VOLUME XXI

JOHN F RIDER

A bandpass pre-stage tuned Radio Frequency section and one stape I.F. at 455 KC terminating in a tuned Infinite Impedence detector for those who insist on the best in a Standard Broadcast Receiver.

A Frequency Modulation Tuner employing a tuned R.F. Pre stage for added gensitivity, a stable drift-free Triode Oscillator, two stages permiability tuned I.F. at 10.7 for superior F.M. performance and fully balanced static free Ratio Detector with 70\% A.M. absorption.

Input jacks for phono pickups, oither crystal pickup or properly compensated preamp for Variable Reluctance type pick. ip and a jack for aural television on Selector control Switch.

A new SR circuit for smooth electro-accoustical control of rass. and trebie emphasis allowing the contrals of the audio mplifier to be presset.

Physical dimentions:- 14" wide, 7" high and $10^{\prime \prime}$ from esoutcheon to back.
F.M.Sensitivity: - 10 microvolts.

Average output:- . 4 volts.
Tubes: 3 6BA6; 1 oach 6BE6; 6C4; 6AL5; 6SN7GT; 6SA7; 6SK7; 63F7; 655 and 6×5.

Power Consumption:-68 watts, 110-125 volts, 50-60 cycles.

ANTENNA REQUIKEMENTS
For best nondirectional standard w broadcast results a single wire five to ten feet in lenrth connected to ana single wire five to ten feet in length connected to en-
temns terminal "A" will be sufficient. Additional selectivity to this efficient input circuit woula tend to restrict the wide band reception capabilities of the detector

For beat F.f. results a 100 K.C. dipole showld be installed well above surrounding obstructions. The twisted 300 ohm ling from ths dipole should be connectent to antenna terminals " D " and "G". ("G" also grounds unit.)

A console type foldad dipole is supplied with the tuner and will prove a satisfactory substitute in most cases where an oxtornal iipole is impractical.
INPUT JACKS.
All phono or TV audio signals as well as the AM and FM radio are subject to the volure and tone controls of the tuner.

The jack marked "MAG" 19 the input for a properly compensated pre amplifier when using the variable reluctance eartridge.

XTAL is the phono input for a stendard crystal pickup.
The $T V$ jack makes it possible to channel the ausio of a television tuner thru the radio's amplifier and spoaker.

The OUTPUT jack should be connected to the high impedence input control (250,000 to 500,000 ohms) of a quality audio amplifier. Use the prepared shielded lead supplied with the tuner. Choose speaker capable of wide rance reproduction.
A.C.POWSR. SR39 is completely powerized for 110-125 volts 50-60 cycles. The porer switch (on the Volume Control) also controls the A.C.recepticle on the back of the chassis for convenience in amplifier installation.

VE:TILATION IS EXTRERELY CAUTICN
should be housed in an Ingipor Tan T . No oulti-tube unit Damage to the unit and insufficiently ventilated cabinet. Damage to the unit and the cabinet will result.

USE OMLY 1 dMP. FUSE.

GENERAL FEATURES

The Model 310 is a combination designed for the reception of radio broadcast programs and for the reproduction of phonograph records, television sound or other external sound. The receiver includes the following separate pieces of equipment: (1) chassis, (2) record changer, and (3) high fidelity speaker.

TECHNICAL DATA

Power Input	105 Watts at 117 Volts, 50-60 cycles. (Phono motor 60 cycles, 25 watts additional.)
Tubes	Total 12 including two rectifiers.
Circuits	Superheterodyne with RF amplifier stage (three gang tuning condenser) on all bands. Three stage FM-IF amplification (10.7 mc). One stage AM-IF (455 kc). Ratio detector on FM. Drift compensation on RF section. Push-pull output with 6 db inverse feedback. Sound input for phono and for TV or other external sound.
Tuning Range	$\begin{aligned} & A M-535-1620 \mathrm{kc} . \\ & F M-87.5-108.5 \mathrm{mc} . \end{aligned}$
Output	10 watts (2-6V6GT tubes in push-pull). Less than 5% distortion at full output.
Sensitivity	AM 12 Inicrovolts FM 17 microvolts (Carrier modulated 30% at 400 cycles. Output 500 milliwatts with 10 db signal to noise ratio.)
Fidel1ty	Overall 30 to $20,000 \mathrm{cps}$ plus or minus 1 db . Separate bass and treble control. Phono input equalized for elimination of objectionable scratch level. $A M$ and $F M$ audio equalized to $B C$ standards.
Speaker	Hi-fidelity 12 inch PM. 8 ohm voice coil. TUBE REPLACEMENT

The Model 310 has the following tube complement:

Symbol	Tube	Application	Symbol	Tube	Application
V1	6BA6	RF Amplifier	V7	6AL5	Ratio Detector, FM
V2	6BE6	Conv. \& AM Osc.	V8	6SQ7	lst Audio Amplifier
V3	6 C 4	FM Oscillator	V9	6SN7	2nd Audio Amplifier
V4	6BA6	IF Amp., FM-AM	V10	6V6GT	Audio Power Output
V5	6AU6	IF Amp., FM \& 2nd	V11	6V6GT	Audio Power Output
16	6AOG	Detector, AM	V12	5Y3GT	Rectifier

FUSE REPLACEMENT

A fuse is provided for protection of the receiver against excessive power line voltages, and against fallure of any component in the receiver which would cause heavy current drain and fire hazard. This fuse is accessible at the rear panel of the tuner chassis. CAUTION: Always replace the fuse with one of the same rating in the event the fuse is blown. If the fuse continues to blow after replacement trouble is indicated and the equipment should be removed from the cabinet for examination.

ALIGNMENT PROCEDURE

Test Equipment

1. Voltohmyst for DC measurements.
2. AM signal generator for $455 \mathrm{KC}, 1500 \mathrm{KC}, 600 \mathrm{KC}, 10.7 \mathrm{MC}$, 89 MC and 107 MC .
3. $A C$ voltmeter such as the Ballantine voltmeter.
4. An aligning tool is included with each receiver and is taped on the lst FM-IF transformer can. Additional aligning tools may be had by ordering under part number 94 V 4707.

In order to reduce instability due to ground currents it is advisabls to have a metal sheet covering the test bench and to place all generators and the receivers to be tested on this metal plate.

Alisnment Procedure

The alignment is preferably performed in the following order: See Figure 1 for location of adjustments on chassis.

1. $\mathrm{AM}-\mathrm{IF}$
2. $A M-R F$
3. $F M-I F$
4. $F M-R F$

AM-IF Alignment
A signal generator capable of modulation and accurately set to 455 KC should be attached through a . Ol MFD capacitor to the lug on the service selector switch which connects to the middle AM section of the gang condenser. A good ground point for the generator is the rear support bracket of the switch.

The AC voltmeter is placed across the secondary of the audio output transformer, which is loaded with a 8 ohm 10 watt resistor connected in place of the speaker voice coil. In the event this resistor is not available the speaker may be used if the noise can be tolerated. The volume, bass and treble controls must be full on, the service selector switch in the AM position, and the tuning dial in any convenient position that does not interfere with the AM-IF output signal.

Apply sufficient input signal at $455 \mathrm{KC}, 30 \%$ AM modulated at 400 cycles to give an indication of about 2 volts rms AC on the $A C$ voltmeter across the secondary of the output transformer. With the use of an aligning tool the primary and secondary of the two AM-IF transformers are peaked for a maximum indication on the output voltmeter. As the receiver approaches correct alignment, reduce the input signal level so that the output never exceeds 3-4 volts AC. It is good practice to recheck the peaking of the transformers a second time, especially if the set was badly out of alignment. The normal AM-IF sensitivity is such that when 100 uV are applied with the signal generator, the output voltmeter will read 2 volts minimum.

AM-RF Alignment

Apply the signal generator to the lug on the service selector switch that supports the loop lead (loop not connected). The AC voltmeter remains attached as for the IF alignment. The operating controls also remain as for the IF adjustment of the receiver. Set the signal generator and receiver dials on 600 KC at 30% modulation with 400 cycles and adjust the AM oscillator core (top adjustment on the $11 / 8^{\prime \prime}$ square can toward rear of chassis) for a maximum indication on the output voltmeter. Keep the generator input low enough to prevent the voltmeter from reading above 3-4 volts AC at all times.

The AM convertor transformer (top of $11 / 8^{\prime \prime}$ square can toward front of chassis) is now adjusted for a maximum output indication on the voltmeter.

The generator and receiver dials are now set at 1500 KC and the oscillator and converter gang condenser trimers (front holes in the gang cover) are adjusted for a maximum output on AC output voltmeter.

The above procedures are repeated until the 1500 KC and 600 KC points on the generator and the receiver dials coincide without further adjustment of the cores or trimer condensers.

A sensitivity of 10 uV or less at 400 cycles 30% modulation for a 3 volt AC output and a 10 db or greater signal to noise ratio is normal for this input point.

The loop is then attached to the receiver and the generator is applied to the loop tap which is available on the antenna strip at rear of the receiver. The generator and the receiver dials are set to 1500 F and the antenna trimmer capacitor on the lat AM section of the gang condenser is adjusted for maximum output on the AC output voltmeter.

A sensitivity of 1 uV at 400 cycles 30% modulation for a 2 volt AC output with a 10 db signal to noise ratio or better at 1500 KC and 600 KC is normal for the receiver at this input point.

FM-IF Alignment

Place the service selector switch in the FM position. Apply a signal generator unmodulated, and set accurately to 10.7 megacycles, to the grid tap on the FM converter coil. The rear mounting bracket of the service selector switch provides a convenient ground point for the generator.

A DC voltohmyst voltmeter is connected from ground to the negative side of the 5 MFD electrolytic capacitor ($\mathrm{C}-37$) which is across the two 8200 ohm load resistors ($\mathrm{R}-30, \mathrm{R}-31$) of the ratio detector.

Enough signal at 10.7 MC is then applied to the receiver to give an indication on the voltohmyst above the residual voltage already present. Always keep the input level of the signal generator low enough to produce not more than negative 5 volts DC on the voltohmyst.

The following FM-IF transformer cores are then adjusted in the following order for a maximum indication on the DC voltmeter:

1. Primary of ratio detector (bottom of large can).
2. Primary and secondary of 3rd FM-IF transformer.
3. Primary and secondary of 2nd FM-IF transformer.
4. Primary and secondary of lst FM-IF transformer.

If the receiver was badly mis-aligned it is advisable to repeat the above procedure for better alignment.

The voltohmyst is then connected to the audio output of the ratio detector which is the junction of the 47,000 ohm $\frac{1}{2}$ watt resistor ($\mathrm{R}-27$) and the 1500 MMFD capacitor ($\mathrm{C}-36$) and ground.

By tuning the secondary of the ratio detector (top of large can) it is possible to produce both positive and negative swings of the DC voltmeter from a zero position. The proper tuned position is the zero position of the voltmeter between the positive and negative swings.

In order to check the relative sensitivity of the PM-IF system move the voltohmyst back to the first position from the negative side of the 5 MFD capacitor to ground. A normal sensitivity is indicated when it is necessary to apply between 300 and 700 uV for a negative 5 volts DC on the voltohmyst.

FM-RF Alignment

Connect a signal generator unmodulated and accurately set on 89 MC to the FM antenna terminals of the receiver through a resistor of 200 ohm to 270 ohm in the hot lead of the generator to match the 300 ohm input of the FM antenna coil. The DC voltmeter is connected as it was for the FM-IF alignment, between the negative side of the 5 MFD capacitor ($\mathrm{C}-37$) and ground.

Set the tuning dial of the radio to 89 MC and adjust the FM oscillator core for a maximum DC output on the voltohmyst. Adjust the input level of the signal generator so as to produce a negative 3 to 5 volts DC on the voltmeter. The correct oscillator core position is when the core is just entering the coll from the bottom of the coil. The and harmonic of the oscillator is used to produce the IF frequency. By compression or expansion of the converter and antenna FM coils it is possible to bring their circuits into alignment with the oscillator at 89 MC .

As the set becomes more accurately aligned it may be necessary to reduce the input of the signal generator to maintain an output below a negative 5 volts DC.

Now reset the signal generator and the receiver dials to 107 MC and adjust the oscillator tubular trimer and the compression trimmers on the FM converter and antenna sections of the gang condenser for a maximum indication on the output DC voltmeter.

Again reset the generator and receiver dials back to 89 MC and repeat the operations performed formerly at this frequency setting. This realigning at the high and low ends of the FM band is necessary until it is noticed that at both 89 MC and 107 MC the receiver has been aligned to the generator frequency without adjustment of either the core of the oscillator or the oscillator trimmer to bring them into alignment.

The converter and antenna coils have been properly aligned when either compression or expansion of the turns will give no increase in the output DC voltage at 89 MC and the converter and oscillator trimmer condenser adjustment will also give no increase in DC output voltage at 107 MC .

VOLTAGE TABLE									
Tube	Type	$\underset{1}{\text { Pin }}$	$\begin{gathered} \text { Pin } \\ 2 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 3 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\underset{5}{\text { Pin }}$	$\begin{gathered} \text { Pin } \\ 6 \end{gathered}$	$\begin{gathered} \text { P1n } \\ 7 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 8 \end{gathered}$
V1	6BA6	0	0	$\begin{gathered} \mathrm{AC} \\ 6.5 \end{gathered}$	0	115	115	0	-
V2	6BE6	$\begin{aligned} & -7 \text { to } \\ & -10 \end{aligned}$. 9	$\begin{gathered} A^{A C} \\ 6.5 \end{gathered}$	0	125	100	0	-
V3	$6 \mathrm{C4}$	120	0	${ }_{5.4}^{A C}$	0	0	$\begin{aligned} & -7 \text { to } \\ & -10 \end{aligned}$	0	-
V4	6BA6	0	0	$\begin{gathered} \mathrm{AC} \\ 6.5 \end{gathered}$	0	120	110	1.3	-
V5	6AU6	0	0	$\begin{array}{r} 1 \mathrm{C} \\ 6.5 \end{array}$	0	110	110	1.2	-
V6	6AU6	0	0	$\begin{array}{r} A C \\ 6.5 \\ \hline \end{array}$	0	110	110	1.3	-
V7	6AL5	0	0	$\begin{gathered} A C \\ 6.5 \end{gathered}$	0	. 6	0	-. 6	-
v8	6SQ7	0	-. 8	0	0	0	20	$\begin{gathered} A C \\ 6.8 \end{gathered}$	0
V9	6SN7	0	75	2.8	5.2	110	20	$\begin{array}{r} A C \\ 6.3 \end{array}$	0
V10	6V60	0	0	260	270	0	105	$\begin{array}{r} A C \\ 6.3 \\ \hline \end{array}$	0
V11	6V6G	0	0	260	270	0	20	$\begin{array}{r} A C \\ 6.3 \\ \hline \end{array}$	0
V12	5×3	0	300	0	$\begin{gathered} \text { AC } \\ 320 \end{gathered}$	0	$\begin{array}{r} \mathrm{AC} \\ 320 \end{array}$	0	300

Voltage readings made with Voltohmyst. Line voltage adjusted to $117 \mathrm{~V} A C$. 411 Voltages measured between indicated pin and chassis frame. Unless noted all voltages are $D C$ and positive to irame.

No signal input.
Voltages takon with the service selector switch in the FM position. Volume control in the oounterclockwise position.
Tone controls clockwise.

REAR OF CHASSIS

Figure 1 Model 310 Receiver Assembly

GTGUL GONYLSISEy	¢ \ddagger	－	1	1	1	1	1	1	\bigcirc	\bigcirc	웅	－	$\stackrel{-1}{4}$
	$\frac{\Xi}{\square} \sim$	－	E	\bigcirc	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{N} \end{aligned}$	어N	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－
	$\stackrel{E}{\text { a }}$	$\stackrel{\dot{~}}{\underset{\sim}{\mid}}$	$\stackrel{\leftrightarrow}{\underset{\sim}{4}} \underset{\sim}{6}$	$\begin{aligned} & x \\ & 5 \\ & * \end{aligned}$	$\dot{\vec{~}}$	$\stackrel{\stackrel{\rightharpoonup}{\underset{~}{-1}}}{ }$	\dot{H}	\bigcirc	$\underset{~}{\dot{G}}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & \hline 1 \end{aligned}$	O
	匠 0	\dot{H}		号	$\underset{\underset{-}{+}}{\dot{H}}$	合	$\dot{\underset{~}{\mathrm{E}}}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	0	$\underset{\sim}{\dot{H}}$	M O_{N} N	$\begin{aligned} & x \\ & \text { N } \\ & \text { N } \end{aligned}$	＋
	$\stackrel{5}{n}+$	0	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	$\begin{aligned} & \hline \\ & 0 \\ & 8 \\ & 0 \end{aligned}$	$\stackrel{4}{E}$	Ei	\sim
	$\underset{R}{A} m$	\bigcirc	0	\cdots	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	$\begin{aligned} & x \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\stackrel{\leftrightarrow}{E}$	$\begin{aligned} & \stackrel{4}{E} \\ & \hline \end{aligned}$	$\stackrel{\leftrightarrow}{\text {－}}$
	E	0	\cdots	$\underset{-}{c}$	0	0	\bigcirc	$\stackrel{+}{ \pm}$	$\begin{aligned} & x \\ & \stackrel{y}{4} \end{aligned}$	$\stackrel{+}{E}$	\bigcirc	\bigcirc	$\stackrel{+}{ \pm}$
	号	$\begin{aligned} & \text { 4 } \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & x \\ & \underset{N}{c} \end{aligned}$	$\stackrel{\leftrightarrow}{-1}$	$\begin{aligned} & \infty \\ & 8 \\ & \hline \mathrm{C} \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	\bigcirc	$\dot{\underset{\Sigma}{\mid}}$	\bigcirc	$\stackrel{\star}{F}$	$\dot{4}$	$\stackrel{-}{\text {－}}$	$\stackrel{+}{\text { H }}$
	$\stackrel{\circ}{8}$	$\begin{aligned} & \bullet \\ & \stackrel{\leftrightarrow}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { 囚ix } \\ & \hline \boldsymbol{0} \end{aligned}$	犬゙		$\begin{gathered} \bullet \\ \hline 6 \\ \hline 6 \end{gathered}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \underset{0}{\circ} \end{aligned}$	 1	$\stackrel{\text { F }}{0}$	$$	－	0 0 0	${ }_{3}^{\text {che }}$
	$\begin{aligned} & \circ \\ & \stackrel{\circ}{7} \\ & \hline \end{aligned}$	$\stackrel{-}{5}$	$\stackrel{N}{>}$	M	5	$\stackrel{10}{7}$	$\stackrel{\square}{8}$	5	$\stackrel{\infty}{>}$	$\stackrel{9}{>}$	$\stackrel{3}{3}$	$\underset{5}{5}$	$\stackrel{\sim}{3}$

[^0]

	兑	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\sim}{0} \end{aligned}$	$$	8 0 0 0 0 \sim	¢		$\begin{aligned} & \text { 8 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \stackrel{\sim}{\mathbf{0}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathbf{\infty} \\ & 0 \\ & 0 \\ & \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	N80	Jo O N Z		＋	N	
$\begin{aligned} & 5 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$																	
	$\begin{aligned} & \text { E } \\ & \stackrel{1}{0} \\ & 0 \\ & \text { a } \end{aligned}$				总 믈 										\circ 0 E 0 0 0 0 0		
	－	W	¢880	J゙	\％\％	M	$\stackrel{\ominus}{0}$	Fi̛o			岗	竿算界	留	界	\digamma	$\stackrel{\text { ® }}{ }$	が号

GENERAL FEATURES

The Model 510 is a combination designed for the reception of radio broadcast programs and for the reproduction of phonograph records, television sound or other external sound. The receiver includes the following separate pieces of equipment: (l) radio-phono chassis, (2) power amplifier, (3) record changer, and (4) coaxial high fidel1ty speaker.

TECHNICAL DATA

Circuits	Superheterodyne with RF amplifier stage (three gang
	tuning condenser) on all bands. Three stage FM IF
	amplification (10.7 mc). One stage AM IF (455 kc)
	Ratio detector on FM. Drift compensation on RF
	section. Push-pull output with 6 db inverse feedback.
	Separate B plus supplies for power amplifier and
	tuner sections for reduction of temperatures and to
	prevent damage to components through surges. Sound
	input for phono and for TV or other external sound.
Tuning Range	AM - $535-1620 \mathrm{kc}$.
	FM - 87.5-108.5 mc.
Output	
	20 watts (2-6L6 tubes in push-pull). Less than 5%

Sensitivity AM 12 microvolts
FM 17 microvolts
(Carrier modulated 30% at 400 cycles. Output 500 milliwatts with 10 db signal to noise ratio.)
Fidelity \quad Verall 30 to $20,000 \mathrm{cps}$ plus or minus 1 db . Separate bass and treble control. Phono input equalized for elimination of objectionable scratch level. $A M$ and FM audio equalized to $B C$ standards.

Speaker Hi-fidelity 12 inch coaxial PM. 8 ohm voice coil. TUBE REPLACEMENT

The Model 510 has the following tube complement:

Symbol	Tube	Application	Symbol	Tube	Application
V1	6BA6	RF Amplifier	V8	6SQ7	lst Audio Amplifier
V2	6BE6	Conv. \& AM Osc.	V9	6SN7	2nd Audio Amplifier
V3	$6 \mathrm{C4}$	FM Oscillator	V10	6SN7	3raj Audio Amplifier
V4	6BA6	IF Amp., FM-AM	Vil	6L6G	Audio Power Output
V5	6AU6	IF Amp., FM \& 2nd	V12	6L6G	Audio Power Output
		Detector, AM	V13	5Y3GT	Rectifier
V6	6AU6	IF Amp., FM	V14	25Z6GT	Rectifier
V7	6AL5	Ratio Detector, FM			

FUSE: PEPLACEAIENT

A fuse is provided for protection of the receiver acilnst excessive poner line voltages, and against failure of any component in the recelver which would cause heavy current drain and fire hazard. This fuse is accessible at the rear panel of the tuner chassis. CAUTION: Always replace the fuse with one of the same rating in the event the fuse is blow. If the fuse continues to blow after replacement trouble is indicated and the equipment should be removed from the cabinet for examination.

Test Equipment

1. Voltohmyst for $D C$ measurements.
2. AM signal generator for $455 \mathrm{KC}, 1500 \mathrm{KC}, 600 \mathrm{KC}, 10.7 \mathrm{MC}$,
89 MC and 107 MC .
3. $A C$ voltmeter such as the Ballantine voltmeter.
4. An aligning tool is included with each receiver and is taped on the lst FM-IF transforner can. Additional aligning tools may be had by ordering under part number 94V4707.

In order to reduce instability due to ground currents it is advisable to have a metal sheet covering the test bench and to place all generators and the receivers to be tested on this metal plate. Alignment Procedure

The alignment is preferably performed in the following order: See Figure 1 for location of adjustments on chassis.

1. $A M-I F$
2. $\mathrm{AM}-\mathrm{RF}$
3. FM-IF
4. FM-RF

AM-IF Alignment

A signal generator capable of modulation and accurately set to 455 KC should be attached through a . Ol MFD capacitor to the lug on the service selector switch which connects to the middle AM section of the gang condenser. A good ground point for the generator is the rear support bracket of the switch.

The AC voltmeter is placed across the secondary of the audio output transformer, which is loaded with a 8 ohm 10 watt resistor connected in place of the speaker voice coil. In the event this resistor is not available the speaker may be used if the noise can be tolerated. The volume, bass and treble controls must be full on, the service selector switch in the AM position, and the tuning dial in any convenient position that does not interfere with the AM-IF output signal. Apply sufficient input signal at $455 \mathrm{KC}, 30, \%$ AM modulated at 400 cycles to give an indication of about 2 volts rms AC on the AC voltmeter across the secondary of the output transformer. With the use of an aligning tool the primary and secondery of the two AM-IF transformers are peaked for a maximum indication on the output voltmeter. As the receiver approaches correct alignment, reduce the input signal level so that the output never exceeds $3-4$ volts AC. It is good prach
tice to recheck the peaking of the transformers a second time, especially if the set was badly out of alignment. The normsl AM-IF sensitivity is such that when 100 uV are applied with the signal generator, the output voltmeter will read 2 volts minimum. AM-RF Alignment

Apply the signal generator to the lug on the service selector switch that supports the loop lead (loop not connected). The AC voltmeter remains attached as for the IF alignment. The operating controls also remain as for the IF adjustment of the receiver. Set the signal generator and receiver dials on 600 KC at 30% modulation with 400 cycles and adjust the AM oscillator core (top adjustment on the $11 / 8^{\prime \prime}$ square can toward rear of chassis) for a maximum indication on the output voltmeter. Keep the generator input low enough to prevent the voltmeter from reading above $3-4$ volts $A C$ at all times.

The AM converter transformer (top of $1 / 8^{n}$ square can toward front of chassis) is now adjusted for a maximum output indication on the voltmeter.

The generator and receiver dials are now set at 1500 KC and the oscillator and converter gang condenser trimmers (front holes in the gang cover) are adjusted for a maximum output on AC output voltmeter.

The above procedures are repeated until the 1500 KC and 600 KC points on the generator and the receiver dials coincide without further adjustment of the cores or trimmer condensers.

A sensitivity of 10 uV or less at 400 cycles 30% modulation for a 3 volt $A C$ output and a 10 db or greater signal to noise ratio is normal for this input point.

The loop is then attached to the receiver and the generator is applied to the loop tap which is available on the antenna strip at rear of the receiver. The generator and the receiver dials are set to 1500 KC and the antenna trimmer capacitor on the lst AM section of the gang condenser is adjusted for maximum output on the AC output voltmeter.

A sensitivity of 1 uV at 400 cycles 30% modulation for a 2 volt AC output with a 10 db signal to noise retio or better at 1500 KC and 600 KC is normal for the receiver at this input point.
FM-IF Alignment
Place the service selector switch in the FM position. Apply a signal generator unmodulated, and set accurately to 10.7 megacycles, to the grid tap on the FM converter coll. The rear mounting bracket of the service selector switch provides a convenient ground point for the generator.
A DC voltohmyst voltmeter is connected from ground to the negative side of the 5 MFD electrolytic capacitor ($C-37$) which is across the two 8200 ohm load resistors $(R-30, R-31)$ of the ratio detector.

Enough signal at 10.7 MC is then applied to the receiver to give an indication on the voltohmyst above the residual voltage already present. Always keep the input level of the signal generator low enough to produce not more than negative 5 volts $D C$ on the voltohmyst.

The following $F M-I F$ transformer cores are then adjusted in the following order for a maximum indication on the $D C$ voltmeter:

1. Primary of ratio detector (bottom of large can).
2. Primary and secondary of 3rd FM-IF transformer.
3. Primary and secondary of 2nd $F M-I F$ transformer.
4. Primary and secondary of lst FM-IF transformer.

If the receiver was badly mis-aligned it is advisable to repeat the above procedure for better alignment.

The voltohmyst is then connected to the audio output of the ratio detector which is the function of the 47,000 ohm $\frac{1}{2}$ watt resistor ($\mathrm{R}-27$) and the 1500 MMFD capacitor ($\mathrm{C}-36$) and ground.
By tuning the secondary of the ratio detector (top of large can) it is possible to produce both positive and negative swings of the DC voltmeter from a zero position. The proper tuned position is the zero position of the voltmeter between the positive and negative swings.

In order to check the relative sensitivity of the FM-IF system move the voltohmyst back to the first position from the negative side of the 5 MFD capacitor to ground. A normal sensitivity is indicated when it is necessary to apply between 300 and 700 uv for a negative 5 volts $D C$ on the voltohmyst.

FM-RF Alignment

Connect a signal generator unmodulated and accurately set on 89 MC to the FM antenna terminals of the receiver through a resistor of 200 ohm to 270 ohm in the hot lead of the generator to match the 300 ohm input of the FM antenna coll. The DC voltmeter is connected as it was for the FM-IF alignment, between the negative side of the 5 MFD capacitor ($C-37$) and ground.

Set the tuning dial of the radio to 89 MC and adjust the FM oscillator core for a maximum DC output on the voltohmyst. Adjust the input level of the signal generator so as to produce a negative 3 to 5 volts DC on the voltmeter. The correct oscillator core position is when the core is just entering the coil from the bottom of the coil. The 2nd harmonic of the oscillator is used to produce the IF frequency. By compression or expansion of the converter and antenna FM coils it is possible to bring their circuits into alignment with the oscillator at 89 MC .
As the set becomes more accurately aligned it may be necessary to reduce the input of the signal generator to maintain an output below a negative 5 volts DC.

Now reset the signal generator and the receiver dials to 107 MC and adjust the oscillator tubular trimmer and the compression trimmers on the FM converter and antenna sections of the gang condenser for a maximum indication on the output DC voltmeter.

Again reset the generator and receiver dials back to 89 MC and repeat the operations performed formerly at this frequency setting. This realigning at the high and low ends of the FM band is necessary until it is noticed that at both 89 MC and 107 MC the receiver has been aligned to the generator frequency without adjustment of either the core of the oscillator or the oscillator trimmer to bring them into alignment.

The converter and antenna coils have been properly aligned when either compression or expansion of the turns will give no increase in the output DC voltage at 89 MC and the converter and oscillator trimmer condenser adjustment will also give no increase in DC output voltage at 107 MC .

worth；5loS，Sheffield

	品 ∞	1	1	1	1	1	1	1	\bigcirc	\bigcirc	－	O -1 -1	－	点	－	$\begin{array}{r}0 \\ \hline 8 \\ \hline 8 \\ \hline\end{array}$	
	¢	－	N	－	$\underset{\sim}{\sim}$	¢	$\stackrel{\sim}{\infty}$	$\begin{aligned} & x \\ & 0 \\ & \end{aligned}$	0	\bigcirc	O	0	－	－	4		
	$\underset{\sim}{\text { E．}}$	$\stackrel{\rightharpoonup}{4}$	$\stackrel{\rightharpoonup}{4}$	$\begin{aligned} & 凶 \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\underset{ت}{\dot{E}}$	$\underset{\sim}{\underset{\sim}{\underset{\sim}{e}} \mid}$	\dot{H}	\bigcirc	$\underset{\text { - }}{\dot{-}}$	$\begin{aligned} & \infty \\ & \sim \\ & \sim \end{aligned}$	\sim -	$\begin{gathered} \infty \\ 0 \\ -1 \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \\ & -1 \end{aligned}$	ω	4		－
	¢ ¢ ¢	$\stackrel{\leftrightarrow}{4}$	$\stackrel{\dot{C}}{\underset{A}{4}}$	$\stackrel{\rightharpoonup}{c}$	$\underset{\sim}{\dot{H}}$	cicic	$\underset{\sim}{\underset{\sim}{\mid c}}$	$\begin{aligned} & x \\ & 0 \\ & 1 \end{aligned}$	0	$\underset{\underset{\sim}{c}}{\dot{H}}$	$\underset{\underset{\sim}{4}}{\dot{4}}$	$\begin{aligned} & x \\ & 8 \\ & 8 \end{aligned}$	$$	$\underset{\sim}{c}$	c		$\begin{aligned} & \text { - } \\ & \text { م } \\ & \text {, } \end{aligned}$
	¢ ¢	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	4 0 0	$$	$\underset{\sim}{4}$	$\stackrel{\oplus}{E}$	∞	－		
	E．	\bigcirc	0	\bigcirc	0	O	\bigcirc	－	\bigcirc	$\begin{aligned} & * \\ & N \\ & \sim \end{aligned}$	x -1	$\underset{\underset{-1}{-}}{\stackrel{-}{4}}$	$\underset{\sim}{-1}$	－	\cdots		$\begin{aligned} & \text { He } \\ & \text { E } \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$
	E	\bigcirc	$\stackrel{\sim}{\infty}$	$\stackrel{\rightharpoonup}{c}$	0	\bigcirc	\bigcirc	$\underset{\sim}{-i}$	$\begin{aligned} & z \\ & F \end{aligned}$	$\dot{\underset{y}{-1}}$	$\underset{\sim}{\text { cid }}$	\bigcirc	\bigcirc	－	$\begin{gathered} \dot{4} \\ \underset{4}{2} \end{gathered}$		
	詹 -	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{N}{2} \end{gathered}$	$\underset{\underset{A}{-}}{\stackrel{\circ}{4}}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	\bigcirc	$\underset{\sim}{\underset{-1}{*}}$	\bigcirc	$\begin{aligned} & x \\ & \text { a } \\ & \end{aligned}$	M ¢ N	$\stackrel{4}{5}$	$\stackrel{\rightharpoonup}{\underset{~}{~}}$	$\underset{\sim}{4}$	$\stackrel{4}{4}$		
	$\stackrel{\text { ® }}{\stackrel{\circ}{8}}$	$\begin{aligned} & \boldsymbol{\omega} \\ & \text { థ్రీ } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 罟 } \end{aligned}$	$\dot{8}$	$\begin{gathered} \boldsymbol{0} \\ \underset{\mathrm{O}}{\mathbf{0}} \\ \hline \end{gathered}$		$\mathfrak{6}$	$\begin{aligned} & 0 \\ & \hline \mathbf{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & \mathbf{y}_{3} \\ & 0 \end{aligned}$	${\underset{j}{6}}_{\substack{0}}^{0}$	㕍	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & -0 \\ & \hline 0 \end{aligned}$	B	0 \sim \sim		
	¢	5	N	\cdots	$\stackrel{N}{\square}$	$\stackrel{\sim}{3}$	$\stackrel{\square}{>}$	5	$\stackrel{\infty}{>}$	$\stackrel{9}{9}$	O	$\xrightarrow{-1}$	$\stackrel{N}{3}$	$\stackrel{m}{5}$	$\xrightarrow{+}$		
GTGVL GDYLTON	$\underset{\sim}{\text { ¢ }}$	1	1	1	1	1	1	1	O	0	$4 \begin{array}{ll}4 & \\ & \infty \\ 0 \\ 0\end{array}$	$\xrightarrow[\sim]{\sim}$	\cdots	8	8	$\circ \stackrel{\substack{0 \\ 0}}{\circ}$	－
	$\underset{\sim}{\text { cin }}$	$\xrightarrow{\sim}$	\bigcirc	O	$\underset{\sim}{n}$	0 \vdots 5	$\begin{array}{ll} 0 \\ \perp & 0 \end{array}$	$\stackrel{\square}{i}$	${ }^{0} 8$	4 ${ }^{0}$	0	\bigcirc	\bigcirc	0	O	옹品 0 ≥ 5	
	$\underset{\sim}{\text { ¢ }}$	$\begin{gathered} \mathrm{O} \\ \text { N- } \end{gathered}$	$\begin{aligned} & 0 \\ & -1 \end{aligned}$	$\left.\begin{array}{ll} 0 \\ \sim & \\ c & 0 \\ -1 & 7 \end{array} \right\rvert\,$	$\begin{gathered} 8 \\ -1 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & -1 \end{aligned}$	O-1	\bigcirc	\％	$\stackrel{1}{6}$	$\stackrel{\infty}{\sim}$	$\stackrel{9}{2}$	$\stackrel{2}{2}$	$\begin{array}{\|c\|} \hline 4 \\ \hline 4 \\ \hline \end{array}$	O		$\begin{aligned} & \underset{\ddagger}{\underset{~}{4}} \\ & \underset{\sim}{\text { G }} \end{aligned}$
	$\underset{\sim}{\text { ¢ ¢ }}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$$	$\xrightarrow{-1}$	$\begin{aligned} & 0 \\ & -1 \\ & -1 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	O	¢	O－1 －	0	\bigcirc	0	$\begin{array}{ll} 2 & 0 \\ 1 & 8 \end{array}$	＂8 ${ }^{9} 0$	
	$\stackrel{5}{n}+$	O	－	O	－	－	0	\bigcirc	0	9	$\%$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	$\left\|\begin{array}{ll} 0 & 8 \\ & 8 \end{array}\right\|$	8 8		
	云め	¢ 4	［10	（1）	\％ 4	$\begin{array}{ll}0 \\ 4 & 0 \\ & 0 \\ & 0\end{array}$	（1）	［09	O	ω	$\stackrel{\infty}{\sim}$	8 8	8 8	－	$\left\|\begin{array}{l} 0 \\ 4 \\ \hline \end{array}\right\|$		90 00 0.1 0.0
	${ }_{\sim}^{5}$	\bigcirc	0	－	－	－	O	－	$\stackrel{\infty}{i}$	8	$\stackrel{0}{2}$	O	［ $\begin{array}{ll}0 & 0 \\ \\ & 0\end{array}$	－	\bigcirc		
	$\underset{\sim}{\text { ¢ }}$	0		$\begin{array}{r}0 \\ \\ \hline\end{array}$	0	－	－	O	\bigcirc	0	$\stackrel{¢}{¢}$	O	\bigcirc	－	\bigcirc		
	$\stackrel{\oplus}{\oplus}$	¢	员	S＇	$\stackrel{\ominus}{\mathbf{0}}$	号	足	－${ }_{4}^{2}$	5		今	$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	［	${ }_{3}$	¢		
	－	5	N	3	\＄	$\stackrel{\sim}{\square}$	$\stackrel{\circ}{>}$	5	9	$\stackrel{\infty}{>}$	O	$\stackrel{\mathrm{H}}{5}$	0 5	$\stackrel{\square}{5}$	ら		

© John F. Rider

	促	谷藘			
	号官	\％E		ヌ	

PAGE 21-20 SCOIT RADIO LABORATORIES
MODELS 510; 510K,
Kenilworth; 5los,
Sheffield
AMPLIFIER CHASSIS

> NOTE 1: ALL SETS AFTER SERIAL NO. 18440
> ALL RESISTORS $\frac{1}{2} w$ UNLESS NOTED

www.americanradiohistory.com

Schematic Location	Part No.	Description
	N22975-2	Knob, Tuning, Maroon, (Cat. No. 2)
	N22978	Leaflet, Instruction.
R1		Resistor, 330,000 ohms, 1/4 watt
R2		Resistor, 22,000 ohms, 1/4 watt
R3	N 21630	Resistor, 2 Megohm, Volume Control \& Switch
R 4	N19177	Resistor, 47 ohm, l watt wire wound
R 5		Resistor, 120 ohm, $1 / 4$ watt .
R6		Resistor, 2200 ohm, 1 watt.
R7		Resistor, 15 ohm, 1/4 watt. . .
R 8		Resistor, 4.7 megohm, 1/4 watt.
R9		Resistor, 15 megohm, 1/4 watt.
R10		Resistor, 470,000 ohm, $1 / 4$ watt
R11		Resistor, 1 megohm, 1/4 watt
SPK	N22875	Speaker, 4* P.M. .
T 1	N22863	Transformer, I.F.
T 2	N22878 N18136	Transformer, Output . . Wire, Antenna

PAGE 21-4 SEARS, ROEBUCK
MODEL 33, Ch.
548.363

© John F. Rider

POWER SUPPLY . 117 V. A.C. 45 WATTS

PARTS LIST			
schematic	Part	DESCRIPTION	
LoCation	no.		
H1	517	Resistor 22,000 Ohm. 1/2 Watt	
H2	615	Resistor 2.2 Meg Ohm, $1 / 2$ Watt	
R4	520	Resistor 47 Ohm. $1 / 2$ Watt	
$16 ;$	411	Control, Volume, $500,0000 \mathrm{hm}$, with Switch	
H_{7}	516	Kesistor, 1 Meg Ohm. $1 / 2$ Watt	
H9	408	Control, Tone, 500,000 uhn.	
H11	502	Resistor $510,000 \mathrm{Ohm} .1 / 2$ watt	
R 12	505	Reststor 150 0hm. 1/2 watt	
K13	607	Resistor 1000 Ohm. 1 watt	
1114	$6{ }^{6} 2$		
11.5	534	Hesistor 30 Ohm. $1 / 2$ Watt	
C1. C2, C3, C4	11104A	Tuning liang and Triminer Assembly	
C5, C6, $\mathrm{C}_{7}, \mathrm{C8}$		Trinmer Condensors tri I. F. Cans	
C9, C92	804	Capacjeor . 1 Mfd. 200 V .	
C13	817	Capacitor 250 Mmfd . Ceramic	
C14	802		- 0 -
C16, C18	1010)	Capacitor filter $40,40,20 \mathrm{Mfd} .150$ Volts$20 \mathrm{Mfd}, 25$ Volts	
C19, C20			
C:1	803 A	Capacitor 005 Mfd .400 V .	
C23	906	Capacitor 5000 Mmid . Ceramic	
113, C11	811	Capristor 100 Mmfd . 50,000 Ohm. 100 Mmf . Dual Shunt	\%
C11 R,$~ C 12 ~$	813	Capristor . 01 Mfd .5 Meg Ohm, Common Terminal	
H10, C15	81.4	Capristor . 01 Mrd . 100,000 Ohm.	
T2	1512A	Loop Antenna	
T3, T4	1402	Transformers I. F. \#118	
\$2	1892A	Switch, Radio-Phono	
PL1	307A	Plug, Loop antenns	
P12	307C	Plug, Motor A. C.	
PL3	305	Plug, Pick up	
RE1	106A	Receptacle, Loop antenna	
HE2	107A	Receptacle, A. C.	
RE3	104	Receptacle, pick up	
x 1	2530	Pick up, Ceramic Cartridge and Plastic Arm	
LS1, T1	2607	Speaker, 5" P.M. with 2500 Ohm. Output Transformer	
	2108A	Portable Carrying Case	
	2411A	Knob, Volume	
	2411 B	Knob, Tuning	
	2411 C	Knob, Tone	
	1736A	dial Pointer	
	2307	Dial Bezel	
	1722B	Dial	

The following equipment is required for aligning: A signal generator which will provide an agt curately calibrated signal at the indicated test frequencies; an outputindicating meter; a non metallic screwdriver.

Radiation Loop: 2-turn loop, 6 inches in diameter.
Conditions for Alignment:
Tone - Treble
Volume - Maximum
Selector Switch - "Radio" position
Test loop coupled loosely to receiver by spacing - receiver loop in same position as it will be witb chassis ia cabinet.

SIGNAL GENERATOR COUPLING	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENBRATOR } \\ & \text { FREQUBNCY } \end{aligned}$	$\begin{aligned} & \text { RADIO } \\ & \text { DIAL } \\ & \text { SBTTING } \end{aligned}$	ODTPUT METBR	REMARES	ADJOST FOR MAXIMUM $00 T P U T$
LOOP	455 KC	Low End of Band	Across Voice Coil	Short out osc. tuning gang section C-2; compress C-3	$\begin{array}{ll} C-8, & C-7, \\ C-6, & C-6 \end{array}$
L00 P	1620 KC	High Bnd of Band	"	Remove short across C-2	$\mathrm{C}-4$
LOOP	1400 KC	Point of Marimum Output	"	Set pointer to 140 on dial	C-8
「00P	600 KC	Point of Marimum Outpat	"	Kinife C-1 plates for maximum output	
LOOP	1400 KC	1400	n	Rechect alignment.	$\begin{aligned} & C-8 \text { if } \\ & \text { necessary } \end{aligned}$

MODELS 51, 53,
Ch. 132.887
Power Supply
105-120 volts 60 oycle AC, 65 watts
Frequency Range
Broadcast - $1600-540 \mathrm{Kc}$

schematic LOGATION	$\begin{aligned} & \text { PART } \\ & \text { NOMBER } \end{aligned}$	DESCRTPTION
L1	N23159	Auterna Loop Assembly
	N22953	Bracket, Antonna Loop Htg.
	N23207	Bracket, Var. Con. Mtg.
	N234.27	
L2	N23163	Coil, R.E.
	\%N23751	Coil, oacillator
C1a, $118, \mathrm{cla}$	* N 2371	Condons or, Variable, 3 Gang
c2,65,613		Condonser, . 05 mifd., 400 volt
		Condenser, . 05 mid., 200 volt
Cl_{4}		Condenser, .00005 infd., 500 volt,
c6,08		mica Condenser,
		Coramic
c7,09		Condenser, 01 mrd., 400 volt
C12S, 0127	N22111	Condens or, Electroistic, $50-50$
612n, 012 l	N22111	mfd., 150 voit
\bigcirc	M 19132	Cord, Dial drive
	N20133-15	Cord, Power with Plug
		Cover, Rear Cabinet
	N23573	Covar. Record Charier, Bottom
	N23.02	Escutcheon, Dial with Cryste
	N23.50-15	Fnob, Cn-0ry-volu
	N23450-1.	Knob, Tuning

Powar Output
Undistorted
Maximum
Speaker Voice Coil Impedance
.5 watt

chematic LOCATION

PART MURBER DESGRIPTION

Lamp, Diel, Mazda, No. 47 Leaflet, Instruction Pointar, Dial
Resistor, 330,000 ohms, $\frac{2}{4}$ Watt Resistor, 22,000 ohms, watt Resistor, 6.3 megohm $\frac{1}{3}$ watt Resistor, 1 megohn $\frac{1}{4}$ watt Resistor, 15 ohm, $\frac{1}{4}$ watt Resistor, Volune control \& Switch, 500,000 ohms Rosis tor s. 3.3 megohn, $\frac{1}{3}$ watt Resistor, 470,000 ohms, wher watt Resistor, 1200 ohms, 2 watt Scale, Dial
Shaft, Tuninis
Sockst, Dial-1ite $\begin{aligned} & \text { ith leads }\end{aligned}$ Socket, Phono Motor Socket, Phono input Spring, Disl Cord Transformer, 1st I.F. Trans former, 2nd I. 5 Trans former, out pu Walzit, Cabinet

TECHNICAL INFORMATION

Tuning range 540 Kc . to 1600 Kc . Intormediate frequency -455 Kc . I-f and $\mathrm{r}-\mathrm{f}$ measurements made at .5 watt output - approximately 1.26 volts on a rectifier type voltmeter connected across the voice coil.

