06.03.2013 Views

Untitled - ESO

Untitled - ESO

Untitled - ESO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ESO</strong><br />

European Organisation<br />

for Astronomical<br />

Research in the<br />

Southern Hemisphere<br />

Annual Report 2006<br />

presented to the Council by the<br />

Director General<br />

Dr. Catherine Cesarsky


About <strong>ESO</strong><br />

<strong>ESO</strong> is the foremost intergovernmental<br />

European Science and Technology organisation<br />

in the field of ground-based<br />

astrophysics. It is supported by 1 countries:<br />

Belgium, Denmark, France, Finland,<br />

Germany, Italy, the Netherlands, Portugal,<br />

Spain, Sweden, Switzerland and the<br />

United Kingdom. The Czech Republic is<br />

currently in the process of joining <strong>ESO</strong><br />

(Status as of 31.1 . 006). Further<br />

countries have expressed interest in<br />

membership.<br />

Created in 196 , <strong>ESO</strong> provides state-ofthe-art<br />

research facilities to European<br />

astronomers and astrophysicists. In pursuit<br />

of this task, <strong>ESO</strong>’s activities cover<br />

a wide spectrum including the design<br />

and construction of world-class groundbased<br />

observational facilities for the<br />

member-state scientists, large telescope<br />

projects, design of innovative scientific<br />

instruments, developing new and advanced<br />

technologies, furthering European<br />

cooperation and carrying out European<br />

educational programmes.<br />

<strong>ESO</strong> operates the La Silla Paranal Observatory<br />

at several sites in the Atacama Desert<br />

region of Chile. The first site is at<br />

La Silla, a 400 m high mountain 600 km<br />

north of Santiago de Chile. It is equipped<br />

with several optical telescopes with mirror<br />

diameters of up to 3.6 metres. The<br />

3.5-m New Technology Telescope (NTT)<br />

was the first in the world to have a computer-controlled<br />

main mirror.<br />

Whilst La Silla remains one of the scientifically<br />

most productive observing sites in<br />

the world, the 600 m high Paranal site<br />

with the Very Large Telescope array (VLT)<br />

is the flagship facility of European astronomy.<br />

Paranal is situated about 130 km<br />

south of Antofagasta in Chile, 1 km inland<br />

from the Pacific Coast in what is<br />

probably the driest area in the world. Scientific<br />

operations began in 1999 and have<br />

resulted in a high number of extremely<br />

successful research programmes. The<br />

VLT is a most unusual telescope, based<br />

on the latest technology. It is not just<br />

one, but an array of four telescopes, each<br />

with a main mirror of 8. -m diameter.<br />

With one such telescope, images of celestial<br />

objects as faint as magnitude 30<br />

have been obtained in a one-hour exposure.<br />

This corresponds to seeing objects<br />

that are four billion times fainter than<br />

what can be seen with the naked eye.<br />

<strong>ESO</strong> Annual Report 006<br />

One of the most exciting features of the<br />

VLT is the possibility to use it as a giant<br />

optical interferometer (VLT Interferometer<br />

or VLTI). This is done by combining the<br />

light from several of the telescopes, including<br />

one or more of four 1.8-m moveable<br />

Auxiliary Telescopes. In the interferometric<br />

mode, one can reach the resolution on<br />

the sky that would be obtained with a<br />

telescope of the size of the separation<br />

between the most distant of the combined<br />

mirrors.<br />

Artist’s impression<br />

of a part of ALMA<br />

on Chajnantor.<br />

The . -m, the 3.5-m<br />

NTT and the 3.6-m<br />

telescopes at La Silla.<br />

In 006, over 1700 proposals were made<br />

for the use of <strong>ESO</strong> telescopes. They<br />

have resulted in a large number of peerreviewed<br />

publications. In 006, 630 refereed<br />

papers based on data from <strong>ESO</strong><br />

telescopes were published.<br />

<strong>ESO</strong> is also a major partner in the Atacama<br />

Large Millimeter/Submillimeter Array<br />

(ALMA), one of the largest ground-based<br />

astronomy projects of the next decade.


ALMA will be comprised of a main array<br />

of fifty 1 -m submillimetre quality antennas,<br />

with baselines of several kilometres.<br />

An additional compact array of four 1 -m<br />

and twelve 7-m antennas complements<br />

the main array. Construction of ALMA<br />

started in 003 and will be completed in<br />

01 ; it will become incrementally operational<br />

from 010 on. ALMA is located on<br />

the high-altitude Llano de Chajnantor<br />

(5 000 m elevation), east of the village of<br />

San Pedro de Atacama in Chile. The<br />

ALMA project is a partnership between<br />

Europe, Japan and North America in<br />

cooperation with the Republic of Chile.<br />

ALMA is funded in Europe by <strong>ESO</strong>, in<br />

Japan by the National Institutes of Natural<br />

Sciences in cooperation with the<br />

Academia Sinica in Taiwan and in North<br />

America by the U.S. National Science<br />

Foundation in cooperation with the National<br />

Research Council of Canada.<br />

ALMA construction and operations are<br />

led on behalf of Europe by <strong>ESO</strong>, on behalf<br />

of Japan by the National Astronomical<br />

Observatory of Japan and on be-<br />

half of North America by the National<br />

Radio Astronomy Observatory, which is<br />

managed by Associated Universities, Inc.<br />

The Chajnantor site is also home of the<br />

1 -m APEX submillimetre/millimetre-wavelength<br />

telescope, operated by <strong>ESO</strong> on<br />

behalf of the Onsala Space Observatory,<br />

the Max-Planck Institute for Radio Astronomy<br />

and <strong>ESO</strong> itself.<br />

<strong>ESO</strong> has built up considerable expertise<br />

in developing, integrating and operat-<br />

ing large astronomical telescopes at remote<br />

sites. Together with the ideas developed<br />

in the framework of the OWL<br />

Conceptual Study and the EC co-funded<br />

Extremely Large Telescope Design Study,<br />

this expertise forms the backbone of<br />

the effort to develop a next-generation<br />

extremely large ground-based optical/infrared<br />

telescope for Europe’s astronomers.<br />

For this project, currently known as<br />

the European Extremely Large Telescope<br />

(E-ELT), <strong>ESO</strong> has developed a basic reference<br />

design for a 4 -m telescope with<br />

a novel five-mirror optical concept. The<br />

current detailed design phase is scheduled<br />

to be completed by the end of 009.<br />

The <strong>ESO</strong> headquarters are located in<br />

Garching, near Munich, Germany. This is<br />

the scientific, technical and administrative<br />

centre of <strong>ESO</strong> where technical development<br />

programmes are carried out to provide<br />

the observatories with the most<br />

advanced instruments. It is also home for<br />

the Space Telescope – European Coordinating<br />

Facility (ST-ECF), operated jointly<br />

by <strong>ESO</strong> and the European Space Agency<br />

(ESA).<br />

Artist’s impression<br />

of the E-ELT.<br />

The VLT Array<br />

at Paranal.<br />

<strong>ESO</strong> Annual Report 006<br />

3


Contents<br />

Foreword 6<br />

Introduction 7<br />

Research Highlights 10<br />

La Silla Paranal Observatory 30<br />

Atacama Large Millimeter/Submillimeter Array 38<br />

The European Extremely Large Telescope 45<br />

Organisation and Personnel<br />

Organigramme 49<br />

List of Personnel 50<br />

Personnel Services 5<br />

Instrumentation 53<br />

Technical Developments 57<br />

Science Archive Operation 60<br />

The European Virtual Observatory 6<br />

ST-ECF 63<br />

Public Outreach 65<br />

<strong>ESO</strong> Press Releases 68<br />

Relations with Chile 70<br />

European Affairs 7<br />

Committees<br />

Council 76<br />

The Scientific Technical Committee 77<br />

Finance Committee 80<br />

The Users’ Committee 80<br />

The Observing Programmes Commitee 8<br />

Summary of Use of Telescopes by Discipline 84<br />

Publications 86<br />

Financial Statement 105<br />

Four Seasons at a Glance 106<br />

Glossary of Frequently Used Acronyms 110<br />

DVD 113<br />

<strong>ESO</strong> Annual Report 006<br />

5


6<br />

<strong>ESO</strong> Annual Report 006<br />

Foreword<br />

It would be evident even to the most casual<br />

observer that <strong>ESO</strong> is as vibrant and<br />

dynamic as ever with a strong track record<br />

of excellence and ambitious projects.<br />

Some of these projects are now operational<br />

facilities, some are under construction<br />

and others are in the design phase.<br />

The task of Council is to provide the overall<br />

strategy and a framework for the further<br />

evolution of the organisation and it is<br />

this forward-looking task that makes the<br />

work of Council members so rewarding.<br />

Arguably, the most important issue<br />

regarding the future that Council had to<br />

address in 006 was the decision to<br />

endorse the proposal to embark on the<br />

detailed design study for a European<br />

Extremely Large Telescope (E-ELT). The<br />

study, scheduled to last for three years,<br />

will lead to a proposal for construction for<br />

Council to consider in due course. Council<br />

was able to take this decision not<br />

least because of the impressive preparatory<br />

work by <strong>ESO</strong> and the various working<br />

groups with strong involvement by the<br />

scientific community across Europe. In<br />

taking this important step Council recognised<br />

that the E-ELT is crucial to the further<br />

development of European astronomy<br />

and its ability to retain a competitive edge<br />

on a global stage.<br />

Building the E-ELT is as big a challenge<br />

to all of us as any of the preceding projects<br />

in <strong>ESO</strong>’s already impressive project<br />

portfolio. We can succeed only if we<br />

manage to harness the necessary resources<br />

– financial, technological and<br />

human. It is therefore gratifying that more<br />

potential member countries continue to<br />

express interest in joining. I was delighted<br />

that the entry of Spain as the 1 th member<br />

state of <strong>ESO</strong> was becoming a reality<br />

at the end of the year, with just the final<br />

formalities pending. Spain plays an important<br />

role in European astronomy and<br />

its membership of <strong>ESO</strong> is a very welcome.<br />

At its December meeting Council<br />

also approved the entry of the Czech<br />

Republic, the first of the Central European<br />

countries to join.<br />

The expansion of <strong>ESO</strong>’s membership<br />

base is clearly important in the context of<br />

the E-ELT. It also strengthens <strong>ESO</strong> as<br />

the focal point for Europe’s astronomers<br />

and thus reinforces the significance of<br />

the organisation as an important actor in<br />

the European Research Area.<br />

<strong>ESO</strong>’s overall role in the European research<br />

landscape is an important question<br />

that warrants serious consideration.<br />

At the June meeting of Council, the<br />

Science Strategy Working Group presented<br />

several scenarios that are now<br />

subject to further debate.<br />

Entrusting the management of the organisation<br />

to the most competent leader<br />

is clearly most important to all of us. With<br />

the term of the current Director Gener-<br />

al coming to its end by September 007,<br />

Council set up a search committee for<br />

the next DG, leading to the selection<br />

of Prof. Tim de Zeeuw as successor to<br />

Dr. Catherine Cesarsky. With this decision,<br />

Council has provided the base<br />

for a smooth transition of the management<br />

of <strong>ESO</strong>.<br />

In conclusion I am pleased to note that by<br />

the end of the year, Council, working with<br />

the Executive, had acted to set <strong>ESO</strong> on<br />

a track towards a very exciting future and<br />

I wish to express my sincere thanks to<br />

all involved in this important endeavour.<br />

Richard Wade<br />

President of the <strong>ESO</strong> Council


Introduction<br />

In my introduction to the 005 Annual<br />

Report, I described that year as a pivotal<br />

year for <strong>ESO</strong>. This was not least on the<br />

basis of the progress regarding the ALMA<br />

project. Looking at 006, however, it is<br />

impossible not to use similar vocabulary<br />

again. Shortly before Christmas 005 I<br />

had launched a very ambitious plan aiming<br />

to move quickly and decisively towards<br />

the realisation of the European<br />

Extremely Large Telescope (E-ELT). The<br />

task was daunting: the plan foresaw<br />

the establishment of five mixed Community-<strong>ESO</strong><br />

topical Working Groups with-<br />

in the shortest space of time to lay the<br />

groundwork for a set of extremely intense<br />

activities to be conducted within a ‘core’<br />

Working Group, the ELT Science and Engineering<br />

Working Group, supplemented<br />

by an ELT Standing Advisory Committee.<br />

Before the end of 006, and with broad<br />

involvement of the scientific community,<br />

we wanted to be able to present a basic<br />

reference design and ask Council for approval<br />

of a Phase B for the project.<br />

The way the scientific community and the<br />

<strong>ESO</strong> staff embraced the plan was truly<br />

encouraging, with 85 out of 88 invitees<br />

enthusiastically agreeing to board the<br />

‘ELT-train’. Now, 1 months later, the train<br />

has arrived – precisely on schedule.<br />

At the 7 November–1 December conference<br />

in Marseille, which was attended by<br />

more than 50 scientists, the results were<br />

presented to and discussed by the<br />

scientific community. Only a week later,<br />

Council gave the green light to embark<br />

on Phase B, a three-year long detailed<br />

design study that should allow us to present<br />

a proposal for construction to the<br />

<strong>ESO</strong> Council in the 009– 010 time frame.<br />

The basis for the design study is a 4 -m<br />

telescope with a unique five-mirror design.<br />

It constitutes an innovative design<br />

solution that takes account of all the concerns<br />

raised with previous design proposals.<br />

Yet, while pursuing the detailed<br />

studies, we retain the option of the classical<br />

Gregorian telescope as a fallback<br />

possibility.<br />

These twelve months have seen a remarkable<br />

coming together of people,<br />

ideas, policy decisions and much hard<br />

work. The outcome is a tribute to the<br />

ability of Europe’s astronomers to set ambitious<br />

goals but also to forge tenable<br />

compromises – to set their sights on the<br />

sky, while keeping their feet on the<br />

ground.<br />

Aside from the impressive mobilisation<br />

of the scientific community, two other elements<br />

in the jigsaw puzzle should be<br />

mentioned: the inclusion of the ELT in the<br />

so-called ESFRI-list of large future research<br />

infrastructures deemed to be of<br />

European interest, and the setting up at<br />

<strong>ESO</strong> of a dedicated E-ELT project office<br />

with cross-divisional parts in a matrix<br />

structure. The former embeds the E-ELT<br />

decision process in the wider European<br />

science policy scene, a necessary step in<br />

the age of the European Research Area.<br />

The latter is part of preparing <strong>ESO</strong> for<br />

the challenges arising from the fact that<br />

we have become a multi-project organisation.<br />

A new step in the matrix structure<br />

foreseen to cope with this new situation<br />

is the creation of the Software Development<br />

Division, encompassing software<br />

developers from the previous Data Management<br />

Division, the Technological<br />

Division, and ALMA. Meanwhile, the new<br />

Data Management Operations division<br />

serves the VLT/VLTI and the ALMA ARC,<br />

ensuring continued attention to our running<br />

operations.<br />

At Paranal, we introduced in January the<br />

Laser Guide Star (LGS) system on Yepun.<br />

At <strong>ESO</strong>, as elsewhere, success requires<br />

hard work, and indeed it became evident<br />

that the LGS launch-telescope needed<br />

<strong>ESO</strong> Annual Report 006<br />

Photo: Volker Steger<br />

modifications in order to perform as required.<br />

However, with the improvements<br />

carried out, the LGS commissioning<br />

could resume by October, and the facility<br />

will be fully used in scientific observations<br />

early in 007.<br />

Also this year, the fourth Auxiliary Telescope<br />

saw First Light, completing the<br />

suite of ATs for the Very Large Telescope<br />

Interferometer (VLTI) and we thank<br />

the Belgians, the Swiss and the Italians<br />

for providing the additional resources<br />

needed for this significant improvement.<br />

Progress was also achieved with respect<br />

to VISTA, the 4-m survey telescope that<br />

forms a part of the UK entrance fee to<br />

<strong>ESO</strong>. In May 006 most of the structural<br />

parts were shipped to Chile. The telescope<br />

enclosure was accepted in Chile,<br />

while the camera was ready to leave<br />

the UK for Chile at the end of the year.<br />

The coating plant that comes with VISTA<br />

was also being installed. This facility<br />

will prove a useful resource as it will allow<br />

mirrors to be silver rather than alumin-<br />

ium coated. Public Surveys for VISTA<br />

have been selected and I am glad to see<br />

that there were so many proposals, with<br />

the result that a very good set of surveys<br />

have been chosen.<br />

The other survey telescope, the .5-m<br />

VST, remains on the other hand a matter<br />

of concern due to serious, continued<br />

delay. Nonetheless, following a visit by<br />

<strong>ESO</strong> engineers to Naples, plans were<br />

made for shipping of the telescope struc-<br />

7


ture early in 007. The 3 -CCD-mosaic<br />

OmegaCAM wide-field optical camera for<br />

the VST, which was developed by <strong>ESO</strong>,<br />

was, however, finished. The primary<br />

mirror of the telescope is also now ready,<br />

in Moscow.<br />

In June the VLT cryogenic high-resolution<br />

infrared echelle spectrograph CRIRES<br />

was commissioned at the Nasmyth focus<br />

of Antu, marking the completion of the<br />

first-generation VLT instrumentation. First<br />

steps of Science Verification also took<br />

place during the year and work was progressing<br />

very well on developing a de-<br />

dicated pipeline for the CRIRES data reduction.<br />

At the same time, the near-infrared imager<br />

HAWK-I, often described as a VLT<br />

‘generation 1.5’ instrument, was in an<br />

advanced stage, undergoing Assembly<br />

and Integration at <strong>ESO</strong> Garching, paving<br />

the way for a shipment to Chile in 007.<br />

Important progress was also achieved<br />

with respect to the second-generation<br />

instrumentation. In September, an agreement<br />

was signed with an extended<br />

consortium led by LAOG in Grenoble to<br />

develop SPHERE. The revised design<br />

fulfils all the requirements set by the <strong>ESO</strong><br />

Scientific Technical Committee (STC) for<br />

the planet-finder instrument.<br />

Meanwhile, the multi-conjugate adap-<br />

tive optics demonstrator (MAD) was successfully<br />

tested in the laboratory in<br />

Garching, passing its PAE (Preliminary<br />

Acceptance Europe) in December and<br />

thus being ready to go to Chile.<br />

All of these instruments constitute technological<br />

marvels; we are thrilled by their<br />

ingenious design and capabilities, for<br />

they allow us to do science at the cuttingedge.<br />

This is undoubtedly also the case<br />

for AMBER, the interferometric beam<br />

combiner for the VLTI, which was offered<br />

to the scientific community from P 76, and<br />

it is gratifying to see a string of truly impressive<br />

scientific results, scheduled to<br />

appear in a special issue of A&A in March<br />

007.<br />

AMBER is not the only facility to have this<br />

honour, as in July 006 the submillimetric<br />

telescope APEX was also the topic of<br />

8<br />

<strong>ESO</strong> Annual Report 006<br />

a special A&A issue, with no fewer than<br />

6 articles based on early science being<br />

published.<br />

Although some of the great scientific<br />

achievements made with <strong>ESO</strong>’s telescopes<br />

are published in the Research<br />

Highlights, I cannot resist mentioning<br />

a few. In January, the discovery of the<br />

smallest exoplanet found so far, a five-<br />

Earth-mass planet, was announced.<br />

The planet was discovered by microlensing,<br />

with the help of a worldwide network<br />

of telescopes, among which the 1.5-m<br />

Danish telescope at La Silla was the one<br />

that could pick up the signal due to the<br />

planet. This discovery heralds a new era<br />

in the search for exoplanets. The identification,<br />

also at La Silla but with the 3.6-m<br />

telescope this time, of a planetary system<br />

containing three Neptune-mass planets<br />

and an asteroid belt, is also of crucial<br />

importance in this very hot research area.<br />

With the VLT, astronomers have found<br />

possible proofs of stellar vampirism in the<br />

globular cluster 47 Tucanae. Indeed,<br />

some hot, bright, and apparently young<br />

stars in the cluster present less carbon<br />

and oxygen than the majority of their sisters,<br />

indicating that these few stars likely<br />

formed by taking their material from another<br />

star. Farther away, the combination<br />

of adaptive optics techniques with the<br />

new SINFONI integral-field spectrograph<br />

allowed astronomers to study a very distant<br />

galaxy with a record-breaking resolution<br />

of a mere 0.15 arcseconds, giving<br />

an unprecedented detailed view of the<br />

anatomy of such a distant proto-disc galaxy.<br />

The observations imply that large<br />

disc galaxies akin to our Milky Way must<br />

have formed on a rapid timescale, only<br />

three billion years after the Big Bang.<br />

With the VISIR instrument, astronomers<br />

have mapped the disc around a star<br />

more massive than the Sun. The very extended<br />

and flared disc most likely contains<br />

enough gas and dust to spawn planets.<br />

It appears as a precursor of debris<br />

discs such as those around Vega-like<br />

stars and thus provides the rare opportunity<br />

to witness the conditions prevailing<br />

prior to or during planet formation. The<br />

huge gain in resolving power offered<br />

by the VLTI also made a difference. VINCI<br />

and MIDI were used to discover envelopes<br />

around three Cepheids, massive<br />

pulsating stars that play a crucial role<br />

in cosmology, being one of the first steps<br />

on the cosmic distance ladder.<br />

Of course, these are but a few examples<br />

of the science that is based on observations<br />

with <strong>ESO</strong> telescopes. In fact, on<br />

average, our user community produces<br />

close to two papers with <strong>ESO</strong> data a day<br />

all year round, more than any other<br />

ground-based observatory in the world.<br />

<strong>ESO</strong> telescopes generate a large quantity<br />

of data, which are kept for reuse in the<br />

Science Archive. With the coming online<br />

of VISTA, and later of the VST, the flow<br />

of data will considerably increase, reaching<br />

100 TB of data per year. To anticipate<br />

this, <strong>ESO</strong> is preparing a Petabyte-class<br />

archive that will be ready next year.<br />

In July, the first data release of the UKIRT<br />

Infrared Deep Sky Survey (UKIDSS)<br />

was available, providing a year of data to<br />

the <strong>ESO</strong> community of users. The full survey<br />

is expected to take seven years. But<br />

this first set of observations already<br />

shows how powerful the full survey will<br />

be at finding rare objects that hold vital<br />

clues to how stars and galaxies in our<br />

Universe formed. Indeed, the new data<br />

on young galaxies is already challenging<br />

current thinking on galaxy formation,<br />

revealing galaxies that are massive at a<br />

much earlier stage of development than<br />

anticipated.<br />

In 005, the ALMA project was set on<br />

track with major industrial contracts<br />

being awarded. The year 006 was a year<br />

of construction: the road from the highway<br />

to the high site, the AOS, was completed<br />

at its full width, and construction<br />

of the buildings at the OSF, at 900 m<br />

altitude, began at full speed. The road<br />

and the OSF buildings are deliverables for<br />

which <strong>ESO</strong> is responsible.<br />

In Europe, the first cryostats and receivers<br />

for two frequency bands were delivered.<br />

By now, prototypes are available<br />

for all four ALMA frequencies (0.6, 0.9,<br />

1.3 and 3 mm), fulfilling specifications. For<br />

the cryostats, a first series of eight was


manufactured and delivered. The first cartridge<br />

for Band 7 exceeded the specifications,<br />

being much more sensitive than<br />

initially planned. This, in effect, is equivalent<br />

to having many more antennas.<br />

First tests on the SMA on Mauna Kea of<br />

the water vapour radiometers proved<br />

the technology to be highly successful. It<br />

was thus decided to implement these<br />

in ALMA, thereby further increasing the<br />

output of this unique facility.<br />

Another important milestone for the<br />

ALMA project was reached in June with<br />

the signing of the agreement with Japan<br />

(and Taiwan), bringing a Compact Ar-<br />

ray and other wavebands to the project.<br />

According to the agreement, the ALMA<br />

array will thus initially comprise 66 antennas,<br />

54 of them with 1 -m diameter<br />

and 1 7-m antennas.<br />

ALMA is the first quasi-global project in<br />

ground-based astronomy, and it is fitting<br />

that <strong>ESO</strong>, with its international orientation,<br />

plays its part in it. That <strong>ESO</strong> plays an<br />

important role on the international scene<br />

was also visible during the 006 SPIE<br />

conference, with a large involvement in<br />

the organisation and numerous presentations<br />

by <strong>ESO</strong> staff. The SPIE meeting<br />

also allowed for starting most fruitful discussions<br />

with other ELT groups, especially<br />

the TMT, that have since been ongoing.<br />

Equally, in November, a top-level meeting<br />

on exoplanets took place in Washington<br />

D.C. between <strong>ESO</strong>, ESA, NSF and NASA.<br />

Back in Europe, the IAU General Assembly<br />

was held in Prague. These triennial<br />

events always provide a unique opportunity<br />

to experience first-hand the progress<br />

across the entire range of astronomy,<br />

as well as to meet friends and colleagues<br />

from one’s own and other sub-fields, and<br />

this General Assembly certainly lived<br />

up to expectation. Some 800 participants<br />

from around the world attended the<br />

event. Again, <strong>ESO</strong> was well presented,<br />

in the various sessions and also with a<br />

major information stand – fitting in the<br />

context of our ongoing talks with the<br />

Czech Republic.<br />

We continued our collaboration with ESA,<br />

with the publication of two joint reports<br />

on Herschel/ALMA synergies and fundamental<br />

cosmology, respectively, as visible<br />

signs of the coordination efforts in this<br />

field on our continent.<br />

In June, with our Chilean colleagues we<br />

celebrated the 10th anniversary of the<br />

supplementary agreement with Chile,<br />

which not only paved the way for <strong>ESO</strong>’s<br />

operations in Chile in the VLT era, but<br />

also provided strong impulses to Chilean<br />

astronomy. Some of the results are described<br />

in the book “10 Years Exploring<br />

the Universe” that was published on this<br />

occasion. We are pleased that our relations<br />

with Chile, its scientific community<br />

and its people, remain strong and positive.<br />

Moving from international relations in general<br />

to the issue of new member states,<br />

we were happy when, in February, Spain<br />

took a decisive step towards full membership<br />

with the signing in Madrid of a<br />

statement aiming at accession to the<br />

<strong>ESO</strong> Convention effective from 1 July.<br />

As it turned out, the ratification process<br />

needed more time and the last steps remained<br />

to be completed by the end of<br />

the year. Nonetheless, we were assured<br />

by the Spanish authorities of the intent<br />

to respect the accession date, as set out<br />

in the February statement.<br />

In parallel, negotiations with the Czech<br />

Republic progressed rapidly. At the<br />

December meeting, Council approved<br />

the agreement, which foresaw Czech<br />

membership as of 1 January 007. A few<br />

days later, the agreement was also approved<br />

by the Czech Government, and<br />

on December the agreement was<br />

signed at a ceremony in Prague. As in the<br />

case of Spain, however, the parliamentary<br />

approval and the subsequent deposition<br />

of the instrument of ratification remained<br />

to be completed.<br />

<strong>ESO</strong> is a high-tech research organisation<br />

with a global perspective. As such it must<br />

meet the challenges of the dynamic, international<br />

labour market, competing for<br />

the best and most talented staff. With the<br />

opening of the IPP/<strong>ESO</strong> crèche for our<br />

staff in Garching, we have taken further<br />

steps to create a working climate that<br />

is also amenable to family needs. In Chile,<br />

we entered collective bargaining, concluding<br />

collective arrangements valid for<br />

three years.<br />

Having physical surroundings that foster<br />

human and intellectual exchange is another<br />

important element. It is therefore<br />

good that the long-awaited expansion of<br />

our Headquarters building moved clos-<br />

er as, with the help of the German authorities,<br />

we made progress towards securing<br />

the land to the south of the existing<br />

premises.<br />

In its 45th year, <strong>ESO</strong> remains a strong<br />

and dynamic organisation, not just full of<br />

ideas and initiatives but with a clear will<br />

to harness these into projects that can<br />

serve our users. An important tool in this<br />

process is the Medium Range Implementation<br />

Plan, which was endorsed by<br />

Council at its December meeting. This<br />

plan provides a clear path for <strong>ESO</strong>’s development<br />

over the next four years; now<br />

it is for us to turn it into reality.<br />

Catherine Cesarsky<br />

Director General, <strong>ESO</strong><br />

<strong>ESO</strong> Annual Report 006<br />

9


Research Highlights<br />

In 006 <strong>ESO</strong> again proved that it has<br />

the telescopes and instruments to maintain<br />

its lead position in the quest for<br />

exoplanets, that is, planets that orbit a<br />

star other than the Sun. Using a variety<br />

of telescopes, at La Silla and Paranal,<br />

astronomers were able to find the smallest<br />

exoplanet yet discovered — a five-<br />

Earth-mass icy world — as well as a complete<br />

planetary system composed of 3<br />

Neptune-mass planets. Also noteworthy<br />

is the study of free-floating planets that<br />

appear to harbour discs and even form as<br />

twins, thereby sharing many properties<br />

of stars.<br />

The Comet With a Broken Heart<br />

On the night of 3/ 4 April, <strong>ESO</strong>’s Very<br />

Large Telescope observed fragment B of<br />

the comet Schwassmann-Wachmann<br />

3 that had split a few days earlier. To their<br />

great surprise, the <strong>ESO</strong> astronomers<br />

discovered that the piece just ejected by<br />

fragment B was splitting again! Five<br />

other mini-comets are also visible on the<br />

image. The comet seems thus doomed<br />

to disintegrate but the question remains in<br />

how much time.<br />

Comet 73P/Schwassmann-Wachmann 3<br />

(SW 3) is a body with a very tormented<br />

past. This comet revolves around the Sun<br />

in about 5.4 years, in a very elongated<br />

orbit that brings it from inwards of the<br />

Earth’s orbit to the neighbourhood of giant<br />

planet Jupiter. In 1995, when it was<br />

coming ‘close’ to the Earth, it underwent<br />

a dramatic and completely unexpected,<br />

thousandfold brightening. Observations<br />

in 1996, with <strong>ESO</strong>’s New Technology<br />

Telescope and 3.6-m telescope, at La<br />

Silla, showed that this was due to the fact<br />

that the comet had split into three distinct<br />

pieces. Later, in December 1996, two<br />

more fragments were discovered. At the<br />

last comeback, in 001, of these five<br />

10<br />

<strong>ESO</strong> Annual Report 006<br />

Talking about discs, the VISIR instrument<br />

allowed astronomers to map a disc<br />

around a very young star, possibly witnessing<br />

the precursor of a planetary system.<br />

But it is not all about stars and planets.<br />

In 006, astronomers provided unique<br />

insights into two classes of important<br />

objects in cosmology, Cepheids and<br />

Type Ia supernovae.<br />

They also have revealed several cases of<br />

stellar vampirism, including one on a<br />

very big scale. In other studies, they have<br />

provided important clues on the past<br />

of our own Galaxy. Looking farther away,<br />

SINFONI on the VLT made a record<br />

fragments only three were still seen, the<br />

fragments C (the largest one), B and E.<br />

No new fragmentations happened during<br />

this approach, apparently.<br />

Things were different this time, when the<br />

comet moved again towards its closest<br />

approach to the Sun – and to the Earth.<br />

Early in March, seven fragments were<br />

observed, the brightest (fragment C)<br />

being of magnitude 1 , i.e. 50 times<br />

fainter than what the unaided eye can<br />

see, while fragment B was 10 times fainter<br />

still. In the course of March, 6 new<br />

fragments were seen.<br />

Early in April, fragment B went into outburst,<br />

brightening by a factor 10 and<br />

on 7 April, six new fragments were discovered,<br />

confirming the high degree of<br />

fragmentation of the comet. On 1 April,<br />

fragment B was as bright as the main<br />

fragment C, with a magnitude around 9<br />

(16 times fainter than what a keen<br />

observer can see with unaided eyes).<br />

Fragment B seems to have fragmented<br />

again, bringing the total of fragments<br />

close to 40, some being most probably<br />

very small, boulder-sized objects with<br />

irregular and short-lived activity.<br />

observation of a very young galaxy, showing<br />

that it formed very quickly, contrarily<br />

to previous beliefs. The VLT also helped<br />

discover a ‘blob’ twice as large as the<br />

Milky Way and emitting as much as<br />

several billion suns, yet it is invisible in<br />

normal light! In another bout of magic, the<br />

VLT also studied an invisible galaxy, from<br />

the imprint it leaves on the spectrum of a<br />

distant quasar acting as a beacon.<br />

One cannot doubt that the Universe has<br />

still many surprises in store but it seems<br />

also evident from the few Research<br />

Highlights presented here that <strong>ESO</strong><br />

telescopes are revealing more and more<br />

of them every day!<br />

The new observations reveal that this<br />

new small fragment has split again! The<br />

image clearly reveals that below the<br />

main B fragment, there is a small fragment<br />

that is divided into two and a<br />

careful analysis reveals five more tiny fragments<br />

almost aligned. Thus, this image<br />

alone shows at least 7 fragments. The<br />

comet has thus produced a whole set of<br />

mini-comets!<br />

Mini-comets coming off comet SW 3.


An Icy 5 Earth-mass Exoplanet<br />

Driven by the need for increasing efficiency<br />

to address current frontline research<br />

topics, astronomy is moving more and<br />

more in the direction of huge international<br />

teams working together, not unlike what<br />

has been the rule for many years in particle<br />

physics. Nothing can better illustrate<br />

this trend than the discovery of the<br />

smallest exoplanet. This incredible result<br />

is a joint effort of three independent<br />

campaigns: PLANET/RoboNet, OGLE,<br />

and MOA, involving a total of 73 collaborators<br />

affiliated with 3 institutions in 1<br />

countries.<br />

Designated by the unglamorous identifier<br />

of OGLE- 005-BLG-390Lb, the alien<br />

world is a five Earth-mass object located<br />

0 000 lightyears away, not far from the<br />

centre of our Milky Way galaxy.<br />

Contrary to most of the more than 00<br />

exoplanets discovered until now,<br />

OGLE- 005-BLG-390Lb was found using<br />

the ‘microlensing’ technique. This method<br />

is based on the fact that the gravity of<br />

a dim, intervening star can act as a giant<br />

natural telescope, magnifying a more<br />

distant star, which then temporarily looks<br />

brighter. A small ‘glitch’ in the brightening<br />

reveals the existence of a planet around<br />

the lens star. Neither the planet nor the<br />

star that it is orbiting can be seen, only<br />

the effect of their gravity. Such an<br />

intervening star causes a characteristic<br />

brightening that lasts about a month.<br />

Any planets orbiting this star can produce<br />

an additional signal, lasting from days for<br />

giant planets down to hours for Earthmass<br />

planets.<br />

In order to be able to catch and characterise<br />

these planets, nearly-continuous<br />

round-the-clock high-precision monitoring<br />

of ongoing microlensing events is<br />

required. This is the goal of the PLANET<br />

network of 1-m-class telescopes consisting<br />

of the <strong>ESO</strong> 1.54-m Danish at La<br />

Silla (Chile), the Canopus Observatory<br />

1.0-m (Hobart, Tasmania, Australia),<br />

the Perth 0.6-m (Bickley, Western Australia),<br />

the Boyden 1.5-m (South Africa),<br />

and the SAAO 1.0-m (Sutherland, South<br />

Africa). Since 005, PLANET has<br />

operated a common campaign with<br />

RoboNet, a UK-operated network of -m<br />

fully robotic telescopes currently comprising<br />

the Liverpool Telescope (Roque<br />

de Los Muchachos, La Palma, Spain) and<br />

the Faulkes Telescope North (Haleakala,<br />

Hawaii, USA).<br />

The OGLE (Optical Gravitational Lensing<br />

Experiment) search team discovered<br />

the event OGLE- 005-BLG-390 on 11<br />

July 005, triggering the PLANET telescopes<br />

to start taking data. A light curve<br />

consistent with a single lens star peaking<br />

at an amplification of about 3 on 31 July<br />

005 was observed, until 10 August<br />

when a PLANET member, observing at<br />

the Danish 1.54-m at <strong>ESO</strong> La Silla, noticed<br />

a planetary deviation. An OGLE<br />

point from the same night showed the<br />

same trend, while the last half of the planetary<br />

deviation, lasting about a day, had<br />

been covered by images from Perth<br />

Observatory. The MOA (Microlensing<br />

Observations in Astrophysics) collaboration<br />

was later able to identify the source<br />

star on its images and confirmed the<br />

deviation.<br />

The new planet orbits a red star five times<br />

less massive than the Sun in about<br />

10 years. It is the least massive exoplanet<br />

around an ordinary star detected so far,<br />

and also the coolest: its relatively cool<br />

parent star and large orbit implies that<br />

the likely surface temperature of the<br />

planet is 0 degrees Celsius below zero,<br />

too cold for liquid water. It is likely to have<br />

a thin atmosphere, like the Earth, but its<br />

rocky surface is probably deeply buried<br />

beneath frozen oceans. It may therefore<br />

more closely resemble a more massive<br />

version of Pluto, rather than the rocky<br />

inner planets like Earth and Venus.<br />

Astronomers claim that this planet is<br />

actually the first and only planet that<br />

has been discovered so far that is in<br />

agreement with the theories for how<br />

our Solar System formed. The favoured<br />

theoretical explanation for the formation<br />

of planetary systems proposes that solid<br />

‘planetesimals’ accumulate to build up<br />

planetary cores, which then accrete<br />

nebular gas – to form giant planets – if<br />

they are sufficiently massive. Around red<br />

dwarfs, the most common stars of our<br />

Galaxy, this model favours the formation<br />

of Earth- to Neptunemass planets being<br />

between 1 and 10 times the Earth-Sun<br />

distance away from their host.<br />

OGLE- 005-BLG-390Lb is only the third<br />

extrasolar planet discovered so far<br />

through microlensing searches. While the<br />

other two microlensing planets have<br />

masses of a few times that of Jupiter, the<br />

discovery of a 5 Earth-mass planet –<br />

despite being much harder to detect than<br />

more massive ones – is a strong hint<br />

that these lower-mass objects are very<br />

common. In particular, astronomers now<br />

think that such frozen worlds are much<br />

more common than their larger, Jupiterlike<br />

brethren, as otherwise the microlensing<br />

method should have found dozens of<br />

them by now.<br />

There is no doubt that the discovery of<br />

this planet marks a groundbreaking result<br />

in the search for planets that support life.<br />

J.-P. Beaulieu, D. P. Bennett, P. Fouqué, A. Williams,<br />

M. Dominik, U. G. Jørgensen, D. Kubas et al., Nature,<br />

6 January 006.<br />

Artist’s Impression of the Icy Exoplanet.<br />

Light Curve of OGLE- 005-BLG-390.<br />

<strong>ESO</strong> Annual Report 006<br />

11


Trio of Neptunes and their Belt<br />

A most unusual planetary system has<br />

been found, in which a nearby star is hosting<br />

three Neptune-mass planets. The<br />

innermost planet is most probably rocky,<br />

while the outermost is the first known<br />

Neptune-mass planet to reside in the habitable<br />

zone. This unique system is likely<br />

further enriched by an asteroid belt.<br />

A planet in orbit around a star will manifest<br />

its presence by pulling the star in<br />

different directions, thereby changing its<br />

measured velocity by very small amounts.<br />

Astronomers therefore measure the<br />

velocity of a star with very high precision<br />

to detect the signature of one or more<br />

planets. Certainly the best instrument to<br />

do this kind of work is the High Accuracy<br />

Radial velocity Planet Searcher (HARPS)<br />

at the <strong>ESO</strong> La Silla 3.6-m telescope, a<br />

fibre-fed high-resolution echelle spectrograph<br />

that has demonstrated a longterm<br />

precision of about 1 m/s.<br />

During more than two years, a team of<br />

astronomers used HARPS to monitor the<br />

velocity of HD 69830, a rather inconspicuous<br />

nearby star slightly less massive<br />

than the Sun. Located 41 light-years<br />

away towards the constellation of Puppis<br />

(the Stern), it is, with a visual magnitude<br />

of 5.95, just visible with the unaided eye.<br />

Precise measurements allowed the<br />

astronomers to discover the presence of<br />

three tiny companions orbiting their<br />

parent star in 8.67, 31.6 and 197 days.<br />

The detected velocity variations are between<br />

and 3 metres per second,<br />

Increasing the Odds of the Sweep<br />

The VLT has confirmed the extrasolar<br />

planet status of two of the 16 candidates<br />

discovered by the NASA/ESA Hubble<br />

Space Telescope.<br />

The 16 candidates were uncovered<br />

during an international HST survey, called<br />

the ‘Sagittarius Window Eclipsing<br />

Extrasolar Planet Search’, or SWEEPS.<br />

HST couldn’t see the 16 newly found planet<br />

candidates directly. Instead, astronomers<br />

used HST to search for planets by<br />

measuring the slight dimming of a star<br />

due to the passage of a planet in front of<br />

it. This event is called a transit. The<br />

1<br />

<strong>ESO</strong> Annual Report 006<br />

Impression of the planetary system around HD 69830.<br />

corresponding to about 9 km/h! That’s<br />

the speed of a person walking briskly.<br />

Such tiny signals could not have been<br />

distinguished from ‘simple noise’ by most<br />

of today’s available spectrographs.<br />

The newly found planets have minimum<br />

masses between 10 and 18 times the<br />

mass of the Earth. Extensive the oretical<br />

simulations favour an essentially rocky<br />

composition for the inner planet, and a<br />

rocky/gas structure for the middle one.<br />

The outer planet has probably accreted<br />

some ice during its formation, and is likely<br />

to be made of a rocky/icy core surrounded<br />

by a quite massive envelope. Further<br />

calculations have also shown that the<br />

system is in a dynamically stable configuration.<br />

The outer planet also appears to be located<br />

near the inner edge of the habitable<br />

zone, where liquid water can exist<br />

planet would have to be about the size of<br />

Jupiter to block enough starlight, about<br />

1 to 10 per cent, to be measurable by<br />

HST. These objects are called planetary<br />

‘candidates’ because astronomers<br />

cannot be sure of their mass, and hence<br />

of their status, without further spectroscopic<br />

measurements.<br />

For two of the stars, the SWEEPS team<br />

could use the UVES and FLAMES<br />

instruments on the VLT to make an independent<br />

confirmation of a planet’s<br />

presence by spectroscopically measuring<br />

a slight wobble in the star’s motion<br />

due to the gravitational pull of an unseen<br />

at the surface of rocky/icy bodies.<br />

Although this planet is probably not Earthlike<br />

due to its heavy mass, its discovery<br />

opens the way to exciting possibilities.<br />

This alone would make this system already<br />

exceptional. But the recent discovery<br />

by the Spitzer Space Telescope<br />

that the star most likely hosts an asteroid<br />

belt adds the cherry to the cake. With<br />

three roughly equal-mass planets, one<br />

being in the habitable zone, and an asteroid<br />

belt, this planetary system shares<br />

many properties with our own Solar System.<br />

The planetary system around HD<br />

69830 clearly represents a ‘Rosetta<br />

stone’ for our understanding of how<br />

planets form. No doubt it will help us<br />

better understand the huge diversity we<br />

have observed since the first extrasolar<br />

planet was found in 1995.<br />

Christophe Lovis et al., Nature, 18 May 006.<br />

companion. One of the planetary<br />

candidates has a mass below 3.8 Jupiter<br />

masses. It orbits its host star, which<br />

is 5% more massive than the Sun, in 4.<br />

days. The other candidate’s mass is<br />

9.7 Jupiter masses.<br />

These are the faintest stars with planets<br />

that have been confirmed by radial<br />

velocities so far. To confirm the other planet<br />

candidates one would need a much<br />

bigger telescope on Earth, such as<br />

the European Extremely Large Telescope.<br />

Kailash Sahu et al., Nature, 5 October 006.


Do ‘Planemos’ Have Progeny?<br />

Two new studies show that objects only a<br />

few times more massive than Jupiter are<br />

born with discs of dust and gas, the raw<br />

material for planet-making. This suggests<br />

that miniature versions of the Solar<br />

System may circle objects that are some<br />

100 times less massive than our Sun.<br />

What’s more, such objects appear also to<br />

be able to form as twins: an approximately<br />

seven-Jupiter-mass companion<br />

was found orbiting an object that is itself<br />

only twice as hefty. The existence of such<br />

a double system puts strong constraints<br />

on formation theories of free-floating<br />

planetary-mass objects.<br />

Since a few years ago, it has been known<br />

that many young brown dwarfs —<br />

‘failed stars’ that weigh less than 8 per<br />

cent the mass of the Sun — are surrounded<br />

by a disc of material. This may<br />

indicate these objects form in the same<br />

way as our Sun. The new findings confirm<br />

that the same appears to be true for their<br />

even punier cousins, sometimes called<br />

free-floating planetary mass objects or<br />

‘planemos’. These objects have masses<br />

similar to those of extrasolar planets, but<br />

they are not in orbit around stars –<br />

instead, they float freely.<br />

In a way, the new discoveries are not too<br />

surprising – after all, Jupiter must have<br />

been born with its own disc, out of which<br />

its bigger moons formed. Still they may<br />

lead to a revision of our understanding of<br />

planetary formation as, unlike Jupiter,<br />

these planemos are not circling stars.<br />

The first study used two of <strong>ESO</strong>’s telescopes<br />

– Antu, the 8. -metre Unit Telescope<br />

no. 1 of the Very Large Telescope,<br />

and the 3.5-metre New Technology<br />

Telescope – to obtain optical spectra of<br />

six candidates identified recently by<br />

researchers at the University of Texas at<br />

Austin. Two of the six turned out to<br />

have masses between five and 10 times<br />

that of Jupiter while two others are<br />

a tad heftier, at 10 to 15 times Jupiter’s<br />

mass. All four of these objects are<br />

‘newborns’, just a few million years old,<br />

and are located in star-forming regions<br />

about 450 light years from Earth. The<br />

planemos show infrared emission from<br />

dusty discs that may evolve into miniature<br />

planetary systems over time.<br />

The other study also used the Very Large<br />

Telescope, but this time with its adaptive<br />

optics system and infrared camera<br />

NACO, to obtain images and spectra of<br />

a planetary-mass companion discovered<br />

two years ago at <strong>ESO</strong> around a young<br />

brown dwarf that is itself about 5 times<br />

the mass of Jupiter.<br />

This planetary-mass companion is the<br />

first-ever exoplanet to have been imaged.<br />

The brown dwarf, dubbed M1 07 for<br />

short and located 170 light years from<br />

Earth, was known to be surrounded by a<br />

disc. Now, evidence has been found for<br />

a disc around the eight-Jupiter-mass<br />

companion as well.<br />

The pair probably formed together, like a<br />

petite stellar binary, instead of the<br />

companion forming in the disc around the<br />

brown dwarf like a star-planet system.<br />

It is also possible that smaller planets or<br />

asteroids could now form in the disc<br />

around each one.<br />

Astronomers have in fact found a double<br />

system composed of even smaller<br />

objects. Oph 16 5- 40515, or Oph<br />

16 for short, is the first planemo found<br />

to be a double. Researchers discovered<br />

the companion candidate in an optical<br />

image taken with the NTT, then took<br />

optical spectra and infrared images of the<br />

pair with the VLT to make sure that it is a<br />

true companion, instead of a foreground<br />

or background star that happens to be in<br />

the same line of sight. These follow-up<br />

observations indeed confirmed that both<br />

objects are young, at the same distance,<br />

and much too cool to be stars. This<br />

suggests the two are physically associated.<br />

By comparing to widely used theoretical<br />

models, the astronomers estimate<br />

that the companion is about seven times<br />

the mass of Jupiter, while the more<br />

massive object comes in at about 14<br />

times Jupiter’s mass. The newborn pair,<br />

barely a million years old, is separated<br />

by about six times the distance between<br />

the Sun and Pluto, and is located in<br />

the Ophiuchus star-forming region approximately<br />

400 light years away.<br />

Planets are thought to form out of discs<br />

of gas and dust that surround stars,<br />

brown dwarfs, and even some free-floating<br />

planetary mass objects, as described<br />

above. But, it is likely that these planemo<br />

twins formed together out of a contracting<br />

gas cloud that fragmented, like a<br />

miniature stellar binary.<br />

Oph 16 B is only the second or third<br />

directly-imaged planetary-mass companion<br />

to be confirmed spectroscopically,<br />

and the first one around a primary that is<br />

itself a planetary-mass object. Its existence<br />

poses a challenge to a popular<br />

theoretical scenario, which suggests that<br />

brown dwarfs and free-floating planetary-<br />

mass objects are embryos ejected from<br />

multiple protostar systems.<br />

Since the two objects in Oph16 are so<br />

far apart, and only weakly bound to each<br />

other by gravity, they would not have<br />

survived such a chaotic birth.<br />

Recent discoveries have revealed an<br />

amazing diversity of worlds out there.<br />

Still, the Oph16 pair stands out as one<br />

of the most intriguing. Now, the as-<br />

tronomers are curious to find out whether<br />

such pairs are common or rare. The<br />

answer could shed light on how free-<br />

floating planetary-mass objects form.<br />

Ray Jayawardhana & Valentin Ivanov, American<br />

Astronomical Society, June 006, Calgary, Canada.<br />

Ray Jayawardhana & Valentin D. Ivanov, Science, 3<br />

August 006.<br />

Subhanjoy Mohanty et al., American Astronomical<br />

Society, June 006, Calgary, Canada.<br />

Spectra of candidate ‘planemos’.<br />

<strong>ESO</strong> Annual Report 006<br />

13


Watching How Planets Form<br />

The disc around a star more massive<br />

than the Sun has been mapped, revealing<br />

a very extended and flared disc that most<br />

likely contains enough gas and dust to<br />

spawn planets. It appears as a precursor<br />

of debris discs such as the one around<br />

Vega-like stars and so provides the rare<br />

opportunity to witness the conditions<br />

prevailing prior to or during planet<br />

formation.<br />

Planets form in massive, gaseous and<br />

dusty protoplanetary discs that surround<br />

nascent stars. This process must be<br />

rather ubiquitous given the many exoplanets<br />

already known. However, very little<br />

is known about these discs, especially<br />

those around stars more massive than the<br />

Sun. Such stars are much more luminous<br />

and could have a large influence on their<br />

disc, possibly quickly destroying the inner<br />

part.<br />

Astronomers used the VISIR instrument<br />

on the VLT to map the disc surrounding<br />

the young star HD 97048 in the infrared.<br />

HD97048 has an age of a few million<br />

years – a blink of an eye compared to the<br />

age of the Sun (4.6 billion years) – and<br />

belongs to the Chameleon I dark cloud,<br />

a stellar nursery 600 lightyears away.<br />

14<br />

<strong>ESO</strong> Annual Report 006<br />

Sketch of a flared proto-planetary disc such as the one around the young star HD 97048.<br />

The star is 40 times more luminous than<br />

our Sun and is .5 times as massive.<br />

The astronomers could only have<br />

achieved such a detailed view due to the<br />

high angular resolution offered by an 8metre-size<br />

telescope in the infrared,<br />

reaching a resolution of 0.33 arcsecond.<br />

They discovered a very large disc, at<br />

least 1 times more extended than the<br />

or-bit of the farthest planet in the Solar<br />

System, Neptune. The observations suggest<br />

that the disc is flared, the first time<br />

such a structure, predicted by some<br />

theoretical models, has been imaged<br />

around a massive star.<br />

Such geometry can only be explained<br />

if the disc contains a large amount of<br />

gas, in this case, at least as much as 10<br />

times the mass of Jupiter. It should also<br />

contain more than 50 Earth masses in<br />

dust.<br />

The dust mass derived here is more<br />

than thousand times larger than what is<br />

observed in debris discs and Kuiper-<br />

belt-like structures found around older,<br />

‘Vega-like’ stars, such as Beta Pictoris,<br />

Vega, Fomalhaut and HR 4796, and<br />

which is thought to be produced by<br />

collisions of larger bodies.<br />

The dust mass observed around HD<br />

97048 is similar to the mass invoked for<br />

the (undetected) parent bodies in the<br />

more evolved systems. HD 97048’s disc<br />

is thus most likely a precursor of debris<br />

discs observed around older stars.<br />

From the structure of the disc, the astronomers<br />

gather that planetary embryos<br />

may be present in the inner part of the<br />

disc. Follow-up observations at higher<br />

angular resolution with the VLT interferometer<br />

(VLTI) should allow them to probe<br />

these regions.<br />

Pierre-Olivier Lagage et al., Science, 8 September<br />

006.


A Substellar Jonah<br />

Astronomers have discovered a rather unusual<br />

system, in which two planet-size<br />

stars, of different colours, orbit each other.<br />

One is a rather hot white dwarf, weighing<br />

a little bit less than half as much as the<br />

Sun. The other is a much cooler, 55<br />

Jupiter-masses brown dwarf.<br />

The low-mass companion to the white<br />

dwarf (named WD0137-349) was found<br />

using spectra taken with EMMI at the New<br />

Technology Telescope at La Silla. The<br />

astronomers then used the UVES spectrograph<br />

on the VLT to record 0 spectra<br />

and so measure the period and the mass<br />

ratio.<br />

Numerical simulations of a brown dwarf being swallowed by a red giant.<br />

The two objects, separated by less than<br />

/3 of the radius of the Sun, or only a<br />

few thousandths of the distance between<br />

the Earth and the Sun, rotate around<br />

each other in about hours. The brown<br />

dwarf moves on its orbit at the amazing<br />

speed of 800 000 km/h!<br />

The two stars were not so close in their<br />

past. Only when the solar-like star<br />

that has now become a white dwarf was<br />

a red giant did the separation between<br />

the two objects diminish drastically. During<br />

this fleeting moment, the giant engulfed<br />

its companion. The latter, feeling a<br />

large drag similar to trying to swim in<br />

a bath full of oil, spiralled in towards the<br />

core of the giant. The envelope of the<br />

giant was finally ejected, leaving a binary<br />

system in which the companion is in a<br />

close orbit around a white dwarf.<br />

Image: Los Alamos National Laboratory<br />

The existence of the system proves that<br />

the brown dwarf came out almost<br />

unaltered from an episode in which it was<br />

swallowed by a red giant. Models show<br />

that had the companion been less than<br />

0 Jupiter masses, it would have<br />

evaporated during this phase. The brown<br />

dwarf shouldn’t rejoice too quickly to<br />

have escaped this doom, however.<br />

Einstein’s General Theory of Relativity<br />

predicts that the separation between the<br />

two stars will slowly decrease. In about<br />

1.4 billion years, the orbital period will<br />

have decreased to slightly more than one<br />

hour. At that stage, the two objects will<br />

be so close that the white dwarf will work<br />

as a giant ‘vacuum cleaner’, drawing gas<br />

off its companion, in a cosmic cannibal<br />

act.<br />

Pierre Maxted et al., Nature, 3 August 006.<br />

<strong>ESO</strong> Annual Report 006<br />

15


Stellar Vampires Unmasked<br />

Some hot, bright, and apparently young<br />

stars – known as ‘blue stragglers’ – in the<br />

globular cluster 47 Tucanae contain less<br />

carbon and oxygen than the majority of<br />

their sisters. This indicates that these few<br />

stars likely formed by taking their material<br />

from another star, acting as stellar<br />

vampires.<br />

Blue stragglers are unexpectedly younglooking<br />

stars found in stellar aggregates,<br />

such as globular clusters, which are<br />

known to be made up of old stars.<br />

These enigmatic objects are thought to be<br />

created in either direct stellar collisions<br />

or through the evolution and coalescence<br />

of a binary star system in which one<br />

star ‘sucks’ material off the other, rejuvenating<br />

itself. As such, they provide<br />

interesting constraints on both binary stellar<br />

evolution and star-cluster dynamics.<br />

To date, the unambiguous signatures of<br />

either stellar traffic accidents or stellar<br />

vampirism have not been observed, and<br />

the formation mechanisms of blue stragglers<br />

are still a mystery.<br />

16<br />

<strong>ESO</strong> Annual Report 006<br />

Oxygen Abundance<br />

Abundances in blue straggler stars.<br />

The VLT was used to measure the abundance<br />

of chemical elements at the<br />

surface of 43 blue straggler stars in the<br />

globular cluster 47 Tucanae, an impressive<br />

globular cluster that has a total<br />

mass of about 1 million times the mass of<br />

the Sun and is 1 0 light years across.<br />

Measurements of so many faint stars are<br />

only possible since the advent of 8-m-<br />

class telescopes equipped with spectrographs<br />

which have multiplexing capability.<br />

In this case, the astronomers used<br />

the FLAMES/GIRAFFE instrument, that<br />

allows the simultaneous observation of<br />

up to 130 targets at a time, making it<br />

ideally suited for surveying individual stars<br />

in closely populated fields.<br />

Six of these blue straggler stars were<br />

found to contain less carbon and oxygen<br />

than the majority of these peculiar<br />

objects. Such an anomaly indicates that<br />

the material at the surface of the blue<br />

stragglers comes from the deep interiors<br />

of a parent star. Such deep material can<br />

reach the surface of the blue straggler<br />

only during the mass transfer process<br />

occurring between two stars in a binary<br />

system. Numerical simulations indeed<br />

show that the coalescence of stars should<br />

not result in anomalous abundances.<br />

Carbon Abundance<br />

In the core of a globular cluster, stars are<br />

packed extremely close to each other:<br />

more than 4 000 stars are found in the innermost<br />

lightyear-sized cube of 47<br />

Tucanae. Thus, stellar collisions are<br />

thought to be very frequent and the collision<br />

channel for the formation of blue<br />

stragglers should be extremely efficient.<br />

The chemical signature detected by these<br />

observations demonstrates that the<br />

binary mass-transfer scenario is also fully<br />

active, even in a high-density cluster like<br />

47 Tucanae.<br />

This is the first detection of a chemical signature<br />

clearly pointing to a specific<br />

scenario to form blue straggler stars and<br />

therefore a fundamental step toward the<br />

solution of the long-standing mystery of<br />

blue-straggler formation in globular<br />

clusters.<br />

Francesco R. Ferraro et al. 006, Astrophys. Journal<br />

Lett., 647, L53.


Cepheids and their ‘Cocoons’<br />

Combining data from the Very Large<br />

Telescope Interferometer (VLTI) and the<br />

CHARA Interferometer at Mount Wilson,<br />

California, astronomers have discovered<br />

envelopes around three Cepheids, including<br />

the Pole Star. This is the first time<br />

that matter has been found surrounding<br />

members of this important class of rare<br />

and very luminous stars whose luminosity<br />

varies in a very regular way.<br />

Cepheids are commonly used as distance<br />

indicators, thanks to the existence<br />

of a basic relation between their intrinsic<br />

brightness and their pulsation period. By<br />

measuring the period of a Cepheid star,<br />

its intrinsic brightness can be deduced,<br />

and from the observed apparent brightness<br />

the distance may then be calculated.<br />

As they are intrinsically very bright<br />

stars, and can be observed in distant<br />

galaxies, this remarkable property has<br />

turned these yellow supergiant stars into<br />

primary ‘standard candles’ for extragalactic<br />

distance estimations. Cepheids<br />

thus play a crucial role in cosmology,<br />

being one of the first ‘steps’ on the<br />

cosmic distance ladder.<br />

The southern Cepheid L Carinae was observed<br />

with the VINCI and MIDI instrument<br />

at the VLTI, while Polaris (the Pole<br />

Star) and Delta Cephei were scrutinised<br />

with FLUOR on CHARA, located on the<br />

other side of the equator. FLUOR is the<br />

prototype instrument of VINCI, both being<br />

built by the Paris Observatory (France).<br />

L Carinae is the brightest Cepheid in the<br />

sky, and also the one that presents<br />

the largest apparent angular diameter.<br />

It is a massive supergiant star, having<br />

about 10 times the mass of the Sun and<br />

approximately 180 times its radius.<br />

Polaris is a peculiar star located very close<br />

to the north celestial pole (hence its<br />

name). It is classified as a Cepheid, but it<br />

shows very weak pulsations compared<br />

to the other stars of its class. Delta<br />

Cephei is the prototype of the Cepheids.<br />

It was discovered to be a variable star in<br />

the 18th century by the English amateur<br />

John Goodricke, and it is still one of the<br />

brightest members of the Cepheid class.<br />

Its short period is characteristic of a<br />

relatively small supergiant, with a radius<br />

of ‘only’ 43 times that of the Sun.<br />

Although such stars are thus rather large,<br />

they are so far away that they cannot<br />

be resolved by single telescopes. Indeed,<br />

even the largest Cepheids in the sky<br />

subtend an angle of only 0.003 arc second.<br />

To resolve this would be similar to<br />

viewing a two-storey house on the Moon.<br />

Astronomers therefore have to rely on the<br />

interferometric technique, which combines<br />

the light of two or more distant telescopes,<br />

providing the angular resolution<br />

of a single telescope as large as the<br />

separation between them. With the VLTI,<br />

it is possible to achieve a resolution of<br />

0.001 arcsecond or less.<br />

For most stars, the observations made<br />

with interferometers follow the theoretical<br />

stellar models very closely. However, for<br />

these three stars a tiny deviation was<br />

detected, revealing the presence of an<br />

envelope. The envelopes were found to<br />

be to 3 times as large as the star itself.<br />

The fact that such deviations were found<br />

for all three stars, which have very<br />

different properties, seems to imply that<br />

envelopes surrounding Cepheids are<br />

a widespread phenomenon. The physical<br />

processes that have created these<br />

envelopes are still uncertain, but, in analogy<br />

to what happens around other<br />

classes of stars, it is most probable that<br />

the environments were created by matter<br />

ejected by the star itself. Cepheids<br />

pulsate with periods of a few days.<br />

As a consequence, the star goes regularly<br />

through large-amplitude oscillations<br />

that create very rapid motions of its<br />

apparent surface (the photosphere) with<br />

velocities up to 30 km/s, or 108 000 km/<br />

h! While this remains to be established,<br />

there could be a link between the<br />

pulsation, the mass loss and the formation<br />

of the envelopes.<br />

P. Kervella et al. 006, Astronomy and Astrophysics,<br />

448, 6 3.<br />

Antoine Mérand et al. 006, Astronomy and<br />

Astrophysics, 453, 155.<br />

Model image of the Cepheid L Carinae.<br />

<strong>ESO</strong> Annual Report 006<br />

17


To Be or Not to Be: Is It All About Spinning?<br />

A study of the active hot star Alpha Arae<br />

solves a 140-year-old mystery.<br />

Lying about 300 light years away from the<br />

Sun, Alpha Arae is the closest member of<br />

the class of active stars known as ‘Be<br />

stars’. Be stars are very luminous,<br />

massive and hot stars that rotate rapidly.<br />

They are losing mass along the poles<br />

through a strong stellar wind and are<br />

surrounded at the equator by a disc of<br />

matter. Alpha Arae has ten times the mass<br />

of the Sun, is three times hotter and 6 000<br />

times as luminous.<br />

With AMBER on the VLTI, the team of astronomers<br />

were able to examine the<br />

structure of the disc surrounding Alpha<br />

Arae in detail. Moreover, because AMBER<br />

also provides spectra, the astronomers<br />

could study the motion of the gas in the<br />

disc and so understand how it rotates.<br />

The disc surrounding Alpha Arae was<br />

found to be in ‘Keplerian rotation’, that is,<br />

obeying the same rules as discovered by<br />

Johannes Kepler for the planets circling<br />

the Sun: the velocity of the material<br />

decreases with the square root of the<br />

distance from the star. The new result<br />

rules out the possibility of the disc<br />

rotating with a uniform velocity, as would<br />

be the case if a strong magnetic field<br />

were present which forced the matter to<br />

spin at the same rate as the star.<br />

Combining the new data with previous<br />

studies, the astronomers also show that<br />

the star Alpha Arae rotates 50 times<br />

faster than our Sun. In fact, with a speed<br />

at the equator of 470 km/s, it is spinning<br />

so quickly that it is near its break-up<br />

velocity. Matter having such a critical<br />

velocity would be able to freely escape<br />

from the star, in the same way that we<br />

would be ejected from a merry-go-round<br />

that has gone out of control. This could<br />

be the clue to the ‘Be phenomenon’.<br />

A. Meilland et al., 007, Astronomy and Astrophysics,<br />

464, 549.<br />

18<br />

<strong>ESO</strong> Annual Report 006<br />

Artist’s rendering of the Be star Alpha Arae.


Asymmetric Ashes<br />

Astronomers are reporting remarkable<br />

new findings that shed light on a decadelong<br />

debate about one type of the<br />

supernova explosions that mark a star’s<br />

final demise: does the star die in a slow<br />

burn or with a fast bang? From their<br />

observations, the scientists find that the<br />

matter ejected by the explosion shows<br />

significant peripheral asymmetry but a<br />

nearly spherical interior, most likely implying<br />

that the explosion finally propagates<br />

at supersonic speed.<br />

Using observations of 17 supernovae<br />

made over more than 10 years with the<br />

VLT for one part and the McDonald<br />

Observatory’s Otto Struve Telescope for<br />

another, astronomers inferred the shape<br />

and structure of the debris cloud thrown<br />

out from Type Ia supernovae. Such<br />

supernovae are thought to be the result<br />

of the explosion of a small and dense star<br />

– a white dwarf – inside a binary system.<br />

As its companion continuously spills<br />

matter onto the white dwarf, the white<br />

dwarf reaches a critical mass, leading to<br />

a fatal instability and the supernova. But<br />

what sparks the initial explosion, and how<br />

the blast travels through the star have<br />

long been thorny issues.<br />

Artist’s impression of a clumpy SN Ia explosion.<br />

The supernovae that were observed occurred<br />

in distant galaxies, and because<br />

of the vast cosmic distances could not be<br />

studied in detail using conventional<br />

imaging techniques, including interferometry.<br />

Instead, the team of researchers<br />

determined the shape of the exploding<br />

cocoons by recording the polarisation<br />

of the light from the dying stars.<br />

Polarimetry relies on the fact that light is<br />

composed of electromagnetic waves that<br />

oscillate in certain directions. Reflection<br />

or scattering of light favours certain orientations<br />

of the electric and magnetic<br />

fields over others. This is why polarising<br />

sunglasses can filter out the glint of<br />

sunlight reflected off a pond. When light<br />

scatters through the expanding debris of<br />

a supernova, it retains information about<br />

the orientation of the scattering layers. If<br />

the supernova is spherically symmetric, all<br />

orientations will be present equally and<br />

will average out, so there will be no net<br />

polarisation. If, however, the gas shell is<br />

not round, a slight net polarisation will be<br />

imprinted on the light.<br />

This is what broadband polarimetry can<br />

accomplish. If additional spectral in-<br />

formation is available (‘spectropolarimetry’),<br />

one can determine whether the<br />

asymmetry is in the continuum light or in<br />

some spectral lines. In the case of the<br />

Type Ia supernovae, the astronomers<br />

found that the continuum polarisation is<br />

very small, implying that the overall shape<br />

of the explosion is crudely spherical. But<br />

the much larger polarisation in strongly<br />

blue-shifted spectral lines shows the<br />

presence, in the outer regions, of fast-<br />

moving clumps with peculiar chemical<br />

composition.<br />

The study reveals that explosions of Type<br />

Ia supernovae are truly three-dimensional<br />

phenomena. The outer regions of the<br />

blast cloud are asymmetric, with different<br />

materials found in ‘clumps’, while the<br />

inner regions are smooth.<br />

The research team first spotted this<br />

asymmetry in 003, as part of the same<br />

observational campaign. The new, more<br />

extensive results show that the degree of<br />

polarisation, and hence the asphericity,<br />

correlates with the intrinsic brightness of<br />

the explosion. The brighter the supernova,<br />

the smoother, or less clumpy, it is.<br />

This has some impact on the use of Type<br />

Ia supernovae as standard candles.<br />

This kind of supernovae is used to measure<br />

the rate of acceleration of the expansion<br />

of the Universe, assuming these<br />

objects behave in a uniform way. But<br />

asymmetries can introduce dispersions in<br />

the quantities observed.<br />

The discovery also puts strong constraints<br />

on any successful models of<br />

thermonuclear supernova explosions.<br />

Models have suggested that the clumpiness<br />

is caused by a slow-burn process,<br />

called ‘deflagration’, and leaves an irregular<br />

trail of ashes. The smoothness of<br />

the inner regions of the exploding star<br />

implies that at a given stage, the deflagration<br />

gives way to a more violent process,<br />

a ‘detonation’, which travels at supersonic<br />

speeds – so fast that it erases all<br />

the asymmetries in the ashes left behind<br />

by the slower burning of the first stage,<br />

resulting in a smoother, more homogeneous<br />

residue.<br />

Lifan Wang, Dietrich Baade and Ferdinando Patat,<br />

Science Express, 30 November 006.<br />

<strong>ESO</strong> Annual Report 006<br />

19


How to Steal a Million Stars?<br />

In another bout of stellar vampirism, but<br />

on a grand scale, astronomers found that<br />

the stellar cluster Messier 1 must have<br />

lost close to one million low-mass stars to<br />

the rest of the Milky Way galaxy.<br />

The astronomers measured the brightness<br />

and colours of more than 16 000<br />

stars within the globular cluster Messier<br />

1 with the FORS1 multimode instrument<br />

attached to one of the Unit Telescopes of<br />

<strong>ESO</strong>’s VLT at Cerro Paranal (Chile). The<br />

astronomers could study stars that are<br />

40 million times fainter than what the<br />

unaided eye can see.<br />

Messier 1 is one of about 00 globular<br />

clusters known in our Galaxy. These are<br />

large groupings of from 10 000 to more<br />

than a million stars that were formed<br />

together in the youth of the Milky Way,<br />

about 1 to 13 billion years ago. Globular<br />

clusters are a key tool for astronomers,<br />

because all the stars in a globular cluster<br />

share a common history. They were<br />

all born together, at the same time and<br />

place, and only differ from one another in<br />

their mass. By accurately measuring<br />

the brightness of the stars, astronomers<br />

can determine their relative sizes and<br />

stage of evolution precisely. Globular<br />

clusters are thus very helpful for testing<br />

theories of how stars evolve.<br />

Located at a distance of 3 000 light<br />

years in the constellation Ophiuchus<br />

(The Serpent-holder), Messier 1 got its<br />

name by being the 1 th entry in the catalogue<br />

of nebulous objects compiled in<br />

1774 by French astronomer and comet<br />

chaser Charles Messier. It is also known<br />

to astronomers as NGC 6 18 and<br />

contains about 00 000 stars, most<br />

of them having a mass between 0 and<br />

80 per cent of the mass of the Sun.<br />

It is however clear that Messier 1 is<br />

surprisingly devoid of low-mass stars.<br />

For each solar-like star, we would expect<br />

roughly four times as many stars with half<br />

that mass. The VLT observations only<br />

show an equal number of stars of different<br />

masses.<br />

In the solar neighbourhood and in<br />

most stellar clusters, the least massive<br />

0<br />

<strong>ESO</strong> Annual Report 006<br />

The Central Part of Messier 1 .<br />

stars are by far the most common.<br />

The new observations show this is not<br />

the case for Messier 1 .<br />

Globular clusters move in extended<br />

elliptical orbits that periodically take them<br />

through the densely populated plane<br />

of our Galaxy, then high above and below,<br />

in the ‘halo’. When venturing too<br />

close to the innermost and denser ‘bulge’<br />

of the Milky Way a globular cluster can be<br />

perturbed, with the smallest stars being<br />

ripped away.<br />

The astronomers estimate that Messier<br />

1 lost four times as many stars as it still<br />

has. That is, roughly one million stars<br />

must have been ejected into the halo of<br />

our Milky Way.<br />

The total remaining lifetime of Messier 1<br />

is predicted to be about 4.5 billion years,<br />

i.e. about a third of its present age. This<br />

is very short compared to the typical<br />

expected globular cluster’s lifetime, which<br />

is about 0 billion years.<br />

The scientists now hope to discover and<br />

study many more clusters like this, since<br />

catching clusters while they are being<br />

disrupted should clarify the dynamics of<br />

the process that shaped the halo of our<br />

home galaxy, the Milky Way.<br />

Guido de Marchi, Luigi Pulone, and Francesco<br />

Paresce, 006, Astronomy and Astrophysics, 449,<br />

161.


