

ANNOUNCING THE

TEIEBINDER

In response to your many requests, thero will shortly bo available the new TELEBINDER, dosigned especially for use with Wallecets TELAIDES. Raggedly conntructed, the bindor bas metal rimga which opmn or clowo instantly for the addition or remoyal of material. Pages lie flat when the TELEBINDER is opened. The TELAIDES you now own are punched to fit exactly the ringe of this now binder.

THE TELEBINDER IS CONSTRUCTED SO AS TO HAVE A LONG AND USEFUL LIFE.

- Cover material is extromely cough, flexible and attractively stamped.
- No tagging at the rings, or jammed fingors--geparate lovers at opposite ends of the binder apino instantly open or closo the twenty-two steel tings.
- Bimier and cover are brase riveted.

YOUR JOBEER WILL ACCEPT YOUR ORDER NOW, SO THAT YOU WILL BE ABLE TO ENJOY THE AD. VANTAGES OF TELEBINDERS JUST AS SOON AS THEY ARE AYAILABLE.

TV MODEL AND CHASSIS CROSS-REFERENCE LIST

MODEL NUMBER MODEL NUMBER SUFFIX LETEER	$\underset{\text { CHASSIS }}{\text { TV }}$	PICTURE TUBE	RADIO CHASSIS
16, 17..... $\left\{^{\text {A or }}\right.$ B	20A1	$10^{\prime \prime}$ Round	4J1 (AM-FM)
, 16, 17.....\{ S	30B1	$10^{\prime \prime}$ Round	4H1 (AM-FM)
C	20B1	$12^{\prime \prime}$ Round	4K1 (AM-FM)
5	30 Cl	$12^{\prime \prime}$ Round	4 HI (AM-FM)
4H115, 116, 117... S	30B1	$10^{\prime \prime}$ Round	4H1 (AM-FM)
[A or B	2141	$16^{\prime \prime \prime}$ Round	411 (AM-FM)
$4 \mathrm{H126}$.......... $\left\{\begin{array}{c}\text { C } \\ \text { c }\end{array}\right.$	21 Al	$16^{\prime \prime}$ R Round	4K1 (AM-FM)
	30D1	16" Round	4H1 (AM-FM)
A or B	21 Al	$16^{\prime \prime}$ Round	431 (AM-FM)
S	30D1	$16^{\prime \prime}$ Round	4HI (AM-FM)
A or B	2081	$12^{\prime \prime}$ Round	4J1 (AM-FM)
4H145, 146, 147 ... ${ }^{\text {c }}$	2081	$12^{\prime \prime}$ Round	4K1 (AM-FM)
5	30 Cl	$12^{\prime \prime}$ Round	4H1 (AM-FM)
A or B	2081	$12^{\prime \prime}$ Round	4JI (AM-FM)
4H155, 156, 157... ${ }^{\text {c }}$	2081	12" Round	4K1 (AM-FM)
S	30 Cl	12" Round	4H1 (AM-FM)
A or B	2081	12" Round	4J1 (AM-FM)
c	2081	12" Round	4K1 (AM-FM)
s	30 Cl	$12^{\prime \prime \prime}$ Round	4H1 (AM-FM)
8C11, 12, 13..... UL, S, T	30A1	$10^{\prime \prime}$ Round	8C1 (AM-FM)
12X11, 12	2021	12"'Round
$14 \mathrm{R12}$	20 Tl	14" Rect.	
14R16	20 Tl	14" Rect.	
15K21, 22	2011	14" Rect.	
16R11, 12	2181	16"'Rect.	
17K11, 12	21F1, P1	$17^{\prime \prime}$ Rect.	
17×16	21F1, Pl	17" Rect.	
17 K 22	21F1, Pl	17" Rect.	
17M16, 17	21F1, Pl	17" Rect.	
17111, 12	17 T	$7{ }^{\prime \prime}$ Round	
19A11, 12	19A1	$7{ }^{\prime \prime}$ Round	
19 Al 15	19A1	$7{ }^{\prime \prime}$ Round
20x11, 12	20x1	10" Round	
20×122	20x1	$10^{\prime \prime}$, Round	
20×136	20 Y 1	$12^{\prime \prime \prime}$, Round	
20x145, 146, 147..	20 Yl	$11^{\prime \prime \prime}$, Round	
22×12	2021	12" Round	
22x25, 26, 27	2021	$12^{\prime \prime}$, Round	
24 Al 2	20A1	$10^{\prime \prime}$ Round	
24A125\{ $\left\{\begin{array}{l}\text { ä }\end{array}\right.$	20A1	10"1/ Round	
	2081	$10^{\prime \prime}$ Round	
24 Cl 5, 24 R 12	2081	12" Round	
${ }_{24 \times 15}^{24 R 12, ~ 16, ~ 17 ~}$	2071	$14^{\prime \prime \prime}$ Rect.	
$24 \times 15,16,17$ $25 A 15,16,17$	20x1	$10^{\prime \prime}$ Round	411 (AM only)
$\begin{aligned} & 25 A 15,16,17 \\ & 26 R 12 \ldots \end{aligned}$	21A1 21 Bl	16" Round $16^{\prime \prime}$ Rect.
	$24 \mathrm{H1}$	$16^{\prime \prime}$ Rect.	
A	21 Bl	$16^{\prime \prime}$ Rect.	
, 35	$24 \mathrm{H1}$	$16^{\prime \prime}$ Rect.	
	21 Bl	$16^{\prime \prime}$ Rect.	
26x35, 36, 37	2401	$16^{\prime \prime}$ Round	
26X45, 46	24 HI	16" Rect.	
$26 \times 55,56,57 \ldots\left\{\begin{array}{l}\text { A }\end{array}\right.$	$\begin{aligned} & 24 \mathrm{DI} \\ & \text { 21D1 } \end{aligned}$	$16^{\prime \prime}$ Round $16^{\prime \prime}$ Round	- .
	24D1	$16^{\prime \prime}$ Round	
A	2101	$16^{\prime \prime}$ Round	
26×75, 76	$\begin{aligned} & 24 \mathrm{D1} \\ & 2101 \end{aligned}$	$16^{\prime \prime}$ Round	
27 K 12	21F1, P1	$17^{\prime \prime}$ Rect.	
27K15, 16, 17.... §§	21F1, P1	$17^{\prime \prime}$ Rect.	
27K25, 26, 27.... §§	21F1, P1	17" Rect.	
27K35, $36 \ldots \ldots$. §§	21F1, P1	$17^{\prime \prime}$ Rect.	

MODEL NUMBER	MODEL NUMBER SUFFIX LETTER	CHASSIS	PICTURE rUBE	RADIO CHASSIS
$\begin{aligned} & 27 \times 46 \\ & 27 \times 85,86,87 \ldots \ldots \\ & 29 \times 15,16,17 \ldots \ldots \end{aligned}$		21	$17^{\prime \prime}$ Rect.	
		21F1, P1	$17^{\prime \prime}$	
		24F1	19" Round	
$29 \times 25,26,27 \ldots . .\left\{\begin{array}{l}\text { A }\end{array}\right.$		24 Fl	19"1/ Round ${ }^{\prime \prime}{ }^{\prime \prime}$	
30A12, $13 . \ldots . .$. UL, S, T		30 Al	$10^{\prime \prime}$ Round	
30A14, 15, 16.... $\left\{\begin{array}{c}\text { UL, S, }{ }_{\text {SA }}\end{array}\right.$		30al	$10^{\prime \prime}$ Rou	
		30al	$10^{\prime \prime}$ Round	
$\begin{array}{lll} 30 B 15,16,17 \ldots & S \\ 30 C 15,16,17 \ldots & S & S \end{array}$		30B1	$10^{\prime \prime}$ Round	
		30 Cl	12" Round	
30F15, 16, 17.... $\left\{\begin{array}{l}\text { a }\end{array}\right.$		2081	$12^{\prime \prime \prime}$ Round	4J1 (AM-FM)
		2081	$12^{\prime \prime}$ Round	4K1 (AM-FM)
		2021	12" Round	4S1 (AM only)
$32 \times 26,27$		2021	12" Round	$5 B 2$ (AM-FM)
32×35, 36		2021	$12^{\prime \prime}$ Round	5B2 (AM-FM)
34R15, 16		20 V 1	$14^{\prime \prime}$ Rect.	3C1 (AM only)
$36 R 37$		21 Cl	$16^{\prime \prime \prime} \mathrm{Rec}$	5D2 (AM-FM)
		21 Cl	$16^{\prime \prime} \mathrm{Rec}$	5 D 2 (AM-FM)
		24E1	16" Round	$5 B 2$ (AM-FM)
$36 \times 35,36,37 \ldots\left\{\begin{array}{c}\because \\ S, A S\end{array}\right.$		24 El	$16^{\prime \prime}$ Round	5D2 (AM-FM)
		21 El	$16^{\prime \prime}$ Round	5D2 (AM-FM)
37F15, $16 \ldots . .$. §§		21G1, Q1	$17^{\prime \prime}$ Rect	5D2 (AM-FM)
37 F 27		21G1, Q1	$17^{\prime \prime}$ Rect	5D2 (AM-FM)
37F28		21G1, Q1	$17^{\prime \prime} \mathrm{Rec}$	5D2 (AM-FM)
37F35, $36 \ldots . .$. §§		21G1, Q1	$17^{\prime \prime} \mathrm{Rec}$	5D2 (AM-FM)
37F55, 56		21 Gl	$17^{\prime \prime} \mathrm{Re}$	502 (AM-FM)
37F67		21 Gl	17" Rec	5D2 (AM-FM)
37k15, 16		21G1, Q1	$17^{\prime \prime} \mathrm{Rec}$	3C1 (AM only)
37×27		21G1, Q1	$17^{\prime \prime}$ Rect.	3C1 (AM only)
37×28		21G1, Q1	17' Rect	3C1 (AM only)
37K35, 36 37K55, 56		21G1, Q1	17" Rect.	3C1 (AM only)
		21G1, Q1	17" Rect.	3C1 (AM only)
37 K 67		21G1, Q1	$17^{\prime \prime} \mathrm{Rec}$	3C1 (AM only)
		24G1	19" Round	5B2 (AM-FM)
		24G1	19"' Round	5D2 (AM-FM)
	c	21J1	19"	5D2 (AM-FM)
39×25, 26		$24 \mathrm{G1}$	1919 Round	5D2 (AM-FM)
		2131	$19^{\prime \prime}$	5D2 (AM-FM)
39x35, 36		2131	191'Round	3C1 (AM only)
121k15, 16, 17		$21 \mathrm{M1}$	$20^{\prime \prime}$	
221×16		$21 \mathrm{K1}$	${ }^{201 \prime}{ }^{\prime \prime}$ Rect	
221×26		$21 \mathrm{K1}$	$20^{\prime \prime}$ Rect	
221 K 28		21 Kl	${ }^{20} 0^{\prime \prime}$ Rect.	
$221 \times 35,36$		$21 \mathrm{K1}$	$20^{\prime \prime}$ Rect	
$\begin{aligned} & 221 \mathrm{~K} 45, \\ & 320 \mathrm{R} 17 \end{aligned}$		21 Ml	$20^{\prime \prime \prime}$ Rect.	
		2131	$20^{\prime \prime}$ Rect	5D2 (AM-FM)
320R25,		2111	$22^{\prime \prime}$ Rect	5D2 (AM-FM)
321F15, 16		216	$20^{\prime \prime}$ Rect	5 D 2 (AM-FN)
321518		2141	$20^{\prime \prime}$ Rect	5 S 2 (AM-FM)
$321 F 27$$321 F 35$		$21 \mathrm{L1}$	20" Rec	502 (AM-FM
		2111	${ }^{2010}$ Rect.	5 S 2 (AM-FM)
321F46, 47, 49		21 LI	$20^{\prime \prime}$ Rect	502 (AM-FM)
321F65, 66, 67....		21 N 1	$20^{\prime \prime}$ Rect	502 (AM-FM)
		2161	$20^{\prime \prime}$ Rect	3C1 (AM only)
321 K 18		2161	$20^{\prime \prime}$ Rect	3 Cl (AM only)
321×27		21 Ll	20" Rect	3C1 (AM only)
		2141	20" R	3C1 (AM only)
		$21 \mathrm{L1}$	$20^{\prime \prime}$ R	3C1 (AM only)
321K65, 66, 67		21N1	20	3C1 (AM only)

§§ These models may have suffix " A "., " B " or no suffix at all.
\dagger These models may have suffix " A " or no suffix at all. § These models may have suffix " S " or no suffix at all.

Index
tr schematic
chassis page

17 I	9
19A1	11
1981	71,73.75
19 Cl	71,73.75
19 E	72,76.78
19F1	73.75
19F1A	71,73.75
1961	76.78
$19 \mathrm{H1}$	71,73.75
19 K	73.75
19 NT	76.78
20A1	20.22
2081	20.22
${ }^{2071}$	44.45
20V1	44.45
20x1	27
20×1	27
2021	32
${ }^{21 A 1}$	20.22
2181	46, 47, 53
21 Cl	46
2101	49
21DE1 21F1	49 $47,48,53$
$\begin{aligned} & 215151 \\ & 2161 \end{aligned}$	$\begin{aligned} & 47,48,53 \\ & 48,53 \end{aligned}$
2141	46
21 JJ 21 K 1	${ }_{48}^{46}$
2151	48
${ }^{2191}$	53
${ }^{21 N 1}$	53
$\begin{aligned} & 21 P 1 \\ & 2100 \end{aligned}$	$\begin{aligned} & 48,53 \\ & 48,53 \end{aligned}$
21w1	55
${ }^{21 \times 1}$	56
21×2	56
2191	55 55
${ }_{212121}^{212}$	55 55
22 A 2	57
${ }^{22 A 2 A}$	57
${ }^{222} \mathrm{CL}^{2}$	61 62
22E2 22M1	$\begin{aligned} & 62 \\ & 58 \end{aligned}$
22 Y 1	57
2341 2401	63 36
2451	36
$24 F 1$	36
${ }_{2}^{2461}$	36 36
${ }_{3041}^{2441}$	36 13
30 Al 3081	13 13,15
${ }_{30 \mathrm{Cl}}^{301}$	13, 15
3001	15
radio schematics	
CHASSIS	PAGE
3 Cl	44, 45
$4{ }^{4}$	15
41	19,21, 23
4×1	19,21
4 L	28
451	31
582	30, 35
502	35
8 Cl	29

Always use this "Service Manual Supplement for 17T1 Chassis"' FIRST, then refer to 19Al service data.

SPECIFICATIONS

The 17T1 television chassis uses an intercarrier sound system and a 7 inch picture tube using electrostatic deflection. The circuits used in the 17T1 chassis are similar (in most cases identical) to the circuits used in the latest production 19Al chassis. All circuit differences are outlined in the discussion under the heading "Circuit Differences" below.

WRITING TO FACTORY OR DISTRIBUTOR

When reporting about any Admiral product, be sure to include the follow. ing information:

1. Model number and anything stamped on model label.
2. Fill out and send the Inspection Tag, if atag is attached to chassis.
3. If Inspection Tag is NOT sent in, give all letters and numbers stamped on back of chassis.
4. Detailed explanation to speed investigation.
5. If reporting parts failure, give symbol number, part number and any brand name on part.
6. For record changers, give model and anything stamped on model label on bottom of changer pan.

IMPORTANT DIFFERENCES BETWEEN 17TI AND 19AI SETS

 CIRCUIT DIFFERENCESWhen comparing the 17T1 schematic with the latest 19Al chassis, you
will note that there are differences in the following circuits.
a. Differences in $\mathbf{B}+$ distribution to the sound IF (V1, 6AU6) and sound amplifier (V3, 6SQ7).
b. Differences in video detector and AGC circuit (V8, 6AL5).
c. Differences in video amplifier (V9, 6AU6) and contrast control (R33) circuits.
d. Lifferences in picture tube deflection circuit.
e. For protection from high voltage leaking to the chassis, a 270,000 ohm, $1 / 2$ watt resistor (R93) is connected trom one side of the power transformer primary (T6) to chassis ground. This resistor was used in late 19Al chassis.

PRODUCTION CHANGES

VERTICAL LINEARITY CONTROL

In later production sets, a change has been made to the vertical output In later production sets, a change has been made to the vertical output circuit (V15A and V156) by addition of vertical linearity control (R88)
and associated resistors and condenser. See schematic for this section of the vertical deflection circuit on this page.

Sets naving vertical linearity control can be identitied as having nine rear panel controls. The vertical linearity control is located competely to the left. This control is pre-set at the factory and will seldom require readjustment, unless it has been accidently disturbed or because of replacement or aging of tubes.

Checking of the vertical linearity control should be made prefereably using a television test pattern. Examine the central circles of the circular test pattern image and if the pattern appears "egg shaped" in a VERTICAL direction, the "VERT. LIN." control should be adiusted until the circles in the test pattern image become circular again.

Vertical Output Circuit with Linearity Control

CIRCUIT CHANGE IN AUDIO AMPLIFIER V3 (6SQ7)

To ovoid possible interference pickup (grid rectification of strong radio signals from nearby transmitters) in later production, C57 condenser (50 mmfd .) has been added and Cll condenser changed from .001 mfd . to 250 mmfd . Condenser C57 (59 mmfd .) is connected from socket terminal 2 of V3 (6SQ7) to chassis.

AUDIO OUTPUT TUBE V

Some 19Al chassis used a 6 Y6G instead of a 6AS5 in this stage.

CHANGE IN SYNC SEPARATOR VIIA (6SN7GT)

In later production, a parallel RC network consisting of R89 resistor (270,000 ohms) and C60 condenser (140 mmfd .) has been wired in series with iunction of C 33 consenser (.05 mfd .) and R37 resistor (10 ,

HORIZONTAL SYNC FILTER ADDED

Vertical lines in the picture appear jagged or broken if high frequency Vertical lines in the picture appear lagged or broken if high frequency in areas having low signal strength and a high noise level. This condit in areas having low signal strength and a high noise level. This condition can be corrected by insertion of a noise filter between the Sync Ampsuch a filter in loter sets.
If this interference condition is encountered in a chassis, a horizonta sync filter can be installed affer removing capacitor C35. All parts, with the exception of C61, must be mounted on a tie-strip. The tie-strip can best be mounted under the chassis between vertical oscillator fronsCher minal 2 of V 12 and the tie-strip. Cress the leads from C61 to iovid minal 2 of V12 and the tie-strip. Cress the leads from C61 to avoid shorts.

NOTE: When the above circuit modification is incorporated, adjustment of the Horizontal Hold control is critical. This adjustment must be carefully made and checked on all channels currently in use. however, once set, readjustment is seldom necessary.

Horizontal Sync Filter Circuit in Later Sets

ELIMINATION OF AUDIO BUZZ

The "Inter-carrier Sound System" used in the 19A1 circuit may cause a buzzing sound (not HUM) under certain conditions, Buzzing sound is the result of amplitude modulation (picture modulation) being superimposed on the 4.5 MC beat FM IF carrier to such on extent that it is impossible for the ratio detector to remove this amplitude modulation completely.
Some of the conditions which may produce a buzzing sound are given below. Corrective measures which may be applied IN THE CUSTOMERS home ore also listed below.

The most common causes of buzzing sound are improper setting of the Sharp Tuning control, and the Contrast control being too far advanced (clockwise). Merely turn down the contrast or tune the Sharp Tuning control for best picture definition. Under normal conditions, the sound will be free of audio buzz at this point.

Audio buzz can also be caused by slight misalignment of the oscillator coils for a particular channel. Oscillator adiustment (for individual channels) can easily be made WITHOUT REMOVING THE CHASSIS FROM THE CABINET. This adjustment must be made while receiving a transmitted television station test pattern or program, and should be performed as follows:

TOUCH-UP of OSCILLATOR SLUG ADJUSTMENTS for INDIVIDUAL CHANNELS.
allow 30 minutes for set to warm up.
b. Remove Channel and Sharp Tuning knobs.
c. Remove channel-indicating escutcheon: For plastic cabinets, pry the channel-indicating escutcheon away evenly (with fingernails or screw driver) being careful not to break off the plastic mounting pins from the escutcheon. For wood cabinets, slide the escutcheon to the left, and pry the right side oway from the cabinet.
d. Replace knobs after removing escutcheon. Set channel switch on sta tion withtest pattern or program. Set Contrast control for normal picture. Turn Sharp Tuning control completely to the left.
e. Insert NON-METALLIC screwdriver (1/8"، blade and 7'' length) in the $3 / 8^{\prime \prime}$ hole in cabinet at right of Sharp Tuning control. Tune oscillator slug for best defined picture with minimum buzz. Do this carefully as If station buzz will not tune out completely, with this adiustment remaining buzz may be due to minalignment of ratio detector secondary. This adiustment can easily be made WITHOUT REMOVING THE CHAS ing a transmitted television station test pattern or program, and should be performed as follows:

TOUCH-UP OF RATIO DETECTOR SECONDARY. NOTE: THIS ADJUSTMENT NEEDED ON ONE CHANNEL ONLY.
a. Tune station for normal picture or test pattern. Advance Contrast cona. Tune station for normal picture or test patrern. Advan
trol until buzz is audible (full on or almost full on).
b. Insert NON-METALLIC screwdriver in $3 / 8^{\prime \prime}$ hole in center of cabinet bottom.
c. Adiust ratio detector-secondary slug for maximum volume with minimum buzz. Do this carefully as only a slight rotation of the slug in either direction will be required. Correct point of adiustment is between the two maximum buzz peaks that can be noticed when turning the slug back and forth slightly in either direction.
d. If necessary, repeat oscillator adiustment and conclude with retouching the ratio detector sdeondary. NOTE: If oscillator adiustment is required for other channels, it will NOT be necessary to retune the ratio detector secondary after ONCE correctly adiusting it as indicated detector
Buzzing sound may also be caused by misalignment or the IF coils. It may be necessary to preform the "IF Amplifier Alignment".
If electrolytic condenser C5 opens or its capacity decreases substantially, audio buzz may be apparent.
Buzzing sound (usually momentary) can also be caused by a drop in transmission level of the video carrier at the transmitter. Naturally, this can not be compensated for by adiustment of the receiver.

Figure 56. Bottom View of Chassis.

PRODUCTION CHANGES

VERTICAL OSCILLATOR CIRCUIT
Changes have been made in the vertical oscillator circuit in later production. The late production circuit is shown in the schematic. The parts list also show the late production components. The adjoining illustration, figure 54, shows the early production circuit.

LOW VOLTAGE RECTIFIER

A small quantity of 5 U 4 G rectifier tubes have been used instead of the 5Y3GT rectifier originally specified for the 19Al chassis. These tube were used because some of the power transformers (supplied by several sources) were slightly different electrically. However, these transform ers are carried under the same part number 80B13.
The transformer used with the 5U4G rectifier has a red dot on the laminations. (A very small number of these transformers were first used with out the identifying red dot). The transformer used with the 5Y3GT rectifier has no red dot.

When servicing power transformer T6 or the low voltage rectifier tube, be sure to use the correct fube for the transformer used. If a 5 Y3GT rectifier tube is substituted for the 5U4G normally used with the "red dot" power transformer, the DC output voltage on pin 8 of the rectiffer will power transtormer, the DC output voltage on pin 8 of the rectifier will
be approximately 220 volts. This is approximately 30 volts below the normal operating voltage. FOR THIS REASON, A 5Y3GT TUBE SHOULD NOT BE USED WITH A TRANSFORMER DESIGNED FOR USE WITH A SU4G. ALSO, A 5 SU4G TUBE SHOULD NOT BE USED WITH A TRANSFORMER DESIGNED FOR USE WITH A 5Y3GT.
Since it may sometimes be Impossible to recognizetransformers from the original markings, the above voltage check will identlfy the transformer. A second check is a resistance check, across the high voltage winding, made between pin 4 and pin 6 of the rectifier tube. A resistance reading of approximately 175 ohms indicates a transformer designed for use with a 5 Y36T rectifier tube. A resistance reading of approximately 150 ohms indicates a transformer designed for use with a 5U4G rectifier tube. For REPLACEMENT PURPOSES, transformer T6 (part NO. 80B13) is supplied only for use with a 5Y3GT rectifler tube. If the set has used a type 5U4G tube with the original transformer, replace with a 5Y3GT tube belng sure to change tube marking on chassis and model label to show 5Y3GT rectifier tube now used.

94C8-1 TUNER DETENT CHANGE

The mechanical dimensions of parts in the detent mechanism of the 4C8-1 Tuner have been changed slightly in later production. See figure 33 and "94C8-1 Tuner Parts List". In addition to the differences indicted in the parts list, the detent cut-out (left side of tuner chassis) is

NOISY TV TUNERS

Noise is generally caused by dirty contacts, loose or intermittent connections and microphonic tubes.
Dirty contacts can be cleaned with carbon tetrachloride or other commercial contact cleaner. A small atomizer filled with carbon tetrachlarlde an be used to spray the switch contacts.
With 94C8-2 funer, remave several sets of coils from turret and rotote furret to position making contact points of contact plate accessible for cleaning. Using a small, stiff brush and carbon tetrachloride, clean contact surfaces and shafts of stationary contacts. Remove accumulated dust ar grease from contact plate with a light canvas cloth dampened wlth carbon tetrachloride. Clean contact surfaces of rotating coils in same manner.
Loose and intermittent connections can be found by tapping the components ar rotating the channel selector and watching the pattern on the asilloscope. A visual inspection or a continuity check will al so be helpful. Microphonic tubes can be located by tapping the tube.
For 94C8-2 (Turret Type) Tuners: Noise with rotation of the Sharp Tuning Control is often caused by poor contact af the tuner shaft with the metal bearing plate (No. 15A247-1). This noise can be eliminated by securing better shaft contact through use of (new part) tuner shaft contact spring No. 19A55. This spring is similar to the front turret shaft spring used on the tuner and is assembled to metal bearing plate (No. 15A-247-1) in the same manner.

High ambient temperatures encountered under certain operating condit ions may result in excessive oscillator frequency drift in some 94C8-2 tuners. Under such conditions, frequent readjustment of the Sharp Tuning Control may be necessory. In some cases, oscillator drift may even go beyond the normal tuning range of the Sharp Tuning Control. This condition is most probable in 30D1 ($16^{\prime \prime}$) chassis due to higher op erating temperatures in this model
When excessive oscillatar frequency drift is encountered in a 94C8-2 tuner, the following part change will usually correct this condition Replace old part, C109 ($10 \mathrm{mmfd} .$, - 300 temp. coef. ceramic) with new port C109, 65B6-33 (10 mmfd ., 750 temp. coef. ceramic)
In some sets, condenser C109 is accessible by removing the cover plate located on the side of the chassis pan, next to the tuner. Condenser C109 is connected between terminal 2 on the turret contact block and ground.
Replacement of C109 will require realignment of Overall Oscillator Ad justment (A18) and then individual channel oscillator adjustments.

PULLING AT TOP OF PICTURE
In some television receivers, pulling shows up across the top of the picure or pattern ond extends approximately one inch down from the top Vertical lines in the picture or pattern will pull to the right or left. This trouble is caused by vertical synchronizing pulses "riding through" the horizontal sync discriminator circuit and momentarily upsetting the horhorizontal sync discriminator circuit and momentarily upsetting the hor-
izontal oscillator. Since vertical sync pulses occur at the frame frequency (during the vertical blanking period), the pulling exists immediately after the vertical blanking period and shows up only in the top portion of the picture.

The low frequency response of the horizontal syne discriminator can be reduced to overcome this problem. It is recommended that resistors R413 and R414 be changed from 470,000 ohms each to 180,000 ohms each (180,000 ohms, $1 / 2$ watt, part number 60B8-184).
CAUTION: With R 413 and R 414 reduced in value, the circuit becomes critical to tolerance variations. TOLERANCE ON R413 and R414 MUST BE WITHIN 5 PER CENT OF EACH OTHER. This tolerance limit can be met by selecting a matched pair from stock resistors. After changing the resistor values of R413 and R414, the horizontal oscillator must be readjusted.

AUDIO BUZZ (Chassis 30B1, 30C1 or 30D1 only)
In some localities audio or station buzz may be apparent on some channels.
Early production 30B1,30Cl or 30D1 chassis have the 6.3 volt heater lead from the TV tuner (94C8-2) connected to pin 4 of V401 (6BA6). Changing the TV tuner heater connection to pin 7 of V411 (6 K 6 GT) will eliminate this trouble in most cases.

Microphonics have been a source of trouble in some early 30Al televison receivers using the 94C8-2 tuner (turret type). Listed below are suggestions for eliminating this microphonic condition. In general, this information will also be helpful in sets with other type television tuners. (1) Check for microphonic oscillator mixer tube, V101 (6J6). It is recommended that several tubes be tried, in order to select a tube which will be least microphonic and at the same time, cause a minimum of oscillator frequency shift, as noted with rotation of Sharp Tuning Control. In some cases, replacement of the oscillatar mixer tube, may necessitate readjustment of the Overall Oscillator Adjustment (A18) and then individual channel oscillator adiustments.
(2) Spot-solder the tube socket saddles and ascillator mixer tube shield bracket to the tuner chassis.
(3) Loosen the chassis mounting screws, in order ta float the chassis on the rubber mounts placed under the chassis mounting lugs. If the chassis does not have the rubber mounts, they can be made from one inch rubber tubing, cut to $1 / 4^{\prime \prime}$ ' lengths. Slip the rubber tubing underneath each chassis mounting lug. Rubber tubing shockmounts can be ordered from the Ad-
4) Check control shafts and knobs (particularly on the Sharp Tuning Control) making sure that they clear the escutcheon or front panel of the cab inet.
5) Microphonics can sometimes be eliminated by shock-mounting the speaker with rubber grommets, (part number 12A2-6) and grommet spacer (port number 29A2-5-71). Ream the speaker mounting holes sufficiently to allow Insertion of a rubber grammet and spacer, and remount the speaker with the grommets in place.
(6) In early production 94C8-2 tuners, microphonics can be caused by vibration of the rotating dielectric disc of the oseillator Sharp Tuning Control. In order to avoid vibration with resulting microphonics, the rotating dielectric dise should be made to contact the grounded stator plate of the oscillator Sharp Tuning Control.
IMPORTANT: Use extreme caution when making adjustment of the stator plates of the oscillator Sharp Tuning Control. If tightening of the stator plate mounting screw is required, extreme care should be exercised in order to ovoid stripping of the screw thread. A malor repair job may result from breakage of the rotor disc or plastic contact strip. If the threads in the plastic Insulating block become stripped, tap the hole for a larger crew.
(7) Microphonics can result from oscillation or vibration of components in the audio IF system. This can often be cured, by pressing condensers close to the chassis, redressing wires and shortening leads wherever possible. Moving of wiring in critical circuits may necessitate audio IF and ratio detector realignment.
(8) Check trimmer adjustments on the top side of the tuner for loose lock. nuts.

LOSS OF HORIZONTAL SYNC (IN EARLY PRODUCTION 30AI ONLY) Loss of horizontal sync in early 30Al receivers has in many cases been due to dielectric leakage or breakdown of eoupling condensers V407 or V408 (100 mmfd .), used in V403A plate and cathode circuits.
Early sets used a 100 mmfd . ceramic condenser, which was replaced in later production by a 100 mmfd ., 10%, mica condenser, part $65 \mathrm{~B} 5-17$, to correct this trouble.

Many production changes usually take place during a long production run These changes are necessary to facilitote purchasing of component parts to improve manufacturing techniques, and to incorporate current circuit run. The foll Several such changes were made during the 30A1 production .

1. FUSE PROTECTION AND HORIZONTAL CENTERING

In early production models, 6BG6G horizontal output tube (407) failure sometimes results in damage to circuit components (such as horizontal The new circuit (see Figure 1-20) results in impraved horizontal ing as well as fuse protection.
This new circuit refinement should always be wired into an early pro duction model television receiver when major repairs make it necess ary to remove the chassis from the cabinet. Parts required for adding this complete kit ore listed below. Parts may be ord kit from the Admiral distributor
Fuse Protection Conversion Kit 98A50-8 contains the following parts and material:
C426 .5 mfd, 200 volts, paper...64B 6-27 M402 Fuse, 0.25A/250V... 844 4-2 Screw, Selfotapping, $6 \times 1 /{ }^{\prime \prime}$.". 84A 5-1 1A 51-6-2 Spaghetti tubing, 1 1/4'.. 2 2-5 hook , ..95B10-20-20-92 Line drawings showing the bottom of the television receiver chassis before and after modification are shown in Figures 1-3 and 1-4. The fuse holder mounting details are shown in Figures 1-5. The circuit modificat ions are made as follows:
a. Remove C426 (50 mfd ., 25 volts, eletrolytic) and R436 (10 ohm, 1 watt) resistor; see figure 1-3.
b. Clip out iumper wire between terminals 1 and 2 on tie-strip " A ". c. Remove lead on R432 from terminal 3 of tio-strip " B " and reconneet to terminal 2 of tio-strip " A ".
d. Disconnect red wire from terminal 1 of tie-strip " A " ond reconnect to Disl of rie-strip "B
. Disconnect deflection yoke lead (yellow) from terminal 5 and reconnect to terminal 1 on tie-strip " A ". Do not disconnect yellow lead from focus coil (this lead must remain connected to terminal 5).

