Easy to build projects for everyone JAN. 80 45p CS

WATFORD ELECTRONICS
 , Amerr

 } ALL DEV
DESPAT
PGOSOP
INSTITU
WELCOM
POSTAG
VAT
CES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDER We stock many more items. It pays to visit us. We are situated behind Watford Football Saturday 9.00 am- 6.00 pm . Ample Free Car Parking space avallable.
POLYESTER CAPACITORS: \qquad
$150 \mathrm{n}, 220 \mathrm{n}, 24 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 41 \mathrm{p} ; 680 \mathrm{n} 52 \mathrm{p} ; 1 \mu \mathrm{~F} 64 \mathrm{p} ; 2 \mu 82 \mathrm{p}$.
$160 \mathrm{~V}: 39 \mu \mathrm{~F}, 100 \mathrm{n}, 150 \mathrm{n}, 220 \mathrm{n} 11 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 19 \mathrm{p} ; 680 \mathrm{n}, 1 \mu \mathrm{~F} 22 \mathrm{p} ; 1 \mu, 2 \mu 232 \mathrm{p} ; 4 \mu 7 \mathrm{36p}$ 1000V: $39 \mu \mathrm{FF}, 15 \mathrm{n}, 20 \mathrm{p}$; 22n 22p; 47n 26p; $100 \mathrm{n} 38 \mathrm{p} ; 470 \mathrm{n}$ 53p; $1 \mu \mathrm{~F} 175 \mathrm{p}$. POLYESTER RADIAL LEAD CAPACITORS (250V) FEED THROUGH 10nF, 15n, 22n, 27n, 5p; 33n, 47n, 68n, 100n 7p; $150 n$
13p; 470n 17p; 680π 19p; $1 \mu \mathrm{~F} 22 \mathrm{p} ; 1 \mu 5$ 30p; $2 \mu 234 \mathrm{p}$. \qquad 1000pF 350 V ELECTROLYTIC CAPACITORS: Axial lead type (Values are in $\mu \mathrm{F}$) $500 \mathrm{~V}: 1040 \mathrm{p} ; 4768 \mathrm{p}$;

 $33014 \mathrm{p} ; 47016 \mathrm{p} ; 1000,150020 \mathrm{p} ; 2200 \mathrm{34p} ; 10 \mathrm{~V}: 1006 \mathrm{p} ; 64012 \mathrm{p} ; 100014 \mathrm{p}$.
TAG-END TYPE: $450 \mathrm{~V}: 100 \mu \mathrm{~F}$ 180p; 70V: $4700165 \mathrm{p} ; 64 \mathrm{~V}: 3300130 \mathrm{p}$; 105p; 2200 99p; 00V: 15,000 399p; 4700 120p; 4000 92p; 3300 93p; 2500 85p; 2200 85p; $2000+$ $2000 \mathrm{20p} ; 30 \mathrm{~V}: 4700$ 90p; 25V: 6400 105p ; 4708 85p;

\section*{| TANTALUM BEAD CAPAC1- | POTENTIOMETERS: (ROTARY) | OPTO |
| :--- | :--- | :--- |
| TORS $35 \mathrm{~V}: 0.1 \mu \mathrm{~F}, 0.22,033,0.47$, | Carbon Track. 0.25 W Log \& 0.5 W | ELECTRONICS |
| LEDs plus cllps | | |} $0 \cdot 68,1 \cdot 0,2 \cdot 2 \mu \mathrm{~F}, 3-3,4-7,6-825 \mathrm{~V}$

$1 \cdot 5,1020 \mathrm{~V}: 1-516 \mathrm{~V}: 10 \mu \mathrm{~F} 13 \mathrm{p}$ each $47,10040 \mathrm{p} .10 \mathrm{~V}: 22 \mu \mathrm{~F}, 3320 \mathrm{p} .6 \mathrm{~V}$:
$47,68,100,30 \mathrm{p} 3 \mathrm{~V}: 68,100 \mu \mathrm{~F} .20 \mathrm{p}$

MYLAR FILM CAPACITORS

100V:0.001,0.002, 0.005,0.01 $\mu \mathrm{F}$ 6p
$0.015,0.02,004,0.05,0.056 \mu \mathrm{~F} .7 \mathrm{p}$
$0.1 \mu \mathrm{~F}, 0.29 \mathrm{p} \quad 50 \mathrm{~V}: 0.47 \quad 12 \mathrm{p}$
MINIATURE TYPE TRIMMERS $\begin{array}{ll}2-5 \cdot 6 \mathrm{pF}, 3-10 \mathrm{pF}, 10-40 \mathrm{pF} & \mathbf{2 2 p} \\ \mathbf{5 - 2 5 p F}, 5-45 \mathrm{pF}, 60 \mathrm{pF}, 88 \mathrm{pF} & \mathbf{3 0 p}\end{array}$ $500 \Omega, 1 \mathrm{~K} \& 2 \mathrm{~K}$ (Lin. oniy) Single 27p
$5 \mathrm{~K}-2 \mathrm{M} \Omega$ single gang
$5 \mathrm{~K}-2 \mathrm{M} \Omega$ single wlth $D P$ switch 65 p $5 \mathrm{~K}-2 \mathrm{M} \Omega$ single with
$5 \mathrm{~K}-2 \mathrm{M} \Omega$ double gang switch
SLIDER POTENTIOMETER COMPRESSION TRIMMERS 3-40pF, $10-80 \mathrm{pF} 30 \mathrm{p} ; 25-190$
100500 pF 45 p 1250pF 58p. $0 \cdot 25 W \log$ and linear values 60 mm
$5 \mathrm{~K} \Omega-50 \mathrm{~K} \Omega$ single gang
$10 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ dual gang
Self Stick Graduated Bezels PRESET POTENTIOMETERS
Vertical \& Horizontal
$0-1 \mathrm{~W} 50 \Omega-5 \mathrm{M} \Omega$ Minlature POLYSTYRENE CAPACITORS
10pF to 1 nF 8p: $1 \cdot 5 \mathrm{nF}$ to 10 nF 10p. SILVER MICA (Values in pF) 3-3, $4-7,6-8,10,12,18,22,33,47$
$75,82,85,100,120,150,180$
$220,250,300,330,360,390$, 220,250
600,820
\qquad CERAMIC CAPACITORS: 50 0.5 pF to 10 nF 4p;22n to $100 \mathrm{n} \mathbf{6 p}$.
EURO BREADBOARD £5.30.

New 'L' series irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. New non-roll GRP safety handles. Ceramic and mica insulated elements enclosed in stainless steel shafts. Fully earthed with screw connected 3 -core leads. Interchangeable, non-seize ironcoated bits.

MODEL LC18 18 watts

Lightweight, high-performance iron for all soldering from calculators to T.V. sets. Fitted with 3.2 mm bit and complete with spare bits $1.6 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $4.7 \mathrm{~mm} . £ 7.89$ including P \& P and V.A.T. 240 volts standard but also available 12 and 24 volts

MODEL LA12 12 watts

Similar to LC18 but with extra slim shaft and bits for fine work. Fitted with 2.4 mm bit and complete with spare bits 1.2 mm and 3.2 mm £6. 69 including P \& P and V.A.T. 240 volts standard, also available 6, 12 and 24 volts.

No. 3 SAFETY SPRING STAND for LC18 \& LA12

Complete with sponge and location for spare bits £3.63 including P \& P and V.A.T.

JOIN UPWIT

C35S CORDLESS SOLDERING IRON

Built-in rechargeable batteries and twin spotlights. Heats in seconds. Solders safely anywhere. Complete with mains charger, sponge, 3 different tips and screwdriver

NEW G100 SOLDERING GUN

Safe 100 watt instant-heat, trigger operated tool. Heats and cools in seconds. With spotlight. For difficult or large joints, and shaping plastics. Ideal domestic and workshop tool. Complete with 2 spare tips, spanner, solder and flux $£ 13.65$ including P \& P and V.A.T.

LIGHT SOLDERING DEVELOPMENTS LIMITED

ELETRDTHTKT

DENSHI KITSSPECIAL OFFER

" . . . fun and entertainment

as well as education"
 (EVERYDAY ELECTRONICS mag.)

The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits ąre safe for anyone.

SR-3A KIT
£29•95

$$
\left(16 \frac{1}{2} \times 10 \times 2 \frac{1}{2}^{\prime \prime}\right)
$$

Build over 100 projects including 3-TR reflex radio receiver, 3-TR racio receiver with RF amplifier, 2-TR reflex radio receiver, 3-TR amplifier for crystal mike, 3-TR amplifier for speaker/mike, 3-TR signal tracer, Morse Code trainer; 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleeping aid, high voltage generator, discontinuity warning device, water supply warning device, photoelectric alarming device, 3-TR burglar alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photoelectric alarming device, Morse Code trainer with sound \& light, discontinuity warning device with sound \& light, water level warning device with sound \& light, electronic metronome with sound \& light, buzzer with sound $\&$ light, wireless mike, wireless telegraph set, wireless discontinuity warning device, wireless water level warning device, wiceless water supply warning device, wireless photoelectric warning device etc. etc.

SR-3A de luxe KIT £39.95

(illustrated $16 \times 14 \times 3 \frac{1^{\prime \prime}}{}$)
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include batteries, educational manuals, free book, VAT, p\&p (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard (or 16p. for illu.strated literature) to DEPT. EE.

ELECTRONIC BOOKS

Rel. Title

Price

126 BOYS BOOK OF CRYSTAL SETS
HAND BOOK OF PRACTICAL ELECTRONIC MUSICAL NOVELTIES
202 HANDBOOK OF IC EQUIVALENTS AND SUBSTITUTES
207 PRACTICAL ELECTRONIC SCIENCE PROJECTS
PRACTICAL STEREO AND QUADROPHONY HANDBOOK BUILD YOUR OWN ELECTRONIC EXPERIMENTERS LABORATORY 8 TESTED TRANSISTOR PROJECTS
SOLID STATE SHORT WAVE RECEIVERS FOR B-GINNERS 50 CMOS IC PROJECTS
224
205 CMOS IC PROJECTS
225
226 HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS
227 BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS
RCC RESISTOR COLOUR CODE DISC CALCULATOR
BPI FIRST BOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES
BP7 RADIO AND ELECTRONIC COLOUR CODES AND DATA CHARTS
BP14 SECOND BOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES CONTROLLED CLOCKS
BP32 HOW TO BUILD YOUR METAL AND TREASURE LOCATORS
BP43 HOW TO MAKE WALKIE-TALKJES
BP48 ELECTRONIC PROJECTS FOR BEGINNERS
BP56 ELECTRONIC SECURITY DEVICES
BP57 HOW TO BUILD YOUR OWN SOLID STATE OSCILLOSCOPE
BP58 50 CIRCUITS USING 7400 SERIES ICs
BP59 SECOND BOOK OF CMOS ICS PROJECTS
BP61 BEGINNERS GUIDE TO DIGITÄL TECHNIQUES 100p

Please add 20p o \& p per book. No VAT on books. Send SAE for full list of Babani gook

OPTO-ELECTRONICS

Red Leds Display
$0 \cdot 125^{\prime \prime}$ 13p DL707 $130 \mathrm{p} \quad$ T1L311 500 p $\begin{array}{llll}0.2^{\prime \prime} & 14 \mathrm{p} & \text { DL747 240p } \\ \text { Green } & \text { THL321 120p }\end{array}$ $\begin{array}{lll}\text { Green } & \text { FND500110p } & \text { TLL322 120p } \\ 0-125^{\prime \prime} & \text { 16p } & \text { FND } 507110 \mathrm{p} \\ \mathbf{3 0 1 5 F} & 200 \mathrm{p}\end{array}$ $\begin{array}{lll}\text { O. 125 } & \text { 16p } & \text { FNDS07110p } \\ 0.2^{\prime \prime} & 20 p & \text { ORP12 90p }\end{array}$

Pocket Multimeter LT22 (20K/V)
$5 \cdot 03$
12.06

STABILISED POWER SUPPLY $400 \mathrm{~mA} \quad 3 \mathrm{~V} 6 \mathrm{~V} 7.5 \mathrm{~V} 9 \mathrm{~V}$

```
ULTRASONIC TRANSDUCERS Rx \& Tx
3.45 pr
```

EXPERIMENTOR BREADBOARDS
No soldering suitable for DIL ICs
EXP 300 (up to $5 \times 14 \mathrm{pin}$)
XP600 (up to $1 \times 40 \mathrm{pin})$
EXP350 (up to $2 \times 14 \mathrm{pin})$
170p
575p

PROTO BOARDS SOLDERLESS
Socket Strips/Bus Strips/Binding
Posts mounted on sturdy base plate
$\begin{array}{cc}\text { PB } 6 & \times 14 \\ \text { PB } 100 & 10 \times 14 \\ \times 14\end{array}$

PB 100	$10 \times 14 \mathrm{pin}$ DILICs
PB 102	$12 \times \mathrm{pin}$

PB 10212×14 pin DiLICs

PB 103	$24 \times 14 \mathrm{pin}$ DIL ICs	$32 \cdot 9$
PB 104	$32 \times 14 \mathrm{pin}$ DIL ICs	34.4
5.95		

VAT Rate. Please add 15% to your total.
VAT Rate, Please add 15% to your total.

LOGIC PROEE
 LOGIC PROBE LOGIC PROBE KIT
 £18.00 $\mathbf{E 1 5} 75$

Add $30 p$ o for
(75 p \& o
official orders)
TECHNOMATIC LTD
17 BURNLEY ROAD, LONDON NW10
(2 minutes from Dollis Hill Tube)
Tel. 01-452 4500
TIx. 922800

MAGENTA ELECTRONICS LTD.

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Project kits include ALL THE ELECTRONICS AND HARDWARE NEEDED-we have even included appropriate screws, nuts and I.C. sockets. Each project kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply-you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. IF YOU DO NOT HAVE THE ISSUE OF E.E. WHICH CONTAINS THE PROJECT-YOU WILL NEED TO ORDER THE INSTRUCTIONS/ REPRINT AS AN EXTRA-39p. each.

BABY ALARM. Nov. $79 £ 8-20$ OPTO ALARM. NOV. $79 \mathrm{E5}$
 OPTO ALARM. Nov. $79 \quad £ 5 \cdot 36$ inc.

 optional ports.TUNER. Nov. 79 £55-50 3 FUNCTION GENERATOR. Nov. 79 E18-44 less pointer, case extra 17.18 . ONE ARMED BANDIT. Oct 79. £18. 39 case extra E3.98.
HIGHCE IMPEDANCE YOLTMETER. Oct. 79. £16.22. SIGNAL LEVEL INDICATOR. Oct. 79. E4 81 (stereo). OSCILLATOR. Oct 79 E3.89. CHASER LIGHTS. SEPt. 79. £18.95.
VARICAP M.W. RADIO. EAR.98. SIMPLE TRANSISTOR TESTER. Sept. 79 . £6. 26.
ELECTRONIC TUNING FORK Aug. 79 WXARBLING TIMER. Aug. 79. $£ 6 \cdot 25$ 9V POWER SUPPLY Aug. 79. $£ 9.94$ in
OV POWER SUPPLY Aug. $79 . £ 9.94$
DCb
SWE WHISTLER Aug. 79 £ 3.19
TOUCH ON PILOT LIGHT Aug. 79 £3.05.
QUIZ REFEREE Aug. 79, £5.81.
SOLDERING IRON BIT SAVER. July SOLDERING IRON BIT SAVER. July
$79 . ~ E 10-19$. .
VOLTAGE SPLITTER, July 79. £3. 37. VOLTAGE SPLITTER. July 79. £3.37 DARKROOM TIMER. July 79. £2.41. £4-60.
TREMOLO UNIT. JUNE 79. £10.99. ELECTRONIC CANARY. June 79. £4.99. LOW COST METAL LOCATOR. June 79. $25 \cdot 44$.

Handle \& coil former parts extra $£ 4$. 95 .
METER AMPLIFIER. June $79 ~ £ 4-19$ QUAD SIMULATOR. June 79. $£ 9 \cdot 26$ INTRUDER ALARM. May 1979. £16. 44 Less Ext. Buzzer \& Lamp and Loop Com ponents.
SHORT WAVE CONVERTER. May 79. £15 36 inc. cases. 'PHOTO' SOLU THERMOSTAT, 'PHOTO' SOLUand ofease. SHAVERINVERTER. April 79. £13-68. TRANSISTOR TESTER. April 79 £3.83.
TOUCH ELEEPER. ApII 79. £3. 30. ONE TRANSISTOR RADIO. Mar. 79
wfth Ampllfler \& Headset. wfth Amplifler a Headset. Less case TIME DELAY INDICATOR. Mar. 79 £ERSATILE POWER SUPPLY. Mar 78, £8.99.
CHARE
G7. AUDIO MODULATOR. Feb. 79. £1-56 less case and pins.
LW CONVERTER. Feb. 79. £6.46.
THYRISTOR TESTER. Feb. 79. £2.99. LWCONVERTER. Feb. $79 . £ 6.46$.
THYRISTOR TESTER. Feb. 79. £2.99. AUC AMP. Dec. $78 . £ 2 \cdot 80$.
LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

3 BAND SHORT WAVE RADIO

Simple trf design covering $1 \cdot 2-24 \mathrm{MHz}$. Covers most amateur bands and short wave broadcast bands. Five controls-bandset, bandspread, reaction, wavechange and attenuator. Uses an internal 9 v battery-very low current consumption. The 3 coils are all mounted on the pcb-selection is by a wavechange switch. Use with headphones or a crystal earpiece. Kit contains all the components required including the pcb and case. Instructions are included with this kit. Headphones are not included-we recommend our high impedance mono headphones.
KIT £18.97
HEADPHONES EXTRA $\mathbf{2 3 . 2 8}$

1980 ELECTRONICS CATALOGUE

MAGENTA'S CATALOGUE HAS BEEN	NO MINIMUM ORDER-ALL PRO-
CAREFULLY DESIGNED FOR E.E.	DUCTS ARE STOCK LINES. FIRST
READERS. PRODUCT DATA AND	CLASS DELIVERY OF FIRST CLASS
ILLUSTRATIONS MAKE THE MA-	COMPONENTS. SEND FOR YOUR
GENTA CATALOGUE AN INDIS-	COPY AND SEE HOW EASY IT IS
PENSABLE GUIDE FOR THE CON-	TO USE THE MAGENTA CATA-
STRUCTOR, CATALOGUE INCLUDES	LOGUEI WRITE TODAY ENCLOSING
CIRCUIT IDEAS FOR YOU TO BUILD.	$5 \times 10 \mathrm{p}$ STAMPS.

MAGENTA ELECTRONICS LTD.
 EN12, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 0UL. 0283-65435. 9-12, 2-5 MON.-FRI.
 OFFICIALORDERSFROM SCHOOLS. ALL PRICES INCLUDE 15\% YAT UNIVERSITIES ETC. WELCOME. AND FIRST CLASS POST. ADD
 MAIL ORDER ONLY. QUIRIES WUST INCLUDE S.A.E.

ADJUSTABLE PSU. Feb. 79. £25.17. Case (horizontal layout) £5-2f extra. CONTINUITY TESTER. Jan. 79. £4.96 less case.
FUZZ BOX. Dec. 78. £5-32.
VEHICLE IMMOBILISER. Inc. PCB WATER LEVEL ALERT. Nov. 78. £6. 25. ''HOT LINE' GAME. Nov. 78. $84 \cdot 65$ less case \& rod.
AUDIO EFFECTS OSCILLATOR. NOV. 78. £3.77inc. board

FUSE CHECKER. Oct. 78. £1-91.
C.MOS RADIO. Oct. 78. £.9-32.
TREASURE HUNTER. Oct. 78. £17-86 less handie \& coll former.
GUITAR TONE BOOSTER. Sept. 78. £4-78 inc. p.c.b.
SOUND TO LighT. Sept. 78. £6.98. FILTER. E1-53
SLAVE FLASH. Aug. 78, £2. 97 less SKt LOGIC PROBE. July 78. £2.53.
IN SITU TRANSISTOR TESTER VISUAL CONTINUITY CHECKER. June 78 . £3 66 inc. probes. 19 I FLASHMETER. May 78. £13 11 less calc and diffuser. WEIRD SOUND EFFECTS GENERA TOR. Mar. 78. E4-57. £23-59 inc. p.c.b. case extra f5. 21.
AUDIO VISUAL METRONOME. Jan. 78 £4.81.
RAPID DIODE CHECK. Jan. 78. £2.34 AUTOMATIC PHASE BOX. DEC. 77 £. 918 inc. p.c.b.
VHF RADIO. Nov. 77.
£14-36
ULTRASONIC REMOTE CONTROL. NOV/DEC. 77. £15-70. case extra. £3.33. Less handie, etc. $_{\text {ELECTRONIC DICE. March 77. £4-77. }}$. SOIL MOISTURE INDICATOR. June PHONE/DOORBELL REPEATER. July 77. E6. CAR . Sept. 78, £1-79 less case inc. PCB. R.F. SIGNAL GENERATOR. Sept. 78 E18-17 less case.
TRANSISTOR
TRANSISTOR TESTER. Oct. 77. £7-06 case extra £3.97.
ADD-ON CAPACITANCE UNIT. Sept A.F. SIGNAL GENERATOR. Aug. 78 Gess dlal. f12-12.
plons \&
CATCH-A-LIGHT. Mar. 78. £8.04. CAR SYSTEM ALARM. Feb. 78. £5.97. HEADPHONE ENHANCER. Jan. 79 PASSIVE MIXER. Oct. 78. £3.72 MIC AMP. Dec. $78 . \mathrm{ER}^{80} 80$.
AUDIBLE FLASHER Dec.

MAGENTA gives you FAST DELIVERY EY FIRST CLASS POST OF QUALITY WOMPONENTS \& KITS. All products are stock lines and are new \& fuli specification.
We give personal service quality products to all our customers-HAVE YOU TRIED
US?

ONE-ARMED BANDIT

Oct 79
Complete with 0.2" LED's and all components. £18-39. ase extra $£ 3.98$

CHASER LIGHTS

Sept 79

Complete kit - with Case plugs and sockets etc. £18.95

G. P. POWER SUPPLY Feb 79

$0-20 \mathrm{~V}$ 0-1A. Variable with calibrated VOLTMETER and AMMETER
All components and Hardware $£ 25 \cdot 17$.
Case (horizontal \& layout) £5. 21 extra.

DOING IT DIGITALLY

Complete kit of top quality components as
specified by EVERYDAY ELECTRONICS. Kit comes complete with free component identification sheets.
TL TEST BED £28.84.
TRST 6 months COMPONENTS £4 98 COMPONENTS FOR PARTS 7, 8. 9 \& 10 Capacitors, thermistors, microphone, speaker
presets etc.
PART 11 £2. 73. PART $12 £ 3$ 19. 19.
PART 11 £2. 73. PART $12 £ 3 \cdot 19$.
Reprints:-Part $1-78 p$ others 39 peach

LOW COST

METAL IOGATOR

E.E. June 79 MADE UP A COMPLETE HARD WARE KIT FOR THIS PROJECT, WITH HANDLE, COIL FORMER and SCREWS etcelectronics and case $£ 10 \cdot 39$.
Or sebarately:
Electronics \& Case £5.14.

TEACH IL 80

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specified by Everyday Electronics. Out kit comes complete with FREE COM PONENT IDENTIFICATION SHEET. Follow this educationa series and learn about electronics-Start today! SEND £22.95 for the TUTOR DECK and ADDITIONAL COMPONENTS parts 1-6. All orders sent by FIRST CLASS POST. Out kit contains all these parts
TUTOR DECK: METER, BREADBOARD, TRANSFORMER LEDS, POTENTIOMETERS, SWITCHES, SPEAKER, PLUGS SOCKETS, BATTERY CLIPS, WIRE, CABLE, FUSES, FUSE HOLDERS, KNOBS. ADDITIONAL COMPONENTS. PARTS 1-6, RESISTORS, PHOTOCELL, DIODES, CAPACITORS.
CASE WOODWORK KIT $\mathbf{£ 4 . 9 8}$ extra. Complete kit for tutor deck woodwork, contains all the softwood, hardboard, ramin, panel pins, adhesive, screws; feet, strap-handle, and fixings Cut to size and ready to assemble.
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS

ANTEX $\times 25$ SOLDERING IRON 25W £4.98
SOLDERING IRON STAND
£2.03
SPARE BITS. Small. Standard, Large. 65p each.
SOLDER. Handy size 78p.
SWING STORAGE DRAWERS £5-98. MULTIMETER TYPE 3100,000 o.p.v. with ransistor tester ranges 209.95
WIRELESS INTERCOM 2 STATION $42 \cdot 95$.
SIREN. 12V £5.95.
P.C.B. ASSEMBLY JIG. £11-98
P.C.E. ETCHING KIT. £4-98.
A.M.-F.M. AIRCRAFT BAND PORTABLE RADIO EIO.95
WIRE STRIPPERS \& CUTTERS £2. 21. ULTRASONICTRANSDUCERS: $£ 5 \cdot 50$
p,A. MICROPHONE coiled lead \& switch £4.68. MULTIMETER TYPE 1. 1,000 o.p.v. with probes. $2^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times 1^{\prime \prime}$. £6.98.
MULTIMETER TYPE $2.20,000$ o.p.v. with case and probes. $5^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$. $\mathrm{f} 14 \cdot 25$. F.絧. INDOOR AERIAL. 57p.

TELESCOPIC AERIAL. $120 \mathrm{c} . \mathrm{m} . \mathrm{E} 2 \cdot 08$. TELEPHONE PICK-UP COIL. 72p. CRYSTAL MICROPHONE INSERT 58 p.
SPEAKERS MINIATURE. 8 ohm 87 p . 54 ohm 98p. 80 ohm £1-. 28
PILLOW SPEAKER. 8 ohm 98p.
$6^{\prime \prime}$ ROUND SPEAKER. 8 ohm, 5 W . $£ 2 \cdot 28$. CABINET SPEAKER. 8 ohm, 5W. 5" peaker. Cabinet $10^{\circ} \times 7 \times 4$. E6. RE-ENTRANT HORN SPEA
EARPIECES.-Crystal 48p. Magnetic 18p. EARPIECES.- Crystal 48p. Magnetic 18p STETHOSCOPE
BUZZER. 6 V 2p. 12 V 85p
MONO HEADPHONES. 2K. Padded Superior. Sensitive, £3.28.
STEREO HEADPHONES Padded. £4.35.
INTERCOM. 2 Station: Desk. $£ 7.48$. MICROPHONE DYNAMIC. 600 ohm MICROPHONE DY

DESOLDER BRAID 69p HOW TO SOLDER BOOKLET

HEAT SINK TWEEZERS 15p.
SOLDER BOBBIN 30p DESOLDER PUMP. £6.98

DĖNTISTS MIRROR. Adjustable. £2-44 JEWELLERS EYEGLASS. E1'08p TRIPLE MAGNIFIER. $£ 1 \cdot 63$
HAND MAGNIFIER. $3^{\prime \prime}$ Lens. £3. 43. SPECTACLE MAGNIFIER. CIIps on to spectacle frame. $£ 4 \cdot 65$
ILLUMINATED MAGNIFIERS. $1 \frac{1}{2}$ " lens £1•10. $3^{\prime \prime}$ lens £2. 98
POCKET TOOL SET. 20 piece. £4-09. SCREWDRIVER SET. Six plece, £i-13 Q MAX PUNCH. 年" £2.14. $\frac{1}{2}$ " $£ 2 \cdot 39$ f"£2.41. द" £2 50.
DRILL 12V. Hand or stand use. $£ 10.95$
Stand $£ 6.88$. CAPACITAN
CAPACITANCE SUBSTITUTION BOX. Nine values, 100 pF--0 22uF. £2:98, PLUG IN POWER SUPPLY. 6, 7.5-9V d.c. 300 mA . $54-05$.

SPRINGS-SMALL. 100 Asstd. E1-08. CROC CLIP TEST LEAD SET. 10 leadz with 20 clips, $\mathbf{E T}$ - 06.
DIMMER SWITCH. $240 \mathrm{~V}, 800 \mathrm{~W}, \mathrm{EA} \cdot 48$. TRADITIONAL STYLE BELL. 3-8V 70 mm chrome gong. $£ 1.60$. UNDERDOME BELL. 4-10V. Smart. Dia 70 mm . £2-27.
TOWERS INTERNATIONAL TRAN SISTOR SELECTOR. New edItion. £6. 54 .
F.M. TUNER CHASSIS. $88-108 \mathrm{MHz}$. 9 V d.c. $£ 9 \cdot 49$.
MORSE KE

MORSE KEY. High speed. £3-83.
PANEL METERS. $60 \times 45 \mathrm{~mm}$. Modern style. $50 \mathrm{uA}, 100 \mathrm{u}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d.c.
f 6.48. NIGHT LIGHT. Plug type. E1-08. CONNECTING WIRE PACK. $5 \times 5 y d$ coils. 55p.
VERO SPOT FACE CUTTER. $\mathbf{E 1 \cdot 0 9 .}$ VERO PIN INSERTION TOOL $0.1^{\prime \prime}$ C1.48. $0 \cdot 15^{\prime \prime}$ Et 4.49 RESISTOR

SEIKO MEMORY BANK

CASIO CHRONO 950S-3LB
Stainless steel case.
water resistant to 66 feet Hours, mins, secs, am/pm year, month, date, day. Auto-calendar pre-programmed until the year 2029. 12/24 hour. Stopwatch function.
Range 7 hours. $1 / 100 \mathrm{sec}$. (Mode) Net time/lap-time/ 1st-2nd place times.
Dual time function.
Accuracy 15 secs per mont
Battery life approx 4 years.
£22.95
M22

MELODY

Multi Alarm
Chronograph
Hours, mins, secs,
Day, Date, Count-
down alarm,
Dual time zone $1 / 100$ th sec stopwatch. Lap/split time, 1 st and 2 nd place times, Melody test function.
£26.95
M30

SEIKO Alarm Chronograph
With WEEKLY Alarm. Hours, mins, secs, month, date, day, am/pm. Weekly alarm - can be set for every day at designate timee.g. 6.30 a
Wed and Friday
Wed and Friday.
Alarm set time displayed Alarm set time dis
above time of day Full stopwatch functions, laptime, split etc
£89.95 M10

CASIO LADIES 86CL-23B-1

 Elegant slim line. Stainless steel bracelet, fully adjustable. Hour. mins, 10 sec symbol second by flash, amMonth, date, day. Auto-calendar preprogrammed for 28th day in Feb. Accuracy per month 15 secs. Battery life approx 15 months.
£29.95

CASIO F-8C
3 Year Battery life.
Hours, mins, secs,
am/pm, date, day Auto calendar set 28th Feb.
Stopweatch function.
Accuracy 15 secs per month. Battery life approx 3 years

$£ 9.95$
M36

SEIKO Calculator Watch

Full specification calculator with memory. plus multi function watch. Hours, mins, secs. day, date,-backlight. Automatic calendar Long life battery.
£99.95

CASIO ALARM CHRONO 81 CS-36B

Hours, mins, secs, day.
and also day, month and year
perpetual automatic calendar. perpetual automatic caiend
100 th sec chronograph to 7 hours.
Net time/lap/time/1st and 2nd place times. User optional 12/24 hr display. 24 Alarm. User optional. hourly chime.
Backlight, mineral glass, Backnight, mine
stainless steel.
Water resistant to
Water rest.
Battery life approx 4 years.
£ 34.95
M25

CASIO CALENDAR 200

47CS-23B-1 Black. Stainless steel.
Hours, mins. 10 second
symbol, second (oy fiash).
am/pm. Month, day, date. Auto-calendar set from
1901 to 2009.
Full month calendar display. Dual time function.
Accuracy 10 secs per
month. Battery life
approx 15 months. $£ 59.95$ M37

PICOQUARTZ
 Microprocessor Alarm Chronograph

CHRONOGRAPH

SEIKO
 CHRONOGRAPH

67 High Street, DAVENTRY Northamptonshire Telephone: 0327276545

South of England 327 Édgwäre Road LONDON W. 2
Telephone: (01) 7234753

QUARTZ LCD
5 Function
Hours, mins, secs. month, date, auto calender, back-light, quality metal bracelet.
£6.65
Guaranteed same day despatch. Very slim, only 6 mm thick.

SOLAR QUARTZ LCD Chronograph
Powered from solar
panel with battery back panel with batter back
6 digit. 11 functions. 6 digit. 11 tunctions.
Hours, mins.. secs., day, Hours, mins. secs.
date, day of week. $1 / 100$ th. $1 / 10 \mathrm{th}$, secs. 10X secs., mins. Split and lap modes. Split and lap mod
Back-light, auto Back-light, auto
calendar. Only 8 mm calenda
thick.
Stainless steel bracelet Stainless
Adjustable bracelet. Metac Price

£13.65
Guaranteed same day despatch.
M9

HANIMEX

Electronic
LED Alarm Clock

Feazures and Specification LeD display with -p.m and alarm on indicator. 24 Hours alarm with
on off controi Display flashing for power losss indication. Repeatable 9 -minute snooze Dispiay
bright'dim modes control Size: $515^{\prime \prime} \times 3.93^{\prime \prime} \times$ bright'dim modes control. Size: $51^{\prime \prime} \times 3.93^{\prime \prime}$ Werght: 1.43 lbs 10.65 kg AC power 220 V . $£ 10.20$ Thousands soid!
Mains operated.
Guaranteed same
day despatch.

