

£1 BAKERS DOZEN PACKS

Price per pack is $£ 1.00$. Order 12 you may choose another free. Items guaranteed ok

```
-13 amp ring maín spur boxos
    mortace ring main spur boxes
    surface mounting
    electrical switches, white flush mounting
    in flex line switches with neons
        *
    mains transformers with 6V 1A secondaries
    -extension speaker cabinet for 6
    - glass reed switches
    ulirasonic transmitters and 2 receivers with circuit
    light dependent resistors
    wafer switches - 6p 2 way, 4p 3 way, 2p 6 way, 2p 5 way, 1p
    way small one hold fixing and good length }\frac{1}{4}\mathrm{ spindle your choice
    6 digit counter mains voltage
    Nicad battery chargers
    aerosol cans of ICI Ory Lubricant
    -1 metre lengths colour-coded connecting wire
    - rng&and medium wave tuner kit
1-24 hour time switch mains operated (s.h.)
lol
    2V OC or 24V AC, 3 CO relays
    12V 4C0 miniature relay
10 - rows of 32 gold plated IC sockets (total 320 sockets)
    - locking mechanism with 2 keys
    -miniature uniselector with circuir for electric jigsaw puzzle
    ferrite rods 4" }\times5/1\mp@subsup{6}{}{\prime\prime}\mathrm{ diameter aerials
    - territe slab aerials with L & M wave coils
    - Mullard thyristor trigger module
    magnetic brake - stops rotation instantly
    N presuts 8 ser switch can me mouth operated
    25 watt pots 1000 oh
- wire wound pots - 18,33,50 and 100 ohm your choice
1-time reminder adjustable 1-60 mins clockwork
l
1- mains motor with geaf box 1 rev per 
    thermostat for fridge
    -motorised stud switch (s.h.)
    mains power supply unit
    mains power supply unit - 4V OC
    -5" speaker size radio cabinet with handle
    - heating pad 200 watts mains
    1W amplifier Mullard 1172
    wall mounting thermostat 24V
    teak effect extension 5" speaker cabin
    p.c. boards with 2 amp full wave and 17 other recs
    putsesin screaned flex white py c. oute
    25 - clear plastic lenses 13 diameter
    4 - pilot bulb lamp metal clip on type
```

 10 - very fine drills for pabs etc.
 plastic boxes with windows, instruments
 2 - plastic boxes with windows, ideal for interrupted beam'switch
 \(1-6 \frac{1}{2}\) " 4 ohm 10 watt speaker
 10-4 BA spanners 1 end open, other end closed
 \(2-4\) reed relay kits \(3 V\) coil normally open or \(c / 0\) if magnets added
 20 - pilot bulbs 6.5V 3A Philips
 -12 V drip proof relay - ideal for car jobs
 varicap push buton funers with knobs
 - short wave air spaced trimmers 2-30f
 \(10-12 \mathrm{~V} 6 \mathrm{~W}\) bulbs Philips m.e.s
 6 - round amber indicators with lilliputs 12 V
 100 - p.v.c. grommets \(\frac{3}{8}\) hole size
 1 - short wave tuning condenser 50 pf with \(\frac{1}{4}\) " spindle
 - three gang tuning condenser each section 500 pf with trimmers
 and good iengit
 1 - plastic box sloping metal front, $16 \times 95 \mathrm{~mm}$ average depth
45 mm
5 amp 3 pin flush sockets brown
B. C. lampholders brown bakelite threaded entry
in flex simmerstat for electric blanket soldering iron etc.
ains operated solenoid with adjusiable range for ovens etc.
-10 digit switch pad for telephones etc.
- computer keytoard switches with knobs, pcb or vero mounting
20 - mtres 80 ohn, standard type co-ax off white
- electric clock mains driven, always night time - not cased
ster eo pre-amp Mullard EP9001
1 - mains transformer 9V 1 amp secondary C core construction
- car door speaker (very flat) $5 \frac{1}{2}$ " 15 ohm made for Radiomobile
- speakers $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm 5 watt made for Radiomobile
- speakers $6^{\prime \prime} \times 4^{\prime \prime} 16$ ohm 5 watt made for Radiomobile
mains motor with gear-box very small, toothed output 1 ppm
standard size pots, $\frac{1}{2}$ meg with dp switch
- 13A switched socket on double plate with fused spur
- mains transformers 9V $\frac{1}{1} \mathrm{~A}$ secondary
ten turns 3 watt pot $\frac{1}{4}$ spindle 100 ohm
car cigar lighter socket plugs
15 amp round pin plugs brown bakelite
mains solenoid with olunger compact tyo
ceramic magnets Mullard $1^{\prime \prime} \times 3 / 8 \times 5 / 16$
12 pole 3 way ceramic wave charge switch
tubular dynamic microphone with desk rest
ubbular dynamic microphone with desk rest
T.V. turret tuner (black \& white T.V.)
oven thermostats
sub miniature -micro switches
$12^{\prime \prime} 8$ watt min fluorescent tube white
a watt min fluorescent tube white
round pin kettle plug with moulded on lead
2 in .80 ohm loudspeakers
2 in . 80 hm loudspeakers
FROZEN PIPES Can be avoided by winding our heating
cable around them, 15 mtrs connected to mains cost only about 10 p per week to run. Hundreds of other uses as it is waterproof and very flexible. Resistance $600 h m s / m e t r e$. Price $28 \mathrm{p} /$ metre or 15 m for $£ 3.95$.

MULLARD UNILEX AMPLIFIERS

We are probably the only firm in the country with these now in
stock. Although only four watts per channel, these give superb reproduction. We now offer the 4 Mullard modules-i.e. Mains power unit (EP9002) Pre amp module (EP900 1) and two amplifier modules (EP9000) all for $£ 6.00$ plus $£ 2$ posiage. For prices of
CAR STARTER/CHARGER KIT
Flat Battery! Don' worry you will star your car in a few minutes with this unit - 250 wari transformer 20 amp rectifiers, case and all
parts with data $£ 14.50$ or without cese $£ 18.50$ post $£ 2$.

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs . repeats daily automatically correcting for the automatically correcting for the expensive time switch but you can have it for only $£ 2.95$ without case, metal case - £2.95, adaptor kit to convert this into a normal 24 hr , time switch but with the added advantage of up to 12 on/offs per
24 hrs . This makes an ideal controller for the immersion heater. Price of adaptor kit the immer
is $£ 2.30$.
SOUND TO LIGHT UNIT
 Compiete kit of parts of a three channel sound to light unit
controlling over 2000 watts of lighting. Use this at home if you
wish but it is plenty rugged enough for disco work. The unit is wish but it is plenty rigged enough ror disco work. The unit is aach channel, and a master on/off. The audio Input and output are by ${ }^{\psi}$ " sockets and three panel mounting fuse holders provide
thyristor protection. A four pin plug and socket facilitate ease of hyristor protection. A four pin plug and socker facilitate ease o
12 volt MOTOR BY SMITHS Made for use in cars, etc. these are ver
powerful and easily reversible. Size
31"
 $1 / 10 \mathrm{hp} £ 3.45$ 1/8 hp £5.75. 1/6 hp £ 7.50
25A ELECTRICAL PROGRAMMER boiling as you wake - switch playing and kettle

THIS MONTH'S SNIP

is a $2 \frac{1}{2} \mathrm{~kW}$ tangential heater, metal box to contain it
 \section*{and 3 level switch to control it}

Special January price $\mathbf{f} \mathbf{7 . 5 0}$ post paid
INSTRUMENT TURNTABLE
Very well made with unique coiled arrangement for Hitachi video unit, also suitable for most modern scopes and many other
instruments. Price $£ 5$ plus $£ 2$ posi, order ref $5 P 72$.

LIGHT BOX

This when completed measures approximately $15^{\prime \prime} \times 14^{\prime \prime}$. The light
source is the Phillips fluorescent " W^{\prime} tube. Above the light a sheet source is the Phillips fluorescent 'W' tube. Above the light a sheer
of fibreglass and through this should be sufficient light to enable you to follow the circuit on fibreglass PCBs. Price for the complete
kit, that is the box, choke, starter, tube and switch, and fitreglass is kit, that is the box, choke, starter
$£ 5$ plus $£ 2$ post, order ref 5 P69.

TANGENTIAL HEATERS?

We again have very good stocks of these quiet running instant heat
units. They require only a simple case, or could easily be fitted into the bottom of a kitchen unit or book case atc. At present we have stocks of $1.2 \mathrm{kw}, 2 \mathrm{kw}, 2 \cdot 5 \mathrm{kw}$, and 3 kw . Prices are $£ 5$ each for the
first 3 , and $£ 6.95$ for the 3 k . Add post $£ 1.50$ per heater if not collecting. SWITCH enabling full heat, half heat or cold blow, with
FANS \& BLOWERS
$5^{*} £ 5+E 1.25$ post. $6^{*} £ 6+£ 1.50$ posi
$4^{*} \times 4^{*}$ Muffin equipment cooling fan $115 \mathrm{~V} £ 2.00$
$4^{* *} \times 4^{*}$ Muffin equipment cooling fan $230 / 240 \mathrm{~V} £ 5.00$

9^{*} Extractor or blower 115 V supplied with 230 to 115 V adaptor
$\mathrm{f} 9.50+£ 2$ post. $\mathfrak{f 9 . 5 0 + £ 2 \text { post. }}$
All above are ex computers but guaranteed 12 months.
$10^{*} \times 3^{*}$ Tangential Blower. New. Very quiter - supplied with 230 to $10 \times \times$ Tangential Blower. New. Very quiet - supplied with 230 to
115 V adaptor on use two in series to give long blow $£ 2.00+$
$£ 1.50$ post or $£ 4.00+£ 2.00$ post for two

IONISER KIT
Refresh your home, office, shop, work room, etc. with a
Refresh your home, office, shop, work room, etc. With a
negative ION generator. Makes you fael better and work
harder - a complete mains operated kit, case included.
$\mathbf{£ 1 1 . 9 5 \text { plus } £ 2 . 0 0 \text { post. }}$.

TELEPHONE BITS

Master socket (has surge arrestor - ringing condenser etc) and Exiension socket.
Dual adaptors (2 from one socket).
Cord terminating with B T 63.95
$\mathbf{6} 3.95$
$\mathbf{5} .95$

Cord terminating with B.T. plug 3 metres

Kit for converting old entry terminal box to new B. T. master
complete with 4 core cable, cabla clips and 2 BT extension

MINI MONO AMP on p.c.b. size $4^{* *} \times$ fitted volume control and a hole for a ton
trol should you require it. The amplifier has three transisquirs and we estimate the output to be 3 W rms.
More technical data will be included More technical data will be
with the amp. Brand new perfect condition, offered a

J \& N BULL ELECTRICAL

Dept. E.E., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 50T

MAIL OROER TERMS: Cash, P.O. or cheque with order. Orders under $£ 20$ add $£ 1$ service charge. Monthly account orders accepted
from schools and public companies. Access \& $8 /$ ccard orders
accepted. Brighon 0273734648 . Bulk orders: write for quote.

POUNDERS

-Wall mounting thermostat, high precision with mercury switch and
thermometer
-Variable and reversibiel $8-12 \mathrm{v}$ psu for model control

- Variable and reversible $8-12 \mathrm{v}$ psu for model control
-24 volt psu with separate chimnels for stereo made for Mullard UNiLEX -24 volt psu with separate chemnels for stareo made for Mullard UNILEX
-100 W mains to 115 V auto-transtormer with voltage tappinas -100W mains to 115 V auto-transtormer with voltage tappings suirable for further speed control
2 2P9 - Turme and set switch. Boxed. glass fronted and with innobs. Controls up to
15 amps. Ideal to program electicic heaters
2 P12 -Disk or Tape pracision motor - has balanced rotor and is reversible 230v
mains operated 1500 rom
2P14 - Mut Stop kit - when thrown emits piercing squawk
2P15 -Interrupted Beam kit for burglar alarms, counters, etc.
2P17-2 rev pr minute mains driven motor, ideal to operate mirrar ball
2 218-Liquid/gas shut off valve mains solennoid operated
P19-Disco switch-motor drives 6 or more 10 amp change over micro switches
supplied ready for mains operation
tools etc.
2P21-10 watt amplifier, Mullard module reference 1173
2P22 -Motor driven smitch 20 sars or
2P22-Motor driven switch 20 sers on or off after push
2P26-Courters rasettable mains opersted 3 digit
2P27 -Goondmans Steakes 6 nch
2P28 - Drill Pump - always useful couples to any make portable dril
2P28 - Drill Pump - always usetul couples to any meke partable drill
2 P31
-4 metres
98
2P31-4 metres 98 way interconnecting wire easy to strip
2P32 -Hot Wire amp meter - $4 \frac{1}{2}$ round surface mounting 0-10A - old but
working and defintely a bit of history
working and definitely a bit of history
2P34-Solenoid Ain Valve mains operated
2P38-200 R.P.M. Geared Mains Motor 1*
2P38-200 R.P.M. Gared Mains Motor 1 " stack quite powerful, definitely large
$2 P 43$ - enough to drive a rotating aerial or a tumbe blower for extractor fan, motishing stor inset so very compact, 230 V .
${ }^{2} \mathrm{P} 46$-Our famous drill control kit complete and with prepared case
2P49 - Fire Alarm break glass switch in heany cast case
2P5
2P51 - Stereso ampififier, 3w per channel
2P55 -Mains motor, extra powerful has $1 \frac{1}{*}$ s stack and good length of spindie
2P62-1 pair Goodmans 15 ohm speakers
2P62-1 pair Goodmans 15 ohm speakers for Unil
${ }_{2}$ 2P66-1 2 Kw bladed fangential heater with mains motor 115 v easily converible for 230 V
2P67-1 12v-0-12v 2 amp mains transformer
2P68-1 $15 v-0-15 v 2 \mathrm{amp}$ mains transtormer
2P69-1 250v-0-250v 60 mA \& 86.3 v 5 A mains transformer +50 p post
2P70-1 E.M.1. tape motor two speed and reversible
2P72-1 115 M Mutfin far $4^{* \prime} \times 4^{* \prime}$ approx. (s.h.)
左 12 hour timer, plugs into 13 A socket
$2-9 v-0-9 v 2$ amp mains uansformer
- Modem board with press keys for telephone redialler
$-20 v-0-20 v$$\frac{A}{}$ Mains transformer

5-20v-0-20v 1 A Mans teansformer
2P89-120 min time switch with knob
${ }_{2} \mathrm{P9O}$ - 90 min . time switch with edgewise engraved contuol
2P94 -Telephone handset for EE home telephone circuit
2P95-13A socket on satin chrome plate
2P97 -mains transformer 24V 2A upright mounting
2P98 -20 m 4 core felephone cable, white
2P98 -20 m 4 core teleptione cable, white outer
2P99
-500
hardened pin tyoe staples tor telephon
2P99-500 hardaned pin type staples for telephone cable
2P101-15V mains transtomer 4 A
2P101-15V mains transformer 4A upright mounting
2P105-capiliary trpe thermostat for ant temperature with $\mathrm{c} / 0$ switch
2P107 -mpmbrane keytoard, telephone type
2P 108 - mains motor with gear box giving 110 rpm
2P109- ${ }^{-}$wide
2P109-5" wide black adhesive puc tape 33 m , add f 1 post if not collecting

OVER 400 GIFTS YOU CAN CHOOSE FROM There is a total of over 400 packs in our Baker's dozen range and you become entitled to a free gift with each dozen pounds you spend on these

 packs.
 A classified list of these packs and our latest "News Letter" will be enclosed with your goods, and you will automatically receive our next news letters.

£5 POUNDERS*

ideal caravan unit. pump complete with a tap and switch, an
5 EP . Sound to light kit complete in case suitable for up to 750
5P3. Watts.
5P5. 250 watt isolating transformer to make your service bench
5P6. safe. plus $£ 3$ postage if you can"t collect. 12 V alarm bell with hesvy $6^{\prime \prime}$ gong, suitable for outside if 12V alarm bell with hesvy 6 gong, suitable for outside 5P 12. Equipment cooling fan - mini snall type mains operated. Ping pong ball blower - or for any iob that requires a pow
stream of air - ex computer. Collect or add $£ 2$ post.
5P15-Uniselector 4 pole, 25 way 50 volt coil
5P 18 -motor diven water pump as fitted to many washing machines
5P20
$5 P 20-2$ kits, matchtox size, survellance transmitter and FM rece
5 P23 -miniature (appr. $2 \frac{1}{2} \frac{1}{\prime \prime}^{\prime \prime}$ wide) tangential blow heater, 1.2 low
522 -miniature (appr. $2 \frac{1}{2}$ " wide) tangential blow heater, 1.2 kw
$5 \mathrm{k} 24-\frac{1}{4} \mathrm{hp}$ motor, ax computer, 230 V , mains operation 1450rpm. If not collect
add $£ 3$ post
$5 P 25$-special effects lighting switch. Up to 6 channels of lamps can be on or off
to
for varying time periods
$5 P 27$ - cantidge player 12V, has high quality stareo amplifter
$5 P 28$ - gear pump, mains motor driven
5P28 - gear pump, mains motor driven with irllat and ourtlet pipe connectors
5P32 -large mains
onerated push $5 P 32$-large mains operated push of pull solenoid. Heawy so add $£ 1.50$ post
5 P34 - $24 V$ VA toroital mains transtomer 5P34-24V 5A toroital mains transformer
5P35 -modem board from
SP37 ICs boal
5P37-24 hour time switch, 2 on/offs and clociwork reserve, ex Elec. Board
SP41-5"ading up to 50A. Add f 1 post
5P41-5" axtractor fan, very quiet runner (s.h.), gntd 12 mths.
5P45
5P45 -pack of 6 cooker clock swtiches
5P48 -telephone extension bell in black
5P48 -telephone extension bell in black case, ex-GP0
5P50 -box of 20 infra
5P50 -box of 20 infra red quartz glass enclosed 360 W heating etements
5P51 -200W auto transtormer 230 V to 115 V torroidal
5P52 -mains transformer 26 V 10A upright mounting, add
5P52 -mains transformer 2 20
5P54 -mains motor with gear box, final speed 5rpm,
5P58 -Amstrad stereo tuner FM and $L M$ and S. AM
5P60 -DC Muttin type fan 18 to 27V, only $3 W$
5P61 -drill pump mounted on frame, ccupled to mains motor
5 P62 $-2 \frac{1}{2} \mathrm{kw}$ tangential blow heater, add $\mathfrak{£ 1} 1.50$ post if not coilecting
LIGHT CHASER KIT motor driven switch bank with connection diagram, used in connection with 4 sets of xmas lights makes a very eye catching display for home, shop or disco, only f5 ref 5 P5 6.

(c) Wimborne Publishing Ltd 1987. Copyright in all drawings, photographs and articles published in drawings, photographs and articies published in and reproduction or imitations in whole or in part are expressly forbidden.

Our February 1987 issue will be published on Friday, 16 January 1987. See page 31 for details.

EVERYDAY
 E
 ECTRONICS

INCORPORATING ELECTRONICS MONTHLY

The Magazine for Electronic \& Computer Projects
Projects
MORSE DECODER by John M. H. Becker 8
Automatic decoding of Morse signals with the aid of your micro ANALOGUE TO DIGITAL CONVERTER 18
Low cost converter circuit for the BBC Micro
LOGIC PULSER by Mike Tooley BA 26
Useful logic fault finding probe; TTL and CMOS compatible 32
Can control up to 2 kW of lighting-ideal for discosSIMPLE BUZZER38
An "Exploring Electronics" project
HANDS OFF INTERCOM by T. Smith 44
Low budget system with good speech quality HAND LAMP CHARGER by T. R. de Vaux Balbirnie 52
Don't let your batteries run down
Series
BBC MICRO by R. A. Penfold \& J. W. Penfold 18
Regular spot for Beeb fanatics
DIGITAL TROUBLESHOOTING by Mike Tooley BA 22
Part Three: Monostable and bistable devices
ACTUALLY DOING IT by Robert Penfold 28
Crystals and semiconductor leadouts
EXPLORING ELECTRONICS by Owen N. Bishop 36
Part Seven: Bistables and the like
ROBOT ROUNDUP by Nigel Clark 42
A regular series that investigates the world of robotics
ON SPEC by Mike Tooley 48
Readers' Sinclair Spectrum page
AMATEUR RADIO by Tony Smith G4FA 1 58
Round the World/MM; Olympic plans: Amateur TV
Features
EDITORIAL 7
BUILDING WITH VERO by Vivian Capel 14
Getting the best out of Veroboard
NEW PRODUCTS 20
Facts and photos of instruments, equipment and tools
MARKET PLACE 29
Free readers' buy and sell spot
FOR YOUR ENTERTAINMENT by Barry Fox 30
Laser Submarine Communications; Star Wars
BOOK REVIEWS A selection of recent releases 35
READERS' LETTERS Your news and views 39
READERS' DISCOUNT SCHEME 39
NEWS What's happening in the world of electronics 40
SHOPTALK by David Barrington 43
Product news and component buying
SPECIAL OFFER Three-Channel Chart Recorder 47
BOOK SERVICE Our own service for readers of EE 50
CIRCUIT EXCHANGE 59
A forum for readers' ideas
PRINTED CIRCUIT BOARD SERVICE 60
DOWN TO EARTH by George Hylton 62Pitch and Loudness; Physics and Psychology

5

EVERYDAY ELECTRONICS	
Modem Tone Decooder	Nov. '86 $f 15$
Car Flashin	Nov. 86
	Nov. 86
Frezer fail	
ramir	${ }^{6}$
van	${ }^{6}$
${ }_{\text {cor }}^{\text {Caravan }}$	866 114
${ }^{\text {Von Box }}$	86
Headidhon Watchion	Y 868
Watch	
Percussio	June :8681
Percussion Symnesiser (Excl PCB)	June 868 f19.75
Versatil PSS	Apr. 86
Stereo Reve	
Excl PCB)	
Nal Timer	
ch C	
Mains Delay Swi	\%. 888159
Chip Alarm	Jan. 868
vva	
ge	
Tremol	
Orill Contol Unit (Excl. Cas	
Low cost PSU	
T	Juty 85859
	July 85 ¢ 77.40
Ele	June 8585.65
	11
	11
Hrgh 2 Moltimeter	
DIGITAL TROUBLE SHOOTING	
1-EE Bench Power Supply	Nov. 86
${ }^{2}$-Logic Probe	Dece 888
logic	Jan 87 Pho
ELECTRONICS MONTHLY KITS	
Compressor/Sustain Pedal	
	Sept. 85 f 19.65
Housshoid Bartery	
Water Indicato	Aug. 8588.20
Wimstrieen Wiper	Aug. 855 £20.50
Sters	Aug. 85 ¢ 21.45
Hearbeat Monitor $\begin{aligned} & \text { Freerer Temperaure }\end{aligned}$	${ }_{85}^{85} 821.45$
Fremer Temperature Ala	5
dedal Flanger	fure 85 ¢2
PRACTICAL ELECTRONICS	
PE Smudum	Oct. 85 ¢20.90
TEACH IN '86 KITS STILL AVAILABLE	
ALL PROJECT COMPONE	
VAILABLE SEPAR	

$\star 164$ pages featuring over 3,000 products.
\star Many new products, plus all the old favourites $\star \$ 500$ worth of electronic equipment and components to be won in our catalogue competition. \star On sale at your newsagent or direct from the address below.
Cirkit Distribution Ltd
Park Lane, Broxbourne. Herts, EN10 7NQ Tel: (0992) 444111. Tix: 22478

THRFEI IWTO ONE WIIL GO- WITH THE CROITECH 3132

1 SCOPE:
DC -20 MHz Bandwidth $2 \mathrm{mV} /$ div Sensitvity 40ns - 0.2s/div Sweep 14 Trigger Functions Including active TV trigger on line \& frame.
3 Triple Output DC Source
$+5 \mathrm{~V}(1 \mathrm{~A})$; -ve grounded $\pm 12 \mathrm{~V}(200 \mathrm{~mA})$. Common Floating

2 Active Component Comparator
(for checking Transistors, diodes and I.C.'s etc)

Test Voltage: $8.6 \mathrm{Vrms}(28 \mathrm{~mA})$
All for the price of a scope at suscom.
£285*
\& EE F (Excluding Delivery and VAT)

Cratech Instruments Limited

2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

OSCILLOSCOPES
TEKTRONIX 2215．Dual Trace 60MHz．Delay Sweep．With Manual
TELEDUIPMENT 075 Dual Trace 50 MHz Delay COSSOR CDU150．Dual frace 35 MHz Soli群 TELEQUIPMENT D61A Dual Trace 10MHz．With TELEQUIPMENT O43．Dual Trace 15MHz．With manual
PHLLPS PM3230．Dual Beam 10MHz Solid TELEQUIPMENT S54A．Single Trace IOMHz Solid Stgte．With manual

MULTIMETERS

AVO 9 Mk4（Identical to AVO 8 Mk4 but scaled differently）．Complete with Batteries \＆Leads．$£ 55$
AVD 8 Mk 2 Complete with Batteries \＆Leads $£ 45$ Above Items in GOOD WORKING ORDER－ appearance not A1 hence the price．
AVO TEST SET No 1 （Military version of AVO 8） Complete with batteries，leads \＆carrying case $£ 65$
AVO Model $7 x$ ．Complete with batteries，leads \＆ carrying case．．
AVO Model 73 ．Pocket Multimeter（Analogue） 30 ranges．Complete with batteries \＆leads
RACAL 32MHz Universal counter timer．Type 836

STEPPING MOTORS

ype 1,200 Steps per rev． 4 Phase（ 5 wire） 2／24V．Torque 2502 inch（will run on 5 V with reduced torque
york on 5V）
Pe 3．NORTH AMERICAN． E 2 ea． 5 off $£ 7.50$ ev． 4 wire 5 V 3.3 Amps $0-250$ rpm $0-200$ PPs f 6 ea Type $4-200$ Steps per rev． 120 V （ 3 wire）Torque 2502 inch Warner 24 Steps per rev． 3 Phase 16 wre）．28V．Holding Torque 4502 inch．．．．．．．．．．$£ 5$ ea
AVO TRANSISTOR TESTER TT169 Handhere GO NOGO for in situ testing．Complete with batteries，leads 8 instructions．p\＆p $£ 3$ ．Now only $£ 12$
ISOLATING TRANSFORMERS 240 V N－240V DUT

COMMUNICATION RECEIVERS

 RACAL RA17L 500 kHz －30MH2 EODYSTONE $730 / 4.480 \mathrm{kHz}-30 \mathrm{MHz}$only $£ 110$ each with manual
DISK DRIVE PSU． 240 V in 5 V 1.6 A 812 V 1.5 A Out． Size W125mm．H75mm．D180mm．Cased．Un used．．．．．．．．．．．．．Only f 10 as（p8a $\mathbf{2}$ ）
OWERTY KEYBOARD（as in（YNX MICRO） QWERTY KEYBOARD Onty E5 ea（0\＆ Push to make．Cased Only $£ 5$ ea（ $\mathrm{p} \& \mathrm{f} £ 2$ ）
Ower．Supply avalable Therefore． Only $£ 50$ вa（p8eq £5）

ADVANCE／GOULD OVM5．Auto ranging：max read ing 20，000．AC／OC Volts－resistance． AVo AM Signal Generator type 133 AVD AM Signal Generator type 135 $100-240 \mathrm{MHz}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 75 ADVANCE AM
$150 \mathrm{KHz}-220 \mathrm{MH}$

SPECIAL OFFERS

B＋K PRECISION CRT restorer／analyser Model 467 Supplied with 2 bases and manual（ $\mathrm{P} \& \mathrm{p}$ f7）ONLY f125 eac

LABGEAR COLOUR BAR GENERATOR KG1 8 Test Patterns（ $\mathrm{p} 8 \mathrm{p} \mathrm{£4}$ ）．．．．．．．．．．．．．．．．．．ONLY $£ 40$ bach

NEW EQUIPMENT

HAMEG OSCILLOSCOPE 605．Oual Trace 60 MHz Delay Sweep．Component Tester ．．．．．．．．．．．．．．．．5567
HAMEG OSCILLOSCOPE 203．6．Dual Trace 20MHz Component Tester \＆ 2 Probes．$£ 298$ All other models available．
BLACK STAR FREQUENCY COUNTERS p\＆p £4
Meteor $100-100 \mathrm{MHz}$
f126
Meteor $1000-1 \mathrm{CHz}$
f 126
f 175
BLACK STAR JUPITOR 500 FUNCTION GENERA． TOR．Sine／Square／Triangle． $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$ ．${ }^{\text {pip }} 110$ E4．．．．．．．．．． 1110 Generator £199

HUNG CHANG DMM 7030． $3 \frac{1}{3}$ digit．Hand held 28 ranges including 10 Amp AC／DC 01% ．Complete
with batteries \＆leads．p8p $£ 459 .50$ OSCILLOSCOPES PROBES．Switched $\times 1 ; \times 10$ ．${ }^{810}$ f2．

PRACTICAL ELECTRONIC CASSETTE RECORDER ＊Nolse Reduction System＊Auto Stop＊Tape Counter \star Switchable Eq ．Independent Level Controls ．Twin VU Meter Wow \＆Flutter 0．1\％ －Record／Playback I．C．with Electronic Switching ＊Fully variable reconding blas for accurate matching of all tapes，Metal，Chrome，etc． Kit includes transport mechanism，ready punched and back printed quality circuit board and all electronic parts．l．e．semicon－ ductors，resistors，capacitors，hardware， top cover，printed scale and mains transformer． You only supply the solder and hook－up wire． As featured in P．E．reprint 50p．Free with kit．	

125W HIGH POWER

AMP MODULES

The power amp kit is a module for high power applications－disco units，gultar amplifiers， public address systems and even high power public address systems and even high power mestic systems．The unit is protected against short circulting of the load and is safe in an

 short circulting of the load and is safe in an circult diagram \＆ith all parts， circult diagram \＆instructions． Built and ready－to－use version with all accessories including power supply and case $£ 42.50+\varepsilon 2.00$ pap．
VHF STEREO TUNER KIT $-£ 8.95+\varepsilon 2.50$ p＋ p ．

Easy to build 3－band stereo AMIFM tuner kit designed in conjunction with PE．For ease of construction

and alignment it incorporates 3 Mullard modules and an I．C．IF System．
FEATURES：VHF，MW，LW Bands，Interstation muting and AFC on VHF．Tuning Meter， Two back printed PCBs．Ready made chassis and scale．Aerial：AM－ferrite rod，FM － 75 or 300 ohms．Stablllsed power supply with＇C＇core mains transformer．Ali com－ ponents supplied are to strict P．E．specification．Front scale slze： $101 / 2 \times 21 / 2^{\prime \prime}$ approx．
Complete with diagram and instructions．

Mail to： 21 HIGH ST ACTON
Mail to： 21 HIGH ST，ACTON Mail or telephone orders by W3 6NG．Callers to Acton or W2．（Open 6 days a week）． Please allow 14 days delivery． ACCESS．Tel：01－992 8430
田田证

BECKER＇S TOP DOZEN－PLUS！

GEIGER COUNTERS

SINCE CHERNOBYL，OWNING A NUCLEAR RADIATION DE－ TECTOR HAS TAKEN ON A NEW SIGNIFICANCE．ACCI－
DENTS SHOULD NOT HAPPEN－BUT THEY DOI YOU DENTS SHOULD NOT HAPPEN－BUT THEY DOI YOU
WOULD BE AMAZED AT THE GEIGER QUANTITIES SOLD WOULD BE AMAZED AT THE GEIGER QUAN
SINCE CHERNOBYL．INSURANCE IS PRUDENT．

IF YOU DO NOT ALRE ADY OWN A GEIGER，WITH TODAY＇S DEBATABLY UNCERTAIN NUCLEAR SECURITY，I BELIEVE THAT YOU SHOULD SERIOUSLY CONSIDER BUYING ONE． MINE，BELOW，HAVE BEEN DESIGNED FOR TME NON－PROFESSIONAL USER，UNSURE ABOUT THE ENVIRONMENT，BUT UNWILLING TO PAY SEVERAL HUNDRED POUNDS FOR STRICT COMMERCIAL UNITS．JOHN BECKER

READY－BUILT \＆KIT FORM
TECHNOLOGICALLY FURTHER DEVELOPED VERSIONS OF THE RADIATION DETECTORS TECHNOLSED IN PE \＆EE DURING JUYY 1986，WITH PARTICULAR EMPHASIS ON LOW POWER CONSUMPTION AND FUNCTIONAL ABLLITY．THEY ARE EOUALLY SUITED TO
PACKGROUND AND CLOSE UP MONITORING．GEIGER TUBE ZP1310 IS SUPPLIED AS THE BACKGROUND AND CLOSE UP MONITORING．GEIGER TUBE ZP1310 IS SUPPLIED AS
SENSITIVE STANDARD DETECTOR，BUT OTHERS MORE COSTLY ARE AVAILABLE．
CASE MATERIAL（EXCEPT GEIGER－MTE）－MILD STEEL COVERED IN HARD WEARING PLASTIC．WHITE PANEL，LIGHT BLUE TOP AND SIDES．BATTERY OPERATED I9V RECHARGEABLE OR DISPOSABLE）．ALI UNITS HAVE SE．

AUDIO－VISUAL GEIGER（PE）
WITH EXTENDABLE PROBE MOUNTED ON REAR OF UNIT，INTERNAL LOUDSPEAKER， METER FOR COUNTS RATE DISPLAY．COMPUTER OUTPUT，BATTERY AND AUDIO TEST SWITCH．CAN BE USED WITH HIGH IMPEDANCE（CRYSTAL）HEADPRONES．NORMAL SUPPLY．CASE SIZE $197 \times 108 \times 90 \mathrm{MM}$ ．
READY－BUILT UNIT $=$ TZ－272 £75．50
KIT－FORM UNIT $=$ SET 264 MK2 $£ 59.50$
AUDIO GEIGER（EE）
WITH FIXED PROBE MOUNTED ON FRONT PANEL，INTERNAL LOUDSPEAKER，COMPUTER OUTPUT，AUDIO TEST SWITCH．MAY ALSO BE USED WITH EXTERNAL SPEAKER OR
HEADPHONES FROM 8 OHMS UPWARDS NORMAL POWER CONSUMPTIONLESS THAN 4 MA ．CASE SIZE $150 \times 83 \times 67 \mathrm{MM}$ ．
READY－BUILT UNIT $=$ TZ－274 £65．00
KIT－FORM UNIT＝SET 265MK2 £49．50
GEIGER－MITE
A POCKET－SIZED GEIGER（PLASTIC CASE $85 \times 56 \times 40 \mathrm{MM}$ ）THAT USES A LIGHT EMITTING DIODE（LED）TO DISPLAY RADIATION IMPACT COUNTS．ALSO HAS AN OUTPUT SOCKET FOR MONITORING BY COMPUTER
HEADPHONES．KIT－FORM ONLY $=$ SET $271 £ 39.50$

ALL KITS INCL．PCBS，PARTS，BLACK STEEL \＆ALI BOXES UNLESS STATED，INSTRUC

CHIP TESTER（PE AUG 86）COMPUTER＊CONTROLLED LOGIC AND CHIP ANALYSER（UP TO 24 PINS）．SET $258 F$ E 39.30 （PA）MONO－STEREO．SUPERB DUAL－MODE MUSIC ENHANCEMENT．SET 235 I 59.99
CYBERVOX（EE APR 85）AMAZING ROBOT TYPE VOICE UNIT，WITH RING－MODULATO AND REVERB．SET 228 £ 44.76
DIGITAL $64 K$ DELAY（PE JUN 85
UP TO 65 SECS DELAY，ECHO，REVERB，RE－PITCH，MULTI \＆REVERSE TRACK，LOOP，ETC PLUS MICRO－INTERFACE＊． 19 INCHRACK．SET 234 －RK £198．50 LEVEL．PLUS MICRO INTERFACE＊．SET 245 F f62．50 REVERB，SWITCHABLE MULTITRACKING．SET 218 \＆ 57.66
MICROSCOPE（PE DEC 85）TURNS A COMPUTER＇INTO AN OSCILLOSCOPE．SET 247 £44．50 TUNER（EE AUG 86）COMPUTER＊CONTROLLED MUSIC TUNING AID．SET 259 £22．50（PE JAN 86 ） 4 CHANS，SEPARATE GAINS，LEVELS，FILTERS，TWIN OUTPUTS SET 229 M £ 44.45
MORSE DECODER（EE JAN 87）COMPUTER CONTROLLED MORSE CODER－DECODER， WITH VARIABLE RATE AND LEVEL CONTROLS．SET 269 £ 22.16
PHASER（PE OCT 84）EXCELLENT PHASING ENHANCED WITH MODULATED FILTERING． SET． 226 f42．36
REVERB（EE OCT 85）MONO，WITH REVERB TO 4 SECS．ECHO TO 6OMS．SET 232 REVERB
$\mathbf{f} 27.35$
f27．35 RING MODULATOR（PE NOV 84）FABULO
OUS EFFECTS GENERATION．WITH ALC AND
TEMPESTUOUS STORMS（PE JUN 86）RAW NATURE UNDER PANEL CONTROLI WIND
8 RAIN－SET 250 W £ 29.50 THUNDER \＆LIGHTNING－SET $250 \mathrm{~T} £ 29.50$
－COMPUTER PROGS AVAILABLE FOR BBC，C64 AND PET．
MANY MORE KITS IN CATALOGUE－OVER 70 OF THEMI
PCB SERVICE PCB＇S FOR ALL PROJECTS DESIGNED BY JOHN BECKER AND PUBLISHED IN PE \＆EE ARE AVAILABLE SEPARATELY AS IN CAT ALOGUE．
CATALOGUE AND ENQUIRIES SEND 9×4 S．A．E．FOR FREE CATALOGUE，AND WITH ALL ENQUIRIES．（OVERSEAS SEND $f 1.00$ OR 5 I．R．C S）．
ORDERS AND POST MAIL ORDER，CWO，CHQ，PO，ACCESS，VISA，ADD 15% VAT．ADD P\＆P－SET $234 R K$ £ 3.50 ，UNTT TZ－272 E2．50，OTHERS $£ 1.50$ ．EACH．INSURANCE 5OP TEXT PHOTOCOPIES－DDL F1 50 TZ－272 TEXT PHOTOCOPIESVELL EI
ALSO CARE BY PROVYDING A KIT MAINTENANCE SERVICE－MY KITS ONLY

NEW SURPLUS LINE

'NEWBRAIN' PANELS

2494 Motherboard microprocessor panel $265 \times 155 \mathrm{~mm}$. Complete PCB fo computer. 280, char EPROM, etc. 68 chips altogether + other associated components, plugs, skis, etc. £5.50 Z495 RAM panel. PCB $230 \times 78 \mathrm{~mm}$ with $14 \times$ MM5290-2 (4116) 12 miss. ing) giving 28 k of memory. Also 8 LS chips. These panels have not been soldered, so chips can easily be re moved if required.
'NE'NBRAIN' PSU 2467 BRAND NEW Stabilized Supply heavy duty ABS case with rubber feet Input $220 / 240 V$ ac to heavy duty transformer via suppressor filter. Regu lated DC outputs: 6.5V@1.2A; 13-5V @ 0-3A;-12V@0-05A. All compoents readily accessible for mods etc Chunky heatsink has $2 \times$ TIP31A Mains lead (fitted with 2 pin continental plug) is 2 m long. 4 core output lead 1.5 m long fitted with 6 pole st on 0.1 pitch. Overall size $165 \times 75 \times 72 \mathrm{~mm}$ $\mathbf{5} .95$ ea 10 for $£ 40$
2469 AL30A amp. Panel $90 \times 64 \mathrm{~mm}$. 10W RMS O/P with 30 V supply. Pop lar audio amp module-these are ex equip but believed to be working.
2.50

2475 TRIAC PANEL -240× 165 mm 14 triacs 2N6346, TXAL116B or sim 200 V 6-8A; 16 SCR's C106A1 4A $30 \mathrm{~V} ; 6 \times 4099$ in skis; 15 suppres sols; 37 ZTX450; min 12 V relay; R 's C's plugs, etc.