- Insulate one lead of a 0.5 mfd .200 volt condenser (new C426, part number 64B6-27) with a $11 / 1^{\prime \prime}$ length of spaghetti tubing (96 A2-5). Solder condenser mounting strap to chassis next to terminal 3 of tio-strip " A ". ing the insulated lead to terminal 2.
g. Connect a $7^{\prime \prime}$ length of wire (95810-20-20-92, white with red tracer) oterminal 1 of tie-strip ' C '". Insert free end through nearest hole at rear of chassis (for connection to fuse holder in 9 KV rectifier comportment). h. Use a 36 drill bit to drill a hole $11 / 8^{\prime \prime}$ from rear of chassis and 21°. from left side of chassis (see figure 1-5). Since there isn't too much room owork in the 9 KV rectifier compartment, it is convenient to dismount R435 and remove V409 from its socket while drilling the hole as describd above. This hole permits mounting the fuse holder (84A5-1) with a 6 self-tapping screw (1A51-6-2).
i. Cut lead (white with yellow tracer) $234^{\prime \prime}$ ' from terminal 5 on horizontal out-put transformer T402. Skin back the two ends $1_{2}^{\prime \prime}$ and tin. Solder both wires to the fuse holder terminal nearest rear of chassis.
i. Connect white wire with red tracer (see step g) to other terminal of fuse holder.
k. Press 0.25 ampere fuse ($84 \mathrm{~A} 4-2$) into the fuse holder clips. Check lead dress to avoid possible shorts before placing receiver chassis in operation.

Figure 1.3. Original Circuit, Before Fusing.

Fig. 1.4. Modified Circuit, After Fusing.

REAR OF CHASSIS, TOP VIEW
Fig. 1.5. Fuse Location

Fig. 1-6. Circuit Before Adding Fuse

2. FUSED CIRCUIT CHASSIS CONNECTION MODIFICATION

When the fuse change discussed in paragraph 1 was first incorporated in the horizontal output circuit, a small number of the 30Al chassis were not wired according to the schematic, figure 1-20. This incorrect chassis wiring is shown in figure 1-7.
If a fuse burns out in a chassis wired as shown in figure 1-7, excessive voltage appears across condenser C426. Subsequent failure of C426 may
val result in damage to other circuit components. Therefore, chassis wired as shown in figure 1.7 must be modified when brought in to the shop. The modified chassis connections are shown in figure 1-8. The necessary modification is chassis wiring can best be accomplished as follows
*a. Unsolder the lead of R330 from terminal 1 of tie-strip " D " and clip *a. Unsolder the lead of R330 from terminal 1 of tie-strip "D" and clip
off the other lead on R330 as close to the ground lug as possible. See off the other lead on R330 as close to the ground lug as possible. See
figure $1-7$.
*b. Connect R330 between the two terminals of tie-strip "E'". See fig ure 1.8 .
c. Unsolder the lead from terminol 1 of tie-strip " D '" and clip the other end of this lead off terminal 3 of tie-strip " C ". See figure 1-7. d. Transfer the connections from terminal 1 of tie-strip " A " to terminal 1 of tie-strip " D "
e. Transfer condenser lead of C426 and deflection yoke lead (white or yellow, depending on the production run) from terminal 2 to terminal 1 on tie-strip "A"
f. Clip off the other lead of condenser C426 from terminal 5 (figure 1-7) and reconnect the terminal 2 of tie-strip " A " (figure 1-8). It will be necessary to splice a length of tinned copper wire to this lead. g. Connect an insulated lead between terminal 2 of tie-strip " A " and terminal 5 of tie-strip "B'"
h. Check wiring per figure $1-8$ and figure $1-20$ before operating receiver *Due to the substitution of a four-terminal tie-strip at " F " in later pro-
duction, some chassis will not appear exactly the same as shown in fig. ure 1.7. The additional terminal on tie-strip " F " was used for the tuner plate decoupling filter in place of terminal 1 of t ie-strip " A '. Since such a chassis connection leaves terminal 1 of tie-strip " A " open, steps " a " through "d" of the above modification procedure do not apply. A chassis having the four-terminal tie-strip at " F " must be modified by following steps " e " through " h " only.

Figure 1.7. $\begin{gathered}\text { (Beforiginal "Fused Chassis" } \\ \text { iring Modification) }\end{gathered}$ Connections

Figure 1-8. $\begin{gathered}\text { Modified "Fused Chassis" Connections. } \\ \text { (After Wiring Modification). }\end{gathered}$

3. POWER SUPPLIES

Early production 30A1 sets used two separate power supply chassis. After a small number of sets were run, the two separote power supply chas. sis were combined into one unit.
When the power supplies were on a separate chassis, upright transformers were used for T501 and T502. When both power supplies were put on the same chassis, these transformers were changed to half-shell mount ing. See parts list.
When both power supplies were combined on one chassis, a 39 ohm is olating resistor was deleted.
Some of the double-cable power supplies had a 270,000 ohm, $1 / 2$ watt ply, and a 270,000 ohm, 1 watt (bleeder) resistor connected across C501B
in the high voltage power supply. These resistors were deleted when a single cable was substituted for the double-cable arrangement. Later production chassis are connected to the power supply through a single cable, instead of two connecting cables as used in earlier production sets. Order replacement cables, sockets or plugs from the description given in the parts list, under heading "Sockets and Plugs". Refer to symbols M203 for cables or connectors attached to the chassis and symbol M513 for cables or connectors attached to the power supply.

4. CONTRAST CONTROL BIAS

Several changes have been made in the contrast control bias circuit. Condenser C301 was originally a 4 mfd . electrolytic condenser. This condenser is now a 50 mfd ., 25 volt electrolytic ($67 \mathrm{AA}-7$). Part number 67 A 4.7 is recommended for replacement of C 301 in all cases.
The value of R304 has been changed in later production to provide a greater contrast control range. This change should prove helpful in areas of unusually high video signal strength. The value has been changed
from 27,000 ohms, $1 / 2$ watt to 15,000 ohms, $1 / 2$ watt (6088 -153). Replacefrom 27,000 ohms, $1 / 2$ watt to 15,000 ohms, $1 / 2$ w
ment should be made with new part, $60 \mathrm{B8}$ - 153 .
In early production sets (first 500 units), an RC filter was used in the selenium bias rectifier circult M405. This filter is a PI circuit consisting of a 180 ohm resistor, and two 50 mfd., electrolytic condensers. In later sets, the 180 ohm resistor and one 50 mfd ., electrolytic condenser have been removed from the circuit. The remaining 50 mfd., electrolytic condenser is used in the circuit and corresponds to C440 in the present schematic. In the event that service is required for sets using the eorly
PI filter circuit, the 180 ohm resistor and one 50 mfd. electrolytic conplatic circi, be condenser should denser should be removed; the remaining electrolytic condenser should
be connected as shown in the schematic. IMPORTANT: the 180 ohm be connected as shown in the schematic. IMPORTANT: the 180 ohm
resistor and 50 mfd , electrolytic condenser (as used in the older circuit) should not be removed unless circuit connection of M405 ($50 \mathrm{mfd} ., 25$ volts condenser, 67A4-7) has been changed as well.
volts condenser,
A contrast control bias decoupling filter consisting of a 12,000 ohm resistor and a 1500 mfd . ceramic condenser, was deleted in later production (after 500 units). This decoupling filter was first used in the grid circuit of the V302 (6AG5), but was found unnecessary.
5. ALTERNATE TRANSFORMER T2O1 (1st AUDIO IF)

Figure 1-9. Wiring Above is for 72 F 58 IF Transformer.
(Schematic, Fig. 1 1-20 shows 72 B44 IF Transformer)
Production used 72B58 as an alternate for 72B44 (T201) for a short period of time, Alternate transformer 72858 has a different terminal numbering arrangement than transformer 72B44. The terminal connections shown in the schematic are those of transformer 72B44. The terminal connections for transformer $72 \mathrm{B58}$ are shown in figure 1-9.
Due to the tendency for transformer 72B58 to detune in shipment, the slugs were sealed with glyptal. In the event that alignment adjustment is necessory, a few drops of solvent must be applied to the glyptal around each slug. The solvent will free the slug in a short time. Alignment adjustment can then be made in the usual manner.

Lacquer thinner or amyl acetate (banana oil) are commonly used thinners which can be used on glyptal.
Replacement for T201 should always be ordered by part number 72B44 èven though part number 72 B 58 was originally used in the chassis. 6. DELETED HEATER DECOUPLING FILTER

Heater decoupling filter choke and 1500 mmfd . ceramic condenser were deleted after 500 units.
7. DELETED V 201 BYPASS CONDENSER

V201 plate circuit and screen bypass (.05 mfd) was deleted in later production. C203, 1500 mmfd ., proved adequate in itself.
8. C407 and C408 CHANGED TO MICA

Ceramic condensers were used for C 407 and C 408 in the horizontal sync discriminator circuit (V404). These condensers were replaced in later production by two 100 mfd ., 10%, mica condensers (65 B 5 -17). The new part number $65 \mathrm{B5}-17$ should be used for service replacements for C407 and C408. This change was made to avoid horizontal sync difficulties caused by dielectric leakage or breakdown of the ceramic type condensers.
9. WATTAGE RATING INCREASE, R415

R415 was a 150,000 ohm, $1 / 2$ watt resistor. In later production, R415 was changed to a 150,000 ohm, 1 watt resistor (60B28-14). Part number 60B28-14 should be used for service replacements.

10. WATTAGE RATING INCREASE, R416

R416 was a 82,000 ohm, $1 / 2$ watt resistor. In later production, R416 was changed to a 82,000 ohm, 1 watt resistor ($60 \mathrm{~B} 28-1$
60 B 28 -15 should be used for service replacements.
11. FM INTERFERENCE TRAP, TUNER A 1582

An FM interference trap (98444-28) consisting of part L984, L985, C921 and C922 was added to tuner A1582 in later production. In the event that FM interference is encountered FM interference trap assembly can be obtained under service part number 98A44-28.

12. AVC CIRCUIT IN SOME SETS

Some early production sets were wired with AVC action, controling the 2nd audio IF stage, V202.
AVC voltage is developed across a 180,000 ohm resistor and a 470,000 ohm resistor in series, connected between point " Y "' (in early ratio deohm resistor connects to Themin.
I (AVC lead) of T201 audio IF transformer is connected to junction of the 180,000 ohm resistor, 470,000 ohm resistor, and a 005 mfd min. ceramic bypass condenser (other end of .005 mfd . condenser is connected to chassis).
13. R205 LOCATED INSIDE RATIO DETECTOR TRANSFORMER T202

Resistance value of R205 in early sets was 47 ohms, and in later sets was changed to 150 ohms. In early sets, R205 was located inside the
ratio detector can T202 (72B45). In the event that T202 (72B45) must be replaced in a chassis that included R218 inside transformer T202, resistor R205, 150 ohms $1 / 2$ watt ($60 \mathrm{B8}$-151) will be required in addition to replacement transformer 72B45. Connect R205 under the chassis ofter re-
placing transformer T202 (72B45).
14. C109 CHANGE IN TV TUNER 94C8-2
(Chassis 30AI, 30BI, 30Cl and 30DI)
in later production 94C8-2 TV tuners, ceramic condenser C109 has boen changed from 10 mm fd., negative 300 temperature coefficient to 10 mmfd . 5%, negative 750 temperature coefficient (part 65B6-33). This change 5w, negative impove frequency stability of the oscillator and mixer stage V102 (6J6) with conditions encountered under high ambient temperatures. For replacement details, see paragraph "Frequency Drift in 94C8-2 Tuners' ${ }^{\prime \prime}$.
15. DIFFERENT TUBES USED FOR 2nd and 3rd VIDEO IF, V302 and V303 (Chassis 30A1, 30B1, 30Cl only)
Type 6AG5 and 6AU6 tubes have been used for V302; and al so for V303. Due to differences in tubes characteristics, corresponding video IF transformers T301, T302 must be used with the different tubes.
When type 6AG5 and 6AU6 tubes are used, T301 and T302 are part numbers 72B40-1 and 72B41-1, respectively. When type 6AU6 tubes are used, T301 and T302 are part numbers 72B81 and 72B82, respectively.
16. DIFFERENT 2nd and 3rd VIDEO IF TRANSFORMERS, T3O1 and T302 (Chassis 30A1, 30B1, 30C1 only)
See discussion in paragraph 15 directly above.

17. ALTERNATE DEFLECTION YOKE

(Chassis 30AI, 30BI, 30CI, 30DI)
Two alternate deflection yoke are currently being used, part number 94B2-1 and 94B2-2. Condenser C423, which is part of the yoke as sembly, has to be a different value when used with the alternate yokes. Condenser C423 should be 56 mmfd ., 5%, mica (65 B 1 1-54) when used with 94B2-1. Condenser C423 should be 39 mmfd. , 5%, mica (65 B 1 -55) when included in 94B2-2. The two yokes are interchangeable when complete with the proper resistors, condenser and wire leads. Yoke 94B2-2
parts and leads included) is supplied for service replacement.
18. CHANGE IN TV TUNER FILAMENT CONNECTION
(Chassis 30B1, 30C1 and 30DI Only)

In later production 30B1,30Cl and 30DI chassis, the 6.3 volt filament connection to the TV tuner has been changed from pin 4 of V401 (6BA6) to pin 7 of V411 (6K6GT). This chonge was made to avoid possible audio or station buzz noticeable on certain channels.
19. DIFFERENT 12"' PICTURE TUBES USED (Chassis 30C1 Only)

Different 12" picture tubes (types 12PB4, 12LP4, 12TP4, 12KP4 or 12QP4) have been used in the 30 Cl models. The varisus tube types require different chassis wiring and ion traps.

A1897 ANDA1945

POWER SUPPLIES

 Dubble cable. 5 tube poner supply chassis. Cables for A1897 Power Supply are not detachabbe. Alla45 Power Supply has one| Sym | Description | Part No. |
| :---: | :---: | :---: |
| R 511 | 2,500 ohms, 5 Halls, Candohm | 61 3.8 |
| R512 | 4.7 Megohms, $1 / 2 /$ Watt | 60B 8 |
| R513 | 4.7 Megohms, 1/2 Watt | 60B 8 |
| R514 | 470,000 ohms, $1 / 2 /$ Watt | 60B 8.474 |
| R515 | 470,000 ohms, 1/2 Wat1 | 60B 8.474 |
| R516 | 47,000 ohms, $1 / 2$ Watt | 60B 8.473 |
| R517 | 470,000 ohnss, $1 / 2 / 2$ Watl | 60B 8.474 |
| R518 | 470,000 ohms, 1/2 Wal | 60B 8.474 |
| +R519 | 18 ohus, 1 Watt | 60B 14.180 |
| R520 | 270 ohms, 2 Watt | 60B 20.271 |
| R521 | 470,000 olims, $1 / 2$ Wat | 60B 8.474 |
| CONDENSERS | | |
| Sym. | Description | Part No. |
| C511 | . 01 mid., 400 Volts, Paper | 64B 5.25 |
| C512 | 1 mid, 400 Volis, Paper | |
| (513 | . 01 mfd ., 400 Volts, Paper | |
| C514 | . 01 mid., 400 Volts, Paper | 64B 5.25 |
| $(515$ | . 01 mid. 400 Volts, Paper | 64B 5.25 |
| | . $002 \mathrm{mid} ., 600$ Volts, Paper | 64B 5.14 |
| C517a 60) mid., 350 Volts | | |
| | | |
| | | |
| | | |
| | 40 mfd ., 450 Volts) | |

COILS, TRANSFORMERS, ETC

Sym	COILS, TRANSFORMERS, Description	Por
1511	Choke, Filter (2.8 henrys)	74A 13
+1.512	Choke, Filter (2 henrys)	74A 12
T511	Transformer, Output	.79A
T512	Transformer Low Voliage Powe	80B 16
+T513	Transurmer, High Vollage Pon	. 80 R
M516	Speaker	
	for $4 \mathrm{H} 15,4 \mathrm{H} 16,4 \mathrm{H} 17,4 \mathrm{H} 145,41114$	
	for 4H115, $4 \mathrm{H} 116,4 \mathrm{Hi17}, 4 \mathrm{H} 155,4$	
	4 H 157 (12" PM).	88 44.1
	for $4 \mathrm{H18} 18,4 \mathrm{H} 19,4 \mathrm{H126}, 4 \mathrm{Hl37}, 4 \mathrm{H} 16$	
	${ }^{4} \mathbf{H 1 6 6 , 4 H 1 6 7 , ~ (1 2 " P M) ~}$	
	Spring, Tube Holder...	.87A 22-2

20. CHANGE IN INTERLOCK CONNECTORS AND

 WIRING TO DEFLECTION YOKE AND FOCUS COIL (Chassis 30DI Only)

An interlock circuit is wired into the plugs connecting the deflection yoke and focusing coil to the 30DI chassis.
In some early production sets, the interlocking circuit in the chassis en incorrectly wired, whereby the 110 volt AC circuit was no opened when plug M407 connection th the deflection yoke, or plug M408 connection to the focus coil, are removed from the chassis.
21. INSUFFICIENT WIDTH, Early 30DI Chassis

This trouble can in most cases be corrected by adjustment of width control L404 or by replacement of tubes V403 (6SN7GT) or V407 (6BG6G) If this will not correct the condition, shunt a 68,000 ohm, 1 watt resistor across R 465 (15,000 ohm, 2 watt, 407 screen dropping resistor), or re place R465 with a 12,000 ohm, 2 watt resistor, part number 60B20-123 Readiust L404 after changing value of R465 resistor. NOTE: In late production sets, R 465 was changed to 12,000 ohms, 2 wat

VOLTAGE DATA

- Line voltage 117 Voles AC Voltages measured with a vacuum tube volt meter, between tube socket ter.
sis, uniess otherwise indicated.
- "Tel-Phono-Rad" switch in "Rad" position.
- Voltages measured wich band switch in FM posion unless otherwe indicated.
Dolume control set at minimum.
- Antenna disconnected.

Television chassis must be turned off, but re. main connected to power supply, unless an AC
line cord is wired to plug M5 13 , see illustration line cord is wired to plug MS 13, see illustration
page $4-1$, or use adapter socket $(98 \mathrm{~A} 30.5)$ page 4.1 , or use adapter socket
availabie from Admiral Distributor.

If taken with a 1000
will be lower or zero.

* If taken with a 1000 ohm-per-volt meter, readings will be lower or zero.

voltage data

- Line voltage 117 volts AC.

VOLTAGE DATA

- Voltages measured with a vaouum tube voltmete
between tube socket termi nals and chassis less otherwise indioated. Note that the grid and oathode of V4 (6AS5) are about 130 volts
positive with respeat to ohassis
- Antenka should bo oonnoented when taking vollages. - Contrast set fully olookwise. Channel seleoto on ohannel 2 or other unassigned low channel.
All rear chassis oontrols set at approximately
half rotation (usual setting for normal pioture). - Some tube sooket terminals are used as tie-

Sym.	Tube	Funotion	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
v101	6ag5	RF Amplifier	-. 3	nc	6.3 AC	0	125	125	0	
$\frac{\text { V102 }}{\text { Voltages at }}$ OBo. \& Mixer Point " F^{n} is -3 volts measured with tubes in sockets.										
v1	6an6	Audio If Amplifier	0	0	6.3 Ac	0	120	120	1	
v2	6al5	Ratio Deteotor	. 6	-. 6	6.3 AC	0	0	0	0	
v3	6SQ7	Audio Amplifier	0	-. 8	0	0	0	70	6.3 AC	0
v4	6AS5	Audio Output	130	125	6.3 AC	0	125	243	230	
v5	6AU6	1st IF Amplifier	-. 6	0	0	6.3 AC	115	115	. 6	
v6	6aU6	2nd IF Amplifier	-. 6	0	0	6.3 AC	115	115	. 6	
v7	6,N6	3rd IF Amplifier	0	0	6.3 AC	0	115	115	-1.3	
v8	6al5	Video Deteotor \& 4 CC	0	-. 7	0	6.3 AC	0	0	0	
v9	6aU6	Video Amplifier	-. 9	0	6.3 AC	0	110	125	0	
v10	5Y3GT	Low Voltage Reotifier	NC	275*	NC	280 AC	NC	280 ac	nc	275*
vil	6SN7GT	Syma Sep. \& Vert. Obo.	-1.7	30	0	-13	60	0	6.3 AC	0
v12	6SN 7GT	Symo Amp. \& Hor. Oso.	-. 9	110	0	-70	230	2.8	0	6.3 AC
v13	183/	High Voltage Reotifier	NC	6500	NC	$\frac{\mathrm{NC}}{\mathrm{n}_{\text {c }}}$	NC	NC	6500	NC
	8016		Voltage	on tub	oap: S	- "cautio	ON" not	above.		
V14	6v6at	High Voltage Oso.	0	6.3 AC	255	230	-120	NC	0	3
v15	6SL 7GT	Vertioal output	-5.5	300	5.5	-4	245	0	0	6.3 Ac
v16	$7 \mathrm{JP4}$	Pioture Tube	6.3 AC	105	NC	nc	2000	NC	6000	6000

* 5.2 volts AC measured between pins 2 and 8 of 5Y3GT

C Indioates no conneation to tube element

High voltages are present on the oap and fila-
nt or $183 / 8016$. NO ATTEMPT SHOULD BE MAE TO ment or $183 / 8016$. NO ATEMPT SHOULD BE MADE TO TAKE MEASUKEEENP FROM THESE POINTS UNLESS SUIT-
ARLE TEST EQUTPUENT IS AVAILABLE.

Pioture tube defleotion voltages oan be measured at the point of oonneotion to ohassis wiring
and should be taken only with a hich voltage inand should be taken only with a high voltage instrument shoh as a
voltage cheok of $1 B 3 / 8016$ tube may be made by observing filament brillianoy as oompared with that obtained with a 1.5 volt dry oell battery.

- All measurements made with vacuum tube voltmeter. TMNZR VOLTAGEs TAKK
- Contrast control full on. All rear controls set $\begin{gathered}\text { FROU TOP OF CHASITS } \\ \text { VITH TUBES REXOVED }\end{gathered}$ at approximately half rotation (usual setting for normal p1cture).
- Transmission line disconnected from set receiver.
- Channel switch on channel 2.

Proper filament voltage check of V13 (1B3/8016) tube can be made by observing flament 5 an dry cell battery.

* 5uth also used: see production changes,
* some lyal chassis use a gygg tubei instead of a gas tube for vh.
- HIGH VOLTAGES: DO NOT USE ORDINARY TEST EQUIPIENT. 6500 VOLTS AT PIN 2 OF VI3

SCHEMATIC DIAGRAM FOR 17T1 CHASSIS

- All measurements made with vacuum tube voltmeter.
- Contrast control full on. All rear controls set at approximately half rotation (usual setting for
normal picture).
normal picture).
- Transmission line disconnected from set receiver.
- Channel switch on channel 2.
- LIne voltage 117 volts, 60 oyoles.
- Proper fllament voltage check of $V 13$ ($1 \mathrm{~B} 3 / \mathrm{gol6}$) are can be made as compared with

* 5 CuG \AA SO USED: SEE PRODUCTION Changes, PAGE 17.

中 sole 19al chassis use a gYg tube, instead of a gass tube far vh.

- HIGH VOLTAGFS: DD HOT USE ORDTNARY TEST ERUIPUENT. 6500 VOLTS AT PIN 2 OF VZ3. Pigure 58. Chassis Voltage Diagram.

\# Same sets use a $6 \mathbf{Y G G}$ tube instead of a $6 A S 5$ tube for VL .

ALTERNATE TV TUNERS USED IN 30A1 CHASSIS

Figure 1-18. Schematic, TV Tuner A1582.

TUNER 94C9-2

Schematic, TV Tuner 94C9-2.

LOCK, HOR. LIN., and WIDTH setinge.)

- Channel , eleccior on channel 2. (Channel 1 for Bets with A1582 Tuner,
Fizure 1.13).

POWER SUPPLY FOR $8 \mathrm{Cl11}, 8 \mathrm{8C12,8C13}$ \&

> + Indicates 30D1 voltage.

"f parts not shown here or different circuit arrangements are found in a chassis, see "Production Changes",

ck

電

Figure 1.23. Deflection Yoke
Connector Cearly trpe). Pin
View Min, Botrom Mien
M406.

2nd Anode Supply Circuit for 30D1;

Schematic, TV Tuner 94C9-2.

LOCK, HOR. LIN., and WIDTH seting.)

- Channel .elector on channel 2 . (Channel 1 for sels with 11582 Tuner,
Fizure 1.13).

filament bill
cill batery.

Andicates contact potential which may vary widely.
\dagger Indicates 3001 voltages.

$$
\begin{aligned}
& \text { POWER SUPPLY (COMBINATION "4H" } \\
& T_{\text {SLC }} \text {) MODELS ONLY }
\end{aligned}
$$

[^0]

PRODUCTION CHANGES

a. VIDEO IF SUB.CHASSIS

Very early production IF sub-chassis may have a 6AG5 in the 2nd VIdeo IF stage. In later production, a 6AU6 tube is used and may be substituted if pin No. 2 (suppressor) is grounded to the chassis.
Early production video IF sub-chassis employ two stages of amplificotion before the sound signal is applied to the grid of the lst sound IF (V201). Early production sub-chassis can be identified by a RED color dot near the 2nd Video IF (V302) on the top of the chassis. In this early sub-chassis, T301 is part number 72A83.1 and is aligned at 25.3 MC . T302 is port number 72A84 and is aligned at 22MC. R305 is 10,000 ohms; R310 is 12,000 ohms.
Late production IF sub-chassis hove only one stage (V301) of amplification before the sound signal is applied to the grid of V201. This change was made to prevent weak audio output, resulting from increased AGC voltage, on STRONG signals. In this late sub-chassis, T301 is part number 72A84 and is aligned at 22 MC . T302 is part number 72A83-2 and is aligned at 25.3 MC . R310 is 10,000 ohms. R305 was 12,000 ohms; then changed to 8200 ohms. Changing R305 to 8200 ohms in later production sets, has Improved the overall RF-Video IF response curve.

B. GAUG SYNC SEPARATOR SCREEN RESISTOR

In early production, the sync separotor screen (V403) was maintained at a constant voltage by a voltage dividing network made up of a 47,000 ohm resistor (part No. 60B8-473) from pin No. 6 to ground and an 82,000 ohm resistor (R421) from pin No. 6 to B . In later production, the 47,000
and ohm resistor was deleted and R421 was connected from pin No. 6 to the contrast control arm to simultoneously regulate the screen voltage on the
sync separator (V403) and video amplifier (V306). This eliminates the sync separator (V403) and video amplifier (V306). This eliminates the
possibility of overadriving the sync separator when the contrast is increased.

C. ALTERNATE DEFLECTION YOKE T404

Two alternate deflection yokes, part number 94B2-1 and 94B2-2 are currently being used. Condenser C428, which is part of the yoke assembly, is $56 \mathrm{mmfd} ., 5 \%$, mica ($65 \mathrm{~B} 1-54$) when used with $94 \mathrm{~B} 2-1$; it is 39 mm fd., 5%, mica ($65 \mathrm{B1} 1-55$) when used with 94B2-2). The two yokes are interchangeoble when complete with the proper resistors, condenser and wire leads. Yoke 94B2-2 (correct parts and leads included is supplied for service replocement.
D. R333 ADDED TO REDUCE PICTURE "FLUTTER"

Chassis with this change stamped run "9"" or higher. To reduce picture "flutter' caused by impulse noises or by weak of fading sync signals, resistor R333 ($\mathbf{2 . 2}$ megohms, $1 / 2$ watt, part number 60B8-225) is connected from the screen grid (pin 6) to the control grid (pin 1) of V305 (6AU6), AGC tube. This results in a higher amplitude sync. signal with less suppression of sync pulse by the 6AC7 video amplifier tube.
E. CHANGE TO ELIMINATE INTERFERENCE FROM HARMONICS OF THE SOUND IF STRIP IN EARLY 20A1, 20B1, 21AI CHASSIS

Chassis with this change stamped run " 11 " or higher. In early production sets, the tenth harmonic of the sound IF channel can cause Interference in the form of a herringbone pattern on channel 13. (Other harmonics may cause interference an channels 3, 6 and 9.)
A check, for early production sets, to determine whether the interference is actually due to harmonics of the sound IF, is made by removing the second sound IF tube V202 (6AU6) and noting if the interference pottern disappears. If the interference pattern remains, the trouble is due to some other cause.
Circuit changes
Circuit changes (made in later production sets) to elliminate this interference ore given below. Changes in early production sets to eliminate this interference con be made in the following sequence:
a. Replace the wire lead between pin 6 of V 202 (6AU6)
a. Replace the wire lead between pin 6 of 202 (6AU6) tube and R213 tor lead to pin 6 of V202 tube must be as short as possible.
b. Connect a 1500 mmfd ., min. ceramic condenser (C213) from the junction of R213 resistor and terminal of R212B focus control to the ground lug next to the socket of V202 (6AU6) tube.
c. Mount aterminal board under the mounting nut of T202 (sound IF tronsformer) near the video IF shield. Locate the lead between pIn 7 of V306 (6AC7) tube ond pin 3 of V202 (6AU6) tube. Remove this lead from pin 3 V202 (6AU6) tube and connect it to the Insulated lug on the terminal board. Connect a filament RF choke (L202) from the insulated lug on the
terminal board to pin 3 of V202 (6AU6) tube.
d. Locate the ground lead wired from the socket of V202 (6AL5) tube to a terminal board. Clip this lead at the terminal board and solder it to the chassis near to the socket of V203 (6AL5) tube. This connection must be as short as possible.
Material Required For The Above Change

1 Terminal board with 1 insulated lug... 10 10B1-43 1 Filament RF choke (L202)... 1 . ${ }^{2}$.
F. CHANGES TO INCREASE THE SOUND LEVEL IN EARLY 20AI,

$$
20 B 1 \text { AND 21AI CHASSIS }
$$

Chassis with this change stamped run " 15 " or higher. The changes listed below were made in later production sets to increase the TV sound dot on top of the RF tuner, adjacent to L106 (lst IF coil) and on a lop of dot on top of the RF tuner, adjacent to L 106 (lst IF coil) and on top of T201 (2nd sound IF tronsformer).
IMPORTANT: Before adding these changes to an early chassis, check to determine if the cause of low sound level is due to misalignment or other possible causes

1. Sound level can be increased by adjusting slug A9 (L106) 1st IF transformer. Turn slug A9 in while watching the picture to make sure that there is no decrease in picture quality with increase in sound level. NOTE: If this adjustment is not sufficient to bring the sound to a satis factory level, the following additional changes should be made. 2. Replace T201, 2nd sound IF transformer, part number 72B86-1 with new port number 72B86-2.
2. Remove damping resistor R203, (27,000 ohms).
3. Replace AGC voltage divider resistor R303, (47,000 ohms) with a 27,000 ohm, $1 / 2$ watt resistor (part number 60B8-275). R203 may be used as a replacement for R303.
4. Realign all 21.25 MC sound IF and ratio detector trimmer adiustments.
5. Relpace original choke coil Ll05, part number 98A45-68, located in TV tuner 94C18-1, with new choke coil part number 98A45-72. Replacement of L 105 may be difficult since it is located inside the RF tuner. Generally, coil L105 will not require changing, since making the changes in steps 2 thru 5 should usually increase audio sensitivity to the desired level. However, should it be desired to replace L105, part unber 984 th 72 con be obtaned. If L lis coll is reploced, it will be uner to 22.3 MC . tuner to 22.3 MC .
G. CHANGE IN $10^{\prime \prime}$ (20Al) SETS FOR INCREASED SWEEP WIDTH

The changes listed below were made in later production 20A1 ($10^{\prime \prime}$) sets or increased sweep width without loss of horizontal linearity. Note that BOTH changes " a " and " b " must be made
a. Horizontal damping resistor R444, has been changed from 6,300 ohms, 50 watt to 7,500 ohms, 25 watt (part number 61A12-2).
b. Cathode by-pass C424 has been changed from .1 mfd ., 200 volts to 2 mid., 200 volts (part 64B5-29).
H. CENTERING OPERATING RANGE OF FOCUS CONTROL (R212B) IN 21AI ($16^{\prime \prime}$) SETS
Chassis with this change stamped run " $13 A^{\prime}$ " or higher. In later 21A1 ($16^{\prime \prime}$) sets, R334 resistor, 10,000 ohms, 2 watt (part No. 60B20-103) has been wired across the (erminals of focus coil L306. When R33 is used, lamper tube should be coneted to ground instead See sche (6W4)

This change was mode In order to shift the operating point of focus control R212B reasonably close to the center point of rotation.