Approximate inputs for a .5 watt output: I-f 200 uv. R-f with standard loop: at $600 \mathrm{Kc} .500 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc} .400 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .400 \mathrm{uv} / \mathrm{m}$. R-f at external antenna connection: at 600 Kc .250 uv ; at 1000 Kc . 200 uv ; at 1400 Kc .200 uv .

ALIGNMENT DATA
With variable condenser closed, set the pointer horizontally to the left.
Position

| of
 Variable | Generator
 Frequency | Dumny
 Ant. | Generator
 Connection
 (High) | Generator
 Connection
 (Low) | Adjust Trimmers
 (in order
 shown) |
| :--- | :--- | :--- | :--- | :--- | :--- | | Trimmer |
| :---: |
| Function |

MODELS 54, 56,
Ch. 132.888

Specifications
Power Supply
$105-120$ volt 60 oycle AC, 65 watts Frequency Range Broadcast - 1600 - 540 Kc FM - 108-88 Mc

Power Output	
Undistorted	1.5
Maximum	2.5

Speaker Voice Coil Impedence 3.2

SCHEMATIC LCCATIO:

R1,R11,R15
R2
R3
R1
$R 3$
$R 4$
R R6
R7,R8,R13,
$R 7, R 8, R 1$
$R 17, R 30$
R17, R30
R9
R10, R20
R10, R2
R12
R12
R14
R16
R14,
R16
R18
\qquad R19
R21
R23 R23
R25 R25
R26 R27A, R27B
R28
$R 29$
$\mathrm{N} 22624_{4}$

N231,29
N 23129
N 22957
N23537-1
N19551
N19551
N1955?
N19552
N23
N231406
N19133
N22334-1
N2233
$\mathrm{N} 223 \mathrm{H}-1$
N
$\mathrm{N} 22335-1$
N 23435
$\mathrm{~N} 22352-1$
N 22590
N22967
N23669
N 23069
N 22959
N 22592
N 22592
N 22763

DESCRIPTION
Lamp, Dial, Mazda No. 47 Leaflct, Instruction
Pointer, Dial
Resistor, 68 ohms, 1/4. watt
Resistor, 68 ohms, $1 / 4$ watt
Resistor, 27 K ohms, 1 watt
Resistor, 27 K ohms, watt Resistor, 47 ohms, 1/ $\frac{1}{}$ watt Resistor, 22 K ohms, $1 / 4$ watt

Resistor, 1 K ohms, $1 / I_{+}$watt
Resistor, 1 K ohms, $1 / 4$ watt Resistor, 1 megohm, $1 / 4$ watt Resistor, 1 megohm, $1 / 4$ wat
Resistor, 10 K ohms, 1 watt Resistor, 100 K ohms, $1 / l_{+}$watt Resistor, 3.3 K onms, 1 watt Resistor, 3.3 K onms, $1 / 4$ watt Resistor, 180 ohns, $1 / 4$ watt Resistor, 220 K ohms, $1 / 4$ watt Resistor, 15 K ohms, $1 / 4$ watt Resistor, 10 megohms, $1 / 4$ watt Resistcr, 330 K ohms, $1 / 4$ ratt
Resistor, 2×500 ohms, 5 watts Resistor, 470 K ohrs, $1 / 4$ watt Resistor, 270 ohms, 1 watt Shaft, Thinine
Socket, Dial-Lite with Leods
Socket, AC Phono Motor
Socket, Phono Input
Speaker, $6^{\prime \prime}$ P. inpu
Spríng, Dial Cord
Suppressor Ass'y. Parasitic-AM
Suppressor Ass'J. Parasitic-AM Switch, Band, Fi(AM-Phono Transformer, I. F., AM, I 45 Kc . Transformer, lst I. $\mathrm{F} . \mathrm{F}, \mathrm{FM}, 10.7 \mathrm{Mc}$. Transformer, 2nd I.F., FM, 10.7 Hic. Trans former, Out put
Trang former, Ratio Detector Weight, Cabinet

TECHNICAL INFORMATION

AM
 Tuping range- 540 Kc . to 1600 Kc . Immediate Froquency-455 Kc. 1.F. and R.F. mensurements made at 500 milliwatts output-approximately 1.27 wolts on a receiver type voltmeter comnected across speaker voice coil Approximate input for 500 MW output: I.F. 300 uv; R.F. with standerd loop: at $00 \mathrm{Kc} 1200 \mathrm{uv} / \mathrm{m}$; at 1000 Kc uv / m; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.
 FM Tuning range- 88 megacycles to 108 megacycles. Intermediate frequency 10.7 megncycles. LF. and R.F. measurements made at 500 milliwatts output-approximately 1.27 volts on a reciffier type voltmeter connected across apeaber voice coil. Approximate input for 500 MW output: I.F. 300 uv; R.F. "Abeolute Measurements": 91 megacydes 125 uv; 105 megacycles, 100 uv.
 ALIGNMENT PROCEDURE
 Output meter connection Across spenter voice coil. Output meter reading to indicate 500 MW Generator Modulation. Postion of volume control
 Set dial pointer Set band switch To left for AM alignoment, center for FM aligment

FM ALIGNMENT

Detector and I.F. alignment using Signal Generator and Oscilloscope.

1. Connect FM Generator, High side, to grid (pin 1) of 6BA6 2 nd I.F. tube through .005 mfd dummy.
2. Set generator frequency to 10.7 Mc . modulated either 60 cycles or 400 cycles, 250 Kc sweep (125 Kc . deviation).
3. Connect vertical input of scope scross volume control of receiver (grounded terminal to chassis, ungrounded terminal to high side of control).
4. Set scope switch for internal synchronization and set horizontal oscillator to 2 X frequency of modulating voltage of generator. (120 or 800 cycles)
5. Turn variable condenser fully open, and band switch to right (FM).
6. Adjust frequency vernier of horizontal oscillator on scope until the pattern becomes stationaty.
7. Adjust ratio detector primary slug No. A7, for maximum vertical sweep of the scope pattern.
8. Adjust ratio detector secondary slug No. A8 to center the cross over point of the pattern. Pattern should look like Fig. 1 with the same amount of curve on both ends, and the cross over point in the center.
9. Connect generator, high side, to center antenna screw terminal on reair of chasis
10. Adjust I.F. slugs A9, A10 and All for the greatest vertical sweep of the pattern, consistent with linearity. If the I.F. slugs are adjusted for maximum sweep of the pattern, the pattern may become non-linear. Therefore, adjustment should be made for the greatest sweep which can be obtained and still have all four ends of the "X" pattern similar in size and shape.
11. Check the alignment of the I.F. and detector circuits by varying the signal generator frequency above and below the center frequency of 10.7 Mc . If the receiver is perfectly alipned, two smaller "X" patterms of similar size and shape will result, one on cither side of the center frequency. See Figure 2.

Position
of
Variable
Fully open
Fully Closed
105 Mc

Generator
108.5 Mc
87.5 Mc .

105 Mc .

91 Mc
91 Mc .

H6 I Cencrator Connection Ground (G) Terminal Ground (G) Teminal Ground (G) Terminal Ground (G) Terminal

FIG. 2
Adjust Trimmens In Onder Shown

A12 Check Point A13

Check Point
deviation)
deviation).
the receiver antenna teconinals.

LOCATIONS OF PARTS UNDER CHASSIS

REPLACE WITH SILVERTONE 671/2V. " 8 " BATTERY

CATALOG NO. 6480

SPECIFICATIONS

Power Supply: . 117 Volts, DC or 50-60 Cycles AC, 11 Watts or Catalog No.
Power Output:
Undistorted . 0.15 Watt Frequency Range:
Maximum . 0.30 Watt Broadcast . 540-1625 KC

LOCATION OF PARTS UNDER CHASSIS

SEARS, ROEBUCK PAGE 21-13

LOCATION OF PARTS ON TOP OF CHASSIS

GANG CONDENSER SHOWN FULLY IN MESH

STRING AND POINTER HOOKUP

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil
Generator ground lead connected
0.4 .

Generator modulation \qquad
To B- through 0.1 mfd capacitor Position of volume control. $30 \%, 400$ cycles Fully on
Position of pointer with tuner fully closed Pointer should be horizontal, pointing to left (9 o'clock).

Position of Tuner	Generator Freq.	Dummy Antenna	Generator Connection	Adjustments (in order shown)	Function	Max. Microvolts Input to produce .05 w . output
Min. Cap.	455 kc	0.1 mfd .	$\begin{aligned} & \text { Pin \#6 of } \\ & \text { 1U4 I-F Amp. } \end{aligned}$	T2 (top and bottom)	I.F.	5000
Min. Cap.	455 kc	0.1 mfd.	Pin \#6 of iRs Conv.	T1 (top and bottom)	I.F.	250
Min. Cap.	1625 kc	0.1 mfd .	Stator ant. tuner	C2	Osc.	
1400 kc	1400 kc		Hazeltine Test Loop	C1	Loop	100

ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on AC.
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Ch. 528.173

OPERATION

PAGE 21-16 SEARS, ROEBUCK

MODEL 225,
Ch. 528.171

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil
Generator ground lead connected To B- through 0.1 mfd. capacitor

Generator modulation $30 \%, 400$ cycles

Position of volume control .Fully on

Position of pointer with tuner fully closed
Center of pointer lined up with extreme right dot on dial backing plate. (Chassis right side up.)

Position of Tuner	Generator Freq.	Dummy Antenna Min. Cap.	455 kc	0.1 mfd.	Generator Connection Pin \#6 of 1U4 I-F Amp.	Adjustments (in order shown)		
T2 (top and								
bottom)							\quad	Function
:---:	\quad	I.F.						
:---:								

ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on AC.
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

MODEL 225,
Ch. 528.171-1

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil
Generator ground lead connected.
To B- through 0.1 mfd . capacitor
Generator modulation $30 \%, 400$ cycles
Position of volume control. Fully on
Position of pointer with tuner fully closed.
Center of pointer lined up with extreme right dot on dial backing plate.
(Chassis right side up.)

Position of Tuner	Generator Freq.	Dummy Antenna	Generator Connection	Adjustments (in order shown)	Function	Max. Microvolte Iaput to produce .05 w . output
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of 1U4 I-F Amp.	T2 (top and bottom)	I.F.	5000
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of 1R5 Conv.	T1 (top and bottom)	L.F.	250
Min. Cap.	1625 kc	0.1 mfd .	Stator ant. tuner	C6	Osc.	
1400 kc	1400 kc	0.1 mfd .	Stator ant. tuner	C5	R.F.	30
1400 kc	1400 kc		Hazeltine Test Loop	C4	Loop	100

ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on AC .
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

PARTS LIST

OPERATION

Fig. I. Fronf View

DESCRIPTION

Your new automobile receiver is a 5 -tabe (plus rectifier) superheterodyne, designed to operate from the 6 volt storage battery in your car. It is a universal type of receiver for mounting underneath the dash panel. It has a self-contained PM speaker, and covers the frequency range 540 to 1600 K.C. Two simple controls are provided for operating the receiver. (see fig. 1).

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, there-by insuring good reception of even distant or weak stations. The unit is simple to install, the antenna input circuit adjustable to permit the use of any two or three section whip ar "fish pole" anterma.

OPERATION

To turn the receiver on, rotate the volume control and switch knob (left hand knob) to the right about half its range. After allowing about 30 seconds for the tubes to warm up, the desired station may be tuned by rotating the tuning control (right hand knob) to the desired frequency. The dial scale is calibrated in kilocycles minus the final two zeros. After the station has been properly tuned, the volume may be adjusted by means of the volume control knob. To increase the volume, turn the control to the right; to decrease the volume, turn it to the left. Turning this control to the left as far as it will go, turns the radio off.

DIAL POINTER DRIVE \& STRINGING DIAGRAM

Fig. 2.

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor sappressor, ammeter condenser and generator condenser. By referring to Figures 1,3 and 9, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $5 / 8^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed by bending to the correct angles, as illustrated in Figure 3 , so that it can then be fastened to the fire wall. After marking and center-punching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 3. Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the antenna receptacle provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.
To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1400 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 3) and adjust the trimmer for maximum volume by turning the screw to the left or right with a small screw driver.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S-84-192, and the Suppression and Misc. Parts Kit, part No. S84-232, as. listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-147.

S84-192 MOUNTING PARTS KIT

1 1/4" Bolt
$21 / 4^{\prime \prime}$ Lock Washers
$21 / 4^{\prime \prime}$ Hexagon Nuts
$210-32 \times 5 / 8^{\prime \prime}$ Screws
$2 \quad 10-32 \times 3 / 8^{\prime \prime}$ Screws
2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
1 Washer-Spacer

S84-232 SUPPRESSION KIT \& MISC. PARTS

1 S84-233 "A" lead assem. 1 S84-193 Suppression Kit
1 A43-10 Fuse consisting of:
2 . 5 MFD Condensers
1 A81-13 Sleeve (for fuse) 1 Distributor Suppressor 20" Wire Braid

ELIMINATING MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These leads will very often pick up motor noise and feed it into the
receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

BONDING OF FIRE WALL RODS AND TUBES

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.
In some cases it may be necessary to ground the tubes and fods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

ELECTRICAL SPECIFICATIONS

Power Supply.................................. . . . 6.3 volts DC Current . 6.2 amp. average Frequency Range . 540 to 1600 KC I. F. Frequency . 455 KC Speaker
Power Output $4^{\prime \prime}$ P. M. Pour7s watts, undistorted 3 watts, maximum Sensitivity 1 microvolt average for 1 watt output Selectivity. . . 40 KC broad at 1000 times signal, at 1000 KC

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the schematic diagram (Fig. 7).

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

The tube compliment of this receiver is as follows:

$$
\begin{aligned}
& \text { 1-6SK7GT-R. F. Amplifier. } \\
& \text { 1-6SA7GT-Converter. } \\
& \text { 1-6SK7GT-I.F. Amplifier. } \\
& \text { 1-6SQ7-Detector-AVC-1st audio. } \\
& \text { 1-6V6GT-Power output. } \\
& \text { 1-6X5GT-Rectifier. }
\end{aligned}
$$

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

Fig. 4. Bottom View
ALIGNMENT PROCEDURE
Volume control-Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

$\begin{gathered} \text { Dial } \\ \text { Sotting } \end{gathered}$	Generator Frequancy	Dummy Ant.	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Open	455 KC	1 MFD .	6SA7 Grid	T2	Maximum	Output I.F.
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	11	Maximum	Input I.F.
Fully Open	1600 KC	75 MMFD.	Ant. lead	ClC	Maximum	Oscillator
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C1B	Maximum	R.F.
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C19	Maximum	Antenna

VIBRATOR

INSTRUCTIONS FOR INSTALLATION OF REAR SEAT SPEAKER

FRONT

Schemetic location	Pont No.	Description
C1A, C1B, C1C	B19-203	Capacitor-rariable, worm drive
C2, C9, C13	A16-201	Capacitor-. 01 mfd - 600 v .
C3, C5, C6	A16-189	Capacitor- $05 \mathrm{mfd}-400 \mathrm{r}$.
C4, C7	A16-197	Capacitor- $05 \mathrm{mfd} .-200 \mathrm{r}$.
C8, C10	A15-196	Copacitor-mico- 100 mmfd .
C11	A16-177	Capacitor-ceramic-. 005 mfd .
C12	A16-187	Capacitor—. 1 mfd.-400 v.
C14	A 16-200	Capacitor—. 003 mfd - 600 \%.
C15, Cl7	A15-176	Capacitor-mica- $\mathbf{2 5 0} \mathbf{m m f d}$.
C16	A16-184	Capacitor-. $5 \mathrm{mfd} .-100 \mathrm{r}$.
C18	A16-202	Capacitor- 5 mfd - 100 V.
C19	A20-145	Capacitor-ceramic-antenna trimmer
C20	A16-185	Capacitor-. 005 mfd - 1600 v.
	A18-289	Capacitor-electrolytic
C22		20 mfd - 25 r .
C23		30 mfd - 350 r .
C24		$20 \mathrm{mfd}-350 \mathrm{v}$.
	A83-421	Clip-I.F. transformer mownting
4	A10-527	Coil_Antenna loading
12	B10-525	Coil-Antenna
43	B10-528	Coil-R. F.
44	B10-526	Coil-Oseillator
45	A33-229	Coil-"A" line choke
L6	A33-234	Coi-Vibrator hash choke
19, 52	A24-177	Control-ON-OFF and VOLUME
	A51-105	Cord-Pointer trovel, 17"
	B67-541	DiaL-Stotion
	A47-112	Grommet-Speoker and variable capacitor mounting
	447-114	Grommet-Fibre-Flexible shoft bearing
	\$84-233	Kit-" A " lead assembly
	584-192	Kit-Mounting parts
	584-193	Kit-Suppression, assembly
	452-293	Knob-Volame and Puning
	A89-10	Lamp-Dial-G. E. No. 422
	431-147	Plate-Mounting, front
	A58-76	Pointer-Dial
	A87-38	Receptaclo-Antenno cable
R 1	A60-753	Resistor- 220 ohm- $1 / 2 \mathrm{w}$.
R2, R4	460-744	Resistor-22,000 ohm- $1 / 2 \mathrm{w}$.
R3, R7	A60-661	Resistor-330,000 ohm- $1 / 2 \mathrm{w}$.
R5	A60-722	Resistor- 470 ohm-1/2 w.
R6	A60-766	Resistor-8200 ahm-1 w.
R8	A60-726	Resistor-2.2 megahm-1/2 w.
R10	A60-728	Resistor— 10 megohm- $1 / 2 \mathrm{w}$.
R11	A60-667	Resistor-220,000 ohm- ${ }^{1 / 2} \mathbf{2}$ w.
R12	A60-765	Resistor-4700 ahm-1 w.
R13	A60-731	Resistor- 470,000 ohm- $1 / 2 \mathrm{w}$.
R14	A60-754	Resistor-270 ohm-1 w.
R15	A60-694	Resistor-470 ohm-1/2 m .
R16, R17	A60-752	Resistor-100 ohm-1/2 w.
	B75-72	Shaft-Tuning drive-flexible
	B79-373	Speaker-4"' P.M.
	B31-134	Strap-Mounting, rear
51	A69-185	Switch-Rear seat sperker
T1	A10-521	Tronsformer-I.F. No. 1
T2	A10-529	Transformen-l.F. No. 2
T3	B80-249	Tronsformer-Output (part of speaker)
T4	880-243	Transformer-Power
	A34-105	Vibrator-Mallory No. 659

IMPORTANT: All tubular condensers must be high temperature $\left(85^{\circ} \mathrm{C} .\right)_{\text {wax }}$ type.

Fig. 1 Front Viow

DESCRIPTION

Your new automobile receiver is a 5 -tube (plus rectifier) superheterodyne, designed to operate from the 6 volt storage battery in your car. It is a universal type of receiver for mounting underneath the dash panel. It has a self-contained PM speaker, and covers the frequency range 540 to 1600 K .C. Two simple controls are provided for operating the receiver. (see fig. 1).

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, there-by insuring good reception of even distant or weak stations. The unit is simple to install, the antenna input circuit adjustable to permit the use of any two or three section whip or "fish pole" antenna.

OPERATION

To turn the receiver on, rotate the volume control and switch knob (left hand knob) to the right about half its range. After allowing about 30 seconds for the tubes to warm up, the desired station may be tuned by rotating the tuning control (right hand knob) to the desired frequency. The dial scale is calibrated in kilocycles minus the final two zeros. After the station has been properly tuned, the volume may be adjusted by means of the volume control knob. To increase the volume, turn the control to the right; to decrease the volume, turn it to the left. Turning this control to the left as far as it will go, turns the radio off.

DIAL POINTER DRIVE \& STRINGING DIAGRAM

Fig. 2

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, am. meter condenser and generator condenser. By referring to Figures 1 and 2, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $7 / 32^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed by bending to the correct angles, as illustrated in Figure 3 , so that it can then be fastened to the fire wall. After marking and center-punching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 2 Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.
To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 2) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression and Misc. Parts Kit, part No. S84-232 as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-147.

S84-192 MOUNTING PARTS KIT

$1 / 4^{\prime \prime}$ Bolt
$1 / 4^{\prime \prime}$ Lock Washers $1 / 4^{\prime \prime}$ Hexagon Nuts $10-32 \times 5 / 8^{\prime \prime}$ Screws $10-32 \times 3 / 8^{\prime \prime}$ Screws

2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
1 Washer-Spacer

S84-232 SUPPRESSION KIT \& MISC. PARTS
1 S84-233 "A" lead assem. 1 S84-193 Suppression Kit consisting of:
1 A43-10 Fuse
1 A81-13 Sleeve (for fuse)

2 . 5 MFD Condensers
1 Distributor Suppressor 20" Wire Braid

ELIMINATING MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise. (The following steps may not be necessary in all cases. Install your radio and operate it before making changes.)

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then , screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION WIRES

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the
receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

BONDING OF FIRE WALL RODS AND TUBES

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

ELECTRICAL SPECIFICATIONS

Power Supply. 6.3 volts DC
Current . 6.2 amp. average
Frequency Range . 540 to 1600 KC
I. F. Frequency . 455 KC

Speaker . 4" P. M.
Power Output 1.75 watts, undistorted 3 watts, maximum
Sensitivity. 3 microvolt average for 1 watt output Selectivity. . 40 KC broad at 1000 times signal, at 1000 KC

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage diagram (Fig. 7).

All voltages should be measured with an input voltage of 6.3 volts $D C$.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

This receiver contains the following:
1-6SK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC—1st audio.
1-6V6GT-Power output.
A 6X5GT Rectifier is used.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers.) can be renoved to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

Fig. 4. Bottom View

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of
Connect output meter across voice coil.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.
The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.

Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD., 75 MMFD.
For alignment points refer to figures 5 and 6.

Dial Seffing	Generator Frequency	Dummy . Ant.	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	T2	Maximum	Output I.F.
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	T1	Maximum	Input I.F.
Fully Open	1600 KC	75 MMFD.	Ant. lead	C1C	Maximum	Oscillator
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C1B	Maximum	R.F.
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C19	Maximum	Antenna

INSTRUCTIONS FOR INSTALLATION OF REAR SEAT SPEAKER

Fig. 9. Mounting Parts

Schematic Location
C1A, C1B, CIC
C2, C13
C3, C5, C6
C4, C9
C8, Clo
Cll
C12
C14
C16
C18
C19
C20
C21
C22
C23
C24
L1
L2
L3
L4
L5
L6
R9, S2

A83-421
A10-527
B10-525
B10-535
B10-536
A33-229
A33-234
A24-182
A51-105
B67-541
A47-112
A47-114
S84-233
S84-192
S84-193
A52-294
A89-10
A31-147
A58-76
A87-38
A60-753
A60-760
A60-661
A60-744
A60-767
A60-716
A60-726
A60-728
A60-667
A60-765
A60-731
A60-754
A60-694
A60-752
A75-74
B75-73 Shaft-Tuning drive-flexible
B79-373 Speaker-4" P.M.
B31-134 Strap-Mounting, rear
SI
T1
$T 2$
T3

A10-521
Al0.521 Trantorme. No. 2
Transformer-I.F. No. 2
B80-249 Transformer-Output (part of speaker)
B80-243 Transformer-Power
A34-105 Vibrator-Maliory No. 659

SEARS, ROEBUCK PAGE 21-37

7" ROUND SPEAKER

7"RUBBER BAFFLE \& SCREEN

Fig. 1. Parts in Master Package
Only one of the speakers illustrated is supplied with each radio; the type of speaker you receive will be determined by the make of car for which the radio is ordered.

Fig. 2. Custom Style Mounting

DESCRIPTION

Your SILVERTONE radio is a newly designed DE LUXE PUSHBUTTON TUNING AUTOMOBILE RECEIVER of advance superheterodyne circuit design, for operation on the six volt storage battery in your car. It covers the frequency range from 540 KC to 1600 KC . In addition to PUSHBUTTON TUNING it features BÁSS-COMPENSATED VOLUME CONTROL supplemented by a MANUAL TONE CONTROL. It consists of three principal parts-the Control Unit, the Power Unit and the Speaker (See Fig. 1)-and is supplied with mounting parts to accommodate either custom instaliation in the instrument panel or underdash mounting. (See Figs. 2 and 3.)
Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, thereby insuring good reception of even distant or very weak stations. It is simple to install. The antenna input circuit is adjustable to permit the use of any two, three or four section telescopic, whip or "fishpole" type antenna.

Each complete radio, with accessories, is made up in two separate packages, one carton containing the Escutcheon Kit and speaker mounting hardware, the other carton containing the Control Unit, the Power Unit and either a $7^{\prime \prime}$ round speaker or a $6 " x 9$ " oval speaker, depending on the make and and model of the cer for which the radio was ordered. This second carton will be stamped with the letter " A " to indicate that it contains a 7 " round speaker, or the letter " B " to indicate the 6 " $\times 9^{\prime \prime}$ oval speaker.

Control Unit Escutcheon Kits (instrument panel matching or universal) are supplicd as a separate item, thus permitting you to transfer the radio from one car to another with only the small expense of replacing the Escutcheon Kit and speaker if you desire to match the instrument panel of your new or different car. Instrument panel matching Escutcheon Kits for most popular late model cars are available at your nearest Sears retail store or Mail Order House. If your Silvertone radio is equipped with a universal underdash tuning panel it may be transferred as is to 2 different car without changing the Escutcheon Kit. However, if you wish to change from an underdash mounting to a custom style instrument panel mounting, this can be accomplished by discarding the universal Escutcheon Kit and replacing it with an instrument panel matching Escutcheon Kit and $6^{\prime \prime} \times 9^{\prime \prime}$ oval speaker, if necessary), as outlined above.

THE SPEAKER

INSTALLATION

The speakers ($7^{\prime \prime}$ round or $6^{\prime \prime} \mathrm{x} 9$ " oval) are supplied with sponge rubber baffles for mounting on flat or curved instrument panels. The rubber baffle for the $7^{\prime \prime}$ round speaker has flared sides so that it will cover an oval opening in the car's speaker grill as well as a round opening.
Speaker mounting hardware is supplied with each Escutcheon Kit for mounting the speaker in your car. This includes a "U-shaped" bracket for mounting the round speaker in cars on which it is not possible to mount the speaker on existing bolts.

SPECIFIC INSTRUCTIONS PERTAINING TO THE MOUNTING OF THE SPEAKER AND CONTROL UNIT IN THE CAR FOR WHICH YOU ORDERED YOUR RADIO ARE CONTAINED IN THE LEAFLET PACKED IN THE ESCUTCHEON KIT.

Fig. 3. Underdash Mounting

MOUNTING THE POWER UNIT

The power unit mounts on the firewall (see Fig. 3). Determine a suitable position for mounting it by holding the case in your hands against the firewall. When a suitable position has been determined, then check the underhood side of the wall, to make sure there is no obstruction to prevent drilling a hole and inserting the mounting bolt. Having located a suitable position that will permit drilling, mark and drill a $5 / 16$ " hole. Insert the $1 / 4$ inch diameter by 3 inch long, carriage type mounting bolt into the hole from the underdash side and attach the lockwasher and nut on the underhood side, but do not tighten. Now holding the case in a vertical position (with wingnut on the bottom), bring the case up to the kolt and slide the channel in the mounsing plate down over the head of the bolt. The lockwasher and nut on the underhood side should then be tightened down securely.

If, because of limited space, you find it necessary to mount the power unit in a horizontal or angle position, this type of mounting is entirely satisfactory and has no ill effect on the operation of the radio.

Fig. 3. Power Unit Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the plug into the antenna receptacle on the side of the control unit (see Fig. 4). Plug the speaker and power cables into the sockets provided on the sides of the Power Unit. Connect the "A" lead to the battery side of the ammeter behind the instrument panel. The fuse should then be inserted into the holder in the " A ' lead. These connections are illustrated in Fig. 4.

Fig. 4. Connecting the Radio

CONTROLS

There are six operating controls on the front of the Control Unit, (see Fig. 5). The two outside knobs are dual purpose controls, the other four are PUSHBUTTON STATION SELECTORS. The left-hand control consists of two knobs mounted on concentric shafts; the front knob (round) is the ON-OFF-SWITCH and VOLUME CONTROL; the rear knob (with four points) is the MANUAL TONE CONTROL. The knob on the right is the MANUAL TUNING CONTROL and it also serves as a fifth PUSHBUTTON STATION SELECTOR. The use of these controls is explained below.

Fig. 5. Control Unit Panel

THE ON-OFF-SWITCH AND VOLUME CONTROL

When the outer left knob is turned all the way to the left the receiver is switched off and there is no drain from the car's battery. Rotating the knob part of a turn toward the right switches the receiver on and illuminates the dial. Further rotation of the knob increases the volume. After a station has been tuned in properly the volume control knob should be adjusted to give the desired volume.

MANUAL TUNING

Use the right-hand knob to tune in stations manually. To select a station, push in the knob and tune the radio by turning the knob until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned.
The dial is marked in Kilocycles minus the final two zeroes. Always tune carefully for the clearest sound and minimum background noise.

PUSHBUTTON TUNING

Adjusting the pushbutton station selectors is simple and quick. No tools are required and a button may be set up for a new station in a few seconds. Each button can be tuned to any station in the broadcast band; thus you can arrange the tuning in any order to suit your convenience.
Before making the following adjustments, turn the radio on and let it warm up for 15 minutes.
Choose the PUSHBUTTON STATION SELECTOR you wish to adjust, and push the button all the way in; it will lock in this position. Now tune in the station to which you wish to pre-tune by turning the button to right or left until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned, but to insure the accuracy of the setting, keep the volume control turned low and adjust the button for sharpest tuning. This will be indicated when the sound is clearest and noise at a minimum. The button is now properly adjusted and should not be turned again until it is desired to set it for a different station.
Follow the above procedure to adjust the remaining PUSHBUTTON STATION SELECTORS.
As was mentioned under the heading CONTROLS, the MANUAL TUNING CONTROL has been designed to serve as a fifth PUSHBUTTON STATION SELECTOR. If you wish to use this control as a PUSHBUTTON STATION SELEC.

Fig. 6. Suppression Kit and Miscellaneous Parts

TOR, simply follow the procedure given above for adjusting the other PUSHBUTTON STATION SELECTORS. How. ever, remember that if you use this control for MANUAL TUNING at any time, it will have to be re-set to the desired station if you wish to use it again as a PUSHBUTTON STATION SELECTOR.

THE TONE CONTROL

The inner left knob (with four points) is the TONE CONTROL, which permits you to select the most pleasing tonal range. When it is turned all the way to the right (clockwise) the tone is treble or brilliant. This position is best for the most distinct reproduction, especially of speech. Turning the knob to the left (counterclockwise) makes the tone more mellow. This is often desirable for certain types of music and is also useful to lessen the effects of static and electrical noise. Turn the knob to the position that gives the tone most pleasing to you.

MATCHING THE ANTENNA

An adjusting screw for matching the receiver to the particular antenna used is accessible through a hole in the bottom side of the Control Unit. (See Fig. 4.) Set the dial pointer between 1400 KC and 1500 KC , where no station is heard with the volume control fully on. Then use a small screw driver to turn the adjusting screw to the point giving the most hiss or noise. The set is now ready for operation.

ELIMINATING MOTOR NOISE

Every precaution was taken in the design of this radio to eliminate motor noise interference. However, in the remote instance that it may be found desirable to take further steps, the following notes are added for your guidance. IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove fron distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most case the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of
the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These leads will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

BONDING OF STEERING COLUMN TO BODY

Ponding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4$ " piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

ELECTRICAL SPECIFICATIONS

Current.	6.5 amp . average
Frequency Range.	. . 540 to 1600 KC
I. F. Frequency	262 KC
Speaker.	$7^{\prime \prime}$ round or $6^{\prime \prime} \times 9^{\prime \prime}$ oval
Power Output	... 3 watts, undistorted 5.5 watts, maximum

Sensitivity. 3 microvolt average for 1 watt output Selectivity. . 40 KC broad at 1000 times signal, at 1000 KC

The set contains the following:
1-6BAG-R. F. Amplifier. 1-6BEG-Converter. I-GBA6-I. F. Amplifier. 1-6ATG-Detector-AVC-1st audio. 1-6V6GT-Power output.
1-6X5GT--Rectifier.

SERVICE NOTES

Voltages taken from the different points of the circuit to chassis are measured with the volume and tone controls in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohm per volt. These voltages are clearly shown on the schematic diagram (Figs. 11 and 12). All voltages should be measured with an input voltage of 6.3 volts DC.
The tubes and rectifier are accessible for servicing without removing the chassis. Loosen the wing-nut on the cover of the power supply case and lift off the cover. On the RF Tuning Unit, loosen the wing nuts on the two stud bolts protruding from the side of the case at the top, rear, and remove the plate over the tubse. CAUTION: Be sure to replace the tubes and the rectifier in the proper sockets. Refer to Tube and Rectifier Location Pictorials, Fig. 10 and 14.

WARNING: The dash pot (brass cylinder on the mechanical tuner) should never be oiled. If it is ever necessary to make adjustments on the mechanical tuner, the dash pot may be cleaned vith ordinary cleaning solvents.

ALIGNING INSTRUCTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace the coils or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, the rectifier, condensers, resistors, etc., are normal before proceeding with realignment.
If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE." After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING THE CHASSIS FROM THE CASE

RF TUNING UNIT: Remove the knobs and nuts from the two control shafts. Take out the six self-tapping screws around the back edge of the case and remove the back cover. Remove the plate over the tubes (see service notes). Loosen the screw securing the cable clamp, slip the cable out from under the clamp and out of the notch. Remove the lead from the plug-in terminal on the spark plate attached to the inside top of case. Slide the "A" lead out of the notch. Now tilt the front of the case up so that the chassis can slide out. Grasp the chassis at the rear with the fingers against the chassis plate and with the thumb hooked over the IF transformer. Pull the chassis straight back, being careful that the pointer bracket does not get caught against the spark plate components. Handle the chassis carefully and set down gently so that the mechanical tuning parts may not be damaged or the settings of the coil cores upset by jarring.

POWER SUPPLY: Loosen the wing-nut and lift the top cover off. Remove the $6-32 \times 1 / 2$ screw securing the high voltage cable socket to the case. Remove the four screws (one on each side) near the bottom outside of the case. Now take the case in one hand and grasp the output transformer with the other hand and lift the chassis straight up.

Fig. 9. Power Unit—Boftom View

Fig. 10. Power Unit-Top View

© John F. Rider

PAGE 21-44 SEARS, ROEBUCK

ALIGNMENT PROCEDURE
Volume control—Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts.

Connect dummy antenna in series with output lead of signal generator. Connect output meter across voice coil.

Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check. For alignment points refer to Figures 13 and 14.

slug Pcsition	Generator Frequency	Dummy Ant.	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T2	Maximum	Output I.F.
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T1	Maximum	Irput I.F.
Fully Out	1610 KC	*	Ant. lead	C9	Maximum	Oscillater
Tune in signal from generator	1400 KC	*	Ant. lead	C3	Maximum	R.F.
Tune in signal from generator - 30 MMFD across	$1400 \mathrm{KC}$ cels arid 75	it "hot"	Ant. lead nerator leads	Cl	Aiaximum	Antenna

PAGE 21-46 SEARS, ROEBUCK
MODEL 6295, Ch. 528.6295

Schematic location	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	Description
Cl	A20-148	Capociror-antenna trimmer
C2	A15-197	Copaciter-ceramic- 10 mmfd .
C3, C3	A20-147	Capacitor-dual trimmer-R.F. and Oscillator
C4	A15-194	Capacitor-ceramic- 50 mmfd .
C5	A16-197	Capacitor-. 05 mfd - 200 v .
C6, C17, C18	A16-177	Capacitor-ceramic-. 005 mfd .
C7	A15-215	Capacitor-ceramic- 270 mmfd .
C8	A15-218	Capacitor-silver mica- $\mathbf{2 2 0} \mathbf{m m f d}$.
C10, Ci9	A16-190	Capacitor- .005 mfd - -600 v .
C11, Cl2	A16-189	Copacitor-. 05 mfd - 400 v .
Cl3, Cl 4	A16-192	Capacitor-. 01 mfd - 400 v .
C15		Capacitor-spark plate
C16, C21, C28	A16-184	Capacitor-. 5 mfd - 100 v .
	A18-294	Copacitor-electrolytic
C20		20 mfd - 25 v .
C23, 224		25 mfd. - 350 r .
C26		35 mfd - 400 v .
C22	A16-206	Capacitor-. $02 \mathrm{mfd} .-600 \mathrm{r}$.
C25	A16-188	Capacitor-. $2 \mathrm{mfd} .-400 \mathrm{v}$.
C27	A16-207	Capacitor-. 007 mfd - 1600 r . -oil filled
	B23-157	Cable-power
L1, L2, L3	S84-368	Coil-assembly-including carriage and slugs, atc.
L4	A33-229	Coi- " A " line choke
L5	A33-228	Coil-vibrator hash choke
	A83-421	Clip-I.F. transformer mounting
R10,R11, SI	A24-183	Control-dual-ON-OFF-VOLUME and TONE
	B67-547	Dial scale
	A43-10	Fuse-15 amp.-3AG
	A47-115	Grommet-rubber-power cable
	584-233	Kit-"A" lead assembly
	B52-296	Knob-Tuning
	B52-297	Knob-Volume
	852-298	Knob-Tane
	A89-7	Lamp-pilot-No. 47 Bayanet
R1، RG	A60-770	Resistor-470 ohm- $1 / 2$ watt
R2	A60-760	Resistor-10K ohm- $1 / 2$ watt
R3	A60-668	Resistor-1 megohm- $1 / 2$ wott
R4	A60-744	Resistor-22K chm- $1 / 2$ watt
R5	A60-773	Resistor-22K ohm-1 watt
R7	A60-726	Resistor- 2.2 megohm- $1 / 2$ watt
R8	A60-730	Resistor- 47 K ohm- $1 / 2$ wott
R9	A60-728	Resistor-10 megohm- $1 / 2$ watt
R12	A60-775	Resistor-68K ahm- $1 / 2$ watt
R13	A60-672	Resistor-220K ohm- $1 / 2$ watt
R14	A60-694	Resistor-470 ohm-1 watt
R15	A60-754	Resistor- 270 ohm-1 watt
R16	A60-731	Resistor-470K ohm- $1 / 2$ watt
R17	A60-698	Resistor-10K ohm-1 watt
R18, R19	A60-752	Resistor-100 ohm- $1 / 2$ watt
	A83-646	Retainer-dial scale-left
	A83-647	Retainer-dial scale-right
	C79-375	*Speaker-7" round
	C79-376	"Speoker-6"x9" oval
	S84-383	Transformer-output-with cable and plug
T1	A10-537	Transformer-I.F. No. 1
T2	A10-540	Transformer-I.F. No. 2
T3	C80-250	Transformer-power
	A34-105	Vibrator-Mallory No. 659

"When ordering a replacement speaker, arder the same type, $7^{\prime \prime}$ round or $6^{\prime \prime} \times 9^{\prime \prime}$ oval, as the ald one that was installed in your cor.

Mechanical Tuner Parts

A56-141	Pusher nut-manual tuning
A56-142	Pusher nut-pushbutton tuning
A75-75	Pusher rod-manual tuning
S84-355	Pushbutton and rod assembly

IMPORTANT: All tubular condensers must be high temperature $\left(85^{\circ} \mathrm{C}\right.$.) wax type.

```
6" \(\times 9^{\prime \prime}\) OVAL SPEAKER
```


$6 " \times 9$ " RUBBER BAFFLE \& SCREEN

CONTROL UNIT

POWER UNIT

7" ROUND SPEAKER

7"RUBBER BAFFLE \& SCREEN

Fig. 1. Parts in Master Package
Only one of the speakers illustrated is supplied with each radio; the type of speaker you receive will be determined by the make of car for which the radio is ordered.

DESCRIPTION

Your SILVERTONE radio is a newly designed DE LUXE PUSHBUTTON TUNING AUTOMOBILE RECEIVER of advance superheterodyne circuit design, for operation on the six volt storage battery in your car. It covers the frequency range from 540 KC to 1600 KC . In addition to PUSHBUTTION TUNING it features BASS-COMPENSATED VOLUME CONTROL supplemented by a MANUAL TONE CONTROL. It consists of three principal parts-the Control Unit, the Power Unit and the Speaker (See Fig. 1)-and is supplied with mounting parts to accommodate either custom installation in the instrument panel or underdash mounting. (See Figs. 2 and 3.)

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, thereby insuring good reception of even distant or very weak stations. It is simple to install. The antenna input circuit is adjustable to permit the use of any two, three or four section telescopic, whip or "fishpole" type antenna.

Each complete radio, with accessories, is made up in two separate packages, one carton containing the Escutcheon Kit and speaker mounting hardware, the other carton containing the Control Unit, the Power Unit and either a 7" round speaker or a 6 " $x 9$ " oval speaker, depending on the make and and model of the car for which the radio was ordered. This second carton will be stamped with the letter " A " to indicate that it contains a 7 " round speaker, or the letter. " B " to indicate the $6^{\prime \prime} \times 9^{\prime \prime}$ oval speaker.

Control Unit Escutcheon Kits (instrument panel matching or universal) are supplied as a separate item, thus permitting you to transfer the radio from one car to another with only the small expense of replacing the Escutcheon Kit and speaker if you desire to match the instrument panel of your new or different car. Instrument panel matching Escutcheon Kits for most popular late model cars are available at your nearest Sears retail store or Mail Order House. If your Silvertone radio is equipped with a universal underdash tuning panel it may be transferred as is to a different car without changing the Escutcheon Kit. However, if you wish to change from an underdash mounting to a custom style instrument panel mounting, this can be accomplished by discarding the universal Escutcheon Kit and replacing it with an instrument panel matching Escutcheon Kit (and $6^{\prime \prime} \times 9^{\prime \prime}$ oval speaker, if necessary), as outlined above.

THE SPEAKER

The speakers (7 " round or $6 " \mathrm{x} 9$ " oval) are supplied with sponge rubber baffles for mounting on flat or curved instrument panels. The rubber baffle for the $7^{\prime \prime}$ round speaker has flared sides so that it will cover an oval opening in the car's speaker grill as well as a round opening.

Speaker mounting hardware is supplied with each Escutcheon Kit for mounting the speaker in your car. This includes a "U-shaped" bracket for mounting the round speaker in cars on which it is not possible to mount the speaker on existing bolts.

Fig. 3. Underdash Mounting

MOUNTING THE POWER UNIT

The power unit mounts on the firewall (see Fig. 3). Determine a suitable position for mounting it by holding the case in your hands against the firewall. When a suitable position has been determined, then check the underhood side of the wall, to make sure there is no obstruction to prevent drilling a hole and inserting the mounting bolt. Having located a suitable position that will permit drilling, mark and drill a $5 / 16^{\prime \prime}$ hole. Insert the $1 / 4$ inch diameter by 3 inch long, carriage type mounting bolt into the hole from the underdash side and attach the lockwasher and nut on the underhood side, but do not tighten. Now holding the case in a vertical position (with wingnut on the bottom), bring the case up to the bolt and slide the channel in the mounting plate down over the head of the bolt. The lockwasher and nut on the underhood side should then be tightened down securely.

If, because of limited space, you find it necessary to mount the power unit in a horizontal or angle position, this type of mounting is entirely satisfactory and has no ill effect on the operation of the radio.

Fig. 3. Power Unit Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the plug into the antenna receptacle on the side of the control unit (see Fig. 4). Plug the speaker and power cables into the sockets provided on the sides of the Power Unit. Connect the " A " lead to the battery side of the ammeter behind the instrument panel. The fuse should then be inserted into the holder in the " A ' lead. These connections are illustrated in Fig. 4.

Fig. 4. Connecting the Radio

CONTROLS

There are six operating controls on the front of the Control Unit, (see Fig. 5). The two outside knobs are dual purpose controls, the other four are PUSHBUTTON STATION SELECTORS. The left-hand control consists of two knobs mounted on concentric shafts; the front knob (round) is the ON-OFF-SWITCH and VOLUME CONTROL; the rear knob (with four points) is the MANUAL TONE CONTROL. The knob on the right is the MANUAL TUNING CONTROL and it also serves as a fifth PUSHBUTTON STATION SELECTOR. The use of these controls is explained below.

Fig. 5. Control Unif Panel

THE ON-OFF-SWITCH AND VOLUME CONTROL

When the outer left knob is turned all the way to the left the receiver is switched off and there is no drain from the car's battery. Rotating the knob part of a turn toward the right switches the receiver on and illuminates the dial. Furthes rotation of the knob increases the volume. After a station has been tuned in properly the volume control knob should be adjusted to give the desired volume.

MANUAL TUNING

Use the right-hand knob to tune in stations manually. To select a station, push in the knob and tune the radio by turning the knob until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned.
The dial is marked in Kilocycles minus the final two zeroes. Always tune carefully for the clearest sound and minimum background noise.

PUSHBUTTON TUNING

Adjusting the pushbutton station selectors is simple and quick. No tools are required and a button may be set up for a new station in a few seconds. Each button can be tuned to any station in the broadcast band; thus you can arrange the tuning in any order to suit your convenience.

Before making the following adjustments, turn the radio on and let it warm up for 15 minutes.
Choose the PUSHBUTTON STATION SELECTOR you wish to adjust, and push the button all the way in; it will lock in this position. Now tune in the station to which you wish to pre-tune by turning the button to right or left until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned, but to ingure the accuracy of the setting, keep the volume control turned low and adjust the button for sharpest tuning. This will be indicated when the sound is clearest and noise at a minimum. The button is now properly adjusted and should not be turned again until it is desired to set it for a different station.

