

For all aspects of practical amateur radio MOrId

IILT OVER
MND EXIANDING

CONCLIDING AUDIO
POWER AMPS

COUPLER PROJECT

LINEVALUES

BUILD THE QOVOG-40A
VALVE LINEAR AMPIIIIR

CONTENTS

CONSTRUCTION PROJECTS

16 High Qually Directional Coupler - A SWR coupler for frequencies above 432 MHz
31 QQV06-40A Linear Amplifier - Coaxing 100 watts from a double beam tetrode
40ff Tilt-Over and Extending Mast - Made from readily available materials
One Night's Work - Adaptations to an electric typewriter
BBC Micro Volume Control - How to connect your micro to your hi-fi
TV and Video Inferface - Providing a direct connection

FEATURES

21 Radio Rallies - A visit to some recent rallies
24 Twenty Questions - Based on the RAE
25 Sparodic-E Propagation - An unpredictable phenomenon
36 Data File - The second part on Audio Power Amplifiers
45 BBC Micro Morse Tutor - A simple Morse feaching program
55 Improving Resistors - A new look at resistors
58 DTI Green Paper - A summary of the discussion document
60 Data Communication - A brief description
62 Computing Transmission Lines - A program to calculate a matching impedance

REGULAR FEATURES

4	Product News
13	News Desk
68	Amateur Radio World
71	Point of Contact
73	Dates for your Diary
79	ATV on the Air
81	Corrections and Mods
82	DX-TV Reception Reports
86	Short Wave News
SERVICES	
65	Newsagents Order Form
66	Amateur Radio Subscription Order Form
75	Radio Amateurs Handbook Order Form
81	Next Month In R\&EW
87	Subscription Order Form
89	Back Issues Order Form
90	Free Ciassifled Ads
91	Free Classified Ads Order Form
94	Advertising Rates and Iniormation
94	Advertisers Index

Editor \qquad . DENNIS PADFIELD G1AJQ

Advertisement Manager.
NICOLA DYER
Advertisement Executive ANNE BRADY

Subscriptions \qquad $01-6843157$

Accounts \qquad CLAREBRINKMAN

Publisher \qquad .PETER WILLIAMS
Ceneral Manager \qquad ALAN GOLBOURN

ON SALE: Second Thursday of the month preceding cover date

NEXT ISSUE: Cover date September 1984 on sale 9 August 1984
PUBLISHED BY: Radio \& Electronics World Magazines, Sovereign House, Brentwood, Essex CM144SE, England (0277) 219876
PRINTED: In England
ISSN: 0262-2572
NEWS TRADE SALES BY: Seymour Press Ltd, 334 Brixton Road, London SW9 7AG Tel $01-733444$

Some of the constructional projects described in R\&EW refer to additions or modifications to equipment. Any alteration or addition to the circuit may invalidate the guarantee
We prefer that each constructional project contains its own power supply or battery. A constructional project will occa sionally describe how the power supplies of any equipment may be used to supply the circuit of that project. Ensure that the power unit in the equipment is adequate to provide the additional load current. In all cases, check that the equipment mains fuse is correctly rated.
Safety in the shack, please at all times.

The new 13 metre satellite earth station antenna, known as System 2, under construction by Marconi Communication Systems Ltd for Mercury Communications Ltd at the Isle of Dogs in London

COVER PICTURES

Left: 40ft Extending Mast courtesy of G6TNC Top right: High Quality Directional Coupler Centre right: DATA COM courtesy of OWC6557 and John G6MOK Botlom: QQVO6-40A Linear Amp circuit dlagram

Whilst every care is taken when accepting advertisements we cannot accept responsibility for unsatisfactory transactions. We will, however, thoroughly investigate any complaints.
The views expressed by contributors are not necessarily those of the publishers.

Every care is also taken to ensure that the contents of Radio \& Electronics World are accurate, we assume no responsibility for any effect from errors or omissions.

[^0]
PRODUCT NEWS

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributers and dealers are invited to supply information on new products for inclusion in Product News.
Readers, don't forget to mention Radio \& Electronics World when making enquiries

BENCH POWER SUPPLY INCLUDES DELAY

New from Thurlby is a 15 V 4A version of the PL Series of laboratory bench power supplies. Designated the PL154, the new supply operates in constant voltage or constant current modes from a few milliamps to 4 amps continuous.
A new feature is switchable current limit delay which makes peak currents up to 7 amps available to circuits with fluctuating loads.
Twin digital meters give a highly accurate display of voltage and current levels to a resolution of 10 mV and 1 mA respectivly.
Remote sense terminals
are provided to allow precision to be maintained at high current, and a separate do output switch enables voltage and current levels to be set before connecting the supply to the load.
The PL154 is part of a wide range of digitally metered bench power supplies from Thurlby which includes single, dual and triple output models.
The PL154 is available from Thurlby Electronics Ltd and their distributors. Price in the UK is $£ 145.00$ plus VAT.

Thurlby Electronics Ltd, New Road, St Ives, Huntingdon, Cambridgeshire PE17 4BG. Tel: 048063570

DOT MATRIX EVALUATION SYSTEM

A Dot Matrix Evaluation System now available from Lascar Electronics is claimed to save hundreds of manhours and thousands of pounds in development costs. It allows use of Dot Matrix Displays by users without specialised microprocessor knowledge.

The system is available at a special offer price of $£ 49.95$ (+ p\&p and VAT) and comprises a 16 -character line display complete with bezel and panel mounting kit, a microp-rocessor-based controller module, inter-connecting cable and a full instruction manual. A 5 V dc supply is all that is required to have an LCD Dot Matrix Display system up and running in minutes.
The controller module contains a pre-programmed EPROM which contains the initialisation programme plus

15 standard 'messages'. Onboard hexadecimal and programme switches allow custom messages and programmes to be developed. These can then be saved, either by implementing a 'power downmode' or by reprogramming the EPROM.
Expansion of the system is easily attained as all controls, data lines etc are brought out to a 32 way double-sided edge connector.
The programme messages can also be switched to the display by contact closure or open collector transistor output.
The EVAL-1 Evaluation system will allow many potential new users of Dot Matrix Displays to fit them to their instruments in the minimum time and cost.

Lascar Electronics Ltd, Module House, Whiteparish, Salisbury, Wiltshire SP5 25J. Tel: 07948 567. Telex 447876.

GAS-TICHT INSULATED TERMINALS

Oxley has extended it range of insulated terminals to include both stand-off and lead-through versions designed to provide optimum sealing against gasses and liquids.
These new components, known as CEEL ${ }^{\mathrm{R}}$ terminals, differ from the standard Barb ${ }^{\text {R }}$ range by having an enlarged middle section to the spill and
a silicone rubber sealing ring recessed into the PTFE insulator bush.
After assembly, this enables increased pressure to be applied to the silicone rubber and the chassis to ensure a gas-tight seal.
CEEL ${ }^{\text { }}$ terminals are available in 5A and 15A versions with rated voltages of, respectively, 3 KV and 4 KV , and mounting hole diameters of 3.96 mm and 6.35 mm .

The spills are precision formed from brass and are finished with heavy silver plating.

Assembly is easy and rapid and is effected by inserting the bush into the mounting hole and then pressing the metal spill firmly and slowly into the bush until the positive detent action locks the assembly in place.
Simple tools are available to facilitate this operation.

Leakage rate of correctly sealed terminals is less than 10^{-3} microlitres per second of helium at one atmosphere differential pressure at $20^{\circ} \mathrm{C}$ ie 15 lb per square inch.
CEEL ${ }^{\text {R }}$ terminals meet the 56 day damp heat climatic category of IEC68 (IEC68: 55/200/56).
Operating
temperature range is $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
Insulation resistance is greater than 2×10^{6} megohms.

NEW WIDE ANGLE SOLID STATE INDICATORS

A range of wide angle viewing press-fit solid state indicator lamps, the SSI/5 series is available from Oxley.
Approved for military applications against DEF/STAN 59-61/90/195, these lamps are available in red, green and amber versions. They are ruggedly constructed and feature the patented Barb ${ }^{\text {R }}$ self-locking body outline which allows rapid assembly to panels drilled with 5 mm holes.
They are supplied with high dispersion grade PTFE bushes; the bush together with the self-locking mounting providing an excellent seal tested to one atmosphere (15 pounds per square inch equivalent to 33.5 feet or

10 metres of sea water) with a leakage rate of less than 1 millilitre per hour under standard laboratory conditions for sealing against gasses, vapours and liquids.

Terminations can be either tin-lead or silver plated and versions with a black PTFE bush and black anodised aluminium bodies are available for improved visual contrast.

Nominal operating current for the red lamps is 20 milliamps and for the green and amber versions: 40 milliamps.

Nominal luminous intensity is 1.4 mcd for the red lamps; 1.5 mcd for the green and amber lamps.

Oxley Developments Co Ltd, Priory Park, Ulverston, CumbriaLA129QG. Tel:022952621.

A HOT STORY FROM WEST HYDEI

Problems of heat dissipation can be particularly hard to solve on small electronic instruments, where forced ventilation is impractical, and external heat sinks both mar the aesthetic appearance of a product, and add significantly to the cost. Two new case ranges from West Hyde meet this problem head on, and incorporate heat dissipation properties into the case bodies themselves.
The first type of case is panel-mounting to DIN standard 43700 dimensions. Lengths of U-shaped aluminium extrusion are linked together in a number of ways to produce cases in twelve standard sizes. The use of an aluminium profile results in a case with an ideal strength/weight ratio, and allows several useful features to be designed in.
As well as slots to carry PCBs or chassis, the extrusion includes T-slots to accept nuts or hex-head bolts with which hot components such as plastic-package semi-conductors can be mounted. Further external slots take rotating fixing pawls, which allow an instrument to be installed in a panel entirely without access at the rear.

The West Hyde DIN case has a semi-matt black epoxy powder paint finish to assist heat radiation, and a clip-in front panel concealing all assembly screws.

The second case range is intended for free-standing or wall-mounting applications, and is formed from a hollow extrusion in various sizes and lengths.

Being made from a single extrusion, the 'Sink Box' has extreme rigidity and is inexpensive to produce and simple to assemble.
As well as two rows of internal PCB slots, the extrusion incorporates a row of deep fins on one face around a central T-slot, to maximise heat dissipation. Two further T-slots on the opposite outer face allow brackets to be fitted for wall mounting, belt mounting, or to attach the Sink Box within a second enclosure.
The case has a black anodised finish as standard, with matching aluminium end panels and optional moulded nylon bezels.

Both these ranges are available ex-stock from:
West Hyde Developments Ltd, Unit 9 Park Street Ind Estate, Aylesbury, Bucks HP20 1ET. Tel: Aylesbury (0296) 20441

FUME EXIRACTION

FOR SOLDERING IRONS

Now available in the Climavent range of soldering fume extraction equipment are low-cost suction adaptors which can be attached to conventional soldering irons for efficient extraction of fumes at source.
Introduced as a cost-saving facility, these attachments will allow industrial companies to make full use of their existing soldering appliances when installing a fume extraction system. The range of adaptors available covers all known makes of soldering irons.
The metal suction nozzle of the Climavent adaptors is positioned on the soldering appliance to remove soldering fumes at the point of work, for optimum operator protection. The fumes collected at the nozzle are transferred by a lightweight tubing connection to high velocity extractors in the fume extraction system.

Solder fume extraction systems can be supplied by Climavent Ltd to suit any factory layout for the protection of from two to 450 operatives. Based on a highvacuum suction ring main arrangement with tubing connections to each soldering appliance, the systems will ensure that the presence of colophony
(solder/flux fumes) within the operator's breathing zone is undetectable.

Available from:

Climavent Ltd, 326 Haydock Lane, Haydock Industrial Estate, St Helens, Merseyside WA11 gUY. Tel: 0942726164

WAVE GUIDE FILTERS

Now available from M M MICROWAVE Ltd, a member of the Micro Metalsmiths Group of Companies, is a new fully illustrated shortform catalogue detailing their extensive range of waveguide filters.
M M Microwave design, manufacture and test a wide range of radar and telecommunications components
and sub systems. The company is approved to Defence Standard 05-24 and facilities include a fully equipped research and development department and a comprehensive computer aided design library.
This allows engineers to optimise design without having to evaluate prototypes. In addition, high precision computer controlied machining

Cirkit.A new name

This year Ambit will stop being Ambit. And become Cirkit.

Cirkit is more than just a change of name. It means a better service for you. Faster delivery.

A bigger range of the best and latest products with well over 10,000 different items available.

Everything for the home and industrial user.
A whole new Cirkit range of constructional kits, graded for the student, expert and enthusiast.

Modules to build for everyone.
Cirkit is a go ahead company that believes in giving service to its customers.

There's a technically skilled staff to help you.
We keep in touch with the manufacturers and we know what's going on.

As soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wider than ever range of products that's growing all the time.

For you, Cirkit means a bigger stock and better service.

For further information send for our latest catalogue or visit one of our three outlets at: 200 North Service Road, Brentwood, Essex, CM14 4SG; 53 Burrfields Road, Portsmouth, Hampshire, PO3 5EB; Park Lane, Broxbourne, Hertfordshire, EN10 7NQ.

[^1]Address
Telephone
Area of Special Interest

Computer Products

A complete range from Connectors to Board Level product

C12 Computer Cassette	21.00012	0.55
BBC to Centronics Printer	03-10019	7.25
BBC to 25 way D Male	03-10021	4.50
25 way D Socket	10-25200	1.90
25 way D Plug	10-25100	1.30
Cover for 25 way D	10-25322	0.93
20 up Eprom Eraser	40-82100	31.25
Z80 A Industrial Controller	40-82000	49.95
6802 Industrial Controller	40.68020	49.95
6502 Industrial Controller	40-65020	49.95
28 Basic/Debug Controller	41-00904	50.00

Nicad Batteries \& Chargers
Minimum life 600 (300 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

				$1-9$	10-49
AA	1.2 V	500 mAH	01-12004	0.80	0.74
${ }^{\circ} \mathrm{C}$	1.2 V	2.2 AH	01-12024	2.35	1.99
' ${ }^{\prime}$	1.2 V	4.0AH	01-12044	3.05	2.85
PP3	8.4 V	110 mAH	0184054	3.70	3.50
$\mathrm{CH1} 1 / 22 \mathrm{PP3} 3$ Charger 11 mA for 16 hours					
			01-00159		4.30
CH8/RX Multi-purpose Charger					
			01-02204		9.40

Will recharge AA, C, D and PP3 size cells with automatic voltage selection. Will recharge following combination: $6 \times \mathrm{D}$, $6 \times \mathrm{AA}, 6 \times \mathrm{C}, 2 \times \mathrm{PP} 3,2 \times \mathrm{D}+2 \times \mathrm{C}$, $2 \times \mathrm{D}+2 \times \mathrm{AA}, 2 \times \mathrm{D}+1 \times \mathrm{PP} 3,2 \times \mathrm{C}+2 \times \mathrm{AA}$, $2 \times \mathrm{C}+1 \times$ PP3, $2 \times \mathrm{AA}+1 \times$ PP3 .
Battery Adaptor 01-12001 0.96
Sold in pairs: one to convert AA size to C size and one to convert C to D size. Both may be used together to convert an AA to D size.
Semiconductors
Linear IC's

LM301AN	DLL version	$61-03011$	0.44
LM308CN	DRL version	$61-03081$	0.65
LM311CN	Popular comparator	$61-00311$	0.46
LM324	Low power quad op amp	$61-03240$	0.67
LM339N	Low power quadcomparator	$61-03390$	0.68
LM346	Programmable quad op amp	$61-00346$	3.72
LF347	Quad Bi-FET op amp	$61-00347$	1.82
LM348	Quad 741 type op amp	$61-03480$	1.26
LF351	Bi-FET op amp	$61-03510$	0.49
LF353	Dual version of LF351	$61-03530$	0.76
LM380N	IW AF power amp	$61-00380$	1.00
NE555N	Multi-purpose low cost timer	$61-05550$	0.45

for a better
 service

Microprocessor \& Memories
Z80A Popular and powerful
8 bit CPU $\begin{array}{llll}\text { Z80AP10 } & 2 \text { port parallel input/output } & 26-18420 & 2.95\end{array}$ Z80A CTC 4 channel counter/timer $28671 \quad 28$ Micro comp. and Basic $6116-3 \quad 16 \mathrm{~K}(2 \mathrm{kx} 8) \mathrm{CMOS}$ RAM 200nS
Z6132-6 $\quad 32 \mathrm{~K}$ (4kx8) quasi RAM 350 nS
4116-2 $\quad 16 \mathrm{~K}(16 \mathrm{kxl}) 150 \mathrm{nS}$ 2764 64K (8kx8) 450nS 2732 32K (4kx8) 450nS

Voltage Regulators

7805	5V 1A positive	$27-78052$	0.40
7812	12V 1A positive	$27-78122$	0.40
7815	15V 1A positive	$27-78152$	0.40
7905	5V 1A negative	$27-79052$	0.49
7912	12V 1A negative	$27-79122$	0.49
7915	15V 1A negative	$27-79152$	0.49
Transitors			
BC182	General purpose	$58-00182$	0.10
BC212	General purpose	$58-00212$	0.10
BC237	Plastic BC107	$58-00237$	0.08
BC238	Plastic BC108	$58-00238$	0.08
BC239	Plastic BC109	$58-00239$	0.08
BC307	Complement to BC237	$58-00307$	0.08
BC308	Complement to BC238	$58-00308$	0.08

BC309	Complement to BC239	5
BC327	Driver/power stage	5
BC337	Driver/power stage	5
MPSA13	NPN Darlington	58
MPSA63	PNP Complement to	
	MPSA13	
J310	JFET for HF-VHF	5
J176	JFET analogue switch	5
3SK51	Dual gate MOSFET-VHF amp	6
3SK88	Dual gate MOSFET-Ulitra lo	
	noise	6
TIP31A	Output stage	5
TIP32A	Complement to TIP31A	5
VN66AF	VMOS Power FET	6
IN4001	Rectifier diode	12
IN4002	Rectifier diode	12
IN4148	General purpose silicon	$12-4$

$58-00309$	0.08
$58-00327$	0.13
$58-00337$	0.13
$58-04013$	0.30
$58-04063$	0.30
$59-02310$	0.69
$59-02176$	0.65
$60-04051$	0.60
$60-04088$	0.99
$58-15031$	0.35
$58-15032$	0.35
$60-02066$	0.95
$12-40016$	0.06
$12-40026$	0.07
$12-41486$	0.05

Silicon Controlled Rectifiers

3mm Diameter LEDs

$\begin{array}{ll}\text { V178P } & \text { Red } \\ \text { V179P } & \text { Green }\end{array}$
V180P Yellow
5mm Diameter LEDs
CQY40L Red
CQY72L Green
CQY74L Yellow $\begin{array}{ll}15-10400 & 0.12 \\ 15-10720 & 0.15\end{array}$

Infra-Red LEDs
CQY99 Emitter
BPW41 Delector
15-10990 0.56 15-30410 $\quad 1.51$
Tri Colour LED
V518 Orange-Green-Yellow

Capacitors

Aluminium Electrolytics Radial PCB Mounting

			Pack of 4
10u	16V	05-10606	0.24
47u	16 V	05-47606	0.28
47u	25 V	05-47607	0.28
470u	6.3 V	05-47705	0.36
470u	16 V	05-47706	0.48
Tantalum Beads			
			Each
luf	35 V	05-10501	0.18
10uf	16 V	05-10601	0.28
47uf	6.3 V	05-47601	0.45
47uf	16V	05-47602	0.92

Monolithic Capacitors		Pack of 3
1 n	0410204	0.39
$10 n$	04-10304	0.42
100n	04.10404	0.45
Low Voltage Disc Cermaic		
		Pack of 5
1 n	0410203	0.20
10 n	0410303	0.20
Polyester (C280)		
		Pack of 3
10 n	0410305	0.18
47n	0447305	0.24
100n	0410405	0.24
470n	0447405	0.51
1 l	0410505	0.66

R F Components

Filters
CFU/LFB CFW/LFH SERIES
Miniature 455 kHz filters. I/P and O / P impedance 2 K .

	-6dBW	-40dBW		
LFB6/CFU455	6 kHz	18kHz	16-45512	1.95
LFB12/CFU455F	12 kHz	26 kHz	16-45515	1.95
LFH6S/ CFW455HT	6 kHz	14kHz	16-45525	2.45
LFG12S/ CFW455FT	12 kHz	22 kHz	16-45528	2.45
CFM2455A Mechanical IF Filters for 455 kHz			19-45530	0.77
Crystal Filters 2 Pole Types				
10M15A	10.7 Centre	req.	20-10152	2.10
10MO8AA	10.695 Cen	Freq.	20-11152	3.49

Inductors

We offer the complete Toko range of fixed and variable inductors. Over 500 coils from audio to V.H.F. See catalogue for details.

Soldering Irons (Antex)

CS240	Iron 240VAC 17 Watts	$54-22300$	5.20
XS-240	Iron 25W 240V High heat capacity	$54-22500$	5.40
SK6	Presentation pack of one MLXS	XS240 with ST4 stand	$54-22510$

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $\$ 2$ please. We reserve the right to vary prices in accordance with market fluctuation.

PRODUCT NEWS

facilities maintain tight tolerances for critical applications, and sophisticated fabrication and evaluation techniques guarantee performance to the highest specifications.
The shortform catalogue details bandpass, bandstop and microwave integrated circuit filters over the frequency range 2 GHz to 100 GHz . Available with Tchebyshev, maximally flat or linear phase designs, the filters cover a wide range of bandwidth and rejection values.
The catalogue also includes diagrammatic references for Design Engineers and a standard filter specification sheet for specific enquiry/order information.

M M Microwave Ltd, Ings Lane, Kirkbymoorside, York, North Yorkshire YO6 6DW. Tel: (0751) 31955

TELETEXT AND
 PRESTEL ADAPTORS

GEC (Radio and Television) Limited are to relaunch their Teletext and Prestel adaptors which not only upgrade a standard television set into receiving these functions, but also convert any television set into remote control capability.
Two versions of these machines have been developed for the UK and overseas markets: one which operates in black and white and the other which operates with colour text and graphics. In addition, the Prestel adaptor is available with either numeric information input or full alphanumeric capability.
This unique product is already proving of great interest to the deaf and hard of hearing. Not only does it offer remote control facility, it also means that for the first time they can record programmes with subtitles.
Special arrangements have been made by GEC with the RNID to give preferential terms to registered deaf people through the GEC network of local dealers.
The price of the Teletext adaptors are: Black and white text (MRP) £114.80. Colour £129.30

GEC (Radio and Television) Ltd, Byfleet Industrial Estate, 2 Canada Road, Byfleet, Surrey. Tel: Byfleet 53134

NEW 'G' CASE

BICC-Vero Electronics has introduced its new range of ' G ' cases which provide the latest in soft-line modern styling and are ideal for housing peripheral equipment or portable instrumentation.
They provide all round accessibility for mounting components, wiring and servicing. An integral chassis forms the mounting plate for components, front and rear panels and the cover. The front and rear panels are each secured through the chassis by two screws, which do not intrude onto the panel area thus there are no unsightly fixings visible and the whole panel areas are free for mounting components.
The cover, which comprises the top and sides, slides onto the chassis and fits closely over the front and rear panels. This is secured in position by four further screws which each pass through foot mouldings and tighten onto the
chassis to provide a minimum of assembly operations. The cover also forms a cowl over the front panel, which protects projecting components such as switches and provides a degree of shading for illuminated components such as neons and LCDs.
The new ' G ' cases are available in three sizes, of which the largest two can be supplied with a comfortable carrying handle. This handle combines the function of portability with an adjustable tilt feature, as it can be folded back and locked at any angle to suit the user. The range is available as standard finished in epoxy textured paint in an attractive combination of seafoam and bitter chocolate and a choice of other colours is available subject to a minimum order quantity.

BICC-Vero Electronics Ltd, Hedge End Industrial Estate, Flanders Road, Hedge End Southampton SO3 3LG. Tel. 04892 81424/5

REMOTELY CONTROLLED ROTATOR UNIT
A substantially built rotatable mounting with remote direction control gets the best out of television, CB or FM radio aerials, or can be used to mount security cameras. Known as the type 200 XL , it is available from Semiconductor Supplies, Sutton, Surrey, by mail order for only £49.45 inclusive.
Television security cameras or other equipment weighing up to 45 Kg (1001b) can be mounted and rotated by mains power over 365 degrees. Speed of movement is one revolution per 65 seconds. The weatherproof case is made of metal castings.
Dimensions: Rotator-290x $120 \times 150 \mathrm{~mm}(\mathrm{~h} \times \mathrm{w} \times \mathrm{d})$. Control box $-80 \times 197 \times 160$ mm .

Semiconductor Supplies International Ltd, Sutton, Surrey. Tel: 01-643 1126

PUSH-ON/TAB CONTACTS AND HOUSINGS
Now available from BICCVero Electronics is its Finclik range of push-on/tab contacts and housing for applications in the domestic appliance and automotive industries and for use by business, gaming and vending machine manufacturers.
The Finclik system consists of reeled 6.3 mm receptacle and tab contacts and a range of nylon male and female housings. The contacts are machine applied to wires and then inserted into the housings from the rear. An integral spring lance latches behind a shoulder in the housing and prevents 'backing out'.

PRODUCT NEWS

The contacts are available in brass, tin plated brass and phosphor bronze as required. Wire sizes accommodated by the receptacle are 0.5 to 2.5 sq mm and 3 to 6 sq mm . Wire ranges covered by the tab are 0.75 to 2.5 sq mm and 3 to 6 sq mm .

The male and female housings are in nylon 6/6 and have a melting/distortion temperature level of $105^{\circ} \mathrm{C}$. They are available in single, 2, 3, 4, 6
and 8 way versions for free hanging applications.

The 6 and 8 way sizes are also available in board mounting versions.

The entire system is readily available ex-stock and has been enthusiastically received in the market place.

BICC-Vero Electronics Ltd, Hedge End Industrial Estate, Flanders Road, Hedge End, Southampton SO3 3LG

BIB COMPACT
DISC CLEANER
Bib announce the introduction of their first accessory product for the Compact Disc, which is a cleaning kit, comprising a bottle of special formula cleaning liquid, applicator cloths and a special purpose high quality chamois leather polisher. All these items are packed in a convenient storage wallet for dust free protection.
Bib recommend regular use of this product, as essential to maintain high quality production of C-D discs. It is necessary to keep the surface of Compact Discs free from
finger prints, dust and dirt and other contaminants, as these prevent the laser optical system operating correctly, resulting in distortion and poor performance.

Bib also state that the same kit is suitable for cleaning video laser discs.
Attractively packaged in fully descriptive blister card, this kit has a recommended retail price of only $£ 2.99$ including VAT.

Bib Audio/Video Products Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts HP2 4RQ. Tel: (0442) 61291

PORTABLE 1 GHz
 FREQUENCY COUNTER

Fieldtech
Heathrow announces the arrival of a new 1 GHz frequency counter designated the Sencore FC71. The FC71 meets the demands for portable frequency counting applications for avionics, broadcast, twoway communications, and general servicing.
The FC71 is the first, portable, 1 GHz frequency counter to provide consistant longterm accuracy measurements for more than 9 hours on one battery charging. The FC71 uses a unique method to hold 0.5 part-per-million accuracy ($0-40$ degrees C) all the way to 1 GHz .
The instrument allows accurate measurements wherever needed: e.g. Broadcast towers; 2 way radio repeater stations; aircraft for testing of nav/comm equipment. It's the first portable counter that's really practical because it provides the technician or engineer with a full day's testing on one battery charge.
The FC71 provides extra tests not found on other
counters. Its single-input Fre-quency-Ratio calculator tests frequency multiplier and divider stages. Sencore's exclusive Crystal Check function tests any crystal for fundamental frequency operation.

The FC71 can be used as a 'talker' for any IEEE 488 Bus system, allowing its frequency measurements to be sent to a computer. The FC71 sends its full 8-1/2 digit frequency readings down the bus, along with the correct range labels: $\mathrm{Hz}, \mathrm{KHz}, \mathrm{MHz}$, or multiply or divide symbols for the ratio function. All FC71s come equipped with a special connector on the back that mates with the Sencore IB72 IEEE Interface Bus Adapter. The IB72 contains all the circuits necesary to interface the FC71 with the IEEE 488 bus circuits.

The FC71 sells for only $£ 640$.
Fieldtech Heathrow Limited Huntavia House
420 Bath Road
Longford
Middlesex
UB7 OLL
Tel: 018976446.

REGULATORS FROM GOTHIC CRELLON

The MC78TOO series from Motorola is a new family of three terminal, 3.0A positive voltage regulators available in a range of output voltages from 5 V to 24 V . Gothic Crellon are now able to supply the range ex-stock.

Besides being offered in a wide variety of voltage options, these devices offer improved performance characteristics over existing regulators with superior load and line regulation, output
voltage tolerance and ripple rejection specifications.
Additionally, these devices are specified for thermal regulation which is an indication of the careful thermal layout of the IC and the integrity of the die bond to the package heat sink.
These monolithic devices employ internal current limiting, thermal shutdown and safe-area compensation. The series is offered in both metal and plastic packages and in two operating temperature ranges.

R WITHERRS COMMUNICATIONS 584 HAGLEY ROAD WEST, OLDBURY, WARLEY B68 OBS (QUINTON, BIRMINGHAM)
 Tel: 021-421 8201/2 (24 HR ANSWERPHONE) Tell 021 -421 8201/2 (24 HR ANSWERPHONE)
 \triangle RWC SPECIAL OFFERS VSA

 INSTANT FINANCE AVAILABLE TO ALL LICENCED AMATEURS SUBJECT TO STATUS. VIA LOMBARD TRICITY + N-WALES TRUST

PRODUCT NEWS

MULLARD POWERMOS
Gothic Crellon are now stocking a range of Mullard POWERMOS devices (BUZ Series) in both plastic and metal international standard packages offering high current and voltage stability.

Typically POWERMOS offers a combination of fast switching times and high cutoff frequencies. Maximum drain source voltages vary across the range of devices from 50 V to 500 V and max-
imum continuous drain current is between 2.5A and 32A. Maximum continuous power dissipation is 75 W for the plastic packages (TO-220) and ranges from 78 W to 125 W in the metal range (TO-3).
The POWERMOS range has been designed for easy connection in parallel to increase performance if required.

Gothic Crellon Ltd, 380 Bath Road, Slough, Berks.
Tel: 062864300.

'SLOPEFRONT' LCD MULTIMEIER

A new low-cost LCD Multimeter now available from Lascar Electronics is of totally British design. A unique feature is the angled display which makes the instrument extremely easy to use, whether hand held or laid flat on a bench. The elegantly styled case is moulded in ABS, making the DP2020 equally suitable for laboratory or rugged field use.

Six full functions are available - dc volts, ac volts, dc amps, ac amps, resistance and diode check - a total of 21 measurement ranges.

Complete protection against accidental overload is built into the meter.
A large LCD readout gives clear unambiguous readings and allows over 2,000 hours use from a standard PP3 battery.
The DP2020 is available from stock at a price of $£ 24.95$ + VAT. Substantial discounts are available to organisations with large numbers of service technicians.

Lascar Electronics Limited, Module House, Whiteparish, Salisbury, Wiltshire SP5 2SJ. Tel: Whiteparish (07948) 567. Telex 477876.

DIGITAL HUMIDITY
 \& TEMPERATURE METER

The model RHT 200 is a lightweight hand held instrument designed for fast and easy determination of relative humidity and temperature. The instrument covers the ranges 10% to $95 \% \mathrm{RH}$ and -10° to $+60^{\circ} \mathrm{C}$, to a resolution of 0.1% and 0.1° respectively. Readout is by large liquid crystal display (LCD).
The. capacitive RH sensor consists of a non-conductive foil which is covered on each side with a layer of gold. Temperature sensing is by semiconductor. Both sensors are mounted in a tubular hand held probe which is connected to the instrument by one metre of flexible selfcoiling cable.

Powered by one small 9 volt battery (PP3 or equivalent) the RHT 200 is completely portable and controls are limited to an ON/OFF slide switch and another to select RH/TEMP mode.
To complete the package a good quality carrying case is provided which has compartments for the unit and probe. A mains charger unit with rechargeable cell is available if required.
The weight of the instrument and probe is only 300 grammes and the overall dimensions of the unit and carrying case are $260 \times 145 \times$ 45 mm .

Channel Electronics (Sussex)
Ltd, PO Box 58, Seaford BN25
3TB. Telephone: 0323894961.

RTWORK STATION FROM
 CREENWOOD ELECTRONICS

Greenwood Electronics has introduced a new, totally selfcontained rework station, the Oryx HSR1, which requires neither external air, nor vacuum, supply lines.
Designed to be simple to operate, the HSR1 offers advanced features including soldering/desoldering temperature selection for different PCB materials, independent ON/OFF and earthing control of the soldering and desoldering irons and fume extraction during soldering. A unique desoldering iron facilitates quick and accurate desoldering and avoids the potential damage to the pcb tracks and adjacent components that can occur with conventional desoldering equipment.

The HSR1 consists of five major units: the TC84 temperature controlied soldering iron, the unique SR84 vacuum solder removing iron, the main control unit and two demountable magnetic base safety stands for the irons.
The TC84 is fitted with a fume extractor. This vacuum line from the main unit can be switched from the TC84 to the SR84 as required. A comprehensive range of long life, iron plated tips is available for the TC84 and interchanging tips is a simple operation.
The SR84 desoldering iron is, like the rework station itself, a new development. It features a hollow tip which allows the operator extremely precise control over the desoldering operation and facilitates very clean, neat reworking. It has been designed to overcome the problems associated with conventional desoldering
equipment - such as burning, damage to the PCB tracks and to adjacent components.
The temperature of the tip can be set to its optimum for the type of board being reworked, a four position switch control being provided on the main unit which gives settings for paper and fibrebased PCBs. The unique Oryx design of filters and interchangeable tips makes the SR84 both easy to use and easy to maintain.
The main unit contains the temperature selector for the irons, independent ON/OFF and earthing switches for each iron, the vacuum pump and switched front panel mounted DIN sockets for foot control of the vacuum line and 'power out' (12Vdc) for powering a hand held type P1 PCB drill - available as an optional extra.
A feature of the main unit is the independent electrical control over the two iron circuits. This allows the HSR1 to be used for soldering only, desoldering only, or both operations sequentially. Also, the vacuum line is only fed to one iron at a time, a switch on the front panel controlling its routing.
Considerable attention has been paid to safety and the HSR1 is designed to meet all the relevant UK and European safety requirements.
Power requirements of the HSR1 are $240 \mathrm{Vac}, 140$ watts maximum.
Dimensions are: $305 \mathrm{~mm}(\mathrm{w})$ $\times 228 \mathrm{~mm}$ (d) $\times 136 \mathrm{~mm}(\mathrm{~h})$. Total weight is 8.5 Kg . Price $£ 495$ (ex VAT).

Greenwood Electronics, Portman Road, Reading, Berks. RG3 1NE. Reading (0734) 595844.

NEWS DESK

Cellular radio prices

British Telecom Radiophone today announced the details of its prices for the new Cellnet cellular radio service which is scheduled to start operating early in 1985.
The new car radiophone, to be called the Telecom Topaz, will cost £1350. Installation will cost around $£ 100$ depending on the make of car. The phone will be manufactured by NEC in Japan.
Telecom Topaz features a 16-memory store, a ten-digit display of the number dialled, hands-free operation, electronic security lock and last number recall.

In addition, British Telecom Radiophone also announced its intention to place orders with Motorola and Mobira for cellular radiophones, for use in the car and as hand-held portables.

The new products from motorola and Mobira are expected to cost between £1350 and $£ 2000$ for car radiophones, and between $£ 2000$ and $£ 2500$ for the hand portables. All prices exclude VAT.
As a special service to existing radiophone customers, British Telecom Radiophone will be offering a trade-in deal for people switching over to Cellnet.

From April 1 next year, customers who own either of British Telecom's automatic car radiophones, Sapphire and Emerald, will be able to switch to Telecom Topaz for only $£ 850$ - a discount of $£ 500$ provided they have been using the service for at least one year.
Sales of Cellnet equipment will be handled by British Telecom Radiophone's retail division which has a nationwide network of dealers selling the existing range of British Telecom radiophones.
The opening of the Cellnet service will mean the introduction of a new range of products, the first of which is Telecom Topaz.
Telecom Topaz charges (excluding VAT) start at $£ 1350$ for the equipment (approx£92 per quarter for a five-year lease). Connection to the Cellnet system costs an initial

£60 plus a quarterly subscription of $£ 75$. Call charges range between $8 p$ and 25 p per minute according to the timing of the call.
Sales enquiries for British Telecom Radiophone products should be made to Al Tingey on 01-730 1570. The Marketing Manager is David Pugh on 01-730 1412.

British Amoteur Television Club

Amateur TV enthusiasts in Central Scotland who would be willing to participate in financial support or construction of a 24 cm ATV Repeater for the area are asked to contact Norrie, GM4BVU, 3 Townhill Road, Earnock, Hamilton, ML3 9UX.

Prestel for Australia

Prestel, British Telecom's world-beating viewdata system based on GEC computers, has recorded another major international success by winning the prestige Australian public service contract.

The all-British system has been chosen by Telecom Australia for its new Viatel service which will start early next year.