J. CENTERING OPERATING POINT OF

 VERTICAL HOLD CONTROL (R405A)Grid resistor R404 of V401A (6SN7GT) vertical oscillator is generally 1.2 meg., $1 / 2$ watt, (part No. 60B8-125). However, when vertical hold control (R405A) will not operate reasonably close to the center of its range resistance value of R404 mat be 1 mag., $1 / 2$ watt (part No. 60B8-125) or 1.5 meg., $1 / 2$ watt (part No. 60B8-155).
K. R332 WATTAGE RATING INCREASE IN $16^{\prime \prime}$ (21AI) SETS

In early 21A1 (16^{\prime} ') sets, R332 focus coil shunt resistor was 3000 ohms, 5 watts, In later 21 A1 ($16^{\prime \prime}$) sets R332 was changed to 3000 ohms, 7.5 watts (61A1-16). This change was made to allow for greater heat dis. slpation under certain operating conditions.
L. SHIPPING BOLTS USED IN LATER PRODUCTION TELEVISION CHASSIS

Later production television chassis have been provided with shipping bolts to reduce the possibility of damage during shipment. Two of thes shipping bolts are used, located between the four chassis mounting bolts one on each side of the chassis.
To avoid the possibility of microphonics due to the chassis being bound down tightly to the mounting board by these bolts, it is necessary to re move these bolts upon installation of the set. This allows the TV chas sis to "float" on its rubber shock mounts.
M. POWER TRANSFORMER FUSE IN 20A1, 20B1, 2lAI TV CHASSIS

Chassis with this change stamped run " 16 " or higher. To protect the power transformer from damage due to the failure of either the $6 \times 5 \mathrm{GT}$ or 5 U4G rectifiers, a 3 ampere, 250 volt fuse M313 (part No. 84A1-14) has been wired in the primary circuit of the power transformer. This fuse, like the $1 / 4$ ampere horizontal output fuse M405 already in use, is located in the second anode supply housing. The fuse holder previously used to hold the $1 / 4$ ampere fuse M405, has been replaced with a double fuse holder (part No.84A5-3) which holds both the $1 / 4$ ampere fuse and the 3 am pere fuse. A bracket (part No. 15A539) is used to mount the fuse holder. If desired, the primary fuse can be added to early sets by clipping off the line cord plug and replacing with a fused plug.
N. MISCELLANEOUS CHANGES IN $16^{\prime \prime}$ TUBE MOUNTING

An insulating sheet (part No. 32D122) is stapled to the inside of the cab inet next to the tube mask in current production. A piece of aluminum foil, $8^{\prime \prime}$ in length (part No. 52A1-17) was also inserted under the two tween the two A metal screen (part No $16 \mathrm{Cl}_{13}$) has also been inserted under the $16^{\prime \prime}$ 'tube mounting board and tacked to the cabinet for customer protection.
P. BRAIDED WIRE ADDED TO MINIMIZE HUM

In later production sets, the power supply chassis is grounded to the television chassis to minimize hum. In $10^{\prime \prime}$ and $12^{\prime \prime}$ sets, a $25^{\prime \prime}$ length of $3 / 8^{\prime \prime}$ copper broided wire (95A12-7), with lugs at both ends, is connected from the small hole in front of the TV tuner to a mounting bolt on the power supply. On $16^{\prime \prime}$ sets, the chassis connection is made at an unused hole at the right front (facing rear of chassis).
Q. SYNC CIRCUIT MODIFICATION

Chassis with this change stamped run " 16 '" or higher. To improve sync stability in weak signal areas having high level impulse type noise interference, the sync circuits of later production 20A1, 20B1, and 21AI chassis have been modified.
The original sync separator tube V403 (6AU6) has been replaced by a tor and separates the synction of this tube functions as a sync separa-
second half of this tube functions mainly as a clipper. The sync pulse is amplified and noise peaks are clipped off.
In addition to using the 12AU7, the second section of the video detector V304 (6AL5) which formerly was not used, has been wired into the circuit and functions as a limiter on the grid of the sync inverter V401B (1/26SN7). This limits the level of the sync signal, thereby eliminating ransient or impulse noise peaks.
Also note that the wiring of horizontal sync discriminator V404 (6AL5) was changed.
R. BUILTIN TV ANTENNA ADDED

Late sets are equipped with a built-in (internal) antenna (part number AD 205), which is mounted to the inside top of the cabinet. Use this antenna in strong signal areas only. Adjust the antenna by moving the control on the back of the set from left to right to determine the best picture. Disconnect it before attaching another antenna.

S. BREAKDOWN OF C437

To prevent breakdown, the working voltage rating of coupling condenser C437 (. 05 mfd .) was changed from 400 volts (DC) to 600 volts (DC). The new part number is 64B5-7. Chassis with this change are stamped run 17A or higher
If C437 shorts in sets using a 12AU7 Sync Separator and Clipper, the yync Separotor section of the 12AU7 will draw grid current. This will bias the AGC tube (V305) to cut-off. Since no AGC voltage is developd, the 1 st and 2 nd video IF's are not controlled by AGC, and their gain will be maximum. With a strong signal, enough negitive voltage will be developed across video detector load resistor R319 to drive the video mplifier V306 to cut-off.
This trouble can be identified by either a weak picture with loss of horizontal and vertical sync, or no picture at all. In most cases, the picure may be observed faintly by furning up the brightness and contras controls. In any case, vertical and horizontal synchronization will be impossible.
If this condition appears, remove the $12 A U 7$ (V403) tube. If the picture appears with brightness and contrast restored, but will still not sync ither vertically or horizontally, replace $\mathbf{C} 437$ with a .05 mfd. 600 volt condenser, part number 64B5-7.

T. R436 DECREASED IN VALUE TO IMPROVE HORIZONTAL OSCILLATOR STABILITY

Chassis with this range stampedrun "18' or higher. Load resistor R436 was changed from a 270,000 ohm, $1 / 2$ watt resistor to a 240,000 ohm, $1 / 2$ watt, 5\% resistor (part number 60B7-244),
R436 was changed to compensate for any increase in its resistance value that may occur during use of the receiver. If R436 does increase in value, horizontal sync will be affected, and a split-framed picture may result.
A check can easily be made with an ohmeter. When replacing R436, use part number 60B7-244.
U. AM PEAKING COIL L. 606 CHANGED TO PREVENT EXCESSIVE REGENERATION IN 4K1, 4JI RADIO TUNER

Peaking ceil L606 was changed in value from 475 microhenrys to 120 microhenrys. The new part number is 73A5-10. The early peaking coil is coded with a blue dot and the new peaking coil is coded with a black dot.
L606 is used to obtain positive feedback and eliminate the grid loading which is inherent in a triode mixer. This results in an increase in conwhichresulted from an increase in value of loading resistor R605 beyond its specified tolerance. This difficulty con be idetified by "mos bert ing" "or "whistling"" at the center of the band, when the AM-FM switch ing" or "whistling" at the center of the band, when the AM-FM switch is on AM, and the loop antenna is connected. If the converter is oscilio-
ting at the center of the band, place your hand across the loop antenna If the oscillations stop, replace L606 and damping resistor with the new part.

If oscillations are present when the new type peaking coil is used, it is possible that the trouble is caused by the first AM IF transformer T604. In some instances the silver mica condensers in T604 haver T604 (part number 72892) will remedy the trouble.
V. CHANGE IN LENGTH OF 300 OHM LINE FROM ANTENNA TO TUNER WHEN BIULT-IN "ROTO-SCOPE' ANTENNA IS USED

FOR 20A1, 20BI CHASSIS: In these chassis, the length of antenna twin lead (300 ohm) connected from the antenna terminals to the TV Tuner (94 C 18 -1), has been shortened from 18 inches (in early sets) to 13 inch(in later sets)
FOR 2IA1 CHASSIS: In these chassis, the length of the antenna lead has been shortened as much as possible (between 4 and 5 inches). This change was made to increase the signal pickup on the high channels IN SETS USING THE BUILT-IN ROTO-SCOPE ANTENNA. When necessary to make this change in a set having the built-in Roto-Scope antenna, unsolder the antenna lead from the antenna terminals and shorten as described above. Then resolder the lead to the antenna terminals.

W. BREAKDOWN OF C3II

Condenser C311 was changed from. 05 mfd ., 400 volts condenser to a .05 mfd., 600 volts condenser (part number $6485-7$)
A voltage divider netwerk consisting of R323 and R324, supplies the proper bias voltage for the picture tube (V307). If C311 shorts, the total oltage is applied to the picture tube cathode, and the picture tube will be cut off. The symptom of this trouble would be: no raster, sound OK.
X. UNGROUNDED STATOR PLATE FOR SHARP TUNING CONDENSER CIII CHANGED TO MINIMIZE FREQUENCY DRIFT

A ceramic ungrounded stator plate was added to late production 94C18-1 Tuners. This new type stator plate is also used in the 94C18-2 Tuner as M 118 . Use of this stator minimizes frequency drift

Y. COUPLING CONDENSER (C214) ADDED TO ELIMINATE NOISE IN VOLUME CONTROL

A coupling condenser (C214, . 05 mfd , 400 volts, part No. $64 \mathrm{B5}-22$) was connected in series between junction of de-emphas is network (R207 ond C204) and terminal of volume control R212A. Addition of this condenser blocks direct current into the volume control, thereby avoiding nolse with rotation of volume control.

Z. VERTICAL OUTPUT TRANSFORMER T402 Lead length changed

Lead length of vertical output transformer T402 has been increased to make this new part (part number 79B24-1) a universal replacement for the 20A1, 20B1 and 20X1 television chassis.

CHANGE IN AMPERAGE OF LINE FUSE M313

A 3-amperage fuse F313 was added in late production sets (see product ion change " M '). The amperage of this fuse M313 has since been in creased from 3 amperes, 250 volts (part number 84A1-14) to 4 amper es, 250 volts (part number 84A1-18) to avoid burning out of fuse due to possible momentary increase in current drain.

HORIZONTAL OUTPUT CIRCUIT FOR 16' SETS (2IAI CHASSIS) WITH ROUNDED.END PICTURE WINDOW

Chassis with this change stamped run " 19 " or higher. Greater sweep width is required for $16^{\prime \prime}$ sets using a rounded-end picture tube window. The schematic insert in figure 85 indicates the horizontal output and 2 nd anode supply circuits used in these sets. Cabinet parts also differ as indicated in the parts list for models 25A15, 25A16 and 25A17

VOLTAGE CHARTS

To operate the television chassis with the Radio Tuner disconnected a jumper must be inserted into the power supply socket (M514) to com plete the heater circuit. See adjoining illustration. A special adapter plug is available from the Admiral Distributor under part number 89A31.

Line voltage, 117 volts $A C$
Antenna disconnected from receiver.
Contrast and focus control set fully counter-clockwise, all other front chassis controls set at approximately half rotation
All rear chassis controls except HOR. LOCK. HOR. LIN. and WIDTH controls, set at approximately half rotation: Do not disturb HOR. LOCK. HOR. LIN. or WIDTH controls settings.
Channel selector set on an unused low channel (preferable channel 2). Some tube socket terminals are used as tie-points and a voltage reading may be present.
Voltage measured with a vacuum tube voltmeter, between tube socket terminals and chassis, unless otherwise indicated. Measure heater voltages between tube socket terminals.

CAUTION

Pulsed high voltages are present on the cap of 6BG6G tube, ond on the filament terminals and cap of 1B3/8016 tube. No attempt shauld be made to take measurements fram these paints unless suitable tes equipment is available.

Picture tube 2 nd anode voltage can be measured at the high voltage cap of picture tube and should be taken only with a high voltage instrumen such as a kilovoltmeter. Voltage for 2 nd anode of $10^{\prime \prime}$ or $12^{\prime \prime}$ tube is approximately 9 KV ., for $16^{\prime \prime}$ tubes, 12KV. Proper filament voltage check 1B3/8016 thbe may be made by abserving filament brilliasay as com pared with that abtained with a 1.5 volt dry cell battery.

OPERATING TELEVISION CHASSIS OR RADIO TUNER CHASSIS WITH EITHER UNIT DISCONNECTED FROM POWER SUPPLY

In combination models, the Radio Tuner and Television chassis cannot be operated with either unit disconnected from power supply, unless interconnecting circuits are completed.
To operate the television chassis with the Radio Tuner disconnected, o iumper is inserted into the power supply socket (M514) to complete the heater circuit. See figure " A ". A special adapter plug is available from the Admiral Distributor under part number 89A31.

To operate the Radio Tuner chassis with the television chassis discon nected, an AC line cord must be wired to plug M515 to supply line voltage. See figure "B". A special adapter socket and line cord is available from the Admiral Distributor under part number 89A30.

In order to use the special adapter illustrated to operate the radio tune without the television set, be sure that the band switch is in the "Radio" position. This adapter will not suffice to check the phonograph, since plate voltage is not supplied to the audio amplifier and output tubes when the band switch is in the "Phono" position.

20A1, 20B1, 21A1, 4J1, 4K1

VOLTAGE CHART FOR 4 TUBE POWER SUPPLY (TELEVISION ONLY SETS) See previous page for conditions for taking measurements											
Sym.	Tube	Function	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Remarks
V501	6597	Audio Amp.	0	-. 7	0	NC	NC	78	6.3 AC	0	
v502	6v6GT	Audio Output	nc	6.3 AC	$\begin{gathered} 25.5 \\ \text { (c) } 205 \end{gathered}$	$\left\|\begin{array}{c} 26.5 \\ \text { (c) } 222 \end{array}\right\|$. 2	NC	0	$\begin{array}{\|c\|c\|} \hline 12 \\ \hline \end{array}$	
v503	6×567	I.V. Rectifier	nc	6.3 AC	160 AC	NC	160 AC	nc	0	160	
$\checkmark 504$	5046	H.V. Rectifier	NC	380	NC	375 AC	NC	375 AC ,	NC	380	Pin 2 to pin 8: 5v. Ac.
(c) Indicates voltage for 21 Al chassis. NC Indicates no connection to tube element.											

NOTE: Heater of 6X5GT (V516) disconnected unless "Tel.Phono-Radio" switch on Radio Tuner is in the "Tel" position.

VOLTAGE CHART FOR 4J1 AND 4KI AM-FM RADIO TUNER

- Line voltage 117 volts AC.
- Voltages measurcd with a vacuum tube voltmeter, between uabe
terminals and chassis. Heater voltages on the 4K1 Radio Tuner terminals and chassis. Heater voltagge
must be made ACROSS the heater.
- Voltages measured with band switch on FM position, unless otherwise ind
is siguificant.
- "Tel.Phono-Rad" switch in "Rad" position
- Volume control set at minimum.
- Dial turned to low frequency end.
- Antennas disconnected.

Sym.	Tube	Function	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Remarks
V601	$12 \mathrm{AT7}$	Converter and Oscillator	198	$\begin{array}{\|l\|} \hline-6 \\ -20 \mathrm{AM} \\ \hline \end{array}$	0	0	0	$\begin{aligned} & 209 \mathrm{FM} \\ & 245 \mathrm{AM} \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \mathrm{FM} \\ 3.2 \mathrm{AM} \end{array}$	3	6.3 AC	
v602	6вA6	1st IF Amp.	-1	0	0	6.3 AC	240	90	0			
v603	6BA6	$\begin{array}{\|l\|} \hline F M \\ \text { And } \\ \text { And } \\ \text { 2nd } \\ \hline \end{array}$	-1	0	0	6.3 AC	$\begin{array}{r} 215 \mathrm{FM} \\ 0 \mathrm{AM} \end{array}$	$\begin{aligned} & 92 \mathrm{FM} \\ & 0 \mathrm{OM} \end{aligned}$	0			
v604	$6 \mathrm{AL5}$	Ratio Det.	. 2	-. 2	6.3 AC	0	0	0	0			

20A1, 20B1, 21A1, 4J1, 4K1

NOTE: V403 is 6AU6 in early sets, $12 A U 7$ in later sels. See figures 85 and 87 . Figure 81. Television Chassis, Bottom View Showing Tube Locations.

NOTE: V403 is 6 AU6 in early sets, 12 AU7 in later sets. See figures 85 and 87 Figure 82. Television Chassis, Top View Showing Tube Location

20at, 20bi, and 21al television chassis voltage chart											
Sym.	Tube	Function	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin6	Pin 7	Pin 8	Remerks
v401	6SMret	$\underbrace{\substack{\text { Vese. } \\ \text { sync. } \\ \text { Inv. } \\ \text { Ind }}}_{\text {Vort. }}$	-55	200	0	(i) $\begin{gathered}(0))^{2} \\ (0)-8\end{gathered}$		${ }_{\text {l }}^{(8))_{1}}$	6.3 Ac	-	
v402	EkGgt	vert. output	nc	0	325	325	-. 5	$\begin{aligned} & 38 \\ & \text { (c) } 20 \end{aligned}$	b.3 Ac	$\text { (c) } 50$	
v403	6NU6	Syme Sep.	-1	0	6.3 Ac	\bigcirc	150	60	0		
	22NV	Sync Sep. and Clipper	270	152	185	6.3ac	3.3AC	${ }_{16,75}^{65}$	-. 6	-	Pial 9: Zero volts.
v404	6nL5	Hor. Syme Disc.	(a). ${ }_{\text {a }}$	$\begin{aligned} & (a)=2 \\ & (0)=-4 \end{aligned}$	0	${ }^{6.3} \mathrm{Ac}$	${ }_{\text {(a) }}^{(0)}$. ${ }^{\text {b }}$	0	${ }_{\text {che }}^{(8)-3}$		
${ }^{*} 405$	6sN7CT	Hor. Ose.	. 9	255	9.5	-4.3	100	9.5	6.3ac	0	
v408.	68666	Hor. Output	nc	-	9	nc	$\begin{gathered} \begin{array}{c} -16 \\ (0)^{-6}-6 \end{array} \end{gathered}$	Nс	6.3 ac	$\underset{\substack{245 \\ c \in 1270}}{\substack{2}}$	Cap: See "Caution"
$\begin{array}{\|l\|l\|} \hline 0.007 \\ \text { and } \\ \text { v440 } \end{array}$	28367	Rectifier	See "crutron doite above on 1836t/8016 voltages.								
v408	6 m 4 T	Damper	nc	nc	420	nc	360		6.3ac	nc	
v307		Picture Iube ages taken at plo	cture is	lue soc	nc	Hoved	$\begin{gathered} \text { room } \\ \text { rob } \\ \text { lobe } \end{gathered}$	$\begin{gathered} \text { Hoc } \\ \text { For } 2 n \end{gathered}$	2nd and ande	$\underset{\text { de, see see }}{\substack{\text { nc }}}$	

20al, 20bi, and 21al television chassis voltage chart											
5ym.	Tube	Function	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Remark
v101 6	6acs	RE Amp.	-. 3	0	6.3 Ac	0	150	150	0		Point -w' (Fig. 27)
(e)											${ }^{-4}$ volits measured with
v201 6	EANL^{6}	${ }^{1 s t}$ Sound IF	0	0	\|6.3AC	0	80	80	. 9		
v202	6ave	2nd Sound IF	0	0	6.3Ac	0	145	145	2.4		
v203	6AL5	Ratio Det.	0	0	5 Ac	0	. 3	0	0		
v301 6	6AV6	1st Video 1 IF	-1.5	0	6.3 Ac	0	140	140	. 6		
v302	6016	2nd Video IF	-1.5	0	6.3Ac	0	140	140	. 6		
v303	Gave	3rd Video IF	0	0	6.3AC	0	142	142	1.3		
v304	6aL5	Video det.	0	0	6.3 Ac	0	0	0	-. 4		
		vid. Det \& Lim.	0	-3	6.3ac	0	\bigcirc	\bigcirc	-. 4		
v305	6ave	acc	(1) $\begin{aligned} & \text { (1) } 1235 \\ & \text { (b) } 155\end{aligned}$	${ }^{\text {a }}$ (a) 145	${ }^{6.3 \mathrm{Ac}}$	0	${ }_{\substack{\text { P.top. } \\ \text { P20\% }}}^{\text {a }}$				
v306	6 6ac7	video Amp.	0	0	。	${ }^{-1}$	(1)(a) (0) 0		6.3 ac	\| \mid [1) 120	

Production Change "Y" $\begin{gathered}\text { Blates that } \\ \text { the }\end{gathered}$

20al, 20bi, and 21al television chasis voltage chart											
5 ym .	Tuso	Function	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Remotks
v401	6Sn7ct		-55	200	0		${ }_{\text {a }}^{(191135}$	${ }_{(6) 5}(8)$	6.3 Ac	0	
v402	6к6ct	vert. output	nc	-	325	325	-. 5	$\prod_{(c) 20}^{38}$	6.3 ac	$\text { (c) } 50$	
v403	6 AU6	Sync Sep.	-1	0	6.3Ac	0	150	60	0		
	$12 \mathrm{NU7}$	Sync Sep. and Clipper	270	152	185	6.3 ac	5.3ac	(c, ${ }_{\text {, }}^{65}$	-. 6	0	Pi.i 9: zero volts.
v404	6aL5	Hor. Sync Dise.	(a) ${ }_{\text {b }}$	${ }_{\text {che }}^{(a) 1.2}$	0	. 3 ac		0			
v605	65M76:	Hor. 0sc.	. 9	255	9.5	-4.5	100	9.5	6.3ac	0	
v608	68666	Hor. Out put	nc	0	9	nc	(c)(c) $(1)^{-16}$	nc	6.3 Ac	$\begin{array}{\|l\|} \hline 245, \\ \hline(c) 270 \\ \hline \end{array}$	Cap: See Caution note above.
	1836 T	Rectirier	See "chution- dote atove oill $1836 \mathrm{~T} / 8016$ voltages.								
v 608	61667	Damper	wc	nc	420	nc	360	нс	6.3 Ac	nc	
v307		Pleture Tube ages raken at pic	$\text { ture } 0$	wo		noved tr	$\begin{aligned} & 10 \text { nco } \\ & \text { roi } \\ & \text { lubob } \end{aligned}$		$\frac{1}{2 n c} \text { nc }$	$\underset{d e . ~}{\text { dec }}$	

2nd. ANODE SUPPLY, DEFLECTION YOKE, and AC INTERLOCK CIRCUIT USED in 16 "(21AI) SETS

Figure 87. Schematic for 20A1, 20B1, 21A1 Television Chassis with 6AU6 Sync Separator. (For sets with 12AU7 Sync Separator, refer to Figure 85.)

Figure 88. Schematic for 4 וJadio Tuner Chassis and 20A1, 20B1, 21A1 Television Chassis with 6AU6 Sync Separator.
Chassis having 6AU6 Sync Seporator and Clipper are rubber-stamped with run number "15" or lower at reor of television chassis.
(For sets with 12AUT Sync Separator, or 4K1 Rodio Tuner, refer to figure 85 or 86.)

PRODUCTION CHANGES

At the start of production, chassis were not stamped with a run number. At the start of production, chassis, were not stamped with a run number stamped 'Run 12". Final production 20X1 chassis were stamped "Run 13".
Production changes are coded Run 2, Run 3, etc., as given in the headings below. All chassis stamped with any particular run number or any higher run number, have the change discussed under that particular run number heading as well as all preceding changes.
Note that numerical symbols (2), (3), (4) etc., on schematic are run numbers.

RUN 2
TOLERANCE OF R211 CHANGED TO INSURE PROPER BIAS ON 6AS5 OUND OUTPUT TUBE. Resistor R211 was changed from 820,000 ohms 10%, $1 / 2$ watt to 820,000 ohms $5 \%, 1 / 2$ watt (part number $60 \mathrm{~B} 20-821$). When replacing, use the late production part.

RUN 3

MODIFICATION OF VIDEO AMPLIFIER TO DECREASE AUDIO "BUZZ". In early sets, the control grid of video amplifier V305 was connected to the junction of series peaking coil L301 and shunt peaking coil L302. Also, the cathode of V305 was returned to ground through a 15,000 ohm resistor.
In later sets, this resistor was removed, and coupling condenser C321 (. $1 \mathrm{mfd}, 200$ volt, part number 64B5-30) was added to the circuit. Resistor R328 (1.2 megohms, $1 / 2$ watt, port number 60B8-125) was added to provide grid leak bias to the tube.

RUN 4

R425 INCREASED IN VALUE TO IMPROVE HORIZONTAL STABILIZA. TION. Resistor R425, which is common to both the horizontal oscillator V403B and horizontal oscillator control tube V403A, was 150,000 ohms. It was changed to a 220,000 ohm resistor, $1 / 2$ watt (part No. 60B8-224). When replacing this resistor, use the late production part.

RUN 5
V204 FILTER NETWORK CHANGED TO DECREASE "HUM". In some sets, the decoupling filter network connected to the sound output tube (V204) plate supply was connected as shown in Figure 42 below. This network consisted of two sections (C209A and C209B) of a four section electrolytic and a single electrolytic (C211).
Other early sets, used different combinations of filter condensers but they were wired as shown in the schematic.
In late sets, the four section electrolytic (C209) was replaced by a three section electrolytic (C209A, C209C, C209D) part number 67C15-11, and one section of a dual electrolytic (C213B), part number 67C15-52. The other halfof the dual electrolytic was used to replace the single electrolytic (C211). See schematic.

RUN 6

MODIFICATION OF VERTICAL OSCILLATOR CIRCUIT V204A In early sets, a 6.8 megohm resistor was connected from the plate (pin 1 of the vertical oscillator (V204A) to the control arm of the vertical hold control R432B. Also, a $\mathbf{1 0 0 , 0 0 0}$ ohm resistor was connected in series with R412 and R432B to ground. Both the 6.8 megohm resistor and the 100,000 ohm resistor were removed from the circuit.

RUN 7

VERTICAL OSCILLATOR PLATE VOLTAGE CHANGED TO Improve HEIGHT AND LINEARITY.'Boot Strap" voltage supplies the vertical oscillator with plate voltage in early production 20X1 chassis and all 20 Yl chassis. In late production 20X1 chassis, the vertical oscillator plate voltage is supplied directly through the focus coil L404 (approximately 340 volts). In some 20X1 chassis, load resistor R416 is 2.7 megohms. If vertical lineary or height is poor in these 20X1 chassis, try replacing R416 with the 2.2 megohm resistor (part number 60B8-225).
VOLTAGE RATING OF C423 INCREASED. Decoupling condenser C423 was changed from a .05 mfd , 400 volts, condenser to a $.05 \mathrm{mfd}, 600$ volts condenser (part number 64B5-7. When replacing C423, be sure to usa ate production part.

RUN 8

COUPLING CONDENSER ADDED TO IMPROVE AUDIO. A coupling ondenser (C214, $.05 \mathrm{mfd}, 400$ volts, part number 64B5-22) was added between the de-emphasis network (R206 and C206) and volume control R207A. This results in removing direct current from the volume control 207A.
FOCUS CIRCUIT MODIFIED. If replacing components in focus circuit, see "Run 10 in 20Y1-Run 11 in 20X1."

RUN 9 IN 2OY1 - RUN 10 IN 20XI
LOCATION OF FUSE (M4OI) C' 1 ANGED. In early sets, the second anode supply pig-tail fuse M 401 ($1 / 4 \mathrm{amp} ., 250$ volts, part number 84 A 7 -1) is socated at the under-side of the chassis. In late sets, the fuse is mounted on a terminal board inside the second anode supply housing near the rear.

FOCUS CIRCUIT MODIFIED. If replacing components in focus circuits see "Run 10 in 20Y1-Run 11 in 20X1".

$$
\text { RUN } 10 \text { IN 20Y1 - RUN } 11 \text { IN 20XI }
$$

FOCUS CIRCUIT MODIFIED. See schematic. In early sets, the focus control (R207B) was 1,500 ohms. In the se sets, R448 and R449, shown in dotted lines on the schematic, were NOT used.
In later sets, resistors R448 (150 ohms, 1 watt, pat number 60814-151) and R449 (750 ohms, 7.5 watt, part number 61 11.-17) were added as shown by dotted lines on the schematic. Note: In some of these sets, R449 (750 ohms) and R446 (750 ohms) were replaced by a 1,500 ohm resistor. In latest sets, the focus control was changed from 1,500 ohms, 2 watt to 1,350 ohms, 4 wart, port number 75612-5. When this focus control is use
R448 and R449 are NOT used.

If it is necessary to replace a focus control in any set, it is advisable to use the latest type focus control (part number 75B 12-5) and the lates circuit (does not include R449 and R448).

RUN 11 IN 20Y1 - RUN 12 IN 20XI
PICTURE POSITIONING LEVER ADDED TO SIMPLIFY FOCUS COIL ADJUSTMENT. In early sets, the focus coil is adjustable by means of its four mounting screws. Focus coil adjustment required removal of cab inet back.
In late sets, a new type of deflection yoke and focus coil mounting arrangement is used. This allows the focus coil adjustment to be made, with out removing the cabinet back, by means of the "picture positioning lever" which extends from the rear of the set through the cabinet back. For part numbers of early type focus coil and mounting parts, see 'Picture Tube Mounting Parts for Sets WITHOUT Picture Positioning Lever' parts, see "Pi For part numbers of the late type focus coil and mouning ing Lever" in parts list.

$$
\text { RUN } 12 \text { IN } 20 Y 1 \text { - RUN } 13 \text { IN 20XI }
$$

TUBE SHIELD ADDED TO ELIMINATE RF INTERFERENCE ON CHAN NEL 4. A tube shield (part number 87A7-7), and tube shield base (part number 8747.6) were added to the Ratio Detector V202 (6AL5) stage. This was done to eliminate harmonic interference of the 4.5 MC IF sound signal when the channel selector is on channel 4. If a herringbone pattern or other type of harmonic interference is apparent on channel 4, check fo cause of this condition by removing the ratio detector tube V202 (6AL5). If the interference stops, try re-routing the antenna leads. If this does not help, it will be necessary to install a tube shield.
CONDENSER C314 CHANGED TO MINIMIZE BREAKDOWN. Decoupling condenser C314 was changed from a .005 mid disc coramic condenser to a $.01 \mathrm{mfd}, 600$ volt paper condenser (part number 64B5-10).
CONDENSER C316 CHANGED TO IMPROVE SYNC STABILITY. Condenser C316 was changed from a $\mathbf{1 2 0} \mathbf{m m f d}$ condenser to a $\mathbf{2 5 0} \mathrm{mmf}$ enser (part number 65B6-5). This resulted in increased syn stability.
CONDENSER C432 ADDED TO $20 Y 1$ CHASSIS TO INCREASE SWEEP WIDTH. Condenser C432 (. $035 \mathrm{mfd}, 600$ volts, part number 64 A 2.5) was added across width control L403 to increase sweep width in 20 Y 1 chas sis only.

AC OUTLET ADDED TO POWER SUPPLY FOR 4LI RADIO
An AC outlet was added to one end of the IPAI power supply used with the 4LI AM radio in combination models. Plug the television line cord into the $A C$ outlet on the power supply and plug the power supply line into the wall socket.

ALTERNATE C501 FILTER CONDENSERS

In some sets, filter condenser C501 (a three section electrolytic 40 mfd $40 \mathrm{mfd}, 80 \mathrm{mfd}$, part number $67 \mathrm{C} 15-10$) is replaced with two dual 40 mfd condensers. In place of the 80 mfd . section (C501A), the sections of one of the dual 40 mfd . condensers are connected in parallel, and mounted underneath the chassis. If a section of these alternate condensers becomes defective, replace C 501 as shown on schematic with the three section electrolytic.

AL TERNATE DEFLECTION YOKE T403

Some early sets used deflection yokes $94 \mathrm{~B} 2-1$ and $94 \mathrm{~B} 2-2$ alternately. The only difference between these yokes is in the size of C429; it is 56 mmfd ., in 94B2-1 and 39 mmfd ., in 94B2-2
Two new alternate deflection yokes are currently used; part number $94 \mathrm{~B} 24-1$ and $94 \mathrm{~B} 24-2$. C429 is 56 mmfd . in part number 94B24-1, and 39 mmfd . in part number 94B24-2. Yoke 94B24-2 (supplied under part No. A3044) can be used for all replacements; only this yoke is listed in the parts list.

HORIZONTAL OUTPUT TRANSFORMER T405 CHANGED
Horizontal output transformer T405 was stamped 79C23-3 in early production sets, and 79C28-1 in late production sets. Late production transformers include the transformer mounting bracket, while early production did not. However, they are otherwise interchangeable. When replacing, order late production transformer, part number $79 \mathrm{C} 28-1$.

CORONA RING

Late production sets have a corona ring (part number 19A62) located below tube contacts of Y405 (1X2) 2nd anode rectifier.

TV PRODUCTION CHANGES 20Z1, 5B2, 4SI

RUN NUMBERS

A system of run numbers is used for the television chassis. The run number is rubber stamped on the rear of the chassis. Whenever a production change is made in the television chassis, the run number changes to the next higher number. Final production 20Z1 chassis were stamped Run 7.

RUN

Pilot light socket added to TV chassis. A two contact wafer socket (part number 88A5-6) was added to all TV chassis. This socket is used in combination models only. The pilot light connector plugs into this socket.

Resistor R454 (270,000 ohms) added to meet UL requirement. Resisto R454 (270,000 ohms, I wott, part number 60B14-274) is connected from power transformer connection on volume control switch (SW501) to chas sis ground. Addition of this resistor eliminates possible shock hazard should the 2nd anode connector lead come in contact with earth. Resistor R444 changed from 470,000 ohms to 1 megohm to meet UL re quirement. Resistor R444 was changed from 470,000 ohms, to 1 megohm, 1 watt (part number 60B23-33). Resistor R444 (connected across terminals 7 and 9 of 1X2 tube socket) was changed in order to avoid possible corona discharge. Important: Order exact replacement from Admiral
Distributor, or use replacement resistor bearing "Speer" brand name.

RUN 4

C425 changed to improve horizontal linearity. C425 was changed from .05 mfd . to .1 mfd . (part number 64B5-5) to improve horizontal linearity.

RUN 5

R319 wottage rating increased. In early sets, R319 (video amplifie plate load resistor) was 5600 ohms, 1 watt. In later sets R319 was chan ged to 5600 ohm, 2 watt resistor (number 60B20-562) or two 12,000 ohm 1 watt resistors (number 60B14-123) in parallel.