Follow the above procedure to adjust the remaining PUSHBUTTON STATION SELECTORS.
As was mentioned under the heading CONTROLS, the MANUAL TUNING CONTROL has been designed to serve as a fifth PUSHBUTTON STATION SELECTOR. If you wish to use this control as a PUSHBUTTON STATION SELEC. TOR, simply follow the procedure given above for adjusting the other PUSHBUTTON STATION SELECTORS. How. ever, remember that if you use this control for MANUAL TUNING at any time, it will have to be re-set to the desired station if you wish to use it again as a PUSHBUTTON STATION SELECTOR.

S84--382 SUPPRESSION KIT AND MISCELLANEOUS PARTS

1 S84-233-"A" lead assembly
1 A43-10-Fuse
1 A81-13-Sleeve (for fuse)
2 A16-183-. 5 MFD condensers
1 A96-4-Distributor Suppressor
$20^{\prime \prime}$ wire braid
1 bolt- $1 / 4^{\prime \prime}$ diameter by $3^{\prime \prime}$ long
1 lockwasher
1 flat washer
1 nut

"A" lead

GENERATOR AND AMMETER CONDENSERS
POWER UNIT MOUNTING HARDWARE

$$
3^{\circ} \mathrm{BOLT}
$$

$$
\theta \text { e }
$$

FLAT WASHER LOCKWASHER

$20^{\prime \prime}$ WIRE BRAID

SUPPRESSOR

Fig. 6. Suppression Kit and Miscellaneous Parts

THE TONE CONTROL

The inner left knob (with four points) is the TONE CONTROL, which permits you to select the most pleasing tonal range. When it is turned all the way to the right (clockwise) the tone is treble or brilliant. This position is best for the most distinct reproduction, especially of speech. Turning the knob to the left (counterclockwise) makes the tone more mellow. This is often desirable for certain types of music and is also useful to lessen the effects of static and electrical noise. Turn the knob to the position that gives the tone most pleasing to you.

MATCHING THE ANTENNA

An adjusting screw for matching the receiver to the particular antenna used is accessible through a hole in the bottom side of the Control Unit. (See Fig. 4.) Set the dial pointer between 1400 KC and 1500 KC , where no station is heard with the volume control fully on. Then use a small screw driver to turn the adjusting screw to the point giving the most hiss or noise. The set is now ready for operation.

ELIMINATING MOTOR NOISE

Every precaution was taken in the design of this radio to eliminate motor noise interference. However, in the remote instance that it may be found desirable to take further steps, the following notes are added for your guidance.
IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A .5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most case the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These leads will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

GROUNDING THE POWER CABLE

In some cases motor noise is reduced by grounding the power cable to the power unit case. See Fig. 4. Loosen one of the two screws located on either side of the power cable socket on the power unit. Cut a six inch length off the wire braid supplied in the Suppression Kit. Fasten one end under the screw and tighten down the screw again. Wrap the remainder of the braid around the cable and solder or tape it securely in place.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

BONDING OF STEERING COLUMN TO BODY

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

ELECTRICAL SPECIFICATIONS

Power	6.3 volts DC
Current	. 6.5 amp . average
Frequency Range	. 540 to 1600 KC
I. F. Frequency	. . . 262 KC
Speaker	$7^{\prime \prime}$ round or 6"x9" oval
Power Output	2.5 watts, undistorted 5 watts, maximum

Sensitivity. 3 microvolt average for 1 watt output
Selectivity. . . 40 KC broad at 1000 times signal, at 1000 KC

The set contains the following:
1-6BAG-R. F. Amplifier.
1-6BE6-Converter.
1-6BA6-1. F. Amplifier.
1-6ATG-Detector-AVC-1st audio.
1-6V6GT-Power output.

SERVICE NOTES

Voltages taken from the different points of the circuit to chassis are measured with the volume and tone controls in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohm per volt. These voltages are clearly shown on the schematic diagram (Figs. 11 and 12). All voltages should be measured with an input voltage of 6.3 volts DC .

The tubes and rectifier are accessible for servicing without removing the chassis. Loosen the wing-nut on the cover of the power supply case and lift off the cover. On the RF Tuning Unit, loosen the wing nuts on the two stud bolts protruding from the side of the case at the top, rear, and remove the plate over the tubes. CAUTION: Be sure to replace the tubes and the rectifier in the proper sockets. Refer to Tube and Rectifier Location Pictorials, Fig. 10 and 14.

WARNING: The dash pot (brass cylinder on the mechanical tuner) should never be oiled. If it is ever necessary to make adjustments on the mechanical tuner, the dash pot may be cleaned with ordinary cleaning solvents.

ALIGNING INSTRUCTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace the coils or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, the rectifier, condensers, resistors, etc., are normal before proceeding with realignment.
If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE." After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING THE CHASSIS FROM THE CASE

RF TUNING UNIT: Remove the knobs and nuts from the two control shafts. Take out the six self-tapping screws around the back edge of the case and remove the back cover. Remove the plate over the tubes (see service notes). Loosen the screw securing the cable clamp, slip the cable out from under the clamp and out of the notch. Remove the lead from the plug-in terminal on the spark plate attached to the inside top of case. Slide the " A " lead out of the notch. Now tilt the front of the case up so that the chassis can slide out. Grasp the chassis at the rear with the fingers against the chassis plate and with the thumb hooked over the IF transformer. Pull the chassis straight back, being careful that the pointer bracket does not get caught against the spark plate components. Handle the chassis carefully and set down gently so that the mechanical tuning parts may not be damaged or the settings of the coil cores upset by jarring.
POWER SUPPLY: Loosen the wing-nut and lift the top cover off. Remove the $6-32 \times 1 / 2$ screw securing the high voltage cable socket to the case. Remove the four screws (one on each side) near the bottom outside of the case. Now take the case in one hand and grasp the output transformer with the other hand and lift the chassis straight up.

fig. 9. Power Unit-Bottom View

CABLE RECEPTACLE
Fig. 10. Power Unit-Top View

MODEL 6295-1,
Ch. 528.6295-1

ALIGNMENT PROCEDURE

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.

Volume control-Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts. Connect dummy antenna in series with output lead of signal generator. Connect output meter across voice coil. Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

Slug
Fully Out
Fully Out
Tune in signal
from generator
Tune in signal
from generator
TONE C
PUSHEUTTONS

$$
\text { Output meter. (1.8 volt for } 1 \text { watt output.) }
$$

Dummy antennas- 1 MFD., 75 MMFD., 30 MMFD. For alignment points refer to Figures 13 and 14.

$\begin{aligned} & \text { Slug } \\ & \text { Position } \end{aligned}$	Generator Frequency	Dummy Ant.	Generator Connections	Trimmer Reference	Trimmer Adiustment	Trimmer Function
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T2	Maximum	Output I.F.
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T1	Maximum	Input I.F.
Fully Out	1610 KC	*	Ant. lead	C9	Maximum	Oscillator
Tune in signal from generator	1400 KC	*	Ant. lead	C3	Maximum	R.F.
Tune in signal from generator	1400 KC	-	Ant. lead	Cl	Maximum	Antenna
*30 MMFD across input terminals and 75 MMFD in series with "hot" side of signal generator leads.						

Schematic Location	Part No.	Description
C1	A20-148	Capacitor-antenna trimmer
C2	A15-197	Capacitor-ceramic- 10 mmfd .
C3, C9	A20-147	Capacitor-dual trimmer-R.F. and Oscillator
C4	A15-194	Capacitor-ceramic- 50 mmfd .
C5	A16-197	Capacitor- 05 mfd - 200 v.
C6, C17, C18	A16-177	Capacitor-ceramic-. 005 mfd .
C7	A15-215	Capacitor-ceramic- 270 mmfd .
C8	A15-218	Capacitor-silver mica- 220 mmfd .
C10, C19	A16-190	Capacitor-. 005 mfd - 600 v .
C11, C12	A16-189	Capacitor-. 05 mfd - 400 v.
C13, C14	A16-192	Capacitor- 01 mfd. - 400 v.
C15		Capacitor-spark plate
C16, C21, C 28	A16-184	Capacitor- 5 mfd - 100 v .
	A18-300	Capacitor-electrolytic
C20		20 mfd . 25 v .
C23		25 mfd - 350 v .
C26		35 mfd - 400 r .
C22	A16-206	Capacitor-. 02 mfd - 600 v .
C25	A16-188	Capacitor- 2 mfd - 400 r .
C27	Al 6-207	Capacitor-. 007 mfd - 1600 v. - oil filled
	B23-157	Cable-power
L1, L2, L3	S84-368	Coi-_assembly-including carriage and slugs, atc.
L4	A33-229	Coil-" ${ }^{\text {A }}$ " line choke
L5	A33-228	Coil-vibrator hash choke
L6	A10-527	Coil-ontenna loading
	A83-421	Clip-I.F. transformer mounting
R10, R11, 51	A24-183	Contro-dual-ON-OFF-VOLUME and TONE
	A43-10	Fuse- 15 amp.-3AG
	A47-115	Grommet-rubber-power cable
	S84-233	Kit--"A" lead assembly
	B52-296	Knob-Tuning
	B52-297	Knob-Volume
	B52-298	Knob-Tone
	A89-7	Lamp-pilot-No. 47 Bayonet
R1	A60-770	Resistor--470 ohm-1/2 watt
R2	A60-760	Resistor-10K ohm- $1 / 2$ watt
R3	A60-668	Resistor-1 megohm- $1 / 2$ watt
R4	A60-744	Resistor-22K ohm-1/2 watt
R5	A60-773	Resistor- 22 K ohm-1 watt
R6	A60-675	Resistor-1000 ohm— $1 / 2$ watt
R7	A60-726	Resistor-2.2 megohm- $1 / 2$ watt
R8	A60-730	Resistor- 47 K ohm-1/2 watt
R9	A60-728	Resistor-10 megohm- $1 / 2$ watt
R12	A60-775	Resistor-68K ohm- $1 / 2$ watt
R13	A60-672	Resistor-220K ohm- $1 / 2$ watt
R14	A60-694	Resistor-470 ohm-1 watt Mechanical Tuner Parts
R15	A60-754	Resistor-270 ohm-1 watt A56-141 Pusher nut-manual tuning
R16	A60-731	Resistor-470K ohm-1/2 watt A56-142 Pusher nut-pushbutton tuning
R17	A60-698	Resistor-10K ohm-1 watt A75-75 Pusher rod-manual tuning Pushbutton and rod assembly
R18, R19	A60-752	
	A83-646	Retainer-dial scale-left Retainer-dial scale-right
	A83-647	Retainer-dial scale-right
	C79-387	"Speaker-7"' round
	C79-386	"Speaker-6"x9'0 oval
	S84-383	Transformer-output-with cable and plug
TI	A10-537	Transformer-I.F. No. 1
T2	A10-540	Transformer-I.F. No. 2
T3	C80-258	Transformer-power
	A34-105	Vibrator-Mallory No. 659

"When ordering a replacement speaker, order the same type, 7" round or 6'x9" oval, at the old one that was installed in your car.

7 7ROUND SPEAKER

7"RUBBER BAFFLE \& SCREEN

Fig. 1. Parts in Master Package
Only one of the speakers illustrated is supplied with each radio; the type of speaker you receive will be determined by the make of car for which the radio is ordered.

Fig. 2. Custom Style Mounting

DESCRIPTION

Your SILVERTONE radio is a newly designed DE LUXE PUSHBUTTON TUNING AUTOMOBILE RECEIVER of advance superheterodyne circuit design, for operation on the six volt storage battery in your car. It covers the frequency range from 540 KC to 1600 KC . In addition to PUSHBUTTON TUNING it features BASS-COMPENSATED VOLUME CONTROL supplemented by a MANUAL TONE CONTROL. It consists of three principal parts-the Control Unit, the Power Unit and the Speaker (See Fig. 1)-and is supplied with mounting parts to accommodate either custom installation in the instrument panel or underdash mounting. (See Figs. 2 and 3.)

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, thereby insuring good reception of even distant or very weak stations. It is simple to install. The antenna input circuit is adjustable to permit the use of any two, three or four section telescopic, whip or "fishpole" type antenna.

Each complete radio, with accessories, is made up in two separate packages, one carton containing the Escutcheon Kit and speaker mounting hardware, the other carton containing the Control Unit, the Power Unit and either a $7^{\prime \prime}$ round speaker or a 6 " $x 9$ " oval speaker, depending on the make and and model of the car for which the radio was ordered. This second carton will be stamped with the letter " A " to indicate that it contains a 7 " round speaker, or the letter " B " to indicate the 6 " $\times 9$ " oval speaker.

Control Unit Escutcheon Kits (instrument panel matching or universal) are supplied as a separate item, thus permitting you to transfer the radio from one car to another with only the small expense of replacing the Escutcheon Kit and speaker if you desire to match the instrument panel of your new or different car. Instrument panel matching Escutcheon Kits for most popular late model cars are available at your nearest Sears retail store or Mail Order House. If your Silvertone radio is equipped with a universal underdash tuning panel it may be transferred as is to a different car without changing the Escutcheon Kit. However, if you wish to change from an underdash mounting to a custom style instrument panel mounting, this can be accomplished by discarding the universal Escutcheon Kit and replacing it with an instrument panel matching Escutcheon Kit (and $6^{\prime \prime} \times 9^{\prime \prime}$ oval speaker, if necessary), as outlined above.

THE SPEAKER

The speakers ($7^{\prime \prime}$ round or $6^{\prime \prime} \times 9^{\prime \prime}$ oval) are supplied with sponge rubber baffles for mounting on flat or curved instrument panels. The rubber baffle for the $7^{\prime \prime}$ round speaker has flared sides so that it will cover an oval opening in the car's speaker grill as well as a round opening.
Speaker mounting hardware is supplied with each Escutcheon Kit for mounting the speaker in your car. This includes a "U-shaped" bracket for mounting the round speaker in cars on which it is not possible to mount the speaker on existing bolts.

SPECIFIC INSTRUCTIONS PERTAINING TO THE MOUNTING OF THE SPEAKER AND CONTROL UNIT IN THE CAR FOR WHICH YOU ORDERED YOUR RADIO ARE CONTAINED IN THE LEAFLET PACKED IN THE ESCUTCHEON KIT.

Fig. 3. Underdash Mounting

MOUNTING THE POWER UNIT

The power unit mounts on the firewall (see Fig. 3). Determine a suitable position for mounting it by holding the case in your hands against the firewall. When a suitable position has been determined, then check the underhood side of the wall, to make sure there is no obstruction to prevent drilling a hole and inserting the mounting bolt. Having located a suitable position that will permit drilling, mark and drill a $5 / 16^{\prime \prime}$ hole. Insert the $1 / 4$ inch diameter by 3 inch long, carriage type mounting bolt into the hole from the underdash side and attach the lockwasher and nut on the underhood side, but do not tighten. Now holding the case in a vertical position (with wingnut on the bottom), bring the case up to the bolt and slide the channel in the mounting plate down over the head of the bolt. The lockwasher and nut on the underhood side should then be tightened down securely.

If, because of limited space, you find it necessary to mount the power unit in a horizontal or angle position, this type of mounting is entirely satisfactory and has no ill effect on the operation of the radio.

Fig. 3. Power Unit Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the plug into the antenna receptacle on the side of the control unit (see Fig. 4). Plug the speaker and power cables into the sockets provided on the sides of the Power Unit. IMPORTANT: LOOSEN SCREW "A" (SEE FIG. 4) ON POWER UNIT CASE. WRAP THE PIGTAIL OF BRAID ON THE POWER SUPPLY CABLE AROUND THE SCREW AND TIGHTEN DOWN THE SCREW AGÁIN. BE SURE THAT THE PIGTAIL IS SECURELY HELD BY THE SCREW. Connect the " A " lead to the battery side of the ammeter behind the instrument panel. The fuse should then be inserted into the holder in the "A" lead. These connections are illustrated in Fig. 4.

Fig. 4. Connecting the Radio

CONTROLS

There are six operating controls on the front of the Control Unit, (see Fig. 5). The two outside knobs are dual purpose controls, the other four are PUSHBUTTON STATION SELECTORS. The left-hand control consists of two knobs mounted on concentric shafts; the front knob (round) is the ON-OFF-SWITCH and VOLUME CONTROL; the rear knob (with four points) is the MANUAL TONE CONTROL. The knob on the right is the MANUAL TUNING CONTROL and it also serves as a fifth PUSHBUTTON STATION SELECTOR. The use of these controls is explained below.

Fig. 5. Control Unit Panel

THE ON-OFF-SWITCH AND VOLUME CONTROL

When the outer left knob is turned all the way to the left the receiver is switched off and there is no drain from the car's battery. Rotating the knob part of a turn toward the right switches the receiver on and illuminates the dial. Further rotation of the knob increases the volume. After a station has been tuned in properly the volume control knob should be adjusted to give the desired volume.

MANUAL TUNING

Use the right-hand knob to tune in stations manually. To select a station, push in the knob and tune the radio by turning the knob until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned.

The dial is marked in Kilocycles minus the final two zeroes. Always tune carefully for the clearest sound and minimum background noise.

PUSHBUTTON TUNING

Adjusting the pushbutton station selectors is simple and quick. No tools are required and a button may be set up for a new statiop in a few seconds. Each button can be tuned to any station in the broadcast band; thus you can arrange the tuning in any. order to suit your convenience.

Before making the following adjustments, turn the radio on and let it warm up for 15 minutes.
Choose the PUSHBUTTON STATION SELECTOR you wish to adjust, and push the button all the way in; it will lock in this position. Now tune in the station to which you wish to pre-tune by turning the button to right or left until the desired station is heard. The dial pointer will indicate the frequency to which you are tuned, but to insure the accuracy of the setting, keep the volume control turned low and adjust the button for sharpest tuning. This will be indicated when the sound is clearest and noise at a minimum. The button is now properly adjusted and should not be turned again until it is desired to set it for a different station.

Follow the above procedure to adjust the remaining PUSHBUTTON STATION SELECTORS.
As was mentioned under the heading CONTROLS, the MANUAL TUNING CONTROL has been designed to serve as a fifth PUSHBUTTON STATION SELECTOR. If you wish to use this control as a PUSHBUTTON STATION SELEC TOR, simply follow the procedure given above for adjusting the other PUSHBUTTON STATION SELECTORS. However, remenber that if you use this control for MANUAL TUNING at any time, it will have to be re-set to the desired station if you wish to use it again as a PUSHBUTTON STATION SELECTOR.

S84--382 SUPPRESSION KIT AND MISCELLANEOUS PARTS

1 S84-233-"A" lead assembly
1 A43-10-Fuse
1 A81-13-Sleeve (for fuse)
2 A16-183-. 5 MFD condensers
1 A96-4-Distributor Suppressor

" A " lead
$20^{\prime \prime}$ wire braid
1 bolt- $1 / 4^{\prime \prime}$ diameter by $3^{\prime \prime}$ long
1 lockwasher
1 flat washer
1 nut

Fig. 6. Suppression Kit and Miscellaneous Parts

THE TONE CONTROL

The inner left knob (with four points) is the TONE CONTROL, which permits you to select the most pleasing tonal range. When it is turned all the way to the right (clockwise) the tone is treble or brilliant. This position is best for the most distinct reproduction, especially of speech. Turning the knob to the left (counterclockwise) makes the tone more mellow. This is often desirable for certain types of music and is also useful to lessen the effects of static and electrical noise. Turn the knob to the position that gives the tone most pleasing to you.

MATCHING THE ANTENNA

An adjusting screw for matching the receiver to the particular antenna used is accessible through a hole in the bottom side of the Control Unit. (See Fig. 4.) Set the dial pointer between 1400 KC and 1500 KC , where no station is heard with the volume control fully on. Then use a small screw driver to turn the adjusting screw to the point giving the most hiss or noise. The set is now ready for operation.

ELIMINATING MOTOR NOISE

Every precaution was taken in the design of this radio to eliminate motor noise interference. However, in the remote instance that it may be found desirable to take further steps, the following notes are added for your guidance. It may not be necessary to use all of the following suggestions to correct a noise condition in any one car. We recommend using these helpful hints in the manner of a process of elimination, using only those methods that correct your condition.
IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

VOLTAGE REGULATOR

It is normal to connect a .5 mfd condenser from the battery terminal on the voltage regulator to ground; however, in a number of cars the voltage regulator is mounted on rubber grommets. In such instances, the condenser should be grounded directly to the case of the regulator, rather than to some other ground point. Do not use a larger condenser than .5 mfd or else it will affect the timing of the regulator rendering it less useful.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

Considerable ignition interference is experienced from leads in cables that run along the inside of the fire wall near the auto radio. For example, the battery lead to the low voltage side of the ignition coil on a 1950 Model Oldsmobile ' 88 ' runs through the fire wall and along the inside past the auto radio to a point beyond the steering column. This lead has heavy radiation. It can be disconnected at the ignition coil and pulled through the fire wall and pushed back through the fire wall at a point to the left of the steering column and run along the outside to its original point of connection on the ignition coil. Such types of leads should be watched for in all installations. They should be rerouted, if possible, or shielded with braid material. It is advisable in extreme cases to bond all leads by wrapping braid around them, and grounding the braid at the closest point. In wrapping a braid around a lead, do not remove the insulation from the leads as this is a radiation type of shield. Keep all ground leads as short as possible, or they will pick up interference.
Bunch up any excess length of the shielded power cable, wrap it with braid and ground it to the closest ground point.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and. it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

Bonding of Ungrounded Engine and Body Parts

The best rule is to keep the ignition interference underneath the hood as much as possible. This is best accomplished by using filters and suppressors on all points that would produce radiation as well as effectively bonding the hood, motor block, and any engine and body parts that are isolated from each other. It would be advisable to check
all bolt-on fenders on which antennas are mounted, in that these fenders frequently are not sufficiently well grounded to the rest of the car. Use bonding braid wherever necessary to ground such fenders. Use wide bonding braid and keep all such braid as short ${ }^{\circ}$ as possible. Bonding all cables and tubes that go through the fire wall is necessary in some cases.

ELECTRICAL SPECIFICATIONS

Power Supply. 6.3 volts DC
Current. 6.5 amp. average
Frequency Range. 540 to 1600 KC
I. F. Frequency. 262 KC

Speaker. $7^{\prime \prime}$ round or $6^{\prime \prime} \times 9^{\prime \prime}$ oval
Power Output. \qquad 2.5 watts, undistorted 5 watts, maximum
Sensitivity. 3 microvolt average for 1 watt output Selectivity. . . 40 KC broad at 1000 times signal, at 1000 KC

The set contains the following:
1-6BAG-R. F. Amplifier.
1-6BEG-Converter.
1-6BAG-I. F. Amplifier.
1-6AT6-Detector-AVC-1st audio.
1-6V6GT-Power output.

SERVICE NOTES

Voltages taken from the different points of the circuit to chassis are measured with the volume and tone controls in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohm per volt. These voltages are clearly shown on the schematic diagram (Figs. 11 and 12). All voltages should be measured with an input voltage of 6.3 volts DC.
The tubes and rectifier are accessible for servicing without removing the chassis. Loosen the wing-nut on the cover of the power supply case and lift off the cover. On the RF Tuning Unit, loosen the wing nuts on the two stud bolts protruding from the side of the case at the top, rear, and remove the plate over the tubes. CAUTION: Be sure to replace the tubes and the rectifier in the proper sockets. Refer to Tube and Rectifier Location Pictorials, Fig. 10 and 14.

WARNING: The dash pot (brass cylinder on the mechanical tuner) should never be oiled. If it is ever necessary to make adjustments on the mechanical tuner, the dash pot may be cleaned with ordinary cleaning solvents.

ALIGNING INSTRUCTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace the coils or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, the rectificr, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE." After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING THE CHASSIS FROM THE CASE

RF TUNING UNIT: Remove the knobs and nuts from the two control shafts. Take out the six self-tapping screws around the back edge of the case and remove the back cover. Remove the plate over the tubes (see service notes). Loosen the screw securing the cable clamp, slip the cable out from under the clamp and out of the notch. Remove the lead from the plug-in terminal on the spark plate attached to the inside top of case. Slide the "A" lead out of the notch. Now tilt the front of the case up so that the chassis can slide out. Grasp the chassis at the rear with the fingers against the chassis plate and with the thumb hooked over the IF transformer. Pull the chassis straight back, being careful that the pointer bracket does not get caught against the spark plate components. Handle the chassis carefully and set down gently so that the mechanical tuning parts may not be damaged or the settings of the coil cores upset by jarring.
POWER SUPPLY: Loosen the wing-nut and lift the top cover off. Remove the $6-32 x^{1} / 2$ screw securing the high voltage cable socket to the case. Remove the four screws (one on each side) near the bottom outside of the case. Now take the case in one hand and grasp the output transformer with the other hand and lift the chassis straight up.

Fig. 9. Power Unit-Bottom View

Fig. 10. Power Unit-Top View

PAGE 21-64 SEARS, ROEBUCK
MOTES:-
VALUES OF CAPACITORS IN
MFD. UNLESS OTHERWISE SHOWH.
ALL RESISTORS I/R WATT
UNLESS OTHERWISE SHOWN.
MOTES:-
VALUES OF CAPACITORS IN
MFD. UNLESS OTHERWISE SHOWH.
ALL RESISTORS I/R WATT
UNLESS OTHERWISE SHOWN.
MOTES:-
VALUES OF CAPACITORS IN
MFD. UNLESS OTHERWISE SHOWH.
ALL RESISTORS I/R WATT
UNLESS OTHERWISE SHOWN.

TUBE SOCKETS SHOWINS TERMIMAL
NUMEERING.
Fig. 12. Schematic Diagram-Power Unit
ALIGNMENT PROCEDURE
Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator. Connect output meter across voice coil.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

$\begin{gathered} \text { Slug } \\ \text { Position } \end{gathered}$	Generator Frequency	Dummy Ant.	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T2	Maximum	Output I.F.
Fully Out	262 KC	. 1 MFD.	6BE6 Grid	T1	Maximum	Input I.F.
Fully Out	1610 KC	*	Ant. lead	C9	Maximum	Oscillator
Tune in signal from generator	1400 KC	*	Ant. lead	C3	Maximum	R.F.
Tune in signal from generator - 30 MMFD across	$1400 \mathrm{KC}$ inals and 75	"hot"	Ant. lead anerator leads.	C1	Maximum	Antenna

fig. 13. Control Unit-Bottom View

MODEL 6295-2,
Cr_{1}. 528.6295-2

*When ordering a replacement speaker, order the same type, 7" round or' 6 " $\times 9^{\prime \prime}$ oval, as the old one that was installed in your car.

DESCRIPTION

Your new automobile receiver is a 5 -tube (plus rectifier) superheterodyne, designed to operate from the 6 volt storage battery in your car. It is a universal type of receiver for mounting underneath the dash panel. It has a self-contained PM speaker, and covers the frequency range 54,0 to $1600 \mathrm{~K} . \mathrm{C}$. Two simple controls are provided for operating the receiver. (see fig. 1)

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, there-by insuring good reception of even distant or weak stations. The unit is simple to install, the antenna input circuit adjustable to permit the use of any two or three section whip or "fish pole" antenna.

OPERATION

To turn the receiver on, rotate the volume control and switch knob (left hand knob) to the right about half its range. After allowing about 30 seconds for the tubes to warm up, the desired station may be tuned by rotating the tuning control (right hand knob) to the desired frequency. The dial scale is calibrated in kilocycles minus the final two zeros. After the station has been properly tuned, the volume may be adjusted by means of the volume control knob. To increase the volume, turn the control to the right; to decrease the volume, turn it to the left. Turning this control to the left as far as it will go, turns the radio off.

DIAL POINTER ADJUSTMENT

If it should become necessary to readjust the dial pointer for correct calibration, this may be easily done without removing the radio from the car by proceeding as follows:
A. Turn tuning knob to the right (clockwise) as far as it will go.
B. Remove snap button located on the right side of the case (viewed from the front), in the extreme upper front corner.
C. Insert screwdriver through hole in case and move dial pointer directly over white dot at high end of dial (1600 KC).
D. Tune receiver to station of known frequency in the center of the dial and readjust pointer for more accurate indication, if necessary.
E Replace snap button into hole in case.
CAUTION: Be careful not to scratch or damage dial scale or dial pointer when making this adjustment

Fig 2

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, and generator condenser. By referring to Figures 2 and 3, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $7 / 32^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided. and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpuse. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed by bending to the correct angles, as illustrated in Fig. ure 3 , so that it can then be fastened to the fire wall. After marking and center-punching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The_mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 3 Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.
To adjust the antenna trimner condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 3) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression and Misc. Parts Kit, part No. S84-407, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-138.

S84-192 MOUNTING PARTS KIT

1	$1 / 4^{\prime \prime}$ Bolt
2	$1 / 4^{\prime \prime}$ Lock Washers
2	$1 / 4^{\prime \prime}$ Hexagon Nuts
2	$10-32 \times 5 / 8^{\prime \prime}$ Screws
2	$10-32 \times 3 / 8^{\prime \prime}$ Screws

2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
1 Washer-Spaces

S84-407 SUPPRESSION KIT \& MISC. PARTS

1 S84-233 "A" lead assem. 1 S84-322 Suppression Kit consisting of:
1 A43-10 Fuse
2 A52-300 Control Knobs
1 A81.13 Sleeve (for fuse) $20^{\prime \prime}$ Wire Braid

ELIMINATING MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor moise

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

NOTE

In most cases the use of the generator condenser and the distributor suppressor will eliminate all objectionable ignition interference. However, if further reduction of noise is found to be desirable, it is suggested that a . 5 MFD. condenser, (similar to the one used on the generator), be connected from either side of the ammeter to a good ground.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper proredure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location

HIGH AND LOW TENSION LEADS

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in notion. If this form of interference is present it can be eliminated by installing wheel static collector springs brtween the inner hub cap and the spindle shaft.

BONDING OF STEERING COLUMN TO BODY

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the rubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4$ " piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

MODEL 6297-1,
Ch. 528.6297-1

SERVICE DATA
 ELECTRICAL SPECIFICATIONS

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage diagram (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts $D C$.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or ransformer, or the adjustments have been tampered with in the field Always make certain that other circuit components, such as tubes. rectifier, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

This receiver contains the following:
1-GSK7GT-R. F. Amplifier.
1 -GSA7GT-Converter.
$1-6$ SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC-1 st audio.
1-6V6GT-Power output.
A 6X5GT Rectifier is used.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components. such as tubes, rectifier and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover. to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby per mitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) sirews securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts.

Connect dummy antenna in series with output lead of signal generator. Connect output meter across voice coil.

Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check. modulated 400 cycles, 30%. Signal generator that will provide the test frequencies as listed, Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.

Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD. 75 MMFD.
For alignment points refer to Figures 5 and 6 .
For

Dial Setting	Generator Frequency	Dummy Ant.	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Open	455 KC	. 1 MFD.	6547 Grid	T2	Maximum	Output I.F.
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	TI	Maximum	Input I.F.
Fully Open	1600 KC	75 MMFD.	Ant. lead	C1B	Maximum	Oscillator
Tune in signal from generator	1400 KC	75 MMFD	Ant. lead	ClA	Maximum	Antenna
NOTE: The antenna trimmer condenser, C3, (see Fig. 3) should be adjusted after the radio is installed in the car. Tune the receiver to a weak station at and adjust this trimmer for maximum volume.						

MODEL 6297-1,
Ch. 528.6297-1

PARTS LIST

Sehomette Diagrem Reforence	$\begin{aligned} & \text { Port } \\ & \text { No. } \end{aligned}$
CIA, CIB	B19-201
C2, Cl4	A16-192
C3	A20-145
C4	A16-189
C5	A15-196
C7	A15-204
C8	A15-205
c9	A16-187
C10	A15-176
c11	A16-190
C12	A16-195
C13	A16-193
C15	
C16	A18-289
C17	
C19, C20	A16-184
C21	A16-185
R1, R3	A60-659
R2	A60-685
R4	A60-769
R5	A60-726
R6	A24-177
R7	A60-728
R8, R15	A60-758
$R 9$	A60-667
R10	A60-731
R11	A60-771
812	A60-770
R13, 14	A60-752

Descripticen
CONDENSERS
Variable condenser

COILS AND TRANSFORMERS

A10-52
Antenna Loading Coil
B10.511
A10-512
A33-229
A33-228
A10-508
A10-509
880-242
880-243

All-303
B11-328
A72-29
A70-130
A58-55
B67-545
A28-101
A52-300
A11-329
A89-10
A65-37
A65-42
465-12
A75-70
475-74
A70-132
A70-135
A70-142
A51-105
A51-108

Antenne Coll

Oscillator Coll
Choke, "A" Line
Choke, vibrotor hash
lst I.F. Tronstormer
2nd I.F. Tronsformer
Output Tronsformer (Port of Spanker, mot furnished separately)
Powef transformer
DIAL PARTS
Brocket, Dial Scele
Bracket, String Guida
Bushing, Tuning Shaft Bearing
Clip, Spring, for Tuning Shaft
Dial Pointer
Dial Scale
Gosket for Speoker
Knob
Link, String Guide
Pilot Light, No. 47 Bayonet
Rivet, Shoulder, for Dial Pointer Stringing
Rivet, Shoulder, for String Guide Brkt, end Liak
Rivet, Shoulder, for Dial Drive Stringing
Shaft, tuning
Shoft, for Dial Pointer
Spring, for Pliot Light Socket
Spring, Dial Drive String Tension
Spring, Pointer Drive String Tension
String, Pointer Traval, 17"'
String, Condenser Drive, 19"

DESCRIPTION

Your new automobile receiver is a 5 -tube (plus rectifier) superheterodyne, designed to operate from the 6 volt storage battery in your car. It is a universal type of receiver for mounting underneath the dash panel. It has a self-contained PM speaker, and covers the frequency range 540 to $1600 \mathrm{~K} . \mathrm{C}$. Two simple controls are provided for operating the receiver. (see fig. 1).

Special care has been taken in the design of this receiver to insure the finest in sensitivity and selectivity, there-by insuring good reception of even distant or weak stations. The unit is simple to install, the antenna input circuit adjustable to permit the use of any two or three section whip or "fish pole" antenna.

OPERATION

To turn the receiver on, rotate the volume control and switch knob (left hand knob) to the right about half its range. After allowing about 30 seconds for the tubes to warm up, the desired station may be tuned by rotating the tuning control (right hand knob) to the desired frequency. The dial scale is calibrated in kilocycles minus the final two zeros. After the station has been properly tuned, the volume may be adjusted by means of the volume control knob. To increase the volume, turn the control to the right; to decrease the volume, turn it to the left. Turning this control to the left as far as it will go, turns the radio off.

Fig. 1 Front View

DIAL POINTER ADJUSTMENT

If it should become necessary to readjust the dial pointer for correct calibration, this may be easily done without removing the radio from the car by proceeding as follows:
A. Turn tuning knob to the right (clockwise) as far as it will go.
B. Remove snap button located on the right side of the case (viewed from the front), in the extreme upper front corner.
C. Insert screwdriver through hole in case and move dial pointer directly over white dot at high end of dial (1600 KC).
D. Tune receiver to station of known frequency in the center of the dial and readjust pointer for more accurate indication, if necessary.
E. Replace snap button into hole in case.

CAUTION: Be careful not to scratch or damage dial scale or dial pointer when making this adjustment.
Fig. 2

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, and generator condenser. By referring to Figures 2 and 3, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $7 / 32^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed by bending to the correct angles, as illustrated in Figure 3, so that it can then be fastened to the fire wall. After marking and center-punching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4$ " bolt, lock washer and nut furnished with the receiver.

Fig.3. Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.
To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 3) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression and Misc. Parts Kit, part No. S84-407, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-138.

S84-192 MOUNTING PARTS KIT

```
1 1/4" Bolt
2 1/4" Lock Washers
2 1/4" Hexagon Nuts
2 10-32 x 5/8" Screws
10-32 \times 3/8" Screws
2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
\(10-32 \times 3 / 8^{\prime \prime}\) Screws
1 Washer-Spacer
```


S84-407 SUPPRESSION KIT \& MISC. PARTS

1 S84-233 "A" lead assem. 1 S84-322 Suppression Ki:
1 A43-10 Fuse
2 A52-300 Control Knobs
1 A81-13 Sleeve (for fuse) $20^{\prime \prime}$ Wire Braid

ELIMINATING MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR
 Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

NOTE

In most cases the use of the generator condenser and the distributor suppressor will eliminate all objectionable ignition interference. However, if further reduction of noise is found to be desirable, it is suggested that a .5 MFD. condenser, (similar to the one used on the generator), be connected from either side of the ammeter to a good ground.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instruinstrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

BONDING OF STEERING COLUMN TO BODY

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

ELECTRICAL SPECIFICATIONS

Supply	C
Current	6.2 amp. average
Frequency Range	. 540 to 1600 KC
I. F. Frequency	4S5 KC
Speaker	$4^{\prime \prime}$ P. M.
Power Output.	1.2 watts, undistorted
	maximum
Sensitivity	rage for 1 watt output
electivity. . . 50	times signal, at 1000 K

This receiver contains the following:
1-GSK7GT-R. F. Amplifier.
1-GSA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC—1st audio
1-6V6GT-Power output.
A 6X5GT Rectifier is used.

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes and the rectifier in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage diagram (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, rectifier, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes, rectifier and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to semove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

ALIGNMENT PROCEDURE
The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed,
modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD., 75 MMFD.
For alignment points refer to Figures 5 and 6 .
For alignment points refer to figures 5 and
Trimmer
Function

Dial Setting	Generator Frequency	Dummy Ant.	Gen erotor Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
Fully Open	455 KC	.1 MFD.	6SA7 Grid	T2	Maximum	Output 1.F.
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	TI	Maximum	Input I.F.
Fully Open	1600 KC	75 MMFD.	Ant. lead	C1B	Maximum	Oscillator
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C1A	Maximum	Anfenna

Volume control-Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts.

Connect dummy antenna in series with output lead of signal generator. Connect output meter across voice coil.

Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

Abstract

Repeat alignment procedure as a final check.

 No signal applied to antenna.| $\begin{array}{c}\text { Dial } \\ \text { Softing }\end{array}$ | $\begin{array}{c}\text { Gr } \\ \text { Fully Open }\end{array}$ |
| :---: | :---: |
| Fully Open | 45 |
| Fully Open | 16 |
| $\begin{array}{c}\text { Tune in signal } \\ \text { from generator }\end{array}$ | 14 |

Fig 6. Schematic Diagram

PAGE 21-80 SEARS, ROEBUCK
MODEL 6297-2, Ch. 528.6297-2

POSITION OF	GENERATOR	DUMMY	GENERATOR	ADJUSTMENTS	
(IN OREER)	TRIMMER				
TUNER	FREQUENCY	ANTENNA	CONNECTION	SHOWN	FUNCTION
Closed	455 KC	.1	mfd	12SA7GT Transl.Grid	T2, C9, \& C8

IMPORTANT ALIGNMENT NOTES

The alignment must be done in the order given.
The entire Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AYC of the receiver from interfering with accurate alignment.

ALIGNMENT PROCEDURE

PRELIMINARY:

LO(ATION OF PARTS O.N TO叉 OF (HASSIS

SEARS, ROEBUCK PAGE 21-83

PRELIMINARY:
Output meter reacing to indicate 0.05 Watt across voice coil. 0.4 Volt
Generator ground lead connection. Receiver chageis
Generator modulation. 30\%, 400 cycles
Position of volume control. Fully on
Position of tone control. Radio-Speech
Position of pointer with tuner fully closed. Horizontal position at low end of dial, parallel to bottom edse o: dial scale. Repositioning o: pointer may je sccomplishec by holding tunins control siaft ateady and turnin. pointer to correct position.

$\begin{gathered} \text { POSITION } \\ \text { OF } \end{gathered}$	GENERATOR			THIM:EK ADJUSTIRENTS		SENSITIVITY
	FREQUENCY	ANTENNA	CON:ECMION	$\begin{aligned} & \text { IN ORDEF } \\ & \text { SHOWN } \end{aligned}$	FUNCTION	(FOR . 05 WATT OUTPUT
Closed	455 Kc .	0.1 mid.	Trimmer \#6	1,2,384	I.F.	46 mv
1400 Kc .	1400 Kc .	200 mmfd .	Ext. Ant. Clip	5	Osc.	
1400 Kc .	1409 Kc .	200 mmfd .	Ext. Ant. Clip	6	Ant.	$100 \mathrm{mv} / \mathrm{m}$

IHPORTANT ALIGNMENT NOTES:

The alignment must be done in the order given.
The entire glignment procedure shoula be repeated step by atep in the original order for greateet accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with sccurat alignment.

AUDIO OSCILLATION

The sudio system of this receiver utilizes a two stage type of inverse Sed-back arrangement and should it ever be necessary to replace the speaker or output transformer it is important to maintein a definite phase relationship in the feed-back circuit. If the connections to the output transformer are reversed or if the feed-back connection is made to the wrong side of the output transformer secondary, the system will become regenerative instead of degenerative. Under those conditions audio oscillation may result. If that occurs, oscillation may be prevented by reversing the connections to the speaker.

To replace and properly position pointer see step 1 in Malignment procedure"

SPECIFICATIONS

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil 0.4 v.

Generator ground lead connected. To B- through 0.1 mfd. capacitor
\qquad
Position of volume control. Fully on
Position of pointer with tuner fully closed. Center of pointer lined up with extreme left dot on dial backing plate.
(Chassis right side up.)

Position of Tuner	Generator Freq.	Dummy Antenna	Generator Connection	Adjustments (in order shown)	Function	Max. Microvolts Input to produce .05 w . output
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of 1U4 I-F Amp.	T2 (top and bottom)	I.F.	5000
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of 1R5 Conv.	T1 (top and bottom)	I.F.	250
Min. Cap.	1610 kc	0.1 mfd .	Stator ant. tuner	C6	Osc.	
1400 kc	1400 kc	0.1 mfd .	Stator ant. tuner	C5	R.F.	30
1400 kc	1400 kc		Hazeltine Test Loop	C7	Loop	100

ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on $\mathbf{A C}$.
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

STRING AND POINTER HOOKUP

LOCA'TION OF PARTS ON TOP OF CHASSIS

MODEL 215,

Ch. 528.174

SPECIFICATIONS

Power Supply:
Power Output:
$\left.\begin{array}{l}\text { Undistorted } \\ \text { Maximum . } 0.150 \text { Watt }\end{array}\right)$. Watt

117 Volts, DC or 50-60 Cycles AC, 11 Watts or Catalog No. 6480 "B" Battery and two Flashlight Cells

Frequency Range:
Broadcast . 540-1625 KC

Schemotic Locotion	Port Number	DESCRIPTION
R4, S I	T76-69	Connector, " B " battery
	T24-187	Control, volume and switch
	T23-162	Cord, power, AC/DC
	T21-159	Cover, bottom
	T47-108	Grommet, variabls condenser
	T37-126	Insulator, volume contral
	T37-127	Insulator, selenium rectifier
L1	T82-68	Loop, antenna -
	T83-642	Rectifier, selenium
RI	t 60.727	Resistor, 100,000 ohm, $1 / 2 \mathrm{w}$.
R2, R5	460-728	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.
R3	A 50-730	Resistor, 47,000 ohm, 1/2 w.
R6	A60-669	Resistor, 4.7 megohm, $1 / 2 \mathrm{w}$.
R7, R8	A $60-726$	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.
R9	A60-690	Resistor, $27 \mathrm{ohm}, 1 / 2 \mathrm{w} .10 \%$
R10	A60-753	Resistor, 220 ohm, $1 / 2 \mathrm{w} .10 \%$

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil$0.4 \mathrm{va}_{\mathrm{a}}$Generator ground lead connected ed.

\qquad To B- through 0.1 mfd. capacitorGenerator modulation30%, 400 cycles
Position of volume control. Pully on
Position of pointer with tuner fully closedPointer should be horizontal, pointingto left (9 o'clock).

Position of Tuner	Generator Freq.	Dummy Antenna	Generator Connection	Adjustments (in order shown)	Function	Max. Microvolts Input to produce .05 w. output
Min. Cap.	$\mathbf{4 5 5 \mathrm { kc }}$	0.1 mfd.	Pin \#6 of 1U4 I-F Amp.	T2 (top and bottom)	I.F.	5000

1. It is recommended that this set be connected to an isolation transformer when aligning on $\mathbf{A C}$.
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

LOCATION OF PARTS ON TOP OF CHASSIS C9,C10,CII,CI2 \& C13

Ch. 528.174

SENTINEL PAGE 21-1

© John F. Rider

ALIGNMENT PROCEDURE

Steps	Set receivordialto	test oscillator			Refer to parts layout diagram for toeation of trimmers mentioned below:
		Adjust tost oseillator frequency to	U*o dummy antenne if oscillater consisting of:	Attach output of test oscillator to	
1	Any point whare no interfering sig nol is rectued	${ }_{45 \mathrm{~S}}^{\text {Mractly }} \mathrm{K}$.	0.2 Mfl Cindenser	Migh sida to griu of hre tubc. condenser.	Adjust each uf the 2nd 1.F. Lransformer trimuer adjustment screws fur adjustment screws for maximuin output. maximum whthut, then aljust cach of the 1st I.F. transformer trimuce
2	$\begin{gathered} \text { Rotate gang } \\ \text { condenser to } \\ \text { mininum capacity } \end{gathered}$	$\underset{1650}{\text { Fractily }} \mathrm{K} . \mathrm{c}$.		$\underset{\substack { \text { see } \\ \begin{subarray}{c}{\text { paragrapl } \\ \text { anlowe }{ \text { see } \\ \begin{subarray} { c } { \text { paragrapl } \\ \text { anlowe } } } \\ {(C)}\end{subarray}}{ }$	ddjust $\mathbf{1 6 5 0} \mathrm{K}$. C. . oscillatur trimmer for maximum output.
3				$\underset{\substack{\text { varagrab } \\ \text { Rbore }}}{\text { Stice }}(\mathbf{D})$	Adjuat 1400 K . C. amtemia trimmer for maximum output.
4	$\begin{aligned} & \text { Approximately } \\ & 600 \mathrm{~K} . \mathrm{C} . \end{aligned}$		$\underset{\substack{\text { Siee } \\ \text { paragraph } \\ \text { above }}}{\text { (D) }}$	$\underset{\substack{\text { saragraph } \\ \text { sbove }}}{\text { D })}$	While rocklug gang adjust givo k. C. M. F. trinumer fur maximum oulput.

