

101.102<br />

103<br />

104.105<br />

106.107.111<br />

10&109<br />

Col<br />

A<br />

E<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

C.D<br />

F<br />

C<br />

A.0<br />

A<br />

B<br />

C<br />

D<br />

F<br />

B<br />

D<br />

A<br />

B<br />

E<br />

F<br />

B<br />

C<br />

0<br />

E<br />

F<br />

Sl<br />

Component<br />

T1<br />

2<br />

U14<br />

56<br />

7<br />

8<br />

9<br />

11<br />

12-13<br />

14-15<br />

16.1 7<br />

18<br />

19<br />

21<br />

22.23<br />

24<br />

25<br />

26<br />

27.29.31.35<br />

36<br />

3 7<br />

36<br />

39<br />

,Wl<br />

Vl<br />

CoI<br />

A<br />

B<br />

F<br />

0<br />

E<br />

F<br />

C<br />

D<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

F<br />

C<br />

D<br />

E<br />

F<br />

8.C<br />

C.0<br />

D<br />

D.E<br />

F<br />

F


SHOWN IN REAR<br />

TESUINAL POSTION<br />

--- ACTIVE ATTENUATOR -4<br />

NOTE I<br />

IN OLDER IWSTRUUENTS I<br />

TW KI SCHEUA'IC IS<br />

NOTE<br />

REFER TO TABLE 8-6 FOR FET<br />

SWI-CH STATES BY FVNCTION<br />

AVO RANGE.<br />

-24V<br />

Figure 8-H-29. Input and Auto-Cal Switching Schematic.<br />

I 8- 147/8-148<br />

-- -- --<br />

COPYRIGH' 1976 BY HEWLETT - -- PnCUARO COUDAUY Y.3.,..',,<br />

I<br />

I<br />

I<br />

I


A13<br />

03455-6651 3<br />

Rev. A<br />

AA For serial numbers 1622A02436 and above. The preferred value for C25 was changed from part<br />

number 016621 50 (33 pF) to improve frequency response near 10 kHz.


4 R 2 -<br />

A15<br />

Rev. B & C<br />

(Instrument %rial No's 1622A0000 and greater)<br />

A1 5<br />

03455-6651 5<br />

Rev. A<br />

(Instrument Serial No's 1622100905 and below.)<br />

AA C37, C38 and R97 have been added and the value of A15R59 has been changed from 10 kR to<br />

100 kS2 to eliminate transients during auto-ranging which cause inaccurate "first" readings.<br />

(Instrument Serial No's 1622A00906 and greater.)<br />

4 R89 has been made a "selected" value to improve the accuracy at 1 MHz. (Instrument Serial<br />

No's 1622A00101 and greater.)<br />

4 C36 and R96 have been added to reduce offset at elevated temperatures. (Instrument Serial<br />

No's 1622A00906 and greater.)<br />

4 Relay K3 has been changed to a different type to prevent arcing during auto-ranging when<br />

1000 V is applied to the input. (Instrument Serial No's 1622A00906 and greater.)<br />

4 The values of potentiometers R72 and R75 have been decreased to improve the temperature<br />

stability of the input amplifier circuity. The value of resistors R81 and R85 have been increased<br />

to center the pots. Previous values were: R72, 200; R75, 2 K; R81, 5.1 1 K; R85,562. These<br />

changes have been made on instrument with Serial No's 1622A00906 and greater.<br />

4 The following component changes have been made to improve the down-scale linearity of the<br />

RMS convener: R 17; from 2 kR to 5 kR. R23; from 68 kS2 to 100 kR. R25; from 25 kS2 to<br />

100 kR. R5l; from 100 R to 200 R52; from 10 kS2 to 20 kR. R53; from 5 kR to 10 kR.<br />

These changes have been made on instruments with Serial No's 1622A0511 and greater.<br />

AG Serial numbers 1622A01000 and above. Replaces 0757-0417 (562 R) to increase the teroadjustment<br />

range.<br />

AH Serial numbers 1622A01806 and above replaces 5080-9080. The new part is not hand-selected.<br />

AI Serial numbers 1622A01656 and above replaces R36: 0698-4450 (324 fl) and R95: 0757-0407<br />

(200 R). R95 provides improved & compensation. R36 essentially improves temperature stability.<br />

Aj Serial numbers 1622A02256 and above. Added as ac bypass of CR3.<br />

AL Serial numbers 1622A01956 and above. Replaces 0757-0486 (825 K) to increase the offset<br />

adjustment range.<br />

AM Serial numbers 1522A01206 and above the following component changes were made to im<br />

prove input amplifier temperature stability:<br />

Old Part No.<br />

R81: 0698-3382 (5490)<br />

R82: 06384308 (16.9 K)<br />

R83: 06984429 (1870)<br />

R85: 06984459 (634)<br />

R71: See padding list as per Table 6-1.<br />

AN Serial .numbers 1622A03136 and above. Improved specifications on U3 and U1 make the expanded<br />

offset adjustment range no longer required. R18 and R31 were changed from part<br />

number 06984540 (41 2 K) to 732 K to reduce this range and improve stability.<br />

A0 R66 was changed from 200 K (0683-2045) to 16 K 10683-1 635) to improve the first<br />

reading after switching from the 10 V range to the 100 V range.<br />

A~ C33 was changed from .1 pF (0160-3581 to .22 pF (0160-3986) to improve accuracy at<br />

30 Hz.<br />

ne5-s&<br />

3455-8- c


Figure 8-H-31. True RMS AC Convertor Schematic.<br />

8-151/8-152


SER. NO. 1622100410<br />

,AND BELOW<br />

A10<br />

0345586510<br />

Rev. C<br />

NOTE 1 : UNKNOWN RESISTANCE IS MEASURED -<br />

NOTE 2: REFERENCE RESISTANCE IS MEASURED +<br />

NOTE 3: K9 IS CLOSED DURING REFERENCE MEASUREMENT<br />

NOTE 4: K2 AND K4 ARE CLOSED DURING 2-WIRE KC2 MEASUREMENTS<br />

I 1 NOTE 5: K3 IS CLOSED DURING 4-WIRE KO MEASUREMENTS<br />

YSS-n-4SOI<br />

A12<br />

0345566512<br />

Rev. A<br />

AA<br />

The value of resistors R7, R8, R16, and R17 have been changed from 4.99 kS2 to 10 kS2 to<br />

properly bias differential amplifiers Q1 and Q5. These changes have been made on instruments<br />

with Serial No's 1622A01056 and greater.<br />

AB The value of resistor R7, R8, R16, R16 have been changed from 10 K (0757-0442) to 4.99<br />

K (0698-3279) and C3 has been changed from .039 pF (0160-0164) to .W47 pF<br />

(01 60-01 57) to eliminate first reading errors. These changes have been made on in-<br />

struments with serial numbers 1622A04831 and above.