Only $£ 4.50$
FLASH UNIT
2488 complete apart from case. Xe non tube, neon indicator, on/off switch, trigger wires. Requires 3 V sup ply. $50 \times 55 \times 30 \mathrm{~mm}$. Brand new, with data
used in
2975 Power Supply Unit. As used in Teach in 86 '. Built in 13A plug. Case $600 \mathrm{~mA} A C$. £3.50
2483 NI-CAD Panel $177 \times 144 \mathrm{~mm}$ PCB with one massive Varta Deac $57 \times$ 50 mm rated $7.2 \mathrm{~V}, 1000 \mathrm{mAH}$ and another smaller Deac $32 \times 35 \mathrm{~mm} \varnothing$ rated 3.6 V 600 mA . The price of these Ni-cad stacks new is over $£ 20$. Also on the panel is a mains input charger transformer with two separate second aries wired via bridge rectifiers, smoothing capacitors and a relay to the output tags. The panel weighs 1 kgm . All this for just $£ 6.00$

KEYBOARDS

TATUNG VT1400 Video Terminal Keyboard. Brand new cased unit $445 \times$ $225 \times 65 / 25 \mathrm{~mm} 71$ Alpha-numeric and function keys, + separate 14 key numeric keypad. ASCII output via curly ord and 6 way plug. Data and connec CAMPUTERS LYNX keyboard 58 full travel keys. Size $334 \times 112 \mathrm{~mm}$. Brand new. Reduced to £5.95 Z470 COMPONENT UNIT. Panel 130 $\times 165 \mathrm{~mm}$ with 10×74 series IC's, all in sockets, R's, C's, etc. Inc. $100 \mu \mathrm{~F} 16 \mathrm{~V}$ tailars 60 mm long supporting a steal panel upon which is mounted a mains transformer giving 5 V and 12 V output: 7805 KC regulator and a screened box $110 \times 80 \times 30 \mathrm{~mm}$ with phono input containing 76131 stereo pre-amp IC + associated components. Various plugs and sockets. Amazing value componets must be worth over $£ 50$.

Yours for just £4.50
Strobe $\mathbf{L 3 0 0}$ housed in attractive wood grain cabinet $150 \times 150 \times$ 120 mm with variable speed control Mains powered
Strobe tubes also available. See Cata loge for details

1987 CATALOGUE OUT NOW

BIGGER \& BETTER THAN EVER.
-80 pp packed with components \& equipment. Bargain List, order forms \& for just 1 inc. vouchers all included or just $\mathbb{E} 1$ inc. post.

 COMPONENT PACKS

Greenweld are No. 1 in component packs-No. 1 for value and No. 1 for variety! We sell thousands of packs containing millions of components every year They all offer incredible value for money-order some now and see how much you save over buying individual parts!
Full details In catalogue
COMPUTER BOOKS
C64, VIC 20, BBC, MSX, Spectrum Dragon, etc. Originally up to $£ 9.95$ each. All now $£ 1$ each Full details in catalogue

REGULATED POWER SUPPLY

 A 103300 mA switched 6-7.5-9V. Built in mains plug. Internal thermal fuse. Output via spider lead. $£ 6.50$
POWER SUPPLIES

299365 Watt switch mode multioutput power supply. Astec Model third 2790. Offered at around Bargain of the Yearll Compact unit 195 $\times 105 \times 50 \mathrm{~mm}$ accepting $115 / 230 \mathrm{~V}$ ac input. Outputs:
$\begin{array}{lll}+5 \mathrm{l} \\ \substack{+12 \mathrm{~V} \\+18 \mathrm{~V} \\+1.9 \mathrm{~A} \\ 1.0 \mathrm{~A}} & \mathbf{8 2 9 . 9 5}\end{array}$ $-5 \mathrm{~V} \quad 0.2 \mathrm{~A}$

2468 Switched mode PSU by Europower model EP3008/MMS. Eurocard size $160 \times 100 \mathrm{~mm}$. 230 V input, 5 V at 3 A and 12 V at $\frac{1}{2} \mathrm{~A}$ output. Excellent value. $£ 19.95$

2482 Siliconix mains input, 4.5V DC 150 mA output to 3.5 mm jack plug on 2 m lead. Builtin continental 2 -pin plug. Size $62 \times 46 \times 35$
$£ 1.50$
Z973 P.S.U. kit. Mains input, output via LM 317T regulator $10 \mathrm{~V}-20 \mathrm{~V}$ at 1 A (set by preset on panel). Kit consists of regulator panel, already assembled, case, terminals. Excellent value at
£8.50
"SENSING \& CONTROL
PROJECTS FOR THE BBC MICRO

Have you ever wondered what all those plugs and sockets on the back of the BBC micro are for? This book assumes no previous electronic knowledge and no soldering is required, but guides the reader (pupil or teacher) from basic connections of the user sockets, to quite complex projects. The author, an quite complex projects. The author, an experienced teacher in this field, has with ideas on how to follow up the basic principles. A complete kit of parts basic principles. A complete kit of parts Book all the expert 195 mm 120 pp 5.95 Kit £29.95

ELECTRONIC COMPONENTS

All prices include VAT; just add 60p P\&P Min Access order $£ 5$. Official orders from schools voice charge $£ 10$. Our shop has enormous stock of components and is open 9-5.30 Mon-Sat. Come and see usl
443D Millbrook Road, Southampton, SO1 OHX.
Tel. (0703) 772501/783740

ORDERS: RING (01) 5678910 - 24 HRS

VERSATILE REMOTE

 CONTROL KIT
DISCO LIGHTING KITS

DL1000K - This value-for-money 4dy laser reatus bins l kw ser
This kit includes all components I 1 transformer to maze a sensitive it receiver whit
which with suitable interface circuitry (relays, trass,
 hems of equipment on or ot remotely. The outputs may be

 circuits 240 V AC or $15-24 \mathrm{~V}$ OC at 10 mA . Sire
Supply. (excluding transformer) $9 \times 4 \times 2 \mathrm{cms}$. The companion tianssinter is it he MK 18 which operates
 Two keyboards are available MK9 (4-wal) and MK10
$(16$-way) depending on the number of outputs to be used
 MK 18 Transmitter
MK 9
4 -way Keyboard mk 1016 .way Keythara
601133 Box for Transmitter $£ 14.85$
$£ 7.50$
$£ 2.00$
$£ 5.95$
$£ 2.60$

HANDY MULTIMETER
An teal multimeter for the hobbyist featuring 20kN input impedance, 19 ranges including 10A dc., battery checker
and continuity buzzer. Supplied complete with test leads, battery and instruction manual. As recommended for the
 $89 \mathrm{~mm} \times 40 \mathrm{Cm}$. AC Vols $0.50-250$. Th v (5\%)
0C Volts: 250.1k $0.2 \cdot 5 \cdot 10-50$
 500 mA .10 A Resistance: 10k-100k-10M oBs: -20 did 80 +62 BdB
DVM/ULTRA SENSITIVE THERMOMETER KIT

channel. $£ 17.50$ DLz1000K - A lower cost uni-direcswitching to reduce interference. $\mathbf{f 9 . 8 5}$
s. DLA1 - Optional opto input allowing audio beat /light response. 70p DL3000K - 3 -channel sound to light kit features zero voltage switching. autometic level control and builtin microphone. 1 kW per channel. $£ 14.25$
DL8000

The DL8000K is an 8 -way sequencer kit with built in opto-isolated sound to light input which comes complete with a pre-progray 8 IGHTY-YES different sequences including standard flashing and chase routines. The KIT includes full instruclions and all components (even the PCB connectors) and requires only a box and a control knob to complete. Other falures include manual sequence speed adjustment, zero voltage switching. LED mimic lamps and sound to light LED and a 300W output per channel.

ONLY $£ 28.50$

XK 102- 3-NOTE DOOR CHIME

 Based on the SAB0600 1C the kit is supplied with all components, including loudspeaker, printed circuit board, a prodrilled box ($95 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires only a PP3 9 V AN IDE AL PROJECT FOR BEGINNERS \qquad HOME LIGHTING KITS
 These kits contain all necessary com- ponents and full instructions \& are deand control up to 300 W of lighting. TDR300K Remote Control MK6 Transmitter for
 TD 300K above TS 300K Touchswitch TDE/K Extension kin switching for TD300K LD 300K Light Dimmer \quad £ 4.35

ELECTRONICS
13 BOSTON RD
LONDON WT SJ J
Tel: 01-567 8910
SEND 9"×6" S.A.E.\& 50p FOR CATALOGUE OR CALL AT SHOP MON-FRI 9-5pm SATURDAY 10-4pm

ORDERING INFORMATION:

ALL PRICES EXCLUDE VAT
FREE P\&\& on orders over $£ 20$ (UK only), otherwise add
$75 p+V A T$. Overseas P\&P: Europe $£ 2.75$. Elsewhere £6.50. Send cheque/PO/Barclaycard/Access No
with order. Giro No. 529314002.
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME GOODS BY RETURN SUBJECT TO AVAILABILITY

E.E. PROJECT KITS

If you do not have the issue of E.E. which
includes the Includes the prolact-you will need to order the
instruction repnot as an extra -70 epech.
Reprints $\begin{aligned} & \text { Reprints } \\ & 70 p \text { each }\end{aligned}+$ p\&o fi.job.

THIS MONTH'S KITS

SAE or 'phone for price

BBC 16K SIDEWAYS RAM Dec 86

 CAR ALARM Dec 86 \qquad $f 12.35$$f 10.97$ DUAL READING THERMOMETER Dec 86 £ 39.98 B CHANNEL A-D (SPECTRUM) CONYERTER | 86 |
| :--- |
| $M D D E M ~ T O N E ~ O E C O O E R ~ N O Y ~$ |
| 86 |
| 144.29 | OPTICALLY ISDLATED SWITCH Nov 86 ह11.99 CAR FLASHER WARNING Nov 86 200 MHz DIG. FRELUENCY METER Nov 86559.9 10 WATT AUDIO AMPLIFIER Oct $86 \quad £ 34.95$ LIGHT RIDER LAPEL BAOGE Oct 86 LIGHT RIDER DISCO VERSION

LIGHT RIDER 16 LED VERSION LIGHT RIOER 16 LED VERSIO SIMPLE PRINTER BUFFER Sept 86 EPROM INFRA-RED BEAM ALARM Sept 86 FREEZER FAILURE ALARM Sept 86 CAR TIMER Sept 86 TILT ALARM Juty 85 HEADPHONE MIXER July 86 CARAVAN BATTERY MONITOR JUly 86 SOUEEKIE CONTINUITY TESTER July 86 E3 ELECTRONIC SCARECRDW July 86 £8.45 VOX B0X AMP July 86 PERCUSSIDN SYNTH JUne 86 LIGHT PEN (less case) June 8 WATCHDOG June 85 MINI STROEE May 88 PA AMPLIFIER May 86 LOGIC SWITCH May 86 GUTO FIRING JDYSTICK May 86 STERED REVERB Apr 86
VERSATILE PSU ADI VERSATLLE PSU Apr 86 CIRCLE CHASER AD STEPPER MOTOR DRIVER Apr 86 BBC MIDI INTERFACE Mar 86 INTERVAL TIMER MaI 86 STEREO HLFFI PRE-AMP MAINS TESTER \& FUSE FINDER Mar 86 FUNCTION GENERATOR FED 86 TOUCH CONTROLIER FEL 86 pH TRANSDUCER (less Probe) Feb 86 PHCHT EFFECTS/GAMES UNIT feb 86 SPECTRUM OUTPUT PORT FEb 88 HEADLIGHT ONE SHOT Feb 86 OPORT Jan 86
TACHOMETER Jan 86
MAIN OELAY SWITCH less case ONE CHIP ALARM Jan BG TTL LOGIC PROBE Dec 85 OIGITAL CAPACITANCE METER Oec 85 FLUX DENSITY TRANSDUCER Nov 85 FLASHING PUMPKIN less case Nov 85 SOUEAKING BAT less case Nov 85 SCREAMING MASK less case Nov 85 STAAIW GAUGE AMPLIFIER Oct 85
SIMPLE AUDIO GENERATOR Oct 85 SOLDERING IRON POWER CONTROLIER 85 LENNG ITON POWER CONTROLLER
VOLTAGE REGULATOR Sept 85
PERSONAL STEREO P.S.U. Sept 85 R.IA.A.A. PRE-AMP Sept 85 CARAVAN ALARM Sepl 85 FRIOGE ALARM Sept 85 SEMI-CONDUCTOR TEMP. SENSOR Sept 85 Probe
PLATINUM PROBE Extra LOW COST POWER SUPPIY UNIT Aug 85 TAI-STATE THERMOMETER (Bat1) Aug 85 TREMQLO/VIBRATO AUE 85 COMPUTER lass case Aug 85 COMPUTER lass case Aug 85

1035 STEPPER MOTOR EXTR OPTIONAL POWER SUPPLY PAR CONTINUITY TESTER July 85 TRAIN SIGNAL CONTROLLER JUIY B5 AMSTRAD USER PDRT JUIY 85 ACROSS THE RIVER JUne 85 GRAPHIC EQUALISER JINR 85 AUTO PHASE May 85 INSULATION TESTER ApI LOAD SIMPLIFIER Fet 85 SOLIO STATE REVERB FEb 85 GAMES TIMER Jan 85 SPECTRUM AMPLIFIER Jan 85 IV AERIAL PRE-AMP D Dec 84 | | $£ 8.97$ |
| :--- | :--- |
| Optional PSU 12V $£ 2.44$ | $£ 14.83$ | MINI WORKSHOP POWER SUPPLY Dec 84E41.88 DOOR CHIME Oec 84

BBC MICRO AUDIO STORAGE SCOPE INTERFACE BBC MICRO AUDIO STORAGE SCDPE INTERFACE
Nov 84
PROXIMITY ALARM Nov 84
MAINS CABLE OETECTOR Oct 84

MAGENTA ELECTRONICS LTD. EE48, 135 HUNTER BURTON-ON-TRENT,
STAFFS, OE14 2ST.
0283 65435, Mon-Fri 9-5. phome or post.
24 hr Answarph

SHOP NOW OPEN CALIERS WEICOME NOW OPEN-CALLERS WELCOME RICES IWPCUDE YAL DRDERS. VERSEAS : RISH REPUBUCC and BFPO: UK PMICl: SEWHERE PRICES plus 10%

PRICE LIST-FREE WITH ORDERS OR SEND SAE
 TEMPERATURE INTERFACE FOR BBC Aug
84
CAR RADIO BOOSTER AUG
£23.64
CAh RADIO BOOSTER Aug 84
VARICAP AM RADIO May 84
XPERIMENTAL POWEA SUPPIY $\$ 12.52$
IMPLE LOOP BURGLAR ALARM May 84 £22.46
MASTERMIND TIMER May 84 May 84 [16.34 FUSE DIDDE CHECKER MAY 84 UUASI STERED ADAPTOR Apr 8
OIGITAL MULTIMETER add on for BBC Mis 13.08
84. CAD BATTERY CHARGER Mar $84 \quad \mathbf{5 1 9 . 9 8}$

REVERSING BLEEPER Mar 84 [8:14
PIPE FINDER Mar 84
IDNISER Feb 84
2X81 EPROM PRDGRAMMER Feb 84
SIGNAL TRACER FEL 84
CAR LIGHT WARNING Feb 84
BIOLDGICAL AMPLIFIER Jan 84
CDNTINUITY TESTER Dec 83
CHILDREN'S DISCD LIGHTS Dec 83
NDVEL EGG TIMER Dec B3 inc. case 88.42 SPEECH SYNTHESIZER FOR THE BBC MCRD 12.29 83 less cable + sockets \quad E26.38
LONG RANGE CAMERA/FLASHGUN TRICGER 20.38

83
HDME INTERCDM less link wire Oct $83 \quad \$ 16.20$
17.26

DIGITAL TD ANALDGUE BOARD Oct 83 DIGITAL TD ANALDGUE BOARD Oct 83 less cable,

$\mathbf{f 2 3 . 9 5}$ CIIGE CODWER DAC DRIVER BOARO Oct 83 less | HIGH PDWER DAC DNVEn |
| :--- |
| case |
| 14.99 | HIGH SPE ED A TO D CONVERTER Sept 83 less cable

STORAGE SCOPE INTERFACE FOR BBC
AUg 83' less software
case
USER PORT CONTROL BDARO July plog less $\mathbf{£ 1 2 . 6 9}$
te + rase
GuITAR HEADPHONE AMPLIFIER May 83
MW PERS ONAL RADIO less case, May $83 \quad \$ 9.14$
MOISTURE DETECTOR May 83 E6.55
CAR RADIO POWER BOOSTER April 83
FUNCTION GE NERATOR April 83
FLANGER SOUNO EFFECTS April 83 NOVELTY EGG TIMER April 83 less case f 29.00 DUAL POWER SUPPLY March 83 Case f6.58
BUZZ OFF March 83
PUSH BIKE ALARM Feb 83
ZX TAPE CONTROL Nov 82
2-WAY INTERCOM July 82 no case
ELECTRONIC PITCH PIPE July 82
REFLEX TESTER July 82
SEAT BELT REMINDER Jun 82
EGG TIMER JUne 82
CAR LED VOLTMETER less case Mzy 82 V.C.O. SOUND EFFECTS UNIT Ap1 82 82 less tripad bushes
POCKET TIMER Mar 82
GUITAR TUNER Mar 82
SIMPIE STABILISED POWER SUPRIY $\begin{array}{r}\$ 40.92 \\ \hline\end{array}$
82
MINł EGS TIMER Jan 82
$\begin{array}{ll}\text { MINł EGG TIMER Jan } 82 & \mathbf{~} 82.37 \\ \text { SIMPLE } \\ \text { INFRA RED }\end{array}$
SIMPLE INFRA RED REMOTE CONTROL NOV
CAPACITANCE METER Oct 81 £22.44
SUSTAIN UNIT OCH B1\%
TAPE NOISE LIMITEA Oct 81
HEADS ANO TAILS GAME DCt 81
CONTINUITY TESTER Dat 81
PHOTO FLASH SL
SOL MOISTUAE UNIT Dct 81
O-12V POWER SUPPLY Sept 81
COMBINATION LOCK July 81 less $£ 23.38$
 PHONE BELL REPEATER/8ABY ALAR
${ }^{81} 1 \mathrm{NTERCOM}$ April 81
MODULATED TONE DDORBEL Mar 81 〔29.31
$\begin{array}{ll}2 \text { HOTE DOOR CHIME Dec } 80 & \text { \& } 8.82 \\ \text { E } 13.62\end{array}$
2 HOTE DOOR CHIME DEC 80
LIVE WIRE GAME Dec 80
GUITAR PRACTICE AMPLIFIER Nov 80 \& 10

$[15.44$
4.10 less
f5.
SOUND TO LIGHT Nov. 803 channel \quad TRA 8.08 SISTOR TESTER Nov 80
TRANSISTOR TESTER Nov 80
AUDID EFFECTS UNIT FOR
80
MICRO MUSIC BOX Feb 80
Case bxtra
SPRING LINE REVERB UNIT Jan 80
UNIBOARD BURGLAR ALARM Dec 79
DARKRODM TIMER July 79
MICROCHIME DOORBELL Feb 79
SOUND TO LIGHT SeD 78 SOUND TO LIGHT Sept 78 STATE MOICATOR LESS $\mathbf{\$ 1 0}$
 R.F. SIGNAL GEMERATOR Sept 78
IN SITU ThANSISTOR TESTER JUI 78 WERD SOUND EFFECTS GENERATOR ELecthonic dice Mar 77

 we shall be CSO_{4}^{4} parts service for this new series. Our excellent technical back-up ser- vice helps to ensure that your projects succeed every time
 PART 1 BENCH POWER SUPPLY-Full kit £24.98.
 Plus a FREE copy of our NEW

LOGIC PROBE- $£ 6.95$.

EXPLORING

ELECTRONICS

A full set of parts including the verob loc breadboard to follow the series right up to Nov. issue. $£ 14.8$
parts $£ 4.99$. Jan parts $£ 4.99$.

INTRODUCTION
 TO ELECTRONICS

electronics. With lots of simple experiments. Uses soldering. Lots of full colour illustrations and simple explanations. A lovely book. Ideal for all ages. INTRDDUCTION TD ELECTRDNICS COMPONENT PACK
f10.99 bDok EXTRA $£ 2.45$

Book also available soparately.

NEW BOOKS

Gidting The Mast From Gour Printer. Pentold

 More Advanced Electronic Music Prof ElectronicPenfold

BOOKS

Wow to Got Your Pariold

Workng Penfold

A practical Introduction to Mictoprocessors 12.15

Penfold
Basic Electronics. Hodder \& Stoughton $\mathbf{£} 2.10$
$\mathbf{f} 8.98$ Beginners Guide to Building Electronic Propects Penfold
DIV Robotics \& Sensors Billingssley. BBC Commodere 64 Elementary Electronics. Sladdin Cience Experiments with Your Computer $\begin{array}{ll} & \mathbf{5} .98 \\ \mathbf{f 2 . 4 3}\end{array}$ w to Make Computer Cour How to Make Computer Controlled Piobots. Potter f3.20

How to Make Computer Model Controllers. Potter 3.19 ow to Make Computer Model Controllers. Potterf 3.19 Machine Code for Beginners. Usborne $\mathbf{2 . 4 5}$ icro Intertacing Circuits Book 1 uicroprocessors for Hobbvists Practical Computer Experiments Parr | $£ 2.45$ |
| :--- |
| |
| 4.98 | sborne

Usborne
Questions \& Answers - Electronics Hickman
$\mathbf{~} \mathbf{~} 2.19$
$\mathbf{\$ 1 . 9 5}$ Understanding the Micro. Ustorne JUST A SMALI SELECTION. LOTS MORE IN OUR PRICE LIST

TEACH IN 86

MULTIMETER TYPE M102BZ as specified. Guaranteed. Top quality. $20 \mathrm{k} / \mathrm{V}$, with battery check, continuity tester buzzer and fuse and diode protection. 10A dc range
Complete with leads, battery and manual.
PAD, MOUNTING PANEL AND 10 CROCODIL f13.98 YEROBLIC BREADBOARD, DESIGN PAD, MOUNTING PANEL AND 10 CROCODILE CLIP
CONNECTING LEADS. CONNECTING LEADS.
REGULATOR UNIT FOA SAFE POWER SUPPIY. All components including the specified case. Also the [16.78
plugs, fuse and fuseholders to suit the EE mains adaptor.
COMPONENTS FDR PRACTICAL ASSIGNMENTS Pans 1 and 2 (0et \& Nov) f1.94. Part $\mathbf{3}$ (0ec) COMPONENTS FDR PRACTICAL ASSIGNMENTS. Parts 1 and 2 (Oct \& Nov) f1.94. Part 3 (Dec) f1.37. Part 4 (Jan) £2.48. Part 5 (Feb) £2.22. Part 6 (Mar) £6.31. Parts 7, 8 \& 9 (combined) £2.55.

TEACH IN 86 PROJECTS TECMCCHDICSS
 UNIVEASAL LCA aRIDGE Nov 85 £25.83 DIOOE/TRANSISTOR TESTER Dec $85 \mathbf{f 1 8 . 8 9}$
 TEACHERS WE ARE STOCKISTS OF THE

 USEFUL AUOIO SIGNAL TRACER Jan 86 WHOLE RANGE CONTACT US FOR BROCHURES. VERY COMPETITIVE PRICES AND QUICK DELIVERIES.STEPPING MOTORS 12 VOLT ET VOLTMETER Apr 86 © $\mathbf{~} 21.48$
NEW

MINI MODEL MOTORS

3V 2 TYPES MMI-59p MM2-61p

MOTOR - GEARBOX ASSEMBLIES
 \section*{Miniature precision made. Complete with quality electric motor. Variable reduction ratios}

achieved by fitting from 1.6 gearwheels (supplied) as required. Operates from 1.5 V to 4.5 V unit type MGL (higher torque motor) $2 \mathrm{rpm}-1150 \mathrm{rpm}$. Long 3 mm dia output shafts. Ideal for
robols and buggies.
Small Unit (MGS)
e3.49. Large Unit (MGL) £3.98.
Pulley wheels 3 mm bore. Metal flange with
brass hub. 10 mm dia. $£ 1.75$. 20 mm dia. £1.84. 30 mm dia. £1.99.
Metal collar with fixing screw, 3 mm bore 24 p . Flexible spring coupling 5 mm . Length 31 mm 68 p .
Flexible metal coupling (universal\} 3 mm

NEW 1987 CATALOGUE

JUST ARAIVED! Brief details of each kit, our books, \& illustrations of our range of tools \& components. Also stepper motor, interlace kit \& simple robotics. Plus circultideas Electronics then you noed a copy of the MAGENTA caralogue
CATALOGUE \& PRICE LIST - Send ff 1 in stamps atc. or add $\mathrm{f} /$ to your order. Price list -9×4 seo Catalogue FREE TO SCHOOLS/COLEGES RE Quested on official letieahead

ADVENTURES WITH ELECTRONICS

An easy io follow took suitabie for all ages. Ideal for

 begunners. No soblering, uses an S.Dec Breacboard Ges cles instructions with lots of pictures. 16 propects - incluoing three radios. siren, metronome, organ. infercom, timel, atc. Helps you learn about Nectroniccomponents and how circuits work. Component pack components and how circuirs work. Component pack
includes an S -Dec breadboard and all Ihe componemits for

Adventures with Electronics $\mathbf{£ 3 . 5 8}$. Component pack $\mathbf{f} 20.98$ less battery.

EVERYDAY
ELECTRONICS
INCORPORATING ELECTRONICS MONTHLY

The Magazine for Electronic \& Computer Projects

VOL 16 No1
JANUARY '87

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET, WIMBORNE
DORSET BH2 1 1JH
Phone: Wimborne (0202) 881749
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone

Advertisement Offices

EVERYDAY ELECTRONICS ADVERTISEMENTS 4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX CO16 7HG. Clacton (O255) 436471

SEASONS GREETINGS

IRST of all may I take this opportunity, on behalf of all the staff at EE, of wishing all our readers, contributors, and advertisers the very best for Christmas and the New Year. We have all enjoyed producing the magazine for the past year-perhaps more than ever before since we left the somewhat restricting influence of IPC at the end of January. Our next issue will mark the completion of our first year "on our own", a year which has seen some renewed interest in project construction following a period when many potential electronics hobbyists were getting to grips with home computers.

It has been an interesting year for the hobby and for EE and we intend to build on the firm base EE has established, with new ideas and continuing value for money which we believe the magazine represents. We are working on what should be a breakthrough for electronics magazines, to be published as a series later in 1987.

So much for our plans--what about the present? You may well have noticed our changed logo this month. We believe the time has come to alter our cumbersome Everyday Electronics and Electronics Monthly title; it has served its purpose since EE took over EM back in November '85. The new logo is neater and we will now refer to the magazine as simply Everyday Electronics as we did when it was launched back in November '71. We have also changed the style of our covers to bring them right up to date with the use of computer graphics for backgrounds. This does not mean we will be going further into computing-we simply feel the image is right for the magazine. We hope you agree that the use of computer graphics provides an eye catching and unusual cover.

OFFERS AND EXTRAS

We are continuing to bring you a range of special offers. These have proved to be very popular with readers and we will run them as long as we feel that they provide excellent value for money. The offer in this issue is unusual and should be of great interest to a number of readers, educational institutions and companies; next month we will be offering oscilloscopes. Also next month EE will carry a brand new 24 page Kit Catalogue from Greenweld
Finally, just one "frustration" left over from last month! Please make sure of your issue by placing an order for it with your newsagent, or by taking out a subscription. So often readers phone us to say they have been unable to get a copy because the newsagent has run out, or because he claims he did not receive any. We have not had any publishing problems for a very long time now-all issues have been published on time for the last three or four years. Please make sure of your copy!

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY are available price $£ 1.50$ ($£ 2.00$ overseas surface mail) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH . In the event of non-availability remittances will be returned. Please allow 28 days for delivery. (We have now sold out of Oct. and Nov. 85 and April 86.)
Binders to hold one volume (12 issues) are available from the above address for £4.95 ($£ 9.00$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.
Payment in $£$ sterling only please.

Editor MIKE KENWARD
 Personal Assistant

PAULINE MITCHELL
Assistant Editor/Production
DAVID BARRINGTON
Assistant Editor/Projects
DAVID BRUNSKILL
Editorial: WIMBORNE (O2O2) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (O2O2) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or their own solicitor

SUBSCRIPTIONS

Annual'subscription for delivery direct to any address in the UK: $£ 13.00$. Overseas: $\mathbf{£ 1 5 . 0 0}$. Cheques or bank drafts (in $\mathbf{£}$ sterling only) payable to Everyday Electronics and sent to EE Subscription Dept., 6 Church Street, Wimborne, Dorset BH2 1 1JH. Subscriptions can only start with the next avallable issue. For back numbers see the note on the left.

MORSE DECODER

 \square JOHN M.H. BECKER> Decode Morse with this unit and your home computer. Instant readout without any "Ilearning"

THE UNIT described here has been designed as a simple interface for use with a computer to decode Morse signals. The program is primarily written in PET and Commodore C64 BASIC, but a separate listing is available for the BBC . The program can probably be modified for use with other 8 -bit machines.

MORSE PIONEERING

Samuel Morse is the man most likely to be remembered for his pioneering work in coding information into a form suitable for long distance transmission. He, after much trial and tribulation, established communication links across parts of America in the mid 19 th century. His method of coding was based upon the length of time that an electrical switch was held on and off. This method is still in use today, and although the codings have been slightly changed to meet international requirements, it is essentially the same system of dots, dashes, and long and short pauses.

Originally the sender would press a switch key, and an electrical path would be connected with the receiver at the far end. This energised an electro-magnet which could deflect a needle or activate a pen on a moving strip of paper. The rate and duration of the deflections was noted by the receiving operator who translated the information into alphabetic or numeric characters. Exceptionally experienced operators are reported to have been able to handle up to 46 words a minute, though the more normal rate was about 20 to 25 words a minute. It soon became noticeable to trained operators that they could actually "read" the letters by listening to the sound of the electromagnet without looking at it From this ability was born the equipment to send more-audible signals by switching a frequency tone on and off.

Once radio transmitting techniques were developed, it was natural that the same system of communication should be used Although speech could be transmitted by early radio equipment, the clarity of speech was often far below that achievable by tone switching as in Morse. The ear can more readily distinguish vague tones being modulated, than it can interpret poor speech reception on a defective radio link.

LOGICAL BITS

The logic behind Morse coding played a significant effect on modern binary data transmission which still relies on whether a signal line is at a high or zero level, and the spacing between the ups and the downs. Binary data transmission is based on the order in which eight precisely-spaced bits are sent up and down, and their accurate reception and interpretation depends on the exact rate at which they are sent. For this system to operate successfully, the rates of transmission and reception need to be accurately controlled, and usually relate to a fixed rate, called the baud rate. Different systems may use different rates, but generally the baud rate of transmitter and receiver need to be previously set for the correct synchronisation.

In this respect Morse code is very different, for the human ear is capable of rapidly discerning a dot from a dash, and a short pause from a long one, even though the relative lengths may be somewhat inconsistent. Additionally, whereas binary transmission is normally on a fixed quantity of 8 bits being set to produce one character, Morse code uses varying numbers of spaced bits being set long or short, varying basically between one bit and six bits, though the "ERROR" message consists of eight.

TRANSMISSION RATES

The rate at which Morse is transmitted is free to vary between operators, though of course the sender must always take into account the rate at which the receiver can decode the signals. Good operators can receive and send at rates in excess of 25 words a minute, each word being regarded as five characters. Although the rate can vary, international conventions lay down
ideals for the relative lengths of the dot, dash and space components. The dot is taken as the primary unit of measurement, a dash is then specified as being three times the length of the dot. The space between the signals that form a character is equal to one dot. The space between two characters is equal to three dots and the space between two. words is equal to seven dots. Even to unpractised ears, these spacings are readily discernable even at quite fast rates.

COMBINATIONS

With practise though, experienced operators will not necessarily be listening for individual letters, but rather will recognise the pattern produced by several letters being sent consecutively. Regularly heard configurations such as those spelling "the", "ing", "ment", "for", "of", etc, being typical examples. The content of the preceding information also helps in speedy decoding since the operator can perhaps anticipate subsequent characters.
Some combinations of three letters are regarded as messages in their own right. The best well known is probably "SOS", meaning "help", though actually stemming from the initial letters of the message "save our souls". Others, usually commencing with "Q" are also used, such as "QRL"-"is this frequency in use", "QRZ"-"who is calling me?", "QRS"-"send more slowly".
Shipping also uses specific meanings for Morse codes when sent on the ships siren, such as "GU"-"it is not safe to fire a rocket", "KR"-"all is ready for towing", " A "-""l have a diver down, keep well clear at low speed". The full lists are lengthy, and probably only of significance to Morse experts, and specific disciplines.

MOTIVATION

There must be many people uninitiated in Morse code who have listened to transmissions, usually on short wave radio, and wondered in interest just what messages are being sent. Some are probably quite mundane, and little more than domestic chitchat. Others are probably military, and are a code within a code. Even though this technological era has provided us with satellite phone links and computer data transmissions, Morse is still used by many people for many reasons. Military and commercial shipping are principal users, but amateur radio hams use Morse to a very great extent, and frequency channels are allocated for Morse use only. Morse can often penetrate bad atmospheric conditions far better than clear speech, enabling. amateurs to communicate world wide.

In Britain, before you can become a qualified radio amateur, (not CB radio), it is still necessary to pass examinations involving both transmission and reception of Morse.

MICRO MORSE

However, with the current generation of home computers, it is not necessary to know Morse in order to decode it. Since the coding rules are formalised, a computer can readily be programmed to perform the decoding. Within certain limitations, this can be done directly by the computer without any significant electronic interface. Such a system can consist simply of a radio linked to a computer data line. The main requirement is that the signal should swing up and down between about zero and five volts, with a limiting network to prevent adverse signal voltages from damaging the computer.

The author has written such a program for his own amusement, but although in machine code, it is somewhat limited in the rates of decoding, due to the time taken by the relative spacing analysis. A better method is presented here, in which the signal is partially decoded electronically before final deciphering by the computer. This increases the reception rates possible by allowing the electronics to distinguish between dots, dashes and spaces, leaving a machine code routine to relate them to look-up tables. Varying reception rates from as low as 20 words per minute, to over 110 words per minute are achievable. Obviously though, the Morse signal must be much stronger than any background noise received.

