Ey=ivody SEPTEMBER 1989
 $==-\operatorname{crion}$

INCORPORATING ELECTRONICS MONTHLY

THE MAGIC LAMP

PROBE POCKET TREASU RE

No. 1 LIST BAKERS DOZEN PACKS
All packs are $£ 1$ each, if you order 12 then you are entitled to another free. Please state which one you want. Note the figure on the extreme left of the pack ref number and the next figure is the quantity of items in the pack, finally a short description
BD2 $\quad 513 \mathrm{~A}$ spurs provide a fused outlet to a ring main where devices such as a clock must not be
4 In flex switches with neon on/off lights, saves leaving things switched on.
BD9 $\quad 26 \mathrm{~V} 1 \mathrm{~A}$ mains transformers uoriaht mountina with fixing clamps.
16 1/2in speaker cabinet ideal for extensions, takes our speaker. Ref BD137.
BD13 1230 watt reed switches, it's surprising what you can make with these-burglar alarms, secret switches, relay, etc., etc.
BD22 225 watt loudspeaker two unit crossovers
BD29
BD30 1B.O.A.C. stereo unit is wonderfil breakdown value
almost any nicad battery. almost any nicad battery.
BD32 2 Humidity switches, as the air becomes damper the membrane stretches and operates a microswitch.
BO42 5 13A rocker switch three tags so on/off, or change
BD45 $\quad 124 \mathrm{hr}$ सime switch, ex-Electriciy Board, automatically adjust for lengthening and shortening day. original cost $£ 40$ each.
BD49 10 Neon valves, with series resistor, these make good , night lights.
BD56 Mini uniselector, one use is tor an electric jigsaw puzzie, we give circuit diagram for this. One pulse into motor, moves switch through one pole.
BD59 2 Flat solenoids-you could make your multi-tester read $A C$ amps with this.
Suck or blow
1 Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as
water level in water tanks. water level in water tanks.
BD91 1 Mains operated motors with gearbox. Final speed $16 \mathrm{rpm}, 2$ watt rated.
BD103A 16 V 750 mA power supply, nicely cased with mains input and $6 V$ output leads.
BD120 2 Stripper boards, each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, et
BDI22 10 m Twin scree
0 Very fine drills for pcb boards etc. Normal cost about 80p each
Plastic boxes approx 3 in cube with square hole through top so ideal for interrupted beam switch.
BD134 10 Motors for model aeroplanes, spin to start so needs 6 no switch.
BD139 6 Microphone inserts-magnetic 400 ohm also act as speakers
BD148 4 Reed relay kits, you get 16 reed switches and 4 coil sets with notes on making c/o relays and other gadgets.
BDI49 6 Safety cover for 13A sockets - prevent those inquisitive little fingers getting nasty shocks.
BD180 6 Neon indicators in panel mounting holders with lens. cost disco panel.
1 in flex simmerstat-keeps your soldering iron etc. always at the ready.

解 poweriul, has lin pull or could 8 Mush if modified.
many or computers but have 4 Transistors type 2N3055, probably the most useful power transistor.
1 Electric clock, mains op
vou need never be late.
horn. Slightly soiled but OK.
26 in $\times 4$ in speakers, 4 ohm made from Radiomobile so very good quality.
1 Panostat, controls output of boiling ring from simmer up boil.
50 Leads with push-on $1 / 4 \mathrm{in}$ tags-a must tor hook ups-mains connections etc
BD263 2 Oblong push switches for bell or chimes, these can mains up to 5 amps so could be foot switch if fitted into pattress.
BD268 1 Mini 1 watt amp for record player. Will also change speed of record player motor. dard electrical.
BD293 50 Mixed silicon diodes.
BD305 1 Tubular dynamic mic with optional table rest
CAMERAS. Three cameras, all by famous makers, Kodak, etc. One disc, one 35 mm and one instamatic. All in first class condition, believed to be in perfect working order, but sold as untested. You can have the three for $£ 10$ including VAT, which must be a bargain-if oniy for the lenses, flash gear, etc. Our ref 10P58
675 VOLT MAINS TRANSFORMER PCB mounting, 20VA. A very well made (British) transformer, Ideal for laser power supply, etc.
EXTRA SPECIAL CROC CLIPS Medium size, just right for most hook-ups. Normally sell for around 10 p to $15 p$ each. These are
insulated and have a length of spring rod connected to them but this is insulated and have a length of spring rod connected to them but this is
very easy to snip off if you do not need it. 20 for $£ 1$. Our ref BD117A. COPPER CLAD PANEL for making PCB. Size approx 12 in long $\times 81 / 2$ in wide. Double-sided on fibreglass middle which is quite
thick (about $1 / 16$ Gin so this would support quite heavy components and thick (about $1 / 16$ in/ so this would support quite heavy components and
could even form a chassis to hoid a mains transformer, etc. Price $£ 1$ could even form a ch
each Our ref BD683.

POWERFUL IONISER

Generates approx.
circuits. Will refresh your home, office, workroom etc. Makes you feel better and work harder-a complete mains operated kit, case included. $\mathbf{E 1 2 . 5 0 + E 2 ~ P \& P . ~ O u r ~ r e f ~ 1 2 P 5 ; ~}$

MODERN TELEPHONES. Two-piece push-button desk or wall mounting telephone. Fitted with standard BT flat plug for immediate
use. Standard model F . Our ref 8 831. If not collecting add f 2 for Use. Standard
special packing

BUSH RADIO MIDI SPEAKERS Stereo pair. BASS reflex system, using a full range 4 in driver of 4 ohms impedance. Mounted in very nicely made black fronted walnut tinish cabinets. Cabinet size approx $81 / 2$ in wide, 14 in high and $31 / 2$ in deep. Fitted with a good length of speaker tex thou terminating
plus $£ 1$ post. Our ref 5 P141.

ELECTRONIC SPACESHIP Sound and impact controlled, responds to claps and shouts and reverses when it hits anything. Kit
with really derailed instructions with really detailed instructions. Ideal present - for budding young electri-
cian. A youngster should be able to . nents on the pcb. Complete kit $£ 8$. Our ref 8 P30.
DATA RECORDER FOR COMPUTERS For plaving games or for listening to music cassettes. It has a built-in condenser microphone and loudspeaker (muted if you use the extension socket). Has the fol lowing controls: pause, stop/eject, fast forward, rewind, play and recort. A so has buil-in tape counter, extension headphone and mic rophone socket and volume control. Buit-in power supply enables itt
run from the mains but provision also for batrery operation In as new condition, but customer returns so may have fault. Price only $£ 10$ and if you order 4 you get a fifth one free. Our ref 10P65.
31/2in FLOPPY DISC DRIVE-DOUBLE SIDED, DOUBLE DENSITY, 80 TRACK Shugart compatible, has 34 way IOC connector and will interface with almost any computer Made oy the
famous Japanese NEC Company. Price f59.50 plus 53 insured post

ATARI 65XE COMPU TER At 64 K this is most powerful and suitable for home and
business. Complete with PSU, business. Complete with PSU, TV ead, owner's manual and six games. Can be yours for only

65XE COMPENDIUM Contains: 65XE Computer, its data recor der XC12 and its joystick, with ten games for $£ 62.50$ plus $£ 4$ insured

AGAIN AVAILABLE: ASTEC PSU. Mains operated switch mode, so very compact. Outputs $+12 \mathrm{~V} 2.5 \mathrm{~A},+5 \mathrm{~V} 6 \mathrm{~A}, \pm 5 \mathrm{~V} .5 \mathrm{~A}, \pm 12 \mathrm{~V}$ 5A. Size: $71 / 4$ in long $\times 43$ sin wide $\times 23$ ain high, Cased ready for use.
Brand new. Normal price $f 30+$ our price only $C 10$ Our ref 10 P 34 .
VERY POWERFUL 12 VOLT MOTORS
VERY POWERFUL 12 VOLT MOTORS. $1 /$ rad Horsepower. Made to drive the Sincliair C5 electric car but adaptable to power a gokart, a mower, a rail car, model railway, ett. Brand new. Price £15 pius

PHILIPS LASER

ORGAN MASTER is a three octave musical keyboard. It is beautifully made, has full size |piano sizel keys, has gold plated contacts and is complete with ribbon cable and edge connector. Can be used with many computers, request information sheet. Brand new, oniy $₹ 15$ plus E3 postage. Our ref 15P15
FULL RANGE OF COMPONENTS at very keen prices are availble from our associate company SCS COMPONENTS. You may already have their catalogue, if not request one and we will send it $F O C$ with your goods.

MONO RADIO CASSETTE RECORDER AMFM with all the normal controls. In 'as new' condition but customer returns or shop rejects, so may need attention. Price £10. Order 5 of these and get a sixth one free: Our ref 10P66.
PRETTY CASSETTE PLAYER in handy carrying. pouch with silk type shoulder cord. Ideal present for a young girl. New, tested and in perfect order. Just needs headphones and batteries. Price $£ 4$. Our ref
4 a35.
HIGH RESOLUTION MONITOR. gin black and white, used Philips tube M24306W. Made up in a laccuuered frame and has open
sides. Mace for use with OPD computer but suitable for most others. sides. Mace for use with OPD computer but suitable for most others. Brand new. $\{16$ plus 55 post. Our ref 16 P1
12 VOLT BRUSHLESS FAN. Japanese made. The popuia
 as the brush type motors do. Ideal for cooling computers, etc. or fire a caravan. $\mathbf{E 8}$ each. Our ref 8 P 26 .

FDD BARGAIN
compatible intertace of Japan. Single sided, 80 track, Shugart compatible interface, interchangeable with most other $31 / 2 i$ in and $51 / 4$ in drives. Completely cased with 4 pin power lead and 34 pin

MINI MONO AMP

ited
Fitted Volume control and a hole for a tone
trol should yopu require it. The amplifier rrol should yopu require it. The amplifie has three transistors and we e
ate the output to be $3 W$ More technical data will be included with the amp. Brand new,
pertect condition, offered at the very
low price of $\mathbf{1} 1.15$ each, or 13 for $£ 12.00$.

> J\&N BULL ELECTRICAL
> Oept. E.E., 250 PORTLAND ROAD, HOVE BRIGHTON, SUSSEX BN3 SOT

wai onoen temes: Cash, PO or cheque with order. Orders under schools and public companies. Access and $\mathrm{B} /$ ccard orders accepted. -minimum e5. Phone (Q273) 734648 or 203500.

Some of the many items described in our current list which you will receive it you request it
MOSFETS FOR POWER AMPLIFIERS AND HIGH CURRENT DEVICES 140V 100w pair made by the famous Hitachi Company. Reference HI.VOLT CAPS Not ceramic but the much more reliable foil rype. Good range from 1 nf to 35μ at vol
tity discounts. Request list.
AGAIN AVAILABLE - THE SOLID STATE RELAY Will switch up to 10 $A C$ load and can be triggered by very small current from photo cell, BATTERY OPERATED TPAVEL MP
BAATERY OPERATED TRAVEL MECHANISM. On a plastic panel measuring approx 9 in $\times 31 / 2 \mathrm{in}$. Is driven by a reversible 12 V batten motor, fitted with pulley and belt which rotates a threaded rod and of approx 5in. Price $\mathrm{E5}$. Our ret 5P140.
MAINS OPERATED WATER VALVE with hose connection for inlet and outlet suitable for low pressure. Auto plant watering, etc. Only $\mathbb{1}$ each, Our ref 80370 .
20VOLT 4AMP MAINS TRANSFORMER. Upright mounting with fixing feet. Price $\mathfrak{E 3}$. Our ref $3 P 59$.
$12 V O L T S$ SOLENOID Has
12 OOLT SOLENOID. Has good $1 / 2$ in pull or could be made to push if fit-
ted with a rod. Approx. $11 / 2 i n$ long by 1 in square. Price $£ 1$. Our ref
BD232A.

60

160HM PM SPEAKERS. Approx 7 in $x 4$ in. 5 wats. Offered at a very low price so you can use two in parallel to give you 10 watts at 8 ohms. C 1 for the two. Our ret BD684,
EHP
$5 \mathrm{P}_{13} 39$
4 CORE TINSEL COPPER LEAD As fitted to telephones. terminating

EHT TRANSFORMER Bky 3mA. E10. Our ref 10P56.
DOUBLE MICRODRIVES. We are pleased to advise you that the Double Microdrives which we were offering at about this fime last year as
being suitable for the "OL', 'OPD' and several other computers are again available, same price as before namely 55 . Our ref 5 Pp 113 . VEAY USEFUL MAGNETS. Flat, about lin long, 1/2in wide and thick. Very powerful. 6 for $£ 1$. Our ref BD247(a).
acomw comprten data recorder ref alfo3 made for the Elec tron or BBC computers but suitable for most others. Complete with mains adaptor, leads and handbook $£ 10$. Our ref 10P44. Plus $£ 2$ special packing.
SOLAR CELLS Will give a good current (depending on size) from sunlight or bright daylight. Module A gives 100 mA . Pitice $£ 1$. Our ref BD6331.
Model C gives 40 mA . Price E 2.0 Ou ref $2 P 199$. Module D gives 700 mA . Model C gives 400 mA ,
Price 3 . Ou ref $3 P 42$.
Price E3. Our ref 3P42.
SOLAR powered mi-cad changen a ni-cad batreries Aa (hPI) charged in eight hours or two in oniv 4 hours. It is a complete, boxed ready io use
METAL PROUECT BOX Ideal size for battery charger, power supply,
 -CDRE REX CABLE. Cores separately insulated and grey PVC covered verall. Each copper core size $7 / 0.2 \mathrm{~mm}$. Ideal for long telephone runs or similar applications even at mains voltage
ret. 2 P196 or 100 metres coil ff . Order ref. 8P19.
6-CDRE FLEX CABLE. Oescription same as the 4-core abo
metres for \mathbf{Z}. Our ref. 2P197 or 100 metres $\mathbf{f 9}$. Our ref. 9P1.
2P186.
13A ADAPTERS Takes 2 13A plugs, packet of 3 for $£ 2$. Order ret. 2 2P187.
2 V -0-20W Mains transtormers $21 / 2 \mathrm{amp}$ (100) woth loading, tapped primary. 200-245 upright mountings $\mathbf{5 4}$. Order ref. 4 P24.
BURGLAR ALARM BEL-6", gong OK for outside use if protected from rain. 12 V battery operated. Price fB . Ref 8 BP 2
CAPACTIOR BARGAIN-axial ended, $4700 \mu \mathrm{~F}$ at 25 V . Jap made, normally 50 p each, you get 4 for $£ 1$. Our ref. 613 .
SINGLE SCREENED FLEX 7.02 copper conductors, puc insulated then with copper screen, inally outer insulation. In fact quite normal screened flex. 10 m for $\mathbf{2 1}$. Our ret B0668.
M.E.S. BUL8 HOLDERS Circular base batten type fitting. 4 for E1. Our ref BD127a.
SPRING LOADED TEST PRODS-Heavy duty, made by the
Bulgin company. very good quality. Price 4 for E1. Ref. BD597
-CDhe fex babgaim Mo. 1 -Core size 5 mm so ideal for long extension leads cariving up to 5 amps or short leads up to 10 amps. 15 mm for f2. ret, 2P189.
3-CORE REX BARGAIN No. 2-Core size 1.25 mm so suitable for long extension leads
for f R. Ret. 2P190.
ALPHA-NUMERIC KEYBOARD - This keyboard hes 73 keys giving trouble free life and no contact bounce. The keys are arranged in two groups, the main area is a OWERTY array and on the right is a 15 key number pad, board size is approx. $13^{\prime \prime} \times 4^{x \prime}$-brand new but offered at onty a fraction of its cost. namely E , plus $\mathbf{f 1}$ post Ref. 3P27
1/8th HORSEPOWER 12 VOLT MOTOR Made by Smiths, the body ength of this is approximately 3 in, the diameter 3 in and the spindle 5 16 th of an inch diameter. It has a centre flange for fixing of can be fixed evs at $3,000 \mathrm{rpm}$. We have a large quantity of them so if you have any projects in mind then you could rely on supplies tor at least two years. Price 56 . Dur ref 6P1, discount for quantities of 10 or more.
3 VOLT MOTOR Very low current so should be very suitable for Norking with solar cells, $£ 1$ each. Our ref BD681
tereo-simply plug in to earphone socket. Excellent your personal only f 4 per pair. Our ref 4 P34.
INNER EAR STEREO HEADPHONES ideal for lady listeners as they will not mess up your hair do! Come complete in a neat carrying case. Price 23. Our ref 3P55.

STEREO HEADPHONE AMPUFIER Very sensitive. A magnetic cartridge or tape head will drive it. Has volume control and socket tor stereo headphones. 3 V battery operated. f 1 each. Our ref BD680.
RET CAPACITOR MICROPHONE EAGLE CL. 200 Output equivalent to a high class dynamic microphone while retaining the c SUB-MIN TOGGLE SWTTCH Body size $8 \mathrm{~mm} \times 4$ chrome dolly fixing nuts. 4 for f ? Our ref BD649. SUB-MIN PUSH SWITCH DPDT. Single hole fixing by hexagonal nut. 3 for f . Our ref BD650.
DISPLAY 16 CHARACTER 2 UNE AS used in telephone answering and similar machines. Screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm} \times 9.3 \mathrm{~mm}$. Alpha-numeric, Made by the EPSON Company, reference 16027AR. Price E10. Our ref 10 P 50.
\square
VOL 18 No 9 SEPTEMBER 1989

ISSN 0262-36.17
PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES . . .

© Wimborne Publishing Ltd 1989. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
Our October '89 Issue will be published on Friday, 1 September 1989. See page 547 for details.
Projects
XENON BEACON by Chris Walker 554
Portable high powered emergency beacon for walkers,climbers, seafarers and the motorist.
FOUR-WAY CHASER by Chris Bowes 558
A novelty "pocket money" project.
PROBE POCKET TREASURE FINDER by Andy Flind 568
Invaluable aid for the searcher. Pinpoints the "find" in seconds.
VARIABLE STABILIZED POWER SUPPLY 586
by Steve Knight
Fully controllable from OV to 12 V output at 1.5 A .
FUSE TESTER by Chris Bowes604
Don't blow your fuse! Buld this simple checker.
Series
BBC MICRO by R. A. Penfold and J. W. Penfold 566
Regular spot for BEEB fanatics.
ACTUALLY DOING IT by Robert Penfold 574
Understanding circuit diagrams.
ON SPEC By Mike Tooley 576
Readers' Sinclair Spectrum page
STABILIZED POWER SUPPLIES by Steve Knight 583
Part Three: Fixed and variable supplies.
INTRODUCING DIGITAL ELECTRONICS
by Mike Cockcroft 594
Part Twelve: Concluding article - Sequential Logic.
AMATEUR RADIO by Tony Smith G4FA1603
Prosecutions; Project Year; Government Enquiry.
ROBOT ROUNDUP by Nigel Clark 611
Investigating the world of robotics.
FeaturesEDITORIAL553
THE MAGIC LAMP by lan Graham 562
The development that was the guiding light of electronics.
FOR YOUR ENTERTAINMENT by Barry Fox 572
Carbon Copy; Tone Deaf; Wrong letter.
MARKET PLACE Free readers' buy and sell spot 577
SHOPTALK by David Barrington 545
Product news and component buying
SPECIAL OFFER I-Tron Super Sound - FX Micro 591
DOWN TO EARTH by George Hylton 592
Tuning Diodes; Signal Voltage; Remedies
PLEASE TAKE NOTE 607
Treasure Hunter; Light Sentinel
DIRECT BOOK SERVICE 608
Special service to EE readers
PRINTED CIRCUIT BOARD SERVICE 612
ADVERTISERS INDEX 616
COMPETITION
Win a Maplin radio control model car 573
Readers'Services • Editorial and Advertisement Departments 553

MAGENTA ELEGTRONDCS Lid.

A SELECTION OF OUR BEST PROJECT KITS

As usual these kits come complete with printed circuit boards, cases, all components, nuts, screws, wire etc. All have been tested by our engineers (many of them are our own designs) to ensure that you get excellent results.

INSULATION TESTER

An electronic High Voltage tester for mains appliances and wiring. An inverter circuit produces 500 volts from a PP3 battery and applies it to the circuit under test. Reads insulation up to 100 Megohms. Completely safe in use.

OUR KIT REF 444 £19.58

DIGITAL CAPACITANCE METER
Simple and accurate (1%) measurements of capacitors from a few pF up to 1,000 uF. Clear 5 digit LED display indicates exact value. Three ranges - pF, nF, and UF. Just connect the capacitor, press the button and read the value.

$£ 41.55$

OUR KIT
REF 493

MOSFET VARIABLE BENCH 25V 2.5A POWER SUPPLY

EE TREASURE

P.I. METAL DETECTOR

 A sensitive pulse induction Metal Detector. Picks up coins and rings etc.up to 20 cms deep. Low "ground effect". Can be used with search-head underwater. Easy to use and build, kit includes search-head, handle, case, P.C.B. and all parts as shown.COMPONENTS, KITS, BOOKS, TOOLS, MOTORS, GEARS, PULLEYS, OPTICAL
FIBRES, ROBOTICS, AND MUCH MUCH MORE-IN OUR
CATALOGUE $£ 1.00$

3 BAND SHORTWAVE RADIO

OUR KIT

REF 718 £26.53

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.

ULTRASONIC PET SCARER

Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered ($9 \mathrm{~V}-12 \mathrm{~V}$ or via *Mains Adaptor).
KIT REF 812 £13.80
*Mains Adaptor $£ 1.98$

A superb design giving $0-25 \mathrm{~V}$ and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V .
Current-Limit contral allows Constant Current charging of NICAD batteries, and protects circuits from overload. A Toroidal transformer MOSFET power output device, and Quad op-amp IC design give excellent performance.

DIGITAL FREQUENCY 200 MHz METER

 KIT REF 563£62.98
An 8 digit meter reading from A.F. up to 200 MHz in two ranges. Large
$0.5^{\prime \prime}$ Red LED display. Ideal for AF play. ldeal for AF
and RF measureand RF measurements, Amateur and C.B. frequen cies

PROJECT KITS FOR E.E.

Magenta supply Full Kits: Including PCB's (or Stripboard), Hardware, Components, and Cases (unless stated). Please state Kit Reference Number, Kit Title, and Price, when ordering. REPRINTS: If you do not have the issue of E.E. which includes the project, you will need to order the instruction reprint as an extra: 80p each. Reprints are also available separately-Send £1 in stamps.

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	KIT-TITLE	PRICE	$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	KIT-TITLE	PRICE
	EE TREASURE HUNTER Aug 89 BAT DETECTOR Jun 89	Full Kit ${ }^{\text {E }}$ 39.95	700	ACTIVE I/R BURGLAR ALARM Mar 87	f33. 65
	BAT DETECTOR Jun 89	£19.98	581	VIIEEOGUARD Feb 87	${ }^{88.39}$
		E13.80	594	SPECTRUM SPEECH SYNTH. Ino casel Feb 87	$\mathrm{E} 20.92^{59}$
	MID' MERGE Mar 89	E11.59		SPECTRUM V O Pori less case feb 87	E9.4
	CALL ALERT Mar 89	$\mathrm{fl3}^{13.51}$	569	CAR ALARM Dee 86	
	MIN PSU Feb 89	E22.71		200MHz OIG. REQUENCY MEIER Nov 86	${ }_{\text {E62.98 }}$
	CONTINUTYY TESTER Feb 89	$\mathrm{f}^{10.28}$	560	LIGHT RIDER DISCO VERSION	${ }_{\text {f19,62 }}$
	4 CHANNEL LIGHT DIMMER Feb 89	¢37.99	559	UGHT RIDER 16 LED VERSION	613.64
	REACTION TMER Dec. 88	${ }^{292989}$	556	INFRA-RED BEAM ALARM Sepi 86	${ }^{228.35}$
	PHASOR ILI Light Controllerl Dec 88	${ }^{\text {E25 }} 6.61$	544	TILT ALARM July 86	E7.82
	DOWNBEAT METHONOME De	E17.57	542	Personal rado june 86	¢11.53
	SPECTRUM EPROM PROGRAMMER Dec 88	$\mathrm{f}^{\text {f22.97 }}$	528	PA AMPLIFER May 86	¢27.95
	SEASHELLS SYTHESISER Nov 88	$\underline{524.99}$	523	STEREO REVERB Adr 86	f26.4
	I.R. OBIECCT COUNTER Nov 88	${ }^{229.63}$	513	BBC MIDI NTERFACE Mar 8	
	EPROM ERASER Cl 188	¢24.95	512	MAINS TESTER\& FUSE ANDER Mar 86	ع8. 22
	UNIVERSAL NICAD CHARGER July	f6.99	497	musical door bell jan 86	12
	CABLE EPPEL LOCATOR April 88	${ }_{5}^{\text {¢15.35 }}$	493	digital capacitance Meter dec 85	\$41.55
	ENVELOPE SHAPER Mar 88	¢14.99		SOLDERING IRON CONTHOLLER OCI	65.47
		¢ $\begin{aligned} & \text { ¢ } 49.73 \\ & \text { 7. } 10\end{aligned}$	464	STEPPER MOTORINTERFACE FOR THE BBC	
$\begin{aligned} & 763 \\ & 739 \end{aligned}$	AUDIO SIGNAL GENERATOR Dec 87	¢13.64		1 1035STEPPER MOTOR EXTR	${ }_{\text {f11.50 }}$
	ACCENTED BEAT METRONOME Nov 87	E20.95		OPTIONAL POWER SUPPL Y PARTS	E5.14
$\begin{aligned} & 740 \\ & 740 \end{aligned}$	ACOUSTIC PROBEE Nov 87 (less boll \& probe)	${ }^{165} 26$	461	CONTNUTTY TESTER July 85	66.20
	VIDEO CONTROLLER OCt 87	529.14	455	ELECTRONIC DOORbELL June 8	
$\begin{aligned} & 744 \\ & 745 \end{aligned}$	TRANSTEST Oci 87	E9.70	453	GRAPHIC EQUALISER June 85	E26.94
$\begin{aligned} & 745 \\ & 734 \end{aligned}$	AUTOMATIC PORCH LIGHT Oct 87	E17.17	44	insulation tester a	
	STATC M MONTOR Oct 8 7	${ }^{288.65}$	430	SPECTRUM AMPLIFER Jan 85	¢6.91
$\begin{gathered} 736 \\ 723 \end{gathered}$	ELECTRONIC MULTIMETER Sepit 87	E46.96	392	BBC MICRO AUDIO STORAGE SCOPE	
728	PERSSONAL STEREO AMP Sep 87	E11.31		INTERFACE Nov 84	¢36.25
$\begin{aligned} & 730 \\ & 724 \end{aligned}$	BURST-FIRE MAINS CONTROLLER Sept 87	E13.57	387	Mains Cable detector oct 84	
	SUPER SOUNO ADAPTOR Aug 87	¢38.39	386	DRIL SPEED CONTROLLER Oct	
$\begin{aligned} & 718 \\ & 719 \end{aligned}$	3 BAND 1.6-300M Mz 2 RADIO Aug 87	源 53	362	va	¢13.15
	BUCCANEER I.B. METAL DETECTOR inc. coils and		337	BIOLOGICAL AMPLIFIER Jan 84	E24.14
720	case, iess handie and hardware July 87	£26.45	263	BUZZ OFF Mar 83	65.68
	binalcounta/meamernu		242	2.WAY INTERCOM no case Juty 82	65.69
	inc. ERMOSJ		240	EGG TMER June 82	
${ }_{712}^{722}$	Fenmosia july 8	E12.14	205	SUSTAIN UNIT Oci 81	
	VISUAL GUITAR TUNER Jun 87	t22.99	108	IN SITU TRANSISTOR TESTER JUn 78	59.42
$\begin{aligned} & 715 \\ & 707 \end{aligned}$	MiNNDISCOLIGHT JUn 87	E12.59	106	WEIRD SGUND EFFECTS GEN Mar 78	67.82
	EQUALIZER (IONISER) May 87	${ }^{\text {f15.53 }}$	101	Electronic dice Mar 77	66.26

SEISMOGRAPH

We investigate the various electronic ignition systems used in modern cars and explain how each one works and what all the technical terms mean.

MUSIC ON HOLD

If you really would like to play your callers a little music while they hang on the phone line then this project is for you. If you are of the other school that detests the things then the design is interesting in its own right and could form the heart of other "musical output" projects.

HIGH GRADE COMPONENT PARCELS

Q
 E
 AMPLIFIERS FROM QTMNVEE

The UK Distributor for the complete ILP Audio Range

BIPOLAR AND MOSFET MODULES

The unique range of encapsulated amplifier modules with integral heatsink.
HY30 15W Bipolar amp. £11.30 HY248 120W Bipolar amp (80hm) £24.15 HY60 30W Bipolar amp $£ 11.30$ HY364 180 W Bipolar amp (40hm) $£ 37.55$ HY6060 30W Stereo Bipolar amp $£ 23.65$ HY368 180W Bipolar amp (80 hm) £37.55 $\begin{array}{llllll}\text { HY124 } & 60 \mathrm{~W} & \text { Bipolar amp (} 40 \mathrm{hm} \text {) } £ 18.50 & \text { MOS128 } & \text { 60W Mosfet amp } & £ 34.95 \\ \text { HY128 } 60 \mathrm{~W} & \text { Bipolar amp (} 80 \mathrm{hm} \text {) } £ 18.50 & \text { MOS248 } & 120 \mathrm{~W} & \text { Mosfet amp } & £ 42.40\end{array}$ HY244 120W Bipolar amp (4ohm) £24.15 MOS364 180W Mosfet amp

PLATE AMPLIFIERS

Bipolar and Mosfet modules with the same electronics as above amplifiers housed in a different extrusion without heatsink.
 $\begin{array}{rr}\text { HY128P } & \text { 60W Bipolar amp (} 8 \mathrm{ohm} \text {) } £ 14.20 \\ \text { HY244P } & \text { 120W Bipolar amp (} 4 \mathrm{ohm} \text {) } £ 19.25\end{array}$ H.

Note: These modules require additional heatsinks

POWER SUPPLIES

Comprising toroidal transformer and DC board to power the ILP amplifier modules.

PSU30 Pre-amplifier	£10.35	PSU542 HY248	£26.15
PSU212 1 or 2 HY30	£18.30	PSU552 MOS248	£28.20
PSU412 HY6060, HY124, 1or 2 HY60	£20.45	PSU712 HY244 (2)	£30.25
PSU422 HY128	¢22.60	PSU722 HY248 (2)	£31.25
PSU432 MOS128	E23.55	PSU732 HY364	E31.25
PSU512 HY244, HY128 (2)	E25.15	PSU742 HY368	£33.30
PSU522 HY124 (2)	£25.15	PSU752 MOS364, MOS248 (2)	$£ 33.30$
PSU532 MOS128 (2)	¢26.15		