I<br />

n CONVERTER<br />

A12 1 03455-66512<br />

t<br />

- - - - --<br />

VOLTAGE CLAMP AMPLIFIER<br />

1% A<br />

I O ] INWARD O ~ ~ ~ MOTHER L ~ - ~ WARD ~ I O<br />

I


CKT. SIDE A E M S CKT. SIDE A E M S<br />

A1 I<br />

03455-6651 1<br />

Rev. A<br />

I 1<br />

COMP S IDE I 5 7 9 1 1 IS<br />

CKT. SIDE A E M S<br />

A20<br />

03455-66520<br />

Rev. A<br />

A1 I<br />

03455-6651 1<br />

Rev. B<br />

Aao<br />

03455.66520<br />

Rev. B<br />

A Serial Numbers 1622A016956 and above A20 replaces all, part number 03455-6651 1,<br />

AA Serial numbers 1622A02106 and above replaces 0160-0820 (.05pF) as frequency compensation<br />

to supress U2 Oscillations.<br />

& Replaced with A20 assembly only for serial numbers 1622A05871 and above.<br />

8-155


SER. WO. ~400110<br />

AND BELOW<br />

.<br />

1<br />

JI I<br />

A<br />

A10. Component Locator Table.<br />

Col<br />

C<br />

D<br />

E<br />

F<br />

C<br />

C.0<br />

D<br />

E<br />

F<br />

B<br />

A<br />

B<br />

E<br />

A<br />

B<br />

Co~POIIent<br />

C1<br />

23<br />

4<br />

5.6<br />

7.9. 11<br />

12<br />

13.15<br />

16<br />

17<br />

1819<br />

21.22<br />

23.25<br />

26.27<br />

28.19.31<br />

32.34<br />

35.36<br />

37.39.4149<br />

45<br />

46<br />

4 7<br />

48<br />

49<br />

51<br />

52.53<br />

54.57<br />

58.59.61<br />

6263.65<br />

66<br />

Comnmt<br />

CRl-2<br />

3-5<br />

6<br />

7-8<br />

9. 11<br />

12-13<br />

14<br />

15<br />

16.17<br />

18.19. 21-22<br />

23<br />

24<br />

25-26<br />

27-28<br />

29.31<br />

37-39<br />

4142<br />

4344<br />

4547<br />

4849.51.56<br />

57.58<br />

59<br />

61-64<br />

65-60<br />

69<br />

71.72<br />

El<br />

€2 (Below Kg1<br />

Col<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

A<br />

E<br />

A<br />

6<br />

C<br />

D<br />

F<br />

F<br />

C<br />

D<br />

B<br />

CD<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Cornwnent<br />

Rl<br />

2<br />

34<br />

7.9. 11<br />

12.19<br />

21.27<br />

28.29.31.37<br />

38<br />

Col<br />

B<br />

D<br />

E<br />

F<br />

B<br />

D<br />

E<br />

F<br />

B<br />

C<br />

F<br />

B<br />

C<br />

A<br />

C<br />

D<br />

D<br />

A<br />

B<br />

C<br />

A *<br />

B<br />

C<br />

0<br />

F<br />

D<br />

A<br />

A-B<br />

Col<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

Camwnmt<br />

J1<br />

2<br />

3<br />

4<br />

5<br />

JM1.2<br />

3<br />

K1.2<br />

3<br />

4.5<br />

6<br />

7<br />

8<br />

9<br />

L1<br />

Component<br />

Sl<br />

T1<br />

2<br />

U14<br />

56<br />

7<br />

B<br />

39.4144 D<br />

45<br />

46 1 !<br />

Col<br />

A<br />

B<br />

F<br />

D<br />

E<br />

F<br />

C<br />

9<br />

11<br />

12.13<br />

14.15<br />

16.17<br />

18<br />

19<br />

21<br />

22-23<br />

24<br />

25<br />

26<br />

27.29.31.35<br />

36<br />

37<br />

38<br />

39<br />

Wl<br />

Y1<br />

Col<br />

C.D<br />

E-F<br />

A<br />

0.C<br />

E<br />

F<br />

D<br />

A<br />

B<br />

A<br />

B<br />

A-B<br />

E<br />

A.B<br />

A<br />

47<br />

48<br />

49<br />

61.50<br />

59.6162<br />

63<br />

64.65<br />

66.69. 71.72<br />

73<br />

74.78<br />

79.81<br />

82.83<br />

84<br />

85<br />

66.89.91.92<br />

93.96<br />

97 99<br />

101 102<br />

103<br />

lM.105<br />

106~107,111<br />

108.109<br />

. -<br />

D<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

F<br />

C<br />

D<br />

E<br />

F<br />

8-C<br />

C-D<br />

D<br />

BE<br />

F<br />

F<br />

Cornwnent<br />

01.5<br />

6<br />

7.9. 11<br />

12<br />

13.16<br />

17.18<br />

19. 21.22<br />

23.29<br />

31.32<br />

33.36<br />

37-39<br />

4041<br />

4243<br />

4445<br />

46<br />

C<br />

C-D<br />

F<br />

C<br />

A.6<br />

A<br />

B<br />

C<br />

D<br />

F<br />

B<br />

D<br />

A<br />

B<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F


Figure 8-H-33. Reference Assembly.<br />

8-157/8-158 5<br />

I - - -- -- -- I<br />

3.55-4-4549<br />

COPYRIGHT I976 BY HEWLETT-PACKARD COMWY


A10<br />

0345566510<br />

Rev. C<br />

A10. Component Locator Table.<br />

Comoonent<br />

C1<br />

2-3<br />

4<br />

56<br />

7-9. 11<br />

12<br />

13-15<br />

16<br />

17<br />

18-19<br />

21-22<br />

23-25<br />

26.27<br />

28.29. 31<br />

37-34<br />

3536<br />

37.39.4149<br />

45<br />

46<br />

47<br />

48<br />

