03.03.2013 Views

TM 11-6625-2837-14&P-7 TECHNICAL MANUAL OPERATOR'S ...

TM 11-6625-2837-14&P-7 TECHNICAL MANUAL OPERATOR'S ...

TM 11-6625-2837-14&P-7 TECHNICAL MANUAL OPERATOR'S ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>TECHNICAL</strong> <strong>MANUAL</strong><br />

OPERATOR’S, ORGANIZATIONAL,<br />

DIRECT SUPPORT,AND GENERAL SUPPORT<br />

MAINTENANCE <strong>MANUAL</strong><br />

INCLUDING REPAIR PARTS AND<br />

SPECIAL TOOLS LIST<br />

(INCLUDING DEPOT MAINTENANCE REPAIR<br />

PARTS AND SPECIAL TOOLS)<br />

FOR<br />

RF SECTION HP-86602B<br />

(NSN <strong>6625</strong>-01-031-8853)<br />

HEADQUARTERS, DEPAR<strong>TM</strong>ENT OF THE ARMY<br />

OCTOBER 1981<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7


SAFETY<br />

WARNING<br />

Although this instrument has been designed in<br />

accordance with international safety standards, this<br />

manual contains information, cautions, and warnings<br />

which must be followed to retain the instrument in safe<br />

condition. Be sure to read and follow the safety<br />

information in Sections <strong>11</strong>, III, V, an VIII.<br />

BEFORE CONNECTING THIS SYSTEM TO LINE<br />

(MAINS) VOLTAGE, the safety and installation<br />

instructions found in Sections II and III of the mainframe<br />

manual should be followed.<br />

HIGH VOLTAGE<br />

Adjustments and troubleshooting are often performed<br />

with power supplied to the instrument while protective<br />

covers are removed. Energy available at many points<br />

may constitute a shock hazard<br />

The multi-pin plug connector which provides inter<br />

connection from mainframe to RF Section, will be<br />

exposed with the RF Section removed from the righthand<br />

mainframe cavity. With the Line (Mains Voltage off<br />

and power cord disconnected, power supply voltages<br />

may still remain and may constitute a shock hazard.<br />

WARNING<br />

COMPATIBILITY<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Damage to the synthesized signal generator system may<br />

result if an option 002 RF Section is used with<br />

unmodified Model 8660A or 8660B main-frames with<br />

serial prefixes 1349A and below.<br />

PERFORMANCE TESTING<br />

To avoid the possibility of damage to the instrument or<br />

test equipment, read completely through each test before<br />

starting it. Then make any preliminary control settings<br />

necessary before continuing with the procedure.<br />

PLUG-IN REMOVAL<br />

Before removing the RF Section plug-in from the<br />

mainframe, remove the line (Mains) voltage by<br />

disconnecting the power cable from the power outlet.<br />

SEMI-RIGID COAX<br />

Slight but repeated bending of the semi-rigid coaxial<br />

cable will damage them very quickly. Bend the cables as<br />

little as possible. If necessary, loosen the assembly to<br />

release the cable.<br />

Voltages are present in this instrument, when energized, which can<br />

cause death on contact.<br />

The multi-pin plug connector which provides interconnection from<br />

mainframe to RF Section, will be exposed with the RF Section removed<br />

from the righthand mainframe cavity. With the line voltage off and power<br />

cord disconnected, power supply voltage may still remain and may<br />

constitute a shock hazard.<br />

A


<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

This manual contains copyrighted material reproduced by permission of the Hewlett-Packard Company. All rights<br />

reserved.<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-2825-14&p-7<br />

<strong>TECHNICAL</strong> <strong>MANUAL</strong> ) HEADQUARTERS<br />

) DEPAR<strong>TM</strong>ENT OF THE ARMY<br />

No. <strong>11</strong>-<strong>6625</strong>-2825-14&p-7 ) Washington, D.C., 18 October 1981<br />

OPERATOR’S, ORGANIZATIONAL, DIRECT SUPPORT<br />

AND GENERAL SUPPORT MAINTENANCE <strong>MANUAL</strong><br />

INCLUDING REPAIR PARTS AND SPECIAL TOOLS LISTS<br />

FOR<br />

RF SECTION PLUG-IN, HEWLETT-PACKARD MODEL 86602B<br />

(NSN <strong>6625</strong>-01-031-8853)<br />

CURRENT AS OF 30 JANUARY 1981<br />

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS<br />

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures,<br />

please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms), direct<br />

to: Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ, Fort<br />

Monmouth, New Jersey 07703. In either case, a reply will be furnished direct to you.<br />

This manual is an authentication of the manufacturer’s commercial literature which, through usage, has been found to<br />

cover the data required to operate and maintain this equipment. The manual was not prepared in accordance with military<br />

specifications; therefore, the format has not been structured to consider categories of maintenance. Section IX contains<br />

improvements made after the printing of the manufacturer’s manual.<br />

CONTENTS<br />

SECTION 0 INTRODUCTION PAGE<br />

0-1. Scope 0-1<br />

0-2. Indexes of Publications 0-1<br />

0-3. Maintenance Forms, Records and Reports 0-1<br />

0-4. Reporting Equipment Improvement Recommendations (EIR) 0-1<br />

0-5. Administrative Storage 0-2<br />

0-6. Destruction of Army Electronics Materiel 0-2<br />

i


Section Page<br />

I GENERAL INFORMATION ......................... 1-1<br />

1-1. Introduction....................................... 1-1<br />

1-7. Specifications .................................. 1-1<br />

1-9. Instruments Covered by Manual....... 1-1<br />

1-12. Manual Change Supplements.......... 1-1<br />

1-15. Description........................................ 1-5<br />

1-20. Options ............................................ 1-5<br />

1-24. Compatibility..................................... 1-5<br />

1-27. Equipment Required but not<br />

Supplied........................................ 1-5<br />

1-28. System Mainframe ........................... 1-5<br />

1-31. Frequency Extension Module........... 1-6<br />

1-33. Auxiliary Section............................... 1-6<br />

1-35. Modulation Section Plug-ins............. 1-6<br />

1-37. Equipment Available......................... 1-6<br />

1-40. Safety Considerations...................... 1-6<br />

1-43. Recommended Test Equipment....... 1-6<br />

II INSTALLATION........................................... 2-1<br />

2-1. Introduction....................................... 2-1<br />

2-3. Initial Inspection ............................... 2-1<br />

2-5. Preparation For Use......................... 2-1<br />

2-6. Power Requirements........................ 2-1<br />

2-8. Interconnections............................... 2-1<br />

2-10. Modifications..................................... 2-1<br />

2-13. Operating Environment..................... 2-1<br />

2-15. Installation Instructions..................... 2-1<br />

2-17. Storage and Shipment...................... 2-2<br />

2-18. Environment..................................... 2-2<br />

2-20. Packaging......................................... 2-2<br />

III OPERATION........................................... 3-1<br />

3-1. Introduction ...................................... 3-1<br />

3-3. Panel Features................................. 3-1<br />

3-5. Operator’s Check.............................. 3-1<br />

3-8. Operating Instructions ..................... 3-1<br />

IV PERFORMANCE TESTS ....................... 4-1<br />

4-1. Introduction....................................... 4-1<br />

4-3. Equipment Required......................... 4-1<br />

4-5. Test Record...................................... 4-1<br />

4-7. Performance Tests........................... 4-1<br />

4-9. Frequency Range............................. 4-2<br />

4-10. Frequency Accuracy and Stability.... 4-3<br />

4-<strong>11</strong>. Frequency Switching Time............... 4-3<br />

4-12. Output Level Switching Time............. 4-5<br />

4-13A . Output Accuracy.......................... 4-7<br />

4-13B . Output Accuracy- Alternate<br />

Procedure...................................... 4-12<br />

4-14. Output Flatness................................ 4-15<br />

4-15. Harmonic Signals............................. 4-16<br />

CONTENTS<br />

ii<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Section Page<br />

4-16. Pulse Modulation Risetime............... 4-17<br />

4-17. Pulse Modulation On/Off Ratio......... 4-19<br />

4-18. Amplitude Modulation Depth and<br />

3 dB Bandwidth............................. 4-19<br />

4-19. Frequency Modulation Rate and<br />

Deviation....................................... 4-23<br />

4-20. Output Impedance and VSWR......... 4-23<br />

4-21. Signal-to-Phase Noise Ratio............ 4-25<br />

4-22. Signal-to-AM Noise Ratio................. 4-27<br />

4-23. Residual FM..................................... 4-29<br />

4-24. Amplitude Modulation Distortion...... 4-31<br />

4-25. Incidental Phase Modulation ........... 4-33<br />

4-26. Frequency Modulation Distortion...... 4-35<br />

4-27. Incidental AM................................... 4-38<br />

4-28. Spurious Signals, Narrowband......... 4-40<br />

4-29. Spurious Signals, Wideband........... . 4-41<br />

4-30. Phase Modulation Peak Deviation... 4-43<br />

4-31A. Phase Modulation Distortion........... 4-43<br />

4-31B. Phase Modulation Distortion -<br />

Alternate Procedure...................... 4-45<br />

V ADJUS<strong>TM</strong>ENTS.......................................... 5-1<br />

5-1. Introduction...................................... 5-1<br />

5-4. Equipment Required........................ 5-1<br />

5-8. Safety Considerations...................... 5-1<br />

5-12. Factory Selected Components......... 5-1<br />

5-14. Related Adjustments........................ 5-1<br />

5-18. Adjustment Locations....................... 5-2<br />

5-20. Adjustments........................... .......... 5-2<br />

5-22. Post Adjustment Tests ............... ..... 5-2<br />

5-24. RF Output Level Adjustment............ 5-3<br />

5-25. 1 dB Step Attenuator Adjustment..... 5-4<br />

5-26. Amplitude Modulation Input Circuit<br />

Adjustment.................................... 5-5<br />

5-27. Phase Modulator Driver Frequency<br />

Response Adjustments................. 5-7<br />

5-28A. Phase Modulation Level and<br />

Distortion Adjustments.................. 5-8<br />

5-28B. Phase Modulation Level and Distortion<br />

Adjustments - Alternate Procedure5-<strong>11</strong><br />

VI REPLACEABLE PARTS.......................... 6-1<br />

6-1. Introduction...................................... 6-1<br />

6-3. Exchange Assemblies...................... 6-1<br />

6-5. Abbreviations............................. ...... 6-1<br />

6-7. Replaceable Parts List..................... 6-1


Section Page<br />

VII <strong>MANUAL</strong> CHANGES ............................... 7-1<br />

7-1. Introduction ...................................... 7-1<br />

7-3. Manual Changes.............................. 7-1<br />

7-6. Manual Change Instructions............. 7-2<br />

VIII SERVICE................................................... 8-1<br />

8-1. Introduction....................................... 8-1<br />

8-8. Safety Considerations...................... 8-1<br />

8-12. Principles of Operation..................... 8-1<br />

8-16. Troubleshooting................................ 8-1<br />

Figure Page<br />

1-1. HP Model 86602B RF Section (Opt. 002<br />

Shown)<br />

1-2. 40 dB Test Amplifier................................ 1-0<br />

1-3. 15 kHz Low Pass Filter .......................... 1-<strong>11</strong><br />

1-4. Low Pass Filters...................................... 1-<strong>11</strong><br />

2-1. RF Section Partially Inserted into<br />

Mainframe ........................................ 2-2<br />

3-1. Front Panel Controls, Connectors, and<br />

Indicators.......................................... 3-2<br />

3-2. Rear Panel Connectors and Indicators... 3-3<br />

3-3. Operator’s Check.................................... 3-4<br />

4-1. Frequency Range Test Setup................. 4-2<br />

4-2. Frequency Switching Time Test Setup... 4-4<br />

4-3. Output Level Switching Time Test Setup 4-6<br />

4-4A. Output Accuracy Test Setup.................. 4-8<br />

4-4B. Output Accuracy Test Setup (Alternate<br />

Procedure......................................... 4-13<br />

4-5. Pulse Modulation Risetime Test Setup . . 4-18<br />

4-6. Amplitude Modulation, Depth and 3 dB<br />

Bandwidth Test Setup...................... 4-20<br />

4-7. Output Impedance Test Setup................ 4-24<br />

4-8. Signal-to-Phase Noise Ratio Test Setup. 4-26<br />

4-9. Signal-to-AM Noise Ratio Test Setup..... 4-28<br />

4-10. Residual FM Test Setup ......................... 4-29<br />

4-<strong>11</strong>. Amplitude Modulation Distortion Test<br />

Setup................................................ 4-30<br />

4-12. Incidental Phase Modulation Test Setup 4-32<br />

4-13. Frequency Modulation Distortion Test<br />

Setup................................................ 4-35<br />

4-14. Incidental AM Test Setup ....................... 4-38<br />

4-15. Narrowband Spurious Signal Test Setup. 4-39<br />

4-16. Wideband Spurious Signal Test Setup... 4-41<br />

CONTENTS (Cont’d)<br />

ILLUSTRATIONS<br />

iii<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Section Page<br />

8-17. System Troubleshooting.................. 8-2<br />

8-19. RF Section Troubleshooting............. 8-2<br />

8-21. Troubleshooting Aids....................... 8-2<br />

8-28. Recommended Test Equipment ...... 8-2<br />

8-30. Repair............................................... 8-2<br />

8-31. General Disassembly Procedures.... 8-2<br />

8-34. Non-Repairable Assemblies............. 8-2<br />

8-36. Module Exchange Program.............. 8-3<br />

8-38. Repair Procedures........................... 8-3<br />

8-42. Post Repair Adjustments ................. 8-3<br />

IX ERRATA<br />

Figure Page<br />

4-17A. Phase Modulation Distortion Test Setup 4-44<br />

4-17B.Phase Modulation Distortion Test Setup<br />

(Alternate Procedure)....................... 4-46<br />

5-1. RF Output Level Adjustment Test Setup 5-3<br />

5-2. 1 dB Step Attenuator Adjustment Test<br />

Setup................................................ 5-4<br />

5-3. Amplitude Modulation Input Circuit<br />

Adjustment Test Setup..................... 5-5<br />

5-4. Phase Modulator Driver Frequency<br />

Response Adjustment Test Setup ... 5-7<br />

5-5A. Phase Modulation Level and Distortion<br />

Adjustment Test Setup..................... 5-9<br />

5-5B. Phase Modulation Level and Distortion<br />

Adjustment Test Setup (Alternate<br />

Procedure)....................................... 5-12<br />

7-1. Phase Modulator Driver Frequency Response<br />

Adjustment Test Setup (Change B). 7-2<br />

7-2. A16 Phase Modulator Driver Assembly<br />

Component and Test Point Locations<br />

(Change B)....................................... 7-6<br />

7-3. Phase Modulation Section Schematic<br />

Diagram (Option 002) (Change B).. . 7-8<br />

7-4. A17 Phase Modulator Assembly<br />

Component Locations (Change C) .. 7-9<br />

7-5. P/O Phase Modulation Section Schematic<br />

Diagram (Change C)........................ 7-<strong>11</strong><br />

7-6. P/O Attenuator Section Schematic<br />

Diagram (Change D)........................ 7-<strong>11</strong><br />

7-7. P/O All Logic Assembly Schematic<br />

Diagram (Change E)........................ 7-12<br />

8-1. LO Signal Circuits Repair....................... 8-4


Figure Page<br />

8-2. Rear Panel Disassembly......................... 8-8<br />

8-3. Schematic Diagram Notes...................... 8-9<br />

8-4. System Test Point Locations.................. 8-17<br />

8-5. Mainframe Interconnect Jack.................. 8-17<br />

8-6. System Troubleshooting Block<br />

Diagram............................................ 8-17<br />

8-7. RF Section Simplified Block Diagram..... 8-19<br />

8-8. Main Troubleshooting Block Diagram .... 8-19<br />

8-9. Logic Troubleshooting Block Diagram . .. 8-21<br />

8-10. A7 Mixer Assembly’s Subassembly and<br />

Component Location........................ 8-22<br />

8-<strong>11</strong>. Mixer Section Schematic Diagram.......... 8-23<br />

8-12. A16 Phase Modulator Driver Assembly<br />

Component and Test Point Locations 8-25<br />

8-13. A17 Phase Modulator Assembly<br />

Component Locations . .................... 8-25<br />

8-14. Phase Modulation Section Schematic<br />

Diagram (Option 002)....................... 8-25<br />

8-15. A4 Detector Amplifier Assembly<br />

Component and Test Point Locations 8-27<br />

Table Page<br />

1-1. Models 86602B/<strong>11</strong>661 Specifications..... 1-2<br />

1-2. Recommended Test Equipment............. 1-7<br />

3-1. Operating Instructions ............................ 3-6<br />

4-1. dB to Power Ratio Conversion................ 4-37<br />

4-2. Narrowband Spurious Signal Checks..... 4-40<br />

4-3. Wideband Spurious Signal Checks ........ 4-41<br />

4-4. Performance Test Record ...................... 4-47<br />

5-1. Factory Selected Components................ 5-2<br />

ILLUSTRATIONS (Cont’d)<br />

TABLES<br />

APPENDICES<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Figure Page<br />

8-16. .Amplifier/Detector Section<br />

Schematic Diagram.......................... 8-27<br />

8-17. A3 ALC Amplifier Assembly Component<br />

and Test Point Locations.................. 8-28<br />

8-18. A10 Reference Assembly<br />

Component Locations ..................... 8-29<br />

8-19. A2 ALC Mother Board Assembly<br />

Component Locations...................... 8-29<br />

8-20. ALC Section<br />

Schematic Diagram.......................... 8-29<br />

8-21. A9 Attenuator Driver Assembly<br />

Component Locations ..................... 8-31<br />

8-22. Attenuator Section<br />

Schematic Diagram.......................... 8-31<br />

8-23. All Logic Assembly<br />

Component Locations...................... 8-33<br />

8-24. All Logic Assembly<br />

Schematic Diagram.......................... 8-33<br />

8-25. Assemblies, Chassis Parts, and Adjustable<br />

Component Locations ............... ...... 8-35<br />

Table Page<br />

6-1. Reference Designations & Abbreviations6-3<br />

6-2. Replaceable Parts.................................. 6-5<br />

6-3. Code Lists of Manufacturers................... 6-15<br />

6-4. Parts to NSN Cross Refererence........... 6-16<br />

7-1. Manual Changes by Serial Prefix........... 7-1<br />

7-2. Summary of Changes by Component.... 7-1<br />

7-3. Replaceable Parts (P/O Change B)........ 7-7<br />

8-1. Front Panel Housing Repair................... 8-7<br />

8-2. Adjustable Components Locations .. 8-34<br />

Page<br />

APPENDIX A. References............................................................................................. A-1<br />

APPENDIX B. Maintenance Allocation<br />

Section I. Introduction............................................................................................. B-1<br />

II. Maintenance Allocation.......................................................................... B-5<br />

III. Tool and Test Equipment Requirements ............................................ B-6<br />

NOTE<br />

Users of this manual are advised to consult SECTION IX, ERRATA. SECTION IX<br />

contains errors and changes in text and illustrations. The user should correct the errors<br />

and perform the changes indicated, as needed.<br />

iv


0-1. Scope<br />

SECTION 0<br />

INTRODUCTION<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

This manual describes RF Section Hewlett-Packard Model 86602B, hereinafter referred to as the RF Section, and<br />

provides instructions for its operation and maintenance.<br />

This manual applies directly to instruments with serial numbers prefixed 1638A. It is also applicable to instruments with<br />

other serial number prefixes for which manual changes are given in SECTION VII.<br />

SECTION VI includes Table 6-4, a cross reference between the Hewlett-Packard part numbers and the equivalent<br />

NATO/NATIONAL Stock Numbers (NSN).<br />

Appendix A provides a reference of pertinent Department of the Army publications.<br />

Appendix B contains the Maintenance Allocation Chart (MAC) which defines the levels and scope of maintenance<br />

functions for the equipment in the Army system and a list of the tools and test equipment required.<br />

0-2. Indexes of Publications<br />

a. DA Pam 310-4. Refer to the latest issue of the DA Pam 310-4 to determine whether there are new editions,<br />

changes or additional publications pertaining to the equipment.<br />

b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are Modification Work Orders (MWOs)<br />

pertaining to the equipment.<br />

0-3. Maintenance Forms, Records and Reports<br />

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures<br />

used for equipment maintenance will be those prescribed by <strong>TM</strong> 38-750, the Army Maintenance Management System.<br />

b. Report of Item and Packaging Discrepancies. Fill out and forward SF 364 (Report of Discrepancy (ROD) as<br />

prescribed in AR 735-<strong>11</strong>-2/DLAR 4140.55/NAVSUPINST 4440.127E/AFR 400.54/MCO 4430.E.<br />

c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report<br />

(DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33B/AFR 75-18/MCO P4610.19C and DLAR 4500.15.<br />

0-4. Reporting Equipment Improvement Recommendations (EIR)<br />

If your HP 86602B RF Section needs improvement, let us know. Send us an EIR. You, the user, are the only one<br />

who can tell us what you don’t like about your equipment. Let us know why you don’t like the design. Tell us why a<br />

procedure is hard to perform. Put it on an SF 368 (Quality Deficiency Report). Mail it to: Commander, US Army<br />

Communications - Electronics Command, ATTN: DRSEL-ME-MQ, Fort Monmouth, New Jersey 07703. We’ll send you a<br />

reply.<br />

0-1


0-5. Administrative Storage.<br />

Store in accordance with Paragraphs 2-17 through 2-22.<br />

0-6. Destruction of Army Electronics Materiel<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with <strong>TM</strong> 750-244-2.<br />

0-2


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Figure 1-1. HP Model 86602B RF Section (Option 002 Shown)<br />

1-0


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

1-1. INTRODUCTION<br />

1-2. This manual contains all information required to<br />

install, operate, test, adjust and service the Hewlett-<br />

Packard Model 86602B RF Section plug-in, hereinafter<br />

referred to as the RF Section. For information<br />

concerning related equipment, such as the Hewlett-<br />

Packard Model 8660-series mainframes or the Model<br />

<strong>11</strong>661 Frequency Extension Module, refer to the<br />

appropriate manual or manuals.<br />

1-3. This manual is divided into eight sections which<br />

provide information as follows:<br />

a. SECTION I, GENERAL INFORMATION,<br />

contains the instrument description and specifications as<br />

well as the accessory and recommended test equipment<br />

list.<br />

b. SECTION II, INSTALLATION, contains<br />

information relative to receiving inspection, preparation<br />

for use, mounting, packing, and shipping.<br />

c. SECTION III, OPERATION, contains<br />

operating instructions for the instrument.<br />

d. SECTION IV, PERFORMANCE TESTS,<br />

contains information required to verify that instrument<br />

performance is in accordance with published<br />

specifications.<br />

e. SECTION V, ADJUS<strong>TM</strong>ENTS, contains<br />

information required to properly adjust and align the<br />

instrument after repair.<br />

f. SECTION VI, REPLACEABLE PARTS,<br />

contains information required to order all replacement<br />

parts and assemblies.<br />

g. SECTION VII, <strong>MANUAL</strong> CHANGES, provides<br />

information to document all serial number prefixes listed<br />

on the title page.<br />

h. SECTION VIII, SERVICE, contains<br />

descriptions of the circuits, schematic diagrams, parts<br />

location diagrams, and troubleshooting procedures to aid<br />

the user in maintaining the instrument.<br />

SECTION I<br />

GENERAL INFORMATION<br />

1-1<br />

1-4. Figure 1-1 shows the Option 002 RF Section.<br />

1-5. DELETED<br />

1-6. On the title page of this manual, below the manual<br />

part number, is a “Microfiche” part number. This number<br />

may be used to order 4 x 6-inch microfilm transparencies<br />

of the manual. Each microfiche contains up to 60 photoduplicates<br />

of the manual pages. The microfiche<br />

package also includes the latest Manual Changes<br />

supplement as well as all pertinent Service Notes.<br />

1-7. SPECIFICATIONS<br />

1-8. Instrument specifications are listed in Table 1-1.<br />

These specifications are the performance standards, or<br />

limits against which the instrument may be tested.<br />

1-9. INSTRUMENTS COVERED BY <strong>MANUAL</strong> 1-10.<br />

This instrument has a two-part serial number. The first<br />

four digits and the letter comprise the serial number<br />

prefix. The last five digits form the sequential suffix that<br />

is unique to each instrument. The contents of this<br />

manual apply directly to instruments having the same<br />

serial number prefix(es) as listed under SERIAL<br />

NUMBERS on the title page.<br />

1-<strong>11</strong>. For information concerning a serial number prefix<br />

not listed on the title page or in the Manual Changes<br />

supplement, contact your nearest Hewlett-Packard<br />

office.<br />

1-12. <strong>MANUAL</strong> CHANGE SUPPLEMENTS<br />

1-13. An instrument manufactured after the printing of<br />

this manual may have a serial prefix that is not listed on<br />

the title page. This unlisted serial


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

FREQUENCY CHARACTERISTICS<br />

Range: 1.0 to 1299.999999 MHz selectable in 1 Hz<br />

steps. Frequencies from 200 kHz to 1 MHz may also be<br />

selected with some degradation in specifications.<br />

Accuracy and Stability 1 : CW frequency accuracy and<br />

long term stability are determined by the aging rate of the<br />

time base (internal or external) and its sensitivity to<br />

changes in temperature and line voltage. Internal<br />

reference oscillator accuracy = + aging rate ± 3 x 10 -10<br />

/°C + 3 x 10 -10 /1% change in line voltage<br />

Switching Time: 6 ms to be within 50 Hz of any new<br />

frequency selected; 100 ms to be within 5 Hz of any new<br />

frequency delected.<br />

Typical 86602B/<strong>11</strong>661 Frequency Switching<br />

Characteristics<br />

Harmonic Signals:<br />

All harmonically related signals are at least 30 dB below<br />

the desired output signal for output levels 45 MHz from carrier at<br />

frequencies >700 MHz<br />

50 dB down from carrier on the +10 dBm range.<br />

All Power Line Related spurious signals are 70 dB down<br />

from carrier.<br />

Signal-to-Phase Noise Ratio (CW, AM, and OM only):<br />

Greater than 45 dB in a 30 kHz band centered<br />

on the carrier and excluding a 1 Hz band<br />

centered on the carrier.<br />

Typical SSB Phase Noise Curve:<br />

Typical 86602B Phase Noise<br />

Signal-to-AM Noise Ratio: Greater than 65 dB down in<br />

a 30 kHz bandwidth centered on the carrier and<br />

excluding a 1 Hz band centered on the carrier


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

OUTPUT CHARACTERISTICS<br />

Level: Continuously adjustable from +10 to -146 dBm<br />

(0.7 Vrms to 0.01 /Vrms) into a 50Q resistive<br />

load. Output attenuator calibrated in 10 dB steps<br />

from 1.OV full scale (+10 dBm range) to 0.03<br />

pVrms full scale (-140 dBm range). Vernier<br />

provides continuous adjustment between<br />

attenuator ranges. Output level indicated on<br />

output level meter calibrated in volts and dBm<br />

into 50 ohms.<br />

Accuracy: (Local and remote modes)<br />

+ 1.5 dB to -76 dBm; + 2.0 dB to -146 dBm at<br />

meter readings between +3 and -6 dB.<br />

Flatness: Output level variation with frequency is less<br />

than ±1.0 dB from 1-1300 MHz at meter<br />

readings between +3 and --6 dB.<br />

Level Switching Time: In the remote mode any level<br />

change can be accomplished in less than 50 ms.<br />

Any change to another level on the same<br />

attenuator range can be accomplished in less<br />

than 5 ms.<br />

Impedance: 50Q.<br />

VSWR:


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

FREQUENCY MODULATION<br />

Rate: DC to 200 kHz with the 86632B and 86635A.<br />

20 Hz to 100 kHz with the 86633B.<br />

Maximum Deviation (peak):<br />

200 kHz with the 86632B and 86635A<br />

100 kHz with the 86633B<br />

Incidental AM: AM sidebands are greater than 60 dB<br />

down from the carrier with 75 kHz peak deviation<br />

at a 1 kHz rate.<br />

FM Total Harmonic Distortion (at rates up to 20 kHz);<br />


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

prefix indicates that the instrument is different from those<br />

documented in this manual. The manual for this<br />

instrument is supplied with a yellow Manual Changes<br />

supplement that contains “change information” that<br />

documents the differences.<br />

1-14. In addition to change information, the supplement<br />

may contain information for correcting errors in the<br />

manual. To keep this manual as current and accurate as<br />

possible, Hewlett-Packard recommends that you<br />

periodically request the latest Manual Changes<br />

supplement. The supplement for this manual is keyed to<br />

this manual’s print date and part number, both of which<br />

appear on the title page. Complimentary copies of the<br />

supplement are available from Hewlett-Packard.<br />

1-15. DESCRIPTION<br />

1-16. The HP Model 86602B RF Section is one of<br />

several RF Sections available for use in an 8660-series<br />

Synthesized Signal Generator System. This RF Section<br />

plug-in is used with an option 100 8660-series<br />

mainframe (Frequency Extension Module installed). The<br />

RF Section provides precisely tuned RF output<br />

frequencies over the 1 to 1300 MHz range with 1 Hz<br />

frequency resolution (8660-series option 004 instruments<br />

have resolutions of 100 Hz.) Frequencies from 200 kHz<br />

to 1 MHz can also be generated with some degradation<br />

in the amplitude leveling and other related specifications.<br />

1-17. The output power can be set to any level between<br />

+10 and --146 dBm by means of the front panel<br />

VERNIER and calibrated OUTPUT RANGE controls. A<br />

front panel-mounted meter and the OUTPUT RANGE<br />

switch indicate the output power and voltage levels<br />

delivered by the RF Section to any external load having a<br />

characteristic impedance of 50 ohms. Output power<br />

levels are maintained within + 1 dB of selected values<br />

through internal leveling of the output signal over the full<br />

frequency range of the instrument.<br />

1-18. Amplitude, frequency, phase, or pulse modulation<br />

of the RF OUTPUT signal can be accomplished within<br />

the RF Section by using the appropriate Auxiliary or<br />

Modulation Section plug-in.<br />

1-19. External programming permits remote selection of<br />

the output signal frequency in 1 Hz steps (100 Hz for<br />

option 004 mainframes) and the output power in 1 dB<br />

steps over the full operating<br />

1-5<br />

range of the instrument. External programming is<br />

accomplished via the mainframe computer-compatible<br />

interface and digital control unit circuits.<br />

1-20. OPTIONS<br />

1-21. This RF Section has two options available. They<br />

affect the instrument’s RF output level, and phase<br />

modulation capabilities.<br />

1-22. Option 001. The RF output attenuator is<br />

removed. This limits the RF output level range from +10<br />

to -6 dBm.<br />

1-23. Option 002. Circuits are added to provide the<br />

phase modulation capability. A compatible modulation<br />

section is required.<br />

1-24. COMPATIBILITY<br />

1-25. Except for Option 002 instruments, the Model<br />

86602B is compatible with all 8660-series option 100<br />

mainframes, all AM-FM Modulation Sections and the<br />

Auxiliary Section. This RF Section is partially compatible<br />

with the FM/OM Modulation Section.<br />

Damage to the signal generator system<br />

may result if an option 002 RF Section<br />

is used with Model 8660A or 8660B<br />

main-frames with serial prefixes 1349A<br />

and below.<br />

1-26. Option 002 instruments are compatible with all<br />

instruments which are part of the Model 8660-series<br />

Synthesized Signal Generator System except early<br />

model 8660A and 8660B Mainframes. Refer to the<br />

paragraph entitled Modifications in Section II of this<br />

manual for further information.<br />

1-27. EQUIPMENT REQUIRED BUT NOT<br />

SUPPLIED<br />

1-28. System Mainframe<br />

1-29. The mainframe uses phase-locked loops to<br />

accurately generate clock, reference, and tuning signals<br />

required for operation of the Synthesized Signal<br />

Generator System. Front panel-mounted mainframe<br />

controls are used to digitally tune two phase-locked loops<br />

in the Frequency Extension Module which, in turn,<br />

produce two high-frequency output signals that are<br />

applied to the RF Section. The RF Section mixes the<br />

two signals


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

and presents their frequency difference at the front panel<br />

OUTPUT jack. The output frequency is either the value<br />

selected by the mainframe front panel controls or<br />

external programming.<br />

1-30. The mainframe power supply provides all dc<br />

operating voltages required by the RF Section,<br />

Frequency Extension Module, and Modulation Section<br />

plug-ins. Remote programming of the plug-ins is<br />

accomplished via the mainframe interface and digital<br />

control unit circuits.<br />

1-31. Frequency Extension Module<br />

1-32. The Frequency Extension Module plug-in extends<br />

the output frequency range of the main-frame to meet<br />

the input requirements of the RF Section. The<br />

Frequency Extension Module plug-in contains two highfrequency<br />

phase-locked loops which receive digital<br />

tuning signals, variable synthesized signals, and fixed<br />

synthesized signals from the mainframe. The phaselocked<br />

loops use the main-frame signals, in conjunction<br />

with the output frequency from a 4.43 GHz oscillator that<br />

is common to both loops, to produce two high-frequency<br />

output signals that are supplied to the RF Section. One<br />

output signal is generated by a phase-locked loop using<br />

a Voltage Controlled Oscillator (VCO) that is tuneable in<br />

1 Hz steps (100 Hz steps for option 004 mainframe) over<br />

the 3.95 to 4.05 GHz range. The other output signal is<br />

generated by a phase-locked loop using a Yittrium-Iron-<br />

Garnet (YIG) oscillator that is tunable in 100 MHz steps<br />

over the 3.95 to 2.75 GHz range. The two outputs from<br />

the Frequency Extension Module plug-in are applied to<br />

the RF Section for mixing, amplification of the converted<br />

signal, and final output power level control.<br />

1-33. Auxiliary Section<br />

1-34. The Auxiliary Section plug-in provides a means of<br />

applying externally generated amplitude or pulse<br />

modulation drive signals to modulate the RF Section’s<br />

output carrier.<br />

1-6<br />

1-35. Modulation Section Plug-ins<br />

1-36. The Model 86630-series Modulation Section plugins<br />

can accept external modulation drive signals or<br />

generate internal drive signals to amplitude, frequency,<br />

phase or pulse modulate the RF Sections output signal.<br />

1-37. EQUIPMENT AVAILABLE<br />

1-38. Extender cables, coaxial adapters, and an<br />

adjustment tool are available for use in performance<br />

testing, adjusting, and maintaining the RF Section. Each<br />

piece may be ordered separately or as part of the<br />

<strong>11</strong>672A Service Kit.<br />

1-39. Extender cards for use in servicing the RF Section<br />

and a type N to BNC adapter for use on the front panel<br />

RF OUTPUT connector are contained in the HP Rack<br />

Mount Kit, Part Number 08660-60070, that is supplied<br />

with the mainframe.<br />

1-40. SAFETY CONSIDERATIONS<br />

1-41. This instrument has been designed in accord-ance<br />

with international safety standards and has been<br />

supplied in safe condition.<br />

1-42. Although this instrument has been designed in<br />

accordance with international safety standards, this<br />

manual contains information, cautions, and warnings<br />

which must be followed to retain the instrument in safe<br />

condition. Be sure to read and follow the safety<br />

information in Sections II, III, V, and VIII.<br />

1-43. RECOMMENDED TEST EQUIPMENT 1-44.<br />

Table 1-2 lists the test equipment and accessories<br />

recommended for use in testing, adjusting, and servicing<br />

the RF Section. If any of the recommended test<br />

equipment is unavailable, instruments with equivalent<br />

specifications may be used. See Appendix B, Section III.


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

See Appendix B, Section III<br />

Table 1-2. Recommended Test Equipment (1 of 4)<br />

Item Critical Specifications Suggested Model Use*<br />

Adapter (Male Type N Frequency range 100 MHz to 1.3 GHz HP 1250-0847 P<br />

to GR874 )<br />

Adapter, SMA-to-BNC 2 required OSM 2<strong>11</strong>90 P<br />

Adapter, SMA-to-OSM OSM 219 P<br />

Right Angle<br />

Adapter, Type N-to- OSM 21040 P<br />

SMA<br />

Amplifier, 20 dB -20 dB gain at 30 MHz HP 8447A P<br />

Input SWR


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Table 1-2. Recommended Test Equipment (2 of 4)<br />

Item Critical Specifications Suggested Model Use*<br />

Counter, Computing 50 kHz to 50 MHz with a 1 ms gate time and HP 5360A with HP 5365A P<br />

external trigger; 1 Hz resolution plug-in<br />

Counter, Frequency Range: 0.2-1300 MHz HP 5340A P<br />

Resolution: 1 Hz<br />

10 MHz external reference output<br />

7.2 Vrms output into 170 ohms<br />

Coupler, Directional Frequency range 100 MHz to 1.3 GHz HP 778D Option 12 P<br />

Detector, Crystal 1 to 1200 MHz HP 8471A P<br />

Detector, Crystal 10 MHz to 1.3 GHz HP 423A P, A<br />

FM Discriminator Input frequency 100 kHz to 10 MHz HP 5210A P, A<br />

Linear Analog Output 1V full scale<br />

Filter Kit Accessory for HP 5210A HP 10513A P, A<br />

Filter, Low Pass, Special (see Figure 1-3) P<br />

15 kHz<br />

Filter, Low Pass, Cutoff frequency: 4 MHz CIR-Q-TEL P<br />

4 MHz FLT/21B-4-3/50-3A/3B<br />

Filter, Low Pass, Cutoff frequency: 2200 MHz HP 360C P<br />

2200 MHz<br />

Filters, Low Pass, 100 kHz at 50 and 600 ohms Specials (See Figure 1-4) A<br />

100 kHz<br />

Filters, Low Pass, 1 MHz - 50 and 600 ohms Specials (See Figure 1-4) P, A<br />

1 MHz<br />

Filters, Low Pass, 5 and 10 MHz - 50 ohms Specials (See Figure 1-4) P<br />

5 and 10 MHz<br />

Filter, Band Pass Pass band 1-2 GHz HP 8430A P<br />

Generator, Distortion less than 0.3% HP 203A P<br />

Function Range: 0.5 Hz to 20 kHz<br />

Output level: 0.1 to 2.0 Vrms into 600 ohms<br />

Generator, Pulse Output -10 Vpk with 0.5V into 170 ohms<br />

*Use: P = Performance Tests, A = Adjustments, T = Troubleshooting<br />

1-8


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Table 1-2. Recommended Test Equipment (3 of 4)<br />

Item Critical Specifications Suggested Model Use*<br />

Mixer, Double 1 MHz to <strong>11</strong>0 MHz HP 10514A A<br />

Balanced<br />

Mixer, Double 300 to 1300 MHz Watkins-Johnson M1J P<br />

Balanced<br />

Oscillator, Test 1 kHz to 10 MHz HP 651B P, A<br />

1.0 to 2.0 Vrms into 600<br />

or 50 ohms<br />

Oscilloscope Vertical: HP 180C with HP 1801A P, A, T<br />

Bandwidth 50 MHz with sensitivity of and HP 1821A plug-ins<br />

5mV/ division minimum<br />

Horizontal:<br />

Sweep time 10 ns to 1 s<br />

Delayed sweep<br />

External triggering to 100 MHz<br />

Oscilloscope, Input impedance HP 10004 P, A, T<br />

10:1 divider probes 10 megohm shunted by 10 pF<br />

Power MeterISensor Range: -10 to +10 dBm from 10 MHz to 1.3 HP 435A/8481A P, A, T<br />

GHz<br />

Power Supply, DC 0-10 volts HP 721A P<br />

Programmer, Marked Capable of programming BCD or HP-IB data HP 3260A Option 001 P, A<br />

Card<br />

Probe, Logic TTL Compatible HP 10525T T<br />

Resistor, 1000 ohm +2% HP 0757-0280 P, A<br />

Resistor, 10K ohm +2% HP 0757-0442 P<br />

Resistor, 100K ohm f2% HP 0698-7284 P<br />

Service Kit Interconnect cables, adaptors, and coaxial HP <strong>11</strong>672A (See A, T<br />

cables compatible to 8660-series plus and Operating Note or<br />

jacks mainframe manual for<br />

parts list)<br />

Stub, Adjustable Frequency range 100 MHz to 1.3 GHz General Radio 874-D50L P<br />

Tee, Coaxial 2 required HP 1250-0781 (BNC) P, A<br />

Termination, 50 50 ohm HP <strong>11</strong>048C P<br />

ohm Feed Thru<br />

*Use: P = Performance, A = Adjustments, T = Troubleshooting<br />

1-9


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Table 1-2. Recommended Test Equipment (4 of 4)<br />

Item Critical Specifications Suggested Model Use*<br />

Termination, 50 ohm 50 ohm, (2 required) HP <strong>11</strong>593A P<br />

Test Set, Phase Input Frequency Range 250 to 950 MHz HP 8660C-K10 (only) P, A<br />

Modulation Distortion<br />


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

40 dB TEST AMPLIFIER<br />

Amplifier Specifications<br />

Gain 44 dB at 25°C<br />

Bandwidth 100 kHz (3 dB down)<br />

Noise Bandwidth 157 kHz<br />

Input Impedance 75K Ohms<br />

Output Impedance 12K Ohms<br />

Current Drain 260 Microamperes<br />

Output (Maximum) 1 Volt<br />

Dynamic Range 66 dB<br />

Figure 1-2. 40 dB Test Amlifier<br />

Figure 1-3. 15 kHz Low Pass Filter<br />

1-<strong>11</strong>


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

100 kHz - 50 ohms 100 kHz - 600 ohms<br />

C1, C4 0.015 μF Mylar 0160-0194 C1, C4 1300 pF 0160-2221<br />

C2 0.027 μF Mylar 0170-0066 C2 3000 pF 0160-2229<br />

C3 0.022 μF Mylar 0160-0162 C3 <strong>11</strong>00 pF 0160-2219<br />

L1, L2 100 μH 9140-0210 L1, L2 1200 μH 9100-1655<br />

1 MHz -50 ohms 1 MHz - 600 ohms<br />

C1, C4 1500 pF 0160-2222 C1, C4 130 pF 0140-0195<br />

C2 3300 pF 0160-2230 C2 300 pF 0160-2207<br />

C3 1600 pF 0160-2223 C3 120, μH 0140-0194<br />

L1, L2 10H ±10% 9140-0<strong>11</strong>4 L1, L2 120 μ 9100-1637<br />

5 MHz - 50 ohms 10 MHz - 50 ohms<br />

C1, C2, C4 300 pF 0160-2207 C1, C4 150 pF 0140-0196<br />

C3 680 pF 0160-3537 C2 330 pF 0160-2208<br />

L1, L2 2 μH 9100-3345 C3 160 pH 0160-2206<br />

L1, L2 1 μH±10% 9140-0096<br />

NOTE<br />

Unless otherwise noted, tolerance of components is + 5%<br />

and capacitors are mica. Part numbers are Hewlett-Packard<br />

Figure 1-4. Low Pass Filters<br />

1-12


Section 2 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

2-1. INTRODUCTION<br />

2-2. This section provides information relative to initial<br />

inspection, preparation for use, and storage and<br />

shipment of the Model 86602B RF Section plug-in. Initial<br />

Inspection provides instructions to be followed when an<br />

instrument is received in a damaged condition.<br />

Preparation For Use gives all necessary interconnection<br />

and installation instructions. Storage and Shipment<br />

provides instructions and environmental limitations<br />

pertaining to instrument storage. Also provided are<br />

packing and packaging instructions which should be<br />

followed in preparing the instrument for shipment.<br />

2-3. INITIAL INSPECTION<br />

2-4. Inspect the shipping container for damage. If the<br />

shipping container or cushioning material is damaged, it<br />

should be kept until the contents of the shipment have<br />

been checked for completeness and the instrument has<br />

been checked mechanically and electrically. The<br />

contents of the shipment should be as shown in Figure<br />

1-1, and procedures for checking electrical performance<br />

are given in Section IV. If the contents are incomplete, if<br />

there is mechanical damage or defect, or if the instrument<br />

does not pass the electrical performance test,<br />

notify the nearest Hewlett-Packard office. If the shipping<br />

container is damaged, or the cushioning material shows<br />

signs of stress, notify the carrier as well as the Hewlett-<br />

Packard office. Keep the shipping materials for carrier’s<br />

inspection. The HP office will arrange for repair or<br />

replacement without waiting for claim settlement.<br />

2-5. PREPARATION FOR USE<br />

2-6. Power Requirements<br />

2-7. All power required for operation of the RF Section<br />

is furnished by the mainframe. This RF Section requires<br />

approximately 40 volt-amperes.<br />

2-8. Interconnections<br />

2-9. Prior to installing the RF Section plug-in into the<br />

mainframe, verify that the Frequency Extension Module<br />

plug-in and interconnecting cable assemblies have been<br />

installed in accordance with the instructions contained in<br />

the Frequency Extension Module manual.<br />

SECTION II<br />

INSTALLATION<br />

2-1<br />

2-10. Modifications<br />

2-<strong>11</strong>. A power supply modification to older versions of<br />

Model 8660A and 8660B mainframes are required if they<br />

are to be used with the option 002 RF Section.<br />

Damage to the synthesized signal generator<br />

system may result if an option 002 RF<br />

Section is used with an older 8660A or 8660B<br />

mainframe.<br />

2-12. Due to the increased power consumption of the<br />

option 002 instrument, mainframes with serial prefixes<br />

1349A and below must be modified by installing a Field<br />

Update Kit. For mainframe configurations other than<br />

option 003 (60 Hz line operation), order kit number<br />

08660-60273. For option 003 mainframes (50 - 400 Hz<br />

line operation) order kit number 08660-60274.<br />

NOTE<br />

Verify that a new higher current fuse, HP Part<br />

Number 2<strong>11</strong>0-0365, 4A Slow Blow, is used in<br />

mainframes with the power supply modification.<br />

2-13. Operating Environment<br />

2-14. The RF Section is designed to operate within the<br />

following environmental conditions:<br />

Temperature ........................................ 0° to +55°C<br />

Humidity ..................................... less than 95% relative<br />

Altitude ....................................... less than 15,000 feet<br />

2-15. Installation Instructions<br />

WARNING<br />

The multi-pin plug connector which provides<br />

interconnection from mainframe to RF<br />

Section, will be exposed with the RF Section<br />

removed from the right-hand mainframe<br />

cavity. With the Line (Mains) Voltage off and<br />

power cord disconnected, power supply<br />

voltages may still remain which, if contacted,<br />

may constitute a shock hazard.