The contract for GEC computers and Prestel software was won against stiff international competition. It is worth $£ 2$ million initially with more to follow as Viatel develops and expands.
More than 1,000 Presteltype terminals are already operating on private Australian networks and local firms will be able to supply terminals, TV-set adaptors and personal computers to work with Viatel.
The Australian decision means that 10 countries have now purchased national videotex systems from GECPrestel - more than all other international competitors combined.
Three GEC 4190 minicomputers will be installed at the Melbourne headquarters Australia's Viatel service which will start public operations in February 1985. Each computer is capable of handling 2,000 simultaneous calls.
Unlike most other countries, Australia has decided to omit the normal public trial stage.

New business opportunities created In mobile radlo

The Department of Trade and Industry has published a consultative document on the future of the radio frequencies known as Band I (41-68 MHz) and Band III (174-225 MHz), which will cease to be used for 405 -line black and white television services from the end of 1984.
This move will create one of the largest single additions to the spectrum available for mobile radio in Great Britain, and is bound to attract much business interest.
A summary of this document is given on page 58.

NEWS DESK

RSGB news

Some Raynet members in East Anglia participating in Intex, the national home defence exercise held recently, were actively canvassed by a group who claimed that such participation would be an infringement of national and international radio regulations.

Fortunately the situation was clarified by reference to DTI and participating members were reassured by information issued very rapidly from HQ.

It is probably worth restating that Raynet exists purely to provide a communication resource to the community at large in times of national and local need.

It is open to all radio amateurs and SWLs, whether they be RSGB members or not. It is not a political organisation, nor does it wish to promote any particular political point of view.

Members and groups are free to decide for themselves their level of support for any user service. In particular they are free to decide their
level of support for CEPOs in work related to peace time, disaster, or to home defence training.

The Chinese Radio Sports Association, which represents radio amateurs in the People's Republic of China, has applied for membership of the IARU. CRSA was originally founded in 1964 but it became inactive soon after that date because of the suspension of amateur radio in China until early 1982 Amateur radio in China is still club-based, with no licences for individual stations having yet been granted: there are at present three club stations, BY1PK near CRSA headquarters (box 6106, Beijing) BY4AA at the Shanghai branch (box 205, Shanghai) and BYBAA at the Sichuan branch (box 6106, Beijing).
There are at present 30 authorised operators, and other applicants are being trained at present.

Another application for membership of the IARU has been received from the

Vanuatu Amateur Radio Society, which represents amateurs in the Republic of Vanuatu. The society was founded in May 1980, at which time the country was known as New Hebrides and was jointly administered by France and the United Kingdom. There are 25 amateurs in Vanuatu, of which 18 are members of VARS, and the country's licensing authority is reported to have a very favourable attitude to the hobby.

VARS has a headquarters station with the callsign YJ8DX, and the callsign YJ8ES is used by the Society's branch on Espiritu Santo Island

The Department of Trade and Industry is at present considering ways of restricting the use of illegal 27 MHz CB equipment without adversely affecting the operation of licensed radio amateurs on the 28 MHz band.

European Space Agency astronaut Huber Ocolls from the Netherlands may become
the first European amateur in space. He is due to fly on one of the USA space shuttle missions during 1985. Although he is not yet licensed, he intends to obtain his ticket prior to launch. The Dutch National Society, VERON, is apparently to make an official request to NASA for him to use equipment similar to that used by W5LFL.

Packet Radio is another acea of rapid growth within amateur radio which is gaining popularity in the UK. Packet data exchanges between two individual amateurs is quite legal. As such, it is just another form of data transmission which is quite permissible under the terms of the UK licence. The initial confusion was because of the third party message facilities associated with packet radio at present being used by many amateurs in North America. Needless to say, as with any other form of data transmission, identification of transmissions should always comply with UK licence regulations.

HOW TO RECEVVE

For the best prices, always choose A.R.E. Buy mail order, phone order, or personal purchase-we give you the lot, including Brenda's coffee. And we've always got more than our ads can carry! A special welcome to new licensees-let our expert staff help sort out your equipment needs.

	ALL PRICES INCL.VAT
ANTENNA TUNERS	

Touse ARE s Rapid Despatch Mal Order Senice justquote the Stock Number gether with your Access or Visa Card number Your goods will be on therr way within 24 nours subpect to avaliabivity
It ithe panicular item you re looking for is not isted here, call us on $01-99257670$ 925229881 . Brenda \& Bernie pride therriselves on being able to supply anything onnecled with amateur radio
24-HOUR
ALL OFFERS SUBJECT TO AVAILABILITY PRICES CORRECT AT TIME OF GOING TO PRESS

THE BEST FROM A.RE

SONY ICF 7600D

SX 400
Undoubtedly the finest VHF UHF receiver yet developed. Extremely professional in its design. Fully pro grammable. scan facility. memory facility
$£ 598$ inc vat.

Sony's latest approach to pocke size communications receivers. Covering from 153 kc through to 30 MHz All mode operation includng SSB and FM on broadcast band Keyboard entry for fiequency access Memory tacilty Scan tachity Athuly portable communication recerver AC power supply included

ICOM IC-R71
 polessonal stmandsyeymb oftered to the amatern faternity Fume
 with F Mopten Menomy lazility

$£ 649$ inc vat.

CLOSED-Mondays•OPEN-Wednesdays
FULL DETAILS. TUES, WED, FRI 9.30-5.30 - THURS 9.30-6.00 - SAT 9.30-5.00

High Quality Precision Directional Coupler

by Derrick simpson

In the course of work on the development of an antenna system the need to be able to measure voltage standing wave ratio at 432 MHz and higher frequencies prompted a look at commercially available directional couplers. The cost of these was enormously high, certainly out of reach of the pocket of most radio amateurs.
It was found that the basic concept was very simple and that the high cost is almost entirely due to the high mechanical precision necessary in order that the accuracy, reliability and repeatability could be achieved and maintained over long periods of time.

SWR meter

A directional coupler in some form or other is used in every instrument and is commonly called a SWR meter. It is a device that is capable of separating the forward or incident voltage from the reverse or reflected voltage, which occur in a transmission line, co-axial or parallel carrying radio frequency energy that is not perfectly terminated.

Note: A line that is infinitely long can be considered as perfectly terminated if all the energy fed into it is totally absorbed, dissipated in the loss resistance along its length.
The circuit and the electrical form of the directional coupler is as shown in Figure 1, and may be recognised by some. It consists of a central line somewhat larger in diameter than the two smaller lines coupled to it, but maintaining the characteristic impedance of the co-axial line of 500 hm .
The smaller lines are diametrically opposite one another on each side of the main line. These secondary lines also have their characteristic impedance set at 500 hm so that the measuring equipment will also see a matched line. In use we very often find that one end of the secondary lines are in fact terminated
with 500 hm dummy loads. This ensures that there is a standard that is common to all the measurements made, and can always be referred to.
The physical dimensions of the directional coupler are determined by the size of the flange on the ' N ' type socket used and the necessity to make the instrument with a 50 ohm characteristic impedance. The formula used to calculate the sizes of the lines is given in the appendix.

Standing waves

At this point it may be helpful to consider how standing waves form and how they relate to the measurements made and to what is happening in the transmission line.
The sine wave of the voltage being propagated in a line towards a short circuit, produces an incident wave
moving from left to right (refer to Figure 2).

Since there can be no voltage sustained across the short circuit assuming no losses, an equal voltage is reflected and is propagated back down the line with such a phase that the voltage at the short is always zero.
It is also true that the current is a maximum into the short circuit and that the current wave is also reflected in the same way. This is important because it does not matter whether the voltage or current is measured as the result is the same.

Diode voltmeter

The conception of two independent waves existing on the line and travelling in opposite directions at the same time is correct, but it is not sufficient for all problems.

DIRECTIONAL COUPLER

For example, a simple diode voltmeter (see Figure 3) connected across such a line could not separate the two waves but would give a reading that would be dependent upon the magnitude and the relative phase of the two voltages existing on the line at that point.

If the voltmeter was moved then it would be found to give a different reading depending upon its position on the line.
For instance, if both reflected and incident voltages were in phase at the point of measurement, then the meter would show a reading of twice the incident voltage. Conversely, if both voltages were out of phase by 180°, then the meter would show zero voltage.

So it can be seen that a reading can be taken simply by moving the diode voltmeter along the line.

Figure 3 Circuit of a simple diode voltmeter

forward and reflected voltages are in phase with one another, but if there is a reactance associated with the load impedance, then the phase angle of the reflected voltage will vary between plus 90° and minus 90° with respect to the forward voltage. The phase angle is therefore dependent upon the magnitude and the sign of the associated reactance.
Unfortunately a directional coupler, like the diode voltmeter, cannot distinguish between loads that are purely

totally reactive, in so much as reactances dissipate no power. All that can be done is to measure the values of forward and reflected voltages or currents and allow them to be expressed as a ratio.
However, this information can be very valuable because it can be used to determine the load impedance, if the conditions under which the measurement is taken are precisely defined. One of these is that the directional coupler can be connected directly to the antenna terminals without the use of any intervening co-axial cable, so that a measurement can be taken determining the complex impedance of the terminations.
To make further measurements would need a slotted line, but these are necessary if the load is to be totally defined.

Power measurements

Another use for a directional coupler is for power measurement and for this a calibrated coupler and dummy load are required, along with an RF voltmeter.

The method of doing this is to couple the transmitter to a dummy load of the correct value via the directional coupler, terminate one of the ports with a 500 hm line termination and the other end with a calibrated voltmeter or millivoltmeter. Then the power can be found by using Ohm's Law and multiplying the result by the coupler loss factor for that frequency (see Figure 4).

Construction

In order to construct this directional coupler it must be said that a fair amount the reflected voltage at the transmitter end because the measurement must end because the measurement must transmitter to the load, and add the loss transmitter to the load, and add the loss
from the load back to our measurement point at the transmitter. In other words, point athe thansmitter. in other words, voltage and also reduces the reflected voltage. The same also applies to the current.

Between the extremes of open and short circuited lines the terminating impedance may have any values of resistance and reactance. Therefore, if the termination has a resistive component then power will be absorbed in that resistance and the reflected power will decrease in magnitude, the actual value depending upon the amount of power fed into the line and the loss of the line.

Therefore it can be seen that if the load is purely resistive, but is not the correct value to terminate the line fully, there will be a standing wave on the line that is a function of the forward power minus the power absorbed in the load.
This is a measure of how closely the cable impedance and the load impedance match. For a resistive load the
Figure 4 Method of measuring power using a directional coupler

Note that the reflections of voltage from short circuit lines, and also from open circuited lines, are considered to be total reflection modified only by the losses inherent in all transmission lines; the losses having the effect of making the measured voltage reflected lower by the amount of loss in the line.

Care should be taken when measuring

\qquad

(D)

Full-Flat Response SWR \& Power Meter

- Slim \& compact body, usable in mobile, marine, handy \& base stations.
WELZ's exclusive new three-transformer type directional power sensor using ferrite cores.
- Three ranges (2.5/20/200 W) Forward/Reflected Power and SWR measurements.
- Full scale meter indication at 2.5 W power range.
- 1.5 W SWR sensitivity.
- Connectable with matching network AC-35M or AC-38M (as shown in picture).

E41 inc VAT

ANTENNA TUNER using SP-15M \& AC-35M/AC-38M

- WELZ's new exclusive wide range ($140 \sim 470 \mathrm{MHz}$) directional power sensor.
- Three ranges (3/20/100 W) Forward/Reflected power and SWR Measurements.
Full scale meter indication at 3.0 W power range. 3W SWR sensitivity.

£59.75 inc VAT

SPECIFICATIONS

	SP-15M	SP-45M
Frequency Range (MHz)	1.8-150	140-470
Power Measurement (W) CW	0-200	0-100
Accuracy (power measurement) at full scale	$\pm 10 \%$	
Power Range (W)	2.5/20/200	3.0/20/100
Measurement Function	Forward/Reflected Power, Calibration \& SWR	
Insertion Loss (dB)	0.2	0.5
SWR Measurement	$1: 1-1: \infty$	
SWR Sensitivity (W)	1.5	3.0
Impedance	50 ohms	
Connectors	SO-239	
Dimensions (mm)	$160(W) \times 65(H) \times 145$ (D)	
Weight (g)	950	

AC 38 ATU £73.95 Carriage £2 extra per item
Send for details of complete range of Welz products.

[^2]
DIRECTIONAL COUPLER

of precision engineering and lathe work is necessary, but this is a must if meaningful use is to be made of the information gained by the measurements that can be performed by this device.

Some of the parts must be manufactured to an accuracy of plus or minus

Turn the block around and do the same at the other side. The block can now be removed from the lathe and sharp edges cleaned off ready for the next step.
The centre conductor is made from a short length of standard brass .250 inch diameter bar (see Figure 6). This is usually accurately sized and will not need any alteration to its diameter but be
one-thousandth of an inch, mainly turned parts; most of the other parts can be finished to a standard engineering tolerance of plus or minus one-hundredth of an inch.
The body of the coupler is machined from a block of brass (see Figure 5) or aluminium 3 inches long and 1 inch square. It is set up on the cross slide using a lathe as a boring machine. A pilot hole .250 inches in diameter is drilled through the block as accurately as possible.
Next, using a long series drill, without removing the block from the lathe cross slide or moving the cross slide in any way (experienced machinists may adjust the cross slide in order to correct an out of true of the pilot hole as it exits the block), fit a boring bar with a cutter set for .265 inches and take a slow cut. Keep taking fine cuts until .565 inches is arrived at.

The final bore diameter must be .575 inches $\pm .001$ inches if a 500 hm line is to be achieved. When the bore is finished turn the block through 90°.
Make sure that the block is square to the chuck and reclamp to the cross slide ensuring that the height of the block is not altered in any way from the previous operation.

Fit a cutter holder into the headstock and mount slot drill or four flute milling cutter of .227 inches diameter. Carefully mill a slot 1.181 inches long, deep enough so that it cuts through into the bore. This must be done in one cut and with very great care.
If a lathe with a power cross slide is available then this will present little difficulty.
careful not to damage its surface when handling; use soft jaws in the vice and in the lathe chuck when drilling and turning the ends.
Two brass plates $1 / 8$ inch thick, three inches by one inch are drilled as per the drawing and the holes threaded as marked (Figure 7). Carefully mark out using a centre punch on hole centres. Use a sharp drill and be careful to avoid snatching if using a press drill.
The body of the coupler should be drilled and tapped to take the fastening screws for the ' N ' type sockets. 4 BA screws could be used and the holes opened out in the socket flange to $9 / 84$ inches. The other holes are drilled

Figure 7 Cover plate detail
$5 / 64$ inch and tapped to take a 6 BA bolt.
All the sockets are modified by turning off the raised part on the back of the flange. On most ' N ' and BNC sockets this will release the pin in the centre. It will be found that there are two teflon washers supporting the pin and the rear one should be discarded. On some types of BNC socket the rear teflon washer must be turned down so that it fits into the .250 inch hole in the mounting plate.
Once all the parts have been sorted out a dummy assembly run can be tried and any mechanical adjustments can be made. Parts should be marked so that they can be reassembled later to be put back in the same place.
The centre conductor should have the pins from the ' N ' type socket soldered in place and any excess solder cleaned off. Care should be taken to ensure that the pins are straight and in line with the centre conductor, otherwise problems could occur when trying to mate the ' N ' type plugs at the sockets. This can now be set aside ready to be fitted later.
The modified BNC sockets can now be fastened permanently to the brass plates and then all the screw threads and the excess pin length can be removed from the BNC sockets. (Care should be taken if your BNC sockets have the long teflon support for the centre pin because there must be at least $1 / 8$ inch of pin showing through the teflon in order to allow the pickup line to be fitted).
The pin on the BNC socket should be flush with the surface of the brass mounting plate, as should the screw threads which protrude through the mounting plate.This can most easily be achieved by rubbing the assembly against fine carborundum paper laid on a glass plate, to ensure a flat surface and a good finish. All traces of grit and dust particles must be removed before any further assembly can take place.
Two lengths of copper wire .098 inches in diameter and 2 inches long (allowing plenty for cutting to size) are used for the pick-up loops.
It is very important that the dimensions of the pick-up loops are adhered to, because unless there is access to calibration facilities, the coupling loss and balance will not be known precisely. Adjustment of balance can be made with simple test equipment and this will be described in Appendix A.
A simple jig should be made in order to help make the loops. A piece of plate about $1 / 8$ inch thick has to have two holes drilled in it .114 inches in diameter and 1.181 inches apart. The copper wire should be bent into a flattened ' U ' shape (Figure 8), the ends should pass through both holes, and the wire should lay flat against the plate between the holes. The height of the pick-up loops should be .310 inches measured by placing the loop legs upwards on a flat surface and scribing a mark across the legs with a height gauge set for .310 inches. Cut the legs and file flat to the mark made.
Once this has been done four copper

Material: 0.098in diameter copper wire 2 required
Figure 8 Coupling loop

Figure 9 Detail of coupling connections
or brass ferrules are needed so that the coupling loops can be soldered onto the BNC socket pins and kept square. They must not lean to either side or be twisted to one side or the other (Figure 9). The ferrules are made from copper or brass shim stock cut into a strip $1 / 4$ inch wide and wrapped around a spare piece of .098 inch diameter copper wire a couple of times to form a tube $1 / 4$ inch long and .098 inches inside diameter. Solder the loops using a hot soldering iron and the minimum amount of cored solder.

The BNC mounting plates can now be fitted onto the body and secured lightly with the fastening screws. The loops should protrude into the bore of the body by the diameter of the wire (Figure 10).

This will produce a coupling loss of about -35 dB at 144 MHz dropping to -26 dB at 432 MHz and about -17 dB at 1296 MHz , cut off being about 3.5 GHz with a coupling of -6 dB or less (but could still be useful).

Continue assembly by fitting the ' N ' type sockets and centre line. When these have been fitted the screws can be tightened securely and varnish applied to prevent them from coming loose.

Appendix A

The finished directional coupler can be adjusted so that both the pick up lines have the same coupling loss. If the details have been followed closely then the out of balance will not exceed 2dB and hopefully we should be able to do better than .25 dB .
Some test equipment is needed but apart from a good 500hm termination load, a 500hm dummy load and an avometer with a diode probe will suffice. The source of RF can be a transmitter for 70 cm . It is not necessary that the diode probe be calibrated: all that is needed is
an indicator of the voltage developed.
The 500hm dummy load termination must be able to handle all the power that the transmitter can produce. Set up the coupler as shown in the drawing (see Figure 4) and switch the transmitter on. Measure the voltage produced at the transmitter end of the coupling line with a 50 ohm terminaton at the other end of the line. Swap sides and compare the voltage measured with the other side. The voltages measured should be exactly the same. If they are then the coupler is ready to use.
The likelihood of both lines producing the same voltage is remote, so one line will have to be adjusted slightly in order to alter the pick-up a little. Move the line in to increase the pick-up. This could be done by bending the flat part of the loop slightly using snipe-nosed pliers. A better method of very fine adjustment can be used by putting several 1 thou thick copper shim stock under the socket mounting plate on the side with the higher voltage measurement (a convenient source for copper shim material is the outer from Pope h100 co-axial cable).

Appendix B

If the constructor has access to a good attenuator of at least 40 dB range adjustable in 1 dB steps, capable of working at 500 MHz or more and of handling the RF power that will be used, then it is quite easy to measure the coupling loss at 432 MHz .

Set up the equipment as shown in Figure 11. With the attenuator set to 35dB and using a Tee connector measure the voltage across the 50 ohm load, then without disturbing anything measure the voltage at the end of the coupling lines.
Reduce the attenuation until the measured voltage is the same as the first measurement. If required the measuring detector could be a receiver or spectrum analyser etc. Because the coupler lines are all 500 hm and indeed should be terminated in 50 ohm so a length of 50 ohm coaxial cable can be used between the coupler and whatever detector is used without incurring errors.

It would only be necessary to add the

The formula used for calculating the impedance of the main line is:
$138 \times \log { }^{10} \mathrm{D} / \mathrm{d}$
Rearranging to give ratio of
D to d from Zo
$*_{*}^{*}$ Zo $=50$ Ohm/138 $=.3623$
${ }^{*} *$ Ratio of $\mathrm{D} / \mathrm{d}=.36233^{10}=2.30: 1$
$*_{*}^{*} \mathrm{~d}=.25$ inch $\times 2.30=.575$ inch
** Line inner diameter $=.250$ inch
** Line outer diameter $=.575$ inch

insertion loss of the co-axial cable used to the insertion loss of the coupler at the frequency used for the measurement.
The physical dimensions of the lines used in this directional coupler are determined by the requirement that the device has a characteristic impedance of 50ohms.

Note the number of dB's of attenuation removed. This figure is then the coupling loss in dB at the frequency that the measurement was made, and if repeated at say $150,300,450,1000$ and 1500 MHz , a curve showing the coupling loss against
frequency can be drawn and this graph can be very useful for some applications.

Once the coupler is finished and calibrated we can now use it in order to measure VSWR very accurately, certainly to within 5% or better at 1296 MHz . It must be remembered that both lines are for all intents and purposes exactly the same, so that it does not matter which line is used to measure forward or reflected voltage.
The pick up coupling is the same in any case, but for the maximum accuracy the same diode detector should be used to
make both forward and reflected measurements.

The coupler should be fitted at the antenna when making VSWR measurements, or if this is not possible then the length of the connecting cable must be an electrical multiple of a half wavelength at the frequency in use and be measured very accurately at that.

Don't forget that the length of the cable must include the plugs and sockets and also about one third of the length of the coupler itself. The terminating loads are $1 / 2 W$ line terminations and are available from Greenpart or Schuner. These are highly recommended since they are good to well over 1.5 GHz and are relatively inexpensive.

The same procedure is used for the secondary line sizes but 276 is substituted for 138, the result gives an approximation of dimensions. It should be remembered that the exact impedance of the secondiary lines will vary slightly with variations in the wire diameter, cavity size and also the coupling to the main line.

Therefore the line impedance must be measured in order to say precisely what the actual characteristic impedance is.
For the directional coupler described using the given dimensions, and obtaining the coupling factor specified, the secondary line impedance will be within a few per cent of 500 hms .

BY STEPHEN IBBS

Two rallies have been held in the Midlands recently, one at Drayton Manor Park, and the other at Elvaston Castle (near Derby). It is interesting to compare these two and see how they serve the amateur and his/her family looking for a day out.

The Drayton rally was held on the 20th May, and the weather was good but not brilliant. I arrived at about 8.15 am to help a friend set up a stall, and was relieved to find that they have at last moved the three marquees to a new site further away from the main entrance. It had always been a dice with death wandering around the rally because of cars streaming in, and this move was an excellent and necessary improvement. However, the recurring criticism of Drayton is that they always try to cram too many stalls into the tents. One more marquee with the same number of firms would ensure much more room, and less irritability from crowds unable to move.

The stewards tend to be rather overzealous, or officious, depending on your view-point, and though the rally was not due to open until 11am, it was clear that most stall holders were ready for business well before time. . . not that this had any effect on the stewards, who delighted in keeping the crowds out,
until finally somebody saw sense. There were a great many bargains to be had at Drayton.

Clearly, the bottom has dropped out of the secondhand market for certain items...eg Pye equipment, and these were being snapped up by those not susceptible to the flashing lights of the latest Japanese offerings.

The big advantage of Drayton is, of course, the fun-fair and zoo for the rest of the family. There is an excellent system whereby children can pay $£ 2.50$ and then go on as many rides as they like, all day. This enabled Shelagh (G4TCD) and myself to wander round at our leisure, wishing we could afford to buy lots of things.

The Elvaston rally was held on the 10th June, and the weather was glorious. Here we had to pay 40p car parking . . compared with Drayton's £1 per adult plus car parking...a very pleasant surprise, but what sort of day could the children expect? As things turned out, it was marvellous. There were beautiful grounds to explore, the castle and its exhibitions, as well as fun-fair rides, traditional fair-organ, WW2 lorries and jeeps, dog-handling displays, and a special childrens' show arranged by the rally organisers. Their efforts were
greatly appreciated, in what I think must be the best rally I have ever attended. Scouts were on hand to direct the very spacious parking facilities, a PA system was working through the day to announce the various attractions etc, and the refreshments were of a very high standard, with a radio ham wandering around in full chef's gear (plus shorts), directing operations.
With all these distractions it was difficult at times to concentrate on the job in hand. . . spending the hard-earned pennies. There were a lot of attractive goodies on offer, particularly on the wellorganised 'bring-and-buy' stand. There were a lot of stalls out in the open, and the marquees only had stalls around the edges (unlike Drayton which also squeezes in a double row along the centre), and this made so much difference in terms of comfort.

Drayton will always be popular because of its well established sideattractions, but its organisers would do well to remember the thousands of amateurs who object to being kept out, then squashed in to marquees holding too many stalls.

Finally, many congratulations to the Elvaston organisers... long may it continue.

FORTHI SWL...

ICRTO, 5565 .

The R70 covers all modes (when the FM option is included), and uses 2CPU-driven VFOs for split frequency working, and has 3 IF frequencies. $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz , and a 100 dB dynamic range. It has a built-in mains supply. Other features include input switchability through a pre-amplifier, direct or via an attenuator, selectable tuning steps of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz , adjustable IF bandwidth in 3 steps (455 KHz). Noise limiter, switchable AGC, tunable notch fitter, squelch on all modes, RIT, tone control. Tuning LED for FM (discriminator centre indicator). Recorder output, dimmer control.

The R-70 also has separate antenna sockets for LW-MW with automatic switching, and a large, front-mounted loudspeaker with 5.8 W output. The frequency stability for the 1 st hour is $\pm 50 \mathrm{~Hz}$, sensitivity - SSB/CW/RTTY better than 0.32 uv for $12 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) \div \mathrm{N}, \mathrm{Am}-0.5$ uv. FM better than 0.32 for 12 dB Sinad. DC is optional.

Ever since its introduction the IC-R70 has proved to be a popular and reliable HF receiver making your listening hours a pleasure. Please contact us for further details on this excellent set.

[CRTHE, £649,

For those who like the easy life, the R71E has the option of an infra-red remote control unit, making it a very sophisticated rig indeed, here are some details.
$100 \mathrm{KHz}-30 \mathrm{MHz}$ all mode (with FM option). Quadruple conversion superhet. If frequencies $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz with continuous bandpass tuning and notch filter. Vitually immune from adjacent channel interference with 100 db dynamic range. Adjustable AGC, noise blanker and switchable pre-amplifier. Direct keyboard into twin VFO's with 32 programmable memories. 5 year lithium memory backup cell. Memory and band scan with auto-stop. Tuning rates $10 \mathrm{~Hz}, 50 \mathrm{~Hz}$ and 1 KHz with 6 digit readout. AC mains operation. Auto squelch tape record function.

OPTIONS:- Synthesized voice readout, infra-red remote controller, 12 V DC kit, mobile mounting bracket, two CW filters 500 and 250 Hz , FM unit, computer interface, headphones.

You can get what you want just by picking up the telephone. Our mail-order dept. offers you: free, same-day despatch whenever possible, instant credit, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service.

Please note that we now have a new retail branch at 95 , Mortimer Street, Herne Bay, Kent. Give it a visit, BCNU.

FORTHE DXer...

IC-745, 8839.

ICOM's IC-745 is the all-in-one transceiver featuring an HF all band SSB, CW, RTTY, AM (receive only) ham transceiver, plus a general coverage receiver. Options for FM transceive and an internal power supply make the IC-745 the complete transceiver in an all-in-one package.

The receiver section features a 100 KHz to 30 MHz general coverage receiver, this allows access to all HF bands plus all the frequencies in between. The IC-745 has an adjustable AGC circuit and DFM (Direct Feed Mixer) giving a wide dynamic range of 103 dB with an intercept point at +18 dBm . Exceptionally clean reception is achieved with a low
 noise PLL circuit and a 70 MHz first IF

The IC-745's features include IF shift, 16 programmable memories with lithium battery back-up, passband tuning, a noise blanker both wide and narrow, threshold level control, notch filter, receive audio tone control and an all mode squelch. Also available is a front end switchable receiver preamp providing 12 dB gain. RIT has a $\pm 1 \mathrm{KHz}$ range.

We could go on all day about the 745 , get in touch with us and we will send you the full story

1C-271H,8819.

The IC-271H is the most advanced 2 meter transceiver available today, it covers the spectrum from $144-146 \mathrm{MHz}$ with FM, SSB, or CW using the most advanced 10 Hz PLL system. The IC-271H is suitable for simplex, repeater operation, moonbouce or satellite work, and has features found on no other transceiver.

Some standard features include 32 tunable memories, a high visibility fluorescent display, RIT readout, scanning, 12V DC operation with optional AC power supply.

The 271 H has a speech synthesizer that announces the displayed frequency, ideal for blind operators, this is an optional extra along with the SM6 desk microphone and 22 channel memory extension with scan facilities.

As you can see from this brief description the IC-271H, (and its 430.440 MHz brother the $I C-471 \mathrm{H}$) are very versatile sets indeed. More detailed literature can be easily obtained from Thanet Electronics Limited.

Agent: Gordon G3LEQ, or telephone Knutsford (0565) 4040. Please telephone first, anytime between $0900-2200 \mathrm{hrs}$.

A self-test for those who are studying for the City and Guilds 765 Radio Amateurs Examination. Otherwise it can be used to 'brush-up' the memory and revive knowledge that is rusty

Compiled by Dennis Hayes

The City and Guilds 765 Radio Amateurs Examination takes approximately 3 hours and contains two separate papers which have to be answered during the period of the examination.
One hour is allowed for the first paper ($765-1-01$) which has 35 multiple choice questions covering licensing conditions and transmitter interference. A short break is allowed before commencing the second paper (765-1-02) containing multiple choice questions about operating practices, procedures and theory. This paper has 60 questions and the time allowance is $13 / 4$ hours.
The Amateurs Handbook (published in three parts and included in the December 83, January \& February 84 issues of Radio \& Electronics World) is a useful source of information and is recommended reading for the intending candidate. Page 20 of Part 1 of this book gives a comprehensive guide to other sources of information.
Although the following quiz is not as extensive as the City and Guilds examination and does not give a preview of the questions actually set, it may provide a useful indication of your state of readiness if you answer the quiz questions over a self-timed interval.
Now try the quiz, then look at the answers (on page 70).

Questions

1. Which of the following organisations is entitled to request assistance from a licensed amateur radio station during an emergency (disaster relief operation)?
(a) Emergency County Planning Officer
(b) St John Ambulance Brigade
(c) The DHSS
(d) British Red Cross Society
(e) Police Force
2. An amateur radio station may use any class of emission provided it is within the amateuf frequency bands. (True or False?)
3. The Morse Test includes sending----
words, averaging 4 letters per word, in 4 minutes.
(True or False)
4. What is the maximum number of corrections and uncorrected errors that are allowed in the Morse Sending Test?

Correction Uncorrected

(a)	2
(b)	1
(c)	4
(d)	3

The Morse Test wo words, averaging 5 letters per word and --- five figure groups in --minutes.
6. Related to Question 5. A word with more than one letter incorrectly received counts as --- errors.
7. The maximum number of errors in receiving plain language and figures during the Morse Test is:

Plain
Language

(a)	1
(b)	2
(c)	3
(d)	4

Figures
(c)

2
4
1
8. What speeds of transmission permitted for RTTY?

Bauds

(a)	40	45
(b)	45.5	50
(c)	49	54
(d)	47.5	56

9. When using telegraphy it is particularly important to ensure that interference due to ---- is eliminated.
10. The amateur must notify the authority when he is testing for the presence of harmonics or other spurious emissions in his transmission.
(True or False?)
11. If the station is temporarily operated elsewhere the call - sign must be amended.
(True or False?)
12. The input power requirement for an
equipment is 550 W . A suitable rating for its supply fuse would be:
(a) 13 A (b) 3 A
13. The ohmic value of a resistor with colour coded bands of yellow, brown, orange is:

(a)	31,000
(b)	41,000
(c)	25,000
(d)	6,000

14. The input level of 100 mW to an amplifier of equal input and output impedances produces an output of 10 W. The power gain of the amplifier (in dB) and its output level (in dBW) is:

Gain Output Level

	Gain (dB)	Output Level
(dBW)		

15. If the maximum deviation of an FM signal is 3 KHz either side of the carrier when the modulating frequency is 100 Hz , the modulation index is:

$$
\text { (a) } 5 \text { (b) } 3 \text { (c) } 100 \text { (d) } 30
$$

16. When a 14.1 MHz carrier is frequency modulated at 1 KHz , first and second sideband pairs will be produced at:

1st
2nd
(a) $14,087 \& 14,103 \mathrm{KHz} 14,094 \& 14,106 \mathrm{KHz}$
(b) $14,098 \& 14,102 \mathrm{KHz} 14,096 \& 14,104 \mathrm{KHz}$
(c) $14,101 \& 14,099 \mathrm{KHz14}, 102 \& 14,098 \mathrm{KHz}$
17. A pre-emphasis circuit restricts the bandwidth of an FM signal and a clipper attenuates the lower frequencies.
(True or False?)
18. A Lissajous figure can be displayed when comparing two low frequency sinusoidal signals and the oscilloscope pattern will depend on:
(a) signal amplitudes (b) phase relation (c) frequencies (d) a,b,c
19. The Lissajous figure will be stationary when a constant ratio exists between (a) phase (b) frequency (c) both.
20. An antenna designed for operation on 435 MHz has the same gain as another designed for operation at 145 MHz . Are they equally effective? (a) No (b) Yes

SPORADIC-E

 PROPACby Keith Hame
and Garry 5 mith

Throughout Europe there are literally hundreds of broadcast radio and television transmitters operating in Bands I and II within the 40 to 110 MHz spectrum. Many outlets are low-power relays but there are dozens of main transmitters with effective radiated powers (ERPs) of between 10 and 100 KW . These can be easily received in the UK with the aid of Sporadic-E propagation.

The established DX enthusiast will already be aware of those countries and transmitters which are readily received, and those which are more elusive, requiring patience and technical expertise. The newcomer has to start from basics and it is hoped that this article will provide an insight as to which countries can be expected during good conditions and how to identify reception.
It shouldn't be assumed that a large aerial and sophisticated equipment will automatically guarantee an endless selection of extra TV and radio programmes on a permanent basis. One of the thrills of DX reception is the uncertainty and surprise element of what may be received, since it is atmospheric conditions which have the upper hand in the matter. TV-DXers with years of experience still find the sight of a foreign test card or clock caption on their screens fascinating, especially when the signal has originated several hundred miles away.

Spanish test card

Sporadic-E reception

Under normal conditions signals radiating from a high power transmitter cannot be satisfactorily received beyond the optical horizon. This is approximately 80 to 100 miles from the transmitting site and is due to the curvature of the Earth. Signals will leave at a tangent and continue into space after passing through the E-layer, situated some 75 miles above the surface of the Earth. At certain times of the year patches of ionised gasses within the E-layer become capable of reflecting signals at VHF frequencies back to the Earth.
Since reflection takes place a skip distance is involved. This is typically 700 miles, but occasionally the signal is reflected again producing multi-skip reception. Sometimes reflection will take place at a more acute angle, thus producing a very short skip of 250 miles or less. Such instances are, however, rare.
Sporadic-E ionisation occurs mainly between mid-May and early September, when DX reception can be an almost daily event. However, Sporadic-E activity can occur at other times of the year, although it is less frequent and less dramatic than the summer period. 'Openings', as they are termed, are completely random and can present themselves at any time of the day or night.
On some days activity can be nonexistent or last for only a few minutes, while on others there may be several openings. Occasionally an opening can last for much of the day with signals arriving from every direction.
Openings are more common on the lower VHF frequencies. Consequently
there will be fewer instances of signal propagation on the FM radio band compared with Band I television channels. During very intense activity the maximum usable frequency (MUF) will occasionally rise above the 2 -metre amateur band and permit Band III TV reception, albeit on the lower channels such as E5 and E6. However, on at least one occasion the MUF rose sufficiently to allow Soviet TV to be seen on all its Band III channels including R12 at 223.25 MHz . Details of channel frequencies are given in the table.
Signals propagated via Sporadic-E ionisation can vary in strength and quality even over a period of seconds, although the higher the frequency at which reception takes place the more stable and slow-fading it tends to be. Television signals propagated on the lower Band I channels are often very strong, attaining levels of several mV , but they can suffer from reduced bandwidth effects, producing smeary and distorted video.
Colour and sound are more easily resolved on the higher Band I channels

Italian test card

SPORADIC.E

due to improved signal stability and quality. Where the FM radio band is affected via Sporadic-E the signal characteristics often resemble those of tropospheric propagation.
Initial experiments in Sporadic-E reception should be conducted during the summer, to take advantage of frequent openings and high signal levels. This means that fairly simple receiving apparatus can be employed. A dipole can be used for both TV and FM radio reception, with each rod cut to 50 inches for the centre of Band I or 30 inches for the FM band.
Aerials should be mounted horizontally and some method of rotation is desirable since a horizontal dipole is directional. Height is not of great importance because signals propagated via Sporadic-E arrive at an angle but, local shielding should be taken into account.
For more serious and regular experiments most enthusiasts progress to the luxury of a multi-element beam covering the appropriate channels. The use of masthead amplifiers should be avoided, no matter how tempting these may be. Signal levels in Band I can attain many mV without amplification, and using such a device may introduce cross-modulation and other spurious effects.