OPTIONAL BYTES

In contemplating the circuitry for this article, there appeared to be three ways that can be used to decode the signals once within the computer. Firstly by direct pattern matching of the signal against a library of patterns, and involving many conditional or "IF" statements. Alternatively the code can be translated into one of two forms of binary code. One form results in a code of up to 16 bits long, the other involves the derivation of two eight-bit codes. Both ways are equally valid, but the second requires less subsequent decoding via look-up tables and is thus a little faster and needs fewer program statements.

In the 16 bit conversion method, a dot is represented by binary "01" and a dash by binary " 11 ". As each group of two bits is received, the previous two are shifted left in the memory register. At the end of the letter received, the empty spaces to the left of the 16 bit number are considered to be zeros.

Thus one dot (letter "E") would produce binary "0000000000000001" (15 zeros and a"1"). Letter "L" (dot-dash-dot-dot) would appear as "0000000001110101". Numeral " 0 " (five dashes) would be "0000001111111111". These binary numbers can be readily translated to decimal and the character corresponding with that decimal number can be printed.

In the two-by-eight bit method, a dot is counted as zero, and a dash as "l". Each bit is shifted left as the next is entered, thus forming the first byte. The second byte simply counts the number of times that the signal goes up and down, irrespective of the pulse length. With letter "C", dash-dot-dash-dot, the first byte would be "00001010", decimal ten, and the second byte would count four ups and downs. Letter "S" dot-dot-dot, would decimal zero, but byte two would have counted three ups and downs.

LOOK UP TABLES

If the first byte is considered as a line address, and the second as a column address, the look-up table would hold "C" at line 10 column 4, and letter " S " at line 0 column 3. However, as some messages are complete words or phrases, the look-up table actually gives another number, referring to a second table in which the character or message is held as a string. With the exception of the 'ERROR' message code, the conventional Morse code primary lookup table can be held within a block six columns across, and 56 lines down.

Since some codes can be imprecisely received though, the effective table size is in fact 256×256, but unrecognised codes will be displayed as a query mark. When codes represent complete words or phrases, these are displayed bracketed by asterisks to indicate their nature. A full table of twin byte decimal codes is shown with the Morse code table. This also includes six international character variations, plus six phrase codes. Note that a colon and a semicolon are both returned as a semicolon.

INTERFACE CHOICE

For the electronic separation of a dot, dash and space lengths two alternative solutions were conceived. The first measures relative lengths by comparing the rates of charge and discharge of capacitors, deriving a binary output by triggering comparators. The second solution, and that described here, is to adopt a digital comparison technique, counting pulses and comparing with a known clocking rate (Fig. 1).

PRE-AMP

Before the Morse signals can be decoded, their levels need to be brought to an
amplitude suitable for triggering the count stages. Since the unit is to drive a computer input, the maximum level must swing between 0 V and no more than 5 V . In practice, a lesser swing will still trigger the computer, but the fuller swing is readily achievable. VR1 (Fig. 2) is a normal volume control that selects the maximum input level of the Morse code signal. IC1 then provides initial amplification to it, and can satisfactorily raise levels of only a^{\prime} few milliamps. Amplification gain is switchable by S2 to between approximately $\times 10$ and $\times 100$. The output passes via C3 to the high gain transistor stage TR1. When the output of ICl produces a swing of greater than about 0.7 V , the collector load of TRI allows a voltage swing of practically full line level, between 0 V and 5 V .

PULSE DETECTOR

The Morse code signal really consists of two signals, a high frequency modulated by a low one. The latter is simply the one that turns the high frequency tone on and off as the Morse key of the sender is pressed, and its rate depends on the operator's sending speed. The high frequency is the pitch of which we are normally aware, coming and going in bursts of sound. In theory this can be any pitch within the audio spectrum, though transmitter bandwidth restrictions narrow the range. The high pitch signal is made up of repeated peaks and troughs, which by definition, occur at the frequency rate. Obviously the unit must distinguish between these short duration variations, and the longer information containing changes. These short duration changes need to be removed, leaving only the low frequency ones.

This function is performed by IC2a, which is a retriggerable monostable. On receipt of a negative going change on its input at pin five, the chip is triggered so that its twin outputs at pins six and seven change state. They will remain in the secondary state until a pre-determined time has elapsed, as set by the combination of C5 and R9. However, each time the input goes low after a preceding high, the chip can be retriggered to the start of the timing cycle, irrespective of the point in the current cycle. With the correct selection of timing components for a given input triggering rate, the chip can be held in its secondary condition until the input signals cease. When they do, the outputs revert to the primary state. The output from IC2a consequently only contains the low pulse rate frequency, and effectively ignores the pitch of the original. The outputs of IC2a are used to signal directly to the computer, and also to control two counters IC3a and IC3b.

Fig. 2. Complete circuit diagram of the Morse Decoder.

COMPONENTS
 Approx. cost Guidance only

Resistors

R1,R3,R7,R12
R2,R4 to R6,R10,R17
100k (4 off)
10k (6 off)

R8	$1 k$
R9	1 M
R11	47 k
R13 to R16	470 (4 off)

Capacitors
C1,C3,C8
$4 \mu 7$ elect. 63 V (3 off)
C2,C4
C5,C6,C9
C7
Potentiometers
VR1
VR2
VR3

Semiconductors

D1,D2
D3 to D5
TR1
IC1
IC2
IC3
IC4

Switches

S1,S2
S1
S3
min. s.p.d.t. (2 off)
s.p. push make

Miscellaneous

SK1,SK2
mono jack sockets (2 off)
SK3
3.5 mm jack socket
P.c.b. mounting clips (4 off); p.c.b.; knobs (3 off); l.e.d. mounting clips (3 off); 8pin i.c. socket; 14-pin i.c. socket; 16-pin i.c. socket (2 off); wire; fixings; case approx $150 \times 120 \times 50 \mathrm{~mm}$.

CLOCK COUNTING

The information that they count is derived from a variable frequency clock around IC4a and IC4b. The frequency rate is controlled by C6 and the total resistance across R11 and VR2, a low resistance producing a higher frequency. A slower rate can be switched in by $\$ 1$ connecting $C 9$ in parallel with C6. IC4c buffers the clock frequency, and feeds it simultaneously to both counters.

Counting of dot and dash durations is performed by IC3a, while IC3b signals pause durations. During the presence of a dot or dash, pin six of IC2a enables IC3a to count the clock pulses. It is a binary ripple counter, each stage dividing the clock by two. At the start of the count, the enable signal controlling IC2a also signals to the computer via line DA0 that the count has started. The computer now waits for one of two conditions, either DA0 going low again, or pin five of IC3a going high. With the correct clocking frequency, the former will occur if the signal is the duration of a dot. The output five of IC3a will only be triggered if the signal is a dash, allowing sufficient clock pulses through the counter to trigger the selected output. The latter information is read on line DA1. When DA0 goes low as IC2a reverts back, whether it is before or after IC3a and DAI being triggered, the computer stores the data in a temporary memory. Simultaneously, IC3a stops counting, and IC3b is enabled by pin seven, IC2a going high.

SPACED OUT

The "b" section of IC3 is identical to IC3a, and the two outputs selected are triggered by long and very long pauses respectively. The presence of a short pause is not directly measured since the act of IC2a reverting back is taken as sufficient indication of this. The outputs are chosen so that a long pause, marking the end of a letter, appears as an output at IC3b pin 13, signalling to the computer via line DA2. On

Fig. 3. Printed circuit board layout and wiring.

Prototype p.c.b. layout.

receipt of this signal the computer takes the data from its temporary store and reads the number held.

Concurrent with this store being accessed during data acquisition, a second store has been incremented by one each time DA0 has gone high. The number of elements in the character is thus known. From these two numbers, the relevant address in the look up table of rows and columns is accessed, and the relevant decoded character displayed on the screen. The computer now watches both DA0 and DA3 lines. Should the pause be long enough for output pin 14 to go high at the same time as pin 13, the ANDed output at D1 and D2 sends DA3 high. The computer then assumes that this length of pause represents a pause between words, and so prints a blank space. When DA0 goes high, the computer loops back to obtain the next set of character factors.
The conditions of DA0 to DA2 are visually signalled to the user by D3 to D5, buffered by IC4d to IC4f.

RESETTING

At the moment of DA0 going high at the start of the next sequence, pin seven of IC2a falls, triggering IC2b. This produces a very short duration pulse set by C7 and R12, and this immediately resets both counters back to zero. The pulse duration is too short to affect the count assessment.
The acquisition of data from the unit is performed in machine code since BASIC is far too slow for decoding at realistic rates, though the printing to the screen is in BASIC. During the machine code routines access to the computer by its keyboard is automatically shut off, and control can only be regained by pressing the interrupt switch S3 on the unit itself. This is fed via DA4 back to the computer. Periodically during the machine code routine, this line is read. Normally it will be found to be low, and so no action is taken. If S3 is pressed, then the line will go high, the data receipt mode will be aborted, and the program returns to the menu display.

PROGRAM OPTIONS

In the published program, the menu allows for a second option to be selected in addition to reception decoding. All three computers for which this program is suitable have an additional data line that can put out a frequency tone and which can be turned on and off under program control. On the PET and BBC, this is the ATN line, and on the C64 is line DA7. The relevant Morse codes for alphanumeric characters are stored in memory from data statements within the program, and the combination of these two facilities provides for testing of the unit itself. The option cycles through all stored Morse codes transmitting each in turn on a loop. Some international variations for some letters have also been included in this coded data library. The audio output generated and passed via volume control VR3, can be stored on an audio taperecorder or cassette, then subsequently played back to the computer via the unit for decode checking.

Experienced programmers will recognise that this second facility can be adapted to produce other options. These include automatic translation and transmission of alphanumeric data entered on the keyboard, or sent from data files on disc or tape. Creation of a screen display showing all characters and their codes is another possibility. As is creating a tutorial test sub-

DECODER PROGRAM

100	REM MORSE DECODER PROG263 SHORT Q2RUG86. THIS PROG CAN BE USED WITH THE REM BBC, CE4 AMI FET COMPUTERS BBC USERS SEE END NOTES BEFORE TYPING
	REM BBC, C64 ANI FET COMPUTERS. BBC USERS SEE END NOTES BEFORE TYPING IN
120	REM C64 \& PET USERS TYPE IN AS PER THIS LISTING.
O	GOTO330
150	PRINTCHR* (CC): PRINT:PRINT:FRINT:PRINTTRB(16)"MORSE UNIT OPTIONS"
160	PRINT:PRINTTAB(10)" 1 DECODE RECEPTIOH
176	PRINT:PRINTTAB (10)"2 TEST SEND CODES
180	
190	IFZ ${ }^{\text {d }}$ 1THEN150
206	PRINT : PRINT "NAIT RECEPTION": PRINT : POKEDRT, $0: \mathrm{A}=\mathrm{Z}(0): \mathrm{B}=\mathrm{Z}(1): \mathrm{C}=\mathrm{Z}(2)$
210	
220	G0T0150
230	REM TRAHSMIT ROUTINE
24	C=ASC (A\$) : $1 F C$ - 126 THENC $=C-128: A \$=C H R \(C)
250	PRIINTA 3 ; $:$ IFC=32THENFORF $=1$ TOH 6 : $\mathrm{NEXT}:$ RETURN
260	
270	
280	PRINTCHR (CC) : PRINT:PRINT"TEST SEND ALL STORED COIES":PRINT
290	PRINT"PRESS ANY KE'' TO RETUFN TO MENU":GOSUB60日
300	
16	
0	NEXT : PRINT : FORF $=1$ TOH* 6 : NEXT : G0T030®
0	RERDA : $A=$ VRL ($A *$) : ONAGOSUB810, 850, 890 : PRINTCHR 5 (CC) : PRINT : PRINT : PRINT
340	FRINTTRB(12)"MORSE DECODER": IFA 3 THENSY=PEEK (MM)*256+PEEK (ML) : G0T0360
350	SY=HIMEM
360	
370	
380	
390	
400	
410	
0	NEXT : FORB $=12 \mathrm{~T} 0128:$ R $(\mathrm{B})=$ "? 113311 l : $\mathrm{HEXT}:$ FORA $=1$ TO5: READA
3.	
.	RERDA
450	
460	
470	READA
489	
490	G0T0470
00	
510	FORA $=0$ TO11 : RERDA 4 (\mathcal{A}) : $\mathrm{HEXT}: \mathrm{H}=\mathrm{SY}-1$
520	
530	
540	
55	IFA\$ = "END" THEN150
560	IFA $=$ "LSB" THENB $=$ SY +150 : G0SUR590 : POKEA, L0: GOT0520
570	IFA $=$ "MSB" THENPGKER, HI : GOT0520
580	STOP
590	HI $=1 N T(B / 256): L O=B-<H I * 256): R E T U R N$
600	
610	H=130-A : RETURN
620	DATRUNDERSTOOD, WAIT, END OF WORK, STARTING SIGNAL, ERROR, ? $612,!613,1630$
630	DATA (522,) 645, $+510,651,-633, .621, / 518,=517,<618, ", 651^{\prime \prime}, ": 656^{\prime \prime}$, A45, A5 13
640	DRTAE5 $4,+1527,0414,443,0531,1515,257,353,451,550,6516,7524,8528.9530$
650	DATAR21, B48, C410, D34, E10, F42, G36, H40, 120,J47, K35, $444, \mathrm{M} 23, \mathrm{~N} 22,037$, P46, Q4 13
660	DRTAR32, 530, T11, U31, V41, W33, X49, Y411, $2412, \#, 152,258,365,4521,580,6415, \#$
670	DATAP13, B3111, C3131, D311, E1, F1131, G331, H1111, I11, J1333, K313, L1311, M133, N31
689	IATAO333, P1331, Q3313,R131, S111, T3, U113, V1113,W133, $\times 3113, \mathrm{Y}^{\prime} 3133,23311$
690	DATA113333,211333,311133,411113,511111,631111, $733111,833311,933331,033333$
700	DATA $133331,<131131, ? 113311,!113313,(31331)$,
710	DATA $=31113,+13131,-311113,731131,4,331133 ", 7: 333111 ", 7 ; 3331114, .131313, \#$
720	
0	DRTA* $11111111, * 3333$
740	DATA162,0,134, $20,134,21,134,22,134,23,134,24,173$, INP, 176, $41,8,5,24,133$

routine to display characters in a random order and check that dots and dashes entered as "." and "-" produce the correct code sequence. The programming for these options is quite simple to work out for yourself. Alternatively an extended software listing is available from the kit sup-plier-see Shop Talk.

UNIT ASSEMBLY

P.C.B. assembly should be carried out in the usual methodical fashion, double checking that joins are adequately soldered, and that no shorts exist between tracks. IC 2 to IC4 are MOS devices, and normal static precautions should be observed whilst handling them. This is easily done by touching a grounded (earthed) metal surface. Pot and switch holes should be drilled in the box at evenly spaced intervals. In the prototype, mounted in a box $15.3 \times 11.3 \times$ 4.5 cm , the spacing was 3 cm apart, and 2 cm above the base. The computer socket should be bought and wired to suit the computer lead to be used. Primary connection data is shown in Fig. 5.

The unit only draws about 10 mA at 5 V and so can be powered directly by the computer from the points shown. Although the computers can deliver more power than this, do not exceed 100 mA consumption without consulting data handbooks. SK 3 is only needed with the PET and C64, or with a separate power supply, since the BBC has +5 V available on its user port socket.

PROGRAM COMPATIBILITY

The program listings have been written to be compatable with the PET, C64, and BBC computers, including the latest BBC which reportedly is compatible with the previous model. The author's experience of the new machine tends to confirm this. When typing in the program for the PET or C64, remember to insert the correct name and number into the 4 th program line. It is from this data statement that the correct codes are obtained to suit the machine in question. The BBC program can be directly typed in as listed.

FINAL DOTS

Two notable points, the input level should be set so that signal background noise is not allowed to trigger the circuit -noisy reception should be put through a tight bandpass filter first. Secondly, when freshly acquiring Morse data, the rate control should be rotated from the left until characters start to make sense, then adjust it carefully so that word spaces (if they exist) become apparent. If the rate is incorrectly set, random series of "T", "E", "I" and " S " will probably be displayed.

Front and rear panel layout and lettering for the Morse Decoder.

Fig. 4. Wiring of panel mounted components.

Fig. 5. Connections to the computer.

Veroboard is a familiar material to most constructors. Here are some facts you may not have known, along with plenty of hints and tips for its use

THE best and easiest way of building a circuit is undoubtedly by using a ready-made, custom-designed, printed-circuit board. All the layout problems have been solved by someone else, all the components will fit providing they are as specified, so all that is required is to mount them and solder.

But a ready-made board may not be available, and will not be if the design is your own. The next option is to etch one yourself. For this you will need etching solution, a suitable plastic bath, an etch-resist pen or transfers, and a drill to make the holes for the component wires. If you make a lot of p.c.b.s all these will be to hand and you will take the job in your stride. But if your project building is less frequent, making a one-off board is expensive and something of a chore.

So we turn to the humbler Veroboard, which consists of a board printed with copper strips along its length and drilled with a matrix of holes. The strips can be cut at any desired point, so a wide variety of circuit configurations can be created. Many experienced constructors tend to look down on Veroboard, and indeed it has some disadvantages, but this distain is unjustified, for most of the snags can be overcome with considered layout.
The pitch of the strips and that of the holes along them is 0.1 inches (however did this escape metrication?),
which means that i.c. pins can be inserted readily in the board. There is also a 0.15 matrix which is less popular now because it is incompatible with i.c. pins. It is useful, though, for larger discrete components if you can get hold of it.
Some variants of the normal Veroboard are Verostrip in which the strips run across the width of the board instead of the length, and V-Q board. The latter has the strips cut after every four holes thus avoiding the need of cutting (Fig. 1). It also saves space because you lose a hole with each cut on Veroboard, whereas the V-Q cuts are between holes. The snag is that there are no complete uncut strips which are needed for supply and earth lines. An improvement would be to have every fourth or fifth strip uncut for this purpose; perhaps the makers will take note!

ELECTRICAL CHARACTERISTICS

There are two factors which are sometimes queried with matrix board, and these are the capacitance between strips, and their resistance. Neither are mentioned in the supplier's catalogues. It may be thought that the inter-strip capacitance would be quite large; however, capacitance is proportional to the facing area of the adjacent conductors. As the strips are laid edge-to-edge, the facing area is quite small.

Actual capacitances measure $2 \cdot 5$ p per inch between adjacent strips for the 0.1 matrix, and $1.6 p$ for the 0.15 . The smaller capacitance of the latter is because the conductors are farther apart.

Capacitances of this order should prove no problem for any circuit other than those involving the higher radio frequencies in the megahertz range. It should be remembered, though, that transient pulses can contain frequencies in the r.f. spectrum and a sensitive part of the circuit could be triggered by a large pulse on an adjacent strip. The rule is, then, to keep such ill bedfellows well apart.

The other factor is resistance. If you connect an average ohm meter across a

Vero track it will read zero resistance. That doesn't mean that there isn't any, only that it is too low for the meter to register; most will not indicate readings below around half an ohm.

The disadvantage with Vero, is what is said to be an advantage with a certain popular domestic product-all those little perforations! Each hole takes up over half the track and so conductivity is reduced at each one.
The resistance for 0.1 matrix is 10 milli-ohms per inch length. For the 0.15 matrix it is 7.5 milli-ohms per inch. If, for example, a one-amp signal current flowed along a five-inch length of 0.1 vero, there would be a 50 mV drop across it. Currents of several amps are by no means unusual in output or even driver stages, so supply or earth lines common to earlier stages could be feeding back sizeable signals, resulting in instability and other ills.

There could be significant feedback with much smaller currents, such as between the input and output circuits of high-gain op. amps with common tracks. Another possibility is that decoupling capacitors could actually inject unwanted signals on an earth run common to another part of the circuit. One very troublesome fault experienced by the author on a prototype proved to be due to this very cause.

In power circuits, earthing points must be carefully chosen, especially for reservoir capacitors. These carry ripple current which is equal to the total supply current, so appreciable hum voltages can be developed over quite short print runs.

For vulnerable tracks, such as those for supply and earth, the resistance can be lowered by running solder along the entire length of the track. This has been found to drop the resistance by nearly a half, from ten to six milli-ohms per inch. Another solution is to use two adjacent tracks for the same supply but link them only at the supply end. One should feed the output or high current stages and the other the input sections.

LAYOUT

The first thing to do when devising the layout for a circuit is to plan it out

Fig. 1. VQ board consisting of matrix board divided into groups of four holes.

(c)

Fig. 2. When several connections have to be made to a single point as in circuit (a), the result on Vero can be elongated as in (b). A more compact and convenient group can be made if two adjacent strips are used. A link can be made by soldering a wire from one component across the two strips (c).

(b)

Fig. 3. Above-board connections can be made by making a wire spiral on a screwdriver shaft (a), slipping it over the free wires of the components and soldering (b).
on paper. To construct it "as you go" rarely works out unless the circuit is a very simple one or you have plenty of board space to spare. Usually you find that an extra hole or connecting strip is needed where there isn't one, so several components must be re-sited to make room.

It would be nice if pads of Vero planning paper were available so that components could be sketched in, just as it is for Veroblock, the solderless prototype breadboard system. Unfortunately none has been produced as yet; perhaps some enterprising maker will take the hint and fill the need, but until then paper planning means ruling your own. This is quite a chore, but well worth it as once you have got it right on paper, construction is much easier.

It helps to make the plan larger than the actual board, say twice normal size. Components too will have to scaled up proportionately. When ruling the paper make several carbon copies to save repeating the job if more plans are needed. Better still, if you have a computer and printer with graphics capability, make a plan and store it for future use.

A common pitfall is to allow too little space for some components, so check in advance how many holes are covered by each. Resistors and capacitors can be mounted either vertically or horizontally. When resistors are
mounted horizontally they span about three or four holes, but when fitted vertically they can usually be connected across adjacent ones. Vertical mounting is more economical, but horizontal fitting can be useful when the component must bridge across to another part of the board.

Capacitors are generally available in two formats: radial, with the wires coming from the same end for vertical mounting, and axial, with a wire at both ends for horizontal fitting. Axials can be mounted vertically, but take an extra hole in this position than their radial counterparts.

PLANNING

Having determined the space required for each component, positioning on the plan can commence. The first step is to establish the power supply and earth strips. It is usually most convenient to put these at the two edges of the board. If there are two supply lines, a positive and negative, these could go on opposite edges of the board, and the earth conductor along the middle. Alternatively, the two supply lines can be two adjacent strips at one edge with the earth at the opposite edge. With this layout there is less likelihood of confusing them when the board is turned over than if they were at opposite edges.

Next, sketch in the components
lightly in pencil so that alterations can be made, and ink in when finalised. Remember to mark in the polarity of diodes, transistors and electrolytics. Position the major components in such a way that their associated small components can be mounted around them and link easily with their feed circuits. Usually this means orientating the component with its positive electrode toward the positive supply line, and the negative and earth wires toward their respective supplies. Sometimes a sideways aspect facilitates the connection of other related components without hindering the connection to the supply strips.

Remember that the board has to be supported, so extra room must be allowed for fixing screws or stand-off posts. Alternatively, Veroboard can be obtained with the strips terminated with edge-connector contacts. These can be plugged into a mating connector which both connects and supports the board. This is ideal for equipment where boards need to be quickly changed to provide alternative functions or for quick substitution servicing.

Connections to conventional boards should be brought out as near to the edge as possible to make the later soldering of connecting leads easier. Terminal points buried amid a forest of components are not easy to locate or connect.

One of the drawbacks with matrix board is that all connections to a single point in the circuit are strung out in a line, instead of being grouped in a cluster as they are with custom-made p.c.b.s. This means that stages tend to spread horizontally, merging with other parts of the circuit, thereby making later circuit identification difficult.

A cluster can be achieved with Vero by using two adjacent strips (Fig. 2). The snag is that they have to be linked and this means the loss of one hole form each for the linking wire. To avoid this, one of the wires from a component can be extended from its hole to a hole in the adjacent strip, thus losing only one hole, or it can just be soldered flat on the adjoining strip without losing any. Other holes would be lost, though, because four cuts, each using a hole, would be needed to isolate the two strips instead of only two for the single one. Cuts between holes can be made with a sharp knife if space is at a premium, but it is better to use a cutting tool on the hole.

It is not essential that all connections be made via the print; if two or three small wire-ended components are vertically mounted close together, their free ends can be easily connected. Instead of twisting the wires which makes them difficult to free later if required, a spiral wire connector can be made up and fitted. This is formed by winding a short length of 22 s. w.g. wire on a small screwdriver shaft to make a spiral some 5 mm in length (Fig. 3). Slip this over the wires and solder.

To remove a wire, just melt the solder and lift of the spiral. All the connections in pre-war Philips radios were made in this manner.

But back to our planning. Give particular regard to the possibility of common-impedance coupling discussed earlier. Avoid it by arranging the return from any high current components to be as close to the supply end of the connecting strip as possible, or as suggested, split the supply along two strips. This applies to the earth connections just as much as to the "hot" pole of the supply, because the same current flows through both.

No doubt there will have been a number of changes and re-arrangements to your drawing, but when it all fits in place, then is the time to ink in the final positions. It is useful now to count off the rows of holes and mark them on the plan along the edge in increments of five. Do the same for the strips but label each one and use letters for these. Thus every hole has an identification. This will prove a big help during the construction, and will minimise the chance of connecting a wire to the wrong hole.

CONSTRUCTION

Believe it or not, although you have as yet nothing constructed, you have completed the biggest part of the job. Popping the components in the holes according to the plan and soldering is much easier than working out the layout and drawing it. Don't be too complacent, though; there are pitfalls.

The first step is to make those cuts. A special tool is available which when centred in a hole on the print side and rotated takes out a neat circular section of print. The same function can be served by using a 5 mm twist drill, though not having a handle it is slightly less convenient. If cuts between holes have been planned to save space, make two parallel cuts with a sharp knife and take out the narrow portion between. A single cut is unreliable because the edges can easily re-connect when the metal expands.

Before you start wielding that cutter, though, remember that your plan shows the component layout. When you turn the board around to make the cuts you see the print layout which is a mirror image of the other. All cuts then should be made counting the holes from right-to-left, instead of from left-to-right as numbered on your plan. The track designations from top to bottom remain the same.

Identify each hole to be cut alphanumerically from the plan then find it on the board and cut. When you have finished, count up the number of holes in your plan and check with the number you have actually cut. It is very easy to miss one, so this count-check should bring any discrepancy to light. The pattern of holes and their spatial relationship should also provide a check as to the accuracy of their positions when compared with that of the plan.

It is prudent furthermore to examine each one under magnification; tiny

Fig. 4. Types of terminal post. (a) Single-sided. Inserted from the print side, the serrated boss holds the post firm in the hole while the bottom stud is soldered to the print. (b) Eyelet post inserted from component side. (c) Double-sided post.
 of double tags in two rows. Can be a useful alternative to circuit boards for simple assemblies.

(a)

Fig. 6. Illustration of how a simple transistor amplifier stage (a) can be assembled using only three pairs of tags.
slivers of copper can often be found bridging what appeared to be a clean cut. Time spent checking is never wasted, it is much easier to spot and correct a defect during construction than try to trace baffling faults later.

FITTING COMPONENTS

Now is the time to fit the components, a satisfying task because it proceeds quickly and it really looks as if you are getting somewhere. Leave the semiconductors except diodes to the last to avoid repeatedly subjecting them to heat as other components are soldered in. Although i.c.s can be soldered in directly, it is best to use an i.c. holder. This prevents any heat applied to the device, and permits a quick change if a fault is suspected later.
A variety of terminal posts are available which make good press-fit into the hole before soldering (Fig. 4). Some are double sided, so permitting connections to be made on both sides of the board, but most are single. Others have eyelets at the top to accept thicker connecting wires or to hold "select-ontest" components.

Insert the wires of wire-ended components, checking the alphanumeric identity of each hole carefully, and
bend the wires slightly at the board to hold the component in place. If the circuit is a simple one with few components, all can be fitted before any are soldered. With larger circuits it is best to complete a section otherwise some may drop out and the forest of wires will impede the mounting of further parts.

Soldering should be done before the wires are cropped because as well as holding the component in place, the excess wire helps to dissipate some of the heat. While most components apart from semiconductors are not too fussy about heat, it is not a bad thing to minimise their exposure to it.

After soldering and trimming is complete, it pays to examine the board carefully under magnification just as we did for the holes. Scan along each track in turn, checking that each joint is sound and that there are no whiskers of solder across to adjacent strips. With the close proximity of Vero 0.1 tracks, these are highly probable, however careful you were in soldering. Many incipient faults can be prevented in this way.

Finally, run the soldering iron along the earth and supply tracks, completely coating them. This reduces the resistance and helps in their identification.

TAG-BOARDS

Printed circuits have become so much a part of the electronic scene that we tend to think that they are indispensable and there is no other valid method of circuit building. Yet they are comparative newcomers; before 1960 all equipment was built with the use of tag strips. That method soon dropped out of favour, the strips were cumbersome, and hand-wiring became too expensive for repetitive production runs:
Modern tags are mounted on boards in parallel rows and are quite compact (Fig. 5). One type has two rows of eighteen tags, each having two solder points, on a panel approximately 115 mm by 40 mm . Each tag can accomodate several wires, and small components can be mounted across the rows or adjacent tags. Quite a variety of possible component and wiring combinations are thereby possible.

For small, simple, circuits without i.c.s, tag boards offer a quick and easier construction method than a one-off printed circuit, even to using Vero. The illustration (Fig. 6) shows a simple amplifier stage using only three pairs of tags. They are well worth considering for appropriate projects.

each instrument has a clear mirrored scale and comes complete with a robust CARRYING CASE, LEADS \& INSTRUCTIONS.
PRICES Our prices inctude VAT and postage and goods we normally despatched by return.
Please write or telephone for details of these and the many other instruments in the Alcon range, including muttimeters, components measuring, aviomotive and eiectronic instruments.

. . Analogue-to-Digital Converters . . .

Following on from last month's article on digital to analogue conversion we naw turn to analogue to digital converters. There are numerous analogue to digital converter chips that are suitable for use with the BBC computer, but many of these would have little advantage over the machine's built-in converter.
In fact most of the converter chips currently a vailable offer higher operating speed than the BBC computer's μ DP7002, but in many cases the higher speed is still inadequate for likely applications such as audio digitizing. What probably represents the ideal complement to the built-in analogue port is a converter which offers a conversion rate of around 60000 or more per second with at least 8 bit resolution and a modest asking price.

Converters

The two obvious candidates are the Ferranti ZN 427 E and the $\mathrm{ZN} 447 / 8 / 9 \mathrm{E}$ series of chips from the same manufacturer. These are all 8-bit successive approximation converters which cost only a few pounds each.
The main difference between the ZN427E and the other devices is that the ZN427E lacks an integral clock oscillator. It also has a lower maximum usable clock frequency of 600 kHz as opposed to 1 MHz for the ZN447/8/9E series. In terms of conversions per second, this equates to about 67000 and 110000 respectively.
All these chips are therefore suitable for audio digitizing or any applications which require a comparable conversion rate. Note that these conversion rates are the maximum ones at which the chips are guaranteed to operate, and that most devices will actually operate at rates approaching double the quoted figures.
The ZN447/8/9E series are all essentially the same device, and the difference between them is the guaranteed level of accuracy. This is $1 / 4$ LSB for the ZN447E, $1 / 2$ LSB for the ZN448E, and I LSB for the ZN449E. The ZN448E is the most readily available of these chips, and its accuracy is adequate for most purposes.
Actually the ZN449E is ofter satisfactory, and can be obtained at relatively low prices. The ZN447E is expensive, difficult to obtain, and its increased accuracy is rarely needed. The ZN427E incidentally, has an accuracy of 1/2 LSB.

Interfacing

Interfacing analogue to digital converters to computers is generally a little more involved than interfacing digital to analogue types, and it generally involves a simple form of handshaking. This is certainly the way in which the ZN447E series and the ZN427E are normally used.
These devices do not continuously take readings automatically, and neither do they take an instant reading to provide current
data whenever they happen to be accessed. The general scheme of things is for a conversion to be initiated under software control, and then a hold-off has to be provided while the circuit converts the input voltage to a corresponding digital value.
The successive approximation technique has been covered in this magazine on more than one occasion in the past, and we will not consider this process here. However, it is a reasonably fast method of conversion which with the ZN447E series and ZN427E chips takes no more than nine clock cycles.
As the time taken for a conversion to be completed is predictable it is possible to prevent readings being taken prematurely by using a software delay loop to provide the hold-off. When using BASIC there would be no need for any delay loop, since each conversion would be completed well before the converter could be read, even if the start conversion instruction is to be followed immediately by a read command. In fact there is probably no point in adding
an external converter if BASIC is to be used, as the built-in analogue port is likely to be at least as effective as the add-on circuit.

The ZN447E series and ZN427E chips both have an "end of conversion" output which goes low when a conversion is initiated, and high again when the conversion has been completed. This output can therefore be monitored via a suitable edge sensitive input, and in conjunction with a suitable software routine used to provide a hold-off.

Analogue to Digital Converters

The user port probably represents the most convenient port when adding an analogue to digital converter to the BBC machine, and Figs. 1 and 2 show how circuits based on the ZN447E series and ZN427E (respectively) can be interfaced to this port. The two circuits are basically the same, and the main difference is in the way the clock signal is obtained.

The ZN447E series have a built-in clock oscillator which requires a single discrete

Fig. 1. The circuit of a simple A/D converter based on a ZN447E chip.

Fig. 3. A zero adjust circuit for a full-scale potential of +5 volts.
component, and this is a capacitor which sets the clock frequency. In this case the capacitor is $\mathbf{C 1}$, and it gives a frequency of approximately 1 MHz .

With the ZN427E an external clock circuit is required, and in this case the 1 MHz clock signal (taken from the 1 MHz Bus) is divided by two in IC2 to produce a 500 kHz clock signal. If preferred, the circuit could have its own 1 MHz crystal oscillator, or even something as basic as a simple 555 astable circuit operating at about 500 kHz or so and directly driving pin 3 of the ZN427E would be adequate.
Another minor difference between the two circuits is that the output enable terminal (pin 2) is taken low in the case of the ZN447E series, and high on the ZN427E. In both cases this permanently enables the tristate data outputs of the device, and for some reason the two chips use the opposite method of control in this respect.

The circuits utilize the built-in 2.55 V reference generators of the chips, and these require a discrete load resistor (R1) and a decoupling capacitor (C2 of Fig. I and C1 of Fig. 2).

It has been assumed that the circuits will be used in audio applications, and accordingly the input is biased to half the full scale input voltage by resistors R1 and R2, and a d.c. blocking capacitor is included at the input. For d.c. applications the alternative input circuit of Fig. 3 should be used. Here the preset potentiometer VR1 is adjusted to give a full scale sensitivity of precisely 5 V . Other voltage ranges can be accommodated with VR1, R1, and R2 having values chosen to provide suitable attenuation. They
should also give an output resistance of about four kilohms if optimum stability is to be achieved.
Preset VR2 is the zero adjustment control, and this is adjusted by first applying an input voltage equal to $1 / 2 \mathrm{LSB}(9.8 \mathrm{mV}$ for 5 V full scale), and then adjusting the control so that returned readings more or less alternate between 0 and 1. In most cases more than adequate results will be obtained if VR2 and R3 are simply replaced with a 1M2 resistor.
A negative supply is required for the "tail" resistor in the comparator stage of the converter chip, and this can be obtained from the computer's power port. An alternative method is to derive it from the +5 V supply using an oscillator, rectifier, and smoothing circuit, such as the one shown in Fig. 4. This only provides an output of about -3 V or so, and resistor R 4 in the converter circuit should accordingly be reduced to 47 k . Note that the circuit will work with a 74LS14 in place of the 7414, but R1 should be increased to 1 k .

Controlling the Unit

Obviously the user port data lines must be set as inputs (?\&FE62=0) in order to read the unit, and CB2 must be set as an output in order to provide the start conversion pulse. Probably the best CB2 mode in this case is the one where it provides a brief negative pulse after each write operation to the user port. This enables a brief start conversion pulse to be produced by using a "dummy" write operation to the user port.
If the end of conversion output is to be monitored CB1 must be set to the low to
high input mode. These modes are selected using values of 160 and 16 respectively, giving a total of 176 to write to the Peripheral Control Register at address \&FE6C.
This simple test routine will set up the user port and read the converter.
$10 ? \&$ FE62 $=0$
$20 ? \&$ FE6C $=176$
$30 ? \& F E 60=0$
40 PRINT ?\&FE60

Note that the start conversion pulse is recorded at line 30 without having to set the user port lines as outputs, and that the value written to the port can be any legal quantity (i.e. any integer from 0 to 255).

The converter circuits can easily be added to the 1 MHz Bus, and in its most fundamental form this can be accomplished by connecting the eight data outputs to the data bus, feeding the start conversion input from NPGFD, and driving the output enable pin (pin 2) from the cleaned up NPGFC line (in the case of the ZN427E this line must be inverted). A conversion is then initiated by a "dummy" read or write operation to any address from \&FDOO to \&FDFF, and the returned value is read at any address from \&FCOO to \&FCFF.
Address decoding can be used to place the converter at a more restricted address range if desired. This would allow more hardware to be added to the 1 MHz Bus, including a simple input port to enable the end of conversion output to be read if necessary.

