Radio\&

 SEPTEMBER 1984 90p SOR Electronics
For all aspects of practical amateur radio

simply Best

AM RAD INATM AN ardecerandor

COMPUUNO WDUGATAE Colls APROCRAM

NOSE-A LOOK AT IHIS ELECTRONC PHIENOMENON

RHVIUV OF TAU STSIAMS

DATA FILE ALARM STSILMS

AMRRON|CS (TONBRIDEE) G4 SYZ tHE AMATEUR RADIO SPECIALISTS IN KENT

FORTOP ${ }_{\text {¢ }}^{\text {¢ }}$	
Convertor	£26.95
$70 \mathrm{~cm} \mathrm{TX}$.	£149.00
70 cm TX/RX	£169.00
24 cm TX .	£199.00
TX Kit.	£33.60

B.N.O.S.	
1-100 Linear.	.E172.50
3-100 Linear.	. 1172.50
10-100 Linea	.£149.50
25 amp PSU	.£138.00
12 amp PSU	. $£ 95.45$

30FT LATTICE TOWER. Made by professionals for
CREDIT AVAILABLE THROUGH SHEPHERD FINANCE Amateurs. This is the latest product in our ever increasing range. (INSTANT) WITH CALL SIGN. ASK FOR WRITTEN Towers and mountings in stock (cash-n-carry) or delivered. Call in at the shop to inspect this quality tower or send SAE for full details.

also new from MET ANTENNAS

70 cm 5 Element 9.5 db gain 0.7 m long. Go anywhere antenna. Fantastic performance. End mounting, horizontal or vertical. Will fit in suitcase. ONLY £16.95p
Coming soon:
$2 m+70 \mathrm{~cm}$ power splitters.
FULL RANGE IN STOCK
Uniden CR2021 Receiver £160 Yamato Rotator (up to 8 Eli beam) only £40
Gamma Twin 2m Antenna £7.95p. New-2 metre Preamps. Also inline 10 metre Preamps, ie 29 MHz FM

Full range Jaybeam Antennas. Large stocks of pole, clamps, including the new 1 Eli.
Rotary Dipole and 1to2to3 Eli add on kits

FAST MAIL ORDER
Access, Visa, Postal Order, Cheque

GENERAL SPECIFICATIONS

WINCH (8001 b)
ROPES 5 mm LOWER 4.5 mm TOP
540 Kg (12001b) S.W.L.
A STANDARD HEAD UNIT IS AVAILABLE ALTHOUGH ONLY REQUIRED IF ROTATOR IS BASE MOUNTED AS ALL 10 m (30^{\prime}) TOWERS ARE BASE MOUNTED AS ALL 10 m (30) TOWERS ARE FITTED WITH MOUNTING FACILITIES FOR 51 mm (2 DIa) STUB MAST AND DEPENDING UPON
AERIAL CONFIGURATION CAN BE UP TO $4 \mathrm{~m}\left(1^{\prime}\right)$ AERIAL CONFIGURATION CAN BE UP TO 4m (13')
ALSO ALL HEAD UNITS WILL TAKE A BEARING IF ALSO ALL H
REQUIRED.
REQUIRED.
FINISH MANUFACTURED TO B.S.I. STANDARDS
HOT DIP GALVANISED
FIXINGS FOR ANY ALTERNATIVE HEAD ATTACHMENTS eg CCTV CAMERA MOUNT OR LIGHTING PAD SIMPLY SLOT INTO TOP SECTION OF TOWER AND IS LOCKED WITH SINGLE BOLT AS IS SAME WITH HEAD UNIT

LOADINGS

BASE ON C.P.3. CHP V. PART 2 AT WINDSPEEDS OF $160 \mathrm{~km} / \mathrm{h}$ ($100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) MAX WEIGHT OF HEADLOAD 125 Kgs (2751b) THIS LOADING WOULD BE EQUIVALENT TO WINDSPEED SURFACE AREA OF: $84 \mathrm{M}\left(9.0 \mathrm{~F}^{2}\right)$

UNIVERSAL MOUNTINGS

(a) WALL
(b) FIXED POST
(c) TILT POST
(d) FIXED BASE
(e) HINGED BASE

VARIATIONS CAN BE MADE TO CLIENTS ON REQUIREMENTS

THE 30 (10 m) TOWER RANGE

The 30° Tower is the result of a detailed design programme to study the needs of today's Radio users particularly in an urban environment
Our Towers are of the conventional triangular lattice construction which provides a low weight, low surface area but high strength combination
For durability the complete tower, brackets and bell housing are hot dip galvanised to current British standards All Towers come complete with suitable winch cables, pulleys, bolts and accessories necessary for raising and lowering as standard. A safety latch is provided to lock the tower in its raised position.
The relatively low closed height of the towers make it practical and acceptable for planning purposes if required. Also the majority of owners find they are able to work on their aerial systems at this closed height which removes the necessity to purchase costly tilt over versions. The extended head height before head unit of $9.14 \mathrm{~m}\left(30^{\prime}\right)$ provides a good operating platform at a most economic price. Bearing in mind depending on head load a $4 \mathrm{~m}\left(13^{\circ}\right.$ stub mast can be fitted giving up to 13.7 m (45^{\prime})
The concept of our range is to provide the user with a basic tower unit and to allow him to choose from a selection of universal accessories to suit the precise needs of individual mounting requirements. If none of the standard items are suitable specific mounts may be manufactured to order

WE ALSO SELL:

Jaybeam, Bnos, Drae, Fortop (ATV), Azden, Adonis, Met, Datong, Uniden Amateur, FDK, Yaesu, Oscar, Diamond, Sagant, Spectrum Software, RSGB Books and Maps. Also large selection of polls clamps, masts, cable-connectors, lashings etc.

CONTENTS

CONSTRUCTION PROJECTS

39	Low Power Transmitter - An 80m CW design
51	AM RAD - An experimental signal generator
55	Spectrum Analyser - More updates for this project
62	Five station Scanner - An add on unit for the 720 channel airband receiver

FEATURES

16 Computing Inductances - A program for winding coils
19 Data File - A look at alarm systems
27 Satellite Update - More information about weather satellites
30 Noise - A look at this electronic phenomenon
45 Distance and Bearing Program - For station location
48 Super-Transmatch - A review of TAU systems' ATU kit

REGULAR FEATURES

4	Product News
13	News Desk
29	Point of Contact
35	Notes from the Past
38	Crossword
68	Dates for your Diary
69	Amateur Radio World
73	Latest Literature
78	ATV on the Air
82	DX-TV Reception Reports
86	Short Wave News

SERVICES

64 Newsagents Order Form
72 Next Month in R\&EW
75 Subscription Order Form
79 Radio Amateurs Handbook Order Form
81 Amateur Radio Subscription Order Form
88 Back Issues Order Form
89 Free Classified Ads
90 Free Classified Ad Form
94 Advertisers Index
94 Advertisers Rates and Information

Editor DENNIS PADFIELD G1AJO

Advertisement Manager . NICOLA DYER
Advertisement Executive . ANNE BRADY

Subscriptions \qquad $01-6843157$

Accounts CLARE BRINKMAN
\qquad

General Manager
.. ALAN GOLBOURN

ON SALE: Second Thursday of the month preceding cover date
NEXT ISSUE: Cover date October 1984 on sale 13 September 1984
PUBLISHED EY: Radio \& Electronics World Magazines, Sovereign House, Brentwood, Essex CM14 4SE, England (0277) 219876 PRINTED: In England
ISSN: 0262-2572
NEWS TRADE SALES BY: Seymour Press Ltd, 334 Brixton Road, London SW9 7AG Tel: 01.733 4444

SAFETY IN THE SHACK

Some of the constructional projects described in R\&EW refer to additions or modifications to equipment. Any alteration or addition to the circuit may invalidate the guarantee.
We prefer that each constructional project contains its own power supply or battery. A constructional project will occasionally describe how the power supplies of any equipment may be used to supply the circuit of that project. Ensure that the power unit in the equipment is adequate to provide the additional load current. In all cases, check that the equipment mains fuse is correctly rated.
Safety in the shack, please at all times.

See page 62

Dock Strike and Paper Supplies

Paper supplies have been disrupted as a result of the recent dock strike, which has caused different paper to be used in this issue

COVER PHOTOGRAPH CAPTIONS

Top left - Computing inductances
Top right - Am Rad
Centre left - TAU Systems' Super-Transmatch ATU Centre right - Earth from 22,300 miles in space. taken by ATS-III
Bottom - QRP transmitter for 80 m

Whilst every care is taken when accepting advertisements we cannot accept responsibility for unsatisfactory transactions. We will, however, thoroughly investigate any complaints.

The views expressed by contributors are not necessarily those of the publishers.

Every care is also taken to ensure that the contents of Radio \& Electronics World are accurate, we assume no responsibility for any effect from errors or omissions.

Audit Bureau of Circulations
membership approved pending first audit C Copyright 4984
Radio \& Electronics World Magazines

PRODUCT NEWS

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News Readers, don't forget to mention Radio \& Electronics World when making enquiries

[DC RIBBON CONNECTORS

An inexpensive range of IDC ribbon cable connectors to MIL-C-83503 and a suitable top quality 1.27 mm pitch ribbon cable are announced by Semiconductor Supplies International.

Female units incorporate strain relief and polarising bumps. Clamp/ejector PCB mounting headers are available, in both straight and right-angle mounting versions.

IDC connectors have beryllium copper contacts in the female connectors and selectively gold-plated contacts in the male headers.

Both connectors and ribbon cable are available in 20, 26, 34 and 40 way versions. Cable is to UL2651 and sold in 35 metre reels, grey only with one polarising band.

Semiconductor Supplies, Sutton, Surrey, Tel: 01-643 1126.

PUSHBUIION SWICH

 RANGECosmos 8000 , a new series of high quality pushbutton switches from SECME, is announced by Felco Electronics, the sole UK agent.

The switches are available singly or grouped in up to 16 ways. Operation of single switches can be specified as
either momentary or maintained. Mounted stacked, any combination of momentary and maintained operation is available with or without an additional mutual release facility. With operations specified up to one million, a long in-use life is indicated.
Pushbuttons, in grey or black, with lens covers in a range of nine standard colours, can be supplied in a variety of shapes and sizes: round (10 mm diameter); rectangular ($8.7 \times 8 \mathrm{~mm}$) and square ($10.16 \times 10.16 \mathrm{~mm}$ and $12.5 \times 12.5 \mathrm{~mm}$).
A choice of illuminated or non-illuminated is also possible, with illumination by LED. (red, green or yellow) or incandescent lamps for per-
manent or switched illumination. LEDs and lamps can be replaced without disturbing the switch assembly.
Individual switches may be mounted directly on to a PCB, or by clip-on panel support accessory. Stacked versions offer a fixing rail mounted along the top surface of the switch modules.
Cosmos 8000 offers innumerable combinations for application in instrumentation, telecoms, modems, test equipment and the professional hi-fi markets. A shortform catalogue with full details on the range is available on request from Felco or its distributors Souriau (UK), Fleetworld, Steatite and Britec.

Felco Electronics Ltd, 38 London Road, Newbury, Berkshire RG13 1JX. Tel: 0635 48282.

SELECTIVE CALL DECODER

IQD has introduced a new selective calling decoder unit for use in mobile vehicles.

The new unit is extremely easy to install in mobiles and operates from a negative earth supply in the voltage range $7-20 \mathrm{volts}$, consuming a few milliamps on standby. Electrical connectors are very simple, no connection to the transceiver being necessary other than to the earth side of the loudspeaker.

Programming of the new unit is achieved by a 4 -digit hexadecimal switch; using numerals alone, 9999 unique substation identification codes can be programmed; inclusion of 'hash' gives expansion by a further 999 stations.
The system is designed so that individual, group and allstation calls can be made. When addressed by an allstation call, the transceiver loudspeaker is simply opened and stays open until muted by the mobile operator.
An LED indicates that the loudspeaker has been opened; this would not otherwise be apparent to an operator returning to a squelched receiver. A bleep of dual-tone frequency is heard upon receipt of an individual call and this serves to distinguish it from an all-station call.
With an individual call the loudspeaker is opened automatically and can be cancelled manually by momentarily earthing the press-to-talk connection, or by replacing the microphone on its hangup.
The sensitivity of the new units has been designed for use in vehicular environments. Logic functions are

PRODUCT NFWS

built in so that the unit will reset itself four seconds after detecting initial digits; this protects it from being jammed permanently into a waiting condition.

Detection of less than four digits may occur when the unit is operating at extreme range or in difficult terrain; the correct digits must therefore be transmitted within four seconds of each other in order to open the loudspeaker of the called mobile.

A side benefit of this system is that if the base operator feeds in an incorrect digit, he merely waits for four seconds before starting again.

IQD Limited, North Street, Crewkerne, Somerset TA18 7AR. Tel: (0460) 74433.

THIRD HAND

Few DIY jobs are more frustrating than the one that needs 'three hands' - two to hold the work and a third to apply solder or adhesive. The smaller the component, the more difficult it usually proves to position it accurately and firmly.
Gripmate, produced by an innovative Sussex company,
is a tiny clamp that provides not just one extra 'hand', but four, able to grip small electronic components and similar items in an infinite number of positions
A base-block clamped to any bench or table top carries four semi-rigid wires, each fitted with a crocodile clip to hold the work. Alternatively, any of the wires can be replaced with one holding either a magnifying glass for close-up work, or a magnet where this is more appropriate than the clip.
Gripmate is not only clever but inexpensive. The fourhanded model costs $£ 4.85$ (a basic type with two arms sells for $£ 1.00$ less), and the magnifier and magnet come for $£ 2.50$ and $£ 1.50$ respectively all inclusive of VAT and postage.

Kemplant Ltd, Durfold Wood, Plaistow, Billingshurst, W Sussex RH14 OPN.

ALBIS KZY ASSEMBBIY 82

Designed by Siemens for use in the micro-electronics sector, the versatile 'Albis' Key Assembly 82 permits compact keypads of any required size to be made up

with or without light-emitting diodes.

It has a normally-open contact and is intended for PCB mounting: the dimensions are based on the $1 / 10$ in (2.54 mm) grid system.

The contact system comprises a moving contact member made of conductive elastic material and a stationary contact which is gold-plated in the dust and splash-proof contact area. This contact system makes the key assembly ideal for performing switching functions in electronic circuits.

The operating condition can be signalled by means of light-emitting diodes (LEDs). The LEDs are simply inserted into a mounting strip which accepts 3 mm diameter LEDs, and can be directly attached to the key assembly. One or two LEDs can be fitted to a key assembly.

Sensitive electronic circuits can be protected against electro-static damage by placing a conductive strip over the diode mounting strip to dissipate charges caused by contact with the diode case. The rugged and cost-effective 'Albis' Key

Assembly 82 has a service life far exceeding 10^{6} operations. Siemens Limited, Siemens House, Windmill Road, Sun-bury-on-Thames, Middlesex TW16 7HS. Tel: Sunbury-onThames (09327) 85691.

WIRE SIRIPPERS

A pair of adjustable wire strippers have been added to the Knipex range by Draper Tools Ltd.
Both are manufactured from special tool steel with smoothly .ground and polished heads incorporating accurate ' V ' cutting grooves and knurled rings to lock the screw adjusters in position.
Handles are spring-loaded for effortless operation and the insulation from wires up to 5 mm diameter can be stripped. One model has soft PVC coated handles and the other features heavy duty insulated PVC coating.
Also available in the Knipex range is a model made to conform to West German VDE safety standards, with super heavy duty insulated handles and chrome plated head.

Draper Tools Ltd, Hursley

Cirkit.A new name

This year Ambit will stop being Ambit. And become Cirkit.

Cirkit is more than just a change of name. It means a better service for you. Faster delivery.

A bigger range of the best and latest products with well over 10,000 different items available.

Everything for the home and industrial user.
A whole new Cirkit range of constructional kits, graded for the student, expert and enthusiast.

Modules to build for everyone.
Cirkit is a go ahead company that believes in giving service to its customers.

There's a technically skilled staff to help you.
We keep in touch with the manufacturers and we know what's going on.

As soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wider than ever range of products that's growing all the time.

For you, Cirkit means a bigger stock and better service.

Three outlets

200 North Service Road, Brentwood, Essex, CM14 4SG, Tel. 0277 211490; 53 Burrfields Road, Portsmouth, Hampshire, PO3 5EB, Tel. 0705 669021; Park Lane, Broxbourne, Hertfordshire, EN10 7NQ, Tel. 0992444111.
 Cirkit Girkit

Computer Products

A complete range from Connectors to Board Level product

C12 Computer Cassette	21-00012	0.55
BBC to Centronics Printer	03-10019	7.25
BBC to 25 way D Male	03-10021	4.50
25 way D Socket	10-25200	1.90
25 way D Plug	10-25100	1.30
Cover for 25 way D	10-25322	0.93
20 up Eprom Eraser	40-82100	31.25
Z80 A industrial Controller	$40-82000$	49.95
6802 Industrial Controller	$40-68020$	49.95
6502 Industrial Controller	40-65020	49.95
z8 Basic/Debug Controller	41-00904	50.00

Nicad Batteries \& Chargers

Minimum life 600 (300 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

				1.9	1049
AA	1.2 V	500 mAH	01-12004	0.80	0.74
${ }^{\text {c }}$	1.2 V	2.2 AH	01-12024	2.35	1.99
${ }^{\text {d }}$	1.2 V	4.0AH	01-12044	3.05	2.85
PP3	8.4 V	110 mAH	'01.84054	3.70	3.50
$\mathrm{CH1} / 22$ PP3 Charger 11 mA for 16 hours					
			01.00159		4.30
CH8/RX Multi-purpose Charger					
			01-02204		9.40

Will recharge AA, C, D and PP3 size cells with automatic voltage selection. Will recharge following combination: $6 \times \mathrm{D}$, $6 \times \mathrm{AA}, 6 \times \mathrm{C}, 2 \times \mathrm{PP} 3,2 \times \mathrm{D}+2 \times \mathrm{C}$, $2 \times \mathrm{D}+2 \times \mathrm{AA}, 2 \times \mathrm{D}+1 \times \mathrm{PP} 3,2 \times \mathrm{C}+2 \times \mathrm{AA}$, $2 \times \mathrm{C}+1 \times$ PP $3,2 \times \mathrm{AA}+1 \times$ PP3 .
Battery Adaptor 01-12001
Sold in pairs: one to convert AA size to C size and one to convert C to D size. Both may be used together to convert an AA to D size.

Semiconductors

Linear IC's

LM301AN	DIL version	$61-03011$	0.44
LM308CN	DIL version	$61-03081$	0.65
LM311CN	Popular comparator	$61-00311$	0.46
LM324	Low power quad op amp	$61-03240$	0.67
LM339N	Lowpower quadcomparator	$61-03390$	0.68
LM346	Programmable quad op amp	$61-00346$	3.72
LF347	Quad Bi-FET op amp	$61-00347$	1.82
LM348	Quad 741 type op amp	$61-03480$	1.26
LF351	Bi-FET op amp	$.61-03510$	0.49
LF353	Dual version of LF351	$61-03530$	0.76
LM380N	IW AF power amp	$61-00380$	1.45
NE555N	Multi-purpose low cost timer	$61-05550$	0.45

for a

Microprocessor \& Memories

Z80A	Popular and powerful 8-bit CPU	$26-18400$	3.40
Z80AP10	2 port parallel input/output	$26-18420$	2.95
Z80A CTC	4 channel counter/timer	$26-18430$	2.90
Z8671	Z8 Micro comp. and Basic	$26-08671$	17.50
$6116-3$	16K (2kx8) CMOS		
	RAM 200nS	$26-36116$	6.68
Z6132-6	32K (4kx8) quasi		
	RAM 350nS	$26-06132$	15.00
$4116-2$	$16 \mathrm{~K}(16 \mathrm{kx} 1) 150 \mathrm{nS}$	$26-24116$	1.59
2764	$64 \mathrm{~K}(8 \mathrm{kx} 8) 450 \mathrm{nS}$	$26-02764$	9.50
2732	$32 \mathrm{~K}(4 \mathrm{kx} 8) 450 \mathrm{nS}$	$26-02732$	5.70

Voltage Regulators

7805 5V IA positive

$7812 \quad 12 \mathrm{~V}$ 1A positive

7815 15V 1A positive
7905 5V IA negative
$7912 \quad$ 12V 1A negative 7915 15V 1A negative

Transitors

BC182	General purpose	$58-00182$	0.10
BC212	General purpose	$58-00212$	0.10
BC237	Plastic BC107	$58-00237$	0.08
BC238	Plastic BC108	$58-00238$	0.08
BC239	Plastic BC109	$58-00239$	0.08
BC307	Complement to BC237	$58-00307$	0.08
BC308	Complement to BC238	$58-00308$	0.08

BC309	Complement to BC239	58
BC327	Driver/power stage	58
BC337	Driver/power stage	58
MPSA13	NPN Darlington	58
MPSA63	PNP Complement to	58
	MPSA13	59
J310	JFET for HF-VHF	59
J176	JFET analogue switch	60
3SK51	Dual gateMOSFET-VHFamp	60
3SK88	Dual gate MOSFET-Ultra lo	60
	noise	58
TIP31A	Output stage	58
TIP32A	Complement to TIP31A	60
VN66AF	VMOS Power FET	12
IN4001	Rectifier diode	12
IN4002	Rectifier diode	12
IN4148	General purpose silicon	
SiliCOn	Controlled Rectifiers	

BRY55-100 100V .8A
C106DI $\quad 400 \mathrm{~V} 4.0 \mathrm{~A}$
C122DI $\quad 400 \mathrm{~V} 8.0 \mathrm{~A}$
3mm Diameter LEDs
$\begin{array}{ll}\text { V178P } & \text { Red } \\ \text { V179P } & \text { Green }\end{array}$
V180P Yellow
5 mm Diameter LEDs
CQY40L Red
CQY72L Green
CQY74L Yellow
Infra-Red LEDs
CQY99 Emitter
BPW41 Detector
$52-55100 \quad 0.50$
$52.00106 \quad 0.70$
$52.00122 \quad 1.45$

15-01780 0.15 $15-01790 \quad 0.16$ $15-01800 \quad 0.18$

15-10400 $\quad 0.12$ 15-10720 0.15 15-10740 $\quad 0.15$

15-10990 0.56 15-30410 1.51
Tri Colour LED
V518 Orange-Green-Yellow
$15-05180 \quad 0.60$

Capacitors

Aluminium Electrolytics Radial PCB Mounting

			Pack of 4
10n	16 V	05-10606	0.24
47u	16 V	05-47606	0.28
47u	25 V	05-47607	0.28
470u	6.3 V	05-47705	0.36
470u	16 V	05-47706	0.48
Tantalum Beads			
			Each
luf	35 V	05-10501	0.18
10uf	16 V	05-10601	0.28
47uf	6.3 V	05-47601	0.45
47uf	16 V	05-47602	0.92

Monolithic Capacitors		
1 n	0410204	Pack of 0.39
10 n	04110304	0.42
100n	${ }^{0410404}$	0.45
Low Voltage Disc Cermaic		
1 n		ck ot
10 n	0410303	0.20
Polyester (C280)		
10 n	0410305	0.18
47n	0447305	0.24
100n	0410405	0.24
470n	${ }^{0447405}$	0.51
1 luF	0410505	0.66

R F Components

Filters
CFU/LFB CFW/LFH SERIES
Miniature 455 kHz filters. I/P and O / P impedance 2 K .

	$-6 \mathrm{dBW}$					-40 dBW		
LFB6/CFU455H	6 kHz	18 kHz	$16-45512$	1.95				
LFB12/CFU455F	12 kHz	26 kHz	$16-45515$	1.95				
LFH6S/								
CFW455HT	6 kHz	14 kHz	$16-45525$	2.45				
LFG12S/								
CFW455FT	12 kHz	22 kHz	$16-45528$	2.45				

19-45530 0.77
Crystal Filters 2 Pole Types
$10 \mathrm{M15A} \quad 10.7$ Centre Freq. $\quad 20-10152 \quad 2.10$ 10MO8AA $\quad 10.695$ Centre Freq. $20-11152 \quad 3.49$
Inductors
We offer the complete Toko range of fixed and variable inductors. Over 500 coils from audio to V.H.F. See catalogue for details.
Soldering Irons (Antex)
$\left.\begin{array}{llll}\begin{array}{llll}\text { CS240 } & \text { Iron 240VAC 17 Watts } \\ \text { XS-240 }\end{array} & 54-22300 & 5.20 \\ \text { SK6 } 25 \mathrm{~W} 240 \mathrm{~V} \text { High heat } \\ \text { capacity. }\end{array} \quad \begin{array}{l}\text { Presentation pack of one }\end{array}\right)$

PRODUGT NEWS

Road, Chandlers Ford, Eastleigh, Hampshire SO5 5YF. Tel: 0421566355.

THERMA 2 DIGIAI THERMOMETER

The Therma 2 features a new principle whereby the probe is a permanent part of the measurement system, thus ensuring continuous repeatability of readings, and security against probe loss.

The thermometer is supplied complete with any one of the three probes, surface, needle or air, each one designed to give versatility and precise accuracy.
The Therma 2 electronic thermometer is designed as a rugged, easy to use low cost unit for the measurements of air, liquids, surfaces and semi-solid material.
Power is supplied by a 9 volt battery, which gives the instrument a bright, easy to read liquid crystal display with a resolution of $0.1^{\circ} \mathrm{C}$, measuring temperatures between $-50^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$.
Lightness and ease of operation make these ideal units for engineers and technicians alike. Housed in rugged, but attractive, custom moulded cases they can withstand harsh outdoor
conditions without looking out of place in the office or laboratory.
High technology electronics and probes for a variety of applications make the Therma 2 an instrument able to fulfil expectations. It is priced at $£ 45.00$ each complete. Electronic Temperature Instruments, Highdown Works, Highdown Avenue, Worthing, West Sussex, BN13 1PU. Tel: Worthing (0903) 690750.

MULI-FORTH 83

After the success of their ZX81-FORTH ROM, giving an
operating system and language which can multi-task (more than ten tasks simultaneously), Skywave Software have moved to larger premises and now produce Multi-FORTH 83 for the BBC Micro.

This version has been specially written for the BBC (and is not rehashed FORTH-79 Code), and is claimed to be the most sophisticated software at present on the market for this computer.

Unique in that it Multitasks, it permits the execution of a number of FORTH programs simultaneously and transparently of each other.

Each task is placed in a queue, and the maximum number of tasks in the queue is twenty-eight.

The number of tasks that the system can run is limited purely by memory requirements, and the system as supplied is set up with four pages (1K) available for tasks. This can be expanded as required.

Also available is a MultiFORTH 83 De-Luxe System, a disc used alongside the EPROM of the standard system, but containing many more source-code definitions and enhancements.
The De-Luxe System is supplied with an Advanced User Manual, which goes into much greater detail than the EPROM's manual, including the generation of user windows (see accompanying photo). The screen shows five tasks running at once, each with its own 'window'. The largest of these contains the main system task, on which the machine can be used normally from the keyboard. The other windows contain four background programs
running independently of the main task.
The Multi-FORTH 83 costs $£ 45+p \& p+$ VAT with the DeLuxe System available on 40 or 80 track disc for $£ 40+\mathrm{p} \& \mathrm{p}+$ VAT. Skywave Software, 73 Curzon Road, Boscombe, Bournemouth, BH1 4PW. Tel: (0202) 302385.

PLUG-IN TIME DELAY RELAY

A new Magnecraft plug-in time delay relay announced by Diamond H, provides independent controls for setting the timing of repeating cycle on and off operations.
Introduced as the class 222 time delay relay, this new and compact device carries UL recognition, and features a DPDT contact rating of 10A. Two timing controls are located on the relay housing and these may be manually set by the user. They provide for independent ON and OFF timing ranges from 0.1 sec to 30 min . The timing circuits are solid state, and thus offer excellent repeatability of 0.1%.

Other salient features of the class 222 time delay relay include operating voltages from 12 to 240 V ac or 12 to 120 V dc. The relay incorporates an octal plug base, the connections to which are annotated on the relay's casing. Diamond H Controls Ltd, Vulcan Road North, Norwich, NR6 6AH. Tel: Norwich (0603) 45291/9.

LINFAR POWER SUPPLIES WN BT APPROVAL

The Coutant GPE range of linear power supplies have been approved by BT for 'user connected' equipment and conform to the Post Office Technical Guide 26. In addition, the GPE range conforms to British Standard 3861 (IEC 380) for electrical safety of office machines and, therefore, meets the requirements of the Health and Safety at Work Act.

The GPE series includes single and twin output units covering the range of one to fifteen amps at 5, 12, 15, 24, 28 and 48 volts. They have a universal input stage covering standard mains supplies from 110 to 240 V at 48 to 65 Hz . Auto reset overload protection is standard and overvoltage protection is fitted to all 5 V outputs. Over-voltage protection can be supplied as

an option for the other outputs.
Regulator performance is excellent, the output voltage changes less than $0.01 \%+\mathrm{mV}$ for a 10% mains change and less than 0.03% from zero to maximum output.

Coutant Electronics Limited, Kingsley Avenue, Ilfracombe, Devon. Tel; (0271) 63781.

REPLACEMENT FOR THE NEON SCREWDRIVER

An electronic single-pole voltage tester, designed as an effective replacement for conventional neon voltage testers, is announced by Steinel (UK) Ltd. The Steinel Mono Check will give a bright, easily visible indication in virtually any circumstances, when voltage is detected. A special electronic sensing circuit overcomes the problems of neon types which can often be very difficult to see when the user presents a very high insulation to earth.
DIY enthusiasts will appreciate the tough, high quality construction of the Mono Check and the safety aspects of the design. The instrument retains the useful screwdriver blade design of conventional phase testers, which means that it is a welcome addition to any handyman's toolbox; particularly those who carry out maintenance on their household ring mains.
Voltage testing range is from 80 to 240 V ac and there is a very generous overvoltage range of six times normal maximum (1500 V). The Mono Check can be used in all situations in temperatures from -20 to +80 degrees C and
in humidities up to 95%. The internal battery lasts for 3000 operations or up to one year's normal use.

Steinel UK Ltd, 17 Reddicap Trading Estate, Sutton Coldfield, West Midlands B75 7BU. Tel: 021-378 2820.

Reliance Cords and Cables now offer, from stock, 100\% tested moulded cable assemblies which enable interconnection of up to 15 programmable instruments in daisy chain or star configurations controlled by the IEEE 488 protocol.
The assemblies comply with the IEEE 488 specification and consist of a 23 core screened cable terminated at each end with moulded-on dual male/female connectors equipped with locking screws for rapid and secure connections.
They are available in standard lengths of 1, 2 and 4 metres from stock, as are small quantities of unterminated cable. Non-standard assembly lengths and bulk quantities of cable are available to order.

Reliance Cords \& Cables Limited, Staffa Road, Leyton, London. Tel: 01-539 3620

INE VOLTAGE CONDIIION:R

Power International's line voltage conditioner is the ideal way to ensure stable, transient-free power from fluctuating and noisy supplies. Especially designed to protect all types of large sensitive equipment, the line voltage conditioner is ideally suited to prevent power problems such as wild fluctuations in input voltage, oscillatory transients caused by switching, voltage spikes, over and under voltage, common mode noise, transverse mode noise and RF interference.
Three models of the line conditioner are available, the LVC 20, LVC30 and the LVC 60 with maximum current capabilities of $0.83 \mathrm{~A}, 1.46 \mathrm{~A}$ and 2.50 A respectively at 240 V . The units all have a response time of 20 ms and an output voltage regulation of $\pm 0.5 \%$. Capable of accepting an input voltage range of -25% to $+15 \%$ at 240 V , the conditioners have a flying lead input connection and a 13A socket output connection. Fuses protect the units against overload.
The line voltage conditioners come in attractively styled cases which are designed to blend in with existing office equipment and operate at an audible noise level of not more than 50 dB .

Power International Ltd, 2A Isambard Brunel Road, Portsmouth, Hants PO1 2DU

INSPECIION ENDOSCOPE

A new concept in inspection endoscope has been translated into practical terms by FORT Ltd, the international fibre optic company with factories in UK, France and the USA.
They have introduced a
3.5 mm endoscope that combines the flexibility of a fibre optic image guide with the protective quality of a stainless steel sheath. The result is a tough instrument which will not break or crease if used within its minimum bend radius of 700 mm .
Known as the RA35 kit, the instrument includes a direct view endoscope with integral light guide of 2.4 m length, and a flexible 360° rotator tube. This combination gives 90° (lateral) viewing, with complete 360° capability.
The instrument has many applications and can be used in any situation where tight radius bends are not encountered, but where resistance to harsh environmental conditions is necessary. The very small diameter also enables it to be used in a wide range of small bore environments, including the inspection of rifle barrels.
The endoscope is 800 mm long but can be supplied in other lengths to special order. Variable focus is standard, as on all FORT instruments.
The RA35 kit is contained in a smart, sturdy wooden case and the outfit is available exstock at $£ 1,821$.

FORT Limited, Riverdale Estate, Vale Road, Tonbridge, Kent TN9 1SS. Tel: (0732) 366266.

16 AMP MINIATURE RELAY

Quiller Components Ltd is pleased to announce that its range of FEME MZPA/16 amp relays has obtained UL approval.

The relays are available with coil voltages ranging from 1.95 to 160 V dc , and output contacts are rated at $16 \mathrm{amp} / 220 \mathrm{~V}$ ac in single pole

normally open or single pole changeover versions.

FEME MZP relays are suitable for PCB mounting and offer $4 \mathrm{KV}-8 \mathrm{~mm}$ insulation as standard with good sensitivity and high switching capability.

Sealed versions are available for use in flow soldering production facilities.

Quiller Components Ltd, 85 Stanley Road, Bournemouth BH1 4SD. Tel: (0202) 303424.

PORTABLE CCTV

A portable CCTV surveillance kit 'Viguard' designed for temporary security, is now available from Pilkington Security Equipment.
The kit is quickly deployed and consists of a video camera, 7in screen monitor, interfaces and a power supply, all contained in 2 lightweight unobtrusive suitcases. A separate fibre-optic cable reel provides up to 1 km video transmission range.
Viguard is powered from a domestic 240 V ac mains, or in remote areas can be powered from a car 12 V dc supply, via the cigarette lighter socket.
The fibre-optic cabling gives clear transmission with good signal quality, it cannot be bridged, tapped or cut without detection and its freedom from EMI allows Viguard to be used in an electronically noisy environment.
Applications include surveillance of car parks, vehicle storage pounds, building sites, road works, retail locations and many other situations where a temporary link would be desirable from a cost, safety, security or control aspect.

Pilkington Security Equipment, Colomendy Industrial Estate, Rhyl Road, Denbigh, Clwyd, LL16 5TA.

'NAVY-SPECIAL' MOBILE ANTENNA!

Glenstar Electric Motors Ltd (part of the Psimat Group of Companies) based in Hen-ley-on-Thames, have produced a range of compact and efficient. HF mobile whip antennas for the amateur market, for $10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ and 40m.
Development has taken place over the past 3 years and during all stages of this process tests have been carried out by radio amateurs, the results of which were most satisfactory. The small size of the resonator and whip (about 1.4 m) gives a discreet looking antenna. With the Navy Special's low cost and the compactness of modern mobile HF rigs, more amateurs will surely be tempted into the fascinating world of mobile HF operation.

Glenstar Electrical Distribu-

 tors Ltd, Newtown Road, Hen-ley-on-Thames, Oxon RG9 $1 H Q$.NEWFRIQUENCY COUNTERS
Levell Electronics have introduced the METEOR range of frequency counters. There are 3 basic versions, MET100, MET600 and MET1000 for measurement of frequencies up to 100 MHz , 600 MHz and 1 GHz . ' X ' versions are also available fitted with temperature compensated crystal oscillators for improved accuracy.
These counters have an 8 digit 0.5 in LED display with automatic decimal point and overflow warning. Sensitivity is 5 mV up to 1 MHz and 50 mV at 1 GHz with resolution down to 0.1 Hz . Mains input protection and a switched low pass filter are included.
A 10 MHz そrystal oscillator is

HAND-HELD DIGITAL MULTIMETER

A new hand-held digital multimeter from Iskra, the Digimer 30 , has a $31 / 2$-digit liquid crystal display and measures voltage, current and resistance values over 28 ranges. Its low power requirement stems from its CMOS circuitry and is provided by an inexpensive 9 V battery. Automatic polarity, overranging, decimal point and battery state indication are features of this latest 'Digimer' model.

Other features include electronic overload (voltage and current) protection, shockproof construction, safe plastic casing, easy servicing (single printed circuit), and specially protected test leads. In addition, the reliability of this instrument is claimed to be outstanding.

Measurement ranges are as follows: Vdc: 200 mV to 1000 V ; Vac: $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$ and 650 V ; current: $200 \mu \mathrm{~A}, 2 \mathrm{~mA}$, $20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}$ and 10A; resistance: 200Ω to $2000 \mathrm{~K} \Omega$, and $20 \mathrm{M} \Omega$.
used giving setability of $< \pm$ 0.5 ppm , temperature stability of $< \pm 2.5 \mathrm{ppm} 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ and aging of $< \pm 5 \mathrm{ppm} /$ year. The ' X ' versions give improved setability of $< \pm 0.2 \mathrm{ppm}$, temperature stability of $< \pm$ $0.5 \mathrm{ppm} 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ and ageing of $< \pm 1 \mathrm{ppm} /$ year.
Power is supplied by rechargeable batteries or ac mains supply via a mains adaptor/charger unit.
A telescopic aerial is available to enable this portable instrument to be used for transmitter frequency measurement in the field.

Levell Electronics Ltd, Moxon Street, Barnet, Herts EN5 5SD. Tel: 01-449 5028, 01-440 8686.

Ltd, Redlands, Coulsdon, Surrey CR3 2HT. Tel: 016687141

LOW VOLTAGE SOLDERING IRONS
 A series of miniature low

 voltage soldering irons, the Oryx Micro Series, has been introduced by Greenwood Electronics, the Readingbased electronics productions equipment specialists.These professional irons, the smallest in the Greenwood 'Oryx' range, have been designed for intricate circuit work.

They provide maximum heat in a concentrated area and offer typical tip temperatures of around $320^{\circ} \mathrm{C}$. Typical unit weight is only 4 grams.
The Oryx Micro soldering iron range includes 5, 6, 9, 11, 12,18 , and 25 watt models and operating voltages include 6 , 12, 24 and 50 volts.
A power supply, station stand and cleaning facility, the Micro P6.6; offers 115/ 240 Vac mains operation and

PRODUCT NEWS

delivers a safety isolated output for the $6 \mathrm{~V}, 6 \mathrm{~W}$ Micro iron.
A more elaborate version, the Micro PT6.6 variable temperature unit, is also available. With this unit the tip temperature of the iron can be controlled between $120^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ via a control knob on the base stand.