A ‘Genetic Study’ of the Galaxy<br />

Looking in detail at the composition of<br />

stars with the VLT, astronomers are<br />

providing a fresh look at the history of<br />

the Milky Way. They reveal that the<br />

central part of our Galaxy formed not<br />

only very quickly but also independently<br />

of the rest.<br />

For the first time, it has been possible<br />

to clearly establish a ‘genetic difference’<br />

between stars in the disc and the bulge<br />

of our Galaxy. From this one can infer<br />

that the bulge must have formed more<br />

rapidly than the disc, probably in less<br />

than a billion years and when the<br />

Universe was still very young.<br />

The Milky Way is a spiral galaxy, having<br />

a pinwheel shape with arms of gas, dust,<br />

and stars lying in a flattened disc, and<br />

extending directly out from a spherical<br />

nucleus of stars in the central region, the<br />

bulge. While the disc of our Galaxy is<br />

made up of stars of all ages, the bulge<br />

contains old stars dating from the time<br />

the galaxy formed, more than 10 billion<br />

years ago. Thus, studying the bulge<br />

allows astronomers to know more about<br />

how our Galaxy formed.<br />

The Oxygen abundance in the bulge of our Galaxy.<br />

To do this, an international team of<br />

astronomers analysed in detail the chemical<br />

composition of 50 giant stars in four<br />

different areas of the sky towards the<br />

Galactic bulge. They made use of the<br />

FLAMES/UVES spectrograph on the VLT<br />

to obtain high-resolution spectra.<br />

The chemical composition of stars carries<br />

the signature of the enrichment processes<br />

undergone by the interstellar matter<br />

up to the moment of their formation.<br />

It depends on the previous history of star<br />

formation and can thus be used to infer<br />

whether there is a ‘genetic link’ between<br />

different stellar groups. In particular,<br />

comparison between the abundance of<br />

oxygen and iron in stars is very illustrative.<br />

Oxygen is predominantly produced<br />

in the explosion of massive, short-lived<br />

stars (so-called Type II supernovae), while<br />

iron instead originates mostly in Type Ia<br />

supernovae, which can take much longer<br />

to develop. Comparing oxygen with iron<br />

abundances therefore gives insight into<br />

the star-birth rate in the Milky Way’s past.<br />

The larger size and iron-content coverage<br />

of the new sample allowed the astronomers<br />

to draw much more robust conclusions<br />

than were possible until then.<br />

They clearly established that, for a given<br />

iron content, stars in the bulge possess<br />

more oxygen than their disc counterparts.<br />

This highlights a systematic, hereditary<br />

difference between bulge and disc stars.<br />

In other words, bulge stars did not originate<br />

in the disc and then migrate inward<br />

to build up the bulge but rather formed<br />

independently of the disc. Moreover, the<br />

chemical enrichment of the bulge, and<br />

hence its formation timescale, was faster<br />

than that of the disc. Comparisons with<br />

theoretical models indicate that the<br />

Galactic bulge must have formed in less<br />

than a billion years, most likely through a<br />

series of starbursts when the Universe<br />

was still very young.<br />

Manuela Zoccali et al. 006, Astronomy and<br />

Astrophysics, 457, L1.<br />

<strong>ESO</strong> Annual Report 006<br />

1


Cut from Different Cloth<br />

A large survey has shed light on our Galaxy’s<br />

ancestry. After determining the<br />

chemical composition of over 000 stars<br />

in four of the nearest dwarf galaxies<br />

to our own, astronomers have demonstrated<br />

fundamental differences in their<br />

make-up, casting doubt on the theory<br />

that these diminutive galaxies could ever<br />

have formed the building blocks of our<br />

Milky Way Galaxy.<br />

Our Milky Way Galaxy is surrounded by<br />

a number of dwarf satellite galaxies,<br />

which because of their loosely rounded<br />

shape are referred to as ‘dwarf spheroidal’<br />

galaxies. Faint and diffuse, these<br />

dwarf galaxies are a thousand times<br />

fainter than the Milky Way itself, making<br />

them the least luminous galaxies known.<br />

Modern cosmological models predict<br />

that small galaxies form first, and later<br />

assemble into larger systems like our Galaxy.<br />

Since the Universe initially only<br />

The Topsy-Turvy Galaxy<br />

This FORS image of the central parts of<br />

NGC 1313 shows a stunning natural<br />

beauty. The galaxy bears some resemblance<br />

to some of the Milky Way’s closest<br />

neighbours, the Magellanic Clouds.<br />

NGC 1313 has a barred spiral shape,<br />

with the arms emanating outwards in a<br />

loose twist from the ends of the bar.<br />

The galaxy lies just 15 million light years<br />

away from the Milky Way – a mere skip<br />

on cosmological scales. The spiral arms<br />

are a hotbed of star-forming activity, with<br />

numerous young clusters of hot stars<br />

being born continuously at a staggering<br />

rate out of the dense clouds of gas and<br />

dust. Their light blasts through the<br />

surrounding gas, creating an intricately<br />

beautiful pattern of light and dark<br />

nebulosity.<br />

<strong>ESO</strong> Annual Report 006<br />

contained hydrogen and helium (most of<br />

all other chemical elements being<br />

synthesized inside stars), dwarf galaxies<br />

should have the lowest heavy element<br />

content. Not so, reveal the observations.<br />

As part of a large observational programme,<br />

called the Dwarf galaxies Abundances<br />

and Radial-velocities Team<br />

(DART), astronomers from institutes in 9<br />

different countries used FLAMES on the<br />

VLT to measure the amount of iron in over<br />

000 individual giant stars in the Fornax,<br />

Sculptor, Sextans and Carina dwarf<br />

spheroidals.<br />

Their data unearthed fundamental differences<br />

in the dwarf galaxy stars’ chemical<br />

composition compared with those<br />

in our galactic halo, calling into question<br />

the merger theory as the origin of large<br />

galaxies’ haloes. Whilst the average<br />

abundances of elements in the dwarf<br />

spheroidals is comparable with that seen<br />

NGC 1313’s appearance suggests it<br />

has seen troubled times: its spiral arms<br />

look lop-sided and gas globules are<br />

spread out widely around them. Moreover,<br />

observations with <strong>ESO</strong>’s 3.6-m<br />

telescope at La Silla have revealed that<br />

its ‘real’ centre, around which it rotates,<br />

does not coincide with the central bar.<br />

Its rotation is therefore also out of kilter.<br />

Strangely enough, NGC 1313 seems to<br />

be an isolated galaxy. It is not part of a<br />

group and has no neighbour, and it is not<br />

clear whether it may have swallowed a<br />

small companion in its past. So what<br />

caused its asymmetry and stellar baby<br />

boom?<br />

Chemical abundance in several dwarf galaxies.<br />

in the Galactic halo, the former are<br />

lacking the very metal-poor stars that are<br />

seen in the Milky Way – the two types<br />

of systems, contrary to theoretical predictions,<br />

are essentially of different descent.<br />

Amina Helmi et al. 006, Astrophysical Journal<br />

Letters, 651, L1 1-L1 4.<br />

The Topsy-Turvy Galaxy NGC 1313.


<strong>ESO</strong> Annual Report 006<br />

3


Long-lasting but Dim Brethren of Cosmic Flashes<br />

For the first time, it has been possible to<br />

make the link between an X-ray flash<br />

and a supernova. Such flashes are the little<br />

siblings of gamma-ray bursts (GRB)<br />

and this discovery suggests the existence<br />

of a population of events less luminous<br />

than ‘classical’ GRBs, but possibly much<br />

more numerous. This also implies a<br />

common origin for these two classes of<br />

events.<br />

The event began on 18 February 006:<br />

the NASA/PPARC/ASI Swift satellite<br />

detected an unusual gamma-ray burst,<br />

about 5 times closer and 100 times<br />

longer than the typical gamma-ray burst.<br />

GRBs release in a few seconds more<br />

energy than that of the Sun during its entire<br />

lifetime of more than 10 000 million<br />

years. The GRBs are thus the most powerful<br />

events known in the Universe since<br />

the Big Bang.<br />

The explosion, called GRB 060 18<br />

after the date it was discovered, originated<br />

in a star-forming galaxy about 440<br />

million light years away toward the<br />

constellation Aries. This is the secondclosest<br />

gamma-ray burst ever detected.<br />

Moreover, the burst of gamma rays lasted<br />

for nearly 000 seconds; most bursts<br />

last a few milliseconds to tens of seconds.<br />

The explosion was surprisingly<br />

dim, however.<br />

Using several telescopes, among them the<br />

VLT, the scientists watched the afterglow<br />

of this burst grow brighter in optical light.<br />

This brightening, along with other telltale<br />

spectral characteristics in the light,<br />

strongly suggests that a supernova was<br />

unfolding. Within days, the supernova<br />

became apparent.<br />

The observations with the VLT started on<br />

1 February 006, just three days after<br />

the discovery. Spectroscopy was then<br />

performed nearly daily for seventeen<br />

days, providing the astronomers with a<br />

large data set to document this new class<br />

of events.<br />

4<br />

<strong>ESO</strong> Annual Report 006<br />

The field around SN 006aj.<br />

The astronomers could finally confirm that<br />

the event was tied to a supernova called<br />

SN 006aj which was observed a few<br />

days later. The newly discovered supernova<br />

is dimmer by about a factor of two<br />

than the hypernovae associated with<br />

normal long gamma-ray bursts, but it is<br />

still a factor of -3 times more luminous<br />

than regular core-collapse supernovae.<br />

All together, these facts point to a<br />

substantial diversity between supernovae<br />

associated with GRBs and supernovae<br />

associated with X-ray flashes. This<br />

diversity may be related to the masses<br />

of the exploding stars.<br />

Whereas gamma-ray bursts probably<br />

mark the birth of a black hole, X-ray<br />

flashes appear to signal the type of star<br />

explosion that leaves behind a neutron<br />

star. Based on the VLT data, another<br />

team of astronomers postulate that the<br />

18 February event might have led to a<br />

highly magnetic type of neutron star<br />

called a magnetar.<br />

They find indeed that the star that<br />

exploded had an initial mass of ‘only’ 0<br />

times the mass of the Sun. This is<br />

smaller, by about a factor of two at least,<br />

than those estimated for the typical GRBsupernovae.<br />

The properties of GRB 060 18 suggest<br />

the existence of a population of events<br />

less luminous than ‘classical’ GRBs, but<br />

possibly much more numerous. Indeed,<br />

these events may be the most abundant<br />

form of X- or gamma-ray bursts in the<br />

Universe, but instrumental limits allow us<br />

to detect them only locally. The astronomers<br />

find that the number of such events<br />

could be about 100 times more numerous<br />

than typical gamma-ray bursts.<br />

Elena Pian et al., Nature, 31 August 006.<br />

Paolo Mazzali et al., Nature, 31 August 006.


Faraway Galaxy Under the Microscope<br />

Some large-disc galaxies akin to our<br />

Milky Way have formed on a rapid time-<br />

scale, only 3 billion years after the<br />

Big Bang, reveals a study made with the<br />

new SINFONI spectrograph on VLT.<br />

Over the past decade astronomers have<br />

established an overall model of how<br />

galaxies formed and evolved when the<br />

Universe was only a few billion years old.<br />

Gas made of ordinary matter cooled and<br />

collected in concentrations of the<br />

mysterious ‘dark’ matter (so-called dark-<br />

matter halos). Since that time, and up to<br />

the present epoch, collisions and<br />

mergers of galaxies subsequently led to<br />

the hierarchical build-up of galaxy mass.<br />

This general picture leaves open,<br />

however, on what timescales galaxies<br />

were assembled and when and how<br />

bulges and discs, the primary components<br />

of present-day galaxies, were<br />

formed.<br />

A major study of distant, luminous starforming<br />

galaxies at the VLT, the ‘SINS’<br />

(Spectroscopic Imaging survey in the<br />

Near-infrared with SINFONI) survey, has<br />

now resulted in a major breakthrough on<br />

these questions. This study exploited<br />

SINFONI, a novel infrared ‘integral-field<br />

spectrometer’ that simultaneously<br />

delivers sharp images, with adaptive<br />

optics, and highly resolved spectra of an<br />

object on the sky.<br />

In one case, studying the galaxy<br />

BzK155043 at cosmological redshift of<br />

.4, the SINFONI observations achieved<br />

an angular resolution of 0.15 arcsecond,<br />

a mere 4 000 light years at the distance<br />

of this high-redshift galaxy. With this<br />

superior angular resolution the data<br />

reveal the physical and dynamical<br />

properties in unprecedented detail.<br />

Surprisingly, instead of showing mostly<br />

irregular and perhaps even chaotic<br />

motions caused by the frequent merger<br />

activity in the young Universe, the<br />

observations reveal a large and massive<br />

rotating protodisc that is channelling gas<br />

toward a growing central stellar bulge.<br />

The high gas surface densities, the large<br />

star-formation rate and the moderately<br />

young stellar ages derived from these<br />

observations suggest that the system<br />

was assembled rapidly, by fragmentation<br />

and star formation in an initially very gas<br />

rich protodisc. SINS observations of<br />

several other massive, high-redshift<br />

galaxies give similar results.<br />

The fact that these galaxies are so large<br />

and rotate rapidly indicates that the gas<br />

has a similar amount of rotation as the<br />

dark matter halo from which it cooled,<br />

thus empirically solving an important<br />

question of galaxy formation.<br />

The SINFONI data suggest that the protodiscs<br />

may have eventually been transformed<br />

to dense elliptical galaxies, either<br />

by internal processes, such as the<br />

spectacular gas inflows observed in BzK-<br />

15504, or by collisions and mergers with<br />

other galaxies, which were frequent in the<br />

dense environments in which the highredshift<br />

luminous star-forming galaxies<br />

appear to reside.<br />

Another important aspect of the work is<br />

the deduction of very high star-formation<br />

rates for many of the luminous starforming<br />

high-redshift galaxies, about one<br />

hundred times greater than in the<br />

present-day Milky Way.<br />

Astronomers have a growing body of<br />

evidence that massive galaxies formed<br />

much more rapidly in the redshift range<br />

-3 than originally anticipated. The new<br />

SINFONI data give us a first glimpse of<br />

what processes might be involved.<br />

SINFONI maps of emission in BzK-15504.<br />

In fact, the SINS programme on the VLT<br />

is a stunning demonstration of what is<br />

going to be possible in the next few years<br />

with the combination of integral-field<br />

spec-troscopy and adaptive optics.<br />

N.M. Förster Schreiber et al. 006, Astrophys.<br />

Journal 645, 106 .<br />

R. Genzel et al., Nature, 17 August 006.<br />

X. Kong et al. 006, Astrophys.J. 638, 7 .<br />

Emission of the galaxy BzK-15504.<br />

<strong>ESO</strong> Annual Report 006<br />

5


The Invisible Galaxies That Could Not Hide<br />

Astronomers have found a metal-rich hydrogen<br />

cloud in the distant universe.<br />

The result may help to solve the missing<br />

metal problem and provides insight on<br />

how galaxies form. This discovery shows<br />

that significant quantities of metals are to<br />

be found in very remote galaxies that are<br />

too faint to be directly seen.<br />

Metal shouldn’t however be taken too literally<br />

as, for astronomers, metals are all<br />

chemical elements heavier than helium.<br />

The Sun, for example, is made mostly of<br />

hydrogen (73%) and helium ( 5%), and<br />

% of ‘metals’.<br />

Almost all of the elements present in the<br />

Universe were formed in stars, which<br />

themselves are members of galaxies. By<br />

estimating how many stars formed over<br />

the history of the Universe, it is possible<br />

to estimate how much of the metals<br />

should have been produced. However,<br />

this apparently straightforward reasoning<br />

has been confronted for several years<br />

with an apparent contradiction: adding<br />

up the amount of metals observable<br />

today in distant astronomical objects falls<br />

Falling Onto the Dark<br />

Using the FORS1 instrument on the VLT,<br />

an international team of astronomers<br />

have discovered a new ‘blob’ located at a<br />

distance of 11.6 billion light years (redshift<br />

3.16). It is thus seen as it was when<br />

the Universe was only billion years old,<br />

or less than 15% its present age. The<br />

newly discovered object is located in the<br />

well-studied GOODS South field.<br />

With a diameter of 00 000 light years,<br />

the blob is twice as big as our Milky Way<br />

and the total energy emitted is equivalent<br />

to that of about billion suns. Despite<br />

this, the object is invisible in images taken<br />

with various telescopes observing from<br />

the infrared to the X-ray wavebands,<br />

making it a very peculiar object indeed.<br />

This is because the object emits most of<br />

its light in the Lyman-alpha hydrogen line,<br />

while its continuum emission is too low to<br />

be detected. It is also the only such<br />

object found by the astronomers in their<br />

survey.<br />

6<br />

<strong>ESO</strong> Annual Report 006<br />

short of the predicted value. When the<br />

contribution of galaxies now observed at<br />

cosmological distances is added to that<br />

of the intergalactic medium, the total<br />

amounts for no more than a tenth of the<br />

metals expected.<br />

Studying distant galaxies is however a<br />

difficult task. The further a galaxy, the<br />

fainter it is, and the smallest or intrinsically<br />

faintest ones will not be observed.<br />

This may introduce severe biases in the<br />

observations as only the largest and most<br />

active galaxies are picked up.<br />

Astronomers therefore came up with<br />

other ways to study distant galaxies: they<br />

use quasars, most probably the brightest<br />

distant objects known, as beacons in the<br />

Universe.<br />

Interstellar clouds of gas in galaxies, located<br />

between the quasars and us on the<br />

same line of sight, absorb parts of the<br />

light emitted by the quasars. The<br />

resulting spectrum consequently presents<br />

dark ‘valleys’ that can be attributed to<br />

well-known elements. Thus, astronomers<br />

Trying to explain this blob by invoking<br />

a powerful galaxy as the cause for the<br />

object to emit so much radiation proved<br />

impossible. The astronomers are instead<br />

led to the conclusion that the observed<br />

hydrogen emission comes from primordial<br />

gas falling onto a clump of dark<br />

HST Image Narrow-band<br />

A Rare Blob.<br />

can measure the amount of metals<br />

present in these galaxies – that are otherwise<br />

invisible – at various epochs.<br />

This can best be done by high-resolution<br />

spectrographs on the largest telescopes,<br />

such as UVES on the VLT.<br />

Astronomers thus studied, with the<br />

UVES spectrograph on the VLT, the light<br />

emitted by the quasar SDSS J13 3-00 1.<br />

Located 9 billion light years away, its<br />

light is partially absorbed by an otherwise<br />

invisible galaxy sitting 6.3 billion light years<br />

away along the line of sight.<br />

The analysis of the spectrum shows that<br />

this galaxy has four times more metals<br />

than the Sun. This is the first time one<br />

finds such a large amount of ‘metals’<br />

in a very distant object, giving encouragement<br />

to astronomers. If a large number of<br />

such ‘invisible’ galaxies with high metal<br />

content were to be discovered, they<br />

might well alleviate the missing metals<br />

problem considerably.<br />

C. Péroux et al., 006, Astronomy and Astrophysics,<br />

450, 53.<br />

matter. They could thus be literally seeing<br />

the building up of a massive galaxy, like<br />

our own, the Milky Way.<br />

K.K. Nilsson et al. 006, Astronomy and Astrophysics,<br />

45 , 3.<br />

Red Blue


A 1.8-m Auxiliary Telescope at Paranal.<br />

<strong>ESO</strong> Annual Report 006<br />

7


8<br />

<strong>ESO</strong> Annual Report 006


Venus and the Moon setting over Paranal.<br />

<strong>ESO</strong> Annual Report 006<br />

9


La Silla Paranal Observatory<br />

In 006 the La Silla Paranal Observatory<br />

has been routinely operating a total of<br />

10 telescopes with 19 optical, near-infrared<br />

and mid-infrared instruments. On<br />

Paranal these are nine VLT instruments at<br />

the four 8. -m Unit Telescopes (UTs).<br />

There are also two instruments at the VLT<br />

Interferometer (VLTI), which coherently<br />

combine the light of the UTs or the 1.8-m<br />

Auxiliary Telescopes (ATs). On La Silla, a<br />

total of eight instruments are operated on<br />

the 3.5-m NTT, the 3.6-m, and the MPG/<br />

<strong>ESO</strong> . -m telescopes.<br />

The observatory has also supported the<br />

operation of the Atacama Pathfinder<br />

Experiment (APEX). The 1 -m APEX<br />

antenna is located on the high plateau<br />

of Chajnantor at an altitude of 5100 m.<br />

APEX and its two workhorse instruments,<br />

APEX a and FLASH, have been<br />

operated from the base camp in the village<br />

of Sequitor near San Pedro de<br />

Atacama. During this first year of regular<br />

operation about 10 nights of mostly<br />

Service Mode observations were carried<br />

out at APEX with an average observing<br />

time of 13 hours per night.<br />

In 006 more than 630 peer-reviewed articles<br />

and papers were published in scientific<br />

journals in which the authors have<br />

made use of astronomical data collected<br />

with telescopes and instruments available<br />

at the three sites of the La Silla Paranal<br />

Observatory. This number translates into<br />

an impressive publication rate of nearly<br />

two refereed papers for every day of the<br />

year. APEX alone in its very first year of<br />

routine operations has produced the respectable<br />

number of 1 publications – all<br />

contained in a special edition of the Astronomy<br />

& Astrophysics journal.<br />

One of the important ingredients for such<br />

a high productivity of the observatory is<br />

the high availability of its telescopes and<br />

instruments to carry out scientific observations.<br />

In this respect the observatory<br />

had another excellent year, with a total of<br />

410 nights scheduled for scientific<br />

observations with the four UTs at the VLT<br />

and with the three major telescopes at<br />

La Silla. In addition, the VLTI was oper-<br />

30<br />

<strong>ESO</strong> Annual Report 006<br />

ated for about 140 nights, executing scientific<br />

observations with its MIDI and<br />

AMBER instruments. This total number of<br />

nights scheduled for scientific observations<br />

is equivalent to about 90% of the<br />

theoretically available total time.<br />

The remaining 10 % were scheduled<br />

for planned engineering and maintenance<br />

activities to guarantee the continuous<br />

performance of the telescopes and instruments.<br />

Technical time further includes<br />

the time slots required to commission<br />

the new instruments and facilities, which<br />

keep arriving in particular on Paranal for<br />

the VLT.<br />

Of the available science time on Paranal,<br />

only .3% was lost due to technical problems<br />

and about 6% due to bad weather.<br />

On La Silla bad weather accounted for a<br />

loss of about 11%, and technical<br />

problems for 5.4%. This comparatively<br />

high figure for the technical downtime in<br />

La Silla was solely due to a major problem<br />

of the aged dome rotation system of<br />

the 3.6-m telescope, which required extended<br />

periods of corrective maintenance<br />

during which no operation of the<br />

telescope was possible. Otherwise, the<br />

downtime figure would have been reduced<br />

to an excellent .6 %.<br />

One of the great technical achievements<br />

of the year has been the first-ever recoating<br />

of a secondary mirror (M ) of the<br />

VLT with a few-nanometre-thick layer of<br />

fresh aluminium (Al). The M of the VLT is<br />

a lightweight 1. -m hyperbolic mirror,<br />

made of beryllium in order to minimise its<br />

mass to allow precise and fast tilt motions<br />

(‘field stabilisation’) and chopping<br />

with frequencies of up to several hertz.<br />

The optical surface of the M is protected<br />

by a thin layer of nickel (Ni) onto which<br />

the reflective layer of Al is superimposed.<br />

The challenges are first to develop and<br />

define the M recoating procedure, then<br />

to actually remove the old Al layer without<br />

affecting the Ni layer, and finally to recoat<br />

the surface with fresh Al. The engineering<br />

department mastered these<br />

challenges for the M of Antu (UT1), in<br />

May 006. Recoating of the secondary<br />

mirrors of the UTs has now become part<br />

of the regular maintenance of the VLT<br />

to ensure the optimal long-term performance<br />

of the telescope optics. The scheduled<br />

recoating of the primary and tertiary<br />

mirrors of Kueyen (UT ) and Yepun (UT4)<br />

were also successfully performed.<br />

Cleaning a mirror at La Silla.


New Instruments and Facilities<br />

With the installation and commissioning<br />

of the CRIRES instrument on the Nasmyth<br />

A focus of Antu (UT1) a major milestone<br />

of the VLT programme was<br />

reached this year: the completion of the<br />

first generation of VLT instruments.<br />

CRIRES is a cryogenic high-resolution<br />

infrared échelle spectrograph, that provides<br />

a resolving power of up to 10 5 in the<br />

spectral range from 1 to 5 μm when used<br />

with a narrow slit of 0. arcseconds. After<br />

its successful commissioning in 006,<br />

CRIRES was offered for the first time to<br />

the astronomical community for Period<br />

79, which starts in April 007.<br />

The sixth <strong>ESO</strong> standard adaptive optics<br />

system, Multi-Applications Curvature<br />

Adaptive Optics (MACAO), was deployed<br />

on Paranal to feed the narrow CRIRES<br />

slit, and to optimise the achievable signalto-noise<br />

ratio and spatial resolution. Four<br />

MACAO systems were already installed<br />

in the Coudé feeds to VLTI, and a similar<br />

system has been installed in the Cassegrain<br />

focus of UT4 feeding the SINFONI<br />

instrument.<br />

Maximum concentration during the CRIRES Commissioning.<br />

The Laser Guide Star Facility (LGSF)<br />

achieved its ‘First Light’ in early 006 and<br />

created the first artificial star in the Paranal<br />

sky. The LGSF provides the adaptive<br />

optics (AO) systems of instruments like<br />

SINFONI and NACO with bright reference<br />

stars in regions of the sky where sufficiently<br />

bright natural stars cannot be<br />

found close enough to the scientific targets<br />

for the AO system to perform. The<br />

path from having seen the first artificial<br />

laser star to regular operations turned out<br />

to be longer and harder than expected<br />

after the initial success. Several modifications<br />

and improvements of the LGSF<br />

were required over the course of the year<br />

until the facility was successfully commissioned<br />

by the end of the year. The<br />

very first observations with SINFONI and<br />

NACO in the new LGS mode immediately<br />

gave a taste of the exciting new possibilities<br />

this facility will provide to the observatory<br />

in early 007 when the LGSF<br />

will be fully commissioned together with<br />

the AO instruments.<br />

The VLT welcomed its second Visitor<br />

Instrument, DAZLE (Dark Age ‘Z’ Lymanalpha<br />

Explorer). DAZLE is an innovative<br />

narrowband imaging instrument, specifically<br />

developed by the Institute of Astronomy<br />

(Cambridge, UK) and the Anglo-<br />

Australian Observatory for use on the<br />

Visitor focus of UT3 (Melipal) in order to<br />

detect the most distant objects in the<br />

Universe. Nine nights of data were taken<br />

with the VLT and first results from this<br />

ambitious search project are eagerly expected.<br />

On La Silla the mid-infrared instrument<br />

TIMMI was decommissioned after the<br />

corresponding mid-infrared instrument<br />

VISIR at the VLT had begun full operation.<br />

A new telescope has joined the suite of<br />

gamma-ray burst (GRB) hunters on<br />

La Silla: the very fast moving and robotic<br />

TAROT-S telescope has been installed<br />

by a consortium led by Observatoire de<br />

Haute-Provence to follow-up GRBs within<br />

seconds of their detection by dedicated<br />

satellites in the Earth’s orbit. The new<br />

telescope delivered first results on newlydetected<br />

GRBs only a few days after its<br />

installation.<br />

The . -m telescope on La Silla was prepared<br />

over the year to receive the GRB<br />

follow-up instrument GROND, which<br />

is being built by the Max-Planck-Institut<br />

für Extraterrestrische Physik and will be<br />

commissioned in early 007.<br />

GRBs also triggered several fast followup<br />

observations with the VLT using<br />

the novel Rapid-Response Mode (RRM),<br />

which allows authorised VLT users<br />

to interrupt ongoing observations and to<br />

point the UTs to a transient target of<br />

interest. On 7 June 006, the Rapid-Response<br />

Mode triggered UVES observations<br />

of the quickly fading afterglow of<br />

a distant gamma-ray source. Integrations<br />

with the high-resolution spectrograph<br />

started a mere 7.5 minutes after the detection<br />

of the GRB by the SWIFT satellite<br />

– to date, still a record for the spectroscopic<br />

follow-up of any GRB.<br />

APEX is expecting its final suite of facility<br />

instruments, including new heterodyne<br />

receivers from the Onsala Space Observatory<br />

to cover all atmospheric windows<br />

from 00 to 1000 GHz, and the Large<br />

<strong>ESO</strong> Annual Report 006<br />

31


APEX Bolometer Camera (LABOCA) developed<br />

by the Max-Planck-Institut für<br />

Radioastronomie. LABOCA, a detector<br />

array with 95 pixels operating at a wavelength<br />

of 870 μm, has been extensively<br />

tested during the year at Chajnantor. We<br />

expect regular science operation for all<br />

new instruments to start in 007.<br />

In addition to these workhorse instruments,<br />

several experimental receivers<br />

covering selected windows above 1 THz<br />

are under development. This frequency<br />

regime has so far been considered to<br />

be only accessible from space. However,<br />

the exceptional site of Chajnantor at<br />

an altitude of 5100 m, and the excellent<br />

quality of the APEX antenna, will allow<br />

us soon to explore the sky at the shortest<br />

radio wavelengths from the ground.<br />

The VLT Interferometer<br />

In 006 the VLT Interferometer (VLTI) executed<br />

about 140 nights of scientific<br />

observations with MIDI and AMBER using<br />

both UT and AT baselines. The other<br />

nights were used for intensive engineering<br />

and commissioning activities to<br />

complete and improve the interferometer<br />

infrastructure and to fully exploit the<br />

capabilities of the VLTI Sub-Array (VISA).<br />

The VISA feeds the VLTI infrastructure<br />

and instruments with the light from the<br />

1.8-m Auxiliary Telescopes (AT) when the<br />

individual UTs are used for stand-alone<br />

VLT observations. By the end of 006,<br />

VISA was completed with the arrival<br />

of the fourth AT and has become integral<br />

part of the VLTI science operation. Because<br />

it is now possible to choose between<br />

any six baselines and switch from<br />

one to another during the same night,<br />

AT4 provides the VLTI operations with<br />

ad-ditional flexibility in the selection of different<br />

and complementary AT baselines<br />

without having to physically reconfigure<br />

the array of telescopes. This capability, in<br />

combination with AMBER phase-closure<br />

on three telescopes, is an important step<br />

toward imaging with the VLTI.<br />

3<br />

<strong>ESO</strong> Annual Report 006<br />

The AMBER instrument allows the interferometric<br />

combination of up to three<br />

beams, and could be offered to the community<br />

for the first time with three ATs<br />

starting in Period 79 after first fringes<br />

were obtained on 3 August 006. The<br />

VLTI infrastructure was prepared accordingly<br />

and the three delay lines numbered<br />

4, 5 and 6 were equipped with<br />

Variable Curvature Mirrors (VCM) to control<br />

the longitudinal position of the pupil<br />

of the individual interferometric beams.<br />

The delay lines themselves were put under<br />

an intensive preventive maintenance<br />

plan in order to keep them literally in the<br />

best possible shape.<br />

These were all necessary steps towards<br />

the VLTI team’s ambitious goal of offering<br />

AMBER on three ATs with FINITO<br />

fringe-tracking for the call for proposals<br />

for Period 80, and to eventually bring<br />

AMBER close to the expected sensitivities<br />

in its different spectroscopic modes.<br />

A major milestone in this direction was<br />

reached when, for the first time, FINITO<br />

fringe-tracking with AMBER and three<br />

ATs was achieved on 1 December 006<br />

on the bright star b Ceti.<br />

The investigation and improvement of<br />

the stability of the interferometric beams,<br />

and in particular of the vibration-induced<br />

variations in the optical path differences<br />

(OPD) of the interferometric beams<br />

delivered by the 8. -m UTs, continued in<br />

parallel to the implementation of new VLTI<br />

observing modes with the VISA and the<br />

ATs.<br />

Working on APEX.<br />

Beam instabilities and vibrations of the<br />

UTs transmitted to the VLTI were identified<br />

as the primary reasons that prevented<br />

fringe-tracking with the UTs in the<br />

past. While the beam stability was recently<br />

improved dramatically through the<br />

introduction of fast beam control with the<br />

VLTI Infrared Image Sensor IRIS, the<br />

elimination of vibrations or their compensation<br />

remained the primary goal of the<br />

VLTI team during 006. Active suppression<br />

of the OPD variations as introduced<br />

by the vibrating optical surfaces of the<br />

Unit Telescopes was achieved through a<br />

novel Vibration Tracking (VTK) system.<br />

The performance of this vibration-suppression<br />

system was further enhanced by<br />

the installation of accelerometers close to<br />

the vibrating optical surfaces of the UTs.


User Support<br />

The User Support Department (USD) of the<br />

<strong>ESO</strong> Data Management and Operations<br />

Division, based in Garching, represents the<br />

primary link between the <strong>ESO</strong> community and<br />

the Observatory and its operation groups. It<br />

provides support primarily to Service Mode<br />

users of <strong>ESO</strong> facilities and to the operations<br />

teams of the La Silla Paranal Observatory. In<br />

006, Service Mode continued to be the most<br />

requested observing mode at the VLT (a<br />

factor of .5 higher than the time requested<br />

for Visitor Mode during Period 77 and 78).<br />

This clearly shows that the community has<br />

recognised the advantages of this observing<br />

mode for many different types of projects.<br />

Period 77 also marked the beginning of<br />

Service Mode observing at the APEX facility,<br />

the <strong>ESO</strong> Project Scientist of which is a<br />

member of the User Support Department.<br />

A total of 1054 Service Mode runs were<br />

supported by USD at the VLT, VLTI, and<br />

MPG/<strong>ESO</strong> . -m telescope during 006,<br />

which includes all runs approved during<br />

Period 77 and 78, including those that were<br />

granted telescope time via the Director’s<br />

Discretionary Time channel.<br />

Data Processing and Quality Control<br />

Ensuring that data taken on Paranal are of<br />

certified and predictable quality, and<br />

continuously monitoring the ‘health’ of the<br />

instruments, are cornerstone concepts in the<br />

<strong>ESO</strong> end-to-end data flow model. The DFO<br />

Quality Control (QC) group is responsible<br />

primarily for the monitoring and reporting of<br />

basic instrument performance for all VLT/VLTI<br />

instruments as well as the creation of various<br />

calibration and science data products for<br />

these instruments. Raw calibration data are<br />

processed into master calibration products<br />

that are used not only to monitor instrument<br />

performance but also to process science<br />

data. These master calibration products are<br />

stored in the <strong>ESO</strong> archive and are available to<br />

the scientific community at large.<br />

For Service Mode users, the QC group<br />

provides two additional services. First,<br />

Service Mode science data are processed<br />

into science products using standard<br />

pipelines which, by now, cover virtually 100 %<br />

of the Paranal data stream. Second, QC<br />

creates data packages that include all raw<br />

data, resultant products, and associated<br />

information for each and every Service Mode<br />

observing run. These packages are burned<br />

onto DVDs and shipped to users by the DFO<br />

SAO group.<br />

During 006 QC processed 5 TB of raw data<br />

in 156 500 processing jobs to create 1014<br />

service mode packages – an increase of 13 %<br />

compared to 005 – which were distributed<br />

to their respective Principal Investigators on<br />

100 DVDs. The quality control processing of<br />

the expected 150 TB/year of VISTA/VIRCAM<br />

data will certainly be challenging. New<br />

concepts and tools were developed and<br />

tested in 006 both to cope with the<br />

computing challenges posed by the high data<br />

rate itself and to efficiently monitor the quality<br />

of a large number of images.<br />

The Data Flow System<br />

The Data Flow System Department is responsible<br />

for the design, the implementation<br />

and the maintenance of the Data Flow System<br />

software components, that are critical for the<br />

end-to-end operation of the VLT, VLTI, VST,<br />

VISTA and some of the La Silla telescopes.<br />

The Data Flow System consists of two kinds<br />

of modules or tools. Some of them (e.g.<br />

P PP) are generic and provide a uniform<br />

interface to all instruments, while others, e.g.<br />

pipelines, are instrument specific. The<br />

department delivers its tools to a variety of<br />

customers: the astronomical community (e.g.<br />

P PP, Exposure Time Calculators, Archive<br />

Interface), VISAS and OPC, User Support<br />

Department (P PP, Observing Tool), and<br />

Science Operations and Data Flow Operation<br />

(Instrument Pipelines, data packing tools).<br />

The Data Flow System Department is also<br />

responsible for the installation and the<br />

commissioning of its software modules<br />

on-site.<br />

The front-end and back-end teams continued<br />

to concentrate their efforts on the design and<br />

implementation of software components<br />

required to support survey facilities. This<br />

includes an upgrade of the Observation<br />

Preparation Tools to introduce new scheduling<br />

concepts such as groups and links of<br />

Observation Blocks. The development of the<br />

User Portal, which will provide the user<br />

community with one registration system for all<br />

services provided by the Observatory, is<br />

progressing well. The pipeline team released<br />

three instrument pipelines to the community:<br />

the ISAAC, VISIR and GIRAFFE packages,<br />

based on the Common Pipeline Library. At the<br />

same time, the CRIRES pipeline was verified<br />

and validated during the commissioning<br />

phases of the instrument. The pipeline team<br />

developed an innovative algorithm based on<br />

pattern-matching for the wavelength calibration<br />

of spectroscopic data. This algorithm was<br />

implemented in the new FORS pipeline, which<br />

is now fully operational and will become<br />

publicly available in the first quarter of 007.<br />

During 006 the SAMPO work has focused on<br />

addressing the requirements within the <strong>ESO</strong><br />

community for more flexible access to the<br />

<strong>ESO</strong> reduction pipeline recipes. Following a<br />

review of the available options an open source<br />

graphical workflow system (Taverna) was<br />

selected and extensively extended to interface<br />

to <strong>ESO</strong> software components. This workflow<br />

system has been named <strong>ESO</strong> Reflex (<strong>ESO</strong><br />

Recipe Flexible Execution Workbench). The<br />

FORS spectroscopy and AMBER recipes have<br />

been integrated in a beta-test version of<br />

Reflex.<br />

The Reflex scientific workflow allows users to run<br />

instrument recipes as a sequence of reduction steps<br />

while inspecting intermediate products and calling<br />

external applications.<br />

<strong>ESO</strong> Annual Report 006<br />

33


The accelerometers enable the feeding of<br />

direct measurements of the actual vibration<br />

signals to the VTK system. Through<br />

this effort the original residual OPD variations<br />

of 480 nm were reduced by the end<br />

of the year to 30 nm. The VLTI team is<br />

confident that, with a robust implementation<br />

of these new vibration-suppression<br />

techniques and further elimination of the<br />

major vibration sources, fringe-tracking<br />

with three UTs and AMBER can be delivered<br />

to science operations by the end<br />

of 007 – just in time for the observatory<br />

to receive PRIMA, the next VLTI facility,<br />

which is expected to further push the<br />

sensitivity of the VLTI and provide relative<br />

astrometric measurements of the highest<br />

precision.<br />

VST and VISTA Survey Telescopes<br />

The construction, integration and test-<br />

ing of the .4-m optical VLT Survey Telescope<br />

(VST) and its subsystems con-<br />

tinued in Naples during 006 by the<br />

Osservatorio di Capodimonte. The disassembly<br />

of the main telescope structure<br />

started in collaboration with <strong>ESO</strong> at the<br />

end of the year, to prepare for the shipment<br />

to Paranal where the reintegration<br />

of the telescope is planned during the<br />

second half of 007.<br />

34<br />

<strong>ESO</strong> Annual Report 006<br />

The primary mirror cell and the secondary<br />

mirror unit, however, remain in Naples for<br />

their completion. The VST secondary<br />

mirror optics were completed and shipped<br />

to Paranal early this year while the .4-m<br />

primary mirror remained at the manufacturer’s<br />

premises for its completion.<br />

The 4. -m infrared survey telescope<br />

VISTA is currently under construction by<br />

the VISTA project office on its own peak<br />

about 1500 m from the Paranal summit.<br />

The enclosure was essentially completed<br />

and accepted before the telescope<br />

structure arrived on 11 May 006. Since<br />

then, the telescope assembly progressed<br />

rapidly and the VISTA telescope had<br />

entered a phase of intensive testing and<br />

tuning by the end of the year. At the same<br />

time, the VISTA facility was integrated<br />

into the power and computer networks of<br />

the Paranal site to prepare for its future<br />

operation. VISTA – as all telescopes on<br />

Paranal – will eventually be operated from<br />

the same common control room as the<br />

VLT and the VLTI.<br />

A dedicated coating unit arrived in September<br />

and was successfully commissioned<br />

in the following months. The<br />

VISTA coating unit is the only facility<br />

on Paranal that allows the coating of<br />

mirror surfaces with a layer of silver (instead<br />

of aluminium as used for the<br />

VLT mirrors) to provide highest reflectivity<br />

of the optical surfaces in the near-infrared<br />

wavelengths where VISTA is going to<br />

survey the sky.<br />

The VISTA telescope is now awaiting the<br />

arrival of its optics and its instrument.<br />

The primary and secondary mirrors are<br />

still in the phase of final polishing in Europe,<br />

and are now only expected to arrive<br />

on Paranal in the second quarter of 007.<br />

Commissioning of the telescope and the<br />

formal handover to <strong>ESO</strong> are planned to<br />

take place in the second half of 007.<br />

In December, the IR Camera that was<br />

developed at the Rutherford Appleton<br />

Laboratory in the UK was also shipped to<br />

Paranal for arrival in mid-January 007.<br />

VISTA enclosure. The VISTA telescope.


<strong>ESO</strong> Annual Report 006<br />

35


36<br />

Llano de Chajnantor<br />

<strong>ESO</strong> Annual Report 006


<strong>ESO</strong> Annual Report 006<br />

37


Atacama Large Millimeter/submillimeter Array<br />

The Atacama Large Millimeter/submillimeter<br />

Array (ALMA) is a very sensitive,<br />

high-resolution aperture-synthesis array<br />

telescope, which will work at millimetre<br />

and submillimetre wavelengths. It is an<br />

international facility, constructed and<br />

operated as a partnership between<br />

Europe (through <strong>ESO</strong>), North America<br />

(through the National Radio Astronomy<br />

Observatory, NRAO) and Japan (through<br />

the National Astronomical Observatory of<br />

Japan, NAOJ), in cooperation with the<br />

Republic of Chile.<br />

The initial plan was to install and operate<br />

64 antennas of 1 metres diameter, but<br />

detailed design studies and prototype<br />

research showed that this project could<br />

not be realised with the funds foreseen<br />

by the agreement between the North<br />

American and European partners. During<br />

005, in-depth studies were made to<br />

redefine the ALMA baseline project with<br />

acceptable cost, while still maintaining<br />

the prime scientific objectives. By the<br />

middle of 006, the North American<br />

partners received approval from their<br />

Funding Agency (the US National Science<br />

Foundation, NSF) for the rebaselined<br />

ALMA project, which had already been<br />

approved by <strong>ESO</strong> Council towards the<br />

end of 005.<br />

In parallel, Japanese scientists, through<br />

the NAOJ, continued to define their<br />

participation in the ALMA project. The<br />

European and North American partners<br />

in ALMA spent a considerable amount of<br />

time with their Japanese partners in<br />

identifying the Japanese participation and<br />

reviewed various subsystems, in particular<br />

the correlator, receivers and antennas.<br />

Details of the partnerships were defined<br />

and a trilateral agreement between <strong>ESO</strong>,<br />

the NSF, and the National Institute for<br />

Natural Sciences (NINS, Japan) was<br />

signed in summer 006. In addition to the<br />

equipment that NAOJ will provide for the<br />

bilateral ALMA configuration of 50<br />

antennas, NAOJ will provide four antennas<br />

of 1 metre diameter, twelve antennas<br />

of 7 metre diameter, and two receiver<br />

bands for all 66 antennas of ALMA.<br />

Approval of funds required for the<br />

Japanese participation in ALMA is<br />

38<br />

<strong>ESO</strong> Annual Report 006<br />

expected by spring 007. With the<br />

inclusion of the Japanese partners,<br />

ALMA becomes a truly global astronomy<br />

facility, involving scientists from four<br />

different continents.<br />

Construction Work<br />

The ALMA Array Operations Site (AOS)<br />

will be located at a truly unique and<br />

unusual place: the Altiplano de Chajnantor,<br />

a plateau at an altitude of 5 000<br />

metres above sea level, in the Atacama<br />

Desert in Chile. This location was<br />

selected for scientific reasons, particularly<br />

dryness and altitude. Considering<br />

these aspects, the ALMA Observatory<br />

will not only be unique because of its<br />

ambitious scientific goals and the<br />

unprecedented technical requirements.<br />

It will also be unique because of the<br />

harsh environment and living conditions<br />

in which the array has to operate with<br />

high efficiency and accuracy.<br />

A second site, the ALMA Operations<br />

Support Facilities (OSF), will be the base<br />

camp for the day-to-day operation of the<br />

observatory. It is located at an altitude of<br />

about 900 metres, quite high compared<br />

to standard living conditions, but still<br />

acceptable for scientific projects in<br />

astronomy of similar scope. However, the<br />

OSF will not only serve as the location for<br />

operating the ALMA Observatory: it will<br />

also be the site for Assembly, Integration<br />

and Verification (AIV) of all the hightechnology<br />

equipment before this is<br />

moved to the Array Operations Site.<br />

The AOS Technical Building.<br />

Both the AOS and OSF are remote<br />

locations. The 900-metre OSF site is<br />

about 15 kilometres away from the<br />

closest public road, the Chilean highway<br />

No. 3. The AOS is another 8 kilometres<br />

away from the OSF site. Thus, one of the<br />

first ALMA projects was to construct an<br />

access road not only to the OSF but also<br />

to the AOS. This road, 43 kilometres long<br />

and at high altitude, with sufficient width<br />

for the regular transport of many large<br />

radio telescopes with diameters of 1<br />

metres, was completed in the course of<br />

006.<br />

The OSF is in many ways the centre of<br />

activities of the ALMA project, and will<br />

remain so in the future. The focus there<br />

will, however, change as ALMA moves<br />

through the different phases of construction<br />

and operations.<br />

Presently, the OSF site is the area where<br />

all ALMA Site contractors and their staff<br />

are accommodated – the base camp for<br />

work on the OSF and AOS infrastructure.<br />

Local contractors’ staff live there and<br />

start their work either at the OSF, the<br />

road construction (between the Chilean<br />

Highway No. 3 and the AOS) or at the<br />

AOS itself. Work is organised in 0 days<br />

working/10 days rest periods. Special<br />

facilities for board and lodging have had<br />

to be organised for such a large activity.<br />

Camps have been erected and by now<br />

can accommodate the maximum<br />

required capacity of 500 workers.


Construction of the OSF Technical Buildings.<br />

The construction of the multi-purpose<br />

OSF, intended to serve over the lifetime of<br />

the observatory, is a challenging task. It<br />

requires taking into account many<br />

aspects of the functionality of these<br />

facilities over a period of 30 years. During<br />

the years 005 and 006 the Technical<br />

Specifications and Statements of Work<br />

for the OSF construction were defined,<br />

refined and adapted to the requirements<br />

and resources of ALMA. <strong>ESO</strong> signed a<br />

very important contract for the construction<br />

of the OSF Technical Facilities in<br />

August 006. Construction work has<br />

started, and during the first five months of<br />

this unique endeavour no major problems<br />

or delays occurred. As specified in the<br />

construction schedule, foundations have<br />

been prepared and the erection of the<br />

first walls started in November 006.<br />

Provisional Acceptance of all facilities is<br />

foreseen for the first quarter of 008.<br />

The construction of the AOS Technical<br />

Building, a project to be delivered by the<br />

North American partner in ALMA, started<br />

in October 005 and the outer shell was<br />

completed by mid- 006. After this date<br />

installation of the interior infrastructure<br />

started.<br />

Antennas<br />

The four antennas of 1 metre diameter<br />

to be provided by Japan have been<br />

ordered from Mitsubishi Electrical<br />

Company by NAOJ. The twelve remaining<br />

antennas of 7 metre diameter will be<br />

ordered during the year 007.<br />

The Preliminary Production Design<br />

Review for antennas to be produced by<br />

Vertex SRL was held in September 006.<br />

The corresponding review for the AEM<br />

antennas contracted by <strong>ESO</strong> is scheduled<br />

for the end of January 007.<br />

The design of the antenna transporter<br />

vehicle has progressed well. Some<br />

delays, due to long delivery time for<br />

materials, have arisen. The first transporter<br />

is expected to be delivered to the<br />

OSF in October 007, about three<br />

months later than originally foreseen.<br />

Front End<br />

The ALMA Front End system is the first<br />

element in a complex chain of signal<br />

reception, conversion, processing and<br />

recording. The Front End is designed to<br />

receive signals in ten different frequency<br />

bands. In the initial phase of operation<br />

the antennas will be equipped with six<br />

bands. These are Bands 3, 4, 6, 7, 8 and<br />

9. <strong>ESO</strong> is in charge of providing Bands 7<br />

and 9. It is planned to equip the antennas<br />

with the missing bands at a later stage of<br />

ALMA operation.<br />

The ALMA Front Ends are superior to<br />

almost all existing systems. Indeed,<br />

development work for the ALMA prototypes<br />

has also led to improved receivers<br />

for existing millimetre and submillimetre<br />

observatories.<br />

The Front End units are comprised of<br />

numerous elements, produced at<br />

different locations in Europe, North America<br />

and East Asia. In the initial phase of<br />

construction after the prototyping and<br />

developing stage, it was decided to build<br />

a set of eight pre-production units before<br />

moving to mass production. This initial<br />

phase started in the years 00 and<br />

003. The pre-production phase has<br />

advanced well and 006 was an especially<br />

important year, because it marked<br />

the start of the transition from this preproduction<br />

to the final series production<br />

phase.<br />

<strong>ESO</strong> Annual Report 006<br />

39


ALMA FE No. 1 rear view (chassis covers removed)<br />

with receiver cartridges for Bands 3, 6, 7 and 9<br />

installed.<br />

In 006, the European groups made<br />

essential contributions to the integration<br />

of the first ALMA front end. In early 006,<br />

the Band 7 Cartridge delivered by IRAM<br />

(Grenoble, France) was the first of all the<br />

cartridges to be accepted by the North<br />

American Front End Integration Centre<br />

(NAFEIC), which is based at NRAO<br />

(Charlottesville, Virginia, USA). The first<br />

Band 9 Cartridge, manufactured by<br />

NOVA (Groningen, the Netherlands), was<br />

successfully delivered and accepted by<br />

the NAFEIC at the end of 006.<br />

Receiver noise performance for three Band 9 Cartridge (pre-production) units.<br />

40<br />

<strong>ESO</strong> Annual Report 006<br />

In 003, <strong>ESO</strong> and the Rutherford<br />

Appleton Laboratory (RAL, UK) launched<br />

a development and pre-production<br />

programme for the manufacture of eight<br />

operational cryostats. By the end of<br />

006, six cryostats had been fully<br />

assembled. The remaining two units are<br />

in manufacture and will be completed in<br />

early 007.<br />

With the end of the pre-production phase<br />

of these cryostats in sight, efforts were<br />

made to prepare the final series production<br />

phase. This resulted in the approval<br />

by <strong>ESO</strong> Finance Committee at its<br />

November 006 meeting of a proposal to<br />

place a contract for 45 production units<br />

to cover the needs of the ALMA Baseline.<br />

With the ongoing production of ALMA<br />

receiver cartridges, more insight was also<br />

obtained into the repeatability of their<br />

performance. Collecting this information<br />

was one of the main goals of the preproduction<br />

phase, and is essential for<br />

increasing the accuracy of the series<br />

production schedule. The graph below<br />

shows the receiver noise performance for<br />

three Band 9 Cartridges, each having<br />

two independent polarisation channels.<br />

Besides the exceptionally good noise<br />

performance for reach of the cartridges –<br />

well within the specified project requirements<br />

– the repeatability is very good.<br />

Pre-production 4-8 GHz cryogenic low-noise amplifier.<br />

In the framework of an EC FP6 programme,<br />

<strong>ESO</strong> is leading a group of<br />

European institutes to develop and build<br />

six Band-5 receiver cartridges and to<br />

develop associated software. This<br />

project, “Enhancement of ALMA Early<br />

Science”, was approved by the European<br />

Commission at the end of 005 and<br />

actual work started in January 006. The<br />

Band 5 receiver design is being developed<br />

by the Onsala Space Observatory<br />

(OSO, Sweden). By the end of 006,<br />

most of the receiver design concept had<br />

been finalised.<br />

Discussions have been initiated between<br />

<strong>ESO</strong>, OSO, and RAL to provide the local<br />

oscillator as needed in this Band 5<br />

receiver. An initial plan for this activity has<br />

been provided by RAL and it is planned<br />

to include them as a participant in the<br />

FP6 programme.<br />

The pre-production phase of the cryogenic<br />

low-noise amplifiers used in the IF<br />

of the Band 7, 4-8 GHz bandwidth, and<br />

Band 9, 4-1 GHz bandwidth receivers<br />

has been successfully completed by<br />

Centro Astronómico de Yebes (CAY,<br />

Spain). Amplifier production for the Band<br />

7 cartridges (198 units) by industry will<br />

commence in early 007. A proposal was<br />

received and approved by the <strong>ESO</strong><br />

Finance Committee at its meeting in<br />

November 006.<br />

Production of the more complex 4-1<br />

GHz cryogenic amplifiers will remain at<br />

CAY. It is planned to start this series<br />

production phase in early 007.


Water Vapour Radiometers (WVRs)<br />

operating at 183 GHz are essential for<br />

ALMA to improve the fidelity of highresolution<br />

radio maps when using<br />

baselines longer than 300 metres. These<br />

radiometers provide a correction of the<br />

signal phase due to atmospheric water<br />

vapour fluctuations. The development of<br />

two prototype WVRs, a joint undertaking<br />

by the University of Cambridge and OSO,<br />

has been completed and they are<br />

undergoing intensive tests at the Submillimeter<br />

Array (SMA) on Mauna Kea<br />

(Hawaii). This field test of the WVRs has<br />

shown that it is feasible to do this<br />

correction of the atmospheric phase<br />

fluctuations with the necessary accuracy.<br />

The performance of both prototypes<br />

meets the requirements, and a simpler,<br />

more cost-effective, single-channel Dicke<br />

switched radiometer design has been<br />

adopted as the baseline for production.<br />

By the end of 006 a Call for Tender had<br />

been prepared for the final detailed<br />

design phase and production phase of<br />

53 units. This Call will be issued to<br />

industry in early 007.<br />

Back End<br />

The ALMA Back End systems deliver<br />

signals generated by Front End units<br />

installed in each antenna to the central<br />

Correlator at the AOS Technical Building.<br />

At any time, 8 GHz of signal bandwidth in<br />

each of two orthogonal linear polarisations<br />

can be processed and recorded.<br />

Analogue data, produced by the Front<br />

End electronics, are processed and<br />

digitised before entering first the data<br />

encoder, and then the optical transmitter<br />

Pre-production ALMA cryostat lined up for delivery<br />

at the Rutherford Appleton Laboratory.<br />

units and multiplexers. All these elements<br />

are installed in the receiver cabins of<br />

each antenna. Optical signals are then<br />

transmitted by fibres to the AOS Technical<br />

Building. The total distance in the<br />

most extended antenna configuration is<br />

about 15 kilometres. At the AOS Technical<br />

Building the incoming optical signals<br />

are de-multiplexed and de-formatted<br />

before entering the Correlator.<br />

The European deliverables in the ALMA<br />

Back End project are various components,<br />

which are produced by several<br />

European institutes, working closely with<br />

<strong>ESO</strong> and NRAO. These deliverables are:<br />

– digitiser chip production<br />

– digitiser chip assembly,<br />

– digitiser clock and assembly,<br />

– optical data transmission system<br />

design,<br />

– fibre patch panel,<br />

– optical multiplexers (MUX), amplifiers<br />

(EDFA), and de-multiplexers (De-MUX),<br />

and<br />

– photonic local oscillator photomixers.<br />

Development and pre-production of<br />

these components has either been<br />

successfully completed or is so far<br />

advanced that completion will happen in<br />

the first few months of 007. The components<br />

will be integrated at the Back End<br />

Integration Center at Socorro (New<br />

Mexico) and installed in the European<br />

and North American prototype antennas<br />

for tests at the ALMA Test Facility.<br />

Correlator<br />

The ALMA Correlator, to be installed in<br />

the AOS Technical Building, is the last<br />

component in the receiving end of the<br />

data transmission. It takes as input the<br />

digitised signals from the individual<br />

antennas, and outputs amplitude and<br />

phase on all of the interferometer<br />

baselines in each of a large number of<br />

spectral channels. It is a very large data-<br />

processing system, composed of four<br />

quadrants, each of which can process<br />

data coming from up to 16 different<br />

antennas. The complete correlator will<br />

have 91 printed circuit boards, 5 00<br />

interface cables, and more than 0<br />

million solder joints. The first quadrant<br />

was completed at NRAO in the third<br />

quarter of 006. Work on the second<br />

quadrant is progressing on schedule.<br />

Integral parts of the Correlator are<br />

Tunable Filter Bank (TFB) cards, which<br />

allow a major increase in the flexibility by<br />

subdividing the frequency range into 3<br />

independently configurable sub-channels.<br />

The layout is such that four TFB<br />

cards are needed for the data coming<br />

from a single antenna. The TFB cards<br />

have been developed and optimised by<br />

the University of Bordeaux over the last<br />

few years. Prototypes and pre-production<br />

units have been extensively tested and<br />

their performance was critically reviewed<br />

in the first half of 006. In the meantime,<br />

series production has started and the first<br />

batch of 36 cards has been produced.<br />

Software Development<br />

The ALMA software is planned from the<br />

beginning as an end-to-end software<br />

system, which goes from proposal<br />

preparation to data reduction, including<br />

all the necessary control software for<br />

antennas and correlator. The computing<br />

work in Europe is organised through<br />

<strong>ESO</strong>. Many developments are done<br />

directly by <strong>ESO</strong>; others are done in<br />

collaboration with European institutes in<br />

Spain, France, Italy, Germany and the<br />

United Kingdom.<br />

In 006, the ALMA software was tested<br />

end-to-end in different observing modes,<br />

starting from proposals consisting of<br />

Scheduling Blocks up to reducing data<br />

obtained with the ALMA prototype<br />

antennas at the ALMA Test Facility (ATF)<br />

located at the site o the Very Large Array<br />

(VLA) in Socorro. <strong>ESO</strong> and its associated<br />

institutes not only provided their software<br />

for this, but also actively participated in<br />

the testing campaigns.<br />

The next goal is to perform interferometry<br />

tests with the two prototype antennas at<br />

the ATF, while preparing to support<br />

integration and tests of the first European<br />

ALMA antenna to be delivered to Chile in<br />

the second part of 007.<br />

<strong>ESO</strong> Annual Report 006<br />

41


System Engineering (SE)<br />

Substantial progress was achieved on<br />

project-wide requirements and Interface<br />

Control Document (ICD) completion,<br />

which are now 93% and 80% completed,<br />

respectively. The ALMA system requirement<br />

version B was released, and is now<br />

consistent with the refined science<br />

requirements document and much more<br />

complete. Progress was also made on<br />

the Front End and Back End requirements<br />

and these will be formally released<br />

at the beginning of 007. The requirements<br />

database DOORS was updated<br />

and enhanced, and more requirements<br />

were added.<br />

The 3-dimensional models of the AEM<br />

and Vertex Antenna receiver cabins with<br />

their interiors have been developed and<br />

documented. The Antenna cabling<br />

designs for these antennas were done<br />

and released. Support was given to all<br />

Integrated Project Teams (IPTs) for their<br />

technical activities, e.g. for the ridges<br />

procurement and for the design and<br />

manufacturing of the ridges alignment<br />

tool. The mechanical tolerance budget<br />

was refined. Master Frequency Standard<br />

specification was prepared and the<br />

procurement process was initiated.<br />

ALMA system block diagrams have been<br />

updated, refined and distributed. The<br />

sensitivity budget was further refined and<br />

used for system design trade-offs and<br />

analysis tasks.<br />

System Engineering participated in<br />

several review meetings, such as maser<br />

laser review, and organised and chaired<br />

the Antenna Transporter PDR, Band 7<br />

Cartridge CDR, 1st Local Oscillator CDR,<br />

System Requirement review, Vertex<br />

antenna Pre-production review (PPDR),<br />

and the ACA correlator CDR.<br />

4<br />

<strong>ESO</strong> Annual Report 006<br />

The ALMA optical analysis led by SE<br />

started. The goal is to perform a detailed<br />

analysis of the antenna optical performance<br />

including polarisation, sidelobe<br />

patterns, and subreflector scattering<br />

cone under load conditions to predict<br />

antenna performance and the science<br />

case of polarisation mosaicing.<br />

A new ALMA Product Assurance (PA)<br />

manager was hired in mid- 006. His main<br />

task was to organise PA to be ready for<br />

the production contracts. This was<br />

achieved through close cooperation and<br />

meeting with all IPTs. Also, Statements of<br />

Work, verification plans and PA plans<br />

were reviewed and updated.<br />

System prototyping in the laboratory<br />

continued until November. A lot of<br />

detailed technical work was done to<br />

finally achieve continuity of the signal<br />

chain in the laboratory. Millimetrewavelength<br />

cross-correlation was<br />

achieved in the lab using both the AEM<br />

and Vertex antenna racks. For this a<br />

signal at 86 GHz was injected into each<br />

leg of the RF simulator. Then, system<br />

level testing, leading to phase tracking<br />

and delay switching interferometry, was<br />

achieved in the lab.<br />

After that the Back End antenna racks<br />

were removed from the lab in November,<br />

moved onto the antennas, and installed.<br />

The Evaluation Front Ends were also<br />

installed on both antennas, on which the<br />

signal path through the Front End to the<br />

Correlator is functional; the evaluation<br />

Front Ends were cooled down; and<br />

monitoring and control is functional via<br />

control software. The Central Local<br />

Oscillator racks and Correlator were<br />

installed, populated, powered up, and<br />

monitoring and control was established.<br />

First on-the-sky fringes are expected in<br />

the first quarter of 007.<br />

Other activities of PSI staff were the<br />

support of the holography system at the<br />

ATF and the support of the photogrammetry<br />

mission.<br />

System integration planning in Chile<br />

progressed well. Discussions with all IPTs<br />

about deliveries and acceptance of<br />

equipment for Chilean Assembly,<br />

Integration and Verification (AIV) were<br />

held and documented. The Japanese AIV<br />

involvement, deliverable and schedule<br />

were agreed. The interface between the<br />

ALMA Back End engineers at work.<br />

IPTs delivering the equipment and the<br />

commissioning team receiving the system<br />

from AIVS was agreed and documented.<br />

The AIV Interim Lab construction, needed<br />

because the OSF technical building will<br />

only be ready at the beginning of 008,<br />

was completed. The Holography Tower<br />

construction was completed. In total 11<br />

AIV engineers have been employed. All<br />

are posted at the executives (Socorro,<br />

Charlottesville, Garching) for training.<br />

Science Activities<br />

One of the main roles of the Science IPT<br />

is to define the top-level science requirements<br />

for ALMA and, in close collaboration<br />

with the System Engineering team, to<br />

ensure that they can be met by the<br />

hardware and software. The year 006<br />

saw the completion of a comprehensive<br />

System Requirements Review, covering<br />

all aspects of the specification. The major<br />

conclusion was that the current design<br />

would indeed meet (and in several areas<br />

such as receiver sensitivity even exceed)<br />

the demanding specification.


The calibration of ALMA is a challenging<br />

problem. The Science IPT has produced<br />

a comprehensive series of examples<br />

which demonstrate how key quantities<br />

such as amplitude, phase, antenna<br />

location and instrumental polarisation can<br />

be calibrated in practice. Even on the<br />

excellent Chajnantor site, water vapour in<br />

the atmosphere both absorbs and<br />

refracts millimetre waves from astronomical<br />

sources. To correct the fast fluctuations<br />

of phase which would otherwise<br />

limit imaging, ALMA will use a combination<br />

of two methods: fast switching<br />

between the object of interest and a<br />

nearby point calibrator, and water vapour<br />

radiometry. The latter technique measures<br />

emission from the 183-GHz atmospheric<br />

water line, using receivers<br />

mounted on each antenna and infers the<br />

resulting phase differences on all<br />

baselines.<br />

ALMA Regional Centre<br />

The European ALMA Regional Centre<br />

(ARC) is part of <strong>ESO</strong>’s Data Management<br />

Operations Division and started its activities<br />

on 1 June 006. The ARC’s mission<br />

is to provide the science and technical<br />

support services necessary for<br />

the European user community to exploit<br />

ALMA to its full scientific potential. The<br />

ARC will form the interface between<br />

the ALMA Observatory in Chile and the<br />

European user community. Similar ARCs<br />

are currently being established in North<br />

America and East Asia, <strong>ESO</strong>’s partners in<br />

the trilateral ALMA project. For Europe-<br />

an users, the ARC is being set up as a<br />

cluster of nodes located throughout Europe,<br />

with the main coordinating centre at<br />

the <strong>ESO</strong> Headquarters in Garching. In<br />

this distributed network, user support<br />

and operations experience at <strong>ESO</strong> can<br />

be mixed with millimetre-wave astronomy<br />

experience that exists in the communi-<br />

ty to create optimal science support services.<br />

The European ARC will be the point of<br />

contact for European ALMA users<br />

from the moment of proposal submission<br />

to the actual distribution of calibrated<br />

data and consequent analysis. The core<br />

of the ARC activities will consist of running<br />

a help desk for the proposal submission<br />

and submission of observing programmes,<br />

the delivery of data to principal<br />

investigators, the maintenance and refinement<br />

of the ALMA data archive, and<br />

the feedback to the data reduction pipeline<br />

and the off-line reduction software<br />

systems that surround it.<br />

Among the tasks of the ARC Manager is<br />

the contribution to the preparation of<br />

the ALMA Operations Plan (AOP), which<br />

describes both the science operations<br />

and the technical services provided by<br />

the technical staff when ALMA becomes<br />

operational, and its implementation within<br />

<strong>ESO</strong>.<br />

Fundamental to ALMA’s success in Europe<br />

are the enhanced services provided<br />

by the network of ARC nodes. These are<br />

required to fully realise the potential of<br />

ALMA and to maximise the scientific return<br />

for the European community. Fostering<br />

community development and guid-<br />

ing the future evolution of ALMA’s use<br />

are among the primary tasks for the<br />

nodes. The nodes will provide face-toface<br />

help and additional support, beyond<br />

what are called the ARC core functions.<br />

This help includes, for example,<br />

advanced user support for special projects,<br />

and refinement in the data reduction<br />

process. To achieve these goals,<br />

the nodes will conduct fellowship, user<br />

grant, student and postdoctoral programmes,<br />

as well as promote the organisation<br />

of workshops, schools, and any<br />

other support facilities for users.<br />

The ARC Manager coordinates this network<br />

of nodes. Activities have been<br />

started with a face-to-face meeting with<br />

representatives of the ARC nodes, held<br />

at <strong>ESO</strong> on 9 August. Most of these activities<br />

are described on the ARC web<br />

page (www.eso.org/projects/alma/ARC),<br />

whereas internal information is shared<br />

and exchanged via a ‘wiki’.<br />

<strong>ESO</strong> Annual Report 006<br />

Organisational structure<br />

of the European<br />

ALMA Regional Centre.<br />

43


44<br />

<strong>ESO</strong> Annual Report 006


The European Extremely Large Telescope<br />

Extremely Large Telescopes – telescopes<br />

with a diameter of 30 m or more – are<br />

seen worldwide as one of the highest priorities<br />

in ground-based astronomy. They<br />

will vastly advance astrophysical knowledge,<br />

allowing detailed studies of, inter<br />

alia, planets around other stars, the first<br />

objects in the Universe, supermassive<br />

black holes, and the nature and distribution<br />

of the dark matter and dark energy<br />

which dominate the Universe. The European<br />

Extremely Large Telescope project<br />

will maintain and reinforce Europe’s position<br />

at the forefront of astrophysical research<br />

and, as such, it is no surprise that<br />

it was included in the European Strate-<br />

gy Forum on Research Infrastructures<br />

(ESFRI) Roadmap in October 006. This<br />

European Roadmap, defined at the<br />

request of the European Union Council,<br />

identifies new Research Infrastructures<br />

of pan-European interest corresponding<br />

to the long-term needs of the European<br />

research communities which are likely to<br />

be realised in the next 10 to 0 years,<br />

covering all scientific areas and regardless<br />

of possible location.<br />

The European Extremely Large Telescope<br />

(E-ELT) project made large strides in<br />

006. In the first half of the year, five working<br />

groups composed of over 100 scientists<br />

and engineers from <strong>ESO</strong> and its<br />

community of users elaborated a new<br />

vision for the project. These ELT Science<br />

and Engineering (ESE) working groups<br />

focused on the scientific case, telescope<br />

design, site, adaptive optics and instrumentation.<br />

Chaired by members of the<br />

community, the working groups produced<br />

their reports, which were collected into<br />

a ‘tool box’ to guide the further design activities.<br />

The chairs of the working groups, augmented<br />

by members of the <strong>ESO</strong> Scientific<br />

Technical Committee (STC), formed a<br />

subcommittee of the STC naturally<br />

named ESE to monitor the project and<br />

advise both the STC and <strong>ESO</strong> on the<br />

work. In parallel to this community-wide<br />

consultation, the <strong>ESO</strong> Council established<br />

an ELT Standing Review Committee<br />

(ESRC) composed of external experts<br />

to advise on a broad variety of aspects to<br />

do with the project.<br />

With the tool box in place, <strong>ESO</strong> formed a<br />

telescope project office in the middle<br />

of the year and tasked it with absorbing<br />

the recommendations of the ESE working<br />

groups and developing a coherent<br />

proposal for a telescope – a baseline reference<br />

design – and associated instrumentation<br />

to be elaborated upon in the<br />

coming years. The <strong>ESO</strong> ELT programme<br />

is in fact split into three parallel activities<br />

on telescope, instrumentation and operations,<br />

each with its own office within the<br />

respective divisions at <strong>ESO</strong>: Telescope<br />

Systems, Instrumentation, and Data Management<br />

and Operations.<br />

Innovative Design<br />

The baseline reference design of the telescope<br />

is to have adaptive optics as<br />

an integral part of the system, to provide<br />

instrumentation with gravity-invariant<br />

foci, to have an instrumentation-friendly<br />

focal plane and to avoid the areas considered<br />

high-risk by the OWL review undertaken<br />

in late 005. The telescope<br />

design working group activities focused<br />

on establishing the viability and relative<br />

merits of the two front-runners in the designs<br />

that could address these basic<br />

requirements. The first design was a classical<br />

Gregorian telescope and the second<br />

a novel five-mirror design. The activities<br />

at <strong>ESO</strong> focused on establishing the<br />

viability of a mechanical structure to support<br />

a mirror diameter of 4 metres and<br />

the rest of the optics required to relay the<br />

beam back to a focal station. Sophisticated<br />

finite-element modelling and analysis,<br />

as well as preliminary control engineering<br />

work, were used to develop a<br />

mechanical structure that could host<br />

either of the two designs with comparable<br />

performance. The size of 4 metres<br />

was considered by the ESE as a good<br />

compromise between ambition and technical<br />

feasibility.<br />

In parallel, <strong>ESO</strong> contracted European industrial<br />

firms to develop conceptual designs<br />

for the adaptive optics systems that<br />

are going to be built into the telescope.<br />

External consultants worked on developing<br />

concepts for the dome to house the<br />

telescope and within <strong>ESO</strong> a great deal of<br />

attention has been placed on the interfaces<br />

of the telescope and its infrastructure<br />

with instrumentation. Industrial firms<br />

were contacted to establish a first topdown<br />

cost estimate for the telescope.<br />

The two optical designs considered during the Basic Reference Design development: five-mirror (left) and<br />

Gregorian (right).<br />

<strong>ESO</strong> Annual Report 006<br />

45


The activities within the EU FP6-supported<br />

ELT Design Studies programme,<br />

led by <strong>ESO</strong> but largely executed in<br />

industry and academia outside the<br />

organisation, are aligned with the<br />

activities of the E-ELT programme and in<br />

all areas much progress is being made.<br />

Actuator prototypes, edge sensors, phasing<br />

techniques, wind evaluation systems,<br />

dome designs, site testing and many<br />

other such activities are all contributing to<br />

the knowledge we require to advance the<br />

project into the next phase. Integral to<br />

this planning is the membership of Spain<br />

in <strong>ESO</strong> and the expertise that the Spanish<br />

community will bring. Spain has just<br />

completed the segmented 10.4-m Gran<br />

Telescopio Canarias (GTC) telescope<br />

and, with Spain’s membership, <strong>ESO</strong><br />

engineers will gain technical access to<br />

that system.<br />

Participants to the E-ELT conference in Marseille.<br />

46<br />

<strong>ESO</strong> Annual Report 006<br />

The baseline reference design selected<br />

and approved by the <strong>ESO</strong> Council to<br />

move into the Phase B of the project is<br />

the five-mirror design. While the Gregorian<br />

design had advantages in a better<br />

theoretical performance in adaptive optics,<br />

a smaller mirror count and smaller<br />

central obstruction, the five-mirror design<br />

was considered to have advantages in<br />

the image quality across the focal plane,<br />

the control of the wavefront using laser<br />

guide stars, the flexibility of the focal stations,<br />

the deployment of atmospheric<br />

dispersion compensators, the smaller<br />

dome and the relative ease with which it<br />

could be upgraded to follow the development<br />

of technology in the future. Most<br />

critically however, the five-mirror design<br />

was considered to have much lower risk<br />

in the area of adaptive optics by virtue<br />

of the separation of the field-stabilisation<br />

and adaptive-optics functions, a key recommendation<br />

of the OWL review.<br />

Into Phase B<br />

The results of this burst of activity came<br />

together during November 006 in preparation<br />

for a series of presentations of<br />

the Project Office conclusions to ESE,<br />

ESRC, STC, to 50 astronomers at the<br />

Marseilles meeting on the E-ELT and, finally,<br />

to the <strong>ESO</strong> Council. The endorsement<br />

of the Project Office proposal by<br />

this broad spectrum of the community<br />

and decision makers reflects not only the<br />

good progress <strong>ESO</strong> made during 006<br />

in the elaboration of the design but also<br />

the clear scientific need to advance<br />

rapidly and effectively in the area of E-<br />

ELTs and the commitment of the user<br />

community.