SENTINEL PAGE 21-5

© John F. Rider
Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For IF RADIO HAS METAL PLATE ON BOTTOM OF CHASSIS BE SURE TO HAVE PLATE MOUNTED ON CHASSIS WHEN ALIGNING SET.
(A) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial indicator must be exactly even with the outside edge of the first 5 in the 55 calibration number at the low frequency end of the dial scale. If dial indicator does not point exactly to the outside edge, move pointer to correct position. (B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) WHEN ADJUSTING THE 1730 KC OSCILLATOR TRIMMER, remove chassis from cabinet and disconnect the loop connection wires
from the loop terminal strip. Attach a 1 megohm resistor across these connections and feed output of test oscillator across the 1 megohm
(D) THE 1400 KC LOOP ANTENNA TRIMMER should be adjusted only after all other adjustments have been made and with the set mounted in the cabinet. When aligning the 1400 KC Antenna Trimmer, couple test oscillator to receiver loop by: (1) make loop consisting of

 IMPORTANT: when ordering complete cabinet, or cabinet parts, BE SURE TO MENTION REQUIRED COLOR in addition to proper part MISCELLANEOUS PARTS

$$
\begin{aligned}
& \text { MODELS } 1 \mathrm{U}-335-\mathrm{PG}, \quad 1 \mathrm{U}-33 \mathrm{~S}-\mathrm{PI}, \\
& 1 \mathrm{U}-335-\mathrm{PM}, 1 \mathrm{~T} 35-\mathrm{PW}, 335-\mathrm{PG}, \\
& 335-\mathrm{PI}, 335-\mathrm{PM}, 335-\mathrm{PW}
\end{aligned}
$$

ALIGNMENT PROCEDURE
For alignment procedure read tahulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third. Before starting alignment:
(A) Check tuning dial adjustment hy tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must he exaclly even with the last line at the low frequency end of the dial calibrache where it attaches to its drum while turning the drum on the gang condenser.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) THE LOOP MAY BE LEFT IN THE CABINET and the chassis with its mounting board pulled out of the cabinet just far enough for adjustment of the trimmers, or the loop and chassis may be removed from the cabinet and the loop placed in the same position and plane it will be in when both are mounted in cabinet-approximately $1^{\prime \prime}$ space between to No. 30 size wire, wound on a $2^{\prime \prime}$ or $3^{\prime \prime}$ form; (2) connect this loop across output of test oscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.

菏	Set receiver dial to:	test oscielator			Refar to narts taynut diagram for lagation of trimmert
		$\begin{aligned} & \text { Adjust test } \\ & \text { oscillator } \\ & \text { frequeney to } \end{aligned}$	Use dummy antenna in series with output of test oscillator comsisting of	Attach output of test osciliator to:	
1	Any fuint where interferink siknal in creived	$45 \overline{\mathrm{~F}} \mathrm{~K}$ c.		High side in rent stitur phates uf un- .42 Mffl Hilukkilig cundenser	Adjust eath of the second 1 . F. transformer trinmers for maximum output-then adjust earl of the first I.F. trimmers for masimum ontput.
2	16xict/y 165. K.	$\begin{aligned} & \text { Exacty } \\ & 1650 \mathrm{~K} . \mathrm{C} \end{aligned}$	Ner Paray raphe	Hee l'aratranh (C) Aliovir	Adjust lbinl li. C. oscillitur trimmer for maximum sutput.
3	Apurox. 1401 K. S.	$\begin{aligned} & \text { Арития } \\ & \text { t100 K } \end{aligned}$	Nre Paratiramis (r) Abwe	Mef l'aradranh (C) Ahuve	Adjust lanu K. C. antema trimmer for maxinum

C. Unscrew the four copper colored screws that are used to hold mounting board (on which chassis rests) to the cabinet.
DO NOT REMOVE THE TWO SCREWS USED TO HOLD THE

MODEL 580, 5803 SPECIFICATIONS

- Band coverage: 540 KC to 1900 KC.
- Ten-inch Alnico V-P. M. console speaker.
- 3.2-ohm speaker terminals (for T. V.)
- Five tubes, plus rectifier-
1-12BAG R. F., 1-12BE6 Mixer,
1-12BAG I. F., 1-12AV6 2nd Detector,
1st Audio, $1-6 \mathrm{~V} 6$ Output, 1 - 6×5 Rectifier.
- Wartage load: 45 watts.
- Undistorted power output: 2 watts.

ALIGNMENT
Connect signal generator to mixer grid No. 128E6 through an . 01 condenser and align I.F.'s 72 and 73 to 45s KC. Use output. mater across output transformer or vacuum tube volt mater for highest AVC voltage across condenser C7.

Align oscillator trimmer (CC) to dial callbration at approximetely 1400 KC . Adjust antenne and RF section (CA and Ca) for bost sensitivity at approximataly 1400 KC . Low frequency end alignment can be made by bending condenser plates.

F. M. ALIGNMENT

Align I.F.'s, TI, T2, primary 13 to 10.7 KC by connecting unmodulated signal genera tor to grid of 12 Ar7 through 01 condenser. Use vacuum tube volt meter to read highest AVC voltage across C 30 condenser. Adjust secondary T 3 (ratio detector coil top slug) for minimum hiss level (off station). Adjust oscillator trimmer to correspond with dial calibration at 100 mc and RF trim mer for maximum sensitivity. A. M. ALIGNMENT
Connect signal generator to mixer grid (I2BE6) through 01 condenser and align I.F.'s T4 and $T 5$ to 455 KC . Use output meter across output transformer or vacuum tube volt meter for highest AVC voltage across condenser C27. Align oscillator trimmer to dial calibration at approximately 1400 KC and antenna trimmer for best sensitivity.

MODEL 511035110 SPECIFICATIONS

- A. M. band coverage: 535 KC to 1800 KC.
- F. M. band coverage: 110 MC to 87 MC .
- Ten-inch Alnico V - P. M. console speaker.
- 3.2-ohm speaker ferminals (for T. V.)
- Wattage load: A. M. - 40 watts
F. M.- 50 watts
- Undistorted power output: 2 watts.
- Eight tubes, plus rectifler-

6C4, $12 A T 7,12 B A 6,12 B E 6,12 B A 6$, 6V6, $12 A L 5,12 A V 6,6 \times 5$ Recrifier.

ALIGNMENT PROCEDURE

Step No.	Position of Gang	Signal Generator Frequency	Generator Connection	Dummy Antenna	Adjustment	Type of Adjustment
1.	Open	455 KC.	Rear Gang Terminal	. 1 Mfd .	Slugs Top and Bottom in can.	Adjust for Maximum Output
2.	Open	1620 KC.		2 Turns of Hookup Wire $6^{\prime \prime}$ in	Front Gang Trimmer	Adjust for Maximum Output
3.	1400 KC	1400 KC	Dummy Antenna	Dia. (Place Approx. a Foot from and in	Rear Gang Trimmer	Adjust for Maximum Output
4.	600 KC	600 KC		Same Plane as Loop)	-	Check Gang Align- ment

POWER SUPPLY - 110 to 120 Volt, 60 Cycle Only.
GROUND - No ground connection should be used.
TUBES - 5 Tubes (inc. rectifier)are used. See label on bottom of cabinet.
TUNING RANGE - 535 to 1620 Kllocycles
AERIAL SYSTEM - Built-in 'Loop" aerial. Provision is made at the rearof cabinet for connecting an external antenna if required.

ALIGNMENT PROCEDURE

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	POSITION OF GANG	SIGNAL GENERATOR FREQUENCY	GENERATOR CONKECTION	DUMMY ANTENNA	TYPE OF ADJUSTMENT	ADJUSTMENT
1.	OPEN	455 KC .	rear gang TERMINAL.	. 1 MFD .	T2.C9 \& C8	ADJUST FOR MAXI. MUM OUTPUT
2.	OPEN	1620 kc .	LOOP	$\begin{aligned} & .0002 \\ & M F D . \end{aligned}$	FRONT GANG TRIMMER	ADJUST FOR MAXI. MUM OUTPUT
3.	1400 kc .	1400 kc .	LOOP	$\begin{aligned} & .0002 \\ & \text { MFD. } \end{aligned}$	REAR GANG TRIMMER	ADJUST FOR MAXI. MUM OUTPUT
4.	600 kc	600 kc .	LOOP	$\begin{aligned} & .0002 \\ & M F D . \end{aligned}$		CHECK GANG ALIGNMENT

Cl - 200 mmf . Condenser 400 V.D.C.
C2 - 400 mmf . Condenser 400 V.D.C.
C3 - . 02 mmf . Condenser $400 \mathrm{~V} . \mathrm{D.C}$.
R - 100 ohms Resistor $1 / 4$ Watt
L - Choke Coil
----Case Shield
Choke Coil Specification
Tubing - $3 / 8^{\prime \prime}$ diameter Bakelite
Wire - No. 38 Enameled
Turns - 59 Closely Wound (Impregnateḍ)

NOTE: When using this dumny antenna the generator output impedance should be 10 ohms or lower.
CHASSIS TYPE 8 LIO
MODEL 141A
CHASSIS DIAGRAM

STEP BY STEP ALIGNMENT PROCEDURE

OPERATION	ALIGNMENT OF	GENERATOR CONNECTED TO	DUMMY ANT.	GENERATOR FREQUENCY	BAND SWITCH SETTING	TUNING COND SETTING	TRIMMER OR SLUG	REMARKS
1.	Set dial pointer even with left-hand stop line with condenser gang closed.							
2.	Connect output meter across speaker terminals.							
3.	A.M.-I.F.	Pin \#7 of 6BE6 Conv. Tube	. 02 MFD. Cond.	456 KC	A.M.	Open	T4 Sec. Slug	Max. Reading
							T4 Pri. Slug	Max. Reading
							T2 Sec. Slug	Max. Reading
							T2 Pri. Slug	Max. Reading
4.	Repeat operation \#3.							
5.	A. Mo - $R_{0} \mathrm{~F}_{\text {- }}$	A.M. Ant.On Cabinet	*	1500 KC .	A.M.	$\begin{aligned} & 1500 \mathrm{KC} . \\ & 1500 \mathrm{KC} \end{aligned}$	C2B Osc. Tri.	Peak Accurately
6.				$1500 \mathrm{KC}$.			C2D Ant. Tri.	Peak Accurately
7.	A.M.-R.F.	On Cabinet	*	600 KC .	A. M.	600 KC .	L-2 Slug	Max. Reading
8.	Repeat operations \#5, \#6 and \#7.							
9.	Check Calibrations at 600, 1000 and 1500 KC .							
10.	SPECIAL NOTE: For complete F.M.-I.			F. Visual his bullet	lignment n.	instruct	ons please ref	r to pages 7,
11.	F.M.-I.F. Alignment using an A.M. Generator and Output Meter.							
12.	T5 F.M. Ratio Det.	Pin \#l of 2nd 6BA6 Tube	. 02 MFD. Cond.	10.7 MC.	F.M.	Open	T5 Sec. Slug	Max. Reading
							T5 Pri. Slug	Max. Reading
13.	NOTE: Operations $11,13,14,15,18$ and 19 must be made with generator output as low as possible, consitent with usable output meter reading.							
14.	$\begin{aligned} & \text { T3 2nd. } \\ & \text { F.M. }-\mathrm{I}_{.} . \end{aligned}$	Pin \#l lst 6BA6 Tube	.02 MFD. COND.	10.7 MC.	F.M.	Open	T3 Sec. Slug	Max. Reading
							T3 Pri. Slug	Max. Reading
15.	$\begin{aligned} & \text { Tl lst } \\ & \text { F.M.-I.F. } \end{aligned}$	Pin \#8 on 12AT7 Mixer Tube	.02 MFD. Cond.	10.7 MC.	F.M.	Open	Tl Sec. Slug	Max. Reading
							Tl Pri. Slug	Max. Reading
16.	Adjust secondary slug on $T 5$ ratio detector transformer to minimum deflection or dip on output meter. Under certain conditions it is possible to adjust $T 5$ sec. slug to minimum noise with the receiver tuned to a weak station. This operation is very critical and the receiver must be tuned to the center response only.							
17.	F.M.-R.F. alignment using an A.M. generator with frequencies of 88 to 108 MC. and a vacuum tube voltmeter, or D.C. voltmeter. (20,000 Ohms per volt.)							
18.	Place meter across 636 elect. condenser. (Meter reading approximately l volt.)							
19.	F.M.-R.F.	F.M. Ant.	Match Gen.		F.M.		C2A Osc. Tri.	Max. Reading
19.	F.M.-R.F.	F.M. Ant.	To 300 Ohm	106 MC.	F.M.	106	C2C Ant. Tri.	Peak Accurately
20.	Check Calibration at 88 MC .							

VISUAL I. F.-F. M. ALIGNMENT DATA

TARNING: Do not proceed with any of the following alignment instructions unless it is certain that the AN-IF is in accurate alignment. If not, align the AM-IF system according to the step by step alignnent procedure.

1. DESCRIPTICN OF CIRCUIT USED:

A 6AL5 is employed as a ratio detector. This tube is preceeded by a 6 BA6 ratio detector driver and a stage of amplification at 10.7 Mc . also utilizing a 6BA6 tube. The 2nd section of the $12 A T 7$ tube is used as the Filmixer. 411 IF coupling uses individual slug tuned transformers.

2. thbory of visual alicinent.

One of the characteristics of a tuned circuit is the fact that when it is excited or driven by a generator such as a vacuum tube or another tuned circuit, the voltage developed across it will vary with slight changes in frequency. This voltage will be greatest when the frequency is equal to the resonant frequency of the circuit and will be less if the frequency is higier or lower than the resonant frequency.

Thus if we were to shift the frequency from high to low or low to high across the resonant frequency and make a record of the voltage across the tuned circuit, we could plot the voltage against frequenc: and obtain a curve which migint look like Fig. 1.

VISUAL I. F.-F. M. ALIGNMENT DATA

This is the selectivity curve or response curve for the circuit under discussion. This type of circuit may be aligned or adjusted to resonance by simply changing either L or C until maximum voltage is obtained at the resonant frequency. Now if another circuit tuned to the same resonant frequency is coupled to the simple case above, a muber of things can happen. First current flowing in one circuit will induce current in the second circuit, the magnitude of this current depending on the degree or amount of coupling between the two circuits. This coupling may be in the form of mutual inductance, motual capacitance or any impedance common to the two circuits. Now if we repeat the proceecture outlined for obtaining the response curve of a single tuned circuit using the voltage developed across the secondary of the coupled circuit while driving the primary, we may get either of two types of curves depending on the magnitude of the coupling, (a) in Fig. 2 is a typical curve for two cireuits coupled belon critical coupling and (b) is a representation of the curve for an over coupled circuit.
(A)

Overcoupled circuits producing a response curve like (b) Fig. 2 are often employed where it is important that the response curve remain approxdmately flat over a narrow band of frequencies near the resonant frequency. They are also frequently combined with single peaked circuits to produce a response curve like Fig. 3.

Fig. 3

The dotted lines indicate the curves of the individual circuits and the solid curve shows the overall response of the two or more pairs of coupled circuits. Circuits like the above or approaching them in form are desirable in an FM receiver where the pass band should be of the order of 200 kc . Now fron the above it is evident that simple peaking both sides of a circuit coupled below critical for maximum voltage will provide optimum alignment but if this proceedure is follomed with an overt coupled circuit it is almost a certainty hat tine two circuits will not be tuned to the resonant frequency but will instead be aligned so that either one or the other is accentuated. The response curve will then look like Fig. 4 (a) or (b).

Fig. 4

VISUAL I. F.-F. M. ALIGNMENT DATA

Now if this overcoupled circuit is combined with a single peaked circuit (where the coupling is below critical), the misalignment becomes worse, something like Fig. 5.

Fig. 5

From the above it appears that to properly align a receiver using overcoupled IF transformers it will be necessary to take a response curve of each atage and align the oircuit so that the two peaks are symmetrical, that is, approximately equal in anplitude and displaced equally from the center frequency. To do this with a CW or AM signal mould be laborious and time oonsuming mereas the use of visual equipment makes it nearly as simple as adjusting a simple single peaked amplifier.

Visual alignment test equipment performs the operation of plotting the response curve almost exactly as described above except that instead of manually changing the generator frequency, recording the voltage and then plotting the results, these operations are performed automatically and simultaneously by a combination of electronic circuits. The operation is briefly as followe.

In the aignal generator a low AC voltage is applied to a reactance tube modulator which ahifts the oboillator frequency from low to high or from high to low at a rate determined by the frequency of the AC voltage and by an amount deterwined by the AC woltage. The frequency at any inatant is dependant on the AC voltage present at that instant of time. An osoilloscope is provided mioh may be considered a voltmeter used to resd the voltage across the tuned circuit, provided a deteotor is used to convert the RF to a low audio frequency. This voltage is then applied to the vertical plates and results in a vertical displacement of the spot on the screen. Some of the voltage used to shift the oscillator frequency is aloo applied to the horisontal plates of the oscilloscope providing a means of displacing the spot horisontally. It is now ovident that sinoe for any given AC voltage only one frequency may be obtained and since that AC voltage will result in an exact amount of apot deflection on the scope wo can read the roltage acrose the circuit undar examination by noticing the position of the apot at this exact instant.

Not if we consider the frequency as shifting from low to high 60 times per second and remember that the spot is moving across the eorsen of the scope 60 times per second at exact synchronization with the change in frequency it is only necesaary to apply the voltage from our circuit to the vertical plates to obtain a replica of the response curve on the face of the cathode ray tabe. This curve will be repeated 60 times per second if our aweep frequency is 60 cyclea. Adjustments to the circuit may not be made and the effect on the response curve noted instantaneously.

Although it is posaible to observe the selectivity curves as shown in Fig. 1, 2, and 3 on the soope by the use of an auxiliary apecial detector ooupled to the plate of the last IF tube, it is muah more convenient to observe the effects of IF alignment upon the shape of the ratio detector output trace. Then this is done the audiliary detector is not necessary and a direct connection of the scope into the receiver circuits rill provide all the necessary connections.

If the overall selectivity curve is not "flat-topped" (solid line in Fig. 3) the ratio detector curve cannot be linear (straight) throughout the center section, symmetrical and have aufficient band width (Fig. 6).

Under these conditions it would not be possible to receive a aignal without distortion and higher than normal noise, the degree of distortion and abnormal noise dependent upon the extent to which the center of the ratio detector trace departs from a straight line and the extent to which the entire trace departs from true symetry.

After a pattern sinilar to Fig. 6 is obtained with connection \#l ahown in the block diagram, the generator lead may be moved ahead through the IF system one tube at a time and the intervening transformer aligned for madmus output but at all times a curve very aimilar to Fig. 6 must be maintained.

(a) A swoep signal generator with a center frequency of 10.7 Nc. and a total sweep width of at least 400 Kc . Eramination of the blook diagram will reveal a variable reaistom-capacitor circuit inserted in the lead between the MI sweep generator and the horisontal amplifier of the osoilloecope. This control should be adjusted so that the dual trace observed on the oscilloscope will blend into a single trace and thereby eliminate any confusion due to the tro traces.
(b) An Oscilloscope with either a $3^{n \prime}$ or $5^{\prime \prime}$ tube equipped with both vertical and horizontal amplifiers.

VISUAL I. F.-F. M. ALIGNMENT DATA

4. aligaiment of the 10.7 I.f.

Turn the wave band switch to F.M. and the generator to 10.7 Hc. Connect the F.M. signal generator output lead to the grid of the ratio detector driver tube and the scope to the list audio plate. Now proceed to allgn the ratio detector transformer for maximum linearity and output, being careful to maintain as symmetrical a trace as possible. Note that tine adjustment of the secondary circuit, controls to a large extent, the linearity and symmetry of the pattern, and adjustment of the primary will influence the gain of the circuit. Fig. 6 represents a linear detector curve properly aligned.

It is important that the geaerator sweep a sufficiently wide band of frequencies so that the curves on both ends of the straight portion can be seen. Maximum linearity of alignment will result when these curves are symmetricaily shaped and as previously stated this will result in minimum distortion and noise.

F1g. 6

Connect the generator output lead to the grid of the I.F. amplifier. Align priaary and aecondary of the I.F. transformer being careful to maintain the same basic ratio detector trace as just described.

Observe that by alternately adjusting the primary and secondary, the vertical amplitude can be increased witiout the response curve becoming distorted. At all times it is important to reduce the signal generator output to maintain the scope picture on the screen. This will avoid overload and possible misalignment therefrom.

Move the generator lead to the grid of the converter tube and align No. 1 I.F. transformar following the same proceedure as above.

Fig. 7, (A), (B), (C), and (D) represent typical selectivity curves of an overall I.P. Amplipier. Fig. 7 , ($A A$), (BB), (CC), and (DD) represent the corresponding ratio detector curves. Fig. 7

Hot Overcoupled Properly Allgned (R gight)

(A)

Marrow Bandpass

(B)

Overcoupled Properly Aligned
(Right)

(BB)
Proper Allgneent

(c)

Overooupled
Improperly Aligned (Mrong)

(c)

Overcoupled

(D)

> Overooupled Improperly Aligeod (Trong)

(DD)
IF Transformer Improperly 121 gned

Should the trece appear mastisfactory, a very slight readjustment of the detector ascondary aligment may be made at this time as the need for any but a alight ocrreotion is an indication of inoorreot aligneent in one of the other atages. This is permisaible conly if the degree of correotion neosssary is slight. If this is not the case the entire alignoent procedure ahould be repeated.

PAGE 21-8 SPARTON

MODELS 141A, Ch. bLiO; $4970,4971,4972$, Ch. 8S10

WHEN ORDERING PARTS ALWAYS SPECIFY PART NUMBER AND MODEL FOR WHJCH PART IS INTENDED.

	Voltage: 117 Volts AC		Postion of volume control: Full with set tuned to quiet channel. Position of Band Switch A.M.							
	FUNCTION	Voltage of Sockets Prongs to Ground See Prong Nos. on Schematic.								
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9
6BE6	A.M. Conv. \& F.M. Osc.	-2.5	0	0	6.3*	100	100	**		
12AT7	F.M. - R.F. \& Mixer	115	-. 6	0	0	0	145	-1	1.6	6.3
6BA6	I.F. Amp.	-. 1	0	6.3*	0	190	100	1.0		
6BA6	Ratio Det. Driver	-. 5	0	6.3*	0	110	100	. 85		
6AL5	Ratio Det.	0	-. 25	5.6*	0	0	0	0		
6AV6	list A.F.-A.M. Det. \& A.V.C.	-. 1	0	6.3*	0	-. 1	-. 1	75		
6V6GT	Power Amplifier	0	0	220	230	0	145	6.3*	12	
5Y3GT	Rectifier	0	270		260*	,	260*		270	

NOTES: Voltage readings are for schematic diagram in this bulletin. Allow 15% or on all measurements. Alsways use meter scale which will give greatest deflection within
scale limits. All D.C. measurements made with 20,000 ohms per volt voltmeter. All AC voltages made with rectifier type voltmeter.

- AC Volts.
** Cannot be measured with 20,000 ohms per volt voltmeter.

- John F. Rider

PAGE 21-10 SPARTON

MODELS 4970, 4971, 4972, Ch. 8S10

SPARTON PAGE 21-11

Line Voltage: 117 Volts AC		Position of volume control: Full with set tuned to quiet channel. Position of band switch A.M.								
TUBE	FUNCTION	Voltage of Sockets Prongs to Ground See Prong Nos.on Schematic.								
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9
6BE6	A.M. Conv. \& F.M. Osc.	-2.5	0	0	6.3*	90	80	**		
12AT7 X	F.M. -R.F. \& Mixer	135	-. 6	0	0	0	150	-1	1.2	6.3*
6BA6	I. F. Amp.	-. 1	0	6.3%	0	235	100	1.0		
6BA6 X	Ratio Det. Driver	-. 5	0	$6.3 \times$	0	95	90	1.2		
6AL5	Ratio Det.	0	-. 25	5.6*	0	0	0	0		
6AV6	lst A.F.-A.M. Det. \& A.V.C.	-. 1	0	6.3×1	0	-. 1	-. 1	95		
6V6GT	Power Amplifier	0	0	250	260	0	240	6.3*	14	
5Y3GT	Rectifier	0	270		260\%		260*		270	

NOTES: Voltage readings are for schematic diagram in this bulletin. Allow 15% or - on all measurements. Always use meter scale which will give greater deflection within scale limits. All D. C. measurements made with 20.000 ohms per volt voltmeter. All AC voltages made with rectifier type voltmeter.

* AC Volts
\% Cannot be measured with 20,000 ohms per volt voltmeter.
X Band switch on F.M.

DUMMY ANTENNA

A
----Case Shield
Cl - 200 mmf . Condenser 400 V.D. C.
C2 - 400 mmf . Condenser 400 V.D.C.
Choke Coil Specification
C3 - . 02 mmf . Condenser $400 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. Tubing - $3 / 8^{\prime \prime}$ diameter Bakelite
R - 100 ohms Resistor $1 / 4$ Watt
L - Choke Coil
Wire- No. 38 Enameled
Turns- 59 Closely Wound (Impregnated)
NOTE: When using this dummy antenna the generator output impedance should be 10 ohms or lower.

MODELS 141X, 142X, 1040X, 1041X, Ch. 3 M10

$\begin{aligned} & \text { OPER- } \\ & \text { ATION } \end{aligned}$	$\begin{aligned} & \text { ALI GNVENT } \\ & \text { OF } \end{aligned}$	$\begin{gathered} \text { GENERATOR } \\ \text { CONNECTED } \\ \text { TO } \\ \hline \end{gathered}$	DUMMY ANT.	GENERATOR FREQUENCY	BAND SWI TCH TTING	TUNING COND SETTING	TRIMMER OR SLUG	REMARKS	
1.	Set Dial pointer even with left-hand stop line								
2.									
3.	A.M.-I.F.	Pin $\# 7$ of 6BE6 Conv. Tube	$.02 \mathrm{MFD}$ Cond.	456 KC.	A.M.	Open	T4 Sec. Slug	Max. Reading	
							T4 Pri. Slug	Max. Reading	
							T2 Sec.Slug	Max. Reading	
							T2 Pri. Slug	Max. Meading	
4.	iepeat operation \#3.								
5.	A.M.-R.F.	A.M. Ant. On Cabinet	*	1500 KC .	A. M.	$\begin{aligned} & 1500 \mathrm{KC} . \\ & 1500 \mathrm{KC} . \end{aligned}$	C2B Osc. Tri.	Peak Accurately	
6.				1500 KC .			Cl7 Ant. Tri.	Peak Accurately	
7.	A.M.-R.F.	On Cabinet	*	600 KC .	A.M.	600 KC .	L-2 Slug	Max.Reading	
8.	Repeat operations \#5, \#\% and $\# 7$.								
9.	Check Calibrations at 600.1000 and 1500 KC .								
10.	SPECIAL NOTE: For complete F.M.- I.F. Visual Alignment instructions please refer to pages 9.10.11.12.13 and 14 of Bulletin 11, Manual 6.								
11.	F.M.-I.F. Alignment using an A.M. Generator and Output Meter.								
12.	T5 F.M. Pin Ratio of 2nd 6 BAG Tube		.02 MFD. Cond.	10.7 MC.	F.f.	Open	T5 Sec. Slug	Max.Keading	
			T5 Pri. Slug				Max.lleading		
13. NOTE: Operations $11,12,14,15,18$ and 19 must be made with generator output as low as possible, consistent with usable output meter reading.									
14.	$\begin{aligned} & \text { T3 2nd. } \\ & \text { F.M.-I.F. } \end{aligned}$	Pin $\# 1$ lst 6BAG Tube		. 02 MFD. COND .	10.7 MC.	F.M.	Open	T3 Sec. Slug	Max.Reading
			T3 Pri. Slug					Max.Reading	
15.	$\begin{aligned} & \text { Tl lst } \\ & \text { F.M.-I.F. } \end{aligned}$	Pin $\# 8$ on 12AT7 Mixer Tube	$\begin{aligned} & .02 \mathrm{IFD} . \\ & \text { COND. } \\ & \hline \end{aligned}$	10.7 MC.	F.M.	Open	Tl Sec. Slug	Max.Reading	
							Tl Pri. Slug	Max.Reading	
16.	Adjust secondary slug on $T 5$ ratio detector transformer to minimum deflection or dip on output meter. Under certain conditions it. is possible to adjust T 5 sec . slug to minimum noise with the receiver tuned to a weak station. This operation is very critical and the receiver must be tuned to the center response only.								
17.	F.M-R.F. alignment using an A.P. Generator with frequencies of 88 to 108 MC . and a vacuum tube voltmeter or D. C. voltmeter. (20.000 Ohms per volt).								
18.	Place meter across C36 elect. condenser. (Meter reading approximately l volt)								
19.	F.N.-R.F.	F.M. Ant. ${ }_{\text {M }}$	Match Gen. To 300 Ohms	106 MC	F.M.	106 MC.	C2A Osc. Tri.	Max.Reading	
							C2C Ant. Tri.	Peak Accurately	
20.	Check Calibration at 88 MC .								

CHASSIS DIAGRAM

OJohn F. Rider

NOTES: Voltage readings are for schematic diagram in this bulletin. Allow $15 \% \not f$ or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All DC measurements made with 20,000 ohms per volt voltmeter. All AC voltages made with rectifier type voltweter. * AC Volts.
** Cannot be measured with 20,000 ohms per volt voltmeter.
DUMMY ANTENNA

NOTE: When using this dummy antenna the generator
output impedence should be 10 ohms or lower.
STEP BY STEP ALIGNMENT PROCEDURE

OPER- ATION	ALIGNAENT OF	$\begin{gathered} \text { GENERATOR } \\ \text { CONNECTAD } \\ T O \\ \hline \end{gathered}$	DUMTY ANIENNA	GENERATOR FREQUENCY	BAND SWITCH SETTTING	TUNING COIDENSER SEITING	TRTMMEPS	REMARKS
1	Set dial pointer even with left-hand stop line with gang closed.							
2	I.T.	PIn \#7 on 12RE6 conv.	. 02 MFD Cond.	456 LCC .	B.C.	Open	Cl7A \& C17B	Peak riccurately
3							Cl5A \& C15B	Peak Accurately
4	I.F. Rej.	Antenna	. 02118 FD	456 KC.	B.C.	Closed	C7 Trim	Adj. to kin.
5	B.C. Band	Antenna	*	1500 k	B.C.	1500 KC	C5 03C. Trim	Peak Accurately
				1500 Kl .			C2 ANT. Trim	Peak inccurately
6				$600 \mathrm{KC}$.	B.C.	600 KC	C4 OSC. Pad.	**
7	Repeat Operations 5 and 6							
8	Check Calibration at 600 KC ., 1000 KC . and 1500 KC .							
9	$\begin{aligned} & \text { S.int } \\ & \text { Band } \end{aligned}$	Antenna	*	$18 \mathrm{MC}$.	S.\#.	18 24.	C6 OSC. Trim	Peak iccurately
10							C3 ANT. Trim	**
11	Repeat Operations 9 \& 10							
12	Check Operations at l8MC., 9MC. and 6 NiC.							
13	Check Operations 1 to 10 inclusive.							
NOTES:	* Use dumny antenna as shown below. (STD.) ** Rock dial while adjusting for maximum output.							

OJohn F. Rider

MODELS 1051,
1052, Ch. 6B9

©John F. Rider

DESCRIPTION

Your new automobile receiver is a 5 -tube (plus rectifier) superheterodyne, designed to operate from the 6 volt storage battery in your car. It is a universal type of receiver for mounting underneath the dash panel. It has a self-contained PM speaker, and covers the frequency range 540 to $1600 \mathrm{~K} . \mathrm{C}$. Two simple controls are provided for operating the receiver. (See Fig. 1)

Fig. 1 Front View
 SUGGESTIONS FOR ELIMINATING POSSIBLE MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rush, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise. (The following steps may not be necessary in all cases. Install your radio and operate it before making changes.)

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Detach the high tension wire where it goes into the top of the distributor cap and cut two inches off the end. Screw the piece you cut off into one end of the distributor suppressor and then screw the other end of the suppressor on the long wire which leads to the coil. Insert the wire back into the distributor cap.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional . 5 MFD condenser. It must be installed from the battery side of the ignition coil to the closest ground on the ment panel.

Short wires are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension wire from the coil to the distributor.
they run from the engine compartment up to the instrument panel. These wires should be placed in a flexible wire shield and the shield grounded to frame or motor. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension wires.

BONDING OF FIRE WALL

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in orderito reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

HIGH AND LOW TENSION WIRES

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, autonatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, and generator condenser. By referring to Figure 2 and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $7 / 32^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed to the correct angles, as illustrated in Figure 2, so that it can then be fastened to the fire wall. After marking and centerpunching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 2 Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

S84-413 SUPPRESSION KIT G MISC. PARTS ASSEMBLY

1-S84-233 "A" lead assembly
1-A43-10 Fuse
2-A52-295 Control knobs
1-A81-13
1-S84-193
Slecve (for fuse)
Suppression Kit consisting of: 1-. 5 MFD Condenser 1 -Distributor Suppressor $20^{\prime \prime}$-Wire Braid

FINAL ADJUSTMENTS
The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 3) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

S84-192 MOUNTING PARTS KIT

$11 / 4^{\prime \prime}$ Bolt
2 1/4" Lock Washers
2 1/4" Hexagon Nuts
$2 \quad 10-32 \times 5 / 8{ }^{\prime \prime}$ Screws
$2 \quad 10-32 \times 3 / 8^{\prime \prime}$ Screws

2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
1 Washer-Spacer

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression \& Misc. Parts Kit, part No. S84-413, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-158.
NOTE: For shipping, the two control knobs have been removed from the tuning and volume control shafts. To install the knobs, line up the flat side of the knob spring (inside knob), with the flat side of the control shaft and push the knob forward until it stops.

ELECTRICAL SPECIFICATIONS

Power Supply . 6.3 volts DC
Current . 6.2 amp. average
Frequency Range. 540 to 1600 KC
I. F. Frequency . 455 KC

Speaker. 4" 4. $^{\prime \prime}$ M.
Power Output. 1.2 watts, undistorted 2.5 watts, maximum

Sensitivity. 10 microvolt average for 1 watt output
Selectivity. . 50 KC broad at 1000 times signal, at 1000 KC

This receiver contains the following:
1-6SK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC-1st audio.
1-6V6GT-Power outpur.
A 6X5GT Rectifier is used.

SERVICE NOTES
Voltages taken from the different points of the circuit to the chassis are measured with volume control in maxiThe bottom cover (the one with the speaker louvers) and and with a volt meter having a resistance of $20,000 \mathrm{ohms}$ such as tubes and vibrator, by removing the eight (8) per volt. These voltages are clearly shown on the voltage screws holding it to the top cover. There are three (3) chart, (Fig. 4). screws on each side, one (1) in the rear, and one (1) in

All voltages should be measured with an input voltage the front.
of 6.3 volts DC.
CAUTION: Before attempting to semove the top cover,
To check for open by-pass condensers, shunt each con- to service condensers, resistors, etc., the screw connecting denser with another one having the same capacity and volt- the spark plate to the " A " terminal (inside case) must be age rating which is known to be good until the defective removed. This is a round head screw, and is located on the unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless After removing the spark plate screw, remove the two it hecomes necessary to replace a coil or transformer, or knobs by pulling forward and remove the eight (8) the adjustments have been tampered with in the field. screws securing the cover to the chassis. Lift the chassis at Always make certain that other circuit components, such the rear, at the same time moving it away from the front as tubes, condensers, resistors, etc., are normal before pro- of the case so that the volume and tuning shafts will clear ceeding with realignment. the holes in the cover.
If realignment is necessary follow the instructions given NOTE: When reinstalling the chassis into the case, be under the heading "ALIGNMENT PROCEDURE". After sure the screw connecting the spark plate to the " A " terrealignment has been completed repeat the procedure as minal (inside case) is tightened very securely, otherwise a Gnal check. the receiver will not operate properly.

ALIGNMENT PROCEDURE

mane

Fig 6. Schematic Diagram

Fig.4. Socket Voltages
©John F. Rider

PAGE 21-6 SPIEGEL

Note: Tubular candensers must be high temperature ($85^{\circ} \mathrm{C}$) wax type.

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, and generator condenser. By referring to Figures 1 and 2, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two $7 / 32^{\prime \prime}$ holes in the instrument panel. flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed to the correct angles, as illustrated in Figure 2, so that it can then be fastened to the Gire wall. After marking and centerpunching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 2. Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 2) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression \& Misc. Parts Kit, part No. S84-445, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-158.
NOTE: For shipping, the two control knobs have been removed from the tuning and volume control shafts. To install the knobs, line up the flat side of the knob spring (inside knob), with the flat side of the control shaft and push the knob forward until it stops.

S84-192 MOUNTING PARTS KIT

```
1/4" Bolt
1/4" Lock Washers
1/4" Hexagon Nuts
10-32 x 5/8" Screws
10-32\times3/8" Screws
```

2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts
1 Washer-Spacer

S84-445 SUPPRESSION KIT \mathcal{E} MISC. PARTS ASSEMBLY

1-S84-233
1-A43-10
2-A52-314
1-A81-13
1-S84-322
"A" lead assembly
Fuse
Control knobs
Sleeve (for fuse)
Suppression Kit consisting of:
1-. 5 MFD Condenser
1-Distributor Suppressor
20"-Wire Braid

SUGGESTIONS FOR ELIMINATING POSSISLE MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise. (The following steps may not be necessary in all cases. Install your radio and operare it before making changes.)

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Detach the high tension wire where it goes into the top of the distributor cap and cut two inches off the end. Screw the piece you cut off into one end of the distributor suppressor and then screw the other end of the suppressor on the long wire which leads to the coil. Insert the wire back into the distributor cap.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional . 5 MFD condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short wires are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the bigh tension wire from the coil to the distributor.

HIGH AND LOW TENSION WIRES

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if
they run from the engine compartment up to the instrument panel. These wires should be placed in a flexible wire shield and the shield grounded to frame or motor. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension wires.

BONDING OF FIRE WALL

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnishod in the suppression kit assembly for this purpose.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a 5 MFD by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

Power Supply. 6.3 volts DC	
Current	
Frequency Range. 540 to 1600 KC	
I. F. Frequency . 455 KC	
Power Output. 1.2 watts, undistorted	
	2.5 watts, maximum
Sensitivity. 10 microvolt average for 1 watt output	
lectivity.	es signal, at 1000 KC

This receiver contains the following:
1-6SK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-LF. Amplifier.
1-6SQ7-Detector-AVC-1st audio.
1-6V6GT-Power output.
A 6X5GT Rectifier is used.

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts DC.

To ${ }^{-}$check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to semove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

MODEL 602-182144

ALIGNMENT PROCEDURE

> For alignment points refer to Figures 5 and 6. Dummy antennas-. 1 MFD., 75 MMFD.
> The following equipment is necessary for proper alignment:
> Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver. Output meter. (1.8 volt for 1 watt output.)

$\begin{gathered} \text { Dial } \\ \text { Setting } \end{gathered}$	Generator Frequency	Dummy Anf.	Generotor Connections	Trimmer Reference	Trimmer Adiustment	Trimmer Function
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	T2	Maximum	Output I.F.
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	T1	Maximum	Input I.F.
Fully Open	455 KC	75 MMFD.	Ant. lead	L3	Minimum	Wave trap
Fully Open	1600 KC	75 MMFD.	Ant. lead	C1B	Maximum	Oscillator
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C3	Maximum	Antenna

NOTE: The antenna trimmer condenser, C3, (see Fig. 2) should be adjusted after the radio is installed in the car. Tune the receiver to a weak station at about 1100 KC and adjust this trimmer for maximum volume.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.
Volume control-Maximum, all adjustments. No signal applied to antenna. Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator Connect output meter across voice coil.
Dial
Setting

$$
\begin{array}{|c}
\hline \text { Fully Open } \\
\hline \begin{array}{l}
\text { Tune in signal } \\
\text { from generator }
\end{array} \\
\hline
\end{array}
$$

BOTTQM VIEW OF CHASSIS

$$
75 \text { MMFD. }
$$

Fig.4. Socket Voltages

Fig 6. Schematic Diagram

PAGE 21-12 SPIEGEL
MODEL 602-182144

An
Na
B19-201
A16-192
A20-145
A16-189
A15-196
A15-202
A15-204
A15-205
A16-187
A15-176
A16-190
A16-195
A16-193
A18-289
A16-184
A16-185

A60-659
A60-685
A60-769
A60-726
A24-182
A60-728
A60-767
A60-667
A60-731
A60-771
A60-770
A60-752

C 0

A10-527
B10-511
A10-510
Al0-512
A33-229
A33-228
A10-508
A10-509
B80-242
B80-243

All-303
B11-328
A72-36
A70-130
A58-55
B67-551
A28-101
A52-314
A11-329
A89-10
A65-37
A65-42
A65-12
A75-83
A75-74
A70-132
A70-135
A70-142
A51-105
A51-108

584-233
A83-421
A83-517
443-10
447-112
B31-134
B31-158
584-192
A87-38
B79-360
S84-322
A34-105
A83-519

Description

CONDENSERS

Variable candenser
. 01 MFD 400 volt condenser.
Trimmer candensar
. 05 MFD 400 volt condenser
100 MMFD ceramic condenser
20 MMFD ceramic condenser
50 MMFD ceramic condenser
12 MMFD ceramic condenser, temp. comp.
. 1 MFD 400 volt condenser.
250 MMFD mica condenser
. 005 MFD 600 volt condenser
. 001 MFD ceramic condenser
. 05 MFD 600 volt condenser
20 MFD 25 volt alectrolytic condenser
20 MFD 350 volt electralytic condenser
.5 MFD 100 volt condenser condonser
. 005 MFD 1600 volt oil filled condenser
RESISTORS
22K ohm $1 / 2$ watt 20% resistor
47 K ohm $1 / 2$ watt 20% resistor
7.5K ohm 2 watt 10% resistor
2.2 megohm $1 / 2$ watt 20% resistor

Volume control, $500,000 \mathrm{ohm}$, with switch.
10 megohm $1 / 2$ watt 20% resistar
560 ohm $1 / 2$ watt 10% resistor
220K ohm $1 / 2$ watt 20% resistor
470K ohm $1 / 2$ watt 20% resistor
270 ohm $1 / 2$ watt 10% resistor-
$470 \mathrm{ohm} 1 / 2$ watt 10% resistor.
100 ohm $1 / 2$ watt 10% resistor
AND TRANSFORMERS
Antenna Loading Cail
Antenna Cail
I.F. Trap Coil

Oncillator Coil
Choke, "A" Line
Choke, vibrator hosh
lat I.F. Tronsformer
Output Transformer (Part of Speaker, not furnished separately)
Power transformer

DIAL PARTS

Bracket, Dial Seale
Bracket, String Guide
Bushing, Tuning Shaft Bearing
Clip, Spring, for Tuning Shaft
Dial Pointer
Dial Scale
Gasket for Speaker
Knob
Link, String Guide
Pilot Light, Type G.E. No. 422
Rivet, Shoulder, for Dial Pointer Stringing
Rivet, Shoulder, for String Guide Brkt. and Link
Rivet, Shoulder, for Dial Drive Stringing
Shaft, tuning
Shaft, for Dial Pointer
Spring, for Pilot Light Socket
Spring, Dial Drive String Tansion
Spring, Pointer Drive String Tension
String, Pointer Travel, 17"
String, Condenser Drive, $19^{\prime \prime}$
MISCELLANEOUS
"A" lead ossembly
Clip, I.F. Transformer Mounting
Clip, Oscillotor Coil Mounting
Fuse, 15 Amp.
Grommet, rubber, (Spkr. E Gang mounting)
Mounting strap, reor.
Mounting Plote, Front
Mounting parts kit
Receptacle, Antenna Cable
Speaker, 4"' P.M. (includes Output Transfarmer)
Suppression Kit Assembly
Vibrator
Wiper, grounding, for case covers
Nota: Tubulat condensers must be high temperature $\left(85^{\circ} \mathrm{C}\right)$ wax type.

DESCRIPTION

Your New Aircastle Radio is a 4-Tube Superhetrodyne receiver designed to cover a frequency range of from 540 kilocycles to 1725 kitocycles (K.C.). The tubes used are-.

1A7 GT-Osc. Converter	IH 5 GT- AVC Det. Audio Amplifier
IN 5 GT-I.F. Amplifier	$3 Q 5$ GT--Power Output

INSTALLATION

This receiver has been designed to operate on a self-contained battery containing both the ' B ' battery (90 Volts) and the 'A' Battery (11/2 Volts) Aircastle No. 1491.

After inserting the battery plug of the receiver into the socket on the battery, the battery may be placed inside the cabinet in the space provided.

Anyone of the following bat teries may al so be used with this receiver: Eveready No. 748 , General No. 60D1-11 L, Burgess No. 17G-D60, Ray-O-Vac No. AB 82.

For best results an outside antenna about $75-100$ feet long, including the lead-in, should be used. It should beerected as high as possible, and as far away from surrounding objects as practical. When the receiver is used close to powerful broadcasting stations it may be desirable to use a shorter antenna. (For most ordinary instalations use Aircastle House Mast Aerial No. 1396.)