Greenwood Electronics, Portman Road, Reading, Berks RG3 1NE. Tel: 0734 595844.

MULITPLE TAG INSULATORS
A range of high quality multiple tag insulator assemblies, the 6 X series, which can accommodate up to six banks of insulator tags in each assembly is available from Oxley.

High dispersion grade PTFE is used as the insulation medium and each bank can be supplied with the insulator in a different colour. Standard insulator colours are black, brown, red, orange, yellow, green, blue, violet, pink, grey
and white. Each bank includes a special internal eyelet that inhibits rotation of the complete assembly
Maximum current per terminal is 5A and working voltage is 3 KV dc. Maximum capacitance to chassis or between banks is 2 pF
Terminations are silverplated brass; the mounting
screws are nickel-plated brass.

The $6 X$ series meet the 56 day damp heat climatic category of IEC68 (IEC68 55/200/56). Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

Oxley Developments Co Ltd, Priory Park, Ulverston, Cum= bria LA12 9OG. Tel: 022952621.

REGULATORS

LM317T Plastic TO220 variable 1.00 LM317 Metal .. $£ 2.20$ 7812 Metal 12v 1A $£ 1.00$ LO36 TO3 Metal 12v LO37 15v ea............50p 7805/12/15/24 plastic................................. 50p
7905/12/15/24 plastic. .50p
CA3085 TO99 Variable regulator........... 50p
LM723 14 dil
.50p

EPROMSNEMORIES

2764 INTEL/FUJITSU $300 \mathrm{~ns} £ 7450 \mathrm{~ns} . £ 6.50$ 2732A-3 NEW £3. 50 ea. $100+/ £ 3.00$ 2102 500ns AMD 80p........................ 10/£6.00 MC6810P. ...£1.05

POWER TRANSISTORS

TIP141, 142, 147£1 ea. TIP112, 125, 42B.............2/£1.00 TIP35B £1.30, TIP35C £1.50 2N3055 Motorola 50p 5/£2.00 2N3055 Ex eqpt tested....................... 4/£1.00 MJE3055, MJE2955 equiv ea.

DISPLAYS

Futaba 4 digit clock fluorescent display FLT-02-8 also 5-LT 16/£1.50 Futaba 8 digit calculator fluorescent display 9CT-01-3L . 1.50
LCD Clock display 0.7" digits £3.00 Large Clock display 1' ' digits £3.00 7 seg $0.3^{\prime \prime}$ display comm cathode 50p MISCELLANEOUS
QUARTZ HALOGEN LAMPS
A1/216 24v 150w.
£2.25

WOUND POT CORES
with adjuster unused
RM7 LA4245 .. $3 / £ 1.00$
RM8 LA4344 $2 / \Sigma 1.00$

TOK KEY SWITCH 2 POLE 3 KEYS

ideal for car/home alarms £3.... 100+/£2.00 $12 v 1.2 w$ small wire ended lamps fit AUDI/VW TR7 VOLVO SAAB 10/£1.00 14v 0.75w MES lamps 8/£1.00 Heat shrink sleeving pack $£ 1.00$ PTFE sleeving pack asstd colours £1.00 250 mixed res diodes, zeners £1.00 Mixed electrolytic caps.................. 100/ $£ 2.00$ ITT CASS RECORD/PLAY AMP + cct...... £2.00
Stereo cassette deck. \qquad £5.00
Stereo cass R/P head. . 2.50
Mono head £1 Erase head 50p
Thermal cut-out $50^{\circ} \mathrm{C}, 77^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$..................70p
Thermal fuse $121^{\circ} \mathrm{C} 240 \mathrm{v} 15 \mathrm{~A}5 / £ 1.00$
Vero pins fit 0.1" Vero100/50p Double sided PCB pins100/50p TO220 Micas + bushes 10/50p 100/£2.00 TO3 Micas + bushes.. ... 10/50p RELAYS $240 v$ AC coil PCB mounting 2 pole changeover £1 3 pole c/o.......... £1.00
Varley 24 v dc 4 p c/o relay 80 p
Fig 8 mains cassette leads $3 / \Sigma 1.00$ KYNAR wire wrapping wire $20 z$ reel....... $£ 1.00$ PTFE min screened cable $10 \mathrm{~m} £ 1.00$ TOKIN MAINS RFI FILTER 250v 15A... £3.00 TDK MAINS RFI FILTER 115 v 15A£1.00 Epoxy potting compound 500g............... 2.00 Mercury tilt switch small. . 1.00
Min rotary sw 4 p c/o 1/8" shaft2/£1.00 Thorn 9000 TV audio o/p stage $2 / £ 1.00$

10 m 7 CERAMIC FILTER 50p 100/£20 6 m CERAMIC FILTER 50p 240v AC FAN 4.6" SQUARE NEW $£ 5.50$ 240/115v AC FAN 4.6" SQ NEW............. $£ 7.00$ 12v DC Brushless fan reversible 2.5"sq 2" deep QUIET \qquad
KLIPPON terminal block EKS 12/4 12 way 20A term block.................................... $3 / \Sigma 1.00$
BELLING-LEE 12 way block L1469 .. 4/E1.00 POTENTIOMETERS short spindle
2K5 10K 2 m 5 Lin . .5/£1.00
500K 1 in 500 K log long spindle......... 4/£1.00 40 KHZ ULTRASONIC TRANSDUCERS
EX-EQPT. NO DATA PAIR $£ 1.00$
STICK-ON CABINET FEET............. 20/£1.00
TO3 TRANSISTOR COVERS 10/£1.00
TRANSISTOR MOUNTING PADS TO5/
TO18 £3/1K
RECTIFIERS
120v 35A stud.. 50p
12FR400 12A 400v small stud............. 4/£1.50
BY127 1200V 1.2A 10/£1.00
1N5401 100v 3A................................... 10/£1.00
BY254 800v 3A ... 8/£1.00
BY255 1300v 3A ... 6/£1.00
1A 800v bridge rectifier 4/£1.00
6 A 100v bridge .. 50p
10A 600 v bridge $£ 1.50$
15A 100 v bridge .. 1.50
25A 200 v bridge $£ 2.00$ ea................................ $10 / \mathrm{E} 18.00$
25A 400 v bridge $£ 2.50$.......................... 10/£22.00

SCRs

MCR72-6 400v... 1.00
BTX95 800v 15A
35A 800v stud.. $£ 2.00$
70A 500 v large stud \qquad $£ 3.00$
MCR106 equiv 4A 400v 40p ea..... 100/£20.00
2N5061 800 mA 60 V TO92................... $4 / £ 1.00$
TICV106D .8A 400v TO92 3 $1, \ldots . .100 / £ 15.00$
MEU21 Prog unijunction................... $3 / £ 1.00$
TRIACS diacs... 25 p
TXAL228 8A 400v isol. tab 2/£1.00
25A 800v ex eqpt, tested....................... £1.50
CONNECTORS (EX EAPT price per pair)
'D' 9 way $£ 1,15$ way $£ 1.25,25$ way $£ 2,37$ way
£2, 50 way £3.50 covers50p ea
NEW 25 way PCB SKT .. 1.00
0.1 " double sided edge connector 32 way ideal ZX81/SPECTRUM........................ £1.50 $0.1^{11} \mathrm{~d} /$ sided pcb plug $24+25$ way........................50 2 pole sub min connectors ideal radio control RS 466/472/488/3435 pairs £2.00

IDC CONNECTORS

25 WAY 'D' SOCKET 37 'D' PLUG ea.. £2.00 20 WAY SOCKET (BBC USER PORT) $£ 1.00$ 26 WAY SOCKET (BBC PRINTER) $£ 1.50$ 34 WAY SOCKET (BBC DISC DRIVE) $£ 2.00$ 40 WAY SOCKET $£ 2.00$
IDC CARD EDGE CONNECTORS D/S EX-EAPT
34 WAY (FITS DISC DRIVE PCB) $£ 3.00$ 40 WAY (FITS CENTRONICS 739 PCB) .. $£ 3.00$ 50 WAY £3.50

WIRE WOUND RESISTORS

W21 or sim 2.5 W 10 OF ONE VALUE FOR........... £1.00 1R0, 2R0, 2R7, 3R9, 5R0, 10R, 12R, 15R, 18R, 20R, 27R, 33R, 36R, 47R, 120R, 180R, 200R, $330 \mathrm{R}, 390 \mathrm{R}, 470 \mathrm{R}, 560 \mathrm{R}, 680 \mathrm{R}, 820 \mathrm{R}, 910 \mathrm{R}$,

1K, 1K15, 1K2, 1K3, 1K5, 1K8, 2K7, 3K3, 10K W22 or sim 6 watt 7 OF ONE VALUE for $£ 1$ R22, 1R5, 9R1, 10R, 12R, 20R, 33R, 51R, 56R, 62R, 120R, 180, 270R, 390R, 560R, 620R, 1K, $1 \mathrm{~K} 2,2 \mathrm{~K} 2,3 \mathrm{~K} 3,3 \mathrm{~K} 9,10 \mathrm{~K}$.
W23 or $\operatorname{sim} 9$ watt 6 OF ONE VALUE for $£ 1$. R22, 1R0, 3R0, 6R8, 56R, 62R, 100R, 220R, $270 \mathrm{R}, 390 \mathrm{R}, 680 \mathrm{R}, 1 \mathrm{~K}, 1 \mathrm{~K} 8,10 \mathrm{~K}$.
W24/sim 12 watt 4 OF ONE VALUE for $£ 1$. R50, 2R0, 10R, 18R, 47R, 68R, 75R, 82R, 150R, 200R, 270R, 400R, 620R, 820R, 1 K .

PHOTO DEVICES

Slotted opto-switch OPCOA OPB815 £1.30 2N5777 50p .. 100/£26.00
TIL81, TO18 Photo transistor $£ 1.00$
TIL38 Infra red LED2/50p
OPI2252 Opto isolator .50 p
Photo diode 50p, \qquad 6/£2.00
MEL12 (Photo darlington base o/c)50p
TO18 LDR 50p, RPY58A LDR 50p LEDs RED 3 mm or $5 \mathrm{~mm} 12 / £ 1, \ldots50 / £ 6.00$ GREEN + YELLOW $3 / 5 \mathrm{~mm} 10 / £ 1, \ldots . . .100 / £ 6.50$ FLASHING RED 5mm 50p,........... 100/£30.00 DIODES
1N4151 sim 1N4148............................ 100/\&1.25 1N4148.. 100/£1.50
1S3740 Germanium..........................100/£2.00
1N4004 or SD4 1A 300v 100/£3.00
1N5401 3A 100V...................................10/£1.00
BA157 1A 400V Fast recovery..............................22.50
BA159 1A 1000V Fast recovery...... 100/£3.50
MULTI TURN PRESETS
10R, 20R, 100R, 200R, $500 \mathrm{R}, 2 \mathrm{~K}, 5 \mathrm{~K}, 22 \mathrm{~K}$, 50K, 100K, 200K

40p

IC SOCKETS

8 pin 12/£1, 14 pin 10/£1.00
18/20 pin 7/£1, 100/£12, 1k £80.00
$22 / 28$ pin 25 p, 24 pin 25 p, 100/£20, 1k ... £ 100.00
40 pin 30p, 16 pin 12/\&1,...................100/£6.00
TRIMMER CAPACITORS small
GREY 1.5-6.4pF GREEN 2-22pF...........5/50p
YELLOW 2-16pF GREY larger type 225 pF

5/50p
SOLD STATE RELAYS NEW 10A 250v AC zero voltage switching control voltage 8-28v DC ..£2.50
VARIAC 0 to 130 v 6 A new uncased..... $£ 6.00$
POLYESTERPOLYCARB CAPS

\qquad 1 u 250 v Polyester C280 5/£1,........ 100/£10.00 $1 \mathrm{u} 5 \mathrm{p} / \mathrm{carb} 15 \mathrm{~mm}$ rad .. 100/\&5.00
2 u 2160 v rad 22 mm 100/£10.00
470n 250v AC X rated rad 4/£1.00 100 N 250 V AC X rated rad $20 \mathrm{~mm}4 / £ 1.00$
33n 250 v AC X rated rad $15 \mathrm{~mm}10 / \mathrm{E} 1.00$
10n 250v AC X rated rad $10 \mathrm{~mm}10 / £ 1.00$
BEAD THERMISTORS
GLASS BEAD NTC Res @ $20^{\circ} \mathrm{C}80 p$
250R 1K2, 50K, 220K, 1 M 4

BEAD TANTALUM CAPS

$47 \mathrm{u}, 3 \mathrm{~V}, 10 \mathrm{v}, 6 \mathrm{~V} 3,68 \mathrm{u}, 6 \mathrm{~V} 12 / £ 1, \ldots . . .100 / £ 6.00$ 2u2 20V 8/£1,

SMALL AXIAL CERAMIC CAPS 50V

15p, 18p, 22p, 27p, 33p, 47p, 68p, 82p, 470p, $1 \mathrm{n}, 10 \mathrm{n}(25 \mathrm{~V})$ 100/£3.00
STEPPER MOTOR 4 PHASE 2 gv

332 LEY STREET, ILFORD, ESSEX Shop open Mon-Sat 10am-2pm

Factinder - a new information service

The business world is becoming more aware that efficient and speedy access to information of all kinds is a necessity in today's economic climate. The costs of setting up and maintaining a library or information unit can be prohibitive for many companies even though there is an obvious need.
In order to help them overcome this problem the Technical Information Service of GEC's Engineering Research Centre at Whetstone, Leicester is offering its wide experience in the information field to outside companies and individuals in the form of 'FACTFINDER'.
Factfinder comprises a number of information packages, the most comprehensive of which is the full subscription service. This keeps the subscriber up-todate in selected fields of technology by way of a weekly information bulletin, a quick reference enquiry facility and access to the world's literature by an up-to-date computer link. Other packages on offer include newscuttings, supplied on a daily or weekly basis, information searching and retrieval on any subject and consultancy on all aspects of library and information work.
The Technical Information Service has been supporting a range of companies on the Whetstone site for 25 years and its professionally qualified staff have wide experience in all forms of informaction handling and retrieval. Comprehensive reference guides and special collections of books and journals on energytechnology, engineering and computing are available, but enquiries can be undertaken on any subject.
For further information:
Factfinder,
Technical
Information Service, GEC Engineering Research Centre, Whetstone, Leicester, LE8 3LH, or telephone 0533 863434 ext 4672.

British Amateur Television Club news

Congratulations are due to
the Bristol TV Group G8GLQ/P for their win over G8DIR and G4CRJ in the British Amateur Television Club's Summerfun contest. Despite fairly awful radio and weather conditions everyone who took part had fun.
ATV operators should note the main contest of the year, the International ATV Contest, will be from 18.00 GMT on Saturday 8th September to 12.00GMT on Sunday 9th September.

Amateurs who can receive ATV transmissions even on the domestic telly will find their reports very welcome!

Full details from G Shirville, G3VZV, 18 Church End, Milton Bryan, Milton Keynes, Bucks, MK17 9HR.

Ford engineers meet by

 sateliliteEvery working day, Ford engineers and executives in Germany and England 'meet' for face-to-face talks without ever leaving their own plants.
They are able to see and talk with colleagues, discuss pictures and graphics, and evaluate vehicle components in detail, by using Europe's first commercial application of international videoconferencing provided by British Telecom International's (BTI) Business Communications Service.
The system links, by satellite, two fully-equipped studios at Dunton in Essex and Cologne, West Germany.
The service is one of the first videoconferencing uses of transmission capacity on the European Communications Satellite (ECSt) and is installed on a trial basis until December this year.
Full audio and videoconferencing is available for one hour in the morning and one in the afternoon, five days a week.
Engineers and executives in the two countries can discuss and examine vehicle drawings, graphics, prototype parts and jointly review all forms of illustrative material, components or cars.
An immediate result of the new videoconferencing link has been the reduction in
travel between the two Ford sites. Faster decision-taking and the ability to hold more such productive meetings has impressed Ford executives.
The two identical studios are equipped for seven people. Up to three people in each studio can appear 'on screen' at any one time.
In addition to facsimile and data links, each studio has an 'electronic chalkboard' and an array of cameras, one of which runs on a track, enabling the transmission of three-dimensional views of vehicle materials.
In addition to these two hours each day of videoconferencing, the studios can be used for six hours of audioconferencing.

BTI's Business Communications Service - established to design, install and support complex international communications on a total system basis - was retained by Ford of Great Britain to devise the entire package in the UK and Germany, including liaison with the German telecom authority.
The Business Communications Service mastered the link between the two locations, along with providing the codecs (coders/decoders) which convert signals into digital form and compress them into a fraction of the capacity normally needed for video transmission.
These codecs were developed at British Telecom's laboratories at Martiesham, Suffolk, in collaboration with six other

Museum), and Mr D Byrne (Curator).

A new organising committee was elected to replace the original one of the Wireless Preservation Society.

Arreton Manor is near Newport, loW, and is open to the public from 10am to 6 pm on week-days, and from 2 pm to 6 pm on Sundays.

Oil rig communication terminal

British Telecom International has placed an order, worth around $£ 1 / 4$ million, with Marconi Communications Systems Ltd, of Chelmsford, for tropospheric scatter communication equipment to be used at the Row Brow shore station near Scarborough for radio communication with the Esmond platform in the North Sea.

British Telecom International will handle the civil engineering work, provide some of its own equipment and be responsible for integrating the system into the national network.

Marconi will provide two high power amplifiers (HPA)

with drives, and quadruple diversity receivers, to give an FM/FDM system with a 72 channel capacity.

Tropospheric scatter, or transhorizon radio communications, depend upon high power microwave radio signals beamed into the
troposphere to become scat tered by atmospheric turbulence so that a small but still usable signal reaches the receiving antenna.
Additionally, the company will supply supervisory units plus the personnel to install and handle the commission-
ing of the shore to platform link. Although not responsible for the total system, Marconi will guarantee the communication link performance.

Schedules

The German Shortwave Press Service ('KurzwellenPressedienst') which was formed in 1981 publishes a new weekly bulletin called 'Schedules'. The bulletin with an average of six pages contains the latest frequency and programme schedules of all radio and TV stations in the world (each Wednesday).
The subscription rates are: world-wide via surface post 58 IRC pa, world-wide via air mail 78 IRC pa or the equivalent in any currency; German Post Office Account: Postgirokonto D-3000 Hannover, Code No: 250100 30, (Giro Account No: 942 01-306).

A sample copy is available for 2 International Reply Coupons from Shortwave Press Service, Rainer Pinkau, Weender St 30, D-3400 Goettingen 1, West Germany, Tel: FRG 0551/551 21.

What the competition hasn't been waiting for:
 Latest version of Forth for the BBC (Is not rehashed Forth 79 Code)

 16k Eprom type 27128
 Unique Stack Display Utility
 GideVWVanc SQFTWVARE MULTI-FORTH 83
 102 120 0
 Multi-tasking operating system for Real-Time use
 extensive Manual (170 pages plus) and at $£ 45+$ VAT it is superb value.

Here's the Forth Eprom for the BBC Micro that makes all others out of date

It's Multi-Forth 83 from David Husband who has built his reputation for Quality Forth products with his ZX81-Forth ROM, Spectrum Forth-1/O Cartridge and now New Multi-Forth 83 for the BBC Micro. This is not rehashed Forth 79 Code, but a completely new version of the Forth 83 Standard. It's uniaue in that it Multi-tasks; and therefore the user can have a number of Forth programs executing simultaneously and transparently of each other.

Multi-Forth 83 sits in the sideways ROM area of the BBC along with any other ROMs in use. It is compatible with the MOS, and specially vectored to enable a system to be reconfigured. It contains a Standard 6502 Assembler, a Standard Screen Editor, and a Unique Stack Display Utility.

With this Forth, David Husband has provided the BBC Micro with capabilities never before realised. And being 16 K rather than 8 K is
twice the size of other versions. Multi-Forth 83 is supplied with an

Order it using the coupon adding $£ 2.30 \mathrm{p} \& \mathrm{p}$ ($£ 5$ for Europe, $£ 10$ outside) or if you want more information, tick that box instead. Either way, it will put you one step ahead of the competition.

MAIL SALE AT A.R.E.

MULTI-FORTH 83 FOR THE BBC MICRO

YAESU FRG- $\mathbf{7 7 0 0}$
Display models from £299.00

Still one of the best receivers available. All mode. Superb sensitivity and selectivity. Also the CWR-610E Telereader. Converts CW and RTTY to your VDU or television. ع179.00 INC VAT

ICOM IC-R71

The best communications receiver of professional standards yet to be offered to the amateur fraternity. Tuneable from 100 Kc to 30 MHz , all mode with FM option. Memory facility. Optional infra-red remote control unit. £649 INC VAT.

Sony's latest approach to pocket-size communications receivers. Covering from 153 Kc through to 30 MHz . All mode operation including SSB and FM on broadcast band. Keyboard entry for frequency access. Memory facility. Scan facility. A truly portable communication receiver $A C$ power supply included

SX 400

Undoubtedly the finest VHF.
UHF receiver yet
developed.Extremely professional in its design. Fully programmable, scan facility, memory facility. $\varepsilon 598$ INC VAT.

CLOSED-Mondays OPEN-Wednesdays

 FULL DETAILS. TUES, WED, FRI 9.30-5.30 THURS 9.30-6.00 - SAT 9.30-5.00 mare an your wavelength

-COMPUTING INDUCTANCES
 by Jeff Howell G4BXZ and Brian Kendal G3GDU

To the average amateur, the winding of coils for home-built equipment is really a bit of a hit-or-miss affair. Many old timers, however, seem to have the ability to look at a coil, sniff twice in the air and say: 'I reckon that will just about tune eighty' - and be right.
This, though, is a result of many years constructional experience and even then, if presented with a coil of unusual diameter or wound with a much thicker or thinner gauge wire than usual, the OT will quite likely be hopelessly wrong.
As a consequence, over the years many constructors have preferred to purchase ready wound coils - from the Eddystone and Wearite ranges available just after the war and the Denco and Electroniques coils of the fifties to the Toko range today.

Commercially wound coils, however, can be expensive and if the equipment is being constructed 'from the junkbox', may add considerably to the final cost. What alternative options are therefore available?
The first possibility is that the equipment under construction is being made to a published design, in which case the
coil data should be supplied. But what if the prescribed diameter coil formers or the correct gauge wire is not available?
The second possibility is to search through old magazines or handbooks and use the coils described for a broadly similar circuit. For this, however, a large and comprehensive library is necessary to ensure even a moderate chance of success.
The third method is to delve into the text books and calculate the values required. This again gives the choice of three options: pencil and paper, a nomogram or a suitable computer program.
A standard formula for the number of turns necessary for a coil of given inductance is:

where: N is the number of turns; L is the inductance required; $M U$ is the permeability of the core; d is the internal diameter; I is the length in mm .
On inspection of this formula, a mathematical difficulty is immediately apparent. To calculate the number of turns, the length of the coil must be known, but how can this be known before the number of turns has been calculated?
The usual subterfuge is to make an intelligent guess for a value of length, and then do the calculation. The number of turns calculated, a suitable wire gauge and turns spacing can be selected.

```
10 REM COIL TURNS CALCULATOR
20 REM J.M.HOWELL JUNE 1984
30 DIM X(9)
4 0 ~ C L S ~ S
50 PRINT
60 PRINT TAB(5);"COIL TURNS CALCULATOR"
70 PRINT
80 B$=""
90 RESTORE
100 FOR I=1 TO 4
110 GOSUB 570
1 2 0 ~ N E X T ~ I ~ I ~ I
130 PRINT "INDUCTANCE KNOWN? (Y/N)"
140 INPUT C$
150 IF C$="N" THEN GOTO 180
160 GOSUB 570
170 GOTO 230
180 READ AS,LO,HI
190 FOR I=6 TO 7
200 GOSUB 570
210 NEXT I
220 x(5)=25330/X(6)/X(6)/X(7)
230 T=1.1312`x(2)/11.76
240 IF X(2)>24 THEN T=T*.967^(X(2)-24)
250 S=x(3)+l
260 D=x(1)+1/T
270 N=D*T/S
280 FOR I=1 TO 10
290 N=SQR(X(5)/X(4)*(457.2*D+1016*N*S/T))/D
300 NEXT I
310 X(8)=N
320 X (9)=S*N/T
330 RESTORE
340 CLS
350 FOR I=1 TO 9
360 GOSUB 550
```

```
370 NEXT I
380 PRINT
390 IF X(9)>D*4 THEN PRINT "!! TOO LONG !!"
400 IF X (9)*4<D THEN PRINT " |! TOO SHORT |!"
410 PRINT
420 PRINT "STOP NOW? (Y/N)"
4 3 0 ~ I N P U T ~ A \$ ~
4 4 0 ~ I F ~ A \$ < > " Y " ~ T H E N ~ G O T O ~ 4 0 ~
4 5 0 ~ S T O P
460 DATA "COIL INSIDE DIA. (MM)",1,300
470 DATA "WIRE GAUGE (SWG)",8,42
4 8 0 ~ D A T A ~ " W I R E ~ S P A C I N G ~ ( 0 = N O N E ) " , 0 , 5
4 9 0 ~ D A T A ~ " F E R R I T E ~ M U ~ ( A I R = 1 ) " , 1 , 1 0 0 ~
500 DATA "INDUCTANCE (UH)",0.01,10000
510 DATA "FREQUENCY (MHZ)",0.01,1000
5 2 0 ~ D A T A ~ " C A P A C I T Y ~ ( P F ) " , 0 . 1 , 1 0 0 0 0 0 ~
530 DATA "COIL TURNS",0,0
540 DATA "LENGTH (MM)",0,0
550 B$=" = "+STR$(X(I))
560 PRINT
570 READ AS,LO,HI
580 PRINT AS;TAB(22);B$
590 IF B$<>"" THEN RETURN
6 0 0 ~ I N P U T ~ C \$ ~
610 IF LEN(CS)=0 THEN GOTO 630
620 IF C$="O" OR VAL(C$)<>0 THEN X(I)=VAL(C$)
630 IF X(I)<=HI THEN GOTO 680
640 CLS
6 5 0 ~ P R I N T ~
660 PRINT "TOO HIGH - LIMIT =",HI
6 7 0 \text { GOTO 580}
680 IF X(I)>=LO THEN RETURN
6 9 0 ~ C L S ~
700 PRINT
710 PRINT "TOO LOW - LIMIT=",LO
720 GOTO 580
```

If for any reason a 'silly' result is obtained (such as a 1 KW tank coil using 42-gauge wire), another calculation using an alternative value for 'l' will have to be made. In all, this method can tend to be both time consuming and laborious.

The second method is to use a nomogram. This can be quite quick and efficient but, like most graphical methods, requires a certain experience to give an accurate result.
The third method in this modern age is to use the digital dexterity of the home microcomputer equipped with a suitable program.

The program

The program described in this article is designed to calculate the number of turns necessary for a coil of given inductance, or if the value of the required inductance is not known, derive this from the resonant frequency required, and the parallel capacity.
The program will calculate to an accuracy of better than 5% within the limits of the formula, and give indication when these limits have been exceeded.

The language used is standard Microsoft Basic and the program has been successfully run on BBC B, Oric and Sanyo computers.

Furthermore, it may be easily modified to 'Sinclair' Basic for Spectrum machines. Doubtless many other machines will be equally suitable.
Finally, being fully aware that the longer the listing the greater the possibility of inadvertent error, two measures have been taken to guard against this. Firstly, the program has been 'pruned' to minimum length, even at the expense of slightly greater complexity and, secondly, a series of test calculations have been devised which will thoroughly check all aspects of the program.
If, after keying in the listing, the test calculations can be successfully performed, it can be confidently assumed that the program is error-free and is ready for use.

Using the program

If, after the program is loaded, the 'RUN' instruction is given, the screen will clear and the user will be asked to input certain parameters of the coil required such as inside diameter, wire gauge, wire spacing and permeability of the core.
This complete, the user is then asked if the required inductance is known. If so, it is entered. If not, the frequency of operation and the parallel capacity are requested.

During this sequence each figure is compared with predetermined limits to ensure that the validity of the formula will not be compromised. Despite this, it is possible for an answer to be derived which is, in itself, beyond the limit of accuracy of the calculation.
In such a case, although the answer will be printed, this will be accompanied by an appropriate warning such as 'TOO LONG' or 'TOO SHORT'.

Program checks calculations

Coil inside dia (mm)	$=25$
Wire gauge (SWG)	$=34$
Wire spacing ($0=$ none)	$=0$
Ferrite mu (air=1)	$=5$
Inductance ($\mu \mathrm{H}$)	$=20.6776$
Frequency (MHz)	$=3.5$
Capacity (pF)	$=100$
Coil turns	$=9.51218$
Length (mm)	$=2.36637$
!! TOO SHORT !	
Coil indide dia (mm)	$=10$
Wire gauge (SWG)	$=22$
Wire spacing ($0=$ none)	$=0$
Ferrite mu ($\mathrm{air}=1$)	$=1$
Inductance ($\mu \mathrm{H}$)	$=1$
Frequency (MHz)	$=0$
Capacity (pF)	$=0$
Coil turns	$=10.765$
Length (mm)	$=8.40534$
Coil inside dia (mm)	$=12.5$
Wire gauge (SWG)	$=25$
Wire spacing ($0=$ none)	= 1
Ferrite mu (air=1)	= 1
Inductance ($\mu \mathrm{H}$)	$=1.1$
Frequency (MHz)	$=0$
Capacity (pF)	$=0$
Coil turns	$=10.8593$
Length (mm)	$=12.1152$
Coil inside dia (mm)	$=12.5$
Wire gauge (SWG)	$=12$
Wire spacing ($0=$ none)	$=1$
Ferrite mu (air=1)	$=1$
Inductance ($\mu \mathrm{H}$)	= . 46
Frequency (MHz)	$=0$
Capacity (pF)	= 0
Coil turns	$=12.0153$
Length (mm)	$=64.3721$
!! TOO LONG!!	

The operator is then asked whether a further calculation is required. If it is, the program is re-run. In such circumstances certain parameters, such as wire gauge or coil diameter, may remain constant. If, when these are requested, the RETURN key is pressed, the computer will assume the previous value, thus obviating reentry.
Note: If, after a calculation in which the required inductance has been derived from frequency and capacity, the inductance is specified in the succeeding calculation, the frequency and capacity previously specified will be displayed in the print out. These figures, however, will be meaningless and will in no way affect the accuracy of the computation.

Operation of the program

Although a detailed knowledge of the program is not necessary for its use, a few notes about its operation may be of interest.

The first action of the program is at line 30 where a 'workspace' of 9 variables $(X(1)$ to $X(9))$ is defined by use of the

DIMENSION instruction. Lines 40 to 70 then cause the heading to be printed on the screen.
Line $80\left(\mathrm{~B} \$=^{\prime \prime \prime \prime}\right)$ is inserted to remove any value for $\mathrm{B} \$$ which may be remaining from a previous calculation, but has no effect during the initial input phase of the program.

Lines 100-120 enable the program to request the first four lines of data (lines 460 to 490) by means of the input/output sub-routine, which starts at line 570 . This sub-routine also ensures that the figures entered are within predetermined parameters.
The computation mode of the program is defined at lines 130 to 150 . This either reads the required inductance directly or calculates it from the resonant frequency and capacity. In the former case, line 160 is merely a continuation of the sequence in lines 100 to 120.
Before the frequency and capacity can be entered (at lines 190 to 210), the program must issue a dummy read instruction (line 180) which makes no use of the information but merely serves to move the internal data pointer forward one line and allows the next input action to use the next two data statements at lines 510 and 520.
With the frequency required and parallel capacity now defined, the necessary inductance is calculated at line 220.

On lines 230 and 240 the wire gauge is converted to 'closewound turns per millimeter' using an empirical formula which is accurate to better than 5%, whilst on line 260 the mean diameter of the coil is determined from the inside diameter and the diameter of the wire.

The calculation of the number of turns of wire necessary to achieve the required inductance is on lines 270 to 300 , with the answer being associated with the appropriate data statement at line 310 and the length of the coil calculated at line 320 .
Line 330 then sets the internal data pointer back to the top of the data list (ie line 460).
The complete list of data, which has either been provided by the user or calculated within the program, is then printed by the action of lines 340 to 380 .

The ratio of length to diameter is next examined in lines 390 and 400 and if the result is outside the limits of accuracy of the formula used in the calculation, an appropriate warning is given.

In conclusion, the user is given the option of a further calculation at lines 420 to 440 and if this is not taken up, the program stops at line 450.

Future programs

This is the second in a series of 'engineering' programs which will appear in R\&EW over the next few months. These will all be written in standard Microsoft Basic so as to be compatible with the majority of home computers.
It is hoped that the use of these programs will considerably simplify the design of home built equipment.

R WITHERS COMMUNICATIONS

584 HAGLEY ROAD WEST, OLDBURY, WARLEY B68 OBS (QUINTON, BIRMINGHAM) WEST MIDS. Tel: 021-421 8201/2 (24 HR ANSWERPHONE)

5

RWC SUMMER-TIME SPECIALS
\star All Available at Time of Going to Press \star

Instant Finance available to all LICENCED AMATEURS SUBJECT TO STATUS. VIA LOMBARD TRICITY NORTH - WALES TRUST

VHF MULTIMODE

YAESU FT480R $£ 375.00$
ICOM IC211E $£ 285.00$
ICOM IC201..............
TRIO TS700S
T

VHF FM MOBILES \& H/HELD

FDK 700EX
£139.00
TRIO 7730
AZDEN 4000
YAESU 207R
(with new Nicad and Base Charger)
YAESU 208R
ICOM IC2E
(with extras)

SECONDHAND SUMMERTIME SPECIALS
HF TRANCEIVERS

We pay good prices for used Radios in good condition working or not.

SSB ONLY

ICOM IC402........ £159.00 (UHFSSB3W)

 MIZUHO MX2..............................59.00(2mtr Portable SSB)
[PLEASE NOTE:]
Naturally our S/H stocks change daily so please TEL before you travel a long way, ask us to let you know when the model you want comes in!
At RWC when you purchase a used Radio you can rest assured that it will have been checked/serviced and will be in good working order guaranteed for 3 mth . Visitors are welcome to see our well equipped workshops. We boast the best test gear!

EXTRA SPECIAL CLEARANCE ON THE FOLLOWING:"

FT101Z AM units, MMB2 FT707 Mobile Mounts, FT102 AM \& CW Filters, Various YAESU MICS KENPRO KT200 Nicad Packs, KENPRO AC Wall Chargers. (Fits most H/Helds). G-whip-HF mobile aerials \& coils.

RWC WHILE YOU WAIT SPECIALS - Subject to telephone confirmation/appointment

MUTEK Board fitted on 290R's @ £35.00 Also ICOM 211Es \& 251's from $\mathbf{\Sigma 8 9 . 0 0}$ LCL2740s modified while you wait (Subject to condition \& X'tal status) from £12.50. AND - ARE YOU SURE YOUR RADIO IS WORKING CORRECTLY? - WHY NOT HAVE IT CHECKED? Everything - TX Power OUTPUT, Harmonic Content, Spectral Purity, Frequency, FM Deviation or AM Modulation! Receiver sensitivity (sinad), etc, \& etc. Written report included All for $\mathbf{\Sigma 1 2 . 5 0}$! We will also undertake to do simple jobs on the spot subject to time available, What more can you ask!

SILLY SEASON SPECIAL OFFER

FREE TRIO WITH EVERY PURCHASE OVER 50p! Yes an absolutely free Trio - Unbelievable - NOW EVERYONE CAN OWN A TRIO! (Not to be confused with grey imports) THIS IS A LIMITED OFFER, ONLY WHILE STOCKS LAST - OFFER AVAILABLE FOR SEVEN DAYS ONLY (FROM publication date). HURRY, COME \& GET YOUR FREE TRIO! NOW! (ALSO AVAILABLE AT SUPERMARKETS, NEWSAGENTS, MOTORWAY SERVICES \& ALL GOOD STORES!) Available to shop callers only

\section*{British}
 TEL.ECOM

APPROVED STOCKISTS FOR ALL YOUR TELEPHONE \& ACCESSORY REQUIREMENTS. IN STOCK:- TELEPHONES, APPROVED CALLERS PHONES, CABLES, LEADS, EVERYTHING!

Overseas customers welcome.
We speak German \& Japanese.
Import/Export no problem.
Please telephone during working hours or
TELEX 334303 TXAGWM-G

$\square \Gamma$

Statistics show that the average citizen has a one-in-four chance of being burgled, beaten up, or burnt in his own home. These odds, however, can be improved by fitting a well thought out electronic home-security system.
'Home security' is a fairly large subject. To understand it, you need to first know the basic principles of security system installation and of 'crook psychology'.

Basic precautions

The disasters most likely to strike at home are fire, thuggery, and burglary. Most home fires are caused by lighted cigarettes or pieces of smouldering coal/coke/wood falling onto rugs, by over-heated electrical appliances, or by carelessly placed tea cosies or tea towels igniting from the heat of gas pilot jets, etc.
The first line of defence against fire is common sense, and the second a fire alarm system. The latter can be a sophisticated affair, including smoke and gas detectors, or a simple outfit consisting of a number of normally-open thermostats, all mounted at ceiling height and connected in parallel, and arranged so that they complete an alarm circuit if any of them close, as shown in Figure 1.

Fig 2 Simple self-latching 'panic' alarm

Any fire alarm system is better than none at all, provided that it is reliable, and a simple thermostat type can easily be used in conjunction with most types of burglar alarm system.

Thuggery prevention

Thuggery is a very real menace to the householder. An attack usually occurs when someone in the home opens the front door in response to a call; or it happens shortly afterwards when entry has been gained on the pretext of reading a meter or selling something. Occasionally, the attacks occur late at night following a break-in.

The first line of defence against this threat is common sense and, possibly, a 'spy hole' device and a security chain fitted to the front door.
An excellent second line of defence is a permanently armed system of 'panic' buttons positioned close to likely attack points (front and rear doors, the TV lounge, and the main bedroom) and arranged to operate a self-latching alarm when they are momentarily activated (see Figure 2). The 'panic' buttons are ordinary, normally-open, push-button switches. A simple 'panic' system of this kind can easily be used in conjunction with most burglar alarm systems.