The baseline reference design selected and<br />

approved by the <strong>ESO</strong> Council to move into<br />

the Phase B of the project is the five-mirror<br />

design. While the Gregorian design had<br />

advantages in a better theoretical performance<br />

in adaptive optics, a smaller mirror<br />

count and smaller central obstruction, the<br />

five-mirror design was considered to have<br />

advantages in the image quality across the<br />

focal plane, the control of the wavefront<br />

using laser guide stars, the flexibility of the<br />

focal stations, the deployment of atmospheric<br />

dispersion compensators, the<br />

smaller dome and the relative ease with<br />

which it could be upgraded to follow the<br />

development of technology in the future.<br />

Most critically however, the five-mirror<br />

design was considered to have much lower<br />

risk in the area of adaptive optics by virtue<br />

of the separation of the field-stabilisation<br />

and adaptive optics functions, a key recommendation<br />

of the OWL review.<br />

The E-ELT is now in Phase B, a period<br />

during which the design will be elaborated<br />

further. Together with academic and<br />

industrial partners, and with continuous<br />

consultation with its user community,<br />

<strong>ESO</strong> expects that a proposal for the<br />

construction of this ambitious project can<br />

be ready by the end of this decade.<br />

A Revolutionary Concept<br />

The present concept features as a<br />

base-line a 4 -m diameter mirror<br />

telescope, and is revolutionary. The<br />

primary mirror is composed of 906<br />

segments, each 1.45 m wide, while the<br />

secondary mirror is as large as 6 m in<br />

diameter. In order to overcome the<br />

fuzziness of stellar images due to<br />

atmospheric turbulence the telescope<br />

needs to incorporate adaptive mirrors<br />

into its optics, and a tertiary mirror, 4.<br />

m in diameter, relays the light to the<br />

adaptive optics system, composed of<br />

two mirrors: a .5-m mirror supported<br />

by 5 000 or more actuators so as to be<br />

able to distort its own shape a<br />

thousand times per second, and one<br />

.7 m in diameter that allows for the<br />

final image corrections. This five-mirror<br />

approach results in an exceptional<br />

image quality, with no significant<br />

aberrations in the field of view.<br />

<strong>ESO</strong> Annual Report 006<br />

47


48<br />

<strong>ESO</strong> Annual Report 006


Organisation and Personnel<br />

The main organisational and managerial<br />

units of <strong>ESO</strong> are the Divisions which<br />

currently include: the Office of the<br />

Director-General, the Administration, the<br />

Space Telescope/European Coordinating<br />

Facility, the La Silla Paranal Observatory,<br />

and the Instrumentation, Telescope<br />

Systems, Technology, Data Management<br />

and Operations, Software Development,<br />

and ALMA Divisions. Most divisions are<br />

organised in Departments, some of which<br />

consist of two or more Groups.<br />

<strong>ESO</strong> Annual Report 006<br />

49


List of Personnel<br />

Office of the Director<br />

General 1<br />

Catherine Cesarsky<br />

Fatme Allouche<br />

Catarina Alves de<br />

Oliveira<br />

Gonzalo Argandoña<br />

Lazo<br />

Mustafa Basbilir<br />

Mary Bauerle Blandford<br />

Luigi Bedin<br />

Yuri Beletsky<br />

Angelika Beller<br />

Adrianus Bik<br />

Michael Böcker<br />

Henri Boffin<br />

Konstantina Boutsia<br />

Jutta Boxheimer<br />

Pamela Bristow<br />

Benoît Carry<br />

Mary Cesetti<br />

Gaël Chauvin<br />

Lise Bech Christensen<br />

Blair Campbell Conn<br />

Silvia Cristiani<br />

Itziar De Gregorio<br />

Monsalvo<br />

Gayandhi Manomala<br />

De Silva<br />

Eric Depagne<br />

Jörg Dietrich<br />

Michelle Doherty<br />

Michaela Döllinger<br />

Brigitta Eder<br />

Christopher Erdmann<br />

Davide Fedele<br />

Cedric Foellmi<br />

Audrey Galametz<br />

Emmanuel Galliano<br />

Kerstin Geissler<br />

Mark Gieles<br />

Carla Gil<br />

Rachel Emily Gilmour<br />

Raphael Gobat<br />

María Eugenia<br />

Gómez Carrasco<br />

Luis Goncalves Calçada<br />

Claudio Grillo<br />

Uta Grothkopf<br />

Karin Hansen<br />

Markus Hartung<br />

Hans Hermann Heyer<br />

Renate Hoppe-Lentner<br />

Hannes Horst<br />

Gaël James<br />

Edmund Janssen<br />

Paulina Jiron Planella<br />

Andres Jordan<br />

Eric Jullo<br />

Georg Junker<br />

Jouni Kainulainen<br />

Katarina Kiupel<br />

Karina Kjær<br />

Rubina Kotak<br />

Isolde Kreutle<br />

Daniel Kubas<br />

Jean Baptiste<br />

Le Bouquin<br />

Bruno Leibundgut<br />

Silvia Leurini<br />

Cristian Lopez<br />

Paul Lynam<br />

1 Including all the<br />

Fellows and Students<br />

under the Studentship<br />

programme.<br />

50<br />

<strong>ESO</strong> Annual Report 006<br />

Mariya Lyubenova<br />

Claus Madsen<br />

Vincenzo Mainieri<br />

Gautier Mathys<br />

Jorge Melnick<br />

Maria Messineo<br />

Steffen Mieske<br />

Igor-Felix Mirabel<br />

Lorenzo Monaco<br />

Marcelo Mora<br />

Dominique Naef<br />

Thomas Naets<br />

Kim Nilsson<br />

Pasquier Noterdaeme<br />

Christina Papadaki<br />

Laura Catherine Parker<br />

Enikö Patkos<br />

Silvia Pedicelli<br />

Douglas Pierce-Price<br />

Olga Pinto Moreira<br />

Farid Rahoui<br />

Suzanna Randall<br />

Jaroslaw P. Rzepecki<br />

Francesco Saitta<br />

Hugues Sana<br />

Julia Scharwächter<br />

Andreas Seifahrt<br />

Zhixia Shen<br />

Rodolfo Silva Smiljanic<br />

Colin Snodgrass<br />

Veronica Sommariva<br />

Thomas Stanke<br />

Christina Stoffer<br />

Gabriel Szasz<br />

Svea Teupke<br />

Sune Toft<br />

Ezequiel Treister<br />

Stefan Uttenthaler<br />

Stefano Valenti<br />

Elena Valenti<br />

Gerrit van der Plas<br />

Martin Vannier<br />

Stefan Vehoff<br />

Daniela Villegas Mansilla<br />

Elisabeth Völk<br />

Rein Warmels<br />

Michael Weigand<br />

Thomas Wilson<br />

Gabriele Zech<br />

Administration Division<br />

Hans Jahreiss<br />

Hugo Freddy Aguilera<br />

Eduardo Arenas<br />

Paredes<br />

Andres Arias<br />

Angela Arndt<br />

Roland Block<br />

Jean-Michel Bonneau<br />

Renate Brunner<br />

Cecilia Carrasco Cruz<br />

Laura Comendador<br />

Frutos<br />

Walter Demartis<br />

Tommaso Di Dio<br />

Günther Dremel<br />

Willem Arie Dirk Eng<br />

Robert Fischer<br />

Nicolás Fischman Rajii<br />

Sonia Gárnica Plaza<br />

Rebonto Guha<br />

Priya Nirmala Hein<br />

Charlotte Hermant<br />

Hans Jahreiss<br />

Nathalie Kastelyn<br />

Elizabeth Kerk<br />

Hans-Jürgen Kraus<br />

Katjuscha Lockhart<br />

Ignacio Lopez Gil<br />

Maria Madrazo<br />

Silvia Madrid Pariente<br />

Jorge Moreno González<br />

María Angélica Moya<br />

Helene Neuville<br />

Christine Nieuwenkamp<br />

Mauricio Quintana<br />

Ipinza<br />

Rolando Quintana<br />

Ipinza<br />

André Louis Ritz Solari<br />

Rosa Ivonne Riveros<br />

Cárdenas<br />

Francky Rombout<br />

Nadja Sababa<br />

María Soledad Silva<br />

Castán<br />

Erich Siml<br />

Beatrice Sivertsen<br />

Roswitha Slater<br />

Albert Triat Saurat<br />

Ullrich Urban<br />

Lone Vedsø Marschollek<br />

Sabine Weiser<br />

Yves Wesse<br />

Gerd Wieland<br />

La Silla Paranal<br />

Observatory<br />

Andreas Kaufer<br />

Nancy Ageorges<br />

Luis Águila Vargas<br />

Claudio Agurto<br />

Bernardo Ahumada<br />

Héctor Alarcón Ramírez<br />

Mario Alfaro Varela<br />

Jaime Alonso Torrini<br />

Nilso Alquinta Espejo<br />

Jose Luis Alvarez<br />

Paola Amico<br />

Michel Anciaux<br />

Andreas Andersson<br />

Lundgren<br />

Gaetano Andreoni<br />

Ernesto Araya Troncoso<br />

Juan Carlos Arcos<br />

Álvarez<br />

Javier Argomedo<br />

Karla Aubel<br />

Francisco Azagra<br />

Jose Baez<br />

Stefano Bagnulo<br />

Pedro Baksai<br />

Emilio Barrios Rojas<br />

Rogelio Bascunan<br />

Bertrand Bauvir<br />

Eduardo Bendek<br />

Per Mikael Bergman<br />

Guillame Blanchard<br />

Carlos Bolados<br />

Henri Bonnet<br />

Stephane Brillant<br />

Armando Bruna Bruna<br />

Erich Bugueño<br />

Blanca Camucet Ortiz<br />

Massimiliano Camuri<br />

Luis Alejandro<br />

Caniguante<br />

Michael Cantzler<br />

Ruben Carcamo<br />

Cesar Cardenas<br />

Johan Carstens<br />

Fabio Caruso<br />

Duncan Castex<br />

Roberto Castillo Ladrón<br />

De Guevara<br />

Mónica Castillo Cortés<br />

Jorge Castizaga<br />

Cáceres<br />

Susana Cerda<br />

Hernández<br />

Cecilia Cerón Canelo<br />

Claudia Cid Fuentes<br />

Florentino Contreras<br />

Alex Correa Gutiérrez<br />

José Ignacio Cortés<br />

Mandiola<br />

Ángela Cortés Carvallo<br />

Jaime Costa Abarca<br />

Claudio De Figueiredo<br />

Melo<br />

Reinaldo Donoso Marín<br />

Javier Duk Díaz<br />

Christophe Dumas<br />

Michael Dumke<br />

Domingo Durán Cortés<br />

Carlos Durán Urrutia<br />

Yves Durand<br />

Carlos Ebensperger Eliz<br />

Cristian Esparza<br />

Morales<br />

Loreno Esparza Morales<br />

Erito Flores Arias<br />

Juan Carlos Fluxá<br />

Nadeau<br />

Patrick Francois<br />

Sergio Gaete Román<br />

Enrique Garcia<br />

José Gardiazabal<br />

Schilling<br />

Gordon Gillet<br />

Alain Gilliotte<br />

Percy Glaves Peters<br />

Leonardo González<br />

Hernández<br />

Domingo González<br />

Leyton<br />

Andrés González López<br />

Sergio Gonzalez Burgus<br />

Víctor González Toro<br />

Charlotte Groothuis<br />

Patricia Guajardo<br />

Obando<br />

Carlos Guerra Escobar<br />

Stephane Guisard<br />

Serge Guniat<br />

Flavio Gutiérrez Willer<br />

Fernando Gutierrez<br />

Nicolas Haddad<br />

Salcedo<br />

Juan Pablo Haddad<br />

Ferretto<br />

Pierre Haguenauer<br />

Olivier Hainaut<br />

George Harding<br />

Juan Pablo Henriquez<br />

León<br />

Cristian Herrera<br />

González<br />

Leonardo Herrera<br />

González<br />

Herrera Mena, Leonardo<br />

Swetlana Hubrig<br />

Gerhard Hüdepohl<br />

Rodrigo Huerta<br />

Ramón Huidobro<br />

Nordenflycht<br />

Christian Hummel<br />

Gerardo Ihle<br />

Valentin Ivanov<br />

Emmanuel Jehin<br />

Jorge Jiménez Rojas<br />

Nestor Jiménez Odgers<br />

Ismo Kastinen<br />

Andreas Kaufer<br />

Nicholas Charles<br />

Kornweibel<br />

Carlos La Fuente Peña<br />

Francisco Labraña<br />

Zamorano<br />

Octavio Lavín Catril<br />

Paul Le Saux<br />

Cedric Ledoux<br />

Alfredo Leiva Becerra<br />

Ramón Leyton Muñoz<br />

Christopher Lidman<br />

Gaspare Lo Curto<br />

Ignacio López Vilches<br />

Ariel Lopez Ortega<br />

Fernando Luco<br />

Meneses<br />

Javier Luhrs Middleton<br />

Felipe Mac-Auliffe Prieto<br />

Agustín Macchino Farías<br />

Massimiliano Marchesi<br />

Gianni Marconi<br />

Pedro Mardones Ojeda<br />

Pedro Marín Fuentes<br />

Kiriako Markar Aros<br />

Mauricio Martinez<br />

Parada<br />

Elena Mason<br />

Eduardo Matamoros<br />

Pastén<br />

Rolando Medina Zanetta<br />

Juan Alberto Mella<br />

Angel Mellado González<br />

Alejandra Mena Briceño<br />

Jorge Miranda Mery<br />

Juan Molina Watanabe<br />

Nelson Montano Ortiz<br />

Alex Morales Agurto<br />

Sebastien Morel<br />

Merilio Morell Rodríguez<br />

Manfred Mornhinweg<br />

Krohmer<br />

Ivan Muñoz Máximo<br />

Julio Navarrete Lavín<br />

Jean-Luc Nicoud<br />

Hernan Nievas<br />

Fernández<br />

Dieter Nürnberger<br />

Herman Nuñez Portilla<br />

Lars A. Nyman<br />

Kieran O’Brien<br />

Rodrigo Olivares Álvarez<br />

Francisco Olivares<br />

González<br />

Ernesto Orrego<br />

Cisternas<br />

Óscar Orrego Sandoval<br />

Juan Osorio Escrich<br />

Juan Carlos Palacio<br />

Valenzuela<br />

Ricardo Parra Paz<br />

José Parra Ortiz<br />

Andrés Parraguez<br />

Cárcamo<br />

Marcus Pavez Hubner<br />

Eduardo Peña<br />

Juan Pineda Hernández<br />

Andres Pino<br />

Manuel Pizarro López<br />

De Maturana<br />

Aldo Pizarro Hess<br />

Andrés Pizarro Pavez<br />

Emanuela Pompei<br />

Hugo Quijón Duarte<br />

Andrés Ramírez Molina<br />

Fredrik Rantakyrö<br />

Johnny Reveco Arias<br />

Vincent Reveret<br />

Miguel Riquelme Oyarce<br />

Christophe Risacher<br />

Thomas Rivinius<br />

Luis Roa Figueroa<br />

Pascal Robert<br />

William Robinson<br />

Chester Rojas<br />

Gorky Román Delgado<br />

José Rosas Ávalos<br />

Felix Alberto Rozas<br />

Francisco G. Ruseler<br />

Claudio Sagüez García<br />

Daniel Salazar Barrera<br />

Fernando Salgado<br />

Ibarra<br />

Alejandro Salinas<br />

Fenero<br />

Ariel Sánchez Peñailillo<br />

Stefan Sandrock<br />

Roberto Sanhueza<br />

Slater


Pierre Sansgasset<br />

Jorge Santana<br />

Marambio<br />

Ivo Saviane<br />

Linda Schmidtobreic<br />

Ricardo Schmutzer Von<br />

Oldershausen<br />

Markus Schöller<br />

Oliver Schuetz<br />

Fernando Selman<br />

Jorge Sepúlveda Ortega<br />

Tzu Chiang Shen<br />

Waldo Siclari Bordones<br />

Peter Sinclaire Aguirre<br />

Alain Smette<br />

Fabio Somboli<br />

Rubén Soto Troncoso<br />

Mauro Stefanon<br />

Stanislav Stefl<br />

Michael Fritz Sterzik<br />

Sandra Strunk<br />

Thomas Szeifert<br />

Roberto Tamai<br />

Mario Tapia Gonzáles<br />

Manuel Torres<br />

Zamorano<br />

Soraya Torres López<br />

Guillermo Valdés<br />

José Javier Valenzuela<br />

Soto<br />

Karen Vallejo Cerda<br />

Leonardo Vanzi<br />

Oscar Varas Mella<br />

Enrique Vera Diaz<br />

Jorge Vilaza Méndez<br />

Stefan Wehner<br />

Ueli Weilenmann<br />

Luis Wendegass<br />

Mellado<br />

Andrew Wright<br />

Juan Christóbal Zagal<br />

ALMA Division<br />

Hans Rykaczewski<br />

Gareth Aspinall<br />

Fabio Biancat Marchet<br />

Claus Dierksmeier<br />

Jörg Eschwey<br />

Preben Grosbøl<br />

Christoph Haupt<br />

Jorge Ibsen<br />

Andreas Kempf<br />

Hervé Kurlandczyk<br />

Robert Alexander Laing<br />

Pascal Lapeyre<br />

Pascal Martinez<br />

Angel Otárola Medel<br />

Eric Pangole<br />

Ferdinand Patt<br />

Gianni Raffi<br />

Silvio Rossi<br />

Hans Rudolf<br />

Joseph Schwarz<br />

Stefano Stanghellini<br />

Donald Tait<br />

Gie Han Tan<br />

Nathalie Thebaud<br />

Eugenio Ureta Bravo<br />

Elena Zuffanelli<br />

Jennifer Hewitson<br />

Manuel de Menezes<br />

Telescope System<br />

Division<br />

Roberto Gilmozzi<br />

Constanza Araujo<br />

Hauck<br />

Robin Arsenault<br />

Domenico Bonaccini<br />

Calia<br />

Jeroen de Jong<br />

Françoise Delplancke<br />

Frédéric Derie<br />

Philippe Dierickx<br />

Robert Donaldson<br />

Enrico Fedrigo<br />

Yan Feng<br />

Andreas Glindemann<br />

Wolfgang Hackenberg<br />

Ronald Holzlöhner<br />

Norbert Hubin<br />

Markus Kasper<br />

Bertrand Koehler<br />

Johann Kolb<br />

Visa Korkiakoski<br />

Miska Kristian Le Louarn<br />

Samuel Leveque<br />

Jochen Liske<br />

Enrico Marchetti<br />

Patrice Martinez<br />

Serge Menardi<br />

Samantha Milligan<br />

Guy Monnet<br />

Riccardo Muradore<br />

Sylvain Oberti<br />

Jérôme Paufique<br />

Duc Thanh Phan<br />

Florence Puech<br />

Mark Robinson<br />

Tatyana Sadibekova<br />

Marc Sarazin<br />

Kevin Scales<br />

Nicolas Schuhler<br />

Christian Soenke<br />

Jason Spyromilio<br />

Josef Strasser<br />

Stefan Ströbele<br />

Isabelle Surdej<br />

Arkadiusz Swat<br />

Luke Taylor<br />

Gautam Vasisht<br />

Christophe Verinaud<br />

Elise Vernet<br />

Anders Wallander<br />

Nataliya Yaitskova<br />

Davide Zil<br />

Data Management and<br />

Operations Division<br />

Fernando Comerón<br />

Paola Andreani<br />

Fabien Chereau<br />

Fernando Comeron<br />

Carlos De Breuck<br />

Nausicaa Delmotte<br />

Danuta Dobrzycka<br />

Adam Dobrzycki<br />

Markus Dolensky<br />

Nina Felber<br />

Nathalie Fourniol<br />

Monika Gotzens<br />

Reinhard Hanuschik<br />

Paul Harrison<br />

Evanthia Hatziminaoglou<br />

Michael Hilker<br />

Wolfgang Hummel<br />

John Lockhart<br />

Jean-Christophe<br />

Malapert<br />

Stephane Marteau<br />

Sabine Mengel<br />

Sabine Moehler<br />

Palle Møller<br />

Petra Nass<br />

Mark Neeser<br />

Paolo Padovani<br />

Ferdinando Patat<br />

Isabelle Percheron<br />

Francesca Primas<br />

John Pritchard<br />

Marina Rejkuba<br />

Jörg Retzlaff<br />

Bruno Rino<br />

Charles Rite<br />

Jesus Rodriguez Ulloa<br />

Martino Romaniello<br />

Piero Rosati<br />

Remco Slijkhuis<br />

Dieter Suchar<br />

Lowell Tacconi-Garman<br />

Mario Van Den Ancker<br />

Benoît Vandame<br />

Andreas Wicenec<br />

Markus Wittkowski<br />

Burkhard Wolff<br />

Martin A. Zwaan<br />

Space Telescope –<br />

European Coodination<br />

Facility<br />

Lars Lindberg<br />

Christensen<br />

Wolfram Freudling<br />

Francesca Granato<br />

Jonas Haase<br />

Richard Hook<br />

Martin Kornmesser<br />

Martin Kümmel<br />

Harald Kuntschner<br />

Marco Lombardi<br />

Paola Popesso<br />

Britt Sjöberg<br />

Aitana Vargas<br />

Jeremy Walsh<br />

Software Development<br />

Division<br />

Michele Peron<br />

Roberto Abuter<br />

Eric Allaert<br />

Luigi Andolfato<br />

Pascal Ballester<br />

Klaus Banse<br />

Peter Biereichel<br />

Alessandro Caproni<br />

Sandra Maria Castro<br />

Maurizio Chavan<br />

Gianluca Chiozzi<br />

Mauro Comin<br />

Livio Condorelli<br />

Stéphane Di Cesare<br />

Gabriele Donino<br />

Dario Dorigo<br />

Philippe Duhoux<br />

Sylvie Feyrin<br />

Robert Frahm<br />

Bruno Gilli<br />

Carlos Guirao Sanchez<br />

Birger Gustafsson<br />

Karim Haggouchi<br />

Carlo Izzo<br />

Bogdan Jeram<br />

Yves Jung<br />

Robert Karban<br />

Mario Kiekebusch<br />

Maurice Klein Gebbinck<br />

Jens Knudstrup<br />

Antonio Longinotti<br />

Henning Lorch<br />

Lars Kristian Lundin<br />

Holger Meuss<br />

Andrea Modigliani<br />

Christophe Moins<br />

Ralf Palsa<br />

Moreno Pasquato<br />

Martine Peltzer<br />

Werther Pirani<br />

Dan Popovic<br />

Eszter Pozna<br />

Marcus Schilling<br />

Diego Sforna<br />

Paola Sivera<br />

Fabio Sogni<br />

Heiko Andreas Sommer<br />

Stefano Turolla<br />

Jakob Vinther<br />

Krister Wirenstrand<br />

Michele Zamparelli<br />

Stefano Zampieri<br />

Instrumentation<br />

Division<br />

Alan Moorwood<br />

Matteo Accardo<br />

Gerardo Avila<br />

Dietrich Baade<br />

Andrea Balestra<br />

Paul Bristow<br />

Iris Bronnert<br />

Mark Casali<br />

Claudio Cumani<br />

Sebastian Deiries<br />

Klaas Johannes Dekker<br />

Sandro D’Odorico<br />

Reinhold Dorn<br />

Mark Desmond<br />

Downing<br />

Christophe Dupuy<br />

Siegfried Eschbaumer<br />

Gert Finger<br />

Christoph Geimer<br />

Stefan Hötzl<br />

Olaf Iwert<br />

Hans-Ulrich Käufl<br />

Florian Kerber<br />

Jean Paul Kirchbauer<br />

Jean-Louis Lizon à<br />

L’Allemand<br />

Antonio Ramon<br />

Manescau Hernandez<br />

Leander H. Mehrgan<br />

Manfred Meyer<br />

Luca Pasquini<br />

Markus Patig<br />

Jean-François Pirard<br />

Roland Reiss<br />

Javier Reyes<br />

Andrea Richichi<br />

Gero Rupprecht<br />

Ralf Siebenmorgen<br />

Armin Silber<br />

Jörg Stegmeier<br />

Sebastien Tordo<br />

Joel Daniel Roger Vernet<br />

Technology Division<br />

Martin Cullum<br />

<strong>ESO</strong> Annual Report 006<br />

Roland Brast<br />

Enzo Brunetto<br />

Bernard Buzzoni<br />

Ralf Dieter Conzelmann<br />

Bernard-Alexis Delabre<br />

Nicola Di Lieto<br />

Canio Dichirico<br />

Martin Dimmler<br />

Michel Duchateau<br />

Toomas Erm<br />

Raul Esteves<br />

Giorgio Filippi<br />

Gerhard Fischer<br />

Christoph Frank<br />

Philippe Gitton<br />

Domingo Gojak<br />

Frederic Yves Joseph<br />

Gonté<br />

Ivan Maria Guidolin<br />

Volker Heinz<br />

Florian Heissenhuber<br />

Guy Hess<br />

Georgette Hubert<br />

Gotthard Huster<br />

Georg Igl<br />

Andreas Jost<br />

Franz Koch<br />

Heinz E. Kotzlowski<br />

Maximilian Kraus<br />

Simon Lowery<br />

Christian Lucuix<br />

Ruben Mazzoleni<br />

Jean-Michel Moresmau<br />

Michael Müller<br />

Michael Naumann<br />

Lothar Noethe<br />

Edouard Pomaroli<br />

Marco Quattri<br />

Jutta Quentin<br />

Michael Schneermann<br />

Babak Sedghi<br />

Barbara Sokar<br />

Jesper Thillerup<br />

Arno Van Kesteren<br />

Véronique Ziegler<br />

Seconded Staff<br />

Members<br />

Joint ALMA Office<br />

Massimo Tarenghi<br />

Alejandra Araya<br />

Ann Edmunds<br />

Jacques Lassalle<br />

Russell Smeback<br />

51


Personnel Services<br />

The ‘Five-Yearly Review’ of the conditions<br />

of employment for International Staff<br />

Members was completed, in close interaction<br />

with CERN. The results of the<br />

study led to further reviews and amendments,<br />

in particular regarding: the definition<br />

of family, now recognising same-sex<br />

marriages and same-sex or opposite-<br />

sex partnerships; maternity leave, parental<br />

leave and further options to facilitate<br />

and increase the harmonisation of family<br />

and professional career; education grants<br />

and expatriation allowances.<br />

The Personnel Department in Garching<br />

and Vitacura prepared and concluded the<br />

collective bargaining with the representatives<br />

of the Unions of La Silla and Paranal<br />

as well as with the representatives of the<br />

Administration in Santiago. The new Collective<br />

Contracts are effective as of 1 December<br />

006 for a period of three years.<br />

The process of the creation and implementation<br />

of the Software Development<br />

Division and reorganisation of the Data<br />

Management and Operations Division<br />

was accomplished. Personnel also participated<br />

in the review and restructur-<br />

ing of the Administration Division, all the<br />

related decisions being implemented by<br />

1 July 006.<br />

5<br />

Others<br />

9.4 %<br />

Sweden<br />

.3 %<br />

Portugal<br />

0.3 %<br />

The Netherlands<br />

3.7 %<br />

Italy<br />

18.9 %<br />

United Kingdom<br />

5.7 %<br />

<strong>ESO</strong> Annual Report 006<br />

Personnel Services was greatly involved<br />

in matters regarding the ALMA project.<br />

We participated in the recruitment of key<br />

positions of the Joint ALMA Observatory,<br />

in the foundation of the ALMA Human<br />

Resource Advisory Group, and in the<br />

completion of the Internal Regulations as<br />

well as the Compensation and Benefits<br />

for ALMA Local Staff.<br />

The ‘leave module’ was implemented for<br />

Garching on 1 July 006 in the ERP system.<br />

To make this process smooth, training<br />

was provided for all the Staff.<br />

To make new staff members in Garching<br />

more used to all the aspects of the organisation,<br />

from an overview of its different<br />

activities to very practical questions,<br />

an induction day was established with<br />

support from all Divisions at <strong>ESO</strong>. Conditions<br />

in Garching have also been improved<br />

for young parents with the opening<br />

of the IPP/<strong>ESO</strong> Crèche on 1 April<br />

006.<br />

Other activities included participating in<br />

the recruitment of key management<br />

positions in Garching and Chile, making<br />

regular visits to the sites in Chile in or-<br />

der to keep close contact with the International<br />

and Local Staff Members and<br />

their representatives, organising common<br />

training in ‘managing people’ for about<br />

Belgium<br />

4.9 %<br />

Switzerland<br />

1.4 %<br />

Germany<br />

3 .6 %<br />

Denmark<br />

3.1%<br />

France<br />

17.7%<br />

5 team leaders of the La Silla Paranal<br />

Observatory during the month of November<br />

006, and providing short-term and<br />

long-term office accommodation in<br />

Garching.<br />

The employment conditions and further<br />

guidelines for International Staff Members<br />

and Local Staff in Chile were revised, particularly<br />

with respect to:<br />

– The calculation and adjustment of<br />

the Cost of Living for International Staff<br />

Members in Chile;<br />

– Contract Policy for International Staff<br />

Members;<br />

– Regular medical examinations for Staff<br />

in Chile and Garching;<br />

– Equal Opportunity Statement;<br />

– Recruitment Policy Statement and its<br />

guidelines;<br />

– The application of the Social Activity<br />

Day;<br />

– Limitation of claims;<br />

– Home leave regulation;<br />

– The application of official holidays<br />

during duty travels.<br />

In the course of the year, 9 Local Staff<br />

and 34 International Staff Members were<br />

recruited. In addition, 101 Students, Fellows,<br />

and Paid and Unpaid Associates<br />

joined <strong>ESO</strong>. The diagramme below shows<br />

the International Staff Members of <strong>ESO</strong>,<br />

by nationality, as of December 006.<br />

Distribution of International<br />

Staff Members<br />

by Nationality as of<br />

31 December 006.


Instrumentation<br />

Highlights of the year were the installation<br />

and commissioning on Antu (UT1) of the<br />

Cryogenic Infrared Spectrometer (CRI-<br />

RES), the last of the first-generation VLT<br />

instruments, and the successful commissioning<br />

of the laser guide-star facility<br />

on Yepun (UT4), which will substantial-<br />

ly increase the sky coverage achievable<br />

with the adaptive optics assisted instruments<br />

NACO and SINFONI. The Omega-<br />

CAM camera was completed in advance<br />

of the VLT Survey Telescope for which it<br />

has been built; integration of the HAWK-I<br />

infrared camera for the VLT started in<br />

Garching; work on PRIMA continued;<br />

the approved second-generation VLT<br />

instruments X-Shooter, KMOS, MUSE<br />

and SPHERE, plus the Adaptive Optics<br />

Facil-ity (AOF) and the new NGC detector<br />

con-troller all progressed well, and Phase<br />

A studies were launched of three<br />

potential second-generation VLT interferometric<br />

instruments to eventually<br />

replace MIDI and AMBER. In addition,<br />

work ramped up on defining the ELT<br />

instrument interfaces and the design of<br />

possble instruments both within the <strong>ESO</strong><br />

E-ELT Instrument Project Office and the<br />

FP6 ELT Design Study.<br />

The leadership and know-how in astronomical<br />

instrumentation of <strong>ESO</strong> and<br />

its partners was very visible at the 006<br />

SPIE Astronomical Telescopes and<br />

Instrumentation Symposium that took<br />

place in Orlando, Florida, bringing together<br />

1700 astronomy, technology, and<br />

engineering experts from all over the<br />

world. <strong>ESO</strong> staff played a key role in the<br />

numerous meetings, either as organisers<br />

or speakers, and many <strong>ESO</strong> projects<br />

were discussed.<br />

CRIRES, the infrared (1–5 μm), high resolution<br />

(R = 10 5 ), adaptive optics assisted<br />

spectrograph built for the VLT by <strong>ESO</strong><br />

was integrated, extensively tested and<br />

formally passed its Preliminary Acceptance<br />

Europe (PAE) review in Garching on<br />

13 April. In order to optimise the installation<br />

and commissioning process the<br />

adaptive optics part was reviewed first,<br />

and released for shipment to Chile by the<br />

end of February. First light was achieved<br />

with an infrared test camera on 6 April<br />

when the adaptive optics control loop<br />

was closed on the star b Muscae. Although<br />

packing of the cryogenic spectrograph<br />

only started on 5 April, first astro-<br />

nomical spectra were already obtained<br />

together with the adaptive optics feed on<br />

4 June. We believe that this constitutes<br />

a record time for such a complex installation.<br />

By year’s end, commissioning was<br />

almost complete and the first scientific<br />

results had already been obtained through<br />

a highly successful set of science verification<br />

observations conducted to test the<br />

end-to-end system including the proposal<br />

preparation, instrument operation, and<br />

data handling and analysis tools and procedures.<br />

Following final commissioning<br />

and calibration in early 007, CRIRES will<br />

officially enter full science operations at<br />

the start of Period 79 on 1 April.<br />

The Laser Guide Star Facility (LGSF) had<br />

first light on 8 January. During the first<br />

commissioning a degradation of the image<br />

quality of the projected artificial star<br />

was detected. This was found to be due<br />

to the deformation of the flange at the<br />

interface between the launch telescope<br />

and the secondary mirror of UT4. The<br />

flange was redesigned and replaced in<br />

April. This solved much of the image quality<br />

problem although a second problem<br />

appeared: at low temperatures the<br />

supports of the launch telescope’s primary<br />

mirror caused an aberration that<br />

also affected the image quality of the artificial<br />

star. The launch telescope was<br />

dismounted, tested and shipped back to<br />

Garching for repairs. A task force was<br />

created to manage the recovery actions.<br />

A new mirror support was designed<br />

and mounted in the launch telescope. A<br />

more advanced focusing mechanism<br />

was also developed and mounted. A comprehensive<br />

set of realistic tests was then<br />

performed in a controlled environment<br />

to check the quality of the refurbishment<br />

before sending the launch telescope<br />

back to Paranal in October. All recovery<br />

activities were done in collaboration<br />

with the telescope provider. The LGSF<br />

went back ‘on sky’ in October, and<br />

commissioning resumed together with<br />

the NACO and SINFONI instruments.<br />

Although not yet fully within specifications,<br />

the LGSF was starting to produce<br />

scientific results at the end of the year.<br />

The OmegaCAM wide-field optical camera<br />

for the VST was finished and passed<br />

its PAE. The camera itself has been<br />

built by a German/Dutch/Italian consortium<br />

and the detector system, compris-<br />

ing a mosaic of 3 CCDs, by <strong>ESO</strong>. The<br />

instrument is now being stored in Garching,<br />

awaiting the installation and commissioning<br />

on Paranal in 007 of the<br />

.6-m VST, being supplied by INAF in<br />

Italy.<br />

Manufacturing and procurement of essentially<br />

all the components of the<br />

HAWK-I infrared camera for the VLT proceeded<br />

well. In particular, all four of its<br />

k × k Hawaii RG infrared detectors<br />

were delivered and fully tested with excellent<br />

results. They were mounted together<br />

to form a mosaic similar to that planned<br />

for the James Webb Space Telescope.<br />

The radiation shield was installed in the<br />

vacuum vessel in Garching, resulting in a<br />

rather large camera system. The reflecting<br />

optics were also mounted and found<br />

to exhibit excellent optical quality at room<br />

temperature. The first cool-down and<br />

test of the complete system at cryogenic<br />

temperatures is expected in January<br />

007 and, if all goes well in the following<br />

few months, HAWK-I will be commissioned<br />

in the period June–September<br />

007 at one of the Nasmyth foci of Yepun<br />

(UT4). After around three years use for<br />

direct imaging it is planned to install four<br />

wavefront sensors to exploit the possibility<br />

of ground layer adaptive optics correction<br />

with the AOF.<br />

Installation of the radiation shield in the HAWK-I<br />

vacuum vessel in Garching.<br />

<strong>ESO</strong> Annual Report 006<br />

53


The Adaptive Optics Facility<br />

The AOF is a project to upgrade one of<br />

the VLT 8. -m telescopes, Yepun (UT4),<br />

with an adaptive secondary mirror, multiple<br />

Laser Guide Stars and two adaptive<br />

optics modules: GRAAL for HAWK-I and<br />

GALACSI for MUSE. The aim is to provide<br />

both instruments with ‘enhanced seeing’<br />

performance in a large field of view and<br />

to achieve diffraction-limited performance<br />

in a small field of view for MUSE. An optical<br />

test-bench, ASSIST, built by a Dutch<br />

partner, will be used to test the complete<br />

system in Europe before sending it to the<br />

observatory.<br />

Substantial progress was achieved in the<br />

design of the various subsystems during<br />

the year. The Deformable Secondary<br />

Mirror (DSM) preliminary design has advanced<br />

well and major design difficulties<br />

– such as procedures for safe handling of<br />

the thin mirror shell, design of a stiff hexapod<br />

structure with sophisticated flexible<br />

joints, manufacture of a light-weight<br />

reference body – have been solved. The<br />

end of the year has been used to write<br />

the documentation for the DSM Preliminary<br />

Design Review (PDR) planned for<br />

early 007. A complete design for GRAAL<br />

has been produced, including the large<br />

bearing which allows rotation of the<br />

wavefront sensors. Preliminary inquiries<br />

have taken place for specifications and<br />

cost-estimate of such a device, opening<br />

the way for the GRAAL PDR in early<br />

007. GALACSI and 4LGSF preliminary<br />

designs are in line for reviews planned<br />

in autumn 007. The synergy between<br />

GRAAL and GALACSI (e.g. their similar<br />

real-time computer and wavefront sensor)<br />

allows GALACSI to benefit from the<br />

GRAAL progress. Moreover, the results<br />

and lessons learned from the LGSF commissioning<br />

in Paranal are retrofitted to<br />

the actual 4LGSF design. The ASSIST<br />

test-bench has undergone Optical PDR in<br />

October 006 and a reliable optical design<br />

is on hand for the ‘DSM main tower’.<br />

The mirror blank for the Thin Shell prototype<br />

has been prepared by a contractor<br />

and is ready to undergo aspherical polishing.<br />

Concerning the Very Large Telescope<br />

Interferometer (VLTI), several parts of the<br />

PRIMA (Phase-Referenced Imaging and<br />

Micro-arcsecond Astrometry facility)<br />

54<br />

<strong>ESO</strong> Annual Report 006<br />

CRIRES installed at a Nasmyth focus of Antu. The large vacuum vessel houses the cryogenically<br />

cooled, high-resolution infrared spectrometer, and the enclosure between it and the<br />

telescope contains adaptive optics and calibration systems.<br />

hardware have been delivered and are<br />

undergoing intensive tests in the Garching<br />

laboratories. The PRIMA facility is a<br />

sys-tem designed to enable simultaneous<br />

interferometric observations of two objects<br />

– each with size of at most arcseconds<br />

– that are separated by up to<br />

1 arcminute. PRIMA can be used to increase<br />

the sensitivity of the VLTI, to image<br />

faint objects with a high angular resolution<br />

and to perform high-precision<br />

astrometry, mainly for planet detection.<br />

The principal components of PRIMA<br />

are: a Star Separator per telescope, a<br />

system of laser metrology, two Fringe-<br />

Sensor Units, and four Differential Delay<br />

Lines.<br />

One Star Separator for the Auxiliary Telescopes<br />

and one for the Unit Telescopes<br />

have been delivered within specifications.<br />

The second of each type will be delivered<br />

in early 007. Two additional Star Separators<br />

for the Unit Telescopes are under<br />

manufacturing and should be delivered in<br />

008. The Fringe Sensor Units (FSU) are<br />

under intensive tests at a laboratory in<br />

the Max-Planck-Institut für Extraterrestrische<br />

Physik. Some specifications are not<br />

yet met but several solutions are being<br />

worked out and implemented in collaboration<br />

with the contractor. The laser metrology,<br />

the system measuring the phase<br />

and delay that is at the basis of the<br />

PRIMA concept, is regularly used in the<br />

testing of the FSU. Its interface with<br />

the Star Separators has also been proven<br />

adequate. Continuous improvement of<br />

this essential device is ongoing as the<br />

lessons learned from the Interferomet-<br />

ric Task Force in Paranal are taken into<br />

account and used to improve the PRIMA<br />

reliability. The Differential Delay Lines are<br />

under manufacturing and currently no<br />

problem has been encountered. Finally,<br />

the PRIMA Astrometric Software, a detailed<br />

data analysis software and calibration<br />

package needed to reach the ambitious<br />

10 micro-arcsecond accuracy, is<br />

under development. A first version of the<br />

software will be available for the integration<br />

and commissioning of PRIMA during<br />

008.<br />

Second-generation Instruments<br />

Design work advanced well on the four<br />

approved second-generation VLT in-<br />

struments. X-Shooter, the wideband UV-<br />

IR spectrograph being developed by a<br />

Danish/Dutch/French/Italian consortium<br />

led by <strong>ESO</strong>, is the most advanced. It<br />

passed its Final Design Review (FDR) in<br />

June 006 and its optical CCDs and<br />

infrared array detector have already been<br />

successfully tested. KMOS, the multiple,<br />

deployable integral-field infrared spectrometer<br />

being developed by a UK/German<br />

consortium (with <strong>ESO</strong> providing the<br />

detector system) passed its PDR in Sep-


Assembling the Hawk-I 4K x 4K detector mosaic.<br />

<strong>ESO</strong> Annual Report 006<br />

55


tember following successful tests of a<br />

prototype cryogenic pick-off arm – one of<br />

4 to be installed in the final instrument –<br />

and of diamond machined optical components<br />

representative of those needed<br />

for its image slicer systems. The agreement<br />

between <strong>ESO</strong> and the French/<br />

Swiss/German MUSE consortium was<br />

signed and the instrument itself continued<br />

in its preliminary design phase.<br />

MUSE is an integral-field optical spectrograph<br />

– actually 4 spectrographs –<br />

with <strong>ESO</strong> again responsible for the design<br />

and procurement of the detector<br />

systems. An important milestone in 006<br />

was the optical PDR, which paved the<br />

way for the production of a prototype of<br />

one of the 4 spectrographs. MUSE is<br />

also designed to be used together with<br />

the AOF described above in order to<br />

enhance the delivered image quality and<br />

hence sensitivity and resolution.<br />

The aim of SPHERE is to directly detect<br />

extrasolar planets, possibly down to<br />

Jupiter masses, achieving a contrast of at<br />

least 1/100 000 at 0.1 arcsecond from a<br />

bright central star. This will be made possible<br />

by an ‘extreme’ adaptive optics system<br />

to correct atmospheric turbulence<br />

effects, by suppression of the diffraction<br />

pattern using state-of-the-art coronagraphs,<br />

and by advanced differential techniques<br />

aimed at reducing the speckle<br />

noise. The corrected beam will feed three<br />

scientific instruments which will work<br />

at optical and near-infrared wavelengths.<br />

The SPHERE consortium comprises partners<br />

from France, Germany, Switzerland,<br />

Italy, and the Netherlands. <strong>ESO</strong> is a full<br />

partner in the project, which also includes<br />

significant support by the OPTICON FP6<br />

network. During 006, the preliminary<br />

design of systems and subsystems has<br />

advanced well at the various institutes.<br />

The PDR of the Optics is planned for<br />

March 007, with the overall PDR planned<br />

for July 007. The development of the<br />

extreme AO deformable mirror, its drive<br />

electronics and the digital detectors necessary<br />

to analyse the wavefront is proceeding.<br />

The delivery of these critical<br />

components is expected in autumn 007.<br />

The High Order Test-bench (HOT), supported<br />

by OPTICON and dedicated to the<br />

verification of high-contrast imaging concepts,<br />

has been set up at <strong>ESO</strong> and first<br />

closure of the AO loop has been achieved.<br />

56<br />

<strong>ESO</strong> Annual Report 006<br />

A formal call for second-generation VLT<br />

interferometric instruments yielded three<br />

Proposals in January: for GRAVITY,<br />

MATISSE and VSI (down from nine possible<br />

concepts at the start of the selection<br />

process in 005). Following a recommendation<br />

of the STC committee, Phase A<br />

study contracts were let for all of them<br />

with final study reports being due in summer<br />

007.<br />

In addition to specific instrumentation<br />

projects, detector and other development<br />

work was undertaken to ensure that<br />

<strong>ESO</strong> remains at the forefront in this critical<br />

area. Most visibly, development of<br />

the Next General detector Controller<br />

(NGC) continued to advance. The NGC is<br />

designed to meet the needs of all foreseeable<br />

visible and infrared detector systems<br />

for the coming years – both to<br />

achieve the noise, speed and other performance<br />

requirements and also to provide<br />

the maintenance benefits of a single<br />

type of system at the La Silla Paranal<br />

Observatory. Furthermore, detector developments<br />

and characterisation together<br />

with industry continued in various areas<br />

aimed at improving the quantum efficiency,<br />

noise, speed and other properties<br />

of both visible and infrared detectors. In<br />

addition to the science detectors themselves,<br />

new drivers for these improvements<br />

have come from the requirements<br />

for adaptive optics wavefront sensors<br />

and fringe-tracking systems needed for<br />

interferometric applications.<br />

MAD, the Multi-Conjugate Adaptive Optics<br />

Demonstrator, is a bench instrument<br />

to demonstrate and study, both in the<br />

Laboratory and on-sky, many of the new<br />

AO approaches proposed in the last<br />

years, which are needed for some second-generation<br />

VLT instruments and<br />

which are crucial for the future European<br />

Extremely Large Telescope. The most<br />

important approaches to be demonstrated<br />

by MAD are the Multi-Conjugate<br />

AO and the Ground Layer AO, both aiming<br />

at enlarging the field of view of the<br />

correction, which is typically very small in<br />

traditional AO systems. During the year<br />

MAD completed its test and characterisation<br />

phase in the laboratory for both the<br />

‘classical’ wavefront-sensing mode developed<br />

at <strong>ESO</strong> and the layer-oriented mode<br />

developed by an Italian consortium.<br />

The laboratory results have shown that<br />

Multi-Conjugate AO has diffractionlimited<br />

capabilities and good correction<br />

uniformity across a field of view up to<br />

arcminutes, under Paranal median seeing<br />

conditions. Ground Layer AO has shown<br />

its great potential in increasing the energy<br />

concentration on similar fields of view.<br />

On-sky demonstration will be extremely<br />

helpful in understanding how the two<br />

correction approaches will perform under<br />

real atmospheric conditions. MAD<br />

achieved Preliminary Acceptance in<br />

Europe (PAE) in December. The infrared<br />

camera produced by the Portuguese<br />

partner also achieved PAE, in September.<br />

MAD has been sent to Paranal to be<br />

reintegrated and should perform first onsky<br />

runs in March/April 007.


Technical Developments<br />

The Technology Division provided engineering<br />

support to over 150 different <strong>ESO</strong><br />

projects and workpackages in 006 –<br />

a 50 % increase over 005. The increase<br />

has been largely due to the start of the<br />

production phases of major on-going<br />

projects like ALMA, second-generation<br />

VLT instrumentation, and VLTI instruments,<br />

as well as the demands of new<br />

workpackages related to the E-ELT and<br />

FP6. Support for VLT operations at<br />

Paranal also continues as an important<br />

background activity for the Division.<br />

Electronic Engineering<br />

The introduction of the EU RoHS Directive<br />

(Restriction on the use of Hazardous<br />

Substances) has had an impact not only<br />

on internal electronic developments at<br />

<strong>ESO</strong> but also on the availability of many<br />

commercial electronic units. This relates,<br />

in particular, to the requirement for leadfree<br />

soldering. In some cases compatible<br />

alternative commercial units that conform<br />

to RoHS are available, but others, like<br />

the <strong>ESO</strong>-standard Maccon motor control<br />

units that are used within all VLT instruments,<br />

are now no longer available. The<br />

Electronics Department has therefore ordered<br />

a sufficient stock of these and<br />

other operations-critical modules to provide<br />

for long-term maintenance sup-<br />

port for the VLT and its instrumentation.<br />

A new standard motor-control suite for<br />

instrumentation based on the CAN-bus<br />

standard has been developed and, in<br />

006, a pre-production series of the DC<br />

motor controllers and prototypes of the<br />

stepper motor controllers were produced<br />

and tested in Garching. These will complement<br />

the existing Maccon boards and<br />

will be particularly suitable for new applications<br />

where distributed motors are to<br />

be controlled.<br />

In order to be able to assure reliable operation<br />

of electronic systems over the entire<br />

range of operational temperatures,<br />

the Electronics Department has acquired<br />

a new climatically controlled enclosure to<br />

allow thermal stress-testing all new electronics<br />

designs as well as commercially<br />

bought equipment. Although electronic<br />

reliability has not been a serious problem<br />

in the past, the new equipment will contribute<br />

to our goal of improving quality assurance<br />

procedures throughout the organisation.<br />

Systems Engineering<br />

Computer modelling of opto-mechanical<br />

systems is an important aspect of <strong>ESO</strong>’s<br />

systems engineering work. To enable increasingly<br />

complex systems such as the<br />

E-ELT to be modelled, the analysis tools<br />

used at <strong>ESO</strong> have to be continually extended<br />

to keep pace with project requirements.<br />

A particular example in 006 is<br />

the Structural Modelling Interface (SMI)<br />

tool developed jointly at <strong>ESO</strong> and the<br />

Technical University in Munich. The SMI<br />

Test chassis with multiple units of the <strong>ESO</strong>-developed CAN-bus DC motor drive module.<br />

can reduce the complexity of large FEM<br />

models produced in ANSYS to levels<br />

that permit control simulations using Matlab/Simulink<br />

to be carried out, but without<br />

significant losses in model fidelity.<br />

Another analysis tool that has been developed<br />

over a number of years at <strong>ESO</strong>, together<br />

with Astrium, is Beam Warrior. A<br />

limitation of classical optical design tools<br />

like Code-V and Zemax is that they produce<br />

optical models but these are not<br />

linked to the mechanical and other perturbations<br />

of the complete system. By combining<br />

optical design parameters from<br />

these programs with flexure information<br />

obtained from a FE Analysis, Beam Warrior<br />

can calculate parameters like the<br />

point-spread functions or Zernike coefficients<br />

for a variety of telescope orientations<br />

and load conditions. It allows optical<br />

models to be integrated into control-loop<br />

simulations and can also handle segmented-mirror<br />

telescopes. Beam Warrior<br />

will thus be an important element of the<br />

E-ELT integrated model.<br />

Systems Engineering is an important discipline<br />

for all complex projects, and for<br />

major projects like ALMA and the E-ELT it<br />

is indispensable. Keeping track of the<br />

continually evolving projects requirements<br />

throughout the development cycle is a<br />

challenging task and is an area where<br />

a Requirement Management Tool can be<br />

very useful. DOORS is such a tool that<br />

has been successfully used within the<br />

Software Department for several years for<br />

the ALMA software documentation and<br />

requirement management. Requirement<br />

Management promotes a formal approach<br />

to the definition of project requirements<br />

at different levels (stakeholder<br />

requirements, systems requirements,<br />

operational requirements, etc.), and links<br />

these to subsystems requirements,<br />

design documentation, verification procedures,<br />

and so on. It allows transparent<br />

requirement traceability for change control<br />

and helps with the early identifica-<br />

tion of errors that can be expensive to<br />

correct later on in the project.<br />

In 006, a pilot project has been started<br />

to apply DOORS to the E-ELT project.<br />

The Level 1 project requirements have<br />

been identified and integrated into the<br />

DOORS requirements management process<br />

framework, and linking has started.<br />

<strong>ESO</strong> Annual Report 006<br />

57


Opto-Mechanics<br />

During 006, several background developments<br />

have been pursued in technologies<br />

that could be of potential interest<br />

for future <strong>ESO</strong> projects. One area of key<br />

importance for an ELT project is fine mirror-shape<br />

control and, with this in mind,<br />

two parallel development projects have<br />

been undertaken to evaluate piezoelectric<br />

actuators. The first project used piezo<br />

fibres attached to a bar. The test results<br />

obtained showed bending that was in<br />

good agreement with a FE analysis and,<br />

in particular, showed no significant hysteresis.<br />

The second development, which<br />

is still ongoing, uses piezo stack actuators<br />

attached to a dummy mirror blank.<br />

Both these techniques show good potential<br />

for a precise and economic means of<br />

mirror deformation control.<br />

A design challenge for any large exposed<br />

structure like the ELT is wind buffeting<br />

control. Although wind tunnel testing and<br />

CFD (Computational Fluid Dynamics)<br />

models are both valuable techniques,<br />

there always remains a problem of validating<br />

these models, both in terms of scaling<br />

and understanding the correct disturbance<br />

spectra to apply. In order to<br />

obtain realistic test data for an extremely<br />

large telescope, an experiment has been<br />

undertaken with the support of the University<br />

of Manchester to attach some 00<br />

pressure sensors on the surface of the<br />

Jodrell Bank 70-m Lovell radio telescope<br />

in the UK. These allow not only the absolute<br />

pressure variations to be determined<br />

over a period of one year, but also enable<br />

us to gain a good understanding of the<br />

pressure correlations across the reflector<br />

surface, that have an important impact<br />

on the overall telescope design. During<br />

the course of 006, the sensors and their<br />

readout electronics were installed on the<br />

telescope by <strong>ESO</strong>’s partner firm GBF, and<br />

analysis of the initial data is already underway.<br />

58<br />

<strong>ESO</strong> Annual Report 006<br />

Software Engineering<br />

The 15th release of the VLT Software, i.e.<br />

the January 006 release, was the last to<br />

support HP-UX and Sun Solaris operating<br />

systems. The next planned release, in<br />

February 007, will support Linux only.<br />

This change will considerably reduce the<br />

amount of software testing to be carried<br />

out and contribute to improved reliability.<br />

<strong>ESO</strong> Videoconferences from 000 to 006<br />

3 000<br />

500<br />

000<br />

1500<br />

1000<br />

500<br />

0<br />

TBytes<br />

70<br />

60<br />

50<br />

40<br />

30<br />

0<br />

10<br />

0<br />

Software updates are needed primarily to<br />

meet the specific requirements of new<br />

VLT instruments as well to cater for various<br />

hardware configuration changes.<br />

For real-time control environments, <strong>ESO</strong><br />

has now moved from WindRiver VxWorks<br />

release 5.5 to release 6.0. This step<br />

was necessary, not only to be able to use<br />

the latest real-time processor boards,<br />

but also because release 6, unlike its predecessors,<br />

supports Linux as a development<br />

platform.<br />

110 141 44 363 496 1 06 568<br />

000 001 00 003 004 005 006<br />

003<br />

004 005 006<br />

Above: The total number of yearly <strong>ESO</strong><br />

videoconferences since the year 000.<br />

TBytes transmitted<br />

TBytes received<br />

Growth of Garching Internet traffic in<br />

Terabytes over the last four years.<br />

The dark blue bars show outgoing<br />

data and the light blue incoming data.


In December 006, an internal reorganisation<br />

in Garching led to the transfer<br />

of staff of the Software Department from<br />

the Technology Division to the newly<br />

formed Software Development Division.<br />

There they join software engineers who<br />

were previously in the software development<br />

group of the former Data Management<br />

Division. This move is intend-<br />

ed to consolidate software developers<br />

within the organisation and provide improved<br />

synergy.<br />

IT Services<br />

A major event for IT services was the<br />

change of outsource service provider in<br />

April 006. The new contractor has<br />

taken over responsibility for providing IT<br />

support not only in Garching but also<br />

in Santiago, La Silla and Paranal. Previously,<br />

three separate contractors were<br />

responsible for providing IT support in<br />

Garching, Paranal and Santiago respectively,<br />

with La Silla being supported by<br />

<strong>ESO</strong> staff. This change will greatly assist<br />

inter-site coordination and the rationalisation<br />

of IT services.<br />

The use of <strong>ESO</strong> communications systems<br />

continues to rise rapidly. Since videoconference<br />

systems were first introduced at<br />

<strong>ESO</strong> in 000, their usage has increased<br />

dramatically. Today, videoconferencing is<br />

an indispensable part of <strong>ESO</strong>’s activities,<br />

not only for internal <strong>ESO</strong> meetings between<br />

Europe and Chile, but also for regular<br />

contacts with our project partners<br />

in Europe and beyond. Videoconferences<br />

not only facilitate closer contact between<br />

staff in Europe and Chile but also lead to<br />

reduced travel costs. In 006, an average<br />

of 10 videoconferences took place each<br />

working day.<br />

Similarly, network traffic has also increased<br />

steadily over the last few years,<br />

fuelled by higher available bandwidths<br />

and cheaper access costs. In 006, the<br />

total incoming and outgoing traffic<br />

through the Garching Internet portal was<br />

about 90 Terabyte/year.<br />

The Spiral Galaxy NGC 3190 (FORS/<strong>ESO</strong>).<br />

<strong>ESO</strong> Annual Report 006<br />

59


Science Archive Operation<br />

The Science Archive Operation (SAO)<br />

group is responsible for receiving, storing<br />

and redistributing <strong>ESO</strong> and Hubble<br />

Space Telescope (HST) data, as well as<br />

providing front-line archive user sup-<br />

port. The current total archive holding is<br />

53. terabytes (TB) of <strong>ESO</strong> data and<br />

in excess of TB of HST data. Roughly<br />

13 TB of new data were archived during<br />

006, a 10 % increase over 005. While<br />

the volume of HST data is rather small<br />

compared to that of <strong>ESO</strong> data, the number<br />

of files archived for the two observatories<br />

is comparable: 6 million <strong>ESO</strong> files<br />

and 4 million from HST, for a grand total<br />

holding in excess of 10 million files hosted<br />

in the <strong>ESO</strong> Archive. Users around the<br />

world can access the <strong>ESO</strong> archive via a<br />

web-based data request submission<br />

system. In addition to the general archive<br />

web interface, all current VLT instruments,<br />

the VLTI MIDI instrument, the<br />

HARPS instrument on La Silla, and APEX<br />

on Chajnantor have dedicated instrumentspecific<br />

forms to query the data. More<br />

than 16 600 unique archive requests were<br />

served in 006, totalling 4 TB of data<br />

(a 4 % increase with respect to 005). Of<br />

those requests, 14 900 were for <strong>ESO</strong><br />

data, while the remaining 1700 were for<br />

HST data. In addition we have prepared<br />

1 11 data packages that were delivered<br />

to Principal Investigators on 733 CDs<br />

or DVDs. Finally, 140 calibrated pre-imaging<br />

data sets from the two FORS instruments,<br />

VIMOS, VISIR and, as of the third<br />

quarter of 006, ISAAC, NACO and SIN-<br />

FONI were delivered automatically within<br />

48 hours of acquisition at the telescope.<br />

Raw data from the UKIRT Infrared Deep<br />

Sky Survey (UKIDSS) executed with the<br />

WFCAM instrument at the UK Infrared<br />

Telescope (UKIRT) have kept flowing into<br />

the <strong>ESO</strong> archive. During 006 we have<br />

received .5 TB worth of UKIDSS data,<br />

mostly concentrated in the first part of<br />

the year.<br />

The year 006 marked the beginning of<br />

operations of the APEX submillimetre<br />

antenna on the Llano de Chajnantor. The<br />

data belonging to two out of the three<br />

APEX partners – <strong>ESO</strong> itself and the<br />

Onsala Space Observatory in Sweden –<br />

are stored in the <strong>ESO</strong> archive. As with<br />

any other <strong>ESO</strong> data, APEX files will also<br />

be made public to the community at<br />

large, once the usual proprietary period<br />

has expired. The <strong>ESO</strong> archive currently<br />

60<br />

<strong>ESO</strong> Annual Report 006<br />

holds 75 GB of APEX data, as produced<br />

by the Science Verification runs and<br />

the first round of <strong>ESO</strong> and Onsala General<br />

Observer programmes.<br />

A major milestone for 007 will be the<br />

archiving of data from VISTA/VIRCAM,<br />

the new wide-field infrared imager scheduled<br />

to start operating in the course<br />

of the year. With an expected data rate of<br />

150 TB a year, this instrument alone<br />

will produce a tenfold increase of data<br />

volume compared to all other instruments<br />

combined!<br />

In order to cope with this massive flow of<br />

data, the way data themselves are transferred<br />

from Paranal to Garching was<br />

overhauled in 006. In fact, the traditional<br />

way of transferring data on CDs and<br />

DVDs, which has faithfully served VLT<br />

operations since the beginning, was discontinued.<br />

As of December 006, VLT<br />

data are transferred to Garching in a<br />

novel and very efficient way, i.e. directly<br />

on NGAS (Next Generation Archiving<br />

System) discs, a technology developed<br />

at <strong>ESO</strong> and the foundation of the <strong>ESO</strong><br />

archive itself.<br />

Fundamentally, archive operations rely<br />

on a large number of hardware servers to<br />

store science data and their associated<br />

metadata in a reliable manner. We estimate<br />

that the archive data volume will exceed<br />

the petabyte limit by 011. Therefore,<br />

a petabyte-class archive has been<br />

designed to deal with the challenge<br />

of huge astronomical data volumes. This<br />

petabyte-class archive consists of <strong>ESO</strong>’s<br />

Primary and Secondary Archive, the<br />

Compute Stack and the Fast Cache.<br />

The Primary Archive is based on hard-<br />

disc technology, currently distributed on<br />

5 Linux servers with a storage capac-<br />

ity of 6.4 TB each, whereas the Secondary<br />

Archive is based on a petabyte tape<br />

library, currently equipped with over 300<br />

tapes, each with a storage capacity of<br />

0.5 TB. The Secondary Archive will store<br />

a second copy of the entire <strong>ESO</strong> archive<br />

contents at another physical location.<br />

The Compute Stack consists of blade<br />

Structure of the <strong>ESO</strong> archive and its main<br />

components. Scheme by R. Höllmüller.<br />

systems with a maximum capacity of<br />

13 CPUs. The Fast Cache provides 9<br />

TB of extendable Fibre Channel discbased<br />

storage. For the safe installation<br />

of the Primary Archive at different<br />

physical locations, <strong>ESO</strong> approved the<br />

plan to build an <strong>ESO</strong> Data, Computing<br />

and Operations Centre, to be completed<br />

in 007.<br />

Archive Database Content Management<br />

The <strong>ESO</strong> science archive contains two<br />

kinds of information: the actual science<br />

data generated by various <strong>ESO</strong> telescopes<br />

as well as the HST, and<br />

metadata which describe these science<br />

data, e.g. what objects were observed,<br />

when they were observed, and how they<br />

were observed. These important descriptions<br />

are necessary to allow users to find<br />

and retrieve science data and data<br />

products from the Archive. The DFO<br />

Database Content Management (DBCM)<br />

group has responsibility for maintaining<br />

these metadata. This is not an easy task,<br />

with the landmark of two billion database<br />

entries being reached and surpassed in<br />

006!<br />

In particular, DBCM implements metadata<br />

changes and updates following<br />

requests from various <strong>ESO</strong> operations<br />

groups or upon identification of erroneous<br />

entries. In addition, the DBCM<br />

group works closely with the DMO<br />

Virtual Observatory Systems (VOS)<br />

department to interface VOS services<br />

with the operational archive.


SN 006X in the spiral galaxy M 100.<br />

<strong>ESO</strong> Annual Report 006<br />

61


The European Virtual Observatory<br />

The Virtual Observatory (VO) aims to allow<br />

users easy and seamless access<br />

to the huge amount of astronomical data<br />

currently available, to facilitate its exploitation<br />

and foster new science. The VO initiative<br />

is a global collaboration of the<br />

world’s astronomical communities under<br />

the auspices of the International Virtual<br />

Observatory Alliance (IVOA). From the<br />

start, <strong>ESO</strong> has been very active in the VO<br />

arena, creating on 1 November 004 a<br />

Virtual Observatory Systems (VOS) Department<br />

in the <strong>ESO</strong> Data Management<br />

and Operations Division. VOS’ role is also<br />

to make the Science Archive Facility<br />

(SAF) a powerful scientific resource for<br />

the <strong>ESO</strong> community, and thereby ensure<br />

that <strong>ESO</strong> also plays a major role in the<br />

VO as a data provider.<br />

<strong>ESO</strong> is a founding member of the EURO-<br />

VO project, whose aim is to deploy an<br />

operational VO in Europe. Besides <strong>ESO</strong>,<br />

initial partners include the European<br />

Space Agency (ESA), and six national<br />

funding agencies, with their respective<br />

VO nodes: Istituto Nazionale di Astrofisica<br />

(INAF, Italy), Institut National des Sciences<br />

de l’Univers (INSU, France),<br />

Instituto Nacional de Técnica Aeroespacial<br />

(INTA, Spain), Nederlandse Onderzoeksschool<br />

voor Astronomie (NOVA,<br />

Netherlands), the Particle Physics and<br />

Astronomy Research Council (PPARC,<br />

UK), and Rat Deutscher Sternwarten<br />

(RDS, Germany). EURO-VO has established<br />

three interlinked structures:<br />

– the Data Centre Alliance (DCA), an alliance<br />

of European data centres which<br />

will populate the EURO-VO with data,<br />

provide the physical storage and computational<br />

fabric and which will publish<br />

data, metadata and services to the<br />

EURO-VO using VO technologies;<br />

– the Facility Centre (VOFC), an organisation<br />

that provides the EURO-VO with<br />

a centralised registry for resources,<br />

standards and certification mechanisms<br />

as well as community support for<br />

VO technology take-up and dissemination<br />

and scientific programme<br />

support using VO technologies and<br />

resources; the VOFC is located at <strong>ESO</strong><br />

and is managed by <strong>ESO</strong> and ESA;<br />

6<br />

<strong>ESO</strong> Annual Report 006<br />

– the Technology Centre (VOTC), a distributed<br />

organisation that coordinates a<br />

set of research and development projects<br />

on the advancement of VO technology,<br />

systems, and tools in response<br />

to scientific and community requirements.<br />

The EURO-VO Science Advisory Committee<br />

(SAC) was put together in March<br />

006 to provide overall scientific input<br />

to the project. Two SAC meetings were<br />

held in 006, the first on 7– 8 April<br />

at <strong>ESO</strong>, the second on November at<br />

ESRIN in Frascati, Italy. SAC members<br />

were introduced to the different aspects<br />

of the EURO-VO through various presentations<br />

and were updated on the latest<br />

EURO-VO developments and on the goals<br />

of the three EURO-VO substructures. The<br />

SAC then discussed some EURO-VO<br />

tools and a call for proposals to carry<br />

out astronomical research projects using<br />

VO tools.<br />

New EURO-VO Web pages (http://www.<br />

euro-vo.org) were presented to the SAC<br />

at its first meeting, and opened to the<br />

public a week or so later. They contain,<br />

among other things, concrete examples<br />

for astronomers of what the VO can and<br />

cannot do for them at present, and links<br />

to VO software applications.<br />

VOS was in charge of the organisation of<br />

the IVOA booth at the XXVIth General<br />

Assembly of the International Astronomical<br />

Union in Prague, on 14– 5 August.<br />

VOS also coordinated the EURO-VO presence<br />

and demonstration and the work on<br />

the EURO-VO flier.<br />

The first meeting of the board of the<br />

EURO-VO Data Centre Alliance (DCA)<br />

project, which has received funding of<br />

1.5 M€ from the Sixth Framework Programme<br />

(FP6; Coordination Actions) of<br />

the European Community, took place<br />

on –3 October in Strasbourg. The DCA,<br />

which is made up of eight European astronomical<br />

organisations including <strong>ESO</strong>,<br />

is vital for the EURO-VO goal of making<br />

the VO a reality in Europe. The DCA project<br />

is currently funded for two years,<br />

with expected completion by September<br />

008. <strong>ESO</strong>’s main role in the DCA is to<br />

organise, in collaboration with ESA, dedicated<br />

workshops to ensure the dissemination<br />

of technical knowledge necessary<br />

to implement VO-endorsed standards.<br />

The VOTech project is a design study,<br />

which aims to complete the technical<br />

preparation for the construction of the<br />

EURO-VO. The project is funded at<br />

the 6.6 M€ level by FP6 and by the part-<br />

ners, which include <strong>ESO</strong>, the Universi-<br />

ties of Edinburgh, Leicester, and Cambridge<br />

(UK), CNRS and Université Louis<br />

Pasteur (France), and INAF (Italy). The<br />

duration of the project is three years, with<br />

expected completion by the end of 008.<br />

<strong>ESO</strong> has a strong role in the VOTech<br />

project as leader of the Design Study 4<br />

on New User Tools, which aims to<br />

provide European astronomers with research<br />

tools integrated in, and fully<br />

compliant with, the VO. The project<br />

works in six-month cycles. Two planning<br />

meetings were held: on 6–9 March in<br />

Sorrento, Italy, and on 4–7 September<br />

in Strasbourg, France.<br />

VOS maintains the Euro-VO project web<br />

site, which in 006 served 77 GB of<br />

content resulting from 10 000 user sessions.<br />

VOS is also in charge of the IVOA<br />

project web site, which served 6 GB of<br />

web content resulting from 330 000 user<br />

sessions.


ST-ECF<br />

<strong>ESO</strong> and the European Space Agency<br />

continued their successful collaboration<br />

through the Space Telescope European<br />

Coordinating Facility (ST-ECF).<br />

The Hubble Space Telescope (HST) is<br />

currently in observing cycle 15, routine-<br />

ly achieving observing efficiencies between<br />

45 and 50 per cent. It is performing<br />

nominally in two-gyro mode. As a<br />

precautionary measure, plans have been<br />

designed to test the HST in one-gyro<br />

mode. Science highlights include the<br />

mapping of dark energy in space and<br />

time, the observation of the earliest<br />

galaxies in the Universe, and the discovery<br />

of many planets around nearby stars.<br />

European participation continued to be<br />

well above the nominal 15 %.<br />

Following directives from the ESA executive<br />

the ST-ECF reached a stable staffing<br />

level: seven ESA-funded positions and<br />

seven <strong>ESO</strong>-funded positions, corresponding<br />

exactly to the initial agreements between<br />

the two organisations, except that<br />

two of the staff members are now allocated<br />

to public outreach. The primary<br />

consequence of this staff rampdown was<br />

the discontinuation of the Advanced Calibration<br />

Project. It was possible to salvage<br />

some of the products of the group<br />

through an early partial delivery to the<br />

STScI. Moreover, two staff members of<br />

the former ST-ECF Advanced Calibration<br />

Group are now working for <strong>ESO</strong>, continuing<br />

this very successful effort, which,<br />

while initially developed for the HST spectrographs,<br />

works exceedingly well for<br />

the <strong>ESO</strong> ground-based instruments. In<br />

October, <strong>ESO</strong> and ESA decided to terminate<br />

the ST-ECF when the current Hubble<br />

ESA/NASA MoU expires at the end of<br />

010. The tasks of the group remain<br />

those agreed at the 006 Annual Review.<br />

The focus of the ST-ECF efforts was on<br />

Advanced Science Data Products: both<br />

the ACS and the NICMOS instruments on<br />

HST have integral-field spectroscopic<br />

capabilities. The data produced in these<br />

modes are complex to analyse and require<br />

techniques unfamiliar to most astronomers.<br />

ST-ECF has therefore begun<br />

to extract the spectra from the data<br />

frames and to calibrate them, with the<br />

aim of making them available to the community.<br />

This capability is also applica-<br />

ble to Wide Field Camera 3, one of the<br />

two new scientific instruments that will<br />

be installed on the HST during Servicing<br />

Mission 4.<br />

The proposed mode of operation for the<br />

other instrument to be installed, the Cosmic<br />

Origins Spectrograph, will put a<br />

higher demand on the usage of the wavelength<br />

calibration lamps. The ST-ECF<br />

coordinated a NASA/ESA funded project<br />

that involved <strong>ESO</strong>, NIST, STScI and the<br />

COS team to evaluate the spectral characteristics<br />

and the life expectancy under<br />

these operating conditions.<br />

The European HST Archive was migrated<br />

to the new <strong>ESO</strong> Archive infrastructure.<br />

The total holdings are now 547000 data<br />

sets. During 006, 414 6 data sets<br />

( .9 TB) were distributed to 40 users.<br />

ST-ECF staff also assisted the STScI<br />

in the final reprocessing of the FOC and<br />

GHRS archives. In collaboration with<br />

the STScI and the CADC the Hubble Legacy<br />

Archive was initiated. The goal is to<br />

collect and generate selected High Level<br />

Science Data Products and make them<br />

available to the community.<br />

User support continued through the<br />

Newsletter, the HST email hotline, and<br />

the production of technical documents.<br />

ST-ECF staff also monitored the TAC<br />

process and continued to support the<br />

<strong>ESO</strong> SAMPO Project. More recently,<br />

the editorship of the <strong>ESO</strong> Messenger was<br />

taken over by ST-ECF staff.<br />

For the ST-ECF’s task to disseminate the<br />

discoveries from Hubble to the public,<br />

006 has been the most successful year<br />

so far. Nineteen news and photo releases<br />

were produced (up 0 % from 005). The<br />

European Hubble website had .8 million<br />

visitors (up 90 %) and distributed 36 TB of<br />

multimedia materials (up 65 %).<br />

The ESA/<strong>ESO</strong>/NASA Photoshop FITS<br />

Liberator .1 was released. Several exhibitions<br />

were produced together with<br />

external organisations – perhaps most<br />

noteworthy was a part of the perma-<br />

nent exhibition in Armagh Planetarium.<br />

The Astronomy Visualisation Metadata<br />

standard (co-authored with Robert Hurt)<br />

was endorsed by the International Vir-<br />

tual Observatory Alliance.<br />

The third ESA-<strong>ESO</strong> Bilateral meeting took<br />

place in Garching at the end of Octo ber.<br />

The third working group report – on<br />

Fundamental Cosmology by Peacock,<br />

Schneider et al. – was finished and distributed.<br />

The meeting addressed the recommendations<br />

of all three working groups<br />

and decided to continue both the bilateral<br />

meetings, which are essential for the<br />

coordination of science planning, and the<br />

series of topical working groups.<br />

The former Instrument Advanced Calibration<br />

Group was selected by NASA to<br />

receive the “Group Achievement Award”<br />

for its work on high-fidelity calibration.<br />

The award, given at a ceremony at NASA<br />

Headquarters on 1 July to Paul Bristow,<br />

Florian Kerber and Michel Rosa, is<br />

shared with a three-member team from<br />

the US National Institute of Standards.<br />

Artist’s view of Servicing Mission 4 to<br />

Hubble. This Servicing Mission will<br />

not only ensure that Hubble can function<br />

for perhaps as much as another<br />

ten years, it will also increase its capabilities<br />

significantly in key areas. As<br />

part of the upgrade, two new scientific<br />

instruments will be installed: the<br />

Cosmic Origins Spectrograph and the<br />

Wide Field Camera 3.<br />

ESA/Hubble<br />

<strong>ESO</strong> Annual Report 006<br />

63


64<br />

<strong>ESO</strong> Annual Report 006<br />

Open House at the <strong>ESO</strong> Headquarters on 15 October 006.