PRE-AMP and MIXER MODULES
These encapsulated modules are supplied with in-line connectors but require potentiometers, switches etc.

```
HY6 Mono pre-amp with bass and treble
HY83 Guitar pre-amp with special effect's
36 Mounting board for HY6
B66 Mounting board for HY66 or HY83
B66 . Mounting board for HY66 or HY83

\section*{POWER SLAVES}

These cased amplifiers are supplied assembled and tested in 60 and 120 watt Bipolar or Mosfet versions.


Prices include VAT and carriage


Quantity prices available on request
Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104


Choose from 25 models \(\quad\) Mixers for home use, disco's, public address and studio use From 4 to 16 channels \(\square\) Also 6 and 8 ch midi systems - Equalizer mixers MRT60 and many more.

\section*{ECHO'S}
- VC1 analogue \(\quad 6040\) stereo amplifier 8040 digital echo - Also mini echo's.

\section*{DIGITAL}

DELAY/REVERB
\(\square 19^{\prime \prime}\) rack systems \(\square\) Digital reverb with 63 user programs Digital delay up to infinite repeat Also multieffects programmable unit.

\section*{GRAPHIGS}
- 19" rack systems 31 band single channel \(2 \times 15\) band two channel, and \(2 \times 31\) band two channel.

\section*{CHASSIS SPEAKERS/ CABINETS}
- PA speakers \(51 /{ }^{\prime \prime}\) to \(12^{\prime \prime}\) T Twin cone from 40 to 100 Watts \(\square\) Various models disco/group speakers \(10^{\prime \prime}\) to \(18^{\prime \prime}\)
various types \(\square\) Bass speakers \(\square\) Bass mids and mids Also Rexine cabinets \(10^{\prime \prime}, 12^{\prime \prime} \& 15^{\prime \prime}\) — Plus range of cabinet fittings and portable speaker stands and brackets.

\section*{PIEZO TWEETERS}
- 10 models stocked from \(£ 2.95\)

PUBLIG
ADDIESS SPEAKERS

\section*{- For PA and}
background music system with and without 100 volt line - Dutiouor. Range of weatherproot systems at various power ratings
a INOOOR Columns for
speech, columns for music ceiling speakers, suspension speakers, corridor speakers, wall speakers, music speakers - various



3 models heavy duty top quality with plinth/cover.
DLP1 belt drive quick start - DLP2 direct drive system. - DLP3 quartz controlled quickstart direct drive.

POWER

\section*{AMPLIIERS}
- Power boosters single channel: \(100 \mathrm{~W}, 175 \mathrm{~W}\) and 2 kW . \(2-\mathrm{ch} /\) stereo \(135+135 \mathrm{~W}, 160+160 \mathrm{~W}\) att and \(1500+1500\) Watt.

\section*{AMPLIFIERS}
- With preamps \(\quad\) 240V AC models and 12 V DC \(/ 240 \mathrm{~V}\) AC or 24 V OC/240V AC- From 15 Watts up to 175 Watts Also background music tape amplifiers and paging amplifiers. - Plus range of mixer-amplifiers. - Choose from 25 modeis.

\section*{MOBILE}

AMPLIFIERS
- Range of 12 volt amplifters up to 100 Watts also portable megaphones stocked and 12 volt power boosters.

MICROPHONES/ STANDS
\(\square\) XLR/Jack etc \(\square\) Mics for disco, public address and Hi-Fi \(\quad\) Good quality at low. cost Also stands, booms etc. and wireless microphone system

\section*{OUTDOOR HORNS}
\(\square\) Various models up to \(12^{\prime \prime}\)
with or without 100 volt line
with drivers
Also range of horns with choice of drive units.
Accessories: Leads Plugs
Adaptors Transformers etc, for all
PA requirements.

\section*{HORN/}

CROSSOVERS
100 Watt midrange and tweeter horns Also matching crossovers and filters up to 300 Watts.
up to 12"
volt line
ns with cho
EPlugs


PA - DISCO
CATALOGUE WITH DISCOUNT VOUCHERS Rel PAI
Send A4 SAE
[E1.00 UK)
or 2 Z UK
products
catalogue

CALL IN OR PHONE FOR BEST PRICES OPEN 6 DAYS A WEEK


301 Edgware Road, L.ondon, W2 1BN
Tel: 01-7243564 Fax: 01-724 0322
SALES OFFICE 01-258 1831
Also at HENRY'S 404 Edgware Road, W2
TRADE/EDUCATION ORDERS ACCEPTED

NI-CAD RECHARGEABLE BATTERIES
\begin{tabular}{lll|}
\hline BATIERIES & 1 off & 10 off \\
AAA & \(£ 1.50\) & \(£ 1.30\) \\
AA & \(95 p\) & 850 \\
C & \(£ 1.95\) & \(£ 1.80\) \\
D & \(£ 2.00\) & \(£ 1.85\) \\
PP3 & \(£ 3.90\) & \(£ 3.20\) \\
\hline
\end{tabular}
with lense
****************************** 217 PAGE CATALOGUE NOW READY ONLY £1 FULL OF CMOS, TRANSISTORS, LS, ICS, DIODES, * SOLDERING TOOLS, TEST GEAR, METERS, CABLE, KITS, SPEAKERS, AERIALS, AUDIO ETC, ETC, AND
INCLUDING E6.50 OFF IN DISCOUNT TICKETS WITH * SPECIAL OFFER LIST, PREPAID ENVELOPE AND * ORDER FORM.

\section*{VISIT OUR RETAIL SHOPS}

WEM imarcol. The Matings, High St., 10939132763 WOLVERHAMPTON (WALTONS), 55A Worcester St (0902) 22039

BIRMINGHAM (SUPERTRONICS), 65 Hurst Street (021) 6666504

SEPTEMBER SPECIAL OFFER
is SOLDER SPECIAL
\(1 \times\) ANTEX 25 WATT IRON \(1 \times\) ANTEX SOLDERING STAND \(1 \times\) DESOLDER PUMP \(1 \times\) REEL SOLDER 18gms i) ALL FOR \(£ 12.50\) 奋

Electronic Component Mail Order Company - Established 1972 217 PAGE CATALOGUE AVAILABLE - SEND \(£ 1\) FOR YOUR COPY Including Discount Tickets - \(\mathbf{5 0}\) p off \(£ 5+\) order; \(\mathbf{£ 1}\) off \(£ 10+\) order; \(£ 5\) off \(£ 50+\) order \(\star\) Please add \(£ 1.00\) postage and packing to all orders unless stated. \(\star\)
transmitter Verr High "Minily. BUG" -ideal tor - ldeat Alor
etc!!
Avery good range is obtainable-We hav
obtained over \(1 / 2\) mile, but it does depend on
conditions. Simp remove cover insert batery You're ready to go. Recoption can be
obtained on any FM radio
Frequenc
\(06-109\)

Power: PP39V.
"CLOSED-CIRCUIT" TELEVISION SYSTEM PRICES E 160 COMPRISING:
\(1 \times\) CAMERA \(1 \times\) MONITOR \(1 \times\) CAMERA


USED
- ALSO NEW EQUIPMENT AVAILABLE

12V Twin Fluorescent lamp 12" Double Tubes


QUARTZ-
HALOGEN
SPOTLGHT SPOTLIGHT

NEW FANE 40OW LOUDSPEAKERS 18' ROUND \(£ 115.00 \mathrm{EACH}\) \(\mp 210.00\) PAR

CHARGER FOR
NI-CAD BATTERIES

Charges AAA. AA. C, D \& PP3 NI-CADS

RESISTOR KITS each value individually packed
iaW pack 10 value E 12.10 R to 1 M 610 pce. \(\mathrm{E5} 10\)
 \(1 / 4 W\) popular 10 value 100 -M10 1000 ore. 66.99
\(1 / 2 W\) pack 10 ea value \(E 12-2 R 2\) to 2 M 2330 pce.

 Watt pack 5 ea value \(\mathrm{E} 12-2 \mathrm{R} 2 \mathrm{to}-1 \mathrm{M} 353 \mathrm{pce}\). 2 Watt pack 5 ea value E6-10R to 2 M 2317 pce


\section*{12 VOLT RECHARGEABLE UNIT}
\(10 \times \mathrm{D}\) size Ni-Cads (4Ah) encapsulated in a black plastic case, fused holder, gives 12 V output when fully charged. Ex-equip-ment-fully tested and guaranteed. \(245 \times 75 \times 75 \mathrm{~mm}\).

ADDITIONAL KITS \(\begin{array}{ll}\text { Disc ceramic } 50 \mathrm{~V} \\ \text { Zener Diodes } & 125 \text { pieces } 3.99 \\ \end{array}\)
 Fuses OBlow, \(20 \mathrm{~mm} \quad 80\) pieces 4.75 Fuses T/Delay, 20mm 80 pieces 8.50 Pre-Set Pots-H 120 pieces 7.75

SOLDER 60/40 A 500 g reel of 22 siwg multicore solder
\(60 \%\) tin, \(40 \%\) alloy £5.75 ALSO 18swg

\section*{TMOCREAT HOBBIES \(-48\) ...NONE GREAT KIT!}

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic teşt equipment. All stages of assembly covered in a detailed 36 page manual.

THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufact urer.
A comprehensive instruction book is available @ \(£ 5\) (deductable from order). Ask at your local Hobby/Electronics shop or contact C-Scope for a copy of a published Field Test Report.

\footnotetext{
CGOP\&
C-Scopé International Ltd., Dept. EE86 Wotton Road, Ashford, Kent TN23 2LN. Telephone: 0233629181.
}

\section*{EMBEDDED CONTROLLERS}

\section*{Range extended to provide a 'System Component' that matches YOUR NEEDS at}


\section*{Now with FORTH and BASIC}


Kits available

An educational package on the micro controller is now available, full details on request.

MONIFIETH BUSINESS CENTRE SOUTH STREET, MONIFIETH, DUNDEE DD5 4PJ electronics Itd

\section*{MAKING ELECTRONICS C.A.D. AFFORDABLE}
\(\star\) HAVE YOU BEEN PUTTING OFF BUYING PCB CAD SOFTWARE?
ネ ARE YOU STILL USING TAPES AND A LIGHT BOX?
\(\star\) HAVE YOU ACCESS TO AN IBM PCIXT/AT OR CLONE INCL. AMSTRAD 1640 \& 1512?
* WOULD YOU LIKE TO BE ABLE TO PRODUCE PCB LAYOUTS UPTO 17" SQUARE?
\(\star\) WITH UP TO 8 TRACK LAYERS AND 2 SILK SCREEN LAYERS?
\(\star\) PLUS DRILL TEMPLATE AND SOLDER RESIST?
\(\star\) WITH UP TO 8 DIFFERENT TRACK WIDTHS ANYWHERE IN THE RANGE .002 to \(.531^{\prime \prime}\) ?
\(\star\) WITH UP TO 16 DIFFERENT PÄD SIZES FROM THE SAME RANGE?
\(\star\) WITH PAD SHAPES INCLUDING ROUND, OVAL, SQUARE, WITH OR WITHOUT HOLE, AND EDGE CONNECTOR FINGERS?
* WITH UP TO 1500 IC's PER BOARD, FROM UP TO 100 DIFFERENT OUTLINES?
\(\star\) WITH AUTO REPEAT ON TRACKS OR OTHER FEATURES-IDEAL FOR MEMORY PLANES?
* THAT CAN BE USED FOR SURFACE MOUNT COMPONENTS?
\(\star\) WITH THE ABILITY TOLOCATE COMPONENTS AND PADS OR GRID OR TO .002" RESOLUTION?
\(\star\) WITH AN OPTIONAL.AUTO-VIA FACILITY FOR MULTILAYER BOARDS?
\(\star\) WITH THE ABILITY TO CREATE AND SAVE YOUR OWN SYMBOLS?
tHAT IS AS GOOD AT CIRCUIT DIAGRAMS AS IT IS AT PCB's?
\(\star\) THAT CAN BE USED WITH EITHER CURSOR KEYS OR MOUSE?
\(\star\) WHERE YOU CAN LEARN HOW TO USE IT IN AROUND HALF AN HOUR?
\(\star\) WHICH WITH EASY PLOT AND EASY-GERB CAN OUTPUT TO PEN. PLOTTER OR PHOTO-PLOTTER (VIA BUREAUXI
THAT ONLY COST FROM \(£ 49\) INC. VAT WRITE OR TELEPHONE FOR FULL INFORMATION


Excellent quality from dot matrix printer

EASY-PC, TINY-PC, EASY-PC, TINY-PC, EASY-PC, TINY-PC, EASY-PC

\title{
Number One Systems Ltd \(]\)
}

Ref. EVD. HARDING WAY, SOMERSHAM ROAD
ST IVES, HUNTINGDON, CAMBS PE17 4WR
Telephone: 048061778 (4 lines)
 magical claims of the 'oxygen free grain oriented copper' brigade and the flashy exterior and mundane interior of the mass market products. With every HART kit Vou get the benefit of circuit design by world
leaders in their field, men of the calibre of John Linsley Hood for instance who has been in the forefront of audio design for many vears. instance who has been in the forefront of audio design for many vears. engineering standards which have been famous in the kit field since 1961. The HART approach is simply to give you the best value in Hi -fi by combining the best circuit concepts with the latest and best components within a unit carefully designed to bring out your hidden skills as an equipment builder.
Units in the HART audio range are carefully designed to form matched stacks of identically sized cases, in many cases even the control pitches are also lined up from unit to unit for a cohesive look to vour customised ensemble.
Flagship of our range, and the ideal powerhouse for your ultimate
system is the new AUDIO DESIGN 80 WATM POWER AMPLIFIER described in the May issue of 'Electronics Today International'. This complete stereo power amplifier has so many features that you really need our list to browse through them all. Glossing over its technical merits, which its pedigree guarantees anyway, it is a power amp with the extra versatility of a built-in passive input stage giving three switched inputs, volume and balance controls. Tape or CD players may, therefore, be directly connected along with a standard pre-amp output, indeed your system may not need a preamp at all with the well
balanced output of competent CD players. balanced output of competent CD players.
new amplifier as well as details of improvements to other kits in our
range. input sockets and double size LCR power supply capacitors.
The 400 SERIES John Linsley Hood Audiophile Tuner range now incorporates the very latest updated stereo decoder circuit which can also be retro-fitted to existing tuners with our 'Tuner Enhancement Package'.
Also listed are many exciting new products for the serious audiophile such as our Gold plated phono and XLR plugs and sockets and ultimate quality connection leads for CD audio or digital signais.

VFL660 VERTICAL FRONT LOADING CASSETTE MECHANISM


High quality, reasonably priced front loading cassette deck, fitted with good quality stereo R/P and erase heads. The mechanism has a 3 -digi counter, chrome operating keys, mechanical auto stop and functions marked below. Cassette door/carrier has a hydraulically damped 'soft eject' feature. Motor is internally governed and only needs a \(12 \mathrm{~V} D \mathrm{D}\) supply with an average current of 80 mA . A changeover switch is fitted to energise the motor when required and provide a make contact in the stop position for replay mute. Overall size is 160 mm wide including counter, 100 mm high and 85 mm deep including motor and keys. A robust and thoroughly useful deck for many purposes.
\(\ldots 27.95\)
SOLENOID CONTROLLED FRONT LOAD
CASSETTE DECK TN3600


High quality ( \(0.08 \%\) W\&F) successor to our very popular SF925F. A very useful high quality cassette mechanism for domestic or industrial use Offers all standard facilities plus cue and revue modes all under remote, logic or software control. The power and control requirements are very simple with 12 V solenoids and 12 V Motor with built in speed control. Deck is supplied as standard fitted with a very nice 10 kHz RiP TN3600 Deck with stereo head
INF340 Full manufacturers dat

\section*{ELECTRONIC GUARD DOG}


One of the best burglar deterrents is a guard dog and this kit provides the barking. Can be connected to a doorbell, pressure mat or any other intruder detecfor and produces random threatening barks. All you need is a mains supply, intruder detector and a little time. XK125.
£24.00

\section*{dISCO LIGHTING KITS}


OL8000K 8 -way sequencer kit with builtin opto-isolated sound to light input. Only requires a box and control knob to complate £34.60 \(\overline{\mathrm{D} L} 1000 \mathrm{~K} 4\)-way chaser features bidirectional sequence and dimming 1 kW per channel.
\(\ddagger 21.00\) DLZ1000K Uni-directional version of the above, Zero switching to reduce interference. £11.80
DLA/1 (for DL \& DLZ1000K) Optional opto input allowing audio 'beat'/light response allowing audio beat respons 80p DL3000K 3-channel sound to light kit, zero voltage switching, automatic level control and bult-in mic. 1 kW per channel.

POWER STROBE KIT Produces an intense light pulse at a variable frequency o
1 to 15 Hz . Includes high quality PCB, components, conne ( tors. 5 W s strobe tube and assembiy instructions. Supply: 240 V ac. Size: \(80 \times 50 \times 45\).
XK124 STROBOSCOPE KIT.

VOICE RECORD/PLAYBACK KIT


This simple to construct and even simpler to operate kit will record and playback short messages or tunes. ft has many uses - seatbelt or lights reminder in the car, welcome messages to visitors at home or at work, warning messages in factories and public places, in fact anywhere where a spoken message is announced and which needs to be changed from time to time. Also suitable for toys.- why not convert your daughter's \(£ 8\) doll to an \(£ 80\) talking doll!!
Size.
Message time
-5 secs normal speed \(2-10\) secs \(10 \times 15 \mathrm{~mm}\) XK129 £22.50

\section*{TEN EXCITING PROJECTS FOR BEGINNERS}

This kit contains a solderless breadboard, components and a booklet with instructions to enable the absolute novice to build ten fascinating projects including a light operated switch, intercom, burglar alarm and electronic lock. Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section on component identification and function is included, enabling the beginner to build the circuits with confidence. XK118
\(£ 15.00\)

\section*{MULTIMETER BARGAINS}

A high accuracy Autoranging meter with Display Hold, Memory features.
AC volts. . ......... 0-2-200-750 1.2\% DC volts. ...... 0-0.2-2-200-1000 0.8\% AC currento-2m-200mA1.2\% 0-10A 2\% DC current..................as for AC Resistance. \(0-200-2 \mathrm{~K}-20 \mathrm{~K}-200 \mathrm{~K}-2 \mathrm{M}+\%\) Continuity. . Buzzer sounds at /20 ohms Size.
\(127 \times 69 \times 25 \mathrm{~mm}\)
405207
.\(£ 31.75\)
A 15 range Autoranging multimeter with 4AC, SDC and 6 resistence ranges. Only \(8 \times 55 \times 108 \mathrm{~mm}\). Complete with wallet. 405206 .................... \(\mathbf{£ 1 9 . 5 0}\) Ask for a leaflet on our range of meters

\section*{ELECTRONIC WEIGHING SCALES}

Kit contains a single chip microprocessor. PCB, displays and all electronics to produce a digital LEDreadout of weight in Kgs or Sis/lbs. A PCB link selects the scale - bathroom/ two types of kitchen scales. A low cost digital rule could also be made.
ES1

\section*{SIMPLE KITS FOR} BEGINNERS
Kits include all components (inc. speaker where used) and full instructions. SK1 DOOR CHIME play a tune when tivated by a pushbutton. SK2 will swich switches a relay and off in response to whistle command.
SK3 SOUNO GENERATOR produces FOUR different sounds, including police/ambulance/fire-engine siren and machine gun.

SPECIAL OFFERS ON KITS FOR
SCHODLS AND TRAINING CENTRES
SCHODLS AND TRANNING CENTRES
-contact Sales Office for discounts
and samples

\section*{ELECTRONIC LOCK KIT}


Don't lock yourself out! This high security lock kit will secure doors to sheds, garages or your front door and the built-in alarm will deter would be prowlers. Scores of uses including area access preventing unauthorised use of machinery or even disabling your car. One correct 4 digh code (out of 5000) will open the lock. Incorreci entries sound the alarm and disable the keyboard for up to 3 mins. Kit includes 12 -way keypad, and operates from 9 to 15 V (50uA) supply will drive relay or 701150 lock mechanism.

SUPER-SENSITIVE MICROBUG


Only \(45 \times 25 \times 15 \mathrm{~mm}\), including built-in mic. \(88-100 \mathrm{MHz}\) (standard FM radio). hange approx. 300 m depending on terrain. Powered by \(9 V\) PP3 (7mA). Ideal for surveillance, baby alarm etc. . . . . \(£ 5.50\)


Includes all components (+transformer) for a sensitive IR receiver with 16 logic outputs \((0-15 \mathrm{~V})\) which with suitable interface circuitry (relays, triacs, etc-details supplied) can switch up to 16 items of equipment on or off remotely. Outputs may be latched to the last received code or momentary (on during transmission) by specifying the decoder IC and a 15 V stabilised supply is available to power external circuits. Supply: 240 V AC or \(15-24 \mathrm{~V}\) DC at 10 mA . Size (exc. transformer) \(9 \times 4 \times 2 \mathrm{cms}\). Companion transmitter is the MK18 which operates from a 9V PP3 battery and gives a range of up to 60 ft . Two keyboards are available-MK9 (4-way) and MK10 (16-way). MK12 IR Receiver (inc transformer). MK18 Transmitter MK9 4-way Keyboard. MK10 16-way Keyboard 601133 80x for Transmitter

\section*{£17.00 617.00
\(f 7.80\)} \(£ 7.80\)

\(£ 2.40\) \(£ 2.40\)
\(£ 7.00\) \(£ 2.60\)


TK ELECTRONICS 13 Boston Road London W7 3SJ Tel: 01-567 8910 Fax: 01-566 1916

ORDERING INFORMATION All prices exclude VAT. Free \(\mathrm{p} \& \mathrm{p}\) on orders over \(£ 50\) (UK only). otherwise add \(£ 1+\) VAT. Overseas p\&p: Europe \(£ 3.50\) elsewhere £10.00. Send cheque/P0/Barclaycard/Access No. with order. Giro No. 529314002. Local authority and export orders welcome. Goods by return subject to availability.
 ORDERS: 01-5678910

24 HOURS

\title{
The Magazine for Electronic \& Computer Projects VOL. 18 No. 9 September '89
}

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
FAX: (0202) 841692
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone
Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 0JS.
Frinton (0255) 850596

\section*{TECHNOLOGY PROJECTS}

School technology projects seem to be an on-going theme in our postbag. Just before the end of the summer term many schools ask students to decide on their project and hand in a basic description of the item. It is after this stage that we get the letters saying "can you send me everything you have ever published on.
Well, frankly, no we cannot. If you need a specific article or a series we can supply back numbers or photostats (stats of one article or one part of a series cost the same as a back number) but you must tell us exactly what you need and what issue it was in.

To find all the articles we have published on, say, burglar alarms would involve someone in hours of work, followed by a letter to let you know what we have and then possibly the sale of one or two back numbers-at \(£ 1.50\) each including postage and packing (see below for details). The end result, a net loss to us of possibly a few tens of pounds depending on how we value someone's time.

Obviously this is not on and we would soon go out of business if we offered such a service. Might I suggest a visit to the school library or a good local or college library will probably result in finding a few years' supply of Everyday Electronics. You can then do the research yourself-it is after all, part of the project-and contact us with your requirements once you have found the relevant articles.

\section*{OLD PROJECTS}

This leads to another point; we cannot provide information on any article over five years old and frankly we would not suggest you try to build anything much older than that anyway. Even after a year or two make absolutely sure you can get all the parts you need for a project before starting it or buying anything.
We have no control over component manufacturers and i.c.'s, in particular, come and go with a fair degree of rapidity. We have no way of knowing if a particular component we use in this month's issue will be still in production in, say, three months' time. This does not mean such a project would be impossible to build after that time as wholesalers' and retailers' stocks would normally be expected to last for a year or two-but as I said please check before you commit yourself and your cash.

\section*{TIME!}

One further word of advice; not every project anyone builds works first time, make an early start and plan to get your project working two or three months before the deadline. Misbehaving electronics have a habit of eating up time very rapidly indeed.
I know I have said most of the above before but each new year seems to throw up the same old problems-good luck.


\section*{SUBSCRIPTIONS}

Annual subscriptions for delivery direct to any address in the UK: £15.70. Overseas: £19.00 ( \(£ 36\) airmail). Cheques or bank drafts (in £ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH.


Subscriptions can only start with the next available issue. For back numbers see below.

\section*{BACK ISSUES}

Certain back issues of EVERYDAY ELECTRONICS are available price \(£ 1.50\) ( \(£ 2.00\) overseas surface mail- \(£\) sterling only please) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. In the event of non-availability remittance will be returned. Please allow 28 days for delivery. We have sold out of Sept. Oct. \& Dec. 85, April, May, Oct. \& Dec. 86, April, May \& Nov. 87, Jan., March, April, June \& Oct. 88.

\section*{BINDERS}

Binders to hold one volume (12 issues) are available from the above address for \(£ 4.95\) ( \(£ 6.95\) to European countries and \(£ 9.00\) to other countries, surface mail) inclusive of postage and packing. Please allow 28 days for delivery. Payment in \(\mathbf{f}\) sterling only please.

Editor MIKE KENWARD
Secretary PAMELA BROWN
Deputy Editor
DAVID BARRINGTON
Business Manager
DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749

\section*{Advertisement Manager}

PETER J. MEW Frinton (0255) 850596.
Classified Advertisements
Wimborne (0202) 881749

\section*{READERS' ENQUIRIES}

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it

\section*{COMPONENT SUPPLIES}

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

\section*{ADVERTISEMENTS}

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor

\section*{TRANSMITTERS/BUGS/}

\section*{TELEPHONE EQUIPMENT}

We would like to advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

\section*{Constructional Project}

\section*{XENON BEACON}


\section*{CHRIS WALKER}

\section*{A visual warning device that is self contained, compact, splash proof and rechargeable.}

IF YOU wish to attract someone's attention to a scene, a flashing light is a good method to employ. This is because the human eye is very sensitive to sudden changes in light level, particularly towards the edge of the field of view. Flashing beacons are to be found wherever attention has to be promptly drawn to a hazard, warning sign or advertisement.
The beacon to be described here emits a powerful burst of light at a rate of approximately 1.5 Hz and was initially designed for visibly locating portable amateur radio stations on hilltops. It has since found refuge in the car boot where it can be used to warn other motorists of accidents, breakdowns etc.
Xenon beacons can be bought quite cheaply but most of them have two main drawbacks: they are not designed as portable units and their light output is not very
high. This design satisfies both these criteria and the light can be seen at a distance in excess of two miles under favourable conditions. Being moisture-proof it is ideal for outdoor use.
Other uses include mountain rescue, sea rescue (take it out with you in the fishing boat!) or just for fun at discos.

\section*{XENON TUBE}

The light source consists of a glass tube containing xenon gas with an electrode at each end, see Fig. 1. When the xenon atoms are excited by passing a high current through the gas they emit an intense blue/ white light. However, the gas is non-conducting at low voltages and in order to make it pass a current a potential difference of several thousand volts would be needed across the ends of the tube.


This is very inconvenient, and so a third "trigger" electrode is attached to the outside of the tube near the ends. In order to strike the gas (make it conduct) a p.d. of about 350 V is applied across the ends of the tube and a brief \(6,000 \mathrm{~V}\) pulse is applied to the trigger electrode. This causes the gas at the ends of the tube to ionise and conduct; this ionisation very rapidly spreads along the tube and current flows from one end to the other causing the emission of light.
The tube used in the prototype is a longlife type with maximum energy input of 45 watt seconds per flash. The e.h.t. trigger pulse is obtained from a trigger transformer designed for use with this tube.

\section*{BLOCK DIAGRAM}

The outline operation of the Xenon Beacon is shown in Fig. 2. The circuit uses an inverter to step up the 12 V supply, producing several hundred volts required for the xenon tube; an ordinary mains transformer used "in reverse" acts as the vol-tage-increasing component. Since transformers only work on a.c. an oscillator is used to drive the primary winding.
The high voltage a.c. is rectified and used to charge up a high voltage storage capacitor. The voltage across the capacitor increases as the charge builds up and when it reaches about 350 V a trigger circuit rapidly discharges the capacitor through the xenon tube thus producing a bright flash.

The inverter then proceeds to recharge the capacitor and the cycle repeats. The behaviour of the storage capacitor and trig-


Fig. 1. The Xenon tube.


Fig. 2. Block diagram of the Xenon Beacon.
ger circuit is analagous to an automatic selfflushing lavatory cistern which fills up slowly to a certain level and then quickly empties its contents before refilling again.

\section*{CIRCUIT DIAGRAM}

The circuit of the beacon, divided into three discrete sections is shown in Fig. 3. The inverter is driven from a 12 V rechargeable battery, protected by fuse FS1. S 1 is an on/off switch which connects B1 to sockets SK1 and SK2 when the unit is switched off, thus allowing the battery to be charged in situ. The power supply is decoupled by capacitor C1.

NAND gate IC1c is wired as a Schmitt trigger inverter, and together with R1, VR1 and C2 it forms a relaxation oscillator. The square wave output from the oscillator is buffered by gate IC1b and used to switch transistor TR2 which controls current through one half of the primary winding of transformer T1. (Note that in this circuit the primary is the low voltage winding).

An inverted version of the oscillator signal from gate IC1a switches TR1 so that when current flows through TR1, TR2 is switched off and vice-versa. TR1 and TR2 are Darlington devices having the high gain necessary to drive the transformer directly from CMOS gates.

Due to self induction in T1 primary,
spikes of about 80 V amplitude are produced each time TR1 and TR2 turn off. These spikes are stepped up in excess of \(1,000 \mathrm{~V}\) in T 1 secondary, rectified by diodes D1 to D4 and used to charge capacitors C3 and C4.

\section*{TRIGGER}

As the voltage across C 3 and C 4 increases, capacitor CS is charged via R4. R5, VR2 and R6 form a potential divider which feeds a fraction of the voltage across C5 to neon LP1 via R7. Thus the voltage across the neon increases to about 70 V upon which the neon conducts and a positive voltage is applied to the gate of thyristor CSR1.
The thyristor triggers and conducts from anode to cathode, discharging C5 through the primary winding of trigger transformer T2. This induces a very high voltage pulse in the secondary of T 2 which is used to strike the zenon tube X1; C3 and C4 then deposit their charge through the tube in a fast, high current surge.

Following this, thyristor CSR1 resets to its high impedance state and the process repeats as C3 and C4 charge again.
Notice that if, as may occasionally happen, the tube fails to strike upon the discharge of C5 through CSR1 then the thyristor will reset and C5 will recharge until
neon LP1 conducts and the tube is triggered again: this process is repeated rapidly until the xenon tube fires.

\section*{ENERGY}

The energy dissipated in the xenon tube per flash is determined by two variables, namely the total capacitance of \(\mathrm{C} 3 / \mathrm{C} 4\) and the voltage across them. The trigger voltage is adjustable from about 220 V to 340 V by altering VR2; setting this to a high value results in one bright flash approximately every two seconds. Reducing the trigger voltage will give more rapid flashes of slightly lower intensity. Constructors may like to experiment with different values for the discharge capacitors C3 and C4; \(32 \mu\) \((22 \mu+10 \mu)\) was found to be a good value for this application. It is very important that these capacitors are rated at 450 V or higher.

\section*{CONSTRUCTION}

It is worth pointing out that while the circuit is driven by 12 V it generates high voltages. These in themselves are not too dangerous due to the high output resistance of the inverter. However, when charged, capacitors C3 and C4 can deliver a very nasty shock or burn if shorted out by, for example, a ring or other piece of jewellery-take care when testing.

All the main components are mounted on a single sided printed circuit board, the full size foil pattern is given in Fig. 4. This board is available from the EE PCB Service, code EE 650 (see page 612). Notice that two 4BA holes need to be drilled to mount T1 and two 1 cm square pieces have to be removed at the corners if the recommended case is used.

Using the layout diagram in Fig. 4 as a guide, solder the small components into place first: the resistors, presets, capacitor C 2 , neon and diodes, observing the polarity of the latter. Insert the trigger transformer T2-the recommended transformer will only fit the p.c.b. in the correct orientation. If a different type is used, check the connections before soldering.

Fit the remaining capacitors checking that C3 and C4 are inserted the correct way around and then bolt transformer T1 into place, nuts uppermost. Solder the transformer connections to the circuit board.


Fig. 3. Circuit diagram of the Xenon Beacon. Note that voltage figures on the transformer T1 only refer to "physical"points or tags. Also the secondary winding has become the "primary" and vice versa.


EE27300
Fig. 4. P.C.B. layout and wiring for the Xenon Beacon.


Fig. 5. Case layout from the top.

The transistors should be fitted with small clip-on heatsinks and these are probably best attached before the devices are soldered into place. Insert the transistors with their tabs facing T1 and fit the thyristor with its front facing the neon bulb.
Three pieces of stout wire about 8 cm long need to be soldered in place to support the xenon tube X1. \(20 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). tinned copper is ideal for the purpose. Do not fit the xenon tube at this stage.
Solder two insulated wires for connection to the switch and then fit IC1 into its socket, observing the usual CMOS handling precautions

\section*{CASE}

The prototype unit is housed in a waterproof plastic case measuring \(150 \times\) \(110 \times 70 \mathrm{~mm}\) and having a transparent top. Fig. 5 and Fig. 6 show the layout of components within the case

Four holes need to be drilled to mount the switch, sockets and fuse holder. Wire these according to Fig. 7. The capacitor C1 is mounted on the back of switch S1. The battery terminals will accept slide-on connectors (the type used for car electrics)these should be insulated with rubber sleeves.

The battery lies on its side and is held in place with double-sided self adhesive pads as shown. In the prototype the battery is further anchored by two clear perspex blocks glued into the lid, which press onto the battery when the lid is screwed in place.

The xenon tube is sited in the transparent lid above a reflector made from a piece of cardboard covered with aluminium cooking foil. The reflector is shaped to fit in the case and a slot needs to be cut to pass the wires to X1. It can be fastened to the side of B1 with "Blue-Tak" or similar, allowing it to be removed for servicing.

Using pliers, and being careful not to strain the glass, bend the wires of the xenon tube at right angles to the plane of the tube about 1 cm from its ends. Slip three 3 cm lengths of sleeving over the tube support wires on the p.c.b. and solder X1 to these wires so that the tube is positioned mid-way between the reflector and the lid of the box, trimming off surplus wire as necessary. Slide the sleeving up to the top of the vertical section of the wires and hold it in place with glue.

\section*{ADJUSTMENTS}

Set both VR1 and VR2 at mid-position and apply power. Transformer T1 should be heard to whine and the xenon tube should flash at approximately 1.5 Hz .

If a frequency counter or oscilloscope is available, connect it between 0 V and pin 3 of IC1 and adjust VR1 until the inverter oscillator runs at a frequency of about 1.5 kHz . If such equipment is not to hand leave VR1 set at mid-position. The trigger voltage/flash rate is set as required by ádjusting VR2.

The p.c.b. can now be fastened into the case with adhesive pads and the lid screwed into place. Four rubber feet will improve the durability of the unit.

\section*{BATTERY}

The battery used in the prototype is a rechargeable \(12 \mathrm{~V} \quad 1.2 \mathrm{Ah}\) sealed lead-acid type. It has a mass of 600 g and fits snugly into the recommended case along with the p.c.b. It will give over three hours of continuous use.


Fig. 6. Case layout from the side.
These batteries are available in a variety of sizes/capacities and constructors wishing to leave the beacon runing for long periods may like to consider using a battery with a higher capacity although size and weight must be taken into account if the unit is to remain portable.
Indeed, the xenon beacon could be very successfully run from a car battery, via the cigar-lighter for instance.

It is possible to operate the unit from a 6 V supply, the only modification being to replace transformer T 1 for a type having a


\section*{COMPONENTS}

\section*{Resistors}
\begin{tabular}{|c|c|c|}
\hline R1 & 10k & \\
\hline R2, R3 & 4k7 (2 off) & \\
\hline R4 & 1M & \\
\hline R5 & 4M7 & \\
\hline R6 & 1M2 & \\
\hline R7 & 270k & \\
\hline All 0.25W carbon & & \\
\hline Potentiometers & & \\
\hline VR1 & 220k & See page 578 \\
\hline VR2 & 1M & \\
\hline
\end{tabular}

Capacitors
\(470 \mu 16 \mathrm{~V}\) elec.
10 n ceramic
\(22 \mu 450 \mathrm{~V}\) elec.
\(10 \mu 450 \mathrm{~V}\) elec.
\(0 \mu 1450 \mathrm{~V}\) polypropylene or similar

\section*{Semiconductors}

TR1, TR2
D1 to D4
IC1
CSR1

TIP122 npn Darlington (2 off) 1N4007 1000 V p.i.v. silicon diodes ( 4 off) 4093 CMOS quad 2-input NAND Schmitt trigger C106D thyristor

\section*{Miscellaneous}

T1
T2
X1
LP1
B1
FS1
S1

Miniature transformer: \(240 \mathrm{~V} / 6-0-6 \mathrm{~V}\) at 250 mA 6 kV xenon tube trigger transformer 45 Ws xenon tube miniature wire ended neon bulb 12 V 1.2 Ah sealed lead-acid battery 20 mm 2 A fuse with panel mounting holder d.p.d.t. toggle switch with splashproof cover
P.C.B. available from the EE PCB Service order code EE 650; 14-pin d.i.I. socket; clip-on heatsinks for TR1 and TR2 (TO220 case); waterproof plastic case internal dimensions \(150 \times 110 \times 70 \mathrm{~mm}\) with transparent lid; 4 mm wander sockets ( 2 off); slide-on connectors and insulating boots for B1; rubber feet; 20 s.w.g. tinned copper wire; sleeving; materials for reflector.

3-0-3V "secondary" winding. The current consumption is increased and, due to inefficiencies in the transformer, the highest flash rate will probably be around 1 Hz . The benefit of using a 6 V supply is that smaller and lighter batteries may be used.
Finally, 12 V sealed lead-acid batteries should be charged at a constant voltage of 13.5 V although the maximum charging current should be restricted to 1A. (The Bench Power Supply featured in Everyday Electronics, February 1988 is ideal for this application-back issues are available for \(£ 1.50\) each including postage, see the Editorial page for details; or see the Stabilised Power Supplies series. month).

Failure to keep to these limits will cause the battery to expel excess hydrogen gas inside the box. In any case, the box should not be entirely sealed-a small vent hole around the sockets will prevent a pressure build up without affecting the moistureproof characteristics. Ideally, the box lid should be removed when charging.

\section*{Pocket Money Project}

\title{
FOUR-WAY CHASER
}

\section*{CHRIS BOWES}

\section*{Using the CMOS version of the ever popular 555 timer chip to produce a simple l.e.d. "light chaser".}

THIS month's pocket money project features a simple "chaser circuit" which can in fact be easily redesigned to give a number of chase patterns for between two and ten output circuits. It is a truly digital project and should provide an interesting introduction to digital electronics for anyone who has hitherto been unsure about using such i.c.s in projects.
The major advantage of digital circuitry over other forms of circuitry is that it operates on only two voltage levels. These are the power supply voltage (referred to as LOGIC 1) and 0 volts (referred to as LOGIC 0 ).

\section*{CIRCUIT DESCRIPTION}

The full circuit diagram for the FourWay Chaser is shown in Fig.1. In effect this circuit consists of two basic "building blocks". These are the clock pulse generator, which is made up of preset VR1, resistors R1, R2, capacitor C1 and IC1. This is used to drive the chaser circuit which consists of IC2 and the output l.e.d.s D1 to D4.

The clock pulse uses a standard 555 timer circuit, a number of which will be featured in other projects in this series. However, in this project it is important that a CMOS 555 timer (such as the 7555) is used, because the cheaper, bipolar version, is not suitable for circuits which also include digital elements. The CMOS ICM 7555 timer does not require the connection of the capacitor between 0 volts and pin 5 that you may have noticed in some circuits using the bipolar device.

To produce the clock pulses the timer is configured as an astable, so that its output (at pin 3) will be switched off (logic 0 state) and on (logic 1 state) repeatedly. The duration of the ON state is set by the values of the preset VR1, resistor R1 and capacitor C 1 and this can be calculated by using the formula:-

ON time \(=0.7 \times\left(\right.\) VR1 \(\left.{ }^{*}+\mathrm{R} 1\right) \times \mathrm{C} 1\) [Time measured in seconds, resistance in ohms and capacitance in Farrads.]

The OFF time between each on period can also be calculated by using the for-mula:-
OFF time \(=0.7 \times\left(\mathrm{VR} 1^{*}+\mathrm{R} 1+\mathrm{R} 2\right) \times \mathrm{C}\)

The circuit shown incorporates a preset potentiometer wired as a variable resistor, VR1, which is included so that the actual speed of operation of the clock can be adjusted as desired by adjusting the wiper of VR1. Only the part of the resistance which is actually incorporated into the circuit is included in the two timing formulae given above.
which in turn resets the counter to zero with ouput 0 once more in the logic 1 state.

Each of the outputs 0 to 3 is connected to a l.e.d., via a 330 ohm series resistor (R3R6). These resistors are necessary to restrict the current flowing through the l.e.d. to a safe level to prevent them burning out.

Capacitor C 2 is included in the circuit to provide the decoupling necessary to prevent the rapid switching which occurs within the i.c.s. from scrambling the sequence generated by IC2.

\section*{CONSTRUCTION}

The Four-way Chaser is easily made up using stripboard. The finished board is


Fig. 1. Complete circuit diagram for the Four-Way Chaser.

\section*{CHASER CIRCUIT}

The chaser circuit consists, very simply, of a 4017 Johnson Counter which is used to turn on the output l.e.d.s D1 to D4 in sequence. The 4017 has two clock inputs (at pins 13 and 14). These operate with opposite sense inputs and for the purposes of this circuit the clock pulse from pin 3 of IC1 is connected to pin 14 of IC2 with pin 13 of IC2 held at the logic 0 level by being connected to the 0 volts power supply rail.

In this arrangement each pulse from the output of IC1 causes the outputs of IC2 to go to the logic 1 state in sequence. As we only require four l.e.d.s to be driven by this circuit only outputs 0 (pin 3 ), 1 (pin 2), 2 (pin 4) and 3 (pin 7) are used to drive the l.e.d.s. The fifth output to be energised in sequence ( \(4-\) pin 10 ) is connected to the Master Reset input (pin 15). The effect of this is that whenever output four (pin 10) goes to the logic 1 state this immediately triggers the Master Reset circuit within IC2
shown in the photographs and the component layout in Fig. 2 so you will probably find it helpful to look at those whilst you make up the circuit.
The first task is to cut a piece of stripboard to the correct size. You will need a piece which is at least 14 strips deep and 46 holes wide. You will need to drill the mounting holes as shown, using a 4 mm drill, before starting to construct the circuit.

Before any components are mounted on the stripboard you will need to break the copper tracks as shown in Fig. 2 with a stripboard cutter or a small drill. It is important that these track breaks are made completely so that not even the merest sliver of copper remains to bridge across the track break.

Once the board has been prepared you can start the electronic construction. Although the operation of the circuit is not affected by the order in which you insert
the components into the stripboard, you will find it easier to construct the circuit if the components are inserted in ascending order of size.

\section*{LINK WIRES}

The first stage in constructing this circuit should be to insert the wire links into place. To do this you should place the stripboard so that the strips of copper on it are underneath the board and run from left to right and not up and down.

Starting at the top left hand corner of the board count across and then down the correct number of holes until you can place one end of the wire link in the position shown in Fig. 2. Turn the board over and solder the wire into place. Cut off any excess wire on the underside of the board with your cutters and turn the board over again for the other end of the linkwire.

The wire links are made with insulated single core wire but before connecting the wire you will need to strip off the insulation from one end with the cutters to leave about 3 mm more of the conductor (wire) exposed than you expect to need. The stripped wire should then be tinned, by melting a little solder onto the bit of a soldering iron and then placing the wire onto the iron's tip with the solder on the opposite side of the wire to the iron.

The solder is left there until it melts and flows evenly over the wire. When you remove the wire from the solder it will probably leave a little blob on the end of the wire, which you should then cut off. The tinned wire should now fit easily through the hole in the stripboard.

The next task is to put the resistors in their correct places by just bending the wires of the resistor at right angles to the body of the component, then fitting them through the holes shown in Fig. 2 and finally soldering them into place. Also, at this stage, fit the preset potentiometer into position and solder it into place.


\section*{I. C. SOCKETS}

The i.c. holders shouiu now be inserted and soldered into position as shown in Fig. 2. Although it is possible to solder the i.c.s directly into place using sockets will both make the construction simpler and make for easier replacement if a fault should occur. It is important that you take care to make sure that the notch on both of the i.c. holders is facing towards the bottom of the stripboard, as this will help you when inserting the timer and counter into place.

The capacitors C1 and C2 are the next items to be fitted. As these are both polarised types it is important that the positive and negative ( -Ve ) connections of both the capacitors (the negative \((-)\) sign is usually marked on the component case) are connected to the correct holes marked in Fig.2. Failure to mount these components
correctly will, at least, cause the risk of the circuit not working.
Both of the capacitors are easy to mount because they have leads which push into the board without needing to be bent. But, because the capacitor's connections are so close together, it is important that you take great care with the process of counting the holes when looking for the correct place to install these components.

The final components to be mounted are the l.e.d.s D1 to D4. These devices are also polarised but the result of not connecting them the correct way round is simply for the circuit not to work. The case of each l.e.d. has a small flat on one side of the otherwise circular body and the connection nearest to this (the cathode - k ) should go to the negative power supply rail. If you

wish you may connect the l.e.d.s to the stripboard by long wires instead of mounting them directly on the stripboard.
The wires connecting the battery B1 to the circuit board can now be tinned and soldered into place. The black wire from the battery connector goes to the point on the stripboard shown as B1-V and the red wire of the battery connector to the place marked B1+V, unless, of course, you wish to add an on/off switch. In which case the battery connector red wire will need to go to one of the switch terminals and another wire connected between the other switch terminal and the \(\mathrm{B} 1+\mathrm{V}\) connection on the board.
The final step is to insert IC1 and IC2 into their respective holders, making sure that the notch on the i.c. corresponds with the notch on the i.c. holder. Some i.c.s do not have a notch in one end but have a slight, circular dent near one pin (pin 1), which goes nearest to the edge of the i.c. holder which has the notch.
duce the fault. The circuit description above will help you here.
The logical place to start is by checking that there is an output from the clock circuit. To check this simply place the multimeter so that the positive probe is connected to pin 3 of IC1 and the negative probe of the meter is connected to any 0 V connection, such as pin 1 of IC1. If the clock circuit is operating correctly you should see the meter needle swing rapidly back and forth. If this is not happening you should investigate further by testing the voltages present at various points in the circuit.
Firstly you should measure the battery voltage with the battery disconnected from the circuit and then between any 0 V connection and both pins eight and four of IC1 as well as between the battery positive connection to the board and pin 1. If there are no voltages present when a good battery is connected to the board this will obviously indicate faulty wiring up of the board.


Layout of components on the completed prototype board. Note that the timer i.c. is not the required CMOS version.

\section*{TESTING}

Before connecting the battery and testing the circuit you should carefully examine the board to make sure all of the components are inserted into the correct places, are the correct way round and that there are no blobs of solder or slivers of wire shorting out the copper tracks. Once the board has been checked, the battery should be connected and you should be able to see the l.e.d.s flashing off and on in sequence and you should be able to adjust the rate of the "chase" by adjusting preset control VR1.

If the circuit does not operate correctly it will be necessary to check for faults. The first step in fault finding is to check carefully, once more, that all of the components are in the correct places and are the correct way round. In this project the components likely to cause faults if connected the wrong way round are the l.e.d.s, C1, C2 and IC1 and IC2.

The next stage is to check carefully that all of the soldered joints are good joints. This is probably best done by reheating the joint with a soldering iron.

If no mechanical problems of the sort mentioned above are found then it will be necessary to check the circuit through to see whether there is a faulty component or not. You will probably find that you will need to use a multimeter to perform this stage of the process.

\section*{FAULT FINDING}

When fault finding it is important to adopt a logical approach to the problem, the first step being to look at the symptoms presented by the circuit and decide which is the most likely part of the circuit to pro-

If the output voltage at pin three is locked permanently at a fixed voltage then you should remove IC1 from its socket and check the voltage at the pin three connection again. If the voltage persists with the i.c. removed then the fault does not lie with IC1 but most possibly with the wiring associated with the input to IC2. Similarly a permanent 0 V at pin three of IC1 might be caused by a short between Pins 13 and 14 of IC2 or the 0 V connection to pin 13 having been inadvertantly connected to pin 14.
The next step is to replace IC1 in its holder and check the voltages between 0 V and pin two, pin six and pin seven. The voltage at pin seven should be fluctuating around a value which is roughly \(2 / 3\) rds of the battery voltage. The voltages at pins two and six should be identical (because these two pins are connected together by a wire link) and these should also be fluctuating but at a voltage slightly less than that found at pin seven.

If both of these voltages are not present then the most likely cause is that the circuit from the positive voltage rail, through preset VR1 and resistors R1 and R2 is not correctly made. This is best checked by measuring the voltage present between 0 V and each of the points in the component chain through VR1, R1, R2 and capacitor C 1 and investigating at the point where no voltage is measured.

If a voltage is present between 0 V and pin seven but no voltage, or only a very small voltage, is measured between the 0 V rail and pins two or six of IC1, then you should check that the resistance between pins seven and six of IC1 is roughly equal to that of resistor R2. If this is correct then check the resistance of capacitor C 1 with
the resistance range of your meter.
If the resistance is very low (less than about 500 ohms) then you should replace capacitor C 1 . If there is no voltage measurable between pins six and two of IC1 then this could be caused by a short circuit between the connections of C 1 or by a short circuit within C 1 or its connections to the stripboard.
If voltage is present at pins two and six of IC1 but it does not fluctuate then the likely causes are that capacitor C 1 is not correctly connected - which can be checked by reheating the joints of C 1 on the stripboard - is faulty or that IC1 is faulty. To check \(\overline{\mathrm{C}} 1\) you should touch connect another capacitor of similar value across the connections to see if this cures the fault. If this does not cure the fault then you should check that the connection between the positive connection of C 1 and pins two and six of IC1 is correctly made.

\section*{CHASER CIRCUIT}

If voltage switching is occuring at pin three of IC1 then the clock circuit is working correctly and the fault must lie within the chaser circuit. Again a few voltage checks need to be made to help with the diagnosis of any chaser circuit faults.
Check that the signal from pin three of IC1 is repeated at pin 14 of IC2. There should be no wiring problem here as the connection is made by a direct copper strip.
If the signal is not reaching pin 14 of IC2 then the only real explanation is that there is a poor soldered joint either at the connection of the strip to pin three of IC1 or to pin 14 or IC2.

The next step is to check that the battery voltage is measureable between pins eight and 16 of IC2. If this is not measurable then the connections between the power supply rails and the i.c. should be investigated.
The battery voltage should be measurable when the positive meter probe is connected to pin 16 and the negative probe is connected to pin 13. If this does not occur the connection between the 0 V power supply rail and pin 13 should be investigated.
The final input to be investigated is pin 15. This pin (and pin 10) should be at logic 0 \((0 \mathrm{~V})\) for virtually all of the time. The very brief time for which these two pins are at logic 1, which occurs at the reset point, is so small as to be almost unmeasurable. If the voltage readings at pin 10 and pin 15 are not the same then the connecting link should be checked.

If the above tests reveal nothing untoward the final step is to check the outputs. If all of the other connections to IC2 are correct the outputs 0 to 3 must either be switching from Logic 0 to Logic 1 in sequence or the i.c. is faulty.
Whenever any of the outputs goes to the logic 1 state its associated l.e.d. (D1 to D4) should light. If this does not happen then the connections between the appropriate output pin and l.e.d. should be investigated. The most likely cause of this problem is that the l.e.d. is inserted into the board with the polarity reversed or that there is at least one dry joint in the series of connections from IC2 outputs, through the dropping resistor and l.e.d. to the 0 V line.

\section*{IN USE}

The project is simple to use. Once you have checked that it works correctly then you can simply set VR1 to give the correct speed of operation and place the LEDs in the desired position.

\title{
GIVE YOUR VIDEO RECORDINGS A NEW IMAGE !!
}

\section*{VCP 7001}

A Superb Video Processing System from ELV


Dimensions: (WxHxD) \(260 \times 75 \times 150 \mathrm{~mm}\)

Numerous Possibilities for Picture Processing!
Separate controllers for red, green, blue, colour saturation, contrast and brightness.

\section*{Different Appliances? No Problem!}

Signal conversion enables compatibility between cameras, recorders, TVs or computers.
Super-VHS-RGB Conversion means that S-VHS units can be connected to conventional TV sets with RGB inputs resulting in super quality recordings (bandwidth 6 MHz ).
Inputs for S-VHS, RGB and CVBS/video via Mini-DIN, SCART and DIN-AV sockets.
Outputs for RGB and CVBS/video via SCART and DIN-AV sockets.
VCP 7001
Ready Assembled Unit GB488F2 \& 199.00
Complete Kit

GB488BKL2 £ Price excluding VAT - Add \& 3 for \(\mathrm{p} \&\) p)

\section*{Room for Imagination}

Would you like to produce optical effects or maybe change a recording intentionally? The VCP7001 offers a wide range of possibilities. With a suitable computer you can superimpose texts or graphics (software not included).

\section*{Just Switch Off Copy Protection}

Perfect recordings can be made of all hire videos protected against copying (Macrovision I, Iland III). Copyright law states that copies of video hire cassettes can be made for private use. However lending copies of video cassettes to friends, wether free of charge or for a fee, is an offence.
German quality products direct from the producer. Comprehensive service from experienced personnel. 8 days money back gurantee.

Orders and Information :

\section*{Special Feature}

\section*{THE MAGIC LAMP}

\section*{PETE ROBERTS}

No. the title is not a misnomer. It describes the derivative of the domestic light bulb that started the entire field of electronics at the turn of the century; the thermionic valve. Far from being obsolete, valves are still extensively used in high power applications, particularly in professional audio power amplifiers and radio and TV broadcast transmitters.

\section*{EDISON}

Valve action was accidentally discovered by Thomas Edison, the inventor of the electric lamp. Light bulbs of the time used a tungsten filament sealed into a highly evacuated bulb, and suffered premature blackening of the inside of the glass.

In an attempt to find the cause Edison sealed a small metal plate into the bulb near the lamp's filament and subsequently found that a current could be made to flow between filament and plate when the plate was made positive with respect to the filament, but not when the polarities were reversed. A phenomenon that came to be known as the "Edison Effect".

Soon after, J. A. Fleming developed the theory of thermionic emission, explaining the Edison Effect. Heating a conductor to a high temperature dislodges electrons from the surface. When surrounded by a vacuum these electrons can "boil off", forming a cloud of electrons. This cloud is known as the "space charge".


Examples of valves in order of size: one very large anonymous triode, a 866 mercury vapour rectifier, \(5 Z 4\) type full wave rectifier, an EL84 output pentode, a EM87 magic eye, and a EA50 submin. detector diode.

When a nearby plate is made positive, electrons from the fringes of the space charge are attracted across the intervening space, setting up a flow of current. Electrons lost from the space charge are replenished by fresh emission from the filament. Conversely a negatively charged plate repels electrons resulting in no current flow. This arrangement of filament and plate was called a "diode" - meaning two electrode. It was, and still is, used for demodulation of radio signals and power rectification. It was the oneway action of the diode that led to the generic term "valve".

\section*{TRIODE}

Soon after the diode valve came the triode (three electrode), invented by Dr. Lee de Forest. He found that a metal mesh interposed between the filament and plate allowed control of the electron flow - charging the grid positively increased current flow, whilst a negative charge would reduce, or even cut off, the plate current, see Fig. 1. The important point to note is that a small change in grid voltage caused a large change in plate current, in other words amplification.

Triode valves could also be used as oscillators, allowing the generation of steady r.f. carriers, rather than bursts


Fig. 1. Simplified diode and triode construction.
of r.f. energy produced by the spark transmitters in use at the time. In fact, the first broadcast station - \(2 \mathrm{LO}-\) started only a few years after the invention of the triode.

Valves are voltage controlled devices. Also, in most cases they operate at fairly high voltages and correspondingly low currents compared with transistorised circuitry. Unlike transistors, valves can be made with any number of electrodes allowing some fairly unconventional circuits by today's standards.

\section*{HEATING}

The circuit symbols for the diode and triode are shown in Fig.2. The plate is now known as the anode, with the filament becoming the cathode. In most cases filaments have given way to indirectly heated cathodes. Filament valves can only be used satisfactorily when a d.c. filament supply is available, i.e, from batteries. Where a.c. supplies are used a 100 Hz hum is impressed upon any signal that the valve is handling.

The indirectly heated cathode comprises a tungsten cylinder into which an insulated tungsten heater is inserted. As hum in filament valves is caused by the filament temperature fluctuating in sympathy with the a.c voltage, the much larger thermal mass


Fig. 2. Basic valve type with scematics.
of the indirectly heated arrangement eliminates the problem. As the cathode is also insulated from the heater, it is possible to design circuits where the cathode potential can be different from that of other valves in the equipment and independent of the (usually grounded) heater supply.

Valve manufacturers soon found that coating the cathode with a mixture of rare earth oxides (usually of strontium, caesium and calcium each maker having his own secret recipe) allowed copious emission of electrons at a dull red heat and this, together with the larger surface area of the cylindrical cathode, allowed the design of valves capable of handling reasonable power.