Burglary prevention

Any burglar alarm system can be broken down into three basic 'building blocks', as shown in Figure 3. The first of these can be regarded as the 'sensor' mechanism, which detects an actual (or 'possible') intrusion at one or more protected points of the house, and sends some kind of signal to the 'control centre' block.
The control centre tests the sensor signals, checks them for validity, and activates the alarm-call generator (an electronic or electro-mechanical siren, etc) when appropriate.
Four basic alarm systems are available,

Fig 4 Single beam infra-red alarm system

Fig 5 Dual beam infra-red alarm system

Fig 6 Simple alarm circuit with n-o switches

Fig 7 Simple alarm circuit with n-c switches
these being the 'radar' type, the ultrasonic type, the infra-red 'light-beam' type, and the 'microswitch' type.
The most important parameter of any system is its reliability or immunity to false alarms, and it is unfortunate that many 'sophisticated' systems have a very poor reliability rating. Any system that gives frequent false alarms (99% of all burglar alarm soundings are false) will be ignored by both the police and its owner, and is thus virtually useless.
Many systems can be false-triggered by electrical interference from lightning or nearby electric motors, etc.
The radar-type generate a microwave field over the whole house, and activate the alarm when that field is disturbed. Unfortunately, these systems can sometimes be false-triggered by large vehicles passing the house, and may thus have a poor reliability rating.

Ultrasonic alarms are usually designed to protect an individual room. They generate an ultrasonic field and sound an alarm if a physical movement within the room causes a significant doppler shift within the field. Some of this type can be false-triggered by draughts, by the fluttering of curtains or drapes, or by the movements of insects close to the ultrasonic sensors, etc.

Infra-red (IR) 'light-beam' types of alarm normally give protection along an invisible 'line-of-sight' beam, and activate the alarm if the beam is broken by a physical object. Most use a single beam, and can easily be false-triggered by insects passing through the beam, as shown in Figure 4.
A few IR alarms use a 'dual' beam, as in

Figure 5, and activate only when both beams are broken simultaneously. These beams are separated by 10 to 25 cm , and the alarm can thus not be false-triggered by a small insect breaking one of the beams.
The most popular type of burglar alarm system uses electro-mechanical 'switches' as sensors. These may take the form of microswitches or reed-relays connected to doors and/or opening windows, or pressure-pad switches hidden under carpets.
The sensor switches may all be of the normally-open ($n-0$) type which close when activated, or of the normallyclosed ($n-c$) type which open when activated, or they can be a mixture of the two.
If normally-open switches are used in all sensor positions, a self-latching burglar alarm can be made by wiring all switches in parallel and connecting them to the alarm bell via a relay, as shown in Figure 6.
This type of circuit may use a great deal of sensor-to-alarm wiring, but has the advantage of consuming zero standby current from its supply battery.
If normally-closed switches are used in all sensor positions, a self-latching burglar alarm can be made by wiring all switches in series and connecting them to the alarm bell via a transistor-aided relay, as shown in figure 7. This 'electronic' type of circuit uses a minimum amount of sensor-to-alarm wiring, but has the disadvantage of consuming a quiescent current of 1 mA via R1-Q1 (in practice, this current can be reduced to a negligible value by using a more elegant
relay-driving system). Note that the above circuit can easily be modified to also act with normally-open switches, as shown in Figure 8.
In a practical contact-operated alarm system, the sensor switches actually connect to the input terminals of a 'control centre', which houses the electronics and the battery, plus a number of switches that enable different parts of the system to be turned on or off, or to be tested.
The centre should ideally be housed in a burglar-proof box and be provided with a key-type on/off switch.
Figure 9 shows a typical control-centre instrument panel, with six control switches. Switch S1 is the main on/off switch, and is of the 'key' type. Pushbutton switch S 2 enables the alarm bell (and thus the battery) to be given a functional check.
The remaining four switches are 'toggle' types, and allow various sensors to be enabled or disabled within the defence system.
Figures 10 and 11 show the connections for turning individual sections of the alarm sensor network on and off. Series-connected normally-closed sensor networks can be enabled or disabled by wiring them in parallel with S1, as shown in Figure 10. The sensors are enabled when S1 is open, and are disabled when S1 is closed.
Parallel-connected normally-open sensor networks can be controlled by wiring them in series with S 1 , as shown in Figure 11. The sensors are enabled when S 1 is closed, and are disabled when S 1 is open.

DAIA FILE

Fig 8 Alarm circuit using n-c and n-o sensor switches

Fig 10 Method of enabling and disabling series-connected n-c sensor switches

Fig 11 Method of enabling and disabling parallel-connected n-o sensor switches

Fig 12 Ground floor plan showing minimal spot and panic defences

Planning a system

The most popular type of burglar alarm system is that based on the use of switchtype 'contact' sensors. Let's look at the actual techniques of planning the installation of such a system in a house.
Any building can, for our present purposes, be regarded as a box that forms an enclosing perimeter around a number of interconnected compartments. This perimeter 'box' is the shell of the building, and contains walls, floors, ceilings, doors and windows.
To commit any crime within the building the intruder must break through the perimeter, which thus forms the owner's first line of defence.

Once an intruder has entered the building he can move from one room or 'compartment' to the next only along paths that are pre-determined by the layout of internal doors and passages.
In moving from one compartment to the next he must inevitably pass over or through certain 'spots' in the building, as is made clear in Figure 12, which shows the ground-floor plan of a medium-sized mid-terrace house. Thus, to move between the kitchen (a likely break-in area) and the lounge he must pass through three 'spots' comprising the kitchen door, adjacent point ' X ', and the lounge door. These typical 'spot' points form the owner's second line of defence.

The house owner can thus obtain protection by using full or partial 'perimeter' defence, or by using 'spot' defence, or by using a combination of these two methods.
'Perimeter' defence sensors include microswitches or reed-relay/magnet combinations which can be fitted to

external doors and windows, and window foil which can be fitted to the glazing on external doors, windows, and skylights.
'Spot' defence sensors include press-ure-pad switches that can be fitted under rugs or carpets, microswitch or reedrelay/magnet door switches, and 'baited traps' comprising an attractive item (such as a clock) placed on top of a concealed microswitch that activates when the item is removed.
When planning the installation, the house owner must try to think like a burglar. Normally, the thief enters a house from an easy access point that is obscured from the view of the neigh-
bours, ie, a back door or window.
Often, he breaks in using tools taken from the owner's shed or garage, so these two places should be included in the owner's defence system.
Invariably, the burglar's first action on entering the property is to secure a rapid escape route, ie, to open the back door. He then starts hunting for stealable goods.

Two examples

Figures 12 and 13 show alternative ways of installing security defence systems in the ground floor of a mediumsized mid-terrace house.

Fig 14 Reed-relay/magnet combination to form a door activated switch

Fig 15 Simple self-latching alarm

In both cases anti-thuggery protection has been obtained by installing a 'spy hole' device in the front door, and by fixing 'panic' buttons at three likely attach points. The two houses differ considerably, however, in their methods of burglary protection.
In the case of Figure 12 the owner has reasoned that a burglar is most likely to enter the house via the French windows of the lounge, or via the kitchen door or window.
If he enters via the French windows he will be detected via a strategically placed pressure pad (hidden under a mat or carpet), but if he enters via the kitchen he will find nothing worth stealing so will open the kitchen door into the hall, where he will subsequently be detected via another hidden pressure pad.
In the unlikely event that the burglar enters the house from the front, he will
eventually be detected via a pressure pad located in the hall, adjacent to the dining room door, or via a small pressure pad placed on the stairs.
Note that this house owner has made no attempt to keep the burglar out of the house, but has used 'spot' defences to detect him once he has entered. This simple type of installation is highly costeffective, and gives a reasonably high degree of protection.
By contrast, the house in Figure 13 uses an extensive perimeter and spot defence system. Its owner has decided to try to scare off potential burglars by fixing clearly visible window foil to selected areas of glazing at the front and rear of the house. Some of this foil is genuinely connected into the alarm system, and some is 'dummy'.
All external and internal doors are protected by door switches, and two
pressure pads are placed on the stairway. Additionally, baited traps are placed in the lounge and dining room. This house has excellent protection.

Installation notes

Pressure pads come in the form of small 'mats;' they are excellent 'spot' defence devices that are easily hidden under rugs. Both standard and stair types are available.

Note, however, that they are fairly sensitive and can easily be set off by large cats and dogs; if you own one of these animals, make sure it is confined to a sensible area when the pressure pad is enabled.

Window foil is an adhesive-backed aluminium strip that bonds to glazing. It couples into the alarm system via special connector blocks. The strip breaks when a window is shattered.

Fig 17 Simple self-latching alarm circuit

Door/window switches usually come in the form of a reed-relay/magnet combination. The magnet is installed in the edge of the door or opening window, opposite the reed-relay that is installed in the frame, as shown in Figure 14. When the door/window is closed, the adjacent magnet holds the reed-relay in one switch mode; when the door/window is opened, the magnet moves away from the reed-relay, causing it to switch to the alternative mode.
Most commercial units of this type have two sets of output wires in the reedrelay unit, one set giving normally-open operation and the other giving normallyclosed operation.
When you plan your installation, don't forget to make some provision for bypassing the front door protection system, so that you can leave and re-enter the house without sounding the alarm.
Also, remember to protect your shed and/or garage. Keep all wiring neat and concealed, and thoroughly test each section of the wiring as it is installed.
If possible, fit your system with both internal and external alarm bells or sirens. The external unit should be mounted in a prominent position at the front of the house, where it will act as an excellent burglar deterrent: special weatherproof alarm-bell housings are readily available.

Home-security circuits

We have already looked at some very
simple burglar alarm circuits in Figures 6 to 8 . In reality, these circuits need some degree of modification before they can be used as practical burglar alarms. The Figure 6 circuit, for example, needs to be provided with an on-off key switch, to enable the circuit to be 'unlatched' once it has been activated, as shown in Figure 15.

A major defect of the Figure 7 and 8 circuits is that they each consume a quiescent current of 1 mA via the R1-Q1 relay-driving circuitry. This snag can be overcome by increasing the value of R1 to 12 M and using a CMOS inverter stage as a buffer between R1 and the input of Q1, as shown in Figure 16. This circuit consumes a quiescent current of a mere $1 \mu \mathrm{~A}$.
Note the use of C1 and R2 in this circuit: in practical installations many metres of wire are used to interconnect the series sensor switches and this wire tends to pick up spurious pulses and signals, particularly during thunderstorms. C1-R2 form a simple low-pass filter that helps reject these signals, and thus helps improve the system's immunity to false-triggering.
Note that the Figure 15 and 16 circuits each use a set of relay contacts (RLA/1) to provide self-latching action. An alternative technique is shown in the circuit of Figure 17.
In this case the self-latching action is performed by the IC1a-IC1b bistable circuit. C2 and R5 cause the bistable
output to latch low at the moment that key-switch SW1 is first closed.
If any of the sensor switches are subsequently activated they cause a 'high' signal to be fed to pin 2 of the bistable (via the R3-C1 low-pass filter), which then latches into high-output state and turns on Q1 and RLA. Relay contacts RLA/1 are used to activate an external alarm generator.
Note in the Figure 17 circuit that R2 is wired in series with the series sensor switches, thereby enabling the circuit to be activated by either the series switches or by paralleled pressure-pad switches wired across R1.
This circuit thus makes a very versatile burglar alarm; ideally, the external alarm generator should be powered by its own battery supply.
Figure 18 shows how the above circuit can be modified to give auto-turn-off alarm action, so that the alarm sounds as soon as an intrusion is detected but turns off again automatically after four minutes or so.
This action is obtained via IC1a and IC1b, which are wired together as a monostable or one-shot multivibrator that drives the relay via Q1 and is triggered via the sensor switches.
Note in the Figure 17 and 18 circuits that Q1 and the relay are permanently connected to the power supply rails, even when SW1 is open and the burglardetecting sensors are disabled.

This fact makes it easy to add

HAND HELD/PORTABLE

TR2500	2M£246.00
TR3500	70cm£265.00

We also have a considerable range of accessories - Mics, headphones, morse keys, SWR/power meters, filters, wavemeters, mobile and fixed speakers, Ham clocks. Also new AR2001A 25-550 MHz Receiver £345.00

ICS Ham Radio Interfaces for CBM 64/VIC 20
AMT-1 AMTOR/RTTY/CW
£269.00
CP-1 RTTY/CW £179.00
Micropatch RTTY .. $£ 129.00$
AMTOR Mk II PCB...................................... $£ 135.00$
G3LIV RTTY-BBC 'B'.................................... $£ 75.00$
G3LIV PCB Mk3 ...£6.80
New
G3LIV SSTV PCB
and BBC Software $£ 17.50$
SCARAB HAM SOFTWARE
CBM64 RTTY
£10.50
VIC20 RTTY.. 9.00
G3WHO BBC RTTY ..£7.50
NEW TATUNG EINSTEIN COMPUTER AND ACCESSORIES

Commodore 64.... £185.95 1541 Disc Drive.... £210.00
BBC'B'.................. $£ 390.00$ ELECTRON.......... $£ 198.00$
ACORN RECORDER $£ 32$ or $£ 20$ with an Electron or BBC 'B'

		RSGB books. morse keys, practice ascillators All items subject to availability. ntly dependent
WAR SOHO HOUSE (FIRS BIRMINGHAM B	크를 LOOR), 36 90L. Tel:	TRONICS 4 SOHO ROAD, HANDSWORTH 1.5540708 (Closed Monday)

Fig 20 Comprehensive high-performance home-security system
accessories such as fire detectors and panic switches, which must be permanently enabled, to the basic circuits.

Figure 19 shows a practical add-on panic and fire alarm circuit that can be used with either of the Figure 17 or 18 circuits. IC2a and IC2b are wired as a bistable latch that can be used to turn the relay on (via Q2) via any of a number of parallel-connected panic switches or fire-sensing thermostats.
Note that if you decide to combine (say) the Figure 18 and 19 circuits into a single unit, it is still necessary to use two independent ICs for IC1 and IC2, since these ICs must have isolated supply connections.

Comprehensive system

Most of the burglar alarm circuits that we've looked at so far give useful but fairly limited performances. This month's final circuit, by contrast, gives an outstandingly good performance and incorporates a number of sophisticated features.

The circuit is that of a comprehensive home security system and is shown in Figure 20. It is powered from a 12 V supply and draws a quiescent current of only a few $\mu \mathrm{A}$.

The operating theory of the Figure 20 circuit is moderately complex. The power supply to the CMOS circuitry is
smoothed via D3. and C4, ensuring that the circuitry is not adversely influenced by power-supply transients.
This factor enables the alarm system and the alarm generator (a bell or electronic siren, etc) to share the same power supply. Normally, with SW1 closed and all sensor switches inactive, LED1 and the relay and alarm generator are all off. C1-R3 and C2-R6 suppress the effects of any transients or lightning-induced spikes that are on the switch wiring.
If any of the sensor switches activate, the inputs of IC1a and IC1b go high. This action causes LED1 to turn on and (normally) causes the relay to immediately turn on via Q1 and IC1cIC1d. As the relay turns on, it self-latches via contacts RLA/1 and activates the alarm generator via contacts RLA/2.
Note that the self-latching relay is permanently wired to the supply circuit and can be activated at any time via panic buttons or fire-sensing thermostats, as shown in the diagram.
In the previous paragraph we have described what happens under 'normal' conditions, when SW1 has been closed for more than a couple of minutes. An exception to this occurs when SW1 is first closed, or if PB1 is pressed and then released.
Under either of these conditions the C3-R7-IC1c network disables the Q1
input circuitry for approximately 100 seconds. At the end of this period the circuit returns to normal operation. This facility is of great .practical value as follows:
When the system is first turned on via SW1, LED1 should remain off, indicating that all sensors are inactive.

If LED1 does illuminate, a sensor fault is indicated and the owner is thereby warned to locate the fault before the alarm sounds. If the owner wishes, he may leave the premises via a protected door without sounding the alarm during this 100 second 'hold off' period.
At the end of the period the system reverts to normal operation and will activate the alarm generator instantly if an intrusion subsequently occurs.
On his return the owner can re-enter the premises via a protected door without sounding the alarm, by first operating the (concealed) PB1 re-entry switch and thereby initiating a new holdoff period. Note that reset switch PB2 is a normally-closed, push-button type, and enables the alarm to be unlatched once it has been activated.
The Figure 20 circuit can be used with a wide variety of types of alarm-generator circuit, including bells, sirens, electronic sirens etc.
These alarms can, if required, be designed to give an auto turn-off action.

-20

SATELLITE UPDATE

by Terry Weatherley

	Statistical Data	
	NOAA-7	NOAA-8
Launch Date	June 23rd '81	March 28th '83
Orbital Inc	98.87	98.73
Period	102.0 mins	101.3 mins
Equator X'ing	15.36 local	07.38 local
APT freq	137.62 MHz	137.5 MHz

For the past twenty years information has been made freely available to all who have asked, be they a national government or an interested amateur. To their credit the other governments have acknowledged this contribution and do not deny that the request is a reasonable one.

NOAA 6

This is the stand-by/back-up satellite at the present time and most systems have been deactivated. The telemetry shows that the power system appears to have experienced a number of failures recently. The spacecraft will be completely deactivated quite soon.

NOAA 7

This is the primary afternoon satellite. NOAA 7 crosses the equator northbound in daylight at about 1536 local time each day. All systems aboard the spacecraft are performing as expected with the exception of the motor. Recent housekeeping telemetry has indicated an unexpectedly high motor current on occasions. Efforts are being made to reduce this by heating the instrument and moving oil to the motor bearing.

Keplarian Elements

NOAA- 7
Epoch
Inc
RAAN
Ecc
Arg
Mean An
Mean Mot
Decay
Epoch Rev
SMA
Anom Per
Apogee
Perigee
84129.50989081
99.0459
100.4732
0.0012415
204.9175
155.1398
14.13031769
$2.54 \mathrm{E}-06$
14825
7224.336 KM
101.908537
858.862 Km
840.924 Km

NOAA-8
84129.23716454
98.7092
160.7367
0.0017074
165.3873
194.7797
14.22406077
9.8E-07

5779
7192.519 Km
101.236913
827.984 Km
803.423 Km

Predict Data

(FOR CALCULATING SATELLITE EQUATOR CROSSING TIMES AND LONGITUDES)
01 JUNE 1984

Orbit \#
Date/Time
Long Asc Node
Nodal Period
Inc bet Orb
Frequency

NOAA-7
15158
0026.55z

132:08W 101.9787 Min
25.49 deg
137.62 MHz

NOAA-8

6118
$0018.88 z$
70.16 W
101.2766 Min
25.33 deg
137.50 MHz

NOAA 8
NOAA 8 is the primary morning spacecraft crossing the equator southbound in daylight at about 0738 local time each day.
Recently excess noise has been detected on channels 3 and 4. Tests to determine the causes were carried out on May 14, 1984 when channels 3 and 4 were turned off for eleven orbits.
Present theories to account for the excess noise suggest that the cause may be 'microphonic sensitivity' rather than contamination. The tests are to investigate whether any modifications can be performed to eliminate or reduce the noise on this channel on future spacecraft in the series.

NOAA-F

NOAA-F is currently planned to be launched in August 1984 but this could be subject to delay and the launch could be as late as February 1985.

GMS-1 \& GMS-2

Japan's second Geostationary Meteorological Satellite GMS-2 was deactivated after nearly two years in space following an apparent malfunction in the electric drive mechanism controlling the scanning mirror. The mirror, which should recycle in 150 seconds, was taking over 3 hours to do so. In early January GMS-1 was moved from its standby position at 160 E and is now the primary spacecraft at 145 E .

GMS-3 is due for lauch in August 1984 and GMS-5 is planned for 1989.

Meteosat-1 \& 2

Meteosats 1 \& 2, the European Space Agency's geostationary satellites, continue to be operated simultaneously to provide both image acquisition and dissemenation, and data collection. Both satellites continue to operate on a 24 hours a day schedule at the present time.

ATS

ATS-1. On March 31, 1984 control of ATS-1 was passed to the University of Hawaii. It will be stationed at 165 E and will be used as an Educational vehicle for voice communications with islands in the Pacific.
ATS-1 was launched in 1966 and was the first satellite used to test and develop WEFAX communications. Eight pictures were transmitted daily on VHF and received on APT type equipment; in all a historic and remarkable satellite.

ATS-5 is over the Atlantic and will be desynchronized soon.

ATS-3. This satellite is. at present working under the control of the University of Miami. Its main use is in the Oceonographic field.
ATS-2 and ATS-4 never achieved geosynchronous orbit and only had a few months of useful life before re-entering the Earth's atmosphere. ATS-6 was desynchronized in 1983. The tables show some recent parameters for some of these satellites.

POINT OF CONTACT

The general interests of some of our readers and of club networks are shown below. If you have similar interests why not establish a contact at the time and on the band indicated.
If you or your club wish to be included in this scheme, would you please complete and return the form below and send to: Radio \& Electronics World, Sovereign House, Brentwood, Essex CM14 4SE

MOST IMPORTANT - include a telephone number - if you have a particularly interesting contact so that we can contact you for details for publication.

CLUB ADDRESSES

Abergavenny and Nevill Hall Amateur Radio Club

The club meets on Thursdays at Pen-y-Fal Hospital at 7.30 pm . It is also the centre for the RAE which commences on Tuesday September 11th starting at 7.30 pm .
For further details contact D FJones GW3SSY QTHr. Tel: 087378674.

Chelmsford Amateur
 Radio Society

The Chelmsford Society meet, the first Tuesday of each month, at the Marconi College, Arbor Lane, Chelmsford. The September meeting is a 'Junk Sale'.

Glenrothes \& District Amateur Radio Club

The Glenrothes and District Club meet at the Clubrooms Provost Land Centre, Leslie, Fife, on Sunday 16th Septem ber 1984 at 7.30 pm , for their AGM. It is hoped to bring you further details at a later date.

Bury Radio Society

The meetings are held at the Mosses Community Centre. Cecil Street, Bury, on Tuesday evenings at 8 pm . Further details from the Secretary, B Tyldsley G4TBT. Tel: Burnley 24254.

South Bristol Amateur

Radio Club

The club meets every Wednesday at the Whitchurch Folk House, East Dundry Road, Whitchurch, Bristol. All enquiries to Len Baker G4RZY. Tel: 0272834282.

Stowmarket District

Amateur Radio Society

The society is now meeting at their new venue, the Maltings Entertainment Complex, which is opposite the railway station. For further information contact G3ZQU on Stowmarket 676288.

Southgate Amateur Radio Club

The club meets at St Thomas' Church Hall, Prince

George Avenue, London N14. The club meets monthly with the next meeting on September 13th.

Dunstable Downs
 Radio Club

The club meets at Chews House, Dunstable Downs alternate Fridays at 8 pm . Further information is available from Phil Morris G6EES on Dunstable 607623.

RAE Courses 1984/85

Brooklands Technical College

Chris Roberts G4EVA is the lecturer for the RAE course starting on Sept 19th at The Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey Tel: Weybridge 53300 ext 246 . Enrolments are on the 10th, 11th and 12th Sept between 6 and 8 pm .

Hendon College of Further Education

Tony Essex G8WCX is the
tutor for the RAE course in the Williams Building, Hendon College of Further Education, The Burroughs, London NW4 4BT. The course enrolments are on 12th September from 2 to 8 pm .

SPECIAL EVENT STAITONS

GB2MSS

Yeovil Amateur Radio Society will be operating a station at the Mid Somerset Show, Shepton Mallet, Somerset, on 18th August. The station will be operating on 3.5 to 432 MHz and further details are available from G3GC. Tel: 0935 75533.

GBYFT

Yeovil Amateur Radio Society are providing a station which will be operating at the Yeovil Festival of Transport, Berwick Park, Yeovil, Somerset, on 11th and 12th August. The station will be operating on 3.5 to 432 MHz and further details are available from G3GC. Tel: 093575533.

POINI OF CONTACT

Name/Club.

by James Dick

People make a lot of noise about noise. It irritates because it degrades their hi-fi, unilaterally draws boundaries in the experimental sciences, and limits all forms of communication. But exactly what is noise?

Many scientists would agree a connection between noise (in electronics) and weeds (in gardening). This is because the term 'noise' is commonly used to mean any signal in which we are not interested - regardless of whether the 'signal' is the result of a random physical process (true noise?), or merely breakthrough of, for example, an adjacent radio channel (a rose in a herb garden?).

In this article both will be considered, although true noise will receive the most attention - it tends to be more interesting in any case.

Qualitatively, noise needs no introduction. Any radio listener is all too familiar with the off-channel hiss of an FM receiver, or the crackle-hiss-whine of the crowded HF bands.
Visually, the 'snow-like' picture on a television set when the aerial has been disconnected, or the 'grass' on an oscilloscope trace convey representations of noise.
However, familiarity should not breed contempt. Noise is too interesting to dismiss; only by understanding its nature
can we optimise the performance of radio receivers, amplifiers, and measuring instruments.
Noise in electronic circuits can come from two types of origin.
It may be caused by physical processes in the circuit itself, or from an origin external to the circuit.
Let us first look at the three main causes of noise within a circuit.

Thermal

Thermal noise - also called Johnson noise - is caused by Brownian motion of the electrons within a conductor. In any material (gas, liquid, solid) which is at a temperature above absolute zero $\left(-273^{\circ} \mathrm{C}\right)$, the atoms are continuously vibrating.

The amplitude of vibration is an increasing function of temperature. If a non-insulating material is considered, there will be electrons which are not bound to the material's atoms and these will also be vibrating.
Because the random movement of some of these electrons towards one edge of the material is not always balanced by an equal and opposite movement, a voltage will be momentarily generated between the edges.

In an out-of-circuit resistor, this fluctuating voltage has a mean value of zero, but if the mean-square voltage is
determined it is found to be:

$$
\mathrm{V}^{2}=4 \mathrm{k} \operatorname{TR} \Delta \mathrm{f}
$$

where k is Boltzmann's constant, T is the temperature (in Kelvins), R is the resistance and Δf is the bandwidth used for the measurement.
This mean-square voltage does have an effect, even though its mean is zero. Consider the ac mains: after an integral number of ac cycles, the mean voltage is zero but the power was certainly there because power is proportional to the square of the voltage and hence is always positive.
The bandwidth term which appears is important. Thermal noise is 'white' - that is, it has equal power per Hertz.
So, if we measure the mean-squarevoltage in a bandwidth between dc and 20 KHz and then between dc and 40 KHz , the latter will have double the value of the former.
As an indication of amplitude, a $10 \mathrm{~K} \Omega$ resistor at room-temperature has an rms (root mean square) voltage of around $5 \mu \mathrm{~V}$ over the dc to 40 KHz range.

Shot

Another source of white noise within a circuit is called 'shot' noise.
The origin of the name reveals the cause: if a cartridge is fired from a shot gun, the amount of lead that hits the target varies

Fig 1 Noise spectrum
simply because some of the pellets will arrive before others depending on where they were in the cartridge and their travel-time through the air.

The effect arises because the 'shot' is not one bullet - but is made up of many smaller 'shotlets'.

Now, exactly the same happens when an electric current flows through a circuit element. Although, on average, the same number of electrons move through it in unit time, in reality there are statistical variations. The mean-square current variation is given by:

$$
\mathrm{I}_{\mathrm{MS}}^{2}=2 \mathrm{eI} \triangle \mathrm{f}
$$

where e is the electronic charge, I is the 'steady' current, and $\triangle f$ is the bandwidth. Hence, a current of 1 amp varies by about one part in ten million for a dc to 10 KHz measurement bandwidth - but a 1 microamp current varies by one part in ten thousand. Whether this is important or not depends on your application.

In valves, shot noise is caused by variations in the number of electrons emitted from the cathode. These variations are statistically described as Poissonian and give rise to a variable current reaching the anode circuitry; this situation is almost directly analogous to the shotgun model above - the electrons take the place of the lead pellets.

Flicker noise

Thermal and shot noise are both well understood in comparison to flicker noise. Indeed, flicker noise has a multitude of possible mechanisms - the major difference is that it is 'pink'.
This term is used when the power (or energy) of the source is proportional to the reciprocal of the measurement frequency.

In more straightforward terms, the energy per octave is constant - so the energy contained in a bandwidth of 1 to 2 KHz is the same as that in the 2 to 4 KHz band despite the doubling of the bandwidth. With white noise, the energy in the larger bandwidth would have been doubled.

Flicker noise is also 'quality dependent'. In a resistor, the noise compo-
nents from thermal and shot noise are independent of the resistor type but the flicker noise is not: a wire-wound device can have a flicker noise some ten times lower than a carbon-composite type.

In semiconductor devices, the faults in the crystal lattice and surface defects may cause flicker noise.
The time-variation of valve cathode properties has been suggested as a cause of flicker noise in thermionic devices.

Because of the relatively high power of flicker noise at low frequencies, its reduction is important if a low-frequency response is required from (say) an amplifier.

Noise sources

Externally created noise comes in two forms - interference from other signals and 'genuine' noise. Both are within our definition of noise as any unwanted signal'.

Interference may be in the form of cross-talk between adjacent communications channels or multiple allocation of the same channel (your local repeater at the rush-hour?). As such, it is caused by design considerations either at system or section level.

More common is the pickup of emission from electrical pulses. Theoretically, it can be shown by Fourier analysis that a single sharp pulse is composed of broadband energy with a white spectrum. Hence, a single spark will radiate at frequencies from a few to a few million Hertz.

Any receiver with a bandwidth centred on a frequency within this range will receive the pulse. Unfortunately, sources of sharp pulses abound. Electric motors in power tools and heavy industry, arcing at switches, and the continuous 'mush' from commutators are all recognisable to the experienced listener. In many cases the only serious cure is to be sited well away from the sources.
Natural noise comes from two sources - events internal to the atmosphere and those which originate outside the atmosphere. The former is mostly caused by nature's spark: the lightning discharge.

While a local lightning storm creates severe interference (often likened to the
crushing of cellophane), a receiver will pick up the impulses from all the storms within its propagation horizon.
Hence, on the HF bands, atmospheric noise may be the integral of sources over many thousands of miles. At very high frequencies, atmospheric effects become more complex. Scattering by water vapour and absorption by gases are both present above 10 GHz .
Noise originating outside the atmosphere is called 'cosmic noise'. It is caused by emission from the Suri and planets, sources within our own Galaxy, and other galaxies.
Charged particles, accelerated to relativistic speeds by intense magnetic fields and high-energy events, emit radio radiation over a wide range of frequencies; radio astronomy is commonly undertaken at VHF and UHF.

In summary, manmade and atmospheric noise are the major factors below approximately 15 MHz . Both are very variable, but tend to increase at night because of the larger coverage area of the receiver brought on by improved propagation. Above 15 MHz , external noise is mostly from cosmic sources and decreases into the UHF range.

Measures of noise

The measurement of noise levels within a system or circuit block is very important. It allows us to determine whether or not a system will be able to perceive a signal, and enables the relative merits of different systems to be established.

The first measure normally encountered is the signal-to-noise ratio. The noise voltage caused by thermal and shot noise is dependent on the bandwidth in which the measurement is made.

The mean-square voltage is linearly dependent on the bandwidth - so the root-mean-square voltage $\left(V_{\text {rms }}\right)$ is expressed as 'volts per root-Hz' because it is a function of the square-root of the bandwidth. The rms value is used since a value in volts - and not volts-squared - is more convenient and meaningful.

Because the noise - and perhaps the signal - is a function of both bandwidth and the centre frequency of the band, the mean-square voltage from the signal $\left(V_{s}\right)$ and that from the noise $\left(V_{n}\right)$ must be

specified with their frequency characteristics.
The signal-to-noise ratio is then expressed, in decibels, as:

$$
\mathrm{SNR}=10 \log _{10}\left(\mathrm{~V}_{\mathrm{s}}^{2} / \mathrm{V}_{\mathrm{n}}^{2}\right)
$$

The other common noise measure is the 'noise figure'. It is mainly used in amplifier comparisons and varies with the signal-source impedance and frequency.

The noise figure is defined as the noise of the amplifier and source divided by the noise of the amplifier, normally expressed in decibels as:

$$
N F=10 \log _{10}\left(\left(4 \mathrm{kTR}+V_{\mathrm{n}}^{2}\right) / 4 \mathrm{kTR}\right)
$$

where 4 kTR is the thermal noise in the source and $V^{2}{ }_{n}$ is the mean-square voltage which would be obtained if the amplifier had a perfect, noiseless resistor (of value R) at its input.

Although apparently simple, noise figures can be confusing - mainly
because they will always have been optimised for a particular configuration and this may differ from manufacturer to manufacturer.

Making noise

Although electronic engineers spend most of their time trying to minimise the effects of noise, occasionally it is necessary to generate noise - usually to a tailored specification.

Simple noise generators may use thermal or shot noise as their source. Zener diodes, operated near their Zener voltage (reverse biased), also produce excellent wideband noise.

Digital techniques have recently taken over many of the random-process generation tasks. The output from a long shift register where the input is fed from either an exclusive or from two of the outputs can produce a pseudo-random sequence nearly 2^{n} long (n element register).

A 32-element shift register can pro-
duce a 200 KHz bandwidth noise stream for twenty minutes before repeating itself. While it is possible to build such a generator from its constituents, National Semiconductor have a convenient package which goes by the name of MM5837.

The 8-pin DIL package contains an onboard oscillator and a 17-element shift register with taps, for feedback, at elements 17 and 14. This produces a pseudo-random binary sequence 131071 bits long.
The half-power point of the spectrum has a minimum frequency of 24 KHz , so the device is ideal for audio applications in music synthesisers, where the white noise output may be filtered to give a pink spectrum.

Because the sequence repeat time is greater than 1 second, the MM5837 may be regarded as a true noise source for most applications.
The advantage of digitally-produced noise is in its predictability - which sounds ironic for what is meant to be a

Clock

Fig 2 Shift register

Fig 3 MM 5837 configuration

NOSE

random process. Analogue techniques suffer from component tolerance problems - while the digital source produces uniform noise characteristics and amplitude.
But why use a noise generator? Because it makes the measurement of amplifier noise figures easy. With the output of the noise source nulled, the amplifier's output voltage is measured with a broadband rms ac voltmeter.
Then the noise source output is gradually increased until the amplifier's output increases by 3 dB . The noise figure can then be calculated (in decibels) from:

$$
\mathrm{NF}=10 \log _{10}\left(\left(\mathrm{~V}_{\mathrm{ns}}^{2} / 4 \mathrm{kTR}_{\mathrm{ns}}\right)+1\right)-3
$$

where $R_{n s}$ is the output impedance of the noise source (set equal to the amplifier's input impedance) and $V_{n s}$ is the output voltage of the noise source at the 3dB-up level.

Noise in amplifiers

The study of the causes of noise in amplifiers, and noise-elimination, is both complex and extensive - so we are only able to give it an overview here.
The bibliography at the end of the article lists texts that readers might find of interest for further information.
In bipolar transistors, the noise within a device is modelled as coming from a
voltage-noise source in the base and a current-noise source across the input. The voltage-noise is caused by thermal noise in the device's intrinsic base resistance, and shot noise is created by the collector current in the intrinsic emitter resistance.
Some flicker noise is also present at high base currents. Hence, the voltagenoise is mainly white and increases at both low and high currents. The increase at low currents is caused by the increase in shot noise in the current-dependent intrinsic emitter resistance.
In most small transistors, the voltagenoise decreases as the collector current rises to around 100 mic coamps.
The current-noise source is mainly shot noise in the base current and increases with the square-root of the current. Below approximately 100 Hz , there is also a contribution from the pink flicker-noise in the intrinsic base resistance. Hence, although the voltage-noise decreases as the collector current increases, the current-noise increases.
If the transistor's operating point is to be optimised for low-noise, the signal source has to be taken into account. This is because the current-noise source in the input of the amplifier creates a noisevoltage when it is placed across the source impedance.

Generally, for low source impedances, the bipolar transistor (type chosen to
have a low intrinsic base impedance) biased to a high collector current offers reasonable performance. As the source impedance rises, the collector current has to be lowered. With source impedances above $1 \mathrm{M} \Omega$, FET-based amplifiers offer better noise characteristics.

Field effect transistors have a similar model to bipolar transistors. However, now the voltage-noise source is thermal noise in the conduction channel. Since this is inversely proportional to the device's transconductance, high currents offer low noise
In the audio region, the current-noise is created by shot noise in the gate current and, because the current is only leakage through the gate, the noise created is at least an order of magnitude less than with bipolar devices.
Just as with bipolar devices, the choice of FET and operating point depends on the expected source impedance and individual device characteristics obtainable from the manufacturer's data sheet.

Bibliography

1 Radio Communication Handbook, RSGB
2 Integrated Electronics, Millman and Halkias
3 Shift Register Sequences, Goulomb
4 Low-noise Electronic Design, Motchenbacher and Fitchen
BSR P256 TURNNTABLE

The opening paragraphs of these notes, written more than thirty years ago, reflect the same arguments that we hear today over sport on TV and the number of programme hours. Other comments include a very favourable reaction to the first edition of the RSGB Amateur Radio Call Book, published in 1951

The chief argument put forward by those anxious to ban sound and television broadcasts of sporting events well illustrates how little such people learn from history. The same old argument was proved wrong over a hundred years ago. At the time of the Exhibition of 1851, when photography was still in its infancy, it was solemnly suggested that no photographing of the Exhibition should be allowed. The grounds then put forward were that if people could see pictures of it they would no longer want to see it, and attendances would so decline that a loss would be incurred.
Well, well, well! We all know, today, that the 1851 Exhibition made an enormous profit despite the circulation of photographic reproductions
In more recent years, the broadcasting of gramophone records was said to threaten a heavy curtailment of sales. Of course, it did nothing of the sort - in fact, it achieved just the opposite. Gramophone companies did bigger business than ever before.
Many sports and entertainments which have struggled for years on enthusiasm alone, and often no promise of future profit, have been so popularised by radio and television that today they have far bigger followings (and profits from gate money) than ever before.

Perhaps I am a purist, but I feel disgusted that these self-styled 'sportsmen' are more interested in making money than the promotion of genuine sport.

I have long advocated less broadcast (and television) hours in order to devote the money saved to provide better programmes. Too much third rate material is used - apparently only to fill in the time in order to make up the scheduled number of hours. Even the programmes arranged for 'popular hours' leave a lot to be desired at times. I sometimes think that listeners have lost their critical faculty, or else they despair of getting the BBC to do anything about it. I am quite sure that a number of our variety artistes would 'get the bird' from a good, old-fashioned music hall audience.

RSGB Call-book

The first edition of the RSGB Amateur Radio Call Book will satisfy a long-felt want, and those concerned are to be congratulated on the speedy production since its compilation was first announced.
That its need was strongly felt in the amateur movement is evidenced by the fact that G-amateur calls are nearly 100\% complete, from information supplied by themselves.
It is surprising that such a publication has not been produced before. Several times in post-War years I have urged its need - the last occasion at some length was in our companion journal, the SHORT WAVE NEWS for November, 1949.
If my prompting has had any effect in bringing this most useful handbook to life, may I be permitted to throw in a couple more suggestions.
Firstly, I should like to see a larger type face used in subsequent editions. My eyes are not so keen as they were and, after all, such a book is needed for quick reference.
The second is that through the good offices of the IARU, future editions of National Call Books such as this and those of the REF and VERON etc, might all be of uniform size and style, except perhaps for distinctively coloured covers.