49<br />

51<br />

52-53<br />

YI-57<br />

58-59.61<br />

67.63.65<br />

66<br />

Comwnent<br />

01.5<br />

6<br />

7.9. 11<br />

12<br />

13.16<br />

17.18<br />

19. 21.22<br />

23-29<br />

31.37<br />

33.36<br />

37.39<br />

4041<br />

4243<br />

4445<br />

46<br />

Cot<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

A<br />

E<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

C<br />

D<br />

B<br />

C.0<br />

D<br />

E<br />

F<br />

8<br />

C<br />

D<br />

E<br />

F<br />

Cot<br />

C<br />

D<br />

E<br />

F<br />

C<br />

C.0<br />

D<br />

E<br />

F<br />

B<br />

A<br />

8<br />

E<br />

A<br />

B<br />

Component<br />

CR1-2<br />

3-5<br />

6<br />

7.8<br />

9. 11<br />

12-13<br />

14<br />

15<br />

16-17<br />

18.19. 21-27<br />

23<br />

24<br />

75.26<br />

27-28<br />

29.31<br />

37-39<br />

41-42<br />

4344<br />

4547<br />

48-49. 51-56<br />

57.58<br />

59<br />

6164<br />

6568<br />

69<br />

71-72<br />

El<br />

E2 IBelow Kg1<br />

Commnent<br />

R1<br />

2<br />

34<br />

7.9. 11<br />

12.19<br />

21.27<br />

28.29. 31.37<br />

38<br />

39.41.44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

51.58<br />

59.6162<br />

63<br />

64.65<br />

66.69. 71.72<br />

73<br />

74.78<br />

79.81<br />

82.83<br />

84<br />

65<br />

86.89. 91.92<br />

93-96<br />

97 99<br />

101 102<br />

103<br />

104.105<br />

106.107. 111<br />

108.109<br />

Col<br />

B<br />

D<br />

E<br />

F<br />

B<br />

D<br />

E<br />

F<br />

B<br />

C<br />

F<br />

B<br />

C<br />

A<br />

C<br />

D<br />

D<br />

A<br />

B<br />

C<br />

A<br />

8<br />

C<br />

D<br />

F<br />

D<br />

A<br />

A.B<br />

Cot<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

C-D<br />

F<br />

C<br />

A.8<br />

A<br />

8<br />

C<br />

D<br />

F<br />

B<br />

D<br />

A<br />

B<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Canwonens<br />

Jl<br />

2<br />

3<br />

4<br />

5<br />

JM1.2<br />

3<br />

K1.2<br />

3<br />

4.5<br />

6<br />

7<br />

8<br />

9<br />

L1<br />

Component<br />

Sl<br />

T1<br />

2<br />

U14<br />

56<br />

7<br />

8<br />

9<br />

11<br />

12.13<br />

14.1 5<br />

16.17<br />

18<br />

19<br />

21<br />

22-23<br />

24<br />

25<br />

26<br />

27-29. 31-35<br />

36<br />

37<br />

38<br />

39<br />

Wl<br />

Y1<br />

Cot<br />

C.D<br />

E.F<br />

A<br />

B.C<br />

E<br />

F<br />

D<br />

A<br />

B<br />

A<br />

B<br />

A.B<br />

8<br />

A4<br />

A<br />

Col<br />

A<br />

B<br />

F<br />

D<br />

E<br />

F<br />

C<br />

0<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

F<br />

C<br />

D<br />

E<br />

F<br />

B-C<br />

C.D<br />

D<br />

D- E<br />

F<br />

F


-mt-<br />

4 9 - b "; @ - : =m= 03 3E


A 8 C D 1 E F 1<br />

Component<br />

C1.5<br />

6.9<br />

11.12<br />

13.14<br />

16.17<br />

18.19<br />

21<br />

22 -<br />

23-29<br />

31.33<br />

34-39<br />

41<br />

42<br />

43.44<br />

46<br />

A1<br />

03455.66501<br />

Rev. D<br />

Col<br />

A<br />

B<br />

B<br />

C<br />

C<br />

D<br />

D<br />

0.E<br />

E<br />

E<br />

F<br />

F<br />

G<br />

F<br />

C.0<br />

Comwnent<br />

CRl<br />

2.9<br />

91-13<br />

14-15<br />

16<br />

Col<br />

B<br />

C<br />

D<br />

E<br />

F<br />

I<br />

-


W D NDAC SRO DAV IFC DIOI Dl 7 EOI OIU3<br />

"+ ++ 9eQ.9


AA<br />

4<br />

4<br />

A2<br />

03455-66502<br />

Rev. A<br />

A1<br />

03455-6650 1<br />

Rev. D<br />

Dl-<br />

Resistor R68 has been added to instruments with Serial No's 1622A00906 and greater so the *,I. WZ-<br />

AmnAr'nmo'<br />

instrument can be externally triggered by a switch closure to ground. Capacitor C43 has been<br />

added to eliminate a pulse which was coupled to the clock signal. The addition of these<br />

components changed the 03455-66501 Assembly from Rev. A to Rev. C.<br />

A1 U57 has been changed from a standard power TTL to a low power TTL device and resistor<br />

assemblies A2R17 and R18 changed from 2.2 kS2 to 10 kS2 to reduce the effects of switch<br />

contact resistance. This change has been made on instruments with Serial No's 1622A00906<br />

and greater.<br />

Resistor R69 and capacitor C44 have been added to filter out pulses caused by switch bounce<br />

to eliminate "double entries" in the MATH mode. Addition of these components change the<br />