To obtain the best possible performance a good ground should be used. This can be a water pipe, or a galvanized pipe driven into the ground. It should be connected to the ground lead (black) of the receiver. Connect the antenna wire to the other lead coming from the receiver.

OPERATION

Turn the 'On-Off' Sitch and Volume Control (left-hand Control) to the right about half its range. This supplies power to the receiver. Now select the desired station by rotating the 'Station Selector', (right-hand Control). For best tone, alway tune the desired station with the Volume turned low. This en ables you to get the exact point where the station comes in best. Then adjust the volume Control to the desired level.

ALIGNMENT PROCEDURE

Volume control-Maximum: all adjustments.
Connect ground lead of signal generator to chassis.
Connect dummy antenna in series with output
lead of signal generator.
Connect output meter across voice coil of speaker

The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed, 30% modulated, $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Chtput meter.
Non-metallic screwdriver.
Dummy antennas-. 1 mfd., . 00025 mfd .

$\begin{gathered} \text { Position } \\ \text { of } \\ \text { Variable } \end{gathered}$	Generator Frequency	Dummy Ant. Mfd.	Generator Connections	Trimmer. 4djustment	Trimmer Function
Fully open	455 KC	. 1	$\begin{aligned} & \text { la7 Grid } \\ & \text { (Stator of } \\ & \hline \end{aligned}$	T2	Output I.F.
Fully open	455 KC	. 1	$\begin{gathered} \text { 1A7 Grid } \\ (\text { Stator of CIA) } \end{gathered}$	T1	Input I.F.
Fully open	1725 KC	. 00025	$\begin{aligned} & \text { Antenna } \\ & \text { Lead } \end{aligned}$	C.IB	Oscillator
Tune in signal from generator	1400 KC	. 00025	Antenna Lead	CIA	Antenna

VOLTAGE CHART

All voltages measured with a 1000 ohm per volt meter on the 150 volt scale. For the following voltages the " B " battery section of the power pack should raad 90 volts under load, the " A " section $11 / 2$ volts.

TUBE PIN NUMBERS

	1	2	3	4	5	6	7	8
$\mid A 7$	0	1.5	85	37	0	85	0	0
IN5	0	1.5	85	85	0	0	0	0
IH5	0	1.5	17	0	0	0	0	0
$3 Q 5$	0	1.5	83	85	0	5	1.5	

TECHNICAL INFORMATION FOR SERVICE
ALIGNMENT PROCEDURE

General data. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of 455,600 . 1400 and 1620 KC and an output meter to be connected across the primary or secondary of the output transtormer. it possible, all atp
ments should be made with the volume control on maximum and the test oscillator output ments should be made with the volume control on maximum and he the to
as low as posible to prevent the AVC from operating and giving false readings. CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be aligned properiy as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.

LF. ALIGNMENT. Remove the chassis and loop antenna from the cabinet and set them up on the bench so that they occupy exactly the same respective position on the bench as they did in the cabinet. Care should be taken to have no iron or other metal near the loop. Do not make this sel.up on a metal bench. With the gang condenser sel at mider tube (12SA7) through a 05 or 11 midd. condenser. The ground on the test oscillator should he connected to the ground buss, indicated on the circuit diagram. Align all four I.F.
gondcast and aucmarnt Conect the oscillator to a dump loop which can be made by coiling 2 turns of hookup wire about $6^{\prime \prime}$ in diameter. Place this dummy loop about a fool from the loop on the receiver and in the same plane as the receiver loop. With the gang condenser set at minimum capacity, set the test oscillator at 1620 KC , asil. ator at 1400 KC . and tune in the signal on the gang condenser. Adjust the antenna trimmer or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC . and tune in signal on condenser to check alignment of coils.

TUBE LOCATION CHART

POWER SUPPLY UNIT DETAIL MOUNTING ASSEmbly
Fig. 2

MOTOR NOISE ELIMINATION

SUPPRESSION KIT

A suppression kit is shipped with this receiver. It contains the following parts:
1 Generator Condenser.
1 Distributor Suppressor.
GENERATOR CONDENSER

Fig. 3

DISTRIBUTOR SUPPRESSOR

Chevrolet

Disconnect the eenter lead in the distributor head of the motor. Cut lead approximately 2 inches back from metal tip end. Screw suppressor into cut end of long lead. Screw cut end of short lead into suppressor. Plug lead, with attached suppressor, back into distributor head.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

AMMETER CONDENSER

A . 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a . 5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

HOW TO ORDER PARTS

Always give the part No. (No. printed on the part if different from that shown on this list), and the name of the part. When No. is not available, give complete description of part. Be sure to always give the Model No. and Catalog No. The Model No. will be found on either the metal plate at the rear of the chassis or on a printed label which may be on the chassis or cabinet.

SERVICE DATA FOR PROFESSIONAL SERVICE MEN

ELECTRICAL SPECIFICATIONS

Power Supply	6.3 Volts DC
Current	5.5 Amp. average
Frequency Range	538-1600 KC
Speaker	51/4" PM
Power Output.	2 watts, undistorted
Sensitivity	e for l watt output
Selectivity 40 K	nes signal, at 1000 KC

> This receiver contains the following:
> 1-6BA6-RF Anmplifier
> l-6BE6-Converter
> 1-6BA6-I. F. Amplifier
> l-6AT6-Detector-AVC-lst Audio
> 1-6AQ5--Power Output
> l-6X4-Rectifier

SERVICE NOTES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 Ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 5).
All voltages should be measured with an input voltage of 6.3 volts DC.
To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCIION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components such as tubes, condensers, resistors, etc. are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "Alignment Procedure". After realignment has been completed repeat the procedure as final check.

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment : Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.
Out put meter. (1.8 volt for 1 watt output.)
Dummy antennas-- 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

Dial Setting	Generator Frequency	Dummy Ant.	Generator Connector	Trimmer Reference	Trimmer Adjustment	Trimmer Functicn
1) Fully open	455 KC	.1 MFD	6BE6 Grid	T1 Top \& bottom	Maximum	Output I.F
2) Fully open	455 KC	.1 MFD	6BE6 Grid	T2 Top \& bottom	Maximum	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV1	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	L3	Maximum	RF Stage
7) Tune in Signal from generator	600 KC	100 MMFD	Ant. lead	L2	Maximum	Antenna

8) Repeat steps 4 and 5

BOTTOM VIEW OF POWER PACK

Fig. 5

PARTS AND PRICE LISTChevrolet

CONDENSERS

Schematic Diagram Reference	Part No.
C2, C3, C6, C9	C207
C4, Cl5	C209
C7	CC200
C8	C210
Cl0, Cl2	CC201
C13. C16	C206
C14	C205
Cll	C211
CE-86	CE-86
CV1-CV2-CV3	CV-300
R1	R309
R2	R306
R3	R314
R4	RV-300
R5	R3i0
R6	R311
R7	R307
R8	R313
R9, R10	R301
R11	R312
R12	R308
R13	R303

COILS

Ll-Cl	L200
L2	57FB-3
$L 3$	57FB-4
14	L201
L5	1203
L6	L202
T1	1655-16
T2	1655-16
T3	TV-100 or $318 \mathrm{~V}-2$
T4	

D300
PS300
DS300
H201
T51
H214
H203
H204
H215

A300
H301
H300
H207
H208
H302
A201
504PC-300
H212
504-FC
PM-705
V 8
H310
H311
H312

Description

. 05 MFD 200 volt coadenser . 5 MFD 100 vollt condenser
100 MMFD ceramic condenser
. 1 MFD 400 volt condenser
200 MMFD ceramic condenser
.01 MFD 600 volt condenser
. 008 MFD 1600 volt condenser
. 002 MFD 400 volt condenser
20 MFD 350 volt electrolytic condenser 20 MFD 350 volt electrolytic condenser 20 MFD 25 volt electrolytic condenser
3 section variable tuning

RESISTORS

1 megohm $1 / 2$ watt 20% resistor
20K ohm $1 / 2$ watt 20% resistor
1.5 K ohm $1 / 2$ watt 20% resistor

Volume control $3 / 4$ megohm with switch
2 megohm $1 / 2$ walt 20% resistor
10 megohm $1 / 2$ watt 20% resistor
250K ohm $1 / 2$ watt 20% resistor
20I ohm 2 watt 20% resistor
100 ohm $1 / 2$ watt 20% resistor
1R ohm l watt 20% resistor
500 K ohm $1 / 2$ watt 20% resistor
330 ohm $1 / 2$ watt 20% resistor
AND TRANSFORMERS
Motor noise elimination unit
Antenna coil
R.F. coil
R.F. oscillator coil

Choke, "A" line
Choke, vibrator hash
2nd IF transiormer
lat IF transformer
Vibrator transiormer
Output transformer (Part of speaker not furnished separately)
DIAL PARTS
Dial Scale
Dial Pointer
Drive Shaft Assembly
Grommet, rubber drive
Pilot Light
Pilot Light Socket
Pulley, idler
Spring, Dial drive String Tension
String, dial drive
MISCELLANEOUS
"A" lead assembly
Case, less covers for Power Supply Unit
Case, complete with covers for R.F. tuning unit
Clip, Anti-rattle
Clip, coil mounting
Cover, power supply unit mounting (with speaker louvres)
Fuse 15 Amp .
Power Cable Assembly (complete with plug)
Receptacle, Antenna cable
Socket, power cable
Speaker, 51/4" PM (includes output transformer)
Vibrator
Knob
Cup washer
Plastic Escutcheon

MODEL 610.D200,

 Plymouth, Dodge

INSTALLATION
 PLYMOUTH P18 SPECIAL DELUXE

1. Remove four screws securing Radio Grill in place and remove Radio Grill.
2. Remove dummy plates covering radio dial and control openings.
3. Enlarge holes in radio control cover plate to $1 / 2$ inch.
4. Remove knobs, cup washers, hex nuts and washers from control shafts and mounting bushings.
5. Secure two mounting brackets to Radio Grill with $3 / 8$ inch long $10-32$ self-tapping screws and cup washers as shown in detail assembly drawing.
6. Place radio control cover plate over mounting bushings.
7. Position receiver behind Radio Grill so that mounting bushings and shafts protrude through the grill.
8. Attach receiver by replacing washers and hex nuts on mounting bushings.
9. Replace cup washers and knobs over shafts.
10. Secure receiver to mounting brackets with two No. 8 self-tapping wing nuts.
11. Insert radio with attached grill through front opening on instrument panel.
12. Replace grill mounting screws.
13. Connect battery lead to terminal marked "ACC" on ignition switch.
14. Plug antenna cable into receiver.

DODGE "CORONET"

Install in the same manner as outlined for the P18 DeLuxe Plymouth except do not remove radio grill.

> PLYMOUTH P17, P18 4-DOOR DELUXE AND
> P18 CLUB COUPE DELUXE
> DODGE "WAYFARER" AND "MEADOWBROOK"

These models are not equipped by the car manufacturers with a radio grill or a radio control cover plate.
The following parts must be obtained from any authorized Plymouth or Dodge dealer before an installation can be made in any of these cars.

Plymouth P17, P18 4-Door DeLuxe, P18 Club Coupe DeLuxe
Radio Grill No. 1299913
Radio control cover No. 1248700
Dodge "Meadowbrook" or "W ay farer"
Radio Grill No. 1301361
Radio control cover No. 1255080

COMPLETE ASSEMBLY

ACCESSORIES FURNISHED FOR INSTALLATION

Mounting Parts Kit
The following mounting hardware parts are shipped attached to the receiver. (See detail assembly drawing FIG. 2)
2 Washers
$2 \mathrm{~T}^{7} \cdot 28$ hex nuts
2 Cup washers
2 Knobs
2 Mounting Brachets.
2 No. 8 self-tapping wing nut screws
An envelope containing additional mounting hardware is supplied with this receiver. It contains the following parts:
$23 / 810-32$ self-tapping screws
2 Cup washers
Suppression Kit
1 Distributor Suppressor
1.5 MFD Generator Condenser

MOTOR NOISE ELIMINATION
GENERATOR CONDENSER

© John F. Rider

DISTRIBUTOR SUPPRESSOR

NOTE: 1950 Dodge and Plymouth automobiles do not require distributor suppressors.

1949 DODGE AND PLYMOUTH

Remove metal tip from the distributor center tower lead and screw lead into the suppressor. Plug suppressor with attached lead back into distributor head.
The generator condenser and distributor suppressor should eliminate all objectionable motor noise in most cases. If the motor noise persists the following steps should be taken. Check operation of radio as each step is made.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

AMMETER CONDENSER

A . 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

ELEC'TRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input - 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipnent is necessary to proper alignment: Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver. Output meter. (1.8 volt for 1 watt output.) Dummy antennas-. 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagrom

Dial Setting	Generator Frequency	$\begin{gathered} \text { Dummy } \\ \text { Ant. } \end{gathered}$	Generator Connector	Trimmer Reference	$\begin{gathered} \text { Trimmer } \\ \text { Adjustment } \end{gathered}$	Trimmer Function
1) Fully open	455 KC	. 1 MFD	6BE6 Grid	T4 Top \& bottom	Maximum	Output I.F.
2) Fully open	455 KC	. 1 MFD	6BE6 Grid	T3 Top \& bottom	Maxinumı	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV1	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	T2	Maximum	RF Stage
7) 'Tune in Signal from generator	600 KC	100 MMFD	Ant. lead	T1	Maximum	Antenna

HOW TO ORDER REPAIR PARTS

[^1]
PARTS AND PRICE LIST

Plymouth, Dodge

CONDENSERS

$\left.\begin{array}{l|r}\begin{array}{l}\text { Schematic Diagram } \\ \text { Reference }\end{array} & \\ \text { C2, C3, C4 }\end{array} \quad \begin{array}{c}\text { Part No. } \\ \text { C5 }\end{array}\right)$
.05 MFD 200 volt condeneor
100 MMFD coramic condenser
200 MMFD ceramic condenser
.002 MFD 200 volt condenser
.01 MFD 600 volt condenser
.5 MFD 100 volt condenser
.008 MFD 1600 volt condenser
20 MFD 350 volt electrolytic condenser
20 MFD 350 volt electrolytic condenser
20 MFD 25 volt electrolytic condener

3 section variable tuning condenser

RESISTORS

1 megohm $1 / 2$ watt 20% resistor 20 K ohm $1 / 2$ watt 20% resistor 2 K ohm $1 / 2$ watt 20% resistor 2 megohm $1 / 2$ watt 20% resistor 10 megohm $1 / 2$ watt 20% resistor 250 R ohm $1 / 2$ watt 20% resistor 530 Z ohm $1 / 2$ watt 20% resistor 333 ohm $1 / 2$ watt 20% resistor 20 K ohm 2 watt 20% resistor 100 ohm $1 / 2$ watt 20% resistor IK ohm l watt 20% resistor Volume control $3 / 4$ megohm with switch
COILS AND TRANSFORMERS

L1-Cl	L200
12	57FB-3
13	57FB-4
14	L201
15	1202
16	L203
T1	1655-16
T2	1655-16
T3	T8-200

D200
PS200
DS200
H2O1
T51
H202
H203
H204
H205

A 200
H206
H207
H208
H209
H210
A201
H211
H212
PM-200
V-83

Motor noise elimination unit
Antenna Coil
RF coil
RF Oscillator coil
Choke, vibrator hash
Choke, " A " line
lat IF transformer
2nd IF tronsformer
Output transformer (Part of speaker not furnished separately) Vibrator transformer

DIAL PARTS

Dial Scale
Dial Pointer
Drive shaft assembly
Grommet. rubber drive
Pilot light
Pilot light socket
Pulley, idler
Spriag, Dial Drive Spriag Tonsion
String
MISCELlANEOUS
"A" lead assembly
Case (less covers)
Clip, anti-rattle
Clip, coil mounting
Cover, bottom case
Cover, top case (with speaker lourres)
Fuse, 15 Amp.
Grommet, rubber, gang mounting
Receptacle, antenna cable
Speaker 4" x 6" PM (includes output transformer)
Vibrator

© John F. Rider
$\stackrel{-}{7}$
コエッゴロゴロッ

Ford

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments. No signal applied to antenna.
Power input - 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment :
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

PAGE 21-30 SPIEGEL

OJohn F. Rider

INSTALLATION

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, ammeter condenser and generator condenser. By referring to Figures 1 and 2, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a templare, mark and drill two $5 / 8^{\prime \prime}$ holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed to the correct angles, as illustrated in Figure 2, so that it can then be fastened to the fire wall. After marking and centerpunching the fire wall at the correct location, drill with a $3 / 8^{\prime \prime}$ drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the $1 / 4^{\prime \prime}$ bolt, lock washer and nut furnished with the receiver.

Fig. 3. Side View, Showing Mounting

CONNECTING THE RADIO

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 1100 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 3) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ACCESSORIES FURNISHED FOR INSTALLATION

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression \& Misc. Parts Kit, part No. S84-344, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-148.
NOTE: For shipping, the two control knobs have been removed from the tuning and volume control shafts. To install the knobs, line up the flat side of the knob spring, (inside knob) with the flat side of the control shaft and push the knob forward until it stops.

S84-192 MOUNTING PARTS KIT

1	$1 / 4^{\prime \prime}$ Bolt
2	$1 / 4^{\prime \prime}$ Lock Washers
2	$1 / 4^{\prime \prime}$ Hexagon Nuts
2	$10-32 \times 5 / 8^{\prime \prime}$ Screws

2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts

S84-344 SUPPRESSION KIT \& MISC. PARTS ASSEMBLY

"A" lead assembly
1-S84-233
1-A43-10
2-A52-295
1-A81-13
1—S84-193
Fuse
Control knobs
Sleeve (for fuse)
Suppression Kit consisting of:

2-. 5 MFD Condensers 1—Distributor Suppressor 20"-Wire Braid

Fig. 1 Front View

SUGGESTIONS FOR ELIMINATING POSSIBLE MOTOR NOISE

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise. (The following steps may not be necessary in all cases. Install your radio and operate it before making changes.)

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

AMMETER CONDENSER

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

DISTRIBUTOR SUPPRESSOR

Detach the high tension wire where it goes into the top of the distributor cap and cut two inches off the end. Screw the piece you cut off into one end of the distributor suppressor and then screw the other end of the suppressor on the long wire which leads to the coil. Insert the wire back into the distributor cap.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional .5 MFD condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short wires are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension wire from the coil to the distributor.

HIGH AND LOW TENSION WIRES

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These wires will very often pick up motor noise and feed it into the
receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. These wires should be placed in a flexible wire shield and the shield grounded to frame or motor. This condition is particularly true on the V. 8 Ford, as the battery and primary leads run through a special tube which also houses the high tension wires.

BONDING OF FIRE WALL

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.
In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A $1 / 4^{\prime \prime}$ piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

ELECTRICAL ACCESSORIES

In some cases it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a. 5 MFD by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

```
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 volts DC
Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 amp . average
Frequency Range. . . . . . . . . . . . . . . . . . . . . . 540 to 1600 KC
I. F. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 KC
Speaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4" P. M.
Power Output. . . . . . . . . . . . . . . . . . 1.2 watts, undistorted
    2.5 watts, maximum
Sensitivity. . . . . . . 10 microvolts average for 1 watt output
Selectivity . . 40 KC broad at 1000 times signal, at 1000 KC
```

This receiver contains the following:
1-6SK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC-1st audio.
1-6V6GT-Power output.
1-6X5GT-Rectifier.

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a $1 / 2$ inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.

Volume control- No signal ap Power input-- Connect dummy Connect output Connect ground Repeat alignme	, all adjusi antenna. in series with oss voice signal gene ure as a fin	ALIG of signal assis.	NT P	URE wing equip generator ulated 40 tallic scre meter. 11.8 antennas ment points	essary for ovide the $\%$. watt output. 5 MMFD. igures 5	as listed	帯
$\begin{gathered} \text { Dial } \\ \text { Selting } \end{gathered}$	Generator Frequency	$\begin{gathered} \text { Dummy } \\ \text { Ant. } \end{gathered}$	Generator Connection:	$\begin{aligned} & \text { Trimmer } \\ & \text { Reference } \end{aligned}$	Trimmer Adjustment	Trimmer Function	
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	T2	Maximum	Output I.F	
Fully Open	455 KC	. 1 MFD.	6SA7 Grid	11	Maximum	Input I.F.	
Fully Open	455 KC	75 MMFD.	Ant. lead	13	Minimum	Wave trap	
Fully Open	1600 KC	75 MMFD.	Ant. lead	C18	Maximum	Oscillator	
Tune in signal from generator	1400 KC	75 MMFD.	Ant. lead	C19	Maximum	Antenna	
NOTE: The antenna trimmer condenser, C3, (see Fig. 2) should be adjusted after the radio is installed in the car. Tune the receiver to a weak and adjust this trimmer for maximum volume.							

Fig. 3 Schematic Diagrom

PAGE 21-36 SPIEGEL

[^2]
GENERAL SPECIFICATIONS

FREQUENCY RANGES:

AM-540 to 1700 Kc . FM - 88 to 108 Mc .

TUNING CAPACITOR:

6 section gang (3-AM and 3-FM); entire R.F. tuning assembly is rubber mounted.

I.F. FREQUENCY:

AM-455 Kc.
FM-10.7 Mc.
POWER SUPPLY:
117 volts A.C.
Radio - 85 watts
Phono-1 15 watts

SPEAKER:

10 inch P.M. Dynamic
Voice coil impedance -3.2 ohms

POWER OUTPUT:

Undistorted-2.8 watts
Maximum - 5.4 watts

ANTENNAS:

AM-Low impedance loop
FM-Single ended half wave dipale

RECORD CHANGER:

Automatic-intermix type; 3-speed

WEIGHT:

Packed-120 lbs.

DIMENSIONS:

Length-36"
Height-34'
Depth - 18'

SENSITIVITY:

AM - 20 micravolts per meter (average) for 0.5 watt output. This measurement must be made with the R.F. signal generatar (modulated 30\% at 400 cycles) coupled to the receiver by means of a standard test loop antenna.

FM - 10 microvalts per meter (average) for 0.5 waft output. This measurement must be made with the R.F. signal generator (frequency modulated $\mathbf{3 0 \% - 2 2 1 / 2 ~ K c . ~ d e v i a t i o n - a t ~}$ 400 cycles) cospled to the receiver thru apprapriate size carbon resistors to match the $\mathbf{3 0 0}$ ohm antenna input circuit.

HOW TO REMOVE CHASSIS FROM CABINET

1. Remove all knobs by pulling them forward.
2. Disconnect all antenna leads from the terminal strip labeled "FM-FM-AM-AM."
3. Disengage phono pick-up plug from its socket at rear of chassis.
4. Take out the four chassis hold-down screws that are located at each corner of the pan and serve to retain the unit in position on the tiltout panel. Chassis can now be removed by lifting it out of cabinet.
5. Disconnect the leads from speaker at bottom left section of cabinet.
6. Remove "ON.OFF" indicator lamp and socket from bottom center of cabinet.
7. Remove bracket which clamps dial plate to frant panel of cabinet.
8. Disengage phono motor plug and socket.

BROADCAST BAND-"AM"-ALIGNMENT PROCEDURE

1. Disconnect leads from FM-AM antenna terminal strip (labeled FM-FM-AM-AM) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis and speaker from cabinot. If desired, ollow speaker to remoin in cobinet and connect to receiver by extension leads.
2. Loop ontenna leads (on cobinet) do not have to be connected to terminal strip on chassis while I.F. stages are being aligned. Before starting alignment of Ant., R.F., and Osc. stages, reconnect AM loop antenna leads to AM ontenna terminal strip-do not attempt to use extension leads; place chossis as close as required to cabinet so that connections may be made direct to antenna terminal strip at back.
3. With the gang condenser fully meshed, dial poinfer should be in the position indicated by the last division below 55 on the dial. If it is set incorrectly, hold tuning shaft steady ond reposition pointer.
4. Connect an output meter ocross speoker voice coil, or from plate of 6V6GT tube to chassis through a 0.1 Mfd . condenser.
5. Connect ground lead of signol generator to the receiver chassis.
6. Set volume control to maximum volume position and use a weak signal from the signal generator.
7. Set band switch to the "AM" (middle) position.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF SIGNAL GENERATOR TO	IGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMIR OR SLUG NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
1 MFD. Condenser	lug on trimmer No. 6 at top of gang (see figure below for location of trimmer).	455 KC	Any point where it does not affect the signal.	$\frac{1-2}{3-4}$	2nd I.F.	Adiust for maximum output. Then repeat adjustment.
260 MMFD. Mica Condenser	External Antenna Clip	1500 KC	1500 KC	5	Broadcast Oscillator	Adiust for maximum output.
260 MMFD. Mica Condenser	External Antenna Clip	1500 KC	Tune to 1500 Kc . generator signal.	6	Broadeast R.F.	Adiust for maximum output.
				7	Broadcast Antenna	Adjust for maximum output.
260 MMFD. Miea Condenser	External Antenna Clip	600 KC	Tune to 600 Kc . generator signal.	8	Adjustable core of Broadcast R.F. Coil.	Adiust for maximum output.
				9	Adiustable core of Broadeast Antenna Coil.	Adiust for maximum output.

Repeat adjustment of trimmers 6 \& 7 and slugs $8 \& 9$ until one no longer detunes the other.

FIG. 1
Top View of Chassis

FIG. 2
Bottom View of Chassis

FREQUENCY MODULATION_'‘FM"-ALIGNMENT PROCEDURE

1. If alignment of both $A M$ and $F M$ channels is required it is necessary to align the $A M$ channel first, then align the $F M$ channel as instructed in chart below ($A M$ alignment procedure is given on the preceding page).
2. Disconnect all leads from antenna terminal strip (labeled FM-FM-AM-AM) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis and speaker from cabinet. If desired, allow speaker to remain in cabinet and connect to receiver by extension leads.
position indicated by the last division below 88 on the dial. If it is set incorrectly, hold tuning shaft steady and reposition pointer.
3. Set volume contral at maximum volume position and use a weak signal from the signal generator.
Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit. I.F. plate and grid leads should also be kept short and straight.
4. With the gang condenser fully meshed, dial pointer should be in the 6 . Set band switch to the FM (extreme counter-clockwise) position.

FREQUENCY MODULATION_'"FM"-ALIGNMENT PROCEDURE (Continued)

STANDARD SIGNAL GENERATOR		SWEEP GENERATOR		VTVM OR OUTPUT METER CONNECTIONS	OSCHLOSCOPE CONNECTIONS	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAR } \\ & \text { SETTING } \end{aligned}$	TRIMMER OR SIUG NUMBER	TYPE OF ADJUSTMENT AND OUTPUT INDICATION
CONNECTIONS	FREQUENCY	CONNECTIONS	FREQ.					
Connect generator "high" side in series with a 270 ohm corbon resistor to ond torminal marked "FM" on strip at back of chassis. Generator ground lead must connect to noxt terminal marked "GND."	$\begin{gathered} 108 \text { Mc. } \\ \text { with } \\ 400 \text { cycle } \\ \text { AM } \\ \text { Modulation. } \end{gathered}$	Not used.	-	Connect VTVM as shown in Fig. 5.	Not used.	108 MC.	$\begin{gathered} \text { \# } 16 \\ \text { Oscillator } \end{gathered}$	Sot trimmer \#16 to recaive 108 Mc . signal as indicated by maximum meter reading.
Same os above.	106 MC. with 400 cycle AM Modulation.	Not used.	-	Some as above.	Not used.	Tune to 106 Mc. generator signal.	\#13 FM RF \#18 FM ANT.	Adiust trimmer for maximum meter reading.

Check calibration and trocking of receiver with input signals of 88,98 and dial setting below 88 MC., then slightly compress the windings of the 106 MC . If difference between dial pointer setting and these frequencies oscillator coil until the signal comes in at the correct calibration point. does not exceed $\pm 0.3 \mathrm{MC}$. and R.F. circuit is tracking proparly, then align-
ment may be considered sotisfactory and no further adjustment is neses- Check calibration of 108. MC. and if it is in error by more than ± 0.3 MC., sary. Where the calibration error is greater ihan $\pm 0.3 \mathrm{MC}$., it is advisable readiust setting of trimmer \#16. Then repeat adjustments of trimmers $\# 17$ to moke the following adjustments: and 18 at 106 MC . Repeat colibration adjustmont at 88, 108 and 108 MC . until desired accuracy is obtained.
Tune recsiver to an 88 MC . signal ond note whether dial pointer is above or below correct calibration point. Then tune receiver so that dial pointer Observe dial calibration at 106 MC . If it is found to be incorrect by an is at the 88 MC . position. If generator signal was previously received at a oppreciable omount, then make a very slight adjustment in the spacing setting above 88 MC ., it will be necessary ta slightly spread the windings of the gang condenser plates to receive the 106 MC . signal at the correct of the FM ascillotor ceil so that signal will now be received of the correct dial setting. Then check adiustment af R.F. trimmer \#17 and ANT. trimmer dial setting. On the other hand, if generator signal was received at a \#18 to obtain maximum output indication of 108 MC .

FIG. 4
VTVM Connections for I.F. Alignment

FIG. 5

$$
\begin{aligned}
& \text { VTVM and Oscilloscope } \\
& \text { Connections for } \\
& \text { Discriminator Alignment }
\end{aligned}
$$

© JJhn F. Rider

PAGE 21-8 STEWART-WARNER

REAR OF CHASSIS

NOTE X: Grounding of center stud on tube socket is necossary to reduce capacity
© John F. Rider

I.F. FREQUENCY:

FREQUENCY RANGES:

AM-540 to 1700 KC.
FM-88 to 108 MC.

TUNING CAPACITOR:
4 section gang (2-AM and 2-FM
rigid mounting.

HOW TO REMOVE CHASSIS FROM CABINET

1. Remove all knobs by pulling them forward.
2. Take off dial scale by pressing down on top center of plastic dial enclosure and at the same time pulling it forward.
3. Remave pointer by pulling it forward.
4. Remove cabinet back by taking out three screws and two clips.

Note: Cabinet back has a power cord interlack which is auto. matically disconnected when back is removed.
5. Take out two chossis mounting screws at bottom of cabinet. Chassis may now be readily remaved by sliding it aut of cabinet.
6. When replacing cabinet back be sure that it is parallel to loop and power cord interlock plug fits into socket on chassis.

GENERAL SPECIFICATIONS

SPEAKER:

6 inch P-M Dynamic
Voice coil impedance- $\mathbf{3 . 2}$ ohms

POWER OUTPUT:

Undistorted-1.2 watts
Maximum-2.3 wapps

ANTENNAS:

AM-Migh impedance loop

 FM-Built-in line cord type
WEIGHT:

13 pounds

DIMENSIONS:

Length-15"
Heigth-9 $1 /$ /" $^{\prime \prime}$
Depth-81/4"
DIAL POINTER DRIVE CORD ARRANGEMENT

To string dial cord, furn the main drive drum to maximum counter.clock. wise position and use following parts:

$$
\begin{aligned}
& 114955 \text { Clip on end of card } \\
& 117057 \text { Cord (} 31 / 2 \mathrm{ft} \text {. required) } \\
& 119087 \text { Ring for dial cord } \\
& 161384 \text { Spring }
\end{aligned}
$$

SOCKET VOLTAGES

THE VOLTAGES SHOWN IN THIS CHART WERE MEASURED UNDER THE FOLLOWING CONDITIONS

Power Supply -117 volis 60 cycles A.C.
2. All voltoges are measured between socket terminals ond chassis unless otherwise indicated on the chart.
3. All measurements made with a voltmeter having a sensitivity of 1000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube volimeter measurement.
4. Where a particular voltoge is dependent upon band switch position, the value shown on the chart carries a letter suffix which is interpreted as follows:
" A " indicotes band switch set to " $A M$ " (counter-clockwise) position.
"F" indicates bond switch set to "FM" (center) position.
"P" indicates band switch set to "PHO" (clockwise) position.
No suffix letter indicates that voltage is the same for any of the three switch positions.
5. When measuring FM voltages, receiver should be funed to 88 Mc .
6. When measuring $A M$ voltages, receiver should be funed to 540 Kc .
7. Terminals on $A M$ loop antenna ore sharted together.

Buitt-in FM antenna lead is disconnected from the "FM ANT." terminal. 9. Volume contral sel to maximum with no signal.

BROADCAST BAND-"AM"-ALIGNMENT PROCEDURE

1. If alignment of both $A M$ and $F M$ channels are required, it is advisable to align the $A M$ channel first; then align the $F M$ channel as instructed on Page 1950.7.
2. Remove chassis and loop antenna (which is mounted to chassis) from cabinet by following procedure outlined on Page 1950-3. Allow loop to remain attached to chassis.
3. In order to provide a coupling for signal generator during R.F. alignment as instructed in chart below, wind several turns of wire in a circular shape so that it may be placed adjacent and parallel to the loop.
4. Connect an output meter across the speaker voice coil or from the
plate of the 5085 tube to chassis through a 0.1 Mfd. condenser.
5. Set band switch to the "AM" (counter-clockwise) position.
6. Set volume control at maximum and use a weak signal from the signal generator.
7. Since the dial scale is a part of the cabinet, when completely assembled, it becomes necessary ta provide a temporary means of locating the dial to obtain calibration points. Rotate gang condenser fully counter-clockwise and replace pointer so that it is parallel with base of the chassis. Now, hold dial scale in front of pointer in such a position that the ends of the indicator point to the "AM" and "FM" markers. While holding the dial scale in this position, rotate tuning sleeve until pointer indicates desired frequency.

SIGNAL GENERATOR CONNECTIONS		SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	TRIMMER OR SLUG NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
CONNECT HIGH SIDE OF SIGNAL GENERATOR TO	CONNECT GROUND LEAD OF SIGNAL GENERATOR TO					
Lug on trimmer \#6 at top of gong (see figure 1 for location of trimmer).	Chassis ground. CAUTION: If your sig-	455 KC	Any point where it does not offect the signal.	1 and 2	2nd I.F.	Adjust for moximum output. Thon repeat adjustment.
	connect ground lead of signal generator to receiver chassis through a 25 Mfd . condenser.			3 and 4	1st 1.f.	
Connect directly to coupling turn. See Step 3 above for instruction on coupling loop.		1500 KC	1500 KC See Step 7 above for instructions on how to obtain this calibration point.	. 5	$\underset{\text { Oscillator }}{\text { AM }}$	Adiust for maximum outpur.
Connect directly to coupling turn. See Step 3 above for instruction on coupling loop.		1500 KC	Tune to 1500 Kc. generator signal.	6	$\underset{\text { Antenna }}{\text { AM }}$	Adjust for maximum output.

Top View of Chassis
FIG. 1

FIG. 3
VTVM Connections for IF Alignment

FIG. 4
VTVM and Oscilloscope Connections for Discriminator Alignment

Bottom View of Chassis
FIG. 2

FREQUENCY MODULATION—"FM"-ALIGNMENT PROCEDURE

1. If alignment of both $A M$ and $F M$ channels are required it is advisable to align the $A M$ channel first os instructed in chart on Page 1950-6. Then, accomplish FM channel alignment by using the procedure outlined in the chart below.
2. Remove chassis and loop antenna (which is mounted to chassis) from cobinet by following procedure outlined on Page 1950-3. Allow loop to remain attached to chassis.
3. Disconnect built-in FM lead from "FM ANT." terminal at back of chassis.
4. Set band switch to the "FM" (middle) position.
5. Set volume contral at maximum and use a weak signal from the signal generator.
6. Dress FM circuit leads os short and straight as possible, particularly those in the oscillatar circuit. If plate and grid leads should also be kept short and straight.
7. Since the dial scale is a part of the cabinet, when completely assembled, it becomes necessary to provide a temporary means of locating the dial to obtain calibration points. Rotote gang condenser fully counter-clockwise and replace pointer so that it is parallel with base of the chassis. Now, hold dial scale in front of pointer in such o position that the ends of the indicator point to the " $A M$ " and "FM" markers. While holding the dial scale in this position, rotate tuning sleeve until pointer indicates desired frequency.

STANDARD SIGNAL GENERATOR		SWEEP GENERATOR		VTVM OR OUTPUT METER CONNECTION	OSCILLOSCOPE CONNECTIONS	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	TRIMMER OR SLUG NUMBER	TYPE OF ADJUSTMENT AND OUTPUT INDICATION
CONNECTIONS	FREQUENCY	CONNECTIONS	FREQ.					
Connect high side to lug on trimmer \#13 (see Fig. 1 for location of trim. mer) using o . 01 Mfd. condenser in series with generotor lead. Connect ground lead to the receiver chassis in vicinity of gang condenser. CAUTION: If your signal generator is designed with an AC-DC type power supply, connect ground lead of signol generator to receiver chassis through o .25 Mfd . condenser.	10.7 MC. Unmodulated	Not used.	-	Connect VTVM as shown in Fig. 3.	Not used.	Any position where it does not affect the signal.	$\# 11_{1 s+1 F}-12$	Adjust these trimmers for maximum meter reoding - the output voltage will be of negative polarity.
Some as obove.	Same as above.	Not used.	-	Connect VTVM as shown in Fig. 4.	Not used.	Same as above.	\#7 Discriminator secondary	Note that as slug \#77 is rotated, a point will be found where the voltmeter will swing rather sharply from a positive to a negative reading or vice verso. The correct sefting is obtained when the meter reads zero as theslug is moved thru this point.
Same as obove.	Some as above. Attenuate signol to prevent overload and distortion of response curve.	Connect high side to lug on trimmer \#13 (see Fig. 1 for location of trimmer) using a .01 Mfd. condenser in series with generator lead. Connect ground lead to the receiver chassis in vicinity of gang condenser. CAUTION: if your signal generator is designed with an AC-DC type power supply, connect ground lead of signal generator to recoiver chassis through a .25 Mfd . condenser.	10.7 MC Sweeping $\pm 300 \mathrm{Kc}$.	Not used.	Connect as shown in Fig. 4. Set vertical omplifier of scope for maximum amplification. Synchronize oscilloscope with sweep generotor by connecting "horizontal input" terminals of 'scope to source of horizontal sweep modulating voltage on the sweep generator.	Same as above.	\#7 Discriminator secondary	A pattern similar to that shown in Fig. 5 should appear on the oscillascope screan. Check for symmetry about the 10.7 Mc . center point and linearity of the slope. FIG. 5 If the characteristic is not shaped properly, attempt to obtain symmetry by changing the setting of slug \#7. Should that fail to produce the desired results, then a slight readiustment of slugs \#8, 9, 10, 11 and 12 should be undertaken.
Connect high side in series with a 270 ohm carbon resistor to "FM ANT." terminal at rear of chassis. Connect ground lead to "'FM GND." terminal.	108 MC. with 400 cycle AM Modulation.	Not used.	\longrightarrow	Connect VTVM as shown in Fig. 3.	Not used.	108 Mc . See Step 7 above for instructions on how to obtain this calibration point.	$\begin{gathered} \text { \#12 } \\ \text { Oscillator } \end{gathered}$	Set trimmer \#12 to receive 108 Mr . signal as indicated by maximum meter reading.
Same as above.	108 MC. with 400 cycle AM Madulation.	Not used.	-	Same as above.	Not used.	Tune to 108 Mc . generator signal.	$\underset{\text { FM }}{+13}$	Adiust trimmer for maximum meter read. ing.

Check calibration and tracking of receiver with input signals of 88 and 98 MC . If difference between dial pointer setting and the above mentioned frequencies does not exceed $\pm 0.3 \mathrm{MC}$. and RF circuit is tracking properly then alignment may be considered satisfactory and no further adjustment is necessary.
Where the calibration error is greater than $\pm 0.3 \mathrm{MC}$. it is advisable to moke the following adjustments:
Tune receiver to an 88 MC . signal and note whether dial pointer is above or below correct calibration paint. Then tune receiver so that dial pointer is at the 88 MC . position. If generatar signal was previously received at a setting oscillator coil (\#14 in Fig. 2) so that signal will now be received at the correct
dial setting. On the other hand, if generator signal was received ot a dial setting below 88 MC ., then slightly compress the windings af the oscillator coil until the signal cames in at the correct calibration point.
Check calibration at 108 MC . and if it is in error by more than $\pm 0.3 \mathrm{MC}$., readjust setting of trimmer \#12. Repeat calibration adiustment at 88 and 108 MC . until desired accuracy is obtained.
Observe dial calibration at 98 MC . If it is faund to be incorrect by an appreciable amount, then make a very slight adiustment in the spacing af the gang check adjustment of RF trimmer $\# 13$ to obtain maximum output indication at 98 MC .

STAGE GAIN MEASUREMENT PROCEDURE

REQUIRED INSTRUMENTS: The amount of amplification or "gain" of each of the stages of this receiver may be measured with an
A.C. Vacuum Tube Voltmeter or a channel type instrument containing a tuned and calibrated amplifier.
PROCEDURE: It is exceedingly important to adhere to the pro cedure outlined belcw since the accuracy of these measurements will be affected to a considerable extent by the failure to establish proper operating conditions.

1. Be sure that R.F. and I.F. stages are enrefully and accurately aligned by utilizing the alignment procedure given above.
2. Connect Signal Generator as shown below.
3. The values of stage gain which are given here were measured with a fixed bias of 3 volts on the control grids of all R.F. and I.F. tubes which are connected to the A.V.C. circuit. Therefore, these values are not intended to indicate the full copability of a stage but they will serve as a convenient basis for determining proper operation. In order to duplicate the fixed bias voltage connect the negative terminal of a 3 volt battery to A.V.C. at terminal ${ }^{4} 4$ of the 1 Is I.F. transiormer and connect the positive
battery lead to B- in receiver chassis.
4. Set Signal Generator for operation at 600 Kc with 400 cycle modulation and carefully tune radio receiver to this signal by using an output meter to indicate peak output. If a local station interferes, set generator to a nearby frequency and retune the receiver.
5. R.F. and I.F. circuits are slightly de-tuned when contact is made with an instrument probe and this action, which is indicated by a change in the output meter reading, may seriously affect the gain measurement. Therefore, it is important to adjust the associated circuit trimmer for a maximum output meter reading and to set the input signal level to a convenient reference point on the gain measuring instrument while the probe is making the trimmer so as to obtain the same output meter reading and thereby assure that the signal voltage at the specified point has not changed as a result of circuit de-tuning.
6. When using a 'channel' type instrument, carefully tune it for maximum output at desired frequency betore making measure ments.

DIFFERENCES in tube characteristics, tolerance of parts, adjustment of tuned circuits and variations in line voltage will influence stage gain. These tactors should be given due attention in event the gain of a stage varies extensively from the values shown above.

PARTS LIST

SOCKET VOLTAGES

Measured with voltmeter having sensitivity of 1000 ohms per volt except where indicated by (*). The (symbol designates a vacuum tube volt meter measurement.
LOOP ANTENNA TERMINALS SHORTED TOGETHER
VOLUME ON FULI WITH NO SIGNAL DIAL TUNED TO 540 KC ,

rear of chassis
NOTE A: The center stud of this tube must be connected to B- to reduce capacity coupling between other pins. Oscillation may result if this connection is omitted.

DRIVE CORD ARRANGEMENT

To string dial cord. turn The main drive drum to maximum counter clock lowing parts: and use 10 114955 Clip on end of cord 117057 Cord (2 feel) 505161 Tension Spring

GENERAL SPECIFICATIONS

FREQUENCY RANGE:
540 to 1600 KC .
TUNING CAPACITOR:
2 section gang, shock mounted, Planetary drive.

I.F. FREQUENCY:

455 KC.

ANTENNA:
High impedance loop.

POWER SUPPLY:

Power line $\{117$ volts A.C. or D.C. Operation 15 watts

Portable $\left\{\begin{array}{l}1-671 / 2 \text { volt "B" Battery }\end{array}\right.$ Operation $5-11 / 2$ volt " A " Batteries

SPEAKER:

4 inch P.M. Dynamic
Voice coil impedance -3.2 ohms

DIMENSIONS:

Length-9 $1 / 2^{\prime \prime}$
Height-67/8"
Depth-43/4"
WEIGHT:
7 pounds

HOW TO REMOVE CHASSIS FROM CABINET

1. Remove volume and the dual luning knobs by pulling them forward.
2. To remove cabinet back first swing hondle outword and note finger grip recess of back edge of cabinet. Grasp back of this recess and pull outward until it is free. Disconnect leads to loop ontenna by slipping pin type connectors out of the electrical clips oftached to loap.
3. Lcosen set screw in hinge pin callar. Then, push hinge pin into one end of hondle and withdraw it.completely by pulling out of the other end.
4. Remove three chassis mounting screws, two of which are lacated olong onf adge and the other located on the opposite edge. To gain occess to one of the chassis mounting. screws it will first be necessary to remove " A " bottery hold down plate os instructed on label attoched to this plate.
5. Chossis is now free ond may be lifted out of cabinet.
6. Battom cover on chassis may be removed by toking out three screws of the sides.

SOCKET VOLTAGES

THE VOLTAGES SHOWN IN THIS CHART WERE MEASURED UNDER THE FOLLOWING CONDITIONS

1. Power supply - 117 V. 60 cycles, A.C.

The (*) symbol designates o vacuum lube volimeter measurement.
2. All voltoges were meosured between sacket terminals and B- 4. Receiver should be tuned to 540 KC .
unless otherwise indicoled on the chort.
5. Loop ontenno terminols should be shorted together.
3. All meosurements were made with o voltmeter hoving o sensi-
livity of 1000 Ohms per volt except where indicated by ("). 6. The valume cantral was set to moximum position with no signal.

STAGE GAIN MEASUREMENT PROCEDURE

REQUIRED INSTRUMENTS: The amount of amplification or "qain" of each of the stages of this receiver may be measured with an A.C. Vacuum Tube Voltmeter or a "channel" type instrument containing a tuned and ealibrated amplitier.

PROCEDURE: It is exceedingly important to adhere to the procedure outlined belcw since the accuracy of these measurements will be affected to a considerable extent by the tailure to establish proper operating conditions.