Equipment requirements

A typical domestic FM radio receiver will suffice for the reception of Western

European FM stations where the frequency range 88 to 108 MHz is used. Eastern bloc countries have their own FM band situated between 64 and 73 MHz , with the exception of Yugoslavia where standard Western European allocations have been adopted. One solution to Eastern bloc FM reception is to use a scanner such as the SX200-N.
This would also allow monitoring of the various Italian private radio station transmitter links operating between 45 and 60 MHz . These carry popular music programmes and are usually present during reception of television signals from Italy on channels IA and IB. As a bonus, foreign TV sound can be monitored with such a scanner.
For television reception via Sporadic-E, a receiving system capable of covering the necessary frequencies is an obvious essential. With the exception of France, who use 625 lines with positive vision modulation and AM sound, all other European services use 625 lines with negative video and FM intercarrier sound. In fact they are very similar to our own system except that the sound spacing differs and they utilise Bands I and III as well as UHF. The intercarrier sound spacing is 6.0 MHz in the UK and Eire, 6.5 MHz in Eastern-bloc countries and 5.5 MHz in Western Europe (including Yugoslavia), Africa and the Middle East.
Certain domestic television receivers already possess a multiband tuner as
standard. These are mainly imported models from manufacturers such as Grundig, Luxor and Telefunken. A few domestic video cassette recorders have multiband facilities. The Sanyo 930-00 and the Hitachi VT 11E (DS) are two examples. By simply connecting a suitable aerial and setting the bandswitch selector to Band I, DX signals can be tuned in with the VCR.
There are many small-screen portable TV sets which cover the appropriate European channels. Prospective purchasers should look for tuning scales marked 2-4 and 5-12; this will indicate Western European E channels 2 to 12. Some portables have switching for Continental and UK sound standards and colour receivers catering for both PAL and SECAM transmissions are readily available.

For the keen experimenter a multiband tuner could be fitted to an existing receiver although modifications and additions of this type demand a certain level of competence on the part of the individual. The usual safety precautions must be observed when dealing with domestic receivers since these employ live-chassis techniques.

Battery/mains portables are normally equipped with an integral mains isolating transformer, thus making modifications more attractive from the aspect of safety.
Inexpensive varicap tuners suitable for Band 1 experiments are available

from mail-order companies such as Sendz Components. Most have only the basic Band I coverage of 47 to 68 MHz but others provide an extended coverage well into the FM radio spectrum. The ELC 2060 is an example and covers OIRT channels R3, R4 and R5.
Simple modifications of this type will provide vision-only signals, but it is not considered too much of a disadvantage. The intercarrier sound IFs could be realigned to the appropriate sound spacing of 5.5 MHz or 6.5 MHz if required, although many circuits use fixed ceramic filters and these would have to be changed.
The more intrepid experimenter could build the multiband DX-TV converter described in the August 1983 issue of R\&EW. This can be used with an unmodified receiver.

Identitying TV signals

Programme content and presentation quality both contribute in providing signal identification in the absence of captions and test cards. The experienced DXer finds his 'sixth sense' offers assistance too. Familiarising oneself with the positions of various channels in Band I is advisable and is a relatively easy task, especially if the local BBC-1 transmitters are still on the air to act as markers.
Reference to the channel allocations in the table should help. Once their relative positions have been established, with practice it should be easy to differentiate between E and R channels.

Some countries do not use all channels in Band I and by a process of elimination it is possible to work out which service is being received. For instance, Rumania does not appear on channel R1 and Denmark does not transmit on channel E2.

The general direction from which a signal originates can often give a valuable clue, although on rare occasions signals can be reflected within the E-layer and arrive from a totally different direction than that of the transmitter. Neighbouring countries may be present, especially during intense openings. Yugoslavian signals usually accompany Italian transmissions, and if these are present it is often worthwhile to be on the look out for double skip signals from Jordan.

The accompanying sound channel can provide more clues, but unless one is conversant with foreign languages it may be best to leave well alone, although it does tend to add a touch of glamour to the reception.
Test cards provide a positive form of identification. Most television services use an electronically generated colour pattern and nearly all incorporate some form of identification. Norway even displays the time and the transmitter location on their test card; other services simply include station initials. On Russian test cards there are lots of unusual numbering systems and small lettering in the Cyrillic alphabet.
Test cards in Europe are radiated prior to programmes but there is a growing
trend to display sample teletext pages. Unfortunately these all look alike, especially on weak signals. Identification captions and clocks are other possible means of identifying services, but not all clocks carry identification.

However, clock captions can give an indication as to the country of origin even without identification. A check should be made of the time. Is it GMT +1 hour or GMT +4 hours? If it's the latter and on an E channel then the signal is almost certainly an 'exotic', probably from the Middle East.

Weather maps can be a useful guide to identifying a signal. By noting which area of the map is receiving the most attention it is often possible to pin-point the source of reception.

Some services regularly use subtitling in the lower portion of the picture, especially with imported programmes and feature films. Scandinavia, Yugoslavia and Rumania frequently show subtitled programmes. While spoken foreign languages may be difficult to understand it is surprising how quickly one recognises them when in subtitle form.

Several European countries such as West Germany, Switzerland and Italy now incorporate station identification in the corner of the picture in an attempt to prevent piracy. These inserts frequently change position but they do provide yet another means of identification.
Most countries use some form of digital information known as vertical interval test signals (VITS). within the frame bar. These differ between services and also from studio to studio within a particular service. As the VITS tend to change periodically they cannot be relied upon to provide definite identification on a permanent basis. The frame amplitude of the receiver may have to be reduced in order to display these test pulses.
The style of dress and sometimes the complexion of presenters can offer an overall clue to the country of origin, although the sighting of a big beefy battleaxe doesn't always indicate Soviet TV. Early morning TV from Russia is easy to spot: it's normally a diet of keep-fit classes followed by a concert, poetry or a military parade.
In other Eastern bloc countries services are more Westernised in their approach, with cartoons and advertising. This is especially true of Hungarian TV. Spanish TV tends to feature bullfighting very regularly - in fact, it's their version of 'Match of the Day'. Popeye cartoons, Tom and Jerry dubbed in Spanish, The Avengers and a few 'heavy' drama programmes are also typical offerings.
The DX-TV enthusiast will have to search for Icelandic TV if it's late-night test cards he's after. Programmes do not start until approximately 2000GMT and closedown is never more than about three hours away. Consequently, the test card is radiated for lengthy periods, even throughout the night on some occasions. A late evening opening to this area could mean trans-Atlantic DX since there will

SPORADIC-E

be little chance of signals being swamped by European stations, especially during the early hours.

When to tune In

As mentioned previously, Sporadic-E reception can occur at any time of the day or night, the only limiting factor being the hours of transmission. Since Western Russia is GMT + 3 hours (CET +2 hours) test transmissions may be present as early as 0400 CET with programmes at 0600. Several other countries usually commence test transmissions shortly after. Italian reception is common during the main season and in 1983 it was seen virtually on a daily basis with a blank raster followed by the test card at 0800.
There is often a decrease in activity towards mid-morning. Spain is a frequent visitor around noon showing test cards, some of which include transmitter location details. Regional programmes in Spain are radiated at 1300.
Many European services devote mornings to schools television followed at lunchtime by lengthy news bulletins and magazine programmes. At such times identifying stations can often prove a headache, especially for the newcomer to DX-TV. During afternoon periods, Spain and Portugal may close down some of the transmitters and, if conditions are good to the south, there is the possibility of double-hop or even triple-
hop reception, perhaps from Ghana or Nigeria.
There is a tendency for intense openings to manifest themselves during the late afternoon or early evening and the FM radio band can become extremely active with signals from the south-east. Albanian TV on channel IC often appears during such activity. The 'magic' time for exotics seems to be between 1815 and about 1930 with the possibility of Jordanian signals appearing.
Western Russia is well populated with Band I transmitters and their current affairs programme 'BPEMЯ' is a familiar sight at 1900 , preceded by a clock caption showing 2100 hours local time. It is not uncommon for Soviet transmissions to end at about 2130 CET but some other Eastern-bloc countries radiate programmes until approximately 0100 .

Successful reception

We have concentrated mainly upon reception of television signals propagated via Sporadic-E ionisation since Band I frequencies are regularly affected. Many would-be experimenters often feel that reception of this nature is too technically demanding for them to undertake and that large receiving arrays and ultra-sensitive receivers are necessary
The authors' thoughts were similar
some 15 years ago but success is assured even for beginners. New enthusiasts usually see Soviet, Italian and Spanish TV programmes within a few days of starting during the main summer season. This year's Sporadic-E may be the quietest yet as regards local interference problems since few 405 -line VHF transmitters are operating at full strength. The whole of the band will eventually be re-organised to incorporate the 6 metre amateur band and various other communication services, a development which will be peculiar to the United Kingdom.

Further reading

The following two books should prove to be of interest to radio and television enthusiasts:-
Radio Stations Guide - Apart from covering long wave, medium wave and short wave stations, this book also lists European FM transmitters in ascending order of frequencies.
Guide to World-Wide Television Test Cards-Edition 2- A comprehensive book featuring test cards and identification captions to help DX-TV enthusiasts identify reception.
Both books are available from HS Publications, 17 Collingham Gardens, Derby DE3 4FS. Further details are available by sending a stamped-addressed envelope.

20 		
青- 		
\% \% 		

ATTENTION 10 METRE OPERATORS!

especially for the 10 Metre users who have converted CB rigs The AKD 10 Metre Linear Amplifier

$\star 25$ Watts FM out for 4 Watts in
$\star 50$ Watts PEP on SSB
\star About 10 Watts out for $1 / 2$ Watt in (13.8V)
\star Automatic RF sensing
\star Fully protected output

* Relay switching employed

Ł Requires nominal 12 volts @ 5 amps (15 volts maximum)
\star In-line fused
$\star 2$ year guarantee (including output device)
\star British made

£25.50
Incl VAT, p\&p

10 Metre RF Switched, In-Line Pre-Amp.

\star 3SK45 Dual Gate Fet, 15 dB gain
\star Fail safe, will handle 10 watts through power $\star 2$ year guarantee

£14.50
$\star \star \star \star \star$
Incl VAT, p\&p
Also available, the AKD range of RF INTERFERENCE FILTERS - high performance, sleek appearence.
Used by British Telecom, Granada, ITT, Thorn-EMI and other prominent companies.

> | A WAVEMETER FOR VHFNUHF |
| :---: |
| The AKD WA1 Absorption Wave- |
| meter covers $120-450 \mathrm{MHz}$ in two |
| ranges. It is extemely sensitive and |
| comes complete with a small aerial. |
| Itrequiresa PP3 battery. |
| \&24.95 inclusive |
| of postage \& VAT |

Direct from the Manufacture - or from your local Amateur Radio dealer.
Trade enquiries welcome

* AKD * ARMSTRONG KIRKWOOD DEVELOPMENTS

62 Marcourt Road, Stokenchurch, High Wycombe, Bucks, HP143OU Tel. 024-026-2360

The QQV06-40A as a linear amplifier

Abstract

In this article Brian Dale discusses the gentle art of coaxing in excess of 100 watts from the QQV06-40A double beam tetrode. Although not a constructional article as such, nevertheless it provides sufficient information to construct a linear amplifier based on his experience of constructing half a dozen such amplifiers in as many years:

Having wet his feet on the band, the newcomer to 2 metres will often decide that he requires more power. Technically this is not very difficult for several manufacturers produce ranges of linear amplifiers with output ratings from ten to nearly 200 W .
All of these are capable of giving excellent results. However, when the cost of the complete system is analysed, particularly for higher powers, the newcomer may well have second thoughts. The combined cost of a 100 W amplifier and the associated power supplies will almost certainly exceed £200 and if higher powers are contemplated, considerably more.
Frequently, therefore, thoughts turn to a 'home brew' solution.
Designs for 2 metre 100 W solid-state linear amplifiers have appeared from time to time in the amateur press. A costing exercise, however, will frequently reveal that, given the expense of high power VHF transistors, there is little financial advantage over purchase and, furthermore, one mishap will make the project hopelessly uneconomic.
The next consideration is for the use of those old fashioned generators of heat, light and RF valves.

Choice of valves

Here there is a choice. The high power alternative is to use a ceramic tetrode such as the 4 CX250, but the cost of this plus the special valve base, blower and the high voltage power supply unit will almost certainly run far higher than the solid-state option previously rejected.
The other choice is to consider the use of a medium power double tetrode such as the well tried QQV06-40A, which is capable of an output well in excess of 100W in SSB service, relatively inexpensive and, provided that reasonable precautions are taken, quite straightforward to construct and operate.
With regard to the economic aspects, these valves are regularly advertised at prices from $£ 6$ to $£ 60$ but it is frequently possible to purchase ex-equipment samples for considerably less at rallies and radio club junk sales.

by Brian Dale

The remaining costly item for such an amplifier is the HT mains transformer. This again is best found at a rally or a junk sale. The power requirements are quite modest and a $350-0-350 \mathrm{~V}$ or $375-0-375 \mathrm{~V}$; 125 mA transformer should be quite capable of powering an output well in excess of 100 W . A small ex-broadcast receiver transformer giving $250-0-250 \mathrm{~V}$ and sundry heater windings will provide bias and heater supplies.
The QQV06-40A is a VHF double tetrode with a total anode dissipation rating of 40 W for which most handbooks quote the use of a maximum anode
voltage of 750 V for CW and 600 V for amplitude modulation operation, giving a carrier output of up to 90W. The latter, however, gives the clue to the power possibilities in SSB operation.
During 100% amplitude modulation peaks, the anode voltage reaches twice its steady value and the peak output power is one and a half times the unmodulated carrier level. It would therefore appear that the valve is capable of withstanding anode voltages up to 1200 V and of giving a peak output power in the order of 130-140W.
Experience gained in the construction

of several QQV06-40A linear amplifiers over the past few years indicate that such output powers are quite possible and practical. Some particular examples of these valves do not seem too happy at the 1200 V HT level, but all seem reasonably content at around 1000 V .
Many excellent articles have been written about the design of QQV06-40A amplifiers for use at the normal rated voltages. However, when the voltages are increased, the stage gain increases to something in excess of 20 dB and in consequence more care has to be taken to ensure that stability is maintained.
The first stage in construction at which stability must be considered is in the physical layout. There must be maximum isolation between input and output circuits and in consequence these must be separated by either a shield or the chassis. This requirement has also been recognised by the valve designers who have fitted an internal shield between the base of the valve and the electrodes.
To ensure maximum shielding effect the valve holder must be mounted below the chassis or shield at a level which ensures the internal screen is exactly level with the chassis or screen. Furthermore the cutout through which the valve is mounted must be sufficiently large to accept the valve but without more than about 1 mm clearance.
The valveholder mounted, it is then convenient to consider wiring those electrodes which must be earthed. These may be earthed individually to a single earth point on the chassis, but I have found that greater stability can be obtained by cutting a strap from an old 50 gm tobacco tin, shaped such that it will join all earthed electrodes and reach down to the chassis to which it is firmly bolted (Figure 3).

The grid clrcult

Most conventional published circuits show a grid circuit comprising a coil and split stator capacitor. This may be perfectly satisfactory at lower voltage levels but experience has shown that better stability is obtained if the split

Figure 4 Details of link windings
stator capacitor is omitted and the grid inductance is resonated by the input capacity of the valve.
This is a simple operation if a grid dip oscillator is used. A coil of about six turns of 18 gauge wire is wound around a pencil, connected across the two grids and the resonant frequency determined. If the frequency is too high, squeeze the turns together; if too low, stretch the coil. If resonance cannot be obtained, remove a turn or substitute a larger coil as appropriate.
When resonance is achieved, solder a 100ohm wire wound resistor (which will later be connected to the bias supply) and the bypass capacitor to the centre point of the coil.

As a further precaution, slip a couple of ferrite beads onto the resistor lead. A wire wound resistor should be used for the resistive element and also acts as a radio frequency choke.

The screen circult

Similarly, the screen grid should also be fed through a wire wound resistor with a couple of ferrite beads on the lead.

Under no circumstances should a bypass capacitor be fitted for to do so would upset the internal neutralisation of the valve.

The anode circult

The anode circuit may comprise either tuned lines or a coil and split stator capacitor.There is little to choose between them. The tuned lines are reputed to be slightly more efficient, but on the other hand the coil-capacitor arrangement takes far less space. I have invariably used the latter system and found no cause for complaint.
The components used have usually been a $15 \times 15 \mathrm{pF}$ or a $10 \times 10 \mathrm{pF}$ split stator capacitor with a 3 turn, 1 inch inside diameter, $11 / 2$ inch long coil. The dimension of this inductance should be checked during construction and before
connecting the power supplies. With valve in position and the capacitor about half enmeshed, check the resonance of the combination in the same way as described for the grid circuit.
The link winding should be a single turn of well insulated wire. For this, I use a length of TV low loss coax with the outer insulation and braiding removed.
In an early linear a link of PVC insulated wire was used. After several months operation, during a 2 metre contest (Murphy's Law again), a loud bang and a flash announced that the insulation had failed. On inspection it was found that the insulation had melted. As the temperature within the case was quite moderate, it can only be surmised that heating due to losses within the PVC had caused the insulation to melt and eventually fail.

Power supplies

All power supplies for a QQV06-40A linear may be obtained from a single 350-$0-350$ or $375-0-375 \mathrm{~V}$ transformer with a 6.3V heater winding, although, if available, it is preferable to use a separate transformer to power heater and bias supplies.
The high voltage output is obtained by fitting a bridge rectifier across the whole secondary winding. With a $350-0-350 \mathrm{~V}$ winding this will give a peak of 990 V whilst a $375-0-375 \mathrm{~V}$ winding will give 1060 V . This is smoothed by three $100 \mu \mathrm{~F}$ capacitors in series, each in parallel with a suitable balancing resistor. The resultant value is $33 \mu \mathrm{~F}$ at 1350 V working which is more than adequate for the task. A suitable capacitor is R S Components stock number 103-890. Using these capacitors in conjunction with a $375-0$ 375 V transformer, my power unit gives an off-load voltage of 1050 V and on 200 mA load is about 60 or 70 V less - quite adequate regulation for the purpose.

A lower voltage for the screen supply may be obtained from the centre tap of

Fut HARD DISK DRIVES

Ully refurbishod DUABLODRE series OEC RKOO, NOVA, TEXS COmpatible

Front load. Free stand or rack mount \quad esso.00
 DIABLO/DRE $44-4000 \mathrm{NB} 5+5$ ex sto

Plus in house repair, refurbishing service.
EX SHOCR DITEGRAI D CIRCUTY
$\begin{array}{lll}\text { D8085AH-2 } & \text { D8086 } & \text { D8257-5 } \\ \text { D8202 } & \text { D8271 } & \text { AM2764-3DC } \\ 74 \text { LS86 } & 74 L S 112 & 74 \text { LS373 }\end{array}$ $\begin{array}{lll}74 L S 86 & 74 L S 112 & 74 L S 373 \\ 7407 & 2102-6 & 4146-3\end{array}$ $7407 \quad 2102 \cdot 6 \quad 4116.3$

COOLT F FATB

Cornigaxuor Dim. $92 \times 92 \times 25 \mathrm{~mm}$.
ETRI
Miniature 240 vo oquipment fan compl
 Gery quiet running 240 voperation. NEW $23^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$ compact
ver BUHLER 89.11.22. 8-16 V DC micro miniature reversible fan. Uses a brushle servo motor tor extremely high air flow. almost silent running and quaranteed 10,
hr life Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Current cost 532.00 OUR PAICE ONLY $\$ 12.95$ complofe with date. MUFFIN-CENTAUR standard
 £10.50. 1000 's of other fans Ex Sto
all for Details. Post $\&$ Packing on all

TRANSTEL PRINTERS EX NEWS SERVICE compact, quality built
50 column matrix printer. Standard 5 bit 50 column matrix printer. Standard 5 bit
serial, BAUDOT CODE current loop interface for connection to computer or radio receiver via simple filter network to decode
and print most world-wide NEWS, TELEX and RTTY senvices Supplied tested and in
good condition with data large paper roll and 50 and 75 baud xtals. ONUY $\$ \$ 9.95$

TTLETYPE ASR 33

DATA I/O TERMINALS
Industry standard combined ASCII 110 baud printer, keyboard and 8 hole paper
tape punch and reader. Standard RS232 tape punch and reader. Standard RS232
serial interface. Ideal as cheap hard copy serial interface. Idea as cheap hard cODY
unit or tape prep. for CNC and NC
machines TESTED and in good condition Only $£ 235.00$ floor stand 10.00
Carr \& ins $£ 15.00$
Carr \& Ins £ 15.00

DATA MODMMS

Join the communications revolution with our
range of EX JELECOM data modems. Made range of EX TELECOM data modems Made to tor 24 hrs per day Units are made to the
CCITF tone spec With RS 232 i/o levels via a 25 way'D skt Units are sold in a tested
and working condition with data Permission may be required for connection to PO lines. MODEM 28 "Hackers Special" fully fledged
up to 300 baud tull duplex. ANSWER or CALL up to 300 Gaud full duplex, ANSWER or CALL
modes. AUTO ANSWER. Data i/o va
standard AS232 25 way 'D' socket. Just 2 wire standard AS232 25 way 'D' socket. Just 2 wire
connection to comms line Ideal networks etc. Complele with data, tested, ready to run at a
NEW SUPER LOW PRICE of ewly EGS.0日 + VAT + Carr.
MODEM 20-1 COMDaCI unit tor Use with
MICRONET, PRESTEL OI TELECOM GOLO
1200 baud receive Data l/o via RS232 D
socket Guaranteed working whin data for os
MODEM $20-2$ same as 20.1 but 75 . MODEM $20-2$ same as $20-1$ but 75 bau
receive 1200 baud ransmit fis0.00 TRANSDATA 307 A 300 baud acoustic
cOupler RS232 NEW DS 2123 M selectable V21 300-300 bpe, V23 75-120 V23 1200-75 full duplex. Or $1200-1200$ half duplex modea. Full auto answer via modem
CPU. LED status indicators. CALL or ANS
mode Switch ble CCIT or BEL 103 . modea Swichable CCIT or BELL 103 a
202 . Housed in ABS case size onty $2.5^{\prime \prime} \times 8$ $\times 9^{\prime \prime} .1288600+$
For furt
For further data or details on other EX STOCK
moderne contect sales office.

GE TERMIPRINTER

 printer terminals enables us to offer you Anthese quality 30 cps printers at a SUPER
LOw. PRICE LOW PAICE against their original cost of
over \&1000. Unit comprises of full OWERTY over £1000. Unit comprises of full OWERTY. print face similar to correspondence quality typewriter. Variable forms tractor unit
enables full width paper, upper - lower case, standaro RS232 serial interface, internal vertical and
horizontal tab settings, standard horizontal tab settings, standard ribbon adjustable baud rates, quiet operation plu
many other features. Supplied complete with manual. Guaranteed working $\mathrm{f} / 100.00$ untested $E \$ 5.00$. optional floor stand $£ 12.50$
Carr $\&$ ins $\Sigma 10.00$
PROFESSIONAL KEYEARD
DOAL 5" DISK DRIVES Current, quality, protessional product of a
major computer company, comprising major computer company, comprising
2×40 track MPI or Shugart FULLY BBC x 40 track MPI or Shugart FULLY
COMPATIBLE single sided drives in a COMPACI, attractively styled, grey ABS compact, attractively styled, grey ABS
structured case with internal switched structured case with internal switched
mode PSU. The PSU was intended to drivel
both drives and an intelligent $Z 80$ controller both drives and an intelligent $Z 80$ controll
with over 70 ic's. The controller has been removed leaving ample space and current on the $+,-5,+12$ and -12 supply for all
your future expansion requirements. Supplied tested with 90 day guarantee BRAND NEW condition with cable
micro. Ex Stock at only 259.00 micro. Ex Stock at only $\mathbf{2 5 9 . 0 0}$
$+£ 10.00$ carr. Limited Quantity Only micro.

+ £ 10.00
FR
An advantageous purchase of brand new surplus allows a gre at OWERTY, full travel,
Chassis keyboard offer at ractions of their onginal costs.
ALPHAMERIC $7204 / 60$ full ASCII 60 key, upper, lower + control key, paralleI TLL OUtput plus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC. E3S. So.
DEC LA34 Uncoded keyboard with 67 quality, GOLD, normally open switches on
standard X, Y matrix. Complete with 3 LED indicators \& $v / 0$ cable - ideal micro

THE BENEFITS OF INSURANCE

ELECTRONICS were unfortunate enough to have a serious fire at our main
location, reducing a substantial part of our stock, warehouse and offices to a pile of
ashes and rubble. HOWEVER, we had seen the adverts about the "Benefits of ashes and rubble. HOWEVER, we had seen the adverts about the "Benefits of
Insurance" and some years ago had taken comprehensive insurance cover to protect against an event such as this.
The day after the fire we did not even have a single pen to write with, to say nothing of the non existant showroom and burnt out warehouse with direct access to the stars via our now non existant roof!!
The loss of stock and damage to the premises has resulted in losses in excess of We are still, although working under great difficulties, VERY MUCH in business. We owe this to supreme efforts by all our staff - perhaps knowing their jobs could have been at stake, stock being located at several different locations, help from business colleagues and our bank
To these people, I say a very loud THANK YOU.
To both the mighty PRUDENTIAL and GENERAL ACCIDENT insurance Companies who from the date of our fire have NOT even offered or paid A SINGLE To both the mighty PRUDENTIAL and GENERAL ACCIDENT insurance
Companies who only answer our requests for help and information with "We are
still looking at reports..." I say "STRONG STUFF THIS INSURANCE???""
66\% DISCOUNT
ELECTRON COMPONENTS
Due to our massive bulk purchasing programme which enabies us to bring you the best possible
bargains, we have thousands of I.C.s. Transistors. Relays, Caps, P.C.B s. Sub-assemblies, Swiches. etc. etc. surplus to our requirements Secause we don t have sufficient stocks of any
one item to include in our ads. we are packing all these tems into the $B A R G A I N P A R C E L$ OF A
IIFETMME Thousands of components at giveaway prices! Guaranteed to be worth
 10kls £10.25 + pp £2.25 $20 \mathrm{kls} £ 17.50+£ 4.75$

TH, PRICES PLUS VAT

COMPURER 'CAB'

abinet with integral switched

mode PSU, Mains filtering, and iwin fan cooling Originally made for the famous DEC PDPB computer yours per day the PSU is fully screened and will deliver a tours per day the PS 17 amps. $+15 v$ DC at 1 amp and -15 v DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power and 'Run' EDs mounted on Ali front panel, rear cable entries, etc tc. Units are in good but used condition - supplied for $240 v$ operation complete with full circuit and tech. man Give your systom that professional finish for on 49.95 + Carr. Dim. 19" wide $16^{\prime \prime}$ deep 10.5" high Useable area $16^{\prime \prime} w 10.5$ "h $11.5^{\prime \prime} \mathrm{d}$
Also avaliable LESS PSU. with FANS etc. Internal dim

BUDGET RANGE VIDNO MOLITORS

 At a price YOU can afford, our range of EX competition!! All are for 240 v working with ore tested and set for up to 80 col use on BBC micro. Even where MINOR screen burns MAY exist-normal data displays are") HITACH 1000'S SOLD TO DATE $21 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W} \times 22 \mathrm{~cm}$ D. Black and
white screen
E 95 12" KGM 320-321, high bandwidth input, Housed in attractive fully enclosed brushed alloy case. B / \mathbf{W} only $£ 32.95$ GREEN ScreenE 39.95
24" KGM large screen black \& white Ideal scholsiso shops, clubs etc.
ONHY
14" BRAND NEW Novex COLOUR typ NC1414-CL. Many exacting features such as RGB TTL and composite video input, audio amp Even tinished in 88c micro owtching golours. Fully guaranteed Carriage and ins on ALL videos $£ 10,00$ SHMICONDOCTOR 'GBAB BAGS'

Mixed Semis amazing value contents

 include transistơrs digital. linear. I.C.s triacsdiodes, bridge recs. etc etc. All devices diodes, bridge recs. etc etc. All devices
guaranteed brand new full spec. with manu quaranteed brand new full spec. with facturer's markings, full
$50+E 2.95100+E 5.15$.
TTL 74 Serles A gigantic purchase of an IC's enables us to offer $100+$ mixed "mostly TL" grab bags at a price which two cost to buy. Fully guaranteed all IC's fult

DEC CORNER

BA11-MB 3.5" Bax, PSU, LTC
DH11-AD $16 \times$ RS232 DMA interface
DLV1
D . 4 EIA interface DUP11 Sych. Serial data $\mathrm{i} /$ DZ11-B 8 line RS232 mux board LA36 Decwnter Ela or 20 ma loop Axx-Nwffer LAX34-AL LA34 tractor feed MS11-JP Unibus 32 kb Ram MS11-LD Unibus 256 kb Ram MSC4804 Qbus (Equiv MSV11 256 kb
PDP1 1/05 Cpu, Ram, i/o, etc
PDP11/40 Cpu, 124 k MMU RT11 ver. 38 documentation kit RK05-J 2.5 Mb disk drives
KL8JA PDP 8 async i / o
MIBE PDP 8 Bootstrap option VT50 VDU and Keyboard -

000's of EX STOCK spares for DE
PDPQ, PDPBA, PDP11 systems \&
peripherals. Call for details. All types Computer equipment and spares wanted

ELERDAtiz.

the transformer and reduced by a suitable resistor network to the appropriate voltage. Ideally the screen should be stabilised at about 250 V and if stabiliser tubes or suitable zener diodes are available, they should be used. If stabilisers are not available, the screen supply should be smoothed by another of the $100 \mu \mathrm{~F}$ capacitors mentioned previously.

Whilst the heater and bias supplies may be obtained from the transformer which supplies the main HT voltage, it is preferable to use a separate transformer for two reasons.

First, it reduces the loading on the HT transformer and, secondly, it is then possible to switch off all high voltages to the amplifier during prolonged reception periods whilst maintaining the bias and heater supplies.
The heater requirement is either 12.6 V at 0.9 amps or 6.3 V at 1.8 amps , a figure which should be within the capability of almost any small broadcast receiver transformer. The bias requirement is around 30 V but this must be variable to enable the operational conditions to be set accurately.
For this purpose, I use in my present linear a small transformer which originally saw service in an old VHF FM valve tuner. This has windings of 6 V and 250 V . The heater of the QQV06-40A is fed from the 6 V winding. One side of the high voltage winding is earthed and a single diode rectifier is attached to the other. The output is smoothed and feeds a resistor chain whose value is arranged to pass a current of approximately 50 mA .
At the 'earthy' end of the chain is a 100 ohm resistor and a 1000 hm wire wound potentiometer. The bias for the amplifier valve is taken from the slider of the potentiometer and in order to ensure that this voltage remains reasonably constant with varying load it is bypassed with a large capacitor of several hundreds of microfarads capacity.

The purpose of the 1000 hm resistor is to make it impossible to remove all bias from the valve by misadjustment of the potentiometer. The value of the resistors above the potentiometer will have to be calculated to allow for the output voltage of the particular transformer used.
I have found it extremely useful to mount the bias potentiometer on the front panel so that the bias level can be varied at will. By this means the amplifier can be adjusted for class $A B$ operation when using SSB or for class C when using either FM or CW.

Testing

The testing of a valve linear amplifier takes two distinct phases. Firstly, to ensure that it remains stable and secondly to set up the correct operating parameters.
In order to check stability, with drive
and aerial disconnected, set the bias control to maximum and switch on the heater and bias supplies. Wait for a minute or so for the valve to heat up and then switch on anode and screen grid voltages. With over 50 V grid bias the anode current should be completely cut off.
Wait for a minute or two, watching carefully and listening for any sign of distress which might indicate a wiring fault or component failure.

If any smoke is seen or 'sizzling' noises heard, switch off immediately and investigate.

If all is well, slowly rotate the bias control until the anode current reads about 35 mA . Quickly rotate the PA tuning capacitor whilst observing the anode current. If this remains constant, quickly increase the anode current to 100 mA , repeat and drop it again to $30-35 \mathrm{~mA}$. Any variation may indicate that instability, in the form of tuned plate tuned grid oscillation, is present. If all is well, connect the input to the RF drive source (ie transceiver) and the output to a dummy load.
Apply sufficient CW or FM from the transmitter to drive the anode current to 100 mA off resonance and tune for maximum dip. Rotate anode tuning to see whether there is more than one dip in anode current. If there is, this could indicate instability. However, if the PA tuning capacitor is 'ex-equipment', this effect could also be caused by an intermittant contact between the rotor of the capacitor and the earth wiper.
The latter can easily be cured by turning off power and giving the points at which the wiper touches the rotor a liberal dose of Servisol or similar switch cleaner. Try this remedy first but if unsuccessful, a thorough investigation of earthing, soldered joints and serviceability of components will have to be made.

The final stage in the testing is to

adjust the position of the output link. For this, an RF power meter should be placed in series with a dummy load.
Position the link about halfway into the PA coil. Without drive applied, set the anode current to about 35 mA and then apply sufficient CW or FM drive to raise this to about 100 mA on resonance. Note the reading on the RF meter. Switch off the HT voltages, earth the PA coil with a screwdriver and push the link another $1 / 8$ to $1 / 4$ inch into the coil.

Remove the screwdriver, switch on the HT voltages, check the PA tuning and again note the power output. If it has increased, repeat the process. If it has decreased, move the link in the opposite direction. Continue until maximum output is obtained. This should be in the order of 60W.
If it is found that with the link fully in, there is still insufficient coupling, substitute a link of greater diameter.

Operating conditions

The operating conditions of the QQV06-40A amplifier are set by the anode dissipation of the valve which is 40W. Thus in FM operation, as the amplifier will be operating for periods of several minutes at a time and assuming an efficiency of about 60%, the maximum input power should be about 100W, ie 100 mA anode current.

In CW operation, however, the valve is
only operating in 'key-down' conditions for about one third of the time, and it might be thought that the input could be increased in proportion.
This, however, is not so, for this would be exceeding the safe cathode emission of the valve. 200 mA would be within this limit, at which level the output would be in the order of 120 W .

In both CW and FM operation, efficiency, cooling and valve life will be improved if maximum bias is applied with the drive level increased accordingly. In either case, several milliamps of grid current will be flowing.
For SSB operation, adjust the bias for $30-35 \mathrm{~mA}$ standing anode current under no-drive conditions, and set the drive level such that speech peaks cause the grid meter to just flicker upwards. At this drive level the anode current meter will probably be kicking to about $150-180 \mathrm{~mA}$. This does not indicate, however, that the input is $150-180 \mathrm{~W}$, for these peaks are of such short duration that the PA meter is unable to follow.

Similarly, the RF output meter will only be following the average output level, which can vary widely with the type of meter, the characteristics of the voice and the level of processing employed.
As a very broad rule of thumb, on unprocessed speech the RF output meter will normally indicate in the order of $30-40 \%$ of peak output.

The thought of exceeding published valve ratings may well give rise to concern regarding valve life. In my experience, however, such worries are groundless, for the QQV06-40A valve in use in my present linear has been used in this and previous linears for the past six years, and I know of several operators whose experience is similar.

PARTS LIST

R1, R2, R3 37Kohm

R4 47Kohm, 2W
R5 8.2Kohm, 11 W
R6, R7 37Kohm, 5W
R8 6 Kohm, 15 W (see text)
R9 1000 ohm W/W Pot
R10 100 ohm
F1 5A
C1-C9 100 μ F, 450V wkg
C8 $330 \mu \mathrm{~F}, 63 \mathrm{~V}$ wkg
T1 350-0-350V or $375-0-375 \mathrm{~V}, 125 \mathrm{~mA}$
T2 250-0-250V, 60 mA
LP1 6V, 0.3A
SW1 SPST 240V 5A
SW2 SPST 240V 5A
V1 VR150/30
V2 VR105/30
Rectifiers associated with T1 1500V PIV
Rectifiers associated with T2750V PIV

THE C. R. SUPPLY CO

 127 Chesterfield Rd, Sheffield S8 ORN Return posting

Ray Marston presents a further selection of practical IC audio power amplifier circuits in this concluding part of his special 2-part feature.

Figure 1b Pin layout of LM390
Figure 1a Internal circuit and pin connections of the LM390
1 watt battery-operated audio power amplifier

Flgure 2 LM390 1 watt amplifier with $A v=20$

LM390 circults

The LM390 is described in the manufacturer's literature as a '1 watt battery operated audio power amplifier', and is optimised for operation with 6 V to 9 V power supplies (10 V maximum): specifically, the IC can feed 1W into a 4RO load when powered from a 6 V supply.

Figure 1a shows the internal circuit and pin connections of this IC, which is internally very similar to the LM388 (described last month) but has its output stage modified to give the maximum possible output voltage swing. The device is housed in a 14 -pin DIL package with an internal heatsink connected to pins 3-4-5 and 10-11-12 (Figure 1b).

The overall voltage gain of the LM390 is internally set at x20, but can be increased to $\times 200$ by wiring a shunt capacitor between pins 2 and 6. The IC inputs are ground referenced, and the output automatically self-biases to a quiescent value of half-supply volts when the output stage of the IC is suitably dcbiased via external resistors wired between pins 9 and 14.