Next month: We will consider the extra hardware needed for good results in audio digitizing applications, together with some assembly language software for use with the A / D and D/A converters.

FREQUENCY COUNTER

The latest addition to the Black Star range of Frequency Counters is the Meteor 1500. utilising the latest monolithic microwave integrated circuit technology to measure frequency up to 1.5 GHz .

The Frequency Counter is an eight digit battery or mains operated bench instrument with resolution down to 0.1 Hz and with sensitivity of $<50 \mathrm{mV}$ at 1.5 GHz . Features include low pass filter, trigger level control, three gate times and battery recharging facility.

The wide frequency range and portability make the instrument suitable for service and test applications in many fields including telecommunications, cellular radio, PMR, etc.
The Meteor 1500 costs $£ 199$, plus VAT, and further technical information may be obtained from:

Black Star Lid., Dept EE,
4 Stephenson Road, St. Ives, Huntingdon, Cambs, PE17 4WJ.

Tel: 048062440

PRINT OUT

ACOMPACT plug in unit (measuring $107 \times 87 \times$ 85 mm) containing a miniature dot matrix printer, and an internal paper supply holder is the latest product from Crotech. The complete assembly consists of two parts, a rugged steel case which is mounted on special brackets behind the main instrument panel, and includes a 13-pin D sub-min socket giving connection to the main assembly.

The main assembly contains an MP- 250 series printer mechanism, offering either 24,32 or 40 characters per line, paper roll holder, and polished aluminium front panel. This section is easily mounted in the case by sliding it through the aperture in the main instrument front panel. It is then secured to the
case by two retaining screws, one of which incorporates a paper advance switch.

Studs are provided on the rear of the metal case of the Datamega MP- 240 for mounting a controller, such as the Datamega MP-181 which includes parallel and serial interface facilities, along with text and data modes, and full graphics capability.

Full information on the Datamega MP-240, and the complete range of printers and ancilliaries, is contained in a Datamega brochure, which is free on request, from:

Crotech Instruments Lid., Dept EE, 2 Stephenson Road, St Ives, Huntingdon, Cambs, PE17 4WJ.

Tel: 0480301818

REMOTE VIEWING

[OR the youngster on-themove or, more importantly, the hard of hearing, Kewmode have just marketed "no wires" infra red headphones for TV and hi fi listening. The phones are claimed to create "spatial sound" and give a simulated stereo effect from the mono signal from TV.

Capable of operating from up to 40 ft away, the unit is supplied complete with a small transmitter which simply plugs into the headphone or audio output socket of the TV, video recorder or hi fi. The headphones contain controls for on/ off and volume with automatic balance to provide the optimum sound effect.

With no wires to worry about
or to restrict viewing distance you can enjoy the entertainment without distracting other members of the family. The system is easy to use and ideal for the hard of hearing who can adjust the volume levels to their personal needs without annoying others.
The Kewmode Infra Red Headphone System is available from electrical and audio stores and sells for around $£ 39.95$. For details of nearest stockists contact:

Kewmode Ltd., Dept EE, Unit C, Faircharm Industrial Estate,

Evelyn Drive,
Leicestershire LE3 2BU .
Tel: 0533893158

> A selection of products recently released on to the market.
> If you have any items you think should be included here send details, together with photographs, to the Editorial Offices. Please mention Everyday Electronics when requesting information published in the magazine.

CD ON THE RACK

A^{s}s the boom in Compact Disc hardware and recordings continues, so the need for related accessories grows, too.

Racks for storage of discs and cleaning products to ensure that dises maintain their "as new" performance are two obvious areas and SMC Supplies have announced, under their Connexions brand, two new products in both these areas.
The Connexions range of eight storage racks offers a variety of differently shaped traditional wood-finish and plastic moulded styles of racks for wall mounting or free standing. The capacity of the racks varies from 10 discs up to 39 discs and retail prices range from around $£ 2.65$ incl. VAT, up to $£ 9.25$ incl. VAT, ensuring that there is a model to suit most pockets.
The CCC is Connexions CD cleaning kit. It includes a CD spray and is expected to retail at around $£ 9.95$ incl. VAT
For details of local stockists readers should write to:

Connexions, SMC Supplies, Dept EE, 125 East Barnet Road, New Barnet, Herts, EN4 8RF.

Tel: 01-441 1282

FAST CHECK

THE Galatrek F.A.S.T. is a 13A socket tester for on the spot checking of the house "power" wiring available from Galatrek International. It will automatically test for six possible fault conditions likely to occur on 13A wall mains sockets simply by plugging the unit in to each wall socket.
The tester also has a facility for testing fuses.
The Galatrek F.A.S.T. sells for the sum of $£ 14.95$, including VAT and p\&p, and is available direct from:

Galatrek International Ltd., Dept EE, Scotland Street, Llanrwst, Gwynedd, North Wales LL26 0AL.

Tel: 0492640311

MICRO TRAINING

ANEW '68000 microprocessor training system has just been launched by Flight Electronics.

Designed and built in the UK, the FLT 68 K operates at 8 MHz and links directly to the 16-bit memory allowing highspeed processing. The board has a full-spec 68000, versatile memory system, 68681 dual UART linked to two RS232 ports, 68230 parallel interface timer and a G64 bus connector.

The FLT 68 K is promptdriven and all commands are self explanatory. A set of 53 monitor commands are provided for program generation, debugging and system control. The integral line assembler and de-bugging routines allow the FLT 68 K to be used as a stand alone unit, using a terminal as the control consols and a serial printer to provide hard copy output.
A full set of documentation is supplied with the system, including a 256-page user manual, the monitor program source

SUITABLE for PA systems headphone amplifier and low power audio systems, the Audiokits Module is a singleboard complete hi fi amplifier, less transformer.
The design features a cascode driver stage, claimed to give better linearity and h.f. response, a two transistor constant current source and diode stabilised biasing in the preamp stage, for improved PSRR.
Up to 30W r.m.s. per channel is claimed when driven from a

40 V a.c. supply. The module will give a reasonable performance down to supplies of 15 V a.c. Additional heatsinking is advisable when used at high powers.
The Audiokit Module is available direct for the sum of $£ 37.50$ plus $£ 2$ p\&p. For details of the complete range of audio products contact:

Audiokits,
Dept EE, 6 Mill Close, Borrowash, Derby DE7 3GU.

Tel: 0332674929

listing and full technical specification/manuals on the Motorola 68000,68681 (dual UART) and 68230 (peripheral interface/timer).

For full technical details contact

Flight Electronics Lidi, Dept EE, Ascupart Street,
Southampton SO1 1LU.
Tel: 0703227721

Abstract

Welcome to our new nine part series on Digital Troubleshooting which aims to provide readers with a practically biased introduction to the diagnosis of faults within digital equipment. The series should also be of interest to anyone wishing to update their knowledge of modern digital devices and circuitry.

The last part of our Digital Troubleshooting series dealt with the basic logic gates; AND, OR, NOT (in verter), NAND and NOR. This month we continue the series by looking at monostable and bistable devices.
We also introduce a partner for the Logic Probe described last month in the shape of a Logic Pulser which is also featured in our companion Digital Test Gear project. These two simple instruments will cope quickly and efficiently with a multitude of digital equipment faults.

MONOSTABLES

The logical state of the outputs of the logic gates we met last month remains at logic 0 or logic 1 according to the logical states of their inputs. Provided the input states remain constant, the output state will also remain constant. There are, however, a number of applications in which a momentary pulse (i.e. a $0-1-0$ or 1-0-1 transition) is required rather than a permanent change of logical state. A device which fulfils this function is said to have only one stable state and is consequently known as a Monostable.

The action of a monostable is quite simple; its ouput is intitially at logic 0 until a level or "edge" arrives at its trigger input. This level change can be from 0 to 1 (positive edge trigger) or 1 to 0 (negative edge trigger) depending upon the particular monostable device or configuration.

Immediately the trigger is received, the output of the monostable changes state to logic 1 . Then, after a time interval determined by
external "timing components", the output reverts to logic 0 . The monostable then awaits the arrival of the next trigger.
Monostables are a vailable in a variety of forms and, whereas it is possible to make a simple form of monostable from individual logic gates and a few discrete components, the use of purpose-designed integrated circuit monostables is much to be preferred. To illustrate the basic principles of monostable pulse generators we will, however, first consider some simple monostable arrangements based on inverters.

A simple negative-going ($1-0-1$) pulse generator which is triggered by a positive edge is shown in Fig. 3.1. In order to explain the action of the circuit we need to consider what happens when the trigger pulse arrives. To help us do this we can use the waveform diagram shown in Fig. 3.2.
Since the voltage level at the input is zero before the trigger arrives, the capacitor, C, is initially uncharged. The inverter thus receives a logic 0 input and its output will be held high (logic 1). When the trigger does arrive, the input voltage rises rapidly from 0 V to approximately 5 V .
This voltage change is conveyed, via the capacitor, to the input of the inverting gate. The inverter then recognises a logic 1 input when its input passes through the logic 1 threshold (approximately 1.5 V) and its output then rapidly changes state from logic 1 to logic 0 .
The capacitor then charges through the resistor, R, and the voltage at the input of the inverter falls exponentially back towards 0 V . When the inverter's input voltage falls below the logic 0

Fig. 3.1. Simple negative-going monostable pulse generator.

Fig. 3.3. Simple positive-going monostable pulse generator.

Fig. 3.2. Waveforms for the circuit of Fig. 3.1.
threshold (again at about 1.5 V) the gate once more recognises a logic 0 input and its output state reverts to logic 1 .
The time taken for the capacitor to charge depends on the time constant of the circuit ($C \times R$). The duration of the output pulse can thus be fixed by a suitable choice of component values. It should, however, be noted that for conventional TTL gates an optimum value of R will be around 470 ohms. Furthermore, it should not be increased much above, nor decreased much below, this value. Hence, to obtain output pulses of different duration, the capacitor rather than the resistor should be varied.
Long duration pulses may require the use of large value capacitors and these will invariably be electrolytic types. It is, therefore, essential that capacitors are low leakage types and, furthermore, close tolerance varieties are necessary if an accurately defined output pulse is required. If we need a positive-going (0-1-0) pulse rather than a negative going pulse (1-0-1) we need only add a second inverter to the output of the circuit, as shown in Fig. 3.3.

How positive and negative output pulses may be derived from a negative edge trigger is shown in Figs. 3.4 and 3.5. These circuits are somewhat similar to those which operate from a positive edge trigger. In this case, however, the input of the inverter is biased into the logic 1 state by means of an additional "pull-up" resistor connected to the positive supply rail. Such an arrangement typically places a quiescent voltage of approximately 2.5 V at the input of the logic gate.

POPULAR I.C. MONOSTABLE

Having dealt at some length with simple monostable arrangements it is worth introducing a popular integrated circuit monostable device, the 74121. This can be triggered by either positive or negative edges depending upon the configuration employed. The chip has complementary outputs (labelled Q and $\overline{\mathrm{Q}}$) and requires only two timing components (one resistor and one capacitor).

The internal arrangement of the 74121 is depicted in Fig. 3.6. Control inputs A1, A2 and B are used to determine the trigger mode and may be connected in any one of the following three ways:
(a) A1 and A2 connected to logic 0 . The monostable will then trigger on a positive edge applied to \mathbf{B}.
(b) A1 and B connected to logic 1. The monostable will then trigger on a negative edge applied to A 2 .
(c) A2 and B connected to logic 1. The monostable will then trigger on a negative edge applied to AI.
It should be noted that, unlike some other astable types, the 74121 is not re-triggerable during its monostable timing period. This simply means that, once a timing period has been started no further trigger pulse will be recognised. Furthermore, in normal use, a recovery time equal in length to the monostable pulse should be allowed before attempting to re-trigger the device.

PULSE STRETCHERS

A typical application for a monostable device is in stretching a pulse of very short duration. A 74121 is an ideal device to perform this function; it can be triggered by a very short duration pulse and will continue with its fixed duration timing period long after the input signal has reverted to its original state. The only requirement is that, to ensure reliable triggering, the input pulse should have a width of at least 50 ns .

For a 74121, the values of external timing resistor should normally lie in the range 1.5 kilohm to 470 kilohm . The minimum recommended value of external capacitor is 10 pF whereas the maximum value of capacitor is only limited by the leakage current of the capacitor employed. In practice this means that, if necessary, values of several hundred microfarads can be used. This all leads to a monostable circuit which can provide a very much wider range of monostable periods than the simple circuits based on inverters described earlier. Typical values of 74121 monostable period for various capacitor values can be determined from the nomograph shown in Fig. 3.7.

RS BISTABLES

In any other than the most elementary of logic circuits, one sooner or later realises the need for a device which can remember a logical state (either 0 or 1) for an indefinite period of time (or at least as long as the supply remains connected!). Such devices constitute a very simple form of memory and, since their output can exist in either one of two stable states (0 and 1), they are known as Bistables.

Simple bistable devices can be built using nothing more than NAND or NOR gates, as shown in Fig. 3.8(a) and Fig. 3.8(b), respectively. These arrangements have two inputs (labelled SET and RESET) and two complementary outputs (labelled Q and \bar{Q}).

A logic 1 applied to the SET input will cause the Q output to become (or remain at) logic 1 , whilst a logic 1 applied to the RESET input will cause the Q output to become (or remain at) logic 0. In either case, the bistable will remain in its SET or RESET state until an input is applied in such a sense as to change the state.

Fig. 3.7. Nomograph for predicting 74121 monostable pulse duration. A 100μ s pulse is produced when $\mathrm{C}=10 \mathrm{nF}$ and $\mathrm{R}=$ 15k.

Fig. 3.4. Falling edge triggered positivegoing pulse generator.

Fig. 3.5. Falling edge triggered negativegoing pulse generator.

Fig. 3.6. Internal arrangement of 74121 monostable.

Fig. 3.8. (a) NAND gate RS bistable. (b) NOR gate RS bistable.

Everyday Electronics, January 1987

Table 3.1: Truth table for the bistables of Fig. 3.8

SET	RESET	$\boldsymbol{0}$	$\overline{\mathbf{0}}$
0	0	NO CHANGE	
0	1	0	1
1	0	1	0
1	1	INDETERMINATE	

Simple NAND and NOR gate bistable arrangements suffer from a problem, as can be seen in the truth table of Table 3.1. It is not possible to predict the output state which results from the simultaneous application of a logic 1 to both the SET and RESET inputs. Hence positive steps are usually taken to ensure that this disallowed state does not arise.
In practice, NAND and NOR gate bistables are rarely encountered since a variety of integrated circuit bistables are available which are both more flexible and predictable in their operation. The commonly used symbols for three common bistable types (RS, D-type and JK) are shown in Fig. 3.9.
The D-type bistable has two principal inputs; D (standing variously for data or delay) and CLOCK. The data input (logic 0 or logic 1) is clocked into the bistable such that the output state only changes when the clock changes state. Operation is thus said to be synchronous. Additional subsidiary inputs (which are invariably "active low") are provided which can be used to directly set or reset the bistable. These are usually called PRESET (PR) and CLEAR (CLR).
A typical application of a D-type bistable as a simple one-bit "data latch" is shown in Fig. 3.10. The operation of the circuit is best explained by considering the timing diagram shown in Fig. 3.11. Here, the state of the D input is transferred to the Q output on each rising clock edge. The \mathbf{Q} output remains unaffected by a falling clock edge. It should be noted that, whereas most common D-type bistables (e.g. 7474, 74174, 74175) are all clocked on the rising edge of the clock waveform, this rule does not generally apply to JK bistables which invariably complete their clocking on a falling edge!

JK $\operatorname{BISTABLES}$

JK bistables have two clocked inputs (J and K), two direct inputs (PRESET and CLEAR), a clock input and two outputs (Q and Q)-see Fig. 3.9. As with the RS bistable, the two outputs are complementary (i.e. when one is 0 the other is 1 , and vice versa). Similarly, the PRESET and CLEAR inputs are invariably both active low (i.e. a 0 on the PRESET input will set the Q output to 1 whereas a 0 on the CLEAR input will set the \mathbf{Q} output to 0). The truth tables for a JK bistable are shown in Table. 3.2.

Table 3.2: Truth tables for a JK bistable

J	K	$\mathbf{0}_{n+1}$ $[0$ after clock $1 \rightarrow 0$ transition]	COMMENT
0	0	0_{n}	NO CHANGE $[0 \rightarrow 0$ OR $1 \rightarrow 1]$
0	1	0	OUTPUT CLEARED

PRESET	CLEAR	0
0	0	INDETERMINATE
0	1	1
1	0	0
1	1	ENABLES CLOCKED OPERATION

BINARY COUNTERS/DIVIDERS

A typical four-stage binary counter/divider using JK bistables is shown in Fig. 3.12. Each JK bistable divides by two and thus the frequency of the final output is one sixteenth of the input as shown in the timing diagram, Fig. 3.13.

Fig. 3.9. Symbols used for RS, D-type and KJ bistables.

Fig. 3.10. D-type bistable as a data latch.

Fig. 3.11. Timing diagram for a D-type bistable.

Fig. 3.12. Four stage binary counter using JK bistables.

Fig. 3.13. Timing diagram for the circuit of Fig. 3.12.

Fig. 3.14. Four stage shift register using JK bistables.

Fig. 3.15. Timing diagram for circuit Fig. 3.14. Data input assumed static at logic 1.

Fig. 3.16 (above). Dual phase microprocessor clock divider. Logic Pulser applied to A, Logic Probe (last month) applied to B.

Fig. 3.17. Internal arrangement of the 7473 JK bistable.

Fault-finding on such an arrangement is usually only a matter of following the Q output signals from stage to stage using a logic probe or an oscilloscope. A stage which has a correctly clocked input but has an output which remains static must be considered suspect. It would then be necessary to check the logical state of the J and K, PRESET and CLEAR inputs. These should normally all be high (logic 1) to permit counting.

SHIFT REGISTERS

An example of a four stage shift register using JK bistables is depicted in Fig. 3.14. Data is shifted from stage to stage on each falling edge of the clock. It would thus take four complete clock cycles for a logic 1 present at the input of the first stage to be transferred to the Q output of the final stage. Fig. 3.15 shows a typical timing diagram for the four-stage shift register. This assumes that the register is initially in a cleared state and that the logical state of the input remains unchanged throughout the four clock cycle shifting period.
Fault tracing on a shift register is not quite so easy as a similar exercise performed on a binary counter. The process usually involves checking that the clock is present at each stage and tracing the Q output from stage to stage. Unfortunately, an investigation of this type can be inconclusive if the data input remains static. In some cases it will therefore be necessary to break the circuit at the input and examine the effect first of loading logic 0 into all stages by linking the first J input directly to 0 V , and then loading all stages with logic 1 by linking the first J input to $+V$ using a pull-up resistor of I kilohm.

LOGIC PULSERS

Having to break into a circuit in order to alter the logical state of a particular point is, to say the least, time consuming and somewhat messy. There is, of course, a much better method which allows one to momentarily to change the state of a point (or "node") in a logic circuit without soldering or desoldering any of the devices and with minimum risk to components and integrated circuits.
A Logic Pulser is a simple hand-held probe which delivers a momentary pulse to the circuit under test. The duration of the pulse is kept short in order to reduce any risk of damage (either to the probe itself or to the circuit under test) and the polarity of the pulse is usually adjustable so that the node under investigation is forced into the opposite logical state.

The pulse is produced at the touch of a button fitted to the probe case. During the period before the button is depressed and for the period after the pulse has finished the probe tip must adopt a tristate (high impedance) condition so that it does not adversely affect the logical state of the node.

Pulsers, like logic probes, normally derive their power supply from the circuit under test and are invariably connected by means of a short length of twin flexible wire fitted with crocodile clips. The leads of an electrolytic decoupling capacitor or the output terminals of a regulator usually make readily identifiable connecting points.

IN USE

In order to illustrate the use of a logic pulser, consider the two phase 1 MHz microprocessor clock divider module shown in Fig. 3.16. The clock divider is based on a TTL dual JK bistable, the internal arrangement of which is shown in Fig. 3.17. Readers may notice that this device is one of the very small minority of TTL devices which do not conform to the usual convention concerning supply pin connections!

Let's assume that both clock signals are missing from the bus and that we have isolated the module from the (presumed functional) system clock. We would simply connect the pulser to the clock input of IC2a (point A, Fig. 3.16) and simultaneously monitor the output of IC2b (point B, Fig. 3.16) using a logic probe. It would then be possible to determine whether or not the divider was operating by repeatedly pulsing the clock input and noting the output change produced. (Note that the pulser over-rides whatever logical output is provided by ICl.)

It should be noted that there would be little point in attempting to identify which particular JK bistable had failed since we would, in any event, have to replace the entire chip! Having verified the operation of IC 2 we could then turn our attention to the bus drivers, IC3a and IC3b. In this case we could simply transfer the logic probe to the respective bus lines whilst continuing to pulse the clock input of the first JK bistable.

Next month we shall be introducing some common i.c. timers and our Digital Test Gear Project involves the construction of a versatile Pulse Generator which can be used to provide test signals for a wide variety of digital circuits.

LOCIC PULSER

\square

This month's Digital Test Gear project deals with the construction of a Versatile Logic Pulser. This instrument is designed for use in conjunction with a logic probe (see last month's Digital Troubleshooting project for constructional details) but it can also be used in its own right as a means of changing the logical state of a digital circuit without the need to make any soldered connections. The pulser is fully compatible with both CMOS and TTL devices.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Logic Pulser is shown in Fig. 1. A 555 timer, IC1, is connected as a monostable pulse generator (this circuit configuration will be discussed in Part Four of our series).
The output of $\mathrm{ICl}($ at pin 3) will go high for a period determined by the time con-

COMPONENTS

Resistors

Resistors		
R1	10 k	
R2	10 k	
R3	10 k	
R4	4 k 7	
R5	4 k 7	
R6	4 k 7	
R7	10	
R8	10	
All resistors are	0.25 W	5%

carbon

Capacitors

C1 4n7
C2 470 n tant. 35 V
C3 10μ tant. 16 V
Semiconductors

D1	1N4001
TR1,TR2	2N3703 pnp silicon
	(2 off)
TR3	2N3705 npn silicon
IC1	555 Timer

Miscellaneous

Si Low profile p.cb. mounting .keyboard switch
S2 Ultra-miniature DPDT vertical slide switch 8 -pin low profile i.c. socket; Probe case, measuring $140 \mathrm{~mm} x$ $30 \mathrm{~mm} \times 20 \mathrm{~mm}$ approx; Singlesided 1 mm terminal pins (3 required); stripboard, 0.1 in matrix measuring $95 \mathrm{~mm} \times 63 \mathrm{~mm}$ approx. (see text)

Specification

Output Pulse Duration:	5.2 ms
Pulse Polarity:	Switched positive or negative
Peak Output Current (short circuit):	200 mA (approx.)
Quiescent Resistance at Probe Tip:	Greater than 200 k
Power Supply Requirements:	4.5 V to 15 V at less than 15 mA quiescent

stant, $\mathrm{R} 2 \times \mathrm{C} 2$, whenever the pulse button, $\mathbf{S} 2$, is depressed. With the values specified, the pulse duration is approximately 5 ms .

The polarity of the output pulse is switched by means of S1. Transistor TRI acts as an inverter whilst TR2 and TR3 operate as saturated switches (providing positive and negative output drive respectively). The output current is limited by resistors R7 and R8. With the component values shown and assuming a standard TTL 5 V supply, the peak current sourced or sunk into a short circuit will be limited to several hundred milliamps.

When no output pulse is being produced, TR 1 conducts but both TR2 and TR3 are in a non-conducting (switched off) state. The output at the probe tip thus floats in a highimpedance state.

In common with the logic probe described last month, a diode, D1, is incorporated in order to provide protection against inadvertent reversal of the supply leads.

CONSTRUCTION

All components for the logic probe are mounted on a 0.1 in matrix board comprising 9 strips of 37 holes. This can be cut from

Fig. 1. Complete circuit diagram for the EE Versatile Logic Pulser.

the standard size stripboard used in this series (24 strips of 37 holes); alternatively the remaining unused board from last month's project may be employed.

The component layout of the Logic Pulser is shown in Fig. 2. The following sequence of component assembly is recommended; button switch, i.c. socket, terminal pins, links, transistors, resistors, diode, and capacitors.

The probe tip boss and supply lead should be connected last. In the latter case, care should be taken to ensure the correct polarity (red crocodile clip/striped lead to positive).
Constructors should note that a total of 18 track breaks are required and these should be made using a spot face cutter. If such a tool is unavailable, a sharp drill bit of appropriate size may be substituted. Three links should also be made under the board, shown dotted on the topside view in Fig. 2.

Before inserting the integrated circuit into its holder and mounting the circuit board in its final position, constructors should very carefully check the components, links, and track breaks. Furthermore, it is worth checking that all of the polarised components (including transistors, diode and electrolytic capacitors) have been correctly oriented. Constructors should also carefully examine the underside of the stripboard for dry joints, solder splashes, and bridges between adjacent tracks.

PROBE CASE

When the board has been thoroughly checked, the integrated circuit should be inserted into its holder (taking care to
ensure correct orientation). The circuit board should then be temporarily placed in the base of the probe case (no mounting hardware is required as the board should be held snugly in place when the two probe case halves are mated together).

The upper half of the probe case should then be marked for drilling and cutting the apertures that will be necessary in order to permit access to switches $\mathbf{S I}$ and \mathbf{S}. Switch S1 will require a rectangular hole measuring approximately $8 \mathrm{~mm} \times 3 \mathrm{~mm}$, whilst S 2 will require a square aperture measuring 12 mm $\times 12 \mathrm{~mm}$. In both cases it will be necessary to drill several small round holes and then apply a small square or rectangular section file.

When complete, the two case halves should be screwed together (using the countersunk screws supplied with the case) and the probe tip should then be fitted into the mounting boss.

TESTING

The probe should be tested using a current limited 5 V supply of the type normally employed with TTL and CMOS circuits (see Part One) together with a logic probe (see Part Two). Connect the pulser and logic probe supply leads together and to the power supply (taking care to observe correct polarity). Then link the two probe tips together using a short length of insulated wire fitted with two crocodile clips.

Switch S1 should first be set to produce a positive pulse. Do not, at this stage, operate the pulse button, S2, but check that the output of the pulser is in a tri-state condition (none of the logic probe's l.e.d.'s should
be be illuminated). If this is not the case, disconnect the pulser, dismantle and check the pulser's circuit board again!
Having verified that the pulser operates in the quiescent state, a pulse should be generated by depressing S2. At the same time the state of the logic probe's l.e.d.'s should be examined. Hopefully, these should confirm that a positive pulse is produced. If no pulse is produced or if the logic pulser generates a continuous low or high state output, the pulser should be dismantled and the circuit layout should be carefully checked again. Finally, the foregoing procedure should be repeated with S 1 switched to produce a negative going output pulse.

Next Month: Construction of a Versatile Pulse Generator which can be used to provide test signals for digital circuits.

ORDER YOUR COPY NOW!

Fig. 2. Component layout and wiring for the EE Versatile Logic Pulser. The link wires shown dotted must be soldered to the underside of the board. The breaks to be made in the underside copper tracks are shown left.

EE 329 M

Dotugy ying it!!

COntinuing in the same vein as last month's article, we will consider a mixture of the more unusual and some mundane types of electronic component. We will start with crystals which are perhaps more common in home constructor designs than they once were, but are still not called for very frequently.

Their purpose is to control the frequency of a high frequency oscillator, and their advantage over the alternative forms of frequency control is the excellent stability that they provide. They can also provide very high accuracy without the need for any setting up or adjustment.
In the past crystals were not very popular as they were very expensive and had few applications apart from radio transmitters and calibration oscillators. These days many of the more popular types are available for less than a pound and their primary use is as the frequency determining component in digital and microprocessor circuits.

OVERTONES AND PINS

The main parameter of a crystal is its operating frequency, which is typically a few megahertz, but can be anything from a few kilohertz to more than 100 MHz . The types you are most likely to encounter are those which operate on their fundamental frequency, and have operating frequencies of up to about 15 MHz .
Crystals intended for use on higher frequencies are often of the "overtone" type, which means that although the fundamental frequency of the crystal might be (say) 9 MHz , it could have a marked frequency of 27 MHz and would then be a third overtone type. There would be frequency selective components in the circuit to ensure that the crystal produced oscillation at three times its fundamental frequency, and without these the circuit would function at the fundamental frequency.

Even with these additional frequency selective components in the circuit, correct operation is only guaranteed if the crystal is a type cut for third overtone operation. When obtaining high frequency crystals, such as those for use in radio control equipment, it is therefore necessary to take some care to ensure that the right type as well as the right operating frequency is obtained.

There are other crystal parameters worthy of consideration, and one of these is whether the operating frequency is at series or parallel resonance. A crystal has two operating frequencies; one where it provides a very low impedance (series resonance) and another, slightly higher, where it provides a very high impedance (parallel resonance). The difference between these two frequencies is generally only a few hundred Hertz, but this is sufficient to be of importance in some critical applications.
Most components lists and component
catalogues do not specify the type of resonance the stated frequency is for, but it can then be safely assumed to be the parallel resonant frequency. The exception is high frequency overtone crystals which are often designed for use at series resonance, and where the marked frequency is often the series resonant one.

It should be realised that there are no series resonant or parallel resonant crystals, and that they are all capable of both modes of operation. Crystals are series or parallel resonant types in that their marked operating frequency is at one or other of these responses. Using a series resonant type instead of a parallel resonant component, or vice versa, will not result in a failure of the circuit to work, but will result in some loss of accuracy

You will often see references to "load capacitance" in component catalogues. and this is the capacitance which the circuit must provide across the crystal in order to obtain precisely the correct operating frequency, and this is usually 25 pF or 30 pF . Few applications require such high accuracy that the few parts per million error caused by the wrong load capacitance will be of any consequence.

Where absolute accuracy is important it is normal for the circuit to have a trimmer capacitor that can be adjusted to bring the circuit to precisely the correct operating frequency. Obtaining a crystal with the correct load capacitance is consequently something that you will not normally need to worry about.

Something that it is important to get right is the encapsulation and base type. Most crystals used to be of the plug-in variety as they were used in applications where it might be necessary to change the crystals.

There are still radio applications where the ability to change crystals easily is a decided asset, and plug-in crystals are still in common use. However, they are probably less common now than the wiredended type which are soldered direct to circuit boards, and are the type normally used in digital and microprocessor circuits.

The most common plug-in styles are the HC-6/U type, and the much smaller HC25/U type. There are many others though, including the once popular (but now old and obsolete) FT241, FT243, and 10XJ units. Chassis and printed circuit mounting crystal holders of various types are available, and it is obviously essential to have crystals that match the holders if the project requires the use of plug-in crystals.

You are more likely to use wire ended crystals of the HC-33/U or (smaller) HC18/U varieties. In general, high frequency crystals have the HC-18/U encapsulation while low and medium frequency types have the HC-33/U type (or the "taller" HC$34 / \mathrm{U}$ encapsulation), but there is no hard and fast borderline frequency.

Sciveral common frequencies at around 2 MHz to 3 MHz are readily available in both
styles. If a components list specifies an HC-33/U type it is unlikely that there would be any real difficulty in using a HC$18 / \mathrm{U}$ crystal, but there would probably be insufficient space to accommodate an HC$33 / \mathrm{U}$ crystal where a project has been designed to take an HC-18/U type.

When ordering crystals the main points to watch are that the frequency and encapsulation style are as specified in the components list, plus the component should be for series resonance or for operation on the appropriate overtone if this information is specified in the components list. If these points are correct there should be no difficulty when it comes to using the component.

DIRECT CONNECTION

When fitting wire-ended crystals bear in mind that these components are not amongst the most rugged of electronic devices. Crystals are normally on a mounting that gives plenty of protection from physcial shock and vibration, but excessive heat when soldering them in place would at best impair their accuracy, and at worst would result in the component becoming ruined with the crystal becoming desoldered from its mounting.

Crystals are sometimes mounted horizontally on the circuit board, and this renders them less vulnerable to physical damage. It also means that there is a greater length of leadout wire between each soldered joint and the crystal, giving less risk of heat damage when connecting the device.

Crystals, particularly the smaller types, are often mounted vertically, and there is then very little in the way of leadout wire between the crystal and the joint. It is then a good idea to use short plastic spacers over the leadout wires, as shown in Fig. 1. so as to reduce the risk of damaging the component when fitting it.

Fig. 1. Using stand-offs to reduce the risk of heat damage when mounting a crystal.

It is worth pointing out that it is not only crystals where this technique can be worthwhile, and that there are other vertical mounting components which can benefit from the same treatment. With something like a radial electrolytic it is probably not worthwhile, as these components are relatively cheap and are not easily damaged anyway. With transistors, and semiconductors which are physically similar to transistors, it is advisable not to mount the components right down on the board, and special spacers or "mounting pads" are available for the popular encapsulations such as the TO-5 and TO-18 types.

Although these pads have the advantage of providing the spacing and giving a mounting of good strength and reliability, it is probably true that few constructors bother to use them (myself included), but instead simply mount the devices slightly proud of the board with no extra physical
support for them. This will not give any problems in the majority of cases, but it could result in the pads on the underside of the boiard being broken away from the board if more than moderate pressure is ever applied to one of the transistors.

LEADOUTS

Continuing on the theme of semiconductors, a frequent cause of confusion are the leadout diagrams for transistors, triacs, etc. Often these days it is not necessary to refer to leadout diagrams as the correct method of connection is obvious from the diagram which shows the component layout for the printed circuit board.
a
0
0
0
0
0
(b)

Fig. 2. Typical TO-18 (a) and TO-92 (b) transistor underside views. (c) is for a low power voltage regulator, and is a top view. Compare these with the 3-D views of Figs. 3 and 4.

In some cases though, especially where stripboard is used as the basis of the project, it is essential to refer to the leadout diagrams, and then the convention is that the diagram is a base view (i.e. as seen looking onto the leadout wires).

Fig. 3. 3-D equivalents of Fig. 2 (a) and (b).

Thus, the two transistor base views of Fig. 2(a) and Fig. 2(b) are for devices with the leadout configurations shown in the 3-D views of Fig. 3. The 3-D type views for semiconductor leadout diagrams seem to be increasingly popular, and have the advantage of leaving little room for confusion.
Where confusion is most likely to occur is with integrated circuits that have transistor type encapsulations. The convention for integrated circuit pinout diagrams is that they are top views, so should integrated circuits in transistor type cases follow the normal integrated circuit convention, or the transistor base view one?
There is no universally accepted answer to this, but it is more common for these devices to follow the integrated circuit convention, and a pinout diagram such as that in Fig. 2(c) (which is for a low power voltage regulator such as the $\mu \mathrm{A} 78 \mathrm{LO}$)

Fig. 4. Pinout details for low power voltage regulators such as the $\mu \mathrm{A} 78 \mathrm{LO}$.
would be for a device having the leadout arrangement shown in Fig. 4(a). Usually the leadout diagram will state whether it shows a base or top view, and it is of little value if it does not.

To further confuse matters, some of the voltage regulators I have been supplied with recently have not had the normal TO92 style case, but have instead have a flat plastic type. These have the leadout arrangement shown in Fig. 4(b).

In next month's article we will have a respite from component matters, and will consider the problem of translating a simple circuit diagram into built-up and working circuit board.

Robert $\mathscr{P}_{\text {enfold }}$

FRFE! READERS' BUY \mathbb{C} SEII SPOT E MARREE PLRGE

Clearing out; lots of components, computer bits. equipment, old magazines, etc. All very cheap. Details from: lan Harris, 39 Coventry Road., Reading, Berks. Tel: 0734661907.

Wanted: Babani Book No. BP32 "How. To Build Your Own Metal \& Treasure Locators". Mr. L. E. Pettman, 88 Aitken Road, Hamilton, Lanarkshire ML3 7YL.
Powerful Solenoid, Maplin Syntom (built), Maplin Synchime (built), £ 10 each. SPO256 voice chip, new, £5. Tim Hayton, 36 Laurel Drive, Willaston, S. Wirral L64 ITW. Tel: 0513274641.
Wanted: Comm produced or ready constructed VHF/UHF video Synco proces-
sor, price, details, illustration to: Mr. D. J. Oliver, 100 May Lane, Kings Heath, Birmingham B14 4AG.
Correspondence Course, C \& G Tech. Cert. 271 . Part one. Unused. Complete as supplied by B.N.R.E.S. £40 o.n.o. Tel: Wigan 212042.
Wanted: Spectrum printer in exchange for my broken Yamaha C5-01. Easily repaired synthesiser. Mr. S. J. Tunn, 30 Mulso Rd., Finedon, Northants. NN9 5DP. Olivetti 8 in . uncased disc drive unit plus 15 discs. Perfect condition. £150. Must sell. David A. Ingles, 7 Castleroy Road, Broughty Ferry, Dundee DD5 2LO.
For sale: Thousands electronic compo-

> RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are braken.

nents cheap or swap W.H.Y. Also CB rig Harvard £15. J. De-Almeida, 18 Langton Park, Wroughton, Swindon, Wilts. Tel: 0793812291 ext. 252.
Prism 4-colour 132 column printer. Serial/parallel, tractors, dot matrix. Exchange modern scope. (Tyneside) 0914824307.
$13.8 \mathrm{~V}, 30 \mathrm{amp}$ power supply. $£ 30$ o.n.o. N. Porter, 16 Low Hatters Close, Downham Market, Norfolk. Tel: 383380.
12 V d.c. cased PSU 2 A regulated $£ 14$. Has capacity for $12-0-12 \mathrm{~V} 5 \mathrm{~A}$. CD4081BE $£ 1 / 5.4164 £ 8.25 / 8$. Nick Spiers, 114 Greenway, Tunbridge Wells, Kent TN2 3JN. Tel: 089244070.