03455-66501 assembly from Rev. C to Rev. D. This change has been made on instruments<br />

with Serial No's 1622A01506 and greater.<br />

CRl<br />

2.9<br />

11-13<br />

A1 Component Locator Table.<br />

P h w\<br />

CRI<br />

o ~<br />

4<br />

I<br />

Crn3'<br />

w7.<br />

0<br />

-<br />

Crn43 ~ n 1 6 3<br />

D n r l m u z D y r o a w D m D u o n ~<br />

'83 ~ w ~ ~<br />

- RI- --RI- -4s- -mo-<br />

C R ' 3 1<br />

-RZ- --RO-- 67- 4- -RIF<br />

-R3- I I<br />

\


Figure 8-H-38. Front Panel Assembly.<br />

8-171/8-172


5<br />

I A I I C I 0 I E I F I<br />

SER. NO. 142.0014<br />

-RI-<br />

A10<br />

0345586510<br />

Rev. C -<br />

I<br />

Comwnent<br />

C1<br />

2-3<br />

4<br />

56<br />

7-9. 11<br />

12<br />

13-15<br />

16<br />

17<br />

(El9<br />

21.22<br />

23.25<br />

2827<br />

2E29.31<br />

32-34<br />

3536<br />

37.39.4149<br />

45<br />

46<br />

4 7<br />

46<br />

49<br />

51<br />

52-53<br />

54-57<br />

5859.61<br />

62-63.65<br />

66<br />

-- . I I<br />

Col<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

A<br />

E<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

C<br />

D<br />

B<br />

C.D<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

T& I<br />

-=a-<br />

Y<br />

I 16 1 g- 1 1 -g- j 1 -s- 1<br />

Bmwnmt<br />

CRl-2<br />

3-5<br />

6<br />

7.8<br />

9.11<br />

12.13<br />

14<br />

15<br />

16-17<br />

18-19. 21-22<br />

23<br />

24<br />

2526<br />

27-28<br />

29.31<br />

3759<br />

4142<br />

4344<br />

4547<br />

4849.51-56<br />

57.58<br />

59<br />

6144<br />

6568<br />

69<br />

71.72<br />

El<br />

€2 (&?low K9)<br />

bl<br />

B<br />

0<br />

E<br />

F<br />

B<br />

D<br />

E<br />

F<br />

8<br />

C<br />

F<br />

B<br />

C<br />

A<br />

C<br />

D<br />

D<br />

A<br />

B<br />

C<br />

A<br />

8<br />

C<br />

D<br />

F<br />

D<br />

A<br />

A-B<br />

Component<br />

Jl<br />

2<br />

3<br />

4<br />

5<br />

JM1.2<br />

3<br />

((1.2<br />

3<br />

4-5<br />

6<br />

7<br />

8<br />

9<br />

L1<br />

AlO. Component Locator Table.<br />

Col<br />

CD<br />

E-F<br />

A<br />

B-C<br />

E<br />

F<br />

D<br />

A<br />

B<br />

A<br />

B<br />

A-B<br />

B<br />

A-8<br />

A<br />

Component<br />

01-5<br />

6<br />

7.9. 11<br />

12<br />

13.16<br />

17-18<br />

19.21-22<br />

23-29<br />

31-32<br />

33-36<br />

37-39<br />

4M1<br />

4243<br />

4445<br />

46<br />

Col<br />

C<br />

D<br />

E<br />

F<br />

C<br />

CD<br />

D<br />

E<br />

F<br />

B<br />

A<br />

B<br />

E<br />

A<br />

B<br />

A<br />

Component<br />

Rl<br />

2<br />

34<br />

7-9, 11<br />

12.19<br />

21-27<br />

28-29.31-37<br />

38<br />

39.4144<br />

45<br />

46<br />

47<br />

48<br />

49<br />

51.58<br />

59.6162<br />

63<br />

64.65<br />

66-69. 71-72<br />

73<br />

74-78<br />

79.81<br />

62.83<br />

84<br />

85<br />

86-89.91-92<br />

93.96<br />

97.99<br />

101.102<br />

103<br />

104.105<br />

106-107. 111<br />

108-109<br />

'F<br />

52 I<br />

Col<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

C.D<br />

F<br />

C<br />

A.8<br />

A<br />

B<br />

C<br />

D<br />

F<br />

B<br />

D<br />

A<br />

B<br />

E<br />

F<br />

B<br />

C<br />

D<br />

E<br />

F<br />

S1<br />

Component<br />

Tl<br />

2<br />

U14<br />

56<br />

7<br />

8<br />

9<br />

11<br />

12-13<br />

14.15<br />

16-17<br />

18<br />

19<br />

21<br />

22-23<br />

24<br />

25<br />

26<br />

27.29.31-35<br />

36<br />

37<br />

38<br />

39<br />

W1<br />

Y1<br />

. .<br />

Col<br />

A<br />

B<br />

F<br />

D<br />

E<br />

F<br />

C<br />

D<br />

C<br />

D<br />

E<br />

F<br />

B<br />

C<br />

D<br />

F<br />

C<br />

D<br />

E<br />

F<br />

8.C<br />

C.0<br />

D<br />

DE<br />

F<br />

F<br />

I<br />

3455-C -45%<br />

,$En. WO. l6224004lI<br />

AND A8OM


Figure 8-H-39. Power Supply Schematic.<br />

8-173/8-174 11


I<br />

' *hJll<br />

Section VIII<br />

R efe ren m<br />

Designation<br />

A1Ju<br />

rA*f<br />

A148<br />

r l w r<br />

aIJlu<br />

&lull<br />

S I J ~<br />

*IJLY<br />

AlJI><br />

Allll"<br />

AIJrf<br />

A1U1b<br />

vlJll<br />

d1J~lJ<br />