1. Be sure that R.F. and I.F. stages are carefully and accurately aligned by utilizing the alignment procedure given on page 1950 118A.
2. Connect Signal Generator as shown below.
3. The values of stage gain which are given here were measured with a tixed bias of $1 l_{2}$ volts on the control grids of all R.F. and IF. tubes which are connected to the A.V.C. circuit. Therefore. these values are not intended to indicate the full capability of a stage but they will serve as a convenient basis for determining proper operation. In order to duplicate the fixed bias voltage. proper operation. in order to duplicate the fixed bias voltage;
frame of gang condenser and connect the positive battery lead to 3 - in receiver chassis
4. Set Signal Generator for operation at 600 Kc . with 400 cycle modulation and carefully turie radio receiver to this signal by using an output meter to indicate peak output. It a local station interteres, set generator to a nearby frequency and re-tune the receiver.
5. R.F. and I.F. circuits are slightly detuned when contact is made with an instrument probe and this action. which is indicated by a change in the output meter reading. may seriously affect the gain measurement. Therefore, it is important to adjust the associated circuit trimmer for a maximum output meter reading and to set the input signal level to a convenient reference point on the gain measuring instrument while the probe is making contact. After removing the probe it is aqain necessary to adjust the trimmer so as to obtain the same output meter reading and thereby assure that the signal voltage at the specified point has not changed as a result of circuit de-tuning
6. When using a "channel" type instrument. carefully tune it to meximum output at desired frequency betore making measure ments.

ALIGNMENT PROCEDURE

1. Remove chassis from cabinet by following procedure described on page 117. Reconnect loop antenna leads to clips on cabinet back. As battery position slightly affects R.F. alignment, it is preferable to have batteries in proper place during this procedure.
2. Replace dial scole and tuning knob on shafts of the gang condenser.
3. Since the "position indicator" for the diol scale is an integral part of the cabinet, it becomes necessary to install a temporary pointer when the chassis is removed from the cabinet. This can readily be accomplished by securing a piece of heovy wire under the chassis bottom cover mounting screw and then shaping the free end of the wire so that it can be placed in a vertical position directly in front of the dial scale. The dial scale should be installed on the gang condenser shaft so that when the can-
denser is fully meshed the smaller 5 of the 55 on the scale is directly under the pointer.
4. In order to pravide a caupling for the signal generatar during R.F. alignment, wind several turns of wire in a circular shape so that it may be placed adjacent and parallel to the loop antenna. Position cabinet back so that loop antenna is in approximately the same pasition as when receiver is completely assembled.
5. Solder approximately 5 in . of insulated wire to each of "soldering lugs" on secendery of output transformer. Connect output meter to these extension leads.
6. Set volume control at maximum and use a weak signal from the signal generator.
7. Operate the receiver from a 117 V. AC ar DC line.

SIGNAL GENERATOR CONNECTIONS					
CONNECT HIGH CONNECT GROUND SIDE OF SIGNAL LEAD OF SIGNAL GENERATOR TO GENERATOR TO	GENERATOR FREQUENCY	DIAL SETTING	OR SLUG NUMEE	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
B- lug in chassis. Lug on trimmer 70 of side of gong (see chant below for location of trimmer). CAUTION If your signol generotor is designed with an AC-DC type power supply, connect ground lead of signal generator to receiver through o . 25 Mfd. condenser.	455 KC	Any point where it does not affect the signal.	1 and 2	2nd I.F. 1sf I.F.	Adiust for maximum output. Then repeat odiustment.
Connect directly to coupling turn. See Step 4 above for instructions on coupling loop.	1400 KC	1400 KC Se•Step 3 obove for instructionson how to obtain this calibration point.	5	Broadcast Oscillator	Adiust for maximum output.

IMPORTANT:-Before undertaking alignment of the ontenno circuit it is necessory to reassemble the chassis in the cobinet. When reinstalling cobinet bock be sure that extension leads previously soldered to secondory of output transfarmer extend through ventilation slot on edge of
bock. Now, replace bock and be sure that it snaps into proper position. To goin occess to antenna trimmer $\# 6$ it will be necessary to first lift off the snop button of bottom of cabinet. Now complete the olignment procedure as follows.

- John F. Rider

SPECIFICATIONS

Voltage Roting - Radio
Type of Circuit
Tuning Range
Input Power Rating
Intermediate Frequency
Speoker Vaice Cail Impedance
Power Output

117 Volts AC-DC
Superheterodyne $540-1640 \mathrm{Kc}$ 30 Wotts

455 Kc
3 Ohm
1.5 Wotts of 10% Distortion

TUBE COMPLEMENT

2. 12BA6 Miniature RF and IF Amplifier

1 12BE6 Miniature Converter
1 12AV6 Miniature Detector, AVC and Audio Driver
1 50L6GT Pawer Output

Voltage and Tube Location Chart

Measurements are made at 11 zy line, using electronic Voltmeter. Except where otherwise inditated ${ }^{\prime}$ volages are D.C. and are positive with respect to the reference point which is the common Black-White lead.

ALIGNMENT PROCEDURE

CAUTION: As this is a transformless Receiver, observe all usual precautions. The Black-White (B-) lead is common to one side of the 117 Volt Power Line Cord.

Pointer Setting	Generctor Setting	Input and Dummy	VIVM and Scope Connection and Scale	Adj. and Notes

I. F. ADJUSTMENT

(1)	Low frequency end of dial	$\begin{aligned} & 455 \mathrm{kc} . \\ & 400 \mathrm{fy} . \mathrm{mod} . \end{aligned}$	```Pin #7, 12BE6 tube 0.01 mfd. dummy```	-3V DC Scele Green White (AVC) lead and Black-White (B-) lead.	Adj. top and bottom cores of each I. F. transformer wit'. nonmetallic screwdriver for maximum voltage.
(2)	\cdots	455 kc . Swept 15 kc .	"	Scope to Junction C. 6 and Volume Control	Adi. same cores as above for best over-lapping curve on scope.

POWER SOURCES: This receiver is designed for operation on either an external power source or on the enclosed batteries.

AC OR DC OPERATION: This receiver may be operated on 50 to 60 cycle, 110 to 125 volt AC current or 110 to 125 DC current.

CAUTION: Never plug this receiver into a 220 volt line as this will seriously damage the component parts which have been designed for 110 to 125 volt operation only.

To operate on AC or DC open the small door at the right in the back of the cabinet. Pull out the power cord and plug into a convenient outlet of the proper voltage and current. Follow instructions under "Controls."

To operate on the enclosed batteries, follow instructions under "Controls."
ANTENNA: This receiver is equipped with a sensitive loop antenna and requires no external antenna wire. However, due to the directional qualities of the loop some stations may appear to be weak in reception. This condition may be remedied by rotating or changing the position of the receiver.

CONTROLS: This receiver has three control knobs which are located on the front panel of the cabinet.

STATION SELECTOR KNOB: The center knob is the station selector. Rotate this knob to the right or left to select your desired station. The dial scale is calibrated in kilocycles. By mentally adding a zero to the numbers on the scale, the result will be read directly in (KC) kilocycles. (i.e., 60 plus 0 equals 800 KC or 140 plus 0 equals 1400 KC).

POWER SELECTOR SWITCH: The right hand knob is the power selector. It has three positions which are indicated on the front panel. The extreme left hand position is the "OFF" position. The small dot on this knob must point to "OFF" when the receiver is not in use. The center position is "AC-DC" and is used when it is desired to operate the receiver from a power line source. The extreme right hand position is "BATT" and is used when it is desired to operate on the enclosed batteries.

AC OPERATION: When an AC power source is used, set the power selector knob to "AC-DC" after the power cord has been plugged into a convenient outlet. The receiver is now ready for operation.

DC OPERATION: If the receiver does not operate after a few seconds, reverse

PAGE 21-2 TRAV-LER

MODEL 5022
BATTERY OPERATION: The power cord is not used for battery operation to "BATT" and the receiver is ready for operation on the enclosed batteries. CAUTION: When the receiver is not in use, the power selector knob must be turned to "OFF." If the knob is allowed to remain in BATY position, the batteries will be in use constantly. The volume control does not control
the batteries and they are still in operation even though the volume control is turned all the way off.
VOLUME CONTROL: The left hand knob is the volume control. After the power
 volume. BATIERY SUPPLIERS
The batteries for this receiver may be purchased from any reliable dealer. For proper operation this receiver requires two " A " batteries and one " B "
The "A" batteries are size " D " flashlight cells and are made by all battery manufacturs.
The " B " battery is a $671 / 2$ volt battery and is made by the following manu-
 BATTERY SERVICING

Replace with fresh batteries, making sure the batteries are inserted according
to the diagram on the inside of the container.
To replace the " B " battery, disconnect the snap fastener connectors. Replace with a fresh battery and snap the connectors into place. Replace the battery in the cabinet as shown in Fig. No. 1, making sure that the connector end laces
top of the cabinet. top of the cabinet.
After the batteries have been installed, replace the back, making sure that of the cabinet. ALIGNMENT AND SERVICE DATA Remove chassis from cabinet for alignment.

www.americanradiohistorv.com

GENERAL:

Signal Seeking Tuners are used on the following radios:

Bulletin No.
Buick
Model 9808991950 6D. 929
Cadillac
Model 72588651950 6D- 1060
Oldsmobile
Model 9824821950 6D. 987
Model 9824831950 6D. 987
The service bulletin for any radio using this tuner will refer to this bulletin for tuner servicing.

This bulletin covers the theory of operation, adjustments, replacements and trouble-shooting procedure.

THE SIGNAL SEEKING TUNER

The Signal Seeking Tuner is an electronically controlled automatic tuner by which the operator can change stations by merely depressing a single station selector bar on the radio or an auxiliary foot switch. The seeking operation is a uni-directional sweep of the broadcast band from low to high frequency with a nearly instantaneous return. The tuning mechanism is driven by a spring loaded mechanical motor which is stopped on station by a triggering circuit actuated by voltage developed from an incoming signal.

The number of stations on which the tuner will stop can be regulated by use of the Sensitivity Control. It is a step control which in the extreme clockwise position gives maximum stopping sensitivity, while it allows the tuner to stop only on strong local stations when in the minimum sensitivity or extreme counterclockwise position. This control is in the circuit only while the tuner is seeking and does not affect the "on station" sensitivity of the receiver.

THEORY OF OPERATION

This discussion of the operation of the Signal Seeking Tuner does not refer to any particular model radio. It covers the overall operation and
the bulletin for the particular radio involved will give the details of the circuit used in the actual receiver.

> Sweep and Return Cycle (See Fig. 2)

One Power Spring, which is fastened to the lower plate of the Planetary Arm, pulls this arm around its pivot. The Planetary Arm is linked to the Core Bar. Thus, as the spring contracts and moves the Planetary Arm it also pulls the core bar and its iron cores from the tuning coils thereby changing the tuned frequency of the radio towards the high end of the broadcast band. After the tuner has swept beyond the top broadcast frequency, the High Frequency Switch Operating Cam on the lower Planetary Arm trips the Tuner Return Switch which in turn energizes the Solenoid and this quickly returns the Planetary Arm to its original position with the cores inserted fully into the coils (low frequency) and the power spring is now under maximum tension. As the Planetary Arm returns, the Low Frequency Switch Operating Cam trips the Tuner Re-

Fig. 2
turn Switch to its original position thus de-energizing the Solenoid and completing the cycle.

Motor and Control (See Fig. 3)

Fig. 3

The Power Spring tends to move the Planetary Arm about its pivot point thereby starting the Planetary Gear and its meshed train in motion. This motion is transferred through the gear train to the Paddle Wheel which acts as an air vane governor keeping the motion at a constant speed. This movement of the Planetary Arm is then controlled by merely freeing or blocking the Paddle Wheel with the Relay Arm. Thus, the movement of the Planetary Arm which moves the tuning cores is started or stopped by the action of the Relay Arm.
Manual Tuning Gear Operation (See Fig. 4)
Manual tuning is accomplished by turning the Manual Control Shaft which turns the Worm Gear in its bracket. The Worm. Gear is meshed with the Manual Drive Gear which in turn is meshed with the Planetary Pinion Gear. During manual tuning the Paddle Wheel is held in place by the Relay Arm and this Pinion Gear is not free to rotate, thus effectively locking the Planetary Arm to the outer edge of the Manual Drive Gear. Therefore as the Manual Drive Gear turns, the Planetary Arm moves in unison with it and varies the frequency of the tuner by varying the position of the iron cores in the tuning coils. (Notice that when the set is being tuned automatically and the Paddle Wheel is rotating, the Manual Drive Gear is held securely in place by the Worm Gear while the Planetary Pinion Gear "walks around" the periphery of the Manual Drive Gear thereby causing the Planetary Arm to move and change the position of the tuning cores.)

Pointer and Core Bar Linkage (See Fig. 4)

The second power spring is shown in this view. It has a dual purpose, serving both as a power spring and an antibacklash spring. The primary linkage is from the tuner frame to the Lever Arm which is securely staked to the Bell Crank. At the Bell Crank the linkage splits, with one arm linked to the

On sets which have no manual drive, the Manual Drive Gear is secured to the Motor Frame and the Control Shaft and Worm Gear are eliminated.

Clutching Operations (See Fig. 5)

The Ratchet Pawl and Wheel are used so that the Solenoid can cock the power springs without running the entire gear train in the reverse direction during the return sweep. Notice that the Ratchet also is used when the dial pointer has reached the high end of the band while tuning manually. Then the Planetary Arm has reached the end of its tuning arc and so the planetary pinion tends to be rotated by the Manual Drive Gear (see Fig. 3). This turns the Ratchet Wheel out of the Pawl and allows the pinion gear to turn freely without exerting further force on the Planetary Arm and thereby eliminates any possible damage to the mechanism.
The purpose of the Friction Disc is to prevent damage to the mechanism when manually tuned past the low frequency stop. This is accomplished because the disc slips before excessive pressure is
core bar at the extreme left end, and the other arm linked to the pointer. Thus, this spring helps pull the core bar in the high frequency direction when it is free to move and provides a spring loaded linkage between the core bar and the pointer preventing any tendency for backlash.

Fig. 5
exerted when the Pinion Gear tends to rotate the Planetary Gear. The Friction Disc is not found on radios without a manual drive.

Tuner Sweep Cycle Outline (Fig. 6)
I. Tuner is started by removing Relay Arm from Paddle Wheel
A. Spring driven gear train begins to sweep. (Fig. 3)
B. Planetary Arm moves. (Fig. 2)
C. Tuning cores are moved toward higher frequency by core bar linkage to Planetary Arm.
D. Spring loaded dial pointer scans dial. (Fig. 4)
II. Signal actuates relay causing arm to stop paddle wheel
A. Gear train stops. (Fig. 3)
B. Planetary Arm is stopped.
C. Core bar movement is stopped.
D. Dial pointer sweep is stopped.
III. When tuner reaches high end of dial after last stop.
A. The High Frequency Switch Operating Cam trips Tuner Return Switch. (Fig. 2)
B. Solenoid is energized.
C. Plunger is pulled into the Solenoid.
D. Planetary Arm and pointer are returned to low end of dial.

Fig. 6
E. The Low Frequency Switch Operating Cam trips the Tuner Return Switch in the opposite direction. (Fig. 2)
F. The Solenoid is de-energized and the sweep starts from the low frequency stop.

ELECTRICAL OPERATION

The purpose of the electrical components associated with the tuner is to control the relay so the operator may start the tuner sweeping cycle by merely depressing the station selector bar and so that the sweeping operation will continue until a signal is received. At that time it is the function of
this circuit to accurately tune to the frequency of the selected station. It also provides the necessary conditions to keep the tuner on the station until a change is desired. The operational cycle of the electronic control system of the signal seeker tuner is outlined

The Electrical Cycle Outline (Fig. 7)

I. Starting the Tuner Seeking (Energizing the Relay)-The Station Selector Bar (27) is momentarily depressed.
A. Contact \#2 of the Station Selector Switch opens first, ungrounding secondary of the output transformer therefore muting the set as contact \#1 closes.
B. Contact \#1 closes and provides a circuit from $B+$ through the relay winding, the 15,000 ohm resistor (30), the Selector Switch contacts, and the delay circuit resistor network to ground.
C. The current through this circuit energizes the Relay and removes the Relay Arm from the Paddle Wheel-thus starting the tuner,
opening contacts \#2 and \#4, and grounding relay contacts \#1 and \#3.
II. Keeping the Tuner Seeking after the Selector Bar is released (Keeping the Relay Energized)
A. Relay contact \#3 is closed providing a path to ground for the cathodes of the R.F. and I.F. amplifier tubes. This path is through the Sensitivity Control so the sensitivity of the set can be controlled during the sweeping operation.
B. Relay contact \#1 is grounded thus lowering the cathode to ground resistance of the Relay Section of the Trigger Tube by putting the 6,800 ohm resistor (24) in parallel with the $47,000 \mathrm{ohm}$ cathode resistor (26).
the Trigger Tube. This triggering voltage gives a substantially constant tuning accuracy for all signals.
E. When the resultant triggering voltage on the grid of the D.C. Amplifier becomes positive it causes the tube to conduct.
F. The plate current fow in the D.C. amplifier section develops a biasing voltage across the 120,000 ohm resistor (25) which is between grid and cathode of the Relay Section of the Trigger Tube, making the grid more negative than the cathode thus reducing the plate current.

 Arm again engages the Paddle Wheel thereby stopping the tuner sweep on a station, opening contacts \#1 and \#3 and grounding relay contacts \#2 and \#4. Holding the Tuner on Station until a new Station is Desired (Holding the Relay De-energized):
A. Relay contact \#1 is opened, ungrounding the 6800 Ohm Resistor (24), thus preventing any appreciable current flow in the relay. B. Relay contact \#4 is grounded and this grounds the cathode circuits of the R.F. and I.F. amplifiers effectively by-passing the sensitivity control (4), which is now ungrounded, and leaving the set at normal sensitivity.
C. Relay contact \#2 is grounded thereby grounding out the grid of the D.C. Amplifier. Any voltage now developed across the 330,000 ohm resistor (22) keeps the Bucking Diode from conducting by applying
 ventional detector.
IV.

- John F. Rider

The Tuner Detection Circuit (See Figs. 7 and 8)

The purpose of the tuner detection circuit is to take input signal voltages of varying strength and trigger the relay tube so that the tuner will stop accurately on the station frequency. A positive voltage developed by the signal on the grid of the D.C. Amplifier Section causes the tuner to trigger and stop. This is accomplished by using the Detector Diode and Bucking Diode to develop voltages of opposite polarity (E_{1} and E_{2}) between grid and ground of the D.C. Amplifier Section of the Trigger Tube, thus effectively applying the algebraic sum of these voltages (E_{t}) to this signal grid. (Note that contacts \#2 and \#4 of the relay are open.) These relative voltages plotted against frequency are shown in Fig. 8 using a station frequency of 1200 KC . Notice that the response curve of the voltage $\left(\mathrm{E}_{2}\right)$ across the 1.5 megohm resistor (17) is broader and not as large as the voltage (E_{1}) developed across the 330,000 ohm (22) detector load. This is because the detector voltage has benefit of one more tuned circuit which gives the narrower curve. Also there is a positive voltage appearing at the cathode of the Bucking Diode which will have the effect of lowering the voltage (E_{2}) across the 1.5 megohm resistor (17) because it will introduce a delay before the Bucking Diode will begin to conduct. This delay can be controlled by the Delay Adjustment in the cathode of the Bucking Diode. This Delay Adjustment also controls the trigger level so

Tuner Muting

Various methods of muting are employed in the signal seeker tuner operated radios. To prevent a click in the speaker as the station selector bar energizes the relay, the output transformer circuit is opened (contact \#2 of Station Selector Switch (27), before contact \#1 is made. Or, in the case of the foot switch, the speaker voice coil is grounded and the set muted before the relay energizing contact is made.

The receiver is also muted when the solenoid is energized during the return cycle of the tuner. This is accomplishd because when the tuner return switch (33) is mechanically tripped to position \#2 it un-

Fig. 8
that the mechanical delay is compensated for and the tuner stops exactly on station. It is a factory adjustment and SHOULD not be adjusted unless it is proven faulty.

Since the two diodes obtain their voltages from the same incoming signal, the strength of both voltages will vary directly with the strength of the incoming signal. Therefore, while they both rise and fall with variation in signal strength, their difference (E_{t}), which is effectively the trigger pulse, will tend to remain constant. Thus, a station will be tuned in with the same degree of accuracy whether it is a strong or weak signal.

(See Fig. 7)

grounds the Sensitivity Control which is the cathode return for the R.F. and I.F. amplifier tubes thus momentarily disabling the set.

The receiver also may be muted during the sweep cycle of the tuner by applying the negative oscillator voltage to the grids of the audio tubes to cut them off during the sweep time. Then, when the relay stops the paddle wheel on station and contact \#1 is ungrounded enough positive voltage is applied through the 2.2 megohm resistor (10) to counteract the negative voltage from the oscillator and return the output tubes to normal operation. Any excess positive voltage will leak off through the diode to ground in the 1 st audio tube.

Sensititivity Control

The sensitivity control is a step resistor which is inserted into the cathodes during the tuning sweep when relay contact \#3 is grounded and is the means
by which the operator controls the number of stations on which the tuner will stop.

ADJUSTMENTS

All illustration numbers in this section can be used in conjunction with the bulletin for the radio involved and do not refer to the Theory of Operation portion of this bulletin.

All adjustments on Signal Seeking Tuners are made accurately at the factory and do not require further adjustment unless it is definitely proven they are wrong or tuner parts are replaced. These adjustments are readily accessible and can be made without removing the tuner from the radio. All adjustments are made with the antenna disconnected from the radio. All adjustments can be reached by removing the front and rear covers of the radio and the adjustment cover on the top of the radio. The correct procedures for making these adjustments are as follows:

Fig. 9

Solenoid Pole Piece Adjustment (Fig. 10)

This adjustment should be made whenever the Solenoid or Solenoid Plunger is replaced. Its purpose is to obtain the correct amount of force from the Solenoid and to prevent the Solenoid Plunger from sticking.

1. With a screwdriver back the Solenoid Pole Piece out of the Solenoid.
2. Bottom the Solenoid Plunger in the Solenoid. The plunger is bottomed when the " C " washer collar on the plunger hits the frame of the Solenoid.
3. Screw the Solenoid Pole Piece into the Solenoid until it just touches the plunger.
4. Back the pole piece off exactly $11 / 2$ turns.
5. Tighten the hex locking nut and seal with glyptal or shellac.

SOLENOID POSITIONING ADJUSTMENT
Fig. 10

Solenoid Adjustment (Fig. 10)

The Solenoid adjustment should be made whenever solenoid or Solenoid plúnger is replaced. Its purpose is to provide the correct amount of solenoid plunger movement to move the tuner to the low frequency end of the broadcast band.

1. With the radio turned off, connect a jumper wire across the 0.5 mfd condenser, Illustration \#43, on the cold side of the Solenoid. This is the only paper condenser found on the tuner.
2. Turn the radio on. (This energizes the Solenoid.)
3. Energize the Relay by momentarily depressing
the Station Selector Bar.
4. Loosen but do not remove the three solenoid mounting screws.
5. Using a screwdriver in the Solenoid Positioning Slot, turn the screwdriver and move the Solenoid until there is a 0.005 to 0.020 inch gap between the Planetary Arm and its Low Frequency Stop.
6. Tighten the three Solenoid Mounting Screws.
7. Turn the radio off and remove the jumper wire from the condenser.

This adjustment should be made whenever the relay is replaced. This is the only adjustment of the relay that should be attempted in the field. The adjustment of the relay is to position the relay arm to have the correct engagement and clearance with the gear train paddle wheel.

1. With the radio turned off, connect a jumper wire across the 0.5 mfd condenser, Illustration \#43, on the cold side of the Solenoid. This condenser is found on the tuner.
2. Turn the radio on. (This energizes the Solenoid.)
3. Energize the Relay by momentarily depressing the Station Selector Bar.
4. Loosen but do not remove the two Relay Mounting Screws.
5. Using a screwdriver in the Relay Positioning Slot, turn the screwdriver and move the relay until there is a gap of approximately 0.030 or

Fig. 11
$1 / 32$ inch between the top of the Relay Arm and the tip of the blades on the Paddle Wheel.
6. Tighten the two Relay Mounting Screws.
7. Turn the radio off and remove the jumper wire from the condenser.

Switch Operating Cam Adjustment (Fig. 12)
This adjustment should be made whenever the Motor Gear Train or the Tuner Return Switch is replaced. Its purpose is to set the timing of the Tuner Return Switch.

1. With the radio turned off, insert a 0.060 inch feeler gauge through the slot against the Low Frequency Stop. Number 14 bare wire is a satisfactory gauge.
2. Position the Planetary Arm against the feeler gauge. This can be done with the manual tuning control or on radios without this control the Planetary Arm cain be moved directly or by moving the core guide bar to the low frequency end of the broadcast band (tuning cores all the way in the coils).
CAUTION: ON RADIOS HAVING NO MANUAL TUNING CONTROL, THE PLANETARY ARM CAN BE MOVED ONLY TOWARD THE LOW FREQUENCY STOP WITHOUT DAMAGING THE MOTOR GEAR TRAIN.
3. With a small screwdriver, move the Low Frequency Switch Operating Cam to a position furthest from the Tuner Return Switch.
4. Trip the Tuner Return Switch so that its operating arm is toward the cam.
5. Turn the Low Frequency Switch Operating Cam in a counter clockwise direction until it trips the switch.
6. Insert a 0.060 inch feeler gauge through the slot against the High Frequency Stop.
7. Position the planetary arm against the feeler gauge. CAUTION: DO NOT USE DIRECT FORCE TO MOVE THE PLANETARY ARM. The Planetary Arm can be positioned either by using the manual tuning control or on radios without a manual control as follows:
(a) Turn the radio on and depress the Station Selector Bar.

SWITCH OPERATING CAM ADJUSTMENTS

Fig. 12
(b) Turn the radio off very close to the high frequency end of the broadcast band.
(c) With a screwdriver turn the Switch Operating Cam to the position furthest from the Tuner Return Switch.
(d) Turn the radio on and depress the Station Selector Bar.
(e) Allow the Planetary Arm to run against the feeler gauge.
(f) Turn the radio off.
8. Turn the Switch Operating Cam to the position furthest from the Tuner Return Switch if this has not already been done.
9. Trip the Tuner Return Switch so that its operating arm is towards the cam.
10. Turn the High Frequency Switch Operating Cam in a clockwise direction until it trips the Tuner Return Switch.

Cathode Delay Adjustment

This adjustment controls the tuning accuracy of the radio and is carefully adjusted at the factory. It should not be made unless the part is replaced. It is adjusted as follows:

1. With the antenna disconnected turn the radio on. If the bulletin for the radio involved specifies the adjustment to be made with the radio "seeking" depress the station selector bar.
2. Adjust the input voltage to the radio to ex-
actly 6 volts at the "A" connector or the spark plate.
3. Connect a meter from the cathode of the D.C. amplifier section of the trigger tube (pin 8 of the 12AU7 tube) to chassis and adjust the cathode delay rheostat, illustration 110, so the meter reads the voltage specified under "Adjustment Procedure" in the service bulletin for the model radio involved.

REPLACEMENTS

All illustration numbers in this section can be used in conjunction with the bulletin for the radio involved and do not refer to the Theory of Operation portion of this bulletin.
This tuner has been designed to provide a maximum of servicing efficiency. All service parts have been made very accessible and easy to replace. The wiring to the tuner has been made long enough so
that the tuner can be dismounted from the radio case and worked on without disconnecting any leads. (NOTE: It may be necessary to remove some connections of bond straps.) For most replacements such as the relay, the tuner return switch, etc., no special instructions other than being sure the proper adjustments are made are necessary. However, to facilitate fast replacement of some parts, the following instructions are included:

Solenoid or Solenoid Plunger Replacement (Fig. 10)

1. Remove the radio rear cover and adjustment cover. (Note: It will be necessary to remove the front cover on some radios.)
2. Remove the three solenoid mounting screws found on the top of the tuner.
3. Disconnect the two leads to the solenoid.
4. Remove the solenoid and bracket from the rear of the tuner. (It will be necessary to disconnect one lead of a 0.5 mfd condenser on some radios to give sufficient clearance.)
5. Remove the solenoid plunger from its linkage by removing the spring clip holding this linkage to it.
6. Place the plunger in the solenoid and make the Solenoid Pole Piece Adjustment.
7. Install the solenoid plunger and solenoid in the tuner.
8. Fasten the solenoid plunger to its linkage with the spring clip.
9. Solder the leads to the terminals from which they were removed. (If the 0.5 mfd condenser lead was removed, solder it in place).
10. Mount the solenoid to the tuner with the three screws and make the solenoid adjustment.
11. Remove the escutcheon from the front of the radio.
12. Remove the Station Selector Bar and switch assembly which is held in place with two screws through the mounting plate.
13. Remove the switch and disconnect the leads.
14. Connect the leads to the new switch and assemble to mounting plate.
15. Adjust the position of the Switch Operating Ring so that it overtravels the apening and closing of the switch contacts in both directions about .030 or $1 / 32$ inch. This adjustment is made by inserting a screwdriver in the slot on the

Fig. 13
ring and sliding on the selector bar shaft.
6. Return the selector bar and switch assembly to the radio and fasten with the two screws.

Station Selector Bar Replacement (Fig. 13)

1. Remove the station selector bar and switch assembly from the radio as described in steps 1 and 2 of Station Selector Switch Replacement.
2. Remove the small " C " washer from the end of the station selector bar shaft.
3. Remove the two springs that hold the station selector bar and toggle plate to the mounting plate.
4. Assemble the new station selector bar and
toggle plate with the two springs to the mounting plate as shown.
5. Place the " C " washer on the shaft and secure.
6. Adjust the position of the switch operating ring as described in step 5 of Station Selector Switch Replacement.
7. Return assembly to the radio and mount with the two screws.

Motor Gear Train Replacement (Fig. 14)

1. Remove the front and rear cover of the radio.
2. Dismount the tuner from the case and move it out of case far enough so that it can be worked on.
3. Divide the tuner into two parts by:
(a) Removing the spring clip holding the gear train planetary arm to the core guide bar linkage.
(b) Removing the four tuner assembly screws. (Some tuners have two additional screws.)
(c) Separating the two halves of the tuner.
4. On radios having a manual tuning control, remove the worm gear and bracket from the gear train.
5. Disconnect the motor gear train from the solenoid plunger linkage by removing the spring clip holding them together.
6. Remove the three nuts mounting the motor gear train.
7. Mount the new motor gear train to the tuner with the three nuts.

Fig. 14
8. Connect the gear train to the solenoid linkage with the spring clip.
9. On radios having a manual tuning control, remove the screw holding the manual gear of the gear train in position and mount the worm gear and bracket to the gear train. Be careful to get good gear mesh and do not lose the anti-squeak spring on the worm gear bracket.
10. Reassemble the tuner and make the Switch Operating Cam Adjustment.

THE TROUBLE SHOOTER'S GUIDE

All illustration numbers in this section can be used in conjunction with the bulletin for the radio involved and do not refer to the Theory of Operation portion of this bulletin.

To facilitate rapid diagnosis of troubles which may develop in the Signal Seeking Tuner, those most likely to occur have been classified and listed in a trouble shooting chart. Three fundamental tests which are easily made on the radio are the basis for this chart. The normal indication for each test is shown just to the right of the test block in solid lines and if the indication is normal the next basic test should be made. However, if the normal
indication does not apply to the radio under test, the various abnormal indications that could result from the check are shown in irregular line blocks below the normal condition. When the block which applies to the radio being checked is reached, a chart which will contain a simplified partial schematic will be referred to. The checks necessary to isolate the defective components will also be included in this chart and components common to all sets are assigned illustration numbers which are the same as those in the individual bulletins for each specific set. Thus, through the use of these charts, the vast majority of the troubles can be isolated in a very short period of time.
Initial Trouble-Shooting Tests
NOTE: Read the chart from LEFT to RIGHT until the specified condition does not apply to the radio being tested, then read See the chart indicated for further analysis.

Radio stops on stations nor- mally received	CHECK RADIO INSTALLATION IN AUTOMOBILE

down until the condition listed is identical to that of the radio under test. TEST II

$$
\left\{\begin{array}{l}
\text { Pointer is stuck at end of dial. } \\
\text { See Chart } 1
\end{array}\right\}
$$

racano-acon?

$$
\left\{\begin{array}{l}
\text { Pointer stuck at a midway point, re- } \\
\text { move adjustment plate - Observe } \\
\text { Relay as bar is depressed }
\end{array}\right\}
$$

CHART 1

CONDITION 1: TUNER WILL NOT START. POINTER STATIONARY AT END OF DIAL
 CHART 2 AND CHECK FOR A MECHANICAL DEFECT.

CHART 2

Relay Energizes But Tuner Will Not Start

I. DEPRESS STATION SELECTOR BAR AND NOTICE WHETHER RELAY ARM DISENGAGES PADDLE WHEEL. IF IT DOESN'T-SEE RELAY POSITIONING ADJUSTMENT.
II. VISUALLY CHECK FOR CAUSE OF BIND. INSPECT TUNER FOR IMPROPERLY ROUTED WIRES FOULING MECHANISM.
III. REMOVE TUNER FROM THE RADIO. SEPARATE THE TWO HALVES OF THE TUNER.
A.

CHECK THE TOP HALF OF TUNER FOR BIND BY MOVING THE CORE BAR WITH YOUR FINGER.

Top half doesn't bind, check bottom half.

Top half binds, remove clip from connecting link between core bar and pointer, and check each sep. arately for bind.
B.

CHECK BOTTOM HALF OF TUNER FOR BIND BY REMOVING CLIP FROM MOTOR SIDE OF SOLENOID LINKAGE.

CHECK

For bind in solenoid by moving solenoid linkage by hand.

Bind occurs in solenoid linkage, remove clip from solenoid end of solenoid linkage to determine if bind is in solenoid plunger or linkage. If the solenoid linkage and solenoid are O. K., connect the gear train and soleniod together again.

CHECK
Gear train for bind by pressing the plunger into the solenoid then carefully moving the relay arm out of the paddle wheel. The paddle wheel should start running.

The paddle wheel doesn't begin running, the gear train is defective and should be replaced.

CHART 3

The Starting Circuit

CONDITION 1: THE TUNER WILL NOT START. RELAY DOES NOT ENERGIZE WHEN THE STATION SELECTOR BAR IS DERRESSED.

MEASURE THE VOLTAGE BETWEEN THE CHASSIS AND THE SWITCH SIDE OF THE 13M OHM RESIS TOR (ILLUS. 90) - (WITH RADIO ON AND AN INPUT OF 6 VOLTS, THIS VOLTAGE MUST BE AT LEAST 180 VOLTS FOR PROPER OPERATION OF THE RELAY.)

VOLTAGE IS ZERO, check for

1. Open relay winding.
2. Open 13 M ohm resistor.
3. Inoperative power supply or short in B voltage line.

VOLTAGE IS LOW check, for

1. Defect in power supply.
2. Low input voltage.

VOLTAGE APPROXIMATES THE B VOLTAGE, depress the station selector bar and again note the voltage.

THE VOLTAGE DROPS, (nor- mal drop approximately 65 volts) Check
1. Relay winding for short or par- tial short. (Normal relay resistance from $3200-3600$ ohms.) 2. Resistor string from station se-\quadTHERE IS NO CHANGE IN VOLTAGE Check
1. Station selector switch contacts, Illus. 117, for open. 2. Resistor string from station se- lector bar switch to ground for possible open.

Resistor string from station selector bar switch to ground, for possible excessive resistance.
3. Relay Current. If relay doesn't energize with 9.5MA current relay is defective.

CONDITION 2: THE POINTER COMMENCES SWEEPING ACTION IMMEDIATELY WHEN THE RADIO IS TURNED ON, WITHOUT PREVIOUS DEPRESSION OF THE STATION SELECTOR BAR.

Check for

1. Defective station selector bar switch, (Sticking closed) or a short at the switch terminals
2. Short to chassis from either end of the 13 M ohm resistor (Illus. 90).
3. Short to chassis at Plate (P 1) terminal of the 12 AU 7 tube. (Pin 1)
4. Relay armature stuck in the energized position. (Should return to de-energized position when set is turned off.)

CONDITION 3: POINTER COMMENCES SWEEPING ACTION AFTER WARM UP PERIOD, WITHOUT PREVIOUS DEPRESSION OF THE STATION SELECTOR BAR.

Check for

1. Short from cathode (KI) of 12AU7 (Pin 3) to ground.
2. Contact \#1 of the relay switch shorted to ground at all times.

Holding Circuit
CONDITION: DIAL POINTER STOPS INSTANTLY WHEN STATION SELECTOR BAR IS RELEASED.
I. CHECK TRIGGER TUBE (12AU7). IF OK GO TO NEXT CHECK.
II. MEASURE GRID $\left(\mathrm{G}_{1}\right)$ (Pin 2) TO CATHODE $\left(\mathrm{K}_{1}\right)$ (Pin 3) VOLTAGE AT 12AU7 TUBE WITH RADIO TURNED ON. (THIS VOLTAGE MUST BE MEASURED WITH A VACUUM TUBE VOLTMETER.)
VOLTAGE READING IS LESS THAN 25 VOLTS - GO TO CHECK III.

VOLTAGE READING IS ABOVE 25 VOLTS check:

1. Grid $\left(G_{1}\right)$ to chassis resistance. If 110,000 ohms or less, check:
a. . 000100 mfd . condenser (Illus. 44) for short or leakage.
b. P_{2} (Pin 6) and G_{1} terminals of $12 A U 7$ for possible shorts to chassis.
2. D.C. amplifier cathode, $\left(K_{2}\right)$ of 12AU7 (Pin 8), to ground resistance for possible short.
a. Check at station selector switch terminals, Illus. 117, for possible short.
b. Check at D.C. amplifier cathode terminal (K_{2}) for short to chassis or grid (G_{2}) terminal. (Pin 7)
3. 25 mfd electrolytic, Illus. 31, for short.

REPEAT MEASUREMENT MADE IN TEST II, THIS TIME WITH STATION SELECTOR BAR DEPRESSED.

VOLTAGE IS LESS THAN 8 VOLTS,

check for:
Open between P_{1} and relay.
Open 6800 ohm resistor. (Illus. 93)
Poor relay contact \#1.
Partially shorted relay. (Resistance should be 3200-3600 ohms)

VOLTAGE IS MORE THAN 8 VOLTS, check for:

1. Defective detector tube. (Check by substitution. 6R8 - Buick and Oldsmobile, 6AQ7-Cadillac)
2. Leaky .000100 mfd . coupling condenser from I.F. amplifier plate to bucking diode plate. (This part in 2nd I.F. assembly. Check by measuring voltage at orange lead of 2nd I.F. with set turned on. A VTVM reading of more than 3 volts positive with respect to ground indicates a leaky condenser.) Replace 2nd I.F.
3. Oscillation in radio. (Check by grounding G_{2} and depressing bar. If tuner action is now OK trouble is due to oscillation.) (For oscillation-check AVC filter and screen by-pass condensers.)

CHART 5

Miscellaneous Defects in the Sweep Action of the Tuner

CONDITION I. TUNER DOES NOT SWEEP THROUGH THE COMPLETE FREQUENCY RANGE.

Tuner retraces before high band edge is reached, adjust high frequency eccentric cam which closes tuner return switch so that retrace occurs at approximately 1620 KC . See adjustments.

Tuner starts sweeping before low band edge is reached, adjust low frequency eccentric cam which opens tuner return switch so that sweeping starts at a point below 550 KC . See adjustments.

CONDITION
 II.

 TUNER SWEEP ACTION IS SLOW, JERKY OR ERRATIC.

CONDITION III.
TUNER SWEEPS NORMALLY UNTIL A CERTAIN POINT ON ITS DIAL IS
REACHED, WHEN IT STOPS. DEPRESS STATION SELECTOR BAR. REACHED, WHEN IT STOPS. DEPRESS STATION SELECTOR BAR.

Tuner will not start when selector bar is again depressed, check for mechanical bind. See Chart 2

Tuner can be started again by depression of selector bar, tuner is stopping on an oscillation or feedback in the radio circuit which occurs only at certain points on the dial. Check radio. F
ping on an oscillation or
ircuit which occurs only
dial. Check radio.

CONDITION IV

CHART 6

Procedure for Checking Radio Operation Independent of Tuner

CONDITION I. RADIO HAS MANUAL TUNING KNOB.

Tune radio manually and note number of stations received with listenable volume. Adjust sensitivity control to maximum and note number of stations selected automatically.

> Normal number of stations is received manually, but these stations are not received automatically, check tuner. See Chart 9.

Normal number of stations cannot be re. ceived, TROUBLE-SHOOT RADIO PROPER.

CONDITION II. RADIO DOES NOT HAVE MANUAL TUNING.

Connect signal generator to antenna connector through a series condenser of the value specified in the service bulletin. Adjust generator output to a high level and tune the generator around the frequency indicated by the radio dial pointer until the signal is tuned in.

RADIO PICKS UP SIGNAL, set the sensitivity control to maximum, peak antenna trimmer and depress the station selector bar.

SIGNAL IS NOT PICKED UP BY RADIO, analyze the cause of radio failure.

TUNER STOPS ON THE SIGNAL,

 tune generator to frequency of weak station normally heard in the locality. Depress the station selector bar. When the tuner stops on the generator signal, plug in the antenna and again peak the antenna trimmer.
IF STATION CAN EE HEARD

Check the tuner - See Chart 10.

IF STATION CANNOT BE HEARD

Check the radio for defect causing it to be weak.

TUNER DOES NOT STOP ON SIGNAL, see Chart 9.

CHART 7

Tuner Stops on Signals But No Sound From Speaker
I. SHORT OUTPUT TRANSFORMER SECONDARY LEAD. GOING TO SELECTOR SWITCH, TO CHASSIS. (POINT A).

find open between transformer sec. ondary and ground end of muting section of station selector switch contact 2.
II.

SHORT PIN \#1 OF 6AQ7 TUBE TO CHASSIS. (POINT B)

IF

SOUND COMES FROM SPEAKER, check for open between pin \#1 at 6AQ7 and connect \#1 of relay switch.

RADIO IS STILL DEAD - go to check III.
III.

CHART 8

Tuner Stops on Signals But No Sound From Speaker
I.
 tion of station selector switch. Check for shorted foot switch - (Buick)
II. SHORT RF, IF, AND OUTPUT CATHODE CIRCUITS TO CHASSIS AT POINT B.

SOUND COMES FROM SPEAKER, check for open between cathode string and ground through relay contact \#4.

RADIO IS STILL DEAD, make usual radio checks to find defective part.

CHART 9

Tuner Will Not Stop on Stations, Radio Otherwise Normal
I.

WITH RADIO OFF, CHECK ENGAGEMENT OF RELAY ARM TO PADDLE WHEEL

II. WITH TUNER SWEEPING, MOMENTARILY SHORT 12AU7 CATHODE (K \mathbf{K}_{2}) (Pin 8) TO GROUND I

TUNER STOPS, check:

1. Voltage between D.C. amplifier cathode (K_{2}) and B-. NO VOLTAGE:
Open between K_{2} and ground.
WRONG VOLTAGE: (For correct voltage see bulletin for model radio involved)
Set delay adjustment rheostat according to bulletin instructions.
2. . 002 condenser (Illus. 28) for short, or short from G_{2} to B - when relay is energized.
3. Open between G_{2} and detector cathode.
4. Open in sensitivity control. (Check continuity from cathode string to B - with relay energized.)
5. Check 2nd I.F. . Procedure listed below.
(1) Feed a modulated signal from the signal generator into the antenna connector of the receiver through the appropriate series condenser.
(2) Tune signal generator until signal is heard in receiver. Adjust generator input for an output signal of approximately 1000 micro-volts. On many signal generators this is obtained roughly with the fine attenuator at 1 and the rough attenuator at 1000 . If you have no way of knowing how the output of your signal generator is calibrated, set your signal generator coarse attenuator at about the half way mark and vary it about $1 / 4$ range each direction, when going through step (6).
(3) Remove 12AU7 tube from its socket.
(4) Disconnect the green wire connected between the grid of the $12 \mathrm{AU} 7\left(\mathrm{G}_{2}\right)$ or its equivalent and the relay at the tube socket terminal.
(5) Connect VTVM between G_{2} and chassis and re-tune the generator frequency for maximum voltage. a. No voltage indication. Defective 2 nd I.F.
b. Voltage which is approximately 90% of the voltage from K_{2} to chassis - proceed with step (6).
(6) Change generator signal to an unmodulated signal and vary the signal by a factor of 10 times louder and weaker. On many signal generators this can be accomplished by merely turning the rough attenuator one step on each side of the starting point.
a. If voltage remains almost constant, increasing slightly with increases in output - the 2nd I.F. is O.K.
b. If voltage goes through a large variation corresponding to voltage reading taken across.detector loadthe bucking detector circuit is defective. Check tube containing bucking diode by substitution. If this does not cure trouble, the 2nd I.F. is probably defective.

Tuner

GENERAL
MOUNTING—All 1950 Packard Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER - 7' Round, Permanent Magnet.
TUNING-Manual and 5 P.B. Mechanical.
ANTENNA TRIMMER COMPENSA-TION-0.000060 - 0.000085 Mfd .

Tuning Range-540-1600 KC.