Section 1 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

2-16. Insert the plug-in approximately half-way into the<br />

right cavity of the mainframe. Rotate the latch (lower<br />

right corner) to the left until it protrudes perpendicular to<br />

the front panel. Refer to Figure 2-1, which shows the<br />

plug-in partially inserted into the mainframe and the latch<br />

rotated to a position that is perpendicular to the plug-in<br />

front panel. Push the plug-in all the way into the<br />

mainframe cavity and then rotate the latch to the right<br />

until it snaps into position.<br />

2-17. STORAGE AND SHIPMENT<br />

2-18. Environment<br />

2-19. The storage and shipping environment of the RF<br />

Section should not exceed the following limits:<br />

Temperature................................ 40° to +75°C<br />

Humidity....................................... less than 95% relative<br />

Altitude......................................... less than 25,000 feet<br />

2-20. Packaging<br />

2-21. Original Type Packaging. Containers and<br />

materials identical to those used in factory packaging are<br />

available through Hewlett-Packard offices. If the<br />

instrument is being returned to Hewlett-Packard for<br />

servicing, attach a tag indicating the type of service<br />

required, return address, model number, and full serial<br />

Figure 2-1. RF Section Partially Inserted into Mainframe<br />

Figure 2-1. RF Section Partially Inserted into Mainframe<br />

2-2<br />

number. Also mark the container FRAGILE to assure<br />

careful handling. In any correspondence, refer to the<br />

instrument by model number and full serial number.<br />

2-22. Other Packaging. The following general<br />

instructions should be used for re-packaging with<br />

commercially available materials:<br />

a. Wrap the instrument in heavy paper or<br />

plastic. (If shipping to a Hewlett-Packard office or<br />

service center, attach a tag indicating the type of service<br />

required, return address, model number, and full serial<br />

number.)<br />

b. Use a strong shipping container. A doublewall<br />

carton made of 350-pound test material is adequate.<br />

c. Use enough shock-absorbing material (3 to 4inch<br />

layer) around all the sides of the instrument to<br />

provide firm cushion and prevent movement inside the<br />

container. Protect the control panel with cardboard.<br />

d. Seal the shipping container securely.<br />

e. Mark the shipping container FRAGILE to<br />

assure careful handling.


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

3-1. INTRODUCTION<br />

3-2. This section contains information which will enable<br />

the operator to learn to operate and quickly check for<br />

proper operation of the RF Section plug-in as part of the<br />

Synthesized Signal Generator System.<br />

3-3. PANEL FEATURES<br />

3-4. The front and rear panel controls, connectors, and<br />

indicators of the RF Section and its options are<br />

described by Figure 3-1 and 3-2.<br />

3-5. OPERATOR’S CHECKS<br />

3-6. The RF Section, as part of the Synthesized Signal<br />

Generator System, accepts inputs from the rest of the<br />

system but controls only the RF output level. Even<br />

though the controlled circuits for most other functions are<br />

within the RF Section, the actual checks are found in the<br />

manual of the instrument which controls that function.<br />

SECTION III<br />

OPERATION<br />

3-1<br />

3-7. The Operator’s Checks in this manual are intended<br />

to verify proper operation of the circuits which control and<br />

are controlled by the RF output level controls. This<br />

includes the meter, the VERNIER control, the OUTPUT<br />

RANGE switch, and the Output Range Attenuator when<br />

operating in the local mode. When the system is being<br />

remotely controlled, the 1 dB and 10 dB remote step<br />

attentator switches are checked in place of the VERNIER<br />

control and OUTPUT RANGE switch. Refer to Figure 3-<br />

3.<br />

3-8. OPERATING INSTRUCTIONS<br />

3-9. In this system, the mainframe and plug-ins contain<br />

the controls for frequency, modulation, and RF level<br />

selection. The mainframe controls frequency, the<br />

Modulation Section plug-in controls modulation type and<br />

level, and the RF Section plug-in controls RF output<br />

level. The Operating Instructions for the RF Section<br />

plug-in are included in Table 3-1.


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

1 Meter. Indicates the RF Output level in Vrms and<br />

dBm (50w) with the scale reference indicated by the<br />

OUTPUT RANGE switch.<br />

2 Mechanical Meter Zero Control. Sets the Panel<br />

Meter indicator to zero when the mainframe LINE Switch<br />

is set to STBY.<br />

3 OUTPUT RANGE Switch. Sets the output level<br />

range of all except option 001 instruments from<br />

NOTE<br />

The front panel of the option 002 instrument is shown.<br />

The standard instrument does not have the term PHASE<br />

MODULATION after 1-1300 MHz. The option 001<br />

instrument has an OUTPUT RANGE switch which shows<br />

only the +10 and 0 dBm ranges.<br />

Figure 3-1. Front Panel Controls, Connectors, and Indicators<br />

3-2<br />

+10 to -140 dBm (502) in 10 dB steps. For option 001<br />

instruments, +10 and 0 dBm ranges only.<br />

4 OUTPUT Jack. Type-N female coaxial connector.<br />

RF Output level +10 to -146 dBm (0.7 Vrms to 0.01<br />

/IVrms) into a 50Q load. Frequency range is 1 to<br />

1299.999 999 MHz in 1 Hz steps.<br />

5 VERNIER Control. RF Output continuously var-iable<br />

within the useable range (+3 to --6 dB) as indicated by<br />

the meter.


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

1 Coaxial Plug. Connects the 3.95 to 2.75 GHz RF<br />

Input signal to the RF Section from the Frequency<br />

Extension Module.<br />

2 Interconnect Plug. Provides interconnection of<br />

power supply voltages; RF and control signals between<br />

the RF Section plug-in and the Main-frame, Frequency<br />

Extension Module, and Modulation Section plug-in.<br />

Figure 3-2. Rear Panel Connectors and Indicators<br />

3-3<br />

3 Coaxial Plug. Connects the 3.95 to 4.05 GHz LO<br />

Input signal to the RF Section plug-in from the Frequency<br />

Extension Module.<br />

4 Serial Number Plate. Metal plate with stamped<br />

serial number. Four-digit and letter for prefix. Suffix is<br />

unique to an instrument.


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

1. Set the System controls as follows:<br />

WARNING<br />

BEFORE CONNECTING THIS SYSTEM TO LINE (MAINS) VOLTAGE,<br />

the safety and installation instructions found in Sections II and III of the<br />

mainframe manual should be followed.<br />

Damage to the signal generator system may occur if option 002 RF<br />

Sections are used with unmodified 8660A and 8660B main frames with<br />

serial prefixes 1349A and below. See the paragraph entitled<br />

Modifications in Section II.<br />

NOTE<br />

Refer to Section HI for RF Section Installation instructions.<br />

Mainframe<br />

LINE Switch .................................................................................... ON<br />

REFERENCESELECTOR .............................................................. EXT<br />

CENTER FREQUENCY ................................................................. 500 MHz<br />

Modulation Section plug-in<br />

MODE Switch ................................................................................. OFF<br />

RF Section plug-in<br />

OUTPUT RANGE Switch ............................................................... 0 dBm<br />

VERNIER Control ........................................................................... +3 dB meter reading<br />

Figure 3-3. Operator’s Checks (1 of 2)<br />

3-4


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

OPERATOR’S CHECKS<br />

2. Connect the RF Section OUTPUT to the power sensor input. Verify that the amplitude of the 500 MHz signal<br />

is approximately +3 dBm.<br />

3. Set the OUTPUT RANGE Switch to +10 dBm and adjust the VERNIER control for a -3 dB meter reading.<br />

Verify that the output level is approximately +7 dBm.<br />

4. Connect the RF Section OUTPUT to the frequency counter input through the 3 dB attenuator. Verify that the<br />

signal is accurate within +1 Hz.<br />

5. To check the remote control capabilities of the RF Section, connect a control unit to the mainframe. Repeat<br />

steps 1 through 4 while the system is remotely programmed from an external source. Application Note 164-1<br />

"Programming the 8660A/B Synthesized Signal Generator" provides the information needed for remote BCD<br />

operation of this system. Application Note 164-2 "Calculator Control of the 8660A/B/C Synthesized Signal<br />

Generator" provides the information needed for calculator control of the system using the HP-IB (option 005).<br />

Section III of the mainframe manual contains the same information in abridged form.<br />

Figure 3-3. Operator’s Checks (2 of 2)<br />

3-5


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

TURN ON<br />

Table 3-1. Operating Instructions (1 of 2)<br />

OPERATING INSTRUCTIONS<br />

BEFORE CONNECTING THIS SYSTEM TO THE LINE (MAINS)<br />

VOLTAGE, the safety and installation instructions found in Sections<br />

II and III of the mainframe manual should be followed.<br />

Damage to the signal generator system may occur if option 002 RF<br />

Sections are used with unmodified 8660A and 8660B main- frames<br />

with serial prefixes 1349A and below. See the paragraph entitled<br />

Modifications in Section II.<br />

NOTE<br />

Refer to Section II for RF Section Installation Instructions.<br />

1. Set the mainframe’s LINE Switch to ON and the rear panel REFERENCE SELECTOR Switch to INT. Wait for the<br />

mainframe "oven" indication to go out.<br />

FREQUENCY SELECTION<br />

2. Refer to Section III of the mainframe operating and service manual for information on system frequency selection.<br />

RF OUTPUT LEVEL<br />

3. dBm. Set the OUTPUT RANGE switch to within +3 and --6 dB of the desired output level. Adjust the VERNIER<br />

control for a meter reading which when added to the OUTPUT RANGE switch indication equals the desired output<br />

level.<br />

4. VOLTS. To set the RF output level in rms volts, the OUTPUT RANGE switch selected the full scale meter reading<br />

and the VERNIER control is adjusted for the correct voltage reading on the meter. The voltage level for meter<br />

scale 1.0 should not be set below 0.32 of full scale. The voltage level should not be set below 1 when using the<br />

meter scale of 3.<br />

NOTE<br />

In order to achieve the output level accuracy specified, the level<br />

selected must be S


Section 3 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Table 3-1. Operating Instructions (2 of 2)<br />

MODULATION SELECTION<br />

6. Refer to Section III of the Modulation Section plug-in operating and service manual for information relating to<br />

selection of modulation type and level.<br />

REMOTE OPERATION<br />

7. Application Note 164-1 "Programming the 8660A/B Synthesized Signal Generator" provides most of the<br />

information needed for remote BCD operation of this system. AN 164-2 "Calculator Control of the 8660A/B/C<br />

Synthesized Signal Generator" provides information for remote HP-IB operation of this system. In abridged form,<br />

Section III of the mainframe manuals contain the same information.<br />

3-7


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-1. INTRODUCTION<br />

4-2. The procedures in this section test the<br />

instrument’s electrical performance using the<br />

specifications of Table 1-1 as the performance standard<br />

All tests can be performed without access to l interior of<br />

the instrument. A simpler operation test is included in<br />

Section III under Operator’s Checks.<br />

4-3. EQUIPMENT REQUIRED<br />

4-4. Equipment required for the performance tests is<br />

listed in the Recommended Test Equipment table in<br />

Section I. Any equipment that satisfies critical<br />

specifications given in the table may substituted for the<br />

recommended model(s).<br />

4-5. TEST RECORD<br />

4-6. Results of the performance tests may tabulated<br />

on the Test Record at the end of the procedures. The<br />

Test Record lists all of the test specifications and their<br />

acceptable limits. Test results recorded at incoming<br />

SECTION IV<br />

PERFORMANCE TESTS<br />

4-1<br />

inspection can be used for comparison in periodic<br />

maintenance and trouble-shooting, and after repairs or<br />

adjustments.<br />

4-7. PERFORMANCE TESTS<br />

4-8. For each test, the specifications are written<br />

exactly as they appear in the specification table in<br />

Section I. Next, a description of the test and any special<br />

instructions or problem areas are included. Most tests<br />

that require test equipment have a setup drawing; each<br />

has a list of required equipment. The initial steps of each<br />

procedure give control settings required for that<br />

particular list.<br />

To avoid the possibility of damage to the<br />

instrument or test equipment, read<br />

completely through each test before starting<br />

it. Then make any preliminary control<br />

settings before continuing with the<br />

procedure.


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-9. FREQUENCY RANGE<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

1 to 1299.999999 MHz selectable in 1 Hz steps. Frequencies from 200 to kHz to 1 MHz may also be selected with some<br />

degradation in specifications.<br />

DESCRIPTION:<br />

The Synthesized Signal Generator System RF OUTPUT is monitored by a frequency counter which supplies a common<br />

time base reference signal. The frequencies are checked at the extremes. Any specified frequency may be checked.<br />

EQUIPMENT:<br />

Figure 4-1. Frequency Range Test Setup<br />

Frequency Counter... .................................HP 5340A<br />

10 dB Fixed Attenuator ..............................HP 8491A Opt 003<br />

NOTE<br />

In the following procedure, allow for accuracy of counter used. -Model<br />

recommended is specified at +1 count.<br />

1. Connect frequency counter 10 MHz output reference signal to mainframe EXT REF input as shown in Figure 4-1<br />

and set mainframe rear panel REF switch to EXT.<br />

2. Set the RF Section OUTPUT RANGE switch to 0 dBm; set the VERNIER control full CW.<br />

3. Set mainframe center frequency to 1.000 000 MHz and check RF section output frequency with counter. Record<br />

the frequency.<br />

0.999999_______________________1.000001 MHz<br />

4. Set mainframe center frequency to 1299.999 999 MHz (Option 004 mainframe set to 1299.,space 9999 MHz) and<br />

check RF Section output frequency with counter. Record the frequency.<br />

4-2<br />

1299.999 998________________1300.000 000 MHz


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-10. FREQUENCY ACCURACY AND STABILITY<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

CW frequency accuracy and long term stability are determined by the aging rate of the time base (internal or external) and<br />

its sensitivity to changes in temperature and line voltage. Internal reference oscillator accuracy = + aging rate +3 x 10-10/°<br />

C + 3 x 10-10/1% change in line voltage. (Aging rate for the time base in the standard mainframe is 3 x 10- 8/day; for<br />

option 001 mainframes, 3 x 10-9/day.)<br />

_______________________________________<br />

4-<strong>11</strong>. FREQUENCY SWITCHING TIME<br />

NOTE<br />

If there is any reason to doubt the mainframe crystal oscillator<br />

accuracy or stability, refer to the performance test in Section IV of<br />

the mainframe manual.<br />

SPECIFICATION:<br />

6 ms to be within 50 Hz of any new frequency selected; 100 ms to be within 0.5 Hz of any new frequency selected.<br />

DESCRIPTION:<br />

A change in the Synthesized Signal Generator System's frequency is remotely programmed; after a preset time interval<br />

the frequency is measured. A trigger pulse from the programming device is first coupled to the oscilloscope. The pulse is<br />

delayed a preset interval by the oscilloscope and then coupled to the computing counter at which time the frequency is<br />

measured.<br />

NOTE<br />

The frequencies in this test were selected for worst-case<br />

conditions (longest switching time).<br />

4-3


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-<strong>11</strong>. FREQUENCY SWITCHING TIME (Cont’d)<br />

EQUIPMENT:<br />

PERFORMANCE TESTS<br />

Figure 4-2. Frequency Switching Time Test Setup<br />

DC Power Supply.......................................HP 721A<br />

Computing Counter....................................HP 5360A/5365A<br />

Marked Card Programmer .........................HP 3260A Opt 001<br />

Oscilloscope...............................................HP 180C/1801A/1821A<br />

Coaxial Tee................................................HP 1250-0781<br />

PROCEDURE:<br />

1. Connect the dc power supply +5 volt output through a 1000 ohm resistor to pin 17 of the mating connector for J3.<br />

Pin 17 (flag) of the Marked Card Programmer output connector is also connected to the oscilloscope ext trigger<br />

input.<br />

2. Connect the marked card programmer to mainframe rear panel connector J3.<br />

3. Connect oscilloscope delayed sweep output through a BNC TEE to oscilloscope channel A vertical input and to<br />

computing counter rear panel external time measurement input.<br />

4. Set counter controls as follows: rear panel switch to trigger; "B" channel to X1 sensitivity; module switch pressed;<br />

digits displayed for necessary resolution; measurement time to 1; counter gate time to 1 ms.<br />

5 Program the System for 29.999 999 MHz. Set the mainframe rear panel reference switch to external.<br />

6. Set oscilloscope controls as follows: trigger to ac slow; ext, negative slope, trigger level at about 9:00 o’clock;<br />

sweep mode auto; delay trigger auto; main sweep 1 ms; delay sweep 0.1 ps; main sweep mode.<br />

7. Set oscilloscope trace to start at left vertical graticule line. Use oscilloscope delay control to delay spike 5.5<br />

divisions from CRT left graticule line.<br />

8. Switch oscilloscope sweep mode from auto to normal.<br />

4-4


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-<strong>11</strong>. FREQUENCY SWITCHING TIME (Cont’d)<br />

PERFORMANCE TESTS<br />

9 Program the system for 30.000 000 MHz. Frequency displayed on computing counter should be 30 MHz + 50 Hz.<br />

Record the frequency.<br />

29.999950__________________30.000050 MHz<br />

10. Program the system for 29.999 999 MHz. Frequency displayed on counter should be within + 50 Hz of 29.999 999<br />

MHz.<br />

29.999949__________________30.000049 MHz<br />

<strong>11</strong>. Set Oscilloscope normal sweep for 10 ms and delay sweep to 1 us.<br />

12. Set Oscilloscope sweep mode to auto and delay control for delay spike 9.5 divisions from the CRT left graticule<br />

line.<br />

13. Set Oscilloscope main trigger to normal and computing counter gate time to 10 ms.<br />

14. Program the System for 30.000 000 MHz. Frequency displayed on computing counter should be within + 5 Hz or<br />

programmed frequency.<br />

29.999995__________________30.000005 MHz<br />

15. Program the System for 29.999 999 MHz. Frequency Displayed on computing counter should be within + 5 Hz of<br />

programmed frequency.<br />

29.999994___________________30.000004 MHz<br />

NOTE<br />

To reduce the effect of random errors, steps 5 through 10 and 13 through<br />

15 may be repeated several times (5 minimum). Record the average<br />

frequency.<br />

______________________________________________<br />

4-12. OUTPUT LEVEL SWITCHING TIME<br />

SPECIFICATION:<br />

In remote mode, any level change can be accomplished in less than 50 ms. Any change to another level on the same<br />

attenuator range can be accomplished in 5 ms.<br />

DESCRIPTION:<br />

The Synthesized Signal Generator System RF OUTPUT level (attenuation) is remotely programmed while the RF<br />

OUTPUT is detected and monitored by an oscilloscope. Because the oscilloscope is triggered by the programming<br />

device, the time needed to effect the level change may be measured directly on the oscilloscope CRT.<br />

4-5


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-12 OUTPUT LEVEL SWITCHING TIME (Cont’d)<br />

EQUIPMENT:<br />

PERFORMANCE TESTS<br />

Figure 4-3. Output Level Switching Time Test Setup<br />

Marked Card Programmer ...................................... HP 3260A Opt 001<br />

Oscilloscope............................................................ HP 180C/1801A/1821A<br />

Crystal Detector . .................................................... HP 8471A<br />

Power Supply.......................................................... HP 721A<br />

PROCEDURE:<br />

1. Connect equipment as illustrated in Figure 4-3. Note that + 5 volt output from DC Power Supply is connected<br />

through a 1000 ohm resistor to pin 17 of mating connector to J3 and to Oscilloscope external trigger input.<br />

2. Connect RF Section OUTPUT through crystal detector to oscilloscope Channel A input.<br />

3. Set Oscilloscope controls as follows: Main Time/Div, 5 ms; Vertical input, dc coupled, 0.2 V/Div; Normal Sweep;<br />

Ext Trigger, negative slope, AC slow Trigger level about 9:00 o’clock.<br />

4. Program the System’s center frequency for 500 MHz and 10 dB attenuation of the RF output signal. Reprogram<br />

for 19 dB attenuation. Switching time should be less than 5 ms. Record switching time.<br />

10 to 19 dB_______________________5 ms<br />

5. Program RF Section attenuation for 10 dB, then for 30 dB. Switching time should be less than 50 ms.<br />

4-6<br />

10 to 30 dB_______________________50 ms


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-12. OUTPUT LEVEL SWITCHING TIME (Cont’d)<br />

PERFORMANCE TESTS<br />

6. Repeat steps 4 and 5 with center frequency set to 1 MHz.<br />

_______________________________________________<br />

4-13A. OUTPUT ACCURACY<br />

SPECIFICATION: (for local and remote modes)<br />

+1.5 dB to -76 dBm; +2.0 dB to -146 dBm at meter readings between +3 and -6 dB.<br />

10 to 19 dB__________________________5 ms<br />

DESCRIPTION:<br />

The RF level accuracy for the +10 and 0 dBm ranges is measured with a power meter. For the lower ranges, an IF<br />

substitution measurement technique is used.<br />

RF level (attenuation) measurements using IF substitution is accomplished by 1) converting the RF output to a low<br />

frequency IF signal, 2) offsetting the decrease in RF level (increase in attenuation) by an equal decrease in IF attenuation.<br />

This maintains a fairly constant output level at the IF load. The intermediate frequency is selected on the basis of<br />

availability of a precision attenuator. Therefore, any variation in output level from an established reference is primarily due<br />

to the RF attenuator.<br />

4-7


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A. OUTPUT ACCURACY (Cont’d)<br />

EQUIPMENT:<br />

PERFORMANCE TESTS<br />

Figure 4-4A. Output Accuracy Test Setup<br />

Power Meter/Sensor ............................................... HP 435A/8481A<br />

Synthesized Signal Generator ............................... HP 8660C/86602B/86631B<br />

40 dB Attenuator..................................................... HP 8491A Option 040<br />

Mixer. ...................................................................... Watkins-Johnson M1J<br />

4 MHz Low Pass Filter............................................ CIRC-Q-TEL FLT/21B-<br />

4-3/50-3A/3B<br />

Coaxial Tee............................................................. 1250-0781 (BNC)<br />

50 Ohm Termination... ............................................ HP <strong>11</strong>593A<br />

40 dB Amplifier........................................................ (See Figure 1-2)<br />

Double Shielded Cables (5 required)...................... HP 08708-6033<br />

Capacitor, 100 #F ................................................... .HP 0180-2207<br />

Resistor, 100 k. ....................................................... HP 0698-7284<br />

Type N-to SMA Adaptor.......................................... OSM 21040<br />

SMA-to-OSM Right Angle Adapter ......................... OSM 219<br />

SMA-to-BNC Adapter (2) ........................................ OSM 2<strong>11</strong>90<br />

10 dB Step Attenuator............................................. HP 355D Option H38<br />

Wave Analyzer........................................................ HP 3581A<br />

4-8


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A. OUTPUT ACCURACY (Cont’d)<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

1. Set the System Under Test Controls for a center frequency of 1000.000000 MHz and an output level of +10 dBm.<br />

2. Set the power meter controls for the +15 dBm range.<br />

3. Connect the power sensor to the RF Section OUTPUT jack of the System Under Test.<br />

4. Set the RF Section controls as shown in the table below and verify that the RF output level is within the specified<br />

tolerance.<br />

Synthesized Signal Generator System<br />

OUTPUT RANGE<br />

Switch<br />

(dBm)<br />

Panel Meter<br />

Reading<br />

(dB)<br />

Power Reading<br />

Reading<br />

(dBm)<br />

+10 0 +8.5________+<strong>11</strong>.5<br />

+10 -3 +5.5________+ 8.5<br />

+10 -6 +2.5________+ 5.5<br />

0 -6 -7.5_________- 4.5<br />

0 -3 -4.5_________- 1.5<br />

0 0 -1.5_________+ 1.5<br />

0 +3 +1.5_________+ 4.5<br />

NOTE<br />

Be careful not to vary the RF Section ‘s VERNIER control setting<br />

throughout the rest of this procedure.<br />

5. Connect the 40 dB attenuator directly to the OUTPUT jack of the RF Section in place of the power sensor.<br />

6. Connect the “R” port of the mixer directly to the 40 dB attenuator using the Type N-to SMA adapter and the SMAto-OSM<br />

right angle adapter.<br />

7. Connect the 4 MHz Low Pass Filter to the “I” port of the mixer with a SMA-to-BNC adapter.<br />

8. Connect the cable from the Reference System output to the “L” port of the mixer with a SMA-to-BNC adapter.<br />

NOTE<br />

Be sure all connections are tight to prevent RF leakage.<br />

9. Set the reference system controls for a center frequency of 1000.0<strong>11</strong>000 and an output level of +7 dBm. Set the<br />

rear panel reference selector to external.<br />

10. Set the 10 dB Step Attenuator to 50 dB.<br />

4-9


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A. OUTPUT ACCURACY (Cont’d)<br />

PERFORMANCE TESTS<br />

<strong>11</strong>. Set the wave analyzer controls as follows: frequency <strong>11</strong> kHz, resolution bandwidth 3 Hz, sweep mode off, dBv/LIN<br />

- dBm 600:1 switch to dBv/LIN, amplitude reference level -40 dB, AFC switch unlock and scale 10 dB.<br />

12. Connect the other equipment which follows the 4 MHz Low Pass Filter as shown in Figure 4-4A.<br />

13. Tune the wave analyzer frequency control for the maximum meter reading. Adjust the input sensitivity and vernier<br />

controls for a midscale meter reading. Press the AFC control for frequency lock.<br />

14. Wait 30 seconds for the DVM reading to stabilize. Record the DVM reading. This is the reference level equivalent<br />

to the last power meter reading ( +3 dBm).<br />

15. Use the following formula to calculate the obsolute RF output level from the System Under Test:<br />

dBm = dBm1 -A dB +2(V-Vreff<br />

dBm is the RF output level<br />

dBm1 is the actual RF level measured at the +3 dBm (O dBm OUTPUT RANGE setting) in Step 4.<br />

A dB is the difference in 10 dB step attenuator setting.<br />

V is the DVM reading for each individual OUTPUT RANGE.<br />

Vref is the reference DVM reading.<br />

NOTE<br />

The wave analyzer recorder output sensitivity is 2dB/volt.<br />

16. Set the RF Section OUTPUT RANGE switch to -10 dBm; set the 10 dB step attenuator to the 40 dB. Wait 30<br />

seconds for the reading to stabilize. Record the DVM reading in the table following step 17. Calculate and record<br />

the RF level in the table.<br />

EXAMPLE:<br />

dBm = dBm1 --(ΔdB) +2 (V1 -Vref)<br />

dBm1 = 2.8 dBm<br />

ΔdB = 10 dB<br />

V1= 2.388 Vdc<br />

Vref = 2.433 Vdc (from step 14)<br />

dBm = 2.8 - (10) +2(2.388-2.433)<br />

= 2.8 -10 +2(-0.045)<br />

= -7.29 dBm<br />

4-10


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A. OUTPUT ACCURACY (Cont’d)<br />

PERFORMANCE TESTS<br />

17. Continue as in step 16,space to measure, record and calculate the DVM reading and RF level for each OUTPUT<br />

RANGE setting as shown in the following table.<br />

Absolute RF Output<br />

Output Range 10dB Step DVM Level (dBm)<br />

Switch Attenuator Reading<br />

(dB) (Vdc) Min. Actual Max.<br />

0 50 _________ + 1.5 __________ + 4.5<br />

- 10 40 _________ - 8.5 __________ - 5.5<br />

-20 30 _________ -18.5 __________ -15.5<br />

-40 10 _________ -38.5 __________ -35.5<br />

-50 0 _________ -48.5 __________ -45.5<br />

18. Set the 10 dB step attenuator to 50 dB.<br />

19. Remove the 40 dB attenuator and connect the mixer directly to the OUTPUT jack of the system under test.<br />

20. Increase the wave analyzer’s input sensitivity by 10 dB. If necessary,space adjust the input sensitivity vernier for a<br />

midscale meter reading.<br />

21. Transfer the last calculated RF output level on the preceding table to the first line on the following table. Wait 30<br />

seconds and record the new DVM reading (Vref).<br />

22. Use the formula and the new Vref level to calculate the RF level for each range shown in the following table.<br />

Absolute RF Output<br />

Output Range 10 dB Step DVM Level (dBm)<br />

Switch (dBm) Attenuator Reading<br />

(dB) (Vdc) Min. Actual Max.<br />

-50 50 ________ -48.5 ________ -45.5<br />

-60 40 ________ -58.5 ________ -55.5<br />

-70 30 ________ -68.5 ________ -65.5<br />

-80 20 ________ -79.0 ________ -75.0<br />

-90 10 ________ -89.0 ________ -85.0<br />

-100 0 ________ -99.0 ________ -95.0<br />

23. Set the wave analyzer’s AFC switch to unlock (OFF). Adjust the frequency control for the peak reading equal to<br />

the last recorded DVM reading on the previous table.<br />

24 Set the 10 dB step attenuator to 30 dB.<br />

4-<strong>11</strong>


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A. OUTPUT ACCURACY (Cont’d)<br />

PERFORMANCE TESTS<br />

25. Set the wave analyzer amplitude reference level to -60 dB. Increase the input sensitivity 10 dB.<br />

26 Transfer the last RF output level reading on the preceding table to the first line of the following table. After 30<br />

seconds record the new DVM reference on the first line of the following table.<br />

27. Measure, calculate,space and record the DVM reading and RF level for each OUTPUT RANGE Setting as shown<br />

in the following table. Due to the high noise levels evident on this test, there is appreciable deviation in the wave<br />

analyzer and DVM readings. Record the average reading.<br />

Absolute RF Output<br />

Output Range 10dB Step DVM Level (dBm)<br />

Switch (dBm) Attenuator Reading<br />

(dB) (Vdc) Min. Actual Max.<br />

-100 30 _______ -99.0 _________ -95.0<br />

-<strong>11</strong>0 20 _______ -109.0 _________ -105.0<br />

-120 10 _______ -<strong>11</strong>9.0 _________ -<strong>11</strong>5.0<br />

-130 0 _______ -129.0 _________ 125.0<br />

NOTE<br />

Output level accuracy may be checked at any frequency between 300<br />

and 2000 MHz using this procedure. This procedure may also be used at<br />

the frequency extremes if a well shielded mixer specified for the desired<br />

frequency range is used in place of the Watkins Johnson M1J.<br />

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE<br />

SPECIFICATION:<br />

+1.5 dB to -76 dBm; +2.0 dB to -146 dBm at meter readings between +3 and -6 dB.<br />

DESCRIPTION:<br />

The RF Level Accuracy for the +10 and 0 dBm ranges is measured with a power meter. A reference level is established<br />

and accuracy is checked from 0 dBm to -80 dBm by comparing the RF Section attenuation against a calibrated 10 dB step<br />

attenuator.<br />

NOTE<br />

This procedure checks all sections of the RF Section Attenuator<br />

separately. Also, the 10 dB, 20 dB, and 40 dB sections are checked in all<br />

possible combinations. The sum of the -70 dBm inaccuracy at -80 dBm<br />

shall not exceed +1.0 dB.<br />

4-12


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE (Cont’d)<br />

EQUIPMENT:<br />

Figure 4-4B. Output Accuracy Test Setup (Alternate Procedure)<br />

Spectrum Analyzer.................................................. HP 8555A/8552B/140T<br />

Power Meter/Sensor. .............................................. HP 435A/8481A<br />

10 dB Step Attenuator............................................. HP 355D Option H38<br />

20 dB Amplifier........................................................ HP 8447A<br />

PROCEDURE:<br />

1. Set the system controls for a frequency of 30 MHz and an output level of +10 dBm.<br />

2. Connect the power sensor to the RF Section’s OUTPUT jack.<br />

3. Set the RF Output Level as shown in the table below and verify that the level is within the specified tolerance.<br />

Synthesized Signal Generator System<br />

Output Range<br />

Switch<br />

(dBm)<br />

Panel Meter<br />

Reading<br />

(dB)<br />

Power Meter<br />

Reading<br />

(dBm)<br />

+10 0 +8.5_______+<strong>11</strong>.5<br />

+10 -3 +5.5_______+ 8.5<br />

+10 -6 +2.5_______+ 5.5<br />

0 -6 -7.5________-4.5<br />

0 -3 -4.5________-1.5<br />

0 0 -1.5________+1.5<br />

0 +3 +1.5________+4.5<br />

4-13


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE (Cont’d)<br />

NOTE<br />

Do not change the RF Section VERNIER Control Setting until this<br />

procedure is completed.<br />

4. Set the spectrum analyzer controls as follows: center frequency 30 MHz, frequency span per division 5 kHz,<br />

resolution bandwidth 3 kHz, input attenutation 10 dB, vertical sensitivity per division 2 dB and sweep time per<br />

division 5 ms.<br />

5. Set the 10 dB Step attenuator switch to the 80 dB range.<br />

6. Connect the equipment as shown in Figure 4-4B.<br />

7. Adjust the reference level range and vernier to extablish a reference level on the analyzer display.<br />

8. On the first line of the following table, record the power meter reading shown on the preceding table for the<br />

OUTPUT RANGE Setting of 0 dBm and the panel meter reading of +3 dB. This is the absolute RF level which<br />

corresponds to the display reference.<br />

9. Set the OUTPUT RANGE switch and the 10 dB step attenuator range switch settings as shown on each line of the<br />

following table. Record the display variation from the established reference.<br />

10. Calculate the RF level using the following formula:<br />

dBm = dBm1 - ΔAdB10 + ΔdB<br />

dBm is the RF output level<br />

dBm1 is the RF level measured at +3 dBm (0 dBm OUTPUT RANGE setting) in step 3.<br />

Δ dB10 is the change in 10 dB Step Attenuator level<br />

Δ dB is the variation from the established display reference for each OUTPUT RANGE setting.<br />

For example, results of the first step are:<br />

dBm1 =+2.8<br />

ΔA dB10 = 10<br />

ΔA dB= -0.2<br />

dBm = +2.8 dBm -10 dB +(-0.2) dB<br />

= -7.4 dBm<br />

4-14


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE (Cont’d)<br />

10 dB Step RF Output Level<br />

Output Range Attenuator (dBm)<br />

Switch (dBm) (dB) Min. Measured Max.<br />

0 80 + 1.5 ________ + 4.5<br />

-10 70 -8.5 ________ - 5.5<br />

-20 60 -18.5 ________ -15.5<br />

-30 50 -28.5 ________ -25.5<br />

-40 40 -38.5 ________ -35.5<br />

-50 30 -48.5 ________ -45.5<br />

-60 20 -58.5 ________ -55.5<br />

-70 10 -68.5 ________ -65.5<br />

-80 0 -79.0 ________ -75.0<br />

<strong>11</strong>. Subtract the two levels obtained for OUTPUT RANGES of -70 and -80 dBm. The level change should be 10 + 1<br />

dB.<br />

4-14. OUTPUT FLATNESS<br />

9 dB_________________________________<strong>11</strong> dB<br />

SPECIFICATION:<br />

Output level variation with frequency is less than +1.0 dB from 1-1300 MHz at front panel meter readings between +3 and -<br />

6 dB.<br />

DESCRIPTION:<br />

After an output level reference is established, power level measurements are made at various frequencies across the<br />

range of the Synthesized Signal Generator System. The Output levels must fall within the limits specified.<br />

EQUIPMENT:<br />

PROCEDURE:<br />

1. Zero the Power Meter.<br />

Power Meter/Sensor ............................................... HP 435A/8481A<br />

2. Set the system center frequency to 1000 MHz.<br />

3. Set the Power Meter range switch to 0 dBm; set the RF Section OUTPUT RANGE Switch and VERNIER Control<br />

for an output level of -1.0 dBm as read on the power meter.<br />

4-15


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-14. OUTPUT FLATNESS (Cont’d)<br />

PERFORMANCE TESTS<br />

4. Measure and record the power level indicated by the Power Meter at the following center frequencies: 1 MHz, 10<br />

MHz, 100 MHz, 200,space 400,space 600,space 800,space and 1299 MHz.<br />

4-15. HARMONIC SIGNALS<br />

1 MHz -2.0_______________0.0 dBm<br />

10 MHz -2.0_______________0.0 dBm<br />

100 MHz -2.0_______________0.0 dBm<br />

200 MHz -2.0_______________0.0 dBm<br />

400 MHz -2.0_______________0.0 dBm<br />

600 MHz -2.0_______________0.0 dBm<br />

800 MHz -2.0_______________0.0 dBm<br />

1299 MHz -2.0_______________0.0 dBm<br />

SPECIFICATION:<br />

All harmonically related signals are at least 30 dB below the desired output signal for output levels < +3 dBm. (25 dB down<br />

for output levels above +3 dBm.)<br />

DESCRIPTION:<br />

A spectrum analyzer is used to measure the relative levels of the second and third carrier harmonics with respect to the<br />

carrier fundamental at various center frequencies.<br />

EQUIPMENT:<br />

Spectrum Analyzer.................................................. HP 8555A/8552B/140T<br />

PROCEDURE:<br />

1. Set the system center frequency to 1299 MHz; set the RF Section OUTPUT RANGE switch and VERNIER control<br />

for an output level of +10 dBm.<br />

2. Connect the power meter/sensor to the system RF OUTPUT jack.<br />

3. Readjust the VERNIER control for a power meter reading of +10 dBm.<br />

4. Set the spectrum analyzer input attenuation to 30 dB. Connect the RF Section OUTPUT jack to the spectrum<br />

analyzer RF input.<br />

5. Set the other spectrum analyzer controls for convenient viewing of the carrier. Adjust the controls as necessary to<br />

view the second and third harmonics. Record the harmonic levels relative to the fundamental signal.<br />

Second Third<br />

1299 MHz >,space 25 dB down ______ ______<br />

4-16


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-15. HARMONIC SIGNALS (Cont’d)<br />

PERFORMANCE TESTS<br />

6. Repeat steps 1 through 5 at the other frequencies listed. Record the levels.<br />

Second Third<br />

1000 MHz>-25 dB down ______ ______<br />

500 MHz>25 dB down ______ ______<br />

100 MHz>25 dB down ______ ______<br />

10 MHz >25 dB down ______ ______<br />

7. Set the system center frequency to 100 MHz; set the RF Section OUTPUT RANGE switch to 0 dBm and the<br />

VERNIER control for a front panel meter reading of +3 dB. Record the harmonic levels.<br />

4-16 PULSE MODULATION RISETIME<br />

SPECIFICATION:<br />

50 nanoseconds.<br />

Second Third<br />

100 MHz >-30 dB down ______ ______<br />

DESCRIPTION:<br />

The external pulse generator output is coupled to the RF Section plug-in through the Model 86631B Auxiliary Section. The<br />

pulse modulated signal is detected and the rise time measured with an oscilloscope.<br />

4-17


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-16. PULSE MODULATION RISETIME (Cont’d)<br />

EQUIPMENT:<br />

PERFORMANCE TESTS<br />

Figure 4-5. Pulse Modulation Risetime Test Setup<br />

Pulse Generator...................................................... HP 8013A<br />

Oscilloscope............................................................ HP 180C/1801A/1821A<br />

Crystal Detector ...................................................... HP 423A<br />

Termination, 50Ω Feedthru..................................... HP <strong>11</strong>048C<br />

Band Pass Filter...................................................... HP 8430A PROCEDURE:<br />

1. Set System center frequency to 1200 MHz.<br />

2. Set the RF Section OUTPUT RANGE switch and VERNIER control for an output of +10 dBm.<br />

3. Set the Auxiliary Section external modulation switch to pulse; set pulse level control full cw.<br />

4. Adjust pulse generator output for -10 Vpk (into 50Q) with risetime


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-17. PULSE MODULATION ON/OFF RATIO<br />

SPECIFICATION:<br />

At least 40 dB<br />

PERFORMANCE TESTS<br />

DESCRIPTION:<br />

An HP Model 86631B Auxiliary Section is inserted in the left cavity of the mainframe. Inputs of -9.5Vdc (pulse-on) and 0<br />

Vdc (pulse-off) are input to the Auxiliary Section while the RF output of the system is monitored by a spectrum analyzer.<br />

The ratio of the pulse-off and pulse-on RF levels is the on/off ratio.<br />

EQUIPMENT:<br />

PROCEDURE:<br />

Spectrum Analyzer.................................................. HP 8555A/8552B/140T<br />

Power Supply.......................................................... HP 6215A<br />

1. Set System center frequency to 500 MHz, RF Section OUTPUT RANGE Switch and VERNIER control for an<br />

output level of +10 dBm, and Auxiliary Section external modulation switch to pulse.<br />

2. Set spectrum analyzer input attenuation to 30 dB; connect the RF Section OUTPUT to the analyzer RF input.<br />

3. Connect -9.5 Vdc from the power supply to the Auxiliary Section input.<br />

4. Adjust the analyzer controls for a CRT display of the carrier. Establish the reference by positioning the carrier<br />

peak on the top horizontal graticule line.<br />

5. Set the power supply output to 0.0 Vdc. Set the Pulse Level control fully clockwise. The signal displayed on<br />

Spectrum Analyzer should be >40 dB down with respect to the reference. Record the displayed level.<br />

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH<br />

SPECIFICATION:<br />

Depth: 0-90% for RF output level meter readings from +3 to -6 dB and only at +3 dBm and below. 3 dB<br />

Bandwidth: At center frequencies 10 MHz<br />

100 kHz from 0 - 30% AM<br />

60 kHz from 0 - 70% AM<br />

50 kHz from 0 --90% AM<br />

NOTE<br />

To check AM accuracy, refer to section IV of the appropriate modulation<br />

section Operating and Service manual.<br />

4-19<br />

40 dB down__________


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH (Cont’d)<br />

DESCRIPTION:<br />

The system Rf output is amplitude modulated. The signal is demodulated by a peak detector in a spectrum analyzer (the<br />

frequency span width is set to zero). The ac and dc components are measured with a voltmeter at the detector (vertical)<br />

output. First, the dc component is set to -283 mVdc plus a detector offset correction. Then, the ac component is<br />

measured. The AM level (%) is ½ (one half) the rms output.<br />

Because of the required measurement accuracy, the accuracy of the spectrum analyzer’s detector offset must be known to<br />