Figures 2 to 6 show some practical applications of this IC. Figure 2 shows one way of using the LM390 as a 1W amplifier driving a 4R0 load from a 6 V supply. Here, R1 and R2 are wired in series between the positive supply line and pin 9 of the IC, to give dc biasing to
the output stage of the IC. Note that the R1-R2 junction is boot-strapped from the output of the IC via C2, to raise the acimpedance of R2 to a value far greater than its dc value.
The overall voltage gain of the LM390 is internally determined in the same way as in the LM388, and thus equals $\times 20$ in the Figure 2 circuit.

Figure 3 shows how the gain can be increased to x200 by simply wiring C5 between pins 2 and 6 .

Figure 4 shows an alternative way of using the LM390. Here, dc current is fed to pin 9 of the IC via the speaker and R1. Note here that R1 is boot-strapped via C 2 , and that this circuit therefore gives a

DATA FILE

Figure 3 LM390 1 watt amplifier with $A v=200$

Figure 4 LM390 1 watt amplifier with $A V=20$ and load returned to +ve supply

Figure 5 LM390 bridge amplifier delivers 2.5 watts into $4 R 0$ load

Figure 6 LM390 based intercom
performance similar to that of Figure 2, but does so with a saving of two components.

Figure 5 shows how to connect a pair of LM390 ICs in the bridge configuration, to provide 2.5 W of drive to a direct-coupled $4 R 0$ load when using a 6 V supply. Pre-set pot RV2 is used to balance the quiescent outputs of the two ICs and thus minimise the quiescent current consumption of the circuit.

Finally, Figure 6 shows how to use a single LM390 IC to make a simple 2-way intercom circuit. Note here that C5-R4 are used to provide the IC with an overall voltage gain of $\times 300(=15 \mathrm{~K} / 51 \mathrm{R})$.

Before leaving the LM390, note that
this IC has a fairly poor ripple-rejection performance, and if any problems are met in this respect they can usually be overcome by wiring a 10uF (or larger) capacitor between pin-1 and ground. Also note in Figures 2 to 6 that the 2R7 resistor and 47 nF capacitor wired in series across the output of the IC form a Zobel network, to enhance circuit stability, and may be eliminated in some applications.

LM383 Circuits

The LM383 (Figure 7) is described in the manufacturer's literature as an 8 W audio power amplifier IC. This device is specifically designed for use in auto-
mobile applications, in which the 'running' supply voltage has a nominal value of 14.4 V , and at this voltage the IC can in fact typically deliver 5.5W into a 4R0 load or 8.6 W into a 2 R0 load. In reality, the IC will operate with any supply voltage in the range 5 V to 20 V , can supply peak output currents of 3.5 amps , and has a current-limited and thermally-protected output stage.
The LM383 is housed in a 5-pin package, as shown in Figure 7, and is a very easy device to use.

Figure 8 shows how to wire the device as a 5.5 W amplifier for use in automobiles. Here, the closed-loop voltage gain is set at $\times 100$ via the R1-R2-C3

$\begin{array}{ll}\text { 80000000000000000000000000000000000 } \\ 8 & C / B E D \\ 8 & \text { (G3ZVI) }\end{array}$

 THE SCANNER SPECLALISTSWITH 4 GREAT PRODUGTS

J.I.L.SX-200-N - THE SUPERIOR SCANNER 299

\star The choice of the professionals
$\star A M+F M$ all bands

* Wide coverage: $26-88,108-180,380-514 \mathrm{MHz}$
$\star 16$ memories \star Positive action keyboard
\star Proven reliability $\star 12 \mathrm{~V} D \mathrm{C}$ \& 230 V AC
* S-meter \& $96-108 \mathrm{MHz}$ converter available

REVCO RS-2000-E - THE VERSATILE SCANNER 259
$\star 70$ memories $\star A M+F M$ all bands

* Cover: $60-180,380-520 \mathrm{MHz}$
\star Search \& store of active channels
\star All the usual search \& scan functions
* 12 v DC \& 230 v AC operation
\star Counts activity of selected channel
REVCO RS-160 - FM POCKET SCANNER 2249
\star Incredible 160 memories (4 banks of 40)
\star Positive action keyboard
\star Covers $26-32,68-88,138-176,380-512 \mathrm{MHz}$
* Scans, searches \& stores active frequencies
* With nicads, charger \& flexiwhip aerial
J.ILL. SX-400 - PROFESSIONAL SCANNER $£ 598$
\star Covers $26-520 \mathrm{MHz}$ (no gaps)
$\star A M+F M$ (manual, automatic or programmable)
\star Computer interfacing for limitless memory, remote control \& data logging
\star I.F. output terminals ($10.7 \mathrm{MHz} \& 455 \mathrm{KHz}$)
\star Switchable channel spacing \& I.F. bandwidths
\star Specifications set by the professionals
Regulated mains adaptor for SX-400. \qquad 229.50

* REVCONE *

A superb quality 16 element, all British made VHF/UHF broadband fixed station aerial from Revco. Ideally suited to SX200 and other VHF/UHF Receivers
Covers 50-500NHz PRICE 224.95 inc

ASK FOR OUR LST OF SECONDHAND SCANNER BARGAINS

SPECLAL OFFER "CENTURY 21D"
Communications Receiver. 0.5 to $30 \mathrm{MHZ} . \mathrm{CW}$, USB, LSB, AM \& FM. Digital readout, excellent performance $\Sigma 199$
SR-9 monitor. 2 m FM with $144-146 \mathrm{MHz}$ full coverage VFO +11 xtal controlled channels; ideal for fixed/M/P use. 12 V DC operation $\mathbf{8 4 7 . 5 0}$
CRYSTALS FOR NR-56, SR-9, SR-11, TM-56B. We have a range of $2 m$ \& VHF Marine band crystals for these receivers at $£ 3.00$ each (+20p post per order). Please phone to check stock.
REsistor Kirs a top selling line for many years. E12 series, 5\% carbon film, 10Ω to $1 \mathrm{~m}, 61$ values, general purpose rating $1 / 1 / \mathrm{W}$ or $1 / 2 \mathrm{~W}$ (state which). Starter pack 5 each value (305 pieces) $\mathbf{8 3 . 1 0}$ Standard pack 10 each value (610 pieces) $\mathbf{8 5} 55$
Mixed pack, 5 each $1 / 4 W+1 / 2 W$ (610 pieces) $\mathbf{E 5 . 5 5}$
Giant pack, 25 each value (1525 pieces) $\$ 13.60$
DCDC TRANSISTORISED INVERTERS 12 V input, 400 V 200 mA output E9.50
This is a chassis section cut from used R/T equipment, tidied, fully wired \& tested. Free-standing but no luxuries like cabinet. $24 v$ version - same price. SAE for details of this and special offer of discontinued line 12 or 24 v to 380 v inverter.

SPARE PARTS FOR PYE RADIOTELEPHONES WESTMINSTER \& PF70 SERIES also Cambridge, Vanguard etc, SAE list

CAREX FM DETECTOR and squelch conversion for Pye R/T equipment Ready Assembled, full instructions. Tailor-made, easy-fit design, replaces existing squelch board, with minimum of modifications. For AM Cambridge ع6.30; for Vanguard AM25B (Valve RX) £6.10; for Transistor Vanguard AM25T $£ 6.95$

MAIN DISTRIBUTOR OF REVCO PRODUCTS PRICES INCLUDE UK P\&P and 15% VAT

Phone 0296 668684. Callers by appointment only

TWO GREAT HOBBES ...N ONE CREAT KIT!

The K5000 Metal Detector Kit combines the challenge of DIY electronics assembly with the reward and excitement of discovering Britain's buried past.

As a Metal Detector-the K5000 boasts the proven
pedigree of C-Scope, Europe's leading detector manufacturer. As a Kit-simplified assembly techniques require little technical knowledge, and no complex electronic test equipment. All stages of assembly are covered in a finely-detailed 36 page manual.
Detector Features Analytical Discrimination \&Ground Exclusion
Ask at your local Hobby/Electronics shop or use the coupon and send with your remittance to:-
C-Scope International Ltd., PO Box 36, Ashford, Kent TN23 2LN Please send me K5000 Kits @ £119.99(+£3.00 p+p) each.

> Send for my CATALOCUE ONLY 75p (plus 25p post/packing)
> My all-inclusive prices quoted in the catalogue are the lowest. All below Normal trade price - some at only one tenth of manufacturers quantity trade.

Millions of components: thousands of different lines
Rechargeable Nickel cadmium batteries Ex-unused Equipment
AA (HP7) 1.25V 500 MA ... Set of $4 \boldsymbol{\Sigma 2 . 0 0}$ Clear LED illuminates red, green or yellow depending upon polarity/current oblong $5 \times 21 / 2 \mathrm{~mm}$ face..................................25p or 100 for $£ 23$ or 1000 for $\mathbf{2 0 0 . 0 0}$ 5 mm Red Flashing LED Watch/Calculator/Lighter etc, Mercury batteries
RW52 (PX 675) RW54 .. RW56 (DH 323, WH8)31p Each or 10 for £2.60, 100 for £21.00 RW57, RW58
IN 4004 or IN 4006 Diodes .. 80.48
TO5 or TO18 Heatsinks71/2p 100 for $\mathbf{8 . 5 0 , 1 0 0 0}$ for $\mathbf{8 5} .00$ Clipover Heatsink for $1 / \mathrm{C}$ or TO202 Device $21 \times 18 \mathrm{~mm}-18 p, 02100$ for $£ 16.50$ or 1000 for £155.00
Heatsink for TO3 or plastic power 19p 100/£17.50 1000/£185.00
Modern Telephone Handset and lead in white, red, blue, grey, yellow, green or black..e2.00 at 4 for 60 p: 10 for... 8120 ITT mercury wetted relay, 20-60V DC coil, SPCO 2A.....................79p. 10 for $£ 7.00$

SEND PAYMENT PLUS 16p SAE OR LABEL

Prices you would not believe before inflation!

BRIAN J REED
 TRADE COMPONENTS

 ESTABLISHED 27 YEARS161 St Johns Hill, Clapham Junction, London SW11 1 TQ Open 11am till 6.30pm Tues to Sat. Telephone: 01-223 5016

DAIA FILE

Figure 7 Internal circuit and pin connections of the LM383 8 watt audio power amplifier IC
feedback network, and the IC is operated in the non-inverting mode by simply feeding the input signal to pin-1 via C1. Capacitors C2 and C4 are used to ensure the high-frequency stability of the IC, and it is vital that C4 be wired as close as possible between pins 3 and 4.

Figure 9 shows how a pair of LM383 ICs can be connected as a 16 W bridge amplifier for use in automobiles. Pre-set pot RV1 is used to balance the quiescent output voltages of the two ICs and to thus minimise the quiescent operating current of the circuit.

LM2002 (TDA2002) circuits

The LM2002 (Figure 10) is described as an 8 W audio power amplifier IC, and is actually a direct equivalent of the popular TDA2002 IC.
Like the LM383, the LM2002 is specifically designed for use in automobile applications, in which it can typically deliver 5.2 W into a 4RO load or 8.0W into a 2R0 load. The LM2002 can in practice operate with any supply voltage in the range 5 V to 20 V , can supply peak output currents of 3.5 amps , and has a currentlimited and thermally-protected output stage.

The LM2002 is internally very similar to the LM383, but uses a slightly less efficient output stage, with a consequent slight reduction in the available output power into a given load. The device is housed in a 5 -pin package, as shown in Figure 10, and is a very easy device to use.

Figure 11 shows how to wire the LM2002 as a 5.2 W audio amplifier for use in automobiles, with a closed-loop voltage gain set at x100 via R1-R2-C3. Note that C4 and R3 help ensure the high frequency stability of the IC, and it is vital that these components are wired as close as possible between pins 3 and 4.

Figure 12 shows how to wire a pair of LM2002 (or TDA2002) ICs as a 16 W bridge amplifier for use in automobiles. Balance control RV1 is set to give minimum quiescent operating current.

Figure 8 LM383 5.5 watt amplifier for use in automobiles

Figure 9 LM383 16 watt bridge amplifier for use in automobiles

Figure 10 internal circuit and pin connections of the LM2002 (TDA2002) 8 watt audio power amplifier IC

DATA FILE

Figure 11 LM2002 5.2 watt amplifier for use in automobiles

Figure 12 LM2002 16 watt bridge amplifier for use in automobiles

LM377 DUAL 2 WATT AMPLIFIER LM378 DUAL 4 WATT AMPLIFIER

LM379 DUAL 6WATT AMPLIFIER

Figure 14 Approximate performance characteristics of the LM377/378/379 dual amplifiers

Figure 13 Outline and pin notations of three popular 'dual' amplifiers

	IC1		
	LM377		LM378
	LM379		
	(max)	18 V	24 V
$\mathrm{P}_{\text {OUT }} / \mathrm{Ch}$	28 V		
$\mathrm{e}_{\text {IN }}$ (max)	80 mV	3 W	4 W
$A_{\text {I }}$ approx	50	50	115 mV
$Z_{\text {IN }}$	22 k	22 k	22 k

TYPICAL PERFORMANCE OF THE INVERTING STEREO AMPLIFIER

Figure 15 Simple inverting stereo amplifier using the LM377, LM378, or LM379 dual amplifier ICs

LM377/378/379 circults

National Semiconductors produce a range of 'dual' power amplifier ICs for use in stereo amplifier and bridgeconfigured mono amplifier applications. The best known of these devices are the LM377 dual 2 W , the LM378 dual 4W, and the LM379 dual 6W amplifiers. Figure 13 shows the outlines of these devices, and Figure 14 shows the approximate performance characteristics of the three ICs.
The LM377/378/379 range of ICs all have similar internal circuits, with highimpedance differential input stages and fully-protected output stages, and differ primarily in their voltage/power ratings
and in their packaging styles. It should be noted that the input stages of these ICs are intended to be dc-biased to halfsupply volts, and a bias generator is built into the ICs for this purpose.
The LM377/378/379 range of ICs are very easy to use. Figure 15 shows the connections for making a simple inverting stereo amplifier powered from a single-ended power supply. Here, the amplifier is biased by connecting each non-inverting input pin to the BIAS terminal (pin-1 on the LM377 or LM378, or pin-14 on the LM379), and the closedloop voltage gain of each amplifier is set at approximately $\times 50$ by the ratio of R2/R1 or R4/R3. The table shows the typical
performance of this circuit.
Figure 16 shows how the above circuit can be modified for use as a noninverting amplifier. The voltage gain of each half is again set at roughly $\times 50$, in this case via the ratio of R4/R3 or R6/R5, and the non-inverting input terminals are biased via the internal network of the IC.

Figure 17 shows how the above 'noninverting' amplifier circuit can be modified for use with split power supplies. Note in this case that the internal BIAS generator is ignored, and that the noninverting input of each amplifier is dccoupled to the ground 'half-supply 'point via volume control RV1.

Figure 18 shows a highly effective way

DATA FILE

Figure 16a Non-inverting stereo amplifier using a single-ended supply

$V+$	IC1	P $_{\text {OUI }}$
18V	LM377	$2 \mathrm{~W} / \mathrm{Ch}$
$24 V$	LM378	$3 \mathrm{~W} / \mathrm{Ch}$
$28 V$	LN379	$4 \mathrm{~W} / \mathrm{Ch}$

Figure 16b Power ratings

Figure 18 One channel of a 15 watt per channel stereo amplifier using a single-ended supply

Figure 17a Non-inverting stereo amplifier using a split supply

V+	v-	161	Pout
+9v	-9v	LM377	2w/ch
+12v	-12v		3w/ch
+rav	-rav	Lмз379	4 w/ch

Flgure 17b Power ratings

Figure 19 One channel of a 15 watt per channel stereo amplifier using a split supply
of boosting the available output power of one half of the LM378 to 15 W . This remarkably simple circuit generates a typical THD of only $.05 \%$ or so at an output power level of 10W. At very low power levels, Q1 and Q2 are inoperative and power is fed directly to the speaker via R2: at higher power levels Q1 and Q2 act as a normal complementary emitter follower and provide most of the power drive to the speaker. R2 and Q1-Q2 are effectively wired into the negative feedback network of the circuit, which consequently generates negligible cross-over distortion.

Figure 19 shows how the above circuit can be adapted for use with a split power
supply. This circuit produces negligible output dc-offset, thus enabling the speaker to be direct-coupled to the output of the circuit.
Finally, Figure 20 shows how the two halves of a LM377, LM378 or LM379 can be used to make a bridge-configured 'mono' amplifier which can feed relatively high power levels into a direct-coupled speaker load.

The LM1877 IC

The LM1877 dual 2W power amplifier IC is an improved pin-for-pin replacement for the LM377, and should be used in place of the latter IC whenever possible. The LM1877 gives an improved perform-
ance in terms of very low cross-over distortion, very high input impedance, and a high slew rate, but has a slightly poorer ripple-rejection performance, and typically consumes a higher quiescent current than the LM377.

In the remainder of this article, Ray Marston gives very brief descriptions of a few popular audio power amplifier ICs, complete with one or more 'application' circuits for each IC.

The TBA810S

This IC can supply several watts of audio power output, and is particularly well suited for use in automobile

GREAT OFFERS FROM SCARAB SYSTEMS

And now, from U.K.'s leading radio software house, come two professionally produced items which are a must for the radio amateur.

Split screen Spectrum RTTY (48K only)
This exciting program and special interface board allows you to compile your answer while stith in receive mode. $\mathbf{£ 3 7 . 5 0}$ (fully assembled and tested.)

MPTU- 1 tone encoder/decoder
This phase lock loop circuit is 100% retiable and extremety sensitive. $\mathbf{£ 6 9 . 7 0}$ (all plugs supplied).

SCARAB SYSTEMS

4
39 Stefford St, Gillinghem, Kent. ME7 SEN Tel : (0634) 57041

Please send me.

- MPTU-1 RTTY/AMTOR terminal unin 569.70

Froe Details of other equipment and programs \square
I enclose a cheque/postal order for.

I wish to use my Access/Visa | | | | | | | \mid | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Address ..

Signature
REW I understand that, if 1 am not fully sat
-a P
 VGA

IC1	$\mathbf{V}+$	R_{L}	Pout
LM377	$14 V$	$8 R 0$	$4 W$
LM378	$22 V$	$16 R$	$8 W$
LM379	$28 V$	$16 R$	$12 W$

Figure 20 Bridge amplifier circuit using dual-amplifier ICs

Figure 21 TBA810S 7 watt amplifier for use in automobiles

BOOTSTRAP 1
OUT 1
V +
OUT 2
BOOTSTRAP 2
GND
INPUT + 2
NNPUT-2
SVRR
INPUT-1
INPUT + 1
F

applications. The device features protection against supply polarity inversion and high-voltage supply transients. Figure 21 shows a practical applications circuit: voltage gain is determined by R2: R1 is an output biasing resistor and is boot-strapped via C8: R3-C7 is a Zobel network.

The TBA820M

This is a low-power amplifier capable of generating a few hundred milliwatts in a 4R0 to 16R0 speaker load, and is housed in an 8 -pin DIL package. The IC can operate from supply voltages as low as 3 V , and features low quiescent current, good ripple rejection, and low cross-over

Figure 22 TBA820M low-power audio amplifier circuit

FIgure 23b TDA2005M 20 watt power booster for use in cars
distortion. Figure 22 shows a practical applications circuit, in which the voltage gain is determined by R2, and R3-C6 form a Zobel network. This circuit can use a maximum supply voltage of 16 V with a 16R0 speaker, 12 V with an 8 RO speaker, or 9 V with a 4R0 speaker.

The TDA 2005M

This is a 20 W audio power booster specifically designed for use in automobiles, and is fully protected against output short circuits etc. The IC actually houses two power amplifiers which are internally connected in the bridge configuration to provide the high power output (into a 2 RO load) from the 14.4 V
(nominal) power supply of an automobile. The IC is housed in an 11-pin package. Figure 23 shows a practical applications circuit. Note that all capacitors must be rated at 25 V minimum.

The TDA2006

This is a high-quality amplifier that can be used with either split or single-ended power supplies, and which typically generates less than 0.1% distortion when feeding 8 W into a 4R0 speaker load. The IC is housed in a 5 -pin TOE20 package that has an electrically insulated heatsink tab, which can consequently be bolted directly to an external heatsink without need of an insulating washer.

DATA FILE

TO220 package

Flgure 24 Outline and pin connections of the TDA2006 and TDA2030

Figure 25 TDA2006 8 watt amplifier with single-ended supply

Figure 26 TDA 20068 watt amplifier with split power supply

Figure 27 TDA2030 15 watt amplifier with single-ended supply
Figure 28 TDA2030 24 watt bridge amplifier with split supply

Figure 25 shows how to use the TDA2006 with a single-ended supply. The non-inverting input pin is biased at halfsupply volts via R3 and the R1-R2 potential divider, and the voltage gain is set at $\times 22 \mathrm{via}$ R5/R4. D1 and D2 protect the output of the IC against damage from back EMF voltages from the speaker, and R6-C6 form a Zobel network.

Figure 26 shows how to modify the above circuit for use with split power supplies. In this case the non-inverting
input is tied to ground via R1. This circuit also shows how high-frequency roll-off can be applied to the amplifier via C5-R4.

The TDA2030

This very popular IC can be regarded as an upgraded version of the TDA2006, and is housed in the same 5-pin T0220 package with insulated heat tab. It can operate with single-ended supplies of up to 36 V ($\pm 18 \mathrm{~V}$, split). When used with a +28 V single-ended supply, it gives a
guaranteed output of 12W into 4 RO or 8W into 8RO. Typical THD is $.05 \%$ at 1 KHz at 7 W output.

Figure 27 shows how to connect the TDA2030 as a 15 W amplifier using a single-ended +30 V supply and a 4R0 speaker load and a voltage gain of 30 dB . Finally, Figure 28 shows how to wire a pair of these ICs as a split-supply 'bridge' amplifier that can deliver 24 W into a 4R0 speaker load with a typical THD of less than 0.5%.

BBC MICRO MORSE TUTOR

This is a Morse tutoring program for the BBC Micro that has a maximum sending speed of about 20 wpm ．The limitation on speed lies in the sound generator chip，which cannot make a sound shorter than $1 / 20$ second．
Since the BASIC is running a lot faster than this there is no advantage to be gained in using machine code．

Data structure

The 36 characters（ 26 letters and 10 digits）are held in the integer array A\％as sequences of 1＇s and 3＇s－the compara－ tive values of the dots and dashes－and the number of dots and dashes in each character is held in the array L\％．
When a character is sounded，the information is converted to a string and examined bit by bit．

This is preferable to using a string array which would waste an incredible amount of memory，although memory itself is not a problem．
The zero is placed first of the numbers in accordance with the sequence in the ASCII code，rather than last as is normal in Morse．

Timing

The real time clock in the BBC runs in Hz （ $1 / 100$ second）but the sound chip runs in units of $1 / 20$ second -5 Hz ．This is therefore the minimum duration of a dot．

by M LAVOCAH

The conversion factor between these two timings is DUR\％．
When a sound statement is reached the CPU passes this to the sound chip and is then free to carry on with the next statement while the sound chip makes the noise．
Therefore when pausing between dots and dashes we must first pause for the time it takes to make the sound，and then pause for the gap itself．

The program

PROCinit selects the mode of opera－ tion．First of all you select between sending phrases or random characters． （PA\％1，2）

If you select phrases，you then have to type in a phrase before the computer sends it back to you．Knowing what＇s coming isn＇t too much of a problem，but you could always get a friend to type something in or else hit the keys at random．

This has the advantage（？）that the Morse sent contains a disproportionate amount of＇hard＇letters．

If you choose to receive random characters，you can then choose between letters only，numbers only， both，or a particular range of letters （ G 1，2，3，4）．

The characters are tokenised as follows：

Space	0
$A-Z$	$1-26$
$0-9$	$27-36$

When picking random letters，two variables are used：
R\％base of range
Q\％length of range
eg R\％1，Q\％ 26 is the alphabet．
As it stands the program runs in an endless loop；when you get bored，press ESCAPE．It＇s all legal due to the REPEAT．．．．UNTIL FALSE syntax．

The noises

The syntax of the SOUND statement is SOUND channel，loudness，pitch，dura－ tion．The pitch can be altered at your discretion，high numbers giving a high pitch．The duration（and hence the speed）can also be varied，but only down to 5 Hz ．
Some of you may have already noticed the extra sound statement in line 370， which provides a bit of background interference．For more difficult recep－ tion，make this noise louder and the morse itself quieter．A louder noise is given by a more negative loudness parameter，up to－15．

```
10 REM (c) M.LAVOCAH AFR'b4
20 MODE?
FROCdata
IF FA%=2 THEN REFEAT:FROCphrase:UNTIL FALSE
REPEAT:FROCr andom:UNTIL FALSE
7O END
70 EN
90 DEF PROCrandom
00 TIME=0
110 FOR PASS%=1 TO H%
120 C%=0%*RND<1O+R%
lol
            FROCchar: PROD
        FRINT"CORRECT:":CHR年(ANS%)
            NEXT
            T=TIME:FRINT"ELAFSED TIME ":JNT(T;1DO):" SECS"
            T=TIME:PRINT"ELAFSED TINETE: "; INI'(H%*&OON)'T'
                FRINT"C
210:
O DEF FROCphrase
INFUT"WHAT IS THE PHRASE "FF:I%=LEN(F.ま)
CLS:PRINT"FRESS ANY KEY TO STARTT":G=GET
T1ME=0
FOR FASS%=1 TO I%
            F=ASC(MIDE(F*,FASS%,1))
            F C%=こ2 THEN C%=0
            IF C%%<4 THEN C%=C%-64 ELSE C%=C%-21
            IF C%<O THEN C%=O
            FROCchar:FROCPause(4*DUR%)
            NEXT
                    T=TIME:FRINT"TIME ":T:FRINT"PRESS ANY KEY":G=GET
                    ENDPROC ,
40 EN
DEF FFOCchar
N%=L%(C%):A:=STR&(D%(C%)):SOUND:10,-5,4,20
FOR A%=1 TO N%
            B%=VAL(MID#(A%,A%,1))
            B1%=E%*DUR%/5:IF F1%=0
            FROCpause (DUF%+B%*DUF%)
            ENDPROC
30 E
SO DEFFROCcorrect
70 IF C%r27 THEN ANS%=C%+64 ELSE ANS%=C%+21
80 G%=6ET
90 IF G%=AN5% THEN COR%=
00 ENDPROC
510:
```

520 DEFFROCpause（F）
S30 T\％＝TIME：REPEAT UNTIL TIME $>=T \%+F$
540 ENDPROC
550 ：
560 DEF FROCinit
STO PRINT＂MORSE TUTOR＂：PRINT
5 Bo PRINT＂DURATION OF DOT IN CS（TRY 50 ）＂；
590 REFEAT：INFUTDUR\％：UNTIL DUR\％ 15 AND DUF $\%$ \＆
600 FRINT＂PITCH（ $50-150$ ）＂：
S10 REPEAT：INFUT FITCH\％：UNTIL FITCH\％，＊O AND FITCH\％ROO
FRINT：FRINT＂FIANDOM LETTEFS（1）OR A PHRASE（2）？
G30 REFEAT： $\mathrm{FA} \%=V A L$（GET $\#$ ）：UNTIL $F \cdot A \%=1$ OR $F A \%=2$
640 IF FA\％$=2$ TIIEIV ENDPROCC
SEO FRINT＂HOW PIANY CHARACTERS＂；
660 REPEAT：IHFUTH\％：UNT IL $H \%<100$ AND H\％${ }^{\circ}$
670 FRINT＂LETTERS（1）NUMEERS（2）BOTH（ 3$)$ SELECTED LETTERS（4）＂
6 BO REPEAT：$G=V A L$（GETF）：UNTIL G＞O AND B＜S AND $G=I N T(G)$
690 IF $\mathrm{G}=2$ THEN $\mathrm{R} \%=27: 0 \%=10 \quad \mathrm{ELSE} \mathrm{R} \%=1$
700 IF $G=1$ THEN $Q \%=26$
710 IF G＝T．THEN $2 \%=-6$
720 IF $G=4$ THEN FRINT＂FIKST LETTER＂：REPEAT：INFUTR\％：F\％＝ASC（R5）－64：UNTIL R\％く26：P
RINT＂LAST LETTER＂；REFEAT：INPUTT ：T $\%=A S C(T)-64:$ UNTIL T $\%$ ： $26: 0 \%=T \%-R \%+1$
730 CLS
740 ENDFROC
750 DEFFROCdata
760 DIM L\％（36），D\％（36）
70 FOR $A \%=1$ TD 30
80 READ $\mathrm{L} \%(A \%), D \%(A \%)$
NEXT
BOO ENDFROC
$810:$
B20 REM AEC，DEF，GHI，JKL
日30 DATA $2,13,4,2111,4,2131$
B40 DATA $3,311,1,1,4,1121$
850 DATA $3,331,4,1111,2,1131$
860 DATA $4,1335,5,313,4,1311$
GBO REM MND，FQR，STU， $2,3 \mathrm{NXX}, 2,31,3,33$
日90 DATA $4,1331,4,3313,3,131$
900 DATA $3,111,1,3,3,113$
910 DATA $4,1112, \dot{3}, 133,4,3113$
920 DATA 4，313こ，4， 3×11
930 ：
940 REM numbers
950 DATA $5,33353,5,13353$
960 DATA $5,11333,5,11133$
970 DATA $5,11113,5,11111$
980 DATA $5,31111,5,33111$
990 DATA $5,33311,5,33331$

PHONE 0474813225 3 LINES

EDEPT REW SELECTRON HOUSE，WROTHAM ROAD MEOPHAM GREEN，MEOPHAM，KENT DA13 OQV

INTEGRATED CIRCUITS

$A A_{12} 12$	0.25	$B C 172 C$	0.10
$A C 122$	0.45	$B C 1728$	0.10

戠

先

DIODES

AA119	0.08
BA115	0.13
BA145	0.18
BA148	0.17
BA154	0.08

䢒景
 BY127
Y 133
$B Y 164$
$B Y 76$
$B Y 19$
BY192
BY184
BY199

P.M. COMPONENTS LTD
 0474813225 DEPT REW SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DA13 OQY

and a few hundredweight of cement for the base. This was bought ready-mixed and barrowed to the hole at a very reasonable price.
The result was a first-class mast which extends to forty feet unguyed, and is extremely easy and simple to tilt and raise. I set about it in the following way.

First I applied through the usual channels for planning permission. A word of advice here: always call it a mast, not a tower!
While this is taking place, contact as many of your local metal stockists as possible to obtain prices and delivery dates. It is worth shopping around as prices can vary considerably.

Foundations

You need to dig a hole 4 foot 6 inches square by 2 foot 6 inches deep. This will take the cement for the base. Bang in two lengths of angle-iron on each side at an angle of 45 degrees and to a depth of three feet. These will help to make a good anchorage. If you bond them with heavy wire and connect it to the groundpost it will serve as a useful ground plane (detail shown in Figure 1).
The main mast and groundpost are constructed from $100 \times 100 \times 4 \mathrm{~mm}$ RHS tube. The inner sliding mast is made from $70 \times 70 \times 2.9 \mathrm{~mm}$ RHS. No guy-wires or ropes are needed.

All the necessary brackets, pulleys, etc can be made in a day by a skilled person, but if you don't feel confident about it, your local blacksmith will knock them up for you. Welding and assembly will take about two days for a skilled worker, but the average ham will probably spend a couple of weeks of spare time labour.

Observe the small sump hole at the bottom. When the groundpost is constructed it is set firstly into this small hole with a bag of ready-mixed cement. Check for true vertical with a spirit level and allow two days for it to set before the bulk cement is barrowed in.
Three and a half tons of cement are required for this, and your local barrowmix firm is probably your best answer here...
After filling, leave for two weeks before any additional strain is put on it. This will give you time to get on with the rest of the construction.
The diagrams (Figure 2a, b and c)
How many of us have gazed up in awe and stood green-eyed at the mast of a rich amateur and wished for the same thing? How many of us have turned the pages of the magazines and wistfully eyed the advertisements for tilt-over masts, only to decide that the cost is prohibitive?

Here is a mast which will cost you just over £100 to build.

All you will need are the materials, which are not expensive, plus the determination to get down to the job yes, some hard work is involved but it isn't beyond anyone's capability. My mast was constructed in a very short time and I used a standard hacksaw, a drill, and a few other simple tools. The only 'extras' were the use of an arc-welder

clearly show the dimensions and constructional details of the ground post. The hatching shown on the angle-iron indicates welding (for the uninitiated!).

On this subject it should be mentioned that unless you can weld it is better to get in a professional to do it. It goes without saying that the welds must be very good in view of the weights and strains involved, so perhaps it would be a good idea to do all the measuring and cutting first and have everything prepared so that you can call in a welder to do the whole job at once. It won't be that expensive, by the way.

Pulleys

If you don't feel confident to make these you will have to buythem, but don't go to a boatbuilders - they will charge the earth. Local bearing shops will often have them at more reasonable prices. Measurements are given in the following diagrams.

In any case most of the odd bits you will need may be found quite cheaply at scrapyards or from your local blacksmith. The pull needed to raise the mast from 90 degrees to the vertical is in the region of 1500 pounds, decreasing of course as the mast rises, so your pulleys and wire must be of very sound quality to say the least...and you can understand from this poundage why the welding has to be of top quality!
Little difficulty should be encountered in the construction providing the measurements are adhered to. Note the

REPAIR THAT OLD BLACK \& WHITE TV with the aid of the best seller "TV FAULT FINDING"

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

FAULT FINDING

G8KBQ AVCOMM LIMITED G6HKT
25 Northload Street, Glastonbury, Somerset BA6 9HB
Tel: 045833145
25p1 Beehive trimmer caps 5/40p
50p
250 pf min variable caps. $1 / 4$ ' spindle
$0.5-6 \mathrm{pf}$ tubular trimmers
$45 \mathrm{pf}+45 \mathrm{pf}$ C808 split stator caps
$5 \times 13 / 4$ Ribbed ceramic coil forme
1000 pf 10 KV caps (ideal 2M linears)
Electret mic inserts, 600 OHM .
240VAC AC RED Strips...
Pack $5^{1 / 4} / 4$ coilformer
Pack asstd. solder tags
Pack 10 cabinet feet
Dummy load resistor packs 520 HM 200W in silver sand
Black collett knobs, $1 / 4$ spindle
$1 / 4$ inline fuseholders
PC8 through plating rivets
Universal $1 / 4^{\prime \prime}$ drive couplings
125uF 350 elect. caps. 10 for

25, above post extra

ELECTRONICS C•A•D "ANALYSER"

PERFORMANCE ANALYSIS OF LINEAR CIRCUTTS using the BBC MODEL B SPECTRUM 48K and NEWBRAIN micros.

> Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
> Performs fREQUENCY RESPONSE ANALYSIS on Circuits with up to 16 Nodes and 60 Components, for Phase and Gain Loss, Input Impedance and Output Impedance. Ideal for the analysis of ACTIVE and PASSIVE FILTERS, AUDIO, WIDEBAND and RF AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc, etc...
> "ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs. USED BY INDUSTRIAL AND UNIVERSITYR \& D DEPARTMENTS WORLD WIDE.
> LOW COST...VERY EASY TO USE
> For further details write or phone NUMBER ONE SYSTEMS
> Department REM, 9A Crown Street, St Ives Muntingdon, Cambs UK, PE17 4EB

TILT-OVER MAST

Figure $4 a$

Pulleys 4 off $\mathbf{2}^{1 / 2 / 2}$ dia Picador with "Oilite" bushes
2 off $61 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \mathrm{H} / \mathrm{T}$ M/S bolts and nuts
Cable is 6 mm stainless steel
then [3] then [4] then [5] and up to tilt winch
Cable length required is 25^{\prime} approx

half-inch clearance between the ground level and the mainmast. The following diagram shows the details of the bottom pulley mounting of the mainmast in detail.

Basic principles

Figure 3 shows the position of the two winches. As can be seen the principle of tilting the mast follows the orthodox methods. The pictures show the tilt pulley mounting details.

Tilt pulley mounting detalls

You will need four $21 / 2$ inch dia. Picador pulleys with Gilite bushes and $2 \times 61 / 4^{n}$ $x^{1} / 2^{\prime \prime} H / T M / S$ bolts and nuts. Approximately 25 feet of 6 mm stainless steel cable is also needed. Anchor the cable with its eye at point 1, pass it over the pulley at point 2 , then over 3,4 and 5 , and then up to the tilt winch. As shown in Figure $4 b$.

Counterwelghts

It was found that counterbalancing was needed in order to facilitate raising the main mast. Approximately 3001bs are required and it is possible to obtain old $561 b$ weights from your local coalman.
The weights do not need to be attached to the mast directly, but by a chain, so that when the mast tilts to about 10 degrees from the vertical the slack is taken up and the weights rise as the mast tilts further.
If the weights are fixed directly to the mast there is the danger that it will snap shut and 'flick' the mast top and cause damage.

Guide plate

Clearly, the inner mast cannot be allowed to 'sit' within the main mast and wobble. The method of stabilising this is again quite simple. Figure 5 a shows the view from the bottom of the mainmast, looking upwards, and the guide plate in position.
The diagonal mounting prevents any

Figure Sa Guide plate details

Figure 5b inner mast locating plate details

Figure $5 \boldsymbol{c}$ Welding details

Figure 5d Inner mast lifting cable fixings Bottom guide and rope anchor plate F/S cable is 6 mm stainless steel $50^{\prime} 0^{\prime \prime}$ approx

2 off $3 / 16^{\prime \prime} \mathrm{M} / \mathrm{S}$ plate to fit inside mast, weld to tube and top of mast
motion except up or down and is perfectly adequate for the task. The plate measures $43 / 4^{\prime \prime} \times 14^{\prime \prime} \times 3^{\prime \prime}$. The inner mast is slotted to take the plate before it is welded into position.