\section*{DISADVANTAGES}

It wasn't long before triodes were found to have certain disadvantages. When the grid is driven positive by the signal the anode current increases. With a resistive load (which is usual) this causes a drop in anode voltage, with a corresponding drop in anode current. Conversely during negative going portions of the signal, the anode current falls, increasing anode voltage which in turn tries to increase the anode current.

This is effectively a form of negative feedback which reduces the valve's gain (known as the amplification factor or \(\mu\) ). Also, at high frequencies, the fairly large parasitic capacity between anode and grid can cause circuit designers some headaches.

While these problems were overcome in multi-grid valves, of which more very shortly, modern triodes still give a good account of themselves, particularly in medium level audio amplifier circuits. Some of you may have come across the ECC83 double triode, a good example of modern valve design.

\section*{TETRODE}

The next development was the tetrode valve, with two grids. The first (signal) grid is now called the control grid (G1) while the new grid (G2) is designated the screen. The screen grid is similar in construction to the control grid; a fairly tight spiral of fine wire. The screen is mounted concentrically, and close to, the control grid (Fig. 2). It is usually held at or close to the mean anode voltage.

The effect of the screen is to make the anode current almost completely independent of anode voltage, removing the degenerative feedback that triodes suffer from. The screen also breaks the capacitive coupling between the anode and control grid, simplifying the design of r.f. circuits. As usual though, Sod's law raised its head and curing one problem led to another.

\section*{SECONDARY EMISSION}

In all valves, the electrons compris-
ing the anode current don't just drift across from the cathode at a gentle walking pace. They whip across at speeds approaching that of light, literally smashing into the anode. Not surprisingly these high speed impacts knock electrons out of the anode; a phenomenon known as secondary emission.

At certain combinations of electrode voltages any increase in anode voltage caused more electrons to be knocked out of the anode than actually arrived from the cathode. Furthermore, most of these electrons were captured by the screen grid, resulting in a fall of anode current when the anode voltage increased. This, of course, is a negative resistance characteristic which in turn means instability. Tetrode valves would "take off" into oscillation quite happily with no warning. Obviously, something had to be done.
This problem was overcome in two ways. It was found that a third grid, with wide spacing, mounted near to the anode and maintained at cathode potential would repel any secondarily emitted electrons back to the anode, removing the negative resistance "kink"

This third grid, numbered G3, is known as the suppressor. The suppressor grid is usually connected to the cathode internally, although in some valves it is brought out to a separate pin. The new five electrode valve is called a pentode, and is the most commonly used type.

\section*{BEAMS AND MORE GRIDS}

The other development used cathode ray tube technology where the tetrode electrode assembly was fitted with a pair of deflection plates, one each side of the screen grid (Fig.2). These plates, which are always connected to the cathode, form the electron stream into beams which repel any stray electrons back to the anode. The resulting valve type is known as a beam tetrode and finds service in high power audio work and r.f. power amplifiers in transmitters.

As a matter of interest, the two best known power output valves, the EL34 and KT88, are pentode and beam tetrode respectively.

There are valves made with even more grids for special applications; the heptode frequency changer springing to mind. Many modern valves are multiple types with two or more separate electrode assemblies in one bulb.

Some readers may also remember the magic eye, a cross between valve and CRT which indicates voltage levels by altering the area of the shadow on a fluorescent display. Magic eyes were extensively used as tuning indicators (by measuring the voltage on a receiver's a.g.c. line) and recording level indicators in tape recorders. An example of such a valve is the EM87.

\section*{NOMENCLATURE}

As we hope to present the occasional valve project in the future, it would be a good idea to introduce the system of valve nomenclature. Like

Fig. 3. European Pro-Electron valve coding.

First letter - heater type.
D -1.5 volt filament.
E - 6.3 volt heater, undefined current.
G -5 volt heater.
P -300 mA heater, undefined voltage.
U -100 mA heater, undefined voltage.

Second and subsequent letters
A - Signal diode, single.
B - Signal diode, double.
C -Triode.
F - Pentode.
H - Heptode.
L -Power output, pentode or beam tetrode.
M - Magic eye voltage indicator.
Y -Single diode half wave power rectifier.
z - Double diode full wave power rectifier.

\section*{Number}

30+ series - International Octal base.
\(40+\) series - B8A skirted base.
\(50+\& 60+\) series - Miscellaneous bases and wired in.
\(80+\) series - B9A miniature base.
\(90+\) series - 87 G miniature base.


American transistors, American valves have an arbitrary numbering system. Usually, but not always, the first part of the valve number (usually comprising both letters and numbers) indicates the filament or heater voltage. The European Pro-Electron system is far easier to understand with each valve number having two or more letters and a number.

Referring to Fig. 3 the first letter indicates the heater voltage, or current where the valve heaters are designed to be used in a series heater chain. Note that the " \(D\) " coding signifies a filament valve usually designed for battery operation.

The next letter denotes the valve type; extra letters here represent a multiple valve. The number indicates the valve base used (see Fig. 4) as well as the "family" to which the valve belongs.

For example, an EF80 is a signal pentode with 6.3 volt heater and a B9A base. An ECL86 is a triode output pentode again with a 6.3 volt heater and B9A base.

\section*{CIRCUITS}

A glance at Fig. 5 will emphasise the differences between valve and transistor circuits of similar function. Compare the values of resistors, capacitors and voltages between the two. Valves are high impedance devices and are voltage, not current controlled.
Valve circuit design is also simplified by the fact that characteristics vary very little between specimens of a given type. Also, valves do not need stabilising against temperature changes as do transistors, and they are fairly difficult to damage by accidental abuse.

Valves are being re-introduced into military equipment as they are immune to damage from electromagnetic pulse (EMP). Bear in mind that in the event of a nuclear war breaking out an airburst 100 miles high over the North Sea could destroy ALL semiconductor equipment in Britain and Western Europe! Valves are also making a comeback in hi-fi circles as valve power amplifiers "sound nicer", to put is crudely.


Fig. 5. Basic circuit comparison.

There are some really odd valves used at v.h.f. and microwave frequencies, these include the cavity magnetron (used in radar as well as the domestic microwave oven), klystrons, used as power amplifiers in u.h.f. TV transmitters, and travelling wave tubes, found in satellite transponder output stages. These devices are beyond the scope of this short article as their design and use owes more to a mixture of plumbing and magic rather than conventional design techniques!

Finally, should anyone still believe that valve technology belongs in the Dark Ages, bear in mind that almost every signal you pick up on the latest digitally synthesised radio, together with teletext and satellite TV, has originated in some form of thermionic valve.

Acknowledgement to P. M. Components, Selectron House, Springhead Enterprise Park, Springhead Road, Gravesend, Kent, DA11 8HD (0474) 60521 who supplied most of the sample valves free of charge.


A 524 type full wave rectifier.


The EL84 a well known output pentode.

\section*{TEACH-IN SERIES}

\title{
TWO SPECIAL publications
}

\section*{FROM EVERYDAY ELECTRONICS}

\section*{THE FIRST "TEACH-IN" BOOK}

\author{
ONLY £1.95 \({ }_{\text {PLus P\&P }}\)
}

\author{
By Michael Tooley BA and David Whitfield MA MSc CEng MIEE
}

A comprehensive background to modern electronics including test gear projects. This 104 page, A4 size book forms a complete course in basic electronics; designed for the complete newcomer it will, however, also be of value to those with some previous experience of electronics. Wherever possible the course is related to "real life" working circuits and each part includes a set of detailed practical assignments.

\footnotetext{
This book is an excellent companion for anyone interested in electronics and will be invaluable for those taking G.C.S.E. or B.T.E.C. electronics courses. ORDER CODE: EE/T-I
}

\title{
TEACH-IN 88/89 BOOK £2.45 plus P \& P
}

\section*{A complete City and Guilds Certificate Course for 726/303 Introductory Microprocessors}

Written by Mike Tooley BA this course can lead successful readers to a City and Guilds Certificate. Everything you need to know is included-even pre-test papers, etc.

From Terminology, Integrated Circuits and Logic Families in Part One, the course progresses in easy stages up to High- and Low-level Languages, Flow Charts and Assembly Language. Also featured is a range of eight Data Pages giving information on popular microprocessor chips. A comprehensive index is included, making this a valuable reference manual. ORDER CODE: TI 88/89

\title{
ग...Beeb. Beeb.
}

CARRYING on from last month's article about serial interfacing and the BBC computer's 1 MHz bus, we will consider the subject of line drivers. An RS232C signal is nominally at unloaded levels of plus and minus 12 volts, and should not go below plus and minus 3 volts. In practice, provided long cables are not going to be used, it is possible to get away without using negative signal voltages.

A simple line driver of the type shown in Fig.1. will usually provide good results, and I have not encountered an RS232C input that cannot be driven from a simple circuit of this type. This is just a simple common emitter switch that gives an output at standard \(0 / 5\) volt logic levels. Current limiting at the output is provided by resistor R4:

Like a line receiver, a line driver must provide a phase inversion in order to produce a signal of the correct polarity. A simple common emitter stage of this type provides the required inversion

\section*{Line Drivers . . .}


Fig. 1. A simple line driver circuit.
Probably the best way to obtain full RS232C voltage levels is to use a special driver chip, such as the MC1488. This provides four line drivers, as will be apparent from the pinout details provided in Fig. 2. It has no built-in voltage converter circuit, and it therefore requires dual balanced supplies of about plus and minus 12 volts (plus and minus 15 volts maximum).

There is no -12 volt supply output on the power port of the BBC computer, and so either a voltage converter or a mains power supply for the unit would be needed. The mains power supply is perhaps the better option, and would meet Acorn's recommendations for user port add-ons.
Three of the drivers in the MC1488, for reasons that are not entirely clear to me, have twin inputs and are effectively a form of NAND gate. Presumably the gate action will not normally be required, and either both inputs can be wired together, or one input can be connected to the earth rail and the other input can be driven from the 6850.

\section*{Max}

For maximum convenience, a chip such as the aptly named MAX232C can be used to provide the line driver and receiver funco
tions (see page 437 of the Maplin catalogue). This provides two line drivers and two receivers, plus integral voltage converters so that operation from a single 5 volt power supply is possible. I have no first hand experience of using this chip, but it certainly seems to be a very good one, if a trifle expensive at the present time.

In order to set the required baud rate a suitable clock signal must be supplied to the baud rate clock inputs of the 6850 . The conventional way of achieving the standard baud rates is to use a crystal oscillator that operates at a frquency which, when repeatedly divided by two, gives frequencies that provide many of the standard baud rates.

You will find 2.4576 MHz crystals in many component catalogues, and these are intended for use in baud rate generators. For example, using a seven stage binary divider with a 2.4576 MHz input gives an output at \(19,200 \mathrm{~Hz}\), eight stages give \(9,600 \mathrm{~Hz}\), and so on.

Fig. 2. Pinout details for the MC1488 line driver i.c.

\section*{System Clock}

With a micro based system there is the alternative approach of using the system clock plus a divide by " n " counter. In the case of a circuit interfaced to the 1 MHz Bus, the system clock would obviously be the 1 MHz clock signal, and the divide by " n " action could be provided by the timer/ counters of a 6522 VIA. You could even use one of the internal VIAs and tap off a suitable clock signal from the user port.
When using the divide by " n " method it is unlikely that dividing 1 MHz by an integer will give exactly the required clock frequency. For example, the required clock frequency for 1200 baud operation with the 6850 in the divide by 16 mode is \(19.2 \mathrm{kHz}(1200 \times 16=19200 \mathrm{~Hz}=\) 19.2 kHz ). Dividing \(1,000,000\) by 19,200 gives the required division rate of 52.083 .

In practice a division rate of 52 should be perfectly satisfactory, giving an error which is only a small fraction of 1 per cent. In fact an error of as much as one or two percent is likely to be perfectly satisfactory in practice.

\section*{Midi}

MIDI seems to become ever more popular, and MIDI using the BBC computer is
 ertainly a popular pastime. Articles on anything connected with both MIDI and the BBC computer certainly produce a large reader response.
MIDI interfacing can be achieved in three basic ways, with the most simple of these being the largely software approach. I will not elaborate on this method here, since it was covered in an article in the MIDI feature in the March 1989 issue of Everyday Electronics. However, it is only fair to point out that using the microprocessor to do the encoding and decoding reduces the amount of processor time left for other purposes. Whether or not this is important depends on the complexity of the MIDI software you will wish to run.

The most complex method is to have a so-called "active" or "intelligent" interface. This is one which has hardware to provide the serial encoding/decoding, plus a built-in microprocessor to aid with the data processing. Often this type of interface has two or more independent MIDI outputs, permitting 32 or more channels to be handled. While this type of interface is highly desirable, it is inevitably quite complex and expensive, and is only worthwhile when used with very complicated software that really requires the power it provides.

The middle route, and the most common form of add-on MIDI interface, is the type which uses a UART (universal asynchronous receiver/transmitter) or other serial interface chip to provide the serial encoding/decoding, but does not give any further assistance. This is a good way of doing things in that it is quite cheap, but still enables quite complex MIDI processing to be undertaken provided the computer has a reasonably powerful microprocessor, since none of the processor's time is taken up on the serial encoding and decoding.

A 16 bit microprocessor is preferable for a high power application such as MIDI processing, but as MIDI programs do a lot of shuffling with byte-size chunks of data, an 8 bit processor is not at such a big disadvantage as you might think. Certainly some impressive MIDI programming is possible with the BBC computer.
A MIDI interface based on the 6850 was described in my article in the March 1986 issue of Everyday Electronics, but it is worth looking into this subject again here. Firstly due to the popularity of the original article, and secondly because a number of constructors seemed to run into difficulties with this project! The 6850 is well suited to this application as it can handle the relatively high baud rate of 31,250 baud, and the required word format of one start bit, eight data bits, one stop bit, and no parity checking is within its repertoire.

\section*{Input Stage}

While MIDI is an asynchronous serial system, much like the RS232C system, it is very different in terms of the type of signal that is used to convey data from one unit to the other. The positive and negative vol-
tages of the RS232C are replaced by a cur rent loop system．This uses a current of five milliamps which is used to drive an opto－ isolator at each MIDI input．The opto－iso lation helps to avoid problems with＂hum＂ loops，the coupling of digital noise from a micro－controller to the audio stages of an instrument，etc．
This opto－isolation provides a slight design difficulty，since a＂bog standard＂ opto－isolator lacks the speed and efficiency to give good results in this application．A Darlington type will give the necessary effi－ ciency，but will be so slow that when fed with a MIDI signal it is unlikely to couple any signal through to its output at all！

Probably the best type of opto－isolator for an application of this type is one which has a photodiode driving an emitter fol－ lower，which in turn drives a common emit ter switching stage．The photodiode and emitter follower stage give a relatively high operating speed，while the amplification of the common emitter output stage provides good efficiency．Opto－isolators of this type can handle baud rates of up to about 300 k baud，and the 31.25 k of MIDI is well within their capabilities．
The circuit for a MIDI input stage based on the 6 N 139 ，which is available from a number of suppliers，is shown in Fig．3．This is a bit more expensive than the CNY17－3 used in my original design，but it should provide excellent reliability and repeatabil－ ity．In fact the CNY17－3 used in the original design should also provide good reliability and repeatability，but only if the correct type with a＂ 3 ＂or＂III＂suffix is used．

I would not recommend the use of a device having any other suffix，or the use of a substitute．Come to that，I would not recommend the use of a substitute for the 6N139 either．There are similar devices available that would probably work prop－ erly in this circuit，but as the 6N139 is fairly easy to obtain there would seem to be little point in using a substitute device that might not be entirely satisfactory
There is no difficulty in designing a MIDI output stage．All that is needed is a simple common emitter switching stage with current limiting resistors to set the required five milliamp output current．The circuit of Fig 4 will suffice，and it is possible to drive several of these from the 6850 if multiple MIDI outputs（for the＂star＂con－ nection system）are needed

\section*{Baud Rate Clock}

Although the MIDI baud rate of 31，250 baud might seem to be an odd choice， dividing one million by 32 gives you a figure of 31,250 ．In other words，using a 1 MHz basic clock signal，a division rate of 32 will provide the correct baud rate．This enables

the required baud rate to be obtained using standard frequency crystals and binary dividers．As the 1 MHz Bus provides a 1 MHz clock signal，and the 6850 can be set to provide a baud rate equal to one six－ teenth of the baud rate clock frequency，a divide by two flip／flop between the 1 MHz clock and the clock inputs of the 6850 are all that is required．
There must be dozens of different ways of obtaining the divide by two action，and two suggestions are provided in Fig．5．The first of these is a 4024 BE seven stage binary ripple counter．In this case only the first stage is utilized while the other six are ignored． The second circuit uses one section of a 4013BE dual D type flip／flop to provide the divide by two action．
MIDI interfacing is very simple in that no handshaking is used．At least，no hardware handshak－ ing is utlized．Some system exclusive messages make use of software hand

\section*{CAMMERIDGE COMPUTER SCIENGE LIMUTED}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
\＄5．25＂Disk Drives， 80 Tk ，DSDD \\
纪 3＂Disk Drives， 40 Tk，SSDD \\
敌5．25＂Disk Drives， 80 Tk，DSDD Used，No Wty \\
रे \(5.25^{\prime \prime}\) Disks， 48 Tpi，boxes of 10 \\
if Dual Disk Drive Power Supply \\
\(\$\) Lead to connect one drive to psu \\
노 50W PSU 5V 6A，12V 2．5A， \(5 \mathrm{VV} 0.5 \mathrm{~A},-12 \mathrm{~V} 0.5 \mathrm{~A}\) \\
\(\underset{4}{4}\) Gould PSU 0－30V＠5A－Limited quantity only at \\
is Single Data lead（BBC Micro to Disk Drive） \\
2 Dual Data lead（BBC Micro to 2 Disk Drives） \\
\({ }_{2}{ }^{2}\) Power lead（BBC Micro to Disk Drive） \\
\％Dual leads（BBC Micro to 2 Disk Drives） \\
\(\stackrel{\sim}{2} 68000 \mathrm{CPUs}\)（The first orders get 10 MHz chips） \\
～ 74 LS TTL assortments， 10 different devices \\
\＆ 8 K Byte NV ram chips \\
\＆ 20 pin dil low profile IC sockets \\
K pin dil low profile IC sockets \\
K Keyboard， 100 keys on board LCD \＆micro i／f \\
\(\hat{\psi}\) Toroidal mains transformer， \\
12 V 4 A \＆0．4A，12－0－12．1A \＆．2A，9－0－9 ．2A \(\qquad\) \(\mathbf{£ 4 . 0 0 / 1} \mathbf{£ 6 . 0 0 / 2} \mathbf{£ 8 . 0 0 / 3}\) \\
All items new unless stated．Add \(15 \%\) VAT to all prices．
Prices include postage．Add 50 p to orders below f5．00 \\
Send an SAE for our latest list or for more info． Dept EE， 374 Milton Road，Cambridge，CB4 1SU Tel： 0223424602
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{FRASER 引 \\ 42 Elm Grove Southsea Hants PO51JG} data links，but no other form of data flow control is used．
One problem with a home made MIDI interface is that it is not likely to be compat－ ible with commercial MIDI software． Therefore，it is only worthwhile taking the d．i．y．approach if you will be able to write MIDI software to suit your needs．If you ＂try to have your cake and eat it＂by using a home made interface with commercial software you can reasonably expect to be disappointed．

\section*{BUDGET PACK SELECTION}

The packs listed below are selected from our full list of 140 packs（sent free with all orders）．Note that our prices include VAT and carriage charges－NO HIDDEN EXTRAS．All orders subject to a minimum value of \(£ 3.00\) ．Access and Barclaycard accepted－and you can＇phone orders to
Portsmouth（0705） 815584
from 9．00am＇till 5．30pm any weekdav
\begin{tabular}{|c|c|c|c|}
\hline & Device & Description & Cost \\
\hline 50 & 1N4004 & Rectifier diode 1A／400V & £2．00 \\
\hline 12 & BC327 & PNP 0．8A transistor & £1．00 \\
\hline 14 & LEDMIX & 7 ea .3 mm red \＆green LED & \(£ 1.00\) \\
\hline 2 & ORP12 & Light dependendent resistor & £1．80 \\
\hline 10 & 555 & 8 －pin DIP timer & \(£ 1.80\) \\
\hline 10 & 741 & 8－pin DIP op．－amp & £1．80 \\
\hline 5 & SB1 & \(9 \mathrm{t} \times 24 \mathrm{~h}\) ．stripboard & \(£ 1.00\) \\
\hline 2 & Z80CPU & 2.5 MHz 8 －bit \(\mu\) proc． & £2．00 \\
\hline 12 & DIL－14 & 14－pin DIL socket & £1．00 \\
\hline 5 & DX25PZ & D－min RS232 solder plug & £2．00 \\
\hline
\end{tabular}

\section*{Constructional Project}

\title{
PROBE POCKET TREASURE FINDER
}

\section*{An invaluable tool for the serious metal detecting enthusiast. Pinpoints the "find" in seconds.}

THis is a most useful accessory for keen metal detecting enthusiasts. As any "detectorist" will confirm, objects located with metal detectors are often hard to see, even though their presence has been clearly indicated. Small pieces of iron, if the detector is not discriminating against these, will usually have rusted to a soil colour and much time can be wasted spotting them in the hope that the signal might be something of greater interest. "Half-p" coins are also a considerable nuisance on many sites; although no longer in circulation there are still vast numbers of them in the ground, usually corroded to a deep earth-brown.
Some detectors do not "pinpoint" very well either and, taken with the above factors, this often leads to time-consuming excavation of unnecessarily large holes. Such activity doesn't improve the find rate on expeditions, and may aggravate the opposition to metal detecting found in some quarters.
The "Probe" is the answer to these problems. Pocket-sized, with a compact detecting coil designed to find small objects at close range, it will pinpoint hard-to-see finds immediately, saving much time and effort. Operation is simple and as far as possible automatic for fast, one-handed use. (The other hand will be holding the "main" detector or a digging tool).

The "Probe" has just one control, a pushbutton. This turns it on and automatically adjusts it to threshold sensitivity. Should a false signal appear, due to "ground effect", another touch of the button will instantly reset the threshold. After use, the unit is simply replaced in the pocket where it will switch itself off after about. thirty seconds.

\section*{CIRCUIT}

The circuit uses a slightly unusual principle for detecting the presence of metal. It generates an alternating magnetic field with a coil in the usual manner, but makes use of the fact that a metal object entering this field absorbs a minute amount of power from it. This causes a fall in the coil voltage, and it is this voltage drop that is sensed. The principal is simple, works equally well for both ferrous and non-ferrous objects and requires only a simple coil with no fiddly alignment procedures.
In the full circuit, Fig. 1. the oscillator is built from two of the four gates in IC1, a CMOS 4011B quad "NAND" gate chip. The frequency, about 80 kHz , is determined by the resonant frequency of coil L1 and tuning capacitor C 3 , the coil being actually driven through resistor R2. The high value of this resistor limits the drive power to the coil, so that voltage drops due to absorbed power are more readily detected.

Detection of the coil voltage is performed by the transistor stage, TR1, TR2 and TR3. If the voltage on the base of TR1 exceeds that on the base of TR2, TR1 will conduct and it's collector current will turn on TR3, collector current from which will raise the voltage at TR2 base to match that of TR1. This voltage will be stored on C4, decaying relatively slowly through R5, so the voltage across this capacitor corresponds accurately to the peak positive value of the a.c. signal applied to the base of TR1.
The "differential pair" arrangement of TR1 and TR2 compensates for their temp-erature-dependant base-emitter voltages. Ideally these should be matched transistors in the same case. Although such transistors are available they are difficult to find among hobby suppliers, and tend to be expensive. In practice, two standard BC184L's stuck together have proved an effective substitute.

\section*{AMPLIFICATION}

The signal has now been converted to a d.c. voltage which falls slightly when the coil approaches a metal object. The effect is very small though, and requires amplification. This is provided by IC2, a straightforward inverting amplifier with one exception; it is "charge coupled", the usual gain-determining resistors being replaced with capacitors C 5 and C 6 , giving a voltage gain of \(\mathrm{C} 5 / \mathrm{C} 6\) or about 300 .
The advantage of using capacitors is that standing d.c. input voltages are easily cancelled by closing a d.c. feedback loop and allowing a charge to form across the input capacitor, after which the d.c. loop is opened and only subsequent input changes are amplified. The circuit works well, provided an amplifier with a very high input impedance, such as the 3130 , is used.
Op-amps in feedback circuits normally try to balance their input voltages. The voltage at the non-inverting input of IC2 is held at 2.5 volts by divider R7, R8, so it tries to match this at the other input. If the electronic switch IC4a is closed, the output of IC2 will swing sufficiently negative to counter the current from VR1 and R9 and achieve 2.5 volts at the inverting input. If the switch is then opened, small drops in the input voltage will appear amplified and inverted (positive-going) at IC2's output. This output voltage is then converted by TR4 and R12 to a current drive for l.e.d. D1.

\section*{AUDIO}

Audio output is a useful addition to the


Fig. 1. Complete circuit diagram of the Probe Pocket Treasure Finder.
l.e.d. indication. It is obtained by chopping the voltage developed across R12 at audio frequency with two switches from IC4, driven by an oscillator built from the two remaining gates of IC1.
The resulting audio signal voltage, proportional to the output from IC2, is fed to a piezo transducer. These are not very loud, but the noise made is very penetrating and has been found quite sufficient in practice.

\section*{POWER}

Power for the circuit, from a 9 volt PP3 battery, is controlled by TR5. When the button ( S 1 ) is pressed. C10 charges through D2 and the remaining switch in IC4, IC4d, is turned on. This biases TR5 which then powers the rest of the circuit. The button also turns on IC4a, allowing the circuit to adjust to a threshold which has been preset by VR1.

COMPONENTS

Resistors
R1,R13 1M (2 off)
R2 56k
R3, R9,
R10,R15 100k (4 off)
R4 to R8,


All 0.6 watt \(1 \%\) metal film type.

\section*{Potentiometer}

VR1 47k vertical sub-min preset.

Capacitors
\begin{tabular}{ll} 
C1 & \(10 \mu\) axial elect. 25 V \\
C2 & 100 p ceramic \\
C3 & 2200 p polystyrene \\
C4 & 100 n miniature polyester \\
& layer \\
C5 & \(1 \mu\) miniature polyester \\
& layer \\
C6 & 3n3 miniature polyester \\
C7 & layer \\
1nceramic \\
C8 & 1npolystyrene \\
C9, C10 & \(100 \mu\) axial elect. 10 V
\end{tabular}

\section*{Semiconductors}
\begin{tabular}{ll} 
D1 & miniature 3 mm , red I.e.d. \\
D2 & 1N4148 silicon diode \\
D3 & 1N4007 silicon diode
\end{tabular}

\section*{Miscellaneous}

WD1 ceramic piezo buzzer element.
S1 switch, momentary press-to-make.
P.C.B. available from the EE PCB Service, order code EE653; 8-pin d.i.l. socket; \(2 \times 14\)-pin d.i.I. sockets; PP3 battery clip; 50 mm by 9 mm diameter ferrite rod for coil - see text; 0.25 mm (32 s.w.g.) enamelled copper wire for coil; case, ABS plastic box \(120 \times 65 \times 40 \mathrm{~mm}\); ABS pipe, etc for coil probe (see text).

\section*{Approx. cost guidance only}

When the button is released, IC4a opens. R16 then slowly discharges C10 until IC4d starts to turn off. As soon as the supply from TR5 starts to drop, the voltage across C 10 is pulled down through C 9 , ensuring a clean, rapid switch-off. If the button is pressed again at any time this timing action is restarted and the threshold readjusted.

For stability, critical parts of the circuit

[EE21720]


Fig. 2. P.C.B. layout and wiring for the Probe. This board is available from the EE PCB Service.

are supplied by the five volt regulator IC3. Diode D3 lowers the battery voltage very slightly, the reason for this being that, with a really fresh battery, the "high" outputs from IC1c and IC1d may not exceed half the battery voltage, so IC4b and IC4c will not switch, causing loss of sound output. The inclusion of D3 reduces the battery voltage just enough to prevent this possibility. Also, it's a usefull precaution against reversed supply polarity, as the unit cannot be switched off during battery replacement.

\section*{HIGH IMPEDANCE}

It should be noted that parts of this circuit, especially around IC2, operate at very high impedance and any leakage across the p.c.b. may cause drift during operation. For this reason the p.c.b. should be handled with care to avoid contamination with skin oils, etc. A wipe with a good solvent before commencing construction and again on final assembly, is advisable.

\section*{ASSEMBLY}

Assembly of the p.c.b. is straight forward, though care is required because of its compactness. The component layout is shown in Fig. 2. The two transistors TR1, TR2 have their "flats" glued together with a spot of "Araldite" resin, the "Rapid" version of this being more convenient. They should be pressed together with a clothes peg or similar until the adhesive has cured.

Two holes at the bottom of the board are enlarged to about 3 mm diameter so that l.e.d. switch and battery leads can pass through them. D.I.L. sockets are recommended for IC1, IC2, and IC4. Leads for
connection to the l.e.d. switch and sounder should be added at this stage.

The coil consists of 180 turns of 0.25 mm (about 32s.w.g.) enamelled copper wire, wound in two layers over about 20 mm of a 50 mm length of 9 mm diameter ferrite rod. This gives an inductance of about 1.6 mH and, with 2 n 2 capacitor C3, resonates at about 80 kHz . None of these dimensions are especially critical, however.

\section*{TESTING}

When the coil has been wound, the p.c.b. can be tested. The author has built quite a number of these units, testing being limited to simply powering up the complete p.c.b.'s and dealing with faults as they arose. Solder "bridges" around the pins of

IC1 occasionally gave trouble, so it's worth inspecting this area with a magnifying glass.

Component failures consisted almost exclusively of faulty 3130 op-amps, the fault sometimes appearing to be the drawing of input current. CMOS handling precautions should be observed whilst fitting this chip and it should be the prime suspect in a probe that refuses to tune or drifts badly.

If the board does not work, the supply current should be checked. It should not exceed about 5 mA quiescent and 30 mA with sound and l.e.d. full on. The battery voltage, less about 0.6 volt, should appear at the positive end of C 9 after the button is pressed and the five volt regulated supply should then be present across C1. Pins 3 and 4 of IC1 should be somewhere around 2.5 volts average, indicating that the coil oscillator is running, as should pins 10 and 11 for the audio oscillator. TR3 collector should have a potential of about two volts, this being most easily measured from the top of C4.

\section*{CASE CONSTRUCTION}

The case is made from an ABS box and some \(3 / 8\) inch ABS pipe, glued together with ABS cement obtained from plumbers' merchants. Finding a source of supply for the pipe may be a small problem, as \(3 / 8\) inch is narrower than usual. Swimming pool installers often use it, and may even be able to assist with a short length, possibly an unwanted off-cut. A piece about 220 mm long is required.

The end of the tube should be sealed, preferably with a proper end cap if one can be obtained, and a hole drilled halfway along its length for coil lead entry. Glassfibre resin, as sold for car body repairs, is poured into the tube to give a depth of 15 mm or so at the bottom, the coil pushed down into it, and just sufficient resin added to ensure the coil is completely potted at the bottom of the tube. The wires are hooked out through the hole in the side of the tube, and the assembly set aside for the resin to cure.

The ferrite should not come into direct contact with the ground as this causes strong false signals, so if the end of the tube is not fitted with a cap, arrangement should be made to ensure a couple of millimetres of resin between ferrite and soil.

The tube is cemented into the case as shown in Fig. 3, using the ABS cement. A "collar" of ABS material at the entry to the case tidied and strengthened the pro-


Fig. 3. Construction and layout of the Probe case.

totypes; this could be made with a ring cut from a connector, or even the end cap.

\section*{CONNECTING UP}

Connections to the p.c.b. are shown in Fig.4. The piezo sounder is soldered directly to the leads and glued to the side of
the box with "Evostik". The l.e.d. is secured with a drop of ABS cement. A small piece of foam plastic will prevent the p.c.b. rattling, and another piece will hold the battery firmly in place.

Adjustment of VR1 consists of keeping the button pressed and carefully trimming

until the audio and visual signals are just apparent. The unit will then return to this setting each time the button is pressed

\section*{IN USE}

The unit is reasonably weatherproof, though not totally so. If it is to be used in pouring rain or very muddy conditions (metal detecting enthusiasts are a hardy lot) it would be a good idea to operate it inside a plastic bag. Alternatively S1 could be replaced with a waterproof type, if one can be found, and the joint around the case sealed in some way. By far the most common problem experienced has been mud entering the pushbutton, against which precautions should be taken.
The Probe will be found extremely useful in the field, saving a lot of tedious digging and sifting. An unexpected bonus is that it keeps the user's hands much cleaner, since the usual method of locating an invisible object is by feeling for it! This is useful when the aforesaid hands have to operate the controls of the "main" detector, often a complex and expensive piece of equipment.

False signals during probing, such as ground effect, can be eliminated with another touch on the button with the tip in the vicinity of the ground, which will automatically compensate for it by retuning. Similarly, the sensitivity can be reduced with another touch in the presence of a signal, which is sometimes useful for larger objects.

\section*{ Now \\ 1989 \\ 100 PAGE COMPONENT CATALOGUE}

\section*{SEND OFF FOR YOUR COPY TODAY...}
- WE STOCK AN UNRIVALLED RANGE
- ALL OUR COMPONENTS ARE FIRST CLASS BRANDED ITEMS
- WE OFFER A SAME DAY SERVICE ON ALL STOCK ITEMS
- NO MINIMUM ORDER-IF YOU NEED ONE COMPONENT WE CAN SUPPLY ONE COMPONENT
- WE HAVE ADOPTED A NEW LOWER PRICING POLICY +QUANTITY DISCOUNTS

\section*{JUST FILL IN THE COUPON OPPOSITE AND POST IT TO THE ADDRESS BELOW FOR OUR SUPERB 100 PAGE CATALOGUE}

> CRICKLEWOOD ELECTRONICS LTD., 40 CRICKLEWOOD BROADWAY, LONDONNW2 3ET TEL: 01-450 0995/452 0161 FAX: 01-208 1441 TELEX: 914977

\section*{Carbon Copy}

If you are travelling in Europe, have a look in the lighting department of large stores. Many are now selling a new kind of light bulb which uses technology abandoned a hundred years ago.
These lamps cost ten times as much as a conventional bulb, are difficult to make and have very poor efficiency when converting electrical energy into light. They use carbon instead of tungsten metal for their filament. But they look so good and give such a restful light that manufacturer Philips is having to transfer production to a new factory to keep up with demand.
To make the bulbs, Philips has had to reinvent old production techniques because no-one who worked on the original production line is still alive.
When Thomas Edison and Joseph Swan started making electric lamps in 1880, they both made the filaments from carbon. Edison used madake bamboo, from Japan. Swan preferred cotton thread. When Gerard Philips started making lamps in Holland in 1891 he squirted a colloidal cellulose paste through a die to form fiexible threads which, when heated, turned into carbon fibre.
By 1913 the lamp industry had switched to using tungsten wire, because it was easier to make and lasted longer. Since then virtually all incandescent lamps have had tungsten filaments. The metal is efficient at converting electricity into light, rather than heat, but gives a harsh glare which many people do not like.
As an experiment Philips recently started to make lamps with carbon filaments again. These give a more restful and attractive glow than tungsten. To Philips' surprise, the public are now buying them, even at \(£ 5\) each.

\section*{Strategic Information}

The price is high because workers at the Philips factory in Weert, Holland must make each glass stem, which holds the filament, by hand on fifty year old jigs. They are very secretive over their manufacturing method.

This may be because the company is genuinely worried about the competition. More likely it is just the usual knee-jerk reaction by the Philips in-house PR people when asked any on-the-record question other than the time of day.

A few months ago 1 asked about the manufacture of video head drums at Philips's factory in Vienna. Philips corporate PR people in the UK wouldn't even tell me the name of the machinery which the factory buys in to do the job. "It's strategic information..." I was told. But l'll bet the next time I visit the factory we'll be proudly shown the head-making process!
All Philips will say about the carbon production process, is that the filament is made by the same colloidal extrusion process as before. Modern automation only begins when the stems are loaded into a modern carousel machine which automatically inserts each stem in a glass
bowl, evacuates the air and seals the glass.

The new/old lamps are currently on sale only in West Germany, Austria and Holland. They have proved so poputar that Philips is transferring production to a larger factory at Gmunden in Austria in September. They may then go on sale in the UK.
Unofficial imports from the Continent have the wrong fitting, a screw instead of a bayonet, and are designed for use on the 220 volts. So when used on Britain's 240 volts they may burn out more quickly.
At \(£ 5\) a time, the lamps may seem expensive, but when electric lamps were first sold, a hundred years ago, they cost over \(£ 1\) each, only later reducing to five shillings (25p).

\section*{Tone Deaf!}

Poor British Telecom. It tries to be modern, but never quite gets it right.
When several London telephone exchanges converted to digital switching recently, BT warned subscribers still renting old telephones from them that they would need to exchange them for new push button units if they wanted to take advantage of the new digital system, to get faster connections and use "Star Services" such as automatic, re-routing of calls. The key point is that old phones and exchanges work with electrical pulses, whereas new digital exchanges only perform the new tricks with phones which use tone dialling.

Doing exactly as BT advised, I took my old antique phone to BT 's Dial House sales centre in Central London and chose a new model. When I got home and plugged in, something odd happened. The phone dialled just as slowly as the old one. Sure enough, it turned out to be dialling with pulses, not tones.
Underneath there was a tiny recessed switch, with three positions cryptically marked LD, MFE and MFT. The instruction book makes only confused mention of LD and MFT, and suggests that users contact their "local BT sales affice". But it was

BT's Sales Office which had pre-set the switch to LD.

Moving the switch to the other positions I got tone dialling. But only because \(I\) knew enough to know that something was wrong in the first place.
If BT's Dial House goes on exchanging old pulse phones for new phones wrongly set to pulse dialling, many subscribers will unwittingly continue dialling with pulses and never know that they are missing the benefits of \(\mathrm{BT}^{\prime}\) s expensive new digital exchange technology.
For things to go right in a company, the people at the top have to know the job well enough to know when things at grass roots level are going wrong. I often wonder whether the people at the top of BT have a clue what is going on.

\section*{Crisis Talk}

The cellular phone business is in crisis, a victim of its own success. So many people are now signing onto the Cellnet and Vodafone services that in just four and a half years both have a third of a million subscribers and are gaining nearly 4000 more each week. However, no amount of reassuring statistics can conceal the fact that cellphone users are sick and tired of paying a high price for the privilege of being unable to make or take calls at peaktimes, or in a traffic jam.
As users reach the end of their tether, British Telecom who control Cellnet, has chosen just this moment to shunt John Carrington the respected boss of BT's Mobile Communications division to the USA, and replace Cellnet's equally respected boss Colin Davis with a new man, Stafford Taylor. BT confirms that Taylor has spent his life working for IBM or dealers selling IBM computers, and has no experience whatsoever of the cellular radio business.
So a lot of eyes, especially inside BT and Cellnet, are on Stafford Taylor. People who work for IBM call themselves IBMers. Working for IBM is a bit like working for the Church, British Rail or the Civil Service. There's no competition. But things are very, very different in cellular radio.

\section*{WRONG LETTER!}

Telephone dials used to have both letters and numbers. British Telecom dropped the letters in 1967, when all-number subscriber trunk dialling came in. This upset a few snobs who were proud of post codes, like HAMpstead instead of SWIss Cottage. There were also legitimate objections from people who found it easier to remember a mix of letters and numbers than a string of digits.
The changeover was slow. Until quite recently a public toilet in Paddington gave the number for the nearest VD clinic as a letter-number mix. One New York hotel still clings to the telephone number PEN 65000 , in memory of the pre-war days when

Glenn Miller played there regularly.
Now, nostalgics with \(£ 500\) or \(£ 600\) to spare, can re-live the old days. The new Roamer cellular telephone has both letters and numbers on the key pad. But we are sorry to tell the Japanese designers, that they have got the letters in the wrong place.
The letters on BT's old dials began with " 2 ". That is why London Transport's enquiry service, now 222 1234, was originally ABBey 1234.
The Roamer starts with ABC on key 1 , DEF on key 2, GHI on key 3, and so on. So anyone using it to dial PEN 65000 in New York or ABBey 1234 in London, will get a wrong number.

\section*{1ST PRIZE}

A MAPLIN ROAD WINNER Radio Control 1/10 scale, 4Wheel Drive Model Car (measuring \(405 \times 234 \times 178 \mathrm{~mm}\) ), complete with controller, racing battery pack and mains charger. Total Value Over £100.

To enter the competition simply put the following eight points in the order you feel would be most important to a teenager contemplating buying the Maplin Road Winner. If you feel that "Operators manual supplied" is the most important put letter " \(B\) " in square one, etc. Then complete the tiebreaker sentence.

Each entry must be on a coupon cut from Everyday Electronics. Members of staff (and their families) of Maplin Electronics and Wimborne Publishing are excluded from entry. Results will be published in the December 1989 issue of Everyday Electronics.

Closing date for entries to be received is Monday, 15th September, 1989.
Maplin Road Winner cars are available from Maplin Electronics for \(£ 59.95\) each.
A. Monocoque chassis with strong front bumper.
B. Operators manual supplied.
C. Spare parts available.
D. Four-wheel shaft drive with two differentials.
E. Full digital proportional radio control.
F. Powerful electric motor.
G. All-round independent suspension.
H. Excellent value for money.

After the closing date for entries, judges-drawn from the Directors of Maplin Electronics and Wimborne Publishing-will place the points in their considered order of merit and prize winners will be those that match or are nearest to the judges' order. In the event of a tie the tie-breaker sentences will be judged to decide the winner and runners up.

The decision of the judges is final. No correspondence will be entered into. Illegible entries will be excluded. No responsibility will be accepted for non-receipt of entries.
We regret that prizes can only be delivered to a U.K. address.

\section*{FOUR RUNNERS UP PRIZES} each comprising a Maplin Road Winner Radio Controlled Model Car and controller. Value \(£ 59.95\) each.

\section*{EIGHT CONSOLATION}

PRIZES each of one year's subscription to Everyday Electronics together with an Everyday Electronics binder.
Send your entry to:- Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH

EVERYDAY ELECTRONICS/MAPLIN ROAD WINNER
COMPETITION
\begin{tabular}{|l|l|}
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline 4 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5 & \\
\hline 6 & \\
\hline 7 & \\
\hline 8 & \\
\hline
\end{tabular}

TIE BREAKER I think the Maplin Road Winner is great because

NAME
ADDRESS \(\qquad\)

\section*{CLOSING DATE FOR RECEIPT OF ENTRIES-} MONDAY 15TH SEPTEMBER, 1989

Send your entry to:- Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH


WHEN first making a start at electronics construction it is advisable to choose a simple project that is complete with detailed instructions, including easy to follow drawings of the circuit board and wiring (one of our Pocket Money Projects would be ideal-Ed). However, before too long most electronics hobbyists wish to try their hand at building a project from a source that only provides a circuit diagram.
There are many popular books full of project circuits, as well as features in magazines such as Everyday Electronics which only provide a circuit plus a few quick notes. You might also be faced with similar problems when trying to construct a project where the instructions provided are something less than explicit.
Starting from scratch faces the budding constructor with two problems, one of which is designing the layout of the circuit board. This is something that has been covered in a previous Actually Doing it article, and is something that we will not consider on this occasion (although it is a topic that we will almost certainly return to at a later date). The second problem, and the one to which our attention will be given on this occasion, is working out which lead on the circuit diagram represents each cqmponent leadout wire, and how interconnections are shown on circuit diagrams.
wires. They differ in the way that connections between two wires and cross overs (i.e. two wires crossing without any interconnection) are represented. The method used by Everyday Electronics, and virtually all electronics publications these days, is to have crossovers shown as two lines simply crossing straight over one another, as in Fig. 1(a).
Joints are represented by a dot at the point where two lines meet. Four wires meeting and joining are sometimes rep resented in the manner shown in Fig 1(b), but the method of Fig. 1(c) is prob ably better and is more common these days. This may seem to be a rather fussy way of doing things, but if one or two connection dots should happen to go "absent without leave", which is not exactly an unknown occurrence, this second method will still make it reasonably clear that the wires should all be joined together. With the system of Fig. 1(b) a missing dot will indicate a crossover rather than a four way connection.

The less common method is for any points where lines simply cross-over or meet to count as connection points, as in Fig. 1(d)-you may find this system on old circuit diagrams. If wires must cross over without any connection between them, one line must be looped over the other, as in Fig. 1(e). This meth od is sometimes used with dots to
indicate connections. This may all seem a little confusing, but provided you understand the basic conventions a quick glance at any circuit diagram should be enough to make it clear which are cross-overs and which are connection points.

\section*{SYMBOLISM}

The common circuit symbols are shown in Fig. 2, which also identifies the components they represent. When dealing with circuit diagrams you have to keep in mind that there is no rigid standardisation of circuit symbols. The British standard for resistors is the "box" type symbol, but the zig-zag style resistor symbol is the one you will probably encounter more often. There was a system introduced some years ago which had all the components as boxes, and you had to look at the component number (R1, C3, L4, etc.) in order to determine whether a component was a resistor, capacitor, inductor, etc.

Such a system makes it easy to draw circuit diagrams, but the resultant diagrams are not easy to read. You may find circuit diagrams of this type in equipment manuals but, fortunately perhaps, this system has never become widely established and is almost never seen in publications for the home constructor.
In American publications you may find rather unusual capacitor symbols. The convention seems to be to have electrolytic capacitors with the positive terminal as a straight line and the negative one as an arc. Apart from major differences in circuit symbols, you also have to make allowances for differences in style.

With the application of a little common sense it is usually not too difficult to sort things out. Remember that if you come across an unfamiliar circuit symbol, the identification number for the component plus reference to the components list should enable you to identify it.

\section*{LEADOUT SORT OUT}

In many cases there is no difficulty in working out which lead on an actual

\section*{DOTS AND LOOPS}

There are actually two different ways of representing connections between components on a circuit diagram. Both systems are the same in that a variety of symbols represent the different components, with lines emanating from the symbols representing the connecting


Fig. 1. Various methods of showing joints and crossovers on circuit diagrams.



Fig. 3. Always take care to get any type of diode connected the right way round.
component is represented by each line on the diagram. Resistors, inductors, and non-polarised capacitors have only two leadout wires, and they can be connected either way round. This leaves no room for error. You need to be a little more careful with polarised capacitors though, which mainly means electrolytic or tantalum types.

The axial type usually have the positive and negative leads marked with "+" and "-" signs at the appropriate ends of the component. Also, there is an indentation around the body of the component at the positive end, which makes it immediately obvious which leadout is which

Radial electrolytic capacitors are usually less clearly marked. Often only the positive or negative leadout is marked with the appropriate sign, and in some cases neither are marked in this way. There is then a bar which runs the full height of the component, and this indicates the negative leadout wire. This bar is sometimes present even if " + " and (or) " -" signs are present.

\section*{DIODES}

Diodes, rectifiers, and Zener diodes are also twin leadout components that must be connected the right way round. Fig. 3 should make the relationship between circuit symbols and actual components perfectly clear. This is all pretty straightforward apart from some recent diodes (usually the 1 N4148 type) which have multiple bands. Apparently these bands are a system of colour coding which is used to mark the type number, very much like the system of value marking used for most resistors.

You will probably not need to worry too much about this method of coding, except that you will obviously need to know how it indicates the polarity of the component. There should be a band at one end of the component that is much wider than the others, and this indicates the cathode (+) leadout. Unfortunately, in practice diodes of this type are not always marked quite as clearly as they might be, and you may need to look


Fig. 4. Transistor leadout diagrams are always base views.


BCE
Fig. 5. Power transistor diagrams are also base views.


Fig. 6. Integrated circuit leadout diagrams are usually top views.
quite closely in order to determine which band is the thick one.

\section*{TRANSISTORS}

In order to correctly equate a transistor with its circuit symbol you need a leadout diagram. There are several possible sources for information of this kind. One possibility is to check through constructional projects such as those in Everyday Electronics to see if you can find some information on the devices you are using. A data book represents a more convenient source for this type of
information, since with one of these you should be able to rapidly find a leadout diagram for any common transistor.
With the larger transistor data books you can quickly locate the correct leadout diagram for practically any transistor under the sun. The only problem with some of these books is that they are quite expensive, being aimed more at commercial organisations rather than the electronics hobbyist. There are some good low cost transistor and general data books available though.
Perhaps the best low cost sources of data are the larger mail order component catalogues. These often contain a lot of information on semiconductors, including transistor leadout diagrams. They are something every electronics constructor should have anyway.
Note that the convention is for transistor leadout diagrams to be base views. In other words, the view represents the one you see when looking onto the leadout wires. Fig. 4 makes the relationship between a leadout diagram and an actual transistor perfectly clear. For both plastic and metal power devices, the leadout diagrams still show the components as underside views (Fig. 5).

The pin numbering of d.i.l. integrated circuits is something that was covered in a recent Actually Doing it article, and we will not go over the same ground again here. There are numerous small integrated circuits which are contained in transistor type encapsulations, and you need to be careful when dealing with these. Often these are not used with any form of pin numbering, but have the leadout wires identified by names ("In", "Out", etc.). The main point to note is that the convention is for integrated circuits to be shown in pinout/leadout diagrams as top views. This differs from the convention for transistors, which as mentioned previously, are always shown as base views. Fig. 6 should help to clarify matters.

On circuit diagrams, apart from a few exceptions such as operational amplifiers and logic gates, integrated circuits are simply shown as boxes. Numbers or names identify the various lines which emanate from each box. The same pin numbers or legends should be present on the leadout diagram, which shows the device as seen looking onto the top of the device (the opposite face to the one from which the leads emanate). This is generally more convenient than the transistor base view method, as it shows the device as you see it when it is fitted onto a circuit board.

\section*{OMNI ELECTRONICS}

174 Dalkeith Road, Edinburgh EH16 5DX•031 6672611


Have you sent for your copy of our catalogue yet?
If not, simply send \(2 \times 19\) p stamps for a copy by return.
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE


\section*{ELECTRONIC CONSTRUCTION KITS SECOND TO NONE}

Our FM MINI TRANSMITTER (BUG) is rather exceptional, measuring only \(2 \times 1 / 2 \mathrm{in}\). It has two transistors, one power output. Varicap controlled. High quality condenser, electret insert plus ready wound coil. About one mile range. Glass PCB. MKIII version. 9V DC

Complete kit \(£ 4.75\)
Exclusive to us our FM RADIO MICROPHONE measures just \(2 \times 1 / 4\) in. It has F.E.T circuitry and is designed to function from only \(11 / 2 \mathrm{~V}\) DC with one 18 inch trailing lead for its aerial. Varicap controlled and built to the same high quality as the above. Complete kit \(\mathbf{£ 6 . 7 5}\)

MANY OTHER QUALITY KITS AVAILABLE. SAE PLEASE.
ALL PRICES ARE COMPLETELY INCLUSIVE.
RETURN POSTING DETAILS OF ALL KITS SENT WITH ALL ORDERS CHEQUES P.O. TO:

65 Roseland Road, Waunarlwydd, Swansea SA5 4ST


TOCONFOUND the pundits who insist that software development for the Spectrum is a thing of the past, this month's instalment of On Spec contains information concerning two recently updated compilers which are available from Mira Software. For those who may be contemplating moving on to another programming language, we shall be making a few comparisons between ZX-BASIC and Mira's implementation (to BS 6192) of Pascal.

We begin by setting the scene with a brief discussion of the merits of compiled programs when compared with their interpreted counterparts.

\section*{Compile or Interpret?}

The resident Sinclair/Amstrad ZXBASIC (immediately available whenever you power up your Spectrum) is an interpreted language. The code responsible for ZX-BASIC (including its crude but effective line editor) is contained within the Spectrum's 16K ROM. Since the software is non-volatile (i.e. not placed in RAM where it would be vulnerable to power failure) it is appropriately referred to as firmware.

At execution time, your ZX-BASIC program code is converted into machine code instructions and executed by the Z80. This conversion process is undertaken one line (or, more strictly, one statement) at a time. The advantage of this method of program execution is that it allows changes

\section*{Listing 1}
progiram demo(input, output): \{Decimal to any base converter\} var number, base, count: integer; begin
```