+2 mVdc. The offset voltage is calculated by measuring the change in the detector output for a change in the RF input<br />

and assuming a linear detector over the range of the levels used.<br />

EQUIPMENT:<br />

Figure 4-6. Amplitude Modulation Depth and 3 dB Bandwidth Test Setup<br />

Test Oscillator ......................................................... HP 651B<br />

AC Voltmeter........................................................... HP 403B<br />

10 dB Step Attenuator............................................. HP 3550 Option H38<br />

Spectrum Analyzer.................................................. HP 8555A/8552B/140T<br />

Digital Voltmeter ..................................................... HP 34740A/34702A<br />

Coaxial Tee (2 required) ......................................... HP 1250-0781<br />

Crystal Detector ...................................................... HP 423A<br />

Oscilloscope............................................................ HP 180C/1801A/1821A<br />

Resistor 1K ............................................................ HP 0757-0280<br />

4-20


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH (Cont’d)<br />

PROCEDURE:<br />

1. Connect the equipment as shown in Figure 4-6 (step 1).<br />

2. Set the synthesized signal generator controls as follows: center frequency 30 MHz, OUTPUT RANGE 10 dBm,<br />

VERNIER control for a panel meter reading of 0 dB, and AM off.<br />

3. Let the spectrum analyzer warm up for 1 hour to minimize drift of the spectrum analyzer detector output. Set 10<br />

dB step attenuator to 10 dB attenuation.<br />

4. Set the spectrum analyzer center frequency to 30 MHz, frequency span per division 5 MHz, resolution bandwidth<br />

300 kHz; input attenuation to 20 dB, and vertical sensitivity per division 10 dB. Adjust the center frequency control<br />

to center the display. Set the frequency span to zero and tune to peak the trace.<br />

NOTE<br />

Throughout this test, continually check that the signal is peaked for<br />

maximum deflection. Tune the center frequency control for maximum<br />

signal deflection.<br />

5. Set the vertical scale to linear and adjust the reference level vernier for a digital voltmeter reading of 200 mVdc.<br />

6. Set the 10 dB step attenuator to 0 dB and record the digital voltmeter reading.<br />

7. Set the 10 dB Step Attenuator to 20 dB and record the digital voltmeter reading.<br />

8. Calculate the offset voltage using the following formula:<br />

mVdc + 200a<br />

Voff =<br />

1-a<br />

Where Voff is the offset voltage in millivolts<br />

mVdc is the DVM reading in millivolts a is 3.16<br />

(step 5) or 0.316 (step 6).<br />

For example:<br />

mVdc = -687 in step 5<br />

-687 + 200 (3.16 )<br />

therefore Voff= = +25.5 mVdc<br />

1 -(3.16)<br />

_______________mVdc<br />

_______________mVdc<br />

9. Find the value of Voff for step 6. The difference between the two should be < 4 m Vdc. Use the average value of<br />

Voff.<br />

10. Set the 10 dB step Attenuator to 10 dB.<br />

4-21


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH (Cont’d)<br />

<strong>11</strong>. Set the system center frequency to 500 MHz, the modulation mode to AM, the modulation source to external, and<br />

a modulation level of 30% (0.3 Vrms input to an Auxiliary Section; 1.5 Vrms to a Modulation Section) at a 1 kHz<br />

rate.<br />

12. Set the spectrum analyzer center frequency control to 500 MHz, frequency span to zero, and peak the trace. Set<br />

the reference level vernier for a digital voltmeter reading of -283 mVdc + Voff. See Steps 8 and 9.<br />

13. Set the DVM controls to measure the peak detector’s ac component. The modulation level (%) is 1/2 (one-half)<br />

the DVM reading (Vrms). Record the reading for 30% AM.<br />

50 mVrms_______________________70 mVrms<br />

14. Set the modulation section (test oscillator) controls for 70% AM. Record the DVM reading.<br />

130 mVrms_____________________150 mVrms<br />

15. Set the modulation section (test oscillator) controls for 90% AM. Record the DVM reading<br />

170 mVrms_____________________190 mVrms<br />

16. Connect the crystal detector to the RF Section OUTPUT jack.<br />

17. Set the modulation section and test oscillator controls for an AM level of 30% (0.3 Vrms input to an auxiliary<br />

section; 1.5 Vrms to a modulation section) at a 5 kHz rate.<br />

18. Set the oscilloscope controls for a 5 division peak-to-peak display of the demodulated signal.<br />

19. Increase the test oscillator frequency to 100 kHz. The signal amplitude should be >3.5 divisions peak-to-peak.<br />

20. Install the 1500 Pf capacitor as shown in Figure 4-6.<br />

3.5 div. p-p_________________<br />

21. Repeat steps 17 through 19 with center frequency set to 9 MHz. Increase the test oscillator frequency from 5 to<br />

10 kHz. Record the signal amplitude.<br />

4-22<br />

3.5 div. p-p_________________


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-19. FREQUENCY MODULATION RATE AND DEVIATION<br />

SPECIFICATION:<br />

Rate: DC to 200 kHz with the 86632B or 86635A.<br />

20 Hz to 100 kHz with the 86633B.<br />

Maximum Deviation (Peak):<br />

200 kHz with the 86632B and 86635A.<br />

100 kHz with the 86633B.<br />

4-20. OUTPUT IMPEDANCE AND VSWR<br />

SPECIFICATION:<br />

NOTE<br />

To check the frequency modulation rate and deviation, refer to the<br />

performance test in Section IV of the applicable modulation section<br />

manual.<br />

Impedance: 50Ω<br />

VSWR:


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-20. OUTPUT IMPEDANCE AND VSWR (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Figure 4-7. Output Impedance Test Setup<br />

Directional Coupler ................................................. HP 778D Opt 12<br />

Adapter (Male Type N to GR 874) .......................... HP 1250-0847<br />

Adjustable Stub....................................................... General Radio 874-D50L<br />

Spectrum Analyzer ................................................. HP 8555/8552B/140T<br />

5052 Termination.................................................... HP <strong>11</strong>593A<br />

1. Set the Synthesized Signal Generator system center frequency to 500 MHz, the OUTPUT RANGE switch to +10<br />

dBm, and the VERNIER control for a panel meter reading of 0 dB.<br />

2. Set up the equipment as shown in Figure 4-7.<br />

3. Set the spectrum analyzer controls for a convenient display of the signal. Set the vertical sensitivity to 2 dB per<br />

division.<br />

4. Adjust the stub for a minimum indication on the spectrum analyzer display. Adjust the reference level range and<br />

vernier controls for a convenient reference level.<br />

5. Adjust the stub for a maximum indication on the display. The signal level increase should be


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-20. OUTPUT IMPEDANCE AND VSWR (Cont’d)<br />

PERFORMANCE TESTS<br />

9. Repeat steps 3 and 4. The signal level increase should be


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-21 SIGNAL-TO-PHASE NOISE RATIO (Cont’d)<br />

EQUIPMENT:<br />

PERFORMANCE TESTS<br />

Figure 4-8. Signal-to-Phase Nose Ratio Test Setup<br />

Synthesized Signal Generator System ................... HP 8660C/86602B/86631B<br />

Oscilloscope............................................................ HP 180C/1801A/1821A<br />

Coaxial Tee............................................................. HP 1250-0781 (BNC)<br />

Double Balanced Mixer........................................... Watkins-Johnson M1J<br />

AC Voltmeter........................................................... HP 403B<br />

40 dB Amplifier........................................................ (See Figure 1-2)<br />

15 kHz Low Pass Filter ........................................... (See Figure 1-3)<br />

502 Termination ...................................................... HP <strong>11</strong>593A<br />

PROCEDURE:<br />

1. Set the controls of the system under test as follows: center frequency 500.001000 MHz and the output level to -47<br />

dBm (OUTPUT RANGE switch set to -50 dBm).<br />

2. Set the controls of the reference system as follows: center frequency 500.000000 MHz and the output level to +7<br />

dBm.<br />

3. Connect the equipment as shown in Figure 4-8.<br />

4. Record the relative ac voltmeter reading.<br />

4-26<br />

_______________dB


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-21. SIGNAL-TO-PHASE NOISE RATIO (Cont’d)<br />

PERFORMANCE TESTS<br />

5. Set the system under test OUTPUT RANGE switch to -10 dBm (-7 dBm output level).<br />

6. Adjust the oscilloscope display of the 1 kHz signal for an amplitude of eight divisions. Set the oscilloscope vertical<br />

input to ground and adjust the vertical position control so the trace lies over the center horizontal line of the<br />

graticule. Set the vertical input to dc coupled.<br />

7. Set the system under test center frequency to 500.000001 MHz and note that oscilloscope baseline trace<br />

alternately rises and falls over eight-division display. (510.0001 MHz; Option 004).<br />

8. Reset the center frequency to 500.000000 MHz at a time that causes the oscilloscope baseline trace to stop within<br />

+ 1/10 division of the center horizontal line of the graticule.<br />

9. Read the noise level on the ac voltmeter. Signal-to-phase noise ratio equals the sum of the attenuator change<br />

and the reference system noise contribution minus the change in voltmeter reading (in dB). Signal-to-phase noise<br />

ratio = 40 dB +3 dB - (+A dB). For example, the voltmeter reading is 8 dB below the reference (-8 dB). Therefore,<br />

the signal-to-phase noise ratio = 40 + 3 - (-8) = 51 dB down.<br />

10. Record the ratio.<br />

4-22. SIGNAL-TO-AM NOISE RATIO<br />

45 dB down__________<br />

SPECIFICATION:<br />

Greater than 65 dB in a 30 kHz bandwidth centered on the carrier excluding a 1 Hz band centered on the carrier.<br />

DESCRIPTION:<br />

A comparison of ac voltage measurements proportional to carrier amplitude and AM noise yields the signal-to-AM noise<br />

ratio. First, a carrier reference level is determined by measuring the detected ac voltage for 30% AM (the detected signal<br />

is 10.5 dB below the carrier level). Then the AM noise level is measured and the signal-to-AM noise ratio is determined.<br />

4-27


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-22. SIGNAL-TO-AM NOISE RATIO (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Figure 4-9. Signal-to-AM Noise Test Setup<br />

10 dB Step Attenuator............................................. HP 355D Option H38<br />

40 dB Amplifier........................................................ Special (See figure 1-2)<br />

Crystal Detector ...................................................... HP 423A<br />

15 kHz Low Pass Filter ........................................... Special (See figure 1-3)<br />

Test Oscillator... ...................................................... HP 651B<br />

502 Termination ..................................................... HP <strong>11</strong>593A<br />

Coaxial Tee............................................................. HP 1250-0781<br />

AC Voltmeter........................................................... HP 403B<br />

1. Set the 10 dB step attenuator to 50 dB.<br />

2. Set the system center frequency to 500 MHz and the RF output level to +3 dBm (O dBm OUTPUT RANGE).<br />

3. Connect the equipment as shown in Figure 4-9.<br />

4. Set the system’s modulation section controls for the AM mode and an external modulation source. The<br />

modulation level control and/or the test oscillator controls are set for a modulation level of 30% (0.3 Vrms to an<br />

auxiliary section; 1.5 Vrms to a modulation section) at a 1 kHz rate.<br />

NOTE<br />

The ac voltmeter can be used to monitor the modulation or auxiliary<br />

section input voltage while it is being set.<br />

5. Record the ac voltmeter reading of the 40 dB amplifier output in dB.<br />

4-28<br />

______________dB


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-22. SIGNAL-TO-AM NOISE RATIO (Cont’d)<br />

6. Set the system’s modulation mode to off.<br />

7. Set the 10 dB step attenuator to 0 dB.<br />

8. Record the ac voltmeter reading.dB<br />

PERFORMANCE TESTS<br />

9. The signal-to-AM noise ratio is equal to the sum of the change in attenuation level and the level of the 30% AM<br />

level relative to the carrier minus the change in ac voltmeter reading in dB. Therefore, signal-to-AM noise ratio =<br />

50 dB + 10.5 dB - (+A dB). For example,space the ac voltmeter reading is 12 dB down (below) the reference<br />

level and the signal-to-AM noise ratio = 50 + 10.5 - (-12) or 72.5 dB down.<br />

10. Record the ratio.<br />

4-23. RESIDUAL FM<br />

SPECIFICATION:<br />

In the FM XO.1 MODE,


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-23. RESIDUAL FM (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Synthesized Signal Generator System ................... HP 8660C/86602B/86631B<br />

Coaxial Tee............................................................. HP 1250-0781 (BNC)<br />

FM Discriminator..................................................... HP 5210A<br />

50 Ohm Termination ............................................... HP <strong>11</strong>593A<br />

40 dB Amplifier (34 dB into 502 )............................ HP 465A<br />

AC Voltmeter........................................................... HP 403B<br />

Capacitor, 5 μF ....................................................... HP 0180-22<strong>11</strong><br />

Mixer ...................................................................... Watkins-Johnson M1J<br />

3 kHz Low Pass Filter ............................................. CIR-Q-TEL FLT/21B-3K-5/50-3A/3B<br />

Spectrum Analyzer.................................................. HP 8555A/8552B/140T<br />

1. Set the system under test center frequency to 1200.0 MHz, the output level to +10 dBm, the modulation mode to<br />

FM XO.1 modulation source to internal 1 kHz, and set the modulation level control for a meter reading of 2.4 kHzpeak.<br />

2. Set the spectrum analyzer controls for a center frequency of 1200 MHz, frequency span per division 2 kHz,<br />

resolution bandwidth 0.3 kHz, input attenuation 40 dB, vertical sensitivity per division 10 dB, and sweep time per<br />

division to 50 ms. Adjust the controls as necessary for a convenient display of the FM signal.<br />

3. Connect the System Under Test OUTPUT jack to the spectrum analyzer’s RF input jack as shown in Figure 4-10.<br />

4. Adjust the signal generator’s modulation level control to null the carrier (2.4048 kHz-pk).<br />

5. Set the Reference System center frequency to 1200.1 MHz, the RF output level to +10 dBm, and modulation off.<br />

6. Disconnect the spectrum analyzer from the System Under Test and connect the other equipment as shown in<br />

Figure 4-10.<br />

7. Set the FM discriminator controls to the 100 kHz range and the sensitivity to 0.01 Vrms (full scale). Install a 10<br />

kHz Butterworth Low Pass Filter in the discriminator output. (Refer to the FM discriminator’s operating and service<br />

manual).<br />

8. Adjust the FM discriminator’s sensitivity control for an ac voltmeter reading of 0.850 Vrms. (This ensures the<br />

sensitivity of the measurement is 2.00/vO/Hz-rms per millivolt-rms. The V2 factor accounts for the residual FM<br />

contributed by the reference system.)<br />

9. Set the System Under Test modulation source switch for external ac (leveled); set the modulation level control full<br />

clockwise.<br />

10. Press the CF CAL switch (Models 86632A and 86635A only) several times.<br />

<strong>11</strong>. Verify and record that the residual FM is less than 10 Hz-rms (less than 7.10 mVrms).<br />

4-30<br />

__________< 7.10 mVrms


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-24. AMPLITUDE MODULATION DISTORTION<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

AM distortion at 30% AM is < 1%, at 70% AM is < 3%, and at 90% AM is < 5%.<br />

NOTES<br />

1. The AM distortion specification applies only at 400 and 1000 Hz rates, with<br />

a front panel meter indication of 0 to +3 dB, and at OUTPUT RANGE switch<br />

settings of < 0 dBm. At a meter indication of -6 dB, the distortion<br />

approximately doubles. The modulating signal distortion must be < 0.3%<br />

for the system performance to meet the specifications.<br />

2. If the signal generator system does not meet the AM distortion<br />

specification, refer to the Systems Troubleshooting information in Section<br />

VIII (Service Sheet 1) in this manual.<br />

DESCRIPTION:<br />

To measure AM distortion, a distortion analyzer is connected to the video output of a spectrum analyzer. In the zero<br />

frequency-span mode, the video output of the spectrum analyzer is the detected RF signal. The signal generator system<br />

controls are set for a specific AM level and the distortion level is measured.<br />

EQUIPMENT:<br />

Figure 4-<strong>11</strong>. Amplitude Modulation Distortion Test Setup.<br />

Distortion Analyzer.................................... .HP 333A<br />

Spectrum Analyzer.................................... HP 8555A/8552B/140T<br />

Function Generator................................... HP 203A<br />

AC Voltmeter............................................. HP 403B<br />

4-31


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-24. AMPLITUDE MODULATION DISTORTION (Cont’d)<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

1. Set the signal generator system controls for a center frequency of 1000 MHz, the output level to -20 dBm<br />

(OUTPUT RANGE -20 dBm), and the modulation mode to off.<br />

2. Set the spectrum analyzer center frequency to 1000 MHz, frequency span per division 1 MHz, resolution<br />

bandwidth 300 kHz, input attenuation 20 dB, vertical sensitivity per division 10 dB and video filter to 10 kHz.<br />

3. Connect the equipment as shown in Figure 4-<strong>11</strong>.<br />

4. Set the spectrum analyzer’s tuning stabilizer to on. Adjust the center frequency fine tune to center the signal on<br />

the display. Set the reference switch and vernier to center the trace vertically.<br />

5. Set the frequency span per division to zero, and the vertical scale to linear. Peak the trace by adjusting the fine<br />

tune center frequency control. Center the trace vertically with the vertical sensitivity and vernier controls.<br />

6. Set the signal generator system’s modulation mode to AM, the source to external, and set the modulation level to<br />

30%. If a modulation section plug-in is installed in the Signal Generator mainframe, set the test oscillator controls<br />

to 1.5 Vrms at 1000 Hz. If an auxiliary section plug-in is installed, set the test oscillator controls to 0.3 Vrms at<br />

1000 Hz.<br />

7. Measure the total harmonic distortion. With the trace peaked on the display, the distortion should be less than 1%.<br />

8. Set the System modulation level to 70% AM. If the Auxiliary Section plug-in is being used, set the test oscillator to<br />

an output of 0.7 Vrms.<br />

9. Measure the total harmonic distortion. With the trace peaked on the display, the distortion should be less than 3%.<br />

10. Set the system modulation level to 90% AM.3%<br />

10. Set the system modulation level to 90% AM. If the Auxiliary Section plug-in is being used, set the test oscillator to<br />

an output of 0.9 Vrms.<br />

<strong>11</strong>. Measure the total harmonic distortion. With the trace peaked on the display, the distortion should be less than 5%.<br />

4-32<br />

1%<br />

3%<br />

5%


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-25. INCIDENTAL PHASE MODULATION<br />

SPECIFICATION:<br />

At 30% AM < 0.2 radians<br />

PERFORMANCE TESTS<br />

DESCRIPTION:<br />

The phase difference between the signal generators is monitored with a vector voltmeter. Amplitude modulation is applied<br />

to the system under test. The peak-to-peak phase variation incidental to the amplitude modulation is read on the vector<br />

voltmeter.<br />

EQUIPMENT:<br />

Figure 4-12. Incidental Phase Modulation Test Setup<br />

Synthesized Signal Generator ................. HP 8660C/86602B/86631B<br />

Function Generator .................................. HP 203A<br />

Vector Voltmeter (with 10:1 voltage<br />

divider probe) ....................................... HP 8405A<br />

AC Voltmeter............................................. HP 403B<br />

Mixer ......................................................... Watkins-Johnson M1J<br />

4-33


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-25. INCIDENTAL PHASE MODULATION (Cont’d)<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

1. Set the system under test rear panel reference selector to external, center frequency 500 MHz, output level -10<br />

dBm (OUTPUT RANGE -10 dBm) and AM mode to off.<br />

2. Set the reference system center frequency to 510 MHz and the output level to +7 dBm (OUTPUT RANGE +10<br />

dBm).<br />

3. Connect the equipment as shown in Figure 4-12.<br />

4. Adjust the vector voltmeter’s frequency range control to 10 MHz, phase range switch to +180, and the phase<br />

meter offset switch for a near or on scale phase reading (Phase reading will drift somewhat due to phase drift in<br />

the synthesized signal generator outputs).<br />

5. Set the system under test modulation mode to AM, the source to external, and the modulation level to 30%. Set<br />

the input level to 0.3 Vrms at 1 kHz if an auxiliary section is inserted into the mainframe of the system under test.<br />

If a modulation section is used, the input level should be 1.5 Vrms at 1 kHz. Use the external dc source if an<br />

86632B or 86633B Modulation Section is used.<br />

6. Set the function generator controls for a modulation rate of 0.5 Hz. (The low rate is necessary for the vector<br />

voltmeter’s metering circuitry. The modulation level is still 30%.)<br />

7. The phase reading will vary at a 0.5 Hz rate. If necessary, readjust the vector voltmeter’s phase meter offset<br />

switch for an on scale reading.<br />

8. Note the peak-to-peak phase variation caused by the 0.5 Hz AM. Visually disregard the random phase variations<br />

caused by phase drift in the synthesized signal generator outputs. Divide the reading by 2 to obtain the peak<br />

phase deviation. The phase deviation should be less than <strong>11</strong>.50 - peak (0.2 radians-peak)<br />

4-34<br />

<strong>11</strong>.5°-pk


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-26. FREQUENCY MODULATION DISTORTION<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

Total harmonic distortion for modulation rates up to 20 kHz, < 1% up to 200 kHz peak deviation. Distortion from an<br />

external source must be < 0.3% to meet these specifications.<br />

DESCRIPTION:<br />

NOTES<br />

1. In the FM mode, typical Residual FM in a 0.3 to 3 kHz audio bandwidth is<br />


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-26. FREQUENCY MODULATION DISTORTION (Cont’d)<br />

EQUIPMENT:<br />

Figure 4-13. Frequency Modulation Distortion Test Setup<br />

FM Discriminator....................................... HP 5210A<br />

Wave Analyzer.......................................... HP 3581A<br />

Function Generator................................... HP 203A<br />

NOTE<br />

This performance test is normally performed with either an HP model<br />

86632B or 86635A Modulation Section inserted into the signal generator<br />

mainframe. Control settings in parenthesis apply only to the Model<br />

86633B.<br />

1. Set the signal generator system center frequency to 8.5 MHz and set the OUTPUT RANGE switch to +10 dBm.<br />

Adjust the VERNIER control for a -3 dB meter reading.<br />

2. Connect equipment as illustrated in Figure 4-13.<br />

3. Set Modulation Section MODE to FM X10 (FM X1) and source switch to EXTERNAL AC. Adjust Modulation<br />

Section modulation level control for 200 kHz (100 kHz) peak deviation and press FM CF CAL switch.<br />

NOTE<br />

The 86633B does not have an FM CF CAL switch.<br />

4. Set the function generator output for 10 kHz at 1.5 Vrms.<br />

5. Install a 100 kHz low pass filter in the FM Discriminator. (Refer to the FM Discriminator Operating and Service<br />

Manual for details ).<br />

4-36


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-26. FREQUENCY MODULATION DISTORTION (Cont’d)<br />

6. Adjust the FM Discriminator for 1 volt rms input sensitivity. Set the controls for the 10 MHz range.<br />

7. Set the wave analyzer scale switch to 90 dB, reference level to normal, resolution bandwidth 30 Hz, sweep mode<br />

off, and AFC on.<br />

8. Peak the meter reading near 10 kHz with the frequency control. Verify that the AFC locks and the amplitude is ~-<br />

37 dBV (14.4 mVrms). Use the input sensitivity switch and vernier control and the amplitude reference level<br />

control to establish a reference level at 0 dB.<br />

9. Set the frequency to ~ 20 kHz (second harmonic) and peak the meter reading. Record the meter reading.<br />

10. Set the frequency to ~ 30 kHz (third harmonic) and peak the meter reading. Record the meter reading.<br />

<strong>11</strong>. Use Table 4-1 to obtain power ratios for the levels recorded in steps 8 and 9. Then use Table 4-1 to find the dB<br />

level corresponding to the sum of the ratios. The resultant level should be -> 40 dB down from the fundamental<br />

frequency level. Record the level.<br />

4-37<br />

dB<br />

dB<br />

40 dB down


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-26. FREQUENCY MODULATION DISTORTION (Cont’d)<br />

4-27. INCIDENTAL AM<br />

SPECIFICATION:<br />

Table 4-1. dB To Power Ratio Conversion<br />

AM sidebands > 60 dB down from carrier with FM peak deviation of 75 kHz at a 1 kHz rate.<br />

DESCRIPTION:<br />

A reference is established on the wave analyzer by detecting an AM signal of known modulation level and rate from the<br />

Synthesized Signal Generator System. The output is frequency modulated at a specified rate and level. The incidental<br />

AM level is detected during frequency modulation and compared to the carrier amplitude.<br />

4-38


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-27. INCIDENTAL AM (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Figure 4-14. Incidental AM Test Setup<br />

Wave Analyzer ......................................... HP 3581A<br />

Crystal Detector ........................................ HP 8471A<br />

15 kHz Low Pass Filter ............................. (See Figure 1-3)<br />

Resistor 10K .............................................. HP 0757-0442<br />

Capacitor 1500 p....................................... HP 0160-2222<br />

1. Set the signal generator system controls for a center frequency of 100 MHz, a +3 dBm output level, the amplitude<br />

modulation mode, an internal source at 1 kHz rate, and a modulation level of 50%.<br />

2. Connect the equipment together as shown in Figure 4-14.<br />

3. Set the wave analyzer controls for the 90 dB scale, AFC on, and resolution bandwidth 30 Hz. Tune the wave<br />

analyzer for a peak meter indication near 1 kHz. Set a reference level of 0 dB using the input sensitivity switch<br />

and the amplitude reference switch. This reference level (AM sidebands) is 12 dB down from carrier signal (50%<br />

AM).<br />

4. Set the system modulation section controls for FM mode, and a modulation level of 75 kHz peak deviation.<br />

5. The meter reading should be > 48 dB down (> 60 dB down from carrier).<br />

4-39<br />

60 dB down


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-28. SPURIOUS SIGNALS, NARROWBAND<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

All narrowband spurious signals in the CW, AM, and OM modes are:<br />

80 dB down from carrier at frequencies < 700 MHz<br />

80 dB down from carrier within 45 MHz of the carrier at frequencies >- 700 MHz<br />

50 dB down from carrier on the +10 dBm range.<br />

ALL power line related spurious signals are 70 dB down from the carrier.<br />

DESCRIPTION:<br />

The outputs of two Synthesized Signal Generator Systems which use the same time base reference are mixed and the<br />

difference frequency is amplified and coupled to the wave analyzer. A reference level is established, various selected<br />

frequencies are then set on the two generator systems, and the spurious signal levels are measured.<br />

EQUIPMENT:<br />

PROCEDURE:<br />

1. Connect the equipment as illustrated in Figure 4-15.<br />

Figure 4-15. Narrowband Spurious Signal Test Setup.<br />

Synthesized Signal Generator ................. HP 8660C/86602B/86631B<br />

Double Balanced Mixer............................. Watkins Johnson M1J<br />

Wave Analyzer ......................................... HP 3581A<br />

40 dB Amplifier.......................................... See Figure 1-2<br />

2. Connect rear panel REFERENCE OUTPUT from reference system to rear panel REFERENCE INPUT of system<br />

under test. Set REFERENCE SELECTOR of system under test to EXT.<br />

3. On reference system. set the mainframe center frequency to 500.001 MHz, the OUTPUT RANGE switch to +10<br />

dBm, and adjust VERNIER control to a -3 dB meter reading.<br />

4-40


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-28. SPURIOUS SIGNALS, NARROWBAND (Cont’d)<br />

PERFORMANCE TESTS<br />

4. On system under test, set mainframe center frequency to 500 MHz, the RF Section OUTPUT RANGE switch to -<br />

80 dBm, and adjust VERNIER control to 0 dB indication on meter scale.<br />

5. Set the wave analyzer scale switch to 90 dB, amplitude reference to -60, dBV mode, resolution band-width 3 Hz,<br />

display smoothing to max, and AFC on.<br />

6. Set wave analyzer frequency control to 1 kHz and adjust the input sensitivity for a 0 dB indication on meter scale.<br />

7. On system under test, set the OUTPUT RANGE switch to -10 dBm and adjust VERNIER to 0 dB indication on<br />

meter scale.<br />

8. On reference system and system under test, set mainframe center frequency values to those listed in Table 4-2<br />

and verify that levels of corresponding spurious signals are in accordance with specification. The corrected<br />

reading of spurious level relative to carrier is 70 dB - (+ difference level), therefore a reading of -13 dB relative to<br />

the reference level (step 6) gives the spurious signal level. 70 dB -(-13 dB) = 83 dB down.<br />

4-29. SPURIOUS SIGNALS, WIDEBAND<br />

SPECIFICATION:<br />

NOTE<br />

It may be necessary to slightly readjust the Wave Analyzer Frequency<br />

control to locate the spurious signal.<br />

Table 4-2. Narrowband Spurious Signals Checks<br />

System Under Test Reference System Level Measured<br />

(dBdown)<br />

100.280000 MHz 100.561000 MHz 80 dB<br />

200.280000 MHz 200.561000 MHz 80 dB<br />

409.720000 MHz 409.441000 MHz 80 dB<br />

509.720000 MHz 509.441000 MHz 80 dB<br />

<strong>11</strong>09.720000 MHz <strong>11</strong>09.441000 MHz 80 dB<br />

1209.720000 MHz 1209.441000 MHz 80 dB<br />

All wideband non-harmonically related spurious signals in the CW, AM, and OM modes are:<br />

80 dB down from carrier at frequencies < 700 MHz<br />

80 dB down from carrier > 45 MHz from carrier at frequencies > 700 MHz<br />

50 dB down from carrier on the +10 dBm range.<br />

4-41


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-29. SPURIOUS SIGNALS, WIDEBAND (Cont’d)<br />

DESCRIPTION:<br />

PERFORMANCE TESTS<br />

The RF OUTPUT of the Synthesized Signal Generator System is monitored by a spectrum analyzer after being passed<br />

through a 2200 MHz low pass filter. Selected signals which fall within the specified range are measured.<br />

EQUIPMENT:<br />

PROCEDURE:<br />

1. Connect equipment as illustrated in Figure 4-16.<br />

Figure 4-16. Wideband Spurious Signal Test Setup<br />

Spectrum Analyzer ................................... HP 8555A/8552B/140T<br />

Low Pass Filter (2200 MHz)...................... HP 360C<br />

2. With the RF Section OUTPUT RANGE switch set to +10 dBm and VERNIER control adjusted for 0 dB meter<br />

indication, set mainframe center frequency to those values listed in Table 4-3 and adjust the Spectrum Analyzer to<br />

measure corresponding spurious signal level relative to the carrier.<br />

Table 4-3. Wideband Spurious Signals Checks<br />

Mainframe Frequency Spurious Frequency Level Measured<br />

1299.9 MHz 150 MHz 50 dB down<br />

<strong>11</strong>50 MHz 50 dB down<br />

1450 MHz 50 dB down<br />

1000 MHz 950 MHz 50 dB down<br />

1050 MHz 50 dB down<br />

999.9 MHz 950 MHz 50 dB down<br />

1050 MHz 50 dB down<br />

800.0 MHz 750 MHz 50 dB down<br />

799.9 MHz 850 MHz 50 dB down<br />

4-42


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-30. PHASE MODULATION PEAK DEVIATION<br />

PERFORMANCE TESTS<br />

SPECIFICATION:<br />

0 to 100 degrees peak. May be overdriven to 2 radians (<strong>11</strong>50) in Modulation Section external dc mode.<br />

NOTE<br />

To check Phase Modulation peak deviation, refer to Section IV of the<br />

appropriate Modulation Section Operating and Service Manual.<br />

4-31A. PHASE MODULATION DISTORTION<br />

SPECIFICATION:<br />


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-31A. PHASE MODULATION DISTORTION (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Figure 4-17A. Phase Modulation Distortion Test Setup<br />

Vector Voltmeter ..................................................... HP 8405A<br />

Test Oscillator . ........................................................ HP 651B<br />

Distortion Analyzer ................................................. HP 333A<br />

50Ω Termination . ................................................... HP <strong>11</strong>593A<br />

Coaxial Tee............................................................. HP 1250-0781<br />

1. Set the Synthesized Signal Generator System controls for a center frequency of 10.000 000 MHz and an<br />

output level of +3 dBm (O dBm range).<br />

2. Set the test oscillator output to 1.5 Vrms at 20 Hz. Set the signal generator system’s modulation mode to off.<br />

3. Connect the instruments as shown in Figure 4-17A.<br />

4. Set the vector voltmeter’s phase range switch to +180 °. Set the meter offset switch for a phase meter reading<br />

of 0 +100.<br />

5. Set the modulation section controls for the OM mode and a modulation level of 1000 as indicated by the front<br />

panel meter.<br />

*In Figure 4-16A, the test oscillator output is 50 ohms when the modulation section is a Model 86634A and 600 ohms<br />

when used with a Model 86635A.<br />

4-44


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-31A. PHASE MODULATION DISTORTION (Cont’d)<br />

PERFORMANCE TESTS<br />

6. Measure the total harmonic distortion of the 20 Hz demodulated signal using the distortion analyzer. Distortion<br />

should be


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-6<br />

EQUIPMENT:<br />

PROCEDURE:<br />

PERFORMANCE TESTS<br />

Figure 4-17B. Phase Modulation Distortion Test Setup (Alternate Procedure)<br />

Synthesized Signal Generator ................. HP 8660C/86602B/86631B<br />

Test Oscillator........................................... HP 651B<br />

Mixer ......................................................... Watkins Johnson M1J<br />

Phase Modulation Test Set....................... HP 8660C-K10<br />

Spectrum Analyzer.................................... HP 8553B/8552B/140T<br />

Low Pass Filters (1 MHz 600Ω; 1, 5, and<br />

10 MHz --50Ω) .......................................... Specials (See Figure 1-4)<br />

1. Set the Test Oscillator to 1 MHz, connect a 1 MHz low pass filter (50 ohm for 86634A, 600 ohm for 86635A) to<br />

appropriate test oscillator output and adjust for 1.7 Vrms output. Connect the rest of the equipment as shown in<br />

Figure 4-17B.<br />

2. Set the system under test for 300 MHz center frequency and +3 dBm output (O dBm range). Connect the RF<br />

output jack directly to the RF input of the phase modulation test set.<br />

3. Set the system under test controls for OM with a modulation level of 1000 peak deviation.<br />

*In Figure 4-16B. the test oscillator output impedance and Low Pass Filter impedance is 50 ohms when the modulation<br />

section is a<br />

Model 86634A and 600 ohms with a Model 86635A.<br />

4-46


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

PERFORMANCE TESTS<br />

4-31B. PHASE MODULATION DISTORTION - ALTERNATE PROCEDURE (Cont’d)<br />

4. View the signal generator output on the spectrum analyzer display. Record the level of the second and third<br />

harmonics of the demodulated output signal with respect to the fundamental.<br />

5. Use Table 4-1 to obtain power ratios of the harmonics. Then use Table 4-1 to find the dB level corresponding to<br />

sum of the two ratios. The resultant level should be < 5% or >- 26 dB down.<br />

86634A 26 dB down<br />

86635A 26 dB down<br />

6. Set the center frequency of the system under test to 299.9 MHz.<br />

7. Set the test oscillator to 1 MHz (10 MHz), connect the 1 MHz (10 MHz) low pass filter to the appropriate oscillator<br />

output (50 or 600Ω) and adjust for an output of 1.7 Vrms.<br />

8. Repeat steps 3-5. Total harmonic distortion should be < 5% or > 26 dB down (< 15% or >- 16.5 dB down).<br />

86634A 16.5 dB down<br />

86635A 26 dB down<br />

9. Set the center frequency of the system under test to 1200 MHz. Connect the mixer and the reference system as<br />

shown in Figure 4-17B.<br />

10. Set the reference system center frequency to 900 MHz with an RF output level of +7 dBm.<br />

<strong>11</strong>. Increase the RF output level of the system under test (if necessary) until the Phase Modulation Test Set phase<br />

locks.<br />

12. Set the test oscillator frequency to 1 MHz (5 MHz). Connect the 1 MHz (5 MHz) low pass filter (50 or 600Ω) to the<br />

oscillator output. Adjust the test oscillator output level to 1.7 Vrms. Set the system under test modulation level to<br />

1000 peak deviation.<br />

13. Repeat steps 3-5. Total harmonic distortion should be < 5% or > 26 dB down (< 7% or >- 23.1 dB down).<br />

86634A 23.1 dB down<br />

86635A 26 dB down<br />

4-47


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

Table 4-4. Performance Test Record (1 of 6)<br />

4-9.<br />

4-<strong>11</strong>.<br />

4-12.<br />

4-48


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-13A.<br />

4-13B.<br />

Table 4-4. Performance Test Record (2 of 6)<br />

4-49


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-14.<br />

4-15.<br />

4-16.<br />

4-17.<br />

Table 4-4. Performance Test Record (3 of 6)<br />

4-50


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-18.<br />

4-20.<br />

4-21.<br />

4-22.<br />

4-23.<br />

Table 4-4. Performance Test Record (4 of 6)<br />

4-51


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-24.<br />

4-25.<br />

4-26.<br />

4-27.<br />

4-28.<br />

4-29.<br />

Table 4-4. Performance Test Record (5 of 6)<br />

4-52


Section 4 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

4-31A.<br />

4-31B.<br />

Table 4-4. Performance Test Record (6 of 6)<br />

4-53


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

5-1. INTRODUCTION<br />

5-2. This section contains adjustment procedure:<br />

required to assure peak performance of the Mode<br />

86602B RF Section. The RF Section should be adjusted<br />

after any repair or if the unit, in conjunction with the<br />

Frequency Extension Module, fails to meet the<br />

specifications listed in Section IV of this manual. Prior to<br />

making any adjustments, allow the RF Section warmup<br />

for 30minutes.<br />

5-3. The order in which some adjustments are made<br />

to the RF Section is critical. Perform the adjustments<br />

under the conditions presented in this section. Do not<br />

attempt to make adjustment randomly to the instrument.<br />

Prior to making any adjustments to the RF Section, refer<br />

to the paragraph entitled Related Adjustments.<br />

5-4. EQUIPMENT REQUIRED<br />

5-5. Each adjustment procedure in this section<br />

contains a list of test equipment and accessories:<br />

required to perform the adjustment. The test equipment<br />

is also identified by callouts in the test setup diagrams<br />

included with each procedure.<br />

5-6. If substitutions must be made for the specified<br />

test equipment, refer to Table 1-2 for the minimum<br />

specifications of the test equipment to be used in the<br />

adjustment procedures. Since the Synthesized Signal<br />

Generator System is extremely accurate, it is particularly<br />

important that the test equipment used in the adjustment<br />

procedure meets the critical specifications listed in the<br />

table<br />

5-7. The HP <strong>11</strong>672A Service Kit is an accessories<br />

item available from Hewlett-Packard for use it<br />

maintaining the RF Section. A detailed listing of the<br />

items contained in the service kit is provided in the<br />

<strong>11</strong>672A Operating Note and in Section I of the<br />

mainframe manuals. Any item in the kit may be ordered<br />

separately.<br />

5-8. SAFETY CONSIDERATIONS<br />

5-9. Although this instrument has been designed in<br />

accordance with international safety standards, this<br />

manual and the system mainframe manual contain<br />

SECTION V<br />

ADJUS<strong>TM</strong>ENTS<br />

5-1<br />

information, cautions, and warnings which must be<br />

followed to ensure safe operation and to retain the<br />

complete system in safe condition. Service adjustments<br />

should be performed only by qualified service personnel.<br />

NOTE<br />

Refer to the mainframe manual for safety<br />

information relating to ac line (Mains)<br />

voltage, fuses, protective earth grounding,<br />

etc.<br />

5-10. Any adjustment, maintenance, and repair of the<br />

opened instrument under voltage should be avoided as<br />

much as possible and, when inevitable, should be carried<br />

out only by a skilled person who is aware of the hazard<br />

involved.<br />

5-<strong>11</strong>. Capacitors inside the instrument may still be<br />

charged even if the instrument has been disconnected<br />

from its source of supply.<br />

WARNING<br />

Adjustments described herein are<br />

performed with power supplied to the<br />

instrument while protective covers are<br />

removed. Energy available at many<br />

points may constitute a shock hazard.<br />

5-12. FACTORY SELECTED COMPONENTS<br />

5-13. Factory selected components are identified on<br />

the schematics and parts list by an asterisk which follows<br />

the reference designator. The normal value of the<br />

components are shown. The manual change sheets will<br />

provide updated information pertaining to the selected<br />

components. Table 5-1 lists the reference designator,<br />

the criterion used for selecting a particular value, the<br />

normal value range, and the service sheet where the<br />

component part is shown.<br />

5-14. RELATED ADJUS<strong>TM</strong>ENTS<br />

5-15. The RF Output Level and 1 dB Step Attenuator<br />

Adjustments interact. The Amplitude Modulation Input<br />

Circuit Adjustment is dependent on


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

and should be performed after the previous mentioned<br />

adjustments. The Phase Modulation Level and<br />

Distortion Adjustment is affected by and should he<br />

performed after the Phase Modulator Driver Frequency<br />

Response Adjustment. All other adjustments are<br />

independent.<br />

5-16. If the RF Output Level Adjustment is performed,<br />

the 1 dB Step Attenuator Adjustment should follow<br />

immediately. Repeat these procedures until the RF<br />

levels are within the stated limits without further<br />

adjustment. Then perform the Amplitude Modulation<br />

Input Circuit Adjustment If the Phase Modulator Driver<br />

Frequency Response Adjustment is performed, the<br />

Phase Modulator Level and Distortion Adjustment should<br />

be performed.<br />

5-17. If the RF Output Level and 1 dB Steel Attenuator<br />

Adjustments are not performed, the Amplitude<br />

Modulation Input Circuit Adjustment may be considered<br />

independent. If the Phase Modulator Driver Frequency<br />

Response Adjustment is not performed, the Phase<br />

Modulation Level and Distortion Adjustment may be<br />

considered independent.<br />

5-18. ADJUS<strong>TM</strong>ENT LOCATIONS<br />

5-19. The last foldout in this manual contains table<br />

which cross-references pictorial and schematic locations<br />

of the adjustable controls. The figure accompanying the<br />

table shows the locations of adjustable controls,<br />

assemblies, and chassis-mounted parts.<br />

5-20. ADJUS<strong>TM</strong>ENTS<br />

5-21. Before performing the adjustment procedures (1)<br />

disconnect the mainframe (Mains) Power<br />

Cable, (2) remove the RF Section from the main-frame,<br />

and (3) remove the RF Section covers. At this point, the<br />

RF Section is either reinserted into the mainframe or<br />

connected to the mainframe with interconnection cables<br />

supplied in the Service Kit. If the RF Section is<br />

reinserted into the mainframe for adjustments, the<br />

mainframe top and/or right side covers must be<br />

removed. Refer to the left-hand foldout page<br />

immediately preceding the last foldout in this manual for<br />

procedures explaining how to remove the RF Section<br />

from the main-frame, the RF Section cover removal, and<br />

how to interconnect the RF Section and mainframe for<br />

adjustments.<br />

NOTE<br />

It may be necessary to remove the upper guide<br />

rail to gain access to some of the adjustable<br />

components.<br />

5-22. POST ADJUS<strong>TM</strong>ENT TESTS<br />

5-23. After adjustments are performed verify that the<br />

system performance is within the parameters specified<br />

for the RF Section and Frequency Extension Module.<br />

Perform the applicable performance test(s) found in<br />

Section IV.<br />

WARNING<br />

The multi-pin plug connector (on mainframe),<br />

which provides interconnection to<br />

the RF Section, will expose power supply<br />

voltages which may remain on the pins after<br />

the RF Section is removed and after the<br />

(Mains) power cable is disconnected from<br />

the mainframe. Be careful to avoid contact<br />

with the pins during interconnection with RF<br />

Section.<br />

Table 5-1. Factory Selected components<br />

Reference Selected For Normal Value Service<br />

Designator Range Sheet<br />

A4R17 Accurately sets the 10 dB difference in 237Ω 6<br />

the power output between OUTPUT<br />

RANGE switch settings of +10 and 0 dBm<br />

(the VERNIER control is not moved).<br />

A16R5 Sets the adjustment range of the Gain 10 to 316Ω 5<br />

Tracking Control A16R4. Refer to the<br />

Phase Modulator Driver Adjustments<br />

procedure.<br />

5-2


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

5-24. RF OUTPUT LEVEL ADJUS<strong>TM</strong>ENT<br />

REFERENCE:<br />

Service Sheet 6.<br />

DESCRIPTION:<br />

ADJUS<strong>TM</strong>ENTS<br />

The Meter and Detector Bias controls are adjusted alternately at specific RF Output levels until the VERNIER’S control of<br />

the RF Output is linear across the control range.<br />

EQUIPMENT:<br />

PROCEDURE:<br />

Figure 5-1. RF Output Level Adjustment Test Setup<br />

Power Meter/Sensor ............................................... .HP 435A/8481A<br />