Holes are drilled in the guide plate for the stainless steel cable which will raise the inner mast. These may be of a size appropriate to the diameter of cable used. About 50 feet of 6 mm cable is required.

Pass one end of it through holes 1 and

2, then clamp it in place at holes 3 and 4 as shown in Figure 5d.

The diagrams are self-explanatory and call for little comment beyond noting the remarks about positioning the blocks. Observe too the gaps for the locking block and the lift cable.
Observe the caution to use trial and error tactics before welding the $3^{\prime \prime} \times 1 / 4^{\prime \prime}$ bar in order to ensure the pulley is mounted in the best position for alignment of the lifting cable. As shown in

Figure 7 Rotator mounting tube detail
Figure 6, the actual position is not difficult to obtain, but one must ensure that the cable does not graze on the inner wall of the main mast, and that an even strain is imparted.

This fitting shown in Figure 7a is to take standard $2^{\prime \prime}$ dia, antenna mounting arrangements. Construction is simple and no problems should be encountered.

Winches

No details of winches have been shown

- Pullo moun

Figure 6 Pulley mounting detail

TILT-OVER MAST

Fig $7 b$ Inner mast constructional detail
as these are readily obtainable from local trailer makers. Again, avoid your boatyard or ship's chandlers because their prices are often astronomical.

The luffing and telescoping cables may also be found at the trailer maker. If you bear in mind the weights and stresses involved in raising the mast you should have no problems in finding the right winches for the job.

Hints and tips

Obviously the first job is to dig the hole and to make the groundpost. Take the trouble to doublecheck all measurements before you cut or drill or do anything else.

Give the groundpost two coats of red oxide undercoat and three coats of black bitumastic. When this is finished, set it in the hole in the manner already described, and start building the mainmast. This can be painted in the same way. You will have a couple of weeks for
this job as the groundpost requires this time to set solidly in the cement.

The rest of the mast can now be tackled and should be quite straightforward.
An additional refinement is to fit a 4' to 5 ' length of tube to a bracket about 15 feet up the mainmast. This is hinged by nut and bolt so that it hangs down when the mast is lowered and supports its weight.

No detail of the cord used for the safety latch has been shown either, as tough cord is readily obtainable from many sources.

The weight and balance of the safety latch is shown in Figure 8, and is of course sufficient to enable it to fall back into place when the block on the inner mast has passed it on the way up. But if any doubt should be experienced it is a simple matter to incorporate a mild spring.

Conclusion

Naturally the best bit has been left to

Fig 8 Safety latch detail
the end. How do you lift the mainmast on to the groundpost? The best way (and probably the only way) is to get a few tough guys from the club to come round and help. A Saturday morning is not usually the best time as most local amateurs seem to be busy then.
Although the mainmast weighs nearly 400 lbs it is by no means a daunting task to get it in place.

One little extra might be to make up a plastic cover to snugly fit over the inner mast at the junction of the mainmast to prevent water from getting in. A child's bucket and a little ingenuity are all you need for this task.
So there you have it! And the cost? Bearing in mind that I was able to tackle the greater part of the work myself, it came to between $£ 85$ and $£ 100$.

If you employ a welder then you must expect it to cost a little more, but then, a commercial mast will cost you anything from £285 to £300... Have fun!

PROFESSIONAL MONITORS
*SANYO *MICROVITEC
*FIDELITY
*PHOENIX

BBC MICROCOMPUTER SYSTEM
WE ARE AN OFFICIAL BBC COMPUTER DISTRIBUTOR dealer enouiries are welcomed

n Electron 2	
Nat	
Eande	
Musto Non	

TORCH Z80 2nd PROCESSOR

 For only £347 + VAT
 ,

£347- VAT $-£ 399$
$\mathbf{5 6 9 5}$ - VAT

GUARANTEED LOWEST PRICES

These drives are supplied ready cased with ail the necesary cables for mating program and User Guide
There are some very useful tultites included on formaling disc eg
DISASSEMBLER This is 6502 machine conde disassembler DISASSEMBLER This is 652 machne croe dis
OUP TO Coy and rename a the on OIIc
FORMAT Formating program for 40 \& 80 tracks
MREE Thus ullhty provides a cisk usage analyss

All above dives are low power slimine 103 A typ at $\cdot 12$ vand 4 A at $\cdot 5 \mathrm{v}$
per drivel
Normall extr power supply is no required lie BBC Computer

YOUR CONTACTS AT AKHTER ARE

OEALEA/BULK ENOUIRIES
 TELEPHONE OROERS

 OEALER OROERSBUSINESS SYSTEMS ENOUIRIES COORT ENCUIAIES CONET SYSTEM TECHNICAL ENOUIRIES DESPATCH REPAIRS

BUSINESS SYSTEMS

APRICOT - SIRIUS - SANYO IBM - TEXAS - TORCH

APAICOT-Portable Executive Computer 16 Bin Micro. 256K RAM up 10

 SANYO PROFESSIONAL COMPUTER £1890- VAT

16 Bit Mirco 128K RAM expandable to 256 K Single or Double Disk Drive built in full colour graphics (640×200 pixets in 8 colours) IBM compatible Free software. Sanyo MBC 550 128K RAM single drive and
free software including Wordstar and Calcstar
$£ 749+$ VAT Sanyo MBC555 128 K double drive and free software inctuding WordstarCalcstar Inforstar Datas1aretc. $£ 999$ - VAT Sirius 1 Sirius 1 Computer with $128 K$ RAM and 12 megabyte FlodDy
disc siorage incluaing CP M 86 MS DOS and disc siorage incluaing CP M 86 MS DOS and
Mictosott Easic $\quad £ 2195$ - VAT

TORCH C COMPUTEA with colour monitor includes Twin 400K disks Torchne

Telecom Gold
mainirame services
TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
T1502 Dual 320 KB Drives 256 K RAM Up to to megabyte on board stor age
 maintenance contracts are available.

COMPLETE WORDPROCESSING

 SYSTEMSINCLUDING DAISYWHEEL PRINTER From £695 + VAT

 SYSTEM 2. 8 . 8 Micro model B. Disk interface, Phoenix Monitor 100 K
Single Disk Drive Wordwise. Smith Corona Dais wwheel Printer - all the necessary cables and documentation $\begin{gathered}\text { Price } \\ \text { only } \\ \text { £ } 895\end{gathered}$-VAT : cto29.25 SYSTEM 3. 88 Micro model B Olsk interlace Phoenix Montor . Dual
Disk Drives 200k Wordwise Smith Corona Daisywheel Printer - ail the necessary cables and documeniaion Price $£ 999$ - VAT $=£ 1148.05$ SVSTEM 4. BBC Micro model B. Oisk Inerrace. Sanyo High-Res Green
Montor. Wordwise for vrew) Juki 6100 Daisy wheet Printer Single 400 K

 Mrive 80 K . ail the necessary cables and documentation sYSTEM B. Sanyo 16 Bit. IMB pc Compatible Micro. 128K RAM. Single Disk Drive 160K. Wordstar Calc Star Sanyo High Res Green Monitor Juki 6100 Dassywheel Printer + all cable and documentation.
system 7. Sany 10 8it I日M Price Only E1145 + VAT 81316.75 Disk Drive S60Ko 16 Bit IBM PC Compatible Micro 128K RAM Dual Datastar Sanyo High Res Green Monitor Juki 6100 Daisywheel Printer - and all neessary cables and documentation. SYstem 8. All the components of System 6 but with Sanyo High Res Colour Monitor and Wordstar with Colour Facilities $\begin{gathered}\text { Price } 1445, \text { VAT }=£ 1667.75\end{gathered}$ SYSTEM \&. All the components of System 7 but with Sanyo High Res Colour Monitor and Wordstar with Colour Fachities $\begin{gathered}\text { Price } 1695-\text { VAT } \\ \text { E1949.25 }\end{gathered}$ WE CAN ALSO SUPPLY PACKAGES WITH COMPONENTS OF YOUR
OWN CHOICE PLEASE PHONE (0279) A12G39 AND ASK FOR OWN CHOICE PLEASE PHONE (O27

EDTRPUTER GRDUP

28/29 BURNT MILL
HARLOW. ESSEX. CM20 2HU U.K.
Tel. HARLOW (0279) 443521 Telex: 818894 AKHTER G
OPENING HOURS: MON-FRI 9am-6.30pm, SAT 10am-5pm We welcome callers, no parking problems.

IMPROVING
 R

 \square
 by Dr CJD Catto

There are occasions when it is worth winding a resistor oneself, for example when an odd value or high wattage low resistance is required. If a precision component is needed, it is advisable to make a four-terminal device, ie by bringing out the current and voltage leads separately. This is best done by spot-welding a pair of voltage tapping points, as shown in Figure 1.
Manganin is a convenient material to use for a low value, low temperaturecoefficient resistor. It is a good idea to wind a loose non-inductive coil (see Figure 1): if the wire is on a former, differential expansion can make the wire act as a strain-gauge, and spoil the low temperature-coefficient of resistance.
There is also the thermal EMF between the manganin and the copper circuit wires, but this is only a few microvolts per ${ }^{\circ} \mathrm{C}$, and its effect can be made negligible by using a symmetrical layout, with junctions isothermal. For higher powers, the wire can be suspended in a gently-stirred oil-bath.
Alternatively, a temperature-controller can be employed, as shown in the block diagram of Figure 2. The full circuit diagram is given in Figure 3, and its operation is described below.
Resistance wires made of coppermanganese or quaternary alloys ${ }^{1}$ and certain film resistors have a temperature coefficient that passes through zero at some temperature. The circuit shown in Figure 3 has been used to maintain a
four-terminal resistor R, at its zero-TC point, despite changes in the current I_{1} passed through it.
The auxiliary heater R_{2} brings the block in which R_{1} is embedded up to temperature, but the fan F_{1} permits efficient extraction of heat if I_{1} is increased.
The feedback loop using the thermistor bridge $\mathrm{T}_{1} \mathrm{P}_{1} \mathrm{R}_{3}-7$ and the op-amp N_{1} followed by the heater/fan combination ensures that the temperature settles rapidly. The speed of the fan motor is controlled by varying the load presented to the transformer-rectifier inserted in series with the ac supply and the motor. T_{1} is mounted in the middle of the block, close to both R_{1} and R_{2}, to minimise thermal overshoot, and a thermocouple junction T_{2} is used to check the temperature.

It is important to bed R_{1} in a resilient but thermally-conductive material (eg Redpoint Thermpath) to minimise
strain-gauge effects. The potential-tapping points $\mathrm{v}+\mathrm{v}$ - are symmetrically disposed, to minimise thermocouple effects.
The somewhat odd supply rails were chosen to fit in with the rest of the equipment, of which this circuit was but one part.
Readers will no doubt be able to simplify the circuit arrangements but, as in any analogue circuit dealing with small signals, it is worth keeping the ac and hum-bearing components separate from the 'precision' side as far as possible.
In the application described, R_{1} was employed as the current-sensing resistor of an electromagnetic lens supply with a stability of the order of a tenth of one part per million!

Reference 1: GWC Kay \& TH Laby 'Tables of Physical and Chemical Constants'14th Edn, Longman 1975, pp 105-106.

Figure 1 Voltage tapping points

Figure 3 Temperature control circuit

Hitachi Oscilloscopes

performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that represents the best value for money available anywhere.

V-212	20 MHz Dual Trace	V-209	20 MHz Mini-Portable
V-222	20 MHz (illustrated)	V-509	50 MHz Mini-Portable
V-203F	20 MHz Sweep Delay	V-1050F	100 MHz Quad Trace
V-353F	35 MHz Sweep Delay	V-134	10 MHz Tube Storage
V-422	40 MHz Dual Trace	VC-6015	10 MHz Digital
V-650F	60 MHz Dual Timebase	VC-6041	40 MHz Digital

Prices start at around $£ 300$ plus vat including 2 probes and 2 year warranty We hold the range in stock for immediate delivery.

For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

RADO \because ELECGROMCS MOR		
PCB's	PCB'S	KITS
Jan '84	March	
FAX Processor ..34,	Aprll ' 8 A	
	10.7MHz oscillator ... 80.99	
7665 ..ع0.99	455Hz oscillator...80.99	
		(includes case)
Real time clock ... $£ 2.45$	Frequency meter ...84.30	
	S meter display \qquad E0.99 $\varepsilon 190$	Teleprinter Interface,
Crowbar protection ..	S meter control ...	All kits include printed circuit board, though are available without, please enquire
We accept Access \& Barclaycard/Vis		Tel: (0277) 216433 453a, Becontree Ave Dagenham Essex, RM8 3UL

C. M. HOWES COMMUNICATIONS FUN TO BUILD KITS BY MAIL ORDER

Enjoy the satisfaction of building your own quality equipment with one of our kits. All kits come with a ready drilled and tinned PCB that has the component locations screen printed on it for easy assembly, all board mounted components, and full, clear instructions. We like to think that our documentation sets our kits apart from the rest.
Building is straightforward and fun, so chose a worthwhile project from our expanding range:-

ADD SOME PUNCH!

AP3 AUTOMATIC SPEECH PROCESSOR

Add more "punch" to your signal with this excellent processor. This is the unit described by Dave, G4KOH in the September edition of "Ham Radio Today". We have sold hundreds an hundreds of these, with many customers coming back to buy a second, third or even fourth unit for use with their other rigs. They work well and sound good
to give precise clipping levels.
lip itself off when not in use.
$\star 9$ or 12 Volt operation, onboard voltage regulator
*Suitable for high or low impedance mics (will even work with an IC251 etc. with a simple mod we can give you details).
\$Simple to build, with only one adjustment for output level to make
\star Full instructions, parts list, circuit etc.
mi4ro,
This kit is revicond in the May issue of "Shorts RECEVER
This kit is reviewed in the May issue of "Shortwave Magazine" by G3RJV. The article says a lot more than we can in this space. Suffice to say these are very popular with both beginners and experienced operator
\pm Single band versions for $3.5,10$ and 14 MHz .
$\$ 12$ Volt operation.
\$1 Watt output into an 8 ohm 'speaker or 'phones.
*Only one adjustment to make to align the module.
\star All coils ready wound for repeatable results.
*Balanced FET mixer, FET VFO.
The unit only requires a couple of 50 pF tuning capacitors by way of external components to function. We can supply suitable air-spaced devices at $£ 1.50$ each while stocks last. DcFix KH Don't be put off by the low price, this receiver reception.

139 Highview, Vigo, Meopham, Kent DA13 OUT Tel: Fairseat (0732) 823129

PN15 2M Limear amplifier 15 Watt

Do you have a 2M hand-held that could do with a boost? Suitable for mobile or base station use this unit will give a 10 dB gain with any hand-held having up to $11 / 2$ Watts output. Easy to build, with preformed inductors for simplicity. this unit is also suitable for 1 Watt SSB rigs. An RF switched (or PTT operated) change-over unit is available type C01, see below PA2/15 Kit $£ 18.90$, aseombled PCB module $\mathbf{2 2 2 . 8 0}$

PA230 2 ${ }^{\text {m }}$ LINEAR AMPLIFIER 30 watt
This unit gives approx 8 dB gain for use with an IC202, FT290 etc. It puts out a clean signal with margin against overdriving with these popular radios. The PA2/30 includes preformed inductors and PTFE output trimmers for good performance. 13.8 Volt operation. The C01 change-over unit can be used with this item.

CO1 RF or PTT SWITCHED CHANGE-OVER UNTT
This unit is designed to switch a linear. preamp, or both in and out of line. Suitable for all bands 160 to 2 M , with an RF sensitivity of $1 / 2 \mathrm{~W}$ for switching. Will switch up to 100 W RF output from a inear, 25W max from the rig. Suitable for many uses apart from switching our PA Series C8.00
(includes a switched bias output on TX and provision for a TX LED indicator).

XM1 CRYSTAL CONTROULED FREOUENCY MARKER

This very useful piece of test equipment is reviewed in the June issue of "Amateur Radio". A good quality design, this calibrator will help you meet the amateur licence frequency measurement requirements, it can also be used to calibrate almost any receivers dial. Check that digital display is telling the truth, they often don't! The XM1 has marker outputs at 1 MHz , features a pulsed ident facility that enablos you to distinguish markers from off-air signals on crowded bands. A worthwhile addition to the shack. KII $£ 15.60$, eesembled PCB modulo $£ 19.60$

ST2 CW SDE-TONE UNT OO PRACTICE OSCILLATOR

The ST2 provides a nice soundig sinewave note, eiter from your key, or from the output of your rig by RF sensing. The unit will work with positive or negative keying, up to 15 volts, and by direct connection to the antenna feeder of an HF or 2 M rig up to 25 W . The unit can also function with a pick-up antenna wihout direct connection as long as it is near enough to the radiating piece of wet string or whatever. With inline connection the unit will work with QRP rigs of as Cs 20, aeaembled PCB mothle EB

If you would like further information on any product, simply drop us a line enclosing an SAE, we have an information sheet on each item. We aim to keep everything in stock and delivery within 7 days.

PLEASE ADD EOp PeP to your total order value
73, Dave, G4KOH, Technical Manager

Land mobile radio services, especially those in densely populated areas, have suffered from congestion of radio channels for a number of years with frustrating consequences for users and industry alike. But relief - in the form of the release of broadcasting Bands I and III for land mobile radio services - is at hand. This release of frequencies will double the amount of spectrum currently available for mobile radio services.

At the beginning of 1985 the 405 -line television services in the United Kingdom will close down and the radio frequencies (known as Bands I and III) will become available for land mobile radio services. The growth of land mobile services (radiotelephone systems and other forms of mobile radio communication) has been inhibited for some years because of the shortage of suitable radio spectrum.
The release of Bands I and III will constitute one of the biggest ever additions to land mobile spectrum in the United Kingdom. At least 1000 channels should be available in London in Band III alone - a substantially larger block of spectrum than that to be used for the two cellular radiotelephone systems to be operated by Racal Vodafone, formerly Racal Millicom, and TSCR.
In spite of the restrictions imposed by the shortage of spectrum, the use of mobile radio has grown at a rate of eight per cent per annum or more for many years. If this were maintained, the number of mobile radios in use would more than double in 10 years.

The relief to the current congestion would, therefore, be only temporary unless the spectrum were used efficiently. The Government believe that multi-channel trunked radio systems, which offer considerable gains in spectrum efficiency, will make the best use of the available radio channels.
Individual users providing their own communication services are unlikely to justify the allocation of the blocks of channels necessary to achieve trunking gains and the Government have therefore identified service providers - companies offering communication services to others - as the likely major operators in Bands I and III.
If the approach that the Government suggest is adopted, it should be possible to meet the demands for mobile radio spectrum until the end of the century.

Opportunities

The release of such a large block of radio spectrum will permit an enormous increase in the use of mobile radio, in terms of the numbers of people having access to it and the range of services offered, and will lead to the creation of new jobs in both the manufacturing and the service industries.
Most radio communication in the UK is local in character. The spectrum in Band III will make it possible to set up a network of local and regional systems meeting this need.
The demand for mobile radio services will probably mean that the first systems are established in the London area and in the other main conurbations. In these

areas, where the mobile radio bands are generally overcrowded, the systems will benefit both new and established users.

The former will be able to obtain an immediate service from a company operating in the new bands; the latter will have the option of transferring to one of the new services.

The size of the new systems has to be decided, but it is clear that there will be opportunities for large operators to bid for substantial blocks of 20 channels or more to provide trunked services and message handling facilities.
An operator of this scale would be capable of meeting the mobile communications requirements of even the largest existing private mobile radio systems.

The size of such an operator may suggest a need for it to accept certain obligations regarding access to the system by others: the Government will wish to consider any views that are expressed on this question.
Smaller operators should also be able to bid for more modest frequency allocations, with the prospect of expansion if they were successful.

Compettion

The Government's belief is that the introduction of new competing services will be the best way of ensuring that the consumer's needs are met.
Within the new bands, competition, and the ability of successful companies to obtain additional radio channels, will

MOBILE RADIO

lead to the development of a range of radio services that reflects the range of consumer demands.
These services will also provide some additional competition to the newly established cellular radiotelephone operators. In this way the consumer will have a choice in the quality of service he obtains and the price he pays.
The question of competition with the cellular radiotelephone systems will be an important one. By 1989 the cellular operators will have achieved virtually national coverage. Before then it should be possible to judge whether there is a need for a further national radiotelephone system.
The existence of further systems would add to the competition in the provision of this type of service, and small and medium-sized systems in Band III will offer a local alternative to the cellular systems. The use of fully interconnected services on a substantial scale would, however, make significant inroads on the overall capacity on Band III to accommodate future mobile radio services.
There may also be implications for the development of the cellular systems which are undertaking major and high investments and are subject to special licence conditions and public interest obligations. A related question will also be the continuation of the existing VHF
radiotelephone service operated by British Telecom.

New fechnology

The availability of the new block of spectrum should act as a stimulus to the development of new radio technologies. The Government propose that part of Band III should be used exclusively for the introduction of new and advanced communication systems, eg single side band and time division code multiplexing, since these offer the means of meeting future growth in demands for radio communication.
Companies with an interest in developing advanced communication systems may wish to put forward proposals for using this part of the band.

Operators

The Telecommunications Act 1984 provides that from July 11984 the Director General of Telecommunications should be available to advise the Secretary of State on what mobile radio services are required and how effective competition in their provision can best be ensured.
The selection of the operators in different areas, and decisions as to the number and size of operators will require careful consideration. The Government hope that the Director General will assist in reaching the necessary decisions.

The issues

The key issues addressed in the consultative document and on which the Government invite views are:
a) - what services should new systems be expected to provide?

- what size should the systems be initially?
- how many systems should be licensed in each area?
- what obligations and conditions should be attached?
b) - how should the candidates be selected?
- should restrictions be imposed on who is allowed to apply, in particular on public telecommunications operators and on manufacturers?
c) - should the Government license further national radiotelephone systems?
- should local services be permitted to provide full interconnection with the PSTN and if so what conditions should be imposed to avoid excessive demands on the spectrum?

There may be other issues that those commenting will wish to raise, but these are the ones the Government see as crucial to the introduction of fully competitive services benefiting all areas of Great Britain.

TAU Old Fashioned Radio Engineering enables our Aerial Tuner Units to perform at an unsurpassed High Level, by virtue of being Infinitely Variable they will tune almost any Transceiver/ Aerial.

The best Transceiver in the World is only as good as the Aerial System its obliged to operate through - Realise its Full Potential with a Tau ATU

ULTIMATE SPC SUPER-TRANSMATCH ATU
The Laws of Physics haven't changed over the years.
Get back to Basic Principles and enjoy complete Signal Readability and Full Strength - courtesy of:-

TAU SYSTEMS LTD - NOBODY MATCHES UP TO US:

ALL COMPONENTS ARE BRAND NEW, TO FULL SPECIFICATION AND GUARANTEED FOR ONE YEAR FROM DATE OF PURCHASE NO CHARGE FOR POSTAGE OR PACKING.
Just add 15\% for VAT and send your cheque/cash/ postal order to us for a by return service.

LCD - Max indication 1999 - Measurements:- DC Volts; AC Volts; DC Amps (Max 10 amps); Resistance Diode and hFE - Battery powered (PP3) - Battery included - Test leads included - many other features full instructions. Complete
A full list of what is available will be sent with each order. Stamped addressed envelope all enquiries.

Unit 3A, Bankfield Industrial Estate, Kitson Road, Leeds LS10 1NT Telephone 0532 455169: Telex 556282

How to get started

In the 1980s, data communication by amateur radio takes many forms: RTTY, AMTOR, Packet Radio, mailboxes and digital repeaters are just a few examples. This article from Datacom, the journal of the British Amateur Radio Teleprinter Group, describes some of the more popular techniques, and outlines how BARTG can help individual amateurs to get started.

Different forms

RTTY, AMTOR and Packet Radio are all examples of digital data communication, allowing text or computer data to be transmitted to a distant point by radio.

RTTY (Radio Teleprinter) is the oldest and simplest of these modes, whereby messages typed at a teleprinter keyboard at one end of the radio link appear as printed characters at the other end, in the same manner as the familiar office telex machine. In fact, many amateurs still use surplus telex machines, but nowadays these are being replaced in many stations by home microcomputer systems with visual display units (VDUs), which are much cleaner and quieter and more flexible.
AMTOR (AMateur Teleprinter Over Radio) is a computer-driven data communication system, incorporating auto-
matic error detection and correction facilities, dramatically reducing errors caused by interference. The main characteristic of AMTOR is that messages are broken down into 3 -character blocks, and the receiving station acknowledges successful receipt of each block before the transmitting station sends the next one. Messages are transmitted at about the same speed as RTTY, and almost all the errors appearing at the receiving end are due to typing mistakes!

Packet Radio is a more complex mode, intended for high integrity data links. The main features of Packet Radio are its very low undetected error rate, message transfer speeds about 15-20 times faster than RTTY or AMTOR, and the capability automatically to route messages to specified destinations. Packet Radio also allows several independent QSOs to be conducted at the same time on a single frequency, thus conserving valuable spectrum space.

The basic requirements

All of these modes of data transmission have very similar basic requirements. At the transmitting end, message characters are encoded into streams of bits (binary digits, or elements), which can
have two states: by convention, a binary ' 1 ' is usually called the Mark state, and a binary ' 0 ' is called the Space state. These bits are fed into a Tone Generator, such that a Mark produces a high audio frequency tone, and a Space produces a low audio frequency tone. It is these tones which modulate the transmitter.
At the receiving end, the high and low audio tones appearing at the loudspeaker or headphone output of the receiver are routed to a Terminal Unit (TU). The TU detects the tones and converts them back to Mark and Space signals to drive the teleprinter or computer.

Character codes

The sequence of Mark and Space bits used to represent each character is agreed internationally. Several different codes are used, depending on the mode.
In standard RTTY, each character is represented by 5 data bits, plus Start and Stop bits, as defined in the International Telegraph Alphabet (ITA) No 2. Also used in RTTY are the Murray and Baudot codes, which are similar to ITA2.
A further code sometimes used in RTTY is the International Telegraph Alphabet No 5. This has 7 data bits per character, and is more or less the same

DATA COMMUNICATION

as the American Standard Code for Information Interchange (ASCII, pronounced 'askee'), used in almost all home computers.
AMTOR uses a special 7-bit code defined in CCIR Recommendation 476. The main characteristic of this code is that all valid characters contain a combination of 4 Mark bits and 3 Space bits. This fact is made use of at the receiver - if a received character contains this combination of Marks and Spaces it is assumed to be valid, but if not it is rejected. AMTOR uses synchronous transmission, and message characters do not have Start or Stop bits.
Packet Radio uses ASCII for message characters, together with special control characters for packet framing, routing and error checking. The way in which these characters are used is defined in the recently agreed AX. 25 protocol, which closely resembles the High Level Data Link Control (HDLC) protocol used in commercial packet networks.

Speeds

For ITA2, the two speeds in general use are 45.45 and 50 baud. The former is by far the most popular on the HF bands, because of the worldwide availability of surplus American equipment. However, the increasing availability of 50 baud telex machines in Europe means that there is now a trend to this speed, particularly at VHF.
For ITA5/ASCII, the most usual speeds are $110,300,600$ and 1200 baud.
For AMTOR, the speed is always 100 baud. However, because of the error detection techniques used in this mode, about half the time is taken up by handling control codes, so the effective message rate is about the same as 50 baud RTTY.
Most present day Packet Radio networks operate at VHF/UHF, allowing
high data rates, typically 1200 baud. However, Packet Radio is still in its infancy, and it is likely that other standards will emerge in due course.

The signal

As mentioned above, the usual way of sending a data signal is by modulating the transmitter with the Mark and Space tones. In practice, these tones are used to produce frequency shift keying (FSK). The most common method is standard FSK, whereby the Mark tone appears as one radiated frequency and the Space tone is 170 Hz below this frequency. The 170 Hz shift is standard for all lower speeds, with 425 Hz and occasionally 850 Hz being used at the higher speeds.
At VHF, use of Audio Frequency Shift Keying (AFSK) of an FM transmitter is popular. The standard frequencies are 1445 Hz for Mark and 1275 Hz for Space.

Where to find data slgnals

Data signals are to be found on virtually all bands from 160 m to 70 cm . FSK is the only mode used on the HF bands, but both FSK and AFSK are used at VHF. The most popular frequencies in use today are:

RTTY: 3.590, 14.090, 144.600, 145.300 and 432.600 MHz

AMTOR: $3.588,14.075$ and 144.590 MHz

RTTY repeaters operate on 70 cm .

The equipment

The equipment required to operate RTTY can be very simple. The cheapest approach is to buy a teleprinter for a few pounds and to connect this to a homemade Tone Generator (for transmission) and a Terminal Unit (for reception). BARTG publishes a book entitled RTTY the Easy Way, which contains full circuit
and constructional details of suitable units, together with full information on how to connect them together and set them up. As an alternative to a mechanical teleprinter, the home micro can be used instead, and several trade suppliers provide suitable RTTY programs for the more popular machines.
To run AMTOR, a more ambitious setup is needed. This can be a complete 'black box', or alternatively there are kits available containing the necessary control hardware and software, for interfacing to an existing teleprinter or micro.
A similar situation exists in the world of Packet Radio, which requires a complex Terminal Node Controller (TNC) to handle the transmission and reception of packets. Again, TNCs are available as 'black boxes' or as kits.

BARTG

The British Amateur Radio Teleprinter Group was formed in 1959, and exists to encourage and promote interest in all modes of data communication. The Group publishes a regular magazine covering technical matters, contest news, tutorials for beginners and general gossip. Other services include a Sunday RTTY news bulletin, contest sponsorship, and the supply of specialist components and books.
Most important, the Group offers advice and assistance to individual members to get their systems working. The current annual membership subscription is $£ 5$. No application form is necessary - simply send the $£ 5$ (cheques etc made payable to 'BARTG'), together with a note of your name, address and callsign (or a QSL card) to Mr John Beedie, G6MOK, 161 Tudor Road, Hayes, Middlesex UB3 2QG. Tel: 01-561 0010.
Published by kind permission of the British Amateur Radio Teleprinter Group.

COMPUTING TRANSMISSION LINES

By Brian Kendal, G3GDU

Whenever a radio signal is passed along a wire, that wire, together with its environment forms a transmission line which has a characteristic impedance and losses.

In most equipment, wiring is kept short and, in consequence, losses are minimal. Sometimes, however, particularly at the higher frequencies, even the shortest connections are significant in terms of wavelength and losses can only be minimised by matching the impedance of these connections to their associated circuits.

When designing and constructing aerials, it may often prove necessary to insert a quarter wave matching section of some unusual impedance. Often this is achieved by paralleling lines of standard impedance, such as using two lengths of 300 hm ribbon to make a 1500 hm section, but if the required impedance is known, it is often quite simple to manufacture an accurate section from materials at hand.

A more common example is in the construction of VSWR meters. Many of these use the case as the screen of the transmission line.

Consequently the selection of the correct diameter of wire between the input and output connectors can ensure that the correct impedance is maintained.

The insertion of the meter in an aerial circuit will not then upset the VSWR previously attained nor affect the loading on the transmitter.

In each of these and many more cases, it is quite possible to calculate the necessary parameters with pencil, paper and a book of log tables.

Recently, however, when working on a problem which required this type of calculation, it occurred to me that a program for calculating the parameters of the most common forms of transmission lines would form a most useful addition to my program library.

The formulae for the calculations were found in the Radio Data Reference Book by G Jessop G6JP, published by
the RSGB. This gives the basic impedance calculations for seven types of transmission line.

One of these formulae is unfortunately ambiguous, so it was decided to omit this from the program until it could be confirmed from an alternative source.
The program may be considered to comprise seven sections, the menu and calculations for each of the six different types of transmission line.

The menu (lines 10 to 210)

This is the section of the program in which the various options are listed and the appropriate calculation selected.
This description is for the BBC Model B Micro, but could be adapted for other popular machines.
The first line of significance is ' 30 MODE 6'. Prior to writing this program, it had been decided that wherever possible, simple diagrams of the selected transmission line should be given.
MODE 6 was chosen as an appropriate low definition mode which could also be output to the printer without a graphics screen dump routine. On line 70, the gap between the words 'USING' and 'AIR' is to prevent the latter word being split onto two lines and also improve the presentation of the display. This technique has also been used elsewhere in the program.

Some readers may be unfamiliar with the style of line 210. This is a single line statement which equates exactly to:
PRINT 'SELECT REQUIRED CALCULATION' INPUT A

The succeeding line, 220 is also a complex statement, this being the equivalent of:
IF $A=1$ GOTO 230
IF $A=2$ GOTO 650 etc.
However, only six valid alternatives exist but it is possible for 0 or a higher number than six to be keyed in. This would confuse the computer and cause it to initiate an error message. To prevent this, the line is completed by:
ELSE GOTO 10
which, if an invalid selection is made,
loops the program back to the beginning.
At this point it might be worthwhile to explain the PRINT statements which appear throughout the program. It is well known that this causes a blank line.

In some cases, however, it appears as 'PRINT" or 'PRINT'", these causing the computer to output two or three blank lines. Some computers, such as the ZX81, will not accept this statement and it will be necessary to include a separate 'PRINT' statement for each blank line required.

Calculations

The second part of the program starts with a CLS in order to remove the menu from the screen. This is followed by a simple diagram. In this, the parallel lines are built up from 'underlines' and the arrow heads on lines 270 and 300 are the 'raise the power' symbol whilst that on line 290 is a lower case ' V '.

The three parameters for a parallel

TRANSMISSION LINE FORMULAE PARALLEL STRIPS (SLAB LINES)

$Z=377 a / b$ if $a<b$
where a is the spacing and b is the width of the line

PARALLEL WRE

$Z=276$ LOG D/d if $d<D$
where d is the diameter of the wire and D the spacing

WRE PARALLEL TO INFINITE PLANE

$Z=138$ LOG D/d if $d<D$
where d is the diameter of the wire and D the spacing

WRE PARALLEL TO TWO INFINTTE PLANES

$Z=138$ LOG [(4D)/(2n)] if $d<D$
where d is the diameter of the wire and D the spacing

CIRCULAR COAXIAL

$Z=138$ LOG (1.178D)/d where d is the diameter of the inner wire and D the side length of the outer

COMPUTING TRANSMISSION LINES

COMPUIING TRANSMISSION LINES

strip line are line spacing (a), line width (b) and impedance (Z). Line 330 asks which of these is required.

In an INPUT statement, the computer expects the answer to be a number and will not accept a letter. It will, however, accept a 'string variable', so the requirement can be satisfied by the term ' B '.

The formula for parallel strip lines is

$$
z=377 \times(a / b)
$$

when b is much larger than a.
This expression can also be transposed to give either ' a ' or ' b ' in terms of the other two parameters.
Lines 340 to 360 select the appropriate calculation and line 360 is a simple method of repeating the question should an invalid selection be made.

In the first of these calculations, the known parameters are input on lines 390 and 410 , and the calcualtion is performed on line 430.

Line 450 invites either a further calculation or a return to menu, this being achieved at lines 460 and 470 with Line 480 as a 'backstop' in case of an invalid selection.
The alternative transpositions of the formula are handled in the same way in Lines 490-560 and 570-640, the only difference being that the selection of further calculation or menu is achieved by looping back to Line 450 with a GOTO statement.
With one exception, each section of
the program works in the same way, the only difference being the graphics and the formulae. The single exception is for 'Circular Coaxial' for which the formula is the same as that for 'Wire Parallel to an infinite Plate'
For this, it seemed superfluous to repeat the calculation, so after selecting the required parameter, the program was looped back to the appropriate part of the earlier section.

Testing and using the program

The best, in fact the only way to test a program is to run it, so, after having input the program, key 'RUN'.
On the screen should appear a menu giving six options. First, however, check the invalid selection routine by keying ' 7 ', ' 8 ', or ' 9 '. The screen should just flicker and the input number disappear.
Now check the first option: 'Parallel Strips'. Press '1' and the screen should change to a diagram in the upper part of the screen with the question below:
'DO YOU REQUIRE a, b OR Z'.
Select ' a ' and the words 'INPUT b' will appear. Input a number (say 10) and 'INPUT Z' will be printed beneath. Input another number (say 100) and below will be written:
'THEN a = 2.65251989'
and further down the screen:
'PRESS C FOR FURTHER CALCULATION OR M FOR MENU'.

Press ' C ' and the previous calculation will be deleted and the diagram plus 'DO YOU REQUIRE a, b OR Z' will return.
This time select ' b ' and use the result of the previous calculation with the value of Z as before.
If the formula has been correctly entered, the answer should be the original ' b '. If all is well, again repeat using ' a ' and ' b ' to calculate ' Z '.
Using this technique, each section may be checked and if all is well, the program may be used with confidence.