RUN 6

Modification of sound IF amplifier V201 (6AU6) to reduce sync buzz. In early sets a 120 mmfd . condenser (C202) was connected between L20 and pin 1 of V201 and 1 megohm resistor (R201) was connected betwee pin 1 of V 201 and ground. See schematic inset for this early circuit In later sets the 120 mmfd , condenser (C202) was replaced with a short length of wire, and the 1 megohm resistor (R201) was omitted. A 82 ohm, $1 / 2$ watt resistor R214 (part number 60B28-31) is added; it is connected between pin 7 of V201 and ground.
When making this modification to an early receiver, it is important that the sound IF stages be realigned.

RUN 7 in 20Z1 CHASSIS

Adiacent Lower Channel Sound Trap (L308, C322) Added. Later production sets have an Adjacent Lower Channel Sound Trap added bewreen the connector lug (terminal of C115) on the TV tuner and pin 1 of of L308 and C322. The trap is pretuned to 27.25 MC.

Figure 82. Bottom of Chas sis Showing Trap Location.

This trap will eliminate herringbone interference pattern produced by the sound carrier of the adjacent lower channel. Close examination of this ype of interference will reveal that the fine lines of the herringbone pattern will vary in accordance with the speech or music on the adjacent lower channel.
Since FM interference from other sources will also produce a herringbone pattern, the presence of a station on the adjacent lower channel號 definitely determined before installing the trap. After installing the trap realign slug A4 (mixer plate coil L105)

TV CHASSIS NOTES
The 20 Zl television chassis is similar to the 20X1, 20Y1 television chassis. The circuit for the first production 2021 chassis is almost identical to the circuit of latest production 20X1,20Y1 chassis. The main difference between the 20 Y and 202 I chassis are the front panel perating controls. In the $20 Z 1$ chassis, the "Brightness," "Vertical," "Horizontal," "Focus" controls are single potentiometers which are concealed behind the small door in front of the receiver. The "Picture" called "Contrast" in 20Y1) and "Off-Volume" are a dual control. In the 2021 chassis, the individual channel oscillotor slugs can be eached through the $1 / 4$ " hole in the control escutcheon by merely removing the "Tuning" and "Channel" knobs.
Television only models use an electrodynamic speaker (part number $78 \mathrm{B50}-1,78 \mathrm{B51-1}$ or $78 \mathrm{B54}-1$), with a field coil (100 ohms) and output transformer.

SERVICING TV SEPARATELY

Combination models with the 5B2 (FM-AM) radio, use a PM speaker (part number 78B44-3) and separate filter choke and two output transformers (located on the 2PA1 radio power supply). In order to operate the television chassis with the 5B2 (FM-AM) radio and power supply disconected, 1 will be necessary put transtormer similar to that used in relevision only models, or to Combination models with 451 (AM) radio use a PM speaker (part number 78C53-1) and two output transformers. In these sets the filter choke and one output transformer (used on TV operation) are part of the PM speaker The other output transtormer (for radio operation) is located on the radio AM) The 4s 1 ped x in
an operated indepen dently of the TV chassis.

HIGH VOLTAGE WARNING

Operation of the set outside of the cabinet or with the cabinet back removed involves shock hazard. Exercise normal high voltage precautions. High voltages are present throughout the horizontal output and second anode supply circuit. No attempt should be made to make measurements from these points with ordinary test equipment.
Very carefully follow instructions given in this manual regarding location of test points for alignment, for taking voltage measurements, or in making oscillos cope wave-form analysis. Do not connect test equipment across other points in the receiver unless you are thoroughly familiar with the circuit wiring and points at which high voltages are present.

Figure 75. Bottom View of Trlevision Chassis Showing Tube Locations.

Figure 76. Top View of Television Chassis Showing Tube Locationa.

VOLTAGE DATA

For B+ voltage distribution differences between late 20X1 chassis, and voluage distribution differences between late
early $20 X 1$ and all $20 Y 1$ chassis, see figure 43

- Line voltage 117 volts AC.
- Voltages measured with a vacuum tube voltmeter between tube

Antenna disconnected from set with terminals shorted.
- Speaker must be connected while taking voluages.
- Contrast turned fully clockwire. Channel Selector set on an unuse rotation.
- Rear chasais controls should not be disturbed unless otherwise
indicated.
- Some tube socket terminals (not connected to tube elements)
are used as tie-points and a voltage reading may be present. CAUTION
Pulsed high voltages are present on the cap of 6 BG 6 G tube
and on the Glament terminals and cap of the IX tube. NO ATTEMPT SHOULD BE MADE TO TAKE MEASUREMENTS
FROM THESE POINTS UNLESS SUITABLE TEST EQUIP. FROM THESE POINTS
MENT IS AVALABLE.
Picture tube 2nd anode
MENT IS AVALABLE.
Picture tube 2nd anode voltage can be measured at the high
voltage cap of picture tube and should be taken only with voltage cap of picture tube and should be taken only with a
high voltage insirument such as a kivooltmeter. Voltage for 2nd
anode is approximately anode is approximatelly 9 KV Proper flimenent. voltage check of
IX2 tube may be made by observing filament brilliancy as com. IX2 tube may be made by observing filament brilliancy
pared with that obtained with a 1.5 volt dry cell battery.

Sym.	Tub*		unotion	Pin 1	Pin 2	Pin 3	P1n 4	Pin 5	Pin 6	Pin 7	Pin 8	P1n 9
V101	6 6ab	RF Amplifi	Hor	-. 1	нc	6.3 AC	0	130	130	0		
$\checkmark 102$	8J6	Ono. 4 Mx	xor	130	130	6.3 AC	0	0	0	0		
Voltages at V101 and V102 measured from top of ohassis with tubes removed. Point "N" (Fig. 30) is -3 volts moanured with tubes in sookets.												
V201	620]	sound IF	Amp.	-. 6	0	0	6.3 Ac	120	120	0		
V202	6als	Ratio Dote	eotor	. 4	-. 4	0	6.3 AC	-. 2	0	0		
v203	681799	Sound Amp.	pre a Symo Clip.	-1.2	40	0	-1	22	0	6.3 Ac	0	
V204	6185	Sound Outp	put	135	120	0	6.3 AC	120	270	260		
v301	6ave	1et IF Amp.		-. 5	0	0	6.3 AC	120	120	. 9		
v502	6206	2nd IF Amp.		-. 5	0	0	6.3 Ac	120	120	. 6		
vs03	6408	Srd IF Amp		0	0	0	6. 3 AC	130	130	1.5		
v504	6AL5	Vidoo Doto	ootor \& AGC	135	0	6.3 Ac	0	1.5	0	130		
vs05	6206	Vidoo mpl	1ifier	115	130	6.3 Ac	0	230	300	130		
$\checkmark 401$	12007	Syma Amp. a Soparator		60	-4	0	0	0	6	0	6	6.3 c
V402	12007	Vort. Oso. \& Output	$\begin{array}{l\|l} \hline \text { - } & \frac{20 Y 1}{20 \times 1} \\ \hline \end{array}$	$\frac{115}{100}$	-58	0	0	0	590	-14	9	6, 6 c
Voltagos		noasurod at	7402 (12a07) t	On with	vortioa	al linea	Ity and	hoight	ontrol	turned	1190	00 2 ml se .
V403	6887GT	Hor. Osoc. Cont. 4 Hor. Oso.		-22	165	-15\%	-85	200	0	6.3 Ac	0	
7404	6BGGG	Horizontal Output		2	,			-9	nc	6.3 AC	270	
				Voltage on tube oap: See "CAUTION" note above.								
V406	1×2	2nd Anode Reotifior See "CAJTIOS" note above.										
V406	6T4 4 T	Dampor		HC	0	450	${ }_{\text {a }}$	376	wC	6.3 Ac	0	
v501	5046	Low Voltage Reotifier		nc	**400	nc	*400ac	nc	*400ıc	nc	**400	
7306	10BP4	Ploture Tube FIn 10: 410		0	80	nc	yc	nc	NC	1 C	nc	1 c
Fin 10: 410V. Pin 11: 110V. Pin 12: 6.3AC 2nd Anode: Soo "CAUTION" Voltages taken at pioture tube sookot (acokot removed from tube).												

* Measured from top of tube socket with SU4 removed.
* Voltage taken from pin \#1 of speaker connector socket M201. Filament 5.2 volts AC measured between pins 2 and 8 of 5 U4G. NC-IIdicates no connection to ube element.

Figure 77. Schematic For 20X1, 20 Y 1 Television Chassis.

4L1 VOLTAGE DATA

- Readings taken from tube socket terminals to chassis.
- Readings taken from tube socket terminals to chassis. taken on Phono position.
- Measured on 117 volt AC line.
- Volume control minimum; gang closed
- Voltages measured with vacuum tube voltmeter.

Figure 40. Voltage Chart for 4LI Radio.

Figure 39. Radio Trimmer Locations.

REMOVING RADIO OR CHANGER FOR SERVICE
 REMOVING COMPLETE RADIO AND
 RECORD CHANGER ASSEMBLY
 REMOVING RADIO CHASSIS ONLY FOR SERVICING

The complete Radio-Phono unit does not need to be emoved unless the "Tilt-Out mechanism requires repair. eradio tuner can be removed separately as explained The record changer can be removed separately by un crewing the three screws on the top of the changer, unscrewing the three screws on the top of the changer, unchanger out.
If it is necessary to remove the complete Radio and Record Changer assembly, disconnect the power cable and unsolder the radio speaker leads. Disconnect on or the tie-bar spring and one side of the tie-rod from a titlt-out bracket. Hold the radio-phono unit with ne hand while springing each of the four till-out hinge arms away from the sides. As this is done, the four pit from the cabinet
To reinstall, place the radio-phono unit back in the cabinet; spring the tilt-out arms out so that the unit will drop down between them; guide the studs back into their to the tilt-out brackets. Reconnect the power cable and re-solder the speaker leads.

Fisure 35. Radio-Phono Unit.

Figure 36. Radio Tuner Showing Chassis Cover

Oscillator trimmer " E " and antenna trimmer " F " ar accessible from the outside of the radio-phono housing ee figure 35.
The radio tubes can be serviced from top of the chassi merely unscrewing the three screws " P " (figure 35) away the record changer assembly.
o remove the radio chassis for complete alignmen or for servicing the unders
steps " a " through " g " below.
a. Loosen the power supply cable clamp on the underside of the radio-phono housing and on the cabinet or power supply. Disconnect the power supply cable plug from the power supply.
Remove one of the loop antenna mounting screws,
move that side of the loop up so the black and move that side of he loop up so the black and wite
leads to the loop antenna can be unsoldered. Also unsolder the black and white leads connecting to the speaker voice coil terminals.
c. Remove the radio front housing mounting screws " S " (Figure 35) at the sides and at the seams on the Carefully pull the radi.
til ourd ail you can reach in and unplug the phono pickup nd phono motor connector plugs. Then, pull the adio tuner completely forward.
e. Remove the tuning knobs. Position the dial drum as shown in figure 36; unhook spring at " A ", and keep-
f. Remove the six hex-head screws "C" which hold chassis cover and dial scale to chassis.
g. After removing the pilot light brackets and hex nut "D" and "E", the chassis front can be pulled away from the chassis. All trimmers and parts are now ccessible for adjustment or service
h. Reassemble in the same manner.

EXTERNAL RADIO ANTENNA

The radio is provided with a built-in Aero-scope antenna. This antenna eliminates the need for external antenna or ground wires in most locations
The built-in radio (loop) antenna is directional in that better reception of weak or distant stations may be had by slightly rotating the set. In extra noisy locations, the set may be rotated to the position that gives a minimum of noise or other interference
If an external antenna is desired, connect the external antenna lead-in wire (preferably by soldering) to the
terminal lug on the back of the internal loop antenna. The internal loop antenna is mounted on a fibre board which is attached to the back of the radio-phono chassis.
The lead-in should be stapled or tacked to the cabinet rail, being sure to allow enough slack so the lead is not pulled tight when the "Tilt-Out" cabinet door is opened. After connecting the external antenna to the set, reAfter connecting the external antenna to the set, re-
ception of weak or distant stations may further be imception of weak or distant stations may further be im-
proved by readjusting the antenna trimmer located on the loop antenna. Adjust the antenna trimmer for maximum signal while tuned to a weak station, preferably at 1400 or 1500 KC .

Figure 84. Schematic For 5B2 Radio and 2PA1 Power Supply Chassis.

AM-FM RADIO ALIGNMENT

FM ALIGNMENT EQUIPMENT

FM circuits should be aligned only with an AM signal gen erator and a vacuum tube volemeter. Any tandard vacuum tube
voltmeter with a DC scale of not over 5 volts is suitable. A 3 -rolt zero center scale is deasirable. A A signal generator wathe. A fourda
mental frequency range up to 110 MC is desirable. It is posaibl mental frequency range up to 110 MC is desirable. It is posaible
however to olign he receiver with e eignal generator going up to
20 or 30 megacycles, by using the harmonics of these lower
 frequencies. To do this merely set the signal generator dial as
indicated in the next paragraph and align exactly as explained
in the alignent instructions.
Where alignment chart specifies $109 \mathrm{MC}, 106 \mathrm{MC}, 92 \mathrm{MC}$ or
in MC get generato to the higestant available frequency shown
in the column under that trequency

IMPORTANT PRELIMINARY

UVder normal operating conditions or use, misalignment of
 Do not attempt to realign dhe treccauser othil
couses have first been thoroughly investigated.
In FM alignment, it is essential that every step be followed.

Especially important is picking the center of the IF curve (atep
in the FM.IF alignment instructions). During this portion of in the FM-IF alignment instructions). During this portion of arefully it may necessitate having to estimate the dial reading When completely ali When completely aligning the FM circuit, it is essential to
follow the sequence of steps in the chart. If only a portion of
the $F M$ circtin he FM circuit is being aligned, be sure to follow all the remain.
ing steps. AM and $F M$ alignment may be made independently ing steps. AM
of each other.
For oligment of IF slug adjustments, it will be necessary to
disassemble the radio chaseis from the escutcheon and housing and also remove the chassis cover and dial scale assembly. Se
figure 85 . NOTE: AM and FM oscilator and

Figure 85. Radio Chassis With Front Housing Removed
are accessible from top of chasais; disasembly of chasesis cover Disconnect FM antenna from twin lead cable. Stretch twin Rad cable to full length during FM RF R alad cabment.
To avoid spliting the sloted head of iron core tuning slug
in the IF transformers, use a non-metallic alignment tool with may strip.
may strip.
Be sure both the set and the eignal generator are thoroughly
warmed up before starting alignment.

AM ALIGNMENT PROCEDUR

: Connect output meter across speaker voice coil.
Turn receiver Volume control fully on; Tone control fully - Uelative position to the chassis as when in the cabinet.
Use lowest output setting of signal generator that gives a

- Band switch in AM position.

Step	Connect Signal Generator	Dummy Antenna Between Radio and Signal Generator	Signal Generator Frequency	Receiver Dial Setting	Adj. Trimmers in Following Order to Max.
1	Gang condenser antenna stator	${ }^{1} \mathrm{MFD}$	455 KC	Tuning gans wide open	$\begin{aligned} & { }^{*} A^{*} \text { CD (2nd IF (1st IF) } \end{aligned}$
2	"	"	1620 KC	"	E (oscillator)
3	Place generator lead close to loop of set to obtain adequate signal. No actual connection (signal by radiation).		1400 KC	Tune in signal	§F (antenna)

* Adjustments A and C made from underide of chati

C

- AM antenna trimmer adjustment "F" in step 3 should be repeated after set and antenna have been instal
Important: AM antenna trimmer may not peak if antenna leads are not properly routed or separated

5B2 PRODUCTION CHANGES

R640 and C653 added to 582 radio to preven oscillation. In later production 5 B2 radio chassis, R640 in series with the $\mathrm{B}+$ lead going to pin " M " on plug M608. C653 (.1 mfd, 400 volts, part number $64 \mathrm{Bl}-20$) was connected between R640 and the B+ lead to chassis ground. This change was made to prevent oscillation on the low end of the AM band.
Change to reduce level of residual hum. The B+ filter circuit of later 2PAl power supplies has been modified to reduce the level of residual hum (hum heard with the volume control turned fully to left, counter-clock-
wise). Before making this change, check to see that secions of the electrolytic condenser C651 are not defective (leaky or under capacity).
Figure 92 shows section of the old circuit used in the early power supply. Figure 84 shows the later power supply (with this change added).

To add these changes to an early power supply, proceed as follows:

Disconnect wires connecting to junction (tap) of candohm resistor R638, R639. Leave tap unconnected.
Solder together and tape ends of wire which m6is from tap of R638, "̊ Connect a 22,000 ohms, 1 watt resistor (part number 60B14. 223) across terminals f electrolytic conden-
 Figure 92. Circuit Used in Early 2PAl Power Supply.

4S1 RADIO (AM ONLY)

FM IF AND RATIO DETECTOR ALIGNMENT

- Keep VTVM leads well separated from signal generator leads and chassis wiring. - Band switch in FM position. - While peaking IF's, keep reducing signal generator output				so VTVM reading is approximately -1.5 volts DC with exception of Step \#5. FM antenna disconnected during alignment. Trimmer adjustments "G", "H" and "J" made from underside of chassis.	
Step	Connect Signal Generator	Generator Frequency	$\begin{gathered} \text { Receiver } \\ \text { Dial Setting } \end{gathered}$	Output Connections	Adjust (very carefully)
Before proceeding, be sure to follow the instructions given under "Important Preliminary Alignment Steps."					
1	Thru 001 cond. to pin \#1 of 6BA6 2nd IF (Ground to chassis close to tube).	$\ddagger 10.7 \mathrm{MC}$	$\begin{gathered} \text { Tuning } \\ \text { wide open } \end{gathered}$	Connect VTYM (DC probe) from point "Pr" to chassis.	"G" (ratio detector primary) for maximum reading on VTVM.
2	*Thru 001 cond. ${ }^{2}$ pin \#l of 6BA6 lst sis, close to tube).	"	"	"	"H" and "I" (2nd IF trans.) for maximum reading on VTVM.
3	Across ends of FM antenna twin lead.	"	"	"	"J" and "K" (lst IF trans.) for maximum on VTVM. Readjust $G,(\mathbf{H}, 1, \mathrm{~J}, \mathrm{~K}$, for maximum. (Keep reducing generator output o keep VTVM at 1.5 volts.)
4	"	a. Reduce output of signal generator until VTVM reads EXACTLY - $\mathbf{1 . 5}$ volts DC. b. Tune generator frequency above 10.7 MC until VTYM reads EXACTLY - $\mathbf{1 . 0}$ volt. Note EXACT generator frequency. Extreme care in reading this is essential. c. Tune generator frequency below $\mathbf{1 0 . 7} \mathbf{~ M C ~ u n t i l ~ V T V M ~ r e a d s ~ E X A C T L Y ~ - ~} \mathbf{1 . 0}$ volt. Note EXACT generator frequency. Extreme care in reading this is essential. d. Add generator frequency in step c to generator frequency in step \mathbf{b} and divide by 2. The result is the center frequency of the IF curye to be used in step 5 . See ex. ample under heading "Setting Signal Generator to Center of IF Selectivity Curve." e. Tune generator frequency above and below 10.7 MC and note voltage reading on VTVM at different frequency points until you have a good impression of the shape of the selectivity curve. If you have two peaks as in Figures \mathbf{D} or \mathbf{E}, note readof the selectivity curve. If you have two peaks as in Figures D or E , note read- ings (voltage) of both peaks. If one peak is over 20% higher than the other one, it will be necessary to realign IF's. A selectivity curve that would require realignment is illustrated by Figure F.			
5	"	Center of IF gelectivity curver step per ster above.	$\begin{gathered} \text { Tuning } \\ \text { wang } \\ \text { wide open } \end{gathered}$		"L" (ratio detector secondary) VTVM. (The correct zero on is located between a positive and a negative maximum.)

SETTING SIGNAL GENERATOR TO CENTER OF IF SELECTIVITY CURVE
CAUTION: Due to the difficulty of setting a signal gen-
erator to the accuracy required by this operation, exerator to the accuracy required by this operation, ex-
treme care must be exercised in making each setting. Otherwise, improper alitsment of making each setting.
and consequent audio distortion will result. EXAMPLE: (See Figures A and B)
Volage reading in step 4 a is -1.5 volt.
Generator frequency on low side of 10.7 MC for a reading
of -1 volt $\mathrm{DC} \xlongequal{=} 10.640 \mathrm{MC}$. Generator frequency on high side of 10.7 MC for a reading
of -1 volt $\mathrm{DC} ~$ Center frequency is obtained by adding 10.640 and 10.800 ,
then dividing by 2 . For these readings it will be 10.72 MC . Set generator frequency to 10.72 MC as this is center of
selectivity curve as shown in Figure B. Note: Numerical vernier dial readings may be used in-
stead of MC.

TYPICAL SELECTIVITY CURVES

Early Circuit; See RUN 6 Under "Production Changes",

- Rear chassis controls should not be
- Rear chassis controls should
- disurbed unlesp other inse ind
Line voltage 117 volts AC.
tube voltenerer betw with a vacuum

 - Antenna disconncted from set with
ternmal shortc.
Speaker must be connected while
\qquad

notes
 Hemern swer ies

(T) Moon

Figure 83. Schematic For $20 Z 1$ Television Chassis

PRODUCTION CHANGES

Af the start of production, chassis were not stamped with a run number. Production changes are coded RUN 1, RUN 2, etc., as given in the headings below. Run number stamped on chassis indicates that this chassis has the change(s) incorporated which are explained under that particulat run number heading below, as well as all changes (lower run numbers) made prior to that time.

Note that numerical symbols (1), (2), (3), etc., on the schematic indicate pun numbers (production changes) for chassis with round picture tubes. Numerical symbols [1, [2],3] etc., indicate run numbers (production changes) for chassis with rectangular picture tubes.

RUN 1 in 24 H

and
RUN 2 in 24DI, 24El, 24FI, 24G1
Alignment point " 5 " changed. Test jack connector for injection of the 4.5 MC signal as explained in step 10 in the "IF Amplifier and Trap Alignment" was changed from junction of L303, to plate (pin 7) of the video detector V'304. This resulted in a more definite dip at 4.5 MC when aligning the 4.5 MC trap (L-303 and C307).

RUN 1 in 24DI, 24El, 24FI, 24G1
Voltoge rating of C214 increased. Condenser C214 was changed from $0022 \mathrm{mfd}, 600$ volts to a .0022 mfd , 1000 volts (part number 64A2-11) to prevent breakdown.

$$
\text { RUN } 2 \text { in } 24 \mathrm{H}
$$

R322 decreased in value to increase brightness control range. Picture tube brightness range was increased by changing resistor R322 from 100,000 ohms, $1 / 2$ watt to 33,000 ohms, $1 / 2$ watt (part number $6088-333$) With this change, the Brightness control will completely cut off the pic ture tube beam current when the Picture control is advanced all the way.

RUN 3 in 24DI, 24El, 24FI, 24GI
Current limiting resistor (R328) deleted to improve focus. Due to varioCurrent limiting resistor (R328) deleted to improve focus. Due to vario ary to add R328 (22,000 ohms, 2 watt) to some receivers produced before RUN 3. Other receivers did not have this resistor. In a few sets, a compromise resistor of 15,000 ohms was used.
If difficulty in focus is encountered in any chassis (either earlier or later than Run 3), determine if resistor R328 is necessary by checking as follows:
a. Picture will focus only with focus control all the way to the right (clock-wise). Add R328 (22,000 ohms, 5 watt, part number 60B20-223).
b. Picture will focus with focus control all the way to the left (counter-
clockwise). Remove R328. If adding or removing R328 does not help, try changing the 6V6GT audio output tube (V205).

RUN 3 in 24H
Interlock bracket changed. The 2 nd anode housing was changed so that the line cord will pull away from the plug interlock and break the prithe line cord will pull away from the plug interlock and break the pri-
mary circuit of the power transformer when the 2 nd anode housing cover mary cirruit of the power transformer when the
is opened, thus preventing possibility of shock.

24D1, 24E1, 24F1, 24G1, 24H1, 5B2, 5D2 RUN 8 in 24DI, 24FI

Audio amplifier circuit changed. The 6SQ7 audio amplifier previously used (as shown under "Audio Amplifier Clrcuit in Early Sets" at right of schematic) in the 24DI, 24E1, 24FI, 24 GI chassis was deleted and replaced by a 6AU6 tube and circuit as shown on schematic.
R322 decreased in value to increase brightness control range. Picture ube brightness range was increased by changing resistor R322 from 100,000 ohms, $1 / 2$ watt to 33,000 ohms, $1 / 2$ watt (part number 60B8-333). With this change, the Brightness control can be made to campletely cut off the picture tube beam current when the Picture control is advanced all the way.

RUN 4 in 24 HI

and
RUN 5 in 24DI, 24E I, 24FI, 24G
Resistor R448 added to 6CD6 screen grid to reduce parasitics. A 100 ohm, $1 / 2$ watt resistor R448 (part number 60B8-101) was added to the 6CD6 screen grid as shown in schematic to reduce parasitic oscillotions in this clircuit. These oscillations will generally cause a double image with a "wovy" effect.
Do not confuse this condition with the "continual ripple" explained under "Copper Band Added To Power Transformer To Eliminate Plcture Ripple'.

RUN 5 in 24 HI
R503 added to prevent static charge on chassis. A 270,000 ohm, $1 / 2$ watt esistor R503 (part number 60B8-274) was added from one side of the 117 volt $A C$ line to ground to provide a DC return for any static charge that might built up on the chassis.

$$
\text { RUN } 6 \text { in 24DI, 24E1, 24FI, 24G1 }
$$

Interlock bracket changed. The 2nd anode housing was changed so that the line cord will pull away from the plug interlock and break the primary circuit of the power transformer when the 2nd anode housing cover is opened thus preventing possibility of shock.

RUN 7 in 24DI, 24E1

Picture tube and focus coil mounting bracket changed to improve pleture centering. The picture tube and focus coil mounting brackets (top and bottom) were changed to improve picture centering. Early mounting brackets had a tendency to tilt backward slightly, making it difficult to bring the raster down enough to fill the picture window. See parts list for early
and late top and bottom picture tube and focus coil mounting brackets.

$$
\text { RUN } 7 \text { in } 24 \text { FI, } 24 \mathrm{GI}
$$

High voltage compartment changed. The high voltage compartment was changed so that the cover could be removed easily without removing the chassis. This change was only necessary on these chassis due to their mounting arrangement in the cabinet.

RUN 8 in 24E1, 24G1

Jumper wirt added to socket M504 to accommodate 5D2 radio. A jumper wire was added between pins ' M ' and " N ' of socket M504 to supply plate voltage to the extra lead on the 5D2 radio. The 582 radio connecting cable has 8 leads, and the 5D2̆ radio has 9.

R503 added to prevent static charge on chassis. A 270,000 ohm, $1 / 2$ wat resistor R503 (part number 60B8-274) was added from one side of the 117 volt $A C$ line to ground to provide a DC return for any static charge that might build up on the chassis.

RUN 9 in 24 E I, 24G1
R503 added to prevent static charge on chassis. A 270,000 ohm, $1 / 2$ wat resistor R503 (port number 60B8-274) was added from one side of the 117 volt $A C$ line to ground to provide a DC return for any static charge that might build up on the chassis
R504 added to limit jewel light current. A 3.3 ohm, $1 / 2$ watt resistor (part number 60B28-10) was added in series with jewel light M508 to limit current.

> RUN 9 in 24 FI and RUN in in 24 GI

Picture tube and focus coil mounting bracket changed to improve picture centering. The picture tube and focus coil mounting brackets (top and bottom) were changed to improve picture centering. Early mounting brackets have a tendency to tilt backward slightly, making it difficult to bring the raster down enough to fill the pleture window. See parts list for carly and late top and bottom picture tube and focus coll mounting brackets.

> RUN 6 in 24 HI ond RUN 9 in 24 DI RUN 10 in $24 \mathrm{E} 1,24 \mathrm{~F}$ RUN 11 in 24 G 1

Traps added to eliminate possibility of adjacent channel interference. Two adjacent channel traps L309 (27.25 MC) and L310 (19.75 MC) were added between the output of the TV funer and the input of the Ist Video IF amplifier V301 (6AU6). This was done to elliminate the possiblity of sound carrier of the adiacent chal below. sound carrier of the adjacent
This interference might evident if two stations are operating on adjacent channels in the same locality, especially when the wanted station is weaker than the interfering station.
Adjacent channel interference may take elther of these two forms: Adjacent Channel Video Interference. The picture has an interference pattern produced by the video carrier of the adjacent HIGHER channel. Sometimes the interference will appear as a superimposed picture (sta tlonary or moving slowly); at other times it may appear as a number of diagonal lines or as a vertical moving bar.
Adjacent Channel Sound Interference. The picturo has a herringbone In terference pattern produced by the sound carrier of the adjacent LOWER channel. Close examinotion will often reveal that the fine lines of the adjacent lower channel. This can be checked by quickly turning the channel selector to this station.
Since these types of interference effects can be produced by other sources of interference, and also by misalignment of the video IF's and traps

24D1, 24E1, 24F1, 24G1, 24H1, 5B2, 5D2
rouble from these saurces should be checked before deciding traps are equired.
The 19.75 MC trap will remove adjacent channel video interference, and the 27.25 MC trap will remove adjacent channel saund interference A complete Adjacent Channel Trap Assembly (includes L309, L310, C313, C314 and mounting bracket) is supplied under part number A3320, To install the adjacent channel trap assembly, proceed as follows: Fit the legs of the bracket over candenser C426 so that the left mounting foot lines up with the unused hole in the chassis (to the left of C426). See illustration. Secure the left mounting foot to the chassis with a No. -1/" self tapping screw. Spot sol der the other mounting foot to the chas is to save drilling a new hole.
Unsolder L301 from the TV tuner output and solder it to the empty lug Unsolder L301 from the TV funer output and solder it to the empty lug
on the assembly. It may be neccessary to extend the lead on L301 with a on the assembly. It may be neccessary to extend the lead on L301 with a er output lug.
The traps will cause the 25.75 MC marker to mave slightly. This will not nake any noticeable difference in the picture, but slight adiustment (not more than one turn in either direction) of slug A7 (25.3 MC coll) will bring it to its proper location.

Fisure $\begin{gathered}\text { Adjacent Chan Chel Traps. } \\ \text { Ad }\end{gathered}$

COPPER BAND (PAINTED BLACK) ADDED TO POWER TRANSFORMER TO ELIMINATE PICTURE RIPPLE

To reduce 60 cycle pickup, which produced a continual very slowly mov ing "wiggle" or ripple in the picture, a 2-inch copper band (painted lack) was added ta each side of the power tronsformer T501. This condition is only possible in areas where the power source for the station is different than for the receiver. If this difficulty is encountered, try a similar shield on these early transformers, or if necessary, replace with new transformer. All service replacement transformers will have the 2 -in
Note that the power transformer is mounted on top of the chassis in early praduction sets, and is maunted underneath on later production sets.

PICTURE WINDOW GROUNDED TO ELIMINATE

A ground wire and spring clip are used in all but early production sets. with raund picture tubes, to eliminate any static charge that might be present on the picture window, cabinet, ar cantrol escutcheon, which might also result in corona effects.

These early picture windows (part number 23D61 for 16-inch sets and part number $23 E 62$ for 19 -inch sets) can be grounded by connecting ordinary braided shield from the maunting screw an the lower right hand corner af the picture window to chassis.

HORIZONTAL OSCILLATOR CATHODE RESISTOR R430 CHANGED

Resistor R430, which is used for feedback from one section of the horizontal oscillator to the other, was changed in some sets from 1500 ohms to 1600 ohms. It is preferable to have a resistance of 1600 ohms in this circuit, however, in most chassis a resistance of near 1600 ohms was obtained by using 1500 ahms resistors with a positive tolerance. If this resistance is lower than specified, the horizontal linearity will change to a lorge degree with different Horizontal Hald settings.

ARCING FROM 654 TUBE SOCKET TO CHASSIS
In early sets, arcing might occur between pin 9 of the 654 vertical output tube socket and ground. This will cause damage to the sacket and to the 2,200 ohm, 2 wott dropping resistor R417. If this happens, replace the esistor R417 Productian socket, part number 87A25-3. Alsock OK , port number 60B14-222, even though it might check OK with an ohmmeter.

 TUBE (V402) AND AUDIO OUTPUT TUBE (V205)A shield was added between the vertical oscillator tube and audio output tube to prevent possibility of 60 -cycle (vertical repetition rate) pickup in the audio amplifier and audio output section. This shield (part number 15B625) is in all 24 HI chassis, and hales are available on early 24DI, 24E1, 24F1, 24G1 chas sis. Use two No. 8-32 self-tapping screws for mounting the shield.

CHASSIS MOUNTING BOLT SHORT CIRCUITING WIDTH CONTROL T405 in 24DI, 24FI CHASSIS

In early production "television only" madels, the chassis is maunted on a mounting board with $11^{\prime \prime}$ mounting bolts. The mounting bolt near the "Horiz. Width" control might shart circuit the width control, resulting in insufficient width, horizontal non-lineority, and loss of plecture brightness, or no raster at all.
To correct, pull the mounting board four or five inches out of the cabinet to remove the mounting bolt, then place four ar five washers under the bolt head. Late production sets use a shorter bolt.
When installing chassis, do not use a sharp pointed tool for locating this mounting hole, as width control winding might be damoged.