I IJLL<br />

AAUC*<br />

41 Jsa<br />

A IJL*<br />

-IJL'J<br />

lA4LO<br />

ALJL'I<br />

*Aurb<br />

AS4l+<br />

Illrldd<br />

Sl"~l<br />

A1 416<br />

AlJ1a<br />

*Ad*<br />

...<br />

A*, SEE HOT€ OH SCHEMATIC 10<br />

HP Part<br />

Number<br />

Description<br />

IL-YlrilIAL P.C34*1P It&* UUIU<br />

I*-JIvIIAL Lh74L52TN ITL LL 1PL 3 NCR<br />

I,-OIuIlAL ~Hr4L5u+S 111 L> HLA 1<br />

IL-ltbllA1 HLI*+LP TlC* 4Ubd<br />

1~-Jtcal4L rNfvLLSW iTL L> lttx 1<br />

I:-UIGSTIC hNl4LbfW I f L CS DJAL<br />

UIUllE ARRAY<br />

11-UIGllhL aHf4LblllN TIC LS<br />

1C-JIGITAL SN74CSlThH I I L lb HEX<br />

tL-UtbtTAL Shl4LIIBIN TIC Lb<br />

Ib-UIGITAL SB7NSIPQN TIL Lh ME#<br />

IC-3IGIIAL SN74LS32H r1L L5 P74D 2 VY<br />

IG->IrlTAl 5Nt4k513dM 1'fL LS 3<br />

li-UldllAL aNI*Lb125N flL La QUA* 1 *US<br />

1L-3lblfAL sNthLSlZ>h 1IL LS dl40 1 BUS<br />

IL-JIGITU SNI*LS~~~ t r LS ~ tll~<br />

It-OIGfTAC IttP4LSlb3N TTL LS !dl*<br />

It-JLblfhL<br />

IL-)I;I~A~<br />

SN7+l.%OBN Ilk LI uJ4U 2 AID<br />

~NI+LSO+H TTL ~i nt* L<br />

Ic-YlulTAL hNISLJl4N 11L La NJAL<br />

It-JIGIIAL SYi+LS13EN 1VL LS 3<br />

Ib-SltiLtAL hMr4L5115N ITL LS uUhJ 1 BUS<br />

1L-OIGllAL INTW+SI~~H 1lL Lh JUAO 1 BUS<br />

ti hHYIIZAPC LN RAM HMOb<br />

11. AMYllLAPl L* RAW H*tJ><br />

I*-<strong>DIGITAL</strong> SNf4LSO3M 1 l L LL 4UAU 2 Y4Nd<br />

IC-JIuITAL 5fi70LSbBH JrC LS WAD 2 AN0<br />

1L-31GITAL SHI*LSIZIW IFL CS UUAL<br />

IL-3lGlTAL *H.f4LSO4N TfL LS HtL 1<br />

IC-3ltillAL SH14LSWIY ITL La UUAU 2 HAHD<br />

1L-<strong>DIGITAL</strong> SUP4LSI74h TTL LS HEX<br />

1.-JllrITAL SNI4tSO4H TTL LS HE* 1<br />

LC-i)ItITAL JlltbCSZlN I r L LA TPL 3 NOR<br />

IL-JIGffAL SN74LS114H ClL Lh HEX<br />

IC-Ol GtTAL hH7CL5001~ TTL La 4UAU 2 N*HU<br />

IC'Ulbl?&L SNI4LSl55M f TL CS DUAL d<br />

IC ENCDR lTL L E-INP<br />

IT-1ICttAL SN74LSLIbN 1IL LS HE*<br />

IC-JIGlfhL SNf4LSOJN l?C LS 1UAO i HAND<br />

~U-DIUIIAL sU7QLIU3H TTL LS uJA3 Z HAHU<br />

IC-PllilTM Skl4LSOON 11L Li ilU4U 2 M*M<br />

It-JltlTU SMNTCUN I I L L4 b<br />

Il-JlGlfAL >NTrLII:HI IIL L> HEX<br />

1:-lltlfAL sHrWSi55H TTL LS UUAL Z<br />

IL-OltlIAC SWI+LSlI*N IIL CS HtX<br />

IL-<strong>DIGITAL</strong> ~ N T ~ L S ~ rft T ~ ~5 M MEX<br />

tc->IGIraL SM7U4174N TTL LS HEX<br />

IC-JIGflAL Std74LSI74H IT4 LS HE*<br />

LL'DIGIrAL hN14LS174M TlL Li HLX<br />

IC-~~GITAL SH~+LSIT~V TTL L><br />

Lay5 LALm UUlHlZ 1.3 MHZ<br />

Model 3455A


A* SEE MOTE OH SCHEYK<br />

HPPsR I<br />

Number<br />

Reahable Parts<br />

LC>-VISlbLE PUM-lrrfrZRt3 IF-LOW-MIX<br />

LED-Y L610LE LUM-INT=ZRC3 IF=LJHl-MAX<br />

LtJ-VI 51 BLt LUM-tNF-2NCU IF.ZOS+MA%<br />

LC$-VI SI ME CUY-EHT-L~CP af-zw*-a**<br />

LkU-YIIIIYE WM-1Hl-ZWLJ IF*ZUHA-9AX<br />

LEO-Y ISZ dLt LUM-lnt-2ACD IF-2OMh-WAX<br />

LkO-VI $1 BLE LUM-1 Nr-ZMCO I F-ZDMA-RAE<br />

LEQ-V I51 BLE LUH-INt-ZHtO IF=ZOR4-MAX<br />

CkD-VlStBLt Wlt-INT-LhL3 1FuZdMPmAt<br />

LED-YI SIBLE LU)F-INT-ZMCO If-ZOUA-MA*<br />

LtD-YISt OLE LUM-1NT-lMCU IF-ZUMA-MAX<br />

LEQ-VISIBLE LUM-INT*ZACU IF-ZOM-MAX<br />

tO-VISI BLE LU!+tPn-ZRCO IF-2uHA-MAX<br />

I<br />

LtV-VISI BLk LUllrINT=2MCP IF=2UII&-R*E<br />

CtV-V I SI BLE LUM-INf-ZRLU IF-LilMA-MAX<br />

LtU-VISIBLL LUM-lilt-WLI IF-ZURA-MA%<br />

LtO-YLSl BLE LUFINf-ZMED IF-TOMA-RAE<br />

LtD-VILI BLE U#-l Hf*Z)ICQ IC*ZJRA-UPX<br />

LEP-Y ISI BLL ~un-~~r-~rlcu IF=ZUMA-UAX<br />

L t 5-VP $1 BLE LUW-f Hr-2NC3 1F -LOMA-MAX<br />

LEO-Y IS1 BIE Lull-1 N7-ZMCD tF*10111--lA*<br />

Li3-VlStBLC LUM-INT-ZMLO IF-LOW-MA*<br />

LEP-VISIBLE<br />

L~P-v I SI&L~<br />

LUN-INT-LACU IF-LOWCIIIX<br />

LUM-IM~=~HCS IT-ZUHA-NAX<br />

CtS-V I JI$LE LUM-INTrlllLW IF=LOMA-**X<br />

DILPL4Y-WM Stt 1-MM .4rH<br />

NO PART NUMBER.SEE A2W1<br />

Mfr<br />

Code<br />

Mfr %a Numb


I<br />

Designation Number<br />

Mfr Part Number<br />

r)jiS5-b4501 1 P.C. hSSEMdLYw PROCtSScl6 2BllO 03455-be503<br />

03465-68603 REBUILT EXCHANGE XSEMBLX 26480 05465-69503<br />

A K 1 1 UISIF.OLI9 3 €*PAC1 IOU-FXU 3-3VF+-ZOL I5YUC Ih 96283 150J335X001312<br />

AJlf 01 O*JCl> CAPACI FOR-FXU 3.3UTb-LOO I5VJC [A 5b2B9 1508335Z5015AZ<br />

ASCJ UlU-ULIJ LAPhL ITOR-FIU >.3UF*-SOL LSYUC FA 5bZB3 1500335XDOY 5AE<br />

Akll. A2 OI?X-F--OLBJ RrsESfm Zll It . l t l W F fC-0,-1W 245+5 C4-li&1+200L-F<br />