SOLAR QUARTZ
LCD 5 Function
Genuine solar panel with battery back-up. Hours, mins., secs., day. date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

M2

QUARTZ LCD
Ladies Day Watch

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
Hours, minutes, seconds. day, date, backlight and auto calendar.
Elegant metal
bracelet in silveror
gold fully adjustable
to suit very stim
wrists.
$£ 9.95$
Guaranted same dar despatch. M15

MACY QUARTZ ANALOGUE

 WATCH

Automatic Calenda

 Day and Date infinite bracelet. This mans watch has elegance as well as the by a watch with traditional features. Accuracy is provided by a quartz longlife miniature battery.£24.95

HOWTO ORDER
Payment can be made by sending cheque, postal order. Barclay. Access or American Express card numbers. Write your name, address and order details cleariy, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry 1 vear written guarantee and fuli money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. All prices include VAT currently at 15\%.
Metac Wholesale:
Trade enquiries - send for a compleţe list of prices for all the goods advertised plus many more not shown also minimum order de tails.
Telephone orders: Credit card customers can telephone orders.direct to Daventry (03272) 76545 or Edgware Rd. 01-723475324 hours a day.

QUARTZ LCD
 sum
 11 Function

f10.65 Thousands sold M3

CALLERS WELCOME Shops open 9-30am-6.00

QUARTZ LCD
Ladies Cocktail Watch
Highly functional watch which also suits those special occasions. Beautifully designed with a very thin bracelet which retains strength as well as eleganceHours, mins, secs, day, date backlight and autocalendar. Bracelet fully adjustable to suit slim wrists. State goid or silver finish.

£19.95

Guaranteed same day despatch M18
Metac price breakthrough for an Alarm Metac price breakthrough for a
Chronograph with Dual Time only

£18.95

 and 59.9 seconds.- On command, stopwatch display freezes to show intermediate
(split/lap) time while stopwatch freezes to show intermediate
(split/lap) time while stopwatch continues to run. Can also switch to
and from timekeeping and stopwatch and from timekeeping and stopwatch modes without affecting either's operation. ALARM can be set to anytime within
a 24 hour period. At the designated
time, a pleasant, but effective buzzer ALARM can be set to anytime within
a 24 hour period. At the designated
time, a pleasant, but effective buzzer time, a pleasant, but effective buzzer sounds to remind or awaken you! Guaranteed same day dispatch. M16
QUARTZ LCD ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

Guaranteed same day dispatch.
M4

ALARM CHRONO with 9 world time zones
 - 6 digits, 5 flags.
 * 8 further time zones.
 - Count-down alarm.
 - Stop-watch to 12 hours
 59.9 secs. in $1 / 10$ sec. steps.
 - Split and timing modes
 - Alarm.
 - 9 mm thick. - Back-light.
 - Fully adjustable bracelet.
 £29.65
 M8

Metrac

Service Enquiries 03272-77659

U. K. RETURN OF POST MAIL-OROER SERVICE ALSO WORLD WIDE EXPORI SEPVICE

R.C.S. LOUDSPEAKER BARGAINS

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$
 $200 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{pi} 25 \mathrm{~V} 42 \mathrm{p}: 420 \mathrm{mF} / 500 \mathrm{~V} £ 1-30$.

HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{lll}8 / 350 \vee 22 p & 8+8 / 450 \vee 50 \mathrm{p} & 50+50 / 300 \vee 50 \mathrm{p}\end{array}$ $\begin{array}{lll}16350 \vee & 30 \mathrm{p} & 8+16 / 450 \mathrm{~V} 50 \mathrm{p} \quad 32+32 / 450 \mathrm{~V} 75 \mathrm{p}\end{array}$ $\begin{array}{lll}32 / 350 \vee 75 p & 16+16 / 450 \vee 50 p & 100+100 / 275 \vee 65 p \\ 32+32 / 350 \vee 50 p & 150+200 / 275 \vee 70 \mathrm{p}\end{array}$ MANY OTHER ELECTROLYTICS IN STOCK

SHORT WAVE 100 p air spaced gangable tuner 95 p . TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CERAMIC, 1 pF to $0 \cdot 01 \mathrm{mF}$, 5 p . Silver Mica 2 to $5000 \mathrm{pF}, 5 p$.
PAPER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 20p: $500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p}: 0.115 \mathrm{p}: 0.2525 \mathrm{p}: 0.4735 \mathrm{p}$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG, $385+385 \mathrm{pF}$ 80p: 500pF slow motion 75 p . $365+365+25+250 F$. Siow motion drive 85p. TWIN GANG 25 pf slow motion 95p
TWIN GANG 25pf slow motion 95p
NEON PANEL INDICATORS 250V. Amber or red 30 p ILLUMPNATED ROCKER SWITCH. Single pole. Red 65 p. RESISTORS. 10Ω to $10 \mathrm{M} . \frac{1}{2} \mathrm{~W}, \frac{ \pm W}{2} \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p}: 2 \mathrm{~W}, 10 \mathrm{p}$. HIGH STABILITY. $1 \mathrm{~W} 2 \% 10$ ohms to 1 meg., 12p.
 RELANK ALUMINIUM CHASSIS. $6 \times 4-95 p$. £1 40 ; 10×7-£1 55 ; $12 \times 8-£ 1 \cdot 70 ; 14 \times 9-£ 1 \cdot 90 ; 16 \times 6$ £1.85: $16 \times 10-£ 220$. ANGLEALI. $6 \times \frac{3}{4} \times \frac{3}{3} \mathrm{in}$. -20 p . ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6$ 8-38p; 84. $14 \times 9-94 p ; 12 \times 12-£ 1 ; 16 \times 10-5116$. 44 p ; $16 \times 6-70 \mathrm{p}$ PLASTICANDALI BOXES IN STOCK. MANY SIZES Some technical knowtedge required $£ 4$:95. TAG STRIP 28-way 12D:
TAPE OSCILLATOR COIL. Valve type. 35p.
BRIDGE RECTIFIER 200 V PIV $\frac{1}{2}$ amp 50 p .8 amp £2. 50 .
TOGGLE SWITCHES SP 30 D . PPST 40 D MANY OTHER TOGGLES IN. STOCK PIease Enqui MANYOTHERTOGGLES INSTOCK. Please enquire.
PICK-UP CARTRIDGES ACOS, GP91 $£ 2$.00. GP9 $£ 2.50$. SONOTONE 9TAHC Dlamond £3-75. Magnetic $£ 7$ WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt $15 p$.

BAKER
50 WATt
AMPLIFIER
£65
Post ${ }^{1}$
Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer 50 watts RMS. Three loud speaker outlets $4,8,16 \mathrm{ohm}$. AC 240 V (120 V avatable). Blue wording on

BAKER 150 Watt AMPLIFIER 4 inpuis s85.
DRILL SPEED COMTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. $\mathbb{E} 3 \cdot 25$ STEREO PRE-AMP KIT. All parts to bulld this pre-amp. 3 nputs for high medium or low gain per channel, control and P.C. Board. Can be ganged to make
multiway stereo mixers.
Post 35 p
\&2.95

R.C.S. SOUND TO LIGHT DISPLAY MK 2

Complete kit of parts with R.C.S. prinied circuit. Three channels. Up to 1,000 watts each. Will operate from
200 M to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi}$ and all Disco Ampliflers
£18
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights. Edison Screw 75p each or '6 for £4. O 12 for $£ 7 \cdot 50$. Post 30 p per order.

MAINS TRANSFORMERS

${ }_{750}$
 i-Fi and all Disco Ampliflers
£4. Or

GENERAL PURPOSE LOW VOLTAGE. Tapped outpu amp. 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 25 and 30 V 00
0

BAKER SPEAKERS "BIG SOUND"
 Post f1 eg.

Robustly constructed to stand up o long periods of electronic p Bass resonance 55 cps .
GROUP 45-12
12in. 45 wat
£15
GROUP 75-12
12in. 75W professional
model. 4,8 or 16 ohms
£24
GROUP 100-15 $£ 35$
15 in .100 wat
Send for leaflets on Disco, P.A. and Group Gear
E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE With tweeter. And cros sover.
ow. S9.95
State 3 or 8 ohm. 15 W model $5 W$ mode GOODMANS 20 Watt Woofer £10.95 Size 12×10 in. 4 ohms. £9.95
Rubber cone surround. GOODMANS TWIN AXIOM 8 Bin. 8 ohm Hi-Fi Twin Cone Eg 95
Post 500
R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in 3-way Loudspeaker System, EMI 5in, Bass 5 in , Middle 3in. Tweeter with 3-way Crossover and Ready Cut Baffie. Full assembly instructions supplied. Response $=60$ to $20,000 \mathrm{cps} 12$ watt RMS 8 ohm. $£ 10 \cdot 95$ per kit. Two kits $£ 20$.
Postage $£ 1$. One or two kits.

$$
\begin{aligned}
& \text { TK Eloctronics assumer cunct roen }
\end{aligned}
$$

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fieids of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

and a career.

COURSES AVAILABLE

- CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.

RADIO AMATEUR LICENCE.

- COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.

DIGITAL ELECTRONICS.

* beginners practical cóurse.
* RADIO AND TELEVISION SERVICE

AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

EXPERIMENTOR BREADBOARDS
FROM

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integra part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 Accepts 8,14, 16 and up to 22 pin IC's.
ONLY £1.70

EXP. 350.
$£ 3.73$
270 contact points with
two 20-point bus-bars.

EXP. 300.

550 contacts
with two
40 -point bus-bars.
f6. 13

EXP. 650 for Microprocessors. $\mathbf{£ 3} \mathbf{8 3}$

EXP.4B
More bus-
bars. £2.45
ALL EXP. 300 Breadboards mix and match with 600 series.

ANTEX IRONS

194315 watt quality soldering iron with $3 / 32^{\prime \prime}$ 1947 Rit $\mathbf{£ 4 . 8 8}$
1944 Iron coated bit $3 / 32^{\prime \prime}$ for 1943
1945 Iron coated bit $1 / 8^{\prime \prime}$ for 1943
1946 Iron coated bit $3 / 16^{\prime \prime}$ for 1943
194818 watt iron with iron'coated bit 1952 Replacement element for 1948 1949 Iron coated bit $3 / 32^{\prime \prime}$ for 1948 1950 Iron coated bit $1 / 8^{\prime \prime}$ for 1948 1951 Iron coated bit $3 / 16^{\prime \prime}$ for 1948 931×2525 watt iron, ceramic shaft and another shaft of stainless steel to ensure strength $\mathbf{£ 4 . 8 8}$ 1935 Replacement element for 1931 932 Iron coated bit $1 / 8^{\prime \prime}$ for 1931 1933 Iron coated bit $2 / 16^{\prime \prime}$ for 1931
f 1.84

1934 Iron coated bit $3 / 32^{\prime \prime}$ for 1931 ron with $3 / 16^{\prime \prime}$ bit plus two spare bits, a reel of solder, heat-sink and a bookiet How to Solder chrom plated steel spring. suit all models includes accommodation for six bits and two sponges to keep the iron bits clean $\mathbf{£ 1 . 8 6}$ 1724 Model MLX as X25 iron but 12 volts $\quad \mathbf{£ 5 . 2 9}$

DIODES ".

BOOKS BY BABANI

${ }^{\text {BP6 }} 14$	Engineers \& Machinists Ref. Tables 2nd book Transistor Equivs \& Subs	
8 P 22	79 Electronic Novelty Circuits	75p ${ }^{+}$
8P24	52 Projects Using IC741 (of Equiv)	75pt
BP26	Radio Antenna Book Long Distance Reception \& Transmission	85p ${ }^{+}$
BP27	Giant Chart of Radio Electronic	
	Semiconductor \& Logic Symbols	60p ${ }^{\dagger}$
8 P32	Build Metal \& Treasure Locatore	85p ${ }^{\text {t }}$
8P34	Practical Repair/Renovation C/TV	95p ${ }^{\text {+ }}$
8 P 35	Handbook of IC Audio Preamplifier \& Power Amplifier Construction	95p \dagger
BP36	50 Cicts use Germ/Su/Zener Diodes	$75 p$
BP37	50 Projects Using Relays/SCR/Triacs	f1.10 \dagger
BP39	50 Field Effect Trans Projects	¢1.25 \dagger
8 P 40	Digital IC Equivs \& Pin Connection	E2.50 \dagger
BP4 1	Linear IC Equivs \& Pin Connection	- 52.75 +
BP42	50 Simple LED Circuits	75p \dagger
8P43	How to make Wakki-Takkes	E1.25 \dagger
8 P 44	IC 555 Timer Projects	¢1.45 \dagger
8 P 45	Projects on Opto-electronics	f1.25 \dagger
BP46	Radio Circuits Using IC's	¢1.35 \dagger
8 P 47	Mobile Discotheque Handbook	f1.35 \dagger
8P48	Electronics Projects for Beginners	¢1.35 \dagger
BP49	Popular Electronic Projects	¢1.45 \dagger
BP50	IC LM3900 Projects	E1.35 \dagger
8 P 55	Radio Stations Guide	£1.45 \dagger
BP160	Coil Design \& Construction Manua!	85p \dagger
8 8202	Handbook of Integrated Circuits	
	Equivalents \& Substitutes	$75{ }^{\text {+ }}$
8 P 205	1st Book Hi-Fi Speaker Enclosures	$75 p$ t
8P213	Circuits for Model Railways	85p \dagger
8P215	Shortwave Circuits \& Gear for	
	Experiments \& Radio Hams	85p ${ }^{+}$
BP216	Electronic Gadigets \& Games	85p
8P217	Solid State Power Supply Handbook	85p
BP221	28 Tested Transistor Projects	95p ${ }^{+}$
8P222	Short-wave Receivers for Beginners	95p
BP223	50 Projects using IC CA3130	95p ${ }^{+}$
$8 P 224$	50 CMOS IC Projects	95p'
BP 225	A Practical intro to Digital IC's	$95{ }^{\text {p }}$
8P226	Build Advanced Short-wave Receivers	£1.20 \dagger
8P227	Beginners Guide to Building	
	Electronic Projects	£1.25 \dagger

ZENER DIODES

$400 \mathrm{mw}(8 \mathrm{zv} 88)$ D007. Glass encapsulated range of voltages
available. $1.3 \mathrm{v}, 2.2 \mathrm{v}, 2.7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v} .4 .3 \mathrm{v}, 4.7 \mathrm{v}, 5.1 \mathrm{v}, 5.6 \mathrm{v}$, $20 \mathrm{v} .22 \mathrm{v}, 24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 39 \mathrm{v}$.

METAL FOIL CAPACITOR PAK̄S

16204 - Containing 50 metal foil capacitor like Mullard C280 series-Mixed values ranging from 01 uft -2.2 Zuf . Completete with
identification sheet

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. HARRINGTON

TECHNICAL SUBEDITOR

 S. E. DOLLIN B.Sc.
ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

 P. A. LOATES
TECHNICAL ILLUSTRATOR

D. J. GOLDING

EDITORIAL OFFICES

Kings Reach Tower, Stamford Street, London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

N. BELL WOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY

 DEPARTMENTPhone 01-261 6615

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

and Popular Features ...

No doubt some rueful rememberances of last winter will be awakened by this month's cover picture. Hopefully we shall not suffer the same severe and treacherous conditions in the opening months of ' 80 . But there's no knowing, so it will be prudent to emulate the Boy Scouts and be prepared. Which leads us to the Loft Alert.
Apart from fire, flooding is probably the most frightening and damaging catastrophe that can happen to our homes. Extensive flooding can occur because quite small defects such as bursts in pipes or frozen ball cocks are undetected in sufficient time to take remedial action.

To be forewarned is to be forearmed. Hence the importance of our Loft Alert. The wise householder will build and instal this monitoring system without delay. Then regardless of the severity of the winter, the occupants can at least be relieved of anxiety concerning the state of things up a'loft.
As will be immediately apparent, the usefulness of this device is by no means limited to the winter months. Any time of the year defects or mabfunctioning of parts in the water systerm can occur, which could lead to a disastrous situation.
A further reassuring feature provided by our Loft Alert is an instant "system check" facility. And being
battery operated it is entirely independent of the mains supply.

As from next month the price of Everyday Electronics will be increased to 50 p . Considering that you could pay this sum for a mere Christmas or birthday card, there can be no question that EE is value for money. Nevertheless we realise any increase could be a serious blow to the younger reader. If so, we suggest an approach to Dad for a subsidy. It should not be difficult to convince him that his investment will be returned with interest in the form of useful projects for the home in the course of the coming year.

As' we leave ' 79 and enter ' 80 , all of us on Everyday Electronics thank our readers for your support and encouragement as often expressed in your letters to us.

Best wishes for the New Year.

Our February issue will be published on Friday, January 18. See page 27 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^0]
CONSTRUGTIONAL PROJECTS
EE LOFT ALERT Early warning of leaks, bursts and frosts by S. E. Dollin B.Sc. 12
UNIBOARD: 3-9V POWER SUPPLY Designed specifically for Uniboard projects by A. R. Winstanley 20
MAINS ON/OFF TIMER Up to 12 hours delay by A. R. Winstanley 28
EE RADIO CONTROL SYSTEM Part 3: The Receiver by L. Armstrong, H. Dickinson and W. Wilkinson 34
SPRING-LINE REVERB UNIT An exciting sound effect by R. A. Penfold 46
GENERAL FEATURES
EDITORIAL 10
SHOPTALK Retail news, products and component buying by Dave Barrington 19
TEACH-IN 80 Part 4: The diode and rectification by S. R. Lewis B.Sc. 22
CROSSWORD NO. 23 by D. P. Newton 26
JACK PLUG AND FAMILY Cartoon by Doug Baker 40
SCHOOL REPORT Electronics in schools' 41
COUNTER INTELLIGENCE A retailer comments by Paul Young 42
THE ADVENTURES OF TANTY BEAD Cartoon by Matthew Read 42
EVERYDAY NEWS What's happening in the world of electronics 44
FOR YOUR ENTERTAINMENT Singing lights, frozen picture and Queen's English 52
SYNTHESISERS EXPLAINED-2 Filters and phasing 54
READERS' LETTERS Your news and views 60
SQUARE ONE Beginners Page: Components 61
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 62
RADIO WORLD A commentary by Pat Hawker 64

[^1]

Is on page 61

AVOID THESE HAZARDS WITH OUR EESLOFT ALERT

By S. E. Dollin, в.sc.

THE Loft Alert is an electronic warning system designed to warn the householder of an overfiowing water tank, burst or leaking water pipes, and also the approach of freezing conditions. It consists of three sensing circuits which, when activated, give a visible and audible warning and shows which channel has been activated so that remedial action may be taken quickly before great damage is done.
An important feature of this unit is the fact that it is battery operated making it immune from the mains power failures that are possible during the winter months when this sys-
tem will be most needed. This also makes installation very much easier and safer. Provision is made for an extension warning device or lamp which can be mains or battery operated.

PRINCIPLE OF OPERATION

The system can be broken up into several distinct stages. When a fault, say a burst pipe, is detected, this produces a voltage which is fed to the appropriate latching circuit. This has the effect of lighting an l.e.d. and applying a "high" input to the or gate which results in its output going
high. This arrangement is necessary to prevent sensor circuits interacting and interfering with each other.

The output of the $\rho \mathrm{R}$ gate is fed via a voltage clamp circuit to the alarm circuit.

This voltage clamp (TR1) is designed to keep the output from the or gate firmly at 0 V when in the off condition. This is necessary as pin 4 of the following astable multivibrator must be kept at 0 V to prevent it turning on when no alarm signal is present, since the output from the or gate is a little above 0 V in its low state.

When the astable is running (pin 4 high) the associated l.e.d. flashes until the alarm condition is removed and the latch reset.

The alarm signal (stepping clamp voltage) is also processed to produce a trigger pulse for the monostable which energises a relay. The relay contacts supply power to an audible warning device for a length of time. This alarm is muted when the monostable times out.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Loft Alert is shown in Fig. 1. The sensors for water overflow and leakage are identical in principle. Water bridges two contacts and causes a signal voltage to be applied via resistors R1 (R9) to the gate of thyristors CSR1 (CSR3). When this happens the thyristor conducts and the cathode rises to a little below battery voltage thus illuminating D1 (D5).

The operation of the freezing detector is slightly different but the effect is to produce a voltage at the thyristor gate when the temperature drops to, or approaches freezing.

The resistor R2, potentiometer VR1 and thermistor RTH1 form a potential divider chain. At room temperature the thermistor has a low resistance of about 1 kilohm. This means that the voltage on the gate of CSR2 is near to zero. However as the temperature falls the resistance of thermistor RTH1 rises causing the voltage across it to rise. At a certain thermistor resistance the voltage across the thermistor is sufficient to turn on the thyristor thus causing the voltage on the cathode to rise to just below battery voltage which lights up D2.

The thyristor cathodes are all wired into a discrete 3 input or gate made up of D3, D4, D6 and R5, R6, R8, R10.

ALARM CIRCUITS

The output of the or gate is fed via R8 to the base of TR1. This stage is the voltage clamp and is simply a transistor switch. The emitter is at 0 V until a high from the or gate

Fig. 1. Complete circuit diagram of the Loft Alert.
appears on the base whereupon the transistor switches on and the emitter voltage rises to just below the positive rail voltage.

At this point the signal takes two paths. The first is to the reset pin of IC1 (pin 4) wired as an astable multivibrator. Pin 4 is used here as an inhibit input.

Front view of the EE Loft Alert showing front panel layout and lettering.

HOW IT WORKS

The presence of water is detected by simple probes made up of a closely spaced pair of uninsulated conductors.
To sense overflow conditions in the main tank a pair of fixed conductors is hung over the side such that their ends are just above the normal water level. Any abnormal rise in this level (caused by a faulty ball

As soon as the voltage on this pin rises above about 0.4 V the i.c. turns on and stays on so long as the "high" voltage to pin 4 is maintained. This causes the l.e.d. attached to pin 3 to flash on and off until the alarm is reset.
The other signal path is to IC2, another 555 i.c., this time wired as a monostable. This activates the relay coil for a certain time period after which the coil is deactivated. The inbuilt audible alarm (and extension alarm) is on for this time period (t) which is governed by the formula:

$$
t=1 \cdot 1 \times(\text { VR } 2+\mathrm{R} 1) \times \mathrm{C} 4 \text { seconds }
$$ where the resistance is in ohms and capacitance in farads. The maximum time period obtainable is about 8 minutes which can be altered by VR2.

To trigger this arrangement pin 2 needs to be grounded momentarily. When the alarm is triggered TRI emitter goes to and remains at a level of about 8 V . This voltage step is applied to the RC network R14 and Cl which produces a positive-going voltage spike at the base of TR2. The transistor momentarily switches on and its collector drops to 0V. This negative-going voltage spike is applied to pin 2 of IC2 causing it to trigger and energise the relay via buffer amplifier TR3 for time t.

Circuit test switches S1, S2 and S4 simulate an alarm condition by causing a voltage to be applied to the thyristor gates. The alarm test switch

S3 when operated applies a voltage to R8 thus simulating alarm conditions. Switch S6 grounds pin 4 of IC2 thus resetting it and S 5 breaks the supply to reset the thyristors.

CIRCUIT BOARD

Construction should start with the circuit board. This consists of a piece of $0 \cdot 1$ inch matrix stripboard size 50 holes by 36 strips. It is advisable to make the breaks in the copper strips and drill the mounting holes before mounting components. Assembly is quite straightforward, although it is advisable to start with the resistors, then larger passive components and finally the transistors (see Fig. 2).

The i.c.s are mounted in sockets and the relay is mounted straight on to the board. It should be secured by glueing or by tightly wrapping a loop of insulated wire around the body and securing under the board well away from any copper strips used for electrical connections.

Veropins have been placed in locations on the board where connections to panel-mounted components are made. This makes interwiring and testing very much easier.

CASE

The prototype unit is housed in a Verobox type 202-21032D.

The completed circuit board mounted in position on the inside back panel of the case.

COMPONENTS

\section*{Resistors

Potentiometers

VR1 $25 \mathrm{k} \Omega$ horizontal miniature preset
VR2 1MS2 horizontal miniature preset

Capacitors

C1 $\quad 0.47 \mu \mathrm{~F}$ ceramic or plastic
$\mathrm{C} 2 \quad 0 \cdot 22 \mu \mathrm{~F}$ ceramic or plastic
C3 $\quad 0.2 \mu \mathrm{~F}$ ceramic or plastic
$\mathrm{C} 4 \quad 470 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Semiconductors

IC1,2 555 CMOS timer i.c. (2 off)
TR1,2,3 BC107 npn silicon (3 off)
CSR1,2,3 C103YY or MCR102 thyristor (3 off)
D1,2,5,7. TIL220 i.e.d. or similar (two red, one yellow, one greeñ)
D3,4,6,8 OA202 or similar small signal silicon diode (4 off)

Miscellaneous

S1,3,4,6 miniature push-to-make single pole switch (4 off)
S2,5 miniature push-to-break single pole switch (2 off)
S7 single-pole key operated on/off switch
SK1 \quad-pin DIN socket
SK2 miniature mains cable socket
PL1 \quad 3-pin miniature mains chassis plug
PL2 \quad-pin DIN plug
RLA miniature 12 V relay, 185 ohm coil resistance with two sets mains rated normally open contacts
WD1 miniature 9 V audible warning device
RTH1 GM102 or VA3400 glass bead type thermistor
TB1 6 way screw términal block
B1 $\quad 9 \mathrm{~V}$ type $\mathrm{PP9}$
Stripboard: 0.1 inch matrix 36 strips $\times 50$ holes; 5 -way multi-core cable (or ribbon cable); connecting wire; twin-core 3A mains cable (for extension alarm); case (Verobox 202-21032D or similar); Battery connector clips; hardboard,

Fig. 3. Internal layout. Note that all letter/number combinations refer to Veropin locations Fig. 4. Wiring of the interlinking cable on the main circuit board and single letters to other locations. SK1 is mounted on the top of the case and FS1 and PL2 on the bottom. from the unit to the sensors and its
 connectors.

匪 IOIIMIII

Fig. 6. Some suggested ideas for the sensors. Remember that if there is more than one sensor for any one circuit then these must be wired in parallel. For those whose pipes run along the top of the joists, leakage detection can be made easier by fastening the detector wires to short lengths of hardboard which are placed between the joists-and under the pipe in question.

Assembly can begin by mounting the mains chassis plug PL2, fuse holder FS1 and 5 -pin din socket SK1 in the case. Next the completed circuit board is bolted to the back of the case using 6BA countersunk bolts and nuts. The front panel is next marked out and drilled to accommodate the panel-mounted components.

Finally the internal wiring is completed as shown in Fig. 3. Although this layout is by no means critical, care should be taken to make sure front panel components do not foul internal parts if another layout or case are used.
A 5-pin din socket is used as the termination for the sensor inputs and the spare set of relay contacts are wired via a 1 A fuse to a miniature mains chassis plug PL1 to act as an on/off switch for the extension alarm. Great care must be taken with this especially if it is likely to be used for switching mains voltage.

It is possible to connect any sort of mains device to this plug, for example a lamp, bell or buzzer, up to a maximum power rating of 250 watts for the relay specified.
The battery simply sits in the space next to the circuit board and a simple clamp is fitted to hold it in position.
Finally to secure the device against accidental switch-off, a key switch is used as the master on/off switch. This is not vital and can readily be replaced by any other on/off switch to reduce the overall cost of the system.

THE SENSORS

The sensor input to the unit is via a 5 pin din plug, hence it is necessary to run a length of 5 -way cable from the unit to the loft. This is then connected to a 6-way screw terminal block as shown in Fig. 4.

Basically there are three types of sensor-one for overflow, one for leakage and one to detect freezing conditions. Various ideas for the sensor are shown in Fig. 5.

The overflow sensor is very simple, and consists of two electrodes mounted in the cold water tank's above the usual water level. See Fig. 5 (a) and (b). A convenient readymade sensor is available in the form of a 2 -pin razor plug. This is robust with pins far enough apart so that when the level subsides there isn't any moisture left behind bridging the gap.
The other method uses a 2-way screw terminal block with short wires forming the probe. Care should also be taken to site this sensor far enough above the water level so that it isn't accidentally triggered by rushing water as the tank fills.

LEAKAGE DETECTOR

The leakage detector in practise is a little more complicated. One method
is to have twin runs of tinned copper wire about 2 mm apart beneath all pipes at risk fitted to the joists vertically beneath the pipe run.

Alternatively the wire can be fastened onto hardboard in a straight line using panel pins. This assembly can then be laid underneath the pipework, perhaps on a slight slant so any dripping water will run down on to the wires and set off the alarm.

If the pipes are lagged then two parallel lengths of tinned copper wire could be wrapped around the length of the lagging. See Fig. 5 (c) and (d) for details.

If complete pipe-run monitoring is not considered essential a number of small sensors consisting of stripboard with alternate strips bridged and placed under particularly risky spots could be tried. All of these sensors would of course be wired in parallel. This is shown in Fig. 6 (e),

FREEZING SENSOR

The freezing detector is straightforward as it consists simply of a miniature bead thermistor. This is attached to either the tank ballcock or pipe most susceptible to freezing. For a permanent arrangement, the thermistor can be glued to the pipe using Araldite. Alternatively the thermistor can be coated in a heatsink compound and taped to the pipe, see Fig. 5 (f).
Readers will no doubt be able to adapt these ideas to their own circumstances or even invent better ideas of their own. In any event if more than one sensor is used for a particular channel, they should all be wired in parallel.

All the sensors are terminated in the loft at a 6 -way screw terminal block TB1 to which the 5 -way cable to the unit is attached.

SETTING UP

Once the unit has been assembled its function can be tested using the built-in test buttons. When any of the circuit test buttons is pressed the relay coil should be activated causing WD1 to sound, diode D7 should flash and the l.e.d. associated with the particular circuit should light up. Pressing alakm reset will mute WD1 and pressing reset will reset the whole device.

Similarly the alarm devices alone can be tested by pressing alarm test and reset by pressing alarm reset.

Having built and tested the unit the freezing circuit should be set up next. To do this, the thermistor shouri be temporarily attached to the unit via the 5 -pin din socket, and fastened to the side of a metal container with adhesive tape. A mixture of water and ice is then poured into the container and the temperature of the
container is allowed to stabilise. The potentiometer VR1 is then adjusted until the alarm just triggers under these conditions.

At this point the sensors in the loft can be installed and the 5 -way cable run down to the unit. Extension warning devices can be attached via PL2, the battery checked and the device is ready for use.

USING THE DEVICE

The Loft Alert has been designed to have a very low quiescent current consumption in the standby condition (typically less than $Q \cdot 4 \mathrm{~mA}$), to allow the unit to be battery powered and left on continuously. Under these conditions the specified life of the PP9 battery will be close to its shelf life which is about one year.

However, should the alarm be triggered, the current consumption during the alarm period reaches about 70 mA . This means that once the alarm condition has been dealt with the battery should be checked before the system is reset and left, to make sure that it was not exhausted whilst the alarm was actiyated.

Assuming the unit is going to be in regular use, periodic inspection and checking of the sensors and battery is a good idea and a half-yearly overhaul is certainly recommended.

It's so easy and tidy with the Easibind to file your copies away. Each binder is designed to hold approximately 12 issues and is bound and blocked with the Everyday Electronics logo. Gold letraset supplied for self blocking of volume numbers and years.
Price $£ 3.75$ including postage, packing and V.A.T., Why not place your order now and send the completed coupon below with remittance to: IPC Magazines Ltd, Post Sales Dept, Lavington House, 25 Lavington St, London SE1 OPF

By Dave Barrington

Light Controller

It would seem that Discos do not have the monopoly on special effects this year. We are reliably informed that the measure of a good festive party this season will be its lighting effects-what's happened to stimulating conversation and good food?
Aimed more at the disco market with a price tag of £99, including VAT, the latest "light controller"' from TU AC should create a stir.
The Starchaser 4000 is an extremely versatile four-channel (750 W per channel) lighting control console offering 16 distinctive and varied lighting patterns, Basic light effects are selected by four switches, but by using another five switches it is claimed that the operator has a possible 1000 different patterns and effects at his finger tips.
Use of automatic gain control (a.g.c.) is a standard feature, and zero reference triac firing circuitry is incorporated to minimise r.f. interference. Also featured are two audio control modes giving a single shot and an audio controlled sequencing facility. Both audio control modes are designed to be "bass sensitive" being triggered by instruments such as drums and bass guitar.
A master dimmer allows all channels to be faded simultaneously. A crossfade facility enables each channel light to be brightened and dimmed at a controlled rate, producing a merging effect,
The crossfade switch also has a short on or "flash'" position which reduces the lamp on time of any channel during sequencing to produce a simulated "strobe" effect.
The Starchaser 4000 is available direct from Tuac Ltd, or from selected stockists. Further information and addresses of stockists can be obtained from Tuac Ltd, Dept $E E_{1} 121$ Charlmont Road, London SW179AB.