Public Outreach<br />

On all accounts, the year 006 marked<br />

a record year in terms of Public Outreach<br />

activities by <strong>ESO</strong>. This growth is motivated<br />

by several factors, including<br />

– the increase in the number of mem-<br />

ber states of <strong>ESO</strong>;<br />

– the current and planned project port-<br />

folio, which foresees investments in<br />

the range of several hundreds of millions<br />

of Euros;<br />

– the increased focus on the need to<br />

secure an adequate recruitment base,<br />

not just in the time to come, but also<br />

in today’s labour market, which is characterised<br />

by stiff competition for the<br />

best people.<br />

Furthermore the increased competition<br />

for public visibility and communication<br />

in general in today’s society places strong<br />

demands on the quality of the communication<br />

efforts, not just in terms of contents<br />

but also with respect to delivery mechanisms.<br />

Other aspects such as timing and<br />

timeliness are of course of crucial importance<br />

in today’s fast moving media world.<br />

This has led us to pursue a particular<br />

strategy, which builds on technical autonomy,<br />

short communication lines within<br />

the organisation and an elaborate system<br />

of partnerships. For example, <strong>ESO</strong> has<br />

established a Science Outreach Network<br />

with representatives in all <strong>ESO</strong> member<br />

states. These ‘ambassadors’ perform an<br />

important interface function between the<br />

national media and <strong>ESO</strong>.<br />

Of course, as in the previous years, many<br />

press releases are done in collaboration<br />

with national organisations (e.g. PPARC,<br />

MPE, CNRS, INAF), universities, the leading<br />

research journal Astronomy & Astrophysics,<br />

and other partners.<br />

Obviously, the Public Affairs Department<br />

(PAD) works in close consultation and<br />

coordination with <strong>ESO</strong>’s Santiago Representation,<br />

which conducts targeted outreach<br />

activities for Chile and provides<br />

logistical support to European media and<br />

high-level visitors.<br />

PAD also works with <strong>ESO</strong>’s sister organisation<br />

ESA, including the Hubble Europe<br />

Information Centre, sited in adjacent<br />

rooms to PAD. The cooperation involves<br />

sharing of information and technical facilities,<br />

wherever possible.<br />

In the field of education, the European<br />

Association for Astronomy Education<br />

(EAAE) is a long-standing partner of <strong>ESO</strong>.<br />

The EAAE members help by spreading<br />

information about <strong>ESO</strong> in the schools,<br />

while at the same time they often provide<br />

didactic advice to PAD as it formulates<br />

and prepares its education activities.<br />

The European Commission has become<br />

a major partner as well, not least in<br />

funding educational activities, which have<br />

come to be seen as representing substantial<br />

added value for Europe’s societies<br />

and therefore enjoy significant political<br />

attention and goodwill.<br />

Finally, the major education activities,<br />

such as Science on Stage and Science in<br />

School, are carried out within the framework<br />

of the EIROforum, the partnership<br />

of Europe’s seven intergovernmental research<br />

organisations. The partnership<br />

enables a very successful pooling of resources<br />

and expertise and allows undertaking<br />

activities on a scale that would<br />

have been impossible for the individual<br />

organisations alone.<br />

Media<br />

In 006, <strong>ESO</strong> issued a total number of<br />

51 releases to the media, or roughly one<br />

release per week.<br />

Press conference on exoplanets at <strong>ESO</strong>F, Munich.<br />

This number can be broken down into<br />

39 ‘standard’ press releases, including<br />

6 about scientific results from observations<br />

with <strong>ESO</strong> telescopes, and 13 press<br />

photos. The press photos enjoy great<br />

popularity among the media and ensure a<br />

much increased visibility of <strong>ESO</strong>. Seven<br />

<strong>ESO</strong> images were selected as the Astronomy<br />

Picture of the Day in 006 by the<br />

NASA website. This number is indicative<br />

of our potential for creating world-class<br />

astronomical images – a potential that<br />

with increased resources could be expanded<br />

significantly. The most appreciated<br />

image was certainly the new, stunning<br />

mosaic of the Tarantula Nebula (<strong>ESO</strong><br />

Press Photo 50a/06), a 56 million pixel<br />

image obtained with the Wide-Field Imager<br />

on the . -m telescope at La Silla.<br />

The image was voted amongst the ten<br />

best of 006 by a very popular web site.<br />

Other successes were encountered particularly<br />

with images of galaxies, such as<br />

the topsy-turvy one (<strong>ESO</strong> Press Photo<br />

43a/06) or the gigantic dusty potato crisp<br />

(<strong>ESO</strong> Press Photo 17/06), as well as those<br />

of the broken comet (<strong>ESO</strong> Press Photo<br />

15a/06).<br />

Among the most successful press releases,<br />

the prize goes without any doubt<br />

to the discovery through microlensing<br />

of a five-Earth-mass planet, a press release<br />

(<strong>ESO</strong> Science Release 03/06) that<br />

<strong>ESO</strong> Annual Report 006<br />

65


generated huge media attention worldwide.<br />

Other excellent results were obtained<br />

with the press releases on the VLT<br />

being equipped with a laser guide star<br />

(<strong>ESO</strong> Instrument Release 07/06), the discovery<br />

of a trio of Neptune-mass planets<br />

(<strong>ESO</strong> Science Release 18/06), the SIN-<br />

FONI observations of a very remote galaxy<br />

(<strong>ESO</strong> Science Release 31/06) and<br />

<strong>ESO</strong>’s Council decision to go ahead with<br />

a design study for the European Extremely<br />

Large Telescope (<strong>ESO</strong> Organisation<br />

Release 46/06).<br />

Other features which have been very<br />

much welcomed by the media are the<br />

increased use of captivating artistic<br />

imagery as an alternative way of explaining<br />

physical phenomena, and the provision<br />

of video footage that is directly<br />

linked to <strong>ESO</strong> press releases.<br />

With respect to broadcast support and<br />

video production, in 006 we delivered<br />

an average of 11 minutes/day of footage<br />

to TV Channels worldwide, produced<br />

1.5 seconds/day of high-end 3D animations<br />

on technical and scientific topics<br />

and 90 minutes of videos, including six<br />

video newsreels – the equivalent of a<br />

15-minute full film production every two<br />

months. This resulted in some 75 registered<br />

broadcasts about <strong>ESO</strong>. The real<br />

number is likely to be significantly higher,<br />

since the use of <strong>ESO</strong> footage is often not<br />

reported to us.<br />

Provision of high-quality material is clearly<br />

a prerequisite for winning the daily battle<br />

for visibility in the public sphere, but<br />

it is not enough. Exploiting a variety of<br />

diffusion channels and new communication<br />

tools are crucially important. Not<br />

surprisingly, much of this is linked to the<br />

world-wide web. For example, we now<br />

make broadcast material electronically<br />

available for download by TV channels,<br />

giving them the option of almost instant<br />

access to <strong>ESO</strong> news reels. Another aspect<br />

is the web-based public sphere.<br />

This has arguably emerged as one of the<br />

most important ways to reach young<br />

people in particular – beyond the classic<br />

media such as broadsheet newspapers<br />

and conventional TV. These new media<br />

include traditional web pages, blogs,<br />

pod-casts, vodcasts, and other emerging<br />

technologies sometimes described as<br />

‘Web .0’. PAD is taking steps to gain a<br />

66<br />

<strong>ESO</strong> Annual Report 006<br />

<strong>ESO</strong> stand in Paris, France.<br />

foothold in this virtual world. A first experiment<br />

was done for the press release<br />

about the discovery of a five-Earth-mass<br />

exoplanet, when a podcast and a vodcast<br />

was provided. Vodcasts are also<br />

done in connection with Video newsreels,<br />

whenever possible.<br />

The growing importance of the web and<br />

the speed with which it evolves, both<br />

technically and conceptually, creates new<br />

demands on web sites to remain up to<br />

date. Of course, <strong>ESO</strong> cannot turn its back<br />

on this development. Hence, a major effort<br />

has been undertaken during the year<br />

by PAD, in collaboration with other departments,<br />

to develop a new website for<br />

our organisation. This web site, which will<br />

serve as the point of entry into <strong>ESO</strong> for<br />

thousands of users every day will feature<br />

a much more attractive appearance, easier<br />

navigation and a major overhaul of<br />

the content. It is the intention to launch<br />

the new web site in the course of 007.<br />

The web is, of course, not just a diffusion<br />

channel, but also provides an important<br />

source of information regarding the public<br />

awareness of and interest in <strong>ESO</strong>’s activities.<br />

Hence, the increased visibility of<br />

<strong>ESO</strong> in media is mirrored by the growth in<br />

traffic on the <strong>ESO</strong> Outreach site, which<br />

in 006 has reached a mean number of<br />

almost 10 000 visitors/day, a factor of .3<br />

increase from three years ago.<br />

Exhibitions and Events<br />

In spite of the undisputed importance of<br />

new distribution methods and tools, faceto-face<br />

communication of course remains<br />

of crucial value, particularly from the perspective<br />

of a coordinated communication<br />

effort. Exhibitions and events clearly provide<br />

excellent forums for exchange and<br />

communication with key target groups,<br />

such as scientists, media, industry and<br />

policymakers. In 006, PAD organised or<br />

participated in more than 0 events,<br />

involving exhibitions, briefings and VIP<br />

visits – in other words roughly an event<br />

every ½ weeks. This constitutes a<br />

significant increase over the previous<br />

years, both illustrating the growing<br />

importance and visibility of <strong>ESO</strong>, but also<br />

the necessity to enlist wide support for<br />

<strong>ESO</strong>’s ambitious future projects. For<br />

example, on February, PAD in collaboration<br />

with PPARC organised a very<br />

successful press event in London in<br />

connection with this year’s AstroFest at<br />

Kensington Town Hall. The event was a<br />

briefing about <strong>ESO</strong> in general and also<br />

served as a ‘primer’ to a subsequent visit<br />

to <strong>ESO</strong>’s sites in Chile by a group of UK<br />

journalists. About 15 journalists attended<br />

this meeting. Just 11 days hence, a major<br />

press event took place in Madrid on the<br />

occasion of the signing of the agreement<br />

aimed at bringing Spain into <strong>ESO</strong>. Only<br />

10 days later, we took part at the AAAS<br />

meeting in Saint Louis, Missouri. The<br />

AAAS is the world’s largest forum for


science and media contacts, and our<br />

presence at such an event not only<br />

supports <strong>ESO</strong>’s visibility in the USA but<br />

also in Europe, since the meetings attract<br />

large numbers of European journalists.<br />

The AAAS exhibition stand was subsequently<br />

transferred to and assembled at<br />

the SPIE conference in Orlando, Florida,<br />

in May. <strong>ESO</strong> was very strongly represented<br />

at this meeting, illustrating that our<br />

organisation has become a global actor<br />

in the field of astronomy.<br />

Back in Europe, we had a major information<br />

stand at the year’s Salon de la Recherche<br />

et de l’Innovation in Paris in June<br />

and, in the context of the EIROforum<br />

partnership, at the <strong>ESO</strong>F 006 Conference<br />

in Munich. At <strong>ESO</strong>F we also held a<br />

press event about exoplanet research.<br />

In August, at the XXVIth General Assembly<br />

of the International Astronomical Union<br />

in Prague, PAD set up a 60 square<br />

metre exhibition for <strong>ESO</strong> and a somewhat<br />

smaller one, on behalf of ALMA.<br />

The last press event of the year took<br />

place in connection with the ELT conference<br />

in Marseille in late November.<br />

The event was co-organised by PAD and<br />

INSU, and resulted in many media reports,<br />

including ones in all major French<br />

newspapers – Libération devoting three<br />

full pages to the story – and also, for example,<br />

on German radio.<br />

The last exhibition took place in Dublin at<br />

the beginning of December. <strong>ESO</strong> participated<br />

as the ‘guest of honour’ at the<br />

Astro-Expo 006 event, organised at the<br />

Dublin City University (DCU) by the Irish<br />

Astronomy and Space magazine.<br />

Education<br />

One of <strong>ESO</strong>’s major education activities<br />

for pupils is the popular Catch a Star!<br />

contest, carried out in close collaboration<br />

with the EAAE. Students work in teams<br />

or individually, learning about an astronomical<br />

topic and writing a report. During<br />

006 we saw the conclusion of the fourth<br />

iteration of the competition. The contest<br />

is evolving, with its division into three categories.<br />

As an important aim is simply<br />

to encourage an interest in astronomy,<br />

and because we wish to avoid a sense of<br />

elitism, some of the winning projects<br />

were decided by lottery. Nevertheless, to<br />

cater for particularly talented students<br />

who may be budding astronomers, there<br />

were also major prizes to be won. These<br />

prizes, including a trip to the VLT on<br />

Paranal, were awarded by an international<br />

jury. Furthermore, a drawing competition<br />

category was introduced, following<br />

the success of a similar competition as<br />

part of the Venus Transit 004 activities.<br />

For the first time, the contest was also<br />

opened to countries beyond Europe and<br />

Chile. We received a total of 134 written<br />

projects and 60 pieces of artwork from<br />

4 countries across Europe and beyond,<br />

with about 400 students and teachers<br />

taking part.<br />

In November 006 Catch a Star! 2007,<br />

was launched (so named because this<br />

competition will conclude in 007). Building<br />

on lessons learned in the previous<br />

competition, its structure was streamlined<br />

to make it easier to enter, and the webbased<br />

infrastructure for administering it at<br />

<strong>ESO</strong> was greatly improved. The differentiation<br />

in categories has been retained<br />

with Catch a Star! Artists, Catch a Star!<br />

Adventurers and Catch a Star! Researchers.<br />

Over the years, <strong>ESO</strong> has supported<br />

the EAAE summer schools for astronomy<br />

teachers in a number of ways, e.g. by<br />

providing speakers and taking care of<br />

proceedings. This was also the case<br />

in 006, where the summer school took<br />

place on the island of La Palma. Next<br />

year, however, the summer school will<br />

change format and scope, and will be<br />

hosted by <strong>ESO</strong>. The intention is to foster<br />

a stronger interaction between teachers<br />

and active scientists and to bring real<br />

science into the classrooms. Towards the<br />

end of the year, preparations for this<br />

event were underway.<br />

Similar thoughts underpin the wider, targeted<br />

effort to stimulate original, attractive<br />

high-quality science teaching in Europe’s<br />

secondary schools, known as the<br />

EIROforum European Science Teachers’<br />

Initiative (ESTI), in which <strong>ESO</strong> is an active<br />

partner. With its twin pillars, Science on<br />

Stage and Science in School, ESTI is a<br />

unique activity in the world. In the teaching<br />

world it constitutes a completely<br />

innovative approach with a focus on excellence,<br />

market mechanisms, interdisciplinarity<br />

combined with direct links between<br />

teachers and active scientists and,<br />

finally, cross-border collaboration on a<br />

big scale. The most recent Science on<br />

Stage Festival, with about 500 participants<br />

from more than 5 countries, took<br />

place at CERN in November 005; the<br />

next one is scheduled for Easter 007.<br />

Throughout 006, staff members of the<br />

EIROforum organisations, including those<br />

at <strong>ESO</strong>, supported and participated in the<br />

many national events that took place in 9<br />

countries to select the participants to the<br />

European festival. In March 006 the first<br />

issue of Science in School was launched.<br />

Science in School is a new European<br />

science education journal for teachers,<br />

scientists, and others. Issues include<br />

teaching material, articles about cuttingedge<br />

science, interviews, and reviews.<br />

<strong>ESO</strong> is strongly involved with the journal,<br />

contributing astronomy-related articles<br />

and participating in the editorial board.<br />

Videoconference with Paranal on the main square of Munich, Marienplatz, Germany, during the<br />

annual German Wissenschaftssommer.<br />

<strong>ESO</strong> Annual Report 006<br />

67


<strong>ESO</strong> Press Releases<br />

<strong>ESO</strong> Press Photo 01/06 (3 January): <strong>ESO</strong> PR High-<br />

lights in 005<br />

<strong>ESO</strong> 0 /06 Science Release (4 January): Measuring<br />

the Size of a Small, Frost World<br />

<strong>ESO</strong> Science Release 03/06 ( 5 January): It’s Far,<br />

It’s Small, It’s Cool: It’s an Icy Exoplanet!<br />

<strong>ESO</strong> Press Photo 04/06 (7 February): How to Steal a<br />

Million Stars?<br />

<strong>ESO</strong> Organisation News 05/06 (13 February): Spain<br />

to Join <strong>ESO</strong><br />

<strong>ESO</strong> Science Release 06/06 (15 February): The Invis-<br />

ible Galaxies That Could Not Hide<br />

<strong>ESO</strong> Instrument Release 07/06 ( 3 February): Man-<br />

made Star Shines in the Southern Sky<br />

<strong>ESO</strong> Press Photo 08/06 ( 3 February): A Blast To<br />

Chase<br />

<strong>ESO</strong> Science release 09/06 ( 8 February): Cepheids<br />

and their ‘Cocoons’<br />

<strong>ESO</strong> Science release 10/06 (15 March): The Cosmic<br />

Dance of Distant Galaxies<br />

<strong>ESO</strong> Science release 11/06 ( March): The Sun’s<br />

New Exotic Neighbour<br />

<strong>ESO</strong> EIROforum release 1 /06 ( 8 March): Bringing<br />

Science out of the Lab into the Classroom<br />

<strong>ESO</strong> Press Photo 13/06 (7 April): Cosmic Spider is<br />

Good Mother<br />

<strong>ESO</strong> Press Photo 14/06 (14 April): The Great Easter<br />

Egg Hunt: The Void’s Incredible Richness<br />

<strong>ESO</strong> Press Photo 15/06 ( 5 April): The Comet With a<br />

Broken Heart<br />

<strong>ESO</strong> Science Release 16/06 (8 May): Physics in Uni-<br />

verse’s Youth<br />

<strong>ESO</strong> Press Photo 17/06 (11 May): Twin Explosions In<br />

Gigantic Dusty Potato Crisp<br />

<strong>ESO</strong> Science Release 18/06 (18 May): Trio of Nep-<br />

tunes and their Belt<br />

68<br />

<strong>ESO</strong> Annual Report 006<br />

<strong>ESO</strong> Science Release 19/06 (6 June): Do ‘Planemos’<br />

Have Progeny?<br />

<strong>ESO</strong> Press Photo 0/06 (8 June): The Toucan’s<br />

Diamond<br />

<strong>ESO</strong> Organisation News 1/06 (19 June): <strong>ESO</strong> and<br />

Chile: 10 Years of Productive Scientific<br />

Collaboration<br />

<strong>ESO</strong> Press Photo /06 ( 8 June): The Hooked<br />

Galaxy<br />

<strong>ESO</strong> Science Release 3/06 (3 July): Falling Onto the<br />

Dark<br />

<strong>ESO</strong> Instrument Release 4/06 (13 July): Sub-<br />

millimetre Astronomy in Full Swing on Southern<br />

Skies<br />

<strong>ESO</strong> Organisation Release 5/06 (18 July): Towards<br />

a European Extremely Large Telescope<br />

<strong>ESO</strong> Science Release 6/06 ( 1 July): Looking Deep<br />

with Infrared Eyes<br />

<strong>ESO</strong> Press Photo 7/06 ( 6 July): Island Universes<br />

with a Twist<br />

<strong>ESO</strong> Science Release 8/06 (3 August): A Sub-Stellar<br />

Jonah<br />

<strong>ESO</strong> Science Release 9/06 (4 August): The<br />

‘Planemo’ Twins<br />

<strong>ESO</strong> Science Release 30/06 (10 August): Stars Too<br />

Old to be Trusted?<br />

<strong>ESO</strong> Science Release 31/06 (17 August): Far Away<br />

Galaxy Under The Microscope<br />

<strong>ESO</strong> Organisation Release 3 /06 ( 4 August):<br />

Catherine Cesarsky elected President of the<br />

International Astronomical Union and Ian Corbett<br />

elected Assistant General Secretary<br />

<strong>ESO</strong> Science Release 33/06 (31 August): Long-<br />

lasting but Dim Brethren of Cosmic Flashes<br />

<strong>ESO</strong> Science Release 34/06 (1 September): A<br />

“Genetic Study” of the Galaxy<br />

<strong>ESO</strong> Science Release 35/06 ( 0 September): To Be<br />

or Not to Be: Is It All About Spinning?<br />

<strong>ESO</strong> Science Release 36/06 ( 8 September): Watch-<br />

ing How Planets Form<br />

<strong>ESO</strong> Science Release 37/06 ( October): Stellar<br />

Vampires Unmasked<br />

<strong>ESO</strong> Science Release 38/06 (4 October): Increasing<br />

the Odds of the Sweep<br />

<strong>ESO</strong> Science Release 39/06 (19 October): The Star,<br />

the Dwarf and the Planet<br />

<strong>ESO</strong> 40/06 ( October) - Organisation News: Ex-<br />

tremely Large Telescope Project Selected in<br />

ESFRI Roadmap<br />

<strong>ESO</strong> Science Release 41/06 (7 November): Cut from<br />

Different Cloth<br />

<strong>ESO</strong> Organisation News 4 /06 (1 November): Catch<br />

a Star!<br />

<strong>ESO</strong> Press Photo 43/06 (11 November): The Topsy-<br />

Turvy Galaxy<br />

<strong>ESO</strong> Science Release 44/06 (30 November): Asym-<br />

metric Ashes<br />

<strong>ESO</strong> Science Release 45/06 (6 December): Do<br />

Galaxies Follow Darwinian Evolution?<br />

<strong>ESO</strong> Organisation Release 46/06 (11 December):<br />

The Rise of a Giant<br />

<strong>ESO</strong> EIROforum Release 47/06 (14 December):<br />

Magna Carta for Researchers<br />

<strong>ESO</strong> Press Photo 48/06 ( 0 December): It Is Too<br />

Early To Be Santa’s Sleigh, Isn’t It?<br />

<strong>ESO</strong> Science Release 49/06 ( 0 December): The<br />

Dark Side of Nature: the Crime was Almost<br />

Perfect<br />

<strong>ESO</strong> Press Photo 50/06 ( 1 December): Portrait of a<br />

Dramatic Stellar Crib<br />

<strong>ESO</strong> Press Photo 51/06 ( December): Little<br />

Brother Joins the Large Family<br />

<strong>ESO</strong> Organisation Release 5 /06 ( December):<br />

Czech Republic to Become Member of <strong>ESO</strong><br />

<strong>ESO</strong> Press Photo 53/06 ( 4 December): Season’s<br />

Greetings!


The starburst galaxy NGC 908 (FORS/VLT).<br />

<strong>ESO</strong> Annual Report 006<br />

69


Relations with Chile<br />

The year 006 marked an important anniversary:<br />

a decade of the Supplementary<br />

Agreement between the Republic of Chile<br />

and <strong>ESO</strong>, which has allowed the successful<br />

installation of the VLT at Paranal<br />

and strengthened the cooperative<br />

relations between <strong>ESO</strong> and the Chilean<br />

scientific and local communities. To<br />

celebrate this, rectors of Chilean universities<br />

and representatives of the Chilean<br />

Ministry of Foreign Affairs gathered at the<br />

<strong>ESO</strong> offices in Santiago to launch a<br />

commemorative book, “10 Years Exploring<br />

the Universe”. This publication<br />

presented an external, independent overview<br />

of the broad impact of the <strong>ESO</strong>–<br />

Government of Chile Joint Committee,<br />

an annual fund for the development of<br />

astrophysics and scientific culture in the<br />

country, which was established by the<br />

Supplementary Agreement.<br />

In January 006, Dr. Michelle Bachelet<br />

became the first woman in the history of<br />

Chile to be elected President of the<br />

Republic. One of the first international<br />

events in which the new government<br />

participated was the opening of the 006<br />

International Air and Space Fair, held<br />

in Santiago in March. There, more than<br />

150 000 people visited the Space &<br />

Astronomy Pavilion, which presented realistic<br />

scale models of the VLT, ALMA<br />

and the E-ELT as well as a collection of<br />

most impressive astronomical pictures.<br />

The exhibition in the Pavilion was<br />

organised by <strong>ESO</strong> Santiago and the<br />

Planetario USACH.<br />

As a step forward in the well-established<br />

<strong>ESO</strong> astronomical outreach program-<br />

mes in Chile, a new strategic partnership<br />

was launched with the Chilean Ministry of<br />

Education to improve the teaching of<br />

astronomy in primary schools, within the<br />

framework of a national programme<br />

called “Science Education Based on Research”.<br />

<strong>ESO</strong> staff astronomers worked in<br />

collaboration with education specialists<br />

to design a learning module on basic<br />

astronomy, which is currently being<br />

tested by the Ministry of Education in pilot<br />

schools in Santiago and cities close<br />

to the observatory sites.<br />

70<br />

<strong>ESO</strong> Annual Report 006<br />

Another new initiative promoted by <strong>ESO</strong>,<br />

in a joint effort with the French Embassy<br />

in Chile, was the organisation of the first<br />

Cafés Scientifiques, in which adults and<br />

youngsters could freely ask questions of<br />

specialists while enjoying an informal café<br />

atmosphere. Inspirational issues like<br />

exoplanets and the possibility of life in the<br />

Universe attracted the interest of many in<br />

Santiago and Antofagasta.<br />

The Universidad Católica del Norte Astronomy<br />

Institute, in partnership with <strong>ESO</strong><br />

Vitacura, continued an extensive programme<br />

of public lectures and star parties<br />

in Antofagasta, Taltal and San Pedro<br />

de Atacama, the closest neighbours to<br />

Paranal and the ALMA site. Also in Chile’s<br />

Region II, <strong>ESO</strong> supported partial scholarships<br />

of 170 undergraduates studying<br />

at regional universities, in a joint programme<br />

with the Municipality of Taltal.<br />

Near La Silla, the educational agreement<br />

with the Municipality of La Higuera<br />

entered its second year of cooperative<br />

work to support local schools.<br />

<strong>ESO</strong> also played an active role in the<br />

Chilean National Science and Technology<br />

week, in partnership with the “Explora”<br />

Programme of CONICYT. Enthusiastic<br />

young students and teachers visited the<br />

<strong>ESO</strong> stand at the recently opened<br />

Biblioteca de Santiago, and more than<br />

300 schools received copies of a new<br />

documentary produced in-house about<br />

recent science highlights obtained at La<br />

Silla and Paranal.<br />

In the framework of ALMA, the regional<br />

fund financed by <strong>ESO</strong>, AUI and NAOJ<br />

supported several social and educational<br />

projects in San Pedro de Atacama and<br />

Toconao in 006. The only primary school<br />

in the village of San Pedro de Atacama<br />

has, in particular, increased its regular<br />

staff of teachers thanks to this fund.<br />

Besides this, ALMA is contributing to other<br />

areas of education and culture. A site<br />

museum located near the ALMA road was<br />

inaugurated in 006, in the presence<br />

of the Intendenta of Region II, the Mayor<br />

of San Pedro de Atacama, and members<br />

of the local communities. The site<br />

museum – in the form of a reconstruction<br />

of an abandoned estancia – provides<br />

physical evidence of the way of life of<br />

shepherds from the ancient Likan Antai<br />

culture. In order to support the understanding<br />

and protection of the archaeological<br />

heritage in the area, a book edited<br />

by <strong>ESO</strong>, “Footprints in the Desert”, was<br />

published and distributed among all<br />

schools of Region II, teachers, and regional<br />

authorities.<br />

In partnership with <strong>ESO</strong> and ALMA, the<br />

University of Antofagasta and University<br />

of Chile, in collaboration with the University<br />

of Copenhagen, launched a joint<br />

research programme on high-altitude<br />

medicine, taking advantage of the operations<br />

on the Chajnantor plateau at 5 050<br />

metres above sea level. For the very<br />

first time, scientists will have systematic,<br />

detailed statistics on the long-term<br />

reaction of the human body to regular<br />

commuting between sea level and<br />

high sites. This information will help to<br />

solve some intriguing, open questions of<br />

human physiology and high-altitude<br />

illness.<br />

Continuing our promotion of scientific<br />

interaction with the Chilean community,<br />

<strong>ESO</strong> held joint open houses with the<br />

Astronomy Department at the Pontificia<br />

Universidad Católica and Universidad de<br />

Chile with the participation of about 60<br />

young researchers in each of the events.<br />

<strong>ESO</strong> Santiago also sponsored the<br />

international conference on Globular<br />

Clusters organised by Universidad de<br />

Concepción in March, and the Fourth<br />

Advanced Chilean School of Astrophysics<br />

organised by the Pontificia Universidad<br />

Católica de Chile in December.<br />

Several delegations from Europe and all<br />

over the world were hosted in Santiago<br />

and the observatories, in particular three<br />

delegations from China, including that<br />

of the Vice-President of the Academy of<br />

Sciences. All scientific delegations gave<br />

informative seminars on science and<br />

technology in their countries.


Inaugurating the ALMA site museum.<br />

Launch of the “10 Years Exploring the Universe” book.<br />

<strong>ESO</strong> at the 006 International Air and Space Fair.<br />

<strong>ESO</strong> Annual Report 006<br />

71


European Affairs<br />

European Affairs at <strong>ESO</strong> is coordinated<br />

by the Public Affairs Department, but<br />

frequently involves several other departments<br />

within the organisation as well<br />

as external partners, notably the EIROforum.<br />

European Affairs focuses on EUrelated<br />

policy aspects of relevance to<br />

<strong>ESO</strong>. These can manifest themselves in<br />

many ways, which has increased the<br />

scope of <strong>ESO</strong>’s EU-related activities in recent<br />

years. This development is in line<br />

with the overall changes in Europe as<br />

European integration progresses. Hence,<br />

our activities are not necessarily limited<br />

to direct interaction with the primary institutions<br />

of the European Union, such as<br />

the European Commission and the European<br />

Parliament. The main conceptual<br />

frame within which this development<br />

follows is the European Research Area.<br />

The end of 006 marked the termina-<br />

tion of the EU Sixth R&D Framework<br />

Programme (FP6) and the new Seventh<br />

Framework Programme (FP7) was<br />

launched at the beginning of 007.<br />

<strong>ESO</strong>’s FP6 participation can be judged as<br />

very positive and successful, both because<br />

it has allowed us to carry out projects<br />

that could not have been funded<br />

otherwise, and as a vehicle for a more<br />

general interaction with the EU at a time<br />

when the Union is emerging as a new,<br />

but potentially important actor in the field<br />

of setting European science policy. In<br />

this sense, the activities deserve continuation<br />

in the context of FP7. Currently<br />

<strong>ESO</strong> still has 11 running FP6 projects,<br />

most of which will terminate in 008.<br />

From the running FP6 projects the E-ELT<br />

preparatory-phase, the ESTI project<br />

and the VO project are already aiming for<br />

continuation in FP7.<br />

Obviously, the preparation of the Seventh<br />

Framework Programme played an important<br />

role in 006. From <strong>ESO</strong>’s perspective,<br />

the challenge has been to be able to<br />

deal with the first FP7 calls, which were<br />

launched by the Commission in December<br />

006. The complications of this were<br />

linked to the preceding legislative process,<br />

which meant that many important<br />

details still remained unclear by the end<br />

of the year. Other issues were not subject<br />

to the direct political process, but nonetheless<br />

remained important. This was the<br />

case for the E-ELT project, which became<br />

7<br />

<strong>ESO</strong> Annual Report 006<br />

included in the so-called ESFRI-list that<br />

was published by the European Strate-<br />

gy Forum for Research Infrastructures<br />

(ESFRI) in October 006. The ESFRI-list<br />

is a ‘road-map’ describing 35 major research<br />

infrastructure projects that are<br />

deemed to be “Research Infrastructures<br />

of European interest” (from the Competitiveness<br />

Council Conclusions, 5– 6<br />

November 004), and thus pre-qualify for<br />

potential co-funding, however limited,<br />

from the Seventh Framework Programme.<br />

Furthermore, EU member states were<br />

encouraged to develop national roadmaps<br />

that are aligned with the ESFRI-list,<br />

in order to determine funding priorities.<br />

ESFRI was tasked with developing a longterm<br />

European view of the development<br />

of Research Infrastructures of pan-European<br />

interest, covering a wide range of<br />

sciences. In the meantime, another activity<br />

took place, focusing on Astronomy and<br />

Space Sciences. This occurred under<br />

the auspices of ASTRONET (http://www.<br />

astronet-eu.org/), a network comprising<br />

<strong>ESO</strong> Council member Jean-Pierre Swings at the Walloon Space Days.<br />

national funding agencies and <strong>ESO</strong> (with<br />

ESA as an observer), which was set up<br />

under the FP6 ERA-net scheme. <strong>ESO</strong>’s<br />

main responsibility in the ASTRO-NET<br />

programme is to coordinate the development<br />

of a common Science Vision for<br />

European Astronomy in the next 0<br />

years, with NWO in charge of collating<br />

the scientific content from the community.<br />

To prepare for this development and<br />

the follow-up construction in 007– 008<br />

of a prioritised Infrastructure Roadmap<br />

under the responsibility of PPARC, a<br />

web-based census tool has been<br />

developed by <strong>ESO</strong>. It currently contains<br />

all available European national prospectives<br />

and a comprehensive list of existing<br />

and planned medium- to large-scale<br />

infrastructures. The activity picked up<br />

much momentum in the autumn of 006<br />

with the preparation for a dedicated<br />

symposium scheduled to take place<br />

towards the end of January 007 in<br />

Poitiers to discuss and refine the draft<br />

Science Vision released by NWO by<br />

mid-December 006.


As mentioned, <strong>ESO</strong>’s European Affairs activities<br />

are linked to basic policy changes<br />

in Europe that have a bearing on many<br />

parts of society. Since these changes are<br />

a result of constant negotiation between<br />

stakeholders at the European and national<br />

levels, our activities must also be of<br />

a broad nature and involve contacts with<br />

decision-takers beyond the EU system.<br />

Thus, on 15 March, <strong>ESO</strong> was pleased to<br />

host the Education Committee of the<br />

Finnish Parliament, an event which created<br />

a fine opportunity for dialogue<br />

between <strong>ESO</strong> and national policy-makers<br />

as well as a chance to present <strong>ESO</strong>’s future<br />

plans. Further visits by diplomatic<br />

representatives of the UK and Switzerland<br />

occurred in the spring. On 8– 9 March,<br />

<strong>ESO</strong> played a major role in the First<br />

Walloon Space Days, organised by the<br />

Walloon Space Cluster and intended<br />

to become a recurring event focusing on<br />

technologies for astronomy and space sciences,<br />

including R&D policy issues. The<br />

event coincided with the delivery of the<br />

fourth Auxiliary Telescope for the VLTI<br />

and provided a forum for European<br />

companies to meet with <strong>ESO</strong> experts.<br />

Visit by the Education Committee of the Finnish<br />

Parliament.<br />

In November, we welcomed to Paranal<br />

a high-ranking delegation from the Academy<br />

of Sciences of the Czech Republic<br />

(CAS), led by its President, Václav Pačes,<br />

and Jan Palouš, responsible for international<br />

relations of the CAS. The visit was<br />

related to the negotiations regarding the<br />

Czech Republic’s membership of <strong>ESO</strong>.<br />

In December these negotiations were<br />

successfully concluded with the approval<br />

both of the <strong>ESO</strong> Council and the Czech<br />

government, paving the way for the signing<br />

of the agreement on December<br />

and enabling the parliamentary ratification<br />

procedure to be initiated. Whilst a<br />

Czech accession to the <strong>ESO</strong> Convention<br />

is not in itself of formal institutional EU<br />

relevance, it may open possibilities with<br />

respect to EU funding for national Czech<br />

activities that follow in the wake of the<br />

membership – illustrating the complexities,<br />

but also the importance, of <strong>ESO</strong>’s<br />

European Affairs activities.<br />

Finally, within the EIROforum partnership,<br />

three events deserve particular men-<br />

tion. On 15 November, a brainstorming<br />

session was organised between the<br />

EIROforum Directors General and key<br />

Commission officials to discuss long-<br />

term perspectives for the European Research<br />

Area.<br />

On November, EIROforum organised a<br />

‘Breakfast Event’ at the European Parliament<br />

on the topic “Fostering Scientific<br />

Understanding Among Young People –<br />

Reinforcing scientific education initiatives<br />

in Europe”. The event was hosted by<br />

Prof. Jerzy Buzek MEP, and attended by<br />

more than 10 MEPs and a further 0 people<br />

from the European Parliament.<br />

On 13 December, a get-together was organised<br />

between senior staff from the<br />

EIROforum partner organisations and research<br />

attachés of the permanent representations<br />

of the EU member states.<br />

The topic for discussion was how to<br />

achieve synergies between the activities<br />

of the intergovernmental research organisations<br />

and the EU-based actions as<br />

conducted through the Framework Programme.<br />

In 006, the Research Directorate General<br />

of the Commission established a<br />

dedicated unit to facilitate contacts with<br />

the European Intergovernmental Research<br />

Organisations. This is clearly an<br />

expression of the intensification of<br />

the interactions between the EC and the<br />

EIROforum in relation to both project<br />

funding and policy-related interactions.<br />

Delegation from the Czech Academy of Science visits Paranal.<br />

<strong>ESO</strong> Annual Report 006<br />

73


The <strong>ESO</strong> Council in session on 6 December 006.


Council<br />

The Council is <strong>ESO</strong>’s ruling body, which<br />

delegates day-to-day responsibility to<br />

the Executive under <strong>ESO</strong>’s Director General.<br />

In 006, Council held two ordinary<br />

meetings, both in Garching. Committee<br />

of Council met three times, in February in<br />

Berne, Switzerland, in September in Santiago,<br />

Chile, and in October in Munich.<br />

The President of Council, Prof. Richard<br />

Wade, chaired all the meetings.<br />

In 006, Council approved the extension<br />

of the agreement for APEX until 01 , the<br />

agreements for the instrument SPHERE,<br />

and the agreement for a fourth star-separator<br />

for the VLT, including the proposed<br />

guaranteed observing time, in accordance<br />

with the standing rules.<br />

Council received the usual VLT/VLTI, Instrumentation<br />

and ALMA biannual reports,<br />

and the reports from the Chairs of<br />

the Finance Committee, the Scientific<br />

Technical Committee, and Observing Programmes<br />

Committee. Council also endorsed<br />

the document “<strong>ESO</strong> Medium<br />

Range Implementation Plan, 006– 010”<br />

and examined the document “<strong>ESO</strong> Future<br />

Perspectives, 006– 03 ”.<br />

In December, Council adopted a resolution<br />

authorising the move of the E-ELT<br />

project, based on the innovative five-mirror<br />

design, to Phase B (detailed design)<br />

and requested the Executive to provide a<br />

detailed work plan by early 007.<br />

Council had been kept informed about<br />

the developments in the negotiations with<br />

the Czech Republic, and at its meeting<br />

in December adopted the necessary resolutions<br />

on the accession of the Czech<br />

Republic to <strong>ESO</strong> as the 13th member<br />

state from 1 January 007.<br />

The issue of a new Headquarters building<br />

in Garching was still of concern. However,<br />

progress in obtaining the necessary land<br />

could be reported, and Council agreed to<br />

give the Executive freedom to pursue the<br />

most cost-effective solution, including the<br />

option of purchasing the land.<br />

76<br />

<strong>ESO</strong> Annual Report 006<br />

Council dealt with various other issues<br />

and approved the schedule and terms of<br />

reference for the visiting committee.<br />

The visiting committee will come to the<br />

sites in Chile and the Headquarters<br />

in Garching in early 007. New terms of<br />

reference for the Finance Committee<br />

were also approved and the working<br />

group which had been chaired by Dr. Finn<br />

Karlsson was discharged. Council agreed<br />

on a new remit and membership of<br />

the Scientific Strategy Working Group.<br />

The Working Group will meet again in<br />

early 007.<br />

At the meeting in December, Prof.<br />

Richard Wade was re-elected President<br />

of Council for 007 and Dr. Monnik<br />

Desmeth was re-elected Vice-President.<br />

Ms. Rowena Sirey was re-appointed<br />

Chair of the Finance Committee for 007.<br />

Dr. Simon Morris was appointed Chair<br />

of the Observing Programmes Committee<br />

for 007 and Dr. Svetlana Berdyugina<br />

was appointed Vice-Chair.<br />

Dr. Monnik Desmeth was appointed Assessor<br />

to the ALMA Board for 007.<br />

The President of Council and the Director<br />

General are members ex officio.<br />

Council set up an ELT Standing Review<br />

Committee and appointed Prof. Roger<br />

Davies as its Chair. This Committee met<br />

twice in 006 and subsequently reported<br />

to Council.<br />

The Scientific Strategy Working Group<br />

met twice during 006. In January it<br />

met with three representatives of the<br />

European Square Kilometre Array (SKA)<br />

Consortium and the initial findings<br />

were reported on at the meeting of Committee<br />

of Council in February. The working<br />

group met again in April and presented<br />

an interim report to the Council at<br />

its meeting in June. Council requested<br />

the working group to elaborate on some<br />

of the scenarios included in the interim<br />

report and to look into related European<br />

Union issues. In addition, it was decided<br />

to organise a meeting of the Council<br />

members representing the funding agencies.<br />

Council and Committee of Council<br />

2006<br />

President Richard Wade<br />

Belgium Monnik Desmeth<br />

Jean-Pierre Swings<br />

Denmark Jens Viggo Clausen<br />

Henrik Grage<br />

Finland Kalevi Mattila<br />

Pentti Pulkkinen<br />

France Philippe Barré<br />

(until November 006)<br />

Julien Galabru<br />

(as of November 006)<br />

Laurent Vigroux<br />

Germany Ralf Bender<br />

Andreas Drechsler<br />

Italy Vicenzo Dovì<br />

Bruno Marano<br />

The Netherlands P. Tim De Zeeuw<br />

(until September 006)<br />

Piet C. van der Kruit<br />

(as of September 006)<br />

Jan A. C. van de Donk<br />

Portugal Fernando Bello<br />

Teresa Lago<br />

Sweden Claes Fransson<br />

Finn Karlsson<br />

Switzerland Michel Mayor<br />

Martin Steinacher<br />

United Kingdom Gerry Gilmore<br />

Rowena Sirey<br />

The <strong>ESO</strong> Tripartite Group, chaired by Dr.<br />

Ugo Sessi, met in Garching in April and in<br />

October. The issue of the CERN Pension<br />

Fund continued to be a very important<br />

topic. Among the other discussion points<br />

were the changes to the regulations regarding<br />

cost-of-living adjustment, expatriation<br />

allowance, and regarding family/<br />

spouse and related leave. The Tripartite<br />

Group received information concerning<br />

the and the collective bargaining for local<br />

staff in Chile.


The Scientific Technical Committee<br />

The Scientific Technical Committee<br />

2006<br />

José Afonso (P)<br />

Willy Benz (CH)<br />

Joris Blommaert (B)<br />

Jean-Gabriel Cuby (F)<br />

Raffaele Gratton (I)<br />

Lauri Haikala (FIN)<br />

Thomas Michael Herbst (D)<br />

Richard Hills (UK)<br />

Hans Kjeldsen (DK)<br />

Yannick Mellier (F)<br />

Dante Minniti (RCH)<br />

Goran Olofsson (SE)<br />

Patrick Roche (UK)<br />

(Chair for first meeting in 006)<br />

Linda Tacconi (D)<br />

(Chair as of second meeting in 006)<br />

Leonardo Testi (I)<br />

Huib Jan van Langevelde (NL)<br />

Dr. Artemio Herrero participated in the<br />

meetings as the representative of Spain,<br />

first as an observer, and then as the<br />

interim Spanish member of the committee.<br />

Due to personal reasons, Dr. Ikka<br />

Tuominen resigned from the committee<br />

and in the interim was replaced by<br />

Dr. Juhani Huovelin.<br />

006 was an extremely busy year for the<br />

Scientific Technical Committee (STC), in<br />

particular in relation to the European Extremely<br />

Large Telescope (E-ELT). In addition<br />

to the two regular meetings (6 nd<br />

and 64th) in April and October, STC met<br />

for two extra one-day sessions in May<br />

and November. In order to cope with the<br />

wide range of technical projects currently<br />

going on at <strong>ESO</strong>, STC appointed two<br />

additional sub-panels which, in addition<br />

to members of the committee, incorporate<br />

experts from the community. These<br />

are the ELT Science and Engineering<br />

(ESE) sub-panel and the Very Large Telescope<br />

Interferometer (VLTI) sub-panel.<br />

Together with the ALMA European Science<br />

Advisory Committee (ESAC), these<br />

three panels advise STC in all matters<br />

related to these important components of<br />

the <strong>ESO</strong> programme.<br />

STC 62nd Meeting<br />

At its 61st meeting, STC had encouraged<br />

<strong>ESO</strong> to explore ways of achieving the<br />

goal of a large, deep, multi-colour survey,<br />

which would be substantially deeper than<br />

the multipurpose Sloan Digital Sky Survey<br />

whilst also tackling the nature of dark<br />

energy. A detailed report about achieving<br />

this goal with the two VLT survey telescopes<br />

(VST and VISTA) was presented<br />

at the 6 nd meeting that took place on<br />

6 and 7 April. Recognising that VST and<br />

VISTA have the potential to play a leading<br />

role in investigating some of the major<br />

current astronomical questions such as<br />

the nature of dark energy, STC encouraged<br />

the Director General to find ways of<br />

maximising the fraction of time that these<br />

telescopes will dedicate to public surveys.<br />

In particular, STC suggested that<br />

the OPC should award only up to 15 % of<br />

the available <strong>ESO</strong> time with these telescopes<br />

to PI projects (down from the<br />

5 % foreseen originally), and that this<br />

fraction should be considered in scientific<br />

competition with the public surveys<br />

such that any unallocated time should be<br />

returned to public surveys.<br />

A full report by the Director of the La Silla<br />

Paranal Observatory on the activities of<br />

the Interferometry Task Force (ITF) was<br />

presented at the meeting. STC was “enormously<br />

impressed by the heroic efforts”<br />

of the ITF that found solutions to many of<br />

the issues which were limiting the performance<br />

of the VLTI. STC congratulated<br />

ITF and Paranal for these achievements,<br />

and in particular for demonstrating fringe<br />

tracking with FINITO and the Auxiliary<br />

Telescopes.<br />

Following the recommendations at the<br />

60th meeting of STC, proposals for<br />

Phase A studies for three second-generation<br />

VLTI instruments were presented<br />

to the committee: MATISSE, VSI (a merging<br />

of VITRUV and BOBCAT), and GRAVI-<br />

TY. Reassured by the progress in understanding<br />

the performance of the VLTI<br />

infrastructure reported at the meeting,<br />

STC made the following recommendations<br />

regarding second-generation VLTI<br />

instruments:<br />

1. The three consortia should proceed<br />

with Phase A studies for secondgeneration<br />

instruments.<br />

. <strong>ESO</strong> should issue a draft Interface<br />

Control Document (ICD) reflecting the<br />

current state of knowledge of the<br />

VLTI system, which should be updated<br />

during these Phase A studies as ITF<br />

further defines the VLTI performance.<br />

3. Phase A studies should proceed<br />

on timescales consistent with the ITF<br />

investigations. At the end of these<br />

studies, and following the review of the<br />

Phase A instrument studies, a new<br />

definition of the VLTI mission and a new<br />

ICD will be put in place.<br />

Extraordinary STC 63rd meeting<br />

Another STC meeting took place on<br />

11 May. The need for this extraordinary<br />

meeting was dictated by the fast pace<br />

of the E-ELT project established by Coun-<br />

cil in December 005. Extensive reports<br />

by the five ELT working groups and by<br />

the Core ELT Science and Engineering<br />

(Core-ESE) working group were presented<br />

at the meeting. STC welcomed<br />

these reports and congratulated the<br />

committees for the “admirable job of investigating<br />

potential telescope design<br />

and adaptive optics solutions”. STC recommended<br />

to develop an operational<br />

model for the E-ELT, which will inform<br />

telescope and instrument design options.<br />

The committee also recommended that<br />

the highest priority of the ESE should be<br />

to define, together with <strong>ESO</strong> and the community,<br />

“the key science and technology<br />

that Europe will want to pursue”. STC emphasised<br />

that the combination of the<br />

E-ELT and the VLT will be unparalleled in<br />

the world, and recommended <strong>ESO</strong> to devote<br />

a significant effort to identify the<br />

science cases that would uniquely utilise<br />

both the E-ELT and the VLT.<br />

A very important item of the agenda was<br />

the nomination of the ESE committee<br />

that would take over from the Core-ESE<br />

as a sub-panel advising STC in all matters<br />

related to the E-ELT project. The STC<br />

endorsed <strong>ESO</strong>’s proposal that the<br />

members of the Core-ESE continue to<br />

serve in the ESE, and thus formally<br />

nominated Daniel Enard (France), Roland<br />

Gredel (Germany), Colin Cunningham<br />

(UK), Gerard Rousset (France), Marijn<br />

Franx (the Netherlands), and Isobel Hook<br />

<strong>ESO</strong> Annual Report 006<br />

77


(UK) as members of the ESE. As STC<br />

members of the ESE, STC nominated<br />

Jean-Gabriel Cuby (France), Raffaele<br />

Gratton (Italy), Thomas Herbst (Germany),<br />

and Göran Olofsson (Sweden). To<br />

complete the committee, STC proposed<br />

names of experienced astronomers<br />

from the community at large. STC also<br />

appointed Daniel Enard as Chair and<br />

Thomas Herbst as co-Chair.<br />

STC 64th meeting<br />

<strong>ESO</strong> received a partnership offer to participate<br />

in the Large Synoptic Survey<br />

Telescope (LSST) project, which was presented<br />

to STC for advice at its 64th meeting<br />

on 3 and 4 October. While STC<br />

recognised the enormous scientific potential<br />

of LSST, it also recognised that<br />

the financial impact of such partnership<br />

would stress <strong>ESO</strong>, given the on-going<br />

developments for the E-ELT, ALMA, VLTI,<br />

and the VLT. Therefore STC recommended<br />

the creation of a small working<br />

group of <strong>ESO</strong> and STC members to<br />

further explore and identify viable options<br />

for an <strong>ESO</strong> LSST collaboration, and indicated<br />

the terms of reference for this<br />

group. STC proposed Yannick Mellier and<br />

Artemio Herrero as members of the<br />

group with Dante Minniti as an alternative.<br />

For <strong>ESO</strong> the members are Bruno Leibundgut<br />

and Paolo Padovani.<br />

Following a presentation of the status of<br />

the APEX project, and the request of the<br />

partners to extend the APEX agreement<br />

until the end of 01 , STC, encouraged<br />

by the recent progress on commissioning<br />

APEX instruments, and recognising the<br />

potential unique nature of this facility<br />

in the Southern Hemisphere, unanimous-<br />

ly agreed that <strong>ESO</strong> should extend the<br />

APEX agreement as proposed. STC also<br />

strongly supported the development and<br />

expansion of APEX/ALMA synergies,<br />

and in particular, the development of surveys<br />

using the APEX instruments to provide<br />

targets for ALMA (as well as for the<br />

VLT and even the E-ELT).<br />

78<br />

<strong>ESO</strong> Annual Report 006<br />

The STC endorsed the ESAC recommendations<br />

concerning the enhanced capabilities<br />

for Early Science operations of<br />

ALMA, and the optimisation of the time<br />

allocation process by having a single<br />

international Time Allocation Committee.<br />

The ESAC also recommended names<br />

to replace two of its members whose<br />

terms expire at the end of 006 and early<br />

007. STC also recommended that, given<br />

their expertise in sub-millimetric systems,<br />

the ESAC should also be the forum where<br />

APEX matters could be discussed.<br />

Concerning the E-ELT development, STC<br />

fully endorsed the recommendations of<br />

the ESE concerning the importance of retaining<br />

nine science cases for the Design<br />

Reference Mission (DRM) and that three<br />

demonstrator science cases be selected<br />

in the early evaluation by <strong>ESO</strong>. The ESE<br />

also made a number of technical and organisational<br />

recommendations including<br />

a request for a detailed plan for instrument<br />

development and selection, and an<br />

organisation chart of the E-ELT effort<br />

within <strong>ESO</strong>. The ESE lauded the efforts of<br />

the E-ELT Project Office in rapidly advancing<br />

in the study of both the five-mirror<br />

and the Gregorian optical designs,<br />

and recommended that the project office<br />

continue contacts to understand the<br />

potential of segmented secondaries.<br />

The VLTI sub-committee met for the first<br />

time in September 006. While recognising<br />

the progress made in some areas,<br />

especially by the ITF, and that the resources<br />

required for VLTI are both adequate<br />

and necessary, the sub-panel<br />

recommended that the ITF be maintained<br />

and even strengthened with the addition<br />

of one or two persons. The sub-panel<br />

considered that the development of an<br />

AMBER data reduction package within<br />

the framework of the SAMPO project<br />

in the Data Management Division (DMD)<br />

is an asset to the VLTI that should be extended<br />

to all VLTI instruments. The members<br />

of the sub-committee were impressed<br />

by the progress on PRIMA and,<br />

while recognising that PRIMA is well<br />

on track, recommended that the project<br />

establishes contacts with the VLBI community<br />

since they have experience in<br />

solving similar technical problems. These<br />

and other technical recommendations<br />

made by the sub-panel were endorsed by<br />

STC, especially the recommendation of<br />

maintaining the ITF effort.<br />

Extraordinary STC 65th meeting<br />

Developments of the E-ELT and their related<br />

impact on <strong>ESO</strong>’s Medium Range<br />

Implementation Plan (MRIP) prompted a<br />

special meeting of the STC, on 3 November,<br />

to discuss these developments<br />

and make related recommendations<br />

prior to the December meeting of Council.<br />

Noting that the highest priority components<br />

of the <strong>ESO</strong> programme, and especially<br />

the Phase B of the E-ELT project,<br />

are included in the document, STC endorsed<br />

the MRIP presented by <strong>ESO</strong>. It<br />

took note of the fact that the MRIP does<br />

not include initiatives for a next-generation<br />

deep-sky survey. STC also discussed<br />

the document on Long Term Perspectives<br />

(LTP) and noted that it does not include<br />

funding for the La Silla Observatory<br />

beyond 010, indicating that the scientific<br />

impact of this will be evaluated in 007.<br />

STC emphasised the requirement to<br />

deliver the E-ELT on a competitive timescale,<br />

and encouraged Council to seek<br />

extra funds to make this a reality. STC<br />

reaffirmed that the scientific importance<br />

of the VLT and ALMA will not wane in<br />

the era of the E-ELT, and stressed that it<br />

will be critical to maintain these facilities<br />

as world-class even then.<br />

At the meeting, the E-ELT Project Office<br />

presented STC with comprehensive information<br />

on the E-ELT Basic Reference<br />

Design, including a detailed analysis of<br />

the pros and cons of the Gregorian and<br />

five-mirror designs. On the basis of the<br />

evidence acquired from within <strong>ESO</strong> and<br />

from industry so far, STC was convinced<br />

that there are no showstoppers for the


five-mirror option, which they considered<br />

would be the most ambitious project<br />

that <strong>ESO</strong> had thus far endeavoured to<br />

undertake.<br />

The ESE held a special meeting after the<br />

E-ELT conference in Marseille, France,<br />

during which it essentially confirmed the<br />

statements made by STC. In particular,<br />

the ESE considered that a 4 -m aperture<br />

is a good balance between very ambitious<br />

scientific goals, risks, cost, and<br />

schedule, and recommended to adopt<br />

the nominal 4 -m aperture for the E-ELT.<br />

Considering that the Gregorian design<br />

bears as a single high-risk item the large<br />

secondary mirror, for which there is no<br />

mitigation, the ESE recommended that<br />

<strong>ESO</strong> and its governing bodies adopt the<br />

4 -m five-mirror concept as the E-ELT<br />

project baseline and that the project proceeds<br />

to Phase B as soon as possible.<br />

STC fully endorsed the recommendations<br />

of the ESE.<br />

A report on the status of the VST was<br />

presented at the meeting. Gianpaolo<br />

Vettolani, representing INAF, assured STC<br />

that INAF was working together with<br />

<strong>ESO</strong> to enable as quickly as possible the<br />

start of scientific operations of VST on<br />

Paranal. STC recommended that <strong>ESO</strong> engage<br />

fully in the critical design review<br />

of the primary and secondary mirror supports<br />

that will take place in early 007,<br />

and requested that STC be represented<br />

at the review. Noting that the delay in VST<br />

is impacting key components of <strong>ESO</strong>’s<br />

scientific programme, and that completion<br />

of the project is very urgent, STC<br />

urged <strong>ESO</strong> to start immediately a study<br />

of alternative plans or possible back-up<br />

solutions.<br />

Finally, STC endorsed the recommendation<br />

of ESAC concerning the implementation<br />

of a sub-reflector tilt capability for<br />

the European ALMA antennas, noting this<br />

enhancement is a cost-effective means<br />

to regain some of the sensitivity lost by<br />

descoping the project to 50 antennas.<br />

NGC 5917, the ‘Hooked’ Galaxy and its companion<br />

(FORS/VLT).<br />

<strong>ESO</strong> Annual Report 006<br />

79


Finance Committee<br />

80<br />

Finance Committee<br />

2006<br />

Chair Rowena Sirey<br />

Belgium Alain Heyen<br />

Denmark Cecilie Tornøe<br />

Finland Jaana Aalto<br />

France Patricia Laplaud<br />

Germany Marlene Lohkamp-<br />

Himmighofen<br />

Italy Ugo Sessi<br />

The Netherlands Coen J. van Riel<br />

Portugal Fernando Bello<br />

Sweden Sofie Björling<br />

Switzerland Jean-Pierre Ruder<br />

United Kingdom Colin Vincent<br />

In 006 the Finance Committee held two<br />

ordinary meetings. It met in addition<br />

twice in extraordinary sessions. All the<br />

meetings were chaired by Ms. Rowena<br />

Sirey and took place in Garching.<br />

The committee dealt with various financial<br />

issues (annual accounts, budget,<br />

cash-flow situation, financial projections,<br />

member state contributions) and with<br />

personnel issues concerning international<br />

as well as local staff. These subjects were<br />

discussed in detail and recommendations<br />

were made to Council.<br />

Finance Committee approved the awarding<br />

of 15 contracts exceeding 300 000 €<br />

and 31 single-source procurements exceeding<br />

150 000 €. Conditions governing<br />

forthcoming ALMA production contracts<br />

were also approved and information was<br />

received concerning procurement statistics,<br />

forthcoming calls for tenders and<br />

price inquiries.<br />

A major item was the approval of a contract<br />

for the construction of the technical<br />

facilities at the Operation Support Facility<br />

(OSF) site of the ALMA Observatory in<br />

Chile.<br />

The committee received regular progress<br />

reports on the implementation of the ERP<br />

system, and appreciated the outcome of<br />

the external ERP review.<br />

<strong>ESO</strong> Annual Report 006<br />

The Users’ Committee<br />

The Users’ Committee<br />

2006<br />

Belgium Griet Van de Steene<br />

Denmark Uffe Gråe Jørgensen<br />

Finland Merja Tornikoski<br />

France Pascale Jablonka<br />

(Chairwoman)<br />

Germany Jochen Heidt<br />

Italy Bianca Maria Poggianti<br />

The Netherlands Walter Jaffe<br />

Portugal Nuno Cardoso Santos<br />

Sweden Sofia Feltzing<br />

Vice-Chairwoman)<br />

Switzerland Fréderic Courbin<br />

United Kingdom Malcolm Bremer<br />

Chile Wolfgang Gieren<br />

The Users’ Committee (UC) held its annual<br />

meeting on 3 and 4 April. The meeting<br />

was chaired by Pascale Jablonka.<br />

Representatives from <strong>ESO</strong> gave presentations<br />

to the Committee about the<br />

La Silla Paranal Observatory, ALMA, the<br />

proposal submission and time allocation<br />

processes and the revised OPC procedures,<br />

the forthcoming User Portal,<br />

and the SAMPO project for data reduction.<br />

The UC in turn provided feedback<br />

from the users on the usage of <strong>ESO</strong> facilities,<br />

based in part on the outcome of<br />

a survey designed and distributed by the<br />

Committee. The level of satisfaction of the<br />

users with respect to observations carried<br />

out both at the La Silla and Paranal<br />

sites is in general high. Most of the expressed<br />

concerns are related to the diffusion<br />

of information from <strong>ESO</strong> to its<br />

community, in particular about the current<br />

and future status of available instrumentation,<br />

and to the transparency of<br />

the OPC processes. This is reflected in<br />

a number of action items and recommendations<br />

assigned by the UC to <strong>ESO</strong> following<br />

the open and constructive discussion<br />

of these topics. The number of such<br />

action items and recommendations from<br />

005 that could be closed at the 006<br />

meeting, or on which significant progress<br />

had been achieved following corresponding<br />

action by <strong>ESO</strong>, is a testimony to efficiency<br />

of the UC process for improvement<br />

of <strong>ESO</strong>’s service to its user<br />

community in the direction expected by<br />

the latter.<br />

As usual, half a day was devoted to a<br />

‘special topic’, this time the VLT secondgeneration<br />

instruments. Given the nature<br />

of this topic, exceptionally, no frequent<br />

users were invited to contribute. Instead,<br />

presentations were given by <strong>ESO</strong> representatives,<br />

starting with an overview of<br />

the instrumentation under development,<br />

followed by specific talks on the individual<br />

instruments HAWK-I, X-Shooter, KMOS,<br />

MUSE and SPHERE. The subsequent discussion<br />

featured a first exchange of views<br />

about possible additional candidates<br />

for developments to start around 010.<br />

Finally, <strong>ESO</strong> presented a report on the<br />

status of the E-ELT project.<br />

The globular cluster 47Tuc (FORS/VLT).


<strong>ESO</strong> Annual Report 006<br />

81


The Observing Programmes Committee<br />

8<br />

The Observing Programmes Committee<br />

2006<br />

Xavier Barcons<br />

Svetlana Berdyugina (Period 79)<br />

Eric F. Bell<br />

Hermann Böhnhardt<br />

Sven de Rijcke<br />

Hans de Ruiter<br />

Gösta Gahm (Period 79)<br />

Martin Groenewegen (Period78)<br />

Michiel Hogerheijde<br />

Jari Kotilainen<br />

Donald W. Kurtz (Period 79)<br />

Rafael Rebolo Lopez (Period 78)<br />

André Moitinho de Almeida (Vice-chairman)<br />

Simon Morris<br />

Tom Richtler<br />

Daniel Rouan (Period 78)<br />

María Teresa Ruíz (Period 78)<br />

Monica Tosi<br />

Lutz Wisotzki (Chairman)<br />

Sebastian Wolf (Period 79)<br />

In 006, the Observing Programmes<br />

Committee (OPC) held its two annual<br />

meetings in May/June and in November.<br />

While the number of proposals received<br />

for Observing Period 78 (P78: 1 Octo-<br />

ber 006 to 31 March 007), at 8 7, was<br />

somewhat lower than in recent periods,<br />

a new all-time record was hit for Observing<br />

Period 79 (P79: 1 April to 30 September<br />

007), with the submission of 913<br />

proposals. This corresponds primarily<br />

to an increased demand in the ‘Galactic’<br />

scientific areas: interstellar medium, star<br />

formation and planetary systems (OPC<br />

category C ), and stellar evolution (OPC<br />

category D). Indeed, since the introduction<br />

of the current OPC categories for<br />

Period 66 (starting in October 000), the<br />

number of proposals submitted in<br />

categories C and D has nearly doubled,<br />

while this number has remained approximately<br />

constant for the ‘extragalactic’<br />

proposals of categories A (cosmology)<br />

and B (galaxies and galactic nuclei).<br />

In Period 78, the ratio between the requested<br />

time and the available time (the<br />

‘pressure factor’) has risen above 6 on<br />

some of the Unit Telescopes (Antu and<br />

Kueyen) for the first time since the start of<br />

science operations of the VLT in April<br />

1999, while demand for the La Silla telescopes<br />

has decreased by about 10 %<br />

from 005 to 006. The workhorse instrument<br />

FORS , which has been in operation<br />

since early 000, remains extremely<br />

popular: the amount of time that is re-<br />

<strong>ESO</strong> Annual Report 006<br />

quested on it is considerably higher than<br />

on any other VLT instruments. Most<br />

of the latter experience similar demand,<br />

within about 0 % of one another. The<br />

only exception is VISIR: the significantly<br />

lower demand on this instrument can<br />

be attributed to the specific nature of<br />

the science for which it is designed. The<br />

last first-generation VLT instrument,<br />

CRIRES, which was offered to the community<br />

for the first time in Period 79,<br />

was immediately on a par with more established<br />

instruments in terms of the<br />

amount of requested time. Visitor Instruments<br />

were also scheduled at the VLT<br />

in both P78 (DAZLE on Melipal) and P79<br />

(ULTRACAM on Melipal and DAZLE on<br />

Yepun).<br />

As in P75 and P77, joint telescope time<br />

applications for coordinated observations<br />

with the VLT and with the XMM-Newton<br />

X-ray observatory have been invited in<br />

P79. These proposals fall within the framework<br />

of an agreement between <strong>ESO</strong><br />

and ESA for a joint telescope time application<br />

scheme, which aims to take full<br />

advantage of the complementary nature<br />

of ground-based and space-borne observing<br />

facilities. Of the four joint applications<br />

evaluated by <strong>ESO</strong>’s OPC in P79,<br />

one was allocated time on both the VLT<br />

and XMM-Newton telescopes; one of<br />

the nine proposals evaluated by the XMM<br />

Time Allocation Committee was also successful.<br />

In 006, the field of gamma-ray bursts<br />

(GRBs) continued to account for about<br />

half of the successful Target of Opportunity<br />

(ToO) proposals. A large fraction of<br />

the GRB proposals make use of the<br />

Rapid Response Mode (RRM) of the VLT,<br />

with which observation of a transient<br />

event can be automatically started within<br />

minutes of its triggering. The unique<br />

performance of the VLT in this mode,<br />

combined with <strong>ESO</strong>’s policy to allow it to<br />

override both Visitor and Service Mode<br />

observations, have positioned the VLT<br />

and the GRB community of the <strong>ESO</strong><br />

member states at the forefront of this<br />

field of research. We further support the<br />

optimisation of the scientific return of the<br />

GRB programmes carried out at its<br />

observatory sites by inviting the Principal<br />

Investigators (PIs) of the successful<br />

GRB proposals to observational strategy<br />

meetings in Garching twice a year.<br />

Large Programmes<br />

Large Programmes (LPs) are projects requiring<br />

more than 100 hours of observing<br />

time per year over no more than two<br />

years, and that have the potential to lead<br />

to a major advance or breakthrough in<br />

the considered field of study. In P78, the<br />

OPC evaluated 0 LP proposals, and<br />

recommended five of them for implementation.<br />

A sixth proposal, submitted as a<br />

preliminary step towards the construction<br />

of a Visitor Instrument for the NTT, was<br />

also supported. In P79, four of the 15 LP<br />

proposals that had been submitted were<br />

approved. In total, between the start of<br />

VLT science operations in 1999 and 006<br />

(P79), 7 LP proposals that received<br />

favourable evaluation from the OPC were<br />

allocated time on the La Silla Paranal<br />

Observatory telescopes. They cover almost<br />

all current astronomical topics,<br />

from the Solar System to cosmological<br />

studies.