h3Y3*<br />

obw-$455<br />

U6W-9151<br />

JbYB-Uud3<br />

04 W-4423<br />

&7 5r-acdU<br />

Ob40-379U<br />

J?SI-U4Lb<br />

3<br />

I<br />

1<br />

A<br />

I<br />

L<br />

PADDING LIST<br />

m~h~brllr C.~M ~r .irsw r rc-+toas wt<br />

RtSlSIW 2.~7rt It .lZSY F IC=O+-lOM15VI<br />

RtsISltX 1-9M 1I .I.?SY F tC=rl*-lilM4.W)<br />

KtStbTM 1.J3II 1: .LLSY F rt=0+-103(35VI<br />

RkhISIW 1U 1; .125m F IE=3+-1JO 130V1<br />

RtSISIW ILB I4 -1L5h F IC*O+-100(2.5V~<br />

RtStSTw 511 1.I "IL5M 6 TLmW4~10~h2.0V~<br />

z+s*b<br />

Z451b<br />

L*5Cb<br />

24545<br />

lf 54b<br />

21514<br />

2+5+b<br />

cr-i/e-ra-+b+~-~<br />

C4-166-I€+ZBTI-F<br />

L4-118-T3-LVbl-F<br />

Lkl/B-TO-l3tL-F<br />

t4-l/U-T0-100L-F<br />

C*-lld-TO-71517-F<br />

C4-11a-T+511~-F<br />

njdt<br />

IWL<br />

Aiuh<br />

IbdWltU I<br />

1ULD-1LJI<br />

lbLl+IIYd<br />

1;-OlGlTAL SMf4tSNh frC LS UJW d MU<br />

It-JIbITAt rnl4LSOBN TtL L5 OUW Z 4ND<br />

IL-DIGIlAl 4hF4L5OdN TtL L4 3dhU r NAN0<br />

01195<br />

01295<br />

01295<br />

SRT4iSOBN<br />

MT4LSOBM<br />

LN74LSO3N<br />

hjJI<br />

*dub<br />

1dW-1399<br />

1 ~ l l 2 ~ 3 ~<br />

IL-D1611hC<br />

I IC-3IGrTU<br />

SNI+LSUbH ?rL L5 HtX 1<br />

dkf4LS1?5N 11L LS UUAU<br />

01295<br />

OIL95<br />

SHTILSQOY<br />

SN74LSI X5H<br />

&%a XB ~tl-o~ba 1 *LED rurtr(05 za*ao 1818-02-<br />

nruf LU 10-UCe5 1 *LC* HORMOh Late0 1818-0265<br />

A3JU IdlB-Wo4 1 .tLr *Cn-MUi 284YO 1B1R-OZb*<br />

hjd'# 1820-1091 2 IL-DICISAL MU 28110 18.?U-1bPC<br />

II)c)-o~*~ 0 E~TRICWR-PC 80 BLK ~ ~trt .DLL-OU-THKWS zN+aa 4010-~74a<br />

AC SERIAL MWBERS 1822A0190B AND ABOVE: REPLACES O 1WlSD<br />

L I t I<br />

I<br />

244bO<br />

I<br />

I


Model 345SA Appendix A<br />

APPENDIX A<br />

A-2. The following section of this manual gives some remote programming (HP-IB) examples for<br />

the 3455A. These examples are given in the HP Basic I-hp- Mode1 9830A/B ControlIer ), HPL (-hp-<br />

Model 9825A Controller), and Enhanced Basic (-hp- Models 9835AJB and 9845A/B) Controller)<br />

languages.<br />

A-3. For effective program writing, it is advisable to write a good algorithm first. Then write the<br />

3455A program using the HIP-IB information in Section III of this manual and the appropriate con-<br />

troller manual. Most -hp- controller manuals have a summary or the HP-I B messages (usua1ly in the<br />

HP-IB section) in a tabutar form. These messages are written in the respective controller languages<br />

and are given as sample HP-IB operations. This informat ion and the following program examples<br />

can be very helpful when you start writing programs for the 3455A.<br />

A-4. Program Erample #I: In this program example, the 3455A is set up to take 50 readings quickly<br />

(with Auto-Cal off) and stores them into an Array. Each reading is printed out after all the readings<br />

have been taken. The 345SA is then set back to the Auto-Cal mode to insure accuracy. The programs<br />

in this example perform basically the same functions using different languages. The first program in,<br />

this example is written in the HP Basic language, the second in HPL, and the third in Enhanced<br />

Basic.<br />

Example t 1 (HP Basic).<br />

1Ci DIH HC501<br />

J<br />

20 [ HD " qIJ6" q 'F I F7 T;il'3HQDn' Etegin For ... Next Loop<br />

Set DVM to DCV IF? 1. Autonnga (R71. HoldtMnnual IT31,<br />

Auto.Cal Off (ABF end Date Ready Off 11101.<br />

30 FlIlF I=l TI:\ 70 Address DVM ta Listen, Contmllsr to Talk.<br />

40 EVIL '""lJ6" ,- ,-, Format the Output.<br />

50 FOT;:MmT ::F<br />

60 I~UTPU'T 1: 1 3 4 " - ' "'<br />

Trl ,yqIl ",sr tc"<br />

C' -1<br />

-113 > ,:-,I:, , :;. 5 i 2-<br />

E:8 FI:rF:PlHT El 3, 6 ~ormmt<br />

Trigger the DVM (GET).<br />

Set DVM to Talk.<br />

the Output (mading).<br />

l?O EtjTEf? r, 13.91j 1 e1: 1 Enter ths Output into Variable.<br />

hyI! h',?lJ~'', m'fil-<br />

FOR l=f To so-<br />

PRI t4T HC I 1-<br />

NEXT 1,-<br />

Complsta For. ..Next loop.<br />

Auto-Cd on to Maintain Accuracy<br />

Begin For ... Next Loop.<br />

hint the Entire Array.<br />

Cornplats For ... Newt Loop EE4<br />

Ends tha Program.