Link-up

Readers embarking on our new Teach-In 80 beginners series may like to investigate the latest link-wire kit for breadboards from Lektrokit for possible use with the EE Tutor Deck.

Although intended for their own range of breadboard systems they
will fit most commercial matrix boards. Each kit contains 350 wires and comes in a plastic compartmentalised box. All of the wires are of solid tinned 22 a.w.g. with p.v.c. insulation sleeving.
Fourteen different lengths are included ranging from $0 \cdot 1 \mathrm{in}$, for linking adjacent holes on a 0.1 in matrix board, to wires with a 5 in span. All wires have both ends stripped and bent to 90 degrees and each group of wires has a different coloured sleeving for easy identification of individual link wires.

For more information and addresses of local stockists, readers should write to Lektrokit Ltd., Dept. EE, Sutton Industrial Park, London Road, Earley, Reading, RG6 1 AZ.

Good Trading

Due to remarkable trading response during 1978/9, Newbear Computing Store recently decided to reorganise its operations for 1980 under three divisions.

Catering for business, industrial and educational requirements, Newbear Systems will be supplying microcomputers built to professional standards with matching peripherals and software.
The growth of the demand for technical books has meant the forming of Newbear Books. Several hundred titles are available 'off-the-shelf' and services offered include, a claimed, 24 hour turnround on mail order.

The Components Division holds very large stocks and includes a wide range of microcomputer components, including kits from Acorn, Nascom and Bearbag $77-68$ series. A comprehensive range of integrated circuits are also stocked.

A further result of their good trading figures, has been the opening of a new 1500 sq. ft. Northern branch store at Mersey House, 220 Stockport Road, Cheadle Hulme, Cheshire.

The latest piece of information we have received from Newbear is the announcement of a Christmas Sale.

A number of ex-demo microcomputers and peripherals are being offered to callers at the Newbury (40 Batholomew Street, Newbury RG14 5LL) and Northern showrooms. A large range of components, keyboards and other small items will also be available at reduced prices.

Small Orders

Another well established company who have long recognised the enormous potential of the amateur electronic constructors' market is Neosid Ltd.

A major supplier of ferrite components, coil assemblies and plastics coil formers, this company has now formed a Small

Lektrokit Link-wire pack.

Order Division to cater for the amateur's special needs.
A Small Order Catalogue is available from Neosid Small Orders, Dept EE, P.O. Box 86, Welwyn Garden City. Herts, AL7 1 AS. Send a large self stamped addressed envelope.

Constructional Projects

As the EE Loft Alert is likely to be our most popular project, and be tackled by the less experienced as well as the more advanced constructor, we recommend that only first grade components be used.
The thyristor type C103YY is available from R.S. retail outlets. A type MCR102 from Maplin and the 2N5060, 2N5061 from Walford Electronics can be used.

If any other type of bead thermistor than that specified is used it will obviously mean circuit "tuning". The type used in our unit was an RS Components miniature bead type (stock No. 151-136) equivalent for the VA3400.

Any relay may be used provided the coil resistance is above 100 ohms and will operate with a voltage of 6 to 9 V . A suitable type is the Keyswitch SM2P/12/ 185 which is a nominal 12 V type but works down to 5 V . Another two types which seem suitable are the Maplin FX27E and the Watford RL.

Part three of the EE Radio Control System this month deal's with the Receiver.

We understand that designer approved parts for the complete EE System are available from Cheshire Model Supplies Ltd., 55 Cheadle Road, Cheadle Hulme, Cheshire.

Because of the small size of the receiver, and the "dense packing" of components on the printed circuit board it is essential that the specified types of capacitors and resistors are used. Resistors rated at up to $\frac{1}{4} \mathrm{~W}$ should be suitable, but $\frac{1}{3} \mathrm{~W}$ types (as available from Electrovalue Ltd) are recommended:

The firm S.L.M. (Model) Engineers Ltd., Chiltern Road, Prestbury, Cheltenham, Glos., can supply control pots, cases and those other items specifically indicated "SLM" in our components lists. They do not however supply standard circuit components.

The short spring-line module called-up in the Spring-Line Reverb Unit is only available from Maplin Electronic Supplies, stock No. XL08J. All other components for this project are readily available from most advertisers.

The ZN1034E timer i.c. for the Mains On/Off Timer is listed by C. N. Stevenson, T.K. Electronics, Technomatic and Watford Electronics.

No buying problems are envisaged for the Uniboard $9 V$ Power Supply project.

UNIBOARDS
 SIMPLE TRANSIS. By A.R.Winstanley
 9V POWER SUPPLY

W${ }^{174}$ one exception, all projects described in this series have been designed to operate from a 9 volt rail. In certain instances, however, it would be considerably more cónvenient to power the project from the domestic mains supply.

The 9 Volt Power Supply was designed with economy in mind. It was to be built as cheaply as possible, and as such it should eventually pay for itself in terms of the cost of dry batteries. Although the circuit is rather basic (and is not transistorised) the unit has proven quite adequate to operate the projects in this series.

CIRCUIT DESCRIPTION

The circuit diagram is shown in Fig. 1. Transformer Tl is a valve heater transformer with a mains primary and a $6 \cdot 3 \mathrm{~V}$ a.c. 300 mA secondary. Mains voltage is applied to the primary and stepped down to
$6 \cdot 3 \mathrm{~V}$. This low a.c. voltage is presented to D1-mD4.
The diagram illustrates four separate rectifiers but in fact a single encapsulated unit, containing four rectifiers, called a "bridge rectifier", is used.

The bridge rectifier converts the a.c. into a pulsating d.c. voltage. Capacitor Cl , being a very large value electrolytic capacitor, smoothes out the pulses to give a nominal d.c. voltage of about 9 V with a reasonably low ripple content sufficient for our purposes here.

Finally, a light-emitting diode, D5, together with its associated currentlimiting resistor Rl, forms a "power on" indicator. A further bonus is that if for some reason, the output of the p.s.u. is shorted, the l.e.d. will extinguish, so indicating a fault present.

A 3.5 mm jack socket SK1 is used as the outlet for the 9 V supply. The tip of the plug inserted in SKl is connected to +9 volts.

Fig. 1. Circuit diagram for the 9 V Power Supply. The output connecting lead iš terminated with jack plugs PL1 and PL2. The jack tips carry the positive (+9 V) supply.

The prototype unit was housed comfortably in a readily-available PB1 type plastic box, measuring 115×75 $x 35 \mathrm{~mm}$. It is recommended however that the heater transformer is acquired first, and then a plastic box of appropriate dimensions chosen to house it.
The circuit is built on $0 \cdot 1$ inch matrix stripboard measuring 10 strips $x 24$ holes as shown in Fig. 2. There are no problems with this aspect of construction, but it is extremely important that both the p.c.b. mounting electrolytic capacitor and the bridge rectifier are correctly orientated.

The completed board is mounted on the inside face of the end opposite main cable exit by means of 6BA spacers, nuts and bolts.

The interwiring is as shown. A cable retaining clamp should be fitted to the main cable to prevent it from pulling out. Also, note how the earth input of the mains cable is connected by means of a solder tag to the transformer mounting frame, using one of the mounting bolts.

The l.e.d. can be positioned and secured using the special-purpose plastic clip normally provided. Finally, a 1 amp fuse must be fitted in the mains plug.

VENTILATION

It was found that the transformer itself did tend to get rather warm during normal operation. To counter this a series of ventilation holes have been drilled in the case. If necessary, a piece of aluminium mesh, or perforated zinc, should be glued behind the holes to prevent any objects poking through the holes and possibly touching mains wiring inside.

Jack sockets have been used in the individual projects to facilitate the connection of the 9 Volt Power Supply. A common audio lead, terminated with a 3.5 mm jack plug each end, is all that is required to make the connection

Note that the audio lead must be connected up before the p.s.u. is switched on: if the p.s.u. is switched on first and then plugged into the project, it is possible that the jack plug can temporarily short out the power supply, perhaps having a detrimental effect.

Next Month: Touch Switch

The finished power supply showing the small ventilating holes and the 9 V output jack socket.

Laycut of components inside the case. The circuit board is mounted on the side of the case using 6BA spacers.

COMPONENTS

Resistors

R1 $390 \Omega \frac{1}{2} W$ carbon $\pm 5 \%$

Capacitors

C1 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ radial elect.
C2 $\quad 0.1 \mu \mathrm{~F}$ polyester type C280
Semiconductors
D1-D4 50 V 1 A diode bridge type W005 or similar
D5 TIL220 l.e.d. or simifar

Miscellaneoùs

T1 mains primary $/ 6 \cdot 3 \mathrm{~V}-300 \mathrm{~mA}$ secondary
SK1 3.5 mm jack socket
PL1,2 $3 \cdot 5 \mathrm{~mm}$ jack plug (2 off)
Stripboard: 0.1 inch matrix size 10 strips $\times 24$ holes; mounting bush for D5; case type PB1, see text; cable retaining clip/grommet; p.v.c. insulated connecting wire; 3-core mains cable; 6BA fixings, nuts bolts, washers, stand-off spacers, solder tag:

Approx. cost Guidanceonly 23.25

Fig.-2. Layout of components on the topside of the stripboard, breaks to be made on the copper strips on the underside and interwiring details to the mains transformer, light emitting diode (D5) and output jack socket (SK1).

THe success of electronics as we know it today is based entirely on the growth of the semiconductor industry. Whilst electronics was certainly thriving in the valve era the real potential of electronics could only be realised by producing a small, cheap, lowpower alternative to the valve.
Investigation and development just after the last war led to the production of the first transistor. It was apparent that the basic components of the transistorsemiconductor junctions-could also be used to build a range of devices each with special characteristics.
In this part of the series we will look at the simplest semiconductor junction device-the diode. Understanding the operation of this relatively simple two-terminal device will aid the understanding of the more complex threeterminal transistors.

ONE-WAY CURRENT

The major point to understand concerning diodes is that whilst they have two terminals just like a resistor the two ends are not identical. Looking at an actual diode the two ends appear the same with the exception that the body of the diode has a ring at one end, so just what is the difference?

The answer to this is that the diode is a device sensitive to the direction of flow of current through it: It does not matter which way round a resistor is put in a circuit, it will still behave in the same way. A diode, on the other hand, appears like two different devices depending on which way round it is connected.

We obviously need to be able to refer to the two ends of a diode
using separate names and Fig. 4.1 shows the circuit symbol for a diode next to an actual diode with the terminals marked with their commonly accepted names-anode and cathode (the latter usually abbreviated to " k "!). The symbol for a diode is an arrow and this gives a clue to its properties.

When current flows through the diode from anode to cathode (in the direction of the arrow) the diode presents very little resistance to that current-it is a good conductor. If we try to pass current from the cathode to the anode (against the arrow) we will have great difficulty. In fact, the diode will break down under the voltage before it will pass any appreciable current.

We can liken the diode to an electronic switch which is either open or closed depending on the direction of the current. It behaves very like a valve (mechanical not electronic) in a tyre which allows air in but not out (Fig. 4.2).

When a diode has a voltage across it such that current tends to flow from anode to cathode we say the diode is forward biased. If the voltage is in the opposite direction then the diode is reverse biased.

RECTIFICATION

The widespread use of diodes has mainly come about because the majority of electronic equipment

Fig. 4.1 (left). Circuit symbol and names of the two terminals of a diode. Current can only flow in the direction of the arrow.

Fig. 4.2 (above). A tyre valve provides a
mechanical analogy of the diode. mechanical analogy of the diode.

Fig. 4.3. (a) Four diodes connected as a "bridge". The "load" represents either a single component or a whole circuit. (b) shows the path of the current when A is positive with respect to B and (c) the path when B is positive with respect to A.
will only operate when supplied with a steady voltage which does not change direction or value with time.
Power as supplied by the electricity generating stations is the opposite to this; it is constantly changing value and direction-in fact doing this $\mathbf{1 0 0}$ times a second.
Diodes are the easiest way (though not the only way) of converting this constantly reversing yoltage into one which is in one direction only. In fact four diodes are needed, the arrangement being shown in Fig. 4.3 and usually referred to as a diode bridge.

DIODE BRIDGE

When point A is positive with respect to point B, diodes D2 and D3 are reverse biased; so little current flows through them that they are virtually open circuit. Diodes D1 and D4 on the other hand are forward biased presenting very little resistance to current. The flow of current is thus as shown in Fig. 4:3b.

When the voltage is reversed, that is B positive with respect to A, diodes D1 and D4 are reverse biased while D3 and D2 are forward biased so that the current flows as in Fig. 4.3c. We thus have a circuit where the voltage across the load is the same no matter what the polarity of the power source.

We could use this circuit for protecting a circuit which could be damaged if the battery were connected the wrong way round.

SINUSOIDAL

If the voltage across A and B is from the mains it will be varying regularly from positive to negative as shown in Fig. 4.4(b). We call this type of waveform sinusoidal.

The positive-going half-cycle will be passed by D1 and D4. The negative-going half-cycle will be passed by D2 and D3. After passing through the diode bridge circuit the waveform appears as at (c). Notice that while it is still varying, it is always of the same polarity (the way in which this "pulsating" voltage is converted into a steady d.c. voltage will be described later in this series).

The process of converting an alternating voltage into a single polarity voltage is referred to as rectification. Very often the four

Fig. 4.4. (a) Mains voltage being rectified by a diode bridge. The bidirectional voltage (b) has been converted in to a voltage of a single direction (c)
diodes needed are supplied in a single package with four leads. This is known as a bridge rectifier.

NON-LINEARITY

It was stated earlier that a forward-biased diode presents very little resistance to current flow but this statement needs some elaboration.
It is found that, in the forward direction, the diode has a nonlinear relationship between applied voltage and current. In other words, if the current is lmA with a forward voltage of 0.5 V it is not true that 2 mA will flow with an applied voltage of $1 V$.

A graph of current plotted against voltage for a typical silicon low-current diode is shown in Fig. 4.5. Two points concerning the graph are of particular interest.

The first is that the voltage range of the graph is very small, only going from 0 to $1 V$. If we look at the graph near the point where 0.7 V is applied to the diode we see that a very small change in voltage is needed to produce a large change in current. Alternatively this may be stated as large changes in current produce small changes in diode voltage drop.
It turns out that this voltage is mainly dependent on the materials from which the diode is made. Silicon diodes have a constant voltage characteristic around $0 \cdot 7 \mathrm{~V}$ and germanium diodes (now rather uncommon) at 0.2 V .

The second point is that at low applied voltages the current is very small, that is the diode has high resistance.

What conclusions can be drawn from the graph? Firstly we can deduce that even when passing a high current the diode will be dropping about $0 \cdot 7 \mathrm{~V}$. In order for the diode to be an efficient rectifier, this voltage should be small with respect to the voltage to be rectified.

Fig. 4.5. Current plotted against voltage for a typical low-current silicon diode.

The fact that the voltage across the diode is relatively stable and predictable leads to another use of the diode: as a constant voltage source. Audio amplifiers often use forward biased diodes to derive stable bias voltages for output stages.

SEMICONDUCTOR JUNCTIONS

Whilst understanding how diodes behave in a circuit is fairly simple, understanding how they are made and how they actually work is far more difficult. One really needs a thorough knowledge of -physics to appreciate semiconductor operation but the general principles are as follows.

Diodes nowadays are made from a single piece (or chip) of silicon which is specially treated when in its molten state. The two halves of the diode are exposed to two types of gas which give each half distinct properties.
The process of introducing tiny amounts of impurities into the silicon in this way is known as doping.

One half of the diode-to-be is "doped" with a carefully chosen material whose atoms have one
more electron than the basic silicon-it is like creating a surfeit of electrons. The other half is doped with a material whose atoms have one less electron than silicon-this is like creating a deficit of electrons.

Where the two forms meet, a field appears which tends to oppose any electrons which try to cross from one side to the other; we call this a potential barrier.

A forward bias on the diode tends to reduce the "height" of the barrier allowing more electrons to flow, hence conduction in this direction is easy. Applying a reverse bias however tends to increase the size of the barrier so very little conduction takes place (until the field is so high that the barrier breaks down). See Fig. 4.6.

This description obviously railses a lot of questions but it should give a feel for the sort of processes occurring in a diode.

LIGHT EMITTING DIODES

When electrons cross the potential barrier in a forward biased diode they change from a high energy state to a lower energy state. The energy that they lose can appear either as heat or aslight.

The materials from which diodes are made determines in which form the energy appears. By making a diode out of gallium, arsenic and phosphorus it is possible to produce a diode which releases a high proportion of the energy change of the electrons as visible light. When these diodes are placed in special translucent packages we have light emitting diodes (l.e.d.s) which are becoming so familiar today. The symbol is shown in Fig. 4.7a.

Light emitting diodes usually require a forward current of about 10 to 20 mA for efficient light generation. At these sort of currents the voltage drop across the diode is around 1.6 V although it may be up to 2 V for some types of l.e.d. At the present time the colours available are red, through orange and yellow to green. Blue has proved a very difficult colour to produce although it was recently announced that a blue diode has been manufactured albeit very inefficient.

As well as single light emitting diodes, arrays of diodes can be

Fig. 4.6. The potential barrier in (a) an unbiased junction (b) a forward-biased junction and:(c) a reverse-biased junction.

Fig. 4.7. (a) Circuit symbol of a light emitting diode (b) circuit symbol of a Zener diode.
combined to form seven-segment l.e.d. displays so familiar in calculators and digital clocks and watches.

ZENER DIODES

As the reverse voltage across a diode is steadily increased there comes a point where the diode "breaks down" and suddenly becomes a good conductor. If the current is controlled so that the diode does not burn itself out we have a very useful component: the Zener or reference voltage diode.
By controlling the geometry of their diodes, manufacturers have been able to produce diodes with a huge range of breakdown or Zener voltages.

The useful thing about the breakdown characteristic is that the current can be varied over a large range with hardly any change in voltage. A typical Zener diode can produce voltages stable to a few tens of millivolts at a voltage of 10 V .
Zener diode specifications usually refer to both the Zener voltage and the maximum power dissipation of the diode. The maximum current that must be allowed to pass through the diode is the maximum power dissipation divided by the Zener voltage. Thus a $4 \cdot 7 \mathrm{~V} 400 \mathrm{~mW}$ diode must not carry more than $400 / 4 \cdot 7$ or about 85 mA . The symbol for a Zener diode is shown in Fig. 4.7b.

DIODE SPECIFICATIONS

Diodes come in a variety of shapes and sizes. Manufacturers specify two main properties of their diodes: the maximum forward current ($\mathrm{i}_{\text {max }}$) and the peak inverse voltage (p...v.), that is the maximum safe voltage that can be placed across the diode in the reverse direction that will not cause breakdown.
A diode in a transistor radio may have a p.i.v. of 50 V and an $\mathrm{I}_{\text {max }}$ of 100 mA . One in a power supply could have a p.i.v. of 600 V and an $I_{\text {max }}$ of 5 A .
When large currents flow through a diode heat is generated so the packages of heavy current diodes are usually designed to bolt onto a piece of metal (a heatsink) to help keep the diode cool.

DIODE GATES

We have seen how diodes are similar to switches, having two states one high resistance and the other low resistance, the "switch" being controlled by the direction of the current flow.

The principle can be put to further use in what is known as the diode gate.

A "gate" as the name implies can be either open or shut. In real terms this means that a voltage is used to control the flow of current into another part of the circuit.

The circuit of a simple diode gate is shown in Fig. 48. The controlling voltage is applied at point A, the voltage to be controlled being that at point B.

EXPERIMENT 4.1: DIODE BRIDGE RECTIFICATION

Components needed: $1 \mathrm{k} \Omega$ resistor,
$100 \mathrm{k} \Omega$ resistor, IN4148 diodes (4 off)
The circuit diagram for an experiment to investigate diode bridge rectification is shown in Fig.4.10(a) with the layout of the components on the Tutor-Deck in Fig.4.10(b). Note these additional connections on right hand panel of Tutor Deck: link $\mathbf{S 1}(\mathrm{a})$ to $\mathrm{B} 1+9 \mathrm{~V}$; link S 1 (c) to B2-9V.
Switch S1 is used to produce either +9 V or -9 V at point A . Since the meter can only indicate $100 \mu \mathrm{~A}$ or so, a resistor R2 is used as the main current path, with the meter (in series with R1) used to indicate the polarity of the voltage across R2.

It will be found that whatever the setting of $\mathbf{S} 1$, the polarity of the voltage across R2 will be the same.

For identification of Tutor Deck components and their associated sockets refer to Flg. 2.8.

EXPERIMENT 4.2: DIODE "AND" GATE

Components needed: $1 \mathrm{k} \Omega$ resistor, 1N4148 diodes (2 off)

The circuit diagram for the simple two diode AND gate is shown in Fig.4.11(a) with the layout of the components in Fig.4.11(b).
The l.e.d. D1 serves a dual purpose; it forms both the output diode and the load. When either input A or input B is taken to $O V$ the l.e.d. will be off, since all the current through R1 will flow through D3 or D4. Only when both inputs are taken to $9 V$ (or left open-circuit) will the l.e.d. light. We say the input A AND input B must be at logic " 1 " before the output is at logic " 1 ".

Fig. 4.10 (a) Circuit diagram showing the diode as a rectifier with (b) showing the component layout on the Tutor Deck.

Fig.4.10b

Fig.4.11b

Fig. 4.11 (a) Circuit diagram of a simple two-input diode AND gate. (b) shows the layout on the Tutor Deck.

Fig. 4.8. Circuit of a simple diode gate. The voltage at A is used to control that at B.

Fig. 4:9. A diode AND gate. All inputs must be at logic "1" (9V) for the output to be high.

Consider what happens when A is taken to 0 V . Diode D1 will be forward biased, current flowing through R1. The voltage drop across D1 will be about 0.7 V (assuming it is silicon). A load connected from the cathode of D2 to 0 V will therefore have no voltage across it.

PART 4 QUESTIONS

4.1. A diode with its cathode more positive than its anode is said to be
a) forward biased
b) reverse biased
c) neither
4.2. A diode in a circuit is found to have a voltage drop from anode to cathode of 0.2 V . Is the diode most likely to be
a) silicon
b) germanium
c) gallium arsenide
4.3. A $10 \mathrm{~V} 1 \cdot 3$ watt Zener diode should not be allowed to pass more than
a) $1 \cdot 3 \mathrm{~A}$
b) 130 mA
c) 13 mA
d) $1 \cdot 3 \mathrm{~mA}$

If A is now taken to 9 V diode D1 will have zero voltage across it. Now all the current will flow through R1, D2 and into the load.
If the usefulness of this circuit is not apparent, consider the case when, instead of just a single diode, two or more diodes are used in place of D1. Now connecting any input diode to 0 V will cause zero voltage to appear across the load. What we have is the basis of
4.4. An AND gate output will only be at logic " 1 " when
a) all
b) none or
c) some of its input are at logic "1".
4.5. The stripe on an 1 N4148 diode indicates
a) the anode
b) the cathode
c) the emitter

PART 3 ANSWERS

3.1. c) $3 \cdot 2$ a) and c) $3 \cdot 3$ b) 3.4 c)

EE CROSSWORD No 23
 BY D. P. NEWTON

ACROSS

1 A kind of biscuit found with chips (5).

4 Complete temperature scale (8).
8 Conducts into kidnapping (7).
9 Grille makes sick (3).
11 Metallic ion form expressing the perverse timing of Fate (6).
13 Would another revolution make the i.c. so antique? (5).

14 Short beats give sustaining activity (3).

15 Those heartily felt surges (6).
16 A switch that's a bit shaky (8).
18 Free electricity? $(2,6)$.
20 Sea with icy connections (6).
21 Phoney part of 25 down (3).
22 Characteristic curves are seldom so perfect (5).
24 Often a cause of an open-circuit but has a capacity to be useful $(3,3)$.
26 We couldn't solder on with it (3).
28 A stratum characteristic of the i.c. (7).

29 To put down interference (8).
30 Measuring term (5).

DOWN

2 It avoids mis-match at the terminal (7).

3 Aged solder partly but more personal (5).

5 We all must have them to make any start at all $(5,10)$.
6 Sound tone clipped to place above (4).

7 The fishy part of electricity (3).
9 When 10 down cools off, do we get these? (4).
10 Type of network (7).
12 Nothing like 18 across in part $(2,4)$.
16 Early galvanometer (7).
17 Bulb coiler tails off to immersion heater (6).
19 One electrode turned cooker (7).
20 All brain but no eye for food (4).

23 Glare makes it big (Anag.) (5).
$25 \operatorname{Cog}$ (4).
27 They are common to the electronics of 13 and 28 across (3).

Solution on page 60

mains On/Off timen

PDerhaps one of the less pleasant ways of starting a day is to be awoken to the nerve-shattering jangling of one very large and very loud alarm clock! There must be better ways of being roused from sleep, and this project would seem to make life a little easier in this respect.

TIMED DELAYS

The Mains On/Off Timer is a versatile unit which will generate timed delays of up to twelve hours in one-hour increments. Once this period is up the Timer will switch on or switch off any mains load connected to its output sockets, and this load can have a power rating of up to 1800 watts; therefore the unit is suitable for driving many appliances.
Thus by connecting a mains radio to the Timer and setting the appropriate delay, one can be awoken to the more acceptable strains of Terry Wogan.

The Timer utilises the Ferranti ZN1034 precision timer i.c. to produce very accurate timing periods using low value timing components when compared with typical component values used with, for example, the NE555 timer.

Also, the ZN1034 is equally at home producing delays of one second or one week-compare this with the maximum one hour delay generated by the 555 . Indeed, by using two ZN1034 timers a delay of up to one year is attainable.

THE TIMER I.C.

The internal circuitry of the ZN1034E (the ' E ' denotes a 14-pin d.i.l. package) is very simply illustrated in Fig. 1. The i.c. features an on-chip oscillator and twelve-stage divider. The frequency of oscillation is determined by an external RC circuit. When the oscillator has cycled 4095 times the control logic switches over the complementary outputs at pins 2 and 3.

The external $R C$ circuit therefore determines the delay period which the i.c. will generate. The use of an oscillator and counter in this manner enables an $R C$ circuit with a relatively low time constant to be utilised to deliver relatively long delays.

The timing period is given by the formula

$$
t=k \times B \times C
$$

where t is the delay (seconds)
R is the external timing resistor (ohms)
C is the external timing capacitor (Farads)
and k is a multiplying constant.
The constant, k, is determined by the value of a "calibration resistor." With pins 11 and 12 of the i.c. linked, an internal 100 kilohm resistor is selected, and $k=2736$.

If pins 11 and 12 are linked by a 50 kilohm resistor then the calibration resistor is increased to 150 kilohms and $k=4095$. If instead a 300 kilohm resistor is connected between pin 12 and ground then k becomes 7500 , and in this mode the i.c. is able to produce its longest delay periods. If the internal resistor is used, this will give the best coefficient of temperature, but whatever method is chosen, the calibration resistor should not exceed 300 kilohms.

When choosing values of R and C, the following limits apply:

$$
\begin{aligned}
5 \mathrm{k} \Omega & \leqslant R \leqslant 5 \mathrm{M} \Omega \\
C & \geqslant 3300 \mathrm{pF}
\end{aligned}
$$

The timing period commences when the device is triggered by grounding pin 1. Two complementary outputs are available at pins 2 and 3; pin 2 (\bar{Q}) is normally high and goes low during timing; the opposite is true of pin $3(Q)$.

Fig. 1. Block diagram of the internal circuitry of the ZN1034 i.c.

A typical "high" value would be about $3 \cdot 5 \mathrm{~V}$ and a "low" would be in the order of 0.3 V . When either output is high, it can supply current of up to 25 mA to the load connected to it; but when the output is low, if the load is biased correctly then current may sink into the output, and again this current must be limited to 25 mA .

POWER REQUIREMENTS

Concerning the power supply rails, the i.c. will operate directly from 5 V to 450 V d.c. When used with a 5 V rail (as with TTL circuits) then pin 4 can be connected straight to $+5 V$. Alternatively when used with a rail exceeding 5 V , a series resistor must be connected between pins 4 and 5 and the positive rail. A 5 V shunt regulator on pin 5 takes care of the rest.

The value of this series resistance is given by

$$
R_{\mathrm{s}}=\frac{\left(V_{\mathrm{B}}-5\right)}{I}
$$

where R is the resistor value (ohms) V_{8} is the supply rail voltage and I is the current flowing through the resistor. (amps)
The current is 5 mA plus any current drawn at the outputs.

A switch-on reset is incorporated into the chip which resets the time delay if the supply is interrupted.

OSCILLATOR FREQUENCY

The actual precision oscillator can be observed in operation by placing a high-impedance frequency meter or cathode-ray oscilloscope on pin 13. The impedance must be at least ten times that of the timing resistor or the test instrument impedance may alter the $R C$ constant.
The actual delay period will be $4095 \times$ period of waveform measured on the 'scope. Measuring the oscillator frequency in this way is often more desirable than having to wait a few hours to check the accuracy of the timer. A provision has been built into the Timer to allow measurement of the oscillator period with an oscilloscope.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Timer is shown in Fig. 2. Mains voltage is stepped down by T 1 to 12 V a.c. This is rectified by D1-D4, an encapsulated bridge rectifier and smoothed by C1 to produce an unregulated supply of some 17 V d.c.; R 1 is a series dropping resistor which permits the operation of IC1 from the 17V supply. Capacitors C2, C3 and C4 are used to decouple the supply rails and serve to reduce any spurious noise.
The internal 100 kilohm calibration resistor is brought into circuit by the link between pins 11 and 12. Capacitor C5 is the timing capacitor and
switch S3 is a 12-way rotary switch which selects the timing resistor. With S3 at position 1, a 390 kilohm resistor is selected as the timing resistor. The delay t is thus

$$
\begin{aligned}
& \quad t=k \times R \times C \\
& =2736 \times 390 \mathrm{k} \Omega \times 3 \cdot 3 \mu \mathrm{~F} \\
& =3521 \text { seconds or about } \\
& \text { one hour (} 58 \text { minutes) }
\end{aligned}
$$

(Internal 100 kilohm calibration resistor selected, so $k=2736$.)

With S 2 in position 2, two 390 kilohm resistors are in circuit and the delay is about two hours, and so on. No preset has been included in the timing resistor chain which might allow exact trimming of the oscillator period to produce spot-on delays (e.g. exactly one hour). Such a preset would obviously be nearly impossible to set up unless an oscilloscope or frequency meter was available to help. In fact reasonable accuracy is obtained when a tantalum capacitor is used for C5.

Socket SK3 is optional and permits the measurement of the basic oscillator period with test equipment. With a 10 megohm c.r.o. and probe, this socket should be usable with the timer set for a delay of up to three hours. After this the scope impedance might cause false readings to be taken.

The i.c. is triggered by grounding pin 1 via S2. The switch-on reset can be utilised to cut short the time delay if required: this can be done by temporarily interrupting the 17 V

A precision timer i.c. forms the basis of this design. An external $R C$ network (R_{t} and C_{t}) alters the frequency of an internal oscillator. When the oscilator has cycled 4095 times, the internal i.c. logic detects this and causes a transistor to switch off, thereby removing power from the relay coil and turning off the mains load.

Two complementary outputs are available on the i.c., and both are utilised to provide a visual indication by means of two l.e.d.s to signal whether the timer has "started" or "stopped."

The i.c. is both triggered and reset with one switch. Timing resistor R_{t} is varied in steps by means of a rotary switch to allow different delays to be obtained. The Timer generates delays of between 1 and 12 hours, but in theory the i.c. can deliver delays of between about $15 \mathrm{micro-}$ seconds and about 3 weeks.

The relay contacts switch the mains load off after the delay is up, but in this design by utilising both sets of changeover contacts, the load can be switched on or off after the delay.
supply to the i.c. with a normallyclosed switch. Instead, however, a reset function was derived by grounding pins 4 and 5 with S2-this grounds the i.c. and resets it. Resistor R1 ensures that there is no danger of shorting out the supply, and R2 limits the peak current caused by C3 and C4 discharging to 0 V .
By resetting the i.c. in this manner it was possible to incorporate the trigger (START) and RESET functions into one switch.

I.C. OUTPUIT

Both of the i.c. outputs are used. When the i.c. is not timing, then pin 2 is high and pin 3 low. Therefore output current flows out of pin 2 and sinks into pin 3, illuminating D5 to indicate the timer has stopped. Light emitting diode D6 cannot illuminate because it is reverse-biased by about two volts. Resistor R15 limits the current flowing in the l.e.d. to less than 10 mA -generally enough to cause an easily visible glow.