PUSHBUTTON SET-UP

Pull pushbutton down and out. Tune in desired station manually. Push button all the way in.
ALIGNMENT PROCEDURE:
Output Meter Connection \qquad Across Voice Coil

Signal Generator Return To Chassis
Dummy Antenna
In Series With Generator

Tone Control
Treble
Generator Output
Minimum for Readable Indication

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 Mfd.	6SA7 Grid (Pin \#8)	260 KC	High Freq. Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	High Freq. Stop	*E, F, G
3	0.000068 Mfd .	Antenna Connector	1000 KC	Signal Gen. Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Freq. Stop	, G
5	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Gen. Signal	L**

[^3]

PARTS LAYOUT - CHASSIS VIEW

PAGE 21-22 UNITED MOTORS

MODEL 416270,
Packard

TUNER
TUBE SOCKET VOLTAGE CHART

ESCUTCHEON CROSS SECTION

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown above. The blank spaces are provided so that the serviceman may fill in actual voltage readings as taken with his own equipment. A normal operating radio should be used for these measurements.

Voltmeter resistance_._-_-_Ohms Per Volt.
Readings taken with_-.-.-Volts at Spark Plate.
All voltages measured from socket terminals to chassis.

PAGE 21-24 UNITED MOTORS
MODEL 416270,
Packard

Illus. No.	Production Part No.	Service Part No. ELECTRICAL PARTS Coils	Description
1	7258502	7258502	Antenna Series Choke
2	7258914	7258914	Antenna
3	7240251	7240251	Antenna Spark Choke
4	7258914	7258914	R. F.
5	7259687	7259687	Oscillator
6	7258849	1219508	1st I. F. Assembly
7	7258850	1219509	2nd I. F. Assembly
8	7259620 7259619	7259620	"A" Spark Choke
9	7259619	1217846	Hash Choke
	Condensers		
11	7259597	7259597	Antenna Trimmer
12	7236842	E503	. 05 Mfd. 200 V . Tubular
13	7258222	G330	. 000033 Mfd. Molded
14.14 A	7242454	7242454	Dual Trimmer R. F. Section
14B			Oscillator
15	7258223	G390	. 000039 Mfd. Ceramic
16	7257424	7257424	. 000180 Mfd. Compensating
17	7258125	E503	. 05 Mfd . 400 V Tubular
18 19	1219551	G470	. 000047 Mfd. Molded
19	1218883	E102	. 001 Mfd. 600 V Tubular
20	7237836	E202	. 002 Mfd .600 V Tubular
21	7237836	E202	. 002 Mfd . 600 V Tubular
22	1211202	E254	.25 Mfd .200 V . Tubular
23	7238789 7240724	E104	. 1 Mfd .200 V Tubular
24 A	7240724	M908	Electrolytic
			$20 \mathrm{Mfd}$.
24C			$20 \mathrm{Mfd}$.
25	1209309	E103	.01 Mfd. 400 V Tubular
26	7230767	E502	.005 Mfd .600 V Tubular
27	7238882	E203	.02 Mfd .400 V Tubular
28	7230767	E502	.005 Mfd .600 V Tubular
29	1219594	H802	. 008 Mfd . 800 V Tubular
30	7259600		Spark Plate-"A" Connector Choke Assy.
32	1217848	1217848	Chassis Plate Assy.
	7240906	H602	. 006 Mfd . 1600 V Tubular
Resistors			
41	1211147	A225	2.2 Megohms 1/2 W Insulated
42	7237595	B153	15,000 Ohms 1 W Insulated
43	1213220	A151	$150 \mathrm{Ohms} 1 / 2 \mathrm{~W}$ Insulated
44	1211192	A334	$330,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}$ Insulated
45		A223	22,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
46	7233653	C153	15,000 Ohms 2 W Insulated
48	1213482	A391	390 Ohms $1 / 2 \mathrm{~W}$ Insulated
49 50	7238873	A105	1 Megohm $1 / 2 \mathrm{~W}$ Insulated
51	7240731	A105	1 Megohm $1 / 2 \mathrm{~W}$ Insulated
		A473	$47,000 \mathrm{Ohms}{ }^{1 / 2} \mathrm{~W}$ Insulated
52	1213482	A391	390 Ohms $1 / 2 \mathrm{~W}$ Insulated
53	7241937	A685	6.8 Megohms $1 / 2 \mathrm{~W}$ Insulated
54	1214555 1213270	A224	220,000 Ohms ${ }^{1 / 2} \mathrm{~W}$ W Insulated
55 56	1213270	A104	100,000 Ohms 1/2 W Insulated
56	1214555	A224	220,000 Ohms 1/2 W Insulated
57	7241616	7241616	1800 Ohms $1 / 2 \mathrm{~W}$ Insulated
58	7241937	A685	6.8 Megohms ${ }^{1 / 2} \mathrm{~W}$ W Insulated
59	1213237	A152	$1500 \mathrm{Ohms} 1 / 2 \mathrm{~W}$ Insulated
60 61	1213481	C331	330 Ohms 1 W Wire Wound
61	1213481	A332	3300 Ohms 1/2 W Insulated
62	1214555	A224	220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
63	1214556	A274	270,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
65	7237994	A104	$100,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}$ Insulated
66	1214573	B221	2200 Ohms 1 W Insulated
		$\stackrel{+}{\mathrm{C} 562}$	with 2700 Ohms 2 W and (or Replace
			W in Parallel)

SERVICE PARTS LIST

$\begin{aligned} & \text { Illus. } \\ & \text { No. } \end{aligned}$	Production Part No.	Service Part No.	Description
Tubes			
	7237751	5229	6SK 7
	7237753	5222	6SA7
	1213793	5231	6SQ7
	1211924	5241	6V6GT
	1211924	5003	OZ4
Miscellaneous Electrical			
7171 A	7259601	7259601	Control - Volume, Tone, \& Switch Volume Control Tone Control Switch
71 B			
71 C			
72	7255888	55	
73	7259615	7259608	Speaker P. M.
74	7259614	7259615	Transformer - Output
76	7239124	6060 8542	Transformer - Power
		MECHANICAL PARTS (Chassis)	
80	7239475	7239475	Socket - Antenna
	1219662	1219662	
	7236279	7236279	Socket - Octal Tube
81	7239125	1216747	Socket - Rear Seat Speaker Socket - Vibrator
		7239125	
		(Tuner)	
	147481 7258072	147481	Ball Bearings (10)
82	7258072	7258072	Clutch Disc-Driven
83	7258210	7258203	Connecting Link-Core Bar
85	7256271	7258210	Core Guide Bar
		7256271	Connecting Link - Pointer
86	72585992	7255992	Spring - Pointer Connecting Link
87	7258468	7258468	Core - Iron Tuning
88	7259570	7259606	Drive Shaft - Manual
89	7259569	7259570	Escutcheon Assy.
90 91	7259567	7259569	Dial Glass
92	7259565	7259567	Dial Backplate
	7259633	7259565	Dial Retainer (2)
	7259539	7259633	Filter - Dial Light
94	7259556	7259539	Gear and Bushing - Clutch
95	7259568	7259568	Gear and Bracket - Worm
	7259656		Guard - Control Knob
	7259550	7259656	Knob - Control
96	7259584	72595507259584	Knob - Tone \& Dummy
	1219663		Pointer Assembly
97	7259676	1219663	Pointer Tip Plate
98	1219664	7259676	Pointer Backplate
99	1219665	1219664	Push Button and Slide No. 1
100	1219666	1219666	Push Button and Slide No. 3
101	1219667	1219667	Push Button and Slide No. 4
102	7258756		
103	7257415	1219668	Push Button and Slide No. 5
105	7259540	7259540	Spring - Clutch Spring - Core Bar Connecting Link
			Spring - Slide Return
		INSTALLATION PARTS	
	7259642	7259642	"A" Lead and Fuse Connector
	7259643	7259644	Capacitor - Generator
	7259646	7259643	Capacitor - Ignition Coil
	147685	7259646147685	Distributor Suppressor
			Fuse 14 Amps

SUBJECT: SERVICE INSTRUCTIONS - PACKARD MODEL 416387

GENERAL
MOUNTING-All 24 Series Packard Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.

TUNING-Manual and 5 P.B. Mechanical. ANTENNA TRIMMER COMPENSA-TION-0.000050-0.000090 Mfd.

TUNING RANGE—540-1600 KC.

PUSHBUTTON SET-UP

Pull pushbutton to the left and out. Tune in desired station manually. Push button all the way in.

MODEL 416387

ALIGNMENT PROCEDURE:

Output Meter Connection
Signal Generator Return
Dummy Antenna
Volume Control
Tone Control
Generator Output

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	$0.1 . \mathrm{Mfd}$.	6SA7 Grid (Pin \#8)	260 KC	High Freq, Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	High Freq. Stop	*E, F, G
3	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Gen. Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Gen. Signal	L**

[^4]

PAGE 21-28 UNITED MOTORS

Illus.	Production
No.	Part No.

Part No.

Service
Part No.

Description
ELECTRICAL PARTS
7258914
7255738
7240251
7258914
7259687

1219508
1219509
7259187
1217845

Coils
1
2
3
4
5
6
7
8

11
12
13
14

14A

14B
15
16
17
18
19
21
22
$22 A$
$22 B$
$22 C$

23
24
25
26
27
28
29
30
31

4

$4!$	1211147
42	7237595
43	1213220
44	7240732
45	1211192
45	7233653
47	7238873
48	1213482
49	7238373
50	7240731
51	1213482
52	7241937
53	1214555
54	1213270
55	1213486
56	1219690
57	1213481
58	1214555
59	1213482
60	7241616
61	1213270
62	1214555
63	1214556
64	1219738
65	1214573

SERVICE PARTS LIST

Illus. No.	Production Part No.	Service Part No.	Description
	Tubes		
	7237751	5229	6SK7
	7237752	5222	6SA7
	7237753	5231	6SQ7
	1213793	5241	6V6GT
	1211924	5003	0Z4
Miscellaneous Electrical			
71	7260139	7260139	Control-Volume, Tone and Switch Volume Control Tone Control Switch
$\begin{aligned} & 71 \mathrm{~A} \\ & 71 \mathrm{~B} \end{aligned}$			
71 C			
72	187189	44	Light - Dial Speaker-6×9 p. m. Transformer- Output Transformer - Power Vibrator - Non-Synchronous
73	7260362	7260362	
74	7260167	7260167	
75	7259375	7255881	
76	7239124	8542	
	MECHANICAL PARTS		
	Chassis		
77	7256742	7256742	Socket - Antenna
78	1219747	1219747	Socket-Dial Light
	7236279	7236279	Socket-Octal Tube
	7239125	7239125	Socket - Vibrator
	Tuner		
80	147481	147481	Ball Bearings (10)
	7260163	7260163	Bushing \& Manual Drive Shaft Assy. Manual Drive Shaft
	7260162	7260162	
81	7258072	7258072	
82	7258203	7258203	Connecting Link-Core Bar
83	7260403	7260403	Core Guide Bar Connecting Link. Pointer Spring - Pointer Connecting Link
84	7256271	7256271	
86^{85}	7255992 7258468	7255992	
8687	7258468 7260325	7258468	Core - Iron Tuning Escutcheon Assy.
	7260325	7260325	
$\begin{aligned} & 88 \\ & 89 \end{aligned}$	7260141	7260141	Dial
	7260125	7260125	Dial Backplate
	7259494	7259494	Retainer Spring - Left Hand
	7256495	7259495 7256495	
90		7256495	Gear \& Bushing-Clutch
92	7260212	7260212	Gear \& Bracket - Worm
93	7260199	7260199	Pointer Assembly
94	7260265	7260265	Pointer Backplate
95	1219200	1219200	Push Button and Slide Assy. Spring-Clutch
96	7258756	7258756	
97	7257415	7257415	Spring - Core Bar Connecting Link Spring-S!ide Return
	7255984	7255984	
		INSTALLATION PARTS	
	7260148	$\begin{array}{r} 7260148 \\ 7259644 \\ 7259643 \\ 6007 \\ 147685 \end{array}$	"A" Lead and Fuse Holder Assy. Condenser - Generator Condenser. Ignition Coil Distributor Suppressor Fuse - 14 Amps
	7259644		
	7259643		
	7259646		
	147685		
	7260187	7260187	Knob - Control Lever - Tone Control Tri:nplate - Control Knob
	7260147	7260147	
	7260149	7260149	

GENERAL

MOUNTING—All 24 Series Packard Cars.
TUBES--Seven, Plus Rectifier and Trigger.
SPEAKER - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Electronic and Manual.
ANTENNA TRIMMER COMPENSA-
TION - $0.000058 \cdot 0.000090 \mathrm{Mfd}$.
TUNING RANGE—540-1600 KC.

PUSHBUTTON SET-UP

No pushbutton set-up is necessary. However, the number of stations on which the tuner will stop can be controlled by the use of the Sensitivity Control.

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE:

NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given-(Notice that the primary of the 2nd I.F. is aligned first.)
Output Meter Connection VTVM From [|्द \mid To Chassis (see parts layout page 2)

Generator Return
Receiver Chassis
Dummy Antenna In Series With Generator

Volume Control \qquad Maximum Volume

Sensitivity Control Maximum Sensitivity

Tone Control Treble

Generator Output
Not To Exceed 2 Volts at VTVM

Step	Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 Mfd.	6SA7 Grid (Pin 8)	260 KC	High Freq. Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Stop	*E, F, G
3	0.000068 Mfd.	Antenna Connector	600 KC	Signal Gen. Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	Signal Gen. Signal	F, G
5	$0.000068 \mathrm{Mfd}$.	Antenna Connector	1000 KC	Signal Gen. Signal	**L

*Before making this adjustment, check the setting of oscillator core "H." The rear of the core should be $1 \frac{35}{} \boldsymbol{y}^{\prime \prime}$ from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screwdriver. (It will be necessary to steady the core guide bar by applying a downward pressure at the antenna core end of the bar while making these adjustments.) If this adjustment is necessary, first dissolve the glyptal seal on the core stud and be sure to re-seal after making the adjustment.
**"L" is the pointer adjustment screw on the end of the core guide bar-adjust so pointer reads 1000 KC .
With the radio installed and the antenna plugged in, adjust antenna trimmer "G" (See sticker on case) for maximum volume with the radio tuned to a weak station from 600 to 1000 KC .

© John F. Rider

UNITED MOTORS PAGE 21-33

MODEL 416394,
Packard

PAGE 21-34 UNITED MOTORS

MODEL 416394,
Packard

$\begin{aligned} & \text { Illus. } \\ & \text { No. } \end{aligned}$	Production Part No.	Service Part No.	Description
	ELECTRICAL PARTS		
	Coils		
1	7257979	7257979	Antenna
2	7255738	7255738	Antenna Series Choke
3	7240251	7240251	Antenna Spark Choke
4	7257979	7257979	R. F.
5	7259184	7259184	Oscillator
6	7259790	1219508	1st I. F.
7	7259290	1219602	2nd I, F.
8	7259187	7259187	"A" Spark Choke
9	7256931	1217846	Hash Choke
	Condensers		
16	7260158	7260158	Antenna Trimmer
17	1219550	G 680	. 000068 mfd . Molded
18	1210697	E 503	. 05 mfd . 200 V Tubular
19	1210697	E 503	. 05 mfd . 200 V Tubular
20	7242454	7242454	Dual Trimmer
20A			R. F. Section
$21^{20 \mathrm{~B}}$			Oscillator Section
	7258221	G 390	.000039 mfd . Molded
22	7257567	7257567	. 000260 mfd . Compensating
23	7238788	E 104	.1 mfd .400 V Tubular
24	7238789	E 104	. 1 mfd .200 V Tubular
25	1219550	G 680	. 000068 mfd . Molded
27	7237836	E 202	. 002 mfd .600 V Tubular
28	1219553	1219553	. 0022 mfd .600 V Tubular
29	7230767	E 502	. 005 mfd . 600 V Tubular
30	7238882	E 203	.02 mfd .400 V Tubular
31	1219660	1219660	20 mfd . 50 V Electrolytic
32	1218883	E 102	.001 mfd .600 V Tubular
33	7237719	7237719	. 015 mfd . 600 V Tubular
34	7238882	E 203	. 02 mfd . 400 V Tubular
35	7240724	M 908	Electrolytic
35A			20 mfd . 25 Volt
35B			20 mfd .400 Volt
35 C			20 mfd .400 Volt
36	1209817	E 254	. $25 \mathrm{mfd}$.200 V Tubular
37	1219594	H 802	.008 mfd .800 V Tubular
38	7238789	E104	.1 mfd . 200 V Tubular
40	7241259	7241259	Spark Plate
41	1217848	1217848	Chassis Plate
42	7240906	H 602	. 006 mfd . 1600 V Tubular
43	1219511	E 504	.5 mfd .100 V Tubular
44	1219499	G 101	.000100 mfd . Molded
	Resistors		
51	1211147	A 225	2.2 Megohms 1/2W Insulated
52	1211085	B 103	10,000 Ohms 1 W Insulated
53	1213217	A 101	100 Ohms 1/2W Insulated
54	7240732	A 334	330,000 Ohms 1/2W Insulated
55	1213283	A 155	1.5 Megohms 1/2W Insulated
56	1211192	A 223	22,000 Ohms 1/2W Insulated
57	1212491	1212491	12,000 Ohms 2W Insulated
58	1214557	A 334	330,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
59	1215107	A 100	10 Ohms 1/2W Insulated
60	1213217	A 101	100 Ohms 1/2W Insulated
61	1215558	1215558	68 Ohms 1/2W Insulated
62	1213283	A 155	1.5 Megohms $1 / 2 \mathrm{~W}$ Insulated
63	1213270	A 104	100,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
64	7237835	A 221	220 Ohms 1/2W Insulated
66	7241937	A 685	6.8 Megohms $1 / 2 \mathrm{~W}$ Insulated
67	1219504	1219504	1600 Ohms 1/2W Insulated
68	1213509	1213509	56,000 Ohms 1W Insulated
69	7241937	A 685	6.8 Megohms $1 / 2 \mathrm{~W}$ Insulated
70	1214555	A 224	220,000 Ohms 1/2W Insulated
71	1214555	A 224	220,000 Ohims 1/2W Insulated
72	1214555	A 224	220,000 Ohms 1/2W Insulated
73	1214555	A 224	220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
74	1213482	A 391	390 Ohms 1/2W Insulated
75	7234563	7234563	360 Ohms 1W Wire Wound
76	1213486	A 471	470 Ohms $1 / 2 \mathrm{~W}$ Insulated
77	1213270	A 104	100,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
78	1213283	A 155	1.5 Megohm $1 / 2 \mathrm{~W}$ Insulated
79	1213481	A 332	3300 Ohms 1/2W Insulated
82	7237835	A 221	220 Ohms 1/2W Insulated
83	1213224	A 331	330 Ohms 1/2W Insulated
84	1213235	A 102	1,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
85	1214545	A 222	2200 Ohms 1/2W Insulated
86	1214547	A 472	4700 Ohms 1/2W Insulated

MODEL 416394,

Packerd

Illus. No.	Production Part No.
87	7237994
88	1214573
89 90 91 92 93 94	1214564 7231539 1213271 1216157 1216154 1216157
94	$\begin{aligned} & 1217690 \\ & 7237752 \\ & 1218506 \\ & 1219484 \\ & 1213793 \\ & 1211924 \\ & 1219485 \end{aligned}$
110	7260328 7259408
111	7260230
$\begin{aligned} & 111 \mathrm{~A} \\ & 111 \mathrm{~B} \\ & 111 \mathrm{C} \end{aligned}$	
112	7260222
113	7259009
114	7259010
115	7260362
116	7259011
117	7259012
119	7260006
120	7259375
121	7239124
123	$\begin{aligned} & 7256742 \\ & 7236279 \\ & 7259307 \\ & 7258073 \\ & 7239125 \\ & 1219747 \end{aligned}$
130	7259201
131	7259178
132	187189
133	7260373
134	7260262
135	7260125 7259494
	7259495
136	7260357
137	7259197
138	7260309
139	7260501
140	7259100
141	7259055
142	7259207
	$\begin{aligned} & 1219751 \\ & 7256121 \end{aligned}$
143	7260223
	7259122
145	$\begin{aligned} & 7259111 \\ & 7259125 \end{aligned}$
146	7259164
147	7259026
	7260148
	7259644
	7259643
	7259646
	147685
	7260187
	7260147
	7260218
	7260219

SERVICE PARTS LIST

Service
Part No. Description

Resistors (Continued)		
B 221		220 Ohms 1W Insulated
[C 272		1800 Ohr 2W Wire Wound (Use 2700 Ohm.
) B 562		2W and 5600 Ohm 1 W in parallel)
A 335		3.3 Megohm 1/2W Insulated
7231539		13,000 Ohms 1 W Insulated
1213271		120,000 Ohms 1/2W Insulated
B 473		47,000 Ohms 1W Insulated
1216154		6800 Ohms 1 W Insulated
B 473		47,000 Ohms 1W Insulated
Tubes		
5252		6BA6
5222		6SA7
5262		6AV6
5278		6AQ7GT
5241		6V6GT
5003		OZ4
5328		12AU7

MISCELLANEOUS ELECTRICAL

7260328	"A"" Lead and Fuse Holder Assy. (Male)
7259408	Adjustor-Cathode Delay
7260230	Control-Volume - Tone - Switch
	Volume Control
	Tone Control
7260222	Switch
7259009	Control-Sensitivity
1219661	Relay
7260362	Solenoid
7259011	Speaker
7259012	Switch - Tuner Return
7260006	Switch-Station Selector
7255881	Transformer-Output
8542	Transformer-Power
	Vibrator

MECHANICAL PARTS
Chassis
7256742
7236279
7259307
7258073
7239125
1219747

Antenna Connector
Socket-Octal Tube
Socket - 9 Pin Miniature Tube
Socket-7 Pin Miniature Tube
Socket - Vibrator
Socket. Dial Light
Tuner
7259201
7259178
44
7260373
7260262
7260125
7260125
7259494
7259495
7260357
1219610
7260309
7260501
6047
7259055
7259207
1219751
7256121
7260223
7259122
7259111
7259125
7259164
INSTALLATION PARTS

7260148	"A" Lead and Fuse Holder Assy.
7259644	Condenser-Generator
7259643	Condenser-Ignition
6007	Distributor-Suppressor
147685	Fuse-14 Amps.
7260187	Knob-Control
7260147	Lever-Tone and Sensitivity
7260218	Trimplate - Sensitivity
7260219	Trimplate - Tone

GENERAL

MOUNTING—All 1950 Buick Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER- $8^{\prime \prime}$ Round, Permanent Mag. net.
TUNING-Manual and Electronic.
ANTENNA TRIMMER COMPENSA-
TION-For Antennas Between 0.000072 - 0.000088 Mfd.

TUNING RANGE-550-1600 KC.
PUSH BUTTON SET.UP PROCEDURE
No push button set-up is necessary. However, the number of stations on which the tuner will stop can be controlled through use of the Sensitivity Control.

MODEL 980899

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE

NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given- (Notice that the primary of the 2nd I. F. is aligned first.)
Output Meter Connection
Generator Return
Dummy Antenna
Volume Control
Tone Control
Generator Output

Step	Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence For Max. Output
1	0.1 mfd	6SA7 Grid (Pin 8)	260 KC	*High Frequency Stop	A, B, C, D
2	0.000082 mfd	Antenna Connector	1615 KC	High Frequency Stop	**E, F, G
3	0.000082 mfd	Antenna Connector	600 KC	Signal Generator Signal	J, K
4	0.000082 mfd	Antenna Connector	1615 KC	Signal Generator Signal	F, G
5	0.000082 mfd	Antenna Connector	1000 KC	Signal Generator Signal	\%* ${ }^{\text {a }}$ +

*To tune to high frequency, put a $0.070^{\prime \prime}$ feeler gauge (or bare \#13 wire) in slot against the high frequency stop. Depress station selector bar and allow the planetary arm to run against the feeler gauge. Turn the radio off and then back on.
**Before making this adjustment, check the setting of oscillator core "H." The rear of the core should be 1 量" from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screwdriver. (It will be necessary to steady the core guide bar while making these adjustments. This can be done by applying a downward pressure on the guide bar at the antenna coil end.) If this adjustment is necessary, first dissolve the glyptal seal on the core stud and be sure to re-seal after making the adjustment.
"**"L" is the pointer adjustment screw on the end of the core guide bar-adjust so pointer reads 1000 KC .
With the radio installed and the antenna plugged in, adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station near 1400 KC (see sticker on case.)

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown above. The blank spaces are pro-
 urements.

Voltmeter resistance
Readings taken with
All voltages measured from socket terminals to chassis.
TUNER ADJUSTMENT PROCEDURE:
CATHODE DELAY ADJUSTOR (Illustration ${ }^{+110 \text {). (This adjustment }}$ should not be made unless it is necessary to replace the Delay Adjustor or the setting is definitely proven to be faulty).

Disconnect antenna and turn radio on.
Allow set to warm up.
4 Set voltage at K of the $12 \mathrm{AU7}$ trigger tube (Pin \#8) to 8.0 volts by adjusting Illustration 110 while the tuner is seeking and with exactly 6.0 volts at the spark plate.

NOTE: For all other tuner adjustments, see Bulletin 6D-620.

PARTS LAYOUT - TUBE VIEW

*The condenser and resistor are included in the 2nd IF Coil Assy. * Connect VTVM between this point and ground for output indications
during alignment procedure.

MODEL 980399,
Buick

TUNER UNFOLDED

SERVICE PARTS LIST

Illus. Production No. Part No.

Service
Part No.

Description

ELECTRICAL PARTS

7257979
7240251
7257979
7259184
1219508
1219602
1217846
Condensers
7259308
G 680
E 503
E. 503

7242454

G 390
7257567
E 104
E 104
7240577
7240578
E 103
E 202
G 221
G 680
1219660
E 204
1211232
7236134
7259128

E 504
1217848
H 602
E 504
G 101

Resistors

A 225
B 103
A 101
A 334
A 155
A 223
1212491
A 100
A 683
A 101
1215558
1219488
1219487
A 222
A 105
B 273
7234563
1214540
A 470
A 101
1215559
A 221
B 221
A 104
A 151
A 155
$\{\mathrm{C} 272$
$\{\mathrm{B} 562$
A 335
7231539
1213271
B 473
1216154
B 473

Antenna
Antenna Spark Choke R.F.

Oscillator
1st I.F.
2nd I.F.
Hash Choke

Antenna Trimmer
.000068 mfd Mica
.05 mfd 200 V Tubular
.05 mfd 200 V Tubular
Dual Trimmer
RF Section
Oscillator Section
.000039 mfd Ceramic
.000260 mfd Compensating
.1 mfd 400 V Tubular .1 mfd 200 V Tubular .000120 mfd Mica
.0025 mfd 400 V Tubular
.01 mfd 400 V Tubular
.002 mfd 600 V Tubular
.000220 mfd Mica
.000068 mfd Mica
20 mfd 50 V Electrolytic
.2 mfd 400 V Tubular
.025 mfd 400 V Tubular
.0015 mfd 800 V Tubular
Electrolytic
10 mfd 100 V
20 mfd 400 V
20 mfd 400 V
.5 mfd 200 V Tubular
Chassis Plate Condenser
.006 mfd 1600 V Tubular
.5 mfd 100 V Tubular
.000100 mfd Mica
2.2 Megohms $1 / 2$ W Insulated

10,000 Ohms 1 W Insulated
100 Ohms $1 / 2 \mathrm{~W}$ Insulated
330,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
1.5 Megohms $1 / 2$ W Insulated

22,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
12,000 Ohms 2 W Insulated
10 Ohms 1/2 W Insulated
68,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
100 Ohms $1 / 2 \mathrm{~W}$ Insulated
68 Ohms $1 / 2$ W Insulated
1500 Ohms $1 / 2 \mathrm{~W}$ Insulated
470 Ohms $1 / 2 \mathrm{~W}$ Insulated
2200 Ohms $1 / 2$ W Insulated
1 Megohm $1 / 2$ W Insulated
27,000 Ohms 1 W Insulated
360 Ohms 1 W (Wire Wound)
56 Ohms $1 / 2 \mathrm{~W}$ Insulated
47 Ohms $1 / 2 \mathrm{~W}$ Insulated
100 Ohms $1 / 2 \mathrm{~W}$ Insulated
180 Ohms $1 / 2 \mathrm{~W}$ Insulated
220 Ohms 1/2 W Insulated
220 Ohms 1 W Insulated
100,000 Ohms 1/2 W Insulated
150 Ohms $1 / 2$ W Insulated
1.5 Megohms $1 / 2 \mathrm{~W}$ Insulated

1,800 Ohms 2 W Wire Wound (or replace with
2700 Ohms 2 W and 5600 Ohms 1 W in parallel)
3.3 Megohms 1/2 W Insulated

13,000 Ohms 1 W Insulated
120,000 Ohms 1/2 W Insulated
47,000 Ohms 1 W Insulated
6800 Ohms I W Insulated
47,000 Ohms 1 W Insulated

Illus. No.	Production Part No.
	1211924
	1213793
	1219496
	1217690
	7219485
112	7237752
$112 A$	7252034
$112 B$	
$112 C$	7259311
111	7242204
110	7259009
113	7259502
114	7258903
115	7259011
116	7259012
117	7258941
118	7258836
119	
120	

	7242035
124	7259392
	7236279
	7259307
	7258073
	7239125
125	7259201
126	7259178
127	125588
128	7259347
129	7259310
130	7256886
131	7259341
132	1219610
133	7259498
134	1219093
135	7259164
136	7259100
137	7259055
138	7259207
	1219612
139	7259309
140	7259111
	1219124
	1219125
	1219126
	1219127
	1219128
141	7259026

INSTALLATION PARTS

1321178	1321178	"A" Lead Assy.
1336763	6030	Condenser-Generator
1910147	6030	Condenser-Ignition
120151	120151	Fuse-15 Amp.
1341337	1341337	Knob-Sensitivity
1341536	1341536	Knob-Tone Control
1341566	1341566	Knob-Tuning Control
7258903	7258903	Switch - Foot Control
1853686	1853686	Suppressor-Adapter
1217820	1217820	

SUBJECT: SERVICE INSTRUCTIONS—OLDSMOBILE 1950 MODELS 982543 AND 982579 DELUXE AUTO RADIO. (These models differ only in accessory parts, the receiver itself being identical in each case. The accessory parts supplied with Model 982543 are for use with 1950 Oldsmobile cars Models 76 and 88. The accessory parts supplied with Model 982579 are for use with 1950 Oldsmobile cars, Model 98).

GENERAL

MOUNTING . Model 982543 in 1950 Oldsmobile cars Models 76 and 88. Model 982579 in 1950 Oldsmobile cars Model 98.
TUBES \qquad Six, plus rectifier SPEAKER . 6"x9" Elliptical Permanent Magnetic TUNING _ . Manual and 5 P.B. Mechanical ANTENNA TRIMMER COMPENSATION .-............ For antennas between $0.000055-0.000090 \mathrm{Mfd}$.
TUNING RANGE..... 535 - 1610 KC .

PUSH BUTTON SET-UP

Pull push button to the left and then out. Tune in desired station manually. Push button all the way in.

MODELS 982543 and 982579

ALIGNMENT PROCEDURE:

Output Meter Connection	Across Voice Coil
Generator Return	To Receiver Chassis
Dummy Antenna	In Series With Cenerator
Volume Control Position	Maximum Volume
Tone Control Position	Treble
Generator Output	for Readable Indication

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust In Sequence For Max. Output
1	0.1 Mfd.	6SA7 Crid (Pin \#8)	257.5 KC.	High Frequency Stop	A, B, C, D
2	0.00007 Mfd.	Antenna Connector	1610 KC.	High Frequency Stop	E. F, G

Low frequency alignment not required.
With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station near 1400 KC .

PARTS LAYOUT-CHASSIS VIEW

PARTS LAYOUT-TUBE VIEW

tube socket voltage chart

- John F. Rider

MODELS 982543, 982579, Oldsmobile

Illus.
No.
27
28
A
B
C
29
30
31

Service
Part No.
E. 204

Production
Part No.
1217876
1218009

1219301
7238879
1219591

Description

. 2 Mfd. 200 V.-Tubular Electrolytic Condenser
$10 \mathrm{Mfd} .-350 \mathrm{~V}$.
$15 \mathrm{Mfd}-350 \mathrm{~V}$.
$20 \mathrm{Mfd}-25 \mathrm{~V}$.
.003 Mfd.- 800 V.-Tubular .0005 Mfd.-Ceramic or Molded .006 Mfd - 1600 V .-Tubular

RESISTORS

1214563	2.2 Megohm-1/2 W. Insulated
1214550	22,000 Ohm-1/2 W. Insulated
1213282	1 Megohm-1/2 W. Insulated
1214550	22,000 Ohm-1/2 W. Insulated
1214566	4.7 Megohm-1/2 W. Insulated
7239157	18,000 Ohm-2 W. Insulated
1215559	180 Ohm-1/2 W. Insulated
1213282	1 Megohm-1/2 W. Insulated
1213283	1.5 Megohm-1/2 W. Insulated
1213282	1 Megohm-1/2 W. Insulated
1214551	27,000 Ohm-1/2 W. Insulated
1213235	1000 Ohm-1/2 W. Insulated
1213235	1000 Ohm-1/2 W. Insulated
1213282	1 Megohm-1/2 W. Insulated
1214551	$27.000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$. Insulated
7233773	330 Ohm - 1 W . Insulated
1211005	150 Ohm-1 W. Insulated
1714573	1800 Ohm-2 W. Insulated

TUNER PARTS
1219589
Bushing-Station Selector Shaft
$\begin{array}{ll}1219597 & \text { Background Assembly } \\ 1219588 & \text { Dial Class-Calibrated }\end{array}$
$1218030 \quad$ Pointer \& Slide Assembly
1218027 String Assembly-Pointer Drive
$\begin{array}{ll}1219595 & \text { Spring \& Sleeve Assembly-Core Lock } \\ 1219596 & \text { Plate \& Socket Assembly-Dial Lamp }\end{array}$
1219596 Plate \& Socket Assembly-Dial Lamp
$\lfloor 219309$ Tuner Unit Assembly-Mechanical portion
$1216687 \quad$ Disc, and crown gear assembly)
1216686
1214876
1217999
1217994
1218113
1218114
1217992
1216692
1216691
1218115
Clutch Disc \& Crown Gear Assembly
Spring-Clutch Compression
Lever Actuating Plate Assembly
Lever Assembly
Link-Tuner Unit
Spring-Link Retaining
Screw-10-32 Special
Washer-"U" Retaining-Station Selector Shaft
Washer-Friction-Station
Selector Shaft
Washer-Spacing-Paper

TUBES

1214292
7237752
1214292
1218149
1213793
1213793
1211924
6SK7GT-R.F. Amplifier
6SA7-Oscillator-Translator
6SK7GT-I.F. Amplifier
6SR7GT-Detector-AVC-1st Audio
6V6GT-Audio Output
6V6GT-Audio Output
OZ4-Rectifier

MISCELLANEOUS ELECTRICAL PARTS
60
60 A
60 B
60 C
61^{62}
63
64
64 A
64 B
64 C
65^{6}
6

1219582

187189
1219291
1219314
1219316

1219315
1218006

Control-Volume, Tone \& Switch Volume Control Tone Control Switch
Lamp-Dial (Mazda \#44)
peaker-6" $\times 9$ " Elliptical Permanent Magnet
Transformer--Output
Power Transformer \& Filter Assembly Transformer-Power
Hash Choke
Condenser- $5 \mathrm{Mfd}-100 \mathrm{~V}$.
Transformer-Audio Input.
Vibrator

PAGE 21-48 UNITED MOTORS

```
MODELS 982543, 982579, Oldsnobile
```


INSTALLATION PARTS MODEL 982579

414997
7255287
7258813
7257400
7259663
120706
103319
554845
554691
120151
1912757
or
555437
1911095
1912900
or
557531
7257239
414237
415823
555348
164349
7258815
558956

Washer-Flat—33/64.D.
Nut-1/2-28 Hex.
Knob-Tone and Dummy
Washer-Wave-3/16 I.D.
(Anti-Rattle) Tuning and Colume Control
Knob-Tuning and Volume Control Includes Set Screw
Bolt- $1 / 4-20 \times 1 / 2$ Hex. Head
Washer-Lock—1/4 (Split)
Washer-Flat
"A" Lead \& Filter Condenser Assembly
Fuse-15 Amp. 25 V .
Condenser-Ignition Coil-0.3 Mfd.
Condenser-Ignition Coil- 0.3 Mfd .
Condenser-Cenerator- 0.3 Mfd .
Condenser-Voltage Regulator- 0.5 Mfd .
Condenser-Voltage Regulator- 0.5 Mfd .
Distributor Suppressor-15,600 Ohms
Insulating Elbowr
Static Coilector (Front Wheel)
Clip-Hood Grounding
Screw $\# 8-32 \times 1 / 4$ Phillips Head Self-Tapping
Panel-Radio Control
Gasket-Speaker Baffle

GENERAL

$$
\begin{aligned}
\text { MOUNTING— } & 982544 \text { - All } 1950-76 \& 88 \\
& \text { Series Oldsmobile Cars. } \\
& 982573 \text { - All } 1950-98 \mathrm{Se}- \\
& \text { ries Oldsmobile Cars. }
\end{aligned}
$$

TUBES-Six, Plus Rectifier.
SPEAKER-6"x $9^{\prime \prime}$ Elliptical Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSA-TION-For Antennas Between $0.000050-0.000070 \mathrm{Mfd}$.

TUNING RANGE—540-1600 KC.

PUSHBUTTON SET-UP

Pull pushbutton to the left and out. Tune in desired station manually. Push button all the way in.

ALIGNMENT PROCEDURE:

Output Meter Connection	Across Voice Coil
Generator Outpu	dication

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence For Max. Output
1	0.1 Mfd .	6SA7 Grid (Pin \#8)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	*E, F, G
3	0.000068 Mfd.	Antenna Connector	1400 KC	Signal Generator Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1000 KC	Signal Generator Signal	**L

[^5]

©john F. Rider

ESCUTCHEON CROSS SECTION

ESCUTCHEON MOUNTING

SPECIAL INSTRUCTIONS

Unless special precautions are taken in removing the dial escutcheon, there is a possibility that the dial pointer tip will be broken. Therefore, in removal of the escutcheon the ollowing procedure is recommended:

1. Loosen, but do not remove, the two screws holding the pointer back plate (" X " in Escutcheon Mounting Drawing Above) and loosen the shellac so that the back plate is free to move.
2. Remove the escutcheon mounting screws "Y" (see Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE). If the dial backplate is free to move slightly downward the escutcheon will come off easily.
The same caution should be exercised when replacing the escutcheon.

	SERVICE PARTS LIST		
Illus.	Production Part No.	Service Part No.	Description

	Coils		
1	7255738	7255738	Antenna Series Choke
2	7240251	7240251	Antenna Spark Choke
3	7258914	7258914	Antenna
4	7258914	7258914	R.F.
5	7259687	7259687	Oscillator
6	1219508	1219508	1st I.F.
7	1219509	1219509	2nd I.F.
8	1217846	1217846	Hash Choke
9	7258434	7258434	Spark Choke
Condensers			
11	7258160	7258160	Antenna Trimmer
12	1210275	G 101	. 000100 mfd . Mica
13	7236842	E 503	. 05 mfd .200 V Tubular
14	7258221	G 390	. 000039 mfd . Mica
15	7242454	7242454	Dual Trimmer
15 A			R.F. Section
15 B			Oscillator Section
16	7258221	G 390	. 000039 mfd . Mica
17	7257424	7257424	. 000180 mfd . Compensating
18	7230892	E 503	. 05 mfd . 400 V Tubular
19	1217848	1217848	Chassis Plate Cond.
20	1215189	G 100	. 000010 mfd . Mica
21	7237870	E 103	. 01 mfd .400 V Tubular
22	1219495	E 104	. 1 mfd .400 V Tubuar
23	7232956	E 502	. 005 mfd .600 V Tubular
24	7238881	E 103	. 01 mfd .400 V Tubular
25	7237836	E 202	. 002 mfd .600 V Tubular
26	7240724	M 908	Electrolytic
26 A			20 mfd .25 V
26 B			20 mfd .400 V
26 C			20 mfd .400 V
27	7236134	7236134	. 0015 mfd .800 V Tubular
28	1212278	1212278	Spark Plate Condenser (included in 7258434)
29	1217848	1217848	Chassis Plate Condenser
30	7240906	H602	. 006 mfd .1600 V Tubular
Resistors			
35	1213217	A 101	100 ohms $1 / 2 \mathrm{~W}$ Insulated
36	1211147	A 225	2.2 megohms $1 / 2 . W$ Insulated
37	7237595	B 153	15,000 ohms 1 W Insulated
38	7240732	A 334	330,000 ohms $1 / 2 \mathrm{~W}$ Insulated
*39	1215548	A 106	10 megohms $1 / 2 \mathrm{~W}$ Insulated
40	1211192	A 223	22,000 ohms 1/2 W Insulated
41	7233653	C 153	15,000 ohms 2 W Insulated
42	1213217	A 101	100 ohms 1/2 W Insulated
43	7238873	A 105	1 megohm $1 / 2 \mathrm{~W}$ Insulated
44	7240731	A 473	47,000 ohms $1 / 2 \mathrm{~W}$ Insulated
45	7238873	A 105	1 megohm $1 / 2 \mathrm{~W}$ Insulated
46	1213235	A 102	1,000 ohms 1/2 W Insulated
47	1213235	A 102	1,000 ohms 1/2 W Insulated
48	1214561	1214561	820,000 ohms $1 / 2 \mathrm{~W}$ Insulated
49	7238873	A 105	1 megohm $1 / 2 \mathrm{~W}$ Insulated
50	1217436	A 393	39,000 ohms 1/2 W Insuiated
51	7236080	B 273	27,000 ohms 1 W Insulated
52	7233773	B 331	330 ohms 1 W Insulated
53	7237994	B 221	220 ohms 1 W Insulated
54	1214573	$\left\{\begin{array}{l} \text { C } 272 \\ \text { B } 562 \end{array}\right.$	1800 ohms 2 W Wire Wound (or replace with 2700 ohm 2 W and $5600 \mathrm{ohm} 1{ }^{\mathrm{W}}$ in parallel)

*This Resistor was removed on all sets above serial \#44678

Illus. No.	Production Part No.
	1218107
	1213793
	7237751
	7237752
	1211924
60	7259447
60 A	
60 B	
60 C	787189
62	7258146
63	7259419
64	7255881
65	

70	7258434
71	7256742
	7236279
	7239125
81	7256688
82	147481
83	7259443
84	7258072
	725811
85	7256271
86	7255992
87	7258468
88	72599430
89	7259496
90	7256495
91	7256705
92	7257898
93	1219174
94	1219173
95	1217820
96	7258756
97	7257415
98	7255984

554691
1911095
1912757
1912900

120151
555348
7259663
7258813
7240138

7257239
414237
7258815
7259626

SERVICE PARTS LIST (Cont.)

Illus. No.Production Part No.	Service Part No.	Description	Tubes

Miscellaneous Electrical	
7259447	Control - Volume, Tone and Switch Volume Control Tone Control
	Switch
44	Lamp-Dial Light
7258146	
7258941	Speaker - 6×9 P.M.
7259419	Transformer - Input
7255881	Transformer - Output
8542	Transformer - Power
MECHANICAL PARTS	

Chassis	
7258434	Connector "A" Lead
7256742	Connector - Antenna
7236279	Socket-Octal Tube
7239125	Socket - Vibrator
Tuner	
7256688	Backplate - Pointer
147481	Ball Bearing Pkg. (12)
7259443	Bushing and Manual Drive Shaft
7258072	Clutch Disc-Driven
7258211	Core Guide Bar - Parallel
7256271	Pointer Connecting Link
7255992	Spring - Pointer Connecting Link
7258468	Core - Powdered Iron
7259429	Escutcheon Assy.
7259430	Dial
7259496	Dial Backplate
7256495	Gear and Bushing - Clutch
7256705	Gear and Bracket - Worm
7257898	Pointer Assy.
1219174	Pointer Tip Pkg.
1219173	Push Button and Slide Assy.
1217820	Socket-Dial Light
7258755	Spring-Clutch
7257415	Spring-Core Bar Connecting Link
7255984	Spring - Slide Return

INSTALLATION PARTS

554691	"A" Lead, Condenser, and Fuse Connector, Male
6016	Condenser-"A" Lead
6030	Condenser-Generator
6030	Condenser-Ignition Coil
6030	Condenser - Voltage Regulator
120151	Fuse-15 Amps
555348	Hook Ground Clip
7259663	Knob Control
7258813	Knob-Tone Control and Dummy
6013	Static Collector
7257239	Suppressor-Distributor
414237	Suppressor-Insulator
7258815	Trim Plate (98 series)
7259626	Trim Plate (76 and 88 series)

GENERAL

MOUNTING-982582 - All 1950-76 \& 88 Series Oldsmobile Cars. 982583-All 1950-98 Series Oldsmobile Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical Permanent Magnet.
TUNING-Manual and Electronic.
ANTENNA TRIMMER COMPENSA.
TION-For Antennas Between $0.000050-0.000070 \mathrm{Mfd}$.
TUNING RANGE—540-1600 KC.

PUSHBUTTON SET-UP

No Pushbutton Set-up is required. However, the number of stations on which the tuner will stop can be regulated by use of the Sensitivity Control.

MODELS $\begin{aligned} & 982582 \\ & 982583\end{aligned}$

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE:

NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given-(Notice that the primary of the 2nd I.F. is aligned first.)