Postscript

This program was written for the BBC ' B ' OS 1.2 computer. As only about 5 K of memory is used, it should also be suitable for the BBC ' A '. For other makes of machine, it is possible that the graphics may not prove suitable. If so, 'MODE 6' on line 30 and the lines describing the graphics throughout the program could be removed without any effect on the calculations.
Minor alterations may also be necessary due to variations in the dialect of these machines.
A final and very important point to remember is that all the calculations have assumed an air dielectric. Should any other material be used, the value of Z calculated should be multiplied by $1 / \sqrt{ } \mathrm{K}$ where K is the dielectric constant of the material.

Largest Amateur Radio Stockist in the South West

YaESU

FTOHE HF TX
FT980 HF TX
FT102 HF TX
FT77 HF TX
FT757 HF TX
FT290 2M M/M TX FT790 70CM MM TX
FT480 2M MM TX
FT726 2M/70CM BS TX FT208 2M H/H FT708 70CM H/H FT203 2M H/H FT230 2M FM FM730 70CM FM FRG7700 RX

ICOM

IC751 AF TX
IC745 HF TX IC730 HF TX IC290D 2M TX IC490 70CM TX IC271 2M B/STX IC27 2M FM IC2E 2M H/H IC02E $2 \mathrm{M} \mathrm{H} / \mathrm{H}$ IC4E 70 CM H/H IC04E 70CM H/H ICR70 RX ICR71 RX

TRIO

TS930S HF TX
TS830S HF TX
TS530S HF TX
TS430S HF TX
TS130S HF TX
TR9130 2M M/M
TR7930 2M FM
TW201 2M FM
TW401 70CM FM
TW4000 $2 \mathrm{M} / 70 \mathrm{CM}$
FM
TR2500 2M H/H
TR3500 70CM H/H

Amateur

For all two-way radio enthusiasts THE PERFECT COMPLEMENT TO
RADIO \& ELECTRONICS WORLD

DON'T MISS YOUR COPY

With regular features like Current Comment, DX Diary, Straight and Level, Angus McKenzie's equipment review, SWL, Rally Calendar and Free Classified Ads, and a host of special features in each issue, make sure you place a regular order for Amateur Radio with your newsagent or take out a post free subscription now, while the offer lasts

SUBSCRIPTION BENEFITS

...delivery to your door by publication date each month ... inflation proof - price guaranteed for 12 months

On sale NOW at your newsagent

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department • Amateur Radio • 513 London Road - Thornton Heath • Surrey • CR4 6AR.

Tel: 01-684 3157
\qquad
ADDRESS \qquad

The Brother EP44 is a very useful typewriter and printer, but if one does a lot of listing or typing it is advisable to use a power pack.
Not all 6 V supplies are suitable, as the printer solenoid causes a current pulse of several amperes, and if the power source does not have a low impedance, the input voltage falls to a point where the data is corrupted.
The makers supply a suitable mains unit, but unless this is left permanently switched on, the plug to the printer must be withdrawn when not in use so that the internal batteries will keep the memory refreshed.
To avoid this inconvenience, I decided to use rechargeable batteries, coupled to a 12 V dc supply which I already had. The circuit is shown in Figure 1.

Four cells are used, giving a nominal $4.8 \mathrm{~V}-5 \mathrm{~V}$, but provided they are kept well charged the working voltage is about 5.5 V and the printer operates on 32 column listings, which are the most demanding as regards power supplies.
The circuit is very simple, comprising four $1 / 2 \mathrm{C}$ cells (1.2AH) in series, charged by a constant current using a BD136 regulated to about 100 mA . A green LED gives a reference voltage between input and base, and also indicates that the circuit is operating.

Optionally, a switch can be fitted to cut out the charging, or, as shown by dotted lines on Figure 1, to give a trickle charge. The whole unit is housed in a suitable box, the transistor being mounted on an aluminium strip, more for convenience than for a heatsink (Figure 2).
A lead with an output connector to fit the EP44 is required: note that the centre socket of the connector is negative and the outer sleeve is positive.

Typing aid

This device is an aid to typing, as it was found that the LCD display viewing angle is such that one must lean over the keyboard to read it. A wedge prism is made to fit over the display (Figure 3). This gives a greatly improved viewing angle. The prism can be cut and filed from $1 / 4$ inch perspex, and polished with fine wet and dry paper and metal polish.
Small pieces of card or thin plastic are glued to the ends as supports. The top surface should be roughly parallel with the keyboard, and it is fitted as shown in Figure 4.
The dimensions are not critical: within limits, the greater the angle of the prism, the further back one can sit and view the display, but the design shown seems satisfactory.

EP44 EXTRAS

by A M Tucker

Figure 1 Circuit diagram

Figure 2 Component layout
Prism

Figure 3 Prism constructional detail

Figure 4 Prism location

AMATEUR RADIO WORLD

Compiled by Arthur C Gee G2UK

Greenwich Mean Time Centenary

The Greenwich Mean Time Centenary was celebrated by radio amateurs by the operation of two stations with the callsigns GB0GMT and GB1GMT respectively. These stations were operated by the St Dunstan's College ARS throughout June. Contacts made will be confirmed in due course, by a special QSL card supplied by the National Maritime Museum.

The measurement of 'Time' goes back to antiquity - possibly as far back as 1500 years BC. The activities of man have, from the creation, been regulated by the natural time scale provided by the daily rotation of the earth giving periods of light and dark, ie day and night.
The first man-made time recorders kept a record of the position of the sun in the sky during its daily apparent passage from sunrise to sunset and even today, the time scale adopted for general use must approximate to solar time.

In the 19th century, there were observatories in many countries making observations for the determination of time. Attempts were made to co-ordinate these activities and in 1884 an international conference was held in Washington DC, USA, at which it was agreed that the meridian of Greenwich, England, should be standard reference meridian for the measurement of time - hence the origin of Greenwich Mean Time.

The measurement of time is now a most sophisticated scientific discipline. It has come a long way from sundials to ceasium beam atomic clocks, with their split second accuracy. Chod Harris, VP2ML, gives a very good description of 'WWV,' the Time and Frequency Radio Station at Boulder, Colorado, in his 'DX' column in the April last 73 Magazine.
Readers interested in this topic should read it. Chod makes a case for every amateur radio station operator interested in DX having one very accurate clock in the shack, set at UTC. Whilst we
don't go quite so far as he makes out in his column, we do agree that a really accurate clock is a boon in the shack.

The writer acquired several years ago one of Cambridge Kits' MSF Radio Clocks. This is a real 'radio clock,' in that it receives radio signals from the British Time Signal radio station at Rugby on 60 KHz and displays them in real time on a digital display unit.
This gives absolutely accurate time and whilst occasional severe electrical interference or very poor propagation conditions may at times distort the display - when the error is quite obvious.

UOSAT-2 back in action

No doubt, by the time this appears in print, most readers will have heard the good news that UOSAT-2 is back in action, transmitting telemetry data again - after ten weeks silence.

Problems arose on the morning after launch, when UOSAT-2 did not respond to repeated commands from the Surrey University Satellite Command Station. Then began a long series of checks to establish the cause of the trouble, made all the more difficult by the fact that according to the telemetry so far recorded, there was nothing wrong at all! Daily attempts to gain command continued to prove unsuccessful.
Then, over the weekend of May 12, radio amateurs at the Stanford Research Institute, California, using a very sensitive radio receiving station located in Greenland, picked up faint signals on 1.2 GHz . These indicated that the command receiver of UOSAT-2 was switched on. This important discovery confirmed not only that the spacecraft was still operating, but also that it was in its predicted orbit.
Armed with this encouraging information, Neville Bean and Roger Peel, of the University of Surrey UOSAT Project team, made a further attempt on Monday 14 May, to recover command of UOSAT-2.
Attempts using 144 MHz were unsuccessful but, on the next orbit, commands using 438 MHz resulted in the main data beacon being powered-up! The signals from the beacon are again as strong as they were immediately following launch and the telemetry indicates all seems pretty okay. The battery voltage is 14.6 volts, which is as it should be and the temperature of the satellite is between -5 to 0 degrees centigrade, ie within expected values. More tests can now be initiated, to see if the cause of the shutdown can be ascertained.

Computerisation of licensing

The licensing of radio amateurs is now being administered by the Post Office on behalf of the Department of Trade and Industry, who remain responsible for all the other aspects of the amateur radio service.
Ever since the first radio amateurs were licensed in the UK, the licensing system has been carried out by manual means.
Due to the significant increase in the number of licensees recently, the manual system has been unable to cope, so it was decided to go over to a central computer system.
To assist in this changeover, all UK licensees are being sent a request from the Post Office to confirm their name, address etc.

If this applies to you, be warned, do read the notes on the back of the letter sent with it before you complete the form, or you may make mistakes!

News

During the discussions following the recent AMSAT-UK AGM, suggestions were made that a feasibility study be made into the possibility of funding and launching a radio communication satellite within the ambit of AMSAT-UK.

The Irish Department of Communications recently released the 'new' HF amateur radio bands for use by Irish radio amateurs. These are 10.100 MHz to $10.150 \mathrm{MHz} ; 18.068 \mathrm{MHz}$ to 18.168 MHz and 24.890 MHz to 24.990 MHz .

The Bulgarian Everest Expedition has used amateur radio for its means of communication. Due to poor propagation conditions, it is reported that communication via OSCAR 10 may be used at times.
Around the 23rd April last, a large group of sunspots began to appear over the limb of the sun. As it came more into 'view,' it was apparent that it was to be one of the largest groups seen for many years.

This was somewhat unexpected, as we are at present in a sunspot minimum period. The group subsequently produced some of the highest solar flux levels ever recorded. Very high levels of absorption, aurora and magnetic disturbances were experienced.
Secondary solar activity peaks such as this one have been observed before in sunspot cycles. It is possible this one may improve propagation conditions for HF communication during several months ahead.

ELECT \& PIEZO BUZZERS

SUB-BOX

DC-DC POWER SUPPLY
DC to DC adaptor, Plugs into car cigar lighter aperture
Output 3. $4.5,6,7.5,9,12 \mathrm{~V} @ 800 \mathrm{~mA}$. Has universal
output spider plug also gV battery snap and polarity

SPEAKER PROTECTOR Limits voltage to speaker or to the permissible max., resistor in series with speak
 ers. When excessive voltage is duced the unit resets itself. Electronic voltage-sensing reiay circuit. Spring terminals. Cut-of level adjustable from $10 \mathrm{~W}-120 \mathrm{~W}$. Full instructions includ ed. Dims: $85 \times 74 \times 25 \mathrm{~mm}$.
$\mathrm{O} /$ No. VP 118
O/No. VP 118
$£ 9.95$

Well designed beginners key. Fully adjustable. $£ 1.85$
Dims: Base $82 \mathrm{~mm} \times 45 \mathrm{~mm}$. O/No. VP 122.12 .8 ANTENN

Co-axial switch for one transceiver to two antennae or one antenna to
two transceivers. Dims: $86 \times 55 \times$ 32 mm (Body).
$0 / \mathrm{No}$. VP 113
As above but
O.No. VP 114
£4.50
$\mathbf{£ 4 . 7 5}$
HIGH PASS FILTER/SUPRESSOR
unwanted signals picked up by antenna. Dims:
O / No. VP 115

LOW PASS FILTER Designed to reduce the VHS and TV band. V.S.WR- Less tran 12 Hz Insertion loss:- 0.2 dB @ impes: $80 \times 55 \times 40 \mathrm{~m}$ O/No. VP 116
$£ 2.75$

ANTENNA COUPLER Transceiver.ar With co-axial na couple
cables. minates in antenna plug and the other in PL259 plug. O / No. VP 117
£2.00
TAPE RECORDER SWITCH
Unit to control motor of tape recorder. 1.8 m cord and 2.5 mm plug attached. Onow swich. Dims. 20 mm . vp 12
£1.00
HOGH OUALTY MODULES FOR STENEO
MONO E OTHER AUDIO EOUIPMENT Audio Amplifiers

PRECISION MORSE KEYS

The BBC Microcomputer has a small internal loudspeaker which produces an audio output at a reasonable volume, under software control. A pre-set situated on the main PCB underneath the keyboard PCB enables the volume to be adjusted. This control could be 'brought out' to the rear of the case for more accessible adjustment, although this is probably not worth the effort as the level would not need to be changed significantly in normal use. Volume adjustment with reference to the pre-set level can also be achieved via the appropriate SOUND command parameter. If desired, the existing speaker could be connected to a changeover switch (or jack socket) and a better quality speaker of the same impedance utilised. This however would be limited by the low power capability of the internal amplifier.
Direct or decoupled connection to the audio amplifier of a television is not recommended, unless the mains input to the set is via an adequate isolation transformer, and the modifier has sufficient knowledge of the equipment and is experienced in working with TV chassis. Also remember that the manufacturer's guarantee may be invalidated by modifications to the equipment.
The most useful enhancement of the audio facility would be to connect the output directly into an external amplifier, eg domestic audio system. This is fairly simple to carry out and is described as follows.

Connections to the computer

The audio section of the computer is made up of a number of op amps, the final stage having the internal speaker connected. An output suitable for connection to an external amplifier is already provided at the output of the 'preamplifier' stage as shown in Figure 1a. This is brought out to the edge of the main PCB situated underneath the keyboard and

Figure 1a

adjacent to the power supply unit. Unfortunately PL16 and the associated OV point are merely solder filled, through-plated holes (no solder pins), and it is rather awkward soldering on to these almost inaccessible points. However, it can be done providing care is taken to ensure that the plastic case, power supply cables and insulation and motherboard are not damaged, and this is easier than removing the motherboard! Small screened cable is recommended, which may then be run along the edge of the motherboard from PL16/0V to the rear of the machine. A 3 (or 5) pin DIN chassis socket can then be
fitted to the 'Econet' aperture, which will necessitate the drilling of two holes in the plastic case as shown in Figure 1b. If twin (screened) cable is used, this enables instant connection to both channels of a stereo amplifier, but an appropriate link would suffice.
All that is now required is a suitable cable, eg 3 (or 5) pin DIN plug which will enable connection to the input of a stereo amplifier.
This facility will considerably enhance such sound effects as those found in Starfire, Space Invader, Envelbeeb programs, etc, but should not be used to annoy (or frighten) the neighbours!

ANSWERS TO TWENTY QUESTIONS

1. All except (c)
2. False. The frequency bands, power limitations and related classes of emission are specified.
3. The missing number and errors in the statement are in italics "The Morse Test includes sending 36 words averaging 5 letters per word in 3 minutes'.
4. (c)
5. The missing numbers in the statement are in italics 'The Morse Test involves receiving 36 words ave-
raging 5 letters per word and 10 five-figure groups in $1 \frac{1}{2}$ minutes'.
6.2 errors.
7.4 errors in plain language, 2 errors in figures, ie (d) 8. (b)
6. Key clicks.
7. False. Details of these tests must be recorded in the Station Log.
8. True. The prefix letters of the callsign are varied according to UK country of location, eg G for England, GD for Isle of Man, etc.

The suffix ' $/ A$ ' is also added for location or '/P' for pedestrian or $/ \mathrm{M}$ ' for vehicle/vessel.
12. (b)
13. (b)
14. (a)
15. (d)
16. (c)
17. False.

Pre-emphasis attenuates the lower audio frequencies and, in relation to the noise distribution across the frequency band, creates a better energy
distribution and S / N ratio. The clipper limits the peak amplitudes of the audio and prevents over-deviation.
18. (d)
19. (b)
20. (b). If the 435 MHz antenna is one third of the size of the other it will receive one third of the energy and if the gains are equal the performance is not. If it has three times as many elements, the performance will be similar.

POINT OF CONTACT

The general interests of some of our readers and of club networks are shown below. If you have similar interests why not establish a contact at the time and on the band indicated.
If you or your club wish to be included in this scheme, would you please complete and return the form below and send to: Radio \& Electronics World, Sovereign House, Brentwood, Essex CM14 4SE.

MOST IMPORTANT - include a telephone number - if you have a particularly interesting contact so that we can contact you for details for publication.

VK5QV ex G3KGH

Usually available Mondays, Wednesdays and Fridays from: 0800 GMT on 14 MHz . Uses phone. Equipment FT101Z, FL2100Z, Theta 7000, TH6, Oric 1. Special interests: working ' G ' stations. Would like to contact someone from Gravesend.

GU4XGU ex GU6NAE

Usually available daily from 0800 to 0855; 1250 to 1325; and 1925 to 2200. Uses phone, CW, and RTTY. Equipment Icom IC 290H, KW 2000A, IC2E, LCL 2740 converted to 10m FM, Vic 20 with an MPTU-1 terminal unit. Special interests: operation on VHF, RTTY, and reception of amateur satellites.

G4JHI

Usually available Monday to Friday from 1730, Saturday anytime and Sunday morning on 2, 15, 20, 80 and 160 metres and occasionally on 10, 30, and 40 metres. Uses J3E/A1A on HF , and F 3 E on VHF.

Equipment Trio TS530, FT480R plus MM 100W linear. Special interests: RS satellites, DX, WAB, local net working.

Fatan CLUB NETS

Escape

Ex-Service Communica-

 tions Association. Usually available Monday, Wednesday and Sunday mornings at 0700 GMT and Monday, Wednesday and Sunday evenings at 1900 GMT. Modes used are CW and SSB on frequencies of 14020/14185/14255; 21020/21185/21255; 7005/7085; 3730/3790/3570. RTTY contact from the early Autumn. National CB channel is 34 .The following list of nets has been supplied by South Essex Amateur Radio Society. Sunday

G5SN net starting at 0930 on 3.7 MHz SSB .

The Royal Naval Amateur Radio Society net starting at 0930 on 3.660 MHz SSB .

The Northern net starting at 1030 on 7.85 MHz .
The Amplitude Modulation Preservation Society net starting at 1430 on 1980 KHz on AM and SSB, with G4GVO in the chair.
Kent and Essex Round Robin on the first Sunday of each month starting at 1830 on 1950 KHz with Basil G3LID or George G4INO in the chair.

Monday

CW net on 1950 KHz starting at 2000, all are welcome.

Thursday

RAYNET Call out on 144.875
FM at 2030 GMT with Joe G3AJS as controller.

Friday

SEARS 2 metre CW net starting at 2030 on 144.410.
10 metre FM net on 29.600 MHz (calling frequency) at 2130.

Weekdays

The Shaving Club starting at 0715 on 1927 KHz with Arthur G3KPT in the chair.

Daily

On 1978KHz at 0930, Frank G5WL and Frank G3BLI wel-
come a call from anyone for a chat.
We apologise for any errors, but the information above is correct as far as we know. Please send any corrections to the Editor.

SPECIAL EVENT STAIIONS

GB2ABC

The Abergavenny and Nevill Hall Amateur Radio Club will be running a special event station at the Abergavenny and Border Counties Show on 28th July. The station will be operating on SSB on all bands to 146 MHz and FM on 2 metres. Further details from GW3SSY on 087378674.

GB2PYF

The Abergavenny and Nevill Hall Amateur Radio Club will be operating a special event station at the Pen-y-Faal Hospital Fete. The station will be using SSB on all bands upto 146 MHz and FM on 2 metres. Further details from GW3SSY.

POINT OF CONTACT

Name/Club.
Telephone No Call Sign d.

Type of Licence A B
Bands usually preferred
Operating days M TWTFSS Times
Equipment
Phone/CW.
Special interests eg DX,AMSAT etc \qquad

Dates for your diary is updated every month.
Club secretaries and organisers are requested to send information of forthcoming events as early as possible
to Radio \& Electronics World, Dates for your diary, Sovereign House, Brentwood, Essex CM14 4SE

Date 15July	Function DF Hunt	Location Wirral and District AR Club	Contact G Scott G8TRY	
	DF Hunt on 160 \& 2 m	Dunstable Downs AR Club	Phill Morris Dunstable 607623	
17 July	QRP Operating by C Page	Biggin Hill AR Club	\| Mitchel	G4NSD
18July	Computer Night	SBristol AR Club	Brian GIDBH	
21 July	Radio \& Electronics Fair	Royal Victoria Hall, S Borough	W Kent AR Society	
22 July	Anglian Mobile Rally	Stanway School	Colchester Radio Amateurs	
22 July	Home Counties Mobile Rally	McMichael Sports and Social Club, Belles Hill, Stoke Poges		
29 July	Scarborough AR Rally	The Spa, Scarborough		
5 August	Woburn Rally			
7 August	High Power Transmitters	Chelmsford AR Society		
17 August	DF Hunt on 2 \& 10m	Dunstable Downs AR Club	Phill Morris Dunstable 607623	
19 August	HAMFEST 84	Flight Refuelling Social Club, Merley Park Road	RAIBC \& Flight Refuelling AR Society	
27 August	DF Hunt	Southgate AR Club	G40BE (QTHr with SAE)	
5Sept	Sattelite Communication	Fareham \& District AR Club	Brian Davey G4ITG	
8-9 Sept	International Amateur TV Contest	British Amateur TV Club	G Shirville G3VZV	
9 Sept	Telford Mobile Rally	Telford Shopping Centre	G8DIR/G8UGL G3UKV	
16 Sept	Vange AR Society Mobile Rally	Nicholas School, Basildon	Mrs DThompson	
19-23 Sept	The Personal Computer World Show	Olympia 2		
23 Sept	Lincoln HAMFEST	Lincolnshire Show-Ground	Lincoln SWClub G5FZ/G6COL	
23 Sept	National Car Boot Sale	Shuttleworth Collection, Old Warden, Beds	Dunstable Downs Radio Club	
70ct	Gt Lumley Annual Rally	Gt Lumley Community Centre	Gt Lumley AR Society G40CQ	
13Oct	Midlands VHF Convention	BT Training College, Stow, Staffs	Peter Burdem G3UBX	
17-25 Jan 85	Amateur TV Winter Cumulative Contest	British Amateur TV Club	G Shirville G3VZV	

Computer \& TV Video INTERFACE

by Alan Pickard

The BBC Micro has the ability to provide a video output via socket SK2. This is standard on the Model B, but can easily be provided on the Model A by fitting the appropriate BNC socket.
This video output provides a more direct connection of the output from the video processor after amplification and dispenses with the necessity of passing through a UHF modulation stage and subsequently a demodulation stage. This signal can then be fed in to a monitor or after the vision detector stage in a television, resulting in a better quality, higher resolution display (having avoided any slight degradation of the signal by a stage of modulation and then demodulation).

Whot is involved

The universally adopted standard for 'line level' video is 1 V peak-to-peak into 750 hm impedance.

Modifying a television circuit involves feeding in the video output from the computer to the point where the vision detector stage output is normally fed. This input should be via a 750 hm coaxial cable and must present a 750 hm terminating impedance to the input circuit.

In most cases a certain amount of additional circuitry will be required to match the $750 \mathrm{hm}, 1 \mathrm{~V}$ positive input signal such that the impedance, amplitude and polarity required by the video stages of the receiver are correct.

Points to check

Before deciding to attempt a 'video in' modification to a black and white television, the following points should be observed.
This modification should only be attempted if you have sufficient knowledge to understand the manufacturer's circuit diagram and have previous experience of working on TV chassis. If the set is within its guarantee period, the guarantee may be invalidated by the modification.
Ensure that the chassis of the set is not connected to either the mains live or the mains neutral lines. To be compatible with connection to a micro (ie safe) the mains input to the set should be via a step down isolating transformer such that the video stages are supplied with low supply voltages of the order $12-24 \mathrm{~V}$ dc.
In the case of a 'hot chassis' set (live or neutral connected to chassis), or low voltage supplies derived from mains

Fig 1 ComputerTV interface - no amplification
dropper resistors, do not attempt modification. The best way of establishing whether or not the set is safe to modify is by consulting the manufacturer's circuit diagram.
In all cases check that the mains fuse to the TV set is correctly rated.

Computer/TV interface

Figure 1 illustrates how to connect a video input (output from micro) to the first video amplifier stage (after the detector stage). These few components would be all that were required for input matching, if the first video amplifier stage in the television stage was designed for 1 V positive input (75 ohm): in other words, if it is not required to change amplitude or polarity of the incoming video signal.
In some cases however, the 1 V video input will not be of sufficient amplitude to drive the video stages fully (resulting in the display not 'locking'). In this case an amplification stage will be required as shown in Figure 2. This consists of a
common base amplifier which provides a low impedance input to the first video amplifier and does not invert the signal. Amplitude is adjusted from 1-3V via RV1, and RV2 sets the bias voltage. The polarity of C2 depends on RV1 and RV2 settings.
If the television set requires a positivegoing video input (see waveform), then the circuit in Figure 3 will provide the required amplification and inversion of the signal. RV1 adjusts the bias on the following video amplifier stage and RV2 sets and gain.
The above notes are intended to be a guide only to conversion, but it should enable the successful connection of a video signal. For stable operation, the wiring to the switch should be kept as short as possible. In order to be able to switch easily from 'video in' mode to 'UHF TV' mode, the fitting of the changeover switch as indicated on the diagrams is recommended. Also, connection to the television set should be via a BNC socket.

COMPUTER \& TV VIDEO INTERFACE

 successfully. A 2 N 3904 is probably also suitable, the requirements being similar operational frequency (around 200 MHz) requires a reasonable amount of time and effort, it is well worth it as the improved quality of the direct video
display will demonstrate. As well as providing a crisper display and therefore reducing eyestrain, the use of Mode 0 for text (word processing, etc) is more realistic.

THE 3-PART RADIO \& ELECTRONICS WORLD

is now available as a complete set for only £2.50 (including post and packing)

The Handbook is an informative guide to the world of the amateur radio enthusiast. It contains a multitude of useful facts and figures designed to benefit both the novice and the licensed amateur.

To: Radio \& Electronics World • Sovereign House Brentwood Essex CM14 4SE

NAME.
ADDRESS \qquad
\qquad

PLEASE SUPPLY: 1 set of R\&EW AMATEURS HANDBOOK

Communications Ltd

 MAIN DISTRIBUTOR: FACTORY BACKED BUCKLEY, STOKE, GRIMSBY, JERSEY, EDINBURGH.
YAESU FOR VHF EQUIPMENT - 'SMC’ YOUR SUPPLIER

FT290R \& FT790R MULTIMODE

FT208R \& FT708R HANDHELDS

KEYBOARD ENTRY
 SCANNING - L.C.D

1. 4 bit CPU provides:- ten memories, up-down manual 4 bit CPU provides:- ten memories, up-down manual
 (busy and clear), autoscan restart, programmable repeater splits, and European standard synthesiser
steps. The keyboard also offers 16 tone

(18)

FT203R \& FT703R HANDHELDS

"THUMBWHEEL"
 TINY HANDHELD

Ultra compact $65 \mathrm{~W} \times 34 \mathrm{D} \times 153 \mathrm{H} m \mathrm{~m}$. synthesised handheld. Computer aided design and component insertion with chip (108 g) (3.5 W RF) (12 V). It has VOX (for use with YH-2 lightweight headset. and built in 'S'/PO meter. Supplied with tone burst. helical and appropriate case.
FT203R
FT203R
FT203R
FBA5
FNB3
FNB4
CSC6
CSC7
YH2
MH-12A 2b
MMB21
SMC8.9AA
NC15

5155.00
$£ 175.00$
$£ 185.00$

ع185.00
 $\Sigma 8.85$ $\Sigma 33.50$

$\begin{array}{r}233.25 \\ \\ \hline\end{array}$

238.25
$\quad \mathbf{8 8 . 0 0}$
86.85
. 514.50
. 817.69
88.00
$ع 8.05$

NC15

BUCKLEY
SMC (TMP)
Unit 27, Pinfold Lane
Buckley, Clwyd
Buckley. (0244) 549563
9.30-5.30 Tues-Sat

STOKE

 SMC (Stoke) 76 High Street Talke Pits, Stoke Kidsgrove \{07818) 72644 9.5.30 Tues-SatFRG7700 FRG7700M MEMG7700
FRT7700
FRA 7700
FF5
FRV7700

FT230R \& FT730R FM MOBILES

FT726R TRANSCEIVER MAIN FRAME ONLY

FT726R(2) Transceiver c/w 2m $\mathbf{5 7 7 5 . 0 0}$
21/24/28
$50 / 7266 m$ module ... 195.00

SAT726 Full duplex module... 259.00
XF455MC 600 Hz CW filter.. 85

2m Transceiver 25w

£269.00FT730R* 70m Transcelver 10w ع14.65 $\mathbf{S}_{\text {Eventr coms. super saver }}$

FRG7700 COMMUNICATIONS RX

FRV7700 VHF Convertors, 6 models, each 3 bands. From £84.50-£94.25 each

CHESTERFIELD	BUCKLEY
SMC (Jack Tweedy) Ltd	SMC (TMP)
102 High Street	Unit 27, Pinfold Lane
New Whittington, Chestertield	Buckley, Clwyd
Chesterfield (0246) 453340	Buckley. (0244) 549583
$\mathbf{9 . 5}$ Tues-Sat	$\mathbf{9 . 3 0 - 5 . 3 0}$ Tues-Sat

GRIMSBY
SMC (Gri JERSEY
SMC (Grimsby) SMC (jersey)
247A Freeman Street
Grimsby, Lincs
Grimsby (0472) 59388
9.30-5.30 Mon-Sat

NEW! Britain's biggest \& best monthly magazine for sea fishermen

Containing a wealth of information and advice from which every sea angler will be able to learn.

 Every issue of Sea Fishing will have two or more superb colour features in our own, very distinctive style
CONTENTS

 Back to basics $=$ Boat fishing - how, when, where \square Build your own dinghy \square DIY projects■ Equipment surveys \quad Fish of the month competition \square Free competitions \square Individual species profiles \square Letters to the Editor \square Match fishing tactics \square New product news $■$ Personality columns $■$ Product reviews \square Readers' questions answered $■$ Readers' record fish lists \square Sea angling abroad $■$ Shore fishing - all the ins-and-outs $■$ The story behind the record - Tide tables
ATV on the Air

Presented by Andy Emmerson, G8PTH

Every shack should have one. This is VERA, the Vision Electronic Recording Apparatus, developed by the BBC in the 1950s. It recorded video and audio on giant reels of tape, and makes a Philips 1500 look really compact. (Picture courtesy 3M)

The topics for this month are connectors and feeders, which means they are applicable to all modes of amateur radio, not just TV, but I hope you will not stop reading just for that. All the information I pass on is based on hard-won experience and is generally the sort of thing you won't find in the handbooks!

BATC convention

The thoughts were inspired by the British Amateur Television Club's annual exhibition and day out. It was a success it was well attended and there were more trade stalls than before.
Anyone searching for a camera or monitor should have come away satisfied, though the really cheap cameras sold very early (like $£ 5$ for a non-working modern Sanyo $2 / 3$ in model). It was nice to see the odd Pye Lynx or two-these seem to go on for ever-and there were several colour cameras at sub-£200 prices.
Monitors seemed to be over-priced, though, and I did not see many selling. Several of the traders had new products,
such as Fortop and Wood \& Douglas. Solent Scientific had a dinky little 10 mW test transmitter for 24 cm , which was demonstrated by its deviser G8CMQ as a creepy-peepy (the video equivalent of a handy-talky). It would also be useful for checking out your receiver after a period of inactivity.

The Worthing Repeater Group had a superb display of 'how they built their repeater' from a junked cash register (well, the logic at least)! L-Wave and LMW Electronics had some nice microwave bits and pieces and added a hightech note to the proceedings.

To the point...

Grant Dixon, in presenting this year's Grant Dixon award, pointed out that we had a duty to pass on the knowledge we gained for the benefit of others. Mike Walters, G3JVL, did just that in a packed lecture on 23 cm techniques. I certainly learned something new and was reminded of other points I had myself learned from bitter experience, so it
might be worth repeating them here.
It is of course true that antennas, connectors and feeders do as much work in your system as the actual transmitter and receiver themselves. At 70 cm , and even more so at 23 and 24 , signals are too precious to lose in sub-standard feeders and connectors.
The choice of the right antenna is important and it is worthwhile sorting out if you want high gain whether you can live with the narrower beamwidth you will end up with. Multiple antenna systems may mean that they are not all beamed exactly on the same point on the horizon, and long aerials must be kept accurately horizontal to avoid firing above (or below) the horizon.

Cabler's choice

Just as important is the feeder. Heliax type cables obviously offer the lowest loss but they are expensive to buy and so are the special connectors! Add to this their inflexibility and size and I think you are better off with more 'normal' types of coax. G3JVL made the important point that semi air-spaced cables could act as water pipes if not properly sealed and the braiding can also act as a capillary wick for moisture. So do tape up the ends of cables with self-amalgamating tape and try to avoid installing cables on humid days - the moisture can later condense out inside the cable. Remember that BNC connectors are not waterproof, so use N-type exclusively outdoors.
When it comes down to a choice of coax, there isn't really a choice now. Half-inch cables are reasonable but avoid RG-8, especially the sort sold to CBers. It has a low braid density, which allows half the RF to escape before it reaches the other end of the feeder. UR67 is adequate but $\mathrm{H}-100$ is lighter in weight and has much improved low-loss characteristics. It is sold at all rallies nowadays and costs little more than new UR-67.

Contaminated cables

Avoid buying second-hand cable like the plague. It looks such a bargain but it is positively evil how coaxial cables age invisibly. I say invisibly, though a trained eye can tell old cable. The outer sheath tends to get harder and more brittle and the inner dielectric goes yellow. The braiding tarnishes to a black colour and is almost impossible to clean or solder. What has happened is that vinyl (from which they make the sheathing) is not naturally a very flexible material and so plasticisers are added to make it more workable.
Over time, however, these additives may leach out and start to contaminate the braiding and dielectric. Exposure to the elements and sunlight hastens this effect and gradually the plasticisers migrate to the central polythene, raising its dielectric constant and power factor and hence VSWR and attenuation.
Having lost its plasticiser the outer vinyl starts to go brittle and cracks, allowing in moisture which corrodes the braid. RF is inhibited from flowing through the braid, attenuating the return

AIV ON IHE AlR

current path and allowing the forward signal to radiate from the centre conductor. Less signal reaches the aerial from the transmitter and as less signal can be reflected, the 'match' as read on a VSWR meter looks better as the cable ages. But clever lads like you and me are not so easily fooled now.
Of course, cable like this is useless, even if it has been stored unused, and it often appears at rallies at bargain prices. But don't be caught
People who have looked at $\mathrm{H}-100$ cable may feel it is difficult to work with, and at first sight this is true. It is not as flexible as 'normal' coaxes, and the sheath needs a good knife to cut it. On the other hand its toughness means it resists scratching and splitting. The braiding and copper foil are fiddly to dress and the copper centre conductor is quite thick, and all these factors add up to make it awkward to prepare the cable for fitting a plug.

Connecting you now

First of all, you must use the right connectors and the Greenpar are the type to use, for two reasons. Firstly, the centre conductor will fit the centre pin without filing down (which is taboo) and secondly because the Greenpar design has a ferrule for contacting the braid, rather than relying on fanning out strands of the braiding.
Do not slit the plastic sheath
lengthwise; just cut around the cable and remove a length of sheath. Remove the braid and foil as well, and after sliding the shell of the connector down the cable (I know, I forget this too sometimes!), force the ferrule between the foil and braiding. If it refuses to go use a hairdrier to warm up the sheath and make it more supple; the ferrule will slide down now and after things cool down they will grip the ferrule even better.
Turning to connectors (both BNC and N type) I must admit I am very fond of the type made by Greenpar and Coline. These use a ferrule to contact the braiding and hold the centre pin captive. The older designs (Mil Spec), if not properly made up, can allow the centre pin to slip back inside the plug (on BNCs). This at least causes an open circuit and may lead to a short circuit when the pin touches the braid. Having blown up a 'Blue Brick' in this way I have now thrown out all my non-captive plugs!

More expense!

Reverting to G3JVL wisdom and the way we risk our equipment by cutting corners, Mike had some instructive thoughts on relays.

Most stations tend to use some form of relay for transmit/receive switching at the bottom of the aerial feeder. Many of these use plated phospor-bronze for
contacts which eventually gets pitted and oxidised.If operated by miniature push-rods these must be capable of conducting heat out of the relay contact chamber (if the relay feels warm when passing power this is a good sign)! The ideal relay also has auxiliary detector contacts, and a well designed system uses these to detect that the relay has thrown before passing RF through the relay. Switching 'live' RF is a recipe for an early death of the relay - and transmitter.
Even more worrying is the poor isolation performance of some relays. Mike said that he would like a preamp or receiver to see no more than 1 mW of RF, though 10 mW might not be lethal. Most relays are fine at two metres and even 70 cm , but give perhaps only 22 dB isolation at 24 cm . If you intend to run 100W on transmit, such a relay is clearly quite inadequate.
I must admit this quite shocked me and sent me rushing for my calculator when I got home. The bottom line is that if you intend to run high power on 24 you must use one of the better Japanese or German relays. These also ground the contact not connected. Otherwise you will have to build your own, or find some aerospace surplus goodies. The only alternative is to put a second relay in series on the Rx side of the main Tx/Rx relay. Oh dear, sounds like more expense!

LINSLEY•HOOD 100 WATT POWER AMPLIFIER
Our complete kit for this brilliant new design is the same size as our Linsley-Hood Cassette Recorded 2 Kit includes all parts to supply and speaker protection circuit. Total cost of all parts is ع114.46 but our special introductory price for all parts bought ogether is only E105.50

'ALPS FF317U FM FRONT END'

Beautiful, precision make High Quality variable capacitor tuned duction gear. FM range 87 to 109 MHz 12 V 30 mA Max AGC and AFC OUR PRICE ONLY $£ 3.99$ INCLUDING VAT AND POSTAGE (Circuit if required 35p).
'MULLARD UHF TV FRONT ENDS'
Compact Varicap tuned modules. U322 is used in 'ELEKTOR

COMPLETE STEREO

TUNER MODULE
Three band LW/MW/FM Stereo Tuner fully assembled on PCB 165 $\times 85 \mathrm{~mm}$ Supplied with Ferrite rod aerial and band switch fully Only needs 12 v DC supply. FM sensitivity. 2.5 uV . Price only EF 7.90 nc. VAT and poet.