NOTE<br />

Prior to performing the procedure, clean the meter face with antistatic glass cleaner.*<br />

1. Extract the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers. Insert<br />

the RF Section into the mainframe.<br />

2. Zero the external Power Meter.<br />

3. Interconnect the equipment as illustrated in Figure 5-1.<br />

4. Set the system’s center frequency to 1000 MHz and the RF Section’s OUTPUT RANGE switch to the 0 dBm<br />

position.<br />

5. Adjust the VERNIER control for a +3.0 dBm indication on the external Power Meter.<br />

6. Adjust MTR potentiometer A4R26 for a +3.0 dB indication on the front panel meter.<br />

7. Adjust the VERNIER control for a front panel meter indication of --6.0 dB.<br />

8. Adjust the BIAS potentiometer A4R13 for a -6.0 dBm indication on external Power Meter.<br />

9. Repeat steps 5 through 8 until the RF Section's front panel meter indicates power levels that are with-in ±0.3 dB of<br />

the external Power Meter indications with no further adjustment.<br />

*STATNUL by Weston Instrument Inc., Newark, New Jersey<br />

5-3


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

5-25. 1 dB STEP ATTENUATOR ADJUS<strong>TM</strong>ENT<br />

REFERENCE:<br />

Service Sheet 7.<br />

DESCRIPTION:<br />

ADJUS<strong>TM</strong>ENTS<br />

RF Level and RF Linearity controls are adjusted alternately at specific RF Output levels until the programmed 1 dB step<br />

control of RF Output is linear across the range (10 dB).<br />

EQUIPMENT:<br />

Figure 5-2. 1 dB Step Attenuator Adjustment Test Setup<br />

Marked Card Programmer ..................................... HP 3260A Opt 001<br />

Power Meter/Sensor .............................................. HP 435A/8481A<br />

PROCEDURE:<br />

1. Connect the equipment as illustrated in Figure 5-2.<br />

2. Zero the external Power Meter.<br />

3. Use a Marked Card Programmer to program the mainframe for a center frequency of 1000 MHz and the RF<br />

Section for an output power level of +3 dBm.<br />

4. Adjust the RF Section’s RF Level Control A10OR7 for a +3.0 dBm indication on the power meter.<br />

5. Use the Marked Card Programmer to program the RF Section for an output power level of -6 dBm.<br />

6. Adjust the Linearity control A3R4 for a -6.0 dBm indication on the power meter.<br />

7. Repeat steps 3 through 6 until the programmed output power levels are within ± 0.3 dB of the required power<br />

meter indication.<br />

8. Recheck the power meter readings for the RF Output Level Adjustments. If necessary, perform the adjustments<br />

again. Then check the power meter readings for this procedure. Alternately perform one procedure and check<br />

the power meter readings on the other until the RF levels are within tolerance without further adjustment.<br />

5-4


Section 5 <strong>TM</strong> 31-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

5-25. 1 dB STEP ATTENUATOR ADJUS<strong>TM</strong>ENT (Cont’d)<br />

ADJUS<strong>TM</strong>ENTS<br />

9. Perform the Amplitude Modulation Input Circuit Adjustments.<br />

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUS<strong>TM</strong>ENT<br />

REFERENCE:<br />

Service Sheet 7.<br />

DESCRIPTION:<br />

A specific modulation drive level is coupled to the RF Section. The RF output signal is demodulated by a peak detector in<br />

a spectrum analyzer (when the frequency-span width is set to zero). The ac and dc components are measured with a<br />

voltmeter at the detector (vertical) output. First, the dc component is set to 283 mVdc plus the detector offset correction.<br />

Then, the ac component is measured. The AM level (%) is 1/2 (one half) the rms output.<br />

Because of the required measurement accuracy, the accuracy of the spectrum analyzer’s detector offset must be known to<br />

±2m Vdc. The offset voltage is calculated by measuring the change in the detector output for a change in the RF input and<br />

assuming a linear detector over the range of the levels used.<br />

EQUIPMENT:<br />

Figure 5-3. Amplitude Modulation Input Circuit Adjustment Test Setup<br />

Test Oscillator ........................................................ HP 651B<br />

AC Voltmeter........................................................... HP 403B<br />

10 dB Step Attenuator ............................................ HP H38-355D<br />

Spectrum Analyzer ................................................. HP 8555A/8552B/140T<br />

Digital Voltmeter...................................................... HP 34740A/34702A<br />

Coaxial Tee (2 required) ......................................... HP 1250-0781<br />

Crystal Detector ...................................................... HP 423A<br />

Oscilloscope ........................................................... HP 180C/1801A/1821A<br />

Resistor, 1K . .......................................................... HP 0757-0280<br />

5-5


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

ADJUS<strong>TM</strong>ENTS<br />

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUS<strong>TM</strong>ENT (Cont’d)<br />

PROCEDURE:<br />

1. Remove the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers.<br />

Insert the RF Section into the mainframe.<br />

2. Connect the equipment as shown in Figure 5-3.<br />

3. Set the synthesized signal generator controls as follows: center frequency 30 MHz, OUTPUT RANGE 0 dBm.<br />

VERNIER control for a panel meter reading of +3 dB, and AM off.<br />

4. Let the spectrum analyzer warm up for 1 hour to minimize drift of the spectrum analyzer detector output. Set the<br />

10 dB step attenuator to 10 dB attenuation.<br />

5. Set the spectrum analyzer center frequency to 30 MHz, frequency span per division 5 MHz, resolution bandwidth<br />

300 kHz; input attenuation to 20 dB, and vertical sensitivity per division 10 dB. Adjust the center frequency<br />

control to center the display. Set the frequency span to zero and tune to peak the trace.<br />

NOTE<br />

Throughout this test, continually check that the signal is peaked for maximum deflection.<br />

Tune the center frequency control for maximum signal deflection.<br />

6. Set the vertical scale to linear and adjust the reference level vernier for a digital voltmeter reading of -200 mVdc.<br />

7. Set the 10 dB step attenuator to 0 dB and record the digital voltmeter reading.<br />

8. Set the 10 dB Step Attenuator to 20 dB and record the digital voltmeter reading.<br />

9.Calculate the offset voltage using the following formula:<br />

For example:<br />

V off = mVdc + 200a<br />

1- α<br />

Where Voff is the offset voltage in millivolts mVdc is<br />

the DVM reading in millivolts. α is 3.16 (step<br />

7) and 0.316 (step 8).<br />

mVdc = ⎯-687 in step 7<br />

Therefore Voff =⎯ 687+200(3.16) =+25.5 mVdc<br />

1 - (3.16)-+5 m<br />

10. Find the value of Voff for step 8. The difference between the two should be


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

ADJUS<strong>TM</strong>ENTS<br />

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUS<strong>TM</strong>ENT (Cont’d)<br />

<strong>11</strong>. Set the 10 dB step attenuator to 10 dB.<br />

12. Set the system center frequency to 1000 MHz, the modulation mode to AM, the modulation source to external, and<br />

a modulation level of 50% (0.5 Vrms input to an Auxiliary Section) at a 1 kHz rate.<br />

13. Set the spectrum analyzer center frequency control to 1000 MHz, and set the reference level vernier for digital<br />

voltmeter reading of ⎯ 283 mVdc + Voff. See Step 10.<br />

14. Set the DVM controls to measure the peak detector’s ac component. The modulation level (%) is 1/2 (one-half)<br />

the DVM reading (Vrms). Adjust the AM CAL Control A10R5 for a reading of 100 mVrms.<br />

15. Set the RF Section’s VERNIER control for a front panel meter reading of ⎯ -6 dB.<br />

16. Set the DVM to monitor the dc vertical output. Reset the DVM reading of ⎯283 mVdc + Voff.<br />

17. Set the DVM to monitor the ac vertical output. Adjust the AM Linearity control A10OR2 for a DVM reading of 100<br />

mVrms.<br />

18. Repeat steps 13 through 17 until the DVM reading is 100 ±2 mVrms at RF Section meter readings of +3 and -6 dB<br />

without further adjustment.<br />

5-27. PHASE MODULATOR DRIVER FREQUENCY RESPONSE ADJUS<strong>TM</strong>ENTS<br />

REFERENCE:<br />

Service Sheet 5.<br />

DESCRIPTION:<br />

The output of a sweep generator is connected to the A16 Phase Modulator Driver Assembly input while a spectrum<br />

analyzer monitors the system’s phase modulated RF output. The frequency response control is adjusted for maximum<br />

flatness to ±40 MHz and for minimum peaking at 80 MHz.<br />

Figure 5-4. Phase Modulator Driver Frequency Response Adjustment Test Setup<br />

5-7


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7<br />

ADJUS<strong>TM</strong>ENTS<br />

5-27. PHASE MODULATOR DRIVER FREQUENCY RESPONSE ADJUS<strong>TM</strong>ENTS (Cont’d)<br />

EQUIPMENT:<br />

Sweep Generator............................................................ HP 8601A<br />

Spectrum Analyzer.......................................................... HP 8555A/8552B/140T<br />

Digital Voltmeter ............................................................. HP 34740A/34702A<br />

PROCEDURE:<br />

1. Remove the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers and<br />

top guide rail.<br />

2. Remove cable W12 from the OM Input A16J1 and wrap the connector with insulating tape. Connect <strong>11</strong>672-60005<br />

(from the Service Kit) to A16J1. Route the BNC end of cable into the cavity and out through the top of the<br />

mainframe. Carefully reinstall the RF Section so as not to damage the cables.<br />

3. Set the sweep generator controls as follows: sweep range <strong>11</strong>0 MHz, frequency 100 MHz, output level -10 dBm,<br />

sweep video, sweep mode free-slow, and sweep vernier full clockwise.<br />

4. Connect the equipment as shown in Figure 5-4.<br />

5. Set the synthesized signal generator controls for a center frequency of 1.05 GHz and an output level of 0 dBm.<br />

6. Set the spectrum analyzer controls for center frequency of 1.05 GHz, frequency span per division 20 MHz,<br />

resolution bandwidth 300 kHz, input attenuation 30 dB, vertical sensitivity per division linear, and sweep time per<br />

division 2 ms.<br />

7. Center the RF Section’s Gain Tracking Adj control, A16R27.<br />

8. Set the Second Harmonic Adj control for +7.0 Vdc on A16TP2.<br />

9. Remove the DVM connection to A16TP2 before continuing.<br />

10. Set the Third Harmonic and Gain Adj controls (A16R1 and A16R2) to their full counter clockwise position.<br />

<strong>11</strong>. Adjust the sweep generator output level so the sidebands are approximately 34 dB below carrier level.<br />

12. Adjust the Frequency Response Control A16C7 for maximum flatness within 40 MHz of the carrier and for the<br />

minimum peaking at frequencies from 60 to 80 MHz.<br />

13. Disconnect sweep generator from the A16 Assembly and set signal generator LINE switch to STBY.<br />

14. Carefully remove the RF Section. Be careful not to damage the cables. Reconnect W12 to A16J1.<br />

5-28A. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS<br />

REFERENCE:<br />

Service Sheet 5.<br />

DESCRIPTION:<br />

The phase modulated signal from the synthesized signal generator is monitored by a spectrum analyzer and is adjusted to<br />

the modulation level indicated by the modulation level meter. The phase modulated signal is then mixed down, the<br />

difference frequency is connected to an FM discriminator, and the detected output is connected to the spectrum analyzer.<br />

The adjustments are set to minimize harmonic distortion. The modulation level and distortion adjustments are repeated<br />

until both are within the required accuracy.<br />

5-8


Section 5 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

ADJUS<strong>TM</strong>ENTS<br />

5-28 A. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS (Cont’d)<br />

EQUIPMENT:<br />

Figure 5-5A. Phase Modulation Level and Distortion Adjustment Test Setup<br />

Spectrum Analyzer...............................HP 8553B/8552B/140T<br />

Synthesized Signal Generator System ............HP 8660C/86603A/86631B<br />

Test Oscillator .....................................HP 651B<br />

FM Discriminator..................................HP 5210A<br />

Mixer, Doubler Balanced......................HP 10514A<br />

Low Pass Filters (100 kHz at 5012 or 6001 )....Special (See Figure 1-4)<br />

PROCEDURE:<br />

1. Extract the RF Section from mainframe. Remove the mainframe top cover, the RF Section covers, and the top<br />

guide rail. Insert the RF Section back into the mainframe.<br />

2. Connect the equipment as shown in Figure 5-5A. Connect the output of the System Under Test directly to the<br />

spectrum analyzer RF input. Be sure to use the correct impedance test oscillator output and the correct low pass<br />

filter.<br />

3. Set the test oscillator output to 100 kHz at 1.5 Vrms.<br />

4. Set the System Under Test center frequency to 100 MHz with a 0 dBm OUTPUT level.<br />

*In Figure 5-5A. the test oscillator output and low pass filter impedances are 50s when the modulation section being used<br />

is a Model 86634A<br />

and 60012 when used with an 86635A.<br />

5-9


Section 5<br />

ADJUS<strong>TM</strong>ENTS<br />

5-28A. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS (Cont’d)<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

5. Set the spectrum analyzer controls for a center frequency of 100 MHz, resolution bandwidth of 10 kHz, frequency<br />

span per division of 0.5 MHz, sweep time per division of 10 ms, input attenuation of 30 dB, vertical scale per<br />

division to 2 dB and adjust the reference level to a readable level.<br />

6. Set the Modulation Section controls for OM mode, external AC source, and a modulation level of exactly 82° as<br />

read on the front panel meter.<br />

7. Adjust A16R2 so the carrier and first sidebands are of equal amplitude.<br />

8. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz. Adjust A16R27 so the carrier and<br />

first sidebands are equal.<br />

9. Set the FM discriminator controls for the 10 MHz range and 0.1V sensitivity, and insert an internal 1 MHz lowpass<br />

filter.<br />

10. Set the spectrum analyzer controls for a center frequency of 100 kHz, resolution bandwidth to 3 kHz, frequency<br />

span per division to 100 kHz, input attenuation to 0 dB, log reference level to a convenient level, vertical<br />

sensitivity per division to 10 dB, and scan time per division to 20 ms.<br />

<strong>11</strong>. Set the Reference System controls for a center frequency of 109 MHz and an output level of +7 dBm.<br />

12. Set the System Under Test center frequency to 100 MHz; set the modulation level to 100° as read on the front<br />

panel meter.<br />

13. Refer to Figure 5-5 and connect the System Under Test OUTPUT to the "RF" input of the mixer. Connect the FM<br />

Discriminator output to the spectrum analyzer RF input.<br />

14. Adjust the spectrum analyzer's reference level control so the peak of the fundamental 100 kHz signal is viewed on<br />

the CRT display at the log reference graticule line.<br />

15. Adjust A16R36 to null the second harmonic level; adjust A16R1 to null the third harmonic level.<br />

NOTE<br />

Observing harmonic distortion of a OM signal after passing it through an FM discriminator<br />

results in an increase in level of 6 dB per octave. There- fore, the measured second<br />

harmonic level will be 6 dB higher and the third harmonic level 9.5 dB higher than with a<br />

phase demodulator.<br />

16. Step the System Under Test center frequency down 1 Hz. Note the direction and amount of readjustment of<br />

A16R36 and R1 necessary to null the second and third harmonics.<br />

17. Set A16R36 and R1 for the best compromise (minimum second and third harmonic levels) at both center<br />

frequency settings of 99.999999 and 100.000000 MHz.<br />

18. Set the System Under Test center frequency to 100 MHz; set the modulation level to 82 degrees as indicated on<br />

the Modulation Section meter.<br />

19. Reconnect the RF Section output directly to the spectrum analyzer input.<br />

5-10


Section 5<br />

ADJUS<strong>TM</strong>ENTS<br />

5-28A. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS (Cont’d)<br />

20. Adjust A16R2 for equal carrier and first sideband levels.<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

21. Step center frequency down 1 Hz to 99.999999 MHz and adjust A16R27 for equal amplitude carrier and first<br />

sidebands.<br />

22. Repeat steps 4 through 22 until all the conditions below are met without further adjustment.<br />

a. Carrier and first sidebands are equal within 0.5 dB when changing Center Frequency of System Under Test<br />

between 100 and 99.999999 MHz (Steps 7-8).<br />

b. Second harmonic levels are equal within 4 dB or >40 dB down from the fundamental as indicated by the<br />

spectrum analyzer at center frequencies of 100 an,, 99.999999 MHz (Step 17).<br />

c. Third harmonic levels are equal within 4 dB or >35 dB down from the fundamental as indicated by spectrum<br />

analyzer at center frequencies of 300 and 299.999999 MHz (Step 17).<br />

23. Replace the RF Section top guide rail and covers, and the mainframe cover.<br />

5-28B. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS - ALTERNATE PROCEDURE<br />

REFERENCE:<br />

Service Sheet 5.<br />

DESCRIPTION:<br />

The phase modulated signal from the synthesized signal generator is monitored by a spectrum analyzer and is adjusted to<br />

the modulation level indicated by the modulation level meter. The phase modulated signal is then mixed down, the<br />

difference frequency is connected to a phase demodulator, and the detected output is connected to the spectrum analyzer.<br />

The adjustments are set to minimize harmonic distortion. The modulation level and distortion adjustments are repeated<br />

until both are within the required accuracy.<br />

5-<strong>11</strong>


ADJUS<strong>TM</strong>ENTS<br />

5-28B. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS - ALTERNATE<br />

PROCEDURE (Cont’d)<br />

EQUIPMENT:<br />

PROCEDURE:<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 5-5B. Phase Modulation Level and Distortion Adjustment Test Setup (Alternate Procedure)<br />

Spectrum Analyzer ...........................HP 8553B/8552B/140T<br />

Test Oscillator...................................HP 651B<br />

Low Pass Filters (1 MHz at 500 or 6002) .....Special (See Figure 1-4)<br />

Phase Modulation Test Set...............HP 8660C-K10<br />

1. Extract the RF Section from mainframe. Remove the mainframe top cover, the RF Section covers, and the top guide<br />

rail. Insert the RF Section back into the mainframe.<br />

2. Connect the equipment as shown in Figure 5-5A. Connect the output of the System Under Test directly to the<br />

spectrum analyzer RF input. Be sure to use the correct impedance test oscillator output and the correct low pass<br />

filter.<br />

3. Set the test oscillator output to 100 kHz at 1.5 Vrms.<br />

4. Set the System Under Test center frequency to 100 MHz with a 0 dBm OUTPUT level.<br />

5. Set the spectrum analzer controls for a center frequency of 100 MHz, resolution bandwidth of 10 kHz, frequency span<br />

per division of 0.5 MHz, sweep time per division of 10 ms, input attenuation of 30 dB, vertical scale per division of 2 dB,<br />

and adjust the reference level to a readable level.<br />

6. Set the Modulation Section controls for OM mode, external AC source, and a modulation level of exactly 82° as read<br />

on the front panel meter.<br />

*In Figure 5-5B, the test oscillator output and low pass filter impedances are 50 ohms when the modulation section being<br />

used is a Model<br />

86634A and 600 ohm when used with an 86635A.<br />

5-12


Section 5<br />

ADJUS<strong>TM</strong>ENTS<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

5-28B. PHASE MODULATION LEVEL AND DISTORTION ADJUS<strong>TM</strong>ENTS - ALTERNATE PROCEDURE (Cont’d)<br />

7. Adjust A16R2 so the carrier and first sidebands are of equal amplitude.<br />

8. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz. Adjust A16R27 so the carrier and first<br />

sidebands are equal.<br />

9. Set the spectrum analyzer controls for a center frequency of 2 MHz, resolution bandwidth to 30 kHz, frequency span<br />

per division to 0.5 MHz, input attenuation to 30 dB, log reference level to a convenient level, vertical sensitivity per<br />

division to 10 dB, and scan time per division to 10 ms.<br />

10. Set the System Under Test center frequency to 300 MHz with a modulation level of 100° as read on the front panel<br />

meter.<br />

<strong>11</strong>. Connect the phase modulation test set between the signal generator output and the spectrum analyzer input as<br />

shown in Figure 5-5B.<br />

12. Adjust the spectrum analyzer's reference level so the peak of the fundamental 1 MHz signal is viewed on the CRT<br />

display at the log reference graticule line.<br />

13. Adjust A16R36 to null the second harmonic level; adjust A16R1 to null the third harmonic level.<br />

14. Step the System Under Test center frequency down 1 Hz. Note the direction and amount of readjustment of A16R36<br />

and R1 necessary to null the second and third harmonics.<br />

15. Set A16R36 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency<br />

settings of 299.999999 and 300 MHz*<br />

16. Set the System Under Test center frequency to 100 MHz; set the modulation level to 82° as indicated on the<br />

Modulation Section meter.<br />

17. Reconnect the RF Section output directly to the spectrum analyzer input.<br />

18. Adjust A16R2 for equal carrier and first sideband levels.<br />

19. Step the center frequency down 1 Hz to 99.999999 MHz and adjust A16R27 for equal amplitude carrier and first<br />

sidebands.<br />

20. Repeat steps 4 through 20 until all the conditions below are met without further adjustment.<br />

a. Carrier and first sidebands are equal within 0.5 dB when changing Center Frequency of System under<br />

Test between 100 and 99.999999 MHz (Steps 7-8).<br />

b. Second harmonic levels are equal within 4 dB or > 46 down from the fundamental. at center<br />

frequencies of 300 and 299.999999 MHz (Step 15).<br />

c. Third harmonic levels are equal within 4 dB or >46 dB down from the fundamental at center frequencies<br />

of 300 and 299.999999 MHz (Step 15).<br />

21. Replace the RF Section top guide rail and covers, and the mainframe cover.<br />

5-13


Section 6<br />

6-1. INTRODUCTION<br />

6-2. This section contains information for ordering parts.<br />

Table 6-1 lists abbreviations used in the par list and<br />

throughout the manual. Table 6-2 lists a replaceable<br />

parts in reference designation order Table 6-3 contains<br />

the names and addresses that correspond with the<br />

manufacturers’ code numbers<br />

6-3. EXCHANGE ASSEMBLIES<br />

6-4. The A13 Attenuator Assembly may be re placed on<br />

an exchange basis, thus affording a con siderable cost<br />

saving. Exchange, factory-repaired and tested<br />

assemblies are available only on a trade basis; therefore,<br />

the defective assemblies must be returned for credit.<br />

For this reason, assemblies required for spare parts<br />

stock must be ordered by the new assembly part<br />

number. The A13 assembly exchange part number is<br />

86601-60109.<br />

6-5. ABBREVIATIONS<br />

6-6. Table 6-1 lists abbreviations used in the part list,<br />

schematics and throughout the manual. I some cases,<br />

two forms of the abbreviation are used one all in capital<br />

letters, and one partial or n capitals. This occurs<br />

because the abbreviations i the parts list are always all<br />

capitals. However, in the schematics and other parts of<br />

the manual other abbreviation forms are used with both<br />

lower case and upper case letters.<br />

6-7. REPLACEABLE PARTS LIST<br />

6-8. Table 6-2 is the list of replaceable parts and in<br />

organized as follows:<br />

a. Electrical assemblies and their components in<br />

alpha-numerical order by reference designation.<br />

b. Chassis-mounted parts in alpha-numerical order<br />

by reference designation.<br />

c. Miscellaneous parts.<br />

The information given for each part consists of the<br />

following:<br />

a. The Hewlett-Packard part number.<br />

SECTION VI<br />

REPLACEABLE PARTS<br />

(Next printed page is 6-3)<br />

6-1<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

b. The total quantity (Qty) used in the instrument.<br />

c. The description of the part.<br />

d. A typical manufacturer of the part in a five-digit<br />

code.<br />

e The manufacturer’s number for the part.<br />

The total quantity for each part is given only at the first<br />

appearance of the part number in the list.


Section 6<br />

Table 6-1. Reference Designations and Abbreviations (1 of 2)<br />

6-3<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Section 6<br />

Table 6-1. Reference Designations and Abbreviations (1 of 2)<br />

6-4<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14&P-7


Section 6<br />

Reference<br />

Designatio<br />

n<br />

HP Part<br />

Number<br />

See TABLE 6-4, Parts to National Stock Number Cross Reference<br />

Table 6-2. Replaceable Parts<br />

Qty Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A1 86602-60002 1 MODULATOR FILTER ASSY 28480 86602-60002<br />

A1C1 0160-3874 1 CAPACITOR-FXD 1OPf: +-.PF 200WVDC CER 28480 060-3874<br />

AJ<strong>11</strong> 0360-1514 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1514<br />

A1J2 0360-1514 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 9360-1514<br />

A1L1 9140-0158 2 COIL-FXD MOLDED RF CHOKE IUH 10 24226 O/10<strong>11</strong>01<br />

A1L2 9140-0158 COIL-FXD MOLDED RF CHOKE IUH l10 24226 10/101<br />

A1L3 9100-2247 1 COIL-FXD MOLDED RF CHOKELUH 10 24226 10D100<br />

A1P1 1251-3172 5 CONNECTOR;1-CONT SKT .03 DIA 00779 2-331677-9<br />

A1P2 1251-3172 CONNECTOR;1-CONT SKT .03 DIA 00779 2-331677-9<br />

A1P3 1251-3172 CONNECTOR 1-CONT SKT .03 DIA 00779 2-331677-9<br />

A1P4 1251-3<strong>11</strong>2 CONNECTOR;1-CONT SKT .03 DIA 00779 2-331677-9<br />

A1P5 1251--3172 CONNECTOR;1-CONT SKT .03 DIA 00779 2-3316177-9<br />

A2 86603-60001 1 ALC MOTHER BCARD ASSY 28480 86603-60001<br />

A2C1 0160-2204 2 CAPACITOP-FXD 100IPF-51 300WVOC MICA 28480 0160-2204<br />

A2C2 060-3457 1 CAPACITOR-FXC 2000PF +-10T 250WVDC CER 28480 0160-3457<br />

A2J1 1250-1255 1 CONNECTOR-RF SMB M PC 98291 SL-O51-0000<br />

A2K1 0490-0916 3 RELAY-REED 1A .56 50V CONT 5V-COIL 28480 0490-0916<br />

A201 1854-0404 5 TRANSISTOR NPN SI TO-18 P09360MW 28480 1854-0404<br />

A2R1 069-0084 1 RESISTOR 2.15K 1t .125W F TC-0-100 16299 C4-1/8-TO-2151-F<br />

A282 0757-1060 1 RESISTOR 196 IT .5w F TC=0-10O 19701 MFTCI/2-TO0196R-F<br />

A2R3 0757-0441 1 RESISTOR 8.25K It .125w F TC-0-100 24546 C4-1/8-TD-8251-F<br />

A2R4 0698-3405 1 RESISTOR 422 1 .5W F TC-0+-100 19701 MFTC/2-TO-422R-F<br />

A205 0757-0438 10 RESISTOR 5.<strong>11</strong>K T .125w F TC-0--100 24546 C4-1/8-TO -5<strong>11</strong>1-F<br />

A209 0757-0276 1 RESISTOR 61.9 <strong>11</strong> .125w F TC-0-100 24546 C4-1/8-TD-6192-F<br />

A2Vet 1902-3139 1 DIODE-ZNR 8.25V 5% DO-7 PD0.4w TC-a.0531 04713 S2 10939-158<br />

A2XA3 1251-1626 3 CONNECTOR-PC EDGE 12-CONT/ROw 2-ROWS 71785 252-12-30-300<br />

A2XA4 1251-1626 CONNECTOR-PC EDGE l2-CONT/ROW 2-ROWS 71785 252-12-30-300<br />

A2XA16 1251-1626 CONNECTOR-PC EDGE I2-CONTIROW 2-ROWS 71785 252-12-30-300<br />

A2 MISCELLANEOUS<br />

0360-1514 6 TERMINAL-STUD SOL-PIN PRESS-ITG 28480 0360-1514<br />

A3 8660260040 1 ALC AMNPLIFIER ASSY 28480 86602-60040<br />

A3C1 3180-tOS8 2 CAPACITOR-FXO 50UFa75-10t 25¥DC AL 56289 300506G025CC2<br />

A3C2 0180-0058 CAPACITOR-FXD 50UF+75T10t 25VDC AL 56289 300506G025CC2<br />

A3C3 0140-0193 1 CAPACITOR-FXD 82PF a-51 300WVDC MICA 04522 DM15E820J0300WV1CR<br />

A3C4 0160-2199 2 CAPACITOR-FXO 30PF t51300WVDC MICA 28480 0160-2199<br />

AI3CS 0160-2199 1 CAPACITOR-FXO300PF +-51 300WVDC MICA 28480 0160-2199<br />

A3C6 0160-0302 1 CAPACITOR-FXD.018UF +-10% 200WVDC POLYE 56289 292P18392<br />

63C7 0160-3468 1 CAPACITOR-FXDZ2UF +1.03 BOWVOC POLYE 56289 292P1249"8<br />

A3C8 0160-2204 CAPACITOR-FXC 100PF a-51 300WVOC MICA 28480 0160-2204<br />

A3C9 0160-2238 1 CAPACITOR-FXD1.5PF +.25PF 500WVDC CER 28480 0160-2238<br />

A3CR1 1901-0047 3 DIODE-SWITCHING 20V 75MA IONS 28480 1901-0047<br />

A3CR2 1901-0047 DIODE-SWITCHING 20V 75MA IONS 28480 1901-0047<br />

A3CR3 1901-0047 DIODE-SWITCHING 20V 75MA IONS 28480 1901-0047<br />

A3CR4 1901-0050 2 DIODE-SWITCHING8OV 2OONA 2NS 00-7 28480 1901-0050<br />

A3K1 0490-0916 RELAY-REED IA .56 50V CONT 5V-COIL 2R480 0490-0916<br />

A3L1 91402--0237 4 COIL-FOE MOLDED RF CHOKE 0ZO0UH 51 24226 151203<br />

A3L2 9140-0237 COIL-FXD MOLDED RF CHOKE 200UH S51 24226 15/203<br />

A313 9140-0105 1 COIL-FXD MOLDED RF CHOKE 8.2UH 10 24226 151821<br />

A301 1853-0020 3 TRANSISTOR PNP SI PD-300MW FT-I1SOMHZ 28480 1853-0020<br />

A302 1854-0404 TRANSISTOR NPN SI TO-18 PD-36OMW 20480 1854-0404<br />

A303 1855-0020 1 TRANSISTOR J-FET N-CHAN D-MODE0-18 SI 28480 1805-0020<br />

A304 1853-0034 5 TRANSISTOR PNP SI T-18 P9036ONW 28480 1853-0034<br />

A305 18S3-0020 TRANSISTOR PNP SI PD-300RW FT-1SOMHZ 28480 1853-0020<br />

A306 1853-0034 TRANSISTOR PNP SI TO-is PD0360AW 28480 1853-0034<br />

A307 1854-0404 TRANSISTOR NPN S1 70-8 PD-360MW 28480 1854-0404<br />

6308 1854-0404 TRANSISTOR NPN SI T0-18 PD0360MW 28490 1R54-0404<br />

A309 1853-0034 TRANSISTOR PNP SI TO-l8 PD9360MW 28480 1853-0034<br />

A3010 1854-0221 2 TRANSISTOR-DUAL NPPO-T950MW 28480 1854-0221<br />

A3Q<strong>11</strong> 1854-0053 1 TRANSISTOR NPN 2N2218 SI TI-5 P0=800Mw 04713 2N2218<br />

See Introduction to this section for ordering information<br />

6-5


Section 6<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Qty<br />

Table 6-2. Replaceable Parts<br />

Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A4R16 0698-0083 RESISTOR 1.96K 1% .125W F TO-04-100 16299 C4-1/8-TO-1961-F<br />

A4R17* 0689-3442 1 RESISTOR 237 1% .125 F TO-0+-100 16299 C4-1/8-TO-237R-F<br />

A4R18 0757-0280 *FACTORY SELECTED PART 24546 C4-1/8-TO-1001-F<br />

A4R19 0698-3447 2 RESISTOR 1K 1% .125W F TO+-100 16299 C4-1/8-TO-422R-F<br />

A4R20 0698-0082 2 RESISTOR 422 1%.125W F TO +-100 16299 C4-1/8-TO 4640-F<br />

A4R21 0698-3447 1 RESISTOR 464 1% .125W F TO +-100 16299 C4-1/8-TO-422R-F<br />

A4R22 0698-3157 1 RESISTOR 422 1% .125W F TO +-100 16299 C4-1/8-TO-1962-F<br />

A4R23 0698-3455 1 RESISTOR 19.6K 1% .125W F TO +-100 16299 C4-1/8-TO-2613-F<br />

A4R24 0757-0439 RESISTOR 261K 1% .125W F TO +-100 24546 C4-1/8-TO-68<strong>11</strong>-F<br />

A4R25 0698-0082 1 RESISTOR 6.81K 1% .125W F TO+-100 16299 C4-1/8-TO-4640-F<br />

A4R26 2100-2489 1 RESISTOR 19701 ET50X02<br />

A451 3101-0973 1 SWITCH-SL DPDT-NS MINTR .5A 125VAC/DC PC 79727 GF126-0018<br />

A4TP1 0360-1514 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1514<br />

A4TP12 0360-1514 TERMINAL-STUD SGL-PIN PRESS MTG 28480 0360-1514<br />

A4U1 1826-0013 1 IC DP AMP 28480 1826-0013<br />

A4 MISCELLANEOUS<br />

4040-0748 EXTRACTOR -PC BD BLK POLYC .062-BD-THNKS 28480 4040-0748<br />

1480-0073 4 PIN:DRIVE 0.25”LG 00000 OBD<br />

4040-0751 1 EXTRACTOR-PC BD ORN POLYC 0.62-BD-THNKS 28480 4040-0751<br />

1480-0073 PIN:DRIVE 0.25”LG 00000 OBD<br />

A5 5086-7049 1 MODULATOR ASSY 28480 5086-7049<br />

A5J1 NSR<br />

A5J2 NSR<br />

A5J3 NSR<br />

A5J4 NSR<br />

A5J5 NSR<br />

A5J6 NSR<br />

A6 5086-7048 1 AMPLIFIER DETECTOR ASSEMBLY 28480 5086-7048<br />

A6J1 NSR<br />

A6J2 NSR<br />

A6J3 NSR<br />

A6J4 NSR<br />

A6J5 NSR<br />

A6J6 NSR<br />

A7 86602-60044 1 MIXER ASSY (EXCEPT OPTION 002) 28480 86602-60044<br />

A7J1 86601-20022 3 CONNECT, BULKHEAD 28480 86602-20022<br />

A7J2 86602-20022 CONNECT, BULKHEAD 28480 86602-20022<br />

A7J3 86602-20022 CONNECT, BULKHEAD 28480 86602-20022<br />

A7 MISCELLANEOUS 28480<br />

0360-0124 3 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-0124<br />

5001-002 1 COVER, FILTER 28480 5001-0002<br />

86602-00003 1 COVER,MIXER,SMALL 28480 86602-00003<br />

86602-20026 1 BUSHING 28480 86602-20026<br />

86602-20029 1 SUPPRESSOR 28480 86602-20029<br />

86603-00005 1 COVER,MIXER,LARGE 28480 86603-00005<br />

86603-20024 1 HOUSING, MIXER 28480 86603-20024<br />

A7A1 86602-20009 1 BALUN MIXER ASSY 28480 86602-20009<br />

A7A2 86602-60008 1 BALANCE MIXER ASSY 28480 86602-60008<br />

A7A2CR1 5080-0271 1 DIODE, SILICON, MATCHED QUAD 28480 5080-0271<br />

A7A3 5086-7066 1 LOW PASS FILTER ASSY, 1.45GHZ 28480 5086-7066<br />

A7A4 86603-20023 1 TRANSISTOR ASSY 28480 86603-20023<br />

A7A5 86602-20044 1 TRANSISTOR ASSY 28480 86602-20044<br />

See introduction to this section for ordering information<br />

6-6


Reference<br />

Designation<br />

HP Part<br />

Number<br />

Qty<br />

Table 6-2. Replaceable Parts<br />

Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A7 86603-60023 1 MIXER ASSY (OPTION 002 ONLY) 28480 86603-60023<br />

A7 C1 0160-4082 1 CAPACITOR-FXD 1000PF +-20% 200WVDC CER 28480 0160-4082<br />

A7 J1 86602-20022 3 CONNECTOR, BULKHEAD 28480 86602-20022<br />

A7 J2 86602-20022 CONNECTOR, BULKHEAD 28480 86602-20022<br />

A7 J3 86602-20022 CONNECTOR, BULKHEAD 28480 86602-20022<br />

A7 L1 9100-1666 1 COIL-FXD MOLDED RF CHOKE 3.6MH 5% 24226 22/364<br />

A7 MISCELLANEOUS 83330<br />

0340-0044 1 TERMINAL-STUD DBL-TUR PRESS MTG 28480 92-1500<br />

0360-0124 1 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-0124<br />

5001-0002 1 COVER, FILTER 28480 5001-0002<br />

86602-00003 1 COVER, MIXER, SMALL 28480 86602-00003<br />

86602-20026 1 BUSHING 28480 86602-20026<br />

86602-20029 1 SUPPRESSOR 28480 86602-20029<br />

86603-00005 1 COVER, MIXER, LARGE 28480 86603-00005<br />

86603-20024 1 HOUSING, MIXER 28480 86603-20024<br />

A7A1 86603-20009 1 BALUN MIXER ASSY 28480 86603-20009<br />

A7A2 86603-60008 1 BALANCE MIXER ASSY 28480 86602-60008<br />

A7A2CR1 5080-0271 1 DIODE SILICON , MATCHED QUAD 28480 5080-0271<br />

A7A3 5086-7066 1 LOW PASS FILTER ASSY, 1.45 GHZ 28480 5086-7066<br />

A7A4 86603-20023 1 TRANSISTOR ASSY 28480 86603-20023<br />

A7A5 86603-60010 1 LOW PASS FILTER ASSY, 50 MHz (OPT 002 ONLY) 28480 86603-60010<br />

A7A5 C1 0160-4303 2 CAPACITOR-FXD .027UF +-10% 50WVDC CER 26654 38X050S273K<br />

A7A5 C2 0160-4305 2 CAPACITOR-FXD 47PF +-10% 100WVDC CER 28480 0160-4305<br />

A7A5 C3 0160-4308 1 CAPACITOR-FXD 33PF +-10% 100WVDC CER 26654 2BN100S330K<br />

A7A5 C4 0160-4247 CAPACITOR-FXD .047 UF +-10% 100WVDC CER 28480 0160-4247<br />

A7A5 C5 0160-4303 CAPACITOR-FXD .027 UF +-10% 100WVDC CER 26654 38X050S273K<br />

A7A5 C6 0160-4305 1 CAPACITOR-FXD 47 PF +- 10% 100WVDC CER 28480 0160-4305<br />

A7A5 CR1 1901-0639 2 DIODE-PIN <strong>11</strong>0V 28480 1901-0639<br />

A7A5 CR2 1901-0639 DIODE-PIN <strong>11</strong>0V 28480 1901-0639<br />

A7A5 L1 86603-80001 2 INDUCTOR, TOROID 28480 86603-80001<br />

A7A5 L2 86603-80001 INDUCTOR, TOROID 28480 86603-80001<br />

A7A5 R1 0698-7222 2 RESISTOR 261 2% .05W F TO-0-+-100 24546 C3-1/8-TO-261R-G<br />

A7A5 R2 0698-7222 RESISTOR 261 2% .05W F TO 0-+-100 24546 C3-1/8-TO-261R-G<br />

A7A5 R3 0698-7229 1 RESISTOR 261 2% .05W F TO-0-+-100 28480 C3-1/8-TO-5<strong>11</strong>R-G<br />

A8 86603-67003 1 4 GHZ AMPLIFIER ASSY (EXCEPT OPTION 002) 28480 86603-67003<br />

A8 86603-67001 1 4 GHZ AMPLIFIER ASSY (OPTION 002 ONLY) 28480 8660-67001<br />

A8J1 NSR<br />

A8J2 NSR<br />

A9 86602-60040 1 ATTENUATOR DRIVER ASSY 28480 86602-60040<br />

(EXCEPT OPTION 001)<br />

A9CR1 1901-0025 8 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR2 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR3 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR4 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR5 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR6 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR7 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9CR8 1901-0025 DIODE-GEN PRP 100V 200NA DO-7 28480 1901-0025<br />

A9Q1 1853-0213 4 TRANSISTOR PNP 2N4236 SI TO-5 PD=1W 04713 2N4236<br />

A9Q2 1854-0361 4 TRANSISTOR PNP 2N4239 SI TO-5 PD =800MW 04713 2N4239<br />

A9Q3 1853-0020 17 TRANSISTOR PNP SI PD=300MW FT=150MHz 28480 1853-0020<br />

A9Q4 1854-0071 4 TRANSISTOR PNP SI PD=300MW FT=200MHz 28480 1854-0071<br />

A9Q5 1854-0404 5 TRANSISTOR PNP SI TD=18 PD 360MW 28480 1854-0404<br />

A9Q6 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHz 28480 1853-0020<br />

A9Q7 1853-0213 TRANSISTOR PNP 2N4236 SI TO=5 PD=1W 04713 2N4236<br />

A9Q8 1854-0361 TRANSISTOR PNP 2N4239 SI TO=5 PD=800MW 04713 2N4239<br />

A9Q9 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHz 28480 1853-0020<br />

A9Q10 1854-0071 TRANSISTOR PNP SI PD=300MW FT=200MHz 28480 18540071<br />

A9Q<strong>11</strong> 1854-0404 TRANSISTOR PNP SI TD=18 PD 360MW 28480 1854-0404<br />

A9Q12 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHz 28480 1853-0020<br />

A9Q13 1854-0213 TRANSISTOR PNP 2N4236 SI TO=5 PD=1W 04713 2N4236<br />

A9Q14 1850-361 TRANSISTOR PNP 2N4239 SI TO=5 PD=800MW 24713 2N4239<br />

A9Q15 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHz 28480 1853-0020<br />

See introduction to this section for ordering information<br />

6-8


Section 6<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Qty<br />

Table 6-2. Replaceable Parts<br />

Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A9016 1853-0071 TRANSISTOR NPN SI PO-300NM FT-200MHz 28480 1854-0071<br />

A9017 1853-0404 TRANSISTOR NPN SI TD-18 PD.360NM 28480 185-0404<br />

A9Q18 1853-0020 TRANSISTOR PNP SI PD-3001i FT.150MH 28480 1853-0020<br />

A9019 1853-0213 TRANSISTOR PNP 2N4236 SI TO-5 PD-W 04713 2N4236<br />

A9020 1853-0036 TRANSISTCR NPN 2N4239 SI T-S5 PD-800M 04713 2N4239<br />

A9021 1853-0020 TRANSISTOR PNP SI PD-300WM FT-101HHZ 28480 1853-0020<br />

A9022 1854-0071 TRANSISTOR NPN SI PD-300MW FT-200MHZ 28480 1854-0071<br />

A9023 1054-0404 TRANSISTOR NPN SI TD-18 PO-360NM 28480 185-0404<br />

A9024 1853-0020 TRANSISTOR PNP SI PD-300NM FT-150HZ 28480 1853-0020<br />

A9R1 0757-0280 <strong>11</strong> RESISTOR 1K LI .125W F TD-0-100 24546 C4-1/8-TO-1001-F<br />