 writeln('E.E. Base Converter');
    ```
    writeln('Enter a number: ");
    readln(number);
    writeln("Enter the base: ");
    readln(bage);
    count: =0;
    repeat
        writelncidigit: *, count, number rod base);
        number: = number div base;
        count: \(=\) count +1 ;
    until number=0;
    writeln('Finished!')
end.
Listing 1 Pascal demonstration program
to be very easily made to the program; the offending line is identified, modified and execution resumed using BASIC's RUN command.

Anyone who has developed even the most straightforward of programs will be only too well aware of the need to make very frequent changes to improve code and correct for errors. The ability to test the odd line of code, enter a direct command, or rapidly debug a program line by line, is only available with interpreted languages. Such an environment is, of course, ideal for the beginner.

Despite this, interpreters do have several notable disadvantages. The interpreter program must itself be present in memory (occupying valuable memory space) whenever a program is to be executed. Furthermore, interpreted languages execute somewhat slowly as each statement needs to be converted to machine code whenever it is executed.
Also, statements contained within the body of a loop will be converted into machine code every time the loop is executed. This is clearly rather wasteful since identical machine code will be generated on every pass!
For those of you who may not have experienced the use of a compiler, this useful software tool will generate executable (usually stand-alone) machine code (known as object code) from a source code program written in a high-level language such as BASIC, Pascal, or C. The compiler is only resident in memory whilst the object code is being generated. Once compiled, the program will no longer require the services of the compiler and the machine code program can be executed directly (or linked with other object code modules to form a larger executable program).

\section*{Mira Pascal}

Some time ago I mentioned the Pascal compiler which is available from Mira Software. This compiler has recently been updated and is now available in versions which cater for tape, Sinclair Microdrive, MGT Disciple and Plus-D, Beta, Opus Discovery and Rotronics Wafadrive. With the exception of the Wafadrive version, the compiler is available in versions for both the 18 K and 128 K versions of the Spectrum.
The Mira Pascal compiler is a full implementation of the BS 6192 standard and offers further extensions specifically for the Spectrum. The compiler generates Spectrum machine code from Pascal source code which is entered using a simple editor which is provided as part of the package.

A brief but adequate manual is supplied with Mira's compiler. This handbook explains how the compiler is installed and used and also provides details of the language extensions which have been provided specifically for the Spectrum;

It is important to note that Mira's manual is not a tutorial guide for the Pascal language. They do, however, recommend a suitable introductory text, alternatively Donald Monro's "A Crash Course in Pascal" (published by Edward Arnold, ISBN \(0-7131-3553-0\) ) can be highly recommended. Armed with one or other of these books and Mira's compiler, the would-be Pascal programmer should be producing working Pascal code within a few hours.
Altogether, Mira Pascal can be very highly recommended. It is simple to use and sensibly priced and indicates that the development of serious software products for the Spectrum is far from dead. -Well done Mira!

\section*{Mira Pascal versus ZX-BASIC}

In order to put Mira's Pascal compiler through its paces, I hastily put together a simple program (see Listing.1) to change the base of a number and display the result on the Spectrum's screen. It then occured to me that readers may be interested to compare this Pascal program with its nearest equivalent in BASIC (Listing.2). In fact, the BASIC program turns out to be more compact than its Pascal counterpart but is greatly lacking in structure. In fairness, the BASIC program could have been much improved if it had been written in Beta BASIC (where improved control structures are available).
For the benefit of newcomers, it is well worth pointing out some of the more important features of the Pascal program. The first line of the program declares the program name (demo) and informs the compiler that it will take its input from the keyboard and output to the display. The second line is simply a comment (equivalent to a BASIC REM statement). The third line declares the variables used in the program and informs the compiler that they are to be treated as integers.

The main body of the program is contained between begin and end and comprises a series of statements, each terminated by a semi-colon. It should be fairly obvious that writeln is equivalent to BASIC's PRINT whilst readln provides the equivalent of INPUT. A loop is implemented between repeat and until and this is clearly a much more elegant structure than the conditional GOTO used in the BASIC program!

\section*{Mira FORTRAN}

If, like me you were first introduced to computing at college through the medium of FORTRAN (rather than BASIC or Pascal) then Mira have produced a second compiler which will accept FORTRAN source code. The compiler operates in much the same manner as its Pascal counterpart but may be preferred by those of

\section*{Listing 2}
```

10 REM Decimal to any base converter
20 PRINT "E.E. Base Converter"
30 PRINT "Enter a number: "
4 0 ~ I N P U T ~ n ~
50 PRINT "Enter the base: "
60 INPUT b
70 LET c=0
80 LET m=b*((n/b)-1NT(n/b))
90 PRINT "Digit: ";c,m
100 LET n=1NT(n/b)
110 LET c=c+1
120 1F n<>O THEN GOTO 80
130 PRINT "Finished!"
Listing 2 ZX-BASIC equivalent of Listing 1

```
you who may be more concerned with scientific applications and who may wish to make use of existing software written in FORTRAN
The Mira FORTRAN package is of the same high quality as its BS 6192 Pascal but I would not recommend this package to a newcomer wishing to develop a familiarity with a second language. Pascal would be a far better choice for most applications which will be instrumental in helping the
user to develop a structured approach to his or her programming.
Mira Software can be contacted at 24 Home Close, Kibworth, Leicestershire, LE8 OJT.
Next Month: We shall be taking a detailed look at the hardware of the SAM COUPE and will provide details for those wishing to get to grips with interfacing MGT's exciting new machine to the outside world. In the meantime, if you would like a
set of our On Spec Update sheets, please drop me a line enclosing a large ( \(250 \mathrm{~mm} \times 300 \mathrm{~mm}\) ) and adequately stamped (currently 42p for UK postage) and addressed envelope.

Please note that I can no longer provide individual replies to queries but instead will do my best to provide answers through \(O n\) Spec or through the Update. Mike Tooley, Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey.

\section*{MARIREF PLAEE}

WANTED ZX81 computers for parts. Reasonable offers accepted. Tel. 0928572088.
ZENITH Variac V3HV1A \(£ 15\). Bulbs 12V. \(1.2 /\) 2.2W SES 12p each. 110 Charteris Rd., Kilburn, London NW6.
WANTED Everyday Electronics April 1988 Volume 17 No. 4 in good condition. Ian Davis, 11 Phillip Street, Pukekohe 1800, New Zealand.
WANTED Anything about Truvox Tape Deck Mark III and Type "C" tape recorder amp. Details and price please. Edward Pinheiro, El Socorro Road, San Juan, Trinidad \& Tobago, West Indies.
WANTED Dragon 32 Computer any condition; service manual Realistic nine-scan model TRE 425. Bob McGrath, 41 Belvedere Place, Dublin 1, Eire.
CLEARING OUT new resistors, switches, cases, buzzers, etc. send s.a.e. for list to: S. Lord, 6 Stubbing Brink, Hebden Bridge, W. Yorks HX7 6LR.
JP101 INKJET printer, Centronics interface 470, switch mode p.s.u., fan and EMI filter, uncased \(£ 25\). D. Armstrong, 85 Lower Bagthorpe, Bagthorpe, Notts. NG 16 5HF. LINSEIS LY1700 X-Y plotter. Good working condition £200 o.n.o. Tel. 0527403132.
AVO MULTIMINOR £25. Fluke Digital £50. Digital Clampmeter £20. Megger £50. Tel. 01-554 2913. 6-8 p.m.
SELABS EM102 oscilloscope with manuals probes and hood. Dual beam £45. Tel. 0708 24102 Evenings (Romford).
SWAP QL Computer for a dual beam oscilloscope at least 15 mHz with Probes. A. Scott, 84 Studley Tower, Canford Close, Highgate, Birmingham B120YZ.
WANTED ZX81 with 16K Ram pack also ZX printer wanted. Would pay around £25. Mr. M. Cullis, 4 Sandgord Rise, Tettenhall, Wolverhampton WV6 9JQ. Tei. 0902759034.
EVERYDAY ELECTRONICS most issues June 1979 to March 1989. Offers plus p \& p. Allan Dunnett, 11 Silverknowes View, Edinburgh EH4 5PY. Tel. 0313364904 (Evenings).
WANTED any info. on ICL PERQ computer. Nigel, Crawley (0293) 513354.
FOR SALE TRS80 computer upgraded Level II plus expansion unit and monitor and manuals. Good condition. £85 o.n.o. Tel. 01-582 7839.

COMMUNICATION RECEIVER. Eddystone AR.88. Good condition. Complete literature. Swop for Bat Detector or zoom binoculars. J. Smith. Tel. 0538361390 (Leek, Staffs.).
WANTED Maplins Combo Amplifier p.c.b. (GA41U) and TCA3502 bucket brigade i.c. to finish project. Contact Brian on 0926497056. WANTED 500 MHz frequency counter also wanted scanner with frequency read out. Tel. 0742326126 (Sheffield).
WANTED Manuals for Realistic DX-200 and TI59 programmable calculator. P. Rex, 61 London Road, Luton LU1 3UE.
WANTED to buy or borrow circuit diagram National digital counter and marker type RD9600. Sean Miuar, Greygrove, Kilmihil, Co. Clare, Eire.
WANTED SN76477 sound effects generator i.c.-two needed. Richard C. Doughty, 10 Northdown Way, Margate, Kent CT9 30X.
SPECTRUM 128K programmable joystick interface, joystick, books, many extras, leads, etc. \(£ 150\) o.n.o. Tel. 0444647179.
WANTED circuit and construction details for Osram Music Magnet Four. D. T. Walker, 97 Raemoir Road, Banchory AB3 3XQ. Tel. 033022476.

WANTED service manual or copy for record changer BSR Model UA55. G. Stuart, 35 North Gyle Grove, Edinburgh EH12 8LA. Tel. 0313397306.
WANTED \(1 / 2\) track 15 i.p.s. mastering tape recorder working or not. Tel. 01-346 9851. Phone after 9 p.m.
WANTED full circuit diagram World Band Amatuer Radio or information where I will get it. Also pen friend. Haneef Unniyal, P.B. No. 1956, Doha, Qatar, A.G.F.
WANTED circuit diagram for Dragon 32 computer or number of chip IC9. Roy Prescott, 22 Calremont Range, Gorton, Manchester M18 7LT.
OSCILLOSCOPE Thandar SC110A Battery/ Mains portable d.c. - 10 MHz with probes. v.g.c. £150 o.n.o. Tele. 072223086.

WANTED valve tester plus valve data manual. Phone 09823357.
DIGITAL Decpack RG05J for disposal also Atari Quadrascan tube power unit etc. Anyone interested? Mr. Harry Speight, 106 Farrar Lane, Adel, Leeds L16 7JW. W. Yorks. Tel. 670666.

\section*{FREE READERS ADS.}

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Pen pals or items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads, or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads, will not appear (or be returned) if these rules are broken.

WANTED Sinclair flat screen pocket TV need not be in good condition. Will consider faulty set. Dave Carter, 12 Martins Lane, Bracknell. Tel. 0344420265.
WANTED Manual, system disk, etc. for Burroughs B21-2T, 384K also manual for Racal CT488 counter timer. D. Armstrong, 85 Lower Bagthorpe, Bagthorpe, Notts NG16 5HF. Tel. 0773810358.

WANTED Circuit Diagram for Sinclair (Thandar) DM450 Multimeter-please. G. O'Brien, 105 Roxborough Road, Harrow HA1 1NT.
MARCONI Valve Radio, old, small, good working order. Offers over \(£ 25\). J. DeAlmeida, 18 Langton Place, Wroughton, Swindon. 0793812566.
WANTED information where I can obtain any professional (Siemens, etc.) Analogue Semiconductor Catalogue. Mr. Jan Kurcharski, 10 Dalton House, Ebury Bridge Estate, London SW1.
ANTIQUE SETS of Practical Wireless-complete issues 1951 to 1958-some partly bound-offers. Mr. P. P. Dusek, 11 Hoylake Gardens, Eastcote, Ruislip, Middx. HA4 9SJ. 01-868 9845.
ROGERS A75 Ser.2: Also Ravensbourne amplifiers; Tandberg TCD310 c/recorder; JVC JT V10 Tuner; Connoisseur deck; best offers. (Monmouth) 0600860705.
WANTED 934 MHz rig with Cybernet board also 934 service manual or circuit diagram. State price. Contact B. J. Rowlands, 8 Camrian Avenue, Gilfach Goch, S. Wales, Glamorgan CF39 8TB. Tel. No. 0443-672280.
TRANSMITTER (Micro) \(70-150 \mathrm{MHz} \mathrm{f5}\). N. Porter. Tel. 0366383380.
ULTRAVIOLET exposure unit, timer, brand new, two \(8 W\) tubes, \(£ 50\). Oscilloscope Hameg, \(8 \mathrm{MHz} £ 55\). Tel. 0274575484 evenings.
SPECTRUM MEMBRANE, new, unused for keyboard repair or renovation \(£ 6.50\). Tony Thomson, 108 Tannahill Drive, Calderwood 12, East Kilbride, Glasgow, Lanarkshire G74 3HT.
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline Mema a adare: & & \\
\hline & \\
\hline
\end{tabular}

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.
```

Signature
Date
COUPON VALID FOR POSTING BEFORE 1 SEPTEMBER '89
(One month later for overseas readers)
SEND TO: EE MARKET PLACE, EVERYDAY ELECTRONICS, 6 CHURCH STREET, WIMBORNE, DORSET BH21 1JH.

```

\section*{ \\ BY DAVID BARRINGTON}

\section*{Xenon Beacon}

Due to the very high voltages present in the Xenon Beacon, some of the components used must, of course, be special items, First, a word of warning. With such high voltages "floating" around the circuit, we advise that extreme care be exercised by any person, novice or professional, constructing this project.
The xenon tube and trigger transformer may prove difficult to locate locally but the prototype model used items purchased mail order from Maplin. The trigger transformer used is the 6kV type, code JE15R ( 6 kV trigger trans.) and the tube is the "beacon" type designated FS79L (Xenon Tube Beacon).

The waterproof case was bought from the same company and is the medium version (code YM93B), with transparent lid. You can, of course, use any suitable size case but you will have to devise some form of waterproofing. You could use one of the "bathroom/ kitchen" silicone sealing compounds to make holes and joints water tight.
Another approach would be to use one of the large "lantern" type torches sold to motorists and build the beacon in the space provided for batteries and bulb. Again you would have to make it water tight for portable use.
The high voltage capacitor can be any polyester or polypropylene type provided it has a similar minimum or higher rated working voltage; it must NOT be less than specified. The one used in the authors model is a metallised polypropylene type.
The mains transformer secondary is rated at \(6 \mathrm{~V}-0 \mathrm{~V}-6 \mathrm{~V} 250 \mathrm{~mA}\) and most component suppliers stock a fairly large range of transformers and should be in a position to suggest a suitable item. The only point to keep in mind is the mounting dimensions for the p.c.b. The one used in the model is from the miniature 250 mA range listed by Maplin, code YN1400.

The 12V 1.2Ah sealed lead-acid battery may well be anotber case where finding a local stockist could prove to be troublesome. The one used in our model is the UK made Yuasa NP1.212V, 1.2Ah from Maplin code, YJ69A. This is not a cheap battery ( \(£ 13.50\) ), but you want long life and relability.

The printed circuit board for the Xenon Beacon is available through the EE PCB Service, code EE650 (see page 612).

\section*{Fuse Tester}

Checking out component availability for the Fuse Tester, one of this month's pocket money projects, we find that
most of our component advertisers are more likely to offer only the 8 -pin version of the CA3240 MOSFET op. amp. However, a 14 -pin d.i.I. CA3240E-1 is currently listed by Cricklewood Electronics. The 14-pin device seems to be a RCA manufactured chip and carries the suffix - 1 .
Although the circuit function is completely identical, using the 8 -pin version will, of course, entail changing the circuit board layout to accomodate the differing pin configuration and may even end up with a completely new component layout. To help constructors using the 8 -pin package we give the pinout details below.


\section*{Stabilized Power Supplies}

A couple of items required for the two power supply units, contained in the Stabilized Power Supplies series, need special mention.
Of the components required for the "Fixed Voltage Unit", the mains transformer was specially selected by the designer and wound by Trent Coil Winding Co. For the fixed voltage version quote order code 00490 ( 10.25 plus \(£ 2.55\) post and packing).
Many of our advertisers now supply special transformer kits for making up your own mains transformers. With these kits you just select the secondary requirements and, referring to a table, wind on the necessary number of turns. Alternatively, specialist transformer suppliers such as Jaytee Electronic Services should be able to come up with a suitable unit.
The Fixed Voltage Unit printed circuit board, covering both the 5 V and 15 V supplies, is available from the EE PCB Service, code EE654. Using a junior hacksaw and exercising extreme care, you can, if you wish, separate the board into two small independent boards.
Turning to the "Variable Stabilized Power Supply", the 2A thermal circuit breaker and the \(0-15 \mathrm{~V}\) moving-iron meter are both RS components. These components can be ordered through any bona-fide RS stockist or by mail
order from Electromail (太 0536 204555), quote order codes 335-996 (contact breaker) and 259-577 (meter). Moving-iron meters are stocked by some of our advertisers and it might be worthwhile checking around for the best price.

Once again, and for the forthcoming units, the author has selected from the specially wound mains transformers from the Trent Coil Winding Co . The one used in the model is order code 00491 ( \(£ 10.25\) plus \(£ 2.55\) post and packing) and can be obtained from Trent Winding Co. Dept EE, 26 Derby Road, Long Eaton, Notts.

There are many suitable metal instrument cases on the market and final choice is left to the constructor. However, the case must have a separate metal chassis plate to take the transformer and heatsink.

The printed circuit board for the Variable Stabilized Power Supply is obtainable through the EE PCB Service, code EE655 (see page 612).

\section*{Probe Pocket Treasure Finder}

Readers should not experience any difficulties when purchasing components for the Probe Pocket Treasure Finder. All parts appear to be standard "off-the-shelf" items.
To meet the requirements of the printed circuit board, when ordering components for the probe keep in mind the physical size of the board. This applies particularly to the polyester capacitors, these should be the metallised layer or "Siemens" types.

The ferrite rod for the "detection" coil may prove a little difficult to locate but it is currently listed by Maplin, Cirkit, Omni and TK Electronics. One small problem likely to be encountered, not mentioned in the article, concerns the length of the ferrite rod.

All of the ferrite rods listed are 100 mm or more long and will have to be cut down to the required 50 mm length. This is where the problems start, the ferrite is very brittle and likely to "shatter" if care is not exercised when cutting it down to size.
The best approach to cutting the rod is to score a deep groove around the circumference of the rod with a hacksaw blade, at the required length. Holding one end of the rod and "gently" tapping it on a firm surface should result in it breaking cleanly around the scored area.

Another point to watch out for is the purchase of the BC184L transistor. When buying this transistor it is most important to specify the \(L\) suffix as pin connections for this device vary.

The printed circuit board for the Probe Pocket Treasure Finder is available from the EE PCB Service, code EEOOO (see page 612).

\section*{Four-Way Chaser}

We do not expect any component sourcing problems for readers undertaking the Four-Way Chaser, this month's pocket money project.
There are two popular CMOS versions of the standard NE555 timer i.c. and both of these will work quite happily in this circuit. These devices are designated ICM7555 and TLC555C and are stocked by most of our advertisers.

\title{
CREENWELD \\ \\ ELECTRONIC \\ \\ ELECTRONIC COMPONENTS
} COMPONENTS
}

available once existing stocks are sold!!
In order to sell at these low, low prices and cover our costs, the minimum order value is \(£ 10\) \& postage is \(£ 3.00\) regardless of quantity (orders can be made up with non-sale goods if required) state "Sale prices" when you order, whether by post, phone or fax. See back page for more info.

\section*{NEARLY EVERYTHING ON THESE PAGES IS}

\section*{HALF PRICE OR LESS!!}

We must clear last years surplus to make room for more parcels we are expecting soon!! So snap up these unrepeatable bargains now - most goods will not be

\section*{GORTAH}

\section*{msplact \& SPEECH 64}


24140 New complete set for ZX. Spectrum unboxed. (They were bulk packed) \(£ 7.95\) SALE PRICE
£4.00
24142 Speech 64 for the C64 computer. Better than' the Spectrum version as no software needed, and can be programmed in plain English! We only have the bare boards but these are new and working. A photocopy instruction book is included.

SALE PRICE
£6.00
\(24138 \mu\) Slot. 'T' connector (1 female, 2 male) for the Spectrum enabling 2 peripherals to be connected at one time. Further \(\mu\) Slots can be added allowing more peripherals to be added: New and boxed.
\(£ 2.00\)
SALE PRICE
£1.00


\title{
COMPONENT PACKS - ALL \(1 / 2\) PRICE
}

\section*{GREENWELD THE PACK PEOPLE!}

More packs - more in them - more value! All our packs contain brand new, marked full spec. components (unless otherwise stated) at a fraction of the normal price and offer constructors the widest range of parts at the lowest cost! How do we do it? By buying manufacturers end-ofrun and surplus components. Because we purchase from many sources, we have an extremely wide range of top quality parts - too costly to sort hence the packs described below. Our larger packs are ideal for schools, groups or clubs.

\section*{SEMICONDUCTORS}

K517 Transistor Pack - 50 assorted full spec. marked plastic devices PNP NPN RF AF. Type numbers include BC114 117172 182183198239251255320 BF198 255 394 2N3904 etc., etc.

Retail cost \(£ 7+\) Special low price \(£ 2.75\) SALE PRICE
£1.37
K547 Zener Diodes - Glass and plastic, 250 mW to 5 W ranging from 3 V to 180 V . All ready identifiable.

100 for \(£ 4.50\)
SALE PRICE
\(£ 2.25\)
K537 I.C. Pack - a mix of linear and logic chips, from 6 to 40 pin. All are new and marked, but some may not be full spec.

SALE PRICE
\(100 £ 6.75\)

K538 Diode Pack - untested small signal diodes like \(\operatorname{N} 4148\) etc. at a price never before seen!!

1000 £2.50
SALE PRICE
£1.25
K560 Semiconductors - Over the years we have purchased many transistors, diodes, ICs etc which for one reason or another have accumulated in one of our stock rooms. Rather than spend weeks sorting and listing them, we have decided to make them into packs. All components are full spec marked devices. Some may be coded. We believe this to be one of the best value packs ever offered, as many high value components are included. Packs are made up by weight; this means contents are very approximate - if there are several bulky power devices, there will be considerably fewer parts than those packs containing all small signal items.

Normally SALE PRICE
Pack of approx \(100 £ 5.00\)
£2.75
Pack of approx \(250 £ 12.00\)
\(\mathbf{£ 6 . 0 0}\)
Pack of approx \(1000 £ 40.00\)
£20.00

\section*{RESISTORS}

K540 Resistor Pack - mostly 1/8,-1/4 and \(1 / 2 \mathrm{~W}\), also some 1 and 2 W in carbon, film, oxide etc. All have full length leads.
Tolerances from 5 to 20\%. Excellent range of values. \(\quad 500 £ 2.50 \quad 2,500 £ 11.00\) SALE PRICES \(500 £ 1.25 \quad 2,500 £ 5.50\)
K503 100 Wirewound Resistors - From 1 W to 12 W , with a good range of values.

\section*{SALE PRICE}
\(£ 2.00\)

K523 Resistor Pack - 1000 - yes, 1000 1/4 and \(1 / 2\) watt \(5 \%\) hi-stab carbon film resistors with preformed leads for PCB mounting. Enormous range of preferred values from a few ohms to several megohms.

\section*{SALE PRICE}

Only £2.50

K531 Precision Resistor Pack - High quality, close tolerance R's with an extremely varied selection of values mostly \(1 / 4\) and \(1 / 2 \mathrm{w}\) tolerances from \(0.1 \%\) to \(2 \%\) - ideal for meters, test gear etc.
\begin{tabular}{lll} 
\\
SALE PRICES & \(250 £ 3.00 \quad 1000 £ 10.00\) \\
\hline
\end{tabular}
SALE PRICES \(250 £ 1.50 \quad 1000 \quad £ 5.00\)

K505 20 Assorted Potentiometers - All types including single, ganged, rotary and slider.
£1.70
SALE PRICE
\(£ 0.85\)
K572 Networks 7,8,9 pin SIL; 14 \& 16 pin DIL. Lots of different values.

Pack of \(100 £ 4.50\)
SALE PRICE
£2.25
K554 Thermistors - Mostly disc, rod and some valuable bead types. Identification/ data sheet included. Big variety up to 40 mm dia! Catalogue value over \(£ 50.00\)

100 for \(£ 8.00\)
SALE PRICE
\(£ 4.00\)
K525 Preset Pack - Big, big variety of types and sizes - submin, min and std, MP slider, multiturn and cermets are all included. Wide range of values from 20R to 5 M .

100 assorted £6.75 \(250 £ 12.95\)
SALE PRICES 100 assorted \(£ 3.37 \quad 250 £ 6.50\)

\section*{CAPACITORS}

K549 Variable Capacitors - Mostly small trimmers - airspace, mica and polyprop dialectrics, buit also included are a few full size tuning caps. 25 for \(£ 5.75\)
SALE PRICE
£2.87
K544 Mullard Polyester Caps - Cosmetic imperfections, electrically OK. Wide range of values from 0.01 to \(0.47 \mu \mathrm{~F}\) in 100,250 and 400 V working.

200 for \(£ 4.75\)

\section*{SALE PRICE}
£2.37
K546 Polystyrene/mica/ceramic caps. Lots of useful small value caps up to about \(.01 \mu \mathrm{~F}\) in voltages up to 8 kV . Good variety.
\(100 £ 2.75\)

\section*{SALE PRICE}
£1.37
K528 Electrolytic Pack - All ready cropped for PCB mounting, this pack offers excellent value for money. Good range of values and voltages from \(0.47 \mu \mathrm{~F}\) to \(1000 \mu \mathrm{~F}, 6 \mathrm{~V}\) to 100 V .
£3.95 250 £8.95
SALE PRICES \(\quad 100 £ 2.00 \quad 250 £ 4.50\)
K518 200 Disc Ceramic Caps - Big variety of values and voltages from a few pF to \(2.2 \mu \mathrm{~F} ; 3 \mathrm{~V}\) to 3 kV .
£ 1.00
50 P
SALE PRICE
50P
K530 100 Assorted Polyester Caps - All new modern components, radial and axial leads. All values from 0.01 to luf at voltages from 63 to 1000 !!

Super value at \(£ 3.95\)

\section*{SALE PRICE}
£2.00
K558 Jumbo electrolytic pack - 10kg of screw top computer grade electrolytic capacitors. Values from \(400 \mu \mathrm{~F}\) to \(83,000 \mu \mathrm{~F}\), voltages 15 V to 200 V . About 40 caps per parcel. Value if bought individually over \(£ 100\) ! Our price? Just \(£ 20.00\). Order now!
SALE PRICE
£10.00

\section*{SWITCHES \& RELAYS}

K520 Switch Pack - 20 different assorted switches - rocker, slide, push, rotary, toggle, micro etc.... Amazing value at only \(£ 2.00\) SALE PRICE
£1.00
W4700 Push Button Banks - An assortment of latching and independent switches on banks from 2 to 7 way, DPCO to 6PCO. A total of at least

40 switches for £2.95 \(100 £ 6.50\) SALE PRICES \(\quad 40 £ 1.50 \quad 100 £ 3.25\)

K532 Relays - Wide selection of styles voltages and contacts. \(4 \mathrm{v}-240 \mathrm{v}, \mathrm{AC} / \mathrm{DC}, \mathrm{SP}\) and 4PCO

20 for \(£ 6.00\)
SALE PRICE
£3.00

K542 Reed Relays
Mostly DIL, single pole \& double pole also some changeover, these are manufacturers rejects, but a good proportion work. \(5 \mathrm{~V}-50 \mathrm{~V}\) coils

50 assorted £3.30
SALE PRICE
£1.65
K569 Reed Switch Pack. A selection of about 15 types of reed switch from submin 12 mm long to 5 A rated 50 mm long, mostly form A (make), few form C (Changeover).

Pack of \(30 £ 2.75\)
SALE PRICE
£1.37

\section*{OPTO}

K539 Led Pack - not only round but many shaped leds in this pack in red, yellow, green, orange and clear. Fantastic mix.
\(100 £ 5.95 \quad 250 £ 13.50\)
SALE PRICES \(100 £ 3.00 \quad 250 £ 6.75\)
K524 Opto Pack - A variety of single point and seven segment LEDs (incl. dual types) of various colours and sizes, opto isolators, numicators, multi digit gas discharge displays, photo transistors, infra red emitters and receivers.

SALE PRICE
25 assorted £3.95

\section*{HARDWARE}

K551 6BA screws - In a variety of lengths and heads from \(3 / 16^{\prime \prime}\) to 20 mm long. Steel.
- 200 £2.00

\section*{SALE PRICE}
\(\mathbf{\Sigma 1 . 0 0}\)
K559 Knobs - Wide selection of sizes, shapes and styles for various diameter shafts and sliders

25 for \(£ 1.95\)
SALE PRICE
\(\mathbf{£ 1 . 0 0}\)
K535 Spring Pack - approx. 100 assorted compression, extension and torsion springs up to 22 mm dia. and 30 mm long \(£ 1.70\). SALE PRICE

85P
K571 Cable Clips - 6 or 7 different sizes from 3.5 mm to double T \& E mostly black and grey.

100 assorted 99p
SALE PRICE
50P
K564 PCB stand-offs. A mixture of 8 different styles and sizes from 4.75 to 12.7 mm high

SALE PRICE
100 £2.40

K567 Wire Ties. 5 types to take \(4-15 \mathrm{~mm}\) dia cable bundles.

100 £1.70

K565 Miniature PCB supports in nylon. 6 different styles - sizes from 6.35 to 13.24 mm high:
\(100 £ 2.20\)
SALE PRICE
£1.10
K566 Self adhesive cord clips in moulded nylon. 5 styles/sizes. Base size from 15.9 to 31.8 mm square

Pack of \(100 £ 2.70\)
SALE PRICE
£1.35
K568 Giant Plastic Pack Approx. 1000 pieces - standard and miniature PCB supports, self adhesive ribbon cable clips, straps, ties, cord clips. This lot would normally cost around \(£ 50.00\)

Our Special Price \(£ 12.00\)
Sale price
£6.00
K563 Cable markers (ident sleeving). Over 1000 pieces, all with either letter or number. Assorted colours and sizes from \(1-5 \mathrm{~mm}\) dia. over 50 different!

Pack of 1000 £2.50
SALE PRICE
£1.25

\section*{Hi-Res Monitor}


2497 AM/FM Stereo Tuner Panel. Complete radio 2497 AM/FM Steo Complete radio chassis with push-button selection for LW/MW/FM and ON/OFF. Ferrite rod for LW \& MW selection, co-ax socket for FM aerial. Supplied with mains transformer and rectifier/smoothing cap, and wiring details. PCB is \(330 \times 90 \mathrm{~mm}\). Reduced to \(£ 7.95\) SALE PRICE
£4.00

\section*{1W Amplifier - mono}


2914 Audio amp panel \(95 \times 65 \mathrm{~mm}\) with TBA820 chip. Gives 1 W output with 9 V supply. Switch and vol control. Just connect batt. and speaker. Full details supplied. Only \(£ 1.50 ; 10\) for \(£ 12.00\);
25 for \(£ 25.00 ; 100\) for \(£ 75.00\)
SALE PRICES
75p each; 10 £6.00


\section*{1W Amplifier - stereo}

Z915 Stereo version of above \(115 \times 65 \mathrm{~mm}\) featuring \(2 \times T B A 820 \mathrm{M}\) and dual vol. control.
£3.50, 10 for \(£ 30\),
25 for \(£ 65,100\) for \(£ 200\)
25 £32.50, 100 £ 100


2974 Mixer Amp Panel - \(115 \times 115 \mathrm{~mm}\) and gives 1 W O/P from a TBA820M chip. There are two inputs, one via a pre-amp, from phono sockets and separate volume controls. A third pot is used to fade from one input to the other. There are also \(24 p 3 w\) rotary switches. Attached to the PCB by flying leads is a panel on which are mounted the 2 input skts, \(2 \times 5\) pin DIN skts and 2 pin DIN speaker skt. A data sheet is supplied

All this for just \(£ 2.50\) SALE PRICE
£1.25


24134 Speaker remote control box. This is a cream case \(125 \times 95 \times 42 \mathrm{~mm}\) housing a 57 mm dia speaker and 2 control knobs, one for volume and one to switch main-remote-dual, the 3 core 6 m long lead enables volume to be controlled from chair or bed. Simple to fit, instructions included.
£3.95
£2.00


Z4135 'STETHOPHONE' mini stereo head-phones, complete with stereo jack plugs, 8R. Hinged complete with stereo jack plugs, 8R headband. SALE PRICE


Brand new and boxed, complete apart from case, the super high definition ( 1000 lines at centre) makes this monitor ideal for computer applications. Operated from 12 V DC at 1.1A. Supplied complete with circuit and 2 pots for brilliance/contrast + connecting instructions. Standard input from IBM machines, slight mod (details Standard input from IBM mach
included) for other computers included) for other computers. \(\quad\). Price £24.95 4 for \(£ 99.00\) SALE PRICE \(\quad £ 12.50 ; 4\) FOR £45.00

2494 Newbrain Motherboard. Micro-processor panel \(265 \times 155 \mathrm{~mm}\). Complete PCB for computer, Z80, EPROM, etc. 68 chips altogether + other associated components, plugs, sockets, etc. Brand new in original packing.
\(£ 5.50\)
£2.75
Z672 Newbrain motherboards. Complete but probably laulty.
£3.50 SALE PRICE

ع1.75
762068000 PANEL PCB \(190 \times 45 \mathrm{~mm}\) believed to be from ICL's 'one per desk' computer containing MC68008P8 ( \(8 \mathrm{MHz} 16 / 8\) bit microprocessor) +4 ROMs all in sockets. TMP52220CNL, 74HCT245, HCT138, LS38 \& LS08, also \(2 \times 20 \mathrm{w}\) SIL sockets \& \(2 \times\) 14w SIL sockets.
85.00 SALE PRICE

ع2.50

\section*{Set Topp Converter}


Z8828 Made by Thorn EMI, this was used to receive cable television. 2 part aluminium case \(211 \times 158 \times 82 \mathrm{~mm}\) (no front panel) contains 2 PCB's: (a) control board with multiway switch, dual 7 seg plug in display, couple of chips. (b) main board with mains transformer, tuner, RF section eic. Rear panel has input and output sockets. 2 m mains lead with moulded on 13A plug sock SAL E PR
84.50


2803 Auto Dialler. Sloping front case \(240 \times 145 \times\) \(90 / 50 \mathrm{~mm}\) contains 2 PCBs: one has 4 keypads (total 54 switches) +14 digit LED display. 2xULN 2004, ULN2033 and 4067; the other has 12 chips +4 power ULN2033 and 4067; the other has 12 chips +4 power
devices etc. Case contains speaker. For use with devices etc. Case contains speaker. For use with
PABXs, could probably be modified for exchange line. PABXs, could probably be modified for exchange line.
Needs 12 V ac supply Needs 12 V ac supply
\(\mathbf{8} 4.50\)


2819 Brand new and boxed, complete with co-ax \(T\) connector, aerial lead and instruction book. Only one snag - the remote control hand-set is missing. Size of smart wooden case is \(347 \times 187 \times 100 \mathrm{~mm}\). Mains operated. Old style BT plug. Made by Ayr Electronics, Model P
£22.00
SALE PRICE
£11.00


28862 Video game unit with 10 games, utilizing, the AY-3-8610 chip. Consists of 2 handheld units \(145 \times 60\) \(\times 45 \mathrm{~mm}\) made of light and dark grey high impact \(\times 45 \mathrm{~mm}\) made of light and dark gith \(0-9\), serve and plastic. Unit 1 has a control pans, 3 switches for bat size, ball speed and eset buttons, 3 switches for bat size, bal speed and sound on or off, and built in joystick. Unit 2 has a serve button and joystick. the two units have \(2 m\) of 5 core cable between them, and the 3 m lead from unit 1 has 3 \(\times 3.5 \mathrm{~mm}\) plugs; 1) \(7-5 \mathrm{~V}\) input; 2) audio out; 3) composite video out. Worth what we're asking just for the cases!
£9.95 SALE PRICE

Dual Sheet Feeder


28837EXXON DUAL SHEET FEEDER Z200. Overall \(395 \times 210 \times 285 \mathrm{~mm}\). Brand new and containing some very high class electronics. although of little practical use as it stands, it makes a great break down unit. It contains:
\(3 \times 12 \mathrm{~V} 36 \mathrm{R} 7.5^{\circ}\) stepper motors by Airpax and associated gear trains drive belt etc.
\(2 \times 12 \mathrm{~V}\) Solenoids
\(1 \times 12 \mathrm{~V}\) electronic buzzer
2 extremely sensitive micro-switches.
1 PCB containing \(4 \times\) TIP115, \(4 \times\) TIP110, \(2 \times 7407\), LM3302 comparator + T's. R's, C's, plugs, sockets etc. 1 control panel containing 4 LED illuminated push buttons + green LED on small PCB
\(1 \times O P B 703 A\) opto coupler
\(1 \times\) OPB7111 opto coupler
Obviously, a very expensive piece of machinery to produce - but once again our contacts in the trade have enabled GREENWELD to procure a few hundred for a fairly modest sum, allowing us to offer them at the bargain price of \(£ 24.95\) SALE PRICE
£12.50
Touch Pad


2811 Cumana Touch Pad for the BBC 'B' computer. This remarkable add-on enables you to draw on the screen using a stylus with the touch sensitive pad. Supplied with 2 stylii, power/data connecting lead and demo tape with 4 progs. Contains state-of-the-art electronics. Originally being sold at f 79.95 - but we can offer a limited quantity of these brand new and boxed for just
f19.95
SALE PRICE
\(£ 10.00\)
Fibre Optics


Scoop purchase of single and twin cable. For use with visible light or infra-red. Core 1 mm dia, overall 2.25 mm dia.