HICH-SPEED DIGITAL CASSETTE RECORDER

A really super buy for the computer enthusiast. These decks made by Burroughs, are the real thing using a capstanless cassette mechanism to record and replay data at 10 and 30 inche per second. The read after write head uses an NAZ system win and $+12 v$ are required. The front panel is fitted with a grey Perspex cassette carrier, eject button and two indicator lights Control circuits contain 39 iCs on 3 PCBs. Front panel is 137 mm square and the unit is 200 mm deep. These are offered in good ex-equipment condition at a fraction of their original cost, ONLY Data inc circuits and layge.

Please Note: New Phone Number: (0691) 652894 Personal callers are always very welcome but please note that we are closed all day Saturday

HIGH QUALITY REPLACEMENT

 CASSETTE HEADSDo your tapes lack treble? A worn head could be the problem, Fitting one of our replacement heads could restore performance TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel The
tollowing is a list of our most popular heads, all are suitable for HCzo Pelby machines and are ex-stock orginal equipment on most decks............ tion High Beta Permalloy Head. A hard-wearing cigher performance head with metal capability0 Longer Iffe than Permalloy, Higher The best head we can find. requency response specification rececond for auto-reverse or Ma481 Latest version Double Moad (2/2) recordic........73 Replaces R484. sm16e Standard Mounting $2 / 2$ Erase head. Compatible with above or HQ5514 Track head

hssi Metal Tape Erase Head. Full double gap
PR7106 Audio Visual Head. (1/2 plus top $1 / 4$).......................80 Please consult our list for technical data on these and other

'STEREO AMPLIFIER MODULE'

Ready built and tested quality power amplifier module complete
and ready to use Mains input 220/240v with power to spare for and ready to use Mains input $220 / 240 \mathrm{~V}$ wit

TUNER AND PRE-AMP MODULE
Matching unit to above. Contains Long, Medium and Short wave
AM tuner. Stereo FM tuner and pre-amp with switched inputs for tuners, tape and pickup Complete with flywheel drive and cord assembly Size $400 \times 220 \times 63 \mathrm{~mm}$. 818.90
Special offor for both tomis only

All prices exclude VAT unless stated

Whilst every effort is made to ensure that there are no mistakes with our diagrams, the occasional error does occur. We appreciate our readers' co-operation in notifying them to us.

VHF/UHF FREQUENCY METER

 (May 1984 issue)Due to an error the foil pattern was printed in mirror image in last month's issue.
It has also been noted that some of the ICs are static sensitive so care should be taken with handling.
VR1 should have read 100 K and not 100R.

YAESU FC102 REVIEW (July 1984 issue)

It appears that part of the review could be misinterpreted, so we advise our readers to read their instruction manuals thoroughly before using.

EXT ISSUE • NEXT ISSUE • NEXT ISSUE • NEXT

NOISE

James Dick takes a look at what we call noise

AM RAD

An experimental signal generator described by Paul Wesley Warren

DISTANCE AND BEARING PROGRAM

Steven Pocock describes his simple program

PLUS all the usual features!
New Products • News • Reception Reports . . . DON'T MISS the September issue - on sale 9th August

To be sure of your copy of Radio \& Electronics World, complete the newsagent order form in this issue or take out a subscription

EXT ISSUE • NEXT ISSUE • NEXT ISSUE • NEXT

Sporadic-E is on the way. That was the message during April when several preseason openings were noted at considerable strength and duration. The first of these was noted on the 8th with a football match from Spain on channels E2, E3 and E4 in the early afternoon. Other programmes followed and the opening lasted until 1530.
Another opening occurred on the 22nd with strong and consistent signals from Italy on channel IA for well over an hour from 1000 BST. The programme was a religious service and at times it appeared on channel IB. Italian signals appeared again during a lengthy opening which was first noticed at 1920 on the 28th. Fortunately there were no problems with identification. The normally small 'anti-pirate' inscription of 'RAI' was in much larger letters towards the top right-hand corner of the picture. You couldn't miss it!
Signals from the east were noted on April 23. The opening was already in progress at 1340 when the receivers were switched on. A cinemascope feature film was noted and, judging by the captions, it was of Polish origin. To confuse the issue, some captions in the Cyrillic alphabet were seen after the film on channel R1, with a newsreader or announcer in uniform appearing a little later.

A new channel R1 transmitter has opened in Poland at Siedice close to the Russian border and one wonders if this may be a joint Polish/Russian service. Several other enthusiasts noted this transmission.
Due to tropospheric activity in Band III and at UHF towards the end of the Easter period, quite a few elusive stations were picked up. At least one enthusiast saw Polish Band III stations. Here in Derby the main highlight was RTL Luxembourg on channel E7 with the test card. Normally reception on E7 is very difficult due to the local menace (Lichfield

FuBK from Albis, Switzerland. Photo courtesy of Gosta van der Linden
channel B8), but fortunately the transmitter had been switched off for several days.

DX log for April

The following log should give newcomers to DX-TV an idea of just what can be received:

2/4/84:

SRG (Switzerland) on channel E3 with the '+PTT SRG 1' FuBK test card from the Uetliberg transmitter; CST (Czechoslovakia) channel R 1 radiating the EZO-type test card from Ceske Budejovice.

3/4/84:
CST R1, R2 on EZO test card.

4/4/84:

TVE (Spain) E3 with the GTE colour test card; CST R2 on test pattern; MTV-1 (Hungary) with a multiburst/frequency gratings pattern on channel R1.

6/4/84:

TVE E3 on GTE test card with several sightings via meteor shower (MS); CST R2 on test card.

8/4/84:

TVE E2, E3, and E4 during the early afternoon with football followed by other programmes until 1530.

9/4/84:

TVE E3 on colour test card; NRK (Norway) on E4 with the PM5534 test card including the identification 'Norge Kongsberg'.

10/4/84:

TVE E3 on a bar test pattern with indecipherable identification: the GTE test card was also seen; TVP (Poland) R1 on the PM5544 with a dark background; CST R1 on EZO test card; ORF (Austria) on channel E2a with the PM5544 test card and 'ORF FS 1' identification. This was

AFN-TV Berlin. Photo courtesy of Jürgen Klassen
also noted in Band III on channel E5 via MS.

12/4/84:

Unidentified PM5544 test card on channel R2 but thought to have been of Hungarian or Czechoslovakian origin.

13/4/84:

TVE colour test card on channel E3.

22/4/84:

RAI (Italy) from 1000 BST onwards with a religious service until 1100 via Spor-adic-E (SpE). This programme was also noted on channel IB; TSS (Russia) or TVP on R1 with a cinemascope feature film during the early afternoon via SpE .

24/4/84:

SR-1 (Sweden) on E2 with the 'TV 1 Sverige' PM5544; several West German stations noted via enhanced tropospheric conditions at UHF including the Hessischer Rundfunk test card and 'hr 3 FFTM' identification on their FuBK on channel E37.

25/4/84:

West German trop signals including WDR-1 (Westdeutscher Rundfunk) from the Langenberg transmitter on channel E9; mystery colour bars noted on E5 at 0825 via weak trops.

26/4/84:

RTL (Luxembourg) on E7 with the 'RTL Plus' PM5544 test card; SWF-1 (Südwestfunk) on channel E9 from Hornisgrinde in West Germany with the FuBK test card and 'SWF BADN' identification.

28/4/84:

RAI on channel IA with programmes from 1900 BST via Sporadic-E propagation.

30/4/84:

TVE E3 on a bar pattern which included the transmitter identification 'RTVE Gamoniteiro'. This pattern was featured in the August 1982 edition of R\&EW.

Reception reports

Kevin Jackson (Leeds) logged a few unusual transmissions towards the end of April via the improved trop conditions. The 8KW NDR (Norddeutscher Rundfunk in West Germany) outlet at Sylt on channel E41 was seen radiating a test card similar to the one shown in the July 1984 issue of R8EW.
Kevin's best DX event was on the 26th when a Polish Band III station appeared

TVE identification from Andalucia, Spain

DX-TV RECEPTION REPORTS

on a clock caption followed by an identification caption and programmes. Transmissions came from the channel R6 outlet at Olstztyn, a distance of 1438 Km .

Adrian Patton of Grimsby has commented on the growing problem of interference in his area from a nearby cordless 'phone installation'. He's also experiencing problems from a home computer. This produces negative images throughout Band I. Has anyone a suggestion regarding a remedy? Incidentally, Adrian wouldn't mind a chinwag with any local DX-TV or amateur radio enthusiasts particularly at weekends. He may be contacted by dialling 0472887950.
Wigan enthusiast Tony Cater has discovered a possible pirate radio link just below channel E21. The identification 'KFM 24 hours a day' has been heard and transmissions come from the Manchester area. An out-of-band amateur station has also been noted from the
same direction.
Andy Webster (Billinge, Wigan) noted patterning over RTE (Eire) on channel IH. Further investigations revealed an electronically generated chessboard pattern not unlike the old Zimbabwe type. The signal; at approximately 210 MHz , later switched to a picture showing an amateur enthusiast and some of his equipment, but there was no sign of a signal on the 70 cm amateur band. Towards the end of the month, Andy noted Sporadic-E activity on channel R1 with possibly the new Polish transmitter at Siedlce.
Over the Easter holiday Clive Athowe of Blofield near Norwich refurbished his DX shack. It now resembles an executive suite with fitted carpets and armchairs. He's also forwarded an executive-style log - it's a computer print out! Band III meteor shower goodies include CST (Czechoslovakia) on channel R6 from Pardubice on April 8th radiating the test
card, and TVP (Poland) from Gdansk or Krakow showing the dark PM5544 test card on channel R10.
The E2 outlet at Gwelo in Zimbabwe appeared on the 20th with programmes accompanied by Italian channel IA signals. Gwelo appeared again on the 24th but this time with the 'ZBC TV' PM5544 test card. Sporadic-E was active on several occasions. The Russian '0249' monoscopic test card came up on R1 for about thirty minutes during the morning of April 24. Signals from Spain on channel E2 were also noted via SpE during the month with a bullfight showing all the gory detail!

DX-TV on video

Adrian Patton has taken us to task over our recent claim that the Hitachi VT 11E video cassette recorder has multi-band facilities. He owns such a machine but it is UHF-only.

There are apparently several versions

Russian identification caption on channel R1

Pirate TV aerials at Bergamo Northern Italy

Test card from Italian pirate station

DX-TV RECEPTION REPORTS

of this particular model. The VT 11E (DS) has multi-band facilities plus the PAL/SECAM switch which we referred to. The VT 11E (BS) however is UHF-only, although according to our service information the standard VT 11E does possess multi-band facilities. This is all very confusing and we wonder if the manufacturers know themselves!
While on the subject of video recorders, from time to time we are asked how Bands I and III DX can be recorded using a UHF-only VCR. One solution is to use a VHF to UHF converter to extract the signal at video.
The live chassis found in most receivers presents a problem but an attractive method which we have used for several years overcomes this.
It involves the use of an expensive UHF modulator with the video tapped off at the cathode of the crt. The reason for using the modulator is simple: it can be positioned inside the set with the signal leaving at UHF via an isolated UHF aerial socket. This is of the same type as found on most recent TV receivers.
The idea was originally suggested by Hugh Cocks of satellite TV fame and the simple circuit is shown in Figure A. The modulator is available from Sendz Components. The 12 V supply may be conveniently obtained from virtually any low-voltage point within the receiver, for instance, the cathode of the sound
output valve. Adjustment to VR1 should be made for optimum results with signals of various strengths.

Service information

Netherlands:

AFN-TV officially commenced broadcasting on April 5 from the American Forces base at Soesterberg. The transmitter has an ERP of approximately 20 KW and operates on channel A80, which would be equivalent to a European channel between E70 and E71.

The horizontally polarised transmitting aerial is located on a 40-metre mast. Programmes from AFN-TV Soesterberg consist of video recordings and are different from those radiated by the station in West Germany where material is received from America via satellite.

Norway:

NRK are expected to start a regional television service in September. Programmes will be produced by NRK at Sorland in Kristiansand and radiated via three main outlets. These will be Greipstad on channel E2 (60KW), Bjerkreim E6 (15KW) and Lyngdal E9 (30KW). A regional news programme will be broadcast on weekdays between 1745 and 1755 local time.

Belgium:

On February 20th, BRT TV2 program-
mes began from a 10KW ERP outlet in Brussels on channel E25. It replaces the E25 transmitter at Wavre which collapsed some time ago.
TELE-2 programmes on channel E49 originate from the Profondeville outlet which has an ERP of 50 KW .
In the Brussels area the French satellite service known as TV5 is rebroadcast on channel E56 in PAL colour on the CCIR-H standard.

France:

Canal Plus commenced broadcasting on April 20 using the VHF Band III channel 1 (176 MHz . vision, 182.5 MHz sound).
Scrambled programmes will be radiated between 1000 and 1200 local time with non-scrambled material from noon until 1800.
The official starting date for Canal Plus is November 1, 1984. Six hours of programmes each day are scheduled but they will be mainly scramibled with only 45 minutes per day of de-scrambled material.
Test transmissions for Canal Plus on channel 1 have started in the area around Paris. The channel corresponds to the old channel F8a.
This month's Service Information was kindly supplied from various sources via Gösta van der Linden in Rotterdam, Netherlands.

Your RadIo AMATEURS EXAM SUCCESS

 Study at home - pass first time with -RRC's Complete Home Tuition Service- Seli-contained courses, regularly updated for The City \& Guilds Radio Amateurs Exam - Fully inclusive fees - No costly, time consuming text books to buy - Everything you need in booklet lecture form - Regular tests ensure you are fully prepared - Enrol at any time - Timetable to suit you - Continued tuition at no extra cost if you don't pass first time
FREE PROSPECTUS\& ADVISORY SERVICE - -
Write or 'phone today for full details, and a FREE copy of our prospectus, without obligation to:

ELECTRONICS LIMITED

THE RAPID RESULTS COLLECE

REGULATORS

LM317T Plastic TO220 variable £1.00 LM317 Metal TO3 variable $£ 2.00$ 7812 Metal 12v 1A $£ 1.00$ L036 TO3 Metal 12v L037 15vea. 50p 7805/12/15/24 plastic40p
7905/12/15/24 plastic50p
CA3085 TO99..50p
LM723 14 dil or TO99 50 p
EPROMS/MEMORIES
2764-300ns INTEL/FUJITSU....................... $£ 6.50$
2732A-3 Ex-eqpt.
26.50

2102 500ns AMD \quad 80p 10/£6.00
MC6810P ... £1.05

POWER TRANSISTORS

TIP141,142,147 £1 ea. TIP112,125,42B2/£1
TIP35B £1.30 TIP35C $£ 1.50$
2N055 Motorola 50p 5/£2.00
2N055 Ex eqpt tested5/£1.00
MJE3055, MJE2955 equiv.......................ea. 50p
DISPLAYS
zFutaba 4digit clock fluorescent display FLT-02-8 also 5-LT 16 8J............................. £1.50
Futaba 8 digit calculator fluorescent display
9CT-01-3L ... $£ 1.50$
LCD Clock display 0.7 in digits $£ 3.00$
Large Clock display 1 in digits.................. $£ 3.00$
7 seg 0.3 in display comm. cathode 50 p
MISCELLANEOUS
QUARTZ HALOGEN LAMPS
A1/216 24v 150w ... £2.25
H1 12v 55w (car spot)
£1.25

WOUND POT CORES

with adjuster unused
RM7 LA4245
. $3 / £ 1.00$
RM8 LA4344 .. $2 / £ 1.00$
TOK KEY SWITCH 2 POLE 3 KEYS
ideal for car/home alarms............£3 $100+£ 2.00$ 12 v 1.2 w small wire ended lamps fit AUDI/VW TR7 VOLVO.. \qquad 10/£1.00 14v 0.75w MES lamps............................... 8/£1.00 Heat shrink sleeving pack $£ 1.00$ PTFE sleeving pack asstd colours $£ 1.00$ 250 mixed res. diodes, zeners \qquad Mixed electrolytic caps 100/£2.00 ITT CASS. RECORD/PLAY AMP.+cct. ... $£ 2.00$ Stereo cassette deck................................. $£ 5.00$
Stereo cass R/P head £2.50
Mono head $£ 1$ Erase hea
Thermal cut-out $50^{\circ} \mathrm{C} 77^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$
Thermal fuse $121^{\circ} \mathrm{C} 240 \mathrm{v} 15 \mathrm{~A}5 / £ 1.00$
Vero pins fit 0.1 in Vero 100/50p
Double sided PCB pins100/50p TO220 Micas + bushes 10/50p 100/£2.00 T03 Micas + bushes 10/50p RELAYS 240v AC coil PCB mounting
2 pole changeover $£ 1$ 3pole c/o $£ 1.00$ Varley 24 v dc 4 p c/o relay.............................80p Fig 8 mains cassette leads.....................3/£1.00 KYNAR wire wrapping wire $20 z$ reel....... $£ 1.00$ PTFE min. screened cable................ $10 \mathrm{~m} / \Sigma 1.00$ TOKIN MAINS RFI FILTER 250 v 15A $£ 3.00$ TDK MAINS RFI FILTER $115 \vee$ 15A $£ 1.00$ IEC CHASSIS PLUG/6A RFI FILTER....... £3.00 Epoxy potting compound 500g................. $£ 2.00$ Mercury tilt switch small.......................... $£ 1.00$ Min. rotary sw.4p c/o 1/8in shaft2/£1.00

Thorn 9000 TV audio o/p stage 2/£1.00 $10 \mathrm{m7} 7$ CERAMIC FILTER..................50p 100/£20 6 m CERAMIC FILTER 50 p 240v AC FAN 4.6in SQUARE NEW£4.00 240/115v AC FAN 4.6in SQ NEW $£ 7.00$ 12v DC brushless fan reversible
2.5in sq 2 in deep QUIET
. $£ 9.00$
BELLING-LEE 12way block L1469 4/乏1
POTENTIOMETERS short spindle 2k5 10k 2 m 5 Lin

5/£1
500k 1 in 500 k log long spindle.................... 4/£1 40 KHz ULTRASONIC TRANSDUCERS EXEQPT. NO DATA.....................................Pair/£1 STICK-ON FEET... 20/£1
TO3 TRANSISTOR COVERS 10/£1

RECTIFIERS

120v 35A stud ... 40p
12FR400 12A 400v small stud.................. 4/£1.50
BY127 1200v 1.2A.....................................10/£1.00
1N5401 100v 3A .. 10/£1.00
BY254 800v 3A .. 8/£1.00
BY255 1300v 3A....................................... 6/£1.00
1A 800 v bridge rectifier........................... 4/ $£ 1.00$
6A 100v bridge .. 50p
10A 100v bridge..£1. 25
15A 100v bridge.. 1.25
25A 200v bridge.......................... £2.00ea. 10/£18
25A 400v bridge..£2.50
SCRs
2N6399A 10A 600V .. 1.00
BTX95 800v 15A .. $£ 1.20$
35A 800v stud.. $£ 2$
70A 500 v large stud \qquad ...22.00

MCR106 equiv. 4 a 400 v 40p ea $100 / £ 20.00$ 2N5061.8A 60V.8A 60v TO92.......4/£1 100/£10.00 TICV106D.8A 400v T092..............3/£1 100/£15.00 TRIACS diac 25p TXAL228 8A 400v isol. tab....................... 2/£1.00 20A 500 v isolated ex eqpt tested£1.50

CONNECTORS

'D' 9way £1 15way £1.25 25way 2
37way £2 50way ..£2.50
(Ex Eqpt price per pair) covers............. 50p ea
D9 PCB PLUG 90 deg. pa

AMPHENOL (Centronics) 36 way plug + skt ex eqpt...£2.50
0.1 in double sided edge connector 32way
ideal ZX81/SPECTRUM $£ 1.50$
0.1 in d/sided pcb plug $24+25$ way $£ 1.50$

2 pole sub min connectors ideal radio
control RS 466/472/488/3435 pairs£2

IDC CONNECTORS

25 way 'D' socket ...£2.00 20 way socket (BBC user port)................... $£ 1.00$ 26 way socket (BBC printer).......................£1.50
34 way socket (BBC disc drive).................. $£ 2.00$
40 way socket... 22.00

IDC CARD EDGE CONNECTORS D/S EX. EQPT
34 way (fits disc drive PCB)£3
40 way (fits Centronics 739 PCB).
50 way
£3.50

WIRE WOUND RESISTORS

W21 or sim 2.5 W 10 OF ONE VALUE for $£ 1$ 1R0 2R0 2R7 3R9 5R0 4R7 10R 12R 15R 18R 20R 27R 33R 36R 47R 100R 120R 180R 330R 390R 470R 560R 680R 820R 1K 1K2 1K3 1K8 2K7 3K3 10K

W22 or sim 6 watt 7 OF ONE VALUE for $£ 1$ R22 1R5 9R1 10R 12R 20R 33R 51R 56R 62R 120R 180R 270R 390R 560R 620R 1K2 2K2 3K3 3K9 10K
W23 or $\operatorname{sim} 9$ watt 6 OF ONE VALUE for $£ 1$ R22 1R0 3R0 6R8 56R 62R 100R 270R 1 K 8 10K W24/ or $\operatorname{sim} 12$ watt 4 of one value for $£ 1$ R50 2R0 10R 18R 68R 47R 75R 82R 150R 200R 270R 400R 620R 820R 1K

PHOTO DEVICES

Slotted opto-switch OPCOA OPB815 £1.30 2N5777

50p 100/\&26 1000/\& 190 TIL81 TO18 Photo transistor
TIL38 Infra red LED
2/50p
OP12252 Opto isolator...................................50p
Photo diode...50p 6/£2
MEL12 (Photo Darlington base o/c)50p RPY58 LDR..

50p
TO18 LDR
$.50 p$
LEDs Red 3 mm or 5 mm 12/£1 $£ 5 / 100$
Green + yellow $3 / 5 \mathrm{~mm}$.................. 10/£1 £6/100
Flashing red 5 mm .
50p
Bicolour red/green 5 mm or rect......... 50p 5/£2

DIODES

1N4151 sim 1N414B 100/\&1.25
1N4148 .. 100/£1.50

1S3740 Germanium 100/£2.00
1N4004 or SD4 1A 300v.......................... 100/£3.00
1N5401 3A 100v 10/£1.00
BA157 1A 400v Fast recovery 100/£2.50 BA159 1A 1000v Fast recovery 100/£3.50

MULTI TURN PRESETS

10R 20R 100R 200R 500R 2K 5K 22K 50K 100K 200K

IC SOCKETS

8 pin $12 / \Sigma 1,14$ pin 10/£ 1
18/20pin 7/£1 100/£12 1k/£80,
22/28pin 25 p, 24pin 25p 100/£20 $1 \mathrm{k} / \varepsilon 100$, 40pin 30p. 16 pin 12/£1 100/£6
TRIMMER CAPACITORS small
Grey $1.5-6.4 \mathrm{pF}$, Green $2-22 \mathrm{pF} 6$ for 50 p , Yellow 2-16pF
SOLD STATE RELAYS NEW 10A 250v AC zero voltage switching control voltage $8-28 \mathrm{v}$ DC.. VARIAC 0 to 270 v 12A new uncased ... $£ 20$ VARIAC 0 to 130 v 6A new uncased................ $£ 6$
POLYESTER/POLYCARB CAPS
10n ax. 100/ $22,22 \mathrm{n}$ radial 100/£2.50, 47n rad. 100/£2.50
1u 250v Polyester C280
5/£1 100/£10
$1 \mathrm{u} 5 \mathrm{P} / \mathrm{carb} 15 \mathrm{~mm}$ rad 100/£5.00 2 u 2.160 v rad 28 mm . 100/\&10 470n 250 v AC X rated rad4/£1 100 n 250 v AC X rated rad $20 \mathrm{~mm}4 / \Sigma 1$
33 n 250 v AC X rated rad 15 mm .
10/£1

BEAD THERMISTORS

GLASS BEAD NTC Res @ 20 80p 250R 1K2 50K 220K 1M4 R53 THERMISTOR
£2.00 BEAD TANTALUM CAPS
47u $3 v, 10 u 6 V 3,68 u 6 v$.................... 12/£1 100/£6 2u2 20v

SMALL AXIAL CERAMIC CAPS 50V

15p 18p 22p 27p 33p 47p 68p 82p 470p 1n $10 n(25 v)$
STEPPER MOTOR 4 PHASE 2 9y WIMDINGS
£4.50 10/£35

KEYTRONICS
332 LEY STREET ILFORD, ESSEX
Shop open Mon-Sat 10am-2pm TELEPHONE: 01-553 1863

SHORT WAVE NEWS FOR DX LISTENERS

BY Frank A Baldwin

All times in GMT, bold figures indicate the frequency in KHz

With the 'season' in full swing for the best chance of reception in the UK of signals from Latin America, I bring to your attention the Republic of Peru and in particular some of the out-of-band stations that have recently been reported.
Peru is in west South America with the capital, Lima, being some 13 Km from the chief port of Callao. The country is bounded in the west by the Pacific Ocean and divided by two ranges of the Andes with high altiplano in between.
The western range features two high volcanoes, El Misti and Huascaran, whilst in the east are the West Amazon rain forests.
The population is mostly Indian, the Inca capital being at Cuzco on the high altiplani, the Inca Atahualpa being captured and treacherously executed by Francisco Pizarro and his band of adventurers - the so-called Conquistadors, who eventually fought amongst themselves. All that sets the scene, now we deal with the DX.
The details listed here are correct according to the latest information that I possess, although I should mention that some of the frequencles are apt to vary on occasions - this habit being part of the LA DX game. Where a time is stated (not a transmission period) it indicates when heard.
Logging some of these Peruvians will prove to be far from an easy matter. Apart from their relatively low powers, there is the ever present problem of the commercial QRM which abounds around most of the channels listed. For these reasons alone the successful reception by a UK based enthusiast would represent a DX feat of no mean order.
In frequency order for ease of operating, we commence with -
Radio El Sol de Los Andes, Cuatunumi, Santa Cruz on 4254.5. The only other details
known about this one is that it announces as being on 4225 and has also been heard on 7073.5.

Radio Frequencia Juvenil, Cajabamba, Cajamarca, on 4361, operating a schedule from 0000 to 0400.
Radio Inca del Peru, Los Banos del Inca, Cajamarca, on 4494 - not to be confused with Radio Inca del Peru based in Lima.
Radio Los Andes is located in Tayacaya, Huancavelica, where is it scheduled around-the-clock, the frequency being 5300.

Radio San Francisco, Ayacucho, is timed on the air from 2300 to 0330 on 5301.
Radio Nueva Acobamba, Acobamba, Huancavelica, is on 5325 where it operates from 1100 to 0230 .
Radio La Voz del Nororiente, Jaen, Cajamarca, on 5340 is scheduled from 1100 to 0200.

Radio Vision, Juanjui, San Martin, is on 5360 schedule unknown.
Radio Pucara, Jaen, Cajamarca, is on 5560 from 2300 to 0200.
Radio Yucan, Cutervo, Cajamarca, is on a reported 5617 from 1110 through until 0007.

Radio Bambamarca, Bambamarca, Cajamarca, is on 5656 from 2100 to 0300.
Radio Acunda Mariscal Morales, Chota, Cajamarca, is reported on 5657 from 2000 to 0400.

Radio San Miguel, San Miguel de Pallaques, Cajamarca, is on 5707 from 0045 to 0250.
All of the foregoing was retrieved from my computer memory bank but much of it was originally obtained from Short Wave News, the journal of the Danish Short Wave Clubs International with additional information from the World Radio Handbook, 38th Edition, to whom acknowledgements are made.
Next month I will be dealing with some more of the Peruvian transmitters.

AROUND THE DIAL

African stations are listed first and these will provide somehours - or even days - of endeavour and enjoyment for those readers interested in the short wave world.

AFRICA

Cameroon

Radio Douala on 4795 at 2052, OMs with songs in vernacular complete with drums and other local instruments - very rhythmic. R Douala is on the air from 0425 to 0800 and from 1630 to 2300 with a power of 100 KW .
Yaounde on 4850 at 2055, OMs and YLs with local songs in vernacular and OM with announcements in French. The schedule is from 0430 to 0700 and from 1630 to 2400. This is the National Service in English and French.

Chad

Radio Chad, N'djamena, on a measured 4904 at 1910, OM with a talk in French, drums in typical African style. OM with station identification at 1930 in French. The schedule is thought to be from 0500 to 2100, Saturday until 2200 although I have not confirmed this period. N'djamena is probably better known as Fort Lamy; it is the capital of the Chad Republic sited at the confluence of the Shari and Logone rivers. It is the centre of the caravan trade and somewhat isolated. The power is 100 KW .

Egypt

Cairo on 11665 at 0015, chimes time-check, OM with station identification and the news in Arabic in a programme of the Domestic/External Service, scheduled on this channel from 1900 to 0030.

Kenya

Nairobi on 4934 at 0334, OM with recitations from the Holy Quran in the Eastern Service programme timed from 0250 to 0630 and from 1420 to 2010
(General Service on Sunday only until 2110).

Libya

Tripoli on 11815 at 2003, OM with a talk in Arabic in a 'Voice of the Greater Arab Homeland' programme, timed on this frequency from 1800 to 2100 and from 2300 to 0330 . English to North America in a Radio Jamahiriya presentation is timed on this channel from 2100 to 2250 although the timings of these programmes are apt to vary from day to day.

Nigeria

Radio Nigeria, Lagos, on a measured 4932 at 2103, OM with a newscast of both African and world events. This is the Educational Service which is on the air from 0400 to 2300.

Sao Tome

Radio Nacional on a measured 4807 at 2026, music in the fast rhythmic local style, OM with announcements in Portuguese. This one is scheduled from 0530 to 2300 (Saturday until 2400) and the power is 10 KW . Sao Tome has recently come to life again after an absence of about eighteen months. Similarly, Chad mentioned above went silent in 1979 but re-emerged earlier this year.

Senegal

Dakar on 11895 at 0612, OM with a newscast in French, a short interlude of some orchestral music then OM \& YL alternate with announcements during a French programme for West and Central Africa, daily from 0600 to 0800 .

AMERICAS

Argentina

Radio Rivadavia, Buenos Aires, on a measured 5882 at 0150, a commentary in Spanish describing the events during an exciting, apparently, futebol (football) match between two local teams.

A GREAT MAGAZINE FOR ALL ASPECTS OF PRACTICAL AMATEUR RADIO

 Reception reports - shortwave, DX-TV, ATV . . Construction projects-what to build for your rig, your computer \& your enjoyment . . . New technology Educational articles . . Coming events . . . Readers letters . . . Ter'innical \& practical questions answered... Latest equipment reviews . . . and all the latest news in the Amateur Radio World... Keep in touch with up to date developments TAKE R\&EW every month and stay informed.

SUBSCRIBER BENEFITS

 Take out a POST FREE (UK) Sub while offer lasts- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

RADIO \& ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department \bullet Radio \& Electronics World - 513 London Road - Thornton Heath Surrey •CR4 6AR.

Tel: 01-684 3157
NAME ..
ADDRESS \qquad
\qquad
PLEASE SUPPLY: (tlck box) for 12 lsewes, all ratos include P \& P

R Rivadavia is on the air Monday to Friday inclusive from 2100 to 0200 but extended to 0400 on football events, Saturday from 2300 to 0400.

Brazil

Radio Emisora Rural, Santarem, on 4765 at 0048 , OM with a sporting commentary in Portuguese, the signal surprisingly riding over that of the R Moscow relay in Havana. R Em Rural is on the air from 0800 to 0300 at 10 KW .

Radio Nacional da Amazonia, Manaus, on 4845 at 0026, OM with a local pop song in Portuguese, OM with announcements. The schedule is from 1300 to 0800, the power 250 KW .

Radio Baré, Manaus, on 4895 at 0039, YL with a ballad in Portuguese complete with guitar backing. R Baréis on the air from 0830 to 0130 with a power of 1 KW .

Radio Cultura do Para, Belem on 5045 at 0053, a programme of recorded local pops, OM announcer. The schedule is from 0700 to 0300 with a power of 10 KW .

Radio Nacional da Amazonia, Brasilia, on 11780 on 0125, OM announcements in Portuguese, YL with a pop song, OM with station identification at 0130. This one radiates from 0800 to 1600 and from 1800 to 0200 with a power of 250 KW .
Radio Globo, Rio de Janeiro, on 11805 at 0120, OM with a sports commentary then $O M$ with promos. R Globo operates from 0800 to 0400 with a power of 10 KW .
Radio Clube de Pernambuco, Recife, on 11865 at 0125, OM a talk in Portuguese, announcements then promos. RC de Pernambuco is scheduled from 0900 to 0400 with a power of 1 KW .

Colombia

Radio Guatapuri, Valledupar, on 4815 at 0320, OM with a local pop song, OM with announcements in Spanish. The schedule is from 1000 to 0500 with a power of 10 KW .
Radio Sutatenza, on 5095 at 0323, OM with announcements in Spanish then a programme of recorded local pops. On the air from 0900 to 0400 at 50 KW .

Ecuador

CRE Guayaquil on a measured 4656 at 0136 , OMs with a discussion in Spanish and several mentions of Guaya-
quil. Radio Dif del Ecuador (CRE) operates from 2300 to 0400 with a power of 5 KW .
Radio Luz y Vida, Loja, on a measured 4851 at 0339 , OM with a local pop song in Spanish, OM announcements. Sometimes on a 24hour schedule but normally from 1045 to a variable 0400. The power is 5 KW .

Peru

Radio Ondas del Titicaca, Puno, on a measured 4922 at 0019, OM with a talk in Spanish about Peruvian affairs, several place names being mentioned. Slightly muffled speech and some echo-effect probably due to studio conditions. This one operates in Spanish or Aymara - the local Indian language - to the schedule 0945 to 0300 with a power of 1 KW .

Venezuela

Radio Valera, Trujillo, on 4840 at 0315 , OM with station identification, promos in Spanish then into a programme of local pops. R Valera is on the air from 1000 to 0400 with a power of 1 KW .
Radio Capital, Caracas, on 4850 at 0012, OM with the station identification, announcements and local pops. The schedule is from 1000 to 0500 and the power 1 KW . Recently reactivated, this one has been off the air since 1978.
Radio Barquisimeto on 4990 at 0339, OM announcements in Spanish, OM ballad - rather sorrowful at that! The schedule is from 1000 to 0400 with a power of 15 KW .

ASIA

China

Radio Beijing on 9900 at 2014, YL with a talk during the Standard Chinese transmission directed to Europe and North and West Africa and timed from 2000 to 2100.

India

AIR (All India Radio) Delhi on 9665 at 1957, OM with announcements, frequencies and times of transmissions then YL with a newscast during the English programme for the UK and Western Europe, scheduled from 1845 to 2230. Also logged in parallel on 9755.
AIR Delhi on 11620 at 1317, OM with a talk in the Sinhalese programme to

Asia, timed from 1300 to 1330.

Iran

Teheran on 9770 at 2030, trumpet call, OMs with a military marching song then OM and YL alternate with a newscast in Persian (Farsi). Schedule on this channel is unknown. Also logged in parallel on 9022.

Israel

Jerusalem on 11655 at 0120 , OMs and YLs with a discussion about local politics during an English presentation to the Americas and Europe, scheduled from 0100 to 0125.
Jerusalem on 9815 at 2004, OM with news comment in the English programme to Africa, Europe and North America, schedule from 2000 to 2030 -a more reasonable time than the above for many readers perhaps.

North Korea

Pyongyang on 9360 at 1823, YL with announcements, local music and songs in the French programme to Europe, timed from 1700 to 1850.

Saudi Arabia

Riyadh on 5875 at 0254, interval signal, national anthem, OM station identification in Arabic at sign-on of the Domestic Service General Programme which is on this channel from 0255 to 0500 and from 1000 to 2300.

Sri Lanka

Colombo on 11800 at 1734, local-style music and YL with a song during the Urdu transmission to East Africa and the Middle East scheduled from 1645 to 1745.
OM with station identification and news in the English programme to the same target areas and timed from 1745 to 1815.

Turkey

Ankara on 9695 at 2120, YL with a song, local-type music during the Turkish programme for Turks abroad, featured from 1600 to 2200 on this frequency.

Yemen Arab Republic

San'a on 9780 at 2020, OM with some songs in Arabic complete with local orchestral backing during the allArab transmission on this channel from 0300 to 0700 (to 1000 on Friday) and from 1100 to 2110.

EUROPE

Austria

Vienna on 11660 at 1858, interval signal, OMs with the station identification in French, German and English, frequencies, then into the German transmission for Europe, North Africa, the Middle East and South and West Africa, scheduled from 1900 to 2000.

Spain

Madrid on 11880 at 2040, YL with a news comment on both local and world events in the English presentation for Africa, timed from 2030 to 2130.

Greece

Radio Macedonia on 12000 at 1004, YL with folk songs and music, YL with announcements in Greek. The schedule is from 0355 (Sunday from 0425) to 2305.