A9R2 0757-0159 8 RESISTOR 1K IS .5F TD-0+-100 19701 MF7C1/2-TO-IRO-F<br />

A9R3 0757-0159 RESISTOR 1K It .5W F TD-0+-IO0 19701 F7TCIZ2-TO-IRO-F<br />

A9R4 0698-3440 4 RESISTOR 196 It .125H F TD-0-100 16299 C4-1/8-TO-1 96R-F<br />

A9R5t 0683-0335 6 RESISTOR 3.3 51 .25WFC TD--400/+500 0<strong>11</strong>21 C833G5<br />

A9R6t 0683-0335 RESISTOR 3.3 5S .25N FC TD--400/+500 0<strong>11</strong>21 CB33GS<br />

A9R7 0757-0401 8 RESISTOR 100 <strong>11</strong>.125N F TO-0-100 24546 C4-<strong>11</strong>8-TO-101-F<br />

A9R8 0757-0401 RESISTOR 100 <strong>11</strong> .125i F TO-0+-100 24546 C4-18-T-L101-F<br />

A9R9 DELETED<br />

A9R10 DELETED<br />

A9R<strong>11</strong> 0757-0280 RESISTOR IK 1I .125M F TO-0+-100 24546 C4-1/8-TO-1001-F<br />

A9R12 0757-0159 RESISTOR IK <strong>11</strong> .5W F TO-0+-100 19701 NF7C1/2-TO-IRO-F<br />

A9R13 0757-0159 RESISTOR IK 1 .5W F TO-0+-100 19701 NF7CI/2-TO-IRO-F<br />

A9R14 0698-3440 RESISTOR 196 13 .125N F TO-0+-100 16299 C4-1/8-TO-196R-F<br />

A9R15 0683-0335 RESISTOR 3.3 51 .25W FC TO--400/+500 0<strong>11</strong>21 CR3365<br />

A9R16 0683-0335 RESISTOR 3.3 51 .25S FC TO--400/+500 0<strong>11</strong>21 C833G5<br />

A9R17 0757-0401 RESISTOR 100 I1 .1251 F TO-0- 100 24546 C4-1/8-TO-101-F<br />

A9R18 0757-0401 RESISTOR 100 <strong>11</strong> .125W F TO-0+-100 24546 C4l/8-TO-101-F<br />

A9R19 DELETED<br />

A9R20t DELETED<br />

A9R21 0757-0280 RESISTOR IK I1 .125W F TO-0+-100 24546 C4-18-TO-1001-F<br />

A9R22 0757-0159 RESISTOR IK 13 .5w F TO-0+-100 19701 HFTC1/2-TO-IRO-F<br />

A9R23 0757-0159 RESISTOR 1K 1I .SW F TO-0+-100 19701 HF7C2lZ-TO-lRO-F<br />

A9R24 0698-3440 RESISTOR 196 <strong>11</strong> .125W F TO-0-+-100 16299 C4-1/8-TO-196R-F<br />

A9R25 0683-0335 RESISTOR 3.3 5S .25W FC TC--4,00/+500 3<strong>11</strong>21 C833G5<br />

A9R26 0683 0335 PRSISTOP 3.3 51 .25L FC TC--4001+500 0<strong>11</strong>21 CR33G5<br />

A9R27 0757-0401 RESISTOR 100 <strong>11</strong> .125M F TC-O,I00 24546 C4-128-TO-101-F<br />

A9R28 0757-0401 RESISTOR 100 <strong>11</strong> .125W F TC-O+-100 24546 C4-1/8-TO-101-F<br />

A9R29 DELETED<br />

A9R30 t DELETED<br />

A9R31 0757-0280 RESISTOR 1K <strong>11</strong> .125L F TO-0100 24546 C4-18-TO-1001-F<br />

A9R32 0757-0159 RESISTOR 1K IX .SW F TO-0+-100 19701 MFT7C/2-TO-IPO-F<br />

A9R33 0757-0159 RESISTOR IK 1t .5S F TC-O+-100 19701 F7C1IZ-TO-IRO-F<br />

A9R34 0698-3440 RESISTOR 196 <strong>11</strong> .125W F TC-O’100 16299 C4-18-TO-196R-F<br />

A9R35 08<strong>11</strong>-2815 2 RESISTOR 1.’ 5S .75L PW TC-O, 50 91637 PSI12-T2-RS5-J<br />

A9R36 08<strong>11</strong>-2815 RESISTOR 1.5 51 .75M PW TC-O+-50 91637 PS1/2-T2—IR5-J<br />

A9R37 0757-0401 RESISTOR 100 <strong>11</strong> .125L F TC-O+-100 24546 C4-1/8-TO-101-F<br />

A9R38 0757-0401 RESISTOR 100 I3 .125W F TC.O+ 100 24546 C4-18-TO-101-F<br />

A9R39t DELETED<br />

A9R40 t DELETED<br />

A9VR1 1902-3002 4 DIODE-ZNR 2.37V 53 DO 7 PO-.4W TC--.0742 04713 SI 10939-2<br />

A9VRZ 1902-3002 DIODE-ZNR 2.37V 51 DO-7 PDO.4W TC--.074S 04713 SZ 10939-2<br />

A9VR3 1902-3002 DIODE-ZNR 2.371 5S D0-T PCD-.4 TC--.0742 04713 SZ 10939-2<br />

A9VR4 1902-3002 DIODE-ZNR 2.37V 5S 00-7 PD-.4W TC--.074S 04713 SZ 10939-2<br />

A9 P MISCELLANEOUS<br />

1480-0073 7 PIN:ORIVF 0.250' LG 00000 080<br />

4040-0752 2 EXTRACTOR-PC BD YEL POLYC .062-BD-THNKS<br />

A10 86602-60006 1 REFERENCE ASSY 28480 86602-60006<br />

A1C1 NOT ASSIGNED<br />

A10C2 01800291 2 CAPACITOR FXO IUF+10 35VDC TA 56289 1500105X9035A2<br />

A10K1 0490-0916 6 RELAY-REED IA .5A 50V CONT 5V-COIL 28480 0490-0916<br />

A10K2 0490-0916 RELAY-REED IA .5A SOV CONT 5Y-COIL 28480 0490-0916<br />

A10K3 0490-0916 RELAY-REED IA .5A 50V CONT 5V-COIL 28480 0490-0916<br />

A10K4 0490 0916 RELAY-REEO IA 5A 50V CONT 5V-COIL 28480 0490-0916<br />

A10K5 0490-0916 RELAY-REED IA .5A 50V CONT 5V-COIL 28480 0490-C916<br />

A10K6 0490-0916 RELAY-REED IA .5A 50V CONT 5V-COIL 28480 0490-0916<br />

A10Q1 1853-0020 TRANSISTOR PNP SI PO-300HM FT-150NHZ 28480 1853-0020<br />

AIC02 1853-0020 TRANSISTCR PNP SI PO-300NW FT-150NHZ 28480 1853-0020<br />

Ai003 1853-0020 TRANSISTOR PNP SI PO-3001M FT.150MHZ 28480 1853-0020<br />

AO14 1853-0020 TRANSISTOR PNP SI PD-300MW FT-150NHZ 28480 1853-0020<br />

A1005 1853-0020 TRANSISTOR PRP SI PO-300MN FT-150HHZ 28480 1853-0020<br />

See introduction to this section for ordering information<br />

FOR BACKDATING, SEE TABLE 7-1.<br />

6-9


Section 6<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Table 6-2. Replaceable Parts<br />

Qty Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A10Q6 1853-0020 TRANSISTOR PFNP SPO-30OMW FT.ISOMHZ 28480 1853-0020<br />

A10Q7 1853-OC20 TRANSISTOR PNP SI PDO300MW FTS150HHn 28480 1853-0020<br />

A10Q8 1853-0020 TRANSISTOR PNP SI PD-30OMW FTI1SOMHZ 2840 1853-0020<br />

A10Q9 1853-0020 TRANSISTOR PNP SI PD-30o0N FT-150MHZ 28480 1853-OC2J<br />

A10Q10 1854-0404 TRANSISTOR NPN SI TO-I8 PD-360MW 28480 1854-004<br />

A10Q<strong>11</strong> 1855-0082 1 TRANSISTOR MOSFET P-CHAN O-MODE SI 28480 1855-0082<br />

A10R1 0757-0279 1 RESISTOR 3.16K 1 .125W F TC-O-100 24546 C4-1/8-T-3161-F<br />

A10R2 2100-2517 1 RESISTOR-TRMR 50K 10t C SIDE-AOJ I-TURN 30993 ET5X50O3<br />

A10R3 0757-0280 RESISTOR IK It .125w F TC-O=100 24546 C4-1/8-TO-1001-F<br />

A10R4 0757-0817 1 RESI STOR 750 1I .5W F TC-O+-100 19701 MFTClZ2-TO-751-F<br />

A10R5 2100-2633 3 RESISTOR-TRMR IK 10X C SIDE-ADJ I-TURN 30983 ETSOX1O2<br />

A10R6 0757-0443 1 RESISTOR IIK 1I .125w F TC-O+-1OO 24546 C4-1/8-TO-lOZ-F<br />

A10R7 2100-2633 RESISTOR-TRMR 1K 10% C SIDE-AD0J 1-TURN 30983 ETSOX102<br />

A10R8 0757-0416 2 RESISTOR 5<strong>11</strong> 1I .125W F TC-O0100 24546 C4-1/8-TO-5<strong>11</strong>R-F<br />

A10R9 0757-0280 RESISTOR LI 1X .125w F TC-O+-100 24546 C4-1/8-TO-1001-F<br />

A10R10 0698-3260 2 RESISTOR 464K IS .125W F TC-O-100 0388 PME55SSS<br />

A10R<strong>11</strong> 0698-3260 RESISTOR 464K I1 .125 F TC=-.100 03888 PFME5S<br />

A10R12 0698-3453 1 RESISTOR 196K 1t .125w F TC-O-100 16299 CI1/8-TO-1963-F<br />

A10R13 0757-0439 1 RESISTOR 6.81K <strong>11</strong> .125W F TC-O= -100 24546 C4-1/8-TO-68<strong>11</strong>-F<br />

A10R14 0683-1065 1 RESISTOR 10ON 5 .25w FC TC--900/+<strong>11</strong>00 0<strong>11</strong>21 C81065<br />

A10R15 0757-0280 RESISTOR IK 1I .125w F TC-O+-100 24546 C4-1/8-TO-1001-F<br />

A10R16 0690-3450 1 RESISTOR 42.2K <strong>11</strong> .IZS F TC-O-100 16299 C4-1/8-TO-4222-F<br />

A10R10 0757-0280 RESISTOR IK I1 .125w F TC-O+-100 24546 C4-1/8-TO-1001-F<br />

A10R18 0698-0083 10 RESISTOR 1.96K 1IS .125 F TC-100 16299 C4-1I8-TO-1961-F<br />

A10R19 0698-0083 RESISTOR 1.96K <strong>11</strong> .125W F TC=-100 16299 C4-<strong>11</strong>8-TI-1961-F<br />

A10R20 0698-0083 RESISTOR 1.96K 1 .125w F TC-O-100 16299 C4-1/8-TO-1961-F<br />

A10R21 069-4406 2 RESISTOR <strong>11</strong>5 1I .125w F TC-0O*100 16299 C4I1/8-TO-L15R-F<br />

A10R22 0698-4482 1 RESISTOR 17.4K <strong>11</strong> .125 F TC-O+-100 03888 PME55-1/8-T0-1742-F<br />

A10R23 0698-4406 RESISTOR <strong>11</strong>5 1I .125w F TC-O+-100 16299 CI-/8-TO-<strong>11</strong>5P- F<br />

A10R24 0698-0083 RESISTOR 1.96K <strong>11</strong> .125w F TC-Oe100 16299 C4-1/8-TO-1961-F<br />

A10R25 0698-0083 RESISTOR 1.96K 1I .125w F TC-O+-100 16299 C4-I18-TO-1961-F<br />

A10R26 0698-3486 2 RESISTOR 232 1% .125w F TO-O+-100 16299 C4-1/8-TO-232R-F<br />

A10R27 0698-3498 1 RESISTOR 8.66K 1% .125w F TO-O-100 16299 C4-1/8-TO-866R-F<br />

A10R28 0698-3486 RESISTOR 232 1% .125W F TO-O+-l00 16299 C4-1/8-TO-232R-F<br />

A10R29 0690-0083 RESISTOR 1.96% 1% .125W F TO-O-100 16299 C4-1/8-TO-1961-F<br />

A10R30 0698-0083 RESISTOR 1.96K 1% .125w F TO-O 100 16299 C4-1/8-TO-1961-F<br />

A10R31 0698-3510 2 RESISTOR 453 1% .125w F TO-O+-100 16299 C4-1/8-TO-453R-F<br />

A10R32 0698-3154 1 RESISTOR 4.22K 1% .125W F TO-O+I00 16299 C4-1/8-TO-4221-F<br />

A10R33 0698-3510 RESISTOR 453 1% .125w F TO+-0100 16299 C4-1/8-TO-453R-F<br />

A10R34 0698-0083 RESISTOR 1.96K 1% .125w F TO-0100 16299 C4-1/8-TO-1961-F<br />

A10R3S 0691-0083 RESISTOR 1.96K 1% .125I F TO-O I100 16299 C4-1/8-TO-1961-F<br />

A10R36 0698-3495 2 RESISTOR 866 1% .125W F TO-O-100I 16299 C4-1/8-TO-866R-F<br />

A10R37 0698-4430 1 RESISTOR 1.91K 1% .125w F TO-O100 16299 C4-1/8-TO-19<strong>11</strong>-F<br />

A10R38 0698-3495 RESISTOR 866 I% .Z15N F TO-O- 100 16299 C4-1/8-TO-866R-F<br />

A10R39 0757-0280 RESISTOR 1K 1% .125w F TO*-100 24546 C4-1/8-TO-1001-F<br />

A10R40 0757-0442 3 RESISTOR 10K 1% .125W F TO-O-100 24546 C4-1/8-TO-1002-F<br />

A10R41 0757-0442 RESISTOR 10K 1 % .125W F TO-O- 100 24546 C4-1/8-TO-1002-F<br />

A10U1 1826-0081 1 IC LM 318 OP ANP 27014 LM318H<br />

A10VR1 1902-0041 DIODE-ZNR 5.<strong>11</strong>V 53 DO-7 PDI-.4TC--.009 04T13 SZ 10939-98<br />

A10 MISCELLANEOUS<br />

4040-0753 2 EXTRACTOR-PC 80 GRN POLYC .062-8D-THKNS 28480 4040-0753<br />

1480-0073 PIN:DRIVE 0.250- LG 00000 080<br />

4040-0753 EXTRACTOR-PC 80 GRN POLYC .062-6D-THKNS 28480 4040-0753<br />

1480-0073 PIN:ORIVE 0.250" LG 0000G 080<br />

A<strong>11</strong> 86603-60029 1 LOGIC ASSY 28480 86603-60029<br />

A<strong>11</strong>C1 0180-2206 1 CAPACITOR-FXO 60UFILOl 6VOC TA 56289 1500606X900682<br />

A<strong>11</strong>L1 9140-0105 1 COIL-FXO MOLOED RF CHCKE 8.2UH 10 24226 15/821<br />

A<strong>11</strong>U1 1820-0508 1 IC N8202N RGTR 18324 N8202N<br />

A<strong>11</strong>U2 1820-0077 1 IC SN74 74 N FLIP-FLOP 01295 SN74744<br />

A<strong>11</strong>U3 1820-0069 1 IC SN74 20 N GATE 01295 SN742ON<br />

A<strong>11</strong>U4 1820-0305 2 IC:TTL 4-81T BINARY FULL ADDER 01295 SN7483N<br />

A<strong>11</strong>U5 1820-0054 4 IC SNT4 00 N GATE 01295 SN7400N<br />

A<strong>11</strong>U6 1820-0054 IC SNT4 00 N GATE 01295 SNT400N<br />

A<strong>11</strong>U7 1820-0305 IC:TTL 4-BIT BINARY FULL ADDER 01295 SN7483N<br />

A<strong>11</strong>U8 1820-0<strong>11</strong>4 2 IC SN74 04 N INV 01295 SN7404N<br />

A1LI9 1820-0054 IC SN74 00 N GATE 01295 SN740ON<br />

A<strong>11</strong>U10 1820-0054 IC SN74 00 N GATE 01295 SN7400N<br />

See introduction to this section for ordering information<br />

6-10


<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Section 6<br />

Reference HP Part Qty<br />

Table 6-2. Replaceable Parts<br />

Description Mfr Mfr Part Number<br />

Designation Number Code<br />

4040-0754 1<br />

A<strong>11</strong> MISCELLANEOUS<br />

EXTRACTOR, PC BD BLU POLYC .062-D-THKNS 28480 4040-0754<br />

1480-0073 1 PIN: DRIVE 0.250” LG 00000 0BD<br />

86603-00007 1 INSULATOR 28480 9200-6-B-091<br />

A12 86602-60038 1 LOGIC MOTHER BOARD ASSY 28480 86602-60038<br />

A12C1 0160-2055 2 CAPACITOR-FXD .01UF +80-20% 100WVDC CER 28480 0160-2055<br />

A12C2 0160-2055 CAPACITOR-FXD .01UF +80-20% 100WVDC CER 28480 0160-2055<br />

A12L1 9140-0144 2 COIL-FXD MOLDED RF CHOKE 4.7UH 10% 24226 10/471<br />

A12L2 9140-0144 COIL-FXD MOLDED RF CHOKE 4.7UH 10% 24226 10/471<br />

A12XA9 1251-<strong>11</strong>626 1 CONNECTOR-PC EDGE 12-CONT/ROW 2-ROWS 71785 252-12-30-300<br />

A12XA10 1251-2034 1 CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS 71785 252-10-30-300<br />

A12XA<strong>11</strong> 1251-1388 1 CONNECTOR-PC EDGE 15 CONT/ROW 2-ROWS 71785 252-15-30-008<br />

A13 86603-60043 1 ATTENUATOR ASSY(EXCEPT OPTION 001) 28480 86603-60043<br />

A13 86601-60109 RESTORED 86603-60043, REQUIRES EXCHANGE 28480 86601-60109<br />

A13J1 NSR<br />

A13J2 NSR<br />

A14 86602-60041 1 WIRING HARNESS, MAIN(EXCEPT OPT’S 001-002<br />

(INCLUDES P5, P7, P8, P13 & P14<br />

28480 86602-60041<br />

WIRING HARNESS, MAIN (OPTION 001 ONLY)<br />

28480 86602-60042<br />

A14 86602-60045 WIRING HARNESS,MAIN (OPTION 002 ONLY)<br />

28480 86602-60045<br />

(INCLUDES P5, P7, P8, P13 & P14<br />

A15 86602-60035 1 20 MHz AMPLIFIER ASSY 28480 86602-60035<br />

A15C1 0160-2437 7 CAPACITOR-FXD 5000PF +80-20% 200WVDC CER<br />

NSR<br />

28480 0160-2437<br />

A15J1 1250-<strong>11</strong>94 3 CONNECTOR-RF SM-SLD M SGL-HOLE-FR 50-OHM<br />

NSR<br />

28480 1250-<strong>11</strong>94<br />

A15J2 1250-<strong>11</strong>94 CONNECTOR-RF SM-SLD M SGL-HOLE-FR 50-OHM<br />

NSR<br />

28480 1250-<strong>11</strong>94<br />

A16 86603-60041 1 BOARD ASSEMBLY, PHASE MODULATOR DRIVER<br />

28480 86603-60041<br />

(OPTION 002)<br />

A16C1 0180-0228 1 CAPACITOR-FXD 22UF +-10% 15 VDC TA 56289 150D226X9015B2<br />

A16C2 0160-0575 5 CAPACITOR-FXD .047UF +-20% 50WVDC CER 28480 0160-0575<br />

A16C3 0160-0127 1 CAPACITOR-FXD 1UF +-20% 25WVDC CER 28480 0160-0127<br />

A16C4 0160-0575 CAPACITOR-FXD .047UF +-20% 50WVDC CER 28480 0160-0575<br />

A16C5 0160-0575 CAPACITOR-FXD .047UF +-20% 50WVDC CER 28480 0160-0575<br />

A16C6 0180-0374 1 CAPACITOR-FXD 10UF +-10% 20VDC TA 56289 150D106X9020B2<br />

A16C7 0121-0494 1 CAPACITOR-V TRMR-CER 2/6.5PF 250V PC-MTG 0086s 7-S TRIKO-13<br />

A16C8 0160-4084 CAPACITOR-FXD 0.1 UF +-20% 50WVDC CER 28480 0160-0575<br />

A16C9 0160-0575 CAPACITOR-FXD .047UF +-20% 50WVDC CER 28480 0160-0575<br />

A16CR1 1901-0179 2 DIODE-SWITCHING 15V 50NA 750PS DO-7 28480 1901-0179<br />

A16CR2 1901-0179 DIODE-SWITCHING 15V 50NA 750PS DO-7 28480 1901-0179<br />

A16CR3 1901-0033 6 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16CR4 1901-0033 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16CR5 1901-0033 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16CR6 1901-0539 1 DIODE-SCHOTTKY 28480 1901-0539<br />

A16CR7 1901-0033 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16CR8 1901-0033 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16CR9 1901-0033 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16E1 0410-0184 1 OVEN:COMPONENT 01295 5ST1-2<br />

A16J1 1250-1377 2 CONNECTOR-RF SMB FEM PC 2K497 700214<br />

A16J2 1250-1377 CONNECTOR-RF SMB FEM PC 2K497 700214<br />

A16L1 9140-0158 1 COIL-FXD MOLDED RF CHOKE 1UH 10% 24226 10/101<br />

A16Q1 1853-0075 2 TRANSISTOR-DUAL PNP PD=400MW 28480 1853-0075<br />

A16Q2 1854-0295 1 TRANSISTOR-DUAL NPN PD=400MW 28480 1854-0295<br />

A16Q3 1853-0075 TRANSISTOR-DUAL PNP PD+400MW 28480 1853-0075<br />

A16Q4 1855-0327 1 TRANSISTOR J-FET 2N4416 N-CHAN D-MODE 01295 2N4416<br />

A16Q5 1854-0457 1 TRANSISTOR-DUAL NPN PD+400MW 28480 1854-0457<br />

A16Q6 1853-0352 1 TRANSISTOR PNP SI TO-92 PD+350MW FT=1GHZ 28480 1853-0352<br />

A16Q7 1854-0013 1 TRANSISTOR NPN 2N2218A SI TO-5 PD=880MW 04713 2N2218A<br />

A16Q8 1853-0012 1 TRANSISTOR PNP 2N2904A SI TO-5 PD=600MW 01295 2N2904A<br />

0340-0850 2 INSULATOR-XSTR NYLON WHITE 28480 0340-0850<br />

A16Q9 1853-0451 1 TRANSISTOR PNP SI TO-18 PD=360MW 28480 1853-<br />

A16Q10 1854-0023 1 TRANSISTOR NPN SI TO-18 PD=360MW 28480 1854-0023<br />

A16R1 2100-3095 2 RESISTOR -TRMR 200 10% C SIDE ADJ-17-TURN 32997 3006P-I-201<br />

A16R2 2100-3095 RESISTOR-TRMR 200 10% C SIDE ADJ 17-TURN 32997 3006P-I-201<br />

A16R3 0698-7236 7 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R4 0698-7241 1 RESISTOR 1.62K 2% F TO-+-100 16299 C3-1/8-TO-1621-G<br />

A16R5 0698-7236 RESISTOR 1K 2% .05W F TO-0-+10C 24546 C3-1/8-TO-1001-G<br />

See introduction to this section for ordering information<br />

FOR BACKDATING, SEE TABLE 7-1.<br />

6-<strong>11</strong>


Section 6<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Table 6-2. Replaceable Parts<br />

Qty Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A16R6 0698-7234 1 RESISTOR 825 2% .05W F TO=0+-100 24546 C3-1/8-TO-825R-G<br />

A16R7 0698-7236 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R8 0698-7226 1 RESISTOR 383 2% .05W F TO =0+-100 24546 C3-1/8-TO-383R-G<br />

A16R9 0698-7236 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R10 0698-7216 1 RESISTOR 147 2% .05W F TO=0+-100 24546 C3-1/8-TO-147R-G<br />

A16R<strong>11</strong> 0698-7260 4 RESISTOR 10K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1002-G<br />

A16R12 0698-7217 2 RESISTOR 162 2% .05W F TO=0+-100 24546 C3-1/8-TO-162R-G<br />

A16R13 0698-7212 3 RESISTOR 100 2% .05W F TO=0+-100 24546 C3-1/8-TO-100R-G<br />

A16R14 0698-7260 RESISTOR 10K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1002-G<br />

A16R15 0698-0083 3 RESISTOR 1.96K 1% .125 F TO=0+-100 24546 C3-1/8-TO-1961-F<br />

A16R16 0698-7280 2 RESISTOR 31.6 2% .05W F TO=0+-100 24546 C3-1/8-TO-31R6-G<br />

A16R17 0698-7221 2 RESISTOR 237 2% .05W F TO=0+-100 24546 C3-1/8-TO-237R-G<br />

A16R18 0698-7260 RESISTOR 10K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1002-G<br />

A16R19 0698-7200 RESISTOR 31.6 2% .05W F TO=0+-100 24546 C3-1/8-TO-31R6-G<br />

A16R20 0698-7221 RESISTOR 237 2% .05W F TO=0+-100 24546 C3-1/8-TO-237R-G<br />

A16R21 0698-7260 RESISTOR 10K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1002-G<br />

A16R22 0698-7217 RESISTOR 162 2% .05W F TO=0+-100 24546 C3-1/8-TO-162R-G<br />

A16R23 0698-7212 RESISTOR 100 2% .05W F TO=0+-100 24546 C3-1/8-TO-100R-G<br />

A16R24 0698-7209 1 RESISTOR 75 2% .05W F TO=0+-100 24546 C3-1/8-TO-750R-G<br />

A16R25 0698-0083 RESISTOR 1.96K 1% .05W F TO=0+-100 24546 C3-1/8-TO-1961-F<br />

A16R26 0698-7213 3 RESISTOR <strong>11</strong>0 2% .05W F TO=0+-100 24546 C3-1/8-TO-<strong>11</strong>0R-G<br />

A16R27 2100-2633 1 RESISTOR TRMR 1K 10% .C SIDE-ACJ 17-TURN 30983 ET050X102<br />

A16R28 0698-0083 RESISTOR 1.96K 1% .05W F TO=0+-100 16299 C3-1/8-TO-1961-F<br />

A16R29 0698-7213 RESISTOR <strong>11</strong>0 2% .05W F TO=0+-100 24546 C3-1/8-TO-<strong>11</strong>0R-G<br />

A16R30 0698-7219 2 RESISTOR 196 2% .05W F TO=0+-100 24546 C3-1/8-TO-196R-G<br />

A16R31 0698-7236 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R32 0698-7248 2 RESISTOR 3.16K 2%.05W F TO=0+-100 24546 C3-1/8-TO-3161-G<br />

A16R33 0698-7219 RESISTOR 196 2% .05W F TO=0+-100 24546 C3-1/8-TO-196R-G<br />

A16R34 0698-7243 1 RESISTOR 1.96K.05W F TO=0+-100 24546 C3-1/8-TO-1961-G<br />

A16R35 0757-0418 1 RESISTOR 619 1% .125W F TO=0+-100 24546 C3-1/8-TO-619R-F<br />

A16R36 2100-3123 1 RESISTOR TRMR 1K 10% .C SIDE-ACJ 17-TURN 24546 3006P-1-501<br />

A16R37 0757-0421 1 RESISTOR 825 1% .125W F TO=0+-100 24546 C3-1/8-TO-825R-F<br />

A16R38 0698-7213 RESISTOR <strong>11</strong>0 2% .05W F TO=0+-100 24546 C3-1/8-TO-<strong>11</strong>0R-G<br />

A16R39 0698-7233 1 RESISTOR 750K 2% .05W F TO=0+-100 24546 C3-1/8-TO-750R-G<br />

A16R40 0698-7202 2 RESISTOR 38.3 2% .05W F TO=0+-100 24546 C3-1/8-TO-383R-G<br />

A16R41 0698-7202 RESISTOR 38.3 2% .05W F TO=0+-100 24546 C3-1/8-TO-383R-G<br />

A16R42 0757-0280 1 RESISTOR 1K 1% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R43 0698-212 RESISTOR 100 2% .05W F TO=0+-100 24546 C3-1/8-TO-100R-G<br />

A16R44 0698-7236 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R45 0698-0085 1 RESISTOR 2.61K 1% .05W F TO=0+-100 24546 C3-1/8-TO-26<strong>11</strong>-F<br />

A16R46 0698-7195 RESISTOR 19.6 2% .05W F TO=0+-100 24546 C3-1/8-TO-196R-G<br />

A16R47 0698-7188 2 RESISTOR 10 2% .05W F TO=0+-100 24546 C3-1/8-TO-10R-G<br />

A16R48 0698-7188 2 RESISTOR 10 2% .05W F TO=0+-100 24546 C3-1/8-TO-10R-G<br />

A16R49 0698-7236 RESISTOR 1K 2% .05W F TO=0+-100 24546 C3-1/8-TO-1001-G<br />

A16R50 0698-7248 RESISTOR 3.16K 2% .05W F TO=0+-100 24546 C3-1/8-TO-3161-G<br />

A16R51 0698-7195 RESISTOR 19.6 2% .05W F TO=0+-100 24546 C3-1/8-TO-196R-G<br />

A16RT1 0839-0004 1 THERMISTOR NEG TO 2K BEAD 83196 32A3<br />

A16TP1 0360-0124 2 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-0124<br />

A16TP2 0360-0124 2 TERMIANL-STUD SGL-PIN PRESS-MTG 28480 0360-0124<br />

A16U1 1858-0032 1 IC CA3146E XSTR ARRAY 02735 CA3146E<br />

A16VR1 1902-0554 1 DIODE-ZNR 10V 5% DO-15 PD-1W TO-+.06% 28480 1902-0554<br />

A16VR2 1902-0579 1 DIODE-ZNR 5.<strong>11</strong>V 5% DO-15 PD-1W TO--.009 28480 1902-0579<br />

A16 MISCELLANEOUS<br />

4040-0748 1 EXTRACTOR -PC BD REG POLYC .062-BD-THNKS 28480 4040-0748<br />

1480-0073 2 PIN DRIVE 0.250M LG 00000 OBD<br />

4040-0750 1 EXTRACTOR-PC BD REG POLYC .062-BD-THNKS 28480 4040-0750<br />

1480-0073 1 PIN DRIVE 0.250M LG 00000 OBD<br />

A17 86603-60042 1 PHASE MODULATOR ASSEMBLY 28480 86603-60042<br />

A17C1 0160-4304 4 CAPACITOR-FXD 10PF +-10% 100WVDC CER 28480 0160-4304<br />

A17C2 0160-4304 CAPACITOR-FXD 10PF +-10% 100WVDC CER 28480 0160-4304<br />

A17C3 0160-4304 CAPACITOR-FXD 10PF +-10% 100WVDC CER 29480 0160-4304<br />

A17C4 0160-4304 CAPACITOR-FXD 10PF +-10% 100WVDC CER 28480 0160-4304<br />

A17CR1 0122-0074 2 DIODE-WC.7PF 10% CO/C25-MIN-4 BVR-40V 96341 MA45644<br />

A17CR2 0122-0074 DIODE-WC.7PF 10% CO/C25-MIN-4 BVR-40V 96341 MA45644<br />

A17J1 1250-<strong>11</strong>94 1 CONNECTOR-RF SM-SLD M SGL-HOLE-FR 50OHM 28480 1250-<strong>11</strong>94<br />

A17P1 1250-0563 2 CONNECTOR-RF SMA M 4 HOLE FLG FR 28480 1250-0563<br />

A17P2 1250-0563 CONNECTOR-RF SMA M 4 HOLE FKLG FR 28480 1250-0563<br />

A17 MISCELLANEOUS<br />

86603-00004 1 COVER, PHASE MODULATOR HOUSING 28480 86603-00004<br />

86603-200<strong>11</strong> 1 HOUSING. PHASE MODULATOR 28480 86603-200<strong>11</strong><br />

See introduction to this section for ordering information<br />

6-12


Section 6<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Qty<br />

Table 6-2. Replaceable Parts<br />

Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

86602-00006 1 Support, Bottom 28480 86602-00006<br />

86602-00007 1 Panel, Front (OPTION 001 ONLY) 28480 86602-00007<br />

86602-20019 2 Plate, Front Support 28480 86602-00019<br />

86603-20028 Plate, Rear Support 28480 86603-20028<br />

86602-20028 2 Guide, Connector 28480 86602-20028<br />

86603-00001 1 Support, Right Front 28480<br />

86603-00002 1 Support, Right Rear 28480 86603-0001<br />

86603-00003 1 Support, Mixer 28480 86603-00002<br />

86603-00008 1 Support, Left 28480 86603-00008<br />

86602-20041 1 Window (EXCEPT OPTION 002) 28480 86602-20041<br />

86602-20042 1 Window (OPTION 002 ON LY) 28480 86602-20042<br />

Table 6-3. Code List of Manufacturers<br />

Mfr Manufacturer Name Address Zip Code<br />

Code<br />

00000 U.S.A. COMMON ANY SUPPLIER OF THE U.S.A.<br />

007<strong>11</strong>9 AMP INC HARRISBURG PA 17105<br />

0086S STETTNER-TRUSH INC CAZENOVIA NY 13035<br />

0<strong>11</strong>21 ALLEN-BRAULEY Co MILWAUKEE WI 53212<br />

01295 TEXAS INSTR INC SENICONO CMPNT DIV DALLAS TX 75231<br />

02735 RCA CORP SOLID STATE DIV SOMMERVILLE NJ 08876<br />

03888 PYROFILM CORP WHIPPANY NJ 07981<br />

04713 NOTOROLA SEHICONDUCTOR PRODUCTS PHOENIX AZ 8(008<br />

06540 ANATOH ELEK HARDWARE DIV OF MITE NEW ROCHELLE NY 10"L2<br />

16299 CORNING GL wK ELEC CMPNT DIV RALEIGH NC 27604<br />

18324 SIGNETICS CORP SUNNYVALE CA 94086<br />

19701 MEPCO/ELECTRA CORP MINERAL WELLS TX 7606?<br />

2K497 CABLEWAVE SYSTEMS INC NORTH HAVEN CT 06473<br />

24226 IGOANDA ELECTRONICS CORP GOMANDA NY 14070<br />

24546 CORNING GLASS WORKS (BRADFORD) BRADFORO PA 16701<br />

24931 SPECIALTY CONNECTOR CO INC INDIANAPOLIS IN 46227<br />

26654 VARADYNE INC SANTA MONICA CA 90403<br />

27014 NATIONAL SEMICONDUCTOR CORP SANTA CLARA CA 95051<br />

28480 HEWLETT-PACKARD CO CORPORATE NH PALO ALTO CA 94304<br />

30983 NEPCO/ELECTRA CORP SAN DIEGO CA 92121<br />

32171 MOOUTEC INC NORWALK CT 06854<br />

32997 BOURNS INC TRIMPOT PROD DIV RIVERSIDE CA 92507<br />

56289 SPRAGUE ELECTRIC CO NORTH ADAMS KA 01247<br />

71002 BIRNBACK CO INC FREEPORT LI NY <strong>11</strong>520<br />

71785 TRW ELEK COMPONENTS CINCH DIV ELK GROVE VILLAGE IL 60007<br />

73734 FEDERAL SCRE PROOUCTS CO CHICAGO IL 60618<br />

78189 ILLINOIS TOOL WORKS INC SHAKEPROOF ELGIN IL 60126<br />

79727 C-W INDUSTRIES WARMINSTER PA 18974<br />

81312 WINCHESTER ELEK DIV LITTON INO INC DAKVILLE CT 06779<br />

90949 AMPHENOL SALES DIV OF BUNKER-RAHO HAZELWOOD NO 63042<br />

91637 DALE ELECTRONICS INC COLUMBUS NE 68601<br />

95238 CONTINENTAL CONNECTOR CORP WOODSIDE NY <strong>11</strong>377<br />

96341 MICROWAVE ASSOCIATES INC BURLINGTON IA 01801<br />

98291 SEALECTRO CORP MAMARONECK NY 10544<br />

6-15


Table 6-4.<br />

PART NUMBER - NATIONAL STOCK NUMBER<br />

CROSS REFERENCE INDEX<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NATIONAL NATIONAL<br />

PART STOCK PART STOCK<br />

NUMBER FSCM NUMBER NUMBER FSCM NUMBER<br />

CB33G5 0<strong>11</strong>21 5905-00-485-2918 0698-0084 28480 5905-00-974-6073<br />

ET50X502 19701 5905-01-013-2344 0698-0085 28480 5905-00-998-1814<br />

GF126-0018 79727 5930-00-412-0939 0698-3154 28480 5905-00-891-4215<br />

SN7400N 01295 5962-00-922-3138 0698-3155 28480 5905-00-976-3418<br />

SN7404N 01295 5962-00-404-2559 0698-3157 28480 5905-00-433-6904<br />

SN7420N 01295 5962-00-927-1567 0698-3159 28480 5905-00-407-0053<br />

SN7432N 01295 5962-00-276-9929 0698-3260 28480 5905-00-998-1809<br />

SN7474N 01295 5962-00-106-4287 0698-3403 28480 5905-00-469-2957<br />

SN7483N 01295 5962-00-0<strong>11</strong>-2762 0698-3405 28480 5905-00-405-3723<br />

0140-0193 28480 5910-00-774-7319 0698-3430 28480 5905-00-420-7136<br />

0160-0127 28480 5910-00-809-5484 0698-3440 28480 5905-00-828-0377<br />

0160-2055 28480 5910-00-2<strong>11</strong>-16<strong>11</strong> 0698-3442 28480 5905-00-489-6773<br />

0160-2199 28480 5910-00-244-7164 0698-3447 28480 5905-00-828-0404<br />

0160-2204 28480 5910-00-463-5949 0698-3450 28480 5905-00-826-3262<br />

0160-2207 28480 5910-00-430-5675 0698-3453 28480 5905-00-078-1548<br />

0160-2244 28480 5910-00-008-4451 0698-3455 28480 5905-00-407-0060<br />

0160-2436 28480 5910-00-472-5005 0698-3486 28480 5905-00-998-1919<br />

0160-2437 28480 5910-00-431-3956 0698-3495 28480 5905-01-042-5033<br />

0160-3457 28480 5910-00-832-9122 0698-3498 28480 5905-00-478-2244<br />

0160-3874 28480 5910-01-057-8163 0698-3510 28480 5905-00-407-0107<br />

0160-3879 28480 5910-00-477-80<strong>11</strong> 0698-4002 28480 5905-00-009-4322<br />

0160-4084 28480 5910-01-057-8158 0698-4482 28480 5905-00-407-0<strong>11</strong>6<br />

0180-0058 28480 5910-00-027-7069 0698-7188 28480 5905-00-138-7304<br />

0180-0<strong>11</strong>6 28480 5910-00-809-4701 0698-7195 28480 5905-00-161-8921<br />

0180-0228 28480 5910-00-719-9907 0698-7200 28480 5905-00-161-8936<br />

0180-0291 28480 5910-00-931-7055 0698-7212 28480 5905-00-138-7305<br />

0180-0374 28480 5910-00-931-7050 0698-7216 28480 5905-00-138-7307<br />

0180-1743 28480 5910-00-430-6017 0698-7229 28480 5905-01-009-7560<br />

0180-2206 28480 5910-00-879-7313 0698-7233 28480 5905-00-160-5437<br />

0360-0124 28480 5940-00-993-9338 0757-0159 28480 5905-00-830-6677<br />

0698-0082 28480 5905-00-974-6075 0757-0198 28480 5905-00-830-6188<br />

0698-0083 28480 5905-00-407-0052 0757-0276 28480 5905-00-479-4628<br />

6-16


TABLE 6-4 (continued)<br />

PART NUMBER—NATIONAL STOCK NUMBER<br />

CROSS-REFERENCE INDEX<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NATIONAL NATIONAL<br />

PART STOCK PART STOCK<br />

NUMBER FSCM NUMBER NUMBER FSCM NUMBER<br />

0757-0279 28480 5905-00-221-8310 1251-2034 28480 5935-00-267-2973<br />

0757-0280 28480 5905-00-853-8190 1251-2262 28480 5935-01-026-0952<br />

0757-0346 28480 5905-00-998-1906 1251-2293 28480 5999-00-477-1360<br />

0757-0394 28480 5905-00-412-4036 1251-3087 28480 5999-01-029-9983<br />

0757-0399 28480 5905-00-929-7774 150D104X9035A2 56289 5910-00-189-3178<br />

0757-0401 28480 5905-00-981-7529 150D105X9035A2 56289 5910-00-421-8346<br />

0757-0416 28480 5905-00-998-1795 150D106X9020B2 56289 5910-00-936-1522<br />

0757-0418 28480 5905-00-412-4037 150D226X9015B2 56289 5910-00-807-7253<br />

0757-0420 28480 5905-00-493-5404 150D685X9035B2 56289 5910-00-104-0145<br />

0757-0438 28480 5905-00-929-2529 1820-0054 28480 5962-00-138-5248<br />

0757-0439 28480 5905-00-990-0303 1820-0077 28480 5962-00-138-5250<br />

0757-0441 28480 5905-00-858-6799 1820-0174 28480 5962-00-404-2559<br />

0757-0442 28480 5905-00-998-1792 1820-0305 28480 5962-00-0<strong>11</strong>-2762<br />

0757-0443 28480 5905-00-891-4252 1826-0013 28480 5962-00-247-9568<br />

0757-0465 28480 5905-00-904-4412 1826-0081 28480 5962-01-021-5220<br />

0757-0482 28480 5905-00-857-0060 1853-0018 28480 5961-00-989-2747<br />

0757-0817 28480 5905-00-909-1778 1853-0020 28480 5961-00-904-2540<br />

0757-1060 28480 5905-00-405-8094 1853-0034 28480 5961-00-987-4700<br />

0757-1094 28480 5905-00-917-0580 1853-0050 28480 5961-00-138-7314<br />

0764-0013 28480 5905-00-931-6977 1853-0075 28480 5961-00-758-5355<br />

0839-0004 28480 5905-00-539-2095 1853-0213 28480 5961-00-937-1409<br />

08555-20093 28480 5999-00-008-8444 1853-0352 28480 5961-01-051-4015<br />

08731-210 28480 5310-00-401-6934 1854-0023 28480 5961-00-998-1923<br />

0960-0084 28480 5985-00-787-2899 1854-0071 28480 5961-00-137-4608<br />

10/471 24226 5950-00-961-9600 1854-0221 28480 5961-00-836-1887<br />

<strong>11</strong>20-0543 28480 <strong>6625</strong>-01-057-4031 1854-0247 28480 5961-00-464-4049<br />

1200-0173 28480 5999-00-008-7037 1854-0295 28480 5961-00-493-0789<br />

1250-0872 28480 5935-00-147-4284 1854-0345 28480 5961-00-401-0507<br />

1250-0914 28480 5935-00-434-3040 1854-0361 28480 5961-00-400-5973<br />

1250-<strong>11</strong>94 28480 5935-00-446-4102 1854-0404 28480 5961-00-408-9807<br />

1250-1221 28480 5935-00-594-0720 1854-0457 28480 5961-01-055-4186<br />

1250-1227 28480 5935-00-009-1329 1855-0020 28480 5961-00-105-8867<br />

6-17


TABLE 6-4 (continued)<br />

PART NUMBER --NATIONAL STOCK NUMBER<br />

CROSS REFERENCE INDEX<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7’<br />

NATIONAL NATIONAL<br />

PART STOCK PART STOCK<br />

NUMBER FSCM NUMBER NUMBER FSCM NUMBER<br />

1855-0081 28480 5961-00-350-8299 3006P-1-102 32997 5905-00-107-4881<br />

1855-0082 28480 5961-00-442-9470 3006P-1-201 32997 5905-00-101-2350<br />

1855-0327 28480 5961-00-107-2678 3006P-1-501 32997 5905-00-428-5335<br />

1901-0025 28480 5961-00-978-7468 3100-3050 28480 5930-01-064-<strong>11</strong>50<br />