Public Surveys<br />

Surveys provide large, homogeneous<br />

data sets covering a variety of combinations<br />

in the parameter space of wavelength,<br />

depth and sky area. Often surveys<br />

span longer time intervals and have<br />

a broader scope than LPs. From their<br />

databases, large uniformly-treated products<br />

can be generated, which can be<br />

used for a variety of scientific purposes.<br />

For optimal exploitation of the wide-field<br />

telescopes VST and VISTA, <strong>ESO</strong>, recognising<br />

that it does not have the resources<br />

to conduct public surveys on behalf of<br />

its user community, has put in place in<br />

005 a new scheme for the implementation<br />

of such surveys, allowing them to<br />

be treated as a separate category of LPs.<br />

Within this framework, a Public Survey<br />

is understood to be an observing programme<br />

in which the investigators commit<br />

to produce and to make publicly<br />

available, within a defined time, a fully<br />

reduced and scientifically usable data<br />

set that is likely to be of general use to a<br />

broader community of astronomers. Following<br />

recommendations by the STC and<br />

the OPC, 75 % of the <strong>ESO</strong> time on both<br />

VST and VISTA will be devoted to Public<br />

Surveys.<br />

For evaluation of Public Survey proposals,<br />

<strong>ESO</strong> established a Public Survey Panel<br />

(PSP), comprising scientists with expertise<br />

in a broad range of current astronomical<br />

research, with particular emphasis on<br />

the areas that can profit from Public Surveys.<br />

The PSP prime mandate is to review<br />

the proposals and to elaborate a scientifically<br />

and observationally well-coordinated<br />

set of Public Surveys.<br />

Similarly to what had been done in 004<br />

for the VST, a call for VISTA Public Survey<br />

proposals was issued at the beginning<br />

of 006. In response to this call, 15 proposals<br />

were received. The PSP held a<br />

first meeting in Garching on –3 May, at<br />

which it identified those proposals that<br />

indeed qualified as scientifically valid public<br />

surveys. A second meeting took place<br />

in Edinburgh in June, with participation<br />

of the PIs of the selected projects. At this<br />

meeting, possible revisions of these proposals<br />

and the merging of some of them<br />

with the aim of enhancement of the scientific<br />

value of the coordinated set were<br />

discussed, and corresponding recommendations<br />

were issued. This resulted in<br />

the submission of six revised proposals<br />

by the P79 OPC deadline. Following their<br />

evaluation by the PSP at a final meet-<br />

ing in Garching on 31 October, and formal<br />

endorsement of the conclusions of the<br />

PSP by the OPC at its November meeting,<br />

these six programmes were recommended<br />

for execution.<br />

OPC procedures<br />

Starting with P78, the revised OPC procedures<br />

that had been worked out in<br />

005 were implemented. The most significant<br />

changes took place in the areas<br />

of the nomination of the members of the<br />

OPC and of its Panels, and of the duration<br />

of their terms of service. As a result,<br />

as of P78, OPC members are no longer<br />

proposed by the member states. Instead,<br />

members of the OPC and of its panels<br />

are selected on scientific excellence. They<br />

are appointed by <strong>ESO</strong>’s Director Gener-<br />

al based on the recomendations of the<br />

Nominating Committee for the OPC. This<br />

Nominating Committee, which was constituted<br />

and held its first two meetings<br />

in 006, comprises three astronomers<br />

from the community and two <strong>ESO</strong> astronomers.<br />

In order to reduce the burden<br />

of the commitment required from astronomers<br />

who serve on the OPC or on its<br />

panels, and to allow a greater fraction of<br />

the community to participate more actively<br />

in the selection of the observing<br />

programmes, and hence in the definition<br />

of the orientation of European astronomy,<br />

the term of service was reduced to two<br />

years for OPC members (compared to<br />

four years previously) and to one year for<br />

panel members (from two years).<br />

On the other hand, in order to face the<br />

increasing number of proposals in scientific<br />

categories C and D, new sub-<br />

panels were created for each of these<br />

categories. Thus as of P78, the OPC<br />

consisted of a total of 10 sub-panels: two<br />

for each of categories A and B (unchanged)<br />

and three for each of categories<br />

C and D (instead of two until P77).<br />

The beneficial effect of this change on the<br />

workload of the referees of categories C<br />

and D was already offset by P79, where<br />

due to the unexpectedly steep increase in<br />

the numbers of proposals submitted in<br />

these categories, the amount of work of<br />

the members of the corresponding subpanels<br />

was back to its P77 level. Further<br />

steps to be taken to address this extremely<br />

fast evolution were discussed<br />

at the P79 OPC meeting, for implementation<br />

in 007.<br />

<strong>ESO</strong> Annual Report 006<br />

83


Summary of Use of Telescopes by Discipline<br />

The scientific categories referred to in<br />

the following tables correspond to the<br />

OPC classifications given below:<br />

OPC Categories and Sub-Categories<br />

A: Cosmology<br />

A1 Surveys of AGNs and high-z<br />

galaxies<br />

A Identification studies of extragalactic<br />

surveys<br />

A3 Large-scale structure and evolution<br />

A4 Distance scale<br />

A5 Groups and clusters of galaxies<br />

A6 Gravitational lensing<br />

A7 Intervening absorption-line systems<br />

A8 High-redshift galaxies (star formation<br />

and ISM)<br />

B: Galaxies and Galactic Nuclei<br />

B1 Morphology and galactic structure<br />

B Stellar populations<br />

B3 Chemical evolution<br />

B4 Galaxy dynamics<br />

B5 Peculiar/interacting galaxies<br />

84<br />

<strong>ESO</strong> Annual Report 006<br />

B6 Non-thermal processes in galactic<br />

nuclei (incl. QSRs, QSOs, blazars,<br />

Seyfert galaxies, BALs, radio galaxies,<br />

and LINERS)<br />

B7 Thermal processes in galactic nuclei<br />

and starburst galaxies (incl. ultraluminous<br />

IR galaxies, outflows,<br />

emission lines, and spectral energy<br />

distributions)<br />

B8 Central supermassive objects<br />

B9 AGN host galaxies<br />

C: Interstellar Medium, Star Formation<br />

and Planetary Systems<br />

C1 Gas and dust, giant molecular<br />

clouds, cool and hot gas, diffuse<br />

and translucent clouds<br />

C Chemical processes in the interstellar<br />

medium<br />

C3 Star-forming regions, globules,<br />

protostars, H ii regions<br />

C4 Pre-main-sequence stars (massive<br />

PMS stars, Herbig Ae/Be stars and<br />

T Tauri stars)<br />

C5 Outflows, stellar jets, HH objects<br />

C6 Main-sequence stars with circumstellar<br />

matter, early evolution<br />

C7 Young binaries, brown dwarfs,<br />

exosolar planet searches<br />

C8 Solar system (planets, comets,<br />

small bodies)<br />

D: Stellar Evolution<br />

D1 Main-sequence stars<br />

D Post-main-sequence stars, giants,<br />

supergiants, AGB stars, post-AGB<br />

stars<br />

D3 Pulsating stars and stellar activity<br />

D4 Mass loss and winds<br />

D5 Supernovae, pulsars<br />

D6 Planetary nebulae, nova remnants<br />

and supernova remnants<br />

D7 Pre-white dwarfs and white dwarfs,<br />

neutron stars<br />

D8 Evolved binaries, black-hole<br />

candidates, novae, X-ray binaries,<br />

CVs<br />

D9 Gamma-ray and X-ray bursters<br />

D10 OB associations, open and globular<br />

clusters, extragalactic star clusters<br />

D11 Individual stars in external galaxies


85<br />

<strong>ESO</strong> Annual Report 006<br />

Percentage of scheduled observing time/telescope/instrument/discipline<br />

Telescope<br />

. -m<br />

Total<br />

Instrument<br />

FEROS<br />

WFI<br />

B<br />

3<br />

5<br />

8<br />

C<br />

14<br />

6<br />

20<br />

D<br />

45<br />

3<br />

48<br />

Total<br />

66<br />

34<br />

100<br />

A<br />

4<br />

0<br />

24<br />

Scientific Categories<br />

Telescope<br />

3.6-m<br />

Total<br />

Instrument<br />

EFOSC<br />

HARPS<br />

Special3.6<br />

TIMMI<br />

B<br />

7<br />

0<br />

0<br />

9<br />

C<br />

1<br />

51<br />

1<br />

7<br />

60<br />

D<br />

6<br />

1<br />

0<br />

1<br />

19<br />

Total<br />

6<br />

63<br />

1<br />

10<br />

100<br />

A<br />

1<br />

0<br />

0<br />

0<br />

12<br />

Scientific Categories<br />

Telescope<br />

APEX<br />

Total<br />

Instrument<br />

APEX- A<br />

FLASH<br />

B<br />

1<br />

14<br />

C<br />

35<br />

57<br />

D<br />

14<br />

13<br />

27<br />

Total<br />

63<br />

37<br />

100<br />

A<br />

0<br />

2<br />

Scientific Categories<br />

Telescope<br />

NTT<br />

Total<br />

Instrument<br />

EMMI<br />

SOFI<br />

SUSI<br />

SpecialNTT<br />

B<br />

8<br />

5<br />

5<br />

0<br />

18<br />

C<br />

9<br />

4<br />

37<br />

D<br />

1<br />

9<br />

1<br />

1<br />

23<br />

Total<br />

46<br />

43<br />

8<br />

3<br />

100<br />

A<br />

17<br />

5<br />

0<br />

0<br />

22<br />

Scientific Categories<br />

Telescope<br />

UT1<br />

Total<br />

Instrument<br />

FORS<br />

ISAAC<br />

B<br />

17<br />

5<br />

22<br />

C<br />

3<br />

11<br />

14<br />

D<br />

14<br />

1<br />

26<br />

Total<br />

64<br />

36<br />

100<br />

A<br />

30<br />

8<br />

38<br />

Scientific Categories<br />

Telescope<br />

UT3<br />

Total<br />

Instrument<br />

DAZLE<br />

VIMOS<br />

VISIR<br />

B<br />

0<br />

5<br />

27<br />

C<br />

0<br />

4<br />

19<br />

23<br />

D<br />

0<br />

4<br />

4<br />

8<br />

Total<br />

4<br />

68<br />

8<br />

100<br />

A<br />

4<br />

38<br />

0<br />

42<br />

Scientific Categories<br />

Telescope<br />

UT<br />

Total<br />

Instrument<br />

FLAMES<br />

FORS1<br />

UVES<br />

B<br />

8<br />

5<br />

5<br />

18<br />

C<br />

10<br />

5<br />

5<br />

20<br />

D<br />

7<br />

15<br />

17<br />

39<br />

Total<br />

5<br />

41<br />

34<br />

100<br />

A<br />

0<br />

16<br />

7<br />

23<br />

Scientific Categories<br />

Telescope<br />

UT4<br />

Total<br />

Instrument<br />

NACO<br />

SINFONI<br />

B<br />

11<br />

1<br />

32<br />

C<br />

9<br />

31<br />

D<br />

1<br />

4<br />

16<br />

Total<br />

45<br />

55<br />

100<br />

A<br />

0<br />

1<br />

21<br />

Scientific Categories<br />

Telescope<br />

VLTI<br />

Total<br />

Instrument<br />

AMBER<br />

MIDI<br />

B<br />

0<br />

1<br />

1<br />

C<br />

10<br />

13<br />

23<br />

D<br />

11<br />

65<br />

76<br />

Total<br />

1<br />

79<br />

100<br />

A<br />

0<br />

0<br />

0<br />

Scientific Categories


Publications<br />

Publications in refereed journals based on <strong>ESO</strong> data<br />

Ábrahám, P.; Mosoni, L.; Henning, T.; Kóspál, Á.;<br />

Leinert, C.; Quanz, S. P.; Ratzka, T.; First AU-scale<br />

observations of V1647 Orionis with VLTI/MIDI;<br />

A&A 449, L13–L16<br />

Acke, B.; van den Ancker, M. E.; Resolving the disk<br />

rotation of HD 97048 and HD 100546 in the [O i]<br />

6300 Å line: evidence for a giant planet orbiting<br />

HD 100546; A&A 449, 67– 79<br />

Acke, B.; van den Ancker, M. E.; A survey for nano-<br />

diamond features in the 3 micron spectra<br />

of Herbig Ae/Be stars; A&A 457, 171–181<br />

Ádámkovics, M.; de Pater, I.; Hartung, M.;<br />

Eisenhauer, F.; Genzel, R.; Griffith, C. A.; Titan’s<br />

bright spots: Multiband spectroscopic measurement<br />

of surface diversity and hazes; JGRE 111<br />

Aerts, C.; de Cat, P.; de Ridder, J.; van Winckel, H.;<br />

Raskin, G.; Davignon, G.; Uytterhoeven, K.; Multiperiodicity<br />

in the large-amplitude rapidly-rotating<br />

b Cephei star HD 03664; A&A 449, 305–311<br />

Afonso, C.; Glicenstein, J. F.; Gould, A.; Smith, M. C.;<br />

Wagner, R. M.; Albert, J. N.; Andersen, J.; Ansari,<br />

R.; Aubourg, É.; Bareyre, P.; Beaulieu, J. P.; Blanc,<br />

G.; Charlot, X.; Coutures, C.; Ferlet, R.; Fouqué,<br />

P.; Goldman, B.; Graff, D.; Gros, M.; Haissinski, J.;<br />

Hamadache, C.; de Kat, J.; Leguillou, L.; Lesquoy,<br />

É.; Loup, C.; Magneville, C.; Marquette, J. B.;<br />

Maurice, É.; Maury, A.; Milsztajn, A.; Moniez, M.;<br />

Palanque-Delabrouille, N.; Perdereau, O.; Prévot,<br />

L.; Rahal, Y. R.; Rich, J.; Spiro, M.; Tisserand, P.;<br />

Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.;<br />

The OGLE-II event sc5 859: a classical nova outburst?;<br />

A&A 450, 33– 39<br />

Alcalá, J. M.; Spezzi, L.; Frasca, A.; Covino, E.;<br />

Porras, A.; Merín, B.; Persi, P.; The first brown<br />

dwarf with a disk in Chamaeleon II; A&A 453,<br />

L1–L4<br />

Allen, D. M.; Barbuy, B.; Analysis of 6 barium stars.<br />

II. Contributions of s-, r-, and p-processes in the<br />

production of heavy elements; A&A 454, 917–931<br />

Allen, D. M.; Barbuy, B.; Analysis of 6 barium stars.<br />

I. Abundances; A&A 454, 895–915<br />

Allen, P. D.; Driver, S. P.; Graham, A. W.; Cameron,<br />

E.; Liske, J.; de Propris, R.; The Millennium Galaxy<br />

Catalogue: bulge-disc decomposition of 10095<br />

nearby galaxies; MNRAS 371, –18<br />

Alvarez-Candal, A.; Duffard, R.; Lazzaro, D.;<br />

Michtchenko, T.; The inner region of the asteroid<br />

Main Belt: a spectroscopic and dynamic analysis;<br />

A&A 459, 969–976<br />

Alves-Brito, A.; Barbuy, B.; Zoccali, M.; Minniti, D.;<br />

Ortolani, S.; Hill, V.; Renzini, A.; Pasquini, L.; Bica,<br />

E.; Rich, R. M.; Meléndez, J.; Momany, Y.;<br />

VLT-UVES abundance analysis of four giants in<br />

NGC 6553; A&A 460, 69– 76<br />

Andreon, S.; Quintana, H.; Tajer, M.; Galaz, G.;<br />

Surdej, J.; The Butcher-Oemler effect at z ~ 0.35:<br />

a change in perspective; MNRAS 365, 915–9 8<br />

Annibali, F.; Bressan, A.; Rampazzo, R.; Zeilinger, W.<br />

W.; Nearby early-type galaxies with ionized gas.<br />

II. Line-strength indices for 18 additional galaxies;<br />

A&A 445, 79–91<br />

Antonello, E.; Mantegazza, L.; Rainer, M.; Miglio, A.;<br />

Probable nonradial g-mode pulsation in early<br />

A-type stars; A&A 445, L15–L18<br />

Antonello, E.; Fossati, L.; Fugazza, D.; Mantegazza,<br />

L.; Gieren, W.; Variable stars in nearby galaxies.<br />

VII. P-L relation in the BVRI bands of Cepheids in<br />

IC 1613; A&A 445, 901–906<br />

86<br />

<strong>ESO</strong> Annual Report 006<br />

Antonelli, L. A.; Testa, V.; Romano, P.; Guetta, D.;<br />

Torii, K.; D’Elia, V.; Malesani, D.; Chincarini, G.;<br />

Covino, S.; D’Avanzo, P.; Della Valle, M.; Fiore, F.;<br />

Fugazza, D.; Moretti, A.; Stella, L.; Tagliaferri, G.;<br />

Barthelmy, S.; Burrows, D.; Campana, S.; Capalbi,<br />

M.; Cusumano, G.; Gehrels, N.; Giommi, P.;<br />

Lazzati, D.; La Parola, V.; Mangano, V.; Mineo, T.;<br />

Nousek, J.; O’Brien, P. T.; Perri, M.; The multiwavelength<br />

afterglow of GRB 0507 1: a puzzling<br />

rebrightening seen in the optical but not in the<br />

X-ray; A&A 456, 509–515<br />

Argiroffi, C.; Favata, F.; Flaccomio, E.; Maggio, A.;<br />

Micela, G.; Peres, G.; Sciortino, S.; XMM-Newton<br />

survey of two upper Scorpius regions; A&A 459,<br />

199– 13<br />

Arias, J. I.; Barbá, R. H.; Maíz Apellániz, J.; Morrell,<br />

N. I.; Rubio, M.; The infrared Hourglass cluster in<br />

M8; MNRAS 366, 739–757<br />

Asplund, M.; Lambert, D. L.; Nissen, P. E.; Primas, F.;<br />

Smith, V. V.; Lithium Isotopic Abundances in<br />

Metal-poor Halo Stars; ApJ 644, 9– 59<br />

Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg,<br />

E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro,<br />

S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux,<br />

H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett,<br />

K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.;<br />

Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland,<br />

C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R.<br />

S.; Filiol, M.; Gonçalves, A. C.; Goobar, A.; Guide,<br />

D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon,<br />

R.; Mouchet, M.; Mourao, A.; Perlmutter, S.;<br />

Ripoche, P.; Tao, C.; Walton, N.; The Supernova<br />

Legacy Survey: measurement of ΩM, Ω∆ and w<br />

from the first year data set; A&A 447, 31–48<br />

Ausseloos, M.; Aerts, C.; Lefever, K.; Davis, J.;<br />

Harmanec, P.; High-precision elements of doublelined<br />

spectroscopic binaries from combined interferometry<br />

and spectroscopy. Application to the b<br />

Cephei star b Centauri; A&A 455, 59– 69<br />

Bagnulo, S.; Landstreet, J. D.; Mason, E.; Andretta,<br />

V.; Silaj, J.; Wade, G. A.; Searching for links between<br />

magnetic fields and stellar evolution.<br />

I. A survey of magnetic fields in open cluster A-<br />

and B-type stars with FORS1; A&A 450, 777–791<br />

Bagnulo, S.; Boehnhardt, H.; Muinonen, K.;<br />

Kolokolova, L.; Belskaya, I.; Barucci, M. A.;<br />

Exploring the surface properties of transneptunian<br />

objects and Centaurs with polarimetric FORS1/<br />

VLT observations; A&A 450, 1 39–1 48<br />

Bains, I.; Wong, T.; Cunningham, M.; Sparks, P.;<br />

Brisbin, D.; Calisse, P.; Dempsey, J. T.; Deragopian,<br />

G.; Ellingsen, S.; Fulton, B.; Herpin, F.; Jones, P.;<br />

Kouba, Y.; Kramer, C.; Ladd, E. F.; Longmore, S.<br />

N.; McEvoy, J.; Maller, M.; Minier, V.; Mookerjea,<br />

B.; Phillips, C.; Purcell, C. R.; Walsh, A.; Voronkov,<br />

M. A.; Burton, M. G.; Molecular line mapping of<br />

the giant molecular cloud associated with RCW<br />

106 – I. 13CO; MNRAS 367, 1609–16 8<br />

Bamford, S. P.; Aragón-Salamanca, A.; Milvang-<br />

Jensen, B.; The Tully-Fisher relation of distant field<br />

galaxies; MNRAS 366, 308–3 0<br />

Barbuy, B.; Zoccali, M.; Ortolani, S.; Momany, Y.;<br />

Minniti, D.; Hill, V.; Renzini, A.; Rich, R. M.; Bica,<br />

E.; Pasquini, L.; Yadav, R. K. S.; VLT-UVES analysis<br />

of two giants in the bulge metal-poor globular<br />

cluster HP-1. Analysis of two giants in HP-1; A&A<br />

449, 349–358<br />

Barucci, M. A.; Merlin, F.; Dotto, E.; Doressoundiram,<br />

A.; de Bergh, C.; TNO surface ices. Observations<br />

of the TNO 55638 ( 00 VE95; A&A 455, 7 5–730<br />

Bassa, C. G.; Jonker, P. G.; in’t Zand, J. J. M.;<br />

Verbunt, F.; Two new candidate ultra-compact Xray<br />

binaries; A&A 446, L17–L 0<br />

Bassa, C. G.; van Kerkwijk, M. H.; Koester, D.;<br />

Verbunt, F.; The masses of PSR J1911-5958A and<br />

its white dwarf companion; A&A 456, 95–304<br />

Bastian, N.; Emsellem, E.; Kissler-Patig, M.;<br />

Maraston, C.; Young star cluster complexes in<br />

NGC 4038/39. Integral field spectroscopy using<br />

VIMOS-VLT; A&A 445, 471–483<br />

Bastian, N.; Saglia, R. P.; Goudfrooij, P.; Kissler-<br />

Patig, M.; Maraston, C.; Schweizer, F.; Zoccali, M.;<br />

Dynamical mass estimates for two luminous star<br />

clusters in galactic merger remnants; A&A 448,<br />

88–891<br />

Battaglia, G.; Tolstoy, E.; Helmi, A.; Irwin, M. J.;<br />

Letarte, B.; Jablonka, P.; Hill, V.; Venn, K. A.;<br />

Shetrone, M. D.; Arimoto, N.; Primas, F.; Kaufer, A.;<br />

Francois, P.; Szeifert, T.; Abel, T.; Sadakane, K.;<br />

The DART imaging and CaT survey of the Fornax<br />

dwarf spheroidal galaxy; A&A 459, 4 3–440<br />

Baume, G.; Moitinho, A.; Vázquez, R. A.; Solivella,<br />

G.; Carraro, G.; Villanova, S.; NGC 401: a template<br />

of the young population of the Norma-<br />

Cygnus arm in the Third Galactic Quadrant;<br />

MNRAS 367, 1441–1449<br />

Beaulieu, J.-P.; Bennett, D. P.; Fouqué, P.; Williams,<br />

A.; Dominik, M.; Jorgensen, U. G.; Kubas, D.;<br />

Cassan, A.; Coutures, C.; Greenhill, J.; Hill, K.;<br />

Menzies, J.; Sackett, P. D.; Albrow, M.; Brillant, S.;<br />

Caldwell, J. A. R.; Calitz, J. J.; Cook, K. H.;<br />

Corrales, E.; Desort, M.; Dieters, S.; Dominis, D.;<br />

Donatowicz, J.; Hoffman, M.; Kane, S.; Marquette,<br />

J.-B.; Martin, R.; Meintjes, P.; Pollard, K.; Sahu,<br />

K.; Vinter, C.; Wambsganss, J.; Woller, K.; Horne,<br />

K.; Steele, I.; Bramich, D. M.; Burgdorf, M.;<br />

Snodgrass, C.; Bode, M.; Udalski, A.; Szymański,<br />

M. K.; Kubiak, M.; Wie¸ ckowski, T.; Pietrzyński, G.;<br />

Soszyński, I.; Szewczyk, O.; Wyrzykowski, Ł.;<br />

Paczyński, B.; Abe, F.; Bond, I. A.; Britton, T. R.;<br />

Gilmore, A. C.; Hearnshaw, J. B.; Itow, Y.; Kamiya,<br />

K.; Kilmartin, P. M.; Korpela, A. V.; Masuda, K.;<br />

Matsubara, Y.; Motomura, M.; Muraki, Y.;<br />

Nakamura, S.; Okada, C.; Ohnishi, K.; Rattenbury,<br />

N. J.; Sako, T.; Sato, S.; Sasaki, M.; Sekiguchi, T.;<br />

Sullivan, D. J.; Tristram, P. J.; Yock, P. C. M.;<br />

Yoshioka, T.; Discovery of a cool planet of 5.5<br />

Earth masses through gravitational microlensing;<br />

Nature 439, 437–440<br />

Beccari, G.; Ferraro, F. R.; Possenti, A.; Valenti, E.;<br />

Origlia, L.; Rood, R. T.; The Dynamical State and<br />

Blue Straggler Population of the Globular Cluster<br />

NGC 6 66 (M6 ); AJ 131, 551– 560<br />

Beccari, G.; Ferraro, F. R.; Lanzoni, B.; Bellazzini, M.;<br />

A Population of Binaries in the Asymptotic Giant<br />

Branch of 47 Tucanae?; ApJ 65 , L1 1–L1 4<br />

Becker, W.; Kramer, M.; Jessner, A.; Taam, R. E.; Jia,<br />

J. J.; Cheng, K. S.; Mignani, R.; Pellizzoni, A.; de<br />

Luca, A.; Słowikowska, A.; Caraveo, P. A.; A Multiwavelength<br />

Study of the Pulsar PSR B19 9+10<br />

and Its X-Ray Trail; ApJ 645, 14 1–1435


Bedding, T. R.; Butler, R. P.; Carrier, F.; Bouchy, F.;<br />

Brewer, B. J.; Eggenberger, P.; Grundahl, F.;<br />

Kjeldsen, H.; McCarthy, C.; Nielsen, T. B.; Retter,<br />

A.; Tinney, C. G.; Solar-like Oscillations in the<br />

Metal-poor Subgiant b Indi: Constraining the<br />

Mass and Age Using Asteroseismology; ApJ 647,<br />

558–563<br />

Bedregal, A. G.; Aragón-Salamanca, A.; Merrifield,<br />

M. R.; Milvang-Jensen, B.; S0 galaxies in Fornax:<br />

data and kinematics; MNRAS 371, 191 –19 4<br />

Behrend, R.; Bernasconi, L.; Roy, R.; Klotz, A.; Colas,<br />

F.; Antonini, P.; Aoun, R.; Augustesen, K.; Barbotin,<br />

E.; Berger, N.; Berrouachdi, H.; Brochard, E.;<br />

Cazenave, A.; Cavadore, C.; Coloma, J.; Cotrez, V.;<br />

Deconihout, S.; Demeautis, C.; Dorseuil, J.; Dubos,<br />

G.; Durkee, R.; Frappa, E.; Hormuth, F.; Itkonen, T.;<br />

Jacques, C.; Kurtze, L.; Laffont, A.; Lavayssière,<br />

M.; Lecacheux, J.; Leroy, A.; Manzini, F.; Masi, G.;<br />

Matter, D.; Michelsen, R.; Nomen, J.; Oksanen, A.;<br />

Pääkkönen, P.; Peyrot, A.; Pimentel, E.; Pray, D.;<br />

Rinner, C.; Sanchez, S.; Sonnenberg, K.; Sposetti,<br />

S.; Starkey, D.; Stoss, R.; Teng, J.-P.; Vignand, M.;<br />

Waelchli, N.; Four new binary minor planets: (854)<br />

Frostia, (1089) Tama, (1313) Berna, (449 ) Debussy;<br />

A&A 446, 1177–1184<br />

Bellazzini, M.; Correnti, M.; Ferraro, F. R.; Monaco, L.;<br />

Montegriffo, P.; The age of the main population of<br />

the Sagittarius dwarf spheroidal galaxy. Solving<br />

the “M giant conundrum”; A&A 446, L1–L4<br />

Belloche, A.; Parise, B.; van der Tak, F. F. S.; Schilke,<br />

P.; Leurini, S.; Güsten, R.; Nyman, L.-Å.; The evolutionary<br />

state of the southern dense core Chamaeleon-MMS1;<br />

A&A 454, L51–L54<br />

Bellazzini, M.; Newberg, H. J.; Correnti, M.; Ferraro,<br />

F. R.; Monaco, L.; Detection of a population gradient<br />

in the Sagittarius stream; A&A 457, L 1–L 4<br />

Beltrán, M. T.; Brand, J.; Cesaroni, R.; Fontani, F.;<br />

Pezzuto, S.; Testi, L.; Molinari, S.; Search for<br />

massive protostar candidates in the southern<br />

hemisphere. II. Dust continuum emission; A&A<br />

447, 1– 33<br />

Benetti, S.; Cappellaro, E.; Turatto, M.; Taubenberger,<br />

S.; Harutyunyan, A.; Valenti, S.; Supernova 00 ic:<br />

The Collapse of a Stripped-Envelope, Massive<br />

Star in a Dense Medium?; ApJ 653, L1 9–L13<br />

Bennert, N.; Jungwiert, B.; Komossa, S.; Haas, M.;<br />

Chini, R.; Size and properties of the NLR in the<br />

Seyfert- galaxy NGC 1386; A&A 446, 919–93<br />

Bennert, N.; Jungwiert, B.; Komossa, S.; Haas, M.;<br />

Chini, R.; Size and properties of the narrow-line<br />

region in Seyfert- galaxies from spatially-resolved<br />

optical spectroscopy; A&A 456, 953–966<br />

Bennert, N.; Jungwiert, B.; Komossa, S.; Haas, M.;<br />

Chini, R.; Size and properties of the narrow-line<br />

region in Seyfert-1 galaxies from spatially-resolved<br />

optical spectroscopy; A&A 459, 55–69<br />

Bensby, T.; Feltzing, S.; The origin and chemical<br />

evolution of carbon in the Galactic thin and thick<br />

discs; MNRAS 367, 1181–1193<br />

Bergond, G.; Zepf, S. E.; Romanowsky, A. J.;<br />

Sharples, R. M.; Rhode, K. L.; Wide-field kinematics<br />

of globular clusters in the Leo I group; A&A<br />

448, 155–164<br />

Berta, S.; Rubele, S.; Franceschini, A.; Held, E. V.;<br />

Rizzi, L.; Lonsdale, C. J.; Jarrett, T. H.; Rodighiero,<br />

G.; Oliver, S. J.; Dias, J. E.; Buttery, H. J.; Fiore, F.;<br />

La Franca, F.; Puccetti, S.; Fang, F.; Shupe, D.;<br />

Surace, J.; Gruppioni, C.; The <strong>ESO</strong>-Spitzer Imaging<br />

extragalactic Survey (ESIS). I. WFIB, V, R<br />

deep observations of ELAIS-S1 and comparison<br />

to Spitzer and GALEX data; A&A 451, 881–900<br />

Bettoni, D.; Moles, M.; Kjærgaard, P.; Fasano, G.;<br />

Varela, J.; The scaling relation of early-type galaxies<br />

in clusters. II. Spectroscopic data for galaxies<br />

in eight nearby clusters; A&A 45 , 811–817<br />

Bigot, L.; Kervella, P.; Thévenin, F.; Ségransan, D.;<br />

The limb darkening of b Centauri B. Matching 3D<br />

hydrodynamical models with interferometric<br />

measurements; A&A 446, 635–641<br />

Bik, A.; Kaper, L.; Waters, L. B. F. M.; VLT K-band<br />

spectroscopy of massive young stellar objects in<br />

(ultra-)compact HII regions; A&A 455, 561–576<br />

Biller, B. A.; Kasper, M.; Close, L. M.; Brandner, W.;<br />

Kellner, S.; Discovery of a Brown Dwarf Very<br />

Close to the Sun: A Methane-rich Brown Dwarf<br />

Companion to the Low-Mass Star SCR 1845-<br />

6357; ApJ 641, L141–L144<br />

Biver, N.; Bockelée-Morvan, D.; Crovisier, J.; Lis, D.<br />

C.; Moreno, R.; Colom, P.; Henry, F.; Herpin, F.;<br />

Paubert, G.; Womack, M.; Radio wavelength<br />

molecular observations of comets C/1999 T1<br />

(McNaught-Hartley), C/ 001 A (LINEAR), C/ 000<br />

WM1 (LINEAR) and 153P/Ikeya-Zhang; A&A 449,<br />

1 55–1 70<br />

Biviano, A.; Salucci, P.; The radial profiles of the<br />

different mass components in galaxy clusters;<br />

A&A 45 , 75–81<br />

Blondin, S.; Dessart, L.; Leibundgut, B.; Branch, D.;<br />

Höflich, P.; Tonry, J. L.; Matheson, T.; Foley, R. J.;<br />

Chornock, R.; Filippenko, A. V.; Sollerman, J.;<br />

Spyromilio, J.; Kirshner, R. P.; Wood-Vasey, W. M.;<br />

Clocchiatti, A.; Aguilera, C.; Barris, B.; Becker, A.<br />

C.; Challis, P.; Covarrubias, R.; Davis, T. M.;<br />

Garnavich, P.; Hicken, M.; Jha, S.; Krisciunas, K.;<br />

Li, W.; Miceli, A.; Miknaitis, G.; Pignata, G.; Prieto,<br />

J. L.; Rest, A.; Riess, A. G.; Salvo, M. E.; Schmidt,<br />

B. P.; Smith, R. C.; Stubbs, C. W.; Suntzeff, N. B.;<br />

Using Line Profiles to Test the Fraternity of Type Ia<br />

Supernovae at High and Low Redshifts; AJ 131,<br />

1648–1666<br />

Blondel, P. F. C.; Djie, H. R. E. Tjin A.; Modeling of<br />

PMS Ae/Fe stars using UV spectra; A&A 456,<br />

1045–1068<br />

Bondar, A.; Galazutdinov, G.; Patriarchi, P.; Krełowski,<br />

J.; On the Homogeneity of the Extinction Law in<br />

our Galaxy; JKAS 39, 73–80<br />

Borissova, J.; Ivanov, V. D.; Minniti, D.; Geisler, D.;<br />

Discovery of new Milky Way star cluster candidates<br />

in the MASS point source catalog. V.<br />

Follow-up observations of the young stellar cluster<br />

candidates RCW 87, [BDSB 003] 164 and<br />

[DBSB 003] 17 ; A&A 455, 9 3–930<br />

Borissova, J.; Minniti, D.; Rejkuba, M.; Alves, D.;<br />

Properties of RR Lyrae stars in the inner regions<br />

of the Large Magellanic Cloud. II. The extended<br />

sample; A&A 460, 459–466<br />

Bornancini, C. G.; Lambas, D. G.; De Breuck, C.;<br />

Clustering and properties of K-band companion<br />

galaxies around ultrasteep spectrum radio<br />

sources; MNRAS 366, 1067–1074<br />

Boschin, W.; Girardi, M.; Spolaor, M.; Barrena, R.;<br />

Internal dynamics of the radio halo cluster Abell<br />

744; A&A 449, 461–474<br />

Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.;<br />

Franx, M.; Galaxies at z ~ 6: The UV Luminosity<br />

Function and Luminosity Density from 506 HUDF,<br />

HUDF Parallel ACS Field, and GOODS i-Dropouts;<br />

ApJ 653, 53–85<br />

Bouy, H.; Martín, E. L.; Brandner, W.; Zapatero-<br />

Osorio, M. R.; Béjar, V. J. S.; Schirmer, M.;<br />

Huélamo, N.; Ghez, A. M.; Multiplicity of very lowmass<br />

objects in the Upper Scorpius OB association:<br />

a possible wide binary population; A&A<br />

451, 177–186<br />

Bragaglia, A.; Tosi, M.; Carretta, E.; Gratton, R. G.;<br />

Marconi, G.; Pompei, E.; Photometric and spectroscopic<br />

study of the intermediate-age open<br />

cluster NGC 3960; MNRAS 366, 1493–150<br />

Brannigan, E.; Takami, M.; Chrysostomou, A.; Bailey,<br />

J.; On the detection of artefacts in spectroastrometry;<br />

MNRAS 367, 315–3<br />

Brandeker, A.; Jayawardhana, R.; Khavari, P.;<br />

Haisch, K. E., Jr.; Mardones, D.; Deficit of Wide<br />

Binaries in the b Chamaeleontis Young Cluster;<br />

ApJ 65 , 157 –1584<br />

Brandeker, A.; Jayawardhana, R.; Ivanov, V. D.;<br />

Kurtev, R.; Infrared Spectroscopy of the Ultra-<br />

Low-Mass Binary Oph 16 5- 40515; ApJ 653,<br />

L61–L64<br />

Bressan, A.; Falomo, R.; Valdés, J. R.; Rampazzo,<br />

R.; Ongoing Star Formation in the BL Lacertae<br />

Object PKS 005-489; ApJ 645, L101–L104<br />

Bresolin, F.; Pietrzyński, G.; Urbaneja, M. A.; Gieren,<br />

W.; Kudritzki, R.-P.; Venn, K. A.; The Araucaria<br />

Project: VLT Spectra of Blue Supergiants in WLM-<br />

Classification and First Abundances; ApJ 648,<br />

1007–1019<br />

Brookes, M. H.; Best, P. N.; Rengelink, R.; Röttgering,<br />

H. J. A.; CENSORS: A Combined EIS-NVSS<br />

Survey of Radio Sources – II. Infrared imaging and<br />

the K-z relation; MNRAS 366, 1 65–1 88<br />

Brotherton, M. S.; De Breuck, C.; Schaefer, J. J.;<br />

Spectropolarimetry of PKS 0040-005 and the<br />

orientation of broad absorption line quasars;<br />

MNRAS 37 , L58–L6<br />

Brunetto, R.; Barucci, M. A.; Dotto, E.; Strazzulla, G.;<br />

Ion Irradiation of Frozen Methanol, Methane, and<br />

Benzene: Linking to the Colors of Centaurs and<br />

Trans-Neptunian Objects; ApJ 644, 646–650<br />

Burgarella, D.; Pérez-González, P. G.; Tyler, K. D.;<br />

Rieke, G. H.; Buat, V.; Takeuchi, T. T.; Lauger, S.;<br />

Arnouts, S.; Ilbert, O.; Barlow, T. A.; Bianchi, L.;<br />

Lee, Y.-W.; Madore, B. F.; Malina, R. F.; Szalay, A.<br />

S.; Yi, S. K.; Ultraviolet-to-far infrared properties of<br />

Lyman break galaxies and luminous infrared<br />

galaxies at z ~ 1; A&A 450, 69–76<br />

Buson, L. M.; Cappellari, M.; Corsini, E. M.; Held, E.<br />

V.; Lim, J.; Pizzella, A.; NGC 7679: an anomalous,<br />

composite Seyfert 1 galaxy whose X-ray luminous<br />

AGN vanishes at optical wavelengths; A&A 447,<br />

441–451<br />

Canto Martins, B. L.; Lèbre, A.; de Laverny, P.; Melo,<br />

C. H. F.; Do Nascimento, J. D., Jr.; Richard, O.; de<br />

Medeiros, J. R.; S1 4 : a lithium-rich subgiant<br />

star in the open cluster M 67; A&A 451, 993–997<br />

Caputi, K. I.; McLure, R. J.; Dunlop, J. S.; Cirasuolo,<br />

M.; Schael, A. M.; Further constraints on the evolution<br />

of Ks-selected galaxies in the GOODS/<br />

CDFS field; MNRAS 366, 609–6 3<br />

Caputi, K. I.; Dole, H.; Lagache, G.; McLure, R. J.;<br />

Puget, J.-L.; Rieke, G. H.; Dunlop, J. S.; Le Floc’h,<br />

E.; Papovich, C.; Pérez-González, P. G.; Linking<br />

Stellar Mass and Star Formation in Spitzer MIPS<br />

4 μm Galaxies; ApJ 637, 7 7–740<br />

Caputi, K. I.; Dole, H.; Lagache, G.; McLure, R. J.;<br />

Dunlop, J. S.; Puget, J.-L.; Le Floc’h, E.; Pérez-<br />

González, P. G.; The role of the LIRG and ULIRG<br />

phases in the evolution of Ks-selected galaxies;<br />

A&A 454, 143–150<br />

<strong>ESO</strong> Annual Report 006<br />

87


Caratti o Garatti, A.; Giannini, T.; Nisini, B.; Lorenzetti,<br />

D.; H active jets in the near IR as a probe of protostellar<br />

evolution; A&A 449, 1077–1088<br />

Carretta, E.; Abundances in Red Giant Stars of NGC<br />

808 and Correlations between Chemical Anomalies<br />

and Global Parameters in Globular Clusters;<br />

AJ 131, 1766–1783<br />

Carrier, F.; Eggenberger, P.; Asteroseismology of the<br />

visual binary 70 Ophiuchi; A&A 450, 695–699<br />

Carretta, E.; Bragaglia, A.; Gratton, R. G.; Leone, F.;<br />

Recio-Blanco, A.; Lucatello, S.; Na-O anticorrelation<br />

and HB. I. The Na-O anticorrelation in NGC<br />

808; A&A 450, 5 3–533<br />

Carraro, G.; Janes, K. A.; Costa, E.; Méndez, R. A.;<br />

Photometry of seven overlooked open clusters in<br />

the first and fourth Galactic quadrants; MNRAS<br />

368, 1078–1086<br />

Casares, J.; Cornelisse, R.; Steeghs, D.; Charles, P.<br />

A.; Hynes, R. I.; O’Brien, K.; Strohmayer, T. E.;<br />

Detection of the irradiated donor in the LMXBs 4U<br />

1636-536 (=V801 Ara) and 4U 1735-444 (=V9 6<br />

Sco); MNRAS 373, 1 35–1 44<br />

Cassan, A.; Beaulieu, J.-P.; Fouqué, P.; Brillant, S.;<br />

Dominik, M.; Greenhill, J.; Heyrovský, D.; Horne,<br />

K.; Jørgensen, U. G.; Kubas, D.; Stempels, H. C.;<br />

Vinter, C.; Albrow, M. D.; Bennett, D.; Caldwell, J.<br />

A. R.; Calitz, J. J.; Cook, K.; Coutures, C.; Dominis,<br />

D.; Donatowicz, J.; Hill, K.; Hoffman, M.; Kane, S.;<br />

Marquette, J.-B.; Martin, R.; Meintjes, P.; Menzies,<br />

J.; Miller, V. R.; Pollard, K. R.; Sahu, K. C.;<br />

Wambsganss, J.; Williams, A.; Udalski, A.;<br />

Szymański, M. K.; Kubiak, M.; Pietrzyński, G.;<br />

Soszyński, I.; Z˙ ebruń, K.; Szewczyk, O.;<br />

Wyrzykowski, Ł.; OGLE 004-BLG- 54: a K3 III<br />

Galactic bulge giant spatially resolved by a single<br />

microlens; A&A 460, 77– 88<br />

Castanheira, B. G.; Kepler, S. O.; Mullally, F.; Winget,<br />

D. E.; Koester, D.; Voss, B.; Kleinman, S. J.; Nitta,<br />

A.; Eisenstein, D. J.; Napiwotzki, R.; Reimers, D.;<br />

Discovery of eleven new ZZ Ceti stars; A&A 450,<br />

7– 31<br />

Castander, F. J.; Treister, E.; Maza, J.; Gawiser, E.;<br />

CXOCY J 013 .8-3 0144: An Edge-on Spiral<br />

Gravitational Lens; ApJ 65 , 955–96<br />

Catanzaro, G.; Leone, F.; Spectroscopic analysis of<br />

the SB3 system 74Aqr†; MNRAS 373, 330–336<br />

Cescutti, G.; François, P.; Matteucci, F.; Cayrel, R.;<br />

Spite, M.; The chemical evolution of barium and<br />

europium in the Milky Way; A&A 448, 557–569<br />

Chand, H.; Srianand, R.; Petitjean, P.; Aracil, B.;<br />

Quast, R.; Reimers, D.; Variation of the finestructure<br />

constant: very high resolution spectrum<br />

of QSO HE 0515-4414; A&A 451, 45–56<br />

Chaty, S.; Bessolaz, N.; Optical/near-infrared obser-<br />

vations of the black hole candidate XTE J17 0-<br />

318 : from high-soft to low-hard state; A&A 455,<br />

639–644<br />

Chauvin, G.; Lagrange, A.-M.; Udry, S.; Fusco, T.;<br />

Galland, F.; Naef, D.; Beuzit, J.-L.; Mayor, M.;<br />

Probing long-period companions to planetary<br />

hosts. VLT and CFHT near infrared coronographic<br />

imaging surveys; A&A 456, 1165–117<br />

Chemin, L.; Balkowski, C.; Cayatte, V.; Carignan, C.;<br />

Amram, P.; Garrido, O.; Hernandez, O.; Marcelin,<br />

M.; Adami, C.; Boselli, A.; Boulesteix, J.; A Virgo<br />

high-resolution Hb kinematical survey – II. The<br />

Atlas; MNRAS 366, 81 –857<br />

88<br />

<strong>ESO</strong> Annual Report 006<br />

Chen, X. P.; Henning, T.; van Boekel, R.; Grady, C.<br />

A.; VLT/NACO adaptive optics imaging of the<br />

Herbig Ae star HD 100453; A&A 445, 331–335<br />

Chen, Y. Q.; Zhao, G.; The puzzling abundance pattern<br />

of HD134439 and HD134440; MNRAS 370,<br />

091– 096<br />

Chesneau, O.; Collioud, A.; De Marco, O.; Wolf, S.;<br />

Lagadec, E.; Zijlstra, A. A.; Rothkopf, A.; Acker,<br />

A.; Clayton, G. C.; Lopez, B.; A close look into the<br />

carbon disk at the core of the planetary nebula<br />

CPD-56°803 ; A&A 455, 1009–1018<br />

Chini, R.; Hoffmeister, V. H.; Nielbock, M.; Scheyda,<br />

C. M.; Steinacker, J.; Siebenmorgen, R.;<br />

Nürnberger, D.; A Remnant Disk around a Young<br />

Massive Star; ApJ 645, L61–L64<br />

Chiosi, E.; Vallenari, A.; Held, E. V.; Rizzi, L.; Moretti,<br />

A.; Age distribution of young clusters and field<br />

stars in the Small Magellanic Cloud; A&A 45 ,<br />

179–193<br />

Choi, M.; Tang, Y.-W.; Millimeter Imaging of the HH<br />

70 Protostellar Core and Outflow; ApJ 648,<br />

504–509<br />

Clariá, J. J.; Mermilliod, J.-C.; Piatti, A. E.; Parisi, M.<br />

C.; Photometric and Coravel observations of red<br />

giant candidates in three open clusters: membership,<br />

binarity, reddening and metallicity; A&A 453,<br />

91–99<br />

Clayton, G. C.; Kerber, F.; Pirzkal, N.; De Marco, O.;<br />

Crowther, P. A.; Fedrow, J. M.; V605 Aquilae: The<br />

Older Twin of Sakurai’s Object; ApJ 646, L69–L7<br />

Clocchiatti, A.; Schmidt, B. P.; Filippenko, A. V.;<br />

Challis, P.; Coil, A. L.; Covarrubias, R.; Diercks, A.;<br />

Garnavich, P.; Germany, L.; Gilliland, R.; Hogan,<br />

C.; Jha, S.; Kirshner, R. P.; Leibundgut, B.;<br />

Leonard, D.; Li, W.; Matheson, T.; Phillips, M. M.;<br />

Prieto, J. L.; Reiss, D.; Riess, A. G.; Schommer,<br />

R.; Smith, R. C.; Soderberg, A.; Spyromilio, J.;<br />

Stubbs, C.; Suntzeff, N. B.; Tonry, J. L.; Woudt, P.;<br />

Hubble Space Telescope and Ground-based<br />

Observations of Type Ia Supernovae at Redshift<br />

0.5: Cosmological Implications; ApJ 64 , 1– 1<br />

Clowe, D.; Schneider, P.; Aragón-Salamanca, A.;<br />

Bremer, M.; de Lucia, G.; Halliday, C.; Jablonka,<br />

P.; Milvang-Jensen, B.; Pelló, R.; Poggianti, B.;<br />

Rudnick, G.; Saglia, R.; Simard, L.; White, S.;<br />

Zaritsky, D.; Weak lensing mass reconstructions<br />

of the <strong>ESO</strong> Distant Cluster Survey; A&A 451,<br />

395–408<br />

Clowe, D.; Bradač, M.; Gonzalez, A. H.; Markevitch,<br />

M.; Randall, S. W.; Jones, C.; Zaritsky, D.; A Direct<br />

Empirical Proof of the Existence of Dark Matter;<br />

ApJ 648, L109–L113<br />

Cocozza, G.; Ferraro, F. R.; Possenti, A.; D’Amico,<br />

N.; The Puzzling Properties of the Helium White<br />

Dwarf Orbiting the Millisecond Pulsar PSR J1911-<br />

5958A in NGC 675 ; ApJ 641, L1 9–L13<br />

Coe, D.; Benítez, N.; Sánchez, S. F.; Jee, M.;<br />

Bouwens, R.; Ford, H.; Galaxies in the Hubble<br />

Ultra Deep Field. I. Detection, Multiband Photometry,<br />

Photometric Redshifts, and Morphology; AJ<br />

13 , 9 6–959<br />

Combi, J. A.; Ribó, M.; Martí, J.; Chaty, S.; Multi-<br />

wavelength properties of the high-energy bright<br />

Seyfert 1 galaxy IGR J180 7-1455; A&A 458,<br />

761–766<br />

Comerón, F.; Reipurth, B.; A small jet in Chamaeleon<br />

I powered by a low-luminosity source; A&A 458,<br />

L 1–L 4<br />

Coppolani, F.; Petitjean, P.; Stoehr, F.; Rollinde, E.;<br />

Pichon, C.; Colombi, S.; Haehnelt, M. G.; Carswell,<br />

B.; Teyssier, R.; Transverse and longitudinal<br />

correlation functions in the intergalactic medium<br />

from 3 close pairs of high-redshift quasars;<br />

MNRAS 370, 1804–1816<br />

Correia, S.; Zinnecker, H.; Ratzka, T.; Sterzik, M. F.;<br />

A VLT/NACO survey for triple and quadruple systems<br />

among visual pre-main sequence binaries;<br />

A&A 459, 909–9 6<br />

Cortese, L.; Gavazzi, G.; Boselli, A.; Franzetti, P.;<br />

Kennicutt, R. C.; O’Neil, K.; Sakai, S.; Witnessing<br />

galaxy preprocessing in the local Universe: the<br />

case of a star-bursting group falling into Abell<br />

1367; A&A 453, 847–861<br />

Costa, E.; Méndez, R. A.; Jao, W.-C.; Henry, T. J.;<br />

Subasavage, J. P.; Ianna, P. A.; The Solar Neighborhood.<br />

XVI. Parallaxes from CTIOPI: Final Results<br />

from the 1.5 m Telescope Program; AJ 13 ,<br />

1 34–1 47<br />

Covino, S.; Malesani, D.; Israel, G. L.; D’Avanzo, P.;<br />

Antonelli, L. A.; Chincarini, G.; Fugazza, D.;<br />

Conciatore, M. L.; Della Valle, M.; Fiore, F.; Guetta,<br />

D.; Hurley, K.; Lazzati, D.; Stella, L.; Tagliaferri, G.;<br />

Vietri, M.; Campana, S.; Burrows, D. N.; D’Elia, V.;<br />

Filliatre, P.; Gehrels, N.; Goldoni, P.; Melandri, A.;<br />

Mereghetti, S.; Mirabel, I. F.; Moretti, A.; Nousek,<br />

J.; O’Brien, P. T.; Pellizza, L. J.; Perna, R.;<br />

Piranomonte, S.; Romano, P.; Zerbi, F. M.; Optical<br />

emission from GRB 050709: a short/hard GRB in<br />

a star-forming galaxy; A&A 447, L5–L8<br />

Covone, G.; Kneib, J.-P.; Soucail, G.; Richard, J.;<br />

Jullo, E.; Ebeling, H.; VIMOS-IFU survey of z ~ 0.<br />

massive galaxy clusters. I. Observations of the<br />

strong lensing cluster Abell 667; A&A 456,<br />

409–4 0<br />

Covone, G.; Adami, C.; Durret, F.; Kneib, J.-P.; Lima<br />

Neto, G. B.; Slezak, E.; Diffuse light and building<br />

history of the galaxy cluster Abell 667; A&A 460,<br />

381–391<br />

Cowley, C. R.; Wahlgren, G. M.; Abundances of vanadium<br />

and bromine in 3 Centauri A. Additional<br />

odd-Z anomalies; A&A 447, 681–684<br />

Cowley, C. R.; Hubrig, S.; Kamp, I.; An Atlas of K-<br />

Line Spectra for Cool Magnetic CP Stars: The<br />

Wing-Nib Anomaly (WNA); ApJS 163, 393–400<br />

Cowley, C. R.; Hubrig, S.; González, G. F.; Nuñez, N.;<br />

HD 65949: the highest known mercury excess of<br />

any CP star?; A&A 455, L 1–L 4<br />

Cox, N. L. J.; Cordiner, M. A.; Cami, J.; Foing, B. H.;<br />

Sarre, P. J.; Kaper, L.; Ehrenfreund, P.; The Large<br />

Magellanic Cloud: diffuse interstellar bands, atomic<br />

lines and the local environmental conditions; A&A<br />

447, 991–1009<br />

Cresci, G.; Davies, R. I.; Baker, A. J.; Mannucci, F.;<br />

Lehnert, M. D.; Totani, T.; Minowa, Y.; Galaxy morphology<br />

and evolution from SWAN adaptive optics<br />

imaging; A&A 458, 385–396<br />

Crowther, P. A.; Hadfield, L. J.; Reduced Wolf-Rayet<br />

line luminosities at low metallicity; A&A 449,<br />

711–7<br />

Crowther, P. A.; Hadfield, L. J.; Clark, J. S.;<br />

Negueruela, I.; Vacca, W. D.; A census of the<br />

Wolf-Rayet content in Westerlund 1 from nearinfrared<br />

imaging and spectroscopy; MNRAS 37 ,<br />

1407–14 4


Cucciati, O.; Iovino, A.; Marinoni, C.; Ilbert, O.;<br />

Bardelli, S.; Franzetti, P.; Le Fèvre, O.; Pollo, A.;<br />

Zamorani, G.; Cappi, A.; Guzzo, L.; McCracken,<br />

H. J.; Meneux, B.; Scaramella, R.; Scodeggio, M.;<br />

Tresse, L.; Zucca, E.; Bottini, D.; Garilli, B.; Le<br />

Brun, V.; Maccagni, D.; Picat, J. P.; Vettolani, G.;<br />

Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts,<br />

S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini,<br />

T.; Foucaud, S.; Gavignaud, I.; Marano, B.;<br />

Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.;<br />

Pozzetti, L.; Radovich, M.; Bondi, M.; Bongiorno,<br />

A.; Busarello, G.; de La Torre, S.; Gregorini, L.;<br />

Lamareille, F.; Mathez, G.; Mellier, Y.; Merluzzi, P.;<br />

Ripepi, V.; Rizzo, D.; Temporin, S.; Vergani, D.;<br />

The VIMOS VLT Deep Survey: the build-up of the<br />

colour-density relation; A&A 458, 39–5<br />

de Cat, P.; Eyer, L.; Cuypers, J.; Aerts, C.;<br />

Vandenbussche, B.; Uytterhoeven, K.; Reyniers,<br />

K.; Kolenberg, K.; Groenewegen, M.; Raskin, G.;<br />

Maas, T.; Jankov, S.; A spectroscopic study of<br />

southern (candidate) b Doradus stars. I. Time<br />

series analysis; A&A 449, 81– 9<br />

de Martino, D.; Bonnet-Bidaud, J.-M.; Mouchet, M.;<br />

Gänsicke, B. T.; Haberl, F.; Motch, C.; The long<br />

period intermediate polar 1RXS J154814.5-<br />

45 845; A&A 449, 1151–1160<br />

da Silva, L.; Girardi, L.; Pasquini, L.; Setiawan, J.;<br />

von der Lühe, O.; de Medeiros, J. R.; Hatzes, A.;<br />

Döllinger, M. P.; Weiss, A.; Basic physical parameters<br />

of a selected sample of evolved stars; A&A<br />

458, 609–6 3<br />

Daigle, O.; Carignan, C.; Amram, P.; Hernandez, O.;<br />

Chemin, L.; Balkowski, C.; Kennicutt, R.; Hbb<br />

kinematics of the SINGS nearby galaxies surveyb<br />

I; MNRAS 367, 469–51<br />

Dall, T. H.; Santos, N. C.; Arentoft, T.; Bedding, T. R.;<br />

Kjeldsen, H.; Bisectors of the cross-correlation<br />

function applied to stellar spectra. Discriminating<br />

stellar activity, oscillations and planets; A&A 454,<br />

341–348<br />

Damiani, F.; Prisinzano, L.; Micela, G.; Sciortino, S.;<br />

The rich young cluster NGC 6530: a combined Xray-optical-infrared<br />

study; A&A 459, 477–488<br />

Damiani, F.; Micela, G.; Sciortino, S.; Huélamo, N.;<br />

Moitinho, A.; Harnden, F. R., Jr.; Murray, S. S.; The<br />

young star cluster NGC 36 : low-mass population<br />

and initial mass function from a Chandra Xray<br />

observation; A&A 460, 133–144<br />

Dannerbauer, H.; Daddi, E.; Onodera, M.; Kong, X.;<br />

Röttgering, H.; Arimoto, N.; Brusa, M.; Cimatti, A.;<br />

Kurk, J.; Lehnert, M. D.; Mignoli, M.; Renzini, A.;<br />

MAMBO 1. mm Observations of BzK-selected<br />

Star-forming Galaxies at z ~ ; ApJ 637, L5–L8<br />

Dartois, E.; Spectroscopic evidence of grain ice<br />

mantle growth in YSOs. I. CO ice modeling and<br />

limiting cases; A&A 445, 959–970<br />

Dasyra, K. M.; Tacconi, L. J.; Davies, R. I.; Genzel,<br />

R.; Lutz, D.; Naab, T.; Burkert, A.; Veilleux, S.;<br />

Sanders, D. B.; Dynamical Properties of Ultraluminous<br />

Infrared Galaxies. I. Mass Ratio Conditions<br />

for ULIRG Activity in Interacting Pairs; ApJ<br />

638, 745–758<br />

D’Avanzo, P.; Muñoz-Darias, T.; Casares, J.;<br />

Martínez-Pais, I. G.; Campana, S.; A search for<br />

evidence of irradiation in Centaurus X-4 during<br />

quiescence; A&A 460, 57– 60<br />

Davis, C. J.; Nisini, B.; Takami, M.; Pyo, T.-S.; Smith,<br />

M. D.; Whelan, E.; Ray, T. P.; Chrysostomou, A.;<br />

Adaptive-Optics-Assisted Near-Infrared Spectroscopy<br />

of SVS 13 and Its Jet; ApJ 639, 969–974<br />

Davies, R. I.; Thomas, J.; Genzel, R.; Mueller<br />

Sánchez, F.; Tacconi, L. J.; Sternberg, A.;<br />

Eisenhauer, F.; Abuter, R.; Saglia, R.; Bender, R.;<br />

The Star-forming Torus and Stellar Dynamical<br />

Black Hole Mass in the Seyfert 1 Nucleus of NGC<br />

3 7; ApJ 646, 754–773<br />

de Medeiros, J. R.; Silva, J. R. P.; Do Nascimento, J.<br />

D., Jr.; Canto Martins, B. L.; da Silva, L.; Melo, C.;<br />

Burnet, M.; A catalog of rotational and radial velocities<br />

for evolved stars. IV. Metal-poor stars;<br />

A&A 458, 895–898<br />

De Breuck, C.; Klamer, I.; Johnston, H.; Hunstead, R.<br />

W.; Bryant, J.; Rocca-Volmerange, B.; Sadler, E.<br />

M.; A search for distant radio galaxies from<br />

SUMSS and NVSS - II. Optical spectroscopy1;<br />

MNRAS 366, 58–7<br />

Del Principe, M.; Piersimoni, A. M.; Storm, J.;<br />

Caputo, F.; Bono, G.; Stetson, P. B.; Castellani,<br />

M.; Buonanno, R.; Calamida, A.; Corsi, C. E.;<br />

Dall’Ora, M.; Ferraro, I.; Freyhammer, L. M.;<br />

Iannicola, G.; Monelli, M.; Nonino, M.; Pulone, L.;<br />

Ripepi, V.; A Pulsational Distance to b Centauri<br />

Based on Near-Infrared Period-Luminosity Relations<br />

of RR Lyrae Stars; ApJ 65 , 36 –369<br />

de Laverny, P.; Abia, C.; Domínguez, I.; Plez, B.;<br />

Straniero, O.; Wahlin, R.; Eriksson, K.; Jørgensen,<br />

U. G.; Chemical analysis of carbon stars in the<br />

Local Group; A&A 446, 1107–1118<br />

Delbo, M.; Gai, M.; Lattanzi, M. G.; Ligori, S.;<br />

Loreggia, D.; Saba, L.; Cellino, A.; Gandolfi, D.;<br />

Licchelli, D.; Blanco, C.; Cigna, M.; Wittkowski,<br />

M.; MIDI observations of 1459 Magnya: First<br />

attempt of interferometric observations of asteroids<br />

with the VLTI; Icar 181, 618–6<br />

Delgado, C.; FOCUS: a deconvolution method based<br />

on algorithmic complexity; A&A 454, 385–39<br />

Della Valle, M.; Malesani, D.; Bloom, J. S.; Benetti,<br />

S.; Chincarini, G.; D’Avanzo, P.; Foley, R. J.;<br />

Covino, S.; Melandri, A.; Piranomonte, S.;<br />

Tagliaferri, G.; Stella, L.; Gilmozzi, R.; Antonelli, L.<br />

A.; Campana, S.; Chen, H.-W.; Filliatre, P.; Fiore,<br />

F.; Fugazza, D.; Gehrels, N.; Hurley, K.; Mirabel, I.<br />

F.; Pellizza, L. J.; Piro, L.; Prochaska, J. X.; Hypernova<br />

Signatures in the Late Rebrightening of GRB<br />

0505 5A; ApJ 64 , L103–L106<br />

Delsanti, A.; Peixinho, N.; Boehnhardt, H.; Barucci,<br />