Single \(50 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}\) coil \(£ 4.00\)
Twin \(90 \mathrm{p} / \mathrm{m}\); 20 m coil \(\varepsilon 6.00\)
SALE PRICES
20M TWIN \(£ 3.00\)

the electronic football game of skill


Z817 Exciting electronic football game - Waddingtons' 'JIMMY'. Brand new models in full working order, but without plastic peripherals, stickers etc. Red plastic case 420 mm long \(\times 93 \mathrm{~mm}\) wide contains keypad and seven segment LED's to keep score either end. The centre section 'players' are represented by red 5 mm LED's, 14 altogether. The main chip is the TMS1000, programmed to make odd noises whilst playing and a tune when a goal is scored. Also inside are 13 plastic transistors, 57 mm 8 R speaker, power supply socket, R's, C's etc. Powered by 2xPP3 batts. Solo or dual play. Supplied with instruction sheet, playing field complete with coloured 'players'. Good fun to play as a game and good value for the electronics within. Originally retailed at \(£ 19.95\).
Only \(£ 5.00\)
Sale price
£2.50

\section*{SPEECH CHIPS}

SPO256A
Only \(£ 1.00\)
10 for \(\mathbf{£ 7 . 0 0 ~} 100\) for \(\mathbf{£ 5 0 . 0 0}\)
OTHER SEMICONDUCTORS:
See pages \(82-83\) of catalogue \(25 \%\) off all prices!!

\section*{POWER FET'S}

Pair of 140 V 100W Hitachi devices 2SJ49 \& 2SK134. List price \(£ 10.72\)
Our
Pire \(£ 6.00\)

\section*{SWITCH MODE PSU BARGAINS \\  \\ ASTEC Model AA12531 \\ I/P: \(115 / 230 \mathrm{~V}\) ac \(50 / 60 \mathrm{~Hz}\) \\ \(\mathrm{O} / \mathrm{P}: \mathrm{V}_{1}+5 \mathrm{v} 5 \mathrm{~A}\) \\ \(\mathrm{V} 2+12 \mathrm{~V} 0.15 \mathrm{~A}\) \\ Size: \(160 \times 104 \times 45 \mathrm{~mm}\) \\ Partially enclosed panel with fixing holes in steel case on \(120 \times 125 \mathrm{~mm}\) centres. \\ Inputs and Outputs are on colour coded leads; there is also an EEC socket on a flying lead. \\ \(£ 6.95\) \\ ASTEC Model AC9231 \\ I/P: \(115 / 230 \mathrm{~V}\) ac \(50 / 60 \mathrm{~Hz}\) \\ O/P: 50Watt max: \\ V1 + 12v 2.5A \\ \(\mathrm{V} 2+5 \mathrm{v} 6.0 \mathrm{~A}\) \\ V3 12v 0.5A (+ or -) \\ V4 5v 0.5A (+ or -) \\ Size: \(203 \times 112 \times 60 \mathrm{~mm}\) \\ Fully enclosed case with built in tapped mounting holes. \\ Inputs and Output pins on edge of panel. \\ \(£ 9.95\)}

\section*{KNOCKOUT KNOBS!!}

Sim to K9 - 19 mm high \(\times 20 \mathrm{~mm}\) dia with coloured tops.

Pack of \(25 £ 3.00\)

\section*{DISK DRIVE PSU KIT}

Ideal for powering single \(31 / 2^{\prime \prime}\) or 5 \(1 / 4^{\prime \prime}\) drive. Mains input, stabilized smoothed outputs, 5V@1A + 12V@1A. Simple, easy to assemble kit with all parts and full instructions. £4.95

\section*{PHONE YOUR ORDER THROUGH NOW - VISA \& ACCESS ACCEPTED. (0703) 772501}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{1989 CATALOGUE SALE PRICES BY PAGE NUMBER} \\
\hline P1-18 & 10\% off & P72 & All \(1 / 2\) price & P87 & Relays 25\% off \\
\hline P25 & 10\% off & P73 & All \(1 / 2\) price & & Rest 1/2 price \\
\hline P31-34 & 10\% off & & except SB15 & P88 & All \(1 / 2\) price \\
\hline P35-36 & 5\% off & P74 & All \(1 / 2\) price & P89 & All \(1 / 2\) price \\
\hline P55 & 10\% off & P75 & All \(1 / 2\) price & & except: \\
\hline P57-59 & 10\% off & P76 & All \(1 / 2\) price & & Z4072 25\% off \\
\hline P62-63 & 20\% off & P77 & All \(1 / 2\) price & & Z656 25\% off \\
\hline \multicolumn{2}{|l|}{BARGAIN LIST PAGES} & P78 & All \(1 / 2\) price & & Z802 20\% off \\
\hline P68 & All \(1 / 2\) price & P79 & All \(1 / 2\) price & P90 & All \(25 \%\) off \\
\hline P69 & All \(1 / 2\) price & P80 & All \(1 / 2\) price & P91 & All \(25 \%\) off \\
\hline P70 & SB17£1.00 & P81 & All \(1 / 2\) price & P92 & Z4100 £2.00 \\
\hline & Z8827 £2.00 & P82-83 & 25\% off & & Z488 £2.00 \\
\hline & Hi-Res Monitor & P84 & All \(1 / 2\) price & & J001-3 £1.20/10 \\
\hline & \[
£ 12.50
\] & P85 & All \(1 / 2\) price & & Rest 1/2 price \\
\hline & SB14 £1.50 & & All \(1 / 2\) price & P93 & All \(1 / 2\) price \\
\hline P71 & All 1/2 price & & except joysticks & P94 & All 1/2 price \\
\hline \multicolumn{6}{|c|}{1989 SPRING SUPPLEMENT SALE PRICES} \\
\hline P3-10 & 10\% off & & Rest 1/2 price & P26 & All 25\% off \\
\hline P12-13 & 10\% off & P24 & SB10 £2.00 & P27 & Z8862 1/2 price \\
\hline P15-17 & 10\% off & & Rest 1/2 price & & Rest 25\% offf \\
\hline P18 & 20\% off & P25 & Z4162 20\% off & P28 & All \(1 / 2\) price \\
\hline P19-22 & All 1/2 price & & Z4163 20\% off & P29 & All \(1 / 2\) price \\
\hline P23 & Z8858 20\% off & & Z4164 Sold out & P30 & 10\% off \\
\hline & Z4167 20\% off & & SB6 Sold out & P32 & Headphones all \\
\hline & Z8861 20\% off & & Rest 25\% off & & given away \\
\hline
\end{tabular}

\section*{VEROBLOC}

AMAZING OFFER!!
RRP £6.69
ONLY

\section*{\(£ 4.95\)}

\section*{ANTEX}

All Soldering Equipment
\(15 \%\) off!!

\section*{SOLDER}

16 g 500 gm reels resin-cored solder. Only £3.95; 10 reels \(£ 33.00\)


ELECTRONIC COMPONENTS

\section*{443D MILLBROOK ROAD, SOUTHAMPTON, SO1 OHX ORDERING INFORMATION}

All prices include VAT; just add £3.00 P\&P; Min order value £10.00. Official orders from schools welcome - Min invoice charge £10.00. Our shop has enormous stocks of components and is open 9-5.30 Mon-Sat. Come and see us!

\section*{HOW TO CONTACT US:}

By post using the address above; by phone (0703) 772501 or 783740 (ansaphone out of business hours); by FAX (0703) 787555; by E Mail Telecom Gold 72:MAG36026; by Telex 9312131093 (GWG)

\section*{Special Series}

\title{
STABIIIZED \\ POWER SUPPLIES
}

\section*{STEVE KNIGHT}


\section*{Part Three}

Apart from delving into the basic theory of p.s.u. design and potential problems, this short five part series will introduce three practical projects which are fairly simple to build and have reasonably good specifications.

The three stabilized units are: Variable OV to 12V 1.5A; Variable OV to 25V 1A; Variable 1.5 V to 25V, with switched current limits of \(0.5 \mathrm{~A}, 1 \mathrm{~A}, 1.5 \mathrm{~A}\) and 2 A .

THIS month we look at a couple of practical designs which are comparatively easy to make and not very heavy on the pocket. These are:
1. A fixed voltage stabilized power supply, presettable between 5 V and 15 V at a current output of 1A;
2. A variable-output stabilized power supply, fully adjustable from 0V to 12 V ( 15 V with a slight modification) at a current output of 1.5A.
Before we get down to details, however, a few words on transformers and their ratings will not be out of place.

\section*{TRANSFORMERS}

Transformers are essentially the only "awkward" components in most of the circuits to be discussed. True, there are plenty of transformers to be had, both conventional and toroidal, from all the usual component advertisers, but it is often very difficult or downright impossible to get one wound exactly to the secondary output requirements needed.

For some of the later projects to be covered in this series, specially wound transformers are essential and these can be obtained from the source mentioned in the Shoptalk page. In some cases off-the-shelf types can be used and suitable types and their suppliers will be mentioned as we go along.
Alternatively, there are transformer kits available with primaries already wound and a free secondary bobbin on which (with a suitable coil of wire) you can easily wind your own coil to give you the output or outputs you require. Full instructions are supplied with the kits and as only a comparatively few turns of stout gauge wire is needed, the work is no problem.
There is a point of some importance which should be appreciated when using an off-the-shelf transformer for any project. This is the stated current rating of the secondary (or secondaries). It is not necessarily correct to choose a transformer with a current rating which is the same as the d.c. output current you are likely to draw; it all depends upon the method of rectification you employ and the system of smoothing.
The current rating of a secondary winding is usually stated in terms of the r.m.s. continuous current. When this feeds into a


Fig. 3.1(a). Bridge rectifier with capacitive smoothing and (b) bi-phase rectification and smoothing.
bridge rectifier with capacitive smoothing (see Fig. 3.1a), the d.c. current available is roughly two-thirds of the stated r.m.s. rating; hence for a 1 A d.c. output, the r.m.s. rating should be at least 1.5 A .
The situation is different if a bi-phase rectifier is used with a centre-tapped transformer (see Fig. 3.1b); here the d.c. output can be identical with the r.m.s. rating. The \(V_{\text {a.c. }}\) here is measured across the total secondary. This is one of those things which, in the writer's experience, is often overlooked - inadvertently in most cases.

Generally no harm comes about from
using a transformer with, say, a 1 A rated secondary winding feeding into a bridge rectifier with capacitance, and drawing out a d.c. of 1 A . The transformer will run slightly warmer and its regulation will deteriorate a bit, but in most cases things will not end in disaster.
This statement is not made as a licence for bad practice! It is best in such cases as this to restrict the current output to twothirds the stated r.m.s. rating (if you can). There is no problem with the bi-phase rectifier, but it is a feature of good design practice to keep these points in mind.


\title{
FIXED VOLTAGE STABILIZED POWER SUPPLY
}

Using a small iron with a fine chisel bit, solder the pins into place. Some care is needed here to avoid bridging across tracks with solder but things are not so difficult as they might sound. How the regulators should look when soldered in position is shown in Fig. 3.5.

\section*{HEATSINK}

Now position the board on the heatsink so that the board is level with the top edge of the aluminium, and after making sure

T IS often useful to have a power unit I which provides a choice of either single or balanced outputs for TTL work (5V outputs) or for CMOS experiments ( 15 V outputs). As there are no panel controls on such a unit - apart from the mains on-off switch - details of a suitable board layout only are needed, and the selection of a suitable case to house the transformer and board (or boards) is simply a matter of personal taste - and finance.
The circuit diagram for the Fixed Voltage Stabilized Power Supply is practically identical with that given in Fig, 2.6 last month and is shown in Fig. 3.2. For this project we need a transformer with two secondary windings, each of 18 V to 20 V rated at 1.5A r.m.s. or anything above this, You can use a 1 A type if you wish, but you should restrict your d.c. output to some 700 mA .
The construction is made easy because everything except the mains transformer, on/off switch and output terminals are mounted on a single printed circuit board, including the "programming" potentiometers and the regulators. The board holds two identical circuits, and after assembly the outputs can be set to any voltage between 5 V and 15 V by adjustment of the potentiometers.

Further, by connecting the outputs in series (terminal B connected to terminal C) voltages between 10 V and 30 V are available, and by using the B-C connection as a common point, balanced supplies up to \(15-\) \(0-15 \mathrm{~V}\) are obtained. The outputs must not be paralleled.

With the components specified, the regulation of the circuit is better than 0.05 per cent per \({ }^{\circ} \mathrm{C}\) and the ripple is less than 10 mV peak-to-peak at 500 mA .

\section*{CONSTRUCTION}

Most of the components for 5 V and 15 V outputs are mounted on a single printed circuit board and the component layout and full size copper foil master pattern is shown in Fig. 3.3. Letters refer to points common to board and circuit diagram. This board is available from the \(E E P C B\) Service, code 654.

Fitting the components to the board is no problem, but make sure that the bridge rectifiers, diodes and electrolytic capacitors are in the right way round. Also make quite sure that the rectifier you obtain has its output leads in the order \(+\sim\) \(\sim\)-. There are bridge assemblies in which the order is \(\sim+\sim-\), and these won't do for this board. A fixing hole must be drilled to take a 6BA spacing screw.
The 7805 regulators (IC1) must be mounted on the copper side of the board, opposite to all the other components. This is because we have to bolt them to a sheet of aluminium which acts as a heatsink as well as the board support.

You will need a piece of 16 gauge


Fig. 3.2. Complete circuit diagram for the Fixed Voltage Stabilized Power Supply. This circuit can be preset for any output between 5 V and 15 V .
aluminium bent to the dimensions shown in Fig. 3.4 and this should preferably be given a coat of matt black paint. Some garages and car parts shops sell a heat resistant black spray and if you can get this, so much the better. But don't spray the bracket until you have drilled all the necessary holes, see later.

The pins of the 7805 regulators should be neatly bent at right angles at the point where there is change in the width of the pins, as Fig. 3.5 shows. The pins are then pushed carefully into the board (from the copper side!) so that the tips just protrude through onto the other side.
that the regulators are straight (you can adjust them slightly on the natural spring of their pins) mark through their fixing holes and also a suitable board spacer hole on to the aluminium. Put a 6BA screw through the board spacer hole and tighten with a nut. Add a further nut to act as an adjustment later on.

Drill out the three marked holes in the aluminium; the hole sizes for the regulators will depend upon the insulating bushes you have, but the assembly is shown in Fig. 3.6. It is vital that the holes for the regulators are completely free of burrs, particularly so if you are using silicone-rubber insulating



Fig. 3.4 (above). Drilling details and dimensions of the heatsink. The mounting holes are drilled later.

Fig. 3.6 (right). The completed assembly of the regulator and p.c.b. on the heatsink.

Fig. 3.5 (below). Method of mounting and soldering the regulator i.c. on the p.c.b.


Fig. 3.3. Printed circuit board component layout (left) and full size copper foil master pattern (above). Note the regulators are soldered on the track side of the board.
washers. A rub down with a very fine piece of emery paper followed by fine wire-wool will save frustration later on.
You will have to use the bushes supplied to determine the right size of hole. Looking at Fig. 3.6 again as your guide, the bush should fit firmly into the hole and a 4BA (or maybe a 6 BA ) screw is then inserted from the rear through the bush and a mica or silicone-rubber insulating washer placed against the aluminium on the other side. Mica washers require a smear of heat transfer compound; this is not necessary with the silicone type but a tiny dab can be used to keep the washer in place while you manipulate things.

The board is positioned so that the spacer screw passes through its appropriate hole about the centre of the heatsink and the regulators drop over the screws at the base of the heatsink. The board and heatsink are now bolted together by adding spring washers and nuts to the regulator fixing screws and tightening them firmly but not excessively. Make sure that the washers stay in position as you tighten up.

The board spacer nut can now be adjusted to make the board and aluminium parallel to each other when viewed from the side, and finally tightened and locked with a further nut from behind. Your completed assembly should now look as shown in Fig. 3.6.

One check must be made at this point: by some appropriate means, such as a multimeter set to ohms, ensure that the fixing screws of both regulators are insulated from the aluminium. This is where any carelessness in de-burring the fixing holes earlier on will find you out!

\section*{COWPDONENTS}

\section*{FIXED VOLTAGE UNIT}
(Each circuit requires)


Miscellaneous
S1 d.p.s.t. mains toggle switch
LP1 220-250V neon indicator
T1 Mains transformer type 00490
Printed circuit board, available from EE PCB Service, code EE654; case, Maplin type Blue 226; terminals, 4 mm socket type, 2 red, 2 black; aluminium heatsink, see text; connecting wire; solder etc.

It is a good plan, now that you've got the hang of putting this assembly together, to make up a second board which will give you a direct 5 V plus 5 V output. The same board print can be used and all you have to do is short-circuit the position of capacitor C3 and omit preset potentiometer VR1, simply connecting the junction of resistor R1 and diode D1 down to the negative line. A suitable transformer giving four secondary outputs, two of 8 V and two of 17 V to supply both boards is a vailable from Trent Coil Winding (see Shoptalk).
Incidentally, it is not necessary to solder the transformer input wires or the d.c. output wires to the board before mounting the board on the heatsink. All these connections come out to copper pads at the top edge of the board and the wires can be pushed through the holes and soldered in situ. Use stranded wire in preference to solid; \(7 / 02\) gauge is suitable.

\section*{BOXING UP}

The metal box mentioned in the components list does the job of holding both boards and transformer without difficulty, but there is no reason for not using an alternative (providing it isn't plastic!) if it will accept the parts. If you use the specified box, take out the internal chassis and bolt the transformer and the board assemblies directly down to the base.
The front panel can then be laid out as suggested in Fig. 3.7 using 4 mm sockets for the output points. By linking the sockets at the indicated points and using this as a common (zero) connection, balanced supplies of \(+5 \mathrm{~V}, 0 \mathrm{~V},-5 \mathrm{~V}\) and \(+15 \mathrm{~V}, 0 \mathrm{~V},-15 \mathrm{~V}\) (or whatever you want) are available. The


Fig. 3.7. Suggested fixed voltage unit front panel layout, providing single or balanced outputs.
mains on-off switch and neon indicator are also fitted to the front panel, the mains lead being taken in at the rear, via a sleeved grommet and a suitable retaining clip.

\section*{TESTING}

There is little testing to be done on this unit. All you need is a voltmeter and a high wattage resistance that you can use as a load. Set the programming potentiometers VR1 on the adjustable output board to mid position and, after switching on, simply measure the outputs at the appropriate terminals.
The 5 V outputs should be within \(\pm 0.2 \mathrm{~V}\) of that figure; for the other outputs, adjust each of the programming potentiometers to obtain the outputs you need. These will normally be either 12 V or 15 V for general CMOS op.-amp work, but you are the boss
here and you can set the outputs to what you need. If you are going to use balanced supplies, both outputs should, of course be the same.
A simple check that the regulators are working properly consists of putting on a load to each output and noting that the output voltage change is negligible. Select the load value (a high wattage resistor is suitable) so that the current drawn is about 1 A for each output.
The change in the output voltage will be noticeable when the load is switched in but it should not exceed about 0.1 V on the 5 V range or 0.2 V on the programmable range. This, of course, is a rough and ready check but it will show that the unit is working as it should. Those who are knowledgeable about such things will know how to make a more sophisticated test.

\section*{Constructional Project}

\title{
VARIABLE STABILIZED POWER SUPPLY
}

THE CIRCUIT diagram of the second project, a Variable Stabilized Power Supply, is shown in Fig. 3.8. Here a transformer is required giving an output of 15 V to 18 V at 2 A , plus a winding giving 5 V to 6 V at a current of 10 mA . The windings must be separate! A specially wound unit is available from Trent, see Shoptalk.

The main secondary output from the transformer T 1 is rectified by the bridge REC1 in the usual way and smoothed by capacitor C 1 . The peak voltage across C 1 can be up to 25 V if you use an 18 V transformer and a minimum working voltage of 35 V should be selected. The capacitor specified has such a working level and a rip-


Fig. 3.8 (below). The complete circuit diagram for the 0.12 V Variable Stabilized Power Supply.

ple rating of 3 A ; this last figure is as important as the former.
This unregulated supply is connected to the regulator system consisting of integrated circuit IC 1 and the series pass transistor TR2, with its base bias controlled by TR1. IC1 is a high gain amplifier functioning as a differential comparator.

The non-inverting input (pin 3 ) of IC1 is fed from potentiometer VR1 which is connected across the Zener diode D1. The Zener maintains a stable 13 V across its ends; the slider of VR1 can therefore be varied between 0 V and 13 V .
The inverting input (pin 2) to the IC1 is connected to the stabilized output of the supply. Whatever the potential at the slider of VR1 happens to be, this is compared with the output potential and any difference is detected and amplified by IC1
The output of IC1 then adjusts the base voltage of TR1 in such a way that the difference is reduced (theoretically) to zero. Hence the output voltage is held at whatever voltage setting has been selected by VR1.
A 13 V reference Zener is used as the output is always slightly less than this reference because of the drop across TR2. An output of up to 12 V can therefore be obtained. If the output tends to change for any reason, that change will be immediately corrected, hence the output will be stabilized.

\section*{THERMAL TRIP}

As this simple circuit does not incorporate a current limiting feature (as later designs will) a thermal trip X1 is included in the positive feed line following the rectifier. This will trip at a current of 2 A so the unit will be protected against inadvertant short-circuits or serious overload.

You can, if you wish, replace this trip with a panel mounted 2A fuse. This saves a few bob but is not so convenient as the trip and after a few blow-outs might lead to the insertion of a larger rated fuse because of the frustration. And hence to more expensive disasters!

Diode D2 across the output terminals is also protective in that it prevents reverse high voltage spikes from being fed back into the unit from inductive loads such as motors.

\section*{NEGATIVE SUPPLY}

So that the unit can be adjusted down to zero volts, a negative supply line is pro-


The completed unit showing front panel layout and lettering.
vided (see Fig. 3.8). This is obtained from the additional secondary winding of the transformer T1.

After rectification by the single diode D3, smoothing is carried out by capacitor C2 and Zener diode D4 maintains a steady 4.3 V feeding the negative supply pin (4) of IC1. The value of resistor R5 is given for the specified transformer; if you use an alternative transformer where the secondary may be greater than 6 V , you may have to modify this value to ensure that the Zener does not exceed its power rating ( 500 mW ) under no-load conditions.

The actual current drawn from this negative rail is very small (about 3 mA ) and there is no problem with the ripple rating of capacitor C 2 .

\section*{CONSTRUCTION}

The construction of the Variable Stabilized Power Supply is reasonably straight-forward with most of the components mounted on a single printed circuit board (p.c.b.). The full size copper foil master pattern for this board is shown in Fig. 3.9, together with the component positioning on the topside.

The complete printed circuit board for the variable supply unit. Note the two heatsinks on TR1 and the bridge rectifier REC1.


COMPONENTS
VARIABLE VOLTAGE UNIT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors} \\
\hline R1 & 1k5 \\
\hline R2, R3 & 6 k 8 (2 off) \\
\hline R4 & 4k7 \\
\hline R5 & 1 k 8 \\
\hline \multicolumn{2}{|l|}{All \(0.5 \mathrm{~W} 5 \%\) carbo} \\
\hline
\end{tabular}

\section*{Potentiometer}

VR1 \(5 k\) rotary carbon, lin

\section*{Capacitors}
\begin{tabular}{ll} 
C1 & \(2200 \mu\) axial elec. 35 V \\
C2 & \(470 \mu\) axial elec. 16 V \\
C3 & 220 nolyester \\
C4 & \(100 \mu\) axial elec. 25 V
\end{tabular}

Semiconductors
\begin{tabular}{ll} 
D1 & 13V 1.3W Zener \\
D2, D3 & 1N4001 (2 off) \\
D4 & 4.3V 500mWZener \\
TR1 & BFY50 non silicon \\
TR2 & 2N3055 (or 2N3771) \\
& npn silicon power \\
IC1 & 741Sop.amp \\
REC1 & \begin{tabular}{l} 
S0052A bridge \\
\\
\\
\\
rectifier
\end{tabular}
\end{tabular}

Miscellaneous
S1 d.p.s.t. mains togigle switch
LP1 220-250V neon indicator
ME1 \(0-15 \mathrm{~V}\) moving-iron meter, RS type 259-577
T1 Transformer type 00491 (Trent Coil Winding Co.)
Printed circuit board, available from EE PCB Service, code EE655; X1 circuit breaker, 2A thermal type; case, Maplin type Blue Case 237; Terminals, 4 mm type 1 red, 1 black; aluminium heatsink (2 off), see text; corrugated T039 heatsink; connecting wire; solder etc.

There is no close packing of the parts, and unless you prefer to obtain your board ready made, it is a simple matter to make one for yourself using either etch-resistant transfers or a careful hand drawing using a Dalo pen. A ready-drilled printed circuit board is available from the EE PCB Service, code EE655.
When assembling the board, great care must be taken to ensure that the rectifier REC1 is correctly orientated. It can go in any one of four ways and only one is the right way! The same applies to the Zener diodes D1 and D4, the diodes D2 and D3, and the electrolytic capacitors. Notice that C2 has its positive end to the "earth" or "chassis" line.
Fit Vero pins at positions XX, YY, TT, PQS and CBE for later wiring to the trans-
former T1, the trip X1, the control potentiometer VR1 and the pass transistor TR2 respectively. Fit a corrugated TO39 type heatsink to transistor TR1. Also fit pins to the plus and minus output points. Drill two 4BA clearance holes at points K.
A small heatsink for the rectifier REC1 itself is recommended if you are thinking of drawing currents up to 1.5 A for any extended period. This is a simple piece of 16 gauge aluminium 3 in . \((76 \mathrm{~mm}\) ) long by 1in. ( 25 mm ) wide, bent as shown in Fig. 3.10 and secured to the rectifier by way of its central hole and a countersunk 4BA screw and nut. Do this before soldering the rectifier to the board!
Once everything is on the board, it has to be fitted to the main aluminium heatsink which carries the power transistor TR2.


Fig. 3.10. Mounting the small ( \(76 \mathrm{~mm} \times 25 \mathrm{~mm}\) ) 16 gauge aluminium heatsink on the bridge rectifier.


Fig. 3.9. Full size printed circuit copper foil master pattern and topside component layout for the variable power supply. A small T039 "corrugated" heatsink should be placed over TR1 - see photos. This board is available through the EE PCB Service, code EE655.



Fig. 3.11. Drilling details and dimensions of the main aluminium heatsink.
The aluminium is cut, bent and drilled to the dimensions given in Fig. 3.11 and then sprayed matt black as for the earlier project. You can use your mica or silicone-rubber insulating washer as a template for the transistor mounting holes, making sure there is adequate clearance round the base and emitter pins.
The board is now placed against the heatsink and the two 4BA fixing hole positions marked through; keep the top edge of the board in line with the top edge of the heatsink. None of this is particularly critical and can be judged by eye well enough.

The 2N3055 transistor should now be mounted on the aluminium, using the usual insulating bushes and washer. A soldering tag is fitted under the upper nut so that connection can be made to the collector (the case) of transistor TR2.

Fig. 3.12. Mounting the circuit board on the main heatsink.


Check that the transistor is not shorting to the aluminium, and then solder flexible leads to the collector tag and the base and chassis. The board must clear the front panel components.
emitter pins for later connection to the board. Use three colours for this so as to avoid any future confusion.

The board can now be screwed to the heatsink using half-inch spacers and the three leads from TR2 brought over the top edge of the board and soldered to the appropriate Vero pins at the points \(\mathbf{C}\) (collector). B (base) and E (emitter). Fig. 3.12 shows the general appearance of the completed mounting.

\section*{BOXING UP}

The case mentioned in the components list makes an attractive housing for this power supply, but any alternative may be used provided it measures at least 8 in. ( 203 mm ) by 4 in . ( 102 mm ) by 6 in . ( 152 mm ) back to front. The front panel carries the meter (which is optional - you may prefer to calibrate directly onto a panel scale), the thermal trip X1, the voltage control VR1, the mains on/off switch and indicator neon and the d.c. output terminals.

If you use the specified case, the transformer and the printed board should be mounted on the internal chassis provided with these cases in the positions indicated in the photographs. Exact placings are not


Positioning of the mains transformer, p.c.b. and heatsink on the internal



Fig. 3.13. Interwiring to front panel mounted components. Letters relate to points on the p.c.b.
critical but should be as far to the rear of the chassis as possible so that room is left for the inwardly projecting components mounted on the rear of the front panel.

\section*{INTERWIRING}

A suggested front panel layout is shown in the photographs; lettering can be carried out using Letraset or other systems before mounting any of the components. With the internal chassis now screwed into the case,
interwiring between the p.c.b., the transformer secondaries and the panel can be quickly made; the panel interwiring is shown in Fig. 3.13.

A word at this point about the meter: the one used in the prototype is a moving-iron meter, scaled \(0-15 \mathrm{~V}\). These meters are quite cheap as analogue instruments go these days and the fact that the scale is nonlinear and the movement does not have the "smoothness" found in more expensive
moving-coil units is no great hardship in the present usage. Over the bulk of the scale length there is a good approximation to linearity, anyway, and it does tell you what is coming out of the terminals!
If you wish to use a moving-coil meter, you will have to hunt around to find one scaled \(0-15 \mathrm{~V}\) (or thereabouts); alternately, you can rescale one of the many units available from advertisers. Choose a 1 mA basic meter, then add a series resistor to convert it to a voltmeter to suit the new scaling. A small preset is useful here.
You can if you wish, of course, omit the meter entirely and draw yourself a panel scale calibrated \(0-12 \mathrm{~V}\) (or \(0-15 \mathrm{~V}\) ). It is not a difficult job to mark a scale off against an external voltmeter as monitor.

\section*{TESTING}

There is little to go wrong with this simple power unit and it should work correctly right away. If you want to get up to 15 V output, replace D1 with a 16 V type, and you may have to replace D4 also with a 4.7 V type. Nothing else needs any modification.
Typical voltage levels are shown in the circuit diagram of Fig. 3.8. These can be used as a guide if the unit does not work properly and will probably enable any gross fault to be quickly located.
The most likely causes of difficulty are the old favourites of reversed diodes or electrolytics, so watch out for these particularly. The output current is nominally 1.5 A as maximum, but 2 A can be drawn for periods not exceeding ten minutes or so.

NEXT MONTH: We will describe power supply units, with current limiting, which will give us outputs up to 30 V

\section*{NEW
OUT Now!}

Over 3.000 product lines feature in the Summer 1989 edition of the Cirkit Constructors' Catalogue. available from most larger newsagents or direct from the company priced at £1.50. The latest books. an RF frequency meter. two new PSU designs, a 3.5 MHz converter and a 2 Watt stereo amplifier are among the innovative new kits this issue. In the test
 equipment section there's a whole new range of multimeters, a bench DVM and a triple output PSU.
For eagle-eyed readers there is the opportunity of winning an audio signal generator worth more than \(£ 180.00\) in the latest fiendish competition. All prices now include VAT for quicker, easier ordering: and Cirkit's same-day despatch of all orders. combined with value-for-money discount vouchers. makes the line-up \(\square\) even more attractive. even more attractive



Make the most amazing range of sounds with this special price Super Sound-FX Micro. Just press a few buttons to reproduce all the following sounds plus various musical notes, etc:
\(\star\) Steam train \& whistle
\(\star\) Continuous train
\(\star\) Hovering helicopter
\(\star\) Electronic fly
\(\star\) Police car siren
\(\star\) Foghorn
\(\star\) Trimphone
\(\star\) U.F.O.

£7.95
\(\star\) Alien communicating
\(\star\) Rally car reving
\(\star\) Rally
These incredible sound routines are already mask programmed into the G.I. microprocesor which forms the heart of the unit.

The kit comes with a fully built p.c.b. just wire up the switches, one resistor and the loudspeaker to get all the noises you could want!

ALL PRICES INCLUDE VAT
Post to: EE SOUND FX OFFER, ITRON U.K., Castle Mill, Lower Kings Road, Berkhamsted, Hertfordshire, HP4 2AD
\begin{tabular}{|l|l|l|}
\hline Quantity & & Value \\
\hline & SOUND FX KITS & \(\mathbf{£}\) \\
\hline \multirow{3}{*}{} & Add postage & \(\mathbf{0 . 9 5}\) \\
\hline & Total & \(\mathbf{£}\) \\
\hline
\end{tabular}

Please make cheques payable to Itron U.K.

\section*{Name}

Address

OFFER CLOSES FRIDAY AUG. 25, 1989

\section*{ALL PRICES INCLUDE VAT}

Post to: EE SOUND FX OFFER, ITRON U.K., Castle Mill, Lower Kings Road, Berkhamsted, Hertfordshire, HP4 2AD


\section*{TUNING DIODES}

RECENTLY, in the course of developing a simple short wave receiver, I tried to substitute a variable-capacitance diode (Varicap) for the conventional tuning capacitor. At first it seemed to work, but on closer acquaintance defects appeared. Tuning was erratic. The audio signal was distorted. Mains hum was audible. These imperfections became apparent when the receiver's regeneration (reaction) was adjusted to give as much gain and selectivity as possible.

Evidently my tacit assumption that a Varicap is just a straightforward alternative to an ordinary variable capacitor was incorrect. It was time to review what knowledge I had of Varicaps and try to figure out what was going wrong.

\section*{DEPLETION LAYER}

Any pn junction diode has capacitance. When unbiased, current carriers move to either side of the junction area, leaving a layer of semiconductor material which is more or less free of holes or electrons and can act as a dielectric.

If the junction is reverse-biased by an external voltage, the depletion layer widens. This is like pulling apart the plates of a capacitor, so the capacitance falls.

The effect of reverse bias on capacitance for a silicon junction diode made by the technique known as epitaxy is shown in Fig. 1. The "diode" is actually the base-emitter junction of a BC168 transistor.

The amount of capacitance change which can be obtained is rather small. Other manufacturing techniques yield better voltage sensitivity and sometimes more conveniently shaped curves.

The Varicap I was using (KV1235) is really intended for long and medium wave receivers. When placed in circuit (Fig. 2) with one particular inductor it gave a frequency range shown. This indicates that a three-to-one frequency ratio is obtainable for a voltage change of less than 9 V : a convenient performance for battery radios.

This type of Varicap is sold in groups of three, matched so that the sam"e vole tage applied to each one gives the same
capacitance within a small percentage. In a superheterodyne receiver, at least two Varicaps are needed, one for signal circuit tuning and one for local oscillator tuning. My short wave receiver has only one tuned circuit so a single diode would suffice - if it worked.

Varicaps have the advantage over mechanical tuning elements that the actual tuning control (usually a potentiometer) can be remote from the tuned circuit. This gives the designer a free hand in laying out his circuitry.

\section*{SIGNAL VOLTAGE}

A Varicap will respond to any voltage which reaches it, d.c. or a.c. The intended voltage is the d.c. tuning voltage \(V_{T}\), but also present is the signal


Fig. 1. How the capacitors of a pn junction changes with reverse bias.


Fig. 2. Tuning curve for a KV1235 Varicap.
voltage. This puts an a.c. wobble on the d.c., pushing the tuning high on one half cycle and low on the next.

If the signal voltage is very small compared with the tuning voltage the effect is negligible. It must, however, be significant if the signal becomes large. A large signal superimposed on the tuning voltage is shown in Fig. 3.

Because of the way the \(C N\) curve bends, negative half-cycles have a greater effect that positive ones. The result is that as the signal voltage is increased the tuning is pulled lower in frequency.

To see what this means in practice the simple test circuit shown in Fig. 4 was used. Here, a signal generator with a comparatively high output voltage is loosely coupled to the tuned circuit formed by \(L\) and the capacitance of the Varicap \(D_{T} 1\).

The voltage across the tuned circuit is rectified by an ordinary diode D2 and


Fig. 3. A.C. signal superimposed on d.c. tuning voltage.
monitored with a high-resistance d.c. voltmeter. With small signals the rectified voltage changes with frequency to give the usual sort of resonance curve (A).

When the signal voltage across \(L\) is raised so that it is an appreciable fraction (e.g. one third) of the tuning voltage, the resonance curve changes to (B). Here, on the low-frequency side of the true resonant frequency, there is a steep jump as the signal pulls the tuning towards itself.

\section*{EFFECTS}

This behaviour can have seriqus, effects in a radio receiver. It makes the tuning point vary with signal strength. If the signal is amplitude-modulated, the tuning must change over each modulation cycle, going lower in frequency at the envelope peaks and staying put at the troughs.

This makes for distortion of the audio component of the rectified signal. Worse, if there happens to be a strong unwanted signal on the low-frequency side of the wanted signal, the unwanted signal will pull the tuning.

If strong enough it may capture the tuning and force the signal circuit of the receiver to become tuned to itself. If too weak to capture the tuning but still strong enough to have some effect the modulation of the unwanted signal may wobble the tuning to and fro, with the result that the wanted signal becomes


Fig. 4. Test circuit and curves showing effects of large a.c. signals.
amplitude-modulated by the unwanted one.
If any stray mains voltage is mixed up with the tuning voltage there will be fre-quency-modulation of the tuning. This shows up as hum on the signal, after rectification. In the same way, if any audio signals from later stages in the receiver find their way into the tuning voltage source they cause distortion.
In a regenerative receiver, where positive feedback of the radio-frequency signal is used to improve gain and selectivity, all these effects tend to be exaggerated. One result can be a form of instability in which a gentlyoscillating receiver amplitude-modulates itself at a low frequency.

\section*{REMEDIES}

The obvious remedy is to ensure that signal levels don't become large enough to upset the Varicap. In a normal receiver where the aerial circuit is the only one tuned to the signal and there is no regeneration, signal levels will be low enough to be harmless (unless you happen to live near a transmitter). Varicaps are also used to control the frequency of the local oscillator, where the r.f. voltage must be relatively high to make the receiver work.
One possible remedy might be to design the local oscillator on the lines of Fig. 5a. Here, the amplifier part of the oscillator circuit is followed by a voltage limiter which ensures that the voltages fed back to the Varicaps in the tuning part are safely low.
Another ploy (Fig.5b) is to use two Varicaps connected back-to-back across the tuning inductor \(L\). When the oscillation voltage drives the capaci-


Fig. 5. Reducing signal-voltage effects: (a) by limiting the a.c. component; (b) by using back-to-back tuning diodes.
\(85215<6\)
(b)
tance of \(D_{T} 1\) high, the effect of \(D_{T} 2\) is the reverse. So the unwanted changes in capacitance tend to cancel one another. Also, since the r.f. voltage is shared by the diodes there is less of it across either than in the single-Varicap circuit.
Having tried this back-to-back method in my test circuit, the pulling effect was reduced but not eliminated. (This is to be expected. The two Varicaps cannot give perfect cancellation of unwanted capacitance changes.) So, although back-to-back may be good enough for many applications it's not a cure-all.

A third remedy is to use high-voltage Varicaps so that the signal can never
become comparable with the tuning voltage. Virtually every TV receiver these days has high-voltage (say 30 V ) Varicaps in its front end, and so do some v.h.f./f.m. receivers. There are also a.m. receivers whose local oscillator frequency is created by frequency synthesis. These systems often have a voltage-controlled oscillator (VCO) and this may use a Varicap. They work.

That's fine, but it doesn't help me. Even with both a voltage limiter and back-to-back diodes my short wave receiver tells me very clearly that Varicaps are not for it. So it's back to the clumsy old tuning capacitor for me. Ah, well, it was fun finding out.

\section*{electromize \\ MICRO-PRESSURE CAR ALARM KIT \\ CHECK THESE FEATURES}
* Micro-Pressure intruder detection.
* Operates on all doors and tailgate.
* No door switches needed.
* Automatically armed 1 minute after leaving vehicle.
\(\star 10\) second entry delay with audible warning.
\(\star\) Sounds hom Intermittently for 1 minute.
\(\star\) Easy fitting - only 3 wires to connect - no holes to drill.
\(\star\) Compact design can be hidden below dashboard.
* Low power drawn from horn circuit - no supply connections.
* All solld state Power MOSFET output - no relays.