1901-0033 28480 5961-00-821-0710 3101-0973 28480 5930-00-455-0120<br />

1901-0047 28480 5961-00-929-7778 4040-0748 28480 5999-00-230-8834<br />

1901-0050 28480 5961-00-914-7496 4040-0749 28480 <strong>6625</strong>-00-031-4796<br />

1901-0179 28480 5961-00-853-7934 4040-0750 28480 5999-00-415-1213<br />

1901-0539 28480 5961-00-577-0558 4040-0751 28480 5999-00-230-8835<br />

1901-0639 28480 5961-00-787-3394 4040-0752 28480 5999-00-230-8832<br />

1902-0041 28480 5961-00-858-7372 4040-0753 28480 5999-00-230-8836<br />

1902-0554 28480 5961-00-918-7501 4040-0754 28480 5999-00-230-8837<br />

1902-0579 28480 5961-00-452-0438 5040-0306 28480 5970-00-470-7622<br />

1902-3002 28480 5961-00-252-1307 5080-0271 28480 5961-00-513-2726<br />

1902-3036 28480 5961-00-350-2205 5086-7049 28480 5840-01-039-2123<br />

1902-3139 28480 5961-00-494-4848 51-051-0000 98291 5935-00-539-1940<br />

2-331677-9 00779 5935-01-017-6539 52-328-0019 98291 5935-00-506-7332<br />

2N2218 04713 5961-00-985-2363 60373-2 00779 5999-00-173-3441<br />

2N2218A 04713 5961-00-922-2944 86601-60109 28480 5895-01-037-5355<br />

2N4236 04713 5961-00-937-1409 86602-20022 28480 5935-01-057-3785<br />

2N4239 04713 5961-00-400-5973 86602-20044 28480 <strong>6625</strong>-01-063-5591<br />

2N5179 04713 5961-00-401-0507 86602-60008 28480 <strong>6625</strong>-01-051-6623<br />

2N5245 01295 5961-00-350-8299 86602-60035 28480 <strong>6625</strong>-01-040-0827<br />

2100-2489 28480 5905-00-105-1774 86603-67003 28480 <strong>6625</strong>-01-028-9762<br />

2100-2517 28480 5905-00-161-9090 9100-1629 28480 5950-00-430-6864<br />

2100-2633 28480 5905-00-476-5796 9100-1640 28480 5950-00-765-2814<br />

2100-3095 28480 5905-01-052-9092 9100-2247 28480 5950-00-405-3735<br />

2100-3<strong>11</strong>3 28480 5905-00-470-3420 9135-0009 28480 5915-01-039-0268<br />

2100-3154 28480 5905-00-615-8<strong>11</strong>1 9140-0105 28480 5950-01-009-9864<br />

251-10-30-400 71785 5935-01-026-0952 9140-0144 28480 5950-00-837-6029<br />

252-12-30-300 71785 5935-00-448-2236 9140-0158 28480 5950-00-059-5920<br />

252-15-30-008 71785 5935-00-138-5209 9140-0210 28480 5950-00-431-3215<br />

30D506G025CC2 56289 5910-00-247-2075 9140-0237 28480 5950-00-431-3216<br />

6-18


Section 7<br />

7-1. INTRODUCTION<br />

7-2. This section contains manual change instructions<br />

for backdating this manual for HP M 86602B RF<br />

Sections that have serial number fixes that are lower<br />

than 1638A. This section contains modification<br />

suggestions and proceed that are recommended to<br />

improve the perform, and reliability of your instrument.<br />

7-3. <strong>MANUAL</strong> CHANGES<br />

7-4. To adapt this manual to your instrument,<br />

refer to Table 7-1 and make all of the ma<br />

SECTION VII<br />

<strong>MANUAL</strong> CHANGES<br />

Table 7-1. Manual Changes by Serial Number<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 &P<br />

changes listed opposite your instrument’s serial prefix.<br />

The manual changes are listed in serial pre- fix<br />

sequence and should be made in the sequence listed.<br />

For example, Change A should be made after Change B;<br />

Change B should be made after Change C; etc. Table 7-<br />

2 is a summary of changes by component.<br />

7-5. If your instrument’s serial prefix is not listed on<br />

the title page of this manual or in Table 7-1, it may be<br />

documented in a <strong>MANUAL</strong> CHANGES supplement. For<br />

additional important information about serial number<br />

coverage, refer to INSTRUMENTS COVERED BY<br />

<strong>MANUAL</strong> in Section I.<br />

Serial Prefix Make Manual Changes<br />

1433A, 1518A E, D, C, B, A<br />

1519A E, D, C, B<br />

1524A E, D, C<br />

1543A E, D<br />

1551A E<br />

Table 7-2. Summary of Changes by Component<br />

Change A9 A<strong>11</strong> A13 A16 A17<br />

A R5,R6,R15,<br />

R16,R25,R26<br />

B Assy Part No. Assy Part No. Assy Part No.<br />

& Parts List & Parts List<br />

C C4<br />

R9,R10,R19,<br />

D R20,R29,<br />

R39,R40<br />

E U7<br />

7-1


7-6. <strong>MANUAL</strong> CHANGE INSTRUCTIONS<br />

CHANGE A<br />

Section 7<br />

Table 6-2:<br />

Change A9R5, R6, R15, R16, R25, and R26 to 08<strong>11</strong>-2815 RESISTOR 1.5 OHM 5% 0.75W PW<br />

TC=0+-50.<br />

Service Sheet 8:<br />

Change the value of A9R5, R6, R15, R16, R25, and R26 to 1.5 OHM.<br />

CHANGE B<br />

Figure 5-4:<br />

Replace with Figure 7-1.<br />

Figure 7-1. Phase Modulator Driver Frequency Response Adjustment Test Setup (Change B)<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Paragraph 5-27, EQUIPMENT:<br />

Delete Digital Voltmeter.<br />

Change the PROCEDURE as follows:<br />

3. Set the sweep generator controls as follows: sweep range to <strong>11</strong>0 MHz, frequency to 80 MHz, output level at<br />

-10 dBm, sweep video, and sweep mode free-slow.<br />

6. Set the spectrum analyzer controls for center frequency of 1.05 GHz, frequency span per division 20 MHz, resolution<br />

bandwidth 300 kHz, input attenuation 30 dB, vertical sensitivity per division 10 dB, and sweep time per division 2 ms.<br />

7. Adjust the sweep generator output level so the sidebands are approximately 34 dB below the carrier level.<br />

8. Set the spectrum analyzer vertical sensitivity per division to 2 dB.<br />

9. Adjust the Frequency Response control (A16C8) for maximum flatness within 40 MHz of the carrier and for the<br />

minimum peaking at 80 MHz.<br />

10. Disconnect the sweep generator from the A16 Assembly and set the signal generator LINE switch to STBY.<br />

<strong>11</strong>. Carefully remove the RF Section. Be careful not to damage the cables. Reconnect W12 to A16J1.<br />

Figure 5-5A:<br />

Change the reference "step 13" to "step 15" in two places.<br />

7-2


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

CHANGE B (Cont’d)<br />

Paragraph 5-28A:<br />

Change the last sentence of step 2 to "Be sure to use the correct test oscillator output and the correct low<br />

pass filter."<br />

Paragraph 5-28A:<br />

Replace steps 8 through 15 with the following:<br />

8. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz. The carrier and first sidebands should<br />

be within 0.5 dB. If the difference is less than or equal to 0.4 dB, proceed to step <strong>11</strong>. If the difference is greater than<br />

0.5 dB and if the OM deviation is 82° proceed to step 10.<br />

9. Adjust A16R4 one-eighth turn cw. If A16R4 is in contact with the ccw stop, increase the value of A16R5. (The normal<br />

value range is 10 to 316Q.) Set the frequency of the System Under Test to 100 MHz and repeat steps 7 and 8.<br />

10. Adjust A16R4 one-eighth turn cw. If A16R4 is in contact with the cw stop, decrease the value of A16R5. (The normal<br />

value range is 10 to 316f.) Set the frequency of the System Under Test to 100 MHz and repeat steps 7 and 8.<br />

<strong>11</strong>. Set the FM discriminator controls for the 10 MHz range and the 0.1V sensitivity, and insert an internal 1 MHz low-pass<br />

filter.<br />

12 Set the spectrum analyzer controls for a center frequency of 200 kHz, resolution bandwidth to 3 kHz, frequency span<br />

per division to 50 kHz, input attenuation to 0 dB, log reference level to a convenient level, vertical sensitivity per<br />

division to 10 dB, and scan time per division to 10 ms.<br />

13. Set the Reference System controls for a center frequency of 309 MHz and an output level of +7 dBm.<br />

14. Set the System Under Test center frequency to 300 MHz with a modulation level of 100° as read on the front panel<br />

meter.<br />

15. Refer to Figure 5-5A and connect the System Under Test OUTPUT to the "RF" input of the mixer. Connect the<br />

FM Discriminator output to the spectrum analyzer RF input.<br />

16. Adjust the spectrum analyzer's reference level control so the peak of the fundamental 100 kHz signal is viewed on<br />

the CRT display at the log reference graticule line.<br />

17. Adjust A16R3 to null the second harmonic level; adjust A16R1 to null the third harmonic level.<br />

NOTE<br />

Observing harmonic distortion of a OM signal after passing it through an FM discriminator<br />

results in an increase in level of 6 dB per octave. Therefore, the second harmonic will be<br />

6 dB higher and the third harmonic 9.5 dB higher than with a phase demodulator.<br />

Paragraph 5-28A:<br />

Replace steps 16 through 23 with the following:<br />

18. Step the System Under Test center frequency down 1 Hz. Note the direction and amount of re- adjustment of<br />

A16R3 and R1 necessary to null the second and third harmonics.<br />

7-3


CHANGE B (Cont’d)<br />

Paragraph 5-28A (cont’d)<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

19. Set A16R3 and Ri for the best compromise (minimum second and third harmonic levels) at both center frequency<br />

settings of 299.999999 and 300 MHz.<br />

20. Repeat steps 4 through 20 until all the conditions below are met without further adjustment.<br />

a Carrier and first sidebands are equal within 0.5 dB when changing Center Frequency of System Under<br />

Test between 100 and 99.999999 MHz (Steps 7-8).<br />

b. Second harmonic levels are equal within 4 dB or >40 dB down from the fundamental as indicated by<br />

the spectrum analyzer at center frequencies of 300 and 299.999999 MHz (Step 19).<br />

c. Third harmonic levels are equal within 4 dB or>35 dB down from the fundamental as indicated by the<br />

spectrum analyzer frequencies of 300 and 299.999999 MHz (Step 19).<br />

21. Replace the mainframe cover and wait 10 minutes. Check to see if the conditions outlined in step 21 are still met.<br />

If not repeat steps 4 through 21.<br />

Figure 5-5B:<br />

Change the reference "step <strong>11</strong>" to "step 13".<br />

Figure 5-28B:<br />

Change the second sentence of step 2 to "Be sure to use the correct test oscillator output and the correct low<br />

pass filter."<br />

Paragraph 5-28B:<br />

Replace steps 8 through 21 with the following:<br />

8. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz. The carrier and first sidebands should<br />

be within 0.5 dB. If the difference is less than or equal to 0.5 dB, proceed to Step <strong>11</strong>. If the difference is greater than<br />

0.5 dB and if the OM deviation is 82° proceed to Step 10.<br />

9. Adjust A16R4 one-eighth turn ccw. If A16R4 is in contact with the ccw stop, increase the value of A16R5. (The normal<br />

value range is 10 to 316 ohms.) Set the frequency of the System Under Test to 100 MHz and repeat Steps 7 and 8.<br />

10. Adjust A16R4 one-eighth turn cw. If A16R4 is in contact with the cw stop, decrease the value of A16R5. (The normal<br />

value range is 10 to 316 ohms.) Set the frequency of the System Under Test to 100 MHz and repeat Steps 7 and 8.<br />

<strong>11</strong>. Set the spectrum analyzer controls for a center frequency of 2 MHz, resolution bandwidth to 30 kHz, frequency span<br />

per division to 0.5 MHz, input attenuation to 0 dB, log reference level to a convenient level, vertical sensitivity per<br />

division to 10 dB, and scan time per division to 10 ms.<br />

12. Set the System Under Test center frequency to 300 MHz with a modulation level of 100° as read on the front panel<br />

meter.<br />

13. Connect the phase modulation test set between the signal generator output and the spectrum analyzer input as<br />

shown in Figure 5-5B.<br />

14. Adjust the spectrum analyzer's reference level so the peak of the fundamental 1 MHz signal is viewed on the CRT<br />

display at the log reference graticule line.<br />

7-4


CHANGE B (Cont’d)<br />

15. Adjust A16R3 to null the second harmonic level; adjust A16R1 to null the third harmonic level.<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

16. Step the System Under Test center frequency down 1 Hz. Note the direction and amount of read- injustment of<br />

A16R3 and R1 necessary to null the second and third harmonics.<br />

17. Set A16R3 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency<br />

settings of 299.999999 and 300 MHz.<br />

18. Repeat steps 4 through 20 until all the conditions below are met without further adjustment.<br />

a. Carrier and first sidebands are equal within 0.5 dB when changing Center Frequency of System Under<br />

Test between 100 and 99.999999 MHz (Steps 7-8).<br />

b. Second harmonic levels are equal within 4 dB or >40 dB down from the fundamental at center<br />

frequencies of 300 and 299.999999 MHz (Step 17).<br />

c. Third harmonic levels are equal within 4 dB or >35 dB down from the fundamental at center<br />

frequencies of 300 and 299.999999 MHz (Step 17).<br />

19. Replace the mainframe cover and wait 10 minutes. Check to see if the conditions outlined in Step 18 are still met. If<br />

not, repeat steps 4 through 19.<br />

Table 6-2:<br />

Change A13 to 86601-60039 ATTENUATOR ASSY (except Option 001).<br />

Replace the A16 Assembly parts list with the one in this change.<br />

Figure 8-12:<br />

Replace with Figure 7-2.<br />

7-5


Change B (Cont’d)<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-34-&P-7<br />

Figure 7-2. A16 Phase Modulator Driver Assembly Component and Test Point Locations (Change B<br />

7-6


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Table 7-3. P/O Table 6-2. Replaceable Parts (P/O Change B)<br />

Reference<br />

Designation<br />

HP Part<br />

Number<br />

Qty Description Mfr<br />

Code<br />

Mfr Part Number<br />

A16 86603-60002 1 PHASE MODULATOR DRIVER ASSY<br />

(OPTION 002 ONLY)<br />

28480 86603-60002<br />

A16C1 0160-4247 CAPACITOR-FXD 28480 0160-4247<br />

A16C2 0160-0127 1 CAPACITOR-FXD 28480 0160-0127<br />

A16C3 0160-4247 CAPACITOR-FXD 28480 0160-4247<br />

A16C4 0180-0374 4 CAPACITOR-FXD 56289 150D106X9020B2<br />

A16C5 0160-3874 1 CAPACITOR-FXD 28480 0160-3874<br />

A16C6 0160-3879 1 CAPACITOR-FXD 28480 0160-3879<br />

A16C7 0180-0228 2 CAPACITOR-FXD 56289 150D106X9010B2<br />

A16C8 0121-0447 1 CAPACITOR-FXD 00865 5S-TRIKO-04<br />

A16C9 0180-0374 CAPACITOR-FXD 56289 150D106X9020B2<br />

A16C10 0180-0228 CAPACITOR-FXD 56289 150D106X9010B2<br />

A16CR1 1901-0179 2 DIODE-SWITCHING 15V 50NA 750PS DO-7 28480 1901-0179<br />

A16CR2 1901-0179 DIODE-SWITCHING 15V 50NA 750PS DO-7 28480 1901-0179<br />

A16CR3 1901-0033 1 DIODE-GEN PRP 180V 200NA DO-7 28480 1901-0033<br />

A16E1 0410-0184 1 OVEN: COMPONENT 01295 5ST1-2<br />

A16J1 1250-1377 2 CONNECTOR-RF SMB FEM PC 2K497 700214<br />

A16J2 1250-1377 CONNECTOR-RF SMB FEM PC 2K497 700214<br />

A16L1 9140-0158 1 COIL-FXD MOLDED RF CHOKE 1UH 10% 24226 10/101<br />

A16Q1 1855-0327 1 TRANSISTOR J-FET 2N4416 N-CHAN D-MODE 01295 2N4416<br />

A16Q2 1854-0023 2 TRANSISTOR NPN SI TO-18 PD-360MW 28480 1854-0023<br />

A16Q3 1853-0050 1 TRANSISTOR PNP SI TO-18 PD-360MW 28480 1853-0050<br />

A16Q4 1853-0018 2 TRANSISTOR PNP SI TO-72 PD-200MW FT-1GHZ 28480 1853-0018<br />

A16Q5 1853-0018 TRANSISTOR PNP SI TO-72 PD-200MW FT-1GHZ 28480 1853-0018<br />

A16Q6 1854-0345 2 TRANSISTOR PNP 2N5179 SI TO-72 PD-200MW 04713 2N5179<br />

A16Q7 1854-0345 TRANSISTOR NPN 2N5179 SI TO-72 PD-200MW 04713 2N5179<br />

A16Q8 1853-0034 1 TRANSISTOR NPN SI TO-18 PD-360MW 28480 1853-0034<br />

A16Q9 1855-0081 1 TRANSISTOR J-FET 2N5245 N-CHAN D-MODE SI 01295 2N5245<br />

A16Q10 1854-0247 1 TRANSISTOR NPN SI TO-39 PD-1W FT-800MW 28480 1854-0247<br />

A16Q<strong>11</strong> 1854-0023 TRANSISTOR NPN SI TO-18 PD-360MW 28480 1854-0023<br />

A16R1 2100-3123 1 RESISTOR-TRMR 500 10% C SIDE -ADJ 17-TURN 28480 3006P-1-501<br />

A16R2 2100-3095 1 RESISTOR-TRMR 200 10% C SIDE-ADJ 17-TURN 32997 3006P-1-201<br />

A16R3 2100-3154 1 RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TURN 32997 3006P-1-102<br />

A16R4 2100-2633 RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TURN 32997 ET50X102<br />

A16R5 0698-7216 1 RESISTOR 147 2% .05W F TO-0+-100 30983 C3-1/8-TO-1002-G<br />

A16R6 0698-7260 4 RESISTOR 10K 2% .05W F TO-0+-100 24546 C3-1/8-TO-8251-G<br />

A16R7 0698-7258 1 RESISTOR 8.25K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1002-G<br />

A16R8 0698-7260 RESISTOR 10K 2% .05W F TO-0+-100 24546 C3-1/8-TO-3831-G<br />

A16R9 0698-7250 1 RESISTOR 3.83K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1002-G<br />

A16R10 0698-7260 RESISTOR 10K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1961-G<br />

A16R<strong>11</strong> 0698-7243 1 RESISTOR 1.96K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1002-G<br />

A16R12 0698-7260 RESISTOR 10K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1001-G<br />

A16R13 0698-7236 RESISTOR 1K 2% .05W F TO-0+-100 24546 C3-1/8-TO-2151-G<br />

A16R14 0698-7244 3 RESISTOR 2.15K 2% .05W F TO-0+-100 24546 C3-1/8-TO-2151-G<br />

A16R15 0698-7244 3 RESISTOR 2.15K 2% .05W F TO-0+-100 24546 C3-1/8-TO-2151-G<br />

A16R16 0698-7244 RESISTOR 2.15K 2% .05W F TO-0+-100 24546 C3-1/8-TO-196R-<br />

A16R17 0698-7219 2 RESISTOR 196 2% .05W F TO-0+-100 24546 C3-1/8-TO-196R-G<br />

A16R18 0698-7219 RESISTOR 196 2% .05W F TO-0+-100 24546 C3-1/8-TO-3161-G<br />

A16R19 0698-7248 1 RESISTOR 3.16K 2% .05W F TO-0+-100 24546 C3-1/8-TO-619RG<br />

A16R20 0757-0418 2 RESISTOR 619 1% .05W F TO-0+-100 24546 C3-1/8-TO-619R-G<br />

A16R21 0757-0418 RESISTOR 619 1% .05W F TO-0+-100 24546 C3-1/8-TO-1961-G<br />

A16R22 0698-0083 RESISTOR 1.96K 1% .05W F TO-0+-100 16299 C3-1/8-TO-100R-G<br />

A16R23 0698-7212 4 RESISTOR 100 2% .05W F TO-0+-100 24546 C3-1/8-TO-5<strong>11</strong>R-F<br />

A16R24 0757-0416 RESISTOR 5<strong>11</strong> 1% .05W F TO-0+-100 24546 C3-1/8-TO-100R-F<br />

A16R25 0698-7212 RESISTOR 100 2% .05W F TO-0+-100 24546 C3-1/8-TO-1001-F<br />

A16R26 0698-7236 RESISTOR 1K 2% .05W F TO-0+-100 24546 C3-1/8-TO-10R-G<br />

A16R27 0698-7188 2 RESISTOR 10 2% .05W F TO-0+-100 24546 C3-1/8-TO-1001-F<br />

A16R28 0757-0280 RESISTOR 1K 1% .05W F TO-0+-100 24546 C3-1/8-TO-100R-G<br />

A16R29 0698-7212 RESISTOR 100 2% .05W F TO-0+-100 24546 C3-1/8-TO-10R-G<br />

A16R30 0698-7188 RESISTOR 10 2% .05W F TO-0+-100 24546 C3-1/8-TO-19R6-G<br />

A16R31 0698-7195 3 RESISTOR 19.6 2% .05W F TO-0+-100 24546 C3-1/8-TO-19R6-G<br />

A16R32 0698-7195 RESISTOR 19.6 2% .05W F TO-0+-100 24546 C3-1/8-TO-100R-G<br />

A16R33 0698-7212 RESISTOR 100 2% .05W F TO-0+-100 24546 C3-1/8-TO-1001-G<br />

A16R34 0757-0280 RESISTOR 1K 1% .05W F TO-0+-100 24546 C3-1/8-TO-390R-F<br />

A16R35 0698-3633 1 RESISTOR 390 2% .05W F TO-0+-100 24546 FP42-2-TOO-390R-J<br />

A16R36 0698-7236 RESISTOR 1K 2% .05W F TO-0+-100 24546 C3-1/8-TO-1001-G<br />

A1637 0698-7195 RESISTOR 19.6 2% .05W F TO-0+-100 24546 C3-1/8-TOO-19R6-G<br />

A16U1 1858-0032 1 IC CA3146E XSTR ARRAY 02735 CA3146E<br />

A16U2 1820-0174 IC SN74 04 N INV<br />

A16 MISCELLANEOUS<br />

01295 SN7404N<br />

1200-0173 1 INSUALTOR-XSTR TO-5 .075-THK 28480 1200-0173<br />

1480-0073 PIN: DRIVE 0.250" LG 00000 OBD<br />

4040-0748 1 EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS- 28480 4040-0748<br />

4040-0750 1 EXTRACTOR -PC BD-RED POLYC .062-BD-THKNS 28480 4040-0750<br />

See introduction to this section for ordering information<br />

7-7


Reference<br />

Designation<br />

HP Part<br />

Number<br />

Table 7-3. P/O Table 6-2 Replaceable Parts<br />

Qty Description Mfr<br />

Code<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Mfr Part Number<br />

A17 86603-60019 1 PHASE MODULATOR ASSY (O\0 PT. 002 28480 86603-60019<br />

ONLY)<br />

86603-00004 1 COVER, PHASE MODULATOR HOUSING 28480 86603-00004<br />

86603-2000<strong>11</strong> 1 HOUSING, PHASE MODULATOR 28480 86603-200<strong>11</strong><br />

A17J1 1250-<strong>11</strong>94 CONNECTOR-RF SM-SLD M SGL-HOLE- 28480 1250-<strong>11</strong>94<br />

FR 50 OHM<br />

A17P1 1250-0563 2 CONNECTOR-RF SMA M 4 HOLE FLG FR 28480 1250-0563<br />

A17P2 1250-0563 CONNECTOR-RF SMA M 4 HOLE FLG FR 28480 1250-0563<br />

A17A1 86603-60003 1 PHASE MODULATOR BOARD ASSY 28480 86603-60003<br />

A17A1C1 0160-0559 3 CAPACITOR-FXD 10PF+-10% 28480 0160-0559<br />

100WVDC CER<br />

A17A1C2 0160-0559 CAPACITOR-FXD 10PF+-10% 28480 0160-0559<br />

100WVDC CER<br />

A17A1C3 0160-0559 CAPACITOR-FXD 10PF+-10% 28480 0160-0559<br />

100WVDC CER<br />

A17A1CR1 0122-0074 2 DIODE VVC.7PF 10% CO/C25-MIN=4 96341 MA45644<br />

BVR=40V<br />

A17A1CR2 0122-0074 DIODE VVC.7PF 10% CO/C25 MIN=4 96341 MA45644<br />

BVR=40V<br />

7-8


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 7-3. Phase Modulation Section Schematic Diagram (Option 002) (Change B)<br />

7-9


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

CHANGE C<br />

Page 6-12, Table 6-2:<br />

Change:<br />

A17C1 to A17A1C1<br />

A17C2 to A17AlC2<br />

A17C3 to A17AlC3<br />

A17CR1 to A17AlCR1<br />

A17CR2 to A17AlCR2<br />

Add A17A1, 86603-60003, 1, PHASE MODULATOR BOARD ASSY, 28480, 86603-60003.<br />

Delete A17C4.<br />

Figure 8-13:<br />

Replace with Figure 7-4.<br />

A17 ASSEMBLY<br />

Figure 7-4. A17 Phase Modulator Assembly Component Locations (Change C)<br />

7-10


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

CHANGE C (Cont’d)<br />

Figure 8-14:<br />

Change the diagram as shown in the partial schematic, Figure 7-5:<br />

CHANGE D<br />

Figure 7-5. P/O Phase Modulation Section Schematic Diagram (Change C)<br />

Table 6-2:<br />

Add A9R9, R10, R19, R20, R29, R30, R39, R40 0698-4002 RESISTOR 5K 1% 125W.<br />

Figure 8-21:<br />

Mark the locations of:<br />

R29, 30 between Q1 and Q2<br />

R19, 20 between Q7 and Q8<br />

R39, 40 between Q13 and Q14<br />

R9, 10 between Q19 and Q20<br />

Figure 8-22:<br />

Change the schematic as shown in Figure 7-6.<br />

Figure 7-6. P/O Attenuator Section Schematic Diagram (Change D)<br />

7-<strong>11</strong>


Section 7 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

CHANGE E<br />

Table 6-2:<br />

Change A<strong>11</strong>U7 to 1820-0639 IC MC 4001P CONV.<br />

Service Sheet 9:<br />

Change the schematic as shown in Figure 7-7.<br />

Figure 7-7. P/O All Logic Assembly Schematic Diagram (Change E)<br />

7-12


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

8-1. INTRODUCTION<br />

8-2. This section contains troubleshooting and repair<br />

information for the RF Section plug-in. Safety of<br />

technical personnel is considered. Circuit operation and<br />

troubleshooting on system, plug-in and assembly levels<br />

is provided.<br />

8-3. The service sheets normally include principles of<br />

operation and troubleshooting information, a component<br />

location diagram, and a schematic, all of which apply to a<br />

specific portion of circuitry within the instrument.<br />

8-4. Information related to operation of the RF<br />

Section plug-in as part of the 8660-series Synthesized<br />

Signal Generator System is provided in Service Sheet 1.<br />

8-5. Service Sheets 2 and 3 include an overview of<br />

RF Section operation, troubleshooting on an assembly or<br />

stage level, and a troubleshooting block diagram. The<br />

block diagrams also serve as an index for the remaining<br />

service sheets.<br />

8-6. The Schematic Diagram Notes, Figure 8-3, aid<br />

in interpreting the schematics.<br />

8-7. The last foldout in the manual includes a table<br />

which cross-references all pictorial and schematic<br />

locations of each assembly, chassis mounted<br />

component, and adjustable component. The figure is a<br />

pictorial representation of the RF Section and shows<br />

location of the aforementioned parts.<br />

8-8. SAFETY CONSIDERATIONS<br />

8-9. Although this instrument has been designed in<br />

accordance with international safety standards, this<br />

manual contains information, cautions, and warnings<br />

which must be followed to ensure safe operation and to<br />

retain the instrument in safe condition (see Sections II,<br />

III, and V). Service and adjustments should be<br />

performed only by qualified service personnel.<br />

8-10. Any adjustment, maintenance, and repair of the<br />

opened instrument under voltage should be avoided as<br />

much as possible and, when inevitable, should be carried<br />

out only by a skilled person who is aware of the hazard<br />

involved.<br />

SECTION VIII<br />

SERVICE<br />

8-1<br />

8-<strong>11</strong>. Capacitors inside the instrument may still be<br />

charged even if the instrument has been disconnected<br />

from its source of supply.<br />

WARNING<br />

The service information is often used with power<br />

supplied and protective covers removed from the<br />

instrument. Energy available at many points<br />

may constitute a shock hazard.<br />

8-12. PRINCIPLES OF OPERATION<br />

8-13. The Principles of System Operation ex-plains<br />

how the RF Section operates within the Synthesized<br />

Signal Generator System, i.e., how other sections affect<br />

the RF Section and in turn how they are affected by the<br />

RF Section. Control functions in both local and remote<br />

modes are also explained.<br />

8-14. Service Sheet 1 includes a block diagram and an<br />

explanation of system operation with respect to the RF<br />

Section.<br />

8-15. Overall operation of the RF Section is discussed<br />

in Service Sheet 2 and 3. The remaining service sheets<br />

are concerned only with sections and/or circuit<br />

assemblies within the RF Section plug-in.<br />

8-16. TROUBLESHOOTING<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII<br />

of the HP Model 8660-series mainframe<br />

Operating and Service Manual to begin<br />

troubleshooting (System Troubleshooting<br />

Guide). Then, if that information indicates<br />

possible problems in the RF Section, refer to the<br />

Systems Troubleshooting information in Service<br />

Sheet 1. This information may be used to isolate<br />

the defect to the RF Section, another plug-in, or<br />

the main-frame. If the problem is in this plug-in,<br />

turn to Service Sheet 2 for further<br />

troubleshooting information.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

8-17. System Troubleshooting<br />

8-18. The System Troubleshooting information in Section<br />

VIII of the HP 8660-series mainframe manual should be<br />

used when first attempting to isolate a circuit defect. If<br />

the defect cannot be isolated to an individual instrument<br />

in the system the technician is normally directed to the<br />

System Troubleshooting in the RF Section manual<br />

(Service Sheet 1). The problem may then be isolated to<br />

the RF Section, Modulation Section, Frequency<br />

Extension Module, or the mainframe.<br />

8-19. RF Section Troubleshooting<br />

8-20. When the defect has been isolated to the RF<br />

Section, refer to Service Sheet 2. This information is<br />

used to isolate the problem to a section or assembly.<br />

8-21. Troubleshooting Aids<br />

8-22. Circuit Board Aids. Test points are physically<br />

located on the circuit boards as metal posts or circuit<br />

pads and usually have either a reference designator<br />

(such as TP1) or a label which relates to the function<br />

(AM, Pulse, ID, etc.). Transistor emitters, diode<br />

cathodes, the positive lead of electrolytic capacitors, and<br />

pin 1 of integrated circuits are indicated by a variety of<br />

symbols such as E, a diode symbol, +, and a tear-drop<br />

shape respectively. Also, a square circuit pad (as<br />

opposed to the round pad) may be used in place of any<br />

of the previously mentioned symbols.<br />

8-23. Service Sheet Aids. RF levels, ac voltages and<br />

dc voltages are often shown on schematic diagrams.<br />

Integrated circuit connection diagram plus diagrams of<br />

relays and printed circuit connectors help to locate<br />

specific inputs and outputs Notes are used to explain<br />

certain circuits or mechanical configurations not easily<br />

shown on the schematic.<br />

8-24. The locations of individual component mounted<br />

on printed circuit boards are found or individual service<br />

sheets on the pictorial representation of the circuit<br />

boards. Chassis mounted parts, major assemblies, and<br />

adjustable component locations are found on the last<br />

foldout in this manual.<br />

8-25. Table 8-3, Schematic Diagram Notes, provides<br />

information relative to symbols and value shown on the<br />

schematic diagrams.<br />

8-2<br />

8-26. Service Kit and Extender Boards. The HP<br />

<strong>11</strong>672A Service Kit contains interconnect cables, RF<br />

cables, various coaxial adaptors, and an adjustment tool,<br />

all of which are useful in servicing the RF Section plug-in.<br />

Refer to the HP <strong>11</strong>672A Operating Note for a listing and<br />

pictorial representation of the contents. A list of the<br />

service kit contents is also found in the Test Equipment<br />

and accessories list in Section I of the mainframe<br />

manual.<br />

8-27. Circuit board extenders are provided with the<br />

mainframe. These extender boards enable the<br />

technician to extend plug-in boards clear of the assembly<br />

to provide easy access to components and test points.<br />

Refer to the list found under Accessories Supplied in<br />

Section I of the mainframe manual.<br />

8-28. RECOMMENDED TEST EQUIPMENT<br />

8-29. Table 1-2 lists the test equipment and<br />

accessories recommended for use in servicing the<br />

instrument. If any of the recommended test equipment is<br />

unavailable, instruments with equivalent specifications<br />

may be used.<br />

See Appendix B, Section III.<br />

8-30. REPAIR<br />

8-31. General Disassembly Procedures<br />

8-32. Procedures for removing the RF Section plug-in<br />

from the mainframe and the covers from the plug-in are<br />

found on the left-hand foldout page immediately<br />

preceding the last foldout in the manual.<br />

8-33. The machine screws used throughout the plug-in<br />

have a Pozidriv head. Pozidriv is very similar in<br />

appearance to the Phillips head, but using a Phillips<br />

screwdriver may damage the Pozidriv screw head.<br />

8-34. Non-Repairable Assemblies<br />

8-35. Repairs should not be attempted on the following<br />

assemblies if any is found to be defective<br />

during troubleshooting:<br />

A5 Modulator Assembly<br />

A6 1-1300 MHz Amplifier Assembly<br />

A8 4 GHz Amplifier Assembly<br />

A13 Attenuator Assembly<br />

A15 20 MHz Amplifier Assembly<br />

A18 Circulator Assembly<br />

A19 3.9 - 4.1 GHz Isolator Assembly<br />

AT1 Isolator<br />

AT2 3 dB Attenuator<br />

FL1 4 GHz Band Pass Filter


Section 8 <strong>TM</strong><strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

8-36. Module Exchange Program<br />

8-37. Only the A13 Attenuator is available as restored<br />

assembly. It may be ordered as a replacement under the<br />

Module Exchange Program. Refer to Section VI for<br />

ordering information.<br />

8-38. Repair Procedures<br />

8-39. LO Signal Circuits Repair Procedure. Refer to<br />

Figure 8-1. This procedure is used in conjunction with<br />

Service Sheet 2 for isolating circuit defect which are<br />

evident as a phase modulation problem or an incorrect<br />

LO signal level (option 002 instruments only). Perform<br />

the procedure if one of the following components is<br />

suspected of being defective: W1, W2, W10, W13, W14,<br />

A7, A8, A17, A1 A19, or AT2.<br />

8-40. Front Panel Housing Disassembly and Repair<br />

Procedure. Circuits and parts located in the front<br />

8-3<br />

Panel Housing are the meter, output range switch, and<br />

vernier control. Perform the procedure in Table 8-1 to<br />

gain access to these circuits for purposes of repair.<br />

8-41. Rear Panel Disassembly Procedure. To gain<br />

access to assemblies and parts mounted on or behind<br />

the rear panel, refer to Figure 8-2. The A12 Logic Mother<br />

Board, A15 20 MHz Amplifier, and the P6 Interconnect<br />

Plug are accessible only after removing the panel.<br />

8-42. Post Repair Adjustments<br />

8-43. After a defective circuit is repaired, refer to<br />

Section V and perform the adjustment procedure(s) for<br />

circuits which may be affected by the change. Consider<br />

the instructions under paragraphs entitled Related<br />

Adjustments and Post Adjustment Tests.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NOTE<br />

In conjunction with this procedure, use the troubleshooting information on Service Sheet 2 to isolate a<br />

circuit malfunction to one of the following assemblies, circuits, or cables: A 7, A8, A18, A19, AT2, W1, W2,<br />

W10, or W13 (RF problem); A 1 7 or W14 (phase modulation problem). The procedure applies for option<br />

002 instruments only.<br />

a. Set the System Line switch to Standby.<br />

b. Remove screws 2, 7 and 14 to release the A17 Phase Modulator 3 and A18 Circulator 5 Assemblies.<br />

c. With a 5/16” open end wrench, loosen the SMA connectors 6 , 8, and 3 . Carefully pull the<br />

assemblies 3 and 5 away from the aluminum decking until A17 3 slips past AT1 1 .<br />

Figure 8-1. LO Signal Circuits Repair (1 of 3)<br />

8-4


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-2737-14 & P-7<br />

d. Phase Modulation Problems. Separate A17 and A18 at connectors 4 and <strong>11</strong> . Set the system LINE switch<br />

to ON. Measure the output of W14 at connector<br />

e. Set the system LINE switch to Standby, replace the defective part of assembly. Reassemble the items in the<br />

reverse order given for disassembly.<br />

Be sure W14 13 runs under connector <strong>11</strong> and is not crushed<br />

under A17 7 .<br />

f. RF Problems. To measure the LO signal at the output of A18 10 , remove the SMA connectors 6 and 8<br />

,and set the System LINE switch to ON.<br />

g. If the output from A18 is correct, proceed to step h. Otherwise, determine which of A18, W13, A19, or W1 is<br />

defective by measuring the outputs of W13, A19, and W1. Refer to Service Sheet 2.<br />

h. Disconnect the System’s line (Mains) power. Release the A20 Assembly by removing the screws (one each where<br />

circuit board and aluminum decking meet). Lift the assembly straight up. Connect a ground lead from the chassis to the<br />

angle bracket which is connected to the ground point on the circuit board.<br />

i. Remove cable W2 at the A8 Assembly output. (The A8 output jack is closer to the top of the RF Section).<br />

j. Reconnect the System’s line (Mains) power. Measure the output level from A8 (refer to Service Sheet 2). If the<br />

output level is correct, determine if cable W2 or the A7 Mixer Assembly is defective. If the level is incorrect, proceed to<br />

step k.<br />

k. Remove the three screws which secure the A8 Assembly. Remove the cable connector 9 at the output of A18.<br />

Carefully pull A8 away from the decking so the end of AT2 (connected to the input of A8) is exposed.<br />

I. With the wrench, loosen and remove AT2 from A8. Carefully remove W10 and AT2 from between the decking.<br />

m. Reconnect the cable to the output of A18 10 .Check the outputs from AT2 and W10 to determine if AT2, W10,<br />

or A8 is defective (refer to Service Sheet 2).<br />

Figure 8-1. LO Signal Circuits Repair (2 of 3)<br />

8-5


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

n. Discard the defective part or assembly. Reassemble the items removed in the reverse order (leave A20 till last).<br />

CAUTION<br />

When tightening the coaxial connectors, be sure the other end of the cable can be connected without<br />

bending the cable. Be sure all connectors are tightened but only enough to ensure a good connection.<br />

Excessive bending of semi-rigid coax or excessive tightening of the connectors may damage the cables<br />

and/or connectors beyond repair.<br />

Figure 8-1. LO Signal Circuits Repair (3 of 3)<br />

8-6


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Table 8-1. Front Panel Housing Repair<br />

FRONT PANEL HOUSING DISASSEMBLY AND REPAIR<br />

a. Place the RF Section in the normal upright position.<br />

b. With a Pozidriv screwdriver, remove the two screws which hold the top of the front panel to the housing.<br />

c. Turn the plug-in over with the bottom up. Remove the screw which is seen through the curved cutout slot in the<br />

latch when it is in the closed or latched position.<br />

d. With a knurled nut wrench, loosen the knurled nut on the OUTPUT jack. Remove the nut by hand.<br />

e. Pull the front panel away from the housing.<br />

f. Determine what part or assembly is defective and replace it.<br />

g. Reinstall the front panel by following the preceding steps in the reverse order. Be careful not to crush any wires<br />

between the front panel and the chassis.<br />

8-7


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

REAR PANEL DISASSEMBLY<br />

a. On the rear panel, remove screws 1 and 2 which hold the A13 Assembly in place. Screw 1 is<br />

located under the Option 002 sticker.<br />

b. Remove the screws 5 and 6 which hold the top rear deck to the rear panel.<br />

c. Remove the screws 3 and 4 which hold the rear panel to the left rear deck. Carefully pull the rear panel<br />

back and away to expose the assemblies and parts.<br />

Figure 8-2. Rear Panel Disassembly<br />

8-8


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-2RI7-14 & P-7<br />

SCHEMATIC DIAGRAM NOTES<br />

Resistance in ohms, capacitance in microfarads,<br />

inductance in microhenries other otherwise noted.<br />

Asterisk denotes a factory-selected value. Value shown<br />

is typical. Part may be omitted.<br />

Indicates backdating. Refer to Table 7-2.<br />

Tool-aided adjustment.<br />

Manual control.<br />

Encloses front-panel designation.<br />

Encloses rear-panel designation.<br />

Circuit assembly borderline.<br />

Other assembly borderline. Also used to indicate<br />

mechanical inter-connection (ganging).<br />

Heavy line with arrows indicates path and direction of<br />

main signal.<br />

Heavy dashed line with arrows indicates path and<br />

direction of main feedback.<br />

Wiper moves toward CW with clockwise rotation of<br />

control (as viewed from shaft or knob.)<br />

Numbered Test Lettered Test point.<br />

point Measure- No measurement<br />

ment aid provided. Aid provided.<br />

Encloses wire color code. Code used is the same as the<br />

resistor color code. First number identifies the base<br />

color, second number identifies the wider strip, third<br />

number identifies the narrower stripe. E.g., 9 denotes<br />

white base, yellow wide stripe, violet narrow stripe.<br />

A direct conducting connection to the earth, or a<br />

conducting<br />

connection to a structure that has a similar function (e.g.,<br />

the frame of an air, sea, or land vehicle).<br />

Coaxial or shielded cable.<br />

Figure 8-3. Schematic Diagram Notes (1 of 3)<br />

8-9<br />

Stripline (i.e., RF transmission line above ground).