Malta

Deutsche Welle (Cologne, West Germany) relay on 11795 at 1417, YL with announcements during the German programme for Europe, the Middle East, South and South East Asia, timed from 1400 to 1600. A news comment followed.

Portugal

Lisbon on 11800 at 1506, OM with a football commentary in the Portuguese programme for India and the Middle East, scheduled from 1400 to 1600.

CLANDESTINE

National Voice of Iran on 5915 at 1932, OM with a talk in the Persian programme with several mentions of Ayatollah Khomeyni. The Persian (Farsi) language is used from 1730 to 1745,1800 to 1815 and from 1930 to 1945. Seda-ye Melli-ye Iran is pro-Soviet (transmissions emanate from the Baku transmitters) antiUS but hostile to Khomeyni although originally they were pro-Khomeyni.

NOW HEAR THESE
 Abidjan, Ivory Coast, on 11920 at 0600 . Radio Amazons, Iquitos, Peru, on 5060 at 0345. At 5 KW the schedule is from 1000 to 0500. Melbourne on 11790 from 1500 to 1600 and from 2000 to 2030 on this channel. Also have a try for signals from the standard frequency and time signal stations.

FREE CLASSIFIED ADS

FREE CLASSIFIED ADS CAN WORK FOR YOU
We are pleased to be able to offer readers the opportunity to sell your unwanted equipment or advertise your 'wants'.

Simply complete the order form at the end of these ads, feel free to use an extra sheet of paper if there is not enough space on the order form. We will accept ads not on our order form.

Send to: Radlo \& Electronica World, Sovereign House, Brentwood, Essex CM14 4SE

DEADLNE AND CONDITIONS

Advertisements will be inserted in the first available issue on a first come first served basis. We reserve the right to edit and exclude any ad. Trade advertisements are not accepted

FOR SALE

Ham int Major M588 USB, LSB, AM, FM, 26.515 to $27.855 \mathrm{MHz}, 5 \mathrm{KHz}$ shift. Zetagi BV131, 200W linear amp. Eurosonic 178 power/SWR Mod/FS metermatcher. Zetagi P27, RF preamp. All superb condition, only eight months old. Current owner now licenced. $£ 130$ or exchange HF receiver in good condition. Tel: Camborne 0209718021

- Yaesu FT101E, good condition, with 600 Hz filter, fan, and fist mic. £285. Yaesu YC601 digital frequency display (fits all Yaesu 101 and 401 series TRCVs) $£ 75$ (perfect condition). Maurice (G6IMV), 18 Mossvale Grove, Washwood Heath, Birmingham, B8-3QJ.
- Yaesu FT707 and FC707 ATU. Mike bracket original boxes and manuals, extra bands K-tone fitted all mint cond $£ 450$ the lot. Pete Stevenson, 6 Netherhouse Place, Commanhead, Glasgow, G34ODT Tel: 041-771-7611
- Zenith R7000 £350 mint, exchange 35 mm Nikon camera, video recorder, WHY. C Haynes, 13 Lionel Road, Eltham, London SE9 6DQ. Tel: 01-850-1543 - Swop Stereo, cost $£ 750$ for transceiver. sorry no cash, on the dole. Just taken licence. Also radio controlled model aircraft cost $£ 200$ WHY. Full details. Tel: 0514892668
\square Eddystone $830 / \mathrm{X}$ Rx $£ 30$. Audioline $341 \mathrm{FM} / \mathrm{CB}$ £25. Rama ext SP £. RD6 resistance box 152 to $1 \mathrm{MHz} £ 15$ ono. $2 \mathrm{x}, 6 \mu \mathrm{~F}, 500 \mathrm{~V}$ capacitors $£ 1.00$ pair. $1400 \mu \mathrm{f}, 400 \mathrm{~V}$ capacitor $50 \mathrm{p} .1800 \mu \mathrm{~F}, 250 \mathrm{~V}$ both BX Daly. $1-3500 \mu \mathrm{f}, 30 \mathrm{Vdc}$ capacitor 20p. Dual O/P $16 \mu \mathrm{f}$, 350 v capacitor. Also $6 \times$ Newmarket 404 transistors 10p ea. Pye radio telephone POA and various other bits + pieces POA. Bob Jones. Tel: 068574061 - Colour printer/X-Y plotter, Type CGP-115, fourcolour pen mechanism, selectable 40/80 character width printing, relative and absolute graphic modes, extras, $£ 110$ ovno. Tel: Mike GM4UKG, QTHR, Inverkeithing (0383) 416688.
- Trio R600, mint condition, four months old, receiver used very little £230 ono. Global at 1000 ATU, good condition £20. T Corbett, Sunnyside, New Road, Coedpoeth, Wrexham, Clwyd, North Wales. Tel: Wrexham 757435 (after 6 pm).
- Scopex 14D-10 double trace CRO. Bandwidth 10 MHz . Absolutely as new condition. Cost $£ 289$, accept $£ 150$. Complete with manual and muff. Tel: Reading 883799
- IC2E, Spkr Mic, BP4 battery case +6 Nicads, DC1, 12 V adaptor, mobile charging lead, cases, all standard accessories $£ 140$. 20W PA, suits $2 \mathrm{E}, \mathrm{£}_{2} 2$. Rx converter, 2 m input, 10 m output, $£ 10$. Wanted, FT290. Dan Glover (G6RMA QTHr). Tel: (0322) 524938 (evenings only)
SWL report forms designed for maximum information about your listening post. Give real meaning to your DX reports. Derek Rout, 3/137 Champion St, Christchurch, New Zealand.
- Pye Tx/Rx $1.6 / 3.9 \mathrm{KHz}, 50 \mathrm{~W}$, spares, manual. As new, offers. BC221 freq meter, charts, PSU vgc£40. Dane test oscillator 0.110000 Hz , dual quad output, vgc $£ 40$. Serviscope with new spare valves $£ 40$ Airmec VTVM, Type 219, vgc £35. Marconi VTVM TF899, vgc £20. Metrix MX202B, VOM, vgc $£ 45$ Racal SSB adaptor RA218 less crystals, as new, offers. Valves QV08/100, QF41, 723A/B, KT66, 11E3, QU37, 3C45, 5R4GY, 6CH6, CRTs DG-18-14A, RMT59. Shack clearance. Tel: 0502715419
\square Complete 80 M through 70 cms station. TS130V transceiver, MMT144/28, MMT432/28, VFO120, DFC230, YK885N, RF switching module and all interconnecting cables. Demonstration available. Prefer not to split. $£ 710$ ovno. Carriage at cost or local delivery. Phone or write to Graeme G6CSY QTHr at Orpington (0689) 29230 evenings.
- 2 m FM amplifier by Catronics Ltd, 11.5 W in, 40 W out plus spare new 11.5 in 40 out transistor and circuit etc $£ 25$. Hardly been used. 2 m speech processor with internal 9 V battery, also multi plug
to fit Yaesu transmitter, as new £15. Tel: Nelson 68548
- Realistic 5 band DX200 receiver $£ 75$ ono. A Parr 3 Groes Lwyd, Abergele Clwyd. Tel: 0745/822176 - Ex EMI research lab's parabolic four foot dish with tripod mount. Part motorised low windage sited in Hampshire £125. Buyer collects phone Looe (05036) 4339 G8MRB
- Realistic DX160 Comm Receiver 50 KHz to 30 MHz coverage in 5 bands. Separate speaker, amateur and broadcast bands. Mains or 12 Vdc operation. Little used. A1 condition. Boxed $£ 50.00$ ono. 10 M to 2 M receive converter to listen to 2 M amateur band. $£ 10.00$. C Walker G4XSE Tel Bishop's Waltham (Hants) 3511
- Armstrong AF208 chassis with full data and speaker. Radiomobile car radio model 1085XT with speaker. Also Bush radio type AC11. Long medium short waves. Needs dial panel. All in good working order. Offers please or exchange for small short wave radio, such as Mohican GC-14, Codar T28, or any similar type. WHY. Arthur Hyde, 54 The Causeway, Pagham, Bognor Regis, Sussex PO21 4PG. Tel: Pagham 3256
- Pye Cambridge 5W VHF mobile transceiver Easily modified to 2 metres $£ 15$. Carriage extra. 'Artificial Satelite Observink' by H Miles. The best book available for information on orbital predictions, telemetry, radio tracking and visual observation of satellites. Brand new, $£ 5.50$. K H Law, 11 Springhill Road, Saffron-Walden, Essex CB11 4AH. Tel: 079921388
- Yaesu FRG 7700, good condition, bargain at only £210. Tel: Yeovil 29313 (evenings)
- Yaesu FT480R as new condition, boxed with manual etc $£ 260$ ono. Nakamichi cassette deck model 350 boxed as new $£ 60$ ono. Rank, Bush, Murphy, colour monitors, Ex-BBC, working $£ 50$ each or all ten for £450. Tel: Guildford 0483-571134 (evening-weekends)
- Labgear LG300 CW transmitter, covers amateur bands. Also Woden UM2 power supply and modulator. Neither in working order but could be made workable. Ideal for valve enthusiast, circuit diagrams also available. $£ 70$ the lot. Buyer must collect. A Mackay, 20 Broom Covert Rd, Swinfen Hall, Lichfield, Staffs. Tel: Shenstone 480909 (after 6.30 pm)
- Code Master CW/RTTY Decoder + Morse tutor, CWR 610E $£ 120.00$ (G4UVJ). Tel: Canvey Island 697978 (QTHr).
- Help yourself to a pass in the RAE. Where ever you live the Dover YMCA Radio Club help you. Write now for information to RAEC, Dover YMCA, 2 Leyborne Road, Dover CT161SN. Our oldest student passed the RAE and CW at age of 87 years. Don't wait that long. P J Pennington, 146 Elms Vole Road, Dover, Kent. Tel: 030420300
- Oric 48 K plus Oric chess and other software $£ 95$ (or swop for Spectrum 48K). Heathkit RAl amateur bands receiver £45 ono. Tel: Loughborough 268136 (after 7pm)
- Shack clear out. Grommets mixed sizes $100+$ $\Sigma 1.00 \mathrm{bag}$. Washers, non-metallic, with $1 / 8 \mathrm{in}^{2}$ and $1 / 2 \mathrm{in}$ holes different sizes rubber/fibre/insulation 2,000 £7.00. Three tone buzzers, will work on 9 V to 12 V fixed to PCB, 3 in $\times 1 / \mathrm{w} / \mathrm{in}$, beautifully made, box of $40 £ 2$ each. Pots all 22 K Lin small size, 10 for $£ 1$. Packs res/cap/tran/100+ $£ 2.50$. Polypropylene twine light, strong, 2001b breaking strain, 100 yard rolls£1. Fuzz boxes £9. D Martin, 29 St Johns Close, Leatherhead, Surrey.
- Cossor 1035 'Scope good condition with manual £15, Mono DX-TV chassis audio video in/out $£ 10$, Pye, Bush, EMO, Philips CTV spares/panels, Philips/Pye portable TV. Chassis all cheap to clear or exchange - what have you? Mains transformers HT \& LT. Also to clear. MrA Bouskill, 129 Lyminster Road, Sheffield, S Yorks S6 1HY. Tel: (0742) 311191
- Hameg scope HM203-4 as new £250. Realistic scanner 200360 channel. Unused $£ 190$. Realistic speaker $£ 5$. Revco discone aerial unused boxed £30. Home built bench power supply 0-30V 2 amp £25. Workshop clearance, wire small drill, bits and peices etc $£ 15$. All collect or plus carr. Edwards, 2 Beach Road, Burton, Bradstock, Bridport, Dorset DT6 4RF. Tel: 0308897625
For sale. DX200 communications receiver, vgc. $1.8-30 \mathrm{MHz}+$ long wire antenna and full instructions. Good for SWL beginner £68 ono. Philips black and white portable television, excellent 20in screen vgc $£ 68$ ono. Hitachi radio portable FM/MW/LW, very smart, $£ 13+$ case + earphone. Nice present. Laurence Mendes, The White House, Chapel Lane, Mickleton, GL55 6SD. Tel: 038 677 727/798.
- Creed 75 page printer with stand, paper winder 6 Stape reader, Creed 80-0-80 power supply, lots of paper rolls \& tape, all in wkg condition. Buyer collects $£ 25.00$ the lot. Ring after 7pm week days. Tel: Mike (G8ATK) 0252715765
- Computer printer for sale. TTL level input. Uses ordinary $81 / 2$ in wide paper. C/W power unit, built-in interface, software (tape and printout). Modified Creed 7B. Can be seen working on my Acorn Atom. E50 buyer collects. Also four 2708 EPROMS offers? Or will exchange for a 2716 or 2532. N J Tubb, 35 Burns Road, Pound Hill, Crawley, Sussex. RH10 3AT. Tel: Crawley 513354 (evenings).
- Closed circuit TV camera with b/w monitor for sale. Two sets available each with $61 / 2 m e t r e s$ cable, $\mathbf{5} 65$ per set. Stereo reel-to-reel recorder (Cossor), 2 speed, track transfer, etc. Complete with stereo microphone, £40. Microphone mixer £5. Fifteen 5 in floppy disks (used) $£ 1$ each. Three storage boxes for 5in disks $£ 1.50$ each. Buyer collects large items or pays carriage extra to price asked. All items must go!! Dennis Lyons. Tel Shipton-under-Wychwood (0993) 830248 or Nuneaton (0203) 385614 (answer service).
- Yaesu FT290R. MuTek, carry case, rubber duck and 25 W linear, all mint. $£ 250$ ono. Yaesu 70 cm FT790R and FL7010 linear brand new, used 5hrs only, £270 ono. All equipment only used in shack. J Beam 12XY 70 cm new, in box $£ 20$. Advance 10A, 13 V power supply £20. Phone 0728 2952. House move forces reluctant sale.
- Realistic PRO2001 scanning receiver 16560 freqs. Complete with discone antenna and VHF/UHF portable antennae. $£ 90.00$ ono. Also Realistic DX200 comms. Receiver $£ 65.00$ ono. Both in mint condition complete with handbooks and original packing. Also Lowe TX40 CB TX/RX complete with SWR meter, matcher and AR2 antenna. £30.00. Tel: 0302841530 . - National NC81C Ham bands receiver, metal tubes, rare 1937 USA Rx, working, £75. QST's 1926 to 1948, approx 150, offers. All following new, boxed, CDE BT1A rotator, £85. AR30 £40. Mirage B108 linear, $144 \mathrm{MHZ} 80 \mathrm{Watts}+$ remote relay $£ 85$ Mics, Yaesu YD148 desk dual Z, £15. Sure 401A, HIZ, £10. Trio MC35S, HI-Z, £10. Mobile mounts, TS130, FT707, £10 each. Kenpro bearing KS-065, £15. FT707 linear relay, £15. FF501DX filter, £12. AEC SWR50A SWR/Watt £10. Phone: 0202510400.
■ Sony CRF-320 HF + general coverage receiver sell £325, or swap 2 metre multimode. Tel: (Glasgow) 041-551-9117 evenings.
- Sony IFC 7600D radio. New May 1984. Controls rather small for my fingers. Cost $£ 170$ asking $£ 140$. Tel: Worthing 49978.
- SX200N scanning Rx with PSU VGC $£ 190$ ono. KW2000A complete with PSU - LS good condition with shure 444 mike $£ 180$ ono. Approx 230 Rx and Tx valves mostly new, offers. Twin meter SWR, new £10. Letters only please. Buyer collects or carriage extra. D Bemister 69 Woodfield Drive, Gidea Park, Romford, Essex.

FOR SALE

- Yaesu Transceiver Monitorscope YO301, checks transmitted and received signals continuously, for all modes including RTTY, built-in two tone audio oscillator for transmitter adjustment, can also be used as an oscilloscope for many measurements. Cabinet is the same style as FT221/FT301. Wide range of I/F input, can be used with FT101, FT221, FT301 etc. Brand new, never been used, complete with handbook and all cables, $£ 125.00$, carriage extra. G4CRW. Tel: 0753 42301.
- Practical Wireless back issues. May, Nov 74; Jan to Mar 75; Sep to Dec 75; Feb to Dec 76; Apr, Oct 77; Jan, Feb 78; Mar 80. 24 copies in all. 80p each including post or offers for the lot. David Wyatt, 6 Whittington Road, Oswestry, Shropshire, SY11 1HY.
- Cossor oscilloscope, Model 1049, circa 1950. Double beam dc to 100 KHz . Probably working, with manual and circuit. $£ 5$ to strong caller (weight 75ib). Tel: 0215522494.
- RCA AR88 Rx with spare set of valves and full manual £55. D J Plant, 15 Heathcombe Rd, Bridgewater, Somerset TA6 7PD. Tel: 0278423288. - Sugiyama F850 multi-band, multi-mode transceiver. Coverage from 1.4 MHz through to 148 MHz with HF5 antenna and Kenwood MC80 microphone $£ 700$ ono. Kenwood V-UHF transceiver TS-770 144 MHz to 440 MHz with MC50 microphone, and Jaybeam MBM88 antenna £575 ono. SP400 loudspeaker to suit FT400 range $£ 15.00$. Manual for Telequip D43, D43R, AW S43 scope $£ 5.00$. HF-60 1 KHz to 55 MHz frequency counter $£ 25.00$. Tel: Telford 49306 after 7.00 pm weekday (Ask for John, G4LMA).
E Trap dipole $10-80 \mathrm{~m}$ with coax, vgc, $£ 12.70 \mathrm{cms}, 19$ ele Tonna very good condition $£ 9.4$ ele Jaybeam, 4 metres, good condition £11. G4NRG. Tel: Brentwood 810831.

WANIED

I need a needle movement and scale assy (horseshoe magnet) for my 1950's AVO, Model 40 , can pay reasonable price. Clive Fortnum, 11 Ayr Close, Stamford, Lincs PE9 2TS. Tel: 078064543 (after 6 pm).

- Urgently, a service manual of Ekco A172 valve mains radio (showing drive cord in full). Engineer would like to get this set working as soon as possible. Mike Horne, Barkwith House, Haylings Road, Leiston, Suffolk. IP16 4DJ. Tel: 0728830039. E 70 cm QRO amps $2 \times 4 \mathrm{CX} 250$ etc. Also big valves 8877 4CX1000, 4CX1500 bits and pieces for VHF, UHF amps bases transformers etc. Reg (GW8VHI). Tel: 0639821308
. HF linear amplifier, FL2100Z or equivalent. Also require memory type lambic keyer. Please state condition and price required. PR Carre, GU4XEA. Write to Coniston, Hautes Courtils, St Sampsons, Guernsey. Tel: 048156321.
- Cash waiting for following: Icom equipment IC751 or IC745, SM6, AS30 or similar AT500, SP3, IC2KL, 2KLPS, IC290D. Contact GW4MTY, QTHR. Tel: 0269844061 (anytime).
- Pye Pocketfones, Type PF1 Tx. Tel: Chris, Reading 661075.
- Operators manual or circuits for Tektronix 531A oscilloscope with Type D plug in unit. Buy or borrow or photocopy. All expenses paid. Peter Makin, 6 Fairisle Close, Clifton Estate, Nottingham NG11 8GD. Tel: Nottingham 215460.
- Circuit diagram or manual for solatron scope type D300. T Heeley G35WU, 34 Worlaby Road, Scartho Grimsby, South Humberside DN33 3JT. Tel: 751537.
- Oscilloscope tube new or s / h for telequipment scope type D83. Complete mainframe considered. G Jackson, 17 Newnham Close, Hartford, Huntingdon, Cambs. Tel: (0480) 58065.
- A handbook for Labgear LG300 TX (1955) and a service manual (not a handbook) for Racal 17L RX.

Will gladly pay for a loan of either to photocopy. If you do not wish to sell. Phone of write. Dave GM4RKA (QTHR) 0875610778. All letters answered. David Marshall, Beech Cottage, Main Street, Ormiston, East Lothian, EH35 5HT, Scotland.

- HRO, 14 to $30 \mathrm{Mc} / \mathrm{s}$ gen cov and any band spread coils. Also wanted Labgear LG 300 transmitter with modulator, or similar Tx. Ray Bisseker (G3SRO), 88 Chapel Lane, High Wycombe, Bucks. Tel: 0494 34786.
- Pair of Partridge output transformers, Type WWFB or CFB for 'Williamson' amplifier. Also Garrard 301 turntable. Tel: 089240022 (evenings). - German WW2 equipment for collection. Condition not all important. Also manuals and parts wanted. Offer WS19 or cash in return (OZ8RO). R Otterstad, Uejdammen, 5 DK-28Y0, Holte, Denmark. Tel: 02-801875.
- Teletex adapter for ordinary TV-set. Must be in good condition and able to work without any alteration of TV-set. S Sakamoto, 53 Appleford Drive, Abingdon, Oxon OX14 2BX
- Vintage wireless equipment, early amateur gear, old American communication receivers, old domestic radios, any condition or incomplete, also old magazines, books, manuals. Tel: 0202-510400 - Denco octal plug in coils. Green 1 and 2. Blue 1 to 5. Tel: Bristol (0272) 844584
- Yaesu FC902 or similar also other makes of ATU considered like Trio 230 KW107 SEM etc. Also wanted Yaesu FTV902R or similar also desk mike for FT1012. V Sayer, 10 St Davids Road, Locks Heath, Southampton. Tel: Locksheath 84340
- Valves W81 or equiv's 7H7 W143 W148 to fix BRT 400 Rx. Also wanted manual or any info. For Gertsch FM3 freq meter. Call Ed G8FAX evenings on Rayleigh (0268) 770716
- Realistic PRO-47 UHFNHF (patrolman receiver) with or without crystals. Also cheap JIL SX200 or 200 N . Mr J Bidgood, 255 Chamberlayne Rd, Eastleigh, Hants SO5 5HX

FREE CLASSIFIED AD ORDER FORM

Send to: Radio \& Electronics World Classified Ads'Sovereign House • Brentwood • Essex • CM14 4SE
Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale
Wanted
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

Nameladdress Postcoer elephnere							

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

CHESHIRE

DW ELECTRONICS G3 XCF

Amateur Radio Supplies
71 Victoria Rd, Widnes Tol: 051-420 2559
Open Mon-Sat 9.30-6 (closed Thurs) Sun 9.30-12 We supply Yaesu, ICOM, Tonna, Jaybeam, Microwave Modules, Datongs etc

KENT

Thanet
Electronics
95 Mortimer St, Herne Bay
Tel: 02273-69464
Open: Mon, Tues, Wed 9-5
Thurs 9-1, Fri, Sat $9-5.30$
All mail order \& service enquiries to head office, 143 Reculver
Rd, Tel: 02273-63859

LONDON

BONGX LTD
RF component specialists Toko coil \& Inductors
102 Churchfield Road
London W3 6DH

NORFOLK

Eastern Communications

Agents Wanted To Sell Computer Software for most Computers. We now have the Dialog Electronics Part 1 in stock. Also have in stock Pools Winner and Coursewinner. We can supply Business software, games and Computer ad on's. Phone (0288) 4179 up to 9pm most nights for your free list and details about our agents.

Complete, full-size sets, any published service sheets $£ 2$ + large SAE - except CTV's/Music Centres from $£ 3+$ large SAE
Manuals from 1930 to latest. Quotations, free 50p magazine, price lists, unique technica publications, for large SAE.
Repair data/circs almost any named TV/CVR, $£ 9.50$ by return.

TISREW

76 Church Street, Larkhall, Lanarkshire ML9 1 HE Phone: 0698883334

BILLINGTON VALVES

Send 35 p for our July 84 catalogue, including a huge range of top quality, valves and bases, or SAE for quotation. We purchase valves, any quantity, vintage on modern, very
high prices paid for PX25, DA30 valves.
Billington Valves, Inwin Drive, Horsham RH12 INL (Mail order only)

BCNU

AT THE SUSSEX MOBILE RALLY

10.30 to 5.00 pm on SUNDAY 15th JULY 1984. Brighton Raceground, Racehill, BRIGHTON. It's the winner for attractions for the whole family. Usual trade stands. All under cover.

> CBM64, VIC20, ATOM, DRAGON 32/64, TANDY HITY SOFTWARE COLOR COMPUTE
> Advanced machine code programs with spit-screen typeahead operation, any baud rate, saveable memories etc. AMTOR
> Superb full-feature system for Dragon 32/64 at one third the cost of current alternatives.

> MORSE DECODER \& SENDER
> MORSE TUTOR: BASICODE KIT Available for Dragon 32/64. Large SAE for software/ hardware details.

> Grosvenor Software (RaW)
> 22 Grosvenor Road, Saaford, Sussex Tel: (0323) 893378

You can be assured that readers know where they can go in your arēa to purchase

RADIO \& ELECTRONICS WORLD COUNTY GUIDE ORDER FORM
TO: Radio \& Electronics World • Sovereign House • Brentwood Essex CM14 4SE • England ((0277) 219876
print your copy here
\qquad

NUMBER OF INSERTIONS REQUIRED
 Double County Guide 3 £94.00... $\quad 6$..........£176.00.... \square 12...........£316.00.... \square

PAYMENT ENCLOSED

Cheques should be made payable to Radio and Electronics World. Overseas payments by

CATALOCUE OF ALLSORTS

Electronic, telephones, new BT sockets, burglar alarm equipment etc
Send 40 p and SAE to
CAB北是C
14 Tillman Close, Greenleys,
Milton Keynes MK12 6AQ. Dept REw.

THE VINTAGE WIRELESS
 COMPANY
 1914-1960

Radios, amplifiers, service sheets, valves, vintage components, books new \& used, repairs \& restorations, mail order only.

Cossham Street, Mangotsfield, Bristol BS 17 3EN
0272 -565472

RADIO CANADA

Peking, Australia, voice of America. A Vega 206 (6x SW/MW/LW). Pulls these and dozens more. £23.45. Year's guarantee. Return dispatch CORRIGAN RADIOWATCH,
Building 109, Prestwick Airport ḰA9 2RT

Turn your surplus IC's Transistors etc into CASH. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.
Contact:
Coles, Harding \& Co, 103 South Brink
Wisbech, Cambs. Tel: 0945584188

RTTY
 THE EXPANDING MODE

Build your own terminal unit to interface your micro to a receiver or transceiver.
PL1 PLL T.U. . . . Kit.. $£ 13.50$ built module... $£ 18.50$ buil module.. 18.50
FP1 Power supply \& pre-filter Kit 11.25 FP1 Power supply \& pre-filter Kit ... 14.65
built module........

Software also available - please enquire For full catalogue send s.a.s.e. to Please add VAT to all prices

PNP Communications (REW)

62, Lawes Avenue, Newhaven East Sussex BN9 95B Telephone (0273) 514465

RESISTOR PACKS FOR ALL PROJECTS

$1 / 4$ watt carbon film resistors $5 \% 1$ ohm to 10M E24 series. Packs of 10 each value (1690 resistors) £10.00 Your choice of quantities/values 125 for E1.00. VAT and Post Free.

GORDON HALLETT 20 Bull Lane, Maiden Newton, Dorchester, Dorset DT2 OBQ.

EUROLEC VIDEO SERVICES

01-669 2611
Telex 893819 Eurolec G Address for correspondence only: 35 Sandy Lane South, Wallington, Surrey SM6 9RF

We have a quantity of Phillips VCR cassettes, both new and ex-library. Please write or phone for details NTSC/PAL Transfers. Please write or phone for details

J A CREW \& CO
 SPINNEY LANE, ASPLEY GUISE, MILTON KEYNES
 Tel: (0908) 583252
 (Mail order only)

1000 resistors $1 / 4 \quad 1 / 2$ watt $£ 2.50 ; 100+$ capacitors 95p, 50 electrolytics 95 p; LED's red $50 \mathrm{p} / 6$, yellowigreen $50 \mathrm{p} / 4 ; 50$ assorted branded transistors £1.95; 50+ diodes, SCR's \& bridge rectifiers $£ 1.60$; BC108 £8/100, panel neons $£ 2.50 / 10$; TIP $50 £ 1.20 / 4$; BY164 bridge 1.4 A 25p; Opto-isolators $60 \mathrm{p} / 5$; Mains filter 5 A (List $£ 6+$) $£ 2.85$; 40 pin Iow profile DIL sockets 50 p/2; 6 volt BI-PIN bulbs $50 \mathrm{p} / 10$; 12 volt low profile relays SPCO 5 A rating $£ 1.25$. Add $£ 1 \mathrm{p} \& \mathrm{p}$ to all orders under £12. 44 page catalogue packed with thousands of other bargains, mechanical and electronic, price 50 p.

4 PLASTIC BOXES E?

1. Thick black, four screw top, size 90 mm by 70 mm deep 26 mm . 1. Thick black four screw top, size 150 mm by 84 mm , deep 2. Thick
43 mm .

43mm.
3. Thin
3. Thin white flick on top, size 81 mm by 64 mm , deep 26 mm .
4.Thin semi-clear white top, size 81 mm by 64 mm , deep 64 mm .

ONE OF EACH TYPE (sample) £2.00 plus P\&P 30p.

ELECTRONIC MAIL ORDER

62 Bridge Street, Ramsbottom, Lancs. BLO 9AC.
Tol: (070 682) 3038. - ACCESSNISA

R \& S Radio (G40WY)

Amateur radio equipment bought, sold and exchanged. List of available items sent on request.
Telephone anytime on 0305-786930

ALPHA KEYS
Precision engineered keys for the connoissaur. Twin or Single
paddle paddle. One of the lightest and smoothest movements ever. For the UHF/VHF CaVITY WAVEMETERS
2500 mhz . Can measure rf as low as 50 mill watts with suitati to over
COAXIAL RELAY KTTS
The cavity block is pre-machined to take either BNG or N type sockets. Two types of cavity avallable. Alum. type for HF , Brass for
the higher frequenc. the higher frequency.
arge SAE for more information to

Ant Products All Saints Industrial Est
 Baghill Lane, Pontefract West Yorkshire Telephone (0977) 700949
 TIGER LY9 70 Cms Antenna

New from Ant Products, a superb addition to the range of renowned antenna, the Tiger LY9 for 70 cms. A light weight antenna with a heavy weight signal. Offering a high 11 db gain on a 58 inch boom length. Great for vertical or horizontal mounting. Supplied in matched pairs for the ultimate Oscar station complete with all hardware for mounting with elevation control. Precisely adjustable for angle in order to get the best performance. Also including matching unit for circular polarisation. Right or left hand can be chosen with equal efficiency. Last but not leas our famo

```
Write now for full details
enclosing a SAE plus 25p in
stampa
```

This space could be yours for as little as £23.25 per month. Call the advertising department now on 0277 219876, or complete the coupon opposite.

ADVERTISERS INDEX

AKD.

$$
.30
$$54

Amateur Radio Exchange. 14,15
Avcomm Ltd. 50
Bi-Pak 69
Black Star Ltd. 42
Bredhurst Electronics 50
Brian Reed, 38
Garex Electronics 38
C-Scope International 38
Grandata Ltd29
Cirkit, 6,7
Commutech (Devon) Ltd. 15
Cricklewood Electronics 63
Data Publications. 50
Display Electronics. 33
East Cornwall Components 26
Edwardschild Ltd 57
AM Electronics 84
L.JElectronics.
SATElectronics. 84
Entield Electronics. 12
Hart Electronics 80
Hemmings Electronics Ltd.72
Number One Systems 50

\qquad 50 McLelland Electronics Ltd 59

Marco Trading.

Marco Trading. Inside Front Cover

\qquad
Microwave Modules......Outside Back Cover TauSystems. 59
Keytronics85
CM Howes Communications.57
Reltech Instruments. 57
Reg Ward \& Co 65
Co..... 65
Scarab Systems 42
South Midlands Communications. 76,77
CRSupply Co 35
Thanet Electronics. 22,23
Velleman (UK) Ltd 42
Ward Electronics. 72
Waters \& Stanton 18
RWithers Communications 10
PM Components Lto.. 46,47

\qquad.9
Mutek Ltd.

\qquad
. Inside Back Cover--Wood \& Douglas
\qquad

ADVERTISNG RATES \& INFORMATION

ABC membershlp approved pending first audt Jan-Dec 1984

$£ 600$ + for the receiver performance

of a £250 portable? There's

a better way!

Fitting a preamplifier to Icom's IC 271 will degrade the dynamic performance of the transceiver to a level very similar to that offered by a FT290 fitted with our SLNA 145sb! Fitting our RPCB 271ub replacement front-end on the other hand will give you the same sensitivity (to within a small fraction of a dB) as the IC $271 / / \mathrm{com}$ AG20 preamp combination, but with about 20dB better spurious-free dynamic range! The superiority of our approach will be best seen during contests and openings, where with our board you'll be able much more easily to hear the weak dx amongst the strong locals (assuming they have clean signals in the first place!!, instead of a bandful of unpleasant noise! It does seem pointless to waste the excellent potential performance of this transceiver by fitting a preamp when there's a better way of going about it.
Incidentally, we did have a few teething problems with the interfacing of the RPCB 271 ub to the IC 271. R+ was getting into Icom's mic preamp IC producing rather unpleasant ssb audio on transmit. This has now been cured, and of course where our customers have had problems we've been happy to put them right. We do care!

Stephen G4 SJP

P.S.

Our new TVHF 230 c 2 m to all 9 amateur hf bands transverter should be available in limited quantities at first by the time this appears in print. See it
(and us) at the major
rallies, or give a ring
for more info.

RPCB 271ub $£ 89.90$ + 1.50 inc. vat.

muTek limited - the rf technology company

Dept RW, Bradworthy, Holsworthy, Devon EX22 7TU (040924) 543

VISA

NEW!
MML 144/200-S: 144 MHz 200 WATT LNEAR AMPLIFIER

FEATURES

* 200 watts Output Power
* Linear All Mode Operation
* Suitable for 3, 10 \& 25 watt Transceivers
* Ultra Low-Noise Receive Preamp - Front Panel Selectable
* Relative Output LED Bar Display
* Equipped with RF Vox \& Manual Overide
* LED Status Lights for Power, Transmit, Preamp on and input level
E245 inc VAT (p\&p E4.50)
144 MHz HIGH PERFORMANGE RECEIVE CONVERTER: MMC 144/28 HP

Input frequency range: Output frequency range; Typical gain:
Noise figure:
3rd order intercept point:
$144-146 \mathrm{MHz}$
$28-30 \mathrm{MHz}$
20 dB minimum $2 d B$
+19 dBm (output)

FEATURES

* Excellent strong signal handling characteristics
* Gasfet RF amplifier
* High level double-balanced mixer
* Harmonic-free, regulated oscillator

Image rejection: $\quad 60 \mathrm{~dB}$
Input/output impedance:
Power requirements:
Power connector:
RF connectors:

50 ohm
13.8 V at 75 mA

5 pin DIN socket
SO239 or BNC,
please specify
Size: $110 \times 60 \times 31 \mathrm{~mm}\left(43 / 8 \times 2^{3 / 8} \times 1 \frac{1 / 4}{}{ }^{\prime \prime}\right)$
ع42.90 inc VAT (p\&p E1.25)

1296 MHz GaASFET
PREAMPLIFIER - MMG1296
This GaASFET 1296 MHz preamplifier is constructed on high-quality Tefton gla** fitter which provides excellent rejection to mixer image frequencies and out of band signals. H has a power gain of 15 dB and a noise figure of 1.2 dB . The power requirements are 13.8 BV at 35 mA and the unit is fitted with $\mathbf{5 0} \mathbf{~ o h m ~ B N C ~ s o c k e t s . ~}$
$\mathbf{8 5 9 . 9 5}$ inc VAT ($p+p \mathbf{\varepsilon 1 . 2 5}$)

MMC50/28S - 6M CONVERTER

This new Converter has switched oscillators to provide coverage of 50-54 MHz on a $\mathbf{2 8 - 3 0} \mathbf{~ M H z}$ receiver. The design utilises MOSFETS in the RF amplifier and mixer stages, and the local oscillator is regulator controlled.
INPUT RANGES: $50-52 \mathrm{MHz}$ OUTPUT RANGE: $28-30 \mathrm{MHz}$

- $52-54 \mathrm{MHz}$

NOISE FGGURE: 2.5 dB
:84.90 inc VAT (p + p : 1.25)

OUR ENTIRE RANGE OF PRODUGTS WILL BE EXHIBITED AND ON SALE AT MOST OF THE

 1984 MOBILE RALLIES BY OUR OWN SALES TEAM, COWE AND TAKE A CLOSER LOOKALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS)

VISA WELCOME	MICROWAVE MODULES(REW) BROOKFIED DRNVE, ANTREE, LVERPOOL L97AN, ENCLAND Telephoner $051-5234011$ Telex: 628608 MAORO C OALLERS ARE WELCOME, PLEASE TELEPHONE FIRST	HOURS: MONDAY-FRIDAY 9-12.30, 1-5.00 E. \& O.E.

[^0]: Audit Bureau of Circulation
 membership approved pending first audit (C) Copyright 1984

 Radio \& Electronics World Magazines

[^1]: To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire.
 I enclose 80 p. Please send me your latest catalogue and $3 \times £ 1$ discount vouchers! lf you have any enquiries please telephone us on Hoddesdon (0992) 444111.
 Name

[^2]: Head Office: 18-20 Main Rd, Hockley, Essex. Southend (0702) 206835 \& 204965
 Branch: 12 North Street, Hornchurch, Essex. (04024) 44765.