Output Meter Connection
VTVM From [픅 To Chassis (see parts layout page 2)
Generator Return
Dummy Antenna \qquad In Series With Generator
Volume Control \qquad Maximum Volume
Tone Control \qquad
\qquad
 Treble
Generator Output Not to Exceed 2 Volts at VTVM

| Step | Dummy Antenna | Connect To | Signal
 Generator
 Frequency | Tune Receiver
 To | Adjust in
 Sequence
 For Max.
 Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1 mfd | 6SA7 Grid (Pin 8) | 260 KC | $*$ High Frequency Stop | A, B, C, D |
| 2 | 0.000068 mfd | Antenna Connector | 1615 KC | High Frequency Stop | $* * \mathrm{E}, \mathrm{F}, \mathrm{G}$ |
| 3 | 0.000068 mfd | Antenna Connector | 600 KC | Signal Generator Signal | J, K |
| 4 | 0.000068 mfd | Antenna Connector | 1615 KC | Signal Generator Signal | F, G |
| 5 | 0.000068 mfd | Antenna Connector | 1000 KC | Signal Generator Signal | $* * * L$ |

[^6]

PAGE 21-58 UNITED MOTORS

MODELS 982582,
982583, Oldsnobile

ESCUTCHEON CROSS-SECTION

982583, Oldsmobile

Illus. No.	Production Part No.
92	1216157
93	1216154
94	1216157
	1217690
	7237752
	1219485
	1219496
	1213793
112	1211924
$112 A$	
$112 B$	7259352
$112 C$	7259034
111	
110	7259021
113	7242204
114	7259009
125	7259164
115	7258146
116	7259011
117	7259012
118	7259324
119	7259375
120	7239124
121	

	7256742
	1217820
	7236279
	7259307
	7258073
	7239125
126	7259201
127	7259178
128	187189
129	7259287
130	7259344
131	7259496
132	7259017
133	1219610
134	7256688
135	1219174
136	7259100
137	7259207
138	7259055
139	1219611
	7259028
	7259125
	7259111
140	7256121
141	7259026

554691
1911095
1912757
1912900
555348
414237
7257239
120151
7259663
7259007
7259008
7240138
7258815
7259626

SERVICE PARTS LIST
Service
Part No. Description

$\begin{array}{cc}\text { Miscellaneous Electrical } \\ 7259352 & \text { A Lead and Fuse Holder Assy. }\end{array}$
$\begin{array}{ll}7259352 & \text { A Lead and Fuse Holder Assy. } \\ 7259034 & \text { Control - Volume - Tone and Switch }\end{array}$ Volume Tone Switch
Control-Sensitivity
Delay Adjustor
Relay
Solenoid
Solenoid Plunger Assy.
Speaker
Switch - Tuner Return
Switch - Station Selector
Transformer - Input
Transformer- Output
Transformer - Power
Vibrator - Non-Synchronous
MECHANICAL PARTS
Chassis

7256742	
1217820	
7236279	
7259307	
7258073	
7239125	
	Tuner
7259201	
7259178	
44	
7259287	
7259344	
7259496	
7259017	
1219610	
7256688	
1219174	
7259100	
7259207	
7259055	
1219611	
7259028	
7259125	
7259111	
7256121	
7259026	

INSTALLATION PARTS
554691 "A" Lead \& Condenser Assy.
6030 Condenser - Generator
$6030 \quad$ Condenser-Ignition
$6030 \quad$ Condenser - Regulator
555348 Clip-Hood Bonding
414237 Distributor - Insulator Elbow
7257239 Distributor.Suppressor
120151 Fuse - 15 Amps
7259663 Knob.Tuner
$7259007 \quad$ Knob - Tone Control
7259008 Knob - Sensitivity Control
6013 Static Collector
$7258815 \quad$ Trim Plate 98 Series
$7259626 \quad$ Trim Plate -88 and 76 Series

GENERAL

MOUNTING—All 1950 Chevrolet Cars.
TUBES-Five, plus rectifier.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSA-
TION-For Antennas Between $0.000058-0.000090 \mathrm{Mfd}$.
TUNING RANGE-550-1600 KC.
PUSH BUTTON SETUP PROCEDURE
Pull Push Button down and out. Tune in desired station manually. Push button all the

MODEL 986388 way in.

ALIGNMENT PROCEDURE

Output Meter Connections
Generator Return
Dummy Antenna
Volume Control Position
Tone Control Position
Generator Output

Steps	Series Condenser or Dummy Antenna	Connect Signal Generator to	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence For Max. Output
1	0.1 Mfd.	6BE6 Grid (Pin \#7)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	High Frequency Stop	$\cdots \mathrm{E}, \mathrm{F}, \mathrm{G}$
3	0.000068 Mfd .	Antenna Connector	1400 KC	Signal Generator Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Generator Signal	L**

*Before making this adjustment check mechanical setting of oscillator core "H." The rear of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessary, first dissolve the glyptal seal on the core studs. Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or household cement after alignment.
** L is the pointer adjustment screw which is on the connecting link, between the pointer assembly and core guide bar (See tuner Dwg.). It should be adjusted so that when looking directly at the dial the pointer is $3 / 16^{\prime \prime}$ below the 1000 KC mark. This setting is to give the correct relationship between the pointer and the dial when the radio is installed in a car.
With the radio installed and the car antenna plugged in adjust the antenna trimmer "G" for maximum volume with the radio tuned to a weak station near 1400 KC (see sticker on case).

R.F. UNIT

AUDIO UNIT

PARTS LAYOUT - CHASSIS VIEW

R.F. UNIT

aUDIO UNIT

TUBE SOCKET VOLTAGE CHART

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram on page 3 are shown above. The blank spaces are provided so the service man may fill in the actual voltage readings as taken with his own equipment. Λ normal operating radio should be used for these measurements.

```
VOLTMETER RESISTANCE ........OHMS PER VOLT
READINGS TAKEN WITH _.....VOLTS AT SPARK PLATE
```

Voltage measured from socket terminals to chassis and are positive unless marked otherwise.

PAGE 21-64 UNITED MOTORS
MODEL 986388,
Chevrolet

©John F. Rider

UNITED MOTORS PAGE 21-65
MODEL 986388,

LSIT SLAYV GOINYGS

Illus. No.	Production Part No.	Service Part No.	Description
Miscellaneous Electrical Parts			
$\begin{aligned} & 46 \\ & 46 \mathrm{~A} \\ & 46 \mathrm{~B} \\ & 46 \mathrm{C} \end{aligned}$	7258084	7258084	Control-Volume, Tone and Switch Volume Control Tone Control Switch
47	115273	51	Lamp-Dial
48	7242204	7242204	Sensitivity Control
49	7249381	6111	Speaker-6x9 Elliptical PM
50	7256009	7256009	Transformer - Output
51	7258747	7258747	Transformer - Power
52	7239124	8542	Vibrator - Non-synchronous
MECHANICAL PARTS			
Chassis - RF Unit			
54	7258022	7258022	Cable
55	7239475	7239475	Socket Antenna
50	1218724	1218724	Socket-Dial Light
	7258073	7258073	Socket-7 Pin Miniature
Chassis - Audio Unit			
58	7258111	7258111	Plug. Cable
	7236279	7236279	Socker- Octal Tube
	7239125	7239125	Socket-Vibrator
Tuner			
62	147481 7258608	147481 7258608	Ball Bearings (10)
63	7258608	7258608	Drive Shaft - Manual
64	7258203	7258203	Connecting Link - Core Bar
65	7258206	7258206	Core Guide Bar - Core Bar
66	7256271	7256271	Connecting Link Pointer
67	7255992	7255992	Spring-Pointer Connecting Link
68	7258468	7258468	Core - Iron Tuning
69	7258963	7258963	Escutcheon
70	7258002	7258002	Dial
72^{71}	7258962	7258962	Dial Backplate
72 73	7259480	7259480	Gear and Bushing
73	7258052	7258052	Gear and Bracket - Worm
74	7258059	7258059	Pointer Assy
	1218848	1218848	Pointer Tip Package
75	7258961	7258961	Pointer Backplate
76	1219558	1219558	Push Button and Slide No. 1
76 78	1219559 1219560	1219559 1219560	Push Buton and Slide No. 2
			Slide No.
79	1219561	1219561	Push Button and Slide No. 4
80	1219562	1219562	Push Button and Slide No. 5
81	7258756	7258756	Spring Clutch
82	7257415	7257415	Spring Core Bar Connecting Link
83	7255984	7255984	Spring Pushbutton Return

© John F. Rider

PAGE 21-66 UNITED MOTORS

MODEL 986389 ,

GENERAL
MOUNTING
TUBES
SPEAKER

TUNING

All 1950 Chevrolet Cars Five, plus Rectifier

6" Electro-Magnetic or 6 " Permanent Magnet

ANTENNA TRIMMER COMPENSATION
-For Antennas Between $0.000060-0.000090$ Mfd.
TUNING RANGE 535 - 1610 KC .

ALIGNMENT PROCEDURE:

Output Meter Connection	Across Voice Coil
Generator Return	To Receiver Chassis
Dummy Antenna	In Series With Generator
Volume Control Position	Maximum Volume
Tone Control Position	Treble
Generator Output	m for Readable Indication

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust In Sequence For Max. Output
1	0.02 Mfd	6BE6 Grid (Pin \#7)	257.5 KC.	High Frequency Stop	A, B, C, D
2	0.000065 Mfd	Antenna Connector	1610 KC	High Frequency Stop	E, F, C
3	0.000065 Mfd	Antenna Connector	1400 KC	Signal Generator Signal	H. J, K
4	0.000065 Mfd	Antenna Connector	1610 KC	High Frequency Stop	F, G
5	0.000065 Mfd	Antenna Connector	1400 KC	Signal Generator Signal	*Pointer Adjust. Screw

[^7]

PARTS LAYOUT-TUBE VIEW

PARTS LAYOUT-CHASSIS VIEW

PARTS LAYOUT-POWER UNIT

PAGE 21-68 UNITED MOTORS

TUBE SOCKET VOLTAGE CHART

POINTER STRING HOOKUP
MISCELLANEOUS ELECTRICAL PARTS

\therefore © $ั$

号薥
毕 \circ
$\frac{0}{3}$
$\frac{1}{4}$
1
0
0

ELECTRICAL PARTS
 范

MOUNTING-All 1950 Chevrolet Trucks. TUBES-Five, plus rectifier.
SPEAKER-6" $\times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING—Manual and 5 P. B. Mechanical. ANTENNA TRIMMER COMPENSA.

TION-For Antennas Between $0.000058 \cdot 0.000090 \mathrm{Mfd}$.
TUNING RANGE-550-1600 KC.
PUSH BUTTON SET-UP PROCEDURE
Pull Push Button left and out. Tune in desired station manually. Push button all the way in.

ALIGNMENT PROCEDURE

Output Meter Connections \qquad Across Voice Coil
Generator Return
To Receiver Chassis
Dummy Antenna
\qquad

Volume Control Position In Series With Generator

Tone Control Position
Maximum Volume
\qquad
Generator Output

Steps	Series Condenser or Dummy Antenna	$\begin{gathered} \text { Connect } \\ \text { Signal Generator } \\ \text { to } \end{gathered}$	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence for Max. Output
5	0.1 Mfd. 0.000068 Mfd. 0.000068 Mfd. 0.000068 Mfd . 0.000068 Mfd .	6SA7 Grid (Pin \#8) Antenna Connector Antenna Connector Antenna Connector Antenna Connector	$\begin{gathered} 260 \mathrm{KC} \\ 1615 \mathrm{KC} \\ 1000 \mathrm{KC} \\ 1615 \mathrm{KC} \\ 1000 \mathrm{KC} \end{gathered}$	High Frequency Stop High Frequency Stop Signal Generator Signal High Frequency Stop Signal Generator Signal	$\begin{gathered} \text { A, B, C, D } \\ { }^{*} \mathrm{E}, \mathrm{~F}, \mathrm{G} \\ \mathrm{~J}, \mathrm{~K} \\ \mathrm{~F}, \mathrm{G} \\ \mathrm{~L}^{* *} \end{gathered}$

*Before making this adjustment check mechanical setting of oscillator core "H." The rear of the core should be 1 gh" from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessary, first dissolve the glyptal seal on the core studs. Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or houschold cement after alignment.
$*$ L is the pointer adjustment screw which is on the connecting link, between the pointer assembly and core guide bar (See tuner Dwg.) It should be adjusted so that when looking directly at the dial the pointer is on the 1100 KC mark. This setting is to give the correct relationship between the pointer and the dial when the radio is installed in a car.
With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with

PARTS LAYOUT-CHASSIS VIEW

TUNER

ESCUTCHEON CROSS SECTION

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram on page 3 are shown above. The blank spaces are provided so the service man may fill in the actual voltage readings as taken with his own equipment. A normal operating radio should be used for these measurements.

VOLTMETER RESISTANCE
READINGS TAKEN WITH

Chevrolet

SERVICE PARTS LIST

Illus.	Production
No.	Part No.

Service
Part No.
Description
ELECTRICAL PARTS

1	7255738	7255738
2	7258914	7258914
3	7240251	7240251
4	7258914	7258914
5	7258911	7258911
6	7258188	1218725
7	7258198	1218726
8	7255912	7255912
9	7258554	1217846
10	7258554	1217846

Coils
Antenna Series Choke
Antenna
Antenna Spark Choke
R.F.
Oscillator
1st I. F.
2nd I.F
Hash Choke
"A" Spark Choke
"A" Spark Choke

Condensers	
7257959	Antenna Trinimer s Brkt.
E-503	. 05 mfd .400 V Tubular
G 680	000068 mid . Mica
7242454	Dual Trimmer
	R.F. Section
	Oscillator Secrion
G 390	. 000039 mfd . Mica
7257424	. 000180 mfd . Compensating
E 503	. 05 mfd . 200 V Tubular
E 502	. 005 mfd .600 V Tubular
1217848	Chassis Plate Cond.
M 908	Electrolytic
	20 mfd .25 V
	20 mfd .400 V
	20 mfd .400 V
E 102	. 001 mfd .600 V Tubular
E 503	. 05 mfd .400 V Tubular
E 202	.002 mfd .600 V Tubular
E 502	. 005 mfd .600 V Tubular
H402	. 004 mfd .800 V Tubular
1219869	Spark Plate Cond.
	Pilot Light Section
	"A" Lead Section
$\begin{array}{r} 1217848 \\ H 602 \end{array}$	Chassis Plate Cond.
	${ }^{0} 006 \mathrm{mfd}$. 1500 V Tubular
	Resistors
A 221	220 ohms 1/2W Insulated
A 225	2.2 megchins 1/2W Insulated
C 153	15,000 ohms 2W Insulated
B153	15,000 ohms 1 W Insulated
A 334	330,000 ohms 1/2W Insulated
A 223	22,000 ohins $1 / 2 \mathrm{~W}$ Insulated
A 105	1 megohm $1 / 2 \mathrm{~W}$ Insulated
A 473	47,000 ohms 1/2W Insulated
A 685	6.8 megohms 1/2W Insulated
A 224	220,000 ohms 1/2W Insulated
A 224	220,000 ohms 1/2W Insulated
C 331	330 ohms 1W Insulated
A 105	1 megohm 1/2W Insulated
B 221	220 ohms 1 W Insulated
1-C. 272	1800 ohms 2W wire wound (Replace with 2700
7B.562	2 W and 56001 W in parallel
5229	6SK7
5222	6SA7
5232	6SQ7GT
5241	6V6GT
5003	0Z4

SERVICE PARTS LIST

Illus. No.	Production Part No.
55	
55A	7256188
55B	
55 C	
57	7242204
58	125588
59	7259381
60	725609
61	72388124

Service
Part No. Description

Miscellaneous Electrical Parts	
7256188	Control-Volume, Tone \& Switch Volume Control Tone Control Switch
7242204	Control-Sensitivity
55	Lamp - Dial Light
6111	Speaker-6x9 Elliptical PM
7256009	Transformer - Output
7255881	Transformer - Power
8542	Vibrator

MECHANICAL PARTS

Chassis	
1217950	"A" Lead \& Fuse Holder
7256742	Connector - Antenna
1219619	Socket-Dial Light
7236279	Socket-Octal Tube
7239125	Socket-Vibrator
Tuner	
7255941	Backplate - Pointer
147481	Ball Bearings Pkg.
7258491	Bushing \& Drive Shaft Assy.
7258525	Manual Drive Shaft Assy.
7258072	Clutch Dise - Driven
7258203	Connecting Link
7258211	Core Guide Bar - Parallel
7256271	Conn. Link - Pointer
7255992	Spring-Conn. Link - Pointer
7258468	Core Assy. - Powdered Iron
7259759	Escutcheon Assy.
7259764	Dial
7255940	Dial Backplate - Upper
7256163	Dial Backplate-Lower
7256102	Gear \& Bushing-Clutch
7259755	Gear \& Bracket - Worm
7237172	Grommet- Osc. Coil Mtg.
7244021	Grommet - Ant. - RF Coil Mtg.
7251168	Grommet - "A" Lead
7256175	Pointer Assy.
1219618	Pointer Tip Pkg.
1217837	Push Button and Slide Assy.
7258756	Spring - Clutch
7257415	Spring-Core Bar Conn. Link
7255984	Spring-Slide Return

INSTALLATION PARTS

7257919	7257919	Condenser-Ammeter
1911095	6030	Condenser-Generator
1910147	6030	Condenser-Ignition Coil
1912900	6030	Condenser-Voltage Regulator
7256098	7256098	Escutcheon-Control Bushing
147685	147685	
7256148	7256148	Fuse-14 amps
7255935	7255935	Knob-Control
7255936	7255936	Knob-Dummy
7256466	7256466	Knob-Wing
		Spacer-Radio Mtg. - Lower
7255934	7255934	
494786	6009	Spacer-Radio Mig. - Upper
1887829	6003	Static Collector
1888204	1888204	Suppressor-Distributor

GENERAL

MOUNTING--All 1950 GMC Trucks.
TUBES—Five, plus rectifier.
SPEAKER-6 $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanical. ANTENNA TRIMMER COMPENSA.

TION-For Antennas Between $0.000058 \cdot 0.000090 \mathrm{Mfd}$.
TUNING RANGE— 550.1600 KC .
PUSH BUTTON SET-UP PROCEDURE
Pull Push Button left arad out. Tune in de. sired station manually. Push button all the way in.

ALIGNMENT PROCEDURE

Output Meter Connections
Generator Return
Dummy Antenna
Volume Control Position
Tone Control Position
Generator Output

Steps	Series Condenser or Dummy Antenna	Connect Signal Generator to	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence for Max. Outnut
1	0.1 Mfd.	6SA7 Grid (Pin $\# 8$)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	F Iigh Frequency Stop	*E, F, G
3	0.000068 Mfd .	Alitenna Connector	1000 KC	Signal Generator Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1000 KC	Signal Generator Signal	L**

*Before making this adjustment check mechanical setting of oscillator core "H" The rear of the core should be $1^{8} 5^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessary, lirst dissulve the glypral seal on the core studs. Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or household cement after alignment.
**L is the pointer adjustment screw which is on the connecting liak, between the pointer assembly and core guide bar (See tuner Dwg.) It should be adjusted so that when looking directly at the dial the pointer is at the 1100 KC mark. This setting is to give the correct relationship between the pointer and the dial when the radio is installed in a car.
With the radio installed and the car antenna plugged in adjust the antenna trommer " G " for maximum volume with the radio tuned to a weak station near 1400 KC (see sticker on case).

PARTS LAYOUT-TUBE VIEW

PARTS LAYOUT-CHASSIS VIEW

PAGE 21-78 UNITED MOTORS

SERVICE PARTS LIST

Illus. Production
No.
Part No.

SERVICE PARTS LIST

Illus. No.	Production Part No.	Service Part No.	Description
	Miscellaneous Electrical Parts		
$\begin{gathered} 55 \\ 55 \mathrm{~A} \\ 55 \mathrm{~B} \\ 55 \mathrm{C} \end{gathered}$	7256188	7256188	Control-Volume, Tone \& Switch Volume Control Tone Control Switch
56	7242204	7242204	Control-Sensitivity
57	125588	55	Lamp - Dial Light
58	7259381	7259381	Speaker-6x9 Elliptical PM
59	7256009	7256009	Transformer-Output
60	7255881	7255881	Transformer - Power
61	7239124	8542	Vibrator
	MECHANICAL PARTS		
	Chassis		
65	7256250	1217950	"A" Lead \& Fuse Holder
56	7256742	7256742	Connector - Antenna
67	1219619	$\begin{aligned} & 1219619 \\ & 7236279 \end{aligned}$	Socket-Dial Light Socker-Octal Tube
	$\begin{array}{r} 7236279 \\ 7239125 \end{array}$	$\begin{array}{r} 7236279 \\ 7239125 \end{array}$	Socket-Vibrator
75	Tuner		
	7255941	7255941	Backplate-Pointer
	147481	147481	Ball Bearings Pkg.
76	7258491	7258491 7258525	Bushing \& Drive Shaft Assy. Manual Drive Shaft Assy.
78	7258072	7258072	Clutch Dise-Driven
79	7258203	7258203	Core Guide Bar-Parallel Conn. Link - Pointer Spring-Conn. Link - Pointer Core Assy.- Powdered Iron
80	7258211	7258211	
81	7256271	7256271	
82	7255992	7255992	
83	7258468	7258468	
$84{ }_{85}$	72597987259799	$\begin{gathered} 7259798 \\ 7259799 \end{gathered}$	Escutcheon Assy. Dial Dial Backplate-Upper Dial Backplate - Lower
86	7255940	7255940	
87	7256163	${ }_{7256102} 72563$	
88	7256102	7256102	Gear \& Bushing - Clutch
89	7259755	7259755	Gear \& Bracket - Worm Grommet - Osc. Coil Mtg. Grommet - Ant. - RF Coil Mtg. Grommet - "A" Lead Pointer Assy. Pointer Tip Pkg.
	7237172	7237172 7244021	
	$\begin{aligned} & 7244021 \\ & 7251168 \end{aligned}$	7244021 7251168	
90	$\begin{aligned} & 7256175 \\ & 1219618 \end{aligned}$	$\begin{aligned} & 7256175 \\ & 1219618 \end{aligned}$	
	1217837	1217837	Push Button and Slide Assy. Spring - Clutch Spring - Core Bar Conn. Link Spring - Slide Return
92	7258756	7258756	
93	7257415	7257415	
94	7255984	7255984	
		INSTALLATION PARTS	
	7257919	7257919	Condenser - Ammeter Condenser - Generator Condenser - Ignition Coil Condenser - Voltage Regulator Escutcheon-Control Bushing
	1911095	6030	
	1910147	6030	
	1912900	6030	
	7256098	7256098	
	147685	147685	Fuse - 14 amps Knob - Control Knob - Dummy Knob-Wing Spacer - Radio Mtg. - Lower
	7256148	7256148	
	7255935	7255935	
	7255936	7256466	
	7256466		
	7255934 494786	7255934 6009	Spacer-Radio Mtg. - Upper Static Collector Suppressor - Distributor Rubber Nipple
	1887829	6003	
	1888204	1888204	

GENERAL

MOUNTING--All 1950 Cadillac Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 P.B. Mechanical.
ANTENNA TRIMMER COMPENSA. TION - 0.000060-0.000035 Mfd.

TUNING RANGE-550-1600 KC.
PUSHBUTTON SET-UP
Pull pushbutton to the right and out. Tune in desired station manually. Push button all the way in.

ALIGNMENT PROCEDURE:

Output Meter Connection
Signal Generator Return
Dummy Antenna
Volume Control
Tone Control
Generator Output

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1 2 3 4 5	$\begin{aligned} & 0.1 \mathrm{Mfd} . \\ & 0.000068 \mathrm{Mfd} . \\ & 0.000063 \mathrm{Mfd} . \\ & 0.000068 \mathrm{Mfd} . \\ & 0.000068 \mathrm{Mfd} . \end{aligned}$	6SA7 Grid (Pin \#8) Antenna Connector Antenna Connector Antenna Connector Antenna Connector	$\begin{array}{r} 260 \mathrm{KC} \\ 1615 \mathrm{KC} \\ 1430 \mathrm{KC} \\ 1615 \mathrm{KC} \\ 1000 \mathrm{KC} \end{array}$	High Freq. Stop High Freq. Stop Signal Gen. Signal High Freq. Stop Signal Gen. Signal	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \\ * \mathrm{E}, \mathrm{~F}, \mathrm{G} \\ \mathrm{~J}, \mathrm{~K} \\ \mathrm{~F}, \mathrm{G} \\ \mathrm{~L} * * \end{gathered}$

*Before making this adjustment check the mechanical setting of the oscillator core "H" The slotted end of the cor should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). If adjustment is necessary, be surc to first dissolve the glyptal seal on the corc studs. Core adjustments are made from the mounting end of the coil form with an insulated screwdriver, and core studs should be re-sealed with glyptal or household cement after alignment.
*ik"L" is the pointer adjustment screw on the pointer connecting link (See tuner drawing). Adjust so pointer reads 1000 KC (on the " 10 " calibration mark).
With the radio installed and the car antenna plugged in adjust antenna trimmer "G" (See sticker on case) for maximum volume with the radio tuned to a weak station near 1400 KC .

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown above. The blank spaces are provided so that the serviceman may fill in actual voltage readings as taken with his own equipment. A normal operating radio should be used for these measurements.

$$
\begin{gathered}
\text { Ohms Per Volt. } \\
\text { Volts at Spark Plate. }
\end{gathered}
$$

All voltages measured from socket terminals to chassis.

© John F. Rider

	\therefore 응 ～n min ヘヘペ			$\begin{aligned} & \text { finNm } \\ & \text { NNNN } \\ & \text { NNN } \\ & \text { NNNN } \\ & \text { NNNN } \end{aligned}$			Ningoo 	ベnnoo ぶヘnNN 	
						い゙べいでへ	诠会的号	式Nôtu	\bigcirc

Miscellaneous Electrical

$\sim n$
\sim
\sim
\sim
\sim
\sim
\sim
∞
+
+
\sim
\sim
\sim

mosN
No
0∞
on
NN
N
N 7239124

SLZVd TVOINVHOGW
Chassis
Chassis
9475

Bushing and Manual Drive Shaft
Clutch Disc－Driven
Connecting Link－Core Bar
Core Guide Bar－Parallel
Pointer Connecting Link Pointer Connecting Link
Spring－Pointer Connecting Link Core－Powdered Iron Dial－Retainer Spring Escutcheon
Dial Glass

Dial Retainer Gear and Bushing Gear and Bracket－Worm
Plunger and Button－＂On．Off＂
Plunger and Butron．Tone Control
Pointer Assy． Pointer Assy．

Tuncr

		Tuncr
86	7258957	7258957
87	7258072	7258072
88	7258203	7258203
89	7258206	7258206
90	7256271	7256271
91	7255992	7255992
92	7258468	7258468
93	1219105	1219105
94	7258254	7258254
95	7258239	7258239
96	7258270	7258270
97	7258236	7258236
98	7258232	7258232
99	7256760	7256760
101	7256758	7256758
102	7258757	7258757
103	1219138	1219138
104	7258269	7258269

GENERAL

MOUNTING—All 1950 Cadillac Cars.
TUBES—Eight, Plus Rectifier.
SPEAKER - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.

TUNING--Electronic.

ANTENNA TRIMMER COMPENSA TION - $0.000060 \cdot 0.000085 \mathrm{Mfd}$.

TUNING RANGE-540-1600 KC.

pUSHBUTTON SET-UP

No pushbutton set-up is necessary. However, the number of stations on which the tuner will stop can be controlled by the use of the Sensitivity Control.

MODEL 7258865

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE:
NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given-(Notice that the primary of the 2nd I.F. is aligned first.)
Output Meter Connection VTVM From 2] To Chassis (see parts layout page 2)
Generator Return Receiver Chassis
Dummy Antenna
In Series With Generator
Volume Control \qquad Maximum Volume

Tone Control
Generator Output

Step	Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 mfd	6SA7 Grid (Pin 8)	260 KC	*High Frequency Stop	A, B, C, D
2	0.000068 mfd	Antenna Connector	1615 KC	High Frequency Stop	**E, F, G
3	0.000068 mfd	Antenna Connector	600 KC	Signal Gen. Signal	J, K
4	0.000068 mfd	Antenna Connector	1615 KC	Signal Gen. Signal	F, G
5	0.000068 mfd	Antenna Connector	1000 KC	Signal Gen. Signal	***L

[^8]
*Condenser and resistor are included in the 2nd I.F. Coil Assembly. ** Connect a VTVM from this point to ground for output indications
during alignment.

SERVICE PARTS LIST

Illus.	Production Part No.

16
17
18
19
20
$20 A$
$20 B$

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
258221
7257567
7238788
7238789
1219550
1218969
1218883
1219553
7230767
7233770
1219660
1219463
7238792
7237719
7240724

$35 A$ $35 B$
 35C

36
37
38
39
40
41
42
43
44

36	1209817
37	1219084
38	1218880
39	1218882
40	7259710
41	1217848
42	7240906
43	1219511
44	1219499
51	1211147
52	1211085
53	1213217
54	7240732
55	1213283
56	1211192
57	1212491
58	1214557
59	1215107
60	1213217
61	1215558
62	1213283
63	1213270
64	1214542
65	1214556
66	7241937
67	1219504
68	1213509
69	7241937
70	1213224
71	1213240
72	1214555
73	1214555
74	1213220
75	1214555
76	1214555
77	1213270
78	1213283
79	7239745
80	1213480
89	1213481
81	1213236
82	7237835
83	1213482
84	12132361
85	1237994
86	
87	
88	

Service
Part No.
Condensers
7258226
G 680
E 503
E 503
7242454

G 390
7257567
E 104
E 104
G 680
E 402
E 102
1219553
E 502
E 203
1219660
1219463
G 221
7237719
$M 908$

E 254
$H 602$
1218880
1218882
7259710
1217848
H 602
$E 504$
$G 101$

Resistors
A 225
B 103
A 101
A 334
A 155
A 223
1212491
A 334
A 100
A 101
1215558
A 155
A. 104

A 271
A 685
1219504
1213509
A 685
A 331
1213240
A 224
A 224
A 151
A 224
A 224
A 104
A 155
7239745
A 393
A 332
1213236
A 221
A 391
1213236
A 332
$\left\{\begin{array}{l}\text { C } 272 \\ \text { B } 562\end{array}\right.$
A 335

Description

Antenna Trimmer
0.000068 mfd . molded
0.05 mfd .200 V Tubular
0.05 mfd .200 V Tubular

Dual Trimmer
RF Section
Oscillator Section
0.000039 mfd . Ceramic
0.000260 mfd . Compensating
0.1 mfd .400 V Tubular 0.1 mfd .200 V Tubular 0.000068 mfd . Molded 0.004 mfd .600 V Tubular 0.001 mfd .600 V Tubular 0.002200 mfd .600 V Tubular 0.005 mfd .600 V Tubular 0.02 mfd .600 V Tubular 20 mfd . 50 V Electrolytic 0.008 mfd .600 V Tubular 0.000220 mfd . Molded 0.015 mfd .600 V Tubular Electrolytic

20 mfd .25 V
20 mfd .400 V
20 mfd .400 V
0.25 mfd .200 V Tubular 0.006 mfd .800 V Tubular 0.15 mfd .100 V Tubular 0.4 mfd .100 V Tubular Spark Plate and "A" Connector Chassis Plate Condenser 0.006 mfd .1600 V Tubular 0.5 mfd .100 V Tubular 0.000100 mfd . Molded
2.2 Megohms 1/2 W Insulated 10,000 Ohms 1 W Insulated 100 Ohms $1 / 2 \mathrm{~W}$ Insulated 330,000 Ohms $1 / 2$ W Insulated 1.5 Megohms $1 / 2$ W Insulated $22,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}$ Insulated 12,000 Ohms 2 W Insulated 330,000 Ohms 1/2 W Insulated 10 Ohms $1 / 2 \mathrm{~W}$ Insulated 100 Ohms $1 / 2 \mathrm{~W}$ Insulated 68 Ohms $1 / 2$ W Insulated 1.5 Megohms $1 / 2$ W Insulated 100,000 Ohms 1/2 W Insulated 270 Ohms $1 / 2 \mathrm{~W}$ Insulated 270,000 Ohms $1 / 2 \mathrm{~W}$ Insulated $6.8 \mathrm{Megohms} 1 / 2 W$ Insulated 1600 Ohms $1 / 2 \mathrm{~W}$ Insulated 56,000 Ohms 1 W Insulated 6.8 Megohms $1 / 2$ W Insulated 330 Ohms $1 / 2$ W Insulated 2700 Ohms $1 / 2 \mathrm{~W}$ Insulated 220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated 220,000 Ohms $1 / 2$ W Insulated 150 Ohms $1 / 2 \mathrm{~W}$ Insulated 220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated 220,000 Ohms 1/2 W Insulated 100,000 Ohms 1/2 W Insulated 1.5 Megohms 1/2 W Insulated 430 Ohms 1 W Wire Wound Insulated 39,000 Ohms $1 / 2$ W Insulated 3300 Ohms 1/2 W Insulated 1200 Ohms $1 / 2 \mathrm{~W}$ Insulated 220 Ohms $1 / 2 \mathrm{~W}$ Insulated 390 Ohms $1 / 2 \mathrm{~W}$ Insulated 1200 Ohms $1 / 2$ W Insulated 3300 Ohms 1/2 W Insulated 220 Ohms 1 W Insulated
1800 Ohms Wire Wound (Replace with 2700 olims
2 W and 5600 Ohms I W in parailel)
3.3 Megohms $1 / 2$ W Insulated
*This resistor was 2.2 Megohms until Serial \#62397-. Use above Value in Service.

Illus. No.	Production Part No.	SERVICE PARTS LIST	ST MODEL 725 Cadillac
		Scrvice Part No.	Description
		Resistors (Continued)	
*90	* 7231539	\%7231539	13,000 Ohms 1 W Insulated
91	1213271	1213271	120,000 Ohms 1/2 W Insulated
92	1216157	B 473	47,000 Ohms 1 W Insulated
93	1216154	1216154	6800 Ohms 1 W/ Insulated
94	1216157	B 473	47,000 Ohms 1 W Insulated
		Tubes	
	1217690	5252	6BA6
	7237752	5222	6SA7
	1218505	5262	6AV6
	1219484	5278	6AQ7GT
	1213793	5241	6V6GT
	1217924	5003	074 Rectifier
	1219485	5328	$12 \mathrm{AU7}$
		Miscellaneous Electrical P	Parts
110	7259408	7259408	Adjuster Cathode Relay
111	7259239	7259239^{*}	Control - Tone
112	7259240	7259240	Control-Volume, Sensitivity Switch
112 A			Volume Control
112 B			Switch
112 C			Sensitivity Control
113	7259009	7259009	Relay
114	1219661	1219661	Solenoid
115	7258488	7258488	Speaker 6×9 Elliptical PM
116	7259011	7259011	Switch - Tuner Return
117	7259012	7259012	Switch. Station Selector
119	7259336	7259336	Transformer - Output
120	7259375	7255881	Transformer - Power
121	7239124	8542	Vibrator-Non-Synchronous
122	125588	55	Lamp - Dial Light
		MECHANICAL PARTS Chassis	
131	7259710	7259710	"A" Connector and Spark Plate
132	7258520	7258520	Antenna Connector
	7236279	7236279	Socket-Ocral Tube
	7259307	7259307	Socket-9 Pin Miniature Tube
	7258073	7258073	Socket-7 Pin Miniature Tube
	7239125	7239125	Socket - Vibrator
133	1219603	1219603	Socket - Dial Light
		Tuner	
141	7259201	7259201	Core - Iron Tuning
142	7259178	7259178	Core - Guide Bar
143	7259319	7259319	Dial - Calibrated
144	$\begin{aligned} & 7259531 \\ & 187189 \end{aligned}$	44	Dial Backplate Assembly Pilot Light
145	7258270	7258270	Escutcheon Assy.
146	7258236	7258236	Dial Glass
	7258232	7258232	Dial Glass Retainer (2)
148	1219610	1219610	Motor Gear Train
149	7259164	7259164	Plunger - Solenoid
150	1219604	1219604	Station Selector Bar Pkg. Station Selector Bar
	7259125	7259125	Switch Operating Collar
			Toggle Plate
	7259111	7259111	Spring (2)
	1216508	1216508	"C' Washer
151	7259100	7259100	Spring Clip
152	7257361	7257361	Spring - Vacuum Valve Anti-Ratte
	7258239	7258239	Spring. Calibrated Dial Retainer
154	7258260	7258260	Vacuum Valve
	7259264	7259264	Vacuum Valve Shaft
155	7259055	7259055	Spring - Motcr Power
		INSTALLATION PARTS	
	7258542	7258542	"A" Lead Assy.
	7240138	6013	Static Collector
	1911095	6030	Condenser - Gencrato
	1910147	6030	Condenser - Ignition Coil
	7259510	7259510	Escutcheon - Sensitivity Control
	7259509	7259509	Escutcheon - Tone Control
	147685	147685	Fuse - 14 Amperes
	7242024	7242024	Fuse Holder Complete
	7259369	7259369	Knob - Control
	7259508	7259508	Knob - Sensitivity Control
	7259507	7259507	Knob - Tone Control
	7259514	7259514	Spring - Tonc Control Retainer
This resistor was 15,000 Chn		ial \#62300-Use above V	alue in Service.

This Model Same as Model 7258865, Except as Indicated by This Bulletin

GENERAL

MOUNTING-1950 Cadillac 75 Series Cars.
TUBES-Seven, Plus Rectifier and Trigger.
SPEAKER-6" $\times 9^{\prime \prime}$ Elliptical, Permanent Magnet, Front - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet, Rear.

PUSHBUTTON SET-UP-No pushbutton set-up is necessary. However, the number of stations on which the tuner will stop can be controlled by the use of the Sensitivity Controls.
ALIGNMENT PROCEDURE-Alignment procedure same as that of Model 7258865, Bulletin 6D-1060.

FUNCTIONAL OPERATION

The Cadillac remote control signal seeker type radio has all the controls of the Cadillac Syncro-Matic Model 7258865 Radio for front seat operation and in addition has a control head mounted in the left rear seat arm rest for rear seat operation. This remote control head has a switch, volume control, and station selector bution.
After the rear seat controi switch is turned on, only the rear controls operate the radio. The radio can not be operated from the front seat again until the rear control switch is turned off. Two controls that are always operated at the receiver are the tone control and the antenna control.
This radio operates from the front instrument panel in exactly the same manner as the 7258865 Model except for a front speaker switch mounted on the lower edge of the instrument panel to the left of the stecring wheel. This switch can only be used when the rear control is in operation, and it gives the front seat occupants the choice of listening at a reduced volume from normal output to the stations selected by the person operating the rear selector button or completely disconnecting the front speaker.

THEORY OF OPERATION

The energizing of relays, illustration numbers 125 and "126, is accomplished by turning the rear control switch (123C) to to the "on" position. When this switch is turned on, the "A" voltage is applied across the relays, energizing the relays and closing the contacts to the rear controls. With the relays 125 and 126 energized, the rear seat controls are operative and not the front seat controls.
Once these relays are energized, the "A" supply is connected to the power transformer center-tap through contacts 1-2 and $3-4$ of relay 126 , regardless of the position of the front switch $(112 B)$; therefore the radio can not be turned off until the relays are de-energized by turning off the rear switch (123C). With the relays in the de-energized position, all controls are operative at the receiver, while all remote controls in the left rear arm rest are inoperative.

Relay leads' destinations and colors are to the respective contacts as numbered on the schematic.

PARTS LAYOUT - TUBE VIEW
**Connect a VTVM from this point to ground for output indications during alignment.

SCHEMATIC DATA

All voltages measured from sockets terminals to chassis with a $20,000 \mathrm{Ohm}$ per volt voltmeter. Measurements taken with no signal and 6.0 volts at spark plate. Oscillator grid voltage taken with the set tuned to 1000 KC . Tuner not seeking.

> Total "A" Drain 7.3 Amps.
> Total "B" Drain 67 MA .

Tolerance on voltages $\pm 10 \%$.
*_Indicates lead from tuner coil assy.
**_See Service Parts List for replacement.
\square-Colors of terminals on service part.
Note the red and black circuits are exactly the same as those of Model 7258865 . The blue circuit has been added so that the tuner can be controlled from the rear seat location. This circuit is switched in or out of control by the relays which are energized from the rear seat.

PAGE 21-94 UNITED MOTORS

MODEL 7259825,
Cadillac

CADILLAC REMOTE CONTROL SYNCROMATIC MODEL SERVICE PARTS LIST

The Service Parts List of the Cadillac Remote Control Syncromatic Radio is identical to the Cadillac Syncromatic Radio, Model 7258865 , except for the illustration numbers and parts listed below: Those parts marked with an asterisk $\left(^{*}\right)$ are changed from Model 7258865 -the others are added parts.

Illus.	ELECTRICAL PARTS	
No.	Production Part No.	Service Part No.
		Condensers

MECHANICAL PARTS

Chassis

$* 131$	7257891
157	7259946
158	1219682
159	1219679
160	7589122
161	7259510
162	7259369
163	1219688
164	1219686
165	7259944
166	7259943
167	7258498
	1219687
	7259125

7257891
A-Lead Assembly
Remote Control

7259946	Cable - Rear Seat
1219682	Plug and Shell Pkg.
1219679	Plug and Shell Pkg.
4589122	Escutcheon - Arm Rest
7259510	Escutcheon - Sensitivity Control
725950 S	Knob-Sensitivity Control
7259369	Knob Control
1219688	Plug. Front Speaker Switch
1219686	Socket Pkg. - Dial Light
7259944	Socket - Cable Plug
7259943	Socket - Cable Plug
7258498	Socket - Front Speaker Plug
1219687	Station Selector Button Pkg.
7259125	Push Button Assy.
	Retaining Ring
7256121	Washer
	Felt Washer
	"C" Washer

INSTALLATION PARTS

* 7259970

7259970
"A" Lead Assembly
$* *$ Located on the top of the hash cover.

[^0]: Resistance readings taken with voltonmyt connected between pin
 indicated and chassis frame．Values given are in ohmsexcept where indicated and chassis frame，Values given are in ohms
 K indicates times 1000 and M indicates times 1 megohm．

 All controls to the counterclockwise or off position．
 Range switch in FM position．

[^1]: Always give the part No. (No. printed on the part if different from that shown on this list), and the name of the part. When No. is not available, give complete description of part. Be sure to always give the Model No. and catalog No. The model No. will be found on either the metal plate at the rear of the chassis or on a printed label which may be on the chassis or cabinet.

[^2]: Note: Tubular condensers must be high temperature ($85^{\circ} \mathrm{C}$) wax type.

[^3]: *Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). If adjustment is necessary, be sure to first dissolve the glyptal seal on the core studs. Core adjustments are made from the mountings end of the coil form with an insulated screwdriver, and core studs should be re-sealed with glyptal or household cement after alignment.
 *" L " is the pointer adjustment screw on the pointer connecting link (See tuner drawing). Adjust so pointer reads 1000 KC (on the " 10 " calibration mark).
 With the radio installed and the car antenna plugged in adjust antenna trimmer " G " (See sticker on case) for maximum volume with the radio turned to a weak station near 1400 KC .

[^4]: *Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). If adjustment is necessary, be sure to first dissolve the glyptal seal on the core studs. Core adjustments are made from the mountings end of the coil form with an insulated screwdriver, and core studs should be re-sealed with glyptal or household cement after alignment.
 **"L" is the pointer adjustment screw on the pointer connecting link (See tuner drawing). Adjust so pointer reads 1000 KC (on the " 10 " calibration mark).

 With the radio installed and the cat antenna plugged in adjust antenna trimmer " G " (See sticker on case) for maximum volume with the radio turned to a weak station between 600 and 1000 KC .

[^5]: *Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of core should be $1 \frac{25}{32}$ " from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessary, first dissolve the glyptal seal on the studs. Core adjustments should be made with an insulated screwdriver and core studs should be re-sealed in place with glyptal or household cement after alignment.
 **" L ". is the pointer adjustment screw which is on the pointer connecting link (see tuner drawing) and should be adjusted so the pointer reads 1000 KC . (On first " 0 " of " 100 .")
 With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station near 1400 KC . (See sticker on case.)

[^6]: *To tune to high frequency, put a $0.070^{\prime \prime}$ feeler gauge (or bare \#13 wire) in slot against the high frequency stop. (See tuner pictures). Depress station selector bar and allow the planetary arm to run against the feeler gauge. Turn the radio off and then on.
 **Before making this adjustment, check the setting of oscillator core "H." The rear of the core should be $18 \frac{85}{25}$ " from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screwdriver. (It will be necessary to steady the core guide bar by applying a downward pressure at the antenna core end of the bar while making these adjustments.) If this adjustment is necessary, first dissolve the glyptal seal on the core stud and be sure to re-seal after making the adjustment.
 ***"L" is" the pointer adjustment screw on the end of the core guide bar-adjust so pointer reads 1000 KC .
 With the radio installed and the antenna plugged in, adjust the antenna trimmer " C " for maximum volume with the radio tuned to a weak station near 1400 KC (see sticker on case).

[^7]: *Refer to the Pointer String Hookup drawing
 This should be adjusted so the pointer reads 1400 KC .
 With the radio installed and the car antenna plugged in adjust the antenna trimmer " C " for maximum volume with the radio tuned to a weak station near 1400 KC .

[^8]: *To tune to high frequency, put a 0.070 " feeler gauge (or bare $\# 13$ wire) in slot against the high frequency stop. (See tuner picture). Depress station selector bar and allow the planetary arm to run against the feeler gauge. Turn the radio off and then on.
 **Before making this adjustment, check the setting of oscillator core "H." The rear of the core should be 1 得" from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screwdriver. (It will be necessary to steady the core guide bar by applying a downward pressure at the antenna core end of the bar while making these adjustments.) If this adjustment is necessary, first dissolve the glyptal seal on the core stud and be sure to re-seal after making the adjustment.
 "\%*"L" is the pointer adjustment screw on the end of the co:e guide bar-adjust so pointer reads 1000 KC .
 With the radio installed and the antenna plugged in, adjust antenna trimmer "G" (See sticker on case) for maximum volume with the radio tuned to a weak station near 1400 KC .