Upon commencement of the timing period (ICl being triggered by S2), pin 3 goes high and pin 2 low-D5 must therefore extinguish and D6 illuminates to indicate that the timer has started timing. Also, TR1 switches on with pin 3 going high. This completes the circuit to RLA which now operates. Resistor R17 is a series dropping resistor and is necessary to
enable the 12 V 110 ohm relay to be used with a 17 V supply. A transistor
is required because the i.c. cannot possibly supply the 110 mA or so required by the relay.

Switch S 4 has been incorporated to allow a manual operation of the relay independently of the Timer which switches on the relay itself and illuminates D8 to indicate the manual function.

RELAY

The relay used in the prototype was an R.S. Open Type $348-835$ which is equipped with a pair of 10 A 250 V a.c. changeover contacts. Socket SK1 is connected to the mains through the normally-closed contacts. When the relay operates, these contacts open and switch off the load connected to SK1 which switches on again when the Timer is reset or times out.
The opposite is true of SK2. When the unit is timing, SK2 switches on and switches off when the unit times out. The use of these "complementary" sockets means that any load can be turned on or turned off when the Timer has completed its cycle.
In the final design, the relay contacts have been derated to $7 \cdot 5 \mathrm{~A}$ by means of FS1 so that neither the relay contacts or the mains interwiring can be operated at their absolute maximum ratings. Fuse FS2 protects the transformer in case a fault should develop.

Completed Timer with front and rear panels displaced showing interior layout and wiring.

CIRCUIT BOARD

The circuit is built on a glass fibre printed circuit board for high reliability and strength. The foil layout and component overlay is shown actual size in Fig. 3. The prototype was made using etch-resistant transfers for the tracks and resist ink for the larger areas of copper foil

There are several points which must be observed when soldering the components to the p.c.b. Firstly make absolutely certain of the polarity of C1. Also ensure the correct orientation of D7. Finally, whilst an i.c. socket was not used on the prototype, it is recommended that one is used to prevent thermal damage to the rather expensive i.c. during soldering. Complete the p.c.b. in accordance with Fig. 3 and ther move on to the casework.

CASE DETAILS

The prototype was housed neaty in a plastic Verobox type $75-1412 \mathrm{~K}$ which has aluminium front and rear panels. The front panel should be drilled to take the three switches and three light-emitting diodes. Take care to ensure that the front panel is not scratched during this operation as this would greatly detract from its final appearance.

Letter the front panel as necessary and give it several light coats of lacquer for protection. A solid machine-turned aluminium knob and two different-coloured end caps for the miniature toggle switches completes the front panel and gives a very professional finish.

REAR PANEL

The rear panel must be punched or cut to take the two main sockets, mains cable inlet, and also SK3 if used. There will not be much room left on the rear fascia after the two mains sockets are in place, and so this stage of the construction needs to be planned with care.

If flush-fitting sockets are used, then two large cut-outs will be required; on the prototype this was very easily accomplished with a tank cutter and hand brace. Other methods include drilling a ring of holes, punching out the centre and then filing till smooth.

Resistors

R1	$1 \cdot 2 \mathrm{k} \Omega$
R2	10Ω
R2-R14	$390 \mathrm{k} \Omega(12$ off $)$
R15	220Ω
R16	680Ω
R17	$47 \Omega 1 \mathrm{~W}$
R18	$1.5 \mathrm{k} \Omega$

Capacitors

C1 $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ p.c.b. elect.
C2 $0.1 \mu \mathrm{~F}$ polyester
C3 $1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C4 $0.1 \mu \mathrm{~F}$ polyester
C5 $3 \cdot 3 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum

All $\frac{1}{2} W$ carbon $\pm 5 \%$ carbon except R 17 (1W)
Semiconductors
D1-D4 BY164 60V 1-4A bridge rectifier
D5, 6,8 TIL220 or similar l.e.d. with mounting clip (3 off)
D7 1 N4001 or similar silicon diode
TR1 BFY52 silicon non
IC1 ZN1034E precision timer i.c. 14 pin d.i.I.

Miscellaneous

T1 Mains primary/ 12 V 500 m A secondary transformer
RLA $\quad 12 \mathrm{~V} 110$ ohm coil with two sets of changeover contacts rated at

250 V 10 A
S. 1 d.p.d.t. 10 A mains toggle

S2 s.p.d.t. miniature toggle, centre biased
S3 1-pole 12-way rotary switch
S4 d.p.d.t. miniature toggle
SK1, SK2 13A 250 V flat pin flush mains socket (2 off)
SK3 See text

FS1 $\quad 1$ A 20 mm
FS2 7.5A 1 1 inch
Chassis fuse holders for FS1 and FS2; case, Verobox 75-1412-K; glass fibre p.c.b.; 14 pin d.i.l. socket; control knob; 13A cable and plug; p.v.c. insulated interconnecting wire; 10A mains interconnecting wire; 10A connecting block; coloured caps for S2 and S4 (one red and one green); p.c.b. mounting pillars.

Fig. 3. Printed circuit board component layout and underside foil pattern (actual size).

The resulting large holes were then slightly modified with an Abrafile to take the shape of the earth terminals of the mains sockets.

It will be seen that as the mains inlet hole must be very near the right hand edge of the panel, then an adjacent hollow pillar moulded into the base needs to be trimmed right down to allow the mains cable to pass through unhindered. This pillar must be cut with a hacksaw, making quite sure that you don't cut into the edge of the case itself.

A hole (or two holes, depending on the type of socket used) will be required for SK3, if used. If a BNC socket is used, as in the case of the prototype, then one hole only is needed, the $0 V$ connection being made through the earth. If, for example, two 4 mm sockets are used then provision has been made on the p.c.b. for a 0 V connection to be extended to one of the sockets.

Fit the sockets to the rear panel and fit a grommet to the mains cable inlet hole. Letter SK1 and SK2 "turn on" and "turn off" respectively.

INTERNAL WIRING

The dark grey chassis is drilled to take the p.c.b. mountings, two fuseholders, transformer, terminal block, relay and mains cable clamp. The positioning of these holes should be carefully marked out so that the holes do not foul with the pre-moulded pillars in the base. The mains cable clamp is a nylon "p" cllp which pre. vents the cable from being pulled out.

There is quite a lot of interwiring ts be carrled out but if Fig. 4 is followed carefully then no problems should arise.

All malns-voltage joints must be neatly soldered and insulated with p.v.c. sleeving, and all of this wiring is carried out with 10A (or greater) mains cable coloured blue, brown or green/yellow to coincide with the standard mains colour code. The transformer and FS2 can, however, be wired with normal 6 A mains cable. The mains inlet must be rated at 13A. All other wiring can be carried out with lightweight hook-up wire, preferably stranded.

The relay connections shown in the diagram are for the specified relay only, and may differ if other makes of open relay are used.

EARTHING

Concerning the earthing arrangements, the front panel must be earthed using a very large earthing tag placed under one of the miniature toggle switches. An alternative here would be to solder the earth wire directly to the metal body of one of the switches. The rear panel is earthed

Close up view of the top of the p.c.b. showing comporient positioning and wiring.
with a 4BA solder tag under one of the mains socket mounting bolts. The 0 V line of the p.c.b., and the transformer mounting bracket, are earthed in a similar fashion.

The wiring can be tidied up using nylon ties. The wires are arranged into looms, the tie is threaded around the loom and pulled tight. The excess is then snipped off. When forming the looms, keep mains cables away from low voltage wiring.

CHECKING AND SETTING UP

With all of the wiring completed, check carefully all aspects of your work. Check the p.c.b. for errors like reversed components or dry joints, etc. Recheck the mains wiring for quality and make sure that this is in order. Check the polarities of the l.e.d.s are correct.

If a multimeter is available, select a low ohms range and test for a low resistance between the earth pin of the mains plug and the front and rear panels. Test for infinite resistances between the earth pin and live and neutral pins of the plug.

If you are satisfied, fix down the top cover of the case, plug in and switch on. The stop l.e.d. should be alight. Move Sl to start and allow it to return to centre off. The stop indicator should extinguish and the start l.e.d. glow. The relay should also be heard switching in. Reset the timer at S 1 and the relay should click out and the l.e.d.s switch over again.

Check now that the manual switch operates the relay and manual l.e.d. when moved down. Set the knob for a one hour delay and start the timer; check that roughly a one hour delay is achieved. This last test will give a good indication of the accuracy to be expected with other delay settings. The prototype gave exactly 58 minutes delay on a one hour setting-this is
exactly the period calculated with the formula given earlier.

If a c.r.o. is available, then the basic oscillator period can be measured (up to a maximum three hour delay) and the expected time delay computed with the formula given previously.

If everything seems in order then try the timer on a very long delay setting to confirm its accuracy. Here again the prototype was less than ten minutes out on an eleven-hour setting.

USING THE TIMER

Someone will possibly want to use a cassette recorder with the device. This is in order provided that the cassette recorder is not allowed somehow to remain for long periods in the "play" position with the power removed. Otherwise the rubber pinchwheel may possibly become physically distorted if it is kept "pinching" the tape against the capstan spindle for too long.

The timer can quite successfully be used with "auto stop" recorders to turn the power off altogether after the tape mechanism has stopped automatically at the end of a tape.

Finally it was discovered that in spite of the decoupling incorporated in the circuit, spurious noise generated by other appliances sharing the same socket being switched on and off sometimes reset the Timer. The Timer will not however start timing when a transient appears on the line.

The only way round this it seems is to use the timer and nothing e'se off one mains outlet, or plug into a suitable mains "suppression unit". It can be noted that the timer is not susceptible to transients generated by appliances in other parts of the building, and it is in order to share a mains wall socket with loads that are always on all of the time, like digital clocks, for example.

THis third part of the series deals with the receiver, its construction and the tuning-up procedure.

This receiver is as sensitive as most commercial receivers and is capable of working in the 25 kHz spaced split frequencies provided reasonable care is taken to ensure that the adjacent channel transmitter is not nearer to the model than the control transmitter.
The receiver is housed in a small plastics case. External connections to the servos and the battery are made either by floating connectors attached to the ends of flexible leads, or via a connector block mounted directly on the p.c.b.

FLEXIBILITY

Any number of channels from one to seven may be used, the only dif. ference being in the number of leads brought out. Individual sockets may be used for each channel if so required, or a mixture of single sockets and blocks as shown in the diagrams.

Any servo may be plugged into any receiver output channel provided that particular channel has a control stick on the transmitter. It is not necessary to use the control channels in any set order and the servos should be plugged into the channels required.

Once again i.c.s are used where advantageous, such as in the r.f. amplifier / oscillator stages and the decoder. This also helps to reduce constructional errors in these areas.

RECEIVER IN OUTLINE

A typical 27 MHz receiver is shown in block diagram form in Fig. 3.1.

The transmitter signal is received by the aerial and passed on to a tuned circuit which has a high impedance to 27 MHz signals but has a low im. pedance to signals of other frequencies. This ensures that a maximum 27 MHz signal is passed to the radio frequency (r.f.) stage for amplification.

The crystal oscillator, which is usually of the third overtone type, runs at a frequency of 455 kHz less than that of the transmitted signal.

When the oscillator signal and the output of the r.f. stage are fed into the mixer stage, the sum and difference frequencies of the two input signals are available at the output of the mixer. The output of the mixer is fed into a tuned amplifier which is tuned to 455 kHz thus ensuring that only the signals spaced 455 kHz away from the crystal oscillator frequency are amplified. This stage is called the intermediate frequency amplifier (i.f.).

The i.f. amplifier output is then fed into a detector stage which effectively removes the 455 kHz signal and leaves only the modulation, the modulation in this case being the pulses necessary to drive the decoder circuitry which in turn drives the servos.
It can be seen that the first three stages of the block diagram Fig. 3.1 are contained in one integrated circuit IC1. This i.c. gives a reliable mixer stage which is necessary if repeatability of performance is to be obtained amongst receivers built by different constructors.

A conventional i.f. amplifier using transistors and transformers is used, this then feeds a transistor detector. It was considered whether to use ceramic filters to obtain a better selectivity, but suitable filters cost a few pounds and were not generally available, hence the choice of standard circuitry.

The rest of the receiver consists of the pulse amplifier, sync pulse detector stage and the decade counter decoder IC2 which decodes the pulses suitably for driving the servos.

CIRCUIT DESCRIPTION

In the full circuit diagram (Fig. 3.2) it can be seen that the aerial is connected to the primary of a double-

Fig. 3.1. Block dlagram of the EE Radio Control System Recelver.
tuned r.f. circuit comprising inductance L1 and capacitor C2. A small capacitor C3 couples the primary tuned circuit to the resonant secondary circuit L2, C4. These two tuned circuits form a highly selective tuned input stage.
Impedance matching into the r.f. stage of ICl is achieved by using the secondary of L2.

The crystal oscillator discrete components are the crystal X2 and three capacitors, $\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$; the remainder of the oscillator circuit being in ICl itself.

MIXER STAGE

The r.f. stage output and the oscillator output are mixed internally, the output of the mixer stage (pin 2)
being fed into the primary of the first i.f. transformer T1 which is tuned to the difference frequency of 455 kHz by its internal capacitor and adjustable ferrite potcore. The output of the untuned secondary drives the first i.f. amplifier TR1, the collector currents of TR1 and TR2 being determined by the emitter resistors and the base voltages.

Fig. 3.2. Circuit of the EE Radio Control System Receiver.
TR3 COLLECTOR
VOLIAGE SHOWS TR3
LIMITING Le. MAX SIGNAL
TR4 COLLECTOR [CLOCK
PULSE AMPLIFER (SIGNAL
TR5 BASE SIGNAL
SYNC. PULSE DETECTOR
TR6 COLLECTOR
(RESET PULSE FOR IC2)
CHANNEL 1
(IC2 PIN 3)
CHANNEL 2
(IC2 PIN 4)
CHANNEL 5
(IC2 PIN 1)
CHANNEL 7
(IC2 PIN 6)

Fig. 3.3. Waveforms at various points in the receiver.

The second i.f. transformer T2 couples the signal into the second i.f. amplifier TR2 which in turn feeds i.f. transformer T3.

The secondary of T 3 is connected between a forward biased diode D2 and the base of detector transistor TR3. The forward voltage of 0.5 V across D2 is insufficient to turn on TR3 which needs approximately 0.65 V base voltage for this purpose. It can be seen therefore if the secondary of T3 supplies a 300 mV peak-to-peak i.f. signal, the positive peaks will add to the 0.5 V thus supplying the base voltage needed and so turn on TR3.

The larger the signal, the larger the voltage swing at TR3 collector until the maximum swing of (supply voltage- 0.4 V) is reached. Smoothing capacitor Cl 2 has the effect of changing the 455 kHz peaks into a mean d.c. voltage whose d.c. level varies with signal strength, the larger the signal the lower the d.c. voltage at TR3 collector.

When a $200_{\mu} \mathrm{sec}$ "interruption" in signal occurs (which constitutes a channel gap from the transmitter), TR3 has insufficient base voltage and turns off, capacitor Cl2 charging swiftly up to positive rail via R6. When the signal resumes, TR3 turns on again discharging $\mathrm{Cl2}$ and the "interruption" becomes a "pulse". In this way the transmitted pulses are reconstituted at TR3 collector.

AUTOMATIC GAIN CONTROL

Since the d.c. level at TR3 collector is dependent upon signal strength, it is fed via R8 to the bases of the two i.f. amplifier transistors TR1, TR2, the pulse interruptions in signal being "smoothed out" by capacitor C10. In this way the gain of the i.f. amplifier is controlled by the incoming signal strength, since the mean d.c. vol-
tage at TR3 collector drops with large signals thus decreasing the base voltages of TR1, TR2, hence their gain.

The signal from TR3 collector is fed via Cl 3 to the pulse amplifier TR4 which has no bias and hence requires 0.6 V pulse to trigger it thus giving a measure of noise immunity. The output at TR4 collector is approximately a 4.5 V peak-to-peak sig. nal and is used to "clock" the decoder IC2.

DETECTION OF SYNC PULSE

In order that "Channel 1" always appears at the same output pin of IC2 it is necessary to detect the end of a block of pulses and reset the counter IC2. It is for this purpose that the sync pulse was inserted into the pulse train and this is now detected by D3, R1i1, C15.
Under no-signal conditions the collector of TR4 is high and hence C15 charges up via Rill. When the pulses appear, Cl 5 is discharged to approximately 0.7 V via D 3 , TR4.
The time constant of Cl5, Rll is such that Cl5 cannot recharge between channel pulses, but only in the sync pulse period which is relatively long. The voltage across Cl 5 is therefore fed into a level detector TR5, TR6 which has a high output when C15 is charged up and vice versa. Hence under no-signal conditions, or during sync pulse, Cl5 is charged up and TR6 collector is high thus resetting the decoder IC2 ready for the next pulse train.

DECADE COUNTER AND DECODER

The decoder IC2 is a cmos fivestage Johnson decade counter with built-in code converter. The ten decoded outputs, of which only seven
are used, are normally low and only go high at their appropriate decimal time period. The output changes occur on the positive-going edge of the clock pulse and the outputs appear in rotation as shown in the waveform diagram, Fig. 3.3.

The sequence of events is therefore as follows:

Assuming sync pulse time, TR6 collector is high thus resetting IC2. The negative going edge of the first clock pulse takes TR6 collector low thus removing the reset from IC2.

When the positive edge of the first pulse occurs; output 1 of IC2 goes high and remains high until the positive edge of the second block pulse, whereupon output 1 returns to the low state and output 2 goes high. This remains high until the positive edge of the third clock pulse when output 2 returns low and output 3 goes high.

This sequence carries on for each clock pulse up to 7 when the sync pulse occurs and resets IC2. All the outputs are set low again ready for the next pulse train.

Hence it can be seen each output goes high for the period between two adjacent clock pulses thus reconstituting the original pulse from the transmitter for that particular channel.

The receiver is built on a small printed circuit board, Fig. 3.4. Location of components is given in Fig. 3.5.

As with the transmitter, the importance of using a good soldering iron with a small bit must be stressed.
Good joints are most essential here as it is the receiver that will be taking all the knocks and bumps in your model, so any dry and loose joints will be a hazard to its survival. A skilled and practised hand in soldering miniature components is demanded. This is NOT a tąsk for a novice to undertake.

CIRCUIT BOARD

Construction is started with the insertion on to the p.c.b. (plain side) of wire links.
"Link "A" goes from IC2 pin 6 to "Channel 7" pad.

Link "B" goes from IC2 pin 12 to position shown. This is for an optional "fail-safe" facility, to be described later.

The r.f. tuned circuits can now be inserted, then the i.f. cans making sure in the case of the latter that

EE RADIO CONTROL RECEIVER

COMPONENTS RECEIVER

Resistors
R1 100Ω
R2 100Ω
R3 120Ω
R4 100Ω
R5 $12 \mathrm{k} \Omega$
R6 $1 \mathrm{k} \Omega$
R7 $2 \cdot 2 \mathrm{k} \Omega$
R8 $220 \mathrm{k} \Omega$
R9 $47 \mathrm{k} \Omega$

R10 $4 \cdot 7 \mathrm{k} \Omega$
R11 $68 \mathrm{k} \Omega$
R12 $10 \mathrm{k} \Omega$
R13 $1 \cdot 2 \mathrm{k} \Omega$
R14 $10 \mathrm{k} \Omega$
All $\frac{1}{3}$ W carbon $\pm 5 \%$
Capacitors
C1 10pF ceramic plate
C2 47pF ceramic plate
C3 $2 \cdot 2 \mathrm{pF}$ ceramic plate
C4 47 pF ceramic plate
C5 $\quad 47 \mu \mathrm{~F}$ tantalum bead 6.3 V
C6 47 nF ceramic disc 12 V
C7 10 pF ceramic plate
C8 33pF ceramic plate
C9 10 pF ceramic plate
C10 $2 \cdot 2 \mu \mathrm{~F}$ tantalum bead 35 V
C11 $47 \mu \mathrm{~F}$ tantalum bead 6.3 V
C12 47nF ceramic disc 12 V
C13 $2 \cdot 2 \mu \mathrm{~F}$ tantalum bead 35 V
C14 47nF ceramic disc 12 V
C15 $\quad 0.47 \mu \mathrm{~F}$ tantalum bead 35 V
C16 $47 \mu \mathrm{~F}$ tantalum bead 6.3 V

Semiconductors

TRI-6 2N4124 npn silicon (6 off)
D1 BZY88C3V9 Zener diode 3.9V
D2,3 1N4148 silicon diode (2 off)
IC1 SO42P R.F. amplifier, tuner \& oscillator (Siemens)
IC2 CD4017 CMOS decade counter

Inductors

L1, 2 Tuned r.f. coil Toko 113CN2K159 (2 off)
T1 i.f. transformer, yellow Toko 4827
T2 i.f. transformer, white Toko L238
T3 i,f. transformer, black Toko 4828
Miscellaneous
Receiver case (SLM)
$\frac{1}{2}$ inch grommets (3 off)
Printed circuit board.
Connectors-as required, see text (SLM)
Connecting wire (10 strand), various colours. Heat shrinkable plastic tubing. Nicad battery box, $4 \times$ HP7, (SLM)
S1 Noble slide switch d.p.d.t., with box (SLM)
SK1 crystal socket, low profile (SLM) X2 Crystal (see Part 2)

Fig. 3.5. Top view of the printed circuit board with all components in situ. The pattern on the other side of the board is shown in grey to assist when fitting components. Note the two links "A" and "B" which must be fitted before any components are mounted. T.P. 1 and T.P. 2 are "tuning points"-for connection of multimeter.

Fig. 3.4. Printed circuit board for the EE Radio Control Receiver, actual size.

Fig. 3.6. (a) Good joint, any filing shows just solder and wire; (b) Bad joint; filing reveals wire with ring of solder and air gap between the two.

they are inserted in the correct place (identified by their coloured tuning core).

The integrated circuits IC1 and IC2 are inserted next. Take care with IC2 as this is one of those cmos devices. If in doubt follow the precautions suggested in the transmitter construction section.

The order of placement for the remaining components is not critical, however a suggestion is to insert the physically smaller components first. Make sure that the diodes, tantalum capacitors and the transistors are all inserted the correct way round.

The uppermost leads of R5 and R7 should be bent to form tuning points.

When mounting the crystal socket take care no solder gets down the leads as this will ruin it.

PLUGS AND SOCKETS

The choice of plugs and sockets for connecting between the receiver and servos is left entirely to the constructor as it is dependent upon whether it is to be compatible with parts of an existing system. In the case of the "first time" constructor then Figs. 3.7 and 3.8 show how to connect to the connector block, in this case the SLM 7-way 3-pin type

This block can be used either as a floating connector on the end of flexible leads, or mounted directly on to the p.c.b.

The writer's preference is to use floating connectors rather than a p.c.b.-mounted block connector, since as the receiver is invariably wrapped in sponge rubber the servos may be plugged or changed in at will without disturbing it. Hence a suggested wiring scheme if more than four channels are required could be as follows:
A single 3 -pin socket on a flying lead is used for the first channel since this is invariably the aerilon channel and the servo is mounted in the wing of the plane. The remaining channels are wired to the connector block as shown, the battery supply feeding into the plug on the block. When ordering the connector block specify 7 -way block and cover (6 sockets plus 1 plug).

The power pins on the blocks are wired in parallel as shown. Two or three strands from the hook-up wire are twisted together and tinned. The wire is then wound round the pins and soldered.

After all the leads are connected, check them very carefully. Then cover the back of the block and the joints with 5 -minute epoxy and slip the cover on to the back of the block. The epoxy when set fixes the pins and wires into a solid block and prevents any single connector from pulling out of the block.

AERIAL
The aerial should be a 30 -inch length of light flexible cable similar to that used for the leads.

FINAL EXAMINATION

When all the wiring is completed (including the servo leads), the bottom of the board should be cleaned to remove any flux. The board should be scrutinised for any solder bridges between tracks and these removed.

Another trick is to file the heads off all the joints and then clean the board again. This usually shows up any dry joints since these cannot be tolerated. Think of the model and your time mending it!! See Fig. 3.6.

CHECKING AND TUNING-UP

Measure the resistance between the battery supply leads with a multimeter on the ohms range. It should read approximately 1 kohm with the leads one way round and $1000 h m$ the other way round. If much less check for shorts on the back of the p.c.b. and check parts placement.

If the measurements prove correct then connect the correct way round to a $4 \cdot 8 \mathrm{~V}$ supply and the following measurements should be checked with reference to the " 0 " volts (-ve) rail. Measurements should be done under no-signal conditions, that is with the transmitter switched off.

1. Pin 2 ICl approx. $+4 \cdot 5 \mathrm{~V}$
2. Emitter voltages
of TR1, TR2
measured at top
of R3 and R4
approx. +0.25 V
3. Can of i.f.
transformer T3 approx. $+3 \cdot 9 \mathrm{~V}$
4. Collectors of TR1, TR2 approx. $+3 \cdot 9 \mathrm{~V}$
5. A.G.C. supply voltage (top of
R8/collector of TR3)
$4 \cdot 5 \mathrm{~V}$
6. Base of TR3 $0 \cdot 6 \mathrm{~V}$
7. Collector TR4 4.8V
8. Collector TR5 $1 \cdot 3 \mathrm{~V}$
9. Collector TR6 4.8V

Should any of the above measurements be incorrect then check the placement of the components associated with them.
If the measurements are correct, then plug in the matching crystal into the socket SKl. Place the transmitter, less aerial. very close to the receiver.

Connect a multimeter (of 5 kohm / volt a.c. minimum) on the lowest a.c. voltage range nearest 1 V between the tops of resistors R7 and R5 (T.P. 1 and T.P.2).

Switch on transmitter. If the receiver is anywhere near in tune the meter will start to indicate. Make sure the receiver aerial is clear of any
metal work, etc.
Adjust the i.f. transformers T1, T2 and T 3 for maximum voltage deflection then Ll and L2, gradually moving the transmitter further away to keep the meter reading below 0.5 V (as this is the maximum deflection obtainable).

Each time the reading approaches 0.5 V , progressively move the transmitter further and further away adjusting L1, L2 and T1, T2 and T3 to peak the reading. The meter may well be 10 to 15 feet away at this stage.

The receiver should now be in tune.
If a servo is available, plug it into channel 1 lead, which should be the aileron, and move the transmitter stick to get a servo movement. Typical range with one servo and with no aerial on the transmitter should be about 15 to 20 feet. If no servos are available then this test will have to await next month's issue when the servos will be described.

ALTERNATIVE TUNING METHODS

Two other tuning techniques are available, the first being to connect a crystal earphone between T.P.1 and T.P. 2 where the tone of the pulse train can be heard. The same tuning sequence is used to peak the tone to its maximum loudness and clarity.

The other technique is to connect an oscilloscope to the test point T.P. 1 and T.P. 2 and tune-up watching the waveform. R7 should be increased to 10 kohm in this case. The waveforms are as in Fig. 3.3.

FITTING IN CASE

Depending on whether a p.c. block or flying leads are used, the appropriate holes should be cut in the lid of the receiver case with a modeller's knife or file.

The receiver aerial exits from the case via a small hole and the aerial wire should be knotted on the inside so that no strain is applied to the connection on the p.c.b. if the aerial is tugged.
The p.c.b. assembly should be fitted into the box base and a piece of sponge rubber (about ${ }_{4}$ inch thick) cut such that when put on top of the receiver, the crystal socket SK1 is uncovered (as is the connector block, if used). This sponge rubber prevents the receiver rattling about in the case and also stops the board lifting when the crystal is removed. The receiver case top should then be fitted and the whole sealed with tape. The receiver is now completed.

BATTERY ASSEMBLY

Fit four Nicad cells into that half of the Nicad holder with the hole in the end. See Fig. 3.11.

Fig. 3.8. The receiver wired for seven channels using 7 -way connector block mounted directly on p.c.b. External connections are via one socket and six plugs.

Fig, 3.11. Wiring of the four Nicad cells and their installation within the battery box.

Fig. 3.13. A typical installation of equipment in a model aircraft,

Fig. 3.14. A typical installation of equipment in a model boat.

Wire the exposed ends of the cells as shown at " A ". Fit other end of holder over this wired end, invert box and remove top cap. Wire this end now as " B " taking care to fit the battery supply wires through the grom ${ }^{*}$ met and the top before connecting to the cells. Finally screw the two halves of the Nicad box together.

INSTALLATION IN A MODEL

Arrangement of the equipment in a model is usually shown on the model plans. If such information is not available, it is suggested that a book on the particular line of modelling in question should be purchased.

These specialist publications give a lot of useful advice based on experience. In a plane for instance, a typical installation is as shown in Fig, 3.13.

Note the battery is installed at the front so that In the event of a crash the battery does not rush forward and batter the receiver to certain death.

The battery and receiver should be well packed in foam rubber. The servos can either be mounted on commercially available servo trays (which even hold the on/off switch), mounted on bearers via woodscrews and the mounting grommets supplied with each servo, or just fixed inside the model using double-sided adresive tape.

TRANSMITTER

The transmitter circuit diagram Fig. $1 \cdot 3$ should be amended as follows:
(i) To conform with Fig. 2.6 and conventional numbering of DIN sockets, renumber SK2 pins as shown below
(ii) Add letter code to S 2 contacts. (Second pole is not used, but slider contact (e) provides anchor point-as in Fig. 2.6.)

In the case of a boat it is best to waterproof all the equipment where possible. This can be easily achieved by putting the receiver battery, receiver and servos inside a plastic sandwich box. It is advisable to mount the speed controller and changeover relay near to the motor in order to cut down any voltage loss which can occur with today's powerful electric motors.
Next Month: Servos and speed controller.

the 741 op. amp and T.T. Logic (TTL), in the 7400 series, are used extensively because these are extremely useful and also inexpensive.

Projects

Recently, they have been experimenting with the ZN414 integrated circuit radio "chip" and this may become the basis of a standard receiver for the pupils. Several simple circuits are used as an introduction to the world of electronics such as, a single transistor radio receiver, a moisture detector, a light operated switch and an elementary metal detector. These are projects which ideally suit the inexperienced constructor. The more advanced pupils have in the past constructed a manual telephone exchange, a digital clock, a logic tutor box and a differential amplifier which is used to demonstrate electrocardiograph tech. niques.

Work now in progress includes a fulladder demonstration unit using TTL and a model high-speed commuter train driven by an air-screw. This particular project will have circuitry to start, stop and reverse the vehicle at pre-determined points along the track.

Identi-light

One pupil is investigating the possibility of identifying people using a light detector which could be employed in police work or in hospitals. His theory is that different features reflect varying amounts of light and by scanning the face with a light measuring device an electrical output can be obtained which can be stored In many ways

With the assistance of the Computer Studies department, he will write a BASIC program to store his data in the computer and also carry ouf a comparison check against previously stored data.

Careers

The projects vary in their complexity but

Electronies was Introduced into Queens: bury Scheol curriculum in September 1974 and then, shortly afterwards, the subject of Design Technology. Both of these sub. jects are taught within the Craft, Design and fechnology department, under the title of Dasign Technology, and satisfy the School's desire to provide a link between Mathematics/Science and Craft.

Pupils who study Design Technology find they are able to build the AND, NOT and OR gates which they encounter in Computer Studies. Likewise, the very elementary electronics knowledge the pupils obtain in Physics is extended both
in theopy and practles during Design Technology lessons.

Exams

The public examinations taken by puplls, having completed the two year Technology course, are C.S.E. Electronics and, elther C.S.E. or ' O ' level Technology. Within the next two years it is hoped to have sixth formers studying at ' A ' level.
Electronic components are, of course, expensive and the constructional projects undertaken by the pupils, in the main, employ discrete components as many of the integrated circuits available are far too expensive for school use. However,

A fifth year pupil taking voltage measurements on the circuit board of his Metal Detector.

A sixth former checking the frequency response of his Mullard 10W Amplifier:

Memory Lane

This being the festive season my indutgent Editor kindly allows me to wander down memory lane and rattle a few old skeletons. In the past I have related incidents in my life that I thought were interesting or amusing without any particular regard to chronological order. This year I thought I would go back in time to my earliest recollections, to see at what point I became entangled in electronics.
It all began when I was about five and was given for my birthday one of those lovely old torches. Perhaps you know the ones. They have a huge bulbous lens and take the Ever Ready 1289 battery. Perhaps they are still around, the batteries are still on sale.

Its amazing after all these years, I think Lawrence of Arabia said the streets of Mecca were lit by electricity while we were still wearing woad. I expect the Arabs used 1289 batteries!

Shock Treatment

Where was I? Oh yes the large torch. Like all small boys I soon reduced it to its component parts and found I could do things with the battery and bulb on their own. I put the bulb in a small aspirin bottle hung it over my bed and wired it up to the battery under by pillow.

So far so good, but | quickly learned that small batteries are soon exhausted, and that led to my next experiment, a more disastrous one. Having decided the battery was dead because there was no electricity in it, where should I get some more? Why of course in the light socket. I promptly removed the bulb and placed the battery contacts on the studs. The result was a violent flash and new fuses required all round.