A.; Merlin, F.; Doressoundiram, A.; Davies, J. K.;<br />

Near-Infrared Color Properties of Kuiper Belt Objects<br />

and Centaurs: Final Results from the <strong>ESO</strong><br />

Large Program; AJ 131, 1851–1863<br />

de Marchi, G.; Pulone, L.; Paresce, F.; Why is the<br />

mass function of NGC 6 18 flat?; A&A 449,<br />

161–170<br />

de Mello, D. F.; Wadadekar, Y.; Dahlen, T.; Casertano,<br />

S.; Gardner, J. P.; Star-forming Galaxies at Intermediate<br />

Redshifts: Morphology, Ages, and Sizes;<br />

AJ 131, 16– 5<br />

de Ruyter, S.; van Winckel, H.; Maas, T.; Lloyd Evans,<br />

T.; Waters, L. B. F. M.; Dejonghe, H.; Keplerian<br />

discs around post-AGB stars: a common phenomenon?;<br />

A&A 448, 641–653<br />

De Ridder, J.; Arentoft, T.; Kjeldsen, H.; Modelling<br />

space-based high-precision photometry for asteroseismic<br />

applications; MNRAS 365, 595–605<br />

de Ridder, J.; Barban, C.; Carrier, F.; Mazumdar, A.;<br />

Eggenberger, P.; Aerts, C.; Deruyter, S.;<br />

Vanautgaerden, J.; Discovery of solar-like oscillations<br />

in the red giantεOphiuchi; A&A 448, 689–<br />

695<br />

de Rijcke, S.; Buyle, P.; Cannon, J.; Walter, F.;<br />

Lundgren, A.; Michielsen, D.; Dejonghe, H.; APEX<br />

CO(3- ) observations of NGC 68 ; A&A 454,<br />

L111–L114<br />

Deroo, P.; van Winckel, H.; Min, M.; Waters, L. B. F.<br />

M.; Verhoelst, T.; Jaffe, W.; Morel, S.; Paresce, F.;<br />

Richichi, A.; Stee, P.; Wittkowski, M.; Resolving<br />

the compact dusty discs around binary post-AGB<br />

stars using N-band interferometry; A&A 450,<br />

181–19<br />

Desidera, S.; Gratton, R. G.; Lucatello, S.; Claudi, R.<br />

U.; Abundance difference between components<br />

of wide binaries. II. The southern sample; A&A<br />

454, 581–593<br />

Dessauges-Zavadsky, M.; Prochaska, J. X.;<br />

D’Odorico, S.; Calura, F.; Matteucci, F.; A new<br />

comprehensive set of elemental abundances in<br />

DLAs. II. Data analysis and chemical variation<br />

studies; A&A 445, 93–113<br />

Dietrich, J. P.; Miralles, J.-M.; Olsen, L. F.; da Costa,<br />

L.; Schwope, A.; Benoist, C.; Hambaryan, V.;<br />

Mignano, A.; Motch, C.; Rité, C.; Slijkhuis, R.;<br />

Tedds, J.; Vandame, B.; Watson, M. G.; Zaggia,<br />

S.; <strong>ESO</strong> imaging survey: optical follow-up of 1<br />

selected XMM-Newton fields; A&A 449, 837–854<br />

Dobbie, P. D.; Napiwotzki, R.; Lodieu, N.; Burleigh,<br />

M. R.; Barstow, M. A.; Jameson, R. F.; On the<br />

origin of the ultramassive white dwarf GD50;<br />

MNRAS 373, L45<br />

D’Odorico, V.; Viel, M.; Saitta, F.; Cristiani, S.; Bianchi,<br />

S.; Boyle, B.; Lopez, S.; Maza, J.; Outram, P.; Tomography<br />

of the intergalactic medium with Lyb<br />

forests in close QSO pairs; MNRAS 37 ,<br />

1333–1344<br />

Dotto, E.; Fornasier, S.; Barucci, M. A.; Licandro, J.;<br />

Boehnhardt, H.; Hainaut, O.; Marzari, F.; de Bergh,<br />

C.; de Luise, F.; The surface composition of Jupiter<br />

Trojans: Visible and near-infrared survey of dynamical<br />

families; Icar 183, 4 0–434<br />

Dubus, G.; Chaty, S.; Infrared polarimetry of the mi-<br />

croquasars H1743-3 , XTE J1550-564 and GRO<br />

J1655-40; A&A 458, 591–595<br />

Duffau, S.; Zinn, R.; Vivas, A. K.; Carraro, G.; Méndez,<br />

R. A.; Winnick, R.; Gallart, C.; Spectroscopy of<br />

QUEST RR Lyrae Variables: The New Virgo Stellar<br />

Stream; ApJ 636, L97–L100<br />

Dufton, P. L.; Ryans, R. S. I.; Simón-Díaz, S.; Trundle,<br />

C.; Lennon, D. J.; B-type supergiants in the Small<br />

Magellanic Cloud: rotational velocities and implications<br />

for evolutionary models; A&A 451, 603–611<br />

Dufton, P. L.; Smartt, S. J.; Lee, J. K.; Ryans, R. S. I.;<br />

Hunter, I.; Evans, C. J.; Herrero, A.; Trundle, C.;<br />

Lennon, D. J.; Irwin, M. J.; Kaufer, A.; The VLT-<br />

FLAMES survey of massive stars: stellar<br />

parameters and rotational velocities in NGC 3 93,<br />

NGC 4755 and NGC 6611; A&A 457, 65– 80<br />

Dunn, L. P.; Jerjen, H.; First Results from SAPAC:<br />

Toward a Three-dimensional Picture of the Fornax<br />

Cluster Core; AJ 13 , 1384–1395<br />

Dunstone, N. J.; Cameron, A. C.; Barnes, J. R.;<br />

Jardine, M.; The coronal structure of Speedy Mic -<br />

II. Prominence masses and off-disc emission;<br />

MNRAS 373, 1308–13 0<br />

Durant, M.; van Kerkwijk, M. H.; The Infrared Coun-<br />

terpart to the Magnetar 1RXS J170849.0-400910;<br />

ApJ 648, 534–540<br />

<strong>ESO</strong> Annual Report 006<br />

89


Eckart, A.; Baganoff, F. K.; Schödel, R.; Morris, M.;<br />

Genzel, R.; Bower, G. C.; Marrone, D.; Moran, J.<br />

M.; Viehmann, T.; Bautz, M. W.; Brandt, W. N.;<br />

Garmire, G. P.; Ott, T.; Trippe, S.; Ricker, G. R.;<br />

Straubmeier, C.; Roberts, D. A.; Yusef-Zadeh, F.;<br />

Zhao, J. H.; Rao, R.; The flare activity of Sagittarius<br />

A*. New coordinated mm to X-ray observations;<br />

A&A 450, 535–555<br />

Eckart, A.; Schödel, R.; Meyer, L.; Trippe, S.; Ott, T.;<br />

Genzel, R.; Polarimetry of near-infrared flares from<br />

Sagittarius A*; A&A 455, 1–10<br />

Ecuvillon, A.; Israelian, G.; Santos, N. C.; Shchukina,<br />

N. G.; Mayor, M.; Rebolo, R.; Oxygen abundances<br />

in planet-harbouring stars. Comparison of different<br />

abundance indicators; A&A 445, 633–645<br />

Ecuvillon, A.; Israelian, G.; Santos, N. C.; Mayor, M.;<br />

Gilli, G.; Abundance ratios of volatile vs. refractory<br />

elements in planet-harbouring stars: hints of pollution?;<br />

A&A 449, 809–816<br />

Ederoclite, A.; Mason, E.; Della Valle, M.; Gilmozzi,<br />

R.; Williams, R. E.; Germany, L.; Saviane, I.;<br />

Matteucci, F.; Schaefer, B. E.; Walter, F.; Rudy, R.<br />

J.; Lynch, D.; Mazuk, S.; Venturini, C. C.; Puetter,<br />

R. C.; Perry, R. B.; Liller, W.; Rotter, A.; Early<br />

spectral evolution of Nova Sagittarii 004 (V5114<br />

Sagittarii); A&A 459, 875–883<br />

Eggenberger, A.; Mayor, M.; Naef, D.; Pepe, F.;<br />

Queloz, D.; Santos, N. C.; Udry, S.; Lovis, C.; The<br />

CORALIE survey for southern extrasolar planets.<br />

XIV. HD 14 0 b: a long-period planetary companion<br />

in a wide binary; A&A 447, 1159–1163<br />

Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.;<br />

Magain, P.; COSMOGRAIL: the COSmological<br />

MOnitoring of GRAvItational Lenses. III. Redshift<br />

of the lensing galaxy in eight gravitationally lensed<br />

quasars; A&A 451, 759–766<br />

Eigenbrod, A.; Courbin, F.; Dye, S.; Meylan, G.; Sluse,<br />

D.; Vuissoz, C.; Magain, P.; COSMOGRAIL: the<br />

COSmological MOnitoring of GRAvItational Lenses.<br />

II. SDSS J09 4+0 19: the redshift of the lensing<br />

galaxy, the quasar spectral variability and the<br />

Einstein rings; A&A 451, 747–757<br />

Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Turatto,<br />

M.; Mazzali, P. A.; Patat, F.; Meikle, W. P. S.;<br />

Stehle, M.; Pastorello, A.; Pignata, G.; Kotak, R.;<br />

Harutyunyan, A.; Altavilla, G.; Navasardyan, H.;<br />

Qiu, Y.; Salvo, M.; Hillebrandt, W.; Anomalous<br />

extinction behaviour towards the Type Ia SN<br />

003cg; MNRAS 369, 1880–1900<br />

Ellison, S. L.; An efficient technique for pre-selecting<br />

low-redshift damped Lyb systems; MNRAS 368,<br />

335–340<br />

Ellison, S. L.; Vreeswijk, P.; Ledoux, C.; Willis, J. P.;<br />

Jaunsen, A.; Wijers, R. A. M. J.; Smette, A.; Fynbo,<br />

J. P. U.; Møller, P.; Hjorth, J.; Kaufer, A.; Three intervening<br />

galaxy absorbers towards GRB 060418:<br />

faint and dusty?; MNRAS 37 , L38–L4<br />

Elíasdóttir, Á.; Hjorth, J.; Toft, S.; Burud, I.; Paraficz,<br />

D.; Extinction Curves of Lensing Galaxies out to<br />

z = 1; ApJS 166, 443–469<br />

Endl, M.; Cochran, W. D.; Kürster, M.; Paulson, D. B.;<br />

Wittenmyer, R. A.; MacQueen, P. J.; Tull, R. G.;<br />

Exploring the Frequency of Close-in Jovian<br />

Planets around M Dwarfs; ApJ 649, 436–443<br />

Erni, P.; Richter, P.; Ledoux, C.; Petitjean, P.; The<br />

most metal-poor damped Lyman-b system at<br />

z < 3: constraints on early nucleosynthesis; A&A<br />

451, 19– 6<br />

90<br />

<strong>ESO</strong> Annual Report 006<br />

Euchner, F.; Jordan, S.; Beuermann, K.; Reinsch, K.;<br />

Gänsicke, B. T.; Zeeman tomography of magnetic<br />

white dwarfs. III. The 70-80 Megagauss magnetic<br />

field of PG 1015+014; A&A 451, 671–681<br />

Evans, C. J.; Lennon, D. J.; Smartt, S. J.; Trundle, C.;<br />

The VLT-FLAMES survey of massive stars: observations<br />

centered on the Magellanic Cloud clusters<br />

NGC 330, NGC 346, NGC 004, and the N11<br />

region; A&A 456, 6 3–638<br />

Feldmann, R.; Carollo, C. M.; Porciani, C.; Lilly, S. J.;<br />

Capak, P.; Taniguchi, Y.; Fèvre, O. L.; Renzini, A.;<br />

Scoville, N.; Ajiki, M.; Aussel, H.; Contini, T.;<br />

McCracken, H.; Mobasher, B.; Murayama, T.;<br />

Sanders, D.; Sasaki, S.; Scarlata, C.; Scodeggio,<br />

M.; Shioya, Y.; Silverman, J.; Takahashi, M.;<br />

Thompson, D.; Zamorani, G.; The Zurich Extragalactic<br />

Bayesian Redshift Analyzer and its first<br />

application: COSMOS; MNRAS 37 , 565–577<br />

Fernández, J. M.; Minniti, D.; Pietrzynski, G.; Gieren,<br />

W.; Ruíz, M. T.; Zoccali, M.; Udalski, A.; Szeifert,<br />

T.; Millimagnitude Optical Photometry for the<br />

Transiting Planetary Candidate OGLE-TR-109;<br />

ApJ 647, 587–593<br />

Ferraro, F. R.; Sollima, A.; Rood, R. T.; Origlia, L.;<br />

Pancino, E.; Bellazzini, M.; The Pure Noncollisional<br />

Blue Straggler Population in the Giant<br />

Stellar System b Centauri; ApJ 638, 433–439<br />

Ferraro, F. R.; Valenti, E.; Straniero, O.; Origlia, L.; An<br />

Empirical Calibration of the Mixing-Length Parameter<br />

b; ApJ 64 , 5– 9<br />

Ferraro, F. R.; Mucciarelli, A.; Carretta, E.; Origlia, L.;<br />

On the Iron Content of NGC 1978 in the LMC: A<br />

Metal-rich, Chemically Homogeneous Cluster;<br />

ApJ 645, L33–L36<br />

Ferraro, F. R.; Sabbi, E.; Gratton, R.; Piotto, G.;<br />

Lanzoni, B.; Carretta, E.; Rood, R. T.; Sills, A.; Fusi<br />

Pecci, F.; Moehler, S.; Beccari, G.; Lucatello, S.;<br />

Compagni, N.; Discovery of Carbon/Oxygendepleted<br />

Blue Straggler Stars in 47 Tucanae: The<br />

Chemical Signature of a Mass Transfer Formation<br />

Process; ApJ 647, L53–L56<br />

Ferraro, F. R.; Valenti, E.; Origlia, L.; An Empirical<br />

Tool to Derive Metallicity, Reddening, and<br />

Distance for Old Stellar Populations from Near-<br />

Infrared Color-Magnitude Diagrams; ApJ 649,<br />

43– 47<br />

Ferrero, P.; Kann, D. A.; Zeh, A.; Klose, S.; Pian, E.;<br />

Palazzi, E.; Masetti, N.; Hartmann, D. H.;<br />

Sollerman, J.; Deng, J.; Filippenko, A. V.; Greiner,<br />

J.; Hughes, M. A.; Mazzali, P.; Li, W.; Rol, E.;<br />

Smith, R. J.; Tanvir, N. R.; The GRB 060 18/SN<br />

006aj event in the context of other gamma-ray<br />

burst supernovae; A&A 457, 857–864<br />

Feulner, G.; Hopp, U.; Botzler, C. S.; Integrated spe-<br />

cific star formation rates of galaxies, groups, and<br />

clusters: a continuous upper limit with stellar<br />

mass?; A&A 451, L13–L16<br />

Filliatre, P.; Covino, S.; D’Avanzo, P.; de Luca, A.;<br />

Götz, D.; McGlynn, S.; McBreen, S.; Fugazza, D.;<br />

Antonelli, A.; Campana, S.; Chincarini, G.;<br />

Cucchiara, A.; Della Valle, M.; Foley, S.; Goldoni,<br />

P.; Hanlon, L.; Israel, G.; McBreen, B.; Mereghetti,<br />

S.; Stella, L.; Tagliaferri, G.; The weak INTEGRAL<br />

bursts GRB 040 3 and GRB 0406 4: an emerging<br />

population of dark afterglows; A&A 448,<br />

971–98<br />

Fischer, S.; Iserlohe, C.; Zuther, J.; Bertram, T.;<br />

Straubmeier, C.; Schödel, R.; Eckart, A.; Nearby<br />

AGN and their hosts in the near infrared; A&A 45 ,<br />

8 7–837<br />

Flores, H.; Hammer, F.; Puech, M.; Amram, P.;<br />

Balkowski, C.; 3D spectroscopy with VLT/<br />

GIRAFFE. I. The true Tully Fisher relationship at<br />

z ~ 0.6; A&A 455, 107–118<br />

Foellmi, C.; Moffat, A. F. J.; Marchenko, S. V.; The<br />

massive eclipsing LMC Wolf-Rayet binary BAT99-<br />

1 9. I. Orbital parameters, hydrogen content and<br />

spectroscopic characteristics; A&A 447, 667-680<br />

Foellmi, C.; Depagne, E.; Dall, T. H.; Mirabel, I. F.; On<br />

the distance of GRO J1655-40; A&A 457, 49- 55<br />

Foley, S.; Watson, D.; Gorosabel, J.; Fynbo, J. P. U.;<br />

Sollerman, J.; McGlynn, S.; McBreen, B.; Hjorth,<br />

J.; The galaxies in the field of the nearby GRB<br />

9804 5/SN 1998bw; A&A 447, 891–895<br />

Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.;<br />

Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.;<br />

Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.;<br />

Gallozzi, S.; The Galaxy mass function up to z = 4<br />

in the GOODS-MUSIC sample: into the epoch of<br />

formation of massive galaxies; A&A 459, 745–757<br />

Fornasier, S.; Belskaya, I.; Fulchignoni, M.; Barucci,<br />

M. A.; Barbieri, C.; First albedo determination of<br />

867 Steins, target of the Rosetta mission; A&A<br />

449, L9–L1<br />

Franceschini, A.; Rodighiero, G.; Cassata, P.; Berta,<br />

S.; Vaccari, M.; Nonino, M.; Vanzella, E.;<br />

Hatziminaoglou, E.; Antichi, J.; Cristiani, S.; Cosmic<br />

evolution of the galaxy’s mass and luminosity<br />

functions by morphological type from multiwavelength<br />

data in the CDF-South; A&A 453, 397–4 1<br />

Francis, P. J.; McDonnell, S.; Fluorescent Lyman b<br />

emission from gas near a QSO at redshift 4. 8;<br />

MNRAS 370, 137 –1378<br />

Frebel, A.; Christlieb, N.; Norris, J. E.; Aoki, W.;<br />

Asplund, M.; The Oxygen Abundance of HE 13 7-<br />

3 6; ApJ 638, L17–L 0<br />

Frebel, A.; Christlieb, N.; Norris, J. E.; Beers, T. C.;<br />

Bessell, M. S.; Rhee, J.; Fechner, C.; Marsteller,<br />

B.; Rossi, S.; Thom, C.; Wisotzki, L.; Reimers, D.;<br />

Bright Metal-poor Stars from the Hamburg/<strong>ESO</strong><br />

Survey. I. Selection and Follow-up Observations<br />

from 3 9 Fields; ApJ 65 , 1585–1603<br />

Frémat, Y.; Neiner, C.; Hubert, A.-M.; Floquet, M.;<br />

Zorec, J.; Janot-Pacheco, E.; Renan de Medeiros,<br />

J.; Fundamental parameters of Be stars located in<br />

the seismology fields of COROT; A&A 451,<br />

1053–1063<br />

Della Valle, M.; Chincarini, G.; Panagia, N.; Tagliaferri,<br />

G.; Malesani, D.; Testa, V.; Fugazza, D.; Campana,<br />

S.; Covino, S.; Mangano, V.; Antonelli, L. A.;<br />

D’Avanzo, P.; Hurley, K.; Mirabel, I. F.; Pellizza, L.<br />

J.; Piranomonte, S.; Stella, L.; An enigmatic longlasting<br />

b-ray burst not accompanied by a bright<br />

supernova; Nature 444, 1050–105<br />

Fynbo, J. P. U.; Watson, D.; Thöne, C. C.; Sollerman,<br />

J.; Bloom, J. S.; Davis, T. M.; Hjorth, J.; Jakobsson,<br />

P.; Jørgensen, U. G.; Graham, J. F.; Fruchter, A.<br />

S.; Bersier, D.; Kewley, L.; Cassan, A.; Castro<br />

Cerón, J. M.; Foley, S.; Gorosabel, J.; Hinse, T. C.;<br />

Horne, K. D.; Jensen, B. L.; Klose, S.; Kocevski,<br />

D.; Marquette, J.-B.; Perley, D.; Ramirez-Ruiz, E.;<br />

Stritzinger, M. D.; Vreeswijk, P. M.; Wijers, R. A.<br />

M.; Woller, K. G.; Xu, D.; Zub, M.; No supernovae<br />

associated with two long-duration b-ray bursts;<br />

Nature 444, 1047–1049<br />

Förster Schreiber, N. M.; Genzel, R.; Lehnert, M. D.;<br />

Bouché, N.; Verma, A.; Erb, D. K.; Shapley, A. E.;<br />

Steidel, C. C.; Davies, R.; Lutz, D.; Nesvadba, N.;<br />

Tacconi, L. J.; Eisenhauer, F.; Abuter, R.; Gilbert,<br />

A.; Gillessen, S.; Sternberg, A.; SINFONI Integral<br />

Field Spectroscopy of z ~ UV-selected Galaxies:<br />

Rotation Curves and Dynamical Evolution; ApJ<br />

645, 106 –1075


Förster Schreiber, N. M.; Franx, M.; Labbé, I.;<br />

Rudnick, G.; van Dokkum, P. G.; Illingworth, G. D.;<br />

Kuijken, K.; Moorwood, A. F. M.; Rix, H.-W.;<br />

Röttgering, H.; van der Werf, P.; Faint Infrared<br />

Extragalactic Survey: Data and Source Catalog of<br />

the MS 1054-03 Field; AJ 131, 1891–1913<br />

Gabasch, A.; Hopp, U.; Feulner, G.; Bender, R.; Seitz,<br />

S.; Saglia, R. P.; Snigula, J.; Drory, N.; Appenzeller,<br />

I.; Heidt, J.; Mehlert, D.; Noll, S.; Böhm, A.;<br />

Jäger, K.; Ziegler, B.; The evolution of the luminosity<br />

functions in the FORS deep field from low to<br />

high redshift. II. The red bands; A&A 448, 101–1 1<br />

Gabel, J. R.; Arav, N.; Kim, T.-S.; The AGN Outflow in<br />

the HDF-S Target QSO J 33-606 from a High-<br />

Resolution VLT UVES Spectrum; ApJ 646, 74 –753<br />

Gamen, R.; Gosset, E.; Morrell, N.; Niemela, V.; Sana,<br />

H.; Nazé, Y.; Rauw, G.; Barbá, R.; Solivella, G.; The<br />

first orbital solution for the massive colliding-wind<br />

binary HD 9316 (bWR 5); A&A 460, 777–78<br />

García Pérez, A. E.; Primas, F.; Li and Be depletion in<br />

metal-poor subgiants; A&A 447, 99–310<br />

García-Rojas, J.; Esteban, C.; Peimbert, M.; Costado,<br />

M. T.; Rodríguez, M.; Peimbert, A.; Ruiz, M. T.;<br />

Faint emission lines in the Galactic H ii regions M16,<br />

M 0 and NGC 3603; MNRAS 368, 53– 79<br />

García-Hernández, D. A.; Manchado, A.; García-<br />

Lario, P.; Cañete, A. B.; Acosta-Pulido, J. A.;<br />

García, A. M.; Revealing the Mid-Infrared Emission<br />

Structure of IRAS 16594-4656 and IRAS 070 7-<br />

7934; ApJ 640, 8 9–841<br />

García Pérez, A. E.; Asplund, M.; Primas, F.; Nissen,<br />

P. E.; Gustafsson, B.; Oxygen abundances in<br />

metal-poor subgiants as determined from [O i], O i<br />

and OH lines; A&A 451, 6 1–64<br />

García-Hernández, D. A.; Abia, C.; Manchado, A.;<br />

García-Lario, P.; High resolution optical spectroscopy<br />

of IRAS 094 5-6040 (=GLMP 60); A&A<br />

45 , 1049–105<br />

Garcia Lopez, R.; Natta, A.; Testi, L.; Habart, E.;<br />

Accretion rates in Herbig Ae stars; A&A 459,<br />

837–84<br />

García-Hernández, D. A.; García-Lario, P.; Plez, B.;<br />

D’Antona, F.; Manchado, A.; Trigo-Rodríguez, J.<br />

M.; Rubidium-Rich Asymptotic Giant Branch Stars;<br />

Sci 314, 1751<br />

Gatti, T.; Testi, L.; Natta, A.; Randich, S.; Muzerolle, J.;<br />

Accretion in b Ophiuchus brown dwarfs: infrared<br />

hydrogen line ratios; A&A 460, 547–553<br />

Gavignaud, I.; Bongiorno, A.; Paltani, S.; Mathez, G.;<br />

Zamorani, G.; Møller, P.; Picat, J. P.; Le Brun, V.;<br />

Marano, B.; Le Fèvre, O.; Bottini, D.; Garilli, B.;<br />

Maccagni, D.; Scaramella, R.; Scodeggio, M.;<br />

Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.;<br />

Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Bolzonella,<br />

M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.;<br />

Foucaud, S.; Franzetti, P.; Guzzo, L.; Ilbert, O.;<br />

Iovino, A.; McCracken, H. J.; Marinoni, C.; Mazure,<br />

A.; Meneux, B.; Merighi, R.; Pellò, R.; Pollo, A.;<br />

Pozzetti, L.; Radovich, M.; Zucca, E.; Bondi, M.;<br />

Busarello, G.; Cucciati, O.; de La Torre, S.;<br />

Gregorini, L.; Lamareille, F.; Mellier, Y.; Merluzzi,<br />

P.; Ripepi, V.; Rizzo, D.; Vergani, D.; The VIMOS<br />

VLT Deep Survey: the faint type-1 AGN sample;<br />

A&A 457, 79–90<br />

Genzel, R.; Tacconi, L. J.; Eisenhauer, F.; Förster<br />

Schreiber, N. M.; Cimatti, A.; Daddi, E.; Bouché,<br />

N.; Davies, R.; Lehnert, M. D.; Lutz, D.; Nesvadba,<br />

N.; Verma, A.; Abuter, R.; Shapiro, K.; Sternberg,<br />

A.; Renzini, A.; Kong, X.; Arimoto, N.; Mignoli, M.;<br />

The rapid formation of a large rotating disk galaxy<br />

three billion years after the Big Bang; Nature 44 ,<br />

786–789<br />

Georgakakis, A.; Hopkins, A. M.; Afonso, J.; Sullivan,<br />

M.; Mobasher, B.; Cram, L. E.; The Phoenix Deep<br />

Survey: the star formation rates and the stellar<br />

masses of extremely red objects; MNRAS 367,<br />

331–338<br />

Georgiev, I. Y.; Hilker, M.; Puzia, T. H.; Chanamé, J.;<br />

Mieske, S.; Goudfrooij, P.; Reisenegger, A.;<br />

Infante, L.; The old globular cluster system of the<br />

dIrr galaxy NGC 14 7A in the Fornax cluster; A&A<br />

45 , 141-153<br />

Gerin, M.; Lis, D. C.; Philipp, S.; Güsten, R.; Roueff,<br />

E.; Reveret, V.; The distribution of ND H in LDN<br />

1689N; A&A 454, L63–L66<br />

Gesicki, K.; Zijlstra, A. A.; Acker, A.; Górny, S. K.;<br />

Gozdziewski, K.; Walsh, J. R.; Planetary nebulae<br />

with emission-line central stars; A&A 451, 9 5–935<br />

Giannini, T.; McCoey, C.; Nisini, B.; Cabrit, S.; Caratti<br />

o Garatti, A.; Calzoletti, L.; Flower, D. R.; Molecular<br />

line emission in HH54: a coherent view from<br />

near to far infrared; A&A 459, 8 1–835<br />

Gieren, W.; Pietrzyński, G.; Nalewajko, K.; Soszyński,<br />

I.; Bresolin, F.; Kudritzki, R.-P.; Minniti, D.;<br />

Romanowsky, A.; The Araucaria Project: An Accurate<br />

Distance to the Local Group Galaxy NGC<br />

68 from Near-Infrared Photometry of Cepheid<br />

Variables; ApJ 647, 1056–1064<br />

Gillon, M.; Magain, P.; High precision determination<br />

of the atmospheric parameters and abundances<br />

of the COROT main targets; A&A 448, 341–350<br />

Gillessen, S.; Eisenhauer, F.; Quataert, E.; Genzel,<br />

R.; Paumard, T.; Trippe, S.; Ott, T.; Abuter, R.;<br />

Eckart, A.; Lagage, P. O.; Lehnert, M. D.; Tacconi,<br />

L. J.; Martins, F.; Variations in the Spectral Slope<br />

of Sagittarius A* during a Near-Infrared Flare; ApJ<br />

640, L163–L166<br />

Gilli, G.; Israelian, G.; Ecuvillon, A.; Santos, N. C.;<br />

Mayor, M.; Abundances of refractory elements in<br />

the atmospheres of stars with extrasolar planets;<br />

A&A 449, 7 3–736<br />

Gillon, M.; Pont, F.; Moutou, C.; Bouchy, F.; Courbin,<br />

F.; Sohy, S.; Magain, P.; High accuracy transit photometry<br />

of the planet OGLE-TR-113b with a new<br />

deconvolution-based method; A&A 459, 49– 55<br />

González, J. F.; Hubrig, S.; Nesvacil, N.; North, P.; AO<br />

Velorum: a young quadruple system with a ZAMS<br />

eclipsing BpSi primary; A&A 449, 3 7–334<br />

Gosling, A. J.; Blundell, K. M.; Bandyopadhyay, Reba;<br />

Complex Small-Scale Structure in the Infrared<br />

Extinction toward the Galactic Center; ApJ 640,<br />

L171–L174<br />

Goto, M.; Stecklum, B.; Linz, H.; Feldt, M.; Henning,<br />

T.; Pascucci, I.; Usuda, T.; High-Resolution Infrared<br />

Imaging of Herschel 36 SE: A Showcase for<br />

the Influence of Massive Stars in Cluster Environments;<br />

ApJ 649, 99–305<br />

Gratadour, D.; Rouan, D.; Mugnier, L. M.; Fusco, T.;<br />

Clénet, Y.; Gendron, E.; Lacombe, F.; Near-infrared<br />

adaptive optics dissection of the core of NGC 1068<br />

with NAOS-CONICA; A&A 446, 813–8 5<br />

Gratton, R. G.; Lucatello, S.; Bragaglia, A.; Carretta,<br />

E.; Momany, Y.; Pancino, E.; Valenti, E.; Na-O anticorrelation<br />

and HB. III. The abundances of NGC<br />

6441 from FLAMES-UVES spectra; A&A 455,<br />

71– 81<br />

Grazian, A.; Fontana, A.; de Santis, C.; Nonino, M.;<br />

Salimbeni, S.; Giallongo, E.; Cristiani, S.; Gallozzi,<br />

S.; Vanzella, E.; The GOODS-MUSIC sample: a<br />

multicolour catalog of near-IR selected galaxies in<br />

the GOODS-South field; A&A 449, 951–968<br />

Grazian, A.; Fontana, A.; Moscardini, L.; Salimbeni,<br />

S.; Menci, N.; Giallongo, E.; de Santis, C.; Gallozzi,<br />

S.; Nonino, M.; Cristiani, S.; Vanzella, E.; The<br />

clustering evolution of distant red galaxies in the<br />

GOODS-MUSIC sample; A&A 453, 507–515<br />

Gredel, R.; HH135/HH136 – a luminous H outflow<br />

towards a high-mass protostar; A&A 457, 157–166<br />

Griffin, R. F.; Cornell, A. P.; Photoelectric radial ve-<br />

locities, Paper XVI 6 5 ninth-magnitude K0 stars<br />

in the six southern Clube Selected Areas; MNRAS<br />

371, 1140–1158<br />

Griffin, R. F.; Photoelectric radial velocities, Paper<br />

XVII The orbits of 30 spectroscopic binaries in the<br />

southern Clube Selected Areas; MNRAS 371,<br />

1159–117<br />

Grocholski, A. J.; Cole, A. A.; Sarajedini, A.; Geisler,<br />

D.; Smith, V. V.; Ca II Triplet Spectroscopy of Large<br />

Magellanic Cloud Red Giants. I. Abundances and<br />

Velocities for a Sample of Populous Clusters; AJ<br />

13 , 1630–1644<br />

Groh, J. H.; Hillier, D. J.; Damineli, A.; AG Carinae: A<br />

Luminous Blue Variable with a High Rotational Velocity;<br />

ApJ 638, L33–L36<br />

Gröningsson, P.; Fransson, C.; Lundqvist, P.; Nymark,<br />

T.; Lundqvist, N.; Chevalier, R.; Leibundgut, B.;<br />

Spyromilio, J.; Coronal emission from the shocked<br />

circumstellar ring of SN 1987A; A&A 456, 581–589<br />

Grosbøl, P.; Dottori, H.; Gredel, R.; Star-forming knots<br />

and density wave in NGC 997; A&A 453, L 5–L 8<br />

Guieu, S.; Dougados, C.; Monin, J.-L.; Magnier, E.;<br />

Martín, E. L.; Seventeen new very low-mass members<br />

in Taurus. The brown dwarf deficit revisited;<br />

A&A 446, 485–500<br />

Guirado, J. C.; Martí-Vidal, I.; Marcaide, J. M.; Close,<br />

L. M.; Algaba, J. C.; Brandner, W.; Lestrade, J.-F.;<br />

Jauncey, D. L.; Jones, D. L.; Preston, R. A.;<br />

Reynolds, J. E.; On the dynamics of the AB<br />

Doradus system; A&A 446, 733–738<br />

Güsten, R.; Philipp, S. D.; Weiß, A.; Klein, B.; CO(4-3)<br />

and CO(7-6) maps of the nucleus of NGC 53;<br />

A&A 454, L115–L118<br />

Gustafsson, M.; Lemaire, J. L.; Field, D.; A method<br />

for detection of structure; A&A 456, 171–177<br />

Habart, E.; Natta, A.; Testi, L.; Carbillet, M.; Spatially<br />

resolved PAH emission in the inner disks of Herbig<br />

Ae/Be stars; A&A 449, 1067–1075<br />

Hadfield, L. J.; Crowther, P. A.; How extreme are the<br />

Wolf-Rayet clusters in NGC 31 5?; MNRAS 368,<br />

18 –183<br />

Haikala, L. K.; Juvela, M.; Harju, J.; Lehtinen, K.;<br />

Mattila, K.; Dumke, M.; C18O (3- ) observations of<br />

the Cometary Globule CG 1 : a cold core and a<br />

C18O hot spot; A&A 454, L71–L74<br />

Haines, C. P.; Merluzzi, P.; Mercurio, A.; Gargiulo, A.;<br />

Krusanova, N.; Busarello, G.; La Barbera, F.;<br />

Capaccioli, M.; Shapley Optical Survey – II. The<br />

effect of environment on the colour-magnitude<br />

relation and galaxy colours; MNRAS 371, 55–66<br />

<strong>ESO</strong> Annual Report 006<br />

91


Hamadache, C.; Le Guillou, L.; Tisserand, P.; Afonso,<br />

C.; Albert, J. N.; Andersen, J.; Ansari, R.;<br />

Aubourg, É.; Bareyre, P.; Beaulieu, J. P.; Charlot,<br />

X.; Coutures, C.; Ferlet, R.; Fouqué, P.; Glicenstein,<br />

J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.;<br />

Haissinski, J.; de Kat, J.; Lesquoy, É.; Loup, C.;<br />

Magneville, C.; Marquette, J. B.; Maurice, É.;<br />

Maury, A.; Milsztajn, A.; Moniez, M.; Palanque-<br />

Delabrouille, N.; Perdereau, O.; Rahal, Y. R.; Rich,<br />

J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.;<br />

Zylberajch, S.; Galactic Bulge microlensing optical<br />

depth from EROS- ; A&A 454, 185–199<br />

Hamdani, S.; Arnold, L.; Foellmi, C.; Berthier, J.;<br />

Billeres, M.; Briot, D.; François, P.; Riaud, P.;<br />

Schneider, J.; Biomarkers in disk-averaged near-<br />

UV to near-IR Earth spectra using Earthshine<br />

observations; A&A 460, 617–6 4<br />

Hammer, F.; Flores, H.; Schaerer, D.; Dessauges-<br />

Zavadsky, M.; Le Floc’h, E.; Puech, M.; Detection<br />

of Wolf-Rayet stars in host galaxies of gamma-ray<br />

bursts (GRBs): are GRBs produced by runaway<br />

massive stars ejected from high stellar density<br />

regions?; A&A 454, 103–111<br />

Harju, J.; Haikala, L. K.; Lehtinen, K.; Juvela, M.;<br />

Mattila, K.; Miettinen, O.; Dumke, M.; Güsten, R.;<br />

Nyman, L.-Å.; Detection of H D+ in a massive<br />

prestellar core in Orion B; A&A 454, L55–L58<br />

Hartung, M.; Herbst, T. M.; Dumas, C.; Coustenis, A.;<br />

Limits to the abundance of surface CO ice on<br />

Titan; JGRE 111<br />

Hau, G. K. T.; Forbes, D. A.; Radial kinematics of<br />

isolated elliptical galaxies; MNRAS 371, 633–64<br />

Heinmüller, J.; Petitjean, P.; Ledoux, C.; Caucci, S.;<br />

Srianand, R.; Kinematics and star formation activity<br />

in the z = .03954 damped Lyman-b system<br />

towards PKS 0458-0 0; A&A 449, 33–39<br />

Hekker, S.; Aerts, C.; de Ridder, J.; Carrier, F.; Pul-<br />

sations detected in the line profile variations of red<br />

giants. Modelling of line moments, line bisector<br />

and line shape; A&A 458, 931–940<br />

Helmi, A.; Irwin, M. J.; Tolstoy, E.; Battaglia, G.; Hill,<br />

V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte,<br />

B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.;<br />

Primas, F.; Sadakane, K.; Szeifert, T.; A New View<br />

of the Dwarf Spheroidal Satellites of the Milky Way<br />

from VLT FLAMES: Where Are the Very Metalpoor<br />

Stars?; ApJ 651, L1 1–L1 4<br />

Hidalgo-Gámez, A. M.; Diffuse Ionized Gas in Irreg-<br />

ular Galaxies. I. GR 8 and <strong>ESO</strong> 45-G05; AJ 131,<br />

078– 088<br />

Hildebrandt, H.; Erben, T.; Dietrich, J. P.; Cordes, O.;<br />

Haberzettl, L.; Hetterscheidt, M.; Schirmer, M.;<br />

Schmithuesen, O.; Schneider, P.; Simon, P.;<br />

Trachternach, C.; GaBoDS: The Garching-Bonn<br />

Deep Survey. V. Data release of the <strong>ESO</strong> Deep-<br />

Public-Survey; A&A 45 , 11 1–11 8<br />

Hilker, M.; Probable member stars of the gravita-<br />

tional theory-testing globular clusters AM 1, Pal 3<br />

and Pal 14; A&A 448, 171–180<br />

Hirano, N.; Liu, S.-Y.; Shang, H.; Ho, P. T. P.; Huang,<br />

H.-C.; Kuan, Y.-J.; McCaughrean, M. J.; Zhang,<br />

Q.; SiO J = 5-4 in the HH 11 Protostellar Jet<br />

Imaged with the Submillimeter Array; ApJ 636,<br />

L141–L144<br />

Hirtzig, M.; Coustenis, A.; Gendron, E.; Drossart, P.;<br />

Negrão, A.; Combes, M.; Lai, O.; Rannou, P.;<br />

Lebonnois, S.; Luz, D.; Monitoring atmospheric<br />

phenomena on Titan; A&A 456, 761–774<br />

9<br />

<strong>ESO</strong> Annual Report 006<br />

Hoffmeister, V. H.; Chini, R.; Scheyda, C. M.;<br />

Nürnberger, D.; Vogt, N.; Nielbock, M.; .3 μm CO<br />

emission and absorption from young high-mass<br />

stars in M 17; A&A 457, L 9–L3<br />

Hogerheijde, M. R.; Caselli, P.; Emprechtinger, M.;<br />

van der Tak, F. F. S.; Alves, J.; Belloche, A.; Güsten,<br />

R.; Lundgren, A. A.; Nyman, L.-Å.; Volgenau, N.;<br />

Wiedner, M. C.; Probable detection of H D+ in the<br />

starless core Barnard 68; A&A 454, L59–L6<br />

Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.;<br />

González Delgado, R. M.; Tzioumis, A.; Inskip, K.<br />

J.; The co-evolution of the obscured quasar<br />

PKS 1549-79 and its host galaxy: evidence for a<br />

high accretion rate and warm outflow; MNRAS<br />

370, 1633–1650<br />

Hopp, U.; Schulte-Ladbeck, R. E.; Kerp, J.; Search-<br />

ing for stars in compact high-velocity clouds – II;<br />

MNRAS 374, 1164–1168<br />

Horst, H.; Smette, A.; Gandhi, P.; Duschl, W. J.; The<br />

small dispersion of the mid IR - hard X-ray correlation<br />

in active galactic nuclei; A&A 457, L17–L 0<br />

Houghton, R. C. W.; Magorrian, J.; Sarzi, M.; Thatte,<br />

N.; Davies, R. L.; Krajnović, D.; The central kinematics<br />

of NGC 1399 measured with 14 pc resolution;<br />

MNRAS 367, –18<br />

Hubrig, S.; Yudin, R. V.; Schöller, M.; Pogodin, M. A.;<br />

Accurate magnetic field measurements of Vegalike<br />

stars and Herbig Ae/Be stars; A&A 446,<br />

1089–1094<br />

Hubrig, S.; Briquet, M.; Schöller, M.; De Cat, P.;<br />

Mathys, G.; Aerts, C.; Discovery of magnetic fields<br />

in the bCephei star b1 CMa and in several slowly<br />

pulsating B stars; MNRAS 369, L61–L65<br />

Hubrig, S.; González, J. F.; Savanov, I.; Schöller, M.;<br />

Ageorges, N.; Cowley, C. R.; Wolff, B.; Inhomogeneous<br />

surface distribution of chemical elements in<br />

the eclipsing binary ARAur: a new challenge for<br />

our understanding of HgMn stars; MNRAS 371,<br />

1953–1958<br />

Hubrig, S.; North, P.; Schöller, M.; Mathys, G.; Evolu-<br />

tion of magnetic fields in stars across the upper<br />

main sequence: I. Catalogue of magnetic field<br />

measurements with FORS 1 at the VLT; AN 3 7,<br />

89– 97<br />

Humphrey, A.; Villar-Martín, M.; Fosbury, R.; Vernet,<br />

J.; di Serego Alighieri, S.; Jet-gas interactions in<br />

z ~ .5 radio galaxies: evolution of the ultraviolet<br />

line and continuum emission with radio morphology;<br />

MNRAS 369, 1103–1114<br />

Hunter, I.; Smoker, J. V.; Keenan, F. P.; Ledoux, C.;<br />

Jehin, E.; Cabanac, R.; Melo, C.; Bagnulo, S.;<br />

Early-type stars observed in the <strong>ESO</strong> UVES<br />

Paranal Observatory Project – I. Interstellar NaI<br />

UV, TiII and CaII K observations; MNRAS 367,<br />

1478–1514<br />

Häring-Neumayer, N.; Cappellari, M.; Rix, H.-W.;<br />

Hartung, M.; Prieto, M. A.; Meisenheimer, K.;<br />

Lenzen, R.; VLT Diffraction-limited Imaging and<br />

Spectroscopy in the NIR: Weighing the Black Hole<br />

in Centaurus A with NACO; ApJ 643, 6– 37<br />

Ilbert, O.; Lauger, S.; Tresse, L.; Buat, V.; Arnouts, S.;<br />

Le Fèvre, O.; Burgarella, D.; Zucca, E.; Bardelli, S.;<br />

Zamorani, G.; Bottini, D.; Garilli, B.; Le Brun, V.;<br />

Maccagni, D.; Picat, J.-P.; Scaramella, R.;<br />

Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami,<br />

C.; Arnaboldi, M.; Bolzonella, M.; Cappi, A.;<br />

Charlot, S.; Contini, T.; Foucaud, S.; Franzetti, P.;<br />

Gavignaud, I.; Guzzo, L.; Iovino, A.; McCracken,<br />

H. J.; Marano, B.; Marinoni, C.; Mathez, G.;<br />

Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.;<br />

Pello, R.; Pollo, A.; Pozzetti, L.; Radovich, M.;<br />

Bondi, M.; Bongiorno, A.; Busarello, G.; Ciliegi, P.;<br />

Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.; The<br />

VIMOS-VLT Deep Survey. Galaxy luminosity<br />

function per morphological type up to z = 1. ;<br />

A&A 453, 809–815<br />

Ilbert, O.; Arnouts, S.; McCracken, H. J.; Bolzonella,<br />

M.; Bertin, E.; Le Fèvre, O.; Mellier, Y.; Zamorani,<br />

G.; Pellò, R.; Iovino, A.; Tresse, L.; Le Brun, V.;<br />

Bottini, D.; Garilli, B.; Maccagni, D.; Picat, J. P.;<br />

Scaramella, R.; Scodeggio, M.; Vettolani, G.;<br />

Zanichelli, A.; Adami, C.; Bardelli, S.; Cappi, A.;<br />

Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.;<br />

Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo,<br />

L.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux,<br />

B.; Merighi, R.; Paltani, S.; Pollo, A.; Pozzetti, L.;<br />

Radovich, M.; Zucca, E.; Bondi, M.; Bongiorno,<br />

A.; Busarello, G.; de La Torre, S.; Gregorini, L.;<br />

Lamareille, F.; Mathez, G.; Merluzzi, P.; Ripepi, V.;<br />

Rizzo, D.; Vergani, D.; Accurate photometric redshifts<br />

for the CFHT legacy survey calibrated using<br />

the VIMOS VLT deep survey; A&A 457, 841–856<br />

Iodice, E.; Arnaboldi, M.; Saglia, R. P.; Sparke, L. S.;<br />

Gerhard, O.; Gallagher, J. S.; Combes, F.;<br />

Bournaud, F.; Capaccioli, M.; Freeman, K. C.;<br />

Stellar Kinematics for the Central Spheroid in the<br />

Polar Disk Galaxy NGC 4650A; ApJ 643, 00– 09<br />

Izotov, Y. I.; Papaderos, P.; Guseva, N. G.; Fricke, K.<br />

J.; Thuan, T. X.; Two extremely metal-poor emission-line<br />

galaxies in the Sloan Digital Sky Survey;<br />

A&A 454, 137–141<br />

Izotov, Y. I.; Schaerer, D.; Blecha, A.; Royer, F.;<br />

Guseva, N. G.; North, P.; VLT/GIRAFFE spectroscopic<br />

observations of the metal-poor blue<br />

compact dwarf galaxy SBS 0335-05 E; A&A 459,<br />

71–84<br />

Jakobsson, P.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk,<br />

P.; Kann, D. A.; Hjorth, J.; Priddey, R. S.; Tanvir, N.<br />

R.; Reichart, D.; Gorosabel, J.; Klose, S.; Watson,<br />

D.; Sollerman, J.; Fruchter, A. S.; de Ugarte<br />

Postigo, A.; Wiersema, K.; Björnsson, G.;<br />

Chapman, R.; Thöne, C. C.; Pedersen, K.; Jensen,<br />

B. L.; H I column densities of z > Swift gammaray<br />

bursts; A&A 460, L13–L17<br />

James, D. J.; Melo, C.; Santos, N. C.; Bouvier, J.;<br />

Fundamental properties of pre-main sequence<br />

stars in young, southern star forming regions:<br />

metallicities; A&A 446, 971–983<br />

Janknecht, E.; Reimers, D.; Lopez, S.; Tytler, D.; The<br />

evolution of Lyman b absorbers in the redshift<br />

range 0.5 < z < 1.9; A&A 458, 4 7–439<br />

Janson, M.; Brandner, W.; Henning, T.; Zinnecker, H.;<br />

Early ComeOn+ adaptive optics observation of<br />

GQ Lupi and its substellar companion; A&A 453,<br />

609–614<br />

Jayawardhana, R.; Ivanov, V. D.; Spectroscopy of<br />

Young Planetary Mass Candidates with Disks;<br />

ApJ 647, L167–L170<br />

Jayawardhana, R.; Ivanov, V. D.; Discovery of a Young<br />

Planetary-Mass Binary; Sci 313, 1 79–1 81<br />

Jeffries, R. D.; Maxted, P. F. L.; Oliveira, J. M.; Naylor,<br />

T.; Kinematic structure in the young b Orionis association;<br />

MNRAS 371, L6–L10


Jehin, E.; Manfroid, J.; Hutsemékers, D.; Cochran, A.<br />

L.; Arpigny, C.; Jackson, W. M.; Rauer, H.; Schulz,<br />

R.; Zucconi, J.-M.; Deep Impact: High-Resolution<br />

Optical Spectroscopy with the <strong>ESO</strong> VLT and the<br />

Keck I Telescope; ApJ 641, L145–L148<br />

Jilinski, E.; Daflon, S.; Cunha, K.; de La Reza, R.;<br />

Radial velocity measurements of B stars in the<br />

Scorpius-Centaurus association; A&A 448,<br />

1001–1006<br />

Joergens, V.; Radial velocity survey for planets and<br />

brown dwarf companions to very young brown<br />

dwarfs and very low-mass stars in Chamaeleon I<br />

with UVES at the VLT; A&A 446, 1165–1176<br />

Joergens, V.; Improved kinematics for brown dwarfs<br />

and very low-mass stars in Chamaeleon I and a<br />

discussion of brown dwarf formation; A&A 448,<br />

655–663<br />

Johnson, O.; Best, P.; Zaritsky, D.; Clowe, D.; Aragón-<br />

Salamanca, A.; Halliday, C.; Jablonka, P.; Milvang-<br />

Jensen, B.; Pelló, R.; Poggianti, B. M.; Rudnick, G.;<br />

Saglia, R.; Simard, L.; White, S.; The X-ray properties<br />

of optically selected z > 0.6 clusters in the<br />

European Southern Observatory Distant Cluster<br />

Survey; MNRAS 371, 1777–179<br />

Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Juett, A.<br />

M.; Brown, E. F.; Chakrabarty, D.; The neutron<br />

star soft X-ray transient 1H 1905+000 in quiescence;<br />

MNRAS 368, 1803–1810<br />

Jönsson, J.; Dahlén, T.; Goobar, A.; Gunnarsson, C.;<br />

Mörtsell, E.; Lee, K.; Lensing Magnification of Supernovae<br />

in the GOODS Fields; ApJ 639, 991–998<br />

Jonsell, K.; Barklem, P. S.; Gustafsson, B.;<br />

Christlieb, N.; Hill, V.; Beers, T. C.; Holmberg, J.;<br />

The Hamburg/<strong>ESO</strong> R-process enhanced star<br />

survey (HERES). III. HE 0338-3945 and the<br />

formation of the r + s stars; A&A 451, 651–670<br />

Kainulainen, J.; Lehtinen, K.; Harju, J.; The ratio of<br />

N(C18O) and AV in Chamaeleon I and III-B. Using<br />

MASS and SEST; A&A 447, 597–607<br />

Kajisawa, M.; Kodama, T.; Tanaka, I.; Yamada, T.;<br />

Bower, R.; Protoclusters with evolved populations<br />

around radio galaxies at z ~ .5; MNRAS 371,<br />

577–58<br />

Kanekar, N.; Subrahmanyan, R.; Ellison, S. L.; Lane,<br />

W. M.; Chengalur, J. N.; HI 1 cm absorption at<br />

z ~ .347 towards PKS B0438-436; MNRAS 370,<br />

L46–L50<br />

Kaper, L.; van der Meer, A.; Najarro, F.; VLT/UVES<br />

spectroscopy of Wray 977, the hypergiant companion<br />

to the X-ray pulsar GX301- ; A&A 457,<br />

595–610<br />

Kaplan, D. L.; Moon, D.-S.; A Near-Infrared Search<br />

for Counterparts to Three Pulsars in Young<br />

Supernova Remnants; ApJ 644, 1056–106<br />

Kaufer, A.; Stahl, O.; Prinja, R. K.; Witherick, D.;<br />

Multi-periodic photospheric pulsations and connected<br />

wind structures in HD 64760; A&A 447,<br />

3 5–341<br />

Kayser, A.; Hilker, M.; Richtler, T.; Willemsen, P. G.;<br />

Medium resolution spectroscopy in b Centauri:<br />

abundances of 400 subgiant and turn-off region<br />

stars; A&A 458, 777–788<br />

Kervella, P.; Mérand, A.; Perrin, G.; Coudé Du<br />

Foresto, V.; Extended envelopes around Galactic<br />

Cepheids. I. l Carinae from near and mid-infrared<br />

interferometry with the VLTI; A&A 448, 6 3–631<br />

Kervella, P.; Domiciano de Souza, A.; The polar wind<br />

of the fast rotating Be star Achernar. VINCI/VLTI<br />

interferometric observations of an elongated polar<br />

envelope; A&A 453, 1059–1066<br />

Kervella, P.; Thévenin, F.; Coudé Du Foresto, V.;<br />

Mignard, F.; Deep imaging survey of the environment<br />

of b Centauri. I. Adaptive optics imaging of<br />

b Cen B with VLT-NACO; A&A 459, 669–678<br />

Kimeswenger, S.; V433 Sgr in ‘Quiescence’;<br />

AN 3 7, 44–5<br />

Kochukhov, O.; Pulsational line profile variation of the<br />

roAp star HR 3831; A&A 446, 1051–1070<br />

Koch, A.; Grebel, E. K.; Wyse, R. F. G.; Kleyna, J. T.;<br />

Wilkinson, M. I.; Harbeck, D. R.; Gilmore, G. F.;<br />

Evans, N. W.; Complexity on Small Scales: The<br />

Metallicity Distribution of the Carina Dwarf Spheroidal<br />

Galaxy; AJ 131, 895–911<br />

Kochukhov, O.; Bagnulo, S.; Evolutionary state of<br />

magnetic chemically peculiar stars; A&A 450,<br />

763–775<br />

Kochukhov, O.; Remarkable non-dipolar magnetic<br />

field of the Bp star HD 137509; A&A 454, 3 1–3 5<br />

Kochukhov, O.; Tsymbal, V.; Ryabchikova, T.;<br />

Makaganyk, V.; Bagnulo, S.; Chemical stratification<br />

in the atmosphere of Ap star HD 13379 .<br />

Regularized solution of the vertical inversion<br />

problem; A&A 460, 831–84<br />

Köhler, R.; Petr-Gotzens, M. G.; McCaughrean, M.<br />

J.; Bouvier, J.; Duchêne, G.; Quirrenbach, A.;<br />

Zinnecker, H.; Binary stars in the Orion Nebula<br />

Cluster; A&A 458, 461–476<br />

Kong, X.; Daddi, E.; Arimoto, N.; Renzini, A.;<br />

Broadhurst, T.; Cimatti, A.; Ikuta, C.; Ohta, K.; da<br />

Costa, L.; Olsen, L. F.; Onodera, M.; Tamura, N.; A<br />

Wide Area Survey for High-Redshift Massive Galaxies.<br />

I. Number Counts and Clustering of BzKs<br />

and EROs; ApJ 638, 7 –87<br />

Kong, A. K. H.; Bassa, C.; Pooley, D.; Lewin, W. H. G.;<br />

Homer, L.; Verbunt, F.; Anderson, S. F.; Margon,<br />

B.; Chandra and Hubble Space Telescope Study<br />

of the Globular Cluster NGC 88; ApJ 647,<br />

1065–1074<br />

Korn, A. J.; Grundahl, F.; Richard, O.; Barklem, P. S.;<br />

Mashonkina, L.; Collet, R.; Piskunov, N.;<br />

Gustafsson, B.; A probable stellar solution to the<br />

cosmological lithium discrepancy; Nature 44 ,<br />

657–659<br />

Krabbe, A. C.; Copetti, M. V. F.; Chemical abun-<br />

dances in seven galactic planetary nebulae; A&A<br />

450, 159–166<br />

Kriek, M.; van Dokkum, P. G.; Franx, M.; Förster S.,<br />

Natascha M.; Gawiser, E.; Illingworth, G. D.; Labbé,<br />

I.; Marchesini, D.; Quadri, R.; Rix, H.-W.; Rudnick,<br />

G.; Toft, S.; van der Werf, P.; Wuyts, S.; Direct<br />

Measurements of the Stellar Continua and Balmer<br />

– 4000 Å Breaks of Red z > Galaxies: Redshifts<br />

and Improved Constraints on Stellar Populations;<br />

ApJ 645, 44–54<br />

Krusch, E.; Rosenbaum, D.; Dettmar, R.-J.; Bomans,<br />

D. J.; Taylor, C. L.; Aronica, G.; Elwert, T.; The faint<br />

end luminosity function of compact galaxy groups;<br />

A&A 459, 759–76<br />

Küpcü Yoldas‚ , A.; Greiner, J.; Perna, R.; Constraining<br />

the environment of GRB 99071 through emission<br />

line fluxes; A&A 457, 115–119<br />

Kurosawa, R.; Harries, T. J.; Littlefair, S. P.; Radial<br />

and rotational velocities of young brown dwarfs<br />

and very low-mass stars in the Upper Scorpius<br />

OB association and the b Ophiuchi cloud core;<br />

MNRAS 37 , 1879–1887<br />

Kurtz, D. W.; Elkin, V. G.; Mathys, G.; The discovery<br />

of a new type of upper atmospheric variability in<br />

the rapidly oscillating Ap stars with VLT highresolution<br />

spectroscopy; MNRAS 370, 1 74–1 94<br />

Kurtz, D. W.; Elkin, V. G.; Cunha, M. S.; Mathys, G.;<br />

Hubrig, S.; Wolff, B.; Savanov, I.; The discovery of<br />

8.0-min radial velocity variations in the strongly<br />

magnetic cool Ap star HD154708, a new roAp<br />

star; MNRAS 37 , 86– 9<br />

Labbé, I.; Bouwens, R.; Illingworth, G. D.; Franx, M.;<br />

Spitzer IRAC Confirmation of z850-Dropout Galaxies<br />

in the Hubble Ultra Deep Field: Stellar<br />

Masses and Ages at z ~ 7; ApJ 649, L67–L70<br />

Lagadec, E.; Chesneau, O.; Matsuura, M.; De Marco,<br />

O.; de Freitas Pacheco, J. A.; Zijlstra, A. A.; Acker,<br />

A.; Clayton, G. C.; Lopez, B.; New insights on the<br />

complex planetary nebula Hen -113; A&A 448,<br />

03– 1<br />

Lagage, P.-O.; Doucet, C.; Pantin, E.; Habart, E.;<br />

Duchêne, G.; Ménard, F.; Pinte, C.; Charnoz, S.;<br />

Pel, J.-W.; Anatomy of a Flaring Proto-Planetary<br />

Disk Around a Young Intermediate-Mass Star; Sci<br />

314, 6 1–6 3<br />

Lagrange, A.-M.; Beust, H.; Udry, S.; Chauvin, G.;<br />

Mayor, M.; New constrains on Gliese 86 B. VLT<br />

near infrared coronographic imaging survey of<br />

planetary hosts; A&A 459, 955–963<br />

Lamareille, F.; Contini, T.; Brinchmann, J.; Le Borgne,<br />

J.-F.; Charlot, S.; Richard, J.; Spectrophotometric<br />

properties of galaxies at intermediate redshifts<br />

(z ~ 0. -1.0). II. The Luminosity - Metallicity relation;<br />

A&A 448, 907–919<br />

Lamareille, F.; Contini, T.; Le Borgne, J.-F.;<br />

Brinchmann, J.; Charlot, S.; Richard, J.; Spectrophotometric<br />

properties of galaxies at intermediate<br />

redshifts (z ~ 0. -1.0). I. Sample description, photometric<br />

properties and spectral measurements;<br />

A&A 448, 893–906<br />

La Palombara, N.; Mignani, R. P.; Hatziminaoglou,<br />

E.; Schirmer, M.; Bignami, G. F.; Caraveo, P.;<br />

XMM-Newton and <strong>ESO</strong> observations of the two<br />

unidentified b-ray sources 3EG J0616-3310 and<br />

3EG J1 49-8330; A&A 458, 45– 57<br />

Larsen, S. S.; Richtler, T.; Planetary nebula candi-<br />

dates in extragalactic young star clusters; A&A<br />

459, 103–111<br />

Lazorenko, P. F.; Astrometric precision of observa-<br />

tions at VLT/FORS ; A&A 449, 1 71–1 79<br />

Lebouquin, J.-B.; Labeye, P.; Malbet, F.; Jocou, L.;<br />

Zabihian, F.; Rousselet-Perraut, K.; Berger, J.-P.;<br />

Delboulbé, A.; Kern, P.; Glindemann, A.; Schöller,<br />

M.; Integrated optics for astronomical interferometry.<br />

VI. Coupling the light of the VLTI in K band;<br />

A&A 450, 1 59–1 64<br />

Lèbre, A.; de Laverny, P.; Do Nascimento, J. D. Jr.;<br />

de Medeiros, J. R.; Lithium abundances and rotational<br />

behavior for bright giant stars; A&A 450,<br />

1173–1179<br />

Ledoux, C.; Petitjean, P.; Srianand, R.; Molecular<br />

Hydrogen in a Damped Lyb System at z = 4. 4;<br />

ApJ 640, L 5–L 8<br />

<strong>ESO</strong> Annual Report 006<br />

93


Ledoux, C.; Petitjean, P.; Fynbo, J. P. U.; Møller, P.;<br />

Srianand, R.; Velocity-metallicity correlation for<br />

high-z DLA galaxies: evidence of a mass-metallicity<br />

relation?; A&A 457, 71–78<br />

Lee, M. H.; Butler, R. P.; Fischer, D. A.; Marcy, G. W.;<br />

Vogt, S. S.; On the :1 Orbital Resonance in the<br />

HD 8 943 Planetary System; ApJ 641, 1178–1187<br />

Lee, H.; Skillman, E. D.; Venn, K. A.; The Spatial<br />

Homogeneity of Nebular and Stellar Oxygen<br />

Abundances in the Local Group Dwarf Irregular<br />

Galaxy NGC 68 ; ApJ 64 , 813–833<br />

Leipski, C.; Bennert, N.; [O III] profile substructure in<br />

radio-quiet quasars; A&A 448, 165–169<br />

Leisy, P.; Dennefeld, M.; Planetary nebulae in the<br />

Magellanic Clouds. II. Abundances and element<br />

production; A&A 456, 451–466<br />

Letarte, B.; Hill, V.; Jablonka, P.; Tolstoy, E.; François,<br />

P.; Meylan, G.; VLT/UVES spectroscopy of individual<br />

stars in three globular clusters in the Fornax<br />

dwarf spheroidal galaxy; A&A 453, 547–554<br />

Leurini, S.; Schilke, P.; Parise, B.; Wyrowski, F.;<br />

Güsten, R.; Philipp, S.; The high velocity outflow in<br />

NGC 6334 I; A&A 454, L83–L86<br />

Leurini, S.; Rolffs, R.; Thorwirth, S.; Parise, B.;<br />

Schilke, P.; Comito, C.; Wyrowski, F.; Güsten, R.;<br />

Bergman, P.; Menten, K. M.; Nyman, L.-Å.; APEX 1<br />

mm line survey of the Orion Bar; A&A 454, L47–L50<br />

Levan, A.; Fruchter, A.; Rhoads, J.; Mobasher, B.;<br />

Tanvir, N.; Gorosabel, J.; Rol, E.; Kouveliotou, C.;<br />

Dell’Antonio, I.; Merrill, M.; Bergeron, E.; Castro<br />

Cerón, J. M.; Masetti, N.; Vreeswijk, P.; Antonelli,<br />

A.; Bersier, D.; Castro-Tirado, A.; Fynbo, J.;<br />

Garnavich, P.; Holland, S.; Hjorth, J.; Nugent, P.;<br />

Pian, E.; Smette, A.; Thomsen, B.; Thorsett, S. E.;<br />

Wijers, R.; Infrared and Optical Observations of<br />

GRB 030115 and its Extremely Red Host Galaxy:<br />

Implications for Dark Bursts; ApJ 647, 471–48<br />

Levshakov, S. A.; Centurión, M.; Molaro, P.; Kostina,<br />

M. V.; VLT/UVES constraints on the carbon isotope<br />

ratio 1 C/ 13 C at z = 1.15 toward the quasar<br />

HE 0515-4414; A&A 447, L 1–L 4<br />

Levshakov, S. A.; Centurión, M.; Molaro, P.;<br />

D’Odorico, S.; Reimers, D.; Quast, R.; Pollmann,<br />

M.; Most precise single redshift bound to ∆b/b;<br />

A&A 449, 879–889<br />

Leão, I. C.; de Laverny, P.; Mékarnia, D.; de Medeiros,<br />

J. R.; Vandame, B.; The circumstellar envelope of<br />