This new design employs a unique pressure sensing system to activate the alarm. As any vehicle door is opened, air is drawn out, causing a minute drop in air pressure. A sensor defects this sudden pressure change and sets off the alarm.
Fitting is extremely simple. Only two wires connect to the horn cifcuit, switching the horn and also powering the alarm. The low power circuit draws less than 2 mA . A single control wire connects to the ignition circuit or hidden switch to arm the system whenever the vehicle is left.
As with all Electronize kits everything is included, highquality components and clear, easy to follow instructions, and all for the lowest possible price.
\begin{tabular}{lll} 
MICRO-PRESSURE ALARM KIT & \(£ 12.95\) \\
ASSEMBLED READY TO FIT & \(£ 18.95\)
\end{tabular}\(\left\{\begin{array}{l}\text { Please add } £ 1.00 \\
\text { postage \& packing }\end{array}\right.\)

Alsó Available
TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION
Extended CDI System
\(\begin{array}{ll}\text { DIY PARTS KIT } & £ 18.95 \\ \text { ASSEMBLED READY TO FIT } & £ 24.90\end{array}\left\{\begin{array}{l}\text { Please add } £ 1.00 \\ \text { postage \& packing }\end{array}\right.\)
Send for details or order from:
ELECTRONIZE DESIGN Tel: 0213085877 2 Hillside Road, Four Oaks, Sutton Coldfield, B74 4DQ

\section*{SUBVBDTMANCB PRODFBSSIONAL, (DUADHY KTIS}

A range of high quality kits as supplied to leading UK security companies, all in-house designed and produced, not to be confused with cheap imports. All kits come fully documented with concise assembly and setting-up details, fibreglass PCB and all components. All transmitters are fully tuneable and can be monitored on a normal VHF radio or tuned higher for greater security. All units available ready built if required.
MTX. Micro-miniature audio transinitter. \(17 \mathrm{~mm} \times 17 \mathrm{~mm}\). 9 V operation. 1000 m range operation. \(2-3000 \mathrm{~m}\) range
VOX75. Voice activated transmitter. Variable sensitivity. \(30 \mathrm{~mm} \times 40 \mathrm{~mm} . \mathrm{gV}^{\mathbf{2}} 12.95\) operation. 1000 m range ... CTX900. Sub-carrier scrambled audio transmitter. Cannot be monitored without decoder fitted to radio. \(30 \mathrm{~mm} \times 40 \mathrm{~mm}\). 9 V operation. 1000 m range \(\ldots . . . . . \mathbf{£ 1 8 . 9}\) DSX900. Sub-carrier decoder unit for monitoring CTX900. Connects 10 2V earphone socket. Provides output for headphones. \(35 \mathrm{~mm} \times 50 \mathrm{~mm}\). 9 -12..................................................................................................
operation HVX400. Mains powered audio transmitter. Connects directly to 240V AC supply. \(30 \mathrm{~mm} \times 35 \mathrm{~mm}\). 500 m range XT89. Crystal controlled audio transmitter. High performance. 100 mW output. Supplied with xtal for 108 MHz . Others available to 116 MHz . \(85 \mathrm{~mm} \times 28 \mathrm{~mm}\). 9 V operation. 2-3000m range ...................................................................... \(\mathbf{E 2 9 . 9}\) TKX900. Tracker/Bleeper transmitter. Transmits continuous stream of audio
 operation. 2-3000m range ATR2. Micro size telephone recording interface. Connects between telephone
line (anywhere) and cassette recorder. Tape switches automatically with use of line (anywhere) and cassette recorder. Tape switches automatically with use of
phone. All conversations recorded. Powered from line \(10 \mathrm{~mm} \times 35 \mathrm{~mm} . . £ 10.95\) phone. Al Micro miniature telephone transmitter. Connects to line (anywhere) switches on and off with phone use. All conversations transmitted.
\(20 \mathrm{~mm} \times 20 \mathrm{~mm}\). Powered from line 1000 m range ................................. £10.95 XML900. RF bug detector. Variable sensitivity. Triggers LED and bleeper when in presence of RF field. Detects MTX \(15-20\) feet. \(55 \mathrm{~mm} \times 55 \mathrm{~mm}\). 9 V operation
XL7000. Professional bug detector/locator. Variable sensitivity. Twin mode ten segment LED readout of signal strength with variable rate bleeper. Second mode distinguishes between localised bug transmission and normal legitimate signal such as pagers, cellular etc. \(70 \mathrm{~mm} \times 100 \mathrm{~mm}\). 9 V operation

> UK customers please send cheques, PO's or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing fomcheque clearance. Overseas customers send sterling bank draft or Eurocheque and add \(£ 5.00\) per order for shipment. Credit card orders accepted on 0827 714476 . Full catalogue available on receipt of 28 p stamp. Trade enquiries welcome.


0827714476

\title{
ysu City and Guilds Introducing DIGITAL ELECTRONICS \\ \\ Part 12 Sequential Logic
} \\ \\ Part 12 Sequential Logic
}

\section*{By Michael J. Cockcroft Training Manager, Peterborough ITeC}

THis concluding article in the series expands on previous treatment of electronic logic to round off our introduction to digital electronics. The following are the remaining City and Guilds objectives (the section 8 objective are not dealt with in this part but have all been covered at one time or another throughout the series):
6.2 Flip-Flops
6.2.1 State the need for a flip-flop.
6.2.2 Describe, in very simple terms, the action of a ' \(D\) ' type flip-flop.
6.2.3 Draw the block symbol for a simple ' \(D\) ' type flip-flop and label the inputs and outputs.
6.2.4 Verify the operation of a simple ' \(D\) ' type flip-flop in conjunction with a breadboard or logic tutor.
6.2.5 Describe a typical application of a 'D' type flip-flop.

\section*{7. Logic Systems}
7.1 Combinational and Sequential
7.1.1 Distinguish between combinational and sequential systems.
7.1.2 Derive truth tables for a variety of combinational systems assembled on a breadboard or logic tutor including:-
Tandem arrangements of inverters (NOT gates)
Combinations of two-input AND, OR, NAND or NOR gates Combinations of two-input AND, OR, NOR or NOT gates
7.1.3 Construct, on a breadboard or logic tutor, a binary half-adder using a combination of the basic logic gates and verify its operation.
7.1.4 Construct, on a breadboard or logic tutor, a four-stage asyn-
chronous binary up-counter using data type flip-flops and verify its operation.
Last month we looked at digital electronics as a general concept and, in particular, at how digital circuits are formulated using combinational logic devices such as AND, OR and NOT gates. We used the binary number system as a systematic method of providing, in the form of a truth table, a precise statement of a logical argument; for example, the decisions involved in the two-way light switch system that turned a light on if either (but not both) of the switches were closed. This month we investigate sequential logic.

\section*{Combinational and Sequential Logic}

Combinational logic circuits are made up of basic (or networks of) gates from SSI devices and are restricted to the simple conversion of binary input patterns to specified binary outputs. This means that, for combinational logic, an output (accoording to the truth table) depends on, and changes at any time according to, its binary input pattern.

As an example, consider the combinational circuit of Fig. 12.1; here, the variation of inputs and outputs with time are shown by a graph. Twice the switch is momentarily depressed for different durations causing input \(A\) to follow suit going low twice and making the output of the NOR gate high for the same time periods.

In contrast to this is the sequential
logic circuit of Fig. 12.2 whose output does different things depending on what went on previously with respect to the applied input; if the last input

\begin{tabular}{c|c|c}
\(a\) & \(b\) & OUT \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
\(p\) & 0 & 0 \\
1 & 1 & 0
\end{tabular}

SECOND SWITCH

A COMBINATIONAL CIRCUIT CHANGES OUTPUT AT ANY TIME ACCORDING TO ITS INPUT.
EE2198G
EE2198G

Fig. 12.1. Combinational circuit operation


Fig. 12.2. Sequential circuit operation
caused the output to go high then the next input will cause the output to go low, if the last input caused the output to go low then the next input will cause the output to go high. In other words, the output always does the opposite to its previous aotion. Sequential circuits, by definition, are circuits whose present outputs depend on the present inputs influenced by the history of their past inputs.

Of the two types of logic, combinational is the more primitive because it does not have the ability to remember previous inputs. Many digital networks, particularly those dedicated to counting or timing operations, require sequential devices to allow the action of progressing sequentially through a number of states. What sequential devices possess that combinational devices do not is memory.

\section*{Memory}

What is memory? Anything that has the ability to record an event can be said to possess memory. Events can be recorded in a number of ways; by pencil and paper, magnetic tape, even a photograph. Anything that can remember (store) the effect of an input after the input has been removed can be regarded as memory.

In digital electronics we use feedback to store events. Feedback is not entirely new to you (although you may not know it) because we used it in the experimental relay circuit of Part 6 (reproduced here as Fig. 12.3) to latch the relay contacts closed after the release of the push button switch. This circuit can be regarded as a basic memory device; the output (the closed relay contacts) is fed back to


Fig. 12.3. Relay latch circuit


Fig. 12.4. Feedback provides memory


Fig. 12.5. The RS flip-flop
the input (the switch) to maintain the flow of current forever, or at least until the power is removed.

Similar feedback can be applied to combinational networks, as shown in Fig. 12.4, to provide them with memory and therefore a sequential action. The output is fed back to one of the gate inputs to allow the input action
to be stored - in the diagram, switch A sets (and latches) the output high, and switch B latches the output low. Using combinational logic devices to produce sequential actions, however, is not always practical since, for many purposes, sequential devices offer a cheaper and simpler solution.

\section*{Bistables}

Sequential devices always incorporate memory, and the most simple memory device is the bistable or, as they are usually called, the flip-flop or latch. A bistable latch is essentially a binary storage device and, as such, is required to accept and hold a binary state for an unlimited period until directed to do otherwise.

The simplest bistable is the R-S flipflop which has two inputs and two outputs, as shown by its symbol in Fig. 12.5. The \(R\) and the \(S\) labels at the inputs stand for Reset and Set respectively: a flip-flop is reset if its \(Q\) output is at logic 0 and it is set if \(Q\) is at logic 1. The \(\overline{0}\) output is at all times in the opposite logic state to the Q output. A pulse to the R input latches the flipflop in the reset condition and a pulse to the \(S\) input latches the flip-flop in the set condition.

There are two types of R-S flip-flop, as shown in Fig. 12.6. A logic 1 to the R input of Fig. 12.6a resets \(Q\) to 0 , and a high to \(S\) sets \(Q\) to 1 . Because the Reset and Set inputs are activated by a logic 1 they are said to be active high inputs.

An active low R-S flip-flop configuration is shown in Fig. 12.6b. The NAND configuration requires a logic 0 at the Reset input to reset the flipflop, and a logic 0 at the Set input to set the flip-flop.

R-S flip-flops are limited in their usefulness because, as shown by their truth tables, the \(R\) and \(S\) inputs are never allowed to assume the active state at the same time. If a system uses R-S latches the circuit must be designed such that it is impossible to activate both inputs simultane-


Fig. 12.6. Two types of RS flip-flop


Fig. 12.7. The D type flip-flop

* output after receipt of a clock pulse (b)

EE22056
Fig. 12.8. D type flip-flop symbol


Fig. 12.9. Pin outs of the 7474 and 4013


Fig. 12.10. Circuit to demonstrate the D type flip-flop
ously, otherwise it would give rise to ambiguity as to the systems correct operation. For this reason, R-S flipflops as i.c. devices are less common than other flip-flop types.

\section*{D-Type}

They do however, form part of all other available MSI flip-flop circuits; as in the D-type flip-flop, for example, as shown in Fig. 12.7. The D-type flipflop, as indicated by its symbol in Fig. 12.8a, has a data input (D), a clock input (CLK), a set direct input (S), a reset direct input ( R ), and two outputs ( Q and \(\overline{\mathrm{Q}}\) ). Operation of this device is very simple: the logic level at the D input is transferred to the O output after receipt of a pulse at the CLK input. The O output can be set directly (set to \(\mathrm{Q}=1\) ) by applying a pulse to S or reset directly (reset to \(\mathrm{O}=0\) ) by applying a pulse to \(R\). The \(\overline{\mathrm{C}}\) output is always in the opposite state to (the logic compliment of) Q .
Two example D-type flip-flop i.c.s are the TTL 7474 and the CMOS 4013 devices, the pin-outs of which are shown in Fig. 12.9 (notice that there are two flip-flops per i.c. device). The operation of D-types can be better understood by constructing the circuit of Fig. 12.10 on breadboard and observing its action. Precautions must be taken, as outlined under Static Sensitive Devices below, when assembling this circuit because it uses CMOS i.c.s which are sensitive to static discharge.

\section*{Demo Circuit}

The circuit uses half (just one of the two flip-flops) of a CMOS 4013 device to demonstrate the "flipping to the high state and flopping to the low state" action of the flip-flop. The push-button switch \(S\) when first activated turns the l.e.d. on, the next depression turns it off, the next turns
it on again - and so on. The I.e.d. is wired to illuminate when the Q output is high.

When power is first applied to the circuit, C1 charges through R1 to provide what is called a power-up-reset pulse to the flip-flop's reset direct pin. This technique is very often used in digital circuits to force sequential devices to a known state when power is switched on.
The power-up-reset pulse can be seen by connecting the probe of an oscilloscope or logic probe to pin 4 of the i.c. before applying power to the circuit. The set direct input of the 4013 is not used in this application so it is connected to \(O V\) (we say the input is tied low: all the unused inputs of CMOS devices must be tied high or low, otherwise they can cause undefined output levels).
Now, since \(Q\) has been reset ( \(O=0\) ), \(\overline{\mathrm{O}}\) must be high \((\overline{\mathrm{O}}=1)\). \(\overline{\mathrm{O}}\) is wired to the \(D\) input pin, so, on the next pulse to the clock input at pin 3 (by depressing \(S\) ), the high at \(D\) will be transferred to 0 turning the I.e.d. on. When \(\mathrm{Q}=1, \overline{\mathrm{Q}}=0\) so the D input is always in the opposite state to the l.e.d.; waiting for the next depression of \(S\) to turn it off if it is on and on if it is off.

\section*{Debounce}

The purpose of the two inverters in this circuit (Fig. 12.10) is to suppress the effects of the switch contacts vibrating (bouncing) when they first come into contact with each other. Without this "switch debounce" part of the circuit an undefined number of pulses, rather than the single one intended, will be applied to the CLK input and the circuits action will be unpredictable. You can remove the feedback link between pins 3 and 4 of the 4049 to show how the circuit reacts without the debounce.
The graphs in the diagram of Fig. 12.11 show what the signal looks like


Fig. 12.11. Debounce circuit


Fig. 12.12. Debouncing with flip-flops


EE2219G

\section*{Fig. 12.13. CR filtering}
at either side of the debounce circuit. As soon as the input switch changes state the output of the second inverter (2) feeds back to lock it in the state according to that switch position (the feedback acts like the relay circuit of Fig. 12.3), thus ignoring the spurious signals from the switch contacts.

R-S flip-flops can also be used for
switch debouncing, as shown in Fig. 12.12. Connection of the "common" switch contact is either to 5 V or 0 V depending on whether the cross coupled gates are NAND or NOR.
There is another way of debouncing switches using a capacitor and a resistor. This method is shown in the circuit of Fig. 12.13a, the graphs in the figure show what the signal looks like before (b) and after (c) CR filtering. The superfluous pulses are smoothed out by the CR network and the CLK input of the flip-flop only sees the one pulse as shown in Fig. 12.13d.

\section*{Registers}

A number of flip-flops can be grouped together to form a single storage unit, as shown in Fig. 12.14. Such a group of flip-flops is called a register, the purpose of which is to store a binary number. There must be one flip-flop for each bit in the binary number, so the 4 -bit register in the diagram is capable of holding any of


Fig. 12.14. Flip-flops wired to form a register


\section*{Static Sensitive Devices}

There are recommended handling precautions for CMOS integrated circuits (in fact all "metal-oxide semiconductor" [MOS] devices) because they are sensitive to static discharge. Anything greater than 100 V can damage the oxide insulating layer inside these devices. If the handler is charged up with static electricity (by, say, synthetic carpets) with respect to the bench surface, voltages much greater than this can be generated and discharged through the i.c. chip.

The protection of static sensitive devices is taken very seriously in industry. Special areas are often set up where anyone handling MOS components are connected (by conductive wrist straps) to a ground
point. Work-benches, tools and soldering iron tips in the SHA (Special Handling Area) are also connected to earth and devices are stored and transported in conductive material so that all their exposed leads are shorted together.

Typical SHAs contain work-areas equipped with the special mats and straps shown below. Precaution areas are usually indicated by the Static Sensitive Area standard symbol (also shown).

Of course, the student/hobbyist is
not expected to take these kind of precautions; after all, the worst that can happen is a damaged i.c. It is important in industry because companies will not, understandably, compromise the performance or reliability of their products.
It is possible to handle i.c.s without ever touching the leads (only handle the plastic [or ceramic] package). If you remember to do this, and not to remove i.c.s while the power is applied, you will probably never damage a device.

sixteen \(\left(2^{4}\right)\) binary coded values: any number, including zero, up to the value of denary 15.
The four-bit binary number is applied to the four \(D\) inputs of the register and then a pulse is applied to the four CLK pins to store (latch) them. Each bit of the number can be applied to the D inputs at different times providing the intended bit pattern exists at the instant the CLK pulse arrives. Please relate this to the PencilBox latch exercise (Exercise 4) of Part 6.
There are two methods for entering binary numbers into registers. The first is the above method of presenting all of the binary digits of the binary number for latching at the same time, thus (in the above case) sending the information down four lines (conductors). The second method sends the information one bit at a time down a single line. The former method is said to transmit in parallel fashion and the latter in serial.


Fig. 12.15. A typical digital waveform


Fig. 12.16. A clock generator


Fig. 12.17. Frequency division


EE22136

Fig. 12.18. A shift register

We will be looking at a serial configuration for the flip-flops in the above register shortly, but first we need to know something about the generation of digital waveforms.

\section*{Binary Signals}

We have looked at various electronic signals in previous parts. Although we did look briefly at the difference between digital and analogue signals in Part 1, most treatment of the subject emerged in Parts


Fig. 12.19. Leading and trailing edges

4 and 5 when we investigated the measurement of (mainly) analogue signals, such as sine and triangle waveforms.
Digital waveforms are very much simpler than analogue waveforms. Digital signals correspond to two voltage levels, so a typical digital waveform, as shown in Fig. 12.15, moves up and down between two voltages to represent a series of binary " 0 "s and " 1 "s. This particular waveforms might have been produced by the clock generator (oscillator) circuit in Fig. 12.16.
A clock generator is required in any digital circuit that needs to test, indicate, record, time or otherwise do something automatically. Computers, calculators, digital watches, and industrial controllers all have a master clock to control and determine when events must occur. There are many widely used oscillator designs depending on the specific requirements of the circuit that the clock is to drive; for example, the frequency and duty cycle specification.
An infinite number of digital waveforms can be derived from the


5622156
Fig. 12.20. Resetting the counter at 1010
master clock; for example, a simple flip-flop configuration (the same configuration as in experimental circuit above) can divide the number of clock pulses (the clock frequency) by two. As shown in Fig. 12.17, these sequences of states can be interpreted as serial binary information.
If, by the same means, we divide by two the signal that is already divided by two, and then divide that signal by two - and so on, we end up with a register that accepts binary information serially (one bit at a time). Such a register, usually called a shift-register is shown in Fig. 12.18 along with a timing diagram showing the binary output voltages. Please note that this diagram demonstrates a very important application of registers; that is, the conversion of data from serial to parallel form.
The shifting of data in and out of sequential devices is initiated by the change between logic levels (known as the transition) of the clock input. There are two transitions for each clock pulse: there is the 0 to 1 or "positive edge" transition and the 1 to 0 or "negative edge" transition. If the clock pulse is positive going, as in Fig. 12.19a, the so called leading edge is the 0 to 1 transition and the trailing edge is the 1 to 0 transition.
For a negative going pulse the opposite is true, the 1 to 0 transition will be the leading edge and the 0 to 1 transition will be the trailing edge, as shown in Fig. 12.19b. Before the exact operation of a sequential device can be determined, then, the i.c. manufacturers timing specification for the device must be consulted.
Shift registers are available as MSI devices classified into four distinct groups:
(a) Parallel-in/Parallel-out, where all the data bits are shifted into the flip-flops at the same time and, when output is required, shifted out all at the same time.
(b) Parallel-in/Serial-out, where all the data bits are shifted into the flip-flops simultaneously and, when output is required, shifted out one bit at a time under clock control.
(c) Serial-in/Parallel-out, where the register is loaded serially and, when output is required, the stored data is shifted out of the flip-flops simultaneously.
(d) Serial-in/Serial-out, where all the data bits are shifted in and out of the register one bit at a time.
Shift registers can be used for the temporary storage of data, for serial to parallel data conversion, for parallel to serial data conversion, and a variety of other functions including, as we are about to see, for counting applications.

\section*{Counters}

The shift register of Fig. 12.18, as it stands, is a simple four-bit binary ripple counter. This 4-bit binary ripple counter generates a sequence of binary numbers: it accepts serial binary data at its input and propagates (ripples) through the sequence of parallel binary numbers, fromi LSB to MSB, at its output.
The binary waveforms produced by the ripple counter, as shown in the figure, are the input clock divided by 2,4,8 and 16 which, when taken in the context of the positional weight or place value of a digit within the binary number (last month), represent the columns \(2^{1}, 2^{2} 2^{3}\) and \(2^{4}\) respectively. We call this an up-counter because it counts from LSB to MSB, but it can easily be transformerd into a down counter by connecting all the \(\overline{\mathrm{Q}}\) outputs (instead of the Q outputs) to the succeeding clock inputs of each flipflop.
As shown by the binary waveforms in the figure, the up counter will continue to count from 0000 (assuming a power-up-reset) to 1111 in repeating cycles for as long as the input clock pulses are maintained. It is, however, a simple matter to modify the counter to reset to 0000 after any number by adding a logic gate to trigger the reset direct inputs at the desired binary number.
The AND gate in Fig. 12.20, for example, resets the counter at 1010 (denary 10). The R input is active high and requires a 1 to clear the Q output to 0 and the output of the AND gate is connected to all of the R lines. The AND gate requires all its inputs to be 1 to produce a 1 output and 1111 is achieved at 1010 by connecting the gate inputs to the \(\overline{\mathrm{O}}\) outputs for the 0 bits in the number, thus:


What we have done here is to select a unique binary pattern - the binary pattern that corresponds to the number at which we want to reset the counter - and gated it such that it activates the reset lines of the flipflops whenever that binary pattern occurs. Here are examples for resetting the counter with the same AND gate at \(6(0110)\) and 9 (1001):



This resetting after n counts gives rise to the name divide by \(n\) counter. The frequency of the clock at the output of the last flip-flop is the frequency of the input clock divided by \(n\).

\section*{Decoders}

The AND gate that performs the reset at \(n\) counts, above, is in fact operating as a decoder. It decodes the binary number at which the counter is reset. An extension of the same decoding operation, as shown in Fig. 12.21, converts the binary outputs to decimal.
This type of decoding is called BCD (Binary Coded Decimal) to Decimal Decoding and it is so common in digital circuits that special-purpose devices are manufactured to fulfil the function. One commonly used device is a 4-to-10 line decoder which has four input lines and ten output lines, as shown in Fig. 12.22. If the inputs are \(\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0\) and \(\mathrm{D}=0\) then the output marked 0 will be at logic 0 , as shown in the truth table.
Another decoder in widespread use is the BCD to 7 Segment Decoder. Seven segment displays are those used in digital multimeters, calculators and many other systems which feature digital readouts. These displays are arranged into seven separate segments which can be individually illuminated to form decimal numbers. This idea is illustrated in Fig. 12.23 where combinations of the segments a-f are illuminated to form the digits; for example, 0 is formed by illuminating all the segments except \(\mathrm{g}, 1\) is formed by illuminating segments \(b\) and \(c\), and so on as shown by the truth table.

The basic principle behind the formulation of a simple denary number generator using a counter, BCD to seven segment decoder/driver, and a seven segment display is shown in Fig. 12.24.

Of course, all of the sequential functions that we have described throughout this article are available in MSI integrated circuit form and many designs use these devices extensively. It is sometimes feasible to use SSI devices in place of an MSI equivalent; however, the increased number of external connections required to do so can increase the size and complexity of the circuit, and generallly reduce overall reliability.
In addition to the flip-flops, registers, counters and decoders discussed in this last part of the series, there are other MSI implementations such as encoders, multiplexers, demultip-


Fig. 12.21. Binary to decimal decoder


Fig. 12.24. A simple denary number generator
lexers, comparators and arithmetic circuits that are beyond the scope of the course.

\section*{A Final Word}

We have come a long way since our first steps into electronics in Part 1 almost a year ago. Even so, we have only scratched the surface of digital electronics and we hope that the course will encourage you to study more advanced and specialised reading matter on the subject.

In the twelve articles of the series we have only deviated from the syllabus in areas where, in our opinion, it made learning easier or more interesting. The set questions and exercises at the end of each lesson, however, have not at any time departed from what is required for


Fig. 12.22. A 4 to 10 line decoder


EE22180
Fig. 12.23. Operation of a seven segment display
self-assessment of your comprehension of the course material only.
Thankyou for staying with us throughout the course and, for those of you taking the examination, good luck!

\section*{Questions}
1. Enter the three missing input labels into the D-type flip-flop symbol below.

2. Connect up the following D-type flip-flop as a divide-by-two frequency divider.

3. Explain the difference between combinational and sequential logic.
4. Explain the operation of the Dtype flip-flop.
5. Is the denary number generator of Fig. 12.24 a combinational or sequential circuit. Give reasons for your answer.
6. After completing Exercise 1, below, describe your observations with regard to all of the gate arrangements.

\section*{Exercises}
1. Construct all of the gate arrangements in Sets 1 to 4 below on a logic tutor and draw a truth table for each. Note that one of the arrangements (as marked*) forms the larger part of the binary half-adder needed for Exercise 2 below; you may wish to build this last.



\section*{Note.}

If you do not have access to a logic tutor use the following circuit and an oscilloscope, meter or logic probe for this exercise.

2. Construct the following binary half-adder circuit and verify its operation (an explanatory note follows).


\section*{The binary Half-adder}

The binary half-adder is used in calculators and computers. This is a basic arithemetic circuit and is easily extended to perform subtraction, multiplication and division.
The half-adder is capable of adding two one-bit binary numbers together:
\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0+ & 1+ & 0+ & 1+ \\
\cline { 1 - 1 } & & 1 & 1
\end{array}
\]

The carry in the last sum is performed as in normal arithmetic but (as explained last month) after 1 instead of after 9 . We can transfer this series of sums into a truth table.
\begin{tabular}{llll} 
A & B & Carry & Sum \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{tabular}

Look at last month's Table 11.7 and determine which basic gate performs the carry function (0001) and which performs the sum function ( 0110 ). It is the AND gate and the EXOR gate respectively. Put the two gates together, thus:

and we get the binary half-adder (the half-adder you constructed uses a combination of basic gates [as directed by the C\&G objective 7.1.3] for the EXOR).

For addition of binary numbers of more than one bit long, half-adders are connected together taking carries from the previous stage into account. Circuits which have carry-in and a carry-out are called full-adders:

3. Construct the following up counter on a logic tutor using TTL devices and verify its operation. Connect the clock input to "clock out" on the interconnect socket and the common connected reset lines to a "pulser" push button. Connect the Q outputs to the "logic indicators".
Answers next month


\section*{ANSWERS TO PART 11}
1. This is an EXOR arrangement:
\begin{tabular}{cc|c} 
A & B & OUT \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}
2.
\begin{tabular}{ccc|c} 
A & B & C & OUT \\
\hline & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{tabular}

\section*{3. \(O R\)}
4. The i.c. is a " \(B\)-series" buffered device
5. 4.75 V to 5.25 V
6. 3 V to 15 V
7. OV to 0.8 V
8. 2 V to 5 V
9. Less than approximately:
(a) 1.5 V
(b) 3 V
(c) 4.5 V
10. Greater than approximately:
(a) 3.5 V
(b) 7 V
(c) 10.5 V
11. This is the equivalent of the EXOR gate - see answer 1
12. (a) 4.75 V to 5.25 V
(b) 3 V to 15 V

\section*{Need an extra pair of hands?}

It's often the case that conventional methods just won't do. Fortunately there is now an alternative with the MULTI-PURPOSE JIG
It will hold a circuit board steady for assembly and wiringIt can hold things while glue sets-
It can hold models for painting and repair-
All its interchangeable heads rotate through 360 degrees so you can position your workpiece to best advantage-no need to take it out to turn it over either-just rotate it to where you want it.
Precision spring loaded head for holding pressures of up to 5.5 łbs.


Each jig is hand built for a lifetime of use.
Supplied with circuit board assembly head, 12.5 mm rubber faced heads and static discharge lead. Other heads and accessories available.
Standard jig takes items up to \(310 \times 145 \mathrm{~mm} \quad £ 19.50\) Mini jig takes items up to \(148 \times 85 \mathrm{~mm}\)
£16.50
inc. VAT and carriage
Local authority, school and college orders welcome
EVERETT WORKSHOP ACCESSORIES
5 Railway Terrace, Henllan, Llandyssul, Dyfed SA44 5TH

Tel: 0559371226
Carbon Film resistors \(1 / 4 \mathrm{~W} 5 \%\) E24 series 0.51 R to 10 MO100 off per value- 75 p, even hundreds per value totalling 1000 1pMetal Film resistors \(1 / 4 \mathrm{~W}\) 10R to 1MO 5\% E12 series-2p, 1\% E24 seriesMixed metal/carbon film resistors \(1 / 2 \mathrm{~W}\) E24 series 1 RO to 10 MO1 watt mixed metal Car Film 5\% E12 series 4R7 to 10 M.................................... 11/2p1 watt mixed metal/Carbon Film 5\% E12 series 4R7 to 10 MegohmsLinear Carbon pre-sets 100 mW and \(1 / / \mathrm{WW} 100 \mathrm{R}\) to \(4 \mathrm{M} 7 \mathrm{E6}\) seriesLinear Carbon pre-sets 100 mW and \(1 / / \mathrm{W}\) 100R to 4 M 7 E6 series ........................................ 7p
Miniature polyester capacitors 250 V working for vertical mounting
\(.015, .022, .033, .047, .068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12 .0 .15,0.22-6 \mathrm{p} .0 .47-8 \mathrm{p} .0 .68-8 \mathrm{p} .1 .0-12 \mathrm{p}\)015, 022, . 033, 047, \(068-4\) p. \(0.1-5 p\) p. \(0.12,0.15,0.22-6 p .0 .47-8\) p. \(0.68-8 \mathrm{p} .1 .0-12 \mathrm{p}\)
1000 p to \(8200 \mathrm{p}-3 \mathrm{p} .01\) to \(068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12 \quad 0.15-22-6 \mathrm{p} .0 .47150 \mathrm{~V}\)
Submin ceramic plate capacitors 100 V wikg vertical mountings. E 12 series
Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series
\(2 \% 1.8 \mathrm{pf}\) to \(47 \mathrm{pf}-3 \mathrm{p} .2 \% 56\) pf to \(330 \mathrm{pf}-4\) p. \(10 \% 390 \mathrm{p}-4700 \mathrm{p}\)
Disc/plate ceramics 50V E12 series 1PO to 1000P, E6 Series 1500P to 47000P ................... 4p
Polystyrene capacitors 63 V working E 12 series long axial wires
10pf to \(820 \mathrm{pf}-3 \mathrm{p} .1000 \mathrm{pf}\) to \(10,000 \mathrm{pf}-4 \mathrm{p} .12,000 \mathrm{pf}\)
cmos 4001-20p. 4011-22p. 401 ALUMINIUM ELECTROLYTICS (Mfds/Volts)
\(1 / 50,2.250,4.7 / 50,10 / 25,10 / 50\)
100/16. \(100 / 257 \mathrm{p}\); \(100 / 50\), 12p: \(100 / 100\)
220/16 8p; 220/25, 220/50 10p; 470/16, 470/25
1000/25 25p; 1000/35, 2200/25; 35p - 4700/25
Submin, tantalum bead electrolytics (Mfdss/Volts)
Submin, tantalum bead electrolytics (MHds/Vol
\(0.1 / 35,0.22 / 35,0.47 / 35,1.035,3.3 / 16,4.7 / 16\)
\(2.2 / 35,4.7 / 25,4.7 / 35,6.8 / 1615 \mathrm{p} ; 10 / 16,22 / 6\)
33/10, 47/6, 22/16 30p; 47/10 35p; 47/16 60p; \(47 / 35\)
VOLTAGE REGULATORS
\(1 \mathrm{~A}+\) or \(-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}\) \(\qquad\) DIODES (piv/amps)
\(75 / 25 \mathrm{~mA} 1 \mathrm{~N} 4148\) 2p. 800/1A 1N4006 6p. 400/3A 1N5404 14p. \(115 / 15 \mathrm{~mA}\) OA91 100/1A 1N4002 4p. 1000/1A 1N4007 7p. 60/1.5A S1M1 5p. 100/1A bridge 400/1A 1N 4004 5p. 1250/1A BY127 10p. 30/.15A OA47
Zener diodes E24 series 3 V 3 to \(33 \mathrm{~V} 400 \mathrm{~mW}-8 \mathrm{p}\). 1 watt
Battery snaps for PP3-6p for PP9
L.E.D.'s 3 mm . \& 5 mm . Red, Greer, Yellow - 10 p. G rommets 3 mm - 2p, 5 mm Red flashing L.E.D.'s require 5V supply only
Mains indicator neons with 220k resistor
20 mm fuses 100 mA to 5 A O/blow 5 p . A/surge 8 p . Holders pc or chassis ligh speed pc drill \(0.8,1.0,1.3,1.5,2.0 \mathrm{~m}-30 \mathrm{p}\). Machines 12 V dc ... HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AAHP7 Nicad rechargeable cells 80 p each. Universal charger unit GRANS reed swit
BC107889-12p, BC557 89-8p, BC182L4L-10p, BC183, 183L-10p, BC212,212L-10p,

BFX88-15p, 2N3055-50p, TIP31,32-30p, TIP41,42-40p. BU208A-f1.20, BF195,197-12p
All prices are inclusive of VAT. Postage 25p (free over f5). Lists Free.

\section*{THE CR SUPPLY CO \\ 127 Chesterfield Rd, Sheffield S8 ORN \\ Return posting}

\section*{PROSECUTIONS}

The DTI recently published a list of prosecutions made during 1988 covering all types of licence issued under the Wireless Telegraphy Acts, and it is interesting to compare the number of cases involved in amateur radio with those in other categories as follows:
\begin{tabular}{lccc} 
Category & Prosecutions & Convictions & \begin{tabular}{c} 
Warning \\
Letters
\end{tabular} \\
CB AM & 59 & 59 & 92 \\
CBFM & 47 & 47 & 589 \\
Unlicensed & & & \\
\begin{tabular}{l} 
Broadcasters
\end{tabular} & 117 & 111 & 7 \\
Cordiess & & & \\
phones & 6 & 6 & 73 \\
PMR & 15 & 15 & 104 \\
Amateur & 5 & 5 & 2 \\
Marine & 2 & 2 & 91 \\
6.6MHz & 5 & 5 & - \\
Others & 14 & 14 & 7 \\
TOTALS & 270 & 264 & 965
\end{tabular}

The five successful prosecutions relating to amateur radio involved four licensed amateurs (one class A and three class B) and one unlicensed operator. There were 28 offences in all and each defendant was convicted of a number of them.

These included communicating with an unlicensed station, failure to use a call sign when transmitting, failure to keep a log book as required by the regulations, monitoring of RAF communications, disclosure of US Navy aeronautical communications, aiding and abetting the use of, and using, an unlicensed transmitter attached to a helium balloon, deliberately interfering with a US Navy aeronautical network causing the network to go on alert.

Other "activities" included inciting others to illegally monitor certain radio frequencies by publishing a frequency list, monitoring of police communications and disclosing the content of these, aiding and abetting the use of a 6 MHz unlicensed broadcasting station, and unlicensed use of an amateur radio station.

The defendants were fined a total of \(£ 8,750\). Costs were awarded against them totalling \(£ 2,230\) and a significant amount of equipment was forfeited. The licensed amateurs subsequently had their licences revoked.

Radio amateurs as a whole, are a reasonably law-abiding community who have to be familiar with the regulations, and are tested by examination, before they can obtain a licence. They are well aware that the practice of their hobby is a hard-earned privilege which can easily be taken away if it is abused.

\section*{PROJECT YEAR}

Plans for the Radio Society of Great Britain's Project YEAR. (Youth into Electronics via Amateur Radio) are progressing well although its abbreviated name is rather misleading, suggesting a one year activity when it is really a long-
term project aiming to increase the size of the amateur population.
The Society hopes to put its proposals for a new Student (Novice) licence to the DTI by mid-summer this year. It also plans to publish twelve small books to take the absolute beginner through the Student Licence course and to assist him/her in assembling lowcost kits as an introduction to the practical side of the hobby.

Realistically, it is felt that such a scheme to introduce amateur radio to beginners cannot succeed without a drastic reduction in the cost of starting off. The Society is therefore currently developing the necessary basic kits, and is encouraging others to do the same.

A recruitment video tape is to be prepared with professional (volunteer) assistance and a major TV company will be sponsoring post-production work to the tune of \(£ 150,000\). TV weatherman, Jim Bacon, G3YLA, will act as linkman in the production, and ICOM UK Ltd will be sponsoring part of the cost of distributing the video to every RSGB affiliated club in the UK.

\section*{THAI UPSURGE}

In contrast to the situation here, amateur radio is increasing in popularity in countries where it was previously seldom found except among foreign expatriates. In Morsum Magnificat last year a story by an Indonesian amateur described how, when formal examinations were introduced in 1981, only 10 per cent of the 2,000 entrants were successful, and how, by 1985 his own pupils were achieving a 90 per cent pass rate.

A recent report from Thailand is even more dramatic. Last August what was probably the world's largest radio examination took place when 15,732 prospective amateurs sat for the country's VHF licence. 9,513 candidates passed and joined the 3,500 plus "old hands" who have held their licences since the beginning of 1988.

There is a lot of concern among national societies around the world that the number of radio amateurs will decline in future years, hence the current emphasis by the RSGB and others in trying to interest the young in amateur radio. After hearing about the Thai experience l'm beginning to wonder if the main problem for amateurs in the future may not be diminishing numbers after all, but finding somewhere to squeeze in the bands as the hobby is discovered and taken up enthusiastically in other countries.

\section*{FREQUENCIES UNDER THREAT}

It appears that a World Administrative Radio Conference (WARC) may be held in 1992 or 1993, earlier than expected. At such conferences, among other things, international frequency
allocations for all users are agreed. In 1979 amateurs gained three new h.f. bands but it is expected that h.f. as well as v.h.f. allocations will be under pressure at the next meeting. There will undoubtedly be demands for more frequencies for commercial services and for the military who now recognise an increasing need for h.f. communications as a back up for vulnerable satellite defence services.

Although there are interntional allocations, national administrations can vary these if they wish. Last August, for example, the Federal Communications Commission (FCC) decided to allocate 2 MHz of the 220 MHz band, currently occupied by American amateurs, for commercial use by the giant United Parcel Service (UPS) who have already spent over \(\$ 3 M\) in setting up a narrowband radio service.
Feelings are running high in the amateur community as the FCC is accused of ignoring protests and submissions by the American Radio Relay League (ARRL), the National Communications System (set up by President Kennedy as a result of shortcomings in emergency communications during the Cuban Missile Crisis, and which includes the Department of Defence), the organisers of amateur emergency services who play a part in NCS, and over 5,000 individual protesters.

\section*{GOVERNMENT ENQUIRY}

On May 11, according to THE W5Y1 REPORT, an amateur radio news report published in the USA, the matter came before a sub-committee of the Congressional House Committee on Government Operations whose brief was to look into charges that the FCC may not have followed proper administrative procedures; may have acted arbitrarily; and disregarded thousands of comments.

At the time of writing the enquiry remains open to enable witnesses to respond to written questions from the sub-committee and the outcome is uncertain. The report on the hearing makes fascinating reading, with NCS which meets the telecommunication needs of 23 Federal agencies, including the National Security Agency, the CIA and NASA, asserting that national security and emergency preparedness favoured retention of an amateur presence on the threatened frequencies.

ARRL's written evidence ran to 40 pages and UPS, in response, presented a bound book of evidence, complete with index, weighing nearly two pounds. One wonders if similar, very expensive, protests involving legal and public relations representation could be taken to such lengths in this country.

What is clearly demonstrated in all this is the need for a strong national society when amateur radio is threatened.

\title{
FUSE
} TESTER

\section*{CHRIS BOWES}

\section*{A simple, inexpensive and unambiguous method of checking the condition of your fuses.}

ALTHOUGH a simple fuse tester can be made very easily by connecting a 1.e.d., through a suitable dropping resistor, to a battery via the fuse under test the output does need a little bit of understanding (i.e. to work out that an illuminated l.e.d. means a working fuse). In order to both make the understanding of the result of the test easier and to make the project a little more interesting this circuit has been designed to produce an unambiguous result by using two l.e.d.s., one of which signifies a good fuse whilst the other signifies a blown fuse.

\section*{HOW IT WORKS}

The Fuse Tester described here makes use of the operation of two simple operational amplifiers (Op.Amps.) used as comparators. All op. amps have an inverting and a non-inverting input. These are identified on circuit diagrams with a minus sign and a plus sign.

Normally op. amps are used with a feedback resistor between the output and the amplifiers inverting input. This is used to set the gain of the amplifier. If this "feedback" resistor is omitted then the amplifier has basically an infinite gain, limited only by the voltages of the power supply available to it.

The amplifier then amplifies the difference between the voltages available at the inverting and non-inverting inputs by a factor determined by the value of the feedback resistor. Because the infinite gain of an op. amp used without a feedback resistor, the output voltage swings from the most negative voltage available to the most positive voltage available depending upon whether the inverting input or the noninverting input is at the higher voltage. In this project the voltage of the non-inverting input of both op. amps is set to half the battery voltage, so that voltage presented to the inverting input are used to control the operation of the op. amp.

\section*{CIRCUIT DESCRIPTION}

The circuit diagram for the Fuse Tester is shown in Fig.1. IC1a and IC1b are each one half of a CMOS operational amplifier type CA3420.

This integrated circuit contains two individual op. amps which are pin compatible with other dual op. amp integrated circuits. These particular op, amps are however designed to work from a single power supply, such as the 9 V battery which we are using for all of the "Pocket Money" projects.

Resistors R1 and R2 are used to set the input voltage to the non-inverting input of IC1a (pin 2). Because they are of equal value the voltage available at pin 2 is approximately 4.5 V ( 50 per cent of the battery voltage). Similarly resistors R5 and R6 are used to set the voltage at the noninverting input of IC1b (pin 7) to 4.5 V .
"pulled down" to \(0 V\). In this condition the voltage at the inverting input is less than the voltage at the non-inverting input and the output of IC1a is forced to the battery voltage.

This allows a current to flow through D1, and its associated series resistor R4, and D1 glows. Resistor R4 is included in this circuit to limit the current flowing through D1 to its safe value of approximately 10 mA .

The second stage, IC1b acts as an inverter in that if the output from IC1a is at 0 V then the voltage at the inverting input of IC1b (pin 6) is less than the voltage at the non-inverting input (pin 7). This causes the output of IC1b to rise to the battery voltage causing a current to flow through D2 in the same way as does the current through D1.


Fig. 1. Complete circuit diagram for the Fuse Tester.

IC1a is used as a comparator to detect whether the voltage at its inverting input (pin 1) is at a higher or lower voltage than the reference voltage at the non-inverting input. Resistor R3 is used as a pull up resistor which sets the voltage at pin 1 of IC1a to the battery supply voltage when the fuse under test is an "open circuit".