Appendix A<br />

Example # 1 (HPP).<br />

Dimension the Array,<br />

0: diil n[ 581 -Assign Name to the DVM Address.<br />

1 : d F 0 " 11 I.! R Q 7<br />

: cr r t.<br />

2 :-Set DVM to OCY IF1 1. Auto~ngm IR71, Ho!~!MBM~~ (T31,<br />

" D 1.1 pl" 3 " F 2 F: 7.' l-2 T 3 A 0 D 0 /Auto- el OH tA01, Data Rnsdy Off (Dl)<br />

C<br />

2:: fc~r I=l to 50 Beain For ... Next Loon.<br />

4: t.1-7 "T!tlpp" Trigger DYM 1GET).<br />

-<br />

5: red "D~.~ri~"~ H[ I l--entsrthsRsadingimov.r<br />

6: next. 1<br />

"~il.~pI"r "Hi" omplete For ... Next Loop.<br />

8: +21j 6 ~ A I I ~ O - on t~ ~aimain C ~ ~ccuncy. I<br />

7 : I ,<br />

In: Pt-~, Hl I1<br />

12: ~1 r- "~ll,~ll~L'<br />

\ ~ ~ l ~ t ~ For...Nsxt LOOP.<br />

1 3 : 5 I:. .3<br />

14: end<br />

+ 2 7 7 8.2<br />

Example # 1 (Enhanced Basic)<br />

!ear the DVM (set to turn on atate), 1SDC).<br />

Advance Printer 3 Spaces,<br />

nds the Pmgram.<br />

/ Choose Option Base for Array tseta Note).<br />

OPTILltI RH5E 1 Dimensim the Amy.<br />

llIP1 \ro ] t.n.3.: 1'50 / Use Variable fw DVM Address.<br />

~ll..ll,\=',?~~ Set DVM to OCV CED, Autmnge (R71, HoldlManual tT3).<br />

0 U J PlJ T D 1,) pl ; " F 1 F: 7 T 2 T 3 D 11 WAuto-Cttl Off (All, and Oats Ready Off 108<br />

FlIlF; It+l~jey=i<br />

TI] 50 Benin For ... Next Loop.<br />

TRIGI~ER II~.J~;I f rigwr DVM (GETI.<br />

E1.I TER nl,!l;l; l#,!ol t. 11.q~ ( 1 ~-II~F.:< ::\<br />

Enter the Reading into Variable.<br />

tjExT 1 lwIdpy,<br />

[II-ITFIJT ~II.,J~~~ "'(j 1 Complete For ... Next Loop,<br />

F 1 )(ED is -~utu-~al on to Maintain Accuracy.<br />

b1AT F'R T t,IT '#:'a l ~aae- Formet the Amy.<br />

-print the Entire Away.<br />

Ends the Program.<br />

Note: Refsr to Controller Manual for Explanation of Option Baae<br />

A-5. Program Example #2: When the 3455A is in the Binary mode, another feature called the<br />

""Learn Mode" can be used. With this feature, the set-up of the instrument (FlT3, etc) can be learned<br />

by the contxotler to be used later on in the progtam. This can be accomplished by sending the 345SA<br />

an ASCII "B" in the Data Mode and reading the next four bytes output by the instrument into a str-<br />

ing variable. The instrument can then be reprogrammed to the previous set-up by using the string<br />

variable instead of program codes. It is important to remember to program the 3455A into the Binary<br />

mode by sending an ASCII "B". The instrument can transfer its set-up information to the controller<br />

in the Binary mode only. The following programs show how the "Learn Mode" feature can be used.<br />

These programs are written in the HP Basic, HPL, and Enhanced Basic languages.