Moving on a year or two I made the interesting discovery that if two pieces of wire were connected to a battery and joined by a short length of very thin wire it would soon get red hot. The thin wire was placed in the hole in the end of a cotton reel while the hole was filled with gunpowder.
The idea was undoubtedly to explode it from a safe distance. Unfortunately while I was busy stuffing the gunpowder into the hole the two wires some-how contrived to make contact with the battery and caused the loss of my eyebrows, the first of many times it was to happen in my chequered career.

Crystal Clear

It was shortly after that, that crystal sets began claiming my attention. My father brought home a most exquisitely made Marconi set. Rather like a small black attache case with two plated knobs at either side which slid in and out for tuning.

Inside the lid was a panel with switching arrangements for different lengths of aerial and for changing from galena crystal to carborundum. The wiring inside was fantastic, all 16 gauge square sections and every bend an exact right angle. Alas it was several years before they discovered that r.f. currents dislike going round sharp corners and tend to fly off at a tangent. My father was delighted with it and told my brother and I that "Gamages are selling them off for ten bob (50p) and they originally cost fourteen pounds'". Even so, we found a simple set using a variometer worked much better.
We then made the amazing discovery that the higher the aerial the louder the sound. Each week we would buy a length
of bamboo pole and push it up another ten feet. The trouble was that each extension had to be thinner than the last until ultimately they were so thin and bent so much that the height advantage was lost.
We made another useful discovery at this time. We found we could run three pairs of earphones from the same set. My father had one pair in the living room and my brother and I each had one by the bed.

We found that to communicate with our parents, we could take off the earphones and talk into them instead of bawling at the top of our voices. This did have its drawbacks. According to my father, I cannot guarantee the veracity of the story, he said he was listening to the news which went as follows "Last night Queen Mary was seen going out with Dad!" The last word being supplied by one of his erring children probably wanting a glass of water. Mind you I have always regarded this story as highly suspect!

Enter the Valve

I had now reached the ripe old age of eleven and was staying in the house of a gentleman who owned a valve set. These had to be seen to be believed. Each valve was turned on slowly by a rheostat, to-day we would call it a variable resistor, and you really could read a newspaper from the light they gave out.
Masses of wires led to an h.t. battery that weighed half a hundredweight, an accumulator fit for a car, and a grid bias battery about a yard long. An enormous coll and slider at the top of the set and two swinging coils on the side, plus a fearsome array of dials and knobs completed the receiver, and crowning all this mammouth out-fit a tiny little horn speaker made by someone called "Brown"
We would all gather round it expectantly and after sundry howls and noises reminiscent of a cat having its tail trodden on, with any luck a squeaky voice would come out of the horn. "This is 2LO London calling in the British Isles, tonight ladies and gentlemen we have for your entertainment that well known comedian Leonard Henry". I wonder how many of my readers remember this or similar announcements.

Say what you will, it was great fun. We were all enthusiastic because we felt we were in at the beginning of a great achievement, and I am delighted to say, those of us in Electronics, to-day, are experiencing the same feelings all over again.

The Adventures of Tanty Bead

YES TANTY, THE CURRENT DRAINS ARE MAKING THINGS HOT FOR US! IF THINGS GO ON LIKE THIS, WE'LL HAVE

A MICRO LASHING FOR INDUSTRY

Judging from the many stories published in these pages over the last year, we find it hard to believe a statement and report from the Minister of State for Industry that less than a third of Britain's top $\mathbf{1 , 0 0 0}$ companies are applying microelectronics in their business.
 This is the finding of a MORI survey conducted for the Department of Industry and revealed recently by Lord Trenchard, Minister of State for Industry.

Brief extracts of a speech he made at a recent London seminar on "Technology and Organised Labour" are given below:
"The lack of British microelectronic applications is reinforcing the huge productivity gap between the UK and our major competitors and provides an explanation as to why UK unit labour costs are so high while our wage levels remains so low."
"In 1978-79 unit labour costs were increasing at a rate of 10 per cent in the UK, twice as fast as in the USA and almost five times as fast as in Germany. Japanese unit labour costs were actually declining at over 3 per cent."

Viewdata Boost

A promise to build thousands a month of viewdata TVs during 1980 has been made by ITT and they will be able to receive the Post Office Prestel Service.

This will go a long way towards remedying Post Office complaints that Britain's TV industry has been producing too few sets, therefore retarding wider useage of Prestel. ITT forecast that by 1985 there will be over a million business users of Prestel and 600,000 domestic users.

[^2]"I have just returned from Japan whose post-War performance is outstanding. I believe that there are two secrets in the Japanese miracle. First, they really accept that the foundation for a high standard and quality of life must be indus trial success and expansion. Secondly, within their companies, they all work together for efficiency and profit. Negotiation of entirely dependable agreements with one union only, in no way conflicts with the drive of all employees towards constant change and greater efficiency."
"With regard to the absolute dependability of agreements and the freedom, indeed requirement, for management to introduce constant change and improvement in Japan, it is not generally realised that even with well ordered industrial relations, it is quite difficult for a factory manager to 'spare up' more than 20 per cent of his time for the introduction of new methods and new sys-
tems to move his company forward. Eighty per cent of his time is already mortgaged in carrying out essential routine duties. If he has to spend up to 50 per cent of his time in constant negotiation at many levels the show moves backwards and not forwards."
"The challenge before us today is whether we can, by combining will with technology right across our industrial and commercial operations, lift ourselves off the lower rungs of the productivity ladder in order to generate the wealth we all need to improve the quality of life for all our people."
"Microelectronics provides us with a means to meet this challenge."
"Why then is it that less than a third of Britain's top 1,000 companies are already applying microelectronics to their production processes, purchasing, design, quality control, and products? This was a finding in a MORI survey commissioned by the

Department of Industry to monitor our national microelectronics awareness campaign."
"The answer is that effective application of microelectronics requires a radical change in work habits and attitudes from the boardroom to the factory floor. The whole company has to learn a new way of operating."
"The MORI survey disclosed that some 5 per cent of the top 1,000 British companies reckon that they have already lost market share because of failure to apply microelectronics and another 9 per cent expect to suffer losses for the same reason."
"In the United States, over 750,000 new jobs have been created during the last three years in California, the home of 'Silicon Valley', while over 5 million new jobs have been generated over the last four years in the USA as a whole. Of even greater significance was the finding of the Birch Report that small firms in the USA employing 20 or fewer people generated 66 per cent of all new jobs. Many of these small firms have come forward on the wave of microelectronic inventions and applications that have been sweeping through the USA."
"There is no reason why we in the UK should not seize our share of these new opportunities, if we turn our attention as a nation away from the sterile internal debates between 'we' and 'they' on whichever side of the fence we are and focus all our energies on acquiring the skills necessary to exploit the new technology whatever our current status or job functions."

The finance may be there, but the millions of pounds investment needed at the new interest rate could make the final unit cost too high for the purchaser?
No doubt readers will have their own views?

-ANALYSIS

THE MIRACLE INGREDIENT

System X sounds as if it ought to be one of those newformula consumer products promising better action with less effort at lower cost. But System X is no soap substitute. It is the new generation of digital electronic telephone exchanges which are now being constructed and will be installed in ever-increasing numbers in the 1980 s . The first large System \times exchanges being installed in 1980 and operational in 1981.

If all goes well it certainly promises better action with less effort for the consumer though whether at lower cost remains problematical. And System X also has a miracle ingredient.

The advantage of going all-digital is that a digital network can handle any type of information without discrimination. The system sees no difference between digitized speech or data or facsimile or telephone answering machines or automatic diallers or teleconferencing or wake-you-up calls or radiopaging or Prestel terminals. Once you change everything into digits you get a complete communications and information system on one network.
A digital system also has a big money-saving spin-off in management statistical information, automatic billing to the customer, automatic self-testing and fault diagnosis, and overload control which at busy periods will hopefully solve queuing and rerouting problems.

A small miracle had to happen in the first place to make this mammoth project feasible. This was to get the equipment manufacturers talking to each other and to the British Post Office with everyone, so to speak, on the same wavelength instead of competing with each other as in the past. GEC, STC and Plessey needed to reveal their engineering secrets to each other as well as to the Post Office. And it actually happened, although not without difficulty.
A central theme of System X is that it is not only good for the UK but for the rest of the world as well. The world telephone network of 400 million lines today is expected to grow to a staggering 1,400 million lines by the end of the century and System \times could capture 10 per cent of the world market.
It raised a lot of interest at the recent international Telecom ' 79 show at Geneva where it was the only large scale digital system shown in actual operation as distinct from wall diagrams and glossy pamphlets from other countries.

The first-ever public demonstration was a triumph but it raises the spectre, ever-present with high technology, of being before its time, of already being obsolescent before getting into service.
But have we not forgotten the miracle ingredient? The modular architecture of System X in both hardware and software is such that it can always be up-dated to take advantage of new components and technology. Moreover, it can be tailored to interface with any existing equipment anywhere in the world and can be expanded at will to accommodate more or different services as they become demanded by the user.

Brian G. Peck

THE ELECTRONIC OFFICE

The electronic office was a big feature of the International Business Show at Birmingham where 430 exhibitors reported a good attendance. But, as one observer reported, the huge display of electronic equipment for the office of the 80s was not matched by the mass
of new office furniture, very little of which was designed to accommodate the electronics.

The beginning of a Japanese low-cost invasion was spearheaded by the first UK showing of the Sharp desk-top personal computer priced at from $£ 520$ plus VAT.

Britain's Airborne Early Warning (AEW) system is running to schedule. The tactical communications system comprising 120 different electronic units has been ground-tested and is now being air-tested in a special trials aircraft. Main contractor for both the airborne radar and communications is Marconi Avionics Ltd.

The Rank Organisation expects to sell 5,000 colour TVs a year in Israel following the recent introduction of colour TV. The Rank sets will be distributed through Electra of Israel.

VIDEO AWARD

The Sony Corporation has been awarded its third Emmy by the National Academy of Television Arts and Sciences for its role in developing the one-inch Videotape recorder for broadcast production.
Sony developed its one-inch BVH series of recorders in 1976. Since then, one-inch VTRs have been rapidly replacing the two-inch format equipment in television stations around the world.

PERSON-to-PERSON

The chance to speak person-to-person to Post Office telephone subscribers anywhere in the country from the privacy of their own vehicle is now possible through the Network radiophone service.

Believed to be the first time an independent message-handling contractor has been granted a licence to break the Post Office's monopoly on telephone communications, the new service is now operational throughout the Greater Manchester area.

Through the Network service's transmitter at Salford, the motoring businessmen can now be "plugged" directly into the Post Office telephone system making it possible to make and receive calls to and from anywhere in Britain or abroad.

Subscribers to the system are charged $£ 60$ a month for the rental of the equipment and service, and allowed up to 40 free local telephone calls a month made or received over the Post Office telephone lines. They are only charged for incoming calls if they agree to accept them from the operator.

Perhaps, when radiophones become standard fitments in new vehicles the sight of vandalised public call boxes and long queues will be a thing of the past.-A commercial venture here for the "new" Post Office?

Reverberation is caused by sounds bouncing around the floor, ceiling and walls of a room, and tends, to a certain extent, to sustain sounds and merge them into one another.

Many types of music benefit from a suitable amount of reverberation and sound rather "flat" if it is absent. This can be something of a problem for the home-recording enthusiast because the carpets, curtains and furniture of most homes tend to have good sound absorbing properties, giving very little reverberation.

Fortunately it is possible to artificially add reverberation to a signal using a unit such as the one des. cribed in this article, and very realistic results can be obtained in this way. There are several ways of producing the reverberation artificially, but using a spring-line unit is prob ably the best low-cost method, and is the one employed here.

The unit can also be used with an electric guitar or an electronic organ or other electronic instrument as an effects unit, and can produce very interesting results.

BLOCK DIAGRAM

The block diagram seen in Fig. 1 shows the basic stages in the circuit of the reverberation unit. The input signal is taken to a buffer stage which gives a reasonably high input impedance of about 100 kilohm. Some of the output from this stage is taken to a mixer, and then to the output by way of an output level control.

The rest of the output from the buffer stage is coupled to an audio power amplifier via a volume control type attenuator. The output from the power amplifier is used to drive the spring-line unit.

A spring-line basically consists of a long coiled wire spring having a
transducer at each end. One transducer is fed with the output from the power amplifier, and it converts this signal into sound waves which travel down the spring comparatively slowly due to its inertia. The transducer at the other end of the spring picks up these sound waves after a short delay, and converts them back into electrical signals.

The sound waves are not totally absorbed, however, and are reflected backwards and forwards along the spring numerous times before they die away to an insignificant level. These reflected waves are picked up by the output transducer each time they reach the appropriate end of the spring, and this gives the required reverberation signal.
The reverberation signal is mixed with the main signal, and the attenuator at the input of the power amplifier controls the level of reverberation signal that is added to the ordinary signal. A switch is used to disconnect the ordinary signal from the mixer when only the reverberation signal is required.

The reverberation time, i.e. the time taken for the reverberation to decay to an insignificant level (-60 dB), depends upon the type of spring-line
utilised in the project, but is approximately $2 \cdot 5$ to 3 seconds if the specified unit is used. This is ideal for most applications.

THE CIRCUIT

The circuit diagram of the reverberation unit is shown in Fig. 2. TRI and its associated components form the input buffer amplifier connected in the emitter follower mode so that it provides the necessary fairly high input impedance, and a low output impedance to drive the following circuit with little loss of signal level due to loading.

Capacitor C3 couples some of the output from the buffer stage to the reverberation level control, VRI. From here the signal is coupled direct into the non-inverting input of the audio power amplifier which uses d LM380N device (IC1). The inverting input of ICl (pin 6) is earthed to the negative rail in order to prevent stray pick up here. Capacitor C5 decouples the supply to the input stages of ICl , and this helps to improve the lowfrequency stability of the circuit.

The output from ICl is coupled to the input transducer of the springline unit by way of d.c. blocking

capacitor C6. The input transducer is a low impedance (16 ohm) magnetic type, and this is why it is necessary to use a power amplifier to drive it.
The output transducer of the spring-line is a medium impedance (10 kilohm) magnetic type, and its output is coiupled by C 7 to the mixer stage. This consists of TR2 connected in common emitter mode with input resistors R5 and R6.

The full gain of TR2 is not required and so emitter resistor R9 is used to introduce negative feedback, which reduces the voltage gain of TR2 to about 20 . There are some losses incurred through R6, but the output from the spring-line still receives a significant amount of amplification. This is necessary due to the quite high signal loss through the unit.

REVERBERATION LEVEL

The second input of the mixer stage is fed with the ordinary input signal from TR1 emitter unless S2 is switched to break this signal path and give only the reverberation signal.

The signal from TR1 emitter will normally be considerably stronger than that from the spring-line, even with the reverberation level control well advanced, and so $R 5$ is given a much higher value than R6. This enables a reverberation level equal to the main signal level to be obtained, as the higher losses through R5 permits the two signals to be roughly balanced. The output from the mixer stage is fed to the output socket via d.c. blocking capacitor C 9 and output attenuator VR2.
The voltage gain of the circuit is a little in excess of unity with this control set for maximum output; but

Resistors

R1	$220 \mathrm{k} \Omega$	R 6	$39 \mathrm{k} \Omega$
R2	$270 \mathrm{k} \Omega$	R 7	$1 \cdot 5 \mathrm{M} \Omega$
R3	$3.9 \mathrm{k} \Omega$	R 8	$4.7 \mathrm{k} \Omega$
R4	560Ω	R 9	220Ω
R5	$220 \mathrm{k} \Omega$		

Potentiometers
VR1 $5 \mathrm{k} \Omega$ carbon log.
VR2 $10 \mathrm{k} \Omega$ carbon lin.
Capacitors

C 1	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C 6	$470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 2	100 F polyester	C 7	$1 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 3	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C 8	10 NF polyester
C 4	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C 9	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 5	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.		

Semiconductors
IC1 LM380N 2 W audio amplifier i.c.
TR1 BC109 silicon npn
TR2 BC109 silicon non

Miscellaneous

S1 s.p.s.t. toggle or rotary switch
S2 \quad S.p.d.t. toggle or rotary switch
£12.50
excluding case
SK1, SK2 3.5 mm jacks (2 off)

Large metal case (Vero "G Range" case type 91-2674B, $304 \times 210 \times 84 \mathrm{~mm}$ or any similar case); 0.1 inch matrix stripboard panel 36 holes $\times 17$ strips; Short spring-line unit (Maplin Electronic Supplies); control knobs; PP9 battery and connectors to suit; connecting wire.
the addition of a high level of reverberation can increase the effective voltage gain to about $\times 2$.

On/off switching is provided by Sl, and power is obtained from a 9 volt battery. The quiescent current consumption is only about 9 mA , but will usually increase somewhat at high volume levels as the L 380 N has a class B output stage. In fact on high
level inputs when a high reverberation level is required, ICl may have to give an output of a few hundred milliwatts r.m.s. into the spring-line in order to give sufficient reverberation, producing a current consumption of as much as 100 mA on volume peaks. It is therefore advisable to power the unit from a large battery such as a PP7 or PP9 size.

Fig. 2. Complete circuit diagram for the Spring-Line Reverb Unit.

Random Electronic EASY DICE

Build your own 'EASY DICE' from the 5 intergrated circuits and full components supplied, including box and descriptive instructions.

All you need is a soldering iron
TWO DICE FACES TOUCH CONTROL.
a *Self Assemble Dice
$£ 3.95+$ P\&P 25p
b *Ready built Dice
$£ 4.75$ + P\&P ${ }^{25 p}$

Order now trom: Fringewood Electronics Ltd 1 Hatton Court lpswich Suffolk 0473-210151 Amount enclosed $£$
Name
Āddress
please state amount required in appropriate box $\times \frac{\mathrm{a}}{\mathrm{b}}$

 of stripboard showing breaks to be made in the copper strips.

THE CASE

A suitable component layout for the unit using a stripboard having 36 holes by 17 strips is shown in Fig. 3. Drill the two 6BA or M3 clearance mounting holes and make the 10 breaks in the copper strips before soldering in the components and three link wires. The semiconductor devices should be the last components to be soldered into circuit.

The case needs to be a fairly large type in order to accommodate all the components, and in particular the spring-line unit which is a little over 200 mm in length. The largest size Vero "G range" case makes a very attractive housing for the project and is used as the cabinet for the prototype unit, but any case of about the same size should also be perfectly suitable.

The layout of the unit is not critical, and the arrangement used for the prototype can be seen from the illustrations.

INTERIOR WIRING

All the point-to-point wiring of the unit is illustrated in Fig. 3. S1 and S2 are rotary types on the prototype (S 2 being one pole of a 4 -way 3 -pole type having an adjustable end stop set for 2-way operation), but toggle or slider types can be used if preferred.

The input and output terminals of the spring-line unit are clearly marked, and the leads to the input transducer can be connected with either polarity. One of the output terminals is connected to the metal casing of the spring-line by a soldertag which is ready wired into place by the spring-line manufacturer.

Assuming a metal case is used there is no need to make a connection to this terminal since it will be earthed to the negative supply rail through the cabinet, which is in turn earthed by the negative supply connection to SK2. Using a separate connecting wire would probably produce an earth loop with consequent instability. Socket SK1 also receives its earth connection via the metal case. However, an earth wire to each socket
will be required if insulated case jack sockets are used.

USING THE UNIT

The unit is intended to be used in a high-level signal path, with an input level of about 50 to 1000 mV r.m.s. It is unlikely that really good results will be obtained operating the unit from a low-level source such as a dynamic microphone, since the signal to noise ratio will inevitably be effectively reduced. Far better results would be obtained by interposing a suitable pre-amplifier between the source and the reverberation unit.

Except with input levels of about 50 mV r.m.s. or less, full reverberation will be reached before VR1 is advanced to its fully clockwise setting. Taking it beyond the point at which full reverberation is achieved would simply cause the signal at the output of IC1 to clip, producing severe distortion on the output signal.

With S2 switched to the position where the ordinary signal is muted and only the reverberation signal is obtained the unit will act as an interesting effects unit for an electronic instrument. It is particularly effective with instruments that provide a glissando signal, as it then gives a weird but not unmusical wailing sound.

The finished circuit board removed from the chassis.
The case "surround" removed showing positioning of circuit board and Spring-Line module.

Interwiring to the front panel controls and detail of the Spring-Line module.

The completed Spring-Line Reverb showing front panel controls and lettering.

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines x 16 chars, with character generator; or 4096 spot positions in graphics móde) on UHF domestic TV. Eurocard-sized module includes UHF modulator, rins on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p .
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

CASSETTE INTERFACE MODULE.

\&7.25, inc. p \& p.

Store and retrieve programs on any cassette recorder. Use for scrial transmission down single line at up to 110 baud (teletype speed), e.g. over telephone line, and to communicate between two or more MK 14s.
$\$$

MK 14 MICROCOMPUTER KIT
£ 46.55 inc. p \& p.
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional 16-lines I/O plus further 128 bytes of RAM.

Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology. Designed for fast, easy assembly; suppliea with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 ISN. Tel: 0223311488 .

To order, complete coupon and post to Science of Cambridge
Return as received within 14 days for full money refund if not completely satisfied.

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 iSN.

Please send me:
\square MK 14 standard kit © $£ 46.55$. \square Extra RAM (10 £4.14 per pair. \square RAM I/O device (0) £8.97.
\square VDU module including character generator © $£ 33.75$.
\square VDU module without character generator (10) $£ 26.85$.
I enclose cheque/ $\mathrm{MO} / \mathrm{PO}$ for \mathcal{L} \qquad
\square Cassette interface module (al $£ 7.25$
\square PROM programmer © 11.85 .

- Power supply (1) £6.10.
\square Full technical details of the MK 14 System, with order form.
All prices include $\mathbf{p}+\mathrm{p}$ and VAT.
(total).

PROM PROGRAMMER.
$\$ 11.85$ inc. p \& p.
Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74 S571) to replace SCI0S monitor for special applications, e.g. model railway control. Software allows editing and verifying.

Address (please print)

By ADRIAN HOPE

Singing Lights

Have you ever noticed how electric light bulbs, especially of high wattage "sing" when run off a thyristor dimmer switch? The singing is usually most pronounced when the switch is set at a half-way position.

The reason for this seems pretty clear. The thyristor dimmer works by biting chunks out of the 50 Hz mains sine waveform and they are taken out so sharply that the waveform ends up with squared edges. These square edges generate high frequency harmonics which cause interference on medium and long wave radio sets.

It also seems reasonable to deduce that some of the lower frequency harmonics fall in the audible range. By electro-magnetic induction these set the coils of the lamp filament vibrating at an audible pitch. In other words the coils of the lamps behave just like the coils and laminations, which can emit mechanical buzzes and hums of an infuriating level.

Given the fact that the use of a dimmer will vibrate the coiled filament mechanically, an interesting thought now arises. Surely this continual mechanical vibration of the lamp filament can't exactly lengthen the lamp's life.

It has become a factoid (Norman Mailer's delightful term for an unsubstantiated fact that finds its way into the folklore) that the use of a dimmer prolongs lamp life because it cuts down on cold current surge and consistently under-runs the lamp. But over the years I have been led to the reluctant conclusion that lamps run on dimmers need replacing at least as often as lamps run on simple on/off switches.

Could it be that the disadvantage of mechanical vibration outweighs the advantage of limited current surge, so that the use of a dimmer actually shortens, rather than lengthens, lamp life?

Frozen picture

A low dosage X-ray machine produced by EMI Pantak and International Aeradio is being installed at Gatwick and Heathrow airports for airline security baggage inspections. The new Rapidex $\times 100$ machines will not fog film and development of X 100 represents an interesting change in policy by EMI Pantak.
The company had previously supplied Heathrow with Rapidex high dose machines which fog passenger's film, even when shielded by protective lead bags. The original machines generated an X-ray dose of at least 17 milliroentgens per second and as the inspection process takes up to ten or twelve seconds (for instance if the operator looks closely at a suspicious object) the baggage under inspection may receive a total of up to 200 milliroentgens.

The advantage of the old machines is a very clear picture which reveals the presence of any metallic weapon, however carefully concealed. The disadvantage is a very unhappy passenger who has forgotten to remove all cameras and film beforehand, or relied on shielding by a protective lead bag.

Low dose X-ray systems, as already used by many airports around the world, expose the baggage only briefly to low level radiation. The resultant X-ray picture is then frozen on a fluorescent screen and artificially brightened by an image intensifier.
Low dose systems do not fog film and will not penetrate the lead shield. If the operator sees the opaque outline of a lead bag the passenger is asked to open it for visual inspection. Public pressure has now forced the London airports to follow the rest of the world and install low dose systems.

The new Rapidex X100 uses a similar strength of radiation to the original machine but for just one hundreth of a second. The picture is then frozen on a memory tube.

There is certainly no noticeable effect on photographic film. Pictures taken on even very fast colour stock, rated at 400 ASA, and exposed thirty times to the X100 radiation dose, show barely noticeable fogging.

Airline passengers passing through London will thus no longer need to
remember to remove all unexposed film from their baggage for pre-flight security checks.

Queen's English

The Texas Instruments Speak and Spell toy (previously mentioned in this column) is now available in a version which speaks something approaching the Queen's English. The basic three-chip synthesiser circuitry includes a ROM which can be programmed to speak any words in any language.

But the original Speak and Spell was modelled on an American voice, with American pronunciation and the visual display shows American spelling. So anomalies like "color" for "colour" and "skedule" for "schedule" are buried in the ROM to confuse British-speaking users.

Although it is an expensive business to completely reprogramme the ROM, and change the speech accent, Texas has now altered the programme sufficiently to eradicate the most obvious "Americanese" anomalies. Unfortunately, both original and re-programmed models are on sale virtually side by side and it is very hard to distinguish one from the other.
The circuitry synthesizes words from the ROM in purely random fashion and a potential customer might have to test the toy for hours before hitting by chance on a tell-tale word like "honor". Fortunately, there is a very simple way to distinguish the two models.

The Z key on the British version has been re-programmed to say "zed" where. as the American version still says "zee". So anyone buying a Speak and Spell to help their childrens' education would be well advised to press the " Z " key before parting with their money.
Speak and Spells are already available for under $£ 40$ and the price, especially of now obsolete Americanese versions, will probably drop further. Texas is using the basic 3 -chip circuitry for a whole range of new applications, for instance a language translator which speaks in a foreign language.
Without doubt there will be all kinds of new speaking gadgetry on the market from Texas and other firms over the next year or so and their prices will fall just as calculator prices have plummeted over recent years. So think twice before buying at current prices.

Is it a Mental Breakdown?

That said, I have to admit to finding Speak and Spell a fascinating gadget, and while playing with one on loan for a week discovered a delightful trick which you can play on it.
In order to expand the Speak and Spell's vocabulary, there is provision for an extra ROM in the form of a plug-in module. A "module" key on the keyboard makes the content of the new memory accessible to the synthesizer circuit.
If you press the "module" key, but fail to insert the module, the synthesizer circuitry makes its usual random search for instructions and will sooner or later try to delve into the non-existent rom. When this happens the synthesizer goes haywire, asking the operator to spell nonexistent words, phrases and sounds. So pathetic is the garbled sound that only the hardest heart can fail to feel sorry for the confused electronics burbling as if in final, demented death throes.

SUPER CENTAUR 200W

GXL. 200W With Twin 200 Watt Cabinc ts
 12 months (a) $\mathbf{6 3 7 \cdot 2 7 \text { or } 2 4 \text { months (a) } 6 2 1 \cdot 6 0 ~}$

GXL WITH PDF BINS (illus.)

CENTAUR

STEREO DISCOS
C/W LIGHT SHOW \& DISPLAY TWIN LOUDSPEAKERS \& LEADS

\star Full Mixing + Crossfade + Mic/Tape Inputs
\star Headphone \& Cue Light Monitoring * Full Range Bass/Treble Controls.t. Mic Tone
$\star 4$ Channel Soundlight+Display
JUST PLUG IN AND GO!! send today for your fre brochure

MINI DISCO 100 WATT
MONO SYSTEM WITH LOUDSPEAKERS £229 incly of Carr Deositit $£ 46.00$ 12 months © $\mathbf{6} 18 \cdot 13$ or 24 months @ $610 \cdot 52$

AMPLIFIER UNITS ONLY

 $\star 4$ mixed inputs

 \star BassITre Cle Controls \star VAP200 AMPLIFIER $£ 102.92+$ Carr 51.50 * Six Mixed Inputs * Six Mixed Inputs * Three Sets Bass/Tre

* 200 Watts Outout
\& Slave Socket

P5000 $£ 102.92 \mathrm{incl}$, of VAT 250 watt. Ql. inc Cassette/ Wheel

SA308 8 ohms 30W 45 V \& 12.36 Supdly for 2 modules $£ 13.69$ Supply for 1 or 2 modules $£ 17$. 19 SA608 8 ohms 60 W 65 V \& 17.82 Supply for 1 or 2 modules $£ 17$ - 19 SAl 2044 ohms $120 \mathrm{~W} 75 \mathrm{~V} \leqslant 20 \cdot 12$ Supply for I module £17•19
SAl208 8 ohms 120W 95 V \&24.I5 Supply for 2 modules $\mathbf{2 8 \cdot 4 6}$

DISCO MIXERS

MONO OR STEREO WITH

 AUTOFADEAvailable complete and ready to plug in or as an easy to connect module with all controls excedt monitor switch already fitted-full instructions supplied.
FEATURES INCLUDE
Twih Deck - Mic \& Tape Inputs Wide range bass \& treble controls Full headphone monitoring Crossfade - Professional standard performance.
COMPLETE COMPLETE (with case) (with case)
Mono mains E52.61 Stereo mains
£73.31

MODULES
Mono module 31 . 62 Stereo module $\mathbf{8 4 3}$ - 12 anel 64-54 sockets etc $\$ 6 \cdot 32$

D.I.Y.

MODULES FOR

P.A. SYSTEMS MONO/STEREO

Input Modules
Mono PCB only $\leqslant 7 \cdot 47$ Stereo PCB only $\mathbb{1} \mathbf{2} .07$ Mono C/W
Front panel $\leqslant 10.92$ Stereo C/W Front panel $£ 15 \cdot 8$:

Mixer/Monitor Modules Mono PCB only $£ 7.47$ Stereo PCB only ≤ 12.07 Mono C/W Front panel $£ 10.92$ Stereo CIW Front panel $\mathbf{x} 15 \cdot 81$ Power supply to suit $610 \cdot 92$
send for full details.

ELECTRET MIC DI50I $621 \cdot 27$ TOP QUALITY UNIT incl. of VAT ECMIO5 LOW COST ELECTRET
CONDESNER MIC incl. of VAT $\mathbf{6 5 . 7 5}$ MELOS CASSETTE ECHOREVERB UNIT-Twin inout $\mathbf{5 7 4 . 7 5}$ VARIABLE SPEED \& DEPTH

MOTOROLA PIEZO HORNS 45.46 YES!

FUZZ LIGHTS Red, Yellow, Green
$126 \cdot 22$

HEAYY DUTY SPOT BANKS
MATCHES LOUDSPEAKERS
3 way 600W ¢40.82 4 way 800 W ¢47.72

IOOW SPOTS

Red - Blue - Amber - Green $\mathrm{Cl} \cdot 72$

CABINET FITTINGS

ICl Vynide 50° wide $\mathbf{6 4 . 0 2 \mathrm { m }}$
Kick-res grille 50° wide $\mathbf{4 4} .02 \mathrm{~m}$
Netlon kick proof 24° wide $\mathbf{4 4} \cdot \mathbf{0 2 m}$
Corners/feet/recess plates 17p
Recess handle 52 p
Bar handles $\mathbf{5 2}$.87
Jack plugs/sockets 29p

LOUDSPEAKER CABINETS -

COMPLETE WITH LEADS

\square Fitted with 100W 17.000 Gauss drivers \square Rugged cabinets with aluminium trim-black Lifetime guarantee on main drive unit Standard $100 \mathrm{WI} \times 12(48 \times 41 \times 24)$ Large loow $1 \times 12(65 \times 48 \times 24)$
P.A. $1 \times 12(+2$ Piezos $)(80 \times 38 \times 24)$
$650 \cdot 60$ ©62. 67 22 Disco $2 \times 12200 \mathrm{~W}(80 \times 63 \times 24)$ PDF reflex bin ($80 \times 40 \times 41$)
£ 119.60
C103.50
£ $1.15 \cdot 00$
PDFI00 Reflex Bin - Twin Horns - Integrated Slave Amplifier - Accepts mono or stereo signals \square Use with all types of mixer
\square Pan and volume controls
\square Send for details
£ $\mathbf{1 5 5} \cdot \mathbf{2 5}$ Deposit $£ 31 \cdot 25$
All inclusive of carr \& VAT

ALL PRICES ARE INCLUSIVE OF 15% VAT.
Shop premises open Tues to Sat $9 \mathrm{am}-5 \mathrm{pm}$
Mon to Fri $10 \mathrm{am}-4 \mathrm{pm}$ Ring $01-6846385$
TO ORDER
By Post Send your requirements with cheque crossed P.O. or 60p COD charge co address below or just send your Acess or Barclycard Number
NOT THE CARD
By Phone. You may order COD, Access or Bar-
claycard. Post \& Packing 50p on all orders except where stated.