Sheet metal cutting

I returned from holiday just in time to see Inventors' Club in the TV programme of $22 n$ d August, and hope to see the sheet metal saw which was demonstrated in early production.
The idea of using a stiffening metal strip (usually a steel rule) at the back of a normal hack-saw blade, has often been employed by constructors in chassis cutting, and by model engineers. It not only makes cutting quicker and easier but enables one to make a really straight cut. The great virtue of the demonstrated model was its simplicity, and the speed and ease with which even broken hacksaw blades can be used.
Good luck to the designer, and here's
one customer for his version as soon as it becomes marketed.

So it has other uses

Wave-change switch contacts have long been a source of receiver noise and crackles, and I guess every reader at some time or the other has advised his listener friends to clean the contacts with carbon tetrachloride. Recently, I gave this advice to a very practical young woman.
'Oh! Carbon tet,' she said, obviouslyon familiar terms with it, 'l've got some already.
'Have you?' ! asked, rather surprised and wondering vaguely what on earth she could use it for - thinking in terms of beauty preparations etc.
'Yes,' she went on brightly, 'it has roughly the same refractive index as glass, and । use it in photographic enlarging.'

It merely goes to prove you can't be too careful with these modern YLs, and dare not risk putting them off with a 'simple answer. A few weeks back an attractive, but rather severely dressed young woman, sat beside me on the bus and started to study a complicated-looking circuit. It turned out she was a physiotherapist, and she proceeded to give me a lecture on how it worked. As she explained it in rather the manner I would have expected her to have chosen for an eight-year-old schoolboy, she apparently didn't think I looked overintelligent. I was glad to escape when we came to my stop.

Finally, a candid letter from T M of Brighton. 'I am not yet 17 and so I have only been a reader for about two years, but I enjoy Radio Miscellany. My cousin says he remembers you from pre-War and, as I saw in a book that the readership of a magazine changes completely during the course of seven years, do you use the same stuff over again?
Well, well, well! ! ask you! No wisecracks that I don't even wait as long as that, please. That certainly seems to put the skids under any ideas I might have had of re-hashing.

IC-745, $£ 839$.

ICOM's IC-745 is the all-in-one transceiver featuring an HF all band SSB, CW, RTY. AM (receive only) ham transceiver, plus a general coverage receiver. Options for FM transceive and an internal power supply make the IC-745 the complete transceiver in an all-in-one package

The receiver section features a 100 KHz to 30 MHz general coverage receiver, this allows access to all HF bands plus all the frequencies in between. The IC-745 has an adjustable AGC circuit and DFM (Direct Feed Mixer) giving a wide dynamic range of 103 dB with an intercept point at
+18 dBm . Exceptionally clean reception is achieved with a low
 noise PLL circuit and a 70 MHz first IF.

The IC-745's features include IF shift, 16 programmable memories with lithium battery back-up. passband tuning, a noise blanker both wide and narrow, threshold level control, notch fiter. receive audio tone control and an all mode squelch. Also avallable is a front end switchable receiver preamp providing 12 dB gan RIT has a $\pm 1 \mathrm{KHz}$ range

We could go on all day about the 745 , get in touch with us and we will send you the full story

[C-271H,5819.

The $1 \mathrm{C}-271 \mathrm{H}$ is the most advanced 2 meter transceiver available today, it covers the spectrum from $144-146 \mathrm{MHz}$ with FM, SSB, or CW using the most advanced 10 Hz PLL system. The IC-271H is suitable for simplex, repeater operation, moonbouce or satellite work, and has features found on no other transceiver.

Some standard features include 32 tunable memories, a high visibility fluorescent display, RIT readout, scanning, 12 V DC operation with optional AC power supply

The 271 H has a speech synthesizer that announces the displayed frequency, ideal for blind operators, this is an optional extra along with the SM6 desk microphone and 22 channel memory extension with scan facilities

As you can see from this brief description the $\mathrm{IC}-271 \mathrm{H}$. (and its 430.440 MHz brother the $\mathrm{IC}-471 \mathrm{H}$) are very versatile sets indeed. More detailed literature can be easily obtained from Thanet Electronics Limited

[^0]

ONT

This must be the smallest. 2M, FM mobile available today, measuring only $38 \mathrm{~mm} \mathrm{H} \times 144 \mathrm{~mm} \mathrm{~W} \times 177 \mathrm{~mm}$ D. It has all the features that you probably require included in this microprocessor controlled unit. In addition, if you feel lonely and can't find anybody on the band, just press "speech" and the optional built in speech synthesizer will tell you the frequency you are tuned to. This is a boon to the blind operator or to those that tuck their rigs out of sight.

Brief features:- 25/1 Watt output, green LED readout, scanning (memories and programmable limit band scan), priority scan, programmable duplex splits, 25 and 5 Khz tuning steps, 10 memory channels with lithium back up cell, normal and reverse repeater switch, dual VFO, internal speaker and optional speech synthesizer. Just ask for a leaflet and we'll be glad to send you one. Price $£ 319$ and $£ 25$ for the optional speech synthesizer.

You can get what you want just by picking up the telephone. Our mail-order dept. offers you: free, same-day despatch whenever possible, instant credit, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service.

IC-290D, 5499.

290D is the state of the art 2 meter mobile, it has 5 memories and VFO's to store your favourite repeaters and a priority channel to check your most important frequency automatically. Programmable offsets are included for odd repeater splits, tuning is 5 KHz or 1 KHz .

The squelch on SSB sitently scans for signals, while 2 VFO's with equalising capability mark your signal frequency with the touch of a button. Other features include: RIT, 1 KHz or 100 Hz tuning/CW sidetone, AGC slow or fast in SSB and CW.Noise blanker to suppress pulse type noises on SSB/CW. You can scan the whole band between VFO's/scan memories and VFO's. Adjustable scan rate 144 to 146 MHz , remote tuning with optional IC-HM1 microphone. Digital frequency display, Hi/Low power switch. Optional Nicad battery system allows retention of memory. What a great little transceiver!

Agent: Gordon G3LEQ, or telephone Knutsford (0565) 4040. Please telephone first, anytime between 0900-2200 hrs.

CROSSWORD

By T R Mowbray G3VUE and D V Pritchard G4GVo

ACROSS

1 In March Okehampton stops the RF (5)
3 Sue's mixed but loud at first for safety devices (5)
5 Artist, little Diana and I, for parts of circle (5)
9 As little Thomas in the middle for the smallest (5)
12 Toe-rags for a place of safe keeping. Like a cell? (7)
13 In India lamps might light it (4)
14 Ohm's Law takes a direction. Upwards? (4)

15 Sonic or elemental (4)
16 Could be twisted by Darlington (4)

20 Visit to barber for calibrated dial? (4)
21 Some dry joints in Middle East may be this (4)
22 By ear or by mouth for VHF DX (7)
25 Is Man isolated for safety reasons? (5)
26 Sardinian and Egyptian stations need direction for emission (5)
28 Wrote for something to put in garden (5)

29 Health centre in Chile for a charge? (5)

DOWN

1 Desirable for mobile operation (3)
2 Time to go back for some output (4)
3 Signal for France, Norway and England (4)
$4 \ln$ his oscillations a sign of urgency (3) 6 Secondary cell constituent (4)
7 Three legged device at Gate Dip? $(4,2,3)$
8 Mixed part in two-band antenna (4)
10 Tramlines end at these (9)
11 Mother and saint on which 3 down is hung (4)
17 Royal Engineer inside motoring organisation in that region (4)
18 Has hot tip for the joint (4)
19 In a lie undenied instead (4)
23 Employer rues the day he defined the graphics (4)
24 Objectives Sam and I pointed out (4)
27 Certainly not a static ram (3)

The solution will be printed in the next issue

ELECTRONICS C•A•D "ANALYSER"

PERFORMANCE ANALYSIS OF LINEAR CIRCUITS using the BBC MODEL B AND SPECTRUM 4BK micros.

Simulates Resistors, Capacitors, Inductors, Transformers. Bipolar and Field effect Transistors, Simulates Resistors, Capacitors, Incuctors, Transiormers
and Operational Amplifiers in any circuit configuration.
Performs FREQUENCY RESPONSE ANALYSIS On CIRCuits with up to 16 NOdes and 60 Periorms FREQUENCY RESPONSE ANALYSIS on CIrcuits with up to is No
Components. for Phase and Gain Loss. Input Impedance and Output Impedance
ldeal for the analysis of ACTIVE and PASSIVE FILTERS, AUDIO. WIDEBAND and RF AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc, etc
'ANALYSER' can greatly reduce or even eliminate the need to breadboard new designs USED BY INDUSTRIAL AND UNIVERSITY R \& D DEPARTMENTS WORLD WIDE

LOW COST . . .VERY EASY TO USE
For further detalls write or phone NUMBER ONE SYSTEMS
Department REW, 9A Crown Street, St Ives Huntingdon, Cambs UK, PE17 4EB

Tel: 048061778 Telex: 32339

EVERYTHING FOR THE RADIO AMATEUR INCLUDING

AMATEUR ELECTRONICS UK
STOCKED

FAST
MAIL
ORDER

MARINE, RADIO AMATEUR \& BUSINESS COMMUNICATIONS MONDAY - FRIDAY 9.30-5.30 NEXT TO
MAIN CAR PARKS

LOW POWER TRANSMITTER FOR 80 METRE CW

by DGK GUY G3IBM

This article describes the

 re-engineering work and construction of a 1950s-style transmitter using 1970s components. It also discusses the design of transmitters in general and shows how a home computer can be used to simplify the design of tuned circuits.This transmitter consists of a VFO running at half the output frequency feeding a doubler/driver which in turn feeds the PA. Figure 1 is an overall wiring diagram of the complete transmitter. The power supply is conventional and uses a $12-0-12 \mathrm{~V}$ transformer and part of a 1A bridge in a full-wave centre-tapped circuit.
A 12 V winding feeding a full-wave bridge would also have been suitable. The rectified output is smoothed and fed to a 781212 V regulator I .
Switch S3 applies power to the VFO alone to allow the transmitter to be netted to the receiver frequency.
Switch S 2 is the send/receive switch. Setting this to SEND applies 12 V to the doubler/driver \& PA board and to the VFO via the key jack.
12 V is also fed to the relay which provides antenna changeover and closes a pair of contacts to mute the receiver during transmit.
There is no front panel PA current meter. A meter was fitted on the original transmitter, but was really only used for initial checking and measurement of power input as I always use an SWR meter and adjust the PA tuning for maximum output.
I therefore decided not to include a meter in this version but, instead, to provide for connecting an external meter for initial setting up.

The VFO unit

Figure 2 is a circuit diagram of the oscillator unit which comprises a seriestuned Clapp oscillator followed by an emitter-follower and amplifier.
The oscillator supply is stabilised at 9 V by Zener diode D1. L1 consists of 62 turns of 22 swg enamelled wire wound on a .75

QRP TRANSMITTER

inch diameter polystyrene former.
The design is fairly conventional, and the only experimental work required was in the values of the trimmer and padder capacitors to provide the required tuning range.
With the values shown, the oscillator tunes from approximately 1.75 to 1.81 MHz (3.5 to 3.62 MHz output) which adequately covers the CW part of the 80 metre band.

The power amplifier

Design of the PA is reasonably straightforward and follows the rules for a tapped tank circuit with series matching capacitor (Radio Communication Handbook: Volume 1 Chapter 6).
Figure 3 is a simplifed circuit of the PA and, referring to this, the design method is as follows:

1. Decide power output (Wo). I had several BFY50s in the junk box which seemed suitable for the PA. As these will dissipate about 1 W continuously with a small push-on heatsink, and assuming $60-70 \%$ efficiency, $3 W$ seemed about right for CW (intermittent) operation.
2. Calculate load (Rc) which must be presented to the collector to obtain 3 W output. Assuming that $\mathrm{Vpk}=\mathrm{Vcc}$, then:

$$
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{cc}^{2}}}{2 \mathrm{Wo}_{0}}=\frac{144}{6}=24 \Omega
$$

3. Decide loaded dynamic resistance of the parallel tuned circuit (Rd). This should not be too high or tuned circuit efficiency will suffer, nor too low to avoid unwieldy values of C. I chose 2400 ohms.
4. Choose loaded Q. Again there is a compromise between high selectivity and good tuned circuit efficiency. I chose a Q of 13.
5. Calculate the value of inductance (L):

$$
\begin{gathered}
X_{L}=\frac{R_{D}}{Q}=\frac{2400}{13}=185 \Omega \\
L=\frac{X_{L}}{2 \pi F}=8 \mu H
\end{gathered}
$$

Fig 3 Simplified PA circuit
6. Calculate the value of C 2 :
$X_{C 2}=R_{L} \frac{\sqrt{R_{0}}-1}{R_{L}}=50 \quad \frac{\sqrt{2400}-1}{50}=342 \Omega$

$$
\mathrm{C}_{2}=\frac{1}{2 \pi \mathrm{FX}_{\mathrm{C} 2}}=130 \mathrm{pF}
$$

7. Calculate the value of C 1 :

$$
\begin{gathered}
\mathbf{X}_{\mathrm{Cl}}=\frac{\mathrm{R}_{\mathrm{D}}}{\mathrm{Q}} \times\left[\frac{1}{\left(\frac{1-\overline{\mathrm{X}_{\mathrm{C}}}}{\mathrm{QR}_{\mathrm{C}}}\right)}\right]=391 \Omega \\
\mathrm{Cl}=\frac{1}{2 \pi \mathrm{FX}_{\mathrm{Cl}}}=115 \mathrm{pF}
\end{gathered}
$$

8. Design the coil. The inductance of a single layer coil is given by:

$$
L=\frac{r^{2} N^{2}}{9 r+10 L}
$$

where: $L=$ inductance $(\mu \mathrm{H}), r=$ radius (ins), $N=$ no. of turns, $L=$ length of coil (ins)
An inductance of $8 \mu \mathrm{H}$ is achieved with
a coil of 20 turns of 28 swg wire wound on a 0.7 inch diameter former.
To provide a match between Rd (2400 ohms) and Rc (240 hms) requires the coil to be tapped to give a turns ratio of:

$$
\frac{\sqrt{2400}}{24}=10: 1
$$

ie 2 turns (from the 12 V end).
The above design method is quite straightforward though the maths can be a little tedious. Readers with a home computer can avoid this tedium by using the program listed in Figure 5. This requires the user to input $V c c, W o, Q, R d$, R1 \& F.
The program then outputs Rc, L, C1, \& C 2 and also designs the coil (if required) given the wire gauge and former diameter.
The program was originally written for the BBC Micro but I have made one or two alterations to make it less machinespecific. It should run on most micros but non-Beeb users will need to change the INPUT statement string delimiter from a comma to a semicolon.

Fig 2 VFO circuit diagram

Send for my CATALOCUE ONLY 75p
 (plus 25p post/packing)

My all-inclusive prices quoted in the catalogue are the lowest. All below Normal trade price - some at only one tenth of manufacturers quantity trade.
Millions of components: thousands of different lines

Rechargeable Nickel cadmium batteries Ex-unused Equipment
AA (HP7) 1.25 V 500 MA .
Set of 4 E2.00
Clear LED illuminates red, green or yellow depending upon polarity/current,
oblong $5 \times 21 / 2 \mathrm{~mm}$ face.............................25p or 100 for $£ 23$ or 1000 for $\mathbf{2 0 0 . 0 0}$
oblong $5 \times 21 / 2 \mathrm{~mm}$ face................................25p or 100 for $\$ 23$ or 1000 for $\$ 200.00$
5 mm Red Flashing LED
25 p or 10 for $£ 2.25$
Watch/Calculator/Lighter etc, Mercury batteries
RW52 (PX 675) RW54 .. bade by Ray-O-Vac RW56 (DH 323, WH8) .. 31 p Each or 10 for £2.60, 100 for £21.00 RW57, RW58
 300 for $\mathbf{\$. 4 8}$
IN 4004 or IN 4006 Diodes $71 / 2 \mathrm{p} 100$ for $86.50,1000$ for $\mathbf{E 5 5 . 0 0}$ TO5 or TO18 Heatsinks \qquad Clipover Heatsink for I/C or TO202 Device $21 \times 18 \mathrm{~mm}$ - 18p, 02100 for $\mathbf{\$ 1 6 . 5 0}$ or 1000 for $£ 155.00$
Heatsink for TO3 or plastic power 19p 100/\&17.50 1000/\$165.00
Modern Telephone Handset and lead in white, red, blue, grey, yellow, green or black ...2.00
Plessey SL403. 3wt amp. From bankrupt source hence sold as untested, Plessey SL403. 3wt amp. From bankrupt source hence sold as untested,
at 4 for 60 p; 10 for ...1.20 ITT mercury wetted relay, 20-60V DC coil, SPCO 2A..

SEND PAYMENT PLUS 16p SAE OR LABEL
Prices you would not believe before inflation!
BRIAN J REED
TRADE COMPONENTS
ESTABLISHED 27 YEARS
161 St Johns Hill, Clapham Junction, London SW11 1 TQ
Open 11am till 6.30pm Tues to Sat. Telephone: 01-223 5016

GENERAL COVERAGE RECEIVER KIT FCR 130

This is a complete kit which allows you to build and learn as you go. Suitable for anyone who has an interest in radio and can manage a soldering iron. It really is within the scope of most beginners. You don't have to be a 'semi-professional amateur' to understand how it works as we supply very comprehensive and complete instructions, written in plain language. Well spaced components so its OK for fat fingers! The receiver tunes, in 3 bands from 1 to 30 Mhz . Solid aluminium tuning and control knobs and base panel. Black anodised front panel. Nice to build... nice to look at . . . nice to own

Model FCR 130 Receiver kit . . . ONLY £75.30 inc VAT. Post \& packing $\mathbf{\Sigma 2 . 4 0}$

* 30:1 Geared analogue tuning
* 3 Band switch with spare position
* Tape record socket
* Signal Meter
* Internal speaker + On/Off sw.
* A.F. Gain and Tone Control
* AM, CW, SSB

COMMUTECH (Devon) LTD

Chapel Street, Holsworthy, Devon EX22 6AR Tel: (0409) 253504

Total Test and Measurement Capability hi?

House of Instruments Ltd.
Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

The doubler／driver stage

Design of the driver is not quite so simple．There are two unknowns which make life difficult．

One is the power needed to drive the PA to the required output：the other is the PA input resistance．My solution was arrived at experimentally－though not
without a little science！
I first of all assumed that about 0.3 W would need to be produced at the driver collector．This was based on fairly sweeping assumptions of the PA current gain and input resistance．
To produce $0.3 W$ ，the driver Rc would need to be：

```
    10 REM PA output matching program
    20 REM DGK GUY MAY 1984
    30 DEFFNA (x)=INT(x+.5)
    40 DEFFNB (X)=INT( X*10+.5)/10
    50 DIMA(13)
    60 FORL=1TDI3, RERORKLL INEXT
    70 REM FILL ARRAY WITH TURNS/INCH DRTA FOR 16 TO 28 SWG
    80 DATA14.81,16.95,19.72,23.47,25.97,29.15,33.33,36.51,42
.37,46.51,51.55, 56.5,62.5
    90 CLSIREM CLERR SCREEN
    100 INPUT"Enter required power out (watts) " Wo
    110 INPUT"Enter VEr (volts)
    120 RCw'山*Vバ2*W0)
    130 INFUT"Enter losd imPedance (ohms) "。RL
    140 INPUT"Enter Operating frequency (MHz) ",F
    150 W=2*PI*F
    160 INPIT"Enter requires Eircuit Q ",Q
    170 INPUT"Enter tank cireuit fid {ohms) ",RD
    180 XL=FD/Q
    190 L=\L/W
    200 4:2=RL*SQR(RO/RL-1 )
    210 C2=1E6/(W**2)
```



```
    230 C1=1E6/(W*%1)
    240 PRINT:PRINT"FF logd = ",FHERFC):" ohme"
    250 FRINT"L = ",FNB(L);" uH"
    260 FRINT"C1 = ",FNE<C1%;" Pf\Xi"
    270 PRINT"C2 = ",FHETG2%" Pf`"
    2 8 0 \text { FRINT}
    290 IfIPIJT"DD you want to rjesign the coil
    300 IFLEFT (F,1)<>"Y" THENEHC
    3 1 0 ~ P R I N T
    320 INFUT"InPut SulG (in range 16 to 28 SWG) ", s
    330 IFS<16ORS>2STHEN320
    340 INPUT"InPut former dimmetar &in=.> "0:R=0,Z
    350 COSUB400
360 T=FNE(N< SQF(RU/RC) )
```



```
" Ins. long anclis"
300 PRINT"ta.PFect a.t ";Tj" tur`ns."
390 EHD
400 K=10/A(S-15)
410 B=K*L/R^2.C=9*L/R:D=\, B"2+4*G``.5
420 N=( B+D)/2
4 3 0 ~ R E T U R H
Fig 5 Program
```

$$
\mathrm{R}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{cc}^{2}}^{2 W}}{2 W}=\frac{144}{0.6}=240 \Omega
$$

Further，for a Q of 10 ，L would need to be about $1 \mu \mathrm{H}$（see step 5 of PA design procedure）．This was my starting point．I wound 6 turns of 28 swg wire onto a 0.7 inch diameter former，which should be about $1 \mu \mathrm{H}$ ，then adjusted the tuning and coupling capacitors until resonance was achieved and drive was adequate to provide full PA output．
This resulted in the values shown on the circuit（Figure 4）．Rc，R1 \＆Q remain unknown but a computer analysis of the effect of various values of PA input resistance acting through the 470 pF coupling capacitor，indicates that driver output is at least 0.3 W and that Q lies between 8 and 10．This is quite accept－ able and is confirmed by the fact that the circuit works and appears to have adequate selectivity．

Construction

The oscillator unit is built into a 4.5×3.5 $\times 2.0$ inch diecast box for stability．The circuitry is contained on a small piece of 0.1 inch pitch veroboard and is laid out virtually as the circuit is drawn．Figure 6 is a photograph of the board．

Any sensible layout would do，ensuring that input and output are well removed．
The main tuning components are solidly mounted for frequency stability and wired together with heavy gauge wire．The completed unit is mounted on a platform in order to place the tuning control centrally on the front panel．
A 10：1 slow motion drive is used to improve bandspread，and drives through a flexible coupler to take out any residual misalignment．
The doubler／driver and PA unit is constructed on a 4×2 inch piece of 0.1 inch pitch veroboard．Figure 7 is a photograph of the board．The coils are wound using 28swg enamelled wire on 0.7 inch SRBF formers．

My technique is to drill a 1 mm diameter hole where the ends of the coil are to be

Fig 6

Fig 7

Fig 8
and to insert 1 mm vero pins.
One end of the wire is soldered to one of the pins, the required number of turns wound on and the finish end soldered to the second pin.

In the case of the PA coil, 3 vero pins were used - the third to bring out the collector tap. Again the layout of the board is not critical but input and output must be kept apart, and separate common connections should be used for
input, output and supply.
To avoid mutual coupling which could cause instability, the coils should be mounted as far apart as possible, preferably with their axes at right angles or at least side-by-side as I have done (not end-to-end).
The driver/PA board is mounted at the back of the box, leaving an area relatively free of RF in which to place the power supply components and relay. Figure 8 is
a photograph of the interior of the finished transmitter.

Sharp-eyed readers will notice that two of the decoupling capacitors on the driver/PA board are different from those appearing in Figure 7. During development there was a slight tendency to instability. This was cured by increasing the values of C 1 and C 2 from $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$. The circuit diagram (Figure 4) shows the correct values.

Overall wiring requires little comment. For low current connections I have used ribbon cable, leaving the separate lines of the ribbon intact where possible as this makes for a tidy layout (Figure 8).
I have used single-point earthing of the supply-commons. That is, I have taken the supply-common connections from the oscillator, driver/PA and the relay back to a single chassis connection which is connected directly to supply negative at the smoothing capacitor.

Not doing this was the cause of instability in the original version.

Co-ax is used between the receiver antenna socket and the relay to reduce RF into the receiver during transmit. Coax is also used to connect the PA tuning capacitor to the board.

As a finishing touch, the panel was sprayed grey and the controls labelled using Dymotape. A simple scale is provided for the VFO which was calibrated against the digital display of my R600 receiver.

Setting up and testing

I first of all set up the VFO tuning range. As mentioned earlier, I had already adjusted the fixed circuit components to provide the correct tuning range.

All I did at this stage was to adjust the 100pF trimmer capacitor for a minimum frequency of 3.49 MHz so that the required range (3.5 to 3.6 MHz) occupied the central, more linear, part of the tuning capacitor range.
The doubler/driver and PA stages were set up using a $12 \mathrm{~V}, 3 \mathrm{~W}$ bulb connected to the output as a dummy load. This has a resistance (hot) of $480 h m s$ - close enough to 500 hms for practical purposes - and also gives a useful visual indication of power output.
The PA current link was removed and a 0.5 A dc meter connected in series. The VFO frequency was set to 3.55 MHz and the doubler/driver and PA tuned circuits adjusted for maximum output as indicated by the lamp dummy load.

The PA current was 0.36 A giving a dc input power of 4.32 W .
The $3 W$ bulb appeared to be fully lit, suggesting $3 W$ output and a PA efficiency of about 69%.

Certainly the original version of this little rig worked extremely well, and the design described here represents a smaller, smarter version which initial 'on-the-air' experience suggests will be just as effective.
I look forward to giving it a lot of use as the shorter days of winter approach and time available for operating increases.

- PROGRAMS FOR

THE ZX81, BBC-B

and HP41C/CV

By Steven Pocock MA, G4GTU

A recent survey showed that within amateur radio, two home micros dominate the scene, namely the Sinclair $\mathbf{Z \times 8 1}$ and the BBC-B. Presented here are three programs for these micros (plus the Hewlett Packard HP41C/CV) to find the exact distance and bearing of any

The only information required is the latitude \& longitude of the distant station which is easily read from any World map found in the majority of amateur 'shacks', and these figures need only be approximate.

In this way, no matter where the station you wish to contact is, you can have your
station, anywhere in the world. you wish to contact is, you can have your

2X81 listing:

beam pointing accurately at him in seconds.

These programs are a considerable improvement on previous distance/bearing programs and are very accurate, simple to type in, user-friendly, and can be loaded from cassette in about ten seconds. More importantly, they are guaranteed to work! If required, the reader could use such programs as a basis to automatically rotate the beam using a digital to analogue converter.

The amateur simply glances at his map, plugs in the rough coordinates and the micro does the rest!

In use, the only listing changes needed are for your own QTH latitude \& longitude; these are:

Lines 15 \& 20 for ZX81
Line 20 for the $B B C-B$

Lines 3 \& 5 for the HP41C/CV
Simply change the values shown (based on London) for your own. No other changes are needed.

When prompted for lat/long of the DX station, values are entered as degrees NORTH and EAST. For example, Tokyo would be entered as 35,140 , ie 35 N \& 140 E .
Locations West of Greenwich and South of the Equator are entered as negative values; eg Sydney is entered as $-34,152$. The -34 indicates iminus 34 degrees North' ie 34 deg South. Similarly, New York is 42,-74;-74 meaning 'minus 74 degrees East' ie 74 deg West. Accordingly, Port Stanley would be entered as -51.5, - 57.6 and so on. Lines could be added to the programs to allow for this, but it adds many unnecessary extra lines and also this format is quite logical and it
will rapidly become second nature.

Program Checks

Once you have entered your program it is advisable to test run it with the following data which cover all four 'quadrants' of the globe. If your results agree, or nearly agree to those given, then all is well. If not, then you have made a typing error or errors entering the program. Check especially the lines with trigonometry and brackets as these are the most likely sources of error.

As a final word, these programs are simple but effective, and if you have a printer with 'screen dumping' facilities, then a complete record of headings, (and on the BBC a pictorial representation of beam headings) can be made to your own needs. Good DXing!

BBC-B Listing

```
10 MODE1
20 A=51.3 : C=-0.1
3O FFINT "Enter name of aTH:"
40 INFUT N$
5 0 ~ C L S
60 FRINT "Inpult LAT and LONG of ":N$
70 INFUT E,D
80 IF E%O THEN M=-B ELSE M=B
90 IF B<O THEN LAT$="S" ELSE LAT$="N"
100 IF D<0 THEN N=-D ELSE N=D
110 IF D&0 THEN LONGक="W" ELSE LONG$="E"
120 FFROCDIST
130 FROCEEAF
140 FFOCFLOT
150 FRINT TAB(7, S0);"Fress SFACE EAF to continue..."
160 Z=GET: IF Z=32 THEN FUN ELSE GOTO 160
170 END
180
190 DEF FFROCDIST
2OO DIST= SIN FADA*SIN FADE + COS FAADA*COS FAD E * COS FAD(C-D)
210 DIST=DEG (ACS(DIST))
220 CLS
230 PRINT TAB(8,1);"Distance from home QTH to"
240 PFINT TAB(1O,S);Nक;" (":M;LAT和",";N;LONGक;")"
250 FFINT TAE(8,5);"is ";INT(DIST*69.06);" miles (";INT(DIST*111.12);" Km)"
260 ENDFFROC
270
280 DEF FROCEEAF
290 EEAF:= (SIN FADDB- SIN FADA*COS FAD DIST) / (COS FADA*SIN FIAD DIST)
300 EEAR=DEG (ACS (BEAR))
Z10 IF D<O THEN BEAR=360-BEAR
30 FRINT TAB(2,9):"Beam ";INT (BEAR)
z30 FFINT TAB(2,10);"degrees."
30 ENDFFOC
350
360 DEF FFOCF'LOT
370 F'RINT TAB(20,9):"N"
380 FFINT TAB(20,28);"S"
390 FFINT TAE(10,18);"W"
400 FFINT TAE (30,18);"E"
410 X=655:Y=437:Fi=250
420 EEAF:=FAD -GEAFi+(FI/2)
430 MOVE X-Fi,Y
440 FOF DX=-F TO F STEF 20
450 DY=SQF(ABS (DX*DX-F*R))
460 DFAW X +DX, Y+DY
4 7 0 ~ N E X T ~ D X ~
480 FOF DX=-F TO F STEF 20
490) DY=SQF (ABS (DX*DX-F*F))
5 0 0 ~ D F A W ~ X - D X , Y - D Y ~
5 1 0 ~ N E X T ~ D X ~
520 MOVE 655,4.7
5S0 x1=x*COS (EEAR)
540 Y1=X*SIN(EEAR)
550 FLOT1,X1/S,Y1/S
5 6 0 ~ E N D F F O C ~
```

DOT MATRIX PRINTERS
 ALL PRINTEAS HAVE CENTRONC PARALLEL INTERFACE UNLESS OTHERWISE STATED ALL PRINTEAS HAVEMI-GES OOT
ADDAESABLE GRAPHC MODE. PLEASE SEHD SAE FOR
FULL DETAILS. EPSON

STAR

serval miteriace downoadable characters
incredobe vilu at
Racox-15 is wide velson of hadux-10
SEIKOSHA

 £431. VAT
£518. VAT
£495

SHINWA
CPRO
80 2234. VAT - $\mathbf{\varepsilon 2 6 9}$
174. VAT

CP80 80 CPS 10 wide triction \& tract teed
Spare ribbon carindge for CPB0
RITEMAN
Compact 120 CPS 80 col trict \& tract teed

£200. VAT - $£ 229$
CANON
PWOOBOA 150 CPS 10% wide 27 CPS NLO 24×16 matrix
PW 1156 A 160 CPS 15 " wide 27 CPS NLO
24×16 matrix

COLOUR PAINTERS

£283. VAT-e325 £347- VAT- $\mathbf{5 3 9 9}$

all ous printers have 1 year warranty
DAISYWHEEL PRINTERS

260 . Vat $\mathbf{2} 299$

BBC MICROCOMPUTER SYSTEM
WE ARE AN OFFICIAL BBC COMPUTER DISTRIBUTOR DEALER ENOUIRIES ARE WELCOMED

Acorn Electron £199 war

WE SUPPLY FREE $\begin{aligned} & \text { 3O HOUR BASIC BOOK AND A DUST COVER } \\ & \text { WITH EACH COMPUTER }\end{aligned}$

 BBC Mrcrocormputer Model B
$8 B C$ Mor 8 -disk interlace BBC Mod 8 . disk interlace BBC to k disk drup
BBC dial 800 k disk dive
Torch 280 disk
 BBC Teletent recelver tAll wal
$8 B C$ cassme recorder and lead oisk casselle recorder and lea
kit Ifree fittingt Mod A $10 \mathrm{Mod} B$ ""parade ${ }^{2}$ 16K memory up

14 Colont
User glude
Econet Inter

Me sock Nor mill

TORCH Z80 2nd PROCESSOR For only $£ 347$ + VAT

Torch 2nd Processor 280 is supptied with perfect writer ia powertul Word
Proces sor) perfect speller (ispelling checking program - i should have used
 Calc ispread Sheell it inc
Fils inside
BC Computer
280 2nd Process. Pertect Soltware
880 Processor - Perlect Soltware - Dual 800K
2347. VAT (ass var

GUARANTEED LOWEST PRICES

These drives are supplied ready cased with all the necesary cables

 FREE This utitly provides a disk usage analysis
MOUMP Enables you to display and moant any

All above dives are low power slimline 103 A typ at. 12 and $0 \mathrm{~A} A$ at 5 F
per drive) Normally extra power supply is not required the BBC Compute

APRICOT - SIRIUS - SANYO IBM - TEXAS - TORCH

APAICOT Portable Executive Computer
144 megabyes ${ }^{16}$ Bit Micro 256 K RAM up to
 Mrary (comoatible with Sirius ${ }^{\prime}$
Apricot with Dovile Drve and Motitor and Monitor and $£ 1690$ - VAT
SANYO PROFESSIONAL COMPUTER
Drive bult in full RAM expandable to 256 K Single or Double Dis Compatiole Free sotitware graphics (640×200 pixels in 8 colours) IBM ree software including Wordstar and Calcstar Sanyo MBC555 128 K double drive and free software including
Wordstar Calcstar InforstarOatastar etc intus ? Surcstar inforstar Oatastar etc disc storage including CPM M 86 MS DOS and
Microsoft Basic

TORCH
CF500 COMPUTEA winh colour montor includes Twin 400 K disks Torchnet
 Erecheral modeding with graphics) Torchtel (Viewdata Access Sys:
Enecuive Ato Menu System! detecom Goldt

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER ossible Ti speech comman nardware ootion ormas a new level ol user possible TI speech command nardware option bring a new level of user
prennliness to computing Allows vare operated keyboaro conlrol
IOptional|
maintenance contracts abe available.

COMPLETE WORDPROCESSING SYSTEMS INCLUDING DAISYWHEEL PRINTER From £695 + VAT

 SYSTEM 2 , BBC Micro model B. Dish Inleftace, Phoenix Montor 100k - all the necessary cables and oocumen pitice only fags - VAT \&1029.23
 Price $9999 \cdot$ VAT $=51148 . \mathrm{B}$
 Di.sk Drive - at the necessary cables and oocumentalion E 1049 . VAT $£ 1206.35$

 SYSTEM 6 . Sanyo 16 Bit IMB pc Comp Oisk Drive 160 K . Wordstar Caic Star Sanyo High Res Green Monitor PrePrice Only Li145 - Vat E1316.75 shom 7 . Sanyo on to Disk Eive 360 k Worostar Caic Star Maimerge infostar Spelistar Printer. and all neessary cables and doc Jult bion Dasymeer Price 11395-VAT E1004.25 sYSTEm B. All the components of System 6 but with Sanyo High Res colour Monitor ano Wordstar with Colour Facilites $\begin{gathered}\text { Price §1445-VAT E1807.75 }\end{gathered}$ system 9. All the components of System 7 but with Sanyo High Res
Colour Monitor and Wordstar with Colour Facilthes Colour Montor and Wordstar win Price E1695 - VAT E1949.25

ORDERING INFORMATION:

We accepo oflicial orders irom Uk Government and Education

Having just acquired one of these new kits from TAU Systems of Skelmersdale, it was interesting to see how simple it appeared to be to construct, and should be within the capability of any amateur.
The kit is well packaged with all the small parts in labelled bags, and the materials used are of a high quality.
The mainframe end-plates are of phenolic resin bonded laminate sheeting and the tie bars of plated steel, with an internal thread at each end. Solid brass which has been nickel plated is used for the shafts and spacers.
The stator and rotor blades have been stamped out of aluminium sheet and then chemically degreased. The rotor blades have a square hole punched through for positive location onto the shaft. Spacers are provided, machined accurately to length, and a close fit to the shaft. This ensures accurate alignment during construction. The variable inductance coil comes as a pre-formed item, due to the complexity of its design.

Power is supplied through the unit by heavy copper feed wire in a polythene insulator. This is connected to the rotors and the inductor with heavy duty solder tags mounted on the spindle bushes.
The travelling connection of the inductor consists of a specially formed wheel which slides along a plated brass rod; it is kept in contact with the inductor by two small tensioning springs, any unevenness being allowed for by the elongated mounting holes for the shaft in the mainframe plate.

Construction

After carefully reading the instruction booklet, construction is very straightforward. All the parts were easily identified from their description in the text.
The instructions are explicit, and warnings, advice and other important notes well marked. One minor fault with the instruction booklet is the quality of the pictures; line drawings would probably be clearer.

Tips to assist the constructor are also given where some difficulties may be encountered, an example being the running of a fingernail over the stator and rotor plates, after construction, to obtain a clear ringing sound. This indicates that the plates are correctly tightened.
The tip given about using petroleum jelly, to assist with the location of the pivot point ball-bearing, is useful but it could be rather messy. An alternative I found, is to slide the rotor toward the rear mainframe plate, with the lock nut of the adjuster in position. Then with the unit standing on its front and the bush in place, drop the ball-bearing into place. Now the adjuster can be threaded into the lock nut, trapping the ball-bearing between its location points. The final adjustment is now made.
Adjustment of the stators is best done when all other construction is complete. This is easily achieved as the whole stator unit, being built on threaded rods,

BUILDING THETAUSYSTEMS SUPER-TRANSMATCH ATU

A look at the construction of this all-British aerial tuning unit kit

by Peter J Kitwood

is easily movable by a very accurate amount.

The method I found best was to tighten the rods and have them under a small amount of tension. Then, by loosening the stator clamp nuts on the side that needs to be moved and gently tightening the opposite side, the stator plates can be moved along the rod.

When the correct spacing has been achieved, the assembly can be finally
tightened up. All that is now left is to mount the unit in a case and make the input and output connections.