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature VALID FOR POSTING BEFORE 16 JANUARY,
SignatureLID FOR POSTING BEFORE 16 JANUARY,
1987 (One month later for overseas readers.)
SEND TO: EE MARKET PLACE, EVERYDAY ELECTRONICS, 6 CHURCH STREET, WIMBORNE, DORSET BH 21 1JH.

FOR YOUR
 =NTERTATNMINT

Laser Submarine Communications

In this country the Ministry of Defence works on the principle of no-need-toknow; only the few people who need to know what is going on, are told or can find out. In America it's usually easier to find out what is going on unless there are genuinely good reasons for high security classification.

As an example, the US Government still refuses even to acknowledge that it is working on the Stealth bomber pro-ject-that's a 'plane which is invisible to radar. But another project, the use of lasers to communicate with submarines, is nowhwere near as secret as the popular press believes. Most of the technical details have already been published and the laser company spear-heading the research will talk with surprising frankness about what it is doing
Spectra-Physics of California, which sells more lasers than any other company in the world, is working with the Xerox Corporation on the submarine project.

So far the only way to transmit signals through water to a submarine has been to use very low frequency radio waves. Although long radio wavelengths can travel through sea water, they can only carry a very low rate of data. Lasers in the blue/green spectrum will cut through water and can carry a very high rate of data because the frequency of light radiation is very high. The US military transmits the laser beam down onto the sea from a satellite. Data is conveyed by modulating the beam with radio signals sent up to the satellite from a ground station. A very sensitive light sensor on the submarine picks up the laser radiation and extracts the signal modulation.

The difficult part is to produce a high power laser beam in the blue/green spectrum, from a satellite in orbit where there is only solar energy available. The trick is to use a "yag" laser, made from a crystal of yttrium-aluminium-garnet, which has been grown in a furnace like silicon and doped with neodymium. This will lase and emit coherent light when illuminated with a bright light. Spectra-Physics illuminates the yag with another laser, a solid state diode laser made from gallium arsenide and radiating light at around 0.8 micro-
metres wavelength. The diode output is precisely tuned at the frequency to which the yag responds, and switched on and off. This "pumps" the yag to produce megawatts of laser light power.
Four years ago Spectra-Physics searched for a suitable high power diode and found that the Xerox Corporation had been working on one to write an optical image on the drum of a xerocopying machine. The joint venture with Xerox, Spectra Diode Labs, has now succeeded in putting 40 separate diodes on a single chip. The diodes are ganged so that they operate in concert to produce 0.5 watt of continuous power, and several watts in pulses. The diode gang is cooled by a Peltier junction to prevent it self destructing (when a current is passed through the junction of dissimilar semiconductors there is a thermoelectric cooling effect).

The 0.8 micrometre light from the diode gang forces the yag to lase at 1.06 micrometres. The light is then halved in wavelength, by passing it through a crystal of potassium titanyl phosphate which has a non-linear optical characteristic and generates a second harmonic of the input frequency. So the beam from the satellite has a wavelength of 0.5 micrometres. Sea water has an optical window at this wavelength, which is why the sea looks blue green when illuminated with white light.

Star Wars

Star Wars is the media's pet name for SDI, the Strategic Defence Initiative. The key component is a very high power laser which can be aimed from a space platform onto incoming missiles. Spectra-Physics has been working on this too. A beam of high energy electrons from a linear accelerator is converted to photons. "Not too many people have a linear accelerator in their back yard" says Herb Dwight, who founded Spectra-Physics 25 years ago and is now company president "but Boeing did, so we are teamed up with them". Early tests suggests that the light output will be far the most powerful ever obtained from a laser, pulses of one million million watts.

I wish | could have more confidence in SDI than I do. It depends on computers to sense attack and control retaliation. The programmes will be the longest codes ever written. My bet is that if anyone ever

Free Batteries

Sometimes the answer to a problem is blindingly obvious, once you have thought of it. It is pretty well known now that Polaroid film packs have a built-in six volt battery. It is a flat cell that lies underneath the stack of photographic sheets.

The battery has to drive the film eject motor, control the autofocus and auto exposure circuits and power the flash. So it is a powerful beast with far more capacity than needed for ten shots. Inevitably, when you throw away a spent Polaroid film pack, you are also throwing away an almost perfect six volt battery.
The snag is that the battery doesn't fit
any other piece of electrical equipment. The contacts are aluminium pads which won't take solder. Here's the trick
Break open the spent Polaroid pack to free the battery. Then strip off the paper casing that surrounds it. This leaves a small rectangular cell with one round contact pad (negative) and one free flap (positive). Make the connections to these with a pair of strong crocodile clips-they do the job perfectly. When you screw wires to the clips you have a "free" six volt supply which will run a torch, portable radio or even (and I've tried it with a Tandy 100) a portable computer.
needs to use the system, nothing will happen. A apologetic programmer will then crawl out of the computer room and say the program has crashed but it should only take a couple of weeks to find the bug

When is live not live?

The record industry now says concert recordings are "live" when what it really means is that a live concert has been recorded on multitrack tape and later edited, overdubbed and doctored to make it sound as good as the musicians wished they had been able to sound on the night. Wrong notes are excised and replaced by right notes; dull solos erased and replaced by better solos recorded in a studio to the accompaniment of the concert tape used as a backing track; extra instruments, for instance keyboards or percussion, are added to flesh out the sound.
By "live" the TV companies mean recorded on video tape at a concert or a studio and televised after as little or as much editing as time allows and the content dictates. When you see, as I did recently, a preview on breakfast TV of exerpts from "Live from Her Majesty's" to be screened later in the weekend, you can't help woridering what they mean by live .
Watch also for the tell-tale jump cuts between sentences in a chat show when the guest got boring, libellous or upstaged the host. Mel Brooks had some hard things to say about his appearance on the Wogan show. The BBC edited the Wogan-Brooks banter to make it look as if Wogan's wit had got the better of Brooks.

On radio stations when there is potentially libellous programming, for instance a phone-in show, the sound is taped and played back into the transmitter around seven seconds later. The tape simply runs a long route from record to playback heads. If anyone is too rude the producer has time to push a "panic button" which mutes playback. The same system will not work with video because the tape has to wrap with precise tension round a rapidly rotating drum. So TV shows must be videotaped, the tapes rewound and played. This means that the delay must be longer than the length of a spool.

Florida company Hubcom has now devised a clever alternative. A series of video recorders are synchronised together by timing pulses. At any time one machine is recording while another replays and a third rewinds what it has just recorded. When the unit playing back comes to the end of its tape, the next machine switches in and starts to play the tape which it has. just rewound. A third starts to record while the idle machine rewinds its tape again. This goes on ad infinitum, with the broadcast signal always delayed. The control electronics cost $\$ 50,000$ but this is a small price to pay for security against libel suits. The same system can be used to delay programmes by a full hour and will come into its own when we have a pan-European satellite TV service.

Incidentally in America even live sports tv looks phoney because it is neatly timed to fit round the numerous commercial breaks. Oddly enough, they don't do it by pre-taping. An event like baseball is covered truly live, but the referee or umpire wears a radio headset. He and the TV producer keep in touch to synchronise the commercial and game play breaks.

Designed to accept the output from a guitar, mixer or other instrument this amplifier feeds headphones to allow the musician to practice in private. The unit is capable of high quality output and has

SPECTRUIII I/O PORT

This 8-bit port provides eight input lines and eight separate output lines. The cased unit is powered from the Spectrum and, with a booster board (also described), can control stepper motors.

UERSATILE PULSE GEIERATOR

A professional quality pulse generator at a reasonable price. It has five switched ranges for pulse period and pulse width plus variable output voltage and an inverted TTL output.

Special Feature \& Special Offer... FETTIIIG the MOST + 05CILLOSCOPE5 at from Your scope olscount prices

ramidom LICHT UNIT

\square
C.J.BOWIS \square

A random switching unit for all types of mains light display

A^{N}Ninteresting lighting effect for discos and parties is achieved by controlling a number of lights so that they are turned on and off in a random fashion. The unit described in this article provides such a control for four mains voltage lighting units each up to a maximum loading of 2 A . The unit incorporates an added refinement in that the speed of the changes can be determined cither by a panel mounted control or
in an "automatic" fashion by the ambient temperature inside the equipment case as it rises with use.
The unit is essentially a binary random number generator, the circuit of which is shown in Fig. 1. The random number, which is used to select the lights which are on, is obtained by sampling the number present in a fast running binary counter circuit at intervals determined by a slow speed clock.

COUNTER CIRCUIT

A series of high speed clock pulses are generated by ICla which is a half of a CMOS 556 timer, configured as an astable multivibrator circuit. This produces a clock waveform which oscillates at a frequency determined by the values of R1, R2 and C3. Although these values are not critical those given in the circuit diagram produce a clock frequency of approximately 70 kHz . These high frequency clock pulses are fed into the CP_{0} input of IC 2 . As long as the CP_{1} input
of IC2 is held at a logic 1 state these cause the clock circuit to advance producing a rapidly changing binary coded number at the outputs O_{0} to O_{3}.
When the number in the counter reaches 15 , which is the maximum number which can be counted in a four bit counter such as the one used, the next clock pulse causes the count to return to zero and the counting process to continue. There are therefore sixteen combinations of on and off values for the four output circuits. Any one of the combinations can be selected by the sample and hold circuit.

SAMPLE AND HOLD CIRCUIT

The selection of the live lighting outputs is achieved by means of a sample and hold circuit which consists of a 4042 quadruple latch (IC3) which is actuated by a strobe pulse applied to the E_{1} input of IC3.
The outputs, O_{0} to O_{3}, of the counter circuit are connected to the data inputs D_{0} to D_{3} of IC3. The connections to the latch

are made in a random order, chosen to ease the design of the printed circuit board. Although this would not be sound practice for most circuits, in this particular application it is not only acceptable but provides a distinct advantage since it assists in the randomness of the pattern produced by the sampling technique. The inputs to the unit are strobed when both the E_{0} and E_{1} inputs are at the same logic state. E_{0} is connected to the 0 volts power rail anchoring it firmly to a logic 0 state. When the strobe input, produced by IClb also goes to logic 0 the latch is strobed. This causes the data present at the inputs D_{0} to D_{3} to be made available at the corresponding outputs O_{0} to O_{3}. When the strobe line returns to the logic 1 state the last data present at D_{0} to D_{3} immediately prior to the change of logic state is locked into the latch and remains present at the outputs O_{0} to O_{3}. This state persists until the strobe line is brought once more to the logic 0 state at which point the new number in the counter replaces the previous output. The strobe line is also connected to the $C P_{1}$ input of the 4520 counter (IC2). When the $C P_{1}$ is at logic 0 the counter is inhibited. This prevents the counter changing whilst the strobe line is active and thus avoids the appearance of a high speed flicker on the outputs of the latch.

STROBE PULSE

The strobe pulse which initiates the change in the light pattern is generated by IC1b. This is the other half of the CMOS 556 timer which is also connected as an astable multivibrator. The duration of the strobe pulse is governed by R5 and C4 and the period between the pulses is determined by the values of either R3 or VR1 (depending on the setting of VR1 and its integral switch S2) plus R4, R5 and C4. With the values given the duration of the strobe pulse is approximately $150 \mu \mathrm{~s}$ and the time between pulses can be varied between approximately 0.1 sec . and 3.5 seconds, depending on the setting of VR1. A thermistor R3 (a GM472) is wired in series with the resistor chain which sets the period between strobe pulses. When VR1 is set to any resistance greater than zero ohms $\mathbf{S} 2$, which is integral with VR1, is in the closed state and shorts out R3. The thermistor therefore takes no part in setting the period between strobe pulses and hence the interval between light changes is governed by the value of VR1 + R4 + R5. When VRI is set to zero $\mathbf{S} 2$ is opened and the period between strobe pulses is set by the value of $\mathrm{R} 3+\mathrm{R} 4+$ R5. R3 has a negative temperature coefficent and its resistance therefore decreases as the temperature rises. This results in the period between lighting changes shortening as the temperature rises.

POWER CONTROL CIRCUIT

The output from the sample and hold latch (IC3) is a low voltage (12 V) low current supply. This is insufficient to drive a lighting output of any significance. It is therefore necessary to use some form of interface device in order to increase the current handling capabilities of the unit. This is achieved by the use of four solid state relays IC4 to IC7 each of which is driven directly by one of the outputs of the latch circuit. These switch the incoming mains voltage off and on as determined by the outputs of IC3. The relays are rated at 2.5 A at 240 volts but are protected by 2 A HRC fuses (FS3 to FS6) so as to prevent overloading a standard 13A plug circuit in the event of all the outputs being fully loaded and "live" at the same time. An additional output (SK1) which is connected to the incoming mains via S 1 is also provided so that a continuous background lighting circuit can be connected to the unit.

POWER SUPPLY

The power supply of the unit is conventional. The incoming mains voltage is stepped down by the transformer T1, rectified by the bridge rectifier D1 to D4 and smoothed by C 1 . Capacitor C 2 is a decoupling capacitor which prevents the appearance of high frequency spikes on the power supply rails, which if not suppressed could cause erroneous operation of the logic circuits.

CONSTRUCTION

All the circuit elements with the exception of the controls, indicator neons and output sockets, which are panel mounted and R3, are accommodated on the printed circuit board as shown in Fig. 2. The p.c.b. track foil pattern is shown in Fig. 2, this p.c.b. is available from the EE PCB Service.

The components are assembled onto the p.c.b. as shown. Assembly of the board will be made easier if the smallest components are installed first and the remainder of the components inserted in ascending order of size. Care should be taken when assembling the p.c.b. to make sure that $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{D} 1$ to D4 and the ICs are installed so that the correct polarity of the components is observed. Once the components which are mounted on the p.c.b. have been installed and soldered into place the wired connections to the p.c.b. can then be made. The board should then be very carefully checked for short circuits, solder blobs and broken tracks.

The mains input to the p.c.b. can be expected to carry up to 8 A in the event of all the sockets being fully loaded and all the

The prototype front panel layout showing the "mimic" neons and speed control.

COMPONENTS
 Resistors

 R2
 R3
 1
 GM472 page 43
 R4
 220
 $2 \cdot 2$
 All $\frac{1}{4}$ watt hystab type

Potentiometer

VR 1
47k variable resistor with integral s.p.s.t switch

Capacitors

C
2200μ elect. axial 16 V
C2 $2 \cdot 2 \mu$ elect.
tantalum 16 V
10 n disc
C3
100 Helect
p.c.b. 16 V

Semiconductors

D1 to D4	$1 A$
IC1	556 CMOS dual
	timer
IC2	4520 dual binar
IC3	counter
1 C	4042 quadruple
IC4 to IC7	Solid state 2.5A
	relays, capable o

Miscellaneous

FS1, FS3 to 20 mm 10 A FS6 fuseholders (5 off) LP1, LP3 to Neons $11 \times$ red, $4 \times$ LP5 amber) 240V (4 off) S1 10A d.p.d.t. toggle S2 s.p.s.t. switch, sart of VR1 SK 1 to SK5 5 way IEC socket block (includes LP2 and FS2)
T1 P.c.b. mounting transformer 240 V primary $4.5+$
$4.5 \mathrm{~V}, 1.2 \mathrm{VA}$ output.
Case; 10A 20 mm HRC mains fuse (1 off); 2 A 20 mm HRC mains fuse (5 off); stand off insulators (4 off); mains cable clamp/gland; case approx $245 \mathrm{~mm} \times 220 \mathrm{~mm} \times$ 60 mm ; connecting wires; knob for VR1

Approx. cost

Guidance only
£48

E E 126
Fig. 2. Printed circuit board layout and wiring

outputs selected to be live by the circuit. It is therefore important to ensure that the cable carrying the "live" power connection to the p.c.b. is capable of withstanding this load. The outputs from the relays to the fuseholders should be wired in flexible cable capable of carrying a current of 2 A . All the remaining connections are required to carry relatively small currents and can therefore be made with relatively small flexible cables.

CONTROL PANELS

Switch S1, VR1, FS1, FS3 to FS6 and neons LP 1 and LP3 to LP6 are all mounted on the front control panel. The holes required to mount these components should be carefully marked and drilled and the panel lettered prior to installation of these components. The front panel is wired up as shown in Fig. 3. You should note that the thermistor is soldered across the switch connections of VR1 by means of its integral leads.

The output sockets (SKI to SK5), fuseholder FS2 and neon LP2 are supplied as a complete unwired unit. These, together with the input cable clamp are mounted on the back panel of the case. The panel should first be cut to accommodate the socket block and the cable clamp. The socket block can then be mounted on the panel and wired up as shown in Fig. 4. Care should be

Fig. 3. Wiring of components mounted on the front panel.

Fig. 4. Back panel interconnections.
taken to make sure that the cables used for the bus-bar earth and neutral connections are suitable for a load of up to 10A. The incoming three core mains cable must be capable of carrying a current of a least 10 amps.

The printed circuit board is mounted on the bottom of the case by means of four insulated stand offs. The position of the mounting holes in the p.c.b. should first be -marked on the bottom of the case and suitable holes then drilled through the case to accommodate the self-tapping screws used to retain the insulated stand offs. The stand offs are then secured to the case with self-tapping screws and the p.c.b. simply snapped into position. The panel mounted components can then be connected up to the wires already soldered to the p.c.b. and the unit made ready for testing.

TESTING

Once completed the unit should be carefully checked before connecting it to the mains. Special care should be taken to make sure that the mains wiring is correctly connected and is safely insulated from the case. The case MUST also be correctly and securely earthed through the incoming mains cable.

Once you are certain that all the connections are correct the unit can be connected to the mains and the pattern displayed on the front panel neons observed. The neons should turn off and on in a random sequence, at a speed which can be varied by the setting of VR1. With VR1 turned fully anticlockwise the speed should increase as the thermistor is heated. This is easily tested by holding the thermistor between finger and thumb and noting the effect that this has on the time interval between changes of the pattern.

NOTE that MAINS VOLTAGE IS PRE-

SENT ON THE UNDERSIDE OF THE PRINTED CIRCUIT BOARD. Great care should therefore be taken when investigating the underside of the p.c.b. whilst the unit is connected to mains power.

Whilst testing the prototype unit it was discovered that if a load was not connected
to the output socket certain types of neons exhibited a tendency to glow when their control relay was not energised. Should your unit exhibit this tendency the problem can be overcome by connecting a $0.1 \mu \mathrm{~F}$, 250 volt capacitor across each of the output sockets SK2 to SK6.

RADIO AND ELECTRONICS ENGINEER'S

POCKET BOOK

Author Keith Brindley
 Price $£ 5.50$ Hard Cover
 Size
 170 pages

Publisher Newnes ISBN 0408007206
THIS is the 16 th Edition of this excellent little reference book, and maintains the high standard set by the earlier editions. It would easily be possible to fill a book of this size ten times over, so the author wisely decided in making his choice, to select the information he is always needing himself. In reviewing this book I adopted a similar criteria, and while my requirements do not always coincide exactly with his, he has managed to cover a wide enough range of information to satisfy the majority. I was not surprised to find nearly sixty pages devoted to semiconductors and integrated circuits, and this proportion seems just about right. It contains lists of all the well known types, giving function, comparative types, data, pin layout and encapsulation. All the familiar items. are included, such as resistor and capacitor colour codes, laws, formulae, Morse code, "Q" code and the international phonetic alphabet. In addition, it touches on conversions, equivalents, mensuration, trigonometry, calculus and the binary code. It is well indexed, which is essential in a reference book.
Taken altogether Keith Brindley has carried out a difficult and exacting task very commendably and produced a reference book that is a "must" for the professional, the student, and amateur electronic engineer alike.
A.S.

ELECTRONICS A PRACTICAL INTRODUCTION

Author P. W. Braby
Price $\quad £ 9.95$ Hard Cover.
Size 248 Pages.
Publisher John Wiley \& Sons ISBN 0471798444

This is a book for beginners of all ages, a book that in my teens I would have jumped at. It starts with the assumption that the reader has no knowledge of electronics at all and gives compelling reasons why he or she should take it up as a hobby or profession. Sensibly enough it first deals with safety precautions and goes on to explain the correct use of the right tools. It takes the reader through the theory and practice of magnetism and electricity, right up to the construction and use of integrated circuits. It is profusely illustrated and a wealth of useful information has been accommodated into its 248 pages. Although it is aimed at schools and colleges, the author goes into such meticulous detail that it is equally useful to the student working on his own. Every chapter concludes with a summary and a list of questions for the reader to answer. There are nine constructional projects and though most of the parts required are quite standard, being a Canadian publication, they quote "Radio Shack" as the supplier. I checked with "Tandy" our equivalent of "Radio Shack" and found they listed most of the components provided you go to a main dealer. I assume the chapter on Metal Work is included for the benefit of establishments with their own workshops as most constructors today buy ready made chassis.
I have very few criticisms, thermionic valves are not mentioned, though this is of little importance at the present time, and there is no explanation of log or linear potentiometers or variable capacitors. No doubt, the author expects his book to be used as a stepping stone to more advanced electronics. These minor criticisms in no way detract from what is an excellent book and one of the most comprehensive publications on the subject that has come my way. I strongly recommend it.
A.S.

PART 7 Bistables and the like

THE bistable multivibrator circuit has close relatives with useful applications. We discuss the bistable and one of its relatives this month leaving other applications and the other members of the family for the next two parts.

BISTABLE MULTIVIBRATOR

The best way to find out what the bistable multivibrator does is to build it and test it (Figs. 7.1, 7.2). When you connect the power supply one of the lamps lights. It is fully on and the other lamp is fully off. Now touch the flying lead to contacts A or B in turn. Try to work out the "rules of behaviour" of the circuit. After a few trials you will find that:

1) Only one lamp is on at a time, never both.
2) If the flying lead is not touched against either A or B the lamp which is on stays on and the lamp which is off stays off, indefinitely.
3) If LPI is on, touching the lead to A puts LP1 off and puts LP2 on. Touching the lead to B has no effect.
4) If LP2 is on, touching the lead to A has no effect. Touching the lead to B puts LP1 on and puts LP2 off.

Here we have a circuit that can be in one of two states (point 1 above) and is stable in either state (point 2). This is why it is described as "bi-stable". It can be made to change from one state to another by taking contact A or contact B to a low voltage (points 3 and 4). How it works is explained in Fig. 7.3.

OTHER CIRCUITS

There are several other circuits differently constructed, which behave like this circuit. Some of them are in the form of integrated circuits, which we shall use later in the series.

One of the commonest applications of bistables is in computer circuits. The circuits which behave in the same way as the bistable circuit of Fig. 7.1 can "remember" which of their two inputs (A or B) was last taken to 0 V . They store this information indefinitely (or until the circuit is switched off). Such circuits, used in the memory circuits of computers, allow us to store information.

ASTABLE MULTIVIBRATOR

The astable multivibrator circuit (central part of Fig. 7.4) looks very much like the bistable circuit. Like the bistable, it has two distinct states. Unlike the bistable, it changes from one state to the other and back again by triggering itself. Let us begin when TR1 is "off" and TR2 has just turned "on". Call this state A. The potential of its collector has suddenly gone "low". This rapid change has brought the potential of both plates of C2 "low". One side of C 2 is connected to the positive rail through R2. Current must flow from the high potential of the positive rail to the low potential at C2. One side of C2 gradually becomes charged. Its potential gradually rises. It is connected to the base of TR1, so the potential there rises too. When the potential has risen to about 0.6 V , this

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

Fig. 7.1. Experimental circuit diagram for a bistable multivibrator.

Fig. 7.2. Demonstration breadboard layout for the bistable multivibrator

Fig. 7.3 (left). How a bistable multivibrator is made to change state.
is enough to start a base current flowing through TR1. This turns TR1 "on". Immediately the potential of the collector of TRI begins to fall. This falling potential pulls down the potential of both plates of Cl and the base of TR2. Base current to TR2 is cut off, and TR2 is turned "off". The circuit has now reached state B.
In state B we have the reverse of state A. A current flows through R3 to charge Cl and soon the circuit changes back to state A . The time taken to change from one state to the other and back again depends on how long it takes for the capacitors to charge to 0.6 V . This depends upon the values of the resistors R2 and R3 and the values of the capacitors. The higher their resistance and capacitance, the longer it takes for the charging to be completed and the lower the frequency of oscillation.

COMPONENTS

BISTABLE MULTIVIBRATOR

Resistors
R1,R2 10k (2 off)
R3 1k
(All $0.25 \mathrm{~W} .5 \%$ carbon)
Semiconductors
TR1,TR2 ZTX300 npn
transistor (2 off)

Miscellaneous

S 1 Push-on push-off switch
B1 6 V battery box with cells
LP1,LP2 6V 60 mA filament lamps in sockets (2 off)
Breadboard (e.g. Verobloc)

ASTABLE MULTIVIBRATOR

Resistors

R1,R4 560 (2 off)
R2,R3 10k (2 off)
(All $0.25 \mathrm{~W}, 5 \%$ carbon)

Capacitors

C1.C2 220 n polyester (2 off)

Semiconductors

TR1 to TR3 ZTX300 (3 off)

Miscellaneous

S1 Pushron release-off switch
B1 6 V battery box with cells
loudspeaker (3 to 15 ohm type)
0.1 matrix Veroboard 10 strips by 24 holes: 1 mm terminal pins (4 off)

Agarmax, egst (y)

Turn over for details of how to build a
Simple Buzzer using an astable multivibrator circuit

SIMPLE BUZZER

The buzzer circuit shown in Fig. 7.4 produces a tone of constant pitch from a loudspeaker. It can be used as a doorbuzzer, a Morse code practice set, or a warning note for alarms of many kinds. Next month we shall see how it can be turned on or off automatically, but in this part we use a switch or Morse key to operate it.

The main part of the circuit is the astable multivibrator. The values of Cl and $\mathbf{C} 2$ decide the frequency of oscillation. The values shown in the drawing give a high-pitched note suitable for Morse code practice. For other purposes you may like to have a sound of

Fig. 7.5. Demonstration breadboard layout for the Simple Buzzer.
lower pitch. If so, change Cl or C 2 (or both) for capacitors of greater value. If Cl is 1μ and C 2 is 220 n , the pitch is just right for a door-buzzer. Experiment with several different capacitors until you get just the sound you require.

The oscillator cannot drive the loudspeaker directly, for this requires too large a current. If we were to take a large current from the astable, it would not work properly. Instead, we take a small current (about 3 mA) from one side of it and use this as the base current of a transistor. The base current flows in regular bursts, in time with the changes in state of the oscillator. The large collector current of TR3 is turned on and off, making the

Fig. 7.4. Circuit diagram of an astable multivibrator being used as a Simple Buzzer.
loudspeaker cone vibrate strongly, at the same frequency as the astable.

If the circuit is used as a doorbuzzer, Sl is the press-button outside the door. Current is used only when the button is pressed, so the battery lasts for months with normal use. If you are using this circuit as a Morse code practice set, it is better to run it continuously while you are practising, and to connect your Morse key in series with the loudspeaker-between LSI and the emitter of TR3. This gives a "cleaner" beginning and end to each dot and dash.

CONSTRUCTION

The stripboard layout for building the astable as a permanent unit is shown in Fig. 7.6. Make certain that the transistors are correctly connected. If you follow the layout of the drawing, all transistors have their flat sides towards the right. Try various values for Cl and C 2 . There is no need for both to have the same value. SI can be a morse-key, or it can be a bell-push at the front door.

Next Month: Frost Alarm using a thermistor, Schmitt trigger and astable multi circuit.

Fig. 7.6. Stripboard component layout for the Simple Buzzer. Remember to make the breaks in the underside copper tracks at points F13 and H13.

The completed buzzer showing wiring to the push switch and loudspeaker.

LETTERS

Well Balanced

Sir-l am writing in response to the letter from G. E. Glover published in the October 1986 issue of the magazine.

The reason why I and many others like Everyday Electronics is that there is always something interesting in it. The magazine is well balanced and easy to read. Its paper is better than the reflective gloss paper used by Practical Electronics which shines the light into one's eyes and makes reading sometimes difficult. Neither is it extremely technical as Electronics \& Wireless

World is even before their recent change. Generally, I like the present format and I would be sad to see it substantially changed. The useful price guide for projects is also very handy.
If changes were to be made, I would like to see the introduction of one (and only one) business or semi-business project each month. For example, a device to be plugged (illegally) into the telephone to start a tape recorder whenever the receiver is lifted a computer parallel to series adaptor and perhaps vice versa, a computer printer sharer switch (parallel or series), a break-out box (hopefully substantially cheaper than the ones on the market), a cheap mains powered network, a mains powered intercom, etc
Perhaps you have already published some of these projects. However, I do feel such projects would open your magazine to a wider readership in addition to retaining the present ones. It would also encour-
age interested but reluctant readers to take the plunge and to actually build their first real project.
I would like to think G. E. Glover does not represent all your current readers.

Paul Janik.
Slough.

At Risk

Sir-That knotted cable on the EE October front cover is a poor show.
Youngsters doing this are at great risk. I hope you publish the necessary warning in the next issue.
"'Mains Cables should go through grommets and holding clips should be used'

Michael Christian
New Maldon,
Surrey.
Quite right too, but we did mention the proper method on page 533 under 'Construction".-Ed.

Readers-you can obtain a 5\% discount on goods from the advertisers listed using coupons cut from EE, provided you follow the rules below:

CROTECH's complete range of single and dual trace oscilloscopes along with accessories is eligible for the discount scheme. For orders below $£ 250.00$ then one voucher is required, on orders above $£ 250.00$ only two vouchers are required. This could mean a saving of over $£ 14.00$ on our 3132 Dual Trace $20 \mathrm{MHż}$ scope.

CPL ELECTRONICS

Kits for Everyday Electronics and Electronics Monthly and Practical Wireless projects including kits for the "Teach In" series. Plus a wide range of competitively priced components, hardware, test equipment and tools. We can also supply, in many cases, "one off" kits for specific projects. Free price lists on request.

GREENWELD ELECTRONICS LTD

 A full range of components at our shop in Southampton; open 9-5.30 Mon-Sat, as well as many surplus lines, all available by mail order. Bargain List free with our Catalogue. Send for your copy today, only £1 inc. post. Now even better value with EE Discount Vouchers!TK ELECTRONICS stock a wide range of components including triacs, ICs \& opto together with other accessories (switches, tools, multimeters, buzzers, crystals, Antex, Velleman and Vero products, etc.). We specialise in kits for timers, disco and home lighting, remote control kits for beginners. Send s.a.e. and 50 p (refundable on first order) for catalogue.

OMNI ELECTRONICS are willing to give a 5% discount on all orders over $£ 10.00$, excluding VAT, if a valid voucher is enclosed. We stock a wide range of com-ponents-ideal for the hobbyist. Goods listed in our catalogue are generally in stock, orders will be sent by return post. Why wait?
E.S.R. ELECTRONIC COMPONENTS supplies the full range of Velleman kits which include amplifiers, light controllers, power supplies, timers and computer interfaces. To complement these kits E.S.R. can offer connectors, switches, control knobs and project cases. A range of small handtools, soldering irons, test equipment and service aids is also available.

BECKER-PHONOSONICS, established
1972. Designers and suppliers of a wide range of kits for projects published in Everyday Electronics and other leading periodicals. Range includes musical and audio effects, computer controlled circuits and Geiger counters. EE discount scheme applies to all full kits over $£ 30$ goods value, excluding Geiger counters.
D.M.R. ELECTRONICS are prepared to give a 5% discount on orders of their Oscilloscope Component Tester, ideal for testing surplus components and fault finding on p.c.b.s. We also design, manufacture and repair electronic equipment and computers, specialising in the Sinclair Spectrum.

RADIO COMPONENT SPECIALISTS

Amplifiers-(PA, disco, music), audio leads all types, components, capacitors, potentiometers, resistors, disco lighting, sound to light units, disco decks, disco consoles, disco mixers, echo chambers, fuzz lights. Multimeters, mains transformers, microphones, stands, leads, goose necks, speakers with or without cabinets, tweeters, mid range units, 100 V line matching audio transformers, etc.

EE BOOK SERVICE, a 5% discount will be given on the total cost-including post-age-of all orders that are sent with a valid voucher. Our complete list of books appears in each issue together with ordering details.

RULES

1. Discounts are available from advertisers listed on this page.
2. Unless otherwise stated by the advertiser, discounts are only available on orders over $£ 20$ in value.
3. Unless otherwise stated by the adver3. Unless otherwise stated by the adver-
tiser, one voucher is required for each tiser, one voucher is required for each
$£ 50$ value of the order placed (i.e. for $£ 50$ value of the order placed (i.e. for
orders between $£ 20$ and $£ 50$ send one voucher, between $£ 50$ and $£ 100$ send two vouchers, etc.)
4. Cut out vouchers (not photostats) must be sent when claiming the discount. 5. Each voucher sent must be valid on the day of posting (i.e. it cannot be used after its expiry date).
5. Discount is not available on "sale" or "special offer" items.
6. You must indicate on your order that the 5% EE Readers Discount has been deducted from the payment sent.
7. All advertisers reserve the right to refuse this discount on any item supplied. Discounts will not be given or coupons returned if these rules are broken.

LASER SANDWICH

claiming a world first, Mitsubishi have developed a gallium arsenide (GaAs) semiconductor laser with two different wavelengths which are switchable by changing the amperage of the current applied to the semiconductor.
Semiconductor lasers are widely used as the light source in optical communications and compact disc (CD) players. These lasers can emit a beam of only single wavelength. The new semiconductor laser will allow multiplexed wavelengths for optical communications with a single unit, thus expanding the traffic capacity. When used in an optical disc system, which uses a laser beam of different wavelength for writing and reading, the laser will simplify the design of CD machines.
The new laser is made by sandwiching a GaAs layer which emits the light, with 48 alternating layers of aluminium arsenide and gallium arsenide on each side. The structure is called the quantumwell structure.
When the core active GaAs layer is 10 nanometres (one nanometre is a billionth of a metre) thick and 410 nanometres wide, the laser can generate light of different wavelengths when the current applied is adjusted. The wavelengths are 843 nanometres at 150 mA and 803 nanometres at 190 mA , both infrared rays invisible to the human eye.
The new lasers are expected to be in practical use in about two to three years' time, after further development work to boost luminescence and extend its operational life has been completed.

ELECTRONIC EXAMS

A basic test in electronics will be available to schools this coming spring.

Devised by the Associated Examining Board (AEB), the test is designed to help the teaching of electronics in schools and, it is hoped, be in line with industry's needs.

Boots promotional campaign "You Can't Buy. Cheaper" has now been extended to include its range of TV and video equipment.
If you can find the same item at a lower price in your town within seven days of purchase, they will happily refund the difference.

DER is to rent out satelite TV receivers through each of its 369 outlets. An agreement has just been concluded whereby DER will distribute NEC Business Systems NESAT satellite TV receivers.

The sets are available to rental customers in London and the South East and they will review progress after six months.

British Weather Wins An Award

The Royal Society "1986 Esso Energy Award" was presented to a team from the Meteorological Office for their development of a world-wide forecasting model for providing accurate information on winds and temperatures to the civil aviation industry, so that flight paths and patterns can be select-
ed to use the minimum amount of fuel.
The gold medal and prize of $£ 2000$ went to Dr. P. W. White, Dr. M. J. P. Cullen, Dr. A. J. Gadd, Mr. C. R. Flood, Dr. T. N. Palmer, Mr. K. Poliard and Dr. G. Shutts. The award was presented by Sir George Porter, President of the Royal Society.

DOCKLANDS RAILWAY

In the Spring of 1987, the Dockland Light Railway will take delivery of a microproces-sor-based fare collection system from Thorn EMI Computer Systems Division. The system will use magnetically encoded tickets which will be compatible with those of British Rail and those proposed for London Transport.

The Docklands system will comprise 32 ticket vending machines, 32 ticket validators, central office equipment including a computer and fixed communications links between the ticket machines and the central office. The central office computer remotely monitors the ticket machines for low ticket stock, full cash box, power failure and can alert the office of vandalism.

The founder and chairman of Dolby Laboratories, Dr Ray Dolby, is to receive the OBE for his services to the electronics industry. As he is an American citizen, the award is honorary and does not carry a title.

ON THE MAP

The British Overseas Trade Board has published the new edition of its export wall map of the world. The map is designed to provide a ready source of information on world markets and official export services.

The map shows all British diplomatic posts which offer commercial services throughout the world. It also gives details of services offered by the BOTB, its publications and contact points within the United Kingdoin, and lists overall figures for British exports to overseas countries in 1985.

This year, the map has been given a completely new look to make it more attractive for display purposes. Measuring 95.3 cm by 67.8 cm , the map now includes some topographic features such as mountains and rivers and is more colourful.