SAXON ENTERTANMENTS

327 Whitehouse Road, Croydon, Surrey.
All.enquiries -Large SAE Please Brochures on

MANCHESTER DISCO CENTRE, 237 DEANS. GATE MANCHESTER. CALLERS ONLY (061) 8328772 - COMPLETE UNITS ONLY

| N PART 1 we dealt with the basic principles of tone generation and envelope shaping in both electronic organs and synthesisers. We saw how the organ uses a set of oscillators and dividers to produce all the required notes or pitches for the entire organ, and the keyboard selects these when keys are pressed, but that in the monophonic synthesiser only one, two or three oscillators are normally used, and these are made such that each can produce a wide range of pitch, and can thus be called upon to produce any note over the whole keyboard, by applying a suitable voltage to its voltage control input.

We also saw how easy it is to memorise any such pitch by arrang. ing for the voltage applied to be "stored" in a special sample/hold circuit, using a simple capacitor.

Already, the principle of voltage control has shown to be very valuable. But it does not stop at that. Just think of the numerous effects pedals you can now buy for guitars alone. Each of these contains a circuit which can be varied by mechanical means to give such effects as waawaa, phase, etc. The circuits are designed such that the effect is modified by the rotation of a potentiometer, which changes the resistance in a
certain part of the circuit to give the change in effect. The rotation of the potentiometer is produced by movement up and down of the footoperated pedal, and is what is termed manually operated.
Manual operation is all very well, and essential in some cases, but in a synthesiser it is often convenient that such changes in effect be done automatically, usuall at a preset frequency of repetition. Of course, little motors could be devised to drive the shafts of potentiometers, but this has obvious disadvantages.

VOLTAGE VARIATION

Instead, the circuits which require a variable resistance to work them are modified so that they will produce the effect by a variation of voltage on a special voltage control input as with the voltage controlled oscillator mentioned earlier. The actual pattern of voltage applied to control such circuits can be generated internally in the synthesiser by other special circuits, or, where required, manually, by either the keyboard, as in tone generation using the v.c.o.s, or even by a special two-function voltage source potentiometer known as a joy-
stick. This device uses two potentiometers arranged such that the movement of a control stick in one direction produces a variable voltage output from one output terminal, whilst movement in a direction at 90 degrees to this, varies a second voltage output. In this way, two separate voltage controlled circuits may be varied using only one hand.

Another source of manuallyoperated voltage control is the ribbon controller which is rather like a long potentiometer operated by a ringer pressed on to a foil strip which is pressed to make contact on a strip of resistive element underneath it. The output is taken from the foil, and a voltage is connected across the ends of the resistive element, so that the foil picks off whatever voltage is present at its point of contact with the element.

AUTOMATIC SOURCES OF V/C VOLTAGES

A repetitively-changing voltage is relatively simple to produce. After all, this is what we have coming from our v.c.o.s, except that the repetition rate is too fast for most of our purposes. So, a slower oscillator is required, whose frequency can be

MORE BIGVALUE FROM YOURTANDYSTORE

1000 OHMS/VOLTS AC/DC
8 RANGES
Handy multitester for home and work-shop. Easy-to-read two colour 5 cm meter, pin jacks for all 8 ranges. Reads AC and OC volts: 0-15-150
1000 DC current; 0. 150 mA . Resistance 0-100,000 ohms Accuracy: $\pm 3 \%$ full scale on DC ranges $\pm 4 \%$ on $A C$ ranges Complete battery
 \section*{22-027.}
 \section*{22-027.}

$£ 6.95$

TRANSISTORIZED SIGNAL
TRACER
Spot circuit troubles and check RF, IF and audio signals from aerial to speaker on all audio equipment. With $9 V$ battery, instructions 22-010.

Req pace $£ 9.95$

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6range preselector with LED indicators. SSb and CW dermodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.

\author{

- вя $\operatorname{moc} £ 229.95$
}

DYNAMIC TRANSISTOR CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from $5-50 \mathrm{~mA}$ on power types. 22-024.
arc max $£ 19.95$
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 ". Pulse LED displays puise transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With 36 "power cables. 22-300.

6-DIGIT
FREQUENCY COUNTER
Counts frequencies from 100 Hz to quer 45 MHz with 100 mS gate time. Accuracy is 3 pom at $25^{\circ} \mathrm{C}$ or less then $\pm 30 \mathrm{Mkz}$ on 10 MHz! Overloadprotected $1-\mathrm{meg}$ input. Sensitivity, 30 mV up to 30 MHz . Req. 9 V battery. 22-351. REG. PRICE

$£ 79.95$

DIGITAL IC LOGIC PROBE

- Inem.

REG. PRICE

$£ 9.95$

You save because we design. manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. Thequality of our products has been achieved by over 60 years of continuous technological advancement

MULTITESTER

Dual FET imput for
accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10-30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-30 1C-1 megaohm. 0-100-1k$101 \mathrm{C}-100 \mathrm{~K}-3$ megaohms. Req. 9 V battery. 22-209.

REG. PRICE

$£ 29.95$

SIGNAL INJECTOR

For RF, IF, AF circuits.
Maximum accuracy. Easy
pushbutton operation. Needs
two "AA" batteries. 22-4033.
$£ 2.79$

AC/DC CIRCUIT TESTER

Accuracy in 1-300 voits ranges. Safe in live/dead circuits. Needs two "AA" batteries. 22-4034

mes maci£1.99

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and $0-1.25 \mathrm{amps}$. Three-way binding posts take wires, banana plugs or dual banana plugs with $0.75^{\prime \prime}$ centres. For 220/240V AC 22-9123
$£ 35.95$
ace pace $£ 35.95$

The NEW Marshall's 79/80 caralogue is just full of components

and that's not all. . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals. Diacs, Diodes. Displays. Heatsinks, I. Cs, Knobs, LEDs. Multimeters. Plugs. Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers. Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Cafd. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering
Plus - Many new products and data
Plus 100s of prices cut on our popular lines including I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post $65 p$ post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50 p

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: $01-4520161 / 2$. Also 325 Edgware Road, W2, Teli 01-723 4242. Glasgow; 85 West Regent Street, G2 200. Tel: 041-332 4133. And Bristol: I08A Sigkes Croft, Bristal. Tel: $0272426801 / 2$.

FASTER THAN A SCOPE SAFER THAN A VOLTMETER

 Instant - simultaneousLOGIC MONITOR LM-1 monitoring of the logic state of all IC nodes
Just clip it over your IC.
LM-1 Instantly and accurately shows both static and dynamic logic states on a bright 16 LED display.
LM-1 finds its own power.
LM-1 cuts out guesswork, saves time, and eliminates the risk of short circuits.
LM-1 is suitable for all dual-in-line logic ICs.
LED on = logic state $1(\mathrm{high})$, LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

ONLY £28.70
plus $\mathbf{1 5 \%}$ VAT, plus post and packing Total $£ 34.44$ including box and instruction manual.

Europe, Africa, Mid-East: CSC UK LTD. Dept.4S. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Telephone: SAFFRON WALDEN 21682. Telex: 817477

CONTINENTAL SPECIALTIES CO Unit 1 Shire Hill Industrial Estate,	
Name	
QUANTITY REQUIRED	
LM1. £34.44 inc. p \& p and VAT	

FREE catalogue Tick box \square I enclose cheque/PO for

Phone your order with Access, Barclaycard or American Express Card No.

Expiry date.
varied at will to suit the type of music being played, and whose effect or intensity can also be varied.
A suitable frequency range would be from 1 Hz (i.e. one cycle per second) to about 7 Hz . Such an oscillator is termed a low-frequency oscillator (l.f.o.) to distinguish it from the v.c.o. used to produce the tones. Whilst the l.f.o. is used to vary voltage-controlled circuits, it is not normally itself voltage controlled, but is varied manually.
Similarly, its output is manually variable, by means of a potentiometer, which results in the change of intensity of the effect being controlled by the l.f.o.

VIBRATO

The vibrato effect is popular in organs and synthesisers. In both cases it is created by modifying the pitch of the tone generators slightly by applying a low-amplitude sinewave of about 6 Hz to the tone generator(s) so that the pitch is varied about six times a second upwards and downwards around the natural frequency of the note(s) being sounded.
In the synthesiser there is no need to apply the l.f.o. signal to each v.c.o. separately, since each oscillator is controlled by the same source, i.e. the resistor ladder of the keyboard and the subsequent sample/hold circuit. So the l.f.o. signal may be applied to either of these.
If it was applied to the keyboard resistor ladder, however, it would be effective only while the keyboard was in actual use. Once a key was released, i.e. during the sustain period, the sample/hold circuit would be disconnected from the ladder, and, of course, the sample/hold could not memorise the changing voltage from the l.f.o.
The effect of vibrato during the held portion of a note, and not during the decay period of the sustain has its uses, but it is more common for the vibrato to be present throughout the entire length of a note. This can be done by applying the l.f.o. signal to the sample/hold circuit, where the stored voltage on its capacitor could be modified at the frequency of the l.f.o., 6 Hz .

The variation that the l.f.o. produces in pitch of the v.c.o. is of the order of a quarter-tone in each direction for normal vibrato supplied on organs, but in the synthesiser we can vary our intensity control so that the l.f.o. sweeps the frequency over many full tones, or even a full octave! Such an effect is in great demand in spacetype musical effects.

PRODUCING CHORDS

Before we drift too far away from the v.c.o. it is relevant to cover the use of more than one v.c.o.

As stated already, the monophonic synthesiser allows one key of the keyboard to be played at a time. So far, it is easy to understand how a single pitch can be created, as a single v.c.o. is scaled by the voltage control selection on its input. Imagine a second oscillator connected the same as the first. If this were identical, the two v.c.o.s would both produce the same pitch, e.g. middle C, when the keyboard key of middle C is pressed. But if we equip one oscillator with an independent pitch-modifying control, and turn this control on the second oscillator such that it changes the pitch of the second oscillator to, say, G below middle C, we find we have a chord of two notes.

The G is, in fact, five semitones below C. When the oscillator is so adjusted for G, and the key pressed is, say, D, the second oscillator sounds a note still five semitones below D, i.e. the note of A below middle C. So, although the secondary pitch control of the second v.c.o. has been changed, the change is constant, so that we can depend upon the fact that if we offset the second v.c.o. to produce à certain difference in pitch as measured on the musical scale, then that same difference in pitch will be maintained for whatever key is pressed on the keyboard. Where more than two v.c.o.s are used, the number of notes sounded in a single-key chord can be increased proportionally.

MULTIPLE-STRING EFFECT

It is not always to produce chords, however, that more than one v.c.o. may be used. You will remember that it was mentioned in Part 1 that a piano hammer strikes more than one string when a key is pressed. There is more than one reason for the use of multiple-strings, and increased volume of sound is only one.

In a piano, it is practically impossible to set two strings such that their frequencies are exactly identical, and certainly quite out of the question to rely on them staying in perfect tune with one another for any length of time afterwards. No, an integral part of the quality of a piano note is actually the very slight difference in pitch produced by the strings of any note played. In fact, the strings are sometimes deliberately offset by a noticeable degree to enhance the "honky-tonk" sound of a piano in a bar-room.

Similarly, in synthesisers, we can use more than one v.c.o., each set basically to the same pitch, yet not quite. The effect is a curious phasing quality as the pitches come together to reinforce one another and gradually drift out of phase so that one tends toward cancelling another out. The change may be very slow, taking
a second or two to repeat, or it may be faster, depending on the discrepancy of tuning between the v.c.o.s.

PHASING

The previous paragraphs have introduced an effect which can be produced by two oscillators slightly offtune to one another; known as phasing. However, there is another way of producing this effect without resorting to two oscillators.
The reader will probably be familiar with the small units available for guitar use, which give a continuously varying phasing sound. The effect is created by selecting a narrow band of frequencies in the audio spec trum and suppressing these frequencies. The band selected is then slowly moved up and down the spectrum, so that it covers and re-covers the whole range of its ability. The result is the familiar effect known as phasing. It operates by suppressing the harmonics of the notes played.
So far, we have dealt with individual notes only, but now we shall look closer at such notes and see exactly what they consist of.
Many books have been written on this sort of study alone, so it must be understood that the look we take at it can only be very brief and basic, sufficient to understand the operation of the phaser and filters, to be described later.

HARMONIC CONTENT

In Fig. 1.2 there are three output waveforms available from the v.c.o One is a truly wavelike form, smooth and flowing, with no sharp corners or points on it, shaped like the ripples on a pond when a stone is thrown into the water. The waveform is known as a sinewave. It is technically pure, i.e. it consists of one frequency, its natural frequency, or fundamental.
If we look at a sinewave of a note of say, middle C, on an oscilloscope, we are looking at the actual shape of the pure signal of middle C frequericy. The straight portions and the rounded portions are all part of the pure and fundamental frequency. This means that any shape slightly different from the sine shape is impure, and contains an element of another frequency.
Difficult to understand? Well, consider the following.
If we take the sinewave of middle C, and modify its shape slightly, such that although its peaks are the same distance apart, the "bend" is made sharper instead of being so smooth. The bent portion will then be narrower, and the sharper law of bend will therefore correspond to the law of bend of a frequency whose peaks are closer together, i.e. a higher frequency. So our modified wavetorm

Fig. 2.1. (a) Sinewave (b) Same fundamental frequency, with added harmonics.

AMPLITUDE

D.C. VOLTAGE ON TRAPEZOID

OUTPUT OF ENVELOPE SHAPER

Fig. 2.2. Trapezoid output from envelope shaper for use in controlling voltage controlled circuits.
will still have the same fundamental, i.e. number of peaks per second, but will also contain a characteristic of another higher, frequency within it!
This second frequency content is termed a harmonic. The more a signal departs from the pure shape of a sinewave, the more harmonics it contains. In fact, the squarewave contains many harmonics, chiefly because its vertical edges are so sharp, but it has a clear-cut fundamental, i.e. repetition rate. Violin music is also rich in harmonics, and a single violin note has a host of harmonics (overtones) contained within it.

WHITE NOISE

A pure sinewave is shown in Fig. 2.1a, to be compared to Fig. 2.1b, a waveform very rich in harmonics, but having the same fundamental frequency as that in Fig. 2.1a.

It is these harmonics which the phaser and later-to-be-described filter operate upon. For this reason, the application of these circuits to pure sinewave signals is largely ineffective, and the more harmonics a signal has the more effective the phaser or filter is found to be.
Sometimes, a deliberate quantity of white noise is added to a signal to enrichen it and make use of a filter or phaser more noticeable. White noise sounds like the rush of steam from a locomotive, or similar to waves breaking on a sea shore. It contains a vast number of harmonics, with no regular or constant fundamental to bias the sound. So, it is analogous to white light, and contains all the colours of the spectrum of sound within it. It is easy to see now why a signal containing white noise is so effectively phased.

FILTERS

Filters take three main forms, bandpass, highpass and lowpass. Like the phaser, filters in synthesisers are made voltage controlled for full flexibility.

The bandpass filter is basically opposite in function to the phaser. Instead of suppressing a narrow band of frequencies or harmonics it is designed to suppress all but this narrow band. The effect is as if it were amplifying the narrow band over all other frequencies.

As in the phaser, the narrow band is moveable, up and down the audio spectrum by means of a voltage control frequency. On some filters, the actual band is adjustable by means of a panel control, so that the band may be narrowed or broadened at will.

The effect of a simple bandpass filter is that of the familiar waa-waa circuit which is really a simple form of bandpass filter.
The highpass filter suppresses frequencies below a certain threshold and this threshold is adjustable by vo'tage control. The lowpass filter works in reverse, by suppressing frequencies above a threshold, which again can be moved up and down the spectrum by voltage control.

The effects differ in practice between the three types of filter, but their basic operation is that of filtering certain harmonic contents in composite waveforms. The actual effect of filters on specific waveforms is not easily shown in diagramatic form, so no attempt is made here to illustrate filtered and unfiltered waveforms, mainly because filtering is not a present/absent effect, but is more a gradual onset as the threshold level is met, and changes as the voltage
control is varied, and two dimensions would prove inadequate to illustrate the whole overall picture. However, it is hoped the above description will give the reader a good idea as to the principles involved.

VOLTAGE CONTROL FROM ENVELOPE

A useful source of voltage control signal is derived from the envelope shaper circuit. Unlike the signal output, which contains the signal shaped into an envelope of variable attack and variable decay, this second output is simply a d.c. voltage, which varies in direct proportion to the form of the actual envelope at any given time. This output is known as the trapezoid output, and it can be used to control other circuits by changing the voltage on their voltage control inputs, see Fig 2.2.

If it were applied to a bandpass filter (giving waa-waa sound), through which the final synthesiser signal is passed, the sound produced would be, perhaps, "oowwhaah". The "oow" portion being produced as the attack portion was covered, and the "whaah" part during the decay period. This effect is particularly useful when it is required to give waa-waa effects which are synchronised with the playing of the tunes.
If the waa-waa was produced by driving the filter from a l.f.o., it would be self-repetitive at the frequency of the l.f.o., and the player would have to set this frequency to synchronise with the music beat, whereas with envelope control, the envelope automatically follows the music beat, as it follows the playing of the keys themselves.

To be continued

No Entry

May 1 endorse what Pat Hawker had to say concerning the delay in the Radio Amateurs Examination, see Radio World November 1979 issue.
Having studied for a year I applied to the R.S.G.B. last August to sit the exam in December. I received no entry form from them and on checking in October found I was too late for the December exam and would have to wait until May 1980, with no results until September. I am considering giving it up especially as I am no youngster but an elderly gent.
G. J. Ábrahams

Birchington,
Kent.

Fading Display

I am writing to correct a statement that appeared in For Your Entertainment October 1979 issue. Mr. Adrian Hope quotes that liquid crystal displays fade after about five years. In fact this is only true of the cholesteric type, the fading being caused by ultraviolet light. The cyano-biphenyl type of display is immune to this fading.
It is possible to tell the difference between the cholesteric and cyano-biphenyl
types of display. Look at the display, while it is running, with your eye almost on a level with it. A cholesteric display will show a greenish tint to the characters.

A more general criterion is that choles teric displays are fitted mainly to Casio calculators: Sharp calculators, and most modern I.c.d. watches, have cyano-biphenyl displays.
I hope this will prove helpful to readers.
C. G. Bulman Worcester.

Light Resistance

Recently, I was in need of a photo transistor OCP71 for a simple alarm circuit. I solved this problem by converting an old OC71 transistor to an OCP71 by scraping off some of the black paint on the outside of the case, Fig. 1.
To test, set a multimeter to the resistance range, connect the common or black test lead to the emitter and the red (+) lead to the collector. By covering the clear area with your fingers the resistance should increase substantially. Connect the other way round and this will not be effected by light. You can use the OCP71 as a light dependent resistor (I.d.r.) as long as the collector is supplied with a positive voltage and emitter a negative voltage, disregarding the base.

David Elwin (age 13),
Kings Lynn,
Norfolk

Ideas Wanted

As I have just arrived in England to work, I am a keen electronics enthusiast, I feel I have no friends to talk about electronics or to exchange ideas and get help in constructing circuits etc.
I am from Mauritius, and speak the English, and the French language. I would be very glad if you would kindly insert my address in your Letters page-about me wishing to write and exchange ideas with other electronics enthusiasts.

Sam Hosenbocus,
11 Claremont Grove,
Leeds LS3 1AX

Crossword No. 23-Solution

0

Wilmslow Audio

 THE firm for speakers!SEND 30P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX AUDIOMASTER BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. Ee)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street
Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213

OHIO SCIENTIFIC Superboard II assembled 8 K basic 4 K ram with free psu and modulator kist $\mathbf{E 1 8 8}+\mathbf{1 5 \%}$ vat.
SINCLAIR PRODUCTS New 10 MHz scope £145, pim200 £51-95, case £3•40,
 adaptor $£ 3 \cdot 40$, case $£ 3 \cdot 40$. dm350 £71. 2 , dm450 $\mathbf{\Sigma 1 0 2} \cdot \mathbf{1 7}$, dm235 £51.95, rechargeable batts. £7.99, adaptor £3.94, case £.9. Enterprise prog. calculator + accessories £22.95.
COMPUTER GAMES chess champion 6 £49:95. Chess challenger 7 £84. Philips
G7000 home computer $£ 149$. Videopaks £12-95. Atari videocomputer £147. Cartridges £44.85.
COMPONENTS 1 N4148 0.9p. 1N4002 $3 \cdot 1 \mathrm{p} .741$ 18p bc182. bc184, bc212, bc214, bc548 5 p . Resistors \mathbf{W} W\% E12 10R to 10M $1 \mathrm{p}, 0 \cdot 8 \mathrm{p}$ for $50+$ of one value. 16 V electro
 40 sq ins peb 66 p . Polystyrene capacitors E12 63V 10 to $1000 \mathrm{pf} 3 \mathrm{p}, 1 \mathrm{n} 2$ to 10 n 4 p . Ceramic capacitors 50 V E6 22pf to 47 n 2 p . Zeners 400 mW E24 2v7 to $33 v$ 7p. TV GAMES AY-3-8500 + kit £9.53. Rifle kycle chlp + kit $£ 16$-72. AY- $3-8603$ chip cycle chip + kit $216 \cdot 72$. AY-3-8603 chip
\&13.63. TRANSFORMERS $6-0-6 \mathrm{~V}$ 100ma 76p,
 £2. $89.12-0-12 \mathrm{~V}$ 100ma 92 p , 1a £2. 75 . IC AUDIO AMPS with pcb. JC12 6W E2.08. JC20 10W £3. 14.
BATTERY ELIMINATORS 3-way type 6/729v 300ma E3.14. 100 ma radio type with prestor-studs $9 \mathrm{v} £ 3 \cdot 57.9+9 \mathrm{v}$ £4•79. Car conE2.66 12 v input, output $41 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 800 \mathrm{ma}$ E2.66.
BATTERY ELIMINATOR KITS 100 ma radio types with press-studs $4 \frac{1}{2 v} £ 1 \cdot 49$
 $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma} £ 2 \cdot 50$. 1 Amp £5.10. Stabilized power kits $2-18 \mathrm{v} 100 \mathrm{ma}$ £2.98, 1-30v 1A £5.95, 1-30v 2A £11-24 12v car convertor $6 / 7 \frac{1}{2} / 9 v$ IA $£ 1$. 35 . T-DEC AND CSC BREADBOARDS s -dec. £3.79, t-dec £4-59, \mathbf{u}-deca £4.69
u-decb $£ 7 \cdot 16,16$ dil adaptor $£ 2 \cdot 31, ~ e x p 4 b ~$ £2.64, exp300 £6. 61 . exp350 £3.62, exp 32 E1. 84
BI-PAK AUDIO MODULES $5450 £ 25 \cdot 06$ AL60 £5.06. pa100 £17.33. spm80 £4.74. bmtB0 £6.08. Stereo 30 £21.57. AL30A

SWANLEY ELECTRONICS Dept. EE, 32 Goldsel Rd, Swanley, Kent
Post 30 extra. Prices include VAT uniess stated. Official and overseas orders wei come. Lists 24 p post free.

THE COMPONENT LIST

Fach constructional article featured in Everyday Electronics contains a comprehensive and detailed component list. This lists all the electronic components and various pieces of hardware, sometimes to the last nut and bolt to complete the project. A typical list is seen on page 31 .

Each component is specified in de tail and this stringent specification can cause headaches for some constructors, especially the newcomers to electronics.
For convenience (yours and ours) the list has several headings under which like components are grouped in numerical order as per the circuit diagram.

RESISTORS

All fixed-value resistors will be found under the heading of resistors. In the majority of cases they will be collectively specified as "1 1_{4} watt carbon ± 5 or 10 per cent". Any special types will be indicated appropriately after the value. Many newcomers can be excused for thinking that this particular type is vital for successful operation of the circuit. It is not!
A metal film, metal oxide and in some cases wirewcund types may be readily substituted for just as good, if not better overall performance. Wirewound types however should be substituted with caution, their relatively high inductance could interfere with the operation of some circuits.

Carbon types are chosen for their availability and low relative cost.

WATTAGE

Now a few words on wattage. As previously said most resistors in these pages are specified as ${ }_{1}{ }_{4}$ watt types. This does not exclude the use of $1_{3}, 1_{2}$, $3_{4}, 1$ watt and even higher, except where available "board space" is limited, or on a p.c.b. design where component hole spacings have been decided with a particular component in mind.

The i_{4} watt resistor is probably chosen by designers for its small, but still easy to handle size, availability
and cheapness. They are more than adequate for low-voltage, low-power battery circuits, as many of our projects are.

If someone took the time and trouble to calculate the required wattages in a circuit, it would be found that in many cases $1 / 10,1 / 20$ watt and less are all that are necessary. (Divide the square of the maximum possible voltage across the resistor by the resistance value. $W=V^{2} / R$.)

But for those not sufficiently experienced, the specified rating should be regarded as the minimum required for the circuit, allowing higher wattages to be used if at hand.

TOLERANCE

The " ± 5 or 10 per cent" seen in component lists refers to the resistor tolerance, its maximum deviation from its nominal value. For 1_{4} watt carbon types the constructor these days has little choice. It appears that only 5 per cent types are available. A closer tolerance type can be employed if that is all you can obtain at the time with no adverse effects on operation. Also a 10 per cent can replace a 5 per cent and in a lot of cases an even looser tolerance. Some parts of circuits will still operate in a fashion even if the value is widely different.

CAPACITORS

Both fixed-value and variable capacitors (including preset-types usually called trimmers) are found under the heading capacitors.

With variable types, their maximum value is given. For example, a variable capacitor specified as 365 pF is continuously variable from 0 pF to 365 pF . A lower value than specified, e.g. 208pF if at hand could be used to initially test the circuit operation but would give reduced coverage or range. A higher value variable capacitor (e.g. 500 pF) can also be used for testing purposes. The range or coverage would be increased, but the intended coverage would be cramped at one end. Similarly with trimmers.

Fixed value capacitors fall into two categories- polarised (elećtrolytic)
and non-polarised. The latter can be connected in circuit either way round but the former can only be connected one way.

Non-polarised capacitors are specified as value and dielectric. In many cases the latter reads "ceramic or plastic". The constructor then has a free choice from what is available to him since plastic includes polycarbonate, polyester, polystyrene and polypropylene. Polyester is the most common and cheapest.

If a particular dielectric is specified it is wise to obtain this type, as it may have been chosen for its particular properties and optimum performance. For example, a silvered mica capacitor would be chosen for its close tolerance and high stability. A particular dielectric may also be specified if it is to be mounted on a p.c.b. where the lead fixing holes have been accurately dimensioned to suit the specified type.

WORKING VOLTAGE

Working voltages of non-polarised capacitors tend to be high, certainly higher in nearly all cases than 9 V which is the most popular supply voltage in our battery operated projects. If the working voltage requires mention, when it is used, say, for example, in a mains filter, it is clearly specified after the value- $0.01 \mu \mathrm{~F}$ 400 V a.c. The capacitor can have a higher working voltage but should never, in any circumstances, be less.

This is true also for electrolytic capacitors where the working voltage is always specified. With such capacitors, the physical size for a given value increases with working voltage.

In particular applications, a higher working voltage type than required may be called up. In timing circuits, where capacitors are being charged with minute currents, the leakage through the capacitors may become significant.

The leakage effect is reduced by using a higher working voltage type of the same value.

The working voltage specified for electrolytic capacitors is usually that used in the prototype and may considerably exceed the maximum requirement.

This may be due to the fact that this is the lowest working voltage available to meet the voltage requirement.

SHOP TALK

A reference to our Shop Talk feature appears alongside most components lists and is often overlooked by constructors. If you are building a project, it is wise to read this page. Here, among other items, any components thought likely to be difficult to get, special components, substitus tions etc. are discussed, and where appropriate sources of supply and cost are given.

by Inthony John Bassett

Bob, Tom and Maurice watched as the Prof. fed a few instructions into a computer which promptly printed out a large bundle of fuzz box circuits, which were simultaneously displayed on one of his large computer viewscreens. "I know you will want to take these and study them." He handed the bundle to Bob.
"Thanks, Prof. These look really interesting. I know that fuzz boxes produce their effects by various changes in the musical waveform of the instrument and it will be interesting to study a few of the different circuits and their effects. I am amazed that there are so many!"
"Yes-but although the large number of circuits may seem bewildering, they can mostly be fitted into a number of small groups according to the various principles of operation."

As the Prof. spoke his young friends saw the diagrams rearrange themselves into groups on the large computer viewscreen.
"In this group (Figs. 1-6) the fuzz is produced by operating transistors as non-linear amplifiers, which adds harmonic distortion, and intermodulation effects. An extra bonus of fuzz effects is also produced by overloading the circuit.
"Notice how in this early design fuzz circuit (Fig. 1) using germanium pnp transistors, the input transistor TR1 is not forward biased at all and relies upon a combination of transistor leakage together with the guitar signal itself, to bias it into conduc-
tion. This results in a highly-distorted signal at the collector, which is fed through a $0 \cdot 1 \mu \mathrm{~F}$ capacitor (sometimes $0 \cdot 047 \mu \mathrm{~F}$ or smaller) to the other two transistors where further distortion and amplification occurs. The effect is modified by adjusting VR1 'Fuzz Filter' control.
"Here is a very similar circuit using silicon transistors (Fig. 2). Because these transistors do not 'leak' as much as the older germanium types and the guitar signal itself cannot be relied upon to bias the input transistor to conduction, a bias circuit (R1, R2, R3) is used and this is decoupled by a $10 \mu \mathrm{~F}$ capacitor to prevent negative feedback from correcting distortion introduced by the transistor.
"I will not comment on every circuit. You can learn a lot for yourself by studying them all and by doing a few experiments. In Fig. 4 the fuzz effect is varied by changing the biās on a transistor, whilst this circuit, Fig. 5, uses a transistor, TR3, which has been deliberately reverse-biased. This technique can be useful in reducing low-level noise and interference which is a problem with many other fuzz box designs.
"The 'overdriver' (Fig. 6) is basically a fuzz circuit which incorporates tone-controls."

DIODES IN FUZZ BOXES

"Here are some more fuzz-box circuits which use diodes to distort the waveform and produce fuzz effects,
but these circuits, unlike earlier ones which used heavy duty power diodes connected to the speaker outlet of the amplifier, use miniature diodes to distort the signal before it reaches the input of the guitar amplifier.
"Either silicón or germanium diodes may be used to produce the fuzz effects, and although the principles are the same, the effects produced are not identical and may sound different. In the first of these diode fuzz circuits (Fig. 7) an integrated-circuit preamplifier is used to raise the voltage level of the input signal to a value which will cause the diodes to conduct, alternately clipping away the upper parts of the signal waveform, when the fuzz control is at minimum resistance.
"As the fuzz control is adjusted to higher resistance, the clipping is. reduced to give less harsh effects."
"What happens if you use germanium diodes instead of silicon ones in this circuit, Prof?" Bob enquired.
"Due to the lower forward yoltage drop of the germanium diodes, they would clip at a lower voltage level, giving a lower output level which would be especially noticeable when the fuzz depth control was set to low resistance. This lower amplitude can easily be compensated by means of extra amplification. So the circuit will work equally effectively with either germanium or silicon diodes!"

Fig. 1. Germanium pnp fuzz circuit.

DISTORTION BOOSTER

Fig. 3. Distortion Booster circuit diagram. Note that any high gain pnp transistor can be used here.

FU22 \& TREBLE BOOSTER

Fig. 5. Circuit diagram for the fuzz box with treble boost.

Fig. 2. Silicon npn fuzz circuit:

Fig. 4. Another simple fuzz circuit.
DODE FUR

Fig. 7. Simple i.c. fuzz box circuit diagram. Note the use of diodes to produce distortion by clipping

Fig. 6. "Overdriver" effect circuit diagram.

By Pat Hawker, gзva

Down to earth?

In announcing the engineering plans for the fourth British TV programme channel, Lady Plowden, chairman of the IBA, pointed out recently that many people think that transmitter networks on the ground are about to be overtaken by direct broadcasting to the home from space, adding: "If we were starting all over again, and there were no u.h.f. networks in the country, there might be reason to do this-always assuming that we were not working to a fixed launch date."' This confirms, once again, the view that the question of broadcasting from spacecraft is now increasingly one of need, desire or choice rather than technological feasibility (which indeed is now virtually proven).
In practice, for the Fourth Channel, there could be no question of using direct broadcasting satellites, with the u.h.f. networks now firmly established and with so many viewers already having receivers and aerials and just waiting to touch or push the channel-selection button. For 12 GHz transmissions from space they would need at least a new "electronic aerial" comprising a parabolic dish aerial of up to one-metre in diameter together with the circuitry of a receiver or adaptor capable of dealing with 12 GHz frequency-modulated signals. Because of the electrical power limitations on spacecraft (the idea of putting a nuclear generator into space is now virtually ruled out) it is necessary for directbroadcast satellites to use f.m. for vision as well as sound.