Cases

The unit does need to be fitted in a case as there is a possibility of high voltages in the system. The case could either be home-made or obtained from the range that can be supplied by TAU Systems.

A wide selection of cases and accessories are available to complete the project.
I found the kit a pleasure to construct with no major difficulties, and would recommend anyone looking for an ATU to consider purchase.

It is available as a ready-made unit but with the ease of construction, I would say that the kit is certainly the better buy.

Tro

ATU KITS, BALUNS, CAPACITOR KITS, ROLLER COASTERS, AERIAL FEEDER SPREADER KITS

TAU SYSTEMS LTD 51 GREENHEY PLACE, EAST GILLIBRANDS SKELMERSDALE, WN8 92A, ENGLAND
 Send SAE for
 our brochure
 Phone
 0695-24662
 TAU Old Fashioned Radio Engineering enables our Aerial Tuner Units to perform at an unsurpassed High Level, by virtue of being Infinitely Variable they will tune almost any Transceiver/Aerial combination to The Optimum
 The best Transceiver in the World is only as good as the Aerial System

ULTIMATE SPC SUPER-TRANSMATCH ATU

The Laws of Physics haven't changed over the years.
Get back to Basic Principles and enjoy complete Signal Readability and Full Strength - courtesy of Tau
Trade enquiries from UK \& Overseas welcome
TAU SYSTEMS LTD - NOBODY MATCHES UP TO US!

TRANSISTORS					
BC107/8/9	-12 p	BC184L	-10 p	BFY50,51,52	-20 p
BC147/8/9	-10 p	BC212,212L	-10 p	BFX88	-15 p
BC1578/9	-10 p	BC327,337,337L	-12 p	BSX19	-12 p
BC547/8/9	-8 p	BD135,136	-25 p	BSX20	-15 p
BC5578/9	-8 p	BD137,138,139	-25 p	$2 N 2926$	-7 p
BC182L	-10 p	BF195,7	-12 p	2 N 3055	-50 p
BC183	-10 p	BCY70	-15 p	TIP31A,32A	-25 p

ELECTROLYTIC CAPACITORS (Mfds/Volts)

1/25, 1/50, 2.2/25, 2.2/50, 4.7/25, 4.7/50, 10/16, 10/25, 10/50
22/16, 22/25, 22/50, 47/16, 47/25, 47/50, 33/10 - 6p. 100/16, 100/255p 5 . 7 . 100/50-12p. 100/100-14p. 220/16 - 8p. 220/25, 220/50.. 10 p 470/16, 470/25-11p. 470/35-12p. 470/40-15p. 1000/16
Carbon Film resistors $1 / 4 \mathrm{~W} 5 \%$ E24 series 0.51 R to 10 MO
100 off per value - 75p, even hundreds per value totalling 1000
Metal Fil
Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E12 series 1 RO to 10 MO Miniature polyester capacitors 250 V working for vertical mounting

Mylar (polyester) capacitors 100 V working E12 series vertical mounting

Subminiature ceramic plate capacitors 100 V wkg vertical mounting. E12 2\% 1.8

Polystyrene capacitors 63 V working E12 series long axial wires 10 pf to 820 pf - 3 p. 1000 pf to $10,000 \mathrm{pf}$ - 4 p. 12,000 pf.

DIODES (p.i.v/amps)
75/25mA 1N4148 2p. 800/1A 1N4006 6p. 400/3A 1N5404 14p. 115/15mA OA916p 400/1A 1N4004 5p. 1250/1A BY127 10p. 30/45mA OA 90 pp. 30/15A OA47 400/1A 1 N4004 5p. 1250/tA BY127 10p. $30 / 45 \mathrm{~mA}$ OA90 6p. 30
Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8 p . 1 watt .
L.E.D's 3 \& 5 mm Red 10p. Green, Yellow 14p. Grommets $3 \mathrm{~mm}-2 \mathrm{~m}$ - 5 mm minm fuses 100 mA to HELPING HANDS 6 ball joints and 2 croc clips to hold awkward Glass reed switches with single pole make contacts - 8p.Mernit £6.00 Ranges of tantalum electrolytic caps at competitive prices All prices are inclusive of VAT. Postage 20 (free over $£ 5$)

THE C. R. SUPPLY CO
 127 Chesterfield Rd, Sheffield S8 ORN

 รึ \%		

It must be emphasised to the reader at the start that the following circuit is experimental in nature, and in no way represents state of the art. It does, however, with practice, provide a cheap source of accurate RF energy for the repair or alignment of other radio apparata.
This is one of those simple circuits that is easily made, works well, and has a wide variety of uses, in aligning or repairing faulty domestic receivers, testing dynamic range, or setting up aerial systems.
You can use it in its basic form, or expand it by adding an audio oscillator to its input and a switched step attenuator at its output, and adding RF meters, etc, at will or when your budget allows.

No originality is claimed for the circuit, being a well established type of Hartley oscillator.
In fact, this article is more of an exercise to show novice and blackbox operators what can be achieved with simple home construction, and to stimulate those who, like myself, have more than a passing interest in the engineering aspects of amateur electronics.

Circuit considerations

Actually, the idea for this project came from examining the circuit of an old war surplus BC-221 heterodyne frequency meterdescribed as 'a dual range variable frequency oscillator with a crystal controlled oscillator operating at 1 MHz .'

by PAUL W. WARREN

The variable frequency oscillator operates in the ranges of 125 to 250 KHz and 2 to 4 MHz on fundamentals.
The outputs of both oscillators are rich in harmonics, so that the instrument can be used well into the VHF range.
It is calibrated on harmonics to 20 MHz and each instrument has to be individually calibrated. They can be housed in either wooden or metal cases.
While I could have copied the circuit direct using FETs, the RF output wasn't strong enough for the dynamic tests I wished to make. Also I did not include the 1 MHz crystal oscillator, because the value and added complication to the operations involved are as questionable today as when the BC-221 was more widely used.
There still remain many similarities in use, including the fact that the circuit is prone to strong hum when operated off a mains power supply; this is not necessarily a fault and mains modulation can be as useful as a separate audio oscillator, which is why I haven't included one on the circuit described.
The circuit layout is quite simple and is shown in Figure ta with the component layout shown in Figure 1b. You can use just about anything for a circuit board; । use sheets of scrap formica and drill out the holes myself, but you can buy perfboard, or veroboard with copper tracks. It is simply a matter of choice.
Even the component values are not especially critical, and a couple of ohms, pFs , or μ Fs either way, shouldn't matter. The choice of transistor at Q2 could affect the frequency coverage, in that a

Fig 3 Coil construction

$\mathrm{CT}=5$ turns
Fig 4 Dial pointer

BFY51 used in the first circuit, limited the harmonic output to just about 14 MHz ; this, too, may be an advantage in some applications.
Conversely, a UHF surplus 2N3866, because it is a one watt transistor, may generate less heat and at the same time allow a more powerful output of harmonics in the UHF region. A heatsink shown in Figure 2 is mandatory on Q2, regardless of the transistor used, otherwise it may suffer burnout.
Metal shielding is mandatory to restrict interference to neighbouring receivers.
This can be accomplished either by using a ready made metal case or lining the case described with kitchen foil and glue.

The value and type of variable capacitor for VC1 is also arbitrary. The prices of these are ever increasing like everything else and price and availability may dictate the final choice more than anything else.
You may choose direct drive, a slow motion drive unit, or the VC may have slow motion drive built in. All these variables influence the type of mounting installation. Anyway, the value may be anything from 60 pF to 1000 pF (a two ganged 500 pF hooked up in parallel). C4 is an aerial capacitor and can be anything from 60 pF to 1000 pF .
The dotted line shown in the circuit is a setup I use to limit the effects of hand capacitance at higher frequency ranges. If a larger (deeper) case is built, a plastic extension rod used to drive the VC should practically eliminate any hand capacitance effects altogether.
The coils are all experimental. For greater stability the ARRL recommend 'that no metal cores should be used in the oscillator tank coils.'
This, however, reduces the strength of the output signal from the generator. Because of this contradiction, a 3 pole-

4 way switch is included, so that different and final coil setups can be switched in and out at will.

But if the low frequency coil shown in Figure 3 is found adequate by itself for your intended purpose, then there is no reason why this or other coils cannot be soldered in directly, eliminating the expense of a switch.

The simple attenuator, VR1, while not essential to operation, is recommended to reduce output and not overload receiver circuits, an effect which can obliterate any accuracy of the signal generator.

The case as shown in the title photograph is self-explanatory. The scale pointer shown in Figure 4 is cut from the clear plastic cover of an audio cassette case.

The hole is melted in with the soldering iron and reamed out to the desired size with a pen knife. Attempts to drill the hole will snag and crack the plastic. Slots are sliced at the points marked ' x '. A red thread is pulled snug in these slots and secured with Bostik or super glue.

For the front panel scale a small protractor is used to good effect and the degrees of 0 to 180 are marked off against frequencies in a note pad.

Unless you have another signal generator, frequency counter or receiver with one, then the signal generator must be calibrated on long, medium, and shortwave against stations of a known specific

frequency on your receiver, such as the BBC Local, Radio 1, 2, 3, Independent stations; on shortwave against WWV transmissions on 5,10 and $15 \mathrm{MHz}, \mathrm{BBC}$ World Service and/or other known frequencies you may have marked out on an all-wave shortwave set.
The attenuator must be set so as not to overload receiver circuits either on the fundamental circuit frequency or on the myriad of harmonics. Of all the harmonics, the fundamental will be the strongest. Long, Medium and Shortwave (1.8 MHz to 6 MHz) are less trouble to mark off than the higher frequencies, which will require more time and patience of the experimentor.

To trace a faulty transistor in a domestic or other receiver, one may either start from the RF Amplifier, and work towards the detector, or from the detector backwards. When working with faulty RF circuits, the former method should be preferred.

The aerial lead of the generator is placed, via an isolating capacitor, to the base and collector (the gate and drain in the case of FETs) until the faulty transistor is found.
If the audio stages are suspect, then a diode probe is affixed to the generator's output lead. The diode probe consists of a stiff piece of copper wire soldered to a diode and a connecting lead, all of which is stuffed inside an empty ballpoint pen casing, or else a separate audio oscillator is used. Experimentation with the unit, is I think, all part of the fun of discovery and also useful.

As noted previously, no audio oscillator circuit was included and the coils were strictly experimental and served my own purpose. However, for those who may wish a more permanent set-up, the following notes, drawings and suggestions may be of interest.

Applying an earphone out on a portable radio across the negative rail and C1, only produced distorted sound and unreliable oscillations. Bypassing Q1 eventually altogether, it was found that putting the audio signal across the negative and positive rail at C5 produced a fairly clear modulated RF signal in the test receiver on medium wave, shortwave and FM broadcast. It could be that the Q1 part of the circuit could be eliminated, but it is probably better kept, and with appropriate matching capacitors at C1, used for test distortion from various types of microphones, and other similar inputs.

For the test lead from the broadcast receivers earphone socket, a simple

AM RAD

Parts List	
Resistors	
R1	4K7
R2	10K
R3	80K
VR1	1M
Capacitors	
C1	$5 \mu \mathrm{~F} 16 \mathrm{~V}$
C2	500 nF
C3,4	1 nF
C5	$50 \mu \mathrm{~F} 16 \mathrm{~V}$
VC1	208pF
	mounted
	on front panel
VC2	$0-70 \mathrm{pF}$ trimmer
Semiconductors	
TR1	BC108
TR2	BC108
	or 2N3866
L1	see text
SW1	SPST
SW2	3 P 4 W
(mounted on front panel)	
Sockets, plugs and knobs to suit	

expedient would be to cut the head off an earphone plug, but really you are better making up your own test cable, with two different coloured leads, preferably red and black so you can tell the earth from the hot lead.
This can later be used for testing different speakers which you suspect are faulty. Remember that some radios have positive earth and some have negative earths at their audio outputs; so you may have to switch the audio wires around to get a smooth signal out of the generator. Figure 5 shows the construction of the test lead.
For those who may wish a more permanent arrangement when they are satisfied that the circuit is worthwhile, I have devised the coil arrangement shown in Figure 6.
Again, the idea was borrowed, if you like, from the circuit plans of an old valve signal service generator on which no coil details were given: so the following coil winding details are an estimate of those used in receiver circuits, but should be fairly close with sufficient circuit overlap.
To attempt to eliminate some of the chopping and changing that usually accompanies tapped coil windings, trimming capacitors of a fairly high value are placed across the individual tappings, as illustrated in Figure 6, but they are more for convenience than necessity.

The coil windings are for $1 / 2$ inch diameter coil formers and may have to be more or less according to whether using smaller or larger formers.
In the setup of Figure 6 the centertap by-passes the three pcle/four way switch and solders direct to the positive line. 'A1/B1', etc in Figure 6 refer to ' A ' and ' B ' sections of the switch and the ' C ' section of this switch is not used. The trimmer capacitors should be as large as possible, with 0 to 170 pF being nearly ideal.

> In next month's Radio \& Electronics World Frank Ogden G4JST starts a series on test equipment

GREAT OFFERS FROM SCARAB SYSTEMS

And now, from U.K.'s leading radio software house, come two professionally produced items which are a must for the radio amateur.

Split screen Spectrum RTTY (48K only)
This exciting program and special interface board allows you to compile your answer while still in receive mode. $\mathbf{£ 3 7 . 5 0}$ (fully assembled and tested.)

MPTU-1 tone encoder/decoder
This phase lock loop circuit is 100% reliable and extremely sensitive
$\mathbf{8} 69.70$ (all plugs supplied)

SCARAB SYSTEMS

39 Stafford St, Gillingham, Kent. ME7 5EN Tel : (0634) 570441

The boards are made from doublesided fibre-glass material which, though not essential for the power supply and sweep circuits, simplifies construction. With the exception of the $\mathrm{VCO} /$ mixer board, which has two layouts, the top surfaces of the boards are left un-etched to form a ground-plane.

I have found from experience that the quickest way of protecting the surface from etchant is to coat an area about half an inch wide round all four sides of the board with ink from an etch-resistant pen such as the Dalo, and when dry cover the whole surface with well over-lapped cellotape.
Without the ink there is a tendency for the etchant to seep under the tape and partially etch the edges, which gives the boards a rather tatty appearance.

Figure 1 shows how the components should be formed when an earth connection to the board is required. The black squares on the layout drawings denote leads which are soldered to the earthplane. The black dots show where earth connections need to pass through the board.

In this case a wire should be passed through the board and soldered both sides. After drilling, the copper round the holes on the upper surface should be removed and this can be done by twisting a hand-held quarter inch drill inserted in the hole. This should not be done where a black dot is shown on the layout.

Pre-amp and log-amp

This board is rather long, and if you cannot obtain a large enough piece of board to cover the whole circuit, the preamp and log-amp can be made from separate pieces, joined at the cross screen, which is placed between the two circuits. The signal circuits are fed through the screen by either a piece of insulated wire through a hole in the screen, or preferably via a glass feedthrough insulator.

There is one error on the original circuit diagram which some constructors may have missed. The pre-amp emitter degeneration resistors marked 4K7 should, of course, be 4R7. Wes Hayward's formula $\mathrm{Rf}=\mathrm{Zo}^{2}$ confirms this.

Figure 2 shows the layout for the first pre-amp, the second being similar.

Figure 3shows the layout for the buffer amp and the first log-amp. The other logamps are similar in layout except for the additional $.01 \mu \mathrm{~F}$ capacitors in log-amps 2 and 4. The variation in the layout for the final log-amp output is also shown. It is suggested that the construction of the log-amp be undertaken working from left to right down the length of the board.

VCO/mixer

This board is not quite as easy to construct as the previous one and it is suggested that construction is done in the following sequence. Firstly, the filter screens should be cut from double-sided PCB material to the dimensions shown in Figure 4.

A cross shows the position of the holes for the glass feedthrough insulators.
The mixer circuit should be constructed first, the layout being shown in

by Ernie Sumption, G3DQL

Power supply component overlay

䍛

Fig 2a Pre-amp PCB layout

Fig $\mathbf{2 b}$ Preamp PCB top plane layout

SPEGTRUM ANALYSER

Fig 6 Side view filter section

Figure 5. The DBM must be inserted the correct way round, the letter M from MCL which is stamped on the metal case being located in the positionshown by an inverted M on the layout drawing.
The filter screen components should now be assembled, the black arrows on the edges of the board template show the location of the screens.
The best way to assemble the screens
is to mark the position of the small crossscreens on the long screen, lay it flat on the bench and, holding the cross screens vertically, solder them both sides to the long screen.
The completed screen should now be soldered to the board, both sides where possible. The VCO layout is shown in Figure 7 , the components being soldered to pads on the top surface of the board,
the leads being kept as short as possible.
The layout of the filter sections is shown in Figure 6, and the VCO amp layout is identical to the pre-amp with the addition of the VCO voltage test components.

Power supply

The power supply board is straightforward, the layout being shown in Figure 8.

SPECIRUM ANAIYSER

Fig 7a Component overlay

Fig $7 b$ VCO PCB layout

Note that the working voltages of the electrolytics are different to those on the circuit diagram. This makes the capacitors easier to obtain.

For the ac supply, I have used an ordinary 12 volt $1 / 2$ amp transformer mounted together with the power supply PCB in a tin-plate enclosure inside the analyser case, the three supply voltages being fed out via 1000pF feedthrough
capacitors to eliminate any noise on the supply lines.

Sweep circuit

Once again the board is straightforward. Any make of potentiometer can be used with this circuit and connected by wires, but if the Ambit VM10R type or others with 5 mm spacing are used, these will connect directly onto the board and
support it without further fixing
Pin 1 of the 555 is soldered to the ground-plane. The layout is shown in Figure 9.

I am currently experimenting with a matching sweep oscillator for this analyser which I hope to complete shortly, the biggest problem being the long delivery times for components!

P.M. COMPONENTS LTD DEPT REW SELECTRON HOUSE, WROTHAM ROAD MEOPHAM CREEN, MEOPHAM, KENT DA13 OQX
 TELEX 966371 PM COMP

INTEGRATED CIRCUITS

${ }_{\text {AN }}^{\text {AN } 1240}$	2.50	MC1358	- 1.58	STK139 ${ }_{\text {TAP06IAP }} \mathbf{7 . 9 5}$	TBA5500 1.45	IDA2530
AN240P	2.80	MC. 4496	1.25	TAT108P 1.00	TBA641A12 ${ }^{\text {a }}$	TDA2332 1.95
AN612	2.15	MC14510		TA7120P 1.65	2.50	TDA2541 2.15
AN7140	3.50		7.95	TA7130P 1.50	TBA651R 2.50	TDA2550 2.15
AN7145	3.50	MC1723	0.50	TAT1146 3.95	tbatzoa	TDA2571 2.95
AN7150	2.95	MC3357	2.75	TA7176AP 2.95	TBA	TDA2581 2.25
BA521	- 3.35	ML2318	1.75 2.50	TA7203 ${ }^{2.95}$	TEAB60 0.898	
${ }_{\text {CA3088 }}$	1.45	MSM	${ }^{2.75}$	TAT204P ${ }^{2.15}$	T-	TDA2600 3.50
ETT60	2.50	PLLC	5.75	TAT222AP 1.80	тВАвгом 0.75	TOA2611A 1.95
HA1339A	2.95	SAAS500	3.50	TA72278 4.25	TBAB200 1.45	TDA2640 2.60
	3.50 1.50	SAA 1025	7.35		TRAB90 ${ }^{2} \mathbf{2 . 5 0}$	TDA2680A 2.75
	2.95	SAS560S	1.75	TA7321P 2.25	tBasso	TDA3560 3.95
	1.15		1.75	TA7609P 3.15		
LAA102	2.95 2.95	SAS580	${ }_{4}^{2.85}$	TA7611AP 2.95	TB4970 2.95	UPC
	1	SL9178	${ }_{6} \mathbf{4 . 8 5}$		TBA990: 1.49	JPC 1025H
LAA430	2.50	SL1310	1.80	taA621AX	TCA270 1.10	1.95
LAA400	4.15	SL132	1.10	3.50	TCAz70S	JPC 1028H
LC7120	3.25	SN76003N	1.95	TAA700 1.70	TCA6501.10 2.50	JPC $1032{ }^{1.95}$
LC7130	3.50 5.50		1.95	TBA 1208 TBA 1200 1.15 1.15		${ }^{\text {UPC } 1.56 H^{1.50}}$
[C737	5.50	SN766	1.95	TBA120才 1.05	TOA440 1.20	$\mathrm{TPC}^{\text {1 } 156 \mathrm{H}^{2} .75}$
LM324N	0.45 0.95	SN761	1.25	T8A $120 U$ TBA331 1.05 1.25	TDA 10011.95	UPC $1158 \mathrm{H} \mathrm{H}^{7} \mathbf{7 5}$
LM38	2.95	SN761	1.30	TPA395 1.50	TDA 1006 A 2.50	JPC1167C2 ${ }^{\text {d }}$
M5151	$\xrightarrow{2.30} \mathbf{2 . 9 5}$			T8A396 TBA440N $\mathbf{0 . 7 5}$ $\mathbf{2 . 5 5}$	TDA1010 ${ }^{2.15}$	
M5152	1.50	SN76227N	1.05	tBA4800 1.25	TDA1037 1.95	
M M B3712	2.00 1.00	SN76533	1.85 1.95	TBA510 ${ }_{\text {TBA5 }} \mathbf{2 . 5 0} \mathbf{2 . 5 0}$	TDA1170 1.95	UPC $1182 \mathrm{H}^{2.95}$
MC1310P	1.95	SN76570	1.5	IBA520 1.10	TDA 127003.95	JPC $1185{ }^{2.95}$
C 1327	0.95	SN7665	1.15	TBA5200 1.10	TDA 13271.70	
MC1328	- 1.95	SN76660	${ }^{0.95}$		TDA 20021.95	JPC:1191V1.50
MC1349P	1.20	STK015	7.95	TBA540 1.25	TDA2030 2.80	
MC1350p	0.95	STK415	7.95	IBA5400 1.35	TDA2522 1.95	$7805 \quad 0.65$
MC135?	${ }_{2.35}^{1.50}$	STK433	7.95 7.95	TBAS500 ${ }_{\text {TGA500 }} \mathbf{1 . 9 5}$	TDA 2523 TDA 2524 1.95 1.95	$7815 \quad 0.65$

SEMICONDUCTORS

NEW BRANDED CATHODE RAY TUBES

P.M. COMPONENTS LTD 0474813225 3 LINES

A SELECTION FROM OUR STOCK OF BRANDED VALVES

ZENER DIODES B2X610.15

BZY88 0.07
\qquad

WIREWOUND
PREFERRED VALUES

BASES ETC.

CALLERS WELCOME

* ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE .

ACCESS AND BARCLAYCARD ORDERS WELCOME

FIVE

By M.A. BROWN

This article describes a 5 Channel Memory Scanner designed as an add-on unit to Keith Mitchell's 720 Channel Airband Receiver, described in September and October 1982, or any other with binary coded decimal switches.
The existing thumbwheel switches are retained and the design allows a rapid change of stored frequency.
It is constructed with 14 CMOS devices and incorporates a $41 / 2$ digit liquid crystal display. This keeps the current consumption very low, enabling the receiver and scanner to be battery operated. The current drawn by the scanner is approximately $10 \mathrm{~mA}, 8 \mathrm{~mA}$ of this being taken by the two LEDs; two is the maximum number of LEDs that are illuminated coincidently, therefore the scanner takes 2 mA .
The scanner PCB should be small enough to fit into the existing receiver case, and the display panel is fitted to the rear of the front panel.

Circuit design

The unit is designed around RCA's 4039A, readily available from several sources. It has four separate address lines, and an extremely useful facility that allows information at the input pins to appear at the output pins without destroying information latched in the four internal stores.
Figure 1 shows the block diagram of RCA 4039A.
All that is needed to work as a scanner is a scan oscillator, which increments a decimal counter whose output addresses four read lines W1-W4 and memory by-pass sequentially.
Two 4039s are required, as each device is 4 words by 8 bits wide. 12 bits of information are required.
The 720 Channel Airband Receiver signal called Mute is used to control the scanner. This Mute signal goes low when receiving a transmission.
The design allows any of the five stations, four preset and manual BCD switches to be selected and held. Also incorporated is a $41 / 2$ digit liquid crystal display and light emitting diodes to indicate which channel is on and if scanning.
This $41 / 2 d i g i t$ LCD is used to indicate
frequency. The circuit incorporates a retriggerable monostable to disable the display when scanning; this obviates an unreadable flickering display. It makes the display indicate frequency of the last transmission received and also ensures that short duration noise spikes like car ignition interference do not alter displayed frequency.

Circuit description

IC8 is the scan oscillator operating at 40 Hz , and is controlled by IC7 if it has

1	21	23	22	11	OUTPUT $13-20$
H	L	L	L	L	WORD 1
L	H	L	L	L	WORD 2
L	L	H	L	L	WORD 3
L	L	L	H	L	WORD 4
L	L	L	L	H	MEMORY BYPASS

High on pin 2 (load) loads data on I/P to location shown in above table:
When P11 high contents of memory are retained been reset by momentarily pressing the scan push button and if Mute signal is high. Inverted output pulses are delayed by R7/C5 clock counter IC9, whose outputs in BCD are converted to a decimal output by IC10. These binary
outputs address the 4039s IC12 and IC13 sequentially.
This corresponds to outputs $0,1,2,3$ and 4. The fifth clock pulse is present at pin 6 IC10, which is fed via D8 to pin 1 of IC9 (preset enable). This resets the BCD counter to zero, as all the four jam inputs are at 0 volts.
This sequence is repeated until any of the five station buttons are pressed. If any of these switches are momentarily pressed a relative code is connected to the jam lines, and at the same time a pulse is transferred coincidently to the load terminal pin 1 of IC9 via diodes D3D7 and capacitor C4.
The same pulse changes the state of bistable IC7, stopping the scan oscillator; thus the counter remains loaded with a number which is identical to the particular switch pressed. The diodes D9 and D10 change the five switches to 1,2 and 4 BCD code. These station-select switches can be pressed in any order to change stations or restart the scan.
The scan oscillator output also drives IC11, a retriggerable monostable, whose Not Q output via diode D1 is connected to the latch inputs of the BCD to the seven segment decoders which drive the liquid crystal display.
This Not Q output stays Iow until 0.3 seconds after the scan oscillator is held. If any of the five station-select switches are operated, the bistable IC7, via diode D2, updates the frequency display with no delay.
The R11/C5 delay network ensures that the display is disabled before IC9 is clocked, so that when scan restarts the frequency displayed is the frequency of the last transmission received.
The scan mode of operation and station addressed is indicated by miniature light emitting diodes.
R8 and R9 are the current limiting resistors for the LEDs; using the values listed this fixes the current at 4 mA for each device. The light output for these high efficiency LEDs is adequate except in bright sunlight.
IC6 is a conventional buffered R/C oscillator for generating the back plane square wave, whose frequency is 34 Hz . IC2 is hard wired to permanently produce a one display. IC1, IC3, IC4 and IC5 convert the four digits of BCD information to seven segment format suitable for the liquid crystal display.
These integrated circuits incorporate internal latches which are disabled when scanning, thus giving a static nonflickering display, and are only updatd when scan is held. The frequency displayed remains static until a new frequency is received.
The 25 KHz switch legends were altered as suggested in the original article on the Airband Receiver;
The ' O ' position on switch was unaltered. The '1' position on switch was altered to read 2.
The ' 2 ' position on switch was altered to read 5 .
The '3' position on switch was altered to read 7.

Fig 3 Circuit diagram

Fig 10 Display board
-

GAREX ${ }_{(63 z v)}$ THE SCANNER SPECIALISTS WITH 4 GREAT PRODUCTS

J.I.L.SX-200-N - THE SUPERIOR SCANNER 2299

* The choice of the professionals
* $A M+F M$ all bands
* Wide coverage: $26-88,108-180,380-514 \mathrm{MHz}$
$\star 16$ memories * Positive action keyboard
\star Proven reliability $\star 12 \mathrm{vDC} \& 230 \mathrm{v}$ AC
\star S-meter \& $96-108 \mathrm{MHz}$ converter available
REVCO RS-2000-E - THE VERSATILE SCANNER $\mathbf{E 2 5 9}$
$\star 70$ memories *AM + FM all bands
* Cover: $60-180,380-520 \mathrm{MHz}$
* Search \& store of active channels
* All the usual search \& scan functions
* 12 V DC \& 230 v AC operation
* Counts activity of selected channel

REVCO RS-160 - FM POCKET SCANNER E249
\star Incredible 160 memories (4 banks of 40)

* Positive action keyboard
* Covers $26-32,68-88,138-176,380-512 \mathrm{MHz}$
* Scans, searches \& stores active frequencies
* With nicads, charger \& flexiwhip aerial
J.I.L. SX-400 - PROFESSIONAL SCANNER $\mathbf{~} 598$
\star Covers $26-520 \mathrm{MHz}$ (no gaps)
* AM + FM (manual, automatic or programmable)
* Computer interfacing for limitless memory, remote control \& data logging
\star I.F. output terminals ($10.7 \mathrm{MHz} \& 455 \mathrm{KHz}$)
* Switchable channel spacing \& I.F. bandwidths
* Specifications set by the professionals

Regulated mains adaptor for SX-400
£29.50

> A superb quality 16 element, all British made VHF/UHF broadband fixed station aerial from Revco. Ideally suited to $\mathrm{S} \times 200$ and other VHF/UHF Receivers

Covers $50-500 \mathrm{MHz}$ PRICE $\mathbf{£ 2 4 . 9 5}$ inc
ASK FOR OUR LIST OF SECONDHAND SCANNER BARGAINS
SPECLAL OFFER "CENTURY 21D"
Communications Receiver. 0.5 to 30 MHz . CW, USB, LSB, AM \& FM. Digital readout, excellent performance £. 199

SR-9 monitor. 2m FM with $144-146 \mathrm{MHz}$ full coverage VFO +11 xtal controlled channels; ideal for fixed/M/P use. 12 V DC operation $\mathbf{\Sigma 4 7 . 5 0}$
CRYSTALS FOR NR-56, SR-9, SR-11, TM-56B. We have a range of 2 m \& VHF Marine band crystals for these receivers at $\mathbf{£ 3 . 0 0}$ each (+20 p post per order). Please phone to check stock. RESISTOR KITS a top selling line for many years. E12 series, 5\% carbon film, 10Ω to $1 \mathrm{~m}, 61$ values, general purpose rating $1 / 4 \mathrm{~W}$ or $1 / 2 \mathrm{~W}$ (state which). Starter pack 5 each value (305 pieces) $\mathbf{~} 3.10$ Standard pack 10 each value (610 pieces) $\mathbf{5 5 . 5 5}$
Mixed pack, 5 each $1 / 4 W+1 / 2 W$ (610 pieces) $\mathbf{5 5 . 5 5}$
Giant pack, 25 each value (1525 pieces) $£ 13.60$
DC/DC TRANSISTORISED INVERTERS 12 V input, 400 V 200 mA output 29.50
This is a chassis section cut from used R/T equipment, tidied, fully wired \& tested. Free-standing but no luxuries like cabinet. 24 v version - same price. SAE for details of this and special offer of discontinued line 12 or $24 v$ to $380 v$ inverter.

SPARE PARTS FOR PYE RADIOTELEPHONES WESTMINSTER \& PF70 SERIES
also Cambridge, Vanguard etc, SAE list
GAREX FM DETECTOR and squelch conversion for Pye R/T equipment Ready Assembled, full instructions. Tailor-made, easy-fit design, replaces Ready Assembled, full instructions. Tailor-made, easy-fit design, replaces existing squelch board, with minimum of modifications. For AM Cambridge E6.30; for Vanguard AM25B (Valve RX) $\mathbf{8 . 1 0}$; for Transistor Vanguard
AM25T E6.95 AM25T E6.9s

MAIN DISTRIBUTOR OF REVCO PRODUCTS PRICES INCLUDE UK P\&P and 15% VAT
GAREX ELECTRONICS
7 NORVIC ROAD, MARSWORTH, TRING, HERTS, HP23 4LS
Phone 0296 668684. Callers by appointment only

fitting the short wire links using sleeved single strand tinned copper wire. It is important that these links are fitted before the integrated circuit holders are soldered in place, as several pass under the holders. Now the IC holders may be fitted, followed by the five long connections using insulated stranded wire.
Next come the resistors, diodes, single in line resistor packs, capacitors, Zener diode and printed circuit plugs. 10 pin plugs were shortened to the correct number of pins required.
At this point it is advisable to examine the foil side of the PCB with a magnifying glass to ensure that there are no solder bridges or dry joints. If all appears correct insert the integrated circuits into the appropriate holders the correct way (note ICs face different directions). This completes the assembly of the scanner board.
The display board is assembled next; before fitting any components it is necessary to fit printed circuit pins to the board. Insert these pins from the component (top) side and press in flush. A pin is used where all wire connections will be. About 60 pins are required and they are soldered to the foil side of the board, before any components are fitted. Without the pins the foil could be inadvertently damaged.
Figure 11 shows the component overlay. Fit the two wire links. Next fit IC14 the correct way without a holder as a holder would make the IC protrude too high above the PCB; this will enable the LCD to be fitted above IC14.
The push switch buttons are inserted next, ensuring they are orientated correctly, then the two resistors and two diodes are fitted. Next fit the two spring clips to the liquid crystal display, which requires very careful handling. Page H 1 of the Ambit catalogue shows how to fit the clips.
The display can now be fitted. Before soldering, position it at the correct height above the PCB so as to be compatible with the switches. Likewise fit the light emitting diodes so as to ensure that the ends just enter the rear of the front panel.
This leaves all the wire connections to be fitted. Use stranded insulated wires, preferably with different coloured insulation. This makes pin connection identification easier.
The 30 wires from the display need to be separated into four groups, for connection via sockets to plugs 5, 6,7 and 8. Figure 2 shows the individual connections. Figure 11 shows how the push switches and LEDs are connected to socket 10 and socket 9 respectively. Two wires are connected to the out of lock LED' to eventually connect to the receiver.

Testing

Before connecting and applying power to the two boards it is advisable to double check all connections. If different coloured wires were used as specified this makes checking easy.

The IC1 inputs are re-arranged to compensate for the former changes, and this allows the display to indicate $0,2,5$ and 7 in the least significant digit.

Construction

The scanner uses CMOS devices, so observe the normal handling precautions.
Assembly of the scanner and display
board needs a great deal of care as some of the tracks are extremely close to each other, especially where tracks go between integrated circuit pads. A fine pointed soldering iron and fine cored solder are recommended.
The scan card is assembled first: shown in Figure 8. Figure 9 gives the component layout. The components are fitted in the following order: start by

Fig 4
PCB foil pattern

If all is correct it can be tested with two 6 volt batteries before connecting to the airband receiver.
First, disconnect the existing BCD thumbwheel switches from the receiver; connect 13 leads as indicated in Figure 5 to socket SK1 and SK2. Connect the two sockets SK3 and SK4 to the 12 leads that formerly were connected to the BCD switches. The remaining lead, 0 volts, with two new leads carrying switched 6 volts and direct 12 volts from the Nicad battery in the receiver will require to be connected to socket SK11, with another new extra lead from pin 12 of IC4a in the

receiver (Mute)
Connect up the boards as shown in Figure 7. Switch on and carefully adjust the squelch control so that it just operates. Momentarily press the manual button and the display will indicate the same reading as the thumbwheel setting.
Before proceeding further this is a good point in the testing cycle to sequence the BCD thumbwheel switches, one switch at a time, to check all frequencies from 118.00 to 136.00 MHz . This ensures all leads from switches and LCD are correct.

Initially the 4039 stores will have random data in memory, so before proceeding further they need loading with valid information. Loading is very simple: firstly momentarily operate the station one push button. Dial up the frequency required on the thumbwheel switches and now momentarily operate the store push button. The LCD will indicate this stored frequency, To load station 2, 3 and 4 repeat this operation.
When all four channels have been loaded with data press the scan button and note that the frequency display remains static. When a transmission is received the scan halts and after a small delay, display updates to this particular frequency. When the transmission ceases, scan restarts and the LCD will freeze the frequency of this particular transmission.
Pressing any station select push button immediately indicates frequency without the 0.3 second delay.
If less than five different stations are required, simply load the same frequency in more than one location.
In Figure 2, it can be seen that the Nicad supply fed via plug 11 is reduced as the zener diode to 5.6 volts. This ensures that when the receiver is switched off the information loaded in to the stores is retained for future use.

	5 STATION SCANNER
Parts list	
1/8 Watt 5	5\%
R1 180	180K
R2,7 270	270K
R3 100	100K
R4 330	330 K
R5	10K
R6	39K
R8,9 100	100K
R10	47K
R11	1 KO
RB 8	$8 \times 4 \mathrm{~K} 7 \mathrm{SIL}$ (9 pin)
RS 4	$4 \times 10 \mathrm{~K} \mathrm{SIL}(5 \mathrm{pin})$
RT 8	$8 \times 10 \mathrm{KSIL}$ (9 pin)
R12,13	1 K 2
C1,3 4	47 nF Ceramic monolithic
C 22	$2.2 \mu \mathrm{~F}$ tantalum
C4 2	2.2 nF Ceramic plate
C5,6 1	100nF Ceramic monolithic
LCD 4	$41 / 2$ digit lucid 130FIII
2 off S	spring clips for display KB2075
ZD1 5	5.6V Zener 400 mW
DI-D10 B	BAW62 or any signal diode
IC1,2,3,4,5	4,5 4056
IC6	4011
IC7	4013
$1 \mathrm{C8}$	4023
IC9	4029
IC10	4028
IC11	4098
IC12,13	4039
IC14	4049
SW1-SW7 push button switches	
LEDs 7 off red H efficiency	
plug/sockets 9 off, 10 way	
pins for ab	above
$8 \times 16 \mathrm{pin}$	
Printed circuit pins	
PCB	
Insulated miniature multistrand	
wire sleeving	

DATES FOR
 YOUR DIARY

Dates for your diary is updated every month.
Club secretaries and organisers are requested to send information of forthcoming events as early as possible
to Radio \& Electronics World, Dates for your diary, Sovereign House, Brentwood, Essex CM14 4SE

Date 9 Aug	Function DF Hunt	Location Stowmarket District AR Society	$\begin{aligned} & \text { Contact } \\ & \text { G3ZQU Stowmarket } \\ & 676288 \end{aligned}$
14 Aug	Fox Hunt	Bury Radio Society	Hon Sec G4TBT Burnley 24254
17 Aug	DF Hunt on 2 m \& 10m	Dunstable Downs AR Club	Phill Morris Dunstable 607623
19 Aug	HAMFEST84	Flight Refuelling Social Club, Wimborne, Dorset	EK Howard 0202 762828 (daytime)
26 Aug	BARTG Rally	Sandown Park, Surrey	G8LWY
27 Aug	DF Hunt	Southgate AR Club	G4OBE (QTHr with SAE)
29 Aug	QRO Activity Night	South Bristol AR Club	G4RZY
5 Sept	AGM	South Bristol AR Club	G4RZY
5 Sept	Satellite Communication	Fareham \& District AR Club	Brian Davey G4ITG
7-9 Sept	WACRAL Annual Conference	London Bible College Northwood, Middx	G3AGX or G4NPM both QTHr
8Sept	Scottish Amateur Radio Convention	Cardonald College, Glasgow	West of Scotland AR Society
8-9 Sept	International Amateur TV Contest	British Amateur TV Club	G Shirville G3 VZX
9 Sept	Telford Mobile Rally	Telford Shopping Centre	G8DIR/G8UGL G3UKV
12 Sept	VHF/UHF Activity Night	South Bristol AR Club	G4RZY
13 Sept	Prototypes Night	Southgate AR Club	G4OBE (QTHr with SAE)
16 Sept	AGM	Glenrothes \& District AR Club	Sec GM4 LYQ
16 Sept	Vange AR Society Mobile Rally	St Nicholas School, Basildon	G4IFD QTHr
19-23 Sept	The Personal Computer World Show	Olympia 2	
23 Sept	National Car Boot Sale	Shuttleworth Colletion, Old Warden, Beds	Dunstable Downs Radio Club
30 Sept	Welsh Amateur Radio Convention	Oakdale Community College Blackwood, Gwent	GW3KYA QTHr
7 Oct	Gt Lumley Annual Rally	Gt Lumley Community Centre	Gt Lumley AR Society $\mathrm{G} 40 \mathrm{OCQ}$
13 Oct	Midlands VHF Convention	BT Training College, Stone, Staffs	Peter Burdem G3 UBX
14 Oct	QRP Convention	Preston School, Monks Dale, Yeovil	G3GCQTHr

AMATEUR RADIO WORLD

Compiled by Arthur C Gee G2UK

It is no doubt true to say that in the early days', practically all radio amateurs got into the hobby through listening to shortwave broadcast stations. I certainly did and still remember with nostalgia. the excitement of hearing some shortwave station in some faraway part of the world.