MOUNTING OF C435 CHANGED

In early sets, the 2nd anode filter condenser C435 (500 mmfd ., 20,000 volts, ceramic) used a tapped screw hole maunting at one end and a threaded stud on the other end. In loter sets, C435 uses threaded studs on both ends of the condense

24D1, 24E1, 24F1, 24G1, 24H1, 5B2,5D2

5B2, 5D2 RADIO (AM-FM)

$5 B 2$ and $5 D 2$ differences discussed in "Radio Chassis Notes" on page 3

SWITCHING IN COMBINATION MODELS If the television and radio are turned on at the sam ing In Combination Models" on page 13.

SERVICING RADIO SEPARATELY See discussion near schematic on preceding page. R640 and C653 ADDED TO 5 B2 RADIO TO PREVENT OSCILLATION
In the 5 B 2 radio chassis, R 640 (22 ohms, $1 / 2$ watt, part
$60 \mathrm{~B} 8-220$) was added in $60 \mathrm{~B} 8-220$) was added in series with the B+ lead going to p in 20) was connected between R 640 and the $\mathrm{B}+$ lead to chassis ground. This change was made to prevent oscillation on the low end of the AM band.

SENSITIVITY IMPROVED IN 5D2 RADIO
To improve the sensitivity of the 5D2 radio, the 1st The lst AM-IF transformer (T604) used in early sets, part 72B97 has been replaced with part 72B97-1.
The lst FM-IF transformer (T601) used in early set part 72 B 98 has been replaced with part 72B98-1. To accommodate this change of the IF transformers, C608 condenser has been changed from 40 mmfd (pat $65 \mathrm{Bl}-65$) to 30 mmfd (part 65B1-69) ; R602 has bee changed from 240 ohms $5 \%, 1 / 2$ watt (part 60B7-241)
Important: All changes mentione
be made when replacing early IF above mu with late IF transformers.

REMOVING RECORD CHANGER Remove by merely lifting it off its float springs. REMOVING RADIO CHASSIS FOR SERVICING The complete Radio-Phono unit does not need to be need repair. The Tilt-Out, or Slide-Out mechanism springing each of the four tilt-out hinge arms away from
the unit's sides. The Slide-Out mechanism is removed in a conventional manner
The radio tubes can be serviced from the top of the chassis by merely lifting the record changer up from the front. Be sure that the two shipping screws, one on each
side of the changer pan, have been removed at time of installation. These screws should be retained in case of future moving or shipping.
To remove the radio chassis for complete alignment or for servicing the underside of the chassis, proceed as follows:
a. Remove the radio mounting screws at the sides and at the seams on the underside of the housing. Pull
the radio chassis down and forward until you can the radio chassis down and forward until you can
reach in and unplug the phono connector plugs.
b. Remove the tuning knobs; remove the radio escutch eon and the front housing by removing the five screws at the bottom of the housing.
c. Position the dial drum as shown in Figure 34. Unhook spring at "A", and while keeping tension on the dial cord, hook it to tab "B"
d. Remove the six hex-head screws "C" which hold Ater
"D" and "E", the chassis front cancts and hex nut from the chassis. All trimmers can be pulled away accessible.

AM-FM RADIO ALIGNMENT

FM ALIGNMENT EQUIPMENT

FM circuits should be aligned only with an AM signel gen-
erator and a vacuum tube voltmeter. Any standard vacuum tube voltmeter with a DC scale of not over 5 volts is suitable. A 3 -volt
zero center scale is desirable. A signal generator with a funde.
 however, to align the receiver with a signal generator going up to
20 or 30 megacyes. by uing the harmonis of these lower
frequencies. To do this merely set the simal 20 or 30 megacycles, by using the harmonics of these lower
frequencies. To do this merely set the signal generator dial as
indicated in the next paragraph and align exactly as explained

IMPORTANT PRELIMINARY ALIGNMENT STEPS

Under normal operating conditions or use, misalignment of
RF
or IF circuits with age will be slight. Lack of sensitivity and poor tone quality may be due to causes other than alignment. Do not ettempt to realign the receiver until all other possaible causes have first been thoroughly ineecestigated. In FM alignment, it is essential that every, step be followed.
Especially importan is picking the center of the PF . curve. (step
4 in the FM .IF alignment instructions) in the FM-IF alignment instructions). During this porve (step
the alignment it is necessary to to tune the signal generator very carefully; it may neecessitate having to estimate the dial reading
to a tenth of a division. follow completely aligning the FM circuit, it it essential to

of ALIGNM other.
For ali
in the alignment instructions.
Where alignment chart specifies $109 \mathrm{MC}, 106 \mathrm{MC}, 92 \mathrm{MC}$ or 87 MC , set generator to the highest available frequency shown

109. MC	106, MC	92. MC	87. MC
	53. MC		43.5
36.33MC	${ }^{35} 53 \mathrm{MCC}$	30.66MC	${ }^{29 .}$ MC
边 27.51 .80 MC	26.5 MC 21.2 MC	23. MC 18.4 MC	21.75MC
${ }_{18.17 \mathrm{MC}}$	17.66 MC	15.33 M	

of each other.
For aligment of IF siug adjustmente, it will be necessary to disassemble the radio chagssis from the escutcheon and housing
and aloo remove the chasis figure 34. NOTE: AM and FM oscillator and anterna trimmers are accessible from top of chassis; disassembly of chassis cover
and dial scale will generally nat be ren Disconnect FM gnternaly from be required.
lead coble
lin lead cable. Stretch twin lead cable to fuit length during FM RF alignment.
To avoid sppliting the sloted head of iron core tuning slugs
 mazstrip.
Be sere both the set and the signal generator are thoroughly
warmed up before starting alignment.

AM ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
Turn receiver Volume control fully on; Tone control fully
clockwise.
- relative position to the chassis as when in the cabinet.
- set lowest output setting of signal generator that gives a

Step	Connect Signal Generator	Dummy Antenna Between Radio and Signal Generator	Signal Generator Frequency	Receiver Dial Setting	Adj. Trimmers in Following Order to Max.
Before proceeding, be sure to follow instructions under heading "Important Preliminary Alignment Steps".					
1	Gang condenser antenna stator	. 1 MFD	455 KC	Tuning sane wide open	$\begin{aligned} & * A-B(\text { 2nd IF) } \\ & { }^{-C-D}(\text { lst IF) } \end{aligned}$
2	"	"	1620 KC	"	E (oscillator)
3	Place generator lead adequate signal. No actual connection	to loop of set to obtain by radiation).	1400 KC	Tune in signal	¢F (antenna)
*Adjustments A and C made from underside of chassis.					

$2401,2461,2451,2461,24 \mathrm{H1}, 582,502$

PRODUCTION CHANGES

Production changes are coded RUN 1, RUN 2, etc, as given in the head ings below. Run number stamped on chassis indicates that this chassis has the change(s) incorporated which are explained under that particular run number heading below, as well as all changes (lower run numbers) made prior to that time. At the start of production, chassis were not stamped with a run number.
Note that numerical symbols [1] [2],[3], etc., on schematic correspond to run numbers stamped of rear of 20 V 1 chassis. Numerical symbols (1), (2), (3), etc., on schematic correspond to run numbers stamped at rear of 2071 chassis.

C431 ADDED to INCREASE SWEEP WIDTH

Run 1 in 20Vi Chassis

Condenser C431, . $02 \mathrm{mfd}, 400$ volts (part number 64B5-24) was added across width control L402 to increase sweep width in some sets. R213 CHANGED to REDUCE SYNC BUZZ and PLATE DISSIPATION

Run $2 \ln 20 \mathrm{~V}$ Chassis

Resistor R213 was changed from 270 ohms, 1 watt, to 330 ohms, 1 watt (part number 60B14-331). This change was made to reduce sync buzz and to reduce plate dissipation.

RANGE of BRIGHTNESS CON-TROL INCREASED

$$
\text { Run } 3 \text { in } 20 \mathrm{~V} \text { ו Chassis }
$$

With some picture tubes, the picture may be too bright even with the brightness control turned fully off Resistor R329, 470,000 ohms, $1 / 2$ wott (part number 60B8-474) was added across coupling condenser C308 to increase the range of the brightness control. At the same time, the DC reinsertion is also improved.

DIFFERENT SOUND AMPLIFIER TUBE (V203)

$$
\text { Run } 4 \text { in 20V1 Chassis, Run } 1 \text { in 20T1 Chassis }
$$

Early sets used a 6AV6 miniature type tube in the sound amplifier stage V203. Some iater production sets use the 6SQ7 tube. Although no circuit changes are necessary, note that the 6SQ7 pin numbering differs from the 6AV6.

DIFFERENT HORIZONTAL OUTPUT (T405) USED

Run 5 in 20V1 Chassis, Run 3 in 20TiChassis
In some sets, Horizontal Output Transformer T405, is part number 79C32-1, which requires a 1.8 ohm resistor (R440) in serles with pin 2 (filament) of the 1B3GT. Use part number $79 \mathrm{C} 36-1$ as replacement and remove R440.

DIFFERENT TUBE USED for SYNC SEP. and CLIPPER (403) Run 6 in 20VI Chassis, Run 2 in 20T1 Chassis
Some sets may use a 6SN7GT tube Instead of a $12 \mathrm{AU7}$ miniature type
ube at V403. Although no clrcult changes are necessary, note that the 6SN7GT pin numbering differs from that of the 12AU7.

DIFFERENT IF TUBES (V302, V303)

Run $4 \ln 20 \mathrm{~T}$ Chassis, Run 7 in 20 V I Chassis
In some sets, a 6AG5 tube is used Instead of a 6AU6 tube in the 2nd and 3rd IF stages. The 6AU6 and 6AG5 tubes are not directly interchangeable. When the 6AG5 tube is used, tube socket terminal 2 is unused (not grounded) as pins 2 and 7 of this tube are connected internally. A tube shield is used with the 6AG5 tube in the 3rd IF stage.
Note that when V303 is a 6AG5, an 18,000 ohm resistor is connected from grid (pin 1) to ground in that stage, and resistor R302, 680,000 ohms is omitted.

DIFFERENT SOUND AMPLIFIER TUBE (V203)
Run 5 in 20T1 Chassis, Run 8 in 20V1 Chassis
A 6AV6 minature tube is used in place of a 6SQ7 tube. The 6AV6 was also used in very early production.

No circuit changes are necessary when substituting one tube for another but the socket will have to be changed.

SOCKET and PLUG ADDED for ATTACHMEN of a COLOR CONVERTER

Run 6 in 20T1 Chassis, Run 9 in 20V1 Chassis
A 9-contact socket M505 was added at the rear of the TV chassisto provide B plus voltages, and 110 volt AC power for attachment of a color converter. Plug M506 fits into the socket to complete the B plus circuits when a color canverter is not used. The plug has iumpers wired between pins 1 and 2, between pins 3 and 4, and between pins 5 and 6 . A few of these sets with socket M505 had electrolytic condenser C407D (40 mfd .) connected to pin 8 of V501 (5U4G) tube.
Note: Sets which have the B plus circuits wired to socket M505 will not operate unless the plug (with jumpers connected) or a color converter is plugged into the socket to complete the B plus circuits.
In very late production sets, plug M506 and the wiring to socket M505 were omitted.

CHANGE In FOCUS CIRCUIT

Run 7 in 20T1 Chassis, Run 10 in 20V1 Chassls
In some sets, a permanent magnet (PM) focusing assembly (part number 94C33) is used. This assembly is mounted to the yoke support bracket: it consists of a mounting bracket, a picture positioning lever, and a permanent magnet focusing control.
The parts eliminated from the B plus (filter) circuit when the PM focus control is used are focus coll L404, focus control R445, and resistor R444. Electrically these parts are replaced with resistor R505, 200 ohms, 10 watt, part number 61A7.20. Screen resistor R438 (6,800 ohms, 2 watt), formerly connected to junction of fuse M401 and condenser C430 (. 1 mfd .), is connected to the opposite side of C43u (junction of white
lead from deflection yoke T403B and C430) when the PM focus assembly is used.
Two alternate types of PM focus assemblies are used. These assemblies are electrically and physically interchangeable. However, they differ slightly in location of adjustments and in method of adjusting. Differences in location of the focus adjustment screw and the picture positioning lever in the alternate types of PM focus assemblies are shown in figure 24.

Figure 24. Alternate PM Focus Assemblies.
Run 11, Run 12, Run 13, Run 14 in 20Vi Chassis
Changes covered by these run numbers have no service significance.
FILTER ADDED to MINIMIZE VERTICAL BARS in PICTURE

$$
\text { Run } 8 \text { in } 20 \mathrm{~T} \text { Chassis, Run } 15 \text { In 20VI Chassis }
$$

A filter has been added to eliminate or reduce to a minimum the brightness of shadow-type vertical bars which may appear at the left side of the picture.
This filter consists of resistor R446 (680 ohms, 2 watts, part num ber 60B20-68), condenser C432 (. $0022 \mathrm{mfd}, 600$ volts, paper, part numbe 64B9-17), and RF choke L405 (part number 73B8-3). These components are all connected in parallel and are wired in the set between terminal 8 of the horizontal output transformer (T405) and pin 5 of the damper tub V407 (6W4GT).
Adding a Filter to Early Sets

Before deciding that a filter is required in early sets giving this trouble be certain that the horizontal drive and width controls have been adjust ed. Also check to see that the picture tube cathode lead (from pin 11) is not too close to the horizontal output tube V405 (6BQ6GT). This lead should be dressed as far away as possible from the horizontal output tube.
If vertical bars are still present after picture tube socket lead dress has been checked, install the filter. NOTE: A pro-assembled filter complete with instructions is available from the Admiral distributor under pan number A3459S.
IMPORTANT: The filter must be placed inside the high voltage housing and NOT under the chassis.
Two alternate types of horizontal output transformers (T405) ave been used in these receivers. If transformer $79 \mathrm{C} 32-\mathrm{i}$ is used, one filter will be required. If transformer 79C36-1 is used, two filters may be required two U shaped cores.

CHANGE IN POWER TRANSFORMER T501

The power transformer (T501) used in later production sets will show a slightly higher voltage for the high voltage secondary than earlier transformers. These later transformers are marked with a green dot near the part number. Since the early and later power transformers are interchangeable, the part number remains unchanged. However, when taking voltage readings it is important to remember that \mathbf{B} plus voltages at some points may be as much as 20 volts higher in sets which have the later power transformer (with the green marking).

AL TERNATE BLOCKING OSCILLATOR

 TRANSFORMER (T401) USEDAlternate blocking oscillator transformers (T401), part numbers 79A18-3 and 79A18-4, are used. These transfamers are electrically Identical and differ only in lead length. Transformer 79A18-4 (wlth longer leads) will be supplied for replacement.

ALTERNATE RESISTORS and CONDENSERS USED

Due to the scarcity of certain resistors and condensers, some substitutons have been made from those values and descriptions shown in the parts list. These substitutions were made only in non-critical circuits not requiring 5% resistors or temperature compensated condensers. It may be found that in some cases resistors are connected in series or in paraliel to obtain the required resistance values. In some cases mica type condensers have been substituted for ceramic condensers.

SOME NON-STANDARD RESISTORS USED
Due to scarcity of some carbon resistors, various non-standard types have been used. These resistors may be uninsulated carbon or tubular ceramic types hoving non-standard values and color coding. SOME TUBULAR RESISTORS RESEMBLE CERAMIC CONDENSERS. Resistance values of some resistors are stamped on the body, others use the old dot color code method. These resistors are all within tolerance and are of correct current handling capacity to insure lasting service. All service reple.
coded type.

FOCUS ADJUSTMENT in SETS HAVING a PM FOCUS ASSEMBLY

To adjust the focus, set the PICTURE control for normal picture and the BRIGHTNESS control at slightly above average brightness.
Slight rotation in either direction of the "Focus Adjustment" (see figure 24) should generally bring the picture into focus. An ordinary screwdriver can be used in sets having a brass odjustment slug; a non-magnetic screwdriver is preferable for sets having a steel adjustm ent slug. If the picture was greatly off focus, readjust the ion trap.

R302 CHANGED to REDUCE OVERLOADING

In late sets, resistor R302 has been changed to 1.2 megohms to prevent verlcading in strong signal areas.

If the picture ls off center, It can be centered by using the picture pos itioning lever, and when necessary, repositioning the PM focus assembly around the picture tube neck. Follow the instructions given below.

Centering the Picture
a. Adjust ion trap.
b. Center the picture by adjusting the picture positioning lever. Note thot the picture positioning lever can be moved sideways, and up and down It may be necessary to reduce plature height and width to determine cor rect centering unless a test pattern is usod.
c. Readjust the lon trap and check focus adjustment.
Difficulty in Centering the Picture
a. Adiust lon trap.
b. Sllghtly loosen the two screws which mount the PM focus assembly to the yoke bracket. Facing the back of the chassis, move the PM focus assembly fully to the left while rotating It counterclockwise (to the left as far as possible, then whiten the two mouning screws.
c. Conor the pleture "b" be ceme thetting the focus assembly in another positlon and then , il d. Readiust the ion trap and check focus adiustment

REPLACEMENT OF V402 (654) VERTICAL OUTPUT TUBE
Some brands of 654 tubes do not have pins 3 and 6 connected together Internally. When replacing the 654 tube in some early sets, it may be necessary to connect a wire umper from terminal 3 to terminal 6 of the tube socket. To accommodate all brands of 554 tubes, later production sets have the junction of C406 and R410 wired to pin 6.

DIFFERENT VERTICAL OUTPUT TUBE (V402)
Some sets may use a 6 SN7GT tube instead of a 654 tube at V402. Note that $65 N 7 G T$ pin numbering differs from that the 654

DIFFERENT TUBE (V703) USED IN 3CI RADIO

Early sets used a 6AV6 tube for V703 (Det-AVC-AF). Later production sets use the 6SQ7 tube, which is the metal tube equivalent. Note tho 6SQ7 pin numbering differs from that of 6AV6.

REMOVING VERTICAL BARS FROM PICTURE VERTICAL FOLDOVER

Vertical foldover appears as a bright horizontal bar, at the bottom of the picture, after the height and linearity controls are adjusted for correct picture size and linearity. Liw voltage (below 105 volts) can often be the cause of foldover in a set which is otherwise normal. Always
check the line voltage first if this trouble appears. However, If foldover ccurs at normal line voltage, it may be corrected by making one or more of the following changes IN THE ORDER SHOWN BELOW:

1. Tubes. A weok vertical output tube (V402) can be the cause of foldver and a number of new tubes should be tried. This has been a source of trouble in sets using a 654 tube for a vertical output tube. Some brands of 654 give a greater output thus making it possible to obtain sufficlent eight without causing foldover. Low B plus voltage caused by a weak U4G rectifler tube (V501) will also cause foldover; try other rectifier ubes.
2. Resister Change. Change grid resistor R410 from 1 megohm to 3.3 megohms, ond decoupling resistor R439 from 1000 ohms to 560 ohms, 1 watt. 3. Additional Condenser Across Width Control. An additlonal cóndenser (. 01 to .05 mfd .) connected across width control L402 will increase the sweep width and al so provide increased vortical sweep without caus ing oldover. The second anode supply voltage will be decreased by several indred volis not noticeable.
3. Deflection Yoke. The cores of the deflection yokes used in these sets consists of two pieces of powdered iron, each semi-circular in shape. For maximum efficiency, these two core pleces should fit closely together with the air gaps as small as possible. Inspoct the iron cores in the yoke to see if the air gap is at a minimum. If the air gap is greater than /32 , nghen the collar. If his does not reduce the gap, remeve the collar and the iron cores, and smooth over the Insulation between the cores so that the gas will be at a minimum.
Some yokes are made so that the fibre sleeve must be clipped away with apair of diagonal cutters before the collar and iron cores can be remaved.

BOOTSTRAP VOLTAGE VARIATION

In some sets, the output (bootstrap) voltage measured at pin 3 of the damper tube V407 (6 W 4 GT), may read from 350 to 400 volts instead of the voltage (400 volts) shown on the schematic. This varlation in voltage is lue to tolerance of components in the horizontal sweep circuit. Thls oltage variation also affects the lst anode voltage measured at pin 10 of picture tube V306.

EXCESSIVE PICTURE HEIGHT

Excessive picture height (which cannot be reduced by adjustment of the height control) can be dup to tolerances of part such as the daflectlon yoke and power transformer.
This condition may be corrected by removing condenser C431, or re lacing resistor R408 (1 megohm) with a 2.2 megohm resistor, part num placing resisto 6088 -225.

HORIZONTAL "TEARING" or "BENDING"

Horizontal "tearing" may be caused by an excessively strong TV sig. nal or by improper AGC action.
A strong signal can cause overloading of the video amplifier with result ing loss of sync pulses due to clipplng. This overloading condition can e eliminated by Increasing the AGC voltage. To da thls, remove R302 (at test point " T ") from the circult.

High resistance leakage, between the control grid and other tube elements, in the RF and IF amplifier circults may also cause clipping of the sync pulses. The tubes should be checked by replacement.

"VEILING' or HORIZONTAL FOLDOVER

This trouble will usually be apparent when the station sync pulses are not positioned correctly on the blanking pulses. A phase change in the sync pulses (or reference voltage) applied to the horizontal control cir cuit could also cause veiling or foldover
Disconnecting R443 will remove the horizontal output reference voltage with very littre change in the operation of the circult. Short circuiting R323 will minimize any phase change of the sync pulses.

INTERMITTENT SOUND, PICTURE or SYNC (in sets with color converter socket and plug)
Poor contact between the color converter plug M510 and socket M509 can cause one or more of the following troubies: (1) No sound, (2) No sync, (3) No picture, sound or raster.
If poor socket contact is suspected as being the cause of trouble, remove the plug and tighten the socket contacts with a pair of long nose pliers.

REMOVING RETRACE LINES
In some areas, where the signal strength is low, it is often desirable to to operate a receiver with the contrast reduced and the brightness turned up.
Under these conditions several bright retrace lines may be visible in the plature. If the following changes are made, the brightness control may be turned fully on without the retrace lines being visible in the plature. T

1. Connect a 270,000 ohm, $1 / 2$ watt resistor (part number 60B8-274) in series with pin 2 (grid) of the plature tube and the lead connected from the junction of C310 and R327.
2. Connect a .05 mfd . condenser (part number 64B5-22) from the iunction of C405 and R407 to pin 2 (grid) of the picture tube.

LONG WARM-UP TIME
A poor connection between the plate cap lead and the plate cap connecting to the harizontal output tube V405 (6BO6GT) may cause on excessIvely long '"warmup"' period before the raster appears. This is sometimes caused by a poor solder connection. Touching a hot soldering iron to the
solder foint inside the plate cap will often correct the trouble.

DISTORTED SOUND

 Distorted sound can be caused by missalignment of the ratlo detectortransformer T201. This missalignment is sometimes due to frequency drift of the ratio detector transformer. Realignment of the ratio detector transformer may correct this trouble for a period of time, after which re alignment may again be required. A permanent remedy for this trouble is to connect a $\mathbf{2 0} \mathrm{mmfd}$ - $\mathbf{7 5 0}$ temperature coefficient, ceramic condenser (part number 65B6-26) in paraliel with condenser C204 (180 mmfd , ceramic connected across the secondary of the ratio detector transformer T201). Realign ratio detector transformer after adding the $\mathbf{2 0} \mathbf{m m f d}$ condenser

SERVICE HINTS FOR HORIZONTAL SYNC

The horizontal oscillator control circuit controls the horizontal oscillator by a method called "Pulse Width Modulation". This methad is so called because the width of the pulse applied to the grid of the horizontal oscillator control section determines the length of time that current flows hrough this section. The duration of current flows through the control seclon determines the DC control voltage applied to the grid of horizontal
oscillator, thereby controlling the frequency.
The waveshape applied to the grid of the horizontal oscillator control ection is formed by combining a partially Intergrated pulse from the horzontal oscillator output, a partially intergrated pulse from the deflection yoke, and the horizontal sync pulse, if these three pulses combine properly, the waveshape shown in Figure 19 will be developed and the horzontal osechlare wil be in sync.
Whth no sync input, the waveform at the harizontal oscillator control grid hould appear as shown in Figure 20. Since the horizontal oscillator contra voitage is dependent upon a waveshape formed at the horizontal hese stages may cave sya troitle. If he waveform shown in one of 20 can be obtained this will indicite proper aper at of the horigral reep and reference valtoge network Then the horizotal oscillator is out of
When the horizontal oscillator is out of sync, it may be difficult to observe this waveform (Figure 20) on an oscilloscope due to the presence of or-ot-phase sync pulses. In this case, remove the sync amp. and sep-
arator tube (V403). If the waveshape shown In FIgure 20 is obtained, place the sync and separator tube back into Its socket. Then remove the horizontal oscillator and control tube V404 (6SN7GT). Conventional well-shaped sync pulses should appear at control grid (pin 1) of V404. If there are ne sync pulses, or the pulses are of low or varying amplitude ccompanied with noise, the sync circults should be checked. However, If the sync pulses are well-shaped and of constant amplitude, the horzontal oscillator may be misaligned. Place V404 back into its socket and make the "Complete Allgnment of Horizontal Oscillator".
If it is impossible to sync the picture, or obtain the correct woveform at erminal " C ", check for a defective component in the following at quence:
a. Check tube V404 (6SN7GT) by substitution.
b. Check C418 by substituting Identical condenser (180 mmfd , 5% 0003 temperature coefficient) part number 65B6-59.
. Check C415 for either open or short.
d. Check condenser C417 for short.
. Check resistance of R427. It should be 100,000 ohms
. Lead dress is critical in the horizontal oscillator circuit. Check to see that lead dress has not been disturbed while servicing.

$\begin{array}{ll}\text { Figure 20. Wareform on Gid Pin } & \text { Figure 20. Waveform on Grid Pi } \\ \text { lof Y400 With Sync Pulse. } & 1 \text { of V404 Without Sync Pul se. }\end{array}$

PICTURE JITTER (SIDEWAYS)
Pleture jifter may be caused by Improper resistance value of R420, plate load resistor of V401B. Check R420 to see that it is $\mathbf{2 2 , 0 0 0}$ ohms.

FRINGE AREA SERVICE SUGGESTIONS

Best performance from a tolevision receiver can be realized only after censiderable care and thought had been given to the selection and in stallation of the proper type of ontenna dependent on the TV signals in the area. This is especially important in fringe or weak signal oreas. Installation be checked. The Admiral Distributor nearest the area can be of help in advising on the selection and Instaflation of the raper an tenna system.
The following service hints will be of help in Improving reception in fringe or weak signal areas. It is possible to apply more than one of these service hints to a chassis to obtain better reception. Generally tubes should be checked and reallgnment should always be tried before making any major clrcuit changes to increase sensitivity.
Check Line Voltage. Check for low power line voltage. If the voltage is known to vary greatly, it is recommended that the set be operated frem constant voltage tronsformer with a power roting af at least 300 watts. Check IF Tubes. Check the IF stages to see that the correct tube types are used according to chassis wiring. Use of an incorrect tube type may cause decroased sensitivity.

Some sets use a 6AU6 tube in the 1st IF stage, and a pair of 6AG5 tubes instead of 6AU6 tubes in the 2nd and 3rd IF stages (V302, V303). Note that these tubes are not directly interchangeable, since they differ in pin numbering, in use of tube shields, and in use of R330 and R302

Check Rectlfier Tube. Check the rectlfier tube (5U4G) by substltution as the voltage output of some tubes moy be slightly higher. An Increase in B plus voltage will increase sensitivity.
Check Videe Amplifier Tube. Check the video amplifier tube (V305) by substitution. Increased contrast is sometimes obtained with tube replacement

Improved Reception Obtained by Correct Alignment. Correct receiver alignment is on Important factor when a receivar is to be operated in a low signal strength orea. it is possible for a recelver to have a good over-all (RF-IF) response curve even though the RF and IF stages are not properly aligned. This type of curve is obtained when the RF alignment is off in one direction and the IF alignment is off in the other dir. ertion. This incorrect alignment may cause excessive snow in the picure when weak signals are received.
The RF tuner should always be aligned to produce a response curve of maximum amplitude, consistent with flat top appearance aad correc marker location. Carefully align the RF and IF stages. If the RF and if curves are similar to those shown in the manual, the receiver signai-to noise ratio will be good and there will be a minimum amount of snow in the picture.
If it should be difficult to obtain a satlsfactory response curve during IF alignment, check whether the set uses 6AG5 tubes in the IF amplifier
stages. If it does, alignment can be made easier if you use a 6AU6 tube in the first and possibly in the second IF stage. To do this, merely con nect a short ground lead to pin 2 of the tube sockets and change to 6AU6 tubes.
Checking tubes (by substitution) in the RF amplifier, oscillator-mixer, IF stages, and video detector while allgning will often give considerable increase in gain. The increase in gain may be observed by an increase in the amplitude of the response curve. Realignment of the particular stage should always be made after each tube replacement, in order to realize the maximum gain possible.
Increased Sensitivity Obtained By Removing AGC Blas From RF Tuner. Remove RF tuner AGC lead (white) from the AGC connecting lug and ground the lead to the chassis.
IMPORTANT: This change should not be made where strong signals may be recelved since over loading will result. A changeover switch (SPDT) can be installed to apply AGC bias to the RF tuner when strong signals are to be received.

AGC Change to Improve Reception in Weak Signal, High Noise Level Areas. If the hints above have been tried, and satisfactory results are not obtained, the following may be of further aid in improving reception under conditions of weak signal and high noise level.
In weak signal areas, where the noise level is high, the AGC diode, ($1 / 2 \mathrm{~V} 304,6 \mathrm{AL} 5$), develops an AGC voltage which is proportional to the (1/2 V304, 6AL5), develops an AGC voltage which is proportional to the peak-to-peak noise voltage. When the high AGC voltage is applied to the
controlled stages, the gain of the receiver is controlled by the noi se level and not the sync pulse level. This may result in loss of sync, poor contrast or low sound level. When this trouble is encountered it may be corrected by using the voltage developed across the video detector load for the AGC voltage instead of the normal AGC voltage developed by the AGC diode V304. IMPORTANT: This change should not be made where strong signals may be received since overloading will result.
To make this change, disconnect the end of resistor R314 $(680,000)$ form pin 7 of V304 and connect it to the terminal strip (junction of R317and L303 as shown in the figure below.

Increasing Sound Level. After making the changes outlined above, a further increase in sound level may be obtained by changing the sound takeoff connections as follows:

1. Disconnect the sound take-off lead (connection to C201) from pin No. 2 of video detector and AGC tube V304 (6AL5) and recionnect lead to pin No. 5 of video amplifier tube V305 (6AU6).
2. Retune adjustment A6, on sound take-off coil L201. This adjustment should preferably be made using a station signal.

PRODUCTION CHANGES

16. RESISTOR R303 CHANGED to INCREASE B PLUS VOLTAGE to RF TUNER
In later production resistor R303 was changed from 1000 ohms to 470 hhms, $1 / 2$ watt, part number 60B8-471. Changing this resistor to a lower alue increases the B plus voltage applied to the RF tuner, thereby providing an increase B apsiviry. This in theased sensivity wil be apmade only in sets having less than 105 volts ot the RF tuner B plus lead.

17. R430 WATTAGE CHANGED

*Run 1 in 21C1 Chassis
Resistor R430 was changed from 12,000 ohms, $1 / 2$ watt to 12,000 ohms, 2 watt (part number 60B20-123) to prevent possible increase in resistance - R430.
18. CHANGE to IMPROVE AUDIO RESPONSE on RADIO OPERATION
*Run 2 in 21 Cl Chassis
R210 was changed from $\begin{gathered}\text { *Run } 270 \text { in } 21 \mathrm{Cl} \text { Chassis } \\ 27000 \text { to } 150,000 \text { ohms, (part number 60B8-154) }\end{gathered}$ and R211 was changed from 100,000 ohms to 47,000 ohms, (part No. 60B8-473) to improve audio response on radio operation.
19. C433 ADDED to OBTAIN SUFFICIENT WIDTH

$$
\text { *Run } 3 \text { in } 21 \mathrm{Cl} \text { Chassis }
$$

To obtain sufficient sweep width, C433 (. 002 mfd , 600V) was added cross width coil L402. Do not make this change in sets with gated AGC.

20. HERRINGBONE PATTERN INTERFERENCE *Run 4 in 21C1 Chassis, Run 1 in 21B1 Chassis

Later production sets have an Adjacent Lower Channel Sound Trap (L307 C314) added between the connector lug (terminal of C113) on the TV iuner and pin 1 of the lst IF amplifier tube V301. This trap (part number 72A 102) is pre-tuned to 27.25 MC.
This trap will eliminate herringbone interference pattern produced by the sound carrier of the adjacent lower channel in the same locality, especially when the wanted station is weaker than the interfering station. Close examination of this type of interference will reveal that the fine lines of on the adjacent lower channel. This can be checked by quickly turning the channel selector to the lower channel.