Free copies of the wall map are available to UK exporters from their nearest $B O T B$ regional office, whose telephone numbers are listed in Yellow Pages.

Technology Park

A $£ 2 M$ technology park in Northern Ireland has just been opened by the Duke of Kent.

He visited the 80-acre park near Antrim, owned by the Northern Ireland Industrial Development Board, and met its first tenant, BIS Beecom (International). The Duke said: "The decision by BIS Beecom International to place its investment in this park is a significant gesture of confidence in Northern Ireland as an industrial location."

BIS Beecom (International) is an associate company of the BIS Group based in London. Its chairman, Paul McWilliams, said: "The new international company will concentrate on developing high quality software and will initially employ 40 staff. rising to over 100 within four years." He added: "A major factor in attracting us to this site was the local supply of graduates."

BIS is injecting $£ 5 M$ into the new project, which has the support of Queen's University, Belfast, and the University of Ulster.

Telecom Deals in Kanji

British Telecom have announced the signing of an agreement between Teletrade, BT's International export unit, and the Japanese trading company Mitsui \& Co Ltd., to distribute the City Business System in Japan.

The City Business System (CBS), a touch-screen dealing board for the financial community, has been specially developed for the Japanese market, including the use of Kanji characters for the visual display screens. The introduction of Kanji characters was seen as a necessary development to enable CBS to be successfully sold to Japanese financial institutions.

The Japanese version will use 1,800 Kanji characters. Translation from English to Japanese is being undertaken by Mitsui.

One of the UK's leading power supply manufacturers, Coutant Electronics, have just reported that they are on target to export over 50 per cent of their products worldwide in 1986.

YOU'RE NEVER ALONE WITH A PHONE

For octogenarian Cornishman, Irving "Bibs" Rogers, who suffers from chest trouble, the pendant he wears when he is out in the garden could be a life-saver.
The pendant is part of British Telecom's Carephone equipment which can be linked to an Answercall machine. It is a transmitter which, at the press of a button, automatically makes telephone contact with pre-recorded numbers. Mr. Rogers is helping to test the pilot project in the West Country.
It means that 80 -year old Bibs, who lives alone, but suffers from a lung complaint which can suddenly leave him fighting for breath, can summon urgent help.
"This Carephone means real peace of mind for me, it's smashing". he says. "I'm not the gardener I used to be, but I like to get out there to do odd jobs. If I'm taken ill I only have to press a button to get in touch with my daughter or my friend across the road."

STARVISION

Greenwich Satellite have clinched a deal to supply more than $£ 1 \mathrm{M}$ worth of satellite TV equipment to homes in the North of England.
The initial order, for 1600 NEC domestic receiver systems, has been placed by directselling specialist Starvision of Leeds. The placing of this order alone means a 30 per cent boost to sales of satellite receivers in Britain. The current figure for satellite receivers is reckoned to be around 5,000 .

HIGH-TECH BOOST FOR TEACHERS

The number of design technology teachers in Richmond, London, area is expected to increase following a joint DTI/Richmond LEA initiative.
In a pilot scheme, starting January ${ }^{\circ} 87$, eight experienced teachers will attend an intensive introductory course followed by luition over a six month period. Following completion of the course the teachers will contribute to technology teaching in their schools.
"Telephones are cheaper to buy than to rent". That's one of the conclusions from "Which" magazine.
The magazine has found that British Telecom's rental charges add up to the price of a telephone in less than three years.

Following the half-year announcement of a continuing growth in turnover, Circaprint has opened a new 15,000 sq.ft. conventional printed circuit board factory alongside its new multilayer and plated through hole facilities at Aylesford.

The Management Services Division (MSD) of W. H. Sinith's has agreed a deal worth $£ 12,000$ with information systems consultants BIS Applied Systems' MODUS Division.
BIS has provided a management package to MSD at its Swindon HQ which employs over 200 staff.

British Telecom has signed a letter of intent securing an agreement to help develop telecommunications in the Chinese province of Zhejiang and its capital city Ningbo (pop. 500,000) up to the year 2000.
The first phase of the project will concentrate on optical fibre and microwave transmission equipment due for commission by 1988/89. BT will also be involved in the training of Chinese managers and technical staff.

DUMMY

Frazer-Nash Electronics is teaming up with Ogle Design to produce human-surrogate dummies fitted with electronic instrumentation. They will be used to assess the likely bodily discomfort or damage under controlled test conditions.

Fraser's tailor the array of sensors to any specific application, such as accelerations, loads, and pressures, etc. They also design and supply the data collection, storage and analysis systems necessary to evaluate test results.

Their latest project is the design and development of a thorax transducer package for the European Side Impact Dummy (Eurosid) programme.

The Ministry of Defence has awarded a contract worth over $£ 250,000$ to the Electro Optics Division of Thorn EMI, for the supply of hand-held thermal imagers for service with the Royal Navy.

Hi-Tech Asia

A new international high technology exhibition, Hi-Tech/ Asia, is to be held at South East Asia's premier venue, the Changkat Pavilion in Kuala Lumpur, Malaysia, from 7 to 10 September 1987.

The exhibilion will be part of Asia's established biennial show. Powertech '87.

The Federation of British Electrotechnical and Allied Manufacturers' Association has approached the British Overseas Trade Board for "joint venture" assistance for British exhibitors.

STEREO TV SOUND

The introduction of digital stereo sound with television has moved a step closer following the Government's approval of the joint BBC/IBA specification for a new transmission standard.

The system, developed by BBC engineers, is currently undergoing experimental tests from the BBC-2 transmitter at Crystal Palace in London. The stereo signals are transmitted via a digitally modulated carrier at 6.552 MHz above the vision carrier.

Although the BBC has no immediate plans to introduce a full stereo service, the experimental tests at Crystal Palace will be extended during the next few months to include both BBC-1 and BBC-2 transmissions. These tests will enable manufacturers to develop prototype receivers and will allow $B B C$ staff to gain operational experience.

ROBAT
Create a robat machine and see the world. Last year's winner of the British heat of Robat-robot ping pong-went to San Francisco to show the Americans how a little ingenuity can go a long way. This year Venice was the setting for the world championships.

Unfortunately, the distance and cost cut the British representation to one-John Knight-who was able to make it with the help of his $£ 2,000$ first prize from the British heat, presented by Nautech of Portsmouth. And the visit was worthwhile because his Charlie took the title against opposition from Belgium and Finland. The Finns were handicapped by not being able to get their machine through the Italian customs but the event organiser, John Billingsley, thought it unlikely that it would have been better than Charlie.
Despite the exotic setting, Venice did create some transport problems because of the lack of road transport. The Belgian machine needed three long journeys on a hand cart to get it from the car park to the venue overlooking the Grand Canal, and a large sum to obtain a boat to take it back. Knight's simpler construction was easily transported and ready to go in a relatively short space of time.

There was a further problem with the specially built table. It was the same dimensions as the table designed by Billingsley to limit the field of operation, thus making a robot game of ping pong more feasible, but the Italian version was more robust than previous tables and the serving mechanism could not be attached without some modification. That required searching for an Italian hardware shop without the necessary Italian words for the items required.

SIMPLIFICATION
Billingsley said the contest was a further lesson in the benefits of simplification and designing equipment that would achieve the task rather than going for elegant but complicated solutions.
To provide vision the Belgians used two independent free-standing cameras, which had to be carefully positioned each time they were used so that the views they received could be co-ordinated. Once positioned on their tripods care was needed to avoid moving them, as that would mean having to position them again.
In contrast, Knight's system was, according to Billingsley, elementary but effective. It consisted of rotating lenses which swept an image of the ball directed onto them by mirrors positioned above and below, across four photocells. The two outer cells provided rough positioning with the fine tuning being achieved by the centre cells.
The Belgian machine experienced further difficulties when put through its paces.

The bat was attached to a horizontal bar, along which it moved with vertical movement provided by servos at each end. Tilt was achieved by a second frame behind the first which moved a pole attached to the back of the bat, the degree of tilt depending on the relative positions of the frames.

Unfortunately, the second frame did not work and when the machine was started the servos on the first frame moved in opposite directions, causing it to break. The constructors had warned that it was called OSCAR, standing for our system crashes at random'

Meanwhile, Charlie was displaying perfect horizontal control and while its vertical control was variable, it managed to achieve a perfect return to a slower serve, which was greeted with applause.
Such are the small triumphs which at the moment are sufficient to take the Robat prizes. Although the contest has been running for over two years, Billingsley is not downhearted that more progress has not been made.

LESSONS
He believes that there is great value in merely trying to create something like a robat machine in that it gets away from the theoretical and into the practical and that there are lessons for industry, particularly in high technology. As well as robat he has been involved with Micromouse, in which a buggy has to find the centre of a maze as quickly as possible, for many years. In that time he has seen the machines improve from being able to manage one straight and a corner to being able to get to the centre in a matter of seconds.

He has also seen the technology improve. Although appearing to be a good thing, Billingsley has been persuaded that there are handicaps in always seeking to innovate. In Europe, contestants have tended to turn their backs on things as soon as they have been seen to work.

In the early days of the contest it was dominated by what he called stepper motors-driven wheelchairs, having only two wheels and the steering provided by driving the wheels at different rates. That has since been replaced by servo-driven machine with a third wheel to help with steering.
When the Japanese had the opportunity to show their machines in last year's world championships, Billingsley was surprised to see that but for a few slight embellishments the mice were much the same as the early European versions, but the quickest was almost twice as fast as the best European version.

The winner was not the newest machine with the latest innovations but the oldest because, as Billingstey was told, the makers had had the longest time to develop it.

SPONSORSHIP
Another supporter of robot competitions is lan Pitkethly, sponsorships manager for BP Oil, which has sponsored two robot building contests for schools and youth organisations in recent years. He also emphasised the practical benefits and added that it gave children who might not be good at games or academic subjects a chance to shine.

While not being surprised by the efforts of the children, he was encouraged by their ability to tackle often complex problems. Many teachers had reported that they were only needed for guidance rather for leading in any particular direction. And the contestants had been able to confound the experts in the second contest when the set task was to build a robot capable of offering a selection of three drinks, accept the order and bring the required drink.

And there has been no shortage of interest, with more than 300 establishments enquiring about the contests, and on both occasions more than 20 finalists from all parts of the country. While the company is not organising an event this year it is expected that next year will see the launch of a further task. A final decision on the suggestion is still awaited, however.

Next year's final of the Robat contest takes place at Euromicro, being held in Portsmouth in September, and anyone interested in the challenge should contact Billingsley in the Electrical Engineering Department at Portsmouth Polytechnic. He is also looking for backing to help increase the number of competitors.

The team from Campion School, winners of the BP Buildarobot Competition, proudly display their trophy and 'Jeeves' the robot butler.

Catalogues Received

This month (November '86), with the receipt of two catalogues, it's the turn of the "big boys" to flex their muscles and show that they are still developing.

The catalogues have increased in bulk over previous editions and are the Cirkit "Winter 1986 Electronic Constructor's Catalogue" and the Maplin "1987 Buyer's Guide To Electronic Components". Both are on sale through leading newsagents, such as W. H. Smiths, or direct from their sales shops and mail order offices.

The 164-page Cirkit catalogue contains over 3,000 product items, with many new to this edition. Among the new items are, low-profile i.c. sockets, cases, Thurlby power supplies and the introduction of the Hameg range of oscilloscopes.

Having built a reputation for the design of good quality add-ons for the Amstrad computer, it's not surprising to see that they are now stocking the Amstrad micros themselves.

Two interesting additions are a simple to enter Competition and a range of "Bargain Packs/Special Offers". The first prize in the competition is a 20 MHz oscilloscope. There are a total of 12 prizes to be won. The "bargains" range from a p.c.b. pack to a cassette deck mechanism.
The Cirkit catalogue cost $£ 1.20$ and even if you do not win a prize there's still f8 worth of redeemable discount vouchers.

Probably the "big daddie" of them all and the one that the new up-and-coming component suppliers use as their "Starship" to emulate is Maplin. The 1987 edition of the Maplin catalogue is no exception and they have produced a monster 472 -page offering that all experimenters and constructors should try to find the time to wrestle with.

New products introduced this time include a range of British Telecom approved telephones and equipment. Also an increased range of connectors, cables and capacitors is being carried.
Of probably more significance is their announcement of the continuing trend towards "own brand" products, this includes extending the Precision Gold label. In particular, the popular range of test gear and musical effects units have been extended.

With the current fears about personal security at this time of year, the increased choice of burglar alarms and home security devices is to be welcomed

As an incentive to buy, a free Battery Condition Tester is available to all purchasers of the catalogue. This is apart from other free and special offers listed in its pages.
The Maplin catalogue costs $£ 1.50$ and the free gift is available direct from Maplin or any of their five stores located in London, Birmingham, Manchester, Southampton or Westcliff, Essex.

CONSTRUCTIONAL PROJECTS

Random Light Unit

There could be problems for readers in locating a local source of supply for some of the components specified for the Random Light Unit.

The thermistor specified is a miniature bead type and is claimed to respond to temperatures from $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The resistance at $250^{\circ} \mathrm{C}$ is about 4.7 kilohms. The GM472 (VA3404) is stocked by Electromail: code 151-142.

The IEC 5 -way, panel mounting, mains distribution socket block comes complete with a mains neon and fuse and is also available from Electromail: code 489-784. The socket block is not pre-wired, so
when wiring up it is most important to use leads that are capable of handling at least 10A.

The switch S2 is part of the potentiometer VR1 and is shown as a single-pole single-throw type. This switch arrangement seems fairly scarce and the answer is to use the common double-pole singlethrow type. Only one set of contacts need be used.

The 10A toggle switch is most likely to be listed in catalogues under "automobile switch"
We have been unable to locate any source of supply for the Hamlyn solid-state relays specified for this project. However, we have been fortunate in that the solidstate relays currently being stocked by Electromail are pin-for-pin compatible and have identical electrical ratings (could they be made by Hamlyn?). Rated at 2.5 A . these single-in-line "relays" cost $£ 6.80$ each and should be ordered as: stock no. 348-431

Hand Lamp Charger

A couple of items could prove troublesome when purchasing parts for the Hand Lamp Charger.

The mains rated microswitch and the d.p.d.t. slide switch called for in the mains version is currently listed by Maplin, Marco, Cricklewood, CPL Electronics and Electromail.

Note that the input wire to the mains version should be 3-core mains type, rated at 3 A minimum. Also the mains unit should be adequately "earthed" and extreme care should be taken when testing the circuit.
The only source we have been able to locate for the 4 -pole 3 -position slide switch used in the battery version is from Maplin: code FH38R (4-pole slide). The "cassette recorder" type power plug and socket connector can be obtained from Henry's, Cirkit and Maplin.

Morse Decoder

Most of the components for the Morse Decoder appear to be standard devices and should not cause buying problems.

A full kit of parts ($£ 26.98$), including the printed circuit board, may be obtained from Becker-Phonosonics, Dept EE, 8 Finucane Drive, Orpington, Kent BR5 4ED. The printed circuit may be purchased from them separately for the sum of $£ 4.20$ inclusive: quote code 269 A .

A fully extended software listing for this project is also available from BeckerPhonosonics for the sum of $\mathbf{f 7 . 5 0}$ plus a large stamped addressed envelope.

Hands Off Intercom

The 1W audio power amp i.c., type ULN2283, called for in the Hands Off Intercom project would appear to be stocked only by Cirkit. They are also able to supply the $33 \mu \mathrm{H}$ r.f. choke.

The electret MIC used in the prototype was purchased from a Tandy store. The four-core telephone cable is now stocked by most of our advertisers.

Logic Pulser

If readers wish to use the same probe case shown in the photograph of the Logic Pulser-Digital Troubleshooting Test Gear project-this was purchased from Electromail: stock no. 508217.

The rest of the components for this project are all readily available from advertisers.

Hanlds OFF InTERCOM

Garage to
 Kitchen-
 Baby's Room to Loungeyou can keep in touch with this low-cost system

MOST published intercom systems use switching to allow a speaker to double up as a microphone, and a single amplifier to serve the entire system. This is certainly an economical way of achieving two-way communication, but it has two main disadvantages. Firstly the speech quality can be distorted, and, secondly, the users need to switch over from "receive" to "speak" continuously throughout the conversation.
Whilst this is quite satisfactory for many applications, there is sometimes a need for a system not requiring switching, and having a better audio quality.

The method suggested here uses two separate amplifiers and separate microphones and speakers. Cost has been borne in mind however, and the microphones used are modestly priced. The integrated circuits used for the amplifiers (ULN2283B) are low voltage devices, operating from 3 V to 12 V with a minimal quiescent current, making them reasonably economical for battery operation if required.

HOW IT WORKS

Referring to the block diagram Fig. 1, Unit A, a self-contained microphone and amplifier, drives loudspeaker LSA which is located with Unit B in any required separate location. Unit B, a duplicate of A , drives speaker LSB, which is located with unit A.

Both amplifiers are in operation at the same time, allowing normal two-way conversation. A single battery or power-supply serves both units and can be located at any convenient point along the connecting fourway telephone cable.

CIRCUIT DESCRIPTION

The complete circuit diagram (one unit) for the Hands Off Intercom is shown in Fig. 2. Transistor TRI is a pre-amplifier to enable the microphone to drive the main amplifier, ICI. Potentiometer VR1 controls

Fig. 1. Block diagram of the operating system for the Hands Off Intercom.
the gain of the amplifier, and capacitor C3 by-passes to earth any radio-frequency signals picked up by the external wiring.
In the desk model, the microphone is a low-cost dynamic type, the sort sold as replacements for small cassette recorders. In the wall-mounting unit, an electret insert is used, and resistor R4 provides bias for the microphone. R4 is only required when an electret MIC is used.

CONSTRUCTION

All components are mounted on standard $0 \cdot$ lin matrix stripboard, as illustrated in Fig. 3. i.c. holders are used to avoid soldering the i.c.s directly to the boards.
It should be noted that a slightly different microphone wiring arrangement is required if an electret microphone is used. No detailed constructional information is given, as the shape and size of a terminal unit will
depend on its particular location, and the needs of the user.
In the prototype installation two different versions were used. A desk model used a standard car speaker and dynamic microphone, mounted side by side on a polished wood base. A hole was cut in the base under the speaker and the circuit board was mounted there, with the switch and gain control on a small aluminium plate over another recess at the side of the speaker.
The second terminal was a small wallmounting unit using a miniature 3 in speaker with an electret microphone insert. The home-made wooden case had an internal wood divider to minimise acoustic feedback between the speaker and the microphone, see Fig. 4. In both versions the microphone should be located as far away from the speaker as possible, and face away from it.

Fig. 2. Complete circuit diagram of the Hands Off intercom (two units required). Resistor R4 is only required when an electret microphone is used.

The power supply can be conveniently located anywhere along the route of the connecting cable, where it can be placed out of sight. A 6 V lantern battery should be satisfactory for occasional use. In the prototype system the total quiescent current at 6 V was about 16 mA .
For frequent use, it would be advisable to use a small mains power supply capable of giving $50-100 \mathrm{~mA}$ at 6 V . Suitable designs have previously appeared in this magazine, or can be purchased ready made at modest cost if the constructor is unhappy about working on a mains unit.

WIRING AND SETTING UP

Four-core telephone cable should be used for inter-unit wiring. This can be inconspicuously laid and stapled along a route from one part of the house to another. In the prototype, one end was terminated in a small metal box having a 5 -pin DIN socket.

adjust the gain controls to ensure there is no acoustic feedback between the microphones and speakers. One person is required at each terminal for this adjustment.

Fig. 3. Component layout, wiring and details of breaks to be made in the underside copper strips of the circuit board. A minimum of two boards are required for this system.

Fig. 4. Suggested arrangement for the wall-mounting unit.
Fig. 5. Simple call-tone to use with street door intercom. The wires to the bell-push must be kept separate to avoid inter-wire capacitance and prevent unwanted oscillation. DO NOT twist wires together.

COMPONENTS

Resistors	
R1	1.8 M
R2	4.7 k

Potentiometer

VR1 22k log.
Capacitors
C1,2 $47 n$ polyester (2 off)
C3 100p polystyrene
C4 $\quad 10 \mu 16 \mathrm{~V}$ elec.
C5 $\quad 100 \mu 10 \mathrm{~V}$ elec.
C6 $470 \mu 10 \mathrm{~V}$ elec.
Semiconductors
TR1 BC109 npn silicon
IC1 ULN2283B low power audio amp

Miscellaneous
$L 1 \quad$ Choke, $33 \mu \mathrm{H}$
LS1 8 ohm loudspeaker, size to suit case chosen, see text.
S 1 s.p.s.t. miniature toggle
MIC1 electret microphone element or low cost dynamic microphone, see text.
Stripboard, $0-1$ in. matrix, 10 strips by 24 holes; 8 pin d.i.l. holder; four-core telephone cable; length to suit installation; control knob; connecting wire; case or mounting to constructor's choice.

Note: The above components are for one unit only and should be repeated for the second unit.

Approx. cost Guidance only

The controls should initially be turned completely anti-clockwise. A gradual advancement of each should result in speech being heard from the other terminal. Too much gain will result in oscillation, and the controls should be backed off slightly to provide clear, distortion free amplification in each unit.

USING THE SYSTEM

The switches SI enable users to activate the system from their end only, i.e. they cannot switch on the microphone at the other end. This feature helps prevent embarrassing eavesdropping, and ensures that speech from one end is transmitted only when those present wish it.
No call-system need be included as all that is necessary is to switch on and call into the microphone for a reply. The person called also switches on and it is then possible to hold a normal two-way conversation, either close to the units or from some few feet away.

Fig. 6. Wiring to provide socket outlets in different locations. The units will connect between any two outlets.

OTHER USES

The system offers possibilities as a street door intercom, linked with a push-button call-tone at the door (see Fig. 5), with all switching inside the house. Used as a oneway system it could function as a baby alarm, or serve as a monitor for intruders; telephone ringing; or simply knocks at the door; from one part of the house to another. Provided the microphone at the receiving end is switched off, the gain control of the monitor could be advanced to provide extra sensitivity without the problem of audio feedback.

First prototype model of the wall-mounted version.

Units connected by flexible cable could provide an invaluable talk-back facility when adjustments, e.g. to TV antennas, have to be made from remote locations. Additional units cannot be added to the system without complicated additional circuitry, but extra outlets could be wired in at various points along the cable route to enable the two units to be plugged in for use in different locations as required, see Fig. 6. The applications are limited only by the ingenuity of the user.

MAIL ORDER DEPT., P.O. BOX 135, EDGWARE,
MIDOX. HA8 5NA. TEL: 019515526

TMO CREAT HOBBIES
 ...IN CNE CREAT KIT!

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.
THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector mianufacturer.
Ask at your local Hobby/Electronics shop or contact:-

THREE CHANNEL

 Including VAT and Carriage

 Chart RecorderT
.HIs fast response three channel chart recorder will provide an ink chart readout of up to three separate inputs. Chart speed is variable from $0.1 \mathrm{~mm} / \mathrm{sec}$. to $25 \mathrm{~mm} / \mathrm{sec}$. in eight steps with each channel requiring an input of 8 mA for full scale deflection.
The moving coil movements carry lightweight syphon pens fed from a large capacity ink well. Usable frequency range is d.c. to 5 Hz and a frequency response of better than 10% at maximum frequency can be achieved. The unit is provided complete with instruction manual, eight bottles of ink, five rolls of paper (approximately 50 m length each), scale, pen filler, fuses, connecting cables and spare pens. The recorder is supplied in a strong wooden carrying case and is made in the USSR. Approximate size is $475 \times 385 \times 165 \mathrm{~mm}$; weight 20 kilos.
Delivery is by Securicor. Overseas readers please write for quote on export prices and delivery.
Send your order to EE Offer. Marco Trading, The Maltings, High Street, Wem, Shropshire SY4 5EN. Make cheques payable to Marco Trading. Tel: 093932763.
Quantity

THis month we shall be introducing some software for use in conjunction with the 8-Channel Analogue to Digital Converter described last month. We shall also be taking a look at Hisoft's COLT BASIC compiler. Before we get started, however, there is just time to deal with two useful points raised by readers.

Post Bag

G. Everest writes from Burgess Hill, Sussex, enclosing an extremely useful machine code routine that can be used to drive a Centronics printer from Tasword Two via a Z80 PIO (similar to that previously described in this column). Mr. Everest says:
"I have found that Tasword's printer output routine is at address E28D hex. and have modified the code at this point so that I can now print Tasword text files using the Z 80 Pl0 with Port B set to output data to the printer whilst Port A is used for control.
"The port used the following addresses but I see no reason why other addresses should not be used:
Port A Control 64991 decimal, FDDF hex. Port A Data 64735 decimal, FCDF hex. Port B Control 65503 decimal, FFDF hex. Port B Data 65247 decimal, FEDF hex.
"The simplest way to set up the port is to use BASIC and line 10 of Tasword should be modified to the following:
. 10 OUT 64991,255: OUT 64991,240: OUT 65503,15: CLS: LET $a=$ USR 64330: GOTO 20
$\left.\begin{array}{|c|c|}\hline \text { Listing 1. Assembler source code for } \\ \text { the parallel printer port }\end{array}\right\}$
"The first OUT sets port A to control mode and the second sets D0-D3 to output and D4-D7 to input, the last OUT sets port B to output mode."
The Z80 assembler source code is shown in Listing 1 but readers not having access to an assembler can enter this using the following POKEs from address 57997 to 58108 :

$$
\begin{gathered}
1,223,252,237,80,203,122,32, \\
250,6,254,237,121,62,240,6 \\
252,237,121,60,237,121
\end{gathered}
$$

Mr. Everest has used the modification with Cannon and Amstrad DMP 2000 printers. He points out that the code was written for the Sinclair version of Tasword Two. It has not been tested with the earlier Tasman version nor (presumably) with the later Tasword Three.

David McInnes has answered my plea for information concerning a method of making use of the extra 32 K of RAM present in the 48 K Spectrum. He writes:
"I have been using the unused top 32 K for over a year, however, I cannot claim to have designed the hardware or software. The 'XK System' has to be soldered into the Spectrum and the software (cassette) is supplied by T.V. Services of Cambridge. The interface is completely compatible with Interface 1 and has the further advantage of pseudo multi-tasking with programs in both pages of memory while sharing a common area of memory between 29000 and 32000 through which data can be passed from one program to another.
"Whether you have a second complete page of memory without any dud bits seems to be the luck of the draw for early issues of the Spectrum as Sinclair Research were buying chips with (theoretically) only one side working. My own Issue Two machine had a second complete 32 K .
"The second page of 32 K is ideal for using a pseudo RAM disc. By reading an entire microdrive file into internal page 2 , page I can be used to process incoming data and then, by making available a reference to page 2 through common memory, it is possible using machine code to search the file very rapidly to select the record for updating. An obvious example for using this type of approach is in Stock Control.
"MEGABASIC is not, incidentally, compatible with the 'XK' software in residence. Apart from that, the modification is completely transparent if the computer is used as normal without the ' XK ' software."

Compilers and Interpreters

For the vast majority of BASIC programmers, the idea of converting programs to machine code without any fuss or bother is quite irresistible. The resulting code should, at least in theory, be more compact and run very much faster than the original program. This, however, is not always the case!

Having tested several mediocre (and some totally unusable) compilers for the Spectrum, I was prepared to be disappointed yet again when Hisoft's COLT compiler appeared. This, however, was not the case and I am happy to report that I have, at last, found a Spectrum BASIC compiler which I can thoroughly recommend.

Now, for the benefit of anyone out there who does not know what a compiler is, it is worth pointing out that Spectrum BASIC is "interpreted". This simply means that, when your BASIC programs are running, only one line of code (or only one statement if the line involves more than one BASIC statement) is fetched at a time.

The line is then checked and if faulty the RUN is terminated and an error message is printed on the screen. If the line is acceptable it is then executed using appropriate machine code routines within the Spectrum's ROM.
The obvious advantage of this approach is that program development and debugging can be carried out interactively. Furthermore, BASIC statements can be entered directly (without line numbers) and executed virually immediately.
Spectrum BASIC does, however, have some notable disadvantages. The ROM based BASIC interpreter occupies valuable memory space (in any particular program you would very rarely need to use anything like the full complement of BASIC commands), the BASIC program itself requires not inconsiderable storage space, and execution is painfully slow since each line has to be fetched and checked prior to execution.
A compiler is a utility program which converts a program written in another language (in this case it is BASIC) into executable machine code. The resulting program can be run directly and does not require the services of the interpreter. The end result should be a comparatively short machine code program which will perform exactly the same function as its high-level counterpart but in a fraction of the time.

The COLT

The COLT is a relatively recent BASIC compiler and, whereas it is supplied on cassette tape, it is fully microdrive compatible. A short BASIC loader is used to load the compiler's machine code and executive system. When the loading process is complete the user is presented with an opportunity to make a backup (working) copy of the compiler (Hisoft licenses purchasers to make one backup copy to tape or microdrive).
Assuming that you have backed-up the compiler, the next option allows the user to alter the default starting address (40000 decimal) for the compiled code. Having dealt with this request, the user is then presented with a clear screen containing an interrupt driven clock display in the top right hand comer of the screen. BASIC programs can then be entered or loaded in the usual way.
The compiler is invoked by typing (in direct mode):

RANDOMIZE USR 60000

The COLT then sets about compiling whatever BASIC program is resident at the time and also displays information on the screen during the process. This includes the line number of the line being compiled, the start and end addresses of the compiled code, and the address of the star of RAM area reserved for variables.
Where the compiler encounters a line which does not compile correctly, the compilation process is halted and the dubious line is printed on the screen together with a '?' which indicates the offending part of the line.
The COLT permits full string handling, up to 26 one dimensional arrays and up to 26 one dimensional string arrays, computed GOTOs, and INPUT with full line editing. There are, inevitably, a few situations which the COLT will not cope with (e.g. multidimensional arrays and floating point numbers) but these can often be overcome by appropriate modifications to the BASIC program.

The COLT provides an "executive" program which users can make use of. This adds a number of useful facilities to BASIC including .sprite graphics, windows, error handling, decimal/binary/hexadecimal conversions, two-byte PEEK and POKE, programmable keys, etc. The executive occupies approximately 7 K of memory (from 52470 to 59200) and can be turned 'on' or off or even erased from memory (to provide extra space for compiled code)

In order to put the COLT through its paces I decided to compile the TV/Monitor test program which forms part of our Update. As this program is fairly short, I decided to place the compiled code at 50000 (rather than the 40000 default start) so the SAVEd code would not be too long.

Compilation first stopped in line 4 and I discovered that all my "pretty listing" colons had to go! After this, admittedly idiosyncratic problem, was put right I then found that I had to make some changes to the BEEP commands (BEEP 1,20 is acceptable but BEEP $0.2,20$ is not!). The program then compiled satisfactorily.

The program was then tested with the compiler still present in memory (using RANDOMIZE USR 40000) and the results proved to be extremely interesting. The vertical linearity display (a circle) showed no discernible increase in speed.

The dot display, on the other hand, appeared to be virtually instantaneous! The colour bar routine showed a speed increase of between five and ten times whereas the cross hatch display was only faster by a factor of about 1.5.
Whereas these widely different results are not all that surprising when one considers what the compiler actually does, they do serve to illustrate difficulty in making an accurate prediction of the scale of increase in speed of execution that can be obtained from a compiled code.
At the end of the session, the machine code program was saved as "tvtest". (One has to remember to disable the executive first otherwise the code will not verify or load correctly as I learned to my cost!') To make the machine code program load and run automatically, a short BASIC loader had to be written. This took the form:

10 LOAD "tvtest" CODE,50000
20 RANDOMIZE USR 50000
This program was SAVEd to the same tape (BEFORE the machine code program) using a command of the form:

SAVE "tvtest" LINE 10

The manual supplied with COLT is typical of the thoroughness and high standard of presentation associated with Hisoft's other products. Sensibly, the manual does not assume a great deal of knowledge on the part of the reader and is illustrated with a number of useful examples. It is a great shame that many other software houses seem to be quite unable to produce handbooks and manuals of this standard.
Hisoft's COLT can be very strongly recommended to anyone who requires the services of a BASIC compiler. It is simple and easy to use, is packed full of useful features, and should cope admirably with the majority of BASIC programs. Hisoft is at 180 High Street North, Dunstable, LU6 1AT.

Using the Eight-Channel Analogue to Digital Converter

The 7581-based Eight-Channel Analogue to Digital Converter described last month is delightfully easy to use. The converter continuously samples each of the eight input channels without the need for any start conversion commands from the host CPU.
Since the outboard clock runs at approximately 2 MHz and the 7581 takes 80 clock cycles to convert each channel input, the total time taken to update the 7581 's internal RAM is around $320 \mu \mathrm{~s}$. In order to read the state of a particular channel it is only necessary to include a command of the form:

100 LET $\mathrm{x}=\mathrm{IN}$ port

where 'port' is the decimal port address (see last month for the port address table).
The value returned in x will be in the range of 0 to 255 , i.e. when 0 V is applied x takes the value 0 whereas, where a full-scale value (equal, but of opposite polarity, to the reference voltage present at the 'test point') is applied x will take the value 255 .
To make this quite clear let's take a simple example. Suppose our reference voltage is 9 V (it is unlikely that the reference voltage will be exactly 9.1 V as there will invariably be some variation in Zener diode characteristics). If we need to continuously read and display the voltages present on Channels 1 and 2 only, we could use the following few lines of BASIC:
10 LET. $\mathrm{x}=$ IN 31: REM Read channel 1
20 LET $y=$ IN 63: REM Read channel 2
30 LET v1=x*255/9
40 LET $\mathrm{v} 2=\mathrm{y}^{*} 255 / 9$

50 PRINT AT 0,0; "Channel 1 voltage $=$ "; vI
60 PRINT AT 2,0; "Channel 2 voltage $=$ ";v2
70 PAUSE 20: CLS
80 GOTO 10

8-Channel Voltmeter

Whilst this simple program has some obvious limitations it does serve to illustrate how easy it is to write software to operate the analogue to digital converter. Listing 2 is provided for readers requiring a "ready-made" Eight-Channel Voltmeter program. This program can be used to display any one of the eight channels (selected by pressing the appropriate number on the Spectrum keyboard) in both digital and analogue bar form.
The program should be reasonably self explanatory and assumes a 9 V reference. Lines 1015 to 1025 are used to strip the digital display voltage string to a sensible length. Calibration may be performed by simply making changes to two lines; 1010 and 1065 for the digital and analogue displays respectively.
Readers should not forget to SAVE the program after entering it and BEFORE attempting to RUN it. When running, the program may be abandoned by pressing the ' q ' key (note that this will perform a NEW command which ruthlessly clears the program from memory!).
Finally, the 9 V maximum analogue input voltage will be something of a limitation in a number of applications. The value can, however, be very easily increased by including a resistor in series with the appropriate input. A 150 k fixed resistor wired in series with a 100 k pre-set resistor will, for example, increase the full-scale reading to approximately 90 V . The pre-set resistor can then be used to calibrate the particular channel concerned.

If you have any comments or suggestions or would just like a copy of our 'Update', please drop me a line at the following address and enclose a large (A4 size) stamped addressed envelope:
Mike Tooley,
Department of Technology, Brooklands Technical College,
Heath Road, Weybridge,
Surrey KT1 3 8TT.
Next month: We shall be describing a Speech Output Interface.
We shall also be taking a look at Softek's IS compiler.

500 REM 解 Main 1 oop wt
O2 PRINT AT 11,16; INVERSE 1;ch
505 LET $z 2=z 1$
510 LET r\$=INKEY\$
S20 IF $\mathbf{r} \$=" \mathrm{q}$ " THEN NEW
540 IF cs>=1 AND cSK=B THEN LET ch=cs
550 LET z $1=1 \mathrm{~N}$ e(ch)
555 PAUSE 2
565 LET $\geq 1=I N \quad c(c h)$
570 If $z 1<0.95 z_{z}$ OR $z 1>1.05 * z 2$ THEN GO SUB 1000
580 GO TO 500
999 REM
1000 REM *** Print the value **
1010 LET $x=z 1 / 28:$ REM Calibrate digital display
1015 LET $\mathrm{Ws}=\mathrm{STR} \times$
1020 IF LEN W\&K=4 THEN GO TO 1030
1030 PRINT AT 15,14 .
1040 PRINT AT 15, 15; INVERSE 1;
1050 PRINT AT 18, 0 ;
1055 FAR $y=26$ to 30
1060 PLOT $0, y$
1065 DRAW $z 1$ ibo. 88,0 : REM Calibrate bar display
IOBO RETURN

The books listed below have been selected as being of special interest to our readers, they are supplied from our editorial address direct to your door.

DATA AND REFERENCE

PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E.。 F.B.I.M.

Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias-tedious and higher mathematics have been avoided where possible and many tables have been
cluded
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Cornpo rents, Alternating-current Circuits, Networks and Theo 256 pages Order Code BP53
$\mathbf{£} 2.95$
ESSENTIAL THEORY FOR THE
LECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.t.), Assoc.I.E.R.E.