IRC+10 16 from milli-arcsecond to arcmin scales;<br />

A&A 455, 187–194<br />

Liang, Y. C.; Hammer, F.; Flores, H.; Significant evo-<br />

lution of the stellar mass-metallicity relation since<br />

z ~ 0.65; A&A 447, 113–119<br />

Lisker, T.; Grebel, E. K.; Binggeli, B.; Virgo Cluster<br />

Early-Type Dwarf Galaxies with the Sloan Digital<br />

Sky Survey. I. On the Possible Disk Nature of<br />

Bright Early-Type Dwarfs; AJ 13 , 497–513<br />

Littlefair, S. P.; Dhillon, V. S.; Marsh, T. R.; Shahbaz,<br />

T.; Martín, E. L.; Observations of ultracool dwarfs<br />

with ULTRACAM on the VLT: a search for weather;<br />

MNRAS 370, 1 08–1 1<br />

Liu, X.-W.; Barlow, M. J.; Zhang, Y.; Bastin, R. J.;<br />

Storey, P. J.; Chemical abundances for Hf - , a<br />

planetary nebula with the strongest-known heavyelement<br />

recombination lines; MNRAS 368, 1<br />

959–1970<br />

94<br />

<strong>ESO</strong> Annual Report 006<br />

Lo Curto, G.; Mayor, M.; Clausen, J. V.; Benz, W.;<br />

Bouchy, F.; Lovis, C.; Moutou, C.; Naef, D.; Pepe,<br />

F.; Queloz, D.; Santos, N. C.; Sivan, J.-P.; Udry, S.;<br />

Bonfils, X.; Delfosse, X.; Mordasini, C.; Fouqué, P.;<br />

Olsen, E. H.; Pritchard, J. D.; The HARPS search<br />

for southern extra-solar planets. VII. A very hot<br />

Jupiter orbiting HD 1 301; A&A 451, 345–350<br />

Lodieu, N.; Hambly, N. C.; Jameson, R. F.; New<br />

members in the Upper Scorpius association from<br />

the UKIRT Infrared Deep Sky Survey Early Data<br />

Release; MNRAS 373, 95–104<br />

Lopes de Oliveira, R.; Motch, C.; Haberl, F.;<br />

Negueruela, I.; Janot-Pacheco, E.; New b<br />

Cassiopeiae-like objects: X-ray and optical observations<br />

of SAO 497 5 and HD 161103; A&A 454,<br />

65– 76<br />

Lotz, J. M.; Madau, P.; Giavalisco, M.; Primack, J.;<br />

Ferguson, H. C.; The Rest-Frame Far-Ultraviolet<br />

Morphologies of Star-forming Galaxies at z ~ 1.5<br />

and 4; ApJ 636, 59 –609<br />

Lovis, C.; Mayor, M.; Pepe, F.; Alibert, Y.; Benz, W.;<br />

Bouchy, F.; Correia, A. C. M.; Laskar, J.; Mordasini,<br />

C.; Queloz, D.; Santos, N. C.; Udry, S.; Bertaux,<br />

J.-L.; Sivan, J.-P.; An extrasolar planetary system<br />

with three Neptune-mass planets; Nature 441,<br />

305–309<br />

Lucatello, S.; Beers, T. C.; Christlieb, N.; Barklem, P.<br />

S.; Rossi, S.; Marsteller, B.; Sivarani, T.; Lee, Y. S.;<br />

The Frequency of Carbon-enhanced Metal-poor<br />

Stars in the Galaxy from the HERES Sample; ApJ<br />

65 , L37–L40<br />

Luhman, K. L.; Potter, D.; Testing Theoretical Evolu-<br />

tionary Models with AB Doradus C and the Initial<br />

Mass Function; ApJ 638, 887–896<br />

Lupu, R. E.; France, K.; McCandliss, S. R.; Discovery<br />

of Lyb-pumped Molecular Hydrogen Emission in<br />

the Planetary Nebulae NGC 6853 and NGC 313 ;<br />

ApJ 644, 981–989<br />

Luz, D.; Civeit, T.; Courtin, R.; Lebreton, J.-P.; Gautier,<br />

D.; Witasse, O.; Kaufer, A.; Ferri, F.; Lara, L.;<br />

Livengood, T.; Kostiuk, T.; Characterization of<br />

zonal winds in the stratosphere of Titan with<br />

UVES: . Observations coordinated with the<br />

Huygens Probe entry; JGRE 111<br />

Lynch, R. S.; Charlton, J. C.; Kim, T.-S.; A Survey of<br />

Weak Mg II Absorbers at Redshift < z > = 1.78;<br />

ApJ 640, 81–91<br />

Maciel, W. J.; Lago, L. G.; Costa, R. D. D.; An esti-<br />

mate of the time variation of the abundance gradient<br />

from planetary nebulae. III. O, S, Ar, and Ne: a<br />

comparison of PN samples; A&A 453, 587–593<br />

Maier, C.; Lilly, S. J.; Carollo, C. M.; Meisenheimer,<br />

K.; Hippelein, H.; Stockton, A.; Oxygen Gas Abundances<br />

at z ~ 1.4: Implications for the Chemical<br />

Evolution History of Galaxies; ApJ 639, 858–867<br />

Maiolino, R.; Mignoli, M.; Pozzetti, L.; Severgnini, P.;<br />

Brusa, M.; Vignali, C.; Puccetti, S.; Ciliegi, P.;<br />

Cocchia, F.; Comastri, A.; Fiore, F.; La Franca, F.;<br />

Matt, G.; Molendi, S.; Perola, G. C.; The<br />

HELLAS XMM survey. IX. Spectroscopic identification<br />

of super-EROs hosting AGNs; A&A 445,<br />

457–463<br />

Maiorano, E.; Masetti, N.; Palazzi, E.; Savaglio, S.;<br />

Rol, E.; Vreeswijk, P. M.; Pian, E.; Price, P. A.;<br />

Peterson, B. A.; Jelínek, M.; Amati, L.; Andersen,<br />

M. I.; Castro-Tirado, A. J.; Castro Cerón, J. M.; de<br />

Ugarte Postigo, A.; Frontera, F.; Fruchter, A. S.;<br />

Fynbo, J. P. U.; Gorosabel, J.; Henden, A. A.;<br />

Hjorth, J.; Jensen, B. L.; Klose, S.; Kouveliotou,<br />

C.; Masi, G.; Møller, P.; Nicastro, L.; Ofek, E. O.;<br />

Pandey, S. B.; Rhoads, J.; Tanvir, N. R.; Wijers, R.<br />

A. M. J.; van den Heuvel, E. P. J.; Physics of the<br />

GRB 0303 8 afterglow and its environment; A&A<br />

455, 4 3–431<br />

Marconi, A.; Pastorini, G.; Pacini, F.; Axon, D. J.;<br />

Capetti, A.; Macchetto, D.; Koekemoer, A. M.;<br />

Schreier, E. J.; The supermassive black hole in<br />

Centaurus A: a benchmark for gas kinematical<br />

measurements; A&A 448, 9 1–953<br />

Marcillac, D.; Elbaz, D.; Charlot, S.; Liang, Y. C.;<br />

Hammer, F.; Flores, H.; Cesarsky, C.; Pasquali, A.;<br />

The star formation history of luminous infrared<br />

galaxies; A&A 458, 369–383<br />

Martayan, C.; Hubert, A. M.; Floquet, M.; Fabregat,<br />

J.; Frémat, Y.; Neiner, C.; Stee, P.; Zorec, J.; A<br />

study of the B and Be star population in the field<br />

of the LMC open cluster NGC 004 with VLT-<br />

FLAMES; A&A 445, 931–937<br />

Martayan, C.; Hubert, A. M.; Floquet, M.; Fabregat,<br />

J.; Frémat, Y.; Neiner, C.; Stee, P.; Zorec, J.; A<br />

study of the B and Be star population in the field<br />

of the LMC open cluster NGC 004 with VLT-<br />

FLAMES; A&A 445, 931–937<br />

Martayan, C.; Frémat, Y.; Hubert, A.-M.; Floquet, M.;<br />

Zorec, J.; Neiner, C.; Effects of metallicity, star-formation<br />

conditions, and evolution in B and Be stars.<br />

I. Large Magellanic Cloud, field of NGC 004; A&A<br />

45 , 73– 84<br />

Martin, N. F.; Irwin, M. J.; Ibata, R. A.; Conn, B. C.;<br />

Lewis, G. F.; Bellazzini, M.; Chapman, S.; Tanvir,<br />

N.; A radial velocity survey of low Galactic latitude<br />

structures – III. The Monoceros Ring in front of the<br />

Carina and Andromeda galaxies; MNRAS 367,<br />

L69–L73<br />

Martin, J. C.; Davidson, K.; Humphreys, R. M.; Hillier,<br />

D. J.; Ishibashi, K.; On the He II Emission in<br />

b Carinae and the Origin of Its Spectroscopic<br />

Events; ApJ 640, 474–490<br />

Martín, E. L.; Guenther, E.; Zapatero Osorio, M. R.;<br />

Bouy, H.; Wainscoat, R.; A Multiwavelength Radial<br />

Velocity Search for Planets around the Brown<br />

Dwarf LP 944- 0; ApJ 644, L75–L78<br />

Martin, J. C.; Davidson, K.; Hamann, F.; Stahl, O.;<br />

Weis, K.; Variable Unidentified Emission near<br />

6307 Å in b Carinae; PASP 118, 697–705<br />

Martín-Hernández, N. L.; Schaerer, D.; Peeters, E.;<br />

Tielens, A. G. G. M.; Sauvage, M.; High spatial<br />

resolution mid-infrared spectroscopy of the starburst<br />

galaxies NGC 3 56, II Zw 40 and Henize -<br />

10; A&A 455, 853–870<br />

Martins, F.; Trippe, S.; Paumard, T.; Ott, T.; Genzel,<br />

R.; Rauw, G.; Eisenhauer, F.; Gillessen, S.; Maness,<br />

H.; Abuter, R.; GCIRS 16SW: A Massive Eclipsing<br />

Binary in the Galactic Center; ApJ 649, L103–L106<br />

Masetti, N.; Pretorius, M. L.; Palazzi, E.; Bassani, L.;<br />

Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A.<br />

J.; Malizia, A.; Nkundabakura, P.; Stephen, J. B.;<br />

Ubertini, P.; Unveiling the nature of INTEGRAL<br />

objects through optical spectroscopy. III. Observations<br />

of seven southern sources; A&A 449,<br />

1139–1149


Masetti, N.; Bassani, L.; Bazzano, A.; Bird, A. J.;<br />

Dean, A. J.; Malizia, A.; Norci, L.; Palazzi, E.;<br />

Schwope, A. D.; Stephen, J. B.; Ubertini, P.;<br />

Walter, R.; Unveiling the nature of INTEGRAL<br />

objects through optical spectroscopy. IV. A study<br />

of six new hard X-ray sources; A&A 455, 11–19<br />

Massi, F.; Testi, L.; Vanzi, L.; The IMF and star forma-<br />

tion history of the stellar clusters in the Vela D<br />

cloud; A&A 448, 1007–10<br />

Masseron, T.; van Eck, S.; Famaey, B.; Goriely, S.;<br />

Plez, B.; Siess, L.; Beers, T. C.; Primas, F.;<br />

Jorissen, A.; CS 303 -0 3: an ultra metal-poor<br />

TP-AGB star?; A&A 455, 1059–107<br />

Mathys, G.; Hubrig, S.; The diagnosis of the mean<br />

quadratic magnetic field of Ap stars; A&A 453,<br />

699–715<br />

Matsuura, M.; Chesneau, O.; Zijlstra, A. A.; Jaffe, W.;<br />

Waters, L. B. F. M.; Yates, J. A.; Lagadec, E.;<br />

Gledhill, T.; Etoka, S.; Richards, A. M. S.; The<br />

Compact Circumstellar Material around OH<br />

31.8+4. ; ApJ 646, L1 3–L1 6<br />

Matute, I.; La Franca, F.; Pozzi, F.; Gruppioni, C.;<br />

Lari, C.; Zamorani, G.; Active galactic nuclei in the<br />

mid-IR. Evolution and contribution to the cosmic<br />

infrared background; A&A 451, 443–456<br />

Mauas, P. J. D.; Cacciari, C.; Pasquini, L.; Modelling<br />

chromospheric line profiles in NGC 808: evidence<br />

of mass loss from RGB stars; A&A 454,<br />

609–615<br />

Mauron, N.; Huggins, P. J.; Imaging the circumstellar<br />

envelopes of AGB stars; A&A 45 , 57– 68<br />

Maxted, P. F. L.; Napiwotzki, R.; Dobbie, P. D.;<br />

Burleigh, M. R.; Survival of a brown dwarf after<br />

engulfment by a red giant star; Nature 44 , 543–<br />

545<br />

Mazumdar, A.; Briquet, M.; Desmet, M.; Aerts, C.; An<br />

asteroseismic study of the b Cephei star b Canis<br />

Majoris; A&A 459, 589–596<br />

Mazzali, P. A.; Deng, J.; Pian, E.; Malesani, D.;<br />

Tominaga, N.; Maeda, K.; Nomoto, K.; Chincarini,<br />

G.; Covino, S.; Della Valle, M.; Fugazza, D.;<br />

Tagliaferri, G.; Gal-Yam, A.; Models for the Type Ic<br />

Hypernova SN 003lw associated with GRB<br />

031 03; ApJ 645, 13 3–1330<br />

Mazzali, P. A.; Deng, J.; Nomoto, K.; Sauer, D. N.;<br />

Pian, E.; Tominaga, N.; Tanaka, M.; Maeda, K.;<br />

Filippenko, A. V.; A neutron-star-driven X-ray flash<br />

associated with supernova SN 006aj; Nature<br />

44 , 1018–10 0<br />

McConnachie, A. W.; Arimoto, N.; Irwin, M.; Tolstoy,<br />

E.; The stellar content of the isolated transition<br />

dwarf galaxy DDO 10; MNRAS 373, 715–7 8<br />

Mehlert, D.; Tapken, C.; Appenzeller, I.; Noll, S.; de<br />

Mello, D.; Heckman, T. M.; Medium-resolution<br />

spectroscopy of galaxies with redshifts .3 < z <<br />

3.5; A&A 455, 835–843<br />

Mei, S.; Holden, B. P.; Blakeslee, J. P.; Rosati, P.;<br />

Postman, M.; Jee, M. J.; Rettura, A.; Sirianni, M.;<br />

Demarco, R.; Ford, H. C.; Franx, M.; Homeier, N.;<br />

Illingworth, G. D.; Evolution of the Color-Magnitude<br />

Relation in High-Redshift Clusters: Early-<br />

Type Galaxies in the Lynx Supercluster at z ~ 1. 6;<br />

ApJ 644, 759–768<br />

Melo, C.; Santos, N. C.; Pont, F.; Guillot, T.; Israelian,<br />

G.; Mayor, M.; Queloz, D.; Udry, S.; On the age of<br />

stars harboring transiting planets; A&A 460,<br />

51– 56<br />

Meléndez, J.; Shchukina, N. G.; Vasiljeva, I. E.;<br />

Ramírez, I.; Permitted Oxygen Abundances and<br />

the Temperature Scale of Metal-poor Turnoff<br />

Stars; ApJ 64 , 108 –1097<br />

Meneux, B.; Le Fèvre, O.; Guzzo, L.; Pollo, A.; Cappi,<br />

A.; Ilbert, O.; Iovino, A.; Marinoni, C.; McCracken,<br />

H. J.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni,<br />

D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.;<br />

Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.;<br />

Arnouts, S.; Arnaboldi, M.; Bardelli, S.; Bolzonella,<br />

M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.;<br />

Franzetti, P.; Gavignaud, I.; Marano, B.; Mazure,<br />

A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.;<br />

Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.;<br />

Bongiorno, A.; Busarello, G.; Cucciati, O.;<br />

Gregorini, L.; Lamareille, F.; Mathez, G.; Mellier, Y.;<br />

Merluzzi, P.; Ripepi, V.; Rizzo, D.; The VIMOS-VLT<br />

Deep Survey. The evolution of galaxy clustering<br />

per spectral type to z ≅ 1.5; A&A 45 , 387–395<br />

Mennickent, R. E.; Unda-Sanzana, E.; Tappert, C.;<br />

Doppler tomography of the dwarf novae VY<br />

Aquari and WX Ceti; A&A 451, 613–619<br />

Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.;<br />

Polehampton, E. T.; Brünken, S.; Submillimeter<br />

vibrationally excited water emission from the peculiar<br />

red supergiant VY Canis Majoris; A&A 454,<br />

L107–L110<br />

Mercurio, A.; Merluzzi, P.; Haines, C. P.; Gargiulo, A.;<br />

Krusanova, N.; Busarello, G.; La Barbera, F.;<br />

Capaccioli, M.; Covone, G.; Shapley Optical<br />

Survey – I. Luminosity functions in the supercluster<br />

environment; MNRAS 368, 109–1 0<br />

Merritt, D.; Storchi-Bergmann, T.; Robinson, A.;<br />

Batcheldor, D.; Axon, D.; Cid Fernandes, R.; The<br />

nature of the HE0450- 958 system; MNRAS 367,<br />

1746–1750<br />

Meyer, L.; Schödel, R.; Eckart, A.; Karas, V.; Dovčiak,<br />

M.; Duschl, W. J.; K-band polarimetry of an Sgr A*<br />

flare with a clear sub-flare structure; A&A 458,<br />

L 5–L 8<br />

Meyer, L.; Eckart, A.; Schödel, R.; Duschl, W. J.;<br />

Mužić, K.; Dovčiak, M.; Karas, V.; Near-infrared<br />

polarimetry setting constraints on the orbiting<br />

spot model for Sgr A* flares; A&A 460, 15– 1<br />

Miettinen, O.; Harju, J.; Haikala, L. K.; Pomrén, C.;<br />

SiO and CH_3CCH abundances and dust emission<br />

in high-mass star-forming cores; A&A 460,<br />

7 1–731<br />

Milone, A. P.; Villanova, S.; Bedin, L. R.; Piotto, G.;<br />

Carraro, G.; Anderson, J.; King, I. R.; Zaggia, S.;<br />

Absolute motions of globular clusters. II. HST<br />

astrometry and VLT radial velocities in NGC 6397;<br />

A&A 456, 517–5<br />

Moehler, S.; Sweigart, A. V.; Observations of the hot<br />

horizontal-branch stars in the metal-rich bulge<br />

globular cluster NGC 6388. Indications of helium<br />

enrichment and a lesson in crowded field spectroscopy;<br />

A&A 455, 943–95<br />

Moitinho, A.; Carraro, G.; Baume, G.; Vázquez, R. A.;<br />

Open clusters in the Third Galactic Quadrant. II.<br />

The intermediate age open clusters NGC 4 5<br />

and NGC 635; A&A 445, 493–501<br />

Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.;<br />

Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer,<br />

N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.;<br />

Yoon, S.-C.; The VLT-FLAMES survey of massive<br />

stars: mass loss and rotation of early-type stars in<br />

the SMC; A&A 456, 1131–1151<br />

Momany, Y.; Zaggia, S.; Gilmore, G.; Piotto, G.;<br />

Carraro, G.; Bedin, L. R.; de Angeli, F.; Outer<br />

structure of the Galactic warp and flare: explaining<br />

the Canis Major over-density; A&A 451, 515–538<br />

Moni Bidin, C.; Moehler, S.; Piotto, G.; Recio-Blanco,<br />

A.; Momany, Y.; Méndez, R. A.; The lack of close<br />

binaries among hot horizontal branch stars in<br />

NGC 675 ; A&A 451, 499–513<br />

Monin, J.-L.; Ménard, F.; Peretto, N.; Disc orienta-<br />

tions in pre-main-sequence multiple systems. A<br />

study in southern star formation regions; A&A<br />

446, 01– 10<br />

Montagnier, G.; Ségransan, D.; Beuzit, J.-L.; Forveille,<br />

T.; Delorme, P.; Delfosse, X.; Perrier, C.; Udry, S.;<br />

Mayor, M.; Chauvin, G.; Lagrange, A.-M.; Mouillet,<br />

D.; Fusco, T.; Gigan, P.; Stadler, E.; Five new very<br />

low mass binaries; A&A 460, L19–L<br />

Mouhcine, M.; Bamford, S. P.; Aragón-Salamanca,<br />

A.; Nakamura, O.; Milvang-Jensen, B.; The metallicities<br />

of luminous, massive field galaxies at intermediate<br />

redshifts; MNRAS 369, 891–908<br />

Mouhcine, M.; Bamford, S. P.; Aragón-Salamanca,<br />

A.; Nakamura, O.; Milvang-Jensen, B.; Star formation<br />

rates and chemical abundances of emissionline<br />

galaxies in intermediate-redshift clusters;<br />

MNRAS 368, 1871–1879<br />

Mucciarelli, A.; Origlia, L.; Ferraro, F. R.; Maraston,<br />

C.; Testa, V.; Red Giant Stars in the Large Magellanic<br />

Cloud Clusters; ApJ 646, 939–950<br />

Mueller Sánchez, F.; Davies, R. I.; Eisenhauer, F.;<br />

Tacconi, L. J.; Genzel, R.; Sternberg, A.; SINFONI<br />

adaptive optics integral field spectroscopy of the<br />

Circinus Galaxy; A&A 454, 481–49<br />

Mugrauer, M.; Seifahrt, A.; Neuhäuser, R.; Mazeh, T.;<br />

HD3651B: the first directly imaged brown dwarf<br />

companion of an exoplanet host star; MNRAS<br />

373, L31<br />

Muno, M. P.; Clark, J. S.; Crowther, P. A.; Dougherty,<br />

S. M.; de Grijs, R.; Law, C.; McMillan, S. L. W.;<br />

Morris, M. R.; Negueruela, I.; Pooley, D.; Portegies<br />

Zwart, S.; Yusef-Zadeh, F.; A Neutron Star with a<br />

Massive Progenitor in Westerlund 1; ApJ 636,<br />

L41–L44<br />

Muñoz, R. R.; Majewski, S. R.; Zaggia, S.; Kunkel, W.<br />

E.; Frinchaboy, P. M.; Nidever, D. L.; Crnojevic, D.;<br />

Patterson, R. J.; Crane, J. D.; Johnston, K. V.;<br />

Sohn, S. T.; Bernstein, R.; Shectman, S.; Exploring<br />

Halo Substructure with Giant Stars. XI. The<br />

Tidal Tails of the Carina Dwarf Spheroidal Galaxy<br />

and the Discovery of Magellanic Cloud Stars in<br />

the Carina Foreground; ApJ 649, 01– 3<br />

Nardetto, N.; Mourard, D.; Kervella, P.; Mathias, Ph.;<br />

Mérand, A.; Bersier, D.; High resolution<br />

spectroscopy for Cepheids distance determination.<br />

I. Line asymmetry; A&A 453, 309–319<br />

Natta, A.; Testi, L.; Randich, S.; Accretion in the b-<br />

Ophiuchi pre-main sequence stars; A&A 45 ,<br />

45– 5<br />

Nazé, Y.; Rauw, G.; Hutsemékers, D.; Gosset, E.;<br />

Manfroid, J.; Royer, P.; The atypical emission-line<br />

star Hen3- 09; MNRAS 371, 1594–1600<br />

Negueruela, I.; Smith, D. M.; Harrison, T. E.; Torrejón,<br />

J. M.; The Optical Counterpart to the Peculiar X-<br />

Ray Transient XTE J1739-30 ; ApJ 638, 98 –986<br />

<strong>ESO</strong> Annual Report 006<br />

95


Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.;<br />

Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.;<br />

Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.;<br />

Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-<br />

Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.;<br />

Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland,<br />

C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.;<br />

Gonçalves, A. C.; Hardin, D.; Kowalski, M.;<br />

Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.;<br />

Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.;<br />

The Type Ia Supernova Rate at z ~ 0.5 from the<br />

Supernova Legacy Survey; AJ 13 , 11 6–1145<br />

Nelemans, G.; Jonker, P. G.; Steeghs, D.; Optical<br />

spectroscopy of (candidate) ultracompact X-ray<br />

binaries: constraints on the composition of the<br />

donor stars; MNRAS 370, 55– 6<br />

Nesvadba, N. P. H.; Lehnert, M. D.; Eisenhauer, F.;<br />

Gilbert, A.; Tecza, M.; Abuter, R.; Extreme Gas<br />

Kinematics in the z = . Powerful Radio Galaxy<br />

MRC 1138- 6 : Evidence for Efficient Active<br />

Galactic Nucleus Feedback in the Early Universe?;<br />

ApJ 650, 693–705<br />

Nesvadba, N. P. H.; Lehnert, M. D.; Eisenhauer, F.;<br />

Genzel, R.; Seitz, S.; Davies, R. I.; Saglia, R. P.;<br />

Lutz, D.; Tacconi, L.; Bender, R.; Abuter, R.; Lyman<br />

Break Galaxies under a Microscope: The Small-<br />

Scale Dynamics and Mass of an Arc in the Cluster<br />

1E 0657-56; ApJ 650, 661–668<br />

Neufeld, D. A.; Schilke, P.; Menten, K. M.; Wolfire, M.<br />

G.; Black, J. H.; Schuller, F.; Müller, H. S. P.;<br />

Thorwirth, S.; Güsten, R.; Philipp, S.; Discovery of<br />

interstellar CF+; A&A 454, L37–L40<br />

Niemela, V. S.; Morrell, N. I.; Fernández Lajús, E.;<br />

Barbá, R.; Albacete Colombo, J. F.; Orellana, M.;<br />

Optical spectroscopy of X-Mega targets in the<br />

Carina nebula – VI. FO15: a new O-type doublelined<br />

eclipsing binary; MNRAS 367, 1450–1456<br />

Nieva, M. F.; Przybilla, N.; C II Abundances in Early-<br />

Type Stars: Solution to a Notorious Non-LTE<br />

Problem; ApJ 639, L39–L4<br />

Nilsson, K. K.; Fynbo, J. P. U.; Møller, P.; Sommer-<br />

Larsen, J.; Ledoux, C.; A Lyman-b blob in the<br />

GOODS South field: evidence for cold accretion<br />

onto a dark matter halo; A&A 45 , L 3–L 6<br />

O’Toole, S. J.; Heber, U.; Abundance studies of sdB<br />

stars using UV echelle HST/STIS spectroscopy;<br />

A&A 45 , 579–590<br />

Oates, S. R.; Mundell, C. G.; Piranomonte, S.; Page,<br />

K. L.; de Pasquale, M.; Monfardini, A.; Melandri,<br />

A.; Zane, S.; Guidorzi, C.; Malesani, D.; Gomboc,<br />

A.; Bannister, N.; Blustin, A. J.; Capalbi, M.;<br />

Carter, D.; D’Avanzo, P.; Kobayashi, S.; Krimm, H.<br />

A.; O’Brien, P. T.; Page, M. J.; Smith, R. J.; Steele,<br />

I. A.; Tanvir, N.; Anatomy of a dark burst – the<br />

afterglow of GRB 060108; MNRAS 37 , 3 7–337<br />

Pearson, K. J.; Hynes, R. I.; Steeghs, D.; Jonker, P.<br />

G.; Haswell, C. A.; King, A. R.; O’Brien, K.;<br />

Nelemans, G.; Méndez, M.; Multiwavelength<br />

Observations of EXO 0748-676. II. Emission-Line<br />

Behavior; ApJ 648, 1169–1180<br />

Ofek, E. O.; Maoz, D.; Rix, H.-W.; Kochanek, C. S.;<br />

Falco, Emilio E.; Spectroscopic Redshifts for<br />

Seven Lens Galaxies; ApJ 641, 70–77<br />

96<br />

<strong>ESO</strong> Annual Report 006<br />

Ohnaka, K.; Driebe, T.; Hofmann, K.-H.; Leinert, C.;<br />

Morel, S.; Paresce, F.; Preibisch, T.; Richichi, A.;<br />

Schertl, D.; Schöller, M.; Waters, L. B. F. M.;<br />

Weigelt, G.; Wittkowski, M.; High angular resolution<br />

N-band observation of the silicate carbon star<br />

IRAS0800 -3803 with the VLTI/MIDI instrument.<br />

Dusty environment spatially resolved; A&A 445,<br />

1015–10 9<br />

Oliveira, J. M.; van Loon, J. Th.; Stanimirović, S.;<br />

Zijlstra, A. A.; Massive young stellar objects in the<br />

Large Magellanic Cloud: water masers and <strong>ESO</strong>-<br />

VLT 3-4 μm spectroscopy; MNRAS 37 ,<br />

1509–15 4<br />

Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Benoist, C.;<br />

Vandame, B.; Rengelink, R.; Rité, C.; Scodeggio,<br />

M.; Slijkhuis, R.; Wicenec, A.; Zaggia, S.; <strong>ESO</strong><br />

imaging survey: infrared observations of CDF-S<br />

and HDF-S; A&A 45 , 119–1 9<br />

Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Madejsky,<br />

R.; Jørgensen, H. E.; Mignano, A.; Arnouts, S.;<br />

Benoist, C.; Dietrich, J. P.; Slijkhuis, R.; Zaggia, S.;<br />

<strong>ESO</strong> imaging survey: infrared deep public survey;<br />

A&A 456, 881–893<br />

Ortolani, S.; Bica, E.; Barbuy, B.; AL 3 (BH 61): A<br />

New Globular Cluster in the Galaxy; ApJ 646,<br />

L115–L118<br />

Pace, G.; Recio-Blanco, A.; Piotto, G.; Momany, Y.;<br />

Abundance anomalies in hot horizontal branch<br />

stars of the Galactic globular cluster NGC 808;<br />

A&A 45 , 493–501<br />

Pannella, M.; Hopp, U.; Saglia, R. P.; Bender, R.;<br />

Drory, N.; Salvato, M.; Gabasch, A.; Feulner, G.;<br />

The Evolution of the Mass Function Split by<br />

Morphology up to Redshift 1 in the FORS Deep<br />

and the GOODS-S Fields; ApJ 639, L1–L4<br />

Papaderos, P.; Izotov, Y. I.; Guseva, N. G.; Thuan, T.<br />

X.; Fricke, K. J.; Oxygen abundance variations in<br />

the system of the two blue compact dwarf galaxies<br />

SBS 0335-05 E and SBS 0335-05 W; A&A<br />

454, 119–1 3<br />

Papaderos, P.; Guseva, N. G.; Izotov, Y. I.; Noeske,<br />

K. G.; Thuan, T. X.; Fricke, K. J.; New southern<br />

blue compact dwarf galaxies in the dF Galaxy<br />

redshift survey; A&A 457, 45–59<br />

Papovich, C.; Moustakas, L. A.; Dickinson, M.; Le<br />

Floc’h, E.; Rieke, G. H.; Daddi, E.; Alexander, D.<br />

M.; Bauer, F.; Brandt, W. N.; Dahlen, T.; Egami, E.;<br />

Eisenhardt, P.; Elbaz, D.; Ferguson, H. C.;<br />

Giavalisco, M.; Lucas, R. A.; Mobasher, B.; Pérez-<br />

González, P. G.; Stutz, A.; Rieke, M. J.; Yan, H.;<br />

Spitzer Observations of Massive, Red Galaxies at<br />

High Redshift; ApJ 640, 9 –113<br />

Paraficz, D.; Hjorth, J.; Burud, I.; Jakobsson, P.;<br />

Elíasdóttir, Á.; Microlensing variability in timedelay<br />

quasars; A&A 455, L1–L4<br />

Parise, B.; Belloche, A.; Leurini, S.; Schilke, P.;<br />

Wyrowski, F.; Güsten, R.; CO and CH3OH observations<br />

of the BHR71 outflows with APEX; A&A<br />

454, L79–L8<br />

Pasquali, A.; Comerón, F.; Nota, A.; The birth-cluster<br />

of the galactic luminous blue variable WRA 751;<br />

A&A 448, 589–596<br />

Pasquali, A.; Pirzkal, N.; Larsen, S.; Walsh, J. R.;<br />

Kümmel, M.; Slitless Grism Spectroscopy with the<br />

Hubble Space Telescope Advanced Camera for<br />

Surveys; PASP 118, 70– 87<br />

Patat, F.; Romaniello, M.; Error Analysis for Dual-<br />

Beam Optical Linear Polarimetry; PASP 118,<br />

146–161<br />

Patat, F.; Ugolnikov, O. S.; Postylyakov, O. V.; UBVRI<br />

twilight sky brightness at <strong>ESO</strong>-Paranal; A&A 455,<br />

385–393<br />

Pauli, E.-M.; Napiwotzki, R.; Heber, U.; Altmann, M.;<br />

Odenkirchen, M.; 3D kinematics of white dwarfs<br />

from the SPY project. II.; A&A 447, 173–184<br />

Paumard, T.; Genzel, R.; Martins, F.; Nayakshin, S.;<br />

Beloborodov, A. M.; Levin, Y.; Trippe, S.;<br />

Eisenhauer, F.; Ott, T.; Gillessen, S.; Abuter, R.;<br />

Cuadra, J.; Alexander, T.; Sternberg, A.; The Two<br />

Young Star Disks in the Central Parsec of the Galaxy:<br />

Properties, Dynamics, and Formation; ApJ<br />

643, 1011–1035<br />

Paunzen, E.; Netopil, M.; Iliev, I. Kh.; Maitzen, H. M.;<br />

Claret, A.; Pintado, O. I.; CCD photometric search<br />

for peculiar stars in open clusters. VII. Berkeley<br />

11, Berkeley 94, Haffner 15, Lyngå 1, NGC 6031,<br />

NGC 6405, NGC 6834 and Ruprecht 130; A&A<br />

454, 171–178<br />

Paunzen, E.; Maitzen, H. M.; Pintado, O. I.; Claret, A.;<br />

Iliev, I. K.; Netopil, M.; Chemically peculiar stars in<br />

the Large Magellanic Cloud; A&A 459, 871–874<br />

Pedersen, K.; Hurley, K.; Hjorth, J.; Smith, D. A.;<br />

Andersen, M. I.; Christensen, L.; Cline, T.; Fynbo,<br />

J. P. U.; Goldsten, J.; Golenetskii, S.; Gorosabel,<br />

J.; Jakobsson, P.; Jensen, B. L.; Milvang-Jensen,<br />

B.; McClanahan, T.; Møller, P.; Palshin, V.; Schartel,<br />

N.; Trombka, J.; Ulanov, M.; Watson, D.; Multiwavelength<br />

Studies of the Optically Dark Gamma-<br />

Ray Burst 0010 5A; ApJ 636, 381–390<br />

Pellizza, L. J.; Chaty, S.; Negueruela, I.; IGR J17544-<br />

619: a new supergiant fast X-ray transient revealed<br />

by optical/infrared observations; A&A 455,<br />

653–658<br />

Pellizza, L. J.; Duc, P.-A.; Le Floc’h, E.; Mirabel, I. F.;<br />

Antonelli, L. A.; Campana, S.; Chincarini, G.;<br />

Cimatti, A.; Covino, S.; Della Valle, M.; Fiore, F.;<br />

Fugazza, D.; Giommi, P.; Goldoni, P.; Israel, G. L.;<br />

Molinari, E.; Moretti, A.; Piro, L.; Saracco, P.;<br />

Stella, L.; Tagliaferri, G.; Vietri, M.; GRB 050 3: a<br />

dark GRB in a dusty starburst galaxy; A&A 459,<br />

L5–L8<br />

Peng, Z.; Gu, Q.; Melnick, J.; Zhao, Y.; The K-band<br />

properties of Seyfert galaxies; A&A 453,<br />

863–868<br />

Pereira, C. B.; Roig, F.; Spectroscopic observations<br />

of the rapid rotating post-AGB star IRAS<br />

05381+101 ; A&A 45 , 571–577<br />

Péroux, C.; Kulkarni, V. P.; Meiring, J.; Ferlet, R.;<br />

Khare, P.; Lauroesch, J. T.; Vladilo, G.; York, D. G.;<br />

The most metal-rich intervening quasar absorber<br />

known; A&A 450, 53–57<br />

Petitjean, P.; Ledoux, C.; Noterdaeme, P.; Srianand,<br />

R.; Metallicity as a criterion to select H -bearing<br />

damped Lyman-b systems; A&A 456, L9–L1<br />

Pian, E.; Mazzali, P. A.; Masetti, N.; Ferrero, P.;<br />

Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley,<br />

S. E.; Kouveliotou, C.; Deng, J.; Filippenko, A. V.;<br />

Foley, R. J.; Fynbo, J. P. U.; Kann, D. A.; Li, W.;<br />

Hjorth, J.; Nomoto, K.; Patat, F.; Sauer, D. N.;<br />

Sollerman, J.; Vreeswijk, P. M.; Guenther, E. W.;<br />

Levan, A.; O’Brien, P.; Tanvir, N. R.; Wijers, R. A.<br />

M. J.; Dumas, C.; Hainaut, O.; Wong, D. S.;<br />

Baade, D.; Wang, L.; Amati, L.; Cappellaro, E.;<br />

Castro-Tirado, A. J.; Ellison, S.; Frontera, F.;<br />

Fruchter, A. S.; Greiner, J.; Kawabata, K.; Ledoux,<br />

C.; Maeda, K.; Møller, P.; Nicastro, L.; Rol, E.;<br />

Starling, R.; An optical supernova associated with<br />

the X-ray flash XRF 060 18; Nature 44 , 1011–<br />

1013


Piconcelli, E.; Sánchez-Portal, M.; Guainazzi, M.;<br />

Martocchia, A.; Motch, C.; Schröder, A. C.;<br />

Bianchi, S.; Jiménez-Bailón, E.; Matt, G.; 4U 1344-<br />

60: a bright intermediate Seyfert galaxy at z =<br />

0.01 with a relativistic Fe Kb emission line; A&A<br />

453, 839–846<br />

Pierre, M.; Pacaud, F.; Duc, P.-A.; Willis, J. P.;<br />

Andreon, S.; Valtchanov, I.; Altieri, B.; Galaz, G.;<br />

Gueguen, A.; Le Fèvre J.-P.; Le Fèvre, O. Le;<br />

Ponman, T.; Sprimont, P.-G.; Surdej, J.; Adami, C.;<br />

Alshino, A.; Bremer, M.; Chiappetti, L.; Detal, A.;<br />

Garcet, O.; Gosset, E.; Jean, C.; Maccagni, D.;<br />

Marinoni, C.; Mazure, A.; Quintana, H.; Read, A.;<br />

The XMM Large-Scale Structure survey: a wellcontrolled<br />

X-ray cluster sample over the D1<br />

CFHTLS area; MNRAS 37 , 591–608<br />

Pietrzyński, G.; Gieren, W.; Soszyński, I.; Bresolin, F.;<br />

Kudritzki, R.-P.; Dall’Ora, M.; Storm, J.; Bono, G.;<br />

The Araucaria Project: The Distance to the Local<br />

Group Galaxy IC 1613 from Near-Infrared Photometry<br />

of Cepheid Variables; ApJ 64 , 16– 4<br />

Podio, L.; Bacciotti, F.; Nisini, B.; Eislöffel, J.; Massi,<br />

F.; Giannini, T.; Ray, T. P.; Recipes for stellar jets:<br />

results of combined optical/infrared diagnostics;<br />

A&A 456, 189– 04<br />

Poggianti, B. M.; von der Linden, A.; De Lucia, G.;<br />

Desai, V.; Simard, L.; Halliday, C.; Aragón-<br />

Salamanca, A.; Bower, R.; Varela, J.; Best, P.;<br />

Clowe, D. I.; Dalcanton, J.; Jablonka, P.; Milvang-<br />

Jensen, B.; Pello, R.; Rudnick, G.; Saglia, R.;<br />

White, S. D. M.; Zaritsky, D.; The Evolution of the<br />

Star Formation Activity in Galaxies and Its Dependence<br />

on Environment; ApJ 64 , 188– 15<br />

Pollo, A.; Guzzo, L.; Le Fèvre, O.; Meneux, B.; Cappi,<br />

A.; Franzetti, P.; Iovino, A.; McCracken, H. J.;<br />

Marinoni, C.; Zamorani, G.; Bottini, D.; Garilli, B.;<br />

Le Brun, V.; Maccagni, D.; Picat, J. P.; Scaramella,<br />

R.; Scodeggio, M.; Tresse, L.; Vettolani, G.;<br />

Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.;<br />

Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.;<br />

Foucaud, S.; Gavignaud, I.; Ilbert, O.; Marano, B.;<br />

Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.;<br />

Pozzetti, L.; Radovich, M.; Zucca, E.; Bondi, M.;<br />

Bongiorno, A.; Busarello, G.; Cucciati, O.;<br />

Gregorini, L.; Lamareille, F.; Mathez, G.; Mellier, Y.;<br />

Merluzzi, P.; Ripepi, V.; Rizzo, D.; The VIMOS-VLT<br />

Deep Survey. Luminosity dependence of clustering<br />

at z &simeq; 1; A&A 451, 409–416<br />

Pompei, E.; de Carvalho, R. R.; Iovino, A.; The DPOSS<br />

II compact group survey: first spectroscopically<br />

confirmed candidates; A&A 445, 857–867<br />

Poncelet, A.; Perrin, G.; Sol, H.; A new analysis of<br />

the nucleus of NGC 1068 with MIDI observations;<br />

A&A 450, 483–494<br />

Pont, F.; Moutou, C.; Bouchy, F.; Behrend, R.; Mayor,<br />

M.; Udry, S.; Queloz, D.; Santos, N.; Melo, C.;<br />

Radius and mass of a transiting M dwarf near the<br />

hydrogen-burning limit. OGLE-TR-1 3; A&A 447,<br />

1035–1039<br />

Pontoppidan, K. M.; Spatial mapping of ices in the<br />

Ophiuchus-F core. A direct measurement of CO<br />

depletion and the formation of CO ; A&A 453,<br />

L47–L50<br />

Preibisch, T.; Kraus, S.; Driebe, T.; van Boekel, R.;<br />

Weigelt, G.; A compact dusty disk around the<br />

Herbig Ae star HR 5999 resolved with VLTI / MIDI;<br />

A&A 458, 35– 43<br />

Proust, D.; Quintana, H.; Carrasco, E. R.;<br />

Reisenegger, A.; Slezak, E.; Muriel, H.; Dünner, R.;<br />

Sodré, L. Jr.; Drinkwater, M. J.; Parker, Q. A.;<br />

Ragone, C. J.; Structure and dynamics of the<br />

Shapley Supercluster. Velocity catalogue, general<br />

morphology and mass; A&A 447, 133–144<br />

Przybilla, N.; Butler, K.; Becker, S. R.; Kudritzki, R.<br />

P.; Quantitative spectroscopy of BA-type supergiants;<br />

A&A 445, 1099–11 6<br />

Puech, M.; Flores, H.; Hammer, F.; Lehnert, M. D.;<br />

3D spectroscopy with VLT/GIRAFFE. III. Mapping<br />

electron densities in distant galaxies; A&A 455,<br />

131–134<br />

Puech, M.; Hammer, F.; Flores, H.; Östlin, G.;<br />

Marquart, T.; 3D spectroscopy with VLT/GIRAFFE.<br />

II. Are luminous compact galaxies merger remnants?;<br />

A&A 455, 119–1 9<br />

Puga, E.; Feldt, M.; Alvarez, C.; Henning, T.; Apai, D.;<br />

Le Coarer, E.; Chalabaev, A.; Stecklum, B.;<br />

Outflows, Disks, and Stellar Content in a Region<br />

of High-Mass Star Formation: G5.89-0.39 with<br />

Adaptive Optics; ApJ 641, 373–38<br />

Puzia, T. H.; Kissler-Patig, M.; Goudfrooij, P.; Ex-<br />

tremely b-Enriched Globular Clusters in Early-<br />

Type Galaxies: A Step toward the Dawn of Stellar<br />

Populations?; ApJ 648, 383–388<br />

Pérez, I.; Freeman, K.; The origin of the hot metal-<br />

poor gas in NGC 1 91. Testing the hypothesis of<br />

gas dynamics as the cause of the gas heating;<br />

A&A 454, 165–169<br />

Péroux, C.; Meiring, J. D.; Kulkarni, V. P.; Ferlet, R.;<br />

Khare, P.; Lauroesch, J. T.; Vladilo, G.; York, D. G.;<br />

Metal-rich damped/subdamped Lyman b quasar<br />

absorbers at z < 1; MNRAS 37 , 369–380<br />

Quanz, S. P.; Henning, T.; Bouwman, J.; Ratzka, T.;<br />

Leinert, C.; FU Orionis: The MIDI VLTI Perspective;<br />

ApJ 648, 47 –483<br />

Quinet, P.; Palmeri, P.; Biémont, É.; Jorissen, A.; van<br />

Eck, S.; Svanberg, S.; Xu, H. L.; Plez, B.; Transition<br />

probabilities and lifetimes in neutral and singly<br />

ionized osmium and the Solar osmium abundance;<br />

A&A 448, 1 07–1 16<br />

Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren,<br />

A. A.; Mass-loss properties of S-stars on the<br />

AGB; A&A 454, L103–L106<br />

Randich, S.; Sestito, P.; Primas, F.; Pallavicini, R.;<br />

Pasquini, L.; Element abundances of unevolved<br />

stars in the open cluster M 67; A&A 450, 557–567<br />

Randall, S. K.; Fontaine, G.; Charpinet, S.; Lynas-<br />

Gray, A. E.; Lopes, I. P.; O’Toole, S. J.; Brassard,<br />

P.; Further Observations and Analysis of the Rapidly<br />

Pulsating Subdwarf B Star EC 0117-4014;<br />

ApJ 648, 637–651<br />

Rau, A.; Greiner, J.; Schwarz, R.; Constraining the<br />

GRB collimation with a survey for orphan afterglows;<br />

A&A 449, 79–88<br />

Rauer, H.; Weiler, M.; Sterken, C.; Jehin, E.;<br />

Knollenberg, J.; Hainaut, O.; Observations of CN<br />

and dust activity of comet 9P/Tempel 1 around<br />

Deep Impact; A&A 459, 57– 63<br />

Reiners, A.; Rotation- and temperature-dependence<br />

of stellar latitudinal differential rotation; A&A 446,<br />

67– 77<br />

Reinhold, E.; Buning, R.; Hollenstein, U.; Ivanchik, A.;<br />

Petitjean, P.; Ubachs, W.; Indication of a Cosmological<br />

Variation of the Proton-Electron Mass Ratio<br />

Based on Laboratory Measurement and Reanalysis<br />

of H Spectra; PhRvL 96, 151101<br />

Rejkuba, M.; da Costa, G. S.; Jerjen, H.; Zoccali, M.;<br />

Binggeli, B.; Dwarf elliptical galaxies in Centaurus<br />

A group: stellar populations in AM 1339-445 and<br />

AM 1343-45 ; A&A 448, 983–999<br />

Rettura, A.; Rosati, P.; Strazzullo, V.; Dickinson, M.;<br />

Fosbury, R. A. E.; Rocca-Volmerange, B.; Cimatti,<br />

A.; di Serego Alighieri, S.; Kuntschner, H.; Lanzoni,<br />

B.; Nonino, M.; Popesso, P.; Stern, D.; Eisenhardt,<br />

P. R.; Lidman, C.; Stanford, S. A.; Comparing dynamical<br />

and photometric-stellar masses of earlytype<br />

galaxies at z ~ 1; A&A 458, 717–7 6<br />

Riaud, P.; Mawet, D.; Absil, O.; Boccaletti, A.;<br />

Baudoz, P.; Herwats, E.; Surdej, J.; Coronagraphic<br />

imaging of three weak-line T Tauri stars:<br />

evidence of planetary formation around PDS 70;<br />

A&A 458, 317–3 5<br />

Richard, J.; Pelló, R.; Schaerer, D.; Le Borgne, J.-F.;<br />

Kneib, J.-P.; Constraining the population of 6 < ~ {z}<br />

< ~ 10 star-forming galaxies with deep near-IR images<br />

of lensing clusters; A&A 456, 861–880<br />

Rigby, J. R.; Rieke, G. H.; Donley, J. L.; Alonso-<br />

Herrero, A.; Pérez-González, P. G.; Why X-Rayselected<br />

Active Galactic Nuclei Appear Optically<br />

Dull; ApJ 645, 115–133<br />

Risaliti, G.; Sani, E.; Maiolino, R.; Marconi, A.; Berta,<br />

S.; Braito, V.; Della Ceca, R.; Franceschini, A.;<br />

Salvati, M.; The Double Active Galactic Nucleus in<br />

NGC 6 40 Revealed through 3-5 μm Spectroscopy;<br />

ApJ 637, L17–L 0<br />

Rivinius, T.; Štefl, S.; Baade, D.; Bright Be-shell stars;<br />

A&A 459, 137–145<br />

Roche, N. D.; Dunlop, J.; Caputi, K. I.; McLure, R.;<br />

Willott, C. J.; Crampton, D.; Deep GMOS spectroscopy<br />

of extremely red galaxies in GOODS-<br />

South: ellipticals, mergers and red spirals at 1 < z<br />

< ; MNRAS 370, 74–90<br />

Rodríguez, E.; Petitjean, P.; Aracil, B.; Ledoux, C.;<br />

Srianand, R.; Relative abundance pattern along<br />

the profile of high redshift Damped Lyman-b systems;<br />

A&A 446, 791–804<br />

Rodríguez-Ardila, A.; Prieto, M. A.; Viegas, S.;<br />

Gruenwald, R.; Outflows of Very Ionized Gas in<br />

the Centers of Seyfert Galaxies: Kinematics and<br />

Physical Conditions; ApJ 653, 1098–1114<br />

Roelofs, G. H. A.; Groot, P. J.; Marsh, T. R.; Steeghs,<br />

D.; Nelemans, G.; Phase-resolved spectroscopy<br />

of the helium dwarf nova `SN 003aw’ in quiescence;<br />

MNRAS 365, 1109–1113<br />

Rucinski, S. M.; Duerbeck, H. W.; Radial Velocity<br />

Studies of Southern Close Binary Stars. I. Winter<br />

Systems; AJ 13 , 1539–1546<br />

Rudnick, G.; Labbé, I.; Förster Schreiber, N. M.;<br />

Wuyts, S.; Franx, M.; Finlator, K.; Kriek, M.;<br />

Moorwood, A.; Rix, H.-W.; Röttgering, H.; Trujillo,<br />

I.; van der Wel, A.; van der Werf, P.; van Dokkum,<br />

P. G.; Measuring the Average Evolution of Luminous<br />

Galaxies at z < 3: The Rest-Frame Optical<br />

Luminosity Density, Spectral Energy Distribution,<br />

and Stellar Mass Density; ApJ 650, 6 4–643<br />

Ryabchikova, T.; Kochukhov, O.; Kudryavtsev, D.;<br />

Romanyuk, I.; Semenko, E.; Bagnulo, S.; Lo<br />

Curto, G.; North, P.; Sachkov, M.; HD 17889 - a<br />

cool Ap star with extremely strong magnetic field;<br />

A&A 445, L47–L50<br />

<strong>ESO</strong> Annual Report 006<br />

97


Ryabchikova, T.; Ryabtsev, A.; Kochukhov, O.;<br />

Bagnulo, S.; Rare-earth elements in the<br />

atmosphere of the magnetic chemically peculiar<br />

star HD 144897. New classification of the Nd III<br />

spectrum; A&A 456, 3 9–338<br />

Ryan-Weber, E. V.; Pettini, M.; Madau, P.;<br />

Intergalactic CIV absorption at redshifts 5.4 to 6;<br />

MNRAS 371, L78–L8<br />

Sabbadin, F.; Turatto, M.; Ragazzoni, R.; Cappellaro,<br />

E.; Benetti, S.; The structure of planetary nebulae:<br />

theory vs. practice; A&A 451, 937–949<br />

Sahu, K. C.; Casertano, S.; Bond, H. E.; Valenti, J.;<br />

Ed Smith, T.; Minniti, D.; Zoccali, M.; Livio, M.;<br />

Panagia, N.; Piskunov, N.; Brown, T. M.; Brown,<br />

T.; Renzini, A.; Rich, R. M.; Clarkson, W.; Lubow,<br />

S.; Transiting extrasolar planetary candidates in<br />

the Galactic bulge; Nature 443, 534–540<br />

Sana, H.; Gosset, E.; Rauw, G.; The OB binary<br />

HD15 19: a detached, double-lined, eclipsing<br />

system; MNRAS 371, 67–80<br />

Santos, N. C.; Pont, F.; Melo, C.; Israelian, G.; Bouchy,<br />

F.; Mayor, M.; Moutou, C.; Queloz, D.; Udry, S.;<br />

Guillot, T.; High resolution spectroscopy of stars<br />

with transiting planets. The cases of OGLE-TR-10,<br />

56, 111, 113, and TrES-1; A&A 450, 8 5–831<br />

Santos, N. C.; Ecuvillon, A.; Israelian, G.; Mayor, M.;<br />

Melo, C.; Queloz, D.; Udry, S.; Ribeiro, J. P.; Jorge,<br />

S.; Chemical abundances for the transiting planet<br />

host stars OGLE-TR-10, 56, 111, 113, 13 , and<br />

TrES-1. Abundances in different galactic populations;<br />

A&A 458, 997–1005<br />

Saracco, P.; Fiano, A.; Chincarini, G.; Vanzella, E.;<br />

Longhetti, M.; Cristiani, S.; Fontana, A.; Giallongo,<br />

E.; Nonino, M.; Probing the evolution of the nearinfrared<br />

luminosity function of galaxies to z ~= 3 in<br />

the Hubble Deep Field-South; MNRAS 367,<br />

349–365<br />

Savanov, I.; Hubrig, S.; Mathys, G.; Ritter, A.; Kurtz,<br />

D. W.; Search for radial velocity and magnetic field<br />

pulsational variations in the roAp star b Equulei;<br />

A&A 448, 1165–1168<br />

Sazhin, M.; Capaccioli, M.; Longo, G.; Paolillo, M.;<br />

Khovanskaya, O.; Further Spectroscopic Observations<br />

of the CSL 1 Object; ApJ 636, L5–L8<br />

Sbarufatti, B.; Treves, A.; Falomo, R.; Heidt, J.;<br />

Kotilainen, J.; Scarpa, R.; <strong>ESO</strong> Very Large Telescope<br />

Optical Spectroscopy of BL Lacertae<br />

Objects. II. New Redshifts, Featureless Objects,<br />

and Classification Assessments; AJ 13 , 1–19<br />

Sbarufatti, B.; Falomo, R.; Treves, A.; Kotilainen, J.;<br />

Optical spectroscopy of BL Lacertae objects.<br />

Broad lines, companion galaxies, and redshift<br />

lower limits; A&A 457, 35–43<br />

Scannapieco, E.; Pichon, C.; Aracil, B.; Petitjean, P.;<br />

Thacker, R. J.; Pogosyan, D.; Bergeron, J.;<br />

Couchman, H. M. P.; The sources of intergalactic<br />

metals; MNRAS 365, 615–637<br />

Schilke, P.; Comito, C.; Thorwirth, S.; Wyrowski, F.;<br />

Menten, K. M.; Güsten, R.; Bergman, P.; Nyman,<br />

L.-Å.; Submillimeter spectroscopy of southern hot<br />

cores: NGC 6334(I) and G3 7.3-0.6; A&A 454,<br />

L41–L45<br />

Schmid, H. M.; Joos, F.; Tschan, D.; Limb polariza<br />

tion of Uranus and Neptune. I. Imaging polarimetry<br />

and comparison with analytic models; A&A<br />

45 , 657–668<br />

Schmidtobreick, L.; Tappert, C.; AD Mensae: a dwarf<br />

nova in the period gap; A&A 455, 55– 58<br />

98<br />

<strong>ESO</strong> Annual Report 006<br />

Schöier, F. L.; Jørgensen, J. K.; Pontoppidan, K. M.;<br />

Lundgren, A. A.; Low-mass star formation in R<br />

Coronae Australis: observations of organic<br />

molecules with the APEX telescope; A&A 454,<br />

L67–L70<br />

Schuler, S. C.; Hatzes, A. P.; King, J. R.; Kürster, M.;<br />

The, Lih-Sin; Hyades Oxygen Abundances from<br />

the b6300 [O I] Line: The Giant-Dwarf Oxygen<br />

Discrepancy Revisited1,; AJ 131, 1057–1073<br />

Schuller, F.; Leurini, S.; Hieret, C.; Menten, K. M.;<br />

Philipp, S. D.; Güsten, R.; Schilke, P.; Nyman, L.-<br />

Å.; Molecular excitation in the Eagle nebula’s<br />

fingers; A&A 454, L87–L90<br />

Schuberth, Y.; Richtler, T.; Dirsch, B.; Hilker, M.;<br />

Larsen, S. S.; Kissler-Patig, M.; Mebold, U.;<br />

Dynamics of the NGC 4636 globular cluster<br />

system. An extremely dark matter dominated<br />

galaxy?; A&A 459, 391–406<br />

Schöier, F. L.; Olofsson, H.; Lundgren, A. A.; SiO in<br />

C-rich circumstellar envelopes of AGB stars:<br />

effects of non-LTE chemistry and grain adsorption;<br />

A&A 454, 47– 55<br />

di Serego Alighieri, S.; Lanzoni, B.; Jørgensen, I.; The<br />

Influence of Mass and Environment on the Evolution<br />

of Early-Type Galaxies; ApJ 647, L99–L10<br />

Serra, P.; Trager, S. C.; van der Hulst, J. M.;<br />

Oosterloo, T. A.; Morganti, R.; IC 4 00: a gas-rich<br />

early-type galaxy formed via a major merger; A&A<br />

453, 493–506<br />

Sestito, P.; Bragaglia, A.; Randich, S.; Carretta, E.;<br />

Prisinzano, L.; Tosi, M.; Old open clusters as key<br />

tracers of Galactic chemical evolution. I. Fe abundances<br />

in NGC 660, NGC 3960, and Berkeley<br />

3 ; A&A 458, 1 1–134<br />

Severgnini, P.; Caccianiga, A.; Braito, V.; Della Ceca,<br />

R.; Maccacaro, T.; Akiyama, M.; Carrera, F. J.;<br />

Ceballos, M. T.; Page, M. J.; Saracco, P.; Watson,<br />

M. G.; An X-ray bright ERO hosting a type QSO;<br />

A&A 451, 859–864<br />

Sharp, R. G.; Reilly, N. J.; Kable, S. H.; Schmidt, T.<br />

W.; Sequence Structure Emission in the Red<br />

Rectangle Bands; ApJ 639, 194– 03<br />

Shibanov, Y. A.; Zharikov, S. V.; Komarova, V. N.;<br />

Kawai, N.; Urata, Y.; Koptsevich, A. B.; Sokolov, V.<br />

V.; Shibata, S.; Shibazaki, N.; Subaru optical<br />

observations of the two middle-aged pulsars PSR<br />

B0656+14 and Geminga; A&A 448, 313–3 6<br />

Sicardy, B.; Bellucci, A.; Gendron, E.; Lacombe, F.;<br />

Lacour, S.; Lecacheux, J.; Lellouch, E.; Renner,<br />

S.; Pau, S.; Roques, F.; Widemann, T.; Colas, F.;<br />

Vachier, F.; Vieira Martins, R.; Ageorges, N.;<br />

Hainaut, O.; Marco, O.; Beisker, W.; Hummel, E.;<br />

Feinstein, C.; Levato, H.; Maury, A.; Frappa, E.;<br />

Gaillard, B.; Lavayssière, M.; di Sora, M.; Mallia,<br />

F.; Masi, G.; Behrend, R.; Carrier, F.; Mousis, O.;<br />

Rousselot, P.; Alvarez-Candal, A.; Lazzaro, D.;<br />

Veiga, C.; Andrei, A. H.; Assafin, M.; da Silva Neto,<br />

D. N.; Jacques, C.; Pimentel, E.; Weaver, D.;<br />

Lecampion, J.-F.; Doncel, F.; Momiyama, T.;<br />

Tancredi, G.; Charon’s size and an upper limit on<br />

its atmosphere from a stellar occultation; Nature<br />

439, 5 –54<br />

Sidoli, F.; Smith, L. J.; Crowther, P. A.; The massive<br />

star population in the giant HII region Tol89 in<br />

NGC5398; MNRAS 370, 799–818<br />

Sivarani, T.; Beers, T. C.; Bonifacio, P.; Molaro, P.;<br />

Cayrel, R.; Herwig, F.; Spite, M.; Spite, F.; Plez, B.;<br />

Andersen, J.; Barbuy, B.; Depagne, E.; Hill, V.;<br />

François, P.; Nordström, B.; Primas, F.; First stars<br />

X. The nature of three unevolved carbon-enhanced<br />

metal-poor stars; A&A 459, 1 5–135<br />

Sluse, D.; Claeskens, J.-F.; Altieri, B.; Cabanac, R. A.;<br />

Garcet, O.; Hutsemékers, D.; Jean, C.; Smette, A.;<br />

Surdej, J.; Multi-wavelength study of the gravitational<br />

lens system RXS J113155.4-1 3155. I. Multiepoch<br />

optical and near infrared imaging; A&A<br />

449, 539–550<br />

Smiljanic, R.; Barbuy, B.; de Medeiros, J. R.; Maeder,<br />

A.; CNO in evolved intermediate mass stars; A&A<br />

449, 655–671<br />

Smith, G. P.; Sand, D. J.; Egami, E.; Stern, D.;<br />

Eisenhardt, P. R.; Optical and Infrared Nondetection<br />

of the z = 10 Galaxy behind Abell 1835; ApJ<br />

636, 575–581<br />

Smith, N.; Brooks, K. J.; Koribalski, B. S.; Bally, J.;<br />

Cleaning Up b Carinae: Detection of Ammonia in<br />

the Homunculus Nebula; ApJ 645, L41–L44<br />

Snijders, L.; van der Werf, P. P.; Brandl, B. R.; Mengel,<br />

S.; Schaerer, D.; Wang, Z.; Subarcsecond Resolution<br />

Mid-Infrared Observations of Super Star<br />

Clusters in the Antennae (NGC 4038/4039); ApJ<br />

648, L 5–L 8<br />

Snodgrass, C.; Lowry, S. C.; Fitzsimmons, A.; Pho-<br />

tometry of cometary nuclei: rotation rates, colours<br />

and a comparison with Kuiper Belt Objects;<br />

MNRAS 373, 1590–160<br />

Sobeck, J. S.; Ivans, I. I.; Simmerer, J. A.; Sneden,<br />

C.; Hoeflich, P.; Fulbright, J. P.; Kraft, R. P.; Manganese<br />

Abundances in Cluster and Field Stars; AJ<br />

131, 949– 958<br />

Sollima, A.; Borissova, J.; Catelan, M.; Smith, H. A.;<br />

Minniti, D.; Cacciari, C.; Ferraro, F. R.; New Metallicities<br />

of RR Lyrae Stars in b Centauri: Evidence<br />

for a Non-He-enhanced Metal-intermediate Population;<br />

ApJ 640, L43–L46<br />

Sollerman, J.; Jaunsen, A. O.; Fynbo, J. P. U.; Hjorth,<br />

J.; Jakobsson, P.; Stritzinger, M.; Féron, C.;<br />

Laursen, P.; Ovaldsen, J.-E.; Selj, J.; Thöne, C. C.;<br />

Xu, D.; Davis, T.; Gorosabel, J.; Watson, D.; Duro,<br />

R.; Ilyin, I.; Jensen, B. L.; Lysfjord, N.; Marquart,<br />

T.; Nielsen, T. B.; Näränen, J.; Schwarz, H. E.;<br />

Walch, S.; Wold, M.; Östlin, G.; Supernova 006aj<br />

and the associated X-Ray Flash 060 18; A&A<br />

454, 503–509<br />

Sollima, A.; Cacciari, C.; Valenti, E.; The RR Lyrae<br />

period-K-luminosity relation for globular clusters:<br />

an observational approach; MNRAS 37 , 1<br />

675–1680<br />

Soszyński, I.; Gieren, W.; Pietrzyński, G.; Bresolin, F.;<br />

Kudritzki, R.-P.; Storm, J.; The Araucaria Project:<br />

Distance to the Local Group Galaxy NGC 3109<br />

from Near-Infrared Photometry of Cepheids; ApJ<br />

648, 375–38<br />

Sousa, S. G.; Santos, N. C.; Israelian, G.; Mayor, M.;<br />

Monteiro, M. J. P. F. G.; Spectroscopic parameters<br />

for a sample of metal-rich solar-type stars;<br />

A&A 458, 873–880<br />

Southworth, J.; Gänsicke, B. T.; Marsh, T. R.; de<br />

Martino, D.; Hakala, P.; Littlefair, S.; Rodríguez-Gil,<br />

P.; Szkody, P.; VLT/FORS spectroscopy of faint<br />

cataclysmic variables discovered by the Sloan<br />

Digital Sky Survey; MNRAS 373, 687–699<br />

Spavone, M.; Iodice, E.; Longo, G.; Paolillo, M.;