Since FM interference from other sources will also produce a herringbone pattern, it should definitely be determined that the interference is caused
by the adjacent lower channel before installing the trap. After installing the trap, realign slug A4 (mixer plate coil Llo3).
21. CHANGE to IMPROVE SYNC STABILITY
*Run 5 in 21CI Chassis, Run 2 in 21B1 Chassis

An RC filter consisting of a parallel combination of a 270,000 ohm, $1 / 2$ watt resistor (part number 60B8-274) and a 150 mmfd , mica condense (part number 60B21-151) is connected between resistor R323 and condenser C308. Resistor R323 was changed from 8,200 ohms to 18,000 ohms, $1 / 2$ watt (part number 60B8-183). These changes will improve sync stabil ity (immunity to noise) in areas having low signal strength and a high noise level.
22. DIFFERENT TUBES USED in 2 nd and 3 rd IF STAGES Runs $3 \& 4$ in 21B1 Chassis produced ot Cortland**
Run 5 in 21 BI Chassis produced at Bloomington **
Run 1 in 21D1 Chassis, Run 1 in 21J1 Chassis
Some sets use a 6AU6 tube in the 1st stage, and a pair of 6AG5, 6BC5 or 6CB6 tubes, instead of 6AU6 tubes in the 2nd and 3rd IF stages (V302 V303). For complete information on the use of these tubes, see schematic Note that these tubes are not directly interchangeable, since thay differ in pin numbering, in use of tube shields, and in use of R330.
IMPORTANT: Alignment is generally required after replacing IF tubes. Check the IF alignment, and preferably, also the over-all RF and IF response curve after tube replacement.
23. C433 CHANGED to OBTAIN SUFFICIENT WIDTH Run 2 in 21DI Chassis, Run 2 in 21Jl Chassis.
C433 is .002 mfd , or $.0047 \mathrm{mfd}, 600$ volts, as required to obtain sufficient width. Increasing the size of condenser C433 provides greater sweep width with slight reduction in picture brightness. When adding or replacing C433 use the smallest capacity possible which will produce sufficient sweep width.
24. VERTICAL OUTPUT TUBE (V402) CHANGED

Run 4 in 21B1 Chassis produced at Bloomington**
The vertical output tube 654 (V402) was changed to a 6 SN7GT. Note that resistance values of R404, R406, and R411 are changed when a 6SN7GT is used.

25. DIFFERENT TUBE USED for SYNC

SEPARATOR and CLIPPER (V403)
Run 5 in 21B1 Chassis produced at Bloomington **
A 6SN7GT tube is used instead of a 12AU7 at V403.

* This change was incorporated at beginning of production of all other. chossis.
** The $21 B 1$ chassis has bean run at two plants. Sets produced at the Cortland plant hove "Cortland Plant'" printed on the model label. Sets produced at Bloomington have "Bloomington Plant" printed on the model number label.

26. DIFFERENT SOUND AMPLIFIER TUBE (V203) Run 3 in 21D1 Chassis, Run 5 in 21DI Chassis Runs 1, 2, 5 use a 6AV6 miniature tube in the sound amplifier stage V203, while Runs 3 and 4 use a 6SQ7 metal or a 6SQ7GT glass tube. To prevent pick-up of hum, a tube shield (part number 87A8) is used with the 6SQ7GT glass tube.
27. DIFFERENT TUBE USED for SYNC DISCRIMINATOR (V404) Run 4 in 21D1 Chassis (see No. 32)

28. PILOT LOGHT SOCKET ADDED

$$
\text { Run } 3 \text { in } 21 \text { Chassis }
$$

A light pilot socket, part number 87A6-3 was added, to accommodate the 110 volt phono compartment pilot light.
29. CHANGES to REDUCE AUDIO HUM on TV OPERATION Run 5 in 21B1 Chassis, Run 8 in 21C1 Chassis, Run 6 in 21D1 Chossis
In some chassis (especially early 21D1 chassis) a sharp audible hum can be heard in the speaker with and without a TV station tuned in. Check for trouble as follows:

1. If the brightness control also varies hum level, it will generally be found that the sound amplifier (V203) is a glass 65Q7 tube which may be used without a tube shield. To minimize hum level either use a tube shield or change to a metal 6SQ7 tube.
2. If the vertical hold control also varies the hum frequency, the hum is introduced from the vertical output stage. Change Condenser C211 from a 047 to at least a .47 mfd ., 400 volt condenser. In many cases it may be necessary to use an electrolytic condenser as large as 10 mfd . to completely eliminate the hum
3. If hum (buzz) is only evident when station is tuned in, check IF alignment. In 21D1 chassis, three 6AG5 tubes were used in the IF stages. In order to obtain a good If curve (with the sound carrier low enough) it is necessary to change the first IF tube to a 6AU6, ground pin 2, and realign the IF stages. Be sure that the 4.5 MC sound iF adjustments ore aligned with a station signal. Buzz can generally be reduced farther after alignment on station signal by turning sound take off coil L 201 slug out about $1 / 4$ turn.
4. SOCKET and PLUG ADDED for ATTACHMENT

of a COLOR CONVERTER

Ryn 6 in 21B1 Chassis; Run 9 in 21Cl Chassis; Run 2 in 21H1 Chassis

A 9 contact socket M509 was added ot the rear of the TV chassis to provide B plus voltages and 110 volt AC power for attachment of a color converter. See schematic.
Plug M510 fits into socket M509 to complete the B plus circuits when a color converter is not used. The plug has iumpers wired between pins 1 and 2, between pins 3 and 4, and between pins 5 and 6 .
few of the early sets with socket M509 had electrolytic condenser C432 $(60 \mathrm{mfd})$ connected to pin 8 of V 501 (5U4G) tube.

Note; In some later 21B1 chassis, plug M510 and wiring connections to socket M509 were omitted.
32. DIFFERENT TUBES USED for SYNC DISCRIMINATOR (V404)
Run 6 in 21Jl Chassis; Run 4 in 21D1 Chassis; Run 7 in 21B1 Chassis; Run 10 in 21C1 Chassis
A 12 H 6 tube may be used instead of a 6AL5 tube for V404 sync discrimnator. A 6 H 6 tube was also used in some sets. The pin numbering for the 12 H 6 and 6 H 6 is identical; the 6AL5 pin numbering is different

When the $12 \mathrm{H6}$ rube is used for V404, an auto-transformer T502 (part num ber 80832) is used to step up the 6.3 volts to 12.6 volts required for the heater of the 12 H 6 tube. The low end (black lead) of T502 connects to chassis ground, the center tap (green lead) connects to pin 7 of, V408, the high end (yellow lead) connects to pin 7 of $12 \mathrm{H6}$ (V404).
The circuit for the 6 H 6 is the same as for the 12 H 6 tube except that T 502 ato-transformer is not used. Heater voltage (6.3 volts AC) connects to pin 7 of 6 H 6 tube (V404).
Replacing 12H6 Tube with a 6 H 6 Tube. If a 12 H 6 is not available for re lacement, a type 6 H 6 tube may be used in place of the $12 \mathrm{H6}$ if the fol plowing changes to the heater circuit are made:
. Remove the transformer lead from pin 7 of the V404 (12H6) socket. Tape the lead to prevent it shorting to chassis.
2. Connect a lead from pin 7 of V404 socket to pin 7 of V401 socket.

33. CHANGE in FOCUS CIRCUIT

Run 10 in 21B1 Chassis
In late 21B1 chassis, a permanent magnet focusing assembly (part num ber 94C35-1) is used. The parts eliminated from the B plus (filter) circuit when the PM focus assembly is used are focus coil L404 and focus con trol R446. These parts have been repaced whi choke coil L405 (part 61A1-20) 0) in the filter circuit between filter condensers C407 and C432.
34. VIDEO DETECTOR and AGC CIRCUIT CHANGED Run 12 in 21B1 Chossis, Run 3 in 21F1 Chassis
Late production 21B1 sets and 2IF1 sets employ a IN64 germanium diode (M301) as a video detector and a 6AU6 tube (V304) as a gated AGC stage. These sets use a 6 AU6 tube in the 1st and 2nd IF stages and a 6AG5 tube in the 3rd IF stage. A cover shield is not used on the bottom of the IF amplifier sub-chassis. For sets with these circuit changes, see sche matic figure 31 and partial schematics figures 18A and 188.
35. CHANGE to PREVENT PICTURE CUT-OFF
ond to STABILIZE PICTURE BRIGHTNESS
Run 13 in 21B1 Chassis, Run 4 in 21F1 Chassis
The following changes were made to the B plus circuit to prevent pos sible picture cut-off due to blocking of the video amplifier. (This block-
ing may occur if the TV set is tuned to a very strong TV signal which could drive the video amplifier to cut-off. With the video amplifier at cutoff, B plus voltage applied to the cathode of the picture tube will increase thereby making the grid voltage more negative with respect to cathode, driving the picture tube to cut-off. Also since the gated AGC tube is dependent upon voltage from the video amplifier for its operation, blocking of the video amplifier will cause no AGC voltage to be develop. ed and the system will remain blocked.)
Diagrams of voltage distribution and partial schematics before and after the change was made are shown in figures 18A and 18B. Note the changes made in the B plus circuit to the 3rd IF amplifier, AGC tube video amplifier and picture tube. Resistor R336 (4,000 ohms, 5 watt)was omitted from the circuit. Resistor R338 (7,500 ohms, 5 watt) was wired in parallel with R319.
To prevent a decrease in brightness when strong signals are received, resistor R324 (in the cathode circuit of the picture tube) was changed from 180,000 the to 560,000 ohms. Resistor R324 was changed to 470,000 ohms in later production sets.

Adding Changes to Prevent Picture Cut-off

If picture cut-off resulting from blocking of the video amplifier is experienced with a 21B1 chassis stamped Run 12 or 21F1 chassis stamped Run 3, the changes below should be made. See figure 19 and proceed as follows:

1. Remove resistor R336 ($4,000 \mathrm{ohms}$).
2. Connect a 7,500 ohm, 5 watt resistor R338 (part number 61A1-18) across R319.
3. Connect together the positive terminals of filter condensers C307A and C307B.
4. Change resistor R324 from 180,000 ohms to 560,000 ohms, $1 / 2$ wath (part number 60B8-564).
5. Erase the old run number from the chassis and mark in the next higher run number.

6. SOCKET M509 and PLUG M510 ADDED AGC TEST POINT WIR

Color Connectors. A 9-contact socket M509 was added at the rear of the TV chassis to provide B plus voltoges, and 110 volt $A C$ power for attachment of a color converter. Plug M510 fits into the socket to complete the B plus circuits when a color converter is not used. The plug has iumpers wired between pins 1 and 2, between pins 3 and 4, and between pins 5 and 6. In some eariler production sets, plug M510 and the wiring to socket M509 were omitted. NOTE: Sets which have the B plus circuits wired to' socket M509 will not operate unless the plug (with jumpers connected) or a color converter is plugged into the socket to complete the B plus
circuits. circuits.
AGC Test Point. To make test point "T" (AGC buss) available from the top of the chassis, this test point has been wired to the test jack adiacent to test jack " Z ".

37. ChANGE TO IMPROVE FOCUS

$$
\text { Run } 8 \text { in 21B1 Chass is }
$$

Some long neck 16TP4 picture tubes (Raytheon and Dumont brands) were used in some 21 BI chassis stamped Run 8 . In order to obtain satisfactory focus when these picture tubes were used, a 10 watt bleeder resistor from 12,000 to 15,000 ohms was added from junction of resistors R326 and R211 to chassis ground. Important: It may be necessary to remove this resistor to obtain satisfactory focus when replacing on original long neck
$16 T P 4$ tube with a 16TP4 tube with a short neck tube

CHANGE in 3CI RADIO to IMPROVE TONE QUALITY
Resistor R709 was changed from $\mathbf{2 7 , 0 0 0}$ ohms to 82,000 ohms (part number 60B8-823).
Condenser C712 was changed from 250 mmfd . to 100 mmfd . (part number
$65 \mathrm{C} 6-3$). C 713 was changed from .01 mfd . to .002 mfd . (part numbe 64B5-25). C714 was changed from 001 mfa. to (part number 6485-12) The schematic figure 30 shows the 3 Cl radio with these changes added.

DIFFERENT TUBE (V703) in 3CI RADIO

Early sets used a 6AV6 tube for V703 (Det-AVC-AF). Later production sets use the 6SQ7 tube, which is the metal tube equivalent.

SENSITIVITY IMPROVED in 5D2 RADIO

To improve the sensitivity of the 5D2 radio. the lst IF transformers in the AM and FM stages were changed.
The 1st AM-IF transformer (T604) used in early sets, part 72897 has been replaced with part 72897-1
The lst FM-IF transformer (T601) used in early sets, part 72B98 has been replaced with part 72898-1.
To accommodate this change of the IF transformers, C608 condenser has been changed from 40 mmfd , (part 65B1-65) to 30 mmfd (part 65B1-69); R602 has been changed from 240 ohms 5%, (part 6087-241) to 1,500 ohms, (part 60B8-152).
mportant: All changes mentioned above must be made when replacing early with lote IF transformers.

FRINGE AREA SERVICE SUGGESTIONS

Check B Plus Voltage. Check B plus voltages at pin 5 of the 2nd IF stage with no signal input. If the B plus voltage is below 90 volts, check R317 and R318, and if necessary, replace with resistors having the cor rect value.
Improved Reception Obtained by Correct Alignment. Correct receive alignment is an important factor when a receiver is to be operated in low signal strength area. It is possible for a receiver to have a goodover

II (RF-IF) response curve even though the RF and IF stages are not properly aligned. This type of curve is obtained when the RF alignment is off in one direction and the IF alignment is off in the other direction. This incorect alignment may cause excessive snow in the picture when

The $R F$ tuner should always be aligned to produce a response curve of maximum amplitude, consistent with flat rop appearance and correct marker location. Carefully align the RF and IF stages following the instrucions given in this service manuol. If the RF and IF curves are similar to those shown in the manual, the receiver signal-to-noise ratio will be good and there will be a minimum amount of snow in the picture
Checking tubes (by substitution) in the RF amplifier, oscillator-mixer, IF stages, and video detector while aligning will often give considerable increase in gain. The increase in gain may be observed by an increase in the amplitude of the response curve. Realignment of the particular stage should always be made after each tube replacement, in order to realize the maximum gain possible.

INCREASING SENSITIVITY for EXTENDED FRINGE AREA RECEPTION
This change should not be applied to later production sets (starting with Run 12 in 21B1 chassis, Run 3 in 21F1 chassis) having a 1 N64 german ium diode (M301) used as a video detector and a 6AU6 tube (V304) used in a "gated" AGC stage.
In weak signal areas where noise level is high, the AGC voltage developed is proportional to the noise peaks instead of the sync pulse level. This increased AGC voltage will reduce the gain of the controlled stages and thereby lower the sensitivity of the receiver. This condition may also cause momentary loss of sync poor contrast and weak sound. The circui modifications shown in figures 20,21 and 22 will greatly improve the operation of a receiver which is to be operated in an extended fringe orea. A receiver with these modifications will also operate satisfactory in areas where strong TV signals can be received, since a Local-Distan

switch is used to prevent circuit overload (picture bending) caused by a strong signal.
Before making the modification given below, it should be determined that the receiver has normal sensitivity by comparison with a receiver of the Gringe areas may be due to low sensitivity caused by one or more of the compo troubles discussed in the previous paragraphs and a moior cir cuit modification may not be necessary.
The parts will be required for making this modification:
2 - 560,000 ohms, $1 / 2$ watt resistors (part number 60B8-564) 1 - 3,000 ohms, 10 watt resistor (can use part number 61A1-9) 1 - 22,000 ohms, $1 / 2$ watt resistor (part number 60B8-223)

- Toggle switch (SPDT)

3 - $26^{\prime \prime}$ lengths of No. 28 or No. 30 insulated (stranded) wire (use 1 black and 2 red wires).

Adding Changes

To add the circuit modifications to a receiver, see figures 21 and 22 To add the circuit modifict

Step 1. Remove and discard the IF cover shield from below the IF sub chassis.
Step 2. Remove resistor R313 (560,000 ohms) and connect a new 560,000 ohm, $1 / 2$ watt resistor from pin 7 of V304 (6AL6) socket, to pin 1 of V501 (5U4G) socket.
Step 3. Connect a 560,000 ohm, $1 / 2$ watt resistor from iunction of L302 and R315, to pin 3 of $\mathbf{V} 501$ (5 U 4 G) socket.
Step 4. Connect each of the three ($26^{\prime \prime}$ long) wires to a terminal of the

SPDT toggle switch. Connect the other end of each wire to connection points shown in figure 21; note color of wires.
Step 5. Connect a 3,000 ohm, 10 watt resistor across R319
Step 6. Remove tuner inspection plate from the side of the chassis and remove resistor R101 (3,900 ohms) from across contact terminals 7 and 11 of the RF tuner. Replace R101 with 22,000 ohm, $1 / 2$ watt resistor. See figure 22.
Step 7. Realign the IF stages and check the IF response curve. Make all alignment adjustments and checks with the Local-Distant switch in the "Distant" position.

Step 8. Make the "RF and Mixer Alignment" with the exception that alignment is made on the weakest high channel in operation for the area concerned. Be sure to adiust RF trimmers for maximum amplitude on the esponse curve.
Step 9. After the above changes have been made, set the Local-Distant switch on the most sensitive position and check the receiver for relative sensitivity by comparison with the receiver used previously to determine whether the receiver to be modified was of normal sensitivity. If another receiver is not available for a sensitivity check, then air check reception on the weakest TV signals available. If the modification and alignment were made properly, there should be a very noticeable improvement in sensitivity with the Local-Distant switch on distant position. Sensitivity can sometimes be further improved by making the checks given under the service hint on "Impoving Sensitivity".
Step 10. Mount switch on the cabinet back near the top so it can be easily reached over the top of the cabinet. IMPORTANT: Be sure to instruct the customer on proper use of the switch. One position of the switch makes the set extro-sensitive for best reception when receiving weak or distant TV stations. The other position of the switch will prevent possible picture "bending" when receiving strong stations.

Figure 18. Schematic for 20T1, 20V1 Television Chassis; 3C1 radio circuit and connections also shown.

V VOLTAGE DATAA Aingom)

to servicing tv chassis separatery

SERVICING RADO SEFARTELY $\quad 1$

Mill
 Yocitoen rado voltage data

Figure 26. Schematic for 21B1 Chassis (run 10 or earlier), 21C1, 21H1, 21J1 Chassis; 5D2 (AM-FM radio) circuit also shown. See figure $\mathbf{3 0}$ for $\mathbf{3 C 1}$ (AM radio chassis). For 21 Bl chassis with gated AGC, see figure $\mathbf{3 1}$.

(11) (18) SChematic notes

TV VOLTAGE DATA
(Valtoger given on tchematic diogram)

 - Liee overago 117 volo AC.

radio voltage data

- Live volige 117 volts $A C$.

为

PRODUCTION CHANGES

47. ALTERNATE MOUNTING PARTS FOR 17'' METAL PICTURE TUBES
21P1 chassis stamped Run $\begin{aligned} & \text { Run } 7 \text { in 21Pl Chassis }\end{aligned}$ ing parts for insulating the 17 inch metal picture tube from the front of the chassis. Early production sets used a single plastic band
Note: When replacing a one piece plastic band with a three piece plastic band, it will be necessary to order all parts listed in the illustration

48, CHANGE TO PREVENT VERTICAL ROLL AND PICTURE WASH OUT IN WEAK SIGNAL AREAS

$$
\text { Run } 15 \text { in all } 21 \text { Series Chassis }
$$

Vertical roll and picture wash-out in weak signal areas can be due to any of the following causes:
a. Noise pulses.
b. IF regeneration.
c. Defective tubes
d. Defective germanium diode (M301).
e. Low line voltage

Circuit changes were made in later production chassis (stamped Run 15 or higher) to prevent vertical roll and picture wash-out due to noise pulses and IF regeneration. The changes made were in the IF amplifier, video amplifier and sync circuits; the schematic in this supplement includes these changes. If vertical roll and picture wash-out is experienced in weak signal areas, the changes given below in paragraph 1 should be made.
For eliminating vertical roll (sync trouble) due to faulty tubes, see paragraph 2.
For vertical roll due to a faulty germanium diode (M301), see paragraph 3

> 1. Adding Changes to Prevent Vertical Roll and

Picture Wash-Out
This change should be made only in sets with a gated AGC circuit, which have run numbers lower than Run 15. (Sets with gated AGC use a 6AU6 for V304).

Using the proper schematic in Service Manual No. S362, make the changes as follows:
a. Remove resistor R442 (15,000 ohms).
b. Connect a wire jumper across C 414 condenser (47 mfd) in order to remove C414 and R425 (12,000 ohms) from the circuit.
c. Disconnect the two leads connected to pin 6 of V305 (6AC7). Solder and tape leads together.
d. Connect a 15,000 ohm, 1 watt resistor (part number 60B14-153) from pin 2 of V305 (6AU6) to pin 6 of V306 (6AC7).
e. Connect a .005 mfd , condenser (part number 65C10-1) between pins and 6 of V305 (6AC7).
f. Connect a $20 \mathrm{mfd}, 450$ volts, electrolytic condenser (part numbe 67A21-1) from pin 6 of V305 (6AC7) video amplifier to chassis ground. g. Locate iunction of resistors R418, R419 and R420. Disconnect R419 (2,200 ohms) at this iunction and connect it to pin 6 of V305 (6AC7). h. Replace resistor R418(47,000 ohms) with a 33,000 ohm, 1 watt resistor (port number 60814-333). If set is a TV-radio-phono combination model, use a 33,000 ohm, 2 watt resistor (part number No. 60B20-333). i. Replace resistor $R 417,18,000$ ohms, $1 / 2$ watt with an 18,000 ohm, 1 wath resistor (part No. 60B14-183).
i. Connect a .005 mfd . condenser (part No. 65 ClO l) from pin 3 of V302 (6AU6) to chassis ground.
k. Solder a $31 / 4$ inch length of $1 / 4$ inch shield braid (part number 95A12-6) from the top shield on the IF strip to the chassis; see figure 41. Before soldering shield braid, insulate it by slipping a 2 inch length of insulating tubing over it. Note: Some early sets may already have the wire braid shield added
I. On the top side of the chassis, spot solder the IF sub-chassis to the main chassis at the center location shown in the adjoining illustration.
2. Vertical Roll Due to Faulty Tubes

Vertical roll (poor vertical sync stability) can be due to faulty tubes. The tubes listed below should be checked by replacement whenever difficulty in vertical roll is encountered.
a. Sync Separator and Clipper V403 tube (12AU7). A weak tube will provide insufficient sync input to lock-in picture.
b. In TV Tuner 94C18-4,RF Amplifier V101 tube (6CB6, 6BC5 or 6AG5). Leakage between tube elements will cause clipping of sync pulse due to incorrect AGC voltage.
c. Video Amplifier V305 tube (6AC7). When plate current is excessive, clipping of sync pulses will occur.
3. Vertical Roll Due to Faulty 1 N64 Germanium Diode

A faulty 1 N 64 germanium diode (with low output) will cause vertical rall. A rough check of the 1 N64 germanium diode can be made by disconnecting one side of the diode from the circuit and checking the front to back ratio with the ohmmeter range of a VTVM. (Diodes are easily ruined by heat and to eliminate the possibility of damage when applying a soldering iron, remove the diode from the circuit by disconnecting peaking coil L301 or L302 from the tie-point which is connected to pin 4 of V305 (6AC7). For additional important information on servicing germanium diodes, see "Servicing Video Detector ($k 301$)" on page 47 of Service Manual No. $\$ 362$. The front to back ratio should be on the order of 1,000 0 1,500 times. For example, if a diode measures 300 ohms in one direction, it should read 300,000 to 500,000 ohms in the other direction.

Lead dress is very important in the video detector and AGC circuits in order to prevent high peak voltages from the AGC circuit causing damage to the germanium diode. Be sure to:
a. Dress the germanium diode away from the white lead connected to pin 5 of AGC tube V304 (6AU6).
b. Dress the white lead close to the chassis
c. Dress the orange lead connected to pin 1 of AGC tube V304 (6AU6) away from video amplifier tube V305 (6AC7).

49. WIRING TO COLOR CONVERTER SOCKET M509 OMITTED

Run 17 in all 21 Series Chassis
In later production sets, plug M5 10 and wiring connections to socket M509 were omitted.
Some later sets do not have socket M509.
50. B PLUS AND AUDIO COUPLATE CIRCUIT CHANGED
Run 18 in 21 Kl Chassis, Run 19 in 21FI, 21 Gl 21M1, 21NI, 21P1 and 21Q1 Chassis
Changes were made in the B plus circuit to the sound amplifier V203 (6 AV 6) and to the first anode (pin 10) of picture tube V306. The schematic in figure 48 has these changes incorporated. Fiuse failure in sets having these changes will result in loss of both sound and picture.

In some sets audio couplate, part number 63B6-3 was replaced with coup-
late $63 \mathrm{~B} 6-5$. When couplate $63 \mathrm{~B} 6-3$ is used, terminal 3 is unused and late $6386-5$. When couplate $63 \mathrm{~B} 6-3$ is used, terminal 3 is unused and
R215 (270,000 ohms, $1 / 2$ watt) is connected in series with terminal 5. When couplate 63B6-5 is used, R210 is 470,000 ohms, and R211 is omitted. Couplate 63B6-5 is shown in the schematic Figure 48. A circuit of couplate 63B6-3 is shown at the right of schmatic.
51. CHANGE TO REDUCE CATHODE CURRENT

$$
\text { Run } 21 \text { in } 21 Y 1 \text { Chassis }
$$

To reduce the cathode current of horizontal output tube V406 (6CD6G), resistor R437 was changed from 470,000 ohms to 1 megohm, part number 60B8-105.

> 52. CHANGE TO IMPROVE PICTURE DEFINITION

Run 22 in all 21 Series Chassis
Changes were made to the video amplifier circuit of later production receivers to improve picture definition (eliminate picture smear). Picture smear may be apparent if the TUNING control is incorrectly tuned, when tuning to eliminate 4.5 MC beat interference.

Figure 41. Underside of IF Strip.

The changes to the video amplifier circuit are asfollows:
Peaking coil L304, part number 73A5-9 (with a gray dot was replaced with peaking coil part number 73A11-1. Peaking coil, 73A11-1 has a three pi winding
Peaking coil L303, part number 73A5-13 (with a white dot) was replaced with peaking coil, part number 73A5-14) (with a blue dot). Resistor R320 (part of L303) is 33,000 ohms when L303 has a white dot and 18,000 ohms when L303 has a blue dot.
A 4.5 MC trap coil (L308) with a 6.8 mmfd . condenser (C322) in series part number 72B99-3, is connected between pin 4 of video amplifier V305 $6 \mathrm{AC7})$ and chassis ground. The 6.8 mmfd . condenser connects to pin 4 of V305 (6AC7).

> Adding Change to Improve Picture Definition

To improve picture definition in an early production receiver (below Run 22), make the changes outlined in the pevious paragraph; also note the following instructions:
If part number 73All-1 is not available, use two 73A5-9 peaking coils connected in series, with shortlleads, so that the cails are not more than $3 / /$ inch apart. Connect a 22,000 ohm, $1 / 2$ watt resistor (part number 60B8. 223) across this two coil assembly

If part number 73A5-14 is not available, part number 73A5.13 should be left in the receiver and a $33,000 \mathrm{ohm}_{\mathrm{t}} 1 / 2$ watt resistor (part number 60B8333) should be wired across it.

Mount the 4.5 MC trap coil in the chassis hole located between tubes V305 (6AC7) and V403 (12AU7), with the 6.8 mmfd . condenser C322 connected to pin 4 of V305.
The trap should be tuned by watching the picture and adjusting the slug for minimum 4.5 MC interference. If greater accuracy is required, the ap should be adjusted according to the instructions given on page 83 under "Alignment of 4.5 MC Interference Trap L308".

R342 ADDED TO PREVENT RINGING

In later production sets, resistor R342, 4,700 ohms, $1 / 2$ watt (port number 60B8-472) was added across peaking coil L301 to prevent possible "ringing"' in picture. In very late production sets, resistor R342 and peaking coil L301 are a single unit, part number 73A5-15. Peaking coil L301 is
wound on the resistor R342.
53. DIFFERENT HORIZONTAL OUTPUT TUBE USED

$$
\text { Run } 23 \text { in } 21 \mathrm{KI}, 2 \mathrm{IL}, 21 \mathrm{Ml} \text { and } 2 \mathrm{IN1} \text { Chassis }
$$

In the above chass is the horizontal output tube V406 was changed from a 6B66GT tube to a 6CD6G tube. When a 6CD6G tube is used in the horizontal output stage, condenser C433 (across the width coil) is omitted. Resistor R437 (across horizontal drive trimmer) was changed from 470, 00 ohms to 1 megohm; and screen dropping resistor R442, 6,800 ohms, 2 watt, is replaced by two 3,300 ohm, 2 watt resistors in series, symbols R442 and R451. Changing to a 6CD6G tube has increased the power in
the output circuit.
54. FILTER ADDED TO MINIMIZE VERTICAL BARS IN PICTURE

Run 24 in 21M1 and 21Y1 Chassis
A filter has been added to eliminate or reduce to a minimum the brightness of shadow-type vertical bars which may appear at the left side of the picture.

This filter consists of resistor R450 (680 ohms, 2 watts, part number 60B20-681), condenser C434 (. $0068 \mathrm{mfd}, 600$ volts, paper, part numbe 64A2.15), and RF choke L406 (part number 73B8-2). These components are all connected in parallel and are wired in the set between terminal 4 of the horizontal output trensformer (T404) and pin 5 of the damper tube V407 (6W4GT).
55. ChANGE TO PREVENT PICTURE FLASHING AND IMPROVE SYNC STABILITY
Run 25 in All 21 Series Chass is
Changes were made in later production chassis to eliminate possible flashing (white horizontal bars in picture) and also improve sync stabil ity in weak signal areas. Resistor R331 (connected between pins 1 and 6 of 304) was changed from 220,000 ohms to 270,000 ohms, $1 / 2$ watt, part number 60B8-274. In the AGC lead to the TV tuner, resistor R304 (1,000
ohms) was omitted, and condenser C313 was changed from 001 mid. to $.47 \mathrm{mfd}, 100$ volts, part number 64A10.1. If slight flashing is still apparanet in a receiver having this change, see the paragraph below.

Adding Changes to Eliminate Flashing and Improve Sync Stability in Weak Signal Areas ync Stability in Weak Signal Areas

The following change can be added to early production chassis below Run 25 to eliminate flashing (white horizontal bars in picture) and also prevent loss of sync from automobile ignition and other high amplitude noise pulses. This type of interference will only appear when the AGC voltage is at a certain level.

1. Connect a. $47 \mathrm{mfd}, 100$ volt condenser (part number 64A10-1) across condenser C317
2. Remove resistor R331 (220,000 ohms) and replace it with a 470,000 ohm, $1 / 2$ watt resistor (part number 60B8-474). In areas where strong TV station is operating, it may be preferable to use a lower value resistor (270,000 to 220,000) to prevent possible picture "bending'" when tuned o a TV station with a strong signal.
3. If vertical roll is encountered in chassis stamped Run 14 or lower, make the Run 15 changes as described in paragraph 48.
4. CHANGE TO PREVENT HORIZONTAL

JITTER IN STRONG SIGNAL AREAS
Run 26 in 21F1, 21G1, 21M1 and 21 Y 1 Chassis
Changes were made in later production 21 series chassis stamped Run 26 to prevent possible horizontal jitterin strong signal areas. In some 21 series chassis with run numbers 25 and 26, pin 3 of sync separator 403, was connncted to one end of picture control R316. in later production sets, pin 3 of V403 is connected directly to chassis ground and one terminal of the picture control R316 is unused. Resistor R418 (in the plate circuit of V403) was changed from 39,000 ohms to 33,000 ohms, 3 watt, part number 60820-333.

HANGE IN $21 Y 1$ CHASSIS TO PREVEN

INSTABILITY ON RADIO OPERATION
In later production 21 YI chassis, condenser C717, 100 mmfd , ceramic, part number $65 \mathrm{C} 6-3$ has been added from terminal 1 of T702 (2nd IF ransformer) to chassis ground and one lead of the secondary winding of 202 (speaker output transformer) is connceted to chassis ground. These changes were made to prevent possible instability in the form of oscilation of the low end of the broadcast band

DIFFERENCES IN SYNC SEPARATOR CIRCUIT

In some later production sets (stamped Run 24 and 25), pin 3 (cathode) of 403 sync separator was connected to a terminal of the picture control R316 instead of going directly to chassis ground. In later production sets in 3 of V403 sync separator is connected directly to chassis ground and esistor R418 (in the plate circuit of V403) is 33,000 ohms, $1 / 2$ watt, part umber 60B8-333 in TV only sets, and 33,000 ohms, 2 watt, part number 60B20-333 in combination sets. Important: in some high signal strength年这, horizontal inter may occur in sets (Run 24 and 25) having pin 3 of 403 sync separator connecting to the picture control. In these sets, horizontal iitter can be elíminated by making the changes outlined in paragraph 56.

ADDITIONAL CHANGES FOR SETS WITH 'LOCAL-DISTANT"' SWITCH

Some receivers have been modified in the field to improve reception in extended fringe areas. These modifications include the addition of a "Local-Distant" switch; the complete modification is described under the heading "ncreasing Sensitivity for Extended Fringe Area Reception" on page 53 of Service Manual No. S362. The changes described below will further improve reception in these sets. Do not add these changes in sets which use a gated AGC circuit; these sets use a 6AU6 tube for V304.
Video Circuit Change: In some areas, particularly where a signal is sub. ject to fading, the picture may bend when the "Local-Distant" switch is in the "Distant" position. This condition may be eliminated or reduced by removing the direct coupling between the video detector V304 (6AL5) and the video amplifier V305 (6AC7). The wire connected between pin 4 ed by a $.1 \mathrm{mfd}, 400$ volt condenser (part number $64 \mathrm{~A} 2-10$). Connect a 1.2 megohm $1 / 2$ watt resistor (part number 60B8-125) between pins 4 and 5 of V305.