I would estimate that it would be some considerable time, if ever, before the extra cost to a viewer for watching programmes coming directly from a space satellite would fall below about $£ 100-£ 200$. This might be well worth paying for say five additional programme channels (the UK allocation) or if you are located in one of the "impossible" places for u.h.f. reception, but otherwise would not appeal to many viewers.
While France, West Germany and Luxembourg all seem anxious to push ahead with direct-broadcast satellites (the first two with an eye on industrial opportunities in those countries where the advantages of satellite systems are more real than in Europe) the major need at present would seem to be for "distribution satellites" akin to those which are already proving useful and profitable for so many American cable "subscription TV" services, for the Canadian CBC and American PBS broadcast networks.
The intention in this case is to provide a low-cost "programme feed" for transmitters spread over large areas or for small, medium and large cable networks. Currently over 1500 TV receiving terminals (mostly working on about 4 GHz) are in use or being planned in North America,
and all the major American sound radio networks now distribute their programmes to affiliated transmitters by means of satellite distribution circuits (which allow improved audio up to 15 kHz compared with the 5 kHz of most long-haul terrestrial links).
Europe at present has only the OTS experimental satellite, apart from the high-cost Inte/sat global system. But at least this has enabled the IBA to make some interesting use of their transportable up-link terminal, including the first space relays from the Channel Islands and Eire (for the Pope's visit).

Since most European countries operate a telecommunications monopoly, one suspects that there will be less rapid progress towards low-cost satellite distribution circuits in Europe than in the fiercely competitive situation in the USA where RCA, Western Union and now $A T \& T$ are all in the business of providing circuits in space.

What a novice needs to know

At a time when there is renewed discussion about the possibility of "novice"' amateur licences in the UK, based on an appreciably simpler technical examination and a Morse test of only 5 or 6 words per minute, Graeme Scott, an Australian amateur with the callsign VK3ZR has formulated what appear to be some guidelines on the minimum technical/ operating knowledge suitable for a novice examination. He considers that the candidate should be expected to show knowledge of the legal conditions imposed by the amateur licence he is seeking (i.e. how to operate legally); how to tune a transmitter; how to carry on a contact in Morse; how to put together a simple station; show an understanding of common problems (including the causes of television interference, key clicks etc); and have some basic familiarity with the terminology and equipment commonly used in radio.

These guidelines differ from the standard Radio Amateur's Examination in placing much less emphasis on the design of equipment and would limit the mathematics to such basic formulae as Ohm's Law; resistance-capacitance-inductance-frequency-wavelength relationships; value of parallel/series resistors, watts input and so on. The emphasis would be on the information needed in practice to ensure the radiation of satisfactory signals.

Interference

Recently, I was speaking to someone concerned with interference complaints in South Africa (where this is primarily the responsibility of the broadcasters rather than the Post Office). He reported that there had been a very significant increase in complaints of television interference since the start of Citizens Band radio there a couple of years ago.

Tests showed that often the CB rig when correctly tuned and operated gave no problem, even when placed on a bench beside the TV receiver. However, when used over a period of time by people with very little technical knowledge, the same rig tended to drift out of adjustment and to cause severe interference.

The most recent figures from the USA also underline the problem of the inexperienced operator: in the first quarter of 1979, the FCC received 16,401 complaints of alleged radio-frequency interference to TV reception: 13,894 related to CB stations; only 519 to amateur radio stations.

Young Ladies

A very marked change has come over the electronics trade and technical press during the past decade: today one finds that the industry's press conferences are very far from being the allmale affairs they tended to be not so many years ago. A large number of talented young ladies are now writing regularly on electronics.

Does this mean, one wonders, whether the readership is similarly changing? Mr Editor may correct me, but I would hazard the guess that the overwhelming majority of readers are still male.

This certainly applies to the field of amateur radio, where at a guess not more than about 0.25 per cent of British amateurs are "YLs" (young ladies) or "XYLs" (wives)-the former expression "OW" comparable to "OM" (old man) is never used today. Of course, even 0.25 per cent represents several hundred and this is a vast increase since the early days of amateur radio.

I was reminded of this by learning of the death a few months ago of Miss Barbara Dunn, G6YL who for five years (1927-1932) had the distinction of being Britain's first and only YL operator. Altogether she held her amateur licence for more than 50 years and, particularly in the 1930s was an extremely active and able operator.

She taught herself 20 words-per-minute operating by listening on a crystal set to the old FL time signals on 2600 metres from Paris and by listening to ships working on 600 metres and (as they did in the early days) around 2100 metres. She also had to cope with the problem, common to many of the early amateurs, of having no a.c. mains supply and having to depend on a rotary converter running from accumulators charged from 100 -volt d.c. mains. Even now, it is well within memory of many of us when quite large areas of London had nothing but d.c. mains.

In 1932 Barbara Dunn was joined by an other YL colleague, the late Miss Nell Corry, G2YL who also achieved great distinction in the amateur world by her work on 28 MHz -on which band she became the first British amateur to work all continents in October 1935.

In fact, although the number of YLs has always been small in the UK they have contributed much to the hobby. These days 1 find quite a few American amateurs and also the operators on the Russian club stations turn out to be "YLs"

With my name 1 also encounter the problem that a number of the people I work on c.w. imagine that I am a "YL" operator and insist on sending me " 88 " (love and kisses)!

IT'S HAPPENIIED REAII ! THE PART THREE CATRLOCIE 15 PUBLISHED \& UE HAUE MOUED TO BILCER PREMILEE5.

Yes. it's here at last - the all new Part Three Catalogue. Fun for all the family, and the usual update on all that is new, worthuhile and exciting in the world of Radio and Communications. A big section on frequency synthesis techmigues covering broadcast tuners. to communcation quality transmitter systems. More new products than ever - RADIO CONTROL parts, crystal filters, ceramic filters for 455 kHz and the new range of TOKO CFSH low temperature coefficient types for 10.7 MHz . Details on new radio ICs, including the new HA1I225, the CA3189E loohalihe with 84 dB signal to noise. and adjustable muting threshoid. Radio control ICs - and an updated version of the RCM\&E 8 channel FM receiver now with art Ambit designed screened front end, with 27 MHz ceramic bandpass filter. LCD panel clock/timer modules - the neatest and best LCD panel DVM yet (only $£ 19.45$ each + VAT), the new 5 decade resolution DFM3 for LW/HF/VHF with LCD readout. The DFM6 with fluorescent display 1010 kHz resolution on VHF, 1 kHz on $S W$. A 1 kHz HF synthe siser with five ICs - the list is endless. Get your copy of the catalogue now. Post publication price is 60 p (inc PP etc). The previous two sections are also required for a complete picture: Parts $1 \& 2 \mathrm{f}, \mathrm{f}$ the pair. AtI 3 f 1.50 . And don't miss our spot the gibbon contest. together with a quiz to see if you can spot the differences between a neofithic cave drawing and a circuit diagram of one of our competitor's tuners.
(* Yes, we still haven't learnt how to spell.)

New series of radio modules in fully screened cans:

DOES YOUR ONE GLOW GREEN IN THE DARK ??
Our DFM4 does, since it uses a vacuum fluorescent display for direct readout of MW/LW/FM. Basically the same as the DFM2, (LCD Version). $£ 24.45$ kit (inc VAT) Transformer with all necessary windings for DFM4 - $£ 2.50$ inc VAT.

Not illustrated here - but also now available is the DFMG. This is a vacuum fluorescent display version of our immensely popular DFM3 (LCD). Resolution is 100 Hz to $3.9999 \mathrm{MHz}, 1 \mathrm{kHz}$ to 39.999 MHz , and 10 kHz to 200.00 MHz ; all standard IF offsets finc. 10.7 MHz on shortwave) are available via diode programming.

UM 1181 VHF band 2 VARICAP TUNERHEAD
5 tuned carcuin, with image/spurii better than -80dB. huffered $L 0$ output. MOSFET RF stage, FET IF preamp, tunes with only $1 / 2 /$ to $8 V$,
$-9 d \mathrm{Bm} 3$ rd order intercept. Toff price f 12.00 inc VAT. (1000/1/ OAI)
911225 FM IF strip with all mod cons for the Hifi tuner: All types use $80+\mathrm{dB}$ S/N Hitachi iC, with muting, AFC, AGC. meter oulputs for signal level and centre zero. IF preamp stage.
preamp and a 3rd narrow filter with OC filter selection. Dual proamp and ard narrow filer withe VAT (wütl)
tunad FM detector stage. $£ 2395$ ince
Oual ceramic filters, single tuned detector stage
'B' Oual ceramic filters, single tuned detector stage f14.95 inc VAT Alt 'A series units are set up with a spectrum analyzer for best THOI
91072 AM RADIO TUNER MODULES - DC TUNED and DC SWITCHED Available February ' 80
All include buffered LO output, mechanical IF filter (TOKO CFMO) 10v tuning biss, switching by a single pole to earth
A MW/LW (150 to 350k Hz LW \%angel with ferrite roat antenna
$S W_{1}=1.8$ to $4 \mathrm{MHz} S W 2=5$ to 10 MHz
C With both SW ranges
Prices one off INC VAT

There is a danger - when advertizing in some magazines - that because we do not find space to list everything we sell in every ad that some readers forget about half the ranges we stock. So to summarize the general ranges: TOKO Chokes, coils for AM/FM/SW/ MPX, Audio filters etc Filters: Ceramic for AM/FM LC for FM, MPX etc Polyvaricons ICs for radio, clock LSI, radio control, MPX decoders etc
Micrometals Dust iron cores for toroids for resonant and EMI filters Toroid mounts
Hitachi Radio/audio/mpx linear ICs 100W MOSFETs, small signal FETs, MOSFETs and bipolar

And the following groups of products from a broad range of sources:
Semiconductors -specializing in radio devices, Plessey SL1600, EUROPE's best selection of AM/FM and communications devices. Power MOSFETs, WORLD's LOWEST NOISE AUDIO small signal transistors, BAR graph LED drivers for linear and log.
CD4000 series CMOS, TTL/LPSNTTL, standard linears ($741,301,3080$ etc). MPUs, memories. Small signal transistors from AEG BC237/8/9 families etc. (1000 off BC239C : 5.2 p ea) LEDs: AEG $3 \mathrm{~mm} / 5 \mathrm{~mm}$ round, $2.5 \times 5 \mathrm{~mm}$ flat, red, greem, orange, yellow. The best prices you will find for quality products. MOSFETs for RF signal processing, including the BF960 UHF device, and 3SK51 for VHF Varicap diodes for $17: 1$ capacity ratio tuning

FREQUENCY READOUT iSI from OKI, with a one-chip answer to most digital frequency display needs (and various modules).
Crystal and ceramic ladder filters from leading manufacturers, ferrite rods, various ferrite beads and a range of crystals for "standard' frequencies and both AM and FM radio control at 27 MHZ . Trimmer capacitors.
METERS - a new range of linear movement types, plus many 'indicator' types for VU, all types of tuning indicators etc.
SOCKETS a new range that are better quality than Texas low profile, yet better priced. Modules for AM/FM/STEREQ, complete kits for tuners, audio amplifiers from Larsholt. SWITCHES - complete low cost DIY systems for push button arrays, keyboard switches. DOUBLE BALANCED MIXERS. MCL SBL 1 , replacement for MD108 etc. And cheaper.

OUR LATEST MOVING EXPERIENCE :: At last, we have moved to the address below. There is car parking for customers approaching via North Service Road (an extension of North Road Avenue, entsance opposite the Brentwoud Fire Station.) Pedestrian access from the High Street (alongside 117 High Street). The new huilding is six times bigger than our Gresham Road offices, and we will be installing a much expanded sales counter in the fuliness of time. NEW TELEPHONE NUMBER (0277) 230909, TELEX NUMBER (as before) 995194 AMBIT G. See you there

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resístance ($<10 \mathrm{~m}$ ohms) nick el silver contacts
£6.20 each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes
$£ 2.00$ for set of three ESB's or FREE with every EuroBreadBoard)
And don't forget the EuroSolderSucker
Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only $£ 7.25$ including VAT \& PP

Snip out and post to David George Sales,

Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE 24 OAU
David George Sales,
Unit 7, Higgs ind. Est., 2 Herne Hill Rd., London SE24 0AU. Please send me:-

1 EuroBreadBoard

(plus 1 free EuroSolderBoard) @ $£ 6.20$ ○
or 2 EuroBreadBoards
(plus 2 free EuroSolderBoards) @ $£ 11.70 \bigcirc$
Please
Tick
or 3 EuroSolderBoards
@ $£ 2.00 \bigcirc$
or 1 EuroSolderSucker
@ $£ 7.25$ ○
All prices are applicable from Jan. 1 st 1980 and include VAT \& PP but add 15% for overseas orders.
Name
Company
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabinet - Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer - Absolutely all parts supplied including l. C. socket - Ready drilled and legended PCB included - Comprehensive kit manual with full circuit details - No previous microcomputer experience necessary - All programming permanently retained is on chip ROM - Can be built in about 3 hours!
- Runs off2 PP3 type batteries.
- Fully Guaranteed

* Save pounds on normal retail price by building yourself.
TN1S 1000 N - MPO027A Micro-
computer chip available separately if
required. Full 24 tune spec device
supplied with data sheet and fully
guaranteed.
New low price only 84.95 inc. p\&p

R/C MODELLERS - LISTEN FOR THE C.B. MENACE GET A 27 MHZ MONITCR
 * Audibly confirm your channel's clear.

* Tunes over whole 27 mhz model band. (CB)
* Receives normal broadcast AM/FM
bands as well.
* Sensitive with telescopic aerial.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver not only provides an invaluable service, checking your channel and TX, but gives normal broadcast reception when you need it as well.
Costing less than a decent Servo, you'll find it cheap and reassuring insurance!

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-2I DAYS FOR DELIVERY

Chromatronics, Riverway, Harlow, Essex

Please send me: EE/1/80 TO; CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. NAME
ADDRESS
lenclose cheque/PO value \mathcal{E}
or debit my ACCESS/BARCLAYCARD account no.

Signature
CHROMATRONICS

STARCIASER ADRO

THE NEW FOUR CHANNEL LIGHTING CONTROLLER

- 4 channels 750W each

- over 1000 different sequence patterns and effects $O 3$ alternative sound triggers © A.G.C. - simulated strobing O zero reference triac firing O superb TUAC quality and reliability $£ 99.00$ inc. VAT.

TUAC Lid., 121 Charlmont Road, SW17 Tel: 01.672 3137/9080 PRICE INCLUDES VAT, P+P FREE (at 1.10.79)

TO ORDER BY POST. Make cheques/P.O.s payable to TUAC ITD. or quote Access/Barclaycard No. and post to TUAC LTD, 121 Charin Road, London SWi7 9AB. We accept telephone orders from Access/Barclaycard Holders. Whone 01.6729080.

TUAC MAIN DISTRIBUTORS (Callers Only) Birmingham, George Matthews, $85 / 87$ Hurst Sureet. (Tel: 622 1941).
Canterbury, Socodi. 9 The Friars, (Tel: 60948)
Crewe, Cookies Disco Centre, 126/128 West Street, (Tel: 4739) Exeter, Electrosure, Fore Street. (Tel: 56687) London, Gariand Bros., Deptford Broadway, TTel: 01.69244121 London, Session Music, 163 Mitcham Road, Tooting,
(Tel: 01.672 3413) Mon-Sal 10am to 5.30pm. Closed Wed Luton, Luton Disco Centre, 88 Wellington Street, (Tel : 411733) Manchester, A1 Music, 88 Oxford Street, (Tel: 2360340) Middlesborough, Salcoglen, 43 Borough Road (Tel: 2428511 Sourhampton, Memhouse, 82 St. Mary Street, (Tel. 28028).

YOU KNOW WHAT ITS LIKE WHEN YOU'RE ABOUT TO START THAT NEW PROJECT - ARMED WITH A NICELY HOT SOLDERING IRON IN ONE HAND, THE SOLDER IN THE OTHER, YOU SUDDENLY FIND YOU'VE NO HANDS LEFT TO HOLD THE CIRCUIT BOARD AND COMPONENT, LET ALONE THE HEAT SINK.

Experience a new freedom with
A twist of the clamping control nut and the Board is held securely. The jaws can then be flipped across so that either side of the board is accessible at will. Flexible arms terminating in crocodile clips hold components and in addition an arm can be provided to hold a magnifying lens to reduce the strain on those valuable eyes of yours. Provision is made for the fitting of up to four flexible arms if required.
ALL DESIGNED TO ENABLE YOU TO DERIVE GREATER PLEASURE FROM YOUR HOBBY.

ABSONGLEN LIMITED,
The Forge, Staplow Cottage,
Staplow, LEDBURY, Herefordshire HR8 1NP

Please supply Minibench	(a) $£ 13.95$ each
Flexible Arms with Clips	(a) $£ 4.25$ each
Flexible Arms with Lens	(a) $£ 5.25$ each
Postage and Packing	£ 1.00
Cheque/Postal Order enclosed for	
POST COUPON TODAY TO-	
Messrs. ABSONGLEN LIMITE	GE
STAPLOW COTTAGE, STAP	
LEDBURY, HEREFORDSHIRE	1NP.

lease supply

 Flexible Arms with Clips.Postage and Packing Cheque/Postal Order enclosed for $£$. POST COUPON TODAY TOMessrs. ABSONGLEN LIMITED, THE FORGE, LEDBURY, HEREFORDSHIRE HR8 1NP.

THE MINIBENCH*

* Trade Mark

Patent Applied For

Name.
Address.

Simply ahead..

ILP'S NEW GENERATION OF HIGH

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely
adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as
those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system.
I.L.P. modules are for Jaboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x $40 \times 15 \mathrm{~mm}$: and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are-provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8 Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into $8 ~$	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz}-3 \mathrm{~dB}$

PSU 30

PSU 36
PSU 50
PSU 70
PSU 90
PSU180
$\pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps
$\mathbf{£ 4 . 5 0}+\mathbf{f 0 . 6 8}$ VAT for 1 or 2 HY30's $£ 8.10+\mathbf{£} 1.22$ VAT for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT with toroidal transformer for 1 or 2 HY120's $£ 13.61+£ 2.04$ VAT with toroidal transformer for
1 HY200 £13.61 + £2.04 VAT
with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

NO QuIBBLE
 5 YEAR GUARANTEE
 7. DAY DESPATCH ON
 ALL ORDERS
 INTEGRAL
 HEATSINKS
 BRITISH DESIGN AND
 MANUFACTURE
 FREEPOST SERVICE -see below

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

維
 ELECTRONICS LTD.

FREEPOST 3 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Talephone (0227) 54778

Please supply

Total purchase price f .

I enclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

ELEGTROVALUE

 catalogue 10 Ready early December> Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

FREE

(You don't even have to pay postage)
ITS A GOOD DEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.
5% on orders, list value
5% £10 or more
10\% on orders list value £25 or more.
Not applicable on Access or Barclaycard purchase orders
- We pay postage
in U.K. on orders !ist value $£ 5$ or over. If under, add 30p handling charge.
- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

all products brand new, clean and maker's spec. No seconds, no surplus.

- Appointed distributors for SIEMENS, VERO, ISKRA, NASCOM and many others.

OUR NEW CATALOGUE No 10

Over 120 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

EIEGTROVALUE LTD

HEAD OFFICE (Mail Orders)

28(A) St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.
NORTHERN BRANCH (Personal Shoppers Only) 680 Burnage Lane, Burnage, Manchester M19 1NA Phone: (061) 4324945.

GREENWVELD
443D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices include VAT-just add 30p post. Tel (0703) 772501

COMPONENT CABINET

IDEAL FOR THE NEWCOMER TO ELECTRONICS
Contains hundreds of brand new resistors, capacitors, transistors
diodes and I.C.'s. All useful values carefully chosen to help the new constructor pursue his hobby without finding himself short of some vital parts! All parts contained in clearly marked bags in a plastic storage cabinet
$232 \times 121 \times 165 \mathrm{~mm}$ with 9 drawers into which all parts can be neatly locsted if bought individually parts plus case. If bought individually parts plus case
would cost over 247 but we are offering would cost over $£ 47$ but we are offering
this for ONLY $£ 31 \cdot 95+£ 1 p \& p$. Simply send a cheque or P/O for $£ 32$-95 for immediate despatch.
CONTENTS:
200 \& watt resistors
20 Wire wound resistors
70 Ceramic Capacitors
70 Mylar Capacitors
50 Polyester Capacitors
61 Transistors
12 I.C.'s
20 L.E.D.'s
55 Diodes and rectifiers
Altogether 614 components.
Price includes current catalogue and Greenweld pen for reordering supplies Plus FREE surprise gift.

PC ETCHING KIT MK III

Now contains 200 sq. ins. copper clad
board, 11 b . Ferric Chloride, DALO etchboard, 16. Ferric Chloride, DALO etchresist pen, abrasive cleaner, two miniature drill bits, etching dish and Instructions. E. 95

KITS OF BITS FOR EE PROJECTS

We supply parts for nearly all EE prolects-for a detalled components list please send SAE.

VEROBLOC BREADBOARD New from Vero, this versatile aid for building and testing circuits can accomioined together. Bus strips on $X \& Y$ axistotal 360 connexion points for just $\mathbf{E 3} \cdot 70$.

VU METERS

V002 Twin type. 2 meters $40 \times 40 \mathrm{~mm}$ and Voo2 Twin type. 2 meters $40 \times 40 \mathrm{~mm}$ and connexion data, $£ 3 \cdot 50$. Twin type moulded vo03 New type, just in. Twin type moulded
in one piece. $80 \times 40 \mathrm{~mm}$ (no driver board In one piece. $80 \times 40 \mathrm{~mm}$ (no driver board
but suitable circult supplied). $£ 2.50$

THE NEW 1980 GREENMELD
 CATALOGUE

features include:

- 60p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices

PRICE 40p + 20p POST

WIRE \& FLEX

Solid core-ideal for breadboards etc. $50 \times 2 \mathrm{~m}$ lengths many assorted colours, Flex packs-5 $\times 5 \mathrm{~m}$ lengths of multistrand thin flex, ideal for wiring up circuits.
Only 35p

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop. Just requires 17 V ac source (and 8R spkr) as bridge rect and smoothing cap are mounted on the PCB. The 4 transistor circuit provides enough sensitivity for most applications. Supplied complete with circuit diagram and wiring details.
Only £1 $\mathbf{~ 7 5 .}$. Suitable transformer £2-20.

3 popular sizes of Verocase at drastically reduced prices-these wore part of their standard range (75-1419 etc.) but are in GREEN and have been discontinued by Vero. We have purchased their
entire stock and offer them as below: entire sto $\begin{array}{ll}\text { Type } & \text { No } \quad \text { Size } \\ 21050 & 205 \times 140 \times 75 \mathrm{~mm} \\ 21052 & 154 \times 85 \times 60 \mathrm{~mm} \\ 21053 & 125 \times 65 \times 40 \mathrm{~mm}\end{array}$ Pifce
£2.70 $\begin{array}{ll}\mathbf{2 1 0 5 2} & \mathbf{1 5 4 \times 8 5 \times 6 0 \mathrm { mm }} \quad \mathbf{£ 1 . 7 0}\end{array}$

1A 400V RECTIFIERS
Plastic, like 1 N4004, type 388 F these diodes have preformed leads for horl-zrice-100 for $£ 2 \cdot 30$; $500 / \varepsilon 10$ 1000/ $£ 18$

BUZZERS \& MOTORS \& RELAYS
2401 Powerful 6 V DC Buzzer all metal construction 50 mm dia $\times 20 \mathrm{~mm} 70 \mathrm{p}$. Z402 Miniature type Buzzer 3-9V, only $22 \times$ $15 \times 16 \mathrm{~mm}$. Very neat 65 p .
Z450 Minlature 6 V DC motor, high quality type 32 mm dia $\times 25 \mathrm{~mm}$ high, with 12 mm spindle. Onty £1
245112 high torque motor 30 mm dia \times W892 Heavy duty 12 V relay, ideal io use-single 15A make contact. Coil 25R, W890 DiL reed relay-SPCO $2 \cdot 4 \mathrm{~V}$-10V 200 R coil. Onty $£ 2.20$

$$
\text { TEAGH IN } 80
$$

We are again supplying all parts required for this major series which started in October. The price for all the Tutor Deck parts is £19.50. Also supplied without breadboard for $\mathbf{£ 1 3 \cdot 5 0}$. The price for the additional components required for Parts $1-6$ is $\mathbf{£ 2 . 0 0}$. All prices include VAT and Postage. Reprints of Oct \& Nov parts 30p ea.

What you see above is a kit of parts that builds into a fully working oscilloscope.

No toy, this vital piece of functional equipment can be found in any professional electronics workshop. It is a valuable instrument of true professional qualitv.

By building the oscilloscope you will be taking the first steps to a rewarding hobby that knows no bounds.
Each constructional stage is a complete lesson

and

in the basics of electronics practice and carefully designed to be understood by those with no previous knowledge. Once built, this instrument can be used to complete a course of practical study and experimentation that will reveal the secrets of printed circuitry, testing and servicing of T.V. and radio and the vast majority of electronic equipment.

Invaluable knowledge that pays big dividends. Send today for the free colour brochure and start growing a new hobby.

grows.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagramis, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.

We show you how to conduct exptri.., ents on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and malntaining all types of electronic equipment, radio, t.v. etc.

A new book for the home electronics constructor Microprocessors for Hobbyists

Ray Coles

* An introduction to microprocessors based on two popular series in Practical Electronics
* Covers the architecture of microprocessor chips and systems, programming memory and input-output components
* Describes home computers together with a comparison of different models and the appropriate software
* Includes a comprehensive glossary of terms to explain the 'buzz-words' of the microprocessor scene

VHF/UHF FETS BF 256 C @ 4 for 75 p, E304 @ 4 for $£ 1$.

MINIATURE 12 WAY CERAMIC TAG STRIPS @ 15p.
CERAMIC DISC CERAMICS 50v.w. 22pf, 33pf, 270pf, 330pf, 2,200pi, 01uf. All at 25p doz.
TRANSMITTING VARIABLE CAPACITORS $30 \times 30 \mathrm{pf}$ @ $£ 2 \cdot 20$.
CLOSE TOLERANCE CAPACITORS 1288pf, 1670pf, 5979pf, 19669pi. All 1% 125v.w. @ 5p each, 01 uf $2 \%, 11$ uf 2%. Both Bp each, $100,000 \mathrm{pf}$ ($\cdot 1 \mathrm{uf}$) 1% @ 12 p each. MINIATURE WIRE ENDED R.F. CHOKES $3 \mathrm{uH}, 5 \mathrm{uH}, 10 \mathrm{uH}, 22 \mathrm{uH}, 27 \mathrm{uH}, 68 \mathrm{uH}$, Alf at $7 p$ each.
THYRISTORS (S.C.R.s) 10 amp Type 100PIV @ 28p. 400 PIV @ 55p, 800 PIV @ 65p, 700 PIV 5 amp @ 50 p .
WIRE WOUND POTENTIOMETERS 2 Watt type $2 \mathrm{~K}, 10 \mathrm{~K}$ @ 30p, 100 K 4 Watt @ 30 p .
3/16" COIL. FORMERS with core @ 6 for $\mathbf{2 5 p}$.
To ASSORTED PUSH BUTTON BANKS LESS KNOBS for £1-30.
50. OC 71 TRANSISTORS untested for 75p.
50. BC 107-8-9 TRANSISTORS assorted untested @ 60p.
20. 10 amp STUD MOUNTING DIODES untested @ 60p.
50.1 amp S.C.R's T05. Case untested @ $£ 1$

NON POLARISED CAPACITORS 63v.w., 1uf@ 5p, 4•7uf@10p, 10uf @ 15p. SMALL GLASS 1 POLE MAKE REEO RELAYS with magnet @ 15p pair.

 Both 25p each.
VERNITRON FM4 10.7 MHz FILTERS at 50 p .3 tor $£ 1$.
MAINS TRANSFORMERS 250 volt input. Tyoe 1.24 volt tapped at 14 volt 1 amp
 @ £ 50 (P\&P 95p). Tyoe 4. 20volt 1 amo Twice. 10volt 1 amp twice@ £4. 50 (P\&P 95p). (P\&P 25p). Type 8. 30 volt $1 \cdot 75 \mathrm{amp} @ £ 1.60$ (P\&P 25p). Type 9. Small output Transformer @ 50p.
VHF STRIPLINE TRANSISTORS BF 362, BF 679. Both 25p.
50. ASSORTED SILVER MICA CAPACITORS for 75p.

DAU SEMI-AIRSPACED TRIMMERS 2 To 9pF, 7 To 35pi, 6 To 45pi, 8 To 125pf. 8 To 140pf. All at 15p each.
SILICON BRIDGE RECTIFIERS 100 PIV 1 amp@ 20p. 200 PIV 4 amp @ 60p. 20 ASSORTED PHOTO TRANSISTORS, DARLINGTONS untested for £1.
VARIABLE CAPACITORS 5pf @ 75p, 10pf @ 75p, 125+125pf @ 60p. $100+200 \mathrm{pf}$ @ 60p, 200 +300 pl @ 60p, $250+250+20+20+20 \mathrm{pf}$ @ $75 \mathrm{p}, 25+25+25 \mathrm{pf}$ @ 75p.
SOLDER-IN FEED THRU CAPACITORS $6.8 \mathrm{pf}, 300 \mathrm{pl}, 1000 \mathrm{pf}$. All 20 p doz.
PAPER 10 uf 370 volt A.C. CAPACITORS $5 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2} @ \mathbf{~} \mathbf{~} 1 \cdot 50$ each.

PRECISION METAL FILM RESISTORS 0.5% Tol. 32, 39, 68, 82, 82-5, 100, 121. | $150,270,330,332,360,365,470,562,619,620,680,681,700,750,820,909,920, \mathrm{IK}, 215 \mathrm{~K}$, |
| :--- |
| $2-2 \mathrm{~K}, 3.01 \mathrm{~K}, 3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 10 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K}$ | All at 6p each.

Please add 20 p for post and packing, unless otherwise stated. on U.K. orders under $£ 2$. Overseas postage charged at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767

BHBOWISOOWIE electronics

 Your soundest connection in the world of componentsDept EEI, 56 Fortis Green Road, Muswell Hill, London N103HN. Tel: 01-883 3705 The items shown in this advert are just a small selection taken from our new 78/79 Catatogue which is now available. It contains everything from Resistors to the latest in Microprocessors. Don't delay order your copy today.
The price is only 40p (inc. 45p vouchers).
Just a small selection from our vast stock. Ring to check current stock levels.