The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or he specific requirements and the author has brought together the relevant material and presented it in a readable manner with minimum recourse to mathematics
128 pages Order Code 228
$£ 2.50$
MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

A rruly comprehensive guide to the elements of microprocessing systems which really starts at the beginning eaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
$\mathbf{E} 256$ pages
Order Code BP7

COMMUNICATION

. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the mportant elements of each branch of the subject in a style as interesting and practical as possible. While not getting involved in the more complicated theory and mathematics, most of the modern transmission system submarine, satellite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electro-
magnetic wave, networks and transmissions assess ment are included, finally a short chapter on optical transmission.
256 pages
Order Code BP89
$£ 2.95$

AUDIO

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. .B.I.M.
Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are folowed by a study of the mechanism of hearing and room acoustics with a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators disc and magnetic recording and electronic music.
$\mathbf{3 2 0}$ pages
Order Code BP111

HOW TO IDENTIFY UNMARKED ICs

K. H. Recorr

Shows the reader how, with just a test-meter, to go about recording the particular signature of an unmarked i.c. Which should enable the i.c. to then be identified with reference to manufacturers or other data. An i.c. signature is a specially plotted chart produced by mea-
suring the resistances between all terminal pairs of an i.c. Chart Order code BP101 E0.95

RADIO AND ELECTRONIC COLOUR CODES AND

DATA CHART
 B. B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use throughout the world, for most radio and electronic components. Includes resistors, capacitors, transfor mers, field coils, fuses, battery leads, speakers, etc. It is particularly useful for finding the values of old components. Order code BP7 £0.95
Chart

CHART OF RADIO, ELECTRONIC,

SEMICONDUCTOR AND LOGIC SYMBOLS

M. H. Banani, B.Sc.(Eng.)

Hlustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction Chart Order Code BP27 $\quad \mathbf{0 . 9 5}$

TRANSISTOR RADIO FAULT-FINDING CHART

 C. E. MillerUsed properly, should enable the reader to trace most common fautts reasonably quickly. Across the top of the chart will be found four rectangles containing brief description of these faults, vis-sound wead, sound low or distorted and background torted, set dead, sound low or distorted and background
noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared.
Chart
Order code BP70

DIGITAL IC EQUIVALENTS
 AND PIN CONNECTIONS

A. Michats

Shows equivalents and pin connections of a popular selection of European, American and Japanese digital i.c.s. Also inctudes details of packaging, families, functions, manufacturer and country of origin

LINEAR IC EQUIVALENTS AND PIN CONNECTIONS

AND Min CI

A. Michaels selection of European, American and Japanese linear i.c.s. Also includes details of functions, manufacturer and country of origin.
320 pages
Order code BP141

INTERNATIONAL TRANSISTOR

EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transistors. Also shows material type, polarity, manufacturer 320 pages Order code BP85
$£ 2.95$
INTERNATIONAL DIODE
EQUIVALENTS GUIDE
A. Michaels

Designed to help the user in finding possible substitutes for a large selection of the many different types of diodes that are available. Besides simple rectifier diodes, also tors, OCIs, photo diodes, i.e.d.s, diacs, triacs, thyristors, OCls, photo and display diodes.
144 pages Order code BP108
£2.25

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED

-CRYSTAL SET CONSTRUCTION

.A. Wisson, C.G.f.A., C.Eng., F.I.E.E., F.I.E.R.E.,
Especially written for those who wish to participate in: he intricacies of electronics more through practical construction than by theoretical study. It is designed for all ages upwards from the day one can read intelligently and handle simple tools

50 CIRCUITS USING GERMANIUM

SILICON AND ZENER DIODES
 R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics using one of the most simple and inexpensive of and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc. Order Code BP36 f1 50
64 pages Order Code BP36
$£ 1.50$

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 intaresting and useful circuits and applica tions, covering many different branches of electronics
 components-the light-emitting diode (LED). Also includes circuits for the 707 common anode display
64 pages

COIL DESIGN AND CONSTRUCTION MANUAL B. B. Babani

A complete book for the home constructor on "how to make" RF, IF, audio and power colls, chokes and transformers. Practically every possible type is discussed and calculations necessary are given and explained in detail. Aithough the exception of torroids and pulse transformers little has changed in coil design since if was written. 96 pages \quad Order Code 160 £2.50

MICRO INTERFACING CIRCUITS-BOOK 1
MICRO INTERFACING CIRCUITS-BOOK 2

R. A. Penfold

Both books include practical circuits together with details of the circuit operation and useful background information. Any special constructional points are covered but p.c.b. layouts and other detailed constructional information are not included.
but of the computer. Bencern with geting signals in and out of the computer;. Book 2 deals primarily with circuits Boolk 1112 pages Order code BP130 £2.25 $\begin{array}{llll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } & \text { £2.25 } \\ \text { Book } 2.112 \text { pages } & \text { Order code BP131 } & \mathbf{£ 2 . 2 5}\end{array}$

A MICROPROCESSOR PRIMER

E. A. Parr, B.SC., C.Eng., M.I.E.E.

Starts by designing a small computer which, because of its simplicity and logical structure, enables the language then discussed and the reader is shown how these can be overcome by changes and additions to the instruction set. In this way, such ideas as relative addressing, index registers, eic., are developed.
96 pages
96 pages Order code BP72
£1.75

A PRACTICAL INTRODUCTION TO

MICROPROCESSORS

R. A. Penfold

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that the reader can experiment and gain practical experience-
96 pages \quad Order code BP $\mathbf{1 2 3} \quad 1.95$

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a calculations. The approach has been made as non$\begin{array}{ll}\text { mathematical as possible. } \\ 160 \text { pages } & \text { Order code BP88 } \\ \text { £2.95 }\end{array}$

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 1
PRACTICAL ELECTRONIC

BUILDING BLOCKS-BOOK 2

R. A. Penfold

These books are designed to aid electronic enthusiasts who like to experiment with circuits and produce their own projects, rather than simply following published project designs.

BOOK 1 contains: Oscillators-sinewave, trlangular, squarewave, sawtooth, and pulse waveform generators stable circuits using i.c.s. the 555 and 7555 devices, etc Miscellaneous-noise generators, rectifiers, comparators and triggers, etc.
BOOK 2 contains: Amplifiers-low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controlled amplifiers. Filters-high-pass, low-pass, 6, 12, and 24 dB per octave types. Miscellaneous-i.c. power amplifiers mixers, voltage and current regulators, etc.
$\begin{array}{ll}\text { BOOK } 2 & 112 \text { pages Order code BP117 } \\ \text { BOOK } & \text { Order code BP118 }\end{array}$
HOW TO DESIGN ELECTRONIC
PROJECTS
The aim of this book is to help the reader to put together projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet your special requirements are also provided.
128 pages Order code BP1 27 £2.25

POPULAR ELECTRONIC CIRCUITS

- BOOK 1

POPULAR ELECTRONIC CIRCUITS
-BOOK 2
R. A, Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing working projects from just a circuit diagram without the aid of procedures are described.
BOOK 1 Temporarily out of print
BOOK $2 \quad 160$ pages Order code BP98 £2.25

GETTING THE MOST FROM YOUR PRINTER

J. W. Penfold

Details how to use all the features provided on most dotmatrix printers from programs and popular word proces. sor packages like Wordwise, Visawrite and Quill, etc. Shows exactly what must be typed in to achieve a given 5

Order Code BP181 £2.95

A 280 WORKSHOP MANUAL
E. A. Parr, B.Sc., C.Eng., M.I.E.E.

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming. or need hardware details of a 280 based computer.
192 pages
Order Code BP112
O3.50

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE
R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Commodore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one 112 pages and this book covers the fundamentals.

THE ART OF PROGRAMMING THE $\mathbf{2 X}$

SPECTRUM
M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be able to combine thern into programs that do exactly what you want them to. This is just what this book is all about-teaching you the ar of effective programming with your Spectrum.
144 pages $\quad \mathbf{£ 2 . 5 0}$
AN INTRODUCTION TO PROGRAMMING THE COMMODORE 16 \& PLUS 4

R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied
in the manufacturer's own manuals. 128 pages Order code BP158 £2.50

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO

R. A. \& J. W. Penfold

Written for readers wanting to learn more about programming and how to make best use of the incredibly powerful model B's versatile features. Most aspects of the BBC micro are covered, the omissions being where little could usefully be added to the information provided by the manufacturer's own manual.
144 pages Order code BP139 £1.95

AN INTRODUCTION TO PROGRAMMING THE ACORN ELECTRON
R. A. \& J. W. Penfold

Designed to help the reader learn more about program ming, and to make best use of the Electron's many eatures. Adds considerably to the information already 144 pages Order code BP142 £1.95

AN INTRODUCTION TO PROGRAMMING THE

 ATARI 600/800 XLA. A. a J. W. Penfold handbook. The information supplied will help the reader to master BASIC programming and to make best use of the Atarl's many powerful features.
128 pages
Order coda BP143

AN INTRODUCTION TO PROGRAMMING THE

 AMS TRAD CPC 464 AND 664A. A. \& J. W. Penfold

The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatlie machine and this book is designed to help the reader get the most from this powerful combination. Written to complement rather than duplicate the information already given in the nanufacturer's own manual. Also applicable to the CPC +28
144 page
Order Code BP153 £2.50

AN INTRODUCTION TO PROGRAMMING THE

 SINCLAIR OL
. A. \& J. W. Penfold

Helps the reader to make best use of the fantastic Sinclair aL's almost unlimited range of features. Designed to 112 pages $\begin{aligned} & \text { Order } \\ & \text { Order code BP150 }\end{aligned}$

AN INTRODUCTION TO 280 MACHINE CODE

A. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous knowedge of these being assumed. The $\mathbf{Z 8 0}$ is used in many popular home computers and simple programming examples are given for 780 -based machines including the inclair $2 X-81$ and Spectrum, Memotech and the Am trad CPC 464. Also applicable to the Amstrad CPC 664 and 6128

Order code BP152 £2.75

AN INTRODUCTION TO 6502 MACHINE CODE

R. A. \& J. W. Penfold

No previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly language and assemblers, the register set and memory hay texadecimal numbering systems, addressing modes and the instruction set, and also mixing maching code with BASIC. Some simple programming examples are given for 6502 -based home computers like the VIC 20, ORIC-1/Atmos, Electron, BCC and also the Commo dore 64.
112 pages Order code BP147
£2.50

THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E. .B.i.M
Another book on BASIC but with a difference. This one does not skip through the whole of the subject and hereby leave many would-be programmers floundering but ins ead concentrates on introducing the technique by ooking in depth at the most frequently used and mor easily understood com potential micro users.

HOW TO GET YOUR COMPUTER PROGRAMS

 RUNNINGJ. W. Penfold

Have you ever written your own programs only to find that they did not workl Help is now at hand with this bool which shows you how to go about looking for you errors, and helps you to avoid the common bugs and pitfalls of program writing. Applicable to all dialects of 144 pages language. Order code BP169

AN INTRODUCTION TO COMPUTER
 COMMUNICATIONS

R. A. Penfold

Provides details of the various types of modem and thei suitability for specific applications, plus details of conhecting various computers to modems, and modems to he telephone system. Also information on common 96 pages Order code BP177

AN INTRODUCTION TO
 J. W. Penfold

Covers such items as monitors, printers, disc drives, cassette recorders, modems, etc., explaining what they are, how to use them and the various types and tandards. Helps you to make sure that the peripherals you buy will work with your computer.
80 pages
Order code BP170
$£ 2.50$

COMPUTER TERMINOLOGY EXPLAINED

D. Poole

Explains a wide range of terms that form the computer argon used by enthusiasts. Includes a reference guide to the more commonly used BASIC commands.
96 pages Order code BP148 £1.95

THE PRE-COMPUTER BOOK

. A. Wilson
Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of computer blts and pieces and programming
96 pages Order code BP115 £1.95

PROJECT CONSTRUCTION

HOW TO GET YOUR

ELECTRONIC PROJECTS WORKING

R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking building up projects.

96 pages | building up projects. |
| :--- |
| Order code BP110 |
| 1.95 |

HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.
R. A. Penfold

Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own,p.c.b.s.
80 pages
Order code BP121
$\mathbf{£ 1 . 9 5}$

BEGINNER'S GUIDE TO BUILDING
 \section*{ELECTRONIC PROJECTS}

R. A. Penfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in
magazines and books. Also includes examples in the orm of sin books. Also includes ex mples in 112 pages \quad Order code No. 227 £1.95

RADIO

AN INTRODUCTION TO RADIO DXING

 R. A. Penfold

 R. A. Penfold}Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to find a particular station, country or type of broadcast and to receive it as clearly as possible requires a little more skill reader to do just that, which of this book is to help the hobby of radio DXing
112 pages Order code BP91
£1.95

INTERNATIONAL RADIO STATIONS
 \section*{GUIDE}

Completely revised and updated, this book is an invaluable aid in helping all those who have a radio receiver to obtain the maximum entertainment valus and enjoyment from their sets
Clearly shown are the station site, country, frequency and/or wavelength, as well as the effective radiation power of the transmitter.
128 pages Order code BP155
Order code BP155

TO ORDER

Please check the latest issue for price and availability.

Add 50p per order postage (overseas readers add $£ 1$, surface mail postage) and send a PO, cheque or international money order (£ sterling only) made payable to Everyday Electronics (quoting the order code and quantities required) to EE BOOK SERVICE, 6 CHURCH STREET, WIMBORNE, DORSET. BH21 1JH.

Although books are normally sent within seven days of receipt of your order please allow a maximum of 28 days for delivery. Overseas readers allow extra for surface mail post.

HAND Lamp CHARGER

\square T.R.de Vaux Balbirnie

Use at home or in the cara boon for the caravanner!

HAND LAMPS are useful but suffer from the disadvantages of high cost and gradual deterioration of the batteries. This means that the lamp only gives maximum light output when they are fresh.
These drawbacks may be overcome by substituting nickel cadmium batteries for the conventional ones. Although the initial cost is fairly high, savings are soon made since these last almost indefinitely and recharge at practically no cost. Furthermore, the lamp will always operate at peak performance.
The project to be described here will convert an existing hand lamp to nickelcadmium operation. Two circuits are offered-one for home use where charging is effected from the mains and the other to charge from a 12 V car battery.

Fig. 1. Complete circuit diagram for the mains-powered version of the Hand Lamp Charger.

The mains-operated circuit is housed in a plastic box on which the lamp is placed when not in use. The weight of the lamp actuates a microswitch which operates the supply. The charging circuit is then connected through contacts on top of the unit and on the base of the lamp.
In the 12 V circuit, connections are made by means of a plug and socket and a slide switch operates the supply. An on-off l.e.d. indicator is also provided.
Both mains and battery circuits provide two charging rates-High and Low. In the mains circuit, a separate switch performs this function. In the 12 V version, the on-off switch also selects the charging rate.

Batteries may be left charging continuously even on the high setting without harm. Although completely "flat" batteries will take several days of charging to reach full capacity, this is not a disad vantage since they will be capable of use within an hour or so. The charging rates are preset so the use of a meter at the testing stage is not essential.

CIRCUIT-MAINS UNIT

Before commencing construction work, find the operating voltage of the lampanything up to 6 V is suitable (for example, 4 off 1.5 V cells). Check that nickel-cadmium equivalents are available to replace the conventional batteries. With a little planning, perhaps smaller batteries could be used giving some saving in weight and cost. The minimum is " $A A^{\prime}$ " size.

Nickel-cadmium batteries must be charged from a constant current supply and Fig. 1 shows how this is achieved in the
mains-powered circuit. $\mathbf{S} 2$ switches on the mains supply to the transformer Tl. This provides a low-voltage a.c. output which is rectified by diodes D3 and D4 then smoothed by capacitor Cl . Current flows through resistor R1 and the diodes DI and D2 connected in series.

A silicon diode in forward bias develops 0.7 V approximately between its ends so 1.4 V will appear between transistor TRI base and the negative of the supply. This is used as a reference voltage.

Since 0.7 V exists between the base and emitter of a silicon transistor, it follows that there will be 0.7 V across the emitter resis-tor-either R2 or R3 according to the position of the Charge Rate switch, SI. The current flowing in the emitter resistor is virtually the same as that in the collector circuit which charges the batteries. Thus, the charge rate may be predetermined by selecting suitable values for R2 and R3. With the resistors specified rates of approximately 4 mA and 60 mA may be expected.

There will be a maximum of 7.5 V to charge the batteries (this takes account of the 0.7 V "Drop" across a diode (D6) built into the lamp itself and whose purpose will be explained later). The excess output voltage over that of the batteries appears between TRI collector and emitter and is self-adjusting.

If the output terminals were short-circuited (as would happen if a heavy metal object were placed on top of the unit) then the whole available 7.5 V would appear between collector and emitter of TRI which would then become hot-this is why a small heatsink is necessary. If diodes D1 or D2 became open-circuit or if a connection here

Fig. 2. Component layout and details of breaks to be made in the underside copper strips of the stripboard for the mains hand lamp charging system.
failed, the stabilising effect would be disrupted and the output current would rise -on the "high" charge this would blow FSI.

CONSTRUCTION-MAINS VERSION

Refer to Fig. 2 and construct the main circuit panel. This uses a piece of 0.1 in . matrix stripboard, size 10 strips $\times 24$ holes. Make the breaks in the copper tracks and insert the single link wire.

Solder the on-board components into position noting the polarities of the diodes and Cl . Check carefully for solder "bridges" which may have formed acciden-
tally between adjacent copper strips. Drill holes in the box for mains lead entry, for SI and for mounting T1, TBI and FS1.
Construct the microswitch support bracket using thin sheet aluminium. Bend the arm of the microswitch very carefully to give an upturned end about 6 mm long. Mount the switch on the bracket noting the solder tag at one fixing point. Drill a 5 mm hole in the lid of the case for the end of the microswitch arm to pass through and attach the bracket using two small fixings. Check that the switch operates freely.

Make the connecting spring support bracket using a piece of 0.1 in . matrix stripboard, size 7 strips $\times 32$ holes (see Fig. 3). Break the strips along the centre line as

Fig. 3. Details of the spring connector support bracket for the mains version.

COMPONENTS

See page 43

Common to Mains \& 12V Versions

Resistors

R1	1k
R2	12
R3	180

All 0.4 W carbon $\pm 1 \%$

Semiconductors

TR1 BFY51 npn silicon
D1,D2 OA200 (2 off)
D6 1N4001

Miscellaneous

FS1 20 mm fuseholder and 100 mA fuse to fit; lobed heatsink to fit TR1; nickel cadmium batteries for tamp

Mains Unit (additional comp)

Capacitor

C1 220μ elec. (p.c.b.) 16 V

Diodes

D3,D4 1N4001 (2 off)

Switches

S1 d.p.d.t. slide switch S2 mains rated microswitch, with lever

Miscellaneous

T1 1.2 W miniature mains transformer; 240 V primary, $0-9 \mathrm{~V} /$ $0-9 \mathrm{~V}$ secondaries. Plastic case, size $120 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$, $0 \cdot 1$ in. matrix stripboard: circuit board, 10 strips $\times 24$ holes; spring connector, 7 strips $\times 32$ holes; lamp base connector, 9 strips $\times 33$ holes; 3 -way 3A terminal block (TB1); aluminium for microswitch support bracket; springs- 2 off (see text).

12V Unit (additional comp)

Resistors

R4 1k 0.4 W carbon 1%
Diode
D5 5 mm red I.e.d.

Miscellaneous

PL1/SK1 cassette recorder type power plug and socket-standard 2.1 mm ; S3 miniature 4 -pole 3 position slide switch; 0.1 in . matrix stripboard, 9 strips $\times 21$ holes; plastic case, size $70 \mathrm{~mm} \times$ $50 \mathrm{~mm} \times 25 \mathrm{~mm}$.

Approx.	Mains- $£ 10$
cost	Bat.- $\mathbf{E 4 . 5 0}$
Guidance	Bats. not included
only	

indicated. Mount the springs using large diameter washers and small fixings-include a solder tag at each. Suitable springs may be obtained from a discarded battery connector.

Drill two holes in the lid of the case large enough for the springs to pass through freely when the bracket is in position. Attach the bracket and check that the weight of the lamp-together with the nickel-cadmium batteries-will compress the springs to the level of the face of the lid. Make adjustments as required.

INTERWIRING

Referring to Fig. 4, mount the remaining components and complete all wiring. Note that solder tags are needed at T1 and S2. The input wire should be 3-core mains type of 3 A rating minimum. It should have a suitable strain relief provided inside the case to prevent it from being pulled free.

Ensure that the connections to S2 are sound and that no short-circuits are formed between any wire and the metalwork of the support bracket. Make sure the polarity of the output springs are clearly marked.

The mains plug should be fitted with a 3A fuse. Note that this project is designed for plugging into a wall socket-it should not be permanently connected to the mains supply.

(above) Layout of components inside the plastic case of the prototype mains version. The microswitch is mounted on the lid together with the spring connector bracket.
(left) The completed circuit board for the mains version. Note the lobed heatsink on TR1.

Fig. 4 (below). Interwiring details for the mainspowered Hand Lamp Charger. It is important that a PLASTIC case is used to house these components.

The completed battery version.

CIRCUIT-12V UNIT

The circuit diagram for the battery-operated version is shown in Fig. 5. It is basically the same as the mains one but with certain components omitted. Power is already derived from a low-voltage d.c. supply so $\mathrm{T} 1, \mathrm{D} 3, \mathrm{D} 4$ and Cl are unnecessary. An l.e.d. indicator D5 shows when the supply is switched on.
Switch S 3 is a 3 -position slider type, the extreme positions provide the alternative charging rates while the centre position is off. This switch replaces S1 and S2 in the mains version.

CONSTRUCTION—12V UNIT

Details for constructing the battery version are given in Figs. 6 and 7. Construction is based on a piece of 0.1 lin . matrix stripboard size 9 strips $\times 21$ holes. Make the breaks in the copper strips (underside) and insert the wire link as indicated in Fig. 6.
Referring to Fig. 6, commence mounting components on the circuit board. Note that all components except S3 are mounted on this board.
Next make holes in the case for the input and output leads, for the on/off and charge rate switch S3, and for the I.e.d. indicator D5. Mount S3 in the lid of the case and complete the wiring as shown in Fig. 7.
Suitable strain relief clamps-tightly tied string will do-should be used to secure the input and output leads inside the case. Fit the specified "cassette recorder" type of plug to the output wire. For a negative-earth car, the sleeve connection should lead to the negative of the unit but for a positive-earth vehicle this should be the positive.
Secure the panel to the base of the box with an adhesive fixing pad. Bend the leads of the l.e.d. as necessary so that it protrudes slightly through the hole in the lid.

TESTING

The mains unit requires an earthed supply. All operations must be carried out with the lid of the case in position.
A basic test may be made using a 6 V $0.06 \mathrm{~A}(0.36 \mathrm{~W})$ bulb and an l.e.d. Connect the 6 V bulb direct to the output of the unit whether mains or battery-operated.
With the battery circuit, set S3 to its centre (off) position and connect the input wires to the battery terminals observing the polarity. With the mains-operated circuit,

Fig. 5 (top right). Complete circuit diagram for the battery-powered Hand Lamp Charger.
Fig. 6 (middle right). Component layout and details of breaks to be made in the underside copper strips of the stripboard for the battery version.
Fig. 7 (above right). Interwiring details for the batterypowered Hand Lamp Charger.
The finished circuit board for the battery model. The l.e.d. is mounted proud of the board to allow it to pass through the hole in the lid of the case.

EE6360

Layout of components inside the plastic case of the battery version.
set S1 to High and plug the unit into the mains. Press the microswitch and check for normal operation. With the battery-operated circuit, switch on by moving S3 to its High position. In both cases the bulb should glow at normal brightness. This may be compared with the brightness of the lamp when connected directly to a 6 V battery.

With the charge rate now set at Low, the lamp should go off since there is now insufficient current to make the filament

Power socket SK1 mounted in the hand lamp and the charger power plug from the battery version.
(top right) Stripboard connector fixed to the underside of the hand lamp. (above) mains unit showing springs and microswitch lever protruding through case top.
glow. Replace the bulb with an l.e.d. observing the polarity (no series resistor is needed). The l.e.d. should glow.

If you have access to a multimeter, the output currents may be checked with this instead. Switch it to a current range and apply the probes direct to the output observing the polarity.

PREPARING THE LAMP

Certain modifications need to be made to the hand-lamp to make it compatible with the two chargers. These are set out below and illustrated in Fig. 8.

For the mains unit: Refer to Fig. 8 and construct the stripboard connector to be attached to the base of the lamp. Interconnect all the strips on the left and righthand sides of the panel and break them all along the centre line as indicated.
Attach the connector to the base of the lamp using two small round-head fixing screws and nuts, with a solder tag under

each nut. Check that the head of each fixing makes contact with at least one copper strip and increase the area of contact with a washer if necessary.
Connect the diode D6 in series with the wire leading from the positive connector to the positive battery terminal. Make sure that the polarity of the diode is observed and sleeve it in plastic to ensure that it cannot touch any adjacent metalwork. On some lamps, a small pad needs to be glued to the base of the lamp to operate the microswitch.

For the 12 V version: Fit the "cassette power socket" SKl to the lamp choosing a site with plenty of free space behind. Connect the diode in series with the wire from the positive terminal to the batteries. Connect the negative terminal direct to the negative terminal of the batteries.
If the lamp is to be charged from either a mains or a battery unit, then it will be necessary to fit it with both a stripboard connector on the base and a socket. Note, however, that only one diode is needed, see Fig. 8.

The purpose of the diode D6 in the lamp housing is to prevent possible discharge of the batteries in the event of the supply being switched off with the unit connected. In the mains circuit it also prevents a short-circuit if the lamp is placed on a metal surface which would join together both sections of the stripboard connector.

USING THE CHARGER

Note that the mains unit must receive adequate support to the underside so place it on a shelf. It must not be free-mounted on a wall-the box is not strong enough for this.

If the batteries are discharged, leave them charging on High for a few days. Experience will soon determine which charge rate is best under particular conditions. Note that it is normal for the case to become warm in prolonged operation.

In the battery circuit, do not remove the plug with the unit switched on. This will make certain that no short-circuits can be caused between the plug and nearby metal parts.

You will never be left in the dark with the Hand Lamp Charging System.

WATCH OUT FOR

No. 9 Another Complete Fantasy Adventure Game Another FREE Poster

On sale NOW!

A replica of the very rare No. 1 issue of Proteus will be given away inside each issue of No. 9 - Two games for the price of one! Plus a free poster.
 ground by now."
banistar

Sell-out disappointment can upset even the less ambitious reader! So why not take out a year's subscription and make sure of every issue, straight from the Publisher? Complete the order form below and post to: EVERYDAY
ELECTRONICS and ELECTRONICS MONTHLY, Subscription Dept., 6 Church Street, Wimborne, Dorset BH21 1JH.
Tel. 0202881749.
Annual subscription rates:
UK £13. Overseas £15 (surface mall),
£30 (alr mall), \& sterling only

EVERYDAY ELECTRONICS and ELECTRONICS

 MONTHLY SUBSCRIPTION ORDER FORM Annual subscription rates:| UK £13. Overseas $£ 15$ (surface mail)
| To: Everyday Electronics and Electronics Monthly, Subscription Dept., 6 Church Street, Wimborne, Dorset BH2 1 1 JH.
Name...

Address

\qquad

TONY SMITH G4FAI

ROUND THE WORLD/MM

TWO HUNGARIAN radio amateurs are sailing round the world in a 9 m long, 2.5 m wide boat, the St. Jupat. Using the callsign HG4SEA/MM (i.e. Maritime Mobile), Nandor Fa and Jozsef Gal sailed from the Adriatic coast on September 26, 1985, via Gibraltar, the Canary Isles, and Tristan da Cunha, reaching Cape Town in Feb '86.
After leaving South Africa in March, the boat capsized to about 60 degrees during a storm, and it took several days to bail it out, right it, and get the radio equipment working again. Heading for Australia, they lost radio contact with their base station in Hungary, HA4KYN, and Australian amateurs, were asked to keep a listening watch for them. On May 10, regular contact was established with Australian stations who relayed advice on the best sea-route to landfall, while New Zealand amateurs supplied the Hungarians with weather reports

During this part of the journey, amateurs passed on a message to Jozsef that his wife, back home, had given birth to a son. On May 20, the St. Jupat arrived at Sydney Harbour, welcomed by yachtsmen, hundreds of members of the Hungarian community, the Australian navy, radio amateurs, and the media

Round about Christmas, the duo planned to sail again, heading towards South America, round Cape Horn, to Argentina, on to the Caribbean, and across the Atlantic back to Europe. One thing is certain. All along their way, radio amateurs will be monitoring their progress, ready to relay messages and provide assistance whenever it is needed

OLYMPIC PLANS

The Korean Amateur Radio League will be installing radio facilities at the 1988 Seoul Olympic Games, with KARL volunteers providing a service to competitors, enabling them to send messages home to the 40 plus countries where third party amateur radio traffic is permitted, (alas, not including the UKI).

All visiting competitors and officials who are also amateurs will be granted temporary operating licences to use the facilities provided, including those from countries which do not normally have reciprocal licensing arrangements with Korea. To commemorate the occasion, individual Korean stations, call prefix HL or HM, will use the suffix 88 during the games, and the special station operating from the Olympic site will use the call 6K88SOG.

AMATEUR TV

The holder of an amateur radio licence has a wide range of communications activities open to him or her, including twoway transmission and reception of television signals. In fact, amateur television attracts many non-licensed enthusiasts as well, who derive great enjoyment from receiving long distance amateur and broadcast TV stations either direct, through relay stations, or relay satellites.

Practitioners, licensed and unlicensed, frequently construct the equipment necessary to create TV studios in their own homes, where they design and produce special effects, work with computer graphics, experiment with colour, and produce TV programmes, recording, editing, and animating their own material.
Licensed on-air activities take place on the 70 cm amateur band (around 436 MHz) and on microwaves on the 1.3 GHz band. Because of the limited bandwidth available on 70 cm , accompanying sound transmissions are on the 2 m band, around 144.75 MHz .

This is conventional television with normal "moving pictures", but an interesting alternative to this is slow-scan TV which transmits "still", lower definition, pictures. This hardly sounds like competition with normal TV, but it has the great advantage that it can be transmitted on the international h.f. amateur bands, providing world-wide TV communications. The signal comprises audio tones between 1200 and 2300 Hz , permitting operation side-byside with other radio transmissions. The signal can be recorded on a normal audio tape recorder, or even sent down a telephone wire.

A low-noise 70 cm pre-amplifier in the feed line improves performance greatly, but probably the most effective way of receiving ATV is to use an up-converter, which converts the incoming 70 cm signal to a frequency within the u.h.f. TV broadcast band. Pre-amps and converters can be home-constructed or bought commercially. Finally, to receive sound, a 2 m receiver is required, capable of receiving 144.750 MHz , f.m.

Having done all that, you will now be able to receive amateur TV signals, see what the operator looks like, see his station and equipment, and generally enjoy transmissions over a wide range of subjects. If band conditions improve, to provide a "lift" you may even receive signals from many European countries.

HELP AND ADVICE

The British Amateur Television Club was founded in 1949 to inform, instruct, and co-ordinate, the activities of radio amateurs experimenting with television transmission. It has a quarterly magazine, CQTV, which includes circuits, constructional articles; news of activities, and so on.

The club can supply members with special items, such as vidicon camera

GETTING STARTED

It is quite easy to make a start in ATV by setting up a receive-only station to begin with. Experience of receiving has persuaded many to take up amateur TV properly. providing a strong incentive to study for, and pass, the Radio Amateurs. Examination.

Many domestic TV sets, especially portables, will tune 70 cm -around channel 17. If there are strong amateur TV signals avaiłable it may well be possible to pick these up by simply re-tuning the domestic receiver. However, as amateur signals are much weaker than broadcast signals, and the sensitivity of a receiver is low at the extremes of its tuning range, the results may not be too satisfactory.

If receiving is to be taken seriously, a rotatable antenna designed for the 70 cm band is required to optimise reception, connected to the receiver by high quality, low loss, coaxial feeder via " N " type connectors.
tubes, scanning and focus coil assemblies, test cards, pcb's, even headed notepaper. There is an annual convention where members display their equipment, exchange ideas, and discuss their problems with each other, and the club exhibits at many of the major amateur radio shows and rallies throughout the year. Contests are held to promote activity on the air.

BATC, which has kindly provided some of the information presented here, has a number of publications specially written for those beginning to take an interest in this absorbing aspect of amateur radio. These include, Introducing Amateur Television, a 12 page booklet giving basic information about ATV and the club itself; and π for Amateurs, a practical introduction giving all the information and designs necessary to assemble, and operate successfully, your own licensed amateur TV station. Details of these and other books, are available by sending an s.a.e. to BATC Publications, 14 Lilac Av., Leics, LE5 1FN.

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

F you're a regular reader and have not yet submitted an idea for Circuit Exchange, why not have a go now? We will pay $£ 40.00$ per page for any article published

We are looking for original ideas which may be simple or complex, but most importantly are useful and practical

To help us to process articles which are offered for publication, all subject matter should conform to the usual practices of this journal. Special attention should be paid to circuit symbols and abbreviations and all diagrams should be on separate sheets, not in the text. Also manuscripts should be typed with wide margins and double line spacing or neatly hand written in the same fashion.

Just send in your idea to our editorial offices, together with a declaration to the affect that it has been tried and tested, is the original work of the undersigned and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proved by us.

SIMPLE MELODY SYNTH

THIS circuit is an interesting project for those hobbyists who have an interest in music and melody. It produces sounds containing different notes, in which the speed and frequency (pitch) can be varied.

The circuit is very straight-forward and uses only two i.c.s. One is a dual 556 timer while the other is a TTL divide-by-twelve binary counter type 7492 .

One half of the timer ICla is used as a clock pulse generator. The duration of clock pulses being established by the values of R1 C5 and VR1, hence we can control the pulse duration of the notes. The output of this clock generator is fed to IC2. The light emitting diode D1 monitors the intervals of clock pulses.

The clock pulses are received at pin 14 (CKA) and pin 1 (CKB) of IC2. This i.c. is used here in pulse divider mode, it converts the pulses into a four-bit output. Capacitors Cl to C 4 connect the outputs to. the 'threshold', pin 12 , of IClb . This is used as a frequency oscillator, its frequency being determined by R3, VR2 and C1 to C4.

The pulses from IC2 charge and discharge

DUAL MODE CONTINUITY TESTER

THIS audible tester unlike most continuity testers, has specific extreme parameters to which it will work. Thus giving a more accurate illustration of the true nature of the material bet ween the probes.

To start with potentiometer VR2 has to be set up to give an earth point (which is not necessarily the mid point), this earth point being the crux of the operation. In the short circuit (S / C) mode, it can be used to test dry joints, etc, i.e. will not buzz above one ohm. This value can be calibrated by the variable control VRI from outside, useful when checking very long wires. Only when the
resistance across the probes is less than VRI does the output of ICla swing high as the inverting input becomes more negative than the non-inverting input. Probe voltage $=$ 1.6 V , current $=0.4 \mathrm{~mA}$.

In the open circuit (O / C) mode buzzing will occur at the slightest continuity. Can be used to check insulation, O/C, etc. When tested, it was still buzzing at 30 megohms. This is because the non-inverting input is held high and the inverting input is floating. The slightest continuity to earth will quickly send pin 2 lower than pin 3 and cause the output to swing positive.
R. R. Goodbourn,

Steyning,
West Sussex.

\approx
capacitors Cl to C 4 , with respect of the binary counting. This develops the generation of different notes, the "Pitch" potentiometer VR2 is used to change the frequency of these notes.

Output from the frequency oscillator is filtered by capacitor $\mathbf{C} 6$, which then drives
speaker LS1. Alternatively, it can be fed to any amplifier by means of jack socket JK2. This unit can be driven from a 5 V regulated power supply via JK1. Changing the values of Cl to C 4 alters the tone of the unit.

Masroor. H. S. Bukhari,
Hyderabad,
Pakistan.

Printed circuit boards for certain constructional projects are now available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics and Electronics Monthly Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics. (Payment in £ sterling only.)

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order on a payment with order basis.