Sodani, S.; Hickson 6 . I. Kinematics of NGC<br />

4778; A&A 457, 493–500<br />

Spite, M.; Cayrel, R.; Hill, V.; Spite, F.; François, P.;<br />

Plez, B.; Bonifacio, P.; Molaro, P.; Depagne, E.;<br />

Andersen, J.; Barbuy, B.; Beers, T. C.; Nordström,<br />

B.; Primas, F.; First stars IX – Mixing in extremely<br />

metal-poor giants. Variation of the 1 C/13C, [Na/<br />

Mg] and [Al/Mg] ratios; A&A 455, 91–301<br />

Stanke, T.; Smith, M. D.; Gredel, R.; Khanzadyan, T.;<br />

An unbiased search for the signatures of protostars<br />

in the b Ophiuchi molecular cloud. II.<br />

Millimetre continuum observations; A&A 447,<br />

609–6<br />

Steinacker, J.; Chini, R.; Nielbock, M.; Nürnberger,<br />

D.; Hoffmeister, V.; Huré, J.-M.; Semenov, D.;<br />

Modeling the NIR-silhouette massive disk candidate<br />

in M 17; A&A 456, 1013–10 6<br />

Stello, D.; Kjeldsen, H.; Bedding, T. R.; Buzasi, D.;<br />

Oscillation mode lifetimes in b Hydrae: will strong<br />

mode damping limit asteroseismology of red giant<br />

stars?; A&A 448, 709–715<br />

Stephens, A. W.; Catelan, M.; Contreras, R. P.; WLM-<br />

1: An old, Nonrotating, Gravitationally Unperturbed,<br />

Highly Elliptical Extragalactic Globular<br />

Cluster; AJ 131, 14 6–1435<br />

Stolte, A.; Brandner, W.; Brandl, B.; Zinnecker, H.;<br />

The Secrets of the Nearest Starburst Cluster. II.<br />

The Present-Day Mass Function in NGC 3603; AJ<br />

13 , 53– 70<br />

Strazzullo, V.; Rosati, P.; Stanford, S. A.; Lidman, C.;<br />

Nonino, M.; Demarco, R.; Eisenhardt, P. E.; Ettori,<br />

S.; Mainieri, V.; Toft, S.; The near-infrared luminosity<br />

function of cluster galaxies beyond redshift<br />

one; A&A 450, 909–9 3<br />

Stütz, C.; Bagnulo, S.; Jehin, E.; Ledoux, C.;<br />

Cabanac, R.; Melo, C.; Smoker, J. V.; Abundance<br />

analysis of 5 early-type stars in the young open<br />

cluster IC 391; A&A 451, 85– 91<br />

Suárez, O.; García-Lario, P.; Manchado, A.; Manteiga,<br />

M.; Ulla, A.; Pottasch, S. R.; A spectroscopic<br />

atlas of post-AGB stars and planetary nebulae<br />

selected from the IRAS point source catalogue;<br />

A&A 458, 173–180<br />

Sulentic, J. W.; Repetto, P.; Stirpe, G. M.; Marziani,<br />

P.; Dultzin-Hacyan, D.; Calvani, M.; VLT/ISAAC<br />

spectra of the Hb region in intermediate-redshift<br />

quasars. II. Black hole mass and Eddington ratio;<br />

A&A 456, 9 9–939<br />

Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.;<br />

Astier, P.; Aubourg, E.; Balam, D.; Basa, S.;<br />

Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez,<br />

D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain,<br />

R.; Palanque-Delabrouille, N.; Pritchet, C. J.;<br />

Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.;<br />

Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.;<br />

Perlmutter, S.; Tao, C.; Photometric Selection of<br />

High-Redshift Type Ia Supernova Candidates; AJ<br />

131, 960–97<br />

Sullivan, M.; Le Borgne, D.; Pritchet, C. J.; Hodsman,<br />

A.; Neill, J. D.; Howell, D. A.; Carlberg, R. G.; Astier,<br />

P.; Aubourg, E.; Balam, D.; Basa, S.; Conley, A.;<br />

Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.;<br />

Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.;<br />

Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Ellis,<br />

R. S.; Filiol, M.; Lusset, V.; Perlmutter, S.; Ripoche,<br />

P.; Tao, C.; Rates and Properties of Type Ia Supernovae<br />

as a Function of Mass and Star Formation<br />

in Their Host Galaxies; ApJ 648, 868–883<br />

Takata, T.; Sekiguchi, K.; Smail, I.; Chapman, S. C.;<br />

Geach, J. E.; Swinbank, A. M.; Blain, A.; Ivison,<br />

R. J.; Rest-Frame Optical Spectroscopic Classifications<br />

for Submillimeter Galaxies; ApJ 651,<br />

713–7 7<br />

Tapia, M.; Persi, P.; Bohigas, J.; Roth, M.; Gómez,<br />

M.; Imaging study of NGC 337 , the Carina nebula<br />

– II. Evidence of activity in the complex Trumpler<br />

14/Car I photodissociation region; MNRAS 367,<br />

513–5 6<br />

Tapken, C.; Appenzeller, I.; Gabasch, A.; Heidt, J.;<br />

Hopp, U.; Bender, R.; Mehlert, D.; Noll, S.; Seitz,<br />

S.; Seifert, W.; Lyb emission galaxies at a redshift<br />

of z ≈ 5.7 in the FORS deep field; A&A 455,<br />

145–15<br />

Taubenberger, S.; Pastorello, A.; Mazzali, P. A.;<br />

Valenti, S.; Pignata, G.; Sauer, D. N.; Arbey, A.;<br />

Bärnbantner, O.; Benetti, S.; Della Valle, A.; Deng,<br />

J.; Elias-Rosa, N.; Filippenko, A. V.; Foley, R. J.;<br />

Goobar, A.; Kotak, R.; Li, W.; Meikle, P.; Mendez,<br />

J.; Patat, F.; Pian, E.; Ries, C.; Ruiz-Lapuente, P.;<br />

Salvo, M.; Stanishev, V.; Turatto, M.; Hillebrandt,<br />

W.; SN 004aw: confirming diversity of Type Ic<br />

supernovae; MNRAS 371, 1459–1477<br />

Telting, J. H.; Schrijvers, C.; Ilyin, I. V.; Uytterhoeven,<br />

K.; de Ridder, J.; Aerts, C.; Henrichs, H. F.; A<br />

high-resolution spectroscopy survey of b Cephei<br />

pulsations in bright stars; A&A 45 , 945–953<br />

Tennekes, P. P.; Harju, J.; Juvela, M.; Tóth, L. V.; HCN<br />

and HNC mapping of the protostellar core Chamaeleon-MMS1;<br />

A&A 456, 1037–1043<br />

Testor, G.; Lemaire, J. L.; Field, D.; Diana, S.; VLT/<br />

NACO near-infrared imaging and spectroscopy of<br />

N159A in the LMC HII complex N159; A&A 453,<br />

517–5 4<br />

Thi, W.-F.; van Dishoeck, E. F.; Dartois, E.;<br />

Pontoppidan, K. M.; Schutte, W. A.; Ehrenfreund,<br />

P.; D’Hendecourt, L.; Fraser, H. J.; VLT-ISAAC 3-5<br />

μm spectroscopy of embedded young low-mass<br />

stars. III. Intermediate-mass sources in Vela; A&A<br />

449, 51– 65<br />

Thomas, T.; Katgert, P.; The <strong>ESO</strong> nearby Abell clus-<br />

ter survey. VIII. Morphological and spectral classification<br />

of galaxies; A&A 446, 19– 9<br />

Thomas, T.; Katgert, P.; The <strong>ESO</strong> nearby Abell clus-<br />

ter survey. IX. The morphology-radius and morphology-density<br />

relations in rich galaxy clusters;<br />

A&A 446, 31–38<br />

Tokovinin, A.; Thomas, S.; Sterzik, M.; Udry, S.;<br />

Tertiary companions to close spectroscopic<br />

binaries; A&A 450, 681–693<br />

Tomsick, J. A.; Chaty, S.; Rodriguez, J.; Foschini, L.;<br />

Walter, R.; Kaaret, P.; Identifications of Four<br />

INTEGRAL Sources in the Galactic Plane via<br />

Chandra Localizations; ApJ 647, 1309–13<br />

Torres, C. A. O.; Quast, G. R.; da Silva, L.; de La<br />

Reza, R.; Melo, C. H. F.; Sterzik, M.; Search for<br />

associations containing young stars (SACY). I.<br />

Sample and searching method; A&A 460,<br />

695–708<br />

Trippe, S.; Martins, F.; Ott, T.; Paumard, T.; Abuter,<br />

R.; Eisenhauer, F.; Gillessen, S.; Genzel, R.; Eckart,<br />

A.; Schödel, R.; GCIRS34W: an irregular variable<br />

in the Galactic Centre; A&A 448, 305–311<br />

Trujillo, I.; Förster Schreiber, N. M.; Rudnick, G.;<br />

Barden, M.; Franx, M.; Rix, H.-W.; Caldwell, J. A.<br />

R.; McIntosh, D. H.; Toft, S.; Häussler, B.; Zirm, A.;<br />

van Dokkum, P. G.; Labbé, I.; Moorwood, A.;<br />

Röttgering, H.; van der Wel, A.; van der Werf, P.;<br />

van Starkenburg, L.; The Size Evolution of Gal-<br />

axies since z ~ 3: Combining SDSS, GEMS, and<br />

FIRES; ApJ 650, 18–41<br />

Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.;<br />

Foellmi, C.; Aller, M. F.; Aller, H. D.; Kraus, A.;<br />

Krichbaum, T. P.; Lähteenmäki, A.; Marscher, A.;<br />

McHardy, I. M.; O’Brien, P. T.; Page, K. L.;<br />

Popescu, L.; Robson, E. I.; Tornikoski, M.;<br />

Ungerechts, H.; A historic jet-emission minimum<br />

reveals hidden spectral features in 3C 73; A&A<br />

451, L1–L4<br />

Udry, S.; Mayor, M.; Benz, W.; Bertaux, J.-L.; Bouchy,<br />

F.; Lovis, C.; Mordasini, C.; Pepe, F.; Queloz, D.;<br />

Sivan, J.-P.; The HARPS search for southern<br />

extra-solar planets. V. A 14 Earth-masses planet<br />

orbiting HD 4308; A&A 447, 361–367<br />

van Loon, J. T.; Marshall, J. R.; Cohen, M.; Matsuura,<br />

M.; Wood, P. R.; Yamamura, I.; Zijlstra, A. A.; Very<br />

Large Telescope three micron spectra of dustenshrouded<br />

red giants in the Large Magellanic<br />

Cloud; A&A 447, 971–989<br />

van Starkenburg, L.; van der Werf, P. P.; Yan, L.;<br />

Moorwood, A. F. M.; On measuring the Tully-<br />

Fisher relation at z > 1. A case study using strong<br />

Hb emitting galaxies at z > 1.5; A&A 450, 5–37<br />

van der Tak, F. F. S.; Belloche, A.; Schilke, P.; Güsten,<br />

R.; Philipp, S.; Comito, C.; Bergman, P.; Nyman,<br />

L.-Å.; APEX mapping of H3O+ in the Sgr B region;<br />

A&A 454, L99–L10<br />

van de Steene, G. C.; Jacoby, G. H.; Praet, C.;<br />

Ciardullo, R.; Dejonghe, H.; Distance determination<br />

to NGC 55 from the planetary nebula luminosity<br />

function; A&A 455, 891–896<br />

van der Wel, A.; Franx, M.; van Dokkum, P. G.; Huang,<br />

J.; Rix, H.-W.; Illingworth, G. D.; The Evolution of<br />

Rest-Frame K-Band Properties of Early-Type Galaxies<br />

from z = 1 to the Present; ApJ 636, L 1–L 4<br />

van der Wel, A.; Franx, M.; Wuyts, S.; van Dokkum,<br />

P. G.; Huang, J.; Rix, H.-W.; Illingworth, G. D.;<br />

Comparing Dynamical and Photometric Mass<br />

Estimates of Low- and High-Redshift Galaxies:<br />

Random and Systematic Uncertainties; ApJ 65 ,<br />

97–106<br />

Vanhollebeke, E.; Blommaert, J. A. D. L.; Schultheis,<br />

M.; Aringer, B.; Lançon, A.; Near-IR spectroscopy<br />

of OH/IR stars in the Galactic centre; A&A 455,<br />

645–65<br />

van Kempen, T. A.; Hogerheijde, M. R.; van<br />

Dishoeck, E. F.; Güsten, R.; Schilke, P.; Nyman,<br />

L.-Å.; Warm molecular gas in the envelope and<br />

outflow of IRAS 1 496-7650 (DK Chamaeleontis);<br />

A&A 454, L75–L78<br />

van Loon, J. T.; McDonald, I.; Oliveira, J. M.; Evans,<br />

A.; Boyer, M. L.; Gehrz, R. D.; Polomski, E.;<br />

Woodward, C. E.; The first 8-13 μm spectra of<br />

globular cluster red giants: circumstellar silicate<br />

dust grains in 47 Tucanae (NGC 104); A&A 450,<br />

339–343<br />

Vannier, M.; Petrov, R. G.; Lopez, B.; Millour, F.;<br />

Colour-differential interferometry for the observation<br />

of extrasolar planets; MNRAS 367,<br />

8 5–837<br />

Vanzi, L.; Sauvage, M.; Stellar clusters in dwarf gal-<br />

axies; A&A 448, 471–478<br />

Vanzella, E.; Cristiani, S.; Dickinson, M.; Kuntschner,<br />

<strong>ESO</strong> Annual Report 006<br />

99


H.; Nonino, M.; Rettura, A.; Rosati, P.; Vernet, J.;<br />

Cesarsky, C.; Ferguson, H. C.; Fosbury, R. A. E.;<br />

Giavalisco, M.; Grazian, A.; Haase, J.; Moustakas,<br />

L. A.; Popesso, P.; Renzini, A.; Stern, D.; The<br />

Goods Team; The great observatories origins<br />

deep survey. VLT/FORS spectroscopy in the<br />

GOODS-South Field: Part II; A&A 454, 4 3–435<br />

Vanzi, L.; Scatarzi, A.; Maiolino, R.; Sterzik, M.; High<br />

resolution spectroscopy of giant HII regions around<br />

young massive clusters; A&A 459, 769–775<br />

Vernazza, P.; Birlan, M.; Rossi, A.; Dotto, E.;<br />

Nesvorny, D.; Brunetto, R.; Fornasier, S.;<br />

Fulchignoni, M.; Renner, S.; Physical characterization<br />

of the Karin family; A&A 460, 945–951<br />

Viehmann, T.; Eckart, A.; Schödel, R.; Pott, J.-U.;<br />

Moultaka, J.; Dusty Sources at the Galactic Center<br />

the N- and Q-Band Views with VISIR; ApJ 64 ,<br />

861–867<br />

Villar-Martín, M.; Sánchez, S. F.; De Breuck, C.;<br />

Peletier, R.; Vernet, J.; Rettura, A.; Seymour, N.;<br />

Humphrey, A.; Stern, D.; di Serego Alighieri, S.;<br />

Fosbury, R.; VIMOS-VLT and Spitzer observations<br />

of a radio galaxy at z = .5; MNRAS 366, L1–L5<br />

Vinicius, M. F.; Zorec, J.; Leister, N. V.; Levenhagen,<br />

R. S.; b Eridani: rotational distortion, stellar and<br />

circumstellar activity; A&A 446, 643–660<br />

Voss, B.; Koester, D.; Østensen, R.; Kepler, S. O.;<br />

Napiwotzki, R.; Homeier, D.; Reimers, D.; Discovery<br />

of seven ZZ Ceti stars using a new photometric<br />

selection method; A&A 450, 1061–1070<br />

Vreeswijk, P. M.; Smette, A.; Fruchter, A. S.; Palazzi,<br />

E.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.;<br />

Kaper, L.; Pian, E.; Masetti, N.; Frontera, F.;<br />

Hjorth, J.; Gorosabel, J.; Piro, L.; Fynbo, J. P. U.;<br />

Jakobsson, P.; Watson, D.; O’Brien, P. T.; Ledoux,<br />

C.; Low-resolution VLT spectroscopy of GRBs<br />

991 16, 011 11 and 0 1 11; A&A 447, 145–156<br />

Wade, G. A.; Aurière, M.; Bagnulo, S.; Donati, J.-F.;<br />

Johnson, N.; Landstreet, J. D.; Lignières, F.;<br />

Marsden, S.; Monin, D.; Mouillet, D.; Paletou, F.;<br />

Petit, P.; Toqué, N.; Alecian, E.; Folsom, C.; A<br />

search for magnetic fields in the variable HgMn<br />

star b Andromedae; A&A 451, 93–30<br />

Walcher, C. J.; Böker, T.; Charlot, S.; Ho, L. C.; Rix,<br />

H.-W.; Rossa, J.; Shields, J. C.; van der Marel, R.<br />

P.; Stellar Populations in the Nuclei of Late-Type<br />

Spiral Galaxies; ApJ 649, 69 –708<br />

Wang, Q. D.; Lu, F. J.; Gotthelf, E. V.; G359.95-0.04:<br />

an energetic pulsar candidate near Sgr A*; MNRAS<br />

367, 937–944<br />

Wang, H.; Henning, T.; A Search for Optical Outflows<br />

from Brown Dwarfs in the Chamaeleon I Molecular<br />

Cloud; ApJ 643, 985–994<br />

Wang, L.; Baade, D.; Höflich, P.; Wheeler, J. C.;<br />

Kawabata, K.; Khokhlov, A.; Nomoto, K.; Patat, F.;<br />

Premaximum Spectropolarimetry of the Type Ia<br />

SN 004dt; ApJ 653, 490–50<br />

Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk,<br />

P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki,<br />

K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.;<br />

Castro Cerón, J. M.; D’Avanzo, P.; Diaz-Fraile, D.;<br />

Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B.<br />

L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.;<br />

Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen,<br />

100<br />

<strong>ESO</strong> Annual Report 006<br />

K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.;<br />

Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling,<br />

R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.;<br />

A logNHI = .6 Damped Lyb Absorber in a Dark<br />

Gamma-Ray Burst: The Environment of GRB<br />

050401; ApJ 65 , 1011–1019<br />

Weisskopf, M. C.; Aldcroft, T. L.; Cameron, R. A.;<br />

Gandhi, P.; Foellmi, C.; Elsner, R. F.; Patel, S. K.;<br />

Wu, K.; O’Dell, S. L.; The First Chandra Field; ApJ<br />

637, 68 –69<br />

Welty, D. E.; Federman, S. R.; Gredel, R.; Thorburn,<br />

J. A.; Lambert, D. L.; VLT UVES Observations of<br />

Interstellar Molecules and Diffuse Bands in the<br />

Magellanic Clouds; ApJS 165, 138–17<br />

Werner, K.; Nagel, T.; Rauch, T.; Hammer, N. J.;<br />

Dreizler, S.; VLT spectroscopy and non-LTE modeling<br />

of the C/O-dominated accretion disks in<br />

two ultracompact X-ray binaries; A&A 450,<br />

7 5–733<br />

Westra, E.; Jones, D. Heath; Lidman, C. E.;<br />

Meisenheimer, K.; Athreya, R. M.; Wolf, C.;<br />

Szeifert, T.; Pompei, E.; Vanzi, L.; The wide field<br />

imager Lyman-alpha search (WFILAS) for galaxies<br />

at redshift ~5.7. II. Survey design and sample<br />

analysis; A&A 455, 61–7<br />

Willis, J. P.; Hewett, P. C.; Warren, S. J.; Dye, S.;<br />

Maddox, N.; The OLS-lens survey: the discovery<br />

of five new galaxy-galaxy strong lenses from the<br />

SDSS; MNRAS 369, 15 1–15 8<br />

Wilman, R. J.; Edge, A. C.; Swinbank, A. M.; Integral<br />

field spectroscopy of Hb emission in cooling flow<br />

cluster cores: disturbing the molecular gas reservoir;<br />

MNRAS 371, 93–107<br />

Wittkowski, M.; Hummel, C. A.; Aufdenberg, J. P.;<br />

Roccatagliata, V.; Tests of stellar model atmospheres<br />

by optical interferometry. III. NPOI and<br />

VINCI interferometry of the M0 giant b Sagittae<br />

covering 0.5- . μm; A&A 460, 843–853<br />

Wittkowski, M.; Aufdenberg, J. P.; Driebe, T.;<br />

Roccatagliata, V.; Szeifert, T.; Wolff, B.; Tests of<br />

stellar model atmospheres by optical interferometry.<br />

IV. VINCI interferometry and UVES spectroscopy<br />

of Menkar; A&A 460, 855–864<br />

Wold, M.; Galliano, E.; Nuclear embedded star clus-<br />

ters in NGC 758 ; MNRAS 369, L47–L51<br />

Wold, M.; Lacy, M.; Käufl, H. U.; Siebenmorgen, R.;<br />

The nuclear regions of NGC 758 from [Ne II]<br />

spectroscopy at 1 .8 μm – an estimate of the<br />

black hole mass; A&A 460, 449–457<br />

Wolk, S. J.; Spitzbart, B. D.; Bourke, T. L.; Alves, J.;<br />

X-Ray and Infrared Point Source Identification and<br />

Characteristics in the Embedded, Massive Star-<br />

Forming Region RCW 38; AJ 13 , 1100–11 5<br />

Wong, T.; Whiteoak, J. B.; Ott, J.; Chin, Y.;<br />

Cunningham, M. R.; Synthesis Imaging of Dense<br />

Molecular Gas in the N113 H II Region of the<br />

Large Magellanic Cloud; ApJ 649, 4– 34<br />

Worseck, G.; Wisotzki, L.; Quasars near the line of<br />

sight towards Q 030 -003 and the transverse<br />

proximity effect; A&A 450, 495–508<br />

Wyrowski, F.; Heyminck, S.; Güsten, R.; Menten, K.<br />

M.; Mid- and high-J CO observations towards<br />

ultracompact HII regions; A&A 454, L95–L98<br />

Wyrowski, F.; Menten, K. M.; Schilke, P.; Thorwirth,<br />

S.; Güsten, R.; Bergman, P.; Revealing the<br />

environs of the remarkable southern hot core<br />

G3 7.3-0.6; A&A 454, L91–L94<br />

York, B. A.; Ellison, S. L.; Lawton, B.; Churchill, C.<br />

W.; Snow, T. P.; Johnson, R. A.; Ryan, S. G.; Detection<br />

of Diffuse Interstellar Bands in the z = 0.5<br />

Damped Lyb System toward AO 0 35+164; ApJ<br />

647, L 9–L3<br />

Yun, J. L.; Figueira, P. R.; Star formation in the<br />

southern dark cloud DC 87.1+0 .4; A&A 453,<br />

937–941<br />

Zackrisson, E.; Bergvall, N.; Marquart, T.; Östlin, G.;<br />

The dark matter halos of the bluest low surface<br />

brightness galaxies; A&A 45 , 857–868<br />

Zamanov, R. K.; Bode, M. F.; Melo, C. H. F.; Porter,<br />

J.; Gomboc, A.; Konstantinova-Antova, R.; Rotational<br />

velocities of the giants in symbiotic stars – I.<br />

D’-type symbiotics; MNRAS 365, 1 15–1 19<br />

Zaroubi, S.; Viel, M.; Nusser, A.; Haehnelt, M.; Kim,<br />

T.-S.; The matter power spectrum from the Lyb<br />

forest: an optical depth estimate; MNRAS 369,<br />

734–750<br />

Zavagno, A.; Deharveng, L.; Comerón, F.; Brand, J.;<br />

Massi, F.; Caplan, J.; Russeil, D.; Triggered massive-star<br />

formation on the borders of Galactic H II<br />

regions. II. Evidence for the collect and collapse<br />

process around RCW 79; A&A 446, 171–184<br />

Zijlstra, A. A.; Gesicki, K.; Walsh, J. R.; Péquignot,<br />

D.; van Hoof, P. A. M.; Minniti, D.; The planetary<br />

nebula population of the Sagittarius dwarf spheroidal<br />

galaxy; MNRAS 369, 875–890<br />

Zima, W.; Wright, D.; Bentley, J.; Cottrell, P. L.;<br />

Heiter, U.; Mathias, P.; Poretti, E.; Lehmann, H.;<br />

Montemayor, T. J.; Breger, M.; A new method for<br />

the spectroscopic identification of stellar nonradial<br />

pulsation modes. II. Mode identification of<br />

the b Scuti star FG Virginis; A&A 455, 35– 46<br />

Zoccali, M.; Lecureur, A.; Barbuy, B.; Hill, V.; Renzini,<br />

A.; Minniti, D.; Momany, Y.; Gómez, A.; Ortolani,<br />

S.; Oxygen abundances in the Galactic bulge:<br />

evidence for fast chemical enrichment; A&A 457,<br />

L1–L4<br />

Zucca, E.; Ilbert, O.; Bardelli, S.; Tresse, L.; Zamorani,<br />

G.; Arnouts, S.; Pozzetti, L.; Bolzonella, M.;<br />

McCracken, H. J.; Bottini, D.; Garilli, B.; Le Brun,<br />

V.; Le Fèvre, O.; Maccagni, D.; Picat, J. P.;<br />

Scaramella, R.; Scodeggio, M.; Vettolani, G.;<br />

Zanichelli, A.; Adami, C.; Arnaboldi, M.; Cappi, A.;<br />

Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.;<br />

Franzetti, P.; Gavignaud, I.; Guzzo, L.; Iovino, A.;<br />

Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.;<br />

Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.;<br />

Radovich, M.; Bondi, M.; Bongiorno, A.; Busarello,<br />

G.; Cucciati, O.; Gregorini, L.; Lamareille, F.;<br />

Mathez, G.; Mellier, Y.; Merluzzi, P.; Ripepi, V.;<br />

Rizzo, D.; The VIMOS VLT Deep Survey. Evolution<br />

of the luminosity functions by galaxy type up to z<br />

= 1.5 from first epoch data; A&A 455, 879–890


Additional peer-reviewed publications by <strong>ESO</strong> Scientists<br />

Lyra, W.; Moitinho, A.; van der Bliek, N. S.; Alves, J.;<br />

On the difference between nuclear and contraction<br />

ages; A&A 453, 101–119<br />

Ridge, N. A.; Di Francesco, J.; Kirk, H.; Li, D.;<br />

Goodman, A. A.; Alves, J. F.; Arce, H. G.; Borkin,<br />

M. A.; Caselli, P.; Foster, J. B.; Heyer, M. H.;<br />

Johnstone, D.; Kosslyn, D. A.; Lombardi, M.;<br />

Pineda, J. E.; Schnee, S. L.; Tafalla, M.; The<br />

COMPLETE Survey of Star-Forming Regions:<br />

Phase I Data; AJ 131, 9 1– 933<br />

Vio, R.; Rebusco, P.; Andreani, P.; Madsen, H.;<br />

Overgaard, R. V.; Stochastic modeling of kHz<br />

quasi-periodic oscillation light curves; A&A 45 ,<br />

383–386<br />

Merrett, H. R.; Merrifield, M. R.; Douglas, N. G.;<br />

Kuijken, K.; Romanowsky, A. J.; Napolitano, N. R.;<br />

Arnaboldi, M.; Capaccioli, M.; Freeman, K. C.;<br />

Gerhard, O.; Coccato, L.; Carter, D.; Evans, N. W.;<br />

Wilkinson, M. I.; Halliday, C.; Bridges, T. J.; A<br />

deep kinematic survey of planetary nebulae in the<br />

Andromeda galaxy using the Planetary Nebula<br />

Spectrograph; MNRAS 369, 1 0–14<br />

Aguerri, J. A. L.; Castro-Rodríguez, N.; Napolitano,<br />

N.; Arnaboldi, M.; Gerhard, O.; Diffuse light in<br />

Hickson compact groups: the dynamically young<br />

system HCG 44; A&A 457, 771–778<br />

Buzzoni, A.; Arnaboldi, M.; Corradi, R. L. M.; Plane-<br />

tary nebulae as tracers of galaxy stellar populations;<br />

MNRAS 368, 877–894<br />

Mangum, J. G.; Baars, J. W. M.; Greve, A.; Lucas,<br />

R.; Snel, R. C.; Wallace, P.; Holdaway, M.; Evaluation<br />

of the ALMA Prototype Antennas; PASP<br />

118, 1 60–1304<br />

Valyavin, G.; Bagnulo, S.; Fabrika, S.; Reisenegger,<br />

A.; Wade, G. A.; Han, I.; Monin, D.; A Search for<br />

Kilogauss Magnetic Fields in White Dwarfs and<br />

Hot Subdwarf Stars; ApJ 648, 559–564<br />

Anderson, J.; Bedin, L. R.; Piotto, G.; Yadav, R. S.;<br />

Bellini, A.; Ground-based CCD astrometry with<br />

wide field imagers. I. Observations just a few years<br />

apart allow decontamination of field objects from<br />

members in two globular clusters; A&A 454,<br />

10 9–1045<br />

Bedin, L. R.; Piotto, G.; Carraro, G.; King, I. R.;<br />

Anderson, J.; The absolute motion of the peculiar<br />

cluster NGC 6791; A&A 460, L 7–L30<br />

Carraro, G.; Villanova, S.; Demarque, P.; McSwain,<br />

M. V.; Piotto, G.; Bedin, L. R.; NGC 6791: An<br />

Exotic Open Cluster or the Nucleus of a Tidally<br />

Disrupted Galaxy?; ApJ 643, 1151–1159<br />

Wirström, E. S.; Bergman, P.; Olofsson, A. O. H.;<br />

Frisk, U.; Hjalmarson, Å.; Olberg, M.; Persson, C.<br />

M.; Sandqvist, A.; Odin CO and 13CO J = 5–4<br />

mapping of Orion KL – a step towards accurate<br />

water abundances; A&A 453, 979–987<br />

Papadaki, C.; Boffin, H. M. J.; Sterken, C.; Stanishev,<br />

V.; Cuypers, J.; Boumis, P.; Akras, S.; Alikakos, J.;<br />

Photometric study of selected cataclysmic variables;<br />

A&A 456, 599–609<br />

Eiroa, C.; Djukvip, A. A.; Casali, M. M.; Brown dwarf<br />

candidates in the Serpens cloud core; AN 3 7,<br />

14–16<br />

Dye, S.; Warren, S. J.; Hambly, N. C.; Cross, N. J.<br />

G.; Hodgkin, S. T.; Irwin, M. J.; Lawrence, A.;<br />

Adamson, A. J.; Almaini, O.; Edge, A. C.; Hirst, P.;<br />

Jameson, R. F.; Lucas, P. W.; van Breukelen, C.;<br />

Bryant, J.; Casali, M.; Collins, R. S.; Dalton, G. B.;<br />

Davies, J. I.; Davis, C. J.; Emerson, J. P.; Evans, D.<br />

W.; Foucaud, S.; Gonzales-Solares, E. A.; Hewett,<br />

P. C.; Kendall, T. R.; Kerr, T. H.; Leggett, S. K.;<br />

Lodieu, N.; Loveday, J.; Lewis, J. R.; Mann, R. G.;<br />

McMahon, R. G.; Mortlock, D. J.; Nakajima, Y.;<br />

Pinfield, D. J.; Rawlings, M. G.; Read, M. A.;<br />

Riello, M.; Sekiguchi, K.; Smith, A. J.; Sutorius, E.<br />

T. W.; Varricatt, W.; Walton, N. A.; Weatherley, S.<br />

J.; The UKIRT Infrared Deep Sky Survey Early<br />

Data Release; MNRAS 37 , 1 7–1 5<br />

Christensen, L.; Jahnke, K.; Wisotzki, L.; Sánchez, S.<br />

F.; Extended Lyman-b emission around bright<br />

quasars; A&A 459, 717–7 9<br />

Lamer, G.; Schwope, A.; Wisotzki, L.; Christensen, L.;<br />

Strange magnification pattern in the large separation<br />

lens SDSS J1004+411 from optical to X-rays;<br />

A&A 454, 493–501<br />

Christensen, L.; Jahnke, K.; Wisotzki, L.; Sánchez, S.<br />

F.; Exter, K.; Roth, M. M.; A jet-cloud interaction in<br />

the 3C 196 environment; A&A 45 , 869–874<br />

Comerón, F.; Pasquali, A.; Torra, J.; G76.188+0.098:<br />

a newly born massive binary star; A&A 457,<br />

553–559<br />

Klamer, I. J.; Ekers, R. D.; Bryant, J. J.; Hunstead, R.<br />

W.; Sadler, E. M.; De Breuck, C.; A search for distant<br />

radio galaxies from SUMSS and NVSS – III.<br />

Radio spectral energy distributions and the z – b<br />

correlation; MNRAS 371, 85 –866<br />

Bornancini, C. G.; Padilla, N. D.; Lambas, D. G.; De<br />

Breuck, C.; Spatial clustering of Ultra Steep<br />

Spectrum sources and galaxies; MNRAS 368,<br />

619–6<br />

Spanò, P.; Zerbi, F. M.; Norrie, C. J.; Cunningham, C.<br />

R.; Strassmeier, K. G.; Bianco, A.; Blanche, P. A.;<br />

Bougoin, M.; Ghigo, M.; Hartmann, P.; Zago, L.;<br />

Atad-Ettedgui, E.; Delabre, B.; Dekker, H.; Melozzi,<br />

M.; Snÿders, B.; Takke, R.; Challenges in optics<br />

for Extremely Large Telescope instrumentation;<br />

AN 3 7, 649–673<br />

Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E.<br />

W.; Saar, S. H.; Walker, G. A. H.; Yang, S.;<br />

Hartmann, M.; Esposito, M.; Paulson, D. B.;<br />

Döllinger, M. P.; Confirmation of the planet<br />

hypothesis for the long-period radial velocity<br />

variations of b Geminorum; A&A 457, 335–341<br />

Doherty, M.; Bunker, A.; Sharp, R.; Dalton, G.; Parry,<br />

I.; Lewis, I.; The star formation rate at redshift one:<br />

Hb spectroscopy with CIRPASS; MNRAS 370,<br />

331–34<br />

Spencer, J. R.; Grundy, W. M.; Dumas, C.; Carlson,<br />

R. W.; McCord, T. B.; Hansen, G. B.; Terrile, R. J.;<br />

The nature of Europa’s dark non-ice surface material:<br />

Spatially-resolved high spectral resolution<br />

spectroscopy from the Keck telescope; Icar 18 ,<br />

0 – 10<br />

Muller, S.; Guélin, M.; Dumke, M.; Lucas, R.; Combes,<br />

F.; Probing isotopic ratios at z = 0.89: molecular<br />

line absorption in front of the quasar PKS 1830-<br />

11; A&A 458, 417–4 6<br />

Krause, M.; Wielebinski, R.; Dumke, M.; Radio polari-<br />

zation and sub-millimeter observations of the<br />

Sombrero galaxy (NGC 4594). Large-scale magnetic<br />

field configuration and dust emission; A&A<br />

448, 133–14<br />

Binette, L.; Wilman, R. J.; Villar-Martín, M.; Fosbury,<br />

R. A. E.; Jarvis, M. J.; Röttgering, H. J. A.; Ionization<br />

of large-scale absorbing haloes and feedback<br />

events from high-redshift radio galaxies;<br />

A&A 459, 31–4<br />

Pacaud, F.; Pierre, M.; Refregier, A.; Gueguen, A.;<br />

Starck, J.-L.; Valtchanov, I.; Read, A. M.; Altieri,<br />

B.; Chiappetti, L.; Gandhi, P.; Garcet, O.; Gosset,<br />

E.; Ponman, T. J.; Surdej, J.; The XMM Large-<br />

Scale Structure survey: the X-ray pipeline and<br />

survey selection function; MNRAS 37 , 578–590<br />

Geissler, K.; Masciadri, E.; Meteorological Parameter<br />

Analysis above Dome C Using Data from the European<br />

Centre for Medium-Range Weather Forecasts;<br />

PASP 118, 1048–1065<br />

Phillips, M. M.; Krisciunas, K.; Suntzeff, N. B.;<br />

Abraham, R. G.; Beckett, M. G.; Bonati, M.;<br />

Candia, P.; Corwin, T. M.; Depoy, D. L.; Espinoza,<br />

J.; Firth, A. E.; Freedman, W. L.; Galaz, G.;<br />

Germany, L.; Gonzalez, D.; Hamuy, M.; Hastings,<br />

N. C.; Hungerford, A. L.; Ivanov, V. D.; Labbé, E.;<br />

Marzke, R. O.; McCarthy, P. J.; McMahon, R. G.;<br />

McMillan, R.; Muena, C.; Persson, S. E.; Roth, M.;<br />

Ruiz, M. T.; Smith, R. C.; Smith, R.; Strolger, L.-G.;<br />

Stubbs, C.; Optical and Near-Infrared Observations<br />

of the Peculiar Type Ia Supernova 1999ac;<br />

AJ 131, 615– 6 7<br />

Fusco, T.; Blanc, A.; Nicolle, M.; Beuzit, J.-L.;<br />

Michau, V.; Rousset, G.; Hubin, N.; Sky coverage<br />

estimation for multiconjugate adaptive optics<br />

systems: strategies and results; MNRAS 370,<br />

174–184<br />

Stelzer, B.; Huélamo, N.; Micela, G.; Hubrig, S.;<br />

Testing the companion hypothesis for the origin of<br />

the X-ray emission from intermediate-mass mainsequence<br />

stars; A&A 45 , 1001–1010<br />

Armstrong, J. T.; Mozurkewich, D.; Hajian, A. R.;<br />

Johnston, K. J.; Thessin, R. N.; Peterson, D. M.;<br />

Hummel, C. A.; Gilbreath, G. C.; The Hyades<br />

Binary b Tauri: Confronting Evolutionary Models<br />

with Optical Interferometry; AJ 131, 643– 651<br />

Peterson, D. M.; Hummel, C. A.; Pauls, T. A.;<br />

Armstrong, J. T.; Benson, J. A.; Gilbreath, G. C.;<br />

Hindsley, R. B.; Hutter, D. J.; Johnston, K. J.;<br />

Mozurkewich, D.; Schmitt, H. R.; Vega is a rapidly<br />

rotating star; Nature 440, 896–899<br />

Peterson, D. M.; Hummel, C. A.; Pauls, T. A.;<br />

Armstrong, J. T.; Benson, J. A.; Gilbreath, G. C.;<br />

Hindsley, R. B.; Hutter, D. J.; Johnston, K. J.;<br />

Mozurkewich, D.; Schmitt, H.; Resolving the<br />

Effects of Rotation in Altair with Long-Baseline<br />

Interferometry; ApJ 636, 1087–1097<br />

<strong>ESO</strong> Annual Report 006<br />

101


Peng, E. W.; Jordán, A.; Côté, P.; Blakeslee, J. P.;<br />

Ferrarese, L.; Mei, S.; West, M. J.; Merritt, D.;<br />

Milosavljević, M.; Tonry, J. L.; The ACS Virgo<br />

Cluster Survey. IX. The Color Distributions of<br />

Globular Cluster Systems in Early-Type Galaxies;<br />

ApJ 639, 95–119<br />

Ferrarese, L.; Côté, P.; Dalla Bontà, E.; Peng, E. W.;<br />

Merritt, D.; Jordán, A.; Blakeslee, J. P.; Has, egan,<br />

M.; Mei, S.; Piatek, S.; Tonry, J. L.; West, M. J.; A<br />

Fundamental Relation between Compact Stellar<br />

Nuclei, Supermassive Black Holes, and Their Host<br />

Galaxies; ApJ 644, L 1–L 4<br />

Jordán, A.; McLaughlin, D. E.; Côté, P.; Ferrarese, L.;<br />

Peng, E. W.; Blakeslee, J. P.; Mei, S.; Villegas, D.;<br />

Merritt, D.; Tonry, J. L.; West, M. J.; Trends in the<br />

Globular Cluster Luminosity Function of Early-<br />

Type Galaxies; ApJ 651, L 5–L 8<br />

Côté, P.; Piatek, S.; Ferrarese, L.; Jordán, A.; Merritt,<br />

D.; Peng, E. W.; Has,egan, M.; Blakeslee, J. P.; Mei,<br />

S.; West, M. J.; Milosavljević, M.; Tonry, J. L.; The<br />

ACS Virgo Cluster Survey. VIII. The Nuclei of Early-<br />

Type Galaxies; ApJS 165, 57–94<br />

Ferrarese, L.; Côté, P.; Jordán, A.; Peng, E. W.;<br />

Blakeslee, J. P.; Piatek, S.; Mei, S.; Merritt, D.;<br />

Milosavljević, M.; Tonry, J. L.; West, M. J.; The<br />

ACS Virgo Cluster Survey. VI. Isophotal Analysis<br />

and the Structure of Early-Type Galaxies; ApJS<br />

164, 334–434<br />

Peng, E. W.; Côté, P.; Jordán, A.; Blakeslee, J. P.;<br />

Ferrarese, L.; Mei, S.; West, M. J.; Merritt, D.;<br />

Milosavljević, M.; Tonry, J. L.; The ACS Virgo Cluster<br />

Survey. XI. The Nature of Diffuse Star Clusters<br />

in Early-Type Galaxies; ApJ 639, 838–857<br />

Kissler-Patig, M.; Jordán, A.; Bastian, N.; The transition<br />

between star clusters and dwarf galaxies. On<br />

the existence of a mass-radius relation for star<br />

clusters of masses > 107 Mo: .<br />

are these objects<br />

formed in mergers of stellar systems?; A&A 448,<br />

1031–1035<br />

Goudfrooij, P.; Gilmore, D.; Kissler-Patig, M.;<br />

Maraston, C.; Integrated-light VRI imaging photometry<br />

of globular clusters in the Magellanic<br />

Clouds; MNRAS 369, 697–704<br />

Intema, H. T.; Venemans, B. P.; Kurk, J. D.; Ouchi,<br />

M.; Kodama, T.; Röttgering, H. J. A.; Miley, G. K.;<br />

Overzier, R. A.; Large-scale structure of Lyman<br />

break galaxies around a radio galaxy protocluster<br />

at z ~ 4; A&A 456, 433–437<br />

Meikle, W. P. S.; Mattila, S.; Gerardy, C. L.; Kotak, R.;<br />

Pozzo, M.; van Dyk, S. D.; Farrah, D.; Fesen, R. A.;<br />

Filippenko, A. V.; Fransson, C.; Lundqvist, P.;<br />

Sollerman, J.; Wheeler, J. C.; A Spitzer Space<br />

Telescope Study of SN 00 hh: An Infrared Echo<br />

from a Type IIP Supernova; ApJ 649, 33 –344<br />

Kotak, R.; Vink, J. S.; Luminous blue variables as the<br />

progenitors of supernovae with quasi-periodic<br />

radio modulations; A&A 460, L5–L8<br />

10<br />

<strong>ESO</strong> Annual Report 006<br />

Kotak, R.; Meikle, P.; Pozzo, M.; van Dyk, S. D.;<br />

Farrah, D.; Fesen, R.; Filippenko, A. V.; Foley, R.<br />

J.; Fransson, C.; Gerardy, C. L.; Höflich, P. A.;<br />

Lundqvist, P.; Mattila, S.; Sollerman, J.; Wheeler,<br />

J. C.; Spitzer Measurements of Atomic and Molecular<br />

Abundances in the Type IIP SN 005af;<br />

ApJ 651, L117–L1 0<br />

McDermid, R. M.; Emsellem, E.; Shapiro, K. L.;<br />

Bacon, R.; Bureau, M.; Cappellari, M.; Davies, R.<br />

L.; de Zeeuw, T.; Falcón-Barroso, J.; Krajnović, D.;<br />

Kuntschner, H.; Peletier, R. F.; Sarzi, M.; The<br />

SAURON project – VIII. OASIS/CFHT integral-field<br />

spectroscopy of elliptical and lenticular galaxy<br />

centres; MNRAS 373, 906–958<br />

Collobert, M.; Sarzi, M.; Davies, R. L.; Kuntschner, H.;<br />

Colless, M.; Central stellar populations of earlytype<br />

galaxies in low-density environments; MNRAS<br />

370, 1 13–1<br />

Falcón-Barroso, J.; Bacon, R.; Bureau, M.; Cappellari,<br />

M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.;<br />

Fathi, K.; Krajnović, D.; Kuntschner, H.; McDermid,<br />

R. M.; Peletier, R. F.; Sarzi, M.; The SAURON<br />

project – VII. Integral-field absorption and<br />

emission-line kinematics of 4 spiral galaxy<br />

bulges; MNRAS 369, 5 9–566<br />

Cappellari, M.; Bacon, R.; Bureau, M.; Damen, M. C.;<br />

Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.;<br />

Falcón-Barroso, J.; Krajnović, D.; Kuntschner, H.;<br />

McDermid, R. M.; Peletier, R. F.; Sarzi, M.; van<br />

den Bosch, R. C. E.; van de Ven, G.; The SAURON<br />

project – IV. The mass-to-light ratio, the virial<br />

mass estimator and the Fundamental Plane of<br />

elliptical and lenticular galaxies; MNRAS 366,<br />

11 6–1150<br />

Sarzi, M.; Falcón-Barroso, J.; Davies, R. L.; Bacon,<br />

R.; Bureau, M.; Cappellari, M.; de Zeeuw, P. T.;<br />

Emsellem, E.; Fathi, K.; Krajnović, D.; Kuntschner,<br />

H.; McDermid, Richard M.; Peletier, Reynier F.;<br />

The SAURON project – V. Integral-field emissionline<br />

kinematics of 48 elliptical and lenticular galaxies;<br />

MNRAS 366, 1151–1 00<br />

Kuntschner, H.; Emsellem, E.; Bacon, R.; Bureau, M.;<br />

Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.;<br />

Falcón-Barroso, J.; Krajnović, D.; McDermid, R.<br />

M.; Peletier, R. F.; Sarzi, M.; The SAURON project<br />

– VI. Line strength maps of 48 elliptical and lenticular<br />

galaxies; MNRAS 369, 497–5 8<br />

Norris, M. A.; Sharples, R. M.; Kuntschner, H.; GMOS<br />

spectroscopy of the S0 galaxy NGC 3115; MNRAS<br />

367, 815–8 4<br />

Laing, R. A.; Canvin, J. R.; Bridle, A. H.; Hardcastle,<br />

M. J.; A relativistic model of the radio jets in 3C 96;<br />

MNRAS 37 , 510–536<br />

Floyd, D. J. E.; Laing, R.; Chiaberge, M.; Perlman, E.;<br />

Sparks, W.; Macchetto, D.; Madrid, J.; Axon, D.;<br />

O’Dea, C. P.; Baum, S.; Quillen, A.; Miley, G.;<br />

Capetti, A.; An Optical-Infrared Jet in 3C 133; ApJ<br />

643, 660–666<br />

Laing, R. A.; Canvin, J. R.; Cotton, W. D.; Bridle, A.<br />

H.; Multifrequency observations of the jets in the<br />

radio galaxy NGC315; MNRAS 368, 48–64<br />

Gieles, M.; Larsen, S. S.; Scheepmaker, R. A.;<br />

Bastian, N.; Haas, M. R.; Lamers, H. J. G. L. M.;<br />

Observational evidence for a truncation of the star<br />

cluster initial mass function at the high mass end;<br />

A&A 446, L9–L1<br />

Larsen, S. S.; Origlia, L.; Brodie, J. P.; Gallagher, J. S.;<br />

Near-infrared spectroscopy of a young super-star<br />

cluster in NGC 6946: chemical abundances and<br />

abundance patterns*; MNRAS 368, L10–L14<br />

Gieles, M.; Larsen, S. S.; Bastian, N.; Stein, I. T.; The<br />

luminosity function of young star clusters: implications<br />

for the maximum mass and luminosity of<br />

clusters; A&A 450, 1 9–145<br />

Le Bouquin, J.-B.; Tatulli, E.; Pupil plane optimization<br />

for single-mode multi-axial optical interferometry<br />

with a large number of telescopes; MNRAS 37 ,<br />

639–645<br />

Fynbo, J. P. U.; Starling, R. L. C.; Ledoux, C.;<br />

Wiersema, K.; Thöne, C. C.; Sollerman, J.;<br />

Jakobsson, P.; Hjorth, J.; Watson, D.; Vreeswijk,<br />

P. M.; Møller, P.; Rol, E.; Gorosabel, J.; Näränen,<br />

J.; Wijers, R. A. M. J.; Björnsson, G.; Castro<br />

Cerón, J. M.; Curran, P.; Hartmann, D. H.; Holland,<br />

S. T.; Jensen, B. L.; Levan, A. J.; Limousin, M.;<br />

Kouveliotou, C.; Nelemans, G.; Pedersen, K.;<br />

Priddey, R. S.; Tanvir, N. R.; Probing cosmic<br />

chemical evolution with gamma-ray bursts: GRB<br />

060 06 at z = 4.048; A&A 451, L47–L50<br />

Elmhamdi, A.; Danziger, I. J.; Branch, D.; Leibundgut,<br />

B.; Baron, E.; Kirshner, R. P.; Hydrogen and helium<br />

traces in type Ib-c supernovae; A&A 450, 305–330<br />

Stritzinger, M.; Leibundgut, B.; Walch, S.; Contardo,<br />

G.; Constraints on the progenitor systems of type<br />

Ia supernovae; A&A 450, 41– 51<br />

Le Louarn, M.; Hubin, N.; Improving the seeing with<br />

wide-field adaptive optics in the near-infrared;<br />

MNRAS 365, 13 4–133<br />

Conley, A.; Goldhaber, G.; Wang, L.; Aldering, G.;<br />

Amanullah, R.; Commins, E. D.; Fadeyev, V.;<br />

Folatelli, G.; Garavini, G.; Gibbons, R.; Goobar, A.;<br />

Groom, D. E.; Hook, I.; Howell, D. A.; Kim, A. G.;<br />

Knop, R. A.; Kowalski, M.; Kuznetsova, N.; Lidman,<br />

C.; Nobili, S.; Nugent, P. E.; Pain, R.; Perlmutter,<br />

S.; Smith, E.; Spadafora, A. L.; Stanishev, V.;<br />

Strovink, M.; Thomas, R. C.; Wood-Vasey, W. M.;<br />

Measurement of Ωm, Ωb from a Blind Analysis of<br />

Type Ia Supernovae with CMAGIC: Using Color<br />

Information to Verify the Acceleration of the Universe;<br />

ApJ 644, 1– 0<br />

Liske, J.; Driver, S. P.; Allen, P. D.; Cross, N. J. G.; De<br />

Propris, R.; The Millennium Galaxy Catalogue: a<br />

census of local compact galaxies; MNRAS 369,<br />

1547–1565<br />

Driver, S. P.; Allen, P. D.; Graham, Alister. W.;<br />

Cameron, E.; Liske, J.; Ellis, S. C.; Cross, N. J. G.;<br />

De Propris, R.; Phillipps, S.; Couch, W. J.; The<br />

Millennium Galaxy Catalogue: morphological<br />

classification and bimodality in the colour-<br />

concentration plane; MNRAS 368, 414–434<br />

Lombardi, M.; Alves, J.; Lada, C. J.; MASS wide<br />

field extinction maps. I. The Pipe nebula; A&A<br />

454, 781–796<br />

Bertin, G.; Lombardi, M.; Looking at the Fundamen-<br />

tal Plane through a Gravitational Lens; ApJ 648,<br />

L17–L 0


Bragaglia, A.; Tosi, M.; Andreuzzi, G.; Marconi, G.;<br />

BVI photometry of the very old open cluster<br />

Berkeley 17; MNRAS 368, 1971–1981<br />

Masetti, N.; Mason, E.; Bassani, L.; Bird, A. J.;<br />

Maiorano, E.; Malizia, A.; Palazzi, E.; Stephen, J.<br />

B.; Bazzano, A.; Dean, A. J.; Ubertini, P.; Walter,<br />

R.; Unveiling the nature of INTEGRAL objects<br />

through optical spectroscopy. II. The nature of<br />

four unidentified sources; A&A 448, 547–556<br />

Masetti, N.; Mason, E.; Bassani, L.; Landi, R.;<br />

Maiorano, E.; Malizia, A.; Palazzi, E.; The extragalactic<br />

nature of the serendipitous BeppoSAX<br />

source MASX J14585116 165 3; NewA 11,<br />

411–414<br />

Gu, Q.; Melnick, J.; Fernandes, R. C.; Kunth, D.;<br />

Terlevich, E.; Terlevich, R.; Emission-line properties<br />

of Seyfert nuclei; MNRAS 366, 480–490<br />

Guillot, T.; Santos, N. C.; Pont, F.; Iro, N.; Melo, C.;<br />

Ribas, I.; A correlation between the heavy element<br />

content of transiting extrasolar planets and the<br />

metallicity of their parent stars; A&A 453, L 1–L 4<br />

Rousselet-Perraut, K.; Le Bouquin, J. B.; Mourard,<br />

D.; Vakili, F.; Chesneau, O.; Bonneau, D.;<br />

Chevassut, J. L.; Crocherie, A.; Glentzlin, A.;<br />

Jankov, S.; Ménardi, S.; Petrov, R.; Stehlé, C.;<br />

First sky validation of an optical polarimetric<br />

interferometer; A&A 451, 1133–1137<br />

Mieske, S.; Hilker, M.; Infante, L.; An I-band calibra-<br />

tion of surface brightness fluctuation measurements<br />

at blue colours; A&A 458, 1013–10 3<br />

Mieske, S.; Hilker, M.; Infante, L.; Jordán, A.; Spec-<br />

troscopic Metallicities for Fornax Ultracompact<br />

Dwarf Galaxies, Globular Clusters, and Nucleated<br />

Dwarf Elliptical Galaxies; AJ 131, 44 – 451<br />

Mieske, S.; Jordán, A.; Côté, P.; Kissler-Patig, M.;<br />

Peng, E. W.; Ferrarese, L.; Blakeslee, J. P.; Mei,<br />

S.; Merritt, D.; Tonry, J. L.; West, M. J.; The ACS<br />

Virgo Cluster Survey. XIV. Analysis of Color-Magnitude<br />

Relations in Globular Cluster Systems; ApJ<br />

653, 193– 06<br />

Mirabel, I. F.; Very energetic gamma-rays from micro-<br />

quasars and binary pulsars; SCI 31 , 1759–1760<br />

Götz, D.; Mereghetti, S.; Molkov, S.; Hurley, K.;<br />

Mirabel, I. F.; Sunyaev, R.; Weidenspointner, G.;<br />

Brandt, S.; del Santo, M.; Feroci, M.; Gög˘ üs¸ , E.;<br />

von Kienlin, A.; van der Klis, M.; Kouveliotou, C.;<br />

Lund, N.; Pizzichini, G.; Ubertini, P.; Winkler, C.;<br />

Woods, P. M.; Two years of INTEGRAL monitoring<br />

of the soft gamma-ray repeater SGR 1806- 0:<br />

from quiescence to frenzy; A&A 445, 313–3 1<br />

Sozzetti, A.; Udry, S.; Zucker, S.; Torres, G.; Beuzit,<br />

J. L.; Latham, D. W.; Mayor, M.; Mazeh, T.; Naef,<br />

D.; Perrier, C.; Queloz, D.; Sivan, J.-P.; A massive<br />

planet to the young disc star HD 81040; A&A 449,<br />

417–4 4<br />

Hasegawa, T. I.; Kwok, S.; Koning, N.; Volk, K.;<br />

Justtanont, K.; Olofsson, H.; Schöier, F. L.;<br />

Sandqvist, A.; Hjalmarson, Å.; Olberg, M.;<br />

Winnberg, A.; Nyman, L.-Å.; Frisk, U.; Observations<br />

of the Circumstellar Water 110-->101 and<br />

Ammonia 10-->00 Lines in IRC +10 16 by the<br />

Odin Satellite; ApJ 637, 791–797<br />

Wiedner, M. C.; Wieching, G.; Bielau, F.;<br />

Rettenbacher, K.; Volgenau, N. H.; Emprechtinger,<br />

M.; Graf, U. U.; Honingh, C. E.; Jacobs, K.;<br />

Vowinkel, B.; Menten, K. M.; Nyman, L.-Å.; Güsten,<br />

R.; Philipp, S.; Rabanus, D.; Stutzki, J.; Wyrowski,<br />

F.; First observations with CONDOR, a 1.5 THz<br />

heterodyne receiver; A&A 454, L33–L36<br />

Güsten, R.; Nyman, L. Å.; Schilke, P.; Menten, K.;<br />

Cesarsky, C.; Booth, R.; The Atacama Pathfinder<br />

EXperiment (APEX) – a new submillimeter facility<br />

for southern skies; A&A 454, L13–L16<br />

Hynes, R. I.; Horne, K.; O’Brien, K.; Haswell, C. A.;<br />

Robinson, E. L.; King, A. R.; Charles, P. A.;<br />

Pearson, K. J.; Multiwavelength Observations of<br />

EXO 0748-676. I. Reprocessing of X-Ray Bursts;<br />

ApJ 648, 1156–1168<br />

Landt, H.; Perlman, E. S.; Padovani, P.; VLA Obser-<br />

vations of a New Population of Blazars; ApJ 637,<br />

183–199<br />

Padovani, P.; Giommi, P.; Ábrahám, P.; Csizmadia,<br />

S.; Moór, A.; Filling the infrared gap: ISO observations<br />

of 1 Jy BL Lacertae objects; A&A 456,<br />

131–139<br />

Maund, J. R.; Smartt, S. J.; Kudritzki, R.-P.;<br />

Pastorello, A.; Nelemans, G.; Bresolin, F.; Patat,<br />

F.; Gilmore, G. F.; Benn, C. R.; Faint supernovae<br />

and supernova impostors: case studies of SN<br />

00 kg/NGC 403-V37 and SN 003gm; MNRAS<br />

369, 390–406<br />

Patat, F.; Benetti, S.; Cappellaro, E.; Turatto, M.;<br />

Reflections on reflexions – II. Effects of light<br />

echoes on the luminosity and spectra of Type Ia<br />

supernovae; MNRAS 369, 1949–1960<br />

Vladilo, G.; Centurión, M.; Levshakov, S. A.; Péroux,<br />

C.; Khare, P.; Kulkarni, V. P.; York, D. G.; Extinction<br />

and metal column density of HI regions up to<br />

redshift z – ~ ; A&A 454, 151–164<br />

Popesso, P.; Biviano, A.; The AGN fraction-velocity<br />

dispersion relation in clusters of galaxies; A&A<br />

460, L 3–L 6<br />

Pott, J.-U.; Eckart, A.; Krips, M.; Tacconi-Garman, L.<br />

E.; Lindt, E.; Search for dense molecular gas in<br />

two QSO host galaxies; A&A 456, 505–508<br />

Pott, J.-U.; Eckart, A.; Krips, M.; Tacconi-Garman,<br />

L.; Lindt, E.; Search for dense molecular gas in<br />

QSO hosts; NewAR 50, 800–80<br />

Richichi, A.; Fors, O.; Merino, M.; Otazu, X.; Núñez,<br />

J.; Prades, A.; Thiele, U.; Pérez-Ramírez, D.;<br />

Montojo, F. J.; The Calar Alto lunar occultation<br />

program: update and new results; A&A 445,<br />

1081–1088<br />

Richichi, A.; Chandrasekhar, T.; Near-infrared obser-<br />

vations of the carbon stars TU Geminorum and<br />

SS Virginis at milliarcsecond resolution; A&A 451,<br />

1041–1044<br />

Risacher, C.; Vassilev, V.; Monje, R.; Lapkin, I.;<br />

Belitsky, V.; Pavolotsky, A.; Pantaleev, M.;<br />

Bergman, P.; Ferm, S.-E.; Sundin, E.; Svensson,<br />

M.; Fredrixon, M.; Meledin, D.; Gunnarsson, L.-G.;<br />

Hagström, M.; Johansson, L.-Å.; Olberg, M.;<br />

Booth, R.; Olofsson, H.; Nyman, L.-Å.; A 0.8 mm<br />

heterodyne facility receiver for the APEX telescope;<br />

A&A 454, L17–L 0<br />

Popesso, P.; Biviano, A.; Böhringer, H.; Romaniello,<br />

M.; RASS-SDSS Galaxy cluster survey. IV. A<br />

ubiquitous dwarf galaxy population in clusters;<br />

A&A 445, 9–4<br />

Romaniello, M.; Scuderi, S.; Panagia, N.; Salerno, R.<br />

M.; Blanco, C.; Low mass pre-main sequence<br />

stars in the Large Magellanic Cloud; A&A 446,<br />

955–969<br />

Overzier, R. A.; Miley, G. K.; Bouwens, R. J.; Cross,<br />

N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.;<br />

Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G.<br />

F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H.<br />

J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.;<br />

Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman,<br />

P. D.; Franx, M.; Golimowski, D. A.; Goto, T.;<br />

Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.;<br />

Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.;<br />

Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.;<br />

Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov,<br />

Z. I.; White, R. L.; Zheng, W.; Clustering of Starforming<br />

Galaxies Near a Radio Galaxy at z = 5. ;<br />

ApJ 637, 58–73<br />

Tozzi, P.; Gilli, R.; Mainieri, V.; Norman, C.; Risaliti, G.;<br />

Rosati, P.; Bergeron, J.; Borgani, S.; Giacconi, R.;<br />

Hasinger, G.; Nonino, M.; Streblyanska, A.;<br />

Szokoly, G.; Wang, J. X.; Zheng, W.; X-ray spectral<br />

properties of active galactic nuclei in the Chandra<br />

Deep Field South; A&A 451, 457–474<br />

Netzer, H.; Mainieri, V.; Rosati, P.; Trakhtenbrot, B.;<br />

The correlation of narrow line emission and X-ray<br />

luminosity in active galactic nuclei; A&A 453,<br />

5 5–533<br />

Golimowski, D. A.; Ardila, D. R.; Krist, J. E.; Clampin,<br />

M.; Ford, H. C.; Illingworth, G. D.; Bartko, F.;<br />

Benítez, N.; Blakeslee, J. P.; Bouwens, R. J.;<br />

Bradley, L. D.; Broadhurst, T. J.; Brown, R. A.;<br />

Burrows, C. J.; Cheng, E. S.; Cross, N. J. G.;<br />

Demarco, R.; Feldman, P. D.; Franx, M.; Goto, T.;<br />

Gronwall, C.; Hartig, G. F.; Holden, B. P.; Homeier,<br />

N. L.; Infante, L.; Jee, M. J.; Kimble, R. A.; Lesser,<br />

M. P.; Martel, A. R.; Mei, S.; Menanteau, F.;<br />

Meurer, G. R.; Miley, G. K.; Motta, V.; Postman,<br />

M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H.<br />

D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.; Zirm,<br />

A. W.; Hubble Space Telescope ACS Multiband<br />

Coronagraphic Imaging of the Debris Disk around<br />

b Pictoris; AJ 131, 3109–3130<br />

Mulchaey, J. S.; Lubin, L. M.; Fassnacht, C.; Rosati,<br />

P.; Jeltema, T. E.; X-Ray-selected Intermediate-<br />

Redshift Groups of Galaxies; ApJ 646, 133–14<br />

Miley, G. K.; Overzier, R. A.; Zirm, A. W.; Ford, H. C.;<br />

Kurk, J.; Pentericci, L.; Blakeslee, J. P.; Franx, M.;<br />

Illingworth, G. D.; Postman, M.; Rosati, P.;<br />

Röttgering, H. J. A.; Venemans, B. P.; Helder, E.;<br />

The Spiderweb Galaxy: A Forming Massive Cluster<br />

Galaxy at z ~ ; ApJ 650, L 9–L3<br />

Jeltema, T. E.; Mulchaey, J. S.; Lubin, L. M.; Rosati,<br />

P.; Böhringer, H.; X-Ray Properties of Intermediate-Redshift<br />

Groups of Galaxies; ApJ 649,<br />

649–660<br />

<strong>ESO</strong> Annual Report 006<br />

103


Homeier, N. L.; Mei, S.; Blakeslee, J. P.; Postman,<br />

M.; Holden, B.; Ford, H. C.; Bradley, L. D.;<br />

Demarco, R.; Franx, M.; Illingworth, G. D.; Jee, M.<br />

J.; Menanteau, F.; Rosati, P.; van der Wel, A.;<br />

Zirm, A.; The Formation Epoch of Early-Type<br />

Galaxies in the z ~ 0.9 Cl 1604 Supercluster; ApJ<br />

647, 56– 64<br />

Blakeslee, J. P.; Holden, B. P.; Franx, M.; Rosati, P.;<br />

Bouwens, R. J.; Demarco, R.; Ford, H. C.;<br />

Homeier, N. L.; Illingworth, G. D.; Jee, M. J.; Mei,<br />

S.; Menanteau, F.; Meurer, G. R.; Postman, M.;<br />

Tran, Kim-Vy H.; Clusters at Half Hubble Time:<br />

Galaxy Structure and Colors in RX J015 .7-1357<br />

and MS 1054-03; ApJ 644, 30–53<br />

Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman,<br />

M.; Blakeslee, J. P.; Homeier, N.; Demarco, R.;<br />

Ford, H. C.; Rosati, P.; Kelson, D. D.; Tran, K.-V.<br />

H.; The Possible z = 0.83 Precursors of z = 0, M*<br />

Early-Type Cluster Galaxies; ApJ 64 , L1 3–L1 6<br />

Zheng, W.; Overzier, R. A.; Bouwens, R. J.; White, R.<br />

L.; Ford, H. C.; Benítez, N.; Blakeslee, J. P.;<br />

Bradley, L. D.; Jee, M. J.; Martel, A. R.; Mei, S.;<br />

Zirm, A. W.; Illingworth, G. D.; Clampin, M.; Hartig,<br />

G. F.; Ardila, D. R.; Bartko, F.; Broadhurst, T. J.;<br />

Brown, R. A.; Burrows, C. J.; Cheng, E. S.; Cross,<br />

N. J. G.; Demarco, R.; Feldman, P. D.; Franx, M.;<br />

Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden,<br />

B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J.<br />

E.; Lesser, M. P.; Menanteau, F.; Meurer, G. R.;<br />

Miley, G. K.; Motta, V.; Postman, M.; Rosati, P.;<br />

Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov,<br />

Z. I.; An Overdensity of Galaxies near the Most<br />

Distant Radio-loud Quasar; ApJ 640, 574–578<br />

Mei, S.; Blakeslee, J. P.; Stanford, S. A.; Holden, B.<br />

P.; Rosati, P.; Strazzullo, V.; Homeier, N.; Postman,<br />

M.; Franx, M.; Rettura, A.; Ford, H.; Illingworth, G.<br />

D.; Ettori, S.; Bouwens, R. J.; Demarco, R.; Martel,<br />

A. R.; Clampin, M.; Hartig, G. F.; Eisenhardt, P.;<br />

Ardila, D. R.; Bartko, F.; Benítez, N.; Bradley, L. D.;<br />

Broadhurst, T. J.; Brown, R. A.; Burrows, C. J.;<br />

Cheng, E. S.; Cross, N. J. G.; Feldman, P. D.;<br />

Golimowski, D. A.; Goto, T.; Gronwall, C.; Infante,<br />

L.; Kimble, R. A.; Krist, J. E.; Lesser, M. P.;<br />

Menanteau, F.; Meurer, G. R.; Miley, G. K.; Motta,<br />

V.; Sirianni, M.; Sparks, W. B.; Tran, H. D.;<br />

Tsvetanov, Z. I.; White, R. L.; Zheng, W.; Evolution<br />

of the Color-Magnitude Relation in High-Redshift<br />

Clusters: Blue Early-Type Galaxies and Red Pairs<br />

in RDCS J0910+54 ; ApJ 639, 81–94<br />

Sana, H.; Rauw, G.; Nazé, Y.; Gosset, E.; Vreux, J.-M.;<br />

An XMM-Newton view of the young open cluster<br />

NGC 6 31 – II. The OB star population; MNRAS<br />

37 , 661–678<br />

De Becker, M.; Rauw, G.; Sana, H.; Pollock, A. M. T.;<br />

Pittard, J. M.; Blomme, R.; Stevens, I. R.; van Loo,<br />

S.; XMM-Newton observations of the massive<br />

colliding wind binary and non-thermal radio<br />

emitter CygOB #8A [O6If + O5.5III(f)]; MNRAS<br />

371, 1 80–1 94<br />

104<br />

<strong>ESO</strong> Annual Report 006<br />

Jordi, C.; Høg, E.; Brown, A. G. A.; Lindegren, L.;<br />

Bailer-Jones, C. A. L.; Carrasco, J. M.; Knude, J.;<br />

Straižys, V.; de Bruijne, J. H. J.; Claeskens, J.-F.;<br />

Drimmel, R.; Figueras, F.; Grenon, M.; Kolka, I.;<br />

Perryman, M. A. C.; Tautvaišiene˙ , G.; Vansevičius,<br />

V.; Willemsen, P. G.; Bridžius, A.; Evans, D. W.;<br />

Fabricius, C.; Fiorucci, M.; Heiter, U.; Kaempf, T.<br />

A.; Kazlauskas, A.; Kučinskas, A.; Malyuto, V.;<br />

Munari, U.; Reylé, C.; Torra, J.; Vallenari, A.;<br />

Zdanavičius, K.; Korakitis, R.; Malkov, O.; Smette,<br />

A.; The design and performance of the Gaia<br />

photometric system; MNRAS 367, 90–314<br />

Claeskens, J.-F.; Smette, A.; Vandenbulcke, L.;<br />

Surdej, J.; Identification and redshift determination<br />

of quasi-stellar objects with medium-band<br />

photometry: application to Gaia; MNRAS 367,<br />

879–904<br />

Kriek, M.; van Dokkum, P. G.; Franx, M.; Quadri, R.;<br />

Gawiser, E.; Herrera, D.; Illingworth, G. D.; Labbé,<br />

I.; Lira, P.; Marchesini, D.; Rix, H.-W.; Rudnick, G.;<br />

Taylor, E. N.; Toft, S.; Urry, C. M.; Wuyts, S.; Spectroscopic<br />

Identification of Massive Galaxies at z ~<br />

.3 with Strongly Suppressed Star Formation; ApJ<br />

649, L71–L74<br />

Treister, E.; Urry, C. M.; The Evolution of Obscuration<br />

in Active Galactic Nuclei; ApJ 65 , L79–L8<br />

van Dokkum, P. G.; Quadri, R.; Marchesini, D.;<br />

Rudnick, G.; Franx, M.; Gawiser, E.; Herrera, D.;<br />

Wuyts, S.; Lira, P.; Labbé, I.; Maza, J.; Illingworth,<br />

G. D.; Förster Schreiber, N. M.; Kriek, M.; Rix, H.-<br />

W.; Taylor, E. N.; Toft, S.; Webb, T.; Yi, S. K.; The<br />

Space Density and Colors of Massive Galaxies at<br />

< z < 3: The Predominance of Distant Red Galaxies;<br />

ApJ 638, L59–L6<br />

Sauer, D. N.; Mazzali, P. A.; Deng, J.; Valenti, S.;<br />

Nomoto, K.; Filippenko, A. V.; The properties of<br />

the `standard’ Type Ic supernova 1994I from<br />

spectral models; MNRAS 369, 1939–1948<br />

Thompson, R. I.; Sauvage, M.; Kennicutt, R. C., Jr.;<br />

Engelbracht, C. W.; Vanzi, L.; Delayed Photoionization<br />

Feedback in a Super Star Cluster in SBS<br />

0335-05 E; ApJ 638, 176–18<br />

Verdoes Kleijn, G. A.; van der Marel, R. P.; Noel-<br />

Storr, J.; Understanding the Nuclear Gas Dispersion<br />

in Early-Type Galaxies in the Context of Black<br />

Hole Demographics; AJ 131, 1961–1973<br />

Fruchter, A. S.; Levan, A. J.; Strolger, L.; Vreeswijk,<br />

P. M.; Thorsett, S. E.; Bersier, D.; Burud, I.; Castro<br />

Cerón, J. M.; Castro-Tirado, A. J.; Conselice, C.;<br />

Dahlen, T.; Ferguson, H. C.; Fynbo, J. P. U.;<br />

Garnavich, P. M.; Gibbons, R. A.; Gorosabel, J.;<br />

Gull, T. R.; Hjorth, J.; Holland, S. T.; Kouveliotou,<br />

C.; Levay, Z.; Livio, M.; Metzger, M. R.; Nugent, P.<br />

E.; Petro, L.; Pian, E.; Rhoads, J. E.; Riess, A. G.;<br />

Sahu, K. C.; Smette, A.; Tanvir, N. R.; Wijers, R. A.<br />

M. J.; Woosley, S. E.; Long b-ray bursts and corecollapse<br />

supernovae have different environments;<br />

Nature 441, 463–468<br />

Morales-Rueda, L.; Groot, P. J.; Augusteijn, T.;<br />

Nelemans, G.; Vreeswijk, P. M.; van den Besselaar,<br />

E. J. M.; Short time-scale variability in the Faint<br />

Sky Variability Survey; MNRAS 371, 1681–169<br />

Wilson, T. L.; Henkel, C.; Hüttemeister, S.; The de-<br />

tection of the (J, K) = (18, 18) line of NH3; A&A<br />

460, 533–538<br />

Rodriguez-Fernandez, N. J.; Combes, F.; Martin-<br />

Pintado, J.; Wilson, T. L.; Apponi, A.; Coupling the<br />

dynamics and the molecular chemistry in the Galactic<br />

center; A&A 455, 963–969<br />

Zwaan, M. A.; Prochaska, J. X.; Where Is the Molec-<br />

ular Hydrogen in Damped Lyb Absorbers?; ApJ<br />

643, 675–679<br />

Wong, O. I.; Meurer, G. R.; Bekki, K.; Hanish, D. J.;<br />

Kennicutt, R. C.; Bland-Hawthorn, J.; Ryan-<br />

Weber, E. V.; Koribalski, B.; Kilborn, V. A.; Putman,<br />

M. E.; Heiner, J. S.; Webster, R. L.; Allen, R. J.;<br />

Dopita, M. A.; Doyle, M. T.; Drinkwater, M. J.;<br />

Ferguson, H. C.; Freeman, K. C.; Heckman, T. M.;<br />

Hoopes, C.; Knezek, P. M.; Meyer, M. J.; Oey, M.<br />

S.; Seibert, M.; Smith, R. C.; Staveley-Smith, L.;<br />

Thilker, D.; Werk, J.; Zwaan, M. A.; NGC 9 – a<br />

new drop-through ring galaxy; MNRAS 370,<br />

1607–1611<br />

Wong, O. I.; Ryan-Weber, E. V.; Garcia-Appadoo, D.<br />

A.; Webster, R. L.; Staveley-Smith, L.; Zwaan, M.<br />

A.; Meyer, M. J.; Barnes, D. G.; Kilborn, V. A.;<br />

Bhathal, R.; de Blok, W. J. G.; Disney, M. J.; Doyle,<br />

M. T.; Drinkwater, M. J.; Ekers, R. D.; Freeman, K.<br />

C.; Gibson, B. K.; Gurovich, S.; Harnett, J.;<br />

Henning, P. A.; Jerjen, H.; Kesteven, M. J.; Knezek,<br />

P. M.; Koribalski, B. S.; Mader, S.; Marquarding,<br />

M.; Minchin, R. F.; O’Brien, J.; Putman, M. E.;<br />

Ryder, S. D.; Sadler, E. M.; Stevens, J.; Stewart, I.<br />

M.; Stootman, F.; Waugh, M.; The Northern<br />

HIPASS catalogue – data presentation,<br />

completeness and reliability measures; MNRAS<br />

371, 1855–1864<br />

Hanish, D. J.; Meurer, G. R.; Ferguson, H. C.; Zwaan,<br />

M. A.; Heckman, T. M.; Staveley-Smith, L.; Bland-<br />

Hawthorn, J.; Kilborn, V. A.; Koribalski, B. S.;<br />

Putman, M. E.; Ryan-Weber, E. V.; Oey, M. S.;<br />

Kennicutt, R. C., Jr.; Knezek, P. M.; Meyer, M. J.;<br />

Smith, R. C.; Webster, R. L.; Dopita, M. A.; Doyle,<br />

M. T.; Drinkwater, M. J.; Freeman, K. C.; Werk, J.<br />

K.; The Survey for Ionization in Neutral Gas Galaxies.<br />

II. The Star Formation Rate Density of the<br />

Local Universe; ApJ 649, 150–16<br />

Meurer, G. R.; Hanish, D. J.; Ferguson, H. C.;<br />

Knezek, P. M.; Kilborn, V. A.; Putman, M. E.;<br />

Smith, R. C.; Koribalski, B.; Meyer, M.; Oey, M. S.;<br />

Ryan-Weber, E. V.; Zwaan, M. A.; Heckman, T. M.;<br />

Kennicutt, R. C., Jr.; Lee, J. C.; Webster, R. L.;<br />

Bland-Hawthorn, J.; Dopita, M. A.; Freeman, K.<br />

C.; Doyle, M. T.; Drinkwater, M. J.; Staveley-Smith,<br />

L.; Werk, J.; The Survey for Ionization in Neutral<br />

Gas Galaxies. I. Description and Initial Results;<br />

ApJS 165, 307–337


Financial Statement<br />

Financial Statements 2006<br />

(in € 1000)<br />

Balance Sheet<br />

Assets<br />

Cash and short-term deposits<br />

Claims, advances, refundable taxes and other assets<br />

Total assets<br />

Liabilities and equity<br />

Dues<br />

Advance payments received and other liabilities<br />

Total liabilities<br />

Cumulated result previous years<br />

Annual result<br />

Total equity<br />

Total liabilities and equity<br />

Statement of Income and Expenditure<br />

Income<br />

Contributions from member states<br />

Contributions from third parties and partners<br />

Income from sales and other income<br />

Total income<br />

Expenditure<br />

Expenditure for staff<br />

Operating and other expenditure<br />

Total expenditure<br />

2006 Result<br />

Statement of Cash flow<br />

Cash flow from operating activities<br />

Receipts<br />

Income<br />

Net movements on accounts receivable<br />

Total<br />

Payments<br />

Expenditure<br />

Net movements on accounts payable<br />

Total<br />

Net cash flow from operating activities<br />

Cash flow from financing activities<br />

Net cash flow from financing activities<br />

Net cash flow = Net increase/decrease in cash<br />

and short-term deposits<br />

31.12.2006<br />

89<br />

60 40<br />

149 624<br />

6803<br />

0 616<br />

27419<br />

46 675<br />

75 530<br />

122205<br />

149 624<br />

31.12.2005<br />

76 880<br />

4 958<br />

81838<br />

18 438<br />

16 7 5<br />

35163<br />

1 977<br />

33 698<br />

46 675<br />

81838<br />

01.01.2006–31.12.2006<br />

179 089<br />

5 00<br />

4 6 3<br />

188 912<br />

49 734<br />

63 648<br />

113 382<br />

75 530<br />

01.01.2006–31.12.2006<br />

188 91<br />

–55 443<br />

133469<br />

–113 38<br />

–14140<br />

–127522<br />

5 947<br />

6 395<br />

12 342<br />

Budget for 2007<br />

(in € 1000)<br />

Income budget<br />

Contributions from member states<br />

Other income from member states<br />

Income from third parties<br />

Various income<br />

Total income budget<br />

Payment budget<br />

Personnel cost<br />

Other cost<br />

Total payment budget<br />

Commitment budget<br />

Personnel cost<br />

Projects commitments without personnel<br />

Operations commitments without personnel<br />

Total commitment budget<br />

<strong>ESO</strong> Annual Report 006<br />

2007<br />

117 73<br />

4 388<br />

1 014<br />

4 000<br />

138134<br />

2007<br />

51170<br />

149 7 8<br />

200 898<br />

2007<br />

51170<br />

158 09<br />

37 61<br />

246 640<br />

Since 003, the <strong>ESO</strong> annual accounts have shown a positive cash flow<br />

development, which is reflected in the amount of cash and short-term deposits at<br />

end of year. In 006, the positive cash flow amounted to 1 ,3 M€ and the cash<br />

and short-term deposits as of 31 December 006 amounted to 89, M€.<br />

The net result of the statement of income and expenditure for 006 was<br />

+ 75,5 M€. The high income figure of 188,9 M€ included in particular the amount<br />

of the entrance fee due by Spain following the country’s accession as a new<br />

<strong>ESO</strong> member state as of 1 July 006.<br />

The budget for 007 was approved by the <strong>ESO</strong> Council in December 006.<br />

The budget comprises three sections: the income budget, the payment budget<br />

and the commitment budget.<br />

With 00,9 M€, the 007 payment budget is driven by the payment profile of<br />

the ALMA project. It also includes a provision for the detail design phase of the<br />

European ELT. In total, it is expected to be significantly higher than the 007<br />

income budget, which amounts to 138,1 M€.<br />

The commitment budget for 007 is 46,6 M€.<br />

105


Four Seasons at a Glance<br />

January<br />

First Light for the Laser Guide Star on<br />

UT4 of the VLT.<br />

Astronomers find 5 Earth-mass exoplanet<br />

with microlensing technique, using a<br />

worldwide network of telescopes, including<br />

the 1.5-m telescope at La Silla.<br />

Meeting of the Scientific Strategy Working<br />

Group.<br />

15th release of the VLT Software.<br />

Workshop on ALMA (From Z-Machines<br />

to ALMA: (Sub)millimeter Spectroscopy of<br />

Galaxies), NRAO Charlottesville.<br />

ALMA European Science Advisory Committee<br />

meeting, Garching.<br />

ALMA Science Advisory Committee<br />

meets in Washington, US.<br />

February<br />

Signing of the agreement between Spain<br />

and <strong>ESO</strong> about membership.<br />

Committee of Council meets in Berne,<br />

Switzerland.<br />

Breakfast press briefing for the UK media<br />

in connection with the yearly Astrofest<br />

in London, organised by <strong>ESO</strong> and PPARC.<br />

<strong>ESO</strong> is also present at the Astrofest<br />

with a scale model of the VLT and display<br />

panels.<br />

<strong>ESO</strong> is present at the annual AAAS meeting<br />

in St. Louis, Missouri.<br />

Yearly <strong>ESO</strong> Status Overwiew held in<br />

Garching.<br />

106<br />

<strong>ESO</strong> Annual Report 006<br />

March<br />

Visit to the <strong>ESO</strong> HQ by the Education<br />

Committee of the Finnish Parliament.<br />

Walloon Space Days in Liège and delivery<br />

ceremony for the 4th VLT Auxiliary Telescope<br />

at AMOS, Belgium.<br />

Launch of the first international, multidisciplinary<br />

journal for innovative science<br />

teaching, “Science in School”, by<br />

EIROforum at EMBL in Heidelberg.<br />

Joint <strong>ESO</strong>-FONDAP Workshop on Globular<br />

Clusters, Concepción, Chile.<br />

European ALMA Board meets in Garching.<br />

ALMA Board meeting, Kyoto, Japan.<br />

Extraordinary Finance Committee in<br />

Garching.<br />

Danish Minister of Education, Bertel<br />

Haarder, visits Paranel.<br />

April<br />

Preliminary Acceptance Europe review of<br />

CRIRES.<br />

8 7 proposals are received in answer<br />

to the Call for Proposals for observing in<br />

Period 78.<br />

CRIRES AO system (MACAO) installed<br />

and commissioned at UT1.<br />

An image made of about 300 million pixels<br />

is released by <strong>ESO</strong>, based on more<br />

than 64 hours of observations with the<br />

Wide-Field Imager on the . -m telescope<br />

at La Silla.<br />

VLT observes fragment B of the comet<br />

Schwassmann-Wachmann 3, that had<br />

split a few days earlier.<br />

Meeting of the Scientific Strategy Working<br />

Group.<br />

6 nd Meeting of the Scientific Technical<br />

Committee.<br />

The Users’ Committee meets in Garching.<br />

Meeting of the <strong>ESO</strong> Tripartite Group.<br />

Opening of the IPP/<strong>ESO</strong> Crèche.<br />

May<br />

HARPS helps discover a nearby star<br />

hosting three Neptune-mass planets.<br />

Strong <strong>ESO</strong> participation at the SPIE<br />

Astronomical Telescopes and Instrumentation<br />

Symposium in Orlando, Florida.<br />

First recoating of M of UT1 successfully<br />

completed.<br />

114th Finance Committee Meeting in<br />

Garching.<br />

Extraordinary 63rd meeting of the<br />

Scientific Technical Committee.<br />

European ALMA Board meeting, Garching.<br />

Public Survey Panel meets in Garching.<br />

Workshop on “Complex Molecules<br />

in Space: Present status and prospects<br />

with ALMA”, Fuglsøcentret, Denmark.


June<br />

First spectra on-sky obtained by CRIRES<br />

on the VLT.<br />

<strong>ESO</strong> establishes a dedicated E-ELT<br />

Project Office.<br />

X-shooter passes Final Design Review in<br />

Europe.<br />

The <strong>ESO</strong> Council meets in Garching.<br />

ALMA Board meeting, Santiago, Chile.<br />

Signing of the ALMA agreement with<br />

Japan.<br />

Observing Programmes Committee<br />

meeting in Garching.<br />

<strong>ESO</strong> and the Government of Chile launch<br />

the book “10 Years Exploring the Universe”,<br />

written by the beneficiaries of the<br />

<strong>ESO</strong>-Government of Chile Joint Committee.<br />

Public Survey Panel meets in Edinburgh,<br />

UK.<br />

<strong>ESO</strong> participates with a major information<br />

stand at the nd Salon Européen de<br />

la Recherche & de l’Innovation in Paris,<br />

France.<br />

EuroSummer School, Observation and<br />

data reduction with the Very Large<br />

Telescope Interferometer, Château de<br />

Goutelas, France.<br />

Conference “Library and Information<br />

Services in Astronomy V: Common Challenges,<br />

Uncommon Solutions”, Cambridge,<br />

Mass., USA.<br />

July<br />

6 articles based on early science<br />

with APEX are published in the research<br />

journal Astronomy & Astrophysics.<br />

The first of seven years of data of<br />

the UKIRT Infrared Deep Sky Survey<br />

(UKIDSS) enters <strong>ESO</strong>’s archive.<br />

The Fifth NEON Observing School,<br />

Observatoire de Haute-Provence, France.<br />

EIROforum takes part in the Euroscience<br />

Open Forum 006 Conference in<br />

Munich with a major information stand,<br />

press conferences and a reception.<br />

<strong>ESO</strong> is also visible in the German Science<br />

Festival with an on-stage show at<br />

Munich’s Marienplatz, involving a live<br />

videoconference with Paranal.<br />

August<br />

The new SINFONI spectrograph scrutinises<br />

a distant protodisc galaxy with a<br />

record-breaking resolution of a mere 0.15<br />

arcseconds.<br />

Provisional Design Review for the ALMA<br />

Transporter.<br />

“Heating vs. Cooling in Galaxies and<br />

Clusters of Galaxies”, MPA/<strong>ESO</strong>/MPE/<br />

USM Joint Astronomy Conference,<br />

Garching, Germany.<br />

The Second NEON Archive Observing<br />

School takes place at <strong>ESO</strong>.<br />

<strong>ESO</strong> is present at the IAU XXVIth General<br />

Assembly in Prague with presentations<br />

and information stands. <strong>ESO</strong>’s<br />

Director General Catherine Cesarsky<br />

is elected President of the International<br />

Astronomical Union while <strong>ESO</strong>’s<br />

Deputy Director General Ian Corbett is<br />

elected Assistant General Secretary<br />

September<br />

Thomas Wilson is appointed as <strong>ESO</strong>’s<br />

Associate Director.<br />

Committee of Council meets in Santiago,<br />

Chile.<br />

ALMA European Science Advisory Committee<br />

meeting, Garching.<br />

ALMA Science Advisory Committee<br />

meets in Florence, Italy.<br />

Joint <strong>ESO</strong>-Lisbon-Aveiro University<br />

Conference on Precision Spectroscopy in<br />

Astrophysics, Aveiro, Portugal.<br />

October<br />

KMOS passes Preliminary Design Review.<br />

913 proposals are received in answer<br />

to the Call for Proposals for observing in<br />

Period 79, a new all-time record.<br />

DAZLE visitor instrument successfully<br />

commissioned on UT3.<br />

UT4 recoating of M1/M3 completed.<br />

<strong>ESO</strong> Annual Report 006<br />

107


Visit to the <strong>ESO</strong> Headquarters by a group<br />

of university rectors from Chile.<br />

Committee of Council meets in Munich.<br />

<strong>ESO</strong> exhibition at major astronomy festival<br />

in Vaulx-en-Velin, France.<br />

<strong>ESO</strong> exhibition in Montpellier, France.<br />

64th Meeting of the Scientific Technical<br />

Committee.<br />

Extraordinary Finance Committee in<br />

Garching.<br />

Public Survey Panel meets in Garching.<br />

ALMA Commissioning meeting.<br />

Meeting of the <strong>ESO</strong> Tripartite Group.<br />

UNAWE Workshop in Leiden, the<br />

Netherlands.<br />

Almost 3000 people visit the <strong>ESO</strong> HQ<br />

at the Open House. On that occasion<br />

<strong>ESO</strong> together with other institutes on the<br />

Garching campus, receives the “Deutschland<br />

– Land der Ideen” Trophy for its<br />

public communication activities.<br />

<strong>ESO</strong> releases its 007 Calendar.<br />

November<br />

Visit to Paranal by a delegation from the<br />

Academy of Sciences of the Czech<br />

Republic.<br />

More than 50 European astronomers<br />

gather at the ‘Towards the European ELT’<br />

conference in Marseille, France.<br />

International ALMA Conference on<br />

“Science with ALMA: a new era for Astrophysics”,<br />

held in Madrid, Spain.<br />

108<br />

<strong>ESO</strong> Annual Report 006<br />

European Extremely Large Telescope is<br />

selected in the European Strategy Forum<br />

on Research Infrastructures (ESFRI)<br />

Roadmap.<br />

EIROforum breakfast meeting at the<br />

European Parliament discusses science<br />

education issues in Europe.<br />

<strong>ESO</strong> and the European Association<br />

for Astronomy Education launch the 007<br />

edition of ‘Catch a Star!’, their international<br />

astronomy competition for school<br />

students.<br />

The Finance Committee (116th) meets in<br />

Garching.<br />

ALMA board meets in Madrid, Spain.<br />

Extraordinary 65th meeting of the<br />

Scientific Technical Committee.<br />

Observing Programmes Committee<br />

meeting in Garching.<br />

EIROforum Assembly in Grenoble,<br />

France.<br />

A top-level meeting on exoplanets takes<br />

place in Washington D.C. between <strong>ESO</strong>,<br />

ESA and NASA.<br />

December<br />

<strong>ESO</strong> participates at major astronomy and<br />

space exhibition, Astro-expo, in Dublin,<br />

Ireland.<br />

The <strong>ESO</strong> Council meets in Garching.<br />

Council decides to proceed with Phase B<br />

studies for the European Extremely<br />

Large Telescope. Council also approves<br />

the Agreement with the Czech Republic<br />

about membership.<br />

Fourth and last-to-be-installed VLTI Auxiliary<br />

Telescope (AT4) obtains its ‘First<br />

Light’.<br />

EIROforum issues statement of support<br />

for the European Charter for Researchers<br />

and the Code of Conduct for the Recruitment<br />

of Researchers.<br />

<strong>ESO</strong> releases 56 million pixel image of<br />

30 Doradus.<br />

UT recoating of M1/M3 completed.<br />

Laser Guide Star Facility on VLT successfully<br />

commissioned.<br />

The Multi-conjugate Adaptive optics<br />

Demonstrator (MAD) passes its PAE<br />

(Preliminary Acceptance Europe).<br />

Fourth Advanced Chilean School of Astrophysics<br />

(co-sponsored by <strong>ESO</strong>),<br />

“Interferometry in the Epoch of ALMA and<br />

VLTI”, P. Universidad Católica de Chile,<br />

Santiago, Chile.<br />

Signing Ceremony in Prague of the<br />

Agreement between <strong>ESO</strong> and the Czech<br />

Republic regarding Czech membership of<br />

<strong>ESO</strong>.


Glossary of Frequently Used Acronyms<br />

4LGSF Four-Laser Guide Star Facility<br />

AAAS American Association for the<br />

Advancement of Science<br />

A&A Journal “Astronomy & Astrophysics”<br />

ACS Advanced Camera for Surveys (HST)<br />

ACS ALMA Common Software<br />

ADP Advanced Data Products (VOS)<br />

AEM Alcatel Alenia Space France, Alcatel<br />

Alenia Space Italy, European Industrial<br />

Engineering s.r.L., MT<br />

Aerospace Consortium (ALMA)<br />

ALMA Atacama Large Millimeter/Submilli-<br />

meter Array<br />

ALMA ARC ALMA Regional Centre<br />

AMBER Astronomical Multi-BEam combineR<br />

(VLTI Instrument)<br />

ANSYS ANSYS Multiphysics, general-<br />

purpose finite element analysis<br />

software<br />

AO Adaptive Optics<br />

AOF Adaptive Optics Facility<br />

AOS Array Operations Site<br />

APEX Atacama Pathfinder Experiment<br />

ASAC ALMA Science Advisory Committee<br />

ASI Italian Space Agency (Agenzia<br />

Spaziale Italiana)<br />

ASSIST Adaptive Secondary Setup and<br />

Instrument Simulator<br />

AT Auxiliary Telescope for the VLTI<br />

AVO Astrophysical Virtual Observatory<br />

BMBF German Federal Ministry for Education<br />

and Research<br />

CADC Canadian Astronomy Data Centre<br />

CAS Academy of Sciences of the Czech<br />

Republic<br />

CCD Charge-Coupled Device<br />

CES Coudé Echelle Spectrometer (3.6-m)<br />

CERN European Organisation for Nuclear<br />

Research (Conseil Européen pour la<br />

Recherche Nucléaire, Switzerland)<br />

CDR Conceptual Design Review<br />

CFD Computational Fluid Dynamics<br />

CI corporate identity<br />

CMMS computerised maintenance management<br />

system<br />

CNRS Centre National de la Recherche<br />

Scientifique (France)<br />

CRIRES Cryogenic InfraRed Echelle Spectrometer<br />

(VLT)<br />

CSIC Spanish National Research Council<br />

(Consejo Superior de Investigaciones<br />

Científicas)<br />

darkCAM dark energy camera for VISTA<br />

DAZLE Dark Age ‘Z’ Lyman-alpha Explorer<br />

DBCM Database Content Management<br />

DCA EURO-VO Data Centre Alliance<br />

DCU Dublin City University<br />

DFO Data Flow Operations<br />

DMD Data Management Division<br />

DMO Data Management and Operations<br />

Division<br />

DRM Design Reference Mission<br />

DSM Deformable Secondary Mirror<br />

EAAE European Association for Astronomy<br />

Education<br />

EFOSC <strong>ESO</strong> Faint Object Spectrograph and<br />

Camera (3.6-m)<br />

EIS <strong>ESO</strong> Imaging Survey<br />

ELT Extremely Large Telescope<br />

E-ELT European Extremely Large Telescope<br />

EMC Electromagnetic Compatibility<br />

EMMI <strong>ESO</strong> Multi-Mode Instrument (NTT)<br />

110<br />

<strong>ESO</strong> Annual Report 006<br />

ERA-net European Research Area Network<br />

ESA European Space Agency<br />

ESAC European Science Advisory Committee<br />

(for ALMA)<br />

ESE ELT Science and Engineering<br />

ESFRI European Strategy Forum on/for<br />

Research Infrastructures<br />

ESRC ELT Standing Review Committee<br />

ESRIN ESA Centre for Earth Observations<br />

ESTI EIROforum European Science<br />

Teachers’ Initiative<br />

EURO-VO European Virtual Observatory<br />

FDR Final Design Review<br />

FE Front End<br />

FEIC Front End Integration Centres<br />

FEM Finite Element Method<br />

FEROS Fibre-fed, Extended Range, Échelle<br />

Spectrograph ( . -m)<br />

FINITO Fringe Tracking Instrument Nice<br />

Torino (VLTI)<br />

FLAMES Fibre Large Array Multi Element<br />

Spectrograph (VLT)<br />

FOC Faint Object Camera<br />

FORS FOcal Reducer/low dispersion<br />

Spectrograph<br />

FP Framework Programme<br />

FP6 Sixth Framework Programme<br />

FP7 Seventh Framework Programme<br />

GALACSI Ground Atmospheric Layer Adaptive<br />

Optics for Spectroscopic Imaging<br />

GENIE Ground based European Nulling<br />

Interferometer Experiment (VLTI)<br />

GHRS Goddard High-Resolution Spectrograph<br />

GRAAL GRound-layer Adaptive opctics<br />

Assisted by Lasers<br />

GRAVITY AO assisted, two-object, multiplebeam-combiner<br />

(VLTI)<br />

GRB Gamma-Ray Burst<br />

GROND Gamma-Ray burst Optical/Nearinfrared<br />

Detector<br />

HARPS High Accuracy Radial Velocity<br />

Planetary Searcher (3.6-m)<br />

HAWK-I High Acuity Wide field K-band<br />

Imager (VLT)<br />

HLA Hubble Legacy Archive<br />

HOT High Order Test-bench<br />

HST Hubble Space Telescope<br />

IAU International Astronomical Union<br />

ICD Interface Control Document<br />

IEM Instituto de Estructura de la Materia<br />

(Madrid, Spain)<br />

INAF Istituto Nazionale di Astrofisica (Italy)<br />

INSU Institut National des Sciences de<br />

l’Univers (France)<br />

INTA Instituto Nacional de Tecnica Aeroespacial<br />

(Spain)<br />

IPP Max-Planck-Institut für Plasmaphysik<br />

IPT Integrated Project Team (ALMA)<br />

IR InfraRed<br />

IRAM Institut de Radioastronomie Millimétrique<br />

(France)<br />

ISAAC Infrared Spectrometer And Array<br />

Camera (VLT)<br />

IT Information Technology<br />

ITF Interferometry Task Force<br />

ITRE European Parliament’s Committee<br />

on Industry, Research and Energy<br />

IVOA International Virtual Observatory<br />

Alliance<br />

JBO Jodrell Bank Observatory (UK)<br />

KMOS K-band multi-object spectrograph<br />

(VLT)<br />

LABOCA Large APEX Bolometer CAmera<br />

LAOG Laboratoire d’Astrophysique de<br />

Grenoble<br />

LERMA Laboratoire d’Étude du Rayonnement<br />

et de la Matière en Astrophysique<br />

(France)<br />

LGS Laser Guide Star<br />

LGSF Laser Guide Star Facility<br />

LP Large Programme<br />

LTP Long Term Perspectives<br />

MACAO Multi-Application Curvature Adaptive<br />

Optics (VLT/VLTI)<br />

MAD Multi-Conjugate Adaptive Optics<br />

Demonstrator<br />

MATISSE Multi AperTure mid-Infrared<br />

SpectroScopic Experiment (VLTI)<br />

MEC Minsitry of Education and Science<br />

(Ministerio de Educación y Ciencia,<br />

Spain)<br />

MIDI Mid-Infrared Interferometric<br />

Instrument (VLTI Instrument)<br />

MoU Memorandum of Understanding<br />

MPE Max Planck Institute for Extraterrestrial<br />

Physics (Germany)<br />

MPIfR Max Planck Institute for Radioastronomy<br />

(Germany)<br />

MRIP Medium Range Implementation Plan<br />

MUSE Multi Unit Spectroscopic Explorer<br />

(VLT)<br />

MVM Image processing library<br />

NACO NAOS-CONICA (VLT)<br />

NAOJ National Astronomical Observatory<br />

of Japan<br />

NAOS Nasmyth Adaptive Optics System<br />

(VLT)<br />

NASA National Air and Space Administration<br />

(US)<br />

NGAS Next Generation Archiving System<br />

NGC New General detector Controller<br />

NICMOS Near Infrared Camera and<br />

Multi-Object Spectrograph (HST)<br />

NIST National Institute of STandards<br />

NOTSA Nordic Optical Telescope Scientific<br />

Association<br />

NOVA Dutch Research School for Astronomy<br />

(Nederlandse Onderzoekschool<br />

voor Astronomie)<br />

NSF National Science Foundation<br />

NTT New Technology Telescope<br />

OmegaCAM Optical Camera for the VST<br />

OPC Observing Programmes Committee<br />

OPD Optical Path Differences<br />

OPTICON Optical Infrared Coordination<br />

Network for Astronomy<br />

OSF Operations Support Facility (ALMA)<br />

OSO Onsala Space Observatory<br />

OWL OverWhelmingly Large Telescope<br />

P PP Phase Preparation Tool<br />

P75 Period 75<br />

P76 Period 76<br />

P77 Period 77<br />

P78 Period 78<br />

P79 Period 79<br />

PAD Public Affairs Department<br />

PAE Preliminary Acceptance Europe<br />

PARSEC Sodium line laser for VLT AO<br />

PDM Product Data Management<br />

PDR Preliminary Design Review<br />

PI Principal Investigator<br />

PPARC Particle Physics and Astronomy<br />

Research Council (UK)


PRIMA Phase-Referenced Imaging and<br />

Micro-arcsecond Astrometry facility<br />

(VLTI)<br />

PSP Public Survey Panel<br />

QC Quality Control<br />

R&D Research and Development<br />

RADIONET Radio Astronomy Network in Europe<br />

RDS Rat Deutscher Sternwarten<br />

(Germany)<br />

RoHS Restriction on the use of Hazardous<br />

Substances<br />

RRM Rapid-Response Mode<br />

SAC EURO-VO Science Advisory Committee<br />

SAF Science Archive Facility<br />

SAO Science Archive Operation<br />

SEI System Engineering and Integration<br />

SINFONI Spectrograph for INtegral Field<br />

Observations in the Near Infrared<br />

SMI Structural Modelling Interface<br />

SMA SubilliMeter Array<br />

SOCHIAS Chilean Astronomical Society<br />

SOFI SOn oF Isaac (NTT)<br />

SPHERE Spectro-Polarimetric High-contrast<br />

Exoplanet Research instrument<br />

SPIE International Society for Optical<br />

Engineering<br />

SSWG Scientific Strategy Planning Working<br />

Group<br />

STC Scientific Technical Committee<br />

ST-ECF Space Telescope European<br />

Coordination Facility<br />

STIS Slit spectrograph (HST)<br />

STScI Space Telescope Science Institute<br />

(USA)<br />

SUSI SUperb Seeing Imager (NTT)<br />

TAC Time Allocation Committee<br />

TB TeraBytes<br />

TFB Turnable Filter Bank<br />

TIMMI Thermal Infrared MultiMode<br />

Instrument (3.6-m)<br />

TMT Thirty Meter Telescope<br />

ToO Target of Opportunity<br />

UC Users’ Committee<br />

UK United Kingdom<br />

UKIDSS UKIRT Infrared Deep Sky Survey<br />

UKIRT UK Infrared Telescope<br />

ULTRACAM ULTRA-fast, triple-beam CCD<br />

CAMera<br />

USD User Support Department<br />

UT1–4 VLT Unit Telescope 1–4: Antu,<br />

Kueyen, Melipal and Yepun<br />

UVES UV-Visual Echelle Spectrograph<br />

(VLT)<br />

VCM Variable Curvature Mirrors<br />

VIMOS VIsible MultiObject Spectrograph<br />

(VLT)<br />

VINCI VLT INterferometer Commissionning<br />

Instrument<br />

VIRCAM VISTA IR Camera<br />

VISA VLTI Sub-Array<br />

VISIR VLT Mid-Infrared Imager Spectrometer<br />

VISTA Visible and Infrared Survey<br />

Telescope for Astronomy<br />

VITRUV Near-IR spectro-imager using fibre<br />

(VLTI)<br />

VLT Very Large Telescope<br />

VLTI Very Large Telescope Interferometer<br />

VO Virtual Observatory<br />

VOFC EURO-VO Facility Centre<br />

VOS Virtual Observatory System<br />

VOTC EURO-VO Technology Centre<br />

VSI VLTI Spectro Imager<br />

VST VLT Survey Telescope<br />

VTK Vibration Tracking<br />

VVDS VIMOS VLT Deep Survey<br />

WFCAM Wide-Field Camera (UKIDSS)<br />

WFI Wide Field Imager ( . -m)<br />

X-Shooter Wideband UV-IR single target<br />

spectrograph (VLT)<br />

<strong>ESO</strong> Annual Report 006<br />

111


<strong>ESO</strong> Europe<br />

Headquarters<br />

Karl-Schwarzschild-Straße<br />

85748 Garching bei München<br />

Germany<br />

Phone +49 89 3 0 06 -0<br />

Direct lines<br />

Director General - 6<br />

Visiting Astronomers -553/473<br />

Science Office - 9/ 86<br />

Technology Division - 58<br />

Data Management Division -69<br />

Public Affairs Department - 76<br />

Instrumentation Division -506<br />

Telescope Division -347<br />

Administration - 38<br />

Fax +49 89 3 0 3 6<br />

www.eso.org<br />

<strong>ESO</strong> Chile<br />

La Silla Paranal Observatory<br />

La Silla Site<br />

IV Región<br />

Chile<br />

Phone +56 464 4100<br />

Fax +56 464 4101<br />

La Silla Paranal Observatory<br />

Paranal Site<br />

II Región<br />

Chile<br />

Phone +56 55 43 5100<br />

Fax +56 55 43 5101<br />

APEX Radio Observatory<br />

Séquitor<br />

II Región<br />

Chile<br />

Phone +56 55 44 8 00<br />

Fax +56 55 44 8 1<br />

Santiago Office<br />

Alonso de Córdova 3107<br />

Vitacura<br />

Casilla 19001<br />

Santiago de Chile 19<br />

Chile<br />

Phone +5 6 463 3100<br />

Fax +5 6 463 3101<br />

11<br />

<strong>ESO</strong> Annual Report 006<br />

La Serena Office<br />

Avenida El Santo 1538<br />

Casilla 567<br />

La Serena<br />

Chile<br />

Phone +56 51 53 87<br />

Fax +56 51 15175<br />

Guest House<br />

Rey Gustavo Adolfo 4634<br />

Las Condes<br />

Santiago de Chile<br />

Chile<br />

Phone +56 08 4 54<br />

Fax +56 8 93 33<br />

Antofagasta Office<br />

Avenida Balmaceda 536<br />

Office 504<br />

Edificio ‘Don Guillermo’<br />

Antofagasta<br />

Chile<br />

Phone +56 55 6 00 3<br />

Fax +56 55 6 00 81<br />

<strong>ESO</strong> is a partner in the international<br />

ALMA project<br />

ALMA Office San Pedro de Atacama<br />

Kilómetro 1 1 CH 3<br />

II Región<br />

Chile<br />

Phone +56 55 44 8416<br />

Fax +56 55 44 84 81<br />

ALMA Office Santiago<br />

El Golf 40, Piso 18<br />

Las Condes<br />

Santiago de Chile<br />

Chile<br />

Phone +56 4676100<br />

Fax +56 4676101<br />

DVD (Mac/PC and DVD Player)<br />

The <strong>ESO</strong> Annual Report 006 DVD<br />

contains two parts. It should play<br />

automatically when inserted in any DVD<br />

player, featuring a set of videos made by<br />

<strong>ESO</strong>.<br />

In addition, on a Mac or a PC, it is<br />

possible to open it to access additional<br />

content:<br />

– All the <strong>ESO</strong> Press Releases and Press<br />

Photos having been published in 006.<br />

– The four Messenger issues of 006.<br />

– The list of all publications based on <strong>ESO</strong><br />

telescopes that appeared in 006.<br />

– A gallery of photos.<br />

To access these features, simply view the<br />

index.html file in your favourite browser.<br />

All images are copyright <strong>ESO</strong> except<br />

where otherwise indicated.<br />

Produced by the<br />

Public Affairs Department<br />

© <strong>ESO</strong> 007<br />

ISSN 0531-4496<br />

Back cover photo:<br />

The Laser Guide Stars System at Paranal.


<strong>ESO</strong> Annual Report 006<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!