It's all very different nowadays, of course, as signals from shortwave broadcast stations are normally strong enough to be classed as of good programme value. Quite apart from the programmes specifically directed at the radio amateur, which many of the shortwave broadcasters run these days, the programme material put out is often of much interest.

Regular listening to a few selected stations in different parts of the world, will give the radio amateur a good idea of how propagation conditions are. So even if you c'on'sider yourself to be a dyed-in-the-wool' amateur radio communicator, don't neglect the shortwave stations.

In some of our bands, they or their harmonics may be a nuisance, but a lot of genuine inierest can be had from the better of them, as you can gather from my colleague Frank Baldwin's 'Shortwave News for DX Listeners' monthly feature.

lliegal use of radio transmitting apparatus
 One of the difficulties in the past of

 getting a conviction for the illegal use of radio transmitters has been the view that uniess the culprit was actually caught in the act of using the transmitter, he could not be convicted of having committed the offence.This made it very difficult indeed to bring à successfui case against the culpfit - no matter how obvious it was to all who heard the transmission. A recent case reported in The Times seems to have overruled this previously held view. The judgement in this case was that .the offence of using apparatus for wireless telegraphy without a licence, contrary to section 1 (1) of the Wireless Telegraphy Act of 1949, was committed where the set was available for use at any time and it was unnecessary to prove that the set had been used or that the defendant intended to use it.

Apart from the question of evidence of actual use, there has been a lot of discussion recently in amateur radio circles as to whether it is legal for a

The opinion was generally held that this was quite alright provided, of course, he did not in fact use the transmitting section of the equipment until he had obtained his licence.

With the results of this case, it would seem that this is not so-possession of such equipment could render one liable to prosecution.

Cable TV interference

Some years ago a friend of mine, resident in Holland, warned that if Cable TV came to England, one must be prepared for the most awful interference to such services as amateur radio, if his experience in Holland, where they were just introducing Cable TV, was anything to go by.

So, when Cable TV was announced here, I sat back and waited to see what was going to happen. I did not have to wait long! Almost immediately trouble appeared in Milton Keynes.

British Telecom's Cable TV distribution system there was found to be radiating sufficient $R F$ at 144 MHz to
make that band unusable in certain areas of the town.

Complaints were made to the RSGB by radio amateurs in the affected area and, in due course, the cause of the trouble was located. It seems it was due to unscreened junction boxes and to insufficiently screened transverters used to convert the 144 MHz main distribution frequency to the UHF frequency required by the TV receivers.

It was thought that the problem could be solved by fitting suitable filters, but this did not prove to be so. The interference continued. The RSGB prepared complaint forms and asked members affected to complete them. Over a hundred were returned.

The RSGB then asked BT to cease operations on the frequency being used. This they very obligingly did and the interference ceased, to the great satisfaction of those affected.

In a letter to Radio Communication, the Secretary of the Milton Keynes Radio Society, thanked the RSGB for the very prompt and efficient way they had dealt with the matter. He also thanked the Cable TV Company concerned, for their co-operation and the way they reacted to the situation, even to displaying a TV picture continuously for a week, telling viewers that the channel was closing down and they should retune their TV sets to a new channel.

In responding to this letter, the RSGB comments that their view is that the primary users of the radio spectrum should be radio transmitters and receivers and not Cable TV systems.
It is very ready to take up the cudgels on behalf of members experiencing similar interference, if they let the RSGB know about it, and they comment that a good deal of work continues to be carried out behind the scenes, to ensure that radio amateurs in the UK, do not suffer the crippling problems which have beset amateurs elsewhere in the world.

FAX - renewed interest

There seems to be a reawakening of interest in FAX - ie Facsimile. Some years ago when FAX was officially added to the modes permitted to be transmitted by British amateur radio stations, there was quite a bit of interest but this faded rather quickly, due probably to the difficulty of getting suitable equipment at 'amateur radio prices'!
The situation in this respect seems to have eased a bit lately. Also, there is much interest in recording weather maps, both from HF stations and satellites. Bob Sayers, G8IYK, 40 Royal Oak Drive, Leegowery, Telford, Salop, has undertaken to co-ordinate information on FAX as part of BARTG's activities and he would like, to hear from anyone interested in this aspect of amateur
radio. A number of local FAX nets are in operation, the latest to come to our notice is in the North Kent/South Essex area. G6TJP, 47 Robin Hood Lane, Chatham, Kent, has been organising a FAX Net on the first Thursday of the month on 144.7 MHz . He would like to hear from anyone interested.

Amateur radio ' D ' Day celebrations

The 'D' Day celebrations on June 6th, were participated in by amateur radio, by special event stations set up by GB4DD and F6PVX. A message was passed to HM The Queen, on board the Royal Yacht 'Britannia', which was duly acknowledged by Her Majesty. Special permission was granted by the Dept of Trade and Industry for this transmission which was on 7050 KHz

New 50MHz beacon

The HQ 50 MHz beacon was recently installed at RSGB HQ and should be in 24 hour operation by the time this appears in print. An interesting feature of its transmissions is that it will give its QTH in the new International (Maidenhead) 6 character location system, which it was agreed should be brought into universal use by the IARU recently. This system replaces, or perhaps one should say extends, the old QRA Locator system, which up until now has been the most popular system for indicating one's QTH.

FREQUENGY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measureing typically $2 \mathrm{~Hz} \quad 1.2 \mathrm{GHz}$
* Sensitivity < 50 mV at 1 GHz
* Setability 0.5ppm
* High Accuracy
* 3 Gate Times
* Low Pass Filter
* Battery or Mains
* Factory Calibrated
* 1-Year Guarantee
* $0.5^{\prime \prime}$ easy to read LED Display

NOW AVAILABLE WITH TCXO OPTION

PRICES (lic adaptoricharger, P \& P and VAT)

METEOR 100 (100 MHz) $£ 111.55$
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 141.55$
METEOR $1000 \quad(1 \mathrm{GHz}) \quad$ £ 192.05

Illustrated colour brochure with technical specification and prices available on request.
N1 7 Designed and
Manufactured in
Britain.

Affordable Accuracy - Low Cost Mulitineters from Amon

ANTENNAS - REMEMBER IT'S THE ANTENNA THAT MAKES THE STATION!
$\begin{array}{lll}\text { Sun KG-144 Triple 5/8 Base..................................29.95 } & £ 3.00 \\ \text { Hoxin } 8 / 8 \text { Mobile } 88\end{array}$
Sun
Hoxin DC Grounded.............................
SPECIAL £10.50 £2.00
FIT08R FT-790R $1 \mathrm{~W} / 200 \mathrm{mw}$ multimode
1W/200mw
All the features of the FT-290R on 70 cms FM portable

10 memories Keyboard entry

JOIN THE INTEREST ON 70!

HB9CV from the company that first made them in the UK. (Don't settle for cheaper immitations)

It's here at last!
 ARM 7ele "TRACTOR BEAM"

Antenna *The Strongest Beam in the World! Research * 10.8 dbD Gain ($144-146 \mathrm{mhz} 1 \mathrm{kw}$) Mannufacture *Unique Boom \& Element Construction - so simple!
"Have a QSO on one at our shop"
*Posidrive screwdriver needed for assembly
*This antenna represents the latest technology in Yagi beams, can be used portable \& phasing kits available. @ $£ 12.50$ extra (fits most 2 mtr beams)
Allthis for $£ 32.80 \mathrm{p} \& \mathrm{p} £ 3.00 \mathrm{IIe} @ £ 42.80 \mathrm{p} \& \mathrm{p} £ 3.50$ SAE for details or see forthcoming reviews

MAIN DISTRIBUTOR FOR

GW MORSE KEYS
*Solid Brass (Polished) 'made in GW LAND' * Hand Made

* Solid Slate Base

Personal Call Sign
Plate Available.

SAE Details
Dealers wanted

REVCO RS2000 WKI \& II GEMSCAN 70 The Scanner you can BUY

 Why Wait? Listen NOW:

RWC EXCLUSIVE

* 70 Memories

* AM-FM (Narrow Band) * $60-179 \mathrm{mhz}$ Continous (depending on Model) $+380-520 \mathrm{mhz}$ *Modifyable $60-520 \mathrm{mhz}$ continous (Out Now) - £299.00 + p\&p £3.00
* Large Clear Red LED Readout
* Push Button Keyboard (No plastic Film)
*Various Models at Prices to suit your Pocket

SAE for more details
From ONLY £259.00* P\&P £3.00
Please allow 14 days for extended versions (*Depending on coverage Required) * GAS-FET Front End Model Availble * 12v DC + Mains PSU Built in * Plus many many more facilities

RWC HAVE THE TECHNOLOGY!:
NOW, listen to all sorts of interesting, activities! Including the

Overseas customers welcome. We speak German \& Japanese. Import/Export no problem. Please telephone during working hours or

Telex 334303 TXAGWM-G

Don't Forget We stock almost all Power Transistors/Modules for amateur radios which we import ourselves proving we mean business when it comes to service back-up! - Phone us for your requirements. Part exchange welcome. Please send a SAE for any information you require and our latest s/h list. Full demonstration facilities. $E \& O E$ Why not visit our shop, Junction 3, M5, 2 mins along the A456 towards Birmingham. We promise your visit will be worthwhile

EXI ISSUEONEXI ISSUEONEXI ISSUEONEXI

Electronics
 For all aspects of practical amateur radio MOr/d

COMPUTERS AND AMATEUR RADIO

Ken Williams asks 'Do you really use your Micro'? and takes a look at a simple program

DATA FILE

Ray Marston continues his series with a further look at security systems

TEST EQUIPMENT

Frank Ogden G4JST describes how you can get the most from your test gear

NON-LINEAR ELEMENTS

 Dr CJD Catto takes a look at analogue multipliersPLUS all the usual features!
New Products News Reception Reports... DON'T MISS the October issue - on sale 13th Sept

To be sure of your copy of Radio \& Electronics World, complete the newsagent order form in this issue or take out a subscription

EXT ISSUEONEXT ISSUEONEXI ISSUEONEXT

Clubs, manufacturers, publishers and agents are invited to send details of new books, catalogues, data sheets, etc for inclusion on this page

21 FASCINATING GAMES FOR
 MEMOTECH MACHINES!

Memotech computers, with their 16-colour high-resolution graphics, 32 mobile sprite graphics and high-quality audio output, have all the facilities for fast and fascinating computer games. Here are 21 exciting, high quality games specifically programmed to make the most of the special features of these microcomputers. All the programs run equally well on all Memotech models.

Each program comes with instructions showing you how to play the game. The way the game works is explained in detail, with tips on winning tactics. Hints are also given on how to change the games creatively to suit your own ideas.
Available from Granada Publishing (ISBN 0-246-12407-5) at £5.95.

Abstract

RIIY TODAY A modern guide to Amateur Radioteletype (Price £4.90). Radioteletype has experienced significant advancements during recent times. Home computer systems and dedicated electronic terminals have opened the door for everyone to enjoy the action regardless of their technical background.

It is a complete new game of amateur communications and shortwave monitoring, and this all new book is your timely guide to that exciting RTTY world. It's all here and waiting for your investigation... from the fascination of monitoring special news bulletins to the renewed excitement of your first QSO (we've included full details on every type of gear to use). If you would like to renew your amateur radio interest and span new horizons, join the thousands of amateurs operating RTTY today. Chapter headings include: the exciting world of RTTY; Operating parameters and

concepts of RTTY; Straight talk on home computers; RTTY converters you can build; RTTY systems for home computers; Dedicated RTTY terminals and systems; Mini RTTY systems; A guide to RTTY action on shortwaves. Interproduct Limited, Lynton, Stanley, Perthshire PH1 4QQ. £4.90 +50p p\&p.

A PRACIIGAL INTRODUCTION TO MICROPROCESSORS

The purpose of this book is to provide a practical introduction to micro-
electronics. It is primarily aimed at those who have some knowledge of general electronics, but have little or no understanding of microprocessors.

Available from Bernard Babani Publishing (ISBN $0-85934-098-8$) at £1.95.

25 SIMPLE INDOOR AND WINDOW AERIALS

Many people live in flats and apartments or other types of accommodation where outdoor aerials are prohibited, or a lack of garden space etc prevents aerials from being erected. This does not mean you have to forgo shortwave listening, for even a 20 -foot length of wire stretched out along the skirting board of a room can produce acceptable results. However, with some additional effort and experimentation, one may well be able to improve performance further.
This concise book tells the story, and shows the reader how to construct and use 25 indoor and window aerials that the author has proven to be sure performers.
Much information is also given on shortwave bands, aerial directivity, time zones, dimensions etc.
A must for all amateur radio enthusiasts.
Available from Bernard Babani Publishing (ISBN $0-85934-111-9$) at £1.75.

AN INTRODUCIION TO PROGRAMMING THE ATAR1 $600 / 800 \times 1$

Learning to program in BASIC might at first appear to be a daunting task, however it can be made much easier if tackled in a sensible way. The step-by-step approach of this book starts with the fundamentals of BASIC and then moves on to more advanced topics such as animated graphics, so enabling the reader to make good use of the ATARI's exceptional graphics and sound capabilities.

LATEST LITERATURE

In a book of this size it is impossible to fully cover every aspect of a micro as versatile as the ATARI, but the authors have tried, as far as possible, to complement the information supplied by the manufacturer rather than just duplicate it. Having followed the book through, it is hoped that the reader will be able to write useful programs of his/her own and then progress, with relative ease, to more advanced programming.
The text is divided into the following chapters: 1. Variables and Arrays; 2. Strings and Codes; 3. INPUT, PRINT and DATA; 4. Decisions; 5. Sound Generator; 6. Ins and Outs; 7. Animation; 8. Graphics Modes.

Essential reading for all ATARI 600/800 XL owners.

Available from Bernard Babani publishing (ISBN 0-85934-118-6) at £1.95.

MICRO INTERFACING

 CIRCUITS BOOK 1It is now perfectly feasible for the average amateur electronics enthusiast to build reasonably simple add-ons
for a microcomputer that will transform it into a versatile and sophisticated piece of control or measurement equipment.

Methods of interfacing addons to home computers are not unduly difficult, but for those who are unaccustomed to microprocessor techniques it is easy to be put off by the plethora of unfamiliar terms and devices.

The aim of this book is to help those who have some knowledge of electronics, but not necessarily an extensive one, to understand the basic principles of interfacing circuits to microprocessor equipment.
The subject is not treated in a purely theoretical manner; the circuits used to demonstrate these principles are all practical ones, using real devices. The subjects covered include address decoding, parallel and serial interfacing, analogue to digital and digital to analogue converters, etc.

Companion volume to book No BP131: Micro Interfacing Circuits Book 2.
Available from Bernard

Babani publishing (ISBN 0-85934-105-4) at £2.25.

COMPUTER PROGRAMS FOR AMAIEUR RADIO

by Wayne Overbeck (N6NB) and James Steffen (KC6A).
This American book, a large paperback of 330 pages, is written by two amateurs who between them have 50 years of radio experience. It demonstrates most impressively that there are many more aspects of home computing to interest the radio amateur than simply applications to Morse and RTTY.
As the authors point out, amateur radio is a dataintensive hobby - what better tool to use for data-processing than a home computer.
The programs included are all designed for worthwhile jobs in the shack, and none are the sort which do minor calculations or data lists which would be better done on a calculator or looked up in a handy textbook.
The book begins with a useful chapter listing the programs, with a description of each one. There is something for everyone from beam-
heading and sunrise calculator programs, to an antenna scaler and a moontracker. Morse \& RTTY programs are excluded, as these are readily available elsewhere.

As with most such books there is an introduction to home computers, including a very interesting history of computers in general.

The style is clear and easilyread, and the contents very informative. The programs are all written especially for Apple II, Commodore 64 and computers that run Microsoft BASIC. There is also information on how to adapt some of the programs for Timex (the American ZX81) and VIC-20: it is not written with the British reader in mind, but given the comprehensive nature of the text the transatlantic jump should pose few problems.

The final few pages, an appendix headed 'In Case of Difficulty, are sure to be appreciated by many, being a series of troubleshooting tips for those experiencing problems running the programs.

Hayden Book Company, 10 Mulholland Drive, Hasbrouck Heights, New Jersey, USA.

Lascar Electronics Limited,

Module House, Whiteparish, Salisbury, Wiltshire SP5 2SJ
Tel: Whiteparish (07948) 567 Telex: 477876

DOT MATRIX DISPLAYS The Full Service

Controller modules save hardware and software development time.

An evaluation system allows use of Dot Matrix System without specialised microprocessor knowledge. Only a +5 V DC supply is needed to have a system up and running in minutes. Evaluation system Eval- 1 contains a 16 character 1 line display, a controller module, interconnecting cable and a full instruction manual.

A GREAT MAGAZINE FOR ALL ASPECTS OF PRACTICAL AMATEUR RADIO

ALSO...

Product reviews

Communications \& electronics news Reception reports - shortwave, DX-TV, ATV . . . Construction projects - what to build for your rig, your computer \& your enjoyment . . . New technology Educational articles . . . Coming events . . . Readers letters. . . Technical \& practical questions answered... Latest equipment reviews . . . and all the latest news in the Amateur Radio World . . . Keep in touch with up to date developments TAKE R\&EW every month and stay informed.

SUBSCRIBER BENEFITS

Take out a POST FREE (UK) Sub while offer lasts

- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

RADIO \& ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department - Radio \& Electronics World - 513 London Road - Thornton Heath Surrey - CR4 6AR.

Tel: 01-684 3157

PLEASE SUPPLY: (tick box) for 12 issues, all rates include P \& P

PAYMENT

ENCIOSED: \quad| Cheques should be made payable to |
| :--- |
| Radio \& Electronics World. Overseas |
| paynent by International Money Order, or |

South Midiands

 BRANCHES AT: SOUTHAMPTON, LEEDS, CHESTERFIELD
YAESU FOR VHF EQUIPMENT - ‘SMC’ YOUR SUPPLIER

4
FT290R \& FT790R MULTIMODE

*432MHz PORTABLE SSB/CW/FM £259!

FT690

FT290R
FT790R*
SMC2.2C
SMCBC
MMB1 1
CSC1A
FL6010
FL2010

Multimode Transceiver 6 m Multimode Transceiver... Multimode Transceiver 70 cm 2.2Ah Nicads 'C' size.
220 mA Charger (13A Style) Mobile Mount Carrying case. 6m 10W Amplifier 2m 10W Amplifier.

FT203R \& FT703R HANDHELDS

"THUMBWHEEL" TINY HANDHELD

"THUMB
Ultra compac
handheld. Cor
tion (with chip
modern marve
(for use with Y
meter. Supplie
case.
F1203R
F1203R
F1203R
FBA5
FNB3
FNB4
CSC6
CSC7
YH2
MH.12A2b
MMB21
SMC8.9AA
PA3

SMC SERVICE Free Securicor delivery on major equipment. Access and Barclaycard over the phone. Biggest Branch agent and dealer network Securicor' B ' Service contract at $£ 5.00$ Biggest stockist of amateur equipmen

C/w FBAS, CSC6 etc
C/w FNB3, CSC6 etc
C/WFB4, CSC7. etc.
10.8 V NiCad Pack (425 xAH) 12.8 V NiCad Pack $(425 \mathrm{mAH})$. Soft case (FBA5 or FNB3 fitting) Soft case (FNB4 fitting) Headphone/Microphone option. Speaker/Microphone option. Mobile mounting bracket Charger (slow:) 13A style DC adaptor/charger unarger (quick) and Power Unit
$£ 155.00$ $£ 175.00$
$£ 185.00$ $\varepsilon 185.00$
+.86 .85 $\begin{array}{r}\text { E6. } \\ \mathrm{E} 53 \\ \mathrm{E} \\ \hline\end{array}$. $\mathbf{~} 33.50$
$\mathbf{8} .25$.86 .00
$\mathbf{~} 8.05$. 28.85 ..E14.50
ع17.89 . $£ 17.69$
. 88.00 E8.00
E8.05 e16.00inc
(9) FT726R MULTIMODE UHF, VHF, HF

FT726R
$F 7726 R(2)$
$21 / 24 / 28$
$50 / 726$
$430 / 726$
SAT726
XF455MC

Transceiver main frame on'v.	E619.00
Transceiver c/w 2m......	$\underline{5775.00}$
HF module	£209.00
6 m module.	£195.00
70 cms module	£259.00
Full duplex module	¢99.95
6000 Hz CW filter	£41.85

FT230R \& FT730R FM MOBILES

FT230R
2m Transceiver 25w
$£ 269.00$
FT230R 70 cm Transceiver 10w $E 239.00$ MMB15 Mobile mounting bracket $\mathbf{E 1 4 . 6 5}$

S"eventy cms. super saver

EKDK 2033 FM MOBILE, 144 MHz

NEW
£239

144 MHz . 12 VDC FM Transceiver. 25W/ EW Hi/Low (both adjustable). Compact $22 / 16^{\prime \prime} \times 6^{3 / 6 "} \times 73 / 16^{\prime \prime} .12^{1 / 2} \mathrm{KHz}$ steps (100 KHz fast OSY). Amber LCD•Sunlight View'. Side 88 . Display; 100 's of $\mathrm{Hz}+$ channel number. Sensitivity $<0.2 \mathrm{uB}$ for 12 dB SINAD. Single knobfrequency control "Dial". Endless or non endless dial options RIT; 1 KHzsteps V.FO. + memory.
Two 5 slot memories A B. A+B. Z×B.

11th memory instant "call" channel. Memory simplex or duplex channels. Band scanning programmable limits. on scan halis squelch + centre zero. Pause RIT from plus cross microphone $\pm 600 \mathrm{KHz}$ split. -press"dial" Setable steps tone splits. imits. Simple controls forsafe mobite. CW mobile mount. mic, handbook

On many reg FINANCE

 Free Financelar priced liems SMC otters 20% down and the balance olance over $\& 120$ You pay no more than the cast pricell details of eleigible items available on request.

Importer warranty on Yaesu Musen products. Abporter staffed and equipped Service Department Daily contact with ine Yaesu Musen factory. Tens of thousands of spares and test equipment. Twenty-five years of professional experience.

Communications Ltd.

 MAIN DISTRIBUTOR FACTORY BACKED4
6 METRE EQUIPMENT

FT680R
FT726R
Main frame unit less modules. 6 M module for 726R 6 M mobile $10 \mathrm{WO} / \mathrm{P}$ 6 M transportable $2.5 \mathrm{WO} / \mathrm{P}$ Matching 10W amplifier for 690R 6 M module for FTV transvertors. 6 M down to 10 M convertor 6M switched pre-amp 50 MHz switched pre-amp
s... £619.00 Inc
£195.00 inc
£359.00 inc
£259.00 inc
£49.00 inc
£89.00 inc
£34.90 inc
£34.90 inc
£44.90 inc

FRG7700 COMMUNICATIONS RX

LEEDS
SMC (Leeds) 257 Otley Road Leeds 16. Yorkshire Leeds(0532) 782326 9-5.30 Mon-Sat
$\begin{array}{ll}\text { CHESTERFIELD } & \text { BUCKLEY } \\ \text { SMC (Jack Tweedy) Ltd } & \text { SMC (TMP) }\end{array}$ 102 High Street New Whittingdon, Chesterfield Chesterfield (0246) 453340 9.5 Tues-Sat

Unit 27. Pinfold Lane
Buckley, Ciwyd Buckley (0244) 549563 10.5.00 Tues-Fr $10-4.00 \mathrm{Sat}$

STOKE
SMC (Stoke)
76 High Street
Thike Plts, Stoke
Kilsgrove (07816) 72644
$9-5.30$ Tues-Sat Kidsgrove (0781
$9-5.30$ Tues-Sat

HEAD OFFICE: S.M.HOUSE, RUMBRIDGE STREET, TOTTON, SOUTHAMPTON, SO4 4DP, ENGLAND, (\& MAIL ORDER Tel: (+44)(0703) 867333, Telex:477351 SMCOMM G, Telegram: "Aerial"Southampton)

ATV on the Air

Presented by Andy Emmerson, G8PTH

Well, it's activity report time again and time has flown since I last dipped into the file of your letters.

Starting as ever with 70 cm , the first letter comes from G8PX in Oxford who is constructing several items. He says he has just built the 'TV for Amateurs' RF probe... I wish some other people would, then they could put out properly modulated signals, instead of an all video and no syncs mess that nobody can lock on their receivers.
It's those power meters that are to blame; some people cannot bring themselves to believe that less indicated power out means a better signal at the other end!

Jeff has also made an upconverter and is now attacking a 2 C 39 linear.
He also has a Spectrum computer and says the 'Worthing' testcard tape is 'really fabulous'. Indeed it is and if you haven't got one yet send off your $£ 5.50$ to G8XEU (QTHr) and support the Worthing video repeater project into the bargain.
One of two letters from Maurice F1FVX, a BATC member, points out that many French stations cannot use 144.750 for ATV talkback. This frequency is used as the input of the Vernon repeater (halfway between Paris and Rouen). Instead, French stations use 144.170 plus or minus ' 20 KHz , FM when conditions are normal and SSB when things get lively!

GM amateur television

Norrie GM4BVU sent in some nice pix from his QTH in Hamilton, Lanarks. All were created on the BBC Micro - it's a shame you can only see them in black and white. One shows the G8NVS test card, very reminiscent of the IBA Channel Four effort.
The second computer graphic is part of a sequence animated using machine code, used during a demonstration of ATV to the Mid-Lanark Club.

Norrie is doing a grand job spreading the word; if your club has not had a talk on ATV why don't you give one?
ATV in the Central Scotland area

An example of the G8NVS test card
continues to take off, with several new transmitting stations coming 'on-air' in recent months. On the east coast Mark (GM4OMT, Grangemouth), Bill (GM6AOJ, Leven) and Keith (GM1FAI, Linlithgow) have appeared, bringing George (GM3RVK, Kennoway) and George (GM8CUS, Linlithgow) back on the band after a lull in activity.
lain (GM6HFH, Stonehouse) has finally taken the plunge and was delighted with a P5 report from Bill, GM4UBJ in Motherwell, plus several other signal reports.

Attempts at cross-country working have not been too successful, mainly because linears are not yet much in evidence. Norrie (GM4BVU, Hamilton) can just about manage P1 to most stations, OK for contests, but not much good for anything more ambitious. Norrie writes that ATVers in the Edinburgh area seem reluctant to check in to the Monday ATV net - let's see your pix! Net time is approx 19.00 GMT, and recent weeks have seen enough activity to force QSYing from the calling channel, the east going up a channel, while the west coast boys go down one.
A quick guide to the relative activity is shown by monitoring contests.

Contest	Stations worked
1982 Winter Cumulative	
1st session	2
2nd session	4
3rd session	6
4th session	2
5th session	7
6th session	11
1983 Summerfun	Operated as G4BVU/P
1983 International	9
1983 Winter Cumulative	
1st session	11
2nd session	10
3rd session	10
4th session	9
5th session	12
1984 Summerfun	$17+$ other stations

Animated graphics demonstration

Of these stations, some are using their normal domestic TV, often with no special aerial but none stranger than Alan (GM1BXG, Dollar) who gave a P3 report to GM4BVU using a coat-hanger suspended from the lamp-shade in his room! Some curious bounce (and dou-ble-bounce) effects have been noted to get pix to Bob (GM4PSV, Renfrew) and Stan (GM3KXQ, Neilston), with all antennae pointed north to the hills.

ATV DX has been observed by Steven, GM4SJL in Fife, who received an F3 and OF4 during his lunch break on Friday 8th June, but he went back to school without working any! Strange fellow!!!

DX; contacts GM to G have taken place many times, but on 19th March, Ray (G4WVI, Whitley Bay) and Norrie (GM4BVU, Hamilton) exchanged P2 pictures both ways. Is this the first TV QSO from west GM to east G?

Following recent on-air chat about 24 cm operation and a total lack of funds from all concerned to try simplex working, a small group are now sounding out opinfon with a view to setting up a 24 cm ATV repeater group, possibly under the wing of the Central Scotland FM Group. Any. reader interested is asked to contact GM4BVU.

Finally, if you are unsure how to receive amateur TV transmissions or wish details of membership of the British Amateur Television Club, write or phone Norrie at 3, Townhill Road, Earnock, Hamilton, ML3 9UX (Tel: 423121).
Another batch of reception reports in the Netherlands has arrived from BDXC member Arthur Milliken. Noted at Beemster (2nd - 5th December) were G3UMF, G6CUQ, G6YLG, G6LIC, G4DVZ, G8LKW, G6HMS, G3VPC, G6XMG, G4SRF, G6LMG, G4RKP, G6YDI, G4CRT, G3DFL and GU8FBO. In February G3TOZ was seen in Geldermalsen.

Twenty-four centimetres

More and more people are 'at it' on 24, and with the growing number of kits to help you transmit and receive signals there is little excuse for not joining in. Stations newly active include John G8UWS in Folkestone and Nick G4IMO near Southend-on-Sea; both are using the F3YX design of transceiver.
Although this design is now somewhat dated it has some good points, as lan G4VTD (ex-G8CQE) pointed out. By using a Foster-Seeley discriminator the F3YX receiver can receive at lower levels of signal than the phase-locked loop

GM8HGT on the air

AIV ON THE AIR

designs can manage.
At the present time Marc, F3YX is redesigning the transceiver to use some of the newer ICs on the market.
I, too, am now equipped for this band; after earlier false starts, I am using the Sandpiper helical aerial and am very pleased with it. Reflected power is minimal and the broad bandwidth is a great blessing.
Allan G8CMQ writes from Southampton that new recruits to the band are Eddy G4PXH and Dave G6GXG in Romsey. Nick G4WHO (ex-G8MCQ) can put out a good few watts from Wimborne, achieving a P4 with Allan and P5 with Syd G4JQU over a 30 mile path.
Norman G6GNS has joined with some of the experiments, including tripling 70 cm AM up to 1308 MHz which works surprisingly well if you set up the Tx and tripler for it.
Allan continues 'On the May day holiday, I went down to Havant to see Pete G6RSV and his TV-DX gear. I took a few little bits and pieces: a 10 mW Tx, converter and receiver.
After seeing the DX-TV, we tried a little walkabout with the QRP 23 cm - cameraman in the garden and viewers indoors.
Who should we see in the picture but Hadrian G6XGH and Nigel G1DSO, coming round to see what I was up to.
We took the 23 cm gear over to Nigel's QTH 100 yards away and Hadrian oper-
ated the camera and 10 mW Tx
Nigel patched the video onto 70 cm and several stations in the Portsmouth and Chichester areas were able to watch as our roving cameraman filmed the surrounding area.

Results were excellent and about 100 yards range was possible. A delightful time was had by all and it made a talking point on the net that evening.

Those who missed it were a little disappointed and I expect it has created some enthusiasm for 23 cm .

Maurice F1FVX says it was a pity that no-one but G6AIW and G8KOE were around on 28.12 .83 to receive his 1255 MHz signals from his Paris suburb. They, it seems, were wised up to the 144.17 frequency!

Finally, the strange but true section. Garry G4CRJ in High Wycombe, has been playing around with a 24 cm oscillator and managed to get a P4 report with just this and a BFR96S linear from Mike G8LES, 25 miles away!
So there you are - two transistors and you're off! He also got a P2 report from G6HVQ in Thames Ditton, and gave P4 reports to both stations (the latter is AM).
A couple of items picked up at the RSGB convention; Peter G4LXC (ex G8EIM) is constructing for 24 cm in Harrow Weald and SM6CVE reports that several Swedish stations are active on 24 cm , including Helmer SM6CCD. What
system they are using is not clear.
To the BATC event at the Post House, Crick, Dave G8GKQ/DA4DG brought his 24 cm receive system. Dave has TV gear for 70 cm and 24 cm and is normally in Germany. From time to time, he is back in the UK and operates from Penge.
There has been no slow-scan activity reported during the last three months. Perhaps in the flurry of activity earlier this year, everybody overdid things!
At this stage, I thought I would throw in a hint: if, like me, you aim to keep your equipment in showroom condition - it makes it more resaleable - there is nothing more annoying than a small scratch to the paint finish.

Black sprayed diecast boxes seem particularly prone to getting scratched and it's boring getting out black paint and a small brush just for this little job.
But, if you visit your local hobby shop where they sell plastic kits you will find they sell 'felt pens' filled with enamel paint instead of ink. These are great for touching up small blemishes and are available in a number of colours. Price is just under a pound.

So, there we are: thanks for your letters. I always enjoy reading them and printing your news, even if I don't get a chance to reply to you personally. Let me have more news for next time and send it to me, care of the editor.

THE 3-PART RADIO \& ELECTRONICS WORLD

To: Radio \& Electronics World • Sovereign House . Brentwood Essex CM 14 4SE

NAME. \qquad
ADDRESS
\qquad

PLEASE SUPPLY:

1 set of R\&EW AMATEURS HANDBOOK

PAYMENT	50	
	50	payment by Inte

Signature

0		
0		

For all two-way radio enthusiasts

THE PERFECT COMPLEMENT TO RADIO \& ELECTRONICS WORLD

DON'T MISS YOUR COPY

With regular features like Current Comment, DX Diary, Straight and Level, Angus McKenzie's equipment review, SWL, Rally Calendar and Free Classified Ads, and a host of special features in each issue, make sure you place a regular order for Amateur Radio with your newsagent or take out a post free subscription now, while the offer lasts

SUBSCRIPTION BENEFITS

... delivery to your door by publication date each month ... inflation proof - price guaranteed for 12 months

On sale NOW at your newsagent

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department - Amateur Radio • 513 London Road - Thornton Heath • Surrey • CR4 6AR. Tel: 01-684 3157

NAME
ADDRESS \qquad

PLEASE SUPPLY: (trick box) tor 12 ssusus, al rrtas Include P \& P

Signałure \qquad RE0984

There were very few qualms about DX reception during May. After a slow start Sporadic-E conditions livened up and things were really humming towards the end of the month.

Perhaps the most startling feature of the current Sporadic-E season is the number of 'exotics' already noted. At least one new country is now known to be using channel E3, possibly with considerable power output.
This is Greece and although there are no official listings of these transmitters, there have been several sightings of captions, news programmes and the test card.
The first inkling that an E3 outlet was in operation came towards the end of last year when Cyril Willis (Little Downham, Cambs) saw their identification caption with the inscription 'EPT' an abbreviation for Elliniki Radiophonia Tileorassis.
The first openings of any significance seen here in Derby were on May 16th during the late afternoon.
Two Yugoslavian transmitters were noted, both carrying the PM5544 test card.
One had the identification 'RTV LJNA' indicating that the signal was coming from the Ljubljana studios; the other was displaying 'TV BGRD' together with a digital clock in the upper black rectangle. This signal originated from Belgrade. Spanish and Portuguese signals on E2 and E3 were seen later in the day.
An opening on the 18 th produced an Italian programme on channel IA at 1745 BST while on E3 a weak signal improved, revealing Arabic script and captions moving vertically.
These could have been the end credits of a programme or even a programme schedule. The signal almost certainly originated in Jordan. Reception lasted for several minutes before finally being swamped by JRT (Yugoslavia) with a
regional musical programme with captions in the Cyrillic alphabet.

Historic event

May 24th must have made history in DXTV circles when an incredible total of four exotic stations were logged within the space of two hours. Clive Athowe and Ray Davies (both in East Anglia) saw the Greek PM5534 test card at considerable strength on E3 shortly after 0800 BST.
The digital clock insert was two hours ahead of British time and the identification on the test card was 'EPT'. The opening sequence began at 0825 and featured the Greek flag.
At 0829 the Jordanian test pattern (PM5544) appeared with 'JTV AMMAN' identification for about two minutes until it disappeared into the noise. Clive noted a caption at 0859 with the inscription 'CHANNEL 3'. This was on channel E3 and is thought by Clive to be of Greek origin. We have other ideas!
The ARAMCO TV service at Dhahran in Saudi Arabia operates on this channel with approximately 5 KW ERP. The test card and clock caption incorporate this particular identification. This station has occasionally been received in Western Europe and the clock caption with 'CHANNEL 3' beneath was seen in Finland last year.
The shock of the day occurred at 0932 when an FuBK test card emerged on E2. Clive and Ray assumed this to be from the West German transmitter at Grünten. However; the signal became more clear, revealing the letters 'IRIB' to the left of the centre bar and Arabic script to the right.
A digital clock in the left-hand corner of the screen displayed ' 1302 ' suggesting Middle Eastern origin. A quick flick through a reference book confirmed that reception was from tran.
Congratulations to all those enthusiasts who saw it, and to those who didn't,
join the club! Reception of the Iranian test card lasted some 30 to 40 minutes before going on to colour bars, with a digital clock in the left-hand corner.