PROJECT TITLE	Order Code	Cost
- JULY '83 - User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
- AUGUST '83 - Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I. T. Part 2 Pedestrian Crossing Simulation M.I. T. Pt 2	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \end{aligned}$
- SEPTEMBER '83 - High Speed A-to-D Converter M.I.T. Pt 3 Signal Conditioning Amplifier M.I.T. Pt 3 Stylus Organ	$\begin{aligned} & 8309-01 \\ & 8309-02 \\ & 8309-03 \end{aligned}$	$\begin{aligned} & £ 4.53 \\ & £ 4.48 \\ & £ 6.84 \end{aligned}$
D-to-A Converter MIT $83-$ High Power DAC Driver M.I.T. Part 4	$\begin{aligned} & 8310-01 \\ & 8310-02 \end{aligned}$	$\begin{array}{r} £ 5.77 \\ £ 5.13 \\ \hline \end{array}$
- NOVEMBER '83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Speech Synthesiser for BBC Micro	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & \text { B311-04 } \end{aligned}$	$\begin{array}{r} £ 5.46 \\ £ 5.70 \\ £ 3.93 \end{array}$
- DECEMBER '83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel'High Speed ADC (Digital) M.I.T. Part 6 Environmental Data Recorder Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-04 \\ & 8312-08 \end{aligned}$	$£ 5.72$ £5.29 £7.24 £3.41
- JANUARY '84 - Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Sc oreboard	$\begin{aligned} & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & \mathbf{£} 6.27 \\ & \mathbf{£} 2.35 \\ & £ 2.56 \\ & \mathbf{£} 9.60 \end{aligned}$
- FEBRUARY '84 - Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{aligned} & 8402-02 \\ & 8402-03 \\ & 8402-04 \end{aligned}$	$\begin{aligned} & \text { £9.56 } \\ & \text { £ } 8.95 \\ & £ 3.52 \end{aligned}$
- MARCH ${ }^{\prime} 84$ - Latched Output Port M.I. T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Con. M.I. T. Part 9 CBM 64 Extension Port Con. M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$\begin{aligned} & \text { £ } 5.30 \\ & £ 4.80 \\ & £ 4.42 \\ & \text { £4.71 } \\ & \text { £4.63 } \end{aligned}$
- APRIL '84 - Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition "PSU" M:I. T. Part 10 A.F. Sweep Generator Quasi Stereo Adaptor	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	f5. 72 E5.20 £5.20 £3.09 £3.55 £3.56

Simple Loop Burglar Alarm Computer Controlled Buggy M.I. T. Part 11 Interface/Motor Drive Collision Sensing — MAY '84 - Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \end{aligned}$
Infra-Red Alarm System Spectrum Bench PSU - JUNE '84 - Speech Synthesiser M.I. T. Part 12 Train Wait	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
Ultrasonic Alarm System Electronic Code Lock - JULY '84 Main Board Keyboard	$\begin{aligned} & 8407-01 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{aligned} & £ 4.72 \\ & £ 2.70 \\ & £ 3.24 \end{aligned}$
- AUGUST '84 - Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{aligned} & £ 4.36 \\ & £ 2.24 \end{aligned}$
- SEPTEMBER '84 -Op-Amp Power Supply	8409-01	£3.45
Micro Memory Synthesiser Drill Speed Controller \qquad	$\begin{aligned} & 8410-01 \cdot \\ & 8410-04 \end{aligned}$	$\begin{aligned} & £ 8.20 \\ & £ 1.60 \end{aligned}$
- NOVEMBER '84 - BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{aligned} & £ 2.90 \\ & £ 2.65 \end{aligned}$
TV Aerial Pre-Amp Digital Multimeter - DEC '84 Mini Workshop Power Supply	$\begin{aligned} & 8412-01^{\circ} \\ & 8412-02 / 03^{\circ} \\ & 8412-04 \end{aligned}$	£ 1.60 £5.20 £2.78
Power Lighting Interface Games Timer Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 8501-02 \\ & 8501-03 \end{aligned}$	£8.23 £ 1.86 $£ 1.70$
Solid State Reverb Computerised Train Controller - FEB '85-	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & £ 3.68 \\ & £ 3.38 \end{aligned}$
- MARCH '85 - Model Railway Points Controller	8503-01	£2.78
Insulation Tester Fibrelarm - APRIL '85 -	$\begin{aligned} & 8504-02 \\ & 8504-03 \end{aligned}$	$£ 2.53$
Auto Phase Amstrad CPC464 Amplifier - MAY '85- Mains Unit Micro Unit Voltage Probe	$\begin{aligned} & 8505-01 \\ & 8505-02 \\ & 8505-03 \\ & 8505-04 \end{aligned}$	$\begin{aligned} & £ 3.02 \\ & £ 2.56 \\ & £ 2.56 \\ & £ 2.67 \end{aligned}$
Graphic Equaliser Computerised Shutter Timer Mono-Bi-Astables (Experimenters Test Bed) Across The River	$\begin{aligned} & 8506-01 \\ & 8506-02 \\ & 8506-03 \\ & 8506-04 \end{aligned}$	$\begin{aligned} & £ 3.21 \\ & £ 2.09 \\ & £ 2.45 \\ & £ 2.63 \end{aligned}$
Amstrad User Port - JULY '85 - Nascom Printer Handshake	$\begin{aligned} & 8507-01 \\ & 8507-02 \end{aligned}$	$\begin{aligned} & £ 3.17 \\ & \text { £ } 1.90 \end{aligned}$
Electronic Building Blocks-1 to 4 \dagger Tremolo/Vibrato Stepper Motor Interface- AUGUST '85 - Drill Control Unit	$\begin{aligned} & 8508-01 \\ & 8508-02 \\ & 8508-03 \\ & 8508-04 \end{aligned}$	$\begin{aligned} & £ 2.98 \\ & £ 4.03 \\ & £ 2.40 \\ & £ 2.90 \end{aligned}$
- SEPTEMBER '85 - RIAA Preamplifier Input Selector Transducers Resistance Thermometer Transducers Semiconductor Temp. Sensor	$\begin{aligned} & 8509-01 \\ & 8509-03 \\ & 8509-04 \end{aligned}$	$\begin{array}{r} £ 2.36 \\ £ 2.64 \\ £ 2.72 \end{array}$
Transducers Strain Gauge - OCT '85 Soldering ir on Power Controller	$\begin{aligned} & 501 \\ & 504 \end{aligned}$	$\begin{array}{r} £ 2.87 \\ £ 2.09 \end{array}$
Transducers- \qquad Magnetic Flux Density Amplifier Hallowe'en Projects (single board price)	$\begin{array}{r} 505 \\ 506 \end{array}$	$\begin{array}{r} £ 3.93 \\ £ 2.68 \end{array}$
Electronic Building Blocks -5 to $8 \dagger$ Opto Intensity Transducer - DEC '85 - Digital Capacitance Meter	$\begin{aligned} & 508 \\ & 509 \\ & 512 \end{aligned}$	$\begin{array}{r} £ 3.07 \\ £ 2.70 \\ £ 5.22 \end{array}$
Mains Delay Musical Doorbell Tachometer-Transducers	$\begin{aligned} & 503 \\ & 507 \\ & 513 \end{aligned}$	$\begin{aligned} & £ 2.13 \\ & £ 2.91 \\ & £ 2.52 \end{aligned}$
Touch Controller Function Generator - FEB '86 Function Generator PSU Board pH Transducer	$\begin{aligned} & 510 \\ & 514 \\ & 515 \\ & 516 \end{aligned}$	$\begin{aligned} & £ 2.65 \\ & £ 3.10 \\ & £ 2.09 \\ & £ 2.75 \end{aligned}$

- Complete set of boards.
M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series. †Four separate circuits

PROJECT TITLE	Order Code	Cost
Mains Tester \& Fuse Finder BBC Midi Interface Stereo Hi Fi Preamp Interval Timer	$\begin{aligned} & 517 \\ & 518 \\ & 519 \\ & 520 \end{aligned}$	£2.27 £3.26 £5.70 £2.36
Stereo Reverb - APRIL '86-	521	¢2.89
PA Amplifier Mini Strobe - MAY '86 Auto Firing Joystick Adaptor	$\begin{aligned} & 511 \\ & 522 \\ & 523 \end{aligned}$	$\begin{array}{r} £ 2.67 \\ £ 2.24 \\ £ 2.73 \end{array}$
Watchdog Percussion Synthesiser , - JUNE '86 - Personal Radio	$\begin{aligned} & 524 \\ & 525 \\ & 526 \end{aligned}$	$\begin{array}{r} £ 2.81 \\ £ 5.65 \\ £ 2.07 \end{array}$
Tilt Alarm Electronic Scarecrow VOX Box Amplifier - JULY'86 Headphone Mixer	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \end{aligned}$	$\begin{array}{r} \text { £2. } 13 \\ \text { £2.28 } \\ \text { £2.35 } \\ \text { £4.56 } \end{array}$
Solar Heating Controller - AUG '86-	533	E3.32
Car Timer \quad SEPT 86 - Freezer Failure Alarm (Trans) Infra Red Beam Alarm (Tam (Rec) Infra Red Beam Alarm (Scratch Blanker	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \end{aligned}$	$\begin{aligned} & £ 2.02 \\ & £ 1.90 \\ & £ 3.32 \\ & £ 3.32 \\ & £ 5.43 \end{aligned}$
10W Audio Amp (Power Amp) (Pre-Amp) £4.78 Pair Light Rider-Lapel Badge -Disco Lights -Chaser Light — OCT '86	$\begin{gathered} 543 \\ 544 \\ 5408541 \\ 542 \\ 546 \end{gathered}$	$\begin{aligned} & £ 2.58 \\ & £ 3.18 \\ & £ 2.70 \\ & £ 4.55 \\ & £ 3.23 \end{aligned}$
Modem Tone Decoder - NOV '86 200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \end{aligned}$	$\begin{aligned} & £ 2.76 \\ & £ 4.12 \end{aligned}$
Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM - DEC '86 (Software Cassette)	$\begin{gathered} 549 \\ 550 \\ 551 \\ 551 S \end{gathered}$	$\begin{aligned} & £ 5.87 \\ & £ 2.35 \\ & £ 2.38 \\ & £ 4.95 \end{aligned}$
Random Light Unit - JAN '87-	552	£4.70

TEACH-IN SOFTWARE

To complement each published part of the Teach-In series (Oct. '85 to June '86), we have produced an accompanying computer program. The Teach-In Software is available for both the BBC Microcomputer (Model B) and the Sinclair Spectrum (48k) or Spectrum-Plus. The programs are despectrum to reinforce and consolidate important concepts and signed to reinforce and consolidate impontwe concepts and
principles introduced in the series. The software also allows principles introduced in the series. The software also allows
readers to monitor their progress by means of a series of readers to monitor their progress by mean
Tape 1 (Teach-in parts 1, 2 and 3). Tape 2 (parts 3, 4 and 5) and Tape 3 (parts 6, 7, 8 and 9) are available for $£ 4.95$ each (inclusive of VAT and postage) from Everyday Electronics and Electronics Monthly, 6 Church Street, Wimborne, Dorset BH21 1JH. IMPORTANT State BBC or Spectrum: add 50 pence for overseas orders; allow 28 days for delivery.

Prices for ELECTRONICS MONTHLY PCBs are shown below.

PROJECT TITLE	Order Code	Cost
Cymbal Synth - DEC '84 - The Thing	EM/84 12/2 EM/84 12/4	$\begin{array}{r} £ 4.86 \\ £ 3.18 \end{array}$
Speak Board - JAN '85-	EM/8501/2	£3.97
Headphone Amp Intelligent Nicad Charger Anti Phaser Logical Lock Touch Dimmer	EM/8502/1 EM/8502/2 EM/8502/3 EM/8502/4 EM/8502/5	$\begin{aligned} & £ 2.08 \\ & £ 3.50 \\ & £ 4.56 \\ & £ 3.58 \\ & £ 3.29 \end{aligned}$
Courtesy Light Extender Disco Light Chaser \qquad	$\begin{aligned} & \text { EM/8503/4 } \\ & \text { EM/8503/5 } \end{aligned}$	$\begin{aligned} & \text { £ } 3.29 \\ & \text { £8.11 } \end{aligned}$
Sound to Light Unit Car Audio Booster - APRIL '85 Short Wave Converter	EM/8504/1 EM/8504/2 EM/8504/3	$\begin{aligned} & \text { £4.02 } \\ & £ 3.12 \\ & £ 4.15 \end{aligned}$
Car Burglar Alarm = MAY 85 -	EM/8505/3	£2.88
Metal Detector Power Supply Module - JUNE '85 - Flanger	EM/8506/1 EM/8506/3 EM/8506/4	$\begin{aligned} & £ 4.24 \\ & £ 3.20 \\ & £ 4.29 \end{aligned}$
El Tom/El Tom+ El Cymb Heartbeat Monitor Real Time Clock	$\begin{aligned} & \text { EM/8507/1 } \\ & E M / 8507 / 2 \\ & E M / 8507 / 3 \\ & E M / 8507 / 4 \end{aligned}$	$\begin{aligned} & £ 4.10 \\ & £ 4.10 \\ & £ 3.98 \\ & £ 4.62 \end{aligned}$
```Intelligent Windscreen Wiper (incl. Terminal Board) HiFi Intercom (2 boards) Plug Power Supply - AUG '85 - Hot Water Alarm```	EM/8508/1/2   EM/8508/3   EM/8508/4   EM/8508/5	$\begin{array}{r} £ 4.12 \\ £ 2.92 \\ £ 2.28 \\ £ 1.93 \end{array}$
Sinewave Generator $\qquad$ Household Battery Checker Audio Signal Generator	EM/8509/1   EM/8509/2   EM/8509/3	$\begin{aligned} & £ 2.76 \\ & £ 1.97 \\ & £ 3.65 \end{aligned}$
Compressor Pedal Computer Cont Filter — OCT :85Spectrum MIDI Interface	$\begin{aligned} & \mathrm{EM} / 8510 / 1 \\ & \mathrm{EM} / 8510 / 2 \\ & \mathrm{EM} / 8510 / 3 \end{aligned}$	$\begin{array}{r} £ 2.87 \\ £ 2.94 \\ £ 3.20 \end{array}$

## SUBSCRIPTIONS

Sell-out disappointment can upset even the less ambitious reader! So why not take out a year's subscription and make sure of every issue, stroight from the Publisher? Complete the order form below and post to: EVERYDAY
ELECTRONICS and ELECTRONICS MONTHLY.
Subscription Dept., 6 Church Street, Wimborne,
Dorset BH21 IJH.
Tel. 0202881749.
Annual subscription rates:
UK £13. Overseas £15 (£ sterling only)

## EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY SUBSCRIPTION ORDER FORM <br> Annual subscription rates:

| UK $£ 13$. Overseas $£ 15$ (surface mail) $£ 30$ (air mail)
| To: Everyday Electronics and Electronics Monthly. Subscription Dept., 6 Church Street, Wimborne, Dorset BH21 1JH.
I




enclose payment of $£$............(cheque/PO in $£$ sterling only payable to Everyday Electronics)
| Subscriptions can only start with the next
available issue. For back numbers see the Editorial page


## PITCH AND LOUDNESS

T is sometimes said that pitch-in the musical sense-is the frequency of a sound. Pitch and frequency are certainly closely connected. But there's a subtle difference. Pitch is what you, a human being, hear. Frequency is what you measure, with an instrument. Pitch, in other words, is a subjective quantity. Frequency is objective.

## HUMAN FACTOR

There are circumstances in which the distinction is far from academic. If an electronic system of some kind produces an output in the form of a sound whose frequency has to be discriminated by the human ear, then the designer of the system needs to know how the human ear performs as a frequency discriminator. That is, he needs to know how well chariges of frequency show up to the listener as changes of pitch.

Music seems to give some pointers. As you go up the musical scale successive tones do not correspond to equal increases of frequency. Instead, the frequency difference increases as you move up from tone to tone. Thus, $G=392 \mathrm{~Hz}$ is followed by $A=440 \mathrm{~Hz}$, then $B=494 \mathrm{~Hz}$. The successive intervals are 48 Hz and 54 Hz , not a constant quantity.
This suggests that the ear, unlike a digital frequency meter, responds not to absolute frequency increases but to proportional increases. The proportion is what is constant.

In fact, to obtain any next-higher semitone from the preceding one this has to be multiplied by the twelfth root of two. This gives twelve notes per octave, spaced out in equal proportion.
On this basis it would seem that if, in some system, the ear must respond to a small change in frequency, then the frequency which changes should be as low as possible, because this makes the proportional change high. For instance, if the starting or reference frequency is 100 Hz , and the change is by 10 Hz , this is a change of 10 per cent. But a reference frequency of 1000 Hz , changing by the same 10 Hz , gives a proportional change of only 1 per cent.
On this basis, if the ear responds to percentage changes, as music suggests, using a reference of 100 Hz should make discrimination by ear ten times easier than using 1000 Hz

## PERCEPTION

In practice, it doesn't work out like that. If you set up an experiment to find out what change of frequency produces a Just-Noticeable Difference (J.N.D.) in pitch, the result looks like Fig. 1. The important thing here is that the ear's sensitivity to pitch itself varies with frequency. At 100 Hz , it takes a 3 per cent change to be noticeable to the average ear.
As the frequency rises the sensitivity rises 100 , until at 1000 Hz a change of only 0.3 per cent is just noticeable. After that the ear's performance, pitch-wise, falls off. The result of this variation in sensitivity is that over the 100 Hz to 1000 Hz range the ear behaves as an absolute frequency discriminator and can detect a change of 3 Hz anywhere in the range.

Remember, however, that published figures are for the average person operating in laboratory conditions with minimal background noise. Anyway, the ear doesn't respond to frequency in quite the way music suggests. For once, nature seems to be on the side of the engineer, making his choice of reference frequency comfortably wide-100-1000Hz.


Fig. 1. The ear's ability to perceive small changes of pitch varies with the frequency of sound.

Fig. 2. Equal-loudness curves. To maintain the same subjective volume the real acoustic intensity has to be adjusted as the frequency changes.

## THE REAL WORLD

When you come out of the laboratory and into the real world things turn out to be different. If, like me, you play around with metal detectors, you may have discovered that for yourself. One easily-made type of detector, the BFO (beat frequency oscillator) detector does require the user's ear to respond to small changes in pitch.

You soon discover that the best results are obtained by setting the reference frequency somewhere near the low end of the voice band, say 100 to 300 Hz . You also find that it helps to adjust the tuning so that, when metal comes into range, the pitc̄h rises rather than falls. And further, it seems easier to notice small changes if you listen with padded earphones (to reduce ambient noise) and set the volume to be just comfortably audible, not loud.

That's the real-world situation, arrived at by trial and error. The question is: why?

## PHYSICS and PSYCHOLOGY

The answers have in fact been sitting in textbooks of physics and psychology (the "experimental" sort of psychology, not the clinical sort) for decades. These give the results of other experiments which add to the information in Fig. 1
These "experiments" show (Fig. 2) that the response of the ear varies with both frequency and sound level. Fig. 2 shows the loudness of sounds; loudness, like pitch, being a subjective quantity.

To produce, these curves, listeners are given half-second bursts of a standard 1000 Hz tone at a known level and asked to adjust a volume control which governs a comparison tone on some other frequency. When both tones sound equally loud, the setting of the volume control shows whether the ear is more sensitive or less sensitive to the comparison tone than to 1000 Hz .

At 100 Hz , for example, the ear is about 15 dB less sensitive to weak sounds than at 1000 Hz . Maximum sensitivity comes at around 4 kHz , but remember this is sensitivity to sound level, not to pitch. So 4 kHz would be a good bet if you are designing a simple measuring bridge with no output amplification but, as we've seen from Fig. 1, it's not a good bet for a BFO metal detector where pitch-changes, not levelchanges, are what matter.

Fig. 2 shows that if the reference frequency is low any rise of frequency produces an accompanying rise of loudness. This is consistent with the trial-and-error finding that it's better to set up for a rise of pitch than a fall. A fall reduces volume and makes the observation more vulnerable to masking by ambient noise.


FREQUENCY $\mathrm{H}_{2}$
The "change-in-foudness-with-change-in-pitch" effect is strongest when the volume is low. Again, this is consistent with field experience. But if volume is set too low interference from external sounds becomes troublesome.

The decibel figures on the loudness curves in fact refer to a "OdB" level, not shown, which represents a just-audible sound. This puts a practical working point somewhere about the 40 dB curve.

## MASKING

Other laboratory experiments have shown that interfering sounds blur or mask sounds which are higher in. pitch than the interference but have much less effect on lower frequencies. This favours setting the reference frequency low, because then at least some interfering noises will be far enough above it in pitch not to cause trouble.

From Fig. 2, the rise in loudness with frequency suggests that the reference frequency should be really low, say 30 Hz . This would also have the advantage of reducing the risk of masking by keeping interfering noise to the minimum.
In practice, one usually finds that the best reference frequency is much higher, $150-300 \mathrm{~Hz}$. The reason is that the cheaper sort of stereo earphones, as used with metal detectors, often have a resonance at $200-400 \mathrm{~Hz}$. Setting the frequency a bit lower than the resonant peak puts this to use. In effect the resonance steepens the slope of the Fig. 2 curves as the resonant peak is approached.

# EVERYDAY <br> ELECTRONICS 

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 30 pence per word (minimum 12 words), box number 60 p extra. VAT must be added. All cheques, postal orders, etc., to be made payable to Everyday Electronics. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21. 1JH. Tel.: 0202881749.

## Electronic Components

ELECTRONIC COMPONENTS IN HOVE, SCS Components, 218 Portland Road, Hove, Sussex (also mail order). Tel: 770191

HUNDREDS OF UNUSUAL ITEMS CHEAP! Send 78 p for interesting samples and list. Grimsby Electronics, Lambert Road, Grimsby.

HARD TO GET Japanese transistors, i.c.s, cables -bargain packs. Send for list. B Components, 30 Arkley Court, Holyport, Maidenhead.

## Computer Discs

FREE DISC!-when you request our amazing disc prices-Nebulae (Dept. MK), Freepost, Carrickfergus, Co. Antrim BT 38 7BR

## Test Gear

Components Tester   Components tester turns any oscilloscope with $X \cdot Y$ input facility into a valuable component tester. Tests all types of semiconductors, capacitors, resistors, etc. in or out of circuit and displays result on CRT. Ideal fault finding toot. Complete with test leads and instructions. Only $£ 19.95$ plus $£ 2$ p\&p. Send cheque/P.O. to



## TURN YOUR SURPLUS

ICS transistors etc into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance
Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs *ESTABLISHED OVER 10 YEARS* Tel: 0945584188

## Service Manuals

SERVICE SHEETS from $£ 2.50 / 1$ sae ctv/musc/combis $£ 3.50 / 1$ sae. Sae Newnes \& TV Technic Books in stock. Thousands Service \& Repair Manuals. SAE Free Review/pricelists. TIS (EE), 76 Church St, Larkhall (0698 883334), Lanarkshire.

SERVICE MANUALS. Most makes Audio, Television, Test, Amateur, Vidco. SAE enquiries. Mauritron (EE), 8 Cherrytree Road, Chinnor, Oxfordshire.

| ELECTRONIC |
| :---: | :---: |
| COMPONENTS |

## Printed Circuit Boards

COMPUTER AIDED DESIGN PCB LAYOUT from your schematic drawings. Single and double sided. Output as either pen-plot, photo-plot or prototype PCBs. Includes component overlay, solder mask and computer drawn schematic. Further details from TrucounT Ltd., P.O. Box 11, Burntwood, Walsall WS7 OLS, or Phone (05436) 75588.

PRINTED CIRCUIT BOARDS made to own requirements. Send for details or phone Brighton 720203. Please send SAE

CIRCUIT BOARDS etched to your design. Contact Q.E.D.. 6 Totternhoe Road, Dunstable, Beds. LU6 2AG.

## Careers Guidance

CV PLANNER booklet to improve job prospects. Send Cheque/PO, $£ 2.00$ to TELSEC, 1 Keighlèy Road, Trawden, Colne, Lancs. BB8 8RW.

Insertions. I enclose Cheque/P.0. for
Please insert the advertisement below in the next available issue of Everyday Electronics for (Cheques and Postal Orders should be made payable to Everyday Electronics)

				1		

HEADING REQUIRED:
NAME
ADDRESS

EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY
Classified Advertisement Dept.,
6 Church Street,
Wimborne,
Dorset BH21 1JH.
Telephone 0202881749
RATE: 30p per word, minimum 12 words. Box No. 60p extra. VAT must be added.

## OMNI ELECTRONICS

-would like to wish their customers a happy and 'constructive' 1987
We stock a wide range of components:
transformers, switches, pots, ICs, capacitors, resistors, diodes, boxes, triacs, LEDs, cable, connectors, PCBsin fact, all you need for your projects.
Send for our 21 page catalogue- $-20 p+12 p$ postage or call at our shop Mon-Fri 9am-6pm, Sat 9am-5pm.
Please note-we will close at 2.00 pm on December 24th and reopen on January 5th.

## 174 Dalkeith Road EDINBURGH EH16 5DX 031-667 2611

## E1 BARGAIN PACKS

```
PK 1. 350 Assorec resistors full lengit leads
PK 2. 400 Assored resstors. Pre tormed lemats
PK 3.60 Assorted resitons Wire wound
PK 4. 200 Assortod cmacciors
PK6. 60 Electrolyuc capackris
PK 7. 2 2200,ut 100 val copscitors.
PK7. 2 2200,4t 100 woh capscitors.
PK 9. 12 As sorted rolary potertiometers Single
PMK 10.6 Assortod rotary potentiometers Dual
PK 11. 12 Assorted slider potentommters
PK 12. 40 Assoried pra-set potentiometers
PK 13.5 100K in mulimum potentionmems.
PX 14.5 I meg in mulinumn potentiomeers.
PK 15. 12 Assoriec mwithes.
PK 18.1 Disik 4-wary push burton switches e/w knobs.
PK}18, i5 pole 5-way water swic
PK 18. 15 Assomiod cantial knobs
PK 20.2 Parrs D.C. plugs a& sockets e/w loads & PP3 clip
PK 21. 25 Assortod trmsistrers All now & coded
PK 22. 15 Assorted IC&. All new & coded
PK 23. 50 Assorted unmarkod & untested I.Cs
PK 24. 200 Assortod dindes
PM 26. 3 Large power-fon hoatsinks TO3.
PK}27.1 & section 7 segment l.e.d. clock display.
PK 28 20 Ascorted nsons Panel mounting &o wre anded
PK 29. 1 Murophone c/w lead, switch, plugs a stend.
PK 30 3 Mcrophone isser's
PK 31. 3 Omarmc eapieces c/w lead e 3.5mmplog
PK 32.2 Triescopocicerrals
PK 33. 1 Stereo cassmme tace head
PK 34. 2 Small cassette motor
PK 35 I Large casserte moto
PK 3B. I Wre peck, Mmens cable
Pr 37. 1 Wire pack Sereened signal crable
PK. 38. I Wre pack Connecting wive Assorter
Postal order or cheque with order. Please add E1 postage & packing per order. Shop open
lol
```

MJR WHOLESALE, 238 Waterside,
Chesham, Bucks HP5 1PG. Tel: 0494771033

## TELEVISION/COMPUTER FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL)

2 YEAR
BTEC National Diploma (OND) ELECTRONIC \& COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)

## 15 MONTHS

BTEC National Certificate (ONC) ELECTRONIC EOUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis)
15 MONTHS
BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Soltware/Hardware, Microelectronic Testing Methods)

## 9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Fault Diagnosis, ATE, Robotics!
THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVTOUS ELECTRONICS KNOWLEOGE
O.N.C. 5th Jan/20th April 1987

FULL PROSPECTUS FROM

## LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT LONDON SW5 9SU. Tel: 01-373 8721

## 'VISIT SUSSEX'S NEWEST COMPONENTS SHOP'

## C. GOMPONENTS

We can supply components for projects published in Everydav Electronics - Phone Prices
Wide range of components in stock including ICs, Resistors, Diodes, Switches, Capacitors, Boxes, Cables, Connectors, etc, etc
Current special offer on LEDs and Capacitors Send two 13p stamps for FREE mail order catalogue

## SCS COMPONENTS 218 Portland Road, Hove BN3 5QT

Callers welcome
Barclaycard accepted
Open Monday to Saturday from 9 to 5 - closed all day Wednesday
More than 8 million students throughout the world have found it worth their whilel An ICS home-stuoy course can help you get a better job, make more money and have more correspondence school in the world you learn at your own pace whend is the largest
 Post or phone today for your FREE INFORMAION PACK on the course
(Tick one box only!)

Electronics	$\square$	Radio, Audio   and TV Servicing	$\square$

## INDEX TO ADVERTISERS

ALCON INSTRUMENTS
17
BI-PAK
.. 4
B.K. ELECTRONICS

BULL, J. \& N
Cover II
CIRKIT HOLDING
C.P.L. ELECTRONICS .................................................................. 2

CROTECH INSTRUMENTS.
CROYDON DISCOUNT ELECTRONICS ................................. 4
C SCOPE
.46
GREENWELD ELECTRONICS ................................................... 5
I.C.S. INTERTEXT .................................................................... 64

LONDON ELECTRONICS COLLEGE ....................................... 64
MAGENTA ELECTRONICS .......................................................... 6
MAPLIN ELECTRONICS ............................................. Cover IV
MARCO TRADING.
M.J.R. WHOLESALE. 64

OMEGA ELECTRONICS
46

OMNI ELECTRONICS
PHONOSONICS
.. 3
RADIO COMPONENT SPECIALISTS ..................................... 19
R.T.V.C.

RISCOMP LTD
RODEN PRODUCTS
SCS COMPONENTS..
STEWART OF READING
T.K. ELECTRONICS

## OPP POWER AMPLIFIER MODULES

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDL OMP POWER AMPLIFIER MODULES
wortd-wide reputation for quality. reliability and perfor mance at a realistic price. Four models Instrumental and Hi.Fi. etc. When comparing prices. NOTE all models include Toroidal power supply. Integral heat sink. Glass fibre P.C.B. and Drive circuits to power compatibl


OMP 100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. $0.01 \%$, S.N.R. 118 dB . Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $\mathbf{f 3 3 . 9 9}+\mathbf{f 3 . 0 0}$ P\& P
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical $0.002 \%$. Input Sensitivity 500 mV , S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE
PRICE $f 3999+f 300 \mathrm{P} \& \mathrm{P}$ PRICE $f 39.99+f 3.00$ P\&P
OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical $0.001 \%$, Input Sensitivity 500 mV , S.N.R. 130dB. Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE
PRICE $662.99+£ 3.50$ P\&, P. $3.50 \mathrm{P} \mathrm{\& P}$.
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350 , Siew Rate 60 V uS. T.H.D. Typical -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $f 79.99+f 4.50$ P\&P.

NOTE: Mos-Fets are supplied as standard ( 100 KHz bandwidth \& Input Sensitivity 500 mV ). If required P.A. version ( 50 KHz bandwidth \& Input Sensitivity 775 mV ). Order - Standard or P.A.


Vu METER Compatible with our four amplifiers detailed above. A very accurate visual display emploving 11 L.E.D. diodes ( 7 green, 4
red) plus an additional on/off indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $\mathbf{1 8 . 5 0}+\mathbf{5 0 p}$ P\&P.

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details.

POWER RANGE
$8{ }^{8 .} 50$ WATT R.M.S. Hi.Fi/Disco
 12"100 WATT R.M.S. Hi-Fi/Disco
${ }^{\text {Freq. }} 25 \mathrm{~Hz}$ Freq. Resp. to 4 KHz . Sens. 95 dB . PRICE $£ 28.60+£ 3.00 \mathrm{P} \mathrm{\&}$ P ea.

## McKENZIE

$12^{\prime \prime} 85$ WATT R.M.S. C1285GP Lead Guitar/Keyboard/Disco $2^{2}$ ally voice coil. Ally centre do
PRICE $£ 29.99+f 3.00$ PRP

Res. Freq. 45 Hz . Freq. Resp. to 14 KHz . PRICE $£ 31.49+£ 3.00$ P\&P ea
$\mathbf{1 5}^{\prime \prime} 150$ WATT R.M.S. C15 Bass Guitar/Disco
 2" voice coil. Res. Freq. 75 Hz . Freq. Resp. to 7.5KHz. Sens. 99 dB . PRICE $£ 19.99+£ 2.00$ P\&P.
$10^{\prime 2} 200$ WATT R.M.S. C10200GP Guitar/Kerbord $2^{\prime \prime}$ voice coill. Res. Freq. 45 Hz . Freq. Resp. to 7 KHz . Sens. 101 dB . PRICE $£ 44.76+£ 3.00 \mathrm{P} \mathrm{\& P}$. $15 " 200$ WATT R.M.S. C15200 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp. to 5 KHz . Sens. 101 dB . PRICE $£ 62.41+£ 4.00 \mathrm{P} 8 \mathrm{P}$.

Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB . PRICE $£ 89.52+£ 4.00$ P\&P
WEM WATT R.M.S. Muttiple Array Disco etc
$1^{1 "}$ voice coil. Res. Freq. 52 Hz . Freq. Resp. to 5 KHz . Sens. 89 dB . PRICE $£ 22.00+f 1.50 \mathrm{P} \mathrm{\& P}$ ea ${ }^{1 \%}$ woin Wail R.M.S. Multiple Array Disco etc.
10 voice col. Res. Freq. 48 Hzz . Freq. Resp. to 5 KHH . Sens. 92 dB . PRICE $£ 32.00+£ 1.50$ P 8 P P $11^{-2}$ vorce coil. Res. Frea. 35 Hz . Freq. Resp. to 4 KHz . Sens. 92 dB . PRICE $£ 36.00+£ 2.00 \mathrm{P} \mathrm{\&} \mathrm{P}$ ea. $12 "$ " 300 WATT R.M.S. Disco/Sound re-enforcement etc
$1 \frac{1}{2} "$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz .
SOUNDLAB (Fult Range Twin Cone)
5" 60 WATT R.M.S. Hi-Fi/Multiple Array Disco
 voice coil Res. Fse. H6.FFz Multiple Array Disco etc. $8^{\prime \prime} 60$ WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
10" 60 WATT R.M.S. Hi-Fi/Disco etc
1/4 voice coil. Res. Freq. 35 Hz . Freq. Resp. 1015 KHz . Sens. 89 dB . PRICE $16.49+\varepsilon 2.00$ P\&

Pa N N NTV區HOBBY KITS. Proven designs including glass components complete with instructions. FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive. microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}(9$ volt) Price: $18.62+75 p$ P\& P
3 WATT. FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled protessional performance. Range
(12 voll) Price: $\mathrm{E} 14.49+75 \mathrm{p}$ Pap.
SINGLE CHANNEL RADHO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation, Recoiver output operates relay with $2 \mathrm{amp} / 240$ vol contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ voll. Price:
$£ 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt). Price: $£ 11.29$ P\&P +75 peach. S.A.E. for complete list.
 ORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMENT VISA/ACCESS/C.O.D. ACCEPTED

3 watt FM

## STEREO DISCO MIXER

STEREO DISCO MIXER with $2 \times 5$ band L. \& R. graphic equalisers and twin 10 segment 5 Inputs with individual faders providing a useful combination of the following: 3 Turntables (Mag), 3 Mics, 4 Line plus Mic Pan Paik ove Master Output controls. Out put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$
Price $£ 134.99-£ 3.00$ P\&P


OMP LINNET LOUDSPEAKERS The very best in quality and value. Made specially to suit todays
need for compactness with high sound output levels. Finished in hard wearing black vynide with-protective cor ners, grille and carry handle. All models 8 ohms. Full range $45 \mathrm{~Hz}-20 \mathrm{KHz}$. Size $20^{\prime \prime}$ OMP 12-100 Watts 100 dB . Price $£ 149.99$ per pair.
OMP 12-200 Watts 102 dB . Price $£ 199.99$ per pair.


OMP 19" STEREO RACK AMPS


Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 4 ohms). Input Sensitivity 775 mV MF200 (100 + 100)W. £169.00 Securicor MF400 $(200+200)$ W. $£ 228.85$ Delivery MF600 $(300+300)$ W. £299.99 £10.00

1 K-WATT SLIDE DIMMER
 * Compact Size
 ing through pane ${ }_{*}$ cabinet Insulated p case

* Fu trol using 8 amp

BS800 ${ }_{*}^{\text {triac }}$ Conforms 10

Suitable for both resist ance and inductive loads. In numerable applications in disco's. theatres etc. PRICE $513.99+75 p$ P\& P

BSR P295 ELECTRONIC TURNTABLE Electronic speed control 45 \& $331 / \mathrm{r}$.p.m. *Plus
Minus variable pitch control $*$ Bett driven *. Aluminium plater with sirobed rim * Cue lever $\star$ Anti-
skate (bias device) \& Adjustable counter balance $\star$ skate (bias device) * Adjustable counter balance
Manual arm ${ }^{*}$ Standard $1 / 2^{*}$ cartrige fixings ** Supplied complete with cut out templaie
Operation 9.14 V D.C.
Price $£ 36.99-£ 3.00$ P\&P.

## PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinaiy dynamic tweeters. As crossover is not required these units can be added to existing speaker systems of up to 100 watt
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN2036A) 3 " round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $£ 4.90$ each +40 p P\&P. TYPE 'B' (KSN1005A) 31/2' super horn. For general £5.99 each +40 p P\&P.
TYPE 'C' (KSN6016A) 2" $\times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc Price $£ 6.99$ each +40 p P\&P.
TYPE 'D' (KSN1025A) 2"' $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range ( 2 KHz ). Suitable for high quality Hi-fi systems and quality discos. Price $\mathbf{£ 9 . 9 9}$ each TYPE ' E '
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with
attractive silver finish trim. Suitable for Hi-fi monitor atractive siver
systems etc. Price $£ 5.99$ each $+40 p$ P\&P. LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket


## 1987 BUYER'S GUIDE TO ELECTRONIC COMPONENTS



Pick up a copy of our new 1987 catalogue from all branches of W.H. Smith for just $£ 1.50$.
Or post this coupon now, to receive your copy by post for just $£ 1.50+40$ p p \& p. If you live outside the U.K. send $£ 2.50$ or 11 International Reply Coupons. I enclose $£ 1,90$.

## Name

Address

...........................................................................................
..............................Post Code .
............................. EEM187
avallable IIV All W.H. SMITH STORES ORDER YOUR COPY NOW!

## MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554161
SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6.

Telephone: 01-748 0926

- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel:0703 225831
- SOUTHEND 282-284 London Rd, Westclift-on-Sea, Essex.

Telephone: 0702-554000
Shops closed all day Monday.