Improving Sound: To be sure that the sound will be satistactory, realign the three sound section slugs (A5, A6, A7) when checking the funer and IF stages. The ratio detector transformer $\mathbf{T 2 0 1}$ should be aligned very carefully. Where possible the bottom slug should be adjusted on a weak signal to a point where the sound is received with a minimum of noise.

R407 CHANGED TO IMPROVE LINEARITY
In sets using a 20 inch picture tube, resistor R407 was changed from 8,200 ohms to 10,000 ohms, $1 / 2$ watt, part number 6088-103. This change was made to improve linearity (prevent packing) at the top of the picture.

Change (IN SETS WITH GATED AGC) TO PREVENT PICTURE CUT-OFF OR DELAY IN AGC ACTION

To prevent possible picture cut-off or momentary delay in AGC action (in sets having a gated AGC circuit), width control L402 has been changed from atwo terminal coil (part number 94A29-1), to a three terminal tapped coil (part number 94A39-1).
Use of the three terminal width coil provides an increase (step-up) in the pulse amplitude (15.75 KC) applied to the plate (pin 5) of AGC tube V304 (6AU6).
The schematic diagram given in this supplement shows the circuit for both types of width coils. The three terminal width coil (part number 94A39-1) can be used as a replacement for the two terminal width coil if proper circuit connections are made.

DIFFERENT VERTICAL OUTPU
 TRANSFORMERS (T402) USED

Several alternate vertical output transformers were used in later production sets having rectangular picture tubes. Transformer, 79B29-1 was used in early sets. Transformer, 79B39-1 was used in later production sets having a 16 or 17 inch rectangular picture tube. Transformer, 79B40was used in later production sets having a 20 or 21 inch rectangular picture tube. Transformer, 79B29-1 has three leads and the transformers used in later production sets (79839-1 and 79B40-1) have four leads as shown on the schematic diagrams in this supplement. The white and yellow leads on transformers 79B39-1 and 79B40-1 are connected together to correspond to the yellow lead on transformer 79B29-1. Transformers 3829-1 and 79B39-1 are interchangeable. Only transformers 79B39-1 and $79840-1$ will be supplied as service replacements.

CHANGE TO REDUCE HISS IN SOUND
In high noise level areas, a hiss may be heard in the sound of the receiver. The following changes were made in the audio circuits of later production receivers to reduce the hiss level
Condenser C207 was changed from .001 mfd . to $.0022 \mathrm{mfd}, 600$ volts, part number 64B9-17. In TV only models, condenser C214 was changed from .005 mfd . to $.01 \mathrm{mfd}, 600$ volts, prot number 64B9-13.

WATTAGE OF SCREEN RESISTOR INCREASED

In later production sets which use a 6CD6G tube in the horizontal output stage V406, screen resistor R 42 was changed from 6,800 ohms to 3,300 hms, 2 watt, part number 60B20-332. Resistor R451, 3,300 ohms, 2 wat part number 60B20-332) was added in series with 2442 to bring the otal value of screen dropping resistance to 6,600 ohms. This change was made to allow for the greater wattage dissipation required for 6CD6G tubes.

CHANGE TO IMPROVE SHAPE OF IF RESPONSE CURVE
To improve more uniform peaks at the opposite sides of the IF response curve, resistor R301 (in the grid circuit of V301, 1st IF amplifier) was and from 10,000 ohms to 5,100 ohms, $1 / 2$ watt, 5%, part number $60 \mathrm{B7}$ I2. Adding this change to the IF circuit reduces

CONNECTING AN EXTERNAL RECORD PLAYER
TO MODELS USING A 21WI OR 21YI GHASSIS
A record ployer can easily be connected to "TV-Radio only models" which use a 21 Wl or 21 Yl chassis, since these chassis have a built-in "'Television-Radio-Phono" switch, a phono input iack, and a 110 vol AC socket for supplying power to operate a phonograph turntable.

Plug the phono-input in the phono jack located on the chassis, adjacen to the 6AV6 tube (V203). To eliminate the need for opening the cabine back each time the recorch player islug (part number 89A27-1).
The 110 volt AC socket (for operating a phonograph turntable) is located on the rear of the chassis, just below the speaker plug. This socket is designed to fit the specialype If a record player having a standard AC plig is to placed with a special plug, part number 88A8-1. The record player can be plugged in a 110 volt $A C$ wall receptacle, if it is not desired to re place the $A C$ plug.

Change to reduce appearance of RETRACE LINES

The following changes were mode in later production sets to reduce the appearance of retrace lines in the picture, thereby making adiustment o the brightness control less critical.
Resistor R335 (shunting picture control R316) was changed from 470 ohms to 270 ohms, $1 / 2$ watt, part number 60B8-271. Resistor R324 (in the cathode circuit of V306 picture tube) was changed from 560,000 ohms to 470,000 ohms, $1 / 2$ watt, part number 60B8-474.

Figure 43. Video Amplifier Circuit Change to Redace Pic. ture Smear. Components drawn in doted lines should be
uted only if peaking coils $73 \mathrm{AAII-1}$ and $73 \mathrm{A5}-14$ are not

waverorm data

tr voltage data
PICTURE conron lurned fult clockwiece CHANNEL monrol eet on

Line moluse 117 velto CL .

caution

(1), (12), …..(T), (2), etc. indicate alignment points and alignment connections.

SERVICING RADIO SEPARATELY

CING RADIO SEPARATELY	,
The radio can be operated without the teleivion chassis if a 2PAl power supply (used in	
TV-radio-phono modele emploving the thezt (12")	; 19
	3000
This resistor drops the B plus voltage	Socket, (Inside

SERVICING TV SEPARATELY

In combination modelas to so srice the television chasisis with the radio disconnected, in
will be neccessary to complete the heater circuit by connecting a jumper wire between pint " L " and " " K " of socket $\mathrm{MS03}$. See schematic.

 Note: This schematic applies only to chassis stamped Run 20 to Run 26

TV TUNER 94C37-1

 - Line volesege 117 volte $A C$.
 curron

TV TUNER 94C37-1

schematic notes

waveform data

$$
\begin{aligned}
& \text { voltaGE Dita } \\
& \text { (Votogen piono on "chemotice) }
\end{aligned}
$$

TV TUNER $94045-1$

Figure 14. Schematic for 22A2, 22A2A and 22Y1 Television and Radio Chassis. Note: This schematic applies only to chassis stamped Run 1
 25,

Tan ${ }^{2}$
(11). (42),.....(Y), (2). etc. indicate alignment points and alignment connections.

Top Vieer of 22M1 Chancis.

Tr voltage data
IVotrag given on ochemotion
 - Volitres, metked with an esteriok - will very widely with control Line voluse 117 volo $A C$.

Volinged a
remol, V102, v306 messured drom top of noch
\qquad

and

DX RANGE FINDER ADJUSTMENT

Incorrect adjustment of this control in a strong signal area may result bending of the picture, excessive contrast and poor sync.

In normal signal strength areas, the DX Range Finder Control will generally be set at the " O " position. In intermediate areas, where the TV signal strength is lower and the noise level is higher, the DX Range Finder control will generally be set within the 10 to 150 position. In inge areas or areas where long distance "DX reception is possible, the DX Range Finder control will generally be set within the 150 to 300 position. In weak signal and high noise level areas, adiust the DX Range Finder for minimum noise (snow) in the picture.

Adjust the DX Range Finder as follows

. Rotate the DX Range Finder control fully to the left (to the " 0 " set ting).
b. Tune in a picture, preferably on the strongest TV channel.
c. Set the Picture (contrast) control fully to the right (clockwise). d. While observing a test pattern or picture, slowly rotate the DX Range Finder control to the right for best contrast with minimum snow in the picture.
Check for bending of vertical objects (overloading) in the picture. Also check to see that the picture locks in sync properly when switching off and on channel. If necessary, rotate the DX Range Finder control to the left or to the right until the operation is satisfactory.
In some fringe areas where long range reception is possible, TV signals may be subject to excessive fading. This may vary with season and time may be subject to excessive foding. This may vary with season and fame of day. If the signal in the area concerned is subject to excessive fading
and the Range Finder is adjusted during the time the signal is weakest and the Range Finder is adjusted during the time the signal is weakest
overloading (picture bending) will take place when the signal is stronger. For this reason be sure that the customer is instructed on the adjustment of this control for periodic voriations in signal strength.

PRODUCTION CHANGE

CHANGE FOR INCREASED SOUND LEVEL

$$
\text { Run } 1 \text { in } 22 C 2 \text { and } 22 E 2 \text { chassis }
$$

Early production sets used a 12AU7 tube for video detector and first Early production sets used a 12 aUt rube for video detector and firs used a $12 \mathrm{AT7}$ tube for V304. The schematic figure 16 shows a partial circuit of the first IF amplifier in sets using the 12AU7 tube. Important: The 12AU7 and 12AT7 tubes are not directly interchangeable. Replace with same type tube used in receiver.

MECHANICAL CHANGE IN RADIO TUNER
USED IN 22E2 CHASSIS
Mechanical changes were made to the later production radio tuner subchassis used in 22E2 combination models. The dimensions of the radio chassis were altered slightly and the mounting position of the gang condenser was changed.
Early production radio tuners used gang condenser (part number 68853) which mounts in a vertical position. Later production radio tuners use gang condenser (part number 68B53-1) which mounts in a horizontal pos. ition.

CHANGE TO PREVENT HORIZONTAL JITTER IN STRONG SIGNAL AREAS

Run 1 and higher in all 22 Series Chassis

Changes were made in 22 series chassis (stamped Run 1 and higher) to prevent possible horizontal jitter in strong signal areas. In 22 Y 1 sets which have no run number stamp, pin 3 of sync separator V403, was connected to one end of picture control R316. In sets stamped Run 1 and higher, pin 3 of V403 is connected directly to chassis ground and one plate circuit of V403) was changed from 39,000 ohms to 33,000 ohms, 2 watt, part number 60B20-333 and resistor R331 (connected between pins 1 and 6 of V307) was changed from 220,000 ohms to 270,000 ohms to $1 / 2$ watt, part number 60B8-274.

SERVICE HINTS

TROUBLE SHOOTING

The 22C2 and 22E2 chassis described in this manual are similar to other chassis in the 22 series with respect to the sync, sweep ond power supply circuit. The basic differences in the 22C2 and 22E2 chassis over other 22 series are outlined under "New Features in 22C2 and 22E2 Chassis'
In general, the trouble shooting of the 22C2 and 22E2 chassis will be similar to that of other chassis in the 22 series which use a cascode TV tuner.
It is important, however, to remember the following trouble shooting hints which apply to the 22C2 and 22E2 chassis
No picture or sound: Raster OK. Incorrect adjustment of the DX Range Finder control in a weak signal area may result in complete loss of picture and sound. In strong signal areas, incorrec. adiustment may also result in picture bending, excessive contrast and poor sync.

No sound and no raster. In the 22C2 chassis, no sound and no raster or distroted sound and no raster can be due to a blown fuse M401. See paragraph on "Replacing Fuse M4O1".

Excessive curvature at the sides of the picture (pin cushion effect) of bending of corners. Excessive curvature at the sides of the picture (pin cushion effect) or bending of corners con be due to misadjustment of the curvature correcting magnets. See "Adiusting Curvature Correcting Mag nets Used With 21EP4A (21') Picture Tube.
Picture bending, excessive contrast or poor sync. Incorrect adjustment of the DX Range Finder control in a strong signal area, may result in picture bending, excessive contrast and poor sync. Incorrect adjustment in a weak signal area may also result in complete loss of picture and sound.

miscellaneous troubles due to
 FAULTY TUBES

Fauty tubes cause the majority of receivers troubles. The list below contains most common troubles which are generally due to faulty tubes. a. Poor fringe area reception due to low B plus voltage. Check the 5U4G tube.
b. Poor fringe orea reception due to low sensitivity. Check the 6CB6 6AG5, and 6BZ7 tubes.

Picture and sound separated due to IF oscillation. Check the 6CB6 and 6AG5 tubes.
d. Picture bending caused by leakage between tube elements. Check the 6CB6 tubes.
e. Poor stability, usually more noticeable in vertical circuit. Check 12AU7 tube.
f. Washed out picture due to negative grid current. Check 6AC7 tube.

EXCESSIVE SNOW IN PICTURE

Excessive snow in the picture can be caused by faulty tubes in the re eiver. Check receiver as follows
Short circuit the antenna terminals and turn the picture control (contrast) fully clockwise.

Connect a vacuum tube voltmeter from test point " V " to chassis. Set he channel selector on an unassigned channel. If the voltmeter reading exceeds .6 volt negative, excessive receiver (tube) noise is indicated This condition can usvally be corrected by tube substitution. Substitute tubes in the following order: Video detector tube V304, RF oscillato ube V102, RF amplifier tube V101 and IF amplifier tube V301, V302 and V303.

Corona or arcing in the second anode supply can also cause a high noise reading.
DISTORTED SOUND

Distorted sound can be caused by misalignment of the ratio detecto ransformer T201. This misalignment is sometimes due to frequency drifi of the ratio detector transformer. If realignment of the ratio detecto rransformer does not correct this trouble permanently, a permanent remedy for this trouble is to connect a $\mathbf{2 0} \mathbf{m m f d}$, - $\mathbf{7 5 0}$ temperature coefficiant, ceramic condenser (part number 65C6-26) in paraliel with condenser C204 (180 mmfd , ceramic, connected across the secondary of the ratio defector transformer T201). Realign ratio detector after adding the 20 mmfd, condenser.

IMPORTANT NOTE ON 27.25 MC AND 19.75 MC TRAP ALIGNMENT

If difficulty is experienced in aligning the 27.25 MC and 19.75 MC traps (A7 and A8), using the method outlined in the alignment procedure make rap alignment as follows:
Connect an oscilloscope between pin 8 (plate) of video amplifier V305 (6AC7) and chassis.
2. Make all connections and receiver control settings as instructed in steps 5 and 6 of the alignment procedure.
3. Operate the signal generator with AM (audio) modulation turned on. Full generator output may be required.

Note: If a termination resistor is used in the generator output cable, in reased generator output can be obtained by disconnecting the terminat ing resistor. Connect a condenser (. 002 mfd . or larger) in series with the generator high side.
4. Adiust A7 (27.25 MC trap) and A8 (19.75 MC trap) for minimum amplit ude of the waveform on the oscilloscope.

SPECIFICATIONS FOR 23AI CHASSIS Picture Tube
Type 27EP4 ($27^{\prime \prime}$) rectangular picture tube with aluminum coated screen. Magnet deflection and focus.
Operating Voltage
$110-120$ volts, 60 cycles, $A C$.
265 watts for all models
Input Impedance and Transmission Line
300 -ohm balanced (between antenna terminals).
Note that 72 -ohm coaxial cable may be used by connecting the outer conductor to the chassis and the inner conductor to either antenna terminal In weak signal areas, the use of coaxial cable should be avoided.

Antenna

All models equipped with a built-in TV antenna. Intermediate Frequencies
Video 25.75 MC. Sound 21.25 MC Intercarrier Sound 4.5 MC.
Fuse Location

The horizontal output circuit is fused with a $3 / 8$ amp., 250 -valt fuse, part number 84A4-3. The fuse is located at the rear of the high voltage compartment.

TUBE COMPLEMENT FOR 23AI CHASSIS		
V101	6BZ7	RF Amplifier
V102	6J6	Oscillator and Mixer
V201	6AU6	2nd Sound IF
V202	6AL5	Ratio Detector
V203	6AV6	Sound Amplifier
V204	6V6GT	Sound Output
V301	6CB6	1st IF
V302	6CB6	2nd IF
V303	6AG5	3rd IF
V304A		Video Detector
V304B	12AT7	1st Sound IF
V305	6CL6	Video Amplifier
V306	27EP4	Picture Tube
V307	6AU6	Gated AGC
V401A	6SN7GT	Vertical Oscillator
V401B	6AV5GT	Sync Inverter
V402	6AV5GT	Vertical Output
V403	12AU7	Sync Separator ond Clipper
V404	6AL5	Sync Discriminator
V405	6SN7GT	Horizontal Oscillator
V406	6CD6G	Horizontal Output
V407	1B3GT	2nd Anode Rectifier
V408	6V3	Damper
V501	5U4G	Low Voltage Rectifier
V502	5U4G	High Voltage Rectifier

23AI CHASSIS NOTES

The 23Al chassis is a 23 tube television receiver using a 27 inch (27EP4) rectangular picture tube. The picture tube is mounted separately from the chassis. Circuitry of the 23Al chassis is similar to that of the 22 series chassis with the exception of the video amplifier, vertical graphs below on "New Features In 23A1 Chassis."

NEW FEATURES IN 23AI CHASSIS

New Video Amplifier: A 6CL6 tube (9-pin miniature pentode) is used as a video amplifier. This tube is capable of higher output, thereby provid. ing greater peak-to-peak output voltage with high efficiency and low amplitude distortion.

New 27' Picture Tube: A 27EP4 (27" rectangular) picture tube is used. This picture tube features a high quality neutral density face plate which produces increased picture contrast and detail under high ambient light conditions. A reflective metal back (aluminized screen backing) increases the light output and contrast.
Vertical Retrace Blanking Circuit: A vertical retrace blanking circuit is used to eliminate vertical retrace lines. Vertical retrace blanking is achieved by applying the pulse voltage appearing at the secondary of achieved by applying the pulse voltage appearing
the output transformer to the grid of the picture tube.
New Vertical Output Tube: A 6AV5GT beam power amplifier is used as the vertical output tube. This tube is capable of greater output currents ot low plate and screen voltages. Use of the 6AV5GT tube and other circuit improvements made to the vertical output stage has resulted in increased vertical output and improved interlace.

Improve Horizontal Output Circuit: A new high efficiency auto-transformer with a ferrite core is coupled directly to a high efficiency 90 degree deflection yoke. A potentiometer type Horizontal Drive control is used for the drive odjustment. A new Width control (having two windings) permits more effective and increased range of width adjustment.
Circuit improvements made to the horizontal output stage have resulted in increased output, capable of producing full 90 degrees deflection and increased 2 nd anode voltage (approximately 19,000 volts).

New Damper Tube: A 6V3 tube (9-pin miniature) is used as the damper tube. This tube features a higher heater to cathode breakdown voltage rating, higher peak inverse plate voltage rating and greater ability to handle high peak currents. Use of this new damper tube minimizes pos. sibility of tube failure in the damper circuit.

Improved Deflection Yoke: A newly designed deflection yoke, provides the 90 degree deflection angle required for the 27 inch picture tube. SERVICE HINTS

Improper Focus (control focuses at extreme end of rotation, 23A1 chassis): This may be caused by a weak 5U4G rectifier tube V501. Try another rectifier tube.
It may also be impossible to obtain good focus with FOCUS control if the focus coil is spaced too far away from the deflection yoke coil. Spacing between the focus coil and the deflection yoke coil should be $3 / 8$ of aninch minimum. The deflection yoke coil should be as far forward on the neck of the tube as possible.

Insufficient Picture Width (23A1 chassis). This may ks caused by weak rectifier tube V502, a weak horizontal output tube V406 or a weak damper tube V408.

Insufficient picture width may also be caused by incorrect adjustment of the Horizontal Drive control R447, or improper positioning of the focus coil on the deflection yoke housing. Moving the focus coil too close to the deflection yoke coil will result in reduction of picture width. The spacing between the focus coil and the deflection yoke coil should be 3/8 of an inch minimum

White Flashes Across Picture (22C2, 22E2 and 23A1 chassis): In weak signal, high noise level areas, white flashes across the picture can sometimes be minimized by careful adjustment of the DX Range Finder control. Caution: Turning the DX Range Finder control too for to the

No Picture; Sound Normal (22C2, 22E2 and 23A1 chassis): If the DX Range Finder control is turned too for to the right for a strong signal, the picture may disappear completely. Advancing the DX Range Finder control too far to the right for a strong signal area will cause excessive delay in AGC bias thereby blocking the video amplifier.

TROUBLE SHOOTING B PLUS CIRCUITS

The power supply and B plus distribution circuits of the 23A1 chassis are different from previous model television receivers. A simplified diagram, showing the B plus distribution in the 23Al chassis, is shown in
figure 20 .

REDUCING SNOW IN INTERMEDIATE FRINGE AREAS
(Applies to 22C2, 22E2 Chassis Below Run 2 and 23A1 Chassis without a Run Number)

To reduce snow (front end noise) in intermediate fringe areas, it is recommended that the tuner AGC voltage be reduced to $11 / 2$ or 2 volts recommended that the tuner AGC voltage be reduced to $11 / 2$ or 2 volts.
This reduction in AGC voltage can be accomplished by removing resistor R337 (150,000 ohms) and replacing it with a 100,000 ohm resistor and a 47,000 ohm resistor connected in series. Connect the 47,000 ohm esistor to chassis ground and the 100,000 ohm resistor to resistor R302, 1,000 ohms (test point " T '). Remove the tuner AGC lead (usually white) from test point " T " and connect it to the iunction of the 100,000 ohm resistor and 47,000 ohm resistor. To reduce the possibility of unstable operation, it is recommended that the tuner AGC lead be by-passed to chassis by a .005 mfd , ceramic condenser.

Figure 16. Schematic for 22C2 Television Chassis.

Waveforms taken with Picture control set fully to the right, all other controls set for normal picture (in sync). Important: In- correct adjustment of the DX Rense Finder control will cause correct adjustment of the DX Range Finder control will cause waveform distortion. DX Range Finder should be at zero setting. Waveforms at video and sync atages obtained with tranamitted signal input to receiver. The oscilloscope sweep is adjusted for 30 cyclem (which is one, half of the vertical frequency), or for 7875 cycles (which is one. half of the verical frequency), or for 7875 cycles (which is one- half of the horizontal frequency) so that two complete waveforme The peak-to-peak voltage readings shown are subject to some variations due to response of the oscilloscope and parts tolerances. caution test equipment. Waveform and peakro-peak voltage at cep of $V 408$ taken, using an oscilloscope wish capacitive voltage divider probe. Waveform at the cap of $V 408$ can be taken by clipping or t wisting the lead from the oscilloscope hist aide over the insula tion on the cap lead. When taking the waveform this way the shape of waveform will be the same but the peakoto-peak voltege

- All 19 series chassis employ the same basic television circuitry. The 19B1, 19CI, 19F1A and 19H1 chassis are television only models. The 19E1 chassis is used in combination models.
The 19B1 chassis uses a $17^{\prime \prime}$ rectangular picture tube (17BP4). The 19 Cl and 19E1 chassis use a $20^{\prime \prime}$ rectangular picture tube (20DP4). The 19F1A chassis uses a $21^{\prime \prime}$ (spherical faced) rectangular picture tube (2 WP4). The 19 HI chassis uses a $2 \mathrm{l}^{\prime \prime}$ (cylindrical faced) rectangular picture tube (2IEP4).

A tone control is used in the 19 Cl . 19E1 and 19 H 1 chassis. The 19E1 chassis uses a PM speaker. The 19B1, 19C1, 19F1A and 19H1 chassis use an EM speaker. All chassis use PM focus.
The 19B1 chassis uses the 94D52-1 TV tuner having a pentode tube (6BC5) used as an RF amplifier. All other chassis in the 19 series use the $94 \mathrm{D} 46-2$ (cascode) TV tuner using a twin triode tube (6BZ7) as an RF amplifier.

SERVICE HINTS

TROUBLE SHOOTING
The 19 series chassis covered in this section are newly designed sets incorporating the latest in television circuitry. These chassis are similar to other late Admiral chassis with respect to the sync, sweep are similar to other late Admiral chassis with respect to the sync, sweep
and power supply circuits. New features incorporated in the 19 series chassis are outlined in paragraph on "New Features in 19 Series Chassis'". Important: Since there are many differences in the 19 series chassis over earlier model Admiral receivers, it is important to remember the following when servicing or installing receivers having the 19 series chassis.

All 19 series chassis have a "DX Range Finder control" (AGC delay circuit). This control is a potentiometer located at the rear of the chassis to enable precision adjustment of receiver sensitivity to suit the signal conditions in any local of fringe area. Incorrect adjustment of this control in a strong signal area, may result in picture bending, excessive contrast and poor sync. Incorrect adjustment in a weak signal area may result in complete loss of picture and sound.
The sound output tube V204 (6Y6G or 6AS5) functions as a voltage dropping tube in addition to being a sound output tube. The cathode of the sound output tube operates at approximately 140 volts above chassis plus voltage to the TV tuer syne separator and clipper, video amplifier plus voltage to the TV tuner, sync separator and clipper, video amplifier
and $A G C$ delay circuit will be affected. and AGC delay circuir will be affected.
In chassis stamped Run 2 or lower, the first and second IF amplifiers V301 and V302 are in series. The cathode of V302 is operated at approximately 120 volts above chassis ground. If either V 301 or V302 become defective, B plus voltage to the other stage will be affected.
In chassis stamped Run 3 or higher (except 1931), B plus voltage to the first and second IF amplifiers V301 and V302 is in parallel. When making voltage measurements in chassis (except 19B1) stamped Run 3 and higher it is important to note that the plate and screen voltages at the first and second IF amplifier stages, V301 and V302, may vary over a wide range depending on the strength of the TV signal. The voltages shown on the
schematics are taken with the antenna disconnected and antenna termin als shorted; see Voltage Data on schematic pages.

In sets using the 94D46-2 or 94D46-3 cascode tuner, the triode sections of the RF stages (V101) are in series. The cathode of the second triode section is operated at approximately 130 volts above chassis ground. If the tube should be come defective or be removed from the socket, there will be no B plus on the plate of the first triode section. See B plus distribution diagrams, figures 9 and 10 .
The horizontal oscillator circuit utilizes pulse width modulation for con trol of the horizontal oscillator frequency. Information on servicing the horizontal oscillator and horizontal oscillator control circuit is given in paragraph "Service Hints foi Horizontal Sync". Note: An oscilloscope is required for alignment of the horizontal oscillator waveform.
When servicing these chassis in the shop, it is important that the correct type of speaker or speaker substitute be used. The 19B1, 19CI, 19F1, 19F1A and 19H1 chassis use an EM speaker with output transformer, or a PM speaker with an output transformer and filter choke mounted to it the chassis, and 19 NI chassis stamped with the letter ' T ' of the rear of former mounted on the television chassis. 19E1, 19G1 and 19N1 chassis without the letter " T " use a permanent magnet (PM) speaker with the output transformer mounted directly on the speaker. Use of an incorrec speaker will result in no B plus voltage or weak and distorted sound.

NEW FEATURES

New TV Tuners (part Nos. 94D52-1, 94D52-2, 94D46-2 and 94D46-3): New improved TV tuners are used. The 94D52-1 and 94D52-2 (pentode type) TV tuners are used in models having a 17" picture tube. The 94D46-2 and 94D46-3 tuners (cascode type) are used in models having a $20^{\prime \prime}$ or $21^{\prime \prime}$ picture tube.
These new improved TV tuners feature high sensitivity and high signal to noise ratio. This is made possible by improved tuner circuitry. The circuits in the RF stage of the 94D52-1 and 94D52-2 tuners have been optimized for the 6BC5 tube and the circuits of the 94D46-2 and 94D46-3 uners have been optimized for the 6BZ7 tube
The 94D46-3 cascode TV tuner is used in all later production chassis (Run 6 and higher), with exception of the 19B1 chassis. The 94D52-2 pentode TV tuner is used in later production 19B1 chassis (Run 6 and higher).
TV tuners 94D46-2 and 94D46-3 are identical, with exception of shaft length. TV tuners 94D52-1 and 94D52-2 are identical with exception of shaft length.
DX Range Finder Control: A DX Range Finder control (AGC delay circuit) is used in all 19 series chassis. This control is a potentiometer located the rear of the chassis to enable adjustment of receiver sensitivity to suit the signal conditions in any local or fringe area.
Improved Video Amplifier: Improved circuitry and use of the 6CB6 tube as a video amplifier have resulted in improved picture definition with greater range of contrast.
Tone Control: A tone control is used in all chassis with exception of the 19B1 and 19F1A.

Horizontal Oscillator Circuit: Pulse Width Modulation is used for control or horizontal oscillator frequency. Better control of oscillator frequency has increased the "hold-in" range of the oscillator and improved noise immunity and sync stability in weak signal high noise level areas over Iso provides better drive to the horizontal output stage.
Horizontal Output Circuit: An improved horizontal output circuit, using a high efficiency auto-transformer provides second anode voltage (approximately 15,000 volts) for good picture definition. A new tube ($6 \mathrm{AX4GT}$) is used in the damper circuit.

Improved Width and Linearity Control: The width control and horizontal inearity controls are of the slider type. Use of slider type controls has made adjustment faster and more accurate.
PM Focus: A PM focus assembly is used in all 19 series chassis. Use of the PM focus assembly provides good line focus and minimizes the defocusing effect on the electron beam due to voltage variation.

Vertical Retrace Blanking Circuit: A vertical retrace blanking circuit is used in later production sets (stamped Run 5 and higher). Vertical rerace blanking is achieved by applying the pulse voltage appearing at the secondary of the putput transformer to the grid of the picture tube.

EXCESSIVE SNOW IN PICTURE DUE TO

FAULTY TUBES

Excessive snow in the picture can be caused by faulty tubes in the receiver. Check receiver as follows:
Short circuit the antenna terminals and turn the Picture control (contrast) fully clockwise.

Connect a vacuum tube voltmeter from test point " V " to chassis. Set the channel selector on an unassigned channel. If the voltmeter reading exceeds .6 volt negative, excessive receiverl (tube) noise is indicated. This condition can usually be corrected by tube substitution. Substitute tubes in the following order: Video detector tube V304, RF oscillator tube V102, RF amplifier tube V101 and IF amplifier tubes V301, V302 and V303.
Corona or arcing in the second anode supply can also cause a high noise reading at the video detector resulting in excessive snow in weak signal areas.
If the above does not eliminate excessive snow and the chassis is stamped Run 2 or lower, see the "Snow Changes" listed under Run 3 Production Change. Note: Since this portion of the Run 3 change is rather involved, we do not recommend that it be made in the field. However, if it is desired to make the changes complete instructions can be obtained by North Water Street, Chicago 2, Illinois.

VERTICAL JITTER AND POOR INTERLACE
Vertical jitter and poor interlace may oceur in early production receivers, if the red lead (terminal 3) of the deflection yoke T403B is dressed too close to the grid circuit of the vertical output tube V 402 (654). The red lead to the deflection yoke should be dressed against the chassis and as far away from the grid circuit of the vertical output tube as possible.

CIRCUIT CHANGES TO REDUCE BENDING AND IMPROVE HORIZONTAL SYNC

Making the following circuit changes to an early production chassis, will minimize bending of the picture ot high contrast control settings in strong signal areas and improve horizontal sync in medium fringe areas.

MPORTANT: Before making changes below, check whether bending or sync trouble is due to faulty tubes, defective components, misadiustment of the DX Range Finder control, or horizontal sync adjustment.

Add changes as follows:

1. Check connections to the DX Range Finder control R315. Be sure hat the center terminal is grounded and that the white wire goes to the terminal of the DX Range Finder nearest the bottom edge of the chassis. Connect a wire lead from pin 1 of V304 (6AL5) to the remaining terminal of the Range Finder control. See figure 14.
2. In chassis using a 6AS5 sound output tube (V204), change resistor R212 from 3,600 ohms to 1,500 ohms, $1 / 2$ wott, 5%. In chassis using a 6Y6G sound output tube (V204), change resistor R212 from 4,700 ohms to 2,000 ohms, $1 / 2$ watt, 5%.
3. In chassis using a 6AS5 sound output tube (V204), change resistor R213 from 1,100 ohms to 910 ohms, $1 / 2$ watt, 5%. In chassis using a 6Y6G sound output tube, change resistor R218 from 2,000 ohms to $\mathbf{1 , 5 0 0}$ ohms, $1 / 2$ watt, 5%.
4. In some areas, it may be beneficial to increase the sync pulse level by changing the sync take-off on the video amplifier plate load. Dis. connect R327 (2,700 ohms) from the junction of resistors R325 and R326 (2,700 ohms). Reconnect R327 to the iunction of R325 (2,700 ohms) and peaking coil L306. See figure 14.
5. Make the Run 4 change, which consists of connecting a 8,200 ohm resistor (R443) in series with resistor R407 (between terminal 3 of the vertical integrator coupltae and pin 1 of V401B). See figure 14.

6. Since step 1 above is effective only with the DX Range Finder set at ' O ', use this setting unless higher setting gives better results.