In this condition the voltage at the inverting input is greater than the voltage available at the non-inverting input. This causes the output voltage of ICla to be forced to 0 V .

If the fuse under test is in good condition it presents a "short circuit", which causes the voltage available at pin 1 of IC1a to be

If the output from IC1a is at the battery voltage this causes the input voltage at the inverting input of IClb to be greater than the voltage at the non-inverting input. This causes the output voltage to be at 0 V and no current can flow through D2. The effect of this arrangement is that D1 is illuminated when the fuse under test is sound and D2 is illuminated when the fuse under test is blown.
Switch S 1 is a push-to-make type which is incorporated in the circuit so that the circuit only becomes active when S 1 is operated. This reduces battery wear by making sure that the battery is only used when a fuse is actively being tested.

\section*{CONSTRUCTION}

The Fuse Tester is constructed on a piece of stripboard and the component layout and breaks required in the underside copper tracks is shown in Fig. 2 and the photographs. You will probably find it useful to look at these whilst you are constructing the project.

The first stage of construction is to cut a piece of stripboard 20 holes by 20 strips. The four mounting holes shown in Fig. 2 should be drilled in the board using a 4 mm drill bit.
The next task is to carefully make the track breaks in the area where the integrated circuit is to be mounted, as shown in Fig.2. These can be made by using a stripboard cutter or alternatively a suitable size drill bit may be used. It is very important that these breaks in the tracks are made completely and that you ensure that there
you should carefully twist the exposed strands between your finger and thumb so as to make a neat compact end to the stripped wire before "tinning".
To install the wire link it is neccessary to count up or down along the edge of the board until you find the correct strip and then count along that strip until you find the correct hole where the link should be inserted as shown in Fig.2. Once you have found the correct place to insert the wire link then the prepared end should be passed through the appropriate hole on the board, the board turned over and the link soldered into place.

The next components in ascending order of size are the resistors. Insertion of these components is made easier if the leads are first bent at 90 degrees with a small pair of long-nosed pliers, at the correct places where they need to pass through the holes in the board as indicated in Fig.2. It is


Fig. 2. Stripboard component layout and details of breaks required in the underside copper tracks.
is not even the most minute trace of cconductive material left to bridge the sections between the broken tracks.
Once the board has been prepared then the components may be inserted and soldered into position. The operation of the circuit is not affected by the order in which the components are installed on the circuit board but you will find it easier to handle the board if the components are inserted in ascending size order.
The first components to be inserted are the four link wires shown in Fig.2. These links are made with insulated wire, which you will need to "tin", pre-solder, before installing. If you are using stranded wire
important when soldering any components onto a stripboard that the soldering iron should be left in contact with the component wire and copper track long enough for the applied solder to flow and make a good joint between the component and the connecting strip.
Now insert the i.c. holder and l.e.d.s in the position shown. Care should be taken with the i.c. socket to make sure that the notch on the holder points towards the top of the board as shown in Fig.2. This also applies to the l.e.d.s, you will find that the l.e.d. carries a flat on the otherwise circular base of the components; this flat is nearest to the cathode (k) connection, see Fig. 2.


Completed circuit board showing the four insulated link wires.

The final stage before inserting the integrated circuit is to connect the battery connections and the wires leading to the fuse carrier. The easiest way to connect the battery to the circuit board is to use a suitable battery connecting clip.

The red (positive) wire from the battery clip should go to one of the two connecting tags on the push-to-make switch (S1). Another piece of wire will be required to go from the other connection of S1 to the point marked B1 +Ve on the board, as shown in Fig. 2.

The two connections to the fuse carrier are made with two wires terminated at the points marked "To fuse" on Fig.2. You will find it easier to make the connections to the fuse carrier "brackets" at a later stage if these wires are each fitted with a small solder tag prior to the other ends being connected to the board.

\section*{TESTING}

Before connecting the battery and installing the board in a suitable case it is adsvisable to check the underside of the board to

\section*{COMPDNENTS \\ Resistors \\ R1, R2, R3, \\ R5, R6 10 k (5 off) \\ R4, R7 330 ohms. (2 off) \\ All 0.25W 5\% carbon \\ Semiconductors \\ D1 Standardgreen l.e.d. \\ D2 Standard red l.e.d. \\ IC1 CA3240E-1 Dual CMOS op.amp \\  \\ See page 578}

\section*{Miscellaneous}
\begin{tabular}{ll} 
S1 & Single-pole push-to- \\
& make switch \\
B1 & 9 V battery (PP3 type)
\end{tabular}

Stripboard, 20 holes \(\times 20\) strips; 14-pin i.c. socket; plastic case; self adhesive stand-offs (4 off); battery connector; solder tags ( 2 off); aluminium angle, for fuse carrier (see text); solder; connecting wire etc.
ensure that there are no solder blobs shorting out adjacent tracks or breaks in the track where you do not wish them to occur. It is also advisable to check that IC1 and the two l.e.d.s. are inserted into the board with the correct orientation.
Assuming that all is correct here then the circuit should work as soon as the battery is connected and S1 is operated.
The test sequence, with the battery correctly installed, is to operate \(S 1\) with the two wires going to the fuse carrier held apart.

As soon as S 1 is operated then D 2 should light. When the two wires going to the fuse carrier are shorted together with S1 operated then D2 should be extinguished and D1 should light.

If the circuit does not operate as described above then it will be necessary to start fault finding. It is really impossible to fault find on this circuit without access to a d.c. voltmeter or alternatively a multimeter.

A simple meter will however be suitable for all the fault finding processes necessary for this circuit.

\section*{FAULT FINDING}

The first stage in fault finding is to repeat the visual check described earlier in the testing section. If this visual inspection produces no signs of anything wrong with the construction of the circuit then it is advisable to check that the battery connections are the correct way round.

This will probably be most easily done by connecting the voltmeter across the strips carrying the positive and negative battery supply along the stripboard and pressing S1. If all is well with the battery and the connections then the voltage read on the voltmeter should be the same as that produced by the battery.

If no voltage, or a very low voltage, is measured across these rails when S1 is pressed then the positive probe of the voltmeter should be connected to the contact on S1 which is connected to the battery. The battery voltage here should be the same as that produced by the battery irrespective of whether S1 is depressed or not.

If the battery voltage is present when S1 is not operated but disappears when \(S 1\) is pressed then this indicates that there is a short circuit on the stripboard and this should be examined carefully, especially the area around IC1.

If this inspection produces no enlightenment then IC1a should be removed from its socket and the test repeated. If the removal of IC 1 cures the problem then it would indicate that this component is faulty and it should be replaced.

\section*{COMPARATOR TESTS}

Following on the fault finding procedure, check that the comparator formed by IC1a and its associated components is functioning correctly. If S1 is operated with an open circuit across the fuse carrier wires then the output from ICla should be 0 V .

When the two wires going to the fuse carrier are shorted out and \(S 1\) is operated then a voltage, approaching the battery voltage, should be measurable at pin 12 of IC1a. If this does not occur then the voltages at pins 1, 2, 3, 4 and 13 of IC1 a should be checked.
The voltages at pins 1,2 and 13 should be measured with the negative connection of the voltmeter connected to any contact of the 0 V track. The voltage at pin 13 should be at the battery voltage for as long as \(S 1\) is operated. If this does not happen then the link between pin 13 and the strip carrying the Batt+ connection should be checked.

Now check the voltage between the positive battery input to S 1 and pin 4 of ICla . Again the battery voltage should be measurable when \(S 1\) is operated.

If either of thesechecks produced no voltage reading at all then it is necessary to check back along the connections to the stripboard, battery and S1 until you find the place where the battery voltage appears. The fault will be found to be immediately after that point.

With the voltmeter's negative probe connected to a suitable 0 V point, the voltages at pins 1 and 2 of IC1 a should be checked. The voltage at pin 2 should be approximately 4.5 V . The precise voltage measurable at this point is not critical as long as it is

Completed Fuse Tester viewed from the top showing the I.e.d.s, push-to-test switch and the fuse carriers made out of aluminium angle.

somewhere in the range between 3 V and 6 V .

If this voltage is not measurable or is considerably higher or lower than the range given then the potential divider formed by resistors R1 and R2 is the most likely cause of the problem. The voltage at the positive end of resistor R1 should be the battery voltage (when switch S1 is pressed) and 0 V at the negative end of R2.

The voltage at the junction of resistors R1 and R2 should be approximately 4.5 V and this voltage is connected, via the appropriate line on the stripboard, to pin 2 of IC1. If the voltage at the junction of R1 and R 2 is considerably higher than 4.5 V then it is most likely that the connection between R1 and R2 or that the connection of the 0 V end of R 2 are not properly made.

Similarly if the voltage at the junction of R1 and R2 is considerably lower than 4.5 V then either the connection between R 1 and R2 is faulty or the positive connection of resistor R 1 to the positive power supply rail is faulty. In all of these cases it is advisable to check the quality of the joints, and if necessary, remelt the joints by applying the soldering iron once more at that point.

\section*{FUSE CARRIER}

The voltage at pin 1 at ICla is determined by the state of the two wires which connect to the fuse carrier. When two wires going to the fuse carrier are connected together pin 1 of IC1a is effectively connected to 0 V . When the two wires going to the fuse carrier are not connected together then the current from the positive battery rail flows through resistor R 3 to pin 1, causing the voltage at this point to be at battery voltage.

The voltage at pin 1 should be monitored under both of these conditions with S1 pressed. If the battery voltage at pin 1 remains at 0 V , irrespective of whether the fuse carrier wires are shorted out or not then the fault is most likely to lie with the connections to resistor R3. If the battery voltage is always present at pin 1 , irrespective of the connection or disconnection of the two wires going to the fuse carrier then the connections to the fuse carrier, via the wires and the appropriate strips on the stripboard should be checked carefully.
If all of these tests give the correct result then the output at pin 12 of the i.c. should be determined by the voltage measured at pin 1 of IC1a. If pin 1 is at 0 V when S 1 is pressed then there should be battery voltage present at pin 12 . If pin 1 is at the battery voltage when S1 is pressed then the output voltage at pin 12 of IC1a should be approximately 0 V .
If this does not occur then the connections to pins 12 and 6 of the i.c. and in the vicinity of D1 and resistor R4 should be carefully checked to ensure that there is no inadvertent short of the output of IC1a to 0 V . If no short circuit is found then IC1a must be suspected of being faulty and should be replaced.

If an output voltage approaching the battery voltage is produced at pin 12 of IC1 but D1 does not light then the next stage is to check through the connections from pin 12 of ICl to the anode of D 1 ; from the cathode of D1 to resistor R4 and from R4 to the 0 V line of the stripboard should be checked for continuity.

One of the most likely causes of the failure of D1 to illuminate is that it may well be connected in the wrong way round so
the first stage of the fault finding is to make a visual check to ensure that the flat on the l.e.d.s base is adjacent to resistor R4. If all is found to be correct then an l.e.d. which is known to be working can be connected across D1, taking care to ensure correct polarity is maintained. If the substituted l.e.d. works then D1 should be removed and replaced.

If D1 illuminates correctly and D2 does not then the circuitry associated with IC1b should be checked in the same way as details for IC1a. The positive supply connection to IC1b is a separate one to that connected to ICla so the voltage between 0 V and pin 9 should be checked. When S1 is pressed the voltage measured between pins 4 and 9 of IC1b should be the battery voltage.

The second difference to check is that the voltage at the inverting input (pin 6) of IClb is the same as that at pin 12 of Icla. This should be checked with a voltmeter and if the two voltages do not correspond then the connections between these pins should be checked. Apart from these differences IC1b can be fault found in the same way as IC1.

\section*{CASE}

The fuse tester is designed to be mounted inside a case and for this reason the l.e.d.s. have been positioned so that the board can be mounted on the back of the case lid, with the l.e.d.s protruding through the front of the case. The fuse carrier has been designed to be made from two small pieces of aluminium angle strip drilled in such a way that they may be mounted on the front of the case as shown in the photograph. The two strips are mounted at an angle to each other, so that a number of different lengths of fuse may be tested.
The first task is to cut two pieces of one centimetre aluminium angle aprroximately three centimetres long. Two holes sufficiently large to accommodate the mounting bolts you intend to use should be drilled into one side of each of the pieces of aluminium angle.
Place the aluminium angle and the push to test switch ( S 1 ) in the lid of the case, taking care to ensure that there is sufficient space underneath the lid to accommodate the stripboard. Once appropriate places have been determined for the components these should be marked on the case and the holes of the correct size drilled.

You will notice in the photographs that the position of switch \(S 1\) is relatively close to one of the aluminium angles. This has been deliberately done so that one handed operation may be achieved by holding the fuse against the fuse carriers with two fingers and using the thumb of the same hand to operate the push-to-test switch.
Once the appropriate holes have been marked and drilled the case may be lettered with rub down lettering which may then be protected by the application of several layers of clear varnish. Once the varnish is dry carefully mount the fuse carriers with nuts and bolts, ensuring that there is sufficient clearance between the end of the bolt and board when mounted underneath the case.

The two l.e.d. clips should now be positioned in their appropriate holes in the case. The stripboard should be mounted on the underside of the lid in such a way that the two l.e.d.s fit into the two clips.

Ideally the board should be held in place by means of self-adhesive stand-offs. These should be placed, from the component


Underside of the case lid showing the circuit board mounted on self-adhesive plastic stand-offs and solder tags under the fuse carrier mounting nuts.
side, in the holes drilled in the strip board to accommodate them. The protective backing should then be peeled off the sticky pads and the board carefully offered into place, ensuring the l.e.d.s fit through the holes in the case front.

When the position of the component board has been accurately determined then the sticky pads should be pushed firmly onto the surface of the case so that they stick firmly on the case lid. Once the pads are in place then the board should be carefully removed and the connections made to the two fuse carriers.

If solder tags have been attached to the end of the two wires which connected to the fuse carrier then connection becomes simply a matter of placing the solder tag of one of the wires underneath one of the two bolts holding each of the two fuse carriers. Switch S1 can also be installed and the wire connections made to it, at this stage.

The final stage of fitting the project into its case is simply a matter of placing the rings which secure each of the l.e.d.s in to
its clip, around each of the two l.e.d.s and offering the stripboard into its position on the already attached stand-offs. Care should be taken to ensure that the l.e.d.s fit neatly through the two clips already installed in the case before sliding the securing rings around the base of the clip to lock them into position.

The battery can then be attached to the battery clip and the circuit checked for correct operation, as described above. This check should, of course, be carried out before fitting the back of the case onto the lid and securing the lid to the case with the four fixing screws.

\section*{IN USE}

The Fuse Tester is very simple to use. All that is necessary to do is to place the suspect fuse so that it makes good contact with the two strips of aluminium angle, which form the fuse carrier, and press the test button (S1). One of the two l.e.d.s should illuminate indicating whether the fuse is sound or not.

\section*{PLEASE \\ TAKE NOTE}

\section*{EE TREASURE HUNTER}
(August '89)
In Fig. 3 the two capacitors close to IC1 are incorrectly designated, C3 should be C 4 and C 4 should be C 5 .

\section*{LIGHT SENTINEL April 1989}

Page 233, Fig.2. Pin 13 of IC5 should be connected to Pin 1 of IC5, NOT as shown. Pin 3 of IC5 should only connect to Pin 5 IC5 and Pin 13 of IC4. The circuit diagram should show IC5 as a NAND gate.

The "master control" printed circuit board copper track (Fig.5), page 235 should be amended as shown in the diagram:


BOOM
oon
The books listed have been selected as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

For another selection of books see next month's issue.
MORE BOOKS NEXT MONTH - MORE BOOKS NEXT MONTH - MORE BOOKS NEXT MONTH
\(\qquad\) AUDIO \& MUSIC

\section*{SYNTHESIZERS FOR MUSICIANS}
R. A. Penfold

Modern synthesizers are extremely complex, but they mostly work on principles that are not too difficult to understand. If you want to go beyond using the factory presets or the random poking of buttons, this is the book or you.
It covers the principles of modern synthesis-linear arithmetic as used by Roland, phase distortion (Casio) Yamaha's requency modulation, are sampling-and duce various types of sound-strings, brass, percussion etc. The theoretical side of synthesis is treated in an easy to understand way-the technical information being restricted to what you need to know to use your instrument effectively.
168 pages Order code PC105 f6.95

\section*{AUDIO}
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.i.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are fol lowed by a study of the mechanism of hearing and examination of the various sounds we hear. A look at phones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators disc and magnetic recording and electronic music. 320 pages Temporarily out of print.

\section*{NTRODUCTION TO DIGITAL AUDIO}

Digital recording methods have existed for many years and have become familiar to the professional recording engin eer, but the compact disc (CD) was the first device to bring digital audio methods into the home. The next step is the appearance of digital audio tape (DAT) equipment. All this development has involved methods and circuits that are totally alien to the technician or keen amateur who has practices of digital audio owe little or nothing to the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers.
This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end product 128 pages Order code PC102 £5.95

\section*{MAKE MONEY FROM HOME RECORDING}

Clive Brooks
Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn't it be nice to get some of it back? Well here's the book to show you how,
It's packed with money making ideas, any one of which Will recoup the price of the book many times over. Whether you have a fully fledged recording studio at home, or just a couple of stereo cassette recorders and a
microphone, you'll be able to put the ideas in this book into practice and make money.
105 pages Order code PG104


ELECTRONICS TEACH-IN
Michael Tooley BA and David Whitfield MA MSc
CEng MIEE (published by Everyday Electronics)
This value for money \(E E\) book provides a comprehensive background to modern electronics including test gear projects. A complete course in basic electronics; designed for the complete newcomer it will however also be of value to those with some previous experience of electronics. Wherever possible the course is related to "real life" working circuits and each part includes a set of detailed practical assignments. Includes details of eight items of related test gear giving full constructional information and diagrams for each one. They are: Safe Power Supply; Universal LCR Bridge; Diode/Transistor Tester; Audio Signal Tracer; Audio Signal Generator; RF Signal Generator; FET Voltmeter; Pulse Generator. An excellent companion for anyone interested in electronics and invaluable for those taking G.C.S.E. and BTEC electronics
courses.
104 pages (A4 size) \(\quad\) Order code EE/T-I 1.95

ELECTRONICS TEACH-IN 88/89
NTRODUCING MICROPROCESSORS
Mike Tooley BA (published by Everyday Elactronics) A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors (726/303). The book contains every ing for assessment etc.
80 pages (A4 size) Order code T1-88/89

THE ILLUSTRATED DICTIONARY OF ELECTRONICS 4th EDITION
Rufus P. Turner and Stan Gibilisco
With more than 27,000 terms used in electronics today, this collection is THE most comprehensive dictionary available. Including all practical electronics and computer terms, it is as up-to-date as the latest advances in the sulted for projects and experiments are included. Other conversion tables include English/metric and metric/ English conversions for units of measurement of energy, power and volume, and Fahrenheit/Celsius temperature conversion charts.
Setting this edition apart from other electronic dictionaries is its emphasis on illustration. Featuring more than complete definitions, this fourth edition includes over 450 detailed drawings and diagrams.
All entries are listed in alphabetical order. Abbreviations and initiais are listed in sequence with whole
words. All terms of more than one word are treated as words. All terms of more than one word are treated as 648 pages Order code T2900
\(£ 18.75\)

\section*{MICROPROCESSING SYSTEMS AND CIRCUITS}
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., B.i.M.

A truly comprehensive guide to the elements of microprocessing systems which really starts at the beginning. Teaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
256 pages
Order Code BP77


\section*{TESTING \& TEST GEAR}

GETTING THE MOST FROM YOUR MULTIMETER R.A. Penfold

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing and the limitations of the two types. In Chapter 2 tive merits and the limitations of the two types. In Chapter 2 cluding tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle 96 pages or most electronic projects.

HOW TO TEST ALMOST EVERYTHING ELECTRONIC2nd EDITION
Jack Darr and Delton T. Horn
Describes electronic tests and measurements-how to make them with all kinds of test equipment, and how to interpret the results. New sections in this edition include ogic probes, frequency counters, capacitance meters
190 pages Order code T2925

\section*{RECOMMENDED READING}

FOR INTRODUCING DIGITAL ELECTRONICS
ELECTRONICS-A "MADE SIMPLE" BOOK
G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest to everyone studying electronics. The subject is simply explained and well illustrated and the book assumes only a very basic knowledge of electricity.
330 pages
Order

PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Bridges the gap between complicated technical theory. and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias-tedious and higher mathematics have included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Components, Alternating-current Circuits. Networks and Theo
rems, Measurements.
256 pages Order code BP53
MICROELECTRONIC SYSTEMS 2 CHECKBOOK
R. Vears

The aim of this book is to provide a foundation in microcomputer hardware, software and interfacing techniques. Each topic is presented in a way that assumes only an elementary knowledge of microelectronic systems and 6800 microprocessors and contains 60 tested programs, 160 worked problems and 250 further problems. Now replaced by Microelectronic Systems N2 Checkbook Order code NE04N

\section*{TEACH-IN, THEORY \& REFERENCE}

\section*{DATA \& COMPONENT IDENTIFICATION}

PRACTICAL ELECTRONICS HANDBOOK
lan Sinclai
lan Sinclair has now revised this useful and carefully seleced collection of standard circuits, rules-of-thumb, and design data for professional engineers, students and nusiasts involved in radio and electronics. Covering passve and active components, discrete component circuits (such as amplifiers, filters and oscillators) and linear and digital i.c.s, the book includes many items which are not and functions of typical circuits are described, while mathmatics is limited to that necessary for deciding component values for any application
his revised edition contains more details on computers and microprocessors and has been brought up to date through 199
199 pages Order Code NE06
f7.95

\section*{ELECTRONICS-BUILD AND LEARN}
A. A. Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapters to introduce common electronic components-resistors, capaci ors, transformers, diodes, transistors, thyristors, fets and op amps. Later chapters go on to describe how these compo ors, bistables and logic circuits.
At every stage in the book there are practical tests and experiments that you can carry out on the demonstrator und tand the principles involved You will soon be able to oo on a more complex circuits and tackle fault finding logically in other circuits you build. Order Code PC103 55.95
120 pages Order Code PC103
55.95

\section*{CIRCUITS \& DESIGN}

ELECTRONHC CIRCUITS FOR THE COMPUTER CONTROL OF MODEL RAILWAYS
R.A. Penfold

Home computers may easily be applied to the control of model railways and really quite sophisticated control, which needs only simple programming, is not too difficult to
achieve. The main problem lies in interfacing the computer to the layout, but fortunately it is not too difficult or expensive to build suitable interfaces, and this book shows you how.
The projects consist of various types of controller, including a high quality pulse type, as well as circuits for train position sensing, signal and electric points control etc. The use of computers does not have to be restricted to massive layouts. Something as simple as an oval of track with a single siding can be given a now dimension by act aps. \({ }_{88}\) pps.
88 pages Order code BP180
£2.95


REMOTE CONTROL HANDBOOK
Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of sys up from a number of relatively simple modules. The author has tried to ensure that, as far as possible, the cir cuit modules in this book are compatible with one another. They can be linked together in many differen configurations to produce remote control systems tai lored to individual requirements. Whether you wish sim ply to switch a table lamp on and off, or to operate an industrial robot, this book should provide the circuit you 226.

COIL DESIGN AND CONSTRUCTION MANUAL B. B. Babani
B. B. Babani A complete book for the home constructor on "how to
make: RF, IF, audio and power coils, chokes and make RF, IF, audio and power coils, chokes and
transformers. Practically overy possible type is dis cussed and calculations necessary are given and explained in detail. Although this book is now rather old, with the exception of torroids and pulse transformers little has changed in coildesign since it was written.
96 pages
Order Code 160


\section*{30 SOLDERLE}
R. A. Penfold

Each project, which is designed to be built on a "Vero bloc" breadboard, is presented in a similar fashion with a brief circuit description, circuit diagram, component lay out diagram, components list and notes on construction and use where necessary. Wherever possible, the com ponents used are common to several projects, hence components, it is possible to build in turn, every project chown Recommended 160 pages Order Code BP107
£2.25
BOOK 2-All projects use CMOS i.c.s but the items on compopent identification etc., are not repested from Book 1.
160 pages Order code BP113
52.25

\section*{ELECTRONIC CIRCUITS HANDBOOK}

Michael Tooley BA
This book aims to explode two popular misconceptions con cerning the design of electronic circuits: that only those with and that the process relies on an understanding of advanced mathematics Provided one is not too ambitious, neither of hese popularly held beliefs is true.
Specifically, this book aims to provide the reader with nique collection of practical working circuits together with upporting information so that circuits can be produced in the shortest possible time and without recourse to theor
Furthermore, information has been included so that the circuits can readily be modified and extended by readers to meet their own individual needs. Related circuits have been also in the index) so that readers are aware of which circuits can be readily connected together to form more complex systems. As far as possible, a commor range of supply voltages, signal levels and impedances has been adopted.
As a bonus, ten test gear projects have been included These not only serve to illustrate the techniques described but also provide a range of test equipment which is useful in its own right.
277 pages \(\quad\) Order code NE05 14.95

\section*{AUDIO IC CIRCUITS MANUAL}
R. M. Marston

A vast range of audio and audio-associated i.c.s are readily available for use by amateur and professional design engineers and technicians. This manualis a guide to the most popular and useful of these devices, with over 240 diagrams. It deals with i.c.s such as low frequency linear amplifiers, dual pre-amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators, and shows how to use these devices in circuits ranging raphic equalizers, stereo amplifier systems, and echo/ everb delay line systems etc
168 pages Order code NE13
£11.95


\section*{HOW TO DESIGN ELECTRONIC}

PROJECTS
R. A. Penfold

The aim of this book is to help the reader to put together projects from standard circuit blocks with a minimum of rial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet your special requirements are also provided
£2.25

KEY TECHNIQUES FOR CIRCUIT DESIGN
C. G. Loveday C.Eng MIERE

Deals with designing electronic circuits from scratch covering concepts such as target specifications, compocovering concepts such as target specifications, compocycle, derating and so on. Numerous design examples are given and several reader exercises all with fully vorked solutions. The approach is essentially nonmathematical.
128 pages Order code BM1
f6.95

\section*{50 CIRCUITS USING GERMANIUM}

\section*{SILICON AND ZENER DIODES}
R. N. Soar

Contains 50 interesting and useful circuits and applicaions, covering many different branches of electronics sing one of the most simple and inexpensive of and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc.
64 pages
Order Code BP36
£1.50

TRANSISTOR SELECTOR GUIDE
This unique guide offers a range of selection tables compiled so as to be of maximum use to all electronics engineers, designers and hobbyists.
Section 1: Covers component markings, codings and standards, as well as explaining the symbols used.
Section 2: Tabulates in alpha-numeric sequence the comprehensive specifications of over 1400 devices.
Section 3: Tabulates the devices by case type.
Section 4: Considers particular limits to the electrical parameters when compiling the tables.
Section 5: Illustrates package outlines and leadouts. Section 6: Consists of a surface mounting device markings conversion list
192.pages

Temporarily out of print

\section*{DIGITAL IC EQUIVALENTS \\ AND PIN CONNECTIONS}
A. Michaels

Shows equivalents and pin connections of a popular selection of European. American and Japanese digita i.c.s. Also includes details of packaging, families. func
tions, manufacturer and country of origin.
t5.95

256 pages Order code BP140
INTERNATIONAL TRANSISTOR
EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transistors. Also shows material type, polarity, manufacturer and use.
320 pages Order code BP85 \(\mathbf{£ 3 . 5 0}\)

CHART OF RADIO, ELECTRONIC,
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani, B.Sc.(Eng.)

Illustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols manuals, etc. in most countries throughout the world Chart \(\quad\) Order Code BP27
R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as the electronics student and amateur. It deals with the subject in an easy-to-read, down-to-earth, and non mathematical yet comprehensive manner, explaining devices, and presenting the reader with many practica applications and over 200 circuits. Most of the i.c.s and other devices used are in expensive and readily available types, with universally recognised type numbers.
182 pages \(\begin{aligned} & \text { Order code NE14 }\end{aligned}\)
\(\mathbf{1 0 . 9 5}\)

\section*{OPYOELECTRONICS} CIRCUITS MANUAL 6 M Magstok



\section*{A MICROPROCESSOR PRIMER
E. A. Parr, B.SC., C.Eng., M.I.E.E.}

Starts by designing a small computer which, because of its simplicity and logical structure, enables the language o be easily learnt and understood. The shortcomings are hen discussed and the reader is shown how these can overcome by changes and addiovs oressing index registers, etc., are developed. \(\mathbf{f 1 . 7 5}\) 96 pages \(\quad\) Order code BP72 \(\mathbf{5 1 . 7 5}\)

POPULAR ELECTRONIC CIRCUITS
-BOOK 1 ELECTRONIC CIRCUITS
POPULAR
-BOOK 2

\section*{R. A. Penfoid}
R. A. Penfoid
Each book provides a wide range of designs for elec tronic enthusiasts who are capable of producing working tronic enthusiasts who are capable of prodects from just a circuit diagram without the aid of detailed construction information. Any special setting-up procedures are described.
BOOK 1160 pages 1 Order code BP80
£2.95
BOOK 2160 pages Order code BP98 f2.95

\section*{CMOS CIRCUITS MANUAL}
R. M. Marston

Written for the professional engineer, student or enthusiast. It describes the basic principles and charac* All the circuits have been designed, built and fulfy evaluated by the author; all use inexpensive and internaionally available devices.
pages Order code NE12
£9.95

\section*{HOW TO GET YOUN}

ELECTRONIC PROJECTS WORKING

\section*{R. A. Penfold}

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to star looking for many of the co building up projects.
96 pages Order code BP110
£2.50
HOW TO DESIGN AND MAKE
YOUR OWNP.C.B.
Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers all aspects of simple p.c.b. construction including photo graphic methods and designing your own p.c.b.s.
80 pages
Order code BP121

BEGINNER'S GUIDE TO BUILDING
ELECTRONIC PROJECTS
R. A. Panfold
shide of electronicste beginner how to tackle the practical side of electronics, so that he or she can confidently build magazines and books. Also includes examples in the form of simple projects.
112 pages \(\quad \mathbf{~ O r d e r}\) code No. 227

LeCtronic science projects
. Bishop
hese projects range in complexity from a simple colour emperature meter to an infra-red laser. There are novelies such as an electronic clock regulated by a resonating spring, and an oscilloscope with solid-state display. here are sciennific measurng instr All proicts have a neter and an el flavour the way they work, and how 10 fridd and use them are fully explained. 144 pages Order code BP104

MORE BOOKS NEXT MONTH

(A Division of Wimborne Publishing Ltd.)

\section*{TO ORDER}

Please state the title and order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage and packing (overseas readers add \(\mathbf{£ 1 . 5 0}\) for countries in Europe, or add \(£ 2.00\) for all countries outside Europe, surface mail postage) and send a PO, cheque or international money order ( \(£\) sterling only) made payable to Direct Book Service quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET, BH21 1RW (mail order only).

See next month's issue for another three page selection of books.

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday
Electronics) before ordering from old lists.
Note-our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add \(£ 1\) per board for overseas airmail. Remittances should be sent to The PCB Service Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everday Electronics (Payment in \(£\) sterling only).
Boards for some older projects - not listed here - can often be obtained from Magenta Electronics, 135 Hunter St., Burton-on-Trent, Staffs DE 14 2ST. Tel: 028365435 or Lake Electronics, 7 Middleton Close, Nuthall, Nottingham NG 16 1BX. Tel: 0602382509.
NOTE: While \(90 \%\) of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail. Please check price and availability in the latest issue before ordering. We can only supply boards listed in the latest issue. Boards can only be supplied on a payment with order basis.
\begin{tabular}{|c|c|c|}
\hline PROJECT TITLE & Order Code & Cost \\
\hline 200 MHz Digital Frequency Meter NOV ' 86 & 548 & £5.14 \\
\hline \begin{tabular}{ll}
\hline Automatic Car Alarm & DEC' 86 \\
BBC 16K Sideways RAM & \\
(Software Cassette) & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 50 \\
& 551 \\
& 551 S
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.00 \\
& £ 3.00 \\
& £ 3.88
\end{aligned}
\] \\
\hline \begin{tabular}{l|l|}
\hline Mini Amp & FEB \({ }^{\circ} 87\) \\
Video Guard & \\
Spectrum I/O & \\
Spectrum Speech Synthesiser & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 554 \& 555 \\
& 556 \\
& 557 \\
& 558
\end{aligned}
\] & \[
\begin{aligned}
& £ 5.68 \\
& £ 3.80 \\
& £ 5.35 \\
& £ 4.86 \\
& \hline
\end{aligned}
\] \\
\hline Computer Buffer/Interface \(\quad\) MAR '87
Infra-Red Alarm: Sensor Head
PSU/Relay Driver & \[
\begin{aligned}
& 560 \\
& 561 \\
& 562
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.32 \\
& £ 4.19 \\
& £ 4.50
\end{aligned}
\] \\
\hline Experimental Speech Recognition APR '87 Bulb Life Extender & \[
\begin{aligned}
& 563 \\
& 564
\end{aligned}
\] & \[
\begin{array}{r}
£ 4.75 \\
£ 3.00
\end{array}
\] \\
\hline \begin{tabular}{l} 
Fridge Alarm \\
EE Equaliser-loniser \\
\hline
\end{tabular} & \[
\begin{array}{|}
565 \\
566 \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
£ 3.00 \\
£ 4.10 \\
\hline
\end{array}
\] \\
\hline Mini Disco Light
Visual Guitar/Instrument Tuner JUNE '87 & \[
\begin{aligned}
& 567 \\
& 568
\end{aligned}
\] & \[
\begin{array}{r}
£ 3.00 \\
£ 3.97 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{ll}
\hline Fermostat & JULY ' 87 \\
EE Buccaneer Metal Detector \\
Monomix \\
\hline
\end{tabular} & \[
\begin{array}{r}
59 \\
570 \\
571 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathbf{£} 3.34 \\
\mathbf{f 4 . 1 0} \\
£ 4.75 \\
\hline
\end{array}
\] \\
\hline Super Sound Adaptor Main Board AUG '87 PSU Board Simple Shortwave Radio, Tuner \& Amplifier & \[
\begin{aligned}
& 572 \\
& 573 \\
& 575 / 576
\end{aligned}
\] & \begin{tabular}{l}
£4.21 \\
£3.32 \\
£4.90
\end{tabular} \\
\hline \begin{tabular}{l}
Noise Gate \\
SEPT '87 \\
Burst Fire Mains Controller \\
Electronic Analogue/Digital Multimeter
\end{tabular} & \[
\begin{aligned}
& 577 \\
& 578 \\
& 579 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& £ 4.41 \\
& £ 3.31 \\
& £ 6.40
\end{aligned}
\] \\
\hline \begin{tabular}{|l|l|}
\hline Transtest & OCT' 87 \\
Video Controller & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 580 \\
& 581
\end{aligned}
\] & \[
\begin{array}{r}
£ 3.32 \\
£ 4.83 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
Accented Metronome \\
Acoustic Probe \\
BBC Sideways RAM/ROM
\end{tabular} & \[
\begin{aligned}
& 582 \\
& 584 \\
& 585 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
£3.77 \\
£3.00 \\
£4.10
\end{tabular} \\
\hline \begin{tabular}{ll}
\hline Pseudo Echo Unit & DEC '87 \\
Dual Mains Light Flasher & \\
Twinkling Star & \\
Audio Sine Wave Generator & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 586 \\
& 587 \\
& 588 \\
& 589
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} 4.60 \\
& \mathrm{f} .66 \\
& £ 3.60 \\
& \mathrm{f} 3.00
\end{aligned}
\] \\
\hline \begin{tabular}{|l|l|}
\hline Capacitance Meter & JAN '88 \\
Bench Amplifier & \\
\hline Transistor Curve Tracer & \\
\hline
\end{tabular} & \[
\begin{array}{r}
590 \\
591 \\
592 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& £ 4.10 \\
& £ 5.51 \\
& £ 3.00
\end{aligned}
\] \\
\hline Bench Power Supply Unit
Game Timer & \[
\begin{aligned}
& 593 \\
& 583 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 4.01 \\
£ 3.55
\end{array}
\] \\
\hline \begin{tabular}{l}
Semiconductor Tester SOS Alert \\
Guitar/Keyboard Envelope Shaper
\end{tabular} & \[
\begin{array}{r}
594 \\
595 \\
596 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& £ 3.19 \\
& f 3.00 \\
& £ 4.23
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Stereo Noise Gate \\
APR '88 \\
Pipe \& Cable Locator \\
Inductive Proximity Detector
\end{tabular} & \[
\begin{array}{r}
597 \\
598 \\
574 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& £ 6.65 \\
& £ 3.00 \\
& £ 3.00
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Multi-Chan Remote Light Dim \\
Transmitter \\
Receiver \\
Door Sentinel \\
Function Generator - Main Board \\
Function Generator - Power Supply \\
Super Sound Effects Generator
\end{tabular} & \[
\begin{aligned}
& 599 \\
& 600 \\
& 605 \\
& 606 \\
& 607 \\
& 608 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.00 \\
& \mathbf{£ 3 . 0 7} \\
& \mathbf{£ 3 . 0 0} \\
& \mathbf{f 5 . 9 1} \\
& \mathbf{£ 4 . 1 9} \\
& \mathbf{£ 4 . 7 8}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Multi-Chan Remote Light Dim \\
Relay/Decoder \\
Dimmer Board \\
Power Supply \\
Mother Board \\
Headlight Reminder
\end{tabular} & \[
\begin{aligned}
& 601 \\
& 602 \\
& 603 \\
& 604 \\
& 611
\end{aligned}
\] & \[
\begin{array}{|l}
£ 4.86 \\
£ 3.07 \\
£ 3.00 \\
£ 7.76 \\
£ 3.00 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{ll}
\hline Video Wiper & JULY '88 \\
Isolink
\end{tabular} & \[
\begin{aligned}
& 612 \\
& 613
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{£} 6.75 \\
& £ 4.21 \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l|l|}
\hline Tea Tune & AUG '88 \\
Time Switch & \\
Suntan Timer & \\
\hline Car Alarm & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 69 \\
& 614 \\
& 610 \\
& 615
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{£3.00} \\
& £ 4.84 \\
& £ 3.07 \\
& £ 3.12 \\
& \hline
\end{aligned}
\] \\
\hline Breaking Glass Alarm
Amstrad PIO & \[
\begin{aligned}
& 617 \\
& 618
\end{aligned}
\] & \[
\begin{aligned}
& £ 4.27 \\
& £ 6.77 \\
& \hline
\end{aligned}
\] \\
\hline Eprom Eraser OCT '88 & 620 & £4.07 \\
\hline \begin{tabular}{l}
 \\
Seashell Sea Synthesiser
\end{tabular} & \[
\begin{aligned}
& 616 \\
& 621 \\
& 622 \\
& 623 \\
& 624 \\
& 625
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.56 \\
& £ 3.12 \\
& £ 4.61 \\
& £ 3.23 \\
& £ 3.05 \\
& \mathbf{£ 4 . 8 4} \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{ll} 
Reaction Timer Main Board & Display Board \\
\multicolumn{1}{c|}{ DEC'88 } \\
Downbeat Metronome \\
EPROM Programmer (On Spec) \\
Phasor & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 626 \\
& 627 \\
& 629 \\
& 630 \\
& 631 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 3.46 \\
£ 3.00 \\
£ 4.84 \\
£ 8.29 \\
£ 5.64 \\
\hline
\end{array}
\] \\
\hline Monkey/Hunter Game JAN '89 & 634 & £3.36 \\
\hline Continuity Tester 4-Channel Light Dimmer Mini PSU & \[
\begin{aligned}
& 619 \\
& 635 \\
& 636 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 2.67 \\
£ 7.67 \\
£ 3.23 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{|l|l|}
\hline Sound-to-Light Interface & MAR '89 \\
Midi Pedal & \\
Midi Merge & \\
Audio Lead Tester & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 637 \\
& 639 \\
& 640 \\
& 641 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 6.24 \\
£ 7.00 \\
£ 3.00 \\
£ 5.77 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
Light Sentinel \\
APR ' 89 \\
Main Control Board \\
Remote Interface (4 boards) \\
Electron User Port \\
4-Channel Auto-Fader Interface
\end{tabular} & \[
\begin{aligned}
& 632 \\
& 633 \\
& 638 \\
& 642 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
£ 9.20 \\
£ 4.59 \\
\text { £6.64 } \\
\text { £6.80 } \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{|l|l|}
\hline \begin{tabular}{ll} 
Pet Scarer \\
Electron AVD Interface & MAY '89 \\
\hline
\end{tabular} \\
\hline
\end{tabular} & \[
\begin{aligned}
& 644 \\
& 645
\end{aligned}
\] & \[
\begin{aligned}
& £ 3.00 \\
& \mathrm{f} 4.84
\end{aligned}
\] \\
\hline Spectrum EPROM Programmer JUNE '89
Bat Detector & \[
\begin{aligned}
& 628 \\
& 647
\end{aligned}
\] & \[
\begin{array}{r}
£ 7.87 \\
£ 4.95 \\
\hline
\end{array}
\] \\
\hline Programmable Pocket Timer JULY '89 & 648 & £3.82 \\
\hline \begin{tabular}{ll}
\hline Electronic Spirit Level & AUG '89 \\
Distance Recorder & \\
Treasure Hunter & \\
\hline
\end{tabular} & \begin{tabular}{l}
649 \\
651 \\
652 \\
\hline
\end{tabular} & \[
\begin{aligned}
& £ 3.85 \\
& £ 5.23 \\
& £ 3.73
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Probe Pocket Treasure Finder SEPT ' 89 \\
Power Supplies \(\left\{\begin{array}{l}- \text { Fixed Voltage } \\ - \text { Variable Voltage }\end{array}\right.\)
\end{tabular} & \[
\begin{aligned}
& 653 \\
& 654 \\
& 655 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& £ 4.12 \\
& £ 4.08 \\
& £ 4.48
\end{aligned}
\] \\
\hline
\end{tabular}

Please note that when ordering it is important to give project title as well
Please note that whe order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

EE PRINTED CIRCUIT BOARD SERVICE
Please send me the following p.c.b.s.
Make cheques/PO payable to: Everyday Electronics
(payment in £ sterling only)
Order Code Project Quantity Price
\(\qquad\)
\(\qquad\)
\(\qquad\)

I enclose cheque/PO for \(£\)...........................................................................
\(\qquad\)