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

EXAMPLE: A3S1AR(2-1/2)<br />

A3S1 = SWITCH SI WITHIN<br />

ASSEMBLY A3<br />

A = 1STWAFER FROM<br />

FRONT (A=IST, ETC)<br />

R = REAR OF WAFER<br />

(F=FRONT)<br />

(2-1/2) =TERMINAL LOCATION<br />

(2-1/2) (VIEWED FROM<br />

FRONT)<br />

SCHEMATIC DIAGRAM NOTES<br />

SWITCH DESIGNATIONS<br />

Arrows on relays indicate direction of arm movement<br />

when energized.<br />

Filters. Specific type indicated by crosses on curved<br />

lines.<br />

Example of Highpass Filter.<br />

Figure 8-3. Schematic Diagram Notes (2 3)<br />

8-10


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-3. Schematic Diagram Notes (3 of 3)<br />

8-<strong>11</strong>


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 1<br />

NOTE<br />

When a malfunction occurs, refer to Section<br />

VIII of the HP Model 8660- series mainframe<br />

Operating and Service Manual to begin<br />

troubleshooting (System Troubleshooting<br />

Guide). Then, if that information indicates<br />

possible problems in the RF Section, refer to<br />

the Systems Troubleshooting information in<br />

this manual (Service Sheet 1). This information<br />

may be used to Isolate the defect to the RF<br />

Section, another plug-in, or the mainframe. If<br />

the problem Is In this plug-in, refer to Service<br />

Sheet 2 for further troubleshooting information.<br />

RF SECTION OPERATION IN THE SYNTHE<br />

SIZED SIGNAL GENERATOR SYSTEM<br />

In order to understand the operation of the RF Section or<br />

to effectively troubleshoot it, the entire Synthesized<br />

Signal Generator System must be understood. The<br />

emphasis here is on the RF Section and its<br />

relationship with the other units which make up the<br />

system.<br />

PRINCIPLES OF OPERATION<br />

The HP Model 86602B RF Section Plug-in (as par of the<br />

HP 8660-series Synthesized Signal Generator System,<br />

has an RF Output of +10 to -146 dBm across 5092 from<br />

1 to 1299.999999 MHz. The RF signals coupled from<br />

mainframe to the Frequency Extension Module are<br />

converted to two phase. locked outputs which are<br />

coupled to the RF Section. The signals are mixed,<br />

amplified, and coupled to the OUTPUT jack through the<br />

RF Attenuator. The RF detector produces a dc output<br />

proportional to the RF output signal. The dc output is<br />

compared to a reference voltage. Any difference in dc<br />

levels produces an error current which drives the PIN<br />

diode modulator. The current flow through the PIN<br />

diodes controls the RF output level. The negative<br />

feedback loop described, is an ALC loop which holds the<br />

RF output level constant.<br />

Output Frequency Selection The desired output<br />

frequency is selected by the Digital Control Unit (DCU) in<br />

the mainframe Control logic levels to the mainframe RF<br />

circuits set the frequencies of the signals to the<br />

Frequency<br />

8-12<br />

Extension Module. Other logic levels are coupled to the<br />

extension module from the mainframe to set the<br />

frequency of the generated RF outputs which are<br />

coupled to RF Section. The signals are mixed and the<br />

converted signal is coupled to the OUTPUT jack.<br />

Modulation Selection<br />

Depending on the Auxiliary or Modulation Section,<br />

amplitude, frequency, phase, or pulse modulation may<br />

be selected.<br />

a. The amplitude modulation drive signal is coupled<br />

to the RF Section from the Modulation Section. The drive<br />

signal is superimposed on the reference level which<br />

controls the ALC loop. Thus, the ALC loop causes the<br />

RF output level to change at the modulation signal rate.<br />

b. Frequency modulation is accomplished by<br />

setting the modulation mode control to FM. The<br />

modulation drive signal frequency modulates a 20 MHz<br />

VCO signal which is generated in the Modulation<br />

Section. This signal is coupled to the RF Section,<br />

amplified, and coupled on to the Frequency Extension<br />

Module. The extension module circuits transfer the<br />

frequency modulation information from the 20 MHz<br />

signal to the 3.95 to 2.75 GHz oscillator signal. This<br />

signal is then coupled to the RF Section circuits.<br />

c. Phase modulation occurs when the selected<br />

modulation mode is set to M. The modulation drive<br />

signal from the modulation section is applied to the LO<br />

signal so its phase deviation varies with the drive signal<br />

amplitude.<br />

d. The Pulse ID logic input opens the ALC loop so<br />

there is no RF output without a pulse modulation drive<br />

signal. A -10 volt peak pulse will momentarily bias the RF<br />

output on.<br />

RF Output Level Selection<br />

The RF output level is selected by the front panel<br />

OUTPUT RANGE switch and the VERNIER control. The<br />

VERNIER control (in conjunction with the front panel<br />

meter) is used to set the output within a usable range of<br />

10 dB. The OUTPUT RANGE switch controls the output<br />

level range by inserting attenuation in 10 dB steps to 150<br />

dB.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14-P-7<br />

SERVICE SHEET 1 (Cont’d)<br />

Remote Operation<br />

In remote mode the frequency, modulation, and RF<br />

output levels are programmed into the DCU. Through<br />

parallel BCD PI (plug-in) control lines, an input is sent to<br />

the various storage registers. A one-of-six address<br />

selects the register which will accept the information.<br />

Frequency information is routed into one of 3 registers:<br />

center frequency, step (except 8660A), and sweep<br />

(except 8660A). Modulation information is routed to<br />

either the Modulation Mode/Source register or the<br />

Modulation Level register. RF output level (attenuation)<br />

information is routed to the attenuation storage register<br />

in the RF Section by addressing the ATTN CLK.<br />

The attenuation information is stored in the register until<br />

new data is received. Until that time the stored<br />

information is connected through various logic and<br />

decoding circuits and applied to the relays and switches<br />

which set the RF output level to the desired value. The<br />

RF Section front panel controls are inoperative in the<br />

remote mode.<br />

SYSTEM TROUBLESHOOTING<br />

When a malfunction occurs, refer to Section VIII of the<br />

HP Model 8660-series mainframe Operating and Service<br />

Manual to begin troubleshooting (System<br />

Troubleshooting Guide). Then, if that information<br />

indicates possible problems in the RF Section, return to<br />

this service sheet and perform the following tests which<br />

may help isolate the problem to an instrument<br />

(mainframe or a plug-in).<br />

Preparing the R F Section for Troubleshooting<br />

Follow the Removal and Disassembly Procedures on the<br />

foldout page which just preceeds the last foldout in the<br />

manual. Follow the directions for removing the RF<br />

Section from mainframe, removing its covers, and<br />

making the interconnections from mainframe to RF<br />

Section for troubleshooting purposes.<br />

Output Level Incorrect<br />

The following steps check the signal levels input to the<br />

RF Section from the Frequency Extension Module. Also,<br />

the attenuation data input to the RF Section must be<br />

checked if the instrument is being operated in the remote<br />

mode.<br />

8-13<br />

a. Disconnect the RF cable connected to P2 (on<br />

rear panel above the multi-pin connector P6). Measure<br />

the level of the 3.95 to 2.75 GHz signal from the cable<br />

with a spectrum analyzer (>+10 dBm). Reconnect the<br />

cable to P2.<br />

b. Disconnect the RF cable connected to P1 (on<br />

rear panel below the multi-pin connector). Measure the<br />

level of the 3.95 to 4.05 GHz signal from the cable with a<br />

spectrum analyzer (>-4 dBm). Reconnect the cable to<br />

P1.<br />

c. If either signal level from the extension module is<br />

incorrect, the problem is either in the extension module<br />

or the interconnections to the RF Section. Check the<br />

continuity of the cables and, if necessary, refer to the<br />

extension module manual for further troubleshooting<br />

information.<br />

d. If both signal levels are correct and the system is<br />

being operated in the remote mode, switch to local (front<br />

panel) control. If the problem is still evident, refer to<br />

Service Sheet 2 for further troubleshooting information.<br />

e. If the problem disappears, check continuity of<br />

the input data lines (PI-1, PI-2, PI-4, and PI-8) and the<br />

ATTN CLK input to the mainframe. If continuity exists,<br />

proceed to Section VIII of the mainframe manual and<br />

troubleshoot the DCU. Otherwise, refer to Service Sheet<br />

3.<br />

Frequency Problems<br />

The mainframe center frequency readout is correct but<br />

the frequency at the RF Section’s front panel jack is<br />

incorrect. The mainframe, and the frequency Extension<br />

Module contain the only controlled frequency sections. If<br />

the RF frequencies to the extension module are incorrect<br />

or if the levels are too low, the circuit defect is in the<br />

mainframe or the interconnections to the extension<br />

module (including the A15 20 MHz Amplifier Assembly).<br />

If these levels and frequencies are all correct, the<br />

extension module is malfunctioning or the data input<br />

from the mainframe DCU is incorrect.<br />

NOTE<br />

If the coaxial test cable <strong>11</strong>672-60008<br />

(for checking outputs from the multi-pin<br />

connector J6) is not available, proceed<br />

to step b.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 1 (Cont’d)<br />

RF Signal Levels<br />

Pin<br />

Numbers<br />

J6 (Main- Signal<br />

frame) or Frequency* (MHz) Level<br />

Inter- (dBm)<br />

connect<br />

Cable<br />

62 20 MHz ± 1 Hz >-7 dBm<br />

63 20 to 30 MHz + 1 Hz >-7 dBm<br />

64 360 to 450 MHz + 1 Hz >+10 dBm<br />

65 100 MHz + 1 Hz >+10 dBm<br />

*To achieve the 1 <strong>11</strong>7 tolerance, the System<br />

mainframe and the frequency counter must share<br />

a common timebase.<br />

a. Check the low frequency RF inputs to the<br />

RF Section. Set the mainframe Line switch to standby<br />

(STBY), disconnect the interconnect cable from the<br />

multi-pin connector P6 on the RF Section rear panel.<br />

Return the mainframe line switch to the ON position.<br />

Check the frequencies and levels according to the tables<br />

with a spectrum analyzer and a frequency counter. If the<br />

levels and frequencies are all correct, the same signals<br />

must be checked to ensure continuity into the Frequency<br />

Extension Module. Refer to the Troubleshooting<br />

Information in the extension module manual. Otherwise,<br />

proceed to step b.<br />

b. Check the RF signal levels and frequencies<br />

at their assembly outputs’ in the mainframe. Refer to the<br />

Section VIII of the mainframe manual. Check the 20<br />

Mhz FM/CW signal at A4J7, 100 MHz at A4J8, and 360<br />

to 450 MHz at A4J12. The 20 to 30 MHz signal is found<br />

on the A2 Mother Board Assembly which is located<br />

directly beneath the A4 Assembly. The tables of<br />

frequencies and levels still apply for these<br />

measurements. If any of the outputs are incorrect, refer<br />

to the appropriate troubleshooting information relating to<br />

the circuits which generate that particular frequency in<br />

Section VIII of the mainframe manual.<br />

c. If all inputs (step b) are correct and if any<br />

of the J6 outputs (step a) were incorrect, check continuity<br />

of the interconnections to the RF Section. In the case of<br />

problems with the 20 MHz CW’/FMI signal, refer to the<br />

Modulation Section manual. If all inputs (step b) are<br />

correct and the J6 outputs to the RF Section were not<br />

checked, proceed to the extension module for further<br />

troubleshooting Information.<br />

8-14<br />

Center Frequency Versus<br />

Frequency of 360 to 450 MHz Signal<br />

Center Frequency Actual Frequency<br />

Readout (350 to 450 MHz Signal)<br />

0.00 GHz 450 MHz<br />

0.01 440<br />

0.02 430<br />

0.03 420<br />

0.04 410<br />

0.05 400<br />

0.06 390<br />

0.07 380<br />

0.08 370<br />

0.09 360<br />

0.10 450<br />

NOTE<br />

If the problem is not in the RF Section or<br />

interconnections, the information in the<br />

Frequency Extension Module will<br />

determine if the problem is in the digit 8, 9,<br />

and 10 logic control units from the<br />

mainframe or the frequency controlled<br />

circuits in the extension module.<br />

Modulation Problems<br />

Amplitude, Frequency, and Phase Modulation.<br />

Defects in modulation circuits can usually be classed as<br />

either accuracy or distortion problems. In each case it<br />

must be determined if the problem is in the Modulation<br />

Section, RF Section, or (in FM mode only), the<br />

Frequency Extension Module.<br />

a. System modulation accuracy is checked by<br />

performing the appropriate performance test in Section<br />

IV of the modulation section manual. If the results<br />

indicate a problem exists, check the modulation section<br />

output with a full scale level setting. The table indicates<br />

where to make the measurement, the type of<br />

measurement, and the normal signal measured. A<br />

coaxial cable from the <strong>11</strong>672A Service Kit (<strong>11</strong>672-<br />

60008) connects to the appropriate signal on J6 (the<br />

mainframe-to-RF Section interconnect jack).<br />

If the measured signal shows the output modulation<br />

signal is incorrect, perform the appropriate adjustment in<br />

Section V of the modulation section manual. If the signal<br />

cannot be properly adjusted, refer to Section VIII of the<br />

modulation section


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 1 (Cont’d)<br />

Assembly (refer to the last foldout for its location). If<br />

either the signal or dc voltage is not present, check<br />

continuity back to the Auxiliary Section. If necessary,<br />

refer to the H<br />

Center Frequency Versus Frequency of 20 to 30 MHz Signal<br />

8-15<br />

Model 86631B Operating Note and troubleshoot the<br />

Auxiliary Section. Otherwise, refer to Service Sheet 1 for<br />

more troubleshooting information.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 1 (Cont’d)<br />

manual for further troubleshooting information. Once the<br />

adjustment is satisfactorily made, recheck the system<br />

modulation accuracy. If the system accuracy is still<br />

incorrect, perform the appropriate adjustment procedure<br />

in Section V of the RF Section manual. If this adjustment<br />

cannot satisfactorily be made, refer to the<br />

troubleshooting information of Service Sheet 2.<br />

b. Modulation distortion problems are verified<br />

by performing the appropriate distortion test determined<br />

by the modulation type (refer to Section IV of this<br />

manual). If the test indicates an excessive distortion<br />

level is present in the RF output signal, the source of the<br />

distortion must be determined. Measurements of the<br />

signals from the Modulation<br />

Section may be made at the J6 connector after the RF<br />

Section has been removed. For each modulation type,<br />

the output distortion is typically


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-4. System Test Point Locations<br />

8-17


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

MAINFRAME INTERCONNECT JACK<br />

Figure 8-5. Mainframe Interconnect Jack<br />

8-17A


Figure 8-6. System Troubleshooting Block Diagram<br />

8-17B<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 2<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of<br />

the HP Model 8660-series mainframe Operating and<br />

Service Manual to begin trouble-shooting (System<br />

Troubleshooting Guide). Then, if that information<br />

indicates possible problems in the RF Section, refer<br />

to the System Troubleshooting information (Service<br />

Sheet 1) in this manual. This information may be<br />

used to isolate the defect to the RF Section, another<br />

plug-in, or the mainframe. If the problem is in this<br />

plug-in, return to this service sheet for further<br />

troubleshooting information.<br />

ANALOG CIRCUITS<br />

PRINCIPLES OF OPERATION<br />

General<br />

The LO and RF input signals from the frequency Extension<br />

Module are mixed and the difference frequency output is<br />

amplified and coupled to the OUTPUT jack. Thus, frequencies<br />

between 1 and 1300 MHz may be selected in 1 Hz steps.<br />

The RF output voltage level is detected and compared to a<br />

stable reference. The result-ant error voltage is used to<br />

control the level of the RF signal as it is passed through the<br />

Modulator assembly. This ALC (Automatic Level Control)<br />

loop, therefore, maintains a relatively constant output level<br />

across the system’s specified output range.<br />

The RF output level may be either locally controlled (front<br />

panel operation) or remotely controlled (programmed input).<br />

In either case, the logic control input is coupled to the Logic<br />

Section. This input data is manipulated so it selects the level<br />

of attenuation of the RF output signal by controlling the 10<br />

and/or 1 dB Step Attenuators.<br />

A power supply, RF interconnections, and a 20 MHz amplifier<br />

are contained in the RF Section. They supply the power and<br />

RF signals which operate the Frequency Extension Module.<br />

Phase Modulator Section<br />

The phase modulation drive signal from the Modulation section<br />

is coupled to the A16 Phase Modulation Driver Assembly<br />

where it passes through a gain tracking circuit (frequency<br />

variable attenuator). This circuit keeps the phase deviation<br />

constant with change in system center frequency because the<br />

sensitivity of the phase modulator circuitry changes with<br />

respect to the LO frequency. The signal is then amplified and<br />

coupled to the Phase Modulator Assembly.<br />

Phase modulation of the LO signal occurs when the signal<br />

(which passes through the Circulator Assembly to the Phase<br />

Modulator Assembly) is reflected back into the circulator. The<br />

phase of the reflected signal with respect to the incident signal<br />

is dependent on the instantaneous modulation drive voltage<br />

present at the phase modulator. The LO signal is first passed<br />

8-18<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

through the isolator, through port 1 (J1) to port 2 (J2) of the<br />

circulator, and on to the phase modulator. The reflected signal<br />

is passed from port 2 to port 3 (J3) where it is again reflected<br />

from the phase modulator with additional phase shift<br />

approximately equal to that which occurred at port 2. The<br />

signal is passed from port 3 to port 4 (J4) and through the 3 dB<br />

attenuator to the 4 GHz Amplifier Assembly.<br />

In other than option 002 instruments (no phase modulation<br />

circuits), the LO signal is coupled directly from FL1 to the A8<br />

4.0 GHz Amplifier Assembly.<br />

Mixer Section<br />

The mixer output is derived from mixing the LO and RF inputs.<br />

The phase modulated or cw LO signal is amplified and<br />

coupled to the Mixer Assembly. The RF signal passes through<br />

the Isolator (20 dB reverse isolation) to the Modulator<br />

Assembly where it encounters variable series attenuation.<br />

The series attenuation is controlled by the bias signal from the<br />

ALC feedback loop. The modulator’s RF output signal is<br />

coupled directly to the Mixer where it is mixed with the LO<br />

signal. The difference frequency output is coupled to the<br />

Amplifier/Detector Assembly.<br />

Amplifier/Detector Section<br />

The RF input to the Amplifier/Detector Assembly is amplified<br />

41 dB. This high level signal is coupled to the 10 dB Step<br />

Attenuator.<br />

The Amplifier/Detector Assembly also contains the RF<br />

Detector circuit. It produces a dc voltage which is proportional<br />

to the peak RF output voltage. This signal, which is amplified<br />

to drive the front panel meter and the AM Gain compensation<br />

circuits in the Reference Assembly, is also coupled to the ALC<br />

Amplifier Assembly.<br />

ALC Section<br />

Reference Assembly. In the Local Mode, the RF output level<br />

is set by the front panel controls. The unmodulated RF level to<br />

the 10 dB Attenuator is set by the ALC loop’s dc bias voltage<br />

which, in turn, is controlled by the VERNIER setting.<br />

In the AM mode the modulation drive signal is superimposed<br />

on the reference voltage. The average amplitude of the RF<br />

output is dependent on the average dc level (which is equal to<br />

the dc reference voltage) while the instantaneous RF output<br />

voltage and its rate of change (modulation characteristics) are<br />

dependent on the superimposed modulation drive signal.<br />

In the remote mode, the entire system responds to<br />

programmed inputs; the front panel controls of all instruments<br />

are inhibited. In the RF Section, the reference output is<br />

coupled to the ALC Assembly through the 1 dB Step<br />

Attenuator. Therefore, the vernier function is controlled by the<br />

1 dB Step Attenuator.<br />

ALC Amplifier. The ALC Amplifier compares the Detector<br />

Amplifier Assembly output to the Reference Assembly output.<br />

Any change


SERVICE SHEET 2 (Cont’d)<br />

in the detected RF level or the reference level is immediately<br />

reflected at the ALC assembly output. This output is coupled<br />

to the A5 Modulator Assembly as the Modulator Bias signal.<br />

Because the RF input to the 10 dB Step Attenuator is directly<br />

proportional to the Modulator RF output level (which is<br />

controlled by the Modulation Bias Signal), the ALC feedback<br />

loop is completed.<br />

Pulse Modulation Circuits. During Pulse Modulation, the<br />

ALC loop is opened at the ALC Amplifier output. With no<br />

signal input, a positive bias voltage to the A5 Modulation<br />

Assembly causes the RF signal output to be at least 40 dB<br />

down (60 dB down at center frequencies >1300 MHz) from the<br />

"on-condition". A -10 Vdc pulse biases the RF "on".<br />

Attenuation Section<br />

The Attenuator Section operates identically in local and remote<br />

modes. The inputs from the Logic Section (10D, 20D, 40D,<br />

and 80D) select the level of attenuation of the RF signal<br />

passing through the 10 dB Step Attenuator.<br />

TROUBLESHOOTING<br />

It is assumed that a problem has been isolated to the RF<br />

Section as a result of using the System Troubleshooting Guide<br />

found in Section VIII of the HP Model 8660-series mainframe<br />

Operating and Service Manual and the information entitled<br />

System Troubleshooting on Service Sheet 1. Troubleshoot the<br />

RF Section using the test equipment, information, and<br />

procedures which follow.<br />

Test Equipment<br />

Spectrum Analyzer ......................HP 8555A/8552B/140T<br />

Oscilloscope ...............................HP 180C/1801A/1821A<br />

Digital Voltmeter ..........................HP 34740A/34702A<br />

Test 1. It is good practice to first check the power supply<br />

inputs to the RF Section and at the same time, it may help to<br />

check AM, Pulse ID or any other inputs which relate to the<br />

problem. The inputs may be checked at the A12 Assembly<br />

test points on the right-side rear of this plug-in.<br />

A12 Assembly Test Points<br />

-10V -10.0 + 0.1 Vdc<br />

+ 20V + 20.0 + 0.1 Vdc<br />

-20Vu -21.0 + 0.2 Vdc<br />

+ 20VI +20.0 + 0.2 Vdc<br />

Test 2. If the problem is related to incorrect output level,<br />

proceed to Test 3. If it is a unique type problem such as<br />

amplitude modulation, noise, etc., refer to the following items<br />

for additional troubleshooting hints.<br />

a. Frequency Problems. Normally not caused by RF<br />

Section. Refer to Section VIII of the mainframe manual or<br />

Service Sheet 1 of this manual.<br />

8-18A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

b. Spurious Signals. May be isolated by checking for<br />

signal at various locations in the RF Section. Setting the A4S1<br />

switch to Test may help to isolate the problem to the RF<br />

circuitry or ALC loop.<br />

c. Noise. Generally, noise originates in Frequency<br />

Extension Module or the A15 20 MHz Amplifier Assembly.<br />

d. Amplitude Modulation. Verify that the AM signal<br />

reaches the A10 Reference Assembly.<br />

If amplitude modulation level changes with an RF level<br />

change, check the RF Section front panel meter reading<br />

versus measured RF OUTPUT level. If the panel meter<br />

reading is correct, refer to Service Sheet 7 (check AM Gain<br />

input and related circuits). Otherwise, check the meter driver<br />

amplifier and related components shown on Service Sheet 6.<br />

Distortion problems may be caused by defective components<br />

associated with the ALC Bandwidth Input. Check the logic<br />

inputs from Service Sheet 3. Then refer to Service Sheet 3, 6,<br />

or 7.<br />

If the amplitude modulation level differs from the level shown,<br />

perform the related adjustment procedures in Section V to see<br />

if the error is corrected. Be sure the fault isn’t in the<br />

Modulation Section. An input of 1.0 Vrms to the A10<br />

Reference Assembly should equal 100% AM level.<br />

e. Phase Modulation. The output of the A16 Phase<br />

Modulator Driver Assembly is a distorted sinusoidal waveform<br />

of approximately 7.5 Vp-p a full scale Modulation Section<br />

meter indication. If the output is incorrect, check the output of<br />

the cable, W12, to determine if W12 or A16 is defective. The<br />

output should be 1.5 Vrms. If the output of the A16 assembly<br />

is correct, either W14 or A17 is defective. Refer to the<br />

paragraph entitled LO Signal Circuits Repair procedure in<br />

Section VIII of this manual for disassembly and repair<br />

procedures.<br />

Phase modulation distortion problems in the RF section will<br />

generally be caused by the A16 Phase Modulator Driver<br />

Assembly or the A17 Phase Modulator Assembly. Refer to<br />

Service Sheet 5.<br />

NOTE<br />

Excessive incidental AM during phase modulation<br />

may be caused by incorrect operation of the 50 MHz<br />

Low Pass Filter. Check the control input and the RF<br />

output level of the filter. Refer to Service Sheet 4.<br />

f. Pulse Modulation. Problems may be isolated by<br />

checking Pulse In and Pulse ID inputs. Also, check continuity<br />

from A5 Modulator Assembly inputs from Auxiliary Section.<br />

g. Incorrect Front Panel Meter Reading. Refer to<br />

Test 3.<br />

Test 3. If the RF output level is incorrect by more than 1 or 2<br />

dB, proceed to Test 4. Otherwise check the 10H input to the<br />

A10


SERVICE SHEET 2 (Cont’d)<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Assembly related components. Refer to Service Sheet 3 if the input is incorrect. If necessary refer to Section V and perform the RF<br />

Output Level and 1 dB Step Attenuator Adjustment procedures. If the Adjustments cannot be done or do not correct the tracking<br />

across the VERNIER range, check the Meter Driver and meter circuitry, and the AM Gain circuits. Refer to Service Sheets 6 and 7<br />

respectively. Also check the circuits in the A4 Assembly which are influenced by the 10H input.<br />

Test 4. Proceed to Test 5 if the RF output level is higher than normal. The RF outputs listed in each step of this test (4) are lower<br />

than normal. The voltages enclosed in parenthesis are Modulator Bias Signal ranges. They indicate that the ALC loop is (1) holding<br />

the RF output low, (2) is trying to increase the RF output or (3) that a quiescent level, although incorrect, has been reached. Refer to<br />

the block diagram for the normal range of Modulator Bias Signal levels.<br />

a. The RF output is low but the ALC loop is trying to increase the level (>-3 Vdc). Check the RF outputs of FL1,<br />

A7, and A6 to isolate the problem to Service Sheets 4 (for other than option 002 instruments), Service Sheets 4 or 5 (option 002<br />

instruments only), or Service Sheet 6 respectively.<br />

If the output of FL1 is correct and the output of A7 is incorrect, the problem may be on either Service Sheets 4 or 5 in option 002<br />

instruments. In this case, refer to the LO Signal Circuits Repair procedure and the Troubleshooting Block Diagram to isolate the<br />

problem to an assembly or cable.<br />

On other than option 002 instruments, if the output of A7 is defective, refer to Service Sheet 4.<br />

Each of these assemblies and circuits, if defective, must be replaced as a unit with the exception of A7. If A7 is defective, refer to<br />

Service Sheet 4 for further troubleshooting information.<br />

b. The RF output is low and the ALC loop is holding the modulator Bias Signal level low (>+10 Vdc). First, check<br />

the A10 reference Assembly output with the VERNIER control set to the pw and ccw position with A4S1 in the Normal position. If the<br />

output is abnormal, refer to the troubleshooting information on Service Sheet 7. A normal output indicates the defect is either on the<br />

A3 ALC Assembly, or the A4 Detector Amplifier Assembly.<br />

Set the A4S1 switch to the Test position. If the Modulator Bias Signal exhibits the same response as shown in the following table, the<br />

problem is probably in the A4 Detector Amplifier Assembly. (Check the Detector Signal input at A4 pin <strong>11</strong>.)<br />

System Troubleshooting Block Diagram<br />

SERVICE SHEET 1<br />

8-18B


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 2 (Cont’d)<br />

Modulator Bias Signal<br />

A4S1 Vernier Control Settings<br />

Switch CW CCW<br />

904 907 904 907<br />

Normal +0.2 Vdc +0.4 Vdc +1 to +0.8 Vdc<br />

+<strong>11</strong> Vdc<br />

Test -4 Vdc -3.0Vdc +0.3Vdc +0.5Vdc<br />

c. The Modulator Bias Signal is at a quiescent level<br />

but is lower (more positive) than normal.<br />

Check the A10 Reference Assembly output level. If the output<br />

is lower (more positive than normal), check the 1A, 2A, 4A,<br />

and 8A inputs to the A10 Assembly (remote mode only). If<br />

they are correct or the instrument is in local mode, refer to<br />

Service Sheet 7. If the remote inputs are incorrect or the<br />

problem is associated with the 10 dB Step Attenuator, refer to<br />

troubleshooting information on Service Sheet 3. Otherwise,<br />

check the detector output and reference at A4 pin 10 and <strong>11</strong>.<br />

Refer to Service Sheet 6.<br />

Test 5. The RF outputs listed in each step of this test are<br />

higher than normal. The voltages enclosed in parentheses are<br />

Modulator Bias Signal ranges. They indicate that the ALC loop<br />

(1) is holding the RF output high, (2) is trying to decrease the<br />

output level or (3) that a quiescent level, although incorrect,<br />

has been reached. Refer to the block diagram for normal<br />

values of Modulator Bias Signal.<br />

3-18 C<br />

a. High RF output level; the ALC has in-creased the<br />

level (>, -3 Vdc). Check the A10 Reference Assembly output.<br />

If the response to VERNIER control settings is abnormal, refer<br />

to Service Sheet 7 and troubleshoot the A10 Assembly. If the<br />

response is normal, set the A4S1 switch to test. If the<br />

Modulator Bias Signal responds to the VERNIER control<br />

settings as indicated by the table of Test 4b, check that the<br />

detector output responds properly to the increased RF signal<br />

level (check A4 pin 10 and <strong>11</strong>) and refer to Service Sheet 6.<br />

Otherwise, turn to Service Sheet 7 and continue<br />

troubleshooting.<br />

b. High RF output level; the ALC is trying to<br />

decrease the level (, >+10 Vdc). The A5 Modulator<br />

Assembly or associated circuitry is probably defective (refer to<br />

Service Sheet 4).<br />

c. The Modulator Bias Signal is at a quiescent level<br />

but higher (more negative) than normal.<br />

Check the A10 Reference Assembly output. If the A10 output<br />

is more negative than normal, check the 1A, 2A, 4A, and 8A<br />

inputs to the A10 assembly (remote mode only). If the A10<br />

outputs are correct or the instrument is in local mode, refer to<br />

Service sheet 7. If the remote inputs are incorrect or the<br />

problem is associated with the 10 dB Step Attenuator, refer to<br />

the troubleshooting information on Service Sheet 3.<br />

Otherwise, check that the detector output responds properly to<br />

the increased RF signal level (check A4 pins 10 and <strong>11</strong>).<br />

Refer to Service Sheet 6.


Figure 8-7. RF Section Simplified Block Diagram<br />

8-19<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Figure 8-8. Main Troubleshooting Block Diagram<br />

8-19A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 3<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of<br />

the HP Model 8660-series mainframe Operating and<br />

Service Manual to begin troubleshooting (System<br />

Trouble-shooting Guide). Then, if that information<br />

indicates possible problems in the RF Section, refer<br />

to the System Troubleshooting information in Service<br />

Sheet 1. This information may be used to isolate the<br />

defect to the RF Section, another plug-in, or the<br />

mainframe. If the problem is in this plug-in, return to<br />

Service Sheet 2 for further troubleshooting<br />

information.<br />

LOGIC CIRCUITRY<br />

PRINCIPLES OF OPERATION<br />

General<br />

In this instrument, logic inputs to the analog circuits control<br />

functions such as 1 dB and 10 dB steps of attenuation of the<br />

RF output signal. These inputs also influence the phase<br />

modulation signal.<br />

In the remote mode, all control signals are external to the RF<br />

Section. In the local mode, the OUTPUT RANGE switch<br />

selects the range by using a binary coded hexadecimal output<br />

with an extra overrange line. Also, the VERNIER control is<br />

analog in nature.<br />

Filter Control Assembly<br />

The ninth and tenth digit BCD inputs from the mainframe (100<br />

MHz and 1 GHz) are used to control the A7A5 50 MHz Low<br />

Pass Filter.<br />

The decoder circuit determines when the frequency output<br />

from the A7 Assembly is greater than 100 MHz. The A7A5 50<br />

MHz High Pass Filter is switched on which effectively traps<br />

any low frequency phase modulation drive signals which would<br />

otherwise be amplified and passed on to the RF output.<br />

Logic Assembly<br />

Local operation of the 10 dB Step Attenuator is selected by a<br />

logic high on the LCL/RMT input. Thus, control of the 10 dB<br />

Step Attenuator by the inputs from the front panel OUTPUT<br />

RANGE switch is enabled while the remote inputs are<br />

inhibited.<br />

In Remote mode, a logic low in the LCL/RMT inputs inhibits<br />

front panel control and enables data information flow from the<br />

mainframe to the Logic Assembly. The ATTN CLK controls<br />

the actual data input on the PI-1, PI-2, PI-4, and PI-8 lines.<br />

The OUTPUTS to the 10 dB Step Attenuator (10L, 20L, 40L,<br />

8-20<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

80L), the over-range (10H), and the 1 dB Step Attenuator<br />

outputs (1A, 2A, 4A, 8A) are all controlled by external<br />

programming in the Remote Mode. A safety feature, the<br />

RESET input, sets the 10 dB Step Attenuator to the maximum<br />

attenuation when the Remote mode is first initiated.<br />

Attenuator Driver Assembly<br />

The inputs from the Logic Assembly (10L, 20L, 40L, and 80L)<br />

switch the equivalent attenuator drive outputs (10D, 20D, 40D,<br />

and 80D). These outputs provide the higher voltages and<br />

current needed to drive the relays in the A13 Attenuator<br />

Assembly.<br />

TROUBLESHOOTING<br />

Malfunctions in the RF Section which appear to be a logic<br />

problem may be an analog circuit problem. Refer to Service<br />

Sheet 2 to begin troubleshooting and return here if necessary.<br />

Test Equipment<br />

Oscilloscope ......................................HP 180C/1801A/1821A<br />

Digital Voltmeter ................................HP 34740A/34702A<br />

Logic Probe .......................................HP 10525T<br />

General<br />

If the malfunction is isolated to the logic circuits, the related<br />

inputs must be checked before an attempt is made to<br />

troubleshoot the individual circuit assemblies. The control<br />

levels are fixed and may change when a new center frequency<br />

or mode of operation (local or remote) has been selected. The<br />

clocked or momentary inputs, PI (plug-in), ATTN CLK, and<br />

RESET occur only at the instant the center frequency or mode<br />

change is made.<br />

Local Mode<br />

In local mode, the inputs mentioned in the preceding<br />

paragraph are not used. The 1A, 2A, 4A, and 8A outputs are<br />

also not used. (VERNIER control replaces the 1 dB step<br />

attenuator.) Check the 1F, 2F, 4F, 8F, and 1H inputs against<br />

the levels shown for the S1 switch in the diagram.<br />

Remote Mode<br />

Check the Logic Assembly PI, ATTN CLK, and RESET inputs.<br />

Switch to the local mode and then back to the remote mode of<br />

operation. Verify that the attenuation level has reset to 150 dB<br />

by checking the 10L, 20L, 40L, 80L, and 10H outputs [10H and<br />

10L should be low (+2.0 Vdc)]. The momentary low<br />

input (O Vdc as compared to the normal +5 Vdc) may be<br />

observed on an oscilloscope at the instant of switching. A<br />

logic probe may also be used to verify the presence of the<br />

reset pulse. To verify that the PI (data) and ATTN CLK inputs<br />

are correct, program the information shown in the table at the<br />

Main Troubleshooting Block Diagram<br />

SERVICE SHEET 2


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 3 (Cont’d)<br />

bottom of this page. Check each output for the correct level.<br />

If any level is incorrect, the presence of the data and/or the<br />

ATTN CLK inputs may be checked at the instant of<br />

programming with an oscilloscope or logic probe.<br />

Check the A9 Attenuator Driver Assembly outputs against the<br />

inputs.<br />

8-20A<br />

NOTE<br />

If the problem is isolated between the inputs and<br />

outputs of an assembly, refer to the appropriate<br />

Service Sheet as indicated on the diagram.


Figure 8-9. Logic Troubleshooting Block Diagram<br />

8-21<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 4<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service<br />

Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible<br />

problems in the RF Section, refer to the Systems Troubleshooting information (Service Sheet 1). This information<br />

maybe used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plugin,<br />

refer to Service Sheet 2 for further troubleshooting information.<br />

MIXER SECTION<br />

PRINCIPLES OF OPERATION<br />

General<br />

The LO signal is filtered and amplified to drive the mixer. The RF signal is leveled and may be amplitude modulated at the A5<br />

Modulator Assembly. After passing through the Modulator, the RF Signal and LO Signal are mixed; the difference frequency is passed<br />

on for further amplification.<br />

4 GHz Bandpass Filter/Amplifier<br />

Unwanted sidebands are eliminated from the LO signal by passing the signal through a bandpass filter. In option 002 instruments, the<br />

LO signal is coupled to the phase modulation circuits before being input to the 4 GHz Amplifier. The signal is amplified to a high level<br />

to drive the mixer.<br />

Isolator<br />

The 3.95 to 2.75 GHz RF Signal is passed through the Isolator to the Modulator Assembly. Reverse signal attenuation is about 20 dB.<br />

Modulator Assembly<br />

The effect of the PIN diode Modulator on the RF Signal is that of a variable attenuator. The level of attenuation and therefore the<br />

modulator RF output is dependent on the Modulator Bias Signal dc level.<br />

The PIN Diode Modulator has dynamic attenuation range of >50 dB. A more positive modulator bias signal turns off the series diodes<br />

while the shunt diodes are forward biased. The shunt diodes and the series resistor form a voltage divider which attenuates the RF<br />

Signal. As the bias voltage goes more negative, the impedance of the shunt diodes increases while the series diodes impedance<br />

decreases. Therefore, the RF signal attenuation decreases. The shunt diodes effectively control the attenuation from 12 to >50 dB<br />

down while the series diodes are effective only to about 12 dB down.<br />

8-22<br />

Logic Troubleshooting Block Diagram<br />

SERVICE SHEET 3


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 4 (Cont’d)<br />

The RF output level at the front panel jack is directly<br />

proportional to the Modulator Assembly RF output. The<br />

Modulator Bias Signal controls the A5 Modulator Assembly<br />

output and is dependent on an error voltage derived from<br />

comparing the RF detector output to the reference dc level.<br />

Mixer Assembly<br />

The RF Signal is passed through a low pass filter and<br />

attenuator before leaving the Modulator Assembly. Then the<br />

RF signal is mixed with the LO signal in the Mixer Assembly,<br />

the mixer output passes through a low pass filter, and the<br />

difference frequency is a 1-1300 MHz phase-locked signal with<br />

frequency resolution of 1 Hz.<br />

At center frequencies >, 100 MHz, the High Pass Filter Control<br />

input from the A20 Filter Control Assembly to the A7A5<br />

Assembly causes the mixer output to pass through the 50 MHz<br />

High Pass Filter. This reduces incidental AM distortion<br />

generated by the phase modulated signal in the balanced<br />

mixer.<br />

TROUBLESHOOTING<br />

It is assumed that the troubleshooting information on Service<br />

Sheet 1 was used to isolate a circuit defect to the assemblies<br />

or cables shown on the accompanying diagram. Troubleshoot<br />

the Mixer Section by using the test equipment and procedures<br />

given below.<br />

NOTE<br />

In Option 002 instruments, a defect cannot easily be<br />

isolated to circuits shown on this schematic diagram.<br />

Refer to Service Sheet 2 and the repair procedure<br />

entitled LO Signal Circuits Repair.<br />

8-22A<br />

Test Equipment<br />

Spectrum Analyzer ...................HP 8555A/8552B/140T<br />

Power Meter .............................HP 435A/8481A<br />

Digital Voltmeter .......................HP 34740A/34702A<br />

Service Kit ..............................HP <strong>11</strong>672A<br />

Test 1. Check the power supply inputs to the A8 Assembly<br />

(+20V and -10V). If correct, proceed to Test 2. Otherwise<br />

check for continuity of interconnections to mainframe or an A8<br />

Assembly defect.<br />

Slight but repeated bending of semi-rigid coaxial<br />

cables will damage them very quickly. Bend the<br />

cables as little as possible. If necessary, loosen<br />

the assembly to release the cable.<br />

Test 2. If the RF power output is greater than normal (refer to<br />

the schematic), the A5 Modulator Assembly is probably<br />

defective. If the power output is less than normal, checking<br />

the difference assembly outputs will quickly isolate the<br />

defective assembly or cable.<br />

NOTE<br />

Defects in the A15 20 MHz Amplifier Assembly and<br />

RF interconnections from mainframe to Frequency<br />

Extension Module (through the RF Section) normally<br />

will be isolated by using the Systems Troubleshooting<br />

(Service Sheet 1).


Figure 8-10. A7 Mixer Assembly’s subAssembly and Component Locations<br />

8-23<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Figure 8-<strong>11</strong>. Mixer Section Schematic Diagram<br />

8-23A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 5<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service<br />

Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible<br />

problems in the RF Section, refer to the Systems Troubleshoot- ing information which precedes Service Sheet 1.<br />

This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the<br />

problem is in this plug-in, refer to Service Sheet 1 for further troubleshooting information.<br />

PRINCIPLES OF OPERATION<br />

General<br />

The phase modulation drive signal from the modulation section is coupled to the A16 Phase Modulation Driver Assembly. The signal<br />

is predistorted and the overall gain is varied (with respect to LC frequency) to compensate for the frequency sensitivity of the Al’7<br />

Phase Modulator Assembly. The signal is amplified before being connected to the phase modulator.<br />

With minimal loss, the LO signal passes through the A19 3.9-4.1 GHz Isolator Assembly to the A18 Circulator Assembly. The signal<br />

passes from port 1 to port 2 and on to the phase modulator. In the phase modulator, the varactor diode, A17A1CR1, reactively<br />

terminates the stripline transmission line which reflects the LO signal. Changing the bias voltage applied to the varactor diode<br />

changes the termination reactance. This causes the reflected signal to shift in phase with respect to the incident input signal. The<br />

reflected LO signal travels back down the transmission line and through port 2 to port 3, where it again enters the phase modulator.<br />

The same sequence of events occurs. Thus, the phase shift of the LO signal reflected back to port 3 is approximately doubled.<br />

The phase modulated LO signal continues from port 3 to port 4, through the AT2 3 dB Attenuator and on to the A8 4 GHz Amplifier<br />

Assembly. Due to the high input reflection coefficient of the 4 GHz: Amplifier, a large portion of the signal is reflected back to port 4,<br />

through to port 1, and on to the Frequency Extension Module. The AT2 3 dB Attenuator and A19 3.9-4.1 GHz Isolator Assemblies,<br />

reduce the level of the reflected signal to minimize the interference created in the extension module VCO circuits.<br />

A16 Phase Modulator Driver Assembly<br />

The shunt capacity of W12 and A16L1 forms a low pass filter which improves the frequency response of the input modulation drive<br />

signal up to 10 MHz.<br />

8-24


SERVICE SHEET 5 (Cont’d)<br />

Diode Shaping Network. The shaping network introduces<br />

third order distortion to higher level input signals (when the<br />

A16CR2 diode begins to conduct). The level of distortion is<br />

adjusted with A16R1 to compensate for the third order<br />

distortion inherent in the phase modulator transfer<br />

characteristics. The demodulated third order phase<br />

modulation sidebands are minimized by adjusting A16R1, the<br />

Third Harmonic Adjust control.<br />

Gain Tracking. Gain tracking of the modulation drive signal is<br />

introduced to compensate for the phase modulator’s inability to<br />

produce a constant phase deviation at different LO<br />

frequencies. At higher LO frequencies, the phase modulator<br />

sensitivity is lower and a higher level modulation drive signal is<br />

required to produce the same phase deviation. The<br />

modulation drive signal level is changed, with respect to the<br />

LO frequency, by the digitally controlled attenuator A16U1 and<br />

differential amplifiers A16Q1 and Q2. At system center<br />

frequencies where digit 8 (10 MHz steps) is zero (LO<br />

frequency is 3.95 MHz) logic lows (< +0.8 Vdc) are present at<br />

inputs to A16U1. Lows cause cause the attenuator stage to<br />

be off with minimum attenuation of the signal at the junction of<br />

A16R12, R13. The differential voltage across the bases of<br />

A16Q1 is essentially zero and the gain is unity. When an input<br />

to A16U1 is high the transistor stage is turned on, current<br />

flows from the modulator drive signal path through either<br />

A16R4, R6, R8, or R10. Any difference in amplitude between<br />

the bases of A16Q1 is amplified and coupled to A16Q2 where<br />

it is further amplified. The differential output voltage across<br />

A16R27 is coupled to the gate of A16Q4. The gain control,<br />

A16R2, sets the modulation level at 3.95 GHz (unity gain).<br />

The Gain Tracking control adjusts the rate of change of<br />

attenuation with respect to the LO frequency by setting the<br />

phase modulation level at 4.05 GHz (maxi- mum gain).<br />

J-FET Shaping Circuit. The J-FET A16Q1 is biased so it<br />

introduces second order distortion to the modulation drive<br />

signal. This distortion compensates for the second order<br />

distortion in the transfer characteristics of the phase<br />

modulator. The transfer characteristics of the phase<br />

modulator are varied by changing the dc output from the A16<br />

Assembly. The Second Harmonic Adjust Control A16R3 sets<br />

the second order distortion level of A16Q1 (by controlling the<br />

drain current flow) and the dc output from A16 (which is<br />

proportional to the A16Q1 drain voltage). The distortion level<br />

is set by demodulating the system’s RF output and nulling the<br />

second order harmonic distortion.<br />

Modulation Driver Amplifier. The J-FET output is coupled to<br />

the discrete component operational amplifier made up of<br />

A16Q5 through Q7 and their associated components. The<br />

amplifier’s high frequency rolloff is set by A16C7. The gain of<br />

approximately 10 is determined primarily by A16R49, 100O2,<br />

and A16R38, <strong>11</strong>0. The network of A16RT1, A16R38 and R39<br />

aid in reducing gain changes due to J-FET drift with<br />

temperature.<br />

8-24A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

A17 Phase Modulator Assembly. In the phase modulator,<br />

the LO signal passes through the blocking capacitors and<br />

down the stripline transmission lines to the varactor diode<br />

terminations, A17A1CR1 and CR2. The amount of phase shift<br />

between the incident and reflected signals is determined by<br />

the varactor capacitance.<br />

The varactor capacitance is voltage variable. The dc bias<br />

input sets the quiescent phase shift. The instantaneous phase<br />

shift is dependent on the sum of the dc bias and the ac<br />

modulation drive signal input to the phase modulator.<br />

TROUBLESHOOTING<br />

It is assumed that the troubleshooting information on Service<br />

Sheet 2 and the LO Signal Circuits Repair procedure were<br />

used to isolate the defect to one of the Assemblies.<br />

Troubleshoot the A16 or A17 Assemblies by using the<br />

following procedure.<br />

Test Equipment<br />

Digital Voltmeter ..............................HP 34740A/34702A<br />

Oscilloscope.. ..................................HP 180C/1801A/1821A<br />

Spectrum Analyzer ..........................HP 8555A/8552B/140T<br />

A16 and A17 Assembly circuit malfunctions usually result in<br />

incorrect or no modulation drive, incorrect gain tracking, or<br />

unwanted distortion. Distortion may be due to misadjusted or<br />

defective components.<br />

Set the system’s modulation section switches for OM mode,<br />

internal 1 kHz source, and adjust the modulation level control<br />

for a full scale meter reading (100° or 200°). Refer to the<br />

schematics for the typical voltages.<br />

Al Modulator Filter Assembly<br />

A2 ALC Mother Board Assembly<br />

A5 Modulator Assembly<br />

A7 Mixer Assembly<br />

A8 4 GHz Amplifier Assembly<br />

A12 Logic Mother Board Assembly<br />

A15 20 MHz Amplifier Assembly<br />

AT1 Isolator<br />

FL1 4 GHz Band Pass Filter<br />

SERVICE SHEET 4


SERVICE SHEET 5 (Cont’d)<br />

1 kHz source, and adjust the modulation level control for a full<br />

scale meter reading (1000 or 200°). Refer to the schematics<br />

for the typical voltages.<br />

A16 Assembly<br />

Test 1. Check the power supply inputs to the A16 Assembly.<br />

Test 2. Check the peak-to-peak ac voltages at the various<br />

points as indicated on the schematic. If all seem to be correct,<br />

refer to Section V and readjust the phase modulation circuits.<br />

Test 3. If the output of the discrete component operational<br />

amplifier is defective, check the dc output and compare it to<br />

the dc inputs. If the change in dc output voltage from normal<br />

does not<br />

8-24B<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

follow the change in input dc voltage, the problem is probably<br />

in Q4 through Q10 or their associated components. For<br />

example, the output voltage is more positive than normal.<br />

Test 4. Check the dc voltages on A16Q1 through Q3 and Qll.<br />

Test 5. If the gain tracking is incorrect, check and compare<br />

the inputs and outputs of A16U1 and U2.<br />

A17 Assembly<br />

Test 1. Remove the assembly cover. Check for the presence<br />

of the dc bias and ac voltage on the varactor diodes, A17CR1<br />

and CR2.<br />

Test 2. Verify that A17C1 and C3 are not defective.