Mysteries and more exotics. . .

At 1108 on the 24th, a multi-burst pattern was noted on channel C $(82.25 \mathrm{MHz})$ which must have been Albania (Radio Televizioni Shqiptar) since RAI Italy were on the PM5544. RAI were later seen on this channel from the Turin transmitter. Ray tells us that a test pattern not unlike the Spanish GTE type appeared briefly during this reception. It is suspected that this emanated from an Italian private TV network.
At 1246 BST on the 25th, another mystery occurred in the form of a blank EBU bar pattern from the south. It lasted for about thirty minutes.
The sound channel consisted of music with conversation in French between tracks. Could this have been another new E3 outlet possibly in North Africa?

DX log for May

This month we are featuring an extract from Clive Athowe's amazing log report covering the period from the 21st to the 29th of May:-
21/5/84: CST (Czechoslovakia) on channel R6 in Band III with the 'RS-KH' test card via meteor shower (MS); TSS (Russia) on channels R1, R2 and R3 with programmes via Sporadic-E (SpE).
22/5/84: RAI (Italy) with programmes on channel IA; TSS R1 and R2 featuring opera; TSS R3 radiating the 0249 monoscopic test card; NRK (Norway) on PM5534 test card with 'GULEN' and 'HEMNES' identification on E2 and E3 respectively; SR 1 (Sweden) E3, E4 with the 'TV 1 SVERIGE' PM5544 with the new digital clock insert (ie the PM5534 test card); YLE (Finland) E3 on FuBK test card. All reception via SpE.
23/5/84: RA| |A (two stations) showing Videotext pages; unidentified FuBK test card on R2 at 0915 but probably TVRRumania; JRT (Yugoslavia) E3 with a science programme; TVE (Spain) E2 and E3 with the GTE test card and 'tve 1 identification; TVE E4 with 'RTVE MADRID 4' electronic bar pattern; TVE E3 with 'GAMONITEIRO 3' bar pattern; TVE-2 on E2 with colour bars; TVE E2 with 'NAVACERRADA 2' bar pattern; TVE E2 on 'SANTIAGO 2' bar pattern; TVE E4 with a regional test card showing 'GALICIA' TVE E4 with colour bars and

The new digital version of Test Card 'F

Arabic caption from Jordan on E3

Unlisted Greek channel E3 transmitter
'TVE ANDALUCIA' inscription - see Reception Reports later; TSS R1 on electronic test card; TSS R2 with a concert; RTP (Portugal) E3 with a modified multi-burst pattern; TVP (Poland) R2 on programme; CST R2 with 'REKLAMA' caption, possibly heralding commercials; MTV (Hungary) R1 with programmes.
All stations noted via SpE propagation. 24/5/84: MTV R1 on 'MTV-1 BUDAPEST' PM5544 test card at 0714; TSS R1 and R2 with programmes and also the colour electronic test card at 0750 on channel R2; EPT (Greece) E3 on PM5534 with clock showing GMT +3 hours going on to the opening sequence with Greek flag at 0825; JTV (Jordan) E3 on PM5544; RAI IA with PM5544 pattern at 0834; TSS R1, R2 and R3 again on electronic test card; ARAMCO TV E3 on caption at 0859; RAI IB on sample teletext pages at 0906; MTV R1 and R2 on programmes at 0917; JRT E3 with programmes via the Beograd network; Iran E2 on test card and colour bars until 1015 with clock caption showing GMT $+41 / 2$ hours; TVE E3 and E4 on GTE test card and various regional patterns; +PTT (Switzerland) E2 and E3 on '+PTT SRG 1' FuBK test card at 1137; RTS (Albania) on channel IC with a multiburst pattern; RAI IC on programmes; RTP E2 on 'RTP-PORTO' FUBK pattern. All reception via SpE .
25/5/84: RAl IA on PM5544; TSS R1 and R2 on 'UT 0167' test card; TVE E3 with 'GAMONITEIRO 3' bar pattern; mystery EBU bar pattern from the south with French sound channel on E3 at 1246; TVE E4 with regional news; ZTV (Zimbabwe) on channel E2 at 1650 with coloured news reader via F2/SpE for 20 minutes; TSS R3 with 'BPEMY' news programme; TSS R1 (EESTI TV) on programmes; RUV (Iceland) E3 and E4 with programmes during the late evening.
26/5/84: TSS R1 and R2 with programmes (two stations on R1); NRK E2 with the 'VARANGER' PM5534 test card.
The transmitter is located in the far north of Norway close to the Russian border; NRK E3 with the 'KAUTOKEINO' PM5534; NRK E2 radiating the 'GULEN' PM5534.
All reception via SpE.
28/5/84: TVE E2, E3 and E4 with the GTE colour test card and 'tve 1' identification; TSS R1 and R2 on colour electronic test pattern; CST R2 on 'BRATISLAVA'

FuBK test card from Iran

PM5544; RTP E2 and E3 on low-frequency test bars.
29/5/84: NRK E2 on 'GULEN' PM5534; NRK E4 radiating the 'BREMANGER' PM5534 via SpE; SR 1 in Band III on channel E5 with the 'TV 1 SVERIGE' test card via MS.

Reception reports

Graham Angel of Sheffield is using two multiband colour receivers for DX-TV work. One is a 24 -inch Bush Model TV161 (dual-standard) modified for VHF/UHF 625 -line working. The other set is a 5 -inch Panasonic portable type 5032 which has continuous tuning throughout Bands I and III and UHF. Several countries have been seen via SpE this season.

These include |taly on channel IA, Spain on E2 and E3 and Norway on E3 from Gamlemsveten and Hemnes. Graham would like to know what the VHF radio transmitters are, often received around channels E2 and E3. Well, these are in fact radio links between Italian private transmitters and studios which operate within Band I to serve the numerous independent radio stations. Some of these are in stereo and the band can be literally choc-a-bloc with them during intense openings.

Kevin Jackson of Leeds claims the best day for $D X$ was the 28th when very strong signals from Spain, Russia, Austria, Czechoslovakia, Switzerland, Italy and West Germany were logged. The modified Swedish test card carrying the new digital clock display was also seen during the month. A switched IF bandwidth DX-TV converter has just been purchased which should make his set-up easier to operate.
Nottingham enthusiast Colin Frost, is using an Italian made Pye Model 99 receiver for DX-ing in the Band II spectrum.
Although these sets are now obsolete, their tuning range embraces channel C (82.25 MHz) and OIRT channels R3 and R4. Being in the aerial trade, Colin has built his own multi-element arrays for Band I but a commercially available system is used at UHF.
TV DXer Bob Brooks of South Wirral, has supplied a lengthy log report indicating that virtually every European country has been received. Apparently, Spain are using a few more test patterns this season prior to regional program-

EBU Bar with a French sound channel
mes at lunchtime. A colour bar pattern with the lower half blank in red is now radiated on channel E4 with the identification 'TVE ANDALUCIA' together with a digital clock insert. 'ihis was noted on the 23 rd and 24 th at 1240 BST. Norwegian stations were a feature of his \log on the 30th, with test patterns from Steigen on channel E2 (located near to the Arctic Circle), Melhus E2, Gamlemsveten E3, Hemnes and Bagn on E3.
Everyone seems to be receiving the American programme MASH from Spain, this year. Tony Cater from Wigan, telephoned to say that he received this together with horse racing on the 20th during the afternoon on channel E4. The Spanish 2nd network test card from TVE2 was logged by Tony on E2. This was a fairly widespread opening - for many, their first taste of the 1984 DX season.
lain Menzies (Aberdeen) is now a licensed amateur (callsign GM1FSU) and he intends to use the 70 cm band. Changes have been made to his aerial system for DX work. Improved results have been obtained with UHF TV DX by mounting his stacked grid on top of a length of fibre-glass tubing.
The system is in the loft and he's not too sure whether the fibreglass mount would be satisfactory for outdoor use. lain has noted a dramatic improvement and results are even better following the removal of the masthead pre-amplifier. Very weak signals from Bilsdale and Chatton can now be resolved and he is confident that only genuine signals will be received rather than spurious ones introduced by the amplifier!
Sporadic-E brought in West Germany on channel E2 on the 5th with the 'Saarländischer Rundfunk' FuBK test card from the Göttelborner Höhe transmitter situated near Luxembourg. This was followed by the Bayerischer Rundfunk test card from Grünten.
To round off the month, a midnight opening produced the PM5544 test card and tone on E3 and E4 from RUV I celand after the local BBC-1405-line transmitter had closed down.
More Band III meteor scatter DX was witnessed by Clive Athowe (Blofield, Norfolk). Norway appeared on E5 with the test card on May 1st. On the 8th and 21st, the Czech 'RS-KH' test card fluttered up on channel R6. Improved tropospherics on the 14th produced

Albanian newsreader on channel IC

Norway on the PM5534 test card from Halden on E11 and Lyngdal on E9. From a more easterly direction several West German stations in the north of the country. gave excellent pictures.

Test card ' F ' goes digital

Test Card ' F ', which has graced millions of television screens since December 1967, has been revitalised! Since last May a new digital version has been radiated on BBC-2 between 0815 and 0900 on weekdays only. Regular Trade Test transmissions were, for some obscure reason, discontinued in May 1983 and were replaced by endless pages from Ceefax. Full details were given in the January 1984 R\&EW.
The new version still includes the central colour display with Carol Hersee and friend, the picture being stored digitally from one of the original slides. All the other features (including frequency gratings, grey scale, grid, etc) have been produced digitally.
On the old monoscopic test card the top blue castellation was partially covered by standard colour bars. On the new version the upper castellations are totally replaced by colour bars which include a white arrow for picture alignment. Sharp-eyed enthusiasts may also note that the white and black dots on the grey scale are square rather than round. At the time of writing, BBC engineers
were still developing the equipment to generate the identification beneath the stylised letter ' F ' although we have received reports that the new digital Test Card ' F ' has occasionally been noted with station information. The old monoscopic test card will be radiated in place of the new version from time to time.

DX-TV Transmitter Map

A new map is available for DX-TV enthusiasts to locate the transmitter from which signals are being received.
The map covers all the principal Band i TV outlets in Europe. The relevant ERP's are listed together with details of TV services country by country. It costs $£ 1.65$ including postage from HS Publications, 17 Collingham Gardens, Derby DE3 4FS.

Service information

Denmark: A final decision is expected soon from the Danish Government about a second TV service. If the plan is approved there will be a total of 18 transmitters (probably all on UHF). It will take about four years to bring them all into service.
The regional television service. (TV SYD) now also broadcasts on Tuesdays from 1900 until 1930 local time.
West Germany: April 1st saw the start of Cable TV in Munich. There are 21 channels available to subscribers with programmes on offer from West Ger-
many, Austria, France, England and Switzerland.
Japan: Direct Broadcasting via Satellite (DBS) began last May via the BS2a craft.
Mexico: DBS should begin next year via the Morelos 1 and Morelos 2 satellites. There will be capacity for ten television channels including facilities for schools TV and a Pay-TV programme.
Australla: The Australian Broadcasting Commission began a 10 -week series of stereo TV programmes last April. Apparently the stereo sound channel was transmitted via ABC's FM network.
Luxembourg: Following repairs to the storm-damaged RTL-Plus transmitter, the ERP has been restored to 100 KW .
Iceland: From January 1st, 1985, Rikisutvarpid Sjonvarp (RUV) willl broadcast TV programmes ón Thursdays. Programme hours in Iceland are very limited with the PM5544 test card being radiated for much of the day.
Sweden: The 1st network of Sveriges Radio has started radiating the PM5534 test card which includes a larger than normal digital clock insert.
Netherlands: The PM5544 test card used by NOS-1 now carries the inscription 'PTT-NED.1' in larger letters than before thus making identification easier.
This month's Service Information was kindly supplied by Gösta van der Linden and Alexander Wiese.

SHORT WAVE NEWS FOR DX LISTENERS

By Frank A Baldwin
All times in GMT, bold figures indicate the frequency in KHz

In the last issue I dealt with some of the Peruvian stations operating outside the broadcast band frequencies, providing all the information currently available, sparse though it may have been.
In this issue of the magazine I continue by bringing to your attention some more of the stations located in Peru: both those out of band and some inside the confines of the bands.
Dealing firstly with some more out-of-band transmitters, a start is made with: Radio San Jose, on 5742.7 noted with a music programme at 0130. Radio Acunta, Chota, Cajamarca on 5801.7, logged at 2345, this being a reactivated station.
Radio Municipal Calca, Cuzco is on 6242 and is scheduled from 1100 to 0200. Radio Guyabamba, is reported as being on 6279 from 2300 to 0305. Radio Moderna, Moyobamba operates from 1055 to 2400 on 6364. Radio Celendin, Cajamarca has been heard on 7053 where it operates from 2100 to 0400 .
Radio Selva, Moyobamba is now on 7307 having moved from 7300. It is on the air from 1100 to 0430.
The final out-of-band transmitter I am listing is Estacion 2000 located in Rioja, San Martin being scheduled from 1000 to 0340, mostly with programmes of a religious nature. The frequency is a variable 9988.
The above information has been entirely retrieved from computer memory, many of the facts being originally culled from the SWL press, notably the DSWCI journal Short Wave News to which acknowledgement is made.

Turning now to some of the stations operating inside the broadcast band limits we commence with:
Radio Ayacucho, on 3220 where it operates from 1100 to 0500 with a power of 1 KW .
Radio Qollasuyo, Juliaca on 3250 with a schedule from 1000 to 0300 at 1 KW .
Or you could try 3260 for
signals from Radio La Voz de Oxapampa, on the air from 2300 to a variable closing time of 0400 . The power is 1 kW .
Coming into the more popular 60 metre band, one that I logged a couple of years ago and originally thought the station identification was a promo for an alcoholic drink! I refer of course to Radio Tingo Maria, on 4760 and scheduled from 1100 to 0500 with a power of 1 KW .
Another Peruvian logged on a couple of occasions last year is Radio Inca in Lima on 4762 working from 1100 to 0500 but reported closing sometimes at 0600 . The power is 1 KW .
Probably the easiest of the lot is Radio Atlantida in Iquitos on $\mathbf{4 7 9 0}$ working from 0900 to 0500 (Sundays from 1130 to 0400) with a power of 5 KW .

If you can hear this one at a good signal strength then it may be a safe bet that other less powerful Peruvians can be logged, QRM permitting.
Radio Andahuaylas, on 4840 is scheduled from 1000 to 0400 and with its 2KW signal can often be heard here in the UK.
On 4860 you will often find Radio Chinchaycocha in Junin with a 1 KW transmitter operating from 1100 to a variable closing time around 0500.

OAX5V Radio Huancavelica, is on $\mathbf{4 8 8 5}$ from 1100 to 0600 at 1 KW and although it is a difficult channel due to other Latin American occupants, Huancavelica has been heard and reported by UK DXers.

Radio Chanchamayo in La Merced has an 0.4 KW transmitter which is on the air from 1030 to 0500 (Sunday from 1100 to 0300) on 4896 but despite this low power it has been heard here in these islands, the best time being a weekday from 0430 until closing.
Radio Andina on 4996, Radio Quillabamba often logged on 5025 and Radio Loreto in lquitos on 5050, 2, 5 and 1 KW respectively.

AROUND THE DIAL

As is usual, we commence with some reports of African stations, the countries being listed in alphabetical order.

Benin

Cotonou on 4870 at 2034, OM with a talk in French all about internal affairs. Cotonou is on the air from 0400 to 2300 with a power of 30 KW . It features a newscast in English from 2000 to 2015 but operates mainly in French and some eighteen local vernaculars.

Equatorial Guinea

Radio Nacional, Bata on 5005 at 2018, music in the typical fast rhythmic local style, OM with a song in vernacular, OM with announcements and station identification at 2019 in Spanish. R Nacional has a power of 100 KW and is scheduled from 0430 to 0655 and from 0955 to 2135. This frequency is alternated with that of 4925, to no known sequence I might add and much to the bewilderment of the local populace 1 suspect!

Kenya

Nairobi on 4804 at 1758, OM with a pop song in English, YL with announcements and station identification at 1800 and a newscast in English, mostly of African events. This was a transmission in the English language General Service which is on this channel from 0255 (Sunday from 0330) to 0630 and from 1300 to 2010 (Saturday until 2110). The power is 5 KW .
Nairobi has also been logged on 4885 and on 4915 around 2030.

Libya

Tripoli on 9890 at 1355 , OM and YL alternate with a news commentary in the Arabic language Domestic Service scheduled on this frequency from 0600 to 2350.

Mauritania

Nouakchott on 4845 at 2030,

OM with the news in Arabic. This station is scheduled from 0600 (Sunday from 0800) to 0830 and from 1700 to 2400 with a newscast in Spanish at 2100.
During recent months however, the frequency has been reported varying from 4821 to 4828 on occasions although I have never heard them on these latter channels. The power is 100 KW .

Nigeria

FRCN (Federal Radio Corporation of Nigeria) Kaduna on 4770 at 2020, YL with a pop song in English with announcements in the same language. This is Channel 2 which operates in English and Hausa from 0400 through to 0100 at 50 KW .

Senegal

Dakar on 4890 at 2037, OM with a talk in vernacular. According to my information Dakar is on the air from 0600 to 0900, 1155 to 1600 and from 1715 to 0100 . The power is 100 KW with an English Ianguage 'slot' from 1845 to 1900 .

Tanzania

Dar-es-Salaam on 5050 at 1750, YL with a local pop song in Swahili during the Commercial Service which is timed from 1300 to 2015, the National Service also being on this frequency but from 0300 to 0700 . The power is 10 KW .

Tunisia

Tunis on a measured 15226 at 1944, mixed choir with songs in Arabic in a programme for the Arabic world scheduled from 0600 to 2330 on this channel.

Uganda

Soroti on 5027 at 2047, pop records and OM with announcements in English. Also logged at 0300 when opening with the national anthem followed by a newscast in English on the occasion of 'Liberation Day from the Fascist regime of Idi

Amin'. Many promos followed, most of them congratulating Milton Obote and the present Ugandan Government. One promo announced that 'soap was available'! Surprising what one can hear on the short waves.

THE AMERICAS

Brazil

Radio Timbira, Sao Luiz on 4975 at 2333, OM with a football commentary in Portuguese. The schedule is from 0800 to 0300 and the power is 2.5 KW .

Radio Cultura, Campos on 4955 at 0046, OM with a commentary on basketball (1 think) - certainly not futebol (football). Radio Cultura operates irregularly from 0800 to 0400 with a power of 2.5 KW but can vary in frequency down to 4953 at times.

Colombia

La Voz del Cinaruco, Arauca on 4865 at 0042, OM with promos then a sports commentary in Spanish.
This one operates from 0900 to 0400 (Sunday until 0200) but at times, just to confuse us, it does work to a 24-hour schedule. The power is 1 KW .

Ecuador

Sistema de Emisora Atalaya, Guayaquil on a measured 4792 at 0448 , OM with a sports commentary, OM with announcements, station identification, the national anthem and sign-off at 0455 . Transmissions are irregular but, when on the air, the timings are from 0900 to 1330 and from 0100 to 0455 with a power of 5 KW .
It will not have escaped many readers' attention that most of these LA (Latin American) irregularly operated stations are on the air for local sporting events - and this usually means at weekends. Listen then during Saturday night and Sunday mornings GMT if you want to log them.

Radio Popular Independiente, Cuenca on 4800 at 0457, OM with promos and full station identification, then YL with a local pop song. The schedule is from 1000 to 0530 but does sometimes operate around-the-clock. The power is 5 KW .
Radio Quito, Quito on 4920 at 0339, OM with a ballad in Spanish and some local-style music. R Quito is scheduled from 1000 to 0500 (Sunday
until 0400) and the power is 5 KW .

Honduras

La Voz Evangelica, Tegucigalpa on 4820 at 0332 , OM with a talk in Spanish with a mention of gasolina (petrol) and Biblia (Bible). This one is scheduled in Spanish from 1030 to 0600 except on Monday, when it has an English transmission from 0300 to 0500. The power is 5 KW .

Herax ASIA

Afghanistan

Kabul on 9665 at 1859, YL with station identification 'This is Radio Afghanistan calling Europe' then OM with the news in the English programme for Europe, timed from 1900 to 1930. This is, however, a USSR relay.

China

Yunnan PBS (People's Broadcasting Station), Kunming on 4760 at 2230 , OM with a talk in Chinese. This is Yunnan 1 which is scheduled in Chinese from 2150 to 0100, 0250 to 0600 and from 0920 to 1600.

Xinjiang PBS, Urumqi on 5440 at 2045 , Chinese orchestral music during a relay of the R Beijing Foreign Service in Russian, timed from 1800 to 2055. Xinjiang PBS is also scheduled from 0050 to 0230, 0530 to 0700 and from 1200 to 1720 with the Home Service in Kazakh, also including relays of the R Beijing Home Service.

Radio Beijing on 9860 at 1907, OM with the news and YL with a news commentary from the Chinese point of view in the English programme for Europe, timed from 1900 to 2000.

India

AIR Delhi on 11620 at 1945, YL with the station identification then the news in English in the General Overseas Service which may be heard on this channel from 1745 to 2230.

Iran

Teheran on 4990 at 2003, YL with station identification and announcements in English, trumpet fanfare. I ran the tape through several times to get this right, Teheran is new on this frequency and there is much co-channel QRM from Yerevan and Lagos at this time. Also confirmed that it was Teheran by switching
alternately from 4990 to 9020 on the memory bank to ensure parallel operation.

Iraq

Baghdad on 13700 at 1948, OM with songs in Arabic, some local-style music in a Voice of the Masses transmission, all in Arabic from 1500 to 2200 on this frequency.

Saudi Arabia

Riyadh on 9870 at $1922, O M$ with a talk in Arabic then some music in the usual style. This is the Domestic Service which is scheduled at this point on the dial from 1700 to 2300.

Riyadh on 11820 at 2044, OM with a talk about Medina in a programme of the Arabic languaged Domestic Service, 1700 to 2130 on this channel.

Sri Lanka

SLBC Colombo on 4902 at 0015, monks with religious chants at the period of a fuli moon.

This is the Home Service 1 in Sinhala, the schedule normally being from 0000 to 0230 and from 0930 to 1745 . On full moon this is extended from 1745 to 2400 . The power is 10 KW .

Turkey

Ankara on 11955 at 1434, local-style music, OM with songs in a relay of the Domestic Service TRT1 which can be logged on this frequency from 1000 to 1500.

EURORE

Albania

Tirana on 5057 at 1745, OM and YL with a talk in the Home Service which is scheduled here from 0400 to 1930. Tirana may also be heard in parallel on 5020.

Austria

Vienna on 12015 at 1500, OM with station identification, YL with announcements, OM with the local news. All in the English transmission to Europe, North Africa and South East Asia being timed from 1500 to 1530. Also logged in parallel on 11825.

Italy

Rome on 11905 at 1430, interval signal then $Y \mathrm{~L}$ with station identification at the commencement of the French programme for Europe, scheduled from 1400 to 1455 .

Romania

Radio Bucharest on 11940 at 0548, OM with station identification, OM and YL answering listeners letters during the English presentation to Africa, timed from 0530 to 0600 on this channel and also heard in parallel on 11840.

Yugoslavia

Belgrade on 11735 at 0956, OM with station identification and announcements at the end of a relay of Radio Zagreb with a Serbo-Croat programme timed from 0900 to 1000. (Sunday only). Relays of local stations are made from 0600 to 1000 in several local languages but the sequence is subject to alteration.
Belgrade on 15240 at 1440, YL with a talk about tourism in Yugoslavia during an English programme for Europe, the Middle East, the Far East, South and South East Asia, listed from 1430 to 1500.

PACIFIC \& SE ASIA

Australia

Melbourne on 11910 at 0621, OM with a talk about AustraIian politics in an English transmission to Africa, the Pacific and Papua/New Guinea. The schedule for the Pacific area is around-theclock, for Africa from 0500 to 0630 and for Papua/New Guinea from 2300 to 0730.

Northern Mariana Islands

KYOI Saipan on 11900 at 1433, US made rock and roll recordings, YL with announcements in Japanese. These programmes are beamed to Japan on various channels, that listed here is used from 1000 to 1600 . KYOI is a commercial station, it does QSL and the QTH is Marcom, PO Box 795, Saipan, CM 96950.
The Northern Mariana Islands are part of the United States Commonwealth.

CLANDESTINE

Voice of the Free Sons of the Yemeni South' on 11180 at 1348, OM with a harangue in Arabic. This clandestine is hostile to the People's Democratic Republic government in Aden and operates daily from 1300 to 1500 entirely in Arabic.

In the next issue, I shall be bringing to readers' attention some of the Clandestine stations currently operating.

BACK ISSUE SERVICE

All issues from October 1981 onwards are still available, with the exceptions of January 1982 and February 1982. All orders must be pre-paid, the cost of each issue being $£ 1.00$ inclusive of postage and packing. A contents index spanning the issues from October 1981 to September 1983 is available on receipt of a stamped addressed envelope. To ensure that you don't miss any future issues, we suggest that you place a regular order with your newsagent or complete the subscription order form found in this issue.

Jamuary 199

Designs - Communication Building
Blocks (Active Antennae): FAX Receiver; RGB Interface for the Ferguson TX-90; A Couple of Voltage Cymar Q -meter (An aid to winding coils): Zener Diode Checker; A Drinker's Delight; LCD Display Option for the Rewbichron II. Features - A Novel Receiver (Sony): and Filtering; Data File on Op-Amps Part 2; Farewell to Test Card 'F'; A Soundboard for the Jupiter Ace; Data Brief - MC1377 Colour Signal

MAY 1984

Projects -One Week's Work (VHF) Analyser Update; Assembling a Logi Probe Signal Generator; 2 Metr SX-200 Relative S Meter
Leacked - Data File - 40468 Phase HM203-4 Oscilloscope IC: Hamey Beginners Guide to Meteor Scatte Propagation; High \& Low Measurements - A Guide t Ranges

FEBRUARY 1904
Designs - Switched Mode Powe Supplies; Crowbar Protection Circuit; Switched Step Attenuator Universal NiCad Charger Communications Building Blocks (IF Amplifiers); Real Time Calenda
Clock. Features - Data File on Op Amps; Six Antennas from Three Wires (Double your directions without doubling your cost) Designers Update (Helical Filters) Phonovision:; from Wax Communications and Applications: Data Brief - Low cost, wide range varicap diodes.

JUNE 1984
Projects
Controlled Dot Microprocessor Nights Work - Replacement Plug-in Module for 2532 EPROM; A low-cos Frequency Standard; Radio requency Bridge; Moditying the RGB Interface for the Ferguson TX90 transmission; Trio-Kenwood TS-430S Transceiver; ZX Spectrum Data ransmission Program; Data File National Semiconductors LM Range frief - MC 1648 (SL 1648) Voltage Controlled Oscillator: HP41CX Calculator Review

MRCH 1984

Designs - Modifying the Pye PF1 cations Building Blocks (IF amplifiers); One Night's Work Audio-Amp), 200W PEP Transmatch. eatures - Sony ICF 7600D Receiver; AKD Absorption Wavemeter, Data rief - Hitachi HA 1197 AM Tuner: Oscar 10 and its Orbit Parameters, Programmable Sound Generator (the AY8910 family); Random Morse Clock.

JULY 198

Prolects - VLF converter, a unit for the very low frequency; Teleprinter Test Instrument, a versatile piece of test equipment; Building the Fortop T-437; Improving Indoor Aerials, getting better reception without an CMOS and TTL's. Features; Amplicon Digital Panel Printer; Oscar 10; Yaesu FC102 Review; Data File - audio power new publication review, the World, a

APRIL 1984
Designs - One Night's Work IIF Piano Keyer - only $£ 5$ for Perfect Morse; Peak-Reading LED RF Wattmeter; Speech and the Computer - Make the Beeb Micro Talk!; 2 Metre Tiger Antenna. Features - Hall Effect Effect on Conductors; Data File CMOS Bilateral Switches and Multiplexer/Demultiplexer ICs; Data Brief-TD 2002A Linear IC

AUCUST 1984

Projects - High Quality Directiona Coupler, a coupler for frequencies amplifier, a 100 watt valve linear amplifier; 40 ft Tilt-over and extending mast. a home construction project; One night's work, adapting a portable typewriter; BBC Micro volume control
TV and Video interface. Features Twenty Questions; Sporadic-E propagation; Data File - Audio amplifiers; BBC Micro Morse tutor: Improving Resistors;
Communication; Communication; Computing

RADIO \& ELECTRONICS WORLD

TO: Back Issues Department - Radio \&
Electronics World • Sovereign House •
Brentwood • Essex • CM14 4SE

NAME

ADDRESS

POST CODE

BACK ISSUE ORDER FORM

PLEASE SUPPLY: (state month and year of issue/s required) [NOTE: January \& February 1982 issues not available]
.. at $£ 1.00$ each PAYMENT ENCLOSED: \square
Cheques should be made payable to Radio Electronice World. Overseas payment by International Money Order or credit card CREDIT CARD PAYMENT: $\square \square \square$
SIGNATURE

FREE CLASSIFIED ADS

FREE CLASSIFIED ADS CAN WORK FOR YOU
We are pleased to be able to offer readers the opportunity to sell your unwanted equipment or advertise your 'wants'.

Simply complete the order form at the end of these ads, feel free to use an extra sheet of paper if there is not enough space on the order form. We will accept ads not on our order form.

Send to: Radio \& Electronics World, Sovereign House, Brentwood, Essex CM14 4SE.

DEADLINE AND CONDTHONS

Advertisements will be inserted in the first available issue on a first come first served basis. We reserve the right to edit and exclude any ad. Trade advertisements are not accepted.

FOR SALE

- Morse TX/RX program for 48 K Spectrum. This program tracks 5-35 wpm on receive, and includes a Type Ahead buffer on TX. Easy connection via ear \& mic sockets-no extra hardware needed Cassette $£ 7.50$. For 16 K Spectrum and 1 K ZX 81 : as above, bur RX only, £5.20. Spectrum versions include a comprehensive Morse tutor. P Anderson, Wellands, Pilton, Shepton Mallet, Somerset. - $31 / 2 d i g i t$ LCD plus 7106 or 7126 (A to D LCD driver) plus data sheet $£ 10$ ono. Will post. Pat, 2 Ridley Road, London, NW10 5VA. Tel: 019616658. - 19in rack, Vero KM6 frame plus 1 in front panel, card mounting brackets, card rails. New, stitl in original packing. Total cost over £26. Buyer to collect for $£ 24$ or will post for $£ 26$ ono. Pat, 2 Ridley Road, London NW10. Tel: 019616658.
- TR2200G 2 m FM TX/RX, fully xtalled, five simplex, seven repeater channels, Nicads, charger, power lead, case, carrying strap, mobile mount, instruction manual, five other xtals, good condition. £50. Yaesu FRG7000, digital, general coverage communicatons receiver, excellent condition, instruction manual, original packaging, £155. Microwave modules, $2 \mathrm{~m}, 144 / 28 \mathrm{MHz}$ converter, instruction sheets, good condition, £10. Tel: 0562886272.

■ Creed 75, £50, $14 / 50$ spares $£ 15.24 \mathrm{dc} / 240 \mathrm{ac}$ motor generator $£ 50.24 \mathrm{Vdc}, 3 \mathrm{hp}$ motor $£ 25.3 \mathrm{ph} / \mathrm{ihp}$ motor $£ 15$. Heavy duty mast, wall brackets $£ 7.13 \mathrm{~m}$ RG8/U $£ 6$. Various junk, shack clearance, offers? Chris. Tel: 0734734289.

- Grundig Stenorette dictaphone with accessories. Works as is, or could be converted computer use? Uses standard tape on $31 / 4 \mathrm{in}$ spools. Microphone has remote on/off and back-space. Foot control for transcribing, with earphones. £50 ono. Tasker. Tel: 0476860421
- Densei CBE 2003 voile activated microphone control unit and boom microphone. Also Altai headset/boom microphone combination OH20BM, £30 ovno or separate. Tel: 019924678 before 3.30pm or anytime Sunday. Ask for Jon.
- Datong FL2 variable audio filter. Perfect working order and condition $£ 60$ plus postage High current psu 24 amp at $13.8 \mathrm{~V} £ 35$ collected. New Farnell switch mode psu 60 amp at 5 V three off at £20 each plus postage. Together would make superb 60A 13.8 V psu also Gould switch mode psu as new 10 A at 12.5 V very small $£ 40$ plus postage. G4GXE QTHr, Tel: Buxton 029871410 .
- CB equipment two York JCB861 rigs with mounts. Two aerial matchers Audiocine SWR meter. Amstrad antenna wih magnetic mount. Revco antenna no mount. $£ 60.00$ or swap for 2 M handheld. Also Akai M8 reel to reel tape recorder takes 7inch reels working but needs a service £45.00 buyer collects. Tel: 036266993 evenings \& weekends.
- Shinwa CP80 dot matrix printer centronics interface swap for Yaesu FT 290R. Tel: Crowborough 63910.
- Creed 7B/RP with 6S6 tape reader and silencer cover both items complete with creed workshop manual and servicing notes. Also details for using printer with home micro from Computing Today. Offers please. Creed 444 almost new with silencer cover and full creed manual. £50. Could deliver within Midlands but buyer inspect first. Tel after 6pm 0543472054.
- FDK 750E 2M multimode transceiver VGC. Very sensitive used for satellites $£ 220$ ovno. Also AR88D in good working order £45. Tel: Mansfield 513573. - Audio signal generator valve version $£ 8.11$ metre mobile aerial 7 foot firestick with bootmount $£ 7.50$. Large quantity of RTLlogic 900 series. Offers please. 'Television' magazines 1976-82 bound volumes $£ 5$ each. Newnes Radio and television servicing 1956-77 offers. Rolf G1DCD QTHr Tel: 0734883418 after 8pm.
- Grundig satellit 3400 professional 150 KHz to 30 ' MHz. FM VHF SSB digital all bands. LCD clock. 10 months old, as brand new, little used. Superb audio, £225 ono (cost £360). HK706 morse keyer (brand new) and osciliator thrown in! Lane. 19 Smugglers Way, Birchington, Kent.
EX81 \& 16K + professional keyboard, software, books, ICL cassette course with 2 manuals (How to Program the ZX81), all leads, psu £59. Tel: 0253 45431.

Yaesu FT902DM transceiver in immaculate condition. $£ 475$. Pan three element mini beam £25. Tel: Northampton (0604) 408155.