-QT VALVE MAIL ORDER CO. (EE1) CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6D SPECIALEXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

	0.12	ASY26		
AAY30	$0 \cdot 31$	ASY27	0.46	
AAY32	0.48	ASZ15	1.44	BC1
AAZ13	0.21	ASZ16	1.44	BC17
AAZ15	0.39	ASZ17	1.44	BC172
AAZ17	0.31	ASZ20	1.72	C1
AC107	0.69	ASZ21	$2 \cdot 30$	
AC125	0.23	A ${ }^{\text {d }} 10$	1.96	
AC126	0.23	AU113	1.96	BC
AC127	0.23	AUY10	2.30	BC18
AC128	0.23	BA145	0.15	
C141	0.29	BA148	0.15	
AC141K	0.40	BA154	$0 \cdot 10$	
AC142	0.23	BA155	0.12	
AC142K	0.35	BA156	0.10	
C176	0.23	BAW62	0.06	4 BC 2
AC187	0.23	BAX13	0.07	${ }^{4} \mathrm{BC} 23$
AC188	0.23	EAX16	0.10	
ACl^{1}	0.98	BC107	0.14	
ACY18	0.92	BC108	0.14	
ACY19	0.86	BC109	0.15	
ACY20	0.80	BA113	0.14	
CY21	0.86	BC114	0.15	
ACY39	1.72	BC115	0.16	
AD149	0.80	BC116	$0 \cdot 17$	
AD161	0.52	BC117	0.20	
162	0.52	BC118	$0 \cdot 12$	
AF106	0.52	BC125	0.18	
AF114	0.86	BC126	$0 \cdot 23$	
15	0.86	BC135	0.16	
AF118	0.86	BC136	0.17	$\mathrm{BCY}^{\text {c }}$
AF117	0.86	BC137	0.17	CY
AF139	0.46	BC147	$0 \cdot 10$	
86	1.38	BC148	0.09	
39	0.52	BC149	$0 \cdot 10$	
AFZ11	3.16	BC157	$0 \cdot 10$	
12	$3 \cdot 16$	BC158	0.09	

VALVES

AZ31	$1 \cdot 26$	ECC83	01
CBL31	$2 \cdot 30$	ECCB4	$1 \cdot 36$
CL33	1. 30	ECC85	$1 \cdot 38$
CY31	$1 \cdot 15$	ECC88	2.07
DAF91	- 0.46	ECC91	8. 72
DAF98	1.15	ECC189	$1 \cdot 90$
DF91	0.46	ECF80	1.24
DF96	$1 \cdot 15$	ECF82	$1 \cdot 38$
DK91	$1 \cdot 21$	ECH35	$2 \cdot 30$
DK92	1.44	ECH42	1-32
DK96	1.26	ECH81	1. 38
DL92	$1 \cdot 26$	ECH83	1.44
DL94	$1 \cdot 38$	ECH84	1.47
DL96	$1 \cdot 26$	ECL82	$1 \cdot 15$
DY86/7	0.73	ECL83	$1 \cdot 73$
DY802	0.96	ECL86	$1 \cdot 38$
E80CC	$9 \cdot 27$	EF37A	4.02
EABCBO	$1 \cdot 38$	EF39	$3 \cdot 18$
EAF42	1.44	EF40	$1 \cdot 32$
EAF801	2.02	EF41	1-38
E841	$2 \cdot 30$	EF42	2.30
EE91	1.01	EF50	1.73
EBC33	2.02	EF80	0.92
EBC41	1.44	EF83	2.02
EBC81	$1 \cdot 28$	EF85	0.92
EBC90	0.97	EF86	1.74
EBF80	0.58	EF89	$1 \cdot 84$
EBF83	1.44	EF91	2.07
EBF89	0.97	EF92	6.03
EBL31	2.88	EF98	1.44
ECC40	1.44	EF183	0.92
ECC81	1.01	EF184	0.96 -
ECC82	0.82	EH90	1-61

INTERGRATED CIRCUITS

7400	0.18	7410
7401	0.18	7412
7402	0.18	7413
7403	0.18	7446
7404	0	0.20
7405	0.18	7420
7406	0.46	7422
7407	0.46	742
7408	0.23	7425
7409	0.23	742

BASES	CRT'S
A unsirited 0.17	

[^3]PRICES CORRECT WHEN GOING TO PRESS

24 TUNE DOOR CHIMES
 has separate contiols for volume, tone and tempo.

T.V. GAMES

PROGRAMMABLE $£ 29 \cdot 50+$ VAT
COLOUR CARTRIDGE T.Y GAME.
The IV game can be compared to an audin cassette deck and is programmed to play a muthinde of diflerent games in COL OUR, using various plug in cartridges At long last a TV game is avalable which will keep pace with improving rechnology by allowing you to extend your library of games with the purchase of addrional canridges as new games are developed Each cantidge contains up to ten diflerent action games and the frsi cansidge containing ten spons games is included tree with the console. Other carridges are currenty available to enable you to play such games as Grand Prix Motor Hacing. Super Wineoir and Suint Rides. Further cannidges are to be released later this year, onduding Tank Batite, Hunt the Sub and Target. The console comes complete with swo removable ioystick player controls to enabie you to move in al four directions cupidowninghtitetu and built into these joysick contrals are ball serve and target fire butons. Other features include several difticulty option switctes, automatic on screen dignal sconng and colour coding on scores and balls Literke sounds are transmited through the W's speaket. smulating the actual game being played Manulactured by Waddingion's Videomaster and 10 Gane COLOUR SPORTSWORID $92.50+$ VAT. guaranteed for one year

CHESS COMPUITERS

STAR CHESS - ESS . 09 + VAT
PLAY CHESS AGAINST YOUR PARTNER. using your own TV to display the board and pieces. Star interest and excise all ages The unit plays into which will socket of pour TV set and displays she boand and piecer aerial socket of your IV set and displays the boand and pieces in tuil colour lor black and whitei on your TV screen. Based on
the moves of chess. It adds even more excitement and the moves of chess. It adds even more excitement and
interest to the game. Far those who have never played interest to the game. For hose who have never played,
Star Chess is a novel infroduction to the classic game of Slar Chess is a nove infroduction to the classic game of
chess For the experienced chess player there are whole chess for the experienced chess player, there are whole
new dimensions of unpredictablity and chance added to new dimensions of unpredictablity and chance added to
the stategy of the game. Not only can pieces be taken in conventional chess rype moves, but each piece can also exchange rocket fire with its opponenis The unit comes complere with a lree 18 V mains adaptor fill ins and twetve moniths guarantee. CHESS CHALLENGER 7 - 885.65 + VAT PLAY CHESS AGAINST THE COMPUTER. The syyish, compact, porabte consale can be set to play at seven difterent levels of abality from beginner to expen including "Mate in two" and "Chess by mait". The coniputer will only make responses whuch obey international chess rules. Casting, on passant, and prompoting a pawn are al
inctuded as pan of the computer's programme it is included as pan of the computer's programme posslife to enter any given problem from magazines or
newspapers or athernatively establish your own bard newspapers or athernatively establish your own board
position and watch the compunes react. The positions of al position and watch the computer teact. The postions of all
pieces can be verifled by using the computor memory recal pieces can be verilled by using the computor memory recall
bution. button.
Price includes unin wih woad grained housing. and Staunton design chess pieces Compurer plays black of whine and agansi nseit and conmes complete with a niains
adapor and 12 months guarantee
OTHER CHESS COMPUTERS IN OUR RANGE INCLUDE: CHESS CHAMPION- 6 LEVELS $£ 47 \cdot 39$ + VAT. CHESS CHALLENGER - 10 LEVELS $\leqslant 138 \cdot 70$ BORIS - MULTI-LEVEL TALKING DISPLAY E163.04 + VAT.

ELECTRONIC CHESS BOARD TUTOR EI7 I7 a special bu
A special bulk purchase of these amaring chess teaching machines enables us 10 offer theri) at anly E [7.7 less than half recommended retail price. The electronic chess tutor is a simple battery operated machine thas can actually teach anyone to play chess and improve theit garpe night up 10 championsthip level. This machine is not only for toral beginners. but also for established players wanting to play better chess Unit conatains the electronic chessboard with 32 chess pieces, a 64 page explaratory booklet and a set of 32 progressive programme cards including 6 beginners cards. if check mate positions, 9 miniature games, 5 openings, 3 end games, 28 chess problems and 2 master
games.

DRAUGHTS COMPUTERS

CHECKER 2 LEVELS $\mathbf{6 3 . 0 0}+$ VAT The draughts computer enables you to sharpen your skills improve your game, and play whenever you want. The compurer incorparates a sophisticated, reliable, decision making microprocesser as its brain hs high level of thinking ability enables it to respond with its best counter moves lake a skated humarn opponent you can select ottence or defence and change playing dittculty levets at any lime Positions can be venied by complifer memory recall Machine does not permit thegal moves and can solve set probiems. Computer comes complete with instructions,

FOR FREE BROCHURES - SEND S.A.E

 which paricular games you require information on.
Callers weicome an our shop in Welling - demanstrations darly - open from Samt5.30pmi Mon-San ISam.1pm Wed. oider by telephone please quore your name, address and Access Barclaycard number Postage and Packing FREE
AJD DIRECT SUPPLIES LIMITED, Dept. EE1 102 Bellegrove Road, Welling, Kent DA16 300. Tel: 01-303 9145 (Dayl 01-850 8652 (Evenings)

EXTRA CARTRIOGES
ROAD RACE - 5887 + VAT.
Grand Prix motor racing with gear changes, cr sho noises SUPER WIPEOUT - EQ. 17 + VAI.
10 different games of blasting obstacles off the screpn STUNT RTOER - E12.15 + VAT.
Mororcycle speed rigls, jumping obstacles, leaping variou ows of up to 24 buses etc. NON.PROGRAMMABLE TV GAMES

6 Game - COLOURSCORE II - $\mathbf{5 1 3 5 0}+$ VAT

PLAY ORAUGHTSICHECKERS AGAINST THE COMPUTEA

\qquad

Allthese advantages... NMM Instant all-weather starting Smoother running - Continual peak performance - Longer battery \& plug life - Improved fuel consumption - Improved acceleration/top speed
 .inkitform

SPARKRITE $\times 5$ is a high performance: ($($ p) quality mdective discharge electronic iegintion systeme desitguedifor the: electionucs D I Y world It thas Ixeen tried. tested and proven ion be natterly reliable Assembly only takes 1.2 lioum samelimstallaties

Sparkritecircintelemuatespor oliseans of thu contact brezaker There is nom misfire chie to contact breaker bounce' whichusemimumater electronically by a puise suppuessum circuit which prevents the ustat formeg of the points bounce opxel at hugh R PM
Contact breaker burn is edummated by reducine the current by 95° ", of the merm

Therere is alse a mingue extenadex dwe:l Circuitonhach alkws therecol a lomeger

 light anct seceurity cilatereser)ver, swite:t Will werk all rive (eunters
Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders
IHE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case Ready drilled. ahmumum exiructed base and heat suk. Coll mountuy clips amd accessories All kit components are glarantexedfor apen axdof 2 verarsitom date of purchase Fully illust atex assembly anc unstallation ustructions are
unclucied meluded Roger Clark the world famous rally driver

Electronics Design Associates, Dept.EE180
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

There's never been anything like it!
 The Greatest advance in inter-connection in 50 Years

Solderless Circuit Boards using ORCUS conductive elastomer multicontacts for equivalents of double sided, plated thro' hole and multilayer PCB's.

- NO SOLDERING
- BUILD YOUR CIRCUITS JUST ONCE IN MINUTES
- ACCEPTS ALL IC's UP TO 60 PINS
- WIRES AND COMPONENTS CAN BE CHANGED WITHOUT DISTURBING OTHERS
- 12 DIL- 14 IC CAPACITY ON SMALL WONDERBOARD ILLUSTRATED

WONDERBOARD

Send cheque or postal order to:

CHARCROFT ELECTRONICSLTD.

TRANSFORMERS
 Continuous
 Ratings ${ }_{15 \%}^{+V A T}$
 30 VOLT RANGE

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so cssential to your success: knowledee that will enable you to take advantage ol the many opportunilies pace and if. Study y your own home. in your own time and at your own until you are successful

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering ànd Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting
post or phone today for fref booklet

In
 ro: International Correspondence Schools

nepr OZgk Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address

Tel:

CRESCENT RADIO LTD.

I, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHÓNE O1-888 3206

Push button heads or tails. Complete kit and full instructions supplied.
A pocket game.
Easy to build and great to play.
Kit price- $\mathbf{6 5} \cdot \mathbf{2 5}+15 \%$ VAT. Post free.
4 OHM DOOR MOUNTING

High performance, door mounting $5!$ inch units with smart front grill. 10 oz magnet, 12 watts, 4 ohms. in attractive see-through carton. $\mathbf{1} 12.60+15 \%$ VAT. per pair.

MORSE KEY CR. 38
All metal, cast base, professional high speed key. Fine adjustment. Mounted on bakerlite base.
Dimensions: (Base) $120 \times 75 \mathrm{~mm}$
$\mathbf{6 3 . 9 0}+15 \%$ VAT
A CRESCENT 'SUPERBUY'
Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 \frac{1}{4}$ " (diagonally).

ONLY $65 \cdot 00+15 \%$ VAT

LOUDSPEAKERS 90p $2 \frac{1}{4} \prime \prime(57 \mathrm{~mm}) 8$ or $75 \mathrm{ohm} \quad+15 \%$ VAT (please state impedance req'd) PSI STABILISED
240v AC input. Outputs: $3,6,7 \cdot 5$ and $240 v A C$ input. Outputs: $3,6,7.5$ and
9 volts $D C$ at maximum 400 ma . Three switches: On-off, Polarity Reversing and switches: On-off, Polarity Reversing and Voltage Change. Regulated to supply exact marked voitages from no load up
to maximum current. Dimensions: 127 to maximum current. Dimensions:
$\times 76 \times 57 \mathrm{~mm} . \mathrm{E6} \cdot 50+15 \%$ VAT $\frac{\times 76 \times 57 \mathrm{~mm} . \pm 6 \cdot 50+15 \% \text { VAT. }}{\text { PS2 } 12 \text { VOLT HEAVY DUTY }}$ POWER SUPPLY 12 volt 1.5 amp suitable for using auto cassettes from domestic mains. Approx. size: $105 \times 100 \times 60 \mathrm{~mm}$. 110 inc. VAT. $\overline{C R 4110 ~ D E S O L D E R I N G ~ P U M P ~}$

ONLY E6 + 150 VAT
High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.

3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
1000 W tighting per channel, max This 3 channel sound to light unit is housed in a robust metal case, with a sensitivity control for each channel i.e. Bass, middle and treble. Full sheet ONLY $\in 20.00+15 \%$ VAT $\frac{\text { sheet. ONLY E20.00 }+15 \% \text { VAT }}{\text { CRLVI }}$ CR12.00

15\% VAT
BRITISH MADE "Versadrili", 12 volts DC. Compact battery operated power toal, sufficiently powerful to perform all the operations associated with 240 v drills. Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.) S.A.E. with all enquiries please

Personal callers welcome at: 21 GREEN.LANES, PALMERS GREEN. NI3 ALSO. 13 SOUTH MALL, EDMONTON GREEN, EDMONTON.

EE RADIO CONTROL SYSTEM

In conjunction with the present set of articles in Everyday Electronics the items that we manufacture comprise transmitter cases, control sticks, receiver boxes, battery boxes, auxiliary levers, plug and sockets, aerials, etc.

We also have extensive tool room facilities manufacturing moulding dies and press tools. We can supply precision turned parts on Swiss sliding head automatics. We can cut spur gears up to 2 in . diameter and bevel gears, and our moulding capacity is up to 60 z . in virtually any material.

We do not handle electronics or electronic components.

S.L.M. (Model) ENGINEERS LTD.

Chiltern Road, Prestbury.
 Tel: Cheltenham 25488

4-STATION INTERCOM

£27.95
VAT E4-19
shlve your communication problems with this A-Stations Transistor Intercun syaten1 (1 master and 3 Subs) in romust fromi Miaster to Subs to Manter. Idenlty sultable for Business, surgery, tehools. Hospitits and Ottice. Operates on one 9V hattery. On/off switch. b olume control. Complete with 3 con-
necting wirws cath lifif. A Batiery ind other accessories

$£ 17.95$ switeh for immerdiate two-way connersation without holding the handset. Many people can bisten at at fime. Gacrease athiciency in ontice, shop, workshop. Perfect for "conference"
anals: leives the user's hands freat to mathe notes, consult tiles.
 switen.
E19.95

DOOR ENTRY SYSTEM

Please

mention

Everyday
Electronics
when
replying

to

advertisements

FROM GASIO - THE NEXT STEP FORWARD IN TIME

New Lithium battery lasting up to 5 years, totally eclipses most SOLAR watches
FOR THE EXECUTIVE WHO DOESN'T WANT HANDS ON HIS TIME

THIS YEAR'S STAR BUY

THE NEW 83QS-27B

ALARM CHRONOGRAPH

Optional display of hours, minutes, seconds, date, am/pm; or alternatively: Hours, minutes, alpha day, date, am/pm. The automatic calendar is set for 28 days in February. Casio's new Lithium battery lasts up to 4 YEARS or more. The chronograph times in $1 / 10$ second units up to 12 hours, measuring net, lap and first and second place times. An indicator shows the chronograph is running when normal time is displayed. The 24 hour alarm can be set very easily to 1 minute intervals with an indicator to show the alarm is set.
In addition the watch can be set to chime every hour, on the hour, with a separate indicator to show this function is on
function is on.
This superb watch is stainless steel encased, has a mineral glass face and is guaranteed water resistant to 66 feet (2 at).

${ }_{\substack{\mathrm{RRP} \\ \mathrm{R} 3.195}}^{\mathbf{£ 2 7 . 9 5}}$

NEW SCIETMITCS
With non-yolatile memory

Others: FX-48 £12.75, FX-58 £25 95 , FX-68 £ 19.95 , FX-80 £ $15 \cdot 95$, FX- 8000 £ 31.95 .
CASIO CALCULATORS
NEW! Musical calculators ML-831 $\mathbf{1 1 1 . 9 5}$ ML-720 Credit card size, kiss keys $£ 14.95$ CLOCK CALCULATORS
$\begin{array}{lllll}\mathrm{HQ}-21 & £ 10.95 & \mathrm{AQ}-2000 & £ 24.95\end{array}$ $\begin{array}{llll}\mathrm{MQ}-11 & £ 26.95 & \mathrm{CQ}-82 & £ 19.95\end{array}$

$$
\begin{aligned}
& \text { GET THE MIDAS TOUCH } \\
& \text { BEFORE YOUR FRIENDS DO } \\
& \text { SUPERSWITCH Midas Touch Dimmer } \\
& \text { The softest touch on the brushed aluminium } \\
& \text { panel of this beautifully styles control is all } \\
& \text { that is required to swich lights on and off } \\
& \text { and to vary lighting brilliance. } \\
& \text { Touch Midas with the fingertips and the light } \\
& \text { is on. Touch again and it's off. Allow the } \\
& \text { finger to rest on the panel and the light inten- } \\
& \text { sity changes smoothly through a cycle from } \\
& \text { bright to dim and back again. Removing the } \\
& \text { touch during the cycle sets the lighting at the } \\
& \text { level required. Once set. this brightness level } \\
& \text { will be maintained during normal on/off } \\
& \text { operations. } \\
& \text { Meets latest BS for } \\
& \text { RF interference. }
\end{aligned}
$$

WE ARE NEVER KNOWINGLY UNDEK SOLD AND WILL TRY AND MATCH OR
BEAT ANY OTHIR ADVERISDD PRICE BEAT ANY OTHIR ADVBRMSSD PRICE
PROVIDING HHE ADVETISER HAS STOCKS YU WANT A WATCH WITH Chrome plating that may year of after a fen months. A plastic glass the will ceratch and scufl and A module with around 25% failure rate, that may take weeks to repaila
t dubious or non-existent spares service.
If yon want a watch that the manufacturer THEN DONP BUX A CASIO

F-200 SPORTS CHRONO
Hours, minutes, seconds, am/pm. Dav, date, month $1 / 100 \mathrm{sec}$. chrono to 1 hr . Net. lap and 1st and 2nd place times. Backlight. Resin case/strap. Mineral glass. WR to 66 feet.
Silver oxide battery.
(817.95)
£ 15

F-8C Time/date

 3 YEAR BATTERYHours, minutes, seconds, date, day, am/pm. Auto $28,30,31$ day calendar Backlight. Resin case/ strap. Mineral glass WR to 66ft ($£ 12 \cdot 95$) $£ 10 \cdot 95$

CASIO CHRONOGRAPHS

Normal time and dual time, $12 / 24$ hour systems. Calendar pre-programmed to 2029. I/ 100 second chronograph'to 7 hours. 95CS-31B Stainless steel $£ 29.95$ 95QS-31B Stainless jacket $£ 23.95$ 95QS-32B Chrome plated $£ 23.95$ CASIO ALARM CHRONOGRAPHS As above but with alarm and hourly chimes and without dual time. 81CS-36B Stainless steel £35. 95 $81 \mathrm{CS}-36 \mathrm{~B}$
$81 \mathrm{QS}-33 \mathrm{~B}$
Chrome plated £27.95 CASIO ALARM WATCH
4 digit ultra-slim dress watch with four year calendar and alarm.
59CS-33B Stainless steel
£44.95
Send $25 p$ for illustrated brochures, prices.

Prices includes VAT: P\&P. Send vour cheque; P.O. or phone your ACCESS or B'ARD number to:

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 5 \cdot 00$ per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

For Sale

NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 75p each Post Free, open $\mathrm{PO} /$ Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885

Receivers and Components

COMPONENTS AT SILLY PRICES. 1,000 mixed resistors £3•60. SAE lists. W.V.E.2, Craigo Farm, Tintern, Gwent.
TURN YOUR SURPLUS capacitors, transistrrs etc. into cash. Contact COLESHAKDING \& CO, 103 South Brink, Wisbech, Cambs, 0945 4188. Immediate settlement.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathfrak{£} \mathbf{I} 0-70$ plus 25p P. \& \mathbf{P}.
'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere 24-50 DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. \&5 each plus 25p \mathbf{P}. \& \mathbf{P}.
LOTS MORE! Send 25p for lists.
Prices include VAT

BOFEIN PROJECTS

4 CUNLIFFE ROAD, STONELEIGH
EWELL, SURREY. (E.E.)

DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector, Breathalyser, Radios, Stethoscope, Lie Detector, Touch time-switches, Burglar alarms etc. Circuits, plans all for $£ 1-50$, including FREE circuit board. Mail only. RIDLEY PHOTO/ELECTRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.

 Amps $3-\mathrm{El} 1 \cdot 20$. 300 Smalt Components, Trans, Diodes \&1.60. 71bs Assorted Components $£ 3$.75. List 15p. refundable. Post 20 p . Insurance edd 15 p .

J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 iNL
100 ASSORTED COMPONENTS 115p, 100 resistors $75 \mathrm{p}, 10$ mains neons $50 \mathrm{p}, 20$ microswitches 150 p, 50 reed switches 200 p. Add 25p p\&p. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.

10 MIXED COLOURS, sizes, LEDs £1-15p Lists 15p. Sole Electronics, EE, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

Miscellaneous

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. £2-25. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. 1mm thick $£ 1 \cdot 70$ sq. ft. Post/packing 60p. WHITE HOUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.
E.E. Radio Control System PCB's

Professional quality glassfibre, Fry's solder tinned and drilled.
Dec. 79 Transmitter
Postage: Please add 25 p postage and packing to complete order.

PROTO DESIGN
 14 Downham Road, Ramsden Heath Billericay, Essex CM11 1 PU Telephone 0258 - 710722

NORTHERN IRELAND. Build your own Computer. Nascom-l Microcomputer kits. From P \& O Computers (N.I), 81 Dublin Rd, Belfast BT2 7HF. Tel: 22010 evenings. Donaghmore 312. Belfast 621706.
LEARN ELECTRONICS THE EASY WAY. Build: amplifiers, oscillators, detectors, testers, flashers, metronomes, etc, more than 25 projects, with our multi-kits, complete instruction manual supplied. Send £15 to: Major Oak Services, 33 Lillian Avenue, London W3.

NI-CAD BATT, packs. Contains 9-AA cells, 5 sub c cells ($1 \cdot 2 \mathrm{AH}$). Mains charger $£ 8 \cdot 50$ inc. p.p. E.D.S., 66 Brook Lane, Warsash, Southampton.
C.C. CONSULTANTS. Printed circuit boards for the popular Everyday Electronics LabCentre are now in stock still at the special price of $£ 5 \cdot 50+35$ p $P \& P$. Enclose remit tance with order to C.C. Consultants, Dept EE, 3 Gainsborough Drive, Worle, Weston-super-Mare, Avon BS22 9PP

THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E.4.
Reg. Office, 22 Coningsby Gardenm.

Prices Include P \& Pand
SAE brings list of copper $\&$ resistance Wires.
Dealer enquiries invited
TUNBRIDGE WELLS COMPONENTS Ballard's, 108 Camden Road, Tunbridge Wells. Phone 31803. No lists, enquiries S.A.E.

AERIAL BOOSTERS

Improves weak VHF radio \& television reception.
B45-UHF TV, BII-VHF RADIO. B11 A-2 metres.
For next to the set fitting.
PRICE \&6. S, A.E. FOR LEAFLETS.
ELECTRONIC MAILORDER LTD. 62 B ridge Street
Ramsbottom, Bury, Lanes, BLO 9AG.

Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC home study course. For details of this, and other courses (GCE, professional examinations etc), write or phone: THE RAPID RESULTS COLLEGE, Dept JR1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service).

Record Accessories

STYII, CARTRIDGES FOR MUSIC CENTRES \&c. FREE List No. 29. For S.A E. includes Leads, Mikes, Phones, etc. FELSTEAD ELECTRONICS (EE), LONGLEY LANE, GATLEY. CHEADLE, CHES SK8 4EE.

Service Sheets

SERVICE SHEETS from 50p and SAE. Catalogue 25p and SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex. BELL'S TELEVISION SERVICE on service sheets of Radio, TV etc. $£ 1$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd, Harrogate, N. Yorkshire. Tel: 042355885.

TITV ойLTr kris FROM DENMARK

Easy-to-build, sure-fire kits with full English instructions Latest IC circuit designs

$\begin{array}{lllll}\text { JK01 AF Amp } & \text { £6.75 } & \text { JK06 27MHz Xtal.TX } & \text { £9.85 }\end{array}$ JK02 Mic Amp \quad £6.75 JK07 Tone Decoder $£ 9.85$ \(\begin{array}{llll}\mathbf{J K 0 3} Sig. Gen \& £9.85 JK08 Triac Control
\mathbf{E 6} .95\end{array}\) JK04 FM Tuner $\quad £ 9.95$ JK09 Birdie Bleeper $£ 5.95$ JK05 27MHz Xtal RX $£ 10.50$ HF61 Begiñners radio $£ 6.50$
Prices include VAT Add 50p for post and packing Stocks limited due to world-wide demand
ORDER NOW
Full money back guarantee
TECHNOCENTRE LTD
SAE for FREE Kit Guide Mail order
54 Adcott Road Middlesbrough TS5 7ES

PLEASE

 MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS
ORDER FORM PLEASE WRITE \ln block CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for insertions. 1 enclose ChequelP.O. for £.......................................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

ADDRESS \qquad

YERYDAY ELECTRONICS

MG; Classified Advertisements Dept., Room 2337 King's Reach Tower, Stamford Street, London SEI 9LS. Telophone 01-261 5942
Rate:
18p per word, minimum 12 words. Box No. 60p extra.

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9 LS.

KITS FOR E.E. PROJECTS

VARICAP RADIO (ZB 1)
TRANSISTOR TESTER (ZB 2)
LOW POWER AUDIO AMPLIFIER WITHÖUT CASE (ZB 3) SEE LIST (ŻB 33)
WARBLING TIMER (ZB 5)
POWER SUPPLY 9V (ZB6)
ELECTRONIC TUNING FORK (ZB7).
SWANEE WHISTLER (ZB 8)
TRAILER FLASHER UNIT (ZB 9)
TOUCH-ON PILOT LIGHT LESS CASE (ZB 10)..
SEE LIST (ZB 34)
QUIZ REFERENCE (ZB 12)
SOLDERING IRON BIT SAVER (ZB 13)
CONFERENCE TIMER INCLUDES 1 EXT UNIT
VOLTAGE SPLITTER (ZB 15) ..
SEE LIST (ZB 35)
DARKROOM TIMER (ZB 17)
TREMOLO UNIT (ZB 18)
ELECTRONIC CANARY (ZB 19)
ELECTRONIC CANARY (ZB
METAL
METER AMPLIFIER (ZB 21)
QUAD SIMULATOR (ZB 22)
QUAD SIM LATOR (ZB 22)
NLECTRONIC DICE (ZB 23)
SLECTRONIC DICE (ZB 24)
SHORT WAVE CONVERTER (ZB 25)
SHAVER JNVERTER (ZB 26)
TOUCH BLEEPER (ZB 27)
CHOKE WARNING DEVICE (Z̈B 28)
SEE LIST (ZB 36).
POWER SUPPLY (ZB 30)
SEE LIST (ZB 37)
LIGHTS REMINDER FOR CAR (ZB 32) All above kits include parts as described in article, i.e. verolboard or p.c. board, i.c. sockets, connecting wire etc.

TEACH-IN '80
New to electronics, then start at the beginning. All electronic components for construction of Tutor Deck and Teach-in experiments during the first six parts of the series. Lists A and $B £ 18 \cdot 50$.
ALL PRICES INCLUDE V.A.T.
BARCLAY/VISA/ACCESS CARDS ACCEPTED.
MINIMUM TELEPHONE OROERS $£ 5 \cdot 00$.

T. POWELL

306 ST. PAUL'S,ROAO, LONDON N. 1
01-224-1439
SHOP HOURS: MON-FRI 9 a.m.-5.30 p.m., SATURDAY 9 a.m. -4.30 p.m.

FIRST

and STILL BEST!
We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogueand 7 tor the service that backs it up. Experience both for yourself. Just send $£ 1 \cdot 30$ with the coupon and a catalogue will come by return of post.
TREAT YOURSELF for Xmas!

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD.

Electronics Make ajob-or hobby-ofit

The opportunities in electronics, today, and for the future are limitless - throughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.
We give modern training courses in all fields of electronics practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

HITACHI PROFESSIONAL
 MONITORS ${ }^{9,2}$ (12"- £199 - Reliability Solid state circuitry using an IC and silicon transistors ensures high reliability. - 500 lines horizontal resolution Horizontal resolution in excess of 500 lines is achieved at picture center - Stable picture Even played back pictures of VTR can be displayed without jittering.
with built-in termination Looping video input video input can be looped through for U and C types) Compact construction Two monitors are mountable side by side in a standard 19 -inch rack

UNIVERSAL POWER SUPPLY

these specifications.
5 V @ $3 \mathrm{amps}+12 \mathrm{~V}$ @ $1 \mathrm{amp}-5 \mathrm{~V}$ @ 500 mills -12 V @ 500 mills Easy to construct - complete with transformer. Our price $£ 24.90$

THE ATARI VIDEO COMPUTER
 SYSTEM £138

Break the language barrier £138

LEXICON

uк.zoco $=$

herever you may be in the-charged from the mains supply and understandable instruction Every additional module carries a concise wo additional modules

At a price equivalent to learning one language, LEXICON offers you, English Spanish, French, German, Italian and Greek The LK3000 comes to you with the person to person module which contains 6 languages, de.luxe carrying case and a charger adaptor using its own power source which will give you 4-5 hours continuous use, and can easily
be re-charged from the mains supply, -

ETI TV PINBALL featuring breakout CHIP \& PCB
all other parts
£14.90
ALSO EX-STOCK

MODULATORS UHF Channel 36

Standard 6 meg band width £2.25 High Quality 8 meg band width $£ 4.90$

EX-STOCK

SHORT C12 CASSETTES FOR COMPUTER PROGRAMMES 10 for $£ 4.00$

- Ideal for home, personal and business computer systems - 12 diagonal video monitor
- Composite video input - Compatible with many computer systems - Solid-state circuitry for a stable \& sharp picture
- Video bandwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$
- Input impedance - 75 Ohms
- Resolution . 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central 80%.
$£ 79$

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CARD or AMERICAN EXPRESS number CREDIT FACILITIES ARRANGED - send S.A.E. for application form. 14 Station Road, New Barnet, Hertfordshire, EN5 1OW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01-449 6596 OPEN - 10 am - 7 pm - Monday to Saturday
*NOW OPEN ALL DAY SUNDAY - For Shop Sales Only
Close to New Barnet BR Station - Moorgate Line.

Atari's Video Computer System now offers more than 1300 different game variations and options in twenty great Game Program ${ }^{\text {TM }}$ cartridges! Have fun while you sharpen your mental and challenging, sophisticated video games, the games that made Atari famous.
Houll have thrill ater thrill, whether you're in the thick of a dogfight, screeching around a galaxy. With crisp bright colour (on color TV and incredible, true-to-life sound effects. With special circuits to protect your TV
Cartridges now available All at $£ 13.90$ each + VAT Basic Maths, Airsea Battle, Black Jack, Breakou Basketball, Hunt \& Score* Space War, Outlaw Air Sea Battle Codebreaker *, Miniature Golf

Extra Paddle Controllers- $£ 14.90+$ VAT Keyboard Controllers - $£ 16.90$ + VAT

This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic
components this is components, this is the one catalogue you must not be pages - some in full colour-it's a colour-it's a
comprehiensive guide to electronic components with hundreds of photographs and photographs and
hllustrations and illusirations and
page after page of invaluable daıa.
Our bi-monthly newsletter contans guakanteed prices. special ofters and all the latest news from Maplin.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification.
Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Fuil construction details in our catalogue.

Speakers from $1 / 2$ inch to 15 inch; megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

ELECTRONIC SUPPLIES LTD

[^0]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Back Issues
 Certain back issues* of EVERYDAY ELECTRONICS are available worldwide price 70 p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

 * Not available: October 1978 to July 1979.

 Binders
 Binders to hold one volume (12 issues) are available from the above address for $\mathbf{5 3} \mathbf{3} 75$ (home and overseas) inclusive of postage and packing. Please state which Volume.
 Subscriptions
 Annual subscription for delivery direct to any address in the UK: ©8.50, overseas: £9.50. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613 Kings Reach Tower, Stamford Street, London SE1 9LS.
 © IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

[^2]: GOLDEN AGE
 This year's President of the Institution of Electrical and Radio Engineers, Professor William Gosling, called his inaugural address "Elec-tronics-a profession in its golden age".

 He pointed out that for the first time in human history we can create artefacts of more than biological complexity and from materials that are as common as dirt.

[^3]: Terms of business: CWO. postage and packing valves and semiconductors 30p per order. CRTs £1.00, Price ruting at packing $£ 1$ on credit orders, O ver 10,000 types of valves, tubes and semiconductors in stock.
 QUOTATIONS FOR ANY TYPE NOT LISTED SAE, ALL PRICES INCLUDE VAT,