Model 3455A Appendix A<br />

Example # 2 {HP Basic1<br />

,Dlmanaion Variables.<br />

St~s 20 Into "Yard -69 100 into "2" Registers of OVM<br />

Sat DVM to DCV (FI), Scale {MI 1, HoldlMbrmal IT3), High<br />

1.0 IIIM Rt lB J i E:$.[ 20 Resolution Off (H0). Auto-Cal on (A1 I, 10 V Range (A31,<br />

and Binary Program lB1.<br />

20 ~,tqrr " *71,16" 7<br />

3!3 CPjD "?U6" r<br />

413 CPlD "'?~5"- Format ?he Output.<br />

YO FClF'MFiT 4Bi F6.8 / ,-Entar Output imo String Variabk.<br />

60 Eb.ITEF! I: 1: 7 50 :'I 65 Enter First Four Charactem d Output into Strlng Varinble<br />

70 E:$[ 5 J-B$[ 13 1<br />

Set DVM to ACV 1F31. Meth Mf fM3k, and Autorsngs on<br />

88 l:PlLl " '7lJ6" ? " F2P1:IF;7 " W1.<br />

98 FOR I=l TO 10<br />

0eain For.. , Next Lmp.<br />

---- 1 El0 [.MI1 '*l~lJ&''<br />

1 lcl FDi?MflT 3B<br />

1261 l~llJTF'I_IT (137 118:j2563 83 51,,<br />

1:>0 1:'i"lD "9',;5"<br />

Address DVM to Listen, Controllor to Talk.<br />

Fornot the Omput.<br />

Trigw the DVM IGm.<br />

148 FClRMAT Fi 2:. 6<br />

151" ENTEE (1 123 140:1I7[<br />

166 tEXT I<br />

I I\<br />

178 FOR J=i Ti1 5<br />

18Q HAIT 100<br />

I?EI IlISp A<br />

Set DVM to Talk.<br />

Format the Output Iraeding).<br />

Emer the Output of the DVM into Varinble.<br />

Complete For ... Next ~oop.<br />

Local Controllsr Opsratlon wkhout DVM,<br />

200 t,IE)(T J<br />

218 t:ND "3lJt5"<br />

228 FORMAT "B"<br />

Set DVM to Listen.<br />

Fomat to s ~ DVM t Fmo Blmarf Mode.<br />

238 llUTplJT 1': 113 2;:8 $89<br />

Set up DVM to Binary Information in String,<br />

24!J ctllD "?IJg" Set 'DVM to Listen, Comroller to Talk.<br />

250 Fl:lF;rl~T 38 Fomt the Output.<br />

260 I:IIJTPUT 13 q 250 256 8 5 1~--.<br />

270 c ~ 1 ~<br />

Trigger the DVM (GtETI.<br />

"#3~,r5~<br />

280 FI:IRIIAT F 1:3.6 sat DVM to ant.<br />

2'30 EHTEF 1 zg# :> I:\- Format tb Output (meding).<br />

308 FOR I=1 TI:I 18 Entar Output into Variable.<br />

3iB - FORHAT F13.5 y B a g i n F o r . . . ~ e i t ~ o o p .<br />

.jLu 11lFF:ITE 1; 151 318:>fi[ 1 1<br />

330 t.IE:.:T I<br />

'1<br />

340 Pl?IIl.IT<br />

350 FQRMHT F13.Bq ' li Complete Fw ... Next LOOP.<br />

350 ClR I TE i 11"; I 358 .:I 1:<br />

Skip a space on Default Printer.<br />

370 FpItdT Format the Defauk Printar.<br />

380 PI? 1 l+lT Print Vab in Variable.<br />

4 10 UlJTPlJT ( I:> 3 256 4 '5<br />

Sklp a Space on Default Prlnter.<br />

Skip a Space on Default Printer,<br />

420 END sat DVM to Listen, Controller to ~atk.<br />

Clear the DVM [set to turn-on statel, (SOC).<br />

Ends tha Program.


Appendix A<br />

Example # 2 EHPL)<br />

8: die, FIG 16 33<br />

1 : pjpv "1l:ll,li1jv 7<br />

.? .<br />

Dlmensim VarirMo.<br />

Model 3455A<br />

Asmlgn Nsmo to the OVM Addma.<br />

Ston 20 into "Y" and -891 00 Into "2" kwistem of DVM.<br />

r., bjl-?.<br />

3: f pit<br />

'*~t>l'l"C<br />

cif:? r<br />

Format Output.<br />

Set DVVM to OCV (Ft l, HoldlMsnwl n31, Hlgh Rmlutlon<br />

Qff (HB~. Scale (MI 1. 10 V Rawe (R31, and Binary Praeram<br />

j: ,jlrt r " F ~ T ~ T ~ H ~ M ~ F : ~ B ~ ( B I .<br />

6: t-pd "~I\.I~I'' c B$ Entire Binary Characters Into Stdng.<br />

7 : 1,~ rt " nv~~" 7 "F'>P13E7 "<br />

DVM to ACV (F3k, Msth Off (M3). and Autwange<br />

8: for 1-1 to 10<br />

9: t.rg "~I~*I~I" A<br />

10: red "Dvrn"!RTI<br />

i 1 : t.rem$t, I<br />

z i<br />

Fur. ..Next Loop*<br />

Trigger the DVM (Gm.<br />

12: fxd 0<br />

13: for ,A-i to 58<br />

nter Output of DVM into Variabk.<br />

Fw...Next toop.<br />

4 : i . 1ClE1<br />

15: dsp 1<br />

1 6 : n e :.: t 3<br />

cl r+ D ,! I,l<br />

1 8 : t- 1-+g '* D I.! 1.1 '"<br />

g<br />

~+-dst-up<br />

Format Output.<br />

Locat Cantroller Opsratktn withan DVM.<br />

DVM to B~MW Information in Stdnu.<br />

Triwr the OVM IGm.<br />

19: red ''D~lyi" 7<br />

Enter Output into Variable.<br />

.- - -<br />

dkl: fxd kn Fomrst the Output.<br />

21: fc1w<br />

33. = '. '-amgin For. ..~ext Loop.<br />

L ~ ~"lr-t. . HC 13<br />

7<br />

Mnt th €nth Amw.<br />

23: t-,gxt X<br />

24: f m t t 4 , 0 a h R t;ompbte Fot...Next LMp.<br />

2 5 : b,l 1- t. 1 6 r E:+-<br />

ormat ttm ~eteult Printer.<br />

" 2 G : 1:. 1 t- D


Model 3455A<br />

Example #2 (Enhanced Basic)<br />

Choose Option Base for Array lsw Note).<br />

10 [IPT I I:lt{ E:HE;E 3.<br />

i .-, -. IiIPi .,imsnSion th. *nay.<br />

'Use Variable for DVM Addreas.<br />

30 1 , . .--'.:,.-*<br />

"1'1--, ;.L<br />

3 1 [IUTFUT T I V ~ " ; E'fZQS'f Ez-64 1 OnsZ''<br />

Appendix A<br />

Stom 20 into "Y" end 491 00 into "Z" Registere of DVM.<br />

Format the Output S?amment,<br />

90 IMHGZ #~13A<br />

5 8 IUT U T 1 ,,,I vl /I 5 I 1.1 4 0 ; " F 1 T 2 T 3 H 0 11 1 E 3 ESht WM to OCV fF11, HoMd'ManwaI tT31" High Resolution<br />

1;<br />

Off (HI). Scare (MI 1. 10 V Range lR31, end &nary Program<br />

60 ENTER 11l.ri;l; E! l na rv$<br />

[Bl.<br />

7 - j U OUT.F'U1 rltl~f,: " F3M3F.1"<br />

Enter Bfneq Charactem into String.<br />

80<br />

FC~F. ~r-l~:fe.-=l TO 10' 1<br />

I- $0 TPIGLEF n~pi Set DVM to ACV .(F3), Math Off I'M1 1, a d Autorange M7).<br />

1 1 EflTEF Dufi j Rprp 1 i t. ~.rrJp :? f tnd~x<br />

:I\<br />

hgln Fw...Next Laop.<br />

1 10 HE;.;? Tndp:< \Triggar ma DVM (GET).<br />

120 Lcrc o. 1 ,I:~FIP Enter Output of WM inta Variable.<br />

130 HnIT 180<br />

140 BISP ,I<br />

Complete For ... Next Loop.<br />

iSl3 IJEXT ,_I Local Controller Operation withwt DVM.<br />

168 CF!.!TF'IjT D ~ f4 i " E" 9 E i na r.~.$ Set-up DVM to Binary Informatkn in Strlng.<br />

1<br />

189<br />

TF' 1 GILEF: D~,lfi~<br />

EtjTEF;' Tll..lrl; F:~IJ.I~ i 179<br />

Trigger ths OVM lGm.<br />

Enter Outnut into Variable.<br />

181 FIXEPI 6 Format the Output.<br />

198<br />

141<br />

200<br />

PtRT PP l \%IT t71.1~11 j t. ild~-~~~~ FIXED 13<br />

pEIt.!T IISIb1C; "k:" ;Rending! "A'"<br />

ths Entira<br />

Format the Default Printer.<br />

2 1 0 C t- E fl F: 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!