\title{
JIDENCO CD
}

The Components Division of Jidenco Machines International Ltd Vale Road, Windsor, Berks SL4 5JW. Tel 0753869723 Telex 847046 Fax 0753830107 Mon/Fri 8.00am-5.30pm. Monitored Answerphone evenings/weekend.
\begin{tabular}{|c|c|c|c|}
\hline ALARMS & & \% & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
WITH BUILT-IN DRIVE \\
REED BUZZER PCB/LEADS 3,6,9,12,24v \\
PIEZO DISC PCB/LEADS 3-28v \\
PIEZO DISC PCB/LEADS 5-15v \\
COIL AND DIAPHRAGM PCB 6,12v
\end{tabular}}} & & \\
\hline & & & 79p \\
\hline & & & 97p \\
\hline & & & 95p \\
\hline & & & 98 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{WITHOUT INTERNAL DRIVE PIEZO CERAMIC PCB/LEADS COIL AND DIAPHRAGM PCB 6,12v}} & \\
\hline & & & 51p \\
\hline & & & 48p \\
\hline \multicolumn{3}{|l|}{BULBHOLOERS} & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{FOR T3 \(1 / 4(10 \mathrm{~mm})\) WEDGE BASE BULBS PANEL MOUNT ( 20 mm CUTOUT) SPADE TERMS. PCB MOUNT BULBS FOR THE ABOVE 6.5/12/24/28v}} & \\
\hline & & & \(18 p\) \\
\hline & & & \(29 p\) \\
\hline & & & 150 \\
\hline \multicolumn{3}{|l|}{CAPACITORS} & \\
\hline \multicolumn{3}{|l|}{CERAMIC DISC} & \\
\hline \multicolumn{2}{|l|}{50v 22/27/150/470/2000/5000pF} & PACK 50 & £1. 25 \\
\hline \multirow[t]{6}{*}{CERAMIC PLATE INF ELECTROLYTIC RADIAL} & & PACK 50 & £1.25 \\
\hline & \(35 \mathrm{v} 2200 \mu \mathrm{~F}\) & & 40p \\
\hline & \(50 \mathrm{v} 2200 \mu \mathrm{~F}\) & & 40 p \\
\hline & 25v 10رF & PACK 10 & 50 p \\
\hline & 16v 220uF & PACK 10 & 50 p \\
\hline & \(16 \mathrm{v} 4700 \mu \mathrm{~F}\) & & 40 p \\
\hline \multirow[t]{3}{*}{ELECTROLYTIC AXIAL} & 16v 100 F & PACK 10 & 70 \\
\hline & 16v 2200 \(\mu \mathrm{F}\) & PACK 5 & £1.00 \\
\hline & 16v \(4700 \mu \mathrm{~F}\) & & 40 \\
\hline \multicolumn{2}{|l|}{TANT BEADS 16v \(2.2 / 4.7 / 10 \mu \mathrm{~F}\)} & PACK 20 & \(£ 2.00\) \\
\hline \multicolumn{2}{|l|}{MONOLITHIC \(50 \mathrm{~V} 1 \mu \mathrm{~F}\)} & PACK 10 & 60 \\
\hline \multicolumn{2}{|l|}{POLYESTER RAD ( 5 mm ) \(100 \mu \mathrm{~F} 5 \% 63 \mathrm{v}\)} & PACK 10 & 80 \\
\hline \multicolumn{4}{|l|}{CRYSTALS} \\
\hline \multicolumn{4}{|l|}{MICROPROCESSOR QUARTZ} \\
\hline \multicolumn{4}{|l|}{32.768 KHZ T0 116.00MHZ P.O.A} \\
\hline \multicolumn{4}{|l|}{TL CLOCK OSCILLATORS} \\
\hline \multicolumn{4}{|l|}{1.00MHZ TO 82.3782MHZ P.0.A} \\
\hline \multicolumn{4}{|l|}{PLEASE SPECIFY PACKAGE SIZE AND TOLERANCE VERY LOW PRICES - PLEASE ENQUIRE} \\
\hline \multicolumn{4}{|l|}{DIP SWITCHES} \\
\hline PIANO DIP 2 POLE & 46p SLIDE & IP 2 POLE & \(38 p\) \\
\hline 4 POLE & 62 p & 4 POLE & 48p \\
\hline 6 POLE & 72p & 6 POLE & 53p \\
\hline 8 POLE & 80p & 8 POLE & 62p \\
\hline
\end{tabular}

ALL SWITCHES HAVE GOLD CONTACTS.
DISC DRIVES
5.25" B0 TRACK DS \(1 / 2\) HEIGHT

TOSHIBA NDO4DT 0.5MB
NEC FC1057 1 MB
SWITCHABLE
TOSHIBA NDOBDE 1MB-1.6MB
MITSUBISHI MF504C-312M 1MB-1.6MB
3.5" DS

TOSHIBA ND 352T 1 MB
NEC FD 1037A 1MB

\section*{FANS-DC AXIAL BRUSHLESS}
\(40 \times 40 \times 10 \mathrm{~mm} 12 \mathrm{vdc}\)
\(40 \times 40 \times 20 \mathrm{~mm} 12,24 \mathrm{vdc}\)
\(62 \times 62 \times 15 \mathrm{~mm} \mathrm{12,24vdc}\)
\(80 \times 80 \times 20 \mathrm{~mm} \mathrm{12,24vdc}\)
\(90 \times 90 \times 20 \mathrm{~mm} 12,24 \mathrm{vdc}\)
VERY QUIET
BIG DISCOUNTS FOR LARGER QUANTITIES - POA
\(\begin{array}{ll} & 8 \mathrm{~mm} \text { SINGLE DIGIT } \\ \text { £85.15 } & \text { 14.22mm SINGLE AND DOUBLE DIGIT }\end{array}\)

\section*{NEON INDICATORS.}

ROUND, SQUARE, \(9,12 \mathrm{~mm}, 110 \mathrm{v}, 240 \mathrm{v}\).
RED. GREEN, AMBER, CLEAR

\section*{RELAYS.}
\(\begin{array}{ll}\text { 4PDT } & \text { 24VDC } 3 A 14 \text { PIN PLUG-IN } \\ & 48 V D C \text { 3A } 14 \text { PIN PLUG-IN }\end{array}\) 240VAC 3A 14 PIN PLUG-IN SCREW TERMINAL BASE FOR ABOVE

DPDT 12VDC 10A ROUND 8 PIN PLUG-IN 24VDC 10A ROUND 8 PIN PLUG-IN 48VAC 10A ROUNO 8 PIN PLUG-IN 110VAC 10A ROUND 8 PIN PLUG-IN 110VAC 10A ROUND 8 PIN PLUG-IN 220VAC 10A ROUND 8 PIN PLUG-IN
240VAC 10A ROUND 8 PIN PLUG-IN SCREW TERMINAL BASE FOR ABOVE
3PDT 12VDC 10A ROUND 11 PIN PLUG-IN 24VDC 10A ROUND 11 PIN. PLUG-IN 48VOC 10A ROUND 11 PIN PLUG-IN 24VAC 10A ROUND 11 PIN PLUG-IN 48VAC 10A ROUND 11 PIN PLUG-IN 110VAC 10A ROUND 11 PIN PLUG-IN 220VAC 10A ROUND 11 PIN PLUG-IN 240VAC 10A ROUND 11 PIN PLUG-IN SCREW TERMINAL BASE FOR ABOVE

MAINS FUSES TO BS 1362 ASTA APPROVED
\(3,5,13 \mathrm{~A} \quad\) PACK \(10 \quad £ 1.00\)

FUSEHOLOERS
PCB CLIP HOLDER
PANEL MOUNT (SCREWDRIVER RELEASE)
PANEL MOUNT (FINGER RELEASE)
PCB MOUNT - VERTICAL, HORIZONTAL
39 p

\section*{FOR BOR SHOS LEDS}

PACK 10
50p
60 p

LED INOICATORS.
3 mm LED IN 6 mm CHROME PROMINENT HOUSING
RED, GREEN, YELLOW

3 mm LED \(\operatorname{IN} 6 \mathrm{~mm}\) CHROME RECESSED HOUSING
RED GREEN, YELLOW
5 mm LED IN 8 mm CHROME PROMINENT HOUSING
RED, GREEN, YELLOW
5 mm LED IN 8 mm CHROME RECESSED HOUSING

\section*{-SEGMENT DISPLAYS AND DOT MATRIX.}
£76.00 \(\quad 6.4 \mathrm{~mm}\) DOUBLE DIGIT
6.4 mm TRIPLE DIGIT

6 mm 4-DIGIT
\(\times 14\) DOT Matrix
SPECIFY COMMON ANODE/CATHODE
SPECIFY BLACIVGREY FACE
SPECIFY COLOUR
MONITORS
MONOCHROME
TAXAN KX \(11812^{\prime \prime}\) GREEN
TAXAN KX \(12312^{\prime \prime}\) GREEN (IBM COMPAT)
£11.25 TAXAN KX 124 12" AMBER (IBM COMPAT)
E11.25 COLOUR
£11.25 TAXAN SUPERVISION 625 12" HIGH RES.
TAXAN SUPERVISION 760 14" EGA
N.B. CARRIAGE IS E8.00 ON ÁLL MONITORS

Order by Access or Visa or in writing enclosing cash, cheque or PO. No minimum cash order. Minimum credit card oraccount order £10.00. Account applications from approved organisations and companies welcome, as are trade enquiries.

Payment:- Add £1.00 P\&P (unless otherwise shown) to all orders and then add VAT (15\%). Prices:- Are for 1 off unless a Pack Qty is shown. Discounts for larger Qtys. See our catalogue or phone. All components are brand new.

Send \(\mathbf{£ 1 . 5 0}\) for our full catalogue which includes discount vouchers \(\mathbf{- 5 0 p} \mathbf{o f f} \mathbf{£ 5 . 0 0}+\) order, \(\mathbf{£ 1 . 0 0} \mathbf{o f f} \mathbf{£ 1 0 . 0 0} \mathbf{+}\) order, \(\mathbf{£ 5 . 0 0}\) off \(\mathbf{£ 5 0 . 0 0 + 0 r d e r}\). Prices valid on all orders received before 31st December 1989. Our product range is continually increasing - please enquire for other items.

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is \(£ 8.00\) (plus VAT) per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 30 pence (plus VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

\section*{WALTONS OF WOLVERHAMPTON}

Established since 1947 - offering a complete range - I.C.s, transformers, switches, pots, capacitors, resistors, kits, speakers, test equipment, books and lots, lots morel
COME AND SEE US AT: MON-SAT 96.00 pm
55A WORCESTER STREET
WOLVERHAMPTON
TEL: 090222039

\section*{ELECTRONIC COMPONENTS}

EVERYTHING FOR YOUR NEXT PROJECT
THE BIGGEST DISPLAY IN THE SOUTH
IS AT

\section*{FRASER ELECTRONICS}

42 ELM GROVE * SOUTHSEA * HANTS
 Telephone 0705-815584 ( )

SALE OF SURPLUS COMPONENTS Send for details. Also our popular G.C.S.E. electronics kits. Sir-Kit Electronics, 70 Oxford Road, Clacton, CO15 3TE

\section*{}

1 to 24 vots up to \(1 / 2\) amp. 1 to 02 volts up to 1 amp. 1 to 16 volts up to \(11 / 2\) amps A.C. Fuly stabilised. Twin panel meters for instant voltage and current readings. Overioad protection.
Fully variable.
Operates from Operates
20V
20V. Compact Unit sime \(9 \times 51 / 2 \times 3\) in

RADIO COMPONENT SPECIALSTS
 SURREY, U.K. Tel: 01-684 1665
Liri Large SAE. Delivery 7 days. Caillers welcome. Closed Wednesday

\section*{SERVICE MANUALS}

Most available for Amateur Radio, Military Surplus, Test Equipment, Vintage Valve, Colour TV, Mono TV, Video Recorders etc. etc
Over 100,000 stocked. LSAE Enquiries with Make/Model wanted.
FREE catalogue unique repair and data guides for LSAE

\section*{MAURITRON (EE)}

8 Cherry Tree Road, Chinnor, Oxon OX9 40Y
Tel: (0844) 51694

\section*{A 8 G ELECTRONICS LTD.}

If you are buying Electronic Components elsewhere you are almost certainly paying too much! Write to us for a free 1989 catalogue and start saving money. (Please send two 19 p stamps towards postage.)
100 Park Avenue, London E6 2SR Tel 01-552 2386
\begin{tabular}{|c|}
\hline ***RESISTOR PACKS*** \\
\hline \(1 / 4\) W 5\% CARBON FILM E12 range 10R to 10M \\
\hline 10 of any 1 value 6p \\
\hline 10 OF EACH VALUE Total 730 resistors \\
\hline Add 35p p\&p and 15\% VAT \\
\hline RMOS P.O. BOX 3 USK GWENT NP5 2YF \\
\hline
\end{tabular}


NEW VHF MICROTRANSMITTER KIT Tuneable \(88-115 \mathrm{MHz}, 500\) metre range, sensitive electret microphone, high quality p.c.b. SPECIAL
OFFER complete kit ONLY E5 POST FREE. Access orders telephone 021-411 1821 ( 24 hrs ).

Cheques/P.O.s payable to:

\section*{QUANTEK ELECTRONICS LTD}
(Dept. EE), 45a Station Road
Northfield, Birmingham B31 3TE

RF PROJECTS and kits including transmitters. For catalogue send s.a.e. to TM Electronics, 39 Mayeswood Road, Grove Park, London SE12.


\section*{MARAPET}

Tools \& Components for the Electronic Constructor, Hobbyist \& Home Electrician OUR SPECIAL OFFERS THIS MONTH ALL POST RIEE Buy the WELLER WM12D ( 12 W 240 Vac ) MICROPOINT MINI SOLDERING IRON @E7.49 and not only will you save on the normal price of \(£ 8.25\), but you'll also receive 3 Multi-purpose Crimp Tool with FREE CRIMPS .. \(£ 1.99\) ea Sub-min. Toggle Switches S.P. On-On ................ 80p ea TV40 Heatsinks (Twisted vane type) drilled for flat plastic devices ..............................................................79p 21p ea or 95p for 5 MUCH MUCH MORE to choose from in our full price lists sent FREE with above orders, or please send \(2 \times 19 \mathrm{p}\) stamps towards postage for your copy.
No VAT MAIL ORDER ONLY Offers end \(30 / 9 / 89\) No VAT MAIL. ORDER ONLY Offers end 30/9/89
Dept. EE 1 HORNBEAM MEWS, GLOUCESTER GL2 OUE

\section*{Kits}

KITS, MICROTRANSMITTER, v.h.f./f.m., \(25 \times 15 \mathrm{~mm}, £ 3.95\). We also stock telephone transmitters/recording switches. bleepers, radio transmitting alarms, circuit diagrams, etc. Kits and built available. Send s.a.e. to A.C.E., 99 Greenheath, Hednesford, Staffs.

\section*{Miscellaneous}

KIA SUMMER TIME FREEBIE!! Sunbright l.e.d.s and transistors . . giftpack \(\ddagger\) resis-tor-pack + wallchart. Enclose advertisement \(+£ 1\) coin ( \(p\) \& \(p\) ) to 8 Cunliffe Road, Ilkley LS29 9EA.

PROTOTYPE PRINTED CIRCUIT BOARDS, one offs and quantities, for details send s.a.e. to Mr B. M. Ansbro, 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203.

\footnotetext{
ELECTRONIC COMPONENT SPECIALIST
\(\star\) Zero Insertion Force and Decoupled IC Sockets \(\star\)
Micros - Memories - Logic 4000/HC/LS Micros-Memories - Logic 4000 - Cables Write or Telephone for free Price List

DATEC ELECTRONICS
20 Lomond Close, Oakley, Basingstoke Hants RG23 7NA
Telephone 0256781736 ( \(\mathbf{2 4}\) Hours)
}

\section*{POWER CONDITIONER}

FEATURED IN ETI JANUARY 1988

The ultumale manns culnfier. Intended mainty
lor lowerng the noise loor and improving the analytical qualities of


The massive filter section contains thirteen capaciors and wo current bal anced ind cictors, together with a bank of six interterence. A ten LED logarithmic display gives a second by secbind indication of the amount of interterence removed.
Our approved parts set consists of case. PCB, all components (inciuding high permeabily toroidal coress HCs. ransistors. class \(X\) and \(Y\) suppression capacitors, VDRs. c. ) and tull insiructions. PARTS SET E29.80 + VAT

MANS CONDITIONEA PARTS SET E5.40 +VAT
RUGGEOPLASTKC CASE \(E 1.30+\mathrm{VAT}\)


\section*{KNIGHT RAIDER}

FEATURED INETI JULY 1987
The utt mate in ighting ettects lor your Lamborghimi, Maserati, BMW or any ther car. To that matter). Preture: Itis: eight powertull lights in ine along the rront ande ight aliong the rear. You filck a switch on the right leavng a comet's tail behind d flip the switch again and the soint ó ighn beconmes a bar, bouncing backwards and tow erds along the row. Press again and ry one of the other six paterns
An LED display on the contiol box let's you see what the mani lights are don'ig.
The Knigh Rader can be fited to any car (it makes an exceilent tog ghty or with low Dowered bulbs it can turn any ctild \(s\) peddal car or
sicycle into a spectacular V -age toy! Perts sel consisis of box PCB and The parts set consists of box. PCB and componenis for contiot. PCB Lamps not included.
PARTS SET \(£ 24.80\) + VAT

RAINY DAY PROJECTS
All can be built in an afternoon!
JUMPIN' JACK FLASH (ETI March 1988)
Spectacular rock, stage and disco lighting Btifectl Spectiacular rock, slage and discol lighting ettectl
CREOIT CARO CASINO (ETI March 1987) CREDIT CARO CASINO (ETI March 1987
The wicked pCoket gambling machine The wickes pocket gambling machine MAINS CONTROLLER (ETI Jaruary 1987) MATCHBOX AMPLIFIERS (ETI Apfil 1986) Listen Sow of H.Fi power fions (ETI APCil 138


\section*{Marchbox Ampliter (20W)}

Matchbox Endge Ampifiter (550w) \(\qquad\)
TACHO/OWELL METER (ETI January 1987)
HI-FI POWER METER (ETIMay 1987)
Measures H-FII aulpul powet up to 100 W
- Incluves PCB, components, meters
Mono power meier

THE DREAM MACHINE

FEATURED IN ETI OECEMBER 1987


Adusthe contisto sun your mod and in genl. relaxing sound drih over you At first you might near soft rain, ea surf, or the wind through distant trees. Almost hypnotic. sleep.
For many, the mought of waking reireshed and atert from perhaps the tirss truly restitul sleep in years is exciting enough itsell. For more adventurous souls there are strange and for instance. Imagine being in control of your dreams and able ochange them at will to act out your wishes and fantasies. With the Dream Machine it's easy!
The appoved parts set consists of PCB, all components. controls, loudspeaker, knobs, lamp, tuseholders, tuse, mains Dower supply, prestige case and tul instruction PARTS SET \(£ 19.80\) + VAT

now in suck. \(£ 2.95\) (NOVAT)

\section*{TVBOOSTER}

Cod TVipiarass sompoor minati why limpryiodis al
 intownur gaod wewing tor mpers end cararmess, hon mocr zeriti, a marevera mpoenty positionod highy



 madob by acurablusgines.

 tox sockotsendheriwre.
AA1 PARTS SET \(£ 12.80\) + VAT
AN2 PARTS SET \(£ 4.80\) + VAT
AA3 OPTIONAL MAINS POWER
SUPPIY PARTS SET \(£ 6.80+\)

POWERFUL AIR IONISER

\section*{FEATURED IN ET} JULY 1986
ons have deen described as vitaminn of the air by the
 been crastited with everything
lom curing hay fever and asthma wo improving concentration and putting an end to insomnia. Although some of the claims may be angeraied inere is no doubl that tonised all is much cleaner The DIPECT ION Ionster caused a grearating than 'toead arr. appeared as a constiuctional propeci in ETI . At last an inn when al was con . was reliable, good lo Duild ...and lun! Aoart from ine sericus appications, some of the suggested experiments were outrageous We can supply a malched sel of parts. Iully approved oy the deshgner, 10 build mis unique project The sel includes a roller rinned ponied cricuil board. 66 components, case, mains lead. and even the parts tor the lester Acccording to ome customer, ine sel costs aboula a third of the price of the indiviluat components: PARTS SET WITH BLACK CASE \(£ 12.60+\) VAT \({ }^{\text {included }}\) PARTS SET WITH WHITE CASE \(£ 12.80+\) VAT

\section*{THE MISTRAL AIR IONISER 4. Counterable ion drive, built-in ion multi-point enough power to drive five minded, it has nins. For the technically ive secondary drives, and a four section booster to give an four capability of almost fifte an outpu \(\left(1.47 \times 10^{13}\right)\) ions every minute, or \(2.45 \times 10^{11}\) ions per second. With extra emitters this can be increased still further!}

PARTS SET \(T_{\text {E28.40 + war }}\) The parts set includes case, printed circuit boards, 126 top grade components, all controls, lamps, hardware, a multi-point phospher-bronze emitter and full instructions.
Some parts are avaiable separately prease send SAE for lists, or SAE detais and durt and construction details and further information
(free with parts ser)

\section*{REAOY-BULTTMSTRAL}

The Mistral loniser (and most of our other projects) can now be supplied built, tested and ready to go. For details, please contact Peter Leah at P.L. Electronics,
8 Woburn Road, Eastville, Bristol BS5 6 TT

NTERNAL EMTTER E 2.80 , wat
Can be used in place of the P-B external emitter, or both can be used together for the highest ion output. Parts set and instructions.

\section*{IPA BOARD CLEANER}

Essential for removing \(\mathcal{E 0 . 9 8 + \text { var }}\)
flux resid for removing grease and flux residues from the Mistral PCB to achieve peak performance. Applicator IONEAN

An almostsilentpiezo- \(\quad \mathbf{E 9 . 8 0}+\) VAT operated, to pump ions away fan, mains emitter and into thens away from the efiter and into the room. Increases the effectiveness of any ioniser by five times!

YONISPEESION METER


\section*{B1O.}

FEEDBACK
FEATUREDIN ETI
DECEMBER 1986
Bio-teedback comes of age
wath Ins highy responsive.
sell-balancing skin
response montior! The
poweriul circuit has tound application in clinical situations as wer as on the bio-feedback scene. It will open your eyes 10 whar GSA techniques ar The complete parts set Includes case. PCB, all
components, leads. electrodes, conductive gel. and tull componenis
instructions.

PARTSSET \(£ 16.80\) +VAT
BIO-FEEDBACK BOOK £4.50 (no VAT)

Mease note: : ine book, by Stern and Ray. is an authoriseo guice 10
Ine polential ol bio--leestback lecchniques tis not a hobby book.
BRANWAVE MONTOR


The most antonsshing propect ever to have appeared in an electronics magazine. Similar in principle to a medical EEG machine, this project aliows you to hear the characteristic thythms of your own mindi The alpha, beta and theta forms can
be selecied tor study and the three articles give mas ses of be selected tor study and the three articles give masses of
information on their interpetation and powers information on their interpretation and powers. In conjunction with Dr. Lewis's Alpha Plan, the montior can be used to overcome shyness, to help you feel contident in
stressful situations, and to train yourself to excel at thing no good at.
Our approved parts sel contalns case, wo PCBS, screering car for bio-ampifiter. all components sincluding three PMI precision amplifiers), leads. brass electrodes and tull instructions PARTS SET \(£ 39.80\) - VAT ALPHA PLAN BOOK \(\mathbf{\Sigma 2 . 5 0}\) SILVER SOLUTION tor dancy eectroes \(£ 3.80+\) VAT



\section*{MAKE YOUR INTERESTS PAY!}

More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 vears experience in home-study courses and is the largest correspondence school in the worid you expert 'personal' tutors. Find out how we can help you. post or phone today for your FREE MNOPMATION PACK on the course of your choice


\footnotetext{
 Width 32 mm , Shaft 10 mm 4 Way 13 mmp Extension Block fitted with 2MTRS 13 amp 3 core flex and a 13 momp Plugtop E 6.50
 2 Way Powerline Professional 25MTR 13amp Extension Reel with Cut Out ............... e24.95 QUALITY SCREWDRIVER SET Manufactured in West Germany to \(\times \mathrm{i}\)
1000 V consisting of Four Parallel Blade Drivers, Blade sizes \(75 \mathrm{~mm} \times 2.5 \mathrm{~mm}, 100 \mathrm{~mm} \times 4 \mathrm{~mm}\), \(125 \mathrm{~mm} \times 5.5 \mathrm{~mm}\), \(150 \mathrm{~mm} \times 6.5 \mathrm{~mm}\), Two Cross Point, Blade Sizes \(80 \mathrm{~mm} \times 5 \mathrm{~mm}\), \(100 \mathrm{~mm} \times 6 \mathrm{~mm}\), One 70 mm 240 V Mains Screwdriver ........................................... \(£ 9.36\) per set LONG NOSE PLIERS \(8^{n}(200 \mathrm{~mm}) 1000 \mathrm{~V}\) . \(£ 4.90\) each SIDE CUTTERS \(61 / 2^{\prime \prime}(160 \mathrm{~mm}) 1000 \mathrm{~V}\) \(\mathbf{f 4 . 6 7 \text { each }}\) WIRE STRIPPER \(61 / 2^{\prime \prime}(160 \mathrm{~mm}) 1000 \mathrm{~V}\)..................................................................................
ANTEX SK5 SOLDERING KIT Consisting of a CS240 17 Wat 240 V Soldering an ST4 Solder Stand, Approx 1 mtr of Solder and a booklet on How to Solder ........ \(\mathbf{f 9 . 1 2 \text { each }}\) ARCOLETRIC ROCKER SWITCHES On/Off snap-in type rated 200/250A.C. 6.3 mm tab: PACK ONE Consisting of 10 assorted illuminated single-pole rocker switches. To fit panel hole approx. \(28.2 \mathrm{~mm} \times 11.5 \mathrm{~mm}\)...........................................
PACK TWO Consisting of 10 assorted illuminated and non-illuminated \(\qquad\) EB.00 per pack

Substantial range of SILVA MICA/WAX POLYSTYRENE AND ELECTROLYTIC CAPACITORS in stock. Catalogua free with FIRST ORDER
CHAFFORD VALLEY PRODUCTS

Chafford Lane, Fordcombe, Kent TN3 OSH Tel. 0892740287 Fax. 0892740216.
MAIL ORDER ONLY. ALL PRICES INCLUSIVE VAT. ADD 1.00 p P\&P UNLESS OTHERWISE STATED. TERMS CASH, CHEQUE OR POSTAL ORDER WITH ORDER SCHOOL ACCOUNTS AVAILABLE
}

\section*{ADVERTISERS INDEX}
aUdio ELECTRONICS \(\qquad\) \begin{tabular}{l} 
Cover (iii) \\
549 \\
\hline
\end{tabular} BKELECTRONICS Nics 590 BLACKMORE ELECTRONICS 590 CAMBRIDGE COMPUTER SIENCE
 SCIENCE

VALLE.........
PRODUCTS
CIRKIT DISTRIBUTION. CRICKLEWOOD ELECTRONICS CR SUPPLY CO. C-SCOPE INTERNATIONAL ELECTRONIZE DESIGN ELECTRONIZE DESIGN ELTRAK ELEC
ELV FRANCE \(\qquad\) EVERETT WORKSHOP ACCESS FRASER ELECTRONICS GREENWELD
\(\qquad\) 579/582 ELECTRONICS ................
HART ELECTRONIC KITS ... 551
548 HIGHGRADE COMPONENTS . ICS
JAYTEE ELEC. SERVICES 616
549 JIDENCO CD \(\qquad\) 575 LONDON ELECTRONICS
COLLEGE .. \(\qquad\) MAGENTA ELECTRONICS ... 616 MAGENTA ELECTRONICS .......... 546 MAPLIN ELECTRONICS ..... Cover (iv)
MARCO TRADING MARCO TRADING ...................... 550 \begin{tabular}{llll} 
NUMBER ONE SYSTEMS ........... 551 \\
\hline OMNIECTRONICS & 575 \\
\hline
\end{tabular} SHERWOOD ELECTRONIC COMPONENTS RONI SPECIALIST
SEMICONDUCTORS ............... 61 SUMA DESIGN . S ........................... 593
552
676 ZENITH ELECTRONICS

\section*{BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING}

\section*{2 YEAR}

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
Electronics, Computing, Television, Video, Testing \& Faulidiagnosis) LECTRONC Certificate (ONC) I-INFORMATION TECHNOLNG
(Electronics, Satellite TV, Networks, Telecomms)
2-ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV Testing and Fault Diagnọsis)
3-SOFTWARE ENGINEERING (Electronics, Assembler, BASIC, Pascai, CADCAM) 4-COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronics)

10 MONTHS
BTECHigher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Control, Robotics)
These courses include a high percontage of college besed practicel work to anhance future amployment prospocts Shortened courses of from 3 to 8 months can be arranged for

THOSE ELIGIBLE CAN APPL Y FOR E.T. GRANT SUPPORT AN EQUAL OPPORTUNITIES PROGRAMME
O.N.C. and H.N.C.

Monday 18th September 1989
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE
(Dept. EE), 20 PENYWERN ROAD EARLS COURT, LONDON SW5.9SU Tel: 01-3738721

\(\square \begin{aligned} & \text { POWER AMPLIFIER MODULES－TURNTABLES－DIMMERS－} \\ & \text { LOUDSPEAKERS－19 INCH STEREO RACK AMPLIFIERS }\end{aligned}\) OMP POWER AMPLIFIER MODULES Supplied ready built and tested． OMP POWER AMPLIFIER MODULES Now enioy a world－wide repulation for qually．relability and
 Lesture instrumental and \(A\) H．Fe Petc．When comparing prcces．NOTE Eall models nclude Tororfal powe
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS


OMP100 Mk 11 Bi－Polar Output power 110 watts R．M．S．into 4 ohms，Frequency Response 15 Hz \(30 \mathrm{KHz}-3 \mathrm{~dB}\), T．H．D． \(0.01 \%\) ，S．N．R．-118 dB ，Sens．for Max output 500 mV at 10 K ，Size \(355 \times 115 \times 65 \mathrm{~mm}\) ． PRICE \(£ 33.99+£ 3.00\) P\＆P．

NEW SERIES II MOS－FET MODULES


OMP／MF 100 Mos－Fet Output power 110 watts R．M．S． into 4 ohms，Frequency Response \(1 \mathrm{~Hz}-100 \mathrm{KHz}\) -3 dB ，Damping Factor，\(>300\) ，Slew Rate \(45 \mathrm{~V} / \mathrm{uS}\) ， T．H．D．Typical \(0.002 \%\) ，Input Sensitivity 500 mV ，S．N．R． -125 dB ．Size \(300 \times 123 \times 60 \mathrm{~mm}\)
PRICE £39． \(99+£ 3.00\) P\＆P．


OMP／MF200 Mos－Fet Output power 200 watts R．M．S． into 4 ohms，Frequency Response \(1 \mathrm{~Hz}-100 \mathrm{KHz}\) -3 dB ，Damping Factor \(>300\) ，Slew Rate \(50 \mathrm{~V} / \mathrm{uS}\) ， T．H．D．Typical \(0.001 \%\) ，input Sensitivity 500 mV ，S．N．R -130 dB ．Size \(300 \times 155 \times 100 \mathrm{~mm}\)
PRICE \(£ 62.99+£ 3.50\) P\＆P．


OMP／MF300 Mos－Fet Output power 300 watts R．M．S． into 4 ohms，Frequency Response \(1 \mathrm{~Hz}-100 \mathrm{KHz}\) －3dB，Damping Factor \(>300\) ，Slew Rate \(60 \mathrm{~V} / \mathrm{uS}\) ， T．H．D．Typical \(0.0008 \%\) ，Input Sensitivity 500 mV SRIC．-130 dB ．Size \(330 \times 175 \times 100 \mathrm{~mm}\)
PRICE \(£ 79.99+£ 4.50\) P\＆P．
NOTE：－MOS－FET MODULES ARE AVAILABLE IN TWO VERSIONS STANOARD－INPUT SENS 500 mV BAND WIOTH TOOKHY
PEC（PROFESSIONAL EQUPMENT COMPATAELE）－WNPUT SENS， 775 mV BAND WIDTH \(50 K H 2\) ，ORDER STANDARD OA PEC


Vu METER Compatible with our four amplifiers detailed above \(A\) very accurate visual display employing 11 L．E．D．diodes（ 7 green， 4 red）plus an additional on off indicatior Soph＇sticated logic control circuits for very fast rise and decay times．Tough moulded plastic case，with tinted acrylic front．
PRICE \(£ 8.50+50 \mathrm{P}\) P\＆P．

LOUDSPEAKERS


LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FRE－ QUENCY BULLETS AND HORNS，LARGE S．A．E．（30p STAMPED）FOR COMPLETE LIST．

\section*{McKENZIE：－INSTRUMENTS，P．A．，DISCO，ETC．}

ALL McKENZIE UNITS 8 OHMS IMPEDENCE
 RES，FREQ， 80 Hz ．FREQ，RESP．TO 14 KHz ．SENS， 99 dB RES，FREQ， 70 Hz ．FREQ．RESP TO 6 KHz ．SENS， 100 dB \(10^{\circ} 200\) WATT C10200GP GUITAR，KEYBOARD，DISCO RES，FREQ， 45 Hz ．FREQ，RESP．TO 7KHZ．SENS， 103 dB ．
\(12^{\prime \prime}\)
100
WIT \(12^{\prime \prime} 100\) WAT C 12100 GP HIGH POWER GEN．PURPOSE，LEAD GUIT
RES，FREO 45 Hz ．FREO，RESP，TO 7KHz．SENS． 98 dB RES，FREQ， 45 Hz ．FREQ，RESP，TO 7KHz．SENS， 98 dB ，
12 IDE 100 WATT C12100TC TWIN CONE）HIGH POWER WIDE REONS 12 12 ，FREQ， 45 Hz ．FREQ RESP TO 14KHz．SENS， 100 dB ．．．． 12.200 WAT C12200B HIGH POWER BASS，KEYBOARDS，DISCO，P．A．
RES，FREQ． 40 Hz ．FREQ，RESP，TO KHZ ．SENS， 100 dB RES，FREQ． 40 Hz z FREQ．RESP，TO 7KHz．SENS， 100 dB ．
12 ． 300 WATT C 12300 GP HIGH POWER BASS 12 300 WATT C12300GP HIGH POWER BASS LEAD GUITAR，KEYBO
RES，FREQ， 45 Hz FREQ，RESP，TO 5 KHz ．SENS， 100 BB 15＂ 100 WATT C15100日S BASS GUITAR，LOW FREQUENCY，P．A DIS 15＂ 200 WATT C 15 ．FREQ RESP，TO 5 KHz ．SENS， 98 dB ． 15 200 WAIT C15200日S VERY HIGH POWER BASS，
RES，FREQ， 40 Hz FREQ．RESP，TO 4 KHz ．SENS， 99 dB
\(15^{\prime \prime} 250\) WATT C15250日S VERY HH \(15^{\prime \prime} 250\) WATT C15250日S VERY HIGH POWER BASS
RES．FREQ， 40 Hz FREQ RESP，TO 4 KHz ．SENS， 99 dB 15＂．FREQ WATT C15400BS VERY HIGH POWER，LOW FREQUENCY B
\(15^{\prime \prime}\) RES．FREQ． 40 Hz ．FREQ，RESP．TO 4 KHz ．SENS． 102 dB ． \(188^{\prime} 400\) WATT C18404BS EXTREMELY HIGH POWER．
RES，FREQ 27 Hz ．FREQ．RESP TO KKHz ．SENS，99dB

\section*{EARBENDERS：－HI－FI，STUDIO，IN－CAR，ETC．}

ALL EARBENDER UNITS 8 OHMS EXCEPT EB8－50 AND EB10－50 DUAL 4 AND 8 OHM bASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED FOAM SURROUND
850 WATT EBE－50 DUAL IMPEDENCE，TAPPES \(4 / 8\) OHM BASS．HI－FI．N．CAR RES，FREQ，40HZ．FREQ，RESP，TO FKHZ．SENS， 97 dB \(10^{\circ} 50\) WATT EB10－50 DUAL IMPEDENCE，TAPPED 4／8
RES．FREQ， 40 HZ ．FREQ，RESP．TO 5 KHz ．SENS， 99 dB ．
 RES．FREQ，35Hz FREQ，RESP，TO T SHZ，SENS． 96 dB ．
 \(1^{1 z^{\prime}} 100\) WAT EB12－100 BASS，STUDO，HI－FI，EXCEL RES．FREQ 26HZ，FREQ．RESP．TO 3KHZ．SENS．93dB．
FUUL RANGE TWIN CONE，HIGH COMPLIANCE \(51 / 460\) WATT EB5－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DIS SUR RESS．FREQ． 63 Hz FREQ，RESP．TO 20 KHz ．SENS 92 dB ．

 RES，FREQ， 40 Hz ．FREO．RESP TO 18 KHz SENS 89 dB
 EXCELLENT MID PRICE \(£ 34.70+£ 2.50\) P \＆P． GR POWER MID． PRICE \(£ 47.48+£ 2.50\) P \＆ P PRICE \(£ 36.66+£ 3.50\) P \＆P PRICE VOICE DISCO．
 PRICE \(£ 64.17+£ 3.50\) P \＆
RDS DISCO ETC PRICE \(£ 85.79+£ 3.50\) P\＆P PRICE \(553.70+£ 4.00\) P\＆\(P\) PRICE \(£ 73.26+£ 4.00\) P\＆P． PRICE \(£ 80.53+£ 4.50\) P \＆P PRICE \(£ 94.12+£ 4.50\) P \＆P． NCY BASS
PRICE \(167.85+\)＋ 5.00 P \＆P

\section*{TRANSMITTER HOBBY KITS}

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPO
COMPIETE WITH CIRCUIT AND INSTRUCTIONS

3W FM TRANSMITTER \(80 \cdot 108 \mathrm{MHz}\) ，VARICAP CONTROLLED PROFESSIONAL PER FORMANCE，RANGE UP TO 3 MLES，SIZI \(38 \times 123 \mathrm{~mm}\) SUPPLY 12 V （a \(0.5 A M P\)

FM MICRO TRANSWITTER（BUG） \(100 \cdot 100 \mathrm{MHz}\) VARICAP TUNED COMPLETE WITH VEFY SENS FET MIC．RANGE \(100-300 \mathrm{~m}\) SIZE \(56 \times 46 \mathrm{~mm}\) ，SUPPLY YV BATT．PRICE
\(8 \mathrm{~B} .62+\{1.00 \mathrm{Pg} \mathrm{P}\)
POSTAL CHARGES PER ORDER \(\$ 1.00\) MINMUM OFFICIAL ORDERS WELCOME FROM


3 watt FM
Transmitter

GES．GOVT．BODIES．ETC．PRICES INCLUSIVE OF V AT
VISA ACCESS ACCEPTED BY POST，PHONE OR FAX
\(\star\) Manual arm \(\star\) STEEL ChaSSIS \(\star\) Electronic SPEED CON－ TROL \(33 \& 45 \star\) VARI PITCH CONTROL HIGH TORQUE SERVO NEON STROBE \(\star\) CAIBRATED SCREWS \(\star 12\) DIE CAST PLATER \(\star\) SHEL \(\star\) CARTRIDGE FIXINGS \(\star\) CUELEVER \(\star\) POWER 220240 V \(5060 \mathrm{~Hz} \star 390 \times 305 \mathrm{~mm} \star\) SUPPLIED WITH MOUNTING CUT－OUT PRICE 59.99 ＋£3．50 P\＆P．

\section*{STANTON AL500 GOLDRING G850 PRICE \(£ 16.99+50 \mathrm{p}\) P\＆P PRICE \(£ 6.99+50 \mathrm{p}\) P\＆P}

OMP MOS－FET POWER AMPLIFIERS，THOUSANDS PURCHASED HIGH POWER．TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS


NEW MXF SERIES OF POWER AMPLIFIERS
THREE MODELS：－MXF200（100w＋100w） MXF400（200w＋200w）MXF600（300w＋300w） All power ratings R．M．S．into 4 ohms
FEATURES：＊Independent power supplies with two Toroidal Transiormers \＃Twin LE．D．Vu meters＊Rotary indented level controls＊llluminated on off switch \(\#\) XLR connectors \(\#\) Standard 775 mV inputs \(\#\) Open and short circuit proof \＆Latest Mos－Fets for stress free power delivery into virtually any load \＃High slew rate＊Very low distortion＊ Aluminium cases \(\star M \times F 600\) Fan cooled with D．C．loudspeaker and thermal protection
USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC
sizes：
 MXF \(400 \mathrm{~W} 19^{\circ} \times \mathrm{H} 511^{\prime \prime}(3 \mathrm{SU}) \times \mathrm{D12}\) MXF 600 W19 \(\times\) H5 \(/ /^{\prime \prime}(3 U) \times D 13\) PRICES：MXF400 £228．85 MXF600 \(£ 322.00\) SECURICOR DELIVERY £12．00 EACH
OMP LINNET LOUDSPEAKERS

the verybest in quality and value


\section*{choice of two models}
power ratings quoted in watts rms for each cabinet
OMP 12－100（ 100 W 100dB）PRICE \(£ 159.99\) PER PAIR OMP 12－200（200W 102dB）PRICE £209．99 PER PAIR SECURICOR DEL：－ 112.00 PER PAIR
 OMP SLIDE DIMMER
1 K WATT \(\& 2.5 \mathrm{~K}\) WATT CONTROLS LOADS UP TO 1 KW \＆ 2.5 SKW ．
SUTABLE FOA RESISTIVE AND INOUC．
 features include：－
＊fuil

> TRAVEL * NEON

MONITOR INDICATOR
＊Flash override
Bution
BUTION
－HIGH \＆LOW LEVEL
PRESETS
－FULIY SUPPRESSED

PRICES：－ 1 K WATT £15．99
2．5K WATT \(£ 24.99+60 \mathrm{p}\) P\＆．P

\section*{PIEZO ELECTRIC TWEETERS－MOTOROLA}

PIEZO ELECTRIC TWEETERS－MOTOROLA
Join the Piezo revolution．The low dynamic mass（no voice coll）of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters．As a crossover is not required these units can
be added to existing speaker systerns of up to 100 watts（more if 2 put in series）FREE EXPLANATORY L EAFLETS be added to existing speaker systerns of up to 100 watts（more if 2 put in series）．FREE EXPLANATORYLEAFLE
SUPPLIED WITH EACH TWEETER．TYPE＇A＇（KSN2036A）3＇round with protective wire
mesh．ideal for bookshelf and medium sized Hi－f speakers．Price \(£ 4.90\) each +50 p P\＆P．
TYPE＇B＇（KSN 1005a） \(31 / 2\)＂super norn．For general purpose speakers，disco and P．A．systems etc．Price TYPE＇C＇（KSN6016A）2＂
quality Hill \(\times 5^{\prime \prime}\) wide dispersion horn．For quality \(\mathrm{Hi}_{1}-\mathrm{H}\) systems and quality discos etc．Price \(\mathbf{\Omega 6 . 9 9}\) TYPE＇D＇（KSN10 Upper frequency response retainide dispersion horn mid range（ 2 KHz ）．Suitable for high quality \(\mathrm{Hi}_{\mathrm{i}}^{\mathrm{f}}\) ，systems and quality discos．Price \(£ 9.99\) each +50 p P\＆P． TYPE＇E＇（KSN1038A）33／4＂horn tweeter with attractive silver finish trim．Suitable for Hi －fi monitor systems etc Price 55.99 each +50 p P\＆P
LEVEL CONTROL Combines on a recessed mounting plate，level control and cabinet input jack socket
\(85 \times 85 \mathrm{~mm}\) ．Price \(£ 3.99+50\) P P\＆P

\section*{STEREO DISCO MIXER}

STEREO DISCO MIXER with \(2 \times 5\) band L \＆R graphic equalisers and twin 10 segment L．E．D． with indivi Many outstanding features 5 Inputs with individual faders providing a useful com－ bination of the following：－
3 Turntables（Mag）
3 Turntables（Mag）． 3 Mics． 4 Line including CD plus Mic with talk over switch Headphone Moni－ Output 775 mV ．Size \(360 \times 280 \times 90 \mathrm{~mm}\) ．Supply \(220-240 \mathrm{v}\) ．
Price £134．99－£4．00 P\＆P


Post Your Order Now . - .


\footnotetext{
I authorise you to debit my Credit Card account for the cost of goods despatched.
}

Credit Card No.
Access Amex Visa ........................................................................................ Delete as required.
If ordering by Credit Card please sign
Expiry date of Credit Card

\section*{IIN Aldolios electroncs} CREDIT CARD HOTLINE


\section*{0702554161}

\section*{PHONE BEFORE 5PM FOR SAME DAY DESPATCH}

\section*{aLL PRICES INCLUDE VAT}

All items subject to availability, both items will be on sale in our shops in Birmingham, Bristol, Leeds, Hammersmith, Edgware, Manchester, Nottingham,
Southampton and Southend-on-Sea.```