- Telequipment S32A scope (10 MHz) in nice condition, just been realigned $£ 45$. Handbook and circuit available. Philips N1502 video recorder some tapes available in working order ideal ATV reasonable offer Tel: Leeds (0532) 866897.
- 2 m Belcom LS-20XE packet transceivers with rechargeable batteries. Never used. Mains charger 2 units at $£ 95.00$ each will split. Tel: 0615737882 (Mr Jones).
- ICL termiprinter type 7075. Excellent working conditon c/w keyboard (detatchable) and box of paper. RS232 interface, 120 column paper, upper and lower case (letter quality typeface), adjustable band rates and quiet operation can be seen working $£ 75$ ono. Buyer collects. Also EX MOD geiger counter with 3 tubes and battery or mains supplies vgc $£ 40$ plus postage. Tel: Mark Templeman Bath (0225) 23276, after 6pm weekdays or anytime at weekends.
- Codar Q mutliplier $£ 10.00$. 2 power packs 300 V dc $6.3 \mathrm{ac} £ 3.50$ each. Many mains transformers 6.3 V to 2 KV 500 mA various turb. Fans Weller expert solder gun as new $£ 10.00 .2$ Cossor double beam CRTs $£ 2.50$ each. Lots of valves acorns to 6146s transistors, crystals BY127s. What do you want. Offers considered G3AFC QTHr Dartford 04747 2691.
- 64 K Vic 20 plus over $£ 200$ software plus books etc imac 3 mth old $£ 199$ ono. National Panasonic RE3100 32 band com receiver plus jil SX200 scanner plus two CBs suit conversion plus ten xtals for 2 mtr offers please. Few job lots components pots, res's, trans', leds, chips, relays, diodes and many other items £15. J Moores, 99 Armadale Road, Dukinfield, Cheshire SK16 5AG. - Bearcat scanner-model 200FB. Complete with power supply and manual. Still under g'tee, cost £184-absolute bargain at $£ 110$! Buyer inspects and collects. Tel: 019072253.
- Icom IC240 2 m TX/RX complete with mobile mount, mic, two power leads and manual $£ 100$. Tel: G4ANW 073061859.
- Barco 26 inch colour receiver monitor. All channels and systems. Pal Secam NTSC. Covers VHF to UHF. Ideal DX/TV video and audio in and out. VCR or computer. Studio definition. $£ 250$ ovno. Tel: 014529436 evenings.
- HF station collins KWM2 + KW600 linear $£ 575.00$ swop for FT225RD cash adj. Hammurland SP600 RX 54 to $54 \mathrm{MHz} £ 85.00$. Set' new valves for SP600 £28.00. Liner2 $£ 50.00$. ETM3 keyer $£ 10.00$. Shure 202 ceramic mic new $£ 10.00$. Collectors items Cossor ganging oscillator Roberts valve and set analyser offers Pr. boxed spkrs $£ 15.00$ all carriage extra. G Morrison, Penang Lodge, Hassell St, Hastingleigh, Ashford, Kent TN25 5JE. Tel: 023375316.
- Leak point one mono valve amp complete working order offers. Tel: (0206) 68706.
- Yaesu FT707 2325 IC4E with soft case only 8 months old $£ 165$. 2 BPI's $£ 10$ each. Contact Keith Tel: 0226296108
- Yaesu FT101E MkIII fan cw filter, unmarked conditon original packing manual etc sale or exch for 70 cms 2 mtr multi mode with psu 70 cms linear or why. Tel: Nottingham 874235.
- Hundreds of valves. American UX and octals. British 5 pin, 7 pin, prewar, post war types. IE 6F6
metal $£ 1.20$ each. All valves unused. Lists sent. Pse sae. A E Jeffrey, 42 Dennis Road, Padstow, Cornwall.
- Hitachi CCTV camera HV-62K c/w tamron lens $16 / 1.6$ very good condition £60. Tel: Alan Basildon (0268) 45573 after 6 pm .
- Yaesu FRG7 receiver plus 2 m convertor as new £150. Eddystone 770 MII good condition requires slight attention £40. Pye 40W Hifi amp new boxed £40. Wireless World Mags new condition 19781982 £2. Tel: 0513276588 .
- FT208R 2 metre handheld with case/charger as new 6 months old $£ 140$ ono ($£ 199$ new) or would exchange for 70 cm handheld IC4E or FT708R consider part exchange for FT790R 70 cm multimode. Also for sale FM board (FMUT77) for Yaesu FT77 HF transceiver new not used £23. Post paid. Roger G4IPE (not QTHr) Tel: Louth (0507) 601030 night (0507 82) 8002 day.
- Fully protected 30A psu £40. DSB top band receiver: with transmitter section nearly comp will make up into a neat TX/RX unit $£ 17$. Iambic keyer £10. Black/white portable TV battery only 12 in screen, works but needs attention £5. Transformers ideal for 30A psu£15. Pye Cambridge £10. Pye Vanguard £10. Hudson TX/RX £8. Creed type 656 paper reader £4. Tel: 0664500228.
- Sommerkamp FT250 and FP250 power supply $80 \mathrm{~m}-10 \mathrm{~m} 200$ watts pep $£ 200$. (same as Yaesu FT200). Ferrograph 4AN reel to reel tape recorder 71/2in ips £40. Tel: 0329287969.
- Masts! Looking for a cheap mast or tower? I have a few hollow glass fibre poles, 8.5 m long, tapered from 12in to 9 in . Head loading in excess of $1 / 4$ ton. Tel: David Pickett 042086512 (day) 04203 4140 (evening).
- VLF Marconi 'Mercury', 5 band receiver, 15 KHz to 4.0 MHz , complete but not working. Also ex-WD infra-red binoculars with power pack, some spares and instructions £45. M Brown, 15 Hamilton Row, Waterhouses, Co Durham, DH7 9AU. Tel: Durham 0385731585.
- KW2000B transr, no mods, AC power unit. In regular use last 8 years. Well known on the air. Good condition and appearance. Spot on results. Call for demo in Halifax $£ 195$ ono. G8CB in callbook. Tel: 042243104
- Trio 3200, eleven channels crystalled, three simplex, eight repeater. Case, Nicads, charger, H/book. W \& D front end, very sensitive, £115. G3DSV. Tèl: Tedburn St Mary 472 (day) 753 after 6 pm .
- Yaesu FTV901R, 3-band transverter, 2,4 \& 70, will work with any HF rig. FL2100Z linear. FC902 ATU SP901P phone patch speaker. FT1290R, all accessories, hand held rigs. TR3500 70 cm Azden. PCS300, 2 m , both with speakr mikes etc. MM43230LS. Diawa, $2 \mathrm{~m}, 3 / 30 \mathrm{Watts}$ RTTY \& CW transceiver from Dragon 32 \& PNP interface. Tel: Derby 383442 (G4TKP QTHr).
- 16K ZX81 with keyboard and computing course §59. Multiband Amstrad radio LW, MW, SW, VHF, airband, marine. Excellent reception on airband eg London ATC and aircraft over Bristol Channel from Blackpool, all using indoor telescopic. Will throw in air frequency book £22. 16 draw components box with different value resistors, capacitors (ceramic and electrolytic) IC's, bulbs, jack plugs and sockets, switches, transistors, TV valves etc. About $1 / 2 u s e d$, will include SWR bridge. Accept £9. Tel: 025345431.
- Resistors Dubilier $1 / 4 \mathrm{~W}$ carbon 5-10\%, approximately 35 boxes of 1,500 each type, total 50,000 . $£ 25$ the lot. Buyer collects London. Tel: 01-286 7799 (daytime)
- Trio R1000, very good condition, hardly used. Complete general coverage. $£ 270$. Eddystone 870 A small Rx. Gen cov. £50. Mr A R Roxbee, 25 Toms Croft, Turners Hill, Hemel Hempstead, Herts HP2 4LL. Tel: 044266968

FOR SALE

- Clearout - from box of bits for 2 m Lin Aug issue to very QRO ADMR chokes. Tel: 072922406 - Ever-Ready 'Flag' large, round batteries, 6 for $£ 5$ $11 / 2 \mathrm{~V}$ Collectors' . items: early GEC (Salford Instruments) xtal calibrator, osc dial, £9. Early 'EKCO' 12 V valve car radio model CR227/4, plus external vibrator power unit. $£ 9$. Outdoor speaker bolt fixing or for motor-cycle 4-80hm, 5 in diameter, strong. £4. Postage extra. Tel: Alan 01-445 4321. - Standard C58 2m multi-mode portable. $£ 165$ with nicads and charger. Microwave modules transverter 2 meters input 28-30 MHz output. £45. Thandar 600 MHz divide by ten prescaler. $£ 30$. Microwave modules advanced Morse trainer MMS2. $£ 100$. Sun KG309 SE2 $5 / 8$ wave mobile ant. offers? Microwave MM4001 KB RTTY Transceiver. £200, with keyboard. Fincher, 27 Albert Street, Tring, Herts HP23 6AX. Tel: Tring 6752
- FT227RA, almost mint, 2M FM 10 W transceiver, 25 KHz channel scanner controlled by push buttons on microphone, 600 KHz repeater shift + reverse repeater, can be changed to 1.6 MHz for UHF repeater working. 4 memories for your favourite channels, including optional repeater channel, tone burst switchable auto-off-on. Hi-low (1W) power switch. Complete with mobile mount and handbook. Original packing, power lead with cigar lighter adaptor. $£ 120$ ovno. Prefer buyer collects. G4CRW. Tel: 075342301 (Slough)
- Shack clear-out. Marconi Atalanta communication receiver, coverage 15 KHz . 28 MHz , clean condition, fault needs working on, hence price with circuit information. $£ 30$. Buyer must collect. Homebrew 2A 13.0 V regulated power supply. $£ 3$. New valves W81, X81, N78, 6L6, new Denco coils range 1 blue, range 1 green. Prices arranged. Tel: 090366329
- Yaesu FT230R, as new condition. Auto tone burst, extended receiver IE 144 to 149 MHz . Boxed with brackets and manual. £190. Warren (G6XJS) QTHR. Tel: West Drayton 448832
- 10 GHz Klystrons, 75 mW . £8. 25 mW . £4. Reed
contact push buttons, 12 for $£ 9$. QQVO640 tested. £8. QQVO310. £3. Mains reversible motor, suit small beam. £4. Lamp and 2 matched photocells assembly. $£ 2$. High resistance phones Browns ' A ' £15. Army PTT microphone. £2. Wanted 603 KHz crystal. Mann. Tel: Cambridge (0223) 860150 - Microphones. Lapel mic. £1. Cassette mic with off/on switch. £1. Miniature mic. £1. Still trying to clear out shack to make way for lathe, so still tons of electronic gear to go. Mixed bags $100+$ items $£ 2.50$. New, large number of ICs and valves. Send sae for list. Large number of well-made three-tone buzzers, new, run on 9 V to 12 V on PCB 3in $\times 13 / 4 \mathrm{in}$. Cost $£ 6$ each, sell 3 for $£ 6$. D Martin, 29 , St John's Close, Leatherhead, Surrey
- Collectors' Hi-Fi items. Chapman tuner mono FM AM \& SW with six inputs pre-amp. Mullard stereo 5-10 amplifier Partridge o/p transformers. Brenell 8 in reel to reel tape deck (3 motors). Truvox 7 in reel to reel tape deck (3 motors), with tape pre-amps for both decks. Acoustical Quad mono FM tuner. Two 5-10 Mullard amps. Power packs. Many early Mullard construction pamphlets. Two construction books for 5-10 amps. Many spare valves for above. Almost any offer accepted. D Stewart. Tel: St Keverne 280269 - Sony 5090 portable radio AIR FM LW MW SW BFO squelch, built-in PSU or batts, nice tone. Bargain $£ 60$. Yaesu FRDX400 160-10metres CB and $2 m e t r e s$ all filters fitted FM etc. $£ 90$ ono. Sharp V22000 portable music centre, 12 volt or mains. Too many facilities to list. $£ 200$. Cost $£ 310$. Contact: Peter, 53 Maple Road, Penge SE20.
- Robot 400 SSTV converter with two extra W9NTP memories for either colour RGB or black and white SSTV pictures. Sensible moderate offers invited to: Thurlow G3WW. Tel: 0354740255 - Telequipment oscilloscope D52 twin beam. £99. Mullard valve data book. £5. Aircraft radio Tx/Rx type $9 \times 2 / 50$ Xtal control $108-140 \mathrm{MHz}$ Tx valves 44A/160M output QVO4-7 driver E491, CV136, CV138. Rx CV131, CV138, CV140, CV4015, CV136, CV133 12 switched freqs, some Xtals made
by STC. Also STC SR14 instrument landing receivers localiser glidepath markers. Localiser freq $108 / 118 \mathrm{MHz}$ marker fixed 75 MHz SR15B glidepath Rx freq $329.6-335 \mathrm{MHz}$ Xtaled. Well made, silver-plated chassis manual for SR14/15 control boxes complete less aircraft harness, must have cost $£ 1,000$ s. Price $£ 250$. Also army Tx/Rx type BC625A Tx BC624C Rx. Valves Tx 6 SS7, 12 A6's 6 G66 VT198A CV788 driver and output. Valves Rx 12 A6, 12 AH7 GTs 12 S97s 12 C 8 , some Xtals, outer case shabby, internal good. $£ 75$. Wilson, Aken House, Prudhoe. Tel: Prudhoe (0661) 32087
- Microwave modules MMC $435 / 60070 \mathrm{~cm}$ ATV converter, UHF output, brand new. £25. Marconiphone b/w TV set with Thorn 950 series chassis, needs attention, spares or repair. £5. York JCB861 mobile FM CB complete with aerial, SWR meter and books about CB. $£ 30$. Buyer collects or pay carriage. Tim Boorman GW1FBL. Tel: Swansea 0792201565 (evenings)
- Wolec legal radio mic, pocket transmitter, mains receiver 174.8 MHz . £125. NRD NDH-515 24 channel memory unit with manual, almost new. £125. Racal diversity unit MA168B with manual. £45. Nombrex type 31 signal generator. 160 KHz to 340 MHz . £15. ISKRA unimer 3 mutti-meter. £9. Decade attenuator AT2010dB-111dB 600Ω audio. £12. Sparkrite SX2000 electronic ignition unit, almost new. £20. All plus carriage. Tel: 0704840328 - HRO Senior and M, few available. Hallicrafters S27, S20R, Sky Buddy. Wartime 1132 valve VHF receiver. Heathkit DX100U amateur band transmitter, mod for SSB - not a portable! A510 transmitter, receiver CW and phone, complete with key, handset, whip, ATU as used in Burma. A510 Rx only, mod for 240 V WS19 no case. Various other bits, accessories, valves, 1930s cabinet radios etc. Sae for list or valves wanted. John Baker, 13 Burrard Road, London NW6 1AB. Tel: 01-794 0823
- Triax RB20 omni directional $45-860 \mathrm{MHz}$ active aerial internal amplifier (22 dB gain) with 240 V ac PSU unused. $£ 80$. Mr G Hall, 8 The Glen, Oakland Road, Newton Abbot, Devon TQ12 4EB

FREE CLASSIFIED AD FORM

Send to: Radio \& Electronics World Classified Ads•Sovereign House • Brentwood • Essex • CM14 4SE

 Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent adsFor Sale .. \square Wanted..
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

			\square	\|	-	-	

USE SEPARATE SHEET FOR MORE WORDS

Ensure that you have included your name and address, and/or telephone number

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

FREF CLASSIIIED ADS

FOR SALE

Barlow Wadley receiver 500 KHz to $30 \mathrm{MHz} £ 60$ plus postage. P R Shepherd, Tel: 014672023 - Walkie-Talkies. Pair, fit pocket, low power 49 MHz . Ideal for antenna tests, etc, £12. Mains transformer output $3.5-40-0-40-3.5 \mathrm{~V} \quad 10 \mathrm{~A}, ~ £ 5$. Another, output 14.5 V twice 14 g wire, C.T 18 g , offers. Gardners $450-400-0-400-450.180 \mathrm{M} / \mathrm{A} .0-4-5 \mathrm{~V}$ $3 A, 0-4-6.3 V 3 A$ twice $2-0-2 V 2 A$ twice, $£ 8$. Following manuals, books, Aiwa AR158, 159. NC-121 National, Advance B4, type 78, £2 plus. Alan, Tel: 01-445 4321 (Nth London)

- Cobra 148 GTL DX excellent condition HI MID LO LOLO channels plus all legal FM. Switchable Roger bleep and K-tone can be combined. Variable power 0-15W. Also brand new Bremi BRL 210 200W mains linear amplifier in box. will sell £ 160 or preferably swop for 934 MHz radio. Will not separate. Buyer collect if possible. Tel: Tony, 2312899 after 5pm
- Joystick antenna £12. R Marris, Tel: Slough 75780
- Yaesu FRG-7 Rx complete with Amtech 200 ATU and 2 m converter. All in excellent cond. Also Codar AT5 Tx 80/160m with power supply. Sell for £150 or swop for 2 metre transceiver. Tel: Jeff G6ZGU, Days 01-439-6512 or eves 01-803 5235. Not QTHr
- AOR AR2001 scanning receiver. Brand new. Boxed with power supply unit $£ 299.00$. Also Sony TC399 reel to reel three speed tape recorder in excellent condition £130.00. Mr T Manning, 24 Croftdown Road, London NW5. Tel: 4854251 - HAC Dx Mk3 with condenser, phones, battery elimator. Not used or assembled. $£ 40$ ono. Must collect, Realistic Dx 200 receiver (re-aligned). £60 ono. Collect. Edward Bartlett, 20 Broadlands Avenue, Enfield, Middx EN3 5AH

WANIID

- First two volumes (to August 1983) of Radio and Electronics World. R H Alderson, Old School House, Tattersett, King's Lynn, Norfolk. Tel: East Rudham (048-522) 385
- Service sheets or manual for GEC communications receiver, will copy or buy. Cat No BRT 402K. M Brown, 15 Hamilton Row, Waterhousies, Co Durham. DH7 9AU. Tel: Durham 0385731585
- Trio-Kenwood TS599D transmitter and matching 5599 speaker for companion receiver. State price and condition. Will collect at own cost almost anywhere! Write with details. Richard, 50 Roper Lane, Queensbury, Bradford BD132DQ.
- R1155 receiver with power supply unit, must be working and in good condition. Write or telephone price and particulars to Borthwick, Torwood, Lilliesleaf, Melrose, Rox. Tel: 08357314
- Gemscan 70 or Pro 200250 channel scanner or similar AM + FM all bands. Also 70 cm Rx TV convertor G8RHU. Tel: 0273-516801 (Newhaven)
- Atom wants: 8271 floppy disc controller chip, 40 column VDU, Atom books; any other information, write Steve Allen, 54 Warwick Ave. Whitleigh Plymouth PL5 4BE or phone 0752776082
- 13.8 V regulated 4 A psu to run a FT-290R. Tel: 025345431
- Data on SL1600 scanner RX. Also data, plug-ins, spares for Telonic sweeper SM2000. Simple morse key, not services plastic. Tel: Ralph C Taylor, 0766 770637 during evening
- Bi-pak S450 FM stereo push button tuner. Tel: Aldridge 51591
- Breadboard, any type, but must be cheap. Send details (type, number of contacts, layout, if possible) and price. I will write back if I am interested. Andrew Richards, 14 Birtrick Drive, Meopham, Kent DA13 OLR
- Can anyone supply me with information on sending modulated signals along 240 V 'live' mains for control purposes. Any book references application notes etc greatly appreciated. M L Dickie, 4 Shaw Place, Salrcoats, Ayrshire, Scotland - Wanted urgently a grid dip oscillator. Tel: Brixham 51664 after midday
- Cheap low band AM rig Cambridge, Motofone etc. Any condition considered. Tel: Roger G4IPE (not QTHr) 0507601030 night, 0507828002 day
- Young man, recently paralysed due to RTA, would like a $2 \mathrm{~m} T X / R X$, or even just $R X$, but must be cheap as pennies are precious at the moment! Also any unfinished kits that you've lost interest in. Garry Hickman, 77A Hollingsworth Road, Lowestoft, Suffolk NR32 4AT
- Very cheap TVs wanted B\&W or colour with the idea to renovate and give away at cost. I'm partially invalided and know what some people go through. l'd like sets with some life left even hybrids (not GEC) anything considered even radios stereos etc. These sets will go through recommended social depts so no misuse can be applied. I only need small amounts at any one time as transport \& storage could be a problem. All your kindness will not go unwelcomed \& with thanks. Trevor Rawson, Tel: Sheffield 338577
- An Icom-ICB 1050 CB transceiver. Will pay any price if it has 3 crystals and antegrated circuit Motorola chip with the number MC145106 on it. Ian Macadams. 9 Walpole Road, Boscombe, Bournemouth BH1 4HA
- Eimac or similar valve socket with built in grid by-pass capacitor for 4CX250B vaive. Would buy or have number of good radio etc exchanges. Mr JP Hupfield, 47 Leeward Road, West Worthing, Sussex. Tel: Worthing 66329
- Radio Constructor 1947-1969. Practical Wireiess 1930s. 1960 blueprint tutor citizen shortwave two. Good price paid. John Savage, 7 Weyhill Close Pk, North Swindon, Wilts
- VLF converter: broadband VHF preamp. Old Marconi Marine 'Atalanta' Receiver 2207C. Any condition. Any old marine receivers considered. H G Woodhouse, 'Trenoweth', Porthrean, St Austell, Cornwall PL26 6AU. Tel: (0726) 3608
- Info wanted on old valved oscillosicope made by Sontranic Ltd Edgware Model 2300. Also has name plate Crosfield London. Ron Wood, 130 East Lane, West Horsley, Surrey Tel: East Horsley 2185 - Wanted: Heathkit RA-1 receivers. R Marris, 35, 35 Kingswood House, Farnham House, Slough - HQ1 mini beam in working order. Will collect (QTHR as G8UQN). Tel: John, G4XJS, St Albans (0727) 62052

■ IC740 workshop manual (not instruction manual), info, mods etc; either very careful short loan at your terms, or buy. Also require info R1937. Tel: 072922406

- Oscilloscope tube, new or s/h for Telequipment scope type D83. Complete main frame considered. G Jackson, 17 Newn ham Close Hartford. Huntingdon, Cambs. Tel: 048050865
- Six green, rotary control knobs (dual ganged type) for Ferrograph 632 open reel stereo tape deck (owner restoring to original spec) so new parts only please. Mullard (boxed) valves $4 \times$ ECL86, $3 \times$ ECC807, blue PU adaptor for 'Rogers' Cadet III, HG88 amplifier. Mr J Townsend 89 High Street, Barry, South Wales CF6 8DY
- Racal RA 17L, must be in good condition. Price and particulars to: Wegg, 23 Kerdane, Orchard Park Estate, Hull HV6 9EB. Tel: 855052
- Early valves for collection, restoration Clandestine 'Spy-Set' receivers, transmitters. B-2 'Major' 'Minor', BP5, AP4 etc. MCRI and similar receivers. Early National SW receivers and 1930s, or earlier, amateur radio equipment, magazines, trade catalogues, valve data manuals etc. Rider's manuals 1, 2 and 3 or similar. Interesting, compact, unusual military communications sets and WWI military sets, units. John Baker. Tel: 01-794 0823 - Please help, urgently needed. HT aud AVC cable form, Imcis connecting cable and RF output cable for connecting Racal RA137A to Racal RA117E. Also for RA117E | need black bakelite facial plate, and film scale (frequency read-out), and the following capacitors: C197 $100 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic, C196 0.5 F F paper 150V 20\% C217A $0.01 \mu \mathrm{~F} 750 \mathrm{~V}$ silver ceramic 20%. Robin Filby. Tel: 0262602278
Metal rectifiers, old type, 12 V 4-6amp. Allen, 82 Heworth Green, York YO3 7TQ
- Blue PU adaptor (for Rogers Cadet Mkill amplifier). Rogers Master II (stereo control unit,. pre-amp). Rogers Master amplifier (17×17) WPC (cw manual) Ferrograph 81/4in spoke type clip-on tape reels, in good condition. Valves (boxed) $4 \times$ ECL86, $3 \times$ ECC807. Rogers Cadet III (teak finish) speakers (pair wanted). Mr James Townsend, 89 High Street, Barry, South Wales CF6 8DY
- CB gear wanted, antennas, plugs, leads, SWR meters, power supplies, rigs. So if you want to clear it out, let me know. Write: D Martin, 29 St John's.Close, Leatherhead, Surrey.
- Help! Has anyone out there got a two metre rig I can buy, that's not too expensive? Or I would be prepared to exchange my photographic equipment, which is: Prinzflex SLR camera F1.755mm lens; metal vertical focal plane shutter; speeds 1 sec to $1 / 1000$ th sec; through lens metering; with case. Meyer 135 mm F2.8 telephoto lens. Miranda computer flash, plus various bits, realistic value about $£ 70+$. All good working order - WHY? Brian (G1ESG). Tel: 0274727734
- German WW2 equipment, technical manuals, parts etc. For collection. Will collect in UK. Also wanted WS 53 and WS 68 radar Al9 for Mosquito. Amplifier for WS12 - high power version. Radio S7N No 8 and No 1 needed by DEF museum. R Otterstad (LA5HE), Box 73, Ljan, Oslo 11, Norway.
(0) Hitachi Oscilloscopes

performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

V-212	20 MHz Dual Trace	$\mathrm{V}-209$	20 MHz Mini-Portable
V-222	20 MHz (illustrated)	$\mathrm{V}-509$	50 MHz Mini-Portable
V-203F	20 MHz Sweep Delay	V-1050F	100 MHz Quad Trace
V-353F	35 MHz Sweep Delay	V-134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC-6015	10 MHz Digital
V- 650 F	60 MHz Dual Timebase	VC- 6041	40 MHz Digital

Prices start at around $£ 300$ plus vat including 2 probes and 2 year warranty We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W, Midlands, B91 3TB

G W MORSE KEYS 4 Owen Close, Rhyl, Clwyd Wales LL18 2 L .	
THE GW MORSE KEY	
A	
Mounting the key on slate stops all movement of the key when in use $£ 3450 \mathrm{pp} £ 200$ ea	
24 HR LCD Clock	
Clear $1 / 2$ " high Icd readout repeat alarm clock. battery powered (2 AA pencells) No R/F problems known Complete with batteries §950 pp $\mathrm{E}_{0} 50 \mathrm{ea}$	
GWHP PRODUCTS	
The tull range of Gwhips always in stock for quick and prompt delivery or collection.	
**	
NEW	NEW BASE STATION ANTENMA FROM NEW
New	GWHP PRODUCTS NEW
NEW	avallable soon

For tull information and price list please send SAE	
Brass call plate	
Your callsign engraved on a brass plate for fixing to the GW morsekey or any of your radio equipment $\Sigma 100$ only	
CKing charge for orders ou	

CHANNEL ISLANDS

THOMSON ELECTRONICS
Basement Office, 5 David Place, St Helier, Jersey. 053475170 Open Mon - Fri 9am - 1 pm 2pm - 5pm. Call in and see us ${ }^{1}$ Also engraving on plastics for caipment repairs undertaken Alates etc.

Agents for Pye Telecom.

CHESHIRE

DW ELECTRONICS G3 XCF

Amateur Radio Supplies
71 Victoria Rd, Widnes Tel: 051-420 2559
Open Mon-Sat 9.30-6 (closed Thurs) Sun 9.30-12 We supply Yaesu, ICOM, Tonna, Jaybeam, Microwave Modules, Datongs etc

KENT


``` chalisis in xant
IT S AMATEUR RADIO from AMTRONICS 8 Tollgate Bulldings Hadlow Road. Tonbridge. Kent FDK, AZDEN, YAESU, JAYBEAM, FORTOP, DATONG, etc.
```


Thanet

Electronics
CDICOM
95 Mortimer St, Herne Bay Tel: 02273-69464
Open: Mon, Tues, Wed 9-
Thurs 9-1, Fri, Sat 9-5.30
All mail order \& service enquiries to head office, 143 Reculver Rd, Tel: 02273-63859

LONDON

NORFOLK

R.A.S.(NOTTINGHAM)

 3 FARNDON GREEN; WOLLATON PARK NOTTINGHAM: TEL: 0602280267 HALBAR: WELZ: ANTENNAS \& OWN GWS H.F

COUNTY GUIDES

FROM ONLY £13.16 PER MONTH Take advantage of this simple, economical and rewarding method of advertising by filling in the form below

THE VINTAGE WIRELESS COMPANY

1914-1960
Radios, amplifiers, service sheets, valves, vintage components, books new \& used, repairs \& restorations, mail order only. Tudor House
Cossham Street, Mangotsfield
Bristol BS17 3EN
0272-565472

\section*{目 (2) Ensure that radio \& electronics enthusiasts in your area know where to find you county $20 \mathrm{~mm} \times 59 \mathrm{~mm}=$ single County Guide $40 \mathrm{~mm} \times 59 \mathrm{~mm}=$ double County Guide 	Total	Ad space	$\mathbf{3}$ issues	$\mathbf{6}$ issues	12	issues
prepayment	single	$\mathbf{5 4 7 . 0 0}$	$\mathbf{8 8 8 . 0 0}$	$\mathbf{8 1 5 8 . 0 0}$		
rates	double	$\mathbf{8 9 4 . 0 0}$	$\mathbf{8 1 7 6 . 0 0}$	$\mathbf{8 3 1 6 . 0 0}$		}

RADIO \& ELECTRONICS WORLD COUNTY GUIDE ORDER FORM
TO: Radio \& Electronics World • Sovereign House • Brentwood
Essex • CM14 4SE • England (0 (0277) 219876
print your copy here
\qquad
\qquad

NUMBER OF INSERTIONS REQUIRED

PAYMENT ENCLOSED \& -

Cheques should be made payable to Radio \& Electronics World. Overseas payments by international Money Orde

Conditions -- Payment must be sent with order form. No copy changes allowed. Ads accepted subject to our standard conditions, avalilable on request

Registered No 2307662 (England)

HEATHERLITE MOBILE MICS

Made to help you drive safely
Reasonably priced to suit your rig, head/neck band, electret mic, control box, variable mic gain, scanning buttons, plug fitted - superb quality. Priced from $£ 20.50 \mathrm{inc}$.

Ring for Details - Heather G8SAV (0401) 50921

RADIO \& RTTY BOOKS
 CLAMDESTINE CONFIDENTLAL new book on shortwave clandestine stations.........................55 55 - 50 p p\&p WORLD PRESS SERVICES FREQENCIS New RTTY services listings services listings $55.55+50 \mathrm{p}$ p\&p oding aero. UN. coastal, etc. frequencies $57.85+50 \mathrm{p}$ p\&p 2+ books p\&p free
 INTERPRODUCT LTD,
 Stanley, Perth PH1 4QQ. Tel: 073882-575 REQ

RADIO CANADA

Peking, Australia, voice of America. A Vega 206 ($6 x$ SW/MW/LW). Pulls these and dozens more. £23.45. Year's guarantee. Return dispatch.

CORRIGAN RADIOWATCH,
Building 109, Prestwick Airport KA9 2RT

RTTY
 THE EXPANDING MODE

Build your own terminal unit to interface your micro to a receiver or transceiver.
PL1 PLL T.U.... Kit.. built module. .. $£ 18.50$ FP1 Power supply \& pre-filter Kit $£ 11.25$ buit module.. £14.65

Software also available - please enquire
For full catalogue send s.a.s.e. to
Please add VAT to all prices
PNP Communications (REW)
62, Lawes Avenue, Newhaven
East Sussex BN9 95B
Telephone (0273) 514465

RESISTOR PACKS FOR ALL PROJECTS

$1 / 4$ watt carbon film resistors $5 \% 1$ ohm to 10M E24 series. Packs of 10 each value (1690 resistors) E10.00 Your choice of quantities/values 125 for £1.00. VAT and Post Free.

GORDON HALLETT

 20 Bull Lane, Malden Newton, Dorchester, Dorset DT2 0BO.Altai Multicharger £7.95. Gould Ni-Cads C Type 1.2 Ah £2 25 ea, 'Fast Charge Vented A A Type' 500 mAh 85 p ea Switches: Mom-Make Push 30 p ea. DPDT Toggle 80 p ea. $10 \times$ various new switches $£ 2.60 .10 \times$ various new knobs $£ 1.6010 \times$ various new pots $£ 240$, iN4007 Diodes (1.000 V) 7 p ea. or 20
for $£ 1.10$. TIS43 UJT 320 ea for $£ 1.10$, TISA3 UJT 32p e
PLEASE NOTE THATALL VAT OR PAP EXTRA.
We also specialise in PCB assembly and Electronic production. to sample or drawings, any quantity. size or type Quality work welcome Nationwide servic

142 Priory Road, Hall Green, Birming

EUROLEC VIDEO SERVICES

01-669 2611
Telex 893819 Eurolec G
Address for correspondence only
35 Sandy Lane South,
Wallington, Surrey SM6 9RF
We have a quantity of Phillips VCR cassettes, both new and ex-library. Please write or phone for details NTSC/PAL Transfers. Please write or phone for details

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre: 1 insertion £9.65, 3 - £9.15, 6 - £8.65, $12-£ 7.75$

RADIO \& ELECTRONICS WORLD SMALL AD ORDER FORM

TO: Radio \& Electronics World • Sovereign House
 Brentwood Essex CM14 4SE • England (0277) 219876

PLEASE RESERVE
centimetres by
.....columns
FOR A PERIOD OF 1 issue....... $\square 3$ issues....... $\square 6$ issues...... $\square 12$ issues........ \square
COPY enclosed........ \square to follow........ \square
PAYMENT ENCLOSED: \square Cheques should be made payable to Radı \& Electronics World Overseas payments by International Money Order

CHARGE TO MY ACCOUNT

COMPANY
ADDRESS
SIGNATURE \qquad TELEPHONE

C \mathbf{P}

CBM64, VIC20, ATOM, DRAGON
ATOR COMPUTER 32/64, TAND COLOR COMPUTER
Advanced machine code programs with split-screen type ahead operation, any baud rate, saveable memories etc. AMTOR
Superb fuli-feature system for Dragon 32/64 at one third the cost of current alternatives.

MORSE DECODER \& SENDER
MORSE TUTOR: BASICODE KTT
Available for Dragon 32/64. Large SAE for software hardware details.

Grosvenor Software (REW)
22 Grosvenor Road, Seaford, Suseex TeF: (0323) 893378

Range up to 1 mile, tuneable from $88-108 \mathrm{MHz}$, receive on VHF/FM radio. Supplied with sensitive microphone and instructions.
$£ 7.00$ inc P\&P.
PD Electronics, 11 Bluebell Close, Orpington, Kent BRE 8HS.

Turn your surplus IC's Transistors etc into CASH. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance
Contact:
Coles, Harding \& Co, 103 South Brink
Wisbech, Cambs. Tel: 0945584188

CATALOGUE OF ALLSORTS

Electronic, telephones, new BT sockets, burglar alarm equipment etc Send 75p and SAE to

CABELEC
14 Tillman Close, Greenley
milton Keynes MK12 6AQ. Dept REw.

Complete, full-size sets, any published service sheets $£ 2+$ large SAE - except CTV's/Music Centres from $£ 3$ + large SAE SAE - except CV's/Music Centres from £3 + large SAE.
Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists. unique technical publications. for large SAE. Repair data/circs almost any named TV/CVR, $£ 9.50$ by return.

TISREW

76 Church Street, Larkhall, Lanarkshire ML9 1HE Phone: 0698883334

R \& S Radio (G40WY)

Amateur radio equipment bought, sold and exchanged. List of available items sent on request.
Telephone anytime on 0305-786930

ADVERTISERS INDEX

Akhter Instruments 47
Amateur Radio Exchange 14, 15
Amtronics IF.C.
Ant Products 11
Armon Electronics 70
Bi-Pak 32
Black Star Ltd 70
Brian Reed 41
Cirkit 6,7
Commutech (Devon) Ltd 41
Cricklewood Electronics 44
Display Electronics 56
East Cornwall Components 80
Eastern Communications 38
Edwardschild Ltd 64
BKElectronics 34
Enfield Electronics 85
Garex Electronics 64
Glenstar Electrical Motors Ltd 11
Grandata Ltd 50
Hart Electronics 84
House of Instruments 41
Keytronics 12
Lascar Electronics 74
Marco Trading 23
Microwave Modules OBC
Mutek Ltd IBC
Number One Systems 38
PM Components 60,61
Reltech Instruments 91
Scarab Systems 54
Sendz Components 25
Skywave Software 15
South Midlands Communications 76, 77
C R Supply Co. 50
Tau Systems 50
Thanet Electronics. 36, 37
Ward Electronics 25
Weirmead Ltd 64
R Withers Communications 18, 71
Wood \& Douglas 54

			series rates for consecutive insertions		
depth mm \times width mm	ad space	1 issue	3 issues	6 issues	12 issues
61×90	1/8page	¢91.00	£86.00	£82.00	£73.00
128×90 or 61×186	1/4 page	£160.00	£150.00	£145.00	£ 125.00
128×186 or 263×90	1/2 page	£305.00	£290.00	£275.00	£245.00
263×186	1 page	£590.00	£560.00	$\begin{aligned} & £ 530.00 \\ & £ 1020.00 \end{aligned}$	$\begin{aligned} & £ 475.00 \\ & £ 910.00 \end{aligned}$
263×394	double page	§1140.00	£1070.00		
		colour rates exclude cost of separations	series rates for consecutive insertions		
depth mm \times width mm	ad space	1 issue	3 issuas	6 issues	12 issues
$\begin{aligned} & 128 \times 186 \text { or } 263 \times 90 \\ & 297 \times 210 \end{aligned}$	1/2 page 1 page	$\begin{aligned} & £ 420.00 \\ & £ 810.00 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 395.00 \\ & £ 760.00 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 375.00 \\ & £ 730.00 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 335.00 \\ & £ 650.00 \end{aligned}$
		Covers Outside back cover 20\% extra inside covers 10\% extra Bleed: 10% extra $[$ Bleed area - $\mathbf{3 0 7} \times 220]$ Facing Matter: 15% extra			
$D \pm A D 10$		*Dates affected by public holidays			
issue	colour : mono proof ad	mono no proof and small ad mon		mono artwork	onsale thurs
		21Aug 84 * .. 23		23 Aug $84{ }^{\circ}$	13 Sept 84
		...19Sep84.. 2		21 Sep 84	110ct 84.
		... 17 Oct 84 Nov 84^{*}.. 1			8 Nov 84.
		-.. 16 Nov 84^{*}	13Dec 84.		

CONDIIIONS \& INFORMATION

series rates

Series rates also apply when larger or additional space to that initially booked is taken An ad of at least the minımum space must appear in consecutive issues to qualify for series rates Previous copy will automatically be repeated if no further copy is received
A hold ad is acceptable for maintaining your
series rate contract This will automatically be inserted if no further copy is receivatically be Oisplay Ad and Small Ad series rate

Printed - web-offset

PAYMENT

All single insertion ads are accepted on a pre-
payment basis only. unless an account is held Accounts willbeopened for series rate advertisers subject to satisfactory credit references
Accounts are strictly net and must be settled by Accountiare stric
OR FURTHER INFORMATION CONTACT
俍 ROR FURTHER INFORMATION CONTACT
Radio \& Electronics World, Sovereign House, Brentwood. Essex CM14 4SE.
available on request
(0277) 219876

Overseas payments by International Money Order Commission to approved advertising agencies it

10\%

CONDIIONS

10% discount if advertising in both Radio \& Copy will be sent to Display and Colour A voucher nly.

$£ 600$ + for the receiver performance

of a $£ 250$ por a better way!

Fitting a preamplifier to Icoms IC 271 will degrade the dynamic performance of the transceiver to a level very similar to that offered by a FT290 fitted with our SLNA 145sb! Fitting our RPCB 271ub replacement front-end on the other hand will give you the same sensitivity (to within a small fraction of a dB) as the IC 271/Icom AG20 preamp combination. but with about 20 dB better spurious-free dynamic range! The superiority of our approach will be best seen during contests and openings. where with our board you'll be able much more easily to hear the weak dx amongst the strong locals (assuming they have clean signals in the first place!). instead of a bandful of unpleasant noise! It does seem pointless to waste the excellent potential performance of this transceiver by fitting a preamp when there's a better way of going about it. Incidentally, we did have a few teething problems with the interfacing of the RPCB 271ub to the IC 271. R-was getting into Icoms mic preamp IC producing rather unpleasant ssb audio on transmit. This has now been cured. and of course where our customers have had problems we ve been happy tn put them right. We do care!

Stephen G4 SJP

P.S.

Our new TVHF 230c 2 m to all 9 amateur hf bands transverter should be available in limited quantities at first by the time this appears in print. See it (and us) at the major rallies. or give a ring for more info.

mu'ek limited - the rf technology company

Dept RW, Bradworthy, Holsworthy, Devon EX22 7TU (040924) 543

MWL 144/200-S: 144 MHz 200 WATT LINEAR AMPLIFIER

FEATURES

* 200 watts Output Power
* Linear All Mode Operation
* Suitable for 3, 10 \& 25 watt Transceivers
* Ultra Low-Noise Receive Preamp - Front Panel Selectable
* Relative Output LED Bar Display
* Equipped with RF Vox \& Manual Overide
* LED Status Lights for Power, Transmit, Preamp on and input level
2245 inc VAT (p\&p 24.50
144 MHz HICH PERFORMANGE RECEIVE CONVERTER: MMC 144/28 HP

Input frequency range: Output frequency range; Typical gain: Noise figure: 3rd order intercept point:

144-146 MHz
$28-30 \mathrm{MHz}$
20 dB minimum 2 dB
+19 dBm (output)

FEATURES

* Excellent strong signal handling characteristics
* Gasfet RF amplifier
* High level double-balanced mixer
* Harmonic-free, regulated oscillator

Image rejection:
mpedance: 50 ohm
Power requirements: $\quad 13.8 \mathrm{~V}$ at 75 mA
Power connector: $\quad 5$ pin DIN socket
RF connectors:

5 pin DIN socket
SO239 or BNC
please specify
Size: $110 \times 60 \times 31 \mathrm{~mm}\left(4^{3} / 8 \times 23 / 8 \times 11 / 4^{\prime \prime}\right)$

z42.90 inc VAT (p\&p z1.25)

OUR ENTIRE R TNGE OF PFODUCTSWILL BE EXHIBTIED AND ON SALE AT MOST OF THE 1984 MOBILE RALLIES BY OUR OWN SALES TEAM, COME AND TAKE A CLOSER LOOK

ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS

MICROWAVE MODULES(REW) BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND Telephone: 051-523 4011 Telex: 628608 MICRO G GALLERS ARE WELCOME, PLEASE TELEPHONE FIR'ST

HOURS: MONDAY-FRIDAY 9-12.30, 1-5.00

[^0]: You can get what you want just by picking up the telephone. Our mail-order dept. offers you: free, same-day despatch whenever possible, instant credit, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service

 Please note that we now have a new retail branch at 95 . Mortimer Street, Herne Bay, Kent. Give it a visit, BCNU.