ELIMINATING AUDIO HUM

Strong (60 cycle) audio hum in these receivers can be due to any one of the causes listed below, which can easily be corrected

1. Hum may be due to coupling between components in the audio input circuit and the AC wiring. Check the 117 volt $A C$ leads to the On_{n}-Off switch. These leads should dress away as far as possible from the grid circuit of the sound amplifier V203. In models using tone control and the plate (pin 7) of V203 away from the AC leads.
2. Check position of condenser C209 (. 01 mfd .) in the sound amplifie circuit (V203) to make certain that it is not too close to the 117 volt AC wiring or On -Off switch. If C 209 is a tubular paper condenser, the outside foil terminal should be connected to the iunction of resisto R207 (47.000 ohms) and condenser C208 (. 0022 mfd .).
3. Check the B plus (power supply) circuits for an open or under capacity electrolytic condenser. Especially check filter condenser C501 60 mfd., 350 volts.
4. If the receiver is a TV only model using a $10^{\prime \prime}$ electro-magnetic (EM) speaker, it may be passible that the speaker is the cause of excessive hum. The speaker may be checked by substituting another speaker of the same type. The original $10^{\prime \prime}$ electro-magnetic (EM) speaker part number 78B75-1, can be checked by substituting a permanent magnet (PM) speaker with the filter choke attached such as part number 78B80-1.

SOUND BARS IN PICTURE

Sound bars noticeable ot high volume levels, may be caused by heavy audio currents being induced in the B plus circuits. This can be due to the location or thr routing of leads to electrolytic condenser C215. Condenser C215 is the single section electrolytic condenser (80 mfd , 350 volts) which is mounted at the center of the chassis.

To minimize the possibility of sound bars in the picture, the mounting To minimize the possibility of sound bars in the picture, the mounting
and routing of leads to electrolytic condenser C215 were changed. In later production sets, electrolytic condenser C215 is mounted in para Ilel ond in front of the 9 lug terminal strip near the center of the chas sis. When mounted this way, the terminals of condenser C215 face away from the TV tuner, thus permitting the negative lead C215 to connect directly to the cathode of the sound output tube V204.

TOUCH-UP OF RATIO DETECTOR SECONDARY USING
 TELEVISION SIGNAL (A8, BOTTOM SLUG OF T2OI)

*Adjustment $\mathbf{A 8}$ is accessible through the $1 / 4$ " hole (just below T201) in bottom of the cabinet or the chassis mounting shelf, located toward the left side facing the rear of the set. Removal of the chassis is therefore not required. Adjustment need be made on one channel only. Proceed as follows:
a. Turn set on and allow about 15 minutes for warm up
b. Tune set for normal picture and sound.
c. Carefully insert a non-metallic alignment tool through the opening in cabinet bottom below T201. An alignment tool with a screwdriver blade or hexagonal end is required depending on the transformer used, see * note below. When the alignment tool engages the bottom tuning slug A8, adjust the slug for best sound with minimum buzz level. Do this carefully as only slight rotation in either direction will generally be required. Correct adjustment point is located between the two maximum buzz peaks that will be noticed when turning the slug back and forth about $1 / 4$ to $1 / 2$ turn.

ALIGNMENT OF 4.5 MC TRAP A9, USING A
TELEVISION SIGNAL
Beat interference (4.5 MC) appears in picture as very fine vertical or diagonal lines, very close together having a "gauze-like" appearance, the pattern will vary with speech, forming a very fine herringbone pattern.

The trap can be tuned by watching the picture and adiusting slug A9 for minimum 4.5 MC interference. If greater accuracy is required, the trap should be adjusted as instructed in step 3 of the " 4.5 MC Sound IF and Trap Alignment' procedure.

SERVICING RADIO TUBES AND DIAL LIGHT IN COMBINATION MODELS

The radio tubes can be serviced without removing the TV chassis from the cabinet. The radio tubes can be reached through the opening in the underside of the chassis shelf.

The dial light can be serviced by removing the tuning knobs and plastic control panel. A number 44 dial light (part number 81A1-5) is used in sets stamped Run 5 or lower; a number 47 dial light (part number 81A1-8) is used in sets stamped Run 6 or higher.

REMOVABLE PICTURE WINDOW

All models using the 19 series television chassis hove picture windows which can be easily removed from the front of the cabinet for cleaning the inside of the window, picture tube and picture tube mask. Two types of picture window mountains are used. A removable molding in used in wood cabinet models. Removable corner brackets are used in plastic cabinet models.

If rotio detector transformer (T201) has hollow hexagonal core slugs, bottom slug adjustment A8 can be made from top of chassis, if you use alignment tool (part number 98A30-7; available at Admiral Distributor). Bottom slug (A8) can be reached through the hole in the core of the upper slug (A10).

REMOVING PICTURE WINDOW FOR CLEANING

If the picture window has a removable molding (at the top), remove the window by first removing the Phillips head screws and molding of the top of the picture window. Pull the top of the window away from the cabinet slightly and lift it up out of the channel at the bottom
After cleaning the window, picture tube and picture tube mask as instructed below, install the window by placing the bottom edge in the channel and replace the molding. Use care when tightening screws on molding to prevent stripping.
If the picture window has removable corner brackets, first remove the two brackets at the top of the window. Then, while holding the window llitl

After cleaning, install the window by setting it in position and mounting the corner brackets. Use care when tightening bracket mounting screws to prevent stripping or cracking glass.

INSUFFICIENT HEIGHT

If adiustment of the Height and Vertical Linearity controls does not provide sufficient height, try replacing the vertical output tube V402 (654). Insufficient height can also be due to a weak vertical oscillato tube V303 (6U8).

B plus distribution in television chassis
Figures 9 and 10 illustrate the basic \mathbf{B} plus distribution used in these chassis. The B plus distribution in chassis stamped Run 2 or lower is shown in figure 9. The B plus distribution in chassis stamped Run 3 and higher is shown in figure 10. Note: There are variations in the B plus highis of TY and combination models and TY models using a differ circuls of TV RF amplifier tobe (VIOI) RF amplifier tube (V101) is shown in figure 9.

Figure 9. B+ Distribution in Chassis Stamper

Figure 10. B+ $+\underset{\text { Stamped Rution in } 3 \text { All Chassis }}{\text { Stais }}$ (except 19B1)

SERVICE HINTS FOR HORIZONTAL SYNC

The horizontal oscillator control circuit controls the horizontal oscillator by a method called "Pulse Width Modulation". This method is so called, because the width of the pulse applied to the grid of the horizontal oscillator control section determines the length of time that current flows through this section. The duration of current flow through the control section determines the DC control voltage applied to the grid of horizontal oscillator, thereby, controlling the frequency.
The waveshape applied to the grid of the horizontal oscillator control section is formed by combining a partially integrated pulse from the horizontal oscillatar output and the horizontal sync pulse. If these two pulses combine properly, the waveshape shown in figure 11 will be developed and the horizontal oscillator will be in sync.

With no sync input, the waveform at the horizontal oscillator contro rid should appear as shown in figure 12 Since the horizontal ossillet cornol voltage is output stages (V404, V405 and V406), a defective component in one of these stages may cause sync trouble. If the waveform shown in figure these stages may cause sync trouble. If the waverorm shown in figure sweep circuit.
When the horizontal oscillator is out of sync, it may be difficult to observe this waveform (figure 12) on an oscilloscope due to the presence of out-of-phase sync pulses. In this case, remove the sync separator and sync clipper tube V410. If the waveform shown in figure 12 is obtained, place the sync and separator tube back into its socket. Then, remove the horizontal oscillator and control tube V403 ($65 N 7 G T$). Conventional, well-shaped sync pulses should appear at control grid (pin 1) of V403.
If there ore no sync pulses, or the pulses are of low or varying amplitude, accompanied with noise, the sync circuits should be checked. However, if the sync pulses are well-shaped and of constant amplitude, the horizontal oscillator may be misaligned. Place V403 back into its socket and make the "Horizontal Oscillotor Alignment". See page 69.

If it is impossible to sync the picture, or obtain the correct waveform ot terminal " C ', check for a defective component in the following sequence
a. Check tube V403 (6SN7GT) by substitution.
b. Check $\mathbf{C 4 1 7}$ by substituting identical condenser ($\mathbf{2 7 0} \mathrm{mmfd}$) part num ber 65B21-271.
c. Check $\mathbf{C 4 1 3}$ for either open or short
d. Check condenser C416 for short.
e. Check resistance of R428. It should be 150,000 ohms.
f. Lead dress is critical in the horizontal oscillator circuit. Check to see that lead dress has not been disturbed while servicing.

PRODUCTION CHANGES

Change to prevent fuse failure in tv-radio chassis Run 8 in 19E1, 19G1 and 19N1 Chassis

The circuit location fuse M401 ($3 / 8 \mathrm{amp}$. 250 V .) has been changed to prevent possible fuse failure when function switch $\$ 701$ is rotated from Radio to TV position. Fuse failure may occur if all contacts of switch section 5701 make simultaneous contact, thus applying a sudden surge f current through the fuse.

Schematic figure 33 shows the fuse location in early sets and schematic figure 35 shows the fuse location in later sets having this production change. This change can be made to an early set by simply interchanging the red and blue leads connecting to switch section S701C. With this change made, the red lead should connect to terminal " h " of $\$ 701 \mathrm{C}$ and the blue lead should connect to terminal " g " of $\mathrm{S7OIC}$.

ChANGE TO INCREASE BRIGHTNESS
Run 2 and higher in all 19 series chassis
The following changes were made in the cathode circuit of picture tube V306 for increased brightness.

Resistor R330 was changed from 470,000 ohms to 180,000 ohms, $1 / 2$ watt part number 60B8-184. Condenser C316 was changed from 01 mfd . to .22 mfd. 400 volts, part number 64B8-24.

Change to eliminate bending and improve HORIZONTAL SYNC AND CHANGE TO REDUCE SNOW
 IN FRINGE AREAS

Run 3 in 19B1, 19Cl, 19E1, 19FI, 19F1A, 19G1; 19H1, and 19K1 Chassis
Bending and Sync Changes
The following changes were made to eliminate possible bending at the top of the picture and to improve horizontal sync. If it is desired to make these changes to chassis stamped Run 2 or lower, see heading on "Circuit Changes to Reduce Bending and Improve Horizontal Sync" In early production chassis (with exception of 19B1), the B plus voltage to the lst and 2nd IF amplifiers V301 and V302 is effectively in series In later production sets, B plus voltage to the 1st and 2nd IF amplifier stages is in parallel. This makes it possible to apply AGC voltage to 1st ai:d 2nd IF amplifiers of later production sets, thus allowing the receiver to operate under a wider range of signal conditions without the possibility of overloading

The circuit changes that were made to the IF amplifiers and AGC cir cuit of later production sets are as follows: The screen (pin 6) of 2 nd IF tube V302 and terminal 2 of 2 nd IF transformer T302 connect to common B plus through resistor R312 (1,000 ohms). Condenser C319 (.001 mfd .) is connected from terminal 2 of T302 to chassis.

The control grid (pin 1) of 2nd IF amplifier V302 is returned to AGC through T301 and decoupling resistor R309 (1,000 ohms). Condense C318 (. .001 mfd .) is connected from terminal 3 of T301 to chassis. The suppressor grid (pin 7) of V302 is connected directly to chassis. The cathode (pin 2) of V302 returns to chassis through R336 (68 ohms).
Overloading of the video amplifier and possible sync instability has been eliminated by the following circuit changes:
The B plus voltage at the screen (pin 6) of the video amplifier V305 (6CB6) was increased by lowering the value of resistors R212 and R213 in the grid and cathode circuits of sound output tube V204.

Resistor R212 was changed from $\mathbf{3 , 6 0 0}$ ohms to 1,500 ohms in sets using a 6AS5 tube for V204, and was changed from 4,700 ahms to 2,000 ohms in sets using a 6 Y6 G tube for Y204.

Resistor R213 was changed from 1, 100 to 910 ohms in sets using a 6ASS tube for V204 and from 2,000 ohms to 1,500 ohms in sets using a 6Y6G tube for Y204.

Increased sync pulse input to the sync circuits is obtained by the following changes made to the video amplifier plate circuit. Resistor R326 was changed from 2,700 ohms to 5,600 ohms, 1 watt. Resistor R325 (2,700 ohms) was omitted.

RESISTORS R214 AND R215 REPLACED BY ONE RESISTOR

 IN SOME LATER PRODUCTION 19EI, 19GI and 19N1 CHASSISIn later production chassis, resistors R214 and R215, 2,200 ohms, 2 watt, were replaced by a single wire wound resistor, 1,200 ohms, 5 watt, part number 61A1-10.

CHANGE IN PILOT LIGHT AND VOLTAGE

 DROPPING RESISTOR R707In later production combination sets a different pilot light and pilot light series dropping resistor is used.
Early production sets stamped Run 5 or lower use a number 44 pilot light (part number 81A1-5) and voltage dropping resistor R707 is 4.7 ohms, $1 / 2$ watt, part number 60B28-11. In later production sets stamped Run 6 and higher, a number 47 pilot light (part number 81Al-8) is used and voltage dropping resistor R707 is 10 ohms, $1 / 2$ watt, part number 60B28-100.

MECHANICAL CHANGE IN RADIO TUNER USED IN 19E1, 19G1 and 19NI CHASSIS

Mechanical changes were made to the later production radio tuner suh. chassis used in combination models. The dimensions of the radio chassis were altered lightly and the mounting position of the gang condenser was changed.

Early production radio tuners used gang condenser (part number 68B53) which mounts in a vertical position. Later production radio tuners use gang condenser (part number 68B53-1) which mounts in a horizontal pos. ition

Change in size of fuse mai
To prevent possibility of fuse failure, due to momentary line voltage surges, fuse M 401 was changed from a $1 / 4$ ampere, 250 -volt fuse to a $3 / 8$ ampere, 250 -volt fuse, part number 84A4-3. Fuse replacement should be made only a $3 / 8$ ampere, 250 -volt fuse, part number $84 \mathrm{~A} 4-3$.

VERTICAL RETRACE BLANKING CIRCUIT ADDED

 Run 5 in all 19 Series ChassisA vertical retrace blanking circuit was added to eliminate retrace lines. The vertical retrace blanking circuit consisting of components R444 (2,700 ohms), R445 (56,000 ohms), C427 (. 01 mfd .) and C428 (. 01 mfd.), is shown in schematic.

Vertical retrace blanking is achieved by applying the pulse voltage appearing at the low side (red lead) of the vertical output transformer T402 to the grid (pin 2) of the picture tube V306.

Snow Changes
(This portion of Run 3 production change does not apply to the 19B1 chassis.)

The circuit changes described below are rather involved. Generally we do not recommend that they be made in the field. However, if snow is still excessive ofter making the checks given under the heading of "Excessive Snow Due to Faulty Tubes", and it is desired to make the changes below, instructions may be obtained by writing the Service Department of the Admiral Corporation of 201 E. North Water Street, Chicago 2, Illinois.

To reduce the amount of snow (front end noise) in the picture the AGC voltage to the tuner has been reduced with respect to the AGC voltage to the 1st and 2nd IF stages by applying a small positive voltage from voltage divider network.

The voltage divider network consisting of R301 (3.3 megohms), R333 (15 meg chms), R334 (2.2 megohms) and R338 (56,000 ohms) was added in the circuit between B plus, the AGC diode V304 and the DX Range Finder control R315.
One terminal of DX Range Finder R315 connects to the R338 (56,000 ohms). Resistor R317 connecting to pin 7 of diode V304 was changed from 820,000 ohms to 470,000 ohms. The delayed AGC bias developed at the AGC diode ($1 / 2$ of V304) is thus controlled by both the Contrast (picture) control and the DX Range Finder control. This provides a means of eliminating entirely the delay on the AGC diode in a very strong signal area and also a means of adjusting the AGC delay to a suitable value for best picture with minimum of snow in weak signal or intermediate fringe areas.

ChANGE IN TOLERANCE OF COMPONENTS IN TH HORIZONTAL OSCILLATOR CIRCUIT V403
 In some Run 2 Chassis and all Chassis
 Run 3 and higher

Changes were made to horizontal oscillator circuit V403 of loter pro duction sets to mimimize possible variation of horizontal oscillato performance due to parts tolerances and variation in electrical choracteristics of ene brands of 6SN7 tubes. By reducing the permissible tolerance of components R422, R423, R428 and C418, the operation of the horizontal oscillator circuit becomes less critical.

In later production sets (stamped Run 3 and higher), tolerance of re sistors R422 (330,000 ohms), R423 (82,000 ohms) and R428 (150,000 ohms) were changed from 10% to 5% tolerance. Condenser C418 (. 01 mfd .) was changed from 20% to 10% tolesance.

In cases where it is difficult to make satisfactory Horizontal Sync Adjustment, the components in the horizontal oscillator circuit should be checked for correct value as mentioned in the preceeding paragraph and under Horizontal Instability and Tearing In Picture.

DIFFERENT INTEGRATOR AND SYNC COUPLATE USED Run 7 in All 19 Series Chassis

Integrator couplate, part number 63B6-11 has replaced integrator cou plate, part number 63 B 6.2 used in earlier production sets. The circuit of both couplates is the same with the exception that resistor R407 (22,000 ohms), is not contained in couplate 63B6-11. Resistor R407 is connected externally from terminal 3 of couplate $63 \mathrm{~B} 6-11$ to pin 1 of V401B. This change in integrator couplates has improved horizontal sync stability by increasing the amplitude and squaring up the sync pulse.
To replace couplate 63B6-2 with couplate 63B6-11, omit resistor R 433 (8,200 ohms) if used between pin 1 of V401B and terminal 3 of the couplate. Connect resistor R407 (22,000 ohms, $1 / 2$ watt) between pin 1 of V401B and terminal 3 of couplate 63B6-11.
Sync couplate, part number 63B6-8 has replaced sync couplate part number 63B6.4 used in early production sets. Couplate 63B6-4 contain number $63 \mathrm{~B} 6-4$ used in early production sets. Couplate 63B6-4 contains resistors R328, R329 and condenser C315. Couplate 63 B 6.8 contains
resistor R329 and condensers C315 and C317. This change in syn couplates has simplified circuit wiring by reducing the number of components.
To replace couplate 63B6-4 with couplate 63B6-8, change resistor R327 from 22,000 ohms to 27,000 ohms. Remove condenser C317 (. 01 mfd .). Connect couplate 63B6.8 between resistor R327 and pin 7 of V401A.

TV TUNER SHAFT LENGTH INCREASED Run 6 in All 19 Series Chassis

The TV tuners used in chassis stamped Run 6 and higher, have a longer shaft length. This increase in shaft length was made to make the chassis adaptable for installation of a separate UHF tuner.
The 94D46-3 cascode TV tuner is used in all loter production chassis (Run 6 and higher), with exception of the 19B1 chassis. The 94D52-2 pentode TV tuner is used in later production 19B1 chassis (Run 6 and higher).
TV tuners 94D46-2 and 94D46-3 are identical, with exception of shaft length. TV tuners 94D52-1 and 94D52-2 are idnetical, with exception of shoft length.

REISSTOR R443 ADDED TO IMPROVE HORIZONTAL

 SYNC STABILITYRun 4 in all 19 Series Chassis
Later production sets using vertical integrated couplate, part number 63B6-2, have an 8,200 ohm, $1 / 2$ watt resistor (R443) connected between terminal 3 of the couplate and pin 1 of sync separator tube V401 (12AU7). The integrator couplate contains components R407, R408, R409, C403, C404 and C405.
Adding resistor R443 to the circuit has increased the sync level by squaring up the sync pulses, thereby improving horizontal sync instability.

To install resistor R443 (8,200 ohms) remove the number three lead of integrator couplate 63B6-2 from pin 1 of V401 (12AU7). Connect resistor R443 between the number three lead of the couplate and pin 1 of V401 (12AU7).

adding vertical retrace blanking circuit

 TO AN EARLY PRODUCTION CHASSISAll 19 series chassis stamped Run 5 and higher, have a vertical retrace blanking circuit incorporated for eliminating retrace lines. A schematic of the retrace blanking circuit and detailed instructions for adding this change to an early production receiver, is given in the paragraphs below. The following parts are required

Sym.	Description	Part No.
C427	. 01 mfd , 600 volts, condenser	648-9.13
C428	. $01 \mathrm{mfd}, 400 \mathrm{volts}$, condenser	.64B 9.32
R445	56,000 ohms, $1 / 2$ watt, resistor.	60B 8-563
R444	2700 ohms, $1 / 2$ wott, resistor	60B 8-272

1. Locate the red wire between pin 10 of the picture tube and the junction of the black lead of T403A (vertical deflection yoke) and the red lead of T402 (vertical output transformer).
2. Locate the bare wire between the junction of R431 (820,000 ohms) and R438 (1200 ohms) and the junction of the black lead of T403A and red lead of T402.
3. Disconnect the red wire and the bare wire from their common junction point. Reconnect both of these leads to the junction of the 7.5 ohm winding and the 100 ohm winding of T402 (common point of the white and yellow leads). See figure 13.
4. Locote the red (positive) lead from C410 (20 mfd) and the junction of the black lead of T403A and red lead of T402. Disconnect the red wire from this iunction and reconnect to iunction of 7.5 ohm and 100 ohm winding of T402.
5. Locate the green wire from pin 2 of the picture tube and disconnect from chassis ground. Connect green wire to a .01 mfd ., 600 volt condenser. Connect the other end of this conderiser to a 2700 ohm, $1 / 2$ wott ser. Connect the other end of this condenser to a 2700 ohm, $1 / 2$ watt resistor. Connect the other end of the resistor
lead of T402 and the black lead of T403A
6. At the junction of the .01 mfd ., 600 volt condenser and the green wire from pin 2 of the picture tube (connected in step 5) connect a 56,000 ohm resistor to chassis ground. Connect a .01 mfd ., 400 volt across the the 56,000 ohm resistor.
WARNING: Do not use any of the unused lugs of V402 (654) tube socket for the points. These lugs are connected to the internal tube structure of the 654 tube.

HORIZONTAL INSTABILITY AND TEARING

 IN PICTUREHorizontal instability, tearing or bending may be due to misadjustment of the DX Range Finder or horizontal sync adiustments; or it may be due to a faulty tube or defective components. If causes of trouble have been checked as instructed in the following steps and the chassis is Run 2 or lower, make the circuit changes described under the heading below on "Circuit Changes to Reduce Bending and Improve Horizontal Sync' ${ }^{\prime}$.
Make checks os follows
a. Check to see if trouble is due to misadiustment of the DX Range Finder control. Set control at " 0 "', use this setting unless a higher setting gives better results.
b. Check horizontal sync odjustment as instructed under "Simplified Horizontal Sync Adjustment'. If difficulty is experienced in making Horizontal Sync adiustment, continue with the following steps.
c. Replace the horizontal oscillator tube V403 (6SN7GT). Try tubes of different brands. Repeat Horizontal Sync adjustment.
d. Check resistors (R420, R421, R422, R423, R424 and R428). These resistors should be within 5% tolerance of the values shown in the parts list and on the schematic. Also, check condenser C418 (.01 mfd.) for correct capacity. If this condenser is suspected as being faulty, it should be replaced with a $.01 \mathrm{mfd}, 400$ volt, 10% condenser, part number 64A2-16.
e. Check condenser C417 by substitution. Use a $\mathbf{2 7 0} \mathrm{mmfd}, \mathbf{1 0 \%}$ mico condenser, part number 65821-271
f. Check condensers C413 and C416 for either open or short.
g. If tapping the horizontal oscillator trnasformer T404 causes erratic operation, a cracked adjustment slug in the transformer may be the cause. If transformer T404 is suspected as being the cause of the trouble it should be replaced.
h. If after following each of the above steps, horizontal difficulties are still present, and the set is Run 2 or lower, it is suggested that circuit changes be made as described in section below.

Figure 13. Verieel Outpul and Pietare Tube Cirenit

COMPLETE HORIZONTAL OSCILLATOR ALIGNMENT (Requires Oscilloscope)

1. IMPORTANT: Set the DX RANGE FINDER at " 0 '" position and set the PICTURE control (contrast on front panel) for normal picture.
2. In some chassis (stamped Run 1 or lower), the HORIZONTAL control (A) may be wired in reverse. If so, it will be impossible to make adiustment properly by following the instructions below.
To determine whether the control wiring is reversed, check the lug to which blue wire is connected. The blue wire should connect to the lug nearest bottom edge of the chassis and the 68,000 ohm resistor R425 should connect to the lug nearest the top of the chassis. If wiring is reversed, change the two connections in accordance with the information given here.
3. IMPORTANT: Connect oscilloscope high side through a 10 mmfd . condenser to terminal marked " C ' or " 2 " on the horizontal blocking ransformer T404. (See figure 6.) It is important to use short leads and a very low capacity condenser (at least 10 mmfd .) to avoid loading the circuit and thus distorting the waveform.

4. Set the oscilloscope sweep to 15.75 KC or a submultiple of it.
5. Adjust the HORIZONTAL LOCK slug (D) (see figure 6) until the oscillocsope waveform pattern appears as in figure 7. The rounded and pointed peaks of the waveform must have equal height. The picture must be kept in sync to obtain the proper oscilloscope waveform pattern. Keep the picture in sync by adjusting the HORIZONTAL FREQUENCY (B) and/or the LOCK RANGE trimmer (C). If the picture still will not sync, check for a defective tube, components, or wiring, before continuing further. See Service Hints on Horizontal Instability And Tearing.

Figure 7. Horizontal Oscillator Waveform.
6. Disconnect the oscilloscope leads.
7. Set the HORIZONTAL control (A) fully counter-clockwise to break sync. If the picture does not go out of sync, momentarily interrupt the sync.
channel selector or adjust the HORIZONTAL FREQUENCY (B) until several bars appear sloping downward to the left. (See figure 8).
8. Slowly turn the HORIZONTAL control (A) clockwise and note the least number of bars present before the picture falls into sync. If two or three bars are present, the LOCK RANGE trimmer is set properly, so reset the HORIZONTAL control (A) to maximum counterclockwise and adiust the HORIZONTAL FREQUENCY (B) until the picture falls back into sync.
9. If more than three bars are present, adiust the LOCK RANGE trimmer (C) slightly clockwise. If less than 2 bars are present, adjust the LOCK RANGE trimmer (C) counterclockwise. Repeat steps 7 and 8.
10. Rotate HORIZONTAL control (A) on the front panel from one end to the other. The picture should hold sync as follows:
a. For strong or medium signals, the picture should remain in sync over the entire rotation of the HORIZONTAL control. If it falls out of sync, bends at the top (iitters), or doubles up on the side; sync adjustment is required; see step 11 below.
b. For weak or fringe area signals, the picture should ramain in sync over $1 / 2$ to $3 / 4$ of the rotation of the HORIZONTAL control. If it falls out of sync, bends at the top (iitters), or doubles up on the side; sync adjustment is required; see step 11 below.
11. If picture does not hold sync as described in paragraphs " a " or " b " above, set the HORIZONTAL control (A) at the point where the picture iust loses sync or becomes unstable and adjust the HORIZONTAL FREQUENCY (B) until the picture just falls back into sync. If may require several furns of adjustment (B). Repeat this procedure until the picture holds as described in paragraphs " a " or " b " of step 10.

MISCELLANEOUS TROUBLE DUE TO

FAULTY TUBES
Faulty tubes cause the majority of receiver troubles. The list below contains most common troubles which are generally due to faulty tubes.
a. Poor fringe area reception due to low B plus voltage. Check the 5U4G tube.
b. Poor fringe area reception due to low sensitivity. Check the 6BC5 and 6BZ7 tubes, if used in the receiver.
c. Picture and sound separated due to IF oscillation. Check the 6BC6 and 6 U 8 tubes.
d. Picture bending caused by leakage between tube elements. Check the 6BC5 and 6CB6 tubes.
e. Poor sync stability, usually more noticeable in vertical circuit. Check 12AU7 tube.
f. Washed out picture due to negative grid current. Check 6CB6 tube.

Figure 8. Picture Out of Horizontal Sync.

ADJUSTING CURVATURE CORRECTING MAGNETS FOR SETS USING A 2IEP4A (21') PICTURE TUBE

If either side of the picture has excessive curvature (pin cushion effect) or if corners of the picture are bent inwardly, this can be minimized by adjustment of the correcting magnets located on the yoke bracket. Either side of the picture can be adiusted individually by using the magnet on using the magnet on that side of the picture tube. A picture or test pattern having straight vertical lines near the sides can be used for making adiustment; the pattern from a cross-hatch generator is preferable IMPORTANT: A cross-hatch generator which is not capable of locking the picture in both horizontal and vertical sync is not suitable. Adiust as follows:
a. Set the receiver controls for normal picture. Be sure that the picture is centered properly and vertical linearity adjustment is made.
b. Check the radial position of the magnet brackets. The magnet brackets are generally set so that the mounting screw is centered in the curved slot. It should only be necessary to change from this setting if the curvature ot the side of the picture is not centered with respect to the side of the picture tube.
c. Move the correcting magnet against the deflection yoke bracket. While observing the vertical lines on the same side of the picture that the magnet is located, slowly move the magnet forward until curvature of vertical lines near the side is minimized. If the magnets are moved too far forward, the corners of the picture will bend inwardly or become shaded.

SCHEMATIC NOTES

Run numbers are rubber stamped at the rear of the chassis.
Numerical symbols (1). ©. (®), etc. indicate run numbers for all 19 series chasis.
(11), (12),.....(1), (1). etc. indicate alignment points and alignment connections. IMPORTANT: Before making waveform and voliage measurements, see instructions below.

waveform data

Wiveforms taken with PICTURE cormn givoen on trchematic) ormal picture (in sync). DX Renge Finder conirol set fully io the left (at "00" position)
WARNING: Incorrect adjustment of the DX Range Finder control will cause waveforn iastortion.
Wavefor
 ondenser connected in series with the oscilloscope high side.
The oscilloscope sweep is
sis equency), or for 7875 cycles (which is one-half of the horizontal frequency) 30 that tw pulees appear on the screen.
The peakio.peak voltage readings shown are subject to some varitions due to response caution
Pulsed high voluge is present on the caUpo io V404, and V405 and at pin 3 of V400. Do
out make direct connection to these points with ordinary test end teak.topeak vollage at pin 3 of V406 taken, wining an oscilloscope with a capacitive voltat
 scilloscope high side over the insulation on the lead connecting to pin 3 . When taking the
wavelorm this way, the shape of waveform will be the same but the peak.topeak volusg waveform this way, the shape of waveform will be the same but the peak-to-peak voluag
will be much lower, depending upon the degree of coupling. voltage data

- PICTURE control turned fully clock wise. CHANNEL control

PICTURE control turned fully clockwise CHANNEL control set on an unused channe
Other front controls set at approximately half rotation. Vert. Lin. and Height roximately half rolation. DX Renge Finder control set fully to the lefi (at an position).

- Antenna disconnected from

Voltages measured with avacuum.lube voltmeter between tube socket terminals an

- Voliages at VIO1 and V102 (TV Tuner) are meaured with tube in sockel. Use an
adapter or lift tube out of socket just high enough to allow a needle point probe to adapter or lifit tue
contact tube pins.
In tuners using a 6 BZ7 tube, voltages taken at
In uners using a $6 B 27$ tube, voltages taken at
above or no voltage reading will be bobtained.
Voltages at V306 measured from top of sockel with tube removed
Voluges marked with an asterisk . will vary widely with control selting. In combination
modelis, $\mathrm{B}+$ voltages in TV chassis will be laighty higher when set is switched to radi osition. Alternate voluge readings for aedio 24 (6Y6G)
 MEASUREMENTS FROM THESE POINTS WTTHOUT SUITABLE TEST EQUIPMENT

 be made by obs.
dry cell batery.

TV-RAD-PHO switch S701

(v201 And Viow of Chasis.

Goza V303 CIRCUIT SHONN BELON USEO OWLY WITH 94052-I TUNER.

Figure 18. Schematic for 19B1, 19C1, 19F1A and 19H1 Television Chassis.

Figure 19. Schematic for $19 E 1$ Television and Radio Chassis.

19B1, 19C1, 19E1, 19F1, 19F1A, 19G1, 19H1, 19K1 and 19N1

TV TUNER 94D52-1 USED IN 19BI CHASSSIS ONLY THE CIRCUITS SHOWN BELOW ARE USED ONL

Note: Tone control not used
in 19B1 and 19F1A chassis.

Figure 32. Schematic for 19B1, 19C1, 19F1, 19F1A, 19H1 and 19K1 Television Chassis.
Note: This schematic applies only to chassis stamped Run 3. See figure $\mathbf{3 0}$ for chassis stamped Run 2 or lower and figure 34 for chassis stamped Run 4 and higher.

Waveform and Voltage data same as for Figure 30, Page 73.

Figure 34. Schematic for 19B1, 19C1, 19F1, 19F1A, 19H1 and 19K1 Television Chassis.
Note: This schematic applies only to chassis stamped Run 4 and higher. See figure 32 for chassis stamped Run 3 and figure 30 for chassis stamped Run 2 or lower.

```
Note: Tone control not used
in 19B1 and 19F1A chassis.
```


Wavefarm and Voltage data same as for Figure 30, Page 73.

 CIRCUITS SHOW BELON USED ONLY

THIS CIRCUIT USED WITH 94052-IG-2 TUNERS (I9BI CHASSIS)

Figure 35. Schematic for 19E1, 19G1 and 19N1 Television and Radio Chassis.
Note: This schematic applies only to chassis stamped Run 4 and higher. See figure 33 for chassis stamped Run 3 and figure 31 for chassis stamped Run 2 or lower.

Figure 33. Schematic for 19E1, 19G1 and 19N1 Television and Radio Chassis.

PARTS LIST

COILS AND TRANSFORMERS PARTS LISTS

[^0]: Voltage Charts.