Section 8<br />

Figure 8-12. A16 Phase Modulator Driver Assembly Component and Test Point Locations<br />

Figure 8-13. A17 Phase Modulator Assembly component Locations<br />

8-25<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Figure 8-14. Phase Modulation Section Schematic Diagram (Option 002)<br />

8-25A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 6<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual<br />

to begin troubleshooting (Systems Troubleshooting Guide). Then, if that information indicates possible problems in<br />

the RF Section, refer to the Systems troubleshoot- ing information in Service Sheet 1 in this manual. This<br />

information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is<br />

in this plug-in, refer to Service Sheet 2 for further troubleshooting information.<br />

PRINCIPLES OF OPERATION<br />

Amplifier/Detector Assembly<br />

The A6 1-1300 MHz Amplifier Assembly contains an RF Preamplifier and Amplifier which are separated by an elliptic low pass filter.<br />

The combined RF gain is approximately 41 dB.<br />

The RF Detector provides a dc output which is proportional to the peak RF output from the A6 Assembly. The dc level charges the 68<br />

pF capacitor which is coupled to the A3 Detector Amplifier Assembly.<br />

Detector Amplifier Assembly<br />

A small bias current through the RF and Reference Diodes is set by the A4R13 Detector Bias Adjustment for maximum detector<br />

sensitivity. Beyond the initial bias current, any further change in current flow is due to temperature variations. Because the two diodes<br />

are located in the same thermal environment, an increase in current flow through the RF Detector Diode is matched by an equal<br />

increase in current flow through the Reference Diode. The Reference Diode current is coupled to the non-inverting input of the<br />

Detector Amplifier (a discrete operational amplifier comprised of A4Q3, A4Q2, A4Q1 and associated components) while the RF<br />

Detector Diode output is coupled to the inverting output. Therefore, any change in current flow due to a change in temperature is<br />

cancelled in the operational amplifier which leaves the output level dependent only on the peak RF output from the A6 Assembly.<br />

At center frequenices of


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 6 (Cont’d)<br />

As the center frequency is decreased, the detector output<br />

needs to be retained for a longer period of time so the leveling<br />

circuits respond to the average RF level rather than the<br />

instantaneous level.<br />

In output ranges of SO dBm, the Detector Amplifier is coupled<br />

directly to the A3 ALC Amplifier Assembly. The output is<br />

compared to a dc reference level and an error signal results<br />

which is coupled to the A5 Modulator Assembly to complete<br />

the ALC loop. When OUTPUT RANGE switch is set to +10<br />

dBm, the 10OH logic input goes high (x+5 Vdc) and turns<br />

A4Q5 off. Relay A4K1 opens and the dc voltage is attenuated<br />

10 dB by A4R19, A4R20, A4R21, and resistors on the A3<br />

assembly. The RF output signal increases 10 dB which brings<br />

the dc output to the A3 ALC Amplifier input back to the<br />

quiescent level present before switching to the +10 dBm<br />

range.<br />

Amplifier A4U1 functions as an active low pass filter because<br />

of A4R23 and A4C5 which are connected in the feedback<br />

loop. The amplifier drives the meter and provides a<br />

compensating dc level which varies the AM drive input to keep<br />

the amplifier modulation level constant with change in RF<br />

output level (VERNIER Control setting).<br />

TROUBLESHOOTING<br />

It is assumed that the troubleshooting information Service<br />

Sheet 2 was used to isolate a circuit defect to the assemblies<br />

shown on the accompany- ing diagram. Troubleshoot the<br />

Amplifier/Detector and Detector Amplifier Assemblies by using<br />

the test equipment and procedures given below.<br />

8-26A<br />

Test Equipment<br />

Spectrum Analyzer ..........................HP 8555A/8552B/140T<br />

Digital Voltmeter ..............................HP 34740A/34702A<br />

Test 1. If the circuit problem is associated with the meter and<br />

AM Gain output rather than the RF Output level, proceed to<br />

Test 2. Check the Detector Output, Detector Amplifier Output<br />

A4TP1, and output to ALC Amplifier to see if they are tracking<br />

the RF output level. Set A4S1 to the test position. If the RF<br />

Amplifier output remains low, the A6 assembly or an<br />

associated cable is probably defective. If the RF output<br />

increases, measure the detector and A4TP1 and A4TP2<br />

voltages. If the detector output doesn’t respond properly, the<br />

A6 assembly or an associated input component on the A4<br />

assembly, is probably defective. If the detector output<br />

increases but the A4TP1 voltage doesn’t go more negative,<br />

the Detector Amplifier or an associated component is probably<br />

defective.<br />

If the RF output level is incorrect only in the +10 dBm range or<br />

is correct only in the +10 dBm range, and the 10H input is<br />

correct for all ranges, the 10 dB attenuator, the relay (A4K1),<br />

or an associated component is probably defective.<br />

Test 2. Monitor the RF output with a Spectrum Analyzer. If<br />

the modulation level changes with respect to the RF carrier<br />

amplitude (change the VERNIER control to three or four<br />

different settings), A4U1 or associated components are<br />

probably defective. Otherwise, the meter control is<br />

misadjusted or the meter connections or an associated<br />

component is probably defective.


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-15. A4 Detector Amplifier Assembly Component and Test Point Locations.<br />

8-27


Figure 8-16. Amplifier/Detector Section Schematic Diagram<br />

8-27A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 7<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe manual to begin<br />

troubleshooting (Systems Troubleshooting Guide). If the information then indicates possible problems in the RF<br />

Section, refer to the Systems Troubleshooting information Service Sheet 1 in this manual. This information may be<br />

used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer<br />

to Service Sheet 2 for further troubleshooting information .<br />

PRINCIPLES OF OPERATION<br />

General<br />

The detected signal output from the A4 Detector Amplifier Assembly is coupled into the A3 ALC Amplifier Assembly where it is<br />

compared to the reference input. Any difference in dc input levels causes an error output signal (i.e., a change from the loop quiescent<br />

state) at the difference amplifier output A3TP1. The error signal is coupled through the Gain-Shaping Amplifier to the A5 Modulator<br />

Assembly which controls the RF output level. The change in RF output level is reflected in a dc level change at the input to the dc<br />

amplifier. The change serves to balance the original error output signal at A3TP1.<br />

A10 Reference Assembly<br />

The Reference Assembly output is coupled to the ALC circuit where it is compared to the Detector Amplifier output. An error signal is<br />

generated which causes the RF signal to follow the reference dc level or, in AM mode, a low frequency ac signal which is<br />

superimposed on the reference dc output.<br />

A reference dc level is established by A1OVR1. This dc level is coupled to the inverting input of AlOUl where (in the +10 dBm range<br />

only) a small RF Detector diode linearity compensation current is added from the 10H input through resistor AlOR14. The output of<br />

AlOUl passes through a remotely controlled attenuator or an adjustable voltage divider which includes R1 VERNIER Control. This<br />

provides fine adjustment of the reference output, i.e., the RF Output level over a 10 dB range.<br />

The Amplitude Modulation drive signal is input at the non-inverting input of A1OU1. The AM Gain input is a dc compensation signal<br />

which effects the level of the AM drive input. As the VERNIER control is rotated cw, the dc level goes more negative which increases<br />

the RF Output level. At the same time a negative change of the AM Gain compensation increases the modulation drive signal<br />

attenuation of the AM drive signal input to A10U1. The resulting increase in modulation drive signal at the output of AlOUl tends to<br />

keep the percentage modulation level constant with change in RF output level.<br />

In the remote mode, the front panel VERNIER control of the RF output level is inhibited and the 1 dB step attenuator assumes<br />

"vernier" control over<br />

8-28


SERVICE SHEET 7 (Cont’d)<br />

a 10 dB range. A logic low (40 dB down). A -10<br />

Vdc input pulse is required to cause the Modulator to exhibit<br />

minimum attenuation to the RF Signal.<br />

TROUBLESHOOTING<br />

It is assumed that the Troubleshooting information on Service<br />

Sheet 1 was used to isolate a circuit defect to the assemblies<br />

shown on the accompanying diagram. Troubleshoot the<br />

Reference and ALC Amplifier Assemblies and pulse<br />

modulation circuits by using the test equipment and<br />

procedures given below.<br />

Test Equipment<br />

Digital Voltmeter .........................................HP 34740A/34702A<br />

Test 1. Check the power supply inputs to the A3 and A10<br />

assemblies at A2XA3 pin 5 (+20V), pin 3 (+5V), and pin 8 (-<br />

10V) and A12XA10 pin D (+20V), pin C (+5V), and pin 5(-10V).<br />

If the voltages are correct proceed to Test 2. If incorrect,<br />

check the continuity of the inputs from the A12 Assembly.<br />

Test 2. Check the Reference Output at P14 Pin E. If the<br />

output level is incorrect for the extreme settings of the vernier<br />

control or 1 dB Step Attenuator settings, (see schematic for<br />

levels) proceed to Test 3. If the output is correct, set A4S1<br />

and check the levels at A3TP1 with the VERNIER (or 1 dB<br />

Step Attenuator) set to one extreme and then the other. If the<br />

output levels are normal, the Gain-Shaping Amplifier or the<br />

Modulator Bias Signal resistors are probably defective. Also<br />

check the Pulse ID input and the relays. Otherwise, the<br />

Difference Amplifier is probably defective.<br />

A4 Detector Amplifier Assembly<br />

A6 Amplifier/Detector Assembly<br />

SERVICE SHEET 6


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 7 (Cont’d)<br />

Test 3. Check the reference diode A1OVR1, and Reference<br />

Amplifier AlOUl and their associated components. If the unit<br />

responds only to the local control or responds to remote<br />

control and not to the VERNIER, check the LCL/RMT input<br />

and the relay. If the reference output is incorrect in remote<br />

mode only, check the 1 dB Step Attenuator, relays, transistor<br />

switches, and other associated components. Small changes<br />

in RF Output level may be traceable to defective components<br />

coupled to the 10H input. If it was found that the amplitude<br />

modulation level varies with RF Output level, check the<br />

components associated with the AM Gain input. If the AM<br />

drive signal is reaching the RF Section, verify that it is<br />

reaching the A10 Assembly circuitry. Determine which<br />

component or part is defective, repair or replace it.<br />

Figure 8-17. A3 ALC Amplifier Assembly Component and Test Point Locations<br />

8-28B


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-18. A10 Reference Assembly Component Locations<br />

Figure 8-19. A2 ALC Mother Board Assembly Component Locations<br />

8-29


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-20. ALC Section Schematic Diagram<br />

8-29A


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 8<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of<br />

the Model 8660-series mainframe manual to begin<br />

troubleshooting (System Troubleshooting Guide). If<br />

the information then indicates possible problems in<br />

the RF Section, refer to the Systems Troubleshooting<br />

information in Service Sheet 1 of this manual. This<br />

information may be used to isolate the defect to the<br />

RF Section, another plug-in or the mainframe. If the<br />

problem is in this plug-in refer to Service Sheet 2 for<br />

further troubleshooting information before returning<br />

here.<br />

PRINCIPLES OF OPERATION<br />

Logic high inputs (>+2.0 Vdc) from the All Logic Board<br />

Assembly will cause the driver transistors supply current to<br />

switch the appropriate attenuator section in the A13 Attenuator<br />

Assembly. A logic low (


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-21. A9 Attenuator Driver Assembly Component Locations.<br />

8-31


Figure 8-22. Attenuator Section Schematic Diagram<br />

8-31A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


SERVICE SHEET 9 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

NOTE<br />

When a malfunction occurs, refer to Section VIII of<br />

the Model 8660-series mainframe manual to begin<br />

troubleshooting (Systems Troubleshooting Guide). If<br />

the information then indicates possible problems in<br />

the RF Section, refer to the Systems Troubleshooting<br />

information in Service Sheet 1 of this manual. This<br />

information is used to isolate the defect to the RF<br />

Section, another plug-in, or the. mainframe. If the<br />

problem is in this plug-in, refer to Service Sheet 2 for<br />

preliminary troubleshooting information.<br />

PRINCIPLES OF OPERATION<br />

Local (Front panel) Control<br />

The front panel OUTPUT RANGE switch provides a binary<br />

coded hexadecimal input (1F, 2F, 4F, 8F) and an over range<br />

input (1H) to the All Assembly in the local mode. The<br />

LCL/RMT input is logic high (>+1.3 Vdc) which causes the<br />

switch inputs to be gated directly to the outputs to the<br />

attenuator driver circuits and the 10H output. The following<br />

table shows the logic states of the inputs from the OUTPUT<br />

RANGE switch S1. The input signals are all active highs<br />

(attenuation) as are the outputs.<br />

Local Inputs to A<strong>11</strong> Logic Assembly<br />

8-32<br />

Remote Operation<br />

In the remote mode, 3 digits of BCD attenuation information<br />

are clocked into the All Assembly Shift Registers from the<br />

System mainframe. On the ATTN CLK input, a series of 10<br />

pulses are received at pin K. These pulses are coupled to the<br />

trigger (T) input to the shift registers. The data input, which is<br />

synchronized with the pulses, contain no usable information<br />

for the first seven pulses. On the eighth pulse, units<br />

information is clocked into the left-handed column of registers<br />

with logic highs indicating data ones and lows indicating<br />

zeroes. On the ninth pulse, the units information is shifted to<br />

the center column of registers while tens information is entered<br />

into the left hand registers. On the tenth pulse, the units word<br />

is shifted into and stored in the right hand column, the tens<br />

information in the center registers, and the hundreds<br />

information in the left registers.<br />

The BCD information stored in the units registers is coupled to<br />

the 1 dB Step Attenuator on the A10 Reference Assembly. (In<br />

local mode these outputs are not used. The VERNIER control<br />

is used for fine control of output level.)<br />

The other two digits of BCD information are coupled to the<br />

BCD-to-Binary Decoder. The binary tens line actually<br />

bypasses the decoder because it expresses odd or even value<br />

in either the BCD or binary coded hexadecimal format. The<br />

second digit (20, 40 and 80) and third digit (100) in BCD<br />

format are output from the BCD-to-Binary Decoder in a 20, 40,<br />

and 80 binary format. With the tens level, these outputs are<br />

binary coded hexadecimal. In order to obtain the over-range<br />

output (10H), the 10, 20, 40 and 80 coded signals are inverted<br />

and coupled to a four input nand gate. The nand gate (overrange)<br />

output is low only with zero input attenuation (i.e., all<br />

the BCD-to-Binary Decoder output lines are low). The overrange<br />

level is coupled to All U5C and therefore to the 10H<br />

output. It is also coupled to the Full Adder along with the 10,<br />

20, 40, and 80 lines. The inputs to the adder are connected so<br />

a value of 10 is subtracted from the input with the Over-Range<br />

inactive (high); when the over-range line is low the output<br />

follows the input directly. The following tables express the<br />

assembly inputs and outputs, the BCD-to-Binary converter<br />

inputs and outputs, and the Full Adder inputs and outputs. In<br />

each case, a level of >+2.0 Vdc is a logic high and


SERVICE SHEET 9 (Cont’d) <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

8-32A


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SERVICE SHEET 9 (Cont’d)<br />

Full Adder<br />

Inputs Outputs<br />

A A A A C, B, B, B 4 3 2 1<br />

80 40 20 10 Over-Range 80 40 20 10<br />

L<br />

L L L<br />

L<br />

L<br />

L L L<br />

L<br />

L L H<br />

H<br />

L<br />

L L L<br />

L<br />

L H L<br />

H<br />

L<br />

L L H<br />

L<br />

L H H<br />

H<br />

L<br />

L H L<br />

L<br />

H L L<br />

H<br />

L<br />

L H H<br />

L<br />

H L H<br />

H<br />

L H L L<br />

L<br />

H H L<br />

H<br />

L H L H<br />

L<br />

H H H<br />

H<br />

L H H L<br />

H<br />

L L L<br />

H<br />

L H H H<br />

H<br />

L L H<br />

H<br />

H L L L<br />

H<br />

L H L<br />

H<br />

H L L H<br />

H<br />

L H H<br />

H<br />

H L H L<br />

H<br />

H L L<br />

H<br />

L<br />

L H H<br />

H<br />

H L H<br />

H<br />

H H L L<br />

H<br />

H H L<br />

H<br />

H H L H<br />

H<br />

H H H<br />

H<br />

H H H L<br />

Local Remote Multiplex<br />

The LCL/RMT input is a logic low in the remote mode.<br />

This enables the gates which are connected to the<br />

remote attenuation inputs (Full Adder and Over-range)<br />

so the remote signals drive the 10 Db Step Attenuator.<br />

At the same time logic inputs from the OUTPUT RANGE<br />

switch are inhibited.<br />

TROUBLESHOOTING<br />

It is assumed that the troubleshooting information on<br />

Service Sheet 1 was used to isolate a circuit defect to the<br />

assembly shown on the accompanying diagram.<br />

Troubleshoot the Logic Assembly by using the test<br />

equipment and procedures given below.<br />

Test Equipment<br />

Digital Voltmeter .........................HP 34740A/34702A<br />

If the problem is evident only in the local mode of<br />

operation, check the OUTPUT RANGE switch, continuity<br />

of the connections to the All assembly, and the<br />

Local/Remote Multiplexer. Refer to the table showing<br />

8-32B<br />

the OUTPUT RANGE switch output. If the defect is<br />

evident only in the remote mode of operation, check the<br />

shift registers, the BCD-to-Binary Decoder, the Full<br />

Adder, and the Local/Remote Multiplexer for proper<br />

operation. Use the tables showing inputs versus outputs<br />

as a tool to isolate the defective component. If the defect<br />

is evident in both the Local and Remote modes, the<br />

Local/Remote Multiplexer or an associated component is<br />

probably defective.<br />

NOTE<br />

If the inputs and outputs of the All Logic<br />

Assembly are correct, check the 10 dB step<br />

attenuator (Service Sheet 6) in all ranges, the 10<br />

dB attenuator in the A4 Detector Amplifier<br />

Assembly, and the 1 dB Step Attenuator in the<br />

A10 Reference Assembly (also the 10OH inputs<br />

and associated components). Also, check<br />

the 1 dB and 10 dB Step Attenuator outputs with<br />

attenuation inputs of 1, 2, 4, and 8 dB and 10,<br />

20, 40, and 80 dB.


Figure 8-23. A<strong>11</strong> Logic Assembly Component Locations.<br />

8-33<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Figure 8-24. A<strong>11</strong> Logic Assembly Schematic Diagram.<br />

8-33A<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

DISASSEMBLY AND INTERCONNECTION PROCEDURES<br />

Before removing the RF Section plug-in from the<br />

mainframe, remove the main (Mains) voltage by<br />

disconnecting the power cable from the power<br />

outlet.<br />

RF Section Plug-in Removal<br />

a. Release the latch below the front panel<br />

OUTPUT jack.<br />

b. Pull the latch out while rotating it to the left until<br />

it is perpendicular to the front panel. This separates the<br />

mating plug and jack (plug-in to mainframe).<br />

c. Grasp the latch and pull the plug-in straight out<br />

from mainframe.<br />

Plug-in Cover Removal<br />

a. Remove the 16 Pozidriv screws from both<br />

covers.<br />

b. Loosen the 4 screws which hold the<br />

teflon/aluminum plug-in guide in place.<br />

c. Remove the covers and set them aside.<br />

d. If necessary, remove the plug-in guides by<br />

removing the screws.<br />

Interconnection of RF Section to Mainframe for<br />

Troubleshooting Purposes<br />

After the RF Section is removed from the mainframe and its<br />

covers have been removed, the RF Section must be<br />

reconnected to the mainframe with interconnecting extender<br />

cables before troubleshooting can begin.<br />

With the mainframe top cover removed, power is<br />

supplied to the system during troubleshooting.<br />

Energy available at many points may constitute a<br />

shock hazard.<br />

a. Remove the mainframe top cover. First remove<br />

the 4 Pozidriv screws; then slide the cover back and off the<br />

mainframe siderails.<br />

NOTE<br />

The interconnect cables and adapters are parts found<br />

in the HP <strong>11</strong>672A Service Kit. They may all be<br />

ordered in the kit or as individual pieces. Refer to the<br />

<strong>11</strong>672A Operating Note for a pictorial cross<br />

reference.<br />

8-34<br />

DISASSEMBLY AND INTERCONNECTION<br />

PROCEDURES (Cont’d)<br />

b. Make connection from J6 (mainframe) to P6 (RF<br />

Section rear panel) with the <strong>11</strong>672-60001 multi-pin<br />

interconnect cable.<br />

To avoid contact with the line voltage, remove the<br />

line (main) power cable from the power outlet<br />

before removing or connecting cables to the<br />

Frequency Extension Module.<br />

c. Connect the 1250-1236 adapter to the <strong>11</strong>672-<br />

60005 gray coaxial cable. Insert the adapter into P2 (on the<br />

RF Section rear panel above the multipin connector).<br />

d. Remove the gray-blue cable from the jack on<br />

the rear side of the Frequency Extension Module. Connect the<br />

gray coaxial cable to the extension module jack.<br />

e. Take the <strong>11</strong>672-60004 red coaxial cable and<br />

connect it to P1 (RF Section rear panel below the multi-pin<br />

connector).<br />

f. Disconnect the gray cable from the other<br />

extension module output jack. Connect the red coaxial cable<br />

to the jack.<br />

g. Reconnect the mainframe line (Main) power<br />

cable to the power outlet and set the mainframe line switch to<br />

ON.<br />

All Logic Assembly<br />

SERVICE SHEET 9


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustable Component Locations (1 of 2)<br />

8-34A


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustable Component Locations (2 of 2)<br />

8-35


Section 8 <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-’<strong>2837</strong>-14 & P-7<br />

Figure 8-25. Assemblies, Chassis Parts, and Adjustable<br />

Component Locations<br />

8-35A


<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

SECTION IX <strong>MANUAL</strong> CHANGES<br />

ERRATA<br />

<strong>MANUAL</strong> IDENTIFICATION<br />

Model Number: 86602B<br />

RF SECTION 1-1300 MHz Date Printed: Oct. 1977<br />

Part Number: 86602-90021<br />

This supplement contains important information for correcting manual errors and for adapting the manual to instruments<br />

containing improvements made after the printing of the manual.<br />

To use this supplement:<br />

Make all ERRATA corrections<br />

ERRATA<br />

Page 6-7 and 6-8,space Table 6-2:<br />

Delete A7A3 HP Part Number. Not separately field replaceable, order new A7 Assembly.<br />

CHANGE 1<br />

Page 6-8, Table 6-2:<br />

Replace the parts list for the A9 Attenuator Driver Assembly found in this supplement (Part of Change 1).<br />

Page 8-31, Figure 8-21:<br />

Replace Figure 8-21 with the component locations diagram in this supplement (Part of Change 1).<br />

Page 8-31, Figure 8-22 (Service Sheet 8):<br />

Replace Figure 8-22 with the schematic found in this supplement (Part of Change 1).<br />

NOTE<br />

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible.<br />

Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available<br />

from all HP offices. When requesting copies quote the manual identification information from your supplement, or the<br />

model number and print date from the title page of the manual.<br />

9-1


Section IX <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

TABLE 6-2. Replaceable Parts (P/O Change 1)<br />

Reference HP Part Qty Description Mfr Mfr Part Number<br />

Designation Number<br />

Code<br />

A9 86601-60129 1 ATTENUATOR DRIVER ASSEMBLY 28480 68801-60129<br />

A9C1 0160-0127 4 CAPACITOR-FXD 1UF +-20% 25VDC CER 28480 0160-0127<br />

A9C2 0160-0127 CAPACITOR-FXD 1UF +-20% 25VDC CER 28480 0160-0127<br />

A9C3 0160-0127 CAPACITOR-FXD 1UF +-20% 25VDC CER 28480 0160-0127<br />

A9C4 0160-0127 CAPACITOR-FXD 1UF +-20% 25VDC CER 28480 0160-0127<br />

A9MP1 1480-0073 2 PIN: DRIVE 0.250” LG 0000J OBD<br />

A9MP2 1480-0073 PIN: DRIVE 0.250” LG 0000J OBD<br />

A9MP3 4080-0073 2 EXTRACTOR-PC BOARD YEL POLYC 28480 4040-0752<br />

A9MP4 4080-0073 EXTRACTOR-PC BOARD YEL POLYC 28480 4040-0752<br />

A9Q1 1853-0213 4 TRANSISTOR PNP 2N4236 SI TO-5PD=1W 04713 2N4236<br />

A9Q2 1854-0361 4 TRANSISTOR NPN 2N4239 SI TO-5 PD=800MW 04713 2N4239<br />

A9Q3 1853-0213 TRANSISTOR PNP 2N4236 SI TO-5 PD=1W 04713 2N4236<br />

A9Q4 1854-0361 TRANSISTOR NPN 2N4239 SI TO-5 PD=800MW 04713 2N4239<br />

A9Q5 1854-0071 4 TRANSISTOR NPN SI PD=300MW FT=200MHZ 28480 1854-0071<br />

A9Q6 1853-0020 4 TRANSISTOR PNP SI PD=300MW FT=150MHZ 28480 1853-0020<br />

A9Q7 1854-0071 TRANSISTOR NPN SI PD=300MW FT=200MHZ 28480 1584-0071<br />

A9Q8 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHZ 28480 1853-0020<br />

A9Q9 1853-0213 TRANSISTOR PNP 2N4236 SI TO-5 PD=1W 04713 2N4236<br />

A9Q10 1854-0361 TRANSISTOR NPN 2N4239 SI TO-5 PD=800MW 04713 2N4239<br />

A9Q<strong>11</strong> 1853-0213 TRANSISTOR PNP 2N4236 SI TO-5 PD=1W 04713 2N4236<br />

A9Q12 1854-0361 TRANSISTOR NPN 2N4239 SI TO-5 PD=800MW 04713 2N4239<br />

A9Q13 1854-0071 TRANSISTOR NPN SI PD=300MW FT=200MHZ 28480 1854-0071<br />

A9Q14 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHZ 28480 1853-0020<br />

A9Q15 1854-0071 TRANSISTOR NPN SI PD=300MW FT=200MHZ 28480 1854-0071<br />

A9Q16 1853-0020 TRANSISTOR PNP SI PD=300MW FT=150MHZ 28480 1853-0020<br />

A9R1 0757-0280 4 RESISTOR 1K 1% .125W F TC=0+-100 24546 C4-1/8-TO-1001-F<br />

A9R2 0757-0280 RESISTOR 1K 1% .125W F TC=0+-100 24546 C4-1/8-TO-1001-F<br />

A9R3 0757-0280 RESISTOR 1K 1% .125W F TC=0+-100 24546 C4-1/8-TO-1001-F<br />

A9R4 0757-0280 RESISTOR 1K 1% .125W F TC=0+-100 24546 C4-1/8-TO-1001-F<br />

A0R5 0757-0159 8 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-196R-F<br />

A9R6 0698-3440 3 RESISTOR 196 1% .125W F TC=0+-100 24546 C4-1/8-TO-196R-F<br />

A9R7 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R8 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R9 0698-3440 RESISTOR196 1% .125W F TC=0+-100 24546 C4-1/8-TO-196R-F<br />

A9R10 0757-0159 RESISTOR 1K 1% ,5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R<strong>11</strong> 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R12 0698-3440 RESISTOR 196 1% .125W F TC=0+-100 24546 C4-1/8-TO-196R-F<br />

A9R13 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R14 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R15 0757-0401 1 RESISTOR 100 1% .125W F TC=0+-100 24546 C4-1/8-TO-101-F<br />

A9R16 0757-0159 RESISTOR 1K 1% .5W F TC=0+-100 19701 MF7C1/2-TO-1R0-F<br />

A9R17 0698-0082 8 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R18 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R19 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R20 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R21 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R22 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R23 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9R24 0698-0082 RESISTOR 464 1% .125W F TC=0+-100 24546 C4-1/8-TO-4640-F<br />

A9VR1 1902-3002 4 DIODE-ZNR 2.37V 5% 00-7 PD=.4W TC=-.074% 04713 8Z 10930-2<br />

A9VR2 1902-3002 DIODE-ZNR 2.37V 5% 00-7 PD=.4W TC=-.074% 04713 8Z 10930-2<br />

A9VR3 1902-3002 DIODE-ZNR 2.37V 5% 00-7 PD=.4W TC=-.074% 04713 8Z 10930-2<br />

A9VR4 1902-3002 DIODE-ZNR 2.37V 5% 00-7 PD=.4W TC=-.074% 04713 8Z 10930-2<br />

9-2


Section IX <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-21. A9 Attenuator Driver Assembly Component Locations (P/O Change 1)<br />

9-3


Section IX <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

Figure 8-22. Attenuator Section Schematic Diagram (P/O Change 1)<br />

9-4


Section IX <strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

CHANGE 2<br />

Page 6-13, Table 6-2:<br />

Add under CHASSIS PARTS, L3 9170-0499 CORE TOROID AL-2135-NH/T.<br />

Page 8-23, Figure 8-<strong>11</strong> (Service Sheet 4):<br />

Add L3 in series with +20V line (red wire) between A12P13 pins 9,K and P5.<br />

CHANGE 3<br />

Page 5-2, Table 5-1:<br />

Add to the table:<br />

Reference Designator Selected For Normal Value Range Service Sheet<br />

A20R4 Current limiting in R1, R2, and None to 1.96k 4<br />

R3 of the 50 MHZ High Pass Filter<br />

The procedure for selecting the resistor (A20R4) is:<br />

1. Measure the voltage (Vdc) to ground at the junction of A7L1 and A7C1.<br />

2. If Vdc A <strong>11</strong>.0, no resistor is needed.<br />

3. If <strong>11</strong>.0 < Vdc < 14.0, select a 1.96K resistor.<br />

4. If Vdc > 14.0, select a 1.OK resistor.<br />

Page 6-13, Table 6-2:<br />

Add A20R4* 0698-7236 RESISTOR 1K 1% 0.05W F TC-O+100. *FACTORY SELECTED PART.<br />

Page 8-23, Figure 8-<strong>11</strong> (Service Sheet 4):<br />

Add, to the A20 Filter Control Assembly, R4* 1000 from the junction of L1 and C3 to ground.<br />

Add to the REFERENCE DESIGNATION BOX, under A20, R4.<br />

CHANGE 4<br />

Page 6-5, Table 6-2:<br />

Change A2R9 to 0764-0013 RESISTOR 56 5%0 2W MO TC - 0 + 200.<br />

Page 8-29, Figure 8.20 (Service Sheet 7):<br />

Change A2R9 to 56.<br />

9-5


APPENDIX A<br />

REFERENCES<br />

DA Pam 310-4 Index of Technical Publications.<br />

<strong>TM</strong> 38-750 The Army Maintenance Management System (TAIMS).<br />

<strong>TM</strong> 750-244-2 Procedures for Destruction of Electronics Materiel<br />

to Prevent Enemy Use (Electronics Command).<br />

A-1<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7


D-1. General<br />

APPENDIX B<br />

MAINTENANCE ALLOCATION<br />

SECTION I. INTRODUCTION<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

This appendix provides a summary of the maintenance operations for the Model 86602B RF Section. It authorizes<br />

categories of maintenance for specific maintenance functions on repairable items and components and the tools and<br />

equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.<br />

D-2. Maintenance Function<br />

Maintenance functions will be limited to and defined as follows:<br />

a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical and/or electrical<br />

characteristics with established standards through examination.<br />

b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical<br />

characteristics of an item and comparing those characteristics with prescribed standards.<br />

c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean<br />

(decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.<br />

d. Adjust. To maintain, within prescribed limits, by bringing into proper or exact position, or by setting the<br />

operating characteristics to the specified parameters.<br />

e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.<br />

f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test<br />

measuring and diagnostic equipments used in precision measurement.<br />

g. Install. The act of emplacing, seating or fixing into position an item, part, module (component or assembly) in<br />

a manner to allow the proper functioning of the equipment or system.<br />

h. Replace. The act of substituting a serviceable like type part, subassembly or module (component or<br />

assembly) for an unserviceable counterpart.<br />

B-1


<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, replace) or<br />

other maintenance actions (welding, grinding, riveting, straightening, facing, remachining or resurfacing) to restore<br />

serviceability to an item by correcting specific damage, fault, malfunction, or failure in part, subassembly, module<br />

(component or assembly), end item or system.<br />

j. Overhaul. That maintenance effort (service/action) necessary to restore an item to a completely<br />

serviceable/operational condition as prescribed by maintenance standards (i.e., DMWR) in appropriate technical<br />

publications. Overhaul is normally the highest degree of maintenance per-formed by the Army. Overhaul does not normally<br />

return an item to like new condition.<br />

k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like<br />

new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance<br />

applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours,<br />

miles, etc.) considered in classifying Army equipments/components.<br />

D-3. Column Entries<br />

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components,<br />

assemblies, subassemblies and modules with the next higher assembly.<br />

b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies,<br />

subassemblies and modules for which maintenance is authorized.<br />

c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column<br />

2. When items are listed without maintenance functions, it is solely for purpose of having the group numbers in the MAC<br />

and RPSTL coincide.<br />

d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a “work time” figure in the appropriate<br />

subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents<br />

the active time required to perform that maintenance function at the indicated category of maintenance. If the number or<br />

complexity of the tasks within the listed maintenance function vary at different categories, appropriate “work time” figures<br />

will be shown for each category. The number of task-hours specified by the “work time” figure represents the average time<br />

required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition<br />

under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality<br />

assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance<br />

functions authorized in the Maintenance<br />

B-2


Allocation Chart. Subcolumns of column 4 are as follows:<br />

C - Operator/Crew<br />

0 - Organizational<br />

F - Direct Support<br />

H - General Support<br />

D - Depot<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tool sets (not individual tools)<br />

and special tools, test and support equipment required to perform the designated function.<br />

f. Column 6, Remarks. Column 6 contains an alphabetic code which leads to the remark in section IV,<br />

Remarks, which is pertinent to the item opposite the particular code.<br />

D-4. Tool and Test Equipment Requirements (Sect. III).<br />

a. Tool or Test Equipment Reference Code. The numbers in this column coincide with the numbers used in the<br />

tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the main-tenance<br />

functions.<br />

b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test<br />

equipment.<br />

c. Nomenclature. This column lists the noun name amd nomenclature of the tools and test equipment required<br />

to perform the maintenance functions.<br />

d. National/NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test<br />

equipment.<br />

e. Tool Number. This column lists the manufacturer’s part number of the tool followed by the Federal Supply<br />

Code for manufacturers (5-digit) in parentheses.<br />

D-5. Remarks (Sect. IV).<br />

a. Reference Code. This code refers to the appropriate item in section II, column 6.<br />

b. Remarks. This column provides the required explanatory information necessary to clarify items appearing in<br />

section II.<br />

B-3<br />

The next page is B-5.


SECTION II MAINTENANCE ALLOCATION CHART<br />

FOR<br />

RF SECTION HP-86602A & B<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & =P-7<br />

(1) (2) (3) (4) (5) (6)<br />

GROUP MAINTENANCE MAINTENANCE CATEGORY TOOLS AND<br />

NUMBER COMPONENT ASSEMBLY FUNCTION C O F H D EQUIPMENT REMARKS<br />

00 RF SECTION Inspect 0.3<br />

Test 2 1-27<br />

Adjust 3 27<br />

Repair 2 27<br />

01 MODULATOR FILTER ASSEMBLY (Al) Inspect 0.3 27<br />

Test 0.5 1,5,13,26<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

02 ALC MOTHER BOARD ASSEMBLY (A2) Inspect 0.3 27<br />

Test 0.5 1,5.13,26<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

03 ALC AMPLIFIER ASSEMBLY (A3) Inspect 0.3 27<br />

Test 0.5 1<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

04 DETECTOR AMPLIFIER ASSEMBLY (A4) Inspect 0.3 27<br />

Test 0.5 1,5<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

05 2.75 - 3.95 GHz NODULATOR ASSEMBLY (A5) Inspect 0.3 27<br />

Test 0.5 1,5,13,26<br />

Replace 0.1 27<br />

06 1-1300 MHz AMPLIFIER/DETECTOR<br />

ASSEMBLY (A6) Inspect 0.3 27<br />

Test 0.5 1,5<br />

Replace 0.1 27<br />

07 MIXER ASSEMBLY (A7) Inspect 0.3 27<br />

Test 0.5 1,5,13,26<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

08 4.0 GHz AMPLIFIER ASSEMBLY (A8) Inspect 0.3 27<br />

Test 0.5 1,5,13,26<br />

Replace 0.1 27<br />

09 ATTENUATOR DRIVER ASSEMBLY (A9) Inspect 0.3 27<br />

Test 0.5 1<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

10 REFERENCE ASSEMBLY (A10) Inspect 0.3 27<br />

Test 0.5 1<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

<strong>11</strong> LOGIC ASSEMBLY (All) Inspect 0.3 27<br />

Test 0.5 1<br />

Replace 0.1 27<br />

Repair 0.5 27<br />

12 10 DB STEP ATTENUATOR ASSEMBLY (A13) Inspect 0.3 27<br />

Test 0.5 1<br />

Replace 0.1 27<br />

13 20 MHz AMPLIFIER (A15) Inspect 0.3 27<br />

Test 0.5 1,5,13,26<br />

Replace 0.1 27<br />

B-5


SECTION III TOOL AND TEST EQUIPMENT REQUIREMENTS<br />

FOR<br />

RF SECTION 86602A & B<br />

<strong>TM</strong> <strong>11</strong>-<strong>6625</strong>-<strong>2837</strong>-14 & P-7<br />

TOOL OR TEST MAINTENANCE NATIONAL/NATO<br />

EQUIPMENT CATEGORY NOMENCLATURE STOCK NUMBER TOOL<br />

REF CODE NUMBER<br />

1 H DIGITAL VOL<strong>TM</strong>ETER HP 34740A <strong>6625</strong>-00-578-6751<br />

2 D VOL<strong>TM</strong>ETER, ELECTRONIC ME-30C/U <strong>6625</strong>-00-929-1897<br />

3 D VECTOR VOL<strong>TM</strong>ETER ME-512/U <strong>6625</strong>-00-929-1897<br />

4 D OSCILLOSCOPE TEK 5440<br />

5 H SPECTRUM ANALYZER TEK 80009 <strong>6625</strong>-00-558-2329<br />

6 D TEST OSCILLATOR HP 651B <strong>6625</strong>-00-937-4961<br />

7 D SYNTESIZED SIGNAL 8660A <strong>6625</strong>-01-008-3284<br />

8 D MODULATOR SECTION HP 86632A <strong>6625</strong>-00-607-9858<br />

9 D COMPUTING COUNTER HP 5360A w/HP 5365A<br />

PLUG-IN 7025-00-607-9858<br />

10 D WAVE ANALYZER HP 3581A <strong>6625</strong>-21-872-1210<br />

<strong>11</strong> D POWER SUPPLY JF 332 <strong>6625</strong>-00-481-8901<br />

12 D FREQUENCY METER HP 5345 AULF 4935-01-034-9167<br />

13 H POWER METER ME-441/U <strong>6625</strong>-00-436-4883<br />

14 D ATTENUATOR HP 355C <strong>6625</strong>-00-866-9462<br />

15 D PULSE GENERATOR SC-<strong>11</strong>05OS/U <strong>6625</strong>-01-010-3524<br />

16 D CRYSTAL DETECTOR HP 8471A OR EQUIVALENT 5985-00-125-1313<br />

17 D MARKED CARD PROGRAMMER HP 3260A OPTION 001<br />

18 D DOUBLE BALANCED MIXER HP 10514A OR<br />

EQUIVALENT 5985-00-895-4608<br />

19 D FUNCTION GENERATOR HP 203A OR EQUIVALENT <strong>6625</strong>-00-456-2712<br />

20 D MICROWAVE FREQUENCY COUNTER HP 5340A <strong>6625</strong>-00-498-8946<br />

21 D POWER METER HP 435A <strong>6625</strong>-01-033-6593<br />

22 D THERMISTOR MOUNT HP 8478B <strong>6625</strong>-00-8<strong>11</strong>-2435<br />

23 D PULSE GENERATOR HP 8013A <strong>6625</strong>-01-010-3524<br />

24 D TERMINATION 50s’ HP <strong>11</strong>048C OR EQUIVALENT<br />

25 D DOUBLE BALANCED MIXER WATKINS JOHNSON MIJ<br />

26 H SERVICE KIT HP <strong>11</strong>672A 5895-01-031-5210<br />

27 H COMMON TOOLS AVALIABLE TO REPAIR PERSON<br />

* U.S. GOVERNMENT PRINTING OFFICE: 1981-703-029/1292<br />

B-6


By Order of the Secretary of the Army:<br />

E. C. MEYER<br />

General, United States Army<br />

Official: Chief of Staff<br />

ROBERT M. JOYCE<br />

Brigadier General, United States Army<br />

The Adjutant General


PIN: 049778-000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!